
RESEARCH Open Access

Cardiovascular magnetic resonance
evaluation of symptomatic severe aortic
stenosis: association of circumferential
myocardial strain and mortality
Tarique Al Musa1, Akhlaque Uddin1, Peter P. Swoboda1, Timothy A. Fairbairn1, Laura E. Dobson1, Anvesha Singh2,
Pankaj Garg1, Christopher D. Steadman2, Bara Erhayiem1, Ananth Kidambi1, David P. Ripley1, Adam K. McDiarmid1,
Philip Haaf1, Daniel J. Blackman3, Sven Plein1,3, Gerald P. McCann2 and John P. Greenwood1,3*

Abstract

Background: It is unknown whether circumferential strain is associated with prognosis after treatment of aortic
stenosis (AS). We aimed to characterise strain in severe AS, using myocardial tagging cardiovascular magnetic
resonance (CMR), prior to and following Transcatheter Aortic Valve Implantation (TAVI) and Surgical Aortic Valve
Replacement (SAVR), and determine whether abnormalities in strain were associated with outcome.

Methods: CMR was performed pre- and 6 m post-intervention in 98 patients (52 TAVI, 46 SAVR; 77 ± 8 years) with
severe AS. TAVI patients were older (80.9 ± 6.4 vs. 73.0 ± 7.0 years, p < 0.01) with a higher STS score (2.06 ± 0.6 vs. 6.
03 ± 3.4, p < 0.001). Tagged cine images were acquired at the basal, mid and apical LV levels with a complementary
spatial modulation of magnetization (CSPAMM) pulse sequence. Circumferential strain, strain rate and rotation were
calculated using inTag© software.

Results: No significant change in basal or mid LV circumferential strain, or of diastolic strain rate, was seen
following either intervention. However, a significant and comparable decline in LV torsion and twist was observed
(SAVR: torsion 14.08 ± 8.40 vs. 7.81 ± 4.51, p < 0.001, twist 16.17 ± 7.01 vs.12.45 ± 4.78, p < 0.01; TAVI: torsion 14.43 ± 4.
66 vs. 11.20 ± 4.62, p < 0.001, twist 16.08 ± 5.36 vs. 12.36 ± 5.21, p < 0.001) which likely reflects an improvement
towards normal physiology following relief of AS. Over a maximum 6.0y follow up, there were 23 (16%) deaths
following valve intervention. On multivariable Cox analysis, baseline mid LV circumferential strain was significantly
associated with all-cause mortality (hazard ratio, 1.03; 1.01–1.05; p = 0.009) independent of age, LV ejection fraction
and STS mortality risk score. ROC analysis indicated a mid LV circumferential strain > −18.7% was associated with
significantly reduced survival.

Conclusion: TAVI and SAVR procedures are associated with comparable declines in rotational LV mechanics at 6 m,
with largely unchanged strain and strain rates. Pre-operative peak mid LV circumferential strain is associated with
post-operative mortality.

Keywords: Aortic stenosis, Transcatheter aortic valve implantation, Aortic valve replacement, Myocardial tissue
tagging
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Background
Degenerative aortic valve stenosis (AS) is the commonest
valvular disease in the western world currently affecting
3% of people over 75 years [1]. The left ventricle (LV) re-
sponds to pressure overload from aortic stenosis with
hypertrophy to offset increased wall stress, in accordance
with Laplace’s law [2]. This involves adverse remodelling
of the extracellular matrix and altered protein compos-
ition which initially leads to a regional reduction in myo-
cardial deformation, with global impairment in
contraction occurring later [3].
Myocardial strain, strain rate and twist allow more

sensitive characterisation of subtle myocardial perform-
ance [4] and can all be objectively quantified using myo-
cardial tagging CMR with proven reproducibility [5, 6].
The myocardium deforms simultaneously in 3 directions
and strain measurements can detect pathology prior to
decline in conventional indices such as ejection fraction
[7]. Patients with preserved cardiac output and severe
AS reportedly exhibit compensatory high circumferential
strain with increased apical rotation which are lost with
decompensation of LV function [8].
Current guidelines recommend aortic valve replace-

ment with the onset of symptoms or cardiac dysfunction
(LVEF < 50%) [9]. However, impaired LVEF is a late
change indicating significant myocardial damage and
poorer outcomes, even after correction of AS [10]. It is
notable LVEF is normal in most patients with severe AS,
even when symptoms develop and that valve area and
transvalvular gradients do not predict clinical outcomes
following AVR [11]. The prognostic importance of cir-
cumferential myocardial strain in particular on outcome
after treatment of aortic stenosis is unknown.
The aims of this study were to 1) characterise LV sys-

tolic and diastolic function as measured by CMR tagging
in patients with severe symptomatic aortic stenosis prior
to and following TAVI and SAVR, and 2) to assess
whether CMR measures of strain could hold prognostic
importance in those undergoing intervention.

Methods
Study population
146 patients were prospectively recruited with severe tri-
leaflet degenerative AS who were referred for either
TAVI (n = 91) or SAVR (n = 55) at the University
Hospitals of Leeds and Leicester, UK, between July 2008
and December 2013. Severe AS was classified by trans-
thoracic echocardiography (TTE) as an aortic valve area
of ≤1.0 cm2 or peak velocity >4 m/s. The decision for
TAVI or SAVR was taken by a multidisciplinary heart
team in accordance with international guidance. Higher-
risk (higher STS score) SAVR patients were recruited in
preference to ensure baseline demographics were more
comparable to the TAVI group. Exclusion criteria

included any contraindication to CMR. Five age-
comparable healthy controls were also scanned for
comparison.

Transcatheter aortic valve replacement
TAVI was performed under general anaesthesia. Either
an 18 F CoreValve Revalving system (CVR, Medtronic,
Minneapolis, Minnesota, USA) or an 18 or 20 F Lotus™
Aortic Valve system (Boston Scientific Corporation,
Natick, MA, USA) were deployed as previously de-
scribed [12, 13]. A transfemoral route was used prefer-
entially when vascular access was suitable. In the
presence of significant peripheral vascular disease, a sub-
clavian artery approach was performed. The invasively
measured LV end diastolic pressure was recorded from
procedural details.

Surgical aortic valve replacement
SAVR was performed by standard midline sternotomy
with cardiopulmonary bypass and mild hypothermia.
Biological or mechanical prostheses of varying sizes were
used according to surgical preference; concomitant cor-
onary artery bypass grafting was performed as indicated.

CMR protocol
For each patient, identical preoperative and 6 m postop-
erative scans were performed on the same 1.5 T MRI
vendor platform (Intera, Phillips Healthcare, Best,
Netherlands or Avanto, Siemens Medical Systems, Er-
langen, Germany). Both sites used the identical CMR
protocol as previously described [14]; in brief this com-
prised standard steady-state free procession pulse se-
quences to image the entire left and right ventricle,
through-plane velocity encoded phase contrast imaging
to quantify aortic valve function and late gadolinium en-
hancement imaging 10 min after the administration of
0.2 mmol/kg of gadoteric acid to assess for fibrosis.
Complementary spatial modulation of magnetisation

(CSPAMM) imaging was carried out during a single
breath hold at end expiration in the short axis orienta-
tion, at the apex, mid-, and basal LV (multishot echo
planar imaging, flip angle sweep applied to the radiofre-
quency excitation pulses of subsequent cardiac phases,
two orthogonal line tags acquired per slice, field of view:
300 mm, matrix 128 × 128, slice thickness 10 mm, tag
separation 8 mm, typically 18 phases, repetition time/
echo time [TR/TE] 30 ms/6 ms, flip angle 25°). The “3
of 5 technique” was used to minimize variation in slice
positioning between visits and has been demonstrated to
be highly reproducible [5].

Image analysis
All analysis was performed blinded off-line, using com-
mercially available software (QMass 7.5 and QFlow 7.2,
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Medis Medical Imaging Systems, Leiden, The
Netherlands). Standard ventricular and valvular assess-
ment was performed as previously described [14]. Late
gadolinium enhancement images were reviewed by two
experienced observers for focal myocardial fibrosis and
scarring (secondary to infarction) and reported qualita-
tively, as either present or absent, and then quantified
using the full-width half-maximum technique.
CSPAMM analysis was performed for each myocardial

slice using a dedicated tagging analysis package (inTag©
software, Creatis, Lyon, Fr) and an example is depicted
in an additional figure (see Additional file 1: Figure S1).
Endocardial and epicardial contours were drawn for each
slice, and a mid-myocardial contour was automatically
calculated; contours were propagated through all cardiac
phases. Strain is defined as an index that refers to the
amount of myocardial deformation in one direction nor-
malised to its initial dimension. Strain rate is the rate of
deformation within in a time unit [2, 4]. Circumferential
Lagrangian strain and strain rates (between epicardial
and endocardial contours) and rotation were calculated
for the three short axis slices. Left ventricular twist was
determined as the difference between rotation at the
apex and rotation at the base. Torsion was calculated as
twist corrected for by length and radius of the LV cavity.
Intra-observer (12 data sets 6 months apart) and inter-

observer (12 data sets) agreement was assessed using the
intra-class correlation coefficient.

Statistical analysis
Continuous variables are presented as mean ± SD.
Normality was determined by the Shapiro–Wilk test.
Frequencies are reported as number (%). The Student
t test and Wilcoxon signed rank test were used to
compare continuous variables as appropriate, and χ2
or Fisher’s exact test for categorical comparisons.
Changes over time were assessed for differences be-
tween the treatment groups and clinical variables by
two-way repeated measures analysis of variance
(ANOVA). Cox proportional-hazards ratio regression
analyses were performed to investigate univariate and
multivariate correlates of all-cause mortality. Hazard
ratios and 95% confidence intervals (CIs) were re-
ported. Variables with univariate p < 0.05 were entered
in the multivariate analysis in a stepwise forward ap-
proach. Receiver operating characteristic (ROC)
curves were constructed to assess the sensitivity and
specificity predictor variables. The cumulative event
rates were calculated on the basis of the Kaplan-
Meier method, and comparisons between groups were
assessed by log-rank test. All statistical analyses were
performed using the PASW software package (V.21.0
SPSS, IBM, Chicago, Illinois, USA) with the exception
of ROC analysis that was performed with MedCalc

version 9.3.1 (MedCalc Software, Mariakerke,
Belgium). A two-sided significance level of p < 0.05
was considered statistically significant.

Results
Ninety-eight patients (52 TAVI, 46 SAVR) with paired
pre-operative and 6 m post-operative CMR scans were
included for analysis. Reasons for non-completion of the
CMR protocol were varied and are depicted in Fig. 1. At
baseline, 15 patients did not undergo late gadolinium
enhancement (LGE) imaging due to impaired renal func-
tion. Baseline characteristics of the study population are
shown in Table 1 and grouped according to treatment
received. As expected the TAVI group were older with a
higher predicted 30 day mortality and greater frequency
of prior coronary artery intervention.

Measurement variability
Calculation of intra-class correlation coefficients indi-
cated good intra- and inter-observer reproducibility of
CMR measurements respectively: circumferential strain
(0.98, 0.96) and LV twist (0.97, 0.95).

Procedural data
Procedural data for TAVI and SAVR are summarised in
an additional file (see Additional file 2: Table S1). For
TAVI, 40(77%) patients received a Medtronic CoreValve
and 12(23%) a Boston Scientific Lotus valve. A 29 mm
valve was the most frequently used size (n = 26, 50%). In
the surgical group, six patients received a mechanical
prosthesis and the remaining 40(87%) a tissue bioprosth-
esis from various manufacturers. The modal valve size
was 23 mm (n = 17, 37%). Twelve (26%) patients re-
ceived concomitant coronary bypass grafting.

Aortic Valve Haemodynamics and LV reverse remodelling
Results of the baseline and 6 m CMR scans are shown in
Table 2. Significant reductions in peak aortic valve pres-
sure gradient resulted in comparable reverse remodelling
post-SAVR and TAVI; with reductions in both indexed
LV EDV and mass.

Measures of strain by CMR
At baseline, both groups undergoing SAVR and TAVI
had comparable LV circumferential strain of the base
(p = 0.081) mid (p = 0.128) and apex (0.318) with over-
all preserved LV ejection fraction. Similarly LV torsion
(p = 0.845) and twist (p = 0.879) were comparable be-
tween groups. However, both systolic (p = 0.039) and
diastolic (p = 0.037) strain rates were higher in the
SAVR group.
At baseline for the TAVI group, there was moderate

correlation between increasing LV end diastolic pressure
(measured invasively during TAVI implantation) and

Musa et al. Journal of Cardiovascular Magnetic Resonance  (2017) 19:13 Page 3 of 10



both a deterioration in peak basal circumferential strain
(r = 0.4, n = 33, p = 0.04, two-sided) and diastolic peak
mid-ventricular strain rate (r = −0.5, n = 33, p = 0.003,
two-sided).
No significant change in basal or mid-LV circumferen-

tial strain or of diastolic strain rate was seen following
intervention, either post-SAVR or TAVI. A significant
decline in peak apical circumferential strain following
SAVR and an increase in circumferential systolic strain
rate following TAVI were noted.
Both SAVR and TAVI were associated with a signifi-

cant and comparable decline in LV twist and torsion at
6 months following intervention (Fig. 2) consistent with
normalisation towards physiological values (Table 3).
Analysing the total severe AS patient population (n =

98), no change in LV strain at any level was seen follow-
ing aortic valve intervention (Base: −0.186 ± 0.056 vs.
−0.186 ± 0.054, p = 0.961; Mid: −0.201 ± 0.058 vs. −0.199
± 0.006, p = 0.714; Apex: −0.194 ± 0.065 vs. −0.182 ±
0.064, p = 0.05).

Predictors of mortality following intervention
Over a maximum 6.0y follow up (median 2.5 years);
there were 23 deaths (all-cause, of which 14 had com-
pleted follow-up imaging). Stepwise logistic regression
identified a number of demographics and measures of
cardiac function that were associated with mortality.
Notably, the presence of baseline myocardial fibrosis
(detected by LGE imaging), indexed LV mass, mean aor-
tic pressure gradient and history of myocardial infarction

were not significantly associated with prognosis. In
multivariate analysis, baseline mid LV circumferential
strain remained independently associated with all-cause
mortality (Table 4). ROC analysis indicated the optimal
threshold for pre-procedure mid LV circumferential
strain to be −18.7%, from which a Kaplan-Meier graph
was derived (Fig. 3).

Discussion
This prospective multicentre study has demonstrated
that in severe symptomatic AS patients with abnormal
strain and torsion, a reduction in torsion but no recov-
ery in circumferential strain is seen post-valve replace-
ment (with either TAVI or SAVR). In addition, reduced
baseline mid-LV circumferential strain was associated
with a higher post-operative mortality, independent of
age, STS predicted mortality and LVEF.
Previous studies in patients with symptomatic severe

AS and preserved LV ejection fraction have reported
uniformly reduced longitudinal strain [15–18]. Sustained
severe AS culminates in hypertrophic LV remodelling
and an elevation in LVEDP. This predisposes to suben-
docardial ischaemia and impairs longitudinal subendo-
cardial fibre contractility [19] reducing global systolic
function [20]. Our study is the first to define an inverse
relationship between invasively measured LVEDP and
CMR derived circumferential strain and diastolic strain
rate in aortic stenosis.
Higher circumferential strain in patients with pre-

served LVEF, and increased apical rotation in patients

Fig. 1 Study Profile
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with mild LV dysfunction are thought to indicate com-
pensatory mechanics serving to maintain radial strain.
These compensatory mechanisms are reduced as LV per-
formance declines (8) and their loss appears to occur at
the time of symptom onset [19] indicating their potential
use for surveillance and timing of surgery [21].
At baseline, our severe AS population had abnormally

low circumferential strain with normal twist values com-
pared with echocardiography derived reference ranges
[22]. This is indicative of failing dynamic LV compensa-
tion consistent with their symptomatic status, despite an
overall preserved LVEF. Our findings are thus a novel
contribution, distinct from prior published work [8, 23–
25], in reporting the impact of treatment in a study
population with more advanced LV dysfunction as a
consequence of severe AS.
Our study population had particularly severe indices

of AS severity and the observed reduced baseline strain
may reflect diminished coronary flow reserve [23] and
repetitive ischaemic myocardial injury [24]. Improved

valvular function following intervention is thought to
confer improved transmural myocardial perfusion and
subsequent improved LV mechanics [26] but this was
not seen in our study; neither following TAVI, SAVR, or
as a treated AS population in its entirety. It is notable
coronary heart disease is thought to blunt recovery of
myocardial mechanics following SAVR [27]. In a sub
analysis of our entire AS population excluding those
with diseased epicardial vessels, we still failed to observe
any improvement in circumferential strain at any LV
level following treatment.
Conflicting changes in LV strain rates have been re-

ported, with both improvements [17, 26, 28] and a de-
cline (25) following SAVR; and either no change [24] or
an improvement following TAVI [29]. Our study demon-
strates neither SAVR nor TAVI was associated with im-
provement of peak circumferential strain at any level, or
of diastolic strain rate. In a sub analysis of our entire AS
population excluding those with late gadolinium en-
hancement, we still failed to observe any improvement
in circumferential strain at any LV level following treat-
ment. This lack of improvement indicates a degree of ir-
reversible decompensation at baseline which may have
potential future implications for surveillance of systolic
function and timing of intervention in severe AS.
Our study provides unique insight into the assessment

of LV rotational mechanics, which remains largely unad-
dressed by previous studies; both in the context of
symptomatic AS and following aortic valve intervention.
LV torsion and twist are integral components of ven-
tricular contractility and diastolic filling [30]. Previous
CMR studies have reported changes in rotation in the
context of AS, but inferences were confounded by very
small sample sizes (largest n = 13) [31, 32]. An increase
in LV twist has been described in severe AS with pre-
served LVEF as compensation for impaired systolic lon-
gitudinal function [27]. The baseline LV twist in our
patients was notably lower than those awaiting SAVR
from published echo studies [33], again suggesting fail-
ure of compensation and a more advanced stage of dis-
ease [29].
Our study indicates that significant and comparable

reductions in both torsion and twist, similar to that re-
ported by others, occurs following SAVR [33] and TAVI
[29]. Twist is an energy saving process reflecting the hel-
ical orientation of cardiac fibres which offsets afterload
mismatch, generating high intra-cavity pressure with
minimal fibre shortening [31]. In the context of AS and
increased afterload, enhanced LV twist and torsion are
observed to preserve adequate LV filling and untwisting
[33–35]. Torsion is dependent on LV shape and falls
with declining concentric hypertrophy, representing re-
duced leverage from epicardial fibres [36]. In our study,
both TAVI and SAVR precipitated comparable reverse

Table 1 Patient characteristics and baseline echocardiographic
data

Characteristics SAVR (n = 46) TAVI (n = 52) p Value*

Age 73.0 ± 7.0 80.9 ± 6.4 <0.001

Male gender, n (%) 34 (74) 28 (54) 0.041

STS Mortality (%) 2.06 ± 0.6 6.03 ± 3.4 <0.001

BMI (kgm−2) 27.5 ± 4.4 27.0 ± 3.8 0.709

Previous MI, n (%) 6 (13) 9 (17) 0.560

Previous PCI, n (%) 1 (2) 14 (27) 0.001

Previous CABG, n (%) 1 (2) 17 (33) <0.001

Stroke/TIA, n (%) 6 (13) 8 (15) 0.742

Peripheral vascular disease, n (%) 1 (2) 10 (19) 0.008

Hypertension 32 (70) 25 (48) 0.032

Diabetes Mellitus, n (%) 7 (15) 10 (19) 0.602

Hyperlipidaemia, n (%) 23 (50) 31 (60) 0.342

COPD, n (%) 4 (9) 12 (23) 0.056

Atrial Fibrillation, n (%) 3 (7) 15 (29) 0.005

eGFR (ml/min/1.73 m2) 73.3 ± 13.8 59.8 ± 18.9 <0.001

AVA (cm2) 0.83 ± 0..46 0.59 ± 0.17 <0.001

Mean aortic valve PG (mmHg) 46.9 ± 13.4 53.2 ± 19.2 0.102

Pulmonary Hypertensiona, n (%) 7 (15) 15 (29) 0.110

ValvuloArterial Impedance (Zva) 3.73 ± 0.99 3.71 ± 1.09 0.734

Values are mean ± SD or n(%)
AVA aortic valve area, CABG coronary artery bypass grafting, eGFR estimated
glomerular filtration rate, COPD chronic obstructive pulmonary disease, MI
myocardial infarction, MPG mean pressure gradient, NYHA New York Health
Association, PCI percutaneous coronary intervention, Zva valvuloarterial
impedance (systolic arterial pressure +mean transvalvular gradient/stroke
volume index)
*p Value for comparison between TAVI and SAVR groups
aPulmonary hypertension defined as estimated pulmonary artery systolic
pressure by transthoracic echocardiography to be >35 mmHg
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LV remodelling with significant reductions in both
indexed LVEDV and LV mass. This is mechanistically
consistent with our observed decline in twist and torsion
which likely reflects an improvement in rotational me-
chanics towards more normal values.
Patients with severe aortic stenosis and reduced LV

ejection fraction carry a high risk of mortality following
both SAVR [37] and TAVI [38]. However, deteriorating
ejection fraction is a late occurrence and significant
interest remains in identifying advanced objective pre-
dictors of mortality when ejection fraction is above 50%.
This study is, to our knowledge, the first to demonstrate
circumferential strain derived by CMR is independently
associated with all-cause postoperative mortality in
symptomatic patients with severe AS and preserved
LVEF undergoing intervention.
Previous studies have hypothesised the prognostic

value of longitudinal strain in AS may reflect the im-
pact of myocardial fibrosis and provide the link to
poor outcome [39, 40]. This study has tested for an
association between myocardial fibrosis and strain
with respect to outcome, and demonstrates the

prognostic importance of circumferential strain meas-
urement is unrelated to late gadolinium enhancement.
Lower circumferential strain in severe AS is inde-
pendently associated with myocardial triglyceride ac-
cumulation [41]. It is possible this lipotoxicity, which
is undetectable using conventional LGE imaging, is
important to the link between strain and outcome.
However, our findings are not fully explicable by
myocardial steatosis which has been shown to regress
following SAVR, albeit in younger patients than our
study [41].
Based on our work, patients with severe AS, even in

the context of preserved LVEF, are at high risk for mor-
tality when baseline mid-LV circumferential strain is >
−18.7%. It is noteworthy this association occurs despite
the relief of index aortic stenosis with SAVR or TAVI,
and thus these patients in particular may benefit from
greater scrutiny in follow-up. Measurement of circum-
ferential strain using CMR is a non-invasive and repro-
ducible modality by which a single, breath-held
acquisition can potentially provide prognostic informa-
tion independent of age, LVEF and surgical risk score.

Table 2 Preoperative baseline measurements and postoperative changes in the separate procedural groups

SAVR TAVI p Value†

Baseline 6 months Baseline 6 months

Haemodynamics

Heart Rate (bpm) 63 ± 9 64 ± 12 67 ± 12 68 ± 15 0.952

Systolic BP (mmHg) 136 ± 21 133 ± 20 133 ± 25 137 ± 23 0.200

Diastolic BP (mmHg) 75 ± 10 72 ± 11 66 ± 10 65 ± 9 0.265

Valvular Function

Aortic Peak PG (mmHg)†† 52 ± 18 30 ± 13*** 52 ± 16 22 ± 13*** 0.072

Aortic Regurgitant Fraction (%) 19 ± 16 10 ± 11* 16 ± 11 9 ± 7** 0.936

MR fraction (%) 20 ± 18 8 ± 10** 26 ± 16 16 ± 16** 0.514

Left Ventricle

EDVI (ml/m2) 94 ± 25 76 ± 13*** 94 ± 21 88 ± 20** 0.023

LVEF (%) 58 ± 12 61 ± 11* 52 ± 11 54 ± 11 0.403

Mass Index (g/m2) 76 ± 22 61 ± 16*** 79 ± 21 66 ± 18*** 0.691

LVM/LVEDV (g/ml) 0.82 ± 0.2 0.81 ± 0.2 0.86 ± 0.2 0.77 ± 0.2*** 0.041

Peak Circumferential strain

Base (%) −19.8 ± 5.2 −18.6 ± 4.9 −17.6 ± 5.8 −18.5 ± 5.8 0.03

Mid (%) −21.1 ± 5.3 −20.0 ± 4.3 −19.3 ± 6.1 −19.8 ± 6.5 0.158

Apex (%) −20.0 ± 6.4 −17.5 ± 6.8** −18.8 ± 6.7 −18.8 ± 6.0 0.054

Peak mid-ventricular strain rate

Systolic (S−1) −0.032 ± 0.010 −0.034 ± 0.009 −0.029 ± 0.008 −0.032 ± 0.007** 0.188

Diastolic (S−1) 0.028 ± 0.016 0.028 ± 0.018 0.022 ± 0.015 0.023 ± 0.014 0.653

LV torsion 14.08 ± 8.40 7.81 ± 4.51*** 14.43 ± 4.66 11.20 ± 4.62*** 0.094

LV twist (°) 16.17 ± 7.01 12.45 ± 4.78** 16.08 ± 5.36 12.36 ± 5.21*** 0.999
†Independent samples t-test to compare degree of change seen following SAVR with that seen following TAVI. Paired t test of baseline Vs 6 months: *p < 0.05,
**p < 0.01, ***p < 0.001
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Limitations
Our study population included patients with coronary
artery disease and hypertension, rather than being re-
stricted to pure aortic stenosis. This is however, general-
isable to real world clinical practise and reduces the
effect of selection bias. CMR assessment of cardiac rota-
tional mechanics is sensitive to atrial fibrillation and re-
gional wall motion abnormalities which can impair
image quality. However, our quantification of strain
using myocardial tagging CMR has demonstrated good
reproducibility [5].
The control group comprised only 5 patients and ideally

a larger sample would have facilitated a more robust com-
parison. There is paucity in the literature in regards to
normal CMR strain ranges particularly in patients aged
80 years and above as it is challenging to recruit volun-
teers with structurally normal hearts from this age group.
Our study population size is small with relatively few

events carrying a risk of potential statistical over fitting.

Also, we have reported all-cause mortality rather than
cardiac mortality. Thus our findings need to be viewed
with caution and validated in larger outcome studies.
The regression analysis was aimed at identifying factors
associated with persistently poor outcomes after aortic
stenosis has already been relieved; thus our results relate
to a specific patient population and should not be over-
generalised. Finally, we only enrolled patients with
symptomatic aortic stenosis and further work is required
to determine whether the prognostic importance of
strain assessment can be extended to those who are
asymptomatic; and thus potentially influence surgical
timing.

Conclusions
Patients with symptomatic severe AS and preserved
LVEF undergoing aortic valve intervention have reduced
peak circumferential strain and systolic strain rates. At
6 m, TAVI and SAVR procedures were associated with

Fig. 2 Change in twist and mid-LV circumferential strain. Twist pre and post-SAVR (a) and pre and post-TAVI (b). Circumferential strain pre and
post-SAVR (c) and pre and post-TAVI (d)

Table 3 Comparison of 6 month strain values following SAVR and TAVI with those from a healthy control group

Control (n = 5) SAVR 6 m (n = 46) p Value TAVI 6 m (n = 52) p Value

Age (years) 72.6 ± 1.7 73.0 ± 7.0 0.769 80.9 ± 6.4 0.001

LVEF (%) 62.1 ± 6.0 61.1 ± 10.7 0.847 53.8 ± 10.5 0.092

LVMI (g/m2) 38.0 ± 7.1 60.8 ± 15.8 0.003 66.4 ± 17.9 0.001

LV torsion 12.58 ± 2.12 8.09 ± 4.85 0.047 11.20 ± 4.62 0.515

LV twist (°) 14.24 ± 2.58 12.68 ± 4.96 0.495 12.36 ± 5.21 0.432
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Table 4 Cox proportional hazard analysis for prediction of all-cause death following valve intervention

Variable Univariate analysis Multivariate analyisis

Hazard ratio (95% CI) p-Value Hazard ratio (95% CI) p-Value

Age (per year) 1.125 (1.043–1.215) 0.002 1.084 (0.935–1.256) 0.286

STS score (per %) 1.238 (1.037–1.477) 0.018 1.365 (0.943–1.976) 0.099

eGFR (per ml/min/1.73 m2) 0.963 (0.936–0.991) 0.010 0.988 (0.947–1.053) 0.953

Baseline Mid LV CS (per %) 1.016 (1.007–1.024) 0.001 1.029 (1.007–1.052) 0.009

Baseline LVEF (per %) 0.962 (0.926–0.999) 0.046 1.031 (0.949–1.119) 0.473

TAVI procedure 3.776 (1.283–11.109) 0.016 0.397 (0.043–3.646) 0.414

Myocardial Fibrosis (LGE + ve) 1.670 (0.615–4.541) 0.315 - -

Baseline LVMI 1.014 (0.993–1.035) 0.189 - -

History of MI 0.611 (0.148–2.516) 0.495 - -

Mean Aortic PG 1.018 (0.91–1.046) 0.182 - -

Indexed LA volume 1.012 (0.982–1.043) 0.428 - -

LV mass:volume ratio 8.051 (0.332–195.380) 0.200 - -

Zva 1.788 (0.847–3.778) 0.128 - -

BMI 1.211 (0.990–1.482) 0.062 - -

Diabetes Mellitus 1.119 (0.162–7.744) 0.909 - -

Hyperlipidaemia 1.795 (0.396–8.138) 0.448 - -

Hypertension 0.578 (0.112–2.994) 0.514 - -

Previous MI 0.960 (0.136–6.778) 0.967 - -

Previous PCI 0.733 (0.101–5.305) 0.758 - -

Previous CABG 0.243 (0.043–1.385) 0.111 - -

Atrial Fibrillation 0.980 (0.144–6.673) 0.984 - -

Stroke/TIA 0.742 (0.069–7.960) 0.805 - -

Peripheral Vascular Disease 1.589 (0.145–17.400) 0.705 - -

COPD 0.907 (0.125–6.586) 0.924 - -

Pulmonary Hypertension 0.692 (0.112–4.267) 0.692 - -

Fig. 3 a ROC curve for baseline mid LV circumferential strain showing optimal discrimination value (−18.69%) and an AUC of 0.74. b Kaplan-Meier
survival curves for AS patients undergoing valve intervention stratified by mid LV circumferential strain more positive than −18.7% (n = 67, green)
or more negative than −18.7% (n = 40, blue). AUC: area under curve, CI: confidence interval
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comparable declines in rotational LV mechanics, with
largely unchanged strain and strain rates. Pre-operative
peak mid LV circumferential strain was associated with
post-operative total mortality and requires further inves-
tigation as to its use as a risk stratification tool.
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