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Abstract

In this thesis, we study general cocycles of dynamical systems in topologi-

cal, measurable and smooth (differentiable) settings. Dynamical systems are

viewed here as given by actions of a discrete, topological, measurable or Lie

group on a set, topological space, measurable space or smooth manifold re-

spectively depending on the given geometrical setting to be considered. We

will mostly concentrate on the topological and smooth settings in this thesis,

but will comment about the necessary alterations in the discrete and measur-

able setting. Cocycles are functions on the Cartesian product of the spaces

and groups involved with values in an abelian group depending again on the

given geometrical settings. A main task of this thesis is to interpret these

cocycles as general cohomology classes of certain action groupoids, which

decode the dynamical system. Similarly, we show that cohomology classes

of action groupoids associated to dynamical systems can be viewed as co-

cycles. The action groupoids which arise out of the dynamical systems and

the given geometrical setting are discrete groupoids, topological groupoids,

measurable groupoids or Lie groupoids. We will introduce a very general

groupoid cohomology and homology theory with values in vector bundles

and discuss its basic properties generalising group cohomology and singular

cohomology. Furthermore, we will study extensions of dynamical systems via

cocycles and interpret these as low-dimensional cohomology classes. Some

low-dimensional homology and cohomology groups are calculated. Finally,

we interpret cocycle cohomology classes as cohomological obstructions for

extending dynamical systems following a suggestion by Tao.
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Chapter 1

Introduction

1.1 Groupoids and Dynamical Systems

In this thesis we discuss cocycles and the general cohomology of action

groupoids to study topological and smooth dynamical systems.

Groupoids were introduced and studied first by the German mathematician

Brandt [6] in 1926 to analyse the composition of quadratic forms in four

variables. They soon turned out to be useful when studying more compli-

cated symmetries of geometric structures than groups allow. Groups are

normally enough to describe symmetries of homogeneous structures, but

there are plenty of geometric structures including dynamical systems, which

only admit few or non-trivial automorphisms and in order to describe their

multi-object symmetries algebraically it is more useful to use the language

of groupoids. Groupoids can formally be defined as categories such that

their morphisms are isomorphisms, but for most applications also here in

our work we define them intrinsically as ordered pairs with structure maps
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which some axioms naturally axioms for compositions in the same spirit as

originally emphasised by Brandt. A groupoid can also be seen as giving a

family of symmetries collecting symmetries of different objects like fibres of

fibre bundles. Ehresmann [13] added further structures (topological and dif-

ferentiable as well as algebraic) to groupoids, thereby introducing groupoids

as a tools to study symmetries in algebraic topology and differential geometry.

An important example of a topological groupoid is for example the funda-

mental groupoid, which encodes symmetries of homotopy classes of paths in

a topological spaces without taking into account choices of base points in

contrast to the fundamental group as first introduced by Poincaré [7]. Later,

Grothendieck [15] revolutionising algebraic geometry used groupoids exten-

sively and, in particular, showed how they could be used successfully to tame

the unruly equivalence relations and high number of automorphisms which

arise in the construction of moduli spaces for classifying geometrical struc-

tures, thus giving rise to algebraic stacks (see also [30]). Later Connes [9]

used groupoids in his framework of non-commutative geometry for a unified

study of operator theory, C∗-algebras, foliations and index theory. In using

groupoids associated to C∗-algebras, groupoids also find their ways into the

theory of dynamical systems. Here versions of groupoids in the category of

smooth manifolds play a prominent role. These Lie groupoids (sometimes

also called smooth or differentiable groupoids) were first studied in the 1950s

by Ehresmann as an alternative to principal bundles and connection theory

in differential geometry (see also [4]). Similarly as Lie groups have asso-

ciated Lie algebras to study infinitesimal properties and their symmetries,

Lie groupoids possess associated Lie algebroids, introduced by Pradines in

1967 and which take care of the multi-object infinitesimal symmetries of Lie

groupoids [31].
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Dynamical systems can be studied in a discrete, topological, measurable and

smooth geometrical setting, but essentially they can be understand as par-

ticular examples as group actions on a spaces [20]. Most of these actions are

highly complicated and therefore need good algebraic invariants to study,

classify and distinguish them. A direct cohomologcal invariant arises with

the construction of cocycles for the group action with values normally in an

abelian group. Cocycles play a prominent role in the study of dynamical

systems for example when dealing with autonomous dynamical systems as

indicated by Oseledets theorem and their generalisations as in the more re-

cent work of Ruelle and others [36]. In effect, whenever one wants to study

multiplicative properties in dynamics cocycles arise. They also give natu-

rally rise to cohomology classes and this is what we are studying for general

topological and smooth dynamical systems, which arise via group actions.

Group actions give rise to so-called action groupoids, which basically model

nice quotient spaces for non-free actions (see [9], [7]). They are special cases

of topological or Lie groupoids and have very recently been studied also in

the context of dynamical systems [8].

Cocycles are closed cochains and used in algebraic topology to express ob-

structions (for example, to integrating a differential equation on a closed

manifold). They are also used in group cohomology as explicit constructible

cohomology classes. Here, they arise as cohomology classes of group actions

on spaces underlying dynamical systems, which in the special case of a group

action on a point space recovers the analogue notions from group cohomology.

Our main aim in this thesis is to study dynamical systems in the topological

and smooth geometrical setting via group actions and action groupoids using

explicit constructions of cocycles as cohomology classes. We will construct

a general cohomology theory for topological and Lie groupoids, which in
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the case of associated action groupoids will be used for the cohomological

study of dynamical systems. We will show the equivalence of working with

cocycles and general cohomology classes when studing dynamical systems

from a homological point of view. Finally, following a suggestion by Tao we

will also show how higher cocycles or cohomology classes can be interpreted

as obstructions for extending dynamical systems. We intend to pursue this

research further in the future looking into non-abelian cohomology and higher

categorical aspects of cohomology for the construction of higher and refined

algebraic invariants suitable for dynamical systems.

1.2 Structure of the Thesis

This thesis is organised as follows:

Chapter 1 comprises the introduction with an overview and background of

the material covered, in particular concerning groupoids, cocycles, dynamical

systems and their interplay.

In chapter 2, we recall the notion of group actions which is our essential set-

up to study dynamical systems. Topological dynamics refers to the study of

continuous actions of topological groups on a topological space. So we begin

with the definition of topological groups and discuss some basic examples.

We study topological transformation groups and properties of their actions

such as transitivity and freeness with some examples from topology. Appli-

cations to dynamical systems focus either on the topological group of the real

numbers to define a continuous flow or on the topological group of integers to

define a discrete flow. Another class of dynamical systems arises as smooth

dynamical systems which considers Lie group actions on smooth manifolds.
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This requires to recall the definition of a Lie group with examples. Also some

information on ergodic theory is given which is important to discuss group

actions on measure spaces. This material provides a basis to study mea-

surable groupoids in chapter 3. Afterwards we review some aspects of the

general theory of fibre bundle and define a particular class of fibre bundles,

namely principal bundles and vector bundles to be uses later in the defini-

tion of general groupoid cohomology. Then we introduces and discusses the

important concept of a cocycle of a dynamical system along with illustrating

examples such as the Radon-Nikodam derivative from measure theory. We

also provide basic but important properties from the theory of cocycles and

their appearance in different geometrical settings. A dynamical system can

be extended by construction from a given cocycle. Dynamical system ex-

tensions via cocycles are defined and studied, generalising group extensions.

Finally, two examples of cocycles of dynamical systems are studied as nat-

ural ways in which cocycles arise , namely the derivative cocycle and the

time change cocycle. Then the general concept of cohomology of dynamical

system is studied using methods and concepts from algebraic topology. We

discuss alternative approaches and basic properties of cohomology of dynam-

ical systems. The last section of chapter 2 gives some basic calculations of

cohomology groups, in particular concerning transitive and free group ac-

tions.

In chapter 3, we start with reviewing the main aspects of the general theory

of groupoids in different settings. We begin with a discussion of discrete

groupoids, i.e. groupoids in the category of sets. Transformations between

groupoids are defined afterwards. Topological, Lie and measurable groupoids

are defined as groupoids in the category of topological spaces, smooth man-

ifolds and measure spaces. We give many examples of groupoids from these
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different geometrical settings. In the next section we study the relationship

between dynamical systems and action groupoids, which is the main concept

here. We then discuss ways of how to construct new groupoids out of given

ones, namely we introduce induced groupoids and strong and weak pullbacks

of groupoids. Next we discuss the several notions of equivalences of Lie

groupoids, namely strong, weak and Morita equivalences. In the following

sections representation of Lie groupoids are defined as a particular type of

groupoid action generalising similar concepts for Lie groups. Then a general

Lie groupoid cohomology theory is introduced and fundamental examples

and properties are studied. In the final section of this thesis we interpret

cocycles of a dynamical system as action groupoid cohomology classes and

vice versa. Finally, following a suggestion of Tao we study cocycle extensions

of dynamical systems using cohomology classes as obstructions.This allows

for an interpretation of the second cohomology group of dynamical systems

and in particular how to see low dimensional cohomology classes as extension

classes for dynamical system.
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Chapter 2

Dynamical Systems, Cocycles

and Cohomology

The theory of topological dynamics deals with the study of continuous ac-

tions of any topological group G on a topological space X [17]. A particular

topological dynamical system is concerned with group actions of the set of

real numbers R or the set of integers Z on topological (smooth or measur-

able) spaces. In this chapter, the concept of a group action is defined in

the different contexts with examples. The smooth versions of topological

dynamical systems deal with smooth actions of Lie groups on differentiable

(smooth) manifolds. Again a main example is given by actions of the real

numbers R. Some preliminaries on fibre bundles are recalled preparing for the

next chapter. Cocycles of dynamical systems will be defined as continuous

(smooth or measurable) functions with values in an abelian group satisfying

the cocycle equation. Finally, notions of cohomology for dynamical systems

are introduced based on the general theory of cocycles and singular cochains

of topological spaces.
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2.1 Transformation Groups, Actions and Dy-

namical Systems

Some of the content of this section can be found in several texts on dynam-

ics and algebraic topology, but for the material presented here we mainly

recommend [1], [20] and [17].

Let us begin with group actions (in an abstract setting) without any extra

structure, so the basic set-up in the study of dynamical systems is that a

group G is acting on a set X.

Definition 2.1. Suppose G is a group and X is a set. A left action of G

on X (or X is said to be a left G-set) is a map φ : G×X −→ X, written

(g, x) 7→ φ(g, x) = gx, with the following properties:

(i) φ(g1, φ(g2, x)) = φ(g1g2, x) for all x ∈ X and all g1, g2 ∈ G,

(ii) φ(e, x) = x for all x ∈ X and e is the identity of G.

Remark 2.1. (1) Similarly, a right action of G on X can be defined as a

map φ : X ×G→ X, written (x, g) 7→ xg with the same properties, but the

composition of maps works in reverse: ((x, g1)φ, g2)φ = (x, g1g2)φ.

(2) Any right action determines a left action, and vice versa, by using the

following correspondence φ(g, x) = (x, g−1)φ. And according to this bijec-

tive correspondence between left action and right action it will therefore be

sufficient to study only one of these type of actions.

Definition 2.2. Let X be a left G-set. For each x ∈ X, the set Gx = {g ∈
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G : gx = x} is a subgroup of G, called the isotropy group or the stabilizer

group of x.

2.1.1 Examples

Let H be a subgroup of a group G and h ∈ H, g ∈ G. Then H acts on G as

follows in two different ways φ : H ×G −→ G:

(1) φ(h, g) = hg (left translation), and

(2) φ(h, g) = hgh−1 (conjugation by h).

(3) Let G be the group of the nonzero real numbers with multiplication and

S be the set of all vectors in the three-dimensional space R3. Then G acts on

S by scalar multiplication. This means, φ(g, (a, b, c)) = (ga, gb, gc) if g is a

nonzero real number. Now for any vector v, we have φ(1, v) = v. If g, h ∈ G,

then φ(gh, v) = (gha, ghb, ghc) = g(ha, hb, hc) = g(h, v) = φ(g, φ(h, v)).

2.1.2 Topological Transformation Groups

In practice, the set X normally has many additional geometrical structures,

and the action by the group G is compatible with these structures. For ex-

ample, if X is a topological space, then one can study these systems when G

has a topological structure acting via continuous maps.

Definition 2.3. A topological group is a group G endowed with a topol-

ogy such that the maps m : G × G −→ G and i : G −→ G given by

m(g1, g2) = g1g2 , i(g) = g−1 are continuous.
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Each of the following is a topological group:

(i) set of the real numbers R with additive group structure and Euclidean

topology.

(ii) the general linear group GL(n,R), which is the set of n × n invert-

ible real matrices under matrix multiplication, with the induced topology

obtained from Rn2
.

(iii) A discrete group G which is any group with the discrete topology.

This includes also finite groups.

Definition 2.4. Let G be a topological group acting on a topological space X

by a map φ : G×X −→ X. The action is said to be continuous if the map φ

is continuous. The action is called an action by homeomorphisms if for

each g ∈ G, the map φ
g

: X −→ X, defined by, x 7→ gx is a homeomorphism

of X.

The next proposition explains the relationship between the two concepts in

the last definition.

Proposition 2.1. Let G be a topological group acting on a topological space

X by a map φ : G×X −→ X.

(i) If the action φ is continuous, then it is an action by homeomorphisms.

(ii) If the group G has the discrete topology, then the action φ is continuous

if and only if it is an action by homeomorphisms .

Proof. See [24] p.79.
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Remark 2.2. The triple (G,X, φ) is called a topological transformation

group and X is called a G-space.

Definition 2.5. Let (G,X, φ) be a topological transformation group. For any

x ∈ X, the set G · x = {φ(g, x) : g ∈ G} ⊆ X is called the orbit of x. The

action is said to be transitive if for every pair of points x, y ∈ X, there is

a group element g such that φ(g, x) = y, that is, the orbit of each point of X

covers all the space X. The action is said to be free if the only element of

the group G that fixes any point in X is the identity ; that is, φ(g, x) = x for

some x implies g = e.

Definition 2.6. Let X be a G-space, we define an equivalence relation ∼ by

saying x ∼ y if there is an element g ∈ G such that φ(g, x) = y. The orbit

space is the quotient space denoted by X/G provided with the finest topology

such that the quotient map γ : X −→ X/G is continuous.

2.1.3 Examples

(1) For any topological space X and any topological group G, the trivial

topological transformation group is defined by φ(g, x) = x. Every orbit is a

singleton set {x}.

(2) The two-element discrete group G = ({±1}, ·) acts continuously on S
n

by the scalar multiplication ±1 · x = ±x. This action is free and each orbit

has two points {x,−x}.

(3) If G = (R∗, ·) and X = Rn\{0}, then G acts continuously by multi-

plication. This action is free, and the orbits are lines through the origin

point.
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(4) Any topological group G acts continuously, freely, and transitively on

itself by left translation Lg(g
′
) = gg

′
, see [24], p.80.

2.1.4 Preliminaries on Ergodic Theory

Ergodic theory is the study of group actions on measure spaces. Historically

this meant the study of integer actions [22]. The main definitions of this

subsection are from [14].

In general, we will assume that X is an infinite set, and P(X), the power set

of X is the collection of all subsets of X.

Definition 2.7. A set A ⊆ P(X) is called a semi-algebra if the following

three axioms are satisfied:

(1) φ ∈ A ,

(2) if A,B ∈ A , then A ∩B ∈ A , and

(3) if A ∈ A , then the complement of A is a finite union of pairwise disjoint

elements in A ,

also if

(4) A ∈ A implies that complement of A is an element in A then it is called

an algebra. If A satisfies the following property

(5) A1, A2, ... ∈ A implies that
∞⋃
i=1

An ∈ A , then A is called a σ-algebra.

Example 2.1. The set of intervals in [0, 2] is a semi-algebra (see [14]).
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Definition 2.8. A measure space (X,A , µ) consists of a non-empty col-

lection σ- algebra A of subsets of a set X and a non-negative real-valued

monotone function µ defined on A .

Remark 2.3. (i) Being a σ-algebra means that A is closed under comple-

ments and countable unions ( or intersections) of subsets of the set X. Every

subset of X is called measurable set.

(ii) A is complete, means if A ∈ A and µ(A) = 0, then B ∈ A for every

B ⊂ A.

(iii) The measure function µ is said to be finite if µ(X) <∞, and σ-finite

if we can write X =
⋃
i∈NXi, where µ(Xi) <∞.

(iv) A set of measure zero is called null set (for example, the empty set φ

and the rational numbers Q).

Definition 2.9. Let X be a topological space and U be the smallest σ- algebra

which contains all the open sets of X. Then U is called a Borel σ-algebra

and any measure µ defined on U is a Borel measure if the measure for

any compact set is finite.

Definition 2.10. A one-point set is called atom if it has positive measure.

A Lebesgue measure space or Lebesgue space is a space with finite

measure and it is isomorphic to the union of an interval [0, a] (with Lebesgue

measure).

Example 2.2. The unit square [0, 1]× [0, 1] with the Lebesgue measure is a

Lebesgue space.

Definition 2.11. Let G be a group which has a locally compact second count-
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able topology. Let (X,µ) be a measure space with a σ-finite measure µ. A

measurable action of a locally compact topological group G on a Lebesgue

measure space (X,S , µ) is a measurable map φ : G×X → X where, G×X

has the product measurable structure and φ has the usual properties of a group

action:

(i) φ(e, x) = x for all x ∈ X,

(ii) φ(g1, φ(g2, x)) = φ(g1g2, x) for all g1, g2 ∈ G and x ∈ X.

Remark 2.4. (1) The measure µ for the last definition is invariant if

µ(gA) = µ(A) for all A ⊆ X, g ∈ G,

(2) Two measures are said to be in the same measure class if they have

the same null sets.

Definition 2.12. A measurable group is a σ- finite measure space (G,S , µ)

such that

(i) µ is not identically zero,

(ii) G is a group,

(iii) the σ- algebra S and the measure µ are invariant under the left trans-

lations, and

(iv) the transformation T : G×G→ G×G defined by T (g, h) = (g, (gh)) is

measure preserving.

Definition 2.13. Let (X,S , µ) and (Y,Ψ, ν) be measurable spaces. A func-

tion f : X → Y is called

(i) measurable if the pre-image of a measurable set A ⊂ Y is measurable
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set in X.

(ii) non-singular if the pre image of null set of Y is a null set in X.

(iii) measure-preserving if µ(f−1(B)) = ν(B) for every B ∈ Ψ.

2.1.5 Topological and Smooth Dynamical Systems

In the subsection 2.1.2, we defined a topological transformation group (G,X, φ)

as an action of any topological group G on a topological space X by a contin-

uous map φ. We will especially study dynamical systems as examples defined

by an action of the real numbers R or integers Z on a space X.

Topological Dynamical Systems

Let G be the additive topological group R of real numbers with its standard

topology or the additive topological group Z with its discrete topology.

Definition 2.14. A topological dynamical system on a topological space

X is a continuous map φ : G×X −→ X such that, for all x ∈ X and for all

s, t ∈ G,

(1) φ(t+ s, x) = φ(s, φ(t, x)),

(2) φ(0, x) = x.

Remark 2.5. (i) For each t ∈ G, φ
t

: X −→ X, defined by φ
t
(x) = φ(t, x)

is a homeomorphism and Homeo (X) = {φt : X −→ X|φt(x) = φ(t, x)} is a

topological group if one defines the group product of any two homeomorphisms

f and g to be the composite map fg.
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(ii) The function θ : G −→ Homeo(X) is a topological group homomorphism

defined by θ(t) = φ
t
, for each t ∈ G.

(iii) If G = R then the dynamical system φ is called a flow on X, or a

one-parameter group of homeomorphisms of X. If G = Z, then the

dynamical system φ is called a discrete dynamical system or discrete

flow.

Proposition 2.2. Let (G,X, φ) be a topological dynamical system. For all

t ∈ G, φt is a homeomorphism and if φ is a C
r
-differentiable map, then φt

is a C
r
-diffeomorphism.

Proof. see [17] p.13.

Remark 2.6. The relationship between group actions and dynamical systems

is obvious, where any map θ : G→ Homeo(X) gives a map φ : G×X −→ X

by φ(t, x) = θ
t
(x).

On the other hand, if φ is a continuous map satisfying the conditions of

a group action, then the previous proposition guarantees that the map θ :

G −→Homeo(X) defined by θ(t) = φ
t

and θ is a group homomorphism.

Smooth Dynamical Systems

The smooth version of dynamical system requires that G is a Lie group, X

is smooth (differentiable) manifold and φ is a smooth or C∞-function. Let

us recall the definition of a Lie group.
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Definition 2.15. A Lie group is a smooth manifold G that is also a group

in the algebraic sense with the property that the multiplication ∗ : G×G→ G

and inversion map inv : G → G, given by ∗(g, h) = gh, inv(g) = g−1 are

both smooth.

Each of the following examples is a Lie group. For more details, see also [25],

chapter 7.

(1) Clearly, Rn has an n-dimensional smooth manifold structure, besides

it satisfies the conditions of a Lie group where ∗ : Rn × Rn −→ Rn by

(x, y) 7→ x+ y ; and the inversion map inv : Rn −→ Rn by x 7→ −x are both

smooth maps.

(2) The space of all n × n matrices with real entries, denoted M(n,R) is a

Lie group by making the identification M(n,R) ∼= Rn2
.

(3) The space of all n×n invertible matrices with real entries, called general

linear group and denoted GL(n,R) is an open subset of the vector space

M(n,R), and thus it is a smooth manifold. In addition, the operations of

matrix multiplication (A,B) 7→ AB and inversion A 7→ A−1 defined on

GL(n,R) are polynomials in each component. This means that these are

smooth maps, and therefore GL(n,R) is a Lie group.

(4) Let V be a real or complex vector space and GL(V ) the set of all iso-

morphisms from V to itself. It is a group under composition. If V has finite

dimension n, then any basis from V determines an isomorphism of GL(V )

with GL(n,R) or GL(n,C), therefore GL(V ) is a Lie group.

(5) The unit circle S1 ⊆ C∗ is a Lie group, called the circle group, by
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identifying it with the set of nonzero complex numbers of norm equal to one.

Furthermore, the group operations are exactly the addition (θ1, θ2) 7→ θ1 +θ2

and inversion θ 7→ −θ inherited from the complex numbers C.

We will now look at smooth versions of dynamical systems. This version

of dyanmical system requires that X is now a differentiable manifold, φ

is a smooth or C
∞− function and G is a Lie group (which need not to

be abelian) satisfying the multiplication axioms of Definition 2.1., that is,

φ(st, x) = φ(s, φ(t, x)) and φ(e, x) = x.

Remark 2.7. One can define a smooth Lie group action as a smooth homo-

morphism from G into Diff(X), the group of all smooth diffeomorphisms of

the smooth manifold X, but the difference with the continuous setting is that

Diff(X) has a Lie group structure only if it has infinite dimension.

2.1.6 Examples

The next examples give smooth versions of dynamical systems:

(i) If G = X = R and φ(t, x) = t+x, then this flow has only one orbit which

is the manifold R.

(ii) Every Lie group G acts smoothly on itself by conjucation: φ(g, h) =

ghg−1, where g, h ∈ G.

(iii) The Lie group G = GL(n,R) acts on the left on the manifold X = Rn

via matrix multiplication, presenting each vector x ∈ X as a column matrix

and satisfying the group action conditions. It is a smooth action because the

components of Ax depend polynomially on the matrix entries of A ∈ G and

24



the components of x. This smooth dynamical system has two orbits {0} and

Rn\{0}.

Some of the orbit spaces resulting from Lie group actions on smooth mani-

folds are manifolds, while other orbit spaces are not. The following examples

indicate both situations:

Examples

(1) The orbit space M/G of a trivial Lie group action on a smooth manifold

has only one-point sets as orbits. This means M/G = M , so it is a smooth

manifold.

(2) Suppose G is the unit circle group S1 which acts on the manifold M = C

by complex multiplication φ(z, w) = zw. The orbit space C/S1 gives all cir-

cles centred at the origin and the singleton set {0}. Now the quotient map

f : C −→ [0,∞) which is defined by f(z) = |z| makes the same identifica-

tions as the projection map π : C −→ C/S1. According to the theorem of

uniqueness of orbit spaces ( see [25] p.606 ) the orbit space C/S1 is homeo-

morphic to [0,∞) and it is not a manifold.

Definition 2.16. If G is a Lie group and M is a smooth manifold, then

a continuous left action by G on M is called a proper action if the map

π : G ×M −→ M ×M which is defined by (g, x) 7−→ (gx, x) is a proper

map. That is, for every compact set K ⊆ M ×M , the preimage π−1(K) is

compact set in G×M .

Now we state the following proposition which is related to the orbit space

arising from a Lie group action on a smooth manifold:
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Proposition 2.3. Suppose G is a Lie group acting smoothly, freely, and

properly on a smooth manifold M . Then the orbit space M/G is a topological

manifold of dimensiomn equal to dimM − dimG, and has a unique smooth

structure with the property that the quotient map θ : M −→M/G is a smooth

submersion.

Proof. See [25] p.544

2.2 Fiber Bundles

We need some notions and examples from algebraic topology and recom-

mend [1] and [25] as some resources for review.

Definition 2.17. A bundle is a triple ζ = (E, p,B) consisting of topolog-

ical spaces E,B called the total and base space respectively and a surjec-

tive continuous map p called the projection map of the bundle. For each

b ∈ B,Eb = p−1(b) is called the fibre with the induced topology by the inclu-

sion in E.

Definition 2.18. A bundle morphism or a fibre map between two bun-

dles ζ = (X, p,B) and η = (Y, q, A), denoted (f, g) : ζ → η is a pair of

continuous maps f : X → Y and g : B → A such that the following diagram

commutes:

X Y

B A

f

p q

g
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i.e., q ◦ f = g ◦ p.

Definition 2.19. A bundle morphism (f, g) : ζ → η is said to be a bundle

isomorphism if both the maps f : X → Y and g : B → A are homeomor-

phisms.

Definition 2.20. Let ζ = (X, p,B) and η = (Y, q, B) be two bundles over

the same base space B. If f : X → Y is a homeomorphism, then f is called a

B-isomorphism. In addition, f is called locally isomorphism if for each

point b ∈ B, there is an open neighbourhood Ub of b and an Ub- isomorphism

between the restricted bundles ζ | Ub and η | Ub.

Definition 2.21. A fibre bundle is a quadruple ζ = (E, π,B, F ), consisting

of

(i) a total space E, a base space B, a fiber F , and a projection p : E → B,

(ii) there is a family {(Vα, φα)}α∈Λ, the local trivialization of the bundle,

such that {Vα} is an open cover of B, and for all α ∈ Λ, φα : p−1(Vα) →

Vα×F is an homeomorphism that makes the following diagram commutative:

π−1(Vα) Vα × F

Vα

ψα

π
p

Given a collection of local trivializations {(Vα, φα)}α∈Λ for which Vα is an

open cover of the space B, one has:(φα ◦ φ−1β )(x, y) = (x, φαβ(x, y)), where

φαβ : (Vα ∩ Vβ) × F −→ F is continuous and y 7−→ φαβ(x, y) is a homeo-

morphism of F . The functions φαβ(x) := (x, ) are called transition func-
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tions. They satisfy the following cocycle equation: φαγ(x)◦φγβ(x) = φαβ(x),

X ∈ Vα ∩ Vβ ∩ Vγ, and φαα(x) is the identity of F for x ∈ V α.

Let A ⊂ B. A section of a fibre bundle ζ = (E, p,B, F ) over A is a con-

tinuous map s : A → E such that p ◦ s = 1A. A smooth fibre bundle

is a fibre bundle with E,B and F smooth manifolds, and p a smooth map.

A quadruple (E, p,B, F ) is a measurable fibre bundle if F is a smooth

manifold with Borel measurable structure, E and B are measurable spaces,

and there exists a measurable isomorphism φ : E → B × F , called a mea-

surable trivialization which preserves the fibres.

Example 2.3. Let M be a smooth manifold. ζ = (TM, π,M,Rn
) is a smooth

fibre bundle, where TM =
⊔
p∈M TpM is the total space, π : v 7−→ p if

v ∈ TpM , and TpM denotes the tangent space of M at a point p ∈M .

Definition 2.22. Let B be a topological space. A (real) vector bundle of

rank k over B is a topological space E together with a surjective continuous

map π : E −→ B such that each fibre Eb = π−1(b) is a k-dimensional R-

vector space satisfying the following condition:

To each point b ∈ B, there is an open neighbourhood U of b in B and a

homeomorphism Θ : π−1(U) −→ U × Rk (called a local trivialization of

E over U), satisfying the following two conditions:

(1) πU ◦Θ = π where πU : U × Rk −→ U is the projection, and

(2) for each q ∈ U , the restriction of Θ to Eq is a vector space isomorphism

from Eq to q × Rk ∼= Rk.

Example 2.4. Let F denote the field of real numbers R or complex numbers

C.
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(i) For any topological space B, the trivial bundle (B×F n, p, B, F n) is an

n-dimensional F -vector bundle.

(ii) For n ≥ 1, the normal bundle N(Sn) over the n-sphere Sn is the fibre

bundle ζ = (E, p, Sn,R), where E = {(x, y) ∈ Rn+1 × Rn+1 : ‖x‖ = 1, y =

rx, r ∈ R} and p : E → B, (x, y) 7→ x.

Now we define φ : R×Sn → E, (r, x) 7→ (rx, x) and ψ : E → R×Sn, (x, y) 7→

(< x, y >, x).

Then φ is a homeomorphism with inverse ψ and N(Sn) is a 1-dimensional

real trivial bundle.

2.3 Principal G-bundles for Lie Group Ac-

tions

This section defines principal G-bundles over smooth manifolds when G is a

Lie group. Similarly there are topological versions of these.

Definition 2.23. Let G be a Lie group. A bundle (E, p,M) is said to

be a (smooth) G-bundle if the bundles (E, p,M) and (E, pE, E/G) are

isomorphic for some G-space structure on E by an isomorphism (1d, f) :

(E, pE, E/G)→ (E, p,M) i.e., there exists a diffeomorphism f : E/G→ M

making the following diagram commutative:

E E

E/G M

1d

pE p

f
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Example 2.5. The tangent bundle TM →M of an n-dimensional manifold

M is an example of a GL(n,R)- bundle. In this case the fibre is Rn with

the linear action of GL(n,R) and the transition functions are the Jacobian

matrices of coordinate changes.

Definition 2.24. A principal (smooth) G-bundle is a triple (E, p,M)

such that p : E → M is a smooth map of smooth manifolds. In addition, E

is given a smooth left G-action such that the following conditions hold:

(i) Ex = p−1(x), x ∈M are the orbits for the G-action.

(ii) For each x ∈M , there exists an open neighbourhood U and a diffeomor-

phism ψ : p−1(U)→ G× U such that the diagram below commutes,

p−1(U) G× U

U

ψ

p
q

i.e., ψx = ψ | Ex maps to G×{x}; and ψ is equivariant i.e., ψ(gx) = gψ(x),

∀x ∈ p−1(U), g ∈ G, where G acts on G× U by g(h, x) = (gh, x) .

Example 2.6. (i) p : R → S1 = {eiθ ∈ C | θ ∈ R} is a principal Z-bundle:

r 7−→ e2πir. The group Z acts on R by translations: rn = r + n for n ∈ Z

and r ∈ R. A set of local trivializations is U1 = {e2iθ | θ ∈ (0, 2π)} and

U2 = {e2iθ | θ ∈ (−π, π)} with trivialization maps

φ1 : p−1(U1)→ Z× U1, where x ∈ (0, 1),

r = x+ n 7→ (n, e2πix)
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φ2 : p−1(U2)→ Z× U2, where x ∈
(
− 1

2
,
1

2

)
,

r = x+ n 7→ (e2πix, n)

The trivializations and the projection p are Z-equivariant.

(ii) Let G be any Lie group and M be a smooth manifold. Then (G×M, p,M)

with p the projection onto the first factor, is a principal G-bundle called the

product bundle,see [1],p.240 .

2.4 Cocycles and Dynamical Systems

One of the most important algebraic tools to study dynamics directly related

to the group action is the concept of a cocycle. Many questions in dynamics

can be solved by determining whether two cocycles are equivalent or not.

These questions are:

• Given an action of a group G on a space X, is there a measure on the space

X so that it is invariant under this action?

• Are two given group actions on a space X isomorphic (conjugate)?

Cocycles allow to study group actions in an extended action of a fibred space

(the abelian group) and the information resulting from the extended action

will help us to analyse the original action. In addition, from these cocycles

one can construct a new dynamical system that inherits the properties from

the given one [21]. So group actions play a central role here in order to de-

scribe dynamical systems.

Definition 2.25. An isomorphism or conjugacy between two actions of
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a group G, say φ : G×X → X and ψ : G×Y → Y , is a bijection f : X → Y

that preserves the structures (homeomorphism, diffeomorphism, measure-

preserving, etc) such that f(φ(g, x)) = ψ(g, f(x)) for all g ∈ G, x ∈ X.

Example 2.7. f : [0, 1] → [−2, 2] is topological conjugate for Q(x) = x2 −

2, x ∈ [−2, 2] and P (x) = {2x, x ∈ 0 ≤ x ≤ 1/2} defined by f(θ) = 2 cos πθ.

2.4.1 Standard Definitions of Cocycles

One of the main goals in this thesis is to answer the relationship between

groupoid cohomology of action groupoids and cocycles for dynamical systems

given by group actions. The basic definitions of cocycles in the topological,

smooth and measurable settings are similar (see [21]). We define it here in the

contexts of continuous and measurable cocycles for topological and measur-

able group actions and discuss examples from different dynamical systems.

The following definitions can be found in [3] and [20].

Definition 2.26. (Topological cocycles)

Let X be a topological space. Let φ : G × X → X be a continuous (or dis-

crete) action of a topological (or discrete) group G on X. If U is a topological

group, then a cocycle for the action φ with values in the topological group

U is a continuous map ρ : G×X → U satisfying ρ(gh, x) = ρ(g, hx)ρ(h, x),

where g, h ∈ G, x ∈ X.

Remark 2.8. (i) The condition in Definition 2.26. is called cocycle iden-

tity. This equation implies that the cocycle is independent of the variable x,
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so it is suitable to think of the cocycle identity as a topological homomorphism

α : G→ U .

(ii) If U is an abstract (discrete) group we can give it the discrete topology

and recover the classical cocycle definition for abstract group actions on sets.

(iii) For a cocycle ρ : G×X → U to be a smooth cocycle, we require that

the cocycle ρ be a smooth map, X be a smooth manifold and that G and U

are Lie groups.

(iv) A cocycle whose value is the identity element in the group U is called

trivial cocycle, while a homomorphism θ : G → U , which satisfies the co-

cycle condition such that θ(g, x) = θ(x) is called a constant cocycle (not

depending on x).

Let us state for completeness the definition of cocycles for the measurable

and smooth context accordingly (see also [20], [21]).

Definition 2.27. (Measurable cocycles)

Given a left group action G on a measurable space (X,µ), a cocycle with

values in the measurable group U is a measurable map ρ : G × X −→ U

satisfying the following cocycle conditions:

ρ(gh, x) = ρ(g, hx)ρ(h, x)

for all g, h ∈ G and x ∈ X.

Definition 2.28. (Smooth cocycles)

Let M be a smooth manifold. Let φ : G ×M → M be a smooth action of

a Lie group G on M . If U is a Lie group, then a cocycle for the action φ
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with values in the Lie group G is a smooth map ρ : G × X → U satisfying

ρ(gh, x) = ρ(g, hx)ρ(h, x), where g, h ∈ G, x ∈ X.

Here are some illuminating examples of cocycles from different settings:

Example 2.8. (1) (Measure theory)

Let φ be an action of a group G on a measurable space (X,µ) which preserves

measure classes represented by a not necessary invariant measure µ. Then we

can obtain a cocycle called Radon-Nikodym derivative which is defined

by : J : G×X → R∗ ; J(g, x) = d(g−1∗ µ)(x)/dµ where (g ∗ µ)(A) = µ(g−1A)

for any measurable set A ⊂ X. Let f be a measurable bounded function on

X.

∫
f(x)J(g1, g2x)J(g2, x)dµ(x) =

∫
f(x)J(g1, g2x)d(g−12 )∗µ)(x)

=

∫
f(g−12 x)J(g1, x)dµ(x)

=

∫
f(g−12 x)d(g−1∗ µ)(x)

=

∫
f(g−12 (g−11 ))dµ(x)

=

∫
f((g1g2)

−1(x))dµ(x)

=

∫
f(x)J(g1g2, x)dµ(x).

Since f is any measurable function, we obtain almost everywhere that

J(g1g2, x) = J(g1, (g2x))J(g2, x).

(2) (Differential topology)

Let f : M → M be a diffeomorphism on a smooth n-dimensional manifold

M and π : TM → M be the tangent bundle. Then the derivative Df is the
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smooth map Df : M → GL(n,R) from M to the Lie group GL(n,R), which

by the Chain Rule, Dxf
n+m = Dfnfm(x) ·Dxf

m satisfies the cocycle identity.

As we are especially interested in topological dynamics here, we will from

now on mostly work in the topological and smooth setting, though it is clear

how to amend the notions and constructions from the topological or smooth

setting to the measurable context.

As we want to study cohomological properties we are mostly interested in

cocycles with values in abelian groups, i.e. U = (A,+), which will be written

as usual in additive notation, which we state for completeness again:

Definition 2.29. (Topological cocycles)

Let X be a topological space. Let φ : G × X → X be a continuous (or

discrete) action of a topological (or discrete) group G on X. If A = (A,+)

is an abelian topological (or discrete) group, then a cocycle for the action

φ with values in the abelian group A is a continuous map ρ : G × X → A

satisfying ρ(gh, x) = ρ(g, hx) + ρ(h, x), where g, h ∈ G, x ∈ X. Similarly, we

have measurable and smooth cocycles with values in an abelian measurable,

respectively abelian Lie groups A.

Let us now introduce another type of cocycles which plays an important

role in this thesis. For more information and the following definitions, see

also [20].

Definition 2.30. A = (A,+) is an abelian topological (or smooth) group.

A cocycle ρ : G × X → A is called a coboundary if there is a continuous

(smooth) map F : X → A, called a transfer function or transfer map,
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such that for each g ∈ G and x ∈ X, we have:

ρ(g, x) = F (gx)− F (x).

Remark 2.9. (i) The coboundary equation in the previous definition im-

plies the cocycle identity, showing that every coboundary is in fact a cocycle,

because we have:

ρ(gh, x)− ρ(g, hx) = F ((gh)x)− F (x)− [F (g(hx))− F (hx)]

= F (hx)− F (x)

= ρ(h, x)

and therefore: ρ(gh, x) = ρ(h, x) + ρ(g, hx).

(ii) While every coboundary is a cocycle as we saw above, the converse is not

always true. For example, if X = {x} is a point, then ρ(g, x) = F (gx) −

F (x) = 0. This means the only coboundary in this situation is given by the

trivial function.

(iii) In general, for a given dynamical system there can be more cocycles than

coboundaries. Only in very special situations cocycles will also be cobound-

aries, for example if X is a finite set and G a finite group with a free action

on X (see [38]). In fact, the failure of a cocycle being a coboundary for the

dynamical system is measured by the first cohomology group of the system as

we will introduce and review in details below.

The classification problem of cocycles for a given dynamical system provides

us with an important insight into the structure of the dynamical system and

its dynamics as describes by the group action and its orbits. Among the

different algebraic possibilities of introducing an equivalence relation among

cocycles in order to classify them, we shall here mainly deal with the coho-

mologous relation.
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Definition 2.31. Two cocycles ρ1 and ρ2 with values in A are called coho-

mologous if there exists a continuous (smooth map) F : X → A satisfying

the cohomology equation :

ρ2(g, x) = F (gx) + ρ1(g, x)− F (x)

for all g ∈ G and x ∈ X.

Proposition 2.4. The cohomologous relation is an equivalence relation.

Proof. To see that the relation of cohomologous between cocycles is an equiv-

alence relation, we have to show that it satisfies reflexivity, symmetry and

transitivity. This relation is reflexive because each cocycle is cohomologous to

itself according to the cohomology equation ρ(g, x) = F (gx)+ρ(g, x)−F (x).

Now if ρ1 cohomologous to ρ2 then ρ1(g, x)− ρ2(g, x) is a couboundary i.e.

ρ1(g, x)− ρ2(g, x) = F (gx)− F (x)

for some function F : X −→ A, then

ρ2(g, x)− ρ1(g, x) = −[ρ1(g, x)− ρ2(g, x)] = −[F (gx)− F (x)],

which is also a coboundary. This means ρ2 is cohomologous to ρ1, so sym-

metry follows. The cohomologous relation is transitive as

ρ2(g, x) = H(gx) + ρ3(g, x)−H(x)

for some functions F : X −→ A and H : X −→ A. Then

ρ1(g, x) = F (g, x)+H(gx)+ρ3(g, x)−H(x)−F (x) = K(gx)+ρ3(g, x)−K(x)

where K : X −→ A and K = F + H, so ρ1 is cohomologous to ρ3 and we

have proven transitivity.
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We can now directly define the abelian groups of cocycles and coboundaries

associated to a dynamical system (G,X, φ) and an abelian topological (or

discrete) group A = (A,+).

Definition 2.32. Let (G,X, φ) be a dynamical system and A = (A,+) an

abelian topological (or discrete) group. The group of cocycles Z1(G,X,A)

and the group of coboundaries B1(G,X,A) of (G,X, φ) are given as:

Z1(G,X,A) = {ρ : G×X → A : ρ is a cocycle}

B1(G,X,A) = {ρ : G×X → A : ρ is a coboundary}.

The first cohomology group of (G,X, φ) is given as the quotient of cocycles

modulo coboundaries:

H1(G,X;A) = Z1(G,X,A)/B1(G,X,A).

Remark 2.10. (i) It is clear from the definitions that Z1(G,X,A) is an

abelian group, with the group structure given by defining the addition ρ + ρ′

of two cocycles ρ, ρ′ using the abelian group A:

(ρ+ ρ′)(g, x) := ρ(g, x) + ρ′(g, x)

and the neutral cocycle ε is given by setting:

ε(g, x) := 0,

where 0 is the neutral element of A. The group axioms can easily be checked

and it follows from the above that B1(G,X,A) is a subgroup of Z1(G,X,A)

and the cohomology group H1(G,X;A) is the quotient group.

(ii) If the action of G on X is free, it follows from the considerations above

immediately that we have

H1(G,X;A) ∼= 0
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as every cocycle is a coboundary.

(iii) This definition can also be amended for the non-commutative setting, i.e.

where we use a general group U as above and use the machinery of nonabelian

cohomology to define H1(G,X;U) as a quotient space of cocycles modulo

coboundaries, but we will not pursue this here. See for example [20] [21]

for the use of nonabelian cohomology in dynamics. There is scope for the

development of a full-blown theory of nonabelian cohomology for dynamical

systems (G,X, φ) in particular for applications in Number Theory [21], [14].

(iv) We will later see how all this fits into the general framework of cohomol-

ogy as used in Algebraic Topology, which allows for a systematic cohomolog-

ical interpretation and use of cocycles as cohomology classes of spaces and

action groupoids.

2.4.2 Construction of Dynamical Systems via Cocycles

and Cocycle Extensions

In this section we use the notion of a cocycle ρ defined for the group action

φ : G × X → X to construct an important particular kind of (abelian) ex-

tension or skew product dynamical system denoted by X ×ρ A of a given

dynamical system (G,X, φ), which generalises the Cartesian product [16].

Definition 2.33. Suppose we have a dynamical system (G,X, φ), A = (A,+)

is an abelian topological group and a cocycle ρ : G×X → A. The extension

of (G,X, φ) by A associated to the cocycle ρ is the dynamical system

(G,X×ρA,ψ) where X×ρA is the Cartesian product X×A with the induced
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group action ψ : G×X × A→ X × A defined by:

ψ[g, (x, a)] = [φ(g, x), a+ ρ(g, x)].

Let us write down the dynamical system conditions for this extension:

(1)ψ[g, ψ[h, (x, a)]] = ψ[g, φ(h, x), a+ ρ(h, x)]

= (φ(g, φ(h, x), a+ ρ(h, x) + ρ(g, φ(h, x))))

= (φ(gh, x), a+ ρ(gh, x))

= [gh, (x, a)].

(2) ρ(0, x) = ρ(0 + 0, x) = ρ(0, x) + ρ(0, φ(0, x)) = ρ(0, x) + ρ(0, x), and

therefore ρ(0, x) = 0. Now

ψ[0, (x, a)] = [φ(0, x), a+ ρ(0, x)]

= (x, a).
.

This shows that (G,X ×ρ A,ψ) is a dynamical system.

Definition 2.34. Let (G,X, φ) be a dynamical system and A be an abelian

topological group. We define a new dynamical system (G,X ×A,ψ). For ev-

ery a ∈ A we define an automorphism Ra of (G,X × A,ψ) by Ra(x, b) =

(x, a+ b) for every (x, a) ∈ X × A and RaRb = Ra+b for every a, b ∈ A.

Proposition 2.5. Let ρ1 : G×X −→ A, ρ2 : G×X −→ A be two cohomol-

ogous cocycles. Then (G,X ×ρ1 A,ψ1) and (G,X ×ρ2 A,ψ2) are conjugate.

Proof. Let F : X −→ A be a continuous map with ρ1(g, x) − ρ2(g, x) =

F (gx)− F (x) for every g ∈ G and x ∈ X.
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Now we define an automorphism θF of X × A by θF (x, a) = (x, a + F (x)).

We have:

ρ1θF (x, a) = ρ1((x, a+ F (x)))

= (gx, a+ F (x) + ρ1(g, x)).

θFρ2(x, a) = θF (gx, a+ ρ2(g, x))

= (gx, a+ ρ2(g, x) + F (gx))

= (gx, a+ ρ1(g, x)− F (gx) + F (x) + F (gx))

= (gx, a+ ρ1(g, x) + F (x)).

Definition 2.35. Depending on the cohomologous relation in Definition 2.31.and

Proposition 2.5., we can say that a cocycle is a coboundary if it is cohomol-

ogous to the trivial cocycle. Then the extension X ×ρ A by a coboundary

ρ(g, x) = F (gx)−F (x) can be conjugated to the extension by the trivial func-

tion X ×0 A by using the form (x, a) 7→ (x, a − F (x)). Also a cocycle is an

almost coboundary if it is cohomologous to a constant cocycle.

2.5 Some Natural Ways for Cocycles to Arise

In this section we will discus two important examples of cocycles arising in

the theory of dynamical systems and topology. They are crucial to describe

the geometrical context in local terms. They are also examples for cocycles

taking values in non-abelian groups.
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2.5.1 The Derivative Cocycle

Let φ : G × M → M be a smooth action of a Lie group G on a smooth

n-manifold M . Then φ gives an action φ̂ of G on the tangent bundle

φ̂g(v) = d(φg)xv

for all x ∈M and v ∈ TxM .

We can obtain a trivialization of TM as follows: Suppose that we choose an

identification of TxM with Rn for each x ∈ M . This is given by a choice of

an isomorphism defined by η(x) : Rn → TxM , for each x ∈ M . Now the

derivative map d(φg)x : TxM → Tφg(x)M can be represented by an automor-

phism of Rn. Let us denote the automorphism by c(g, x) ∈ GL(n,R), so we

have

c(g, x) := η(φg(x))−1 ◦ d(φg)x ◦ η(x).

This means the map c : G ×M → GL(n,R) as just defined is a cocycle for

the action φ taking values in the linear general group of dimension n.

2.5.2 Orbit Equivalence and Time Change

Cocycles can also appear in connection with the orbit equivalence of dynami-

cal systems [21]. Let (G,X, φ) and (H,Y, ψ) be two dynamical systems (with

the same structure). Orbit equivalence is a bijection map α : X → Y

that takes orbits of X under G to orbits of Y under H and preserves the

structures. This means there exists a map β : G × X → H such that

α(φ(g, x)) = ψ[β(g, α(x)), α(x)]. The last condition shows that the map β is

a cocycle because:
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ψ[β(g2g1, α(x)), α(x)] = α(φ(g2g1, x))

= α(φ(g2, φ(g1, x)))

= α(φ(g2, α
−1(ψβ[g2, α(x), α(x)]))

= ψ[β(g2, α(φ(g1, x), α(x))), ψ[β(g1, α(x), α(x))]

= ψ[β(g2, φ(g1, x))), ψ[β(g1, α(x)), α(x)]]

which gives

β(g2g1, x) = β(g2, φ(g1, x))β(g1, x).

In the simplest cases, we have a flow on the smooth manifold X. Then, an

orbit equivalence that preserves orbits is called a time change, and yields a

cocycle β : R×X → R. In this case all smooth cocycles are cohomologically

constant and will tell us that all time changes are of a particular type: they

arise by taking some smooth homomorphism R → R and a smooth transfer

function map X → R, and defining the cocycle according to the cohomology

equation in Definition 2.31. Thus the cocycle condition and the cohomology

equation gives a way of studying orbit equivalences of dynamical systems.

2.6 Cohomology of Dynamical Systems

This section deals with one of the main concepts of this thesis which is the

cohomology of dynamical systems. We will fit the concepts of cocycles into

a general setting of cohomology. As it is said in the introduction of this

chapter the definitions of this section are analoguous to the similar concepts

of singular homology and cohomology in algebraic topology. See [3] and [33],

chapter 4 and 12 to compare.

43



Now let us fix, G to be a topological group, X a topological space and

(G,X, φ) a topological dynamical system.

Definition 2.36. (i) For n ∈ Z and n ≥ 0, a singular n-simplex is an

element (g1, g2, ..., gn, x) in G
n ×X, where g1, g2, ..., gn ∈ G and x ∈ X.

(ii) We denote by Cn(G,X) the free abelian group with basis all singular n-

simplexes in G
n×X, any element of Cn(G,X) is called a singular n-chain.

(iii) For n < 0, we define Cn(G,X) = 0 to be the trivial group.

Remark 2.11. (i) A singular n-chain is an oriented simplex connecting the

n + 1 points x, gnx, gn−1gnx, gn−2gn−1gnx, . . . , g1g2 · · · gnx. In particular, an

element of C0(G,X) is a finite formal linear combination of elements of X

with Z-coefficients. This means a 0-chain is of the form
∑m

i=1 cixi of points

and any 1-chain is a formal integer linear combination
∑m

i=1 ci(gi, xi) con-

taining line segments from xi to gixi with integer coefficients and so on.

(ii) If G is not a discrete group, i.e. a general topological group the def-

inition of the singular chain complex needs modification. We will under-

stand by Cn(G,X) the space of continuous singular cochains i.e. such sin-

gular cochains whose restriction to the space of simplices (endowed with the

compact-open topology) define continuous functions as defined in general for

example in [41].

Definition 2.37. Let (G,X, φ) be a dynamical system, then (i) For n ∈ Z

and n > 0, we define the boundary map

∂n : Cn(G,X)→ Cn−1(G,X)

to be the unique group homomorphism given by
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∂n(g1, ..., gn, x) = (g1, ..., gn−1, gnx)+

+
n−1∑
k=1

(−1)
n−k

(g1, ..., gk−1, gkgk+1, gk+2, ..., gn, x)+

+ (−1)
n

(g2, ..., gn, x).

(ii) For n ≤ 0, we define ∂n : Cn(G,X)→ Cn−1(G,X) to be the zero map.

Example 2.9. For n = 0, ∂0 : C0(G,X)→ C−1(G,X), ∂0(x) = 0,

n = 1, ∂1 : C1(G,X)→ C0(G,X), ∂1(g, x) = gx− x,

n = 2, ∂2 : C2(G,X)→ C1(G,X), ∂2(g, h, x) = (g, hx)− (gh, x) + (h, x),

n = 3, ∂3 : C3(G,X) → C2(G,X), ∂3(g, h, k, x) = (g, h, kx) − (g, hk, x) +

(gh, k, x)− (h, k, x).

Definition 2.38. The singular chain complex of a dynamical system

(G,X, φ) is the sequence of free abelian groups Cn(G,X) and homomorphisms

∂n

· · · ∂n+2−−−→ Cn+1(G,X)
∂n+1−−−→ Cn(G,X)

∂n−→ Cn−1(G,X)
∂n−1−−−→ · · ·

such that ∂n∂n+1 = 0 for each n ∈ Z.

Remark 2.12. (i) We will use the notation (C•(G,X), ∂) or more simply

C• to refer to the singular chain complex of a dynamical system (G,X, φ).

(ii) The condition ∂n∂n+1 = 0 is equivalent to im ∂n+1 ⊂ ker ∂n.

Definition 2.39. Let (G,X, φ) be a dynamical system and C• be its chain

complex. Then ker ∂n is called the group of (singular) n-cycles and is

denoted by Zn(Cn(G,X), ∂) and im ∂n+1 is called the group of (singular)
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n-boundaries and is denoted by Bn(Cn(G,X), ∂) . The n-the homology

group of this chain complex is Hn(C•, ∂) = Zn(C•, ∂)/Bn(C•, ∂). We will

also write Hn(G,X, φ) or Hn(G,X;A) depending on the emphasis and group

of coefficients. If A = Z we normally omit it from the notation.

Remark 2.13. If ∂2 = 0, then every a n-boundary is an n-cycle. For ex-

ample the 1-chain (gh, x) − (h, x) − (g, hx) is both 1-boundary and 1-cycle.

However if g is not the trivial element in G which fixes x and G is an abelian

group, then the 1-chain (g, x) is an 1-cycle (∂(g, x) = gx− x = 0) but not a

1-boundary. Also Zn(G,X) and Bn(G,X) are abelian groups and Bn(G,X)

is contained in Zn(G,X).

Now we calculate the homology groups for some simple dynamical systems:

Proposition 2.6. Let G be a topological group and X be a topological space.

(i) If X = {x0} a point, then H0(G,X) ∼= Z.

(ii) If G acts transitively on X, then H0(G,X) ∼= Z. Similarly, in the topo-

logical context of dynamical systems transitivity corresponds to minimal and

in the measurable or ergodic context, transitivity corresponds to ergodicity

(see [20]).

(iii) If G acts freely on X, then H0(G,X) ∼= Z while Hn(G,X) ∼= 0 is trivial

for n > 0.

(iv) If X is a point, then H1(G,X) = G/[G,G] is the abelianisation of G.

Proof. (i) By definition of the zero homology group H0(G,X) = ker∂0 =

C0(G,X)/im∂1 = ∂1(C1(G,X)) = ZX�Z < x− x0|∀x ∈ X >∼= Z < x0 >.
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(ii) Since G acts transitively on the topological space X, for each x, y ∈ X,

there exists a g ∈ G such that y = gx. This means X has only one orbit

(one path component).

(iii) Since G acts freely on X, then gx = x implies that g = 0. We know

that all points of C0(G,X) = X are cycles and boundaries im C1(G,X) are

linear combinations of (g, x) such that gx − x = 0. This means gx = x and

H0(G,X) = Z.

(iv) This follows immediately from the definitions and basic properties as we

have seen already before.

We have seen that the concept of singular homology groups can be de-

rived from a singular chain complex of chain groups for a dynamical system

(G,X, φ) with some maps ∂n : Cn(G,X) −→ Cn−1(G,X) where n ∈ Z.

Now if A is an abelian (topological) group, then we can define the dual

cochain group of a dynamical system denoted by Cn(G,X,A) depending on

a contravariant functor Hom(−, A).

Definition 2.40. Let (G,X, φ) be a dynamical system and A be an abelian

(topological) group. We define the abelian group C
n
(G,X,A) to be all (con-

tinuous) group homomorphisms between Cn(G,X) and the group A, i.e.,

Cn(G,X,A) = Hom(Cn(G,X), A).

Remark 2.14. (i) Elements of C
n
(G,X,A) are called singular n-cochains

and a singular n-cochain θ is a group homomorphism i.e.

θ : Cn(G,X) −→ A.

If A is a not necesarily non-discrete topological group we understand by

47



Cn(G,X,A) the space of continuous cochains Gn × X → A, i.e. those sin-

gular cochains whose restriction to the space of simplices define continuous

functions to the topological group A and we will make the necessary modifi-

cations whenever needed without explicitily refering to them (compare [41]).

(ii) Since Cn(G,X) is a free abelian group and the collection of n-simplices is

a basis for Cn(G,X), then an n-cochain is determined by the values it assigns

to n-simplices. We therefore identify singular n-cochains with functions of

the form Gn ×X −→ A.

Definition 2.41. Let (G,X, φ) be a dynamical system and A an abelian

topological group. We define the coboundary map

δ : Cn−1(G,X,A) −→ Cn(G,X,A)

by setting (δF )(c) = F (∂c) where F ∈ Cn−1(G,X,A) and c ∈ Cn(G,X).

Explicitly, for F ∈ Cn−1(G,X,A) and an n-simplex (g1 , ..., gn , x) ∈ Gn ×X,

we have:

(δF )(g1 , ..., gn , x) = F (∂(g1 , ..., gn , x))

= F (g1 , ..., gn−1 , gnx)+

+
∑n−1

k=1(−1)n−kF (g1 , ..., gk−1
, g

k
g
k+1
, g

k+2
, ..., gn , x)+

+ (−1)
n

F (g2 , ..., gn , x).

Example 2.10. Let (G,X, φ) be a dynamical system and A be an abelian

topological group. If F ∈ C0(G,X,A) i.e. F is a singular 0-cochain,

F : X −→ A, then δF (g, x) = F (∂(g, x)) = F (gx− x) = F (gx)− F (x).

Now if ρ ∈ C1(G,X,A) i.e. ρ is an singular 1-cochain, ρ : G × X −→ A,

then δρ(g, h, x) = ρ(g, hx)− ρ(gh, x) + ρ(h, x).
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Remark 2.15. To define the singular cochain complex we need to satisfy the

condition δ
2

= 0 between C
n
(G,X,A) for each n ∈ Z. So let c ∈ Cn(G,X)

and F ∈ Cn−2
(G,X,A) such that L = δF , then

(δ2F )(c) = δ(δF )(c) = (δL)(c) = L(∂c) = (δF )(∂c) = F (∂2c) = F (0) = 0.

This means that δ2 = 0 and depending on this result we can define the fol-

lowing concept.

Definition 2.42. If A is an abelian topological group, then the singular

cochain complex of a dynamical system (G,X, φ) which is denoted by

(C•(G,X), δ) or simply C• is a sequence of Cn(G,X,A) with the coboundary

maps δ : Cn(G,X,A) −→ Cn+1(G,X,A) for each n ∈ Z.

Remark 2.16. (i) We denote the kernel of δ : Cn(G,X,A) −→ Cn+1(G,X,A)

by Zn(G,X,A), and elements of Zn(G,X,A) are called n-cocycles.

(ii) We denote the image of δ : Cn−1(G,X,A) −→ Cn(G,X,A) by Bn(G,X,A),

and elements of Bn(G,X,A) are called n-coboundaries.

(iii) Since δ2 = 0, an n-coboundary is a cocycle. Also Z
n
(G,X,A) and

B
n
(G,X,A) are abelian groups with B

n
(G,X,A) ⊆ Z

n
(G,X,A), and thus

we write H
n
(C
•
(G,X, φ), δ) = Z

n
(C•(G,X, φ), δ)/B

n
(C•(G,X, φ), δ), which

we call the n-th cohomology group. We will also write Hn(G,X, φ) or

Hn(G,X;A) depending on the emphasis and group of coefficients. If A = Z

we normally omit it from the notation.

(iv) We identify the group C
1
(G,X,A) with functions from G × X −→ A.

This means if ρ is a 1-cochain, then to be a 1-cocycle is equivalent to that

for any (g, h, x) ∈ G
2 × X, we have (δρ)(g, h, x) = 0, therefore ρ(g, hx) −

ρ(gh, x)+ρ(h, x) = 0 and this implies that ρ(gh, x) = ρ(h, x)+ρ(g, hx). Also
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to say ρ is a 1-coboundary means that there is a continuous function X → A,

a 0-cochain F such that ρ = δF i.e., for any (g, x) ∈ G×X, then

ρ(g, x) = (δF ) (g, x) = F (∂(g, x)) = F (gx)− F (x).

Thus ρ(g, x) = F (gx) − F (x). This means in particular also, that we now

recover the groups of cocycles and coboundaries as defined directly before.

2.7 Some Basic Cohomology Calculations for

Dynamical Systems

We will look at some general examples describing particular situations in

which group actions govern dynamical systems (G,X, φ). These have many

particular incarnations in the literature (see e.g. [14], [20]), but are studied

here in purely algebraic-topological terms.

Example 2.11. (1) If G is a topological group acting transitively on a topo-

logical space X and A is an abelian group, then for the zeroth cohomology

group we have: H0(G,X;A) ∼= A.

Now we will consider H0(G,X;A) to be the kernel of δ0 of the cochain com-

plex for the dynamical system (G,X, φ). This is the set of continuous maps

F from X into A. Now δ0F is a continuous map from G×X into A given

by δ0F ((g, x)) = F (∂1(g, x)) = F (gx− x) = F (gx)−F (x) = 0, for all g ∈ G

and x ∈ X. This means F (gx) = F (x) for all g ∈ G and x ∈ X. So we

see that the zero cohomology group H0(G,X;A) corresponds to the set of all

elements a = F (x) of A fixed by G i.e., H0(G,X;A) ∼= A.
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(2) Let (G,X, φ) a dynamical system and A a (topological) abelian group,

then

Z1(G,X, φ) = {ρ : G×X −→ A | ρ(gh, x) = ρ(h, x) + ρ(g, hx)}.

B1(G,X, φ) = {ρ : G×X −→ A | ρ(g, x) = F (gx)−F (x) for some function

F : X −→ A }.

If ρ = (δ0F )(g, x) = F (gx)− F (x), then

δ1δ0(F )(g, x) = δ1(ρ)(g, h, x)

= ρ(g, hx)− ρ(gh, x) + ρ(h, x)

= ρ(g, hx)− ρ(h, x)− ρ(g, hx) + ρ(h, x) = 0.

Now if the action of G on X is trivial, then

Z1(G,X, φ) = {ρ : G×X −→ A | ρ(gh, x) = ρ(h, x) + ρ(g, hx)}

and B1(G,X, φ) = 0 implying that we get:

H1(G,X, φ) = Z1(G,X, φ).

Remark 2.17. These examples can also be looked at for dynamical systems

(G,X, φ) in the measurable or smooth context, where similar homological

considerations can be pursued, independent of the geometric or topological

nature of the system itself.
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Chapter 3

Groupoids, Cohomology and

Dynamical Systems

The aim of this chapter is first to give an introduction to the basic concepts

of groupoid theory with an emphasis on topological and Lie groupoids. We

will discuss the concept of a groupoid in the discrete, topological, measur-

able and smooth setting. Morphisms, equivalences and natural constructions

for constructing new groupoids out of given ones are discussed with details.

The main part is then concerned with the development of a general concept

of cohomology for Lie groupoids with particular applications to cohomology

of action groupoids associated to a given dynamical system (G,X, φ). We

will interprete cocycle cohomology classes of dynamical systems as action

groupoid cohomology classes and look at some examples. Representation of

groupoids are introduced as a concept related to groupoid actions used for

our approach to define general groupoid cohomology. Many of these concepts

generalises notions from group representations and group cohomology. In the

last section of this chapter, following a suggestion of Tao [38], we will discuss
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how to interpret the cohomology classes defined via cocycle functions as ac-

tion groupoid cohomology classes and in general how to see low-dimensional

cohomology classes as extension classes for dynamical systems. In this chap-

ter, we will be mostly interested in topological and Lie groupoids and in

particular in action groupoids associated to a dynamical system (G,X, φ)

arising from an action of a topological or Lie group. We concentrate on the

Lie groupoid case, but it it is clear from the constructions how to amend

things in the discrete, topological and measurable setting.

3.1 Glimpses of Groupoid Theory: Discrete,

Topological, Measurable, Lie Groupoids

This section reviews the general theory of groupoids in four settings, namely

groupoids in sets, in topological spaces, in measure spaces and in smooth

manifolds. We will recall the main definitions and basic facts of the theory

of groupoids and study transformations and equivalences between them, il-

lustrated with specific examples. In general, we recommend [29] and [27] for

this section. A good overview about the general use of groupoids to describe

symmetries can be found in [40].

3.1.1 Discrete Groupoids

Let us first define groupoids in the category Sets of sets, which are of a

purely categorical nature.

Definition 3.1. A groupoid is a (small) category such that all morphisms
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are invertible. As with the familiar conventions, we will denote a groupoid

by (G, X, s, t,m, id, i), or G ⇒ X, or G, subject to the following internal

description:

(1) G is the set of morphisms (arrows or morphism space) and X is the set

of objects (base or object space);

(2) s : G −→ X is the source (domain) of a morphism and t : G −→ X is

the target (range) of a morphism;

(3) m : G(2) −→ G is the multiplication map, defined on the subset of the

composable morphisms G(2) = Gs ×t G = {(g, h) ∈ G × G | s(g) = t(h)};

(4) id : X −→ G, x 7→ 1x gives the identity morphisms ;

(5) i : G −→ G, g 7→ g−1 gives the inverse morphisms.

These maps satisfy the following identities:

(i) s(hg) = s(g), t(hg) = t(h),

(ii) k(hg) = (kh)g,

(iii) 1t(g)g = g = g1s(g), and

(iv) s(g−1) = t(g), t(g−1) = s(g) , g−1g = 1s(g) , gg−1 = 1t(g)

for any k, h, g ∈ G with s(k) = t(h) and s(h) = t(g). We sometimes refer to

structure maps of a groupoid (G, X, s, t,m, id, i) to mean s ,t ,m ,id , or i

and we talk of a groupoid G over X.

Definition 3.2. A functor between two groupoids G ⇒ X and H⇒ Y

consists of two functions ϕ0 : X −→ Y and ϕ1 : G −→ H that respect all

structure maps. We also call a functor between groupoids a morphism of
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groupoids.

Definition 3.3. Two groupoids G and H are said to be isomorphic if there

are morphism ϕ : G −→ H and ψ : H −→ G such that ϕ ◦ ψ and ψ ◦ ϕ are

the identity morphisms of H and G respectively. In this case ϕ and ψ are

called isomorphisms.

The following follows directly from the definitions:

Proposition 3.1. Groupoids and morphisms between groupoids form a cat-

egory, the category of groupoids, denoted by Gpd.

Example 3.1. (1) Let X be a set, then it can be described as the trivial

groupoid or unit groupoid where the only morphisms are identities. The

source and target maps are both the identity map 1X , and the multiplication

is only defined between a morphism and itself: xx = x where x ∈ X.

(2) Any (abstract) group G is a groupoid with one object ∗ and the morphisms

are the elements of G. The composition of morphisms is given by the group

operation of the group G.

(3) Any set X gives rise to the pair groupoid of X. The set of objects is

X, and the set of morphisms or arrows is X ×X, so we have X ×X ⇒ X.

The source and target maps are the first and second projection maps. Multi-

plication is defined as follows: (x, y)(y, z) = (x, z).

Proposition 3.2. A groupoid G gives rise to an equivalence relation ∼ on

the object space X as follows: for x, y ∈ X, x ∼ y if there is a morphism

g ∈ G such that s(g) = x and t(g) = y.

Proof. (1) ∼ is reflexive: x ∼ x for any x ∈ X, because there exists 1x : x→
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x,

(2) ∼ is symmetric: x ∼ y ⇒ y ∼ x because each g : x −→ y has an inverse

g−1 : y −→ x,

(3) ∼ is transitive: if x ∼ y and y ∼ z , then x ∼ z, because h : y −→ z can

be composed with g : x −→ y, giving hg : x −→ z.

3.1.2 Topological Groupoids

Until now, we have only defined a groupoid G ⇒ X in sets, i.e. groupoids in

which both object space and morphism space are sets. But in the most inter-

esting geometric contexts, these groupoids have more structure. For example,

they could be topological spaces and such groupoids are called topological

groupoids and belong to TopGpd, the category of topological groupoids as

defined below (see [7], [10] for the basic theory of topological groupoids).

Definition 3.4. A topological groupoid G ⇒ X is a groupoid where

(1) the arrow (morphisms) space G is a second-countable, locally compact

Hausdorff topological space,

(2) the object space X is a Hausdorff, second-countable topological space;

(3) the source map s : G −→ X and the target map t : G −→ X are continu-

ous maps;

(3) the multiplication map m : G(2) −→ G defined on the topological subspace

of the composable morphisms G(2)
= Gs×tG = {(g, h) ∈ G × G | s(g) = t(h)};

is a continuous map;

(4) the identity map id : X −→ G, x 7−→ 1x is a continuous map and gives
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the identity morphisms;

(5) the inverse map i : G −→ G, g 7−→ g−1 is a homeomorphism and gives

the inverse morphisms.

Remark 3.1. Let (G, X, s, t,m, id, i) be a topological groupoid and x ∈ X.

(1) The isotropy group Gx of x is considered as a closed topological space

of G and contains all morphisms g : x −→ x. Gx has a topological group

structure.

(2) A foliation groupoid is a topological groupoid such that all the isotropy

groups Gx are discrete, x ∈ X.

(3) If the source map s and the target map t are local homeomorphism, then

G is called an étale groupoid.

(4) A topological groupoid G is proper if the map (s, t) : G −→ X × X is

proper (i.e. the pre-image of any compact set is also a compact set).

Definition 3.5. Let G ⇒ M and H ⇒ N be two topological groupoids, a

homomorphism between topological groupoids G and H is a functor

Φ given by a continuous map ϕ1 : G −→ H on arrows and a continuous map

ϕ0 : M −→ N on objects, which together preseve the topological groupoid

structure i.e.we have:

ϕ0(s(g)) = s(ϕ1(g)), ϕ0(t(g)) = t(ϕ1(g)), ϕ1(1p) = 1
ϕ0 (p)

and

ϕ1(hg) = ϕ1(h)ϕ1(g),

which implies also ϕ1(g
−1) = ϕ(g)−1, for any g, h ∈ G with s(h) = t(g) and

any p ∈ M . If M = N and ϕ0 = idM we say that Φ is homomorphism
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over M , or that ϕ1 is a base-preserving homomorphism.

Proposition 3.3. Topological groupoids and homomorphisms between topo-

logical groupoids form a category, the category of topological groupoids, de-

noted by TopGpd.

Definition 3.6. Let G ⇒ M and H ⇒ N be two topological groupoids. We

say that G and H are isomorphic if there are homomorphisms Φ : G −→ H

and Ψ : H −→ G such that Ψ ◦Φ and Φ ◦Ψ are the identity homomorphisms

of G and H respectively. In this case Φ and Ψ are called isomorphisms.

A natural transformation between functors τ : ϕ ⇒ ψ : G −→ H is a

function τ : X −→ H such that τ(y) ◦ ϕ(g) = ψ(g) ◦ τ(x) for every arrow

g : x −→ y in G. This natural transformation is invertible because every

arrow in a groupoid is invertible.

Examples

(1) Any topological space X gives two topological groupoids. One of them

has the space of morphisms G and the space of objects X being the same

(G = X ⇒ X) that is a groupoid with identity morphisms only. The second

arises when the space of objects is X and (G = X ×X ⇒ X), is a groupoid

with for any two elements x, y ∈ X there is exactly one morphism (y, x) from

x to y.

(2) A topological group is a topological groupoid. The same is true for a

disjoint union of topological groups which is also topological group.

(3) If U := {Ui}i∈I is an open cover of a topological space X, then the

cover groupoid of the cover, which we denote GU, is defined as follows:
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GU := (
∐
i,j∈I

Uij ⇒
∐
i∈I
Ui) where Uij = Ui ∩ Uj for i, j ∈ I. The source and

target maps are the inclusion maps Ui,j ↪→ Uj and Ui,j ↪→ Ui respectively.

The multiplication Ui,j ×X Uj,k −→ Ui,k is defined as (x, y) 7−→ x = y. The

identity map as Ui −→ Uii = Ui. The inversion map is the identity map

Ui,j −→ Uj,i.

(4) The fundamental groupoid ΠX of a topological spaceX is the groupoid

with object space X and with arrow space G consisting of homotopy classes

[γ] (rel. end points) of continuous paths γ : [0, 1] −→ X. Multiplication is

composition of paths. The source is given by the starting point (s[γ] = γ(0))

and the target by the end point (t[γ] = γ(1)). The inverse is defined by

inverting the direction of the path (i([γ]) = [t −→ γ(1− t)]).

3.1.3 Lie Groupoids

Now we will discuss the smooth category to define Lie groupoids which we

are most interested in this work (see also [29]).

Definition 3.7. A Lie groupoid is a groupoid (G,M, s, t,m, id, i) such that

(1) M is a Hausdorff, second-countable smooth manifold;

(2) G is a second-countable smooth manifold, (not necessarily Hausdorff);

(3) the source s and the target t are surjective submersions;

(4) the multiplication m and the identity id are smooth;

(5) the inversion map i : G −→ G is a diffeomorphism.

Remark 3.2. Let (G,M, s, t,m, id, i) be a Lie groupoid and x ∈M .
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(1) The isotropy group Gx of x is considered as a closed submanifold of G

and contains all morphisms g : x −→ x. Gx has a Lie group structure.

(2) A foliation Lie groupoid is a Lie groupoid such that all the isotropy

groups Gx are discrete, x ∈M .

(3) If the source map s and the target map t are local diffeomorphism, then

G is called an étale Lie groupoid.

(4) A Lie groupoid G is proper if the map (s, t) : G −→ M ×M is proper

(i.e. the pre-image of any compact set is also a compact set).

Definition 3.8. Let G ⇒ M and H ⇒ N be two Lie groupoids, a homo-

morphism between Lie groupoids G and H is a functor Φ given by a

smooth map ϕ1 : G −→ H on arrows and a smooth map ϕ0 : M −→ N on

objects, which together preseve the Lie groupoid structure i.e.

ϕ0(s(g)) = s(ϕ1(g)), ϕ0(t(g)) = t(ϕ1(g)), ϕ1(1p) = 1
ϕ0 (p)

and

ϕ1(hg) = ϕ1(h)ϕ1(g),

which implies also ϕ1(g
−1) = ϕ(g)−1, for any g, h ∈ G with s(h) = t(g) and

any p ∈ M . If M = N and ϕ0 = idM we say that Φ is homomorphism

over M , or that ϕ1 is a base-preserving homomorphism.

Proposition 3.4. Lie groupoids and homomorphisms between Lie groupoids

form a category, the category of Lie groupoids, denoted by LieGpd.

Definition 3.9. Let G ⇒ M and H ⇒ N be two Lie groupoids. We say

that G and H are isomorphic if there are homomorphisms Φ : G −→ H
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and Ψ : H −→ G such that Ψ ◦Φ and Φ ◦Ψ are the identity homomorphisms

of G and H respectively. In this case Φ and Ψ are called isomorphisms.

A natural transformation between functors τ : ϕ ⇒ ψ : G −→ H is a

smooth function τ : X −→ H such that τ(y) ◦ ϕ(g) = ψ(g) ◦ τ(x) for every

arrow g : x −→ y in G. This natural transformation is invertible because

every arrow in a groupoid is invertible.

Examples

(1) Let M be a smooth manifold and let p : E −→M be a vector bundle. Let

GL(E) be the set of all linear vector space isomorphisms between fibres Ex for

each x ∈M . Now each fibre Ex always has the identity automorphism idEx ,

and this gives an inclusion map M ↪→ GL(E). Also there is a multiplication

map defined on GL(E), which is defined by composition of maps, whenever

possible, that is, Ex
ϕ−→ Ey

ψ−→ Ez for each x, y, z ∈ M . Since all maps

Ex
ϕ−→ Ey are isomorphisms this implies they are invertible and Ey

ϕ−1

−−→ Ex is

also in GL(E). Above any given x ∈M , the set of isomorphisms Ex −→ Ex

is a Lie group which is isomorphic to GL(V ), where V is a typical fibre of the

vector bundle p : E −→ M . We call GL(E) the general linear groupoid

of the bundle E.

(2) A Lie groupoid G ⇒ M = {pt} is a Lie group. A functor between two

Lie groupoids G ⇒ M = {pt} and H ⇒ N = {pt} is given by a Lie group

homomorphism G −→ H. A natural transformation between these functors

is given by an element of H conjugating between the two homomorphisms.

(3) If G is a Lie group acting smoothly from the left on a smooth manifold

M , then associated to this action is the action or translation groupoid

GnM . The object space is M and the arrow space is the manifold G×M ,
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where an orderd pair (g, x) ∈ G×M corresponds to an arrow x −→ g ·x with

the obvious composition rule. Now if the action is almost free (each isotropy

group Gx is discrete), then GnM is a foliation groupoid. If the group G is

discrete, then G nM is an étale Lie groupoid. If we suppose the action of

G is proper, then the action groupoid is proper. Action groupoids for right

actions are defined similarly. If P −→ M is a left principal G -bundle, then

P −→ M induces a Lie groupoid functor G nM −→ M , where M is the

trivial groupoid on M .

(4) For any manifold M , the pair groupoid of M is denoted by G =

Pair(M) = M × M , where the source and target maps are the first and

second projection.

(5) Let M be a smooth manifold and ΠM = {(x, [σ], y) | x, y ∈M, [σ] is the

homotopy class of paths σ(0) = x, σ(1) = y}. Then ΠM is a groupoid on

M with these rules: s(x, [σ], y) = x, t(x, [σ], y) = y,m((x, [σ], y)(y′, [τ ], z)) =

(x, [σ ◦ τ ], z) iff y = y′, where σ ◦ τ is the concatenation of paths σ and

τ , id(x) = (x, [constant], x) and i(x, [σ], y) = (y, [σ−1], x) where σ−1(t) =

σ(1 − t), for each t ∈ [0, 1]. If ΠM is equipped with the quotient topology

for the compact open topology on the space of paths of M , then s × t :

ΠM −→M×M is a covering map. It follows that ΠM is a Lie groupoid and

called again the fundamental groupoid ofM , whose underlying topological

groupoid we have already met in the last subsection. Its isotropy groups are

the fundamental groups π1(M,x) for each x ∈M .

(6) Let G ⇒ M be a Lie groupoid. The opposite Lie groupoid for G

denoted by Gop has the same object space and arrow space, but all of the

arrows are inverted. The inversion map i : G −→ G induces a Lie groupoid

isomorphism from G onto Gop.
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(7) Let f : M −→ N be a surjective submersion. The associated kernel

groupoid over M , denoted by ker(f), is the Lie groupoid with object space

M , arrow space M ×N M , s(x, y) = y, t(x, y) = x, id(x) = (x, x), i(x, y) =

(y, x), and m((x, y), (y, z)) = (x, z). If f : M −→ pt, then we get the pair

groupoid G = Pair(M) = M ×M . When f is the identity map M −→ M ,

we get the trivial groupoid on M , denoted M . This induces an embedding

of categories Mfd ↪→ LieGpd, M 7−→ M . For any f : M −→ N , there is a

Lie groupoid functor τ(f) : ker(f) −→ N induced by f .

3.1.4 Measurable Groupoids

Measurable groupoids come with a Borel structure. A Borel space is de-

fined as an ordered pair of a set X and σ-algebra B(X) (see Definition 2.9.)

of subsets of the set X in which every one is called a Borel set. A map

from a Borel space into a another Borel space is called Borel map if the

inverse image of every Borel set is a Borel set. A bijective Borel map in both

directions is called Borel isomorphism.

Definition 3.10. A measurable groupoid is a groupoid (G, X, ,m, s, t, id, i)

such that the underlying space is endowed with a Borel structure B and all

of the structure maps are Borel:

(1) i : G −→ G ; g 7−→ g−1 ;

(2) m : G2 −→ G ; (g1, g2) 7−→ g1g2 ;

(3) s, t : G −→ X.

Here G × G has the product Borel structure, X ⊂ G and G2 ⊂ G × G the

induced Borel structure.
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Definition 3.11. Two measurable groupoids G ⇒ X and H ⇒ Y are said

to be isomorphic if there exists a Borel isomorphism Φ of G onto H such

that Φ and Φ−1 are algebraically inverse homomorphisms.

3.2 Dynamical Systems and Action Groupoids

A dynamical system (G,M, φ) is defined by a group G acting on a space M .

In example (3) of subsection 3.1.3 an action groupoid GnM is constructed

depending on a group action. The following two examples refer to dynamical

systems out of given action groupoids explaining the relationship between

dynamical systems and action groupoids.(See also [2]).

Example 3.2. (1) Let M = {0, 1} and G be the cyclic group of order 2 i.e.

G = C2 = {1, c}. If ob(G nM) = M and mor(G nM) = {(1, 0) : 0 −→

0, (1, 1) : 1 −→ 1, (c, 0) : 0 −→ 1, (c, 1) : 1 −→ 0}, then the dynamical system

related to the action groupoid GnM is given by the map φ defined on G×M

interchanging 0 and 1 by c and fixing 0 and 1 by 1.

(2) For any vector field X defined on a smooth manifold M , the domain

D(X) of the flow φt of X, D(X) = {(t, x) ∈ R ×M} such that φt is de-

fined can be seen as an action groupoid GnM with the source and target as

follows s(t, x) = x and t(t, x) = φ(t, x). The composition of this groupoid is

m(t′, φ(t, x), (t, x)) = (t′ + t, x). Now if X is a complete vector field (all its

integral curves extend over the whole R), then D(X) is the action groupoid

RnM related to the global flow of the vector field X interpreted as an action

of the real numbers R on the smooth manifold M .
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For the next sections, groupoid will always mean Lie groupoid if not otherwise

stated as it is a main subject for this thesis.

3.3 Constructions of Groupoids

In this section, we give some general construction methods for Lie groupoids,

including induced Lie groupoids, strong pullbacks and weak pullbacks. This

can be found partially also in [29], chapter 5.

3.3.1 Induced Groupoids

Definition 3.12. Let (G ⇒ G0) be a groupoid and f : M −→ G0 be a smooth

map. The induced groupoid f ∗(G)1 over M is defined as follows:

f ∗(G) = M×G0G1×G0M = {(x, g, y) ∈M×G×M | t(g) = f(x), s(g) = f(y)},

the sourse and target maps s(x, g, y) = y, t(x, g, y) = x the multiplication

given by (x, h, z)(z, g, y) = (x, hg, y), the identity id(x) = (x, idf(x), x) and

the inverse i(x, g, y) = (y, g−1, x).

Remark 3.3. We note that there is a functor τ from f ∗(G)1 to G where

τ = f : M −→ G′ and τ : f ∗(G) −→ G, τ(x, g, y) = g.

Proposition 3.5. The induced groupoid f ∗(G) is a Lie groupoid provided

that t ◦ pr1 : G ×G0 M −→ G0 is a surjective submersion.

Proof. We observe that f ∗(G)1 = M ×G0 ×G1 ×G0 M can be constructed by

65



two pullbacks given by the diagram

f ∗(G)1 //

��

M

f

��
G1 ×G0 M

pr1 //

��

G1 t //

s

��

G0

M
f // G0

Since the composite map G1 ×G0 M
pr1
−→ G1

t

−→ G0 is a surjective submer-

sion, f ∗(G)1 is representable and f ∗(G)1 −→ G0 is a surjective submersion.

Therefore the diagram below is a pullback square in Mfd:

f ∗(G)1 G1

M ×M G0 × G0

(s, t) (s, t)

Thus f ∗(G)1 is a Lie groupoid and f induces a Lie groupoid functor τ :

f ∗(G) −→ G.

3.3.2 Strong Pullbacks

For this and the following constructions, we suppose (G ⇒M), (H⇒N) and

(K⇒ L) are groupoids.
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Definition 3.13. If ϕ : G −→ K and ψ : H −→ K are two groupoid

morphisms, the strong pullback groupoid G ×K H is a groupoid with ob-

ject space M ×L N = {(x, y) ∈ M × N,ϕ0(x) = ψ0(y)}, morphism space

G ×LH = {(g, h) ∈ G ×H, ϕ1(g) = ψ1(h)} and the composition defined com-

ponentwise.

Remark 3.4. In general, the groupoid G ×K H is not a Lie groupoid. How-

ever, if (ϕ0, ψ0) and (ϕ1, ψ1) are both transversal, then G ×K H is a Lie

groupoid. This means the strong pullback satisfies the usual universality prop-

erty for pullbacks in the category LieGpd.

Example 3.3. The induced groupoid can be written as a strong pullback. Let

G ⇒ M be a Lie groupoid and f : L −→ M be a smooth map. The diagram

below is a strong pullback.

f ∗(G) G

P (L) P (M)

Here P (L) and P (M) are pair groupoids, the Lie groupoid functor G −→

P (M) is determined by (s, t) : G −→ M × M , and P (L) −→ P (M) is

induced by f .

3.3.3 Weak Pullbacks

We will use the notion of comma category (see [26], section II.6).

Definition 3.14. Given two functors ϕ : G −→ K and ψ : H −→ K, the

weak pullback groupoid G ×wK H is the comma category (ϕ ↓ ψ). Explicitly,
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objects of G ×wKH are triples (x, k, y), x ∈M, y ∈ N and k : ϕ0(x) −→ ψ0(y)

is an arrow in K. Arrows from (x1, k1, y1) to (x2, k2, y2) are pairs (g, h) of ar-

rows g ∈ G and h ∈ H where g : ϕ0(x1) −→ ϕ0(x2) and h : ψ0(x1) −→ ψ0(x2)

are arrows in K such that h ◦ k1 = k2 ◦ g. The composition is given compo-

nentwise.

Proposition 3.6. The weak pullback G×wKH defined above is a Lie groupoid

if t ◦ pr2 : M ×L,s K −→ L or s ◦ pr2 : N ×L,t K −→ L is a surjective

submersion.

Proof. The object space of the groupoid G ×wKH is the limit of the following

diagram:

G ×s,L K ×t,L ×H //

��

H
s

��
G ×s,L K ×N //

��

M ×K ×Npr2 //

pr1
��

N

G s //M

which is representable if t ◦ pr2 : M ×L,s K −→ L is a surjective submersion.

In a similar way, it is representable if s ◦ pr2 : N ×L,t K −→ L is a surjec-

tive submersion. In both cases, it is easy to show that the space of arrows

G ×t◦ϕ1,L,s K ×t,L,s◦ϕ1 H is also a manifold, and the source and target maps

are surjective submersions. This proves the claim.
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3.4 Equivalences of Lie Groupoids

The classical notion of equivalence of categories can be applied to groupoids

provided that no additional structures such as topology or smoothness are

involved [29]. In this part we discuss the notion of equivalence of groupoids.

There exist several different notions of equivalence for Lie groupoids (see

also [29]).

3.4.1 Strong Equivalences

Definition 3.15. Let (G ⇒ M) and (H ⇒ N) be two Lie groupoids. We

say that G and H are strongly equivalent if there exist two homomor-

phisms, Φ : G −→ H and Ψ : H −→ G and, together with smooth natural

transformations S : Ψ ◦ Φ −→ idG , T : Φ ◦Ψ −→ idH.

3.4.2 Weak Equivalences

Definition 3.16. A Lie groupoid functor ϕ from (G ⇒ M) to (H ⇒ N) is

a weak equivalence (or essential equivalence) if it is

(1) essentially surjective; that is, the map t ◦ pr1 : H ×N M −→ N which

sends a pair (h, x) with s(h) = ϕ(x) to t(h) is a surjective submersion, and

(2) fully faithful; that is, the diagram below is a pullback sqare in Mfd.

G H

M ×M N ×N

ϕ1

(s, t) (s, t)

ϕ0 × ϕ0
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Remark 3.5. According to Proposition 3.3., the first condition ensures that

the pullback in the the second condition exists. Now if ϕ : G −→ H is a

weak equivalence, then there is an isomorphism between G and the induced

groupoid ϕ∗0(H).

In general, the strong equivalences between Lie groupoids are rare in com-

parison with the weak equivalences.

Example 3.4. (1) Let M be a smooth manifold and G = Pair(M) = M×M

its pair groupoid. If G ′ is a trivial groupoid consisting of one point {pt} and

only identity morphism, then the functor ϕ : G −→ G ′ is a strong and a weak

equivalence.

(2) If (G ⇒ M) is a Lie groupoid, then the smooth map f : L −→ M

in Proposition 3.5. induces a weak equivalence τ : f ∗(G) −→ G, see [29],

Example 5.10(4).

Proposition 3.7. Every strong equivalence of Lie groupoids is a weak equiv-

alence.

Proof. Let φ : G −→ H be a strong equivalence, with ψ : H −→ G and S

and T as in the definition of strong equivalence above. We prove first that

the map t ◦ pr1 : H1 ×H0 G0 −→ H0 of the definition of weak equivalence is

a surjective submersion. Clearly it is surjective because any y ∈ H0 is the

image of (T (y), ψ(y)). To see that it is a submersion, we prove that it has

a local section through any point (h0 : φ(x0 −→ y0, x0)) of H1 ×H0 G0. To

this end, consider the arrow T (y0)
−1h0 : φ(x0 −→ φ(ψ(y0))) in H. Since φ

is an equivalence of categories, there is a unique arrow g0 : x0 −→ ψ(y0) in

G with φ(g0) = T (y0)
−1h0 . Let λ : U −→ G1 be a local bisection through

g0 in G, and let λ̃ = t ◦ λ : U −→ G0 be the associated diffeomorphism
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onto an open neighbourhood V of ψ(y0). Let κ : ψ−1(V ) −→ H1 ×H0 G0 be

the map κ(y) = (T (y)φ(λ(λ̃)−1(ψ(y)))), λ̃−1(ψ(y))). Then κ is a section of

t◦pr1 through the given point (h0, x0). This proves that t◦pr1 is a surjective

submersion. In particular, the fibred product G0 ×H0 H1 ×H0 G0 of t ◦ pr1
along φ : G0 −→ H0 is a manifold, which fits into a pull-back diagram

G0 ×H0
H1 ×H0

G0 H1

G0 ×G0 H0 ×H0

pr2

(pr3, pr1) (s, t)

φ× φ

Since φ is an equivalence of categories, the map G1 −→ G0 ×H0
H1 ×H0

G0

sending g to (s(g), φ(g), t(g)) is a bijection.

Remark 3.6. The following two examples show that the converse is not true.

Example 3.5. (1) Let f : M −→ N be a surjective submersion, and let

ker(f) be the corresponding kernel groupoid. Then c(f) : ker(f) −→ N is

a weak equivalence. Let g : N −→ ker(f) be a quasi-inverse of c(f). Then

c(f) ◦ f is the identity map because N is a trivial groupoid. Hence g0 is a

section of f : M −→ N , but f need not admit a section in general.

(2) Let G be a Lie group and P −→ M a left principal G -bundle. The

functor G n P −→ M is a weak equivalence. P −→ M being a surjective

submersion implies essential surjectivity. Since the action is principal, the

diagram
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P ×G M

P × P M ×M

is a pullback square, hence implies fully faithful. For a similar reason as in

the previous example, Gn P −→M need not be a strong equivalence.

Weak equivalences of Lie groupoids satisfy the following properties:

Proposition 3.8. Let (G ⇒M), (H⇒ N) and (K⇒ L) be Lie groupoids.

(i) For two functors ϕ, ψ : G −→ H, if there is a natural transformation

τ : ϕ⇒ ψ, then ϕ is a weak equivalence if and only ψ is.

(ii) The composite of weak equivalence is a weak equivalence.

(iii) For a weak equivalence ϕ : G −→ H and a functor ψ : K −→ H, their

weak pullback P exists. Moreover, P −→ K is a weak equivalence and the

map from object space of P to L is a surjective submersion.

(iv) For functors ϕ, ψ : G −→ H and a weak equivalence τ : H −→ K,

if there is a natural transformation τ ◦ ϕ ⇒ τ ◦ ψ then there is a natural

transformation ϕ⇒ ψ.

Proof. The statements (i) and (ii) are straightforward implications from the

definitions. For (iii) see [29], Proposition 5.12. For (iv) see [32], Section

4.1.
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3.4.3 Morita Equivalences

Morita equivalence is the smallest equivalence relation between Lie groupoids

whenever there exists a weak equivalence between them.

Definition 3.17. Two Lie groupoids G ⇒ M and H ⇒ N are Morita

equivalent (G M∼ H) if there exist two weak equivalences ϕ : K −→ G and

ψ : K −→ H for a third Lie groupoid K⇒ L.

Now depending on the Proposition 3.8. (iii) we have the following proposi-

tion:

Proposition 3.9. Morita equivalence is the smallest equivalence relation

containing weak equivalence.

Proof. The proposition is clear as soon as we have asserted that
M∼ is an

equivalence relation. We only need to prove transitivity of
M∼. Suppose

G
M∼ H

M∼ K. Then there is a diagram G ←− L′ −→ H ←− L′′ −→ K,

where each arrow is an strong essential equivalence . The arrow and object

part of an essential equivalence are surjective submersions, and therefore the

strict pullback L of L′ and L′′ over H is well defined. By symmetry in (L′, G)

and (L′′, K), it is suffices to show that the natural map L −→ L′′ −→ G is

an essential equivalence. We check both conditions:

(i) It is immediate that L0 −→ L′0 is an surjective submersion since it is the

pullback of L′′0 −→ H0.

(ii) To prove that the composed rectangle in the diagram
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L1 L′1 G1

L0 × L0 L′0 × L′0 G0 ×G0

is a pullback, it suffices to show that the left hand square is a pullback since

the right hand square is. But we know that the composed rectangle

L1 L0 × L0 L′′0 × L0”

L′1 L′0 × L′0 H0 ×H0

is a pullback, and thus the left hand square is also a pullback.

3.4.4 Examples

(1) Let M be a smooth manifold. Consider ΠM , the fundamental groupoid

of M and π1(M, p) the fundamental group at p of M . There is a Morita

equivalence ΠM
M∼ π1(M, p) for p ∈ M , where we regard the fundamental

group π1(M, p) as a groupoid over the singleton {p}. In this case, we can see

this as the following

ΠM π1(M, p)oo id //π1(M, p) .

(2) Let G be a Lie group acting freely and properly on a smooth manifold

M . Consider the action groupoid GnM over M . There is a Morita equiva-

lence GnM
M∼ M/G, where we regard the quotient space M/G as the unit
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groupoid. So,

GnM M/Goo id //M/G .

(3) Two Lie groups G and G
′

are Morita equivalent if and only if they are

isomorphic.

(4) The general linear groupoid GL(E) ⇒M associated to the vector bundle

p : E −→ M is Morita equivalent to the Lie group GL(Ex), for any x ∈ M .

In addition, the natural inclusion GL(Ex) −→ GL(E) is a weak equivalence.

3.5 Groupoid Actions and Representations

The theory of representations of Lie groupoids gives a unified view for the

study of vector bundles on singular geometric spaces like orbifolds, spaces of

leaves of foliations or orbits of Lie group actions or dynamical systems. Also,

this theory has a direct relationship with the theory of representations of Lie

groups. In addition, it is also used to describe symmetries of fibre bundles

in a similar way as in the case for Lie groups, which are used to study

symmetries of manifolds [19]. In this section, we introduce Lie groupoid

actions and representations of Lie groupoids. We recommend [10] and [27]

as additional references for some of the material presented here.

3.5.1 Lie groupoid actions

Definition 3.18. Let (G ⇒M) be a Lie groupoid, N a smooth manifold and

ε : N −→M a smooth map called moment map. A smooth left action of

G on N along ε is given by a smooth map µ : G×MN −→ N , µ(g, y) = gy de-

fined on the pullback manifold G×MN = {(g, y) ∈ G×N | s(g) = ε(y)}, which
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satisfies the following identities: ε(gy) = t(g), 1ε(y)y = y and g′(gy) = (g′g)y,

for any g′, g ∈ G and y ∈ N with s(g′) = t(g) and s(g) = ε(y).

Remark 3.7. That the pullback in the previous definition is a smooth man-

ifold comes from the fact that the morphism s of the the groupoid is a sub-

mersion (see [29],p.122).

Example

Let (G ⇒ M) be a Lie groupoid and (M × F, p,M) be the trivial vector

bundle. Then, a left action of the Lie groupoid G along p can be defined by the

smooth map µ : G×MM×F −→M×F as follows : µ(g, (s(g), a)) = (t(g), a),

for g ∈ G, a ∈ F .

Given two left actions (ε1, µ1) on N and (ε2, µ2) on L respectively, a map

f : N −→ L is called equivariant if ε1 = ε2◦f and f(gy) for (g, y) ∈ G×MN .

Remark 3.8. (1) A right action is defined analogously. Given a left action

of G on a manifold N along ε, then yg = g−1y defines a right action on N

along ε and vise versa.

(2) An action µ realizes the arrows of the groupoid (G ⇒M) as symmetries

of the collection of fibres of the moment map, i.e. for each arrow x
g−→ y we

have a diffeomorphism Nx
µg−→ Ny.

(3) In the previous definition, if M is a one-point manifold, then G is a Lie

group, and we recover the action of a Lie group on a manifold as defined in

chapter 2.
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An action of a Lie groupoid (G ⇒ M) on a manifold N along a map ε in-

duces an equivalence relation on N . The quotient space N/G is usually not

a manifold even for a Lie group action (Proposition 2.3.).

Definition 3.19. Given a right action (µ1, ε1) of a Lie groupoid (G ⇒M) on

a manifold N . A semi-direct product groupoid N o G is a Lie groupoid

with object space N and morphism space N ×M,t G. The source map is µ,

the target map is N ×M,t G −→ N and the composition is given by the com-

position in G. There is a Lie groupoid functor π : N o G −→ G given by

ε : N −→M and pr2 : N ×M,t G −→ G.

Example 3.6. (1) Let (G ⇒ M) be a Lie groupoid. There is a natural

right action on M with moment map id : M −→ M and with action map

s : G ∼= M ×id,M,t G −→ M . The semi-direct product groupoid of this action

is G. This action may be regarded as a universal action. Given a right action

(µ, ε) on N , then ε : N −→M is an equivariant map.

(2) Let (G ⇒ M) be a Lie groupoid acting on manifolds N and L. Suppose

that either N −→ M or L −→ M is a surjective submersion. Then there is

an action on N ×M L given by (x, y).g = (x.g, y.g). This is the product in

the category of spaces with groupoid action.

3.5.2 Representations of Lie Groupoids

We study now particular types of Lie groupoid actions, which are generalis-

ing representations of Lie groups.

Definition 3.20. Let (G ⇒M) be a Lie groupoid and p : E −→M a smooth
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vector bundle. A representation of the groupoid G on E or G-module is

a smooth left action ρ : G ×
M
E −→ E, denoted by ρ(g, v) = gv, of G on E

along the bundle projection p : E −→ M , such that for any arrow g between

x, y ∈ M , the induced map between fibers g∗ : Ex −→ Ey , v 7−→ gv, is a

linear isomorphism.

Example 3.7. (1) Representations of the unit groupoid related to a smooth

manifold M correspond precisely to smooth real vector bundles over M.

(2) Let G be a point groupoid with only one object, i.e. G is a Lie group K.

The representation of G then coincides with representation of the Lie group

K on finite dimensional real vector spaces.

(3) The pair groupoid G = M × M over a smooth manifold M has both

projections as source and target maps and multiplication defined in a natural

way. Every representation of G on a vector bundle p : E −→ M amounts

to a natural identification of all the fibres of E and is thus isomorphic to a

trivial representation.

(4) Let G =K nM be the action groupoid of a smooth left action of a Lie

group K on a smooth manifold M . In this case the representations of the

groupoid G correspond to K-equivariant vector bundles over M (see also [37]).

(5) When G = Pair(M) = M × M , then a representation of G on E is

equivalent to a trivializtion of E. For this example, if the vector bundle E is

nontrivializable, then there is not any representation of the pair groupoid G

on E which is equivalent to a trivializtion of E.
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3.6 Lie Groupoid Cohomology

The (smooth) Eilenberg-MacLane cohomology of a Lie group can be gener-

alized to the cohomology of a Lie groupoid (see [28]). In this section, we give

a definition of Lie groupoid cohomology in the category of smooth manifolds

Mfd.

Definition 3.21. Let (G ⇒ M) be a Lie groupoid and π : E −→ M be a

vector bundle. Let θ : G ×M E −→ E, (g, v) 7−→ g.v be a Lie groupoid action.

Let G(n)
denote the manifold of all n- tuples (g1, ..., gn) ∈ G(n)

such that the

product of any two successive morphisms is defined, i.e.,

G(n)

= {(g1, ..., gn) ∈ G × G × ...× G | s(gi) = t(gi+1), i = 1, 2, ..., n− 1}.

The Lie groupoid cohomology of a G-module E is the cohomology H•(G, E)

of the cochain complex

C0(G, E)
δ0−→ C1(G, E)

δ1−→ C2(G, E)
δ2−→ C3(G, E)

δ3−→ · · · ,

where:

(1) For n = 0, let C0(G, E) be the set Γ(E) of smooth sections σ of the vector

bundle π : E −→M ;

(2) for all n ∈ N∗, Cn(G, E) is the set of smooth functions F from G(n)

to E, such that F (g1, ..., gn) ∈ Et(g1), where Et(g1) is the fibre at the point

t(g1) ∈M , for all (g1, ...., gn) ∈ G(n)
;

(3) for all σ ∈ Γ(E), δ0σ is the smooth function of C
1
(G, E) defined on G

into E by δ0σ(g) = g · σ(s(g))− σ(t(g)) for all g ∈ G(1)
= G;
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(4) for all n ∈ N and all F ∈ Cn
(G, E), δnF is the element of C

n+1
(G, E)

defined by

δnF (g0, ..., gn) = g0 · F (g1, ..., gn) +
n∑
i=1

(−1)
i

F (g0, ..., gi.gi+1, ..., gn)+

+ (−1)
n+1

F (g0, ..., gn−1)

for all (g0, ..., gn) ∈ G(n+1)
.

Remark 3.9. (i) The first cohomology group denoted by H1(G, E), is given

by 1-cocycles as functions F from G to E such that F (g) ∈ Et(g) for all

g ∈ G and satisfying the cocycle definition F (g1 .g2) = g1 .F (g2) + F (g1)

for all g1 , g2 ∈ G. But 1-coboundaries are E-valued functions on G of the

form F (g) = g · σ(s(g))− σ(t(g)) for some smooth section σ ∈ Γ(E).

(ii) The space C
n
(G, E) can also be defined as the space of sections of the

vector bundle t∗E −→ G(n)
, where t : G(n) −→ M represents the map given

by (g1 , ..., gn) 7−→ t(g1).

(iii) Each dynamical system (G,X, φ) gives rise to an action groupoid and

in particular, we recover the cohomology of a dynamical system (G,X, φ) as

a special case of this more general groupoid cohomology of the associated ac-

tion groupoid with constant coefficients A (see the last section below). It is

interesting to study these groupoid cohomology groups with more general coef-

ficients in the case of dynamical systems, which will be part of future research.

Example 3.8. (1) Let G be an action groupoid resulting from an action

of a group G on a one-point space {∗} i.e., G = G n {∗} ⇒ {∗}. For

σ ∈ C0(G, E) we have (δ0σ)(g) = g.σ(s(g))−σ(t(g)) and so ker δ0 is the set

{σ ∈ Γ(E) |g.σ(s(g)) − σ(t(g)) = 0} for all g ∈ G i.e., Z0(G, E) = ΓG(E)
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and so H0(G, E) = ΓG(E) which is invariant G- functions defined on the

one-point space {∗}.

(2) Suppose that G = {e} is the trivial group acting on the topological space

X. Then the action groupoid G takes the form G = {(g, x) |x ∈ X}. Then

Gn = {(e, x), ..., (e, x) |x ∈ X} is also trivial groupoid, so f ∈ C
n
(G, E)

is determined by f((e, x), ..., (e, x)) = a ∈ E. Identifying f = a we obtain

C
n
(G, E) = Γ(E) for all n ≥ 0. Then, if f ∈ Γ(E), then δ = 0 if n is even,

while δn = 1 if n is odd. Therefore H0(G, E) = ΓG(E) = E and Hn(G, E) = 0

for all n ≥ 1.

(3) Let (G = M ⇒M) be the trivial groupoid of a smooth manifold M , which

has a Lie groupoid structure. Since M (p) ∼= M , then any smooth vector bundle

E −→ M is a representation for the manifold M . Therefore Cn(G, E) can

be identified with Γ∞(E), the space of smooth sections of the vector bundle

E −→M . Now one can compute δi = 0 if i is even and δi = idE if i is odd.

Then H0(G, E) = Γ∞(E) and Hn(G, E) = 0 for n ∈ N.

3.7 Cocycles of Dynamical Systems and Lie

Groupoid Cohomology

The aim of this section is to represent cocycles of a dynamical system as ac-

tion groupoid cohomology classes and to understand how cohomology classes

of an action groupoid associated to a dynamical system appear as cocycles of

the given dynamical system. This follows some suggestions due to Tao and

related comments by Kim [38] to study dynamical systems from a purely

homological algebra point of view. As before, we will work in the discrete or
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topological situation, i.e. in the topological framework all group actions and

maps involved need to be assumed to be continuous.

Let (G,X, φ) be a dynamical system and A an abelian (topological) group.

The function ρ : G × X −→ A is a cocycle of G with values in A if the

following condition is satisfied: ρ(gh, x) = ρ(h, x) + ρ(g, hx) for all g, h ∈ G

and x ∈ X.

Also, out of this data we can construct an associated action groupoid G =

G n X ⇒ X, i.e. G = {(g, x) : g ∈ G, x ∈ X}, where s((g, x)) = x and

t((g, x)) = φ(g, x) = gx.

Firstly, let us write the cocycle function as an action groupoid cohomology

class. We expect that this class should be in the first cohomology group of

the action groupoid. The cohomology class of the action groupoid is denoted

by [c] ∈ H1(G, A).

As we know, G2 = G × G = {(γ1, γ2) : t(γ1) = s(γ2)} where γ1 = (g, x) and

γ2 = (h, y), y = φ(g, x) = gx = t((g, x)).

The cocycle function of the dynamical system ρ(gh, x) = ρ(h, x)+ρ(g, hx) can

be written as a groupoid cohomology class using the function F : G −→ A,

which satisfies the cocycle condition F (γ1 · γ2) = F (γ1) + γ1 ·F (γ2) added to

δ0σ(γ) = γ · σ(s(γ))− σ(t(γ)).

This means the following:

ρ(gh, x) = ρ(h, x) + ρ(g, hx) = F (m((g, x), (h, y))) + δ0σ((g, x))

= F (gh, x) + γ∗ · σ(x)− σ(gx).

Secondly, if we have a cohomology class of the action groupoid associated to

a dynamical system, we can also interpret it as a cohomology class being a

cocycle of the dynamical system in the following way:
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c = F ((g, x), (h, gx)) + δ0σ((g, x)) = F (gh, x) + σ(x)− σ(gx)

= ρ(gh, x) + ρ(g, x).

We end this thesis with a theorem which written without details in [38] con-

cerning the interpretation of the higher cohomology groups Hn(G,X;A) of

a given dynamical system (G,X, φ). We will give details of this problem and

will restrict ourselves to the two-dimensional case i.e. we will be looking for

an interpretation of H2(G,X;V ) here. It is a suggestion of Kim in regard to

Tao comments in [38] to study the role of this second cohomology group in

detail. This group is directly related to the problem of extending a dynamical

system and will be interpreted here in homological terms.

Theorem 3.1. Let (G,X, φ) be a dynamical system and A an abelian (topo-

logical) group. If for the second cohomology group H2(G,X, V ) = 0, then it

will be an obstruction group to extending a dynamical system and in general

we have a long exact sequence in cohomology:

· · · → H1(G,X;V )→ H1(G,X; Ã)→ H1(G,X;A)→ H2(G,X;V )→ · · ·

Proof. Suppose we have given a short exact sequence of abelian groups

0→ V
ι−→ Ã

π−→ A→ 0 .

By the definition of a group extension, one can view Ã as the set of ordered

pairs {(a, v) | a ∈ A, v ∈ V } equipped with an additive group law:

(a, v)⊕ (a′, v′) := (a+ a′, v + v′ +B(a, a′)) (2)

for some function B : A× A→ V (see [35]).
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According to Theorem 21, p.802, [12] we will get a natural long exact se-

quence in cohomology of the form:

· · · → H1(G,X;V )→ H1(G,X; Ã)→ H1(G,X;A)→ H2(G,X;V )→ · · · (3)

Thus H2(G,X;V ) is an obstruction group for detecting if an A-extension of

a given dynamical system (G,X, φ) can be lifted to an Ã-extension.

We will deduce this in several steps by constructing the maps involved: The

second map in (3) from H1(G,X; Ã) to H1(G,X;A) is obvious where the

projection map π in the short exact sequence from Ã to A induces a projec-

tion group homomorphism between their first cohomology groups. That is,

it sends each cohomology class ρ̃ + B(G,X; Ã) ∈ H1(G,X, Ã) to the coho-

mology class ρ + B(G,X;A) ∈ H1(G,X;A) , where ρ̃ : G ×X −→ Ã is an

1-cocycle and thus the group homomorphism transverses the first cohomology

group H1(G,X; Ã) to H1(G,X;A).

The third map in (3) is given as follows: Suppose we have given a cohomology

class which is represented by ρ : G × X → A ∈ H1(G,X,A) and want to

lift it to a cohomology class which is represented by ρ̃ : G × X → Ã ∈

H1(G,X, Ã) by using the projection map from H1(G,X, Ã) to H1(G,X,A).

Now by writing elements of H1(G,X, Ã), as a direct sum from H1(G,X,A)

and H1(G,X, V ) then we can write ρ̃ = (ρ, σ) for some 1-cocycle σ : G×X →

V. By using the cocycle equation ρ(gh, x) = ρ(h, x)+ρ(g, hx) for all g, h ∈ G,

x ∈ X and the additive group law in (2), we get

(ρ, σ)(gh, x) = (ρ, σ)(h, x) + (ρ, σ)(g, hx)

= (ρ(h, x) + ρ(g, hx), σ(h, x) + σ(g, hx) +B(ρ(h, x) + ρ(g, hx)).

This means we need to find a 1-cocycle σ such that the following holds:

σ(gh, x) = σ(h, x) + σ(g, hx) +B(ρ(h, x), ρ(g, hx)).
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We can write this as follows:

σ(gh, x)− σ(h, x)− σ(g, hx) = B(ρ(h, x), ρ(g, hx))

The left side gives a 2-cocycle in H2(G,X, V ) and implies that there is a

map defined as Φ : H1(G,X,A) −→ H2(G,X, V ) such that Φ sends the

cohomology class [ρ] representing the 1-cocycle ρ : G × X → A to the co-

homology class in H2(G,X, V ). B(ρ(h, x) + ρ(g, hx)) is its coboundary and

Φ(ρ) : (g, h, x) 7→ B(ρ(h, x), ρ(g, hx)) is a V-valued 2-coboundary. If we

suppose that σ is a trivial cocycle, then there is a map sending (g, h, x) 7→

(0,Φ(ρ)), which gives a Ã-valued 2-coboundary. But every coboundary is

a cocycle, so it is a Ã-valued 2-cocycle, and Φ(ρ) is a V-valued 2-cocycle.

This means the map ρ 7→ Φ(ρ) maps 1-cocycles ρ : G × X → A to 2-

cocycles Φ(ρ) : G×G×X → V . Analogously, if we are given two 1-cocycles

ρ, ρ′ : G × X → A, it follows that (ρ + ρ′, 0) differs from (ρ, 0) + (ρ,′ 0)

by some V-valued 1-cochain which is B(ρ, ρ′) and taking derivatives, we see

that Φ(ρ + ρ′) differs from Φ(ρ) + Φ(ρ′) by some 2-coboundary. Therefore,

it follows that Φ is a linear map modulo 2-coboundaries and in fact a group

homomorphism.

Finally, as we know that each cohomology class is a cocycle modulo a cobound-

ary, we will take ρ as an A-valued 1-coboundary, then depending on assuming

that cocycles in H1(G,X, Ã) are ordered pairs as defined before, thus (ρ, 0) is

the sum of an Ã-valued 1-coboundary and a V-valued 1-cochain, and so tak-

ing derivatives again, we see that Φ maps 1-coboundaries from H1(G,X, Ã)

to 2-coboundaries in H2(G,X, V ). Therefore we finally get an induced map

from H1(G,X;A) to H2(G,X;V ), and therefore the sequence (3) is a short

exact sequence.

It is an interesting question to ask for an interpretation also for the higher
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cohomology groups Hn(G,X;V ) and Hn(G,X;A), which we plan to look

into in the future. It looks possible to develop a whole theory of cocycle

extensions for dynamical systems (G,X, φ) using methods from homological

algebra and higher category theory. It can be expected that also an adequate

version of Hochschild cohomology will enter the game, which is a natural tool

to study extensions and deformations of this type.
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