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Abstract 

 

The potential of using multi-frequency Synthetic Aperture Radar (SAR) for land cover 
classification is becoming a reality, with multiple SAR satellites utilising different 
frequencies currently in orbit and more missions planned for the future. This study looks 
at combining SAR frequencies from L-band (ALOS PALSAR), C-band (ENVISAT ASAR) and 
X-band (TerraSAR-X) to find the optimum combination of the SAR data for land cover 
classification of forested and semi-arid ecoregions in Africa. The study site for forested 
areas is in Cameroon and the semi-arid study site is in Tanzania. Data from both the wet 
and dry seasons are available. Random forest models, with different combinations of 
input variables, are compared. Models with the top 30 variables are chosen from the 
mean decrease accuracy and mean decrease Gini variable importance measures, and 
compared with the classification accuracies using support vector machines. Some of the 
findings are that L-band is the best single frequency for land cover classifications for 
both ecoregions, with X-band the best single frequency if only forested regions are 
considered. Texture measures lead to an increase of between 15-25% overall 
classification accuracy compared to using only backscatter coefficients. The 
recommended dual-frequency combination are LX-bands, although L-band data give 
overall classification accuracies very close to LX-bands. The use of images from LCX data 
only marginally improves the classification accuracy from LX-images and L-band images. 
The benefit from acquisition of all three frequencies would therefore rarely outweigh 
the cost of acquiring and processing data from all three frequencies. The transferability 
of the random forest models to an additional geographic site did not produce 
satisfactory results, however the transferability of the random forest models to 
additional season data did give satisfactory results. The Kullback-Leibler divergence class 
difference measure showed potential to give an indication of transferability of the 
models, although refinement remains necessary. 
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Chapter One Introduction 

 

This chapter presents an overview of the thesis and sets an outline of the structure and 

flow of the document. A brief history of Synthetic Aperture Radar (SAR) satellites is 

presented to introduce the context of multi-frequency SAR, classification algorithms, 

land cover classification of Africa and the relevance of this thesis to the Copernicus 

programme. 

 

1.1 Overview 

The knowledge of land cover and land cover change is important for a wide variety of 

applications and is being used by government departments, non-governmental 

organisations and private institutions to make decisions regarding planning for land 

resource management, conservation, biodiversity management and climate change, to 

name a few. Land cover is on the list of essential climate variables (ECV) that need to be 

monitored to assess the state of climate change as defined by the Global Climate 

Observing System (GCOS) in support of the United Nations Framework Convention on 

Climate Change (UNFCCC) and the International Panel on Climate Change (IPCC) (GCOS, 

2010). Biomass and burnt area are two more ECVs related to land cover. Biomass in 

forests is a great store of carbon, and therefore monitoring of any deforestation can be 

used to account for carbon released into the atmosphere (Le Toan et al., 2011). Other 

uses of land cover and land cover change are: landscape ecology and the impacts of land 

cover change on biodiversity and ecosystems (Newton et al., 2009; Duro et al., 2007), 

conservation monitoring (Nagendra et al., 2013), mangrove forests monitoring 

(Heumann, 2011), desertification and water erosion (Albalawi and Kumar, 2013; 

Vrieling, 2006), agriculture and horticulture-intensive farming (Cotlier et al., 2011), 

wetlands monitoring (White et al., 2015; Evans and Costa, 2013) and emergency 

management (Joyce et al., 2009; Voigt, 2011). This is just an extract of the wide 

application area of land cover maps and land cover change maps used by scientists, 
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organisations and governments to make informed decisions ranging from the local 

environment to the global climate. 

 

A big challenge for remote sensing remains to be cloud cover in many regions of the 

world. This is one of the main benefits of Synthetic Aperture Radar (SAR) as opposed to 

from optical remote sensing satellites: the ability to acquire data in any weather 

condition, and during the day and night. This is especially the case for regions with 

regular cloud cover (Kuntz, 2010), and during and after stormy weather associated with 

certain emergency response situations (Voigt et al., 2007). In addition to using single 

frequency SAR data for land cover classification, multi-frequency SAR have been 

investigated in a handful of studies (Li et al., 2012; Turkar et al., 2012). Turkar et al. 

(2012) showed very high classification accuracies of land cover classes in an area of 

Mumbai, India, using fully polarimetric, multi-frequency SAR. Peng et al. (2005) has 

shown that the addition of texture measures and elevation data can improve the land 

cover classification accuracies significantly. The use of ensemble classifiers, including 

random forests is shown to be by Waske and Braun (2009), to be successful to classify 

multi-temporal SAR images.  

 

SAR satellites have been in orbit since the late 1970s. SEASAT, an L-band horizontally 

transmitted and horizontally received (HH) polarization SAR sensor, was the first civilian 

SAR mission from the United States, and operated for three months during 1978. Since 

then several missions followed during the 1980s with the SIR-A and SIR-B (both L-band, 

HH-polarization) Space Shuttle missions in 1981 and 1984 acquiring data in orbit for 2.5 

days and 8 days respectively. At the time Russia was also an active contender and 

operated Kosmos 1870 (S-band, HH polarization) in 1987 and Almaz (S-band, HH-

polarization) in 1991. Since 1991 more international participants joined in with the 

launch of several SAR satellites. In 1991 the European Remote Sensing satellite, ERS-1, 

a C-band vertically transmitted and vertically received (VV) polarization SAR sensor was 

launched, with the Japanese Earth Resources Satellite, J-ERS-1 (L-band, HH polarization) 

in 1992 (Lewis et al., 1998).  
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During April and October 1994 a ground-breaking mission, SIR-C / X-SAR was undertaken 

to obtain simultaneous measurements from L, C (quad-polarization, i.e. HH, HV, VH, VV) 

and X-band SAR (VV polarization) from the Space Shuttle. SIR-C / X-SAR was a 

collaboration between National Aeronautics and Space Administration (NASA)’s Jet 

Propulsion Laboratory (JPL) of the United States, the German Aerospace Center (DLR, 

Deutsches Zentrum für Luft- und Raumfahrt) and the Italian Space Agency (ASI, Agenzia 

Spaziale Italiana). JPL managed the L- and X-band SAR and the DLR and ASI managed the 

X-band SAR (Lewis et al., 1998). This was the first time that L-, C- and X-band images 

were obtained simultaneously from space and the potential of a multi-frequency SAR 

system was realised. The potential to use multi-frequency SAR for land cover 

classification was recognised and several studies were undertaken by the researchers 

involved. Some very high classification accuracies (90%+) were found for their Michigan 

test site (Pierce et al., 1995), using a knowledge-based hierarchical classifier. Classes 

used were flat areas, short vegetation and tall vegetation, with tall vegetation split into 

upland conifers, lowland conifers and deciduous trees. Other studies found more 

varying classification accuracy results, varying from 17% for rapeseed, 51% for built-up 

areas, 84% for winter cereals and open soil combined, 72% for meadows and 93% for 

forests (Stolz and Mauser, 1995). Classification accuracies using both the April and 

October data from SIR-C / X-SAR were found to give very high accuracies (90%+, with 

higher class-specific accuracies) using multi-temporal land cover classification (Pierce et 

al., 1998). 

 

Since the SIR-C / X-SAR mission, several SAR missions have been put in orbit during the 

1990s. Both ERS-2 (C-band, VV polarization) from the European Space Agency (ESA) and 

RADARSAT-1 (C-band, HH polarization) from Canada were launched in 1995 (Lewis et al., 

1998) and ESA’s Environmental Satellite, ENVISAT (C-band, VV+HH polarization) in 2002. 

ENVISAT was a remarkable satellite and the largest and most likely the most complex 

satellite built in Europe to date (Louet and Bruzzi, 1999). ENVISAT was a scientific 

mission, weighed 8000kg and had 10 instruments on board, including the Advanced 

Synthetic Aperture Radar (ASAR) instrument (Desnos et al., 2000). ENVISAT acquired 

data for over ten years, which was in excess of its design lifetime of 5 years, until 
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communication to the satellite was lost on 8 April 2012 (ESA, 2012a). Similar to ENVISAT, 

RADARSAT-1 outlived its design lifetime by many years. Its design lifetime was also 5 

years, but the mission continued for 17 years. The RADARSAT-1 mission was ended in 

May 2013, when a technical anomaly was detected (Mahmood, 2015). In 2007 

RADARSAT-2 (C-band, quad-polarization) was launched and is still active at the time of 

writing in mid-2015. RADARSAT-2 is an operational commercial satellite run by the 

private sector, with a large focus on sea-ice monitoring (Morena et al., 2004; Flett et al., 

2008).   

 

In addition to the satellites mentioned in the previous paragraph, which are all C-band 

satellites (ERS-2, ENVISAT, RADARSAT-1, RADARSAT-2), X-band and L-band SAR satellites 

were also launched during the mid-2000s. In 2006, the Japanese Aerospace Exploration 

Agency (JAXA) launched the Advanced Land Observing Satellite (ALOS), with three 

sensors, including the Phased Array type L-band Synthetic Aperture Radar (PALSAR) (L-

band, with quad-polarisation capability) (JAXA, 2006). The ALOS mission was ended by 

JAXA on 12 May 2011, when it developed a power generation anomaly after five years 

of operation. TerraSAR-X (X-band, HH, VV, HV, VH) was launched in June 2007 by the 

DLR in a public-private partnership with Airbus Defence and Space, which at the time 

was European Aeronautic Defence and Space Company (EADS) Astrium (Werninghaus 

and Buckreuss, 2010). At the same time, between June 2007 and 2010 ASI launched the 

COnstellation of small Satellites for Mediterranean basin Observatory (COSMO-Skymed) 

which is a constellation of four X-band SAR satellites. 

 

This means that for the window period between June 2007 and May 2011, SAR satellites 

were acquiring images from L-band, C-band and X-band SAR sensors. This was for the 

first time since the SIR-C / X-SAR mission in 1994 that all three SAR frequencies were 

acquired at the same time from space. However, each SAR satellite had its own mission 

objectives and the acquisitions were not coordinated as a multi-frequency mission. It 

did create a scenario where high resolution images were acquired from all three 

frequencies for the same geographic area and relatively close in time (within the same 

season) for several places around the world. 
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In 1998 the European Space Agency (ESA), the European Commission (EC), the European 

Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) and the main 

European national space agencies met to establish a European-wide Earth Observation 

programme which came to be known as Global Monitoring for Environment and Security 

(GMES) (Aschbacher and Milagro-Pérez, 2012). In 2007 the Resolution on the European 

Space Policy (EU 4th Space Council, 2007) was adopted in the Lisbon Treaty (EU Lisbon 

Treaty, 2007) and GMES and Galileo were acknowledged as the two flagship 

programmes of the newly adopted policy (EC COM, 2007). Galileo is the European 

contribution to the Global Navigation Satellite System (GNSS), similar to the Global 

Positioning System (GPS) owned by the United States and GLObal NAvigation Satellite 

System (GLONASS), owned by Russia (Flament, 2004). 

 

Funding for GMES Initial Operations (GIO) was provided by the 6th and 7th Framework 

Programmes of the European Union (EU). This included funding to build the first series 

of satellites which will provide satellite imagery for operational use, known as the 

Sentinel satellites. The period from 2011-2013 was the GIO phase and in May 2013 

GMES was renamed Copernicus (European Commission, 2013). The Copernicus 

programme will provide six services, namely the Land Monitoring service, Marine 

service, Atmosphere service, Emergency Management service, Security Support service 

and Climate Change service. Of these services the Land Monitoring service 

(http://land.copernicus.eu) and Emergency Management service 

(http://emergency.copernicus.eu) are in operational phase and with funding secured for 

2014-2020. All six services should become operational within the next few years 

(European Commission, 2013). 

 

The first of the Sentinel satellites, Sentinel 1A, is a C-band dual-polarisation (HH+HV, 

VV+VH) SAR satellite and was successfully launched on 3 April 2014. Sentinel 1 will be 

used for both the Land Monitoring and the Emergency Management Copernicus services 

(Torres et al., 2012). In current land cover and emergency management applications, 

most SAR applications focus on using single frequency applications, but the possibility 

of using information from more than one SAR sensor, and therefore more than one 

http://land.copernicus.eu/
http://emergency.copernicus.eu/
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frequency has not been fully investigated. There are currently many SAR missions 

planned for the next 5-10 years for different SAR frequencies. As mentioned, Sentinel 1 

(C-band) was launched on 4 April 2014 with data available from 3rd October 2014 (ESA, 

2014). The Japanese Advanced Land Observing Satellite-2 (ALOS-2) (L-band) was 

launched on 24 May 2014 (JAXA, 2014b), with data available from 25 November 2014 

(JAXA, 2014a). Other SAR satellites that are being developed are TerraSAR-X2 (X-band) 

(Janoth et al., 2012), NovaSAR-S (S-band) (SSTL, 2011) and BIOMASS (P-band) (Le Toan 

et al., 2011), to name a few, and the trend seems set to continue in the foreseeable 

future. This means that from 25 November 2014, multi-frequency SAR is again available 

by combining images from several SAR satellites, and the opportunity to utilise multi-

frequency SAR from L-, C- and X-band frequencies is reinstated.  

 

The African continent is a relevant geographic context for the emergency response 

management services, such as the Copernicus Emergency Management service. To 

investigate the use of multi-frequency SAR data for land cover classification for the 

forested and semi-arid ecoregions, the data archive of TerraSAR-X of the African 

continent was first queried. Secondly, archive data from the Environmental Satellite 

(ENVISAT) Advanced Synthetic Aperture Radar (ASAR) and ALOS Phased Array L-band 

Synthetic Aperture Radar (PALSAR) were overlayed over the available TerraSAR-X 

images. The number of images from the archives of TerraSAR-X, ENVISAT ASAR and ALOS 

PALSAR for the year 2010 are shown in Figure 1.1. Starting with the TerraSAR-X images, 

areas where the images overlap geographically and close in time were selected, based 

on data availability in the respective archives. As a result, study sites representing 

forested ecoregions were identified in Cameroon and the Democratic Republic of the 

Congo (DRC), and study sites representing semi-arid ecoregions were identified in 

Tanzania and Chad (see Section 3.1 and 3.2 for a detailed description of the study sites). 

For both the semi-arid and forested sites, data are available for the wet and dry seasons, 

which were identified using rainfall data obtained from the Famine Early Warning 

Systems Network (www.fews.net). 

http://www.fews.net/
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Figure 1.1 Availablity of SAR data from ALOS PALSAR, ENVISAT ASAR and TerraSAR-X for the full year of 2010 over the African continent. 
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1.2 Hypotheses for the thesis 

The overall objective of this study is to enhance current available land cover 

classification techniques to classify landscapes and quantify change, regardless of what 

data is used. Within this context of available multi-frequency SAR data, to address this 

overall objective, the following hypotheses are tested in this thesis: 

 

     1a.   Multi-frequency SAR images provide a higher classification accuracy than single  

             frequency SAR for land cover classification. 

 

     1b.  Random forest classification algorithm gives higher classification accuracies 

             than the support vector machine algorithm. 

 

To test these hypotheses, combinations of single, dual and three frequencies are 

compared for:  

a. The forested ecoregion wet and dry season images. 

b. The semi-arid ecoregion wet and dry season images. 

 

Features that are calculated in addition to the SAR backscatter coefficient images 

are:  

 Interchannel ratios 

 Texture measures 

 Elevation data  

 

Classification accuracy results of support vector machine (SVM) models are 

compared to the random forest models, using the variables selected by the 

random forest model. 

 

2. The SAR models are tranferable between different seasons of the same site, and 

to different sites of similar ecoregions. 
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To test this hypothesis, the classification accuracies are compared for the: 

a. Forested ecoregion: 

 Site1 wet vs dry season images. 

 Site1 wet vs site2 wet season images. 

b. Semi-arid ecoregion: 

 Site1 dry vs wet season images. 

 Site1 dry vs site2 dry season images. 

 

3. The land cover classes are similar between different seasons, and similar 

between different sites of the same ecoregion. 

 

To test this hypothesis, the SAR signatures of land cover classes are compared, 

both visually and with a statistical separability measure, for the: 

a. Forested ecoregion: 

 Site1 wet vs dry season images. 

 Site1 wet vs site2 wet season images. 

b. Semi-arid ecoregion: 

 Site1 dry vs wet season images. 

 Site1 dry vs site2 dry season images. 

 

By testing these hypotheses, the use of multi-frequency SAR are tested as a viable 

classification strategy to classify images in regions that would otherwise be affected by 

cloud cover. Testing hypothesis 1a, a comparison will be done for single (L-, C-, X-band), 

double (LC, LX, CX-bands) and all three frequencies (LCX-bands). This will create a set of 

recommendations as to which frequency or frequency combinations are most suitable 

for forested and semi-arid ecoregions, as well for the wet and dry seasons for both 

ecoregions. Testing hypothesis 1b will result in a comparison between random forest 

modelling and SVM modelling, for the multi-frequency SAR data of the forested and 

semi-arid ecoregions. 
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By addressing hypothesis 2, a guideline will be esatablished as to whether these models 

can be transferred between seasons and to additional sites. This is crucial for 

applications such as emergency response management monitoring, where the 

transferability of models can improve the response time and enable the application of a 

model developed for a certain region and season to another region or season. 

 

By testing hypothesis 3, a  fundamental question will be answered with the regards to 

the SAR signature and how different the SAR signal are between the wet and dry 

seaseons, and between the main and additional sites for both the forested and semi-

arid ecoregions. 

 

1.3 Thesis outline 

For clarity of the overall flow between the different chapters and the three hypotheses, 

this research project is shown as a schematic diagram (Figure 1.2). This is similar to a 

Cross Industry Standard Process for Data Mining (CRISP-DM) project (Sharma et al., 

2012; Piatetsky-Shapiro, 2007). First the context is set and the literature review given in 

Chapter Two. Chapter Three explains the the data availability and the chosen study sites. 

Chapter Four lists the data preparation steps, land cover class identification and sample 

selection for each of the study sites. The data preparation includes the additional data 

feature calculations of interchannel ratios, texture measures and elevation data.  

 

Chapter Five addresses the first hypothesis of comparing multi-frequency SAR vs single 

frequency SAR for land cover classification. In the same chapter the random forest 

algorighm is compared to the SVM algorithm. The challenge quickly becomes a multi-

dimensional problem, which is well handled by machine learning algorithms in the field 

of data mining. The machine learning algorithms compared in this research were 

random forests (Breiman, 2001) and SVMs (Cortes and Vapnik, 1995). The random forest 

algorithm, as implemented in the randomForest package in R (Liaw and Wiener, 2002), 

gives measures of variable importance as part of its output. This allows the researcher 

to select a smaller set of variables with possibly only a marginal decrease in classification 
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accuracy. The approach in this research is to first develop a model, using all the input 

variables for several scenarios. The scenarios include single frequencies (L vs C vs X), 

compared with two frequencies (LC, LX and CX) and then with using all the data available 

(LCX). Using the variable importance measures from the random forest model, a smaller 

set of variables is chosen to have a more agile model. This smaller set of variables, 

containing the variables that carry the largest weight in the random forest model, is then 

used to train an SVM model. The classification accuracy results are then compared 

between the random forest and SVM models. In this comparison the classification 

algorithm that gives the highest classification accuracy result is then selected for each 

of the semi-arid (wet vs dry) and forested (wet vs dry) scenarios. 
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Figure 1.2 Schematic overview of this research in terms of the Cross Industry Standard Process for Data Mining. 
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Chapter Six addresses the second hypothesis to test the transferability of the models to 

a different season, for the same study site, and to a different sit location. This is done 

for both the forested and semi-arid ecoregions. The second hypothesis looks into the 

transferability of the random forest model for each of the semi-arid (wet vs dry) and 

forested (wet vs dry) landscape scenarios. This is a crucial part of the research project, 

since many studies often only focus on one study site, resulting in the classification 

model being study site specific, and possibly overtrained. The intention is to assess 

whether the classification models generalize well enough to be used on another set of 

input images from semi-arid or forested areas within Africa. 

 

Chapter Seven addresses the third hypothesis, to test how different the SAR response is 

for the wet and dry seasons, and for different sites for both the forested and semi-arid 

ecoregions. The statistical distributions of each of the SAR backscatter coefficient 

channels and derived information layers (interchannel ratios, texture measures and 

elevation data) for each land cover class are visually compared. This is done for the 

training vs test data, inter-season and inter-site comparison for both the forested and 

semi-arid study sites. Apart from the visual comparison of the statistical distributions of 

the land cover classes, the Kullback-Leibler divergence (KLD) separability index measure 

are also compared for the backscatter coefficients and most prominent texture 

measures. From the KLD measures a KLD class difference measure is derived, and the 

relation between this newly derived KLD class difference measure and the user’s 

accuracy from a random forest model using the same input variables are assessed. This 

will therefore address the hypothesis of how separable the SAR signatures of different 

land cover types are for the different landscape scenarios. 

 

Finally Chapter Eight gives an overall discussion and conclusion, identification of further 

work and a future view. With the identification of which frequencies and derived feature 

layers separate each land cover class from the other land cover classes most effectively, 

and with a set of classification algorithms for each landscape scenario, 

recommendations are made for a possible monitoring mission of a constellation of 

multi-frequency SAR satellites aimed at land cover monitoring and emergency response 
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situations across Africa and other regions around the world with similar semi-arid and 

forested landscapes.  

 

A selection of the computer code used for this research are shown in the Appendices. 

The scripts to orthorectify the SAR images are given in Appendix One (GAMMA 

orthorectification scripts). The scripts to calculate the additional information layers of 

interchannel ratios, texture measures and elevation data; and creating an overlay and 

layer stack of the images are given in Appendix Two (GDAL scripts to create image 

overlay). The scripts to do the R modelling and plotting graphs are given in Appendix 

Three (R modelling and Graphing scripts). 
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Chapter Two Literature review on multi-frequency SAR land 

cover classification 

 

In Europe, the main land cover mapping initiative is the Coordination of Information on 

the Environment (CORINE) Land Cover project that was initiated in 1985 and is 

periodically produced by the European Environment Information and Observation 

Network (EIONET) National Reference Centres (NRCs) for Land Cover and coordinated 

by the European Environment Agency (EEA). The CORINE Land Cover (CLC) maps 

produced so far are CLC1990, CLC2000 and CLC2006, with CLC2012 in the process of 

being completed. As part of the CLC maps, Land Cover Change (LCC) maps are also 

produced, resulting in LCC1990-2000, LCC2000-2006 and LCC2006-2012 (EEA, 2007, 

2015). The CLC as well as other similar mapping initiatives around the world, uses images 

from multi-spectral optical sensors such as Landsat, SPOT, RapidEye or similar sensors 

with spatial resolution varying from 5-30m. For the CLC project the minimum mapping 

unit is 25ha and minimum width of 100m. All changes greater than 5ha are mapped on 

the LCC maps (EEA, 2015).  

 

The strengths of the CLC approach to creating land cover maps are that it is well 

coordinated and produced by the EEA, and that there are regional experts partaking in 

the validation of the land cover maps from each country involved. However, this 

resolution of land cover mapping is not readily available, for a large portion of the world. 

There are a collection of global land cover products available, but they are at a much 

coarser resolution. The Global Land Cover database for the year 2000 (GLC2000) used 

SPOT VEGETATION data at 1km spatial resolution (Bartholomé and Belward, 2005), 

GLOBCOVER using Medium Resolution Imaging Spectrometer (MERIS) data from 

ENVISAT at 300m (Arino et al., 2008) and the Modis global land cover product at 500m 

spatial resolution (Friedl et al., 2010). 

 

One shortcoming of this approach is that it requires a huge amount of time and effort 

to produce and validate these land cover maps. CLC maps are currently produced every 
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6 years, even though the map production time has been reduced from 10 years to 2 

years (EEA, 2015). Another shortcoming of using optical images for land cover 

classification is that it is difficult to obtain multiple clear and cloud-free optical images 

throughout the year for some regions of the world. This is particularly so in the tropical 

regions (Asner, 2001; Wylie et al., 2005), but also for some higher latitude regions (Ju 

and Roy, 2008; Armitage et al., 2013). One of the main advantages of SAR, over optical 

images, is that the SAR images can be acquired in any weather condition, and is 

therefore largely unaffected by cloud cover (Kuntz, 2010).  

 

Two areas of research are therefore identified to improve the land cover classification 

process: the development of a more automated process to not be reliant on this 

intensive manual process, and the use of SAR images to eliminate the dependence on 

utilising only cloud-free images (Kuntz, 2010). Utilising SAR is furthermore of particular 

interest to emergency response situations when images are needed quickly, and where 

the areas affected are often in stormy environments with overcast cloud conditions 

(Voigt et al., 2007; Covella et al., 2010). 

 

Several studies have been done to use SAR for land cover classification. Most of the 

studies look at single-frequency SAR applications (McNairn and Brisco, 2004; Rosenqvist 

and De Grandi, 2009; Longepe et al., 2010; Marti-Cardona et al., 2010; Li et al., 2012). A 

detailed comparison of optimal SAR parameters for various application disciplines are 

given in (Schmullius and Evans, 1997). Schmullius and Evans (1997) found that each 

frequency and polarisation has its strengths for specific applications.  

 

To maintain a sustainable change monitoring approach, a systematic acquisition 

strategy is needed. A systematic acquisition strategy is when images are acquired every 

set number of days for a specific location. This enables the monitoring of changes for 

these locations. Examples of satellite sensors that follow a systematic acquitision 

strategy are Landsat and Sentinel 1. The Landsat is an optical sensor which acquires 

images continuously, resulting in a revisit time of every 16 days. The latest Landsat 

satellite is Landsat 8, and builds on 30-40 years of systematic data acquisition from the 
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Landsat programme. Sentinel 1 is a C-band SAR sensor, and acquires images 

continuously, with a revisit time of every 12 days around the globe. Sentinel 1B will 

compliment Sentinel 1A, allowing a revisit time for the Sentinel 1 constellation of every 

6 days. A systematic acquisition strategy is important for applications such as monitoring 

deforestation. This allows for the monitoring of very large areas, such as the whole 

Amazon rainforest, or the Congo basin in Africa. This enables a regular acquisition of a 

specific location, and allows for the building up of a set of historical data that would not 

be available if data was only selected irregularly.  

 

Some research papers focused on using full quad-polarimetric images, which allow for 

polarimetric processing of the images (Ainsworth et al., 2009; Qi et al., 2010; Moran et 

al., 2012). This current research excludes the full polarimetric processing, since it is not 

readily available on all SAR systems, and is a focus area in its own right. Any interchannel 

ratios from available dual-polarimetric images are included in this research. Another 

aspect of SAR is the ability to perform interferometric calculations between two images. 

This is usually used for displacement mapping such as earthquakes and landslides 

(Metternicht et al., 2005; Joyce et al., 2009). Interferometric processing has been 

applied to land cover mapping (Strozzi et al., 2000; Okhimamhe, 2003) though any 

interferometric processing is excluded from this research.  

 

Studies conducted using the multi-frequency SAR images from the SIR-C / X-SAR shuttle 

mission in 1994 showed the potential of utilising multi-frequency SAR for land cover 

classification (Pierce et al., 1995, 1998). Multi-frequency SAR applications have been 

studied from airborne sensors and are of particular interest to the current study, 

because the SAR signals from multiple frequencies can be acquired concurrently. There 

have been several airborne multi-frequency campaigns, such as the NASA / JPL AirSAR 

(Quegan et al., 2003; Lucas et al., 2006) the DLR’s E-SAR (Rowland et al., 2008), and the 

latest F-SAR multi-frequency SAR airborne campaign (Horn et al., 2009). The F-SAR 

instrument enables the simultaneous capturing of P-, L-, C- and X-band images. For a 

multi-frequency system, this would be the ideal scenario, however this would be limited 

to airborne instruments. The global reach of satellite missions for a multi-frequency SAR 
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setup is still currently lacking. Therefore, to make use of multi-frequency SAR 

measurements, one presently needs to combine measurements from multiple sensors 

on different satellites. 

 

Recently, more studies have looked at the use of multi-frequency SAR for land cover 

classification using a combination of SAR frequencies from satellite (Turkar et al., 2012; 

Naidoo et al., 2015). Turkar (2012) compared the classification accuracies of L-band 

(ALOS PALSAR), C-band (RADARSAT-2), X-band (TerraSAR-X) and combinations thereof, 

of land cover classes: water, mangrove, urban, forest, saltpans, sewage plant, wetland 

and grassland of a study site in Mumbai using ANN and Wishart classifiers. Fully 

polarimetric data were used from ALOS PALSAR and RADARSAT and DualPol from 

TerraSAR-X data. Overall classification accuracies of up to 98% were achieved using all 

three frequencies with polarimetric decompositions. The main conclusions from Turkar 

(2012) were that (1) classification accuracies using co-polarised data are marginally 

lower than fully-polarised data, (2) classification using complex data compared to only 

backscatter coefficients leads to higher classification accuracy, (3) L-band is in general 

the best frequency for land cover classification, and (4) combining multi-frequency data 

(L, C and X-band) improves classification accuracy.  

 

Naidoo (2015) compared the use of L-band (ALOS PALSAR), C-band (RADARSAT-2) and 

X-band (TerraSAR-X) data to classify above ground biomass (AGB), canopy cover (CC) 

and total canopy volume (TCV). Naidoo concluded that, although the use of all three 

frequencies yielded the best results (𝑅2 = 0.83 for AGB and CC, and 𝑅2 = 0.85 for TCV, 

with 𝑅2 being the coefficient of determination of a regression analysis), it was marginal 

above using only L-band data (𝑅2 = 0.78 for AGB, 0.77 for CC and 0.79 for TCV). Naidoo 

made use of the random forest machine learning algorithm to obtain these results. 

 

From the SAR backscatter coefficient images, additional feature layers can be calculated, 

such as interchannel ratios and texture measures. Interchannel ratios of SAR images 

have been investigated in several studies (Buckley, 2002; Quegan et al., 2003; Dierking 

et al., 2003; Simental et al., 2005; Lönnqvist et al., 2010). Lönnqvist found that the 
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addition of the interchannel ratio layers gave an increase of at least 2.2% on using only 

the basic backscatter coefficient channels. 

 

A set of texture measure of images was presented by Haralick (1973) which have been 

used to enhance SAR images for land cover classification in many studies (Anys, 1995; 

Clausi, 2002; Herold et al., 2004; Peng et al., 2005). Peng found that using texture 

information increase the overall accuracy from 25.6% to 57.6% for a mountainous region 

in southern Patagonia. In addition, Peng found that using elevation, slope and aspect 

data from a DEM increases the overall land cover classification significantly. 

 

In the last 10-15 years there has been an increase in the use of ensemble classifiers 

instead of using a single classifier (Waske and Braun, 2009). An ensemble classifier is 

when multiple models are run, and the results of the models are combined to form a 

consensus view on the classification result, often by a simple majority vote. One of the 

most well-known ensemble classifiers is random forests (Breiman and Cutler, 2001). 

Random forests were used to classify multi-temporal SAR imagery with 79.8% and 83.8% 

overall classification accuracies for two test sites in Bonn and Jena (Waske and Braun, 

2009). In the PhD thesis of Waske (2007), where different classification algorithms to 

classify multisource imagery were compared, the final conclusion of the thesis was the 

following:  

 

“In summary, the following main subjects are worth to investigate in detail: (1) the 

derivation of additional temporal information from high temporal resolution imagery, 

such as RapidEye and TerraSAR-X data, (2) the integration of textural information, e.g. 

derived from spatial high resolution SAR data, as TerraSAR-X or Cosmo-SkyMed, (3) the 

utilization of polarimetric satellite imagery, as provided by ALOS PALSAR and TerraSAR-

X, and (4) the use of multi-frequency approaches, using for example, ALOS PALSAR, 

TerraSAR-X or Cosmo-SkyMed, and Radarsat-2 data.” (Waske, 2007) 

 

This study will address points 2, 3 and 4 mentioned above by incorporating textural 

information, using features from polarimetric satellite imagery (although not 
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polarimetric decompositions), and the use of multi-frequency SAR imagery, in the 

context of semi-arid and forested biomes of Africa. 

 

2.1 SAR land cover classification 

Land cover classification is one of the core applications of remote sensing. Land cover 

classification has been studied since the advent of satellites in orbit around the earth. 

The ability to classify what is observed in a satellite image is very valuable and can assist 

decision makers to make informed decisions regarding a particular field of interest for a 

particular area of the world. This could vary in scale from planning and monitoring of 

large regions for carbon emissions e.g. as part of the United Nations’ program on 

Reducing Emissions from Deforestation and forest Degradation (UN-REDD) (FAO et al., 

2008), to land cover classification of a small area before and after a specific disaster 

event (Voigt et al., 2007). 

 

The generation of accurate land cover maps is about interpreting the satellite signal 

correctly, whether from optical or SAR images. A standardised classification system sets 

a standard for decision makers who interpret the classified land cover map. Several land 

cover classification schemes have been defined over the last 35 years, since the dawn of 

widely used remote sensing technology. The first was the Land Use and Land Cover 

Classification System for Use with Remote Sensor Data (Anderson et al., 1976), 

developed by the United States Geological Survey (USGS). To establish a system which 

is transferable and applicable to any mapping scale or possible land cover type, the Land 

Cover Classification System (LCCS) has been developed by the Food and Agriculture 

Organization of the United Nations (FAO) and the United Nations Environment 

Programme (UNEP) (Di Grigorio, 2005). In this current study, the land cover classes 

identified are related to the LCCS framework. A more detailed description of LCCS is 

covered in Section 2.1.1. 

 

Applications of land cover classification range depending on the scale and size of the 

area being studied. This ranges from very high resolution optical imagery, which focuses 
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at very fine detail (<1m) on a small area e.g. mapping urban areas (Pacifici et al., 2009), 

to coarser 500m to 1km resolution imagery used for global land cover mapping 

(Loveland & Belward 1997; Bartholomé & Belward 2005). This research will focus on 

high resolution (5-30m pixel spacing) land cover mapping from SAR satellites. This is 

therefore a local scale, which is often limited to the size of the swath of the high 

resolution satellite image. High resolution SAR land cover mapping can be used in the 

context of emergency response situations for flood monitoring (Martinez & Le Toan 

2007; Cruz 2010; Pulvirenti et al. 2011), burn scar mapping (Ruecker & Siegert 2000), oil 

spills (Solberg et al., 2007), landslides and earthquakes (Massonnet and Feigl, 1998; 

Metternicht et al., 2005) as well as for carbon inventories (Gibbs et al., 2007).  

 

SAR land cover classification has the potential to be used within the Copernicus 

programme, which is the European Earth Observation program (EuropeanCommission, 

2013). Two of the services are already operational, namely Land Monitoring 

(land.copernicus.eu) and Emergency Management (emergency.copernicus.eu). The 

main satellite data source for Copernicus will be the Sentinel satellites (Malenovský et 

al., 2012), of which Sentinel 1A (SAR, C-band) (Torres et al., 2013) was launched on 3 

April 2014 and Sentinel 2A (high resolution optical, multispectral) (Drusch et al., 2012) 

was launched on 23 June 2015. The Copernicus core services and downstream services 

presents a significant opportunity for utilising SAR and multi-frequency SAR for land 

cover classification applications. 

 

SAR satellites are relatively unaffected by atmospheric conditions such as rain or cloud 

in most conditions and are therefore some of the most useful systems for emergency 

response situations, allowing a fast response time for mapping a disaster area (Voigt et 

al., 2007). The monitoring of emergency situations is crucial to effectively give aid to 

people affected by the disaster on the ground. The effect of disasters in developing 

countries is much greater than in developed countries as there are proportionally many 

more associated casualties in developing countries (Peduzzi et al., 2009). The Copernicus 

/ GMES pre-operation emergency response projects, Respond (ESA, 2011) and Services 

and Applications For Emergency Response (SAFER) (SAFER, 2012), focused on providing 

http://land.copernicus.eu/
http://emergency.copernicus.eu/
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reference mapping during the first stages of a disaster, but also throughout the 

monitoring and reconstruction phases of the disaster. Land cover mapping and 

classification systems can be used for reference mapping and change detection of pre 

and post disaster events. 

 

A further application of SAR to land cover mapping is in estimating the amount of above-

ground biomass (AGB) in the vegetation. AGB can then be correlated to an estimate of 

total carbon content of the vegetation using ecosystems specific conversions 

(Patenaude et al., 2005). This is particularly useful in the context of UN-REDD and 

REDD+. REDD+ is an extension to UN-REDD, and include the focus on sustainable 

management of forests, the role of conservation and enhancement of forest carbon 

stocks, going further than deforestation and forest degradation (Gibbs et al., 2007; FAO 

et al., 2008; UNFCCC, 2011). It has been shown in several studies that there is a strong 

relationship between SAR backscatter and AGB (Lucas and Armston, 2007; Lucas et al., 

2010; Mitchard et al., 2011; Carreiras et al., 2012) and that the best polarisations to use 

for biomass retrieval are L-band HV (Mitchard et al. 2011; Tsui et al. 2012) . This study 

will not focus directly on estimating biomass, but it is good to know that land cover 

classes relate to different biomass estimates, and are therefore related. AGB of semi-

arid areas was estimated by Eisfelder et al. (2012) and can be used to refine land cover 

classification. 

 

2.1.1 Land cover classification system (LCCS) 

LCCS was initially developed through the AFRICOVER project (Di Gregorio and Latham, 

2002). The basic principle of LCCS is that a land cover class is defined by a set of 

independent classifiers. As more classifiers are added, a more detailed class is defined. 

Therefore the emphasis is no longer on the class name, as in most other classification 

systems, but on the set of classifiers used to classify the land cover class. 

 

The first step of LCCS is to identify the land cover class from a list of eight broad classes, 

called the dichotomous phase, given in Figure 2.1. 
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Figure 2.1 The LCCS eight broad land cover classes from the dichotomous phase of the LCCS land cover classification. 
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LCCS is implemented in a software package where the user can step through as many 

steps necessary to classify the land cover class. The second phase is called the modular-

hierarchical phase, where more detail is added to refine the specific land cover class (Di 

Grigorio, 2005). For the dichotomous class of natural and semi-natural terrestrial 

vegetation, the modular-hierarchical phase drills down to six more levels as listed in 

Table 2.1. 

 

Table 2.1 The six levels of the modular-hierarchival phase of the natural and semi-natural terrestrial vegetation 

dichotomous class of LCCS. 

Level Description 

1 Life form and cover / Height / Spatial distribution 

2 Leaf type and life cycle / Leaf phenology 

3 Stratification 

4 Landform / Lithology and Soils 

5 Climate / Altitude / Erosion 

6 Floristic Aspect 

 

Similarly for each of the eight broad dichotomous classes, LCCS allows the user to add 

as many aspects of the class as deemed necessary to describe the land cover class to be 

classified. The land cover classes that were extracted individually from the SAR data for 

this research were closed woody vegetation (referred to as dense trees), open woody 

vegetation (open woodland), sparse woody vegetation / herbaceous closed to open 

vegetation (sparse vegetation), bare soil and/or other unconsolidated materials (bare 

soil), built up areas (settlements), aritificial and natural waterbodies (water) and 

herbaceous crops (agriculture). This is expanded on in Section 3.4. 

 

2.2 Introduction to principles of Synthetic Aperture Radar (SAR) 

The beneficial properties of SAR remote sensing are the ability of SAR sensors to observe 

the land surface through cloud cover and that it uses its own power source, independent 

of sun illumination (i.e., it can image throughout day and night). There is, however, an 
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influence of the atmosphere on shorter wavelengths (<4cm, i.e. X-band). Rainfall, and 

especially heavy downpours, has a considerable influence on short wavelength radar (X-

band and shorter wavelengths), but has less of an effect on longer wavelengths (C-band 

and longer wavelengths) (Lillesand et al., 2004). Nonetheless, the ability of SAR sensors 

to observe through cloud cover remains one of its biggest benefits over optical systems 

which are completely hindered by clouds (Kuntz, 2010).  

 

Here follows a brief background on the theory of SAR from Ulaby and Dobson (1989), 

Lewis et al. (1998) and Woodhouse (2006). Radar remote sensing is the measurement 

of electromagnetic waves in the microwave part of the electromagnetic spectrum, 

which covers frequencies < 40000 MHz or wavelengths > 1cm. Electromagnetic 

wavelength (λ) and frequency (f) are inter-related by Equation 2-1: 

 

 c = fλ Equation 2-1 

 

where c is the speed of light, given by 2.99792458x108 ms-1.  An outline of radar 

frequency bands, with corresponding frequency and wavelength ranges, is given in Table 

2.2 (Lewis et al. 1998; Barrett et al. 2009).  

 

Table 2.2 Range of radar frequency bands with their corresponding frequency and wavelength ranges (Lewis et al. 

1998; Barrett et al. 2009).  

Radar frequency band Frequency, f (GHz) Wavelength, λ (cm) 

P 0.22-0.39 136-77 

UHF 0.3-1 100-30 

L 1-2 30-15 

S 2-4 15-7.5 

C 4-8 7.5-3.75 

X 8-12.5 3.75-2.4 

Ku 12.5-18 2.40-1.67 

K 18-26.5 1.67-1.18 

Ka 26.5-40 1.18-0.75 

mm >40 <0.75 

 

Table 2.2 shows the SAR sensors that are currently in orbit, along with those approved 

and planned for in the next seven years. The SAR frequencies covered are P-, L-, C- and 
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X-band. The principal owner, polarisation, revisit time, swath width, spatial resolution 

and expected mission life from 2011 onwards is included in this table. This table shows 

the potential to utilise multi-frequency SAR into the foreseeable future. Two satellites 

to mention from this table are Sentinel-1A and NovaSAR-S. The Sentinel-1A satellite is 

the first of a series of operational satellites as part of the Copernicus programme. 

NovaSAR-S will be an S-band satellite developed and built by Surrey Satellite Technology 

Limited (SSTL) based in the United Kingdom.  

 

The acquisition geometry of a SAR system is given in Figure 2.2. SAR refers to imaging 

radar which requires image pre-processing to synthesize a much longer effective radar 

antenna length to construct an image. This improves the resolution in the azimuth 

direction (Woodhouse 2006). The incidence angle (θ) is the angle between the radar 

wave and the vertical.  

 

Satellite based SAR are active microwave instruments which transmit a pulse at a 

specific frequency and measures the signal that is scattered back to the instrument. The 

received power (Pr) is related to the transmitted power (Pt) by the radar equation: 

                                                                          

 
𝑃𝑟 = 

𝑃𝑡𝐺𝐴𝑒
(4𝜋𝑅2)2

 𝜎 
Equation 2-2 

 

where G is the antenna gain, R is the slant range distance between the instrument and 

the measured object, Ae is the effective area of the antenna and 𝜎 (sigma) is the radar 

cross section of the measured object. The backscatter coefficient 𝜎0 (sigma-nought) is 

defined as the radar cross section per unit area. The 𝜎0 values are essentially what the 

SAR instrument measures, and are used to determine biophysical parameters from SAR 

measurements. 
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Figure 2.2 Acquisition geometry of a satellite SAR system, amended from Lewis et al. (1998). 

Another important concept when dealing with SAR remote sensing images is 

polarimetry. All SAR sensors transmit the radar pulse in a certain polarization. This can 

be either horizontal (H) or vertical (V) with respect to the slant range direction. Many 

SAR sensors can also receive the signal in either H or V direction which leads to 

backscatter measurements of 𝜎ℎℎ
0 , 𝜎𝑣𝑣

0 , 𝜎ℎ𝑣
0  and 𝜎𝑣ℎ

0 . The representation used most 

commonly to describe fully polarimetric SAR measurements is the Sinclair scattering 

matrix [S], which is given by 

 

 [𝑆] =  [
𝑆𝐻𝐻 𝑆𝐻𝑉
𝑆𝑉𝐻 𝑆𝑉𝑉

] 
Equation 2-3 

 

where matrix [S] is symmetrical with SHV = SVH . Different scatterers on the ground 

surface modify the polarisation to varying degrees, and the polarisation mode therefore 

influences how the object looks on the resulting imagery (Lillesand et al., 2004).  A good 

overview of recent advancements in polarimetry is given by Lee and Ainsworth (2010). 
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Table 2.3 SAR satellites in orbit, approved and planned for 2011-2022, for potential SAR applications. 

 

ASI – Italian Space Agency (Agenzia Spaziale Italiana), CONAE – Argentinian Space Agency (Comision Nacional de 

Actividades Espaciales), CRESDA – China Center for Resource Satellite Data and Application, CSA – Canadian Space 

Agency, DLR – German Aerospace Centre (Deutsches Zentrum für Luft- und Raumfahrt), ESA – European Space 

Agency, ISRO – Indian Space Research Organisation, JAXA – Japan Aerospace Exploration Agency, MDA – 

MacDonald, Dettwiler and Associates Ltd., Canada, SSTL – Surrey Satellite Technology Limited, UK 
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References for Table 2.2: 

1(Aschbacher and Milagro-Pérez, 2012), 2(ESA, 2013a; Le Toan et al., 2011), 3(JAXA, 2011), 4(JAXA, 2013a, 2013b), 

5(CONAE, 2011), 6(Huang et al., 2010), 7(Barbosa, 2012), 8(SSTL, 2011), 9(ESA, 2013b), 10(Torres et al., 2012), 11(CSA, 

2011), 12(CSA, 2013), 13(Chakraborty et al., 2013), 14(Werninghaus and Buckreuss, 2010), 15(Zink, 2012), 16(Janoth 

et al., 2012), 17(Covella et al., 2010), 18(Hisdesat, 2013) 

 

2.3 Key factors that influence SAR backscatter 

The key factors that influence SAR backscatter are terrain geometry; the physical 

structure of the scatterers on the surface of the earth, such as vegetation structure; and 

the dielectric constant, which is related to water content, of the scatterers on the 

surface of the earth (Lewis et al., 1998). The SAR signal can therefore be related to the 

biophysical parameters of the scatterers on the ground, such as biomass in vegetation 

and soil moisture.  

 

2.3.1 Terrain geometry 

The terrain geometry affects the SAR signal by modifying the incidence angle (𝜃) of the 

SAR signal by the effect of a local incidence angle (𝜃𝑙). The local incidence angle is 

influenced by the local slope of the terrain (Figure 2.3). The measured backscatter 

coefficient (𝜎0) varies with relation to 𝜃, as the scattering geometry changes. For all 

polarisations the SAR backscatter coefficient values decrease as the incidence angle 

increases (Ulaby and Dobson, 1989). This can be explained in that there is a larger 

observed backscatter to the sensor at a steeper incidence angle, and a lower observed 

return backscatter at a more oblique incidence angle. 

 

To be able to extract biophysical parameters from a SAR image, the effect of terrain 

geometry first needs to be removed. This is done during the orthorectification steps to 

rectify an image using a DEM. This is particularly necessary for images with hilly terrain, 

where the effect of different angled slopes are greatest. Although the effect of terrain 

geometry is was minimal for the sites used in this research, due to the relatively flat 

terrain, a SRTM DEM was still used during the orthorectification steps of the SAR images. 
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Figure 2.3 The comparison between the incidence angle 𝜃 and the local incidence angle 𝜃𝑙 . 

 

2.3.2 Surface roughness and vegetation structure 

There are three main scattering mechanisms at work between that influences the SAR 

signal as it interacts with the surface and vegetation: surface scattering, volume (or 

canopy) scattering and double bounce scattering (Freeman and Durden, 1998) (see 

Figure 2.4).  

 

 

Figure 2.4 Scattering mechanisms affecting the SAR signal: volume, surface and double-bounce scattering. 
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Surface scattering is affected by the roughness of the surface in relation to the SAR 

frequency. A rough surface in relation to an X-band and therefore be a smooth surface 

in relation to a longer SAR signal, such as L-band. Volume scattering is the interaction of 

the SAR signal where are large volume of vegetation is combined together. This is 

especially prevalent to dense forest areas, but also shorter vegetation such as shrubs 

and grassland. Double-bounce scattering is where the SAR signal interacts with objects 

orthogonal to the surface, such as the vertical stems of trees or the sides of buildings. 

 

The SAR signals returned are often a combination of the scattering mechanisms. In a 

forest there are SAR backscatter returned from the canopy, through volume scattering, 

and double-bounce from the ground and the stems of the trees. For vegetation with 

smaller stems, such as shrubs or tall grass, a combination of volume scattering and 

surface scattering is returned. 

 

However, since the scattering mechanisms are frequency dependent, different 

scattering interactions can be separated to a large degree. Within the forest example, 

the X-band will interact largely with the canopy, through volume scattering, whereas 

longer wavelengths such as L-band will penetrate the canopy, and return scattering from 

the stems and large branches through double bounce scattering and some surface 

scattering. 

 

2.3.3 Dielectric properties / moisture content 

The backscatter coefficient 𝜎0 is determined by both the surface roughness and the 

dielectric properties of the surface. The dielectric constant is heavily influenced by the 

moisture content of the material. One of the main challenges in retrieving soil moisture 

measurements from SAR 𝜎0 values is therefore to separate the influence of surface 

roughness from the influence of soil moisture on the 𝜎0 values (Paloscia, 2012; van der 

Velde et al., 2012). 
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The reflectivity of a rough surface increases as a response to a higher dielectric constant. 

Therefore, e.g. a wet agricultural field will result in a brighter image during and after 

rainfall. The effect of increased moisture on the surface reduces surface roughness in 

addition to increasing its dielectric constant. As a result this leads to greater forward 

scattering, with a smaller part of the signal reflected back to the SAR sensor (Raney, 

1998). The increased moisture has therefore a two-fold effect, and depending if the 

increased dielectric constant or the resulting smooth surface is more prevalent, will 

determine whether it is a lighter or darker area on the SAR image. 

 

For volume scattering, increased volume moisture such as a wet canopy, increases 

internal reflections towards, but also away from the SAR sensor. Additionally, as 

observed by the SAR sensor, the total reflection includes the surface scattering from the 

surface as well as the volume scattering from the canopy (Raney, 1998). In general, in 

forested areas the effect of rainfall events before or during the SAR acquisition leads to 

an increased backscatter scatter (Lucas et al., 2010).  

 

2.4 SAR sensor characteristics 

A brief introduction to each of the SAR sensors used in this study is presented in this 

section. Images from ALOS PALSAR, ENVISAT ASAR and TerraSAR-X were used in this 

study. 

 

2.4.1 ALOS PALSAR 

The Phased Array L-band Synthetic Aperture Radar (PALSAR) instrument was on board 

the Japanese Space Exploration Agency’s (JAXA) Advance Land Observing Satellite 

(ALOS) launched in January 2006 (Rosenqvist et al., 2007), and came to the end of its life 

after five years in May 2011 (JAXA, 2011). The ALOS satellite had a 46-day repeat cycle 

and the PALSAR instrument has 4 acquisition modes: Fine beam mode, which was split 

into Fine beam single polarization (FBS) (HH or VV) or Fine beam double polarization 

(FBD) (HH/HV or VV/VH), Polarimetric or Quad-polarization mode (POL) 
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(HH/HV/VH/VV), ScanSAR mode and Direct transmission mode (Rosenqvist et al., 2007). 

The data used in this study were acquired using the FBS, FBD and POL modes. The swath 

width for the FBS mode is 70km with 10m x 10m spatial resolution on the ground. The 

swath width for the FBD mode is 70km with 20m x 10m spatial resolution, and for the 

POL mode, a swath width of 30km with 31m x 10m spatial resolution. ALOS PALSAR has 

a variable off-nadir incidence angle of 9.9° - 50.8° for FBS and FBD modes, and 9.7° - 

26.2° for the POL mode (Rosenqvist et al., 2007). 

One of the main products developed from the ALOS PALSAR images is the Kyoto and 

Carbon Initiative global mosaic (Shimada and Ohtaki, 2010). The processing of PALSAR 

scenes into a mosaic of the African continent was undertaken by the European 

Commission’s Joint Research Centre (JRC) (Rosenqvist and De Grandi, 2009; De Grandi 

et al., 2011). Additionally, the full polarimetric ability from the ALOS PALSAR POL mode 

has been investigated in several studies (Ainsworth et al., 2009; Bagan et al., 2012).  

ALOS-2 was launched on 24 May 2014 and carries the PALSAR-2 instrument, with 

upgrades that include a much shorter revisit cycle of 14 days and new modes of ultra 

fine single mode (UFS) at 3m spatial resolution and high sensitive polarimetric mode 

(HSPol) at 6m spatial resolution, to name a few (Rosenqvist et al., 2014). 

 

2.4.2 ENVISAT ASAR 

ENVISAT is one of ESA’s most ambitious satellites to fly in space to date, with ten 

instruments on board and weighing eight tons (Gardini et al., 1995). The satellite was 

launched in March 2002 and contact with the satellite was lost on 8 April 2012 (ESA, 

2012a). One of the instruments on board is the Advanced Synthetic Aperture Radar 

(ASAR), which is a C-band SAR instrument. ASAR followed on the previous European SAR 

sensors ERS-1 and ERS-2.  The ASAR instrument has five acquisition modes (Desnos et 

al., 2000), of which the Image mode (IM) (VV or HH) and Alternating polarisation mode 

(AP) (VV/HH, HH/HV or VV/VH) were used in this study. Both the IM and AP modes 

present spatial resolution of about 30m x 30m. The remaining three modes are Wide 

swath, Global monitoring and Wave mode. 
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With data acquired from ten sensors on board ENVISAT during ten years in orbit, 

numerous applications were researched. A selection of applications using ASAR data are 

flood extent mapping (Henry et al., 2006; Marti-Cardona et al., 2010), oil spill detection 

(Solberg et al., 2007), landslide detection (Hölbling et al., 2012) and land cover mapping 

(Park and Chi, 2008).  

To continue the global archive of C-band SAR data of nearly 25 years (since 1991) from 

ERS-1, ERS-2, ENVISAT ASAR, RADARSAT-1 and RADARSAT-2, the next generation of C-

band SAR satellites are Sentinel 1A and Sentinel 1B. As mentioned in Section 2.1, the 

Sentinel satellites are the main data source for the European Earth Observation 

programme Copernicus. One of the major improvements of the Sentinel data, compared 

to its predecessors is that the data are free and accessible to the public (ESA, 2012b). 

This is similar to NASA’s Landsat data policy which is used extensively all around the 

world as a results of its free and open data policy. 

2.4.3 TerraSAR-X 

TerraSAR-X, Germany’s first commercial X-band satellite, was launched in June 2007 and 

was developed as part of a public-private partnership between the DLR and EADS 

Astrium GmbH (Werninghaus and Buckreuss, 2010). For interest, EADS Astrium has, 

since July 2013, been re-branded as Airbus Defence and Space. EADS Astrium developed, 

built and launched the satellite, while the DLR developed the corresponding ground 

segment and the science service segment to provide data to the science community. 

TerraSAR-X offer 4 imaging modes, namely Stripmap mode single or dual polarization 

(at 3.3m or 6.6m azimuth resolution), High Resolution Spotlight mode in single or dual 

polarization (at 1.1m or 2.2m azimuth resolution), Spotlight mode in single or dual 

polarization (at 1.7m or 3.4m azimuth resolution) and ScanSAR mode in single 

polarization (at 18.5m azimuth resolution) (Fritz and Eineder, 2010).  

 

The TanDEM-X satellite is a replication of the TerraSAR-X satellite and was launched in 

June 2010 (Martone et al., 2013). TanDEM-X is in the similar orbit as TerraSAR-X and 

able to fly in different formations, which enables interferometric data acquisition. The 

primary objective of the TanDEM-X mission was to complete a global DEM of unmatched 
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accuracy, quality and coverage. The processing of the global DEM data were completed 

in 2014, and is commercially available as the WorldDEMTM product from Airbus Defence 

and Space (Riegler et al., 2015). The WorldDEM product has a relative vertical accuracy 

of 2m and is available at 12m x 12m spatial resolution. This is a large improvement from 

the SRTM DEM which had a  relative vertical accuracy of 12m and was available at 30m 

x 30m (90m x 90m before September 2014) spatial resolution (Martone et al., 2013; JPL, 

2014). 

 

A few applications of TerraSAR-X related to land cover classification are mapping soil 

texture (Zribi et al., 2012), burn severity (Tanase et al., 2010a), sugarcane fields 

(Baghdadi et al., 2010) and flood mapping (Cruz, 2010). 

 

2.5 Multi-frequency SAR 

Early studies using multi-frequency SAR are from Chen et al. (1996), who demonstrated 

using a neural network as a classification algorithm for multi-frequency SAR data. Images 

from ERS-1 (C-band) and JERS-1 (L-band) were used for land cover classification of 

different vegetation structures using hierarchical knowledge-based decision rules 

(Dobson et al. 1996). This was achieved through a manual process of decision rule 

selection, assisted by modelling the SAR backscatter values in the Michigan microwave 

canopy scattering model (MIMICS). 

 

The combination of using more than one SAR frequency in land cover classification has 

been explored in several studies. The combination of L- and X-band for AGB retrieval for 

a forest area of central Kalimantan was successfully used by Englhart et al. (2011). L-

band and C-band were combined in a study of land cover classification over central 

Africa, with a focus on Malawi (Holecz et al., 2009). The influence of burn scars on co- 

and cross-polarised L-, C-, and X-band data were compared in Tanase et al., (2010b). The 

highest sensitivity to burn severity was found to be at L- and C-band. 

 



36 

 

In a study on large-scale mapping of central Africa, L- and C-band SAR data were used to 

map forest extent within the Congo basin (Mayaux et al., 2002). The study concluded 

that, although the SAR data can provide thematic information of the forest composition 

for the whole ecosystem, SAR data alone could not consistently map all the vegetation 

features, such as secondary forests, in this tropical ecosystem. A synergistic use of SAR 

and optical data were proposed for future regional scale land cover projects. It is noted 

here that in this case, the SAR image data were downscaled to 100m pixel spacing, so 

the conclusion might be different with higher resolution SAR images. 

 

Most of the examples thus far have only made use of single frequency data; most 

regularly C-band, but also X- and L-band. Even though there are SAR satellites of 

different frequencies in orbit and even more planned for the future (Table 2.2), 

synergies with other frequencies are not regularly used or part of the current Copernicus 

core service activities.  

Another innovative way to make use of multi-frequency SAR was suggested by Eckardt 

et al. (2013). Here it is proposed to use data from multi-frequency SAR satellites to 

supplement the optical thick cloud cover areas in optical imagery, using a closest feature 

vector. This was used to fuse the SAR and optical imagery together, in the areas of the 

optical image which are affected by clouds. Eckardt et al. also used mono-temporal, 

multi-frequency data. 

 

The satellites mentioned in Table 2.2 show the various data opportunities for potential 

applications of multi-frequency SAR, by combining data from different SAR sensors. Over 

the next 5 years, there is the potential to obtain data from L-, S-, C- and X-band SAR 

sensors, over the same geographical area, and relatively close in time. The addition of 

the BIOMASS P-band SAR mission from 2020 onwards adds another frequency to the 

possible SAR images available. It is notable that the spatial resolution keeps improving 

with the newer satellites, and more satellites are being used in constellations to improve 

revisit times. 
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2.6 Classification algorithms 

Classification methods for remote sensing data are usually taken from the machine 

learning / pattern recognition methods for various statistical applications. Some of the 

most commonly used methods are the standard supervised maximum likelihood 

classifier (MLC), decision trees and artificial neural networks (ANN) (Jensen, 2005). More 

recently, techniques applied to multisource remote sensing data that have proved 

superior to the standard supervised classification techniques include SVMs (Huang et al. 

2002) and random forests (Rodriguez-Galiano et al., 2012b). SVMs and random forests 

are both non-parametric classification algorithms, similar to ANN and decision trees, 

which mean that the algorithms do not rely on the assumption that the input variables 

are from a specific statistical distribution. This is contrary to parametric classification 

algorithms, such as MLC, which are based on the assumption that the input variables are 

normally distributed (Moser et al., 2006). Non-parametric classification algorithms are 

therefore preferred for classifying multi-source data. Additionally, SAR backscatter 

values of different land cover classes do not all follow the same distribution functions 

(Ulaby and Dobson, 1989; Moser et al., 2006).  

 

In the last 15 years much research has gone into ensemble classifiers. Ensemble 

classifiers are learning algorithms that construct a set of classifiers. New data points are 

then classified using a weighted vote between the different classifier results (Dietterich, 

2000). Some of the most well established ensemble classifier methods are bagging, and 

boosting.  

 

Bootstrap aggregation a.k.a. bagging, was introduced by Breiman (1996). Bagging works 

as follows: the training dataset are sampled multiple times by selecting a random sample 

with replacement from the training set, to produce 𝑚 training datasets. The 𝑚 newly 

sampled training datasets are known as bootstrap replicates of the original training 

dataset. The size of each bootstrap replicate is 63.2% of the training set, with instances 

that can appear more than once. A model is then trained on each of the 𝑚 bootstrap 

replicates, to produce 𝑚 model results. A majority vote on the 𝑚 model results is used 
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to determine the overall classification result by creating a consensus view from all the 

trained models. 

 

Boosting is similar to bagging, with the difference that instead of creating 𝑚 models 

concurrently, each model is developed based on the results from the previous model.  

At the first iteration, all training instances are given the same weight. Then, with each 

iteration, the weight for each of the training instances are adjusted, based on the results 

from the previous model training. A larger weight is given to instances classified 

incorrectly in the previous model. This is done for 𝑚 iterations, to derive a final set of 

weights, on which the final model is trained. This final model, based on the weights-

distribution after 𝑚 iterations, are then used to classify any new data. Boosting was first 

proposed by Schapire (1990) and Freund (1995). The most commonly used boosting 

algorithm named adaptive boosting or AdaBoost as presented by Freund and Schapire 

(1997, 1996). Based on the bagging and boosting techniques, a specific classifier was 

developed by Breiman (2001) using multiple decision trees, called random forests.  

 

Therefore, based on the literature mentioned above, the classifiers compared in this 

study were random forests and SVMs. They are both techniques that outperform 

traditional classifiers in most cases. Random forests and SVMs are expanded on in the 

next sections. 

 

2.6.1 Random forests 

Random forests was formulated by Breiman (2001) and originally coded by Breiman and 

Cutler (2001). Random forests is essentially an ensemble model of many decision trees, 

where the dataset used to build each tree is randomly selected from the full training set, 

with replacement. At each random selection of the training data, one third of the 

instances are left out, referred to as the out-of-bag (OOB) sample. The OOB sample is 

used to get an unbiased estimate of the classification error as more trees are added to 

the forest. At each node, a small group of features are chosen at random, which are then 

available to be chosen by the decision tree algorithm, to split the tree on. The decision 
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trees are built to maximum size, with no pruning of the trees. Finally a majority vote is 

used between all the trees, to decide the final class for each instance. A schematic 

diagram is shown in Figure 2.5. 

 

Figure 2.5 Schematic diagram of the random forest classifier. 

 

The following pros and cons of random forests have been identified: 

 

Pros (+) (Breiman, 2001): 

 The accuracy of random forests is as good as and sometimes better than 

Adaboost. 

 Random forests is relatively robust to outliers and noise. 

 Random forests is faster than bagging or boosting. 

 Random forests gives useful internal estimates of strength, error, correlation and 

variable importance. 

 Random forests is simple and easy to parallelize on implementation. 
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Cons (-): 

 The interpretability of random forest results can be difficult, since there are often 

hundreds of trees in the model, compared to a single decision tree (Prasad et al., 

2006). 

 The variable importance measures give a bias towards predictor variables that 

are highly correlated (Strobl and Zeileis, 2008). 

 Cases were identified when a random forest model may overfit the training 

dataset, in the situation when there are many noisy variables to consider for the 

model (Segal, 2004).  

 

The classification accuracies of land cover using multi-temporal SAR data of two sites in 

Bonn and Jena in Germany were compared by using standard decision trees, MLC, 

boosted decision trees and random forests in Waske and Braun (2009a). The results 

showed that random forests outperformed the standard classification techniques, 

including the boosted decision tree ensemble classifier.  

 

The use of random forests in the classification of SAR images has been demonstrated in 

Loosvelt et al. (2012) and Corcoran et al. (2013). Naidoo et al. (2015) used random 

forests to classify AGB, CC and TCV from multi-frequency SAR images. 

2.6.2 Support vector machines (SVM) 

The mention of a SVM first appeared in (Vapnik, 1979), with the main paper calling SVMs 

support vector networks in (Cortes and Vapnik, 1995).  

 

In short, SVMs is a non-parametric binary classifier that intends to find an optimal 

separating hyperplane between the two classes by maximizing the margin between the 

closest points of the classes, called the support vectors. Figure 2.6 shows a 

representation of an SVM for linearly separable classes. The support vectors and the 

separating hyperplane are highlighted in this figure. 
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Figure 2.6 Classification of an SVM, for linearly separable classes. 

 

For the situation where the classes are not linearly separable, the data points are 

mapped to a higher dimensional space using a kernel function, where the points are 

linearly separable. Figure 2.7 shows how the kernel function is applied to a dataset with 

classes that is not linearly separable. 
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Figure 2.7 An SVM mapped to a higher dimension using kernel K() for non-linearly separable classes. 

 

This problem can be formatted as a quadratic optimization problem, which can be 

solved by known optimization techniques. For SVMs, a regular implemented optimizer 

is the sequential minimization optimization algorithm, which solves the SVM quadratic 

problem without using any numerical quadratic optimization steps, and instead aims to 

solve the smallest possible optimization problem reducing the computation and 

memory requirements (Platt, 1998; Karatzoglou et al., 2006).  

 

Since the support vectors are the training data points closest to the separating 

hyperplane, only a small amount of data are actually used to train the model. For a multi-

class problem, SVMs uses a technique called one-to-many, and then finds the correct 

class by a voting mechanism. 

 

A major implementation of SVMs is the library Libsvm (Chang and Lin, 2011). An 

implementation in the R statistical programming language is with the package called 

‘e1071’ (Karatzoglou et al., 2006). There are many different kernel functions available 

for SVMs, namely Gaussian, polynomial, linear, sigmoid, Laplace, Bessel, analysis of 

variance (ANOVA), spline and user-defined. For the SVM implementation in the ‘e1071’ 
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package the Gaussian radial basis function (RBF), polynomial, linear and sigmoid 

functions are available.  

 

The pros and cons of SVMs can be summarized as follows from Mountrakis et al. (2011): 

 

Pros(+): 

 SVMs generalize well from a small amount and / or quality of training data. For 

remote sensing this is especially important due to the cost of collecting ground 

truth data. 

 As part of the optimization problem, SVMs are resilient against getting trapped 

in a local minimum and always get to global minima. 

 There is no need for repeated training of the classifier using different random 

starting points or architectures. 

 SVMs are non-parametric and therefore no assumption is made on the statistical 

distribution of the data. 

 

Cons(-): 

 The choice of which kernel function to use is not always known.  

 The choice of the parameter value C, which denotes the trade-off between 

minimizing the training error and maximizing the margin, needs to be 

determined. This often leads to a trial and error approach. 

 As dimensionality increases, SVMs typically have dimensionality issues such as 

how to address outliers and increased computational demands. 

 Noisy data can be a problem for SVMs, as they are not optimized for noisy data 

with many outliers. 

 The performance of an SVM can decrease as a result of only a small number of 

mislabelled training samples. 

 

SVMs have been used in many studies during the last ten years to classify remote sensing 

images. One study where the SVMs focused on classifying AIRSAR images shows that 

SVMs perform much better than the supervised Wishart classifier (Lardeux et al., 2009). 
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The overall mean producer’s accuracy using fully polarimetric P-, L- and C-band images 

were 99% for the SVM, compared to 78% for the Wishart classifier, for seven classes 

varying between four forest classes, two low vegetation classes and bare soil. This was 

for 5.5m spatial resolution for all three frequencies, with several polarimetric 

decompositions added to the feature space. In contrast to the Wishart classifier, no a 

priori data are needed with regards to the distribution of the different classes. For the 

SVM classifier, the Gaussian RBF kernel was used (Lardeux et al., 2009). 

 

In another study, SVMs were used to determine the AGB of a study site in Borneo, using 

a variant of SVMs known as support vector regression (SVR), in comparison to ANN and 

multivariate linear regression (MLR). The Gaussian RBF kernel was used to train the SVR. 

For AGB estimation in the Indonesian forest, the ANN was preferred to SVR and MLR, 

and not the SVR classifier. This is due to AGB saturation levels being reached at about 

260 t/ha for the SVR compared to the 400 t/ha for the ANN and MLR classifiers (Englhart 

et al., 2012). This shows the importance to compare several models for a specific 

application. 

 

In Waske and Benediktsson (2007), a technique was shown to fuse data from different 

sources, in this case SAR and optical data. Each data source was first classified on its own 

using SVMs. Then, instead of combining the classification directly, it was combined using 

another SVM. This method of fusing the data with an SVM outperformed all other 

parametric and nonparametric methods tested. It also outperformed majority and 

absolute maximum voting methods to combine an ensemble of classifiers. Similar to the 

other SVM studies reviewed so far, the Gaussian RBF kernel was used as a kernel 

function. 

 

2.7 Discussion of literature review 

From the introduction and literature review it is shown that SAR has been used for land 

cover classification and some multi-frequency SAR applications have been attempted. 

Many research papers focus on classifying AGB (Ferrazzoli et al., 1997; Svoray and 
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Shoshany, 2002; Mitchard et al., 2009; Englhart et al., 2011) or soil moisture (Barrett et 

al., 2009; Baghdadi et al., 2012). Some studies have focused on using SAR for land cover, 

but most have either used interferometry (Strozzi et al., 2000; Okhimamhe, 2003; Park 

and Chi, 2008) or polarimetric decompositions (Qi et al., 2010; Niu, X., Ban, 2010; Bagan 

et al., 2012) to classify land cover. 

 

In recent years, the use of ensemble classifiers and especially random forests have been 

proven to outperform traditional classification algorithms (Waske and Braun, 2009; 

Rodriguez-Galiano et al., 2012a). With the increase in available SAR data from satellite 

and from several frequencies: L-, C-, X-band, with the addition of S- and P-band in the 

near future, some researchers have investigated the combination of the SAR frequencies 

into multi-frequency SAR applications. Waske (2007) highlighted the use of classifier 

ensembles for land cover classification and mentioned that the use of texture measures 

and multi-frequency SAR data needs to be further investigated. Turkar (2012) used 

multi-frequency SAR, which included fully polarimetric data and polarimetric data for a 

study site in India. Texture measures were not included in Turkar’s study. Texture 

measures were included in Pierdicca et al. (2011), but only L-band and X-band images 

were used. Multi-frequency SAR using C-band and L-band for land cover classification of 

an Arctic coastal ecosystem was studied in Banks et al. (2012). The use of multi-

frequency SAR to classify AGB, CC and TCV of savannah woody structures was studied in 

Naidoo et al. (2015), and found that although the combination of L-, C, and X-band give 

the highest classification accuracy, the use of L-band alone is only marginally lower than 

using all three frequencies. The use of random forests and SVMs to classify land cover 

using multi-frequency SAR, including derived interchannel ratios, texture measures and 

elevation data of the wet and dry seasons of both forested and semi-arid regions of 

Africa has not been attempted before. 

 

Most land cover studies focus on areas in Europe or North America where reliable and 

regularly updated land cover maps are available (Wegmuller et al., 2004; Kouskoulas et 

al., 2004; Waske and Benediktsson, 2007). As a result there are many areas in Africa, 

which have not been the focus of research studies, and where it would be useful to focus 
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future research efforts. Moreover, there are many humanitarian crises in central Africa, 

and this research has the potential to benefit the aid organisations who supply aid and 

support to these areas of conflict, by having better knowledge of what is happening on 

the ground. The sites that are chosen in this study are based on data availability, due to 

the sparse overlapping of high resolution images from multiple SAR satellites during the 

last five years. The forested sites that are chosen, are located in Cameroon and the DRC. 

The semi-arid sites are based in Tanzania and Chad.  

 

The three hypotheses are investigated in Chapter Five, Chapter Six and Chapter Seven, 

but first the study sites, data and methodology are given in Chapter Three, with an 

expansion on data preparation in Chapter Four.   
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Chapter Three Study sites, data and general methodology 

 

This chapter discusses the broader context of the study sites, the process of choosing 

the study sties and data, and the general methodology for the three experiments. The 

characteristics of the chosen SAR images are discussed and tabulated. 

 

3.1 Study sites 

The study sites chosen from the available data are in Cameroon, DRC, Tanzania and 

Chad. The Cameroon and DRC sites are forested areas whereas the Tanzania and Chad 

sites are semi-arid. For the forested areas, the Cameroon site was selected as the model 

development site, while the DRC site was an additional site to test the transferability of 

the model.  For the semi-arid sites, the Tanzania site was the model development site, 

while the Chad site was used to test transferability of the model. The geographic 

locations of each site within the biome map of Africa are shown in Figure 3.1. The 

Cameroon site is within the mosaics of forest biome and the DRC site is within the 

tropical lowland forest biome. Both mosaics of forest and tropical lowland forest are 

types of forests, and the Cameroon and DRC sites were therefore grouped together 

within a wider group of forested ecoregions. The Tanzania study site is within the moist-

infertile savanna and the Chad site within arid-fertile savanna, which are both types of 

semi-arid areas. The Tanzania and Chad sites were grouped into a wider group of semi-

arid ecoregions. 

 

The location of the study sites, especially those in Chad and the DRC, were currently 

difficult to visit due to internal civil and political conflict. For this reason, it was decided 

not to perform fieldwork, but to rather use available very high resolution optical imagery 

on Google Earth and moderate resolution images from Landsat to identify land cover 

classes. This is not the ideal situation, but fieldwork would also not necessarily have 

corresponded with the satellite acquisition dates to provide an accurate account of the 

land cover in the SAR images. Several other studies have used very high resolution 
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images available on Google Earth as ground reference data, due to its easy and free 

access (Brink and Eva, 2011; Evans et al., 2010; Turkar et al., 2012). 

 

 

Figure 3.1 The locations of the study sites, in the context of the biome map of Africa (White, 1983b). 

 

Before choosing study sites for this research, a handful of constraints were set out to 

restrict which study sites could be chosen: 

 Images for each site should overlap geographically. 

 Two sites within forested ecoregions and two sites within semi-arid ecoregions. 

 Images should be close in time (same season), and if not available, then for the 

same season from a different year. 
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 The more available polarisations the better. This is to increase the number of 

information layers from the available input channels, and to build a 

comprehensive data stack with the data dimensionality as close to its full 

potential scenario as possible. This allows for models to be trained with all the 

possible input variables. 

 Only high resolution SAR data were considered (≤15m azimuth or range 

resolution), which corresponds to the high resolution imaging modes of the 

different satellite sensors. 

 The sites were chosen to be within Africa. Some preliminary work was done in 

Africa within the SAFER project (Hello, 2010) and therefore background 

knowledge and initial datasets are available from selected locations in Africa. 

 

With these constraints in mind, the study sites for this research are chosen from images 

available in the archives of TerraSAR-X, ALOS PALSAR and ENVISAT ASAR. The data were 

screened manually, starting with data from the TerraSAR-X archive, since it is the least 

populated of the SAR archives.  

 

Table 3.1 lists the Universal Transverse Mercator (UTM) projection zones and the 

European Petroleum Survey Group (EPSG) codes to easily convert between standard 

latitude / longitude projection and the UTM projection for each site. A site abbreviation 

along with the upper left and bottom right hand corner coordinates are listed for each 

site. Each of these sites are now discussed in turn in more detail. 

 

The TerraSAR-X images were requested from the DLR, whereas the ENVISAT ASAR and 

ALOS PALSAR images were requested via a Category 1 proposal from ESA. ALOS PALSAR 

is owned by JAXA and is an ESA third party mission.  
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Table 3.1  List of study site locations with corresponding UTM zones and EPSG codes. 

Biome / 
Ecoregion 

Site Season Abbreviation Training 
samples / 

test 
samples 

Model 
development / 

Additional 
seaon / site 

Coordinates   
upper left 

corner 
(latlong) 

Coordinates   
bottom 

right corner 
(latlong) 

UTM zone EPSG 
code 

Forested Cameroon Wet CW Training Forested model 
development 

6°36’33’’N 
12°31’60’’E 

6°11’18’’N 
12°56’27’’E 

33 North (N) 32633 

    Test   

  Dry CD Training Additional 
season 

  

    Test   

 DRC Wet DW Training Additional site 1°38’35’’N 
29°41’19’’E 

1°12’12’’N 
29°52’02’’E 

35 North (N) 32635 

    Test   

Semi-arid Tanzania Dry TD Training Semi-arid model 
development 

  3°48’34’’S 
31°57’26’’E 

  4°15’28’’S 
32°20’47’’E 

36 South (M) 32736 

    Test   

  Wet TW Training Additional 
season 

  

    Test   

 Chad Dry ChD Training Additional site 13°44’46’’N 
22°02’56’’E 

13°31’10’’N 
22°15’23’’E 

34 North (P) 32634 

    Test   

- All (latitude / 
longitude) 

- - - - - - - 4326 

- All (WGS84 
Pseudo 

Mercator for 
Google Earth) 

- - - - - - - 3857 
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3.1.1 Cameroon 

The starting point of the data availability search is the high resolution TerraSAR-X images 

in Africa. The available data from the ALOS PALSAR and ENVISAT ASAR archives for the 

overlapping location of the TerraSAR-X archive images, for the site in Cameroon, are 

shown in Figure 3.2. The rainfall estimation was downloaded from the Famine Early 

Warning Systems Network (www.fews.net), as daily precipitation, and then summed 

into monthly totals. 

 

Figure 3.2 Available data from the satellite archives for the Cameroon site, with selected images in red for the dry 

season and in blue for the rainy wet season. The optical images used in this study is shown in dark brown squares 

(Landsat 8) and a light brown square, © 2015 Google, Image © 2015 DigitalGlobe. 

Figure 3.2 differentiates between the different polarisation and modes (single / dual / 

quad-polarisation) for images that are available from the archives for each of the three 

sensors. Each of the sensors and their polarisations are shown on the left-hand axis, with 

the corresponding available dates on the archive on the x-axis. The red dots highlight 

the images chosen for the dry season and the blue dots show the images chosen for the 

wet season from the available images for the Cameroon test site. The optical images 

used in this study to identify and validate land cover types are the very high resolution 

image from DigitalGlobe (available on Google Earth) along with two recent images from 

Landsat 8. To fit on the scale of the graph, the dates of the two Landsat images from 

2013 are superimposed on the same days of the year during 2010 in Figure 3.2, which 

overlap with the available SAR images. 

http://www.fews.net/
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Figure 3.3a shows the footprints of the available images from ALOS PALSAR, ENVISAT 

ASAR and TerraSAR-X, with the overlap area highlighted in yellow. Figure 3.3b shows the 

study site as viewed in Google Earth. The wider surrounds are also shown to see the 

general landscape surrounding the study site. 

 

 

Figure 3.3 a) Overlap between different SAR sensors for the Cameroon study site. b) Google Earth view of the 

overlapping area and wider surrounds for the Cameroon study site. © 2015 Google, Image © 2015 DigitalGlobe, 

Image © 2015 CNES /Astrium, © 2015 CNES /Spot Image. 

 

The SRTM elevation along with dry and wet season optical images and dry and wet 

season composites of SAR images are shown in Figure 3.4. The Landsat 8 images were 

taken on the 12th of April 2013 (dry season) and on the 19th of September 2013 (wet 

season). The multi-frequency SAR image for the dry season is a combination of L-HH, C-

HV and X-VH. For the wet season the multi-frequency SAR image is displayed as L-HV, C-

VH and X-VH. The large lake in the study site is lake Mbakaou which forms part of the 

Djerem department (one of five departments), part of the Adamawa region (4th largest 

of ten regions) in Cameroon. The size of the Cameroon study site is 15km by 40km. The 

elevation of the majority of the study site is between 820m and 940m above sea level.  
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Figure 3.4 The SRTM elevation, Landsat (dry and wet) and multi-frequency SAR (dry and wet) images of the 

Cameroon site. 

Most of this region is being converted to agricultural land from the natural habitat of 

submontane forests. The soil are from volcanic rock, which is productive soils for 

farmland, but also susceptible to dry out easily during the dry season, becoming non-

vegetated areas. Vegetation structure are therefore a mixture of remaining forest areas 

are open areas which consist of a mixture of grass and other vegetation. Species from 

this forested montane zone include Nuxia congesta, Podocarpus latifolius, Prunus 

africana, Rapanea melanophloeos, and Syzygium guineense bamendae (WWF, 2016c). 

The Cameroon study site is the main study site used to develop the model for the 

forested region. The DRC study site, which will be discussed next, will be used to test the 

transferability of the model to an additional area.  

 

3.1.2 DRC 

The DRC study was used to determine the transferability of the model developed using 

the Cameroon data. The available SAR images for this site are shown in Figure 3.5. The 

sensors and available polarisations are given on the left-hand axis with the available 

dates of the images in the archives on the x-axis. The monthly rainfall data are also 

plotted in Figure 3.5 in green and the rainfall pattern differs quite significantly to the 
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Cameroon site. As a result, only one set of images were chosen, which will be taken as 

the wet season. With a nearly continuous rainfall throughout the year, this study site 

does not present a dry season, though there seems to be a six-monthly cyclical rainfall 

pattern of a wet season and slightly less wet season. This rainfall pattern highlights the 

benefit of SAR imagery over optical imagery, with the associated consistent cloud cover 

with the regular rainfall of the tropical regions. The relevant Landsat 8 image for this 

study site from 2013 is overlain in dark brown onto Figure 3.5 to fit within the scale of 

the figure and the very high resolution image from DigitalGlobe, as available on Google 

Earth is shown in light brown. The DigitalGlobe image is used to identify the land cover 

samples to test the transferability of the model for the forested areas. 

 

 

The overlapping area between the TerraSAR-X, ASAR and PALSAR images is shown in 

Figure 3.6a. Similar to the other sites, the area of overlap between the three SAR sensors 

is relatively small, compared to footprint sizes of the individual images. The overlap area 

are 20km by 50km at its widest dimensions. The Google Earth image for the study site 

and surrounding area is shown in Figure 3.6b. Areas of dense forest and deforested 

areas are clearly visible in this image. 

 

 

Figure 3.5 Available data from the archives for the DRC site, with selected images in dark blue for the wet season. 

© 2015 Google, Image © 2015 DigitalGlobe. 
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Figure 3.7 shows more detail regarding the DRC study site. The SRTM elevation data are 

shown with the DRC study site being in the order of 1000m above sea level. This is at a 

similar elevation to the Cameroon study site, which is at around 900m above sea level. 

The Landsat 8 image is shown in false colour with red as the short wave infrared (SWIR) 

band, green as the near infrared (NIR) band and blue as the red band. This highlights the 

forested areas in black, the settlement area in white and the river in orange. A multi-

frequency SAR image is also shown, with the L-band HV channel as red, C-band HH as 

green and X-band VV as blue. This shows the forest /non-forest clearly with the forested 

areas as red and the non-forested areas ranging between blue and green. 

 

 

Figure 3.6 a) Overlap area from the different SAR sensors for the DRC site. b) Google Earth view of the overlapping 

area and wider surroundings for the DRC study site. © 2015 Google, Image © 2015 DigitalGlobe, Image Landsat. 

 

This eastern part of the DRC is part of an undifferentiated Afromontane forest, which 

is less tall than the Afromontane forest. Tree species types include a mix of Apodytes 

dimidiata, Halleria lucida, Ilex mitis, Kiggelaria africana, Nuxia congesta, Nuxia 

floribunda, Ocotea bullata (including Ocotea kenyensis), Podocarpus falcatus 

(including gracilior), Podocarpus latifolius, Prunus africana, Rapanea melanophloeos 

and Xymalos monospora (White, 1983a). Many of the forested areas are converted 
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into agricultural areas. Other deforestation reasons are logging and firewood 

collection (WWF, 2016a). 

 

 

Figure 3.7 SRTM elevation, Landsat 8 and multi-frequency SAR images of the DRC study site. 

 

3.1.3 Tanzania 

The Tanzania study site is the main study site for the semi-arid region, used for model 

development. The dates of the available SAR images for the study site in Tanzania are 

shown in Figure 3.8. The selected images for the wet season are shown in dark blue and 

for the dry season in red. The rainfall pattern is distinctly different from the forested 

sites, with less rain and a longer and distinct dry season. The Landsat 8 images were 

available for both the wet and dry season but from a different year, 2013. One of the 

DigitalGlobe images, as available on Google Earth, overlaps closely in time with the dry 

season SAR images, with a second image from 2012 also available for the dry season. 

The optical images are used for land cover identification and validation, on which the 

land cover classification model is developed. 
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Figure 3.8 Available data from the archives for the Tanzania site, with selected images in red for the dry season and 

in blue for the rainy wet season. © 2015 Google, Image © 2015 DigitalGlobe. 

 

The area of overlap for all the SAR images for the Tanzania site is shown in Figure 3.9a. 

It is approximately 10km x 45km and falls within the Kigosi Game Reserve, which is on 

the United Nations list of protected areas (IUCN, 2015). The Kigosi Game Reserve is an 

International Union for Conservation of Nature (IUCN) Category IV protected area, 

which means it is protected for its habitat and species management. Although the whole 

site falls, in theory, within the protected area, it is assumed that the actual boundary of 

the game reserve falls on the clear contrast of forest / non-forest as can be seen in the 

western side of Figure 3.9b. This is broadly within the Shinyanga region of Tanzania. The 

species of the woodlands of Shinyanga are Brachystegia, Julbernardia and Isoberlinia. 

The natural vegetation of Shinyanga is shrubs of 4-6m high, and thorny deciduous trees 

of 10-15m high. Agricultural food crops are predominately maize, cassava, sorghum, 

beans, rice, chickpeas, groundnuts and sweet potatoes. A decline in soil fertility and soil 

erosion are concerns in the area (Kamwenda, 2002). 

 

The SRTM elevation for the Tanzania study site, along with the Landsat 8 and multi-

frequency SAR images for both the wet and dry season are shown in Figure 3.10. This 

site is located higher than the forested sites, at between 1100m and 1300m above sea 

level. 
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Figure 3.9 a) Overlap area from the different SAR sensors for the Tanzania study site. b) Google Earth view of the 

overlapping area and wider surroundings for the Tanzania semi-arid study site. © 2015 Google, Image ©2015 

DigitalGlobe, ©2015 CNES/Spot Image, Image © 2015 CNES / Astrium. 

 

 

Figure 3.10   SRTM elevation, Landsat (dry and wet season images) and multi-frequency SAR (dry and wet season 

images) for the Tanzania site. 
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3.1.4 Chad 

The Chad study site is the site that is used to test the transferability of the model for the 

semi-arid areas, as developed on the Tanzania study site. Figure 3.11 shows the available 

data for the Chad study site with the selected images for the dry season shown in red. 

Only images for the dry season are chosen, as SAR images from L-, C- and X-band were 

available for the dry season compared to the wet season. The rainfall pattern for the 

Chad study site is also shown in Figure 3.11, and the site is seen to be drier than the 

Tanzania study site with longer periods of no rain. The very high resolution DigitalGlobe 

image available is only from 2004, which overlap with the same season as the SAR 

images from 2008 to 2009. A Landsat image from 2013 is also available. The DigitalGlobe 

and Landsat 8 images are used to identify and validate land cover sample areas. This is 

the best optical imagery available, and assumptions are made regarding the stability of 

land cover types for the study area for the years between the optical and SAR images. 

 

Figure 3.11 Available data from the archives for the Chad site, with selected images in red for the dry images. © 

2015 Google, Image © 2015 DigitalGlobe. 

The overlap area between the ALOS PALSAR, ENVISAT ASAR and TerraSAR-X images is 

shown in Figure 3.12a. The view of the images on Google Earth is shown in Figure 3.12b, 

with a dry river bed visible through the centre of the study site. This river is a border 

between Chad on the western side and Sudan on the eastern side. The site is 19km x 

17km in size, as shown in Figure 3.13. The topography for the Chad study site is relatively 

flat as shown in the SRTM elevation. Additionally, the Landsat scene from 27 May 2013 

is shown along with a multi-frequency SAR image of the Chad study site. 
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This site falls within the cetral Sahelian region, when is the semi-arid transition zone 

between the woody Sudanian savanna in the south and the desert in the north. It 

consists mostly of semi-arid grasslands and thorny shrublands. Grass species are 

Cenchrus biflorus, Schoenefeldia gracilis, and Aristida stipoides. The dominant tree 

species are acacia trees: Acacia tortilis, Acacia senegal and Acacia laeta. During the long 

dry season, most trees loose their leaves and most of the annual grasses die, resulting 

in a dry landscape (WWF, 2016b). 

 

 

Figure 3.12 a) Overlap area from the different SAR sensors for the Chad site. b) Google Earth view of the overlapping 

area and wider surroundings for the Chad semi-arid study site. © 2015 Google, © 2015 CNES/Spot Image, Image 

© 2015 DigitalGlobe, Image © 2015 CNES / Astrium. 

 

Figure 3.13 SRTM elevation, Landsat and multi-frequency SAR for the Chad study site. 

A list of all the optical images from DigitalGlobe and Landsat 8, along with the dates and 

seasons for the images, is given in Table 3.2. 

https://en.wikipedia.org/wiki/Cenchrus_biflorus
https://en.wikipedia.org/wiki/Acacia_senegal
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Table 3.2 The available optical images for the four study sites, with respective dates and seasons for each site. 

Site Sensor Date Season 

Cameroon DigitalGlobe (Google Earth) 2008-04-13 Dry 

 Landsat 8 2013-04-12 

2013-09-19 

Dry 

Wet 

Chad DigitalGlobe (Google Earth) 2004-12-31 Dry 

 Landsat 8 2013-05-27 

2013-08-31 

Dry 

Wet 

DRC DigitalGlobe (Google Earth) 2010-02-04 

2011-04-19 

2012-02-06 

Wet 

Wet 

Wet 

 Landsat 8 2013-04-24 

2013-07-13 

Wet 

Wet 

Tanzania DigitalGlobe (Google Earth) 2010-06-09 

2012-08-02 

Dry 

Dry 

 Landsat 8 2013-06-15 

2013-04-26 

Dry 

Wet 

Chad DigitalGlobe (Google Earth) 2004-12-31 Dry 

 Landsat 8 2013-05-27 

2013-08-31 

Dry 

Wet 
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3.2 Characteristics of available images for each site 

A summary of the available data for the four study sites, namely Cameroon and DRC 

forested sites and Tanzania and Chad semi-arid sites, is given in Tables 3.3 and 3.4. The 

inter-seasonal comparison of the images is shown in Table 3.3 with all sensor-

polarisation combinations of the same incidence angle, apart from the L-band HH 

images for the Cameroon study site. The L-band HH images are of 25°-27° and 41° mean 

incidence angles. This shows the combination of images available for comparison 

between the wet and dry seasons for the Cameroon and Tanzania sites. Table 3.4 shows 

the frequency and polarisation of images available for comparison between the main 

development site and the additional site for both the forested and semi-arid areas. The 

combination of these frequency-polarisation images can be used to test the 

transferability of the land cover classification model to the additional sites. The 

TerraSAR-X HV and VH images for the Tanzania wet season site had unsatisfactory 

orthorectification results, as is discussed in Section 4.1, which as a result is not used in 

the model development and further analysis. 
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Table 3.3 The available images for each study site, with colours showing images to be used for an inter-seasonal 

comparison between the semi-arid and forested study sites. 

 

- available and used in further analysis 

 - available, but did not orthorectify correctly. Therefore not used in furthre analysis. 

Table 3.4 The available images for each study site, with colours showing the available images used for testing the 

transferability of the classification model to an additional study site for both the forested and semi-arid areas. 
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- available and used in further analysis 

 - available, but did not orthorectify correctly. Therefore not used in furthre analysis. 

 

All images were ordered as single-look complex (SLC) images, to allow for an automated 

orthorectification of the images. However, for a select number of TerraSAR-X images, 

only detected images were granted due to the sensitivity of the geographic locations. 

This is for the sites in the DRC and Chad, due to the civil conflict present in these areas 

during this timeframe. The TerraSAR-X images for these sites were therefore manually 

corrected by selecting ground-control points, to match the ENVISAT ASAR and ALOS 

PALSAR images. 
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3.3 General methodology for the three experiments 

The general methodology for the three experiments is underpinned by first getting the 

data in a useable format. This is covered in Chapter Four, and consists of the 

orthorectification of the images, creating an image overlap, calculating the derived 

layers, combing the images into a layer stack and finally to selecting samples of land 

cover classes as identified from available optical images. The derived layers that are 

calculated are interchannel ratios and texture measures from the backscatter coefficient 

data and elevation, slope and aspect layers from the SRTM data for the same sites. As 

part of the sample selection, the land cover polygons are randomly split between 

training and test sample areas. Samples from the test areas are then kept separate on 

which to evaluate the models. 

 

To assess whether multi-frequency SAR backscatter coefficient images, along with 

interchannel ratios and texture measures, can be used to successfully distinguish 

between land cover classes in the semi-arid and forested areas of Africa, random forest 

models are built for multiple scenarios. Once the data are in the correct format, the 

dataset is grouped into combinations of L-, C-, and X-band for the backscatter 

coefficients, interchannel ratios, texture measures and elevation data. Random forest 

models are run for each of these scenarios and the overall accuracies as well as class-

specific accuracies compared in Chapter Five. To assess which channels and / or derived 

variables separate the land cover classes the most, for both the wet and dry seasons, 

the variable importance measures from the random forest model are used. As part of 

the random forest model output, two measures of variable importance, namely mean 

decrease accuracy (MDA) and mean decrease Gini (MDG) are given and the classification 

accuracies of both measures are compared. The random forest models using the top 30 

variables of both MDA and MDG variable importance measures are compared for each 

of the sites and seasons. The same top 30 variables for each site/season are then used 

to train an SVM model and the overall classification accuracies are compared with those 

from the random forest models. The final chosen model is run on the whole image for 

the Cameroon wet season site, to see the results not only for the samples, but applied 

to the whole area where the SAR images overlap. 
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In Chapter Six, the random forest models developed in Chapter Five are applied to the 

different season of the same site, for both the forested and semi-arid sites, to assess the 

transferability of these models to a different season. Two types of comparisons were 

made, namely inter-season and inter-site comparisons, for the forested and semi-arid 

ecoregions (Figure 3.14).For the forested sites, the model developed on the Cameroon 

wet season samples are applied to the Cameroon dry season samples, and model 

developed on the Cameroon wet season samples is applied on the DRC wet season 

samples. For the semi-arid sites, the model developed on the Tanzania dry season 

samples is applied to the Tanzania wet season samples, and model developed on the 

Tanzania dry season samples is applied on the Chad dry season samples.  

 

 

Figure 3.14 The inter-season and inter-site comparison between the main and additional sites for the forested and 

semi-arid ecoregions. 

Since there are fewer images available for the additional site than for the main 

development site for both the forested and semi-arid ecoregions, the models had to be 

re-trained using only the available images and calculated feature layers from the 

additional sites (see Table 3.3 for available frequencies and polarisations for the inter-

season comparison and in Table 3.4 for the inter-site comparison). 
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In terms of the land cover class comparison, two approaches are followed here. Firstly 

to apply the model from the main development site directly to the additional season 

and additional sites using the exactly the same land cover classes. These are bare soil, 

dense trees, sparse vegetation, settlement and water for the forested sites; and bare 

soil, dense trees, sparse vegetation, settlement and agriculture for the semi-arid sites. 

The open woodland class was left out in these models, since it was not present in the 

additional sites for both the forested and semi-arid ecoregions. This direct application 

of the model would assess the transferability of the model directly for both the inter-

season and additional site comparison for the forested and semi-arid ecoregions. 

 

Secondly, a model is built, but keeping the classes as those that are site-specific. This 

implies that for the forested site the model is trained on the training datasets of both 

Cameroon wet and Cameroon dry season and applied on the test datasets of both the 

Cameroon wet and Cameroon dry season for the inter-season comparison. For the 

additional site comparison for the forested ecoregion, the model is trained on training 

datasets of both the Cameroon wet and DRC wet season sites; and applied on the test 

datasets of both the Cameroon wet and DRC wet season sites. The resulting land cover 

classes are CD-bare soil, CD-dense trees, CD-sparse vegetation, CD-settlement, CD-

water, CW-bare soil, CW-dense trees, CW-sparse vegetation, CW-settlement and CW-

water for the forested inter-season comparison; and CW-bare soil, CW-dense trees, CW-

sparse vegetation, CW-settlement, CW-water, DW-bare soil, DW-dense trees, DW-

sparse vegetation, DW-settlement and DW-water for the forested additional site 

comparison.  

 

Similarly for the semi-arid ecoregion, the model is trained on both the Tanzania dry 

season and Tanzania wet season training datasets and applied on the test datasets of 

both the Tanzania dry season and Tanzania wet season for the inter-season comparison. 

For the additional site comparison, the model is trained on training datasets of both the 

Tanzania dry and Chad dry season; and applied on the test datasets of both the Tanzania 

dry and Chad dry season. The resulting land cover classes are the TD-bare soil, TD-dense 

trees, TD-sparse vegetation, TD-settlement, TD-agriculture, TW-bare soil, TW-dense 
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trees, TW-sparse vegetation, TW-settlement and TW-agriculture for the semi-arid inter-

season comparison; and TW-bare soil, TW-dense trees, TW-sparse vegetation, TW-

settlement, TW-agriculture, ChD-bare soil, ChD-dense trees, ChD-sparse vegetation, 

ChD-settlement and ChD-agriculture for the semi-arid additional site comparison. Again, 

the open woodland class was left out in the site-specific land cover class models, since 

it was not present in the additional sites for both the forested and semi-arid ecoregions. 

The reason for the site-specific land cover classes, is to assess if the random forest model 

can distinguish the site-specific land cover classes as separable from each other. This can 

then be used to motivate a refinement of more land cover classes that the model can 

classify.  

 

To test whether the statistical distributions of the land cover classes of the main model 

site and the additional site are similar enough for the model to be transferable, the 

distributions are compared both visually and with a statistical measure in Chapter Seven. 

The statistical measure used to compare the distributions of the land cover classes is the 

Kullback-Leibler divergence (KLD). The visual comparisons are made for the backscatter 

coefficients, interchannel ratios, texture measures and elevation data. This was 

undertaken for the Cameroon wet season training vs test samples as a baseline measure. 

The visual comparison was also undertaken on the Cameroon wet vs dry season samples 

and the Cameroon wet season vs the DRC wet season samples. The KLD measures were 

computed and assessed for the backscatter coefficients and the top eight texture 

measures for the Cameroon wet season training vs test samples, Cameroon wet season 

vs dry season samples and the Cameroon wet vs DRC wet season samples. This shows 

how different the land cover SAR signal distributions are between the training and test 

samples, wet and dry seasons, and between the main development study site and the 

additional study site for the forested site in Cameroon. A similar comparison was 

performed for the semi-arid site in Tanzania, comparing the Tanzania dry season training 

vs test samples, Tanzania dry vs wet season samples and the Tanzania dry season vs 

Chad dry season samples. 
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To round off Chapter Seven, KLD class difference measures are calculated from the KLD 

measures, and related to the user’s accuracy of the relevant random forest models for 

both the forested and semi-arid sites. 

 

3.4 Sample selection of land cover types 

The land cover types for each site were identified by viewing very high resolution images 

from DigitalGlobe available on Google Earth. Apart from the DigitalGlobe images, the 

land cover types were also identified using available Landsat 8 images, which were 

processed to top-of-atmosphere reflectance for each site. The land cover classes 

identified for the Cameroon and Tanzania study sites were bare soil, dense trees, open 

woodland, sparse vegetation, settlements, water (Cameroon only) and agriculture 

(Tanzania only). An explanation of the land cover types with regards to woodland cover 

estimation and a description of each land cover type along with the relation of the land 

cover classes to LCCS (Di Grigorio, 2005) are shown in Table 3.5. The dense trees are 

closed woody vegetation in LCCS, the open woodland are open woody vegetation in 

LCCS. The sparse vegetation class is a combination of sparse woody vegetation and 

herbaceous closed to open vegetation in LCCS. Settlements are built-up areas, and the 

water land cover class is a combination of both the natural waterbodies and artificial 

waterbodies LCCS land cover classes. The agriculture land cover class is matched with 

the herbaceous crops LCCS land cover class. 

 

One of the challenges with regards to land cover classification across these African 

landscapes becomes apparent here. This is the lack of clearly defined boundaries 

between different land cover classes, with a gradual shift from one class to the next, 

ranging from areas of woodland with close to complete canopy cover (here named 

dense trees), to areas with a combination of shrubs, herbaceous cover and open woody 

vegetation with 15-65% canopy cover (named open woodland), areas with mixed 

vegetation of herbaceous cover, shrubs and woody canopy cover between 1-15% 

(named sparse vegetation) and areas with little to no vegetation (named bare soil). The 

settlement, water and agricultural areas are more distinct, although the settlement 
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areas often have mixed vegetation, and the agricultural areas could vary between bare 

soil and fully vegetated land, depending on the time of year. To enable a better 

understanding of the landscape, some examples of the land cover types identified are 

shown in Figures 3.15 to 3.17. Figure 3.15a shows the location of the land cover sample 

areas, which are shown more closely in Figure 3.16 for the Cameroon study site. Figure 

3.15b shows the location of the land cover sample areas, which is zoomed into in Figure 

3.17 for the Tanzania study site. 

 

The land cover classification using Google Earth was reliable to identify and distinguish 

the different land cover classes from each other. The main uncertainty from using 

Google Earth, is that the height of the vegetation is unknown, which might affect a finer 

land classification such as specific tree types. However, Google earth is being used 

increasingly as an alternative approach to ground truthing in the remote sensing 

research community (Thenkabail et al., 2009; Tehrany et al., 2013).  Google earth 

provides easy axxess to very high resolution imagery across the globe. The main 

challenge observed in this study, is the date and season differences between the 

imagery used in the research, compared to the acquisition date of the google earch 

imagery. An assumption is therefore made that the land cover classes remained the 

same between the two sets of imagery, to make reliable conclusions. 

 

By comparing the selected screenshots from Figure 3.16 and Figure 3.17, the difference 

between the landscape of the forested Cameroon site and more semi-arid Tanzania site 

can be seen. All the selected sample areas for the Cameroon and Tanzania sites are 

shown in Figure 3.18. The sample polygon areas are randomly grouped into training and 

test areas, with a 50:50 split for training:test data. From these training polygon areas, 

3000 pixels per land cover class are randomly selected as training samples. As test 

samples, another 3000 pixels per land cover class are randomly selected from the test 

polygon areas, which are different polygons to the training data areas.
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Table 3.5  The land cover types identified in the Cameroon and Tanzania study sites, with their woodland cover estimation and additional description. 

Land cover 
name 

Woodland 
cover 
estimate 

Description LCCS dichotomous 
phase 

LCCS description LCCS code LCCS classifiers used 

Dense trees 65-100% 
canopy 
cover 

Dense trees / forest A12. Natural and 
semi-natural 
terrestrial vegetation 

Closed woody 
vegetation 

A12A1A10 A-Life form: woody 
A-Cover: closed > 65% 

Open 
woodland 

15-65% 
canopy 
cover 

Mixed vegetation, trees, 
grassland, shrubs 

A12. Natural and 
semi-natural 
terrestrial vegetation 

Open woody 
vegetation 

A12A1A11 
 

A-Life form: woody 
A-Cover: open 65-15% 

Sparse 
vegetation 

1-15% 
canopy 
cover 

Mixed vegetation, trees, 
grassland, shrubs 

A12. Natural and 
semi-natural 
terrestrial vegetation 

Sparse woody 
vegetation /  
Herbaceous closed to 
open vegetation 

A12A1A14 / 
A12A2A20 

A-Life form: woody 
A-Cover: open 15-1% / 
A-Life form: herbaceous 
A-Cover: open 100-15% 

Bare soil  Bare soil , with possibly 
some vegetation 

A12. Natural and 
semi-natural 
terrestrial vegetation 
/ B16. Bare areas 

Herbaceous closed to 
open vegetation / Bare 
soil and/or other 
unconsolidated 
material(s) 

A12A2A20 / 
B16A5 

A-Life form: herbaceous 
A-Cover: open 100-15% 
A-Life form: woody 
A-Cover: sparse 15-1% / 
A-Surface aspect: bare soil and 
other unconsolidated materials 

Settlements  Settlements B15. Artificial 
surfaces and 
associated areas 

Built up area(s) B15A1 A-Surface aspect: built up 

Water 
(Cameroon) 

 Water B27. Artificial 
waterbodies, snow 
and ice / B28. Natural 
waterbodies, snow 
and ice 

Artificial waterbodies / 
Natural waterbodies 

B27A1 / B28A1 A- Physical status: water /  
A- Physical status: water 

Agriculture 
(Tanzania) 

 Agricultural fields A11. Cultivated and 
managed terrestrial 
areas 

Herbaceous crop(s) A11A3 A-Life form:  
Main crop-herbaceous 
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Figure 3.15 a) Cameroon study site with letters a-f referring to the land cover classes show in Figure 3.16. b) 

Tanzania study site with letters a-f referring to the land cover classes in Figure 3.17. © 2015 Google, Image © 2015 

DigitalGlobe. 
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Figure 3.16 Screenshots from Google Earth of selected sample areas of identified land cover classes for the 

Cameroon study site. Each image is 1km x 1km in size. © 2015 Google, Image © 2015 DigitalGlobe.  
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Figure 3.17  Screenshots from Google Earth of selected sample areas of identified land cover classes for the 

Tanzania study site. Each image is 1km x 1km in size. © 2015 Google, Image © 2015 DigitalGlobe.  
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Figure 3.18  Sample selection process for the Cameroon and Tanzania sites. © 2015 Google, Image © 2015 

DigitalGlobe.  
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The number of training and test samples were chosen as 3000 per land cover class, since 

larger samples ran into computational and memory constraints during the sample 

extraction step. Sample sizes of 1000, 3000 and 5000 were attempted, with 3000 giving 

satisfactory results, and computationally efficient. The number of pixels from the 

training and test samples selected for the Cameroon study site are shown in Table 3.6 

and for the Tanzania site in Table 3.7. The split between the training and test polygons 

was 50:50, but due to different numbers of pixels in each of the polygons, the % of pixels 

in the training and test polygons varies closer to a 40:60 split. For both the Cameroon 

and Tanzania test sites, 3000 pixels are selected for training and 3000 pixels for test for 

each land cover class. It can be noted that the Tanzania samples are much smaller areas, 

and as a result the 3000 pixels are a larger proportion of the total number of available 

sample pixels. 
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Table 3.6  Number of training and test samples available, training and test sample percentage split, and 3000 samples as a percentage of the available land cover samples, for the Cameroon 

study site. 

Cameroon    
      

Land cover Nr of training 
polygons 

Nr of test 
polygons 

Total nr 
of 
polygons 

Available 
training 
samples 

Available 
test 
samples 

Total 
available 
samples 

% pixels in 
available 
training 
samples 

% pixels in 
available 
test samples 

Chosen 3000 samples as % of 
available pixels 
 

for training for test 

Bare soil 10 10 20 18408 19423 37831 49 51 16 15 

Dense trees 17 16 33 21568 33924 55492 39 61 14 9 

Open 
woodland 

12 12 24 
112954 170696 283650 40 60 3 2 

Sparse 
vegetation 

16 16 32 
154016 202353 356369 43 57 2 1 

Water 4 4 8 232548 163835 396383 59 41 1 2 

Settlement 10 8 18 9288 10269 19557 47 53 32 29 
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Table 3.7  Number of training and test samples available, training and test sample percentage split, and 3000 samples as a percentage of the available land cover samples, for the Tanzania study 

site. 

Tanzania    
      

Land cover Nr of training 
polygons 

Nr of test 
polygons 

Total nr 
of 
polygons 

Available 
training 
samples 

Available 
test 
samples 

Total 
available 
samples 

% pixels in 
available 
training 
samples 

% pixels in 
available 
test samples 

Chosen 3000 samples as % of 
available pixels 
 

for training for test 

Agriculture 15 15 30 25608 16193 41801 61 39 12 19 

Bare soil 44 46 90 5442 5509 10951 50 50 55 54 

Dense trees 15 15 30 27788 26770 54558 51 49 11 11 

Open 
woodland 

25 25 50 
28108 17935 46043 61 39 11 17 

Sparse 
vegetation 

15 15 30 
13762 17645 31407 44 56 22 17 

Settlement 9 9 18 15789 19332 35121 45 55 19 16 
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Chapter Four Data preparation 

 

For the SAR data to be combined and compared between different sensors, all images 

need to be processed to the desired level. These pre-processing steps include 

orthorectification, calibration and mosaicking, calculating new information layers of 

interchannel ratios and texture calculations; and adding elevation, slope and aspect data 

from a SRTM DEM; and then combining it all in a layer stack (Figure 4.1). The data 

preparation and pre-processing steps follow the site selection and data selection from 

the archives as discussed in Chapter Three. Data preparation was necessary to translate 

the data in the correct format to be able to develop a classification model with the data. 

The data preparation consists of several pre-processing steps of: orthorectification of 

the images (Section 4.1), creating an image overlap (Section 4.2), calculating derived 

layers (Section 4.3) and combining the data all into a layer stack (Section 4.4). After the 

pre-processing steps, the data was extracted based on the land cover samples selected 

in Section 3.4.  
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Figure 4.1  Overview of the pre-processing steps, leading up to the model development. Numbers correspond to 
chapter and section numbers. 
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The land cover types were selected by identifying several land cover types, using the 

available very high resolution DigitalGlobe imagery. The land cover polygons were 

drawn and then randomly split into training and test areas from which samples were 

randomly selected for model development. 

 

These five data preparation steps listed above, are performed on the data for the main 

model development and additional study sites, i.e. for the Cameroon and Tanzania study 

sites, for main model development, for the forested and semi-arid areas respectively, 

and for the additional sites in the DRC and Chad. Once the data preparation was 

complete (pre-processing and sample selection), the data were in a format ready for 

model development and for comparison between several classification models (Chapter 

Five). After the models have been developed, they are ready to be applied to new data. 

The transferability of the models was tested, by applying the models on data from a 

different season and an additional site for the forested and semi-arid ecoregions 

(Chapter Six). Finally, the SAR signatures were visualized and compared for all the 

selected land cover types for the forested and semi-arid study sites (Chapter Seven). 

 

4.1 Orthorectification of images 

The main aim of the orthorectification or geo-terrain correction step is to align the 

images from the different SAR sensors with each other and to enable the placement of 

images on to a map, thus linking each pixel with a specific location on the earth’s surface. 

This process can usually be done relatively easily using ESA’s SAR software, Next ESA SAR 

Toolbox (NEST), but following this route did not allow all the images to overlap properly. 

The TerraSAR-X images and ENVISAT ASAR images overlapped well, but the ALOS 

PALSAR images did not match, due to incorrect orbital state vector information in the 

metadata.  This is a known issue, and after applying the ALOS deskewing application 

within NEST, it still did not lead to satisfactory results. 

 

To orthorectify the images, the GAMMA SAR and Interferometric software (Werner et 

al., 2000) was used. To automate the orthorectification using GAMMA, a Linux shell 
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script, originally written by Waldram (2014), was adapted and customized for this 

research. Waldram (2014) used the script to orthorectify multi-temporal ALOS PALSAR 

images to classify AGB for a region in Central Kalimantan in Indonesia. The script was 

modified to orthorectify ENVISAT ASAR and TerraSAR-X images in addition to the ALOS 

PALSAR images, and was run on all the available single-look complex (SLC) images. As 

part of the GAMMA script, the images need a reference image to be aligned to. As a 

reference image, panchromatic Landsat images were mosaicked together, for each 

study site. The reference image needs to cover a larger geographic area than the SAR 

image that is being orthorectified. Other options are to use an SRTM DEM or a 

combination of a Landsat image and SRTM DEM (Lucas et al., 2007) or an already 

orthorectified SAR image. The use of panchromatic Landsat images was chosen as it has 

a higher spatial resolution of 15x15m compared to the SRTM DEM with 90x90m. This is 

closer in line to the SAR images with a spatial resolution between 5-15m, as is discussed 

in more detail later in this section. The use of panchromatic Landsat images produced 

good results for most of the images.  

 

As part of the GAMMA orthorectification steps, the final model fit of the 

orthorectification procedure is reported in the metadata. The maximum final model fit 

standard deviation in the range and azimuth direction for each site/season/sensor 

combination are presented in Table 4.1. All the images used in this research produced 

sub-pixel orthorectification accuracy, with the exception of the DRC wet season L-band 

images, which had approximately 1.5 pixels standard deviation in both the range and 

azimuth directions. The orthorectification of the Tanzania wet season TerraSAR-X 

images resulted in large standard deviation errors of 22 pixels in both the range and 

azimuth directions. As a result, it was therefore decided not to use the Tanzania wet 

season TerraSAR-X images for the remainder of the research. The enhanced ellipsoid 

corrected (EEC) TerraSAR-X images were already orthorectified by the DLR. A visual 

comparison was undertaken to establish whether these images are aligned to the ALOS 

PALSAR and ENVISAT ASAR images.  
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Table 4.1 The images used in this research with the final model fit standard deviation in the range and azimuth 

directions. 

Site Season Sensor SLC/ 
EEC 

Number 
of images 

Polarisations Maximum final 
model fit  
standard deviation 
(samples) 

      Range Azimuth 

Cameroon Wet L SLC 4 Quad  0.45 0.63 

  C SLC 2 Dual VV/VH 0.97 0.52 

  X SLC 4 Dual HH/HV,  
Dual VV/VH 

0.65 0.80 

Cameroon Dry L SLC 1 HH 0.32 0.67 

  C SLC 2 Dual VV/VH 0.97 0.47 

  X SLC 4 Dual HH/HV,  
Dual VV/VH 

0.65 0.77 

DRC Wet L SLC 5 Quad 
HH 

1.49 1.59 

  C SLC 3 VV 
Dual HH/HV 

0.37 0.58 

  X EEC 2 HH, VV - 3 - 3 

Tanzania Dry L SLC 6 Quad 
Dual HH/HV 

0.54 0.82 

  C SLC 2 Dual VV/VH 0.38 0.43 

  X SLC 1 VH4 0.59 0.61 

Tanzania Wet L SLC 2 HV, VH4 0.32 0.48 

  C SLC 2 Dual VV/VH -1 -1 

  X SLC 2 HV, VH4 22.052 22.562 

Chad Dry L SLC 6 Quad 
Dual HH/HV 

0.40 0.34 

  C SLC 2 Dual HH/HV 0.31 0.02 

  X EEC 2 Dual HH/HV - 3 - 3 

1 The geocoding information is stored on the ALICE server for three months, and this information was 

unfortunately lost as a result. Upon visual inspection it was decided to still use these images. 

2 The high range and azimuth values for the Tanzania wet season TerraSAR-X images. It was decided not 

to use these images in the analysis, due to the sub-optimal orthorectification result. 

 3 The EEC images were ordered orthorectified, and these were used as is. A visual comparison was done 

to assess the alignment with the ALOS PALSAR, ENVISAT ASAR images. 

4 Not all SLC polarisation images resulted in orthorectified images with the GAMMA script. Only the SLC 

images that successfully orthorectified by the GAMMA script are listed here. 
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Figure 4.2 shows the GAMMA script steps, which include multi-looking, radiometric 

calibration, geocoding/orthorectification of the image and creation of an ENVI header 

file (.hdr), to enable the orthorectified image to be opened in any standard remote 

sensing or GIS software. 

 

 

Figure 4.2  First step of the pre-processing workflow, to create orthorectified images. 

 

 

Figure 4.3 shows a comparison of the spatial resolution of different sensors after the 

multi-looking step. The images are multi-looked and resampled to the nearest 5m 

interval, as set out in Table 4.2, to allow for relatively easy layer comparison and stacking 

of the images. The TerraSAR-X images were first multi-looked and then resampled to 

5m, ALOS PALSAR to 10m, and ENVISAT ASAR to 15m spatial resolution. After the 
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GAMMA orthorectification script, the images were still in a linear format, and were 

converted to a dB scale using a log conversion in the following steps. 

 

 

Figure 4.3  Spatial resolution comparison for the multi-looked and spatially resampled images used in this study, 

from ENVISAT ASAR, ALOS PALSAR and TerraSAR-X. 

 

The GAMMA script was run on the ALICE High Performance Computing Facility at the 

University of Leicester, due to the high volume and large size and of the files. 

Additionally, ALICE was the only access to an implementation of the GAMMA software 

at the University of Leicester. 

 

Table 4.2  Multi-looking applied in the range and azimuth direction for each sensor to achieve the listed spatial 

resolutions. 

Sensor Original 
Spatial 
resolution 
Range (m) 

Original 
Spatial 
resolution 
Azimuth (m) 

Multi-
looking 
Range 

Multi-
looking 
Azimuth 

Spatial 
resolution 
Range (m) 

Spatial 
resolution 
Azimuth 
(m) 

Resampled 
Spatial 
resolution, 
Range and 
Azimuth (m) 

ALOS 
PALSAR 

9.369 3.534 1 3 9.369 10.603 10m 

ENVISAT 
ASAR 

7.804 3.954 2 4 15.608 15.818 15m 

TerraSAR-X 0.909 2.410 5 2 4.547 4.821 5m 

TerraSAR-X 

ALOS PALSAR 

ENVISAT ASAR 

5m 10m 15m 
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4.2 Creation of image overlap 

As was shown when the study sites were introduced in Chapter Three, only a relatively 

small area coincides between the images from the three sensors for each site. The steps 

of how to create this overlap-area are shown in Figure 4.4. Starting with the 

orthorectified images from the GAMMA script, the images were copied from ALICE to a 

local laptop. Some file manipulation steps were necessary, such as moving the files all 

to a single folder, converting the images from ENVI format to .tif files and mosaicking 

the images that were acquired as part of the same orbit.  

 

A shapefile was created of each image, which is then used to obtain the area of overlap 

between all the shapefiles. The ENVI to .tif conversion, mosaicking, shapefile creation 

and overlap calculation were all performed using the Geospatial Data Abstraction 

Library (GDAL) (GDAL, 2013). 

 

After an overlap for each study site was obtained, the overlap shapefile was used to 

extract that portion of the data from each of the images. After the relevant portions of 

the images were obtained, the intensity images were converted from a linear scale to 

sigma-naught (σ0), which is in a decibel (dB) scale, with Equation 4-1: 

 

 𝜎𝑃𝑄
0 =  10 ×  𝑙𝑜𝑔10(𝑆𝑃𝑄) Equation 4-1 

 

where SPQ is the linear scale intensity in PQ polarization, with P either horizontally  or 

vertically transmitted, and Q either horizontally or vertically received. The σ0-images are 

now in the familiar -0.40 to -0.05 range (approximately), and are used in this form for 

the classification model development. 
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Figure 4.4 Second step of the pre-processing workflow, creating overlap areas from the SAR images for each site, 

creating a layer stack and converting from linear to dB scale. 
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4.3 Calculation of derived layers 

Three sets of derived layers were calculated, namely interchannel ratios, texture 

measures and DEM-derived layers. This increases the data dimensionality from just the 

backscatter coefficients to a multitude of information layers that can be used for 

classification model development. 

 

4.3.1 Interchannel ratios 

In terms of interchannel ratios, there are several image manipulations that can be 

calculated to enhance the information content between the various polarisation 

channels (e.g. ratios, sums and differences). The phase-related calculations, such as the 

phase difference and fully polarimetric decompositions, are excluded from this study. 

This was necessary because this study aimed to derive a classification algorithm from 

the channels that can be used from dual-polarized and single polarized SAR images.  

 

The interchannel ratios that were calculated are listed in Table 4.3. Most of the 

interchannel ratios were performed on the linear scale of the SAR images. The 

backscatter coefficients 𝜎𝐻𝐻
0 , 𝜎𝑉𝑉

0  and 𝜎𝐻𝑉
0  along with the co-polarisation ratio and de-

polarisation ratio have been used in sea-ice classification from SAR images (Dierking et 

al., 2003). The cross-polar backscatter coefficient 𝜎𝐻𝑉
0  have been used for agricultural 

crop classification whilst the ratios in dB have been used for bare soil and vegetation 

classification (Buckley, 2002; Quegan et al., 2003). The linear ratios and linear sum 

calculations have been used for land cover and terrain characterization (Simental et al., 

2005). Several interchannel ratios have been added in this study, that were not 

mentioned in Simental et al. (2005). These are:  SHH + SHV, SVV + SVH, SVV − SVH, 
𝑆𝐻𝐻−𝑆𝐻𝑉

𝑆𝐻𝐻+𝑆𝐻𝑉
 

and 
𝑆𝑉𝑉−𝑆𝑉𝐻

𝑆𝑉𝑉+𝑆𝑉𝐻
. This is to complete the possible feature space of calculations. The 

normalised difference interchannel index calculations are similar in information content 

to the linear difference calculations, but normalise the images in a similar way in which 

the normalised difference vegetation index (NDVI) is calculated from optical imagery. 
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Table 4.3  The interchannel ratios, sums and differences used in this study, extended from Lönnqvist et al. (2010). 

Name of 
calculation 

Equation Eq. Previous 
application 

Reference 

Backscatter 
coefficients 

σHH
0 =  10 ∙ log10(SHH) 4-2 Sea ice (Dierking et al., 2003; 

Skriver et al., 2003) 
σVV
0 =  10 ∙ log10(SVV) 4-3 

σHV
0 =  10 ∙ log10(SHV) 4-4 Agriculture 

(crops), sea ice 
(Quegan et al., 2003; 
Skriver et al., 2003) 

Ratios in dB 
rdBVH/VV = 10 ∙ log (

|SVH|
2

|SVV|
2
) 

4-5 Bare soil / 
vegetation 

(Quegan et al., 2003) 

 
rdBVV/HH = 10 ∙ log (

|SVV|
2

|SHH|
2
) 

4-6 Vegetation 
types 

 

(Buckley, 2002) 

 

 
rdBHV/HH = 10 ∙ log (

|SHV|
2

|SHH|
2
) 

4-7 

Co-
polarisation 
ratio 

γ =  
σVV
0

σHH
0  

4-8 Sea ice 

 

(Dierking et al., 2003) 

Depolarisation 
ratio δ =  

σVV
0

σHH
0 + σVV

0  
4-9 (Dierking et al., 2003; 

Skriver et al., 2003) 

Linear ratios 
rlinearHH/VV =

SHH
SVV

 
4-10 Terrain 

characterization, 
land cover  

(Simental et al., 2005)  

(1) Variation of (Simental 
et al., 2005) 

 

 

 

 

 

 

 
rlinearVH/VV =

SVH
SVV

 
4-11 

 
rlinearHV/HH =

SHV
SHH

 
4-12 

Linear Sums  SHH + SVV 4-13 

 SHH + SHV    
(1) 4-14 

 SVV + SVH  
(1) 4-15 

Linear 
Differences 

SHH − SVV 4-16 

 SHH − SHV 4-17 

 SVV − SVH  
(1) 4-18 

Normalised 
difference 
interchannel 
indices 

 

 

𝑆𝐻𝐻 − 𝑆𝑉𝑉
𝑆𝐻𝐻 + 𝑆𝑉𝑉

 
4-19 

𝑆𝐻𝐻−𝑆𝐻𝑉

𝑆𝐻𝐻+𝑆𝐻𝑉
  (1) 4-20 

𝑆𝑉𝑉−𝑆𝑉𝐻

𝑆𝑉𝑉+𝑆𝑉𝐻
  (1)

 4-21 
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4.3.2 Texture measures of SAR images 

To increase data dimensionality further, several texture measures are calculated for 

each of the SAR images. The Grey-Level Co-occurance Matrix (GLCM) texture 

measurements are the most widely used texture measures for images (Haralick et al., 

1973). Haralick et al. assessed the use of several texture measures for different types of 

image data, including multispectral satellite imagery from Landsat 1 with seven land-use 

categories. A piecewise linear discriminant function classification algorithm was used for 

the multispectral satellite image, giving 83% classification accuracy on a test data set. 

 

Fourteen different texture measures were introduced by Haralick et al. (1973). They are 

Angular Second Moment (ASM), Contrast (CON), Correlation (COR), Sum of Squares 

Variance (VAR), Inverse Difference Moment (IDM), Sum Average (SA), Sum Variance 

(SV), Sum Entropy (SENT), Entropy (ENT), Difference Variance (DVAR), Difference 

Entropy (DENT), two measures of Information Measures of Correlation (IMCOR1, 

IMCOR2) and Maximal Correlation Coefficient (MAXCOR). These texture measures use 

the matrix known as the Grey-Level Co-occurance Matrix (GLCM) to derive the texture 

measures. The GLCM is a matrix that defines how often each grey-level occurs next to 

every other grey-level in a certain distance and direction. This is calculated for an image 

using a moving window at a specific square window size (e.g. 3x3, 5x5, 7x7 etc). The 

GLCM is given by 

 

 

𝐺𝐿𝐶𝑀 = 

[
 
 
 
𝑃(1,1) 𝑃(1,2) ⋯ 𝑃(1,𝑁𝑔)

𝑃(2,1) 𝑃(2,2) … 𝑃(2,𝑁𝑔)

⋮
𝑃(𝑁𝑔, 1)

⋮
𝑃(𝑁𝑔, 2)

⋱
…

⋮
𝑃(𝑁𝑔, 𝑁𝑔)]

 
 
 

 ÷  ∑ 𝑃𝑖𝑗

𝑁𝑔

𝑖,𝑗=1

 

            =  

[
 
 
 
𝑝(1,1) 𝑝(1,2) ⋯ 𝑝(1,𝑁𝑔)

𝑝(2,1) 𝑝(2,2) … 𝑝(2, 𝑁𝑔)

⋮
𝑝(𝑁𝑔, 1)

⋮
𝑝(𝑁𝑔, 2)

⋱
…

⋮
𝑝(𝑁𝑔, 𝑁𝑔)]

 
 
 

                    

 

 

 

 

Equation 

4-22 

 

where  𝑁𝑔 is the number of distinct grey levels in the image, and element P(i,j) is the 

number of times a pixel with value i is next to (or at a specified distance away from) a 
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pixel with value j. The matrix is then normalized by dividing each element by the total 

number of occurrences, resulting in a probability (Haralick et al., 1973; Boland, 1999). 

The GLCM probability measure, which is dependent on the inter-pixel distance (δ) and 

orientation (θ), can therefore be defined by: 

 

 Pr(𝑥) = { 𝑝(𝑖, 𝑗) |  (𝛿, 𝜃) } Equation 4-23 

 

where the co-occurrence probability between grey levels i and j is defined as: 

 

 
𝑝(𝑖, 𝑗) =  

𝑃𝑖𝑗

∑ 𝑃𝑖𝑗
𝑁𝑔
𝑖,𝑗=1

 
Equation 4-24 

 

where 𝑃𝑖𝑗 is the number of occurrences of grey levels i and j within a given window, 

given the inter-pixel distance δ, orientation θ and  the number of distinct grey levels 𝑁𝑔 

(Haralick et al., 1973; Clausi, 2002). To enable the calculation of the GCLM matrices, all 

the SAR images are rescaled between 1 and 64 in the linear domain. This is called the 

quantization level. The quantization level can affect the classification results and 

contrary to expectation, a higher quantization level (e.g. 128 or 256) can have lower 

classification accuracy than a lower quantization level. Contrast and Entropy are the two 

recommended texture measures by Clausi (2002), and a quantization of greater than 24 

grey levels is also recommended by Clausi (2002).  

 

The GLCM can be calculated in four orientation directions, namely 0°, 45°, 90° and 135°. 

What is often done to derive orientation invariant texture measures, is to calculate the 

average of all four orientation angles, as is done in this study. A summary of GLCM 

texture measures used for SAR image classification in other publications is listed in Table 

4.4. As first order statistics, which use the pixel values directly, the neighbourhood mean 

(MEAN) for a given window size is calculated. As second order statistics, which use the 

co-occurrence of grey-levels in a given window size, four GLCM texture measures are 

calculated in this study, namely contrast, correlation, entropy and variance. 
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Table 4.4  Summary of texture measures used in other studies for the classification of SAR images. 

Publication Application Sensor Spatial 
resolution 

Texture 
measure 

Window 
size 

Kuplich et 
al., 2005 

Biomass 
estimation 

JERS-1  

(L-band) 

25m CON 3x3,5x5 

Peng et al., 
2005 

Land cover, 
mountains 

Radarsat 12.5m CON,ENT,COR, 

ASM,MEAN 

17x17 

Herold et 
al., 2004 

Water, 
agriculture, 
bare, urban 

SIR-B  

(L-band) 

12.5m Variance 21x21 

Urban Radarsat 25m Variance 13x13 

Clausi, 2002 Sea ice Aerial 
SAR 

100m CON, ENT, COR 8x8 

  Radarsat 150m 16x16 

Anys, 1995 Agricultural 
crops 

Convair-
580  

(C-band) 

12.5m MEAN,  

VAR (1st order), 

CON,  

VAR (2nd order) 

7x7 

 

The neighbourhood mean is calculated by: 

 

 
𝑓𝑚𝑒𝑎𝑛 = 

∑ 𝑥𝑘
𝑁
𝑘=1

𝑁
 

Equation 4-25 

 

where N is the number of pixels in the window, and 𝑥𝑘 is the grey tone value of pixel k. 

 

Contrast is given by: 

 

 

𝑓𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ 𝑛2

{
 

 
∑ ∑𝑝(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1
|𝑖−𝑗|=𝑛 }

 

 
𝑁𝑔−1

𝑛=0

 

 

Equation 4-26 
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Correlation is calculated by: 

 

 
𝑓𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 

∑ ∑ (𝑖𝑗)𝑝(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝑗𝑖

𝜎𝑥𝜎𝑦
 

Equation 4-27 

 

where μx, μy, σx and σy are the means and standard deviations of px and py. 

 

Entropy is calculated as per Equation 4-28: 

 𝑓𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −∑∑𝑝(𝑖, 𝑗) log( 𝑝(𝑖, 𝑗))

𝑗𝑖

 Equation 4-28 

 

with p(i,j) as defined by Equation 4-22 and Equation 4-23. 

 

Variance is calculated as per Equation 4-29: 

 𝑓𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑∑(𝑖 − 𝜇)2𝑝(𝑖, 𝑗)

𝑗𝑖

 Equation 4-29 

 

with μ the mean of p(i,j) for the moving window and p(i,j) defined by Equation 4-24. The 

variance is also referred to as the Sum of Squares (Haralick et al., 1973). 

 

As mentioned, the texture calculations are applied at a specific window size. To relate 

the texture measures to features on the ground, the spatial resolution of the image has 

to be taken into account. The interpretation of the window size is therefore dependent 

on the spatial resolution of the sensor. Table 4.5 show how the window size and sensor 

spatial resolution relates to the footprint area on the surface on the ground. The 

highlighted sections show the window sizes at which the texture measures are 

calculated for this study. 

  

Figure 4.5 shows a graphical representation of the footprint areas of the texture 

measures for the different sensors on a relative scale. It can be seen that a 9x9 window 

size on 5m TerraSAR-X imagery have an equivalent footprint of a 3x3 15m ASAR image, 
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and is comparable to a 5x5 10m PALSAR image. Similarly a 15x15 window size 5m 

TerraSAR-X image has the same footprint as a 5x5 15m ASAR image and is similar to a 

7x7 10m PALSAR image. This comparison shows that the high spatial resolution of 

TerraSAR-X has a significant impact on the effectiveness and granularity of the texture 

calculations compared to the coarser resolutions of ALOS PALSAR and ENVISAT ASAR. 

The motivation for calculating the contrast, correlation, entropy and variance texture 

measures along with the neighbourhood mean at the selected window sizes, is to 

provide many additional information layers to enhance the classification of the chosen 

land cover types. 

 

Table 4.5 The footprint area covered in meters by the texture calculation, for each sensor, at different window sizes. 

Window 
size 

TSX 
(5m) 

PALSAR 
(10m) 

ASAR 
(15m) 

   

3 15 30 45    

5 25 50 75    

7 35 70 105   Texture window 
sizes calculated 9 45 90 135   

11 55 110 165   

13 65 130 195    

15 75 150 225    

17 85 170 255    

19 95 190 285    

 

 

The mean, entropy and contrast texture measures of L-HH image, were found useful to 

distinguish dense trees and and bare soil land cover classes (Figure 4.6). Similarly, the 

mean, entropy and contrast texture measures of X-VV give a similar separation between 

dense trees and bare soil (Figure 4.7).  

 



95 

 

 

Figure 4.5 Comparison of the footprints of the different window-sizes used for the texture calculations for TerraSAR-X, ALOS PALSAR and ENVISAR ASAR. 
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Figure 4.6 Texture measures at various window sizes for ALOS PALSAR (L-HH), highlighting dense trees and bare soil. 
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Figure 4.7 Texture measures at various window sizes for TerraSAR-X (X-VV), highlighting dense trees and bare soil. 
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Figure 4.8 Texture measures at various window sizes for ALOS PALSAR (L-HH), highlighting settlements. 
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Figure 4.9 Texture measures at various window sizes for TerraSAR-X (X-VV), highlighting settlements. 
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The entropy and contrast texture measure of X-VV works well to identify settlemnt areas 

(Figure 4.8), whereas the contrast texture measure of L-HH emphasised the settlement 

areas as well (Figure 4.9). The mean texture measure does not highlight the settlement 

areas as it did for the dense trees and bare soil areas. By comparing the contrast texture 

measure of L-HH with X-VV, it is noted that different areas of the settlement are 

highlighted by the two frequencies. The variance texture measure looked very similar to 

the contrast images, whereas the correlation texture measure did not provide visually 

meaningful results for the dense trees, bare soil and settlement land cover classes. 

 

4.3.3 Elevation data from DEM 

The SRTM elevation data are used as part of the orthorectification data preparation step 

in Section 4.1. Since the SRTM data are readily available, elevation data along with the 

derived slope and aspect information are used as additional information layers. 

Furthermore, the inclusion of elevation, aspect and slope has been shown to increase 

the accuracy of land cover mapping (Peng et al., 2005). 

 

All interchannel ratios, texture measures and the SRTM-derived elevation layers were 

processed using the open source software GRASS GIS (Neteler et al., 2012). 

 

4.4 Combining images into a layer stack 

To enable utilisation of all the available backscatter coefficient images for each site, 

along with the derived layers of interchannel ratios, texture measures and DEM-derived 

layers, all the images were combined into a layer stack. In order to do this the images 

were all resampled to 5m spatial resolution, using nearest neighbour resampling.  

 

To recap the preceding steps:  

 The images is first orthorectified (Section 4.1),  

 then, an area of overlap is calculated, which is used to extract the overlapping 

area from the orthorectified images (Section 4.2).  
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 Several additional information layers are calculated, namely interchannel ratios, 

texture measures and DEM-derived layers (Section 4.3).  

 All of these layers are then combined into a layer stack (this section, Section 4.4). 

 

Figure 4.10 shows the layer stack creation for the Cameroon and Tanzania study sites. 

First, the stack of multi-frequency SAR images is shown on the left hand side of the 

figure. Secondly, the separation of images into dry season and wet season sets is shown 

in the centre of the figure. Thirdly, on the right-hand side of the figure, the expanded 

stacks are shown which include the multi-frequency SAR images, the interchannel ratio 

layers, the selected texture layers at various window sizes and the DEM-derived 

information layers of the elevation, slope and aspect. Combining all the layers together 

came to 165 layers for the Cameroon dry site, 245 layers for the Cameroon wet season 

site, 219 layers for the Tanzania dry site and 134 layers for the Tanzania wet season site. 

The number of layers were not too much for classification, since it is straightforward to 

be dealt with by machine learning algorithms such as random forests. 

 

Where possible, a virtual stack (.vrt) file format is preferred to a single image containing 

all the layers, for the sake of more efficient disk space allocation, with each set of site-

season stack of images in the order of 10-30 Gb of data. Once all the data preparation 

steps had been completed, the layer stacks were then ready for sample selection 

(Section 3.4) in preparation for the land cover classification model development 

(Chapter Five). 
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Figure 4.10  Layer stack creation and additional layer calculation of the Cameroon and Tanzania SAR images. 
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Chapter Five Random forest and SVM classification of multi-

frequency SAR over Cameroon and Tanzania study sites 

 

In this chapter, the classification accuracies of random forests and SVMs, using different 

frequency combinations and input-variable scenarios, are compared. This is undertaken 

for the Cameroon (forested) and Tanzania (semi-arid) sites in both the wet and dry 

seasons. As part of the random forest model, measures of variable importance are given, 

namely the MDA and MDG. These variable importance measures enable the selection 

of those that are most important for building a model, with a sufficient number of 

variables to give a high level of accuracy but without an excessive number of variables. 

This therefore reduces unnecessary complexity of the model. 

 

Random forests is an ensemble classifier that has proved to be a highly efficient non-

parametric classification technique (Breiman, 2001; Waske and Braun, 2009). SVMs are 

not an ensemble classifier, but still provide superior classification accuracies to 

traditional classifiers in most scenarios (Cortes and Vapnik, 1995; Waske and 

Benediktsson, 2007) (see Section 2.6).  

 

As a results, the main algorithm investigated was first random forests and secondly 

SVMs. Fist, the different combinations of frequencies for different input scenarios were 

compared using random forests. In this process, all the available variables are compared, 

ranked and discussed. The available variables include: the backscatter coefficients for all 

frequencies and polarisations in 𝜎0-values (which are measured in decibels (dB) such as 

L-HH, C-VH etc.), the interchannel ratios and a selection of texture measures and 

elevation data (see Section 4.3). From all the available input variables, the 30 most 

important were chosen to build a random forest model for land cover classification for 

both the semi-arid and forested areas. The top 30 variables were chosen to train the 

random forest models with only a minor decline in overall accuracy compared to a 

random forest model using all available variables. As a second comparison, the top 30 

variables were in used to train a SVM model and classification accuracies were 
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compared to that of the random forest model. The transferability of these models to an 

additional study site was tested in Chapter Six. 

 

5.1 Introduction 

The objective of this study was to compare the classification accuracies of land cover 

classification using single frequency L-, C-, X-band images, with dual-frequency 

combinations of LC, LX, CX-bands and three-frequency LCX-band images. This study 

addresses the question of: what is the added benefit of using two or three frequencies, 

compared to only one frequency? In order to achieve this objective a comparison was 

conducted on random forest classification models of the different band combinations 

(L-, C-, X-band, LC-, LX-, CX- and LCX-bands) for each of the available study site / season 

scenarios (i.e. for Cameroon dry season, Cameroon wet season, Tanzania dry season and 

Tanzania wet season). Apart from the standard radar backscatter coefficients, several 

additional input layers (calculated as set out in Section 4.3) are compared for each 

frequency combination. The list of options that are investigated for each frequency 

combination is: 

 all layers (backscatter coefficients, interchannel ratios,  

       texture measures and elevation data) 

 backscatter coefficients only 

 interchannel ratios only 

 texture measures only 

 elevation data only 

 backscatter coefficients and interchannel ratios 

 backscatter coefficients and texture measures  

 backscatter coefficients and elevation data 

 backscatter coefficients, interchannel ratios and texture 
measures 

 

The methodology of comparing the different combinations is discussed further in 

Section 5.2. 
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5.2 Specific methodology for developing the classification algorithms 

The methodology followed in this study was a standard supervised classification 

involving sample selection, training / test data split, model development on the training 

data and testing the model on the test data.  

 

5.2.1 Input variable combination scenarios 

The input layer stack of data was split into different combinations of input variables as 

set out in Table 5.1. Each of the frequency combinations of L-, C-, X-band, LC, LX, CX and 

LCX-bands were combined with a combination of the available input layers (backscatter 

coefficients, interchannel ratios, texture measures and elevation data). For each of these 

input variable scenarios, a random forest model was trained. The number of trees of 

each forest was kept to 500, which is the default for the random forest implementation. 

The default value of 500 was often used in other studies (Waske and Braun, 2009; 

Naidoo et al., 2012). The random forest model development was undertaken using the 

R statistical programming language (R-Core-Team, 2014). The standard implementation 

of random forests (Breiman and Cutler, 2001) is the randomForest package in R (Liaw 

and Wiener, 2002). The randomForest package was used to train the random forest 

models for each of the input variable scenarios. As part of the output from the 

randomForest package, the model, variable importance measures and class-specific and 

overall accuracies for each of the input variable scenarios are given. The different input 

variable scenarios are shown in Table 5.1, with the classification accuracies based on the 

test data for each scenario plotted in Section 5.3.1. 
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Table 5.1 List of scenarios investigated for model input comparison. 

Name of 
scenario 

Frequency Included layers 
in scenario 

 Name of 
scenario 

Frequency Included layers 
in scenario 

L - dBite L 𝜎0, i, t, e  L - dBi L 𝜎0, i 

C - dBite C 𝜎0, i, t, e  C - dBi C 𝜎0, i 

X - dBite X 𝜎0, i, t, e  X - dBi X 𝜎0, i 

LC - dBite LC 𝜎0, i, t, e  LC - dBi LC 𝜎0, i 

LX - dBite LX 𝜎0, i, t, e  LX - dBi LX 𝜎0, i 

CX - dBite CX 𝜎0, i, t, e  CX - dBi CX 𝜎0, i 

LCX - dBite LCX 𝜎0, i, t, e  LCX - dBi LCX 𝜎0, i 

L - dB L 𝜎0  L - dBt L 𝜎0, t 

C - dB C 𝜎0  C - dBt C 𝜎0, t 

X - dB X 𝜎0  X - dBt X 𝜎0, t 

LC - dB LC 𝜎0  LC - dBt LC 𝜎0, t 

LX - dB LX 𝜎0  LX - dBt LX 𝜎0, t 

CX - dB CX 𝜎0  CX - dBt CX 𝜎0, t 

LCX - dB LCX 𝜎0  LCX - dBt LCX 𝜎0, t 

L - i L i  L - dBe L 𝜎0, e 

C - i C i  C - dBe C 𝜎0, e 

X - i X i  X - dBe X 𝜎0, e 

LC - i LC i  LC - dBe LC 𝜎0, e 

LX - i LX i  LX - dBe LX 𝜎0, e 

CX - i CX i  CX - dBe CX 𝜎0, e 

LCX - i LCX i  LCX - dBe LCX 𝜎0, e 

L - t L t  L - dBit L 𝜎0, i ,t 

C - t C t  C - dBit C 𝜎0, i, t 

X - t X t  X - dBit X 𝜎0, i, t 

LC - t LC t  LC - dBit LC 𝜎0, i, t 

LX - t LX t  LX - dBit LX 𝜎0, i, t 

CX - t CX t  CX - dBit CX 𝜎0, i, t 

LCX - t LCX t  LCX - dBit LCX 𝜎0, i, t 

LCX – e none e     

  

 

 

 

where         𝜎0:    Backscatter coefficients 

    i:     Interchannel ratios 

    t:    Texture measures 

   e:    Elevation data 
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5.2.2 Variable importance measures from random forest modelling 

As part of the standard implementation of the random forests, two measures of variable 

importance are given, namely the MDA and MDG. Random forests is introduced in 

Section 2.6.1. As each individual tree of the random forest is built, a third of the samples 

are left out, and the tree is only built on two thirds of the samples. Cross-validation, or 

a separate test set to get an unbiased estimate of the test set error, is not necessary in 

random forests, as the OOB error estimate can be used instead (Breiman, 2001; Breiman 

and Cutler, 2001). However, an additional test dataset was still used in this research to 

assess the classification accuracy of applying the model to data from the same image, 

but different polygon areas. The random forest MDA and MDG variable importance 

techniques are often used as feature selection techniques (Díaz-Uriarte and Alvarez de 

Andrés, 2006; Rodriguez-Galiano et al., 2012b; Gromski et al., 2014).  

 

Feature selection are broadly grouped into three groups for filter methods, wrapper 

methods and embedded techniques (Saeys et al., 2007). Filter methods ranks the 

variables by assessing each variable individually (although some muti-varaite filter 

methods have been developed), and  include information gain and random k-nearest 

neighbour feature selection (Li et al., 2011). Wrapper methods wraps a search algorithm 

within a classification model, to evaluates specific subset of features, such as SVM 

Recursive Feature Elimination (Pal and Foody, 2010). Embedded feature selection 

methods are built into the classifier, such as the random forest feature selection 

techniques. Variants of the standard random forest variable importance measures are 

conditional variable importance for random forests (Strobl et al., 2008) ,area under the 

curve (AUC) based permutation variable importance measures (Janitza et al., 2013), and 

variable importance measure for random forests with missing values (Hapfelmeier et al., 

2014). However, in this research the standard random forest variable importance 

measures MDA and MDG were used. 
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5.2.2.1 Mean decrease accuracy (MDA) 

The MDA is based on the permutation importance of each variable. The permutation 

importance was given in Strobl et al. (2008), which is re-stated here. The MDA works as 

follows: when the values of predictor variable Xj is randomly permuted (re-ordered), and 

predictor variable Xj is important, then the prediction accuracy of the response variable 

in conjunction with the non-permuted variables will decrease as a result, as applied on 

the OOB sample. When values of Xj are randomly permuted and the prediction accuracy 

is not important, then the prediction accuracy on the OOB sample will not be affected. 

The MDA is then the difference between the prediction accuracy before permuting Xj 

and after permuting Xj, averaged over all the trees in the RF. The mathematical notation 

of this is given by: 

 

Let 𝑂𝑂𝐵̅̅ ̅̅ ̅̅ (𝑡) be the OOB sample for a tree 𝑡, with 𝑡 ∈ (1,…,ntree) and 𝑛𝑡𝑟𝑒𝑒 the number 

of trees in the random forest model. The variable importance (VarImp) of variable 𝑋𝑗 in 

tree 𝑡 is then 

 

𝑉𝑎𝑟𝐼𝑚𝑝(𝑡)(𝑋𝑗) =  
Σ𝑖∈𝑂𝑂𝐵̅̅ ̅̅ ̅̅ (𝑡)𝐼(𝑦𝑖 = 𝑦̂𝑖

(𝑡))

|𝑂𝑂𝐵̅̅ ̅̅ ̅̅ (𝑡)|
−  
Σ𝑖∈𝑂𝑂𝐵̅̅ ̅̅ ̅̅ (𝑡)𝐼 (𝑦𝑖 = 𝑦̂𝑖,𝜅𝑗

(𝑡)
)

|𝑂𝑂𝐵̅̅ ̅̅ ̅̅ (𝑡)|
 

 

Equation 5-1 

where 𝑦̂𝑖
(𝑡)
= 𝑓(𝑡)(𝑥𝑖) is the predicted class for observation 𝑖 before permutation, and 

𝑦̂𝑖,𝜅𝑗
(𝑡)
= 𝑓(𝑡) (𝑥𝑖,𝜅𝑗) is the predicted class for observation 𝑖 after permutation of variable 

𝑋𝑗.  The raw variable importance for each variable is then calculated by averaging the 

variable importance over all the trees: 

 

 
𝑉𝑎𝑟𝐼𝑚𝑝𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑(𝑋𝑗) =  

Σ𝑡=1
𝑛𝑡𝑟𝑒𝑒  𝑉𝑎𝑟𝐼𝑚𝑝(𝑡)(𝑥𝑗)

𝑛𝑡𝑟𝑒𝑒
 

Equation 5-2 
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The raw variable importance is scaled by dividing it by its standard error (also called the 

z-score) in the standard implementation of RF. This was given by Strobl and Zeileis (2008) 

as: 

 

 
𝑉𝑎𝑟𝐼𝑚𝑝𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑧 =  

𝑉𝑎𝑟𝐼𝑚𝑝𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑(𝑋𝑗) 

𝜎̂
√𝑛𝑡𝑟𝑒𝑒
⁄

 
Equation 5-3 

 

where 𝜎 is the standard deviation for each individual 𝑉𝑎𝑟𝐼𝑚𝑝(𝑡) and the mean 

importance from all ntree trees in the random forest has standard error 𝜎̂ √𝑛𝑡𝑟𝑒𝑒⁄ . 

However, since the 𝑉𝑎𝑟𝐼𝑚𝑝𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑 has been shown to have better statistical properties 

than 𝑉𝑎𝑟𝐼𝑚𝑝𝑠𝑐𝑎𝑙𝑒𝑑 (Strobl and Zeileis, 2008; Strobl et al., 2008), the unscaled version of 

the MDA variable importance measure was used instead of the scaled version in this 

study. 

 

5.2.2.2 Mean decrease Gini (MDG) 

The MDG is the second measure of variable importance from the random forest output 

and is the average of the decrease in node impurity over all the trees in the RF. The 

decrease in node impurity is related to the Gini index, as is shown in Equation 5-7. 

Splitting a tree based on the Gini index is a standard way of splitting classification and 

regression trees (Breiman et al., 1984; Ishwaran, 2015). This can be defined 

mathematically as follows (Ishwaran, 2015): 

 

Let the training data be 𝛵 =  (𝐗𝑖, 𝑌𝑖)1≤𝑖≤𝑛where 𝐗 is the matrix of predictor variables 

and 𝑌 is the outcome class vector with class label 𝑌 ∈  {1, … , 𝐶} with 𝐶 ≥ 2 possible 

classes. The Gini node impurity for node 𝑝, Γ̂(𝑝), is then defined as: 

 
Γ̂(𝑝) =  ∑𝜆̂𝑐(𝑝)(1 − 𝜆̂𝑐(𝑝))

𝐶

𝑐=1

 

 
Equation 5-4 
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with  𝜆̂𝑐(𝑝) the class frequency for class 𝑐 in a node 𝑝. Let 𝑠 be the proposed split that 

splits node 𝑝 into a left daughter node 𝑝𝐿 {𝑋𝑖  ≤ 𝑠} and a right daughter node, 

𝑝𝑅 {𝑋𝑖  > 𝑠}. The Gini node impurities for 𝑝𝐿 and 𝑝𝑅, Γ̂(𝑝𝐿) and Γ̂(𝑝𝐿), are 

 
Γ̂(𝑝𝐿) =  ∑𝜆̂𝑐 (𝑝𝐿) (1 − 𝜆̂𝑐(𝑝𝐿))

𝐶

𝑐=1

 

 
Equation 5-5 

and  

 
Γ̂(𝑝𝑅) =  ∑𝜆̂𝑐 (𝑝𝑅) (1 − 𝜆̂𝑐(𝑝𝑅))

𝐶

𝑐=1

 

 
Equation 5-6 

respectively, with 𝜆̂𝑐(𝑝𝐿) the class frequency for class 𝑐 in 𝑝𝐿 and with 𝜆̂𝑐(𝑝𝑅) the class 

frequency for class 𝑐 in 𝑝𝑅. The decrease in node impurity, Γ̂(𝑠, 𝑝), for split 𝑠 and node 

𝑝, is then defined as 

 

 Γ̂(𝑠, 𝑝) =  Γ̂(𝑝) − [𝜙̂(𝑝𝐿)Γ̂(𝑝𝐿) + 𝜙̂(𝑝𝑅)Γ̂(𝑝𝑅)] 

                   =  Γ̂(𝑝) − 𝐺̂(𝑠, 𝑝) 

Equation 5-7 

 

with 𝜙̂(𝑝𝐿) and 𝜙̂(𝑝𝑅) the proportions of observations in nodes 𝑝𝐿 and 𝑝𝑅respectively. 

The second part of Equation 5-7 is known as the Gini Index, 𝐺̂(𝑠, 𝑝), with 

 𝐺̂(𝑠, 𝑝) =  𝜙̂(𝑝𝐿)Γ̂(𝑝𝐿) + 𝜙̂(𝑝𝑅)Γ̂(𝑝𝑅) 
Equation 5-8 

Therefore, a good split-point will be where the split-point maximizes the decrease in 

node impurity, or equally minimizes the Gini Index.  

 

Both the MDA, which is based on the permutation importance, and the MDG, which is 

based on the decrease in node impurity, are criteria for ranking the variables in terms of 

importance with relation to the outcome classes. Both of these measures were 

considered and compared when selecting the short-list of variables for the land cover 

classification model in this research. 
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5.3 Results 

5.3.1 Random forest classification accuracy results 

The classification accuracies based on the different input variable scenarios (from Table 

5.1) are given in this section. Figure 5.1 shows the classification accuracies using all the 

available feature variables grouped by different frequency combinations (L-, C-, X-band, 

LC-, LX-, CX- and LCX-bands). For the Cameroon site, the dry season gives best results at 

92% overall classification accuracy using either X or CX, and 91% for LCX. This compares 

to the Cameroon wet season with 88% overall classification accuracy using either bands 

LX or LCX. For the Tanzania site, the dry season gives the highest classification accuracy 

of 65% using LX and LCX. The Tanzania wet season has the highest classification accuracy 

of 52% using LC, and 51% using only L-band. Only L- and C-band data were available for 

the Tanzania wet season (see Sections 3.2 and 4.1). 

 

The overall classification accuracies are much lower for all four site-season graphs using 

only the backscatter coefficients (Figure 5.2), compared to using the backscatter 

coefficients in conjunction with the interchannel ratios, texture measures and elevation 

data (Figure 5.1). This shows the benefit of using the additional derived feature layers, 

which added between 15-30% increase in overall classification accuracy for all four site-

season combinations. 

 

Using only backscatter coefficients, the Cameroon dry site has the highest overall 

classification accuracy of 66% (LCX), compared to the Cameroon wet site with 59% (LCX). 

The random forest model on the Tanzania dry images gives 49% (LCX) and the Tanzania 

wet images, only 32% (LC, no X-band available). In comparison, the Tanzania dry LC-band 

gave 48% overall accuracy. The dry season yields substantially higher overall 

classification accuracies to the wet season for both ecoregions. This can be explained by 

a higher soil moisture content and higher vegetation moisture content in the wet season 

images. This leads to higher SAR backscatter for all the land cover classes, and as a result 

higher misclassification between classes. In the dry seasen images, there is a greater 



112 

 

differentiation between dry bare soil and dense trees, with a greater backscatter spread 

for the vegetation classes between the two extremes. 

 

Random forest results using all variables (𝜎0, i, t, e)  

 

Figure 5.1 Random forest classification accuracies using all variables for different frequency combinations (𝜎0) for 

the Cameroon dry season study site (top left), the Cameroon wet season study site (top right), the Tanzania dry 

season study site (bottom left) and the Tanzania wet season study site (bottom right). 

Random forest results using backscatter coefficients only (𝜎0) 

 

Figure 5.2 Random forest classification accuracies using backscatter coefficients only for different frequency 

combinations (𝜎0) for the Cameroon dry season study site (top left), the Cameroon wet season study site (top right), 

the Tanzania dry season study site (bottom left) and the Tanzania wet season study site (bottom right). 
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The results using only interchannel ratios (Figure 5.3) are slightly lower than when only 

the backscatter coefficients are used (Figure 5.2). The highest overall classification 

accuracies are 63%, 58%, 47% and 21% for the Cameroon dry, Cameroon wet, Tanzania 

dry and Tanzania wet site respectively. To enable the calculation of the interchannel 

ratios, either a dual-polarized or a quad-polarized image is required. Only the Cameroon 

wet season site had a dual-polarized or quad-polarized image for L-band, C-band and X-

band. The Cameroon dry season site does not have a dual-polarized L-band and Tanzania 

dry season study site does not have a dual polarized X-band image. The Tanzania wet 

season study site only had a dual-polarized C-band image with no dual- or quad-

polarized L- or X-band images available.  

 

The highest overall classification accuracies using only texture measures are 92%, 85%, 

64% and 49% for the Cameroon dry season, Cameroon wet season, Tanzania dry season 

and Tanzania wet season respectively (Figure 5.4). Using only the texture measures 

(Figure 5.9) was only marginally lower (or the same for the Cameroon dry season), than 

the random forest models with all the variable groups (Figure 5.1). This shows that the 

texture measures variables are more predictive of the land cover classes than the 

backscatter coefficients, interchannel ratio layers and elevation data. This entails that 

the texture measures was a greater differentiator of the land cover classes than the 

other variables considered. 

 

Using only the elevation data results in a relatively high classification accuracy for the 

Cameroon study site, at 56% and 57% overall classification accuracy for the dry and wet 

seasons respectively. For the Tanzania site the result was substantially lower, at 28% 

and 27% for the dry and wet seasons respectively (Figure 5.5). The combinations of input 

variables that don’t include texture measures give overall accuracies similar to the 

backscatter coefficients only (Figure 5.2). They are backscatter coefficients and 

interchannel ratios (Figure 5.6) and backscatter coefficients and elevation data (Figure 

5.7). The combinations of input variables that include texture measures, give overall 

accuracies similar to the scenario that only includes texture measures (Figure 5.4). These 
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combinations are backscatter coefficients and texture measures (Figure 5.8) and 

backscatter coefficients, interchannel ratios and texture measures (Figure 5.9). 

 

Random forest results using interchannel ratios only 

 

Figure 5.3 Random forest classification accuracies using only interchannel ratios for different frequency 

combinations (𝜎0) for the Cameroon dry study site (top left), the Cameroon wet study site (top right), the Tanzania 

dry study site (bottom left) and the Tanzania wet study site (bottom right). 

Random forest results using texture measures only 

 

Figure 5.4 Random forest classification accuracies using texture measures only for different frequency combinations 

(𝜎0) for the Cameroon dry study site (top left), the Cameroon wet study site (top right), the Tanzania dry study site 

(bottom left) and the Tanzania wet study site (bottom right). 
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Random forest results using elevation data only 

 

Figure 5.5 Random forest classification accuracies using only elevation data from SRTM (elevation, slope and 

aspect) for the Cameroon dry study site (top left), the Cameroon wet study site (top right), the Tanzania dry study 

site (bottom left) and the Tanzania wet study site (bottom right). 

 

Random forest results using backscatter coefficients and interchannel ratios 

 

Figure 5.6 Random forest classification accuracies using backscatter coefficients and interchannel ratios for 

different frequency combinations (𝜎0) for the Cameroon dry study site (top left), the Cameroon wet study site (top 

right), the Tanzania dry study site (bottom left) and the Tanzania wet study site (bottom right). 
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Random forest results using backscatter coefficients and elevation data 

 

Figure 5.7 Random forest classification accuracies using backscatter coefficients and elevation data for different 

frequency combinations (𝜎0) for the Cameroon dry study site (top left), the Cameroon wet study site (top right), 

the Tanzania dry study site (bottom left) and the Tanzania wet study site (bottom right). 

 

 

Random forest results using backscatter coefficients and texture measures 

 

Figure 5.8 Random forest classification accuracies using backscatter coefficients and texture measures for different 

frequency combinations (𝜎0) for the Cameroon dry study site (top left), the Cameroon wet study site (top right), 

the Tanzania dry study site (bottom left) and the Tanzania wet study site (bottom right). 
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Random forest results using backscatter coefficients,  

interchannel ratios and texture measures 

 

Figure 5.9 Random forest classification accuracies using backscatter coefficients, interchannel calculations and 

texture measures for different frequency combinations (𝜎0) for the Cameroon dry study site (top left), the 

Cameroon wet study site (top right), the Tanzania dry study site (bottom left) and the Tanzania wet study site 

(bottom right). 

 

5.3.2 Selecting variables based on variable importance 

5.3.2.1 Variable importance of all available variables 

As mentioned and described in Section 5.2.2, there are two measures of variable 

importance as part of the random forest model output, namely the MDA and MDG. Both 

of these measures are considered and compared against each other to select a short-list 

of variables for a refined model for the Cameroon dry and wet season, Tanzania dry and 

wet season sites. The unscaled version of the MDA was used to determine the variable 

importance  (Strobl and Zeileis, 2008; Strobl et al., 2008). 

 

The order of variable importance based on MDA and MDG of all the available variables 

for the Cameroon dry and wet seasons and the Tanzania dry and wet seasons are shown 

in Figure 5.10. Figure 5.10 groups the variables based on variable type, namely 
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backscatter coefficients, interchannel ratios, texture measures and elevation data. The 

backscatter coefficients and interchannel calculations are consistently grouped as the 

variables with a lower variable importance based on both MDA and MDG. The texture 

measures and elevation data stand out as being the variables with the highest variable 

importance based on both MDA and MDG. The variable importance of each individual 

group is investigated further. Looking more closely at both the Cameroon and Tanzania 

site, revealed a relationship between elevation and land cover type. It was noted that 

for the Cameroon site, the dense trees class are mostly in the valleys, whereas the open 

woodland land cover class are higer on the hills. Sparse vegetation and bare soil classes 

are located closer to the riverbed areas. For the Tanzania site, the agricultural areas 

seems to coincide with the valleys, with the dense trees and open woodland classes 

higher on the hills.  

 

Considering the variable importance based only on the backscatter coefficients, the C-

VV channel performs the best overall across all the study sites and seasons (Figure 5.11). 

The X-VH and X-HV channels are either the lowest, or towards the lower half, of the 

variable importance measures. The order of variable importance for the other channels 

varies depending on each site/season as well as the variable importance measure being 

considered, i.e. either MDA or MDG. These graphs are of interest to know which 

frequency and polarisation channels give the highest contribution towards the 

classification accuracy of the land cover classes for each site / season. It is worthwhile 

to mention here that different classification accuracies can be expected under different 

rainfall amount conditions. Higher amounts of rainfall lead to higher soil moisture and 

higher vegetation water content, which results in increased backscatter returns. An 

indication of whether the models are still suitable or not applicable at all, are addressed 

in Section 6.3.1.1 and 6.3.2.1, where the inter-season transferability of the Cameroon 

and Tanzania sites are investigated respectively. 

 

Assessing the interchannel ratios individually, the C-VV plus C-VH, and C-VV minus C-VH 

interchannel ratios have the highest variable importance across all the site-season 

scenarios (Figure 5.12).  



119 

 

Analysis of the texture measures revealed that the mean texture measure are the most 

predictive variables, followed by entropy, contrast, variance and correlation. The texture 

measures for the top frequency-polarisation band combinations are X-HH, C-VV and L-

HH for Cameroon dry (Figure 5.13); X-HH, C-VV and L-HV for Cameroon wet (Figure 5.14); 

X-VH, C-VV and L-HV for Tanzania dry (Figure 5.14); and X-VH, C-VV and L-HV for 

Tanzania wet (Figure 5.15). For each of the texture measures, the larger window sizes 

lead to a higher ranking of variable importance, which indicate higher classification 

accuracies. 
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All variables based on MDA and MDG grouped by variable type 

 

Figure 5.10 The MDA and MDG variable importance measures for Cameroon dry season (top left), Cameroon wet 

season (top right), Tanzania dry season (bottom left) and Tanzania wet season (bottom right), grouped by variable 

type (backscatter coefficients, interchannel ratios, texture measures and elevation data). The number of variables 

for each grouped are shown in brackets to the left of each group. 
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Variable importance of backscatter coefficients only 

 

Figure 5.11 The order of variable importance based on MDA and MDG using only backscatter coefficients, for 

Cameroon dry season (top left), Cameroon wet season (top right), Tanzania dry season (bottom left) and Tanzania 

wet season study sites (bottom right). The number of variables for each grouped are shown in brackets to the left 

of each group. 
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Variable importance of interchannel ratios only 

 

Figure 5.12 Variable importance (MDA and MDG) of only interchannel ratios, for each of the site / season scenarios. 
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Variable importance of texture measures – Cameroon dry 

 

Figure 5.13 MDA and MDG variable importance of texture measures, for X-HH, C-VV and L-HH frequency-

polarisation combinations for the Cameroon dry study site. 
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Variable importance of texture measures – Cameroon wet 

 

Figure 5.14 MDA and MDG variable importance of texture measures, for X-HH, C-VV and L-HV frequency-

polarisation combinations for the Cameroon wet study site. 

 

 

 

 

 

 



125 

 

Variable importance of texture measures – Tanzania dry 

 

Figure 5.15 MDA and MDG variable importance of texture measures, for X-VH, C-VV and L-HV frequency-

polarisation combinations for the Tanzania dry study site. 
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Variable importance of texture measures – Tanzania wet 

 

Figure 5.16 MDA and MDG variable importance of texture measures, for X-VH, C-VH and L-HV frequency-

polarisation combinations for the Tanzania wet study site. 
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For the Cameroon dry site in Figure 5.13, the X-HV entropy (15 and 13 window sizes) are 

the top variables selected by the MDA measure and the X-HV entropy (15) and X-HH 

variance (15) are the top variables selected by the MDG measure. For the L-band and C-

band, the neighbourhood mean layers (see Section 4.3.2 for calculation) give the highest 

classification accuracies for the L- and C- frequencies. 

 

For the Cameroon wet study site, as shown in Figure 5.14, the X-HH band entropy, 

contrast and variance layers, at 13 and 15 window sizes, have the highest variable 

importance. For C-VV the neighbourhood mean texture measures, at window sizes 9 and 

7, give the highest variable importance. The correlation measures have the lowest 

variable importance for the X, C and L frequencies.  

 

For the Tanzania dry and Tanzania wet study sites (Figure 5.15 and Figure 5.16) the L-HV 

texture measures give the highest variable importance. For the Tanzania wet site the C-

VH neighbourhood mean texture measures, at 9 and 7 window sizes, give the highest 

variable importance, whereas for the Tanzania dry site the C-band texture measures do 

not give very high variable importance. 

 

Figure 5.17 shows the MDA and MDG variable importance values for the elevation data 

for each site, with the variable importance order shown for elevation, slope and aspect 

for each site. For all the study sites, the elevation above sea level gives very high variable 

importance, followed by the aspect and then the slope.  

 

Since the polarimetric decompositions of fully polarimetric data were excluded from this 

research, the direct relationship between the physical scattering mechanisms of volume 

scattering, surface scattering and double bounce, were not directly related to the 

texture measures in the final model. Polarimetric decompositions such as entropy / 

alpha / anisotropy model is often used to give a measure of the physical scattering 

mechanisms (Hajnsek et al., 2003).  
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Variable importance of elevation data only 

 

Figure 5.17 MDA and MDG variable importance for elevation, slope and aspect for the Cameroon dry (top left), Cameroon wet (top right), Tanzania dry (bottom left) and Tanzania wet (bottom 

right) study sites. 
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5.3.2.2 Variable importance of the top 30 variables 

From all the available variables, which included the backscatter coefficients, 

interchannel calculations, texture measures and elevation data, the top 30 variables 

were chosen, based on both the MDA and MDG. The random forest models based on 

the top 30 variables resulted in only a small decline in overall accuracy compared to a 

random forest model using all available variables. The classification accuracies based on 

the top 30 variables is shown in Section 5.3.3, and compared can be compared to the 

random forest models based on all the variables in Section 5.3.1. 

 

The top 30 variables for the Cameroon dry study site are shown in Figure 5.18. The top 

30 variables based on MDA and MDG are shown in the top half of the graph. The bottom 

half shows the same top 30 variables, but grouped by the frequency-polarisation group. 

This was similarly undertaken for the Cameroon wet season study site in Figure 5.19, the 

Tanzania dry season study site in Figure 5.20 and for the Tanzania wet season study site 

in Figure 5.21.  

 

In Figure 5.10 and Figure 5.17 it was shown that the elevation data variables have high 

variable importance values. However, to be able to use the models on additional study 

sites, which are at a slightly different elevation above sea-level, it was decided to exclude 

the elevation data from the top 30 variable selection. Therefore, after excluding the 

elevation data, the top 30 variables are all texture measures, for all four site-season 

combinations.  

 

For the Cameroon dry season site, the X-HH and X-HV texture layers have the highest 

variable importance (Figure 5.18). For the Cameroon wet season site, the most 

important variables in the top 30 list are spread evenly between all the frequency 

combinations of X-HH, X-HV, C-VV, L-HV and L-VH (Figure 5.19). The top 30 variables for 

the Tanzania dry season site are a combination of X-VH and all the available L-band 

channels, namely L-HH, L-HV, L-VH and L-VV. For the Tanzania dry season site, only 

texture measure from L-band and X-band images were selected, with no C-band image 
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texture measures in the top 30 variables (Figure 5.20). For the Tanzania wet season site, 

where no X-band data were available, the top 30 variables are from the texture layers 

calculated from C-VH, C-VV, L-HV and L-VH (Figure 5.21). 

 

The two combinations of top 30 variables, based on MDA and MDG, are used to train 

random forest models in the following section for each site (Section 5.3.3). 

 

 

 



131 

 

 

Figure 5.18 Top 30 variables based on MDA and MDG for the CD site random forest model. The top two graphs 

show variable 1-30 in ranking order, whereas the bottom two graphs are grouped by the original frequency-

polarisation channels. 
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Figure 5.19 Top 30 variables based on MDA and MDG for the CW site random forest model. The top two graphs 

show variable 1-30 in ranking order, whereas the bottom two graphs are grouped by the original frequency-

polarisation channels. 
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Figure 5.20 Top 30 variables based on MDA and MDG for the TD site random forest model. The top two graphs 

show variable 1-30 in ranking order, whereas the bottom two graphs are grouped by the original frequency-

polarisation channels. 
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Figure 5.21 Top 30 variables based on MDA and MDG for the TW site random forest model. The top two graphs 

show variable 1-30 in ranking order, whereas the bottom two graphs are grouped by the frequency-polarisation 

groups. 
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5.3.3 Model based on the top 30 variables 

The top 30 variables are used to develop random forest models for each of the sites. The 

variable importance, based on MDA and MDG, was used incrementally to develop a 

random forest model, first using one variable, then two variables, progressively using 

more variables until all the top 30 variables are used. The order of variables was 

determined by the MDA and MDG variable importance measures respectively, with the 

most important variable used first.  

 

The MDA (Figure 5.22) and MDG measures of variable importance (Figure 5.23) yield 

similar results. It is notable that with using only the top 5 variables for the Cameroon dry 

season site, an overall classification accuracy of 88% can be obtained, based on MDA. 

The top 5 variables for the Cameroon dry season site are X-HV entropy (window size 

15x15), X-HV entropy (13x13), X-HV correlation (15x15), X-HV entropy (11x11) and L-HH 

mean (11x11) (from Figure 5.18). The overall classification accuracy increases marginally 

to 90% with 10 variables, 91% with 15 variables and then decreases again slightly to 90% 

using the top 30 variables. For the top 30 MDG variables, the overall classification 

accuracy was marginally lower at 89% for the Cameroon dry season study site. For the 

Cameroon wet season study site, the overall and class-specific classification accuracies 

seem to stabilize with 10 variables, at 82% and 81% for the MDA and MDG variables 

respectively. The overall classification accuracies then climb gradually to 83% and 84% 

using the top 30 variables for the MDA and MDG variable importance measures, 

respectively.  

 

The Tanzania dry study site has an overall classification accuracy of 55% using the top 

10 variables from the MDA variables and 54% using the top 10 variables from the MDG 

variables. The overall classification accuracies of the MDA variables remains at about 

55% up to the top 25 variables and only then increase to 61% with the top 30 variables. 

The overall classification accuracies of the MDG variables increase to 60% using the top 

20 variables in then to 63% using the top 30 variables. The Tanzania wet study site has 

an overall classification accuracy of 48% using the top 10 MDA variables and 49% using 
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the top 10 MDG variables. The overall classification accuracy increases gradually to 50% 

using either the the top 30 MDA or MDG variables. 

 

Classification accuracies for random forest models top 1 to 30 variables (MDA) 

 

Figure 5.22 The overall and class-specific classification accuracies for the top 30 variables based on the MDA 

variable importance measure (considering backscatter coefficients, interchannel ratios and texture measures) for 

each site / season scenario. 

 

To look at the practical implications of a multi-frequency application for land cover 

classification, the classification accuracies using all available variables were revisited 

(see Figure 5.1). There appears to be no one clear-cut, one-size-fits-all, scenario. 

However, some general deductions can be made. If only one frequency could be chosen 

for all the site-season scenarios, it would be L-band, which would currently be ALOS-2 

PALSAR-2 data. L-band gives the best overall classification accuracy, with the exception 

of the Cameroon dry site, where X-band imagery outperforms L-band and C-band, with 

92% overall classification accuracy. L-band as a single frequency gives 76% for the 

Cameroon dry season site, 78% for the Cameroon wet season site, 63% for the Tanzania 

dry season site and 51% for the Tanzania wet season site. 

 

 

 



137 

 

Classification accuracies for random forest models top 1 to 30 variables (MDG) 

 

Figure 5.23 The overall and class-specific classification accuracies for the top 30 variables based on MDG variable 

importance measure (considering backscatter coefficients, interchannel ratios and texture measures) for each site 

/ season scenario. 

 

A combination of LX-bands, in general, give the highest classification accuracies as a 

dual-frequency application. For the Cameroon dry site, the classification accuracy using 

CX-bands was slightly higher at 92%, compared to the 90% using LX-bands, and for the 

Tanzania wet, no X-band data were available. However, the LX-band combination had a 

higher overall classification accuracy for the other three sites (Cameroon dry, Cameroon 

wet and Tanzania dry), than other dual-frequency combinations. The combination of L-

band and X-band gives 90% overall classification accuracy for the Cameroon dry season 

site, 88% for Cameroon wet season site and 65% for the Tanzania dry season site. This 

would entail, for example, combining ALOS-2 PALSAR-2 data with TerraSAR-X data, for 

the satellites currently operational. The overall recommendation would therefore be to 

acquire L-band and X-band together, to maximize the benefit of using more than one 

frequency, without the complications of coordinating acquisitions from three satellites. 
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5.3.4 Correlation between top 30 variables for MDA and MDG 

Graphical representation of the correlation matrices for the MDA and MDG top 30 

variables is shown for the Cameroon dry season site in Figure 5.24, for the Cameroon 

wet season site in Figure 5.25, the Tanzania dry season site in Figure 5.26 and for the 

Tanzania wet season site in Figure 5.27. Ellipses in combination with colour are used to 

represent each correlation matrix. Very high positive correlation is represented by an 

almost flat 45° angle dark blue ellipse, and a low positive correlation is represented by 

a light-blue circle. Any negative correlation would be a red colour and a highly negative 

correlation would show as a red almost flat ellipse in a 315° direction. For all the site-

season combinations, there are very high correlations between the top 30 variables, 

often with >80% correlation. This were the case for the Cameroon wet and dry seasons 

and the Tanzania wet season, with between 15-20 very highly correlated variable in the 

top 30 list (Figures 5.24, 5.25 and 5.27). For the Tanzania dry season the proportion of 

highly correlated variables was between 20-25 variables in the top 30 list (Figure 5.26). 

An alternative model building strategy could be to instead include the top 5-10 variables 

from each frequency, and compare that model to the overall top 30 model. However, 

this route was not pursued as part of this research. 

 

It has been shown in Strobl et al. (2008) that the standard variable importance methods 

from the random forest modelling show a preference towards highly correlated 

predictor variables. This is due to the nature of random forests of selecting only a portion 

of all the available variables for each tree during model training. A group of highly 

correlated variables can then all be chosen as important variables in a final model. In 

comparison, this is different to standard stepwise linear regression, where it is more 

likely to only choose one or two variables that represent the same information, after 

which other variables which are less highly correlated are more likely to be chosen. 

 

To select a set of predictor variables that are less highly correlated, Strobl et al. (2008) 

suggested a technique called conditional permutation importance. However, in this 

research, only the standard variable importance measures of MDA and MDG were used 
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to select the most important variables for each site-season scenario. This was due to the 

implementation of the conditional permutation importance measure leading to long 

processing times with the data sets at hand. Nevertheless, the standard version of 

random forest model implementation in R resulted in high classification accuracies, 

regardless of high correlation between the variables in the random forest models.  
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Figure 5.24 Correlation plots for the top 30 variables based on MDA and MDG for the Cameroon dry study site. Ordering of the variables are based on hierarchical clustering. 
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Figure 5.25 Correlation plots for the top 30 variables based on MDA and MDG for the Cameroon wet study site. Ordering of the variables are based on hierarchical clustering. 
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Figure 5.26 Correlation plots for the top 30 variables based on MDA and MDG for the Tanzania dry study site. Ordering of the variables are based on hierarchical clustering. 
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Figure 5.27 Correlation plots for the top 30 variables based on MDA and MDG for the Tanzania wet study site. Ordering of the variables are based on hierarchical clustering. 
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5.3.5 SVM vs random forest classification accuracies 

Using the top 30 variables as selected by the MDA and MDG from the random forest 

modelling, SVM models are also trained based on incrementally adding variables from 1 

to 30 for each site-season scenario. The overall and class-specific classification 

accuracies resulting from these SVM model classifications are shown in Figure 5.28 for 

the MDA top 30 variables and in Figure 5.29 for the MDG top 30 variables. The results 

are very similar to the random forest classification results for all site-season 

combinations, apart from the Tanzania dry season MDA top 30 SVM model, where the 

overall classification accuracy was significantly higher. The Tanzania dry season MDA 

and MDG SVM models both have an overall classification accuracy of 68%, compared to 

61% and 63% for the random forest models based on the MDA and MDG top 30 variables 

respectively. 

 

 

Classification accuracies for SVM models, top 1 to 30 variables (MDA) 

 

Figure 5.28 Overall and class-specific classification accuracies for the support vector machine classification based 

on the top 1 to 30 variables selected by the MDA variable importance measure in the random forest classification.  
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Classification accuracies for SVM models, top 1 to 30 variables (MDG) 

 

Figure 5.29 Overall and class-specific classification accuracies for the support vector machine classification based 

on the top 1 to 30 variables selected by the MDG variable importance measure in the random forest classification. 

 

5.3.6 Random forest model applied on the complete layer stack of 

images 

Up to this point, all the model training and land cover classification accuracy plots were 

generated using only the training and test samples as set out in Section 3.4. In this 

section the random forest models developed using the top 30 variables based on MDA 

and the MDG are used to classify the full scene where the SAR images overlap for the 

Cameroon study site. 

 

The classification of the whole image for the Cameroon dry images of the random forest 

model based on the top 30 MDA variables are shown in Figure 5.30. The classified image 

was compared to the optical image available on Google Earth of the same area. Figure 

5.31 shows a zoomed-in area of the random forest classification compared to the optical 

images at the most southern part of the lake in the Cameroon study site. The 90% 

classification accuracy as based on the test samples should be applicable to the whole 

image as well, as can be seen in the zoomed-in area of the Cameroon site in Figure 5.31. 
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Figure 5.30 The Cameroon study site optical image available on Google Earth on the left compared the random 

forest classification of the whole image using the Cameroon dry top 30 MDA variables on the right. © 2015 Google, 

Image © 2015 DigitalGlobe, Image © 2015 CNES /Astrium. 
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Figure 5.31 Zoomed in section of the random forest classification based on the MDA top 30 variables (top), 

compared to the very high resolution image of the same area of the Cameroon dry study site. © Google, Image © 

2015 DigitalGlobe. 
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5.3.7 Summary of results 

The development of a land cover classification model with a list of the top 5, 10 or 30 

most important variables was first of all an exercise to increase the dimensionality of 

the available data. Once the interchannel ratios and texture measures were calculated 

and the elevation data layers added, a comprehensive list of predictor variables was 

available from which the most important variables can be chosen for each site-season 

scenario. The different combinations of variables for each site-season scenario were 

presented in Section 5.2.1. The two variable importance measures are the MDA and 

MDG, and both measures are used to select shortlists of the most important variables. 

The top 30 variables based on MDA and MDG were chosen and the results compared. 

The same top 30 variables based on the MDA and MDG as part of the random forest 

model output were then used to train an SVM models and the classification accuracies 

compared to the random forest models. 

 

The highest overall classification accuracy from variable input scenario are summarized 

for the Cameroon dry season and Cameroon wet season study sites for the random 

forest models based on all the mentioned variable combinations, including the top 30 

MDA random forest model, top 30 MDG random forest model, top 30 MDA SVM model 

and top 30 MDG SVM model for the Cameroon wet and dry season sites (Figure 5.32) 

and for the Tanzania wet and dry season sites (Figure 5.33). The results reveal that the 

top 30 models give overall classification accuracies very close to using all varables, and 

even slightly higher for the Tanzania wet and dry SVM top 30 classifications. The dry 

sites yield higher overall classification accuracies for both the Cameroon and Tanzania 

sites. 
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Figure 5.32 A summary of the results of the overall classification accuracies for the models based on different 

variable combinations for the Cameroon dry and Cameroon wet site. All models are random forest models apart 

from the two mentioned Top 30 SVM models. 

 

Figure 5.33 A summary of the results of the overall classification accuracies for the models based on different 

variable combinations for the Tanzania dry and Tanzania wet sites. All models are random forest models apart 

from the two mentioned Top 30 SVM models. 
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Table 5.2 Overall classification accuracies of random forest models using (a) single frequencies and (b) dual / three frequencies, with different variable combinations for the forested and semi-

arid study sites. 
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The four site / season combinations, with the overall classification accuracies of different 

feature combinations, are all summarized in Table 5.2. From this table, 

recommendations can be made for each ecoregion and season scenario. The single and 

dual frequencies are ordered in ranking order of 1st, 2nd and 3rd, in terms of overall 

classification accuracy. The LCX-bands classification accuracies are shown next to the 

dual frequency results. Table 5.2 reveals in one view all the classification accuracy results 

presented thus far. The best single frequency classification results for the forested 

regions are from X-band, and secondly L-band (92% and 77% for Cameroon dry and wet 

respectively, using X-band only; and 72% and 78% for Cameroon dry and wet 

respectively using L-band only). Texture measures add the most value from all the 

variable types (e.g overall classification accuracies increase from 68% to 91% for the 

Cameroon dry site; using X-band only; and from 49% to 60% for Tanzania dry using L-

band only). The best dual and three frequency scenarios is only marginally higher than 

the single frequency results (e.g. for Cameroon dry the best dual frequency results are 

CX at 92%, which is the same as using only X-band at 92%; for Cameroon wet, the highest 

overall accuracy is from LX-bands at 88%, which is the most significant increase of all the 

sites; for Tanzania dry, the highest overall accuracy is from LX-bands at 65%, which is 

marginally higher that only L-band at 63%; and for Tanzania wet, the highest dual 

frequency combination is LC-band at 52%, which is marginally higher that using only L-

band). 

The recommended SAR frequencies along with an alternative recommendation are 

given in Table 5.3. Both Table 5.2 and Table 5.3 are discussed in more detail in Section 

5.4, and in Section 8.1.1. 
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Table 5.3 The recommended SAR frequencies with high classification accuracies for land cover classification within 

specific ecoregions. This assumes all the available variables of backscatter coefficients, interchannel ratios, texture 

measures and elevation data are included in the models. 

Ecoregions 

considered 

 

Season 

Recommended SAR 

frequencies  

(overall classification 

accuracy) 

Alternative 

recommendation 

(overall classification 

accuracy) 

Both semi-arid and 

forested* 

Wet and dry LX* or LC L-band only 

Forested only Wet and dry LX (wet: 90% and dry: 

88%) 

X-band only (wet: 92% 

and dry: 77%) 

 Dry only X-band only (92%) LX (90%), CX (92%) or 

L-band only (76%) 

 Wet only LX (88%) L-band only (78%), or  

X-band only (77%) 

Semi-arid Wet and dry L-band only (dry: 

63% and wet: 51%) 

LC (dry: 64% and wet: 

52%) 

 Dry only L-band only (63%) LX (65%) 

 Wet only L-band only (51%) LC (52%) 

*For both semi-arid and forested sites, LX band models can only be recommended for the Cameroon wet and dry, 

and Tanzania dry season, and not the Cameroon wet season with the current available data. The alternatives of LC 

and L-band only are recommended for all four site-season scenarios.  

5.4 Discussion 

For the Cameroon dry and wet season sites, the top 30 random forest models give 

accuracies very close to that achieved using all the available layers, as shown in Figure 

5.32. For the Cameroon dry site, the complete data stack consists of 165 layers and the 

Cameroon wet complete data stack of 245 data layers. The overall classification 

accuracies using only the top 30 variables are very close to the overall classification 

accuracies using the full data stack for model development.  As mentioned in Section 

5.3.3, using only the top 5 variable for the Cameroon dry site achieved 88% overall 

classification accuracy and the top 10 variables for the Cameroon wet site achieved 82% 
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overall classification accuracies using only a fraction of the available feature layers (see 

Figures 5.22 and 5.23). This greatly increased the processing time and reduced the disk 

space required while still maintaining a very high overall classification accuracy. 

 

It was surprising that for the Tanzania dry study site, the Top 30 MDA SVM and Top 30 

MDG SVM models achieved higher classification accuracies (68%) compared to the top 

30 random forest models as well as compared to the random forest models using all 

available data layers (65%) (Figure 5.33). As mentioned in Section 4.4, the complete data 

stack for the Tanzania wet study site was 134 layers and for the Tanzania dry study site 

219 layers. For the Tanzania wet study site, the highest overall classification accuracy of 

52% was achieved using either all the variables (dBite), or the top 30 SVM MDA or the 

top 30 SVM MDG variables. Similar to the Tanzania dry season SVM models, the wet 

season SVM models also outperform the top 30 MDA and MDG random forest models. 

 

In the results section and discussion above, it was apparent that the data layers adding 

the most value to the classification accuracies are the texture layers, with the top 30 

most important variables all being texture measures. This is after the elevation data 

were excluded from the top 30 variable selection, so that models were transferable to 

other forested and semi-arid areas regardless of the elevation above sea-level. The 

texture measures added considerably more information compared to using only the 

backscatter coefficients on their own, with an increase of between 15-25% overall 

accuracy for both the Cameroon and Tanzania study sites, between using only the 

backscatter coefficients and the top 30 model, which consists only of texture measures, 

for each study site. The comparison between the MDA and MDG variable importance 

measures does not yield a distinct winner, as neither the MDA nor the MDG variable 

importance measures gave consistent higher classification accuracies between the 

different site-season scenarios. 

 

The class-specific classification accuracies, as presented in Section 5.3.3 for the random 

forest models and Section 5.3.5 for the SVM models, allow the researcher to select the 
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best model for a specific land cover class of interest. This is because, even though the 

overall classification accuracies may increase with the number of variables in some 

cases, the class-specific accuracy may decrease at a certain point. For example, the 

classification accuracy for settlements for the Tanzania dry season random forest model 

was higher using the top 5 or top 10 variables compared to using all 30 variables, based 

on the MDG variables importance measure (see Figure 5.23). Similarly, for the 

Cameroon wet season site, using the top 5 or top 10 MDA variables achieved a higher 

classification accuracy for the sparse vegetation class, than using the top 30 MDA 

variables. 

 

Therefore, the best combination of variables depends on both the study site and 

whether the overall accuracy or class-specific accuracies are the most important to 

achieve. For the Cameroon dry and wet sites, the top 10 variables already give very high 

overall classification accuracy (similar to the top 30 variables). The Tanzania wet season 

study sites gave similar results between the top 10 and the top 30 variables, whereas 

the top 30 variables for the Tanzania dry season study sites achieves much better overall 

classification accuracies compared to using only the top 10 variables, with 63% 

compared to 54% for the MDG variables, and 61% compared to 55% for the MDA 

variables.  

 

The SVM models using the same top 30 MDA or MDG variables from the random forest 

modelling gave either the same or slightly higher overall classification accuracies, with a 

notable increase for the Tanzania dry season study site for the SVM vs the random forest 

models. It was noted, however that the classification of the SVM model takes 

considerably longer to run on the complete stack of images, compared to the random 

forest models for all the site-season scenarios. In Chapter Six the transferability of the 

models developed in this chapter is assessed to additional study sites in the DRC and 

Chad and in Chapter Seven the SAR signatures of the backscatter coefficients and the 

derived layers are compared. 
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5.5 Conclusion 

Through an extensive investigation of random forest models of single, dual and three-

frequency scenarios and of the various combinations from backscatter coefficients, 

interchannel ratios, texture measures and elevation data, several conclusions can be 

made. Firstly, it should be noted that it was possible to extract the LCCS land cover 

classes that were identified in Section 3.4, to a relatilively high level of accuracy. For the 

Cameroon dry site, all land cover classes were extracted at > 75% classification accuracy. 

For the Cameroon wet season, all classes were extracted > 75%, apart from the sparse 

vegetation class that were 60% classification accuracy. The class specific classification 

accuracie for the for the Tanzania dry site were > 75% for the dense trees and 

agricultural classes, 65% for open woodland, 52% for sparse vegetation and < 50% for 

bare soil and settlement. For the Tanzania wet site were dense trees and agriculture at 

~70%, open woodland and bare soil ~50%, sparse vegetation at 40% and settlement at 

24%.  

 

There are some inconsistenties between the forested and semi-arid sites. First of all, the 

classification accuracies is much lower for the semi-arid sites (63% for the Tanzania dry, 

51% for the Tanzania wet, using only L-band) , compared to the forested site (78% for 

the Cameroon wet, 76% for the Cameroon dry, using only L-band). This could be 

explained by several factors. The land cover areas are more varied and small mosaics of 

different land cover classes in the Tanzania site, compared to the larger homogenous 

land cover of the Cameroon site. Additionally, for the Tanzania wet season, no X-band 

images were available, which could have increased the classification accuracy for this 

site. The settlement class in particular was not classified well for either the Tanzania dry 

or wet season (~25%), so by excluding this class, the overall classification accuracy 

should increase notably (Figures 5.22, 5.23). The other classes that did not perform well 

are the sparse vegetation and bare soil classes. This indicates that there are some 

confusion to separate these classes, and this could be resolved by assessing the rainfall 

events close to the SAR image acquisition more closely; or by acquiring high resolution 
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images at a similar time to the SAR images; or by actual field visits, to understand the 

vegetation growth on the ground better. 

 

When assessing a view over all the site-season scenarios, L-band gives the highest 

classification accuracy, as a single frequency. For two frequencies, and using all features 

(or any that include texture measures), the combination of LX-bands give the highest 

overall classification accuracies in general. This can be attributed to the combination of 

long (L-band) and short (X-band) frequencies to observe different parts of the 

vegetation, i.e. the L-band reflects the stems (everything greater than ~23.5cm), 

whereas the X-band reflects the leaves and canopy (everthing greater than ~3cm). It can 

be argued however, that it is also due to the higher spatial resolution from X-band (5m) 

and L-band (10m). However, as single frequencies, L-band gave higher overall 

classification accuracy for all sites apart from the Cameroon dry site.  

 

The addition of texture measures increases the classification accuracies with 15-25% for 

all site-season scenarios, when compared to using only backscatter coefficients. The 

texture measures enhances many of the land cover classes, as in the examples shown in 

Section 4.3.2. Settlements stand out through the entropy and contrast texture measures 

from X-band and the mean and entropy texture measures emphasises the bright and 

dark areas corresponding to dense trees and bare soil areas. Using the top 30 variables 

gave classification accuracies very close to using all the variables for each site / season 

scenario, for both the MDA and MDG variables. The SVM models performed similar to 

the random forest model for the Cameroon sites, and gave slightly higher overall 

classification accuracies for the Tanzania sites, than the random forest models, when 

using the same top 30 variables. This was not expected, and the reason for this is not 

currently certain. This will have to be investigated more fully, and possibly checked with 

when using different samples, to see if the same results are maintained. The next step 

is to assess how transferable these models are, when transferring the model to 

additional sites from a different geographic region in Chapter Six. 
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Chapter Six Transferability of random forest classification 

models on additional study sites in the DRC and Chad 

 

The hypothesis that SAR models are transferable between different seasons of the same 

site, and to additional sites of a similar ecoregion, is tested in this chapter. The 

classification accuracies of inter-season and inter-site transferability of the models 

trained in Chapter 5 are compared for both the forested and semi-arid ecoregions, to 

test the hypothesis. 

 

6.1 Introduction 

Most remote sensing studies focus on applying models on a single geographic location. 

The aim of this chapter is to assess the transferability of the developed random forest 

models, and to assess the accuracy of transferring the algorithms to a different season 

and different geographic location, although still to a similar ecoregion. This will assess 

how applicable the models are to new data. 

 

The robustness of the developed classification algorithms needs to be tested for various 

scenarios based on available data. To determine if an algorithm is transferable and 

applicable to use operationally, it is important that the algorithms give similar results for 

different datasets and areas (Waske and Braun, 2009). Since the main model 

development dataset and the additional season / additional site do not all have the same 

frequency-polarisation images available, only the frequency-polarisation images that 

are available for both the main and additional sites are used to train the random forest 

models that are used to test transferability.  

 

The additional test site for the forested ecoregion is located in the DRC and for the semi-

arid ecoregion in Chad (see Sections 3.1.2 and Section 3.1.4). Both sites were previously 

used for the SAFER project, and the findings will therefore be applicable to emergency 

response situations surrounding Internally Displaced Persons (IDP) and refugee camps 

(SAFER, 2012).  
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6.2 Specific methodology on transferability and generalization of 

classification algorithms 

The transferability was tested by applying the models that were developed on the main 

development sites on the additional season data and additional site data for each 

ecoregion.  

 

Two land cover class definition approaches are considered as shown in Table 6.1. The 

first land cover class definition is where the model is trained on the Cameroon wet 

season land cover classes, namely bare soil, dense trees, settlement, sparse vegetation 

and water (Table 6.1, 1a and 2a). The open woodland class is left out of this chapter, 

since it is not present in the DRC wet dataset.  

 

The second land cover class definition is where the model is trained on both the main 

development and the additional site datasets. For the inter-season comparison for the 

forested sites, the model is therefore trained on both the Cameroon wet season and 

Cameroon dry season training datasets, and applied to the Cameroon wet season and 

Cameroon dry season test datasets (Table 6.1, 1b). For the inter-site comparison for the 

forested sites, the model is trained on both the Cameroon wet season and the DRC wet 

season training datasets, and then applied to the Cameroon wet season and DRC wet 

season test datasets (Table 6.1, 2b).  

 

For the semi-arid study sites, the transferability of the random forest models is also 

assessed. The models developed on the Tanzania dry season data are applied to the 

Tanzania wet season data, for an inter-season comparison, and to the Chad dry season 

data, for an inter-site comparison. Again, the originally selected ‘training’ samples are 

used for the model development and comparison. Similar to the forested sites, two land 

cover class scenarios are assessed: first, by applying the model directly on the new data 

with the same classes, and secondly, by using site-specific land cover classes and 

developing and testing the model on both sites. The training and test site combinations, 

along with the land cover classes, are shown in Table 6.2. For the direct application of 

the model, the semi-arid land cover classes are agriculture, bare soil, dense trees, 
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settlement and sparse vegetation (Table 6.2, 3a and 4a). The site-specific land cover 

classes for the semi-arid inter-season comparison are given in Table 6.2, 3b; and the site-

specific land cover classes for inter-site comparison in Table 6.2, 4b. 

 

The direct application of the model with the same land cover classes assesses the 

transferability of the model in a direct way. The training and application of the model 

using the site-specific land cover classes aim to determine if the land cover classes 

between the different seasons and sites, can be separated successfully by the 

classification algorithm. This will prove that the land cover classes are in fact not the 

same (e.g. dense trees in Cameroon vs dense trees in the DRC), and can be seen as 

distinct classes. As a result, the number of land cover classes increases, and a refined 

LCCS land cover definition can be deducted to classify the land cover classes between 

the sites as separate land cover classes. 
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Table 6.1 The training data, test data and different land cover class scenarios for the forested sites. 

Nr Model training 
dataset 

Model test 
dataset 

Land cover classes  
(directly applied and 
site-specific) 

Results section / 
Figure number 

1a) Cameroon wet 
season 
(training 
samples) 

Cameroon dry 
season 
(training 
samples) 

Directly applied: 
bare soil 
dense trees 
settlement 
sparse vegetation 
water 

Section 6.3.1.1 / 
Figure 6.1 

1b) Cameroon wet 
and Cameroon 
dry season 
(training 
samples) 

Cameroon wet 
and Cameroon 
dry season 
(test samples) 

Site-specific: 
CW bare soil 
CW dense trees 
CW settlement 
CW sparse vegetation 
CW water 
CD bare soil 
CD dense trees 
CD settlement 
CD sparse vegetation 
CD water 

Section 6.3.1.1 / 
Figure 6.2 

2a) Cameroon wet 
season 
(training 
samples) 

DRC wet 
season 
(training 
samples) 

Directly applied: 
bare soil 
dense trees 
settlement 
sparse vegetation 
water 

Section 6.3.1.2 / 
Figure 6.3 

2b) Cameroon wet 
and DRC wet 
season 
(training 
samples) 

Cameroon wet 
and DRC wet 
season (test 
samples) 

Site-specific: 
CW bare soil 
CW dense trees 
CW settlement 
CW sparse vegetation 
CW water 
DW bare soil 
DW dense trees 
DW settlement 
DW sparse vegetation 
DW water 

Section 6.3.1.2 / 
Figure 6.4 
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Table 6.2 The training data, test data and different land cover class scenarios for the semi-arid sites. 

Nr Model 
training 
dataset 

Model test 
dataset 

Land cover classes  
(directly applied or 
site-specific) 

Results section / 
Figure number 

3a) Tanzania dry 
season 
(training 
samples) 

Tanzania wet 
season 
(training 
samples) 

Directly applied: 
agriculture 
bare soil 
dense trees 
settlement 
sparse vegetation 

Section 6.3.2.1 / 
Figure 6.5 

3b) Tanzania dry 
and Tanzania 
wet season 
(training 
samples) 

Tanzania dry 
and Tanzania 
wet season 
(test samples) 

Site-specific: 
TD agriculture 
TD bare soil 
TD dense trees 
TD settlement 
TD sparse vegetation 
TW agriculture 
TW bare soil 
TW dense trees 
TW settlement 
TW sparse vegetation 

Section 6.3.2.1 / 
Figure 6.6 

4a) Tanzania dry 
season 
(training 
samples) 

Chad dry 
season 
(training 
samples) 

Directly applied: 
agriculture 
bare soil 
dense trees 
settlement 
sparse vegetation 

Section 6.3.2.2 / 
Figure 6.7 

4b) Tanzania dry 
and Chad dry 
season 
(training 
samples) 

Tanzania dry 
and Chad dry 
season (test 
samples) 

Site-specific: 
TD agriculture 
TD bare soil 
TD dense trees 
TD settlement 
TD sparse vegetation 
ChD agriculture 
ChD bare soil 
ChD dense trees 
ChD settlement 
ChD sparse vegetation 

Section 6.3.2.2 / 
Figure 6.8 
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6.3 Results  

For both the forested and semi-arid ecoregions, random forest models were developed 

for different input variable scenarios. The combination of input variables considered 

here is taken from the possible scenarios in Table 5.1 from Section 5.3.1. The scenarios 

chosen are the different frequency-combinations of (i.e. L- , C- and X-band, LC-, LX-, CX- 

and LCX-bands) of at most the top 30 variables of specific feature-type combinations. 

The chosen variables are based on the MDG variable importance measure from the 

random forest model development output, as discussed in Chapter Five. 

 

6.3.1 Transferability of Cameroon wet season random forest models 

Several random forest models are trained on the Cameroon wet season data and applied 

directly on the Cameroon dry season data in Section 6.3.1.1, and to the DRC wet season 

data in Section 6.3.1.2. The models are first applied directly, and secondly using the site-

specific land cover classes. The site-specific classes implies that the Cameroon land cover 

classes and that DRC land cover classes are seen as distinct land cover classes. The model 

is therefore trained on the Cameroon and DRC training datasets and applied on the 

Cameroon and DRC test datasets. Instead of only classifying only bare, dense trees, 

settlement, sparse vegetation and water classes, the number of classes were expanded 

to include CW_bare, CW_densetrees, CW_settlement, CW_sparsevegetation, 

CW_water, DW_bare, DW_densetrees, DW_settlement, DW_sparsevegetation and 

DW_water. By doing this, the land cover classes from both sites are seen as separable 

land cover classes, and instead of classifying five land cover classes, ten land cover 

classes are classified by the algorithm. 

 

6.3.1.1 Cameroon wet season models applied to Cameroon dry 

season data 

Figure 6.1 shows the overall and class-specific classification accuracies for the different 

input variable scenarios for the random forest models trained on Cameroon wet season 
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training data and applied directly on the Cameroon dry season training data, using the 

same land cover classes.  

 

Classification accuracies of random forest models, built on Cameroon wet season data and  

applied directly to Cameroon dry season data using the same classes 

 

Figure 6.1 Classification accuracies of random forest models based on Cameroon wet season training samples, 

applied directly to Cameroon dry season samples. Several combinations of input variables for the various frequency 

combinations are shown. 

 

Figure 6.2 shows the overall and class-specific classification accuracies for the random 

forest models built on the Cameroon wet season training data and applied to the 

Cameroon dry season training data, using the site-specific land cover classes. 
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Classification accuracies of random forest models, built on Cameroon wet season data and  

applied to Cameroon dry season data, using site-specific classes 

 

Figure 6.2 Classification accuracies of random forest models based on Cameroon wet season data, applied to 

Cameroon dry season data, with site-specific classes. Several combinations of input variables for the various 

frequency combinations are shown. 

 

6.3.1.2 Cameroon wet season models applied to DRC wet season data 

Figure 6.3 shows the overall and class-specific classification accuracies for the different 

input variable scenarios for the random forest models trained on Cameroon wet season 

training data and applied directly on the DRC wet season training data, using the same 

land cover classes.  
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Classification accuracies of random forest models, built on Cameroon wet season data and  

applied directly to DRC wet season data using the same classes 

 

Figure 6.3 Classification accuracies of the random forest models based on Cameroon wet season data, applied 

directly to DRC wet season data. Several combinations of input variables for the various frequency combinations 

are shown. 

 

Figure 6.4 shows the overall and class-specific classification accuracies for the random 

forest models built on the Cameroon wet season training data and applied to the DRC 

wet season training data, using the site-specific land cover classes. The results of the 

Cameroon wet season models applied on the Cameroon dry season data and the DRC 

wet season data are discussed in detail in Section 6.4. 
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Classification accuracies of random forest models, built on Cameroon wet season data and  

applied to DRC wet season data, using site-specific classes 

 

Figure 6.4 Classification accuracies of random forest models based on Cameroon wet season data, applied to DRC 

wet season data, with site-specific classes. Several combinations of input variables for the various frequency 

combinations are shown. 

 

 

6.3.2 Transferability of Tanzania dry season random forest models 

For the semi-arid study sites, several random forest models are trained on the Tanzania 

dry season data and applied on the Tanzania wet season data in Section 6.3.2.1, and to 

the Chad dry season data in Section 6.3.2.2. The models are first applied directly, and 

secondly using the site-specific land cover classes. 
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6.3.2.1 Tanzania dry season random forest model applied to Tanzania 

wet season data 

Figure 6.5 shows the overall and class-specific classification accuracies for the different 

input variable scenarios for the random forest models trained on Tanzania dry season 

training data and applied directly on the Tanzania wet season training data, using the 

same land cover classes.  

 

Classification accuracies of random forest models, built on Tanzania dry season data and  

applied directly to Tanzania wet season data using the same classes 

 

Figure 6.5 Classification accuracies of random forest models based on Tanzania dry season data, applied directly 

to Tanzania wet season data. Several combinations of input variables for the various frequency combinations are 

shown. 
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Figure 6.6 shows the overall and class-specific classification accuracies for the random 

forest models built on the Tanzania dry season training data and applied to the Tanzania 

wet season training data, using the site-specific land cover classes. 

 

Classification accuracies of random forest models, built on Tanzania dry season data and  

applied to Tanzania wet season data, using site-specific classes 

 

Figure 6.6 Classification accuracies of random forest models based on Tanzania dry season data, applied to 

Tanzania wet season data, with site-specific classes. Several combinations of input variables for the various 

frequency combinations are shown. 
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6.3.2.2 Tanzania dry season random forest model applied to Chad dry 

season data 

Figure 6.7 shows the overall and class-specific classification accuracies for the different 

input variable scenarios for the random forest models trained on Tanzania dry season 

training data and applied directly on the Chad dry season training data, using the same 

land cover classes. Since only L-band data are available for the Chad dry season site, only 

L-band data could be used as part of the random forest models. 

 

 

Classification accuracies of random forest models, built on Tanzania dry season data and  

applied directly to Chad dry season data using the same classes 

 

Figure 6.7 Classification accuracies of random forest models based on Tanzania dry season data, applied directly 

to Chad dry season data. Several combinations of input variables are shown. Only L-band data overlapped between 

the two sites. 
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Figure 6.8 shows the overall and class-specific classification accuracies for the random 

forest models built on the Tanzania dry season training data and applied to the Chad dry 

season training data, using the site-specific land cover classes. 

 

 

Classification accuracies of random forest models, built on Tanzania dry season data and  

applied to Chad dry season data, using site-specific classes 

 

Figure 6.8 Classification accuracies of random forest models based on Tanzania dry season data applied to Chad 

dry season data, with site-specific classes. Several combinations of input variables are shown. Only L-band data 

overlapped between the two sites. 
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6.4 Summary of results 

The results of the models which test the transferability of the forested sites are 

summarized in Table 6.3a for the single frequency SAR random forest models and in 

Table 6.3b for the multi-frequency SAR random forest models. Additional graphical 

representations of the same results summary are given in Figure 6.9 for the forested 

single frequency models and in Figure 6.10 for the forested multi-frequency models. The 

transferability results for the semi-arid sites are summarised in Table 6.4a for the single 

frequency SAR random forest models and in Table 6.4b for the multi-frequency SAR 

random forests. Similarly to the forested models, additional graphical representations 

of the same results are given in Figure 6.11 for the semi-arid single frequency models 

and in Figure 6.12 for the semi-arid multi-frequency models. In Table 6.3 and Table 6.4, 

the intensity of the colours represents the level of the overall classification accuracies, 

with higher classification accuracies showing as more intense colours. The results are 

summarised showing the model with the highest overall classification accuracy (1st), 

then the second highest (2nd) and then the third highest/ lowest (3rd) overall 

classification accuracy for each group. 

 

The random forest models trained and tested on the Cameroon wet season data are 

referred to the forested ecoregion baseline models. In Table 6.3, the classification 

accuracy results from the random forest models trained on the Cameroon wet season 

data and applied on the Cameroon dry season (see Figure 6.1 and Figure 6.2) and the 

DRC wet season data (see Figure 6.3 and Figure 6.4) are compared to the forested 

baseline models (as marked with a * in Table 6.3 and presented in Figures 5.1 to 5.6). 

The model trained and tested on the Cameroon dry data are given for reference. 

 

The random forest models trained and tested on the Tanzania dry season data are 

referred to the semi-arid ecoregion baseline models. In Table 6.4 the classification 

accuracy results from the random forest models trained on the Tanzania dry season data 

and applied on the Tanzania wet season (see Figure 6.5 and Figure 6.6) and the Chad dry 

season data (see Figure 6.7 and Figure 6.8) are compared with the semi-arid baseline 
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models (as marked with a * in Table 6.4 and presented in Figures 5.1 to 5.6). The 

Tanzania wet season model is given for reference. 

 

The comparisons of the transferability of the random forest models for both the 

forested results (in Table 6.3 and Figures 6.9 – 6.10) and semi-arid results (in Table 6.4 

and Figures 6.11 – 6.12) results are grouped by an increasing level of variable complexity. 

The groups are backscatter coefficients only (from Figure 5.2), interchannel ratios only 

(from Figure 5.3), elevation data only (from Figure 5.5), texture measures only (from 

Figure 5.4), backscatter coefficients, interchannel ratios and texture measures (from 

Figure 5.6), and backscatter coefficients, interchannel ratios, texture measures and 

elevation data (from Figure 5.1).  
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Table 6.3 Summary table of the overall classification accuracies from the random forest models, which test the transferability of the forested sites. The (a) single frequency and (b) dual / three 
frequency combinations are shown. 
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Table 6.4 Summary table of the overall classification accuracies from the random forest models, which test the transferability of the semi-arid sites. The (a) single frequency and (b) dual / 
three frequency combinations are shown. 
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Forested ecoregion, single frequency 

 

Figure 6.9 The overall classification accuracies from the random forest models, to test the transferability of the 

models for the forested sites, using single frequencies. This is the same data from table 6.3a represented as a bar 

charts. 
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Forested ecoregion, dual / three frequencies 

 

Figure 6.10 The overall classification accuracies from the random forest models, to test the transferability of the 

models for the forested sites, using dual/three frequencies. This is the same data from table 6.3b represented as a 

bar charts. 
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Semi-arid ecoregion, single frequency 

 

Figure 6.11 The overall classification accuracies from the random forest models, to test the transferability of the 

models for the semi-arid sites, using single frequencies. This is the same data from table 6.4a represented as a bar 

charts. 
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Forested ecoregion, dual / three frequencies 

 

Figure 6.12 The overall classification accuracies from the random forest models, to test the transferability of the 

models for the semi-arid sites, using dual/three frequencies. This is the same data from table 6.4b represented as 

a bar charts. 

 

6.5 Discussion 

The results are next discussed from the following viewpoints: groups of increasing 

variable complexity (Section 6.5.1); single, double or three frequencies (Section 6.5.2); 

and forested vs semi-arid transferability comparison (Section 6.5.3).  

 

6.5.1 Groups of increasing variable complexity  

The groups of increasing variable complexity used to test the transferability of the 

random forest models are the focus for this discussion section. The groups of variables 

discussed are backscatter coefficients (Section 6.4.1.1), interchannel ratios (Section 

6.4.1.2), elevation data (Section 6.4.1.4) and texture measures (Section 6.5.1.3). 

 



179 

 

6.5.1.1 Backscatter coefficients 

Using only backscatter coefficients produced results much lower than using all the 

available variables and specifically any model with the addition of texture measures. For 

the forested sites, the Cameroon wet season model applied to the Cameroon dry season 

using the same land cover classes was similar to the baseline model (59% for LCX 

models). The Cameroon wet season models applied to dry season data, perform 

marginally lower to the Cameroon dry season models applied to dry season data (59% 

compared to 66% for the LCX, backscatter coefficient only models). 

 

For the semi-arid sites the inter-season comparison transfer of the Tanzania dry season 

model to the Tanzania wet season data does worse than the Tanzania dry season 

baseline model (31% vs 48% for the LC, backscatter coefficient only models).  

 

The inter-site comparison for the forested ecoregion using only backscatter coefficients 

performed slightly better than the other variable combinations that include the 

additional feature layers. This was unexpected, since all the other scenarios have higher 

classification accuracies when additional layers are included. However, the overall 

classification accuracies of the forested inter-site comparison were very low at 33% for 

the LC model or 33% using X-band only. This is higher than the LCX-bands scenario using 

all the variables at 26% overall classification accuracy. 

 

The inter-site comparison for the forested ecoregion using site-specific land cover class 

scenarios resulted in an overall classification accuracy of 63% for the LCX backscatter 

coefficient only model, which is higher than the LCX baseline model with an overall 

classification accuracy of 59%. 

 

The inter-site comparison for the semi-arid ecoregion using only backscatter coefficients 

could only be assessed with the L-band data (see Section 3.2). The classification accuracy 

was lower, at 34% using the same land cover classes and 31% using site-specific land 

cover classes, compared to the baseline model with 44% overall classification accuracy. 
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6.5.1.2 Interchannel ratios 

The interchannel ratios can only be calculated when either a dual polarized or quad 

polarized image are available. Only a small number of interchannel ratios are available 

on the inter-season and inter-site comparisons. When the interchannel ratios are 

available, the overall classification results are either the same or slightly lower than the 

overall classification accuracies using backscatter coefficients only. 

 

6.5.1.3 Elevation data 

Using only the elevation data, which includes the elevation, slope and aspect data as 

discussed in Section 4.3.3, gave higher overall classification accuracies than expected. 

This can be explained by a topographical relationship between land cover and elevation 

in each site. This is especially the case for the Cameroon site, which has a relatively 

rugged terrain, and with land cover classes following the terrain pattern. The dense trees 

are most often in the valleys, and open woodland more prevalent on the hills. The lower 

planes are more prevalent to sparse vegetation and bare soil, closer to the river. As a 

result, the elevation data serves as good indication of land cover class (56% classification 

accuracy for Cameroon dry and 57% classification accuracy for Cameroon wet training 

vs test data). The Tanzania site is much flatter, and as a result the relation between 

elevation and land cover class was less pronounced (27% classification accuracy for 

Tanzania wet and 28% classification accuracy for Tanzania dry, training vs test datasets). 

 

For the inter-season comparison, the elevation data models gives overall classification 

accuracies higher than the backscatter coefficient only models using the best single 

frequencies (58% for Cameroon wet vs dry elevation only model compared to 51% for 

Cameroon wet vs dry C-band backscatter coefficient only model; and 36% for Tanzania 

dry vs wet elevation only model and 30% for Tanzania dry vs wet L-band backscatter 

coefficient only model). The inter-season comparison using the site-specific land cover 

class options performed worse than directly applying the same land cover classes (29% 

overall classification accuracy for the Cameroon wet vs dry site-specific land cover 

classes vs 58% for applying the land cover classes directly; and 18% overall classification 
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accuracy for the Tanzania dry vs wet site-specific land cover classes vs 36% for applying 

the land cover classes directly). 

 

There was a large enough difference in the elevation between the two sites for both the 

forested and semi-arid sites, to distinguish the site-specific land cover classes to 

reasonable degree of accuracy while only using the elevation data. The elevation data 

gave an overall classification accuracy of 42% for the Cameroon wet season vs DRC wet 

season for the site-specific land cover class models, which is higher than the site-specific 

single frequency (L-band) backscatter coefficient only model with 39% overall 

classification accuracy. Using the same land cover classes only gave 21% overall 

classification accuracy. For the semi-arid inter-site comparison, the elevation data only 

gave 42% overall classification accuracy using the site-specific classes and only 20% using 

the same land cover classes.  

 

6.5.1.4 Texture measures 

It is noted that the addition of texture measures to any of the models lead to a large 

increase in overall classification accuracies, for both ecoregions and for all frequency 

combinations, inter-season and inter-site comparisons, with the exception of the 

Cameroon wet season model applied to the DRC wet season data using the same land 

cover classes. 

  

The texture measures only model for the forested sites using LCX-band for the inter-

season comparison, gives an overall classification accuracy of 65% applying the same 

land cover classes directly. This is 20% lower than the LCX texture measure only baseline 

model with 85% overall classification accuracy. The inter-season and inter-site LCX 

texture measures only models, perform slightly higher at 86% and 87% respectively, 

compared to the baseline model at 85% overall classification accuracy. 
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The semi-arid inter-site comparison of the LC-band texture measures only model is 

lower at 40% overall classification accuracy using the same land cover classes and 47% 

using site-specific land cover classes, compared to the LC-band baseline model of 61%.  

 

The semi-arid inter-site comparison could only be undertaken with L-band data, and the 

Tanzania dry season model applied on Chad dry season data gave 40% overall 

classification accuracy using the same land cover classes, which is lower than the 

baseline model of 60%. Using the site-specific land cover classes, the L-band model of 

the Tanzania dry model applied on the Chad dry data gave an overall classification 

accuracy of 66%, compared to the baseline model with 60% overall classification 

accuracy. 

 

The models with more additional variables than the texture measures only scenario (dB 

+ i + t and dB + i + t + e), resulted in overall classification accuracies slightly higher or 

very similar to the models using only texture measures. This shows that that the texture 

measures has the largest contribution to the model, and that the additional layers or 

backscatter coefficients, interchannel ratios and elevation data, only has a marginal 

additional contribution to the models for both ecoregions and for the inter-season and 

inter-site comparisons. 

 

For the second and third best frequency choices for the single frequency scenarios, the 

addition of elevation data to the model of backscatter coefficient, interchannel ratios 

and texture measures, does lead to a substantial increase in overall classification 

accuracy for both the forested and semi-arid models. This can therefore be a relatively 

easy way to increase classification accuracy results when only single frequency data are 

available. For the dual-frequency and three-frequency scenarios, the addition of 

elevation data does not lead to the same level of overall classification accuracy increase. 
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6.5.2 Single, double or three frequencies 

For each site comparison scenario, recommendations are made for both single 

frequency and dual / three frequency options in Table 6.5. This is achieved by taking the 

highest overall classification accuracies from the single frequency and dual / three 

frequency scenarios in Table 6.3 and Table 6.4. For the forested sites, the recommended 

single frequency is X-band. The main dual frequency recommendation for the forested 

sites are either LX-band or CX-bands. The LX-band recommendation is consistent for all 

the forested inter-season and inter-site scenarios. The recommended single frequency 

for the inter-season and inter-site model transfers for the semi-arid ecoregion is L-band, 

and the recommended dual-frequency is LC-bands. For the semi-arid inter-season 

comparison, only L-band and C-band data were available and for the semi-arid inter-site 

comparison, only L-band data were available (see Section 3.2). For this reason, the 

discussion only includes L-band and C-band for the semi-arid inter-season scenario, and 

L-band for the semi-arid inter-site scenario. 

 

It is noteworthy that the single frequencies give overall classification accuracies very 

close to the dual-frequency scenarios. It is also surprising that the best dual-frequency 

scenarios gave overall classification accuracies at the same level to the LCX models, and 

the three-frequency model gave higher overall classification accuracy only for one 

scenario (i.e. for the Cameroon wet season model applied to the DRC wet season data 

using site-specific land cover classes).
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Table 6.5 Summary of recommended frequency and variable recommendations for transferring random forest models to different season and additional site scenarios. Overall classification 

accuracies are given in brackets for the respective scenarios. 

Model transfer site 

scenario 

Land cover 

type 

Recommended single-frequency Recommended dual/three frequencies 

Band  Variables used Bands variables 

Forested inter-season 

(Cameroon wet vs dry ) 

same X All variables (74%)  LX / CX All variables (74%) 

site-specific X Texture measures only (84%) LX / CX All variables (86%) 

Forested inter-site 

(Cameroon vs DRC, wet)  

same X Backscatter coefficients only 

(33%) 

LX / CX All variables (26%) (lower than 
single frequency models, therefore 
rather use X-band only) 

site-specific L All variables (82%) LX 

LCX 

Texture measures only (86%) 

Texture measures only (87%) 

Semi-arid inter-season (1) 

(Tanzania dry vs wet) 

same L Texture measures only (58%) LC All variables (51%) 

site-specific L / C All variables (40%) LC All variables (50%)  

Semi-arid inter-site (2) 

(Tanzania vs Chad, dry) 

same L Texture measures only (40%) N/A (only L-band available) 

site-specific L All variables (68%) N/A (only L-band available) 

(1)only L-band and C-band data available (no X-band) for semi-arid inter-season comparison 

(2)only L-band data available (no C-band or X-band) for semi-arid inter-site comparison 
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If only single frequency data are available, it is recommended to add SRTM elevation 

data to increase the classification accuracy with relative ease. When two or three 

frequency data are available, the addition of elevation data only has a marginal effect. 

It is highly recommended to use texture measures for both inter-site and inter-season 

transfer of the models, regardless of whether single or dual/three frequency data are 

used. This applies to both the forested and semi-arid ecoregions. 

 

6.5.3 Forested vs semi-arid transferability comparison 

The inter-season transfer of the random forest models for the Cameroon site, using the 

same land cover classes, gave reasonably high overall classification accuracies, with the 

highest overall classification accuracy from the LCX or CX models at 74%, compared to 

88% for the LCX and CX baseline models. The forested inter-season comparison using 

site-specific land cover classes was much closer to the baseline models, with the highest 

overall classification accuracy of 85% using LX-bands compared to the 88% of the LX-

bands baseline model. It can therefore be deduced that the land cover classes between 

the Cameroon dry and wet season sites are sufficiently different for the random forest 

model to be able to distinguish a meaningful difference, and therefore classify the site-

specific land cover classes correctly. The Cameroon wet and dry season data are 

however similar enough for the model trained on the wet season data to be applied to 

the dry season data with still a relatively high level of overall classification accuracy (see 

Section 7.3.1.2). 

 

The highest overall classification accuracies for the semi-arid inter-season comparison 

are 51%, using the same land cover classes, and 50%, using the site-specific land cover 

classes using the LC-bands model with all the variables. This is in comparison to the LC-

bands baseline model using all the variables with 65% overall classification accuracy. The 

overall classification accuracies of the same, and site-specific, land cover classes are 

therefore much closer to each other for the semi-arid site, than for the forested site. For 

the semi-arid dry season and wet season data, it can be deduced that the land cover 



186 

 

classes are quite similar between the wet and dry season samples (see also Section 

7.3.2.2).  

 

The forested and semi-arid inter-site comparisons using the same land cover classes did 

not perform very well, and much lower than expected. The highest overall classification 

accuracy for the forested inter-site comparison was 33%, using X-band data with only 

the backscatter coefficients. The highest overall classification accuracy for the semi-arid 

inter-site comparison was 40%, using L-band data with only texture measures. This is 

much lower than the inter-site comparisons using the site-specific classes, where the 

forested sites gave 87% for the LCX-bands model using all variables (compared to 88% 

for the LCX baseline model with all the variables), and 68% for the semi-arid inter-site 

comparison using L-band data with all the variables (compared to 63% for the L-band 

baseline model with all the variables). There appears to be a substantial difference 

between the land cover classes of the Cameroon wet and DRC wet study sites (see 

Section 7.3.1.3), and also between the land cover classes of the Tanzania dry season and 

Chad dry season study sites (see Section 7.3.2.3). 

 

It should be noted that the overall classification results in Chapter Six are not 100% 

comparable to the overall classification accuracies presented in Chapter Five, since 

Chapter Five included the open woodland class. The open woodland class was not 

present in either of the additional sites (i.e. neither in the DRC site for the forested 

ecoregion, or for the Chad site for the semi-arid ecoregion). The open woodland class 

varied between the third or fourth highest classification accuracy out of the six classes 

for the Cameroon and Tanzania sites. The overall classification accuracies of all the inter-

season and inter-site scenarios presented in Chapter Six, are therefore slightly higher, 

compared to when open woodland would have been included. However, the overall 

conclusions should remain the same, regardless of whether the open woodland class is 

included or not. 
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6.6 Conclusion 

In this chapter it is shown that the random forest models are transferable from the wet 

to the dry season for the forested sites, and from the dry to the wet season for the semi-

arid sites, while still maintaining a reasonable level of classification accuracy. The 

algorithms should be transferable, with the assumptions that the following conditions 

remain similar between the training data and the new data on which the model is 

applied: 

- land cover classes are similar 

- acquisition conditions are similar, such as rainfall, vegetation water content 

and soil moisture 

- elevation are at a similar altitude 

 

Should these conditions not be similar, the model will not be transferable, or at least 

not to the same degree of accuracy as achieved on the training dataset. The exact limits 

and degree of acceptable change in the landscape parameters will still need to be 

determined, to be able to quantify whether the model is transferable or not to new data. 

 

For the forested sites, the inter-season transfer decreases from 88% for the LCX baseline 

model to 74% for the LCX-model using all the available variables. For the semi-arid site, 

the overall classification accuracy decreases marginally from 63% to 58% using L-band 

models, using all the available variables.  

 

For the inter-site model transfer, it is therefore recommended to rather collect samples 

from both sites, and train the models to incorporate the site-specific land cover classes. 

It appears that in both the forested and semi-arid inter-site comparisons, the land cover 

classes of the additional sites are substantially different, to such a degree that a direct 

transfer of the model using the same land cover classes is not feasible. 

 

For the forested ecoregion the use of X-band is recommended for single frequency SAR 

land cover applications. For the semi-arid ecoregion, with the data available, L-band is 

recommended above C-band data for any inter-season land cover classification. Due to 
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the X-band orthorectification errors (see Section 4.1), no conclusion can be made with 

regards to X-band for semi-arid inter-season model transferability. 

 

Using dual or three frequencies for the inter-season and inter-site transfer of the 

random forest models for the forested sites, the use of LX-band data gives consistently 

good results for both the same and site-specific land cover classes (with the exception 

of the Cameroon wet season vs DRC wet season data using the same land cover classes). 

The use of texture measures only give overall accuracies close to using all the feature 

variables.  

 

The summary tables (Table 6.3, 6.4 and 6.5) in this Chapter can be used by the remote 

sensing community as a reference of which frequency combinations are recommended 

for the forested and semi-arid ecoregions. The summary tables can also give an 

indication of expected overall classification accuracies for the transfer of the models to 

both additional season and additional site data, when similar data to that which was 

used in this study is available.  
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Chapter Seven SAR signatures and Kullback-Leibler 

divergence measures of multi-frequency SAR over semi-arid 

and forested sites 

 

To enable the application of a model trained on one dataset with known outcomes on a 

new dataset with unknown outcomes, one of the fundamental questions to ask is 

whether the new dataset land cover classes have similar statistical distributions for the 

dataset variables as the original training dataset land cover classes? If the new dataset 

does have similar statistical distributions, then it can be assumed that the model will be 

reliable and give reliable predictions on the new data. However, if the statistical 

distributions are remarkably different, then the model will not give reliable results. In 

the case of working with satellite imagery, as in this study, a land cover classification 

model is often trained on a set of satellite imagery that is acquired of a specific 

geographical location with specific climatic conditions. A model trained and developed 

on one set of satellite images can most reliably be applied on another set of data that is 

of the same, or similar, geographical location and similar climatic conditions. In 

particular, the specific scattering mechanisms related to the specific vegetation type, 

such as the land cover classes of sparse vegetation or dense trees, should be similar for 

the model to be applicable to additional data. 

 

To address the third and final hypothesis, the statistical distributions of the SAR 

backscatter coefficients and additional calculated layers were compared for different 

land cover classes. The comparison was performed first visually and secondly with a 

statistical measure to compare the distance between distributions. The comparison was 

undertaken not only between the land cover classes of the same site, but also between 

the land cover classes of the wet and dry seasons, as well as between the main 

development site and the additional site for both ecoregions. If the distributions are 

similar, then the model can be applied to the new data. However, if the distributions are 

different, then the model is not applicable to the new data and should be used with 

caution. To determine an acceptable level of deviation between the statistical 
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distributions of the training dataset and the new dataset, is part of what this chapter 

aims to address. 

 

7.1 Introduction 

There are several measures to compare statistical distributions with each other, known 

as separability indices. A selection of measures are the Fisher criterion, the 

Bhattacharyya distance and the Kullback-Leibler divergence (KLD). These separability 

indices have all been applied to separating land cover classes within SAR images in the 

literature. The Fisher criterion is used to compare texture measure separability of SAR 

images of sea-ice (Clausi, 2002), whereas the Bhattacharyya distance is used to compare 

class separability within SAR images of selected crop classes (Anys, 1995) and rangeland 

classes related to oil-fields (Kwarteng et al., 2008). The KLD is related to the relative 

entropy measure, which is the basis of the Maximum Entropy (MaxEnt) classifier (Elith 

et al., 2011; Phillips and Dudik, 2008). Additionally, the KLD has been used to compare 

texture measures within SAR images (Mathiassen et al., 2002) and to classify SAR 

imagery (Qin et al., 2015).  

 

In this study, there are different scenarios where it is necessary to use a separability 

index to compare the statistical distributions of selected land cover classes:  

a) The comparison between the different land cover types of the training dataset. 

b) The comparison of the land cover types between the training data and the test 

data, from the same study site and season. 

c) The comparison of land cover types between the wet and dry seasons, but of the 

same geographical locations, also referred to as an inter-season comparison. 

d) The comparison of land cover types of the same season, but of different 

geographical locations, also referred to as an inter-site comparison. 

 

For scenario (a), the separability index needs to be as high as possible, to ensure that 

the land cover classes are distinguishable and that it is possible to classify the land cover 

classes successfully. This scenario is not covered in this chapter, since it is a feature 
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selection application of a separability index, and in this project this is done by the 

variable importance measure as part of the random forest classification in Section 5.3. 

 

In scenario (b), the separability index needs to be low to ensure that the test data are 

similar to the training data, although not always exactly the same. The reason for having 

a separate test dataset is to ensure that the model can generalise to a reasonable extent, 

with new data provided. 

 

For scenario (c) and (d) the separability index is a test to assess whether the model 

developed on the training dataset is still relevant for application on new data. Scenario 

(c) compares the wet and dry season of the same geographical area (inter-season 

comparison), whereas scenario (d) compares study sites that are in different 

geographical locations but of similar ecological conditions (inter-site comparison). The 

reason for comparing the statistical distributions of the land cover classes in scenario (d) 

is that although land cover classes can look similar using visual interpretation of optical 

images, the SAR backscatter coefficients and additionally calculated layers such as 

interchannel ratios, texture measures and elevation data can be quite different. In cases 

when the distributions of the SAR backscatter coefficients are too different, it will be 

unsuitable to use the same model developed on one geographical location, on another 

dataset of a different geographical location. For the data used specifically in this study, 

the distribution comparisons are detailed as in Table 7.1. 

 

Table 7.1 Scenarios for assessing the separability between land cover classes. 

Scenario Comparison Forested site Semi-arid site 

a) Land cover 
classes 
separability 

Output from RF variable 
importance in Section 5.3 

Output from RF variable 
importance in Section 5.3 

b) Training vs test CW-training vs 
CW-test 

TD-training vs 
TD-test 

c) Wet vs dry CW-training vs  
CD-training 

TD-training vs  
TW-training 

d) Site 1 vs Site 2 CW-training vs  
DW-training 

TD-training vs  
ChD- training 
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The data collected are only from a certain timestamp and is only a trace of the full 

phenological cycle of the land cover over an annual cycle. This should be kept in mind, 

as well as the fact that the data in this study are from a broad wet and dry season, and 

not collected from a detailed daily, weekly or monthly interval. 

 

There is, therefore, a trade-off between the ideal sampling scenario compared to the 

real-world data availability scenario. The ideal sampling scenario would involve every 

land cover class in every biome collected daily (or perhaps hourly), simultaneously, by 

all possible SAR frequency-polarisation acquisition modes, with optical imagery and 

ground-truth data at exactly the same time as the SAR satellite data collection. The real 

world data availability scenario is only an approximation of the ideal sampling scenario. 

This should be kept in mind when attempting to apply these findings to newly acquired 

SAR imagery. This highlights why it is important not to overfit a model, and to ensure 

that the model generalizes sufficiently to be flexible when using new data to classify the 

land cover. 

 

7.1.1 Cameroon wet season training vs test samples 

Figures 7.1 to 7.4 shows the data distributions for the Cameroon wet season training vs 

test land cover comparisons. It can be seen that the training and test samples are similar, 

which is as expected. These figures are drawn to get an insight to the data, and as a 

double check between the training and test sample distributions. 

 

The backscatter coefficients are shown in Figure 7.1 for the CW-training vs CW-test 

samples. It can be seen that the training and test datasets are similarly distributed. It is 

also notable that apart from the water class, the statistical distribution of the remaining 

classes of bare, settlement, sparse vegetation and dense trees are largely overlapping 

for all the backscatter coefficients channels. This highlights the effectiveness of SAR data 

to be used for mapping water bounderies during flood events (Martinez and Le Toan, 

2007; Cruz, 2010; Pulvirenti et al., 2011). This can be explained by the SAR signal being 

reflected away from the SAR sensor, due to the smooth water surface, and as a result, 
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has low backscatter coefficient values. The main challenge is therefore how to separate 

the different vegetation classes, which are currently largely overlapping with each other. 

 

Figure 7.2 show the interchannel ratios for the CW-training vs test samples. Here all the 

land cover classes overlap with each other, and it confirms why the interchannel ratios 

did not rank high by the MDA and MDG variable importance measures in Section 5.3.2.  

Figure 7.3 shows the top 10 texture measures for the CW-training vs CW-test samples. 

Here the classes are more separable, and it becomes apparent why the variable 

importance measures showed that the texture measures are the most important 

variables. The elevation data in Figure 7.4 shows a slight variation between the training 

and test samples.  
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Cameroon wet season training vs test samples: backscatter coefficients 

 

Figure 7.1 Distribution of backscatter coefficients for the Cameroon wet season training vs test samples. Order 

based on MDG variable importance of a random forest model of the backscatter coefficients. 
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Cameroon wet season training vs test samples: interchannel ratios 

 

Figure 7.2 Distribution of the top 10 interchannel ratios for the Cameroon wet season training vs test samples. 

Order based on MDG variable importance of a random forest model of the interchannel ratios. 



196 

 

Cameroon wet season training vs test samples: texture measures 

 

Figure 7.3 Distribution of the top 10 texture measures for the Cameroon wet season training vs test samples. Order 

based on MDG variable importance of a random forest model of the texture measures. 
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Cameroon wet season training vs test samples: elevation data 

 

Figure 7.4 Distribution of elevation, slope and aspect data for the Cameroon wet season training vs test samples. 

Order based on MDG variable importance of a random forest model of the elevation variables. 
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7.1.2 Tanzania dry season training vs test samples 

Figures 7.5, 7.6, 7.7 and 7.8 show the comparison of the statistical distributions of the 

land cover classes: agriculture, bare, dense trees, sparse vegetation and settlement for 

the Tanzania dry season training vs test samples, for the backscatter coefficients, 

interchannel ratios, texture measures and elevation data respectively. The training and 

test data are relatively similar for all the backscatter coefficient channels and calculated 

information layers, as expected. Similar to the forested ecoregion graphs, the 

comparison between the Tanzania dry training vs test samples were just to make sure 

that the land cover classes are similar between the training and test samples. There is, 

however, a much larger overlap for all the classes for the semi-arid ecoregion sites, 

compared to the forested ecoregion sites. This explains why the classification accuracies 

for the semi-arid sites were much lower than the forested sites in Chapter Five and 

Chapter Six. 

Tanzania dry training vs test samples: backscatter coefficients 

 

Figure 7.5 Distribution of backscatter coefficients for the Tanzania dry training vs test samples. Order based on 

MDG variable importance of a random forest model of the backscatter coefficients. 
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Tanzania dry training vs test samples: interchannel ratios 

 

Figure 7.6 Distribution of the interchannel ratios for the Tanzania dry training test samples. Order based on MDG 

variable importance of a random forest model of the interchannel ratios. 
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Tanzania dry training vs test samples: texture measures 

 

Figure 7.7 Distribution of the top 10 texture measures for the Tanzania dry training vs test samples. Order based 

on MDG variable importance of a random forest model of the texture measures. 
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Tanzania dry training vs test samples: elevation data 

 

Figure 7.8 Distribution of the elevation, slope and aspect for the Tanzania dry training vs test samples. Order based 

on MDG variable importance of a random forest model of the elevation data. 
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7.2 Specific methodology for SAR signature extraction 

The Kullback-Leibler divergence (KLD) (Kullback and Leibler, 1951; Kullback, 1987), also 

referred to as Relative Entropy (RE), is the relative comparison between two probability 

distributions 𝑝 and 𝑞 on a variable 𝛸. The discrete version of the KLD between 𝑝 and 𝑞 

is given by Phillips et al. (2004): 

 

 
𝐾𝐿𝐷(𝑝 ∥ 𝑞) =  ∑ 𝑝(𝑥) 𝑙𝑛

𝑝(𝑥)

𝑞(𝑥)𝑥∈𝑋
 

Equation 7-1 

 

The KLD between the different distributions are minimized in the Maximum Entropy 

model (MaxEnt) (Phillips and Dudik, 2008; Elith et al., 2011). In this study, the KLD will 

be used to assess the comparison for the forested sites: between the Cameroon wet 

season training and test samples, the Cameroon wet vs dry season samples and then the 

Cameroon wet vs DRC wet season samples. Similarly, a comparison was undertaken for 

the semi-arid sites: between the Tanzania dry season training and test samples, the 

Tanzania dry vs wet season samples and between the Tanzania and Chad dry season 

samples. A list of the land cover sample data distributions evaluated is given in Table 

7.2.  The scenarios for which the KLD measures are calculated for the different land cover 

classes are also outlined in Table 7.2. 
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Table 7.2 List of land cover sample data distribution comparisons, both visual and by the KLD, for the forested and semi-arid sites. 

Scenario 
(x) 

Comparison Visual comparison: 
forested site (Section 
7.3.1.x) 

Visual comparison: semi-
arid site (Section 7.3.2.x) 

KLD: forested site 
(Section 7.3.3.x) 

KLD: semi-arid 
site (Section 
7.3.4.x) 

(1) Training vs test Cameroon wet season  Tanzania dry season  Cameroon wet 
season  

Tanzania dry 
season  

 Backscatter coefficients     

 Interchannel ratios     

 Texture measures  (top 10)  (top 10)  (top 8)  (top 8) 

 Elevation data     

(2) Wet vs dry Cameroon wet vs dry 
season 

Tanzania dry vs wet season Cameroon wet vs 
dry season 

Tanzania dry vs 
wet season 

 Backscatter coefficients     

 Interchannel ratios     

 Texture measures  (top 10)  (top 10)  (top 8)  (top 8) 

 Elevation data     

(3) Site1 vs Site2 Cameroon wet vs DRC wet 
season 

Tanzania dry vs Chad dry 
season 

Cameroon wet vs 
DRC wet season 

Tanzania dry vs 
Chad dry season 

 Backscatter coefficients     

 Interchannel ratios     

 Texture measures  (top 10)  (top 10)  (top 8)  (top 8) 

 Elevation data     
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7.3 Results 

The statistical distributions of the land cover samples of the SAR backscatter coefficients, 

interchannel ratios, texture measures and elevation data are presented in Section 7.3.1 for 

the forested sites and for the scenarios shown in Table 7.2. Similarly, the visual comparison 

of the SAR signatures of the semi-arid sites are presented in Section 7.3.2. The KLD for the 

land cover classes of the forested sites are shown in Section 7.3.3, with the KLD for the land 

cover classes of the semi-arid sites presented in Section 7.3.4. 

 

7.3.1 Visual comparison of SAR signatures for the forested sites 

(Cameroon and DRC) 

In this section, the statistical distributions, of the backscatter coefficients, interchannel ratios, 

texture measures and elevation data for the forested sites, are compared for the site 

combinations as shown in Table 7.3. 

 

Table 7.3 The site comparisons for the forested sites with corresponding figure numbers. 

Site1 

samples 

Site2 

samples 

Backscatter 
coefficients 
figure nr 

Interchannel 
ratios  
figure nr 

Texture 
measures 
figure nr 

Elevation 
data  
figure nr 

CW-training CD-training 7.9 7.10 7.11 7.12 

CW-training DW-training 7.13 7.14 7.15 7.16 

 

7.3.1.1 Cameroon wet vs dry season samples 

Figures 7.9, 7.10, 7.11 and 7.12 show the same four graphs of the CW-training samples 

compared to the CD-training samples. This comparison was undertaken to assess whether a 

model developed on the wet season data can be applied directly to the dry season data. The 

classes between the wet and dry seasons look quite similar, although a definite distribution 

shift is noticed for all the land cover classes. There is a noticeable difference between the CW 

water and CD water classes for backscatter coefficient layer X-VV, texture measures L-HH 

mean (9x9, 11x11 window size) and X-VV mean (11x11, 13x13, 15x15 window sizes). The other 
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classes are relatively similar, with the most noticeable difference being the bare class, as 

shown in the C-VV mean (9x9 window size) and X-HH mean (15x15 window size) texture 

measures. 

Cameroon wet vs dry season samples: backscatter coefficients 

 

Figure 7.9 Distribution of backscatter coefficients for the Cameroon wet vs dry season samples. Order based on 

MDG variable importance of a random forest model of the backscatter coefficients. 
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Cameroon wet vs dry season samples: interchannel ratios 

 

Figure 7.10 Distribution of the top 10 interchannel ratios for the Cameroon wet vs dry season samples. Order based 

on MDG variable importance of a random forest model of the interchannel ratios. 
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Cameroon wet vs dry season samples: texture measures 

 

Figure 7.11 Distribution of the top 10 texture measures for the Cameroon wet vs dry season samples. Order based 

on MDG variable importance of a random forest model of the texture measures. 

 



208 

 

Cameroon wet vs dry season samples: elevation data 

 

Figure 7.12 Distribution of elevation, slope and aspect data for the Cameroon wet vs dry season samples. Order 

based on MDG variable importance of a random forest model of the elevation variables. 

 

7.3.1.2 Cameroon vs DRC wet season samples 

Figures 7.13, 7.14, 7.15 and 7.16 show statistical distributions of the backscatter coefficients, 

interchannel ratios, top 10 texture measures and elevation data for the Cameroon vs DRC wet 

season training samples. Here is a clearer difference between all the classes, though still a 

large overlap between the Cameroon and DRC wet season classes. The difference in the 

classes between the two sites is most noticeable in the C-VV backscatter coefficient graph in 

Figure 7.13, with the water classes clearly different and all the DRC wet classes giving higher 

𝜎0 values than the Cameroon wet samples.  
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Cameroon vs DRC wet season samples: backscatter coefficients 

 

Figure 7.13 Distribution of backscatter coefficients for the Cameroon vs DRC wet season samples. Order based on 

MDG variable importance of a random forest model of the backscatter coefficients. 
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Cameroon vs DRC wet season samples: interchannel ratios 

 

Figure 7.14 Distribution of the top 10 interchannel ratios for the Cameroon vs DRC wet season samples. Order based 

on MDG variable importance of a random forest model of the interchannel ratios. 
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Cameroon vs DRC wet season samples: texture measures 

 

Figure 7.15 Distribution of the top 10 texture measures for the Cameroon vs DRC wet season samples. Order based 

on MDG variable importance of a random forest model of the texture measures. 
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Cameroon vs DRC wet season samples: elevation data 

 

Figure 7.16 Distribution of the elevation, slope and aspect for the Cameroon vs DRC wet season samples. Order based 

on MDG variable importance of a random forest model of the elevation data. 

 

7.3.2 Visual comparison of SAR signatures for the semi-arid sites 

(Tanzania and Chad) 

The visual comparisons of the statistical distributions of the SAR data for the semi-arid sites 

are given in this section, similar to the forested sites in Section 7.3.1. More specifically, the 

land cover classes of the Tanzania dry training samples are compared to the Tanzania dry test 

samples, Tanzania wet training samples and the Chad dry training samples. Table 7.4 shows 

the figure numbers of the visual comparisons of the statistical distributions of the land cover 

classes for the Tanzania dry season training vs test samples, Tanzania dry vs wet season 

samples and Tanzania vs Chad dry season samples. The comparisons of the different land 

cover classes were undertaken for the backscatter coefficients, interchannel ratios, texture 

measures and elevations data. 
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Table 7.4 The site comparisons for the semi-arid sites with corresponding figure numbers. 

Site 1 samples Site 2 samples Backscatter 
coefficients 
figure nr 

Interchannel 
ratios  
figure nr 

Texture 
measures 
figure nr 

Elevation 
data  
figure nr 

TD-training TW-training 7.17 7.18 7.19 7.20 

TD-training ChD-training 7.21 7.22 7.23 7.24 

 

 

7.3.2.1 Tanzania dry vs wet season samples 

Figures 7.17, 7.18, 7.19 and 7.20 show the comparison of the statistical distributions of the 

land cover classes: agriculture, bare, dense trees, sparse vegetation and settlement for the 

Tanzania dry season vs wet season samples, for the backscatter coefficients, interchannel 

ratios, texture measures and elevation data respectively. In Figure 7.17 it is noted that there 

was a substantial difference between the dry and wet season especially for the bare land 

cover class, for the L-HV, C-VV and C-VH backscatter coefficient channels, and the agriculture 

class, in the L-HV and C-VV backscatter coefficient channels. Figure 7.18 shows that the 

interchannel ratios which has a large overlap for all the land cover classes. Figure 7.19 shows 

the texture measures have a significant difference between the wet and dry season land cover 

classes. The elevation data in Figure 7.20 shows that the distributions between the wet and 

dry seasons are exactly the same, since the elevation, slope and aspect remain the same 

between the wet and dry seasons. 
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Tanzania dry vs wet season samples: backscatter coefficients 

 

Figure 7.17 Distribution of backscatter coefficients for the Tanzania dry vs wet season samples. Order based on MDG 

variable importance of a random forest model of the backscatter coefficients. 
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Tanzania dry vs wet season samples: interchannel ratios 

 

Figure 7.18 Distribution of the interchannel ratios for the Tanzania dry vs wet season samples. Order based on MDG 

variable importance of a random forest model of the interchannel ratios. 
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Tanzania dry vs wet season samples: texture measures 

 

Figure 7.19 Distribution of the top 10 texture measures for the Tanzania dry vs wet season samples. Order based on 

MDG variable importance of a random forest model of the texture measures. 
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Tanzania dry vs wet season samples: elevation data 

 

Figure 7.20 Distribution of the elevation, slope and aspect for the Tanzania dry vs wet season samples. Order based 

on MDG variable importance of a random forest model of the elevation data. 

 

7.3.2.2 Tanzania vs Chad dry season samples 

Figures 7.21, 7.22, 7.23 and 7.24 show the comparison of the statistical distributions of the 

land cover classes: agriculture, bare, dense trees, sparse vegetation and settlement for the 

Tanzania vs Chad dry season samples, for the backscatter coefficients, interchannel ratios, 

texture measures and elevation data respectively. There was a substantial difference for all 

the land cover classes for the backscatter coefficient channels in Figure 7.21 and the 

additionally calculated information layers in Figures 7.22 and 7.23. There was also a 

substantial difference in the elevation, slope and aspect data between the Tanzania and Chad 

sites as shown in Figure 7.24.  
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Tanzania vs Chad dry season samples: backscatter coefficients 

 

Figure 7.21 Distribution of backscatter coefficients for the Tanzania vs Chad dry season samples. Order based on 

MDG variable importance of a random forest model of the backscatter coefficients. 
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Tanzania vs Chad dry season samples: interchannel ratios 

 

Figure 7.22 Distribution of the top 10 interchannel ratios for the Tanzania vs Chad dry season samples. Order based 

on MDG variable importance of a random forest model of the interchannel ratios. 
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Tanzania vs Chad dry season samples: texture measures 

 

Figure 7.23 Distribution of the top 10 texture measures for the Tanzania vs Chad dry season samples. Order based 

on MDG variable importance of a random forest model of the texture measures. 
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Tanzania vs Chad dry season samples: elevation data 

 

Figure 7.24 Distribution of the elevation, slope and aspect for the Tanzania vs Chad dry season samples. Order based 

on MDG variable importance of a random forest model of the elevation data. 

 

7.3.3 KLD for land cover classes of the forested ecoregion (Cameroon 

and DRC) 

The KLD measures were compared for the land cover classes of the forested sites. The 

comparison was performed between the Cameroon wet season training vs test samples, the 

Cameroon wet vs dry season samples and between the Cameroon vs DRC wet season 

samples. The types of variables considered are the backscatter coefficients and the top 8 

texture measures with corresponding figure numbers given in Table 7.5. The order of the 

texture measures is given by the MDG variable importance measures during random forest 

model development in Chapter 6. 
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Table 7.5 The site comparison using KLD of the forested sites with corresponding figure numbers. 

Site comparison using KLD Type of variables Figure number 

Cameroon wet season  

training vs test 

Backscatter 

coefficients 

7.26 

Texture measures 

(top 8) 

7.27 

Cameroon wet vs dry season Backscatter 

coefficients 

7.28 

 Texture measures 

(top 8) 

7.29 

Cameroon wet season vs 

DRC wet season 

Backscatter 

coefficients 

7.30 

Texture measures 

(top 8) 

7.31 

 

In the KLD plots that follow, the ideal comparison would require similar land cover classes 

between the two sites in question (e.g. the statistical distribution of the dense trees of the 

Cameroon wet season samples would be similar to the statistical distribution of the dense 

trees class of the DRC wet season samples, implying a small KLD). At the same time, to be able 

to distinguish the classes successfully, the statistical distribution of the dense trees class would 

be different to the other classes, resulting in a larger KLD. This ideal scenario is illustrated in 

Figure 7.25. A KLD of more than 1.0 would mean that the statistical distributions are 

completely separate. To show that two distributions are similar, to exactly the same, a value 

of less than 0.2 was chosen by observing the KLD of the Cameroon wet training vs test site 

backscatter coefficient comparison in Figure 7.26. However, this ideal scenario was not found 

within the data used in this study, and if it was, advanced machine learning algorithms such 

as random forests and SVMs would not be required to achieve accurate land cover 

classifications.  
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Figure 7.25 The ideal scenario of KLD between two sites that would allow models to be completely transferable 

between site 1 and site 2. The classes are similar between the two sites, whereas the differences between classes 

are completely separable. 

 

7.3.3.1 KLD for Cameroon wet training vs test samples 

Figure 7.26 shows then KLD measures of the backscatter coefficients for the five land cover 

classes (bare, dense trees, settlement, spase vegetation and water) for the Cameroon wet 

training vs test samples. Figure 7.27 shows the KLD measures of the textures measures, for 

the Cameroon wet training vs test samples. The KLD measures of the training vs test samples 

are done as a baseline measurement. First the backscatter coefficients, and then the top 8 

texture measures, which were the variables that were highlighted as beting the most 

predicitive in the random forest model. Both the backscatter coefficients (Figure 7.26) and 

the texture measures (Figure 7.27) of the Cameroon wet training vs test samples were 

relatively close to the ideal scenario of Figure 7.25. The diagonal elements are small values in 

most cases, apart from densetrees class for the Cameroon training vs test sample texture 

measures in (Figure 7.27). Some of the off-diagonal elements, which need to be larger values 

for a good class separation, were small, which indicates therefore that the classes are not 
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completely separable, e.g. settlements vs sparse vegetation for both the backscatter 

coeffienct (Figure 7.26) and texture measure scenarios (Figure 7.27). 

 

 

Figure 7.26 The KLD of the backscatter coefficients for the land cover classes of the Cameroon wet training vs test 

samples. 

 

Figure 7.27 The KLD of the top 8 texture measures for the land cover classes of the Cameroon wet training vs test 

samples. The order of the top 8 variables is based on the MDG variable importance measure from the random forest 

model. 
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7.3.3.2 KLD for Cameroon wet vs dry season samples 

Figure 7.28 shows the KLD measures of the backscatter coefficients for the five land cover 

classes (bare, dense trees, settlement, sparse vegetation and water) for the Cameroon wet vs 

dry season samples. Figure 7.29 shows the KLD measures of the top 8 texture measures for 

the Cameroon wet vs dry land cover samples. In both the backscatter coefficient (Figure 7.28) 

and texture measure (Figure 7.29) KLD measures plots, there is more of a deviation from the 

ideal scenario of Figure 7.25, compared to the training vs test samples KLD plots in Figures 

7.26 and 7.27. In these plots, the diagonal values (see Figure 7.25) shows the overlap of the 

statistical distributions each land cover class between the wet and dry season data. The off-

diagional values shows the difference between the land cover classes. It is noted that there is 

a larger difference between the wet and dry season data, especially for the bare and water 

classes. For some of the KLD measure, some of the calculations returned NULL values. This is 

epspecially noted for the X-HH Variance (15 window size) texture measure and in the L-HH 

Entropy (11 window size). Investigating the data distributions in Figure 7.7, it is noted that the 

distributions were less clear than the other texture measures, which is an indication of why 

the NULL values were returned. 

 

Figure 7.28 The KLD of the backscatter coefficients for the land cover classes of the Cameroon wet vs dry season 

samples. 
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Figure 7.29 The KLD of the top 8 texture measures for the land cover classes of the Cameroon wet vs dry season 

samples. The order of the top 8 variables is based on the MDG variable importance measure from the random forest 

model. 

7.3.3.3 KLD for Cameroon vs DRC wet season samples 

Figure 7.30 shows the KLD measures for backscatter coefficients of the five land cover classes 

(bare, dense trees, settlement, sparse vegetation and water) of the Cameroon vs DRC wet 

season samples. Figure 7.31 shows the KLD measures for the texture measures of the land 

cover classes of the Cameroon vs DRC wet season samples. There is more of a variation here, 

with most of the backscatter coefficient and texture measure KLD measures diverging from 

the ideal scenario in Figure 7.25. For the X-HH Correlation (15 and 13 window sizes) and the 

X-HH Entropy (15 window size), several NULL values were calculated. The distribution plots in 

Figure 7.11 shows the statistical distributions of the land cover classes, and gives an indication 

as to why NULL values were returned for the KLD measures. 
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Figure 7.30 The KLD of the backscatter coefficients for the land cover classes of the Cameroon vs DRC wet season 

samples. 

 

 

Figure 7.31 The KLD of the top 8 texture measures for the land cover classes of the Cameroon vs DRC wet season 

samples. The order of the top 8 variables is based on the MDG variable importance measure from the random 

forest model. 
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7.3.4 KLD for land cover classes of the semi-arid ecoregion (Tanzania 

and Chad) 

In this section the KLD measures are compared for the land cover classes of the semi-arid 

sites. The comparison is between the Tanzania dry season training vs test samples, the 

Tanzania dry vs wet season samples and between the Tanzania vs Chad dry season samples. 

Similar to the forested sites, the types of variables considered are the backscatter coefficients 

and the top 8 texture measures with corresponding figure numbers given in Table 7.6. The 

order of the texture measures in this table is given by the MDG variable importance measures 

during random forest model development in Chapter 6. 

 

Table 7.6 The site comparison using KLD for the semi-arid sites with corresponding figure numbers. 

Site comparison using KLD Type of variables Figure number 

Tanzania dry season  

training vs test 

Backscatter 

coefficients 

7.32 

Texture measures 

(top 8) 

7.33 

Tanzania dry vs wet season Backscatter 

coefficients 

7.34 

 Texture measures 

(top 8) 

7.35 

Tanzania dry season vs 

Chad dry season 

Backscatter 

coefficients 

7.36 

Texture measures 

(top 8) 

7.37 
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7.3.4.1 KLD for Tanzania dry season training vs test samples 

Figure 7.32 shows the KLD measures of the backscatter coefficients of the five land cover 

classes (agriculture, bare, dense trees, settlement and sparse vegetation) for the Tanzania dry 

training vs test samples. Figure 7.33 shows the KLD measures of the texture measures for the 

Tanzania dry training vs test samples. Although the diagonal elements show a large overall 

between training and test data, the off-diaogonal elevemtns also show low KLD values, 

indicating a small difference between the statistical distributions of the various land cover 

classes. The KLD measures of the training vs test samples are shown as a baseline 

measurement, to compare the inter-season (Figures 7.34 and 7.35) and inter-site (Figures 

7.36 and 7.37) comparisons to.  

 

 

Figure 7.32 The KLD of the backscatter coefficients for the land cover classes of the Tanzania dry season training vs 

test samples. 
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Figure 7.33 The KLD of the top 8 texture measures for the land cover classes of the Tanzania dry season training vs 

test samples. The order of the top 8 variables is based on the MDG variable importance measure from the random 

forest model. 

 

7.3.4.2 KLD for Tanzania dry vs wet season samples 

Figure 7.34 shows the KLD measures of the backscatter coefficients of the five land cover 

classes (agriculture, bare, dense trees, settlement and sparse vegetation) for the Tanzania dry 

vs wet season samples. Figure 7.35 shows the KLD measures of the texture measures of the 

five land cover classes for the Tanzania dry vs wet season samples. The diagonal elements in 

Figures 7.34 and 7.35 shows that there is a devation between the statistical distributions of 

the land cover classes of the dry and wet season data. The small values of the off-diagonal 

elements, indicate a large overlap between the different land cover classes, which will 

diminish the ability to classify the land cover classes correctly. 
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Figure 7.34 The KLD of the backscatter coefficients for the land cover classes of the Tanzania dry vs wet season 

samples. 

 

 

 

Figure 7.35 The KLD of the top 8 texture measures for the land cover classes of the Tanzania dry vs wet season 

samples. The order of the top 8 variables is based on the MDG variable importance measure from the random 

forest model. 
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7.3.4.3 KLD for Tanzania vs Chad dry season samples 

Figure 7.36 shows the KLD of the backscatter coefficients of the five land cover clases 

(agriculture, bare, dense trees, settlement and sparse vegetation) of the Tanzania vs Chad dry 

season samples. Figure 7.37 shows the KLD measures of the texture measures of the land 

cover classes for the Tanzania vs Chad dry season samples. The larger values of the diagonal 

elements indicate a deviation of the statistical distributions of the land cover classes between 

the Tanzania and Chad dry season data. Most of the land cover classes seem to be quite 

different between the two sites, with the bare class and settlement classes being the most 

similar. The KLD measures of the L-HH Entropy (11 window size) texture measures produced 

NULL values, and the distribution of the values in Figure 7.23 shows why it could be difficult 

to give an indication of the separation between the different statistical distributions. 

 

 

Figure 7.36 The KLD of the backscatter coefficients for the land cover classes of the Tanzania vs Chad dry season 

samples. 
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Figure 7.37 The KLD of the top 8 texture measures for the land cover classes of the Tanzania vs Chad dry season 

samples. The order of the top 8 variables is based on the MDG variable importance measure from the random forest 

model. 

 

7.3.5 KLD class difference vs random forest classification user’s 

accuracy 

To assess whether the KLD measures can be used to indicate the expected classification 

accuracy, the KLD class difference is calculated as follows: 

 

First, the averages of the KLD matrices in the graphs in Sections 7.3.3 and 7.3.4 are calculated 

for each of the site comparison scenarios leaving, one matrix of KLD averages. In the site-

comparisons in Sections 7.3.3 and 7.3.4, the number of matrices varied between 3 and 8. The 

average of the matrices 𝑋𝑖 with 𝑖 = 1 𝑡𝑜 𝑁 and 𝑁 the number of matrices present, are 

calculated as in Equation 7-2: 

 

 ∑ 𝑋𝑖
𝑁
𝑖=1

𝑁
 

Equation 7-2 
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For this calculated matrix, the difference between the diagonal elements and the average of 

the off-diagonal elements is calculated for each row, resulting in the KLD class differences. 

The matrix of average KLD measures are represented in Figure 7.38. 

 

Secondly, for each row element, the average of the off-diagonal elements is calculated. The 

diagonal element are then subtracted from the average off-diagonal elements, for each row, 

resulting in the KLD class difference for each land cover class. 

 

The results are represented in a confusion matrix between the actual values and the predicted 

values, as in Table 7.7 (Fielding and Bell, 1997). 

 

 

 

Figure 7.38 An outline of the diagonal and off-diagonal elements of the matrix of the KLD averages. 
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Table 7.7 A confusion matrix between reference values and predicted values. 

P
re

d
ic

te
d

 

va
lu

es
 

Reference values 

 + - 

+ a b 

- c d 

 

where  

(a) is the number of times the predicted classification matched the actual reference class. 

(b) is the number of times the samples were predicted to be X and were not observed to 

be X in the reference values. 

(c) is the number of times the samples were predicted  to be something other than class 

X when the reference class was class X. 

(d) is the number of times the samples were predicted not to be X, when the reference 

class was also observed not to be X. 

 

There are several measures of accuracy from the confusion matrix results. Two of the most 

commonly used accuracy measures are the producer’s accuracy and user’s accuracy. The 

producer’s accuracy is also referred to as the positive predictive power and is given in 

Equation 7-3. This is the accuracy measure that is used in Chapter Five and Six. The user’s 

accuracy is also known as the sensitivity and is given in Equation 7-4.  

 

 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑎

𝑎 + 𝑐
 Equation 7-3 

 

 

 𝑈𝑠𝑒𝑟′𝑠 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑎

𝑎 + 𝑏
 Equation 7-4 

 

It can therefore be seen that the calculation of the KLD class difference is similar to the 

calculation of the user’s accuracy from the confusion matrix of the classified results. A 

regression line is fitted to the KLD class differences for each site comparison, to determine 

whether the KLD class difference can be used as an indication of the expected user’s accuracy. 
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This expected user’s accuracy would be the results from transferring a random forest model 

developed on one site to an additional site. 

 

The KLD class difference compared to the user’s accuracy of the (up to) top 8 variables for the 

backscatter coefficients (dB) and texture measures, with a regression line fitted for each 

scenario are given in Figure 7.39 for the forested sites and in Figure 7.40 for the semi-arid 

sites. 

 

 

Figure 7.39 The KLD class difference compared to the user’s accuracy of the random forest models using at most the 

top 8 backscatter coefficient channels and the top 8 texture measures for the forested sites. 
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Figure 7.40 The KLD class difference compared to the user’s accuracy of the random forest models using at most the 

top 8 backscatter coefficient channels and top 8 texture measures for the semi-arid sites. 

 

For the Cameroon wet season training vs test sample backscatter coefficient and texture 

groups, the linear relationship between the KLD class difference and the user’s accuracy has 

an 𝑅2 value of 0.88 and 0.84 respectively. For the Cameroon wet vs dry season backscatter 

coefficient group of variables, the 𝑅2 value is 0.71, which is still relatively high. However, for 

the Cameroon wet vs dry season texture measure variables, the 𝑅2 value is only 0.3, and for 

the Cameroon wet season vs DRC wet season backscatter coefficient and texture measure 

variables, the 𝑅2 values are 0.34 and 0.01 respectively. 

 

For the Tanzania dry training vs test season backscatter coefficient and texture groups, the 

linear relationship between the KLD class difference and the user’s accuracy has an 𝑅2 value 

of 0.97 and 0.94 respectively. For the Tanzania dry vs wet season backscatter coefficient 

variables, the 𝑅2 value is 0.97, which is close to perfectly linear. However, similar to the 

Cameroon site, the 𝑅2 value for the Tanzania dry vs wet season texture measure variables is 

much lower, at 0.45. The Tanzania dry season vs Chad dry season backscatter coefficients 
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scenario has a reasonably good 𝑅2 value of 0.59, with no linear relationship between the KLD 

class difference and user’s accuracy for the Tanzania dry vs Chad dry texture measures 

scenario. This measure proved to be reliable for inter-seasonal comparison, but less reliable 

for inter-site comparison. This might indicate that the land cover classes are more different 

between the different sites, than the initial assessment. This method was however chosen as 

a promising separability index measure, and its use as part of the MaxEnt classifier. 

 

7.4 Discussion 

Plotting the statistical distributions of the backscatter coefficients, interchannel ratios, 

texture measures and elevation data are useful for getting a better insight into the data. This 

was undertaken for the Cameroon wet season training vs test data (Section 7.3.1.1), 

Cameroon wet vs dry season data (Section 7.3.1.2) and Cameroon vs DRC wet season data 

(Section 7.3.1.3). Similarly, for the semi-arid ecoregion, the statistical distributions were 

compared for the Tanzania dry season training vs test samples (Section 7.3.2.1), Tanzania dry 

vs wet season data (Section 7.3.2.2) and Tanzania vs Chad dry season data (Section 7.3.2.3).  

  

Based on the SAR distribution plots in Section 7.3.1 and Section 7.3.2, most of the classes 

appear not to be very separable. In reality, however, the classification algorithm (be it a 

random forest model or an SVM) are classifying the land cover classes in an n-dimensional 

space (where n is the number of input bands), and better separability is therefore achievable. 

 

Considering the Cameroon wet season training vs test sample graphs (Section 7.3.1.1), it is 

noted that the statistical distributions of the different land cover classes are very similar for 

all the groups of variables, namely, backscatter coefficients, interchannel ratios, texture 

measures and elevation data. For the Cameroon wet vs dry season comparison (Section 

7.3.1.2), there is a shift of the statistical distributions of the land cover classes between the 

wet season and dry season samples. This difference between the wet and dry season is even 

more prominent for the texture measures. This leads to asking the question of whether there 

is enough similarity between the wet and dry season data distributions to be able to develop 

a model on the wet season data and apply it to the dry season data? As was seen in Chapter 
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6, this does seem to be the case, and resulted in a classification accuracy of 74% for the 

Cameroon wet season model applied to the Cameroon dry season data, compared to 88% for 

the Cameroon wet season training vs test data (see Table 6.3). 

 

Taking it one step further, the statistical distributions of the land cover classes for the 

Cameroon wet season were compared to the DRC wet season samples in Section 7.3.1.3. Here 

it was noted that there is substantial difference between the land cover classes of the 

Cameroon wet season and DRC wet season samples. This leads to the question of whether a 

measure between the land cover classes can give an indication of the potential classification 

accuracy of a model developed on the Cameroon wet season data, and applied to the DRC 

wet season data? To achieve this, the KLD was calculated for all Cameroon wet training vs test 

samples (Section 7.3.3.1), Cameroon wet vs dry season samples (Section 7.3.3.2) and 

Cameroon wet season vs DRC wet season samples (Section 7.3.3.3). From the KLD measures, 

the KLD class difference was calculated and correlated with user’s accuracy measure. The 

results were that the KLD class difference measure proves to work well for the training vs test 

backscatter coefficient and texture measure datasets (𝑅2 of 0.88 and 0.84 respectively). The 

Cameroon wet vs dry dataset also had a high correlation (𝑅2 of 0.71). However, the 

correlation using the Cameroon wet vs dry texture measures (𝑅2 of 0.3), inter-site comparison 

of Cameroon wet vs DRC wet backscatter coefficients (𝑅2 of 0.34) and texture measures (𝑅2 

of 0.01), did not yield satisfactory results.  

 

The relationship between KLD class difference and the user’s accuracy works well for the 

backscatter coefficient scenarios between the different seasons, but less well for the 

backscatter coefficient inter-site comparison. Other separability indexes will therefore need 

to be tested, to find a good measure to assess whether the statistical distributions between 

one site and another are too far apart for a model to be developed on the one site, and 

applied to the other site. One finding is that the KLD class difference performs better on the 

backscatter coefficients than on the texture measures. An explanation for this could be that 

the KLD measure works well for single modal distributions between two Gaussian 

distributions, such as the backscatter coefficients (Figure 7.10), but does not work well for 

multi-modal distributions, such as the texture measure distributions (Figure 7.11). From the 
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texture measures it appears that the mean texture measure was calculated with an integer 

instead of a numeric (with decimal values) output. It is noted that this might have contributed 

to the KLD class difference not working successfully on the texture measures, and will have 

to be corrected and re-assessed in future calculations. 

 

Upon visual interpretation of the KLD measures, it is seen that the Cameroon wet season 

training vs test samples have low values for the diagonal elements (<0.2) and in most cases 

higher KLD values for the off-diagonal elements (Section 7.3.3.1). However for the Cameroon 

wet season vs dry season, the KLD plots diverges further from the ideal scenario (Figure 7.25), 

for the backscatter coefficients, and especially for the texture measures (Section 7.3.3.2). The 

KLD measures for the Cameroon wet season vs DRC wet season diverges even further from 

the ideal scenario (Figure 7.25) for both the backscatter coefficients and texture measures 

(Section 7.3.3.3). In some instances the KLD calculation resulted in NULL-values.  

 

The semi-arid site follows a similar pattern to the forested site, with the KLD measures low 

(similar distributions) for the diagonal elements, and higher (dissimilar distributions) for the 

off-diagonal elements for the Tanzania dry training vs test samples, for both the backscatter 

coefficients and texture measures (Section 7.3.4.1). For the Tanzania dry vs wet season KLD 

measures, some of the diagonal elements have higher KLD measures, showing that the 

statistical distributions of some of the land cover classes are dissimilar between the Tanzania 

dry and wet seasons. Similarly, for the off-diagonal elements, some of the KLD measures are 

low, showing that the distributions of the land cover classes are similar, which should ideally 

be dissimilar, to enable identification of the different land cover classes, for both the 

backscattering coefficient and texture measures (Section 7.3.4.2). It is also noted again that 

no X-band data were available for analysis of the Tanzania wet season data. Therefore, in the 

comparison between the Tanzania dry and wet season data, no X-band data were assessed. 

The KLD measures between the Tanzania dry season and Chad dry season samples show some 

diagonal elements with larger KLD measures, showing dissimilar distributions, and some off-

diagonal elements with lower KLD values, showing similar statistical distributions between 

the different land cover classes (Section 7.3.4.3). It is noted that in this comparison, only L-
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band data were available for overlap between the Tanzania dry and Chad dry season data 

(see Table 3.4). 

 

Drawing linear regression lines between the KLD class difference measures and the user’s 

accuracies for the semi-arid sites resulted in higher 𝑅2 values than for the forested sites. The 

KLD class difference for the Tanzania dry season training vs test samples yielded an 𝑅2 value 

of 0.97 for the backscatter coefficients and 0.94 for the texture measures. For the Tanzania 

dry season vs wet season, the backscatter coefficients also yielded an  𝑅2 of 0.97, with the 

texture measures giving an 𝑅2 value of 0.45. For the Tanzania dry vs Chad dry season 

backscatter coefficient comparison, the KLD class difference compared to the user’s accuracy 

gave an 𝑅2 value of 0.59, which is much higher than the 𝑅2 value of 0.34 for the Cameroon 

wet vs DRC wet season backscatter coefficient relationship. For the Tanzania dry vs Chad dry 

season texture measures, the linear relationship gave an 𝑅2 value of 0.0, showing no linear 

relationship. For the semi-arid data, the KLD class difference of backscatter coefficients, 

proved to be a good indicator of the potential user’s accuracy of developing the model on one 

set of data, and applying it to another. 

 

Assessing the statistical distributions and KLD measurements in such a detailed way, manually 

and visually, highlighted the effectiveness of machine learning classification algorithms for 

feature selection and classification. Probably the most significant benefit of the random forest 

algorithm, as used in this study, is the measures of variable importance, which was used to 

quickly highlight features which result in the highest classification accuracy results (Chapter 

5). Machine learning allows the researcher to quickly work through a multitude of input 

feature layers (in this study between 100-250 feature layers for each site), in an automated 

and meaningful way, without having to work through each layer manually and visually. The 

algorithm therefore identifies the most prominent features, and allows the researcher to 

select the features most prominent for a specific application: in this case land cover 

classification. 
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7.5 Conclusion 

The KLD class difference gives a good indication of the expected user’s accuracy when the 

backscatter coefficients are used directly for both ecoregions. For the inter-season 

backscatter coefficient comparison, the KLD class difference gave an 𝑅2 value of 0.71 for the 

user’s accuracy of the Cameroon wet vs dry season, and an 𝑅2 value of 0.97 for the user’s 

accuracy of the Tanzania dry vs wet season comparison. For this application, the KLD class 

difference measure proved accurate and useful. 

 

When applying the KLD class difference to the backscatter coefficients of a new geographical 

site, the semi-arid sites performed better, with an 𝑅2 value of 0.59 compared to the forested 

sites with an 𝑅2 value of 0.34. In this application, the KLD class difference measure proved 

therefore less accurate, than anticipated. The KLD class difference measures of the texture 

measures were also less accurate than the backscatter coefficients ( 𝑅2 value 0.3 and 0.45 for 

the inter-season comparison of the Cameroon and Tanzania sites respectively), most likely 

due to the multi-modal statistical distributions of the texture measures. 

 

Even though the KLD class difference gave a high relationship for the inter-site comparison 

for the semi-arid sites, the results for the forested site, is quite low. There is, therefore, the 

opportunity for more research to investigate other separability indices, such as the Fisher 

criterion and the Bhattacharyya distance. These separability indices can be compared to the 

KLD results, as indicators to assess whether or not the statistical distributions of the land cover 

classes are similar enough, for the model to yield high classification accuracies on the new 

data. 
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Chapter Eight Overall discussion and conclusion 

 

The potential of utilising multi-frequency SAR was highlighted with the first experiments from 

airborne SAR sensors through the last three decades, together with the land cover 

classification results using multi-frequency SAR from SIR-C / X-SAR images in 1994. Several 

studies have since looked at the use of SAR for land cover classification from single and multi-

frequencies. A few studies using SAR for land cover classification that are related to this 

research, are Waske and Braun (2009), Turkar et al. (2012) and Naidoo et al. (2015). 

 

Waske and Braun (2009) compared decision trees, MLC, boosted decision trees and random 

forests to classify land cover using multi-temporal SAR data and found that the random forest 

classifier outperformed the other classifiers for study sites in Bonn and Jena in Germany. 

Turkar et al. (2012) compared land cover classification accuracies of a mangrove study site in 

Mumbai using L-, C-, X-band, LC-, LCX-bands without polarimetric decompositions; and LCX-

bands with polarimetric decompositions. Turkar et al. (2012) found that L-band gave the 

highest classification accuracies, using a single frequency, and that combining all three 

frequencies improved the classification accuracies for all land cover classes considered, 

namely water, mangrove, urban, forest, saltpans, sewage plant, wetland and grassland. 

Naidoo et al. (2015) investigated the use of L-, C- and X-band to classify AGB, CC and TCV of 

woody trees in an African savannah. Naidoo et al. (2012) concluded that the use of LCX-bands 

data yielded only marginally higher classification results than using L-band data on its own. 

The results therefore does not justify the acquisition of all three frequencies to monitor tree 

structure. 

 

This research looked at using multi-frequency SAR for land cover classification of forested and 

semi-arid ecoregions of Africa, and addressed the three hypothesis posed in Section 1.2. The 

hypothesis stated that multi-frequency SAR provides a higher classification accuracy to single 

frequency SAR (first hypothesis), that the models are transferable between different sites and 

seasons (second hypothesis), and that land cover classes are similar between seasons and 

similar between different sites of the same ecoregions (third hypothesis). 
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The overall discussion covering the combined results from Chapters Five, Six and Seven, which 

tested the first, second and third hypotheses, is presented in Section 8.1.1, Section 8.1.2 and 

Section 8.1.3 respectively. Practical implications of a multi-frequency SAR approach are 

discussed in Section 8.2. The final conclusion of the thesis, together with further work 

identified and a future view are presented in Section 8.3.  

 

8.1 Overall discussion 

8.1.1 Findings from the random forest and SVM classification of multi-

frequency SAR over Cameroon and Tanzania study sites 

The discussion in this section expands on that in Chapter Five, in which random forest models 

of different input variable scenarios are compared. A summary of the overall classification 

accuracies, using all available variables, is given in Table 5.2. From this summary, several 

conclusions can be made, as discussed in the following sections. 

 

8.1.1.1 Single vs dual vs three frequencies 

With the inclusion of texture measures in the random forest model, single frequency SAR 

gives overall classification accuracy results very similar to dual-frequency and all three SAR 

frequencies. The question is rather which single frequency to use? From the results of this 

study, as a single frequency, L-band provided the highest overall classification accuracy, when 

considering both forested and semi-arid eco-regions simultaneously, with results comparable 

to combining two or three frequencies. Should L-band images not be available, X-band images 

would be the second choice, with C-band the third choice for using single frequency SAR for 

land cover classification. When the forested and semi-arid sites are considered separately, X-

band provides the highest overall classification accuracies for the forested ecoregion, when 

both wet and dry seasons are considered. L-band provides the highest overall classification 

accuracies for the semi-arid ecoregion, for both dry and wet seasons.  

 

The case for utilising dual-frequency SAR, is that the overall classification results are generally 

higher, even though only slightly so, than the single frequency scenarios. The best dual-
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frequency combination uses L- and X-bands (LX) for both ecoregions. With the current data 

available, this can only be stated for the Cameroon wet and dry season sites, and the Tanzania 

dry season site. For the Tanzania wet season site, no X-band data were available and LC-bands 

are recommended, based on the available data. 

 

When comparing the highest single frequency to the dual frequency LX-bands, the overall 

classification accuracy for the Cameroon dry season decreases slightly, from 92% to 90% (X vs 

LX), and for the Cameroon wet season increases, from 78% to 88% (L vs LX). For the semi-arid 

ecoregion, there is only a slight increase, from 63% to 65% (L vs LX) for the Tanzania dry 

season. For the Tanzania wet season, there is only a marginal increase from 51% using the L-

band single frequency model, to 52% using the LC-bands model. The benefit of using dual / 

three frequencies for the semi-arid models is therefore very small, and L-band only models 

lead to overall classification accuracies that are highly comparable to dual / three frequencies. 

This is similar to the conclusion from Naidoo et al. (2015), who found that L-band data yields 

sufficiently high accuracy results, and that additional frequencies do not present a large 

increase in overall classification accuracy for the semi-arid regions. Naidoo et al. (2015) 

investigated tree structure classification, contrasting to the land cover classification in this 

study. Turkar et al. (2012) also concluded that L-band is the recommended frequency for land 

cover classification, which is confirmed in this study. Turkar et al. (2012) concluded that the 

combination of multi-frequency data (from L-, C- and X-band) improves classification 

accuracy. This study found that this is the case when only backscatter coefficients are 

considered. However, the increase in overall classification accuracy when using dual or three 

frequencies, compared to single frequency, becomes marginal when texture layers are 

included in the models. 

 

This study presents not only whether or not to use more than one SAR frequency for land 

cover classification, but which SAR frequencies to use for specific ecoregions. The findings are 

summarized in Table 5.2 and Table 5.3. The reference figures from Chapter Five are cross-

referenced for each section (from Figures 5.1 to 5.9) in Table 5.2, to investigate individually if 

required. Table 5.2 presents a detailed guideline of the classification accuracies to expect for 

each ecoregion, using different combinations of frequencies.  
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The question of whether it would be beneficial to acquire data from L-, C- and X-band SAR 

satellites will depend on the application at hand and on the classification accuracies that are 

expected. The combination of LC-bands is a good alternative to LX-bands for both ecoregions, 

should X-band data not be available, although L-band on its own yields accuracies close to the 

LC-band combination. 

 

The recommended frequency combination applicable to both ecoregions, and each of the 

forested and semi-arid ecoregions separately, along with the respective wet and dry seasons 

are listed in Table 5.2. For the forested ecoregion the overall recommendation is LX-bands, 

and for the semi-arid ecoregion L-band. Several alternative recommendations are given in 

Table 5.3, for each of the site / season scenarios. 

 

8.1.1.2 Backscatter coefficients only 

Using only the backscatter coefficients for land cover classification is not recommended, as 

the texture measures and elevation data add in the order of 15-25% increase in overall 

classification accuracies. Using data from all three frequencies (LCX-bands), but without using 

additional calculated texture measures, gives lower overall classification accuracies than 

using single frequency L-band (all four site-season scenarios) or X-band data (all scenarios, 

excluding Tanzania wet season) that includes texture measures.  

 

8.1.1.3 Interchannel ratios 

Interchannel ratios do not add much value in addition to using only the backscatter 

coefficients. The overall classification accuracies either stay the same, or increase/decrease 

by 1% when interchannel ratios are combined with backscatter coefficients. For LCX, the 

addition of interchannel ratios to the backscatter coefficients and texture measures did not 

influence the overall classification accuracies for any of the study sites. This finding is in 

contrast to Lönnqvist et al. (2010), who found that the addition of the interchannel ratio 

layers gave an increase of at least 2.2% on using only the basic backscatter coefficient 
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channels. It should be noted that Lönnqvist et al. (2010) included polarimetric decompositions 

from fully polarimetric data, which was excluded in this study. 

 

8.1.1.4 Texture measures 

One of the main findings of this study is that texture measures add the most value of all the 

additionally calculated feature layers. The increase of 15-25% in overall classification 

accuracies using texture measures, compared to using only backscatter coefficients. Using all 

three frequencies, classification accuracies increased from 66% to 91% for Cameroon dry; 

from 59% to 85% for Cameroon wet; from 49% to 64% for Tanzania dry and from 32% to 49% 

for Tanzania wet. This confirms the findings of Peng et al. (2005), who showed an increase of 

30% when texture measures were included for land cover classification, for a study site of a 

mountainous region in southern Patagonia.  The overall classification accuracies of using only 

texture measures, for the best single frequency (e.g. Cameroon dry: X-band, 91%), dual 

frequency (e.g. Cameroon dry: CX, 92%) and three frequency scenarios (Cameroon dry: LCX, 

91%), are very close to the overall classification accuracies of using all available variables 

(backscatter coefficients, interchannel ratios, texture measures and elevation data) (e.g. 

Cameroon dry: LCX using all available feature layers). Texture measures improve the overall 

classification accuracy of the single frequency models, more than adding additional 

frequencies, without using texture measures. For the top 30 variable models, for both the 

MDA and MDG variable importance measures, all top 30 variables are texture measures, as 

shown in Section 5.3.3 (Note: elevation data were excluded at this point). 

 

8.1.1.5 Elevation data 

Elevation data increases the overall classification accuracy for both ecoregions and for both 

seasons for each ecoregion. The main increase in overall classification accuracy is when 

elevation data are added to the backscatter coefficient only models. This leads to an increase 

in the region of 5-20% for the single frequency models and an increase of 1-10% for the dual 

frequency models. The addition of the elevation data to the models of backscatter 

coefficients, interchannel ratios and texture measures, still adds up to 5% increase in the 
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overall classification accuracies. This confirms the findings from Peng et al. (2005) who found 

that using elevation, slope and aspect data from a DEM increases the overall land cover 

classification significantly. The transferability of the elevation data does not work when there 

are elevation differences between two sites, as explained further in section 8.1.2. 

 

8.1.1.6 Dry season vs wet season 

The dry season images gave higher overall classification accuracies (Cameroon: 92% for the 

dry season and 88% for the wet season; Tanzania: 65% for the dry season and 52% for the 

wet season) than the wet season images for both ecoregions. The forested dry season study 

site had a maximum overall classification accuracy of 92%, using X-band only (90% using LX-

bands) with all feature layers. In comparison, the forested wet season study site had a 

maximum overall classification accuracy of 88%, using LX-bands with all feature layers. The 

semi-arid dry season study site had a maximum overall classification accuracy of 65%, using 

LX-bands with all feature layers, compared to the semi-arid wet study site which only had an 

overall maximum classification accuracy of 52% using LC-bands.  

 

Wet conditions, including rainfall events, correspond to a higher SAR backscatter return as a 

result of higher effective vegetation water content and higher soil moisture (Lucas et al., 

2010). In bare soil, higher soil moisture relates to an increased observed backscatter 

coefficient, due to increased surface scattering (Hobbs et al., 1998). This is however the case, 

until there are pools of water, when the backscatter coefficient will decrease, due to the full 

signal being reflected away from the SAR sensor. With vegetation, wetter conditions influence 

different scattering mechanisms. It is a combination of surface scattering, from the surface, 

and volume scattering from the stems and canopy, that are affected by wet conditions. The 

result is often still an increase in backscatter, but less drastic than for bare soils (Hobbs et al., 

1998). 

 

As a result, the different types of vegetation are better distinguished within the dry season 

images. Additionally the land cover classes are more similar to each other, as viewed by the 

SAR signal, in the wet season, due to higher water content throughout the landscape in this 
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season. The vegetation is also denser during the wet season in all the land cover classes, i.e. 

more dense vegetation in the agriculture areas, bare soil areas, sparse vegetation, open 

woodland and dense trees, and even within the settlement areas. It is therefore harder to 

separate the land cover classes with the SAR signal, since all the land cover classes are more 

alike during the wet season, than in the dry season. It has been shown that SAR backscatter 

ratio, called the Radar Vegetation Index (RVI), is correlated to NDVI, and can be used similar 

to NDVI to monitor vegetation growth (Kumar et al., 2015). Kumar et al. (2015) showed a 

strong correlation between NDVI and RVI, calculated from C-band HH/HV Radarsat-2 data. 

Towards the end of the growing season, NDVI saturates before the RVI, however, RVI can not 

replace NDVI completely since it can not represent greenness directly as NDVI does. 

 

8.1.1.7 Forested vs semi-arid 

For all scenarios, the forested site (Cameroon) has higher overall classification accuracies than 

the semi-arid site (Tanzania). One way to improve the results of the semi-arid region could be 

to use object-based image analysis (OBIA), such as in Nascimento et al. (2012) and Evans and 

Costa (2013) for wetland regions, instead of pixel-based classification as used in this study. 

The benefits of OBIA are that it uses non-spectral features such as shape, size, smoothness, 

and the spatial relation between objects (Blaschke, 2010; Blaschke et al., 2014; Dronova, 

2015). Some aspects such as texture analysis, which is often used as part of OBIA, was used 

in this study, although overall more standard pixel-based approach was followed. This allows 

for a results comparison, should the same data be used as part of an OBIA study in the future 

(Tehrany et al., 2013). OBIA should also address smoothing any speckle that are prevalent in 

SAR imagery. 

 

The polygons chosen for sample areas of the land cover classes are smaller for the semi-arid 

regions than for the forested sites, which could affect the classification accuracies. This could 

lead to a further study to compare the influence of the geometric size of land cover sample 

areas to the classification accuracies. The semi-arid regions of central Africa pose a challenge 

in this regard, as the settlement areas and bare areas are quite small, and scattered between 

the areas with sparse vegetation and some areas with dense trees.  
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8.1.1.8 MDA vs MDG 

From all the MDA vs MDG variable comparisons, there does not appear to be a substantial 

difference between the overall classification accuracies of the models chosen by the MDA and 

MDG variable importance measures. For the class-specific accuracies of the land cover classes 

for the top five variables, the MDA vs MDG variable comparison seem somewhat random, but 

stabilize with more than five variables. The list of the MDG order of variables chosen in 

Chapter Six, could therefore equally have been from the MDA list of variables. 

 

8.1.1.9 Random Forest vs SVM 

In this study SVMs were built using the top 30 variables from the MDA and MDG variable 

importance measures of the random forest models. In general the SVM models gave very 

similar overall classification accuracies to the random forest models. The only exceptions are 

the SVM models built on the Tanzania dry season data, which show an increase for the top 30 

MDA variables (from 61% to 68%), and for the top 30 MDG variables (from 63% to 68%). In 

assessing the class-specific accuracies, the main difference is that the SVM models give a 

higher value for the bare soil land cover class (MDA and MDG variables) and for the agriculture 

class (MDA variables) than the random forest models.  

 

8.1.2 Findings from assessing the transferability of the random forest 

classification models to additional test sites 

The main findings of testing the transferability of the models, as discussed in Chapter Six, is 

expanded on below. The transferability of models from the wet to the dry season for the 

forested site, and from the dry to the wet season for the semi-arid site proved to work 

reasonably well. The loss in overall classification accuracy was from 88% to 74%, for the 

Cameroon wet model applied on the Cameroon dry data, and from 65% to 51%, for the 

Tanzania dry model applied on Tanzania dry data. This is a useful finding, since most studies 

only focus on models as applied to the season for which that model is developed. Another 

approach would be to use images from both seasons during the model development, as in 

Rodriguez-Galiano et al. (2012a). 



251 

 

 

The inter-site transferability of the models did produce satisfactory results when the same 

land cover classes were used. The highest inter-site overall classification accuracy for the 

Cameroon wet model applied to the DRC wet data is 33% (using X-band with backscatter 

coefficient data only), compared to the baseline model of 88% (using LCX-bands with all 

available features). The highest overall classification accuracy for the Tanzania dry model 

applied to the Chad dry data, was 40% (using L-band with only texture measures), compared 

to 63% for the baseline model (with L-band and all available features). There is therefore still 

more research to be done, to develop models that are readily transferable to additional 

geographical sites. 

 

One suggestion, as investigated in this study, is to select land cover samples from both the 

main development site and the additional site, which are here referred to as site-specific land 

cover classes. The model is then trained on the site-specific land cover classes, which 

essentially expands the list of land cover classes to a finer level. The land cover classes can 

then be refined to a finer level of detail within the LCCS framework. The transferability of the 

models using site-specific land cover classes, in this study, had high overall classification 

accuracies. The overall classification accuracies of the Cameroon wet model applied to DRC 

wet data, using class-specific accuracies, was 87% (for the LCX-model with all available 

variables), compared to the 88% overall classification accuracy of the baseline model (LCX-

bands). The overall accuracy of the Tanzania dry model applied to the Chad dry data was 68% 

(using L-band with all available features), compared to 63% for the baseline model (LCX-

bands). The high overall classification accuracies of the site-specific land cover class models 

show that the land cover classes are sufficiently different between the two sites, to be able 

to distinguish them as separate classes. 

 

The transferability of elevation as a feature to classify land cover are not recommended, 

unless the elevation between the two sites are very similar. The elevation difference between 

the Cameroon (850m) and DRC (950m) sites were ~100m, and lead to a decrease is 

classification accuracy from 58% to 21%. The elevation difference between the Tanzania 

(1200m) and Chad (850m) sites were ~350m lower, and the classification accuracy decreased 
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from 36% to 20%. This is the case when looking only at elevation data, but the effect is much 

less pronounced when the texture measure features are included in the model. 

 

8.1.3 Findings from the SAR signatures and KLD measures of multi-

frequency SAR images 

This section summarizes and expands on the discussion in Chapter Seven. The KLD class 

difference measure that is calculated in this study, proves to be an effective measure for 

indicating the expected user’s accuracies in most cases. The KLD class difference measure is 

more aligned to the user’s accuracy when the backscatter coefficients are used in the 

calculation, instead of the texture measures. A high linear relationship is found between the 

KLD class difference and the expected user’s accuracies for the inter-season transfer for both 

the forested and semi-arid ecoregions. The inter-season transfer gave less satisfactory results 

with an 𝑅2 value of 0.34, for the Cameroon wet model applied on the DRC wet season data, 

and an 𝑅2 value of 0.59, for the Tanzania dry model applied to the Chad dry season data.  

 

A more suitable measure for indicating whether the difference in the SAR distributions of the 

land cover classes between two sites, can show how transferable a model will be, still remains 

to be found in research.  

 

To determine the limit of SAR distributions differing, so that a model trained on one set of 

data can still be applied on another dataset with different statistical distributions, is therefore 

still to be determined. It will be useful to derive a measure of acceptable deviation between 

two distributions, to give an indication that the model will still give reliable results. 

 

The visual display of the statistical distributions of the different SAR frequencies and 

polarisations is useful for obtaining a deeper insight into the data. This is related to Ulaby and 

Dobson (1989), where the statistical distributions of various land cover classes were 

presented for different frequencies and polarisations, but from a ground-based radar 

instrument. In comparison, the data used in this study are all acquired from satellites. 

 



253 

 

8.2 Practical implications of a multi-frequency SAR approach 

There are many practical implications that needs to be considered when the use of multi-

frequency SAR is considered. Currently the different SAR sensors are operated by separate 

governments and space agencies (e.g. TerraSAR-X by the DLR, ALOS-2 PALSAR-2 by JAXA, 

RADARSAT-2 by the CSA and Sentinel1- by ESA). The mission objectives of each satellite are 

not necessarily aligned for use in an operational multi-frequency set-up. There are inter-

governmental collaborations such as the International Charter ‘Space and Major Disasters’, 

where satellite acquisitions can be commissioned to coincide closely in time and geographical 

area (The International Charter, 2000; Mahmood et al., 2005). For an operational multi-

frequency SAR system to work, a similar agreement will be necessary, to ensure that 

acquisitions are coordinated.  

 

The other possibility would be a multi-frequency SAR constellation of satellites. One such 

agreement is SIASGE (Sistema Italo-Argentino di Satelliti per la Gestione delle Emergenze) 

(Pierdicca et al., 2011) which seeks to combine imagery from the Italian Cosmo-Skymed X-

band satellite and the Argentinian SAOCOM L-band satellite for disaster response applications 

(Giudici et al., 2010; CONAE, 2011). The SIASGE agreement is in line with the findings from 

this study, that LX-bands provide high overall classification accuracies for both the forested 

and semi-arid ecoregions. 

 

An important aspect to note from this study is the overlap size between satellite images, when 

images are acquired from more than one sensor. When choosing images from multiple 

satellites, the overlapping area is likely to become smaller with each additional satellite 

image. If a larger area needs to be classified, it might be of more benefit to use two 

frequencies instead of three, as a larger area can be classified from the overlapping data. The 

area of overlap can be maximized with planned acquisitions, compared to with archive data, 

as used in this study. 

One aspect of SAR that was not covered in this research is the impact of ascending and 

descending SAR acquisitions. This will most likely have a greater impact on classification 

results for areas of varying topography.  Since the study sites in this research were relatively 

flat, the impact of ascending and descending acquisitions was omitted from this research. 
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The benefit of additional classification accuracy needs to outweigh the additional cost of 

acquiring images from more satellites, to motivate for the use of multi-frequency SAR. Several 

satellite image providers are making their images available free of charge, or at a low cost per 

scene. The main provider of freely distributed SAR data is ESA with Sentinel 1A data (ESA, 

2012b). Additionally, ALOS-2 archive data are available at low cost (since November 2014) 

(RESTEC, 2014). There is, however, still the processing cost of orthorectifying the images, and 

calculating additional texture measure layers that need to be taken into account for a multi-

frequency SAR application.  

 

One of the main challenges in this study was to obtain accurate orthorectification for the 

images from all three SAR sensors. There were several images that did not orthorectify 

correctly, and in particular the sub-optimal orthorectification results from the X-band images 

for the Tanzania wet season site, resulted in an incomplete set of images for this site. One 

suggestion for future research is to request both the detected and SLC versions of the images, 

to have a relevant reference image for each SAR image. 

 

8.3 Conclusion, further work identified and future view 

The final conclusion, further work and future view are presented in this section. 

 

8.3.1 Final conclusion  

(1) L-band is the best single frequency for land cover classification, when considering 

both forested and semi-arid ecoregions. 

(2) X-band gives the highest overall classification accuracy when only forested ecoregions 

are considered. 

(3) L-band gives the highest overall classification accuracy when only semi-arid 

ecoregions are considered. 

(4) The recommended dual-frequency combination is LX-bands, and alternatively LC-

bands, if no X-band images are available. 
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(5) The addition of texture measures increases the overall classification accuracies 

between 15-25%, and it is recommended to include texture measures to obtain high 

classification accuracies for all land cover classification projects that use SAR data. 

(6) The inter-season transfer of models works well, with a relatively small drop in overall 

classification accuracy. The overall classification accuracies decreased from 88% to 

74%, when the Cameroon wet season model was applied to the Cameroon dry season 

data, and from 65% to 51% when the Tanzania dry season model was applied to the 

Tanzania wet season data. 

(7) The inter-site transfer of the models did not give satisfactory results, when 

considering the same land cover classes. 

(8) The high classification accuracies for the Cameroon wet model applied to the DRC wet 

season data, showed that the land cover classes were different enough to enable their 

classification as site-specific land cover classes. 

(9) The KLD class difference measure provides a good linear relationship for the inter-

season land cover comparison, with an 𝑅2 value of 0.71 for the Cameroon wet season 

vs Cameroon dry season backscatter coefficient data and an 𝑅2 value of 0.97 for the 

Tanzania dry season vs Tanzania wet season backscatter coefficient data. 

(10)  The KLD class difference measure did not provide satisfactory results for the inter-

site land cover comparison, with an 𝑅2 value of 0.34 for the Cameroon wet season vs 

DRC wet season backscatter coefficient data and an 𝑅2 value of 0.59 for the Tanzania 

dry season vs Chad dry season backscatter coefficient data. 

(11)  The inclusion of all three frequencies of L-, C- and X-band for large area monitoring is 

not necessary, as the increase of classification accuracy does not warrant the use of 

all three frequencies simultaneously. The consideration would therefore be project 

specific as to the final choice of frequencies, depending on the ecoregion, and on 

class-specific classification accuracies required. 
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8.3.2 Further work identified 

Further research would include:   

1) Comparing the number of images per frequency vs classification accuracy?  

2) Comparing the spatial resolution of images vs classification accuracy? In the data used 

in this study, C-band had the lowest spatial resolution of 15m, compared to the spatial 

resolution of 10m for the L-band data and 5m for the X-band data. How did this 

influence the classification accuracies?  

3) What is the relationship between the geometric size of the land cover polygons and 

the classification accuracies? In this study the land cover polygons from the semi-arid 

Tanzania site were much smaller than the land cover polygons from the forested 

Cameroon site. How does this influence the overall classification accuracies? 

4) Compare the random forest and SVM results using either different or more sample 

points, to assess whether the SVM model still outperforms random forest model for 

the Tanzania wet season site. 

5) Investigating the use, and comparison, of OBIA compared to the pixel-based 

classification used in this research. 

6) First identify biomass from the images, using different combinations of images; 

compare the accuracy from different frequencies / polarisations and texture measures 

and use this to classify the underlying land cover classes. 

7) What are the overall and class-specific classification accuracies when the roles of the 

main site and additional sites are reversed, to that used in this study? I.e. train the 

model on the DRC wet season data and apply the model to the Cameroon wet season 

data; and train the model on the Chad dry season data and apply it to the Tanzania 

dry season data. 

8) What are the overall and class-specific classification accuracies when the roles of the 

inter-season comparison sites are reversed? I.e. train the model on the Cameroon dry 

season data and apply it to the Cameroon wet season data; and train the model on 

the Tanzania wet season data and apply it to the Tanzania dry season data. 

9) Deriving a cross-ecoregion modelling approach: either training the model on one 

ecoregion and applying it to another ecoregion, or training the model on both 
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ecoregions simultaneously, similar to the site-specific land cover class approach used 

in this study. 

10) Testing additional separability indices such as the Fisher criterion and the 

Bhattacharyya distance, to assess if a better measure than the KLD class difference 

measures can be found. This is especially for the multi-modal statistical distributions 

of the texture measures. 

 

8.3.3 Future view 

The future view is that there will be an increase in multi-frequency SAR applications, from all 

the available SAR satellites in the future (see Table 2.2 for a list of current SAR satellites and 

those planned for the future). With ALOS-2 PALSAR-2 in orbit, along with Sentinel 1A, an LC-

band application is feasible. An LX-band combination is also possible between ALOS-2 

PALSAR-2 and TerraSAR-X. If the planned TerraSAR-L satellites coincide with current 

TerraSAR-X satellites, this could create the ideal LX-band constellation for land cover 

classification. 

 

The cost of SAR data has decreased substantially during the last few years, with open access 

to Sentinel 1 data, and from 24 November 2014, ALOS PALSAR data available at a fraction of 

the cost per scene than before then (RESTEC, 2014). It is the author’s view that the lower cost 

and open access to SAR data will increase its use by a much wider user community. The 

lowering in cost of data processing and data storage will make the processing and storage of 

the large data requirements for SAR satellite images more feasible to a much wider user 

community of SAR data. 

 

A universal model to classify SAR data for multiple ecoregions is still lacking. The training of a 

model using site-specific land cover classes, as in this study, shows one way of doing this. If 

enough samples are collected from multiple sites, from multiple ecoregions, around the 

world, this could be done. This could be one of the next challenges to utilise the increasing 

number of SAR images available, with big data and distributed processing approaches, in the 

future.
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Appendices 

 

Appendix One: GAMMA orthorectification scripts 

 

Appendix One covers the orthorectification scripts using the GAMMA SAR and interferometric 

software (Werner et al., 2012). The scipt was originally written by Waldram (2014), and was 

modified for this research. To run the GAMMA orthorectification scripts, this research used 

the ALICE High Performance Computing Facility at the University of Leicester. 

 

A1.1 Overview of GAMMA orthorectification scripts 

The broad outline of the orthorectification stepard are shown in Figure 4.2. The script requires 

the following input: 

1. An SLC SAR image: TerraSAR, ENVISAT ASAR or ALOS PALSAR. 

2. A Landsat Tile ( or mosaic of tiles) covering the full extent of the SAR image, or 

3. An SRTM DEM Tile (or mosaic of tiles) covering the full extent of the SAR image 

The main script used for this processing, is the automate.csh script which is shown in Script 

A1.1. The directory structure that needs to be created before the script is run, is shown in 

Figure A1.1, and the /DEM directory structure with file locations in Figure A1.2. The location 

of Scripts A1.1, A1.2, A1.4 and A1.5 should be placed in the /phd folder, as shown in Figure 

A1.1. The base directory in this case is /scratch/gionet/bfs4/ but can be any other reference 

directory in which the analysis is done. The script provides the ability to use either an SRTM 

DEM or an alternative DEM from a panchromatic Landsat image. Even though panchromatic 

Landsat images were used in this research, the alternative SRTM scripts are presented as 

reference. The steps to download, mosaic and prepare a panchromatic Landsat image are 

presented in Section A1.2. The steps to download, mosaic and prepare an SRTM DEM for the 

GAMMA scripts are presented in Section A1.3. Some of the file and folder names are in lower 

case, e.g. /srtm. It is important to note that the linux operating system is case sensitive, and 

the folder and file names should therefore be treated as lower or upper case as appropriate. 
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Figure A1.1 Directory structure to be created for the GAMMA orthorectification scripts. 



260 

 

 

 

Figure A1.2 The directory structure of the /DEM folder, with locations of scripts 
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A1.2 DEM preparation steps – Landsat 

The steps to download, mosaic and prepare a Landsat panchromatic image to be used 

as a DEM in the GAMMA orthorectification scripts are given here: 

1) Download landsat images from http://earthexplorer.usgs.gov/ 

2) Mosaic in ENVI (using the feather 8 method): 

a. Load the images in ENVI. Select the tool to ‘georeferenced mosaicking’ 

from the tool menu. 

b. Select Import > ‘Import Files and Edit Properties’. 

c. Select Feathering Distance of 8 pixels, No Colour Balancing. 

d. Select File > Apply to create the mosaic. 

3) Convert to float using float(b1) in bandmath in ENVI. 

4) Copy to /DEM/landsat/landsat_preparation on ALICE. 

5) Run the do_dem_byteswap.csh script (Script A1.16) located in the 

/DEM/landsat/landsat_preparation forlder. 

 

A1.3 DEM preparation – SRTM 

The steps to download, mosaic and prepare an SRTM DEM to be used in the GAMMA 

orthorectification scripts are given here: 

 

1) Download from http://srtm.csi.cgiar.org/ (void filled, version 4 SRTM, 

recommended by GAMMA) or from http://dwtkns.com/srtm/ which is an 

intuitive link to the http://srtm.csi.cgiar.org/ website. 

a. Open file in ENVI and save as ENVI format (to get header file info, to be 

used later). 

b. To work with the SRTM’s on your local computer, the images need to be 

re-projected into UTM projection, to be able to overlap the SAR 

imagery, which will be geo-terrain corrected into UTM. 

2) Mosaic in ENVI (using the feather 8 method), and do not convert to float 

format as with the Landsat image. 

http://earthexplorer.usgs.gov/
http://srtm.csi.cgiar.org/
http://dwtkns.com/srtm/
http://srtm.csi.cgiar.org/
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a. Load the images in ENVI. Select the tool to ‘georeferenced mosaicking’ 

from the tool menu. 

b. Select Import > ‘Import Files and Edit Properties’ 

c. Select Feathering Distance of 8 pixels, No Colour Balancing 

d. Select File > Apply to create the mosaic. 

3) Copy the mosaic or single srtm.dat and srtm.hdr files to ALICE into the 

/DEM/srtm/srtm_preparation folder 

4) Run the do_dem_byte_swap_srtm.csh (Script A1.22) program 

5) Manually create site_srtm_eqa.dem_par (Scripts A1.17- A1.20) files using the 

details from the .hdr file from the ENVI mosaic (this could be automated later if 

necessary). 

a. In the header file, the samples becomes the width in the dem_par file, 

and the lines becomes the nlines in the dem_par file. 

b. Check the latitude and longitude for the top left corner. The .dem_par files 

are represented in Scripts A1.17-A1.20. 
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A1.4 GAMMA orthorectification scripts 

The GAMMA orthorectification scripts and supporting files as modified from Waldram (2014), 

are represented in this section. The main GAMMA script, called automate.csh are presented 

in Script A1.1. 

 

A1.4.1 /phd folder scripts 

Script A1.1 GAMMA script, automate.csh 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

 
27 
28 
29 
30 
31 

#!/bin/csh -fe 
if ($#argv < 13) then 
  echo " " 
  echo "***  Process ALOS PALSAR, ENVISAT ASAR and TerraSAR-X Data  ***" 
  echo "***  Copyright 2004, Gamma Remote Sensing, v1.4 18-May-2004 ts/uw/clw  
***" 
  echo "***  Modified from the Emma Tebbs/MSW version   ***" 
  echo "***  Edited by Bernard Spies, bfspies@gmail.com - version 6 June 2013 ***" 
  echo " " 
  echo "automate.csh : To calibrate, multilook and geo-terrain correct images from 
ALOS PALSAR, ENVISAT ASAR and TerraSAR-X SLC images" 
  echo " " 
  echo "usage: automate.csh" 
  echo "   1. working_dir       Base working directory e.g. /alice/scratch/gionet/bfs4"   
  echo "   2. script_dir            Directory in which the script is kept, e.g. phd" 
  echo "   3. region                 Region name e.g. cameroon1, cameroon2, drc, tanzania, 
sudan, chad" 
  echo "   4. sensor                 PALSAR, ASAR, or TSX" 
  echo "   5. slc1_dir1           Data directory for slc1, e.g. 
Cameroon1_Dry_PALSAR_20100318_SLC_0_HH" 
  echo "   6. slc1_dir2             Deeper directory for TSX, if not TSX use -" 
  echo "   7. slc1                      SLC 1 level 1.1 IMG file name e.g. IMG-HH-
ALPSRP075937190-H1.1__A" 
  echo "   8. slc2_dir1           Data directory for slc2 for interferometry, e.g. 
Cameroon1_Dry_PALSAR_20100318_SLC_0_HH" 
  echo "   9. slc2_dir2             Deeper directory for TSX, if not TSX use -" 
  echo "   10. slc2                    SLC 2 level 1.1 IMG file name e.g. IMG-HH-
ALPSRP075937190-H1.1__A" 
  echo "   11. mli_range_looks    Multi-look intensity range looks (for PALSAR from 
Matt: FBS = 2; FBD, PLR = 1) " 
  echo "   12. mli_azimuth_looks  Multi-look intensity azimuth looks (for PALSAR 
from Matt: FBS, FBD = 6; PLR = 9)" 
  echo "   13. polarisation           Polarisation (HH, HV, VH or VV)" 
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32 
 

33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

  echo "   14. grd_pixel_spacing    Ground pixel spacing, output resolution in m for 
utm (e.g. 25, assume pixel is square)" 
  echo "   15. create_offset_method Offset_algorithm (for interferometry) 1: 
intensity cross-correlation (default), 2: fringe visibility" 
  echo "   16. direction                    Ascending/Descending, Asc,flipping = 1, 
Desc,flipping = -1" 
  echo "   17. interp_mode      Interpolation Mode (0: nearest neighbor (default), 1: 
spline, 2: spline log)" 
  echo "   18. dem_source       DEM source, e.g. srtm" 
  echo "   19. img_source        image source, e.g. landsat or palsar" 
  echo "   20. init_thres           Initial Threshold for SNR correlation between SAR 
images and simulated SAR from DEM (default 7.000)" 
  echo "   21. second_thres    Secondary Threshold for SNR correlation between SAR 
images and simulated SAR from DEM (default 7.0)" 
  echo "   22. hemisphere       Hemisphere of the image, for the ENVI .hdr file 
creation" 
  echo "   23. imgtype              Image type: SLC or MLI" 
  echo "   24. geocode_path  GTC (directly from Gamma) vs geocode (version by 
Matt Waldram)" 
  echo " " 
  exit 
endif 
 
#set the variables from the do_automate_site.csh command 
set working_dir          = $1 
set script_dir              = $2 
set region             = $3 
set sensor                   = $4 
set slc1_dir1             = $5 
set slc1_dir2               = $6 
set slc1             = $7 
set slc2_dir1            = $8 
set slc2_dir2               = $9 
set slc2             = $10 
set range_looks         = $11 
set azimuth_looks        = $12 
set pol                      = $13 
set grd_pixel_spacing        = $14 
set create_offset_method = $15 
set direction         = $16 
set interp_mode        = $17 
set dem_source         = $18 
set img_source         = $19 
set output_name               = $5_$13 
set init_thres                       = $20 
set second_thres                = $21 
set hemisphere                   = $22 
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78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 

 
120 
121 
122 
123 

set imgtype                          = $23 
set geocode_path               = $24 
 
echo "input parameters:" 
echo "working_dir(1):    $working_dir"  
echo "script_dir(2):     $script_dir" 
echo "region(3):         $region" 
echo "sensor(4):         $sensor" 
echo "slc1_dir1(5):      $slc1_dir1" 
echo "slc1_dir2(6):      $slc1_dir2" 
echo "slc1(7):        $slc1" 
echo "slc2_dir1(8):      $slc2_dir1" 
echo "slc2_dir2(9):      $slc2_dir2" 
echo "slc2(10):          $slc2" 
echo "range_looks(11):   $range_looks" 
echo "azimuth_looks(12): $azimuth_looks" 
echo "pol(13):       $pol" 
echo "grd_pixel_spacing(14): $grd_pixel_spacing" 
echo "create_offset_method(15): $create_offset_method" 
echo "direction(16)      $direction" 
echo "interp_mode(17):   $interp_mode" 
echo "dem_source(18):    $dem_source" 
echo "img_source(19):    $img_source" 
echo "output_name(5_13): $output_name" 
echo "init_thres(20):    $init_thres" 
echo "second_thres(21):  $second_thres" 
echo "hemisphere(22):    $hemisphere" 
echo "imgtype (23):      $imgtype" 
echo "geocode_path(24):  $geocode_path" 
 
if ($direction == "Ascending") set flipping = 1    
if ($direction == "Descending") set flipping = -1    
 
set grd_rsp = $grd_pixel_spacing 
set grd_azsp = $grd_pixel_spacing 
set input_dir = $working_dir/$region\_input 
 
#these offsetts are for interferometric processing 
set init_offset_corr_threshold_1 = 4.0 
set init_offset_corr_threshold_2 = 4.0 
 
#Option1 1: slc1 only, Preparation - orthorectification only, no interforogram, using 
GTC_MLI procedure 
if ($geocode_path == "GTC") then 
  echo "GTC path" 
  set do_untidy          = 0 
  set do_prepare_slc1    = 1   #1     necessary for slc1 
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124 
125 
126 
127 
128 
129 
130 
131 
132 
133 

 
134 
135 

 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 

 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 

  set do_initial_offset1 = 0 
  set do_create_offset1  = 0 
  set do_interferogram1  = 1   #1     necessary for slc1 - multilooking 
  set do_base_est1       = 0 
  set do_flattening1     = 0 
  set do_coherence1      = 0 
  set do_ad_filtering1   = 0 
  set do_calibration1    = 1   #1     necessary for slc1 
  set do_GTC_MLI         = 1   #1     GTC_MLI code from GAMMA 
  set do_geocode1        = 0   #0     only do_geocode1 for slc1(not slc1 & slc2) works at 
the moment 
  set add_pixel_area     = 0   #0     suggestion by Andreas Wiesmann, Oct2013 
  set do_geocode1_next   = 0   #0     only do_geocode1_next for slc1 works at the 
moment 
  set onemore_init_offsetm = 0 #0     extra option suggested by Andreas Wiesmann 
  set do_header1         = 0   #0     necessary for slc1 
  set do_kml       = 0 
  set do_tidy_up         = 0   #0     necessary for slc1, to tidy up 
#keeper variables 
  set do_prepare_slc2   = 0 
  set do_initial_offset2 = 0 
  set do_create_offset2  = 0  
  set do_interferogram2  = 0 
  set do_base_est2       = 0 
  set do_flattening2     = 0 
  set do_coherence2      = 0 
  set do_ad_filtering2   = 0 
  set do_calibration2    = 0 
  set do_header2         = 0 
  set do_tidy_up_Matt   = 0 
endif #if geocode_pat == "GTC" 
 
#Option 2: slc1 only, Preparation - orthorectification only, no interforogram, using 
Matt's geocode procedure 
if ($geocode_path == "geocode") then 
  echo "geocode path original" 
  set do_untidy          = 0 
  set do_prepare_slc1    = 1   #1     necessary for slc1 
  set do_initial_offset1 = 0 
  set do_create_offset1  = 0 
  set do_interferogram1  = 1   #1     necessary for slc1 - multilooking 
  set do_base_est1       = 0 
  set do_flattening1     = 0 
  set do_coherence1      = 0 
  set do_ad_filtering1   = 0 
  set do_calibration1    = 1   #1     necessary for slc1 
  set do_GTC_MLI         = 0   #0     GTC_MLI code from GAMMA 
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168 
 

169 
170 

 
171 
172 
173 
174 
175 

 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 

 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 
202 

 
203 
204 

 
205 
206 
207 
208 

  set do_geocode1        = 1   #1     only do_geocode1 for slc1(not slc1 & slc2) works at 
the moment 
  set add_pixel_area     = 0   #0     suggestion by Andreas Wiesmann, Oct2013 
  set do_geocode1_next   = 1   #1     only do_geocode1_next for slc1 works at the 
moment 
  set onemore_init_offsetm = 0 #0     extra option suggested by Andreas Wiesmann 
  set do_header1         = 1   #1     necessary for slc1 
  set do_kml       = 0 
  set do_tidy_up         = 1   #1     necessary for slc1, to tidy up 
#keeper variables 
  set do_prepare_slc2   = 0 
  set do_initial_offset2 = 0 
  set do_create_offset2  = 0  
  set do_interferogram2  = 0 
  set do_base_est2       = 0 
  set do_flattening2     = 0 
  set do_coherence2      = 0 
  set do_ad_filtering2   = 0 
  set do_calibration2    = 0 
  set do_header2         = 0 
  set do_tidy_up_Matt   = 0 
endif #else if geocode_path == "geocode" 
 
#Option 3: slc1 only, Preparation - orthorectification only, no interforogram, using 
Matt's geocode procedure - with pixel area correction 
if ($geocode_path == "geocode_with_pixel_area") then 
  echo "geocode path with pixel area" 
  set do_untidy          = 0 
  set do_prepare_slc1    = 1   #1     necessary for slc1 
  set do_initial_offset1 = 0 
  set do_create_offset1  = 0 
  set do_interferogram1  = 1   #1     necessary for slc1 - multilooking 
  set do_base_est1       = 0 
  set do_flattening1     = 0 
  set do_coherence1      = 0 
  set do_ad_filtering1   = 0 
  set do_calibration1    = 1   #1     necessary for slc1 
  set do_GTC_MLI         = 0   #0     GTC_MLI code from GAMMA 
  set do_geocode1        = 1   #1     only do_geocode1 for slc1(not slc1 & slc2) works at 
the moment 
  set add_pixel_area     = 1   #1     suggestion by Andreas Wiesmann, Oct2013 
  set do_geocode1_next   = 1   #1     only do_geocode1_next for slc1 works at the 
moment 
  set onemore_init_offsetm = 1 #1     extra option suggested by Andreas Wiesmann 
  set do_header1         = 1   #1     necessary for slc1 
  set do_kml       = 0 
  set do_tidy_up         = 1   #1     necessary for slc1, to tidy up 
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209 
210 
211 
212 
213 
214 
215 
216 
217 
218 
219 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 

 
249 
250 
251 
252 
253 
254 

#keeper variables 
  set do_prepare_slc2   = 0 
  set do_initial_offset2 = 0 
  set do_create_offset2  = 0  
  set do_interferogram2  = 0 
  set do_base_est2       = 0 
  set do_flattening2     = 0 
  set do_coherence2      = 0 
  set do_ad_filtering2   = 0 
  set do_calibration2    = 0 
  set do_header2         = 0 
  set do_tidy_up_Matt   = 0 
endif #else if geocode_path == "geocode" 
 
#if ((! $geocode_path == "geocode") || (! $geocode_path == "GTC")) then 
#  echo "incorrect geocode_path value. Use GTC or geocode as input" 
#endif #geocode_info 
 
if (0) then 
  set do_geo_fine_LS = 0 
  set do_geocode_LS  = 0 
endif 
 
#variables for the unwrapping steps (for interferometry) 
set do_unwrapping_bcut2  = 0 
set do_unwrapping_mcf2   = 0 
 
#=================================================# 
# set the hemisphere for the different locations of the images 
#set hemisphere = 0 
#if ($region == "cameroon1") set hemisphere = "North" 
#if ($region == "cameroon2") set hemisphere = "North" 
#if ($region == "drc") set hemisphere = "North" 
#if ($region == "tanzania") set hemisphere = "South" 
#if ($region == "sudan") set hemisphere = "North" 
#if ($region == "chad") set hemisphere = "North" 
 
#set process directory, clean for reruns, change to the process directory 
set process_dir = 
$region\_process/$output_name\_$range_looks\x$azimuth_looks\_$grd_pixel_spa
cing\m_$geocode_path 
if (! (-d $working_dir/$process_dir) ) mkdir $working_dir/$process_dir 
 
echo "cd to process directory, to clean before new processing" 
cd $working_dir/$process_dir 
  if (-e create_header.csh) rm * 
echo "after cleaning the directory" 
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#copy create_header script and GTC_MLI script from the script folder to the process 
folder 
cp $script_dir/create_header.csh $working_dir/$process_dir 
cp $script_dir/GTC_MLI_edit.csh $working_dir/$process_dir 
cd $working_dir/$process_dir 
 
#========================================================# 
#do untidy (remove files from processed_files folder created in do_tidy and places 
them in insar_directory)# 
if ($do_untidy) then  
#  if (!(-d processing_files)) then 
  cd $working_dir/$process_dir/processing_files/ 
  mv * .. 
  cd .. 
#  endif 
endif 
 
#================================================================# 
#Prepare slc data and processing parameter files# 
# for 1 slc image, for geocoding only, not interferogram# 
if ($do_prepare_slc1) then   
  echo "" 
  echo "input directory to prepare the slc:" 
  echo $input_dir 
  echo "" 
  echo "slc1.slc" 
  echo $slc1.slc 
  echo "" 
  echo "slc1.slc.par" 
  echo $slc1.slc.par 
 
  if (-e $slc1.slc) rm -f $slc1.slc 
  if (-e $slc1.slc.par) rm -f $slc1.slc.par 
  if (($sensor == "PALSAR") && ($imgtype == "SLC")) par_EORC_PALSAR 
$input_dir/$slc1_dir1/LED* $slc1.slc.par $input_dir/$slc1_dir1/$slc1 $slc1.slc 
 
  if (($sensor == "PALSAR") && ($imgtype == "MLI")) par_EORC_PALSAR_geo 
$input_dir/$slc1_dir1/LED* $slc1.mli.par $slc1.dem_par 
$input_dir/$slc1_dir1/$slc1 $slc1.mli 
 
  if ($sensor == "ASAR" && $imgtype == "SLC") par_ASAR 
$input_dir/$slc1_dir1/$slc1 $slc1.slc - 
  if ($sensor == "ASAR" && $imgtype == "SLC") mv *.$pol.SLC $slc1.slc 
  if ($sensor == "ASAR" && $imgtype == "SLC") mv *.$pol.SLC.par $slc1.slc.par 
  if ($sensor == "ASAR" && $imgtype == "MLI") par_ASAR 
$input_dir/$slc1_dir1/$slc1 $slc1.mli - 
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  if ($sensor == "ASAR" && $imgtype == "MLI") mv *.$pol.MLI $slc1.mli 
  if ($sensor == "ASAR" && $imgtype == "MLI") mv *.$pol.MLI.par $slc1.mli.par 
  if ($sensor == "RS2" && $imgtype == "MLI") par_RSAT2_SG 
$input_dir/$slc1_dir1/product.xml $input_dir/$slc1_dir1/lutSigma.xml 
$input_dir/$slc1_dir1/imagery_\$pol\.tif $pol $slc1.grd_par $slc1.grd 
 
  #if ($sensor == "ASAR") mv $slc1.slc.$pol.SLC $slc1.slc 
  #if ($sensor == "ASAR") mv *.$pol.SLC.par $slc1.slc.par 
#mv *.HH.SLC Chad_Dry_ASAR_20071106_VV.N1.slc 
#mv *.HH.SLC.par Chad_Dry_ASAR_20071106_VV.N1.slc.par 
 
echo "" 
echo "test Sudan TSX SLC" 
echo "dir1: $input_dir/$slc1_dir1/$slc1_dir2/*.xml " 
echo "dir2: $input_dir/$slc1_dir1/$slc1_dir2/IMAGEDATA/$slc1 " 
echo "slc1: $slc1" 
echo "pol: $pol" 
echo "" 
 
  if ($sensor == "TSX" && $imgtype == "SLC") par_TX_SLC 
$input_dir/$slc1_dir1/$slc1_dir2/*.xml 
$input_dir/$slc1_dir1/$slc1_dir2/IMAGEDATA/$slc1 $slc1.slc.par $slc1.slc $pol 
 
  if ($sensor == "TSX" && $imgtype == "MLI") par_TX_SLC 
$input_dir/$slc1_dir1/$slc1_dir2/*.xml 
$input_dir/$slc1_dir1/$slc1_dir2/IMAGEDATA/$slc1 $slc1.mli.par $slc1.dem_par 
$slc1.cmli $pol 
 
endif  #do_prepare_slc1 
 
#================================================================# 
#Prepare slc data and processing parameter files# 
# for 2 slc images, for geocoding AND interferogram# 
if ($do_prepare_slc2) then   
  echo "" 
  echo "input directory to prepare the slc:" 
  echo $input_dir 
  #echo $working_dir/$region\_input/$slc1_dir1/LED* 
  #echo $working_dir/$region\_input/$slc1_dir1/$slc1 
  #echo $working_dir/$region\_input/$slc2_dir1/LED* 
  #echo $working_dir/$region\_input/$slc2_dir1/$slc2 
  echo "" 
  if (-e $slc1.slc) rm -f $slc1.slc 
  if (-e $slc1.slc.par) rm -f $slc1.slc.par 
  if ($sensor == "PALSAR") par_EORC_PALSAR $input_dir/$slc1_dir1/LED* 
$slc1.slc.par $input_dir/$slc1_dir1/$slc1 $slc1.slc 
  if (-e $slc2.slc) rm -f $slc2.slc 



271 

 

334 
335 

 
336 
337 

 
338 
339 
340 
341 
342 
343 
344 

 
345 
346 
347 
348 
349 
350 
351 

 
352 
353 
354 
355 

 
356 
357 
358 

 
359 

 
360 
361 
362 
363 
364 
365 

 
366 
367 
368 
369 
370 
371 
372 

  if (-e $slc2.slc.par) rm -f $slc2.slc.par 
  if ($sensor == "PALSAR") par_EORC_PALSAR $input_dir/$slc2_dir1/LED* 
$slc2.slc.par $input_dir/$slc2_dir1/$slc2 $slc2.slc 
endif 
 
################################################################ 
###   Offset estimation of the slc images (for interferometry)                                                                            
### 
########################################################### 
if ($do_initial_offset1) then 
  echo "" 
  echo "do_intial_offset1:" 
  echo "no initial offset necessary, since no interferogram is calculated using this 
option" 
  echo "" 
  endif 
 
if ($do_initial_offset2) then 
  if (-e $slc1\_$slc2.off) rm -f $slc1\_$slc2.off 
  if ($create_offset_method == 1) then 
    create_offset $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off $create_offset_method 
$range_looks $azimuth_looks < $working_dir/DEM/create_offset_input_ICC 
    else 
   endif 
  if ($create_offset_method == 2) then 
    create_offset $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off $create_offset_method 
$range_looks $azimuth_looks < $working_dir/DEM/create_offset_input_FVI 
   else 
   endif 
  init_offset $slc1.slc $slc2.slc $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off 
$range_looks $azimuth_looks - - 0 0 $init_offset_corr_threshold_1 
  init_offset $slc1.slc $slc2.slc $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off 1 1 - - 0 0 
$init_offset_corr_threshold_2 
  endif 
 
if ($do_create_offset1) then 
  echo "" 
  echo "do_create_offset1:" 
  echo "create offset is not necessary, since no interferogram is calculated using this 
option" 
  echo "" 
endif 
 
if ($do_create_offset2) then 
  if ($create_offset_method == 1) then 
    if (-e $slc1\_$slc2.offs) rm -f $slc1\_$slc2.offs 
    if (-e $slc1\_$slc2.snr) rm -f $slc1\_$slc2.snr 



272 

 

373 
374 
375 
376 

 
377 

 
378 
379 
380 
381 
382 
383 
384 
385 
386 
387 

 
388 

 
389 
390 
391 
392 
393 
394 
395 
396 
397 

 
398 
399 
400 
401 
402 

 
403 

 
404 
405 
406 
407 
408 
409 
410 
411 
412 

    if (-e $slc1\_$slc2.offsets) rm -f $slc1\_$slc2.offsets 
    if (-e $slc1\_$slc2.coffs) rm -f $slc1\_$slc2.coffs 
    if (-e $slc1\_$slc2.coffsets) rm -f $slc1\_$slc2.coffsets 
    offset_pwr $slc1.slc $slc2.slc $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off 
$slc1\_$slc2.offs $slc1\_$slc2.snr - - $slc1\_$slc2.offsets 1 - - $second_thres 
    offset_fit $slc1\_$slc2.offs $slc1\_$slc2.snr $slc1\_$slc2.off $slc1\_$slc2.coff 
$slc1\_$slc2.coffsets - 4 0 
    else 
    endif 
 
  if ($create_offset_method == 2) then 
    if (-e $slc1\_$slc2.offs) rm -f $slc1\_$slc2.offs 
    if (-e $slc1\_$slc2.snr) rm -f $slc1\_$slc2.snr 
    if (-e $slc1\_$slc2.offsets) rm -f $slc1\_$slc2.offsets 
    if (-e $slc1\_$slc2.coffs) rm -f $slc1\_$slc2.coffs 
    if (-e $slc1\_$slc2.coffsets) rm -f $slc1\_$slc2.coffsets 
    offset_SLC $slc1.slc $slc2.slc $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off 
$slc1\_$slc2.offs $slc1\_$slc2.snr - - $slc1\_$slc2.offsets 2 - - 3.0 
    offset_fit $slc1\_$slc2.offs $slc1\_$slc2.snr $slc1\_$slc2.off $slc1\_$slc2.coff 
$slc1\_$slc2.coffsets - 4 0 
    else 
    endif 
  endif 
 
################################################## 
###   Compute interferogram (interferometry and multi-looking calculation)          
### 
#################################################### 
#this step used to be $do_interferogram1, but has been renamed to do_multilook1 
as a better description 
if ($do_interferogram1) then 
#basically only does multilooking of the slc1 image, no interforegram 
  if (-e $slc1.mli) rm -f $slc1.mli 
  if (-e $slc1.mli.par) rm -f $slc1.mli.par 
  multi_look $slc1.slc $slc1.slc.par $slc1.mli $slc1.mli.par $range_looks 
$azimuth_looks 
  set image_width = `awk '{if($1 == "range_samples:" ) printf("%d", $2)}' < 
$slc1.mli.par` 
  echo "" 
  echo "image_width:" 
  echo $image_width 
  echo "" 
  raspwr $slc1.mli $image_width 1 0 1 1 1.0 0.35 $flipping $slc1.mli.bmp 
  if (-e $slc1.mli_flip.bmp) rm -f $slc1.mli_flip.bmp 
  #convert -flip $slc1.mli.bmp $slc1.mli_flip.bmp 
  rm -f $slc1.mli.bmp 
endif 
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#multi-looking and interferogram calculation 
if ($do_interferogram2) then 
  if (-e $slc1\_$slc2.int) rm -f $slc1\_$slc2.int 
  if (-e $slc2.rslc) rm -f $slc2.rslc 
  if (-e $slc2.rslc.par) rm -f $slc2.rslc.par 
  SLC_interp $slc2.slc $slc1.slc.par $slc2.slc.par $slc1\_$slc2.off $slc2.rslc 
$slc2.rslc.par 
 
  SLC_intf $slc1.slc $slc2.rslc $slc1.slc.par $slc2.rslc.par $slc1\_$slc2.off 
$slc1\_$slc2.int $range_looks $azimuth_looks 
  if (-e $slc1.mli) rm -f $slc1.mli 
  if (-e $slc1.mli.par) rm -f $slc1.mli.par 
  if (-e $slc2.mli) rm -f $slc2.mli 
  if (-e $slc2.mli.par) rm -f $slc2.mli.par 
  if (-e $slc2.rmli) rm -f $slc2.rmli 
  if (-e $slc2.rmli.par) rm -f $slc2.rmli.par 
  multi_look $slc1.slc $slc1.slc.par $slc1.mli $slc1.mli.par $range_looks 
$azimuth_looks 
  multi_look $slc2.slc $slc2.slc.par $slc2.mli $slc2.mli.par $range_looks 
$azimuth_looks 
  multi_look $slc2.rslc $slc2.rslc.par $slc2.rmli $slc2.rmli.par $range_looks 
$azimuth_looks 
  set image_width = `awk '{if($1 == "range_samples:" ) printf("%d", $2)}' < 
$slc1.mli.par` 
  echo "" 
  echo "image_width:" 
  echo $image_width 
  echo "" 
  raspwr $slc1.mli $image_width 1 0 1 1 1.0 0.35 $flipping $slc1.mli.bmp 
  raspwr $slc2.mli $image_width 1 0 1 1 1.0 0.35 $flipping $slc2.mli.bmp 
  raspwr $slc2.rmli $image_width 1 0 1 1 1.0 0.35 $flipping $slc2.rmli.bmp 
  if (-e $slc1.mli_flip.bmp) rm -f $slc1.mli_flip.bmp 
  if (-e $slc2.mli_flip.bmp) rm -f $slc2.mli_flip.bmp 
  if (-e $slc2.rmli_flip.bmp) rm -f $slc2.rmli_flip.bmp 
  #convert -flip $slc1.mli.bmp $slc1.mli_flip.bmp 
  #convert -flip $slc2.mli.bmp $slc2.mli_flip.bmp 
  #convert -flip $slc2.rmli.bmp $slc2.rmli_flip.bmp 
  rm -f $slc1.mli.bmp $slc2.mli.bmp $slc2.rmli.bmp 
  rasmph $slc1\_$slc2.int $image_width 1 0 1 1 1. 0.35 $flipping 
$slc1\_$slc2.mag_phase.bmp 
  if (-e $slc1\_$slc2.mag_phase_flip.bmp) rm -f $slc1\_$slc2.mag_phase_flip.bmp 
  #convert -flip $slc1\_$slc2.mag_phase.bmp $slc1\_$slc2.mag_phase_flip.bmp 
  rasmph_pwr $slc1\_$slc2.int $slc1.mli $image_width 1 1 0 1 1 1.0 0.35 $flipping 
$slc1\_$slc2.mag_phase_pwr.bmp 
  if (-e $slc1\_$slc2.mag_phase_pwr_flip.bmp) rm -f 
$slc1\_$slc2.mag_phase_pwr_flip.bmp 
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  #convert -flip $slc1\_$slc2.mag_phase_pwr.bmp 
$slc1\_$slc2.mag_phase_pwr_flip.bmp 
  #rm -f $slc1\_$slc2.mag_phase_pwr.bmp $slc1\_$slc2.mag_phase.bmp 
 
set image_width = `awk '{if($1 == "range_samples:" ) printf("%d", $2)}' < 
$slc1.mli.par` 
endif 
 
#command for all methods to access - set image_width 
#uncomment to run all 
#set image_width = `awk '{if($1 == "range_samples:" ) printf("%d", $2)}' < 
$slc1.mli.par` 
 
################################################## 
###   Generate baseline file (parallel component from the orbit parameters,         
### 
###   perpendicular component from the fringe rate), remove the Earth phase 
trend,  ### 
###   filter (running adf several times with a smaller coefficient and              ### 
###   decreasing window size (e.g. 128,64,32) will lead to a better filtering but   ### 
###   is time consuming) and estimate the phase noise (obs.: 05721_25394.smcc is    
### 
###   not the degree of coherence but rather the phase noise because it is          ### 
###   estimated from the filtered interferogram without use of the intensities).    
### 
################################################### 
if ($do_base_est1) then   # generate baseline file (first remove an eventual first 
estimate)        
  echo "" 
  echo "do_base_est1:" 
  echo "baseline generation is not necessary, since no interferogram is calculated 
with 1 slc image" 
  echo "" 
  endif 
 
if ($do_base_est2) then   # generate baseline file (first remove an eventual first 
estimate)        
  if (-e $slc1\_$slc2.base) rm -f $slc1\_$slc2.base 
  if (-e $slc1\_$slc2.base.txt) rm -f $slc1\_$slc2.base.txt 
  touch $slc1\_$slc2.base.txt 
  base_init $slc1.slc.par $slc2.rslc.par $slc1\_$slc2.off $slc1\_$slc2.int 
$slc1\_$slc2.base 0 1024 1024 > $slc1\_$slc2.base.txt 
  endif 
 
#==========================================================# 
if ($do_flattening1) then   # curved Earth phase trend removal (flattening) and filter 
  echo "" 
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  echo "do_flattening1:" 
  echo "do_flattening is not necessary, since no interferogram is calculated with 1 
slc image" 
  echo "" 
  endif 
 
if ($do_flattening2) then   # curved Earth phase trend removal (flattening) and filter 
  if (-e $slc1\_$slc2.flt) rm -f $slc1\_$slc2.flt 
  ph_slope_base $slc1\_$slc2.int $slc1.slc.par $slc1\_$slc2.off $slc1\_$slc2.base 
$slc1\_$slc2.flt 
  if (-e $slc1\_$slc2.flt_mag_phase_flip.bmp) rm -f 
$slc1\_$slc2.flt_mag_phase_flip.bmp 
  rasmph $slc1\_$slc2.flt $image_width 1 0 1 1 1. 0.35 $flipping 
$slc1\_$slc2.flt_mag_phase.bmp 
  #convert -flip $slc1\_$slc2.flt_mag_phase.bmp 
$slc1\_$slc2.flt_mag_phase_flip.bmp 
  if (-e $slc1\_$slc2.flt_mag_phase_pwr_flip.bmp) rm -f 
$slc1\_$slc2.flt_mag_phase_pwr_flip.bmp 
  rasmph_pwr $slc1\_$slc2.flt $slc1.mli $image_width 1 1 0 1 1 1.0 0.35 $flipping 
$slc1\_$slc2.flt_mag_phase_pwr.bmp 
  #convert -flip $slc1\_$slc2.flt_mag_phase_pwr.bmp 
$slc1\_$slc2.flt_mag_phase_pwr_flip.bmp 
  #rm -f $slc1\_$slc2.flt_mag_phase.bmp $slc1\_$slc2.flt_mag_phase_pwr.bmp 
  endif 
 
if ($do_coherence1) then   # coherence estimation and generation of Bitmaps 
  echo "" 
  echo "do_coherence1:" 
  echo "do_coherence is not necessary, since no interferogram is calculated with 1 
slc image" 
  echo "" 
endif 
 
#==========================================================# 
if ($do_coherence2) then   # coherence estimation and generation of Bitmaps 
  if (-e $slc1\_$slc2.cc) rm -f $slc1\_$slc2.cc 
  cc_wave $slc1\_$slc2.flt $slc1.mli $slc2.rmli $slc1\_$slc2.cc $image_width 
  if (-e $slc1\_$slc2.cc_flip.bmp) rm -f $slc1\_$slc2.cc_flip.bmp 
  ras_linear $slc1\_$slc2.cc $image_width 1 0 1 1 0.0 1.0 $flipping 
$slc1\_$slc2.cc.bmp 
  #convert -flip $slc1\_$slc2.cc.bmp $slc1\_$slc2.cc_flip.bmp 
  if (-e $slc1\_$slc2.cc_pwr_flip.bmp) rm -f $slc1\_$slc2.cc_pwr_flip.bmp 
  endif 
 
#==============================================================# 
if ($do_ad_filtering1) then   # adaptive interferogram filtering and generation of 
Bitmaps 
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  echo "" 
  echo "do_ad_filtering1:" 
  echo "do_ad_filtering is not necessary, since no interferogram is calculated with 1 
slc image" 
  echo "" 
endif 
 
#============================================================# 
if ($do_ad_filtering2) then   # adaptive interferogram filtering and generation of 
Bitmaps 
  if (-e $slc1\_$slc2.cc_filt) rm -f $slc1\_$slc2.cc_filt 
  if (-e $slc1\_$slc2.flt_filt) rm -f $slc1\_$slc2.flt_filt 
  adf $slc1\_$slc2.flt  $slc1\_$slc2.flt_filt $slc1\_$slc2.cc_filt $image_width .5 
  if (-e $slc1\_$slc2.flt_filt_mag_phase_pwr_flip.bmp) rm -f 
$slc1\_$slc2.flt_filt_mag_phase_pwr_flip.bmp 
  rasmph_pwr $slc1\_$slc2.flt_filt $slc1.mli $image_width 1 1 0 1 1 1.0 0.35 
$flipping $slc1\_$slc2.flt_filt_mag_phase_pwr.bmp 
  #convert -flip $slc1\_$slc2.cc.bmp $slc1\_$slc2.cc_flip.bmp 
  if (-e $slc1\_$slc2.cc_pwr_flip.bmp) rm -f $slc1\_$slc2.cc_pwr_flip.bmp 
  rascc $slc1\_$slc2.cc $slc1.mli $image_width 1 1 0 1 1 0.1 0.9 1.0 0.35 $flipping 
$slc1\_$slc2.cc_pwr.bmp 
  #convert -flip $slc1\_$slc2.cc_pwr.bmp $slc1\_$slc2.cc_pwr_flip.bmp 
  rm -f $slc1\_$slc2.cc.bmp $slc1\_$slc2.cc_pwr.bmp 
endif 
 
############################################################## 
###   Phase unwrapping                                                              ### 
############################################################## 
if ($do_unwrapping_bcut2) then   # phase unwrapping (first remove an eventual 
first estimate) 
  if (-e $slc1\_$slc2.flag) rm -f $slc1\_$slc2.flag 
  if (-e $slc1\_$slc2.unw) rm -f $slc1\_$slc2.unw 
  corr_flag $slc1\_$slc2.cc_filt $slc1\_$slc2.flag $image_width 0.25 
  neutron $slc1.mli $slc1\_$slc2.flag $image_width 
  residue $slc1\_$slc2.flt_filt $slc1\_$slc2.flag $image_width 
  tree_cc $slc1\_$slc2.flag $image_width 64 
  grasses $slc1\_$slc2.flt_filt $slc1\_$slc2.flag $slc1\_$slc2.unw $image_width 
  if (-e $slc1\_$slc2.unw.bmp) rm -f $slc1\_$slc2.unw.bmp 
  if (-e $slc1\_$slc2.unw_flip.bmp) rm -f $slc1\_$slc2.unw_flip.bmp 
  rasrmg $slc1\_$slc2.unw $slc1.mli $image_width 1 1 0 1 1 .5 1. .35 0.0 $flipping 
$slc1\_$slc2.unw.bmp 
  #convert -flip $slc1\_$slc2.unw.bmp $slc1\_$slc2.unw_flip.bmp 
  endif 
 
if ($do_unwrapping_mcf2) then   # phase unwrapping (Minimum Cost Flow) 
  if (-e $slc1\_$slc2.cc_mask.bmp) rm -f $slc1\_$slc2.cc_mask.bmp 
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  rascc_mask $slc1\_$slc2.cc $slc1.mli $image_width 1 1 0 1 1 0.2 - - - - - 
$slc1\_$slc2.cc_mask.bmp 
  if (-e $slc1\_$slc2.unw_mcf0) rm -f $slc1\_$slc2.unw_mcf0 
  mcf $slc1\_$slc2.flt_filt $slc1\_$slc2.cc $slc1\_$slc2.cc_mask.bmp 
$slc1\_$slc2.unw_mcf0 $image_width 1 0 0 - - 1 1 - - - 
  rasrmg $slc1\_$slc2.unw_mcf0 $slc1.mli $image_width 1 1 0 1 1 .5 1. .35 0.0 
$flipping $slc1\_$slc2.unw_mcf0.bmp 
  #convert -flip $slc1\_$slc2.unw_mcf0.bmp $slc1\_$slc2.unw_mcf0_flip.bmp 
  if (-e $slc1\_$slc2.unw_mcf0_interp) rm -f $slc1\_$slc2.unw_mcf0_interp 
  interp_ad $slc1\_$slc2.unw_mcf0 $slc1\_$slc2.unw_mcf0_interp $image_width 
  rasrmg $slc1\_$slc2.unw_mcf0_interp $slc1.mli $image_width 1 1 0 1 1 .5 1. .35 
0.0 $flipping $slc1\_$slc2.unw_mcf0_interp.bmp 
  #convert -flip $slc1\_$slc2.unw_mcf0_interp.bmp 
$slc1\_$slc2.unw_mcf0_interp_flip.bmp 
  if (-e $slc1\_$slc2.unw_mcf) rm -f $slc1\_$slc2.unw_mcf 
  unw_model $slc1\_$slc2.flt_filt $slc1\_$slc2.unw_mcf0_interp 
$slc1\_$slc2.unw_mcf $image_width - - - 
  if (-e $slc1\_$slc2.unw_mcf.bmp) rm -f $slc1\_$slc2.unw_mcf.bmp 
  rasrmg $slc1\_$slc2.unw_mcf $slc1.mli $image_width 1 1 0 1 1 .5 1. .35 0.0 
$flipping $slc1\_$slc2.unw_mcf.bmp 
  #convert -flip $slc1\_$slc2.unw_mcf.bmp $slc1\_$slc2.unw_mcf_flip.bmp 
  rm -f $slc1\_$slc2.unw_mcf0_interp.bmp $slc1\_$slc2.unw_mcf0.bmp 
  endif 
 
#============================================================# 
#do_calibration1   
if ($do_calibration1) then  # Perform a calibration of the SLC data 
  if (-e $slc1.cslc.par) rm -f $slc1.cslc.par 
  if (-e $slc1.cslc) rm -f $slc1.cslc 
  if (-e $slc1.cmli.par) rm -f $slc1.cmli.par 
  if (-e $slc1.cmli) rm -f $slc1.cmli 
  if ($sensor == "PALSAR" && $imgtype == "SLC") then 
    #these next two lines works, but for concistentency, the calibration was done 
after multi-looking 
    #radcal_SLC $slc1.slc $slc1.slc.par $slc1.cslc $slc1.cslc.par 1 - 0 0 1 0 -115.0 
    radcal_SLC $slc1.slc $slc1.slc.par $slc1.cslc $slc1.cslc.par 1 - 0 0 1 0 -115.0 1  
#added the 1 to get correct sigma0 values. 
    multi_look $slc1.cslc $slc1.cslc.par $slc1.cmli $slc1.cmli.par $range_looks 
$azimuth_looks 
   #radcal_SLC $slc1.slc $slc1.slc.par $slc1.cslc $slc1.cslc.par 1 - 0 0 1 0 - 
     
    #Alternative (first multilook, then calibrate - does not work without the 
calibration factor of -115. Otherwise the final db values are in the range of 80-100. 
    # therefore, for PALSAR, the radcal_SLC and multi_look was done, instead of 
multilook and radcal_MLI as for ASAR and TSX. 
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    #multi_look $slc1.slc $slc1.slc.par $slc1.mli $slc1.mli.par $range_looks 
$azimuth_looks 
    #radcal_MLI $slc1.mli $slc1.mli.par - $slc1.cmli 
    #create a copy of the .mli.par file and name it the .cmli.par file for further use 
    #cp $slc1.mli.par $slc1.cmli.par 
    #rm -f $pol.cslc $pol.cslc.par $pol.cmli 
  endif #ifPALSAR 
  if ($sensor == "ASAR" && $imgtype == "SLC") then  
    #radcal_SLC $slc1.slc $slc1.slc.par $slc1.cslc $slc1.cslc.par 1 - 0 0 1 0 - 
    multi_look $slc1.slc $slc1.slc.par $slc1.mli $slc1.mli.par $range_looks 
$azimuth_looks 
    #rm -f $pol.cslc $pol.cslc.par $pol.cmli 
    radcal_MLI $slc1.mli $slc1.mli.par - $slc1.cmli 
    #create a copy of the .mli.par file and name it the .cmli.par file for further use 
    cp $slc1.mli.par $slc1.cmli.par 
  endif #ifASAR 
 
  if ($sensor == "TSX" && $imgtype == "SLC") then  
    #radcal_SLC $slc1.slc $slc1.slc.par $slc1.cslc $slc1.cslc.par 1 - 0 0 1 0 - 
    multi_look $slc1.slc $slc1.slc.par $slc1.mli $slc1.mli.par $range_looks 
$azimuth_looks 
    #rm -f $pol.cslc $pol.cslc.par $pol.cmli 
    radcal_MLI $slc1.mli $slc1.mli.par - $slc1.cmli 
    #create a copy of the .mli.par file and name it the .cmli.par file for further use 
    cp $slc1.mli.par $slc1.cmli.par 
  endif #ifTSX 
 
  #multi-look the .grd image from RS2, already calibrated in prepare_slc step. 
  if ($sensor == "RS2" && $imgtype == "MLI") then 
    multi_look $slc1.grd $slc1.grd_par $slc1.cmli $slc1.cmli_par $range_looks 
$azimuth_looks  
  endif #ifRS2 
   
  #create .bmp file of multi-looked image before and after calibration  
  set image_width = `awk '{if($1 == "range_samples:" ) printf("%d", $2)}' < 
$slc1.mli.par` 
  echo "" 
  echo "image_width:" 
  echo $image_width 
  echo "" 
  raspwr $slc1.mli $image_width 1 0 1 1 1.0 0.35 $flipping $slc1.mli.bmp 
  if (-e $slc1.mli_flip.bmp) rm -f $slc1.mli_flip.bmp 
  #convert -flip $slc1.mli.bmp $slc1.mli_flip.bmp 
  rm -f $slc1.mli.bmp 
 
  if (-e $slc1.cmli_flip.bmp) rm -f $slc1.cmli_flip.bmp 
  raspwr $slc1.cmli $image_width 1 0 1 1 1.0 0.35 $flipping $slc1.cmli.bmp 
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  #convert -flip $slc1.cmli.bmp $slc1.cmli_flip.bmp 
  rm -f $slc1.cmli.bmp 
endif 
 
#=========================================================# 
if ($do_calibration2) then  # Perform a calibration of the SLC data 
  if (-e $slc1.cslc.par) rm -f $slc1.cslc.par 
  if (-e $slc1.cslc) rm -f $slc1.cslc 
  if (-e $slc2.cslc.par) rm -f $slc2.cslc.par 
  if (-e $slc2.cslc) rm -f $slc2.cslc 
  if (-e $slc1.cmli.par) rm -f $slc1.cmli.par 
  if (-e $slc1.cmli) rm -f $slc1.cmli 
  if (-e $slc2.cmli.par) rm -f $slc2.cmli.par 
  if (-e $slc2.cmli) rm -f $slc2.cmli 
  radcal_SLC $slc1.slc $slc1.slc.par $slc1.cslc $slc1.cslc.par 1 - 0 0 1 0 -115.0 
  radcal_SLC $slc2.slc $slc2.slc.par $slc2.cslc $slc2.cslc.par 1 - 0 0 1 0 -115.0 
  multi_look $slc1.cslc $slc1.cslc.par $slc1.cmli $slc1.cmli.par $range_looks 
$azimuth_looks 
  multi_look $slc2.cslc $slc2.cslc.par $slc2.cmli $slc2.cmli.par $range_looks 
$azimuth_looks 
  if (-e $slc1.cmli_flip.bmp) rm -f $slc1.cmli_flip.bmp 
  if (-e $slc2.cmli_flip.bmp) rm -f $slc2.cmli_flip.bmp 
  raspwr $slc1.cmli $image_width 1 0 1 1 1.0 0.35 $flipping $slc1.cmli.bmp 
  #convert -flip $slc1.cmli.bmp $slc1.cmli_flip.bmp 
  raspwr $slc2.cmli $image_width 1 0 1 1 1.0 0.35 $flipping $slc2.cmli.bmp 
  #convert -flip $slc2.cmli.bmp $slc2.cmli_flip.bmp 
  rm -f $slc1.cmli.bmp $slc2.cmli.bmp 
  endif 
 
#do_calibration alternative - 20 March 2013 - Bernard Edit first Multilook, then 
calibrate 
#if ($do_calibration) then  # Perform a calibration of the SLC data 
#  if (-e "$slc1.mli") rm -f $slc1.mli 
#  if (-e "$slc2.mli") rm -f $slc2.mli 
#  if (-e "$slc1.mli.par") rm -f $slc1.mli.par 
#  if (-e "$slc2.mli.par") rm -f $slc2.mli.par 
#  if (-e "$slc1.cmli") rm -f $slc1.cmli 
#  if (-e "$slc2.cmli") rm -f $slc2.cmli 
#  multi_look $slc1.slc $slc1.slc.par $slc1.mli $slc1.mli.par $range_looks 
$azimuth_looks 
#  multi_look $slc2.slc $slc2.slc.par $slc2.mli $slc2.mli.par $range_looks 
$azimuth_looks 
# #rm -f $pol.cslc $pol.cslc.par $pol.cmli 
# radcal_MLI $slc1.mli $slc1.mli.par - $slc1.cmli - 0 0 1 0.0 -115.0 
# radcal_MLI $slc2.mli $slc2.mli.par - $slc2.cmli - 0 0 1 0.0 -115.0 
 
 #create a copy of the .mli.par file and name it the .cmli.par file for further use 
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#  cp $slc1.mli.par $slc1.cmli.par 
#  cp $slc2.mli.par $slc2.cmli.par 
 
  #bmp image of un-calibrated files 
#  if (-e $slc1.mli_flip.bmp) rm -f $slc1.mli_flip.bmp 
#  if (-e $slc2.mli_flip.bmp) rm -f $slc2.mli_flip.bmp 
#  raspwr $slc1.mli $image_width 1 0 1 1 1.0 0.35 $flipping $slc1.mli.bmp 
#  #convert -flip $slc1.mli.bmp $slc1.mli_flip.bmp 
#  raspwr $slc2.mli $image_width 1 0 1 1 1.0 0.35 $flipping $slc2.mli.bmp 
#  #convert -flip $slc2.mli.bmp $slc2.mli_flip.bmp 
#  rm -f $slc1.mli.bmp $slc2.mli.bmp 
 
  #bmp image of calibrated files 
#  if (-e $slc1.cmli_flip.bmp) rm -f $slc1.cmli_flip.bmp 
#  if (-e $slc2.cmli_flip.bmp) rm -f $slc2.cmli_flip.bmp 
#  raspwr $slc1.cmli $image_width 1 0 1 1 1.0 0.35 $flipping $slc1.cmli.bmp 
#  #convert -flip $slc1.cmli.bmp $slc1.cmli_flip.bmp 
#  raspwr $slc2.cmli $image_width 1 0 1 1 1.0 0.35 $flipping $slc2.cmli.bmp 
#  #convert -flip $slc2.cmli.bmp $slc2.cmli_flip.bmp 
#  rm -f $slc1.cmli.bmp $slc2.cmli.bmp 
#  endif 
 
#====================================================# 
#   Run the GTC_MLI script on the MLI images                                                                                                                
# 
#  first create the dem_par from the Landsat images to be used in the GTC_MLI 
script                                         # 
#===============================================# 
if ($do_GTC_MLI) then 
  if (-e $slc1.dem_par) rm -f $slc1.dem_par 
  if (-e $slc1.dem) rm -f $slc1.dem 
  if (-e $slc1.dem_seg) rm -f $slc1.dem_seg  
  if (-e $slc1.img) rm -f $slc1.img 
 
  if ($dem_source == srtm) set dem_projection = eqa 
  if ($img_source == landsat) set img_projection = utm 
  if ($img_source == palsar) set img_projection = utm 
 
  #create_dem_par for image outline within landsat reference 
 
echo "reach1" 
  # create_dem_par of landsat DEM 
  create_dem_par $slc1\_utm.dem_par $slc1.cmli.par - -$grd_rsp $grd_rsp < 
$working_dir/DEM/$img_source/create_dem_par_utm_$region 
  #cp $working_dir/DEM/$img_source/$region\_landsat_utm.img $slc1\_utm.dem 
echo "reach2" 
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  #transform the eqa srtm to utm srtm, using the SAR image and landsat dem_par 
created above 
  # output: $slc1\_utm.dem 
 
 #transform the eqa srtm to utm srtm, using the SAR image and landsat dem_par 
created above 
  dem_trans $working_dir/DEM/srtm/$region\_srtm_eqa.dem_par 
$working_dir/DEM/srtm/$region\_srtm_eqa.dem $slc1\_utm.dem_par 
$slc1\_utm.dem 
echo "reach3" 
 
  #display the $slc1\_utm.dem file  
  set dem_width_utm = `awk '{if($1 == "width:" ) printf("%d", $2)}' < 
$slc1\_utm.dem_par` 
   
  #create header for the DEM (to be able to open the file in ENVI or other GIS/RS 
software) 
  ./create_header.csh $slc1\_utm $hemisphere 
 
  #create a bitmap .bmp file to easily see the result 
  raspwr $slc1\_utm.dem $dem_width_utm 1 0 1 1 1. .35 1 $slc1\_utm.dem.bmp 0 
0  
 
  echo "" 
  echo "dem_width_utm" 
  echo $dem_width_utm 
  echo "" 
 
  # run the GTC_MLI script 
   ./GTC_MLI_edit.csh $slc1.mli $slc1.mli.par $slc1\_utm.dem $slc1\_utm.dem_par 
$slc1\_output.img $slc1\utm_dem_seg.dem $slc1\_utm_dem_seg.dem_par 1 1 1 
$init_thres $second_thres 
 
# create header file for the geocorrected image 
  cp $slc1\_utm_dem_seg.dem_par $slc1.dem_par 
  set pixels = `awk '{if($1 == "width:" ) printf("%d", $2)}' < $slc1.dem_par` 
  set lines = `awk '{if($1 == "nlines:" ) printf("%d", $2)}' < $slc1.dem_par` 
  set ul_easting = `awk '{if($1 == "corner_east:" ) printf("%.3f", $2)}' < 
$slc1.dem_par` 
  set ul_northing = `awk '{if($1 == "corner_north:" ) printf("%.3f", $2)}' < 
$slc1.dem_par` 
  set pixel_size = `awk '{if($1 == "post_east:" ) printf("%.10f", $2)}' < $slc1.dem_par` 
  set projection = `awk '{if($1 == "projection_name:" ) printf("%s", $2)}' < 
$slc1.dem_par` 
  set utm_zone = `awk '{if($1 == "projection_zone:" ) printf("%d", $2)}' < 
$slc1.dem_par` 
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  set envi_hdr_file = $slc1\_output.hdr 
  echo "ENVI" > $envi_hdr_file 
  echo "description = {" >> $envi_hdr_file 
  echo "  File Imported into ENVI. }" >> $envi_hdr_file 
  echo "samples = $pixels" >> $envi_hdr_file 
  echo "lines   = $lines" >> $envi_hdr_file 
  echo "bands   = 1" >> $envi_hdr_file 
  echo "header offset = 0" >> $envi_hdr_file 
  echo "file type = ENVI Standard" >> $envi_hdr_file 
  echo "data type = 4" >> $envi_hdr_file 
  echo "interleave = bsq" >> $envi_hdr_file 
  echo "sensor type = UNKNOWN" >> $envi_hdr_file 
  echo "byte order = 1" >> $envi_hdr_file 
  echo "map info = {$projection, 1.0000, 1.0000, $ul_easting, $ul_northing, 
$pixel_size, $pixel_size, $utm_zone, $hemisphere, WGS-84, units=Meters}"  >> 
$envi_hdr_file 
  echo "wavelength units = Unknown" >> $envi_hdr_file 
  echo "band names = {" >> $envi_hdr_file 
  echo " }" >> $envi_hdr_file 
 
  #copy the files to the output folder 
  echo "move the output files from process to output folder, to easily copy for 
further steps" 
  cd $working_dir 
  set output_folder = 
$output_name\_$range_looks\x$azimuth_looks\_$grd_pixel_spacing\m_$geocode
_path 
  set output_dir = $region\_output/$output_folder 
 
  if (! (-d $working_dir/$output_dir) ) mkdir $working_dir/$output_dir 
  echo "" 
  echo "output_dir" 
  echo $output_dir 
 
  #clean the output directory of any existing files in it. 
  cd $working_dir/$output_dir 
  #if (-e $working_dir/$output_dir/$slc1.*) rm -f $slc1.* 
  #if (-e $working_dir/$output_dir/$output_folder.*) rm -f $output_folder.* 
  cd $working_dir/$process_dir 
 
  mv *_output.* $working_dir/$output_dir 
  cp $slc1.slc.par $working_dir/$output_dir 
  mv $working_dir/$output_dir/$slc1\.slc.par 
$working_dir/$output_dir/$output_folder\.slc.par 
  mv $working_dir/$output_dir/$slc1\_output.hdr 
$working_dir/$output_dir/$output_folder\.hdr 
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  mv $working_dir/$output_dir/$slc1\_output.img 
$working_dir/$output_dir/$output_folder\.img 
  mv $working_dir/$output_dir/$slc1\_output.img.bmp 
$working_dir/$output_dir/$output_folder\.bmp 
endif 
 
 
####################################################### 
#   Geocoding using srtm & Landsat                   ## 
####################################################### 
 
######################################################### 
if ($do_geocode1) then 
  if (-e $slc1.dem_par) rm -f $slc1.dem_par 
  if (-e $slc1.dem) rm -f $slc1.dem 
  if (-e $slc1.dem_seg) rm -f $slc1.dem_segset  
  if (-e $slc1.img) rm -f $slc1.img 
  if (-e $slc1.rough.utm_to_rdc) rm -f $slc1.rough.utm_to_rdc 
  if (-e $slc1.utm.sim_sar) rm -f $slc1.utm.sim_sar 
  if (-e $slc1\_utm.dem_par) rm -f $slc1\_utm.dem_par 
  if (-e $slc1\_utm.dem) rm -f $slc1\_utm.dem 
  if (-e $slc1.u) rm -f $slc1.u 
  if (-e $slc1.v) rm -f $slc1.v 
  if (-e $slc1.inc) rm -f $slc1.inc 
  if (-e $slc1.psi) rm -f $slc1.psi 
  if (-e $slc1.pix) rm -f $slc1.pix 
  if (-e $slc1.ls_map) rm -f $slc1.ls_map 
  #Remove the .bmp files 
  if (-e $slc1.dem.bmp) rm -f $slc1.dem.bmp 
  if (-e $slc1.dem_seg.bmp) rm -f $slc1.dem_seg.bmp 
  if (-e $slc1.img.bmp) rm -f $slc1.img.bmp 
  if (-e $slc1.rough.utm_to_rdc.bmp) rm -f $slc1.rough.utm_to_rdc.bmp 
  if (-e $slc1.utm.sim_sar.bmp) rm -f $slc1.utm.sim_sar.bmp 
  if (-e $slc1\_utm.dem.bmp) rm -f $slc1\_utm.dem.bmp 
  if (-e $slc1.u.bmp) rm -f $slc1.u.bmp 
  if (-e $slc1.v.bmp) rm -f $slc1.v.bmp 
  if (-e $slc1.inc.bmp) rm -f $slc1.inc.bmp 
  if (-e $slc1.psi.bmp) rm -f $slc1.psi.bmp 
  if (-e $slc1.pix.bmp) rm -f $slc1.pix.bmp 
  if (-e $slc1.ls_map.bmp) rm -f $slc1.ls_map.bmp 
 
  if ($dem_source == srtm) set dem_projection = eqa 
  if ($img_source == landsat) set img_projection = utm 
  if ($img_source == palsar) set img_projection = utm 
 
  #create_dem_par - eqa 
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  #create_dem_par $working_dir/DEM/srtm/cameroon1_srtm_eqa.dem_par < 
$working_dir/DEM/srtm/create_dem_par_eqa_cameroon1 
 
  #create_dem_par for image outline within landsat reference 
  create_dem_par $slc1\_utm.dem_par $slc1.cmli.par - -$grd_rsp $grd_rsp < 
$working_dir/DEM/$img_source/create_dem_par_utm_$region 
 
  #transform the eqa srtm to utm srtm, using the SAR image and landsat dem_par 
created above 
  # output: $slc1\_utm.dem 
  dem_trans $working_dir/DEM/srtm/$region\_srtm_eqa.dem_par 
$working_dir/DEM/srtm/$region\_srtm_eqa.dem $slc1\_utm.dem_par 
$slc1\_utm.dem 
 
  #display the $slc1\_utm.dem file  
  set dem_width_utm = `awk '{if($1 == "width:" ) printf("%d", $2)}' < 
$slc1\_utm.dem_par` 
   ./create_header.csh $slc1\_utm $hemisphere 
  raspwr $slc1\_utm.dem $dem_width_utm 1 0 1 1 1. .35 1 $slc1\_utm.dem.bmp 0 
0  
  echo "" 
  echo "dem_width_utm" 
  echo $dem_width_utm 
  echo "" 
   
  #derive intitial geocoding lookup table and SAR intensity image simulation 
  # original gc_map, before .pix and other options were added 
  #gc_map $slc1.cmli.par - $slc1\_utm.dem_par $slc1\_utm.dem 
$slc1\_utm_dem_seg.dem_par $slc1\_utm_dem_seg.dem $slc1.rough.utm_to_rdc 
- - $slc1.utm.sim_sar 
  #added .pix and other options, by bspies, 28/10/2013 
  gc_map $slc1.cmli.par - $slc1\_utm.dem_par $slc1\_utm.dem 
$slc1\_utm_dem_seg.dem_par $slc1\_utm_dem_seg.dem $slc1.rough.utm_to_rdc 
- - $slc1.utm.sim_sar - - $slc1.inc - $slc1.pix $slc1.ls_map 8 - - 
 
  #gc_map $slc1.mli.par - 
$scratch_dir/$location/$season/$sensor/Z_SRTM/$image_dir1/$srtm_name\_utm.
dem_par 
$scratch_dir/$location/$season/$sensor/Z_SRTM/$image_dir1/$srtm_name\_utm.
dem $slc1.dem_seg_par $slc1.dem_seg $slc1.rough.utm_to_rdc_lut - - 
$slc1.utm.sim_sar $slc1.u $slc1.v $slc1.inc $slc1.psi $slc1.pix $slc1.ls_map 8 - -  
 
  ./create_header.csh $slc1\_utm_dem_seg hemisphere 
  cp $slc1\_utm_dem_seg.hdr $slc1.utm.sim_sar.hdr 
  set dem_width = `awk '{if($1 == "width:" ) printf("%d", $2)}' < 
$slc1\_utm_dem_seg.dem_par` 
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  echo "" 
  echo "dem_width from $slc1\_utm_dem_seg.dem_par" 
  echo $dem_width 
  echo "" 
 
  if ($add_pixel_area) then 
      # step 1 
      pixel_area $slc1.cmli.par $slc1\_utm.dem_par $slc1\_utm.dem 
$slc1.rough.utm_to_rdc $slc1.ls_map $slc1.inc $slc1.pix_sigma0 $slc1.pix_gamma0 
10 
      # Calculate offset polynomials 
      echo "dem_diff_par" >>  create_diff_par_take3 
      echo "0  0" >> create_diff_par_take3 
      echo "16  16" >> create_diff_par_take3 
      echo "256  256" >> create_diff_par_take3 
      echo $init_thres >> create_diff_par_take3 
 
      # extra '1' paramater added below, bspies, 20131029 
      create_diff_par $slc1.cmli.par - $slc1.diff_par 1 1 < create_diff_par_take3 
      #create_diff_par $slc1.cmli.par - $slc1.diff_par 1 
      init_offsetm $slc1.pix_gamma0 $slc1.cmli $slc1.diff_par 1 1 - - - - $second_thres 
- 1  > geocode_info2 
      offset_pwrm $slc1.pix_gamma0 $slc1.cmli $slc1.diff_par $slc1.offs $slc1.snr - - 
$slc1.offsets 2 - - - 1 >> geocode_info2 
      offset_fitm $slc1.offs $slc1.snr $slc1.diff_par $slc1.coffs $slc1.coffsets 
$second_thres - 0 >> geocode_info2 
 
      # Refine the look-up table based on the offset polynomials 
      gc_map_fine $slc1.map_to_rdc $dem_width $slc1.diff_par 
$slc1.map_to_rdc_fine 
 
      #Calculate terrain-based sigma/gammma nought normalization area in slant-
range geometry 
      # based on the refined geocoding look-up table 
      pixel_area $slc1.cmli.par $slc1\_utm_dem_seg.dem_par 
$$slc1\_utm_dem_seg.dem $slc1.map_to_rdc_fine $slc1.ls_map $slc1.inc 
$slc1.pix_sigma0_2 $slc1.pix_gamma0_2 
 
      #make bmp to visualise 
      echo "create bmp of pix_sigma0_2 and pix_gamma0_2" 
      raspwr $slc1.pix_sigma0_2 $dem_width 1 0 1 1 1. .35 1 $slc1.pix_sigma0_2.bmp 
0 0  
      raspwr $slc1.pix_gamma0_2 $dem_width 1 0 1 1 1. .35 1 
$slc1.pix_gamma0_2.bmp 0 0  
 
      # step 2 
      # separate ASAR and PALSAR and TSX?? 
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      echo "step to run radcal_MLI again" 
      radcal_MLI $slc1.mli $slc1.mli.par - $slc1.cmli - 0 0 0 0.0 - $slc1.ellip_pix_sigma0 
      #ratio $slc1.ellip_pix_sigma0 $slc1.pix.sigma0_2 $slc1.sigma0ratio $dem_width 
1 1 
      #product $slc1.cmli $slc1.sigma0ratio $slc1.cmli_sigma0norm $dem_width 1 1  
      #make bmp to visualise 
      raspwr $slc1.ellip_pix_sigma0 $dem_width 1 0 1 1 1. .35 1 
$slc1.ellip_pix_sigma0.bmp 0 0  
 
      # is the geocode_back step still necessary, or is this already achieved with the 
pixel_area step? 
      geocode_back $slc1.cmli $image_width $slc1.map_to_rdc_fine 
$slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path\_new $dem_width 0 
$interp_mode 0 
  
      if (-e $slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path\_new.bmp) rm -
f $slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path\_new.bmp 
      raspwr $slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path\_new 
$dem_width 1 0 1 1 1.0 0.35 1 
$slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path\_new.bmp 
  endif #add_pixel_area 
 
  raspwr $slc1\_utm_dem_seg.dem $dem_width 1 0 1 1 1. .35 1 
$slc1\_utm_dem_seg.dem.bmp 0 0  
  raspwr $slc1.utm.sim_sar $dem_width 1 0 1 1 1. .35 1 $slc1.utm.sim_sar.bmp 0 0  
  #raspwr $slc1.u $dem_width 1 0 1 1 1. .35 1 $slc1.u.bmp 0 0  
  #raspwr $slc1.v $dem_width 1 0 1 1 1. .35 1 $slc1.v.bmp 0 0  
  #raspwr $slc1.inc $dem_width 1 0 1 1 1. .35 1 $slc1.inc.bmp 0 0  
  #raspwr $slc1.psi $dem_width 1 0 1 1 1. .35 1 $slc1.psi.bmp 0 0  
  #raspwr $slc1.pix $dem_width 1 0 1 1 1. .35 1 $slc1.pix.bmp 0 0  
  #raspwr $slc1.ls_map $dem_width 1 0 1 1 1. .35 1 $slc1.ls_map.bmp 0 0  
 
  #create_dem_par - landsat utm 
  #create_dem_par $working_dir/DEM/landsat/cameroon1_landsat_utm.dem_par 
< $working_dir/DEM/landsat/create_dem_par_utm_cameroon1 
 
  #create_dem_par for image outline within landsat reference 
  #create_dem_par $working_dir/DEM/$region\_$img_source\_utm.dem_par 
$slc1.cmli.par - -$grd_rsp $grd_rsp < 
$working_dir/DEM/$img_source/create_dem_par_utm_$region 
 
  #create_dem_par $working_dir/DEM/cameroon1_landsat_utm.dem_par IMG-HH-
ALPSRP220970110-H1.1__A.cmli.par - -25 25 < 
$working_dir/DEM/landsat/create_dem_par_utm_cameroon1 
 
   #map transformation from the landsat utm image to the dem_seg outline 
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   map_trans 
$working_dir/DEM/$img_source/$region\_$img_source\_utm.dem_par 
$working_dir/DEM/$img_source/$region\_$img_source\_utm.img 
$slc1\_utm_dem_seg.dem_par $slc1.img 
   cp $slc1\_utm_dem_seg.hdr $slc1.hdr 
   raspwr $slc1.utm.sim_sar $dem_width 1 0 1 1 1. .35 1 $slc1.utm.sim_sar.bmp 0 0  
   #set dem_width = `awk '{if($1 == "width:" ) printf("%d", $2)}' < 
$slc1\_utm_dem_seg.dem_par` 
   raspwr $slc1.img $dem_width 1 0 1 1 1. .35 1 $slc1.img.bmp 0 0  
endif 
 
if ($do_geocode1_next) then 
  #set dem_width = `awk '{if($1 == "width:" ) printf("%d", $2)}' < $slc1.dem_par` 
  set dem_width = `awk '{if($1 == "width:" ) printf("%d", $2)}' < 
$slc1\_utm_dem_seg.dem_par` 
 
  if ($img_source != -) then 
    geocode $slc1.rough.utm_to_rdc $slc1.img $dem_width $slc1.sim_sar 
$image_width - 1 0 
    endif 
  #if ($img_source == -) then 
  #  geocode $slc1.rough.utm_to_rdc $slc1.utm.sim_sar $dem_width $slc1.sim_sar 
$image_width - 1 0 
  #  endif 
 
  if (-e $slc1.diff_par) rm -f $slc1.diff_par 
  if (-e geocode_info) rm -f geocode_info 
  echo "before create_diff_par" 
  # line below from GTC_MLI.csh script 
  #echo 'geo_par 0 0 24 24 128 128 $second_thres' > diff_par.in 
  #echo 'dem_diff_par 0 0 16 16 256 256 $second_thres' > diff_par.in 
 
  #create_diff_par $MLI_par.tmp - $diff_par 1 < diff_par.in 
  #create_diff_par $slc1.cmli.par - $slc1.diff_par 1 < diff_par.in 
 
  echo "dem_diff_par" >>  create_diff_par_take2 
  echo "0  0" >> create_diff_par_take2 
  echo "16  16" >> create_diff_par_take2 
  echo "256  256" >> create_diff_par_take2 
  echo $init_thres >> create_diff_par_take2 
 
  # extra '1' paramater added below, bspies, 20131029 
  create_diff_par $slc1.cmli.par - $slc1.diff_par 1 1 < create_diff_par_take2 
  #create_diff_par $slc1.cmli.par - $slc1.diff_par 1 < 
$working_dir/DEM/create_diff_par 
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  # threshold was 7.0, change to $second_thres (several places further down, in 
offset_pwrm 
  echo "before init_offset" 
  init_offsetm $slc1.cmli $slc1.sim_sar $slc1.diff_par - - - - - - $second_thres - 0 > 
geocode_info 
  echo "just after init_offset" 
  if (-e $slc1.gc_offs) rm -f $slc1.gc_offs 
  if (-e $slc1.gc_snr) rm -f $slc1.gc_snr 
  if (-e $slc1.gc_offsets) rm -f $slc1.gc_offsets 
  if (-e $slc1.gc_coffs) rm -f $slc1.gc_coffs 
  if (-e $slc1.gc_coffsets) rm -f $slc1.gc_coffsets 
#put repeat steps here   
  if ($img_source == -) then 
    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 256 
256 $slc1.gc_offsets 1 8 8 $second_thres 
    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs 
$slc1.gc_coffsets $second_thres 3 0 
    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 
128 $slc1.gc_offsets 2 24 24 $second_thres 
    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs 
$slc1.gc_coffsets $second_thres 3 0 >> geocode_info 
    endif 
  if ($img_source != -) then 
    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 
128 - - 8 32 
    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs 
$slc1.gc_coffsets - 1 0 
    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 
128 - - 16 64 
    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs 
$slc1.gc_coffsets - 1 0 
    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 
128 - - 16 64 
    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs 
$slc1.gc_coffsets - 3 0 
    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 128 
128 - - 24 96 
    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs 
$slc1.gc_coffsets - 4 0 
    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 96 
96 - - 24 96 
    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs 
$slc1.gc_coffsets - 4 0 
    offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 96 
96 - - 32 96 
    offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs 
$slc1.gc_coffsets - 4 0 >> geocode_info 
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    endif 
 
  if ($onemore_init_offsetm) then 
  echo "test final accuracy estimate - added by bspies 28/10/2013, recommendation 
by Andreas Wiesmann" 
      init_offsetm $slc1.cmli $slc1.sim_sar $slc1.diff_par - - - - - - $second_thres - 0 >> 
geocode_info 
  endif 
 
#  offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 
256 256 $slc1.gc_offsets 1 8 8 $second_thres 
#  offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs 
$slc1.gc_coffsets $second_thres 3 
#  offset_pwrm $slc1.cmli $slc1.sim_sar $slc1.diff_par $slc1.gc_offs $slc1.gc_snr 
256 256 $slc1.gc_offsets 1 16 16 $second_thres 
#  offset_fitm $slc1.gc_offs $slc1.gc_snr $slc1.diff_par $slc1.gc_coffs 
$slc1.gc_coffsets $second_thres 3 
#put repeat steps here 
 
 
  if (-e $slc1.utm_to_rdc) rm -f $slc1.utm_to_rdc 
  gc_map_fine $slc1.rough.utm_to_rdc $dem_width $slc1.diff_par $slc1.utm_to_rdc 
0 
  if (-e $slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path) rm -f 
$slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path 
  #if ($slc2_dir1 != -) then 
    #if (-e $slc2_dir1.cmli.utm_$grd_rsp\m_$pol) rm -f 
$slc2_dir1.cmli.utm_$grd_rsp\m_$pol 
    #if (-e $slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol) rm -f 
$slc1\_$slc2.cc.utm_$grd_rsp\m_$pol 
    #endif 
  geocode_back $slc1.cmli $image_width $slc1.utm_to_rdc 
$slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path $dem_width 0 
$interp_mode 0 
  cp $slc1\_utm_dem_seg.dem_par 
$slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path.par_file 
  #if ($slc2_dir1 != -) then 
  #if (-e $slc2_dir1.cmli.utm_$grd_rsp\m_$pol.par_file) rm -f 
$slc2_dir1.cmli.utm_$grd_rsp\m_$pol.par_file 
    #if (-e $slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol.par_file) rm -f 
$slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol.par_file   
 
    #geocode_back $slc2.cmli $image_width $slc1.utm_to_rdc 
$slc2_dir1.cmli.utm_$grd_rsp\m_$pol $dem_width 0 3 0 
    #geocode_back $slc1\_$slc2.cc $image_width $slc1.utm_to_rdc 
$slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol $dem_width 0 1 0 
    #cp $slc1.dem_par $slc2_dir1.cmli.utm_$grd_rsp\m_$pol.par_file 
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    #cp $slc1.dem_par $slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol.par_file 
    #endif 
  if (-e $slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path.bmp) rm -f 
$slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path.bmp 
  raspwr $slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path $dem_width 1 0 
1 1 1.0 0.35 1 $slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path.bmp 
 
  #if ($slc2_dir1 != -) then 
    #if (-e $slc2_dir1.cmli.utm_$grd_rsp\m_$pol.bmp) rm -f 
$slc2_dir1.cmli.utm_$grd_rsp\m.bmp_$pol 
    #if (-e $slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol.bmp) rm -f 
$slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol.bmp 
    #raspwr $slc2_dir1.cmli.utm_$grd_rsp\m_$pol $dem_width 1 0 1 1 1.0 0.35 1 
$slc2_dir1.cmli.utm_$grd_rsp\m_$pol.bmp 
    #ras_linear $slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol $dem_width 1 0 1 1 
0.0 1.0 1 $slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol.bmp 
#endif 
    #endif 
endif #endif: do_geocode1_next 
 
  #display the image interactively 
  #dispwr $slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path $dem_width 
  #dispwr 20070824_FBD_422_7140.cmli.utm_25m_HV 3228 
 
################################# 
##   Create ENVI header file   ## 
################################# 
if($do_header1) then  
  cp $slc1\_utm_dem_seg.dem_par $slc1.dem_par 
  #./create_header.csh $slc1 $hemisphere 
 
  set pixels = `awk '{if($1 == "width:" ) printf("%d", $2)}' < $slc1.dem_par` 
  set lines = `awk '{if($1 == "nlines:" ) printf("%d", $2)}' < $slc1.dem_par` 
  set ul_easting = `awk '{if($1 == "corner_east:" ) printf("%.3f", $2)}' < 
$slc1.dem_par` 
  set ul_northing = `awk '{if($1 == "corner_north:" ) printf("%.3f", $2)}' < 
$slc1.dem_par` 
  set pixel_size = `awk '{if($1 == "post_east:" ) printf("%.10f", $2)}' < $slc1.dem_par` 
  set projection = `awk '{if($1 == "projection_name:" ) printf("%s", $2)}' < 
$slc1.dem_par` 
  set utm_zone = `awk '{if($1 == "projection_zone:" ) printf("%d", $2)}' < 
$slc1.dem_par` 
 
  set envi_hdr_file = $slc1_dir1.hdr 
  echo "ENVI" > $envi_hdr_file 
  echo "description = {" >> $envi_hdr_file 
  echo "  File Imported into ENVI. }" >> $envi_hdr_file 
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1082 
1083 
1084 

 
 

1085 
1086 
1087 
1088 
1089 
1090 
1091 
1092 
1093 
1094 
1095 
1096 
1097 
1098 
1099 
1100 
1101 

 
1102 

 
1103 
1104 

 
1105 

 
1106 
1107 
1108 
1109 
1110 
1111 
1112 
1113 
1114 
1115 
1116 
1117 
1118 
1119 
1120 

 
 

  echo "samples = $pixels" >> $envi_hdr_file 
  echo "lines   = $lines" >> $envi_hdr_file 
  echo "bands   = 1" >> $envi_hdr_file 
  echo "header offset = 0" >> $envi_hdr_file 
  echo "file type = ENVI Standard" >> $envi_hdr_file 
  echo "data type = 4" >> $envi_hdr_file 
  echo "interleave = bsq" >> $envi_hdr_file 
  echo "sensor type = UNKNOWN" >> $envi_hdr_file 
  echo "byte order = 1" >> $envi_hdr_file 
  echo "map info = {$projection, 1.0000, 1.0000, $ul_easting, $ul_northing, 
$pixel_size, $pixel_size, $utm_zone, $hemisphere, WGS-84, units=Meters}"  >> 
$envi_hdr_file 
  echo "wavelength units = Unknown" >> $envi_hdr_file 
  echo "band names = {" >> $envi_hdr_file 
  echo " }" >> $envi_hdr_file 
 
  cp $slc1_dir1.hdr $slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path.hdr 
  #if ($slc2_dir1 != -) then 
    #cp $slc1_dir1.hdr $slc2_dir1.cmli.utm_$grd_rsp\m_$pol.hdr 
    #cp $slc1_dir1.hdr $slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol.hdr 
    #endif 
  #rm -f $slc1_dir1.hdr 
  endif 
 
if($do_header2) then  
  cp $slc1\_utm_dem_seg.dem_par $slc1.dem_par 
  set pixels = `awk '{if($1 == "width:" ) printf("%d", $2)}' < $slc1.dem_par` 
  set lines = `awk '{if($1 == "nlines:" ) printf("%d", $2)}' < $slc1.dem_par` 
  set ul_easting = `awk '{if($1 == "corner_east:" ) printf("%.3f", $2)}' < 
$slc1.dem_par` 
  set ul_northing = `awk '{if($1 == "corner_north:" ) printf("%.3f", $2)}' < 
$slc1.dem_par` 
  set pixel_size = `awk '{if($1 == "post_east:" ) printf("%.10f", $2)}' < $slc1.dem_par` 
  set projection = `awk '{if($1 == "projection_name:" ) printf("%s", $2)}' < 
$slc1.dem_par` 
  set utm_zone = `awk '{if($1 == "projection_zone:" ) printf("%d", $2)}' < 
$slc1.dem_par` 
 
  set envi_hdr_file = $slc1_dir1.hdr 
  echo "ENVI" > $envi_hdr_file 
  echo "description = {" >> $envi_hdr_file 
  echo "  File Imported into ENVI. }" >> $envi_hdr_file 
  echo "samples = $pixels" >> $envi_hdr_file 
  echo "lines   = $lines" >> $envi_hdr_file 
  echo "bands   = 1" >> $envi_hdr_file 
  echo "header offset = 0" >> $envi_hdr_file 
  echo "file type = ENVI Standard" >> $envi_hdr_file 
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1121 
1122 
1123 
1124 
1125 
1126 
1127 
1128 
1129 
1130 
1131 
1132 
1133 
1134 
1135 
1136 
1137 
1138 
1139 
1140 

 
1141 

 
1142 

 
1143 

 
1144 

 
1145 

 
1146 
1147 

 
1148 

 
1149 
1150 

 
1151 

 
1152 

 
 

1153 
 

1154 

  echo "data type = 4" >> $envi_hdr_file 
  echo "interleave = bsq" >> $envi_hdr_file 
  echo "sensor type = UNKNOWN" >> $envi_hdr_file 
  echo "byte order = 1" >> $envi_hdr_file 
  echo "map info = {$projection, 1.0000, 1.0000, $ul_easting, $ul_northing, 
$pixel_size, $pixel_size, $utm_zone, $hemisphere, WGS-84, units=Meters}"  >> 
$envi_hdr_file 
  echo "wavelength units = Unknown" >> $envi_hdr_file 
  echo "band names = {" >> $envi_hdr_file 
  echo " }" >> $envi_hdr_file 
 
  cp $slc1_dir1.hdr $slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_path.hdr 
  #if ($slc2_dir1 != -) then 
    #cp $slc1_dir1.hdr $slc2_dir1.cmli.utm_$grd_rsp\m_$pol.hdr 
    #cp $slc1_dir1.hdr $slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol.hdr 
    #endif 
  #rm -f $slc1_dir1.hdr 
  endif 
 
##################################### 
##  Create Google Earth KML file   ## 
##################################### 
 
if ($do_kml) then  
   if (-e $slc1\.eqa_par) rm -f $slc1\.eqa_par 
   if (-e $slc2\.eqa_par) rm -f $slc2\.eqa_par 
   if (-e $slc1_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp) rm -f 
$slc1_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp 
   if (-e $slc2_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp) rm -f 
$slc2_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp 
   if (-e $slc1_dir1\_$slc2_dir1.cc.eqa_$grd_rsp\m_$pol.bmp) rm -f 
$slc1_dir1\_$slc2_dir1.cc.eqa_$grd_rsp\m_$pol.bmp 
   if (-e $slc1_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp.kml) rm -f 
$slc1_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp.kml 
   if (-e $slc2_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp.kml) rm -f 
$slc2_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp.kml 
   if (-e $slc1_dir1\_$slc2_dir1.cc.eqa_$grd_rsp\m_$pol.kml) rm -f 
$slc1_dir1\_$slc2_dir1.cc.eqa_$grd_rsp\m_$pol.kml 
 
  create_dem_par $slc1\.eqa_par $slc1\.cmli.par - -$grd_rsp $grd_rsp < 
$working_dir/DEM/create_kml 
  create_dem_par $slc2\.eqa_par $slc2\.cmli.par - -$grd_rsp $grd_rsp < 
$working_dir/DEM/create_kml 
 
  map_trans $slc1\_utm.dem_par $slc1_dir1.cmli.utm_$grd_rsp\m_$pol.bmp 
$slc1\.eqa_par $slc1_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp - - 0 2 
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1187 
1188 
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1190 

  map_trans $slc1\_utm.dem_par $slc2_dir1.cmli.utm_$grd_rsp\m_$pol.bmp 
$slc2\.eqa_par $slc2_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp - - 0 2 
  map_trans $slc1\_utm.dem_par 
$slc1_dir1\_$slc2_dir1.cc.utm_$grd_rsp\m_$pol.bmp $slc1\.eqa_par 
$slc1_dir1\_$slc2_dir1.cc.eqa_$grd_rsp\m_$pol.bmp - - 0 2 
  kml_map $slc1_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp $slc1\.eqa_par 
$slc1_dir1.cmli.eqa_$grd_rsp\m_$pol.kml 
  kml_map $slc2_dir1.cmli.eqa_$grd_rsp\m_$pol.bmp $slc2\.eqa_par 
$slc2_dir1.cmli.eqa_$grd_rsp\m_$pol.kml 
  kml_map $slc1_dir1\_$slc2_dir1.cc.eqa_$grd_rsp\m_$pol.bmp $slc1\.eqa_par 
$slc1_dir1\_$slc2_dir1.cc.eqa_$grd_rsp\m_$pol.kml 
  endif 
 
  
##################################### 
#      tidy up                                ## 
##################################### 
if ($do_tidy_up) then 
echo "move the output files from process to output folder, to easily copy for further 
steps" 
  
cd $working_dir 
set output_dir = 
$region\_output/$output_name\_$range_looks\x$azimuth_looks\_$grd_pixel_spa
cing\m_$geocode_path 
set output_folder = 
$output_name\_$range_looks\x$azimuth_looks\_$grd_pixel_spacing\m_$geocode
_path 
 if (! (-d $working_dir/$output_dir) ) mkdir $working_dir/$output_dir 
cd $working_dir/$output_dir 
 if (-e $slc1_dir1.hdr) rm * 
 if (-e $output_folder\.img) rm * 
 
cd $working_dir/$process_dir 
 
mv $slc1_dir1* $working_dir/$output_dir 
 
echo "slc1       $slc1" 
echo "slc1_dir   $slc1_dir1" 
 
echo "reach1" 
cp $slc1.slc.par $working_dir/$output_dir 
mv $working_dir/$output_dir/$slc1.slc.par 
$working_dir/$output_dir/$output_folder\.slc.par 
rm $working_dir/$output_dir/$slc1_dir1.hdr  
echo "reach2" 
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1191 
1192 

 
 

1193 
1194 
1195 
1196 
1197 
1198 
1199 

 
1200 
1201 
1202 
1203 
1204 
1205 
1206 
1207 
1208 
1209 
1210 
1211 
1212 
1213
1214 
1215 
1216 
1217 
1218 
1219 
1220 
1221 
1222 
1223 
1224 
1225 
1226 
1227 

mv 
$working_dir/$output_dir/$slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_pat
h $working_dir/$output_dir/$output_folder.img 
echo "reach3" 
mv 
$working_dir/$output_dir/$slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_pat
h\.bmp $working_dir/$output_dir/$output_folder.bmp 
echo "reach4" 
mv 
$working_dir/$output_dir/$slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_pat
h\.hdr $working_dir/$output_dir/$output_folder.hdr 
echo "reach5" 
mv 
$working_dir/$output_dir/$slc1_dir1\_cmli_utm_$grd_rsp\m_$pol\_$geocode_pat
h\.par_file $working_dir/$output_dir/$output_folder.par_file 
echo "reach6" 
 
endif #if_do_tidy_up 
 
if ($do_tidy_up_Matt) then 
  rm -f $slc1.slc $slc2.slc $slc2.rslc $slc1.cslc $slc2.cslc  
  if (!(-d $working_dir/$process_dir/processing_files)) mkdir 
$working_dir/$process_dir/processing_files 
  mv *.cmli $working_dir/$process_dir/processing_files 
  mv *.par $working_dir/$process_dir/processing_files 
  mv *.dem $working_dir/$process_dir/processing_files 
  mv *.gc* $working_dir/$process_dir/processing_files 
  mv *.mli $working_dir/$process_dir/processing_files 
  mv *.utm_to_rdc $working_dir/$process_dir/processing_files 
  mv *.sim_sar $working_dir/$process_dir/processing_files 
  mv *.base $working_dir/$process_dir/processing_files 
  mv *.txt $working_dir/$process_dir/processing_files 
  mv *.cc_* $working_dir/$process_dir/processing_files 
  mv *.cc $working_dir/$process_dir/processing_files 
  mv *.flt* $working_dir/$process_dir/processing_files 
  mv *.int $working_dir/$process_dir/processing_files 
  mv *.snr $working_dir/$process_dir/processing_files 
  mv *.rmli $working_dir/$process_dir/processing_files 
  mv *.off* $working_dir/$process_dir/processing_files 
  mv *_flip.* $working_dir/$process_dir/processing_files 
  mv *.coff* $working_dir/$process_dir/processing_files 
  mv *.dem_par $working_dir/$process_dir/processing_files 
  mv *.dem_seg $working_dir/$process_dir/processing_files 
  mv *.diff_par $working_dir/$process_dir/processing_files 
  mv *.img $working_dir/$process_dir/processing_files 
#  mv *.par_file* processing files 
  endif 
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#cd .. 
#cd .. 
#chmod -R 755 * 

 

To run the automate.csh script in Script A1.1, a script is written that includes a line of input 

for each SLC SAR image file, and grouped by site, called do_automate_site.csh. An extract 

from the do_automate_Tanzania.csh is shown in Script A1.2. To run a .csh file, type 

./scriptname.csh in the console to run scriptname.csh. 

Script A1.2 An extract from do_automate_Tanzania.csh 

1 
2 

 
 
 
 
 
 
 
 

3 
4 
5 

 
 
 
 
 
 

 
6 
7 
8 

 
 
 
 
 
 
 
 
 
 

#Tanzania_Dry_ASAR_20100715_SLC_0_VVVH_VH  
echo "module load gamma;cd /scratch/gionet/bfs4/phd; ./automate.csh 
/scratch/gionet/bfs4 /scratch/gionet/bfs4/phd tanzania ASAR 
Tanzania_Dry_ASAR_20100715_SLC_0_VVVH - 
Tanzania_Dry_ASAR_20100715_VV_VH.N1 
Tanzania_Dry_ASAR_20100715_SLC_0_VVVH - 
Tanzania_Dry_ASAR_20100715_VV_VH.N1 2 4 VH 15 1 Descending 0 srtm 
landsat 4.000 7.0 South SLC geocode " | qsub -N 
Tanzania_Dry_ASAR_20100715_SLC_0_VVVH_VH_geocode -M bfs4@le.ac.uk -
l walltime=04:00:00,nodes=1:ppn=1,pvmem=12Gb 
 
#Tanzania_Dry_PALSAR_20080915_SLC_1_Quad_HH  
echo "module load gamma;cd /scratch/gionet/bfs4/phd; ./automate.csh 
/scratch/gionet/bfs4 /scratch/gionet/bfs4/phd tanzania PALSAR 
Tanzania_Dry_PALSAR_20080915_SLC_1_Quad - IMG-HH-ALPSRP140877110-
P1.1__A Tanzania_Dry_PALSAR_20080915_SLC_1_Quad - IMG-HH-
ALPSRP140877110-P1.1__A 1 3 HH 10 1 Ascending 0 srtm landsat 4.000 7.0 
South SLC geocode " | qsub -N 
Tanzania_Dry_PALSAR_20080915_SLC_1_Quad_HH_geocode -M 
bfs4@le.ac.uk -l walltime=04:00:00,nodes=1:ppn=1,pvmem=12G 
 
#Tanzania_Dry_TSX_20100920_SLC_0_VVVH_VH  
echo "module load gamma;cd /scratch/gionet/bfs4/phd; ./automate.csh 
/scratch/gionet/bfs4 /scratch/gionet/bfs4/phd tanzania TSX 
Tanzania_Dry_TSX_20100920_SLC_0_VVVH TSX-
1.SAR.L1B/TSX1_SAR__SSC______SM_D_SRA_20100920T160312_20100920T1
60320 IMAGE_VH_SRA_stripNear_006.cos 
Tanzania_Dry_TSX_20100920_SLC_0_VVVH TSX-
1.SAR.L1B/TSX1_SAR__SSC______SM_D_SRA_20100920T160312_20100920T1
60320 IMAGE_VH_SRA_stripNear_006.cos 5 2 VH 5 1 Ascending 0 srtm landsat 
4.000 7.0 South SLC geocode " | qsub –N 
Tanzania_Dry_TSX_20100920_SLC_0_VVVH_VH_geocode -M bfs4@le.ac.uk -l 
walltime=04:00:00,nodes=1:ppn=1,pvmem=12Gb 
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Before any of the .csh scripts will work, the permissions needs to be adjusted as in Script A1.3, 

to make the scripts executable in linux. The $-sign represents the linux console / terminal. 

 

Script A1.3 Console / terminal commands to make .csh scripts executable. 

$ chmod +x automate.csh 
$ chmod +x do_automate_Tanzania.csh 

 

The remaining scripts, needs to be located within the directory structure as shown in Figure 

A1.1 and Figure A1.2. 

 

Script A1.4 create_header.csh, located in folder /phd 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

 
13 

 
14 

 
15 

 
16 

 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

#! /bin/csh -fe 
set image = $1          #image file name without the .dem_par extension 
set hemisphere = $2     #North or South 
#echo "current directory:" 
#echo pwd 
 
#cd $1 
#cd $insardir\_$range_looks\x$azimuth_looks\_$pol 
 
set pixels = `awk '{if($1 == "width:" ) printf("%d", $2)}' < $image.dem_par` 
set lines = `awk '{if($1 == "nlines:" ) printf("%d", $2)}' < $image.dem_par` 
set ul_easting = `awk '{if($1 == "corner_east:" ) printf("%.3f", $2)}' < 
$image.dem_par` 
set ul_northing = `awk '{if($1 == "corner_north:" ) printf("%.3f", $2)}' < 
$image.dem_par` 
set pixel_size = ̀ awk '{if($1 == "post_east:" ) printf("%.10f", $2)}' < $image.dem_par` 
set projection = `awk '{if($1 == "projection_name:" ) printf("%s", $2)}' < 
$image.dem_par` 
set utm_zone = `awk '{if($1 == "projection_zone:" ) printf("%d", $2)}' < 
$image.dem_par` 
 
  set envi_hdr_file = $image.hdr 
  echo "ENVI" > $envi_hdr_file 
  echo "description = {" >> $envi_hdr_file 
  echo "  File Imported into ENVI. }" >> $envi_hdr_file 
  echo "samples = $pixels" >> $envi_hdr_file 
  echo "lines   = $lines" >> $envi_hdr_file 
  echo "bands   = 1" >> $envi_hdr_file 
  echo "header offset = 0" >> $envi_hdr_file 
  echo "file type = ENVI Standard" >> $envi_hdr_file 
  echo "data type = 4" >> $envi_hdr_file 
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27 
28 
29 
30 
31 

 
 

32 
33 
34 

  echo "interleave = bsq" >> $envi_hdr_file 
  echo "sensor type = UNKNOWN" >> $envi_hdr_file 
  echo "byte order = 1" >> $envi_hdr_file 
  echo "map info = {$projection, 1.0000, 1.0000, $ul_easting, $ul_northing, 
$pixel_size, $pixel_size, $utm_zone, $hemisphere, WGS-84, units=Meters}"  >> 
$envi_hdr_file 
  echo "wavelength units = Unknown" >> $envi_hdr_file 
  echo "band names = {" >> $envi_hdr_file 
  echo " }" >> $envi_hdr_file 

 

 

Script A1.5 dem_byte_swap.csh, located in /phd folder. 

1 
2 
3 
4 
5 
6 
 

#!/bin/csh -fe 
 
set inputfile = $1 
set outputfile = $2 
 
swap_bytes $inputfile $outputfile 2 

 

A1.4.2 /DEM folder scripts 

 

Script A1.6 create_diff_par file, in /DEM folder 

1 
2 
3 
4 
5 
6 

dem_diff_par 
 
 
 
4.0 
 

 

 

The create_kml script in Script A1.7 is not currently implemented, but left here for future 

reference. 
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Script A1.7 create_kml in /DEM folder 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

EQA 
WGS84 
1 
 

 

 

Script A1.8 create_offset_input_FVI, in /DEM folder 

1 
2 
3 
4 
5 
6 
7 
8 

interferogram parameters 
 

 

 

 

Script A1.9 create_offset_input_ICC, in /DEM folder 

1 
2 
3 
4 
5 
6 

interferogram parameters 
0 0 
32 32 
64 64 
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A1.4.3 /DEM/landsat folder scripts 

In the following scripts, when more than one script is presented for different sites, the 

differences are highlighted in red font. 

 

Script A1.10 create_dem_par_utm_site files for Cameroon, DRC, Tanzania and Chad, in /DEM/landsat folder. 

create_dem_par_cameroon  create_dem_par_drc 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

UTM 
WGS84 
1 
33 
 
REAL*4 
 
 
 
 
 
 

 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

UTM 
WGS84 
1 
34 
 
REAL*4 
 
 
 
 
 
 

   
create_dem_par_tanzania  create_dem_par_chad 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

UTM 
WGS84 
1 
36 
 
REAL*4 
 
 
 
 
 
 

 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

UTM 
WGS84 
1 
34 
 
REAL*4 
 
 
 
 
 
 

 

 

All the _utm.dem_par files (Scripts A1.11-A1.14) are created by taking the values from the 

original .hdr file. The false_easting and false_northing values needed for the UTM zones 

shown in Table A1.1. These values are then used in Scripts A1.11-A1.14 as required. 
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Table A1.1 The false easting and false northing values for the northern and southern hemisphere. 

 For Northern Hemisphere For Southern Hemisphere 

false_easting:            500000.000   m 500000.000   m 

false_northing:                    0.000   m 10000000.000   m 

 

Script A1.11 cameroon_landsat_utm.dem_par 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
 

Gamma DIFF&GEO DEM/MAP parameter file 
title: DEM 
DEM_projection:     UTM 
data_format:        REAL*4 
DEM_hgt_offset:          0.00000 
DEM_scale:               1.00000 
width:                29181 
nlines:               24721 
corner_north:  904807.500   m 
corner_east:    87292.500   m 
post_north:    -15.0000000   m 
post_east:      15.0000000   m 
 
ellipsoid_name: WGS 84 
ellipsoid_ra:        6378137.000   m 
ellipsoid_reciprocal_flattening:  298.2572236 
 
datum_name: WGS 1984 
datum_shift_dx:              0.000   m 
datum_shift_dy:              0.000   m 
datum_shift_dz:              0.000   m 
datum_scale_m:         0.00000e+00 
datum_rotation_alpha:  0.00000e+00   arc-sec 
datum_rotation_beta:   0.00000e+00   arc-sec 
datum_rotation_gamma:  0.00000e+00   arc-sec 
datum_country_list Global Definition, WGS84, World 
 
projection_name: UTM 
projection_zone:                 33 
false_easting:           500000.000   m 
false_northing:               0.000   m 
projection_k0:            0.9996000 
center_longitude:        15.0000000   decimal degrees 
center_latitude:          0.0000000   decimal degrees 
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Script A1.12 drc_landsat_utm.dem_par 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

Gamma DIFF&GEO DEM/MAP parameter file 
title: DEM 
DEM_projection:     UTM 
data_format:        REAL*4 
DEM_hgt_offset:          0.00000 
DEM_scale:               1.00000 
width:                29381 
nlines:               24682 
corner_north:   266107.500   m 
corner_east:    504592.500   m 
post_north:    -15.0000000   m 
post_east:      15.0000000   m 
 
ellipsoid_name: WGS 84 
ellipsoid_ra:        6378137.000   m 
ellipsoid_reciprocal_flattening:  298.2572236 
 
datum_name: WGS 1984 
datum_shift_dx:              0.000   m 
datum_shift_dy:              0.000   m 
datum_shift_dz:              0.000   m 
datum_scale_m:         0.00000e+00 
datum_rotation_alpha:  0.00000e+00   arc-sec 
datum_rotation_beta:   0.00000e+00   arc-sec 
datum_rotation_gamma:  0.00000e+00   arc-sec 
datum_country_list Global Definition, WGS84, World 
 
projection_name: UTM 
projection_zone:                 35 
false_easting:           500000.000   m 
false_northing:               0.000   m 
projection_k0:            0.9996000 
center_longitude:        27.0000000   decimal degrees 
center_latitude:          0.0000000   decimal degrees 

 

 

Script A1.13 tanzania_landsat_utm.dem_par 

1 
2 
3 
4 
5 
6 
7 

Gamma DIFF&GEO DEM/MAP parameter file 
title: DEM 
DEM_projection:     UTM 
data_format:        REAL*4 
DEM_hgt_offset:          0.00000 
DEM_scale:               1.00000 
width:                29281 
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8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

nlines:               24621 
corner_north:  9785207.500   m 
corner_east:    249892.500   m 
post_north:    -15.0000000   m 
post_east:      15.0000000   m 
 
ellipsoid_name: WGS 84 
ellipsoid_ra:        6378137.000   m 
ellipsoid_reciprocal_flattening:  298.2572236 
 
datum_name: WGS 1984 
datum_shift_dx:              0.000   m 
datum_shift_dy:              0.000   m 
datum_shift_dz:              0.000   m 
datum_scale_m:         0.00000e+00 
datum_rotation_alpha:  0.00000e+00   arc-sec 
datum_rotation_beta:   0.00000e+00   arc-sec 
datum_rotation_gamma:  0.00000e+00   arc-sec 
datum_country_list Global Definition, WGS84, World 
 
projection_name: UTM 
projection_zone:                 36 
false_easting:           500000.000   m 
false_northing:        10000000.000   m 
projection_k0:            0.9996000 
center_longitude:        33.0000000   decimal degrees 
center_latitude:          0.0000000   decimal degrees 

 

 

Script A1.14 chad_landsat_utm.dem_par 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Gamma DIFF&GEO DEM/MAP parameter file 
title: DEM 
DEM_projection:     UTM 
data_format:        REAL*4 
DEM_hgt_offset:          0.00000 
DEM_scale:               1.00000 
width:                28981 
nlines:               24701 
corner_north:  1704307.500   m 
corner_east:    451492.500   m 
post_north:    -15.0000000   m 
post_east:      15.0000000   m 
 
ellipsoid_name: WGS 84 
ellipsoid_ra:        6378137.000   m 
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16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

ellipsoid_reciprocal_flattening:  298.2572236 
 
datum_name: WGS 1984 
datum_shift_dx:              0.000   m 
datum_shift_dy:              0.000   m 
datum_shift_dz:              0.000   m 
datum_scale_m:         0.00000e+00 
datum_rotation_alpha:  0.00000e+00   arc-sec 
datum_rotation_beta:   0.00000e+00   arc-sec 
datum_rotation_gamma:  0.00000e+00   arc-sec 
datum_country_list Global Definition, WGS84, World 
 
projection_name: UTM 
projection_zone:                 34 
false_easting:           500000.000   m 
false_northing:               0.000   m 
projection_k0:            0.9996000 
center_longitude:        21.0000000   decimal degrees 
center_latitude:          0.0000000   decimal degrees 

 

A1.4.4 /DEM/landsat/landsat_preparation folder 

The landsat images are first combined in a mosaic (where necessary) and then converted to 

float format in ENVI. The _utm_float images are then copied to 

/DEM/landsat/landsat_preparation folder on ALICE. This is then use to create the 

site_landsat_utm.img and site_landsat_utm.dem_par files in the /DEM/lansdsat/ folder. The 

files are named:  

site_landsat_utm_float and  

site_landsat_utm_float.hdr, 

 

with site replaced with the specific site-name as appropriate. The do_dem_byte_swap needs 

to be run, for the automate.csh script to read the correct format of the DEM file. 

 

Script A1.15 dem_byte_swap 

1 
2 
3 
4 

#!/bin/csh -fe 
set inputfile = $1 
set outputfile = $2 
swap_bytes $inputfile $outputfile 4 
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Script A1.16 do_dem_byte-swap 

1 
2 
3 
4 
5 

 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

#byte swap in gamma 
module load gamma 
#./dem_byte_swap.csh cameroon1_landsat_wide_utm_float 
cameroon1_landsat_utm_new.dem 
./dem_byte_swap.csh cameroon2_landsat_utm_float 
cameroon2_landsat_utm.img 
#./dem_byte_swap.csh chad_landsat_utm_float chad_landsat_utm.img 
#./dem_byte_swap.csh drc_landsat_utm_float drc_landsat_utm.img 
#./dem_byte_swap.csh sudan_landsat_utm_float sudan_landsat_utm.img 
#./dem_byte_swap.csh tanzania_landsat_utm_float tanzania_landsat_utm.img 
 
# move the output files to the main /DEM/landsat folder 
#mv cameroon1_landsat_utm.img ../cameroon1_landsat_utm.img 
mv cameroon2_landsat_utm.img ../cameroon2_landsat_utm.img 
#mv chad_landsat_utm.img ../chad_landsat_utm.img 
#mv drc_landsat_utm.img ../drc_landsat_utm.img 
#mv sudan_landsat_utm.img ../sudan_landsat_utm.img 
#mv tanzania_landsat_utm.img ../tanzania_landsat_utm.img 

 

A1.4.5 /DEM/palsar 

This folder is used to geo-terrain correct to a PALSAR image, as was done by Waldram (2014). 

In this study this was not used, but is kept for future reference. 

 

A1.4.6 /DEM/srtm 

The site_srtm_eqa.dem_par files accompany each a site_srtm_eqa.dem file, as shown in 

Scripts A1.17-A1.20.  

 

Script A1.17 cameroon1_srtm_eqa.dem_par 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Gamma DIFF&GEO DEM/MAP parameter file 
title: DEM 
DEM_projection:     EQA 
data_format:        INTEGER*2 
DEM_hgt_offset:          0.00000 
DEM_scale:               1.00000 
width:                6000 
nlines:               6000 
corner_lat:     10.0000000  decimal degrees 
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10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

corner_lon:     10.0000000  decimal degrees 
post_lat:   -8.3333330e-04  decimal degrees 
post_lon:    8.3333330e-04  decimal degrees 
 
ellipsoid_name: WGS 84 
ellipsoid_ra:        6378137.000   m 
ellipsoid_reciprocal_flattening:  298.2572236 
 
datum_name: WGS 1984 
datum_shift_dx:              0.000   m 
datum_shift_dy:              0.000   m 
datum_shift_dz:              0.000   m 
datum_scale_m:         0.00000e+00 
datum_rotation_alpha:  0.00000e+00   arc-sec 
datum_rotation_beta:   0.00000e+00   arc-sec 
datum_rotation_gamma:  0.00000e+00   arc-sec 
datum_country_list Global Definition, WGS84, World 

 

Script A1.18 drc_srtm_eqa.dem_par 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Gamma DIFF&GEO DEM/MAP parameter file 
title: DEM 
DEM_projection:     EQA 
data_format:        INTEGER*2 
DEM_hgt_offset:          0.00000 
DEM_scale:               1.00000 
width:               12002 
nlines:              12002 
corner_lat:     5.00000000  decimal degrees 
corner_lon:    24.99958382  decimal degrees 
post_lat:   -8.3333330e-04  decimal degrees 
post_lon:    8.3333330e-04  decimal degrees 
 
ellipsoid_name: WGS 84 
ellipsoid_ra:        6378137.000   m 
ellipsoid_reciprocal_flattening:  298.2572236 
 
datum_name: WGS 1984 
datum_shift_dx:              0.000   m 
datum_shift_dy:              0.000   m 
datum_shift_dz:              0.000   m 
datum_scale_m:         0.00000e+00 
datum_rotation_alpha:  0.00000e+00   arc-sec 
datum_rotation_beta:   0.00000e+00   arc-sec 
datum_rotation_gamma:  0.00000e+00   arc-sec 
datum_country_list Global Definition, WGS84, World 
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Script A1.19 tanzania_srtm_eqa.dem_par 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

Gamma DIFF&GEO DEM/MAP parameter file 
title: DEM 
DEM_projection:     EQA 
data_format:        INTEGER*2 
DEM_hgt_offset:          0.00000 
DEM_scale:               1.00000 
width:                6002 
nlines:              12003 
corner_lat:     0.00041725  decimal degrees 
corner_lon:    29.99958333  decimal degrees 
post_lat:   -8.3333330e-04  decimal degrees 
post_lon:    8.3333330e-04  decimal degrees 
 
ellipsoid_name: WGS 84 
ellipsoid_ra:        6378137.000   m 
ellipsoid_reciprocal_flattening:  298.2572236 
 
datum_name: WGS 1984 
datum_shift_dx:              0.000   m 
datum_shift_dy:              0.000   m 
datum_shift_dz:              0.000   m 
datum_scale_m:         0.00000e+00 
datum_rotation_alpha:  0.00000e+00   arc-sec 
datum_rotation_beta:   0.00000e+00   arc-sec 
datum_rotation_gamma:  0.00000e+00   arc-sec 
datum_country_list Global Definition, WGS84, World 

 

Script A1.20 chad_srtm_eqa.dem_par 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Gamma DIFF&GEO DEM/MAP parameter file 
title: DEM 
DEM_projection:     EQA 
data_format:        INTEGER*2 
DEM_hgt_offset:          0.00000 
DEM_scale:               1.00000 
width:                6000 
nlines:               6000 
corner_lat:    15.00000000  decimal degrees 
corner_lon:    20.00000000  decimal degrees 
post_lat:   -8.3333330e-04  decimal degrees 
post_lon:    8.3333330e-04  decimal degrees 
 
ellipsoid_name: WGS 84 
ellipsoid_ra:        6378137.000   m 
ellipsoid_reciprocal_flattening:  298.2572236 
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17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

 
datum_name: WGS 1984 
datum_shift_dx:              0.000   m 
datum_shift_dy:              0.000   m 
datum_shift_dz:              0.000   m 
datum_scale_m:         0.00000e+00 
datum_rotation_alpha:  0.00000e+00   arc-sec 
datum_rotation_beta:   0.00000e+00   arc-sec 
datum_rotation_gamma:  0.00000e+00   arc-sec 
datum_country_list Global Definition, WGS84, World 

 

 

A1.4.7 /DEM/srtm/srtm_preparation folder 

Copy the site_srtm_equ_beforebyteswap.dat  and site_srtm_equ_beforebyteswap.hdr files 

to the /DEM/SRTM/SRTM_preparation folder.  

 

Run the do_dem_byte_swap_srtm.csh script (Script A1.22) to convert the SRTM to the correct 

format. This will enable the automate.csh script (Script A1.1) to run correctly. 

 

Script A1.21 dem_byte_swap 

1 
2 
3 
4 
5 
6 
7 

#!/bin/csh -fe 
 
set inputfile = $1 
set outputfile = $2 
 
swap_bytes $inputfile $outputfile 2 
 

 

 

Script A1.22 do_dem_byte_swap 

1 
2 
3 

 
4 

 
5 

 
6 

#byte swap in gamma 
module load gamma 
#./dem_byte_swap.csh cameroon1_srtm_eqa_beforebyteswap.dem 
cameroon1_srtm_eqa_new 
#./dem_byte_swap.csh cameroon2_srtm_eqa_beforebyteswap 
cameroon2_srtm_eqa.dem 
#./dem_byte_swap.csh chad_srtm_eqa_beforebyteswap.dat 
chad_srtm_eqa.dem 
#./dem_byte_swap.csh drc_srtm_eqa_beforebyteswap.dat drc_srtm_eqa.dem 



308 

 

7 
 

8 
 

9 
 
 

10 
11 
12 
13 
14 
15 
16 
17 
18 

#./dem_byte_swap.csh sudan_srtm_eqa_beforebyteswap.dat 
sudan_srtm_eqa.dem 
./dem_byte_swap.csh tanzania_srtm_eqa_beforebyteswap.dat 
tanzania_srtm_eqa.dem 
#./dem_byte_swap.csh drc_srtm_eqa_beforebyteswap_4tiles.dat 
drc_srtm_eqa.dem 
 
# move the output files to the main /DEM/srtm folder 
#mv cameroon1_srtm_eqa.dem ../cameroon1_srtm_eqa.dem 
#mv cameroon2_srtm_eqa.dem ../cameroon2_srtm_eqa.dem 
#mv chad_srtm_eqa.dem ../chad_srtm_eqa.dem 
#mv drc_srtm_eqa.dem ../drc_srtm_eqa.dem 
#mv sudan_srtm_eqa.dem ../sudan_srtm_eqa.dem 
mv tanzania_srtm_eqa.dem ../tanzania_srtm_eqa.dem 
#mv drc_srtm_eqa.dem ../drc_srtm_eqa.dem 

 

 

 

A1.5 Additional Linux commands and notes 

This section presents a handful of linux commands that proved useful during this research. 

To load GAMMA on ALICE: 
$    module load gamma 
 
Available modules: 
$   module avail 
 
To see if your script is running on ALICE, replace bfs4 with your username (it might take about 
10-15 seconds, or longer before the job appears on the queue): 
$   showq –u bfs4 
 
Any errors are shown in files named (1234567 changes after each run): 
Gamma_Proc.e1234567 
 
The screen output is all written to files named (1234567 changes after each run): 
Gamma_Proc.o1234567 
 
List files and directories, with or without the –l: 
$   ls –l 
 
List files by time: 
$   ls –l -t 
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List files by time in reverse: 
$   ls –ltr 
 
Current directory: 
$   pwd 
 
To run the .csh file: 
$    ./filename.csh 
 
 
To copy and paste in Linux: 
Mark the text to be copied in the terminal. Click with the middle mouse buttom where you 
want to paste the text 
 
Move / rename a file: 
$   mv filename_old filename_new 
 
Copy a  file: 
$ cp location1\filename location2\filename 
 
Change from icon-view to list view in the file browser on linux: 
Cntrl-2 
 
Change directory to the parent directory, one level up: 
$   cd .. 
 
Copy directories with all sub-directories and files (recursively) (see 
http://www.tuxfiles.org/linuxhelp/dirman.html): 
$   cp –r dir1 dir2 
 
Renaming directories, the same as renaming file-names: 
$   mv dir1 dir2 
 
Remove all files starting with e.g. Gamma_Proc, by using the wildcard (*) character: 
$  rm Gamma_Proc.* 
 
Or move all Gamma_Proc files to the extras directory: 
$   mv Gamma_Proc.* extras 
 
Get the size of a whole folder: 
$ du –sh 
 
To kill a running job: 
$ qdel <jobid> 
e.g. 

http://www.tuxfiles.org/linuxhelp/dirman.html
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$ qdel 4332199 
 

Appendix Two: GDAL scripts to create image overlap 

 

Appendix Two provides the scripts to perform the pre-processing steps of creation of an 

image overlap (Section 4.2), calculation of the derived layers (Section 4.3) and combining the 

images into a layer stack (Section 4.4). The scripts are a combination of bash, which is the 

GNU shell scripting language (FSF, 2014a, 2014b), the Geospatial Data Abstraction Library 

(GDAL) scripts (GDAL, 2013), and GRASS GIS (Neteler et al., 2012). 

 

 

A2.1 Overview of GDAL scripts 

Once the GAMMA orthorectification scripts are run, all the output files are located in the 

folders /site_output, as shown in Figure A1.1. Copy this whole folder onto a local computer, 

to the new base directory, called /step2_after_geocode, using WinSCP or a similar program. 

 

All the scripts in Appendix Two, apart from Scripts 2.9-2.14, should also be placed in the new 

base directory, and can be run from there. Scripts 2.9-2.14, which creates the additional layers 

of slope and aspect from the SRTM elevation images for each site, should be run from the 

/Z_SRTM_UTM folder, which is on the same level as the base directory. 

 

 

 

 

 



311 

 

 

 

Figure A2.1 Folder structure for the GDAL scripts data preparation steps. 
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Table A2.1 Structure of bash scripts for data preparation. 

Script name Script number 
  

Unfold output files to new folder  

d1_unfold_copy_to_site_output_geocode_folder.sh  A2.1 
  

Create overlap  

do_overlap_create.sh A2.2 
d2_convert_envi_to_tif.sh A2.3 

e_mosaic_images.sh A2.4 
f1a_prepare_tif_directories.sh A2.5 

f1_create_layer_stack.sh A2.6 
f2_unfold_shapefiles.sh A2.7 

f3_intersect_shapefiles.sh A2.8 
  

Cutout DEM scripts  

do_demcalc_cutout_pre.sh A2.9 
demcalc_cutout_pre.sh A2.10 

do_demcalc_allsites.sh  (in GRASS) A2.11 
demcalc_allsites.sh   (in GRASS) A2.12 

do_srtm_resample.sh A2.13 
srtm_resample.sh A2.14 

  

Calculated additional layers and create data stack  

do_processflow.sh A2.15 
f4b_complete_stack_envi.sh 

 
A2.16 

g2b2_bandcalc_ENVI.sh A2.17 
texture_calc_take2.sh ( in GRASS) A2.18 

g3b_copy_to_largestack_folder.sh A2.19 
g3b_envi_virtualstack.sh A2.20 

g3b_envi_realstacks.sh A2.21 
  

Additional scripts before R modelling  

do_convert_to_raster_all.sh A2.22 
convert_to_raster_all.sh A2.23 
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A2.2 GDAL bash scripts 

 

A2.2.1 Unfold multiple folders into a single folder 

First copy the site_output folders to the new base directory, as shown in Figure A2.1. Copy 

Script A2.1 into the site_output folder for each site, and run the script from inside this folder. 

The image files are unfolded into the /d2_Separate_ENVI folder. 

 

 Script A2.1 d1_unfold_copy_to_site_output_geocode_folder.sh 

1 
2 
3 
4 
5 
6 
7 
8 
9 

 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 

#!/bin/bash 
 
#if [ -f dirlist ] ; then  
#  rm -f dirlist 
#fi 
#ls -d */ >> dirlist 
#for dir in $dirlist; 
 
# see  http://stackoverflow.com/questions/2107945/how-to-loop-over-
directories-in-linux 
 
# Notes: 
# copy this file to the d1_site_output_geocode folder 
 
for dir in ./*/; 
do 
    #echo dir 
    dir=${dir%*/} 
    echo ${dir##*/} 
    cd ${dir##*/} 
 
    #cp *.img ../../Tanzania_geocodeG 
    #cp *.hdr ../../Tanzania_geocodeG 
    cp *.img ../../d2_Separate_ENVI 
    cp *.hdr ../../d2_Separate_ENVI 
    cd ../ 
done   
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A2.2.2 Creating an overlap between multiple shapefiles script 

The do_overlap_create.sh script in Script A2.2 calls Scripts A2.3-A2.8. Parameters can be set 

for all of these scripts from Script A2.2. 

 

 

Script A2.2 do_overlap_create.sh 

1 
2 
3 

 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

 
15 
16 
17 
18 
19 
20 
21 

 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

#!/bin/bash 
 
#file to create the shapefile overlap, before the do_processflow.sh 
programs 
 
#site='Cameroon1' 
#site='Cameroon2' 
#site='Chad' 
#site='DRC' 
#site='Sudan' 
site='Tanzania' 
do_mosaic_images=0; 
do_resample=0; 
do_create_shapefile_outlines=0; 
do_unfold_shapefiles=0; #check manually if all shapefiles were created - 
otherwise create new shapefiles in QGIS 
do_intersect_shapefiles=1; 
 
if [ $do_mosaic_images == 1 ]; 
then 
     ./d2_convert_envi_to_tif.sh 
     ./e_mosaic_images.sh  
fi 
 
if [ $do_resample == 1 ]; 
then 
     ./f1_create_layer_stack.sh $site 1 0 
fi 
 
if [ $do_create_shapefile_outlines == 1 ]; 
then 
     ./f1_create_layer_stack.sh $site 0 1  
fi 
 
if [ $do_unfold_shapefiles == 1 ]; 
then 
     ./f2_unfold_shapefiles.sh $site 
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fi 
 
if [ $do_intersect_shapefiles == 1 ]; 
then 
     ./f3_intersect_shapefiles.sh $site geocodeG 
     ./f3_intersect_shapefiles.sh $site geocodeS 
fi 

 

Script A2.3 d2_convert_envi_to_tif.sh 
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#!/bin/bash 
# program to convert ENVI files to .tif files using gdal.  
# Bernard Spies, 11 July 2013 
 
#copy this convert_envi_to_tif.sh script to the parent folder of 
d_Separate_ENVI and d_Separate_tif 
#run the program using ./convert_envi_to_tif.sh from the parent folder 
 
#step 1 convert from envi to tif 
cd ./d2_Separate_ENVI/ 
 
for filename in *.img; 
do 
  echo $filename 
  gdal_translate -of GTiff -a_nodata 0 $filename 
../d3_Separate_tif/$filename.tif 
done 
 
#change back to parent directory for step 2 
cd .. 
 
#step 2: rename all the .img.tif filenames to .tif filenames 
#see http://stackoverflow.com/questions/1224766/how-do-i-rename-
the-extension-of-a-batch-of-files 
cd ./d3_Separate_tif/ 
 
for filename in *.img.tif; 
do 
   mv "$filename" "`basename $filename .img.tif`.tif" 
done 
cd .. 
 
#test line 
#gdal_translate -of GTiff -a_nodata 0 
Cameroon1_Dry_ASAR_20100411_SLC_0_VVVH_VH_2x4_15m_geocode.
img ../d_Separate_tif/test.tif 
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Script A2.4 e_mosaic_images.sh 

1 
2 
3 
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21 
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42 
43 

#!/bin/bash 
 
#this program mosaics the _1_ and _2_ images into _3_ , to cover a 
larger area, using gdal 
 
cd ./d3_Separate_tif 
 
#mkdir {process1and2,output3} 
#mkdir {process1,process2,process3} 
 
mv *_1_* ./process1 
mv *_2_* ./process2 
 
cd ./process2 
 
for x in *_2_*;  
do   
  #echo $x 
  mv $x ${x/_2_/_1_};  
done 
 
#mv *_2_* *_1_* 
for file in *geocode.tif; 
do 
  mv $file "`basename $file geocode.tif`geocode_nr2.tif" 
  #mv $file "`basename $file geocode.tif.aux.xml`geocode_nr2" 
done  
 
for file in *geocode.tif.aux.xml; 
do 
  mv $file "`basename $file 
_geocode.tif.aux.xml`_geocode_nr2.tif.aux.xml" 
done  
cd .. 
 
cd ./process1 
for file in *geocode.tif; 
do 
  mv $file "`basename $file geocode.tif`geocode_nr1.tif" 
  #mv $file "`basename $file geocode.tif.aux.xml`geocode_nr2" 
done  
 
for file in *geocode.tif.aux.xml; 
do 
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  mv $file "`basename $file 
_geocode.tif.aux.xml`_geocode_nr1.tif.aux.xml" 
done  
 
cd .. 
 
#mkdir process3 
mv ./process1/*.tif ./process3/ 
mv ./process2/*.tif ./process3/ 
cd ./process3 
 
#cd ./process1and2 
 
for file1 in *.tif; 
# 
# #for file1 in [find ./process1/ -maxdepth 1 -type f -name '*.tif']; 
# #for file1 in [cd ./process1; ./ -maxdepth 1 -type f -name '*.tif']; 
# 
do 
  for file2 in *.tif; 
  do 
     #echo "file1: $file1" 
     #echo "file2: $file2" 
       test1=`basename $file1 _nr1.tif` 
       test2=`basename $file2 _nr2.tif` 
       #if [ "basename $file1 _nr1.tif" == "`basename $file1 _nr2.tif`" ] 
        if [ "$test1" == "$test2" ] 
       then 
        #if [ *_1_*.tif == *_2_*.tif ] 
           echo "file1 nr1: $file1" 
           echo "file2 nr2: $file2" 
          gdal_merge.py -o ../output3/"`basename $file1 
_nr1.tif`_mosaic.tif" -of GTiff -n 0 $file1 $file2 
       fi 
  done 
done 
 
for x in *_1_*;  
do   
  #echo $x 
  mv $x ${x/_1_/_3_};  
done 
mv * ../ 
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Script A2.5 f1a_prepare_tif_directories.sh 

1 
2 
3 
4 
5 
6 
7 
8 
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10 
11 
12 
13 
14 
15 

# 3. clip the raster file to the boundingbox of the shapefile 
cd ./f1_layerstack_pre 
 
#create a for loop for all the .tif files 
#make the separate site directories - only in later steps?! 
mkdir {Cameroon1,Cameroon2,Chad,DRC,Sudan,Tanzania} 
 
#move the files to each separate directory 
 
mv Cameroon1*.tif ./Cameroon1/ 
mv Cameroon2*.tif ./Cameroon2/ 
mv Chad*.tif ./Chad/ 
mv DRC*.tif ./DRC/ 
mv Sudan*.tif ./Sudan/ 
mv Tanzania*.tif ./Tanzania/ 

 

Script A2.6 f1_create_layer_stack.sh 
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#!/bin/bash 
site=$1 
resample=$2 
polygons=$3 
 
#see http://www.techques.com/question/26-30111/Merging-raster-
data-with-different-resolutions 
 
#first test on a test sample of 3 images (1 from TSX, 1 from ASAR, 1 
from PALSAR) 
 
#======================================================# 
# Step 1 - resample 
# gdalwarp with -r bilinear (or nearest neighbor) 
# resample the lower resolution to get close to the higher resolution 
data sets 
 
#loop over each file individually 
## test files 
##cd ./d_Separate_tif_test 
## all the files 
 
if [ $resample == 1 ]; 
then 
#cd ./d3_Separate_tif 
cd ./f1_layerstack_pre/$site 
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#for filename in *.tif; 
for filename in *.img; 
#for filename in 
Cameroon1_Dry_ASAR_20100411_SLC_0_VVVH_VH_2x4_15m_geocod
eG.img; 
 
##for filename in 
Cameroon1_Dry_TSX_20100313_SLC_0_HHHV_HH_5x2_5m_geocode.t
if; 
do 
  echo $filename 
 
  ##  gdalwarp step - resample to 5m 
  #original ##gdalwarp -tr 5 5 -r near -srcnodata 0 -dstnodata 0 -
dstalpha -of GTiff -overwrite $filename 
../../f1b_layerstack_pre_for_shapefiles/$site/"`basename $filename 
.img`_resampled.tif"  
 
  #gdalwarp -tr 5 5 -r near -srcnodata 0 -dstnodata 0 -dstalpha -of GTiff -
overwrite $filename 
../../f1b_layerstack_pre_for_shapefiles/$site/"`basename $filename 
.img`_resampled.tif"  
 
  #correctone for ENVI files  
  gdalwarp -r near -srcnodata 0 -dstnodata 0 -dstalpha -of GTiff -
overwrite $filename 
../../f1b_layerstack_pre_for_shapefiles/$site/"`basename $filename 
.img`_resampled.tif"  
 
  #gdalwarp -tr 5 5 -r near -srcnodata 0 -dstnodata 0 -dstalpha -of ENVI -
overwrite $filename 
../../f1b_layerstack_pre_for_shapefiles/$site/"`basename $filename 
.img`_resampled.img" 
  #gdalwarp -r near -srcnodata 0 -dstnodata 0 -dstalpha -of ENVI -
overwrite $filename 
../../f1b_layerstack_pre_for_shapefiles/$site/"`basename $filename 
.img`_resampled.img"   
done 
 
cd ../../ 
fi #resample 
 
if [ $polygons == 1 ]; 
then 
cd ./f1b_layerstack_pre_for_shapefiles/$site 
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for filename in *.tif; 
#for filename in *.img; 
#for filename in 
Cameroon1_Dry_TSX_20100313_SLC_0_HHHV_HH_5x2_5m_geocode_
resampled.tif; 
 
do 
  echo $filename 
  #gdal_polygonize.py $filename -b 2 -f "ESRI Shapefile" 
../../f2_layerstack_shapefiles/$site\_shp/"`basename $filename 
.img`_outline" "`basename $filename .img`_outline" 
  gdal_polygonize.py $filename -b 2 -f "ESRI Shapefile" 
../../f2_layerstack_shapefiles/$site\_shp/"`basename $filename 
.tif`_outline" "`basename $filename .tif`_outline" 
done 
fi #polygons 
 
#=======================================================# 
# Step 2 create stack 
 
#do the gdal_merge on all the files in the folder in one go (not looping 
through each individually) 
 
#for file in ./d_Separate_tif_test/* 
#do 
#  gdal_merge -o ./e_layerstack/layerstack3files.tif -o GTiff -ps 5 5 -
separate -n 0 a_nodata 0 -r #bilinear "$file"  
#done 
#step 2 gdal_merge  

 

 

Script A2.7 f2_unfold_shapefiles.sh 
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#!/bin/bash 
# see  http://stackoverflow.com/questions/2107945/how-to-loop-over-
directories-in-linux 
 
# to expand the program see: 
# http://stackoverflow.com/questions/4842130/how-do-i-count-the-
number-of-directories-in-a-path-using-bash 
# and http://nixcraft.com/shell-scripting/18400-bash-script-count-
number-files-directory.html 
 
site=$1 
 
cd ./f2_layerstack_shapefiles/$site\_shp 
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echo "f2_layerstack_shapefiles/$site\_shp" 
 
#unfold the shapefiles 
for dir in ./*/; 
do 
    dir=${dir%*/} 
    echo ${dir##*/} 
    cd ${dir##*/} 
 
#    mv * ../../f2_layerstack_shapefiles/$site\_shp 
     mv * ../ 
    cd .. 
done 
 
#remove the original directories, leaving only the shapefiles, all in the 
same directory 
for dir in ./*/; 
do 
    dir=${dir%*/} 
    echo "removing: " ${dir##*/} 
    rmdir ${dir##*/} 
done 
cd ../../   

 

Script A2.8 f3_intersect_shapefiles.sh 
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#!/bin/bash 
#script to create one shapefile which is the intersect of all the shapefiles 
over the same site. 
 
# see https://github.com/dwtkns/gdal-cheat-sheet for clipping tips 
# see also error on GOEMETRYCOLLECTION suggestion: 
http://www.forumsig.org/archive/index.php/t-32130.html 
# and http://georezo.net/forum/viewtopic.php?id=76424 
 
sitename=$1 
geocodeGS=$2 
echo "sitename: $sitename" 
echo "$geocodeGS" 
 
#set counter 
i=0; 
cd ./f2_layerstack_shapefiles 
cd ./$sitename\_shp 
 
#for filename in *.shp; 
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#do 
# 
#    #echo $sitename\_shp_polygons/"`basename $filename 
.shp`_polygon.shp" 
#    echo $filename 
#    ogr2ogr -overwrite ../$sitename\_shp_polygons/"`basename 
$filename .shp`_polygon.shp" -nlt POLYGON $filename  
#done 
#cd ../$sitename\_shp_polygons 
 
#set first file to $tmp variable 
#for filename in *.shp; 
for filename in *$geocodeGS*.shp; 
do 
#set the first filename 
  if [ $i -eq 0 ]; then 
     echo "shapefile number " $i $filename 
     tmp=$filename; 
     i=$((i+1)); 
  fi 
done 
 
#loop through all the shapefiles. create a temporary output, and intersect 
each time with the next shapefile in the list 
# the -skipfailures option is important, otherwise it boms out, due to 
POINT vs POLYGON discrepencies - not sure how to  
# get around this without the -skipfailures option(!) 
 
#for filename in *.shp; 
for filename in *geocodeG*.shp; 
do 
  #intersect the next filename with the previous one 
  if [ "$tmp" != "$filename" ]; then 
    echo "shapefile number " $i $filename 
    ogr2ogr -skipfailures -overwrite -clipsrc $tmp 
../../f3_layerstack_overlap/overlap_$sitename\_$geocodeGS\.shp -nlt 
POLYGON $filename  
    
tmp=../../f3_layerstack_overlap/overlap_$sitename\_$geocodeGS\.shp 
    i=$((i+1)); 
  fi 
done 
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A2.2.3 Elevation data preparation 

Script A2.9 do_demcalc_cutout_pre.sh 

1 
2 
3 
4 
5 
6 
7 
8 

#!/bin/bash 
# do_demcalc_cutout.sh to run demcalc_cutout.sh for each site 
./demcalc_cutout_pre.sh cameroon1 utm33N 0 1 0    #cameroon1 
./demcalc_cutout_pre.sh cameroon2 utm33N 0 1 0    #cameroon2 
./demcalc_cutout_pre.sh drc utm35N 0 1 0    #drc 
./demcalc_cutout_pre.sh tanzania utm36S 0 1 0    #tanzania 
./demcalc_cutout_pre.sh chad utm34N 0 1 0    #chad 
./demcalc_cutout_pre.sh sudan utm34N 0 1 0    #sudan 

 

 

 

Script A2.10 demcalc_cutout_pre.sh 
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#!/bin/bash 
# demcalc_cutout.sh 
# 3 Feb 2014, Bernard Spies 
# similar to f4b_complete_stack.sh in the step2_after_geocode folder 
# program to cut DEM smaller, for faster processing and less space usage 
# ideas taken from Tim Sutton's Linfiniti.com blog : 
# http://linfiniti.com/2009/09/clipping-rasters-with-gdal-using-polygons/ 
 
# Four steps to follow: 
# 1. create shpfile containing the features you wish to use as a clip mask - 
DONE 
# 2. determine the extent of your clipmask 
# 3. perform a rectangular clip on the image 
# 4. perform a polygon clip on the image 
# 5. my added step: then combine these clipped rasters into a layer stack. 
 
# 2. create shapefile extent 
### ==== Run these steps in loops over all the files in the folder, 
### === then add the final gdalwarp step in the end to create a stack for each 
site 
site=$1 
utm=$2 
do_shapefile_extent=$3 #1=yes, 0=no 
do_bbclip=$4 #1=yes, 0=no 
do_shpclip=$5 #1=yes, 0=no 
 
if [ $do_shapefile_extent == 1 ]  
then 
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    cd ./shapefiles 
    #SHPFILE=$1 
    SHPFILE=overlap_$1\.shp 
    BASE=`basename $SHPFILE .shp` 
    EXTENT=`ogrinfo -so $SHPFILE $BASE | grep Extent \ 
    | sed 's/Extent: //g' | sed 's/(//g' | sed 's/)//g' \ 
    | sed 's/ - /, /g'` 
    EXTENT=`echo $EXTENT | awk -F ',' '{print $1 " " $4 " " $3 " " $2}'` 
    echo $EXTENT 
    # back to base directory 
    cd .. 
fi 
#extent:  Top-left, Bottom-right 
# cameroon1 extent:   250955.000000 726170.000000 265250.000000 
687000.000000 
# cameroon2 extent:  488360.000000 462455.000000 511350.000000 
411620.000000 
# drc extent:        799860.000000 187950.000000 809620.000000 
133080.000000 
# tanzania extent:   392660.000000 9577095.000000 403980.000000 
9532990.000000 
# chad extent:      608480.000000 1529840.000000 637230.000000 
1495780.000000 
# sudan extent:       698415.000000 1458735.000000 714050.000000 
1444050.000000 
 
#New extent (added 500m in all directions)    
#cameroon1 250455.000000 726670.000000 265750.000000
 686500.000000 
#cameroon2 487860.000000 462955.000000 511850.000000
 411120.000000 
#drc 799360.000000 188450.000000 810120.000000
 132580.000000 
#tanzania 392160.000000 9577595.000000 404480.000000
 9532490.000000 
#chad 607980.000000 1530340.000000 637730.000000
 1495280.000000 
#sudan 697915.000000 1459235.000000 714550.000000
 1443550.000000 
EXTENT_cameroon1="250455.000000 726670.000000 265750.000000
 686500.000000" 
EXTENT_cameroon2="487860.000000 462955.000000 511850.000000
 411120.000000" 
EXTENT_drc="799360.000000 188450.000000 810120.000000 
132580.000000" 
EXTENT_tanzania="392160.000000 9577595.000000 404480.000000
 9532490.000000" 
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EXTENT_chad="607980.000000 1530340.000000 637730.000000 
1495280.000000" 
EXTENT_sudan="697915.000000 1459235.000000 714550.000000
 1443550.000000" 
 
# 3. clip the raster file to the boundingbox of the shapefile 
#cd ./f1_layerstack_pre/$sitename 
  #create a for loop for all the .tif files 
  #RASTERFILE=$2 
 
## currently these next three lines are done on ALICE: 
if [ $do_bbclip == 1 ] 
then 
    #cd ./f4_layerstack_pre_group/$sitename 
    echo $site 
    echo $utm 
    echo $site\_srtm_$utm.tif 
    echo EXTENT_$site 
    echo $EXTENT_cameroon1 
  
   for RASTERFILE in $site\_srtm_$utm.tif; 
    do 
      echo $RASTERFILE 
      echo EXTENT_$site 
      echo `basename $RASTERFILE .tif`_bbclip.tif 
      if [ $site == "cameroon1" ]; 
      then 
          gdal_translate -projwin 250455.000000 726670.000000 
265750.000000 686500.000000 -of GTiff $RASTERFILE 
./bbclip/`basename $RASTERFILE .tif`_bbclip.tif 
      fi 
      if [ $site == "cameroon2" ]; 
      then 
          gdal_translate -projwin 487860.000000 462955.000000 
511850.000000 411120.000000 -of GTiff $RASTERFILE 
./bbclip/`basename $RASTERFILE .tif`_bbclip.tif 
      fi 
      if [ $site == "drc" ]; 
      then 
          gdal_translate -projwin 799360.000000 188450.000000 810120.000000 
132580.000000 -of GTiff $RASTERFILE ./bbclip/`basename $RASTERFILE 
.tif`_bbclip.tif 
      fi 
      if [ $site == "tanzania" ]; 
      then 
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          gdal_translate -projwin 392160.000000 9577595.000000 
404480.000000 9532490.000000 -of GTiff $RASTERFILE ./bbclip/`basename 
$RASTERFILE .tif`_bbclip.tif 
      fi 
      if [ $site == "chad" ]; 
      then 
          gdal_translate -projwin 607980.000000 1530340.000000 
637730.000000 1495280.000000 -of GTiff $RASTERFILE ./bbclip/`basename 
$RASTERFILE .tif`_bbclip.tif 
      fi 
      if [ $site == "sudan" ]; 
      then 
          gdal_translate -projwin 697915.000000 1459235.000000 
714550.000000 1443550.000000 -of GTiff $RASTERFILE ./bbclip/`basename 
$RASTERFILE .tif`_bbclip.tif 
      fi 
      #gdal_translate -projwin EXTENT_$site -of GTiff $RASTERFILE 
destination_$site.tif 
      #gdal_translate -projwin 250455.000000 726670.000000 265750.000000
 686500.000000 -of GTiff cameroon1_srtm_utm33N.tif test.tif 
    done 
fi 
 
  # 4. perform polygon clip on the image 
#for file in *_bbclip.tif; 
if [ $do_shpclip == 1 ] 
then 
    cd ./bbclip 
   for RASTERFILE in $site\*_bbclip.tif; 
    #for RASTERFILE in 
Cameroon1_Dry_ASAR_20100411_SLC_0_VVVH_VH_2x4_15m_geocode_res
ampled_bbclip.tif; 
    do 
     gdalwarp -co COMPRESS=DEFLATE -co TILED=YES -of GTiff -r lanczos -
cutline ../shapefiles/$SHPFILE -srcnodata 0 -dstnodata -999 `basename 
$RASTERFILE _bbclip.tif`_bbclip.tif ../shpclip/`basename $RASTERFILE 
_bbclip.tif`_shpclip.tif 
    done 
fi 

 

Script A2.11 do_demcalc_allsites.sh 
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#!/bin/bash 
./demcalc_allsites.sh cameroon1 utm33N 
./demcalc_allsites.sh cameroon2 utm33N 
./demcalc_allsites.sh drc utm35N 
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./demcalc_allsites.sh tanzania utm36S 

./demcalc_allsites.sh chad utm34N 

./demcalc_allsites.sh sudan utm34N 

 

Script A2.12 demcalc_allsites.sh 
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#!/bin/bash 
# demcalc_allsites - calculate elevation, slope and aspect for each site 
# 3 Feb 2014, Bernard Spies 
# these commands are to be run in grass 
# step 1 is to test that it works, if time permits, the bash code can be rewritten 
as a python script 
#this is a program to calculate the slope and aspect from a DEM 
site=$1 
utm=$2 
#site="cameroon1" 
#utm="utm33N" 
 
if [ $site == "cameroon1" ]  
then 
    g.mapset mapset=cameroon1_dry location=cameroon1_dry 
fi 
if [ $site == "cameroon2" ]  
then 
    g.mapset mapset=cameroon1_dry location=cameroon1_dry 
fi 
if [ $site == "drc" ]  
then 
    g.mapset mapset=drc_dry location=drc_dry 
fi 
if [ $site == "tanzania" ]  
then 
    g.mapset mapset=tanzania_dry location=tanzania_dry 
fi 
if [ $site == "chad" ]  
then 
    g.mapset mapset=chad_dry location=chad_dry 
fi 
if [ $site == "sudan" ]  
then 
    g.mapset mapset=chad_dry location=chad_dry 
fi 
 
#site="cameroon2" 
#utm="utm33N" 
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#read in the DEM file 
r.in.gdal -e -k 
input=/home/bernard/sharefolder/A_Data_PhD/A_Alldata/Z_SRTM_UTM/bbc
lip/$site\_srtm_$utm\_bbclip.tif output=dem_$site 
g.region rast=dem_$site 
 
d.mon wx0 #open a display window 
#d.erase #clean current display 
d.rast dem_$site 
 
# --o allow output files to overwrite existing files 
r.slope.aspect elevation=dem_$site slope=$site.slope aspect=$site.aspect 
format=degrees prec=FCELL zfactor=1.0 min_slp_allowed=0.0 --o   
 
#d.rast $site.slope 
#d.rast $site.aspect 
 
#r.slope.aspect elevation=dem_$site slope=$site.slope aspect=$site.aspect 
format=degrees prec=float pcurv=dar.pcurv tcurv=dar.tcurv dx=dar.dx 
dy=dar.dy dxx=dar.dxx dyy=dar.dyy dxy=dar.dxy zfactor=1.0 
min_slp_allowed=0.0 --o   
 
r.mapcalc "$site.slope2 = round($site.slope)" --overwrite 
r.mapcalc "$site.aspect2 = round($site.aspect)" --overwrite 
 
#d.rast $site.slope2 
#d.rast $site.aspect2 
 
 
#r.out.gdal help 
#write the files back to TIF or ENVI format 
#r.out.gdal input=$site.pcurv format=GTiff type=Float32 
output=/home/bspies/hostshare/SRTM/dar_pcurv.tif nodata=-32768 
#r.out.gdal input=dar.tcurv format=GTiff type=Float32 
output=/home/bspies/hostshare/SRTM/dar_tcurv.tif nodata=-32768 
r.out.gdal input=dem_$site format=ENVI type=Int16 
output=/home/bernard/sharefolder/A_Data_PhD/A_Alldata/Z_SRTM_UTM/o
utput/$site\_elevation.dat nodata=-99 --overwrite 
r.out.gdal input=$site.slope2 format=ENVI type=Int16 
output=/home/bernard/sharefolder/A_Data_PhD/A_Alldata/Z_SRTM_UTM/o
utput/$site\_slope.dat nodata=-99 --overwrite 
r.out.gdal input=$site.aspect2 format=ENVI type=Int16 
output=/home/bernard/sharefolder/A_Data_PhD/A_Alldata/Z_SRTM_UTM/o
utput/$site\_aspect.dat nodata=-99 --overwrite 
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Script A2.13 do_srtm_resample.sh 

1 
2 
3 

#!/bin/bash 
# do_srtm_resample.sh 
./srtm_resample.sh 

 

Script A2.14 srtm_resample.sh 

1 
2 
3 
4 
5 
6 
7 
8 
8 
9 

10 
11 

#!/bin/bash 
# srtm_resample.sh 
# program to resample SRTM data to 5x5m to be able to use in the layer stack 
with the SAR data 
 
cd ./output/ 
for filename in *.dat; 
do 
    echo $filename 
    gdalwarp -tr 5 5 -r bilinear -dstnodata -999 -of ENVI -overwrite $filename 
../output_resampled/"`basename $filename .dat`_resampled.dat"  
done 

 

A2.2.4 Calculate additional features layers process flow script 

Script A2.15 do_processflow.sh 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

 
18 
19 

#!/bin/bash 
 
#site='Cameroon1' 
#site='Cameroon2' 
#site='Chad' 
#site='DRC' 
site='Sudan' 
#site='Tanzania' 
 
do_move_files=0 
do_f4b_shpclip=0                      #take the _bbc_clip files and clip them to the 
shapefiles, NN resampling 
#do_f4c_complete_stack_tifs=0          #complete the stack 
#do_g2b_linear_to_db_R=0               #convert from linear to decibels 
#do_g2c_nodata_values=0            #?? is this step really necessary ?? 
do_g2b2_bandcalc=0 
#do_g3a_tif_to_envi=0              #input into grass for tif files did not work, 
therefore convert to ENVI again. 
do_texture_calc=0                #calculate texture in GRASS 
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do_copy_to_largestack_folder=0    #copy all necessary layers to largestack 
folder, and resample to 5m resolution (nearest neighbour) 
do_g3b_envi_virtualstack=1        #create virtualstack 
do_g3c_envi_realstacks=0          #create the realstacks from RF modelling, to 
be used in EnMap 
do_g3c_trainingtest_cutout=0 
 
#add elevation, slope and aspect layers (where/when are they calculated?) 
#move data from d3_separate_tif to f1_layerstack_pre/$site 
if [ $do_move_files == 1 ] && [ $site == "Cameroon1" ]; 
then 
    cd 
/home/bernard/sharefolder/A_Data_PhD/A_Alldata/A_Cameroon1/d3_Sep
arate_tif 
    mv * 
/home/bernard/sharefolder/A_Data_PhD/A_Alldata/step2_after_geocode/
f1_layerstack_pre/Cameroon1 
    cd 
/home/bernard/sharefolder/A_Data_PhD/A_Alldata/step2_after_geocode/ 
fi 
 
#take the _bbc_clip files and clip them to the shapefiles 
# read from (bbclip): ./f1_layerstack_pre/$sitename 
# write to (bbclip): ./f4a_layerstack_pre_group/$site 
# read from (shpclip): ./f4a_layerstack_pre_group/$site 
# writes to (shpclip): ./f4b_layerstack_pre_group_shpclip/$site 
#sitename=$1 
#do_bbcclip=$2   #1=yes, 0=no 
#do_shpclip=$3ge   #1=yes, 0=no 
if [ $do_f4b_shpclip == 1 ]; 
then   
        #./f4b_complete_stack.sh $site 1 0 
        ./f4b_complete_stack_envi.sh $site 1 1 
fi 
 
#complete the stack 
# read from: ./f4b_layerstack_pre_group_shpclip/$site 
# writes to: ./f4b_layerstack_pre_group_shpclip/$site/$site_stack_all.vrt , 
_dry.vrt, _wet.vrt 
 
#if [ $do_f4c_complete_stack_tifs == 1 ]; 
#then 
#        ./f4c_complete_stack_tifs.sh $site 
#fi 
 
#convert from linear to decibels 
# read from: ./f4b_layerstack_pre_group_shpclip/$site/ 
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# write to: ./g1a1_layerstack_utm_db/$site 
#if [ $do_g2b_linear_to_db_R == 1 ]; 
#then 
#      Rscript g2b_linear_to_db_R.R $site UTM linux > 
g2b_linear_to_db_R_UTM_$site.results 
#fi 
# run a histogram to see the values of the data, and decide if the next step 
(converstion to NA values) 
# is necessary or not 
 
# create virtualstack, convert -3.3999999521444e+38 values to 0 / NA 
values 
# read from: ./g1a1_layerstack_utm_db/$sitename 
# write to:  ./g1a2_layerstack_utm_db_NA/$sitename   
#if [ $do_g2c_nodata_values == 1 ]; 
#then 
#      #./g2c_create_virtualstack.sh $site 
#      ./g2c_nodata_values.sh $site 
#fi 
 
# create band ratios, create a new virtual stack 
# read from: g1a1_layerstack_utm_db_NA/$sitename/  (old one) 
# read from ./f4b_layerstack_pre_group_shpclip/$site (new calculations) 
# write to:  g1a1_layerstack_utm_db/$sitename/ 
if [ $do_g2b2_bandcalc == 1 ]; 
then 
        #./g2b2_bandcalc.sh $site 1 1 
        ./g2b2_bandcalc_ENVI.sh $site 1 1 0 S 
        ./g2b2_bandcalc_ENVI.sh $site 0 1 0 G 
        ./g2b2_bandcalc_ENVI.sh $site 0 0 1 S 
        ./g2b2_bandcalc_ENVI.sh $site 0 0 1 G 
fi 
 
## convert .tif to ENVI files 
## read from: ./g1a2_layerstack_utm_db_NA/$sitename 
## write to: ./g3_envi_db/$sitename/ 
#if [ $do_g3a_tif_to_envi == 1 ]; 
#then 
#        ./g3a_tif_to_envi.sh $site 
#fi 
 
 
# Texture calculations, via GRASS GIS 
# read from: ./g3_envi_db/$site 
# write to: ./g4_texture_measures_envi/$site/ 
#site=$1 
#season=$2 
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#do_ringdal=$3 #1=yes, 0=no 
#do_texture=$4 #1=yes, 0=no 
#do_convert_to_int=$5 #1=yes, 0=no 
#do_output=$6 #1=yes, 0=no 
#quick=$7 # quick = 1 for do_converst_to_int, all in one go. quick = 0 to run 
manually step-by-step 
 
if [ $do_texture_calc == 1 ]; 
then 
    #./texture_calc.sh 
    ./texture_calc_take2.sh $site dry 1 1 1 1 1   
    ./texture_calc_take2.sh $site wet 1 1 1 1 1 
fi 
 
# read from: ./g4_texture_measures_envi/$sitename 
# write to: ./g4c_large_stack_resampled/$sitename 
if [ $do_copy_to_largestack_folder == 1 ]; 
then 
    ./g3b_copy_to_largestack_folder.sh $site 
fi 
 
# read from: ./g4c_large_stack/$sitename 
 
if [ $do_g3b_envi_virtualstack == 1 ]; 
then 
    ./g3b_envi_virtualstack.sh $site 
fi 
 
if [ $do_g3c_envi_realstacks == 1 ]; 
then 
    ./g3c_envi_realstacks.sh $site 
fi 
 
if [ $do_g3c_trainingtest_cutout == 1 ]; 
then 
    echo "cutting out training and test data to overlap area" 
    ./g3c_realstacks_trainingtest_cutout.sh $site 0 1  
fi  
 
#g3a_tif_to_envi.sh 
#g3a_tif_to_envi_DRC_specific.sh 
 
    ##g3b_envi_virtualstack.sh 
 
#g3c_envi_realstack.sh 
#texture_calc.sh 
#texture_calc_extra.sh 
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##run_texture_grass.py 
 

 

 

Script A2.16 f4b_complete_stack_envi.sh 

1 
2 

 
3 
4 

 
5 
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11 
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14 
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16 
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20 
21 
22 
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24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

#!/bin/bash 
# bash script program to create a layer stack per site, of the 
overlapping area 
# ideas taken from Tim Sutton's Linfiniti.com blog : 
# http://linfiniti.com/2009/09/clipping-rasters-with-gdal-using-
polygons/ 
 
# 1. create shpfile containing the features you wish to use as a clip 
mask - DONE 
# 2. determine the extent of your clipmask 
# 3. perform a rectangular clip on the image 
# 4. perform a polygon clip on the image 
 
#sitename=$1 
#do_bbcclip=$2   #1=yes, 0=no 
#do_shpclip=$3   #1=yes, 0=no 
 
 
# step big-1: mv the .img files into separate sites 
 
# ideas taken from Tim Sutton's Linfiniti.com blog : 
# http://linfiniti.com/2009/09/clipping-rasters-with-gdal-using-
polygons/ 
 
# Four steps to follow: 
 
# 1. create shpfile containing the features you wish to use as a clip 
mask - DONE 
# 2. determine the extent of your clipmask 
# 3. perform a rectangular clip on the image 
# 4. perform a polygon clip on the image 
 
# 5. my added step: then combine these clipped rasters into a layer 
stack. 
 
# 2. create shapefile extent 
### ==== Run these steps in loops over all the files in the folder, 
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### === then add the final gdalwarp step in the end to create a stack 
for each site 
 
sitename=$1 
do_bbcclip=$2   #1=yes, 0=no 
do_shpclip=$3   #1=yes, 0=no 
 
cd ./f3_layerstack_overlap 
 
SHPFILE=overlap_$1\.shp 
#SHPFILE=overlap_DRC4.shp 
BASE=`basename $SHPFILE .shp` 
EXTENT=`ogrinfo -so $SHPFILE $BASE | grep Extent \ 
| sed 's/Extent: //g' | sed 's/(//g' | sed 's/)//g' \ 
| sed 's/ - /, /g'` 
EXTENT=`echo $EXTENT | awk -F ',' '{print $1 " " $4 " " $3 " " $2}'` 
echo $sitename 
echo $EXTENT 
 
#Obtain Extent from Overlap shapefile 
#cd ./f3_layerstack_overlap 
# 
#SHPFILE=overlap_$1\.shp 
#SHPFILE=overlap_DRC4.shp 
#BASE=`basename $SHPFILE .shp` 
#EXTENT=`ogrinfo -so $SHPFILE $BASE | grep Extent \ 
#| sed 's/Extent: //g' | sed 's/(//g' | sed 's/)//g' \ 
#| sed 's/ - /, /g'` 
#EXTENT=`echo $EXTENT | awk -F ',' '{print $1 " " $4 " " $3 " " $2}'` 
#echo $sitename 
#echo $EXTENT 
 
# DRC3 799999.960133 178576.920543 809620.027194 133059.987578 
# DRC4 800040.027194 178422.457594 809620.027194 133059.987578 
 
# Cameroon1  250955.000000 726170.000000 265250.000000 
687000.000000 
# Cameroon2  488360.000000 462455.000000 511350.000000 
411620.000000 
# Chad       608480.000000 1529840.000000 637230.000000 
1495780.000000 
# DRC        800040.027194 178422.457594 809620.027194 
133059.987578 
# Sudan      698415.000000 1458735.000000 714050.000000 
1444050.000000 
# Tanzania   392660.000000 9577095.000000 403980.000000 
9532990.000000 
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#Bounding-Box clip, Cameroon1 
#if [ $do_bbcclip == 1 ] && [ $sitename == "Cameroon1" ]; then 
#    echo "do_bbcclip" 
#    echo "$site" 
#    cd ./f1_layerstack_pre/$sitename 
#    #cd ./f1_layerstack_pre/DRC_Texture 
#    for RASTERFILE in *.img; 
#       do 
#          gdal_translate -projwin 250955.000000 726170.000000 
265250.000000 687000.000000 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img 
#        done 
#    cd ../../ 
#fi 
 
# back to base directory 
cd .. 
# 3. clip the raster file to the boundingbox of the shapefile 
if [ $do_bbcclip == 1 ] && [ $sitename == "Cameroon1" ]; then 
    echo "do_bbcclip" 
    echo "$site" 
    cd ./f1_layerstack_pre/$sitename 
    #cd ./f1_layerstack_pre/DRC_Texture 
    for RASTERFILE in *.img; 
        do 
        echo 'bbclip processing: ' $RASTERFILE 
          #gdal_translate -projwin 250955.000000 726170.000000 
265250.000000 687000.000000 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img 
          gdal_translate -projwin 250940.000000 726175.000000 
265210.000000 686980.000000 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img #bspies 20150225 outline with TSX 
        done 
    cd ../../ 
fi 
 
if [ $do_bbcclip == 1 ] && [ $sitename == "Cameroon2" ]; then 
    echo "do_bbcclip" 
    echo "$site" 
    cd ./f1_layerstack_pre/$sitename 
    #cd ./f1_layerstack_pre/DRC_Texture 
    for RASTERFILE in *.img; 
        do 
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        echo 'bbclip processing: ' $RASTERFILE 
          gdal_translate -projwin 488360.000000 462455.000000 
511350.000000 411620.000000 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img  
        done 
    cd ../../ 
fi 
 
if [ $do_bbcclip == 1 ] && [ $sitename == "Chad" ]; then 
    echo "do_bbcclip" 
    echo "$site" 
    cd ./f1_layerstack_pre/$sitename 
    #cd ./f1_layerstack_pre/DRC_Texture 
    for RASTERFILE in *.img; 
        do 
        echo 'bbclip processing: ' $RASTERFILE 
          #gdal_translate -projwin 608480.000000 1529840.000000 
637230.000000 1495780.000000 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img 
          gdal_translate -projwin 614183.754502 1518376.961734 
634162.966218 1496430.000000 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img #bspies 20150225 outline with TSX 
        done 
    cd ../../ 
fi 
 
if [ $do_bbcclip == 1 ] && [ $sitename == "DRC" ]; then 
    echo "do_bbcclip" 
    echo "$site" 
    cd ./f1_layerstack_pre/$sitename 
    #cd ./f1_layerstack_pre/DRC_Texture 
    for RASTERFILE in *.img; 
        do 
        echo 'bbclip processing: ' $RASTERFILE 
          #gdal_translate -projwin 800040.027194 178422.457594 
809620.027194 133059.987578 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img 
            #gdal_translate -projwin 799835.000000 181065.000000 
805000.000000 167245.000000 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img #bspies 20150225 outline with TSX 
            gdal_translate -projwin 799835.000000 181065.000000 
819600.459909 133060.000000 -of ENVI $RASTERFILE 
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../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 

.img`_bbclip.img #bspies 20150225 outline with TSX 
        done 
    cd ../../ 
fi 
 
if [ $do_bbcclip == 1 ] && [ $sitename == "Sudan" ]; then 
    echo "do_bbcclip" 
    echo "$site" 
    cd ./f1_layerstack_pre/$sitename 
    #cd ./f1_layerstack_pre/DRC_Texture 
    for RASTERFILE in *.img; 
        do 
        echo 'bbclip processing: ' $RASTERFILE 
 
          #gdal_translate -projwin 698415.000000 1458735.000000 
714050.000000 1444050.000000 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img 
          gdal_translate -projwin 698315.000000 1456355.125502 
713572.614335 1444010.000000 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img  #bspies 20150225 outline with TSX 
        done 
    cd ../../ 
fi 
 
if [ $do_bbcclip == 1 ] && [ $sitename == "Tanzania" ]; then 
    echo "do_bbcclip" 
    echo "$site" 
    cd ./f1_layerstack_pre/$sitename 
    #cd ./f1_layerstack_pre/DRC_Texture 
    for RASTERFILE in *.img; 
        do 
        echo 'bbclip processing: ' $RASTERFILE 
#          gdal_translate -projwin 392660.000000 9577095.000000 
403980.000000 9532990.000000 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img 
          gdal_translate -projwin 390720.000000 9577710.000000 
403890.000000 9532185.000000 -of ENVI $RASTERFILE 
../../f4a_layerstack_pre_group/$sitename/`basename $RASTERFILE 
.img`_bbclip.img 
        done 
    cd ../../ 
fi 
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##cd ./f1_layerstack_pre/$sitename 
  #create a for loop for all the .img files 
  #RASTERFILE=$2 
 
## currently these next three lines are done on ALICE: 
#   echo "cutting to extent" 
#cd ../../ 
 
  # 4. perform polygon clip on the image 
#for file in *_bbclip.img; 
if [ $do_shpclip == 1 ]; then 
    echo 'do_shpclip' 
    echo ./f4a_layerstack_pre_group/$sitename 
    cd ./f4a_layerstack_pre_group/$sitename 
 
    for RASTERFILE in *_bbclip.img; 
#for RASTERFILE in 
Cameroon1_Dry_ASAR_20100411_SLC_0_VVVH_VH_2x4_15m_geocod
e_resampled_bbclip.img; 
#for RASTERFILE in sigma0_hh_db_output_bbclip.img; 
    do 
         #.tif version 
       #gdalwarp -co COMPRESS=DEFLATE -co TILED=YES -of ENVI -r near -
cutline ../../f3_layerstack_overlap/$SHPFILE -srcnodata 0 -dstnodata 0 
`basename $RASTERFILE _bbclip.img`_bbclip.img 
../../f4b_layerstack_pre_group_shpclip/$sitename/`basename 
$RASTERFILE _bbclip.img`_shpclip.img 
       echo 'shpclip processing: ' $RASTERFILE 
       #.envi version 
       gdalwarp -of ENVI -r near -cutline 
../../f3_layerstack_overlap/$SHPFILE -srcnodata 0 -dstnodata 0 
`basename $RASTERFILE _bbclip.img`_bbclip.img 
../../f4b_layerstack_pre_group_shpclip/$sitename/`basename 
$RASTERFILE _bbclip.img`_shpclip.img 
    done 
fi 
 
#echo 'made this line1' 
##echo  
##echo "SHPFILE: $SHPFILE" 
##echo "RASTERFILE: $RASTERFILE" 
#echo  
 
##echo `basename $RASTERFILE .img`_bbclip.img 
##echo `basename $RASTERFILE .img`_shpclip.img 
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##gdalwarp -of ENVI -r lanczos -cutline 
../f3_layerstack_overlap/$SHPFILE /tmp/`basename $RASTERFILE 
.img`_bbclip.img ../g_layerstack/`basename $RASTERFILE 
.img`_shpclip.img 
##echo 'made this line2' 
 
#  # step big-2: create layer stack of overlap between the tif files, using 
the shapefile intersect from step f3 
# 
#  #for file in ./d_Separate_tif_test/* 
#  #do 
#  #  gdal_merge.py -o ./e_layerstack/layerstack3files.img -of ENVI -ps 5 
5 -tap -#separate -n 0 a_nodata 0   
##done 
 
#========================================================# 
# used in presentation: 
#if [ $do_shpclip == 1 ]; then 
#    echo 'do_shpclip' 
#    cd ./f4a_layerstack_pre_group/$sitename 
# 
#    for RASTERFILE in *_bbclip.img; 
#    do   
#        gdalwarp -of ENVI -r near -cutline 
../../f3_layerstack_overlap/$SHPFILE -srcnodata 0 -dstnodata 0 
`basename $RASTERFILE _bbclip.img`_bbclip.img 
../../f4b_layerstack_pre_group_shpclip/$sitename/`basename 
$RASTERFILE _bbclip.img`_shpclip.img 
#    done 
#fi 

 

Script A2.17 g2b2_bandcalc_ENVI.sh 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

#!/bin/bash 
# program to use gdal_calc.py to do band ratios and calculations 
sitename=$1 
convert_TSX=$2 
linear_to_db=$3 
other_calculations=$4 
geocodeGS=$5   #geocodeG or geocodeS 
echo $1 
echo $2 
echo $3 
echo $4 
echo $5 
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29 
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31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

 
 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

#cd g1a2_layerstack_utm_db_NA/$sitename/ 
#cd g1a1_layerstack_utm_db/$sitename/ 
cd f4b_layerstack_pre_group_shpclip/$sitename/ 
 
if [ ! -d "./process/" ]  
then 
    mkdir process 
fi 
 
if [ ! -d "./process_geocodeG/" ]  
then 
    mkdir process_geocodeG 
fi 
 
if [ ! -d "./process_geocodeS/" ]  
then 
    mkdir process_geocodeS 
fi 
 
if [ ! -d "./tsx_dB_extra/" ]  
then 
    mkdir tsx_dB_extra 
fi 
 
if [[ $sitename == "Chad" && $convert_TSX == 1 ]]; 
then 
    mv *TSX*.img ./tsx_dB_extra/ 
    mv *TSX*.hdr ./tsx_dB_extra/ 
    mv *TSX*.img.aux.xml ./tsx_dB_extra/ 
 
    cd ./tsx_dB_extra/ 
    for file in *.img; 
        do 
            echo " processing `basename $file .img`_dB.img" 
            gdal_calc.py -A $file --outfile=../"`basename $file 
_shpclip.img`_linear_shpclip.img" --calc="exp((A/10))" --format='ENVI' -
-NoDataValue=0 --overwrite 
        done 
    cd .. 
fi 
 
if [[ $sitename == "DRC" && $convert_TSX == 1 ]]; 
then 
    mv *TSX*.img ./tsx_dB_extra/ 
    mv *TSX*.hdr ./tsx_dB_extra/ 
    mv *TSX*.img.aux.xml ./tsx_dB_extra/ 
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    cd ./tsx_dB_extra/ 
    for file in *.img; 
        do 
            echo " processing `basename $file .img`_dB.img" 
            gdal_calc.py -A $file --outfile=../"`basename $file 
_shpclip.img`_linear_shpclip.img" --calc="exp((A/10))" --format='ENVI' -
-NoDataValue=0 --overwrite 
        done 
    cd .. 
fi 
 
if [[ $sitename == "Sudan" && $convert_TSX == 1 ]]; 
then 
    mv *TSX*.img ./tsx_dB_extra/ 
    mv *TSX*.hdr ./tsx_dB_extra/ 
    mv *TSX*.img.aux.xml ./tsx_dB_extra/ 
    cd ./tsx_dB_extra/ 
 
    for file in *.img; 
        do 
            echo " processing `basename $file .img`_dB.img" 
            gdal_calc.py -A $file --outfile=../"`basename $file 
_shpclip.img`_linear_shpclip.img" --calc="exp((A/10))" --format='ENVI' -
-NoDataValue=0 --overwrite 
        done 
    cd .. 
fi 
 
 
if [ ! -f ./$site/process_geocodeG/*_geocodeG*.img ];  
#if [ -f *_geocodeG*.img ];  
then 
    echo "moving geocodeG files" 
    mv *_geocodeG*.img ./process_geocodeG/ 
    mv *_geocodeG*.hdr ./process_geocodeG/ 
    mv *_geocodeG*.img.aux.xml ./process_geocodeG/ 
fi 
 
if [ ! -f ./$site/process_geocodeS/*_geocodeS*.img ];  
#if [ -f "*_geocodeS*.img" ];  
then 
    echo "moving geocodeS files" 
    mv *_geocodeS*.img ./process_geocodeS/ 
    mv *_geocodeS*.hdr ./process_geocodeS/ 
    mv *_geocodeS*.img.aux.xml ./process_geocodeS/ 
fi 
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#linear to db conversion - geocodeS 
#Cameroon1 
if [[ $linear_to_db == 1 && "$geocodeGS" == "S" ]]; 
then 
        cd ./process_geocodeS 
        for file in *.img; 
        do 
            echo " processing `basename $file .img`_dB.img" 
            gdal_calc.py -A $file --outfile=../process/"`basename $file 
.img`_dB.img" --calc="10*log10(A)" --format='ENVI' --NoDataValue=0 --
overwrite 
        done 
        echo "moving files to main folder:" 
        mv ../process/* ../../../g1a1_layerstack_utm_db/$sitename 
    cd .. 
fi 
 
#linear to db conversion - geocodeG 
#Cameroon1 
if [[ $linear_to_db == 1 && "$geocodeGS" == "G" ]]; 
then 
        cd ./process_geocodeG 
        for file in *.img; 
        do 
            echo " processing `basename $file .img`_dB.img" 
            gdal_calc.py -A $file --outfile=../process/"`basename $file 
.img`_dB.img" --calc="10*log10(A)" --format='ENVI' --NoDataValue=0 --
overwrite 
        done 
        echo "moving files to main folder:" 
        mv ../process/* ../../../g1a1_layerstack_utm_db/$sitename 
    cd .. 
fi 
    
#other calculations - geocodeS 
if [[ $other_calculations == 1 && "$geocodeGS" == "S" ]]; 
then 
    cd ./process_geocodeS 
 
    for file1 in *.img; 
    do 
      for file2 in *.img; 
          do 
          ##===============check1 for file1 =====================# 
          if [ "$sitename" == "Cameroon1" ]  
          then 
               #echo "" 
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               #echo $sitename 
               #echo "" 
               if [[ "${file1:14:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:9:19}" 
                   check1=${file1:9:19} 
               elif [[ "${file1:14:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
                   #echo "check1 for PALSAR: ${file1:9:21}" 
                   check1=${file1:9:21} 
               elif [[ "${file1:14:3}" == "TSX" ]] 
               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:9:18}" 
                   check1=${file1:9:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "Cameroon2" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file1:14:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:9:19}" 
                   check1=${file1:9:19} 
               elif [[ "${file1:14:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
                   #echo "check1 for PALSAR: ${file1:9:21}" 
                   check1=${file1:9:21} 
               elif [[ "${file1:14:3}" == "TSX" ]] 
               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:9:18}" 
                   check1=${file1:9:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
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          if [ "$sitename" == "Chad" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file1:9:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:4:19}" 
                   check1=${file1:4:19} 
               elif [[ "${file1:9:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
                   #echo "check1 for PALSAR: ${file1:4:21}" 
                   check1=${file1:4:21} 
               elif [[ "${file1:9:3}" == "TSX" ]] 
               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:4:18}" 
                   check1=${file1:4:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "DRC" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file1:8:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:3:19}" 
                   check1=${file1:3:19} 
               elif [[ "${file1:8:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
                   #echo "check1 for PALSAR: ${file1:3:21}" 
                   check1=${file1:3:21} 
               elif [[ "${file1:8:3}" == "TSX" ]] 
               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:3:18}" 
                   check1=${file1:3:18} 
               else 
                   echo "something is not right: $sitename" 
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               fi           
          fi 
 
          if [ "$sitename" == "Sudan" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file1:10:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:5:19}" 
                   check1=${file1:5:19} 
               elif [[ "${file1:10:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
                   #echo "check1 for PALSAR: ${file1:5:21}" 
                   check1=${file1:5:21} 
               elif [[ "${file1:10:3}" == "TSX" ]] 
               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:5:18}" 
                   check1=${file1:5:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "Tanzania" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file1:13:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:8:19}" 
                   check1=${file1:8:19} 
               elif [[ "${file1:13:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
                   #echo "check1 for PALSAR: ${file1:8:21}" 
                   check1=${file1:8:21} 
               elif [[ "${file1:13:3}" == "TSX" ]] 
               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:8:18}" 
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                   check1=${file1:8:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          ##===============check2 for file2 ====================# 
          if [ "$sitename" == "Cameroon1" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file2:14:3}" == "ASA" ]] 
               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:9:19}" 
                   check2=${file2:9:19} 
               elif [[ "${file2:14:3}" == "PAL" ]] 
               then 
                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:9:21}" 
                   check2=${file2:9:21} 
               elif [[ "${file2:14:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:9:18}" 
                   check2=${file2:9:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "Cameroon2" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file2:14:3}" == "ASA" ]] 
               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:9:19}" 
                   check2=${file2:9:19} 
               elif [[ "${file2:14:3}" == "PAL" ]] 
               then 
                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:9:21}" 
                   check2=${file2:9:21} 
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               elif [[ "${file2:14:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:9:18}" 
                   check2=${file2:9:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
           
          if [ "$sitename" == "Chad" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file2:9:3}" == "ASA" ]] 
               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:4:19}" 
                   check2=${file2:4:19} 
               elif [[ "${file2:9:3}" == "PAL" ]] 
               then 
                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:4:21}" 
                   check2=${file2:4:21} 
               elif [[ "${file2:9:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:4:18}" 
                   check2=${file2:4:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "DRC" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file2:8:3}" == "ASA" ]] 
               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:3:19}" 
                   check2=${file2:3:19} 
               elif [[ "${file2:8:3}" == "PAL" ]] 
               then 
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                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:3:21}" 
                   check2=${file2:3:21} 
               elif [[ "${file2:8:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:3:18}" 
                   check2=${file2:3:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "Sudan" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file2:10:3}" == "ASA" ]] 
               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:5:19}" 
                   check2=${file2:5:19} 
               elif [[ "${file2:10:3}" == "PAL" ]] 
               then 
                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:5:21}" 
                   check2=${file2:5:21} 
               elif [[ "${file2:10:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:5:18}" 
                   check2=${file2:5:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "Tanzania" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file2:13:3}" == "ASA" ]] 
               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:8:19}" 
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                   check2=${file2:8:19} 
               elif [[ "${file2:13:3}" == "PAL" ]] 
               then 
                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:8:21}" 
                   check2=${file2:8:21} 
               elif [[ "${file2:13:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:8:18}" 
                   check2=${file2:8:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
 
          # HHVV - DualPol 
          if [[ "$file1" == *HHVV_HH_* ]] && [[ "$file2" == *HHVV_VV_* ]] 
&& [[ "$check1" == "$check2" ]] 
          then 
            echo "HHVV_HH:       $file1" 
            echo "HHVV_VV:       $file2" 
            echo "check1:        $check1"   #check images are the same date 
            echo "check2:        $check2"   #check images are the same date 
           
            echo " processing `basename $file1 .img`_HHdivVV_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHdivVV_linear.img" --calc="A/B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHminVV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHminVV_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHplusVV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHplusVV_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVdivHH_rdB.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHH_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_VVdivHH_copol_gamma.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHH_copol_gamma.img" --
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calc="(10*log10(B))/(10*log10(A))" --NoDataValue=0 --format='ENVI' --
overwrite 
            echo " processing `basename $file1 
.img`_VVdivHHpVV_depol_delta.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHHpVV_depol_delta.img" --
calc="(10*log10(B))/((10*log10(A))+(10*log10(B)))" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_HHmVVdivHHpVV_NDI.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHmVVdivHHpVV_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
          fi 
 
          # VVVH - DualPol 
          if [[ "$file1" == *VVVH_VV_* ]] && [[ "$file2" == *VVVH_VH_* ]] 
&& [[ "$check1" == "$check2" ]] 
          then 
            echo "VVVH_VV:       $file1" 
            echo "VVVH_VH:       $file2" 
            echo "check1:        $check1" 
            echo "check2:        $check2" 
            #echo "file1 string 1to25:  ${file1:0:25}" 
            #echo "file2 string 1to25:  ${file2:0:25}" 
 
            echo " processing `basename $file1 .img`_VHdivVV_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VHdivVV_linear.img" --calc="B/A" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVminVH_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVminVH_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVplusVH_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVplusVH_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VHdivVV_rdB.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VHdivVV_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_VVmVHdivVVpVH_NDI.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVmVHdivVVpVH_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
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          fi 
 
          #HHHV- DualPol 
          if [[ "$file1" == *HHHV_HH_* ]] && [[ "$file2" == *HHHV_HV_* ]] 
&& [[ "$check1" == "$check2" ]] 
          then 
            echo "HHHV_HH:       $file1" 
            echo "HHHV_HV:       $file2" 
            echo "check1:        $check1" 
            echo "check2:        $check2" 
            #echo "file1 string 1to25:  ${file1:0:25}" 
            #echo "file2 string 1to25:  ${file2:0:25}" 
 
            echo " processing `basename $file1 .img`_HVdivHH_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HVdivHH_linear.img" --calc="B/A" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHminHV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHminHV_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHplusHV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHplusHV_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HVdivHH_rdB.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HVdivHH_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_HHmHVdivHHpHV_NDI.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHmHVdivHHpHV_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
          fi 
 
          #HHHV - QuadPol 
          if [[ "$file1" == *Quad_HH_* ]] && [[ "$file2" == *Quad_HV_* ]] 
&& [[ "$check1" == "$check2" ]] 
          then 
            echo "Quad_HH:       $file1" 
            echo "Quad_HV:       $file2" 
            echo "check1:        $check1" 
            echo "check2:        $check2" 
            #echo "file1 string 1to25:  ${file1:0:25}" 
            #echo "file2 string 1to25:  ${file2:0:25}" 
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            echo " processing `basename $file1 .img`_HVdivHH_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HVdivHH_linear.img" --calc="B/A" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHminHV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHminHV_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHplusHV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHplusHV_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HVdivHH_rdB.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HVdivHH_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_HHmHVdivHHpHV_NDI.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHmHVdivHHpHV_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
          fi 
 
          #VVVH - QuadPol 
          if [[ "$file1" == *Quad_VV_* ]] && [[ "$file2" == *Quad_VH_* ]] 
&& [[ "$check1" == "$check2" ]] 
          then 
            echo "Quad_VV:       $file1" 
            echo "Quad_VH:       $file2" 
            echo "check1:        $check1" 
            echo "check2:        $check2" 
            #echo "file1 string 1to25:  ${file1:0:25}" 
            #echo "file2 string 1to25:  ${file2:0:25}" 
 
            echo " processing `basename $file1 .img`_VHdivVV_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivVH_linear.img" --calc="B/A" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVminVH_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVminVH_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVplusVH_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVplusVH_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VHdivVV_rdB.img"  
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            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VHdivVV_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_VVmVHdivVVpVH_NDI.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVmVHdivVVpVH_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
          fi 
 
          #HHVV - QuadPol 
          if [[ "$file1" == *Quad_HH_* ]] && [[ "$file2" == *Quad_VV_* ]] 
&& [[ "$check1" == "$check2" ]] 
          then 
            echo "Quad_HH:       $file1" 
            echo "Quad_VV:       $file2" 
            echo "check1:        $check1" 
            echo "check2:        $check2" 
            #echo "file1 string 1to25:  ${file1:0:25}" 
            #echo "file2 string 1to25:  ${file2:0:25}" 
 
            echo " processing `basename $file1 .img`_HHdivVV_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHdivVV_linear.img" --calc="A/B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHminVV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHminVV_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHplusVV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHplusVV_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVdivHH_rdB.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHH_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_VVdivHH_copol_gamma.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHH_copol_gamma.img" --
calc="(10*log10(B))/(10*log10(A))" --NoDataValue=0 --format='ENVI' --
overwrite 
            echo " processing `basename $file1 
.img`_VVdivHHpVV_depol_delta.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHHpVV_depol_delta.img" --



354 

 

 
 
 

582 
 

583 
 
 

584 
585 
586 
587 
588 
589 
590 
591 
592 
593 
594 
595 
596 
597 
598 
599 
600 
601 
602 
603 
604 
605 
606 
607 
608 
609 
610 
611 
612 
613 
614 
615 
616 
617 
618 
619 
620 
621 
622 

calc="(10*log10(B))/((10*log10(A))+(10*log10(B)))" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_HHmVVdivHHpVV_NDI.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHmVVdivHHpVV_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
          fi 
       done #for file2 
    done #for file1 
 
echo "moving files to main folder:" 
#mv ../process/* ./ 
mv ../process/* ../../../g1a1_layerstack_utm_db/$sitename 
cd .. 
 
fi # if other_calculations - geocodeS 
 
#======================================================# 
#other calculations - geocodeS 
if [[ $other_calculations == 1 && "$geocodeGS" == "G" ]]; 
then 
    cd ./process_geocodeG 
    for file1 in *.img; 
    do 
      for file2 in *.img; 
          do 
          ##===========check1 for file1 =========================# 
          if [ "$sitename" == "Cameroon1" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file1:14:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:9:19}" 
                   check1=${file1:9:19} 
               elif [[ "${file1:14:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
                   #echo "check1 for PALSAR: ${file1:9:21}" 
                   check1=${file1:9:21} 
               elif [[ "${file1:14:3}" == "TSX" ]] 
               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:9:18}" 
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                   check1=${file1:9:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "Cameroon2" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file1:14:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:9:19}" 
                   check1=${file1:9:19} 
               elif [[ "${file1:14:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
                   #echo "check1 for PALSAR: ${file1:9:21}" 
                   check1=${file1:9:21} 
               elif [[ "${file1:14:3}" == "TSX" ]] 
               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:9:18}" 
                   check1=${file1:9:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
           
          if [ "$sitename" == "Chad" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file1:9:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:4:19}" 
                   check1=${file1:4:19} 
               elif [[ "${file1:9:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
                   #echo "check1 for PALSAR: ${file1:4:21}" 
                   check1=${file1:4:21} 
               elif [[ "${file1:9:3}" == "TSX" ]] 
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               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:4:18}" 
                   check1=${file1:4:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "DRC" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file1:8:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:3:19}" 
                   check1=${file1:3:19} 
               elif [[ "${file1:8:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
                   #echo "check1 for PALSAR: ${file1:3:21}" 
                   check1=${file1:3:21} 
               elif [[ "${file1:8:3}" == "TSX" ]] 
               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:3:18}" 
                   check1=${file1:3:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "Sudan" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file1:10:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:5:19}" 
                   check1=${file1:5:19} 
               elif [[ "${file1:10:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
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                   #echo "check1 for PALSAR: ${file1:5:21}" 
                   check1=${file1:5:21} 
               elif [[ "${file1:10:3}" == "TSX" ]] 
               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:5:18}" 
                   check1=${file1:5:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "Tanzania" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file1:13:3}" == "ASA" ]] 
               then 
                   #echo "file1 for ASAR:  $file1" 
                   #echo "check1 for ASAR: ${file1:8:19}" 
                   check1=${file1:8:19} 
               elif [[ "${file1:13:3}" == "PAL" ]] 
               then 
                   #echo "file1 for PALSAR:  $file1" 
                   #echo "check1 for PALSAR: ${file1:8:21}" 
                   check1=${file1:8:21} 
               elif [[ "${file1:13:3}" == "TSX" ]] 
               then 
                   #echo "file1 for TSX:  $file1" 
                   #echo "check1 for TSX: ${file1:8:18}" 
                   check1=${file1:8:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          ##================check2 for file2 ==============# 
          if [ "$sitename" == "Cameroon1" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file2:14:3}" == "ASA" ]] 
               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:9:19}" 
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                   check2=${file2:9:19} 
               elif [[ "${file2:14:3}" == "PAL" ]] 
               then 
                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:9:21}" 
                   check2=${file2:9:21} 
               elif [[ "${file2:14:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:9:18}" 
                   check2=${file2:9:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "Cameroon2" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file2:14:3}" == "ASA" ]] 
               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:9:19}" 
                   check2=${file2:9:19} 
               elif [[ "${file2:14:3}" == "PAL" ]] 
               then 
                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:9:21}" 
                   check2=${file2:9:21} 
               elif [[ "${file2:14:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:9:18}" 
                   check2=${file2:9:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
           
          if [ "$sitename" == "Chad" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file2:9:3}" == "ASA" ]] 
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               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:4:19}" 
                   check2=${file2:4:19} 
               elif [[ "${file2:9:3}" == "PAL" ]] 
               then 
                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:4:21}" 
                   check2=${file2:4:21} 
               elif [[ "${file2:9:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:4:18}" 
                   check2=${file2:4:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "DRC" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file2:8:3}" == "ASA" ]] 
               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:3:19}" 
                   check2=${file2:3:19} 
               elif [[ "${file2:8:3}" == "PAL" ]] 
               then 
                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:3:21}" 
                   check2=${file2:3:21} 
               elif [[ "${file2:8:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:3:18}" 
                   check2=${file2:3:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
          if [ "$sitename" == "Sudan" ]  
          then 
               #echo "" 
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               #echo $sitename 
               #echo "" 
               if [[ "${file2:10:3}" == "ASA" ]] 
               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:5:19}" 
                   check2=${file2:5:19} 
               elif [[ "${file2:10:3}" == "PAL" ]] 
               then 
                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:5:21}" 
                   check2=${file2:5:21} 
               elif [[ "${file2:10:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:5:18}" 
                   check2=${file2:5:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
 
 
          if [ "$sitename" == "Tanzania" ]  
          then 
               #echo "" 
               #echo $sitename 
               #echo "" 
               if [[ "${file2:13:3}" == "ASA" ]] 
               then 
                   #echo "file2 for ASAR:  $file2" 
                   #echo "check2 for ASAR: ${file2:8:19}" 
                   check2=${file2:8:19} 
               elif [[ "${file2:13:3}" == "PAL" ]] 
               then 
                   #echo "file2 for PALSAR:  $file2" 
                   #echo "check2 for PALSAR: ${file2:8:21}" 
                   check2=${file2:8:21} 
               elif [[ "${file2:13:3}" == "TSX" ]] 
               then 
                   #echo "file2 for TSX:  $file2" 
                   #echo "check2 for TSX: ${file2:8:18}" 
                   check2=${file2:8:18} 
               else 
                   echo "something is not right: $sitename" 
               fi           
          fi 
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          # HHVV - DualPol 
          if [[ "$file1" == *HHVV_HH_* ]] && [[ "$file2" == *HHVV_VV_* ]] 
&& [[ "$check1" == "$check2" ]] 
          then 
            echo "HHVV_HH:       $file1" 
            echo "HHVV_VV:       $file2" 
            echo "check1:        $check1"   #check images are the same date 
            echo "check2:        $check2"   #check images are the same date 
            echo " processing `basename $file1 .img`_HHdivVV_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHdivVV_linear.img" --calc="A/B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHminVV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHminVV_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHplusVV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHplusVV_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVdivHH_rdB.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHH_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_VVdivHH_copol_gamma.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHH_copol_gamma.img" --
calc="(10*log10(B))/(10*log10(A))" --NoDataValue=0 --format='ENVI' --
overwrite 
            echo " processing `basename $file1 
.img`_VVdivHHpVV_depol_delta.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHHpVV_depol_delta.img" --
calc="(10*log10(B))/((10*log10(A))+(10*log10(B)))" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_HHmVVdivHHpVV_NDI.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHmVVdivHHpVV_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
          fi 
 
          # VVVH - DualPol 
          if [[ "$file1" == *VVVH_VV_* ]] && [[ "$file2" == *VVVH_VH_* ]] 
&& [[ "$check1" == "$check2" ]] 



362 

 

 
931 
932 
933 
934 
935 
936 
937 
938 
939 
940 

 
 

941 
942 

 
 

943 
944 

 
 

945 
946 

 
 

947 
 

948 
 
 

949 
950 
951 
952 

 
953 
954 
955 
956 
957 
958 
959 
960 
961 
962 

 
 

          then 
            echo "VVVH_VV:       $file1" 
            echo "VVVH_VH:       $file2" 
            echo "check1:        $check1" 
            echo "check2:        $check2" 
            #echo "file1 string 1to25:  ${file1:0:25}" 
            #echo "file2 string 1to25:  ${file2:0:25}" 
 
            echo " processing `basename $file1 .img`_VHdivVV_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VHdivVV_linear.img" --calc="B/A" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVminVH_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVminVH_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVplusVH_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVplusVH_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VHdivVV_rdB.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VHdivVV_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_VVmVHdivVVpVH_NDI.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVmVHdivVVpVH_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
          fi 
 
          #HHHV- DualPol 
          if [[ "$file1" == *HHHV_HH_* ]] && [[ "$file2" == *HHHV_HV_* ]] 
&& [[ "$check1" == "$check2" ]] 
          then 
            echo "HHHV_HH:       $file1" 
            echo "HHHV_HV:       $file2" 
            echo "check1:        $check1" 
            echo "check2:        $check2" 
            #echo "file1 string 1to25:  ${file1:0:25}" 
            #echo "file2 string 1to25:  ${file2:0:25}" 
 
            echo " processing `basename $file1 .img`_HVdivHH_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HVdivHH_linear.img" --calc="B/A" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHminHV_linear.img"  
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            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHminHV_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHplusHV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHplusHV_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HVdivHH_rdB.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HVdivHH_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_HHmHVdivHHpHV_NDI.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHmHVdivHHpHV_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
          fi 
 
          #HHHV - QuadPol 
          if [[ "$file1" == *Quad_HH_* ]] && [[ "$file2" == *Quad_HV_* ]] 
&& [[ "$check1" == "$check2" ]] 
          then 
            echo "Quad_HH:       $file1" 
            echo "Quad_HV:       $file2" 
            echo "check1:        $check1" 
            echo "check2:        $check2" 
            #echo "file1 string 1to25:  ${file1:0:25}" 
            #echo "file2 string 1to25:  ${file2:0:25}" 
 
            echo " processing `basename $file1 .img`_HVdivHH_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HVdivHH_linear.img" --calc="B/A" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHminHV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHminHV_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHplusHV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHplusHV_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HVdivHH_rdB.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HVdivHH_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_HHmHVdivHHpHV_NDI.img"  
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            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHmHVdivHHpHV_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
          fi 
 
          #VVVH - QuadPol 
          if [[ "$file1" == *Quad_VV_* ]] && [[ "$file2" == *Quad_VH_* ]] 
&& [[ "$check1" == "$check2" ]] 
          then 
            echo "Quad_VV:       $file1" 
            echo "Quad_VH:       $file2" 
            echo "check1:        $check1" 
            echo "check2:        $check2" 
            #echo "file1 string 1to25:  ${file1:0:25}" 
            #echo "file2 string 1to25:  ${file2:0:25}" 
 
            echo " processing `basename $file1 .img`_VHdivVV_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivVH_linear.img" --calc="B/A" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVminVH_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVminVH_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVplusVH_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVplusVH_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VHdivVV_rdB.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VHdivVV_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_VVmVHdivVVpVH_NDI.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVmVHdivVVpVH_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
          fi 
 
          #HHVV - QuadPol 
          if [[ "$file1" == *Quad_HH_* ]] && [[ "$file2" == *Quad_VV_* ]] 
&& [[ "$check1" == "$check2" ]] 
          then 
            echo "Quad_HH:       $file1" 
            echo "Quad_VV:       $file2" 
            echo "check1:        $check1" 
            echo "check2:        $check2" 
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            #echo "file1 string 1to25:  ${file1:0:25}" 
            #echo "file2 string 1to25:  ${file2:0:25}" 
 
            echo " processing `basename $file1 .img`_HHdivVV_linear.img" 
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHdivVV_linear.img" --calc="A/B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHminVV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHminVV_linear.img" --calc="A-B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_HHplusVV_linear.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHplusVV_linear.img" --calc="A+B" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 .img`_VVdivHH_rdB.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHH_rdB.img" --calc="10*(log10((B*B)/(A*A)))" --
NoDataValue=0 --format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_VVdivHH_copol_gamma.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHH_copol_gamma.img" --
calc="(10*log10(B))/(10*log10(A))" --NoDataValue=0 --format='ENVI' --
overwrite 
            echo " processing `basename $file1 
.img`_VVdivHHpVV_depol_delta.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_VVdivHHpVV_depol_delta.img" --
calc="(10*log10(B))/((10*log10(A))+(10*log10(B)))" --NoDataValue=0 --
format='ENVI' --overwrite 
            echo " processing `basename $file1 
.img`_HHmVVdivHHpVV_NDI.img"  
            gdal_calc.py -A $file1 -B $file2 --outfile=../process/"`basename 
$file1 .img`_HHmVVdivHHpVV_NDI.img" --calc="(A-B)/(A+B)" --
NoDataValue=0 --format='ENVI' --overwrite 
          fi 
       done #for file2 
    done #for file1 
 
echo "moving files to main folder:" 
#mv ../process/* ./ 
mv ../process/* ../../../g1a1_layerstack_utm_db/$sitename 
cd .. 
 
fi # if other_calculations - geocodeG 
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#move all the files to the g3_envi_db_folder 
cd ../../ 
mv ./g1a1_layerstack_utm_db/$sitename/* ./g3_envi_db/$sitename/ 
#mv ./g1a1_layerstack_utm_db/Cameroon1/* 
./g3_envi_db/Cameroon1/ 
 
##====================================================# 
## create a virual stack with the newly calculate (HH+HV, HH-HV, 
HH/HV) images included  
##====================================================# 
# 
##create a list of filenames with all image files 
#for file in *.img; 
#do 
#    echo $file >> listofnames_all_with_calc_bands.txt 
#done 
##create a list of filenames with all the Dry image files 
#for file in *_Dry_*.img; 
#do 
#    echo $file >> listofnames_dry_with_calc_bands.txt 
#done 
##create a list of filenames with all the Wet image files 
#for file in *_Wet_*.img; 
#do 
#    echo $file >> listofnames_wet_with_calc_bands.txt 
#done 
 
#build the virtual stacks for all, dry and wet sets of images 
#echo "Building virtual stack of all images with calculated bands" 
#gdalbuildvrt -tr 5 5 -tap -srcnodata 0 -vrtnodata 0 -separate -
input_file_list listofnames_all_with_calc_bands.txt -overwrite 
$sitename\_utm_db_stack_all_calc.vrt 
#echo "Building virtual stack of dry images with calculated bands" 
#gdalbuildvrt -tr 5 5 -tap -srcnodata 0 -vrtnodata 0 -separate -
input_file_list listofnames_dry_with_calc_bands.txt -overwrite 
$sitename\_utm_db_stack_dry_calc.vrt 
#echo "Building virtual stack of wet images with calculated bands" 
#gdalbuildvrt -tr 5 5 -tap -srcnodata 0 -vrtnodata 0 -separate -
input_file_list listofnames_wet_with_calc_bands.txt -overwrite 
$sitename\_utm_db_stack_wet_calc.vrt 
#echo "done" 
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First start GRASS with $ grass70. Then run Script 2.18 from inside GRASS. Create a location for 

each site, with the corresponding UTM zone. 

 

Script A2.18 texture_calc_take2.sh 

1 
2 

 
3 
4 
5 
6 

 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

 
17 
18 
19 
20 
21 
22 
23 
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28 
29 
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33 
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37 

#!/bin/bash 
# texture_calc_take2.sh - new approach to use correct spatial resolution 
for each sensor 
# 6 February 2014, Bernard Spies 
# new edition: 7 August 2014 
 
# note input raster map needs to be mapped to 0 to 255 for input to 
r.texture: changed to 1 to 64 
# first step is to run grass70 in the terminal 
# open correct location - cameroon1_dry for cameroon 
 
site=$1 
season=$2 
do_ringdal=$3 #1=yes, 0=no 
do_texture=$4 #1=yes, 0=no 
do_convert_to_int=$5 #1=yes, 0=no 
do_output=$6 #1=yes, 0=no 
quick=$7 # quick = 1 for do_converst_to_int, all in one go. quick = 0 to 
run manually step-by-step 
 
cd ./g3_envi_db/$site 
 
if [ -e listofnames_all.txt ]  
then 
      echo "listofnames_all.txt exists"  
      rm listofnames_all.txt 
fi 
if [ -e listofnames_dry.txt ]  
then 
      echo "listofnames_dry.txt exists"  
      rm listofnames_dry.txt 
fi 
if [ -e listofnames_wet.txt ]  
then 
      echo "listofnames_wet.txt exists"  
      rm listofnames_wet.txt 
fi 
if [ -e listofnames_wetdry_geocodeG.txt ]  
then 
      echo "listofnames_wetdry_geocodeG.txt exists"  
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      rm listofnames_wetdry_geocodeG.txt 
fi 
if [ -e listofnames_wetdry_geocodeS.txt ]  
then 
      echo "listofnames_wetdry_geocodeS.txt exists"  
      rm listofnames_wetdry_geocodeS.txt 
fi 
 
#create a list of filenames with all image files 
for file in *.img; 
do 
    echo $file >> listofnames_all.txt 
done 
#create a list of filenames with all the Dry image files 
for file in *_Dry_*.img; 
do 
    echo $file >> listofnames_dry.txt 
done 
#create a list of filenames with all the Wet image files 
for file in *_Wet_*.img; 
do 
    echo $file >> listofnames_wet.txt 
done 
#create a list of filenames with all geocodeG image files 
for file in *_geocodeG_*.img; 
do 
    echo $file >> listofnames_wetdry_geocodeG.txt 
done 
#create a list of filenames with all geocodeS image files 
for file in *_geocodeS_*.img; 
do 
    echo $file >> listofnames_wetdry_geocodeS.txt 
done 
 
if [ $do_ringdal == 1 ]; 
then 
    # the list of filenames without any div,plus or min calculations 
    if [ -e listofnames_$season\_vanilla_$site\.txt ]  
    then 
      echo "listofnames_$season\_vanilla_$site\.txt exists"  
      rm listofnames_$season\_vanilla_$site\.txt 
    fi 
    # the list of filenames to refer to in GRASS 
    if [ -e listofnames_$season\_vanilla_$site\_grass.txt ]  
    then 
      echo "listofnames_$season\_vanilla_$site\_grass.txt exists"  
      rm listofnames_$season\_vanilla_$site\_grass.txt 
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    fi 
 
    while read line; do   # reading the list of filenames in directory, output 
without div,plus or min 
        #if [[ $line != *div* ]] && [[ $line != *plus* ]] && [[ $line != *min* ]]; 
        if [[ $line == *_shpclip_dB* ]]; 
        then 
            echo $line >> listofnames_$season\_vanilla_$site\.txt 
        fi 
    done < listofnames_$season\.txt 
 
    # iterate through the list without div, plus or min, read into grass, 
output names to a new textfile 
    i=1 
    while read line; do  
             echo $i 
             if [[ $line == *ASAR* ]]; 
             #if [[ $line == 
DRC_Dry_ASAR_20100705_SLC_0_VVVH_VH_2x4_15m_dB* ]]; 
             then 
                 echo $line 
                 r.in.gdal $line output=$site.$season\.asar.$i --overwrite 
                 echo $site.$season\.asar.$i >> 
listofnames_$season\_vanilla_$site\_grass.txt 
                 #r.in.gdal $line output=`basename $line _dB.img`   --overwrite 
                 #echo `basename $line _dB.img`   >> 
listofnames_$season\_vanilla_$site\_grass.txt 
             fi 
             if [[ $line == *PALSAR* ]]; 
             then 
                 echo $line 
                 r.in.gdal $line output=$site.$season\.palsar.$i --overwrite 
                 echo $site.$season\.palsar.$i >> 
listofnames_$season\_vanilla_$site\_grass.txt 
                 #r.in.gdal $line output=`basename $line _dB.img`   --overwrite 
                 #echo `basename $line _dB.img`   >> 
listofnames_$season\_vanilla_$site\_grass.txt 
             fi 
             if [[ $line == *TSX* ]]; 
             then 
                 echo $line 
                 r.in.gdal $line output=$site.$season\.tsx.$i --overwrite 
                 echo $site.$season\.tsx.$i >> 
listofnames_$season\_vanilla_$site\_grass.txt 
                 #r.in.gdal $line output=`basename $line _dB.img`   --overwrite 
                 #echo `basename $line _dB.img`   >> 
listofnames_$season\_vanilla_$site\_grass.txt 
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             fi 
             i=$[$i+1] 
 
    done < listofnames_$season\_vanilla_$site\.txt 
fi # do_ringdal 
 
#r.texture 
if [ $do_texture == 1 ] 
then 
    # test if a textfile with the names of the output texture files exists? 
    if [ -e listofnames_$site\_$season\_textures_grass.txt ]  
    then 
      echo "listofnames_$site\_$season\_textures_grass.txt exists"  
      rm listofnames_$site\_$season\_textures_grass.txt 
    fi 
 
    # iterate through the grass filenames, and create texture layers with 
specified window sizes 
    # output the new GRASS filenames to a textfile, to be used in the 
r.out.gdal step 
    while read line; do  
            if [[ $line == *asar* ]]; 
            then 
                g.region rast=$line 
                r.mapcalc "$line.linear=(10^($line/10))*10000" 
                #r.mapcalc 
"asar.vh.1.linear10000=(10^(asar.vh.1.db/10))*10000" 
                #r.mapcalc "Cameroon1.asar=(10^($line/10))*1000" 
                #r.rescale input=$line output=$line.scaled.db to=0,255 
                r.rescale input=$line.linear output=$line.scaled.linear to=1,64 
 
#                for window in 5 7 9 
                for window in 3 5 7 9 #new verion post 20140808 
                do  
                    echo "running the r.texture step for $line" 
                    echo "window size: $window" 
 
                    # standard  
                    #r.texture input=$line prefix=$line\_$window\x$window 
size=$window distance=1 method=contrast,entr,corr --verbose 
                    #r.neighbors input=$line 
output=$line\_$window\x$window\_mean method=average 
size=$window 
 
                    # scaled, but from db (not from linear) 
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                    #r.texture input=$line.scaled.db 
prefix=$line.scaled_$window\x$window.db size=$window distance=1 
method=contrast,entr,corr --verbose 
                    r.neighbors input=$line 
output=$line.scaled_$window\x$window.db_mean method=average 
size=$window 
 
                    # scaled version, from linear, not from db 
                    r.texture input=$line.scaled.linear 
prefix=$line.scaled_$window\x$window.linear size=$window distance=1 
method=contrast,entr,corr,var --verbose 
 
                    echo $line.scaled_$window\x$window.linear_Contr >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.linear_Corr >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.linear_Entr >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.linear_Var >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.db_mean >> 
listofnames_$site\_$season\_textures_grass.txt 
 
                    #r.neighbors input=$line.scaled.linear 
output=$line.scaled_$window\x$window.linear_mean method=average 
size=$window 
                done # asar while 
            fi 
 
            if [[ $line == *palsar* ]]; 
            then 
                r.mapcalc "$line.linear=(10^($line/10))*10000" 
                #r.mapcalc 
"asar.vh.1.linear10000=(10^(asar.vh.1.db/10))*10000" 
                #r.mapcalc "Cameroon1.asar=(10^($line/10))*1000" 
                #r.rescale input=$line output=$line.scaled.db to=0,255 
                r.rescale input=$line.linear output=$line.scaled.linear to=1,64 
 
#                for window in 7 9 11 
                for window in 5 7 9 11  #new verion post 20140808 
                do  
                    echo "running the r.texture step for $line" 
                    echo "window size: $window" 
 
                    # standard  
                    #r.texture input=$line prefix=$line\_$window\x$window 
size=$window distance=1 method=contrast,entr,corr --verbose 
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                    #r.neighbors input=$line 
output=$line\_$window\x$window\_mean method=average 
size=$window 
 
                    # scaled, but from db (not from linear) 
                    #r.texture input=$line.scaled.db 
prefix=$line.scaled_$window\x$window.db size=$window distance=1 
method=contrast,entr,corr --verbose 
                    r.neighbors input=$line 
output=$line.scaled_$window\x$window.db_mean method=average 
size=$window 
 
                    # scaled version, from linear, not from db 
                    r.texture input=$line.scaled.linear 
prefix=$line.scaled_$window\x$window.linear size=$window distance=1 
method=contrast,entr,corr,var --verbose 
 
                    echo $line.scaled_$window\x$window.linear_Contr >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.linear_Corr >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.linear_Entr >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.linear_Var >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.db_mean >> 
listofnames_$site\_$season\_textures_grass.txt 
 
                    #r.neighbors input=$line.scaled.linear 
output=$line.scaled_$window\x$window.linear_mean method=average 
size=$window 
                done # palsar while 
            fi 
 
            if [[ $line == *tsx* ]]; 
            then 
                r.mapcalc "$line.linear=(10^($line/10))*10000" 
                #r.mapcalc 
"asar.vh.1.linear10000=(10^(asar.vh.1.db/10))*10000" 
                #r.mapcalc "Cameroon1.asar=(10^($line/10))*1000" 
 
                #r.rescale input=$line output=$line.scaled.db to=0,255 
                r.rescale input=$line.linear output=$line.scaled.linear to=1,64 
 
#                for window in 7 9 11 13 
                for window in 9 11 13 15  #new verion post 20140808 
                do  
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                    echo "running the r.texture step for $line" 
                    echo "window size: $window" 
 
                    # standard  
                    #r.texture input=$line prefix=$line\_$window\x$window 
size=$window distance=1 method=contrast,entr,corr --verbose 
                    #r.neighbors input=$line 
output=$line\_$window\x$window\_mean method=average 
size=$window 
 
                    # scaled, but from db (not from linear) 
                    #r.texture input=$line.scaled.db 
prefix=$line.scaled_$window\x$window.db size=$window distance=1 
method=contrast,entr,corr --verbose 
                    r.neighbors input=$line 
output=$line.scaled_$window\x$window.db_mean method=average 
size=$window 
 
                    # scaled version, from linear, not from db 
                    r.texture input=$line.scaled.linear 
prefix=$line.scaled_$window\x$window.linear size=$window distance=1 
method=contrast,entr,corr,var --verbose 
 
                    echo $line.scaled_$window\x$window.linear_Contr >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.linear_Corr >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.linear_Entr >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.linear_Var >> 
listofnames_$site\_$season\_textures_grass.txt 
                    echo $line.scaled_$window\x$window.db_mean >> 
listofnames_$site\_$season\_textures_grass.txt 
 
                    #r.neighbors input=$line.scaled.linear 
output=$line.scaled_$window\x$window.linear_mean method=average 
size=$window 
                done # tsx while 
            fi 
 
    done < listofnames_$season\_vanilla_$site\_grass.txt 
 
 
fi # do_texture 
 
#while read line; do  
#  if [[ $line == *tsx* ]]; 
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#    then 
#        r.mapcalc "$line.linear=(10^($line/10))*10000" 
#        r.rescale input=$line.linear output=$line.scaled.linear to=1,64 
# 
#        for window in 9 11 13 15 
#        do  
#            echo "running the r.texture step for $line" 
#            echo "window size: $window" 
#            r.neighbors input=$line 
output=$line.scaled_$window\x$window.db_mean method=average 
size=$window 
# 
#            # scaled version, from linear, not from db 
#            r.texture input=$line.scaled.linear 
prefix=$line.scaled_$window\x$window.linear size=$window distance=1 
method=contrast,entr,corr,var --verbose 
#         done # tsx while 
#  fi 
#done < listofnames_$season\_vanilla_$site\_grass.txt 
 
# do convert to int, normal version (run all in one go) 
if [ $do_convert_to_int == 1 ] && [ $quick == 1 ]; 
then 
    while read line; do  
           
          if [[ $line == *Contr* ]]; 
          then 
              echo $line 
              r.mapcalc "$line.2=round($line*100)" 
          fi # Contr 
 
          if [[ $line == *Corr* ]]; 
          then 
              echo $line 
              r.mapcalc "$line.2=round($line*100)" 
          fi # Corr 
 
          if [[ $line == *Entr* ]]; 
          then 
             echo $line 
             r.mapcalc "$line.2=round($line*100)" 
          fi # Entr 
 
          if [[ $line == *Var* ]]; 
          then 
             echo $line 
             r.mapcalc "$line.2=round($line*100)" 
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          fi # Entr 
 
          if [[ $line == *mean* ]]; 
          then 
             echo $line 
             r.mapcalc "$line.2=round($line)" 
          fi # mean 
 
        #r.out.gdal input=$line output=$line.img format=ENVI type= 
    done < listofnames_$site\_$season\_textures_grass.txt  
fi # do_convert_to_int 
 
j=1 
 
if [ $do_convert_to_int == 1 ] && [ $quick == 0 ]; 
then 
    while read line; do  
          if [[ $line == *Contr* ]] && [[ $line == *.$j.* ]]; 
          then 
              echo $line 
              r.mapcalc "$line.2=round($line*100)" 
          fi # Contr 
 
          if [[ $line == *Corr* ]] && [[ $line == *.$j.* ]]; 
          then 
              echo $line 
              r.mapcalc "$line.2=round($line*100)" 
          fi # Corr 
 
          if [[ $line == *Entr* ]] && [[ $line == *.$j.* ]]; 
          then 
             echo $line 
             r.mapcalc "$line.2=round($line*100)" 
          fi # Entr 
 
          if [[ $line == *Var* ]] && [[ $line == *.$j.* ]]; 
          then 
             echo $line 
             r.mapcalc "$line.2=round($line*100)" 
          fi # Entr 
 
          if [[ $line == *mean* ]] && [[ $line == *.$j.* ]]; 
          then 
             echo $line 
             r.mapcalc "$line.2=round($line)" 
          fi # mean 
        #r.out.gdal input=$line output=$line.img format=ENVI type= 
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    done < listofnames_$site\_$season\_textures_grass.txt  
fi # do_convert_to_int 
 
 
    currentdir=${PWD} 
    echo $currentdir 
 
#r.out.gdal 
if [ $do_output == 1 ]; 
then 
    #cd ../../g4_texture_measures_envi/$site 
    #currentdir=${PWD} 
   # add a step to read the textfile with all the GRASS texture measures, 
and replace all the dots (.) with underscores (_) 
 
    while read line; do  
 
        #r.out.gdal input=$line.2 
output=../../g4_texture_measures_envi/$site/$line.img format=ENVI 
type=Int16 nodata=-999 --overwrite 
          if [[ $line == *Contr* ]]; 
          then 
              echo $line 
              r.out.gdal input=$line.2 
output=../../g4_texture_measures_envi/$site/$line.img format=ENVI 
type=Int16 nodata=-999 --overwrite 
          fi # Contr 
 
          if [[ $line == *Corr* ]]; 
          then 
              echo $line 
              r.out.gdal input=$line.2 
output=../../g4_texture_measures_envi/$site/$line.img format=ENVI 
type=Int16 nodata=-999 --overwrite 
          fi # Corr 
 
          if [[ $line == *Entr* ]]; 
          then 
             echo $line 
             r.out.gdal input=$line.2 
output=../../g4_texture_measures_envi/$site/$line.img format=ENVI 
type=Int16 nodata=-999 --overwrite 
          fi # Entr 
 
          if [[ $line == *Var* ]]; 
          then 
             echo $line 
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             r.out.gdal input=$line.2 
output=../../g4_texture_measures_envi/$site/$line.img format=ENVI 
type=Int32 nodata=-999 --overwrite 
          fi 
           
          if [[ $line == *mean* ]]; 
          then 
             echo $line 
             r.out.gdal input=$line.2 
output=../../g4_texture_measures_envi/$site/$line.img format=ENVI 
type=Int16 nodata=-999 --overwrite 
          fi # mean 
    done < listofnames_$site\_$season\_textures_grass.txt  
fi # do_output 

 

 

Script A2.19 g3b_copy_to_largestack_folder.sh 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

 
21 
22 
23 
24 
25 

 
 

#!/bin/bash 
# copy all the intensity, ratios, textures and SRTM layers to the largestack 
folder 
# resample to 5m spatial resolution (next step?) 
site=$1 
do_copy_elevationdata=1 
do_copy_intensities_and_ratios=1 
do_copy_textures=1 
 
if [ $do_copy_elevationdata == 1 ]; 
then 
    cd ./f3_layerstack_overlap 
    SHPFILE=overlap_$1\.shp 
    cd ../ 
    cd ./g4c_elevation_cutout 
    
        if ! [ -e *elevation* ];  
        then 
          echo "cutout elevation file"  
          #cp 
../../../Z_SRTM_UTM/output_resampled/$sitename\_wet_dry_elevation* . 
          #cp ../../../Z_SRTM_UTM/output/$site\_wet_dry_elevation* . 
          cd ../../Z_SRTM_UTM/output 
        for RASTERFILE in $site\_wet_dry_*.img; 
        do 
           gdalwarp -co COMPRESS=DEFLATE -co TILED=YES -of ENVI -r near -
cutline ../../step2_after_geocode/f3_layerstack_overlap/$SHPFILE -srcnodata 
0 -dstnodata 0 $RASTERFILE 
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../../step2_after_geocode/g4c_elevation_cutout/`basename $RASTERFILE 

.img`_cutout.img 
        done 
        fi 
 
    #back to starting directory 
    cd ../../step2_after_geocode/ 
    echo "copy and resample elevation,slope,aspect" 
    cd ./g4c_large_stack_resampled/$site 
 
        if ! [ -e *wet_dry* ];  
        then 
          cd ../../g4c_elevation_cutout/ 
          #echo "moving texture images"  
          #mv ../../g4_texture_measures_envi/$site/* . 
 
          echo "resampling, moving texture images" 
          for filename in $site\_wet_dry_*.img; 
          #for filename in Cameroon1.wet.tsx.9.scaled_9x9.db_mean.img; 
          do 
            echo $filename 
            gdalwarp -tr 5 5 -r near -dstnodata -999 -ot Int16 -of ENVI -overwrite 
$filename ../g4c_large_stack_resampled/$site/`basename $filename 
_cutout.img`_cutout_resampled.img 
          done 
          cd ../g4c_large_stack_resampled/$site 
        fi 
        cd ../../ 
fi 
 
    #resample the elevation data 
    #if ! [ -e *slope* ]  
    #then 
    #  echo "copying slope file"  
    #  #cp ../../../Z_SRTM_UTM/output_resampled/$sitename\_wet_dry_slope* 
. 
    #  cp ../../../Z_SRTM_UTM/output/$site\_wet_dry_slope* . 
    # 
    #fi 
 
    #if ! [ -e *aspect* ]  
    #then 
    #  echo "copying aspect file"  
    #  #cp 
../../../Z_SRTM_UTM/output_resampled/$sitename\_wet_dry_aspect* . 
    #  cp ../../../Z_SRTM_UTM/output/$site\_wet_dry_aspect* . 
    # 
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    #fi 
#fi 
 
if [ $do_copy_intensities_and_ratios == 1 ]; 
then 
    echo "copying intensities and ratios" 
        cd ./g4c_large_stack_resampled/$site 
        if ! [ -e *plus* ];  
        then 
          cd ../../g3_envi_db/$site/ 
          echo "resampling, moving intensity and ratio layers" 
          for filename in *.img; 
          #for filename in Cameroon1.wet.tsx.9.scaled_9x9.db_mean.img; 
          do 
            echo $filename 
 
 
            gdalwarp -tr 5 5 -r near -dstnodata -999 -ot Float32 -of ENVI -overwrite 
$filename ../../g4c_large_stack_resampled/$site/"`basename $filename 
.img`_resampled.img"  
          done 
          fi 
        #back to starting directory 
        cd ../.. 
fi 
 
if [ $do_copy_textures == 1 ]; 
then 
    echo "copy textures" 
        cd ./g4c_large_stack_resampled/$site 
         if ! [ -e *scaled* ];  
        then 
          cd ../../g4_texture_measures_envi/$site/ 
          #echo "moving texture images"  
          #mv ../../g4_texture_measures_envi/$site/* . 
 
          echo "resampling, moving texture images" 
          for filename in *.img; 
          #for filename in Cameroon1.wet.tsx.9.scaled_9x9.db_mean.img; 
          do 
            #echo $filename 
            #gdalwarp -tr 5 5 -r near -dstnodata -999 -ot Int16 -of ENVI -overwrite 
$filename ../../g4c_large_stack_resampled/$site/"`basename $filename 
.img`_resampled.img"  
 
          #The Var calculations have a greater range than 32676, therefore Int32 is 
required instead of Int16,  
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          #as for the Contr,Corr,Entr,Mean Texture measures 
          if [[ $filename == *Contr* ]]; 
          then 
              echo $filename 
              gdalwarp -tr 5 5 -r near -dstnodata -999 -ot Int16 -of ENVI -overwrite 
$filename ../../g4c_large_stack_resampled/$site/"`basename $filename 
.img`_resampled.img"  
          fi # Contr 
 
          if [[ $filename == *Corr* ]]; 
          then 
              echo $filename 
              gdalwarp -tr 5 5 -r near -dstnodata -999 -ot Int16 -of ENVI -overwrite 
$filename ../../g4c_large_stack_resampled/$site/"`basename $filename 
.img`_resampled.img"  
          fi # Corr 
 
          if [[ $filename == *Entr* ]]; 
          then 
             echo $filename 
             gdalwarp -tr 5 5 -r near -dstnodata -999 -ot Int16 -of ENVI -overwrite 
$filename ../../g4c_large_stack_resampled/$site/"`basename $filename 
.img`_resampled.img"  
          fi # Entr 
 
          if [[ $filename == *Var* ]]; 
          then 
             echo $filename 
             gdalwarp -tr 5 5 -r near -dstnodata -999 -ot Int32 -of ENVI -overwrite 
$filename ../../g4c_large_stack_resampled/$site/"`basename $filename 
.img`_resampled.img"  
          fi 
           
          if [[ $filename == *mean* ]]; 
          then 
             echo $filename 
             gdalwarp -tr 5 5 -r near -dstnodata -999 -ot Int16 -of ENVI -overwrite 
$filename ../../g4c_large_stack_resampled/$site/"`basename $filename 
.img`_resampled.img"  
          fi # mean 
 
          done 
        fi 
        #back to starting directory 
        cd ../.. 
fi 
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Script A2.20 g3b_envi_virtualstack.sh 

1 
2 
3 
4 
5 
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10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
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28 
29 
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31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

#!/bin/bash 
sitename=$1 
 
#=== build a virtual stack of the images 
#cd ./g3_envi_db/$sitename 
cd ./g4c_large_stack_resampled/$sitename 
 
if [ -e listofnames_all.txt ]  
then 
  echo "listofnames_all.txt exists"  
  rm listofnames_all.txt 
fi 
 
if [ -e listofnames_dry.txt ]  
then 
  echo "listofnames_dry.txt exists"  
  rm listofnames_dry.txt 
fi 
 
if [ -e listofnames_wet.txt ]  
then 
  echo "listofnames_wet.txt exists"  
  rm listofnames_wet.txt 
fi 
if [ -e listofnames_wetdry_geocodeG.txt ]  
then 
      echo "listofnames_wetdry_geocodeG.txt exists"  
      rm listofnames_wetdry_geocodeG.txt 
fi 
if [ -e listofnames_wetdry_geocodeS.txt ]  
then 
      echo "listofnames_wetdry_geocodeS.txt exists"  
      rm listofnames_wetdry_geocodeS.txt 
fi 
 
#create a list of filenames with all image files 
for file in *.img; 
do 
    echo $file >> listofnames_all.txt 
done 
#create a list of filenames with all the Dry image files 
for file in *_Dry_*.img; 
do 
    echo $file >> listofnames_dry.txt 
done 



382 

 

46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 

for file in *dry*.img; 
do 
    echo $file >> listofnames_dry.txt 
done 
 
#create a list of filenames with all the Wet image files 
for file in *_Wet_*.img; 
do 
    echo $file >> listofnames_wet.txt 
done 
for file in *wet*.img; 
do 
    echo $file >> listofnames_wet.txt 
done 
 
#create a list of filenames with all geocodeG image files 
for file in *_geocodeG_*.img; 
do 
    echo $file >> listofnames_wetdry_geocodeG.txt 
done 
#create a list of filenames with all geocodeS image files 
for file in *_geocodeS_*.img; 
do 
    echo $file >> listofnames_wetdry_geocodeS.txt 
done 
 
#build the virtual stacks for all, dry and wet sets of images 
echo "Building virtual stack of all images" 
gdalbuildvrt -tr 5 5 -tap -srcnodata 0 -vrtnodata 0 -separate -input_file_list 
listofnames_all.txt $sitename\_utm_db_stack_all.vrt 
 
echo "Building virtual stack of dry images" 
gdalbuildvrt -tr 5 5 -tap -srcnodata 0 -vrtnodata 0 -separate -input_file_list 
listofnames_dry.txt $sitename\_utm_db_stack_dry.vrt 
 
echo "Building virtual stack of dry images" 
gdalbuildvrt -tr 5 5 -tap -srcnodata 0 -vrtnodata 0 -separate -input_file_list 
listofnames_wet.txt $sitename\_utm_db_stack_wet.vrt 
 
echo "Building virtual stack of geocodeG images" 
gdalbuildvrt -tr 5 5 -tap -srcnodata 0 -vrtnodata 0 -separate -input_file_list 
listofnames_wetdry_geocodeG.txt 
$sitename\_utm_db_stack_wetdry_geocodeG.vrt 
echo "done" 
 
echo "Building virtual stack of geocodeS images" 
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93 
94 
95 

gdalbuildvrt -tr 5 5 -tap -srcnodata 0 -vrtnodata 0 -separate -input_file_list 
listofnames_wetdry_geocodeS.txt 
$sitename\_utm_db_stack_wetdry_geocodeS.vrt 
echo "done" 

 

Script A2.21 g3c_envi_realstacks.sh 

1 
2 

 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

#!/bin/bash 
# create real ENVI stacks from RandomForest Variable Importance results, to 
use in EnMAP 
sitename=$1 
 
if [ $sitename == 'Cameroon1' ]; 
then 
    cd ./g4c_large_stack_resampled/$sitename/ 
 
    gdal_merge.py -o ../../g4c_realstacks/$sitename/cdlcx_varimp_rf_top20.dat 
-of ENVI -ps 5 5 -tap -v -separate -n 0 -a_nodata -999 --optfile 
listofnames_cdlcx_varimp_rf_top20.txt 
fi 

 

Script A2.22 do_convert_to_raster_all.sh 

1 
2 
3 
4 
5 
6 
7 

#!/bin/bash 
 
#./convert_to_raster_all.sh cameroon1 
./convert_to_raster_all.sh chad 
./convert_to_raster_all.sh drc 
./convert_to_raster_all.sh sudan 
./convert_to_raster_all.sh tanzania 

 

Script A2.23 convert_to_raster_all.sh 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

#!/bin/bash 
#for Cameroon1 site 
#get extent from dry.vrt stack in R 
 
#extents 
#cameroon1 250940 686980 265210 726175 
#chad 614183.754502 1496430 634162.966218 1518376.961734  
#drc 799835 133060 819600.459909 181065 
#sudan 698315 1444010 713572.614335 1456355.125502 
#tanzania 390720 9532185 403890 9577710 
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12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

 
 

22 
23 
24 
25 
26 
27 
28 
29 
30 

 
 

31 
 
 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

 
 

43 
44 

 
 

45 
46 

 
 

site=$1 
#site='tanzania' 
 
if [ $site == 'cameroon1' ]; 
then 
    echo 'processing: ' $site 
    cd ./shapefiles/cameroon1_samples_5050/ 
  
    #all - training, validation and test 
    gdal_rasterize -a lc10_split -of ENVI -a_nodata -999 -te 250445 686505 
265745 726680 -tr 5 5 -ot Int16 cameroon1_samples.shp 
cameroon1_samples_raster.dat 
    cd ../../ 
fi #cameroon1 
 
if [ $site == 'chad' ]; 
then 
    echo 'processing: ' $site 
    cd ./chad/ 
     #all - training, validation and test 
    #gdal_rasterize -a lc_nr -of ENVI -a_nodata -999 -te 614183.754502 1496430 
634162.966218 1518376.961734 -tr 5 5 -ot Int16 chad_samples_UTM34N.shp 
./R_samples_extract_rasters/chad_samples_raster_new.dat 
    gdal_rasterize -a lc_nr -of ENVI -a_nodata -999 -te 607915 1495330 637715 
1530430 -tr 5 5 -ot Int16 chad_samples_UTM34N.shp 
./R_samples_extract_rasters/chad_samples_raster_new.dat 
    cd ../../ 
 
fi #chad 
 
if [ $site == 'drc' ]; 
then 
    echo 'processing: ' $site 
    cd ./drc/ 
  
    #all - training, validation and test 
    #gdal_rasterize -a lc_nr -of ENVI -a_nodata -999 -te 799835 133060 
819600.459909 181065 -tr 5 5 -ot Int16 drc_samples_all_UTM35N.shp 
./R_samples_extract_rasters/drc_samples_raster_new.dat 
 
    gdal_rasterize -a lc_nr -of ENVI -a_nodata -999 -te 799285 132670 819600 
188515 -tr 5 5 -ot Int16 drc_samples_all_UTM35N.shp 
./R_samples_extract_rasters/drc_samples_raster_new.dat 
 
    gdal_rasterize -a lc_nr -of ENVI -a_nodata -999 -te 799285 132670 819605 
188515 -tr 5 5 -ot Int16 drc_samples_all_UTM35N.shp 
./R_samples_extract_rasters/drc_samples_raster_new_wet.dat 
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52 
53 
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60 
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82 
83 

 
 

84 

 
    cd ../../ 
fi #drc 
 
if [ $site == 'sudan' ]; 
then 
    echo 'processing: ' $site 
    cd ./sudan/ 
  
    #all - training, validation and test 
    #gdal_rasterize -a lc_nr -of ENVI -a_nodata -999 -te 799835 133060 
819600.459909 181065 -tr 5 5 -ot Int16 sudan_samples.shp 
./R_samples_extract_rasters/sudan_samples_raster_new.dat 
 
    gdal_rasterize -a lc_nr -of ENVI -a_nodata -999 -te 697850 1443600 714490 
1459325 -tr 5 5 -ot Int16 sudan_samples.shp 
./R_samples_extract_rasters/sudan_samples_raster_new.dat 
 
    gdal_rasterize -a lc_nr -of ENVI -a_nodata -999 -te 697850 1443600 714490 
1459325 -tr 5 5 -ot Int16 sudan_samples.shp 
./R_samples_extract_rasters/sudan_samples_raster_new_wet.dat 
    cd ../../ 
fi #sudan 
 
#old version392110 9532550 404375 9577625 
#tanzania new version extent 390720 9577710 403890 9532185 
 
#for Tanzania site 
if [ $site == 'tanzania' ]; 
then 
    echo 'processing: ' $site 
    cd ./tanzania/ 
     #all - training, validation and test 
    #gdal_rasterize -a lc_nr -of ENVI -a_nodata -999 -te 390720 9532185 403890 
9577710 -tr 5 5 -ot Int16 tanzania_samples_all.shp 
./R_samples_extract_rasters/tanzania_samples_all_raster_new.dat 
#get extent values from R tanzania.dry.stack) 
     gdal_rasterize -a lc_nr -of ENVI -a_nodata -999 -te 390715 9532180 404375 
9577715 -tr 5 5 -ot Int16 tanzania_samples_all.shp 
./R_samples_extract_rasters/tanzania_samples_all_raster_new.dat 
 
    gdal_rasterize -a lc_nr -of ENVI -a_nodata -999 -te 390720 9532180 404375 
9577710 -tr 5 5 -ot Int16 tanzania_samples_all.shp 
./R_samples_extract_rasters/tanzania_samples_all_raster_new_wet.dat 
fi 
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R modelling and graphing scripts 

 

A3.1 Overview of R modelling and graphing scripts 

An overview of the R scripts with the corresponding script number are given in Table A3.1 for 

the R data preparation for modelling scripts, in Table A3.2 for the R modelling functions and 

in Table A3.3 for the R plotting / graphing functions. Only extracts and summaries from the 

full R scripts are given in Appendix Three, with the focus on R functions that were written for 

this research project. 

 

Table A3.1 R data preparation for modelling scripts (Section A3.3.1) 

Script 
number 

Script name Description 

A3.1 Set the working directory and 
load the required R packages. 

R packages used in the remainder of the 
scripts. 

A3.2 Extract data Extract data from the raster images to 
data frames in R. 

A3.3 Define input feature 
combinations 

Input feature layers groups of backscatter 
coefficients, interchannel ratios, texture 
measures and elevation data. 
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Table A3.2 R functions for modelling (Section A3.3.2) 

Script 
number 

Script name Description 

A3.4 model_and_test_rf function Returns the confusion matrix of the 
random forest model. 

A3.5 model_rf function Returns the actual random forest model, 
to be applied on new data. 

A3.6 varimp_rf Returns the MDA and MDG variable 
importance measures for all input 
variables. 

A3.7 varimp_rf_unscaled The unscaled version of the MDA and 
MDG variable importance measures. 

A3.8 model_and_test_svm Returns the confusion matrix from the 
SVM model. 

A3.9 model_svm Returns the SVM model to be applied on 
new data. 

A3.10 rf.topX.conf Runs a random forest model on the top X 
variables, based on either the MDA or 
MDG variable importance measure. The 
function returns the confusion matrix 
between the training and test datasets. 

A3.11 rf.topX.model Returns the random forest model 
consisting only of the top X variables, 
based on either the MDA or MDG variable 
importance measures. 

A3.12 rf.topX.varimp Returns the variable importance 
measures of the top X variables from a 
random forest model. 

A3.13 svm.topX.conf Returns the confusion matrix based on 
the training and test datasets, for the SVM 
based on the top X variables (based on 
random forest modelling). 

A3.14 svm.topX.model Returns the SVM model for the top X 
variables (based on random forest 
modelling). 

A3.15 apply_KL_divergence Apply the Kullback-Leibler divergence 
between two distributions of data. 
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Table A3.3 R functions for plotting graphs (Section A3.3.3) 

Script 
number 

Script name Description 

A3.16 multiplot The multiplot functions enables multiple 
plots to be plotted to the output window. 
This is reproduced from www.cookbook-
r.com 

A3.17 plot_overall_accuracy_with_ 
class_accuracy 

A plotting function to plot the overall 
accuracy and class-specific accuracies on 
the same plot. 

A3.18 plot_overall_accuracy_with_ 
class_accuracy_elevation_only 

A variation of Script A3.17, that uses only 
the elevation data as input. 

A3.19 convert_pat_to_lcx_dBite A function the converts the variable 
names from P (PALSAR), A (ASAR) and T ( 
TerraSAR-X), to L, C and X. 

A3.20 corrplot  Using the corrplot function from the 
corrplot R package. 

A3.21 plot_overall_accuracy_with_ 
class_accuracy_top1_to_30_ 
in1s 

A function to plot the overall and class-
specific accuracies for the top 30 
variables, by adding variables 
incrementally from 1 to 30. 

A3.22 apply_model1_on_site2_conf
_newsite_cw_traintest 

A function the develops the random 
forest model on one set of data, and apply 
it on an additional set of data, either of a 
new season or an additional site. 
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A3.2 R random forest modelling scripts 

A list of the main R packages used in this research, are given in Script A3.1. This is not the full 

list, and packages applicable to specific functions are given in the respective scripts. 

 

A3.2.1. R data preparation for modelling scripts 

 

Script A3.1 Set working directory and loading R packages 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

rm (list = ls()) 
setwd("/home/bernard/sharefolder/RProjects/signature_extract") 
 
# packages 
require(raster) 
require(sp) 
require(rgdal) 
require(shapefiles) 
library(maptools) 
library(MASS) 
library(gplots) 
library(caTools) 
library(ggplot2) 
library(reshape2) 
library(plyr) 
library(data.table) 
library(splancs) 
library(spatstat) 
library(caret) 
library(randomForest) 
library(ROCR) 
library(ggplot2) 
library(ellipse) 
library(Hmisc) 
library(dplyr) 
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Script A3.2 Extract data 

1 
 
 
 

2 
 

3 
4 

 
 

5 
 
 

6 
 
 
 

7 
8 
9 

10 
11 
12 
13 

 
14 
15 
16 
17 
18 
19 
20 
21 

 
22 

 
23 

 
24 
25 
26 
27 
28 

 
 

cam1.dry.stack <- 
brick("/home/bernard/sharefolder/A_Data_PhD/A_Alldata/step2_after_geoc
ode/g4c_large_stack_resampled/Cameroon1/Cameroon1_utm_db_stack_dr
y.vrt") 
        extent(cam1.dry.stack) # get extent for convert_raster_to_shape.sh 
script 
 
c.trv_t.raster <- 
raster("/home/bernard/sharefolder/qgis/shapefiles/cameroon1_samples_50
50/Cameroon1_all_samples_5050_raster_from_prev_one.dat") 
        c.trv.raster <- 
raster("/home/bernard/sharefolder/qgis/shapefiles/cameroon1_samples_50
50/Cameroon1_training_samples_5050_raster_clipped.envi") 
        c.test.raster <- 
raster("/home/bernard/sharefolder/qgis/shapefiles/cameroon1_samples_50
50/Cameroon1_test_samples_5050_raster_clipped.envi") 
 
set.seed(12345) 
        #cameroon1 training         
        c.trv.samples3000 <- sampleStratified(c.trv.raster, 
size=3000,na.rm=TRUE,xy=T,sp=T) 
        c.trv.samples3000 
table(c.trv.samples3000$Cameroon1_training_samples_5050_raster_clipped
) 
 
c.test.samples3000 <- sampleStratified(c.test.raster, 
size=3000,na.rm=TRUE,xy=T,sp=T) 
        c.test.samples3000 
        
table(c.test.samples3000$Cameroon1_test_samples_5050_raster_clipped) 
 
save(c.trv.samples3000,c.test.samples3000,file="cameroon1_training_test_s
amples3000.rda") 
        writeOGR(c.trv.samples3000, dsn='polys/', layer='c1s3000trv', 
driver='ESRI Shapefile',overwrite=TRUE) 
        writeOGR(c.test.samples3000, dsn='polys/', layer='c1s3000test', 
driver='ESRI Shapefile',overwrite=TRUE) 
 
#============================================================== 
#now extract the values from the stack of images 
c.trv_t.raster <- 
raster("/home/bernard/sharefolder/qgis/shapefiles/cameroon1_samples_50
50/Cameroon1_all_samples_5050_raster_from_prev_one.dat") 
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29 
 
 

30 
 
 

31 
32 

 
 
 

33 
34 
35 
36 

 
 

37 
 
 

38 
 
 

39 
 
 
 

40 
41 
42 
43 

 
44 
45 
46 
47 

 
 

48 
49 
50 

 
 

51 
52 

 
53 

        c.trv.raster <- 
raster("/home/bernard/sharefolder/qgis/shapefiles/cameroon1_samples_50
50/Cameroon1_training_samples_5050_raster_clipped.envi") 
        c.test.raster <- 
raster("/home/bernard/sharefolder/qgis/shapefiles/cameroon1_samples_50
50/Cameroon1_test_samples_5050_raster_clipped.envi") 
         
        cam1.dry.stack <- 
brick("/home/bernard/sharefolder/A_Data_PhD/A_Alldata/step2_after_geoc
ode/g4c_large_stack_resampled/Cameroon1/Cameroon1_utm_db_stack_dr
y.vrt") 
        cam1.dry.stack <- addLayer(cam1.dry.stack,c.trv_t.raster) 
        cam1.dry.stack 
 
c.trv_t.raster <- 
raster("/home/bernard/sharefolder/qgis/shapefiles/cameroon1_samples_50
50/Cameroon1_all_samples_5050_raster_from_prev_one.dat") 
        c.trv.raster <- 
raster("/home/bernard/sharefolder/qgis/shapefiles/cameroon1_samples_50
50/Cameroon1_training_samples_5050_raster_clipped.envi") 
        c.test.raster <- 
raster("/home/bernard/sharefolder/qgis/shapefiles/cameroon1_samples_50
50/Cameroon1_test_samples_5050_raster_clipped.envi") 
        cam1.dry.stack <- 
brick("/home/bernard/sharefolder/A_Data_PhD/A_Alldata/step2_after_geoc
ode/g4c_large_stack_resampled/Cameroon1/Cameroon1_utm_db_stack_dr
y.vrt") 
        cam1.dry.stack <- addLayer(cam1.dry.stack,c.trv_t.raster) 
        cam1.dry.stack 
        
#save(c.trv.samples3000,c.test.samples3000,file="cameroon1_training_test_
samples3000.rda") #note from higher up in the code 
        #load the 3000 samples per class. 
        load("cameroon1_training_test_samples3000.rda") 
        #cameroon1 training 
        cam1_dry_all_trv3000 <- 
extract(cam1.dry.stack,c.trv.samples3000,layer=1,nl=dim(cam1.dry.stack)[3],
sp=TRUE) 
        save(cam1_dry_all_trv3000,file="cam1_dry_all_trv3000.rda") 
        #cameroon1 test 
        cam1_dry_all_test3000 <- 
extract(cam1.dry.stack,c.test.samples3000,layer=1,nl=dim(cam1.dry.stack)[3]
,sp=TRUE) 
        save(cam1_dry_all_test3000,file="cam1_dry_all_test3000.rda")         
        save(cam1_dry_all_trv3000,cam1_dry_all_test3000, 
file="cam1_dry_training_test3000.rda") 
        #write to csv 
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54 
55 
56 
57 
58 
59 

        
write.csv(cam1_dry_all_trv3000,"/home/bernard/sharefolder/RProjects/sign
ature_extract/cam1_dry_all_trv3000.csv") 
        
write.csv(cam1_dry_all_test3000,"/home/bernard/sharefolder/RProjects/sig
nature_extract/cam1_dry_all_test3000.csv") 

 

 

Script A3.3 Define input feature combinations 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 

cam1_dry_colnames <- c("ID","cell","x","y","class2",   "C1DAVHG", 
"C1DAVHS","C1DAVVG","C1DAVHdivVV_linearG","C1DAVHdivVV_rdBG",  
"C1DAVH5meanG","C1DAVH5ContrG","C1DAVH5CorrG","C1DAVH5EntrG", 
"C1DAVH5VarG","C1DAVH7meanG","C1DAVH7ContrG","C1DAVH7CorrG", 
"C1DAVH7EntrG", 
#… columns omitted here                              
"C1DTHV15EntrG","C1DTHV15VarG","C1DTHV9meanG","C1DTHV9ContrG","
C1DTHV9CorrG","C1DTHV9EntrG","C1DTHV9VarG","C1Daspect","C1Delev", 
                               "C1Dslope",   
                               "class","x1","y1")             
    length(cam1_dry_colnames) 
    
    cd.lcx.dB.S <- 
c("C1DAVHS","C1DAVVS","C1DPHHS","C1DTHHS","C1DTHVS","C1DTVHS","C1
DTVVS") 
     
    cd.l.dB.S = cd.lcx.dB.S[substr(cd.lcx.dB.S,1,4) == "C1DP"]  
    cd.c.dB.S = cd.lcx.dB.S[substr(cd.lcx.dB.S,1,4) == "C1DA"]  
    cd.x.dB.S = cd.lcx.dB.S[substr(cd.lcx.dB.S,1,4) == "C1DT"] 
 
cd.lcx.i.S <- c("C1DAVHdivVV_linearS", 
"C1DAVHdivVV_rdBS","C1DAVVminVH_linearS", 
"C1DAVVmVHdivVVpVH_NDIS","C1DAVVplusVH_linearS",                         
"C1DTHHmHVdivHHpHV_NDIS", "C1DTHHminHV_linearS", 
"C1DTHHplusHV_linearS", "C1DTHVdivHH_linearS", 
"C1DTHVdivHH_rdBS","C1DTVHdivVV_linearS", "C1DTVHdivVV_rdBS", 
"C1DTVVminVH_linearS", "C1DTVVmVHdivVVpVH_NDIS", 
"C1DTVVplusVH_linearS") 
 
    cd.l.i.S = cd.lcx.i.S[substr(cd.lcx.i.S,1,4) == "C1DP"]  
    cd.c.i.S = cd.lcx.i.S[substr(cd.lcx.i.S,1,4) == "C1DA"]  
    cd.x.i.S = cd.lcx.i.S[substr(cd.lcx.i.S,1,4) == "C1DT"] 
 
cd.lcx.t.S <- c("C1DAVH3meanS", "C1DAVH3ContrS", "C1DAVH3CorrS", 
"C1DAVH3EntrS", "C1DAVH3VarS", "C1DAVH5meanS", "C1DAVH5ContrS",  
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37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 

"C1DAVH5CorrS", "C1DAVH5EntrS", "C1DAVH5VarS", "C1DAVH7meanS", 
"C1DAVH7ContrS", "C1DAVH7CorrS", "C1DAVH7EntrS", 
 "C1DAVH7VarS", "C1DAVH9meanS", "C1DAVH9ContrS", "C1DAVH9CorrS", 
"C1DAVH9EntrS", "C1DAVH9VarS", "C1DAVV3meanS", 
 "C1DAVV3ContrS", "C1DAVV3CorrS", "C1DAVV3EntrS", "C1DAVV3VarS", 
"C1DAVV5meanS", "C1DAVV5ContrS", "C1DAVV5CorrS", 
"C1DAVV5EntrS", "C1DAVV5VarS", "C1DAVV7meanS", "C1DAVV7ContrS", 
"C1DAVV7CorrS", "C1DAVV7EntrS", "C1DAVV7VarS" 
#, … columns omitted here                              
) 
 
    cd.l.t.S = cd.lcx.t.S[substr(cd.lcx.t.S,1,4) == "C1DP"]  
    cd.c.t.S = cd.lcx.t.S[substr(cd.lcx.t.S,1,4) == "C1DA"]  
    cd.x.t.S = cd.lcx.t.S[substr(cd.lcx.t.S,1,4) == "C1DT"] 
 
cd.elev <- c("C1Daspect","C1Delev","C1Dslope") 
cd.all.S <- c(cd.lcx.dB.S,cd.lcx.i.S,cd.lcx.t.S,cd.elev) 
 
cd.lc.dB.S <- c(cd.l.dB.S,cd.c.dB.S) 
    cd.lx.dB.S <- c(cd.l.dB.S,cd.x.dB.S) 
    cd.cx.dB.S <- c(cd.c.dB.S,cd.x.dB.S) 
    cd.lcx.dB.S <- c(cd.l.dB.S,cd.c.dB.S,cd.x.dB.S) 
    cd.lc.i.S <- c(cd.l.i.S,cd.c.i.S) 
    cd.lx.i.S <- c(cd.l.i.S,cd.x.i.S) 
    cd.cx.i.S <- c(cd.c.i.S,cd.x.i.S) 
    cd.lcx.i.S <- c(cd.l.i.S,cd.c.i.S,cd.x.i.S) 
    cd.lc.t.S <- c(cd.l.t.S,cd.c.t.S) 
    cd.lx.t.S <- c(cd.l.t.S,cd.x.t.S) 
    cd.cx.t.S <- c(cd.c.t.S,cd.x.t.S) 
    cd.lcx.t.S <- c(cd.l.t.S,cd.c.t.S,cd.x.t.S) 
    cd.elev 
cd.l.dBite.S <- c(cd.l.dB.S,cd.l.i.S,cd.l.t.S,cd.elev) 
cd.c.dBite.S <- c(cd.c.dB.S,cd.c.i.S,cd.c.t.S,cd.elev) 
cd.x.dBite.S <- c(cd.x.dB.S,cd.x.i.S,cd.x.t.S,cd.elev) 
cd.lc.dBite.S <- c(cd.lc.dB.S,cd.lc.i.S,cd.lc.t.S,cd.elev) 
cd.lx.dBite.S <- c(cd.lx.dB.S,cd.lx.i.S,cd.lx.t.S,cd.elev) 
cd.cx.dBite.S <- c(cd.cx.dB.S,cd.cx.i.S,cd.cx.t.S,cd.elev) 
cd.lcx.dBite.S <- c(cd.lcx.dB.S,cd.lcx.i.S,cd.lcx.t.S,cd.elev) 
 
cd.l.dBi.S <- c(cd.l.dB.S,cd.l.i.S) 
cd.c.dBi.S <- c(cd.c.dB.S,cd.c.i.S) 
cd.x.dBi.S <- c(cd.x.dB.S,cd.x.i.S) 
cd.lc.dBi.S <- c(cd.l.dB.S,cd.l.i.S,cd.c.dB.S,cd.c.i.S) 
cd.lx.dBi.S <- c(cd.l.dB.S,cd.l.i.S,cd.x.dB.S,cd.x.i.S) 
cd.cx.dBi.S <- c(cd.c.dB.S,cd.c.i.S,cd.x.dB.S,cd.x.i.S) 
cd.lcx.dBi.S <- c(cd.l.dB.S,cd.l.i.S,cd.c.dB.S,cd.c.i.S,cd.x.dB.S,cd.x.i.S) 
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cd.l.dBe.S <- c(cd.l.dB.S,cd.elev) 
cd.c.dBe.S <- c(cd.c.dB.S,cd.elev) 
cd.x.dBe.S <- c(cd.x.dB.S,cd.elev) 
cd.lc.dBe.S <- c(cd.l.dB.S,cd.c.dB.S,cd.elev) 
cd.lx.dBe.S <- c(cd.l.dB.S,cd.x.dB.S,cd.elev) 
cd.cx.dBe.S <- c(cd.c.dB.S,cd.x.dB.S,cd.elev) 
cd.lcx.dBe.S <- c(cd.l.dB.S,cd.c.dB.S,cd.x.dB.S,cd.elev) 
 
cd.l.dBt.S <- c(cd.l.dB.S,cd.l.t.S) 
cd.c.dBt.S <- c(cd.c.dB.S,cd.c.t.S) 
cd.x.dBt.S <- c(cd.x.dB.S,cd.x.t.S) 
cd.lc.dBt.S <- c(cd.l.dB.S,cd.l.t.S,cd.c.dB.S,cd.c.t.S) 
cd.lx.dBt.S <- c(cd.l.dB.S,cd.l.t.S,cd.x.dB.S,cd.x.t.S) 
cd.cx.dBt.S <- c(cd.c.dB.S,cd.c.t.S,cd.x.dB.S,cd.x.t.S) 
cd.lcx.dBt.S <- c(cd.l.dB.S,cd.l.t.S,cd.c.dB.S,cd.c.t.S,cd.x.dB.S,cd.x.t.S) 
 
cd.l.dBit.S <- c(cd.l.dB.S,cd.l.i.S,cd.l.t.S) 
cd.c.dBit.S <- c(cd.c.dB.S,cd.c.i.S,cd.c.t.S) 
cd.x.dBit.S <- c(cd.x.dB.S,cd.x.i.S,cd.x.t.S) 
cd.lc.dBit.S <- c(cd.l.dB.S,cd.l.i.S,cd.l.t.S,cd.c.dB.S,cd.c.i.S,cd.c.t.S) 
cd.lx.dBit.S <- c(cd.l.dB.S,cd.l.i.S,cd.l.t.S,cd.x.dB.S,cd.x.i.S,cd.x.t.S) 
cd.cx.dBit.S <- c(cd.c.dB.S,cd.c.i.S,cd.c.t.S,cd.x.dB.S,cd.x.i.S,cd.x.t.S) 
cd.lcx.dBit.S <- 
c(cd.l.dB.S,cd.l.i.S,cd.l.t.S,cd.c.dB.S,cd.c.i.S,cd.c.t.S,cd.x.dB.S,cd.x.i.S,cd.x.t.S) 
 
cd3000.train <- 
as.data.frame(read.csv("/home/bernard/sharefolder/RProjects/signature_ex
tract/cam1_dry_all_trv3000.csv")) 
        cd3000.test <- 
as.data.frame(read.csv("/home/bernard/sharefolder/RProjects/signature_ex
tract/cam1_dry_all_test3000.csv")) 
        dim(cd3000.train) 
        #summary(cd3000.train) 
        cd3000.train[cd3000.train==-999]<-NA 
        cd3000.test[cd3000.test==-999]<-NA     
        
table(cd3000.train$Cameroon1_utm_db_stack_dry.162,useNA=c("always")) 
        #?table 
        cd3000.train <- replace(cd3000.train, is.na(cd3000.train), 0) 
        cd3000.test <- replace(cd3000.test, is.na(cd3000.test), 0) 
        table(cut2(cd3000.train$Cameroon1_utm_db_stack_dry.132,g=24), 
cd3000.train$Cameroon1_training_samples_5050_raster_clipped, 
useNA='always') 
         
        colnames(cd3000.train) <- cam1_dry_colnames 
        dim(cd3000.train) 
        summary(cd3000.train) 
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        colnames(cd3000.test) <- cam1_dry_colnames 
        summary(cd3000.test)         
        head(cd3000.train) 
        #3000 dry 
        cd3000.train$classname[cd3000.train$class == 1 ] <- "Bare" 
        cd3000.train$classname[cd3000.train$class == 3 ] <- "DenseTrees" 
      cd3000.train$classname[cd3000.train$class == 4 ] <- "ThinnerDenseTrees" 
        cd3000.train$classname[cd3000.train$class == 5 ] <- "SparseVeg" 
        cd3000.train$classname[cd3000.train$class == 6 ] <- "Water" 
        cd3000.train$classname[cd3000.train$class == 7 ] <- "Agriculture" 
        cd3000.train$classname[cd3000.train$class == 10 ] <- "Settlement" 
        table(cd3000.train$classname) 
         
        cd3000.test$classname[cd3000.test$class == 1 ] <- "Bare" 
        cd3000.test$classname[cd3000.test$class == 3 ] <- "DenseTrees" 
        cd3000.test$classname[cd3000.test$class == 4 ] <- "ThinnerDenseTrees" 
        cd3000.test$classname[cd3000.test$class == 5 ] <- "SparseVeg" 
        cd3000.test$classname[cd3000.test$class == 6 ] <- "Water" 
        cd3000.test$classname[cd3000.test$class == 7 ] <- "Agriculture" 
        cd3000.test$classname[cd3000.test$class == 10 ] <- "Settlement" 
        table(cd3000.test$classname) 
         
        cd3000.train[,c("ID","cell","x","y","class2","class","x1","y1")] <- list(NULL) 
        summary(cd3000.train) 
        cd3000.test[,c("ID","cell","x","y","class2","class","x1","y1")] <- list(NULL) 
        summary(cd3000.test) 
         
        #make the response variable a factor 
        cd3000.train$classname <- as.factor(cd3000.train$classname) 
        cd3000.test$classname <- as.factor(cd3000.test$classname) 
        table(cd3000.train$classname) 
        table(cd3000.test$classname) 
 
cd.colnames.all = names(cd3000.train)   
        cd.colnames.all.G <- cd.lcx.dBite.G 
        cd.colnames.all.S <- cd.lcx.dBite.S 
        cd.colnames.all.G2 <- c(cd.colnames.all.G,'classname') 
        cd.colnames.all.S2 <- c(cd.colnames.all.S,'classname') 
          
        cd3000.train.G <- subset(cd3000.train,select=cd.colnames.all.G2) 
        cd3000.train.S <- subset(cd3000.train,select=cd.colnames.all.S2) 
        cd3000.test.G <- subset(cd3000.test,select=cd.colnames.all.G2) 
        cd3000.test.S <- subset(cd3000.test,select=cd.colnames.all.S2) 
         
        #select columns for each scenario 
        #train cd dB 
        cd.l.dB.S.train = subset(cd3000.train, select = c(cd.l.dB.S,'classname')) 
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        cd.c.dB.S.train = subset(cd3000.train, select = c(cd.c.dB.S,'classname')) 
        cd.x.dB.S.train = subset(cd3000.train, select = c(cd.x.dB.S,'classname')) 
        cd.lc.dB.S.train = subset(cd3000.train, select = c(cd.lc.dB.S,'classname')) 
        cd.lx.dB.S.train = subset(cd3000.train, select = c(cd.lx.dB.S,'classname')) 
        cd.cx.dB.S.train = subset(cd3000.train, select = c(cd.cx.dB.S,'classname')) 
       cd.lcx.dB.S.train = subset(cd3000.train, select = c(cd.lcx.dB.S,'classname')) 
        #test  cd dB 
        cd.l.dB.S.test = subset(cd3000.test, select = c(cd.l.dB.S,'classname')) 
        cd.c.dB.S.test = subset(cd3000.test, select = c(cd.c.dB.S,'classname')) 
        cd.x.dB.S.test = subset(cd3000.test, select = c(cd.x.dB.S,'classname')) 
        cd.lc.dB.S.test = subset(cd3000.test, select = c(cd.lc.dB.S,'classname')) 
        cd.lx.dB.S.test = subset(cd3000.test, select = c(cd.lx.dB.S,'classname')) 
        cd.cx.dB.S.test = subset(cd3000.test, select = c(cd.cx.dB.S,'classname')) 
        cd.lcx.dB.S.test = subset(cd3000.test, select = c(cd.lcx.dB.S,'classname')) 
        #select columns for each scenario 
        #train cd i 
        cd.l.i.S.train = subset(cd3000.train, select = c(cd.l.i.S,'classname')) 
        cd.c.i.S.train = subset(cd3000.train, select = c(cd.c.i.S,'classname')) 
        cd.x.i.S.train = subset(cd3000.train, select = c(cd.x.i.S,'classname')) 
        cd.lc.i.S.train = subset(cd3000.train, select = c(cd.lc.i.S,'classname')) 
        cd.lx.i.S.train = subset(cd3000.train, select = c(cd.lx.i.S,'classname')) 
        cd.cx.i.S.train = subset(cd3000.train, select = c(cd.cx.i.S,'classname')) 
        cd.lcx.i.S.train = subset(cd3000.train, select = c(cd.lcx.i.S,'classname')) 
        #test  cd i 
        cd.l.i.S.test = subset(cd3000.test, select = c(cd.l.i.S,'classname')) 
        cd.c.i.S.test = subset(cd3000.test, select = c(cd.c.i.S,'classname')) 
        cd.x.i.S.test = subset(cd3000.test, select = c(cd.x.i.S,'classname')) 
        cd.lc.i.S.test = subset(cd3000.test, select = c(cd.lc.i.S,'classname')) 
        cd.lx.i.S.test = subset(cd3000.test, select = c(cd.lx.i.S,'classname')) 
        cd.cx.i.S.test = subset(cd3000.test, select = c(cd.cx.i.S,'classname')) 
        cd.lcx.i.S.test = subset(cd3000.test, select = c(cd.lcx.i.S,'classname')) 
        #select columns for each scenario 
        #train cd t 
        cd.l.t.S.train = subset(cd3000.train, select = c(cd.l.t.S,'classname')) 
        cd.c.t.S.train = subset(cd3000.train, select = c(cd.c.t.S,'classname')) 
        cd.x.t.S.train = subset(cd3000.train, select = c(cd.x.t.S,'classname')) 
        cd.lc.t.S.train = subset(cd3000.train, select = c(cd.lc.t.S,'classname')) 
        cd.lx.t.S.train = subset(cd3000.train, select = c(cd.lx.t.S,'classname')) 
        cd.cx.t.S.train = subset(cd3000.train, select = c(cd.cx.t.S,'classname')) 
        cd.lcx.t.S.train = subset(cd3000.train, select = c(cd.lcx.t.S,'classname')) 
        #test  cd t 
        cd.l.t.S.test = subset(cd3000.test, select = c(cd.l.t.S,'classname')) 
        cd.c.t.S.test = subset(cd3000.test, select = c(cd.c.t.S,'classname')) 
        cd.x.t.S.test = subset(cd3000.test, select = c(cd.x.t.S,'classname')) 
        cd.lc.t.S.test = subset(cd3000.test, select = c(cd.lc.t.S,'classname')) 
        cd.lx.t.S.test = subset(cd3000.test, select = c(cd.lx.t.S,'classname')) 
        cd.cx.t.S.test = subset(cd3000.test, select = c(cd.cx.t.S,'classname')) 
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        cd.lcx.t.S.test = subset(cd3000.test, select = c(cd.lcx.t.S,'classname')) 
        #select columns for each scenario 
        #train cd e 
        cd.l.e.S.train = subset(cd3000.train, select = c(cd.elev,'classname')) 
        #test  cd e 
        cd.l.e.S.test = subset(cd3000.test, select = c(cd.elev,'classname')) 
         
        #============================================# 
        #cd dBite train 
         cd.l.dBite.S.train <- subset(cd3000.train, select = c(cd.l.dBite.S, 
'classname')) 
        cd.c.dBite.S.train <- subset(cd3000.train, select = c(cd.c.dBite.S, 
'classname')) 
        cd.x.dBite.S.train <- subset(cd3000.train, select = c(cd.x.dBite.S, 
'classname')) 
        cd.lc.dBite.S.train <- subset(cd3000.train, select = c(cd.lc.dBite.S, 
'classname')) 
        cd.lx.dBite.S.train <- subset(cd3000.train, select = c(cd.lx.dBite.S, 
'classname')) 
        cd.cx.dBite.S.train <- subset(cd3000.train, select = c(cd.cx.dBite.S, 
'classname')) 
        cd.lcx.dBite.S.train <- subset(cd3000.train, select = c(cd.lcx.dBite.S, 
'classname')) 
         
        #cd dBite test 
        cd.l.dBite.S.test <- subset(cd3000.test, select = c(cd.l.dBite.S, 
'classname')) 
        cd.c.dBite.S.test <- subset(cd3000.test, select = c(cd.c.dBite.S, 
'classname')) 
        cd.x.dBite.S.test <- subset(cd3000.test, select = c(cd.x.dBite.S, 
'classname')) 
        cd.lc.dBite.S.test <- subset(cd3000.test, select = c(cd.lc.dBite.S, 
'classname')) 
        cd.lx.dBite.S.test <- subset(cd3000.test, select = c(cd.lx.dBite.S, 
'classname')) 
        cd.cx.dBite.S.test <- subset(cd3000.test, select = c(cd.cx.dBite.S, 
'classname')) 
        cd.lcx.dBite.S.test <- subset(cd3000.test, select = c(cd.lcx.dBite.S, 
'classname')) 
               
#train  cd dBi 
cd.l.dBi.S.train = subset(cd3000.train, select = c(cd.l.dBi.S,'classname')) 
cd.c.dBi.S.train = subset(cd3000.train, select = c(cd.c.dBi.S,'classname')) 
cd.x.dBi.S.train = subset(cd3000.train, select = c(cd.x.dBi.S,'classname')) 
cd.lc.dBi.S.train = subset(cd3000.train, select = c(cd.lc.dBi.S,'classname')) 
cd.lx.dBi.S.train = subset(cd3000.train, select = c(cd.lx.dBi.S,'classname')) 
cd.cx.dBi.S.train = subset(cd3000.train, select = c(cd.cx.dBi.S,'classname')) 
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cd.lcx.dBi.S.train = subset(cd3000.train, select = c(cd.lcx.dBi.S,'classname')) 
#test  cd dBi 
cd.l.dBi.S.test = subset(cd3000.test, select = c(cd.l.dBi.S,'classname')) 
cd.c.dBi.S.test = subset(cd3000.test, select = c(cd.c.dBi.S,'classname')) 
cd.x.dBi.S.test = subset(cd3000.test, select = c(cd.x.dBi.S,'classname')) 
cd.lc.dBi.S.test = subset(cd3000.test, select = c(cd.lc.dBi.S,'classname')) 
cd.lx.dBi.S.test = subset(cd3000.test, select = c(cd.lx.dBi.S,'classname')) 
cd.cx.dBi.S.test = subset(cd3000.test, select = c(cd.cx.dBi.S,'classname')) 
cd.lcx.dBi.S.test = subset(cd3000.test, select = c(cd.lcx.dBi.S,'classname')) 
 
#train  cd dBe 
cd.l.dBe.S.train = subset(cd3000.train, select = c(cd.l.dBe.S,'classname')) 
cd.c.dBe.S.train = subset(cd3000.train, select = c(cd.c.dBe.S,'classname')) 
cd.x.dBe.S.train = subset(cd3000.train, select = c(cd.x.dBe.S,'classname')) 
cd.lc.dBe.S.train = subset(cd3000.train, select = c(cd.lc.dBe.S,'classname')) 
cd.lx.dBe.S.train = subset(cd3000.train, select = c(cd.lx.dBe.S,'classname')) 
cd.cx.dBe.S.train = subset(cd3000.train, select = c(cd.cx.dBe.S,'classname')) 
cd.lcx.dBe.S.train = subset(cd3000.train, select = c(cd.lcx.dBe.S,'classname')) 
#test  cd dBe 
cd.l.dBe.S.test = subset(cd3000.test, select = c(cd.l.dBe.S,'classname')) 
cd.c.dBe.S.test = subset(cd3000.test, select = c(cd.c.dBe.S,'classname')) 
cd.x.dBe.S.test = subset(cd3000.test, select = c(cd.x.dBe.S,'classname')) 
cd.lc.dBe.S.test = subset(cd3000.test, select = c(cd.lc.dBe.S,'classname')) 
cd.lx.dBe.S.test = subset(cd3000.test, select = c(cd.lx.dBe.S,'classname')) 
cd.cx.dBe.S.test = subset(cd3000.test, select = c(cd.cx.dBe.S,'classname')) 
cd.lcx.dBe.S.test = subset(cd3000.test, select = c(cd.lcx.dBe.S,'classname')) 
 
#train  cd dBt 
cd.l.dBt.S.train = subset(cd3000.train, select = c(cd.l.dBt.S,'classname')) 
cd.c.dBt.S.train = subset(cd3000.train, select = c(cd.c.dBt.S,'classname')) 
cd.x.dBt.S.train = subset(cd3000.train, select = c(cd.x.dBt.S,'classname')) 
cd.lc.dBt.S.train = subset(cd3000.train, select = c(cd.lc.dBt.S,'classname')) 
cd.lx.dBt.S.train = subset(cd3000.train, select = c(cd.lx.dBt.S,'classname')) 
cd.cx.dBt.S.train = subset(cd3000.train, select = c(cd.cx.dBt.S,'classname')) 
cd.lcx.dBt.S.train = subset(cd3000.train, select = c(cd.lcx.dBt.S,'classname')) 
#test  cd dBt 
cd.l.dBt.S.test = subset(cd3000.test, select = c(cd.l.dBt.S,'classname')) 
cd.c.dBt.S.test = subset(cd3000.test, select = c(cd.c.dBt.S,'classname')) 
cd.x.dBt.S.test = subset(cd3000.test, select = c(cd.x.dBt.S,'classname')) 
cd.lc.dBt.S.test = subset(cd3000.test, select = c(cd.lc.dBt.S,'classname')) 
cd.lx.dBt.S.test = subset(cd3000.test, select = c(cd.lx.dBt.S,'classname')) 
cd.cx.dBt.S.test = subset(cd3000.test, select = c(cd.cx.dBt.S,'classname')) 
cd.lcx.dBt.S.test = subset(cd3000.test, select = c(cd.lcx.dBt.S,'classname')) 
 
#train  cd dBit 
cd.l.dBit.S.train = subset(cd3000.train, select = c(cd.l.dBit.S,'classname')) 
cd.c.dBit.S.train = subset(cd3000.train, select = c(cd.c.dBit.S,'classname')) 
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cd.x.dBit.S.train = subset(cd3000.train, select = c(cd.x.dBit.S,'classname')) 
cd.lc.dBit.S.train = subset(cd3000.train, select = c(cd.lc.dBit.S,'classname')) 
cd.lx.dBit.S.train = subset(cd3000.train, select = c(cd.lx.dBit.S,'classname')) 
cd.cx.dBit.S.train = subset(cd3000.train, select = c(cd.cx.dBit.S,'classname')) 
cd.lcx.dBit.S.train = subset(cd3000.train, select = c(cd.lcx.dBit.S,'classname')) 
#test  cd dBit 
cd.l.dBit.S.test = subset(cd3000.test, select = c(cd.l.dBit.S,'classname')) 
cd.c.dBit.S.test = subset(cd3000.test, select = c(cd.c.dBit.S,'classname')) 
cd.x.dBit.S.test = subset(cd3000.test, select = c(cd.x.dBit.S,'classname')) 
cd.lc.dBit.S.test = subset(cd3000.test, select = c(cd.lc.dBit.S,'classname')) 
cd.lx.dBit.S.test = subset(cd3000.test, select = c(cd.lx.dBit.S,'classname')) 
cd.cx.dBit.S.test = subset(cd3000.test, select = c(cd.cx.dBit.S,'classname')) 
cd.lcx.dBit.S.test = subset(cd3000.test, select = c(cd.lcx.dBit.S,'classname')) 

 

A3.2.2. R functions for modelling 

 

Script A3.4 model_and_test_rf function and application example in R 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

model_and_test_rf <-function(training,test) { 
        rf.model <- randomForest(classname~., data=training, 
importance=TRUE, keep.forest=TRUE,ntree=500) 
        rf.test <- predict(rf.model, newdata=test) 
        rf.confusion <- confusionMatrix(rf.test,test$classname, 
dnn=c('Prediction','Reference')) #from caret package 
        return(rf.confusion)             
    } 
 
#apply the model_and_test_rf_model 
cd.l.dBite.S.conf <- model_and_test_rf(cd.l.dBite.S.train,cd.l.dBite.S.test) 
    cd.c.dBite.S.conf <- model_and_test_rf(cd.c.dBite.S.train,cd.c.dBite.S.test) 
    cd.x.dBite.S.conf <- model_and_test_rf(cd.x.dBite.S.train,cd.x.dBite.S.test) 
 cd.lc.dBite.S.conf <- model_and_test_rf(cd.lc.dBite.S.train,cd.lc.dBite.S.test) 
 cd.lx.dBite.S.conf <- model_and_test_rf(cd.lx.dBite.S.train,cd.lx.dBite.S.test) 
cd.cx.dBite.S.conf <- model_and_test_rf(cd.cx.dBite.S.train,cd.cx.dBite.S.test) 
cd.lcx.dBite.S.conf <- 
model_and_test_rf(cd.lcx.dBite.S.train,cd.lcx.dBite.S.test) 
save(cd.l.dBite.S.conf,cd.c.dBite.S.conf,cd.x.dBite.S.conf,cd.lc.dBite.S.conf,cd.
lx.dBite.S.conf,cd.cx.dBite.S.conf,cd.lcx.dBite.S.conf, 
file="cd_dBite_S_confusion.rda") 
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Script A3.5 model_rf function in R 

1 
2 
3 
4 
5 
6 
7 
8 

model_rf <-function(training) { 
    rf.model <- randomForest(classname~., data=training, importance=TRUE, 
keep.forest=TRUE,ntree=500) 
    #rf.test <- predict(rf.model, newdata=test) 
    #rf.confusion <- confusionMatrix(rf.test,test$classname, 
dnn=c('Prediction','Reference')) #from caret package 
    return(rf.model)             
} 

 

 

Script A3.6 varimp_rf function and application example in R 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

varimp_rf <- function(training, test) { 
        rf.model <- randomForest(classname~., data=training, 
importance=TRUE, keep.forest=TRUE,ntree=500) 
        rf.test <- predict(rf.model, newdata=test) 
        rf.confusion <- confusionMatrix(rf.test,test$classname, 
dnn=c('Prediction','Reference')) #from caret package 
        imp.rf.model <-importance(rf.model) 
        #varImpPlot(rf.model) 
        #write.csv(imp.rf.cd100,paste(training,"_imp.csv") 
        imp.rf.model.ordered <- 
imp.rf.model[order(imp.rf.model[,dim(imp.rf.model)[2]], decreasing=TRUE),] 
        imp.rf.model.ordered <- as.data.frame(imp.rf.model.ordered) 
        imp.rf.model.ordered$variables <- rownames(imp.rf.model.ordered) 
        #cdl.varimp.rf.ordered$variables[1] 
        return(imp.rf.model.ordered)     
    } 
#importance(obj, type=1, scale=FALSE) 
#varimp(obj) 
 
    #apply the varimp_rf function 
    cd.l.dBite.S.varimp.rf <- varimp_rf(cd.l.dBite.S.train,cd.l.dBite.S.test) 
    cd.c.dBite.S.varimp.rf <- varimp_rf(cd.c.dBite.S.train,cd.c.dBite.S.test) 
    cd.x.dBite.S.varimp.rf <- varimp_rf(cd.x.dBite.S.train,cd.x.dBite.S.test) 
    cd.lc.dBite.S.varimp.rf <- varimp_rf(cd.lc.dBite.S.train,cd.lc.dBite.S.test) 
    cd.lx.dBite.S.varimp.rf <- varimp_rf(cd.lx.dBite.S.train,cd.lx.dBite.S.test) 
    cd.cx.dBite.S.varimp.rf <- varimp_rf(cd.cx.dBite.S.train,cd.cx.dBite.S.test) 
    cd.lcx.dBite.S.varimp.rf <- varimp_rf(cd.lcx.dBite.S.train,cd.lcx.dBite.S.test) 
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Script A3.7 varimp_rf_unscaled function and application example in R 

1 
2 
3 
4 
5 
6 
7 
8 
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10 
11 
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varimp_rf_unscaled <- function(training, test) { 
    rf.model <- randomForest(classname~., data=training, importance=TRUE, 
keep.forest=TRUE,ntree=500) 
    rf.test <- predict(rf.model, newdata=test) 
    rf.confusion <- confusionMatrix(rf.test,test$classname, 
dnn=c('Prediction','Reference')) #from caret package 
    imp.rf.model <-importance(rf.model,scale=FALSE) 
    #varImpPlot(rf.model) 
    #write.csv(imp.rf.cd100,paste(training,"_imp.csv") 
    imp.rf.model.ordered <- 
imp.rf.model[order(imp.rf.model[,dim(imp.rf.model)[2]-1], 
decreasing=TRUE),] 
    imp.rf.model.ordered <- as.data.frame(imp.rf.model.ordered) 
    imp.rf.model.ordered$variables <- rownames(imp.rf.model.ordered) 
    #cdl.varimp.rf.ordered$variables[1] 
    return(imp.rf.model.ordered)     
} 
 
#apply the varimp_rf_unscaled function 
    cd.lcx.dBite.S.varimp.rf.uns <- 
varimp_rf_unscaled(cd.lcx.dBite.S.train,cd.lcx.dBite.S.test) 

 

 

Script A3.8 model_and_test_svm function in R 

1 
2 
3 
4 
5 
6 
7 
8 

# SVM model 
model_and_test_svm <-function(training,test) { 
    svm.model <- svm(classname~., data=training) 
    svm.test <- predict(svm.model, newdata=test) 
    svm.confusion <- confusionMatrix(svm.test,test$classname, 
dnn=c('Prediction','Reference')) #from caret package 
    return(svm.confusion)             
} 

 

 

Script A3.9 model_svm function in R 

1 
2 
3 
4 
5 
6 
7 

model_svm <-function(training) { 
    svm.model <- svm(classname~., data=training) 
    #svm.test <- predict(svm.model, newdata=test) 
    #svm.confusion <- confusionMatrix(svm.test,test$classname, 
dnn=c('Prediction','Reference')) #from caret package 
    return(svm.model)       
} 
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Script A3.10 rf.topX.conf function in R 

1 
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26 

 
27 

 
28 

 
29 

 
 

rf.topX.conf <- function(varimp_all,train,test,mda_mdg_ind,top_x){ 
                            if (mda_mdg_ind == 'MDG') { 
                                varimp_all_ordered <- varimp_all[order(varimp_all[,8], 
decreasing=TRUE),] 
                                varimp_all_ordered <- as.data.frame(varimp_all_ordered) 
                            } 
                            if (mda_mdg_ind == 'MDA') { 
                                varimp_all_ordered <- varimp_all[order(varimp_all[,7], 
decreasing=TRUE),] 
                                varimp_all_ordered <- as.data.frame(varimp_all_ordered) 
                            } 
                            #select top x (20) variables 
                            varimp_all_ordered_topX <- 
varimp_all_ordered$variables[1:top_x] 
                            varimp_all_ordered_topX_with_classname <- 
c(varimp_all_ordered_topX,"classname") 
                            train.topX <- 
subset(train,select=varimp_all_ordered_topX_with_classname) 
                            test.topX <- 
subset(test,select=varimp_all_ordered_topX_with_classname) 
                            train.topX.conf <- model_and_test_rf(train.topX,test.topX) 
                            return(train.topX.conf) 
} 
 
cd.dBit.rf.conf.mdg.top1 <- 
rf.topX.conf(dBit_cd_uns,cd.lcx.dBite.S.train,cd.lcx.dBite.S.test,'MDG',1) 
cd.dBit.rf.conf.mdg.top2 <- 
rf.topX.conf(dBit_cd_uns,cd.lcx.dBite.S.train,cd.lcx.dBite.S.test,'MDG',2) 
cd.dBit.rf.conf.mdg.top3 <- 
rf.topX.conf(dBit_cd_uns,cd.lcx.dBite.S.train,cd.lcx.dBite.S.test,'MDG',3) 
cd.dBit.rf.conf.mdg.top4 <- 
rf.topX.conf(dBit_cd_uns,cd.lcx.dBite.S.train,cd.lcx.dBite.S.test,'MDG',4) 
cd.dBit.rf.conf.mdg.top5 <- 
rf.topX.conf(dBit_cd_uns,cd.lcx.dBite.S.train,cd.lcx.dBite.S.test,'MDG',5) 

 

 

Script A3.11 rf.topX.model function in R 

1 
2 
3 
4 
5 
6 

rf.topX.model <- function(varimp_all,train,test,mda_mdg_ind,top_x){ 
                        if (mda_mdg_ind == 'MDG') { 
                            varimp_all_ordered <- varimp_all[order(varimp_all[,8], 
decreasing=TRUE),] 
                            varimp_all_ordered <- as.data.frame(varimp_all_ordered) 
                        } 
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                        if (mda_mdg_ind == 'MDA') { 
                            varimp_all_ordered <- varimp_all[order(varimp_all[,7], 
decreasing=TRUE),] 
                            varimp_all_ordered <- as.data.frame(varimp_all_ordered) 
                        } 
                        #select top x (20) variables 
                        varimp_all_ordered_topX <- 
varimp_all_ordered$variables[1:top_x] 
                        varimp_all_ordered_topX_with_classname <- 
c(varimp_all_ordered_topX,"classname") 
                        train.topX <- 
subset(train,select=varimp_all_ordered_topX_with_classname) 
                        test.topX <- 
subset(test,select=varimp_all_ordered_topX_with_classname) 
                        train.topX.model <- model_rf(train.topX) 
                        return(train.topX.model) 
} 

 

 

Script A3.12 rf.topX.varimp function in R 
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rf.topX.varimp <- function(varimp_all,train,test,mda_mdg_ind,top_x){ 
                        if (mda_mdg_ind == 'MDG') { 
                            varimp_all_ordered <- varimp_all[order(varimp_all[,8], 
decreasing=TRUE),] 
                            varimp_all_ordered <- as.data.frame(varimp_all_ordered) 
                        } 
                        if (mda_mdg_ind == 'MDA') { 
                            varimp_all_ordered <- varimp_all[order(varimp_all[,7], 
decreasing=TRUE),] 
                            varimp_all_ordered <- as.data.frame(varimp_all_ordered) 
                        } 
                        #select top x (20) variables 
                        varimp_all_ordered_topX <- 
varimp_all_ordered$variables[1:top_x] 
                        varimp_all_ordered_topX_with_classname <- 
c(varimp_all_ordered_topX,"classname") 
                        train.topX <- 
subset(train,select=varimp_all_ordered_topX_with_classname) 
                        test.topX <- 
subset(test,select=varimp_all_ordered_topX_with_classname) 
                        topX.varimp <- varimp_rf_unscaled(train.topX,test.topX) 
                        return(topX.varimp) 
} 
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Script A3.13 svm.topX.conf function in R 
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30 

 

svm.topX.conf <- function(varimp_all,train,test,mda_mdg_ind,top_x){ 
                        if (mda_mdg_ind == 'MDG') { 
                            varimp_all_ordered <- varimp_all[order(varimp_all[,8], 
decreasing=TRUE),] 
                            varimp_all_ordered <- as.data.frame(varimp_all_ordered) 
                        } 
                        if (mda_mdg_ind == 'MDA') { 
                            varimp_all_ordered <- varimp_all[order(varimp_all[,7], 
decreasing=TRUE),] 
                            varimp_all_ordered <- as.data.frame(varimp_all_ordered) 
                        } 
                        #select top x (20) variables 
                        varimp_all_ordered_topX <- 
varimp_all_ordered$variables[1:top_x] 
                        varimp_all_ordered_topX_with_classname <- 
c(varimp_all_ordered_topX,"classname") 
                        train.topX <- 
subset(train,select=varimp_all_ordered_topX_with_classname) 
                        test.topX <- 
subset(test,select=varimp_all_ordered_topX_with_classname) 
                        # svm top20 modelling 
                        svm.topX.conf <- model_and_test_svm(train.topX,test.topX) 
                        return(svm.topX.conf) 
} 
 
cd.dBit.svm.conf.mdg.top1 <- 
svm.topX.conf(dBit_cd_uns,cd.lcx.dBite.S.train,cd.lcx.dBite.S.test,'MDG',1) 
cd.dBit.svm.conf.mdg.top2 <- 
svm.topX.conf(dBit_cd_uns,cd.lcx.dBite.S.train,cd.lcx.dBite.S.test,'MDG',2) 
cd.dBit.svm.conf.mdg.top3 <- 
svm.topX.conf(dBit_cd_uns,cd.lcx.dBite.S.train,cd.lcx.dBite.S.test,'MDG',3) 
cd.dBit.svm.conf.mdg.top4 <- 
svm.topX.conf(dBit_cd_uns,cd.lcx.dBite.S.train,cd.lcx.dBite.S.test,'MDG',4) 
cd.dBit.svm.conf.mdg.top5 <- 
svm.topX.conf(dBit_cd_uns,cd.lcx.dBite.S.train,cd.lcx.dBite.S.test,'MDG',5) 
 

 

 

Script A3.14 svm.topX.model function in R 

1 
2 
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4 
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svm.topX.model <- function(varimp_all,train,test,mda_mdg_ind,top_x){ 
                        if (mda_mdg_ind == 'MDG') { 
                            varimp_all_ordered <- varimp_all[order(varimp_all[,8], 
decreasing=TRUE),] 
                            varimp_all_ordered <- as.data.frame(varimp_all_ordered) 
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                        } 
                        if (mda_mdg_ind == 'MDA') { 
                            varimp_all_ordered <- varimp_all[order(varimp_all[,7], 
decreasing=TRUE),] 
                            varimp_all_ordered <- as.data.frame(varimp_all_ordered) 
                        } 
                        #select top x (20) variables 
                        varimp_all_ordered_topX <- 
varimp_all_ordered$variables[1:top_x] 
                        varimp_all_ordered_topX_with_classname <- 
c(varimp_all_ordered_topX,"classname") 
                        train.topX <- 
subset(train,select=varimp_all_ordered_topX_with_classname) 
                        test.topX <- 
subset(test,select=varimp_all_ordered_topX_with_classname) 
                        svm.topX.model <- model_svm(train.topX) 
                        return(svm.topX.model) 
} 
 

 

 

Script A3.15 apply_KL_divergence function 
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apply_KL_divergence <- function(dB_training, class1_vector, class2_vector, 
                                                            iterations,colname1,colname2) { 
    library(FNN) 
    temp_subset <- subset(dB_training,  
                                              subset = classname %in% c(class1_vector[1])) 
    class1_colnames <- colnames(temp_subset) 
    a <- length(class1_vector) 
    b <- length(class2_vector) 
    e <- length(class1_colnames) 
    d <- a * b * (e-1) 
    kld.df <- as.data.frame(matrix(nrow = d, ncol = 4))     
    for (n in 1:(length(class1_colnames)-1)) {         
        for (i in 1:length(class1_vector)) { 
            class1_subset <- subset(dB_training,  
                                                       subset = classname %in% c(class1_vector[i])) 
            #class1_colnames <- colnames(class1_subset) 
            for (j in 1:length(class2_vector)) { 
                class2_subset <- subset(dB_training,  
                                                          subset = classname %in% c(class2_vector[j])) 
                kld <- KL.divergence(as.matrix(class1_subset[n]), 
as.matrix(class2_subset[n]), k = iterations, algorithm=c("kd_tree")) 
                #a 
                #kld.df 
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                m = ((n-1)*(length(class1_vector)*length(class2_vector)))+(((i-
1)*length(class1_vector))+j) 
                kld.df[m,1] <- class1_vector[i] 
                kld.df[m,2] <- class2_vector[j]    
                kld.df[m,3] <- class1_colnames[n] 
                kld.df[m,4] <- round(mean(kld[is.finite(kld)]),2) 
            } 
        } 
    } 
    print(n) 
    print(i) 
    print(j) 
    kld.df$V1 <- as.factor(kld.df$V1)  
    kld.df$V2 <- as.factor(kld.df$V2) 
    colnames(kld.df) <- c(colname1,colname2,"Band","KLD") 
    return(kld.df) 
} 
 
# apply_KL_divergence  
td_class_vector <- c("TD_Agriculture", "TD_Bare", "TD_DenseTrees",  
                                     "TD_Settlement","TD_SparseVeg") 
tw_class_vector <- c("TW_Agriculture", "TW_Bare", "TW_DenseTrees",  
                                      "TW_Settlement","TW_SparseVeg") 
kld.td.tw.dB <- apply_KL_divergence(td.tw.lcx.dB.rf.mdg.30b[[1]],  
                                                         td_class_vector,tw_class_vector, 2000,  
                                                         "TD_Train", "TW_Train") 
kld.td.tw.t <- apply_KL_divergence(td.tw.lcx.t.rf.mdg.30b[[1]],  
                        td_class_vector,tw_class_vector, 2000, "TD_Train", "TW_Train") 

 

 

A3.2.3. R functions for plotting graphs 

The multiplot function is reproduced in Script A3.16 for refererence from www.cookbook-

r.com. 

 

Script A3.16 multiplot function from www.cookbook-r.com 

1 
2 
3 
4 
5 
6 

#multiplot function reference: 
#http://www.cookbook-
r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/ 
# Multiple plot function 
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects) 
# - cols:   Number of columns in layout 
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# - layout: A matrix specifying the layout. If present, 'cols' is ignored. 
# 
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), 
# then plot 1 will go in the upper left, 2 will go in the upper right, and 
# 3 will go all the way across the bottom. 
# 
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { 
    library(grid) 
    # Make a list from the ... arguments and plotlist 
    plots <- c(list(...), plotlist) 
     
    numPlots = length(plots) 
     
    # If layout is NULL, then use 'cols' to determine layout 
    if (is.null(layout)) { 
        # Make the panel 
        # ncol: Number of columns of plots 
        # nrow: Number of rows needed, calculated from # of cols 
        layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 
                         ncol = cols, nrow = ceiling(numPlots/cols)) 
    } 
     
    if (numPlots==1) { 
        print(plots[[1]]) 
         
    } else { 
        # Set up the page 
        grid.newpage() 
        pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) 
         
        # Make each plot, in the correct location 
        for (i in 1:numPlots) { 
            # Get the i,j matrix positions of the regions that contain this subplot 
            matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) 
             
            print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, 
                                            layout.pos.col = matchidx$col)) 
        } 
    } 
} 
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The plot_overall_accuracy_with_class_accuracy function in Script A3.17 can be modified to 

include only selected input variables, that are with no X-band, no C-band and for only L-band 

data. 

 

 

Script A3.17 plot_overall_accucary_with_class_accuracy function and application example. 
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plot_overall_accucary_with_class_accuracy <- 
function(inputl.conf,inputc.conf,inputx.conf,inputlc.conf, 
                                                      inputlx.conf,inputcx.conf,inputlcx.conf, 
                                                      site,season,GS,vardescrip,legendYN) { 
#     inputl.conf <- cd.l.dBite.S.conf 
#     inputc.conf <- cd.c.dBite.S.conf 
#     inputx.conf <- cd.x.dBite.S.conf 
#     inputlc.conf <- cd.lc.dBite.S.conf 
#     inputlx.conf <- cd.lx.dBite.S.conf 
#     inputcx.conf <- cd.cx.dBite.S.conf 
#     inputlcx.conf <- cd.lcx.dBite.S.conf 
#     site <- "Cameroon" 
#     season <- "Dry" 
#     GS <- "S" 
#     vardescrip <- "All variables" 
#     legendYN <- "Y" 
     
    input.byClass <-  rbind(inputl.conf$byClass[,1], 
                            inputc.conf$byClass[,1], 
                            inputx.conf$byClass[,1], 
                            inputlc.conf$byClass[,1], 
                            inputlx.conf$byClass[,1], 
                            inputcx.conf$byClass[,1], 
                            inputlcx.conf$byClass[,1]) 
     
    input.overall <- c(inputl.conf$overall[1], 
                       inputc.conf$overall[1], 
                       inputx.conf$overall[1], 
                       inputlc.conf$overall[1], 
                       inputlx.conf$overall[1], 
                       inputcx.conf$overall[1], 
                       inputlcx.conf$overall[1]) 
    #input.overall     
    lcx <- c('L','C','X','LC','LX','CX','LCX')   
     
    #input.overall.new <- input.overall[order(input.overall)] 
     input.overall2 <- cbind(lcx,input.overall) 
    input.overall.order <- input.overall2[order(input.overall)] 
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    input.byClass <- round(input.byClass * 100,2) 
    input.overall <- round(input.overall * 100,2) 
    input.byClass1 <- cbind(input.byClass,input.overall) 
     
    if (site == 'Cameroon') { 
        site_columnnames <- c("BareSoil", "DenseTrees", "Settlement",  
                                 "SparseVeg", "ThinnerDenseTrees","Water","Overall") 
    } 
    if (site == 'Tanzania') { 
        site_columnnames <- c("Agriculture","BareSoil", "DenseTrees",  
                          "Settlement", "SparseVeg","ThinnerDenseTrees","Overall") 
    } 
    #input.byClass1 
    colnames(input.byClass1) <- site_columnnames 
    rownames(input.byClass1) <- lcx 
    input.byClass2 <- cbind(lcx,as.data.frame(input.byClass1)) 
    input.byClass.long <- melt(input.byClass2,id.vars=c("lcx")) 
    input.byClass.long$lcx <- as.factor(input.byClass.long$lcx) 
    #input.byClass.long$lcx <- ordered(input.byClass.long$lcx, 
                                                    levels = c('L','C','X','LC','LX','CX','LCX')) 
    input.byClass.long$lcx <- ordered(input.byClass.long$lcx,  
                                                  levels =c(input.overall.order)) 
     
    if (site == 'Cameroon') { 
        site_colours <- c("#FF5500", "#007139", "#FF0000", "#FB3AFF",  
                                        "#00D362","#0000FF","#000000") 
    } 
    if (site == 'Tanzania') { 
        site_colours <- c("#55AAFF", "#FF5500", "#007139",  
                                      "#FF0000","#FB3AFF","#00D362","#000000") 
    } 
     
    if (GS == "S" && legendYN == "Y") {  
        pinput <-  ggplot(input.byClass.long,  
            aes(x=lcx, y=value, colour=variable, group=variable)) +  
            geom_line(size=1.2) +  
            ggtitle(bquote(.(site) ~ .(season) )) + 
            ylab("Classification Accuracy on Test Data") +  
            xlab("") + 
            scale_color_manual(values=site_colours) + ylim(0,100) + 
                        annotate("text",x=lcx,y=(input.overall+5), 
                        label=paste0(round(input.overall),"%"),size=8) + 
theme(plot.title=element_text(size=rel(3.0),lineheight=2.0,vjust=2), 
                  legend.title=element_text(size=rel(1.5),color="white"), 
                  legend.text=element_text(size=rel(2.0),lineheight=2.0), 
                  legend.key.height=unit(1,"cm"), 
                  axis.title=element_text(size=rel(1.8)), 
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                  axis.text=element_text(size=rel(1.8),colour='black'), 
                  
axis.ticks=element_line(size=rel(2.0)),strip.text=element_text(size=rel(2.0)), 
                  plot.background=element_rect(fill = "transparent", colour = NA) 
            ) 
    } else if (GS == "G" && legendYN == "Y") {              
        pinput <-  ggplot(input.byClass.long, aes(x=lcx, y=value, colour=variable, 
group=variable)) + geom_line(size=1.2) +  
            ggtitle(bquote(.(site) ~ .(season) )) + 
            ylab("Classification Accuracy on Test Data") +  
            xlab("") + 
            scale_color_manual(values=site_colours) + ylim(0,100) + 
                        annotate("text",x=lcx,y=(input.overall+5), 
                        label=paste0(round(input.overall),"%"),size=8) + 
theme(plot.title=element_text(size=rel(3.0),lineheight=2.0,vjust=2), 
                  legend.title=element_text(size=rel(1.5),color="white"), 
                  legend.text=element_text(size=rel(2.0),lineheight=2.0), 
                  legend.key.height=unit(1,"cm"), 
                  axis.title=element_text(size=rel(1.8)), 
                  axis.text=element_text(size=rel(1.8),colour='black'), 
                  
axis.ticks=element_line(size=rel(2.0)),strip.text=element_text(size=rel(2.0)), 
                  plot.background=element_rect(fill = "transparent", colour = NA) 
            )     
    } else if (GS == "S" && legendYN == "N") {  
        pinput <-  ggplot(input.byClass.long, aes(x=lcx, y=value, colour=variable, 
group=variable)) + geom_line(size=1.2) +  
            ggtitle(bquote(.(site) ~ .(season) )) + 
            ylab("Classification Accuracy on Test Data") +  
            xlab("") + 
            scale_color_manual(values=site_colours) + ylim(0,100) + 
                        annotate("text",x=lcx,y=(input.overall+5), 
                        label=paste0(round(input.overall),"%"),size=8) + 
theme(plot.title=element_text(size=rel(3.0),lineheight=2.0,vjust=2), 
                  legend.title=element_text(size=rel(1.5),color="white"), 
                  legend.text=element_text(size=rel(2.0),lineheight=2.0), 
                  legend.key.height=unit(1,"cm"), 
                  legend.position="none", 
                  axis.title=element_text(size=rel(1.8)), 
                  axis.text=element_text(size=rel(1.8),colour='black'), 
axis.ticks=element_line(size=rel(2.0)),strip.text=element_text(size=rel(2.0)), 
                  plot.background=element_rect(fill = "transparent", colour = NA) 
            ) 
    } else if (GS == "G" && legendYN == "N") {              
        pinput <-  ggplot(input.byClass.long,  
                           aes(x=lcx, y=value, colour=variable, group=variable)) +  
            geom_line(size=1.2) +  
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            ggtitle(bquote(.(site) ~ .(season) )) + 
            ylab("Classification Accuracy on Test Data") +  
            xlab("") + 
            scale_color_manual(values=site_colours) + ylim(0,100) + 
                        annotate("text",x=lcx,y=(input.overall+5), 
                        label=paste0(round(input.overall),"%"),size=8) + 
theme(plot.title=element_text(size=rel(3.0),lineheight=2.0,vjust=2), 
                  legend.title=element_text(size=rel(1.5),color="white"), 
                  legend.text=element_text(size=rel(2.0),lineheight=2.0), 
                  legend.key.height=unit(1,"cm"), 
                  legend.position="none", 
                  axis.title=element_text(size=rel(1.8)), 
                  axis.text=element_text(size=rel(1.8),colour='black'), 
axis.ticks=element_line(size=rel(2.0)),strip.text=element_text(size=rel(2.0)), 
                  plot.background=element_rect(fill = "transparent", colour = NA) 
            )     
    } 
    return(pinput)       
} 
 
#all4 S dBite - with legend 
png("all4_cd_cw_td_tw_S_dBite_overallaccuracy_legendY900h.png",height=
900,width=1980, bg="transparent") 
p1 <- plot_overall_accucary_with_class_accuracy(cd.l.dBite.S.conf, 
cd.c.dBite.S.conf, cd.x.dBite.S.conf, cd.lc.dBite.S.conf, cd.lx.dBite.S.conf,  
cd.cx.dBite.S.conf, cd.lcx.dBite.S.conf, "Cameroon",  
"dry", "S", "All variables", "Y") 
p2 <- plot_overall_accucary_with_class_accuracy(cw.l.dBite.S.conf, 
cw.c.dBite.S.conf, cw.x.dBite.S.conf, cw.lc.dBite.S.conf, cw.lx.dBite.S.conf, 
cw.cx.dBite.S.conf, cw.lcx.dBite.S.conf, "Cameroon", "wet", "S",  
"All variables","Y") 
p3 <- plot_overall_accucary_with_class_accuracy(td.l.dBite.S.conf, 
 td.c.dBite.S.conf, td.x.dBite.S.conf, td.lc.dBite.S.conf,  
td.lx.dBite.S.conf, td.cx.dBite.S.conf, td.lcx.dBite.S.conf,  
"Tanzania", "dry","S","All variables","Y") 
p4 <- plot_overall_accucary_with_class_accuracy_no_x(tw.l.dBite.S.conf,  
tw.c.dBite.S.conf, tw.lc.dBite.S.conf, "Tanzania", "wet","S","All variables","Y") 
multiplot(p1,p3,p2,p4,cols=2) 
dev.off() 

 

Script A3.18 plot_overall_accucary_with_class_accuracy_elevation_only function in R. 

1 
2 
3 
4 
5 

plot_overall_accucary_with_class_accuracy_elevation_only <- 
function(inpute.conf, site,season, GS,vardescrip,legendYN) { 
    input.byClass <-  rbind(#inputl.conf$byClass[,1], 
        inpute.conf$byClass[,1] 
        #,inputx.conf$byClass[,1], 
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        #inputlc.conf$byClass[,1] 
        #,inputlx.conf$byClass[,1], 
        #inputcx.conf$byClass[,1], 
        #inputlcx.conf$byClass[,1] 
    ) 
     
    input.overall <- c(#inputl.conf$overall[1], 
        inpute.conf$overall[1] 
        #,inputx.conf$overall[1], 
        #inputlc.conf$overall[1] 
        #,inputlx.conf$overall[1], 
        #inputcx.conf$overall[1], 
        #inputlcx.conf$overall[1] 
    ) 
    input.overall     
    #lcx <- c('L','C','X','LC','LX','CX','LCX') 
    lcx <- c('SRTM') 
     
    input.overall2 <- cbind(lcx,input.overall) 
     
    input.overall.order <- input.overall2[order(input.overall)] 
    input.byClass <- round(input.byClass * 100,2) 
    input.overall <- round(input.overall * 100,2) 
    input.byClass1 <- cbind(input.byClass,input.overall) 
     
    if (site == 'Cameroon') { 
        site_columnnames <- c("BareSoil", "DenseTrees", "Settlement",  
                           "SparseVeg", "ThinnerDenseTrees","Water","Overall") 
    } 
    if (site == 'Tanzania') { 
        site_columnnames <- c("Agriculture","BareSoil", "DenseTrees",  
                  "Settlement","SparseVeg","ThinnerDenseTrees","Overall") 
    } 
    #input.byClass1 
    colnames(input.byClass1) <- site_columnnames 
    rownames(input.byClass1) <- lcx 
    input.byClass2 <- cbind(lcx,as.data.frame(input.byClass1)) 
    input.byClass.long <- melt(input.byClass2,id.vars=c("lcx")) 
    input.byClass.long$lcx <- as.factor(input.byClass.long$lcx) 
    #input.byClass.long$lcx <- ordered(input.byClass.long$lcx,  
    #                                              levels = c('L','C','X','LC','LX','CX','LCX')) 
    input.byClass.long$lcx <- ordered(input.byClass.long$lcx,  
                                                 levels =c(input.overall.order)) 
     
    if (site == 'Cameroon') { 
        site_colours <- c("#FF5500", "#007139", "#FF0000", "#FB3AFF",  
                                       "#00D362","#0000FF","#000000") 
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    } 
    if (site == 'Tanzania') { 
        site_colours <- c("#55AAFF", "#FF5500", "#007139", "#FF0000",   
                                      "#FB3AFF","#00D362","#000000") 
    }     
    if (legendYN == "Y") {              
        pinput <-  ggplot(input.byClass.long, aes(x=lcx, y=value, colour=variable, 
group=variable)) + geom_point(size=4.0) +  
             ggtitle(bquote(.(site) ~ .(season) )) + 
            ylab("Classification Accuracy on Test Data") +  
            xlab("") + 
            scale_color_manual(values=site_colours) + ylim(0,100) + 
             annotate("text",x=lcx,y=(input.overall+5), 
label=paste0(round(input.overall),"%"),size=8) +            
theme(plot.title=element_text(size=rel(3.0),lineheight=2.0,vjust=2), 
                  legend.title=element_text(size=rel(1.5),color="white"), 
                  legend.text=element_text(size=rel(2.0),lineheight=2.0), 
                  legend.key.height=unit(1,"cm"), 
                  axis.title=element_text(size=rel(1.8)), 
                  axis.text=element_text(size=rel(1.8),colour='black'),                  
axis.ticks=element_line(size=rel(2.0)),strip.text=element_text(size=rel(2.0)), 
                  plot.background=element_rect(fill = "transparent", colour = NA) 
            ) 
    } 
    if (legendYN == "N") {              
        pinput <-  ggplot(input.byClass.long, aes(x=lcx, y=value, colour=variable, 
group=variable)) + geom_point(size=4.0) +  
            ggtitle(bquote(.(site) ~ .(season) )) + 
            ylab("Classification Accuracy on Test Data") +  
            xlab("") + 
            scale_color_manual(values=site_colours) + ylim(0,100) +             
annotate("text",x=lcx,y=(input.overall+5),label=paste0(round(input.overall),"
%"),size=8) +            
theme(plot.title=element_text(size=rel(3.0),lineheight=2.0,vjust=2), 
                  legend.title=element_text(size=rel(1.5),color="white"), 
                  legend.text=element_text(size=rel(2.0),lineheight=2.0), 
                  legend.key.height=unit(1,"cm"), 
                  legend.position="none",  #for legendYN="N" 
                  axis.title=element_text(size=rel(1.8)), 
                  axis.text=element_text(size=rel(1.8),colour='black'),                  
axis.ticks=element_line(size=rel(2.0)),strip.text=element_text(size=rel(2.0)), 
                  plot.background=element_rect(fill = "transparent", colour = NA) 
            ) 
    } 
    return(pinput)       
} 
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The variable were named P for PALSAR, A for ASAR, and T for TerraSAR-X. For showing the 

variable names instead as L, C and X, a function convert_pat_to_lcx_dBite was written, and 

shown in Script A3.19. 

 

Script A3.19 convert_pat_to_lcx_dBite function and example application in R 

1 
2 

 
3 
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5 
6 
7 
8 
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10 
11 
12 
13 
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15 
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27 
28 
29 
30 
31 
32 
33 
34 
35 

convert_pat_to_lcx_dBite <- function(a) { 
    library(stringr) 
    library(dplyr) 
    a$type <- "notAssignedYet" 
    a$type <- with(a,ifelse(grepl("Entr",a$variables),"t",a$type)) 
    a$type <- with(a,ifelse(grepl("mean",a$variables),"t",a$type)) 
    a$type <- with(a,ifelse(grepl("Contr",a$variables),"t",a$type)) 
    a$type <- with(a,ifelse(grepl("Var",a$variables),"t",a$type)) 
    a$type <- with(a,ifelse(grepl("Corr",a$variables),"t",a$type)) 
    a$type <- with(a,ifelse(grepl("elev",a$variables),"e",a$type)) 
    a$type <- with(a,ifelse(grepl("slope",a$variables),"e",a$type)) 
    a$type <- with(a,ifelse(grepl("aspect",a$variables),"e",a$type)) 
    a$type <- with(a,ifelse(grepl("linear",a$variables),"i",a$type)) 
    a$type <- with(a,ifelse(grepl("NDIS",a$variables),"i",a$type)) 
    a$type <- with(a,ifelse(grepl("rdB",a$variables),"i",a$type)) 
    a$type <- with(a,ifelse(grepl("rdB",a$variables),"i",a$type)) 
    a$type <- with(a,ifelse(grepl("copol",a$variables),"i",a$type)) 
    a$type <- with(a,ifelse(grepl("depol",a$variables),"i",a$type)) 
    a$type <- with(a,ifelse(grepl("HVS",a$variables),"dB",a$type)) 
    a$type <- with(a,ifelse(grepl("VHS",a$variables),"dB",a$type)) 
    a$type <- with(a,ifelse(grepl("HHS",a$variables),"dB",a$type)) 
    a$type <- with(a,ifelse(grepl("VVS",a$variables),"dB",a$type)) 
    a$type <- with(a,ifelse(grepl("HVG",a$variables),"dB",a$type)) 
    a$type <- with(a,ifelse(grepl("VHG",a$variables),"dB",a$type)) 
    a$type <- with(a,ifelse(grepl("HHG",a$variables),"dB",a$type)) 
    a$type <- with(a,ifelse(grepl("VVG",a$variables),"dB",a$type)) 
    a$e <- with(a,ifelse(a$type == 
"e",substring(a$variables,4,nchar(a$variables)),"")) 
                        library(stringr) 
                        library(dplyr) 
                        a$bcc  <- "" 
                        a$b    <- "" 
                        a$cc   <- "" 
                        a$freq <- "" 
                        a$var <- "" 
                        a$calc1 <- "" 
                        a$calc2 <- "" 
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                        a$win1 <- "" 
                        a$win2 <- "" 
                        a$m   <- "" 
                        a$descrip <- "" 
                        a$bcc <- with(a,ifelse((a$type == "t" | a$type =="i" | a$type 
=="dB"), substring(a$variables,4,6),a$bcc)) 
                        a$b   <- with(a,ifelse((a$type == "t" | a$type =="i" | a$type 
=="dB"),substring(a$variables,4,4),a$b)) 
                        a$cc   <- with(a,ifelse((a$type == "t" | a$type =="i" | a$type 
=="dB"),substring(a$variables,5,6),a$cc)) 
                        a$freq <- with(a,ifelse(b == "P","L", 
                                                ifelse(b == "A","C", 
                                                       ifelse(b == "T","X","")))) 
                        a$var <- with(a,ifelse(a$type == "t" | a$type == "i" | a$type == 
"dB",paste0(a$freq,"-",a$cc),a$freq)) 
                        a$calc1 <- with(a,ifelse(a$type == "t" | a$type == 
"i",substring(a$variables,5,nchar(a$variables)),a$calc1)) 
                        a$calc2 <- with(a,ifelse(a$type == "t" | a$type == 
"i",paste0(a$freq,"-",a$calc1),a$calc2)) 
                        a$calc2 <- with(a,ifelse(a$type == "t" | a$type == 
"i",gsub("S","",a$calc2),a$calc2)) 
                        a$calc2 <- with(a,ifelse(a$type == "t" | a$type == 
"i",gsub("linear","lin",a$calc2),a$calc2)) 
                        a$calc2 <- with(a,ifelse(a$type == "t" | a$type == 
"i",gsub("plus","p",a$calc2),a$calc2)) 
                        a$calc2 <- with(a,ifelse(a$type == "t" | a$type == 
"i",gsub("min","m",a$calc2),a$calc2)) 
                        a$calc2 <- with(a,ifelse(a$type == "t" | a$type == 
"i",gsub("div","d",a$calc2),a$calc2)) 
                        a$calc2 <- with(a,ifelse(a$type == "t" | a$type == 
"i",gsub("_gamma","",a$calc2),a$calc2)) 
                        a$calc2 <- with(a,ifelse(a$type == "t" | a$type == 
"i",gsub("_delta","",a$calc2),a$calc2)) 
                        a$win1 <- with(a,ifelse(a$type == 
"t",substring(a$calc2,5,6),a$win1)) 
                        a$win2 <- with(a,ifelse(substring(win1,1,1) == 
"1",substring(win1,1,2),substring(win1,1,1))) 
                        a$m <- with(a,ifelse(a$type == "t", 
                                             ifelse(nchar(win2) == 
2,substring(calc2,7,nchar(calc2)),substring(calc2,6,nchar(calc2))),a$m)) 
                        a$m <- with(a,ifelse(a$type == "t",gsub("1","",a$m),a$m)) 
                        a$m <- with(a,ifelse(a$type == "t",gsub("2","",a$m),a$m))     
                        a$m <- with(a,ifelse(a$type == 
"t",gsub("mean","Mean",a$m),a$m))         
                        a$descrip <- with(a,ifelse(a$type == "dB",var,a$descrip)) 
                        a$descrip <- with(a,ifelse(a$type == "i",calc2,a$descrip)) 
                        a$descrip <- with(a,ifelse(a$type == "t",calc2,a$descrip)) 
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                        a$descrip <- with(a,ifelse(a$type == "e",e,a$descrip)) 
     return(a) 
} 
 
load("dBite_dBit_t_unscaled.rda") 
dBite_cd_uns <- convert_pat_to_lcx_dBite(cd.lcx.dBite.S.varimp.rf.uns) 
dBit_cd_uns <- convert_pat_to_lcx_dBite(cd.lcx.dBit.S.varimp.rf_uns) 
t_cd_uns <- convert_pat_to_lcx_dBite(cd.lcx.t.S.varimp.rf_uns) 
 
db_cd_uns_select <- dBite_cd_uns[dBite_cd_uns$type=="dB",] 
i_cd_uns_select <- dBite_cd_uns[dBite_cd_uns$type=="i",] 
t_cd_uns_select <- dBite_cd_uns[dBite_cd_uns$type=="t",] 
e_cd_uns_select <- dBite_cd_uns[dBite_cd_uns$type=="e",] 
 

 

Script A3.20 corrplot function and example application in R 

1 
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library(corrplot) 
#cd mdg 
ppi <- 300 
png("cd.lcx.dBite.S.train_top30_mdg_cor.png",height=8*ppi,width=7*ppi, 
res=ppi,bg="transparent") 
corrplot(cd.lcx.dBite.S.train_top30_mdg_newcolnames_cor, 
method='ellipse',mar=c(0,0,2,0),order="hclust",tl.col="black", 
         title="Cameroon dry top 30 MDG correlation, hclust sorting") 
dev.off() 
 

 

Script A3.21 plot_overall_accucary_with_class_accuracy_top1_to_30_in1s function 

1 
 

2 
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10 
11 
12 
13 
14 
15 

plot_overall_accucary_with_class_accuracy_top1_to_30_in1s <- 
function(input1.conf,input2.conf,input3.conf,input4.conf, input5.conf, 
input6.conf,input7.conf,input8.conf,input9.conf,input10.conf, 
input11.conf,input12.conf,input13.conf,input14.conf,input15.conf, 
input16.conf,input17.conf,input18.conf,input19.conf,input20.conf, 
input21.conf,input22.conf,input23.conf,input24.conf,input25.conf, 
input26.conf,input27.conf,input28.conf,input29.conf,input30.conf, 
site,season,GS,vardescrip,legendYN) { 
     
    input.byClass <-  rbind(input1.conf$byClass[,1],input2.conf$byClass[,1], 
input3.conf$byClass[,1],input4.conf$byClass[,1],input5.conf$byClass[,1], 
input6.conf$byClass[,1], input7.conf$byClass[,1], input8.conf$byClass[,1], 
input9.conf$byClass[,1],input10.conf$byClass[,1],input11.conf$byClass[,1], 
input12.conf$byClass[,1], input13.conf$byClass[,1], input14.conf$byClass[,1], 
input15.conf$byClass[,1], input16.conf$byClass[,1], input17.conf$byClass[,1], 
input18.conf$byClass[,1],input19.conf$byClass[,1],input20.conf$byClass[,1], 
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input21.conf$byClass[,1], input22.conf$byClass[,1], input23.conf$byClass[,1], 
input24.conf$byClass[,1],input25.conf$byClass[,1],input26.conf$byClass[,1],  
input27.conf$byClass[,1],input28.conf$byClass[,1], input29.conf$byClass[,1], 
input30.conf$byClass[,1] ) 
     
    input.overall <- c(input1.conf$overall[1], input2.conf$overall[1], 
input3.conf$overall[1], input4.conf$overall[1], input5.conf$overall[1], 
input6.conf$overall[1], input7.conf$overall[1], input8.conf$overall[1], 
input9.conf$overall[1], input10.conf$overall[1], input11.conf$overall[1], 
input12.conf$overall[1], input13.conf$overall[1], input14.conf$overall[1], 
input15.conf$overall[1], input16.conf$overall[1], input17.conf$overall[1], 
input18.conf$overall[1], input19.conf$overall[1], input20.conf$overall[1], 
input21.conf$overall[1], input22.conf$overall[1], input23.conf$overall[1], 
input24.conf$overall[1], input25.conf$overall[1],                       
input26.conf$overall[1], input27.conf$overall[1], input28.conf$overall[1], 
input29.conf$overall[1], input30.conf$overall[1] ) 
    #input.overall     
     
    lcx <- c('1','2','3','4','5', 
             '6','7','8','9','10', 
             '11','12','13','14','15', 
             '16','17','18','19','20', 
             '21','22','23','24','25', 
             '26','27','28','29','30')   
     
    input.overall2 <- cbind(lcx,input.overall) 
    input.overall.order <- input.overall2[order(input.overall)] 
    input.byClass <- round(input.byClass * 100,2) 
    input.overall <- round(input.overall * 100,2) 
    input.byClass1 <- cbind(input.byClass,input.overall) 
     
    if (site == 'Cameroon') { 
        site_columnnames <- c("BareSoil", "DenseTrees", "Settlement",  
                                     "SparseVeg", "ThinnerDenseTrees","Water","Overall") 
    } 
    if (site == 'Tanzania') { 
        site_columnnames <- c("Agriculture","BareSoil", "DenseTrees",  
                                 "Settlement","SparseVeg","ThinnerDenseTrees","Overall") 
    } 
    #input.byClass1 
    colnames(input.byClass1) <- site_columnnames 
    rownames(input.byClass1) <- lcx 
    input.byClass2 <- cbind(lcx,as.data.frame(input.byClass1)) 
    input.byClass.long <- melt(input.byClass2,id.vars=c("lcx")) 
    input.byClass.long$lcx <- as.factor(input.byClass.long$lcx) 
    input.byClass.long$lcx <- ordered(input.byClass.long$lcx,  
                                                       levels = c('1','2','3','4','5', 
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                                                                         '6','7','8','9','10', 
                                                                         '11','12','13','14','15', 
                                                                         '16','17','18','19','20', 
                                                                         '21','22','23','24','25', 
                                                                         '26','27','28','29','30')) 
    ##input.byClass.long$lcx <- ordered(input.byClass.long$lcx,  
    ## levels =c(input.overall.order))   #this line was commented out, which  
    ## was originally ordered in LCX 
     
    if (site == 'Cameroon') { 
        site_colours <- c("#FF5500", "#007139", "#FF0000", "#FB3AFF",  
                                      "#00D362","#0000FF","#000000") 
    } 
    if (site == 'Tanzania') { 
        site_colours <- c("#55AAFF", "#FF5500", "#007139", "#FF0000",  
                                      "#FB3AFF","#00D362","#000000") 
    } 
     
    if (GS == "S" && legendYN == "Y") {  
        pinput <-  ggplot(input.byClass.long, aes(x=lcx, y=value, colour=variable, 
group=variable)) + geom_line(size=1.2) +  
            #ggtitle(bquote(.(site) ~ .(season) ~ sigma^0 ~ .(vardescrip) ~ "RF")) + 
            #ggtitle(bquote(.(site) ~ .(season) ~ sigma^0 ~ .(vardescrip) ~ "RF")) + 
            ggtitle(bquote(.(site) ~ .(season) ~ "")) + 
            #ggtitle(expression(paste0(site," ",season," ",sigma^0," ",vardescrip," 
RF"))) + 
            ylab("Classification Accuracy on Test Data") +  
            #xlab("Sorted Sensor combinations") +  
            xlab("") + 
            scale_color_manual(values=site_colours) + ylim(0,100) + 
             
annotate("text",x=5.2,y=(input.overall[5]+5),label=paste0(round(input.overal
l[5]),"%"),size=8) + 
            
annotate("text",x=10.2,y=(input.overall[10]+5),label=paste0(round(input.ove
rall[10]),"%"),size=8) + 
            
annotate("text",x=15.2,y=(input.overall[15]+5),label=paste0(round(input.ove
rall[15]),"%"),size=8) + 
            
annotate("text",x=20.2,y=(input.overall[20]+5),label=paste0(round(input.ove
rall[20]),"%"),size=8) + 
            
annotate("text",x=25.2,y=(input.overall[25]+5),label=paste0(round(input.ove
rall[25]),"%"),size=8) + 
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annotate("text",x=29.2,y=(input.overall[30]+5),label=paste0(round(input.ove
rall[30]),"%"),size=8) + 
            theme(plot.title=element_text(size=rel(3.0),lineheight=2.0,vjust=2), 
                  legend.title=element_text(size=rel(1.5),color="white"), 
                  legend.text=element_text(size=rel(2.0),lineheight=2.0), 
                  legend.key.height=unit(1,"cm"), 
                  axis.title=element_text(size=rel(1.8)), 
                  axis.text=element_text(size=rel(1.5),colour='black'), 
                  
axis.ticks=element_line(size=rel(2.0)),strip.text=element_text(size=rel(2.0)), 
                  plot.background=element_rect(fill = "transparent", colour = NA) 
            ) 
    } else if (GS == "G" && legendYN == "Y") {              
        pinput <-  ggplot(input.byClass.long, aes(x=lcx, y=value, colour=variable, 
group=variable)) + geom_line(size=1.2) +  
            #ggtitle(bquote(.(site) ~ .(season) ~ gamma^0 ~ .(vardescrip) ~ "RF")) + 
            ggtitle(bquote(.(site) ~ .(season) ~ "")) + 
            #ggtitle(expression(paste(site,season,gamma^0,vardescrip," RF"))) + 
            #ggtitle(expression(paste0(site," ",season," ",gamma^0," ",vardescrip," 
RF"))) + 
            ylab("Classification Accuracy on Test Data") +  
            #xlab("Sorted Sensor combinations") +  
            xlab("") + 
            scale_color_manual(values=site_colours) + ylim(0,100) + 
                        
annotate("text",x=5.2,y=(input.overall[5]+5),label=paste0(round(input.overal
l[5]),"%"),size=8) + 
            
annotate("text",x=10.2,y=(input.overall[10]+5),label=paste0(round(input.ove
rall[10]),"%"),size=8) + 
            
annotate("text",x=15.2,y=(input.overall[15]+5),label=paste0(round(input.ove
rall[15]),"%"),size=8) + 
            
annotate("text",x=20.2,y=(input.overall[20]+5),label=paste0(round(input.ove
rall[20]),"%"),size=8) + 
            
annotate("text",x=25.2,y=(input.overall[25]+5),label=paste0(round(input.ove
rall[25]),"%"),size=8) + 
            
annotate("text",x=29.2,y=(input.overall[30]+5),label=paste0(round(input.ove
rall[30]),"%"),size=8) + 
            theme(plot.title=element_text(size=rel(3.0),lineheight=2.0,vjust=2), 
                  legend.title=element_text(size=rel(1.5),color="white"), 
                  legend.text=element_text(size=rel(2.0),lineheight=2.0), 
                  legend.key.height=unit(1,"cm"), 
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                  axis.title=element_text(size=rel(1.8)), 
                  axis.text=element_text(size=rel(1.5),colour='black'), 
                  
axis.ticks=element_line(size=rel(2.0)),strip.text=element_text(size=rel(2.0)), 
                  plot.background=element_rect(fill = "transparent", colour = NA) 
            )     
    } else if (GS == "S" && legendYN == "N") {  
        pinput <-  ggplot(input.byClass.long, aes(x=lcx, y=value, colour=variable, 
group=variable)) + geom_line(size=1.2) +  
            #ggtitle(bquote(.(site) ~ .(season) ~ sigma^0 ~ .(vardescrip) ~ "RF")) + 
            #ggtitle(bquote(.(site) ~ .(season) ~ sigma^0 ~ .(vardescrip) ~ "RF")) + 
            ggtitle(bquote(.(site) ~ .(season) ~ "")) + 
            #ggtitle(expression(paste0(site," ",season," ",sigma^0," ",vardescrip," 
RF"))) + 
            ylab("Classification Accuracy on Test Data") +  
            #xlab("Sorted Sensor combinations") +  
            xlab("") + 
            scale_color_manual(values=site_colours) + ylim(0,100) + 
            
#annotate("text",x=29.2,y=(max(input.overall)+5),label=paste0(round(max(in
put.overall)),"%"),size=8) + 
            
annotate("text",x=5.2,y=(input.overall[5]+5),label=paste0(round(input.overal
l[5]),"%"),size=8) + 
            
annotate("text",x=10.2,y=(input.overall[10]+5),label=paste0(round(input.ove
rall[10]),"%"),size=8) + 
            
annotate("text",x=15.2,y=(input.overall[15]+5),label=paste0(round(input.ove
rall[15]),"%"),size=8) + 
            
annotate("text",x=20.2,y=(input.overall[20]+5),label=paste0(round(input.ove
rall[20]),"%"),size=8) + 
            
annotate("text",x=25.2,y=(input.overall[25]+5),label=paste0(round(input.ove
rall[25]),"%"),size=8) + 
            
annotate("text",x=29.2,y=(input.overall[30]+5),label=paste0(round(input.ove
rall[30]),"%"),size=8) + 
            theme(plot.title=element_text(size=rel(3.0),lineheight=2.0,vjust=2), 
                  legend.title=element_text(size=rel(1.5),color="white"), 
                  legend.text=element_text(size=rel(2.0),lineheight=2.0), 
                  legend.key.height=unit(1,"cm"), 
                  legend.position="none", 
                  axis.title=element_text(size=rel(1.8)), 
                  axis.text=element_text(size=rel(1.5),colour='black'), 
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axis.ticks=element_line(size=rel(2.0)),strip.text=element_text(size=rel(2.0)), 
                  plot.background=element_rect(fill = "transparent", colour = NA) 
            ) 
    } else if (GS == "G" && legendYN == "N") {              
        pinput <-  ggplot(input.byClass.long, aes(x=lcx, y=value, colour=variable, 
group=variable)) + geom_line(size=1.2) +  
            #ggtitle(bquote(.(site) ~ .(season) ~ gamma^0 ~ .(vardescrip) ~ "RF")) + 
            ggtitle(bquote(.(site) ~ .(season) ~ "")) + 
            #ggtitle(expression(paste(site,season,gamma^0,vardescrip," RF"))) + 
            #ggtitle(expression(paste0(site," ",season," ",gamma^0," ",vardescrip," 
RF"))) + 
            ylab("Classification Accuracy on Test Data") +  
            #xlab("Sorted Sensor combinations") +  
            xlab("") + 
            scale_color_manual(values=site_colours) + ylim(0,100) + 
            
#annotate("text",x=29.2,y=(max(input.overall)+5),label=paste0(round(max(in
put.overall)),"%"),size=8) + 
            
annotate("text",x=5.2,y=(input.overall[5]+5),label=paste0(round(input.overal
l[5]),"%"),size=8) + 
            
annotate("text",x=10.2,y=(input.overall[10]+5),label=paste0(round(input.ove
rall[10]),"%"),size=8) + 
            
annotate("text",x=15.2,y=(input.overall[15]+5),label=paste0(round(input.ove
rall[15]),"%"),size=8) + 
            
annotate("text",x=20.2,y=(input.overall[20]+5),label=paste0(round(input.ove
rall[20]),"%"),size=8) + 
            
annotate("text",x=25.2,y=(input.overall[25]+5),label=paste0(round(input.ove
rall[25]),"%"),size=8) + 
            
annotate("text",x=29.2,y=(input.overall[30]+5),label=paste0(round(input.ove
rall[30]),"%"),size=8) + 
            theme(plot.title=element_text(size=rel(3.0),lineheight=2.0,vjust=2), 
                  legend.title=element_text(size=rel(1.5),color="white"), 
                  legend.text=element_text(size=rel(2.0),lineheight=2.0), 
                  legend.key.height=unit(1,"cm"), 
                  legend.position="none", 
                  axis.title=element_text(size=rel(1.8)), 
                  axis.text=element_text(size=rel(1.5),colour='black'), 
                  
axis.ticks=element_line(size=rel(2.0)),strip.text=element_text(size=rel(2.0)), 
                  plot.background=element_rect(fill = "transparent", colour = NA) 
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            )     
    } 
    return(pinput)       
} 
 
#apply plot_overall_accucary_with_class_accuracy_top1_to_30_in1s 
png("top01to30_S_MDG_overallaccuracy_legendY900h.png",height=900,wid
th=1980, bg="transparent") 
p1 <-
plot_overall_accucary_with_class_accuracy_top1_to_30_in1s(cd.dBit.rf.conf.
mdg.top1, cd.dBit.rf.conf.mdg.top2, cd.dBit.rf.conf.mdg.top3, 
cd.dBit.rf.conf.mdg.top4, cd.dBit.rf.conf.mdg.top5, cd.dBit.rf.conf.mdg.top6, 
cd.dBit.rf.conf.mdg.top7, cd.dBit.rf.conf.mdg.top8, cd.dBit.rf.conf.mdg.top9, 
cd.dBit.rf.conf.mdg.top10, cd.dBit.rf.conf.mdg.top11, 
cd.dBit.rf.conf.mdg.top12, cd.dBit.rf.conf.mdg.top13, 
cd.dBit.rf.conf.mdg.top14, cd.dBit.rf.conf.mdg.top15, 
cd.dBit.rf.conf.mdg.top16, cd.dBit.rf.conf.mdg.top17, 
cd.dBit.rf.conf.mdg.top18, cd.dBit.rf.conf.mdg.top19, 
cd.dBit.rf.conf.mdg.top20, cd.dBit.rf.conf.mdg.top21, 
cd.dBit.rf.conf.mdg.top22, cd.dBit.rf.conf.mdg.top23, 
cd.dBit.rf.conf.mdg.top24, cd.dBit.rf.conf.mdg.top25, 
cd.dBit.rf.conf.mdg.top26, cd.dBit.rf.conf.mdg.top27, 
cd.dBit.rf.conf.mdg.top28, cd.dBit.rf.conf.mdg.top29, 
cd.dBit.rf.conf.mdg.top30,  "Cameroon","dry","S","MDG","Y") 
p2 <- 
plot_overall_accucary_with_class_accuracy_top1_to_30_in1s(cw.dBit.rf.conf
.mdg.top1, cw.dBit.rf.conf.mdg.top2, cw.dBit.rf.conf.mdg.top3, 
cw.dBit.rf.conf.mdg.top4, cw.dBit.rf.conf.mdg.top5, 
cw.dBit.rf.conf.mdg.top6, cw.dBit.rf.conf.mdg.top7, 
cw.dBit.rf.conf.mdg.top8, cw.dBit.rf.conf.mdg.top9, 
cw.dBit.rf.conf.mdg.top10, cw.dBit.rf.conf.mdg.top11, 
cw.dBit.rf.conf.mdg.top12, cw.dBit.rf.conf.mdg.top13, 
cw.dBit.rf.conf.mdg.top14, cw.dBit.rf.conf.mdg.top15, 
cw.dBit.rf.conf.mdg.top16, cw.dBit.rf.conf.mdg.top17, 
cw.dBit.rf.conf.mdg.top18, cw.dBit.rf.conf.mdg.top19, 
cw.dBit.rf.conf.mdg.top20, cw.dBit.rf.conf.mdg.top21, 
cw.dBit.rf.conf.mdg.top22, cw.dBit.rf.conf.mdg.top23, 
cw.dBit.rf.conf.mdg.top24, cw.dBit.rf.conf.mdg.top25,  
cw.dBit.rf.conf.mdg.top26, cw.dBit.rf.conf.mdg.top27, 
cw.dBit.rf.conf.mdg.top28, cw.dBit.rf.conf.mdg.top29, 
cw.dBit.rf.conf.mdg.top30, "Cameroon","wet","S","MDG","Y") 
p3 <- 
plot_overall_accucary_with_class_accuracy_top1_to_30_in1s(td.dBit.rf.conf.
mdg.top1, td.dBit.rf.conf.mdg.top2, td.dBit.rf.conf.mdg.top3, 
td.dBit.rf.conf.mdg.top4, td.dBit.rf.conf.mdg.top5,  td.dBit.rf.conf.mdg.top6, 
td.dBit.rf.conf.mdg.top7, td.dBit.rf.conf.mdg.top8, td.dBit.rf.conf.mdg.top9, 
td.dBit.rf.conf.mdg.top10, td.dBit.rf.conf.mdg.top11, 
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td.dBit.rf.conf.mdg.top12, td.dBit.rf.conf.mdg.top13, 
td.dBit.rf.conf.mdg.top14, td.dBit.rf.conf.mdg.top15, 
td.dBit.rf.conf.mdg.top16, td.dBit.rf.conf.mdg.top17, 
td.dBit.rf.conf.mdg.top18, td.dBit.rf.conf.mdg.top19, 
td.dBit.rf.conf.mdg.top20, td.dBit.rf.conf.mdg.top21, 
td.dBit.rf.conf.mdg.top22, td.dBit.rf.conf.mdg.top23, 
td.dBit.rf.conf.mdg.top24, td.dBit.rf.conf.mdg.top25, 
td.dBit.rf.conf.mdg.top26, td.dBit.rf.conf.mdg.top27, 
td.dBit.rf.conf.mdg.top28, td.dBit.rf.conf.mdg.top29, 
td.dBit.rf.conf.mdg.top30, "Tanzania","dry","S","MDG","Y") 
p4 <- 
plot_overall_accucary_with_class_accuracy_top1_to_30_in1s(tw.dBit.rf.conf.
mdg.top1, tw.dBit.rf.conf.mdg.top2, tw.dBit.rf.conf.mdg.top3, 
tw.dBit.rf.conf.mdg.top4, tw.dBit.rf.conf.mdg.top5, tw.dBit.rf.conf.mdg.top6, 
tw.dBit.rf.conf.mdg.top7, tw.dBit.rf.conf.mdg.top8, tw.dBit.rf.conf.mdg.top9, 
tw.dBit.rf.conf.mdg.top10, tw.dBit.rf.conf.mdg.top11, 
tw.dBit.rf.conf.mdg.top12, tw.dBit.rf.conf.mdg.top13, 
tw.dBit.rf.conf.mdg.top14, tw.dBit.rf.conf.mdg.top15, 
tw.dBit.rf.conf.mdg.top16, tw.dBit.rf.conf.mdg.top17, 
tw.dBit.rf.conf.mdg.top18, tw.dBit.rf.conf.mdg.top19, 
tw.dBit.rf.conf.mdg.top20, tw.dBit.rf.conf.mdg.top21, 
tw.dBit.rf.conf.mdg.top22, tw.dBit.rf.conf.mdg.top23, 
tw.dBit.rf.conf.mdg.top24, tw.dBit.rf.conf.mdg.top25, 
tw.dBit.rf.conf.mdg.top26, tw.dBit.rf.conf.mdg.top27, 
tw.dBit.rf.conf.mdg.top28, tw.dBit.rf.conf.mdg.top29, 
tw.dBit.rf.conf.mdg.top30, "Tanzania","wet","S","MDG","Y") 
multiplot(p1,p3,p2,p4,cols=2) 
dev.off() 

 

Script A3.22 apply_Model1_on_Site2_conf_newsite_cw_traintest 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

apply_Model1_on_Site2_conf_newsite_cw_traintest <- function(train1, 
train2, test1, test2, same_other_ind, overlap_colnames, 
                                               classname_site_ind, 
                                               LCX_ind, dBit_ind, elevYN, 
                                               model_ind, mda_mdg_ind,top_x) { 
#      train1 <- cw3000.train 
#      train2 <- cd3000.train 
#      test1 <- cw3000.test  
#      test2 <- cd3000.test 
#      same_other_ind <- "wetdry" 
#      overlap_colnames <- F_overlap_CW_CD_S 
#      classname_site_ind <- "classname_wetdry_site" #"classname_tt_site" 
#      LCX_ind <-c("L","C","X") 
#      dBit_ind <-c("dB","i","t") 
#      elevYN <-"Y" 
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60 

#      model_ind <-"RF" 
#      mda_mdg_ind <-"MDG" 
#      top_x <-30  
#      
    colnames2 <- return_LCX(overlap_colnames,LCX_ind)    
    colnames3 <- return_dBit(colnames2,dBit_ind) 
    if (elevYN == "Y") { colnames4 <- c(colnames3,"elev","slope","aspect") 
    } else if (elevYN == "N") { colnames4 <- colnames3 } 
     
    b_d_se_sp_w <- 
c("Bare","DenseTrees","Settlement","SparseVeg","Water") 
    b_d_se_sp_w_site <- c("CW_Bare", "CW_DenseTrees", "CW_Settlement", 
"CW_SparseVeg", "CW_Water", "DW_Bare", "DW_DenseTrees", 
"DW_Settlement", "DW_SparseVeg", "DW_Water") 
    b_d_se_sp_w_site_only.cw <- c("CW_Bare", "CW_DenseTrees", 
"CW_Settlement", "CW_SparseVeg", "CW_Water") 
    b_d_se_sp_w_site_only.dw <- c("DW_Bare", "DW_DenseTrees", 
"DW_Settlement", "DW_SparseVeg", "DW_Water") 
    #train vs test comparison 
    #b_d_se_sp_w <- c("Bare", "DenseTrees", "Settlement", "SparseVeg", 
"Water") 
    b_d_se_sp_w_site_cw_tt <- c("CW_Train_Bare", "CW_Train_DenseTrees", 
"CW_Train_Settlement", "CW_Train_SparseVeg", "CW_Train_Water", 
"CW_Test_Bare", "CW_Test_DenseTrees", "CW_Test_Settlement", 
"CW_Test_SparseVeg", "CW_Test_Water") 
    b_d_se_sp_w_site_only.cw_train <- c("CW_Train_Bare", 
"CW_Train_DenseTrees", "CW_Train_Settlement", "CW_Train_SparseVeg", 
"CW_Train_Water") 
    b_d_se_sp_w_site_only.cw_test <- c("CW_Test_Bare", 
"CW_Test_DenseTrees", "CW_Test_Settlement", "CW_Test_SparseVeg", 
"CW_Test_Water") 
     
    #b_d_se_sp_w_site_cw_cd <- c("CW_Train_Bare", 
#"CW_Train_DenseTrees", "CW_Train_Settlement", 
#"CW_Train_SparseVeg","CW_Train_Water", 
#"CD_Train_Bare","CD_Train_DenseTrees","CD_Train_Settlement", 
#"CD_Train_SparseVeg","CD_Train_Water") 
     
    b_d_se_sp_w_site_cw_cd <- c("CW_Bare", "CW_DenseTrees", 
"CW_Settlement", "CW_SparseVeg", "CW_Water","CD_Bare", 
"CD_DenseTrees", "CD_Settlement", "CD_SparseVeg", "CD_Water") 
         
    if (classname_site_ind == "classname") { 
        classes <- b_d_se_sp_w 
    } else if (classname_site_ind == "classname_site" & same_other_ind == 
"cw") { 
        classes <- b_d_se_sp_w_site_only.cw 
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    } else if (classname_site_ind == "classname_site" & same_other_ind == 
"dw") { 
        classes <- b_d_se_sp_w_site_only.dw 
    } else if (classname_site_ind == "classname_site" & same_other_ind == 
"other") { 
        classes <- b_d_se_sp_w_site 
    }         
     
    if (classname_site_ind == "classname_tt_site") { 
        classes <- b_d_se_sp_w_site_cw_tt 
    } 
     
    if (classname_site_ind == "classname_wetdry_site") { 
        classes <- b_d_se_sp_w_site_cw_cd 
    } 
     
#======cw train vs cw test - same classes======= 
    if (same_other_ind == "cw" | same_other_ind == "dw" ) { 
        if (classname_site_ind == "classname") {    
            a.train1 = subset(train1, classname %in% classes,  
                                           select = c(colnames4,'classname')) 
            a.test1 = subset(test1, classname %in% classes,  
                                           select = c(colnames4,'classname')) 
            a.train1$classname <- factor(a.train1$classname,levels=classes) 
            a.test1$classname <- factor(a.test1$classname,levels=classes)   
            a.train <- a.train1 
            a.test <- a.test1 
        #same_other_ind == "cw" | same_other_ind == "dw" 
        #classname_site_ind == "classname" 
        } else  
            #======cw train vs cw test - sitespecific classes========== 
            if (classname_site_ind == "classname_site") { 
                a.train1 = subset(train1, classname_site %in% classes,  
                                                select = c(colnames4,'classname_site')) 
                a.test1 = subset(test1, classname_site %in% classes,  
                                             select = c(colnames4,'classname_site'))  
                a.train1$classname_site <- factor(a.train1$classname_site,  
                                                                             levels=classes) 
                a.test1$classname_site <- factor(a.test1$classname_site,  
                                                                            levels=classes)   
                names(a.train1)[names(a.train1) == 'classname_site'] <- 'classname' 
                names(a.test1)[names(a.test1) == 'classname_site'] <- 'classname' 
                a.train <- a.train1 
                a.test <- a.test1 
                #same_other_ind == "cw" | same_other_ind == "dw" 
                #classname_site_ind == "classname_site" 
            } 
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    } else if(same_other_ind == "other"){ 
        #cw train vs dw train 
        if (classname_site_ind == "classname") { 
            a.train1 = subset(train1, classname %in% classes,  
                                           select = c(colnames4,'classname')) 
            a.test1 = subset(test1, classname %in% classes,  
                                          select = c(colnames4,'classname')) 
            a.train2 = subset(train2, classname %in% classes,  
                                           select = c(colnames4,'classname')) 
            a.test2 = subset(test2, classname %in% classes,  
                                            select = c(colnames4,'classname')) 
            a.train1$classname <- factor(a.train1$classname,levels=classes) 
            a.test1$classname <- factor(a.test1$classname,levels=classes)            
            a.train2$classname <- factor(a.train2$classname,levels=classes) 
            a.test2$classname <- factor(a.test2$classname,levels=classes)   
            #a.train <- rbind(a.train1,a.train2) 
            #a.test <- rbind(a.test1,a.test2) 
            a.train <- a.train1   #cw.train 
            a.test <- a.train2    #dw.train 
            #same_other_ind == "other" 
            #classname_site_ind == "classname" 
        } else  
            if (classname_site_ind == "classname_site") { 
                a.train1 = subset(train1, classname_site %in% classes,  
                                               select = c(colnames4,'classname_site')) 
                a.test1 = subset(test1, classname_site %in% classes,  
                                              select = c(colnames4,'classname_site'))  
                a.train1$classname_site <- factor(a.train1$classname_site,  
                                                                             levels=classes) 
                a.test1$classname_site <- factor(a.test1$classname_site,  
                                                                            levels=classes)   
                names(a.train1)[names(a.train1) == 'classname_site'] <- 'classname' 
                names(a.test1)[names(a.test1) == 'classname_site'] <- 'classname' 
                a.train2 = subset(train2, classname_site %in% classes,  
                                               select = c(colnames4,'classname_site')) 
                a.test2 = subset(test2, classname_site %in% classes,  
                                              select = c(colnames4,'classname_site'))  
                a.train2$classname_site <- factor(a.train2$classname_site,  
                                                                             levels=classes) 
                a.test2$classname_site <- factor(a.test2$classname_site, 
levels=classes)   
                names(a.train2)[names(a.train2) == 'classname_site'] <- 'classname' 
                names(a.test2)[names(a.test2) == 'classname_site'] <- 'classname' 
                #a.train <- rbind(a.train1,a.train2) 
                #a.test <- rbind(a.test1,a.test2) 
                a.train <- rbind(a.train1,a.train2) 
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                a.test <- rbind(a.test1,a.test2) 
                #same_other_ind == "other" 
                #classname_site_ind == "classname" 
            } 
    } else if(same_other_ind == "tt"){ 
            if (classname_site_ind == "classname_tt_site") { 
                    a.train1 = subset(train1, classname_tt_site %in% classes,  
                                                    select = c(colnames4,'classname_tt_site')) 
                    a.test1 = subset(test1, classname_tt_site %in% classes,  
                                                  select = c(colnames4,'classname_tt_site'))  
                    a.train1$classname_tt_site <- factor(a.train1$classname_tt_site, 
                                                                                      levels=classes) 
                    a.test1$classname_tt_site <- factor(a.test1$classname_tt_site,  
                                                                                     levels=classes)   
       names(a.train1)[names(a.train1) == 'classname_tt_site'] <- 'classname' 
       names(a.test1)[names(a.test1) == 'classname_tt_site'] <- 'classname' 
                    a.train2 = subset(train2, classname_tt_site %in% classes,  
                                                   select = c(colnames4,'classname_tt_site')) 
                    a.test2 = subset(test2, classname_tt_site %in% classes,  
                                                  select = c(colnames4,'classname_tt_site'))  
                    a.train2$classname_tt_site <- factor(a.train2$classname_tt_site, 
                                                                                      levels=classes) 
                    a.test2$classname_tt_site <- factor(a.test2$classname_tt_site,  
                                                                                     levels=classes)   
           names(a.train2)[names(a.train2) == 'classname_tt_site'] <- 'classname' 
           names(a.test2)[names(a.test2) == 'classname_tt_site'] <- 'classname' 
                    a.train <- rbind(a.train1,a.train2) 
                    a.test <- rbind(a.test1,a.test2) 
                    #a.train <- a.train1 
                    #a.test <- a.train2 
                } 
    } else if(same_other_ind == "wetdry"){ 
        if (classname_site_ind == "classname_wetdry_site") { 
            a.train1 = subset(train1, classname_site %in% classes,  
                                           select = c(colnames4,'classname_site')) 
            #head(a.train1) 
            a.test1 = subset(test1, classname_site %in% classes,  
                                          select = c(colnames4,'classname_site'))  
            #head(a.test1)             
            a.train1$classname_site <- factor(a.train1$classname_site,  
                                                                          levels=classes) 
            a.test1$classname_site <- factor(a.test1$classname_site,                       
                                                                        levels=classes)   
            names(a.train1)[names(a.train1) == 'classname_site'] <- 'classname' 
            names(a.test1)[names(a.test1) == 'classname_site'] <- 'classname' 
            a.train2 = subset(train2, classname_site %in% classes,  
                                           select = c(colnames4,'classname_site')) 
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            a.test2 = subset(test2, classname_site %in% classes,  
                                          select = c(colnames4,'classname_site'))  
            a.train2$classname_site <- factor(a.train2$classname_site,  
                                                                         levels=classes) 
            a.test2$classname_site <- factor(a.test2$classname_site,  
                                                                        levels=classes)   
            names(a.train2)[names(a.train2) == 'classname_site'] <- 'classname' 
            names(a.test2)[names(a.test2) == 'classname_site'] <- 'classname' 
            a.train <- rbind(a.train1,a.train2) 
            a.test <- rbind(a.test1,a.test2) 
            #a.train <- a.train1 
            #a.test <- a.train2 
        } else if (classname_site_ind == "classname") { 
            a.train1 = subset(train1, classname %in% classes,  
                                           select = c(colnames4,'classname')) 
            a.test1 = subset(test1, classname %in% classes,  
                                         select = c(colnames4,'classname')) 
            a.train2 = subset(train2, classname %in% classes,  
                                           select = c(colnames4,'classname')) 
            a.test2 = subset(test2, classname %in% classes,  
                                          select = c(colnames4,'classname')) 
            a.train1$classname <- factor(a.train1$classname,levels=classes) 
            a.test1$classname <- factor(a.test1$classname,levels=classes)            
            a.train2$classname <- factor(a.train2$classname,levels=classes) 
            a.test2$classname <- factor(a.test2$classname,levels=classes)   
            #a.train <- rbind(a.train1,a.train2) 
            #a.test <- rbind(a.test1,a.test2) 
            a.train <- a.train1 
            a.test <- a.train2             
            #same_other_ind == "other" 
            #classname_site_ind == "classname" 
        } 
    } 
# head(a.train) 
# head(a.test) 
# table(a.train$classname) 
# table(a.test$classname) 
 
    #return(a.train) 
    #return(a.test) 
    a.varimp <- varimp_rf_unscaled(a.train,a.test,mda_mdg_ind) 
     
    top_x <- min(top_x,length(a.varimp$variables)) #set top_x not more than 
list of available vars 
    if (model_ind == "RF") {                                             
        a.conf <- rf.topX.conf(a.varimp,a.train,a.test,mda_mdg_ind,top_x) 
    } else if (model_ind == "SVM") { 
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        a.conf <- svm.topX.conf(a.varimp,a.train,a.test,mda_mdg_ind,top_x) 
    } 
    b <- c(a.varimp$variables,"classname") 
    a.train <- a.train[c(b)] 
    a.test <- a.test[c(b)] 
    return(list(a.train,a.test,a.varimp,a.conf)) 
} 
 
cw.cw.lq.lcx.dBite.rf.tt.mdg.30 <- 
apply_Model1_on_Site2_conf_newsite_cw_traintest(cw3000.train, 
cw3000.test, cw3000.train, cw3000.test,"tt",FW_overlap_CW_DW_Lquad_S, 
"classname_tt_site", LCX_ind=c("L","C","X"),dBit_ind=c("dB","i","t"), 
elevYN="Y", model_ind="RF",  mda_mdg_ind="MDG", 30) 
 
cw.cw.lq.lcx.dBite.rf.mdg.30 <- 
apply_Model1_on_Site2_conf_newsite(cw3000.train, 
cw3000.train,cw3000.test,cw3000.test,"cw",FW_overlap_CW_DW_Lquad_S, 
"classname_site",LCX_ind=c("L","C","X"),dBit_ind=c("dB","i","t"), elevYN="Y", 
model_ind="RF", mda_mdg_ind="MDG",30) 
 
cw.cd.lcx.dBite.rf.mdg.30 <- 
apply_Model1_on_Site2_conf_newsite_cw_traintest(cw3000.train, 
cd3000.train, cw3000.test, cd3000.test, "wetdry", F_overlap_CW_CD_S, 
"classname_wetdry_site", LCX_ind=c("L","C","X"),dBit_ind=c("dB","i","t"), 
elevYN="Y", model_ind="RF", mda_mdg_ind="MDG",30) 
 
cw.cd.classname.lcx.dBite.rf.mdg.30 <- 
apply_Model1_on_Site2_conf_newsite_cw_traintest(cw3000.train, 
cd3000.train,cw3000.test,cd3000.test,"wetdry",F_overlap_CW_CD_S, 
"classname",LCX_ind=c("L","C","X"), dBit_ind=c("dB","i","t"), elevYN="Y", 
model_ind="RF", mda_mdg_ind="MDG",30) 
 
cw.dw.classname.lq.lcx.dBite.rf.mdg.30 <- 
apply_Model1_on_Site2_conf_newsite_cw_traintest(cw3000.train, 
dw3000.lq.train,cw3000.test,dw3000.lq.test,"other",FW_overlap_CW_DW_L
quad_S, "classname",LCX_ind=c("L","C","X"),dBit_ind=c("dB","i","t"), 
elevYN="Y", model_ind="RF", mda_mdg_ind="MDG",30) 
 
cw.dw.lq.lcx.dBite.rf.mdg.30 <- 
apply_Model1_on_Site2_conf_newsite(cw3000.train, 
dw3000.lq.train,cw3000.test,dw3000.lq.test,"other", 
FW_overlap_CW_DW_Lquad_S, "classname_site", LCX_ind=c("L","C","X"), 
dBit_ind=c("dB","i","t"), elevYN="Y",model_ind="RF", 
mda_mdg_ind="MDG",30) 
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