
1

Segmenting Oil Spills from Blurry Images Based
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Abstract—We exploit the alternating direction method of
multipliers (ADMM) for developing an oil spill segmentation
method, which effectively detects oil spill regions in blurry
synthetic aperture radar (SAR) images. We commence by con-
structing energy functionals for SAR image deblurring and
oil spill segmentation separately. We then integrate the two
energy functionals into one overall energy functional subject to
a linear mapping constraint that correlates the deblurred image
and the segmentation indicator. The overall energy functional
along with the linear constraint follows the form of alternating
direction method of multipliers and thus enables an effective
augmented Lagrangian optimization. Furthermore, the iterative
updates in the ADMM maintain information exchanges between
the energy minimizations for SAR image deblurring and oil
spill segmentation. Most existing blurry image segmentation
strategies tend to consider deblurring and segmentation as two
independent procedures with no interactions, and the operation
of deblurring is thus not guided for obtaining accurate segmenta-
tion. In contrast, we integrate deblurring and segmentation into
one overall energy minimization framework with information
exchanges between the two procedures. Therefore, the deblurring
procedure is inclined to operate in favor of more accurate oil
spill segmentation. Experimental evaluations validate that our
framework outperforms the separate deblurring and segmenta-
tion strategy for detecting oil spill regions in blurry SAR images.

Index Terms—Deblurring, oil spill segmentation, alternating
direction method of multipliers.

I. INTRODUCTION

MARINE oil spill accidents, which have caused various
damages to the natural environment, have frequently

occurred at different scales [1]. Satellite-based synthetic aper-
ture radar (SAR) provides an important means for monitoring
marine oil spills [2][3] because it has the advantage of all-
weather and all-time observation ability. In order to make
timely damage assessment [4] and spread control of oil spills,
it is vital to accurately observe the oil spills through SAR
images. Therefore, developing intelligent algorithms for seg-
menting marine oil spill regions from SAR images has been an
important research topic in the field of ocean remote sensing.
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Most researchers conduct oil spill studies based on SAR
data [5] in terms of investigating oil spill physic characteristics
for reflecting different types of electromagnetic waves. Here
the non-Bragg scattering phenomenon caused by oil spills is
a major physical feature for oil spill analysis based on SAR
images. The capillary and short gravity waves on the ocean
surface give rise to Bragg scattering that is sensed by SAR,
and marine oil spills result in dark patches in SAR images by
damping out the Bragg scattering. The non-Bragg scattering
regions provide indications for observing oil spills based on
SAR images. Recently, the more sophisticated polarimetric
characteristics of oil spills have been comprehensively in-
vestigated and representative state of the art studies include
those conducted by Migliaccio et al. [6][7], Ricci et al. [8][9],
Minchew et al. [10][11] and Brekke et al. [12][13]. The
polarimetry based strategies enhance oil spill observations in
SAR images such that basic image processing techniques such
as thresholding [14] and K-means clustering [7] can be easily
applied to detect oil spills in the enhanced representations.

On the other hand, researchers mainly from the image
processing community have been working on developing more
sophisticated oil spill segmentation methods for accurately
detecting oil spill regions in SAR images. In this scenario,
one common formulation of oil spill segmentation is en-
ergy minimization, where an energy functional measures the
segmentation characteristics such as fitness and similarity
with respect to the oil spills. Xia et al. [15] developed a
continuous energy functional for multiscale nonlocal charac-
terization and employed level set evolution for detecting oil
spill contours. Mdakane et al. [16] incorporated a region-based
signed pressure force functional into the level set continuous
energy functional for detecting oil slicks from moving vessels.
Ren et al. [17] proposed to smooth both image and cost
volume for discrete energy functions, and apply the graph
cut algorithm for obtaining optimal segmentation. Recently,
deep learning strategies such as convolutional neural nets [18]
and generative adversarial nets [19] have been investigated
for oil spill segmentation. These methods normally require a
set of segmented images for training a segmentation model.
However, the availability of marine oil spill images is not
as easy as that of normal images. Such shortage of data
becomes even more critical for segmenting blurry marine oil
spill images. To train a model addressing the blurry marine
oil spill segmentation, a large number of correctly segmented
blurry images are required. However, as oil spill accidents
are not always observed in blurry conditions, the access to
such qualified training data is limited. On the other hand, we
directly conduct segmentation on investigated images by ex-
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ploiting energy minimization strategies, which do not require
the training procedure. It is thus much more straightforward
for practical operations.

Most energy minimization methods perform oil spill seg-
mentation on clear images and tend to ignore the situation
that a SAR image is blurred. The SAR imaging is affected by
environmental factors such as atmospheric turbulence [20] and
inaccurate estimation of the speed of the airborne devices [21]
for monitoring ocean. Therefore, blurs are regular phenomena
arising in SAR images and pose inevitable interferences to oil
spill segmentation.

One possible way to segment oil spills from a blurry
SAR image is to conduct deblurring to the blurry image and
then perform segmentation on the deblurred image [22]. The
flowchart for this separate two-step strategy is illustrated in
Fig.1. The two-step strategy is easy to implement. However,
most existing deblurring methods [23][24] tend to straightfor-
wardly restore a clear image and do not necessary enhance
the effect of the subsequent procedures such as segmentation.
One classical method for deblurring images is deconvolution.
Recently, a number of new deconvolution strategies [25][26]
have been developed for achieving visually higher quality
of the restored images. Though these methods improve the
visual quality of the restored images, they do not necessarily
enhance information required by the subsequent procedures
such as segmentation. In order to address this shortcoming, we
formulate the problem of SAR image deblurring and oil spill
segmentation into one overall energy minimization framework.
We present a novel oil spill segmentation framework in which
the deblurring and segmentation comprehensively interact with
each other. In this scenario, our framework does not consider
the deblurring and segmentation as two separate operations
but encourages the deblurring to operate in a way that
favors accurate segmentation. Therefore, in our framework,
the deblurring and segmentation operate in a complementary
reciprocal manner such that their intrinsically combined effort
essentially improves the effectiveness of oil spill segmentation
over the separate deblurring and segmentation strategy.

Our novel energy minimization framework for oil spill
segmentation is summarized as follows. We first establish
energy functionals for deblurring and oil spill segmentation
separately. We then integrate the two energy functionals into
one overall energy functional subject to one linear mapping
constraint between the deblurred image and the segmentation
indicator. The linear mapping not only conveys information
between the deblurring and segmentation operations but also
enables minimization of the overall energy functional in
terms of alternating direction method of multipliers (ADMM)
[27][28]. The ADMM decomposes one original problem into
several subproblems using the separability of the overall
energy functional such that each subproblem is easier to
handle. On the other hand, it maintains information conveyed
between the subproblems such that the subproblem solutions
are compatible with one another and achieve the final solution
of the overall energy minimization. We exploit this advantage
of ADMM for conducting deblurring which provides helpful
information for oil spill segmentation, and thus establish a
framework that simultaneously deblurs and segments oil spill

SAR images. Experimental evaluation validates the effective-
ness of our method for segmenting blurry oil spill SAR
images.

II. ENERGY FUNCTIONAL FOR DEBLURRING MARINE OIL
SPILL IMAGES

This section reviews the energy functional for neutralizing
blurs in oil spill images. A deconvolution energy term for
restoring images and a regularization term for smoothing
kernels are developed separately, and then integrated for
penalizing the process of deblurring.

The deblurring scheme presented in this section is a com-
monly used traditional strategy [29][30]. Based on this existing
scheme, we will propose a novel segmentation framework
that intrinsically guides the traditional deblurring scheme to
operate in favor of accurate segmentation, which will be
presented in Section IV.

A. Energy Term for Deconvolution
Suppose a blurry SAR image I for observing oil spills is

formed in terms of the convolution between an original image
Id and an unknown blurring kernel Kb, along with additive
Gaussian white noise n, as follows:

I (x, y) = Id (x, y) ∗Kb (x, y) + n (x, y)

=

∫∫
Id (x− u, y − v)Kb (u, v) dudv + n (x, y)

(1)

where (x, y) denotes one pixel location, Id(x, y) ≥ 0,
Kb(x, y) ≥ 0 and ∗ represents the operation of convolution.

The energy term that characterizes the disagreement be-
tween the deblurred image Id and the blurry image I is given
as follows:

EB (Id,Kb
) =

∫∫
[Id (x, y) ∗Kb (x, y)− I (x, y)]

2
dxdy

(2)
The blurring kernel Kb in (2) is considered as a parameter
to be estimated for precisely characterizing the disagreement
between the deblurred image Id and the blurry image I . The
estimation of Kb will be described in Section IV. Minimizing
the energy term EB in (2) with respect to Id and Kb results in
deconvolution of these two components from the blurry image
I . The energy term (2) thus restores the deblurred image Id
by maximally neutralizing the interferences from the blurry
kernel and the white Gaussian noise on I .

B. Kernel Smoothing Regularization
The blurring kernel Kb may contain unexpected abrupt

changes especially when it is estimated from a noisy blurry
image I . To address this drawback, we exploit a smoothing
regularization term with respect to Kb as follows:

RK (Kb) =

∫∫
|5Kb (x, y)| dxdy (3)

The gradient 5 characterizes the oil and background vari-
ations over the image domain. The regularization term (3)
penalizes abrupt changes in Kb and thus avoids restoring an
image with spikes.



3

C. Energy Functional for Deblurring Oil Spills

We integrate the deconvolution energy term introduced in
Section II-A and the smoothing regularization terms intro-
duced in Section II-B into the energy functional ED (Id,Kb

)
for deblurring oil spills images, which is given as follows:

ED (Id,Kb
) = EB (Id,Kb

) + ηRK (Kb) (4)

where η is a positive regularization parameter, which charac-
terizes the trade-off between deconvolution and regularization.

III. ENERGY FUNCTIONAL FOR SEGMENTING OIL SPILL
REGIONS

This section introduces the energy functional for segmenting
oil spills in SAR images. A level set energy term for measuring
oil spill fitness, and regularization terms with respect to oil
contour length, update regularity and oil edge preservation are
developed separately. They are then integrated for character-
izing the oil spill segmentation.

Specifically, we not only review the existing region scalable
fitting (RSF) segmentation method [31] but also develop a
novel oil spill edge preserving regularization term. The new
term smooths images without heavily degenerating oil spill
edges and thus improves the detail segmentation over the
existing RSF method.

A. Level Set Energy Term for Fitness

We use level sets for detecting oil spills in SAR images [32].
A level set function φ manifests itself as a surface in a three
dimensional space. It is one key optimization parameter for
indicating the marine oil spill segmentation in our framework.
Specifically, φ(x, y) ≥ 0 indicates that the pixel Id(x, y) is
segmented into the marine oil spill region, otherwise it is
segmented into the background.

We exploit the region-scalable fitting (RSF) level set for
characterizing the data fitting in oil spill SAR images. The
RSF energy functional is defined as follows:

EF (φ, r1, r2)

=
2∑
i=1

αi

∫∫
Kσ (u− x, v − y) |Id (u, v)− ri (x, y)|2

M ε
i (φ (u, v)) dudv

(5)

where α1 and α2 are positive balancing constants, separately.
Id is the deblurred image, and ri (x, y) characterizes the
weighted averages of the intensities in a neighborhood of
(x,y) and it represents the image approximation whose update
scheme will be introduced in Section IV-D. M ε

1 (φ) = Hε (φ)
and M ε

2 (φ) =1-Hε (φ), and Hε(φ) is the Heaviside function
given as follows:

Hε (φ) =
1

2

[
1 +

2

π
arctan

(
φ

ε

)]
(6)

where ε is a positive smooth parameter. The integrations in (5)
operate over the spatial domain of the whole image. M ε

i con-
trols the integration domain in which the nonnegative Gaussian

kernel Kσ emphasizes the central fitness. Specifically, the
integration centered by ri (x, y) just takes place within the
φ ≥ 0 image region if i = 1 or within the φ < 0 image region
if i = 2. Therefore, EF measures the fitness between the oil
spills and the image approximation within the scalable region
controlled by M ε

i .

B. Oil Contour Length Regularization

The curve obtained in terms of the intersection between φ
and the zero plane (i.e. φ(x, y) = 0) is referred to as the zero
level set of φ(x, y), and it indicates the contour of an oil spill
region. The length of the oil spill contours is approximated as
follows:

RHε(φ) =

∫∫
|5Hε (φ (x, y))| dxdy (7)

It is a commonly used regularization term for level set based
segmentation.

C. Update Regularity Regularization

Oil spills always exhibit irregular shapes. However, to
achieve optimal segmentation, the iterative evolution of φ for
optimization is supposed to be updated in a regular way. To
preserve the regularity for updating the level set φ, which
is necessary for accurate computation and stable level set
evolution, a distance regularization should be intrinsically
incorporated into the variational level set energy formulation
to maintain the regularity of the level set functional during the
evolution [33]. The distance regularization is defined with a
potential function as follows:

RP (φ) =

∫∫
1

2
(|5φ (x, y)| − 1)

2
dxdy (8)

The regularization term RP (φ) characterizes the deviation
of the level set φ from a signed distance function and also
smooths the level set function φ.

D. Oil Edge Preserving Regularization

Oil spill edges provide important information for accurately
characterizing oil spill regions . However, most existing image
denoising methods smooth an image with the trade-off of
degenerating oil spill edges. To address this shortcoming,
following our preliminary work in [34], we incorporate one
recently developed edge preserving filtering technology, i.e.
guided filtering [35], into our framework.

In order to have our SAR image smoothed by the guided
filter, in our work, we use Id as both the input and guided
images, we commence by computing the local features for Id.
Let ω(x,y) denote a local square window around (x, y) in Id
and |ω(x,y)| is the number of pixels in ω(x,y). The local mean
µ(x,y) and local variance σ2

(x,y) of Id within ω(x,y) are given
as follows:

µ(x, y) =
1

|ω(x,y)|
∑

(u,v)∈ω(x,y)

Id(u, v) (9)
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σ2(x, y) =
1

|ω(x,y)|
∑

(u,v)∈ω(x,y)

[Id(u, v)− µ(x, y)]2 (10)

The intermediate coefficients p(x, y) and q(x, y) are com-
puted, respectively, as follows:

p(x, y) =

1

|ω(x,y)|
∑

(u,v)∈ω(x,y)
|Id(u, v)|2 − |µ(x,y)|2

σ2
(x,y) + ε

(11)

q(x, y) = µ(x,y) − p(x, y)µ(x,y) (12)

where ε is a regularization parameter preventing p(x, y) from
being too large.

The mean maps p̄ and q̄ for p and q are computed as follows:

p̄(x, y) =
1

|ω(x,y)|
∑

(u,v)∈ω(x,y)

p(u, v) (13)

q̄(x, y) =
1

|ω(x,y)|
∑

(u,v)∈ω(x,y)

q(u, v) (14)

Finally, one filtered image pixel Îd(x, y) is given by

Îd (x, y) = p̄(x, y)Id (x, y) + q̄(x, y) (15)

We incorporate the guided filter into the RSF energy func-
tional by introducing the following regularization term:

RG (φ) = τ1

∫∫ ∣∣∣5Îd(x, y)
∣∣∣Hε (φ (x, y)) dxdy

+τ2

∫∫
Îd(x, y) |5Hε (φ (x, y))| dxdy

(16)

where τ1 and τ2 are positive constants, which balance the two
terms for edge preserving regularization.
5Îd and 5Hε (φ (x, y)) characterize the oil spill edges

in the smoothed image domain and the level set domain,
respectively. In contrast to the gradient of the original 5Id
which might misidentify noise as oil spill edges, the guided
filtered representation 5Îd reflects more accurate oil spill
edges without noisy misidentification.

It is motivated by the edge indicating regularizations in
that the integration of the product of one edge indicator and
one image presentation from different domains possibly slows
down the level set evolution around edges and enables a detail
edge characterization. In the light of this observation, the terms
in (16) regularize the segmentation energy functional in terms
of characterizing edge information in both image and level set
domains and favor the preservation of edge details.

E. Energy Functional for Segmenting Oil Spill Regions

We integrate the fitness energy term introduced in Section
III-A and the regularization terms introduced in Sections III-B,
III-C and III-D into the energy functional ES (φ, r1, r2) for
segmenting oil spills in SAR images, which is given as follow:

ES (φ, r1,r2)=EF (φ, r1, r2)+γ1RHε(φ)+γ2RP (φ)+γ3RG (φ)
(17)

where γ1, γ2 and γ3 are positive balancing parameters.

IV. SEGMENTING MARINE OIL SPILLS FROM BLURRED
IMAGES VIA ALTERNATING DIRECTION METHOD OF

MULTIPLIERS

One possible way to detect oil spills in a blurry SAR image
is to conduct deblurring to the blurry image and then perform
segmentation on the deblurred image [22][36]. The flowchart
for this separate two-step strategy is illustrated in Fig.1. The
two-step strategy is straightforward to implement. However,
as the deblurring and segmentation operations are two inde-
pendent procedures, they cannot communicate to each other.
The deblurring operation tends to straightforwardly restore a
clear image without considering enhancing the segmentation
accuracy. The segmentation operation just aims to detect oil
spill regions subject to data fitness but neglects providing
indicative information for effective deblurring. Such separate
operations neglect the interaction with each other and do not
consider maximizing their representational powers in terms of
mutual benefit.

We address this shortcoming by developing a blurry oil
spill segmentation method that intrinsically incorporates the
deblurring operation. A brief review of our method is il-
lustrated in Fig. 2. In contrast to the separate deblurring
and segmentation strategy in Fig. 1, our method performs
intrinsic interactions between the deblurring and segmentation
and encourages the deblurring to operate in favor of accurate
segmentation. Detailed descriptions of our novel framework
are presented in the following subsections.

A. Overall Energy Functional for Simultaneously Deblurring
and Segmenting Marine Oil Spill Images

We integrate the separate minimizations of deblurring en-
ergy functional ED (Id,Kb

) and the oil spill segmentation
energy functional ES (φ, r1, r2) into the minimization of one
overall energy functional as follows:

minimize ED (Id,Kb
) + ES (φ, r1, r2) (18)

subject to aφ+ bId = c (19)

Although the two separate energy functionals ED (Id,Kb
)

and ES (φ, r1, r2) are summed in (18) which results in an
overall energy functional. The coefficients a and b establish a
linear mapping that correlates the segmentation indicator level
set φ and the deblurred image Id. Here a more sophisticated
relationship between φ and Id might exist. However, we use
the linear mapping to characterize the relationship between φ
and Id for two reasons. Firstly, it establishes an informative
correlation between the segmentation indicator φ and the
deblurred image Id. The linear mapping constraint conveys
such indicative information and thus enables the information
interaction between the deblurring and segmentation steps.
Secondly and more importantly, the linear mapping constraint
follows the standard form of the alternating direction method
of multipliers (ADMM), which provides a reliable solution for
the optimization problem in (18) and (19).
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Fig. 1: Separate deblurring and segmentation for detecting oil spills in blurry images.

Fig. 2: ADMM based segmentation for detecting oil spills in blurry images.

B. ADMM Form of The Overall Energy Functional
The alternating direction method of multipliers (ADMM)

formulates a constrained optimization problem in terms of
the augmented Lagrangian method, which involves a quadratic
regularization term. The quadratic regularization relaxes con-
ditions such as differentiability on the energy functional and
thus enables more efficient and robust optimization. Detailed
introduction to ADMM is referred to [37].

The ADMM form for our overall energy functional shown
in (18) and (19) is formulated as follows:

Eρ (φ, Id, l) =ES (φ, r1, r2) + ED (Id,Kb) + lT (aφ+ bId − c)

+
ρ

2
‖aφ+ bId − c‖22

(20)

where l is the Lagrange multiplier to be optimized, and ρ is
a positive balancing coefficient. The variable r1, r2 and Kb

are considered as intermediate variables in the ADMM form
of the overall energy functional and thus are not global.

ADMM requires two sets of variables. Most existing
ADMM strategies set the original optimization variables as
one set of ADMM variables and use a set of artificial variables
as the other set of ADMM variables. Furthermore, they usually
use the linear constraints to enforce the equality of the original
variables and the artificial variables. The two sets of variables
are then assigned to subproblems intentionally separated from
the original energy minimization. Therefore, most existing
ADMM methods construct artificial variables and conduct
intensional energy separation just for the purpose of efficient
computation, and their linear constraints do not reflect practical
relationships underlying data representations.

In contrast to the artificial setting of variables, the two major
sets of variables in our energy functional (20) are the deblurred
image Id and the oil spill segmentation indicating level set φ,
both of which are original optimization variables. Furthermore,
unlike the intensional energy separation, our energy functional
practically consists of the deblurring and segmentation en-
ergy functionals, which are naturally separated. However, the
separate energy functionals and their variables Id and φ are
correlated by the Lagrangian term lT (aφ+ bId − c) and the
quadratic regularization term ρ

2 ‖aφ+ bId − c‖22. Therefore,
our ADMM form not only enables robust and efficient opti-
mization but also encodes the interaction between SAR image
deblurring and oil spill segmentation.

C. ADMM Minimization of The Overall Energy Functional

According to the standard ADMM computation, minimiza-
tion of the ADMM form of the overall energy functional is
implemented in terms of iterating the following three basic
steps.

In the first step, we fix φ and l, and compute the mini-
mization of the overall energy functional with respect to Id as
follows:

Ik+1
d = arg min

Id
Eρ
(
φk, Id, l

k
)

(21)

where k indicates the iteration number.
In the second step, we fix Id and l, and compute mini-

mization of the overall energy functional with respect to φ as
follows:

φk+1 = arg min
φ
Eρ
(
φ, Ik+1

d , lk
)

(22)
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In the third step, we fix Id and φ, and update the Lagrange
multiplier l as follows:

lk+1 = lk + ρ
(
aφk+1 + bIk+1

d − c
)

(23)

Iteratively implementing the three steps until convergence
achieves the minimization of the ADMM form of the overall
energy functional. Here the third step plays an extremely
important role in our framework. For one thing, it fuses the
the information from both the deblurred image Ik+1

d and the
segmentation indicating level set φk+1. For another, the up-
dated Lagrange multiplier lk+1 conveys the fused information
of the first and second step for updating the deblurred Ik+1

d

image and the segmentation indicating level set φk+1 in a
new iteration. It is in such iterative way that the information
of deblurring and segmentation is exchanged in the process of
minimizing the overall energy function.

D. Energy Minimization Algorithm for Segmenting Oil Spills
from Blurry Images

We describe the exact computation scheme for implement-
ing the three steps presented in Section IV-C.

Step one. In order to obtain optimal Ik+1
d in the (k+1)th it-

eration, we commence by computing the intermediate variable
Kk+1
b by solving ∂Eρ

∂Kb
= 0 as follow:

Ikd ∗
(
Ikd ∗Kb − I

)
+ η

(
5 5Kb

|5Kb|

)
= 0 (24)

In order to efficiently solve (24) which involves sophisti-
cated operations such as convolution and gradient, we exploit
the additive operator splitting method and obtain Kk+1

b as
follows:

Kk+1
b =

1

2
(Kk

b )
1
4 η(Kk

b + (−τIkd ∗ (Ikd ∗Kk
b − I))) (25)

With the blur kernel Kk+1
b and the other parameters fixed

to be the values obtained from the kth iteration, we solve
∂Eρ
∂Id

= 0 in terms of

Kσ ∗ [(r1)kHε(φ
k)]− Id[Kσ ∗Hε(φ

k)] +Kσ ∗ {(r2)k[

1−Hε(φ
k)]} − Id{Kσ ∗ [1−Hε(φ

k)]}+Kk+1
b ∗ (Id ∗Kk+1

b

− I) + (lk)T b+ ρb(aφk + bId − c) = 0
(26)

and obtain Ik+1
d as follows:

Ik+1
d =Ikd + τ(−Kσ ∗ [(r1)kHε(φ

k)] + Id[Kσ ∗Hε(φ
k)]

−Kσ ∗ {(r2)k[1−Hε(φ
k)]}+ Id{(Kσ) ∗ [

1−Hε(φ
k)]} −Kk+1

b ∗ (Id ∗Kk+1
b − I)

− (lk)T b− ρb(aφk + bId − c))
(27)

The major computation at this step involves solving the
multi-dimensional partial differential equations which requires
O(N2) operations.

Step two. In order to obtain optimal φk+1 in the (k+1)th it-
eration, we compute the intermediate variable rk+1

i by solving
∂Eρ
∂ri

= 0 in terms of∫∫
Kσ(x−u, y−v)M ε

i (φk(u, v))(Ik+1
d (u, v)−ri(x, y))duv = 0

(28)
and obtain rk+1

i as follows:

rk+1
i =

Kσ ∗
[
M ε
i

(
φk
)
Ik+1
d

]
Kσ ∗M ε

i (φk)
, i = 1, 2 (29)

With the latest updated intermediate variables rk+1
i and the

other parameters fixed to be the values obtained from the kth
iteration, we have

∂Eρ
∂φ

=− δ(φ)(α1e1 − α2e2) + βδ(φ)div(
5φ
| 5 φ|

)

+ γ(52φ− div(
5φ
| 5 φ|

)) + µ1δ(φ)| 5 Îd|

+ µ2Îdδ(φ)div(
5φ
| 5 φ|

)+(lk)Ta+ ρa(aφ+bIk+1
d −c)

(30)

where ei is given by

ei (x, y) =

∫∫
Kσ (v − y, u− x)

∣∣Ik+1
d (x, y)− (ri)

k+1 (u, v)
∣∣2

dudv, i = 1, 2
(31)

and δ (φ) is given by

δ (φ) =
∂Hε (φ)

∂φ
=

1

π

ε

ε2 + φ2
(32)

We thus obtain updated φk+1 as follows:

φk+1 = φk+t
∂Eρ
∂φ

(33)

where t is a fixed learning rate. The major computation at
this step involves the divergence of a gradient which requires
O(N2) operations.

Step three. In the third step, we fix Id and φ, and update the
Lagrange multiplier l according to (23). It should be observed
from (23) that each updated Lagrange multiplier lk fuses the
the information from both the deblurred image Ikd and the
segmentation indicating level set φk in the previous iteration.
Additionally, the updated Lagrange multiplier lk conveys itself
to the updates of Ik+1

d in (27) and φk+1 in (30) in the current
iteration. Therefore, the iterative ADMM computation turns
out to be a rotating update of the deblurred image Id and the
segmentation indicator φ, where the two factors affect each
other and the Lagrange multiplier l plays a role of messenger
for transferring information between them.

The summarized description of our novel ADMM frame-
work is illustrated in Fig. 2. In contrast to the separate deblur-
ring and segmentation shown in Fig. 1, the ADMM framework
maintains rotating information exchanges over iterations. As
illustrated in Fig. 2, the information exchanges arise in a two-
fold manner, i.e. the outer cycle updates subject to the linear
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mapping constraint and the inner interaction via the Lagrange
multiplier. Firstly, the deburred image Ik+1

d is updated with the
consideration of the latest segmentation indicator φk according
to (27); similarly, the segmentation indicator φk+1 is updated
with the consideration of the latest deblurred image Ik+1

d

according to (30) and (33). These mutually affected updates
form the outer cycle information exchanges shown in Fig. 2.
Secondly, the Lagrange multiplier lk+1 fuses information from
the latest deblurred image Ik+1

d and the segmentation indicator
φk+1 according to (23) and conveys itself to the next iteration
for updating the new deblurred image according to (27) and the
new segmentation indicator according to (30) and (33). These
operations regarding information fusion and conveying are
depicted by the inner interaction via the Lagrange multiplier
shown in Fig. 2. Specifically, two different style single-line
arrows point from the deblurring and segmentation boxes
to the Lagrange multiplier box separately. Additionally, two
double-line arrows point from the Lagrange multiplier box
to the deblurring and segmentation boxes separately. The
double-line arrows reflect that the Lagrange multiplier fuses
information from the deblurring and the segmentation which is
delivered by the two different styled single-line arrows. Then
the two double-line arrows convey the fused information back
to compute the new deblurring and segmentation separately.
Therefore, the deblurring and segmentation are not isolated
in our ADMM framework but comprehensively interact with
each other in a sense of alternating direction. This partially
explains why the framework we exploit in our work is referred
to as the alternating direction method of multipliers in the
literature. The deblurring procedure within the ADMM is
guided to restore images in favor of accurate segmentation,
and deblurring cues also empower more effective oil spill
segmentation.

The algorithm for implementing our framework is illustrated
as Algorithm 1. Specifically, we initialize I0d by the original
image I , K0

b by an all one matrix, and φ0 by a rectangle
around one oil spill region.

Algorithm 1 Segmenting Oil Spills from Blurry Images
Based on Alternating Direction Method of Multipliers

Input: An blurry oil spill SAR image I .

I0d ← I,K0
b = ones(size(I)), φ0 = initialLSF, l0 = 1.

Kσ ← Gaussian kernel, Hε
i ← Heaviside function.

For from k = 1 until convergence: do

Solve ∂Eρ
∂Kb

= 0, update Kk+1
b based on (25).

Solve ∂Eρ
∂Id

= 0, update Ik+1
d based on (27).

Solve ∂Eρ
∂ri

= 0, calculate rk+1
i based on (29).

Solve ∂Eρ
∂φ = 0, update φk+1 based on (33).

Solve ∂Eρ
∂l = 0, update lk+1 based on (23).

End for

Output: Detected oil spill regions for I .

V. EXPERIMENTAL VALIDATION

To validate the effectiveness of the proposed ADMM frame-
work, we commence by using the SAR images with VV
polarization obtained from the NOWPAP database1, which
contain differently shaped marine oil spill regions, as our test
dataset. The images we used in the experiment are SAR images
including C-band SAR images from the ERS-1 and ERS-2
satellites, and C-band ASAR images from the Envisat satellite.
These images containing oil spills with various shapes are
captured in separate time by different sensors. We describe
the information of SAR image sources and sensor properties
in Tables I and II, where the symbol “-” indicates unavailable
information.

TABLE I: NOWPAP image descriptions.

Capture time Satellite Image cover ground

19.06.1995 02:30:40 ERS-1 394 km2

02.09.1996 02:00:55 ERS-2 17.8x106m2

20.07.1997 02:14:41 ERS-2 -

27.09.1999 02:02:05 ERS-2 -

27.09.1999 02:02:35 ERS-2 -

29.05.2000 02:02:32 ERS-2 -

15.08.2007 13:04:01 Envisat -

16.08.2007 01:16:02 Envisat -

01.09.2008 01:11:51 Envisat -

TABLE II: SAR satellite and image descriptions.

Satellite Spatial resolution Waveband Image level

ERS-1,2 SAR 30m x 30m C-band 2

Envisat ASAR 150m x 150m C-band 2

We use the region scalable fitness (RSF) level set [31] as a
baseline for comparing segmentation accuracy. The RSF level
set is one state of the art image segmentation method. We
have modified the RSF level set by incorporating the edge
preserving regularization and developed our energy functional
(20) in Section IV-B. In order to validate the effectiveness
of our framework, we conduct experiments for comparison as
follows: (a) Applying the RSF level set method directly to
blurry images and obtaining the oil spill segmentation results;
(b) First performing deblurring by minimizing (4) and then
conducting graph cuts, DRLSE (distance regularized level set
evolution) or RSF level set segmentation for obtaining the oil
spill segmentation results, (c) Operating ADMM for minimiz-
ing the proposed overall energy functional for obtaining the oil
spill segmentation results. We test different methods subject
to imposing Gaussian blur and motion blur on SAR images.
However, the blur type is totally blind to the ADMM in the
integrated deblurring and segmentation process.

1http://cearac.poi.dvo.ru/en/db/
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Fig. 3 illustrates the visual results for different segmentation
strategies subject to the Gaussian blur. Specifically, Fig. 3(a-
1) illustrates the blurry SAR images which are blurred by
an unknown Gaussian. Fig. 3(a-2) illustrates the segmentation
results obtained by applying the RSF level set method directly
to the blurry images. As the images are not deblurred before
segmentation, the oil spill segmentation results thus obtained
contain certain blurs with considerable detail loss. Fig. 3(b-
1) illustrates the deblurred results by just minimizing the
deblurring energy functional introduced in Section II-C. Figs.
3(b-2), 7(b-3) and 7(b-4) illustrate the segmentation results by
applying the graph cuts, DRLSE and RSF level set method
to the deblurred images shown in Fig. 3(b-1). It is clear that
these segmentation results preserve more details than those
shown in Fig. 3(a-2). This validates that the separate deblurring
and segmentation strategy outperforms the straightforward
segmentation strategy. However, they still exhibit differences
from the ground truth segmentation shown in Fig. 3(d). Fig.
3(c) illustrates the oil spill segmentation results from applying
our ADMM framework to the blurry SAR images in Fig. 3(a-
1). It is clear that our ADMM framework generates the most
accurate segmentation results, and outperforms the straightfor-
ward RSF level set strategy and the separate deblurring and
segmentation strategy. Additionally, the visual experimental
results subject to the motion blur are illustrated in Fig. 4,
where we observe that our ADMM method also outperforms
the alternative comparison methods.

In order to further evaluate the proposed method, in addition
to the experiments on the NOWPAP dataset, we test our
method on three airborne L-band Uninhabited Aerial Vehicle
Synthetic Aperture Radar (UAVSAR) images with HH and VV
polarization and a spatial resolution of 6 m. The experimental
results are illustrated in Figs. 5 and 6.

Furthermore, we test our method and different comparison
methods on MODIS oil spill images and the visual results
are given in Figs. 7 and 8. MODIS is not SAR and the
experimental evaluations on MODIS images validate that our
framework is not only suitable for processing SAR images
but also potentially applies to other types of remote sensing
images for segmenting oil spills.

To quantitatively evaluate the performance of
different segmentation algorithms, we compute the
recall (# correctly segmented pixels

# oil spill pixels ) and precision
(# correctly segmented pixels

# segmented pixels ) for segmentation results of
alternative comparison methods. Tables III, IV, VI and V
provide the quantitative experimental results. It is clear that
the straightforward segmentation without deblurring is the
most inferior strategy and our ADMM segmentation achieves
the highest accuracy. The quantitative experimental results
comply with the visual observations of Figs. 3, 4, 5, 6, 7 and
8.

Figs. 9 and 10 illustrate the segmentation accuracies in
terms of recall and precision for alternative methods over
50 NOWPAP SAR, UAVSAR and MODIS images containing
oil spills. Standard deviations are also marked on the top of
corresponding accuracy bars. We can see that our ADMM
framework outperforms the two comparison methods in terms

of both recall and precision with relative small standard
deviations.

To make the quantitative evaluation one step further, we
compare the convergence rates of different strategies by using
the top oil spill UAVSAR image in Fig. 6(a-1). Fig. 11
illustrates the convergence rates of different strategies with
respect to iteration numbers. Fig. 12 illustrates the convergence
rates of different strategies with respect to runtime under
Matlab 2016b implementation based on Intel(R) Core(TM)
i5-3470 CPU. We can see that our ADMM method not only
produces more accurate segmentation results but also achieves
much better convergence rate than the other two comparison
strategies. This efficiency benefits from the information ex-
change between the blurring and segmentation procedures in
ADMM, which guides the deblurring to operate in favor of
more accurate segmentation and thus enables fast convergence
to the minimum energy.

VI. CONCLUSIONS

We have described how to exploit the alternating direction
method of multipliers (ADMM) for accurately segmenting
oil spill regions in synthetic aperture radar (SAR), unin-
habited aerial vehicle synthetic aperture radar (UAVSAR)
and moderate-resolution imaging spectroradiometer (MODIS)
blurry images. Existing strategies tend to consider deblurring
and segmentation as two separate steps and the deblurring
procedure is not guided in favor of accurate segmentation.
To address this shortcoming, we have formulated images
deblurring and oil spill segmentation in one overall energy
functional, and established a linear mapping for characterizing
the deblurring and segmentation relationship. We have used
ADMM to minimize the overall energy functional. The itera-
tive updates in ADMM not only fuse information both from
deblurring and segmentation but also convey the fused infor-
mation updates for deblurring and segmentation. Therefore,
our framework is able to perform effective deblurring in favor
of accurate segmentation. Experimental results have validated
that our framework outperforms the separate deblurring and
segmentation strategy for detecting oil spill regions in blurry
NOWPAP SAR, UAVSAR and MODIS images.
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(a-1) (a-2) (b-1) (b-2) (b-3) (b-4) (c) (d)

Fig. 3: Visual results of oil spill segmentation for Gaussian blurry NOWPAP SAR images: (a-1) Gaussian blurry oil spill
images; (a-2) Straightforward segmentation results. (b-1) Deblurred images; (b-2) Oil spill segmentation of deblurred images
(graph cuts); (b-3) Oil spill segmentation of deblurred images (DRLSE); (b-4) Oil spill segmentation of deblurred images
(RSF); (c) ADMM segmentation results; (d) Ground truth.
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(a-1) (a-2) (b-1) (b-2) (b-3) (b-4) (c) (d)

Fig. 4: Visual results of oil spill segmentation for motion blurry NOWPAP SAR images: (a-1) Motion blurry oil spill images;
(a-2) Straightforward segmentation results. (b-1) Deblurred images; (b-2) Oil spill segmentation of deblurred images (graph
cuts); (b-3) Oil spill segmentation of deblurred images (DRLSE); (b-4) Oil spill segmentation of deblurred images (RSF); (c)
ADMM segmentation results; (d) Ground truth.
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(a-1) (a-2) (b-1) (b-2) (b-3) (b-4) (c) (d)

Fig. 5: Visual results of oil spill segmentation for Gaussian blurry UAVSAR images: (a-1) Gaussian blurry oil spill images;
(a-2) Straightforward segmentation results. (b-1) Deblurred images; (b-2) Oil spill segmentation of deblurred images (graph
cuts); (b-3) Oil spill segmentation of deblurred images (DRLSE); (b-4) Oil spill segmentation of deblurred images (RSF); (c)
ADMM segmentation results; (d) Ground truth.

(a-1) (a-2) (b-1) (b-2) (b-3) (b-4) (c) (d)

Fig. 6: Visual results of oil spill segmentation for motion blurry UAVSAR images: (a-1) Gaussian blurry oil spill images;
(a-2) Straightforward segmentation results. (b-1) Deblurred images; (b-2) Oil spill segmentation of deblurred images (graph
cuts); (b-3) Oil spill segmentation of deblurred images (DRLSE); (b-4) Oil spill segmentation of deblurred images (RSF); (c)
ADMM segmentation results; (d) Ground truth.
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Fig. 7: Visual results of oil spill segmentation for Gaussian blurry MODIS images: (a-1) Gaussian blurry oil spill images;
(a-2) Straightforward segmentation results. (b-1) Deblurred images; (b-2) Oil spill segmentation of deblurred images (graph
cuts); (b-3) Oil spill segmentation of deblurred images (DRLSE); (b-4) Oil spill segmentation of deblurred images (RSF); (c)
ADMM segmentation results; (d) Ground truth.

(a-1) (a-2) (b-1) (b-2) (b-3) (b-4) (c) (d)

Fig. 8: Visual results of oil spill segmentation for motion blurry MODIS images: (a-1) Gaussian blurry oil spill images; (a-2)
Straightforward segmentation results. (b-1) Deblurred images; (b-2) Oil spill segmentation of deblurred images (graph cuts);
(b-3) Oil spill segmentation of deblurred images (DRLSE); (b-4) Oil spill segmentation of deblurred images (RSF); (c) ADMM
segmentation results; (d) Ground truth.
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Fig. 9: Accuracy and standard deviation for Gaussian blurry oil spill image segmentation.

Fig. 10: Accuracy and standard deviation for motion blurry oil spill image segmentation.
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Fig. 11: Convergence rates with respect to the number of iterations. Fig. 12: Convergence rates with respect to runtime.


