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Abstract 

Remote sensing of tree/grass fractional cover using phenological 

signal decomposition of MODIS time series data 

Reliable assessments of tree/grass fractional cover in savanna using remote sensing are 

challenging due to the heterogeneous mixture of the two plant functional types (PFTs) 

and soil backgrounds. This thesis reduces this knowledge gap in the remote sensing of 

tree/grass fractional cover. Tree/grass dynamics in heterogeneous savanna ecosystems are 

assessed using time-series decomposition of MODIS data acquired from 2002 to 2015. 

The decomposition method follows a harmonic analysis and tests the harmonic terms for 

significance. Several scales of spatial and temporal variability are considered for these 

PFTs (for each field plot against 14 years dataset as well as for the whole study area). In 

most harmonic cycles, the tree greening-up period started earlier than grasses. While 

changes in tree cover are more gradual, grasses have high variability over time. The phase 

(R² = 0.60, slope = 1, RMSE = 12.52%), cycles (R² = 0.44, slope = 1.2, RMSE = 17.64%) 

and amplitude (R² = 0.36, slope = 0.83, RMSE = 16.28%) of the strongest harmonic terms 

show good estimate of tree cover. The estimates of tree cover from the simple linear 

regression of field data and dry season NDVIpixel/SAVIpixel images had good performance. 

The tree cover estimated using soil determining methods had an improved slope for NDVI 

and SAVI but yield slightly a high RMSE. A comparison of tree cover using Pearson’s 

correlation indicated strong agreement with LiDAR/SAR and Bucini woody cover maps. 

The errors, uncertainties and the challenges in discriminating and estimating trees and 

grasses using signal decomposition methods are discussed. Tree cover maps will be 

helpful for vegetation monitoring, climate change impact assessment and vegetation 

model validation. Finally, the techniques employed for the assessment of tree-grass 

mixtures in this study would be useful for earth observation especially where end-

members of the woody-herbaceous continuum are being considered.  
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1.1 Research context 

Large-scale information on plant functional types (PFTs) composition of a landscape can 

reveal ecological processes leading to vegetation fluctuation and succession which may 

allow assessment of ecosystem vulnerability (Lu et al., 2003, Smith et al., 2014a, Smith 

et al., 2014c). PFTs uses structural, physiological and phenological features to group plant 

species in terms of their response to environmental conditions and determine their impact 

on the ecosystem function (Ustin and Gamon, 2010). The monitoring of long-term 

changes in the tree/grass cover in savannas is required for an assessment of the 

ecosystems processes, biosphere-atmosphere transfer (e.g. hydrology) and carbon budget 

(e.g. carbon sequestration potential) to understand a changing climate (Yang et al., 2012, 

Williams et al., 2007, Jin et al., 2013, Hoffmann and Jackson, 2000). Vegetation fraction 

datasets can be used for climate models and ecological models (Los et al., 2012). For 

example, information on tree/grass fractional cover is commonly used as an input to many 

ecological models in the context of ecosystem change for the assessment of fire, 

deforestation, degradation, urban extension and water management, etc., (Montandon and 

Small, 2008, Guan et al., 2012, Mathieu et al., 2013, Gessner et al., 2013, Villegas et al., 

2015, Giglio et al., 2006, Li and Strahler, 1985, DeFries et al., 2007, Los et al., 2012).  

Tree cover datasets exist at both coarse and moderate spatial resolutions (Los et al., 2012, 

Hansen et al., 2003b). The existing vegetation continuous fields (VCF) product from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) do not adequately capture 

woody species (DeFries et al., 2000, Hansen et al., 2003a). Despite the fact that 

information on vegetation fractional cover (FVC) provides immense benefit to ecological 

modelling and promotes understanding of ecosystem function in savanna (Hill and 

Hanan, 2010b, Verger et al., 2009a), spatially explicit information on tree fractional 

cover, for example, is rarely available in savannas due to mixtures of PFTs (Gessner et 

al., 2008, Gessner et al., 2013, Cho et al., 2010). Research in this direction is useful since 

changes in the woody cover may have profound effects and unpredictable consequences 

for ecosystem function (Ustin and Gamon, 2010, Jiménez-Muñoz et al., 2009). Some of 

the key requirements for effective measurement accuracy include a proper understanding 

of vegetation structure and phenological characteristics (Ustin and Gamon, 2010).  

Although several techniques are still being adopted for estimating tree/grass fractions, 

and their interannual variability, the complexity of tree/grass coexistence limits previous 
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approaches to derive spatially explicit information about heterogeneous landscapes 

(House et al., 2003, Gill et al., 2009, Brandt et al., 2016, Bonan et al., 2003). This is 

because trees and grasses in savannas are not distributed uniformly across the landscape 

but instead show different degrees of ‘clumping’ or ‘patchiness’ (Scholes and Archer, 

1997). Assessing the quantity and quality of PFTs could be better achieved by mapping 

tree/grass fractional cover as a better representation of these landscapes (Gessner et al., 

2013, Mairota et al., 2015). 

Many previous efforts have been made to quantify the tree/grass canopies using field-

based methods (Beale, 1973, Walker et al., 1972, House et al., 2003, Scholes, 2003). 

Vegetation indices such as Leaf Area Index (LAI), biomass, basal area, fractional cover, 

density, etc., are commonly measured or estimated using different methodologies based 

on ecological theories and sampling protocols. Although some models have empirical 

support, their validity as general mechanisms of tree/grass coexistence have been 

questioned purely due to the subsets of datasets and the consideration to limiting factors 

of establishing and assessing PFTs (Sankaran et al., 2004, House et al., 2003, Scholes, 

2003).  

There are many challenges which make the assessment of fractional vegetation cover 

using a field-based method limited. Some of these include the difficulty in sampling the 

number of species to be investigated, the impact of the sampling design itself and the 

challenges in defining the population under concern (Rocchini et al., 2015).  Challenges 

arise due to site-specific differences in vegetation distribution, probably a result of 

differences in species composition, soil types, changing climate and anthropogenic 

disturbances. Besides landscape factors, understanding characteristic differences in the 

biology of trees and grasses is very useful to ecosystem change modelling (Higgins et al., 

2011). This is typically challenging in a savanna ecosystem because of the heterogeneity 

in the distribution of trees and grasses and their differences in leafing periods and water 

and nutrient requirements. While this is problematic, there are pressing needs for reliable 

tree/grass information for model validation (Boke-Olén et al., 2016). Subsequently, a 

robust technique which could capture the spatial heterogeneity of PFTs is needed (Boke-

Olén et al., 2016). 

Remote sensing is one of the most cost-effective approaches with which to identify and 

predict changes in PFTs (Rocchini et al., 2015, Mairota et al., 2015). Advances in remote 
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sensing technology have increased our understanding of tree/grass structure, physiology 

and phenology, which yield insight into the concept of PFTs (Ustin and Gamon, 2010, 

Schmidtlein and Fassnacht, 2017). Remote sensing measurements in different spatial, 

radiometric and temporal resolutions offer a key source of updated, consistent and 

spatially explicit data on biophysical indices including Leaf Area Index, fraction of 

photosynthetic active radiation (fPAR), phytomass and canopy height,  for assessing 

PFTs (Avitabile et al., 2012). Remote sensing data are acquired from airborne and space-

borne sensors, from multispectral sensors to hyperspectral, at different wavelengths from 

visible to microwave, and at a range of spatial and temporal scales (Xie et al., 2008, Los 

et al., 1994). This provides a greater possibility for large area measurement, time series 

analysis to capture the spatial and temporal variability of the various PFTs and allow 

systematic observations at both local, regional and global scales (Ustin and Gamon, 2010, 

Zimmermann et al., 2007, Avitabile et al., 2012). Many efforts have been made previously 

using microwave (e.g. synthetic aperture radar such as Sentinel-1) and optical sensing 

(e.g. airborne LiDAR; passive multispectral such as Landsat) to characterise PFTs 

(Tucker et al., 1985, Ollinger, 2011, Balzter et al., 2007b, Khalefa et al., 2013, Tansey et 

al., 2004). Remote sensing measurements are therefore more advantageous than a field-

based method which usually extrapolates tree/grass biophysical variables at limited 

subsamples (House et al., 2003, Roy et al., 2014).  

Recent advances in remote sensing technology present opportunities to develop proper 

understanding and characterisation of PFTs. The technology is often linked to ecological 

theory considering structural, physiological and phenological traits of PFTs based on 

resource constraints. This idea is leading to an emerging hypothesis in remote sensing, 

referred to as optical types (Ustin and Gamon, 2010). The optical types relate to the 

assessment of PFTs based on optical principles, meaning PFTs distributed across spatial 

scales with variability in resource availability (e.g. moisture, nutrient, light, temperature) 

are detectable by remote sensing through radiative transfer and spectroscopy (Ustin and 

Gamon, 2010). This is because vegetation structure, biogeochemistry, physiology, and 

phenology have a strong influence on vegetation optical properties (Ustin and Gamon, 

2010, Ollinger, 2011, Alton et al., 2005). Consequently,  the reflectance properties of 

PFTs are not only influenced by the differences in fractional cover but also the nature and 

chemistry of the plants (Asner et al., 2011, Los et al., 2005).  
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Considerable efforts have been made using vegetation indices to characterise species 

based on their leaf area, biomass, fractional cover and physiological functioning (Myneni 

and Hall, 1995, Lotsch et al., 2003). From the space-borne optical sensors (e.g. NOAA 

AVHRR, NASA-MODIS), large measurements of satellite-derived parameters, such as 

biophysical and biochemical variables over the land surface, are being provided at very 

fine temporal frequencies. Satellite time series products relating to land surface 

phenology include indices of ‘greenness’, such as Normalised Difference Vegetation 

Index (NDVI), Soil Adjusted Vegetation Index (SAVI) and Enhanced Difference 

Vegetation Index (EVI). These are currently being utilised to extract phenology metrics 

for understanding climate change and biogeochemical models (Ma et al., 2013). Land 

surface phenology is defined as the spatiotemporal development of the vegetated land 

surface (De Beurs and Henebry, 2004).  

While phenology signals such as the NDVI are useful for vegetation characterisation, 

they do not separate trees and grasses, and they contain a bare soil contribution (Fuller et 

al., 1997, Boke-Olén et al., 2016, Ding et al., 2016: Montandon and Small, 2008). This 

means an increased uncertainty in the use of the vegetation index for image analysis and 

interpretation as trees and grasses can have different phenological cycles subject to 

differences in species types, locations and time (Boke-Olén et al., 2016). Another 

challenge is that remote sensing data itself can be affected by several factors such as signal 

contamination, sensor viewing geometry, and habitat type (Tucker et al., 1985, Yengoh 

et al., 2015, Cleland et al., 2007, Los et al., 2005). These pose significant challenges for 

PFTs characterisation using remote sensing. Hence, there is an increasing use of various 

approaches aiming to reduce uncertainty for PFTs characterisation using remote sensing. 

For example, signal decomposition techniques have been utilised to transform original 

satellite time series data to understand PFTs and ecosystem dynamics (Lu et al., 2003, 

Cleveland et al., 1990, Atkinson et al., 2012, Jakubauskas et al., 2001, Lhermitte et al., 

2011, Kostadinov et al., 2017). 

Fourier or harmonic analyses of a time series is the decomposition of time series data into 

the sum of the sinusoidal components, and the coefficients are the discrete transform of 

the series (Bloomfield, 2004). The Discrete Fourier Transform (DFT) is useful in 

quantifying phenological metrics from remote sensing data to characterise PFTs 

(Kostadinov et al., 2017). DFT presents an analytical way for transforming original data 
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into sinusoids in order to partition observations into specific components (Kong et al., 

2015, Thomson, 1982). The decomposed components derived from the phenology of 

vegetation provide important information on the PFT’s growing cycles (e.g. seasonal, 

annual and biannual signals and the timing of greening). Seasonal cycles are a key 

property of ecosystems (Kostadinov et al., 2017). The decomposed components can 

reflect the interannual variability of vegetation growing cycles driven by weather, fires 

and human activities among others. Signal decomposition can be applied to PFTs 

characterisation in the savanna ecosystem where higher inter-annual climatic variability 

and disturbances are more prominent (Ma et al., 2013). While signal decomposition is 

useful for identification, mapping, and modelling PFTs, a proper understanding of the 

satellite time series characteristics and ecosystems are fundamental (Lhermitte et al., 

2011, de Beurs and Henebry, 2010).  

It is obvious that remote sensing is one of the viable means for assessing and estimating 

vegetation phenology. From the literature cited above, it appears that remote sensing 

methods for tree/grass characterisation are many and varied; each has its strengths and 

weaknesses. In general, it should be noted that from the review of field-based methods 

and remote sensing approaches presented above, much has been done for the 

identification, modelling and mapping of PFTs in savannas as well as in many 

ecosystems. Yet, there is a wide range of opportunities for improvement. The techniques 

that would efficiently answer some of the pressing questions, especially regarding 

tree/grass characterisation using passive data, are not fully in place yet. 

This thesis aims to improve on existing harmonic analysis methods (Shatkay, 1995, 

Moody and Johnson, 2001) using satellite time series data on tree/grass phenology by 

estimating statistical significance using the Hartley test and correcting for multiple testing 

with the Bonferroni method (Hartley, 1949) and multitaper approach (Barbour and 

Parker, 2014), adding knowledge to the assessment of tree/grass dynamics, as well as 

estimation of their fractional cover in African savanna. The study estimated the seasonal 

cycle as amplitude and phase derived from the annual frequency over the entire time 

series data (14 years of MODIS NDVI). The use of dry season images from MODIS data 

(NDVI and SAVI) to estimate tree cover fractions is also investigated. Previous methods 

of determining soil from the NDVI/SAVI were employed for tree cover estimation due 

to uncertainty inherent in vegetation indices resulting from soil backgrounds (Ding et al., 
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2016: Montandon and Small, 2008). The study is presented as a novel remote sensing 

approach that can be in principle applied to the assessment of tree/grass phenology in 

savanna sites worldwide. 

1.2 Thesis structure 

This thesis comprises eight chapters. The following section provides a brief description 

of each chapter.  

• Chapter one introduces the problem and provides background information about 

the need for tree/grass estimates, discusses the limitations of field methods and 

advantages being offered by the remote sensing approaches. It also discussed 

uncertainty surrounding remote sensing data (e.g. vegetation index) especially for 

tree cover estimates in savannas. The importance of signal decomposition in the 

context of retrieving phenological cycles of PFTs (e.g. Fourier analysis) and soil 

determining methods (e.g. soil contribution in the NDVI) have been discussed 

briefly. 

• Chapter two reviews the literature on the concept of savanna and approaches to 

estimates of tree and grass fractions in savannas. The strength and weaknesses of 

field and remote sensing approaches were reviewed. A general review was made 

on the optical passive sensors (e.g. radiative transfer theory, MODIS VCF), 

LiDAR, and radar microwave remote sensing. Specifically, a review of remote 

sensing methods for signal decomposition of satellite time series data was 

considered in this chapter. Research gap, questions, and objectives were stated. 

This chapter formed a strong foundation upon which analyses in the subsequent 

chapters were based.  

• Chapter three presents a description of the study area and general methods. The 

chapter described how the harmonic analyses were applied for the decomposition 

of tree/grass phenology using MODIS time series data. Methods for pixel as well 

as image analyses were explained. However, not all methods employed in this 

study are explained in this chapter. Some methods are described in each analysis 

chapter as they are more specific. All datasets used in this study were outlined and 

discussed. 

• Chapter four presents pixel-based analysis for MODIS NDVI data (2002 to 2015) 

of twenty-eight field plot data collected from a field campaign in 2015. The 
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analyses estimated the tree/grass amplitude, number of cycles and phase values 

for each growing cycle that are statistically significant based on the Bonferroni-

Hartley test. The interannual variability of trees and grasses were assessed based 

on the annual NDVI of a 14-year data aggregated as one as well as for each 

analysis year separately. Tree/grass cover was estimated using phase and cycles 

as derived from the harmonic analysis. 

• Chapter five provides estimates of tree cover using amplitude, NDVIpixel, 

SAVIpixel and a field data collected from the field campaign in 2015. Detail 

description of the methods such as soil determining and regression analyses were 

provided in this chapter. Tree cover maps estimated with regression equations 

derived from different models were presented and explained. 

• Chapter six presents a validation of fractional tree cover estimated in chapter 5 

using field data on percent tree cover. A comparison of accuracy was made 

between MODIS NDVI harmonic, NDVIpixel, SAVIpixel, NDVI/SAVI (soil 

determining methods) tree cover maps and MODIS VCF using LiDAR-SAR tree 

cover and Bucini woody cover maps. A wide range of statistical tests were used 

to assess the level of uncertainty in the estimated tree cover. 

• Chapter seven presents an overarching discussion for the thesis and main thesis 

contribution, conclusion, limitations and future research direction. This section 

provides a summary of the overall analysis chapters and findings while referring 

to gaps, significance and novelty of the study.  
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Chapter 2 

 Approaches to tree/grass estimates in savannas (field and remote 

sensing methods) 
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2.1 Introduction 

This chapter begins by defining the concept of savanna, explaining the ecological threat 

(e.g. fires) and potentials of savanna ecosystems. It also highlights the gradual 

development of remote sensing technology to modelling of PFTs through satellites and 

airborne observations. The difficulties and challenges associated with some remote 

sensing techniques especially in estimating tree/grass phenological characteristics were 

highlighted. The advantages and gaps associated with signal decomposition methods on 

harmonic analysis (Fourier analysis) were identified. The research questions and 

objectives identified in the course of reviewing the literature were stated and formed the 

basis for the analyses in the subsequent chapters. 

2.2 The Savanna ecosystem 

A savanna is broadly defined as a grassy biome composed mainly of shrubs, herbs, 

grasses and scattered trees (Bond and Parr, 2010). Savanna is also termed as mixed tree-

grass communities consisting of mainly herbaceous systems and of a discontinuous 

woody cover (Sankaran et al., 2008). Dansereau (1957) defined savanna as "a mixed 

physiognomy of grasses and woody plants in any geographical area (Hill et al. 2011). 

These definitions imply that savanna vegetation cuts across different sets of global 

ecosystems. It represents one of the world’s most important terrestrial ecosystems, 

comprising up to 20% of the total global land surface depending on the definition. 

Savanna occupies nearly 50% of the African continent and one-third of the South African 

land area (Shackleton and Scholes, 2011).  

Savanna demarcation has however been a subject of disagreement among biogeographers 

and ecologists (Shackleton and Scholes, 2011). The extent or coverage of a savanna at a 

given location or region depends largely on the definition in use. Different classification 

systems use different parameters (e.g. tree/grass cover and density) for these definitions, 

and different thresholds for these parameters. This is due to savanna heterogeneity and 

diversity in species richness, and in the composition of both flora and fauna. This 

complexity makes it difficult to describe the global savanna biome. Figure 2.1 is a 

representation of global tropical and subtropical savannas constructed by the World 

Wildlife Fund (WWF) and based on terrestrial ecoregions of the world according to 
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species richness, endemism, higher taxonomic uniqueness and global rarity of the major 

habitat type, among other parameters. 

 

Figure 2. 1 global tropical and subtropical savannas by WWF (Hill et al., 2011) 

The heterogeneity of the savanna ecosystem is the result of inherently diverse ecology 

owing to striking variability of environmental indices such as rainfall, temperature, plant 

composition, topography, soils, fire and herbivores, etc., in this environment.  

The global distribution of tree/grass mixtures as revealed by the MODIS Vegetation 

Continuous Field (VCF) data reflects the global importance attached to savanna 

ecosystems (Figure 2.2). Savanna alone accounts for nearly 30% of the primary 

productivity of all terrestrial vegetation in the tropics (Ribeiro et al., 2013). Hence, 

savanna ecosystems have large carbon sequestration potential (Bombelli et al., 2009). 

Savanna ecosystems are also a major source of livelihood for many people across the 

landscape. For example, global tree/grass environments and savannas produce meat and 

milk to the value of $1.4 trillion annually. In the African savanna, cattle rearing is a major 

source of employment to a large number of labours which contribute substantially to 

revenue generation and Gross Domestic Product (GDP) (Thornton, 2010) 

Globally, savannas are facing ecological threats which, if properly handled, could result 

in harnessing its myriad of potential. This is because, the regions are characterised by 

vulnerable people who are mostly subsistence farmers. For instance, rapid population 

growth coupled with increased poverty, often leads to a high demand for agricultural land 

and large-scale deforestation due to biomass burning for charcoal and firewood 

extraction. In combination, these pressures lead to general land fragmentation and 

degradation; the effects of which are yet to be fully realised. Savanna accounts for nearly 

90% of the world global burnt area. In Africa, for instance, fire has caused carbon 

emissions of up to 1.03 ± 0.22 Pg C yr ˉ ¹, of which 90% is emanating from the burning 

of savanna and woodlands (Valentini et al., 2014). Savanna has a strong, inter-annual 

climatic variability which consequently affects livestock production, subsistence 

agriculture, tree/grass density, biomass, carbon and biogeochemical dynamics (Valentini 

et al., 2014).  
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Figure 2. 2: Global distribution of tree-grass mixtures based on classification according 

to MODIS Vegetation Continuous Field (VCF) data (Hansen et al., 2005) 

2.3 Field method for tree/grass modelling 

For estimating PFTs using the field method, vegetation indices such as Leaf Area Index 

(LAI), biomass, basal area, fractional cover and density etc., are commonly measured or 

estimated using different methodologies based on ecological theories and sampling 

protocols. Such methodologies are usually employed to assess tree/grass characteristics 

as a basis for model parameterisation.  However, most of field method (models) have 

been largely developed for forest ecosystems rather than savannas. Previous studies show 

that many studies in African savannas do not use allometric equations for the retrieval of 

tree/grass variables. The few that applied such equations are often concentrated in the 

narrowest of geographical regions, with sampled trees and huge inconsistences in 

methods, which might make the comparison of data very difficult. This gap was identified 

by Gibbs et al., 2007 and was also well acknowledged in the IPCC 2006 (Kamelarczyk, 

2009). 

Therefore, for a comprehensive understanding of this process, information at large spatial 

and temporal scales is needed. While a field experiments are being considered as the most 

accurate method for estimating tree/grass variables, often served as reference datasets for 

other modelling approaches, limited and short-term observations constrained their ability 

to capture spatial heterogeneity and enable comprehensive tree/grass modelling (House 

et al., 2003). Therefore, combined field studies and other modelling approaches will go a 

long way in providing an enabling platform with which to assess a tree/grass system in 

savannas. Specifically, the use of satellite remote sensing together with field studies could 

provide better opportunities for understanding tree-grass systems at a wide range of 

spatial scales. 

2.4 Remote sensing of tree/grass composition  

Satellites and airborne observations rely on the spectral reflectance signatures of 

vegetation to distinguish various PFTs characteristics (Chuvieco and Huete, 2010). All 

objects with a temperature above absolute zero (0 K or -273°C) absorb and emit energy 

from and to the atmosphere. The range of radiant energy is called the electromagnetic 
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(EM) spectrum. The magnitude of absorption and reflectance varies with objects due to 

differences of the radiant energy in wavelength or frequency. Signals acquired by the 

remote sensor from terrestrial objects enable analysts to characterise these objects by their 

behaviour of emittance over the spectral regions of the EM spectrum. Figure. 2.4 shows 

the electromagnetic spectrum with the visible spectrum highlighted (Chuvieco and Huete, 

2010, Lillesand et al., 2014).  

The visible (VIS) region (0.4 – 0.7µm) of the electromagnetic spectrum corresponds to 

the segment of EM that can be seen by human eye. It consists of three bands, the blue 

(0.4 – 0.5 µm), green (0.5 – 0.6 µm) and the red (0.6 – 0.7 µm). The near-infrared (NIR) 

region (0.7 – 1.2 µm) extends beyond the eye’s perception. It is one of the most useful 

regions for its ability to discriminate green vegetation. The mid-infrared (MIR) region 

(0.12 – 8 µm) is the transition between the NIR and the thermal infrared regions. It is 

known as the short infrared (SWIR). The thermal infrared (TIR) lies between 8 to 14 µm 

while the microwave region (>1mm) is the long wavelength which can penetrate cloud 

and dense forest canopies. Optical sensors operate within the visible, infrared and thermal 

portions of the EM spectrum, while radar wavelength is situated in the microwave region. 

LiDAR is an active sensor like radar, its pulses are in the range of visible and short 

infrared portions of the spectrum. Unlike the optical passive sensors, active sensors 

illuminate objects and detect the returns or backscatter (Lillesand et al., 2014, Chuvieco 

and Huete, 2010).   

 

Figure 2. 3: The electromagnetic spectrum with visible spectrum indicated (source: 

Chuvieco and Huete 2010). 

For a long time now, remote sensing studies have used measurements of spectral 

reflectance within visible and NIR regions to characterise vegetation (Chuvieco and 

Huete, 2010). This was made possible since spectral reflectance signatures of PFTs 

behave differently across the regions of electromagnetic spectrum. Many factors such as 

leaf type, leaf physiology, chlorophyll content, water content, plant stress and senescence 

influence spectral reflectance signatures of PFTs. The reflectance for both visible and 

SWIR spectrums is low due to high chlorophyll absorption by plants and high in the NIR 

due to individual leaves and whole plant canopies which strongly scatter NIR energy 

(Ollinger, 2011). Figure. 2.4 illustrates how the typical reflectance of green vegetation, 

dry vegetation and soil appear in different spectral wavelengths.  
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Figure 2. 4: typical spectral reflectance curves for green vegetation, dry vegetation, and 

soil (Source:(Clark, 1999) Adapted with the kind permission of Wiley and Sons inc) 

There are several attempts to describe PFTs from single to combinations of bands using 

remote sensing. Through different bands combinations, a range of vegetation indices are 

derived which usually enable more information on plant behaviour to be better assessed 

than in a single band.  In the context of the remote sensing of PFTs, Normalised 

Difference Vegetation Index (NDVI) is the most widely used (Archibald and Scholes, 

2007b, Gill et al., 2009, Lu et al., 2003, Ustin and Gamon, 2010). This index is derived 

from the combination of NIR and red bands:  

                                   NDVI =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑    
 

However, different sensor platforms ranging from optical to microwave systems have 

provided wider opportunities for the characterisation of the structure and function of 

various PFTs under different conditions. Key challenges in the use of satellite data for 

modelling PFTs include data type probably due to data processing, atmosphere, energy 

sources or sensor characteristics. Thus, trade-offs exist between datasets in terms of their 

applicability and usage. To better understand the dynamic of PFTs, various users of this 

data have since identified the suitability of different sensors and for assessment of 

different phenomena (Lillesand et al., 2014). However, the full range of opportunities 

provided by these sensors are still being explored. The next section discusses previous 
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research in remote sensing (the optical passive sensor and active such as radar and the 

LiDAR system) with specific consideration to the vegetation. 

2.4.1 Optical remote sensing 

Remote sensing data from optical passive sensors have been very useful for monitoring, 

analysing, and mapping temporal and spatial distribution of PFTs at both regional and 

global scales. The availability of remotely sensed time series satellite data covering more 

than three decades, provides a large data resource for PFTs characterization and 

measurement. Thus, the long-term history of the optical (passive) data archive has 

increased interest in the assessment physiological and biophysical characteristics of PFTs 

(Gitelson, 2004, Labrecque et al., 2006, Yang et al., 2012).  

The Landsat satellite, or Earth Resources Technology Satellite (ERTS 1) as it was then 

called, was first used for the development of the land cover classification system (with 

particular reference to North America) based on plants physiognomy types which 

correspond to 16 growth forms defined by Von Humboldt in 1807 (Ustin and Gamon, 

2010). This facilitates the rapid understanding of PFTs based on their biochemical 

composition and morphological structure. Since PFTs are composed of different growth 

forms, their signals as captured by sensors, would produce different characteristic 

reflectance patterns (e.g. very low reflectance in the NIR for developed forest compared 

to grasslands) making it possible to distinguish species types, to quantify fractional cover 

and estimate canopy structure. Since then, research on vegetation phenology using global 

weather satellites (e.g. AVHRR and MODIS) for monitoring climate responses has 

increased (Tucker et al., 1985, Tucker and Sellers, 1986). However, the discrimination of 

a mixture of several vegetation types within a pixel is a challenge in the application of 

remote sensing. 

Remotely sensed time series data is relevant for studying PFTs, because of their 

consistency and repeatability at a large spatial scale (Verbesselt et al., 2010). Despite their 

limitations due to the phenology itself, inter-annual climate variability, disturbance, 

signal contamination and sensor conditions, studies on the application phenology in 

ecology, agriculture, modelling climate and human-induced change have been widely 

published. The analysis of the NDVI, Fraction of Absorbed Photosynthetically Active 

Radiation (FAPAR) and Leaf Area Index (LAI) using time series satellite data from the 

Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imagery 
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Spectroradiometer (MODIS) and Landsat for detecting vegetation phenology has been 

applied to the estimation of net primary productivity (Tucker and Sellers, 1986, Reed et 

al., 1994), fire risk assessment (Hernandez-Leal et al., 2006), crop type discrimination 

(Mingwei et al., 2008), biosphere/climate feedbacks (Balzter et al., 2007a) and vegetation 

dynamics (Martínez and Gilabert, 2009, Verbesselt et al., 2010).  

The existing land cover products (those on tree/grass cover) ranging from local, regioal 

to global scale (DeFries et al., 2000, Hansen et al., 2000, Hansen et al., 2003a, Hansen et 

al., 2005a, Herold et al., 2008, Sexton et al., 2013) are still being utilised for a number of 

purposes such as global estimation of burnt area (Giglio et al., 2006), in addition to the 

mapping crop cycles (Li et al., 2014), and greenhouse gas emissions and deforestation 

(DeFries et al., 2007). However, there are inherent limitations and challenges in the 

application of these products for different purposes. Most of these products were derived 

from different datasets, modelling approaches, (e.g. spatial resolution) and contained 

different thematic classes.  

2.4.1.1 Radiative transfer theory 

Radiative transfer theory provides understanding on how light interacts with canopies 

(Chandrasekhar, 2013) . Since the development of radiative transfer theory, studies on 

radiative transfer modelling have been widely published (North et al., 2010, Alton et al., 

2005). The amount of radiant energy being transported in a specified frequency is affected 

by the nature of the surface configurations. The canopy architecture, soil scattering, and 

the effect of Bidirectional Reflectance Distribution Function (BRDF) are key elements 

being considered in remote sensing image interpretations.  

The canopy architecture could be described by three main structural parameters (the 

vertical leaf area density, the leaf normal orientation and the function of leaf spatial 

dispersion). The photons striking a canopy are either absorbed or scattered (Myneni et al., 

1989). For example, as explained earlier, the reflectance of vegetation in the visible and 

SWIR spectrums is low due to high chlorophyll absorption by plants and high in the NIR 

due to individual leaves and whole plant canopies which strongly scatter NIR energy 

(Ollinger, 2011).  

The soil scattering is usually induced by the variability of the soil structure, soil moisture, 

colour, organic matter, and surface roughness. The behaviour of the reflected light from 
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a soil surface lies on the nature of the surface and the amount of radiation incident upon 

the surface. Therefore, spectral behaviour of soil depends on the region of the 

electromagnetic spectrum (Fuller et al., 1997, Price, 1990, Baumgardner et al., 1986). 

Soil colour is one of the most useful characteristics for differentiating soil reflectance 

variation among soil types (Baumgardner et al., 1986). Although differences in soil 

reflectance depend on the soil types, the impact of soil moisture on reflectance could be 

higher than the soil categories. Soil moisture reflectance usually increases with decreasing 

soil moisture (Muller and Décamps, 2001). This means that mapping plant functional 

types using vegetation indices such as the NDVI need an account of soil contribution in 

each pixel. 

The surface reflectance which many remote sensing systems rely upon is directional, 

therefore is influenced by the incident solar and receiving detector angles and is a function 

of wavelength (Shell and James, 2005).  BRDF defines how light scatter when it contacts 

surface materials. The interaction of light depends basically on the physical 

characteristics of the light as well as the physical composition and characteristics of the 

matter. A BRDF is a function of incoming (light) direction and outgoing (view) direction 

relative to a local orientation at the light interaction point. The interaction of light with a 

surface is function of wavelengths and the nature of the surface being illuminated, certain 

portion of light may be absorbed, reflected and transmitted at varying degree (Wynn, 

2000). All objects on the earth surface indicate degree of spectral reflectance anisotropy 

when illuminated by the sunlight due to BRDF (Su et al., 2009). Fassnacht et al. (2016) 

defined anisotropy as the property of a natural object or phenomena being directionally 

dependent (Fassnacht et al., 2016). Los et al. (2005) explained that bi-directional 

reflectance distribution function (BRDF) can alters the seasonal and inter-annual 

variations of plants exhibited in satellite data which consequently can limit an effective 

interpretation of temporal variations in land-surface vegetation. Specifically, Los et al. 

developed a method to assess the bi-directional effects in AVHRR NDVI using a MODIS 

BRDF kernels (NDVI) data. The method apply correction to the AVHRR NDVI to a 

standard illumination and viewing geometry. The techniques reduces BRDF effects in 

AVHRR NDVI observations by about 50 to 85% (Los et al., 2005). 

Remote sensing methods for assessing PFTs must take account of these factors in 

savannas with complex vegetation structure (species composition and diversity), exposed 
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surface with varying degree of soil types and high interannual variability due to fires and 

deforestation (Bombelli et al., 2009).  Although radiative transfer modelling has 

contributed much to the understanding of canopy reflectance without the need for ground 

data (Alton et al., 2005), it should be noted that it is beyond the scope of this study. The 

principles behind radiative transfer theory are however acknowledged in the chosen 

techniques. 

2.4.1.2 MODIS Vegetation Continues Field (MODIS VCF)  

MODIS VCF is an Earth observation product of percent tree cover, percent non-tree 

vegetation (mostly herbaceous) and percent bare surface and is available at 250 m 

resolution provided by NASA, from the Land Processes Distribution Active Archive 

Centre (LP DAAC) available at http://e4ftl01.cr.usgs.gov/MOLT/. The variables, 

algorithms, relevance, and limitation of the product are briefly explained in the following 

sections; 

• Variables used for MODIS VCF products 

MODIS vegetation continuous (MODIS VCF) field is also called 

MOD44B as a standard MODIS product (Townshend et al., 2011, Hansen 

et al., 2000). The collection 3 of the MODIS VCF is 500 m and provides 

information on sub-pixel estimates of the proportional tree, herbaceous 

and bare surface cover for the year 2001. Collection 5 (V005) is provided 

at 250 m resolution containing information on tree cover only, from 2000 

to 2014 (Gessner et al., 2013). The version 0051 is the most recent version 

of this dataset (V0051) at the time of writing this thesis and provides 

estimates of percent tree cover, percent non-tree vegetation and percent 

bare surface of temporal coverage from 2000 to 2014 (on an annual basis). 

A global water mask is also included as an embedded ancillary layer. The 

primary target of MODIS VCF was to estimate tree cover greater than 5 

m in height.  

MODIS VCF is produced from 16 days composite MODIS surface 

reflectance (bands 1-7) and brightness temperature (bands 20, 31, 32). 

MODIS band 1-7 are corrected for atmospheric effect with some 

algorithms that uses aerosol and water vapour information by the sensor. 

http://e4ftl01.cr.usgs.gov/MOLT/
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There are 23, 16 days’ composite for each year of data which were further 

composited to 8 days per year such that cloud effect could be minimized.  

 

Phenology metrics were then derived from these MODIS surface 

reflectance data.  The phenology metrics used for MODIS VCF are 

independent of specific timing of vegetation dynamics (Hansen et al., 

2002). For instance, the metrics calculated from band 1-7 include 

amplitude of minimum and 5th darkest reflectance, Minimum reflectance, 

mean 3 darkest reflectance, reflectance at peak NDVI, maximum NDVI, 

mean of 3 highest NDVI values, mean of 5 highest NDVI values, Mean of 

8 highest NDVI values. The approach for deriving the metrics and training 

data is fully described in Hansen et al. (Hansen et al., 2002)  

• The algorithms  

Regression tree algorithm was used to produce MODIS VCF product. 

Regression tree is one of the machine learning algorithms which is being 

applied to remote sensing data to characterise global land surface. It is 

based on the principles that create a model to predict the value of a target 

variable based on several input variables. It is robust to handling nonlinear 

relationships within remotely sensed datasets (Hansen et al., 2002).  

The training datasets from previously VCF products were derived from 

Landsat 5, Thematic Mapper data of 1980’s. In this version, as training 

dataset is very crucial to regression tree algorithm, efforts have been made 

which provide completely a new training data that matched the acquisition 

dates of the MODIS data (2000 to present). The training dataset is created 

by a discrete classification of Landsat as a training dataset verified using 

IKONOS, Quick-bird and Google Earth (where tree crowns can be 

distinguished clearly) into four classes (0, 20, 50, and 80+). The training 

data at 30 m were then averaged to MODIS resolution of 250 m. 

The algorithm was run in three basic steps (sampling the inputs data under 

the training, creating the models and applying the models to the output). 

These processes were achieved using open-source software (Weka data 

mining software) as well as coding in C programming language. In step 1, 

30 independent samples were created from the training dataset. In step 2, 

The Weka data mining software is used for model creation which provides 
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30 independent regression trees through bagging (M5’ linear model 

regression tree algorithm). In step 3, the 30 independent models were 

applied to MODIS data which provides 30 independent results. These 

results were then averaged as one for every individual pixel. Detail 

explanations on MODIS continuous fields of vegetation cover algorithm 

is described in Hansen et al. (Hansen et al., 2002, Hansen et al., 2003). 

• The strength of the MODIS VCF product 

The MODIS product has been validated by the providers using limited 

amount of field data from two sites in Maryland, and three sites in Brazil, 

South America. Recent validation shows that the new (collection 5 VCF) 

product is significantly more accurate compared to ground based 

measurements of canopy cover with more than 50% improvement 

compared to the two old versions. The validation site in Maryland 

indicates a RMSE of 19.27% and 9.47%, and Mean Absolute Error of 

14.37% and 7.87% for the old and new products respectively. The 

providers have since encouraged validation of these products (for overall 

improvement in the VCF tree cover products) with available ground based 

validation data across the globe. 

Many previous studies have attempted to validate MODIS VCF product 

in different ecosystems. Sexton et al. (2012) who provide a global, 30-m 

resolution continuous fields of tree cover using Landsat and LiDAR to 

rescale MODIS vegetation continuous fields revealed that the Landsat-

based estimates maintained consistency with the MODIS VCF. An 

independent validation with LiDAR measurement show an RMSE 16.8% 

and 17.4% for MODIS and Landsat-based estimates respectively. 

However, the RMSE of MODIS was 3.3% higher than that of the Landsat 

estimates data in an agricultural region. Los et al. (2012) provides an 

estimates of vegetation height and vegetation cover fraction between 60˚ 

S and 60˚ N at 0.5˚ spatial resolution using Geoscience Laser Altimeter 

aboard the Ice Cloud and Land Elevation Satellite (ICESat GLAS) data 

collected from 2003-2009. The application of filter to the GLAS 

vegetation height increases the correlation with aircraft data from r = 0.33 

to r = 0.78. The GLAS product was compared globally with MODIS VCF 

data. The tree fractional cover calculated from the GLAS highly correlated 
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with the MODIS VCF (r = 0.76). Similarly, the bare soil fraction from the 

GLAS was also strongly correlated with MODIS VCF estimates of bare 

soil fraction (r = 0.65). 

i. The use of the multispectral bands, specifically designed for land cover 

monitoring, for the MODIS VCF is an improvement compared to the product 

derived from a single spectral reflectance. The use of multi-spectral bands also 

reduces background from adjacent pixels (Hansen et al., 2003b).  The spectral 

signatures allow for a robust vegetation mapping. For example, the mean red 

reflectance of the five darkest red composite values performed well for tree 

cover discrimination. Specifically, the  aggregate mean red reflectance value 

was found more robust in separating tree cover than any single composite red 

reflectance (Hansen et al., 2005b) 

ii. The use of regression tree algorithm as a nonlinear, flexible model provides 

opportunity for large area mapping with limited training datasets (Hansen et 

al., 2003b). 

iii. The validity of MODIS VCF product dataset for mapping percent tree cover 

has been proven in areas of dense tree cover in Zambia (Hansen et al., 2005b) 

• Limitations of MODIS VCF product 

Despite the strength of the MODIS VCF product in tree, non-tree, and bare 

surface characterisation as highlighted in the previous sections, there are 

associated shortcomings with the product in areas of mixed trees, shrub lands 

and herbaceous vegetation (e.g. savannas) (Gessner et al., 2013). The 

following are considered as limitations: 

i. The multi-temporal metrics applied in the MODIS VCF algorithm are not 

specific to vegetation dynamics. The use of multi-temporal metrics, which are 

independent of the specific timing of vegetation dynamics, for mapping PFTs 

may be limited in an ecosystem with a mixture of upper canopy, under-story, 

and bare soil. Although MODIS VCF algorithm works in a non-linear fashion, 

mapping tree/grass system in some ecosystem require important consideration 

in the specific periodicity of the PFTs phenology due to influence of bare soil, 

understory and sensor’s limitation (Los et al., 2005, Su et al., 2009).  
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The multi-temporal metrics used for MODIS VCF have their pros and cos in 

mapping savanna vegetation. For instance, the annual metrics such as 

maximum NDVI indicates a period when all PFTs type are in leaf. This metric 

may be more useful to forest ecosystem which are homogeneous and less 

complex. Hansen et al. (2005) noted that such composites perform well 

comparably to metrics in areas with a dominant phenological profile where 

common cover types share a common seasonal variation. Seasonal and inter-

annual variability of the PFTs and sensor viewing geometry can posed 

significant challenges in discrimination PFTs (Los et al., 2000, Los et al., 

2005). It has been observed that during the peak of the growing season 

grasslands are indistinguishable from woodlands, hence dry-season imagery 

may improve tree cover characterization in those regions (Hansen et al., 2002, 

Bucini et al., 2009, Bucini et al., 2010).  

ii. Underestimation of the low tree cover and overestimation of the dense canopy. 

The MODIS VCF (500 m resolution) has been assessed in western USA, a 

region spanning semi-arid deserts, sparse dry woodlands, and cool mesic 

upland forests by White et al.  (2005) using two independent ground-based 

tree cover databases. The results show overall RMSE at 24% for SWReGAP 

and 31% for ground-based Forest Inventory and Analysis (FIA) (1176 plots) 

and Southwest Regional GAP (SWReGAP) datasets (2778 plots) respectively. 

However, the RMSE for classes indicated a more positive values at > 10% 

cover than 15% for FIA and 12% for SWReGAP. At canopy cover >60% the 

error is high (49 for FIA and 44% for SWReGAP) (White et al., 2005). 

iii. Cloud cover: the influence of cloud in the MODIS reflectance data can also 

be considered as another limitation of the product as it is the input data for the 

MODIS VCF. However, the providers have made a quality layer (at per pixel 

level) available to users for every corresponding pixel of the variables 

estimated (percent tree cover, percent non-tree vegetation (mostly herbaceous) 

and percent bare surface). Users are cautioned to take account of the pixel 

affected by the cloud. 
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2.4.1.2 Mapping PTFs in savannas 

The measurement accuracy and precision with regard to mapping  PFTs vary with the 

modelling approach, datasets and the ecosystems in which the study is being carried out. 

(Hansen et al., 2003a, House et al., 2003, Gitelson, 2013). Unike the estimate of fractional 

cover in a uniform land surfaces such as cropland or a dense forest, the measurement 

accuracy of the mixed vegetated (e.g. tree/grass fractional cover) landscape requires 

consideration of many factors. 

PFTs in savannas are generally not distributed uniformly across the landscape, but rather 

show different degrees of clumping or patchiness. Also, the effects of soil moisture and 

inter-annual weather variability on vegetation phenology can affect the information 

content of satellite imagery, for example, Landsat imagery has revisit period of 16 days. 

This revisit rate means that Landsat can miss important phenological changes between 

two subsequent acquisitions (Hilker et al., 2009). It is therefore challenging to identify 

tree cover changes with a snap-shot of images. This means for an accurate assessment of 

tree cover, there is a need for not only a method that is robust to inter-annual variation 

due high inter-annual weather variability in savannas, but also remote sensing data with 

a frequent revisit period to capture phenology of PFTs adequately.  

Tree/grass separation is one of the major challenges for estimating tree or grass cover due 

to a mixture of the two PFTs in savannas. Mapping tree cover for example, requires that 

the contribution from herbaceous layers and the soil background is removed (Gill et al., 

2009, Tim Danaher et al., 2011, Guan et al., 2012, Gessner et al., 2013). Previous effort 

have been made to separate trees and grass  (Chidumayo, 2001a, Jolly and Running, 

2004). The need for such techniques in the analysis of multi-temporal satellite data is one 

of the most significant challenges facing remote sensing (Martínez and Gilabert, 2009, 

Boke-Olén et al., 2016). For accurate representations of PFTs, one important thing to 

considered is the differences in tree/grass growing cycles over the years. 

Trees and grasses have distinct phenological cycles in savannas (Moore et al., 2016, 

Boke-Olén et al., 2016). Figure 2.7 explained the theoretical contributions of trees and 

grasses to total landscape and how tree green-up curve can be extracted from the satellite 

data (NDVI data). Tree normally green earlier and stay green for longer period, but 

grasses usually have high productivity during the peak of the gwowing season. In the end 

of the growing season, grass dries while tree greening remain for sometimes. Therefore, 
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tree is mostly found to be green while grass is dry in autumn and spring, except where 

perenial grass exist (Archibald and Scholes, 2007b).   

Figure 2. 5: (a) Theoretical contributions of trees and grasses to total landscape LAI over 

a growing season. Trees go green earlier, and stay green for longer, but grasses have a 

higher LAI at the height of the growing season (b) Schematic showing how to extract the 

tree green-up curve from satellite NDVI data (Archibald and Scholes, 2007a). 

The phenology metrics for trees and grasses is however affected by weather variability, 

species composition and the geomorphology of the land surface in savannas (Hill et al., 

2011, Cho et al., 2012, Higgins et al., 2011). Previous studies applied moving average to 

extract tree/grass green-up curve.  In spite of the fact that the moving average method 

usually maintains the area and mean position of the seasonal peak in a time series of 

satellite data (Eklundha and Jönssonb, 2012), it is inappropriate to also assume that the 

moving average captures all phenology metrics including those due to noise, fire and land 

degradation. There are also no standard criteria for choosing the delay time in the moving 

window which consequently affects the degree of changes being observed in the data (de 

Beurs and Henebry, 2010, Verbesselt et al., 2010). 

Many approaches to estimates tree/grass fractions using remote sensing are not robust to 

interannual variability and noise reduction (Lhermitte et al., 2011). The growing cycles 

of various PFTs are often not considered for their characterisation. Therefore, a reliable 

technique for tree/grass discrimination should be one that is capable of decomposing 

satellite signals into useful phenological characteristics. Signal decomposition methods 

are considered very efficient in performing this task since they can decomposed satellite 

signals into cycles, with amplitude and phase angle (timing of greening) and minimise 

the effect of noise in satellite data (Andres et al., 1994, Lhermitte et al., 2011). The next 

section reviews signal decomposition methods applied to remote sensing data for PFTs 

characterisation. 

2.4.1.3 Signal decomposition and smoothing techniques for the analysis of PFTs. 

Several approaches for spectral signal decomposition of remote sensing time series data 

have been proposed (Cleveland et al., 1990, Lu et al., 2003). Lu et al., (2003) developed 

a model which decomposes the tree/grass phenology signals from Advanced Very High-

Resolution Radiometer (AVHRR) data based on assumptions that take account of 

vegetation biophysical characteristics and noise reduction. The model is an extension of 

the Seasonal-Trend Decomposition based on the Loess algorithm (Cleveland et al., 1990). 
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Although the model retrieves periodic information on regional and global vegetation, it 

has several limitations, including the effects of soil background colour. Another limitation 

of the model is the threshold used to determine the low and high varying components of 

woody and herbaceous cover. The tendency for over or underestimation of these 

components is very high and can result in false separation of the vegetation index 

components  (Lu et al., 2003). 

Several modern approaches have been proposed for signal decomposition of time series 

data such as empirical mode decomposition (EMD) (Kong et al., 2015), principal 

coordinates neighbor matrices (PCNM) (Pottier and Evette, 2011, Lewis et al., 2014, 

Dray et al., 2006), wavelets transform (WT) (Martínez and Gilabert, 2009) and harmonic 

analysis (Kostadinova et al. 2017).  

EMD is one important technique which decomposes signals into its components 

adaptively without using a priori basis. It is very useful to ecological phenomena 

expecting to follow a non-stationary dynamic in the time domain (Attoh-Okine et al., 

2008). The EMD decomposes data into Intrinsic Mode Functions (IMFs) and residue. The 

IMFs usually stand for the oscillatory mode of the original data while the residue stands 

for the overall trend. One of the challenges of using EMD is the lack of sufficient 

theoretical framework which often make characterization and evaluation of time series 

data difficult using this approach (Niang et al., 2010).  

PCNM is developed for building a spatial matrix based on a spectral decomposition of 

space. Moran’s Eigenvector Maps (MEMs), which are based on PCNM, uses the spatial 

or temporal coordinates of the observations to compute a series of sine waves similar to 

a Fourier decomposition (Legendre and Gauthier, 2014). Although it has proved very 

useful as it considers the spatial structure of an ecosystem through spatial weighting 

matrix, this method requires large samples, providing a large range of distances between 

plots (Lewis et al., 2014, Pottier and Evette, 2011).  

WT is another technique that decomposes the signal into different frequencies. Although, 

wavelets transform has several advantages in the analysis of time series data which are 

commonly non-stationary dynamic, the standard WT is shift sensitive (which may lead 

to complete different transform coefficients) and lacks phase information (Muhammad et 

al., 2002, Strang and Nguyen, 1996).  
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Archibald and Scholes (2007) developed a method for separating tree and grass responses 

to environmental cues in African savanna. This assumed that trees and grasses exhibit 

different biological characteristics in their life-forms which can be separated using, for 

example, a moving average method to extract their phenological metrics. In savannas, 

trees green-up before grasses because they rely less on water from rainfall. Their 

maximum green-up rates, as well as the rate of greening, are generally constant between 

years (Archibald and Scholes, 2007). Results show that while productivity of grasses is 

higher than trees during the peak of the rainy season, trees have a less variable 

phenological cycle than grasses. 

Most spatiotemporal statistical methods currently being used for time series analysis have 

their strength and weaknesses (de Beurs and Henebry, 2010). de Beurs and Henbry (2010) 

who discussed 12 existing spatiotemporal statistical methods being used for the analysis 

of land surface phenology (LSP) from time series of satellite data, emphasized a lack of 

consensus regarding nomenclature, model significance, uncertainty and error structure. It 

is therefore challenging to find a given method that is best for all vegetation types (de 

Beurs and Henebry, 2010, Atkinson et al., 2012). However, Atkinson et al. (2012) 

compared four smoothing algorithms: Fourier analysis, the asymmetric Gaussian model, 

the double logistic model and the Whittaker filter to assess the annual vegetation growth 

cycle and a reliable estimate of phenological parameters in four vegetation types. The 

Fourier analysis and the Whittaker filter outperformed the  asymmetric Gaussian and 

double logistic models (Atkinson et al., 2012).  

Fourier analysis decompose time series data into varying signals and can improving data 

quality through noise reduction (Jakubauskas et al. 2001). The method has since been 

recommended as one of the most efficient techniques for modelling and the change 

detection of ecosystem dynamics (Lhermitte et al., 2011). Lhermitte et al. (2011) 

explained that Fourier analysis is a suitable method for modelling and change detection 

of PFTs dynamics in consideration to time series satellite characteristics such as: 

i. Serial correlation: This occurs when time series values are correlated between 

different temporal observations within one-time series. This is often caused 

mainly by the seasonal variation of vegetation (Zoffoli et al., 2008). Its 

implication is that where temporal observations are combined, for examples 

on trees and grasses variables, one PFTs may contribute in the information to 
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yield a relationship. Harmonic analysis partition time series observations into 

annual and biannual signals. It is evident that in savannas, trees and grasses 

have different phenological cycles. The onset of grass is mainly supported by 

precipitation, soil moisture, and day length while tree growth is usually 

supported by the day temperature and day length (Archibald and Scholes, 

2007b, Boke-Olén et al., 2016). The use of field data or prior information on 

the biophysical parameters could be useful in harmonic analysis. One of the 

advantages of harmonic analysis over other methods such as principle 

component analysis is the evaluation of time-series data on a per-pixel basis. 

Periodicity of a pixel in the time series data is usually evaluated independently 

of other pixels unlike in a principle component analysis that evaluates the 

variance of all pixels in all images of the time-series data to derive 

transformation coefficients which are later applied to each pixel (Jakubauskas 

et al. 2001). 

ii. Time series stationarity - temporal observations with larger variance may 

influence the behavior of several similar measures when the time series 

variance is not constant over time. The influence of non-stationary dynamic 

phenomena such as tree/grass phenology is minimal with harmonic analysis 

approach, because of its requirement for a long time series data (de Beurs and 

Henebry, 2010). The comparison of means and application of statistically 

significant harmonics in Fourier analysis could provide a realistic manner with 

which to assess changes either at annual or within the interannual variability. 

In contrast, the use of threshold methods which set arbitrary level of amplitude 

to determine the start of season or end of season is disadvantageous since it is 

unlikely for the changes in the time series data to be stable through time and 

could change significantly, for example due to disturbance processes (de 

Beurs and Henebry, 2010). 

iii. Temporal resolution - the variability in the time interval between consecutive 

observations is also an important factor to be considered. This relates with the 

sensor (e.g. MODIS and Landsat) revisit period. Both high and low temporal 

resolutions have their advantages. A high resolution is more appropriate if the 

phenomena are dynamic. Harmonic analysis requires a high temporal 

resolution and can be said to be appropriate since the variability of tree and 

grass phenological cycles may not easily lead to serial correlation of the 
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temporal observations. And with the fact that changes in plant phenology 

could be seasonal (e.g. intra-annual changes due to differences in PFTs life 

cycle), gradual (e.g. because of climate variability) and abrupt (e.g. due to fires 

and drought) (Lhermitte et al., 2011, Verbesselt et al., 2010, de Beurs and 

Henebry, 2010). Harmonic analysis can decompose time series data into 

various cycles to assess phenological development of vegetation. 

iv. Noise - Satellite-derived NDVI time series are necessary to the remote sensing 

of vegetation phenology, but their application is limited by the present of noise 

resulting mainly from varying sun sensor-surface viewing geometries and 

atmospheric conditions. Effective noise reduction is required for the analysis 

of time series data, especially those from passive optical sensors. The errors 

in the NDVI due to noise include negatively biased noise and the present of 

spurious drops and spikes (Hird and McDermid, 2009). Harmonic analysis 

employs the decomposition of noise-affected time series into periodic signals 

in the frequency domain and was found to maintain the integrity of the data in 

the process. The effectiveness of certain methods to reduce noise sometime 

depends on the individual metrics being extracted and the vegetation indices 

(Hird and McDermid, 2009, Roerink et al., 2000).  

v. Unequally spaced observations or missing data - Harmonic analysis is good 

for interpolating missing values or the compositing of missing data (Roerink 

et al., 2000). 

Because of the suitability of harmonic analysis for analysis ecological phenomena 

with time series data, the next section provides a more detailed review of its 

application to identify additional gaps in the literature with a focus on PFTs 

discrimination using a time series of remote sensing data.  

2.4.1.4 Harmonic (Fourier) analysis for phenological signal decomposition of PFTs 

Harmonic analysis is based on the Fourier transformation and is one of the most reliable 

techniques for land cover discrimination from decoupled vegetation phenological signals 

(Andres et al., 1994). Harmonic analysis enables a phenological time series to be 

expressed as a sum of cosine waves and an additive term. Each individual wave is called 

a harmonic term and is characterized by its amplitude (height of the maximum), frequency 



29 
 

(number of cycles) and phase (delay from time zero). Figure. 2.7 illustrates harmonic 

terms (amplitude and phase). 

Figure 2. 6: (a) simple cosine curve showing amplitude and first harmonic (b) 1st, 2nd 

3rd harmonic terms (curve produced from addition of curves in b) (Source :(Jakubauskas 

et al. 2002), adapted with kind permission of Elsevier). 

Previous studies have applied this method to successfully characterize seasonal changes 

for natural land cover/land use types (Jakubauskas et al., 2001, Jakubauskas et al., 2002, 

Canisius et al., 2007, Westra and De Wulf, 2007). Jakubauskas & Legates (2000) 

implemented harmonic analysis to a nine-year time series of vegetation index from 

NOAA AVHRR to identify PFTs and analyse their changes across a given time span. In 

their study, the amplitude values were used to assess the variation in the temporal NDVI 

data. While high variance was captured by the first and additive terms on certain land 

cover types, a few crops exhibited bimodal NDVI periodicity.  In another major study, 

Moody and Johnson (2001) applied discrete Fourier analysis to derive a mean-phase-

amplitude space to separate six vegetation types from different geographical regions by 

classifying AVHRR data. Validation results indicated that grassland had the highest 

accuracy (77%) and the most common confusion in their classification accuracy was 

between grassland and savannah (23%). This was partly due to mixed pixels being 

influenced by annual grass understory variations. Geerken et al. (2005) investigated the 

application of Fourier analysis to classify rangeland vegetation type and coverage from 

NDVI values. The study compared the unsupervised classification of phenology metrics 

derived from Fourier analysis and original NDVI. The validation results for Fourier 

derived phenology metrics were strongly correlated with field data on homogeneous plant 

species fractional cover (Noaea mucronata (R² = 0.50) and Cornulaca setifera (R² = 

0.75)). The unsupervised classification of the Fourier derived phenology metrics for 
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vegetation types had the best accuracy (overall accuracy = 73% and kappa = 0.60). The 

harmonic analysis is therefore a good approach for assessing PFTs. Although the estimate 

of spatial variations in sub-grid PFTs has been considered more appropriate than by 

defining class boundary, it is far more challenging in a heterogenous ecosystem  (Geerken 

et al., 2005).  

Jakubauskas et al. (2001) demonstrated the use of a single year data to characterise 

different PFTs (Corn, Shortgrass prairie, Sandsage prairie, Alfalfa). Harmonic functions 

such as amplitude values and phase angle were the major components upon which the 

discrimination analysis of these crops were based. Although they have used variance to 

characterise the differences in the harmonic terms, a test of the confidence interval of the 

observation is not applied in the estimate of harmonic terms. This approach might have a 

negative implication for change analysis within the range of monthly variability as to 

whether those changes between harmonic terms have really occurred (Chen et al., 2011, 

de Beurs and Henebry, 2010). 

Many previous studies from remote sensing using harmonic analysis have paid more to 

crop rather than tree/grass characterisation (Canisius et al., 2007, Mingwei et al., 2008). 

Mingwei et al. (2008) showed that harmonic analysis can identify double cropping 

systems. The results for the estimated crop areas have shown to be correlated with 

statistics derived from field surveys. The study demonstrated an improved method for 

discriminating PFTs over the traditional means of categorisation and classification in 

remote sensing analysis (Chen et al., 2011, de Beurs and Henebry, 2010). Similarly, 

Canicus et al., (2006) demonstrated the used NDVI time series 10-day composites derived 

from NOAA AVHRR (at scale of 0.1°) data to discriminate bimodal agricultural areas 

(where two seasons of cultivation occur per year) from other land cover types (e.g. forest, 

bushes, mixed rain-fed areas etc.) through the application of the Fourier approach and 

decision classifier to characterise harmonic signals. The amplitude and phase shift for all 

land cover types were estimated for the study area. The amplitude signals of the second 

harmonic term of where bimodal agriculture was predominant had a relationship (R² = 

0.38) with previous statistics of the sample areas (irrigated areas). The relationship 

between the two variables was used to generate an estimate of the bimodal agriculture 

area. However, Some of the coarse satellite time series data, such as the NOAA AVHRR, 

are highly limited for PFTs discrimination due to their requirement of re-compositing, 
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low resolution and quality assessment (Loveland et al., 2000, Roerink et al., 2000). The 

moderate resolution and good atmospheric correction for MODIS data (e.g. MOD1Q31) 

have made them more advantageous in land cover discrimination than the AVHRR.  

The influence of low spatial resolution for some satellite data may increase the difficulty 

of PFTs discrimination as a pixel may contained a mixture of PFTs (as the land cover is 

spatially heterogeneous) and can result in confusion in defining the required signals using 

conventional classification methods. Another limitation relates to a selection of harmonic 

terms for the PFTs discrimination, for instance, where the analysis relies on second order 

harmonic to discriminate PFTs, a separation of these PFTs can be challenging as more 

than one PFTs may have bimodal characteristics. This means that a good knowledge of 

ecosystem dynamics, and the PFTs, can be a useful guide to this analysis. With field data 

on the PFTs perhaps based on fractional cover, an empirical analysis using moderate 

resolution data is more likely to improve tree/grass characterisation using harmonic 

analysis.  

Despite limitations identified in the application of harmonic analysis, previous studies 

have demonstrated its usefulness for the analysis of time series data to characterise PFTs. 

From the foregoing, it is evident that this method has great potential for discriminating 

main PFTs with distinct phenological characteristics (e.g. trees and grasses).  However, 

one of the most important questions in the application of Fourier (harmonic analysis) is 

the assessment of statistically significant harmonics in the measurement of land surface 

phenology observations which have not been adequately addressed in remote sensing 

studies (de Beurs and Henebry, 2010). Most previous studies that applied harmonic 

analysis to satellite data only assumed that noise is contained within the higher-order 

harmonic components (Moody and Johnson, 2001, Lhermitte et al., 2011, Gessner et al., 

2013) without measure to their degree of significance. The need to incorporate more 

statistical techniques to test confidence intervals is important (Bloomfield, 2004).  

2.4.2 Radar remote sensing  

Radar is an acronym, meaning radio detection and ranging. Radar is best known as active 

sensor system.  The active systems have the capacity to generate energy pulses and collect 

them after the surface target reflects them back (Chuvieco and Huete, 2010). Radar 

sensors are capable of imaging all parts of the globe regardless of cloud cover, day or 

night. Depending on wavelengths and polarisations, radar data can be affected by the 
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interacting medium such as the vegetation (e.g. trunk, leaves, branches and surface 

roughness (Balzter et al., 2007b, Lillesand et al., 2014, Chuvieco and Huete, 2010). Radar 

data are powerful microwave data used for vegetation structure retrieval. It has been used 

extensively for biomass mapping and canopy characterisation (Lucas et al., 2007). The 

use of dual wavelength SAR interferometry for canopy height characterisation and carbon 

stock estimation has been previously demonstrated (Balzter et al., 2007b).  

2.4.3 LiDAR remote sensing  

The continued development of remote sensing technology has increased technical 

capabilities which stimulates and further facilitates the assessment of vegetation 

biophysical parameters using data from the active sensors. LiDAR is an acronym, 

meaning “Light Detection and Ranging”. LiDAR systems work with the polarised light 

and operates within ultraviolet to near-infrared range of the spectrum. Like radar systems, 

it emits pulses to the observed surface and records the reflected energy from the target. 

LiDAR sensor calculates the distances from the platform to the observed target by 

measuring the precise time that the return signal reaches the sensor. LiDAR data are 

recognised as the most accurate data used for assessing vegetation structure by measuring 

the three-dimensional (3D) structure of a forest or savanna vegetation attributes 

(Chuvieco and Huete, 2010, Asner et al., 2011).  

LiDAR data are often used to estimate tree canopy height, map individual tree species 

and fractional cover or the spacing of individual trees and shrubs. Most techniques require 

a Digital Elevation Model to be derived from a laser pulse with which to distinguish 

terrain and vegetation returns (Chen, 2007). A Digital Surface Model (DSM) is used to 

calculate tree canopy height, biomass or FVC. Popescu & Wynne 2004 used kriging while 

Persson et al. 2002 have used an active contour algorithm to create a Canopy Height 

Model (CHM) or DSM. 

The use of space-borne LiDAR, specifically the Geoscience Laser Altimeter aboard the 

Ice Cloud and Land Elevation Satellite (ICESat) data is also receiving increased attention. 

ICESat data have been used for the estimates of tree canopy height and biomass (Lefsky 

et al., 2006, Lefsky et al., 2007, Gwenzi and Lefsky, 2014). Popescu et al. (2011) shows 

a comparison of satellite LiDAR with foot airborne LiDAR ground elevation and four 

vegetation variables. The results indicated a strong correlation for terrain elevation 

between GLAS and airborne LiDAR with R² of 0.98 and a root square error of 0.78 m. 
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The accessibility of GLAS-LiDAR from regional to continental and global extents makes 

it a useful resource to assist with the assessment of various PFTs. A previous study 

demonstrated a successful retrieval of canopy height which correlates (59–68%) with 

field estimates of tree height in three different ecosystems using a combination of ICESat 

and Shuttle Radar Topography Mission (SRTM) (Lefsky et al., 2006). The synergistic 

use of ICESat data with other datasets to overcome its patchy coverage has since been 

recommended (Popescu et al., 2011, Mitchard et al., 2012). 

While the use of LiDAR data, the Airborne data, is quite novel, the high cost of obtaining 

the data makes it difficult for researchers to explore various environmental conditions. 

However, there is increased attention regarding the integration of different datasets to 

achieve maximum benefit and reduce uncertainty. Current remote sensing methods have 

indeed shifted to the novel application and complimentary use of the data through data 

fusion and integration (Smith et al., 2014b). Many studies using data from the passive 

optical sensors data now rely on data from the active sensors for model calibration and 

validation (Gill et al., 2009, Sexton et al., 2013, Naidoo et al., 2015). 

2.6 Research gaps, questions and objectives 

In the literature cited above, knowledge gaps are quite broad. Thus, in the context of this 

research, the following are considered most important. For each gap, research questions 

and objectives were outlined. In addition, the analysis chapter that addresses each 

research question is stated. 

 

Research gap 1: 

The uncertainty of the metrics of land surface phenology from Fourier analysis have not 

been adequately addressed in remote sensing studies (for estimating tree/grass fractions 

using satellite data).  

Research question 1: 

How can satellite time series data for tree/grass signals be decomposed into statistically 

significant harmonic terms?  

Objective 1: 
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To decompose tree/grass signals into statistically significant harmonics. This was 

addressed in chapter four (4). 

Research gap 2: 

Due to high interannual variability in savannas, the assessment of changes in tree and 

grass composition is challenging. 

Research question 2: 

How does tree/grass phenology vary inter-annually?  

Objective 2: 

To assess spatiotemporal variability of tree/grass phenology over a 14-year record of 

MODIS NDVI time series data. This was addressed in chapter four (4). 

Research gap 3: 

The estimates of tree/grass fraction in savannas is challenging due the mixture of the two 

PFTs and bare soil. Moreover, some of the existing remote sensing products on tree cover 

acquired at sub pixel level do not capture woody species adequately. 

Research question 3: 

How well the satellite derived metrics from MODIS data be used to estimate tree/grass 

fractions?  

Objective 3: 

To estimate tree/grass cover using field data collected from a field campaign. This was 

addressed in chapter four (4 and 5) 

Research gap 4: 

The accuracy of remote sensing products is very vital for understanding land surface 

interactions, yet it is challenging to establish model to estimates tree cover at a 

considerable accuracy. 

Research question 4: 

How accurate can a tree fractional cover estimated using MODIS data derived satellite 

phenology metrics be?  

Objective 4: 
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To test the performance of tree cover estimated using plot data from a field campaign in 

2015 and compare it with previous satellite products (such as LiDAR and MODIS VCF). 

This was addressed in chapter six (6)  
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Chapter 3 

Study area and general method 
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3.1 study area 

KNP is located on the northeastern tip of South Africa, bordering Zimbabwe to the north 

and Mozambique to the east (Figure 3.1). It is one of the largest national parks in Africa. 

It is approximately 2 million hectares in size and extends 380 km from north to south and 

60 km from east to west. Its elevation ranges from 260 m to 839 m above mean sea level. 

The mean annual precipitation ranges from 440 mm in the north to 750 mm in the south. 

The park has large perennial rivers as well as seasonally flooded dryland river channels.  

 

Figure 3. 1: Location of the study area of Kruger National Park in South Africa and its 

main river courses, an indication of the locations of the sample plots of the field data 

collection in 2015. The red circles indicate the field plot locations. 

Geologically, the area is divided into two main zones. The western part is situated on 

granite and the east on basaltic bedrocks. Therefore, a strong influence of geological 

structures on soil formation processes and plant species distribution is observable in the 

park. Soils within KNP can be grouped into a more fertile basaltic zone in the east, and a 

less fertile granitic zone in the west (Venter et al., 2003a). The soil type (Figure 3.3) has 

a strong influence on the plant species. The granitic soils are dominated by wooded 

species like Combretum apiculatum, while the basaltic soils support finer-leaved species 
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such as the Acacia (Codron et al., 2006). Figure. 3.2 shows the geology of the KNP.  

 

Figure 3. 2: Location of the study area of Kruger National Park in South Africa showing 

geology. 

A global soil and terrain database at a scale of 1:1 million developed by the initiative of 

the International Union of Soil Sciences (IUSS), the United Nations Environment 

Programme (UNEP), the FAO, and the International Soil Reference and Information 

Centre (ISRIC) (van Engelen and Hartemink, 2000) available at 



39 
 

http://www.isric.org/content/soilgrids is presented in Figure 3.3. Eutric regosols, Nitisols, 

and Luvisols are the main types of soil in our field plots locations. 

 

Figure 3. 3: Location of the study area of Kruger National Park in South Africa showing 

geology. 

KNP is home to a gradient of more than 1,900 plant species including trees and grasses 

(Eckhardt et al., 2000). The status of each PFTs has been a focus of savanna ecology for 

many decades. The park has 20 ecotones (e.g. Skukuza thickets, open trees, dense trees, 

http://www.isric.org/content/soilgrids
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and bush savanna) based on a floristic classification (Eckhardt et al., 2000, Archibald and 

Scholes, 2007b, Khalefa et al., 2013). The dominant tree species in the southwestern part 

include Combretum apiculatum, Acacia nigrescens, Sapirostachys Africana, Combretum 

hereroense, Sclerocarya birrea, Terminalia sericea, Combretum zeyheri etc. The drier 

northeastern part is dominated by mopane savanna. Grass species include Aristida 

congesta spp, Digitaria eriantha, Erasiantha, Uracholoa mosambicensis, Themeda 

triandra, Panicum colouratum etc. (Eckhardt et al., 2000, Archibald and Scholes, 2007b, 

Khalefa et al., 2013). Figure. 3.4 is a map of KNP showing landscape and species types.   

KNP was chosen as a study site because of its size, diversity of vegetation formations at 

the MODIS resolution of 250 m, and absence of agro-pastoral systems. Harmonic analysis 

is more applicable in a diverse area with varied species composition, density, and 

environmental conditions (Moody and Johnson, 2001).  

There are several minor subdivisions of landscape formations within the park, each with 

different species composition. Van et al. (2014) have provided a description of various 

tree species, as listed below, according to their main features and their habitats in southern 

Africa. 

1. Acacia nigrescens is of varying size from a medium to large deciduous tree. Its 

trunk and thicker branches are usually persistent with thorns. Its leaves are usually 

10-30 x 7-30mm. Flowers are usually pale cream to pale yellow appearing before 

or with the new leaves. It is found in the Bushveld and Rugged veld, commonly 

in heavy soils. 

2. Colophospermun mopane is commonly shrub with medium to tall deciduous 

trees. It can be found as a single or multistemmed. It is dark grey and has thick 

bark. Its leaves are alternate compound with two leaflets (bifoliolate), petiole 20-

40mm long. It is found in many landscapes such as mopanevveld, shrubveld on 

calcrete, gabbro and basaltic soils. 

 

3. Combretum apiculatum is a small to medium-sized deciduous tree and is 

multistemmed. Its leaves are usually opposite, simple and elliptic to broadly 

obviate. It is usually hairless. Its flowers are usually small and creamy yellow. It 

is found in Bushveld, mostly in rocky places. It has dense greyish hair. It is found 

in Bushveld, especially floodplains. 
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4. Combretum hereroense this should not be confused with Combretum apiculatum. 

It is a shrub or small deciduous tree. It is commonly multistemmed with a roundish 

crown found in Bushveld. It is found mostly on sandy soils and on termitaria. 

5. Schlerocarya birrea is also a medium-sized to large deciduous tree. It has a 

spreading crown and is rounded. Its leaflets are usually 3-7 pairs plus terminal 

one, dark green above and pale and bluish green below. The species usually 

flowers in unbranched parts before the new leaves. It is found in Bushveld and 

woodland. 

6. Terminalia sericea is a small to medium-sized deciduous tree. Its branches are 

dark brown or purplish. Its leaves are usually clustered towards the end of 

branches. The flowers are usually small in auxiliary spike, pale cream to pale 

yellow. It is found in Bushveld on deep, sandy soils often in dense stands. 

7. Salvadora australis is shrub to small evergreen tree, its trunk is short with round 

branches which usually drop to the ground. 

8. Euclea divinorum is a small evergreen tree, usually multistemmed. Its leaves are 

dark green to greyish green. It is found in Bushveld, commonly on brackish 

floodplain along rivers and or termitaria. 
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Figure 3. 4: Location of the study area of KNP showing landscape and tree compositions 
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3.3 Data  

  3.3.1 MODIS time series NDVI data 

MODIS Normalized Difference Vegetation Index (NDVI) data (MOD1Q31) were 

obtained from the National Aeronautics and Space Administration (NASA) via 

http://reverb.echo.nasa.gov/rever. A total of 322 images (from July 2001 to June 2015) 

were used for harmonic analysis. For single year analysis, MODIS images from July to 

June (e.g. 2014/2015) were considered for each analysis year. The estimates of tree cover 

which were not based on harmonic analysis uses only dry season images for each growing 

season. A previous study developed a method based on MODIS Ross-Thick and Li-

Sparse kernels to estimates the effects of BRDF in NOAA-AVHRR NDVI time series. 

The results indicated that in most cases uncorrected NDVI time series do not reflect actual 

seasonal and interannual variation in vegetation greenness. It was found out that the 

techniques reduces BRDF effects in AVHRR NDVI observations by about 50% to 85% 

(Los et al., 2005). MOD13Q1 used in this study, is a gridded level 3 product provided at 

250 m spatial resolution every 16 days produced from atmospherically corrected bi-

directional surface reflectance factors (BRFs) and masked for water, clouds, and cloud 

shadows (Strahler et al., 1999). 

MODIS NDVI has been used widely for retrieving vegetation composition such as 

vegetation structure and annual net primary productivity (ANPP) dynamics in grassland-

shrub land areas (Moreno-de las Heras et al., 2015), for tree cover change (Gill et al., 

2009), and tree-grass separation/green-up dates (Archibald and Scholes, 2007b) and for 

Analysis of trends  to assess the effects of  CO2 fertilization effect in global vegetation 

(Los, 2013). NDVI has also been used to examine the relationship between vegetation 

productivity and rainfall distribution along environmental gradients (Foody, 2003, 

Chamaille-Jammes and Fritz, 2009). Furthermore, Jung and Chang (2015) assessed land-

cover change from harmonic analysis using NDVI data. Muñoz Peña and Navarro (2016) 

assessed the spatiotemporal variability of NDVI to study deforestation using harmonic 

analysis. NDVI is used here as the proxy of vegetation productivity as numerous studies 

have identified a strong relationship between the NDVI and NPP (Prince and Goward, 

1995, Zhu and Southworth, 2013, Mbow et al., 2014).  

http://reverb.echo.nasa.gov/rever
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  3.3.2 MODIS SAVI data 

The Soil Adjusted Vegetation Index (SAVI) was developed mainly to minimize soil 

brightness effects from spectral information involving red and near-infrared (NIR) 

wavelengths (Huete, 1988). In this study, the SAVI vegetation index was derived from 

the dry season images of the MODIS data. The SAVI index was calculated as thus: 

 SAVI= (NIR - R)/ (NIR + R+ L) * (1 + L)                                                                           (3.1) 

where the NIR is the near-infrared band, R is the red band and L stands for a soil 

correction factor (ranges from 0 to 1). L = 0.5 was used in this study being appropriate 

for savanna ecosystems (Gilabert et al., 2002). The estimates of tree cover using SAVI 

index were based on individual growing season which normally starts from October to 

April. To capture a complete cycle, dry season images for each growing year from July 

to June were considered. So, for example, the estimates of tree cover for the year 

2014/2015 uses SAVI index calculated from dry season images of this season. 

  3.3.3 MODIS vegetation continuous field (VCF) 

MODIS VCF data have been described in the previous Chapter.  It is an Earth observation 

product of percent tree cover, percent non-tree vegetation (mostly herbaceous) and 

percent bare surface and is available at 250 m resolution provided by NASA, from the 

Land Processes Distribution Active Archive Centre (LP DAAC) available at 

http://e4ftl01.cr.usgs.gov/MOLT/. It is called MOD44B as a standard MODIS product 

(Townshend et al., 2011, Hansen et al., 2000). This product used in this study, is the most 

recent version of this dataset at the time of writing this thesis (collection 0051). This 

version provides estimates of percent tree cover, percent non-tree vegetation and percent 

bare surface of temporal coverage from 2000 to 2014 (on an annual basis). Specifically, 

MODIS VCF for the years 2008 and 2014 were used in this study for validation and 

comparison purposes. None of the MODIS VCF (2014) pixel values was of bad quality 

within field plots used in this study. 

  3.3.4 LiDAR/SAR woody cover map 

A woody cover map of KNP produced by the Ecosystem Earth Observation Research 

Group (Natural Resources and the Environment) of the Council for Scientific and 

Industrial Research (CSIR), South Africa, was used as independent validation dataset. 

This map was produced using 14 dual-polarized (HV, HH) 12.5m L-band ALOS 

http://e4ftl01.cr.usgs.gov/MOLT/
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PALSAR images trained with a random forest algorithm and 25,000 ha of airborne 

LiDAR data (Wessels et al., 2011). The Phased Array Type L-band Synthetic Aperture 

Radar (PALSAR) is an active microwave sensor developed by the joint project between 

the JAXA and the Japan Resources Observation System Organization (JAROS). The L-

band frequency could achieve a high cloud-free and day-and-night land imaging. The L-

band SAR data were known for its advantages over other SAR data such as the C-band 

(Urbazaev et al., 2015, Li et al., 2012).  

As explained in Mathieu et al. (Mathieu et al., 2013), the LiDAR data were obtained from 

the Carnegie Airborne Observatory (CAO). The Carnegie Airborne Observatory (CAO) 

Alpha system was flown over eight sites in April–May 2008. The CAO Alpha system has 

three integrated sub-systems: a high fidelity visible-to-near infrared imaging spectrometer 

(new design of CASI-1500), a waveform LiDAR (LiDAR) capable of operating 

simultaneously in discrete-return and waveform modes and a Global Positioning System-

Inertial Measurement Unit (GPS-IMU) system which makes for an accurate registration 

and projection of the hyperspectral and LiDAR datasets. The woody cover was 

extrapolated from the two LiDAR datasets generated structural metrics. The Physical 

models of ground surfaces (Digital Elevation Model, DEM) and top-of-canopy surface 

models (CSM) were created by processing the raw LiDAR points (Mathieu et al., 2013). 

The LiDAR data were acquired in April 2008 (end of wet season) when woody plants 

were leaf-on, and the SAR images in July-August 2008 (dry season, leaf-off) to avoid soil 

moisture effects on the radar signal (Mathieu et al., 2013). This was shown to be the best 

season to model woody cover (Mathieu et al., 2013). Woody plants of at least 1 m canopy 

height included, for details of the LiDAR and SAR datasets see Naidoo et al. (Naidoo et 

al. 2015). Validation of the SAR-map with independent LiDAR data produced an R2= 0.8 

and RMSE=7.7% (Naidoo et al., 2015).  Since the MODIS data is 250 m while the 

LiDAR-SAR product is 12.5 m, one partial solution was to resample the LiDAR-SAR 

product to a larger pixel size using cubic convolution (interpolation). The cubic 

convolution approach assigns a weighted average of the 16 nearest cells. 

  3.3.5 Bucini woody cover map 

The woody cover map by Bucini was provided by Scientific Services (GIS unit) of 

SANPark. The woody cover product is a woody vegetation map of the Kruger National 

Park for the year provided at 90 m spatial resolution. For this study, the map was 
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resampled to 250 m through bilinear interpolation using the MODIS NDVI data as 

reference (using raster package in R). Bilinear interpolation takes a distance-weighted 

average of the values of the four nearest pixels (Lillesand et al. 2008). The woody cover 

map was produced through the calibration of remote sensing data and field measurements 

(Bucini et al., 2009, Bucini et al., 2010). The fusion of optical and radar data was 

performed to enhanced the remote sensing data. Specifically, Landsat ETM+ scenes 

(bands 1, 2, 3, 4, 5, 7) acquired between 2000 and 2001 and 11 JERS-1 Synthetic Aperture 

Radar (SAR) scenes (L-band, HH polarization) acquired between 1995 and 1996 were 

used. The Landsat scene were chosen for beginning of the dry season for the optical 

dataset to maximize discrimination of woody vegetation (still photosynthetically active) 

from the grass layer (dormant). The woody cover was extrapolated by multiple regression 

model developed between Landsat ETM+ and JERS-1 data and the field woody cover. 

The best predictive model was selected based on the Akaike information criterion (AIC). 

The variables JERS-1 backscatter and Landsat band 2 (green) being the most important 

variables were used to predict woody cover for KNP. The validation of the woody cover 

show an R2 = 061, residual error = 0.89 and P< 0.0001(Bucini et al., 2009).  

  3.3.6 Precipitation 

This study used precipitation observations from the weather stations of the KNP. The 

rainfall data from Skukuza, Pafuri, Mahlengeni and Satara weather stations for 14-year 

period were used. The annual rainfall values for each station were plotted against each 

pixel values of the second harmonic term (amplitude) as well as for the mean dry season 

NDVI (Chapter 4). The mean annual rainfall and corresponding pixel values for the 

estimated tree cover were also plotted for each station (Chapter 5). 

  3.3.7 GIS layer of landscape units 

The GIS layer of landscape units was provided by Scientific Services (GIS unit) of 

SANParks where landscape types are classified based on dominant soil series, dominant 

woody plant species, hill slope units and landform characteristics (relief, soil, slope 

length, stream frequency). The landscape map is used for management planning and 

ecological studies in KNP. We used this map as reference to woody species distribution 

in KNP.  
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3.2 General methods  

For the assessment of tree/grass phenology, ground-based cover estimation, signal 

decomposition (harmonic analysis) and regression analysis were used. A signal 

decomposition method was applied to estimate amplitude, phase, and cycles of NDVI 

values for all field plots extracted from MODIS data (2002 to 2015). The resultant 

amplitude values for all plots were used together with amplitude images (derived from 

the decomposition using harmonic analysis) to characterise the phenological 

characteristics of tree/grass phenology and to estimate fractional tree cover in KNP. A 

validation of tree fractional cover products and a comparison with MODIS VCF and the 

LiDAR-SAR fractional woody cover map were undertaken.  

3.2.1 Harmonic analysis 

A discrete Fourier analysis was applied to decompose the time series into harmonic terms 

that characterise phenology features of woody and herbaceous vegetation. With reference 

to satellite time series data, a given pixel can be expressed by a Fourier function as (Eq. 

3.1):  

𝑓(𝑡) = 𝒇(𝒕)̅̅ ̅̅ ̅̅ + ∑ (𝐴𝑛 cos
2𝜋𝑛𝑡

𝐿
− ∅𝒏)

𝑳/𝟐

𝑛=1

                                                  (𝟑. 𝟏) 

 

such that f(t) stands for the NDVI images and 𝑓(𝑡)̅̅ ̅̅ ̅̅  is the mean of f(t); An denotes the 

amplitude A of the nth harmonic term (number of the harmonic terms); ∅n represents the 

phase of the nth harmonic term; and L is the number of observations within the study 

period (that is (322 observations (for each plot analysed or when the whole study area 

was considered) (de Beurs and Henebry, 2010).  

In a satellite NDVI time series, the strength of the harmonic terms is expressed as their 

amplitude. The phase represents the delay of the wave relative to a standard cosine wave. 

The phase angle indicates the time delay of the greening cycles of PFTs. The Discrete 

Fourier Transform (DFT) was used (Shatkay, 1995). The sampling rate is the number of 

samples in the time series while the fundamental frequency is the number of time steps. 

DFT requires regular spacing of the samples. The maximum frequency is the content of 

the Nyquist frequency. Thus, DFT can separate noisy NDVI time series data into their 
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individual cosine waves of different frequencies and filter the time series to reconstruct 

the complex waveform domain of the vegetation index data (Evrendilek and Gulbeyaz, 

2008) as in Eq. (3.2):  

𝒚
𝒌 =

𝟏
 𝑵

∑ 𝒄𝒌𝒆
−𝒊𝟐𝝅𝒌

𝑵−𝟏

𝒌=𝟎

/𝑵                                                                                             (𝟑. 𝟐) 

where N is the number of samples in the time series, k is an index representing the current 

sample number, i is an imaginary number, and c is the kth sample value (Shatkay, 1995, 

Moody and Johnson, 2001). 

The extracted NDVI pixels data for each plot was prepared as a .txt file (322 observations 

for each plot) and the signal decomposition method was run in R. First, the model used 

here converts the satellite time series data from the time domain to the frequency domain 

and retrieves the spectral information in a periodogram. Schuster (1898) defined 

periodogram as a measure of the relative power of a time series as a function of frequency 

(Hernandez, 1999). For each harmonic term, the frequency, amplitude and phase angle 

were calculated. The harmonic analysis model here encompasses a linear detrending 

method to remove the gradient in the data. It then identifies the strongest harmonic terms 

based on their amplitudes and tests for significance using the test by Hartley (Hartley, 

1949) and Fisher’s F tests. An analysis of variance (ANOVA) was used to test the Null 

hypothesis that there are no significant harmonic terms within the time series. The 

alternative is that there are at least statistically significant peaks in the model. Therefore, 

whenever we reject the null hypothesis, we also determine the significant peaks 

(harmonics) that are in the models. The procedure was applied to trees or grasses data as 

a one-tailed test procedure. Previous estimates often leads to bias, large variance, and 

spectral leakage which might make one frequency spilling into the neighbouring 

frequencies, consequently improve higher frequency features but distort lower frequency 

spectra (Barbour and Parker, 2014).  Two harmonic analysis methods were employed for 

the temporal analysis presented in chapter four (Bonferroni and multitaper methods). The 

test by Hartley was applied together with Bonferroni method which  used to control the 

experiment-wise type I error at 5% for multiple testing (Köhl et al., 2006) to select the 

statistically significant harmonic. The multitaper approach (uses Fisher’s F test) was 

initially developed by David J. Thomson to estimate the power spectrum of a stationary 

time series (Thomson, 1982). The multitaper method is one of the methods that reduces 
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spectral bias and variance (Thomson, 1982). In this study, the multitaper package (in R) 

developed by Rahim et al. (Rahim et al., 2017) was used. The approach is considered as 

an improvement to previous harmonic analysis methods as it is designed to work with 

data that is nonstationary. Multitaper method applied in this study also uses 95% 

confidence interval to select statistically significant harmonic. The difference between 

the two methods is that the selection of significant harmonics by Bonferroni is through 

adjustment of the overall alpha level while the multitaper is performed using the tapering, 

which means the multiplication of the time series by the window function in the time plan 

based on discrete prolate spheroidal sequences (Thomson, 1982). The NDVI time series 

data were detrended for all harmonic analysis methods presented in chapter 4. 

The extracted NDVI data for each plot was prepared for each field plot (322 observations 

for each plot), and the signals were decomposed. Noise is biased towards low frequencies  

(Allen and Smith, 1994). Red noise is being considered as a way of attaining less noise 

in the estimate of power spectrum. At certain threshold, some harmonics are likely to 

stand above the red noise spectrum. Therefore, to account for red noise, the Hartley and 

Fisher’s tests were used to select statistically harmonic terms whose threshold is high. 

Most geophysical time series tend to have larger power at lower frequencies (Ghil et al., 

2002). The threshold set the confidence intervals outside which the time series can be 

considered significantly different from a generic red noise simulation. By selecting the 

lower harmonics whose power is significantly different from the red noise, we can be 

confident to reject all other red noise processes (Allen and Smith, 1994, Sella et al., 2010).  

The spatial analysis of MODIS 16 day NDVI composites comprising 322 images for the 

whole study area was presented in Chapter 5. The harmonic analysis presented in chapter 

was based on Bonferroni method and no detrending was applied in that case. The 

strongest harmonic term is the annual signal which can be caused by all PFTs. The second 

strongest harmonic term represents PFTs with bimodal characteristics, i.e. two peaks per 

year (Moody and Johnson, 2001). The following R packages were used: 

• zoo: S3 Infrastructure for Regular and Irregular Time Series  (Zeileis and Grothendieck, 

2005). 

• maptools: Tools for Reading and Handling Spatial Objects (Bivand and Lewin-Koh, 

2013). 
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• raster: Geographic Data Analysis and Modelling (Hijmans and Van Etten, 2013). 

• rasterVis: Visualization Methods for Raster Data (Lamigueiro et al., 2011).  

3.2.2 Assessing interannual variability  

Based on harmonic analysis, the interannual variability of trees and grasses were assessed 

with reference to amplitude, phase, and cycles using MODIS NDVI time series data (14 

year). Much emphasis was placed to first and second harmonic terms. A comparison of 

annual rainfall data with the amplitude and the mean of the dry season NDVI images for 

each growing season over the 14-year period was provided. The details of the methods 

applied have been explained in chapter four where the analyses were carried out. 

3.2.3 Tree cover estimations 

Tree cover was estimated in Chapter 4 and 5. The estimates of percent tree cover 

presented in Chapter four were based on phase and cycles as derived from the first and 

second strongest harmonic terms respectively. The estimates of tree cover presented in 

chapter five were based on harmonic analysis (using amplitude), NDVI and SAVI 

vegetation indices with soil determining methods. Detail explanation of these methods 

has been provided in the relevant chapters.  

3.2.3 Regression analysis 

Regression models were used for data calibration and validations. Simple, logarithmic, 

polynomial and the multiple linear regression models are established between the 

vegetation indices and the plot data collected from the field. Research questions were 

carefully explained based on the chosen method in each relevant chapter where the 

analyses were carried out. 

3.2.44 Field observation 

A field campaign was carried out in March 2015 towards the end of the wet season when 

the photosynthetic activity of the vegetation was still high (Archibald and Scholes, 

2007b). Fractional vegetation cover (FVC) of trees and grasses was estimated following 

the visual estimation procedure by Law et al. (Law et al., 2008). This procedure is usually 

applied to estimate percent canopy cover when for instance tree canopy cover is clearly 

less than or greater than 10 % live tree canopy cover (Figure 3.5) (Law et al., 2008, 

Riemann et al., 2016). A recent study compared four methods of estimating tree canopy 
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cover (Riemann et al., 2016). These methods include: Stem-mapped canopy cover 

(SMCC) which is derived directly from ground inventory data using modeled 

relationships between tree diameter at breast height (DBH) and crown diameter for each 

tree species, the  Field-collected percent canopy cover (FCC) derived through Ocular 

estimates, Photo-interpreted percent canopy cover data (PCC), (PCC collected from leaf-

on, 1 m resolution, digital color-infrared National Agriculture Imagery Program (NAIP) 

imagery) and Geographic-Object-Based Image Analysis (GEOBIA) approach that uses 

both high resolution imagery and leaf-off LiDAR data. RMSE and coefficient of 

agreement (AC) were used to compare the accuracy of the methods. FCC (Ocular based 

method) show high agreement with PCC (AC: 0.73, RMSE = 16), GCC (AC = 0.7, 23%) 

and SMCC (AC = 0.78, RMSE = 14%). The FCC was also evaluated based on quality 

assurance (QA) data which is collected on 4 % of the plots nationwide of the original 

plots (revisit and re-inventory by a separate crew and all variables are re-measured). The 

results indicate better agreement (AC = 0.92, RMSE = 7.4) than what was observed in all 

the previous methods. Ocular estimate together with satellite data have promise for large 

area estimation of tree cover (Riemann et al., 2016). 

In the field, tree and grass FVC was estimated visually in 25 plots along the main road 

from Skukuza to Tshokwane. Three additional plots were added based on the visual 

interpretation of Google Earth images to incorporate areas with more dominant tree cover 

than was found in the plots. The plots span different vegetation types, rainfall, geological 

conditions and soil types and cover a gradient of tree/grass mixtures that are very distinct 

regarding their structure, type, density and distribution. Specifically, the tree species for 

these plots include Acacia gradicortuna (e.g. plot 1, 11, 12), Combretum 

(Zeyheri/apiculatum) (e.g. plot 13, 14, 25), Acacia nigrescens (e.g. plot 5), 

Dicchrostachys cinnerea, Scelerocarya birrea (e.g. plot 28), Euclea divinorum (e.g. plot 

4), Combretum hereroense (e.g. plot 5), Albizia harveyi (15) and Terminalia sericea (e.g. 

plot 3) etc. Grass species include Aristida congesta spp., Digitaria eriantha, Erasiantha, 

Uracholoa mosambicensis, Themeda triandra, Panicum colouratum etc.  The cover scale 

adopted from Law et al., (2008) is presented on Figure. 3.5. 

FVC of four structural vegetation types was estimated for each plot (trees ≥ 6m, shrubs 

1-5 m, forbs and grasses). Trees and shrubs were merged into a single group in the 

analysis to represent overall woody cover while forbs and grasses were merged to 
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describe overall herbaceous cover. Since, phenology is a function of species composition, 

time and maturity of the plant life-forms, only sites with healthy vegetation at the time of 

the field work were incorporated (Archibald and Scholes, 2007b, Ma et al., 2013). Figure 

3.6 shows photographs of selected field plots and a map from OpenStreetMap. The field 

data was sampled about 50 m away from the road to avoid proximity effects (Smit and 

Asner, 2012). Considering the MODIS pixel size of 250 m, each plot was chosen as a 200 

m x 200 m square along transect about 25 km in length.  As the method adopted a rough 

approximation, for each plot we consider the cover scale used by Law et al. (Law et al., 

2008). The sampling applied is random, but a distance of at least 1 km between plots was 

maintained to capture landscape variability to include samples that are representative of 

the ecosystem.  A bounding circle (cover scale) adopted from Law et al. (2008) was used 

for measuring the tree/grass cover. The procedure started by establishing a plot boundary. 

It should be noted however that no subplot measurement was done in order to ease field 

data process due to nature of the study area (Riemann et al., 2016, Mairota et al., 2015). 

Previous studies highlighted the difficulty of relating field information to image data at a 

comparable scale due to product mismatch and insufficient field data if the plots are 

smaller than 0.1km² (Gill et al., 2009). 

Figure 3. 5: Examples of percent cover (Law et al. 2008) 

 



53 
 

 

Figure 3. 6: Map of the study sites along the Skukuza/Tshokwane road, showing 

photographs of some selected field plots to illustrate the different tree/grass compositions. 
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Chapter 4 

An assessment of tree/grass fractional cover using phenological 

signal decomposition of MODIS data 
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4.1 Introduction 

Many previous studies have conceptualized the distribution of vegetation in savanna as a 

function of soil, climatic gradient and human activities (Foody, 2003, Chamaille-Jammes 

et al., 2006, Chamaille-Jammes and Fritz, 2009) without consideration to trees and 

grasses separately, even though they have different growing cycles and contribute 

differently to ecosystem function in savannas.  

To date, the full potential of remote sensing of mixed tree/grass communities with time-

series analysis has not been fully realized. PFTs mapping from time-series decomposition 

adds immense value to the long-term data archives of satellite imagery (Lu et al., 2003, 

Archibald and Scholes, 2007b). Challenges lie in the differences in tree/grass structure, 

physiology, phenology and seasonality. Because the signals from different PFTs are 

mixed within the same pixel in medium-resolution satellite images (Hill et al., 2011, Hill 

and Hanan, 2010a). The partitioning of tree and grass phenology could be possible since 

the two PFTs have different phenological cycles (Boke-Olén et al., 2016). In addition, 

mapping fractional tree/grass cover as a continuous variable is more applicable in African 

savannas; where landscapes are dominated by gradual transitions between open and 

closed shrub and grasslands rather than by distinct class boundaries (Gessner et al., 2008).  

The use of uncertainty measures in land surface phenology is also important as they allow 

a statistically unusual event at a given probability level and an event within the normal 

range of variability to be distinguished (White and Nemani, 2006). White and Nemani 

(2006) presented a statistical measure of uncertainty using a confidence interval for real-

time monitoring and short-time forecasting of LSP. Many previous studies that have used 

Fourier analysis do not assessed harmonic terms based on statistically significant 

harmonics (de Beurs and Henebry, 2010, Moody and Johnson, 2001). The need to 

incorporate more statistical techniques to estimate confidence intervals is important 

(Bloomfield, 2004). The aim of this study was to use satellite phenology data to assess 

the temporal dynamics of PFTs in the African savanna of Kruger National Park, South 

Africa. The harmonic analysis was applied to vegetation phenology observations of a 

heterogeneous savanna based on MODIS NDVI time series data. The decomposition 

model is tested for its ability to estimate separate tree/grass cover fractions as well as for 

their annual and interannual variability using plot data from a field campaign in 2015. 

The study seeks to answer the following questions: 
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1. How can satellite time series data on tree/grass signals be decomposed into 

statistically significant harmonic terms? 

2. How does tree and grass phenology vary inter-annually? 

3. How well are the satellite derived metrics estimated from the NDVI using Fourier 

analysis can estimate tree/grass fractions?  

4. 2 Objectives  

1. To decomposed MODIS NDVI data into significant strongest harmonic terms of 

tree and grass signals 

2. To characterise inter-annual variability of the PFTs with reference to amplitude 

phase, cycles based on their temporal frequency domain.  

3. To assess relationship between the tree and grass cover fractions as derived from 

the field.  

4. To assess the accuracy of tree/grass cover estimates from phase and cycles using 

field data collected in 2015. 

4.3 Methods 

This section addresses how the NDVI and the derived amplitude, cycles and phase values 

were analyzed. The signal decomposition procedure for the estimation of statistically 

significant harmonic terms has been explained in chapter three. 

4.3.1 Assessing changes in PFTs from NDVI time series 

The changes in the MODIS NDVI time series data were assessed and compared between 

different field plots. The purpose was to determine the interannual variability of tree/grass 

fractional and investigate whether a distinction can be made among various PFTs as they 

are composed of varying density. 

4.3.2 Identifying variability of amplitude and phase values using harmonic terms 

 

Harmonic terms of the NDVI time-series data were used to characterize fractional 

tree/grass phenology changes. The analysis was first run for all field plots data to identify 

all statistically significant harmonic terms. The annual and interannual variability with 

corresponding amplitude and phase values for these plots were then assessed. However, 

it should be noted that two kinds of analyses were performed with the NDVI time series 

data. The first analysis considered the entire time series over the study period (322 
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observations) and this was applied to all plots. The second analysis was applied to few 

plots and for phenological year (23 observations for each year). The selection of the plots 

is based on a threshold of ≥ 35% and ≥ 10% of tree cover (TC) and grass cover (GC) 

respectively. Specifically, plot 25 (TC = 55%, GC = 15%), 28 (TC= 70%, GC = 20%), 

for dominated tree sites were used. For grass dominated sites, plot 1 (TC = 5%, GC= 

85%), plot 10 (TC = 20%, G C= 70%). Others include plots where the proportion of trees 

and grasses are equal. These are plot 17 (TC = 35, GC = 35%) and plot 24 (TC = 45, GC 

= 45%). These plots cover parts of the thickets of the Sabie and Crocodile River, where 

trees were dominated by Combretum/Terminalia serica woodland, Sclerocarya birrea, 

Euclea divinorum, Sapirostachys Africana, Acacia nigrescens savanna and in the Acacia 

welwitschii thickets in the Karoo sediments landscape. The major species in the grass 

dominated plots include Themeda triandra and Panicum colouratum. 

The assessments of these PFTs were made with reference to strongest harmonic terms. 

For example, first and second strongest harmonics are the most important as they have a 

clear ecological interpretation (Scharlemann et al., 2008, Moody and Johnson, 2001). The 

first and second strongest harmonic represent the annual and biannual signals 

respectively. The first strongest harmonic term can be caused by all PFTs while the 

second strongest is more likely to represent PFTs with bimodal characteristics (Moody 

and Johnson, 2001). The annual rainfall data for four stations have been compared using 

a bar and line plots with the corresponding pixels values of the second strongest harmonic 

term and the mean NDVI of the dry season for each year (2002/2015). The stations 

include Skukuza (in the extreme south), the Pafuri (in the extreme north), Satara (in the 

far south) and Mahlengeni in the north. 

4.3.3 Regression analyses 

Regression analysis is a statistical method of estimating the relationships among the 

variables. For example, a simple linear regression model can be expressed in the form: 

y=α+βx+ε                                                                            (4 .1)                                                  

In this model, the two variables to be related are y, the dependent variable, and x, the 

independent variable. The parameters, α represents the intercept and β expresses the slope 

of the relationship between the two variables, and an error term, ε. When there is more 

than one independent variable (multiple linear model), the regression model is typically 

expressed as: 
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y= β0  +β1𝑥1 +……β𝑛𝑥𝑛 +ε                                                            (4 .2)  

where β0 is the intercept and β1 − β𝑛 represent the slope coefficients for the independent 

variables 𝑥1 − 𝑥𝑛, respectively. The relationship between tree and grass cover as obtained 

from the field was first assessed using simple linear regression. A simple linear regression 

was also used to estimates percent tree/grass cover using phase values of the first 

harmonic term. The number of cycles were also used to estimate the percent tree/grass 

cover. Both phase and cycles were used in a multiple linear regression to assess whether 

the synergy between the two variables would yield better accuracy in this estimation. The 

field data was divided into two: one half were used for calibration and the other for 

validation. The procedure for calibration and validation for the estimates of percent 

tree/grass cover are explained in the following sections. The phase values of the first 

harmonic term were used for tree cover estimation. For the Bonferroni method, the 

number of cycles of the second harmonic term were used, while the number of cycles 

used to estimate tree cover for multitaper method was the sum of five harmonic terms. 

The accuracies of tree cover estimated using Bonferroni and multitaper methods were 

compared. 

4.3.3.1 Calibration of tree/grass cover using field data 

In this Chapter, the estimates of tree/grass percent cover were made by establishing the 

relationship between the phase, cycles and the field data. The field data were used as the 

dependent variable while the phase and cycles as the independent. Only percent tree cover 

was estimated using the phase and cycles in the multiple regression. 

4.4.3. 2 Validation of tree/grass cover using field data 

The remaining half of the field data on tree/grass cover were used for model validation. 

To assess model performance for tree cover estimated in this study, the coefficient of 

determination (R²) was used to measure the strength of the relationship between the 

predicted and the observed values. The predicted data for each model is taken as the 

independent variable  while the observed as the dependent as explained in Piñeiro et al. 

(Piñeiro et al., 2008). In addition, the root mean square error (RMSE) was used to 

determine the goodness-of-fit. 
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4.4 Results 

The time series analysis of NDVI for some selected plots is presented. The results from 

signal decomposition are used for the assessment of PTF dynamics based on the 

statistically significant signals. The first three strongest harmonic terms of the entire field 

plots are presented based on their amplitude and phase values. Annual and interannual 

variability of some tree/grass dominated plots are assessed based on their productivity 

represented by the amplitude. Finally, tree/grass cover were estimated and validated. 

4.4.1 Time series of PFTs based on percent cover 

Examples of a visual exploration of the time series analysis results based on selected field 

plots with different mixtures of FVC of trees and grasses are presented in Figure 4.1 (a-

d). These time series plots do not clearly represent the FVC of individual PFTs at first 

sight except for years with an unusual event. Generally, a distinction can be made between 

tree and grass dominated sites regarding their minimum and maximum NDVI values. 

Most of the sites dominated by grasses show low and high varying signals (NDVI values 

0.1-0.8), while the tree dominated plots show NDVI values around 0.3 and higher. The 

PFTs show interannual variability with the shape of the NDVI curve being differently 

between the years. Figure 4.1a and 41b distinguished between a tree and grass dominated 

sites. For instance, the difference between the two is more obvious in the very dry growing 

season of 2002/2003. Although it is challenging to differentiate the two when reference 

is made to the time series data, the drought year is exceptional for these PFTs. In this 

year, very little grass growth can be observed while tree species maintained high NDVI. 

Biologically, the trees are more resilient to water-constrained conditions than grasses. 

Trees usually have well-developed roots which enables them to tap water from the 

ground. They are less dependent on rainfall than the shallow-rooting grasses, which rely 

on short-lived rainfall (Whitecross, Witkowski, and Archibald 2017b). Trees are more 

resistant to fire and can recover more easily after a fire once they have grown to a certain 

height and escaped the ‘fire trap’. In the NDVI time series data, little variation can be 

seen between them, although they (tree and grass) have different growing cycles. A 

spectral analysis through the harmonic model is applied in the next section which 

decomposed the time series data into harmonic cycles (cycles, amplitude and phase 

values). 
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Figure 4. 1: Time series plots of selected field plots with different FVC of the tree and 

grass PFTs, (a) tree dominated site (plot 28) and grass dominated site (plot 3), (b) tree 

dominated site (plot 25) and grass dominated site (plot 4), (c) mixed tree/grass site (plot 

17) and (plot 24), (c) mixed tree/grass site (plot 21) and (plot 11) 

  4.4.2 Signal decomposition of MODIS NDVI data 

Given that NDVI for the PFTs varies temporally and cannot be easily understood as a 

mixed signal, numeric decomposition of these values into harmonic terms to estimate 

their amplitude and phase values for each cycle is applied to assess the interannual 

variability of PFTs and greening-up period for all field plots. The five plots, 

predominantly composed of trees and grasses and a mixture of the two, are presented. 

The signal decomposition results for the first and second strongest harmonic terms are 

presented for the all field plots in Table 4.3.  

i. Mixed tree/grass (plot 21, TC = 41%, GC = 35%) 

In Figure 4.2, the NDVI time series (a), the linear trend (b), the detrended time series 

(black) and the model composed of all significant harmonic terms (red) (c), all individual 

harmonic terms that are significant (d), and spectral density of the harmonics at different 
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frequency (e) are presented for this field plot (plot 21). This plot shows the annual 

variability and changes associated with a site having a considerable tree/grass mixture. In 

Figure 4.2 (b), the black line indicates the trend whereas the red line shows the composite 

harmonic model. This harmonic model is a good fit as it reflects changes in the time 

series. The trend line shows that the rate of change was higher at the beginning driven 

probably by the drought year (2002/2003). In this plot, the early years had also low NDVI 

values. The spectrum plot shows the aggregate frequencies of the entire time series 

(Figure 4.2e). The statistically significant harmonic terms are usually characterized by 

increasing power at lower frequencies (Figure. 4.2 e). 
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Figure 4. 2: 1 Harmonic decomposition of MODIS NDVI for a tree/grass field plot (21). 

(a) MODIS NDVI time series. (b) The red line indicates the composite harmonic model 

of all significant terms while the black line shows the trend line. (c) Detrending result, 

with the red line indicating the composite harmonic model. (d) Significant harmonic 
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terms of tree/grass signal based on the harmonic model. (e) Spectral density of the 

harmonics at different frequency. 

ii. Grass dominated plot (plot 3, TC = 5%, GC= 85%) 

The same analysis for a grass dominated field plot (plot 3) is shown in Figure 4.3a-e, with 

the MODIS NDVI time series (a), the linear trend (b), the detrended time series (black) 

and the model composed of all significant harmonic terms (red) (c), all individual 

harmonic terms that are significant (d), and spectral density of the harmonics at different 

frequency (e). The NDVI data indicated annual variability over the study period. 

Similarly, for most of the years, the NDVI values exceeds 0.25. Figure 4.3d presented a 

graphical expression of these significant terms. There is also a decreasing NDVI value at 

the beginning resulted probably due to manifestation effect of drought (e.g. 2002/2003).  
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Figure 4. 3:  Harmonic decomposition of MODIS NDVI for a grass dominated field plot 

(2). (a) MODIS NDVI time series. (b) The red line indicates the composite harmonic 

model of all significant terms while the black line shows the trend line. (c) Detrending 

result, with the red line indicating the composite harmonic model. (d) Significant 
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harmonic terms of tree dominated signals based on the harmonic model. (e) Spectral 

density of the harmonics at different frequency. 

iii. Tree dominated plot (plot 28, TC = 70%, GC = 20%) 

In Figure 4.4, the NDVI time series (a), the linear trend (b), the detrended time series 

(black) and the model composed of all significant harmonic terms (red) (c), and all 

individual harmonic terms that are significant (d), spectral density of the harmonics at 

different frequency (e) are presented for the tree dominated plot (plot 28). The NDVI data 

for this plot indicated the annual variability and changes associated with a predominantly 

tree dominated site. In Figure 4.4, the black line indicates the trend whereas the red line 

shows the composite harmonic model. This harmonic model is a good fit as it reflects the 

key changes in the time series. The trend line was relatively stable from the beginning 

and was higher towards the end. The strongest significant harmonic terms, based on the 

Bonferroni-Hartley test and their corresponding amplitude, phase values and cycles are 

presented in Table 4.3.  
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Figure 4. 4: Harmonic decomposition of MODIS NDVI for a tree dominated field plot 

(28). (a) MODIS NDVI time series. (b) The red line indicates the composite harmonic 

model of all significant terms while the black line shows the trend line. (c) Detrending 

result, with the red line indicating the composite harmonic model. (d) Significant 
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harmonic terms of tree dominated signals based on the harmonic model. (e) Spectral 

density of the harmonics at different frequency. 

4.5.5 Comparison of strongest significant harmonic terms between tree and grass 

dominated plots 

The amplitude values represent the productivity level of the PFTs (extent of the wave in 

y direction) whereas the phase angle shows the time delay of the wave term (shift along 

the time axis). The variability of the amplitude and phase values here only indicated the 

maximum productivity level of the PFTs of a given cycle.  

Comparison of the strongest significant harmonic terms between tree and grass dominated 

field plots in Figure 4.5 was presented with reference to the ten most powerful harmonic 

terms (Table 4.1). The table shows distinct amplitude and phase angle values for trees 

and grasses. Both exhibit a large amplitude value of 14 cycles as the strongest harmonic 

term, which corresponds to the annual seasonality over the 14-year length of the time 

series. The PFTs (trees and grasses) usually attained their most active photosynthetic 

stage during this time. In the second strongest harmonic term, the tree phenology has 28 

cycles, i.e. two cycles per year.  

In contrast, the grass phenology (Table 4.1) has only 5 peaks over the 14-year period in 

the second strongest harmonic term. This implies that the time of the maximum amplitude 

of the second strongest term for grass does not follow an annual pattern or a multiple 

thereof. Instead, it is reached in different years.  Thus, the second strongest term shows 

that a subtle bimodal phenological pattern was found for tree phenology, overlaying the 

annual cycle, while in contrast, and the grass phenology has a stronger second harmonic 

term that does not follow an annual pattern (cycle 5). There is no complete bimodal annual 

signal component found for grasses up to fourth strongest harmonic term which had only 

23 cycles.  
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Table 4. 1: Significant harmonic terms of the main PFTs (tree and grass) selected with 

Hartley’s ANOVA F-test at 5% (p < 0.05) analysed over the entire time series (14 years) 

to compare tree and grass dominated sites. 
Strongest 

terms 

 

Tree dominated site (plot 28) Grass dominated site (plot 3) 

Cycles Amp Phase Cycles Amp Phase 

1 14   0.115 144 14 0.182 164 

2 28 0.029 -32.7 5 0.042 -21 

3 10 0.028 116 9 0.040 15 

4 16 0.028 64.2 23 0.036 -146 

5 9 0.026 -101 16 0.035 -85.7 

6 7 0.025 -112 8 0.032 -176 

7 15 0.025 -14.9 17 0.031 -151 

8 6 0.022 -121 39 0.030 -78.7 

9 12 0.019 -52.6 7 0.029 -110 

10 17 0.019 -99.6 6 0.028 -66.9 

4.5.3 Inter-annual variability of selected tree/grass productivity with reference to 

amplitude and phase values estimated with Harley’s test 

The length of time series for the calculated harmonic terms in this case is shorter (based 

on each growing season separately). The amplitude values for the strongest harmonic 

term and its corresponding phase shifts for the six plots: tree dominated, grass dominated 

and mixed tree/grass plots (plot 28, 3, 17, 25, 2 and 24,) were presented in Table 4.2 and 

illustrated in Figure 4.5 a-d. Plot 28 and 25 are the tree dominated plots while plot 2 and 

3 are grass dominated. Plot 24 and 17 contained a considerable mixture of both trees and 

grasses at almost equal proportion. The amplitude of the strongest harmonic term show 

changes in phenology of these PFTs over the years. The grass dominated plots have higher 

amplitude values with reference to this strongest harmonic term. The maximum amplitude 

values for grass are close to 0.29. Tree (plot 28) records maximum values at 0.18 for plot 

28 while plot 25 has maximum value at 0.20. Plot 25 is dominated by the Sapirostachys 

Africana and Euclea divinorum tree species. The highest amplitude value recorded by the 

plots was in 2003/2004 phenological year which also had a high record of rainfall (Figure 

4.6). 

In general, these changes in tree/grass phenology could be seasonal (e.g. intra-annual 

changes due to differences in the PFTs life cycle), gradual (e.g. because of climate 

variability) and abrupt (e.g. due to fires and drought). With reference to phase values, it 

can be observed that the greening of PFTs is variable with species and time. There are 

inconsistencies in the amplitude and greening period of these PFTs over the years. 

Mostly, the tree dominated plot had an earlier greening than grasses. This might be 

connected to the fact that some tree species usually grow leaves (leaf flush) before the 
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rainy season while most grass species depend on water availability during the rainy 

season. For instance, tree dominated site (Plot 28) had earlier greening period than grass 

throughout the study period. For the comparison of plot 25 and plot 2, the early greening 

period for tree dominated plots occur only in some years (Figure 4a/d, Table 4.2). Grass 

dominated plot appear to have an earlier greening period for six years (Figure 4a/d). The 

year 2014/2015 in which the field campaign was carried out show that the estimated tree 

dominated sites (plot 28 and 25) had earlier greening period than grass dominated sites 

(plot 3 and 2). 

Table 4. 2: Parameters of the strongest significant harmonic term of the main PFTs (tree 

and grass). Plot 28, Plot 3, Plot 17, Plot 25, Plot 2 and Plot 24 analysed for each 

phenological year separately. 

year Plot 28 (TC 

= 70%, GC = 

10%) 

 

Plot 3 (TC = 

6%, GC = 

85%) 

 

Plot 17 

(TC = 

35%, GC = 

35%) 

Plot 25 

(TC = 

55%, GC 

= 15%) 

Plot 2 (TC = 

5%, GC = 

70%) 

 

Plot 24 (TC 

= 45%, GC 

= 45%) 

 

2002 0.14 189 0.20 198 0.22 178 0.18 174 0.22 195 0.18 191 

2003 0.08 115 0.04 156 0.11 168 0.08 148 0.06 69.5 0.08 157 

2004 0.19 94.1 0.29 114 0.20 126 0.18 120 0.28 111 0.25 111 

2005 0.09 142 0.12 191 0.16 169 0.12 150 0.11 189 0.11 181 

2006 0.18 121 0.26 159 0.24 149 0.20 139 0.25 160 0.22 153 

2007 0.11 132 0.16 150 0.16 165 0.12 146 0.16 132 0.16 137 

2008 0.12 196 0.22 210 0.13 178 0.12 169 0.24 209 0.19 206 

2009 0.12 153 0.28 157 0.22 157 0.17 149 0.26 147 0.24 143 

2010 0.15 144 0.22 154 0.20 142 0.16 138 0.19 155 0.20 153 

2011 0.10 148 0.21 163 0.19 165 0.18 155 0.17 161 0.15 155 

2012 0.16 144 0.22 148 0.19 164 0.16 159 0.21 150 0.19 147 

2013 0.10 142 0.16 181 0.18 181 0.13 174 0.15 183 0.13 173 

2014 0.15 158 0.21 173 0.20 171 0.14 152 0.21 172 0.19 165 

2015 0.10 153 0.20 168 0.16 180 0.13 166 0.19 169 0.17 161 

 

In Figure. 4.5a-d, an example of the results derived from harmonic analysis of the inter-

annual dataset indicating different harmonic terms for discriminating tree/grass 

phenology is presented. These are results already presented in Table 4.5. The Figure 

shows the variability of amplitude values between plots that are predominantly trees or 

grasses and those with a considerable mixture of the two. Figure 4.5a/b shows amplitude 

and phase values of tree and grass cover with up to 70% as well as the mixed tree/grass 

site consist of 35% for each PFTs.  The grass dominated plot has peak values in most 

cycles while the mixed site follows in between the dominated tree/grass plots. The inter-

annual variability in phenology is, however, site-specific. 
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Figure 4. 5: Interannual variability of strongest harmonic terms of the decomposed 

tree/grass NDVI time series, estimated per year. (a) and (b) Annual amplitude of the first 

strongest term (c) and (d) Annual phase of the first strongest term. 

4.5.5 Statistically significant harmonics for tree and grass dominated sites assessed 

using Hartley-test and Bonferroni approach 

Harmonic models were applied to all field plot data to assess their temporal changes using 

the amplitude and phase values of the first and second strongest harmonic terms (Table 

4.3). The first and second harmonic terms presented here are statistically significant 

terms. There is, however, sites specific differences in the density of amplitude of the first 

strongest harmonic terms. In the second term, the amplitude values were quite lower. On 

the other hand, the phase values have shown a different scenario remarkably due to the 

dissimilarity of the PFTs (Table 4.6) because their greenness periods vary. Generally, 

earlier greening periods for these plots were found where tree cover is higher (e.g. plot 

28 (143) and plot 27 (145) and later for grass cover (e.g. plot 1 (161) and plot 3 (164) as 

shown by the first harmonic term (annual). This is expected since signals from PFTs under 

various natural processes usually present immediate changes in their amplitude and 

frequency due their response to ecosystems environmental condition. For example, 



71 
 

precipitation, fires, herbivore influence spatial and temporal variability of vegetation 

induce strong changes to annual and inter-annual amplitude and frequency. Figure 4.6 

indicates a 14-year observed annual rainfall data for weather four stations and their 

corresponding amplitude values of the second strongest harmonic terms and mean NDVI. 

The bar plot shows the annual rainfall for each year and at each station while the red line 

shows amplitude or mean dry season MODIS NDVI. All phenology metrics have 

responded strongly to annual variation of rainfall. However, the amplitude values appear 

to be more sensitive to rainfall fluctuations than the dry season NDVI (Figure 4.6). With 

reference to a drought year (2002/2003), the differences between the two is more obvious. 

As the grass layer is usually non-photosynthetic in the dry season, the dry season NDVI 

further indicates the resistant of woody species to environmental harsh condition and less 

dependent on rainfall. The sensitivity of the second amplitude values might be the result 

of certain grass species being captured by this harmonic term. 

Table 4. 3: Amplitude and phase values of the first and second strongest harmonic terms 

of field data selected with Hartley’s ANOVA F-test at 5% using Bonferroni (p < 0.05) 

analysed over the entire time series (14 year) for all plots. 

Plot 

  

TC 

(%) 

  

GC 

(%) 

  

Longitud

e  

Latitude Amplitude 

values 

  

Cycles 

  

Phase 

values 

  

1st  2nd  1st  2nd 1st  2nd  

1 5 85 31.8632 -24.7952 0.166 0.035 14 9 161 13.3 

2 5 70 31.8658 -24.7909 0.177 0.047 14 9 162 10.3 

3 6 85 31.8568 -24.8024 0.182 0.042 14 5 164 -21.3 

4 10.5 45 31.854 -24.8024 0.188 0.047 14 5 162 -14.3 

5 11 85 31.7916 -24.8591 0.19 0.041 14 9 158 0.75 

6 11 42 31.7483 -24.9045 0.172 0.032 14 9 159 -11.3 

7 12 67 31.7832 -24.8642 0.184 0.033 14 17 158 173 

8 12 70 31.8411 -24.8182 0.177 0.040

8 

14 9 161 8.95 

9 17 78 31.7666 -24.8781 0.182 0.036

5 

14 23 159 -142 

10 20 70 31.7544 -24.9025 0.179 0.028 14 15 159 -43.4 

11 22 35 31.7256 -24.9003 0.171 0.039 14 9 163 163 

12 30 45 31.7123 -24.9122 0.199 0.037 14 15 160 -51.6 

13 30 40 31.8185 -24.8366 0.181 0.044 14 9 158 -18.3 

14 30 45 31.7558 -24.899 0.177 0.029 14 15 158 -56.9 

15 31 55 31.8433 -24.8155 0.174 0.042 14 9 161 4.22 

16 32 35 31.8111 -24.8427 0.174 0.038 14 9 156 -16.9 

17 35 35 31.6289 -24.9643 0.176 0.037 14 28 163 72.5 

18 35 50 31.8206 -24.8376 0.181 0.044 14 9 157 -20.3 

19 35 22 31.6948 -24.9326 0.184 0.033 14 28 161 66.6 
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20 35 57 31.7726 -24.8721 0.186 0.032 14 23 161 -148 

21 41 35 31.8354 -24.8258 0.165 0.036 14 23 157 -15.4 

22 42 30 31.7035 -24.9229 0.193 0.033 14 23 163 -160 

23 45 50 31.6866 -24.9367 0.19 0.032 14 2 161 -157 

24 45 45 31.8596 -24.7895 0.165 0.039 14 9 157 10.4 

25 55 15 31.6374 -24.9625 0.146 0.036 14 28 152 67.6 

26 65 10 31.7873 -24.7475 0.157 0.033 14 16 152 -110 

27 69 20 31.8074 -24.762 0.151 0.036 14 28 145 74.3 

28 70 10 31.7487 -24.6234 0.116 0.028 14 28 143 59.7 
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Figure 4. 6: Annual precipitation data from weather their corresponding phenology 

metrics from the MODIS data (2002-2015), showing Skukuza with amplitude (a) and 

mean dry season NDVI (b), Pafuri with amplitude (c), and mean dry season NDVI (d), 

Mahlengeni with amplitude (e) and mean dry season NDVI (f), SATARA with amplitude 

(g), and mean dry season NDVI (h) 

 

 

 

 

 

 

 

 

 

 



74 
 

4.5.6 Statistically significant peaks for tree and grass dominated sites assessed using F-

test through multitaper method. 

 

Figure 4.7 illustrates the periodogram of the field plot data (the tree and grass dominated 

sites) extracted from MODIS NDVI time series from 2001-2015 (June to July) showing 

significant peaks assessed using statistical confidence level of the power spectrum 

calculated by the F-test (at 95%) through multi-taper method. Similar to Bonferroni 

approach, the NDVI time series data were also detrended in this method. The multi-taper 

estimator detects peaks in the lower, middle and the higher frequency. The pattern of the 

cycles as derived from the multi-taper do not appear to be consistent for all sites because 

the phenomena itself is nonstationary dynamic. However, although, trees and grasses 

have distinct growing cycles, the tree/grass phenology could not be distinguished by 

cycles using the tapers. The Bonferroni approach presented earlier distinguished these 

PFTs as presented earlier. The multiplication of the time series in multi-taper approach 

usually reshaped the original time series by the window functions. The number of tapers 

as well as time band parameter being applied to the original time series to decrease the 

dynamic range of a dataset may change the distribution of the power spectrum. 

It should be noted that the multitaper package (in R) used in this study offer possibility to 

computes complex demodulate of a given series around a given central frequency which 

returns amplitude and phase values based on certain parameters (Rahim et al., 2017). As 

explained previously in the method section, the amplitude and phase values (Figure 4.7 

and Table 4.4) were estimated from the multitaper package based on time-bandwidth of 

2 and 46 number of the length of sub-block (to be used in the time series) and the step-

size of 1. Stepsize is a proposed option that sets the index step size between blocks. The 

number of cycles for the five harmonic terms, the average amplitude values and phase 

values of the 14 year MODIS NDVI data are presented in Table 4.4. The estimated phase 

values are presented (Figure 4.7) in their nonstationary form as computed from the 

multitaper techniques. For tree/grass cover estimate, the phase values were averaged. The 

amplitude values are lower for most tree dominated plots because only the peak of the 

annual cycle was considered (Figure 4.7). The amplitude values are therefore like the 

estimate from the Bonferroni approach presented earlier. The behavior of tree/grass 

phenology as assessed using Bonferroni with tree phenology having earlier greening 

period is consistent with multitaper method. Figure 4.7 shows tree dominated plots with 

a range of phase values from 100 to 140 while grass dominated sites mostly occur from 
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130 to 160 over a 14-year period. However, the two approaches also differ in phase 

estimation. The multitaper phase estimation follows a nonstationary dynamic of the 

original time series. 
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Figure 4. 7: Statistically significant peaks of tree and grass dominated sites assessed 

calculated by the F-test (at 95%) through multi-taper method: the red-dash lines indicate 

the boundary of the statistical confidence level of the power spectrum 
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Table 4. 4: Amplitude and phase values of the statistically significant harmonic term of 

field data selected with Hartley’s ANOVA F-test at 5% using multi-taper method (p < 

0.05) analysed for the entire time series (14 years) and for all plots. 

Plot 

  

TC 

(%) 

  

GC (%) 

  

    

Longitude 

  

  Latitude 

  

Amplitude 

values 

  

Cycles       Phase 

values 

 

1 5 85 31.8632 -24.7952 0.18 16 143.45 

2 5 70 31.8658 -24.7909 0.19 11 144.26 

3 6 85 31.8568 -24.8024 0.20 12 147.00 

4 10.5 45 31.854 -24.8024 0.20 14 144.60 

5 11 85 31.7916 -24.8591 0.21 14 140.61 

6 11 42 31.7483 -24.9045 0.18 14 143.15 

7 12 67 31.7832 -24.8642 0.20 10 140.18 

8 12 70 31.8411 -24.8182 0.19 12 142.30 

9 17 78 31.7666 -24.8781 0.20 16 140.36 

10 20 70 31.7544 -24.9025 0.19 20 141.86 

11 22 35 31.7256 -24.9003 0.18 15 145.01 

12 30 45 31.7123 -24.9122 0.21 16 141.50 

13 30 40 31.8185 -24.8366 0.19 17 140.71 

14 30 45 31.7558 -24.899 0.19 19 139.49 

15 31 55 31.8433 -24.8155 0.18 16 141.75 

16 32 35 31.8111 -24.8427 0.18 15 138.33 

17 35 35 31.6289 -24.9643 0.18 8 144.48 

18 35 50 31.8206 -24.8376 0.19 20 139.03 

19 35 22 31.6948 -24.9326 0.20 16 143.60 

20 35 57 31.7726 -24.8721 0.20 15 141.32 

21 41 35 31.8354 -24.8258 0.17 17 137.63 

22 42 30 31.7035 -24.9229 0.21 9 145.89 

23 45 50 31.6866 -24.9367 0.20 27 143.93 

24 45 45 31.8596 -24.7895 0.17 13 139.91 

25 55 15 31.6374 -24.9625 0.15 11 134.76 

26 65 10 31.7873 -24.7475 0.17 16 132.77 

27 69 20 31.8074 -24.762 0.16 22 126.25 

28 70 10 31.7487 -24.6234 0.12 18 127.07 

 

4.5.7 Inter-annual variability of selected tree/grass productivity regarding amplitude and 

phase values estimated using Fisher’s test (with multitaper) 

 

Similar harmonic analysis of selected tree/grass plots demonstrated earlier using the 

Harley’s ANOVA F test (with Bonferroni) is presented for Fisher’s F test (with multitaper 

method) to assess tree/grass interannual variability. The amplitude values for the strongest 
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harmonic term and its corresponding phase shifts for the six plots: tree dominated, grass 

dominated and mixed tree/grass plots (plot 28, 3, 17, 25, 2 and 24,) were presented in 

Figure 4.5 a-d. Plot 28 and 25 are the tree dominated plots while plot 2 and 3 are grass 

dominated. Plot 24 and 17 contained a considerable mixture of both trees and grasses. 

Unlike the statistically significant harmonic selected with Bonferroni using the Harley’s 

ANOVA F test, the multitaper method allow to estimate amplitude in the nonstationary 

form of the original time series such that there are varying amplitude values throughout 

the year. The amplitude of the harmonic term show changes in phenology of these PFTs 

over the years. The maximum amplitude values for grass are close to 0.27 (plot 3). The 

maximum amplitude values recorded for tree vegetation 0.20 (plot 25). Plot 25 is 

dominated by the Sapirostachys Africana and Euclea divinorum tree species. 

Furthermore, the amplitude values estimated here are like the estimate using Bonferroni 

approach. With reference to phase values, it can be observed that the greening of PFTs is 

variable with tree species having early greening period than grasses. There are however 

few years with grass species having early greening period than trees. For example, in the 

2009/2010 (Figure 4. 8 a) and 2003/2004 and 2011/12 (Figure 4.8 a). 
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Figure 4.8: Interannual variability of strongest harmonic terms of the decomposed 

tree/grass NDVI time series, estimated per year (a) and (b) Annual amplitude of the first 

strongest term (c) and (d) Annual phase of the first strongest term. 

4.5.8 Comparison of number of cycles for the first three harmonic terms estimated using 

Harley’s ANOVA F test (with Bonferroni) and Fisher’s F test (with multitaper method). 

A comparison of the number of cycles estimated from the first three significant harmonic 

terms for tree/grass field plots (28 field plot data) using the Harley’s ANOVA F test (with 

Bonferroni) and Fisher’s F test (with multitaper method) is presented in Table 4.5. The 

table shows distinct number of cycles for trees and grasses with Harley’s ANOVA F test 

and correction for multiple testing with Bonferroni. There are 14 cycles in the strongest 

harmonic term, which corresponds to the annual seasonality over the 14-year length of 

the time series. In the second strongest harmonic term, the tree phenology has 28 cycles, 

i.e. two cycles per year. The number of cycles estimated with Harley’s ANOVA F test in 
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the first and second harmonic terms, appear to be consistent with biological 

characteristics of tree vegetation in savannas.  

In contrast, the power spectrum estimated by the Thomson multitaper method using the 

statistical confidence as evaluated by the F-test do not presents tree and grass phenology 

as two distinct PFTs. In Table 4.5, the 28 field plots have a range of number of cycles 

from 2-6 and 0-7 in the first and second harmonic terms respectively. Therefore, the 

cycles have less physical meaning as they do not follow an annual pattern of the tree/grass 

phenology. The number of cycles do not also differentiate between trees and grasses as 

was the case for the Harley’s ANOVA F test which indicate a subtle bimodal phenological 

pattern for tree phenology, 

Table 4. 5 : Number of cycles of the first three harmonic terms estimated using Harley’s 

ANOVA F test (with Bonferroni) and Fisher’s F test (with multitaper method). 

Plot 

  

TC (%) 

  

GC (%) 

  

Longitude 

  

Latitude 

  

Hartley’s test (with 

Bonferroni)  

Fisher’s (with 

multitaper) 

1st  2nd  3rd  1st  2nd  3rd  

1 5 85 31.8632 -24.7952 14 9 5 6 5 0 

2 5 70 31.8658 -24.7909 14 9 5 6 1 1 

3 6 85 31.8568 -24.8024 14 5 9 4 3 4 

4 10.5 45 31.854 -24.8024 14 5 9   3 5 3 

5 11 85 31.7916 -24.8591 14 9 5 4 5 1 

6 11 42 31.7483 -24.9045 14 9 23 4 3 3 

7 12 67 31.7832 -24.8642 14 17 5 5 3 0 

8 12 70 31.8411 -24.8182 14 9 5 5 2 2 

9 17 78 31.7666 -24.8781 14 23 9 4 0 3 

10 20 70 31.7544 -24.9025 14 15 23   3 4 3 

11 22 35 31.7256 -24.9003 14 9 23   2 3 3 

12 30 45 31.7123 -24.9122 14 15 15 5 2 2 

13 30 40 31.8185 -24.8366 14 9 5 5 6 2 

14 30 45 31.7558 -24.899 14 15 23 3 4 3 

15 31 55 31.8433 -24.8155 14 9 5 5 3 2 

16 32 35 31.8111 -24.8427 14 9 15 4 3 3 

17 35 35 31.6289 -24.9643 14 28 2   4 1 0 

18 35 50 31.8206 -24.8376 14 9 15 5 3 3 

19 35 22 31.6948 -24.9326 14 28 9   5 3 2 

20 35 57 31.7726 -24.8721 14 23 9 5 2 3 

21 41 35 31.8354 -24.8258 14 23 15 6 4 2 

22 42 30 31.7035 -24.9229 14 23 9 6 0 2 
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23 45 50 31.6866 -24.9367 14 2 9 4 7 6 

24 45 45 31.8596 -24.7895 14 9 5 7 2 2 

25 55 15 31.6374 -24.9625 14 28 10 4 3 1 

26 65 10 31.7873 -24.7475 14 16 9 4 4 4 

27 69 20 31.8074 -24.762 14 28 5 5 7 3 

28 70 10 31.7487 -24.6234 14 28 2 4 2 7 

 

4. 5.6 Relationship between field data on fractional cover of trees and grasses 

A relationship between the field estimate of tree and grass cover is presented in Figure. 

4.9a/b. The relationship indicated a strong negative correlation between tree and grass 

cover (R²=0.69 (P<0.01) and R²=0.71 (P<0.01)). Grass cover decreased linearly with 

increasing tree cover and vice-versa. In general, there are more plots with a high 

proportion of grasses than trees.  

 

Figure 4. 9 Relationship between field data on fractional cover of trees and grasses (a) 

tree cover vs grass cover (b) grass cover vs tree cover 

4.5.7 Model calibration using simple regression between the phase, cycles vs percent 

tree/grass cover (field data) 

Table 4.6 indicates field plots, phase and cycles used for data calibration. The Figure 4.10 

indicated the relationship between phase values as well the cycles (of the second harmonic 

terms for Bonferroni method) derived from the MODIS NDVI data over KNP (2002-

2015) as calculated with the F-test using Bonferroni and multitaper methods. The phase 

values of the first strongest harmonic term had strong linear relationship with percent tree 

cover, R2 = 0.50, p <0.01 and R2 = 0.50, p <0.01 for Bonferroni and multitaper method 
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respectively (Figure 4.10a). There is no strong relationship between the phase and percent 

grass cover for both methods (Bonferroni: R2 = 0.20, p = 0.11, multitaper: R2 = 0.19, p = 

0.12, Figure 4.10b). There is a moderate relationship between the cycles and percent tree 

cover (R2 = 0.32, p = 0.02) for Bonferroni but an insignificant relationship (R2 = 0.13, p 

= 0.19) was observed with cycles derived from the multitaper method (Figure 4.10c). 

Again, the relationship between the cycles and the percent grass cover is weak in all 

methods (Bonferroni: R2 = 0.32, p = 0.06 and Bonferroni: R2 = 0.02, p = 0.58).  The 

reason for the weak relationship of grass cover with cycles is not unconnected to the grass 

layer being more susceptible to temporal changes (e.g. drought) as previously 

demonstrated using the time series data. Overall, the positive correlation between the 

phase and percent tree or grass cover implies that it could be used as surrogates to percent 

cover in areas that are not well known.  

Tree cover at less than 50% show an inconsistent greening and very unstable 

developmental growth (Table 4.5). Contrary to what was presented above for Figure 

10a/c, Figure 10e/h show calibration results for phase and cycles when plot 27 (outlier) 

is removed.  All models (for phase and cycles) have very weak relationship linear 

relationships with an observed tree/grass cover when plot 27 is removed (Figure 10e/h).  

Although the variability in the distribution of phase values with reference to plots used in 

this relationship is not very high, plot 27 has an important contribution in establishing 

this relationship being ecologically different compared to other plots. Only few plots had 

tree cover above 40%. Plot 27 which has 69% tree cover had the earliest greening period. 

The insufficient number of plots especially at high tree cover may constraint these models 

in the estimates of tree/grass cover overlarge area even where plot 27 was used. Therefore, 

only relationships that used plot 27 where used for tree/grass estimations and validation. 
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Table 4. 6: calibration of phase (1st harmonic) and cycle values (2nd harmonic) to 

estimates tree/grass cover. 

Plot Tree 

cover 

(%) 

Grass 

cover 

(%) 

Longitude  Latitude Bonferroni Multitaper 

Cycles Phase 

values 

Cycles Phase values 

2nd 1st  All peaks 1st 

1 5 85 31.8632 -24.7952 9 161 16 143.45 

3 6 85 31.8568 -24.8024 5 164 12 147 

4 10.5 45 31.854 -24.8024 5 162 14 144.6 

7 12 67 31.7832 -24.8642 17 158 10 140.18 

9 17 78 31.7666 -24.8781 23 159 16 140.36 

10 20 70 31.7544 -24.9025 15 159 20 141.86 

12 30 45 31.7123 -24.9122 15 160 16 141.5 

15 31 55 31.8433 -24.8155 9 161 16 141.75 

16 32 35 31.8111 -24.8427 9 156 15 138.33 

19 35 22 31.6948 -24.9326 28 161 16 143.6 

21 41 35 31.8354 -24.8258 23 157 17 137.63 

22 42 30 31.7035 -24.9229 23 163 9 145.89 

24 45 45 31.8596 -24.7895 9 157 13 139.91 

27 69 20 31.8074 -24.762 28 145 22 126.25 
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Figure 4. 10: calibration of phase (1st harmonic) and cycle values (2nd harmonic) to 

estimates tree/grass cover, (a) Phase values vs tree cover, (b) Phase values vs grass cover, 

(c) Cycles vs tree cover, (d) Cycles vs grass cover and (e-j) phase vs tree/grass cover 

without plot 27 
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4.5.8 Calibration using multiple regression between cycles, phase values and 

observed tree cover  

The table 4.7 shows a strong linear relationship between the phase and cycles as the 

independent variables and the percent tree cover as the dependent for Bonferroni and 

multitaper methods. The relationships show strong linear correlation with percent tree 

cover, R2 = 0.61, p < 0.01 and R2 = 0.51, p = 0.01 for Bonferroni and multitaper method 

respectively (Table 4.5). The validation results presented in next section would confirm 

whether multiple regression model is more useful than when variables were tested 

individually. 

Table 4. 7 Multiple linear regression coefficient for phase and cycles with percent tree 

cover 

Regression coefficient Bonferroni

  

Multitaper 

intercept 363.22      444.34 

Slope Phase -2.181 -2.873 

Cycles 0.732 -0.754 

R² 0.60 0.51 

P value 0.007 0.01 

 

4.5.9 Validation of tree/grass cover estimates using phase and cycles 

4.5.9.1 Simple linear regression tree/grass cover estimates 

Table 4.8 and 4.9 shows field validation plots and their corresponding phase values, 

cycles, as well as estimated tree cover for Bonferroni and multitaper methods 

respectively. Figure 4.11 presents an accuracy assessment of tree and grass cover 

estimated using field data. It should however be noted that each estimated phase and 

cycles values here resulted from MODIS NDVI data of a 14-year period (July 2001 to 

June 2015). The MODIS NDVI harmonic tree cover estimated from the phase using 

Bonferroni method has an R² = 0.55, p < 0.01, slope = 1, with RMSE = 13.13% and R² = 

0.44, p = 0.01, slope = 1.2, with RMSE = 17.64% for tree cover and grass cover 

respectively. While the MODIS NDVI harmonic tree cover estimated from the phase 

using multitaper method has an R² = 0.62, p < 0.01, slope = 1.2, with RMSE = 12.52% 

and R² = 0.41, p = 0.01, slope = 1.4, with RMSE = 18.02% for tree cover and grass cover 

respectively. The estimates of grass cover had the highest error. The estimate of tree cover 

is better with cycles (R² = 0.55, p = 0.03, slope = 1, with RMSE = 16.07%) using 

Bonferroni method and otherwise for grasses (R² = 0.32, p = 0.03, slope = 1, with RMSE 
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= 17.91%). The estimates of tree (R² = 0.10, p = 0.27, slope = 0.74, RMSE = 19.11%) 

and grass cover using cycles (R² = 0.03, p = 0.84, slope = 0.26, RMSE = 23.91%) are not 

significant using the multitaper method. The level of accuracy in the estimates of grass 

cover as opposed to calibration could simply be explained as a function of strong inverse 

relationship of the two PFTs.  

Table 4. 8: Validation of tree/grass cover estimates derived through simple linear 

regression using phase, cycles and field data (using Bonferroni) 

Plot 

no 

  

Observe 

tree 

cover 

(%) 

  

Observe 

grass 

cover 

(%) 

  

Phase 

values 

 Cycles Phase Cycles 

Estimated 

Tree 

cover (%) 

 

Estimated 

Grass cover 

(%) 

Estimated 

Tree cover 

(%) 

 

Estimated 

Grass cover 

(%) 1st  2nd  

2 5 70 162 9 19.41 58.08 25.63 51.91 

5 11 85 158 9 30.41 49.53 25.63 51.91 

6 11 42 159 9 27.66 51.66 25.63 51.91 

8 12 70 161 9 22.16 55.94 25.63 51.91 

11 22 35 163 9 16.16 60.21 25.63 51.91 

13 30 40 158 9 30.41 49.53 25.63 51.91 

14 30 45 158 15 30.41 49.53 33.60 43.12 

17 35 35 163 28 16.66 60.21 50.87 24.09 

18 35 50 157 9 33.16 47.39 25.63 51.91 

20 35 57 161 23 22.16 55.94 44.22 31.41 

23 45 50 161 2 22.16 55.94 16.33 62.16 

25 55 15 152 28 46.90 36.70 50.87 24.09 

26 65 10 152 16 46.90 36.70 34.92 41.66 

28 70 10 143 28 71.64 17.47 50.87 24.09 

 

Table 4. 9: Validation of tree/grass cover estimates derived through simple linear 

regression using phase, cycles and field data (using multitaper) 

Plot 

no 

  

Observe 

tree 

cover 

(%) 

  

Observe 

grass 

cover 

(%) 

  

Cycles Phase 

values 

Phase Cycles 

Estimated 

Tree 

cover (%) 

 

Estimated 

Grass cover 

(%) 

Estimated 

Tree cover 

(%) 

 

Estimated 

Grass cover 

(%)  1st  

2 5 70 11 144.26 19.67 57.81 20.47 55.48 

5 11 85 14 140.61 28.93 50.69 26.10 52.39 

6 11 42 14 143.15 22.49 55.64 26.10 52.39 

8 12 70 12 142.3 24.65 53.99 22.35 54.45 

11 22 35 15 145.01 17.77 59.27 27.98 51.36 

13 30 40 17 140.71 28.68 50.88 31.74 49.30 

14 30 45 19 139.49 31.78 48.51 35.49 47.24 

17 35 35 8 144.48 19.11 58.24 14.84 58.57 

18 35 50 20 139.03 32.94 47.61 37.37 46.21 

20 35 57 15 141.32 27.13 52.07 27.98 51.36 

23 45 50 27 143.93 20.51 57.16 50.50 39.00 

25 55 15 11 134.76 43.78 39.28 20.47 55.48 

26 65 10 16 132.77 48.83 35.40 29.86 50.33 

28 70 10 18 127.07 63.29 24.29 33.61 48.27 
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Figure 4. 11 Validation of tree/grass cover estimates derived through simple linear 

regression using phase, cycles and field data, (a) Validation of tree cover estimated with 

phase values, (b) validation of grass cover estimated with phase values, (c) validation of 

tree cover estimated with cycles, (d) validation of grass cover estimated with cycles 

 

4.5.9.2 Multiple linear regression estimates 

The Figure 4.11 shows the accuracy assessment for tree cover estimated from multiple 

variables. This model has an increased accuracy compared to the individual variables in 

a simple linear regression (Figure 4.12).  The accuracy of multiple regression for 

Bonferroni estimate of phase and cycles shows an R² = 0.61, p = 0.001, and slope = 0.99 

and the least RMSE = 12.54 %.  The accuracy of the multiple regression model estimated 

between the phase, cycles (multitaper variables) and tree cover is lower than (R² = 0.51, 

p <0.01, and slope = 0.98 and RMSE = 13.85 %, Figure 4.12) when phase alone was used 

(R² = 0.62, p < 0.01, slope = 1.2, with RMSE = 12.52%, Figure 4.11). This means that 
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cycles estimated from the Bonferroni method appear to be physically more meaningful 

than the ones derived from the multitaper method. 

 

Figure 4. 12: Validation of tree cover estimates through multiple regression of phase and 

cycles for Bonferroni and Multitaper 

4.6 Discussion 

This study shows a harmonic decomposition of a 14-year time series of MODIS NDVI 

data over a savanna site in Kruger National Park, South Africa. The study has shown that 

the interannual variability tree/grass phenology can be derived from the amplitude values 

of the harmonic terms (Figure. 4.5, 4.6, 4.7, 4.8 and Table 4.3 and 4.4). The greening 

pattern (seasonal and interannual NDVI) of these two main PFTs varies with their relative 

composition. Trees green up earlier in the wet season than grasses, as observed using 

signal decomposition (Table 4.1, 4.2, 4.3 and Figure 4.5). In the study area, the rainy 

season normally starts around September and ends in April. The earliest period in these 

series was recorded in the growing cycles of the second harmonic term. Except for the 

harmonic term with the highest amplitude (14 cycles over 14 years, i.e. the annual signal), 

the number of cycles for PFTs for most harmonic terms differ (Table 4.1, 4.2). The 
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harmonic analysis revealed that grass phenology has the maximum amplitude at the peak 

of the growing season (strongest harmonic term) than tree phenology. This is caused by 

grasses responding more strongly to the annual seasonality of wet/dry seasons than trees, 

which can tap into deeper water reservoirs through their deep roots (Whitecross, 

Witkowski, and Archibald 2017a).  

Grasses usually have a high NDVI values in their most active photosynthetic stage during 

the rainy season, as was found in a previous study by Archibald and Scholes (Archibald 

and Scholes, 2007b). In their paper, however, there was a hidden periodicity for the timing 

of the maximum NDVI of trees that was not captured by the moving average method they 

applied (Archibald and Scholes, 2007b). An explanation of that issue is that the moving 

average method has no standard criteria for choosing the delay time in the moving 

window and that it is inappropriate to assume that the moving average can capture the 

phenology in its entirety in savannas where weather variability, fire frequency and 

herbivory are prevalent (Eklundha and Jönssonb, 2012, Bombelli et al., 2009, de Beurs 

and Henebry, 2010, Verbesselt et al., 2010).   

Here, this study identified tree/grass dynamics in 28 plots of Kruger National Park from 

the amplitude, cycles and phase values of the strongest harmonic terms, excluding any 

terms that were not statistically significant when applying the Hartley test and correcting 

for multiple testing with the Bonferroni method. When applying harmonic analysis to 

sequences of one year of NDVI data, the amplitude of the two PFTs varies between years 

(Figure 4.5 and Table 4.2). The phase values show inconsistencies concerning the timing 

of the tree/grass phenology, especially in the terms that are weaker than the one with the 

highest amplitude (Fig. 4.5a-d). This might be due to an asynchronous start of the rainy 

season leading to grasses greening up while the trees are limited by the temperatures and 

photoperiod (Archibald and Scholes, 2007b). Although our study cannot conclusively 

attribute these changes to specific factors, it is known from the literature that the 

magnitude and consistency of the first and second strongest harmonic terms relate to 

secondary succession, weather anomalies and other land cover changes (Moody and 

Johnson, 2001). Similarly, Jakubauskas et al. (2001) explained that changes in harmonic 

parameters (amplitude and phase) can indicate changes in the natural vegetation, e.g. in 

terms of maximum greenness (due to onset of greenness), or changes in vegetation 

condition due to drought, flooding or overgrazing or land surface condition (changes 
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arising from post-fire regeneration, natural or anthropogenic disturbance). The 

fluctuations in the amplitude values as well as the NDVI of the dry season have been 

observed using the annual rainfall data over four weather stations (Figure 4.6). The dry 

season NDVI appear to be more stable than the amplitude.  

Furthermore, the time of greening and changes in the minimum and maximum 

NDVI/amplitude values of PFTs in different ecosystems and species can be influenced 

by the climatic conditions or anthropogenic disturbance. This finding can be further 

supported with the work of Sankaran et al., 2005 who investigated the determinants of 

woody cover in over 854 savannah sites in African. The study highlights the influence of 

resource (such as water, nutrients, fire and herbivore etc.) availability and the distribution 

of plant species within savannah ecosystem. The analysis demonstrated that the tree cover 

is not simply associated to resource abundance, that for all sites with <650mm mean annul 

precipitation (MAP), tree cover is constrained linearly with moisture availability (and 

permits grasses to coexist), while for the sites having >650mm MAP canopy closure is 

possible. Disturbances such as fire can prevent canopy closure. Therefore, climate, soil 

nutrients, fire are some of the essential components that monitor savannah dynamics. 

The phase and cycles have been consistent measures for discriminating tree and grasses 

as well as for estimating percent tree and grass cover using a field data collected in 2015 

(Figure 4.5, 4.8, 4.9, 4.10, 4.11, 4.12). As the tree phenology had earlier greening period, 

the phase values had produced an estimates of tree cover with the least error compared to 

grass (Figure 4.11a/b). The estimate of tree cover is also better with the cycles due to its 

bimodal characteristics (Figure 4.10c/d) using Bonferroni. However, the relationship 

between tree and grass cover with cycles estimated with multitaper method is not 

significant (Figure 4.10c/d). The F-test with the multitaper estimator tends to find 

significant peaks in the low frequencies as well as more spurious peaks in the middle and 

high frequencies (Table 4.4, 4.5 and Figure 4.7). Similar behavior of cycles estimated 

from the multitaper method was observed by Pardo-Igúzquiza and Rodríguez-Tovar 

(2015) who compared the statistical significance of maximum entropy estimates and 

Thomson multitaper method using an F-test in the estimates of statistical significance of 

their power spectrum estimates for the cyclicity of past ocean/atmosphere dynamics (from 

decadal to millennial time scales). Their results show that the cycles identified as 

significant by maximum entropy have a clear physical interpretation (as presented with 
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Bonferroni in this study) while Thomson multitaper estimator had no significant peaks in 

the low frequencies and tends to give as significant more spurious peaks in the middle 

and high frequencies (Pardo-Igúzquiza and Rodríguez-Tovar, 2015). 

The synergy between phase and cycles estimated with Bonferroni for the estimates has 

yielded an increased accuracy for tree cover estimate (Figure 4.12). These estimates are 

more accurate to tree cover than grasses and for all methods. In model calibration, grass 

cover had no significant relationship with either of the variables but appear to be accurate 

in the validation results for Bonferroni. The accuracy of grass cover in the validation 

result was due to presence of three plots (Table 4. 6) with predominant tree cover. This 

occurs due to the inverse relation between tree and grass cover (Figure 4.8).  Grass cover 

decreased non-linearly with increasing tree cover as shown in Figure 4.8. Previous studies 

demonstrate an empirical relationship between the fraction of maximum tree cover and 

annual grass productivity (Aucamp et al., 1983, Beale, 1973, Walker et al., 1972), where 

grass density decreases as the fractional tree cover increases.  The use of phase and cycles 

using empirical methods is an important contribution to remote sensing of tree/grass 

fractional cover estimations as the effects of soil backgrounds remain a significant 

challenge in the estimate tree/grass cover fractions especially when using vegetation 

indices.   

Although raw NDVI values have been reported as being sub-optimal for FVC estimation, 

some methods which account for soil background contribution in the NDVI have shown 

good relationships with ground measurements (Moreno-de las Heras et al., 2015). 

However, signal contamination, soil background colour and saturation problems limited 

the NDVI-FVC relationship (Verger et al., 2009b). Although detrending the time series 

may be useful in spectral analysis even with phenomena that is nonstationary dynamic 

(Wu et al., 2007), the estimate of tree cover from the amplitude may be more appropriate  

without removing the trend (Hernandez, 1999). While detrending may provide 

information on the significant peak (e.g. annual), tree and grass have different 

phenological cycles. The implication of detrending could lead to depressing the amplitude 

of the lower frequency components and increases the amplitude of the higher frequency 

components of the original signal’s spectrum (Hernandez, 1999). Detrending the NDVI 

signals in harmonic analysis amplitude may limit amplitude values in predicting tree 

cover because the detrended data do not represents full spectrum of the original data 
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(Hernandez, 1999). Therefore, the estimates of tree cover require that the full spectrum 

relative to whole time series data be used. The tree cover was estimated in the next chapter 

using amplitude derived from harmonic analysis without detrending. In addition, the dry 

season NDVI appear to be applicable to woody cover estimation as suggested by the tree 

phenological behaviour in the phase and cycles of the first and second strongest harmonic 

term respectively (Figure 4.10, 4.11, 4.12).  

In general, the use of harmonic analysis has been considered limited due to its demand 

for prior ecological knowledge, long-term datasets and the need for effective 

interpretation of confidence intervals of the observations in the power spectrum (de Beurs 

and Henebry, 2010). Our study recognizes these limitations and adopts approaches to 

minimize them. A long-term dataset of over a decade was interpreted using field 

information from 28 plots collected in one year.  

Despite careful experimental planning, a pixel-level analysis in remote sensing and 

geographical information science (GIS) is subject to some remaining uncertainties 

depending on the datasets and modelling approaches (Fisher, 1997). Here, the uncertainty 

in the phenology analysis can be identified as having three main components:  

1) Uncertainty in aligning field data with satellite pixel areas when matching NDVI time-

series to fractional cover data from plots;  

2) Uncertainty how the tree/grass cover inside the field plots may have changed over the 

14 years;  

3) uncertainty inherent in the NDVI retrieval from the MODIS sensor, e.g. the impact of 

sensor viewing geometry and attenuation of the signal by tree canopies (McCoy, 2005, 

Gill et al., 2009, Los et al., 2005).  

Firstly, since the field survey has considered the MODIS satellite pixel size by sampling 

plot of almost equal to the size of the pixel, the centers of the plots were chosen such that 

they are representative of a large surrounding area and that the point data were geo-

referenced to the projection system of MODIS; the first uncertainty term is considered 

minimal. Second, the use of recent field data for mapping annual and interannual 

tree/grass phenology in savanna may not entail significant uncertainty. In the savanna, a 

tree cover change is more stable over time than changes in the grass layer (Guerschman 

et al., 2009). High variability is reflected by the grass contribution to the overall 
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phenological signal of a plot and this can affect the tree/grass separation method 

(Archibald and Scholes, 2007b). Although there can be small changes in the amplitude 

mostly contributed by the grass layer (Scanlon et al., 2002), the use of a composite dataset 

(Holben, 1986, Hilker et al., 2009) is more promising than a single-date dataset (Mondal 

et al., 2014). Third, for MODIS data product MOD1Q31 the influence of viewing 

geometry on vegetation indices has been investigated and was found to be insignificant 

in ecosystems with less complex canopies structures (Gill et al., 2009). MODIS NDVI is 

atmospherically corrected bi-directional surface reflectance factors (BRDFs) and masked 

for water, clouds, and cloud shadows (Strahler et al., 1999). NDVI is also less sensitive 

to BRDFs compared to individual bands (Los et al., 2005). 

The phase values and cycles, particularly the first and second strongest terms, provide a 

robust method for estimating FVC of trees and grasses for the Skukuza study site (Table 

4. 7, Figure 4. 10, 4.11, 4.12). The significance of this study is that it shows that harmonic 

analysis has a high discriminatory ability of trees and grasses in savannas. Tests in other 

savanna types could help show whether it is sufficiently robust to retrieve FVC of trees 

and grasses at the continental scale. The availability of robust tree/grass FVC datasets 

over time would enable new ecological studies of tree/grass coexistence to be carried out. 

4.7 Summary 

The signal decomposition method of harmonic analysis was applied to estimate fractional 

cover of tree and grass PFTs in Kruger National Park. MODIS NDVI time series data 

over 14-years were decomposed and statistically significant harmonic terms were 

estimated. The amplitude, cycles and phase values show distinct patterns for trees and for 

grasses. The cycles and phase of the strongest harmonic terms were a robust discriminator 

between tree and grass phenology because grasses respond more strongly to the annual 

seasonal cycle than trees. The phase values show that trees green up earlier than grasses. 

Tree/grass phenology from satellite remote sensing can be used to estimate their fractional 

covers as the phase has an R² = 0.55, p = 0.002, slope = 1, with RMSE = 13.13% and R² 

= 0.44, p < 0.01, slope = 1.2, with RMSE = 17.64% for tree cover and grass cover 

respectively (based on Bonferroni). The estimates of grass cover had the highest error. 

The estimate of tree cover is better with cycles (R² = 0.55, p = 03, slope = 1, with RMSE 

= 16.07%) than for grass (R² = 0.32, p = 03, slope = 1, with RMSE = 17.91%). The 
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accuracy assessment of the multiple linear regression model for tree cover estimate shows 

an R² = 0.61, p < 0.001, and slope = 0.99 and the least RMSE = 12.54 % using Bonferroni 

method. The accuracy has increased greatly compared to when models were observed 

with individual variables based on Bonferroni method. The estimates of grass cover using 

harmonic is more challenging as grasses tend to be more susceptible to environmental 

changes than trees. The multitaper method is more accurate in the estimates of tree cover 

using phase information than cycles (R² = 0.62, p <0.01, slope = 1.2, with RMSE = 

12.52%). Generally, the estimates of tree/grass cover using harmonic analysis is limited 

to areas that are well-known.    

Despite the successfully implementation of harmonic analysis using MODIS, it is 

necessary for further studies to characterize changes in a more diversified vegetation 

types, particularly beyond the sample field data to simulate another condition base on the 

field information and within the trend of MODIS data using signal decomposition. 

Although MODIS high temporal resolution is important for change analysis, validation 

of such woody fractional cover is valuable. Comparison of the estimates tree cover can 

be encourage using medium (e.g. Landsat), high (LiDAR) resolution dataset and other 

previous satellite products (such as MODIS VCF) derived from these sensors to examine 

to what extent can the methods develop for different datasets will reflect minimum 

reduction or addition in the quantitative estimates of FVC. In the next chapter (5), tree 

cover was estimated for a large part of the study area using the amplitude images, NDVI 

and SAVI (dry season images) vegetation indices based on the understanding of tree 

phenological behavior in KNP as observed and presented in this chapter.  
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Chapter 5 

Estimating tree fractional cover in African savanna using MODIS 

time series data 
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5.1 Introduction 

Woody and herbaceous vegetation as well as bare soil contribute differently to the NDVI 

resulting in a mixed signal at the sub pixel scale (Helman et al., 2015:Montandon and 

Small, 2008, Ding et al., 2016). To estimate tree cover, therefore, the contribution from 

grasses and the soil background need to be accounted for, especially where soil 

inventories are available with good temporal resolution (Smallman et al., 2017). In 

savanna, the mixed tree/grass system is controlled by climatic conditions, soil moisture 

and disturbances (Scholes and Archer, 1997, Sankaran et al., 2005). Grasses cannot use 

deeper groundwater reservoirs and depend mostly on instantaneous rainfall during the 

rainy season; therefore, they are limited by water availability. In contrast, many tree 

species flush their leaves before the first rain in response to photoperiodic and temperature 

triggers (Archibald and Scholes, 2007b). Thus, signal decomposition of MODIS NDVI 

(amplitude) time series data could be useful in tree cover estimation (Gessner et al., 2013).  

Moreover, from the analyses presented in chapter four, the phase and cycles show that 

tree species had an earlier greening period than grasses in KNP. The analysis of MODIS 

NDVI (amplitude) time series data using DFT may provide an estimate of fractional tree 

cover over a given period when relevant frequency components of DFT are considered 

(Moody and Johnson, 2001). In addition, the dry season images from MODIS data for 

NDVI and SAVI could also be used to provide estimate of tree cover if soil determining 

methods are considered (Montandon and Small, 2008, Zeng et al., 2000, Ding et al., 

2016). In this chapter, tree cover was estimated in three main ways: (1) by using the 

amplitude values as derived from a signal decomposition of NDVI data using harmonic 

analysis, (2) using the NDVI data without applying harmonic analysis (3) by the 

decomposition of NDVI and SAVI signals to determine the contribution of bare soil using 

two soil determining methods. 

5. How well the satellite data derived metrics from MODIS can be used to estimate 

percent tree cover? 

5.2  Objectives  

5. To estimate tree fractional cover using amplitude (2004-2015) derived from the annual 

MODIS NDVI data as well as from dry season NDVI and SAVI data. 
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5.3 Methods 
5.3.1 Tree cover estimation 

 

Definitions of the variables and notations used for these methods are provided below: 

f_t - is the tree fractional cover 

f_s - fractional cover of bare soil 

f_g - grass fractional cover 

NDVIpixel - is the mean dry season MODIS NDVI 

SAVIpixel- is the mean dry season MODIS SAVI 

NDVIT - is the fraction of NDVI for tree cover 

SAVIT- is the fraction of SAVI for tree cover 

NDVI veg - is the NDVI maximum value for vegetation 

SAVI veg - is the SAVI maximum value for vegetation 

NDVIs - is the soil threshold value for NDVI 

SAVIs - is the soil threshold value for SAVI 

NDVIsi - is the soil type threshold value for NDVI (at certain location (i)) 

SAVIsi - is the soil type threshold value for SAVI (at certain location (i)) 

NDVIsoil - is the soil NDVI value for a pixel 

SAVIsoil - is the soil SAVI value for a pixel 

NDVIsoili - is the soil NDVI value for a pixel based on the soil type at certain location 

5.3.2.1 Tree cover estimate using harmonic analysis 

From the previous analyses presented in chapter four (4), phase and cycles values derived 

through a temporal analysis of each pixel have identified an inter-annual variability over 

the period of study which further suggests the possibility for tree cover estimation. In this 

chapter, the derived amplitude of the first harmonic term were used for tree cover 

estimates. It should be noted that unlike the previous analysis presented in chapter four, 

the estimated harmonics presented in this chapter are not based on detrended time series 
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data. Since leaf-out period for plant species varies in this region, and that tree phenology 

has more growing cycles compared to grasses, the statistically significant harmonics 

based on Bonferroni method need to be assessed based on full spectrum (Hernandez, 

1999). In this chapter, a spatial analysis of signal decomposition with Hartley-test using 

Bonferroni method for the MODIS NDVI data (July 2001- June 2015) was performed. 

The first strongest harmonic term was used for tree cover estimation. 

5.3.2.2 Tree cover estimate using NDVIpixel and SAVIpixel 

The mean NDVI and SAVI over the dry period were calculated (NDVIpixel/SAVIpixel) and 

used to estimate percent tree cover based on certain assumptions. In this ecosystem, 

woody species have two growing cycles at the time when the herbaceous layer is dormant. 

Grass usually dries before woody species lose their leaves in autumn so that we have two 

small periods with dry grass and green woody canopy (before and after the wet seasons) 

(Archibald and Scholes, 2007b). These cycles occur before (May-August) and after the 

wet season (May-August). The wet season starts from September and ends in April. 

Therefore, growing season overlap each calendar year (Archibald and Scholes, 2007b). 

To reduce an overlap of tree and grass phenology occurring probably due to delayed start 

or end of season, dry season images were chosen for the months of July and August before 

the start of season and May and June after the end of season. This is useful in capturing 

the phenology of woody plants. There are reasons for these considerations: (1) Tree 

species are usually fully green before the first significant rains (e.g. Sclerocarya birrea, 

Acacia nigrescens) in KNP. (2) Some trees such as Combretum Apiculatum are usually 

late in their leafing but take a shorter period to present full leaf than early flushers. (3) 

Woody species in KNP usually take 8 weeks to reach full leaf from the date that first 

woody vegetation started leafing (Archibald and Scholes, 2007b).  

Although these vegetation indices are sensitive to vegetation fractional cover, they are 

also sensitive to soil background (Montandon and Small, 2008, Ding et al., 2016). The 

assumption here does not completely argue that there is no bare soil influence in the 

NDVI. For the SAVI vegetation index, the soil correction factor usually applied to derive 

the vegetation index might reduce bare soil influence. While this approach may 

constitutes uncertainty in tree cover estimations, the effects of soil reflectance due the 

nature of soil type characteristics (e.g. such as soil brightness, moisture) in this region is 

likely to be negligible because of the extent of the spatial scale (smaller) being considered 

(Lillesand et al., 2014). In addition, the soil background reflectance values are lower than 



100 
 

the canopy reflectance due to high albedo in the tropics (Los et al., 2000). Jiang et al 

(2006) found that the nonlinearity of NDVI over partially vegetated surfaces is more 

prominent with darker soil backgrounds and shadow (Jiang et al., 2006).  

The aim is to establish the fundamental relationships between NDVIpixel and field data on 

tree cover to develop a calibration technique to assess the extent and accuracy to which 

such relationships could estimate tree cover. Both linear and non-linear regression 

analyses methods have been used for data calibration as the relationship between NDVI 

and measurements of canopy structures vary with vegetation types and seasonality 

(Gamon et al., 1995, Sellers, 1987). 

5.3.2.3 Tree cover estimate using NDVIsoil and SAVIsoil determining methods.  

In this scenario, first, it is assumed that each pixel consists of three constant fractional 

covers: tree cover (T), bare soil cover (S), and grass cover (G). In savannas, during the 

dry period, most of grass fractions are occupied by the bare soil (or remain dried) while 

in the wet seasons, the grass fractional cover makes up most of the contribution (Scanlon 

et al., 2002, Archibald and Scholes, 2007b). In the dry season, the grass layer becomes 

non-photosynthetic and dries. So, the non-photosynthetic grass layer was merged with 

bare soil as the fractional cover for each pixel = 1.  It has been reported that the grass 

layer (fraction of photosynthetic vegetation) in savannas may have changed from 85% to 

8% in the dry season and fraction of non-photosynthetic vegetation of the same layer may 

increase from 7% to 79% in the wet season (Guerschman et al., 2009). Furthermore, an 

investigation of field reflectance measurements of bare soil, grass and tree indicated that 

dry grass had the lowest NDVI (Guerschman et al., 2009). NDVIpixel is attributed to only 

woody and bare soil as expressed in equation 5.1.  

NDVI * f_t + NDVIsoil * (f_s+f_g) = NDVIpixel                                            (5.1)                                                                               

f_t - is the tree fractional cover, f_s - fractional cover of bare soil, f_g - grass fractional 

cover, NDVIpixel -is the mean NDVI of the dry season from MODIS data. The 

contribution of from grass is assumed very low in the dry season. Therefore, equation 5.1 

merged the fractional cover of bare soil and grass cover (NDVIsoil * (f_s+f_g). This means 

that the influence of bare soil and grass cover on the vegetation index does not usually 

allow spectral signals of woody vegetation to vary. To estimate the spatial variability of 

woody cover, over a large area, the contribution of bare soil and grass cover need to be 

accounted for. Different techniques of vegetation fractional cover estimate have been 
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proposed previously (which accounted for bare soil contribution in the pixel). Some of 

these techniques are usually invariant to soil types and characteristics (Gutman and 

Ignatov, 1998, Sobrino and Raissouni, 2000, Los et al., 2000).These methods are usually 

based on the assumption that pixels with FVC = 1 and 0 exist in an image. These are 

donated as NDVIveg and NDVIs for maximum vegetation and bare soil respectively.  

Gutman and Ignatov, (1998) who used low spatial resolution data (0.15˚x15˚) proposed 

NDVIveg at 0.52 ± 0.03 and NDVsoil at 0.05 ± 0.03. Similarly, Sobrino and Raissouni 

(2000) applied thresholds of 0.5 and 0.02 for NDVIveg and NDVsoil respectively. In this 

section, previous methods by Zeng et al. (2000) and Wu et al. (2014) are adopted with 

modification due to consideration of the relatively small study site, spatial data resolution, 

and lack of field soil spectral reflectance measurement. The same procedure was applied 

to SAVI to determine the contribution of soil as Ding et al.  (2016) show that the impact 

of soil backgrounds in the SAVI still need to be accounted for.  

i. The first method is invariant to soil characteristics for determining NDVIsoil. 

Zeng et al. (2000) determined NDVIsoil by utilizing the percentile of 

vegetation types using the International Geosphere-Biosphere Program 

(IGBP) land cover classification with 1 km NOAA AVHRR NDVI data. They 

used the fifth percentile of the histogram of the maximum NDVI for the barren 

or sparsely vegetated category as the NDVIs, which was 0.05, to estimate 

global FVC. Note however, that only tree cover is estimated in this study as 

opposed to Zeng et al. whose aim was to assess the statistically most likely 

FVC using the spectra of soil collected from different datasets. The procedure, 

however, requires that the histogram for each land cover to be computed. 

Considering the size of the study area, the histogram for the whole image was 

computed. Figure 5.1a shows the NDVIpixel histogram extracted from mean 

dry season NDVI for the 2014/2015. The graph shows a minimum and 

maximum values of NDVI at 0.12 and 0.65. Since, the maximum NDVI for 

this image is 0.65, this suggests lower NDVIsoil than for barren and sparsely 

vegetated areas. In this case, NDVIveg and NDVIsoil are approximated as 0.02 

and 0.7 for bare soil and maximum NDVI respectively. The 0.7 is the 

maximum vegetation NDVI for the whole KNP. The 0.02 is threshold for 

NDVIs since the method is pixel dependent coupled with zero values observed 

in the NDVI histogram. For the SAVI, Figure 5.1b shows SAVIpixel histogram 
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extracted from mean dry season NDVI for the 2014/2015. The SAVIs is 

threshold at 0.05 while maximum vegetation at 1.32 (the maximum for the 

whole KNP). The fractions of the NDVI/SAVI that is representing tree 

(NDVIT/SAVIT) was then calculated. 

 

      NDVIT =
NDVIpixel − NDVIsoil

NDVIveg− NDVIsoil
                                                                      (5.2) 

                  SAVIT =
SAVIpixel − SAVIsoil

SAVIveg− SAVIsoil
                                                                        (5.3) 

 

 

Figure 5. 1: NDVI histogram extracted from mean dry season image (2014/2015). 

ii. Tree cover estimates using the NDVIsoil determining method (Wu et al., 

(2014). The estimates of NDVIsoil could be performed with considerable 

accuracy if available soil reflectance data from in situ measurements exist for 

the major types of soil in a study area (Montandon and Small, 2008, Wu et al., 

2014, Ding et al., 2016). Unfortunately, it is always challenging to acquire this 

information (Montandon and Small, 2008). Consequently, many previous 

studies have relied on World Soil Database and the International Geosphere–

Biosphere Program (IGBP) land cover classification to assign NDVIsoil for 

each vegetation types especially when regional scale is being considered 

(Zeng et al., 2000, Wu et al., 2014).  

Wu et al. (2014) used the Harmonized World Soil Database (HWSD) Version 

1.21 which was produced by the International Institute for Applied Systems 

Analysis (IIASA) and the Food and Agriculture Organization of the United 
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Nations (FAO) to determine NDVIs for soil types. The Harmonized World 

Soil Database (HWSD) do not cover all the major soil types in KNP due to 

missing data from the map especially for the parts of our field data over KNP. 

On this basis, and for the purpose of this study, a global soil and terrain 

database at a scale of 1:1 million developed by the initiative of the 

International Union of Soil Sciences (IUSS), the United Nations Environment 

Programme (UNEP), the FAO, and the International Soil Reference and 

Information Centre (ISRIC) (van Engelen and Hartemink, 2000) has been 

used. Figure 5.2a/b show soil types for the KNP. Figure 5.2b indicates the 

major types of soil within our field plots data. Based on study by Wu et al. 

(2014), the NDVIsi for the three types of soils in our plots locations which 

include Regosols, Luvisols, and Nitisols have been thresholded at 0.21, 0.24, 

and 0.32 respectively. The high NDVIsoil in Wu et al (2011) might be because 

of the spatial resolution of datasets they have used (GIMMS NDVI dataset 

was derived at a 10 km) coupled with differences in the soil type and 

ecosystem conditions. Only three types of soils are covered in this study.  Wu 

et al. (2014) investigated FVC at global scale. Even where soil types for this 

study are the same with Wu et al., the threshold used for Wu et al. is very high 

for this study considered minimum and maximum NDVI/SAVI for this study 

area. Another reason is seasonality. Wu et al. has the maximum NDVI 

between 0.6 to 0.94 for different vegetation types. This is much larger when 

compared to the NDVI used in this study (the dry season NDVI data) which 

has maximum value of only 0.65. 

Moreover, though reference was made to the types of soils in determining the 

NDVIs, the approach in this study differ from Wu et al. First a linear method 

is applied as opposed to Wu et al. Given the small size of the study area, only 

soil types are considered for each of the plots while a single value for 

maximum NDVI (NDVIveg) was considered for all locations. For the NDVI, 

Regosols, Luvisols, and Nitisols have been thresholded at 0.015, 0.02, and 

0.02 respectively. While, for SAVI Regosols, Luvisols, and Nitisols have been 

thresholded at 0.04, 0.05, and 0.06 respectively. This is in consideration to 

image histogram as the method is purely pixel dependent (Zeng et al., 2000). 

The fractions of the NDVI/SAVI that is representing trees (NDVIT/SAVIT) is 

also calculated as thus:  
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       NDVIT =
NDVIpixel − NDVIsoil𝑖

NDVIveg− NDVIsoil𝑖
                                                                  (5.4) 

                  SAVIT =
SAVIpixel − SAVIsoil𝑖

SAVIveg− SAVIsoil𝑖
                                                                      (5.5) 

 

Figure 5. 2: (a) Soil types in KNP, while the blue and pink points in the box indicate 

calibration and validation plots respectively, (b) Main soil types in the field plot area, 

field plots data (the blue and pink points indicate calibration and validation plots. 

5.3.3 Regression analyses 

In this study, different types of regression models were established between the observed 

tree cover from a field campaign in 2015 and the independent variable(s). Only 50% of 

the field data on tree cover is used for (14 out of the 28 plots) model calibration while 

holding the remaining 50% for model validation. It should be noted that the type of 

regression analyses applied in this study depends on the nature of the phenology metric 

being used. The procedure is based on the assumption that NDVI-fractional vegetation 

cover relationship (or SAVI) is a function of vegetation type, the influence of understory 

and bare soil (Gamon et al., 1995, Sellers, 1987, Wang et al., 2016, Carlson and Ripley, 

1997). The regression model applied for each phenology metric is explained below: 

i .  A nonlinear regression is applied to the amplitude data which resulted from a 

14-year MODIS NDVI data to estimate percent tree cover. Specially, a 

logarithmic regression was used.  
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% tree = 228.12*ln (ampli tude)  + 36.955                      (5.6) 

 

ii. Since the assumption to mean dry season images of MODIS data (NDVIpixel 

and SAVIpixel) for the estimate of tree cover does not precludes the presence 

of bare soil, in this context, different regression models were tested in 

estimating tree cover. Although it has been previously reported that the 

relationship between vegetation indices (especially the NDVI) and percent 

cover depend largely on vegetation type (Gamon et al., 1995), or may even 

have strong linear relationship in a sparse vegetation (Sellers, 1987, Wang et 

al., 2016), it is not well-known how tree cover would be in KNP. Therefore, 

simple linear, polynomial and logarithmic equations were tested for both 

vegetation indices to find the best fit for percent tree cover estimation. The 

field data on percent tree as the dependent while the NDVIpixel or SAVIpixel as 

the independent. The equations are presented for linear, polynomial and 

logarithmic regression for the NDVI and SAVI respectively. 

 

% tree  =  284.86*NDVI p i x e l  –  71 .158                                  (5 .7)  

 

% tree  =  625.1*NDVI p i x e l ²  -  175*NDVI p i x e l  +  11 .89             (5 .8)  

             % t ree  =  99 .02*ln  (NDVI p i x e l)  +  133.31                              (5 .9)  

% tree  =  240.69*SAVI p i x e l  –  97 .692                                   (5 .10)  

 

% tree= 3 .1994*SAVI p i x e l ² +236.99*NDVI p i x e l  –  96 .597        (5 .11)  

 

% tree  =  132.26*ln  (SAVI p i x e l)  +  114.73                             (5 .12)  

 

iii. Only a simple linear regression is applied to NDVIsoil and SAVIsoil 

determining methods as the methods are themselves linear in this study. The 

fraction of NDVIT or SAVIT is used as the independent variable while the 

percent tree cover as the dependent variable. The model is the same for the 

two methods and for both NDVIT and SAVIT. The regression equations for the 

variant and invariant methods are presented on equations 5.13 – 5.14 and 5.15 

– 5.16 respectively.  

 

% tree = 270.68* NDVIT – 56.78                                                                                     (5.13) 

% tree = 177.74* SAVIT – 57.845                                                                                       (5.14) 

% tree = 277.68* NDVIT – 60.05                                                                                     (5.15) 
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%tree = 215.36* SAVIT – 71.28                                                                                       (5.16) 

 

iv. A multiple linear regression was also established between the field data as a 

dependent variable and three variables with the least RMSE (when assessed 

individually). Therefore, not all variables were used in the multiple regression 

applied here to reduce multicollinearity effect. Specifically, the amplitude 

values calculated from the harmonic analysis, NDVIp i x e l  and SAVIp i x e l  

were used for multiple linear regression.   

 %tree=-139.67+75.69*ampl i tude -21 .88*NDVI p i x e l+196.17*SAVI p i x e l    (5 .17)  

 

v. Validation methods of all models explained here were presented in Chapter 

six where the actual validation results were presented. 

5.4 Results  
 

5.4. 1 Amplitude image of the first harmonic term, gauge stations and field plot data. 

Figure 5.1a shows the amplitude data (14-year MODIS NDVI aggregated as one) of the 

first strongest harmonic term derived from the MODIS NDVI time series data (July, 2001 

to June, 2015). On the image, the average annual rainfall (14 year) for the corresponding 

amplitude data was also presented (Figure 5.1). The amplitude image shows the spatial 

variability of vegetation distribution over KNP. The density of vegetation in KNP is 

usually influenced by environmental gradients of geological formations and annual 

rainfall (Smit and Asner 2012; Bucini et al 2010). The southern parts of KNP receive 

higher amounts of rainfall (e.g. Skukuza: 620.52 mm) and tend to be covered by dense 

thickets, while the northern part is mostly dominated by grassland because it receives 

insufficient rainfall to support dense vegetation cover (e.g. Mahlangeni: 410.71 mm). It 

is evident that the southern part of KNP has higher amplitude than the northern part in the 

first strongest harmonic term. It should also be noted that the woody species are more 

resistant to harsh environmental conditions (e.g. drought) than grasses as already 

discussed in Chapter four. The spatial distribution of field plots data on percent tree cover 

is shown on Figure 5.1b.  As the next section dwells on model calibration (and validation 

in Chapter six), it is important to give the reader an insight into where these locations are. 
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Figure 5. 3: (a) Amplitude image of the first harmonic term: red points show the gauge 

stations, the number in pink indicate the mean annual of rainfall for each location while 

the blue and red points in the box indicate calibration and validation plots respectively, 

(b) field plots data (the blue and pink points indicate calibration and validation plots 

 

5.4. 2 Calibration of NDVI Harmonic tree cover estimate (Amplitude)  

Table 5.2 indicates field plots and amplitude values used for data calibration. The 

Figure 5.4 displays the relationship between percent tree cover and amplitude as 

estimated from the MODIS NDVI data over KNP (2002-2015). The amplitude values of 

the first strongest harmonic term had strong correlation with percent tree cover (R2 = 0.56, 

p <0.01). The amplitude values are fit to a nonlinear regression due to presence of high 

canopy, under-story and bare soil. Overall, the positive correlation between the amplitude 

and percent tree cover implies that it could be used as surrogates to percent tree cover at 

large spatial scales. However, the validation result with the remaining field plots data 

which is not used for calibration, will show whether this method is robustly enough to 

estimate percent tree cover over large area.  
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Table 5. 1: calibration of NDVI Harmonic tree cover estimate 

Plot no Tree cover Amplitude (1st) 

1 5 0.96 

3 6 0.87 

4 10.5 0.90 

7 12 0.97 

9 17 0.97 

10 20 0.94 

12 30 0.98 

15 31 0.90 

16 32 0.96 

19 35 0.98 

21 41 0.94 

22 42 1.01 

24 45 1.00 

27 69 1.11 

 

Figure 5. 4: Relationship between field data on tree percent cover and amplitude (1st 

harmonic term) 

5.4. 3 Calibration of NDVIpixel and SAVIpixel for tree cover estimate  

Figure 5.5a-f shows the relationship between NDVIpixel and SAVIpixel for the growing 

season of 2014/2015 and percent tree cover from a field campaign in 2015. The NDVIpixel 

and SAVIpixel relationships had stronger correlations with the percent tree cover estimated 
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in the field. The NDVIpixel (Figure 5a/c/e) had strong correlation with the percent tree 

cover (R2 = 0.53–0.58, p <0.01). The relationships that yielded the largest accuracy 

(R2 = 0.56, p <0.01 and R2 = 0.58, p <0.01) are for linear (Figure 5a) and polynomial 

(Figure 5c) regression respectively. Although the differences between linear and 

nonlinear regression (Figure 5e: R2 = 0.53, p <0.01) is relatively small, the result for 

nonlinear regression reflects the nonlinearity of the NDVI (which normally increases with 

increasing species composition). In the dry season, certain PFTs especially the 

herbaceous plants are leaf-out thereby making NDVI more sensitive to woody vegetation. 

On the other hand, the accuracy of SAVIpixel appear to be better (Figure 5b/d/f) than the 

NDVIpixel with R2 = 0.56–0.67, p <0.01). There is no doubt since SAVI vegetation index 

has correction factor such that the effect of soil background reduces. Overall, the positive 

correlation for both NDVIpixel and SAVIpixel with percent tree cover implies that they 

could be used as surrogates to percent tree cover at some considerable spatial scales. 

Table 5. 2: Calibration of NDVIpixel and SAVIpixel for tree cover estimate 

Plot no Tree 

cover 

Grass 

cover 

Bare soil Grass cover 

plus bare soil 

Soil 

types 

NDVIpixel SAVIpixel 

1 5 85 10 95 Nitisols 0.336 0.485 

3 6 85 9 94 Nitisols 0.289 0.454 

4 10.5 45 44.5 89.5 Regosols 0.264 0.434 

7 12 67 21 88 Luvisols 0.3492 0.544 

9 17 78 5 83 Regosols 0.349 0.499 

10 20 70 10 80 Regosols 0.3547 0.520 

12 30 45 25 70 Regosols 0.352 0.511 

15 31 55 14 69 Luvisols 0.335 0.498 

16 32 35 33 68 Luvisols 0.375 0.557 

19 35 22 43 65 Regosols 0.341 0.502 

21 41 35 24 59 Luvisols 0.389 0.551 

22 42 30 28 58 Regosols 0.346 0.515 

24 45 45 10 55 Nitisols 0.330 0.562 

27 69 20 11 31 Luvisols 0.471 0.691 
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Figure 5. 5: The relationship between NDVIpixel, SAVIpixel and field percent cover 

estimate with regression analyses, with simple linear (a and b), polynomial (c and d) and 

nonlinear regression (e and f). 
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5.4.4 Calibration of NDVI and SAVI for tree cover estimate with NDVIsoil determining 

methods using a modified procedure by Zeng et al. and Wu et al. 

Table 5.3 shows the field plots data for the percent trees, grasses, bare soil and the type 

of soil for each of the calibration plots. The table (5.3) also indicates the fraction of the 

NDVIT and SAVIT estimated using the two soil determining methods explained above. 

Figure 5.4a-d shows the calibration results for NDVIT and SAVIT and field data. NDVI 

estimates for both methods showed an increased accuracy which is much better than when 

NDVIsoil is not removed. The invariant method (Zeng’s et al. 2000) for which the 

threshold of NDVIs was 0.02 has a strong relationship with percent tree cover: R2 = 0.67, 

p <0.01 (Figure 5.4a) while the other approach (Wu et al., 2014) which considered the 

world soil database to determine the NDVIs for each soil type in our plot locations had 

also a strong relationship with the percent cover (R2 = 0.67, p <0.01, Figure 5.4c). There 

is slight difference between the two as only three types of soil were found in the plot 

locations. And the threshold NDVIs for Regosols is determined at 0.015 while Luvisols 

and Nitisols a value of 0.02 was used. This has however made an impact as the accuracy 

of the relationship has improved. 

The invariant soil determining method for SAVI which threshold NDVIs at 0.05, is not 

very effective as its accuracy is slightly lower than (R2 = 0.50, p <0.01) the initial 

relationship for which the NDVIsoil is not accounted for. This means that the invariant 

method applied here may be less accurate in inferring tree cover compared to other 

approaches although validation results might show otherwise. On the other hand, when 

soil types are considered in determining the NDVIs, a strong relationship is observed 

between the SAVI and percent tree cover (R² = 0.80, p <0.01). In this case, the NDVIs at 

0.04 was threshold for Regosols while Luvisols and Nitisols at 0.05 and 0.06 respectively. 

Overall, all vegetation indices have shown a good relationship with the percent tree cover. 
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Table 5. 3: estimates of percent cover using NDVI and SAVI with soil determining 

methods using a modified procedure by Zeng et al. and Wu et al 

Plot 

no 

Tree 

cover 

Grass 

cover 

Bare 

soil 

Grass 

& 

bare 

soil 

Soil 

types 

NDVIpixel  

 

NDVI 

T 

(Zeng) 

 

NDVIT 

(Wu ) 

SAVIpixel  

 

SAVIT 

(Zeng) 

 

SAVIT 

(Wu ) 

1 5 85 10 95 Nitisols 0.336 0.290 0.290 0.485 0.404 0.384 

3 6 85 9 94 Nitisols 0.289 0.244 0.244 0.454 0.469 0.354 

4 10.5 45 44.5 89.5 Regosols 0.263 0.220 0.231 0.434 0.504 0.371 

7 12 67 21 88 Luvisols 0.349 0.306 0.306 0.544 0.426 0.466 

9 17 78 5 83 Regosols 0.349 0.310 0.320 0.499 0.501 0.440 

10 20 70 10 80 Regosols 0.354 0.316 0.326 0.520 0.447 0.463 

12 30 45 25 70 Regosols 0.352 0.318 0.327 0.511 0.454 0.461 

15 31 55 14 69 Luvisols 0.335 0.302 0.302 0.498 0.451 0.437 

16 32 35 33 68 Luvisols 0.375 0.342 0.342 0.557 0.488 0.497 

19 35 22 43 65 Regosols 0.340 0.309 0.317 0.502 0.447 0.456 

21 41 35 24 59 Luvisols 0.389 0.361 0.361 0.551 0.438 0.499 

22 42 30 28 58 Regosols 0.346 0.319 0.326 0.515 0.493 0.474 

24 45 45 10 55 Nitisols 0.330 0.304 0.304 0.562 0.578 0.504 

27 69 20 11 31 Luvisols 0.471 0.457 0.457 0.691 0.683 0.664 

 

  

 

 

Figure 5. 6: Calibration of NDVIT and SAVIT for tree cover estimate with soil 

determining methods using a modified procedure by Zeng et al. and Wu et al:  NDVI (a 

R2 = 0.67, p <0.001  

NDVI
T
 
 
 SAVI

T
 
 
 

NDVI
T
 
 
 SAVI
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Field data (% tree) 
 
 Field data (% tree) 

 
 

Field data (% tree) 
 
 Field data (% tree) 

 
 

% tree = 270.68* NDVIT – 56.78   

% tree = 277.68* NDVIT – 60.05   

R2 = 0.67, p <0.001  

R2 = 0.50, p <0.001  

% tree = 177.74* SAVIT – 57.845 

R2 = 0.80, p <0.001  

% tree = 215.36* SAVIT – 71.28 
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and c for Zeng et al. and Wu et al respectively), SAVI (b and d for Zeng et al. and Wu et 

al respectively). 

5.4.5 Calibration of amplitude, NDVIpixel and SAVIpixel for tree cover estimate using 

multiple regression 

Table 5.4 shows that the relationship between the amplitude, NDVIpixel and SAVIpixel with 

a field data (percent tree cover) had also a high accuracy. Although multiple regression is 

expected to improve model accuracy due to contribution from many variables, the 

coefficient of determination obtained in this approach (R² = 0.60, p <0.01) is slightly 

lower compared to other models with single variables (not all) such as the SAVI-percent 

cover relationship. This may be attributable to differences in phenology metrics derived 

from various indices. However, the amplitude data is useful to the multiple regression 

model due to interannual variability of tree phenology. While this relationship indicates 

that percent tree cover can be inferred from these variables, overall model performance 

evaluated and presented in chapter 6 would show whether this model would have a 

high/low accuracy than the model variables tested individually. 

Table 5. 4: Multiple regression coefficient 

Regression coefficient values 

intercept -139.67  

Slope Amplitude 75.69 

NDVIpixel 

 

-21.88 

SAVIpixel 196.17 

R² 0.60 

P value 0.007 

 

5.4. 5 The tree cover maps 

Figure 5.5a-l presents the NDVI, SAVI and NDVI harmonic tree cover maps derived 

from different model calibration presented above. Figure 5m-n shows the LiDAR/SAR 

(Figure 5m) and Bucini (Figure 5n) tree cover maps. It should be noted however that a 

comparison of tree cover maps (including the MODIS VCF products) with these previous 

products has been presented in the Chapter six. All tree cover estimated from our models 

have demonstrated a consistent pattern of tree cover distribution in KNP. Visually, the 

distribution of these tree cover maps is consistent with the geological formation of the 

region. The presence of high and low tree cover cut across various landscapes in the 

region. The difference between the east and west division is apparent with the western 

part supporting in general high tree cover. For example, the high tree cover in the Granitic 
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plains with Terminalia sericea tree savanna landscape in the extreme south and very low 

tree cover in the Basaltic plains or Rhyolite Mountains with Combretum apiculatim 

landscape or Colophospermum mopane bush savanna in the east. There are however little 

pockets of high tree cover in the eastern part.  

While estimates of tree cover from all models as well as for all vegetation indices 

indicated the known heterogeneity in the distribution of tree cover over KNP, there are 

differences between them. Tree cover derived from NDVIsoil (Figure 5.5d/e) and SAVIsoil 

(Figure 5.5i/j) determining methods appear to have dense tree cover compared to other 

maps. Generally, the estimates from the NDVI (Figure 5.5a/e) is high compared to SAVI 

(Figure 5.5f/j). The estimate from the amplitude (average of 14 year) (Figure 5.5k) is 

slightly different from the NDVI and SAVI which is due to differences in the phenology 

of tree species in 14 years as represented by the amplitude data.  
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Figure 5.7: The tree maps, NDVI tree cover maps: with linear (a), polynomial (b), 

nonlinear regression (c), Zeng’s et al. (d), Wu et al. (e), SAVI tree cover maps: linear (f), 

polynomial (g), nonlinear regression (h), Zeng’s et al. (i), Wu et al. (j), amplitude (k), 

Mul.var. (l), LiDAR/SAR (m), Bucini (n). Tree cover maps are derived from the 

regression equations of each method presented in the data calibration above 

5.5 Discussion 

This chapter estimated the percent tree cover using phenology metrics derived from 

MODIS data, firstly, by using the amplitude (harmonic analysis), mean NDVI and SAVI 

data of the dry season (NDVIpixel and SAVIpixel) and through the signal decomposition to 

account for NDVIsoil and SAVIsoil in KNP.  The estimated tree cover maps were obtained 

by calibrating the remote sensing data and field measurements using regression analyses 

(simple linear, logarithmic and polynomial regression).  

Although there are limited plots for model calibration, results in this study showed strong 

relationships between the vegetation indices and field data on percent tree cover collected 

in 2015 (Figure 5.4-5.6 and Table:5.4). It should be noted however that the accuracy of 

the models differs with respect to the type of regression analysis and vegetation indices 

used. Validation results for these models were presented in the next chapter (chapter six). 

Visually, the spatial pattern of tree covers as shown by most of these models, and to large 

extent, appear to be consistent with ecological condition in KNP (Figure 5.7). 

The strong relationship between averaged tree phenology of a 14-year MODIS NDVI 

determined by Fourier analysis and field plot measurements indicated the usefulness of 

harmonic analysis in capturing the interannually variability of PFTs in savannas. The 

strong relationship found with the amplitude values of the first harmonic term to percent 

tree cover (Figure 5.4) may be attributable to tree species being more resistant to harsh 

environmental conditions. This may be because of the influence of site, climatic 
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conditions and disturbances (e.g. fire, drought) on the productivity of each PFTs (House 

et al., 2003, Archibald and Scholes, 2007b, Moreno-de las Heras et al., 2015, Kaduk and 

Los, 2011). The results demonstrated that amplitude values can be used as surrogates for 

tree cover estimation more broadly to capture the spatial variability of heterogeneous 

savannas (Figure 5.3 and 5.4, 5.7). 

The vegetation indices and percent tree cover relationships are strong for both NDVIpixel 

and SAVIpixel (Figure 5.5a-f). Even though logarithmic (nonlinear) model had the least 

accuracy (Figure 5.5e) for the NDVI pixel, the differences between the models are not very 

significant, in essence, the spatial variability is well noticeable from the tree maps (Figure 

5.7). The SAVIpixel appear to be better than the NDVI pixel in all models (Figure 5.5b/d/f). 

From the calibration results obtained for the linear model in soil determining methods, 

the trend of the linear regression is greatly improved for the NDVI and SAVI (Figure 

5.6a/c) except for the invariant method (Figure 5.6b) in SAVI. This means that the NDVI 

vegetation index is more sensitive to correction than the SAVI except for an invariant 

method. Despite improvements, from the visual assessment, it is evident that the soil 

determining methods have a high estimates of tree cover in KNP for both NDVI and 

SAVI. The estimate of fractional vegetation cover usually underestimates where ever 

NDVIsoil is overestimated and the exact opposite occurs when the NDVIsoil is 

underestimated (Montandon and Small, 2008). It is difficult to conclude from the visual 

inspection as to whether soil determining methods overestimate tree cover or not. At plot 

level, in this case, the validation results may show if there is overestimation (Chapter six). 

Validation results presented in chapter six indicated the RMSE for each model. 

5.6 Summary 

In this study, tree cover was estimated from MODIS data phenology metrics (NDVI 

amplitude, mean NDVI, SAVI). Both spatial and temporal scales were considered for 

model development. The percent tree cover maps have reflected spatial and temporal 

variability in many sites, probably due the influences of biophysical processes such as 

climate, geomorphology, and disturbances (e.g. fires). Moreover, validation of these maps 

will show whether the approaches employed in this study are sufficiently robust for tree 

cover estimation in KNP. Validation of these maps with the remaining half of the field 

data was shown in the next chapter (six). In addition, the comparison of the estimated tree 
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cover with previous woody cover maps derived from high-resolution data was also 

presented in the same chapter (six).   
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Chapter 6 

Validation of tree fractional cover map derived from phenological 

signal decomposition of MODIS time series data  
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6.1 Introduction    

All estimates of land cover types including plant functional types (PFTs) using remote 

sensing data have an associated error and uncertainty of an unknown magnitude (Rocchini 

et al., 2013). It is therefore, one of the ultimate goals of many remote sensing studies to 

provide information that is accurate. To achieve this, an assessment of errors and 

uncertainty needs to be made to ascertain the level of accuracy of a given remote sensing 

product. 

Although approaches to tree cover modelling differ, careful considerations to the choice 

of efficient method, data, and field sampling protocols are needed to reduce uncertainty 

in the input parameters. For instance, mapping tree cover in savanna using Boolean logic 

has been considered inappropriate given conditions to savanna as gradual transitions 

between open and closed shrub and grasslands (Gessner et al., 2008, Rocchini et al., 

2013). A sub-pixel analysis is being considered as an appropriate method especially in 

heterogeneous regions such as savannas (Foody and Cox, 1994: Gessner et al., 2008). 

Proper field data collection  is an essential requirement since the accuracy of tree cover 

estimate is affected by the nature of the landscape formation (Herrmann et al., 2013).  

Due to limited field measurements, and high costs, as well as the volume associated with 

high-resolution datasets, a variety of modelling approaches, have relied on the synergy 

between the field samples and optical imagery (multi-spectral and multi-temporal data). 

Thus, the usefulness of these varied modelling outputs lies closely with their accuracy. 

The essence of quantifying uncertainties resulting from those processes has never been 

more pertinent. Specifically, many previous studies have resorted to the use of the high-

resolution data for validation (Gill et al., 2009, Hansen et al., 2000, Sexton et al., 2013).  

While quantifying uncertainties resulting from these estimates might enhance proper 

assessment of the effectiveness of a given technique, the quality and robust nature of the 

procedure employed in the process are even more critical.  One of the useful methods is 

the adoption of statistical observations that are unbiased and also, make comparisons with 

maps and other data sources (Strahler et al., 2006).  Several statistical techniques are 

essential for efficient tests of correct agreement between different observations.  In this 

Chapter, the accuracy of the tree cover maps produced from the NDVI, SAVI, and the 

MODIS VCF were evaluated. However, all datasets including the LiDAR/SAR product 
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were also validated using a field data from a field campaign in 2015.  The LiDAR/SAR 

product was previously validated and found to be highly accurate. However, it has been 

resampled for this study. This aggregation made to the product means that its accuracy 

should be evaluated. The study here asked the following questions: 

6. How accurate can a signal decomposition model of tree fractional cover estimates 

using derived satellite phenology metrics be?  

6.2 Objectives 

• To compare MODIS NDVI, SAVI, and MODIS VCF tree cover maps with 

existing tree cover maps. 

• To test the performance of signal decomposition for the estimates of tree cover 

maps (MODIS NDVI, SAVI tree cover maps) using an observation data from a 

field campaign in 2015. 

6.3 Material and method 
6.3.1 Assessment of model performance 

The assessment of model performance for fractional tree cover from the MODIS 

NDVI/SAVI time series data uses the remaining half of the field observed data (14 plots) 

not used for calibration. The LiDAR/SAR-based tree cover map and the MODIS VCF 

datasets were first compared to the field observations to quantify their accuracies. The 

validation of MODIS VCF with field data uses the MODIS VCF data for the year 2014 

since the field campaign was in 2015. To assess model performance for tree cover 

estimated in this study, the coefficient of determination (R²) was used to measure the 

strength of the relationship between the predicted and the observed values. The predicted 

data for each model is taken as the independent variable  while the observed as the 

dependent as explained in Piñeiro et al. (Piñeiro et al., 2008). In addition, the root mean 

square error (RMSE) was used to determine the goodness-of-fit. 

 

6.3.2 Comparison of tree cover estimates with LiDAR/SAR and Bucini woody cover 

maps 

Pearson correlation which is the measure of the linear dependence (correlation) between 

two variables X and Y, was used to assess whether tree cover estimates (from this study) 
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as well as the MODIS VCF product (Y) are related to LiDAR/SAR and Bucini woody 

cover maps (X). The significant of the relationship was also assessed at alpha (α) value 

of 0.05.  

6.4 Result 
 

6.4.1 The tree cover maps 

Figure 6.1 a-k presents a comparison of maps between the LiDAR/SAR, Bucini woody 

cover map, MODIS VCF, NDVI harmonic, NDVIpixel, SAVIpixel and tree cover resulting 

from the multiple variables as explained in Chapter five. Visually, the spatial variability 

is present in NDVI harmonic, NDVIpixel, SAVIpixel and tree cover resulting from the 

multiple variables and that the maps have consistent patterning with LiDAR/SAR product 

(Figure 6.1a) as well as for Bucini woody cover map (Figure 6.1b). The presence of high 

and low tree cover cut across all the landscape in the region. The difference between the 

east and west division is apparent with the western part supporting high tree cover. There 

are however little pockets of high tree cover in the east part. The Bucini woody cover 

(Figure 6.1b) (2001) depicts a dense woody cover in the KNP. The difference between 

Bucini and the LiDAR/SAR (2008) could be due to phenology changes which occur over 

the years (7-year period) as well as the differences in the datasets for which the two maps 

were produced. The Bucini woody cover is produced from the synergy between the 

optical (Landsat ETM+ scenes for 2000 and 2001) and SAR (1995 and 1996) datasets. 

The MODIS VCF (Figure 6.1c/d) estimates of tree cover is well below 30% resulting 

probably due to its model which limited tree cover at certain minimum height (> 5 m). It 

is therefore obvious since savannas are generally less dense with tree height greater than 

5 m.  

The estimates from the NDVI Harmonic (Figure 6.1e) especially the amplitude indicated 

the known heterogeneity in tree cover over KNP. It has clearly demarcated the differences 

between the west and eastern parts. Both NDVIpixel and SAVIpixel tree cover maps have 

shown almost a similar trend with LiDAR/SAR and Bucini woody cover maps.  These 

estimates closely replicate the vegetation structure of the region as a combination of both 

dense and sparse tree coverage. The distribution of tree cover estimated with the 

amplitude might also result due to influence of precipitation in KNP. The southern parts 

have high rainfall than the extreme north parts of the study area (Figure 6.2). Figure 6.2 
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shows the comparison of pixel values for percent tree cover and mean annual rainfall for 

weather stations in KNP (14-year weather station data at: Mahlengeni = 410, mm, Satara 

= 475 mm, Skukuza = 620 mm) approximated to 400 - 600 mm of three weather stations 

in KNP with LiDAR/SAR, amplitude, Bucini, NDVI, SAVI, and MODIS VCF. The 

estimates from the NDVIpixel and SAVIpixel showed a clear distinction between the dense 

thickets and an open shrub to grassland. Since most of these tree cover maps are 

phenology based, it should be noted that apart from geology, several factors may 

influence the density of tree cover in this region. For example, fire, herbivore and weather 

variability can also have a strong impact on the density of tree cover in KNP. Moreover, 

differences between tree cover maps are also obvious. 

 

Figure 6. 1: A comparison of maps (a) LiDAR/SAR, (b) Bucini woody cover map, (c) 

MODIS VCF (2008), (d) MODIS VCF (2014), (e) Amplitude tree cover, (f) NDVI tree 

cover (2008), (g) NDVI tree cover (2014), (h) SAVI tree cover (2008), (i) SAVI tree 

cover (2014), (j) Mul-var. tree cover map. 
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Figure 6. 2: comparison of pixel values for percent tree cover and mean annual rainfall 

(an average of a 14-year weather station data) data of three weather station in KNP with 

LiDAR/SAR, amplitude, Bucini, NDVI, SAVI, and MODIS VCF 

6.4.2 Regression of percent tree against mean annual precipitation data (of a 14-year) 

obtained from three weather stations 

 

Table 1 shows the relationship between the tree cover and mean annual precipitation (14 

years) of the KNP. Overall, the tree cover has a positive relationship with precipitation in 

the study area but not significant (p < 0.001) for all tree cover datasets except the 

amplitude. 

Table 6.1: Regression of percent tree against precipitation 
 

LiDAR/SAR Bucini Amplitude NDVI SAVI VCF14 VCF08 

R²  0.95 0.37 0.99 0.97 0.92 0.50 0.50 

P value                 0.13 0.57 0.02 0.09 0.17 0.49 0.49 

 

6.4.3 LiDAR/SAR, Buccini and MODIS VCF tree cover with field data  

The accuracy assessments for the LiDAR/SAR, Bucini and MODIS VCF tree cover 

maps with field data collected in 2015 (28 plots) are presented in Figure 6.3a/b. The 

assessment for MODIS VCF was made in two ways: first, the assessment was made with 

reference to all tree canopies regardless of height. Secondly, only tree cover greater than 
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5 m was considered as MODIS VCF was calibrated on tree of certain minimum height.  

The first assessment with field estimates indicated that the LiDAR/SAR tree cover map 

has the highest accuracy (R² = 0.45, p < 0.001, Slope = 0.5, RMSE=15.90%) followed 

by Bucini (R² = 0.48; p < 0.001, Slope = 0.5, RMSE=17.54%) compared to MODIS 

VCF (R² = 0.53, p < 0.001, Slope = 0.05, RMSE = 27.5%). The difference between these 

tree cover estimates is more obvious in the RMSE and Slope (Figure 6.3a). For field 

data on tree cover above 5 m, the MODIS VCF had better accuracy with the RMSE (R² 

= 0.19, p < 0.02, slope = 0.1, RMSE = 7.03) (Figure 6.3b). However, with reference to 

slope and intercept (slope =0.12, intercept = 8.9) the MODIS VCF significantly 

underestimated tree cover in all cases compared to the field data (Figure 6.3b). 

 

Figure 6. 3: (a) for the LiDAR/SAR tree cover map Bucini woody cover map (2001) and 

MODIS VCF using field plots (all canopies), (b) MODIS VCF using field plots (for tree 

cover > 5 m). The dashed line is the 1:1 line. 

6.4.4 Validation of MODIS NDVI Harmonic Tree cover map 

Table 6. 2 shows the field validation plots and their corresponding amplitude (1st 

harmonic) and estimated tree cover. Figure 6.4 presents an accuracy assessment of tree 

cover from amplitude using the field data from a field campaign in 2015. The MODIS 

NDVI Harmonic tree cover estimated from the amplitude has an R² = 0.36, p = 0.03, slope 

= 0.83, with RMSE = 16.28%. The challenges of estimating tree cover with amplitude 

increases with the complexity of species diversity over a large area. 
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    Table 6. 2: Validation of MODIS NDVI harmonic tree cover map 

plot Tree cover Amplitude Estimated tree cover 

(amplitude) 

1 5 0.945 24.14 

3 11 0.935 21.64 

4 11 1.032 44.21 

7 12 0.905 14.30 

9 21 1.017 40.77 

10 30 0.920 17.84 

12 30 0.939 22.59 

15 35 1.007 38.60 

16 35 0.953 26.00 

19 35 0.934 21.49 

21 45 0.980 32.24 

22 55 0.958 27.08 

24 65 1.050 48.16 

27 70 1.130 64.75 
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Figure 6. 4: Assessment of model performance of tree cover estimated from harmonic 

analysis using field data (14 plots). The dashed line is the 1:1 line and the solid line is 

the regression line 

6.4.5 Validation of MODIS NDVIpixel and SAVIpixel tree cover maps 

Table 6.3 shows field validation plots and NDVIpixel, SAVIpixel as well their 

corresponding tree cover estimated from simple linear, polynomial and logarithmic 

regression equations. Figure 6.5a-c presents an accuracy assessments of tree cover from 

the NDVIpixel and SAVIpixel (mean of dry season images for 2014/2015) using the field 

data from a field campaign in 2015. The estimated tree cover using linear regression has 

an R² = 0.40, p < 0.01, slope = 1.01, with RMSE = 15.26% and R² = 0.32, p < 0.03, slope 

= 0.79, with RMSE = 16.39% for NDVIpixel and SAVIpixel respectively. The level of 

accuracy for NDVIpixel and SAVIpixel with polynomial regression is not far from the 
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simple linear regression (NDVIpixel: R² = 0.40, p < 0.01, slope = 0.89, with RMSE = 

15.21%, SAVIpixel: R² = 0.32, p < 0.03, slope = 0.78, with RMSE = 15.39%). The 

logarithmic is slightly less accurate with RMSE and slope for both vegetation indices 

(NDVIpixel = R² = 0.40, p < 0.01, slope = 0.79, with RMSE = 15.44%, SAVIpixel = R² = 

0.32, p < 0.03, slope = 0.82, with RMSE = 16.51%). These results suggested that both 

NDVIpixel and SAVIpixel are sensitive to percent tree cover during this period and at this 

vegetation type.  

Table 6. 3 Validation of MODIS NDVIpixel and SAVIpixel tree cover estimates 

plo

t 

no. 

Tree 

cover 

(%) 

NDVIpixel  

 

SAVIpix

el  

 

NDVIpixel  estimated tree 

cover 

SAVIpixel  estimated tree 

cover 

Linear Polynomi

al 

logarithm

ic 

Linea

r 

Polynomi

al 

logarithm

ic 

2 5 0.307 0.486 16.17 16.99 16.24 19.35 19.35 19.32 

5 11 0.359 0.550 31.21 29.74 31.98 34.80 34.78 35.73 

6 11 0.385 0.582 38.42 37.07 38.71 42.43 42.41 43.14 

8 12 0.345 0.502 27.08 25.88 27.89 23.19 23.19 23.59 

11 21 0.401 0.573 43.04 42.20 42.80 40.23 40.21 41.04 

13 30 0.371 0.517 34.47 32.95 35.08 26.69 26.68 27.37 

14 30 0.350 0.514 28.41 27.10 29.23 26.13 26.12 26.77 

17 35 0.347 0.511 27.78 26.52 28.60 25.41 25.40 26.00 

18 35 0.374 0.547 35.24 33.74 35.80 34.08 34.06 35.00 

20 35 0.338 0.503 25.26 24.27 26.04 23.50 23.50 23.93 

23 45 0.338 0.489 25.22 24.24 26.01 19.99 19.99 20.03 

25 55 0.366 0.544 33.20 31.68 33.88 33.19 33.17 34.11 

26 65 0.425 0.625 49.99 50.53 48.65 52.84 52.84 52.62 

28 70 0.489 0.710 68.22 75.92 62.53 73.12 73.17 69.35 
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Figure 6. 5: Validation of tree cover estimates derived with NDVIpixel and SAVIpixel 

using regression analyses, (a) With simple linear, (b) polynomial (c) Logarithmic 

regressions 

 

6.4.6 Validation of NDVI and SAVI tree cover estimate using NDVIsoil determining 

methods  

Table 6. 4 shows the field validation plots and their corresponding tree cover estimated 

using two approaches which account for NDVIsoil and SAVIsoil in the estimation. Figure 

6.6a/b Shows validation of tree cover estimates from a modified procedure of vegetation 

fractional estimates by Zeng et al., for NDVI (Figure 6.6a) (R² = 0.40, p < 0.01, slope = 

1.06; RMSE = 19.04%) as well as for SAVI (Figure 6.6b) (R² = 0.32, p < 0.3, slope = 

1.06; RMSE = 17.34%) vegetation indices. The tree cover estimated for both vegetation 

indices using Zeng’s procedure indicated that the approach can be used to infer tree 

fractional cover using dry season satellite data even though the accuracy of the estimated 

tree cover were slightly lower than when NDVIsoil were not accounted for. In these 

methods, there is also an overestimation of tree cover in the lower percent cover (< 30%) 
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where the contribution of soil is higher demonstrating the implication of an invariant 

NDVIsoil removal approach. Figure 6.6b shows validation of tree cover estimates from a 

modified procedure for vegetation fractional estimates using NDVIsoil determining 

method by Wu et al., (NDVI: R² = 0.40, p < 0.01, slope = 0.98; RMSE = 18.28%, SAVI: 

R² = 0.32, p < 0.02, slope = 0.88; RMSE = 19.17%). The accuracy of this approach is 

slightly high above the previous method. The difference between the two methods is more 

obvious in the RMSE and slope demonstrating the importance of NDVIsoil accounting 

method that considers soil type characteristics. However, from the graph, it could be seen 

that there is clustering of few points from 30-40% cover which might not be the influence 

of soil alone but also the possibility of field underestimation of tree cover or presence of 

grass layer being active in the dry season at those plots (Figure 6.6a/b). Although the 

accuracy for NDVIpixel and SAVIpixel is high, the tree cover maps estimated from these 

approaches as presented in chapter (Figure 5.6) have evidently indicated the well-known 

pattern of tree cover distribution over KNP. 

 

Table 6. 4 Validation of MODIS NDVI tree cover maps estimated using two methods of 

soil removal 

plot 

no. 

Observe 

tree 

cover 

(%) 

NDVIpixel SAVIpixel Estimated 

tree cover 

(%) (Zeng 

et al) 

Estimated 

tree cover 

(%) (Wu 

et al) 

Estimated 

tree cover 

(%) 

(Zeng et 

al) 

Estimated 

tree cover 

(%) (Wu 

et al) 

2.00 5.00 0.307 0.486 28.52 28.99 29.382 33.39 

5.00 11.00 0.359 0.550 39.94 43.83 40.757 47.17 

6.00 11.00 0.385 0.582 45.57 51.16 46.445 54.06 

8.00 12.00 0.345 0.502 31.36 32.68 32.225 36.83 

11.00 21.00 0.401 0.573 43.95 49.05 44.845 52.12 

13.00 30.00 0.371 0.517 33.94 36.04 34.892 40.06 

14.00 30.00 0.350 0.514 33.53 35.50 34.358 39.42 

17.00 35.00 0.347 0.511 33.00 34.81 33.825 38.77 

18.00 35.00 0.374 0.547 39.40 43.14 40.224 46.52 

20.00 35.00 0.338 0.503 31.59 32.98 32.403 37.05 

23.00 45.00 0.338 0.489 28.99 29.60 29.915 34.03 

25.00 55.00 0.366 0.544 38.75 42.29 39.691 45.88 

26.00 65.00 0.425 0.625 53.27 61.17 54.088 63.32 

28.00 70.00 0.489 0.710 68.25 80.65 69.195 81.63 
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Figure 6. 6: Validation of NDV and SAVI tree Cover estimates (a) modified procedure 

by Zeng et al. (2000), (b) modified procedure by Wu et al. (2014) 

6.4.7 Validation of Tree Cover estimates through multiple regression of Amplitude, 

NDVIpixel and SAVIpixel, 

 

The table 6.5 shows the observed tree cover and corresponding amplitude values, NDVI 

and SAVI which were used as synergy in a multiple regression model for improved tree 

cover estimate in KNP. Figure 6.7 shows the accuracy assessment for tree cover estimate 

from multiple variables. This model produced the highest R² = 0.60 and slope = 1.2 and 

had the least RMSE (13.10 %) compared variables investigated individually. The map 

estimated from these multiple variables as discussed above (Figure 6.1) has similar 

patterning with LiDAR/SAR and Bucini woody cover maps. The contribution from the 

NDVI, SAVI, and amplitude in the multiple model is more useful for tree cover 

estimation. 

Table 6. 5: Validation of tree cover estimates through multiple regression of amplitude, 

NDVIpixel, and SAVIpixel. 

Plot no. Observe tree 

cover (%) 

Amplitude NDVIpixel SAVIpixel Estimated tree 

cover (%) 

2 5 0.95 0.307 0.485 20.66 

5 11 0.94 0.359 0.454 12.68 

6 11 1.03 0.385 0.434 15.00 

8 12 0.91 0.345 0.544 28.37 

11 21 1.02 0.401 0.499 26.64 

13 30 0.92 0.371 0.520 23.85 

14 30 0.94 0.350 0.511 24.06 

17 35 1.01 0.347 0.498 26.87 

18 35 0.95 0.374 0.557 33.31 

20 35 0.93 0.338 0.502 21.80 
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23 45 0.98 0.338 0.551 35.20 

25 55 0.96 0.366 0.515 26.01 

26 65 1.05 0.425 0.562 40.75 

28 70 1.13 0.489 0.691 70.71 

 

 

Figure 6. 7: Validation of tree cover estimates through multiple regression of 

amplitude, NDVIpixel, and SAVIpixel. 

 

6.4.8 Comparison of estimated tree cover with LiDAR/SAR and Bucini woody cover 

maps using Pearson correlation 

Table 6.6 presents a comparison of NDVI, SAVI, and MODIS CVF tree cover maps with 

LiDAR/SAR and Bucini using 14 validation plots datasets collected from a field 

campaign in 2015. All vegetation indices have a significant relationship with previous 

tree cover maps except the polynomial in the NDVIpixel. However, the linear model had 

a best correlation for both vegetation indices (NDVIpixel: r = 0.52, p = 0.05 with 

LiDAR/SAR and r = 0.63, p = 0.014 with Bucini (SAVIpixel: r = 0.53, p = 0.05 with 

LiDAR/SAR and r = 0.59, p = 0.02 with Bucini). The relationship between MODIS VCF 
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with the previous tree cover maps is however not very significant (r = 0.39, p = 0.16 with 

LiDAR/SAR and r = 0.40, p = 0.17 with Bucini). 

Table 6.6: Correlation of estimated tree cover maps with LiDAR/SAR and Bucini woody 

cover maps 

Tree cover estimates  LiDAR/SAR 2008 Bucini 2001 

r p value r p value 

NDVIpixel (Linear)  0.52 0.05 0.63 0.014 

NDVIpixel (Polynomial) 0.49 0.07 0.62 0.016 

NDVIpixel (Logarithmic) 0.52 0.05 0.63 0.014 

NDVI (Zeng’s et al.) 0.52 0.05 0.59 0.02 

NDVI (Wu et al.) 0.52 0.05 0.59 0.02 

SAVIpixel (Linear) 0.53 0.05 0.59 0.02 

SAVIpixel (Polynomial) 0.53 0.05 0.59  0.02 

SAVIpixel (Logarithmic) 0.53 0.05 0.58 0.02 

SAVI (Zeng’s et al.) 0.52 0.05 0.59 0.02 

SAVI (Wu et al.) 0.52 0.05 0.59 0.02 

MODIS VCF  0.39 0.16 0.40 0.17 

 

6.5 Discussion 
 

6.5.1 The LiDAR/SAR, Bucini and MODIS VCF: 

The previous products on tree cover used in this study have been validated by the 

providers and were found relatively accurate (Naidoo et al., 2015, Bucini et al., 2009, 

Hansen et al., 2003b, Hansen et al., 2005b). The LiDAR/SAR and Bucini woody cover 

map have been found the most accurate using our field data (Figure 6.3a). Even though 

MODIS VCF was assessed based on tree cover greater than 5 m (Figure 6.2b), the 

accuracy from the validation carried out with the field observed tree cover in KNP (slope 

= 0.1). MODIS VCF showed a moderate correlation with LiDAR/SAR and Bucini woody 

cover maps (Table 6.5). Despite differences between the time of field campaign (2015) 

and remote sensing data, the LiDAR/SAR (2008) and Bucini (2001) tree cover maps are 

consistent with field measurements. (Figure 6.3a). LiDAR/SAR tree cover has the 

advantage because of its ability to measure vegetation in three dimension (Los et al., 2012, 

Khalefa et al., 2013). The Bucini woody which is produced from the synergy between 

optical (Landsat ETM+ and JER-S) and SAR data. The accuracy of the Bucini product 

could be due to consideration to acquire the SAR images in July-August 2008 (dry season, 
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leaf-off) to avoid soil moisture effects on the radar signal (Mathieu et al., 2013) as well 

as by using the dry season images for the optical dataset to maximize the discrimination 

of woody vegetation. The study has also accounted for the effects of climate, soil 

characteristics, topography, fire frequency and herbivory in a regression analysis to 

estimate woody canopy (Smit and Asner 2012; Bucini et al 2010).  

 

The accuracy of MODIS VCF datasets when trees height above 5 m are considered 

(without the shrubs) is higher than when all canopies are considered, especially when 

reference is made to RMSE error only. The RMSE (7%) found with MODIS VCF in this 

study is 2% lower than the recent validation of the product carried out by the providers at 

sites in Maryland (9.47%). Despite strength of MODIS VCF datasets as observed in many 

studies (Giglio et al., 2006, Los et al., 2012, Sexton et al., 2013, Hansen et al., 2005b), 

the accuracy of the product is less with savannas particularly when certain statistical 

observations are put into considerations. For instance, in this study, MODIS VCF had a 

high RMSE (28.56) and low slope (0.07) when all canopies were considered (Figure 6. 

8a). At the same time, a low slope (0.12) and high intercept (8.9) was recorded for the 

product at tree height of 5 m. This simply means that there is an underestimation of tree 

or woody species from the MODIS VCF in this region. The underestimation of the 

MODIS VCF with in situ as observed in this study is similar to a recent study  (Brandt et 

al., 2016) whose estimate of woody cover in the Sahel was nine times higher than the 

MODIS VCF. Consequently, the low accuracy for MODIS VCF has been reported in 

scientific literatures (White et al., 2005, Gessner et al., 2013, Herrmann et al., 2013). 

 

The use of large number of phenology metrics acquired at different period regardless of 

vegetation dynamics (Hansen et al., 2002, Hansen et al., 2005b), the presence of bad 

pixels (cloud cover), the training datasets (regression tree usually require large samples), 

limitations inherent in the MODIS sensor viewing geometry (the effects is more with the 

individual bands than the vegetation index-NDVI) and cloud contamination may be 

responsible for the limitations of the MODIS VCF in savannas due to heterogeneity and 

the complexity in species diversity. In this study, none of the MODIS VCF (2014) pixel 

value used for our field plots is of bad quality (with reference to information of quality 

pixels by the providers). Consideration to the seasonal vegetation dynamics could aid 

global scale mapping of tree cover in savannas from space. This is due to large differences 
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in vegetation phenology during the wet and dry season (Venter et al., 2003b) and 

consequent sensor’s limitations such as the cloud cover and sensor view geometry which 

may affect the interannual and seasonal variation of  tree/grass phenology (Los et al., 

2005, Su et al., 2009).  

6.5.2 The NDVI harmonic tree cover map  

The harmonic analysis applied to MODIS NDVI data for a 14-year time series was found 

relatively accurate (Figure 6.4). The estimates of tree cover using phase and cycles from 

a temporal analysis presented in chapter 4 show the importance of harmonic analysis for 

tree/grass fractional cover estimates. The amplitude estimated from the MODIS NDVI 

achieved an overall RMSE of less than 16% (Figure 6.4). The accuracy of tree cover 

estimated from the amplitude is relatively high with Slope (slope = 0.83) (Figure 6.4). 

The amplitude of the first harmonic term from the NDVI time-series used in this study 

was extracted from the composite of images covering various stages of the growing 

season cycles that could sufficiently reflect phenology features of tree species in this area 

(Gessner et al., 2013). However, the error resulting from NDVI harmonic might be due 

to confusion between the woody and grass layer occurring probably due to environmental 

conditions (Smit et al., 2010). A previous study applied on discrete Fourier analysis to 

derive a mean-phase-amplitude space to separate six vegetation types into geographic 

regions using classification with AVHRR data reported confusion in the classification 

accuracy between grassland and savanna (achieved 23% accuracy). Fourier analysis such 

as that applied in this study is more robust than traditional methods of analysing single 

acquisition dates which identify very little information about the phenology of the PFTs. 

Though tree species usually flush their leaves before the first rain in KNP, there are 

differences in their leaf-out period. For example, Acacia spp. usually starts leaf-flushing 

earlier than Combretum apiculatum. Tree species in KNP usually take 8 weeks to reach 

full leaf from the date first trees started leafing (Archibald and Scholes, 2007b). Although 

there are limitations to some of the metrics that capture annual phenology in estimating 

tree cover because of non-linearity in the NDVI occurring due to presence of tree, grass, 

and bare soil (Gamon et al., 1995, Jiang et al., 2006, Verger et al., 2009b), such annual 

composites could perform well comparably to metrics in areas with a dominant 

phenological profile where common cover types share a common seasonal variation 

(Hansen et al., 2005b). 
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6.5.3 The NDVIpixel and SAVIpixel 

The composites dry season images used for vegetation indices to estimate tree cover in 

KNP were found to be moderately accurate (Figure 6.5a-c). The NDVI-tree fractional 

cover relationships had stronger accuracy with the linear and polynomial regression than 

the logarithmic relationship (Figure 6.5a-c), illustrating the strong dependence of NDVI 

on tree canopy structure during the dry season in KNP. This also demonstrated the 

presence of photosynthetic active tree layer in the dry season as previously observed 

(Bucini et al., 2009). The relationship between the NDVI and PFTs depend on the nature 

of the ecosystem in question and modelling technique (Los et al., 2000, Los et al., 2005, 

Gamon et al., 1995).  

 

The relationship between the NDVIpixel and percent tree cover is relatively linear (Figure 

6.4 and 6.5).  The relationship between the SAVIpixel and percent tree cover is relatively 

linear (Figure 6.5 and 6.6). The nonlinearity in the NDVI-species relationships increases 

with increasing species diversity (Wang et al., 2016, Gamon et al., 1995) and darker soil. 

It also decreases with the sparse vegetation and soil brightness (Jiang et al., 2006). Most 

of the plots used to estimate tree cover are within granite site where soil types differ 

compared to the basalt in the east, hence, the results discussed in this section agree with 

previous studies (Gamon et al., 1995, Wang et al., 2016, Sellers, 1987). A recent study 

found a linear relationship between FVC and the EVI as well as the SAVI vegetation 

index. In the same study, the relationship between the NDVI and FVC was nonlinear due 

to saturation effects at high vegetation fractions due to presence of shadow as well as the 

influence of soil background (Sousa and Small, 2017). 

 

The tree cover estimated for the KNP and for both vegetation indices show consistent 

patterning of KNP landscape formation (Bucini et al., 2009, Naidoo et al., 2015). 

However, the error rate between the SAVIpixel and NDVIpixel is almost similar (Figure 

6.5a-c) which further demonstrates less soil variation in this region as SAVIpixel reduces 

soil effects on canopy reflectance (Huete, 1988).  There is strong relationship between 

the SAVIpixel as well as the NDVIpixel with Bucini and LiDAR/SAR (Table 6.5). From the 

scatter plots in figure 5 a-c, it can be observed that at the lower percent tree cover, the 

relationship with field data was not very good (especially for NDVI). The influence of 

soil background on the signal is therefore evident. This demonstrated the influence of 
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radiative transfer from the surface on canopy reflectance especially where there is mixed 

tree, grass and bare soil fractions (Fuller et al., 1997, Price, 1990, Baumgardner et al., 

1986, Los et al., 2012). The influence of soil reflectance from the NDVI reduces with 

decreasing canopy gaps (Walter‐Shea et al., 1992, Ding et al., 2016).  

6.5.4 The tree cover maps estimated using two NDVIsoil and SAVIsoil determining 

methods 

The assessment of tree cover maps from the soil determining methods indicated a 

moderate linear relationship between the predicted and the observed percent tree cover 

(Figure 6.6). Although the slope of the regression line for both vegetation had improved 

(Figure 6.6) compared with tree estimates with no soil remove (Figure 6.5a), the RMSE 

is high with these approaches. The SAVI vegetation index was found to be less sensitive 

to soil removal than the NDVI. SAVI index is one of the vegetation indices specifically 

developed to reduce soil backgrounds effects. Although soil colour is useful for 

differentiating soil reflectance (Baumgardner et al., 1986), soil moisture was considered 

the most important factor in influencing vegetation indices (Muller and Décamps, 2001). 

From the results in Figure 6.6 and Table 6.4, uncertainties in the estimates of percent tree 

cover at lower NDVI or SAVI are high for all methods. However, the second approach 

of soil determining methods had a high estimate in the lower percent cover. This can be 

explained by the sensitivity of soil background on the NDVI or SAVI or the result of 

changing canopy structure which might decrease in the NIR reflectance and increasing 

visible reflectance consequently leading to reduce NDVI. Furthermore, the sensitivity soil 

backgrounds to vegetation indices was found to be greatest in the lower tree cover than 

in dense canopy (Huete et al., 1985, Ding et al., 2016). Sometimes larger canopies can 

have more shadows thereby also reducing the NIR reflectance. These challenges can 

introduce a substantial uncertainty for tree cover estimation. For example, there can be 

overestimation of percent tree cover whenever soil contribution is underestimated. The 

exact opposite is often the case when the soil contribution is overestimated (Montandon 

and Small, 2008).  

Overall, despite uncertainty suffered in the estimation of the percent tree cover with the 

soil removal approaches used in this study, the heterogeneity is present in tree cover maps. 

The heterogeneity in the spatial distribution of percent tree cover with regards to areas of 

high and lower tree cover. Visually, the maps from these approaches appear to be similar 

to Bucini woody cover maps at global scale. At local scale, using validation plots, the 
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maps show strong and significant relationship with LiDAR/SAR and Bucini woody cover 

maps (Table 6.5).  

6.5.5 Tree cover estimated from the multiple variables 

The multilinear model using the amplitude, NDVIpixel and SAVIpixel demonstrated the 

usefulness of synergy between phenology metrics for tree cover estimation in savannas. 

This model produced the highest R² (0.60) and slope (1.2) and has the least RMSE (13.08 

%) compared to all the variables investigated individually. The amplitude (an averaged 

of a 14 year MODIS NDVI) has been considered useful in this model because of the 

changes in tree cover due  interannual variability (Brandt et al., 2016). SAVIpixel was 

specifically developed to reduce soil background effects (Huete et al., 1985) and the 

linearity of the NDVI with the dry season images due a reduced species richness in that 

season (dry season) (Gamon et al., 1995, Wang et al., 2016).  

6.5.5 The uncertainties and sources of errors and proposed improvements  

While our results demonstrated the potential of MODIS data to estimate percent tree cover 

from vegetation indices using signal decomposition, the estimated tree cover in this study 

has some limitations and remaining uncertainties that must be considered: 

i. Phenology 

Phenology of PFTs in savannas is usually influenced by many environmental factors 

(Prins, 1988, Archibald and Scholes, 2007a). Specifically, tree phenology is influenced 

mainly by temperature and day length (Chidumayo, 2001b), or precipitation and 

disturbance in certain condition (February et al., 2005). For these reasons, the estimates 

of percent tree cover from the passive sensor are less accurate compared to active sensor. 

While active sensor such as the LiDAR can determine the canopy cover by measuring its 

3D structure, the estimates from the passive optical sensor mostly rely on the green 

density of the canopy cover within a pixel (Brandt et al., 2016). Therefore, changes in 

tree/grass phenology due to high interannual variability (seasonality, fires and drought) 

in savanna (Bombelli et al., 2009) may have important implication for tree cover 

estimates. For instance, it has been reported that the grass layer (fraction of photosynthetic 

vegetation) in savannas may change from 85% to 8% in the dry season and fraction of 

non-photosynthetic vegetation of the same layer may increase from 7% to 79% in the wet 

season (Guerschman et al., 2009). In this study, although attention has been paid to 
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defining the dry season which is approximation for the whole study site, yet, tree/grass 

separation can, therefore, be affected by certain grass species that are supported by soil 

moisture and temperature (Archibald and Scholes, 2007b, Higgins et al., 2011). In 

savannas, certain environmental factors favor grass growth and influence its phenology, 

productivity and biomass allocation (Scholes and Archer, 1997, Scholes, 2003). This 

might contribute to the overestimation of tree cover in this study in a highly mixed 

tree/grass area. Furthermore, although the MODIS vegetation indices (e.g. NDVI) are less 

sensitive to the effect of  illumination and viewing geometry than individual bands as 

previously reported in the literature, the estimates of tree cover in this study may have 

remaining uncertainties despite being specific to a particular season due to differences in 

tree/grass structures (Los et al., 2005, Su et al., 2009).  

ii. The ground data (field plots data on percent tree/grass cover) 

Although the LiDAR/SAR product showed a good slope (0.5) and RMSE of 15.90 as 

assessed with field data, the accuracy of the product is lower than the previous validation 

(R2=0.8 and RMSE=7.7%) (Naidoo et al., 2015). The level of uncertainty in the estimates 

from the LiDAR/SAR and Bucini woody cover maps is probably due to time gap between 

these products and the field campaign. Furthermore, the Bucini woody cover map was 

produced from the Landsat acquired between 2000 and 2001 and the JERS-1 Synthetic 

Aperture Radar (SAR) scenes (L-band, HH polarization) were acquired between 1995 

and 1996 while the field campaign for this study was 2015. The time gap means that there 

could be significant changes in tree cover in KNP over this period. Despite these 

differences, The Bucini woody cover appear to show a significant relationship with the 

field data (R2=0.48, p < 0.001 and RMSE=17.54%).  

Moreover, the estimates in this study using field data is also limited due to limited field 

plot data. It should be noted that the calibration data used in our models may not be the 

representative of all species over the KNP landscape. The field method for tree cover 

estimation is also a visual approach which may also constraints accuracy of our model 

due to remaining uncertainties in the field data collection. However, the results presented 

in this study demonstrated that percent tree cover can be estimated from vegetation 

indices in savannas, and that single regression model based on our field data has relatively 

high accuracy. The accuracy assessments indicated that the RMSE ranges from 15 to 21% 

for the individual models tested in this study. High uncertainty is attributed to percent tree 
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cover less than 40% where spectral signatures are probably dominated by understorey 

(dry grass) and soil backgrounds. This arise due to presence of soil and dry grass, 

underestimation of percent tree cover in the field campaign or changes in tree phenology 

due to fire over the period (Smit et al., 2010). For both calibration and validation plots, 

there are only few plots with percent tree cover above 40%. This means that if the 

regression models are to be developed and applied consistently over the large area, it is 

important that they are established on a much larger sample than was presented in the 

current study. This may reduce uncertainty and increase model accuracy. It may also 

indicate high variability in the level of accuracies (variability) of various models tested 

in this study. 

iii. The NDVIsoil 

The use of in situ measurement of soil reflectance remains a crucial step for an effective 

determination of NDVIsoil in a pixel to estimate vegetation cover fraction (Montandon 

and Small, 2008, Muller and Décamps, 2001, Stoner and Baumgardner, 1981, Smallman 

et al., 2017) in savannas where vegetation indices at MODIS resolution of 250 m is 

essential for capturing not only vegetation but also bare soil. One of the biggest challenges 

for tree cover estimation is the lack of ground measuremnts of soil reflectance since soil 

reflectance values vary with soil types and characteristics (e.g. soil moisture) in both 

spatial and temporal resolution.  

In this study, as demonstrated from the validation results using different models, 

quantifying the influence of NDVIsoil is challenging without in situ measurement 

(Smallman et al., 2017) of soil reflectance. Though the estimate of tree cover from the 

linear regression using soil determining methods had better slope (Figure 6.5a/b) for both 

vegetation indices, the NDVIpixel and SAVIpixel had the least RMSE (Figure 6.4a). The 

high error in tree cover estimation with soil determining methods can be explained by the 

fact that the thresholds used to determine the NDVIsoil for each pixel were rough 

estimations. Therefore, tree cover estimation with these approaches might introduce 

errors especially where the in situ measurement of soil reflectance is lacking (Ding et al., 

2016). Challenges in tree/grass or soil separation remain critical to model accuracy. 

However, the methods employed in this study, would have been more accurate if larger 

environment is considered as some of these approaches are insensitive to a particular land 

cover type (Zeng et al., 2000). The influence of spectral response pattern of both 
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vegetation and soil can have a strong temporal and spatial effects (Lillesand et al., 2004). 

The spatial effects may be negligible if small area is being considered (Lillesand et al., 

2004). The temporal effects for soil (Smallman et al., 2017) as well as for vegetation is 

important due to species changes throughout the growing season as well as due to sensor 

limitations (Los et al., 2005, Los et al., 2000, Kaduk and Los, 2011).  

Smallman et al., (2017) who evaluated the critical role of repeated woody biomass 

estimates in constraining the dynamics of the major ecosystem carbon pools, highlighted 

the challenges with dead organic carbon stocks and soil using the Harmonised World soil 

database (HWSD) to account for bare soil. In their estimates of carbon stock, the in-situ 

soil carbon observations have lower uncertainty than the one which used the HWSD, and 

unlike the HWSD, the in-situ data they have used is well constrained in time. They 

stressed that the impact of the HWSD prior is reduced due to lack of a robust assessment 

of the uncertainty associated with the database and the lack of information on the time for 

which the priors are representative, necessitating a conservative use of the database. The 

in-situ measurements of soil reflectance if available would be more useful regardless of 

the extent of spatial scale being considered for tree cover estimation (Ding et al., 2016, 

Muller and Décamps, 2001, Smallman et al., 2017). 

6.6 Summary 

Remote sensing based models of tree cover in the Savanna were developed from 

vegetation indices (amplitude, NDVI and SAVI of the dry season images) derived from 

MODIS data and a field data (in situ) on percent tree cover measured at 28 sites in KNP. 

The models were developed on the understanding that during the dry season only woody 

species are photosynthetically active. Some of these models had however accounted for 

bare soil (as non-photosynthetic vegetation) in the estimation. A strong linear relationship 

was found between the phenology and tree cover observations from a field campaign in 

2015. The MODIS NDVI harmonic tree cover estimated from the MODIS NDVI had an 

R² = 0.36, p < 0.03, slope = 0.83, with RMSE = 16.28%. While tree cover estimated from 

the dry season MODIS data had R² = 0.40, p < 0.01, slope = 1.01, RMSE = 15.26% and   

R² = 0.32, p < 0.03, slope = 0.79, RMSE = 16.39% for NDVIpixel and SAVIpixel 

respectively. The percent tree cover estimated from the soil determining methods had an 

improved slope for both NDVI and SAVI but yield slightly a high RMSE. The multiple 

regression model produced with amplitude NDVIpixel, SAVIpixel had the highest accuracy: 
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R² = 0.46, p < 0.001 and slope = 1.2 and RMSE = 13.08 % compared to all variables 

investigated individually.  

The tree cover estimated from all models had a high correlation and significant 

relationship with the LiDAR/SAR and Bucini woody cover maps. The linear model had 

a best correlation for both vegetation indices (NDVIpixel: r = 0.52, p = 0.05 with 

LiDAR/SAR and r = 0.63, p = 0.014 with Bucini (SAVIpixel: r = 0.53, p = 0.05 with 

LiDAR/SAR and r = 0.59, p = 0.02 with Bucini). The MODIS VCF tree cover datasets 

found to be less accurate compared to field percent tree cover with R² = 0.53, p < 0.001, 

Slope = 0.05, RMSE = 27.5% for all canopies as well as when certain minimum height 

(> 5 m) of tree was considered (R² = 0.19, p < 0.02, slope = 0.1, RMSE = 7.03) due to 

poor slope and low R² = 0.19. The relationship between MODIS VCF with the previous 

tree cover maps is not significant (r = 0.39, p = 0.16 with LiDAR/SAR and r = 0.40, p = 

0.17 Bucini). This implies that MODIS VCF which is calibrated on trees at a certain 

minimum height (tree > 5 m in height) was only detecting a proportion of the woody 

cover in KNP. The results presented in this study suggest an improvement compared to 

previous phenology based maps. The maps of tree cover presented here will be useful in 

understanding tree/grass interactions in wooded savannas. Future work will have to 

ascertain the transferability of these methods to savanna sites globally.  
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Chapter 7 

Discussion and Conclusions  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 
 

7.1 Discussion  

This study used harmonic analysis and soil determining methods from vegetation indices 

in African savanna. MODIS time series data were used to assess the interannual 

variability of tree and grasses. A range of spatial and temporal scales have been analysed. 

The pixel values of 28 field plots (collected in 2015) were extracted over 14-year MODIS 

NDVI time series data. The harmonic analysis presented in chapter 4 uses amplitude, 

phase and seasonal cycles of trees and grasses to assess annual and interannual variability. 

Tree and grass fractions were also estimated using phase and cycles as retrieved from the 

first and second strongest harmonic. The phase and frequency of the strongest harmonic 

terms are consistent measures for tree/grass discrimination. Tree and grass cover were 

also estimated from the NDVI and SAVI vegetation indices using soil determining 

methods. The accuracies and uncertainties of the various models tested in this study were 

presented.  

The statistically significant harmonics were estimated from the decomposition of 

tree/grass phenology as an average of 14-year datasets and for each phenological year 

over the study period. The results from decomposition method presented in this study 

have been useful for change analysis, discrimination and mapping of PFTs in KNP. The 

statistically significant harmonics using harmonic analysis is important in many ways for 

reasons being that red noise and correlation of time series data have been reduced. The 

implication of phenology metrics from the harmonic analysis which are not based on 

assessment of significant harmonics is likely to provide unreliable result due to their 

statistical features of uncertainty arising due to presence of high frequencies or correlation 

of time series which consequetly makes signal separation capabilities challenging 

(Griffith and Chun, 2016, Ghil et al., 2002, Barbour and Parker, 2014). Previous studies 

which aimed to assess observations based on time series data using harmonic analysis do 

not offer a much analytical solution to the error structure of the statistics. The time series 

observations may be correlated and for example, can inflate type I or II error depending 

upon the sampling size and the nature of the time series data. The estimated harmonics in 

such case may often lead to bias, large variance, and spectral leakage which might make 

one frequency spilling into the neighbouring frequencies, consequently improve higher 

frequency but distort lower frequency spectra (Barbour and Parker, 2014). In such 

estimates, it is likely that estimated changes on PFTs occurring at a period do not have 

occurred at all. It is, therefore, challenging to understand the reliability of the observed 
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changes in the phenological metrics within the expected range of interannual variability 

since little independent information exists in the observations (de Beurs and Henebry, 

2010, Bence, 1995). In this study, the use of Hartley test and correcting for multiple 

testing with the Bonferroni method as well as the multi-taper approach for estimating 

phenology metrics have introduced a new and improved technique for analying changes 

in PFTs (trees and grasses) resulting from environmental conditions and disturbance in 

savannas. 

The changes in PFTs are key indications of climate change and disturbances, but the 

assessment of interannual variability in tree/grass phenology in savannas, is one of the 

most significant challenges to facing remote sensing (Rusch et al., 2003, Bradstock and 

Kenny, 2003, Cleland et al., 2007). Therefore, although there is an increased development 

of the species-specific phenology models, remote sensing data is offering an immense 

contribution at regional and global scales. In this study, the assessment of tree/grass 

phenology using remote sensing data have promoted our understanding in the site-

specific differences and peculiarities of varied PFTs. All PFTs assessed with reference to 

cycles in this study, have shown fourteen peaks over a 14-year data in the strongest 

harmonic term. While a comparison of tree and grass dominated plots indicated that only 

tree dominated plots have 28 cycles i.e. two cycles per year in the second strongest 

harmonic terms with Bonferroni approach. Trees are mostly influenced by the soil 

moisture resulting from the previous growing cycles. (Scholes and Archer, 1997).  

In contrast, the grass phenology has a stronger second harmonic term that does not follow 

an annual pattern, Similar findings of unimodal phenological pattern and bimodal 

characteristic have been reported for wheat which span over nine months of growing 

period before harvesting (Jakubauskas et al., 2002). Canisius et al., (2007)  identified 19 

cycles of annual pattern of vegetation over 19 years and 38 cycles which cover two 

seasons far year over the same period. Canisius et al., (2007) stressed the importance of 

identifying bimodality (e.g. agricultural areas) using biannual signals derived from the 

harmonic analysis. The technique presented here is an improvement to the previous 

analysis of time series analysis of remote sensing data. The assessment of bimodality in 

tree cover distribution has been used as proof that savanna and forest are alternative stable 

states. The time series analysis of PFTs using harmonic analysis can, therefore, provide 
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important grounds in the possibility of identifying interactions and causal nexi between 

drivers and state variables for various PFTs  (De Michele and Accatino, 2014).   

The assessment of tree/grass co-existence through the combined field studies and 

improved remote sensing methods to support empirical analysis could facilitate a better 

understanding of tree/grass system. This study shows how empirical method with 

harmonic analysis and field data can be used as a synergy for the estimate of tree cover. 

Much have been discussed in chapter 5 on the estimates of tree cover using MODIS NDVI 

and SAVI, primarily when the soil backgrounds and understory in a pixel are being 

considered. The use of dry season images from MODIS data for the estimate of tree cover 

through the soil determining methods has demonstrated the difficulties and challenges in 

dealing with remote sensing data (especially where the field measurement of soil spectral 

information is lacking). However, it is evident from the empirical relationship between 

the field estimate of tree/grass fractional cover and the satellite-derived phenology 

metrics of MODIS (NDVI and SAVI) that remote sensing presents a clear opportunity 

for assessing tree cover. The regression models used in this study appears to be crucial in 

the assessment of fractional cover in sparse vegetation type where the relationship 

between the field data on percent tree cover and vegetation indices is not well-understood 

due to present of bare soil. While a linear relationship was found between the field data 

on percent tree cover and for all vegetation indices, there are limitations in most of the 

models used in this study especially in the lower cover where the contribution of bare soil 

and understory is likely to be higher (radiative transfer effects- light interaction with 

canopies and bare soil) (Fuller et al., 1997). However, tree cover is estimated with a 

considerable accuracy using the field data and had a high correlation with LiDAR/SAR 

and Bucini woody cover maps.  The MODIS VCF product has much lower accuracies 

when evaluated with field data and previous products. As the MODIS VCF do not 

consider woody species smaller than 5 m in height,  it is therefore limited for landscape 

decisions in areas of predominantly woody species.  

The usefulness of phenology metrics in the frequency domain such as the amplitude, 

phase and cycles, as they demonstrate sensitivity of PFTs to greening, a measure of 

separability, inter-annual variability and predictive capability for the wide area for tree 

fractional cover estimates. This has been confirmed by the use of field data and high-

resolution reference dataset (LiDAR-SAR product). From the evidence gathered on tree 
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phenology using Fourier analysis, the selection of dry season NDVI/SAVI from MODIS 

images to estimates tree fractional cover provides another insight to minimising 

uncertainty due to influence of understory and soil backgrounds.  However, uncertainties 

in the estimates of tree cover carried out in this study were previously highlighted in the 

discussion section of each analysis chapter (4,5 and 6). Jointly, results presented in this 

study using signal decomposition method improves the understanding of time series data 

from remote sensing and for tree/grass characterisation in an African savanna. 

7.2 Thesis conclusion 

This study focused on the use of signal decomposition of satellite time series data to assess 

interannual variability of the main PFTs (trees and grasses). The phenological metrics 

retrieved from these methods (Fourier analysis and soil determining methods from 

vegetation indices) were used to characterized PFTs and estimate fractional tree cover in 

Kruger National Park using MODIS NDVI time series data over 14-year period. The 

estimate of tree cover was established based remote sensing model of tree cover in the 

savanna from vegetation indices metrics (NDVI amplitude, NDVI and SAVI of the dry 

season images) derived from MODIS data and a field data (in situ) on percent tree cover 

measured at 28 sites in KNP. The conclusions drawn from this study were as thus: 

• Statistically significant harmonic terms estimated based signal decomposition 

have revealed a distinct pattern for trees and for grasses. The used of Bonferroni-

Hartley tests in Fourier analysis and multitaper method are very useful for the 

estimate of significant harmonics from the time series.  

• Interannual variability of these PFTs assessed from the amplitude, cycles and 

phase values of the strongest harmonic terms is robust to tree and grass phenology 

characterization since grasses respond more strongly to the annual seasonal cycle 

than trees. For the whole study area, estimates from Fourier analysis show changes 

in the distribution of PFTs in both temporal and spatial domains. 

• The phase values indicated that in most cases, trees green up earlier than grasses. 

However, the study also notes an inconsistent condition in the greening of these 

PFT over the period especially at annual temporal scale. This relates to site-

specific differences, species composition and the differences in the fractional 

cover of PFTs.  
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• Tree/grass phenology from Fourier analysis of satellite remote sensing can be 

used to estimate their fractional covers as the phase has an R² = 0.60, p = 0.001, 

slope = 1, with RMSE = 12.52% and R² = 0.44, p = 0.01, slope = 1.2, with RMSE 

= 17.64% for tree cover and grass cover respectively. The estimates of grass cover 

had the highest error. The estimates of tree cover are still better with cycles (R² = 

0.55, p = 0.03, slope = 1, with RMSE = 16.07%) than for grass (R² = 0.32, p = 

0.03, slope = 1, with RMSE = 17.91%). The accuracy assessment of multiple 

linear regression model for tree cover estimate shows an R² = 0.61, p < 0.001 and 

slope = 0.99 and had the least RMSE = 12.54 %. The accuracy has increased 

greatly compared to when models that were assessed with individual variables. 

The MODIS NDVI harmonic tree cover estimated from the NDVI dataset has an 

R² = 0.36, p = 0.03, slope = 0.83, with RMSE = 16.28%.  

• While harmonic analysis is robust to estimates of tree/grass phenology, like in 

many other techniques, it is limited to areas that are not well-known. This is 

especially the case for the phase and cycles in inferring tree/grass cover. The 

behavior of PFTs as captured by the frequency domain of the original time series 

is linked to the influence of site-specific differences and time series 

characteristics. Thus, for a better use of signal decomposition such as that applied 

in this study, it is essential to have a priori knowledge of the ecosystem and proper 

understanding of time series data characteristics. 

• Despite the limitations in the Fourier analysis, this study demonstrates how 

estimating statistically significant harmonics using the Hartley test and correcting 

for multiple testing with the Bonferroni method is a good option for any remote 

sensing study of time series, especially for assessing inter-annual variability and 

estimating fractional cover of PFTs in savannas.  

• NDVI and SAVI (NDVIpixel and SAVIpixel) vegetation indices from the dry season 

MODIS dataare found suitable for the estimates of tree cover in KNP due to 

reduced species richness as grass layer is usually non-photosynthetic in the dry 

season (R² = 0.40, p = 0.01, slope = 1.01, RMSE = 15.26% and   R² = 0.32, p = 

0.03, slope = 0.79, RMSE = 16.39% were found for NDVIpixel and SAVIpixel 

respectively). Tree cover estimated from these vegetation indices agree with 

previous products (NDVIpixel: r = 0.52, p = 0.05 with LiDAR/SAR and r = 0.63, 
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p = 0.014 with Bucini (SAVIpixel: r = 0.53, p = 0.05 with LiDAR/SAR and r = 

0.59, p = 0.02 with Bucini). 

• The percent tree cover estimated from the soil determining methods had an 

improved slope for the vegetation indices but yield slightly a high RMSE for both 

methods. The invariant method had an R² = 0.40, p = 0.01, slope = 1.06; RMSE 

= 19.04% for the NDVI and an R² = 0.32, p = 0.03, slope = 1.06; RMSE = 17.34% 

for SAVI. While method which take account of soil types had an R² = 0.40, p = 

0.01, slope = 0.98; RMSE = 18.28% for NDVI and an R² = 0.32, p = 0.03, slope 

= 0.88; RMSE = 19.17% for SAVI. Tree cover estimates from these approaches 

agree with previous products (LiDAR/SAR and Bucini woody cover maps).  The 

high RMSE in the estimate of tree cover based on soil determining 

NDVIsoil/SAVIsoil removal were applied relied on based on the soil database, could 

be due to uncertainty in the spatial and temporal precision of the soil types and 

characteristics over KNP. 

• The understanding of soil characteristics remains strong pivotal for an effective 

soil determination from the NDVI. Although an in-situ measurements of soil 

reflectance is key to successful estimates of tree cover in savannas especially 

when using vegetation indices, the use of global Harmonized World Soil Database 

provides cost effective remote sensing approach especially where field 

measurements of soil reflectance is lacking or impractical.   

• The MODIS VCF tree cover datasets were found relatively accurate compared to 

field percent tree cover with R² = 0.53, p < 0.001, Slope = 0.05, RMSE = 27.5% 

for all canopies as well as when certain minimum heights were considered (R² = 

0.19, p < 0.02, slope = 0.1, RMSE = 7.03). MODIS VCF has large error from the 

analysis conducted in this study (regardless of height). The low R2 is found when 

tested with a data that set limit to tree height (as was the case for MODIS VCF’s 

model calibration). This implies that MODIS VCF which is calibrated on trees at 

a certain minimum height (tree > 5 m in height) was only detecting a proportion 

of the woody cover in KNP.  

• To reduce uncertainty in tree cover estimates using remote sensing, especially in 

savannas, requires multi-temporal metrics derived with reference to a specific 

vegetation phenology. 
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• This study demonstrated an improvement in tree cover estimates using different 

phenology metrics compared to previous phenology based maps as savanna site 

is dominated by the woody species (shrubs and trees). The techniques presented 

in this study demonstrated a significant improvement and an important 

contribution to future studies. The maps of tree cover will be useful in 

understanding tree/grass interactions in wooded savannas. 

7.3 Original research contributions  

There are several important areas where this study makes an original contribution to 

knowledge. The assessments of spectral response of PFTs from a time-series of remotely 

sensed data implemented in this study presents new methodological applications for 

multi-temporal change analysis in savannas. The techniques applied here present an 

interesting opportunity for the exploration of many ecological questions regarding the 

mixed tree/grass system. The harmonic analysis that employed confidence interval to 

estimate statistically significant harmonics in the spatiotemporal development of trees 

and grasses as revealed by satellite sensor was evaluated. The study also demonstrated 

that differences in PFTs (such as the time of greening) due to fractional changes, site 

differences or species composition could be quantified from remote sensing. The signal 

decomposition method applied in chapter 4, and 5, together with accuracy assessments 

presented in chapter 6 demonstrated the effectiveness and usefulness of this study. 

The phase, amplitude and the number of cycles are robust discriminators of trees and 

grasses. The empirical relationships evaluated between the satellite-derived phenology 

metrics and field data on tree/grass cover provides another insight in savanna remote 

sensing. This finding is a clear indication that remote sensing technology is providing an 

important opportunity to advance the understanding of tree/grass structure and their 

phenological properties. Moreover, the study also signifies the role of remote sensing 

particularly in identifying PFTs whose phenological properties are defined by resource 

constraints. In this context, it is observed that the synergy between remote sensing and 

field observation is more likely to provide a good measure of functional types than is 

possible from field observations alone (Ustin and Gamon, 2010). 

The partitioning of remotely sensed time series data into frequency domain such as the 

amplitude images provides a very useful parameter for ecological studies. The amplitude 

images especially the first and second harmonic terms are essential for the management 
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of biodiversity in KNP. This is because the extracted harmonics terms have strong 

biological meaning and can, therefore, be used in addition to other physical variables to 

evaluate ecological status. This thesis produced the first KNP tree fractional cover maps 

at MODIS resolution of 250 m that capture woody species adequately. The availability 

of robust tree/grass FVC datasets over time would enable new ecological studies of 

tree/grass coexistence to be carried out. It is important therefore for monitoring woody 

vegetation trends in KNP. This will have significant ecological implication in changing 

landscape decisions. 

This study has offered a strong insight for the assessments of the main PFTs using signal 

decomposition which can be further developed for tree/grass characterization using 

remote sensing application. It is evident from this study that phenology metrics estimated 

from signal decomposition require proper interpretation and therefore becomes necessary 

for modelling tree/grass phenology in an African savanna.  

7.4 Future research directions 

Future work will have to ascertain the transferability of the method to savanna sites 

worldwide. For instance, more efforts should go into defining the empirical relationships 

between field data on tree/grass cover and satellite phenology metrics as remote sensing 

is proven to be promising. Therefore, the study can be further improved by collecting 

more field samples on tree/grass cover. Research is therefore required to understand the 

underlying mechanisms and factors influencing these relationships. This is particularly 

useful as there are no reliable global datasets for trees (which capture woody species 

adequately) and grass fractions (Boke-Olén et al., 2016).  

Specifically, even the estimation of woody cover in this study is limited by field data. The 

overestimations of woody cover especially in areas of high vegetation result due to lack 

of coincidence and sufficient field data. However, spatial variability is present in the tree 

cover maps. Future studies require large amount of field information (on woody cover 

and soil reflectance measurement) to improve woody cover estimation in KNP. 

Although this study was carried out at a local scale, several inconsistencies were found 

relating to productivity and time of greening of PFTs. The question remains how this 

variability fit over a large area and what are the mechanisms for these differences. 

Specifically, there is the need to monitor changes in woody cover with a focus on species 

composition and their environmental conditions. There is need to test the techniques 
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presented in this study to derive a global woody cover map for savannas. The synergy 

between remote sensing and field method could be given more attention.  

Although MODIS data has proven promising in this study, this method is not specific to 

a dataset and could be applied to detect and characterize changes in PFTs within other 

remotely sensed image time series (e.g. Landsat). Future studies could test the possibility 

of using Landsat data for harmonic analysis because of its spatial and temporal resolution. 

Newly launched satellite data i.e., the Sentinel-2 can also be tested if the adequate time 

series data becomes available. Both datasets have advantages because of their pixel 

resolutions considerably finer than MODIS spatial resolution. This is suitable for 

identifying the non-stationary dynamic nature of PFTs in savanna ecosystems. These 

datasets are also applicable for studies at regional and global scales.  
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 Appendix I: Contributions of co-authors 

This thesis comprises three results chapters. The first result chapter has been published in 

the international journal of remote sensing, while the remaining two chapters are 

currently being prepared as one manuscript for submission into one of the remote sensing 

high impact journals. These parts of the thesis therefore contained a bit of other co-

authors. The contribution of co-authors and the PhD student, are detailed below. 

“Assessment of tree/grass fractional cover using phenological signal decomposition” 

Parts of this work is under review with the International journal of Remote Sensing 

Journal as: 

Sa’ad Ibrahim, Heiko Balzter, Kevin Tansey, Narumasa Tsutsumida, Renaud Mathieu., 

(2018) Estimating fractional cover of plant functional types in African savanna from 

harmonic analysis of MODIS time-series. International journal of Remote Sensing, 39:9, 

2718-2745 

Respective co-author contributions 

Sa’ad Ibrahim conceived the research idea, conduct the field work, analyses the data, 

created all tables, and figures, publication writing and revisions.  

Heiko Balzter and Kevin Tansey provided feedback, edits throughout the planning and 

completion of the study. Heiko Balzter wrote the R code. 

Tsutsumida, N. provide feedback and help with modification of the original R code 

written by Heiko for signal decomposition of MODIS images. 

Mathieu, R. provides LiDAR-SAR woody fractional cover product and feedback, edits 

and review on the manuscripts 

Ch. 5 & 6: “Estimating tree fractional cover in African savanna using MODIS time series” 

and “Validation of tree fractional cover map derived from phenological signal 

decomposition of MODIS time series data” 

Parts of this work is being is prepared for submission to Remote Sensing  
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(under review) Estimating woody fractional cover in African savanna using MODIS time 

series data. Remote Sensing 

Respective co-author contributions 

Sa’ad Ibrahim conceived the research idea, conduct the field work, analyses the data, 

created all tables, and figures, publication writing and revisions.  

Heiko Balzter and Kevin Tansey provided feedback, edits throughout the planning and 

completion of the study. Heiko Balzter wrote the R code.  

Mathieu, R. provides LiDAR-SAR woody fractional cover product and feedback, edits, 

and review on the manuscripts 

Tsutsumida, N. provide feedback and help with modification of the original R code 

written by Heiko for signal decomposition of MODIS images. 
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Appendix II: statistically significant peaks for all field data on 

tree/grass sites calculated with F-test using tapering method. 
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Appendix III. R codes for pixel-based signal decomposition of 

MODIS data 
####################################### 

# Generic package for harmonic analysis in R 

####################################### 

# 

# written by Heiko Balzter, copyright 2014 

# contact the author: hb91@le.ac.uk 

# 

# includes modified functions from source: 

http://www.di.fc.ul.pt/~jpn/r/fourier/fourier.html 

# 

####################################### 

 

# t is a time index from 0 to n-1 where n is the number of measurements in the time-

series 

# xt is the vector of time points at which the measurements were taken 

# The amplitude of a wave is defined as half the height from the maximum to the 

minimum point. 

# The phase of the wave is defined as the angle by which the sine wave is delayed to its 

first peak. 

# A harmonic term is defined by how many complete waves it has within the defined 

time series, from start to end, 

#    i.e. harmonic term 2 has two full waves (two maxima and two minima) within the 

time series. 

# The fundamental period is the period between the first sample and the last. 

# The acquisition frequency is the number of measurements between two successive 

units of time.  

# The fundamental frequency f_0 is 1/N where N is the number of time steps.  

# The frequencies of the wave components must be integer multiples of the fundamental 

frequency. 

# f_0 is called the first harmonic, the second harmonic is 2*f_0, the third is 3*f_0, etc. 

 

get.trajectory <- function(X.k,xt,acq.freq) { 

# Inverse Fourier Transform:  

# Returns the x.n time series for a given time sequence (xt) and a vector with the 

amount of frequencies k in the signal (X.k) 

  n   <- length(xt) 

  i   <- complex(real = 0, imaginary = 1) 

  x.n <- rep(0,n) 

  ks  <- 0:(length(X.k)-1) 

  for(j in 0:(n-1)) { # compute each time point x_n based on freqs X.k 

    x.n[j+1] <- sum(X.k * exp(i*2*pi*ks*j/n)) / n 

  } 

  x.n * n 

} 

 

plot.fourier <- function(fourier.series, f.0, xt, ...) { 

# plot a Fourier series 
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# ***** This function has been verified. ***** 

  w <- 2*pi*f.0 

  trajectory <- sapply(xt, function(t) fourier.series(t,w)) 

  plot(xt/length(xt), trajectory, type="l", xlab="time", ylab="f(t)"); abline(h=0,lty=3) 

} 

 

convert.fft <- function(x.k, acq.freq=1) { 

# convert a FFT to amplitude and phase 

# x.k is the vector of complex points to convert 

  n <- length(Re(x.k)) # number of points 

  x.k <- x.k / n # normalize 

  distance.center <- function(c)signif( Mod(c),        4) 

  angle           <- function(c)signif( 180*Arg(c)/pi, 3) 

  df <- data.frame(cycle    = 0:(n-1), 

                   freq     = 0:(n-1) / acq.freq, 

                   t        = n / 0:(n-1) / acq.freq, # in time units, not sequential units 

                   ampl     = sapply(x.k, distance.center) * 2 * n, 

                   phase    = sapply(x.k, angle)) 

  df 

} 

 

plot.frequency.spectrum <- function(X.k, acq.freq=acq.freq, col = 1, lwd = 2, pch = "+", 

...) { 

# plot a frequency spectrum of a given X_k 

  xax <- (0:(length(X.k)-1)) / length(X.k) * acq.freq 

  xlimits <- c(0, max(xax)/2) 

  plot.data  <- cbind( xax, 2 * Mod(X.k)) 

  plot(plot.data, t="h", main="Periodogram", xlab="Frequency", ylab="Power spectral 

density", 

       col = col, lwd = lwd, pch = pch, xlim=xlimits, ylim=c(0,max(Mod(plot.data[,2])))) 

} 

 

plot.harmonic <- function(xk, i, xt, acq.freq, mar=c(1,1,1,1), 

  col = 3, lwd = 2, pch = "+", cex.lab = 1, cex.axis = 1, cex.main = 1, cex.sub = 1, ...) { 

# plot.harmonic() plots the i-th harmonic on the current plot 

# xk: the frequencies computed by the FFt 

#  i: which harmonic 

# xt: the sampling time points 

# acq.freq: the acquisition rate 

  xk.h <- rep(0,length(xk)) 

  xk.h[i+1] <- xk[i+1] # i-th harmonic 

  harmonic.trajectory <- 2 * get.trajectory(xk.h, xt, acq.freq=acq.freq) 

  points(xt, Re(harmonic.trajectory), type="l", mar=mar, 

       col = col, lwd = lwd, pch = pch, cex.lab = cex.lab, cex.axis = cex.axis, 

       cex.main = cex.main, cex.sub = cex.sub) 

} 

 

get.harmonic <- function(xk, i, xt, acq.freq) { 

# Get the values that define the i-th harmonic term. 

# xk: the frequencies computed by the FFt 
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#  i: which harmonic term(s) 

# xt: the sampling time points 

# acq.freq: the acquisition rate 

  xk.h <- rep(0,length(xk)) 

  xk.h[i+1] <- xk[i+1] # i-th harmonic 

  harmonic.trajectory <- 2 * get.trajectory(xk.h, xt, acq.freq=acq.freq) 

  Re(harmonic.trajectory) 

} 

 

harmonic <- function(xt, x, acq.freq, N, alpha, detrend, which, test, ...) { 

# core harmonic analysis function 

# xt = a vector of time steps in units of s,min, hr or other time units, does not have to be 

integers 

# x = a vector of time-series observations with the same length as xt 

# N = number of the harmonic terms to be included, starting with largest amplitude 

# acq.freq = number of measurements between two successive units of time.  

# alpha = type I error probability for statistical significance testing (default 0.05 or 5%) 

# detrend = TRUE or FALSE, if TRUE (default) then linear detrending is applied to the 

data 

# which = "strongest": the N strongest harmonic terms are included in the model 

(default) 

#       = "first": the first N terms are included, or 

#       = "all": all harmonics are included. 

# test = "bonferroni" adjusts type I error by the number of tests N; "holm" adjusts the 

type I error by N+1-k where k=1:N  

# 

# How to understand the harmonic terms:  

# Cycle means the number of waves in the time series, i.e. cycle = 9 the wave fits 9 

times into the length of the data 

#      which is the annual cycle for a 9-year series.  

# Freq is the position in the frequency domain (periodogram) from 0 to 0.5.  

# t is the position in the time domain from 0 to n-1 where n is the number of 

measurements.  

# Amplitude is the strength of the wave and  

# phase is the delay of the wave in degrees (0-360). 

 

  dig.aov <- 4 # number of significant digits for ANOVA table 

  if (missing(acq.freq)) acq.freq <- 1 

  if (missing(N)) N <- 20 

  if (missing(alpha)) alpha <- 0.05 

  if (missing(detrend)) detrend <- TRUE 

  if (missing(which)) which <- "strongest" 

  if (!(which %in% c("strongest", "first", "all"))) which <- "strongest" 

  if (missing(test)) test <- "bonferroni" 

  if (!(test %in% c("bonferroni", "holm"))) test <- "bonferroni" 

  t <- 0:(n-1) 

  # detrending 

  n <- length(x) 

  if (detrend) { 

    trend <- lm(x~xt) # linear model 
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    cat("Linear detrending result:\n") 

    print(summary(trend)) 

    detrended.x <- trend$residuals 

    } else { 

    cat("No detrending.\n\n") 

    detrended.x <- x 

    trend <- "No detrending" 

    } 

 

  detrended.x.k <- fft(detrended.x) / n 

  windows() 

  plot.frequency.spectrum(detrended.x.k, acq.freq=acq.freq) 

 

  # Calculate the amplitude and phase angle for the N harmonic terms 

  # Cycle 9 means that the harmonic wave repeats 9 times over the time series 

  # Note that cycle is indexed from 0 and ndx from 1 

  x.fft <- convert.fft(detrended.x.k, acq.freq) 

  nx <- length(x.fft$cycle) 

  # you can get the components of the table from: 

  #   x.fft$cycle[ndx] 

  #   x.fft$freq[ndx] 

  #   x.fft$t[ndx] 

  #   x.fft$ampl[ndx] 

  #   x.fft$phase[ndx] 

 

  # find the N strongest harmonics 

  if (which=="strongest") { 

    ndx <- order(x.fft$ampl[1:(nx/2)], decreasing = T)[1:N] 

    #print(cbind(ndx, x.fft$ampl[ndx])) 

    cat(paste(N, "strongest harmonic terms:\n", sep=" ")) 

    write.table(round(x.fft[ndx,],4), quote = F, sep = "\t", row.names=F) 

    cat("\n") 

    } 

  if (which=="first") { 

    ndx <- 2:(N+1) 

    #print(cbind(ndx, x.fft$ampl[ndx])) 

    cat(paste(N, "first harmonic terms:\n", sep=" ")) 

    write.table(round(x.fft[ndx,],4), quote = F, sep = "\t", row.names=F) 

    cat("\n") 

    } 

  if (which=="all") { 

    ndx <- 1:n 

    cat(paste("All harmonic terms:\n", sep=" ")) 

    write.table(round(x.fft[ndx,],4), quote = F, sep = "\t", row.names=F) 

    cat("\n") 

    } 

 

  # test for significance of the individual harmonic terms using the F test 

  # Reference: Hartley, H. O. (1949): Tests of Significance in Harmonic Analysis. 

Biometrika, 36, 194-201. 



184 
 

  # time dimension ts is in arbitrary units, with acq.freq measurements between two 

successive units 1 and 2, say 

  # without loss of generality, for the purpose of the significance testing we treat the  

  #     time dimension as steps of 1, 2, ..., n 

  # we do this by adjusting the time index tn <- xt * acq.freq 

 

  if (which=="strongest" || which=="first") { 

  bonferroni <- alpha / N   # adjusted alpha probability by the number of comparisons, 

Bonferroni correction 

  holm <- alpha / seq(N, 1, -1)   # adjusted alpha probability, Bonferroni/Holm 

correction 

  gamma = 2*pi/n # in Hartley's paper, but only for time steps of 1 

  a0 <- mean(detrended.x) 

  # work out the mean squares (MSQ) of each harmonic term for ANOVA table 

  ssq <- rep(0, N) # SSQ components  

  df <- rep(2, N) # degrees of freedom 

  msq <- rep(0, N) # MSQ components = SSQ / df 

  a <- rep(0, N) # ai 

  b <- rep(0, N) # bi 

  f <- rep(0, N) # F values for each harmonic term 

  p <- rep(0, N) # p values for each harmonic term 

  sig <- rep("n.s.", N) # significance 

  for (i in 1:N) { 

    a[i] <- 2/n * sum(detrended.x * cos(x.fft$cycle[ndx[i]] * t * gamma)) # note that we 

use t here and not xt, see above 

    b[i] <- 2/n * sum(detrended.x * sin(x.fft$cycle[ndx[i]] * t * gamma)) 

  } 

  # calculate SSQ terms 

  ssq <- n/2*(a^2+b^2) 

  # calculate MSQ terms 

  msq <- ssq/df 

  # Calculate the residual MSQ variance component: 

  rssq <- sum((detrended.x-a0)^2) - n/2 * sum(a^2+b^2) 

  # The total df is n-1. The residual df is the total n – 2N - 1. 

  rdf <- n-2*N-1 # residual df 

  rmsq <- rssq/rdf 

  # Work out the F values: 

  f <- msq / rmsq 

  # Each harmonic term has 2 degrees of freedom since it is characterised by 2 

parameters ai and bi.  

  # The F ratio is calculated by dividing the MSQ of each harmonic term by the residual 

MSQ. It should be compared to the F distribution for 2,11 degrees of freedom for the 

5%/m point, assuming type I error is controlled at 5%. 

  p <- pf(f, df1=2, df2=n-N*2-1, lower=FALSE) 

  # rounding for pretty printing: 

  ssq <- round(ssq, 2) 

  msq <- round(msq, 2) 

  f <- round(f, 1) 

  p <- round(p, 5) 

  bonferroni <- round(bonferroni, 5) 
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  holm <- round(holm, dig.aov) 

  rssq <- round(rssq, dig.aov) 

  rmsq <- round(rmsq, dig.aov) 

  # now merge all into a data.frame 

  if (test=="bonferroni") { 

    sig[p<bonferroni] <- "*" 

    x.aov <- as.data.frame(cbind(x.fft$cycle[ndx], ssq, df, msq, f, p, bonferroni, sig)) 

    names(x.aov) <- c("cycle", "SSQ", "df", "MSQ", "F", "p", "pBonf", "Sig") 

    } 

  if (test=="holm") { 

    sig[p<holm] <- "*" 

    for (i in 1:(N-1)) if (p[i]>=holm[i]) sig[(i+1):N] <- rep("n.s.", N-i) 

    x.aov <- as.data.frame(cbind(x.fft$cycle[ndx], ssq, df, msq, f, p, holm, sig)) 

    names(x.aov) <- c("cycle", "SSQ", "df", "MSQ", "F", "p", "pHolm", "Sig") 

    } 

  # print it 

  cat("ANOVA table for the selected harmonic terms:\n") 

  write.table(format(x.aov, trim = FALSE, justify = "right"), quote = F, sep = "\t", 

row.names=F) 

  write.table(format(cbind("Res.", rssq, rdf, rmsq), trim = FALSE, justify = "right"), 

quote = F, sep = "\t", row.names=F, col.names=F) 

  # cat("Res.", round(rssq, dig.aov), rdf, round(rmsq, dig.aov), "\n") 

  cat("\n") 

  # print(x.aov) 

  x.aov <- merge.data.frame(x.aov, data.frame(c(NA, round(rssq,dig.aov), rdf, 

round(rmsq,dig.aov), NA,NA,NA,NA), row.names = names(x.aov))) 

 

  if (which=="strongest") { # select only the significant harmonic terms 

    ndxs <- ndx[sig=="*"] 

    N <- length(ndxs) 

    cat("\nRetaining ", N, "significant harmonic terms.\n") 

    } 

  if (which=="first") { # select the first N harmonic terms 

    ndxs <- ndx 

    cat("\nRetaining the first", N, " harmonic terms.\n") 

    } 

 

  # plot detrended time series and overlay the individual N significant harmonics with 

the largest amplitudes: 

  # only plot up to 40 harmonics 

  x.n <- get.trajectory(detrended.x.k, xt, acq.freq)  # create time wave from detrended 

data (if detrending is switched on) 

  windows() 

  par(mfrow = c(1,1)) 

  plot(xt, Re(x.n), type="l", lwd=1, main="(d) Significant harmonic terms of tree/grass 

signals") 

  abline(h=0,lty=2) 

  for (i in 1:min(40, N)) plot.harmonic(detrended.x.k, ndxs[i], xt, acq.freq, col=i+1) 
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  # Now plot detrended time series and the composite of the first significant N 

harmonics: 

  windows() 

  plot(xt, Re(x.n), type="l", lwd=1, main="(c) Detrended tree/grass signals") 

  abline(h=0, lty=2) 

  wave <- get.harmonic(detrended.x.k, ndxs, xt, acq.freq) 

  lines(xt, wave, col="red") 

 

  # And now plot add the trend back on to the composite of the first N harmonics: 

  if (detrend) { 

    windows() 

    plot(xt, x, type="l",lwd=1, main= "(b) Trend of tree/grass signals") 

    abline(trend) 

    wave <- wave + trend$coef[1] + trend$coef[2] * xt 

    lines(xt, wave, col="red") 

    } 

 

  # plot residuals 

    windows() 

    plot(xt, x - wave, type="p", pch="+", main="Residuals of tree/grass signals") 

  } 

  else 

  { # if which == "all" 

  ndxs <- 2:n # in case all harmonics will be included except term 0 

  N <- n 

  x.aov <- "No ANOVA available. All harmonics are included." 

  wave <- x 

  } 

 

  # return these components: 

  harm <- list(xt) 

  names(harm) <- "xt" 

  harm$lm <- trend 

  harm$detrended <- detrended.x 

  harm$Nsig <- N 

  harm$ndx <- ndx 

  harm$frequency.spectrum <- detrended.x.k 

  harm$Amp <- x.fft$ampl[ndx] 

  harm$Ph <- x.fft$phase[ndx] 

  harm$aov <- x.aov 

  harm$fitted.values <- wave 

  harm$residuals <- x - wave 

  harm$call <- match.call() 

  class(harm) <- "harmonic" 

 

  # return results   

  harm 

} 

################## 

# end of functions 
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################## 

 

############### 

# verification: 

############### 

 

 

# file name and number of header lines in the file to skip 

ndvi <- read.table("11_4168_2383.txt", header=T) 

# column names of the file 

ndvi <- ndvi[,1] # use first column  

ndvi<- ndvi # extract biweekly ndvi measurements 

time     <- length(ndvi)                # measuring time interval (in months) 

acq.freq <- 1                           # data acquisition frequency (Hz), how many 

measurements per month 

ts <- seq(0,time-1/acq.freq,1/acq.freq)  # vector of sampling time-points in months 

n <- length(ndvi) 

f.0 <- 1/time 

plot(ndvi, type="l", xlab="t", ylab="NDVI values",main="Tree/grass signals") # show 

the data 

 

# with Bonferroni adjusted alpha error 

tmax.harm <- harmonic(ts, ndvi, N=100, alpha=0.05, detrend=TRUE, 

test="bonferroni") 

 

# with Holm adjusted alpha error 

tmax.harm <- harmonic(ts, ndvi, N=100, alpha=0.05, detrend=TRUE, test="holm") 

 

sum(ndvi.harm$Amp) 
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Appendix IV. R codes for image signal decomposition of MODIS 

data 
 

Written by Heiko Balzter, copyright 2014, modified by Narumasa Tsutsumida  

 harmonic for matrix to extend spatiotemporal data --------------------------------------------

- 

##harmonic function for apply  

harmonic4matrix <- function(x,xt, acq.freq,n, N, alpha, detrend, which, test, ...) { 

  # core harmonic analysis function 

  # xt = a vector of time steps in units of s,min, hr or other time units, does not have to 

be integers 

  # x = a vector of time-series observations with the same length as xt 

  # N = number of the harmonic terms to be included, starting with largest 

amplitude.ã€€"m" in paper (Harley 1949)ã€€ 

  # acq.freq = number of measurements between two successive units of time.  

  # alpha = type I error probability for statistical significance testing (default 0.05 or 5%) 

  # detrend = TRUE or FALSE, if TRUE (default) then linear detrending is applied to 

the data    

  # which = "strongest": the N strongest harmonic terms are included in the model 

(default) 

  #       = "first": the first N terms are included, or 

  #       = "all": all harmonics are included. 

  # test = "bonferroni" adjusts type I error by the number of tests N; "holm" adjusts the 

type I error by N+1-k where k=1:N  

  # 

  # How to understand the harmonic terms:  

  # Cycle means the number of waves in the time series, i.e. cycle = 9 the wave fits 9 

times into the length of the data 

  #      which is the annual cycle for a 9-year series.  

  # Freq is the position in the frequency domain (periodogram) from 0 to 0.5.  

  # t is the position in the time domain from 0 to n-1 where n is the number of 

measurements.  

  # Amplitude is the strength of the wave and  

  # phase is the delay of the wave in degrees (0-360). 

   

  dig.aov <- 4 # number of significant digits for ANOVA table 

  if (missing(acq.freq)) acq.freq <- 1 

  if (missing(N)) N <- 20 

  if (missing(alpha)) alpha <- 0.05 

  if (missing(detrend)) detrend <- FALSE 

  if (missing(which)) which <- "strongest" 

  if (!(which %in% c("strongest", "first", "all"))) which <- "strongest" 

  if (missing(test)) test <- "holm" 

  if (!(test %in% c("bonferroni", "holm"))) test <- "holm" 

  t <- 0:(n-1) 

  # detrending 

 # n <- length(x)     #comment out 

  if (detrend) { 
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    trend <- lm(x~xt) # linear model 

    #cat("Linear detrending result:\n") 

    #print(summary(trend)) 

    detrended.x <- trend$residuals 

  } else { 

    #cat("No detrending.\n\n") 

    detrended.x <- x 

    trend <- "No detrending" 

  } 

   

  detrended.x.k <- fft(detrended.x) / n      

  #windows() 

  #plot.frequency.spectrum(detrended.x.k, acq.freq=acq.freq) 

   

  # Calculate the amplitude and phase angle for the N harmonic terms 

  # Cycle 9 means that the harmonic wave repeats 9 times over the time series 

  # Note that cycle is indexed from 0 and ndx from 1 

  x.fft <- convert.fft(detrended.x.k, acq.freq) 

  nx <- length(x.fft$cycle) 

  # you can get the components of the table from: 

  #   x.fft$cycle[ndx] 

  #   x.fft$freq[ndx] 

  #   x.fft$t[ndx] 

  #   x.fft$ampl[ndx] 

  #   x.fft$phase[ndx] 

   

  # find the N strongest harmonics   

  if (which=="strongest") { 

    ndx <- order(x.fft$ampl[1:(nx/2)], decreasing = T)[1:N]    

    #print(cbind(ndx, x.fft$ampl[ndx])) 

    #cat(paste(N, "strongest harmonic terms:\n", sep=" ")) 

    #write.table(round(x.fft[ndx,],4), quote = F, sep = "\t", row.names=F) 

    #cat("\n") 

  } 

  if (which=="first") { 

    ndx <- 2:(N+1) 

    #print(cbind(ndx, x.fft$ampl[ndx])) 

    #cat(paste(N, "first harmonic terms:\n", sep=" ")) 

    #write.table(round(x.fft[ndx,],4), quote = F, sep = "\t", row.names=F) 

    #cat("\n") 

  } 

  if (which=="all") { 

    ndx <- 1:n 

    #cat(paste("All harmonic terms:\n", sep=" ")) 

    #write.table(round(x.fft[ndx,],4), quote = F, sep = "\t", row.names=F) 

    #cat("\n") 

  } 

   

  # test for significance of the individual harmonic terms using the F test 
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  # Reference: Hartley, H. O. (1949): Tests of Significance in Harmonic Analysis. 

Biometrika, 36, 194-201. 

  # time dimension ts is in arbitrary units, with acq.freq measurements between two 

successive units 1 and 2, say 

  # without loss of generality, for the purpose of the significance testing we treat the  

  #     time dimension as steps of 1, 2, ..., n 

  # we do this by adjusting the time index tn <- xt * acq.freq 

   

  if (which=="strongest" || which=="first") { 

    bonferroni <- alpha / N   # adjusted alpha probability by the number of comparisons, 

Bonferroni correction 

    holm <- alpha / seq(N, 1, -1)   # adjusted alpha probability, Bonferroni/Holm 

correction 

    gamma = 2*pi/n # in Hartley's paper, but only for time steps of 1 

    a0 <- mean(detrended.x) 

    # work out the mean squares (MSQ) of each harmonic term for ANOVA table 

    ssq <- rep(0, N) # SSQ components  

    df <- rep(2, N) # degrees of freedom 

    msq <- rep(0, N) # MSQ components = SSQ / df 

    a <- rep(0, N) # ai 

    b <- rep(0, N) # bi 

    f <- rep(0, N) # F values for each harmonic term 

    p <- rep(0, N) # p values for each harmonic term 

    sig <- rep("n.s.", N) # significance 

    for (i in 1:N) { 

      a[i] <- 2/n * sum(detrended.x * cos(x.fft$cycle[ndx[i]] * t * gamma)) # note that we 

use t here and not xt, see above 

      b[i] <- 2/n * sum(detrended.x * sin(x.fft$cycle[ndx[i]] * t * gamma)) 

    } 

    # calculate SSQ terms 

    ssq <- n/2*(a^2+b^2)    #a^2+b^2 is the observed intensities 

    # calculate MSQ terms 

    msq <- ssq/df     # m intensities are all independent kai-squere values, each based on 

two degree of freedom 

    # Calculate the residual MSQ variance component: 

    rssq <- sum((detrended.x-a0)^2) - n/2 * sum(a^2+b^2)    #eq (3) in Harley's paper 

    # The total df is n-1. The residual df is the total n ? 2N - 1. 

    rdf <- n-2*N-1 # residual df : n - (N cos wave + N sin wave + a0) 

    rmsq <- rssq/rdf 

    # Work out the F values: 

    f <- msq / rmsq    #eq (5) in Harley's paper 

    # Each harmonic term has 2 degrees of freedom since it is characterised by 2 

parameters ai and bi.  

    # The F ratio is calculated by dividing the MSQ of each harmonic term by the 

residual MSQ. It should be compared to the F distribution for 2,11 degrees of freedom 

for the 5%/m point, assuming type I error is controlled at 5%. 

    p <- pf(f, df1=2, df2=n-N*2-1, lower=FALSE) 

    # rounding for pretty printing: 

    ssq <- round(ssq, 2) 

    msq <- round(msq, 2) 
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    f <- round(f, 1) 

    p <- round(p, 5) 

    bonferroni <- round(bonferroni, 5) 

    holm <- round(holm, dig.aov) 

    rssq <- round(rssq, dig.aov) 

    rmsq <- round(rmsq, dig.aov) 

    # now merge all into a data.frame 

    if (test=="bonferroni") { 

      sig[p<bonferroni] <- "*" 

      x.aov <- as.data.frame(cbind(x.fft$cycle[ndx], ssq, df, msq, f, p, bonferroni, sig)) 

      names(x.aov) <- c("cycle", "SSQ", "df", "MSQ", "F", "p", "pBonf", "Sig") 

    } 

    if (test=="holm") { 

      sig[p<holm] <- "*" 

      for (i in 1:(N-1))  

        if (p[i]>=holm[i]) sig[(i+1):N] <- rep("n.s.", N-i)  

        x.aov <- as.data.frame(cbind(x.fft$cycle[ndx], ssq, df, msq, f, p, holm, sig)) 

      names(x.aov) <- c("cycle", "SSQ", "df", "MSQ", "F", "p", "pHolm", "Sig") 

    } 

    # print it 

    #cat("ANOVA table for the selected harmonic terms:\n") 

    #write.table(format(x.aov, trim = FALSE, justify = "right"), quote = F, sep = "\t", 

row.names=F) 

    #write.table(format(cbind("Res.", rssq, rdf, rmsq), trim = FALSE, justify = "right"), 

quote = F, sep = "\t", row.names=F, col.names=F) 

    # cat("Res.", round(rssq, dig.aov), rdf, round(rmsq, dig.aov), "\n") 

    #cat("\n") 

    # print(x.aov) 

    x.aov <- merge.data.frame(x.aov, data.frame(c(NA, round(rssq,dig.aov), rdf, 

round(rmsq,dig.aov), NA,NA,NA,NA), row.names = names(x.aov))) 

     

    if (which=="strongest") { # select only the significant harmonic terms 

      ndxs <- ndx 

      #ndxs <- ndx[sig=="*"] 

      N <- length(ndxs) 

      #  cat("\nRetaining ", N, "significant harmonic terms.\n") 

    } 

    if (which=="first") { # select the first N harmonic terms 

      ndxs <- ndx 

      #  cat("\nRetaining the first", N, " harmonic terms.\n") 

    } 

     

    # plot detrended time series and overlay the individual N significant harmonics with 

the largest amplitudes: 

    # only plot up to 40 harmonics 

    # x.n <- get.trajectory(detrended.x.k, xt, acq.freq)  # create time wave from detrended 

data (if detrending is switched on) 

    #windows() 

    #par(mfrow = c(1,1)) 

    #plot(xt, Re(x.n), type="l", lwd=1) 
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    #abline(h=0,lty=2) 

    #for (i in 1:min(40, N)) plot.harmonic(detrended.x.k, ndxs[i], xt, acq.freq, col=i+1) 

     

    # Now plot detrended time series and the composite of the first significant N 

harmonics: 

    #windows() 

    #plot(xt, Re(x.n), type="l", lwd=1) 

    #abline(h=0, lty=2) 

    wave <- get.harmonic(detrended.x.k, ndxs, xt, acq.freq) 

    #lines(xt, wave, col="red") 

     

    # And now plot add the trend back on to the composite of the first N harmonics: 

    if (detrend) { 

      #windows() 

      #  plot(xt, x, type="l",lwd=1) 

      #  abline(trend) 

      wave <- wave + trend$coef[1] + trend$coef[2] * xt 

      #  lines(xt, wave, col="red") 

    } 

     

    # plot residuals 

    #windows() 

    #  plot(xt, x - wave, type="p", pch="+") 

  } 

  else 

  { # if which == "all" 

    ndxs <- 2:n # in case all harmonics will be included except term 0 

    N <- n 

    x.aov <- "No ANOVA available. All harmonics are included." 

    wave <- x 

  } 

   

  # return these components: 

  #change 

  #harm <- list(xt)                                   #comment out 

  harm <- list()                                      #comment out 

  #names(harm) <- "xt"                                #comment out 

  #harm$lm <- trend                                   #comment out 

  #harm$detrended <- detrended.x                      #comment out 

  harm$Nsig <- N 

  #harm$ndx <- ndx                                    #comment out 

  #harm$frequency.spectrum <- detrended.x.k           #comment out 

  #harm$Amp <- x.fft$ampl[ndx]                        #comment out 

  harm$Amp <- x.fft$ampl[ndxs]                        #change ndx to ndxs 

  harm$Ph <- x.fft$phase[ndx]                         

  #harm$aov <- x.aov                                  #comment out 

  #harm$fitted.values <- wave                         #comment out 

  #harm$residuals <- x - wave                         #comment out 
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  harm$cycle <- x.fft$cycle[ndxs]                     #add 

  harm$res <- trend$coefficients[1]                 #add 

  harm$slope <- trend$coefficients[2]                 #add 

  harm$lmPval <- summary(trend)$coefficients[2,4]     #add 

 

   

  #harm$call <- match.call()   

  #class(harm) <- "harmonic" 

   

  # return results   

  harm 

} 

 

################## 

# end of functions 

################## 

 

library(zoo) 

library(maptools) 

library(raster) 

library(rasterVis) 

library(zoo) 

library(foreach) 

library(latticeExtra) 

library(lattice) 

library(RColorBrewer) 

library(sp) 

library(maptools) 

library(MASS) 

library(rgeos) 

library(rgdal) 

#library(GISTools) 

library(raster) 

library(maptools) 

#library(rasterVis) 

 

 

## harmonic function is amended not to consider statistically significant of waves. 

  #source("harmonics2.0_verNT_Saad.R") 

  source("harmonic_2.0_verNT6.R") 

 

## For global regions analysis settings ## 

  time.ndvi <- 1               #number of years 

  acq.freq.ndvi <- 23           #frequency of observation in a year 

  f.0.ndvi <- 1/time.ndvi            

  ts.ndvi <- seq(0,time.ndvi-1/acq.freq.ndvi,1/acq.freq.ndvi)  # vector of sampling time-

points in months 

  n.ndvi <- 10 

 

harmonic4rast_func <- function(stk, na.rm=TRUE){ 
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   ans <- harmonic4rast(stk,  

                       xt = ts.ndvi, 

                       acq.freq = acq.freq.ndvi,  #frequency of observation in a year 

                       n = time.ndvi*acq.freq.ndvi,   #number of images 

                       N = n.ndvi,   #considered number of waves 

                       alpha = 0.05, 

                       detrend = FALSE, 

                       which = "strongest", 

                       test = "holm", 

                       sig = FALSE,    ###extract statistically significant waves or not 

                       approx = FALSE, ### apply na.approx() to input time series 

                       slent = TRUE, 

                       na.rm = TRUE) 

            

           return(ans) 

} 

 

   

## creating mask 

  #bnd_shp <- readShapePoly("Export_Output.shp") 

  

  tif <- stack("2001_stack1.tif") 

# e <- extent(3300000,3310000,-2800000,-2790000) 

 tif <- crop(tif, e) ##test for small area without NAs 

  ans.harmonic <- calc(tif, harmonic4rast_func) 

  names(ans.harmonic) 

 

  ##if name of variables are not attached.... 

    detrend <- FALSE 

    N <- 10 

    time.ndvi <- 1               #number of years 

    acq.freq.ndvi <- 23           #frequency of observation in a year 

  if (detrend){ 

    names(ans.harmonic) <- c("Nsig", paste0("Amp_", 1:N), paste0("Ph_", 1:N), 

paste0("Cycle_", 1:N), paste0("Residuals_", 1:(time.ndvi*acq.freq.ndvi)), "lmres", 

"lmslope", "lmPval")     

  } else names(ans.harmonic) <- c("Nsig", paste0("Amp_", 1:N), paste0("Ph_", 1:N), 

paste0("Cycle_", 1:N),  paste0("Residuals_", 1:(time.ndvi*acq.freq.ndvi))) 

   

   

    spplot(ans.harmonic, "Ph_1") 
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