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Abstract

Engineering software and software intensive systems has become in-
creasingly complex over the last decades. In the ongoing digitalization of
all aspects of our lives in almost every domain, including, e.g., mechanical
engineering, electrical engineering, medicine, entertainment, or jurisdiction,
software is not only used to enable low-level controls of machines, but also
to understand system conditions and optimizations potentials.

To remain in control of all these heterogeneous systems of systems, a
precise, but abstract understanding of these systems is necessary. To this
end, models in their various forms are an important prerequisite to gain
this understanding.

In this article, we summarize research activities focusing on the de-
velopment and use of models in software and systems engineering. This
research has been carried out by the working group of Bernhard Rumpe,
which started 25 years ago in Munich, continued in Braunschweig, and
since 10 years carries on at RWTH Aachen University.
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1 Introduction

Development of a system consists of understanding what the system should do, decom-
posing the problem into smaller problems until they can be solved individually and
composed into an overall solution. An important part of this process is decomposition,
which leads to an architecture for the individual components. Quality can be obtained
by powerful analyses or intensive forms of testing.

In each of these activities an understanding of the system is needed. Understanding
the system is generally and always done by using models. Sometimes these models
remain implicit as mental models, but often it is desired or required that models are
made explicit for documentation, communication and analysis of the desired properties
of the system.
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The roles of modeling in software and systems development are manifold and
can vary greatly dependent on the chosen development process. To gain a better
understanding of the manifold forms of models and their use in a development process,
we discuss in the following series of research topics the use of explicit models denoted
in artifacts of a more precisely, potentially even formally defined modeling language.
We also discuss techniques to efficiently design new domain-specific languages (DSLs)
using a language workbench, such as MontiCore [HR17]. Techniques such as language
extension, aggregation and composition are the foundation of the Software Language
Engineering discipline.

For a precise analysis of the correctness and quality of a model it is necessary
that the modeling language itself has a precise meaning [HR04]. We therefore also
discuss how to define semantics for languages, such as UML [Rum16, Rum17], SysML
and derivations [RRW14, BHH"17]. Semantics for a DSL (in the sense of “meaning”)
completes the DSL definition process.

Knowing the semantics of a DSL (or any modeling language) allows to derive
algorithms and finally tools that enable developers to use models in the development
process. This includes of course code generation and potentially more sophisticated
model and code synthesis techniques, but also the generation of automated tests,
consistency checking between models, metrics to determine the quality of models, and
constructive refactoring and transformation steps to evolve models. Models can also
be used to describe variability, e.g., using delta-models to describe the difference to a
base variant as an additive feature.

Agile software and systems development based on models is not a contradiction.
With the right tools to automate development tasks, such as analysis, transformation
and generation, an efficient, evolutionary process that uses models as primary artifacts
becomes feasible. The last years, however, have shown, that it is still a long way to go.
In particular, the (meta-)development of comfortable and usable development tools
is an important prerequisite to further improve efficiency and predictability of the
quality of a development project.

This of course holds for software development, but will more and more also hold for
systems development, where hardware is designed in a model-based way and is quality
ensured, e.g., through virtual integration as well as 3D-printer based prototyping.

Many software modeling languages used for software modeling are either describing
component structure (and thus architecture), data structure (and thus informational
content) or behavior (and thus state based reaction on incoming events). Formal
methods have provided a digital theory of informatics in the last decades, which includes
automata in its various forms, Petri nets [Rei92], temporal logics [Pnu77, Lam94],
CSP [HoaT78], CCS [Mil78], m-calculus [Mil99] and various related approaches.

All other engineering and also scientific disciplines mainly use differentiation/inte-
gration calculus to describe continuous processes. Therefore, there is still a challenging
problem to be solved: the digital theory of informatics is not well integrated with
calculus that is needed to describe continuous processes of the physical world.

While the following sections describe steps towards a better integration of models
into software and systems development techniques, there is also still a lot more to do.

As a consequence, the mission of the Software Engineering Department at RWTH
Aachen University was and still is to define, improve, and industrially apply techniques,
concepts, and methods for innovative and efficient development of software and software-
intensive systems, such that high-quality products can be developed in a shorter period
of time and with flexible integration of changing requirements. Furthermore, we
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demonstrate the applicability of our results in various domains and potentially refine
these results in a domain specific form.

The remainder of this paper presents our activities in different areas of software
engineering. These activities are structured into three overarching topics: 1. From agile
methods to language engineering (cf. Section 2), 2. the application of model-based
engineering techniques to different domains (covered in Section 3), and 3. the tools
and languages developed using the language workbench MontiCore (cf. Section 4).
Thereafter in Section 5, we briefly summarize our research activities, identify open
challenges, and formulate further research goals.

2 Topics From Agile Methods to Language Engineering

As observed in other engineering disciplines, also the efficiency of software engineering
must be assisted by powerful models and tools. These must allow for an agile
development process with effective iterations. Central research topics in model-based
software development therefore integrate agile methods, code generation, evolution
and re-factoring. In addition, model-based software development also faces the tricky
question of what is a “good modeling language”. The following subsections address
semantics of UML and DSLs and behavior modeling based on automata. On the
meta-level these subsections also address the engineering of languages with suitable
semantics.

2.1 Agile Model-Based Software Engineering

Today, many developers and project managers assume that the use of models in
software development leads to heavy-weight, tedious development processes. On the
one hand, they believe that sooner or later, models are outdated, are not being co-
evolved with software changes, contain bugs, and are no longer helpful. On the other
hand, agility means to concentrate on the program as a core artifact without much
extra documentation. Agility enables efficient evolution, correction and extension. As
such, it seems to conflict with modeling.

We believe, and have shown, that using an executable, abstract and multi-view
modeling language for modeling, designing, and programming still allows to use an
agile development process (see the research hypotheses in [Rumo04]). Such modeling
languages, often consisting of one or more DSLs, are used as a central notation in the
development process (see Figure 1). DSLs or the UML serve as a central notation
for software development. A DSL can be used for programming, testing, modeling,
analysis, transformation and documentation.

static analysis

\ rapid prototyping

DSL models
/
automated tests

Figure 1 — DSL models as central artifacts: They can be used for many purposes.
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We found that modeling will be used in development projects much more, when
its benefits become evident early. This means constructive generation or synthesis of
code from the models needs to be among the first steps of a model-based development
process. All other interesting techniques, such as test synthesis or high level analysis
techniques seem to come second. As a consequence, executability of modeling languages
is a desired feature.

Execution of UML and DSLs

The question, whether UML should be executable, is discussed in [Rum02]. We found
this a promising approach for larger subsets of UML, but also identified a number of
challenges. We therefore started our research agenda to solve these challenges in order
to make model-based software engineering (MBSE) truly successful when employed
for agile software development. We explored in detail, how UML fits for that purpose.
Not only the deficiencies of existing UML tools but also the UML language itself
need to be adapted to fit the needs of an agile software development process, e.g., in
[RumO03] we discuss how modeling of tests helps to increase reuse and efficiency and in
[GKRSO06] the integration of models and ordinary programming code.

Moreover, in [Rum12], [Rum11], [Rum16], and [Rum17], the UML/P, a variant of
the UML especially designed for programming, refactoring and evolution, is defined.
The UML/P embodies class, object, sequence diagrams, Statecharts, and OCL in
combination with Java to model code as well as tests as sketched in Figure 2. Moreover,
these publications include a detailed discussions on how to use the UML/P for code
generation, testing and on how to refactor structural models such as class diagrams,
as well as behavioral models such as Statecharts. Additionally, forms of language
integration, e.g., using object diagrams within OCL to describe desired or unwanted
object structures, are presented there as well.

statecharts object
class i
diagrams sequence

architectural diagrams \
models £ diagrams
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Figure 2 — UML/P used for code and test generation.

In the last decade, we implemented a language workbench called MontiCore (see
Section 4.1) that was first described in [GKR106]. On top of MontiCore, we realized
most of the language components of the UML/P [Sch12]. This work includes a precise
definition of textual languages, type checks, checks for context conditions within
and between UML sub-languages and a framework for the implementation of code
generators.
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Specific Concepts Assisting Agile Development

Agile development processes require quite a lot of specific activities, techniques and
concepts. Our research includes a general discussion of how to manage and evolve
models [LRSS10] and a precise definition for model and modeling language compo-
sition [HKRT09]. Compositionality is particularly important and must be designed
carefully as it allows for incremental analyses and code generation, thus being much
more agile than today’s modeling tools. We also discussed in detail what refactoring
means and how it looks like in various modeling and programming languages [PR03].
UML/P is implemented to support modeling without redundancies even on different
levels of abstraction, which enhances refactoring and evolution techniques on models.
To better understand the effect of an evolved design, we discuss the need for semantic
differencing in [MRR10].

When models are the central notation, model quality becomes an important issue.
Therefore, we have described a set of general requirements for model quality in [FHROS].
We distinguished between internal and external quality. External quality refers to the
correctness and completeness of a model with respect to the original that it describes,
while internal quality refers to the model presentation and thus plays the same role as
coding guidelines for programming languages.

We also know that, even when using the UML/P, there is additional effort necessary
to adapt the tooling infrastructure to the project specific needs. This becomes
more pressing, when a domain specific language is specifically designed for a project.
We discuss the additional roles and activities necessary in a DSL-based software
development project in [KRV06]. However, it may be that not all of the participants in
a project need to be physically at the same place and fully available anymore [JWCR18].

We expect that the use of models at runtime will soon become an agile and efficient
development technique. It allows developers to defer design decisions to runtime
adaptation and configuration of systems. However, reliability then becomes an issue.
In [CEG™14] we have therefore discussed how to improve reliability while retaining
adaptability. In [KMAT16] we have also introduced a classification of forms of reuse
of modelled software components.

2.2 Generative Software Engineering (GSE)

We believe that modeling will only become an integral part of the process in many
industrial projects, if automatic derivation of executable code and smooth integration
with handwritten code is a standard feature of its tooling. In Section 2.1 we clarify
that generating software is an important capability for a tooling infrastructure that
successfully assists modeling in the development process. We therefore examined
various aspects of generation. For instance, in [Rum12, Rum11, Rum16, Rum17] we
define the language family UML/P (a simplified and semantically sound derivate of the
UML) which is designed specifically for product and test code generation from class
diagrams, object diagrams, Statecharts and sequence diagrams as shown in Figure 2.

We developed several generators, e.g., a flexible, modular and reusable genera-
tor for the UML/P [Sch12], a generator for generating simulation components out
of the architectural analysis and design language MontiArc [Habl16] (used for the
cloud as well as cyber-physical systems (CPS), such as cars or robotics [HRR12],
see Section 4.2) or the generator MontiGEM [AMNT19] for enterprise information
systems (see Section 4.4). All of them are based on the MontiCore language work-
bench [KRV10, GKR*06]. With MontiCore we are able to easily define extensions of
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languages as well as new combinations and thus are able to reuse the defined UML/P
sub-languages and generation techniques in various applied projects.

Tooling and especially generators will only be successful in practical projects,
if they have an appropriate impact on the development process, i.e., development
processes need to be adapted or completely reshaped according to the availability of a
generator. In [KRV06], we discuss additional roles necessary in a model-based software
development project (while other roles either vanish or their workload can greatly be
reduced).

Working with generated and handwritten code leads to challenges related with con-
tinuous repetitive generation (the generation gap problem). In [GKRS06, GHK ™ 15a,
GHK™15b] we discuss mechanisms to keep generated and handwritten code separated,
while integrating them in the product and enabling the repetitive generation (which is
much more valuable than one-shot generation).

For various purposes, including preparation of a model for generation, it is helpful
to define model transformations. We are able to create transformation languages in
concrete syntax, that reuse the underlying language concepts [Weil2, HRW15, H6118].
Even more important, we describe how to systematically derive a transformation
language in concrete syntax. Since then, we have applied this technique successfully for
several UML sub-languages and DSLs [HHRW15, AHRW17a, Ho118] (see Section 2.7).

Sometimes executability can be a disadvantageous characteristics for a modeling
language, especially when people start modeling concrete algorithms instead of abstract
properties. We therefore discuss needs and advantages of executable modeling with
UML in agile projects in [Rum04], how to apply UML for testing in [RumO03] as well as
the advantages and perils of using modeling languages for programming in [Rum02].

2.3 Unified Modeling Language (UML)

Challenges for the standardization of the UML, such as problems for defining a
semantics for the entire UML, have been well-known for a long time [KER99]. Thus,
many of our contributions build on the UML variant UML/P which is suitable for
programming. UML/P is described in [Rum16] and [Rum17] and implemented in a
first version in [Sch12] (see Section 4.3).

Defining variants of a modeling language in a systematic way is useful for adapting
the language to domain or project specific needs. Thus, semantic variation points of the
UML are first discussed in [GR11]. It discusses formal semantics for UML [BHP198]
and describes UML semantics using the “System Model” [BCGR09a], [BCGR09b],
[BCRO7b] and [BCRO7a]. Semantic variation points have, e.g., been applied to define
class diagram semantics [CGROS].

A precisely defined semantics for variations is applied, when checking variants
of class diagrams [MRR11c| and objects diagrams [MRR11d] or the consistency of
both kinds of diagrams [MRR11e]. These concepts are also applied to activity dia-
grams [MRR11b] which allows us to check for semantic differences of activity dia-
grams [MRR11a]. The basic semantics for ADs and their semantic variation points is
given in [GRR10].

Other important questions are how to ensure and identify model quality [FHROS],
how models, views and the system under development correlate to each other [BGH'98]
and how to use modeling in agile development projects [Rum04, Rum02]. Figure 2
demonstrates the principal forms of uses of UML models in agile development projects.
The exemplary diagrams, namely object diagrams and sequence diagrams, are used
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for test case definition, whereas the more “complete” diagrams are used for code
generation (see also Section 2.2).

The idea of adaption and extension of the UML in order to better suit the needs of
specific domains or settings, is another important aspect. [PFR02] describes product
line annotations for UML. More general discussions and insights on how to use meta-
modeling for defining and adapting the UML are included in [EFLR99], [FELR98]
and [SRVK10].

To use UML not only for analysis but also for programming has an impact on
the development process. To understand the implications of executability for UML,
we discuss needs and advantages of executable modeling with UML in agile projects
in [Rum04], how to apply UML for testing in [Rum03] and the advantages and perils
of using modeling languages for programming in [Rum02].

2.4 Domain-Specific Languages (DSLs)

The ability to abstract is one of the basic cognitive abilities of the human being.
Both science and philosophy use models to understand and describe the concepts and
phenomena in their fields. Engineering disciplines use models to describe the systems
they intend to design. All human beings use models, but only informatics defines and
studies the set of valid models, namely the modeling language explicitly. This is made
necessary because computer scientists use models not only to communicate among
each other, but also with computers.

Informatics, therefore, is very much about languages. We use universally applicable
modeling languages to describe problems and problem contexts. We employ general-
purpose programming languages (GPLs) to implement solutions. We specify properties,
architect and design solutions. And we define tests, as well as an increasing number of
application specific languages and DSLs tailored for a concrete target area.

A DSL is always constructed with a particular domain in mind. Examples include
HTML for websites, Matlab for numerical computation, or SQL for relational database
management. In each instance, the DSL trades some of the expressiveness of GPLs in
order to allow for more concise models in the target domain.

As software systems have become essential components of nearly all innovative
products, increasingly many non-ICT experts now find themselves working with these
systems. Furthermore, complexity of software-based systems is increasing. While
modeling languages such as UML provide a high level of abstraction to deal with
complexity, these languages are usually still too technical (hence UML profiles are
useful, as discussed in [GHK'07] and [PFR02]). DSLs address both of these problems.
Non-ICT experts benefit from DSLs by being able to transfer already familiar language
concepts to the new application. Experienced users benefit by having a smaller mental
gap between the software system and the associated real world models.

The main drawback of domain specific languages currently is still their challenging
creation process. Not only does the creation of a computer language necessitate the
fundamentals, such as a carefully defined grammar and corresponding translation
programs. Productive usage of a language also requires extensive tool support. Gener-
ative software engineering techniques are at the center of attention for attempts to
meet these challenges. In [SRVK10] we discuss the state of the art and current efforts
to develop languages through meta-modeling.

Figure 3 depicts the architecture of a typical DSL processing tool in a model-based
software engineering process. DSLs and the models expressed with them are becoming
first-class elements of the software engineering process. In order to support this
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development, research was and is necessary focusing on new, effective, and efficient
ways of creating DSLs and corresponding tool support. The processing of a model is
relatively similar to classical compiler architecture it consists of a front end handling
the input, an internal validation and transformation part and a back and to produce
the desired results. Like in classical compiler construction parts of this infrastructure
is generated using a meta-tool, in this case MontiCore.

Language I
Library 0|

Language Definition uses 4 o o]
Parser

AST Classes

Add. Infrastructure

£l
DSL Grammar [— | MC Generator | —»

conforms to 4

DSL Tool &) [n) =
. Input Models —P‘ Parser 2 ‘—D ’ AST ‘ VC::!?I’:\I;S.
Model Analysis —‘
[ :
. Validated h Al ted, Cod
Transformation and ASTs | *|Transformation simplfied AST Generation
Code Generation

Figure 3 — The role of DSLs in a model-based software engineering process.

DSL Definition

DSLs have to be designed carefully to meet their respective requirements. The core
design of a DSL consists of a desired concrete and abstract syntax [CFJT16]. We
examine the relations between concrete and abstract syntax and propose a language
definition format in [KRV07b] and [KRV10], which allows the combined definition of
concrete and abstract syntax.

Our experience shows that guidelines for the creation of DSLs tremendously improve
their quality. They target and enable suitability, reuse, conciseness, and usability. In
[FHRO8], we discuss metrics and potential guidelines, that help to achieve high quality
models and extend this into a collection of design guidelines for DSLs in [KKPT09).

Another important aspect is how to define the semantics of DSLs. Variability in
syntax and semantics for DSLs in general and UML in particular has been discussed
in [GR11]. For an extensive discussion on semantics we refer the reader to Section 2.6,
Semantics of Modeling Languages.

Composition of DSLs

Modularity is a key concept in software development and the enabler for efficient
reuse. We investigated the application of modularity to the development of DSLs in
[GKRT07], [KRV08] and [V6111]. Modularity has been successfully applied in various
areas of the DSL development process, such as concrete and abstract syntax, context
conditions, and symbol table structures and has been implemented in our language
workbench MontiCore [HR17].

We can compose independently developed languages into integrated families of DSLs,
which allows us to describe a system from various viewpoints using these different
DSLs. The language family UML/P, defined in [Sch12], serves as an example of this
technique. We can reuse existing languages by embedding them as sub-languages, e.g.,
Java’s expression language can be used for various purposes within a modeling DSL.
Consequently, we have integrated both, Java statements and expressions, into UML/P.
We are further investigating the decomposition of generators and modular composition
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of generated code. Another important aspect for composition is inheritance and
adaption of existing concepts. As described in [KRV08, HRW18], we can inherit from
existing languages and adapt certain language concepts. An often used example is to
extend an action language by new forms of actions. These concrete techniques are
summarized in the broader discussion on the so called “global” integration of domain
specific modeling languages and techniques in a conceptual model [CBCR15], which is
published in [CCFT15].

DSL Tooling

As previously mentioned, the usability of a language depends on the availability of
powerful tooling. We have implemented the MontiCore DSL workbench as a realization
of all the aforementioned concepts regarding DSLs. It is available as a stand alone
tool as well as a collection of Eclipse plugins. It also creates stand alone tools as well
as tailored Eclipse-based plugins for the defined DSLs [KRV07a]. We generate editors
with syntax highlighting, syntactic and semantic content assist and auto completion,
graphical outlines, error reporting, hyperlinks, etc., just from the DSL definition.
More details about the MontiCore DSL workbench can be found in Section 4.1, in
[GKR106, KRV08, KRV10, HR17] as well as on the MontiCore Website!.

Moreover, there is a strong need for evolution and management of models [LRSS10],
especially for comfortable transformation languages. Therefore, [Weil2, HRW15,
Hol118] present a tool that creates an infrastructure for transformations that are
specifically dedicated to an underlying DSL. The generated transformation language
is quite understandable for domain experts and comes with an engine dedicated to
transform models of this DSL.

2.5 Software Language Engineering (SLE)

Identifying or engineering appropriate languages for the various activities in software
and systems development is one of the most important issues in software engineering.
Even programming languages are still subject to improvement. For many other
activities, such as architectural design, behavioral modeling, and data structure
specifications, we use the general purpose UML [Rum16, Rum17]. Nevertheless, UML
and its tooling still are much less elaborate and hence subject to extensive syntactic,
semantic, and methodical improvement.

In various domains, however, it is more appropriate to employ DSLs to enable non-
software developers specifying properties, configuring their systems, etc. in terms of
established domain concepts and corresponding language elements. DSLs have already
achieved a significant degree of penetration in industry [HWR14]. With the upcoming
age of digitalization, we thus expect DSLs to grow even stronger and therefore also
involve increasing effort in their efficient engineering, integration and composition.

Design of a DSL is a complex task, because, on one hand, it needs to be precise
enough for being processed by a computer and, on the other hand, comprehensible
by humans. Monolithic design of a language can already benefit from methods
for language engineering in the small including design guidelines and tooling. The
MontiCore language workbench [HR17] is such a tool to assist development of languages.
It provides, e.g., techniques for an integrated definition of concrete and abstract syntax
of a language [KRVO07b, Kral0], but is much more a framework for compositional
language design [KRV10, HRW18].

L http://www.monticore.de/
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Language Engineering in the Large

To efficiently engineer languages in the large, we need all the help that we can get. As
software languages are software too, it is not surprising that the following techniques
largely discussed in [CFJ*16] help:

e Elaborate tooling to assist language development.

e Reuse of tools, e.g., for parsing and for parameterizable pretty printing.

Reuse of language components.

e Decomposition of the language to be designed in smaller components.
e Refinement and adaptation of existing languages.

e Automatic derivation of new languages from existing ones.

To improve understanding of language engineering, we have defined the terms
language and language components in [CBCR15, BEK™ 18] and how to capitalize on
this from a global perspective in [CCFT15, CKM™18]. Additionally, we discuss the
possibilities and the challenges using metamodels for language definition [SRVK10],
identifying, for instance, the need for metamodel merging and inference, as well as
assistance for their evolution .

Language and Tool Composition

Divide and conquer is one of the core concepts for managing large and complex tasks.
Language design therefore needs to be decomposed along several dimensions: First,
we want to decompose the language in language components [BEK18]. Some of
these components, for example the basic language for full qualified names, constants,
expressions, or imperative statements, should be designed in a reusable form.

In a second dimension, we want to decompose the tooling along the activities (front-
end: model processing, context conditions, internal transformations, backend: printing)
and decompose each of these activities along the individual language components. Mon-
tiCore 3 [HR17], e.g., is able to decompose the front-end language processing along the
decomposition of the language itself [KRV10, V6111, KRV08, HMSNRW16, MSN17].
MontiCore also assists modular decomposition of the backend code generation based
on different targets and different sublanguages [RRRW15, BBCT18] (cf. Section 2.9).

Language Derivation

Language derivation is, to our believe, a promising technique to develop new languages
for a specific purpose that are relying on existing basic languages [HHK 13, HHK ™ 15a,
HRW15, GLRR15, BDL*18, BJRW18]. Formally, a language derivation is a mapping
D, that maps a base language B into another language D(B). This mapping produces
new languages, not models. To automatically derive such new languages D(B) or,
at least, assist such derivation with tools, the base language B itself has to be
modeled explicitly, for instance as a metamodel or as a grammar together with its
well-formedness rules in a reasonably explicit form. Thus, language derivation can
be partially understood as model transformation on a metalanguage. We, so far,
successfully conceived three language derivation techniques.
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Transformation languages in concrete syntax Instead of using a fully generic
transformation language that is applicable to a base language B, we automatically
derive a transformation language T(B) that merges elements of the concrete syntax
of B with generic - and thus reusable - elements for defining transformations on B
models. The result is a comprehensible and easy applicable transformation language
that modelers find familiar, because it systematically reuses the syntax of the base
language B. Automatic derivation of such transformation languages using concrete
syntax of the base language is described in [HRW15, Weil2, Ho118].

As the language derivation operator T is applicable to any language, we have
successfully applied it to, e.g., class diagrams, object diagrams, MontiArc, Automata.
The operator T not only derives the new languages T(B), but the tool infrastructure
behind T also generates the transformation engine necessary to execute transformations
defined in T(B) (which finally transform models of the base language B).

Tagging languages A tagging model is used in the context of a base model M and
adds additional information in form of tags to the elements defined in M. This, for
example, can be used to add technology-specific information or advice on how code
generation, model merging and other algorithmic transformations have to handle the
tagged elements. Tags can, for example, instruct a persistence generator, whose data
model classes are mapped into single transportable DAOs or add security restrictions
to data objects. For activity diagrams, tags can describe, where to find the appropriate
activity implementation, etc.

Tagging models share the idea of UML’s stereotypes, but are not part of the
base model. Instead the separate tagging model references the base model. This has
the advantages (1) that the base model can be reused without technology specific
pollution, (2) several different tag models are possible for the same base model in
different technological spaces (e.g., iPhone, Android or Windows clients), and (3) a
tag model can also be reused for different base models.

A tagging language is the language of the tagging models and thus is highly
dependent on the base language that it tags (i.e., it must be aware of the modeling
elements of the base language). [GLRR15] describes how to systematically derive
tagging languages from a base language and how code for processing tagging models
can be generated automatically.

This also rests on the concept of a tag definition language, which allows defining
the possible form and values that tags may have, as well as which kind of model
elements they can be applied to and therefore acts as type definition for tags.

Delta languages Another way of deriving new languages from existing languages
is described in [HHK ' 15a] and [HHK™13], where a base language B is used to derive
a delta language Delta(B). The delta language Delta(B) enables to explicitly describe
differences between a base model of B and the model variant (also of B). This
helps to define system variability in a bottom-up fashion. A delta model describes
which model elements are added, modified, or deleted on the base model. Thus
delta approach is popular for the management of Variability and Software Product
Lines (SPL) (see Section 2.10). Again the delta operator transforms a base language
B into a language Delta(B) allowing to describe delta models. Each delta model
can be applied individually and therefore n deltas amount to 2™ variants (modulo
application dependencies and orders). Delta language techniques are specifically suited
for architectural languages, such as MontiArc to add and modify components as well
as channels, but also have been applied to Simulink in an industrial context.
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2.6 Semantics of Modeling Languages

To deal with model analysis, synthesis, evolution, definition of views, and abstraction
based on models, we need a sound semantic foundation of the meaning of the models.
We also need a proper semantics when applying a given language to new domains, such
as monitoring energy consumption or modeling flight safety rules for the European air
traffic (see Section 3). We do this regularly with our language workbench MontiCore
[KRV10, HR17].

The Meaning of Semantics and its Principles

Over the years we have developed a clear understanding of what the semantics of a
model and a modeling language is. For example in [HR04] we discussed different forms
of semantics and what they can be used for. We, in particular, distinguish between
“meaning” that can be attached to any kind of modeling language and an often used
narrow interpretation, that uses “semantic” synonymously to behavior of a program.

Each modeling language, whether it be UML or a DSL deserves a semantics, even
if the language itself is for modeling structure, such as Class Diagrams or Architecture
Description Languages. Furthermore, modeling languages are not necessarily executable
and as their main purpose is abstraction from implementation details, they are usually
not fully determined, but exhibit forms of underspecification. We discuss a very general
framework for semantics definition in [HR04]. At the core, we use a denotational
semantics, which is basically a mapping M from source language L (syntax) into
a target language respectively a target domain S (semantic domain). In Figure 4
we see a combination of functions, where the first simplifies the syntax language by
mapping redundant concepts to their simplest form (less concepts used, but usually
more complex models).

Syntax L

Conceptually
reduced L'

Semantic mapping M

Mapping of complex, redundant
concepts to core concepts

Figure 4 — Composed semantic mapping: (1) Syntax reduction, (2) translation to the se-
mantic domain

While many attempts of defining semantics only give examples on how mapping
M looks like, we advocate an explicit and precise definition of M to be able to analyze
or compare the semantics of models. For example, refinement and evolution of models
rely on such explicit denotational semantics.

System Model as Semantic Domain

To define a semantic domain we use a mathematical theory, that allows us to explicitly
specify the desired properties of the target system, we are aiming at. We call the
developed theory System Model. Tts first version is explicitly defined in [RKB95] and
[BHP 98] (including work from [GKR96], [KRB96] and [RK96]).

The System Model for the full UML, however, became a rather large mathematical
theory, that captures object-oriented communication (method calls, dynamic lookup,
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inheritance, object identity) as well as distributed systems at various levels as states
and state machines. We therefore developed the full system model for the UML in
[BCGRO9b] and discuss the rationale for it in [BCGR09a]. See also [BCRO0T7a] and
[BCROTD] for more detailed versions and [CGRO8] for an application on class diagrams.
Figure 5 shows the hierarchy of the mathematical model.

System Model

t
oo || cowo | e

Classes, Objects,
Associations

Types, Values

Threads, Stacks

Figure 5 — Structure of the semantic domain: The system model

The system model and its variants are used for a variety of tool embeddings of
the semantic domain. We provide a structured approach for system model-based
modeling language semantics definitions in [GRR09]. [MRR10] explains the case for
semantic model differencing as opposed to syntactic comparison. In [MRR11a] (based
on [MRR11b]) we encoded a part of the semantics, big enough to handle differences
of activity diagrams based on their semantics, and in [MRR11e] we compare class and
object diagrams based on their semantics.

In [BRO7] we have defined a much simpler mathematical model for distributed
systems based on black-box behaviors of components, hierarchical decomposition, but
also the sound mathematical theory of streams for refinement and composition. While
this semantic model is useful for distributed real-time systems, such as Cloud, Internet
of Things or CPS, it does not exhibit concepts of objects and classes.

We also discussed a meta-modeling approach [EFLR99]. As nothing is as mighty
and comfortable as mathematical theories, one needs to carefully design the semantics
in particular if a concept of the language does not have a direct representation in the
semantics domain. Using a meta-model to describe the semantics is appealing, because
the syntactic domain L is meta-modeled anyway, but also demanding, because both
the semantic domain S and the mapping M need to be encoded using meta-modeling
instead of mathematical concepts. We learned, that meta-modeling is limited, e.g., in
its expressiveness as well as due to finiteness.

Semantics of UML and Object-Orientation

In the early days, when modeling technology was still in its infancy, it was of interest
to precisely understand objects, classes, inheritance, their interactions and also how
modeling technologies, like the upcoming UML, describe those. [BGHT97] discusses
potential modeling languages for the description of an exemplary object interaction,
today called Sequence Diagram, and a complete description of object interactions,
which obviously needs additional mechanisms, e.g., a sequential, parallel or iterative
composition of Sequence Diagrams. Furthermore, [BGH98]| discusses the relationships
between system, a view and a complete model in the context of the UML.
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Abstraction, Underspecification and Executability

A modeling language is only a good language, if it allows to abstract from implementa-
tion details. Abstraction however often means that its models are not fully determining
the original, but exhibit underspecification. Underspecification is regarded as freedom
of the developer or even of the implementation to choose the best solution with respect
to the given constraining specification. It is an intrinsic property of a good modeling
language to allow underspecification.

As a consequence a semantic mapping of an (underspecified) model into a single
running program cannot be correct or useful in order to capture the semantics adequate.
To tackle underspecification, we use a set-based mapping. This means a single model
is mapped to a set of possible implementations all of which fulfill the constraints given
by the model. This approach has several advantages:

1. Each element in the semantics can be an executable implementation, we just do
not know, which of them will be the final implementation.

2. Given two models, the semantics of composition is defined as intersection: these
are exactly the systems that implement both models. This approach is based on
“loose semantics”, where an implementation is allowed to do everything that has
not explicitly been forbidden by the specification.

3. A model is consistent exactly when it has a nonempty semantics.

4. Refinement of a model on the syntactic level maps to set inclusion on the
semantics.

Using sets of executable systems in the semantic mapping combines the denotational
approach with an operational approach that is perfectly suited for semantics for
modeling languages.

Semantic Variation Points

In the standardization of the UML the contributors had some challenges to agree on
the meaning of quite a few modeling concepts. To some extent this is due to political
reasons (tool vendors try to push their already implemented solution), but to a large
extent this is also due to the attempt of the UML to describe phenomena in various
real world and application domains as well as software/technical domains. As it is a
bad idea to capture different phenomena with the same syntactical concept, the UML
standard introduces the semantic variation point without describing precisely what it
means and how to describe it.

In [GR11], [CGR09] we have discussed the general requirements for a framework to
describe semantic and syntactic variations of a modeling language. We also introduced
a mechanism to describe variations (1) of the syntax, (2) of the semantic domain,
and (3) of the semantic mapping using feature trees for class diagrams and for object
diagrams in [MRRI11e] as well as activity diagrams in [GRR10]. Feature trees are a
perfect concept to capture variation points and denotational semantics based on a
system model allowing to explicitly describe the effect of the variant.

In [Rum17] (or its German version [Rum12]) we have embodied the semantics in
a variety of code and test case generation, refactoring and evolution techniques to
make UML semantics amenable to developers without exposing the formalism behind.
Additionally, [LRSS10] discusses evolution and related issues in greater detail.
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Streams and Automata as Semantic Foundation

It is also noteworthy that we have used the mathematical concept of streams (e.g.,
[BS01, RR11] also discussed in [RW18]) and various extensions including automata
[Rum96] as semantic basis for the kind of systems, we have in focus: distributed,
asynchronously communicating agents, which can be regarded as active objects. We il-
lustrate our state machine formalism and its stream-based composition in Section 2.13.

2.7 Evolution & Transformation of Models

Models are central artifacts in model-driven software development (MDD). However,
software changes over time and so do models. Many of the new requirements imposed
by stakeholders, technology adaptations, or bug and performance improvements
do not only affect the implementation, but also require an evolution, refinement
or refactoring of the models describing the system. When models play a central
role in the development process, it is therefore necessary to provide a well-founded,
methodologically sound and tool-based assistance for evolving models according to
changing needs. [CFJT16] discusses several of the following.

Evolution

Agile methods, such as XP or Scrum, rely to a large extent on the ability to evolve the
system due to changing requirements, architectural improvements and incremental
functional extensions. While agile methods use code as their central artifacts, a
model-driven method concentrates on modeling artifacts. In [Rum04] and [Rum12]
we describe an agile, model-based method that relies on iterated and fully automatic
generation of larger parts of the code as well as tests from models, which in turn
enables us to apply evolutionary techniques directly on the various kinds of models,
e.g., the UML. We argue that combining automatic and repeatable code generation
with tool-assistance for model transformation allows to combine agile and model-based
development concepts for a new and effective kind of development process.

An overview on current technologies for evolving models within a language and
across languages is given in [LRSS10]. We refined this with a focus on evolving
architecture descriptions for critical software-intensive systems [MMR10].

Refinement

Refinement is a specialized form of transformation of models that adds informational
details, while all conclusions a developer could derive from the abstract model still
hold. Such an addition may for example be the structural refinement of the state space
of state machine, but also the reduction of underspecification expressed as alternative
behaviors. Stepwise refinement is therefore an important development technique as it
prevents unwanted surprises when abstract models are implemented.

In [PR94] we developed a precise understanding of automaton refinement that
is especially useful for software development, as it uses a loose semantics approach,
where no implicit assumptions are made that need to be invalidated in the refinement
steps. In [KPR97] we applied this refinement concept to feature specifications.

Finally, we developed a powerful set of refinement rules for pipe-and-filter architec-
tures in [PR99]. Its rules allow us to refactor the internal structure of an architecture,
while retaining respectively refining the externally promised behavior. We speak
of “glass box” refinement as opposed to “black box” refinement, where only the ex-
ternal visible behavior is taken to consideration, and “hierarchical decomposition”,
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where a black box behavior is decomposed into an (forthwith immutable) decomposed
architecture.

As performing a refinement step is error-prone, we present a language independent
and fully automated method to repair failed model refinements [KR18]. This is possible
by identifying syntactic changes that does not lead to refined models.

Refactoring of models

Refactoring aims to improve the internal structure while preserving its observable
behavior and became prominent with agile development. In [PR01] we traced back
refactoring of programs to related techniques, e.g., known from math or theorem provers.
In [PRO3] we have discussed the existing refactoring techniques for specifications and
models. We, e.g., found a number of well-defined refactoring techniques for state
machines, logic formula, or data models that come from formal methods, but have not
yet found their application in software development. In [Rum12] we therefore discuss
refactoring techniques for various UML diagrams in detail. Additionally, libraries of
reusable refactorings for class diagrams and MontiArc models were developed [H6118].

If a model refactoring is actually a refinement, then dependent artifacts are not
affected at all. However, it may be that a refactoring does have effect on related
artifacts. In [MRR11a] we discuss a technique to identify semantic differences for
UML'’s activity diagrams. It can be used to understand the effects of a refactoring
resp. evolutionary change.

It is important to understand semantic differences between refactoring steps on
data structures by exhibiting concrete data sets (object structures) as a witness of
semantic differences. Thus, we provide a mapping of UML class diagrams to Alloy
[MRR11c].

Understanding model differences

While syntactic differences of models are relatively easy to understand, it is an
interesting question what the semantic differences between two given models are,
where one evolved from the other, and what their clear semantics is. In [MRR10] we
discussed the necessity for this and since then have defined a number of semantic-based
approaches for this (see Section 2.6). We also applied compatibility checking of evolved
models on Simulink, e.g., in [RSWT15], where we identified in which system context
a component can be replaced safely by another version and still achieve the same
functionality.

Delta transformations to describe software variability

Software product line engineering is most effective if planned already on the modeling
level. For this purpose, we developed the delta approach for modeling. Each delta
describes a coherent set of changes on a model. A set of deltas applicable to a base
model thus describes a model variant (see also Variability in Section 2.10).

We successfully applied delta modeling for software architectures [HRRS11] and
extended this into a hierarchical approach in [HRR™11]. Second, we discussed in
[HRRS12], how to evolve a complete product line architecture, by merging deltas or
extracting sub-deltas, etc., which allows us to keep a product line up to date and
free of undesired waste. Third, based on the experience we gained from applying the
delta approach to one particular language, we developed an approach to systematically
derive delta languages from any modeling language in [HHK*13] and [HRW15].
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Model transformation language development

As we do deal with transformations on models in various forms, we are very much
interested in defining these transformations in an effective and easily understandable
form. Today’s approaches are focussing on the abstract syntax of a modeling language,
which a typical developer should not be aware of at all. We heavily demand better
transformation languages. Thus, in [Weil2, HRW15, H6118] we present a technique that
derives a transformation language from a given base language. Such a transformation
language reuses larger parts of the concrete syntax of the base language and enriches
it by patterns and control structures for transformations. We have successfully applied
this engine on several UML sub-languages and DSLs [HRW15, HHRW15, AHRW17a,
AHRW17b, Hol18].

2.8 Modeling Software Architecture

Distributed interactive systems have become more and more important in the last
decades. It is becoming the standard case that a system is either logically or physically
distributed. Typically such systems consist of subsystems and components like

e sensors, control units, and actuators in cyber-physical machines,
e high performance computing nodes and micro-services, and

e big data storage nodes.
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Figure 6 — Excerpt of a component and connector model of a car locking device

The logical or physical architecture of a hierarchically decomposed system can
be modeled like the excerpt of a car locking device in Figure 6. The main paradigm
for communication in distributed systems is asynchronous message passing between
actors.

Messages can be
e values measured by sensors and discrete event signals,

e event signals, e.g., messages on a bus, streams of telephone or video data, method
invocation, or
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e complex data structures passed between software services.

Some challenges in the design and implementation of these systems are the de-
velopment of an appropriate architectural decomposition of the system and fitting
component interfaces suitable for property analysis, effective realization, and reuse of
components under variability considerations. We have made a number of contributions
to this field from more theoretical considerations up to a concrete tooling infrastructure
called MontiArc.

In the following, we give an overview over the works of our group on the foundations
of modeling software architecture, concepts of software architecture variability, and
their evolution.

Foundations, MontiArc, and Code Generation

Our approach is formally sound and defined using streams [BS01], state machines
[Rum96], components [BS01, Rum96, Rinl4, Hab16], as well as expressive forms of
composition and refinement.

A theoretical foundation of a model-based development in terms of an integrated,
homogeneous, but modular construction kit for architectural models is described
in [BRO7]. Mathematical foundations are given for modeling of interfaces, building
architectures through composition and decomposition, layering architectures as well as
hierarchical decomposition, and implementation of components using state machines.
Especially the refinement [PR99] of hierarchy, interfaces, and behavior is discussed
as well as abstraction mechanisms for the integration of abstract viewpoints. The
presented theory consists of a set of theorems and provides a basis for architectural
modeling without sticking to a concrete syntax of a modeling language.

The architecture description language MontiArc (cf. Section 4.2) has been devel-
oped for modeling distributed interactive systems based on this theory. It comprises
active components, their interfaces (ports), the communication infrastructure between
the components, and a hierarchic decomposition. It is realized as a textual Monti-
Core language that features and editor, analyses, simulation, and code generation
implemented in Java.

Software Architecture Variability

The inherent variability software systems have to be considered and modeled by appro-
priate means during all phases of the development but especially in the architectural
design. In the following we present a brief overview of variability in the MontiArc
language family. For a more detailed discussion on variability see Section 2.10 where
much variability research was applied to and experimentally verified using MontiArc.

We explored a variability mechanism based on MontiArc that allows specifying
component variants fully integrated at any level of the component hierarchy [HRR*11].
Here variation points may have hierarchical dependencies. Associated variants define
how this variability can be realized in component configurations. As a general drawback
of this approach, systems are restricted to the set of predefined variations and cannot
be extended. This approach is not additive.

We thus explored delta-modeling as an additive approach to variability design. This
allows for incremental introduction and development of software product lines, before
a full variability model is established (reengineered). The main idea is to represent
any system by a core system and a set of deltas that specifies modifications [HRRS11].
A delta-language is defined describing how to add, remove, or modify architectural
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elements. The concrete realization of A-MontiArc using the DSL development frame-
work MontiCore (see Section 4.1) is described in [HKR™11]. The developed language
allows the modular modeling of variable software architectures and supports proactive,
reactive as well as extractive product line development. As a next step, we explored
in [HRRS12] how to evolve a complete delta-based product line, e.g., by merging or
splitting deltas.

Runtime variability was discussed in a separate line of work: we have analyzed
dynamic reconfiguration of software architectures [HKR™16] as a means for achieving.

Specification and Evolution

A methodological approach to close the gap between the requirements architecture and
the logical architecture of a distributed system realized in a function net is described
in [GHK*07, GHK"08a]. It supports the tracing of requirements to the logical
software architecture by modeling the logical realization of a feature that is given in a
requirement in a dedicated feature view. This allows us to break down complexity
into manageable tasks and to reuse features and their modular realization in the next
product generation. [GKPRO8] extends this modeling approach to model variants of
an architecture.

We have defined a precise verification technique that allows developers to decompose
logical architectures into smaller pieces of functionality, e.g., individual features
in [MRR13] and [Rin14], and to verify their consistency against a complete architecture
in [MRR14]. Our hypothesis is that with this technique, developers will be able to
decompose requirements into features and compose their implementation late in
the development process. We have documented an evaluation our specification and
verification techniques in an experience report [MRRW16]. These concepts are now
successfully integrated into automotive development processes [DGH'19].

An overview and a detailed discussion on the challenges of co-evolution of ar-
chitectural system descriptions and the system implementation is given in[MMR10].
Architectural descriptions of a system deal with multiple views of a system including
both its functional and nonfunctional aspects. Especially, critical aspects of a system
should be reflected in its architecture. The description must also be accurately and
traceably linked to the software’s implementation so that any change of the architec-
ture is reflected directly in the implementation, and vice versa. We provide powerful
analyses of software architecture behavior evolution in [BKRW19]. Otherwise, the
architecture description will rapidly become obsolete as the software evolves to accom-
modate changes. One way for understanding evolution based on semantic differences
is presented in [BKRW17b].

2.9 Compositionality & Modularity of Models

Divide and conquer as well as abstraction are the most fundamental strategies to
manage complezxity. Complex (software) systems become manageable when divided
into modules (horizontally, vertically and/or hierarchically). Modules encapsulate
internal details and give us an abstract interface for their usage. Composing these
modules as “black boxes” allows us to construct complex systems.

MBSE uses models to reduce complezity of the system under development. Nev-
ertheless, it has reached a point, where the models themselves are becoming rather
complex. This clearly rises the need for suitable mechanisms for modularity within
and between models. A modular approach for MBSE cannot only help us mastering
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complexity, but is also a key enabler for model-based engineering of heterogeneous
software systems as discussed in [HKRT09]. In [BRO7] we have described such a
set of compositional modeling concepts, perfectly suited for modular development of
interacting systems.

A compositional approach has to take into account several levels of the entire
MBSE process, starting with the respective modeling language in use, the models
themselves and, eventually, any generated software components. We have examined
various aspects of model composition in [HKRT07], describing a mathematical view
on what model composition should be. It defines the mechanisms of encapsulation,
and referencing through externally visible interfaces.

In [KRV10] and [KRV08], we examine modularity and composition for the definition
of DSLs. As DSLs are becoming more and more popular, the efficient reuse of DSL
fragments (i.e., language components) is vital to achieve an efficient development
process. But aside from the language definition, the accompanying infrastructure
needs to be modular as well (as described in [KRVO7b]). Infrastructure such as
validation or editor functionality should be reusable if parts of the underlying DSL are
reused, e.g., as part of another language. [V6l11] provides the underlying technology
for compositional language development, which we, e.g., applied to Robotics control
[RRRW15] and nowadays investigate under the umbrella term of Software Language
Engineering (see Section 2.5). Based on the experiences in language design, we also
have developed a set of guidelines to estimate the quality of a DSL in [KKP*09]. We
have summarized our approach to composition and the challenges that need to be
solved in [CBCR15], which describes a conceptual model of the compositional, so
called “globalized” use of domain specific languages, which we published together with
related topics in [CCF115].

As a new form of decomposition of model information we have developed the
concept of tagging languages in [GLRR15]. It allows to describe additional, e.g.,
technical information for model elements in extra documents and thus facilitates reuse
of the original model in different contexts with individual tag sets, but also of tags on
different models. It furthermore allows to type the tags.

2.10 Variability & Software Product Lines (SPL)

Many products exist in various variants, e.g., cars or mobile phones, where one
manufacturer develops several products with many similarities but also many variations.
In most cases, product variants are created through software variability. On a software
level, variants are managed in a SPL that captures product commonalities as well as
differences. SPLs have many benefits: they decrease development time of new product
variants, decrease time to market, lead to better software quality, improve reuse, and
reduce bug fix time [GHK"08a, GRJA12, HKM*13, HHK " 15a, BEK"19].

Feature diagrams are a popular mechanism to describe variability in a top down
fashion, e.g., in the automotive domain [GHK'08a] using 150% models. Reducing
overhead and associated costs is discussed in [GRJA12]. Feature diagrams suffer
from the need to first decompose the problem space and understand possible features
in order to build the feature diagram before being able to apply it. In [GHK'08a]
and [GKPRO8] we also speak of a 150% model. This normally enforces a product line
definition phase in which the requirements and features need to be collected which
creates additional costs. Among others we discuss decreasing these costs in [GRJA12].

Delta modeling is a bottom up technique starting with a small, but complete
base variant. Features are additive, but also can modify the base variant. A set of
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commonly applicable deltas configures a system variant. We discuss the application of
this technique to Delta-MontiArc [HRR'11] and to Delta-Simulink [HKM™13]. Deltas
can not only describe spacial variability but also temporal variability which allows
for using them for software product line evolution [HRRS12]. In [HHK " 15a] we have
generalized this approach to investigate, how to synthesize a delta modeling language
based on a given modeling language. Thus deltas can generally be applied to almost
any language.

On a related line of research, we also have studied variability of modeling lan-
guages. For this purpose we defined a systematic way to define variants of modeling
languages [CGR09]. We applied this research, e.g., in the form of semantic language
refinement on state charts in [GR11]. In [FPR02] we discussed how to apply annotation
to the UML to describe product variation points. Current work continues this line
of research to support the definition and development of 150% language families for
textual and generative modeling languages [BEK 18, BEK™19).

2.11 Cyber-Physical Systems (CPS)

CPS are software controlled, collaborating physical machines [Lee08, KRS12]. This
new term arises mainly due to the increased ability of computers to sense their
environment and to interact with their contexts in various ways. As consequence,
CPS are usually designed as distributed networks of interacting nodes and physical
devices (machines) that carry out certain tasks. Often some of these devices are
mobile (robots or autonomous cars, but also smart phones, airplanes and drones) and
interaction with humans is essential. CPS are therefore complex in several dimensions:
they embody characteristics of physical, networked, computational-intensive, and
of human-interactive systems. Furthermore, they typically cannot be developed as
monolithic systems, but need to be developed as open, composable, evolving, and
scalable architectures (see also Section 2.8).

Nowadays, CPS are found in many domains, including aerospace, automotive,
energy, healthcare, manufacturing, and robotics. Many distributed CPS use a virtual
communication network mapped to the internet or telecommunication infrastructure.

The complexity and heterogeneity of CPS introduces a wide conceptual gap between
problem and solution domains. Model-driven engineering of such systems can decrease
this gap by using models as abstractions and thus facilitate a more efficient development
of robust CPS [RW18].

CPS Application Domains

For the aviation domain, we have developed a modeling language [ZPK*11] that allows
to specify flight conditions including trajectories, status of the airplanes and their
devices, weather conditions, and pilot capabilities. This modeling language allows
EuroControl to operationalize correct flight behavior as well as specify and detect
interesting events.

As long term interest, we intensively do research on how to improve the engineering
for distributed automotive systems as well. For example [HRR12, KRRvW17], outline
our proposal for an architecture centric development approach.

Automotive is a highly innovative CPS subdomain. We discuss in [GRJA12] what
an OEMs needs to understand about costs arising from requirements complexities
and from cross-platform dependencies in their automotive development projects.
Transforming a set of individual projects with similar requirements and technology
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into a product line for a central part of an automotive system is discussed in [HRRW12].
Another important aspect are current and future processes and tools for development
of autonomous driving cars. We discuss this in [BR12a] based on our experiences in
building such a car and using sophisticated simulation techniques for the context of
autonomous robots (cars). Moreover, fully automatic simulation of the cyber-physical
contexts of cars and fully automatic checking of the robots behavior leads to an
highly efficient development process with high quality results [BBR07]. Optimized
code-generators [KRSvW18] and domain specific code generation [AHRW17b] are key
for CPS. Moreover, we have extended our work from individual CPS to product lines
of CPS [RSWT15, KRR*16, RRST16].

Robotics is another highly innovative CPS subdomain. It is characterized by an
inherent heterogeneity of involved domains, platforms, and increasing set of challenges.
Engineering of robotics applications requires composition and interaction of complex,
distributed systems as well. We developed a component and connector architecture
description language suitable for the specific challenges in robotics [RRW13, Worl6]
as well as in [RRW14]. This language serves from requirements modeling [RRW12] to
the complete development of CPS software [RRSW17].

Smart and energy efficient buildings embody large amounts of IT technology. There
is a multitude of networked systems and sensors to continuously control the building’s
behavior. We have built the Energy Navigator [KPR12, FPPR12] to be able to model
the specifications of such buildings in order to control the measured actual data
against the desired specification, e.g to save energy. In [KLPR12] we discuss how such
a specification approach improves development quality in the energy subdomain of

CPS.

2.12  Model-Driven Systems Engineering (MDSysE)

Systems engineering is the interdisciplinary engineering and management that focuses
on the design and management of complex CPS over their life cycles. Systems
engineering can and should be applied to a great variety of fields from automotive, to
avionics and robotics.

We have a long tradition on contributing to systems engineering in automo-
tive [FNDR98, GHK*08b|, which recently culminated in developing a new compre-
hensive model-driven development process for automotive software function testing
with the BMW Group [KMS*18, DGH*19]. In this, we leverage SysML to enable the
vertical flow down from requirements to implementations that was well-received by
the software developers.

Moreover, we recently started intensifying our research efforts towards a model-
driven systems engineering that leverages methods and concepts from software engi-
neering to make the systematic engineering of CPS more efficient. To this end, we
conducted a systematic mapping study on modeling for Industry 4.0 that uncovered a
gap between the communities, concepts, and modeling techniques of automation engi-
neering and software engineering [WCB17]. To facilitate modeling products, resources,
and processes in the context of Industry 4.0 we also conceived a multi-level framework
for machining based on these concepts [BKL*18].

2.13 State-Based Modeling with Automata

Today, we see that many informatics theories are based on state machines in various
forms including Petri Nets or temporal logics. Software engineering is particularly
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interested in using state machines for modeling systems. Nonetheless, we believe that

a sound and precise integration of the digital theory (automata) of informatics with

control theory (calculus) used by almost all other engineering and science disciplines

is one of the most interesting challenges that we experience at the moment. Cyber-

physical systems (CPS) (see Section 2.11) urgently require such an integrated theory.
Our contributions to state-based modeling can be split into three parts:

1. Understanding how to model object-oriented and distributed software using state
machines resp. Statecharts;

2. Understanding refinement and composition on state machines; and

3. Applying state machines for modeling of systems.

State Machines as Semantics for Object-Oriented Distributed Software

A practically usable language for state-based modeling must be different from the pure
theory because a concrete modeling notation, for example, allows us to denote finitely
many (typically very few) states only, while the theory normally has an infinite state
space.

In early publications, such as [GKR96], we have discussed how a system model
can describe object-oriented systems. Built on this experience, a complete semantic
model has been created for object-oriented systems in [BCRO7b]. Objects, inheritance,
states, method calls, stack, distribution, time as well as synchronous and asynchronous
communication are completely defined and encoded into state machines. The theory
is, therefore, suitable as semantic model for any kind of discrete systems. Hence,
[BCGRO9Db] describes a condensed version of this system model and [BCGR09a]
discusses design decisions, how to use the system model for denotational semantics —
and taming the complexity of the system model.

Refinement and Refactoring of Statemachines

Starting with [PR94], we investigated how to use state machines to describe the
abstract behavior of superclasses and refine it in subclasses. While the description
in [PR94] was rather informal, we have formalized the refinement relation in [RK96]
by mapping a state machine to a set of possible component behaviors based on the
streams of the Focus (see Section 2.8) theory. In [Rum96], constructive transformation
rules for refining automata behavior are provided and proven correct. This theory is
applied to features in [KPR97], where a feature is a sub-automaton that adapts the
original behavior in a refining form, precisely clarifying where feature interaction is
allowed or harmful.

It became apparent that a state machine either serves as an implementation,
where the described behavior is partial and can only be extended but not adapted,
or that a state machine describes a specification, where the behavior is constrained
to a possible, underspecified set of reactions, promised to the external users of a
state machine. Here, refinement always means reduction of underspecification, telling
more behavioral details to the external user. This is constructively achieved, e.g., by
removing transitions that have alternatives or adding new behavior (transitions), if
previously no transition was given at all.

Specification languages are particularly strong if only explicitly given statements
and no implicit additional assumptions hold (such as: implicit ignoring of messages,
if they cannot be processed by a transition) as detailed in [Rum96, Rum16]. The
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concept of chaos completion should be used to define semantics of incomplete state
machines. This is much better suited for behavioral refinements than the concept of
ignoring messages or error handling in cases where no explicit transition is given. The
main disadvantage of “implicit ignoring” is that you never know whether the specifier
intended this as desired behavior or just did not care — which is a big difference when
aiming to refine the specifier’s model.

Our State Machine Formalism: I/O“ Automata
[Rum96] describes an I/O%-automaton as (S, My, Moy, 0, I) consisting of:

e states .S,
e input messages M;,,
e output messages My,

e transition relation d C .S x M;, x S x M&,,,

e initial states I,
where M, = M}, UMy, is the set of all finite and infinite words over M.

The transition relation § is non-deterministic and incomplete. Each transition
has one single input message from M, but an arbitrary long sequence of output
messages from M,,;. Nondeterminism is handled as underspecification allowing the
implementation (or the developer) to choose. Incompleteness is also understood
as underspecification allowing arbitrary (chaotic) behavior, assuming that a later
implementation or code generator will choose a meaningful implementation, but a
specifier does not have to decide upfront. Fairness of choice for transitions is not
assumed (but possible), as it is counterproductive to refinement by deciding on one
alternative during the implementation process.

Most interestingly, describing transitions in § with input and corresponding output
leads to a much more abstract form of state machines, which can actually be used
in the modeling process. First there are no (explicit) intermediate states necessary
that would distribute a sequence of output messages in individual transitions (which
is the case in classic I/O-automata [L.S89], where a transition has exactly one input
or output message). Second our I/O% automata preserve the causal relation between
input and output on the transitions (whereas I/O automata distribute this over many
transitions). We believe I/O% automata are therefore suited as a human modeling
language and are thus used in a syntactically enriched, comfortable form as Statecharts
in [Rum16] and [Rum17].

Composition of State Machines

One state machine describes one component. In a distributed system, many state
machines are necessary to describe collaborating components. The overall behavior
of the component collaboration must then be derivable from the knowledge about
the form of composition (architecture describing communication channels) and the
specified behavior (state machines) of the components. [GR95] describes how timed
state machines are composed.

This technique is embedded in the composition and behavioral specifications
concepts of Focus using streams and state machines in a compact overview article
[BRO7]. Most important, refinement of a component behavior by definition leads to
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a refinement of the composed system. This is a very important property, which is
unfortunately not present in many other approaches, where system integration is a
nightmare when components evolve.

Unfortunately, the untimed, event driven version of state machines that is very
well suited for refinement and abstract specification has no composition in general.
Further investigation is necessary.

Usage of Automata-based Specification

All our knowledge about state machines is being embedded in the model-based
development method for the UML in [Rum16] and [Rum17]. Furthermore, we applied
it to robotics (cf. Section 3.1) with the MontiArcAutomaton infrastructure (see
Section 4.2), a modeling language combining state machines and an architectural
description language in [THR13] as well as in building management systems in
[FLP*11].

2.14 Model-Based Assistance and Information Services (MBAIS)

The aim of information services and systems is to turn data into useful information.
Assistive systems are a special type of information system: they (1) provide situational
support for human behaviour (2) based on information from previously stored and
real-time monitored structural context and behaviour data (3) at the time the person
needs or asks for it.

Figure 7 shows the main components of such an assistive system according to
the architectural patterns for model centered architecture solutions [MMR'17] .
Information about human behavior is collected via sensors or smart devices and
processed in an observation engine, which stores the data and models. The behavior
engine compares and connects the current behavior step with already existing models
of behavior. The support engine decides which next step should be provided as
behavior support for the assisted person. This support can be provided as step-by-step
information multi-modal on different kinds of devices.

f Assisted ‘ ((‘ En
Person(s) éE Step-by-step Support & Feedback &8
= rJ
& @ Support Devices
“ - \ T
D \ @ [ observation Behavior Support

v — —
j /8 Sensg:s/ Engine Engine Engine
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) % | Model and Data Storage Manager |

- -

— —
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Model Storage Data Storage

Figure 7 — Main concepts of systems for human assistance

For both, information and assistive services and systems, the application of agile,
model-based and generative methods (see Section 2.1 and Section 2.2) fastens the
development process, enables a quick response to requirements changes in a user-
centered engineering process, and ensures consistency-by-design.
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Our current work on assistive systems is based on former work within the Human
Behavior Monitoring and Support (HBMS) project [MGSM13, MSS*18] in which a
domain specific language [MM13] and domain specific modeling method for assistive
systems [MM15] were developed.

Current work extends these approaches: to enable useful support, it is important
to know more than just the behavior of a person. Context-aware systems need detailed
information about the task context (including temporal information), the personal
and social context, the environmental context, as well as the spatial context. We
have investigated the modeling of these contexts primary for the active assisted living
and smart home domain [MS17]. Recent research discusses the context model for
user-centered privacy-driven systems in the IoT domain including special aspects for
the use in combination with process mining systems [MKM*19].

The mark-up of online manuals for non-smart devices [SM18] as well as web-
sites [SM19] is one further step to provide human-centered assistance. Using these
approaches reduces system set-up time and improves flexibility for changes by auto-
matically integrating device and application functionality into supporting systems.

Due to the General Data Protection Regulation (GDPR) organizations are obliged
to consider privacy throughout the complete development process. Our work suggests
solutions for privacy-aware environments for cloud services [ELRT17] as well as
privacy preserving information systems demonstrated on an IoT manufacturing use
case [MKM™19].

3 Applying Model-based Engineering in a Particular Domain

The results discussed above are transferred into practical applications in various areas
including Robotics, Automotive, Energy Management, Cloud Computing, Enterprise
Information Systems and the Internet of Things.

3.1 Modeling Robotics Architectures and Tasks

Robotics can be considered a special field of CPS that is defined by an inherent
heterogeneity of involved domains, relevant platforms, and challenges. Engineering
robotics applications requires composition and interaction of diverse distributed soft-
ware modules. This usually leads to complex monolithic software solutions hardly
reusable, maintainable, and comprehensible, which hampers broad propagation of
robotics applications.

Our research in model-driven software engineering for robotics on one hand focuses
on software architectures (cf. Section 2.8) to structure reusable units of behavior. On
the other hand, we concentrate on DSLs (cf. Section 2.4) for robotic product assembly
tasks in industrial contexts as well as planned and unplanned logistic tasks. We apply
this to indoor robots interacting with humans as well as to industrial robots and to
autonomous cars.

Modeling Robotic Application Architectures and Behavior

Describing both, a robot’s software architecture and its behavior in integrated models,
yields many advantages to cope with complexity: the models are platform independent,
can be decomposed to be developed independently by experts of the respective fields,
are highly reusable and may be subjected to formal analysis.
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In [RRW12] we have introduced the architecture and behavior modeling language
and framework MontiArcAutomaton which provides an integrated, platform inde-
pendent structure and behavior modeling language family with an extensible code
generation framework. MontiArcAutomaton’s central concept is encapsulation and
decomposition known from component & connector architecture description languages
(ADLs). This concept applied to the modeling language, the code generation pro-
cess and the target runtime to bridge the gap of platform specific and independent
implementations along well designed interfaces. This facilitates the reuse of robot
applications and makes their development more efficient.

MontiArcAutomaton extends the ADL MontiArc (see Section 4.2) and integrates
various component behavior modeling languages implemented using MontiCore as well
as code generation for the ROS robot operating system [QGC'09]. The integration of
automata and tables to model component behavior are described in [RRW13|. The
integration capabilities of MontiArc have been extended and generalized in [RRRW15,
AHRW17b)]. For interested readers, the MontiArcAutomaton website? provides further
information on the MontiArcAutomaton framework.

Capability-Based Robotics Architectures

Although the costs for robotics hardware and software decrease, deploying a successful
robotics application still requires tremendous effort. While various challenging issues
for service robotics have been solved to a degree where their deployment is possible,
integration of the corresponding hardware components and software components
requires intensive collaboration of domain experts, robotics experts, and software
experts. Model-driven software engineering can facilitate development and integration
of robotics software components while retaining a proper separation between domain
expert concerns and software expert concerns.

To foster the separation of concerns in engineering service robotics applications,
we conceived the iserveU modeling framework to describe domains, actors, goals, and
tasks of service robotics applications [ABH'16]. From these declarative modeling lan-
guages [ABH'17], we generate parts of a MontiArcAutomaton architecture including
component structure and behavior. In this architecture, goals and tasks are translated
into models of the planning domain description language (PDDL) [MGH"98] and
solved online using the Metric-FF [HNO1] planner [ABK"17]. Through our work,
domain experts can focus on describing the domain and its properties and robotics
experts can focus on implementing actors with their properties and actions.

Modeling Assembly Robotics Tasks

The importance of flexible automated manufacturing grows continuously as products
become increasingly individualized. Flexible assembly processes with compliant robot
arms are still hard to be developed due to many uncertainties caused — among others —
by object tolerances, position uncertainties and tolerances from external and internal
sensors. Thus, only domain experts are able to program such compliant robot arms.
The reusability of these programs depends on each individual expert and tools allowing
to reuse and the compose models at different levels of detail are missing.

In cooperation with the DLR Institute on Robotics and Mechatronics we have intro-
duced the LightRocks (Light Weight Robot Coding for Skills) framework in [THR ™13,
BRS™15] which allows robotics experts and laymen to model robotic assembly tasks
on different levels of abstraction, namely: assembly tasks, skills, and elemental actions.

2http://monticore.de/robotics/montiarcautomaton/
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Robotics experts provide a domain model of the assembly environment and elemental
actions which reference this model. Factory floor workers combine these to skills and
task to implement assembly processes provided by experts. This allows a separation
of concerns, increases reuse and enables flexible production.

3.2 Model-based Autonomic Driving & Intelligent Driver Assistance

Development of software for automotive systems has become increasingly complex in the
past years. Sophisticated driver assistance, infotainment and Car2X-communication
systems as well as advanced active and passive safety-systems result in complex
embedded systems. As these feature-driven subsystems may be arbitrarily combined
by the customer, a huge amount of distinct variants needs to be managed, developed
and tested. While we are carrying out in numerous projects in the Automotive domain,
here we concentrate on three aspects: Autonomic driving, modeling of functional and
logical architectures and on variability. To understand all these features in [GRJA12]
we describe a requirements management that connects with features in all phases of the
development process helps to handle complex development tasks and thus stabilizes
the development of automotive systems.

Modeling logical architecture: function nets

The conceptual gap between requirements and the logical architecture of a car is closed
in [GHK'07] and [GHK " 08a]. Here, feature views modeled as a function net are used
to implement the mapping between feature-related requirements and the complete
logical architecture of a car.

In a more elaborate version, we have helped a larger car manufacturer to design their
company specific method, SMaRDT, that injects model-based software development
for the logical architecture of a car and connects it with the requirements and the
technical implementation. Furthermore, we have added automatic testing techniques
to ensure model quality from the beginning in [DGH*19] and [KMS™18].

Variability of car software

Automotive functions that may be derived from a feature view are often developed in
Matlab/Simulink. As variability needs also to be handled in development artifacts,
we extended Matlab/Simulink with Delta-Modeling techniques (see also Section 2.10).
A core Simulink model represents the base variant that is transformed to another
variant by applying deltas to it. A delta contains modifications that add, remove or
modify existing model elements. This way, features of an automotive system may be
developed modularly without mixing up variability and functionality in development
artifacts [HKM'13]. New delta models that derive new variants may be added
bottom-up without the need for a fully elaborated feature model.

In practice, product lines often origin from a single variant that is copied and
altered to derive a new variant. In [HRRW12], we provide means to extract a well
defined Software Product Line from a set of copy and paste variants. This way, further
variant development is alleviated, as new variants directly reuse common elements of
the product line.

Ways to identify potential variants of components for potential product lines are
to use similarity analysis on interfaces [KRRT16], or to execute tests to identify
similar behavior [RRST16]. And a third approach is described in [RSW15] that uses
logical and model checking techniques to identify commonalities and differences of
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Figure 8 — Screenshot of the Delta-Simulink tool

two Simulink models describing the same control device in different variants. All
these techniques allow us to understand incompatibilities or identify the portion of
compatibility of two components respectively their models.

Autonomous driving

Quality assurance, especially of safety-related functions, is a highly important task. In
the Carolo project [BR12a, BR12b]), we have developed a rigorous test infrastructure
for intelligent, sensor-based functions through fully-automatic simulation (not only
visualization) of the car within its surrounding: the city, pedestrians and especially
other cars [BBR07]. Beside the simulation of a complete autonomic car with its sensors
and actors, the simulation environment may also be used to test dedicated subsystems
without any real hardware involved. By producing sensor input from the simulation
and comparison of expected and actual behavior, subsystems may be automatically
validated and thus developed in an agile way.

Figure 9 — How an autonomous car sees the world (taken from the Carolo project)

Journal of Object Technology, vol. 18, no. 1, 2019


http://dx.doi.org/10.5381/jot.2019.18.1.r1

30 - Katrin Hélldobler et al.

Driver Intelligence

From the viewpoint of software engineering, intelligent driver assistance and, in
particular, autonomic driving is an interesting and demanding challenge because it
includes the development of complex software embedded within a distributed, life-
critical system (car) and the connection of heterogeneous, autonomic mobile devices
(other cars, infrastructure, etc.) in one big distributed system.

We are involved in a number of projects with major European car manufacturers
in which we transfer modern software development techniques to the car domain. This
transfer is necessary as, with its increasing complexity, software becomes a demanding
driver of the overall systems development process and not just an add-on.

In the Carolo project, we built Caroline [BBBT08] - a completely autonomous
car - and participated in the Darpa Urban Challenge, where our car was driving
autonomously in an urban area for hours. We successfully achieved the best place as
newcomers (and best non-Americans). This resulted from a number of facts, including
the rigorous application of agile development methods, such as XP and Scrum and a
simulation for driving scenarios. In [BR12b] we describe the process driven by story
cards as a form of use cases, a continuously integrated and running software up to a
rigorous test, and simulation infrastructure, called Hesperia.

Figure 10 — Caroline arriving in the finish area after a successful race

In particular, we have developed a rigorous test infrastructure for intelligent, sensor-
based functions through fully-automatic simulation (not only visualization!) of the
car within its surrounding: the city, pedestrians and especially other cars [BBRO7].
Our simulator is capable of running automatic back-to-back tests on the complete
software system with no real hardware involved by producing sensoric input from
the simulation and acting according to the steering output of the autonomic driving
software. Every night and, when necessary for every version change, the tests are
automatically executed.

This technique allows us a dramatic speedup in development and evolution of
autonomous car functionality, and thus, enables us to develop software in an agile
way [BR12a]. We have successfully shown that agile development of high-quality
software is possible and very effective in the automotive domain. However, it remains
a challenge to combine this innovative, modern way of agile, iterative systems develop-
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ment with the current development standards, such as ISO 26262, in order to allow
the OEMs to benefit both from efficiency and quality on one hand and legal issues
on the other hand. As tooling infrastructure, we mainly used an IDE such as Eclipse
and in particular the SSElab storage, versioning and management services [HKR12].
Without those, agile development would not have been possible.

In further projects, we have evaluated and designed OEM specific architectures
and processes, on individual assistance functions and on the complete architecture.
[BBH™13] contains metrics, e.g., to understand the cross-linkage complexity for
software and functions. In [MMR10] we give an overview of the state-of-the-art in
development and evolution on a more general level by considering any kind of critical
system that relies on architectural descriptions.

In recent years, we also investigate in the next steps of autonomy, namely coopera-
tively interacting autonomous vehicles, allowing e.g., convoys with almost no distance to
drive very energy efficient [FIK'18], as well as virtualization of development of safety
algorithms, e.g., for the EuroNCAP and US NCAP scenarios discussed [BBH'15].

3.3 Models in Energy Management

In the past years, it became more and more evident that saving energy and reducing
CO2 emissions is an important challenge. Today housing, offices, shops and other
buildings are responsible for 40 % of the overall energy consumption and 36% of the
EU CO2 emissions. The EU 2020 Climate & Energy package sets three key objectives:
(1) 20% reduction in EU greenhouse gas emissions, (2) Raising the share of EU energy
consumption produced from renewable resources to 20% and (3) 20% improvement in
the EU’s energy efficiency compared to 1990.

Thus, the management of energy in buildings as well as in neighborhoods becomes
equally important to efficiently use energy. Improvements in this field can be found
at multiple scales: Smart Grids, Demand-Response Systems, Energy Efficient Neigh-
borhoods, Energy Efficient Buildings, User awareness, Micro- and Mini Renewable
Energy Sources, to name a few. While there has been a lot of research on increasing
the efficiency of single devices and also of single buildings, there is a huge need for
ICT based approaches within this field to integrate and combine the heterogeneous
approaches. By such an integrated solution the efficiency can be raised even more.

Within several research projects we developed methodologies and solutions for
integrating heterogeneous systems at different scales. Starting with single buildings we
developed in collaboration with the Synavision GmbH and the Technical University
Braunschweig the ICT tool Energy Navigator (see Figure 11).
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Figure 11 — Screenshot of the Energy Navigator software

Journal of Object Technology, vol. 18, no. 1, 2019


http://dx.doi.org/10.5381/jot.2019.18.1.r1

32 . Katrin Hélldobler et al.

During the design phase, the Energy Navigator’s Active Functional Specification
(AFS) [FPPR12, KPR12] is used for technical specification of building services already.
Resulting from a lack of process integration the AFS can close the loop between
modeling the structure and behavior of the building and its facilities, measuring
operational data from sensors, matching model and operational data during analysis
and reporting of the results (see Figure 12). The results can be reused to adapt the
model or to find faults in the implementation.

Reporting Specification
Analysis Modeling Structure
Results and Behavior

Analysis Measuring

Matching Model and Operational Data
Operational Data from Sensors

Figure 12 — The Energy Navigators’ process loop

Within the Energy Navigator a DSL is used to enable the domain expert to express
his specific domain knowledge via first class language concepts. These concepts include
Rules, Functions, Characteristics, Metrics, Time Routines and States. Proposed by the
DIN EN ISO 16484 a state based approach should be used to describe the functional
behavior of facilities. We adapted the well known concept of state machines to be
able to describe different states of a facility and to validate it against the monitored
values [FLP*11]. We show how our data model, the constraint rules and the evaluation
approach to compare sensor data can be applied [KLPR12].

Moving up the scale we investigated several existing approaches for energy efficient
neighborhoods that aim at moving from a local, building specific optimum to a
more global optimum. By efficiently using results of simulation and optimization
calculated optimal set points for local consumption and generation can be utilized.
Therefore information from several heterogeneous data sources, such as single sensor
data, structural data, data on installed devices, geospatial data or weather data is
needed. Based on existing approaches we developed a Neighborhood Information Model
that follows a metamodel-based approached and utilized code generation techniques
to automatically generate adapters between heterogeneous data models. Following
this approach we are able to fully integrate the data sources on an abstract level and
are still extensible at runtime.

Also Demand Response Systems are used to distribute energy more equally over
time and enable a consumption during peak loads. We developed a secure high
performance storage that is able to capture sensor data and DR signals.

3.4 Model-based Cloud Computing Applications

The paradigm of Cloud Computing is arising out of a convergence of existing tech-
nologies for web-based application and service architectures with high complexity,
criticality and new application domains. The development, integration, evolution,
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operation and migration of web-based application and service architectures poses ever
more and ever larger challenges to Software Engineering. In [KRR14] we discuss the
paradigm of Cloud Computing that is arising out of a convergence of existing and new
technologies in detail. It promises to enable new business models, to lower the barrier
for web-based innovations and to increase the efficiency and cost-effectiveness of web
development.

Cloud-based systems pose a multitude of different challenges. The demand for
seamless scalability with system load leads to highly distributed infrastructures and
software architectures that can grow and shrink at runtime. The lack of standards,
complemented by the variety of proprietary infrastructure and service providers,
leads to a high degree of technological heterogeneity. High availability and intercon-
nectivity with a multitude of clients leads to complex evolution and maintenance
processes. These challenges come coupled with distinct requirements posed by the
individual application domain. Application classes like Internet of Things as described
in [HHK'14, HHK*15b], CPS described in [KRS12], Big Data, App and Service
Ecosystems bring attention to aspects like responsiveness, privacy and open platforms.
Regardless of the application domain, developers of such systems are in need for robust
methods and efficient, easy-to-use languages and tools. For example in [HHK™14]
and [HHK ™ 15b] we discuss how to handle privacy in the cloud in a trusted environment
(see Figure 13).
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Figure 13 — Example for a trusted cloud environment

In our research [NPR13] we tackle these challenges by perusing a model-based,
generative approach. The core of this approach are several modeling languages that
describe different aspects of a cloud-based system in a concise and technology-agnostic
way. Software architecture and infrastructure models describe the system and its
physical distribution on a large scale. UML/P models, and class diagrams in particular,
describe several other aspects of the system, such as its domain and data models,
its interfaces and interactions, and its monitoring and scaling capabilities. Among
other tools, code generators most prominently take these models as input and generate
application-specific frameworks that implement big parts of the system’s technical
aspects and provide technology-agnostic, ease-to-use interfaces for the cloud-based
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application’s actual business logic.

We have applied these technologies to various cloud systems, cars, buildings, smart
phones and smart pads and various other kinds of sensors. We built a rather successful
and technologically sound framework for web-based software portals [HKR12] that we
offer under sselab.de for general use. Another set of cloud systems helps to deal with
energy management and is described in [FPPR12, KPR12]. It continuously monitors
building operation systems to derive operational data and compare these to the
building specification. We use cloud technologies to maintain data, dynamically execute
calculations and host management services enabling reduction of building energy costs.
Furthermore, we investigate the architecture of Cloud Services for the digital me
in a privacy-aware environment [ELR*17]. We support developers with a model-
driven and generative methodology supporting reuse of existing services, automated
conversion between different data models, integration of ecosystems facilitating service
composition, user data access control, and user data management.

We apply cloud technology also for our tool demonstrators and our own development
platforms. New services, e.g., collecting data from temperature, cars etc. can now be
developed easily.

3.5 Models in Enterprise Information System Development

Enterprise Information Systems (EIS) provide information to different user groups
as main system goal. To be more precise, it is important to be able to create, read,
update and delete data (CRUD). We use model-based methods to support these
functionalities. Different types of models are used in the context of EIS: structural
models to describe data structures, dynamic models to describe business processes,
functional models to describe software functions or graphical user interface (GUI)
models to describe graphical user interfaces. Usually, these models are developed using
specific DSLs (cf. Section 2.4).

Using our experiences in the model-based generation of code with MontiCore [KRV10,
HR17] (cf. Section 4.1), we developed several generators for data-centric applications.
Figure 14 shows the main concepts for these approaches: Models from different DSLs
are used as input for the generator in combination with predefined templates. As
an output large parts of the information system are produced: the databases, data
communication and infrastructure as well as the GUIs for different users and roles.
Missing parts have to be added as handwritten code, such as application logic.
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Figure 14 — Main concepts of information systems developed with mbse methods

The MontiCore Data Explorer (MontiDEzx) code generator was used for the auto-
matic generation of customizable, extensible data-centric business applications from

Journal of Object Technology, vol. 18, no. 1, 2019


http://dx.doi.org/10.5381/jot.2019.18.1.r1

Innovations in Model-based MBSE and MBSyse - 35

UML/P Class Diagrams [MSNRR15, Rot17]. It processes models to generate data-
centric applications in Java and Java Swing. The department has developed further
generators such as MontiEE [Lool7] or MontiWIS [Reil6].

The most recent generator, MontiGem [AMNT19], was successfully applied in
an application project for the financial controlling of the chairs of RWTH Aachen
University, the MaCoCo project [ANVT18]. With MontiGem it is possible to generate
large parts of data centric business applications: The data-structure and communication
infrastructure, functions to access, retrieve and store the data, the GUIs, and parts of
the access control (see also Section 4.4).

Enterprise Information Systems are currently facing new challenges: The General
Data Protection Regulation (GDPR), in application since May 2018, marks a new
era in data privacy. This regulations are also relevant for EIS dealing with private
data. Thus, we investigate the architecture of Cloud Services for the Digital me in a
Privacy-Aware Environment [ELR™17]. Further approaches go beyond architectural
aspects: [MKM™19] discusses a privacy preserving data model and system architecture.
The user-centered view on the system design allows to track who does what, when,
why, where and how with personal data and can make this information available for
users in an information portal.

3.6 Internet of Things (loT) and Industry 4.0

In line with our mission, our research contributions to the Internet of Things and
Industry 4.0 focus on modeling techniques to support and facilitate development of
increasingly complex solutions. Early contributions include architecture modeling tech-
niques and infrastructures for the efficient development of cloud-based systems [NPR13],
secure distributed systems [HHRW15], and distributed robotics systems [RRRW15].

With the rise of Industry 4.0, we included modeling outside of informatics, e.g.,
in mechanical or electrical engineering, into our focus of research. To this end,
we conducted a systematic mapping study on modeling in Industry 4.0 [WCB17]
which uncovered that knowledge representation and discrete modeling of systems
and processes demand for DSLs (see Section 2.4) usable by the automation and
manufacturing experts.

In that study, we also identified products, resources, and processes as primary
Industry 4.0 concerns that usually are related inflexibly. Hence, we conceived a
multi-level framework for machining based on these concepts [BKL™18].

4 MontiCore Zoo of Model-based Tools and Languages

As one of the important results of practical software engineering research, tools or
demonstrators arise. For quick definition of languages and rapid development of
model-based tools, the language workbench MontiCore was designed. It allows to
compositionally design model-based tools for various languages. Some of them are
discussed in the following subsections to demonstrate their feasibility.

4.1 MontiCore: The Language Workbench for DSLs

MontiCore is a language workbench, which has been developed since 2004 [GKR ™08,
HR17]. We started its development because at that time the available tools for model
management where often very poor in functionality and also not extensible, but
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closed shops. In 2004 the first version of UML/P was published (and is now available
as [Ruml16, Ruml17]) demonstrating that the conglomerate of languages — that the
UML is made of — can be substantiated with useful transformation, refinement and
refactoring techniques (cf. Section 2.7). We were mainly interested in model-based
techniques for code and test code generation as well as flexible combination of language
fragments, such as OCL within Statecharts or Class Diagrams for typing in Component
and Connector Diagrams. However, hard coded modeling tools where not helpful
in realizing these techniques. This original motivation for providing a flexible and
adaptable toolset through MontiCore can also be found in the foundational PhD theses
of MontiCore [Kral0, Voll1].

Later, it became apparent that UML will be complemented by several DSLs that
will be connected to software development or execution in various ways. The definition
of DSLs encounters the same difficulties as the definition of UML has faced, i.e.,
they are often built from scratch, reuse is difficult or not supported, and the same
concepts get different syntactic shapes. Thus, combining DSLs is rather impossible.
We therefore extended the focus of MontiCore to become a general language workbench
that allows to define languages and language fragments and to derive as much as
possible from an integrated, compact definition.

MontiCore provides sophisticated techniques to generate transformation lan-
guages and their transformation engines based on DSLs [HRW15, AHRW17a, RRW15,
HHRW15, Weil2], we have explored tagging languages [Lool7, MRRW16, GLRR15],
various forms of the UML and its derivatives [Sch12, Worl6, Hab16, Reil6, Rot17]
and a variety DSLs. Despite MontiCore being an academic tool to explore mod-
eling and meta-modeling techniques, after 14 years of development, it has reached
an extraordinary strength and is thus increasingly used in industrial projects, like
energy management [Pinl4], as well as in scientific projects of entirely different nature,
such as the simulation of urban scenarios for autonomous driving [Ber10] or human
brain modeling [PBIT16]. MontiCore, however, does not primarily focus comfort, e.g.,
graphical editing, but advanced functionality for model-based analysis or synthesis of
software intensive systems as well as efficient textual editing for experienced users.

4.2 MontiArc: Architectural Modelling With Semantics

MontiArc [HRR10, Hab16] is a framework for modeling and simulation of software
architectures that has been developed for modeling distributed interactive systems
using MontiCore (see Section 4.1). The domain of the architecture description language
(ADL) MontiArc are information-flow architectures which describe the components
of a (software) system and their message-based communication. Hence, MontiArc
captures active components (agents, actors) of a logical or physical distribution,
their interfaces (ports), the communication infrastructure between components, and
hierarchical decomposition. A component is a unit which executes computations or
stores data. It may have arbitrary complexity and size being a subsystem or a single
function. A component has an explicitly defined interface via which it communicates
with its environment. It is implemented as a textual language and comes with an
eclipse-integrated editor.

On one hand MontiArc is an architecture description language that helps modeling
distributed systems by supporting the user with context condition (well-formedness
rules) checks and analyses. On the other hand MontiArc serves a simulation envi-
ronment and a code generator to generate simulation components out of MontiArc
models. MontiArc provides a timed, event-based simulation framework that can exe-
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cute behavior implemented in Java and attached to MontiArc models in a declarative
way so that analysis and validation of MontiArc models becomes possible [Hab16].

Because the language MontiArc is designed for extensibility, several sublanguages
for behavior may be embedded directly within component definitions. As examples,
MontiArc has been extended with automata to MontiArcAutomaton [RRW13, RRW14,
Worl6], with replication message bundles to ClArc [NPR13], and with security anno-
tations to MontiSecArc [HHRW15].

In [HRR10], an extension of MontiArc with Java is presented and later extended
to MontiArcAutomaton, which becomes a full programming language with explicit
control of architecture, data structures, and behavior  BKRW17a]. Details on the com-
positional nature and extensibility of MontiArcAutomaton are described in [RRRW15]
and [BHH™17] respectively. This approach achieves a smooth integration of architec-
tural design and programming. Supported by powerful code generation mechanism
based on chains of model transformations [AHRW17b], we call our approach architec-
tural programming.

4.3 UML/P: Executable Modeling with UML

The UML/P [Ruml6, Ruml7, Ruml2, Rumll] is a realization [Sch12] of a subset
of the modeling languages of the UML with particular focus on applicability for
programming, i.e., modeling of software systems (the "P" in UML/P stands for
"suitable for programming"). It comprises the following types of UML diagrams:

e Class Diagrams as basic structural modeling technique with solid yet configurable
semantics [MRR11e, MRR11¢],

e Object Diagrams to describe specific situations that are used for setups of tests
or test verdicts as well as unwanted situations, etc. [MRR11d].

e Statecharts are the main technique to describe behavior. UML/P Statecharts
can be used as abstract specifications, explicitly allowing underspecification in
various forms as well as code-like detailed algorithms, where a direct mapping to
code becomes feasible. UML/P Statecharts assist the large bandwidth between
high-level abstract specifications and implementations and come with a powerful
refinement calculus allowing for the refinement of specifications throughout the
development process as well as from superclasses to specific implementations in
subclasses.

e Sequence Diagrams describe interactions between objects in a specific situation
and thus are generally exemplary. They can be used nicely for describing the set
up and the execution of tests.

e OCL is a textual language in the spirit of predicate logic over object models,
allowing to describe constraints of various forms. OCL/P is a specific variant of
OCL that allows for writing constraints in a syntax inspired by Java [GJS05]. It
is extended by various techniques for set and list comprehension known from
functional languages like Haskell [HJW92].

These languages can be used individually as well as in a coherent language family
that allows to connect models of different sublanguages into a well structured, accessible
specification of complex systems. This constitutes a powerful way of describing software
systems on various levels of abstraction from different viewpoints. In addition, it is
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possible to use Java expressions to enrich the models with implementation details. As
such, UML/P forms the foundation for applied Generative Software Engineering (see
Section 2.2).

To shape UML/P as a modular, composable set of languages, we have intensively
applied the techniques of software language engineering (see Section 2.5). As an
example, OCL is not only a stand-alone constraint language, but it is also used for
pre- and post-conditions in Statechart transitions, for state invariants, for desired
properties to describe the verdict of tests, and for desired properties while inside a
sequence diagram-governed test execution.

For the constructive part of UML/P Java expressions are also integrated in various
UML/P sublanguages. This integration relies on solid foundations, actually allowing
for intensive consistency checks within models of all sublanguages as indicated in
Figure 2. This includes type checking of variables introduced and used in sublanguages
as well as the mapping of symbols defined in one sublanguage to another sublanguage.

Because object diagrams have limited expressiveness on their own, we have inte-
grated object diagrams into OCL/P to identify specific scenarios via diagrams and
connecting them with powerful logic operators of OCL/P. The integration of object
diagrams into OCL/P allows for describing the context of invariants and specifying
situations that are allowed, forbidden, or alternatives. This yields a powerful yet
partially diagrammatic logic specification technique.

We also have dealt with activity diagrams [MRR11a, MRR11b] as extension of the
UML/P and out ADL MontiArc (see Section 4.2) completes UML/P with a notation
for logically or physically distributed computation [BKRW17a].

Parts of UML/P are available as an Eclipse plugin featuring syntax-aware editors
for the various types of diagrams. We have successfully applied UML/P for generatively
creating various kinds of software systems. This spans from database schemas over
web applications up to entire data management desktop applications. UML/P is under
continuous extension with interesting new features.

4.4 MontiGem: Generating Enterprise Management Systems

MontiGem [AMNT19] is a specific generator for data-centric business applications. To a
large extent, it uses standard models from UML/P as sources. Namely, Class Diagrams,
OCL, and Statecharts are taken from UML. While the standard semantics of these
modeling languages remains untouched, the generator produces a lot more functionality
around these models, because it is well integrated into the target framework and target
infrastructure which is used to execute the enterprise management system. The
generator thus knows the backend technology stack, with an application core in
Java, storage using a relational database and the frontend consisting of Typescript
respectively JavaScript components based on Angular 6 and thus running in the
browser.

The generator creates the data structure in the frontend and backend as well as
the communication infrastructure to transport data in both directions. Furthermore,
it generates the database tables as well as all necessary functionality to access, retrieve
and store the data in the database.

As a highlight, the storage paradigm is based on the command pattern that allows
to merge current changes much better and thus allows an optimistic update scheme.

As an extension, a DSL is used to describe the graphical layout of the user interface
in a comfortable way. Again the GUI sub-language is well integrated with the class
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diagram models allowing to directly describe what to visualize based on the storage
structure in the database (see Figure 15 for some of the possible visualizations).

rafsteuer berechnet nach SAP Werten 2141298 €
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s nt

Figure 15 — GUI-components generated based on models

The internal architecture of the MontiGem generator includes the three typical main
processes: reading, transformation and generation (see Figure 16), while generation
produces a whole lot of resulting Java classes, Typescript and HTML files and related
artifacts.
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Figure 16 — Overview of the generator components

The whole generation is designed in a very extensible way: First, a generator target
itself is written in a modular way allowing to reuse parts in a rather independent
way. Secondly, templates are used allowing developers to add functionality in the
systematic manner. They can, e.g., add additional methods to all generated classes of
certain kind. Thirdly, the TOP mechanism created in MontiCore [HR17] is applied
for all kinds of creative classes allowing to efficiently add handwritten code extensions
to the generated classes, while fully retaining the ability to intentionally re-generate
everything every time. For that purpose, all classes are also equipped with builders,
which can be replaced using the TOP mechanism if required.

Thus, handwritten and generated code pieces are well integrated [GHK T 15b]. This
enables the continuous regeneration of the application with changing models and thus
the co-evolution of the models and the handwritten additional functionality during
the entire development process.

The input of the generator for such enterprise management systems can be expanded
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to allow the tagging of existing models [GLRR15], e.g., for the definition of roles and
rights, as well as model-based testing [DGHT18].

MontiGem builds on earlier versions. Together with MontiGem they are already
in use for generating various applications, such as a library system, a Management
Controlling Cockpit and a development artifact overview system. Current extensions
adapt and extend MontiGem for mobile applications, further graphical representation
components as well as the development of information portals in the Internet of Things
domain.

5 Software Engineering at RWTH: “Modeling the World”

In this article we have summarized the research conducted and published by Bernhard

Rumpe and his group at the TU Munich (1992-2003), at TU Braunschweig (2003-2008),

and at the Software Engineering group at RWTH Aachen University (since 2009).
Over these years our work has been guided by our mission statement:

Our mission is to define, improve and industrially apply techniques, con-
cepts, and methods for innovative and efficient development of software and
software-intensive systems, such that high-quality products can be devel-
oped in a shorter period of time and with flexible integration of changing
requirements. Furthermore, we demonstrate the applicability of our results
in various domains and potentially refine these results in a domain specific
form.

Models and therefore modeling languages have been chosen as the most important
vehicle to take bold steps in this direction. Making models explicit and formally
accessible in form of manageable artifacts is one subgoal, because this allows reusing,
joint refactoring and evolving models. Combined with code synthesis and test case
generation, this enables to achieve higher degrees of automation. Repeatable automa-
tion of analysis, transformation, and synthesis tasks is an important prerequisite for an
efficient process. Efficiency and automation are furthermore prerequisites for agility.

Our ultimate goal is to have techniques and methods at hand that allow to model
requirements for a system in a rather abstract form and use smart transformation
tools with a high degree of automation during the process, such that the developers at
least of standard products are liberated from architecture definition, fine design, test
case invention, manual testing, reviewing various forms of the same information, and
other potential tedious tasks as much as possible.

In the preceding sections, we have discussed various steps in this direction demon-
strating that this goal on the one hand can be continuously approached, but also that
the path towards it is relatively complex, because the optimal languages for abstract
and compact design of software are still in the making, comfortable tools still need
to be improved, and people need to be trained to be able to use powerful tools and
models.

Modeling techniques mainly come into play, when the understanding of a domain
has matured, the complexity and variability within the domain have increased due
to various individual demands, and the domain has become a serious scientific or
industrial sector. Standard business systems as well as web services and apps for
mobile phones belong into this category. However, we also observe that the connection
between physical systems and their controlling and managing software tightens and
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a model-based systems engineering process emerges. This process allows developing
mobility services (including cars, buses, bicycles), electrifying a smart home, efficiently
assisting clinical surgery and caring, and much more. Still there are many more things
to model in this world, to gain a better understanding and to improve it.

While currently, big data gains much attention, we assume that its potential can
only be fully exploited when combined with pre-existing knowledge about the system
under observation. This demands the combination of engineered models with data
acquisition, and the data-driven refinement of such models will be one of the future’s
interesting challenges. Digital twins, for instance, are such models of products or
systems that demand connection to data sources. Digital twins can also be used to
describe production, business, and other complexities in the (cyber-physical) world.
Because of the highly heterogeneous nature of the systems being described, we can safely
assume that quite a number of general-purpose as well as domain-specific languages
will be needed to enable the integrated development, harnessing, and evolution of
digital twins. Language composition, aggregation, and evolution will help addressing
these challenges as well as the continuous evolution of modelling mechanisms. It will
be interesting to see how digital twins will benefit from using models at runtime, e.g.,
for enhancement, manipulation, but also for self-healing, self-adapting, and similar
approaches. It may even be, that a strong connection between the digital twin and the
raw physical system is the foundation for self-aware systems that will help to assist
individual persons as well as humankind in various future challenges.
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