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Abstract

The potential of using multi-frequency Synthetic Aperture Radar (SAR) for land cover
classification is becoming a reality, with multiple SAR satellites utilising different
frequencies currently in orbit and more missions planned for the future. This study looks
at combining SAR frequencies from L-band (ALOS PALSAR), C-band (ENVISAT ASAR) and
X-band (TerraSAR-X) to find the optimum combination of the SAR data for land cover
classification of forested and semi-arid ecoregions in Africa. The study site for forested
areas is in Cameroon and the semi-arid study site is in Tanzania. Data from both the wet
and dry seasons are available. Random forest models, with different combinations of
input variables, are compared. Models with the top 30 variables are chosen from the
mean decrease accuracy and mean decrease Gini variable importance measures, and
compared with the classification accuracies using support vector machines. Some of the
findings are that L-band is the best single frequency for land cover classifications for
both ecoregions, with X-band the best single frequency if only forested regions are
considered. Texture measures lead to an increase of between 15-25% overall
classification accuracy compared to using only backscatter coefficients. The
recommended dual-frequency combination are LX-bands, although L-band data give
overall classification accuracies very close to LX-bands. The use of images from LCX data
only marginally improves the classification accuracy from LX-images and L-band images.
The benefit from acquisition of all three frequencies would therefore rarely outweigh
the cost of acquiring and processing data from all three frequencies. The transferability
of the random forest models to an additional geographic site did not produce
satisfactory results, however the transferability of the random forest models to
additional season data did give satisfactory results. The Kullback-Leibler divergence class
difference measure showed potential to give an indication of transferability of the
models, although refinement remains necessary.
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Chapter One Introduction

This chapter presents an overview of the thesis and sets an outline of the structure and
flow of the document. A brief history of Synthetic Aperture Radar (SAR) satellites is
presented to introduce the context of multi-frequency SAR, classification algorithms,
land cover classification of Africa and the relevance of this thesis to the Copernicus

programme.

1.1 Overview

The knowledge of land cover and land cover change is important for a wide variety of
applications and is being used by government departments, non-governmental
organisations and private institutions to make decisions regarding planning for land
resource management, conservation, biodiversity management and climate change, to
name a few. Land cover is on the list of essential climate variables (ECV) that need to be
monitored to assess the state of climate change as defined by the Global Climate
Observing System (GCOS) in support of the United Nations Framework Convention on
Climate Change (UNFCCC) and the International Panel on Climate Change (IPCC) (GCQOS,
2010). Biomass and burnt area are two more ECVs related to land cover. Biomass in
forests is a great store of carbon, and therefore monitoring of any deforestation can be
used to account for carbon released into the atmosphere (Le Toan et al., 2011). Other
uses of land cover and land cover change are: landscape ecology and the impacts of land
cover change on biodiversity and ecosystems (Newton et al., 2009; Duro et al., 2007),
conservation monitoring (Nagendra et al.,, 2013), mangrove forests monitoring
(Heumann, 2011), desertification and water erosion (Albalawi and Kumar, 2013;
Vrieling, 2006), agriculture and horticulture-intensive farming (Cotlier et al., 2011),
wetlands monitoring (White et al., 2015; Evans and Costa, 2013) and emergency
management (Joyce et al., 2009; Voigt, 2011). This is just an extract of the wide

application area of land cover maps and land cover change maps used by scientists,



organisations and governments to make informed decisions ranging from the local

environment to the global climate.

A big challenge for remote sensing remains to be cloud cover in many regions of the
world. This is one of the main benefits of Synthetic Aperture Radar (SAR) as opposed to
from optical remote sensing satellites: the ability to acquire data in any weather
condition, and during the day and night. This is especially the case for regions with
regular cloud cover (Kuntz, 2010), and during and after stormy weather associated with
certain emergency response situations (Voigt et al., 2007). In addition to using single
frequency SAR data for land cover classification, multi-frequency SAR have been
investigated in a handful of studies (Li et al., 2012; Turkar et al., 2012). Turkar et al.
(2012) showed very high classification accuracies of land cover classes in an area of
Mumbai, India, using fully polarimetric, multi-frequency SAR. Peng et al. (2005) has
shown that the addition of texture measures and elevation data can improve the land
cover classification accuracies significantly. The use of ensemble classifiers, including
random forests is shown to be by Waske and Braun (2009), to be successful to classify

multi-temporal SAR images.

SAR satellites have been in orbit since the late 1970s. SEASAT, an L-band horizontally
transmitted and horizontally received (HH) polarization SAR sensor, was the first civilian
SAR mission from the United States, and operated for three months during 1978. Since
then several missions followed during the 1980s with the SIR-A and SIR-B (both L-band,
HH-polarization) Space Shuttle missions in 1981 and 1984 acquiring data in orbit for 2.5
days and 8 days respectively. At the time Russia was also an active contender and
operated Kosmos 1870 (S-band, HH polarization) in 1987 and Almaz (S-band, HH-
polarization) in 1991. Since 1991 more international participants joined in with the
launch of several SAR satellites. In 1991 the European Remote Sensing satellite, ERS-1,
a C-band vertically transmitted and vertically received (VV) polarization SAR sensor was
launched, with the Japanese Earth Resources Satellite, J-ERS-1 (L-band, HH polarization)
in 1992 (Lewis et al., 1998).



During April and October 1994 a ground-breaking mission, SIR-C / X-SAR was undertaken
to obtain simultaneous measurements from L, C (quad-polarization, i.e. HH, HV, VH, VV)
and X-band SAR (VV polarization) from the Space Shuttle. SIR-C / X-SAR was a
collaboration between National Aeronautics and Space Administration (NASA)'s Jet
Propulsion Laboratory (JPL) of the United States, the German Aerospace Center (DLR,
Deutsches Zentrum fiir Luft- und Raumfahrt) and the Italian Space Agency (ASI, Agenzia
Spaziale Italiana). JPL managed the L- and X-band SAR and the DLR and ASI managed the
X-band SAR (Lewis et al., 1998). This was the first time that L-, C- and X-band images
were obtained simultaneously from space and the potential of a multi-frequency SAR
system was realised. The potential to use multi-frequency SAR for land cover
classification was recognised and several studies were undertaken by the researchers
involved. Some very high classification accuracies (90%+) were found for their Michigan
test site (Pierce et al., 1995), using a knowledge-based hierarchical classifier. Classes
used were flat areas, short vegetation and tall vegetation, with tall vegetation split into
upland conifers, lowland conifers and deciduous trees. Other studies found more
varying classification accuracy results, varying from 17% for rapeseed, 51% for built-up
areas, 84% for winter cereals and open soil combined, 72% for meadows and 93% for
forests (Stolz and Mauser, 1995). Classification accuracies using both the April and
October data from SIR-C / X-SAR were found to give very high accuracies (90%+, with
higher class-specific accuracies) using multi-temporal land cover classification (Pierce et

al., 1998).

Since the SIR-C / X-SAR mission, several SAR missions have been put in orbit during the
1990s. Both ERS-2 (C-band, VV polarization) from the European Space Agency (ESA) and
RADARSAT-1 (C-band, HH polarization) from Canada were launched in 1995 (Lewis et al.,
1998) and ESA’s Environmental Satellite, ENVISAT (C-band, VV+HH polarization) in 2002.
ENVISAT was a remarkable satellite and the largest and most likely the most complex
satellite built in Europe to date (Louet and Bruzzi, 1999). ENVISAT was a scientific
mission, weighed 8000kg and had 10 instruments on board, including the Advanced
Synthetic Aperture Radar (ASAR) instrument (Desnos et al., 2000). ENVISAT acquired

data for over ten years, which was in excess of its design lifetime of 5 years, until



communication to the satellite was lost on 8 April 2012 (ESA, 2012a). Similar to ENVISAT,
RADARSAT-1 outlived its design lifetime by many years. Its design lifetime was also 5
years, but the mission continued for 17 years. The RADARSAT-1 mission was ended in
May 2013, when a technical anomaly was detected (Mahmood, 2015). In 2007
RADARSAT-2 (C-band, quad-polarization) was launched and is still active at the time of
writing in mid-2015. RADARSAT-2 is an operational commercial satellite run by the
private sector, with a large focus on sea-ice monitoring (Morena et al., 2004; Flett et al.,

2008).

In addition to the satellites mentioned in the previous paragraph, which are all C-band
satellites (ERS-2, ENVISAT, RADARSAT-1, RADARSAT-2), X-band and L-band SAR satellites
were also launched during the mid-2000s. In 2006, the Japanese Aerospace Exploration
Agency (JAXA) launched the Advanced Land Observing Satellite (ALOS), with three
sensors, including the Phased Array type L-band Synthetic Aperture Radar (PALSAR) (L-
band, with quad-polarisation capability) (JAXA, 2006). The ALOS mission was ended by
JAXA on 12 May 2011, when it developed a power generation anomaly after five years
of operation. TerraSAR-X (X-band, HH, VV, HV, VH) was launched in June 2007 by the
DLR in a public-private partnership with Airbus Defence and Space, which at the time
was European Aeronautic Defence and Space Company (EADS) Astrium (Werninghaus
and Buckreuss, 2010). At the same time, between June 2007 and 2010 ASI launched the
COnstellation of small Satellites for Mediterranean basin Observatory (COSMO-Skymed)

which is a constellation of four X-band SAR satellites.

This means that for the window period between June 2007 and May 2011, SAR satellites
were acquiring images from L-band, C-band and X-band SAR sensors. This was for the
first time since the SIR-C / X-SAR mission in 1994 that all three SAR frequencies were
acquired at the same time from space. However, each SAR satellite had its own mission
objectives and the acquisitions were not coordinated as a multi-frequency mission. It
did create a scenario where high resolution images were acquired from all three
frequencies for the same geographic area and relatively close in time (within the same

season) for several places around the world.



In 1998 the European Space Agency (ESA), the European Commission (EC), the European
Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the main
European national space agencies met to establish a European-wide Earth Observation
programme which came to be known as Global Monitoring for Environment and Security
(GMES) (Aschbacher and Milagro-Pérez, 2012). In 2007 the Resolution on the European
Space Policy (EU 4th Space Council, 2007) was adopted in the Lisbon Treaty (EU Lisbon
Treaty, 2007) and GMES and Galileo were acknowledged as the two flagship
programmes of the newly adopted policy (EC COM, 2007). Galileo is the European
contribution to the Global Navigation Satellite System (GNSS), similar to the Global
Positioning System (GPS) owned by the United States and GLObal NAvigation Satellite
System (GLONASS), owned by Russia (Flament, 2004).

Funding for GMES Initial Operations (GIO) was provided by the 6™ and 7" Framework
Programmes of the European Union (EU). This included funding to build the first series
of satellites which will provide satellite imagery for operational use, known as the
Sentinel satellites. The period from 2011-2013 was the GIO phase and in May 2013
GMES was renamed Copernicus (European Commission, 2013). The Copernicus
programme will provide six services, namely the Land Monitoring service, Marine
service, Atmosphere service, Emergency Management service, Security Support service
and Climate Change service. Of these services the Land Monitoring service

(http://land.copernicus.eu) and Emergency Management service

(http://emergency.copernicus.eu) are in operational phase and with funding secured for

2014-2020. All six services should become operational within the next few years

(European Commission, 2013).

The first of the Sentinel satellites, Sentinel 1A, is a C-band dual-polarisation (HH+HV,
VV+VH) SAR satellite and was successfully launched on 3 April 2014. Sentinel 1 will be
used for both the Land Monitoring and the Emergency Management Copernicus services
(Torres et al., 2012). In current land cover and emergency management applications,
most SAR applications focus on using single frequency applications, but the possibility

of using information from more than one SAR sensor, and therefore more than one


http://land.copernicus.eu/
http://emergency.copernicus.eu/

frequency has not been fully investigated. There are currently many SAR missions
planned for the next 5-10 years for different SAR frequencies. As mentioned, Sentinel 1
(C-band) was launched on 4 April 2014 with data available from 3 October 2014 (ESA,
2014). The Japanese Advanced Land Observing Satellite-2 (ALOS-2) (L-band) was
launched on 24 May 2014 (JAXA, 2014b), with data available from 25 November 2014
(JAXA, 2014a). Other SAR satellites that are being developed are TerraSAR-X2 (X-band)
(Janoth et al., 2012), NovaSAR-S (S-band) (SSTL, 2011) and BIOMASS (P-band) (Le Toan
et al., 2011), to name a few, and the trend seems set to continue in the foreseeable
future. This means that from 25 November 2014, multi-frequency SAR is again available
by combining images from several SAR satellites, and the opportunity to utilise multi-

frequency SAR from L-, C- and X-band frequencies is reinstated.

The African continent is a relevant geographic context for the emergency response
management services, such as the Copernicus Emergency Management service. To
investigate the use of multi-frequency SAR data for land cover classification for the
forested and semi-arid ecoregions, the data archive of TerraSAR-X of the African
continent was first queried. Secondly, archive data from the Environmental Satellite
(ENVISAT) Advanced Synthetic Aperture Radar (ASAR) and ALOS Phased Array L-band
Synthetic Aperture Radar (PALSAR) were overlayed over the available TerraSAR-X
images. The number of images from the archives of TerraSAR-X, ENVISAT ASAR and ALOS
PALSAR for the year 2010 are shown in Figure 1.1. Starting with the TerraSAR-X images,
areas where the images overlap geographically and close in time were selected, based
on data availability in the respective archives. As a result, study sites representing
forested ecoregions were identified in Cameroon and the Democratic Republic of the
Congo (DRC), and study sites representing semi-arid ecoregions were identified in
Tanzania and Chad (see Section 3.1 and 3.2 for a detailed description of the study sites).
For both the semi-arid and forested sites, data are available for the wet and dry seasons,
which were identified using rainfall data obtained from the Famine Early Warning

Systems Network (www.fews.net).
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Figure 1.1 Availablity of SAR data from ALOS PALSAR, ENVISAT ASAR and TerraSAR-X for the full year of 2010 over the African continent.



1.2

Hypotheses for the thesis

The overall objective of this study is to enhance current available land cover

classification techniques to classify landscapes and quantify change, regardless of what

data is used. Within this context of available multi-frequency SAR data, to address this

overall objective, the following hypotheses are tested in this thesis:

1a.

1b.

Multi-frequency SAR images provide a higher classification accuracy than single

frequency SAR for land cover classification.

Random forest classification algorithm gives higher classification accuracies

than the support vector machine algorithm.

To test these hypotheses, combinations of single, dual and three frequencies are
compared for:
a. The forested ecoregion wet and dry season images.

b. The semi-arid ecoregion wet and dry season images.

Features that are calculated in addition to the SAR backscatter coefficient images
are:

e Interchannel ratios

e Texture measures

e Elevation data

Classification accuracy results of support vector machine (SVM) models are
compared to the random forest models, using the variables selected by the

random forest model.

The SAR models are tranferable between different seasons of the same site, and

to different sites of similar ecoregions.



To test this hypothesis, the classification accuracies are compared for the:
a. Forested ecoregion:
e Sitel wet vs dry season images.
e Sitel wet vs site2 wet season images.
b. Semi-arid ecoregion:
e Sijtel dry vs wet season images.

e Sitel dry vs site2 dry season images.

3. The land cover classes are similar between different seasons, and similar

between different sites of the same ecoregion.

To test this hypothesis, the SAR signatures of land cover classes are compared,
both visually and with a statistical separability measure, for the:
a. Forested ecoregion:
e Sitel wet vs dry season images.
o Sijtel wet vs site2 wet season images.
b. Semi-arid ecoregion:
e Sitel dry vs wet season images.

e Sijtel dry vs site2 dry season images.

By testing these hypotheses, the use of multi-frequency SAR are tested as a viable
classification strategy to classify images in regions that would otherwise be affected by
cloud cover. Testing hypothesis 1a, a comparison will be done for single (L-, C-, X-band),
double (LC, LX, CX-bands) and all three frequencies (LCX-bands). This will create a set of
recommendations as to which frequency or frequency combinations are most suitable
for forested and semi-arid ecoregions, as well for the wet and dry seasons for both
ecoregions. Testing hypothesis 1b will result in a comparison between random forest
modelling and SVM modelling, for the multi-frequency SAR data of the forested and

semi-arid ecoregions.



By addressing hypothesis 2, a guideline will be esatablished as to whether these models
can be transferred between seasons and to additional sites. This is crucial for
applications such as emergency response management monitoring, where the
transferability of models can improve the response time and enable the application of a

model developed for a certain region and season to another region or season.

By testing hypothesis 3, a fundamental question will be answered with the regards to
the SAR signature and how different the SAR signal are between the wet and dry
seaseons, and between the main and additional sites for both the forested and semi-

arid ecoregions.

1.3 Thesis outline

For clarity of the overall flow between the different chapters and the three hypotheses,
this research project is shown as a schematic diagram (Figure 1.2). This is similar to a
Cross Industry Standard Process for Data Mining (CRISP-DM) project (Sharma et al.,
2012; Piatetsky-Shapiro, 2007). First the context is set and the literature review given in
Chapter Two. Chapter Three explains the the data availability and the chosen study sites.
Chapter Four lists the data preparation steps, land cover class identification and sample
selection for each of the study sites. The data preparation includes the additional data

feature calculations of interchannel ratios, texture measures and elevation data.

Chapter Five addresses the first hypothesis of comparing multi-frequency SAR vs single
frequency SAR for land cover classification. In the same chapter the random forest
algorighm is compared to the SVM algorithm. The challenge quickly becomes a multi-
dimensional problem, which is well handled by machine learning algorithms in the field
of data mining. The machine learning algorithms compared in this research were
random forests (Breiman, 2001) and SVMs (Cortes and Vapnik, 1995). The random forest
algorithm, as implemented in the randomForest package in R (Liaw and Wiener, 2002),
gives measures of variable importance as part of its output. This allows the researcher

to select a smaller set of variables with possibly only a marginal decrease in classification

10



accuracy. The approach in this research is to first develop a model, using all the input
variables for several scenarios. The scenarios include single frequencies (L vs C vs X),
compared with two frequencies (LC, LX and CX) and then with using all the data available
(LCX). Using the variable importance measures from the random forest model, a smaller
set of variables is chosen to have a more agile model. This smaller set of variables,
containing the variables that carry the largest weight in the random forest model, is then
used to train an SVM model. The classification accuracy results are then compared
between the random forest and SVM models. In this comparison the classification
algorithm that gives the highest classification accuracy result is then selected for each

of the semi-arid (wet vs dry) and forested (wet vs dry) scenarios.
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Q1: RF vs SVM multi-frequency SAR
classification algorithm?

Q2: Transferability of models
between different sites?

Q3: SAR signatures?

Q1: RF vs SVM multi-frequency SAR
classification algorithm?

Q2: Transferability of models
between different sites?

Q3: SAR signatures ?

<

Figure 1.2 Schematic overview of this research in terms of the Cross Industry Standard Process for Data Mining.

12



Chapter Six addresses the second hypothesis to test the transferability of the models to
a different season, for the same study site, and to a different sit location. This is done
for both the forested and semi-arid ecoregions. The second hypothesis looks into the
transferability of the random forest model for each of the semi-arid (wet vs dry) and
forested (wet vs dry) landscape scenarios. This is a crucial part of the research project,
since many studies often only focus on one study site, resulting in the classification
model being study site specific, and possibly overtrained. The intention is to assess
whether the classification models generalize well enough to be used on another set of

input images from semi-arid or forested areas within Africa.

Chapter Seven addresses the third hypothesis, to test how different the SAR response is
for the wet and dry seasons, and for different sites for both the forested and semi-arid
ecoregions. The statistical distributions of each of the SAR backscatter coefficient
channels and derived information layers (interchannel ratios, texture measures and
elevation data) for each land cover class are visually compared. This is done for the
training vs test data, inter-season and inter-site comparison for both the forested and
semi-arid study sites. Apart from the visual comparison of the statistical distributions of
the land cover classes, the Kullback-Leibler divergence (KLD) separability index measure
are also compared for the backscatter coefficients and most prominent texture
measures. From the KLD measures a KLD class difference measure is derived, and the
relation between this newly derived KLD class difference measure and the user’s
accuracy from a random forest model using the same input variables are assessed. This
will therefore address the hypothesis of how separable the SAR signatures of different

land cover types are for the different landscape scenarios.

Finally Chapter Eight gives an overall discussion and conclusion, identification of further
work and a future view. With the identification of which frequencies and derived feature
layers separate each land cover class from the other land cover classes most effectively,
and with a set of classification algorithms for each landscape scenario,
recommendations are made for a possible monitoring mission of a constellation of

multi-frequency SAR satellites aimed at land cover monitoring and emergency response
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situations across Africa and other regions around the world with similar semi-arid and

forested landscapes.

A selection of the computer code used for this research are shown in the Appendices.
The scripts to orthorectify the SAR images are given in Appendix One (GAMMA
orthorectification scripts). The scripts to calculate the additional information layers of
interchannel ratios, texture measures and elevation data; and creating an overlay and
layer stack of the images are given in Appendix Two (GDAL scripts to create image
overlay). The scripts to do the R modelling and plotting graphs are given in Appendix

Three (R modelling and Graphing scripts).
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Chapter Two Literature review on multi-frequency SAR land

cover classification

In Europe, the main land cover mapping initiative is the Coordination of Information on
the Environment (CORINE) Land Cover project that was initiated in 1985 and is
periodically produced by the European Environment Information and Observation
Network (EIONET) National Reference Centres (NRCs) for Land Cover and coordinated
by the European Environment Agency (EEA). The CORINE Land Cover (CLC) maps
produced so far are CLC1990, CLC2000 and CLC2006, with CLC2012 in the process of
being completed. As part of the CLC maps, Land Cover Change (LCC) maps are also
produced, resulting in LCC1990-2000, LCC2000-2006 and LCC2006-2012 (EEA, 2007,
2015). The CLC as well as other similar mapping initiatives around the world, uses images
from multi-spectral optical sensors such as Landsat, SPOT, RapidEye or similar sensors
with spatial resolution varying from 5-30m. For the CLC project the minimum mapping
unit is 25ha and minimum width of 100m. All changes greater than 5ha are mapped on

the LCC maps (EEA, 2015).

The strengths of the CLC approach to creating land cover maps are that it is well
coordinated and produced by the EEA, and that there are regional experts partaking in
the validation of the land cover maps from each country involved. However, this
resolution of land cover mapping is not readily available, for a large portion of the world.
There are a collection of global land cover products available, but they are at a much
coarser resolution. The Global Land Cover database for the year 2000 (GLC2000) used
SPOT VEGETATION data at 1km spatial resolution (Bartholomé and Belward, 2005),
GLOBCOVER using Medium Resolution Imaging Spectrometer (MERIS) data from
ENVISAT at 300m (Arino et al., 2008) and the Modis global land cover product at 500m

spatial resolution (Friedl et al., 2010).

One shortcoming of this approach is that it requires a huge amount of time and effort

to produce and validate these land cover maps. CLC maps are currently produced every
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6 years, even though the map production time has been reduced from 10 years to 2
years (EEA, 2015). Another shortcoming of using optical images for land cover
classification is that it is difficult to obtain multiple clear and cloud-free optical images
throughout the year for some regions of the world. This is particularly so in the tropical
regions (Asner, 2001; Wylie et al., 2005), but also for some higher latitude regions (Ju
and Roy, 2008; Armitage et al., 2013). One of the main advantages of SAR, over optical
images, is that the SAR images can be acquired in any weather condition, and is

therefore largely unaffected by cloud cover (Kuntz, 2010).

Two areas of research are therefore identified to improve the land cover classification
process: the development of a more automated process to not be reliant on this
intensive manual process, and the use of SAR images to eliminate the dependence on
utilising only cloud-free images (Kuntz, 2010). Utilising SAR is furthermore of particular
interest to emergency response situations when images are needed quickly, and where
the areas affected are often in stormy environments with overcast cloud conditions

(Voigt et al., 2007; Covella et al., 2010).

Several studies have been done to use SAR for land cover classification. Most of the
studies look at single-frequency SAR applications (McNairn and Brisco, 2004; Rosenqvist
and De Grandi, 2009; Longepe et al., 2010; Marti-Cardona et al., 2010; Li et al., 2012). A
detailed comparison of optimal SAR parameters for various application disciplines are
given in (Schmullius and Evans, 1997). Schmullius and Evans (1997) found that each

frequency and polarisation has its strengths for specific applications.

To maintain a sustainable change monitoring approach, a systematic acquisition
strategy is needed. A systematic acquisition strategy is when images are acquired every
set number of days for a specific location. This enables the monitoring of changes for
these locations. Examples of satellite sensors that follow a systematic acquitision
strategy are Landsat and Sentinel 1. The Landsat is an optical sensor which acquires
images continuously, resulting in a revisit time of every 16 days. The latest Landsat

satellite is Landsat 8, and builds on 30-40 years of systematic data acquisition from the
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Landsat programme. Sentinel 1 is a C-band SAR sensor, and acquires images
continuously, with a revisit time of every 12 days around the globe. Sentinel 1B will
compliment Sentinel 1A, allowing a revisit time for the Sentinel 1 constellation of every
6 days. A systematic acquisition strategy is important for applications such as monitoring
deforestation. This allows for the monitoring of very large areas, such as the whole
Amazon rainforest, or the Congo basin in Africa. This enables a regular acquisition of a
specific location, and allows for the building up of a set of historical data that would not

be available if data was only selected irregularly.

Some research papers focused on using full quad-polarimetric images, which allow for
polarimetric processing of the images (Ainsworth et al., 2009; Qi et al., 2010; Moran et
al., 2012). This current research excludes the full polarimetric processing, since it is not
readily available on all SAR systems, and is a focus area in its own right. Any interchannel
ratios from available dual-polarimetric images are included in this research. Another
aspect of SAR is the ability to perform interferometric calculations between two images.
This is usually used for displacement mapping such as earthquakes and landslides
(Metternicht et al., 2005; Joyce et al., 2009). Interferometric processing has been
applied to land cover mapping (Strozzi et al., 2000; Okhimamhe, 2003) though any

interferometric processing is excluded from this research.

Studies conducted using the multi-frequency SAR images from the SIR-C / X-SAR shuttle
mission in 1994 showed the potential of utilising multi-frequency SAR for land cover
classification (Pierce et al., 1995, 1998). Multi-frequency SAR applications have been
studied from airborne sensors and are of particular interest to the current study,
because the SAR signals from multiple frequencies can be acquired concurrently. There
have been several airborne multi-frequency campaigns, such as the NASA / JPL AirSAR
(Quegan et al., 2003; Lucas et al., 2006) the DLR’s E-SAR (Rowland et al., 2008), and the
latest F-SAR multi-frequency SAR airborne campaign (Horn et al., 2009). The F-SAR
instrument enables the simultaneous capturing of P-, L-, C- and X-band images. For a
multi-frequency system, this would be the ideal scenario, however this would be limited

to airborne instruments. The global reach of satellite missions for a multi-frequency SAR
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setup is still currently lacking. Therefore, to make use of multi-frequency SAR
measurements, one presently needs to combine measurements from multiple sensors

on different satellites.

Recently, more studies have looked at the use of multi-frequency SAR for land cover
classification using a combination of SAR frequencies from satellite (Turkar et al., 2012;
Naidoo et al., 2015). Turkar (2012) compared the classification accuracies of L-band
(ALOS PALSAR), C-band (RADARSAT-2), X-band (TerraSAR-X) and combinations thereof,
of land cover classes: water, mangrove, urban, forest, saltpans, sewage plant, wetland
and grassland of a study site in Mumbai using ANN and Wishart classifiers. Fully
polarimetric data were used from ALOS PALSAR and RADARSAT and DualPol from
TerraSAR-X data. Overall classification accuracies of up to 98% were achieved using all
three frequencies with polarimetric decompositions. The main conclusions from Turkar
(2012) were that (1) classification accuracies using co-polarised data are marginally
lower than fully-polarised data, (2) classification using complex data compared to only
backscatter coefficients leads to higher classification accuracy, (3) L-band is in general
the best frequency for land cover classification, and (4) combining multi-frequency data

(L, C and X-band) improves classification accuracy.

Naidoo (2015) compared the use of L-band (ALOS PALSAR), C-band (RADARSAT-2) and
X-band (TerraSAR-X) data to classify above ground biomass (AGB), canopy cover (CC)
and total canopy volume (TCV). Naidoo concluded that, although the use of all three
frequencies yielded the best results (R? = 0.83 for AGB and CC, and R? = 0.85 for TCV,
with R? being the coefficient of determination of a regression analysis), it was marginal
above using only L-band data (R? = 0.78 for AGB, 0.77 for CC and 0.79 for TCV). Naidoo

made use of the random forest machine learning algorithm to obtain these results.

From the SAR backscatter coefficient images, additional feature layers can be calculated,
such as interchannel ratios and texture measures. Interchannel ratios of SAR images
have been investigated in several studies (Buckley, 2002; Quegan et al., 2003; Dierking
et al., 2003; Simental et al., 2005; Lonnqvist et al., 2010). Lonngvist found that the
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addition of the interchannel ratio layers gave an increase of at least 2.2% on using only

the basic backscatter coefficient channels.

A set of texture measure of images was presented by Haralick (1973) which have been
used to enhance SAR images for land cover classification in many studies (Anys, 1995;
Clausi, 2002; Herold et al., 2004; Peng et al., 2005). Peng found that using texture
information increase the overall accuracy from 25.6% to 57.6% for a mountainous region
in southern Patagonia. In addition, Peng found that using elevation, slope and aspect

data from a DEM increases the overall land cover classification significantly.

In the last 10-15 years there has been an increase in the use of ensemble classifiers
instead of using a single classifier (Waske and Braun, 2009). An ensemble classifier is
when multiple models are run, and the results of the models are combined to form a
consensus view on the classification result, often by a simple majority vote. One of the
most well-known ensemble classifiers is random forests (Breiman and Cutler, 2001).
Random forests were used to classify multi-temporal SAR imagery with 79.8% and 83.8%
overall classification accuracies for two test sites in Bonn and Jena (Waske and Braun,
2009). In the PhD thesis of Waske (2007), where different classification algorithms to
classify multisource imagery were compared, the final conclusion of the thesis was the

following:

“In summary, the following main subjects are worth to investigate in detail: (1) the
derivation of additional temporal information from high temporal resolution imagery,
such as RapidEye and TerraSAR-X data, (2) the integration of textural information, e.g.
derived from spatial high resolution SAR data, as TerraSAR-X or Cosmo-SkyMed, (3) the
utilization of polarimetric satellite imagery, as provided by ALOS PALSAR and TerraSAR-
X, and (4) the use of multi-frequency approaches, using for example, ALOS PALSAR,
TerraSAR-X or Cosmo-SkyMed, and Radarsat-2 data.” (Waske, 2007)

This study will address points 2, 3 and 4 mentioned above by incorporating textural

information, using features from polarimetric satellite imagery (although not
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polarimetric decompositions), and the use of multi-frequency SAR imagery, in the

context of semi-arid and forested biomes of Africa.

2.1 SAR land cover classification

Land cover classification is one of the core applications of remote sensing. Land cover
classification has been studied since the advent of satellites in orbit around the earth.
The ability to classify what is observed in a satellite image is very valuable and can assist
decision makers to make informed decisions regarding a particular field of interest for a
particular area of the world. This could vary in scale from planning and monitoring of
large regions for carbon emissions e.g. as part of the United Nations’ program on
Reducing Emissions from Deforestation and forest Degradation (UN-REDD) (FAO et al.,
2008), to land cover classification of a small area before and after a specific disaster

event (Voigt et al., 2007).

The generation of accurate land cover maps is about interpreting the satellite signal
correctly, whether from optical or SAR images. A standardised classification system sets
a standard for decision makers who interpret the classified land cover map. Several land
cover classification schemes have been defined over the last 35 years, since the dawn of
widely used remote sensing technology. The first was the Land Use and Land Cover
Classification System for Use with Remote Sensor Data (Anderson et al.,, 1976),
developed by the United States Geological Survey (USGS). To establish a system which
is transferable and applicable to any mapping scale or possible land cover type, the Land
Cover Classification System (LCCS) has been developed by the Food and Agriculture
Organization of the United Nations (FAO) and the United Nations Environment
Programme (UNEP) (Di Grigorio, 2005). In this current study, the land cover classes
identified are related to the LCCS framework. A more detailed description of LCCS is

covered in Section 2.1.1.

Applications of land cover classification range depending on the scale and size of the

area being studied. This ranges from very high resolution optical imagery, which focuses

20



at very fine detail (<1m) on a small area e.g. mapping urban areas (Pacifici et al., 2009),
to coarser 500m to 1km resolution imagery used for global land cover mapping
(Loveland & Belward 1997; Bartholomé & Belward 2005). This research will focus on
high resolution (5-30m pixel spacing) land cover mapping from SAR satellites. This is
therefore a local scale, which is often limited to the size of the swath of the high
resolution satellite image. High resolution SAR land cover mapping can be used in the
context of emergency response situations for flood monitoring (Martinez & Le Toan
2007; Cruz 2010; Pulvirenti et al. 2011), burn scar mapping (Ruecker & Siegert 2000), oil
spills (Solberg et al., 2007), landslides and earthquakes (Massonnet and Feigl, 1998;

Metternicht et al., 2005) as well as for carbon inventories (Gibbs et al., 2007).

SAR land cover classification has the potential to be used within the Copernicus
programme, which is the European Earth Observation program (EuropeanCommission,
2013). Two of the services are already operational, namely Land Monitoring

(land.copernicus.eu) and Emergency Management (emergency.copernicus.eu). The

main satellite data source for Copernicus will be the Sentinel satellites (Malenovsky et
al., 2012), of which Sentinel 1A (SAR, C-band) (Torres et al., 2013) was launched on 3
April 2014 and Sentinel 2A (high resolution optical, multispectral) (Drusch et al., 2012)
was launched on 23 June 2015. The Copernicus core services and downstream services
presents a significant opportunity for utilising SAR and multi-frequency SAR for land

cover classification applications.

SAR satellites are relatively unaffected by atmospheric conditions such as rain or cloud
in most conditions and are therefore some of the most useful systems for emergency
response situations, allowing a fast response time for mapping a disaster area (Voigt et
al., 2007). The monitoring of emergency situations is crucial to effectively give aid to
people affected by the disaster on the ground. The effect of disasters in developing
countries is much greater than in developed countries as there are proportionally many
more associated casualties in developing countries (Peduzzi et al., 2009). The Copernicus
/ GMES pre-operation emergency response projects, Respond (ESA, 2011) and Services

and Applications For Emergency Response (SAFER) (SAFER, 2012), focused on providing
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reference mapping during the first stages of a disaster, but also throughout the
monitoring and reconstruction phases of the disaster. Land cover mapping and
classification systems can be used for reference mapping and change detection of pre

and post disaster events.

A further application of SAR to land cover mapping is in estimating the amount of above-
ground biomass (AGB) in the vegetation. AGB can then be correlated to an estimate of
total carbon content of the vegetation using ecosystems specific conversions
(Patenaude et al., 2005). This is particularly useful in the context of UN-REDD and
REDD+. REDD+ is an extension to UN-REDD, and include the focus on sustainable
management of forests, the role of conservation and enhancement of forest carbon
stocks, going further than deforestation and forest degradation (Gibbs et al., 2007; FAO
et al., 2008; UNFCCC, 2011). It has been shown in several studies that there is a strong
relationship between SAR backscatter and AGB (Lucas and Armston, 2007; Lucas et al.,
2010; Mitchard et al., 2011; Carreiras et al., 2012) and that the best polarisations to use
for biomass retrieval are L-band HV (Mitchard et al. 2011; Tsui et al. 2012) . This study
will not focus directly on estimating biomass, but it is good to know that land cover
classes relate to different biomass estimates, and are therefore related. AGB of semi-
arid areas was estimated by Eisfelder et al. (2012) and can be used to refine land cover

classification.

2.1.1 Land cover classification system (LCCS)

LCCS was initially developed through the AFRICOVER project (Di Gregorio and Latham,
2002). The basic principle of LCCS is that a land cover class is defined by a set of
independent classifiers. As more classifiers are added, a more detailed class is defined.
Therefore the emphasis is no longer on the class name, as in most other classification

systems, but on the set of classifiers used to classify the land cover class.

The first step of LCCS is to identify the land cover class from a list of eight broad classes,

called the dichotomous phase, given in Figure 2.1.
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Area(s) Vegetation Area(s) Vegetation Area(s)

Figure 2.1 The LCCS eight broad land cover classes from the dichotomous phase of the LCCS land cover classification.
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LCCS is implemented in a software package where the user can step through as many
steps necessary to classify the land cover class. The second phase is called the modular-
hierarchical phase, where more detail is added to refine the specific land cover class (Di
Grigorio, 2005). For the dichotomous class of natural and semi-natural terrestrial
vegetation, the modular-hierarchical phase drills down to six more levels as listed in

Table 2.1.

Table 2.1 The six levels of the modular-hierarchival phase of the natural and semi-natural terrestrial vegetation

dichotomous class of LCCS.

Level Description

1 | Life form and cover / Height / Spatial distribution

Leaf type and life cycle / Leaf phenology

Stratification

Landform / Lithology and Soils

Climate / Altitude / Erosion

| | | W N

Floristic Aspect

Similarly for each of the eight broad dichotomous classes, LCCS allows the user to add
as many aspects of the class as deemed necessary to describe the land cover class to be
classified. The land cover classes that were extracted individually from the SAR data for
this research were closed woody vegetation (referred to as dense trees), open woody
vegetation (open woodland), sparse woody vegetation / herbaceous closed to open
vegetation (sparse vegetation), bare soil and/or other unconsolidated materials (bare
soil), built up areas (settlements), aritificial and natural waterbodies (water) and

herbaceous crops (agriculture). This is expanded on in Section 3.4.

2.2 Introduction to principles of Synthetic Aperture Radar (SAR)

The beneficial properties of SAR remote sensing are the ability of SAR sensors to observe
the land surface through cloud cover and that it uses its own power source, independent

of sun illumination (i.e., it can image throughout day and night). There is, however, an
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influence of the atmosphere on shorter wavelengths (<4cm, i.e. X-band). Rainfall, and
especially heavy downpours, has a considerable influence on short wavelength radar (X-
band and shorter wavelengths), but has less of an effect on longer wavelengths (C-band
and longer wavelengths) (Lillesand et al., 2004). Nonetheless, the ability of SAR sensors
to observe through cloud cover remains one of its biggest benefits over optical systems

which are completely hindered by clouds (Kuntz, 2010).

Here follows a brief background on the theory of SAR from Ulaby and Dobson (1989),
Lewis et al. (1998) and Woodhouse (2006). Radar remote sensing is the measurement
of electromagnetic waves in the microwave part of the electromagnetic spectrum,
which covers frequencies < 40000 MHz or wavelengths > 1cm. Electromagnetic

wavelength (1) and frequency (f) are inter-related by Equation 2-1:

c=fA Equation 2-1

where c is the speed of light, given by 2.99792458x10% ms'. An outline of radar
frequency bands, with corresponding frequency and wavelength ranges, is given in Table

2.2 (Lewis et al. 1998; Barrett et al. 2009).

Table 2.2 Range of radar frequency bands with their corresponding frequency and wavelength ranges (Lewis et al.

1998; Barrett et al. 2009).

Radar frequency band Frequency, f (GHz) Wavelength, A (cm)
P 0.22-0.39 136-77
UHF 0.3-1 100-30

L 1-2 30-15

S 2-4 15-7.5

C 4-8 7.5-3.75
X 8-12.5 3.75-2.4
Ku 12.5-18 2.40-1.67
K 18-26.5 1.67-1.18
Ka 26.5-40 1.18-0.75
mm >40 <0.75

Table 2.2 shows the SAR sensors that are currently in orbit, along with those approved
and planned for in the next seven years. The SAR frequencies covered are P-, L-, C- and
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X-band. The principal owner, polarisation, revisit time, swath width, spatial resolution
and expected mission life from 2011 onwards is included in this table. This table shows
the potential to utilise multi-frequency SAR into the foreseeable future. Two satellites
to mention from this table are Sentinel-1A and NovaSAR-S. The Sentinel-1A satellite is
the first of a series of operational satellites as part of the Copernicus programme.
NovaSAR-S will be an S-band satellite developed and built by Surrey Satellite Technology
Limited (SSTL) based in the United Kingdom.

The acquisition geometry of a SAR system is given in Figure 2.2. SAR refers to imaging
radar which requires image pre-processing to synthesize a much longer effective radar
antenna length to construct an image. This improves the resolution in the azimuth
direction (Woodhouse 2006). The incidence angle (8) is the angle between the radar

wave and the vertical.

Satellite based SAR are active microwave instruments which transmit a pulse at a
specific frequency and measures the signal that is scattered back to the instrument. The

received power (Py) is related to the transmitted power (P:) by the radar equation:

_ ﬂ o Equation 2-2
" (4mR?)2

where G is the antenna gain, R is the slant range distance between the instrument and
the measured object, A is the effective area of the antenna and ¢ (sigma) is the radar
cross section of the measured object. The backscatter coefficient o° (sigma-nought) is
defined as the radar cross section per unit area. The ¢ values are essentially what the
SAR instrument measures, and are used to determine biophysical parameters from SAR

measurements.
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Figure 2.2 Acquisition geometry of a satellite SAR system, amended from Lewis et al. (1998).

Another important concept when dealing with SAR remote sensing images is
polarimetry. All SAR sensors transmit the radar pulse in a certain polarization. This can
be either horizontal (H) or vertical (V) with respect to the slant range direction. Many
SAR sensors can also receive the signal in either H or V direction which leads to
backscatter measurements of oy, 0, 05, and 03,. The representation used most
commonly to describe fully polarimetric SAR measurements is the Sinclair scattering
matrix [S], which is given by

[S] _ SHH SHV] Equation 2-3

SVH S Vv

where matrix [S] is symmetrical with Syv = Sy . Different scatterers on the ground
surface modify the polarisation to varying degrees, and the polarisation mode therefore
influences how the object looks on the resulting imagery (Lillesand et al., 2004). A good

overview of recent advancements in polarimetry is given by Lee and Ainsworth (2010).
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Table 2.3 SAR satellites in orbit, approved and planned for 2011-2022, for potential SAR applications.

*
c (] *
—_ o £ s @
S = E= s = T o
1 £ o -2 2E = |29 3(288(5 832N
SAR missions g 2 2 8 e = sE |o|o|o|c|o|c|s|o|a|o|e|g
o ° 7]
a « S &

P-Band SAR
~eowass® | A | ful | zsasi | a0 | so | | | || | ||
L-Band SAR
ALOS PALSAR® | JAXA | full 46 40-70 7-44 HEEEE
ALOS-2* JAXA full 14 25-70 3/6/10
saocom 1a5 | CONAE full 16 30-350 10-100
(Arg)
NAE
SAOCOM 1B° C&rg) full 8, A&B 30-350 10-100 I
S-Band SAR
HJ-1C CRESDA
(Huan Jing)®’ (China) W 4 40-100 II
NovaSAR-s* |SSTL(UK)| full | 01-Apr | 1520 6 HEE
C-Band SAR
Envisat (ASAR)! | ESA | DualPol | 35 56-100 BEEEEEEE
Sentinel 1A*1° ESA DualPol 12 80-250 5-20
Sentinel 18%1° ESA | DualPol | 6, A&B 80-250 5-20
Sentinel 1C, ... ESA | DualPol 6 80-250 5-20
Radarsat2'' | MDA | full 24 20-100 1x3 ]
Radarsat
Constellation |MDA/CSA| full 1 5-125
Mission (RCM)*?
RISAT-1%3 'SR.O full 25 30-240
(India)
X-Band SAR
TerraSAR-X* DLB/ DualPol 11 10-50
Astrium
TanDEM-X'® DLB/ DualPol 11 10-50
Astrium
TerraSAR-X2'¢ DLR / full 11 5-24
Astrium
c°5";°2'5?"§}§',“ed' Al (Italy) S”Lgrle/ 3-36hr 10-40
c°s"“zls,1"7"me“' AS (Italy) S”ﬂ‘?/ 212hr | 10-40
Cosmo-Skymed single/
2nd Gen ABL ASI (Italy) | = 2-12hr 10-60
SeoSAR/PAZ!®! | Hisdesat | DualPol 11,5 10-30
(+ TSX)
SeoSAR/PAZ-2" | Hisdesat | DualPol |  ? ? ? B

In orbit
Approved
Planned

*Swath width and spatial resolution for high-resolution imaging modes.
Wider swaths and lower spatial resolution also available.
AP: Alternate Polarisation

ASI — Italian Space Agency (Agenzia Spaziale Italiana), CONAE — Argentinian Space Agency (Comision Nacional de
Actividades Espaciales), CRESDA — China Center for Resource Satellite Data and Application, CSA — Canadian Space
Agency, DLR — German Aerospace Centre (Deutsches Zentrum fiir Luft- und Raumfahrt), ESA — European Space
Agency, ISRO — Indian Space Research Organisation, JAXA — Japan Aerospace Exploration Agency, MDA —
MacDonald, Dettwiler and Associates Ltd., Canada, SSTL — Surrey Satellite Technology Limited, UK
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References for Table 2.2:

1(Aschbacher and Milagro-Pérez, 2012), 2(ESA, 2013a; Le Toan et al., 2011), 3(JAXA, 2011), 4(JAXA, 2013a, 2013b),
5(CONAE, 2011), 8(Huang et al., 2010), 7(Barbosa, 2012), 8(SSTL, 2011), °(ESA, 2013b), 19(Torres et al., 2012), 11(CSA,
2011), 12(CSA, 2013), 13(Chakraborty et al., 2013), 4(Werninghaus and Buckreuss, 2010), 15(Zink, 2012), 1¢(Janoth
et al., 2012), 7(Covella et al., 2010), 18(Hisdesat, 2013)

2.3 Key factors that influence SAR backscatter

The key factors that influence SAR backscatter are terrain geometry; the physical
structure of the scatterers on the surface of the earth, such as vegetation structure; and
the dielectric constant, which is related to water content, of the scatterers on the
surface of the earth (Lewis et al., 1998). The SAR signal can therefore be related to the
biophysical parameters of the scatterers on the ground, such as biomass in vegetation

and soil moisture.

2.3.1 Terrain geometry

The terrain geometry affects the SAR signal by modifying the incidence angle (6) of the
SAR signal by the effect of a local incidence angle (6;). The local incidence angle is
influenced by the local slope of the terrain (Figure 2.3). The measured backscatter
coefficient (o°) varies with relation to 0, as the scattering geometry changes. For all
polarisations the SAR backscatter coefficient values decrease as the incidence angle
increases (Ulaby and Dobson, 1989). This can be explained in that there is a larger
observed backscatter to the sensor at a steeper incidence angle, and a lower observed

return backscatter at a more oblique incidence angle.

To be able to extract biophysical parameters from a SAR image, the effect of terrain
geometry first needs to be removed. This is done during the orthorectification steps to
rectify an image using a DEM. This is particularly necessary for images with hilly terrain,
where the effect of different angled slopes are greatest. Although the effect of terrain
geometry is was minimal for the sites used in this research, due to the relatively flat

terrain, a SRTM DEM was still used during the orthorectification steps of the SAR images.
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Figure 2.3 The comparison between the incidence angle 8 and the local incidence angle 6,.

2.3.2 Surface roughness and vegetation structure

There are three main scattering mechanisms at work between that influences the SAR
signal as it interacts with the surface and vegetation: surface scattering, volume (or
canopy) scattering and double bounce scattering (Freeman and Durden, 1998) (see

Figure 2.4).

Volume/canopy
scattering

Surface scattering

Double-bounce
scattering

Figure 2.4 Scattering mechanisms affecting the SAR signal: volume, surface and double-bounce scattering.
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Surface scattering is affected by the roughness of the surface in relation to the SAR
frequency. A rough surface in relation to an X-band and therefore be a smooth surface
in relation to a longer SAR signal, such as L-band. Volume scattering is the interaction of
the SAR signal where are large volume of vegetation is combined together. This is
especially prevalent to dense forest areas, but also shorter vegetation such as shrubs
and grassland. Double-bounce scattering is where the SAR signal interacts with objects

orthogonal to the surface, such as the vertical stems of trees or the sides of buildings.

The SAR signals returned are often a combination of the scattering mechanisms. In a
forest there are SAR backscatter returned from the canopy, through volume scattering,
and double-bounce from the ground and the stems of the trees. For vegetation with
smaller stems, such as shrubs or tall grass, a combination of volume scattering and

surface scattering is returned.

However, since the scattering mechanisms are frequency dependent, different
scattering interactions can be separated to a large degree. Within the forest example,
the X-band will interact largely with the canopy, through volume scattering, whereas
longer wavelengths such as L-band will penetrate the canopy, and return scattering from
the stems and large branches through double bounce scattering and some surface

scattering.

2.3.3 Dielectric properties / moisture content

The backscatter coefficient ¢° is determined by both the surface roughness and the
dielectric properties of the surface. The dielectric constant is heavily influenced by the
moisture content of the material. One of the main challenges in retrieving soil moisture
measurements from SAR ¢ values is therefore to separate the influence of surface
roughness from the influence of soil moisture on the o° values (Paloscia, 2012; van der

Velde et al., 2012).
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The reflectivity of a rough surface increases as a response to a higher dielectric constant.
Therefore, e.g. a wet agricultural field will result in a brighter image during and after
rainfall. The effect of increased moisture on the surface reduces surface roughness in
addition to increasing its dielectric constant. As a result this leads to greater forward
scattering, with a smaller part of the signal reflected back to the SAR sensor (Raney,
1998). The increased moisture has therefore a two-fold effect, and depending if the
increased dielectric constant or the resulting smooth surface is more prevalent, will

determine whether it is a lighter or darker area on the SAR image.

For volume scattering, increased volume moisture such as a wet canopy, increases
internal reflections towards, but also away from the SAR sensor. Additionally, as
observed by the SAR sensor, the total reflection includes the surface scattering from the
surface as well as the volume scattering from the canopy (Raney, 1998). In general, in
forested areas the effect of rainfall events before or during the SAR acquisition leads to

an increased backscatter scatter (Lucas et al., 2010).

2.4 SAR sensor characteristics

A brief introduction to each of the SAR sensors used in this study is presented in this
section. Images from ALOS PALSAR, ENVISAT ASAR and TerraSAR-X were used in this

study.

2.4.1 ALOS PALSAR

The Phased Array L-band Synthetic Aperture Radar (PALSAR) instrument was on board
the Japanese Space Exploration Agency’s (JAXA) Advance Land Observing Satellite
(ALOS) launched in January 2006 (Rosenqvist et al., 2007), and came to the end of its life
after five years in May 2011 (JAXA, 2011). The ALOS satellite had a 46-day repeat cycle
and the PALSAR instrument has 4 acquisition modes: Fine beam mode, which was split
into Fine beam single polarization (FBS) (HH or VV) or Fine beam double polarization

(FBD) (HH/HV or VV/VH), Polarimetric or Quad-polarization mode (POL)
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(HH/HV/VH/VV), ScanSAR mode and Direct transmission mode (Rosenqvist et al., 2007).
The data used in this study were acquired using the FBS, FBD and POL modes. The swath
width for the FBS mode is 70km with 10m x 10m spatial resolution on the ground. The
swath width for the FBD mode is 70km with 20m x 10m spatial resolution, and for the
POL mode, a swath width of 30km with 31m x 10m spatial resolution. ALOS PALSAR has
a variable off-nadir incidence angle of 9.9° - 50.8° for FBS and FBD modes, and 9.7° -
26.2° for the POL mode (Rosenqvist et al., 2007).

One of the main products developed from the ALOS PALSAR images is the Kyoto and
Carbon Initiative global mosaic (Shimada and Ohtaki, 2010). The processing of PALSAR
scenes into a mosaic of the African continent was undertaken by the European
Commission’s Joint Research Centre (JRC) (Rosenqvist and De Grandi, 2009; De Grandi
et al., 2011). Additionally, the full polarimetric ability from the ALOS PALSAR POL mode

has been investigated in several studies (Ainsworth et al., 2009; Bagan et al., 2012).

ALOS-2 was launched on 24 May 2014 and carries the PALSAR-2 instrument, with
upgrades that include a much shorter revisit cycle of 14 days and new modes of ultra
fine single mode (UFS) at 3m spatial resolution and high sensitive polarimetric mode

(HSPol) at 6m spatial resolution, to name a few (Rosengvist et al., 2014).

2.4.2 ENVISAT ASAR

ENVISAT is one of ESA’s most ambitious satellites to fly in space to date, with ten
instruments on board and weighing eight tons (Gardini et al., 1995). The satellite was
launched in March 2002 and contact with the satellite was lost on 8 April 2012 (ESA,
2012a). One of the instruments on board is the Advanced Synthetic Aperture Radar
(ASAR), which is a C-band SAR instrument. ASAR followed on the previous European SAR
sensors ERS-1 and ERS-2. The ASAR instrument has five acquisition modes (Desnos et
al., 2000), of which the Image mode (IM) (VV or HH) and Alternating polarisation mode
(AP) (VV/HH, HH/HV or VV/VH) were used in this study. Both the IM and AP modes
present spatial resolution of about 30m x 30m. The remaining three modes are Wide

swath, Global monitoring and Wave mode.

33



With data acquired from ten sensors on board ENVISAT during ten years in orbit,
numerous applications were researched. A selection of applications using ASAR data are
flood extent mapping (Henry et al., 2006; Marti-Cardona et al., 2010), oil spill detection
(Solberg et al., 2007), landslide detection (H6lbling et al., 2012) and land cover mapping
(Park and Chi, 2008).

To continue the global archive of C-band SAR data of nearly 25 years (since 1991) from
ERS-1, ERS-2, ENVISAT ASAR, RADARSAT-1 and RADARSAT-2, the next generation of C-
band SAR satellites are Sentinel 1A and Sentinel 1B. As mentioned in Section 2.1, the
Sentinel satellites are the main data source for the European Earth Observation
programme Copernicus. One of the major improvements of the Sentinel data, compared
to its predecessors is that the data are free and accessible to the public (ESA, 2012b).
This is similar to NASA’s Landsat data policy which is used extensively all around the

world as a results of its free and open data policy.
2.4.3 TerraSAR-X

TerraSAR-X, Germany’s first commercial X-band satellite, was launched in June 2007 and
was developed as part of a public-private partnership between the DLR and EADS
Astrium GmbH (Werninghaus and Buckreuss, 2010). For interest, EADS Astrium has,
since July 2013, been re-branded as Airbus Defence and Space. EADS Astrium developed,
built and launched the satellite, while the DLR developed the corresponding ground
segment and the science service segment to provide data to the science community.
TerraSAR-X offer 4 imaging modes, namely Stripmap mode single or dual polarization
(at 3.3m or 6.6m azimuth resolution), High Resolution Spotlight mode in single or dual
polarization (at 1.1m or 2.2m azimuth resolution), Spotlight mode in single or dual
polarization (at 1.7m or 3.4m azimuth resolution) and ScanSAR mode in single

polarization (at 18.5m azimuth resolution) (Fritz and Eineder, 2010).

The TanDEM-X satellite is a replication of the TerraSAR-X satellite and was launched in
June 2010 (Martone et al., 2013). TanDEM-X is in the similar orbit as TerraSAR-X and
able to fly in different formations, which enables interferometric data acquisition. The
primary objective of the TanDEM-X mission was to complete a global DEM of unmatched
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accuracy, quality and coverage. The processing of the global DEM data were completed
in 2014, and is commercially available as the WorldDEM™ product from Airbus Defence
and Space (Riegler et al., 2015). The WorldDEM product has a relative vertical accuracy
of 2m and is available at 12m x 12m spatial resolution. This is a large improvement from
the SRTM DEM which had a relative vertical accuracy of 12m and was available at 30m
X 30m (90m x 90m before September 2014) spatial resolution (Martone et al., 2013; JPL,
2014).

A few applications of TerraSAR-X related to land cover classification are mapping soil
texture (Zribi et al.,, 2012), burn severity (Tanase et al., 2010a), sugarcane fields

(Baghdadi et al., 2010) and flood mapping (Cruz, 2010).

2.5 Multi-frequency SAR

Early studies using multi-frequency SAR are from Chen et al. (1996), who demonstrated
using a neural network as a classification algorithm for multi-frequency SAR data. Images
from ERS-1 (C-band) and JERS-1 (L-band) were used for land cover classification of
different vegetation structures using hierarchical knowledge-based decision rules
(Dobson et al. 1996). This was achieved through a manual process of decision rule
selection, assisted by modelling the SAR backscatter values in the Michigan microwave

canopy scattering model (MIMICS).

The combination of using more than one SAR frequency in land cover classification has
been explored in several studies. The combination of L- and X-band for AGB retrieval for
a forest area of central Kalimantan was successfully used by Englhart et al. (2011). L-
band and C-band were combined in a study of land cover classification over central
Africa, with a focus on Malawi (Holecz et al., 2009). The influence of burn scars on co-
and cross-polarised L-, C-, and X-band data were compared in Tanase et al., (2010b). The

highest sensitivity to burn severity was found to be at L- and C-band.
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In a study on large-scale mapping of central Africa, L- and C-band SAR data were used to
map forest extent within the Congo basin (Mayaux et al., 2002). The study concluded
that, although the SAR data can provide thematic information of the forest composition
for the whole ecosystem, SAR data alone could not consistently map all the vegetation
features, such as secondary forests, in this tropical ecosystem. A synergistic use of SAR
and optical data were proposed for future regional scale land cover projects. It is noted
here that in this case, the SAR image data were downscaled to 100m pixel spacing, so

the conclusion might be different with higher resolution SAR images.

Most of the examples thus far have only made use of single frequency data; most
regularly C-band, but also X- and L-band. Even though there are SAR satellites of
different frequencies in orbit and even more planned for the future (Table 2.2),
synergies with other frequencies are not regularly used or part of the current Copernicus
core service activities.

Another innovative way to make use of multi-frequency SAR was suggested by Eckardt
et al. (2013). Here it is proposed to use data from multi-frequency SAR satellites to
supplement the optical thick cloud cover areas in optical imagery, using a closest feature
vector. This was used to fuse the SAR and optical imagery together, in the areas of the
optical image which are affected by clouds. Eckardt et al. also used mono-temporal,

multi-frequency data.

The satellites mentioned in Table 2.2 show the various data opportunities for potential
applications of multi-frequency SAR, by combining data from different SAR sensors. Over
the next 5 years, there is the potential to obtain data from L-, S-, C- and X-band SAR
sensors, over the same geographical area, and relatively close in time. The addition of
the BIOMASS P-band SAR mission from 2020 onwards adds another frequency to the
possible SAR images available. It is notable that the spatial resolution keeps improving
with the newer satellites, and more satellites are being used in constellations to improve

revisit times.
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2.6 Classification algorithms

Classification methods for remote sensing data are usually taken from the machine
learning / pattern recognition methods for various statistical applications. Some of the
most commonly used methods are the standard supervised maximum likelihood
classifier (MLC), decision trees and artificial neural networks (ANN) (Jensen, 2005). More
recently, techniques applied to multisource remote sensing data that have proved
superior to the standard supervised classification techniques include SVMs (Huang et al.
2002) and random forests (Rodriguez-Galiano et al., 2012b). SVMs and random forests
are both non-parametric classification algorithms, similar to ANN and decision trees,
which mean that the algorithms do not rely on the assumption that the input variables
are from a specific statistical distribution. This is contrary to parametric classification
algorithms, such as MLC, which are based on the assumption that the input variables are
normally distributed (Moser et al., 2006). Non-parametric classification algorithms are
therefore preferred for classifying multi-source data. Additionally, SAR backscatter
values of different land cover classes do not all follow the same distribution functions

(Ulaby and Dobson, 1989; Moser et al., 2006).

In the last 15 years much research has gone into ensemble classifiers. Ensemble
classifiers are learning algorithms that construct a set of classifiers. New data points are
then classified using a weighted vote between the different classifier results (Dietterich,
2000). Some of the most well established ensemble classifier methods are bagging, and

boosting.

Bootstrap aggregation a.k.a. bagging, was introduced by Breiman (1996). Bagging works
as follows: the training dataset are sampled multiple times by selecting a random sample
with replacement from the training set, to produce m training datasets. The m newly
sampled training datasets are known as bootstrap replicates of the original training
dataset. The size of each bootstrap replicate is 63.2% of the training set, with instances
that can appear more than once. A model is then trained on each of the m bootstrap

replicates, to produce m model results. A majority vote on the m model results is used
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to determine the overall classification result by creating a consensus view from all the

trained models.

Boosting is similar to bagging, with the difference that instead of creating m models
concurrently, each model is developed based on the results from the previous model.

At the first iteration, all training instances are given the same weight. Then, with each
iteration, the weight for each of the training instances are adjusted, based on the results
from the previous model training. A larger weight is given to instances classified
incorrectly in the previous model. This is done for m iterations, to derive a final set of
weights, on which the final model is trained. This final model, based on the weights-
distribution after m iterations, are then used to classify any new data. Boosting was first
proposed by Schapire (1990) and Freund (1995). The most commonly used boosting
algorithm named adaptive boosting or AdaBoost as presented by Freund and Schapire
(1997, 1996). Based on the bagging and boosting techniques, a specific classifier was

developed by Breiman (2001) using multiple decision trees, called random forests.

Therefore, based on the literature mentioned above, the classifiers compared in this
study were random forests and SVMs. They are both techniques that outperform
traditional classifiers in most cases. Random forests and SVMs are expanded on in the

next sections.

2.6.1 Random forests

Random forests was formulated by Breiman (2001) and originally coded by Breiman and
Cutler (2001). Random forests is essentially an ensemble model of many decision trees,
where the dataset used to build each tree is randomly selected from the full training set,
with replacement. At each random selection of the training data, one third of the
instances are left out, referred to as the out-of-bag (OOB) sample. The OOB sample is
used to get an unbiased estimate of the classification error as more trees are added to
the forest. At each node, a small group of features are chosen at random, which are then

available to be chosen by the decision tree algorithm, to split the tree on. The decision
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trees are built to maximum size, with no pruning of the trees. Finally a majority vote is
used between all the trees, to decide the final class for each instance. A schematic

diagram is shown in Figure 2.5.
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Figure 2.5 Schematic diagram of the random forest classifier.

The following pros and cons of random forests have been identified:

Pros (+) (Breiman, 2001):

e The accuracy of random forests is as good as and sometimes better than

Adaboost.
e Random forests is relatively robust to outliers and noise.
e Random forests is faster than bagging or boosting.

e Random forests gives useful internal estimates of strength, error, correlation and

variable importance.

e Random forests is simple and easy to parallelize on implementation.
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Cons (-):

e Theinterpretability of random forest results can be difficult, since there are often
hundreds of trees in the model, compared to a single decision tree (Prasad et al.,
2006).

e The variable importance measures give a bias towards predictor variables that
are highly correlated (Strobl and Zeileis, 2008).

e Cases were identified when a random forest model may overfit the training
dataset, in the situation when there are many noisy variables to consider for the

model (Segal, 2004).

The classification accuracies of land cover using multi-temporal SAR data of two sites in
Bonn and Jena in Germany were compared by using standard decision trees, MLC,
boosted decision trees and random forests in Waske and Braun (2009a). The results
showed that random forests outperformed the standard classification techniques,

including the boosted decision tree ensemble classifier.

The use of random forests in the classification of SAR images has been demonstrated in
Loosvelt et al. (2012) and Corcoran et al. (2013). Naidoo et al. (2015) used random

forests to classify AGB, CC and TCV from multi-frequency SAR images.
2.6.2 Support vector machines (SVM)

The mention of a SVM first appeared in (Vapnik, 1979), with the main paper calling SVMs

support vector networks in (Cortes and Vapnik, 1995).

In short, SVMs is a non-parametric binary classifier that intends to find an optimal
separating hyperplane between the two classes by maximizing the margin between the
closest points of the classes, called the support vectors. Figure 2.6 shows a
representation of an SVM for linearly separable classes. The support vectors and the

separating hyperplane are highlighted in this figure.
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Support Vectors

Figure 2.6 Classification of an SVM, for linearly separable classes.

For the situation where the classes are not linearly separable, the data points are
mapped to a higher dimensional space using a kernel function, where the points are
linearly separable. Figure 2.7 shows how the kernel function is applied to a dataset with

classes that is not linearly separable.
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Figure 2.7 An SVM mapped to a higher dimension using kernel K() for non-linearly separable classes.

This problem can be formatted as a quadratic optimization problem, which can be
solved by known optimization techniques. For SVMs, a regular implemented optimizer
is the sequential minimization optimization algorithm, which solves the SVM quadratic
problem without using any numerical quadratic optimization steps, and instead aims to
solve the smallest possible optimization problem reducing the computation and

memory requirements (Platt, 1998; Karatzoglou et al., 2006).

Since the support vectors are the training data points closest to the separating
hyperplane, only a small amount of data are actually used to train the model. For a multi-
class problem, SVMs uses a technique called one-to-many, and then finds the correct

class by a voting mechanism.

A major implementation of SVMs is the library Libsvm (Chang and Lin, 2011). An
implementation in the R statistical programming language is with the package called
‘1071’ (Karatzoglou et al., 2006). There are many different kernel functions available
for SVMs, namely Gaussian, polynomial, linear, sigmoid, Laplace, Bessel, analysis of

variance (ANOVA), spline and user-defined. For the SVM implementation in the ‘e1071’
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package the Gaussian radial basis function (RBF), polynomial, linear and sigmoid

functions are available.

The pros and cons of SVMs can be summarized as follows from Mountrakis et al. (2011):

Pros(+):

SVMs generalize well from a small amount and / or quality of training data. For
remote sensing this is especially important due to the cost of collecting ground
truth data.

As part of the optimization problem, SVMs are resilient against getting trapped
in a local minimum and always get to global minima.

There is no need for repeated training of the classifier using different random
starting points or architectures.

SVMs are non-parametric and therefore no assumption is made on the statistical

distribution of the data.

Cons(-):

The choice of which kernel function to use is not always known.

The choice of the parameter value C, which denotes the trade-off between
minimizing the training error and maximizing the margin, needs to be
determined. This often leads to a trial and error approach.

As dimensionality increases, SVMs typically have dimensionality issues such as
how to address outliers and increased computational demands.

Noisy data can be a problem for SVMs, as they are not optimized for noisy data
with many outliers.

The performance of an SVM can decrease as a result of only a small number of

mislabelled training samples.

SVMs have been used in many studies during the last ten years to classify remote sensing

images. One study where the SVMs focused on classifying AIRSAR images shows that

SVMs perform much better than the supervised Wishart classifier (Lardeux et al., 2009).

43



The overall mean producer’s accuracy using fully polarimetric P-, L- and C-band images
were 99% for the SVM, compared to 78% for the Wishart classifier, for seven classes
varying between four forest classes, two low vegetation classes and bare soil. This was
for 5.5m spatial resolution for all three frequencies, with several polarimetric
decompositions added to the feature space. In contrast to the Wishart classifier, no a
priori data are needed with regards to the distribution of the different classes. For the

SVM classifier, the Gaussian RBF kernel was used (Lardeux et al., 2009).

In another study, SVMs were used to determine the AGB of a study site in Borneo, using
a variant of SVMs known as support vector regression (SVR), in comparison to ANN and
multivariate linear regression (MLR). The Gaussian RBF kernel was used to train the SVR.
For AGB estimation in the Indonesian forest, the ANN was preferred to SVR and MLR,
and not the SVR classifier. This is due to AGB saturation levels being reached at about
260 t/ha for the SVR compared to the 400 t/ha for the ANN and MLR classifiers (Englhart
et al., 2012). This shows the importance to compare several models for a specific

application.

In Waske and Benediktsson (2007), a technique was shown to fuse data from different
sources, in this case SAR and optical data. Each data source was first classified on its own
using SVMs. Then, instead of combining the classification directly, it was combined using
another SVM. This method of fusing the data with an SVM outperformed all other
parametric and nonparametric methods tested. It also outperformed majority and
absolute maximum voting methods to combine an ensemble of classifiers. Similar to the
other SVM studies reviewed so far, the Gaussian RBF kernel was used as a kernel

function.

2.7 Discussion of literature review

From the introduction and literature review it is shown that SAR has been used for land
cover classification and some multi-frequency SAR applications have been attempted.

Many research papers focus on classifying AGB (Ferrazzoli et al., 1997; Svoray and
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Shoshany, 2002; Mitchard et al., 2009; Englhart et al., 2011) or soil moisture (Barrett et
al., 2009; Baghdadi et al., 2012). Some studies have focused on using SAR for land cover,
but most have either used interferometry (Strozzi et al., 2000; Okhimamhe, 2003; Park
and Chi, 2008) or polarimetric decompositions (Qi et al., 2010; Niu, X., Ban, 2010; Bagan

et al., 2012) to classify land cover.

In recent years, the use of ensemble classifiers and especially random forests have been
proven to outperform traditional classification algorithms (Waske and Braun, 2009;
Rodriguez-Galiano et al., 2012a). With the increase in available SAR data from satellite
and from several frequencies: L-, C-, X-band, with the addition of S- and P-band in the
near future, some researchers have investigated the combination of the SAR frequencies
into multi-frequency SAR applications. Waske (2007) highlighted the use of classifier
ensembles for land cover classification and mentioned that the use of texture measures
and multi-frequency SAR data needs to be further investigated. Turkar (2012) used
multi-frequency SAR, which included fully polarimetric data and polarimetric data for a
study site in India. Texture measures were not included in Turkar’s study. Texture
measures were included in Pierdicca et al. (2011), but only L-band and X-band images
were used. Multi-frequency SAR using C-band and L-band for land cover classification of
an Arctic coastal ecosystem was studied in Banks et al. (2012). The use of multi-
frequency SAR to classify AGB, CC and TCV of savannah woody structures was studied in
Naidoo et al. (2015), and found that although the combination of L-, C, and X-band give
the highest classification accuracy, the use of L-band alone is only marginally lower than
using all three frequencies. The use of random forests and SVMs to classify land cover
using multi-frequency SAR, including derived interchannel ratios, texture measures and
elevation data of the wet and dry seasons of both forested and semi-arid regions of

Africa has not been attempted before.

Most land cover studies focus on areas in Europe or North America where reliable and
regularly updated land cover maps are available (Wegmuller et al., 2004; Kouskoulas et
al., 2004; Waske and Benediktsson, 2007). As a result there are many areas in Africa,

which have not been the focus of research studies, and where it would be useful to focus
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future research efforts. Moreover, there are many humanitarian crises in central Africa,
and this research has the potential to benefit the aid organisations who supply aid and
support to these areas of conflict, by having better knowledge of what is happening on
the ground. The sites that are chosen in this study are based on data availability, due to
the sparse overlapping of high resolution images from multiple SAR satellites during the
last five years. The forested sites that are chosen, are located in Cameroon and the DRC.

The semi-arid sites are based in Tanzania and Chad.
The three hypotheses are investigated in Chapter Five, Chapter Six and Chapter Seven,

but first the study sites, data and methodology are given in Chapter Three, with an

expansion on data preparation in Chapter Four.
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Chapter Three Study sites, data and general methodology

This chapter discusses the broader context of the study sites, the process of choosing
the study sties and data, and the general methodology for the three experiments. The

characteristics of the chosen SAR images are discussed and tabulated.

3.1 Study sites

The study sites chosen from the available data are in Cameroon, DRC, Tanzania and
Chad. The Cameroon and DRC sites are forested areas whereas the Tanzania and Chad
sites are semi-arid. For the forested areas, the Cameroon site was selected as the model
development site, while the DRC site was an additional site to test the transferability of
the model. For the semi-arid sites, the Tanzania site was the model development site,
while the Chad site was used to test transferability of the model. The geographic
locations of each site within the biome map of Africa are shown in Figure 3.1. The
Cameroon site is within the mosaics of forest biome and the DRC site is within the
tropical lowland forest biome. Both mosaics of forest and tropical lowland forest are
types of forests, and the Cameroon and DRC sites were therefore grouped together
within a wider group of forested ecoregions. The Tanzania study site is within the moist-
infertile savanna and the Chad site within arid-fertile savanna, which are both types of
semi-arid areas. The Tanzania and Chad sites were grouped into a wider group of semi-

arid ecoregions.

The location of the study sites, especially those in Chad and the DRC, were currently
difficult to visit due to internal civil and political conflict. For this reason, it was decided
not to perform fieldwork, but to rather use available very high resolution optical imagery
on Google Earth and moderate resolution images from Landsat to identify land cover
classes. This is not the ideal situation, but fieldwork would also not necessarily have
corresponded with the satellite acquisition dates to provide an accurate account of the

land cover in the SAR images. Several other studies have used very high resolution
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images available on Google Earth as ground reference data, due to its easy and free

access (Brink and Eva, 2011; Evans et al., 2010; Turkar et al., 2012).

Forested sites: Semi-arid sites:
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Figure 3.1 The locations of the study sites, in the context of the biome map of Africa (White, 1983b).

Before choosing study sites for this research, a handful of constraints were set out to

restrict which study sites could be chosen:
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e The more available polarisations the better. This is to increase the number of
information layers from the available input channels, and to build a
comprehensive data stack with the data dimensionality as close to its full
potential scenario as possible. This allows for models to be trained with all the
possible input variables.

e Only high resolution SAR data were considered (<15m azimuth or range
resolution), which corresponds to the high resolution imaging modes of the
different satellite sensors.

e The sites were chosen to be within Africa. Some preliminary work was done in
Africa within the SAFER project (Hello, 2010) and therefore background

knowledge and initial datasets are available from selected locations in Africa.

With these constraints in mind, the study sites for this research are chosen from images
available in the archives of TerraSAR-X, ALOS PALSAR and ENVISAT ASAR. The data were
screened manually, starting with data from the TerraSAR-X archive, since it is the least

populated of the SAR archives.

Table 3.1 lists the Universal Transverse Mercator (UTM) projection zones and the
European Petroleum Survey Group (EPSG) codes to easily convert between standard
latitude / longitude projection and the UTM projection for each site. A site abbreviation
along with the upper left and bottom right hand corner coordinates are listed for each

site. Each of these sites are now discussed in turn in more detail.

The TerraSAR-X images were requested from the DLR, whereas the ENVISAT ASAR and

ALOS PALSAR images were requested via a Category 1 proposal from ESA. ALOS PALSAR

is owned by JAXA and is an ESA third party mission.
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Table 3.1 List of study site locations with corresponding UTM zones and EPSG codes.

Biome / Site Season | Abbreviation | Training Model Coordinates | Coordinates | UTM zone EPSG
Ecoregion samples / | development / upper left bottom code

test Additional corner right corner

samples seaon / site (latlong) (latlong)

Forested Cameroon Wet cw Training | Forested model 6°36’33”N 6°11’18”N | 33 North (N) | 32633

Test development 12°31’60"E 12°56’27"'E

Dry CDh Training Additional
Test season

DRC Wet DW Training Additional site 1°38’35”N 1°12’12”N | 35 North (N) | 32635

Test 29°41'19”E 29°52°02"E
Semi-arid Tanzania Dry D Training | Semi-arid model 3°48'34"’S 4°15’28"”S | 36 South (M) | 32736

Test development 31°57°26"E 32°20'47"E

Wet T™W Training Additional
Test season

Chad Dry ChD Training Additional site 13°44’46"”’N 13°31’10”N | 34 North (P) | 32634

Test 22°02’'56"E 22°15'23"E
- All (latitude / - - - - - - - 4326

longitude)
- All (WGS84 - - - - - - - 3857
Pseudo
Mercator for
Google Earth)
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3.1.1 Cameroon

The starting point of the data availability search is the high resolution TerraSAR-X images
in Africa. The available data from the ALOS PALSAR and ENVISAT ASAR archives for the
overlapping location of the TerraSAR-X archive images, for the site in Cameroon, are
shown in Figure 3.2. The rainfall estimation was downloaded from the Famine Early

Warning Systems Network (www.fews.net), as daily precipitation, and then summed

into monthly totals.

Cameroon Data
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Figure 3.2 Available data from the satellite archives for the Cameroon site, with selected images in red for the dry
season and in blue for the rainy wet season. The optical images used in this study is shown in dark brown squares

(Landsat 8) and a light brown square, © 2015 Google, Image © 2015 DigitalGlobe.

Figure 3.2 differentiates between the different polarisation and modes (single / dual /
guad-polarisation) for images that are available from the archives for each of the three
sensors. Each of the sensors and their polarisations are shown on the left-hand axis, with
the corresponding available dates on the archive on the x-axis. The red dots highlight
the images chosen for the dry season and the blue dots show the images chosen for the
wet season from the available images for the Cameroon test site. The optical images
used in this study to identify and validate land cover types are the very high resolution
image from DigitalGlobe (available on Google Earth) along with two recent images from
Landsat 8. To fit on the scale of the graph, the dates of the two Landsat images from
2013 are superimposed on the same days of the year during 2010 in Figure 3.2, which

overlap with the available SAR images.
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Figure 3.3a shows the footprints of the available images from ALOS PALSAR, ENVISAT
ASAR and TerraSAR-X, with the overlap area highlighted in yellow. Figure 3.3b shows the
study site as viewed in Google Earth. The wider surrounds are also shown to see the

general landscape surrounding the study site.
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Figure 3.3 a) Overlap between different SAR sensors for the Cameroon study site. b) Google Earth view of the
overlapping area and wider surrounds for the Cameroon study site. © 2015 Google, Image © 2015 DigitalGlobe,
Image © 2015 CNES /Astrium, © 2015 CNES /Spot Image.

The SRTM elevation along with dry and wet season optical images and dry and wet
season composites of SAR images are shown in Figure 3.4. The Landsat 8 images were
taken on the 12t of April 2013 (dry season) and on the 19 of September 2013 (wet
season). The multi-frequency SAR image for the dry season is a combination of L-HH, C-
HV and X-VH. For the wet season the multi-frequency SAR image is displayed as L-HV, C-
VH and X-VH. The large lake in the study site is lake Mbakaou which forms part of the
Djerem department (one of five departments), part of the Adamawa region (4" largest
of ten regions) in Cameroon. The size of the Cameroon study site is 15km by 40km. The

elevation of the majority of the study site is between 820m and 940m above sea level.
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Figure 3.4 The SRTM elevation, Landsat (dry and wet) and multi-frequency SAR (dry and wet) images of the

Cameroon site.
Most of this region is being converted to agricultural land from the natural habitat of
submontane forests. The soil are from volcanic rock, which is productive soils for
farmland, but also susceptible to dry out easily during the dry season, becoming non-
vegetated areas. Vegetation structure are therefore a mixture of remaining forest areas
are open areas which consist of a mixture of grass and other vegetation. Species from
this forested montane zone include Nuxia congesta, Podocarpus latifolius, Prunus

africana, Rapanea melanophloeos, and Syzygium guineense bamendae (WWF, 2016c).

The Cameroon study site is the main study site used to develop the model for the
forested region. The DRC study site, which will be discussed next, will be used to test the

transferability of the model to an additional area.

3.1.2 DRC

The DRC study was used to determine the transferability of the model developed using
the Cameroon data. The available SAR images for this site are shown in Figure 3.5. The
sensors and available polarisations are given on the left-hand axis with the available
dates of the images in the archives on the x-axis. The monthly rainfall data are also

plotted in Figure 3.5 in green and the rainfall pattern differs quite significantly to the
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Cameroon site. As a result, only one set of images were chosen, which will be taken as
the wet season. With a nearly continuous rainfall throughout the year, this study site
does not present a dry season, though there seems to be a six-monthly cyclical rainfall
pattern of a wet season and slightly less wet season. This rainfall pattern highlights the
benefit of SAR imagery over optical imagery, with the associated consistent cloud cover
with the regular rainfall of the tropical regions. The relevant Landsat 8 image for this
study site from 2013 is overlain in dark brown onto Figure 3.5 to fit within the scale of
the figure and the very high resolution image from DigitalGlobe, as available on Google
Earth is shown in light brown. The DigitalGlobe image is used to identify the land cover

samples to test the transferability of the model for the forested areas.
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Figure 3.5 Available data from the archives for the DRC site, with selected images in dark blue for the wet season.

© 2015 Google, Image © 2015 DigitalGlobe.

The overlapping area between the TerraSAR-X, ASAR and PALSAR images is shown in
Figure 3.6a. Similar to the other sites, the area of overlap between the three SAR sensors
is relatively small, compared to footprint sizes of the individual images. The overlap area
are 20km by 50km at its widest dimensions. The Google Earth image for the study site
and surrounding area is shown in Figure 3.6b. Areas of dense forest and deforested

areas are clearly visible in this image.
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Figure 3.7 shows more detail regarding the DRC study site. The SRTM elevation data are
shown with the DRC study site being in the order of 1000m above sea level. This is at a
similar elevation to the Cameroon study site, which is at around 900m above sea level.
The Landsat 8 image is shown in false colour with red as the short wave infrared (SWIR)
band, green as the near infrared (NIR) band and blue as the red band. This highlights the
forested areas in black, the settlement area in white and the river in orange. A multi-
frequency SAR image is also shown, with the L-band HV channel as red, C-band HH as
green and X-band VV as blue. This shows the forest /non-forest clearly with the forested

areas as red and the non-forested areas ranging between blue and green.
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Figure 3.6 a) Overlap area from the different SAR sensors for the DRC site. b) Google Earth view of the overlapping

area and wider surroundings for the DRC study site. © 2015 Google, Image © 2015 DigitalGlobe, Image Landsat.

This eastern part of the DRC is part of an undifferentiated Afromontane forest, which
is less tall than the Afromontane forest. Tree species types include a mix of Apodytes
dimidiata, Halleria lucida, llex mitis, Kiggelaria africana, Nuxia congesta, Nuxia
floribunda, Ocotea bullata (including Ocotea kenyensis), Podocarpus falcatus
(including gracilior), Podocarpus latifolius, Prunus africana, Rapanea melanophloeos

and Xymalos monospora (White, 1983a). Many of the forested areas are converted
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into agricultural areas. Other deforestation reasons are logging and firewood

collection (WWF, 2016a).
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Figure 3.7 SRTM elevation, Landsat 8 and multi-frequency SAR images of the DRC study site.

3.1.3 Tanzania

The Tanzania study site is the main study site for the semi-arid region, used for model
development. The dates of the available SAR images for the study site in Tanzania are
shown in Figure 3.8. The selected images for the wet season are shown in dark blue and
for the dry season in red. The rainfall pattern is distinctly different from the forested
sites, with less rain and a longer and distinct dry season. The Landsat 8 images were
available for both the wet and dry season but from a different year, 2013. One of the
DigitalGlobe images, as available on Google Earth, overlaps closely in time with the dry
season SAR images, with a second image from 2012 also available for the dry season.
The optical images are used for land cover identification and validation, on which the

land cover classification model is developed.
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Figure 3.8 Available data from the archives for the Tanzania site, with selected images in red for the dry season and

in blue for the rainy wet season. © 2015 Google, Image © 2015 DigitalGlobe.

The area of overlap for all the SAR images for the Tanzania site is shown in Figure 3.9a.
It is approximately 10km x 45km and falls within the Kigosi Game Reserve, which is on
the United Nations list of protected areas (IUCN, 2015). The Kigosi Game Reserve is an
International Union for Conservation of Nature (IUCN) Category IV protected area,
which meansi it is protected for its habitat and species management. Although the whole
site falls, in theory, within the protected area, it is assumed that the actual boundary of
the game reserve falls on the clear contrast of forest / non-forest as can be seen in the
western side of Figure 3.9b. This is broadly within the Shinyanga region of Tanzania. The
species of the woodlands of Shinyanga are Brachystegia, Julbernardia and Isoberlinia.
The natural vegetation of Shinyanga is shrubs of 4-6m high, and thorny deciduous trees
of 10-15m high. Agricultural food crops are predominately maize, cassava, sorghum,
beans, rice, chickpeas, groundnuts and sweet potatoes. A decline in soil fertility and soil

erosion are concerns in the area (Kamwenda, 2002).

The SRTM elevation for the Tanzania study site, along with the Landsat 8 and multi-
frequency SAR images for both the wet and dry season are shown in Figure 3.10. This
site is located higher than the forested sites, at between 1100m and 1300m above sea

level.
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Figure 3.9 a) Overlap area from the different SAR sensors for the Tanzania study site. b) Google Earth view of the

overlapping area and wider surroundings for the Tanzania semi-arid study site. © 2015 Google, Image ©2015

DigitalGlobe, ©2015 CNES/Spot Image, Image © 2015 CNES / Astrium.
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Figure 3.10 SRTM elevation, Landsat (dry and wet season images) and multi-frequency SAR (dry and wet season

images) for the Tanzania site.
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3.1.4 Chad

The Chad study site is the site that is used to test the transferability of the model for the
semi-arid areas, as developed on the Tanzania study site. Figure 3.11 shows the available
data for the Chad study site with the selected images for the dry season shown in red.
Only images for the dry season are chosen, as SAR images from L-, C- and X-band were
available for the dry season compared to the wet season. The rainfall pattern for the
Chad study site is also shown in Figure 3.11, and the site is seen to be drier than the
Tanzania study site with longer periods of no rain. The very high resolution DigitalGlobe
image available is only from 2004, which overlap with the same season as the SAR
images from 2008 to 2009. A Landsat image from 2013 is also available. The DigitalGlobe
and Landsat 8 images are used to identify and validate land cover sample areas. This is
the best optical imagery available, and assumptions are made regarding the stability of

land cover types for the study area for the years between the optical and SAR images.
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Figure 3.11 Available data from the archives for the Chad site, with selected images in red for the dry images. ©

2015 Google, Image © 2015 DigitalGlobe.

The overlap area between the ALOS PALSAR, ENVISAT ASAR and TerraSAR-X images is
shown in Figure 3.12a. The view of the images on Google Earth is shown in Figure 3.12b,
with a dry river bed visible through the centre of the study site. This river is a border
between Chad on the western side and Sudan on the eastern side. The site is 19km x
17km in size, as shown in Figure 3.13. The topography for the Chad study site is relatively
flat as shown in the SRTM elevation. Additionally, the Landsat scene from 27 May 2013

is shown along with a multi-frequency SAR image of the Chad study site.
59



This site falls within the cetral Sahelian region, when is the semi-arid transition zone
between the woody Sudanian savanna in the south and the desert in the north. It
consists mostly of semi-arid grasslands and thorny shrublands. Grass species are
Cenchrus biflorus, Schoenefeldia gracilis, and Aristida stipoides. The dominant tree
species are acacia trees: Acacia tortilis, Acacia senegal and Acacia laeta. During the long
dry season, most trees loose their leaves and most of the annual grasses die, resulting

in a dry landscape (WWF, 2016b).
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Figure 3.12 a) Overlap area from the different SAR sensors for the Chad site. b) Google Earth view of the overlapping
area and wider surroundings for the Chad semi-arid study site. © 2015 Google, © 2015 CNES/Spot Image, Image
© 2015 DigitalGlobe, Image © 2015 CNES / Astrium.
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Figure 3.13 SRTM elevation, Landsat and multi-frequency SAR for the Chad study site.

A list of all the optical images from DigitalGlobe and Landsat 8, along with the dates and

seasons for the images, is given in Table 3.2.
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Table 3.2 The available optical images for the four study sites, with respective dates and seasons for each site.

Site Sensor Date Season
Cameroon DigitalGlobe (Google Earth) 2008-04-13 | Dry
Landsat 8 2013-04-12 | Dry
2013-09-19 | Wet
Chad DigitalGlobe (Google Earth) 2004-12-31 | Dry
Landsat 8 2013-05-27 | Dry
2013-08-31 | Wet
DRC DigitalGlobe (Google Earth) 2010-02-04 | Wet
2011-04-19 | Wet
2012-02-06 | Wet
Landsat 8 2013-04-24 | Wet
2013-07-13 | Wet
Tanzania DigitalGlobe (Google Earth) 2010-06-09 | Dry
2012-08-02 | Dry
Landsat 8 2013-06-15 | Dry
2013-04-26 | Wet
Chad DigitalGlobe (Google Earth) 2004-12-31 | Dry
Landsat 8 2013-05-27 | Dry
2013-08-31 | Wet
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3.2 Characteristics of available images for each site

A summary of the available data for the four study sites, namely Cameroon and DRC
forested sites and Tanzania and Chad semi-arid sites, is given in Tables 3.3 and 3.4. The
inter-seasonal comparison of the images is shown in Table 3.3 with all sensor-
polarisation combinations of the same incidence angle, apart from the L-band HH
images for the Cameroon study site. The L-band HH images are of 25°-27° and 41° mean
incidence angles. This shows the combination of images available for comparison
between the wet and dry seasons for the Cameroon and Tanzania sites. Table 3.4 shows
the frequency and polarisation of images available for comparison between the main
development site and the additional site for both the forested and semi-arid areas. The
combination of these frequency-polarisation images can be used to test the
transferability of the land cover classification model to the additional sites. The
TerraSAR-X HV and VH images for the Tanzania wet season site had unsatisfactory
orthorectification results, as is discussed in Section 4.1, which as a result is not used in

the model development and further analysis.
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Table 3.3 The available images for each study site, with colours showing images to be used for an inter-seasonal

comparison between the semi-arid and forested study sites.

Mean Forested Semi-Arid
Sensor  Polarization Incidence Cameroon DRC Tanzania Chad
Angle  Dry Wet Wet Wet Dry Dry
PALSAR HH 25°-27° v v v
HV 25°-27° v v v
a y
VH 25°-27° v v v
Vv  25°-27° v v v v
ASAR HH 26°-31° v v
HV 26°-31° v v
v o I
VV  26°-31° v
36°
TSX HH 28°-30° v
44°-45° v
HV 28°-30° x v
VH 28°-30° x v
Vv  28°-30°
44°-45° v

Same Incidence Angle
Different Incidence Angle

v~ available and used in further analysis
x - available, but did not orthorectify correctly. Therefore not used in furthre analysis.
Table 3.4 The available images for each study site, with colours showing the available images used for testing the

transferability of the classification model to an additional study site for both the forested and semi-arid areas.
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Mean Forested Semi-Arid

Sensor Polarization Incidence Cameroon DRC Tanzania Chad
Angle Dry Wet Wet Dry @ Dry
PALSAR HH 25°-27°
41° v
Hv 25027 [N
41°
VV 25°-27°
ASAR HH 26°-31° v
HV 26°-31° v v
VH 36° Vv v v v
VV 26°-31° v
36° v v v v
TSX HH 28°-30° Vv v v
44°-45° v
HV 28°-30° Vv v x v
VH 28°-30° Vv v x v
Vv 28°-30° Vv v
44°-45° v
Semi-
Forested Arid
Same Season, Same Incidence Angle—
Same Season, Different Incidence Angle| N/A
Different Season, Same incidence Angle N/A

v~ available and used in further analysis

x - available, but did not orthorectify correctly. Therefore not used in furthre analysis.

All images were ordered as single-look complex (SLC) images, to allow for an automated
orthorectification of the images. However, for a select number of TerraSAR-X images,
only detected images were granted due to the sensitivity of the geographic locations.
This is for the sites in the DRC and Chad, due to the civil conflict present in these areas
during this timeframe. The TerraSAR-X images for these sites were therefore manually
corrected by selecting ground-control points, to match the ENVISAT ASAR and ALOS

PALSAR images.
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3.3 General methodology for the three experiments

The general methodology for the three experiments is underpinned by first getting the
data in a useable format. This is covered in Chapter Four, and consists of the
orthorectification of the images, creating an image overlap, calculating the derived
layers, combing the images into a layer stack and finally to selecting samples of land
cover classes as identified from available optical images. The derived layers that are
calculated are interchannel ratios and texture measures from the backscatter coefficient
data and elevation, slope and aspect layers from the SRTM data for the same sites. As
part of the sample selection, the land cover polygons are randomly split between
training and test sample areas. Samples from the test areas are then kept separate on

which to evaluate the models.

To assess whether multi-frequency SAR backscatter coefficient images, along with
interchannel ratios and texture measures, can be used to successfully distinguish
between land cover classes in the semi-arid and forested areas of Africa, random forest
models are built for multiple scenarios. Once the data are in the correct format, the
dataset is grouped into combinations of L-, C-, and X-band for the backscatter
coefficients, interchannel ratios, texture measures and elevation data. Random forest
models are run for each of these scenarios and the overall accuracies as well as class-
specific accuracies compared in Chapter Five. To assess which channels and / or derived
variables separate the land cover classes the most, for both the wet and dry seasons,
the variable importance measures from the random forest model are used. As part of
the random forest model output, two measures of variable importance, namely mean
decrease accuracy (MDA) and mean decrease Gini (MDG) are given and the classification
accuracies of both measures are compared. The random forest models using the top 30
variables of both MDA and MDG variable importance measures are compared for each
of the sites and seasons. The same top 30 variables for each site/season are then used
to train an SVM model and the overall classification accuracies are compared with those
from the random forest models. The final chosen model is run on the whole image for
the Cameroon wet season site, to see the results not only for the samples, but applied

to the whole area where the SAR images overlap.
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In Chapter Six, the random forest models developed in Chapter Five are applied to the
different season of the same site, for both the forested and semi-arid sites, to assess the
transferability of these models to a different season. Two types of comparisons were
made, namely inter-season and inter-site comparisons, for the forested and semi-arid
ecoregions (Figure 3.14).For the forested sites, the model developed on the Cameroon
wet season samples are applied to the Cameroon dry season samples, and model
developed on the Cameroon wet season samples is applied on the DRC wet season
samples. For the semi-arid sites, the model developed on the Tanzania dry season
samples is applied to the Tanzania wet season samples, and model developed on the

Tanzania dry season samples is applied on the Chad dry season samples.

Ecoregion Comparison Main site Additional site

Forested Cameroon DRC

Inter-season

Inter-site
Semi-arid Tanzania Chad

Inter-season

c

Inter-site

Figure 3.14 The inter-season and inter-site comparison between the main and additional sites for the forested and
semi-arid ecoregions.
Since there are fewer images available for the additional site than for the main
development site for both the forested and semi-arid ecoregions, the models had to be
re-trained using only the available images and calculated feature layers from the
additional sites (see Table 3.3 for available frequencies and polarisations for the inter-

season comparison and in Table 3.4 for the inter-site comparison).
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In terms of the land cover class comparison, two approaches are followed here. Firstly
to apply the model from the main development site directly to the additional season
and additional sites using the exactly the same land cover classes. These are bare soil,
dense trees, sparse vegetation, settlement and water for the forested sites; and bare
soil, dense trees, sparse vegetation, settlement and agriculture for the semi-arid sites.
The open woodland class was left out in these models, since it was not present in the
additional sites for both the forested and semi-arid ecoregions. This direct application
of the model would assess the transferability of the model directly for both the inter-

season and additional site comparison for the forested and semi-arid ecoregions.

Secondly, a model is built, but keeping the classes as those that are site-specific. This
implies that for the forested site the model is trained on the training datasets of both
Cameroon wet and Cameroon dry season and applied on the test datasets of both the
Cameroon wet and Cameroon dry season for the inter-season comparison. For the
additional site comparison for the forested ecoregion, the model is trained on training
datasets of both the Cameroon wet and DRC wet season sites; and applied on the test
datasets of both the Cameroon wet and DRC wet season sites. The resulting land cover
classes are CD-bare soil, CD-dense trees, CD-sparse vegetation, CD-settlement, CD-
water, CW-bare soil, CW-dense trees, CW-sparse vegetation, CW-settlement and CW-
water for the forested inter-season comparison; and CW-bare soil, CW-dense trees, CW-
sparse vegetation, CW-settlement, CW-water, DW-bare soil, DW-dense trees, DW-
sparse vegetation, DW-settlement and DW-water for the forested additional site

comparison.

Similarly for the semi-arid ecoregion, the model is trained on both the Tanzania dry
season and Tanzania wet season training datasets and applied on the test datasets of
both the Tanzania dry season and Tanzania wet season for the inter-season comparison.
For the additional site comparison, the model is trained on training datasets of both the
Tanzania dry and Chad dry season; and applied on the test datasets of both the Tanzania
dry and Chad dry season. The resulting land cover classes are the TD-bare soil, TD-dense

trees, TD-sparse vegetation, TD-settlement, TD-agriculture, TW-bare soil, TW-dense
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trees, TW-sparse vegetation, TW-settlement and TW-agriculture for the semi-arid inter-
season comparison; and TW-bare soil, TW-dense trees, TW-sparse vegetation, TW-
settlement, TW-agriculture, ChD-bare soil, ChD-dense trees, ChD-sparse vegetation,
ChD-settlement and ChD-agriculture for the semi-arid additional site comparison. Again,
the open woodland class was left out in the site-specific land cover class models, since
it was not present in the additional sites for both the forested and semi-arid ecoregions.
The reason for the site-specific land cover classes, is to assess if the random forest model
can distinguish the site-specific land cover classes as separable from each other. This can
then be used to motivate a refinement of more land cover classes that the model can

classify.

To test whether the statistical distributions of the land cover classes of the main model
site and the additional site are similar enough for the model to be transferable, the
distributions are compared both visually and with a statistical measure in Chapter Seven.
The statistical measure used to compare the distributions of the land cover classes is the
Kullback-Leibler divergence (KLD). The visual comparisons are made for the backscatter
coefficients, interchannel ratios, texture measures and elevation data. This was
undertaken for the Cameroon wet season training vs test samples as a baseline measure.
The visual comparison was also undertaken on the Cameroon wet vs dry season samples
and the Cameroon wet season vs the DRC wet season samples. The KLD measures were
computed and assessed for the backscatter coefficients and the top eight texture
measures for the Cameroon wet season training vs test samples, Cameroon wet season
vs dry season samples and the Cameroon wet vs DRC wet season samples. This shows
how different the land cover SAR signal distributions are between the training and test
samples, wet and dry seasons, and between the main development study site and the
additional study site for the forested site in Cameroon. A similar comparison was
performed for the semi-arid site in Tanzania, comparing the Tanzania dry season training
vs test samples, Tanzania dry vs wet season samples and the Tanzania dry season vs

Chad dry season samples.
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To round off Chapter Seven, KLD class difference measures are calculated from the KLD
measures, and related to the user’s accuracy of the relevant random forest models for

both the forested and semi-arid sites.

3.4 Sample selection of land cover types

The land cover types for each site were identified by viewing very high resolution images
from DigitalGlobe available on Google Earth. Apart from the DigitalGlobe images, the
land cover types were also identified using available Landsat 8 images, which were
processed to top-of-atmosphere reflectance for each site. The land cover classes
identified for the Cameroon and Tanzania study sites were bare soil, dense trees, open
woodland, sparse vegetation, settlements, water (Cameroon only) and agriculture
(Tanzania only). An explanation of the land cover types with regards to woodland cover
estimation and a description of each land cover type along with the relation of the land
cover classes to LCCS (Di Grigorio, 2005) are shown in Table 3.5. The dense trees are
closed woody vegetation in LCCS, the open woodland are open woody vegetation in
LCCS. The sparse vegetation class is a combination of sparse woody vegetation and
herbaceous closed to open vegetation in LCCS. Settlements are built-up areas, and the
water land cover class is a combination of both the natural waterbodies and artificial
waterbodies LCCS land cover classes. The agriculture land cover class is matched with

the herbaceous crops LCCS land cover class.

One of the challenges with regards to land cover classification across these African
landscapes becomes apparent here. This is the lack of clearly defined boundaries
between different land cover classes, with a gradual shift from one class to the next,
ranging from areas of woodland with close to complete canopy cover (here named
dense trees), to areas with a combination of shrubs, herbaceous cover and open woody
vegetation with 15-65% canopy cover (named open woodland), areas with mixed
vegetation of herbaceous cover, shrubs and woody canopy cover between 1-15%
(named sparse vegetation) and areas with little to no vegetation (named bare soil). The

settlement, water and agricultural areas are more distinct, although the settlement
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areas often have mixed vegetation, and the agricultural areas could vary between bare
soil and fully vegetated land, depending on the time of year. To enable a better
understanding of the landscape, some examples of the land cover types identified are
shown in Figures 3.15 to 3.17. Figure 3.15a shows the location of the land cover sample
areas, which are shown more closely in Figure 3.16 for the Cameroon study site. Figure
3.15b shows the location of the land cover sample areas, which is zoomed into in Figure

3.17 for the Tanzania study site.

The land cover classification using Google Earth was reliable to identify and distinguish
the different land cover classes from each other. The main uncertainty from using
Google Earth, is that the height of the vegetation is unknown, which might affect a finer
land classification such as specific tree types. However, Google earth is being used
increasingly as an alternative approach to ground truthing in the remote sensing
research community (Thenkabail et al.,, 2009; Tehrany et al., 2013). Google earth
provides easy axxess to very high resolution imagery across the globe. The main
challenge observed in this study, is the date and season differences between the
imagery used in the research, compared to the acquisition date of the google earch
imagery. An assumption is therefore made that the land cover classes remained the

same between the two sets of imagery, to make reliable conclusions.

By comparing the selected screenshots from Figure 3.16 and Figure 3.17, the difference
between the landscape of the forested Cameroon site and more semi-arid Tanzania site
can be seen. All the selected sample areas for the Cameroon and Tanzania sites are
shown in Figure 3.18. The sample polygon areas are randomly grouped into training and
test areas, with a 50:50 split for training:test data. From these training polygon areas,
3000 pixels per land cover class are randomly selected as training samples. As test
samples, another 3000 pixels per land cover class are randomly selected from the test

polygon areas, which are different polygons to the training data areas.
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Table 3.5 The land cover types identified in the Cameroon and Tanzania study sites, with their woodland cover estimation and additional description.

areas

Land cover Woodland | Description LCCS dichotomous LCCS description LCCS code LCCS classifiers used
name cover phase
estimate
Dense trees | 65-100% Dense trees / forest Al12. Natural and Closed woody A12A1A10 A-Life form: woody
canopy semi-natural vegetation A-Cover: closed > 65%
cover terrestrial vegetation
Open 15-65% Mixed vegetation, trees, | A12. Natural and Open woody A12A1A11 A-Life form: woody
woodland canopy grassland, shrubs semi-natural vegetation A-Cover: open 65-15%
cover terrestrial vegetation
Sparse 1-15% Mixed vegetation, trees, | A12. Natural and Sparse woody A12A1A14 / A-Life form: woody
vegetation canopy grassland, shrubs semi-natural vegetation / A12A2A20 A-Cover: open 15-1% /
cover terrestrial vegetation | Herbaceous closed to A-Life form: herbaceous
open vegetation A-Cover: open 100-15%
Bare soil Bare soil , with possibly Al12. Natural and Herbaceous closed to A12A2A20/ A-Life form: herbaceous
some vegetation semi-natural open vegetation / Bare | B16A5 A-Cover: open 100-15%
terrestrial vegetation | soil and/or other A-Life form: woody
/ B16. Bare areas unconsolidated A-Cover: sparse 15-1% /
material(s) A-Surface aspect: bare soil and
other unconsolidated materials
Settlements Settlements B15. Artificial Built up area(s) B15A1 A-Surface aspect: built up
surfaces and
associated areas
Water Water B27. Artificial Artificial waterbodies / | B27A1 / B28A1 A- Physical status: water /
(Cameroon) waterbodies, snow Natural waterbodies A- Physical status: water
and ice / B28. Natural
waterbodies, snow
and ice
Agriculture Agricultural fields A11. Cultivated and Herbaceous crop(s) A11A3 A-Life form:
(Tanzania) managed terrestrial Main crop-herbaceous
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Figure 3.15 a) Cameroon study site with letters a-f referring to the land cover classes show in Figure 3.16. b)
Tanzania study site with letters a-f referring to the land cover classes in Figure 3.17. © 2015 Google, Image © 2015
DigitalGlobe.
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Figure 3.16 Screenshots from Google Earth of selected sample areas of identified land cover classes for the

Cameroon study site. Each image is 1km x 1km in size. © 2015 Google, Image © 2015 DigitalGlobe.
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Figure 3.17 Screenshots from Google Earth of selected sample areas of identified land cover classes for the

Tanzania study site. Each image is 1km x 1km in size. © 2015 Google, Image © 2015 DigitalGlobe.
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Figure 3.18 Sample selection process for the Cameroon and Tanzania sites. © 2015 Google, Image © 2015

DigitalGlobe.
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The number of training and test samples were chosen as 3000 per land cover class, since
larger samples ran into computational and memory constraints during the sample
extraction step. Sample sizes of 1000, 3000 and 5000 were attempted, with 3000 giving
satisfactory results, and computationally efficient. The number of pixels from the
training and test samples selected for the Cameroon study site are shown in Table 3.6
and for the Tanzania site in Table 3.7. The split between the training and test polygons
was 50:50, but due to different numbers of pixels in each of the polygons, the % of pixels
in the training and test polygons varies closer to a 40:60 split. For both the Cameroon
and Tanzania test sites, 3000 pixels are selected for training and 3000 pixels for test for
each land cover class. It can be noted that the Tanzania samples are much smaller areas,
and as a result the 3000 pixels are a larger proportion of the total number of available

sample pixels.
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Table 3.6 Number of training and test samples available, training and test sample percentage split, and 3000 samples as a percentage of the available land cover samples, for the Cameroon

study site.
Cameroon
Land cover Nr of training | Nr of test Total nr Available | Available Total % pixels in | % pixels in Chosen 3000 samples as % of
polygons polygons of training test available | available available available pixels
polygons | samples | samples samples | training test samples
samples for training for test
Bare soil 10 10 20 18408 19423 37831 49 51 16 15
Dense trees 17 16 33 21568 33924 55492 39 61 14 9
Open 12 12 24
woodland 112954 170696 283650 40 60 3 2
Sparse 16 16 32
vegetation 154016 202353 356369 43 57 2
Water 4 4 8 232548 163835 396383 59 41 1 2
Settlement 10 8 18 9288 10269 19557 47 53 32 29
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Table 3.7 Number of training and test samples available, training and test sample percentage split, and 3000 samples as a percentage of the available land cover samples, for the Tanzania study

site.
Tanzania
Land cover Nr of training | Nr of test Total nr Available | Available Total % pixels in | % pixels in Chosen 3000 samples as % of
polygons polygons of training test available | available available available pixels
polygons | samples | samples samples | training test samples
samples for training for test

Agriculture 15 15 30 25608 16193 41801 61 39 12 19
Bare soil 44 46 90 5442 5509 10951 50 50 55 54
Dense trees 15 15 30 27788 26770 54558 51 49 11 11
Open 25 25 50

woodland 28108 17935 46043 61 39 11 17
Sparse 15 15 30

vegetation 13762 17645 31407 44 56 22 17
Settlement 9 9 18 15789 19332 35121 45 55 19 16
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Chapter Four Data preparation

For the SAR data to be combined and compared between different sensors, all images
need to be processed to the desired level. These pre-processing steps include
orthorectification, calibration and mosaicking, calculating new information layers of
interchannel ratios and texture calculations; and adding elevation, slope and aspect data
from a SRTM DEM; and then combining it all in a layer stack (Figure 4.1). The data
preparation and pre-processing steps follow the site selection and data selection from
the archives as discussed in Chapter Three. Data preparation was necessary to translate
the data in the correct format to be able to develop a classification model with the data.
The data preparation consists of several pre-processing steps of: orthorectification of
the images (Section 4.1), creating an image overlap (Section 4.2), calculating derived
layers (Section 4.3) and combining the data all into a layer stack (Section 4.4). After the
pre-processing steps, the data was extracted based on the land cover samples selected

in Section 3.4.

79



()
o 3.1-3.2 Site selection and data selection from archives
£
a
T 6 o |
S B 3.4 Land cover type identification and sample selection.
[P Selection of training and test data for each site
a3
tCID
G 4.1 Orthorectification of images
vy
5]
5 l
| -
o 4.2 Creating image overlap
g - Cut out images, based on overlap
- Convert linear to dB
C
e
©
LCG 4.3 Calculating derived layers:
o - interchannel ratios
e - texture measures
o - elevation data
]
=
(O
(] 4.4 Combining images into a layer stack:
- backscatter coefficients
- interchannel ratios
- texture measures
- elevation data
) |
Extract data from layer stack
based on samples selected in 3.4
AN
— 5. Development of 7. SAR signature
% GCJ models visualization
© £
= S
o
2
(] Models ready to be 6. Assessment of
© applied to new data the transferability
of the models

Figure 4.1 Overview of the pre-processing steps, leading up to the model development. Numbers correspond to
chapter and section numbers.
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The land cover types were selected by identifying several land cover types, using the
available very high resolution DigitalGlobe imagery. The land cover polygons were
drawn and then randomly split into training and test areas from which samples were

randomly selected for model development.

These five data preparation steps listed above, are performed on the data for the main
model development and additional study sites, i.e. for the Cameroon and Tanzania study
sites, for main model development, for the forested and semi-arid areas respectively,
and for the additional sites in the DRC and Chad. Once the data preparation was
complete (pre-processing and sample selection), the data were in a format ready for
model development and for comparison between several classification models (Chapter
Five). After the models have been developed, they are ready to be applied to new data.
The transferability of the models was tested, by applying the models on data from a
different season and an additional site for the forested and semi-arid ecoregions
(Chapter Six). Finally, the SAR signatures were visualized and compared for all the

selected land cover types for the forested and semi-arid study sites (Chapter Seven).

4.1 Orthorectification of images

The main aim of the orthorectification or geo-terrain correction step is to align the
images from the different SAR sensors with each other and to enable the placement of
images on to a map, thus linking each pixel with a specific location on the earth’s surface.
This process can usually be done relatively easily using ESA’s SAR software, Next ESA SAR
Toolbox (NEST), but following this route did not allow all the images to overlap properly.
The TerraSAR-X images and ENVISAT ASAR images overlapped well, but the ALOS
PALSAR images did not match, due to incorrect orbital state vector information in the
metadata. This is a known issue, and after applying the ALOS deskewing application

within NEST, it still did not lead to satisfactory results.

To orthorectify the images, the GAMMA SAR and Interferometric software (Werner et

al., 2000) was used. To automate the orthorectification using GAMMA, a Linux shell

81



script, originally written by Waldram (2014), was adapted and customized for this
research. Waldram (2014) used the script to orthorectify multi-temporal ALOS PALSAR
images to classify AGB for a region in Central Kalimantan in Indonesia. The script was
modified to orthorectify ENVISAT ASAR and TerraSAR-X images in addition to the ALOS
PALSAR images, and was run on all the available single-look complex (SLC) images. As
part of the GAMMA script, the images need a reference image to be aligned to. As a
reference image, panchromatic Landsat images were mosaicked together, for each
study site. The reference image needs to cover a larger geographic area than the SAR
image that is being orthorectified. Other options are to use an SRTM DEM or a
combination of a Landsat image and SRTM DEM (Lucas et al., 2007) or an already
orthorectified SAR image. The use of panchromatic Landsat images was chosen as it has
a higher spatial resolution of 15x15m compared to the SRTM DEM with 90x90m. This is
closer in line to the SAR images with a spatial resolution between 5-15m, as is discussed
in more detail later in this section. The use of panchromatic Landsat images produced

good results for most of the images.

As part of the GAMMA orthorectification steps, the final model fit of the
orthorectification procedure is reported in the metadata. The maximum final model fit
standard deviation in the range and azimuth direction for each site/season/sensor
combination are presented in Table 4.1. All the images used in this research produced
sub-pixel orthorectification accuracy, with the exception of the DRC wet season L-band
images, which had approximately 1.5 pixels standard deviation in both the range and
azimuth directions. The orthorectification of the Tanzania wet season TerraSAR-X
images resulted in large standard deviation errors of 22 pixels in both the range and
azimuth directions. As a result, it was therefore decided not to use the Tanzania wet
season TerraSAR-X images for the remainder of the research. The enhanced ellipsoid
corrected (EEC) TerraSAR-X images were already orthorectified by the DLR. A visual
comparison was undertaken to establish whether these images are aligned to the ALOS

PALSAR and ENVISAT ASAR images.
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Table 4.1 The images used in this research with the final model fit standard deviation in the range and azimuth

directions.
Site Season | Sensor | SLC/ | Number Polarisations | Maximum final
EEC | of images model fit
standard deviation
(samples)
Range Azimuth
Cameroon | Wet L SLC 4 Quad 0.45 0.63
C SLC |2 Dual VV/VH 0.97 0.52
X SLC |4 Dual HH/HV, 0.65 0.80
Dual VV/VH
Cameroon | Dry L SLC 1 HH 0.32 0.67
C SLC |2 Dual VV/VH 0.97 0.47
X SLC |4 Dual HH/HV, 0.65 0.77
Dual VV/VH
DRC Wet L SLC |5 Quad 1.49 1.59
HH
C SLC |3 vV 0.37 0.58
Dual HH/HV
X EEC |2 HH, VV -3 -3
Tanzania Dry L SLC |6 Quad 0.54 0.82
Dual HH/HV
C SLC |2 Dual VV/VH 0.38 0.43
X SLC |1 VH?* 0.59 0.61
Tanzania Wet L SLC |2 HV, VH* 0.32 0.48
C SLC 2 Dual VV/VH . -1
X SLC |2 HV, VH* 22.052 22.562
Chad Dry L SLC |6 Quad 0.40 0.34
Dual HH/HV
SLC |2 Dual HH/HV 0.31 0.02
X EEC 2 Dual HH/HV -3 -3

! The geocoding information is stored on the ALICE server for three months, and this information was

unfortunately lost as a result. Upon visual inspection it was decided to still use these images.

2 The high range and azimuth values for the Tanzania wet season TerraSAR-X images. It was decided not

to use these images in the analysis, due to the sub-optimal orthorectification result.

3 The EEC images were ordered orthorectified, and these were used as is. A visual comparison was done

to assess the alignment with the ALOS PALSAR, ENVISAT ASAR images.

4Not all SLC polarisation images resulted in orthorectified images with the GAMMA script. Only the SLC

images that successfully orthorectified by the GAMMA script are listed here.
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Figure 4.2 shows the GAMMA script steps, which include multi-looking, radiometric
calibration, geocoding/orthorectification of the image and creation of an ENVI header
file (.hdr), to enable the orthorectified image to be opened in any standard remote

sensing or GIS software.

SLC Panchromatic
o image Landsat tile /
- mosaic
g' used as DEM
L
)
g Steps:
00 o Multi-looking
f= Gamma e  Radiometric calibration
v orthorecFification o Geocoding
9 script e  Create a .hdr file to open
8 file in remote sensing /
o GIS software
)
-]
o
)
-0
O

Figure 4.2 First step of the pre-processing workflow, to create orthorectified images.

Figure 4.3 shows a comparison of the spatial resolution of different sensors after the
multi-looking step. The images are multi-looked and resampled to the nearest 5m
interval, as set out in Table 4.2, to allow for relatively easy layer comparison and stacking
of the images. The TerraSAR-X images were first multi-looked and then resampled to

5m, ALOS PALSAR to 10m, and ENVISAT ASAR to 15m spatial resolution. After the
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GAMMA orthorectification script, the images were still in a linear format, and were

converted to a dB scale using a log conversion in the following steps.

ENVISAT ASAR

ALOS PALSAR

TerraSAR-X

5m 10m 15m

Figure 4.3 Spatial resolution comparison for the multi-looked and spatially resampled images used in this study,

from ENVISAT ASAR, ALOS PALSAR and TerraSAR-X.

The GAMMA script was run on the ALICE High Performance Computing Facility at the
University of Leicester, due to the high volume and large size and of the files.
Additionally, ALICE was the only access to an implementation of the GAMMA software

at the University of Leicester.

Table 4.2 Multi-looking applied in the range and azimuth direction for each sensor to achieve the listed spatial

resolutions.

Sensor Original Original Multi- Multi- Spatial Spatial Resampled
Spatial Spatial looking looking resolution resolution Spatial
resolution | resolution Range Azimuth | Range (m) Azimuth resolution,
Range (m) | Azimuth (m) (m) Range and

Azimuth (m)

ALOS 9.369 3.534 1 3 9.369 10.603 10m

PALSAR

ENVISAT 7.804 3.954 2 4 15.608 15.818 15m

ASAR

TerraSAR-X | (0.909 2.410 5 2 4.547 4.821 5m
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4.2 Creation of image overlap

As was shown when the study sites were introduced in Chapter Three, only a relatively
small area coincides between the images from the three sensors for each site. The steps
of how to create this overlap-area are shown in Figure 4.4. Starting with the
orthorectified images from the GAMMA script, the images were copied from ALICE to a
local laptop. Some file manipulation steps were necessary, such as moving the files all
to a single folder, converting the images from ENVI format to .tif files and mosaicking

the images that were acquired as part of the same orbit.

A shapefile was created of each image, which is then used to obtain the area of overlap
between all the shapefiles. The ENVI to .tif conversion, mosaicking, shapefile creation
and overlap calculation were all performed using the Geospatial Data Abstraction

Library (GDAL) (GDAL, 2013).

After an overlap for each study site was obtained, the overlap shapefile was used to
extract that portion of the data from each of the images. After the relevant portions of
the images were obtained, the intensity images were converted from a linear scale to

sigma-naught (c°), which is in a decibel (dB) scale, with Equation 4-1:

0P = 10 X log19(Spq) Equation 4-1
where Spq is the linear scale intensity in PQ polarization, with P either horizontally or
vertically transmitted, and Q either horizontally or vertically received. The o%-images are

now in the familiar -0.40 to -0.05 range (approximately), and are used in this form for

the classification model development.
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Figure 4.4 Second step of the pre-processing workflow, creating overlap areas from the SAR images for each site,

creating a layer stack and converting from linear to dB scale.
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4.3 Calculation of derived layers

Three sets of derived layers were calculated, namely interchannel ratios, texture
measures and DEM-derived layers. This increases the data dimensionality from just the
backscatter coefficients to a multitude of information layers that can be used for

classification model development.

4.3.1 Interchannel ratios

In terms of interchannel ratios, there are several image manipulations that can be
calculated to enhance the information content between the various polarisation
channels (e.g. ratios, sums and differences). The phase-related calculations, such as the
phase difference and fully polarimetric decompositions, are excluded from this study.
This was necessary because this study aimed to derive a classification algorithm from

the channels that can be used from dual-polarized and single polarized SAR images.

The interchannel ratios that were calculated are listed in Table 4.3. Most of the
interchannel ratios were performed on the linear scale of the SAR images. The
backscatter coefficients o7y, o0y and g, along with the co-polarisation ratio and de-
polarisation ratio have been used in sea-ice classification from SAR images (Dierking et
al., 2003). The cross-polar backscatter coefficient USV have been used for agricultural
crop classification whilst the ratios in dB have been used for bare soil and vegetation
classification (Buckley, 2002; Quegan et al., 2003). The linear ratios and linear sum
calculations have been used for land cover and terrain characterization (Simental et al.,

2005). Several interchannel ratios have been added in this study, that were not

. e SHH-S
mentioned in Simental et al. (2005). These are: Syy + Suv, Svv + Svi, Syv — Svi, ——2r
SHH+SHV
Syv—SvH . . .
d ——. This is to complete the possible feature space of calculations. The
Syv+SvH

normalised difference interchannel index calculations are similar in information content
to the linear difference calculations, but normalise the images in a similar way in which

the normalised difference vegetation index (NDVI) is calculated from optical imagery.
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Table 4.3 The interchannel ratios, sums and differences used in this study, extended from Lonngvist et al. (2010).

Syv+SvH

Name of Equation Eq. Previous Reference
calculation application
Backscatter ofy = 10-1og;o(Sun) 4-2 | Seaice (Dierking et al., 2003;
coefficients 5 Skriver et al., 2003)
oyy = 10-log;o(Syv) 4-3
oy = 10 -log;o(Suv) 4-4 | Agriculture (Quegan et al., 2003;
(crops), sea ice Skriver et al., 2003)
Ratios in dB q _ | |Syul? 4-5 | Bare soil / (Quegan et al., 2003)
rdByy vy = 10 -log EME vegetation
[Syv|?\ | 4-6 | Vegetation (Buckley, 2002)
rdBvv/mn = 10- log<ISHH|2 types
[SuvI?\ | 4-7
rdBHv/HH = 10 ' lOg( v 2
|Suul
Co- ooy 4-8 | Seaice (Dierking et al., 2003)
polarisation G%H
ratio
Depolarisation 3 o0y 4-9 (Dierking et al., 2003;
ratio 0%y + 0y Skriver et al., 2003)
Linear ratios Hinear _ SH_H 4-10 | Terrain (Simental et al., 2005)
HH/VV = Svv characterization, () At g .
| Variation of (Simental
and cover
. Svu 4-11 et al., 2005)
rlinearyy vy = ——
Swv
. Shv 4-12
rlinearyy yy = ——
Suu
Linear Sums Suu + Svv 4-13
Linear Suu — Svv 4-16
Differences
Normalised Sun — Svv 4-19
difference Sy + Syv
interchannel S5
indices SHH_CHV (1) 4-20
SHHtSHV
Syv—=SvH (1) 4-21
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4.3.2 Texture measures of SAR images

To increase data dimensionality further, several texture measures are calculated for
each of the SAR images. The Grey-Level Co-occurance Matrix (GLCM) texture
measurements are the most widely used texture measures for images (Haralick et al.,
1973). Haralick et al. assessed the use of several texture measures for different types of
image data, including multispectral satellite imagery from Landsat 1 with seven land-use
categories. A piecewise linear discriminant function classification algorithm was used for

the multispectral satellite image, giving 83% classification accuracy on a test data set.

Fourteen different texture measures were introduced by Haralick et al. (1973). They are
Angular Second Moment (ASM), Contrast (CON), Correlation (COR), Sum of Squares
Variance (VAR), Inverse Difference Moment (IDM), Sum Average (SA), Sum Variance
(SV), Sum Entropy (SENT), Entropy (ENT), Difference Variance (DVAR), Difference
Entropy (DENT), two measures of Information Measures of Correlation (IMCOR1,
IMCOR2) and Maximal Correlation Coefficient (MAXCOR). These texture measures use
the matrix known as the Grey-Level Co-occurance Matrix (GLCM) to derive the texture
measures. The GLCM is a matrix that defines how often each grey-level occurs next to
every other grey-level in a certain distance and direction. This is calculated for an image
using a moving window at a specific square window size (e.g. 3x3, 5x5, 7x7 etc). The

GLCM is given by

Kk A
e R RN
P(N,1) P(N,2) .. P(N,Np|l 7
[P p(L2) o p(LNy)
P(.Z»l) p(Z,‘Z) P(Z"Ng) Equation
P(Nu 1) P(NL2) . p(N, Ny 422

where N is the number of distinct grey levels in the image, and element P(i,j) is the

number of times a pixel with value i is next to (or at a specified distance away from) a
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pixel with value j. The matrix is then normalized by dividing each element by the total
number of occurrences, resulting in a probability (Haralick et al., 1973; Boland, 1999).
The GLCM probability measure, which is dependent on the inter-pixel distance (6) and

orientation (8), can therefore be defined by:
Pr(x) ={p@,j)| (5, 6)} Equation 4-23
where the co-occurrence probability between grey levels i and j is defined as:

.. Py Equation 4-24
p(i.)) =
Zi,j=1 ij

where P;; is the number of occurrences of grey levels i and j within a given window,
given the inter-pixel distance §, orientation 8 and the number of distinct grey levels N,
(Haralick et al., 1973; Clausi, 2002). To enable the calculation of the GCLM matrices, all
the SAR images are rescaled between 1 and 64 in the linear domain. This is called the
quantization level. The quantization level can affect the classification results and
contrary to expectation, a higher quantization level (e.g. 128 or 256) can have lower
classification accuracy than a lower quantization level. Contrast and Entropy are the two
recommended texture measures by Clausi (2002), and a quantization of greater than 24

grey levels is also recommended by Clausi (2002).

The GLCM can be calculated in four orientation directions, namely 0°, 45°, 90° and 135°.
What is often done to derive orientation invariant texture measures, is to calculate the
average of all four orientation angles, as is done in this study. A summary of GLCM
texture measures used for SAR image classification in other publications is listed in Table
4.4. As first order statistics, which use the pixel values directly, the neighbourhood mean
(MEAN) for a given window size is calculated. As second order statistics, which use the
co-occurrence of grey-levels in a given window size, four GLCM texture measures are

calculated in this study, namely contrast, correlation, entropy and variance.
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Table 4.4 Summary of texture measures used in other studies for the classification of SAR images.

CON,
VAR (2"9 order)

Publication | Application | Sensor Spatial Texture Window
resolution | measure size
Kuplich et Biomass JERS-1 25m CON 3x3,5x5
al., 2005 estimation (L-band)
Pengetal.,, | Land cover, | Radarsat | 12.5m CON,ENT,COR, 17x17
2005 mountains ASM. MEAN
Herold et Water, SIR-B 12.5m Variance 21x21
al., 2004 agriculture, (L-band)
bare, urban
Urban Radarsat | 256m Variance 13x13
Clausi, 2002 | Seaice Aerial 100m CON, ENT, COR | 8x8
SAR
Radarsat | 150m 16x16
Anys, 1995 | Agricultural | Convair- | 12.5m MEAN, 7x7
crops >80 VAR (1°t order),
(C-band)

The neighbourhood mean is calculated by:

Y= %k Equation 4-25

fmean - N

where N is the number of pixels in the window, and x; is the grey tone value of pixel k.

Contrast is given by:

Ng—1 Ng Ny
feontrast = Z n? Z p(i,j) Equation 4-26
n=0 i=1 j=1
li-jl=n

92



Correlation is calculated by:

22N, ) — palty Equation 4-27
0.0,

fcorrelation -

where Wy, Wy, 0xand oy are the means and standard deviations of px and py.

Entropy is calculated as per Equation 4-28:

fentropy = — Z Z p(i,j) log( p(i, j)) Equation 4-28
J

i

with p(i,j) as defined by Equation 4-22 and Equation 4-23.

Variance is calculated as per Equation 4-29:

Joariance = Z Z(l — ‘u)zp(i’j) Equation 4-29
J

i

with p the mean of p(i,j) for the moving window and p(i,j) defined by Equation 4-24. The

variance is also referred to as the Sum of Squares (Haralick et al., 1973).

As mentioned, the texture calculations are applied at a specific window size. To relate
the texture measures to features on the ground, the spatial resolution of the image has
to be taken into account. The interpretation of the window size is therefore dependent
on the spatial resolution of the sensor. Table 4.5 show how the window size and sensor
spatial resolution relates to the footprint area on the surface on the ground. The
highlighted sections show the window sizes at which the texture measures are

calculated for this study.

Figure 4.5 shows a graphical representation of the footprint areas of the texture
measures for the different sensors on a relative scale. It can be seen that a 9x9 window

size on 5m TerraSAR-X imagery have an equivalent footprint of a 3x3 15m ASAR image,
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and is comparable to a 5x5 10m PALSAR image. Similarly a 15x15 window size 5m
TerraSAR-X image has the same footprint as a 5x5 15m ASAR image and is similar to a
7x7 10m PALSAR image. This comparison shows that the high spatial resolution of
TerraSAR-X has a significant impact on the effectiveness and granularity of the texture
calculations compared to the coarser resolutions of ALOS PALSAR and ENVISAT ASAR.
The motivation for calculating the contrast, correlation, entropy and variance texture
measures along with the neighbourhood mean at the selected window sizes, is to
provide many additional information layers to enhance the classification of the chosen

land cover types.

Table 4.5 The footprint area covered in meters by the texture calculation, for each sensor, at different window sizes.

Window TSX PALSAR | ASAR
size (5m) (10m) (15m)
3 15 30 45
5 25 50 75
7] 35 70 105 [ ] Texture window
9 45 90 135 sizes calculated
11 55 110 165
13 65 130 195
15 75 150 225
17 85 170 255
19 95 190 285

The mean, entropy and contrast texture measures of L-HH image, were found useful to
distinguish dense trees and and bare soil land cover classes (Figure 4.6). Similarly, the
mean, entropy and contrast texture measures of X-VV give a similar separation between

dense trees and bare soil (Figure 4.7).
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Figure 4.5 Comparison of the footprints of the different window-sizes used for the texture calculations for TerraSAR-X, ALOS PALSAR and ENVISAR ASAR.
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Figure 4.6 Texture measures at various window sizes for ALOS PALSAR (L-HH), highlighting dense trees and bare soil.
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Figure 4.7 Texture measures at various window sizes for TerraSAR-X (X-VV), highlighting dense trees and bare soil.
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Figure 4.8 Texture measures at various window sizes for ALOS PALSAR (L-HH), highlighting settlements.
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Settlement

Figure 4.9 Texture measures at various window sizes for TerraSAR-X (X-VV), highlighting settlements.
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The entropy and contrast texture measure of X-VV works well to identify settlemnt areas
(Figure 4.8), whereas the contrast texture measure of L-HH emphasised the settlement
areas as well (Figure 4.9). The mean texture measure does not highlight the settlement
areas as it did for the dense trees and bare soil areas. By comparing the contrast texture
measure of L-HH with X-VV, it is noted that different areas of the settlement are
highlighted by the two frequencies. The variance texture measure looked very similar to
the contrast images, whereas the correlation texture measure did not provide visually

meaningful results for the dense trees, bare soil and settlement land cover classes.

4.3.3 Elevation data fromm DEM

The SRTM elevation data are used as part of the orthorectification data preparation step
in Section 4.1. Since the SRTM data are readily available, elevation data along with the
derived slope and aspect information are used as additional information layers.
Furthermore, the inclusion of elevation, aspect and slope has been shown to increase

the accuracy of land cover mapping (Peng et al., 2005).

All interchannel ratios, texture measures and the SRTM-derived elevation layers were

processed using the open source software GRASS GIS (Neteler et al., 2012).

4.4 Combining images into a layer stack

To enable utilisation of all the available backscatter coefficient images for each site,
along with the derived layers of interchannel ratios, texture measures and DEM-derived
layers, all the images were combined into a layer stack. In order to do this the images

were all resampled to 5m spatial resolution, using nearest neighbour resampling.

To recap the preceding steps:
e The images is first orthorectified (Section 4.1),
e then, an area of overlap is calculated, which is used to extract the overlapping

area from the orthorectified images (Section 4.2).
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e Several additional information layers are calculated, namely interchannel ratios,
texture measures and DEM-derived layers (Section 4.3).

e All of these layers are then combined into a layer stack (this section, Section 4.4).

Figure 4.10 shows the layer stack creation for the Cameroon and Tanzania study sites.
First, the stack of multi-frequency SAR images is shown on the left hand side of the
figure. Secondly, the separation of images into dry season and wet season sets is shown
in the centre of the figure. Thirdly, on the right-hand side of the figure, the expanded
stacks are shown which include the multi-frequency SAR images, the interchannel ratio
layers, the selected texture layers at various window sizes and the DEM-derived
information layers of the elevation, slope and aspect. Combining all the layers together
came to 165 layers for the Cameroon dry site, 245 layers for the Cameroon wet season
site, 219 layers for the Tanzania dry site and 134 layers for the Tanzania wet season site.
The number of layers were not too much for classification, since it is straightforward to

be dealt with by machine learning algorithms such as random forests.

Where possible, a virtual stack (.vrt) file format is preferred to a single image containing
all the layers, for the sake of more efficient disk space allocation, with each set of site-
season stack of images in the order of 10-30 Gb of data. Once all the data preparation
steps had been completed, the layer stacks were then ready for sample selection
(Section 3.4) in preparation for the land cover classification model development

(Chapter Five).
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Figure 4.10 Layer stack creation and additional layer calculation of the Cameroon and Tanzania SAR images.
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Chapter Five Random forest and SVM classification of multi-

frequency SAR over Cameroon and Tanzania study sites

In this chapter, the classification accuracies of random forests and SVMs, using different
frequency combinations and input-variable scenarios, are compared. This is undertaken
for the Cameroon (forested) and Tanzania (semi-arid) sites in both the wet and dry
seasons. As part of the random forest model, measures of variable importance are given,
namely the MDA and MDG. These variable importance measures enable the selection
of those that are most important for building a model, with a sufficient number of
variables to give a high level of accuracy but without an excessive number of variables.

This therefore reduces unnecessary complexity of the model.

Random forests is an ensemble classifier that has proved to be a highly efficient non-
parametric classification technique (Breiman, 2001; Waske and Braun, 2009). SVMs are
not an ensemble classifier, but still provide superior classification accuracies to
traditional classifiers in most scenarios (Cortes and Vapnik, 1995; Waske and

Benediktsson, 2007) (see Section 2.6).

As a results, the main algorithm investigated was first random forests and secondly
SVMs. Fist, the different combinations of frequencies for different input scenarios were
compared using random forests. In this process, all the available variables are compared,
ranked and discussed. The available variables include: the backscatter coefficients for all
frequencies and polarisations in o°-values (which are measured in decibels (dB) such as
L-HH, C-VH etc.), the interchannel ratios and a selection of texture measures and
elevation data (see Section 4.3). From all the available input variables, the 30 most
important were chosen to build a random forest model for land cover classification for
both the semi-arid and forested areas. The top 30 variables were chosen to train the
random forest models with only a minor decline in overall accuracy compared to a
random forest model using all available variables. As a second comparison, the top 30

variables were in used to train a SVM model and classification accuracies were

103



compared to that of the random forest model. The transferability of these models to an

additional study site was tested in Chapter Six.

5.1 Introduction

The objective of this study was to compare the classification accuracies of land cover
classification using single frequency L-, C-, X-band images, with dual-frequency
combinations of LC, LX, CX-bands and three-frequency LCX-band images. This study
addresses the question of: what is the added benefit of using two or three frequencies,
compared to only one frequency? In order to achieve this objective a comparison was
conducted on random forest classification models of the different band combinations
(L-, C-, X-band, LC-, LX-, CX- and LCX-bands) for each of the available study site / season
scenarios (i.e. for Cameroon dry season, Cameroon wet season, Tanzania dry season and
Tanzania wet season). Apart from the standard radar backscatter coefficients, several
additional input layers (calculated as set out in Section 4.3) are compared for each
frequency combination. The list of options that are investigated for each frequency

combination is:

o all layers (backscatter coefficients, interchannel ratios,
texture measures and elevation data)

e backscatter coefficients only

e interchannel ratios only

e texture measures only

e elevation data only

e backscatter coefficients and interchannel ratios

e backscatter coefficients and texture measures

e backscatter coefficients and elevation data

e backscatter coefficients, interchannel ratios and texture
measures

The methodology of comparing the different combinations is discussed further in

Section 5.2.
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5.2 Specific methodology for developing the classification algorithms

The methodology followed in this study was a standard supervised classification
involving sample selection, training / test data split, model development on the training

data and testing the model on the test data.

5.2.1 Input variable combination scenarios

The input layer stack of data was split into different combinations of input variables as
set out in Table 5.1. Each of the frequency combinations of L-, C-, X-band, LC, LX, CX and
LCX-bands were combined with a combination of the available input layers (backscatter
coefficients, interchannel ratios, texture measures and elevation data). For each of these
input variable scenarios, a random forest model was trained. The number of trees of
each forest was kept to 500, which is the default for the random forest implementation.
The default value of 500 was often used in other studies (Waske and Braun, 2009;
Naidoo et al., 2012). The random forest model development was undertaken using the
R statistical programming language (R-Core-Team, 2014). The standard implementation
of random forests (Breiman and Cutler, 2001) is the randomForest package in R (Liaw
and Wiener, 2002). The randomForest package was used to train the random forest
models for each of the input variable scenarios. As part of the output from the
randomForest package, the model, variable importance measures and class-specific and
overall accuracies for each of the input variable scenarios are given. The different input
variable scenarios are shown in Table 5.1, with the classification accuracies based on the

test data for each scenario plotted in Section 5.3.1.
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Table 5.1 List of scenarios investigated for model input comparison.

Name of Frequency Included layers Name of Frequency Included layers
scenario in scenario scenario in scenario
L - dBite L a%it e L- dBi L a? i
C - dBite C a% it e C-dBi C ali
X - dBite X a% it e X - dBi X ali
LC - dBite LC a’ it e LC - dBi LC ali
LX - dBite LX a%i,te LX - dBi LX a?i
CX - dBite CX a’it e CX - dBi CX ali
LCX - dBite LCX a’it e LCX - dBi LCX ali
L-dB L a® L- dBt L 00t
C-dB C a? C-dBt C o0t
X-dB X a? X - dBt X o0t
LC-dB LC a® LC - dBt LC o't
LX - dB LX a® LX - dBt LX o't
CX-dB cX a® CX - dBt cX a’t
LCX - dB LCX a® LCX - dBt LCX a’t
L-i L i L- dBe L o e
C-i C i C-dBe C o e
X-i X i X - dBe X a’ e
LC-i LC i LC-dBe LC a’ e
LX-i LX i LX - dBe LX a’ e
CX-i CX i CX - dBe CX a’ e
LCX -i LCX i LCX - dBe LCX a’ e
L-t L t L - dBit L a% it
C-t C t C- dBit C a% it
X-t X t X - dBit X 0% it
LC-t LC t LC - dBit LC 0% it
LX -t LX t LX - dBit LX a% it
CX-t cX t CX - dBit cX a% it
LCX - t LCX t LCX - dBit LCX g% it
LCX—e none e

where o0 Backscatter coefficients
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5.2.2  Variable importance measures from random forest modelling

As part of the standard implementation of the random forests, two measures of variable
importance are given, namely the MDA and MDG. Random forests is introduced in
Section 2.6.1. As each individual tree of the random forest is built, a third of the samples
are left out, and the tree is only built on two thirds of the samples. Cross-validation, or
a separate test set to get an unbiased estimate of the test set error, is not necessary in
random forests, as the OOB error estimate can be used instead (Breiman, 2001; Breiman
and Cutler, 2001). However, an additional test dataset was still used in this research to
assess the classification accuracy of applying the model to data from the same image,
but different polygon areas. The random forest MDA and MDG variable importance
techniques are often used as feature selection techniques (Diaz-Uriarte and Alvarez de

Andrés, 2006; Rodriguez-Galiano et al., 2012b; Gromski et al., 2014).

Feature selection are broadly grouped into three groups for filter methods, wrapper
methods and embedded techniques (Saeys et al., 2007). Filter methods ranks the
variables by assessing each variable individually (although some muti-varaite filter
methods have been developed), and include information gain and random k-nearest
neighbour feature selection (Li et al., 2011). Wrapper methods wraps a search algorithm
within a classification model, to evaluates specific subset of features, such as SVM
Recursive Feature Elimination (Pal and Foody, 2010). Embedded feature selection
methods are built into the classifier, such as the random forest feature selection
techniques. Variants of the standard random forest variable importance measures are
conditional variable importance for random forests (Strobl et al., 2008) ,area under the
curve (AUC) based permutation variable importance measures (Janitza et al., 2013), and
variable importance measure for random forests with missing values (Hapfelmeier et al.,
2014). However, in this research the standard random forest variable importance

measures MDA and MDG were used.
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5.2.2.1 Mean decrease accuracy (MDA)

The MDA is based on the permutation importance of each variable. The permutation
importance was given in Strobl et al. (2008), which is re-stated here. The MDA works as
follows: when the values of predictor variable X;is randomly permuted (re-ordered), and
predictor variable X;is important, then the prediction accuracy of the response variable
in conjunction with the non-permuted variables will decrease as a result, as applied on
the OOB sample. When values of Xjare randomly permuted and the prediction accuracy
is not important, then the prediction accuracy on the OOB sample will not be affected.
The MDA is then the difference between the prediction accuracy before permuting X;
and after permuting X;j, averaged over all the trees in the RF. The mathematical notation

of this is given by:

Let 00B® be the OOB sample for a tree t, with t € (1,...,ntree) and ntree the number
of trees in the random forest model. The variable importance (Varimp) of variable X; in

tree t is then

~ — 5®
iem(t)l(yi = J’i(t)) _ 2icoop® ! (yi - yi,rcj)
IOOB(t) | | OOB(t) | Equation 5-1

X
Varlmp®(X;) =

where 37l.(t) = f(t)(xi) is the predicted class for observation i before permutation, and

371(,?] = f® (xl-,,cj) is the predicted class for observation i after permutation of variable

Xj. The raw variable importance for each variable is then calculated by averaging the

variable importance over all the trees:

Zzzthee Var]mp(t) (X]) Equation 5-2

ntree

Varlmpynscated (Xj) =
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The raw variable importance is scaled by dividing it by its standard error (also called the
z-score) in the standard implementation of RF. This was given by Strobl and Zeileis (2008)

as:

Equation 5-3
Varlmpynscaied (Xj) e

o
/\/ ntree

Varlmpscqieq = 2 =

where o is the standard deviation for each individual Varlmp® and the mean
importance from all ntree trees in the random forest has standard error &/+/ntree.
However, since the VarImp, ,;scaieqa has been shown to have better statistical properties
than VarImpgcqieq (Strobl and Zeileis, 2008; Strobl et al., 2008), the unscaled version of
the MDA variable importance measure was used instead of the scaled version in this

study.

5.2.2.2 Mean decrease Gini (MDG)

The MDG is the second measure of variable importance from the random forest output
and is the average of the decrease in node impurity over all the trees in the RF. The
decrease in node impurity is related to the Gini index, as is shown in Equation 5-7.
Splitting a tree based on the Gini index is a standard way of splitting classification and
regression trees (Breiman et al., 1984; Ishwaran, 2015). This can be defined

mathematically as follows (Ishwaran, 2015):

Let the training data be T = (X, Y;)1<i<nWhere X is the matrix of predictor variables
and Y is the outcome class vector with class label Y € {1, ...,C} with C > 2 possible

classes. The Gini node impurity for node p, ['(p), is then defined as:

C
f(p) = Z j.c(p)(l — ic(p)) Equation 5-4
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with A.(p) the class frequency for class ¢ in a node p. Let s be the proposed split that
splits node p into a left daughter node p, {X; < s} and a right daughter node,

pr {X; > s}. The Gini node impurities for p; and pg, ['(p,) and I'(p,), are

C
f(PL) = z /’ic (pL) (1 — /ic(pL)) Equation 5-5
c=1
and
C
[(pr) = Z Ae (PR) (1 - /ic(pR)) Equation 5-6
c=1

respectively, with 1.(p,) the class frequency for class ¢ in p;, and with 1.(pg) the class
frequency for class c in pg. The decrease in node impurity, ['(s, p), for split s and node

p, is then defined as

[(s,p) = T(@) — [¢@IT(w) + ¢RI (PR)] Equation 5-7

= I'(p) — G(s,p)

with <]3(pL) and $(pR) the proportions of observations in nodes p; and prrespectively.

The second part of Equation 5-7 is known as the Gini Index, G (s, p), with

G(s,p) = @(PL)f(PL) + (;b\(pR)f(pR) Equation 5-8
Therefore, a good split-point will be where the split-point maximizes the decrease in

node impurity, or equally minimizes the Gini Index.

Both the MDA, which is based on the permutation importance, and the MDG, which is
based on the decrease in node impurity, are criteria for ranking the variables in terms of
importance with relation to the outcome classes. Both of these measures were
considered and compared when selecting the short-list of variables for the land cover

classification model in this research.
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5.3 Results
5.3.1 Random forest classification accuracy results

The classification accuracies based on the different input variable scenarios (from Table
5.1) are given in this section. Figure 5.1 shows the classification accuracies using all the
available feature variables grouped by different frequency combinations (L-, C-, X-band,
LC-, LX-, CX- and LCX-bands). For the Cameroon site, the dry season gives best results at
92% overall classification accuracy using either X or CX, and 91% for LCX. This compares
to the Cameroon wet season with 88% overall classification accuracy using either bands
LX or LCX. For the Tanzania site, the dry season gives the highest classification accuracy
of 65% using LX and LCX. The Tanzania wet season has the highest classification accuracy
of 52% using LC, and 51% using only L-band. Only L- and C-band data were available for

the Tanzania wet season (see Sections 3.2 and 4.1).

The overall classification accuracies are much lower for all four site-season graphs using
only the backscatter coefficients (Figure 5.2), compared to using the backscatter
coefficients in conjunction with the interchannel ratios, texture measures and elevation
data (Figure 5.1). This shows the benefit of using the additional derived feature layers,
which added between 15-30% increase in overall classification accuracy for all four site-

season combinations.

Using only backscatter coefficients, the Cameroon dry site has the highest overall
classification accuracy of 66% (LCX), compared to the Cameroon wet site with 59% (LCX).
The random forest model on the Tanzania dry images gives 49% (LCX) and the Tanzania
wet images, only 32% (LC, no X-band available). In comparison, the Tanzania dry LC-band
gave 48% overall accuracy. The dry season yields substantially higher overall
classification accuracies to the wet season for both ecoregions. This can be explained by
a higher soil moisture content and higher vegetation moisture content in the wet season
images. This leads to higher SAR backscatter for all the land cover classes, and as a result

higher misclassification between classes. In the dry seasen images, there is a greater
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differentiation between dry bare soil and dense trees, with a greater backscatter spread

for the vegetation classes between the two extremes.

Random forest results using all variables (49, i, t, €)
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Figure 5.1 Random forest classification accuracies using all variables for different frequency combinations (c°) for
the Cameroon dry season study site (top left), the Cameroon wet season study site (top right), the Tanzania dry

season study site (bottom left) and the Tanzania wet season study site (bottom right).

Random forest results using backscatter coefficients only (o°)
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Figure 5.2 Random forest classification accuracies using backscatter coefficients only for different frequency
combinations (c°) for the Cameroon dry season study site (top left), the Cameroon wet season study site (top right),

the Tanzania dry season study site (bottom left) and the Tanzania wet season study site (bottom right).
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The results using only interchannel ratios (Figure 5.3) are slightly lower than when only
the backscatter coefficients are used (Figure 5.2). The highest overall classification
accuracies are 63%, 58%, 47% and 21% for the Cameroon dry, Cameroon wet, Tanzania
dry and Tanzania wet site respectively. To enable the calculation of the interchannel
ratios, either a dual-polarized or a quad-polarized image is required. Only the Cameroon
wet season site had a dual-polarized or quad-polarized image for L-band, C-band and X-
band. The Cameroon dry season site does not have a dual-polarized L-band and Tanzania
dry season study site does not have a dual polarized X-band image. The Tanzania wet
season study site only had a dual-polarized C-band image with no dual- or quad-

polarized L- or X-band images available.

The highest overall classification accuracies using only texture measures are 92%, 85%,
64% and 49% for the Cameroon dry season, Cameroon wet season, Tanzania dry season
and Tanzania wet season respectively (Figure 5.4). Using only the texture measures
(Figure 5.9) was only marginally lower (or the same for the Cameroon dry season), than
the random forest models with all the variable groups (Figure 5.1). This shows that the
texture measures variables are more predictive of the land cover classes than the
backscatter coefficients, interchannel ratio layers and elevation data. This entails that
the texture measures was a greater differentiator of the land cover classes than the

other variables considered.

Using only the elevation data results in a relatively high classification accuracy for the
Cameroon study site, at 56% and 57% overall classification accuracy for the dry and wet
seasons respectively. For the Tanzania site the result was substantially lower, at 28%
and 27% for the dry and wet seasons respectively (Figure 5.5). The combinations of input
variables that don’t include texture measures give overall accuracies similar to the
backscatter coefficients only (Figure 5.2). They are backscatter coefficients and
interchannel ratios (Figure 5.6) and backscatter coefficients and elevation data (Figure
5.7). The combinations of input variables that include texture measures, give overall

accuracies similar to the scenario that only includes texture measures (Figure 5.4). These
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combinations are backscatter coefficients and texture measures (Figure 5.8) and

backscatter coefficients, interchannel ratios and texture measures (Figure 5.9).

Random forest results using interchannel ratios only
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Figure 5.3 Random forest classification accuracies using only interchannel ratios for different frequency
combinations (c°) for the Cameroon dry study site (top left), the Cameroon wet study site (top right), the Tanzania

dry study site (bottom left) and the Tanzania wet study site (bottom right).

Random forest results using texture measures only
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Figure 5.4 Random forest classification accuracies using texture measures only for different frequency combinations
(c®) for the Cameroon dry study site (top left), the Cameroon wet study site (top right), the Tanzania dry study site

(bottom left) and the Tanzania wet study site (bottom right).
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Random forest results using elevation data only
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Figure 5.5 Random forest classification accuracies using only elevation data from SRTM (elevation, slope and
aspect) for the Cameroon dry study site (top left), the Cameroon wet study site (top right), the Tanzania dry study

site (bottom left) and the Tanzania wet study site (bottom right).

Random forest results using backscatter coefficients and interchannel ratios
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Figure 5.6 Random forest classification accuracies using backscatter coefficients and interchannel ratios for
different frequency combinations (°) for the Cameroon dry study site (top left), the Cameroon wet study site (top

right), the Tanzania dry study site (bottom left) and the Tanzania wet study site (bottom right).
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Random forest results using backscatter coefficients and elevation data
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Figure 5.7 Random forest classification accuracies using backscatter coefficients and elevation data for different
frequency combinations (c°) for the Cameroon dry study site (top left), the Cameroon wet study site (top right),

the Tanzania dry study site (bottom left) and the Tanzania wet study site (bottom right).

Random forest results using backscatter coefficients and texture measures
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Figure 5.8 Random forest classification accuracies using backscatter coefficients and texture measures for different
frequency combinations (a°) for the Cameroon dry study site (top left), the Cameroon wet study site (top right),

the Tanzania dry study site (bottom left) and the Tanzania wet study site (bottom right).
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Random forest results using backscatter coefficients,

interchannel ratios and texture measures
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Figure 5.9 Random forest classification accuracies using backscatter coefficients, interchannel calculations and
texture measures for different frequency combinations (c°) for the Cameroon dry study site (top left), the
Cameroon wet study site (top right), the Tanzania dry study site (bottom left) and the Tanzania wet study site

(bottom right).

5.3.2  Selecting variables based on variable importance
5.3.2.1 Variable importance of all available variables

As mentioned and described in Section 5.2.2, there are two measures of variable
importance as part of the random forest model output, namely the MDA and MDG. Both
of these measures are considered and compared against each other to select a short-list
of variables for a refined model for the Cameroon dry and wet season, Tanzania dry and
wet season sites. The unscaled version of the MDA was used to determine the variable

importance (Strobl and Zeileis, 2008; Strobl et al., 2008).

The order of variable importance based on MDA and MDG of all the available variables
for the Cameroon dry and wet seasons and the Tanzania dry and wet seasons are shown

in Figure 5.10. Figure 5.10 groups the variables based on variable type, namely
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backscatter coefficients, interchannel ratios, texture measures and elevation data. The
backscatter coefficients and interchannel calculations are consistently grouped as the
variables with a lower variable importance based on both MDA and MDG. The texture
measures and elevation data stand out as being the variables with the highest variable
importance based on both MDA and MDG. The variable importance of each individual
group is investigated further. Looking more closely at both the Cameroon and Tanzania
site, revealed a relationship between elevation and land cover type. It was noted that
for the Cameroon site, the dense trees class are mostly in the valleys, whereas the open
woodland land cover class are higer on the hills. Sparse vegetation and bare soil classes
are located closer to the riverbed areas. For the Tanzania site, the agricultural areas
seems to coincide with the valleys, with the dense trees and open woodland classes

higher on the hills.

Considering the variable importance based only on the backscatter coefficients, the C-
VV channel performs the best overall across all the study sites and seasons (Figure 5.11).
The X-VH and X-HV channels are either the lowest, or towards the lower half, of the
variable importance measures. The order of variable importance for the other channels
varies depending on each site/season as well as the variable importance measure being
considered, i.e. either MDA or MDG. These graphs are of interest to know which
frequency and polarisation channels give the highest contribution towards the
classification accuracy of the land cover classes for each site / season. It is worthwhile
to mention here that different classification accuracies can be expected under different
rainfall amount conditions. Higher amounts of rainfall lead to higher soil moisture and
higher vegetation water content, which results in increased backscatter returns. An
indication of whether the models are still suitable or not applicable at all, are addressed
in Section 6.3.1.1 and 6.3.2.1, where the inter-season transferability of the Cameroon

and Tanzania sites are investigated respectively.

Assessing the interchannel ratios individually, the C-VV plus C-VH, and C-VV minus C-VH
interchannel ratios have the highest variable importance across all the site-season

scenarios (Figure 5.12).
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Analysis of the texture measures revealed that the mean texture measure are the most
predictive variables, followed by entropy, contrast, variance and correlation. The texture
measures for the top frequency-polarisation band combinations are X-HH, C-VV and L-
HH for Cameroon dry (Figure 5.13); X-HH, C-VV and L-HV for Cameroon wet (Figure 5.14);
X-VH, C-VV and L-HV for Tanzania dry (Figure 5.14); and X-VH, C-VV and L-HV for
Tanzania wet (Figure 5.15). For each of the texture measures, the larger window sizes
lead to a higher ranking of variable importance, which indicate higher classification

accuracies.
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All variables based on MDA and MDG grouped by variable type
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Figure 5.10 The MDA and MDG variable importance measures for Cameroon dry season (top left), Cameroon wet
season (top right), Tanzania dry season (bottom left) and Tanzania wet season (bottom right), grouped by variable
type (backscatter coefficients, interchannel ratios, texture measures and elevation data). The number of variables

for each grouped are shown in brackets to the left of each group.
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Variable importance of backscatter coefficients only
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Figure 5.11 The order of variable importance based on MDA and MDG using only backscatter coefficients, for
Cameroon dry season (top left), Cameroon wet season (top right), Tanzania dry season (bottom left) and Tanzania
wet season study sites (bottom right). The number of variables for each grouped are shown in brackets to the left

of each group.
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Figure 5.12 Variable importance (MDA and MDG) of only interchannel ratios, for each of the site / season scenarios.
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Variable importance of texture measures — Cameroon dry

MDA, Cameroon Dry

MDG, Cameroon Dry
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Figure 5.13 MDA and MDG variable importance of texture measures, for X-HH, C-VV and L-HH frequency-

polarisation combinations for the Cameroon dry study site.
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Variable importance of texture measures — Cameroon wet
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Figure 5.14 MDA and MDG variable importance of texture measures, for X-HH, C-VV and L-HV frequency-

polarisation combinations for the Cameroon wet study site.
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Variable importance of texture measures — Tanzania dry
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Figure 5.15 MDA and MDG variable importance of texture measures, for X-VH, C-VV and L-HV frequency-

polarisation combinations for the Tanzania dry study site.
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Figure 5.16 MDA and MDG variable importance of texture measures, for X-VH, C-VH and L-HV frequency-

polarisation combinations for the Tanzania wet study site.
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For the Cameroon dry site in Figure 5.13, the X-HV entropy (15 and 13 window sizes) are
the top variables selected by the MDA measure and the X-HV entropy (15) and X-HH
variance (15) are the top variables selected by the MDG measure. For the L-band and C-
band, the neighbourhood mean layers (see Section 4.3.2 for calculation) give the highest

classification accuracies for the L- and C- frequencies.

For the Cameroon wet study site, as shown in Figure 5.14, the X-HH band entropy,
contrast and variance layers, at 13 and 15 window sizes, have the highest variable
importance. For C-VV the neighbourhood mean texture measures, at window sizes 9 and
7, give the highest variable importance. The correlation measures have the lowest

variable importance for the X, C and L frequencies.

For the Tanzania dry and Tanzania wet study sites (Figure 5.15 and Figure 5.16) the L-HV
texture measures give the highest variable importance. For the Tanzania wet site the C-
VH neighbourhood mean texture measures, at 9 and 7 window sizes, give the highest
variable importance, whereas for the Tanzania dry site the C-band texture measures do

not give very high variable importance.

Figure 5.17 shows the MDA and MDG variable importance values for the elevation data
for each site, with the variable importance order shown for elevation, slope and aspect
for each site. For all the study sites, the elevation above sea level gives very high variable

importance, followed by the aspect and then the slope.

Since the polarimetric decompositions of fully polarimetric data were excluded from this
research, the direct relationship between the physical scattering mechanisms of volume
scattering, surface scattering and double bounce, were not directly related to the
texture measures in the final model. Polarimetric decompositions such as entropy /
alpha / anisotropy model is often used to give a measure of the physical scattering

mechanisms (Hajnsek et al., 2003).
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Variable importance of elevation data only
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Figure 5.17 MIDA and MDG variable importance for elevation, slope and aspect for the Cameroon dry (top left), Cameroon wet (top right), Tanzania dry (bottom left) and Tanzania wet (bottom

right) study sites.
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5.3.2.2 Variable importance of the top 30 variables

From all the available variables, which included the backscatter coefficients,
interchannel calculations, texture measures and elevation data, the top 30 variables
were chosen, based on both the MDA and MDG. The random forest models based on
the top 30 variables resulted in only a small decline in overall accuracy compared to a
random forest model using all available variables. The classification accuracies based on
the top 30 variables is shown in Section 5.3.3, and compared can be compared to the

random forest models based on all the variables in Section 5.3.1.

The top 30 variables for the Cameroon dry study site are shown in Figure 5.18. The top
30 variables based on MDA and MDG are shown in the top half of the graph. The bottom
half shows the same top 30 variables, but grouped by the frequency-polarisation group.
This was similarly undertaken for the Cameroon wet season study site in Figure 5.19, the
Tanzania dry season study site in Figure 5.20 and for the Tanzania wet season study site

in Figure 5.21.

In Figure 5.10 and Figure 5.17 it was shown that the elevation data variables have high
variable importance values. However, to be able to use the models on additional study
sites, which are at a slightly different elevation above sea-level, it was decided to exclude
the elevation data from the top 30 variable selection. Therefore, after excluding the
elevation data, the top 30 variables are all texture measures, for all four site-season

combinations.

For the Cameroon dry season site, the X-HH and X-HV texture layers have the highest
variable importance (Figure 5.18). For the Cameroon wet season site, the most
important variables in the top 30 list are spread evenly between all the frequency
combinations of X-HH, X-HV, C-VV, L-HV and L-VH (Figure 5.19). The top 30 variables for
the Tanzania dry season site are a combination of X-VH and all the available L-band
channels, namely L-HH, L-HV, L-VH and L-VV. For the Tanzania dry season site, only

texture measure from L-band and X-band images were selected, with no C-band image
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texture measures in the top 30 variables (Figure 5.20). For the Tanzania wet season site,
where no X-band data were available, the top 30 variables are from the texture layers

calculated from C-VH, C-VV, L-HV and L-VH (Figure 5.21).

The two combinations of top 30 variables, based on MDA and MDG, are used to train

random forest models in the following section for each site (Section 5.3.3).

130



MDA top 30, Cameroon Dry

X-HV15Entr

X-HV13Entr

X-HV15Corr

X-HV11Entr
L-HH11lmean

X-HH15Var
X-HH15Contr =
L-HH9mean =
L-HH11Var =
X-HH15mean =
XVH15Entr =
X-HH13Contr =
L-HH7mean =

X-HH13Var —
X-HH11Var =
CAVV9mean —
X-HH13mean =
L-HH11Contr =
CVV7mean —
L-HH11Entr =
X-VH15Corr —
X-VV15Var —
XVV15Contr —
L-HH9Var —
X-HV15mean =

X-HH11Contr —
CVV5mean —
X-HH11mean —

X
—A
—&
—+
- e
—A
—

X-VH15mean —4|—
—x
—&
—
H
—F
—
- m
—x
A

59
o+
X-VV1lmean ——'—
-+
+

MDA top 30 by freg-pol, Cameroon Dry

N o
D'Q 096 Q.Q

MeanDecreaseAccuracy

X-HH15Var
X-HH15Contr —
X-HH15mean —

X-HH13Var =
X-HH11Var =
X-HH13mean =
X-HH11Contr =
X-HH11mean =

——— A

—+
X-HH13Contr ——

|

————1

-

H-

HH-X

X-HV15Entr

X-HV13Entr

X-HV15Corr

X-HV11Entr
X-HV15mean =

Om
AH-

XVHI15Entr —

X-VH15Corr =

HAX

{H

X-VV15Var =
XVV15Contr —
X-VV1lmean —

—+
e

X-VH15mean —4‘—
——n
—N

ANX

C-VV9mean =

— "
- mean -_|_
C-VV7 —{_

C-VVbmean =

AND

L-HH11mean
L-HH9mean —
L-HH11Var =

L-HH11Contr =
L-HH11Entr =
L-HH9Var =

—
L-HH7mean ——'—
—
—0
—

HH-1

MeanDecreaseAccuracy

MDG top 30, Cameroon Dry

X-HV15Entr
X-HH15Var

X-HV13Entr
X-HH13Vvar

X-HV15Corr

X-HV11Entr

X-HH15mean

X-HH15Contr

X-HH13Contr

L-HH11mean
X-HH13mean

X-HV9Entr =

L-HH9mean =

—e
X-HH11Var ——————————+§{

—+

——— ]

X-HV13Corr —

L-HHOVar =f——eeee—is’]
L-HH11Var =i
C-VV7mean =}

L-HH11Contr =

X-VH15mean ——I—

X-HH11Contr

L-HH11Entr =@

X-HV15mean ——————

X-VV11lmean —
L-HH7mean =

X-HV13mean —
X-VV9mean =
X-HH9mean =

—
-
C-VVbmean =
X-HH11mean —:t
=

o

T
RN

MeanDecreaseGini

T
p®

T
o°

WindowSize
® 5

7

9

11

13

15

Texture
Measure

@® Entr
A contr
B cor

—|— Mean
B var

MDG top 30 by freqg-pol, Cameroon Dry

X-HH15Var

X-HH13Var

X-HH15mean
X-HH15Contr

X-HH13Contr ——‘

X-HH13mean

X-HH11Var =
X-HH11Contr ————

X-HH11mean ——

X-HH9mean —+

HH-X

X-HV15Entr

X-HV13Entr

X-HV15Corr
X-HV11Entr

X-HV9Entr —
X-HV13Corr —
X-HV15mean —
X-HV13mean —

AHX

X-VH15mean =—————— %}

]
X-VV1lmean
X-VV9mean é

CVV7mean
CVV5mean

L-HH11mean
L-HH9mean =
L-HH9Var =
L-HH11Var =
L-HH11Contr =
L-HH11Entr =
L-HH7mean =

oo®

HH-1

T T I
ae® o w°

MeanDecreaseGini

WindowSize
® 5

7

9

11

13

15

Texture
Measure

@ Enir
A Contr
H Corr
—I— Mean
B var

Figure 5.18 Top 30 variables based on MDA and MDG for the CD site random forest model. The top two graphs

show variable 1-30 in ranking order, whereas the bottom two graphs are grouped by the original frequency-

polarisation c
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Figure 5.19 Top 30 variables based on MDA and MDG for the CW site random forest model. The top two graphs
show variable 1-30 in ranking order, whereas the bottom two graphs are grouped by the original frequency-

polarisation channels.
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Figure 5.20 Top 30 variables based on MDA and MDG for the TD site random forest model. The top two graphs

show variable 1-30 in ranking order, whereas the bottom two graphs are grouped by the original frequency-

polarisation channels.
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Figure 5.21 Top 30 variables based on MDA and MDG for the TW site random forest model. The top two graphs
show variable 1-30 in ranking order, whereas the bottom two graphs are grouped by the frequency-polarisation

groups.

134



5.3.3 Model based on the top 30 variables

The top 30 variables are used to develop random forest models for each of the sites. The
variable importance, based on MDA and MDG, was used incrementally to develop a
random forest model, first using one variable, then two variables, progressively using
more variables until all the top 30 variables are used. The order of variables was
determined by the MDA and MDG variable importance measures respectively, with the

most important variable used first.

The MDA (Figure 5.22) and MDG measures of variable importance (Figure 5.23) yield
similar results. It is notable that with using only the top 5 variables for the Cameroon dry
season site, an overall classification accuracy of 88% can be obtained, based on MDA.
The top 5 variables for the Cameroon dry season site are X-HV entropy (window size
15x15), X-HV entropy (13x13), X-HV correlation (15x15), X-HV entropy (11x11) and L-HH
mean (11x11) (from Figure 5.18). The overall classification accuracy increases marginally
to 90% with 10 variables, 91% with 15 variables and then decreases again slightly to 90%
using the top 30 variables. For the top 30 MDG variables, the overall classification
accuracy was marginally lower at 89% for the Cameroon dry season study site. For the
Cameroon wet season study site, the overall and class-specific classification accuracies
seem to stabilize with 10 variables, at 82% and 81% for the MDA and MDG variables
respectively. The overall classification accuracies then climb gradually to 83% and 84%
using the top 30 variables for the MDA and MDG variable importance measures,

respectively.

The Tanzania dry study site has an overall classification accuracy of 55% using the top
10 variables from the MDA variables and 54% using the top 10 variables from the MDG
variables. The overall classification accuracies of the MDA variables remains at about
55% up to the top 25 variables and only then increase to 61% with the top 30 variables.
The overall classification accuracies of the MDG variables increase to 60% using the top
20 variables in then to 63% using the top 30 variables. The Tanzania wet study site has

an overall classification accuracy of 48% using the top 10 MDA variables and 49% using
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the top 10 MDG variables. The overall classification accuracy increases gradually to 50%

using either the the top 30 MDA or MDG variables.

Classification accuracies for random forest models top 1 to 30 variables (MDA)
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Figure 5.22 The overall and class-specific classification accuracies for the top 30 variables based on the MDA
variable importance measure (considering backscatter coefficients, interchannel ratios and texture measures) for

each site / season scenario.

To look at the practical implications of a multi-frequency application for land cover
classification, the classification accuracies using all available variables were revisited
(see Figure 5.1). There appears to be no one clear-cut, one-size-fits-all, scenario.
However, some general deductions can be made. If only one frequency could be chosen
for all the site-season scenarios, it would be L-band, which would currently be ALOS-2
PALSAR-2 data. L-band gives the best overall classification accuracy, with the exception
of the Cameroon dry site, where X-band imagery outperforms L-band and C-band, with
92% overall classification accuracy. L-band as a single frequency gives 76% for the
Cameroon dry season site, 78% for the Cameroon wet season site, 63% for the Tanzania

dry season site and 51% for the Tanzania wet season site.
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Classification accuracies for random forest models top 1 to 30 variables (MDG)
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Figure 5.23 The overall and class-specific classification accuracies for the top 30 variables based on MDG variable
importance measure (considering backscatter coefficients, interchannel ratios and texture measures) for each site

/ season scenario.

A combination of LX-bands, in general, give the highest classification accuracies as a
dual-frequency application. For the Cameroon dry site, the classification accuracy using
CX-bands was slightly higher at 92%, compared to the 90% using LX-bands, and for the
Tanzania wet, no X-band data were available. However, the LX-band combination had a
higher overall classification accuracy for the other three sites (Cameroon dry, Cameroon
wet and Tanzania dry), than other dual-frequency combinations. The combination of L-
band and X-band gives 90% overall classification accuracy for the Cameroon dry season
site, 88% for Cameroon wet season site and 65% for the Tanzania dry season site. This
would entail, for example, combining ALOS-2 PALSAR-2 data with TerraSAR-X data, for
the satellites currently operational. The overall recommendation would therefore be to
acquire L-band and X-band together, to maximize the benefit of using more than one

frequency, without the complications of coordinating acquisitions from three satellites.
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5.3.4 Correlation between top 30 variables for MDA and MDG

Graphical representation of the correlation matrices for the MDA and MDG top 30
variables is shown for the Cameroon dry season site in Figure 5.24, for the Cameroon
wet season site in Figure 5.25, the Tanzania dry season site in Figure 5.26 and for the
Tanzania wet season site in Figure 5.27. Ellipses in combination with colour are used to
represent each correlation matrix. Very high positive correlation is represented by an
almost flat 45° angle dark blue ellipse, and a low positive correlation is represented by
a light-blue circle. Any negative correlation would be a red colour and a highly negative
correlation would show as a red almost flat ellipse in a 315° direction. For all the site-
season combinations, there are very high correlations between the top 30 variables,
often with >80% correlation. This were the case for the Cameroon wet and dry seasons
and the Tanzania wet season, with between 15-20 very highly correlated variable in the
top 30 list (Figures 5.24, 5.25 and 5.27). For the Tanzania dry season the proportion of
highly correlated variables was between 20-25 variables in the top 30 list (Figure 5.26).
An alternative model building strategy could be to instead include the top 5-10 variables
from each frequency, and compare that model to the overall top 30 model. However,

this route was not pursued as part of this research.

It has been shown in Strobl et al. (2008) that the standard variable importance methods
from the random forest modelling show a preference towards highly correlated
predictor variables. This is due to the nature of random forests of selecting only a portion
of all the available variables for each tree during model training. A group of highly
correlated variables can then all be chosen as important variables in a final model. In
comparison, this is different to standard stepwise linear regression, where it is more
likely to only choose one or two variables that represent the same information, after

which other variables which are less highly correlated are more likely to be chosen.

To select a set of predictor variables that are less highly correlated, Strobl et al. (2008)
suggested a technique called conditional permutation importance. However, in this

research, only the standard variable importance measures of MDA and MDG were used
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to select the most important variables for each site-season scenario. This was due to the
implementation of the conditional permutation importance measure leading to long
processing times with the data sets at hand. Nevertheless, the standard version of
random forest model implementation in R resulted in high classification accuracies,

regardless of high correlation between the variables in the random forest models.
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Figure 5.24 Correlation plots for the top 30 variables based on MDA and MDG for the Cameroon dry study site. Ordering of the variables are based on hierarchical clustering.
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Figure 5.25 Correlation plots for the top 30 variables based on MDA and MDG for the Cameroon wet study site. Ordering of the variables are based on hierarchical clustering.
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Figure 5.26 Correlation plots for the top 30 variables based on MDA and MDG for the Tanzania dry study site. Ordering of the variables are based on hierarchical clustering.
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Figure 5.27 Correlation plots for the top 30 variables based on MDA and MDG for the Tanzania wet study site. Ordering of the variables are based on hierarchical clustering.
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5.3.5

SVM vs random forest classification accuracies

Using the top 30 variables as selected by the MDA and MDG from the random forest

modelling, SVM models are also trained based on incrementally adding variables from 1

to 30 for each site-season scenario. The overall and class-specific classification

accuracies resulting from these SVM model classifications are shown in Figure 5.28 for

the MDA top 30 variables and in Figure 5.29 for the MDG top 30 variables. The results

are very similar to the random forest classification results for all site-season

combinations, apart from the Tanzania dry season MDA top 30 SVM model, where the

overall classification accuracy was significantly higher. The Tanzania dry season MDA
and MDG SVM models both have an overall classification accuracy of 68%, compared to

61% and 63% for the random forest models based on the MDA and MDG top 30 variables

respectively.
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Figure 5.28 Overall and class-specific classification accuracies for the support vector machine classification based

on the top 1 to 30 variables selected by the MDA variable importance measure in the random forest classification.
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Classification accuracies for SVM models, top 1 to 30 variables (MDG)
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Figure 5.29 Overall and class-specific classification accuracies for the support vector machine classification based

on the top 1 to 30 variables selected by the MDG variable importance measure in the random forest classification.

5.3.6 Random forest model applied on the complete layer stack of

images

Up to this point, all the model training and land cover classification accuracy plots were
generated using only the training and test samples as set out in Section 3.4. In this
section the random forest models developed using the top 30 variables based on MDA
and the MDG are used to classify the full scene where the SAR images overlap for the

Cameroon study site.

The classification of the whole image for the Cameroon dry images of the random forest
model based on the top 30 MDA variables are shown in Figure 5.30. The classified image
was compared to the optical image available on Google Earth of the same area. Figure
5.31 shows a zoomed-in area of the random forest classification compared to the optical
images at the most southern part of the lake in the Cameroon study site. The 90%
classification accuracy as based on the test samples should be applicable to the whole

image as well, as can be seen in the zoomed-in area of the Cameroon site in Figure 5.31.
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Figure 5.30 The Cameroon study site optical image available on Google Earth on the left compared the random
forest classification of the whole image using the Cameroon dry top 30 MDA variables on the right. © 2015 Google,
Image © 2015 DigitalGlobe, Image © 2015 CNES /Astrium.
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Figure 5.31 Zoomed in section of the random forest classification based on the MDA top 30 variables (top),
compared to the very high resolution image of the same area of the Cameroon dry study site. © Google, Image ©

2015 DigitalGlobe.
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5.3.7 Summary of results

The development of a land cover classification model with a list of the top 5, 10 or 30
most important variables was first of all an exercise to increase the dimensionality of
the available data. Once the interchannel ratios and texture measures were calculated
and the elevation data layers added, a comprehensive list of predictor variables was
available from which the most important variables can be chosen for each site-season
scenario. The different combinations of variables for each site-season scenario were
presented in Section 5.2.1. The two variable importance measures are the MDA and
MDG, and both measures are used to select shortlists of the most important variables.
The top 30 variables based on MDA and MDG were chosen and the results compared.
The same top 30 variables based on the MDA and MDG as part of the random forest
model output were then used to train an SVM models and the classification accuracies

compared to the random forest models.

The highest overall classification accuracy from variable input scenario are summarized
for the Cameroon dry season and Cameroon wet season study sites for the random
forest models based on all the mentioned variable combinations, including the top 30
MDA random forest model, top 30 MDG random forest model, top 30 MDA SVM model
and top 30 MDG SVM model for the Cameroon wet and dry season sites (Figure 5.32)
and for the Tanzania wet and dry season sites (Figure 5.33). The results reveal that the
top 30 models give overall classification accuracies very close to using all varables, and
even slightly higher for the Tanzania wet and dry SVM top 30 classifications. The dry
sites yield higher overall classification accuracies for both the Cameroon and Tanzania

sites.
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Figure 5.32 A summary of the results of the overall classification accuracies for the models based on different

variable combinations for the Cameroon dry and Cameroon wet site. All models are random forest models apart

from the two mentioned Top 30 SVM models.
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Figure 5.33 A summary of the results of the overall classification accuracies for the models based on different

variable combinations for the Tanzania dry and Tanzania wet sites. All models are random forest models apart

from the two mentioned Top 30 SVM models.
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Table 5.2 Overall classification accuracies of random forest models using (a) single frequencies and (b) dual / three frequencies, with different variable combinations for the forested and semi-

arid study sites.

a) Single frequency

dB only dB+i dB +e t only dB+t dB+i+t dB+i+t+e
(Fig. 5.2) (Fig. 5.6) (Fig. 5.7) (Fig. 5.4) (Fig. 5.8) (Fig. 5.9) (Fig. 5.1)

Ecoregion Site 3rd [1st 2nd 3rd 1st 2nd 3rd |1st 2nd 3rd
Forested |Cameroon dry 61 91 71 62 91 71 61
Cameroon wet 52 73 69 52 74 69 52

Semi-arid Tanzania dry
Tanzania wet

b) Dual / three frequencies
dB only
(Fig. 5.2)

dB +e i dB+i+t+e
(Fig. 5.7)

Ecoregion [Site LCX 1st 2nd 3rd LCX 1st 2nd 3rd LCX 1st 2nd
Forested Cameroondry 9 [78 91 92 91 92 9079 91 92 90 &0

Cameroon wet 53 76 76 85 84 85 8 76 76 83 83 80 78

Semi-arid Tanzaniadry
Tanzania wet

dB backscatter coefficients
i interchannel ratios

t texture measures
e elevation data
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The four site / season combinations, with the overall classification accuracies of different
feature combinations, are all summarized in Table 5.2. From this table,
recommendations can be made for each ecoregion and season scenario. The single and
dual frequencies are ordered in ranking order of 1st, 2nd and 3rd, in terms of overall
classification accuracy. The LCX-bands classification accuracies are shown next to the
dual frequency results. Table 5.2 reveals in one view all the classification accuracy results
presented thus far. The best single frequency classification results for the forested
regions are from X-band, and secondly L-band (92% and 77% for Cameroon dry and wet
respectively, using X-band only; and 72% and 78% for Cameroon dry and wet
respectively using L-band only). Texture measures add the most value from all the
variable types (e.g overall classification accuracies increase from 68% to 91% for the
Cameroon dry site; using X-band only; and from 49% to 60% for Tanzania dry using L-
band only). The best dual and three frequency scenarios is only marginally higher than
the single frequency results (e.g. for Cameroon dry the best dual frequency results are
CX at 92%, which is the same as using only X-band at 92%; for Cameroon wet, the highest
overall accuracy is from LX-bands at 88%, which is the most significant increase of all the
sites; for Tanzania dry, the highest overall accuracy is from LX-bands at 65%, which is
marginally higher that only L-band at 63%; and for Tanzania wet, the highest dual
frequency combination is LC-band at 52%, which is marginally higher that using only L-

band).

The recommended SAR frequencies along with an alternative recommendation are
given in Table 5.3. Both Table 5.2 and Table 5.3 are discussed in more detail in Section

5.4, and in Section 8.1.1.
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Table 5.3 The recommended SAR frequencies with high classification accuracies for land cover classification within
specific ecoregions. This assumes all the available variables of backscatter coefficients, interchannel ratios, texture

measures and elevation data are included in the models.

Ecoregions Recommended SAR | Alternative
considered Season frequencies recommendation

(overall classification | (overall classification

accuracy) accuracy)
Both semi-arid and | Wet and dry LX* or LC L-band only
forested*
Forested only Wet and dry LX (wet: 90% and dry: | X-band only (wet: 92%
88%) and dry: 77%)
Dry only X-band only (92%) LX (90%), CX (92%) or
L-band only (76%)
Wet only LX (88%) L-band only (78%), or
X-band only (77%)
Semi-arid Wet and dry L-band only (dry: LC (dry: 64% and wet:

63% and wet: 51%) 52%)

Dry only L-band only (63%) LX (65%)

Wet only L-band only (51%) LC (52%)

*For both semi-arid and forested sites, LX band models can only be recommended for the Cameroon wet and dry,
and Tanzania dry season, and not the Cameroon wet season with the current available data. The alternatives of LC

and L-band only are recommended for all four site-season scenarios.

5.4 Discussion

For the Cameroon dry and wet season sites, the top 30 random forest models give
accuracies very close to that achieved using all the available layers, as shown in Figure
5.32. For the Cameroon dry site, the complete data stack consists of 165 layers and the
Cameroon wet complete data stack of 245 data layers. The overall classification
accuracies using only the top 30 variables are very close to the overall classification
accuracies using the full data stack for model development. As mentioned in Section
5.3.3, using only the top 5 variable for the Cameroon dry site achieved 88% overall

classification accuracy and the top 10 variables for the Cameroon wet site achieved 82%
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overall classification accuracies using only a fraction of the available feature layers (see
Figures 5.22 and 5.23). This greatly increased the processing time and reduced the disk

space required while still maintaining a very high overall classification accuracy.

It was surprising that for the Tanzania dry study site, the Top 30 MDA SVM and Top 30
MDG SVM models achieved higher classification accuracies (68%) compared to the top
30 random forest models as well as compared to the random forest models using all
available data layers (65%) (Figure 5.33). As mentioned in Section 4.4, the complete data
stack for the Tanzania wet study site was 134 layers and for the Tanzania dry study site
219 layers. For the Tanzania wet study site, the highest overall classification accuracy of
52% was achieved using either all the variables (dBite), or the top 30 SVM MDA or the
top 30 SVM MDG variables. Similar to the Tanzania dry season SVM models, the wet

season SVM models also outperform the top 30 MDA and MDG random forest models.

In the results section and discussion above, it was apparent that the data layers adding
the most value to the classification accuracies are the texture layers, with the top 30
most important variables all being texture measures. This is after the elevation data
were excluded from the top 30 variable selection, so that models were transferable to
other forested and semi-arid areas regardless of the elevation above sea-level. The
texture measures added considerably more information compared to using only the
backscatter coefficients on their own, with an increase of between 15-25% overall
accuracy for both the Cameroon and Tanzania study sites, between using only the
backscatter coefficients and the top 30 model, which consists only of texture measures,
for each study site. The comparison between the MDA and MDG variable importance
measures does not yield a distinct winner, as neither the MDA nor the MDG variable
importance measures gave consistent higher classification accuracies between the

different site-season scenarios.

The class-specific classification accuracies, as presented in Section 5.3.3 for the random

forest models and Section 5.3.5 for the SVM models, allow the researcher to select the
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best model for a specific land cover class of interest. This is because, even though the
overall classification accuracies may increase with the number of variables in some
cases, the class-specific accuracy may decrease at a certain point. For example, the
classification accuracy for settlements for the Tanzania dry season random forest model
was higher using the top 5 or top 10 variables compared to using all 30 variables, based
on the MDG variables importance measure (see Figure 5.23). Similarly, for the
Cameroon wet season site, using the top 5 or top 10 MDA variables achieved a higher
classification accuracy for the sparse vegetation class, than using the top 30 MDA

variables.

Therefore, the best combination of variables depends on both the study site and
whether the overall accuracy or class-specific accuracies are the most important to
achieve. For the Cameroon dry and wet sites, the top 10 variables already give very high
overall classification accuracy (similar to the top 30 variables). The Tanzania wet season
study sites gave similar results between the top 10 and the top 30 variables, whereas
the top 30 variables for the Tanzania dry season study sites achieves much better overall
classification accuracies compared to using only the top 10 variables, with 63%
compared to 54% for the MDG variables, and 61% compared to 55% for the MDA

variables.

The SVM models using the same top 30 MDA or MDG variables from the random forest
modelling gave either the same or slightly higher overall classification accuracies, with a
notable increase for the Tanzania dry season study site for the SVM vs the random forest
models. It was noted, however that the classification of the SVM model takes
considerably longer to run on the complete stack of images, compared to the random
forest models for all the site-season scenarios. In Chapter Six the transferability of the
models developed in this chapter is assessed to additional study sites in the DRC and
Chad and in Chapter Seven the SAR signatures of the backscatter coefficients and the

derived layers are compared.
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5.5 Conclusion

Through an extensive investigation of random forest models of single, dual and three-
frequency scenarios and of the various combinations from backscatter coefficients,
interchannel ratios, texture measures and elevation data, several conclusions can be
made. Firstly, it should be noted that it was possible to extract the LCCS land cover
classes that were identified in Section 3.4, to a relatilively high level of accuracy. For the
Cameroon dry site, all land cover classes were extracted at > 75% classification accuracy.
For the Cameroon wet season, all classes were extracted > 75%, apart from the sparse
vegetation class that were 60% classification accuracy. The class specific classification
accuracie for the for the Tanzania dry site were > 75% for the dense trees and
agricultural classes, 65% for open woodland, 52% for sparse vegetation and < 50% for
bare soil and settlement. For the Tanzania wet site were dense trees and agriculture at
~70%, open woodland and bare soil ~50%, sparse vegetation at 40% and settlement at

24%.

There are some inconsistenties between the forested and semi-arid sites. First of all, the
classification accuracies is much lower for the semi-arid sites (63% for the Tanzania dry,
51% for the Tanzania wet, using only L-band) , compared to the forested site (78% for
the Cameroon wet, 76% for the Cameroon dry, using only L-band). This could be
explained by several factors. The land cover areas are more varied and small mosaics of
different land cover classes in the Tanzania site, compared to the larger homogenous
land cover of the Cameroon site. Additionally, for the Tanzania wet season, no X-band
images were available, which could have increased the classification accuracy for this
site. The settlement class in particular was not classified well for either the Tanzania dry
or wet season (~25%), so by excluding this class, the overall classification accuracy
should increase notably (Figures 5.22, 5.23). The other classes that did not perform well
are the sparse vegetation and bare soil classes. This indicates that there are some
confusion to separate these classes, and this could be resolved by assessing the rainfall

events close to the SAR image acquisition more closely; or by acquiring high resolution
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images at a similar time to the SAR images; or by actual field visits, to understand the

vegetation growth on the ground better.

When assessing a view over all the site-season scenarios, L-band gives the highest
classification accuracy, as a single frequency. For two frequencies, and using all features
(or any that include texture measures), the combination of LX-bands give the highest
overall classification accuracies in general. This can be attributed to the combination of
long (L-band) and short (X-band) frequencies to observe different parts of the
vegetation, i.e. the L-band reflects the stems (everything greater than ~23.5cm),
whereas the X-band reflects the leaves and canopy (everthing greater than ~3cm). It can
be argued however, that it is also due to the higher spatial resolution from X-band (5m)
and L-band (10m). However, as single frequencies, L-band gave higher overall

classification accuracy for all sites apart from the Cameroon dry site.

The addition of texture measures increases the classification accuracies with 15-25% for
all site-season scenarios, when compared to using only backscatter coefficients. The
texture measures enhances many of the land cover classes, as in the examples shown in
Section 4.3.2. Settlements stand out through the entropy and contrast texture measures
from X-band and the mean and entropy texture measures emphasises the bright and
dark areas corresponding to dense trees and bare soil areas. Using the top 30 variables
gave classification accuracies very close to using all the variables for each site / season
scenario, for both the MDA and MDG variables. The SVM models performed similar to
the random forest model for the Cameroon sites, and gave slightly higher overall
classification accuracies for the Tanzania sites, than the random forest models, when
using the same top 30 variables. This was not expected, and the reason for this is not
currently certain. This will have to be investigated more fully, and possibly checked with
when using different samples, to see if the same results are maintained. The next step
is to assess how transferable these models are, when transferring the model to

additional sites from a different geographic region in Chapter Six.
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Chapter Six Transferability of random forest classification

models on additional study sites in the DRC and Chad

The hypothesis that SAR models are transferable between different seasons of the same
site, and to additional sites of a similar ecoregion, is tested in this chapter. The
classification accuracies of inter-season and inter-site transferability of the models
trained in Chapter 5 are compared for both the forested and semi-arid ecoregions, to

test the hypothesis.

6.1 Introduction

Most remote sensing studies focus on applying models on a single geographic location.
The aim of this chapter is to assess the transferability of the developed random forest
models, and to assess the accuracy of transferring the algorithms to a different season
and different geographic location, although still to a similar ecoregion. This will assess

how applicable the models are to new data.

The robustness of the developed classification algorithms needs to be tested for various
scenarios based on available data. To determine if an algorithm is transferable and
applicable to use operationally, it is important that the algorithms give similar results for
different datasets and areas (Waske and Braun, 2009). Since the main model
development dataset and the additional season / additional site do not all have the same
frequency-polarisation images available, only the frequency-polarisation images that
are available for both the main and additional sites are used to train the random forest

models that are used to test transferability.

The additional test site for the forested ecoregion is located in the DRC and for the semi-
arid ecoregion in Chad (see Sections 3.1.2 and Section 3.1.4). Both sites were previously
used for the SAFER project, and the findings will therefore be applicable to emergency
response situations surrounding Internally Displaced Persons (IDP) and refugee camps

(SAFER, 2012).
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6.2 Specific methodology on transferability and generalization of

classification algorithms

The transferability was tested by applying the models that were developed on the main
development sites on the additional season data and additional site data for each

ecoregion.

Two land cover class definition approaches are considered as shown in Table 6.1. The
first land cover class definition is where the model is trained on the Cameroon wet
season land cover classes, namely bare soil, dense trees, settlement, sparse vegetation
and water (Table 6.1, 1a and 2a). The open woodland class is left out of this chapter,

since it is not present in the DRC wet dataset.

The second land cover class definition is where the model is trained on both the main
development and the additional site datasets. For the inter-season comparison for the
forested sites, the model is therefore trained on both the Cameroon wet season and
Cameroon dry season training datasets, and applied to the Cameroon wet season and
Cameroon dry season test datasets (Table 6.1, 1b). For the inter-site comparison for the
forested sites, the model is trained on both the Cameroon wet season and the DRC wet
season training datasets, and then applied to the Cameroon wet season and DRC wet

season test datasets (Table 6.1, 2b).

For the semi-arid study sites, the transferability of the random forest models is also
assessed. The models developed on the Tanzania dry season data are applied to the
Tanzania wet season data, for an inter-season comparison, and to the Chad dry season
data, for an inter-site comparison. Again, the originally selected ‘training’ samples are
used for the model development and comparison. Similar to the forested sites, two land
cover class scenarios are assessed: first, by applying the model directly on the new data
with the same classes, and secondly, by using site-specific land cover classes and
developing and testing the model on both sites. The training and test site combinations,
along with the land cover classes, are shown in Table 6.2. For the direct application of

the model, the semi-arid land cover classes are agriculture, bare soil, dense trees,
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settlement and sparse vegetation (Table 6.2, 3a and 4a). The site-specific land cover
classes for the semi-arid inter-season comparison are given in Table 6.2, 3b; and the site-

specific land cover classes for inter-site comparison in Table 6.2, 4b.

The direct application of the model with the same land cover classes assesses the
transferability of the model in a direct way. The training and application of the model
using the site-specific land cover classes aim to determine if the land cover classes
between the different seasons and sites, can be separated successfully by the
classification algorithm. This will prove that the land cover classes are in fact not the
same (e.g. dense trees in Cameroon vs dense trees in the DRC), and can be seen as
distinct classes. As a result, the number of land cover classes increases, and a refined
LCCS land cover definition can be deducted to classify the land cover classes between

the sites as separate land cover classes.
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Table 6.1 The training data, test data and different land cover class scenarios for the forested sites.

Nr | Model training | Model test Land cover classes Results section /
dataset dataset (directly applied and | Figure number
site-specific)
1la) | Cameroon wet | Cameroon dry | Directly applied: Section 6.3.1.1/
season season bare soil Figure 6.1
(training (training dense trees
samples) samples) settlement
sparse vegetation
water
1b) | Cameroon wet | Cameroon wet | Site-specific: Section 6.3.1.1/
and Cameroon | and Cameroon | CW bare soil Figure 6.2
dry season dry season CW dense trees
(training (test samples) | CW settlement
samples) CW sparse vegetation
CW water
CD bare soil
CD dense trees
CD settlement
CD sparse vegetation
CD water
2a) | Cameroon wet | DRC wet Directly applied: Section 6.3.1.2/
season season bare soil Figure 6.3
(training (training dense trees
samples) samples) settlement
sparse vegetation
water
2b) | Cameroon wet | Cameroon wet | Site-specific: Section 6.3.1.2/

and DRC wet
season
(training
samples)

and DRC wet
season (test
samples)

CW bare soil

CW dense trees

CW settlement

CW sparse vegetation
CW water

DW bare soil

DW dense trees

DW settlement

DW sparse vegetation
DW water

Figure 6.4
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Table 6.2 The training data, test data and different land cover class scenarios for the semi-arid sites.

Nr | Model Model test Land cover classes Results section /
training dataset (directly applied or Figure number
dataset site-specific)

3a) | Tanzania dry Tanzania wet | Directly applied: Section 6.3.2.1/
season season agriculture Figure 6.5
(training (training bare soil
samples) samples) dense trees

settlement
sparse vegetation

3b) | Tanzania dry Tanzania dry Site-specific: Section 6.3.2.1/
and Tanzania | and Tanzania | TD agriculture Figure 6.6
wet season wet season TD bare soil
(training (test samples) | TD dense trees
samples) TD settlement

TD sparse vegetation
TW agriculture

TW bare soil

TW dense trees

TW settlement

TW sparse vegetation

4a) | Tanzania dry Chad dry Directly applied: Section 6.3.2.2 /
season season agriculture Figure 6.7
(training (training bare soil
samples) samples) dense trees

settlement
sparse vegetation
4b) | Tanzania dry Tanzania dry Site-specific: Section 6.3.2.2 /

and Chad dry
season
(training
samples)

and Chad dry
season (test
samples)

TD agriculture

TD bare soil

TD dense trees

TD settlement

TD sparse vegetation
ChD agriculture

ChD bare soil

ChD dense trees

ChD settlement

ChD sparse vegetation

Figure 6.8
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6.3 Results

For both the forested and semi-arid ecoregions, random forest models were developed
for different input variable scenarios. The combination of input variables considered
here is taken from the possible scenarios in Table 5.1 from Section 5.3.1. The scenarios
chosen are the different frequency-combinations of (i.e. L-, C- and X-band, LC-, LX-, CX-
and LCX-bands) of at most the top 30 variables of specific feature-type combinations.
The chosen variables are based on the MDG variable importance measure from the

random forest model development output, as discussed in Chapter Five.

6.3.1 Transferability of Cameroon wet season random forest models

Several random forest models are trained on the Cameroon wet season data and applied
directly on the Cameroon dry season data in Section 6.3.1.1, and to the DRC wet season
data in Section 6.3.1.2. The models are first applied directly, and secondly using the site-
specific land cover classes. The site-specific classes implies that the Cameroon land cover
classes and that DRC land cover classes are seen as distinct land cover classes. The model
is therefore trained on the Cameroon and DRC training datasets and applied on the
Cameroon and DRC test datasets. Instead of only classifying only bare, dense trees,
settlement, sparse vegetation and water classes, the number of classes were expanded
to include CW_bare, CW_densetrees, CW_settlement, CW_sparsevegetation,
CW_water, DW_bare, DW_densetrees, DW_settlement, DW_sparsevegetation and
DW_water. By doing this, the land cover classes from both sites are seen as separable
land cover classes, and instead of classifying five land cover classes, ten land cover

classes are classified by the algorithm.

6.3.1.1 Cameroon wet season models applied to Cameroon dry

season data

Figure 6.1 shows the overall and class-specific classification accuracies for the different

input variable scenarios for the random forest models trained on Cameroon wet season
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training data and applied directly on the Cameroon dry season training data, using the

same land cover classes.

Classification accuracies of random forest models, built on Cameroon wet season data and

applied directly to Cameroon dry season data using the same classes
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Figure 6.1 Classification accuracies of random forest models based on Cameroon wet season training samples,
applied directly to Cameroon dry season samples. Several combinations of input variables for the various frequency

combinations are shown.

Figure 6.2 shows the overall and class-specific classification accuracies for the random
forest models built on the Cameroon wet season training data and applied to the

Cameroon dry season training data, using the site-specific land cover classes.
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Classification accuracies of random forest models, built on Cameroon wet season data and

applied to Cameroon dry season data, using site-specific classes
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Figure 6.2 Classification accuracies of random forest models based on Cameroon wet season data, applied to
Cameroon dry season data, with site-specific classes. Several combinations of input variables for the various

frequency combinations are shown.

6.3.1.2 Cameroon wet season models applied to DRC wet season data

Figure 6.3 shows the overall and class-specific classification accuracies for the different
input variable scenarios for the random forest models trained on Cameroon wet season
training data and applied directly on the DRC wet season training data, using the same

land cover classes.
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Classification accuracies of random forest models, built on Cameroon wet season data and

applied directly to DRC wet season data using the same classes

Backscatter Coefficients Interchannel Ratios
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Figure 6.3 Classification accuracies of the random forest models based on Cameroon wet season data, applied
directly to DRC wet season data. Several combinations of input variables for the various frequency combinations

are shown.

Figure 6.4 shows the overall and class-specific classification accuracies for the random
forest models built on the Cameroon wet season training data and applied to the DRC
wet season training data, using the site-specific land cover classes. The results of the
Cameroon wet season models applied on the Cameroon dry season data and the DRC

wet season data are discussed in detail in Section 6.4.
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Classification accuracies of random forest models, built on Cameroon wet season data and

applied to DRC wet season data, using site-specific classes
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Figure 6.4 Classification accuracies of random forest models based on Cameroon wet season data, applied to DRC

wet season data, with site-specific classes. Several combinations of input variables for the various frequency

combinations are shown.

6.3.2

Transferability of Tanzania dry season random forest models

For the semi-arid study sites, several random forest models are trained on the Tanzania

dry season data and applied on the Tanzania wet season data in Section 6.3.2.1, and to

the Chad dry season data in Section 6.3.2.2. The models are first applied directly, and

secondly using the site-specific land cover classes.
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6.3.2.1 Tanzania dry season random forest model applied to Tanzania

wet season data

Figure 6.5 shows the overall and class-specific classification accuracies for the different
input variable scenarios for the random forest models trained on Tanzania dry season
training data and applied directly on the Tanzania wet season training data, using the

same land cover classes.

Classification accuracies of random forest models, built on Tanzania dry season data and

applied directly to Tanzania wet season data using the same classes
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Figure 6.5 Classification accuracies of random forest models based on Tanzania dry season data, applied directly
to Tanzania wet season data. Several combinations of input variables for the various frequency combinations are

shown.

167



Figure 6.6 shows the overall and class-specific classification accuracies for the random
forest models built on the Tanzania dry season training data and applied to the Tanzania

wet season training data, using the site-specific land cover classes.

Classification accuracies of random forest models, built on Tanzania dry season data and

applied to Tanzania wet season data, using site-specific classes
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Figure 6.6 Classification accuracies of random forest models based on Tanzania dry season data, applied to
Tanzania wet season data, with site-specific classes. Several combinations of input variables for the various

frequency combinations are shown.
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6.3.2.2 Tanzania dry season random forest model applied to Chad dry

season data

Figure 6.7 shows the overall and class-specific classification accuracies for the different
input variable scenarios for the random forest models trained on Tanzania dry season
training data and applied directly on the Chad dry season training data, using the same
land cover classes. Since only L-band data are available for the Chad dry season site, only

L-band data could be used as part of the random forest models.

Classification accuracies of random forest models, built on Tanzania dry season data and

applied directly to Chad dry season data using the same classes
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Figure 6.7 Classification accuracies of random forest models based on Tanzania dry season data, applied directly
to Chad dry season data. Several combinations of input variables are shown. Only L-band data overlapped between

the two sites.
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Figure 6.8 shows the overall and class-specific classification accuracies for the random
forest models built on the Tanzania dry season training data and applied to the Chad dry

season training data, using the site-specific land cover classes.

Classification accuracies of random forest models, built on Tanzania dry season data and

applied to Chad dry season data, using site-specific classes
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Figure 6.8 Classification accuracies of random forest models based on Tanzania dry season data applied to Chad
dry season data, with site-specific classes. Several combinations of input variables are shown. Only L-band data

overlapped between the two sites.
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6.4 Summary of results

The results of the models which test the transferability of the forested sites are
summarized in Table 6.3a for the single frequency SAR random forest models and in
Table 6.3b for the multi-frequency SAR random forest models. Additional graphical
representations of the same results summary are given in Figure 6.9 for the forested
single frequency models and in Figure 6.10 for the forested multi-frequency models. The
transferability results for the semi-arid sites are summarised in Table 6.4a for the single
frequency SAR random forest models and in Table 6.4b for the multi-frequency SAR
random forests. Similarly to the forested models, additional graphical representations
of the same results are given in Figure 6.11 for the semi-arid single frequency models
and in Figure 6.12 for the semi-arid multi-frequency models. In Table 6.3 and Table 6.4,
the intensity of the colours represents the level of the overall classification accuracies,
with higher classification accuracies showing as more intense colours. The results are
summarised showing the model with the highest overall classification accuracy (1%,
then the second highest (2"9) and then the third highest/ lowest (3') overall

classification accuracy for each group.

The random forest models trained and tested on the Cameroon wet season data are
referred to the forested ecoregion baseline models. In Table 6.3, the classification
accuracy results from the random forest models trained on the Cameroon wet season
data and applied on the Cameroon dry season (see Figure 6.1 and Figure 6.2) and the
DRC wet season data (see Figure 6.3 and Figure 6.4) are compared to the forested
baseline models (as marked with a * in Table 6.3 and presented in Figures 5.1 to 5.6).

The model trained and tested on the Cameroon dry data are given for reference.

The random forest models trained and tested on the Tanzania dry season data are
referred to the semi-arid ecoregion baseline models. In Table 6.4 the classification
accuracy results from the random forest models trained on the Tanzania dry season data
and applied on the Tanzania wet season (see Figure 6.5 and Figure 6.6) and the Chad dry

season data (see Figure 6.7 and Figure 6.8) are compared with the semi-arid baseline
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models (as marked with a * in Table 6.4 and presented in Figures 5.1 to 5.6). The

Tanzania wet season model is given for reference.

The comparisons of the transferability of the random forest models for both the
forested results (in Table 6.3 and Figures 6.9 — 6.10) and semi-arid results (in Table 6.4
and Figures 6.11—6.12) results are grouped by an increasing level of variable complexity.
The groups are backscatter coefficients only (from Figure 5.2), interchannel ratios only
(from Figure 5.3), elevation data only (from Figure 5.5), texture measures only (from
Figure 5.4), backscatter coefficients, interchannel ratios and texture measures (from
Figure 5.6), and backscatter coefficients, interchannel ratios, texture measures and

elevation data (from Figure 5.1).
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Table 6.3 Summary table of the overall classification accuracies from the random forest models, which test the transferability of the forested sites. The (a) single frequency and (b) dual / three
frequency combinations are shown.

a) Forested single frequency

Site comparison Land cover 2nd 3rd

Cameroon dry, training vs test  same 5. 91 71 61 91 71 61 92

Cameroon wet, training vs test * same . 73 69 52 74 69 52 78 77 63 min max

Cameroon wet vs dry same . 64 51 74 54 74 63 L
site-specific . 84 65 61 84 65 61 84 74 68 C

Cameroon wet vs DRC wet same . X

site-specific . 77 75 54 78 75 54 82 76 60 elev

b) Forested dual/ three frequencies

dB only ionly tonly dB+i+t dB+i+t+e
Fig. |(5.2) (5.3) (5.5) (5.6) (5.1)

Site comparison Land cover LCX 1st 2nd 3rd LCX 1st 2nd 3rd LCX 1st 2nd 3rd |LCX 1st 2nd 3rd LCX 1st 2nd 3rd
Cameroon dry, training vs test  same . 91 92 90 /8|91 92 90 /79|91 92 90 |80
Cameroon wet, training vs test * same . 85 84 76 76|85 85 76 76 88 88|80 78
Cameroon wet vs dry same . 65 65 65 /53|74 74 73 (49|74 74 74 |53

site-specific . 86 85 84 76|86 8 84 7685 86 86 |79
Cameroon wet vs DRC wet same 332 33 29 23

site-specific . 87 86 81 74 87 86 82 74 87 86|83 75

dB |backscatter coefficients
i |interchannel ratios

t texture measures

e [|elevation data

* baseline model
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Table 6.4 Summary table of the overall classification accuracies from the random forest models, which test the transferability of the semi-arid sites. The (a) single frequency and (b) dual /
three frequency combinations are shown.

a) Semi-arid single frequency

dB only ionly e only[t only dB+i+t dB+i+t+e
Fig. (5.2) (5.3) (5.5) ((5.4) (5.6) (5.1)
Site comparison Land cover 1st 2nd 3rd |1st 2nd 3rd SRTM [1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd
Tanzania wet, training vs test same 5x 127 21 - 21 - - | 27
Tanzania dry, training vs test *  same 5.x 30 26 - 29 - 28 min max
Tanzania dry vs wet same 6530 26 - |26 - - L
site-specific 66 18 17 - 18 - - C
Tanzania dry vs Chad dry same 6.7 . - - F - - X
site-specific 6.8 - - 13 - - elev
b) Semi-arid dual/ three frequencies
dB only i only t only dB+i+t dB+i+t+e
Fig. (5.2) (5.3) (5.5) (5.6) (5.1)
Site comparison Land cover LCX 1st 2nd 3rd LCX 1st 2nd  3rd LCX 1st 2nd 3rd |LCX 1st 2nd 3rd |LCX 1st 2nd 3rd
Tanzania wet, training vs test same 5x - 32 - - - - - - - 49 - - | -149 - - | - - -
Tanzania dry, training vs test *  same 5x 49 48 45 35 - 47 - -
Tanzania dry vs wet same 65 - 31 - - |- - - -
site-specific 66 - 26 - - | - - - -
Tanzania dry vs Chad dry same 67 - - - -] - - - e e T -
site-specific 68 - - - - |- - - T L N

dB |backscatter coefficients min max

i interchannel ratios LC
t  texture measures LX
e elevation data CX

* baseline model LCX
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Forested ecoregion, single frequency
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Figure 6.9 The overall classification accuracies from the random forest models, to test the transferability of the
models for the forested sites, using single frequencies. This is the same data from table 6.3a represented as a bar

charts.
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Forested ecoregion, dual / three frequencies

Cameroon dry, training vs test Cameroon wet, training vs test
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Figure 6.10 The overall classification accuracies from the random forest models, to test the transferability of the
models for the forested sites, using dual/three frequencies. This is the same data from table 6.3b represented as a

bar charts.
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Semi-arid ecoregion, single frequency

Tanzania wet, training vs test - same classes Tanzania dry, training vs test - same classes
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Figure 6.11 The overall classification accuracies from the random forest models, to test the transferability of the
models for the semi-arid sites, using single frequencies. This is the same data from table 6.4a represented as a bar

charts.
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Forested ecoregion, dual / three frequencies

Tanzania wet, training vs test - same Tanzania wet, training vs test - same
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Figure 6.12 The overall classification accuracies from the random forest models, to test the transferability of the
models for the semi-arid sites, using dual/three frequencies. This is the same data from table 6.4b represented as

a bar charts.

6.5 Discussion

The results are next discussed from the following viewpoints: groups of increasing
variable complexity (Section 6.5.1); single, double or three frequencies (Section 6.5.2);

and forested vs semi-arid transferability comparison (Section 6.5.3).

6.5.1 Groups of increasing variable complexity

The groups of increasing variable complexity used to test the transferability of the
random forest models are the focus for this discussion section. The groups of variables
discussed are backscatter coefficients (Section 6.4.1.1), interchannel ratios (Section

6.4.1.2), elevation data (Section 6.4.1.4) and texture measures (Section 6.5.1.3).
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6.5.1.1 Backscatter coefficients

Using only backscatter coefficients produced results much lower than using all the
available variables and specifically any model with the addition of texture measures. For
the forested sites, the Cameroon wet season model applied to the Cameroon dry season
using the same land cover classes was similar to the baseline model (59% for LCX
models). The Cameroon wet season models applied to dry season data, perform
marginally lower to the Cameroon dry season models applied to dry season data (59%

compared to 66% for the LCX, backscatter coefficient only models).

For the semi-arid sites the inter-season comparison transfer of the Tanzania dry season
model to the Tanzania wet season data does worse than the Tanzania dry season

baseline model (31% vs 48% for the LC, backscatter coefficient only models).

The inter-site comparison for the forested ecoregion using only backscatter coefficients
performed slightly better than the other variable combinations that include the
additional feature layers. This was unexpected, since all the other scenarios have higher
classification accuracies when additional layers are included. However, the overall
classification accuracies of the forested inter-site comparison were very low at 33% for
the LC model or 33% using X-band only. This is higher than the LCX-bands scenario using

all the variables at 26% overall classification accuracy.

The inter-site comparison for the forested ecoregion using site-specific land cover class
scenarios resulted in an overall classification accuracy of 63% for the LCX backscatter
coefficient only model, which is higher than the LCX baseline model with an overall

classification accuracy of 59%.

The inter-site comparison for the semi-arid ecoregion using only backscatter coefficients
could only be assessed with the L-band data (see Section 3.2). The classification accuracy
was lower, at 34% using the same land cover classes and 31% using site-specific land

cover classes, compared to the baseline model with 44% overall classification accuracy.
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6.5.1.2 Interchannel ratios

The interchannel ratios can only be calculated when either a dual polarized or quad
polarized image are available. Only a small number of interchannel ratios are available
on the inter-season and inter-site comparisons. When the interchannel ratios are
available, the overall classification results are either the same or slightly lower than the

overall classification accuracies using backscatter coefficients only.

6.5.1.3 Elevation data

Using only the elevation data, which includes the elevation, slope and aspect data as
discussed in Section 4.3.3, gave higher overall classification accuracies than expected.
This can be explained by a topographical relationship between land cover and elevation
in each site. This is especially the case for the Cameroon site, which has a relatively
rugged terrain, and with land cover classes following the terrain pattern. The dense trees
are most often in the valleys, and open woodland more prevalent on the hills. The lower
planes are more prevalent to sparse vegetation and bare soil, closer to the river. As a
result, the elevation data serves as good indication of land cover class (56% classification
accuracy for Cameroon dry and 57% classification accuracy for Cameroon wet training
vs test data). The Tanzania site is much flatter, and as a result the relation between
elevation and land cover class was less pronounced (27% classification accuracy for

Tanzania wet and 28% classification accuracy for Tanzania dry, training vs test datasets).

For the inter-season comparison, the elevation data models gives overall classification
accuracies higher than the backscatter coefficient only models using the best single
frequencies (58% for Cameroon wet vs dry elevation only model compared to 51% for
Cameroon wet vs dry C-band backscatter coefficient only model; and 36% for Tanzania
dry vs wet elevation only model and 30% for Tanzania dry vs wet L-band backscatter
coefficient only model). The inter-season comparison using the site-specific land cover
class options performed worse than directly applying the same land cover classes (29%
overall classification accuracy for the Cameroon wet vs dry site-specific land cover

classes vs 58% for applying the land cover classes directly; and 18% overall classification
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accuracy for the Tanzania dry vs wet site-specific land cover classes vs 36% for applying

the land cover classes directly).

There was a large enough difference in the elevation between the two sites for both the
forested and semi-arid sites, to distinguish the site-specific land cover classes to
reasonable degree of accuracy while only using the elevation data. The elevation data
gave an overall classification accuracy of 42% for the Cameroon wet season vs DRC wet
season for the site-specific land cover class models, which is higher than the site-specific
single frequency (L-band) backscatter coefficient only model with 39% overall
classification accuracy. Using the same land cover classes only gave 21% overall
classification accuracy. For the semi-arid inter-site comparison, the elevation data only
gave 42% overall classification accuracy using the site-specific classes and only 20% using

the same land cover classes.

6.5.1.4 Texture measures

It is noted that the addition of texture measures to any of the models lead to a large
increase in overall classification accuracies, for both ecoregions and for all frequency
combinations, inter-season and inter-site comparisons, with the exception of the
Cameroon wet season model applied to the DRC wet season data using the same land

cover classes.

The texture measures only model for the forested sites using LCX-band for the inter-
season comparison, gives an overall classification accuracy of 65% applying the same
land cover classes directly. This is 20% lower than the LCX texture measure only baseline
model with 85% overall classification accuracy. The inter-season and inter-site LCX
texture measures only models, perform slightly higher at 86% and 87% respectively,

compared to the baseline model at 85% overall classification accuracy.

181



The semi-arid inter-site comparison of the LC-band texture measures only model is
lower at 40% overall classification accuracy using the same land cover classes and 47%

using site-specific land cover classes, compared to the LC-band baseline model of 61%.

The semi-arid inter-site comparison could only be undertaken with L-band data, and the
Tanzania dry season model applied on Chad dry season data gave 40% overall
classification accuracy using the same land cover classes, which is lower than the
baseline model of 60%. Using the site-specific land cover classes, the L-band model of
the Tanzania dry model applied on the Chad dry data gave an overall classification
accuracy of 66%, compared to the baseline model with 60% overall classification

accuracy.

The models with more additional variables than the texture measures only scenario (dB
+i+tanddB +i+1t+e), resulted in overall classification accuracies slightly higher or
very similar to the models using only texture measures. This shows that that the texture
measures has the largest contribution to the model, and that the additional layers or
backscatter coefficients, interchannel ratios and elevation data, only has a marginal
additional contribution to the models for both ecoregions and for the inter-season and

inter-site comparisons.

For the second and third best frequency choices for the single frequency scenarios, the
addition of elevation data to the model of backscatter coefficient, interchannel ratios
and texture measures, does lead to a substantial increase in overall classification
accuracy for both the forested and semi-arid models. This can therefore be a relatively
easy way to increase classification accuracy results when only single frequency data are
available. For the dual-frequency and three-frequency scenarios, the addition of

elevation data does not lead to the same level of overall classification accuracy increase.
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6.5.2 Single, double or three frequencies

For each site comparison scenario, recommendations are made for both single
frequency and dual / three frequency options in Table 6.5. This is achieved by taking the
highest overall classification accuracies from the single frequency and dual / three
frequency scenarios in Table 6.3 and Table 6.4. For the forested sites, the recommended
single frequency is X-band. The main dual frequency recommendation for the forested
sites are either LX-band or CX-bands. The LX-band recommendation is consistent for all
the forested inter-season and inter-site scenarios. The recommended single frequency
for the inter-season and inter-site model transfers for the semi-arid ecoregion is L-band,
and the recommended dual-frequency is LC-bands. For the semi-arid inter-season
comparison, only L-band and C-band data were available and for the semi-arid inter-site
comparison, only L-band data were available (see Section 3.2). For this reason, the
discussion only includes L-band and C-band for the semi-arid inter-season scenario, and

L-band for the semi-arid inter-site scenario.

It is noteworthy that the single frequencies give overall classification accuracies very
close to the dual-frequency scenarios. It is also surprising that the best dual-frequency
scenarios gave overall classification accuracies at the same level to the LCX models, and
the three-frequency model gave higher overall classification accuracy only for one
scenario (i.e. for the Cameroon wet season model applied to the DRC wet season data

using site-specific land cover classes).
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Table 6.5 Summary of recommended frequency and variable recommendations for transferring random forest models to different season and additional site scenarios. Overall classification

accuracies are given in brackets for the respective scenarios.

Model transfer site Land cover | Recommended single-frequency Recommended dual/three frequencies
scenario type Band Variables used Bands variables
Forested inter-season same X All variables (74%) LX / CX All variables (74%)
(Cameroon wet vs dry ) site-specific | X Texture measures only (84%) LX / CX All variables (86%)
Forested inter-site same X Backscatter coefficients only | LX / CX All variables (26%) (lower than
(33%) single frequency models, therefore
(Cameroon vs DRC, wet) ° rather use X-band only)
site-specific | L All variables (82%) LX Texture measures only (86%)
LCX Texture measures only (87%)
Semi-arid inter-season ¥ | same L Texture measures only (58%) LC All variables (51%)
(Tanzania dry vs wet) site-specific | L/C All variables (40%) LC All variables (50%)
Semi-arid inter-site ?) same L Texture measures only (40%) N/A (only L-band available)
(Tanzania vs Chad, dry) site-specific | L All variables (68%) N/A (only L-band available)

@only L-band and C-band data available (no X-band) for semi-arid inter-season comparison

@only L-band data available (no C-band or X-band) for semi-arid inter-site comparison
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If only single frequency data are available, it is recommended to add SRTM elevation
data to increase the classification accuracy with relative ease. When two or three
frequency data are available, the addition of elevation data only has a marginal effect.
It is highly recommended to use texture measures for both inter-site and inter-season
transfer of the models, regardless of whether single or dual/three frequency data are

used. This applies to both the forested and semi-arid ecoregions.

6.5.3 Forested vs semi-arid transferability comparison

The inter-season transfer of the random forest models for the Cameroon site, using the
same land cover classes, gave reasonably high overall classification accuracies, with the
highest overall classification accuracy from the LCX or CX models at 74%, compared to
88% for the LCX and CX baseline models. The forested inter-season comparison using
site-specific land cover classes was much closer to the baseline models, with the highest
overall classification accuracy of 85% using LX-bands compared to the 88% of the LX-
bands baseline model. It can therefore be deduced that the land cover classes between
the Cameroon dry and wet season sites are sufficiently different for the random forest
model to be able to distinguish a meaningful difference, and therefore classify the site-
specific land cover classes correctly. The Cameroon wet and dry season data are
however similar enough for the model trained on the wet season data to be applied to
the dry season data with still a relatively high level of overall classification accuracy (see

Section 7.3.1.2).

The highest overall classification accuracies for the semi-arid inter-season comparison
are 51%, using the same land cover classes, and 50%, using the site-specific land cover
classes using the LC-bands model with all the variables. This is in comparison to the LC-
bands baseline model using all the variables with 65% overall classification accuracy. The
overall classification accuracies of the same, and site-specific, land cover classes are
therefore much closer to each other for the semi-arid site, than for the forested site. For

the semi-arid dry season and wet season data, it can be deduced that the land cover
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classes are quite similar between the wet and dry season samples (see also Section

7.3.2.2).

The forested and semi-arid inter-site comparisons using the same land cover classes did
not perform very well, and much lower than expected. The highest overall classification
accuracy for the forested inter-site comparison was 33%, using X-band data with only
the backscatter coefficients. The highest overall classification accuracy for the semi-arid
inter-site comparison was 40%, using L-band data with only texture measures. This is
much lower than the inter-site comparisons using the site-specific classes, where the
forested sites gave 87% for the LCX-bands model using all variables (compared to 88%
for the LCX baseline model with all the variables), and 68% for the semi-arid inter-site
comparison using L-band data with all the variables (compared to 63% for the L-band
baseline model with all the variables). There appears to be a substantial difference
between the land cover classes of the Cameroon wet and DRC wet study sites (see
Section 7.3.1.3), and also between the land cover classes of the Tanzania dry season and

Chad dry season study sites (see Section 7.3.2.3).

It should be noted that the overall classification results in Chapter Six are not 100%
comparable to the overall classification accuracies presented in Chapter Five, since
Chapter Five included the open woodland class. The open woodland class was not
present in either of the additional sites (i.e. neither in the DRC site for the forested
ecoregion, or for the Chad site for the semi-arid ecoregion). The open woodland class
varied between the third or fourth highest classification accuracy out of the six classes
for the Cameroon and Tanzania sites. The overall classification accuracies of all the inter-
season and inter-site scenarios presented in Chapter Six, are therefore slightly higher,
compared to when open woodland would have been included. However, the overall
conclusions should remain the same, regardless of whether the open woodland class is

included or not.
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6.6 Conclusion

In this chapter it is shown that the random forest models are transferable from the wet
to the dry season for the forested sites, and from the dry to the wet season for the semi-
arid sites, while still maintaining a reasonable level of classification accuracy. The
algorithms should be transferable, with the assumptions that the following conditions
remain similar between the training data and the new data on which the model is
applied:

- land cover classes are similar

- acquisition conditions are similar, such as rainfall, vegetation water content

and soil moisture

- elevation are at a similar altitude

Should these conditions not be similar, the model will not be transferable, or at least
not to the same degree of accuracy as achieved on the training dataset. The exact limits
and degree of acceptable change in the landscape parameters will still need to be

determined, to be able to quantify whether the model is transferable or not to new data.

For the forested sites, the inter-season transfer decreases from 88% for the LCX baseline
model to 74% for the LCX-model using all the available variables. For the semi-arid site,
the overall classification accuracy decreases marginally from 63% to 58% using L-band

models, using all the available variables.

For the inter-site model transfer, it is therefore recommended to rather collect samples
from both sites, and train the models to incorporate the site-specific land cover classes.
It appears that in both the forested and semi-arid inter-site comparisons, the land cover
classes of the additional sites are substantially different, to such a degree that a direct

transfer of the model using the same land cover classes is not feasible.

For the forested ecoregion the use of X-band is recommended for single frequency SAR
land cover applications. For the semi-arid ecoregion, with the data available, L-band is

recommended above C-band data for any inter-season land cover classification. Due to
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the X-band orthorectification errors (see Section 4.1), no conclusion can be made with

regards to X-band for semi-arid inter-season model transferability.

Using dual or three frequencies for the inter-season and inter-site transfer of the
random forest models for the forested sites, the use of LX-band data gives consistently
good results for both the same and site-specific land cover classes (with the exception
of the Cameroon wet season vs DRC wet season data using the same land cover classes).
The use of texture measures only give overall accuracies close to using all the feature

variables.

The summary tables (Table 6.3, 6.4 and 6.5) in this Chapter can be used by the remote
sensing community as a reference of which frequency combinations are recommended
for the forested and semi-arid ecoregions. The summary tables can also give an
indication of expected overall classification accuracies for the transfer of the models to
both additional season and additional site data, when similar data to that which was

used in this study is available.
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Chapter Seven SAR signatures and Kullback-Leibler
divergence measures of multi-frequency SAR over semi-arid

and forested sites

To enable the application of a model trained on one dataset with known outcomes on a
new dataset with unknown outcomes, one of the fundamental questions to ask is
whether the new dataset land cover classes have similar statistical distributions for the
dataset variables as the original training dataset land cover classes? If the new dataset
does have similar statistical distributions, then it can be assumed that the model will be
reliable and give reliable predictions on the new data. However, if the statistical
distributions are remarkably different, then the model will not give reliable results. In
the case of working with satellite imagery, as in this study, a land cover classification
model is often trained on a set of satellite imagery that is acquired of a specific
geographical location with specific climatic conditions. A model trained and developed
on one set of satellite images can most reliably be applied on another set of data that is
of the same, or similar, geographical location and similar climatic conditions. In
particular, the specific scattering mechanisms related to the specific vegetation type,
such as the land cover classes of sparse vegetation or dense trees, should be similar for

the model to be applicable to additional data.

To address the third and final hypothesis, the statistical distributions of the SAR
backscatter coefficients and additional calculated layers were compared for different
land cover classes. The comparison was performed first visually and secondly with a
statistical measure to compare the distance between distributions. The comparison was
undertaken not only between the land cover classes of the same site, but also between
the land cover classes of the wet and dry seasons, as well as between the main
development site and the additional site for both ecoregions. If the distributions are
similar, then the model can be applied to the new data. However, if the distributions are
different, then the model is not applicable to the new data and should be used with

caution. To determine an acceptable level of deviation between the statistical
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distributions of the training dataset and the new dataset, is part of what this chapter

aims to address.

7.1 Introduction

There are several measures to compare statistical distributions with each other, known
as separability indices. A selection of measures are the Fisher criterion, the
Bhattacharyya distance and the Kullback-Leibler divergence (KLD). These separability
indices have all been applied to separating land cover classes within SAR images in the
literature. The Fisher criterion is used to compare texture measure separability of SAR
images of sea-ice (Clausi, 2002), whereas the Bhattacharyya distance is used to compare
class separability within SAR images of selected crop classes (Anys, 1995) and rangeland
classes related to oil-fields (Kwarteng et al., 2008). The KLD is related to the relative
entropy measure, which is the basis of the Maximum Entropy (MaxEnt) classifier (Elith
et al., 2011; Phillips and Dudik, 2008). Additionally, the KLD has been used to compare
texture measures within SAR images (Mathiassen et al.,, 2002) and to classify SAR

imagery (Qin et al., 2015).

In this study, there are different scenarios where it is necessary to use a separability
index to compare the statistical distributions of selected land cover classes:
a) The comparison between the different land cover types of the training dataset.
b) The comparison of the land cover types between the training data and the test
data, from the same study site and season.
c) The comparison of land cover types between the wet and dry seasons, but of the
same geographical locations, also referred to as an inter-season comparison.
d) The comparison of land cover types of the same season, but of different

geographical locations, also referred to as an inter-site comparison.

For scenario (a), the separability index needs to be as high as possible, to ensure that
the land cover classes are distinguishable and that it is possible to classify the land cover

classes successfully. This scenario is not covered in this chapter, since it is a feature
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selection application of a separability index, and in this project this is done by the

variable importance measure as part of the random forest classification in Section 5.3.

In scenario (b), the separability index needs to be low to ensure that the test data are
similar to the training data, although not always exactly the same. The reason for having
a separate test dataset is to ensure that the model can generalise to a reasonable extent,

with new data provided.

For scenario (c) and (d) the separability index is a test to assess whether the model
developed on the training dataset is still relevant for application on new data. Scenario
(c) compares the wet and dry season of the same geographical area (inter-season
comparison), whereas scenario (d) compares study sites that are in different
geographical locations but of similar ecological conditions (inter-site comparison). The
reason for comparing the statistical distributions of the land cover classes in scenario (d)
is that although land cover classes can look similar using visual interpretation of optical
images, the SAR backscatter coefficients and additionally calculated layers such as
interchannel ratios, texture measures and elevation data can be quite different. In cases
when the distributions of the SAR backscatter coefficients are too different, it will be
unsuitable to use the same model developed on one geographical location, on another
dataset of a different geographical location. For the data used specifically in this study,

the distribution comparisons are detailed as in Table 7.1.

Table 7.1 Scenarios for assessing the separability between land cover classes.

Scenario | Comparison Forested site Semi-arid site

a) Land cover Output from RF variable Output from RF variable
classes importance in Section 5.3 | importance in Section 5.3
separability

b) Training vs test | CW-training vs TD-training vs

CW-test TD-test
c) Wet vs dry CW-training vs TD-training vs
CD-training TW-training
d) Site 1 vs Site 2 | CW-training vs TD-training vs
DW-training ChD- training
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The data collected are only from a certain timestamp and is only a trace of the full
phenological cycle of the land cover over an annual cycle. This should be kept in mind,
as well as the fact that the data in this study are from a broad wet and dry season, and

not collected from a detailed daily, weekly or monthly interval.

There is, therefore, a trade-off between the ideal sampling scenario compared to the
real-world data availability scenario. The ideal sampling scenario would involve every
land cover class in every biome collected daily (or perhaps hourly), simultaneously, by
all possible SAR frequency-polarisation acquisition modes, with optical imagery and
ground-truth data at exactly the same time as the SAR satellite data collection. The real
world data availability scenario is only an approximation of the ideal sampling scenario.
This should be kept in mind when attempting to apply these findings to newly acquired
SAR imagery. This highlights why it is important not to overfit a model, and to ensure
that the model generalizes sufficiently to be flexible when using new data to classify the

land cover.

7.1.1 Cameroon wet season training vs test samples

Figures 7.1 to 7.4 shows the data distributions for the Cameroon wet season training vs
test land cover comparisons. It can be seen that the training and test samples are similar,
which is as expected. These figures are drawn to get an insight to the data, and as a

double check between the training and test sample distributions.

The backscatter coefficients are shown in Figure 7.1 for the CW-training vs CW-test
samples. It can be seen that the training and test datasets are similarly distributed. It is
also notable that apart from the water class, the statistical distribution of the remaining
classes of bare, settlement, sparse vegetation and dense trees are largely overlapping
for all the backscatter coefficients channels. This highlights the effectiveness of SAR data
to be used for mapping water bounderies during flood events (Martinez and Le Toan,
2007; Cruz, 2010; Pulvirenti et al., 2011). This can be explained by the SAR signal being

reflected away from the SAR sensor, due to the smooth water surface, and as a result,
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has low backscatter coefficient values. The main challenge is therefore how to separate

the different vegetation classes, which are currently largely overlapping with each other.

Figure 7.2 show the interchannel ratios for the CW-training vs test samples. Here all the
land cover classes overlap with each other, and it confirms why the interchannel ratios
did not rank high by the MDA and MDG variable importance measures in Section 5.3.2.
Figure 7.3 shows the top 10 texture measures for the CW-training vs CW-test samples.
Here the classes are more separable, and it becomes apparent why the variable
importance measures showed that the texture measures are the most important
variables. The elevation data in Figure 7.4 shows a slight variation between the training

and test samples.
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Cameroon wet season training vs test samples: backscatter coefficients
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Figure 7.1 Distribution of backscatter coefficients for the Cameroon wet season training vs test samples. Order

based on MDG variable importance of a random forest model of the backscatter coefficients.
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Cameroon wet season training vs test samples: interchannel ratios
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Figure 7.2 Distribution of the top 10 interchannel ratios for the Cameroon wet season training vs test samples.

Order based on MDG variable importance of a random forest model of the interchannel ratios.
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Cameroon wet season training vs test samples: texture measures
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Figure 7.3 Distribution of the top 10 texture measures for the Cameroon wet season training vs test samples. Order

based on MDG variable importance of a random forest model of the texture measures.
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Cameroon wet season training vs test samples: elevation data
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Figure 7.4 Distribution of elevation, slope and aspect data for the Cameroon wet season training vs test samples.

Order based on MDG variable importance of a random forest model of the elevation variables.
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7.1.2  Tanzania dry season training vs test samples

Figures 7.5, 7.6, 7.7 and 7.8 show the comparison of the statistical distributions of the
land cover classes: agriculture, bare, dense trees, sparse vegetation and settlement for
the Tanzania dry season training vs test samples, for the backscatter coefficients,
interchannel ratios, texture measures and elevation data respectively. The training and
test data are relatively similar for all the backscatter coefficient channels and calculated
information layers, as expected. Similar to the forested ecoregion graphs, the
comparison between the Tanzania dry training vs test samples were just to make sure
that the land cover classes are similar between the training and test samples. There is,
however, a much larger overlap for all the classes for the semi-arid ecoregion sites,
compared to the forested ecoregion sites. This explains why the classification accuracies
for the semi-arid sites were much lower than the forested sites in Chapter Five and

Chapter Six.

Tanzania dry training vs test samples: backscatter coefficients
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Figure 7.5 Distribution of backscatter coefficients for the Tanzania dry training vs test samples. Order based on

MDG variable importance of a random forest model of the backscatter coefficients.
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Tanzania dry training vs test samples: interchannel ratios
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Figure 7.6 Distribution of the interchannel ratios for the Tanzania dry training test samples. Order based on MDG

variable importance of a random forest model of the interchannel ratios.
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Tanzania dry training vs test samples: texture measures
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Figure 7.7 Distribution of the top 10 texture measures for the Tanzania dry training vs test samples. Order based

on MDG variable importance of a random forest model of the texture measures.
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Tanzania dry training vs test samples: elevation data
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Figure 7.8 Distribution of the elevation, slope and aspect for the Tanzania dry training vs test samples. Order based

on MDG variable importance of a random forest model of the elevation data.
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7.2 Specific methodology for SAR signature extraction

The Kullback-Leibler divergence (KLD) (Kullback and Leibler, 1951; Kullback, 1987), also
referred to as Relative Entropy (RE), is the relative comparison between two probability
distributions p and g on a variable X. The discrete version of the KLD between p and g

is given by Phillips et al. (2004):

KLD(p Il q) = zxexp(x) ln% Equation 7-1

The KLD between the different distributions are minimized in the Maximum Entropy
model (MaxEnt) (Phillips and Dudik, 2008; Elith et al., 2011). In this study, the KLD will
be used to assess the comparison for the forested sites: between the Cameroon wet
season training and test samples, the Cameroon wet vs dry season samples and then the
Cameroon wet vs DRC wet season samples. Similarly, a comparison was undertaken for
the semi-arid sites: between the Tanzania dry season training and test samples, the
Tanzania dry vs wet season samples and between the Tanzania and Chad dry season
samples. A list of the land cover sample data distributions evaluated is given in Table
7.2. The scenarios for which the KLD measures are calculated for the different land cover

classes are also outlined in Table 7.2.
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Table 7.2 List of land cover sample data distribution comparisons, both visual and by the KLD, for the forested and semi-arid sites.

Scenario

(x)

Comparison

Visual comparison:
forested site (Section
7.3.1.x)

Visual comparison: semi-
arid site (Section 7.3.2.x)

KLD: forested site
(Section 7.3.3.x)

KLD: semi-arid
site (Section
7.3.4.x)

(1)

Training vs test

Backscatter coefficients
Interchannel ratios
Texture measures
Elevation data

Cameroon wet season

v
v

v’ (top 10)
v

Tanzania dry season

v
v

v’ (top 10)
v

Cameroon wet
season
v

x

v (top 8)
X

Tanzania dry
season

X

v (top 8)
X

(2)

Wet vs dry

Backscatter coefficients
Interchannel ratios
Texture measures

Elevation data

Cameroon wet vs dry
season
v

v

v’ (top 10)
v

Tanzania dry vs wet season

v
v

v’ (top 10)
v

Cameroon wet vs
dry season
v

X

v (top 8)
X

Tanzania dry vs
wet season
v

X

v (top 8)
X

(3)

Sitel vs Site2

Backscatter coefficients
Interchannel ratios
Texture measures
Elevation data

Cameroon wet vs DRC wet
season
v

v

v (top 10)
v

Tanzania dry vs Chad dry
season
v

v

v (top 10)
v

Cameroon wet vs
DRC wet season
v

X

v (top 8)
X

Tanzania dry vs
Chad dry season
v

X

v (top 8)
P 4
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7.3 Results

The statistical distributions of the land cover samples of the SAR backscatter coefficients,
interchannel ratios, texture measures and elevation data are presented in Section 7.3.1 for
the forested sites and for the scenarios shown in Table 7.2. Similarly, the visual comparison
of the SAR signatures of the semi-arid sites are presented in Section 7.3.2. The KLD for the
land cover classes of the forested sites are shown in Section 7.3.3, with the KLD for the land

cover classes of the semi-arid sites presented in Section 7.3.4.

7.3.1 Visual comparison of SAR signhatures for the forested sites

(Cameroon and DRC)

In this section, the statistical distributions, of the backscatter coefficients, interchannel ratios,
texture measures and elevation data for the forested sites, are compared for the site

combinations as shown in Table 7.3.

Table 7.3 The site comparisons for the forested sites with corresponding figure numbers.

Sitel Site2 Backscatter | Interchannel | Texture Elevation
coefficients | ratios measures | data
samples samples . . . .
figure nr figure nr figure nr | figure nr
CW-training CD-training 7.9 7.10 7.11 7.12
CW-training DW-training | 7.13 7.14 7.15 7.16

7.3.1.1 Cameroon wet vs dry season samples

Figures 7.9, 7.10, 7.11 and 7.12 show the same four graphs of the CW-training samples
compared to the CD-training samples. This comparison was undertaken to assess whether a
model developed on the wet season data can be applied directly to the dry season data. The
classes between the wet and dry seasons look quite similar, although a definite distribution
shift is noticed for all the land cover classes. There is a noticeable difference between the CW
water and CD water classes for backscatter coefficient layer X-VV, texture measures L-HH

mean (9x9, 11x11 window size) and X-VV mean (11x11, 13x13, 15x15 window sizes). The other
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classes are relatively similar, with the most noticeable difference being the bare class, as
shown in the C-VV mean (9x9 window size) and X-HH mean (15x15 window size) texture
measures.

Cameroon wet vs dry season samples: backscatter coefficients
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Figure 7.9 Distribution of backscatter coefficients for the Cameroon wet vs dry season samples. Order based on

MDG variable importance of a random forest model of the backscatter coefficients.
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Cameroon wet vs dry season samples: interchannel ratios
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Figure 7.10 Distribution of the top 10 interchannel ratios for the Cameroon wet vs dry season samples. Order based

on MDG variable importance of a random forest model of the interchannel ratios.
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Cameroon wet vs dry season samples: texture measures
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Figure 7.11 Distribution of the top 10 texture measures for the Cameroon wet vs dry season samples. Order based

on MDG variable importance of a random forest model of the texture measures.
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Cameroon wet vs dry season samples: elevation data
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Figure 7.12 Distribution of elevation, slope and aspect data for the Cameroon wet vs dry season samples. Order

based on MDG variable importance of a random forest model of the elevation variables.

7.3.1.2 Cameroon vs DRC wet season samples

Figures 7.13, 7.14, 7.15 and 7.16 show statistical distributions of the backscatter coefficients,
interchannel ratios, top 10 texture measures and elevation data for the Cameroon vs DRC wet
season training samples. Here is a clearer difference between all the classes, though still a
large overlap between the Cameroon and DRC wet season classes. The difference in the
classes between the two sites is most noticeable in the C-VV backscatter coefficient graph in
Figure 7.13, with the water classes clearly different and all the DRC wet classes giving higher

o values than the Cameroon wet samples.
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Cameroon vs DRC wet season samples: backscatter coefficients
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Figure 7.13 Distribution of backscatter coefficients for the Cameroon vs DRC wet season samples. Order based on

MDG variable importance of a random forest model of the backscatter coefficients.
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Cameroon vs DRC wet season samples: interchannel ratios
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Figure 7.14 Distribution of the top 10 interchannel ratios for the Cameroon vs DRC wet season samples. Order based

on MDG variable importance of a random forest model of the interchannel ratios.
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Cameroon vs DRC wet season samples: texture measures
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Figure 7.15 Distribution of the top 10 texture measures for the Cameroon vs DRC wet season samples. Order based

on MDG variable importance of a random forest model of the texture measures.
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Cameroon vs DRC wet season samples: elevation data
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Figure 7.16 Distribution of the elevation, slope and aspect for the Cameroon vs DRC wet season samples. Order based

on MDG variable importance of a random forest model of the elevation data.

7.3.2  Visual comparison of SAR signatures for the semi-arid sites
(Tanzania and Chad)

The visual comparisons of the statistical distributions of the SAR data for the semi-arid sites
are given in this section, similar to the forested sites in Section 7.3.1. More specifically, the
land cover classes of the Tanzania dry training samples are compared to the Tanzania dry test
samples, Tanzania wet training samples and the Chad dry training samples. Table 7.4 shows
the figure numbers of the visual comparisons of the statistical distributions of the land cover
classes for the Tanzania dry season training vs test samples, Tanzania dry vs wet season
samples and Tanzania vs Chad dry season samples. The comparisons of the different land
cover classes were undertaken for the backscatter coefficients, interchannel ratios, texture

measures and elevations data.
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Table 7.4 The site comparisons for the semi-arid sites with corresponding figure numbers.

Site 1 samples | Site 2 samples | Backscatter | Interchannel | Texture Elevation
coefficients | ratios measures | data
figure nr figure nr figure nr figure nr

TD-training TW-training 7.17 7.18 7.19 7.20

TD-training ChD-training 7.21 7.22 7.23 7.24

7.3.2.1 Tanzania dry vs wet season samples

Figures 7.17, 7.18, 7.19 and 7.20 show the comparison of the statistical distributions of the
land cover classes: agriculture, bare, dense trees, sparse vegetation and settlement for the
Tanzania dry season vs wet season samples, for the backscatter coefficients, interchannel
ratios, texture measures and elevation data respectively. In Figure 7.17 it is noted that there
was a substantial difference between the dry and wet season especially for the bare land
cover class, for the L-HV, C-VV and C-VH backscatter coefficient channels, and the agriculture
class, in the L-HV and C-VV backscatter coefficient channels. Figure 7.18 shows that the
interchannel ratios which has a large overlap for all the land cover classes. Figure 7.19 shows
the texture measures have a significant difference between the wet and dry season land cover
classes. The elevation data in Figure 7.20 shows that the distributions between the wet and
dry seasons are exactly the same, since the elevation, slope and aspect remain the same

between the wet and dry seasons.
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Tanzania dry vs wet season samples: backscatter coefficients
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Figure 7.17 Distribution of backscatter coefficients for the Tanzania dry vs wet season samples. Order based on MDG

variable importance of a random forest model of the backscatter coefficients.
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Tanzania dry vs wet season samples: interchannel ratios
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Figure 7.18 Distribution of the interchannel ratios for the Tanzania dry vs wet season samples. Order based on MDG

variable importance of a random forest model of the interchannel ratios.
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Tanzania dry vs wet season samples: texture measures
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Figure 7.19 Distribution of the top 10 texture measures for the Tanzania dry vs wet season samples. Order based on

MDG variable importance of a random forest model of the texture measures.
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Tanzania dry vs wet season samples: elevation data
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Figure 7.20 Distribution of the elevation, slope and aspect for the Tanzania dry vs wet season samples. Order based

on MDG variable importance of a random forest model of the elevation data.

7.3.2.2 Tanzania vs Chad dry season samples

Figures 7.21, 7.22, 7.23 and 7.24 show the comparison of the statistical distributions of the
land cover classes: agriculture, bare, dense trees, sparse vegetation and settlement for the
Tanzania vs Chad dry season samples, for the backscatter coefficients, interchannel ratios,
texture measures and elevation data respectively. There was a substantial difference for all
the land cover classes for the backscatter coefficient channels in Figure 7.21 and the
additionally calculated information layers in Figures 7.22 and 7.23. There was also a
substantial difference in the elevation, slope and aspect data between the Tanzania and Chad

sites as shown in Figure 7.24.
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Tanzania vs Chad dry season samples: backscatter coefficients
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Figure 7.21 Distribution of backscatter coefficients for the Tanzania vs Chad dry season samples. Order based on

MDG variable importance of a random forest model of the backscatter coefficients.
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Tanzania vs Chad dry season samples: interchannel ratios

LHHpHV_lin1,1

density

LVVpVH_lin,2

LHHmMHVdHHpHV_NDI1,4

LVVmVHdVVpVH_NDI,7

classname
LHVdHH_lin1,6 TD_Agriculture
TD_Bare
TD_DenseTrees
TD_Settlement
TD_SparseVeg
ChD_Agriculture
ChD_Bare
ChD_DenseTrees
ChD_Setilement

LVVdVH_lin,8

density

' '
0.25 0.50 0.75 1.00

LHHmMHV _lin1,10

Figure 7.22 Distribution of the top 10 interchannel ratios for the Tanzania vs Chad dry season samples. Order based

on MDG variable importance of a random forest model of the interchannel ratios.
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Tanzania vs Chad dry season samples: texture measures
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Figure 7.23 Distribution of the top 10 texture measures for the Tanzania vs Chad dry season samples. Order based

on MDG variable importance of a random forest model of the texture measures.
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Tanzania vs Chad dry season samples: elevation data
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Figure 7.24 Distribution of the elevation, slope and aspect for the Tanzania vs Chad dry season samples. Order based

on MDG variable importance of a random forest model of the elevation data.

7.3.3 KLD for land cover classes of the forested ecoregion (Cameroon
and DRC)

The KLD measures were compared for the land cover classes of the forested sites. The
comparison was performed between the Cameroon wet season training vs test samples, the
Cameroon wet vs dry season samples and between the Cameroon vs DRC wet season
samples. The types of variables considered are the backscatter coefficients and the top 8
texture measures with corresponding figure numbers given in Table 7.5. The order of the
texture measures is given by the MDG variable importance measures during random forest

model development in Chapter 6.
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Table 7.5 The site comparison using KLD of the forested sites with corresponding figure numbers.

Site comparison using KLD Type of variables | Figure number
Cameroon wet season Backscatter 7.26
training vs test coefficients

Texture measures | 7.27

(top 8)

Cameroon wet vs dry season Backscatter 7.28

coefficients

Texture measures | 7.29

(top 8)
Cameroon wet season vs Backscatter 7.30
DRC wet season coefficients

Texture measures | 7.31

(top 8)

In the KLD plots that follow, the ideal comparison would require similar land cover classes
between the two sites in question (e.g. the statistical distribution of the dense trees of the
Cameroon wet season samples would be similar to the statistical distribution of the dense
trees class of the DRC wet season samples, implying a small KLD). At the same time, to be able
to distinguish the classes successfully, the statistical distribution of the dense trees class would
be different to the other classes, resulting in a larger KLD. This ideal scenario is illustrated in
Figure 7.25. A KLD of more than 1.0 would mean that the statistical distributions are
completely separate. To show that two distributions are similar, to exactly the same, a value
of less than 0.2 was chosen by observing the KLD of the Cameroon wet training vs test site
backscatter coefficient comparison in Figure 7.26. However, this ideal scenario was not found
within the data used in this study, and if it was, advanced machine learning algorithms such
as random forests and SVMs would not be required to achieve accurate land cover

classifications.
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Figure 7.25 The ideal scenario of KLD between two sites that would allow models to be completely transferable
between site 1 and site 2. The classes are similar between the two sites, whereas the differences between classes

are completely separable.

7.3.3.1 KLD for Cameroon wet training vs test samples

Figure 7.26 shows then KLD measures of the backscatter coefficients for the five land cover
classes (bare, dense trees, settlement, spase vegetation and water) for the Cameroon wet
training vs test samples. Figure 7.27 shows the KLD measures of the textures measures, for
the Cameroon wet training vs test samples. The KLD measures of the training vs test samples
are done as a baseline measurement. First the backscatter coefficients, and then the top 8
texture measures, which were the variables that were highlighted as beting the most
predicitive in the random forest model. Both the backscatter coefficients (Figure 7.26) and
the texture measures (Figure 7.27) of the Cameroon wet training vs test samples were
relatively close to the ideal scenario of Figure 7.25. The diagonal elements are small values in
most cases, apart from densetrees class for the Cameroon training vs test sample texture
measures in (Figure 7.27). Some of the off-diagonal elements, which need to be larger values

for a good class separation, were small, which indicates therefore that the classes are not
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completely separable, e.g. settlements vs sparse vegetation for both the backscatter

coeffienct (Figure 7.26) and texture measure scenarios (Figure 7.27).
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Figure 7.26 The KLD of the backscatter coefficients for the land cover classes of the Cameroon wet training vs test

samples.
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Figure 7.27 The KLD of the top 8 texture measures for the land cover classes of the Cameroon wet training vs test
samples. The order of the top 8 variables is based on the MDG variable importance measure from the random forest

model.
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7.3.3.2 KLD for Cameroon wet vs dry season samples

Figure 7.28 shows the KLD measures of the backscatter coefficients for the five land cover
classes (bare, dense trees, settlement, sparse vegetation and water) for the Cameroon wet vs
dry season samples. Figure 7.29 shows the KLD measures of the top 8 texture measures for
the Cameroon wet vs dry land cover samples. In both the backscatter coefficient (Figure 7.28)
and texture measure (Figure 7.29) KLD measures plots, there is more of a deviation from the
ideal scenario of Figure 7.25, compared to the training vs test samples KLD plots in Figures
7.26 and 7.27. In these plots, the diagonal values (see Figure 7.25) shows the overlap of the
statistical distributions each land cover class between the wet and dry season data. The off-
diagional values shows the difference between the land cover classes. It is noted that there is
a larger difference between the wet and dry season data, especially for the bare and water
classes. For some of the KLD measure, some of the calculations returned NULL values. This is
epspecially noted for the X-HH Variance (15 window size) texture measure and in the L-HH
Entropy (11 window size). Investigating the data distributions in Figure 7.7, it is noted that the
distributions were less clear than the other texture measures, which is an indication of why

the NULL values were returned.
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Figure 7.28 The KLD of the backscatter coefficients for the land cover classes of the Cameroon wet vs dry season

samples.
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Figure 7.29 The KLD of the top 8 texture measures for the land cover classes of the Cameroon wet vs dry season

samples. The order of the top 8 variables is based on the MDG variable importance measure from the random forest

model.

7.3.3.3 KLD for Cameroon vs DRC wet season samples

Figure 7.30 shows the KLD measures for backscatter coefficients of the five land cover classes
(bare, dense trees, settlement, sparse vegetation and water) of the Cameroon vs DRC wet
season samples. Figure 7.31 shows the KLD measures for the texture measures of the land
cover classes of the Cameroon vs DRC wet season samples. There is more of a variation here,
with most of the backscatter coefficient and texture measure KLD measures diverging from
the ideal scenario in Figure 7.25. For the X-HH Correlation (15 and 13 window sizes) and the
X-HH Entropy (15 window size), several NULL values were calculated. The distribution plots in
Figure 7.11 shows the statistical distributions of the land cover classes, and gives an indication

as to why NULL values were returned for the KLD measures.
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Figure 7.31 The KLD of the top 8 texture measures for the land cover classes of the Cameroon vs DRC wet season

forest model.
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7.3.4 KLD for land cover classes of the semi-arid ecoregion (Tanzania

and Chad)

In this section the KLD measures are compared for the land cover classes of the semi-arid
sites. The comparison is between the Tanzania dry season training vs test samples, the
Tanzania dry vs wet season samples and between the Tanzania vs Chad dry season samples.
Similar to the forested sites, the types of variables considered are the backscatter coefficients
and the top 8 texture measures with corresponding figure numbers given in Table 7.6. The

order of the texture measures in this table is given by the MDG variable importance measures

during random forest model development in Chapter 6.

Table 7.6 The site comparison using KLD for the semi-arid sites with corresponding figure numbers.

Site comparison using KLD

Type of variables

Figure number

(top 8)

Tanzania dry season Backscatter 7.32
training vs test coefficients
Texture measures | 7.33
(top 8)
Tanzania dry vs wet season Backscatter 7.34
coefficients
Texture measures | 7.35
(top 8)
Tanzania dry season vs Backscatter 7.36
Chad dry season coefficients
Texture measures | 7.37
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7.3.4.1 KLD for Tanzania dry season training vs test samples

Figure 7.32 shows the KLD measures of the backscatter coefficients of the five land cover
classes (agriculture, bare, dense trees, settlement and sparse vegetation) for the Tanzania dry
training vs test samples. Figure 7.33 shows the KLD measures of the texture measures for the
Tanzania dry training vs test samples. Although the diagonal elements show a large overall
between training and test data, the off-diaogonal elevemtns also show low KLD values,
indicating a small difference between the statistical distributions of the various land cover
classes. The KLD measures of the training vs test samples are shown as a baseline
measurement, to compare the inter-season (Figures 7.34 and 7.35) and inter-site (Figures

7.36 and 7.37) comparisons to.
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Figure 7.32 The KLD of the backscatter coefficients for the land cover classes of the Tanzania dry season training vs

test samples.
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Figure 7.33 The KLD of the top 8 texture measures for the land cover classes of the Tanzania dry season training vs

test samples. The order of the top 8 variables is based on the MDG variable importance measure from the random

forest model.

7.3.4.2 KLD for Tanzania dry vs wet season samples

Figure 7.34 shows the KLD measures of the backscatter coefficients of the five land cover
classes (agriculture, bare, dense trees, settlement and sparse vegetation) for the Tanzania dry
vs wet season samples. Figure 7.35 shows the KLD measures of the texture measures of the
five land cover classes for the Tanzania dry vs wet season samples. The diagonal elements in
Figures 7.34 and 7.35 shows that there is a devation between the statistical distributions of
the land cover classes of the dry and wet season data. The small values of the off-diagonal
elements, indicate a large overlap between the different land cover classes, which will

diminish the ability to classify the land cover classes correctly.
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Figure 7.35 The KLD of the top 8 texture measures for the land cover classes of the Tanzania dry vs wet season

forest model.
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7.3.4.3 KLD for Tanzania vs Chad dry season samples

Figure 7.36 shows the KLD of the backscatter coefficients of the five land cover clases
(agriculture, bare, dense trees, settlement and sparse vegetation) of the Tanzania vs Chad dry
season samples. Figure 7.37 shows the KLD measures of the texture measures of the land
cover classes for the Tanzania vs Chad dry season samples. The larger values of the diagonal
elements indicate a deviation of the statistical distributions of the land cover classes between
the Tanzania and Chad dry season data. Most of the land cover classes seem to be quite
different between the two sites, with the bare class and settlement classes being the most
similar. The KLD measures of the L-HH Entropy (11 window size) texture measures produced
NULL values, and the distribution of the values in Figure 7.23 shows why it could be difficult

to give an indication of the separation between the different statistical distributions.
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Figure 7.36 The KLD of the backscatter coefficients for the land cover classes of the Tanzania vs Chad dry season

samples.

232



Tanzania Dry vs Chad Dry, Kullback-Leibler
LVH11Entr LHV11mean1 LHH11Entr1 LVH11Var

ChD_SparseVeg - o o O O . ) s O
p 9 99 0.44 9 022 053 pg 072 07 018 ggg O 0.18 188 09 127 008 peg
ChD_Settlement- O O - O o 0O @ O O 0 o O
- 138 088 % 004 150 1F 121 02 079 137 069 O 115 095 024
chb_DenseTrees-O O 2, 3 O OO 0 OO Bo OOo0O
oo 184 028 096 53 273 167 071 147 193 253 06 55 56 118 27 8
ChD_Bare = 43, o® @] O e e « O e o .
c - 0.01 0.06 0.68 % 0.76 0.16 9 0.16 0.14 0.08 1.05 0.16 0.1 159 018
‘m ChD_Agriculture= O ® e O (] ® o O e s O X
© -Ad 051 0.7 S22 009 gd9 3 032 T3 017 0. Q 023 028 0.14 g 0% o3 KLD<0.2
= o
o LVV11mean LHV9meant LVHOENtr LHV11Entrt FALSE
® TRUE
& ChD_S -
arseVe e o O O e O O o (@) e O (@] e O
© =P 97 0% 008 032 038 011 1(5)9 078 066 024 038 13 045 ;g3 017 051 137 053 9 019 063
ChD_Settlement = O o = O O o 0O OO =+0 O0Q e O
131 085 052 008 g9 155 122 022 077 135 145 067 144 O%® 1m 122 078 176 %9 144
ChD_DenseTrees - O O =« O O O o OO OO oo O
161 1.08 091 01 437 557 172 079 151 195 208 186 022 142 35 196 1ee 039 117 %
ChD_Bare - . O e e o o () - (o
5 a2 Q 037 081 o078 0.15 1(;2 043 048 012 008 081 g5 008 005 088 1o
ChD_Agriculture - o - 0 O o ® O e @ e O O = 6 « O
-9 07 041 002 033 025 {7 029 Q 019 007 57 015 3= 047 0a4 035 0.12 7 006 5
I 1 1 1 1 1 1 I 1 1 1 1 ) 1 1 1 1 1 1 1
g © g E QP @ Q9 E D OO QE D OO 9 E D
3 [} [<}] = [} 4] 3 [} ) 3 [+ [4}]
=2 @n & g = =2 mn L £ = =2 g 2 g = =2 @;m £ g =
3 | = & ] =] = & ] =] | = & ] 3 | = & @
e n o 2 2 8 n o =2 2 o n o 2 2 8 n o £ 2
= w B @ ey w = © = n = © = n E
2" 5883 2T 538 2T 5883 27 53 &
o) = - o 2 A - o ) 2 [ 2 4 2
o [a) [a &
[= o F = o F [= o= = o F
(= = [ = = = g =
TD_Train

Figure 7.37 The KLD of the top 8 texture measures for the land cover classes of the Tanzania vs Chad dry season

samples. The order of the top 8 variables is based on the MDG variable importance measure from the random forest

model.

7.3.5 KLD class difference vs random forest -classification user’s

accuracy

To assess whether the KLD measures can be used to indicate the expected classification

accuracy, the KLD class difference is calculated as follows:

First, the averages of the KLD matrices in the graphs in Sections 7.3.3 and 7.3.4 are calculated
for each of the site comparison scenarios leaving, one matrix of KLD averages. In the site-
comparisons in Sections 7.3.3 and 7.3.4, the number of matrices varied between 3 and 8. The

average of the matrices X; with i = 1to N and N the number of matrices present, are

calculated as in Equation 7-2:

NoX; Equation 7-2

i=
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For this calculated matrix, the difference between the diagonal elements and the average of
the off-diagonal elements is calculated for each row, resulting in the KLD class differences.

The matrix of average KLD measures are represented in Figure 7.38.

Secondly, for each row element, the average of the off-diagonal elements is calculated. The
diagonal element are then subtracted from the average off-diagonal elements, for each row,

resulting in the KLD class difference for each land cover class.

The results are represented in a confusion matrix between the actual values and the predicted

values, as in Table 7.7 (Fielding and Bell, 1997).

Site 2

Average KLD for Land cover 1
Average KLD for Land cover 2
Average KLD for Land cover 3
Average KLD for Land cover 4
{ Average KLD for Land cover 5

Site 1 __.-Off-diagonal elements 1

Average KLD for Land cover 1
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.Off-diagonal elements 2

Average KLD for Land cover 2

Average KLD for Land cover 3

Average KLD for Land cover 4

-l Diagonal elements 1-5
Average KLD for Land cover 5

Figure 7.38 An outline of the diagonal and off-diagonal elements of the matrix of the KLD averages.
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Table 7.7 A confusion matrix between reference values and predicted values.

Reference values

+ -
K
C w | + a b
T 9
e & | - c d
a >

where
(a) is the number of times the predicted classification matched the actual reference class.
(b) is the number of ti