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Abstract

As reliable mathematical methods for finance, various concepts of the stochas-

tic calculus are discussed in detail in this thesis such as the Ito integral, the

(continuous and discrete) Malliavin calculus and the Stratonovich integral.

The derivative of a natural number and the quantum calculus are also illus-

trated in this thesis.

The Stroock lemma and the duality formula are two methods when the Malli-

avin calculus is applied to calculate the preceding quantities. To extend the

range of application of these rules is a crucial purpose of this thesis. Solving

certain equations based on the Ito integral and the Malliavin calculus has also

been introduced and analysed in this thesis. This equation, which is also a

kind of stochastic differential equation, can be treated as an inverse applica-

tion of the Malliavin derivative. Finally, the product rule for other derivative

operators is extensively introduced and analysed throughout the whole thesis,

since this rule in the stochastic calculus or the quantum calculus is sometimes

different from the traditional infinitesimal calculus.

To explore the idea of differential dynamics with the non-standard and new

types of differentiation, the differential operators discussed and introduced

v



in this thesis, such as the continuous and the discrete Malliavin derivative

operator and the q-derivation operator are applied as transforms on some

state spaces, such as measurable space and the space constructed by the finite

fields.
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Chapter 1

Introduction

This thesis consists of three main parts. The three parts are loosely con-

nected. The two main joint points in all modelling and analysis are trying to

identify conditions when the Lie-bracket or the Stroock type relationship and

the duality property are satisfied. This relationship can be simply represented

by

Dδ = I + δD,

or equivalently,

[D, δ] = I,

where [, ] is the Lie bracket.

From the pure mathematics point of view, both parts of this thesis are in-

teresting as mathematical questions. Bernt Oksendal [38] [40] [41] and David

Nualart [34] [36] are partly treated some stochastic differential equations which

are defined as the Ito-Malliavin type equations in this thesis. The q-derivative,
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or Jackson derivative, which first introduced by Frank Hilton Jackson [20] has

been widely applied in number theory such as the sums of two and of four

squares, the sums of two and of four triangular numbers [21]. It is interesting

to investigate how to apply q-derivation operator on the finite field.

From the applied mathematics point of view, both the q-derivation operators

and the solutions to the Ito-Malliavin type equation give another way to the

financial modelling. These notions lead to the non-standard financial mod-

elling. There are more details in the paper written by X. Ma et al. [32], the

paper written by Rukiye Samci Karadeniz et al. [22] and the Ph.D. thesis of

Wenyan Hao [16].

The inspiration of the Ito-Malliavin type equation comes from the application

of the Stroock lemma ( or called ”a fundamental theorem of calculus” by Giulia

Di Nunno et al. [38] ) in the Malliavin calculus and some Gaussian processes

such as Brownian bridge. The adapted solutions of all three Ito-Malliavin type

equations illustrated in this thesis have been given.

The Stroock lemma is an important notion in the stochastic calculus. Three

different approaches of generalization of this lemma such as the discrete Malli-

avin calculus, the traditional derivative and the arithmetic derivative are given

in the second part. Here in this part a generalised duality formula via a bilinear

map is also given in the first part.

In general, the q-derivation operator and the q-type derivation operator in-

troduced in this thesis are non-commutative. These operators, different from

the semi-derivation operators and the derivation operators ( see Chapter 10

), satisfy the q-product rule. In this thesis, these operators are applied to a

vector space of Fp-valued functions where Fp is a finite field. It gives another

way to construct the famous Cox-Ross-Rubinstein model.
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Main structure of the thesis

Before the main contents, all commonly used notations are listed in Chapter

2 for convenience.

• The first part of this thesis is certain equations based on the Ito integral

and the Malliavin calculus which are simply called the Ito-Malliavin type

equations in this thesis. These equations can be simply represented as

DtXu = F (t,Wt, u,Wu) .

Furthermore, the Stratonovich-Malliavin type equations are also intro-

duced and analysed in this part.

All terminologies and methods can be found in Chapter 3. Several simple

lemmas and examples are illustrated in Chapter 4. The specific defini-

tions and methods of preceding equations are shown in Chapter 5.

• The second part of this thesis is about the general Stroock lemma. To

find different forms of this lemma, several concepts, such as the discrete

Malliavin calculus and the derivative of a natural number are introduced

in this part.

All terminologies and methods can be found in Chapter 6. Several simple

lemmas and examples are illustrated in Chapter 7. Various topics about

the general Stroock lemma are shown in Chapter 8.
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• The third part of this thesis is a discrete differential dynamics. The q-

derivation operator is applied to Fpn-valued vectors to investigate how

differential dynamics works.

All terminologies and methods can be found in Chapter 9. Several simple

lemmas and examples are illustrated in Chapter 10. The discrete differ-

ential dynamics of q-derivation and the characterization of q-derivation

are shown in Chapter 11. The application of the q-derivation operator

to Cox-Ross-Rubinstein model is demonstrated in Chapter 12.

Results: There are too many to state. Chapter 4, 5, 7, 8, 10, 11 and 12 are

based on my results.
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Chapter 2

Notations

In this chapter, some commonly used notations of the whole thesis are illus-

trated here.

{Xt : t > 0}, Xt, Xt,z: stochastic process{
X

(m)
t : t > 0

}
, X

(m)
t : a sequence of stochastic processes

{Wt : t > 0}, Wt: Wiener process

{Bt : t > 0}, Bt: standard Brownian motion

{Ft : t > 0}, Ft: filtration

∆, ∆̃: delta operator, shift-equivariant linear operator

L2 ([0, T ]n): standard space of square integrable Borel real functions on [0, T ]n

L̃2 ([0, T ]n): standard space of symmetric square integrable Borel real functions

on [0, T ]n

5



In: n-fold iterated Ito integrals

L2 (P ): space of square integrable random variables

(g, h)L2([0,T ]n): the inner product of L2 ([0, T ]n)

fn (t1, · · · , tn, t) = fn,t (t1, · · · , tn) = fn (·, t) , n = 1, 2, · · · : functions of n + 1

variables, that is (t1, · · · , tn) ∈ [0, T ]n and the parameter t ∈ [0, T ]

f̃n (t1, · · · , tn, tn+1) = f̃n, n = 1, 2, · · · : symmetric functions derived from

fn (·, t) , n = 1, 2, · · ·

δ (u): Skorohod integral of the stochastic process ut

Dt: Malliavin derivative at time t

D1,2: subspace of L2 (P ) of which function F satisfies ‖F‖2
D1,2

=
∑∞

n=1 nn!‖fn‖2
L2([0,T ]n) <

∞

D0
1,2: the set of all F ∈ L2 (P ) whose chaos expansion has only finitely many

terms

G (t,Xt): function of the process Xt and the time t

∫ T
0
G (t,Xt) ◦ dWt: Stratonovich integral of the function G (t,Xt)

Hn (λ, x): Hermite polynomial of degree n and parameter λ > 0

(Ω,F , P ): a complete probability space

R: the set of real numbers

R0: R\ {0}

N: the set of natural numbers
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Λ: discrete time set

ω: Bernoulli random variable

Ω: set of ω

L2 (Ω, P ): discrete version of the Wiener space with respect to the uniform

probability measure P

B, Bt: discrete Brownian motion

Xs, (Xs)s∈Λ: discrete stochastic process

Xn (t1, · · · , tn): symmetric function Xn on Λn

Xn,s (t1, · · · , tn; s): coefficient function with respect to the process variable s

B: bilinear map

Fp: finite field with p elements

Fpn : finite field with pn elements and characteristic p

Dq: q-derivation operator

An,p = {(f1, · · · , fn)T : fi ∈ Fp}: a vector space of Fp-valued functions

OAn,p→An,p : a class of matrices from An,p to An,p

7



Part 1 :

Ito-Malliavin Equations

Main definitions from the Ito integral, the Stratonovich integral and the Malli-

avin calculus are introduced in Chapter 3. Chapter 4 contains several exam-

ples and lemmas on the Ito integral, the Stratonovich integral and Mallaivin

calculus. The Ito-Malliavin type equations, the Stratonovich-Malliavin type

equations and related main results are in Chapter 5 based on [9].
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Chapter 3

Terminology and Methods

In this chapter, all crucial notations and methods are introduced in details in-

cluding definitions and properties. These concepts will be applied throughout

part 1. Several lemmas with proofs are also given here.

3.1 Ito integral

Ito stochastic integral is a stochastic generalization of the RiemannStieltjes

integral. This notion has a lot of applications in financial mathematics and

stochastic differential equations.

This section follows Rogers Chris et al. [5] and Revuz Daniel et al. [8].

3.1.1 Definition

Let {t0, t1, · · · , tk} be a partition of the interval [0, T ], that is,

0 = t0 < t1 < · · · < tk = T.

9



Assume that an adapted stochastic process {Xt : t > 0} is constant in t on

each subinterval [ti, ti+1) , i = 0, 1, · · · k − 1, such that for each t ∈ [0, T ],

Ep
[
(Xt)

2] < +∞. This kind of process is often called a simple process. Let

(Ω,F , P ) be a probability space and
(
Ω,F , {Ft}t>0 , P

)
be a filtered probabil-

ity space. The Ito integral can be defined as

∫ t

0

XsdWs, t ∈ [0, T ] ,

where {Wt : t > 0} is an adapted Wiener process with respect to a natural

filtration {Ft : t > 0} which is a sub-σ-algebra of F . Then, for t ∈ [ti, ti+1],

I (t) =

∫ t

0

XsdWs

=
i−1∑
j=0

Xtj

(
Wtj+1

−Wtj

)
+Xti (Wt −Wti) .

Then, consequently, the definition of the Ito integral is given as follow.

Definition 3.1.1. (Ito integral)

Suppose {Wt : t > 0} is a Wiener process and {Xt : t > 0} is an adapted stochas-

tic process with respect to a filtration {Ft : t > 0}. Then the Ito integral is

defined as

∫ T

0

XtdWt = lim
∑
i

Xti

(
Wti+1

−Wti

)
, i = 0, 1, · · · , k − 1,

where the symbol of limit represents that the mesh of the partition 0 = t0 <

t1 < · · · < tk = T of [0, T ] tends to 0.

10



3.1.2 Properties

Since the definition of Ito integral is given, some important properties which

will be used in this thesis are illustrated in this section.

As a simple application of discretization method, the Ito isometry is proved in

details.

Lemma 3.1.1. (Ito isometry)

The Ito integral satisfies

E

[∣∣∣∣∫ t

0

XsdWs

∣∣∣∣2
]

= E

[∫ t

0

|Xs|2 ds
]
.

Lemma 3.1.2. (Convergence)

Let
{
X

(m)
t : t > 0,m = 1, 2, · · ·

}
be a sequence of adapted stochastic processes

with respect to a filtration {Ft : t > 0} which satisfies

X
(m)
t → Xt

in L2 (P ) which is a space of square integrable random variables. Then,

∫ T

0

X(m)
s dWs →

∫ T

0

XsdWs

in L2 (P ) with respect to m→∞.

Proof.

For each m,

11



E

[(∫ T

0

X(m)
s dWs −

∫ T

0

XsdWs

)2
]

= E

[(∫ T

0

(
X(m)
s −Xs

)
dWs

)2
]
.

Through Ito isometry ( Lemma 3.1.1 ),

E

[(∫ T

0

(
X(m)
s −Xs

)
dWs

)2
]

= E

[∫ T

0

(
X(m)
s −Xs

)2
ds

]
.

From the condition that X
(m)
t → Xt in L2 (P ),

lim
m→∞

‖X(m)
t −Xt‖2 = 0.

Therefore,

E

[∫ T

0

(
X(m)
s −Xs

)2
ds

]
→ 0

in L2 (P ) with respect to m→∞. This completes the proof.

3.1.3 Ito process

Definition 3.1.2. (Ito process)

Let {Ft : t > 0} be a filtration and let {Wt : t > 0} be an adapted Wiener pro-

cess. An Ito process is a stochastic process of the form

Xt = X0 +

∫ t

0

µsds+

∫ t

0

σsdWs,

where X0 is deterministic and {µt : t > 0} and {σt : t > 0} are adapted stochas-

tic processes, which satisfy

E

[∫ t

0

|µs|2ds
]
< +∞

12



and

E

[∫ t

0

|σs|2ds
]
< +∞.

The former definition is the integral form of the Ito process. The differential

form of the Ito process is

dXt = µtdt+ σtdWt.

Lemma 3.1.3. (Uniqueness)

Suppose {Xu : u > 0} and {Yu : u > 0} are two Ito processes defined in Defi-

nition 3.1.2 which can be represented as

dXu = µudu+ σudWu

and

dYu = µ̄udu+ σ̄udWu.

If these two processes satisfy

Xt +

∫ u

t

µsds+

∫ u

t

σsdWs = Yt +

∫ u

t

µ̄pds+

∫ u

t

σ̄sdWp,

then µs = µ̄s and σs = σ̄s almost surely, and therefore Xt = Yt almost surely.

13



3.2 Wiener-Ito chaos expansion

This section follows Giulia Di Nunno et al. [38].

Let L2 ([0, T ]n) be the standard space of square integrable Borel real functions

on [0, T ]n such that

‖g‖2
L2([0,T ]n) =

∫
[0,T ]n

g2 (t1, · · · , tn) dt1 · · · dtn <∞.

Let L̃2 ([0, T ]n) ⊂ L2 ([0, T ]n) be the space of symmetric square integrable

Borel real functions on [0, T ]n.

Definition 3.2.1. (n-fold iterated Ito integrals)

If g ∈ L̃2 ([0, T ]n), the n-fold iterated Ito integrals can be defined as

In (g) =

∫
[0,T ]n

g (t1, · · · , tn) dWt1 · · · dWtn

= n!

∫ T

0

∫ tn

0

· · ·
∫ t2

0

g (t1, · · · , tn) dWt1 · · · dWtn .

The function g in Definition 3.2.1 is defined to be symmetric because it is

convenient to explain the Wiener-Ito chaos and the Malliavin calculus through

symmetric expansion, as opposed to the time-ordered expansion. Through the

definition of the n-fold iterated Ito integrals In, the following Wiener-Ito chaos

expansion is given here as a theorem.

Lemma 3.2.1. (The Wiener-Ito chaos expansion)

14



Let ξ be an Ft - measurable random variable in L2 (P ), that is the space

of square integrable random variables. Then there exists a unique sequence

{fn : n = 1, 2, · · · ,∞} of functions fn ∈ L̃2 ([0, T ]n) such that

ξ =
∞∑
n=0

In (fn) ,

where the convergence is in L2 (P ). Moreover, the isometry can be written as

‖ξ‖2
L2(P ) =

∞∑
n=0

n!‖fn‖2
L2([0,T ]n).

The proof of Lemma 3.2.1 can be found in section 1.3 of Chapter 1 in the book

”Malliavin Calculus for Levy Processes with Applications to Finance” written

by Giulia Di Nunno et al. [38].

If g ∈ L̃2 ([0, T ]m) and h ∈ L̃2 ([0, T ]n), remark that the following relations

always hold:

E [Im (g) In (h)] =

{
0, n 6= m
(g, h)L2([0,T ]n) , n = m

(m,n = 1, 2, · · · ) ,

where

(g, h)L2([0,T ]n) =

∫
L2([0,T ]n)

g (t1, · · · , tn)h (t1, · · · , tn) dt1 · · · dtn

= n!

∫ T

0

∫ tn

0

· · ·
∫ t2

0

g (t1, · · · , tn)h (t1, · · · , tn) dt1 · · · dtn

is the inner product of L2 ([0, T ]n).

15



3.3 Skorohod integral

The Skorohod integral was introduced for the first time by A. Skorohod in

1975. This stochastic integral is connected to the Malliavin calculus which

will be introduced in the next part.

This section follows Giulia Di Nunno et al. [38].

3.3.1 Definition

Let fn,t = fn,t (t1, · · · , tn), (t1, · · · , tn) ∈ [0, T ]n, n = 1, 2, · · · be the symmetric

functions and fn,t ∈ L̃2 ([0, T ]n). Since the functions fn,t, n = 1, 2, · · · depend

on the parameter t ∈ [0, T ],

fn (t1, · · · , tn, tn+1) = fn (t1, · · · , tn, t) = fn,t (t1, · · · , tn)

and fn can be regarded as a function of n + 1 variables. The symmetrization

f̃n of fn is given by

f̃n (t1, · · · , tn, tn+1) =
1

n+ 1
[fn (t1, · · · , tn, tn+1)

+fn (t2, · · · , tn+1, t1) + · · ·+ fn (t1, · · · , tn−1, tn+1, tn)] .

Definition 3.3.1. (The Skorohod integral)

Let ut, t ∈ [0, T ], be a measurable stochastic process such that for all t ∈

[0, T ] the random variable ut is FT -measurable and E
[∫ T

0
u2
tdt
]
<∞. Let its

Wiener-Ito chaos expansion be

16



ut =
∞∑
n=0

In (fn,t) =
∞∑
n=0

In (fn (·, t)) .

Then the Skorohod integral of u can be defined by

δ (u) =

∫ T

0

utδWt =
∞∑
n=0

In+1

(
f̃n

)
when convergent in L2 (P ). Here f̃n, n = 1, 2, · · · , are the symmetric functions

derived from fn (·, t), n = 1, 2, · · · . u is Skorohod integrable if
∑∞

n=0 In+1

(
f̃n

)
converges in L2 (P ), which can be represented as u ∈ Dom (δ).

By isometry in Lemma 3.2.1 a stochastic process u belongs to Dom (δ) if and

only if

E
[
δ (u)2] =

∞∑
n=0

(n+ 1)!‖f̃n‖2
L2([0,T ]n+1) <∞.

3.3.2 The connection between the Skorohod integral
and the Ito integral

The Skorohod integral is an extension of Ito integral. The two integrals are

the same elements of L2 (P ) if the integrand u is F adapted. This will be

proved in this section.

Lemma 3.3.1. Let u = ut, t ∈ [0, T ], be a measurable stochastic process

such that, for all t ∈ [0, T ], the random variable ut is FT -measurable and

E [u2
t ] <∞. Let
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ut =
∞∑
n=0

In (fn (·, t))

be its Wiener-Ito chaos expansion. Then u is F adapted if and only if

fn (t1, · · · , tn, t) = 0

if t < max16i6n ti. The above equality is meant almost everywhere in [0, T ]n

with respect to Lebesgue measure.

Proof.

First note that for any g ∈ L̃2 ([0, T ]n),

E [In (g) |Ft] = E

[∫
[0,T ]n

g (t1, · · · , tn) dWt1 · · · dWtn|Ft
]

= n!E

[∫ T

0

∫ tn

0

· · ·
∫ t2

0

g (t1, · · · , tn) dWt1 · · · dWtn|Ft
]

= n!

∫ t

0

∫ tn

0

· · ·
∫ t2

0

g (t1, · · · , tn) dWt1 · · · dWtn

= In
(
g (t1, · · · , tn) · χ{max ti<t}

)
.

Now, u is F adapted if and only if E [ut|Ft] = ut. Namely, if and only if∑∞
n=0 In (fn (·, t)) =

∑∞
n=0E [In (fn (·, t)) |Ft] =

∑∞
n=0 In

(
fn (·, t) · χ{max ti<t}

)
.

And thus if and only if fn (t1, · · · , tn, t) · χ{max ti<t} = fn (t1, · · · , tn, t) almost

everywhere in [0, T ]n with respect to Lebesgue measure. By uniqueness of

the sequence of deterministic functions on the Wiener-Ito chaos expansion (

Lemma 3.2.1 ), this lemma is proved.
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Lemma 3.3.2. Let u = ut, t ∈ [0, T ], be a measurable F adapted stochastic

process such that

E

[∫ T

0

u2
tdt

]
<∞.

Then u ∈ Dom (δ) and its Skorohod integral coincides with the Ito integral

∫ T

0

utδWt =

∫ T

0

utdWt.

Proof.

Let ut =
∑∞

n=0 In (fn (·, t)) be the chaos expansion of ut. By Lemma 3.3.1,

f̃n (t1, · · · , tn, tn+1) =
1

n+ 1
fn (t1, · · · , tj−1, tj+1, · · · , tn+1, tj) ,

where

j = argmax16i6n+1ti.

Consider the set

Sn = {(t1, · · · , tn) ∈ [0, T ]n : 0 6 t1 6 t2 6 · · · 6 tn 6 T} .

Hence
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‖f̃n‖2
L2([0,T ]n+1)

= (n+ 1)!

∫
Sn+1

f̃n
2

(t1, · · · , tn+1) dt1 · · · dtn+1

=
(n+ 1)!

(n+ 1)2

∫
Sn+1

f 2
n (t1, · · · , tn+1) dt1 · · · dtn+1

=
n!

n+ 1

∫ T

0

∫ t

0

∫ tn

0

· · ·
∫ t2

0

f 2
n (t1, · · · , tn, t) dt1 · · · dtndt

=
n!

n+ 1

∫ T

0

∫ T

0

∫ tn

0

· · ·
∫ t2

0

f 2
n (t1, · · · , tn, t) dt1 · · · dtndt

=
1

n+ 1

∫ T

0

‖fn (·, t)‖2
L2([0,T ]n)dt,

again by using Lemma 3.3.1. Hence, by isometry in Lemma 3.2.1,

∞∑
n=0

(n+ 1)!‖f̃n‖2
L2([0,T ]n+1) =

∞∑
n=0

n!

∫ T

0

‖fn (·, t)‖2
L2([0,T ]n)dt

=

∫ T

0

∞∑
n=0

n!‖fn (·, t)‖2
L2([0,T ]n)dt

= E

[∫ T

0

u2
tdt

]
<∞.

This proves that u ∈ Dom (δ). Finally,
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∫ T

0

utdWt

=
∞∑
n=0

∫ T

0

In (fn (·, t)) dWt

=
∞∑
n=0

∫ T

0

n!

∫
06t16···6tn6t

fn (t1, · · · , tn, t) dWt1 · · · dWtndWt

=
∞∑
n=0

∫ T

0

n! (n+ 1)

∫
06t16···6tn6tn+1

f̃n (t1, · · · , tn, tn+1) dWt1 · · · dWtndWtn+1

=
∞∑
n=0

In+1

(
f̃n

)
=

∫ T

0

utδWt

By this the proof is complete.

3.4 Malliavin calculus for Brownian motion

Paul Malliavin is the first one who introduces the Malliavin calculus, an

infinite-dimensional differential calculus on the Wiener space, to the public

in the 1970s. Many new applications of this calculus have appeared as a result

of the development of this theory. In this thesis, the Malliavin derivative op-

erator has been applied to both the Ito integral and the Stratonovich integral.

In those famous researches did by Fournie E. et al. [13] [14], the Malliavin

calculus has been used to calculate Delta, Gamma and Vega for no jump

process. Their approach is based on the integration-by-parts formula which

is also called the duality formula somewhere. Such calculations can be also

found in the lecture notes of Eulalia Nualart [37] and the book written by Paul
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Malliavin et al. [44]. Then Fournie E. et al. [13] [14] did numerical experiments

by using Monte Carlo simulations after calculating those Greeks. On the other

hand, Evangelia Petrou [45] gives her calculation of the Greeks for a general

stochastic volatility model with jumps both in the underlying and the volatility.

These works show that the Malliavin calculus has widespread applications in

finance. Considering the practicability of the Malliavin calculus, it plays an

important part in hedging and related topics.

This section follows Peter K. Friz [15], Giulia Di Nunno et al. [38], Bernt

Oksendal [40], David Nualart [34] and Eulalia Nualart [37]. There are more

details in the book written by Paul Malliavin himself [44].

3.4.1 Definition

Definition 3.4.1. (Malliavin derivative)

Let F ∈ L2 (P ) be FT -measurable with chaos expansion

F =
∞∑
n=0

In (fn) ,

where fn ∈ L̃2 ([0, T ]n), n = 1, 2, · · · .

(1) F ∈ D1,2 if

‖F‖2
D1,2

=
∞∑
n=1

nn!‖fn‖2
L2([0,T ]n) <∞.

(2) If F ∈ D1,2, the Malliavin derivative DtF of F at time t as the expansion

can be defined as

DtF =
∞∑
n=1

nIn−1 (fn (·, t)) , t ∈ [0, T ] ,
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where In−1 (fn (·, t)) is the (n− 1)-fold iterated integral of fn (t1, · · · , tn−1, t)

with respect to the first n−1 variables t1, · · · , tn−1 and tn = t left as parameter.

Lemma 3.4.1. (Closability of the Malliavin derivative)

Suppose F ∈ L2 (P ) and Fk ∈ D1,2, k = 1, 2, ..., such that

(1) Fk → F , k →∞, in L2 (P )

(2) {DtFk}∞k=1 converges in L2 (P × λ).

Then F ∈ D1,2 and DtFk → DtF , k →∞, in L2 (P × λ).

The proof can be found in the book written by Giulia Di Nunno et al. [38].

3.4.2 Properties

Let D0
1,2 be the set of all F ∈ L2 (P ) whose chaos expansion has only finitely

many terms.

Proposition 3.4.1. (Product rule)

Suppose F1, F2 ∈ D0
1,2. Then F1, F2 ∈ D1,2 and also F1F2 ∈ D1,2 with

Dt (F1F2) = F1DtF2 + F2DtF1.

Proposition 3.4.2. (Sum rule)

Suppose F1F2 ∈ D1,2. and α and β be two constants. Then,

Dt (αF1 + βF2) = αDtF1 + βDtF2.
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Proposition 3.4.3. (Chain rule)

Let F ∈ D1,2 and f is a function with bounded derivative. Then f (F ) ∈ D1,2

and

Dtf (F ) = f ′ (F )DtF.

Here f ′ (x) = df (x) /dx.

Lemma 3.4.2. Let G ⊆ [0, T ] be a Borel set and v = vt, t ∈ [0, T ], be a

stochastic process such that

(1) for all t, vt is measurable with respect to Ft ∩ FG

(2) E
[∫ T

0
v2
t dt
]
<∞.

Then

∫
G

vtdWt

is FG-measurable.

Proposition 3.4.4. Let u = us, s ∈ [0, T ], be an F adapted stochastic process

and assume that us ∈ D1,2 for all s. Then

(1) Dtus, s ∈ [0, T ], is F adapted for all t;

(2) Dtus = 0, for t > s.

All proofs provided by Giulia Di Nunno et al. [38].
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Proposition 3.4.5. (Constant rule)

Let Ct be a function with respect to t. Then, for all t,

DtCs = 0.

This proposition is a direct result of the definition of the Malliavin derivative.

3.4.3 Duality formula

This section follows Giulia Di Nunno et al. [38]. The Malliavin derivative

operator is the adjoint operator of the Skorohod integral, which will be shown

as the following lemma. Note that the following lemma may be defined as the

integration-by-parts formula in some papers ( Fournie E. et al. [13],[14] ).

Lemma 3.4.3. (Duality formula)

Let F ∈ D1,2 be FT -measurable and let u be a Skorohod integrable stochastic

process. Then

E

[
F

∫ T

0

utδWt

]
= E

[∫ T

0

utDtFdt

]
.

Proof.

Let F =
∑∞

n=0 In (fn) and, for all t, ut =
∑∞

k=0 Ik (gk (·, t)) be the chaos

expansions of F and ut, respectively. Then
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E

[
F

∫ T

0

utδWt

]
= E

[
∞∑
n=0

In (fn)

∫ T

0

∞∑
k=0

Ik (gk (·, t)) δWt

]

= E

[
∞∑
n=0

In (fn)
∞∑
k=0

Ik+1 (g̃k)

]

= E

[
∞∑
k=0

Ik+1 (fk+1) Ik+1 (g̃k)

]

=
∞∑
k=0

(k + 1)!

∫
[0,T ]k+1

fk+1 (x) g̃k (x) dx

=
∞∑
k=0

(k + 1)! (fk+1, g̃k)L2([0,T ]k+1) ,

where g̃k is the symmetrization of gk (x1, · · · , xn, t) as a function of n + 1

variables. On the other side,

E

[∫ T

0

utDtFdt

]
= E

[∫ T

0

(
∞∑
k=0

Ik (gk (·, t))

)(
∞∑
n=1

nIn−1 (fn (·, t))

)
dt

]

=

∫ T

0

∞∑
k=0

E [(k + 1) Ik (gk (·, t)) Ik (fk+1 (·, t))] dt

=

∫ T

0

∞∑
k=0

(k + 1) k! (fk+1 (·, t) , gk (·, t))L2([0,T ]k) dt

=
∞∑
k=0

(k + 1)! (fk+1, gk)L2([0,T ]k+1) .

Now

(fk+1, g̃k)L2([0,T ]k+1) =

∫ T

0

(fk+1 (·, t) , g̃k (·, t))L2([0,T ]k) dt

=
1

k + 1

k+1∑
j=1

∫ T

0

(fk+1 (·, tj) , gk (·, tj))L2([0,T ]k) dtj

=

∫ T

0

(fk+1 (·, t) , gk (·, t))L2([0,T ]k) dt

= (fk+1, gk)L2([0,T ]k+1) .

26



This finishes the proof.

Note that if u is an F adapted process with

E

[∫ T

0

u2
tdt

]
<∞.

Then

E

[
F

∫ T

0

utdWt

]
= E

[∫ T

0

utDtFdt

]
.

Lemma 3.4.4. (Integration by parts)

Let ut, t ∈ [0, T ], be a Skorohod integrable stochastic process and F ∈ D1,2 such

that the product Fut, t ∈ [0, T ], is Skorohod integrable. Then

F

∫ T

0

utδWt =

∫ T

0

FutδWt +

∫ T

0

utDtFdt.

Proof.

Assume that F ∈ D0
1,2. Choose G ∈ D0

1,2. By product rule ( Proposition 3.4.1

) and duality formula ( Lemma 3.4.3 ),

E

[
G

∫ T

0

FutδWt

]
= E

[∫ T

0

FutDtGdt

]
= E

[
GF

∫ T

0

utδWt

]
− E

[
G

∫ T

0

utDtFdt

]
.

Since the set of all G ∈ D0
1,2 is dense in L2 (P ), it follows that

F

∫ T

0

utδWt =

∫ T

0

FutδWt +

∫ T

0

utDtFdt, P − a.s.
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Then the result follows for general F ∈ D1,2 by approximating F by F (n) ∈ D0
1,2

such that F (n) → F in L2 (P ) and DtF
(n) → DtF in L2 (P × λ), for n → ∞.

The duality formula can be also used to prove the following important result.

Lemma 3.4.5. (Closability of the Skorohod integral)

Suppose that u
(n)
t , t ∈ [0, T ], n = 1, 2, · · · , is a sequence of Skorohod integrable

stochastic processes and that the corresponding sequence of Skorohod integrals

δ
(
u(n)
)

=

∫ T

0

u
(n)
t δWt, n = 1, 2, · · ·

converges in L2 (P ). Moreover, suppose that

lim
n→∞

u(n) = 0 in L2 (P × λ) .

Then

lim
n→∞

δ
(
u(n)
)

= 0 in L2 (P ) .

Proof.

By duality formula ( Lemma 3.4.3 ),

(
δ
(
u(n)
)
, F
)
L2(P )

=
(
u(n), DF

)
L2(P×λ)

→ 0, n→∞,

for all F ∈ D1,2. Then, conclude that δ
(
u(n)
)
→ 0 weakly in L2 (P ). Since{

δ
(
u(n)
)

: n = 0, 1, · · · ,∞
}

is convergent in L2 (P ), it can be seen that δ
(
u(n)
)
→

0 in L2 (P ).
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3.4.4 A fundamental theorem of calculus

This section follows Giulia Di Nunno et al. [38].

The relation between differentiation and Skorohod integration is given as the

next lemma.

Lemma 3.4.6. (The fundamental theorem of calculus)

Let u = us, s ∈ [0, T ], be a stochastic process such that

E

[∫ T

0

u2
sds

]
<∞

and assume that, for all s ∈ [0, T ], us ∈ D1,2 and that, for all t ∈ [0, T ],

Dtu ∈ Dom (δ). Assume also that

E

[∫ T

0

(δ (Dtu))2 dt

]
<∞.

Then
∫ T

0
usδWs is well-defined and belongs to D1,2 and

Dt

(∫ T

0

usδWs

)
=

∫ T

0

DtusδWs + ut.

Proof.

First assume that

us = In (fn (·, s)) ,

where fn (t1, · · · , tn, s) is symmetric with respect to t1, · · · , tn. Then
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∫ T

0

usδWs = In+1

[
f̃n

]
,

where

f̃n (x1, · · · , xn+1) =
1

n+ 1
[fn (·, x1) + · · ·+ fn (·, xn+1)]

is the symmetrization of fn as a function of all its n+ 1 variables. Hence

Dt

(∫ T

0

usδWs

)
= (n+ 1) In

[
f̃n (·, t)

]
,

where

f̃n (·, t) =
1

n+ 1
[fn (t, ·, x1) + · · ·+ fn (t, ·, xn) + fn (·, t)] .

Then, by linearity and former results, it is clear that

Dt

(∫ T

0

usδWs

)
= In [fn (t, ·, x1) + · · ·+ fn (t, ·, xn) + fn (·, t)]

= In [fn (t, ·, x1) + · · ·+ fn (t, ·, xn)] + u (t) . (1)

Consider

δ (Dtu) =

∫ T

0

DtusδWs

=

∫ T

0

nIn−1 [fn (·, t, s)] δWs

= nIn

[
f̂n (·, t, ·)

]
,

where

f̂n (x1, · · · , xn−1, t, xn) =
1

n
[fn (t, ·, x1) + · · ·+ fn (t, ·, xn)]
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is the symmetrization of fn (x1, · · · , xn−1, t, xn) with respect to x1, · · · , xn.

Then,

∫ T

0

DtusδWs = In [fn (t, ·, x1) + · · ·+ fn (t, ·, xn)] . (2)

After comparing (1) and (2), the result is clear. Next, consider the general

case when

us =
∞∑
n=0

In [fn (·, s)] .

Define

u(m)
s =

m∑
n=0

In [fn (·, s)] , m = 1, 2, · · · .

By E
[∫ T

0
u2
sds
]
<∞, ‖u− u(m)‖2

L2(P×λ) → 0, m→∞. Then, for all m,

Dt

(
δ
(
u(m)

))
= δ

(
Dtu

(m)
)

+ u
(m)
t .

By δ (Dtu) = nIn

[
f̂n (·, t, ·)

]
, E
[∫ T

0
(δ (Dtu))2 dt

]
<∞ is equivalent to saying

that

E

[∫ T

0

(δ (Dtu))2 dt

]
=

∞∑
n=1

n2n!

∫ T

0

‖f̂n (·, t, ·)‖2
L2([0,T ]n)dt

=
∞∑
n=1

n2n!‖f̂n‖2
L2([0,T ]n+1) <∞, (3)

since Dtu ∈ Dom (δ). Hence, for m→∞,

‖δ (Dtu)− δ
(
Dtu

(m)
)
‖2
L2(P×λ) =

∞∑
n=m+1

n2n!‖f̂n‖2
L2([0,T ]n+1) → 0. (4)
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Therefore,

Dt

(
δ
(
u(m)

))
→ δ (Dtu) + u (t) , m→∞,

in L2 (P × λ). Note that

(n+ 1) f̃n (·, t) = nf̂n (·, t, ·) + fn (·, t)

and hence

(n+ 1)!‖f̃n‖2
L2([0,T ]n+1) 6

2n2n!

n+ 1
‖f̂n‖2

L2([0,T ]n+1) +
2n!

n+ 1
‖fn‖2

L2([0,T ]n+1).

Therefore,

‖δ (u)‖2
D1,2

=
∞∑
n=0

(n+ 1) (n+ 1)!‖f̃n‖2
L2([0,T ]n+1)

6
∞∑
n=0

[
2n2n!‖f̂n‖2

L2([0,T ]n+1) + 2n!‖fn‖2
L2([0,T ]n+1)

]
6 2‖δ (Dtu)‖2

L2(P×λ) + 2‖u‖2
L2(P×λ) <∞,

by (3) and E
[∫ T

0
u2
sds
]
< ∞. Then δ (u) is well-defined and belongs to D1,2.

Similarly,

‖Dt

(∫ T

0

usδWs

)
−Dt

(∫ T

0

u(m)
s δWs

)
‖2
L2(P×λ)

= ‖
∞∑

n=m+1

(n+ 1) In

(
f̃n (·, t)

)
‖2
L2(P×λ)

=

∫ T

0

∞∑
n=m+1

(n+ 1)2 n!‖f̃n (·, t)‖2
L2([0,T ]n)dt

6 2
∞∑

n=m+1

[
n2n!‖f̂n‖2

L2([0,T ]n+1) + n!‖fn‖2
L2([0,T ]n+1)

]
, (5)
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which vanishes when m→∞. Hence given (4) and (5),

Dt (δ (u)) = δ (Dtu) + u (t) ,

by letting m→∞ in Dt

(
δ
(
u(m)

))
= δ

(
Dtu

(m)
)

+ u
(m)
t .

Lemma 3.4.7. (Stroock lemma)

Let u be as in Lemma 3.4.6 and assume in addition that us, s ∈ [0, T ] is F

adapted. Then

Dt

(∫ T

0

usdWs

)
=

∫ T

t

DtusdWs + ut.

Proof.

This lemma can be proved directly by Lemma 3.3.2 and Lemma 3.4.6.

3.5 Hermite polynomials

This section follows Pierre-Simon Laplace [29].

The definition of Hermite polynomials are given here, since it will be used

many times in the following examples.

Definition 3.5.1. (Hermite polynomials)

The Hermite polynomials of degree n and parameter λ > 0 can be defined by

Hn (λ, x) = (−λ)n e
x2

2λ
dn

dxn
e−

x2

2λ , n > 1, x ∈ R,

where H0 (λ, x) = 1.
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Moreover, the following properties hold:

Proposition 3.5.1.

∂

∂x
Hn (λ, x) = nHn−1 (λ, x) , n > 1.

Proposition 3.5.2.

Hn+1 (λ, x) = xHn (λ, x)− nλHn−1 (λ, x) , n > 1.

Proposition 3.5.3.

Hn (λ,−x) = (−1)nHn (λ, x) , n > 1.

Proposition 3.5.4.

∂

∂λ
Hn (λ, x) = −1

2

∂2

∂x2
Hn (λ, x) , n > 1.

Note that Hermite polynomials satisfy the following lemma.

Lemma 3.5.1. Let Hn (λ, x) be the Hermite polynomials defined by Definition

3.5.1. Then,

exp

(
tx− t2λ

2

)
=
∞∑
n=0

tn

n!
Hn (λ, x) .
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3.6 Stratonovich integral

Stratonovich integral was developed by Ruslan L. Stratonovich and D. L. Fisk

simultaneously, which is a stochastic integral. The history of Stratonovich in-

tegral is explored by Jarrow Robert et al. [48]. The application of Stratonovich

integral exists in applied mathematics and physics. This part is motivated by

Ruslan L. Stratonovich [52] and D. L. Fisk [12]. One can find more details

in Chapter 3 of the book ’Stochastic Differential Equations, An Introduction

with Applications’ written by Bernt Oksendal [41].

3.6.1 Definition

Definition 3.6.1. (Stratonovich integral)

Suppose Wt is a Wiener process and {Xt : t > 0} is an adapted stochastic

process according to the nature filtration {Ft : t > 0}. Then the Stratonovich

integral is defined as

∫ T

0

G (t,Xt) ◦ dWt = lim
∑
i

G
(
ti, Xti+1

)
+G (ti, Xti)

2

(
Wti+1

−Wti

)
,

i = 0, 1, · · · , k − 1,

where the symbol of limit represents that the mesh of the partition 0 = t0 <

t1 < · · · < tk = T of [0, T ] tends to 0 and G (t, ·) is a Ft measurable function.

There is an another way to define the Stratonovich integral. The Stratonovich

integral can be also defined as
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∫ T

0

G (t,Xt) ◦ dWt = lim
∑
i

G

(
ti,
Xti+1

+Xti

2

)(
Wti+1

−Wti

)
,

i = 0, 1, · · · , k − 1,

where the symbol of limit represents that the mesh of the partition 0 = t0 <

t1 < · · · < tk = T of [0, T ] tends to 0 and G (t, ·) is a Ft-measurable function

according to Suresh P. Sethi et al. [50].

3.6.2 Properties

Next lemma shows the relationship between the Ito integral and the Stratonovich

integral. This lemma can be found at page 101 of the book written by Suresh

P. Sethi et al. [26] where also proof is provided.

Lemma 3.6.1. (Conversion between Ito integral and Stratonovich integral)

Suppose f (t,Wt) is any continuously differentiable function of two variables

Wt and t, then

∫ T

0

f (t,Wt) ◦ dWt =
1

2

∫ T

0

∂f

∂Wt

(t,Wt) dt+

∫ T

0

f (t,Wt) dWt.

Example 3.6.1.

Let Bt be a standard Brownian motion. By Definition 3.6.1,

BT =

∫ T

0

1 ◦ dBt.

For n > 1,
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(n+ 1)

∫ T

0

Bn
t ◦ dBt = (n+ 1)

∫ T

0

Bn
t dBt +

n (n+ 1)

2

∫ T

0

Bn−1
t dt

by Lemma 3.6.1. According to the Ito representation,

Bn+1
T = B0 + (n+ 1)

∫ T

0

Bn
t dBt +

n (n+ 1)

2

∫ T

0

Bn−1
t dt.

Therefore,

Bn+1
T = (n+ 1)

∫ T

0

Bn
t ◦ dBt, n > 1.

Finally, concluding the former results,

Bn+1
T = (n+ 1)

∫ T

0

Bn
t ◦ dBt, n ∈ N.

3.7 Stochastic differential equation

A stochastic differential equation is a differential equation in which one or

more of the terms is a stochastic process, resulting in a solution which is also

a stochastic process.

The Ito stochastic differential equation in the form of

dXt = f (t,Xt) dt+ g (t,Xt) dWt, Xt0 = 0

is one of the classical stochastic differential equations which has been used in

many fields, such as physics and finance. This kind of stochastic differential

equations will be considered many times in this thesis.
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The Brownian bridge introduced next is an important example. This Gaussian

process is the inspiration of the Equation B and Equation C in Chapter 5.

This example can be also found in page 75 of the book ’Stochastic Differential

Equations’ written by Bernt Oksendal [41].

Example 3.7.1. (Brownian bridge)

For fixed a, b ∈ R, consider the following equation

dYu =
b− Yu
1− u

du+ dBu, 0 6 u < 1, Y0 = a.

Turn the differential form of the former process Yu to the integral form

Yu = Y0 +

∫ u

0

(
b− Ys
1− s

)
ds+

∫ u

0

dBs.

For fix t, applying Malliavin derivative operator Dt to the process Yu,

DtYu =

∫ u

t

Dt

(
b− Ys
1− s

)
ds+ 1

=

∫ u

t

−DtYs
1− s

ds+ 1.

Let As = DtYs, therefore,

Au =

∫ u

t

−As
1− s

ds+ 1.

The derivative of Au is

Au
′ =
−Au
1− u

.

Solve former equation and get
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lnAu = −
∫

1

1− u
du

= ln (1− u) + lnC,

and then,

Au = C (1− u)

where C is a constant. Since At = 1,

C =
1

1− t
.

Conclude former results,

Au = DtYu =
1− u
1− t

where 0 6 t < u < 1.

There is another form of Brownian bridge, which is

Yu = a (1− u) + bu+ (1− u)

∫ u

0

dBs

1− s
, 0 6 u < 1.

For fix t, applying derivative operator Dt to the process Yu,

DtYu = Dt

[
a (1− u) + bu+ (1− u)

∫ u

0

dBs

1− s

]
= (1− u)Dt

∫ u

0

dBs

1− s

=
1− u
1− t

+

∫ u

0

Dt
dBs

1− s

=
1− u
1− t

where 0 6 t < u < 1.
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Chapter 4

Simple Results

In this chapter, numerous examples and lemmas are treated as simple results

here. These results may help to understand not only several lemmas given

before but the inspiration of this part as well. Note that these lemmas given

here will be applied in following chapters.

4.1 Some related results of Malliavin calculus

The following lemma gives another way to prove the Stroock lemma which

follows Professor Utev.

Lemma 4.1.1. (Direct proof of Stroock lemma)

Let F =
∫ T

0
σudWu in which σu is Fu adapted and Wu is the Wiener process.

Then, for fixed t,

DtF =

∫ T

0

DtσudWu + σt.
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Proof.

This equation holds if proven for

σt =

{
ηa, a < t 6 b,
0, else,

where ηa is a random variable and a, b ∈ [0, T ]. Then,

σt = ηaI (a < t 6 b)

= ηa [I (a < t 6 T )− I (b < t 6 T )] .

Without loss of generality, it is equivalent to proof

σt = ηaI (a < t 6 T ) .

According to the definition of the Ito integral,

F =

∫ T

0

σudWu

=
∑
j

ηtj
(
Wtj+1

−Wtj

)
= ηa (WT −Wa)

= ηaWh,

where Wh =
∫ T

0
h (s) dWs and

h (t) =

{
1, a < t 6 T,
0, else.

Applying Proposition 3.4.1 and the fact that
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DtWh = h (t) ,

the left-hand side of the equation is

DtF = Dt (ηaWh)

= ηaDtWh +WhDtηa

= ηaI (a < t 6 T ) + (WT −Wa)Dtηa

= ηah (t) + (WT −Wa)Dtηa.

Meanwhile, applying the fact that Dth = 0,

Dtσu = DtηaI (a < t 6 T )

= Dtηah (t)

= h (t)Dtηa,

and then the first term of the right-hand side of the equation is

∫ T

0

DtσudWu = Dt

∑
j

ηtj
(
Wtj+1

−Wtj

)
= Dtηa (WT −Wa)

since Dtσu is Fu adapted because t is fixed and σu is Fu adapted. The second

term of the right-hand side of the equation is

σt = ηaI (a < t 6 T ) = ηah (t) .

In terms of the aforementioned results,

DtF =

∫ T

0

DtσudWu + σt.
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Lemma 4.1.2. Let f be a function with respect to u and Wiener process Wu,

such function f and its first and second derivative are bounded. Then,

DtDuf (u,Wu) = DuDtf (u,Wu) .

Proof.

By Proposition 3.4.3, from left hand side of the former equation,

DtDuf (u,Wu) = Dt

{
f ′Wu

(u,Wu)
}

= f ′′WuWu
(u,Wu) I (u > t) .

Similarly, from right hand side of the former equation,

DuDtf (u,Wu) = Du

{
f ′Wu

(u,Wu) I (u > t)
}

= f ′′WuWu
(u,Wu) I (u > t) .

Therefore, it is clear that

DtDuf (u,Wu) = DuDtf (u,Wu) .

Remark that

DtDuf (s,Ws) 6= DuDtf (s,Ws) .

Without loss of generality, assume that s > t > u. Then, from left hand side

of the former equation,
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DtDuf (s,Ws) = Dt

{
f ′Ws

(s,Ws) I (s > u)
}

=
{
f ′′WsWs

(s,Ws) I (s > u)
}
I (u > t)

= 0.

From right hand side of the former equation,

DuDtf (s,Ws) = Du

{
f ′Ws

(s,Ws) I (s > t)
}

=
{
f ′′WsWs

(s,Ws) I (s > t)
}
I (t > u)

= f ′′WsWs
(s,Ws) I (s > u) .

Therefore, DtDuf (s,Ws) is not always equal to DuDtf (s,Ws). Lemma 4.1.2

is just a special case.

4.2 Some related results of Stratonovich inte-

gral

The following lemma gives another way to represented the relationship between

the Ito integral and the Stratonovich integral.

Lemma 4.2.1. Suppose {Xu : u > 0} is Fu adapted. Then

∫ T

0

Xu ◦ dWu =
1

2

∫ T

0

σudu+

∫ T

0

XudWu

where dXu = σudWu + µudu.
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Proof.

According to the Definition 3.6.1, the Stratonovich integral can be represented

as

∫ T

0

Xu ◦ dWu = lim
∑
j

(
Xuj +Xuj+1

2

)(
Wuj+1

−Wuj

)
= lim

∑
j

Xuj

(
Wuj+1

−Wuj

)
+

1

2
lim
∑
j

(
Xuj+1

−Xuj

) (
Wuj+1

−Wuj

)
. (?)

The first term of the right hand side of (?) is equal to
∫ T

0
XudWu. Since Xu is

an Ito process and the differential form of this process is dXu = σudWu+µudu,

it can be seen that

Xuj+1
−Xuj =

∫ uj+1

uj

σudWu +

∫ uj+1

uj

µudu.

Then the second term of the right hand side of (?) can be divided into two

parts. The first part of this term is

∑
j

(∫ uj+1

uj

µudu

)(
Wuj+1

−Wuj

)
→ 0

in L2 since ∆u∆Wu → 0 in L2 ( see Appendix ). The second part of this term

is

∑
j

(∫ uj+1

uj

σudWu

)(
Wuj+1

−Wuj

)
→
∫ T

0

σudu

in L2 since ∆Wu∆Wu → ∆u in L2 ( see Appendix ). To sum up the former

results,

45



lim
∑
j

(
Xuj+1

−Xuj

) (
Wuj+1

−Wuj

)
=

∫ T

0

σudu.

The next lemma explains the uniqueness of the representation of the Stratonovich

integral.

Lemma 4.2.2. (Uniqueness)

Suppose {Xu : u > 0} and {Yu : u > 0} are two adapted processes, which can

be represented as

dXu =

(
µu −

1

2
(σu)

′
Wu

)
du+ σudWu

and

dYu =

(
µ̄u −

1

2
(σ̄u)

′
Wu

)
du+ σ̄udWu.

If these two processes satisfy

Xu = Yu,

and therefore


Xt = Yt a.s.
µp = µ̄p a.s.
σp = σ̄p a.s..

Proof.

From the definition of Stratonovich integral and Lemma 4.2.1, the left-hand

side of former equation can be illustrated as
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Xt +

∫ u

t

(
µp −

1

2
(σp)

′
Wp

)
dp+

∫ u

t

σp ◦ dWp = Xt +

∫ u

t

µpdp+

∫ u

t

σpdWp

and the right-hand side can be similarly illustrated as

Yt +

∫ u

t

(
µ̄p −

1

2
(σ̄p)

′
Wp

)
dp+

∫ u

t

σ̄p ◦ dWp = Yt +

∫ u

t

σ̄pdWp +

∫ u

t

µ̄udu

Then, according to Lemma 3.1.3, the result is clear.

4.3 Malliavin calculus for Stratonovich inte-

gral

The Stroock lemma can be extended to the Stratonovich integral by following

lemma.

Lemma 4.3.1. (Stroock lemma for Stratonovich integral)

Assume that f (t,Wt) is any continuously differentiable function of two vari-

ables Wt and t. Then

Dt

(∫ T

0

f (u,Wu) ◦ dWu

)
=

∫ T

0

Dtf (u,Wu) ◦ dWu + f (t,Wt) .

Proof.

Considering Lemma 4.1.1 and Lemma 3.6.1,
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Dt

(∫ T

0

f (u,Wu) ◦ dWu

)
= Dt

(∫ T

0

f (u,Wu) dWu

)
+

1

2
Dt

(∫ T

0

∂f (u,Wu)

∂Wu

du

)
=

∫ T

0

Dtf (u,Wu) dWu + f (t,Wt) +
1

2

∫ T

0

Dt
∂f (u,Wu)

∂Wu

du

=

∫ T

0

Dtf (u,Wu) ◦ dWu −
1

2

∫ T

0

∂Dtf (u,Wu)

∂Wu

du+

+
1

2

∫ T

0

Dt
∂f (u,Wu)

∂Wu

du+ f (t,Wt)

=

∫ T

0

Dtf (u,Wu) ◦ dWu −
1

2

∫ T

0

DuDtf (u,Wu) du+

+
1

2

∫ T

0

DtDuf (u,Wu) du+ f (t,Wt) .

According to Lemma 4.1.2,

∫ T

0

DuDtf (u,Wu) du =

∫ T

0

DtDuf (u,Wu) du.

This finishes the proof.

Lemma 4.3.2. Assume that Xt is an adapted process which can be defined as

dXt = µtdt+σtdWt where Wt is a Wiener process and DtXt is also an adapted

process where D is the differential operator. Then

Dt

(∫ T

0

Xu ◦ dWu

)
=

∫ T

0

DtXu ◦ dWu +Xt.

Proof.

Considering Lemma 4.1.1 and Lemma 4.2.1,
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Dt

(∫ T

0

Xu ◦ dWu

)
= Dt

(∫ T

0

XudWu

)
+

1

2
Dt

(∫ T

0

σudu

)
=

∫ T

0

DtXudWu +Xt +
1

2

∫ T

0

Dtσudu

=

∫ T

0

DtXu ◦ dWu −
1

2

∫ T

0

σv (DtXu) dv +
1

2

∫ T

0

Dt (σu) du+Xt

where σv is a operator which lets d (DtXu)v = µv (DtXu) dv + σv (DtXu) dWv.

The process Xu in the former equation can be represented as

Xu = X0 +

∫ u

0

µvdv +

∫ u

0

σvdWv.

Therefore,

DtXu =

∫ u

0

Dt (µv) dv +

∫ u

0

Dt (σv) dWv + σt.

Applied the operator σv,

σv (DtXu) = Dt (σv) .

Next, some examples are introduced here to see how Statonovich integral

works.

Example 4.3.1.

Apply the derivative operator Dt to the Stratonovich integral
∫ T

0
Bu ◦ dBu.

Then,
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Dt

(∫ T

0

Bu ◦ dBu

)
= Dt

(∫ T

0

BudBu

)
+

1

2
Dt

(∫ T

0

1du

)
=

∫ T

0

DtBudBu +Bt

=

∫ T

0

DtBu ◦ dBu −
1

2

∫ T

0

∂DtBu

∂Bu

du+Bt

=

∫ T

0

DtBu ◦ dBu +Bt.

Example 4.3.2.

Apply the derivative operator Dt to the Stratonovich integral
∫ T

0
Hn (u,Bu) ◦

dBu where Hn (t, Bt) is Hermite polynomial defined by Definition 3.5.1. Then,

Dt

(∫ T

0

Hn (u,Bu) ◦ dBu

)
= Dt

(∫ T

0

Hn (u,Bu) dBu

)
+

1

2
Dt

(∫ T

0

nHn−1 (u,Bu) du

)
=

∫ T

0

DtHn (u,Bu) dBu +Hn (t, Bt) +
1

2

∫ T

0

nDtHn−1 (u,Bu) du

=

∫ T

0

DtHn (u,Bu) ◦ dBu −
1

2

∫ T

0

∂DtHn (u,Bu)

∂Bu

du+

+
n

2

∫ T

0

DtHn−1 (u,Bu) du+Hn (t, Bt)

=

∫ T

0

DtHn (u,Bu) ◦ dBu −
n

2

∫ T

0

∂Hn−1 (u,Bu) I (u > t)

∂Bu

du+

+
n (n− 1)

2

∫ T

t

Hn−2 (u,Bu) du+Hn (t, Bt)

=

∫ T

0

DtHn (u,Bu) ◦ dBu +Hn (t, Bt) .

In this example, n is larger than 1 because there exists a slight difference

between n = 1 and n > 1 in specific calculation. The situation of n = 1 has

been already illustrated in the example 4.3.1.
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Example 4.3.3.

Let St = S0e
at+σBt , where a = µ − σ2/2. Apply the derivative operator Dt

again to the Stratonovich integral
∫ T

0
Su ◦ dBu. Then,

Dt

(∫ T

0

Su ◦ dBu

)
= Dt

(∫ T

0

SudBu

)
+

1

2
Dt

(∫ T

0

σSudu

)
=

∫ T

0

DtSudBu + St +
1

2

∫ T

0

DtσSudu

=

∫ T

0

DtSu ◦ dBu −
1

2

∫ T

0

∂DtSu
∂Bu

du+
1

2

∫ T

0

DtσSudu+ St

=

∫ T

0

DtSu ◦ dBu −
1

2

∫ T

0

∂σSuI (u > t)

∂Bu

du+
1

2

∫ T

t

σ2Sudu+ St

=

∫ T

0

DtSu ◦ dBu + St.

Lemma 4.3.3. (Duality formula for Stratonovich integral)

Let u be a Skorohod integrable stochastic process and Yt is defined by

YT =

∫ T

0

Xt ◦ dWt =

∫ T

0

XtdWt +
1

2

∫ T

0

σtdt

(Stratonovich integrable), where

dXt = σtdWt + µtdt

is adapted. Note that σt and µt are also adapted. Suppose that

∫ T

0

XtdWt ∈ D1,2

and
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∫ T

0

σtdt ∈ D1,2.

Then,

E

[
YT

∫ T

0

u (t) δWt

]
= E

[∫ T

0

u (t)DtYTdt

]
.

Proof.

Since YT is defined by

∫ T

0

Xt ◦ dWt,

it is equal to prove

E

[(∫ T

0

Xt ◦ dWt

)(∫ T

0

u (t) δWt

)]
= E

[∫ T

0

u (t)Dt

(∫ T

0

Xt ◦ dWt

)
dt

]
.

The left hand side of the former equation is

E

[(∫ T

0

Xt ◦ dWt

)(∫ T

0

u (t) δWt

)]
= E

[(∫ T

0

XtdWt +
1

2

∫ T

0

σtdt

)∫ T

0

u (t) δWt

]
= E

[(∫ T

0

XtdWt

)(∫ T

0

u (t) δWt

)]
+

1

2
E

[(∫ T

0

σtdt

)(∫ T

0

u (t) δWt

)]
by linearity, and the right hand side of this equation is
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E

[∫ T

0

u (t)Dt

(∫ T

0

Xt ◦ dWt

)
dt

]
= E

[∫ T

0

u (t)

(∫ T

0

DtXudWu +Xt +
1

2

∫ T

0

Dtσudu

)
dt

]
= E

[∫ T

0

u (t)

(∫ T

0

DtXudWu

)
dt

]
+ E

[∫ T

0

u (t)Xtdt

]
+

1

2
E

[∫ T

0

u (t)

(∫ T

0

Dtσudu

)
dt

]
= E

[∫ T

0

u (t)Dt

(∫ T

0

XudWu

)
dt

]
+

1

2
E

[∫ T

0

u (t)

(∫ T

0

Dtσudu

)
dt

]
by Lemma 4.3.2, linearity and Lemma 3.4.7. According to Lemma 3.4.3,

E

[(∫ T

0

XtdWt

)(∫ T

0

u (t) δWt

)]
= E

[∫ T

0

u (t)Dt

(∫ T

0

XudWu

)
dt

]
and

E

[(∫ T

0

σtdt

)(∫ T

0

u (t) δWt

)]
= E

[∫ T

0

u (t)

(∫ T

0

Dtσudu

)
dt

]
.

This completes the proof.

4.4 Stratonovich stochastic differential equa-

tion

Consider the Ito stochastic differential equation,

dXt = f (t,Xt) dt+G (t,Xt) dWt, Xt0 = 0

where G (t, x) is differentiable in x.
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For Definition 3.6.1,

1

2

(
G
(
ti, Xti+1

)
+G (ti, Xti)

) (
Wti+1

−Wti

)
=

1

2

(
G
(
ti, Xti+1

)
−G (ti, Xti)

) (
Wti+1

−Wti

)
+G (ti, Xti)

(
Wti+1

−Wti

)
,

where ti+1 and ti are time points of the partition 0 = t0 < t1 < · · · < tk = T .

The second term of this equation is

G (ti, Xti)
(
Wti+1

−Wti

)
→ G (t,Xt) dWt

as the mash of the partition 0 = t0 < t1 < · · · < tk = T tends to 0 in L2 (P ).

Then, rewrite the first term, which is

1

2

G
(
ti, Xti+1

)
−G (ti, Xti)

Xti+1
−Xti

(
Xti+1

−Xti

) (
Wti+1

−Wti

)
.

Applying mean value theorem and the fact that Xt is an Ito process, it can be

seen that

1

2

G
(
ti, Xti+1

)
−G (ti, Xti)

Xti+1
−Xti

→ 1

2
Gx (t,Xt)

and

Xti+1
−Xti → f (t,Xt) dt+G (t,Xt) dWt

as the mesh of the partition 0 = t0 < t1 < · · · < tk = T tends to 0 in L2 (P ).

Thus, using the fact that dt · dWt = 0 and dWt · dWt = dt ( see Appendix ),

1

2
Gx (t,Xt) (f (t,Xt) dt+G (t,Xt) dWt) dWt =

1

2
Gx (t,Xt)G (t,Xt) dt.
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For another definition of the Stratonovich integral,

G

(
ti,
Xti+1

+Xti

2

)(
Wti+1

−Wti

)
=

(
G

(
ti,
Xti+1

+Xti

2

)
−G (ti, Xti)

)(
Wti+1

−Wti

)
+G (ti, Xti)

(
Wti+1

−Wti

)
,

where ti+1 and ti are time points of the partition 0 = t0 < t1 < · · · < tk = T .

The second term of this equation has the same representation as the former

one. Then, rewrite the first term, which is

G

(
ti,
Xti+1

+Xti

2

)
−G (ti, Xti)

Xti+1
+Xti

2
−Xti

(
Xti+1

+Xti

2
−Xti

)(
Wti+1

−Wti

)
.

Applying mean value theorem and the fact that Xt is an Ito process again, it

can be seen that

G

(
ti,
Xti+1

+Xti

2

)
−G (ti, Xti)

Xti+1
+Xti

2
−Xti

→ Gx (t,Xt)

and

Xti+1
+Xti

2
−Xti =

1

2

(
Xti+1

−Xti

)
→ 1

2
(f (t,Xt) dt+G (t,Xt) dWt) .

as the mesh of the partition 0 = t0 < t1 < · · · < tk = T tends to 0 in L2 (P ).

Thus, using the fact that dt · dWt = 0 and dWt · dWt = dt ( see Appendix ),

1

2
(f (t,Xt) dt+G (t,Xt) dWt)Gx (t,Xt) dWt =

1

2
Gx (t,Xt)G (t,Xt) dt.
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Therefore, for both two definitions, the representation of the Stratonovich

stochastic differential equation is

dXt =

(
f (t,Xt)−

1

2
Gx (t,Xt)G (t,Xt)

)
dt+G (t,Xt) ◦ dWt, Xt0 = 0.
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Chapter 5

Ito-Malliavin Type Equations

Since Paul Malliavin introduces Malliavin calculus in the 1970s, it has been

wildly applied in finance. For instance, Fournie E. et al. use Malliavin calculus

to calculate ”Greeks” in their famous paper [13] ( There are similar calculations

of ”Greeks” in the lecture notes of Eulalia Nualart [37]. ) and Bernt Oksendal

applies Malliavin calculus to the Black and Scholes formula as well [40].

The concept of stochastic differential equations (SDEs) is a big topic both in

physics and mathematical finance. SDEs can be driven by different processes

such as the Wiener process, the pure jump process and the Levy process.

Many SDEs ( stochastic differential equations ) are already solved [31], such

as first-order Ito equations. However, Malliavin calculus can be also applied

to solving stochastic differential equations. For more details there are many

references, such as the book written by Giulia Di Nunno et al. [38] and the

paper written by David Nualart et al. [36].

The Ito-Malliavin type equations or simply called Ito-Malliavin equations can

be treated as the inverse application of the Malliavin derivative. The aim of
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introducing Ito-Malliavin type equations and other related equations is to find

the unknown original process in these equations. In this chapter, concepts

of Ito-Malliavin type equations and Stratonovich-Malliavin type equations are

illustrated as a special series of SDEs ( stochastic differential equations ). Some

related examples are also given to explain how to solve these equations.

5.1 Ito-Malliavin type equations

Definition 5.1.1. (Ito-Malliavin type equations)

Let Xu be an unknown Fu adapted Gaussian process and Xu ∈ D1,2. F is a

function with respect to the time t, u and the Wiener processes Wt, Wu and

F (t,Wt, u,Wu) is Fu adapted. Dt is the Malliavin derivative operator. Then,

equations which have the form of

DtXu = F (t,Wt, u,Wu)

are called Ito-Malliavin type equations.

Notice that u > t is the only case considered in this chapter, since it is clear

that DtXu = 0 for all Fu adapted Gaussian processes Xu when u < t according

to Proposition 3.4.4. This is also the reason why F (t,Wt, u,Wu) is Fu adapted

in Definition 5.1.1.

Next, some specific Ito-Malliavin type equations are introduced here and these

equations will be solved in the next section. The Equation A is an application

of the Stroock lemma. The inspiration of the Equation B and the Equation C

comes from the Brownian bridge which is a Gaussian process.
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Equation A:

Find all Gaussian processes Xt which satisfy the equation A

Dt

∫ T

0

XudWu = Xt +

∫ T

0

g (u,Wu) dWu

where g (u,Wu) is a known Fu measurable function with respect to u and Wu.

The initial value of the process X0 = 0.

Equation B:

Find all Gaussian processes Xt which satisfy the equation B

DtXu = f (u)

where f (u) is a known continuous function of u with continuous derivatives

up to order one.

Equation C:

Find all Gaussian processes Xt which satisfy the equation C

DtXu = f1 (u) f2 (t)

where f1 (u) is a known continuous function of u and f2 (t) is a known contin-

uous function of t.

5.2 Solving different kinds of Ito-Malliavin type

equations

In this section, each part illustrates one of the aforementioned Ito-Malliavin

type equations as well as some related examples.
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5.2.1 Equation A

Before solving this kind of Ito-Malliavin type equations, it is necessary to

simplify this equation first. Applying Lemma 3.4.7 to the Equation A defined

in 5.1, this equation becomes

∫ T

0

DtXudWu =

∫ T

0

g (u,Wu) dWu.

Then, this Ito-Malliavin type equation is equivalent to

DtXu = g (u,Wu)

where

g (u,Wu) = g (t,Wt) +

∫ u

t

σmdm+

∫ u

t

µmdWm.

Assume that

Xu = Xt +

∫ u

t

pmdm+

∫ u

t

qmdWm.

Applying Lemma 3.4.7 again to Xu,

DtXu =

∫ u

t

Dtpmdm+

∫ u

t

DtqmdWm + qt.

Comparing g (u,Wu) and DtXu through using Lemma 3.1.3, solving this Ito-

Malliavin type equation is equivalent to solving the set

{
g (t,Wt) = qt a.s.
σm = Dtpm a.s..
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Example 5.2.1. Solve the Ito-Malliavin type equation

Dt

∫ T

0

XudBu = Xt +B2
T − T,

where t is fixed. The initial value of this Gaussian process is X0 = 0.

To simplify this Ito-Malliavin type equation, aforementioned method shows

that

∫ T

0

DtXudBu = 2

∫ T

0

BudBu

since B2
T − T = 2

∫ T
0
BudBu, and then

DtXu = 2Bu

which can be also represented as

DtXu = 2Bt + 2

∫ u

t

dBm.

Assume that

Xu = X0 +

∫ u

0

pmdm+

∫ u

0

qmdBm.

Then, combining all former results,

DtXu = qt +

∫ u

t

Dtpmdm+

∫ u

t

DtqmdBm

= 2Bt + 2

∫ u

t

dBm.

Therefore, this Ito-Malliavin type equation is equivalent to
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{
Dtpm = 0 a.s. (1)
qt = 2Bt a.s. (2) .

Leave equation (1) here, it will be solved later.

The next example is more general than the former one.

Example 5.2.2. Solve the Ito-Malliavin type equation

Dt

∫ T

0

XudBu = Xt +Hn (T,BT ) ,

where Hn (T,BT ) , n > 2 is Hermite polynomials defined by Definition 3.5.1

and t is fixed. The initial value of this Gaussian process is X0 = 0.

Simplify this equation to get that

∫ T

0

DtXudBu = n

∫ T

0

Hn−1 (u,Bu) dBu

since Hn (T,BT ) = n
∫ T

0
Hn−1 (u,Bu) dBu, and then

DtXu = nHn−1 (u,Bu)

which can be also represented as

DtXu = nHn−1 (t, Bt) + n (n− 1)

∫ u

t

Hn−2 (m,Bm) dBm.

Assume that

Xu = X0 +

∫ u

0

pmdm+

∫ u

0

qmdBm.
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Then, combining all former results, it can be seen that

DtXu = qt +

∫ u

t

Dtpmdm+

∫ u

t

DtqmdBm

= nHn−1 (t, Bt) + n (n− 1)

∫ u

t

Hn−2 (m,Bm) dBm.

Therefore, this Ito-Malliavin type equation is equivalent to

{
Dtpm = 0 a.s. (1)
qt = nHn−1 (t, Bt) a.s. (2) .

Similarly, here left the equation (1) where t is fixed, which will be solved later.

Example 5.2.3. Solve the Ito-Malliavin type equation

Dt

∫ T

0

XudBu = Xt + ST ,

where ST = S0e
(−σ2/2)T+σBT and t is fixed. The initial value of this Gaussian

process is X0 = 0.

Simplify former equation to get that

∫ T

0

DtXudBu = ST =

∫ T

0

σSudBu,

and then

DtXu = σSu

which can be also illustrated as
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DtXu = σSt + σ2

∫ u

t

SmdBm.

Assume that

Xu = X0 +

∫ u

0

pmdm+

∫ u

0

qmdBm.

Then, combining all former results, it can be seen that

DtXu = qt +

∫ u

t

Dtpmdm+

∫ u

t

DtqmdBm

= σSt + σ2

∫ u

t

SmdBm.

Therefore, this Ito-Malliavin type equation is equivalent to

{
Dtpm = 0 a.s. (1)
qt = σSt a.s. (2) .

Now, all three former examples have left the same problem which is how to

solve

Dtpm = 0,

where t is fixed and t < m < u. Split pm of the former equation to two terms,

which can be shown as

Dt

(
pt +

∫ m

t

dpv

)
= 0.

Since the operator Dt is linear, this problem becomes to solving
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Dtpt = 0

and

Dt

∫ m

t

dpv = 0.

Here dpv can be represented as

dpv = αvdBv + βvdv,

where αv and βv are two unknown processes, and therefore

Dt

∫ m

t

dpv = Dt

(∫ m

t

αvdBv +

∫ m

t

βvdv

)
= Dt

∫ m

t

αvdBv +Dt

∫ m

t

βvdv

= αt +

∫ m

t

DtαvdBv +

∫ m

t

Dtβvdv.

Combine all aforementioned results,

{
αt = 0 a.s.
Dtβv = 0 a.s..

It is meaningless to repeat solving the second equation of the former equation

set, which means the equation Dtpm = 0 cannot be solved by this method.

Come back to the original problem and let

pm (w) =

{
f (w) + h (w,Bw) , w < t,
f (w) , t 6 w < m,
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where h is an arbitrary function with respect to w and Bw. For w < t,

Dtpm (w) = Dt (f (w) + h (w,Bw))

= Dtf (w) +Dth (w,Bw)

= 0 + h′BwI (w > t)

= 0,

since I (w > t) = 0. For t 6 w < m,

Dtpm (w) = Dtf (w) = 0.

Here pm (w) is a solution of the equation Dtpm = 0 for some fixed t. Then, for

arbitrary t the solution of this equation becomes

pm (w) = f (w) .

Next, some crucial properties of this solution will be explained.

Lemma 5.2.1. (Linearity)

Assume that Xu and Yu are respective solutions of

Dt

∫ T

0

XudWu = Xt + f (WT , T ) (1)

where f (Wt, t) is a known Ft measurable function of t and Wt and

Dt

∫ T

0

YudWu = Yt + g (WT , T ) (2)
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where g (Wt, t) is a known Ft measurable function of t and Wt. Then, Zu =

αXu + βYu is the solution of

Dt

∫ T

0

ZudWu = Zt + αf (WT , T ) + βg (WT , T ) ,

where α and β are two constants.

Proof.

The equation α · (1) + β · (2) is

α

(
Dt

∫ T

0

XudWu

)
+ β

(
Dt

∫ T

0

YudWu

)
= α (Xt + f (WT , T )) + β (Yt + g (WT , T )) .

By linearity of Dt, the left hand side of α · (1) + β · (2) equals to

Dt

(
α

∫ T

0

XudWu + β

∫ T

0

YudWu

)
,

and then, by linearity of the Ito integral, the former equation is equivalent to

Dt

(∫ T

0

(αXu + βYu) dWu

)
.

Therefore, Zu = αXu + βYu satisfies the equation

Dt

∫ T

0

ZudBu = αXt + βYt + αf (WT , T ) + βg (WT , T ) .

Lemma 5.2.2. (Uniqueness)

Assume that X
(1)
u and X

(2)
u are two solutions of
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Dt

∫ T

0

XudWu = Xt + f (WT , T )

where f (Wt, t) is a known Ft measurable function of t and Wt. Suppose that

t is not fixed. Then,

X(1)
u = X(2)

u a.s..

Proof.

Let Yu = X
(1)
u −X(2)

u . According to Lemma 5.2.1, it is sufficient to prove that

Yu = 0 is the almost surely solution of

Dt

∫ T

0

YudWu = 0. (?)

Then, using Lemma 4.1.1,

Dt

∫ T

0

YudWu = Yt +

∫ T

t

DtYudWu = 0.

Solving this Ito-Malliavin equation, Yt = 0 almost surely and

∫ T

t

DtYudWu = 0.

Therefore,

DtYu = 0.

By Proposition 3.4.5, Yu = C (u) for all u > t. Since t is not fixed, Yu = 0 is

the almost surely solution of the (?). This completes the proof.
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Lemma 5.2.3. (Convergence)

Let
{
X

(m)
t : t > 0,m→∞

}
be a sequence of adapted stochastic processes with

respect to a filtration {Ft : t > 0} which satisfies

X
(m)
t → Xt

in L2 (P ) and

DtX
(m)
u → DtXu

in L2 (P × λ). Then,

Dt

∫ T

0

X(m)
u dWu → Dt

∫ T

0

XudWu

in L2 (P ) with respect to m→∞.

Proof.

According to Lemma 3.1.2

∫ T

0

X(m)
u dWu →

∫ T

0

XudWu

in L2 (P ). Let

Y
(m)
t =

∫ t

0

X(m)
u dWu.

Applying Dt to Y
(m)
T ,

DtY
(m)
T = X

(m)
t +

∫ T

t

DtX
(m)
u dWu

by Lemma 3.4.6. Similarly,
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DtYT = Xt +

∫ T

t

DtXudWu

Then,

DtY
(m)
T → DtYT

in L2 (P × λ) with respect to m → ∞, since DtX
(m)
u → DtXu in L2 (P × λ).

Example 5.2.4. (Example on Lemma 5.2.3)

Let X
(m)
t be as in Lemma 5.2.3 ( excluding all solutions which do not satisfy

DtX
(m)
u → DtXu in L2 (P × λ) ). Consider a sequence of Ito-Malliavin type

equations, which has the form of

Dt

∫ T

0

X(m)
u dBu = X

(m)
t +

αm

m!
Hm (T,BT ) ,m = 0, 1, · · · , n,

where Hm (T,BT ) are Hermite polynomials defined by Definition 3.5.1. Then,

summing both sides of the equations,

Dt

∫ T

0

n∑
m=0

X(m)
u dBu =

n∑
m=0

X
(m)
t +

n∑
m=0

αm

m!
Hm (T,BT ) .

Assume that

Y n
t =

n∑
m=0

X
(m)
t → Yt = lim

n→∞

n∑
m=0

X
(m)
t

in L2 (P ). It can be seen that

n∑
m=0

αm

m!
Hm (T,BT )→ exp

{
αT − α2

2
BT

}
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in L2 (P ) when n→∞ due to Lemma 3.5.1. According to Lemma 5.2.3,

Dt

∫ T

0

Y (n)
u dBu = Dt

∫ T

0

n∑
m=0

X(m)
u dBu

→ Dt

∫ T

0

YudBu = lim
n→∞

Dt

∫ T

0

n∑
m=0

X(m)
u dBu

in L2 (P × λ). Let


S0 = 1,

α = µ− σ2

2
,

−α
2

2
= σ.

Then,

Dt

∫ T

0

YudWu = Yt + S0

{(
µ− σ2

2

)
T + σBT

}
.

Note that this kind of Ito-Malliavin type equations is exactly the one intro-

duced in Example 5.2.3 when µ = 0, which has been solved.

5.2.2 Equation B

Note that the method solving the Equation A in 5.2.1 cannot be applied here

to solve the Equation B defined in 5.1. To see this, first assume that

Xu = X0 +

∫ u

0

αsds+

∫ u

0

βsdBs,

where αs and βs are Fs adapted. Then, applying Lemma 3.4.7 to Xu,

DtXu = βt +

∫ u

t

DtβsdBs +

∫ u

t

Dtαsds.
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Let DtXu = Mu for all u > t. Then, Mt = βt. The differential form of Mu is

dMu = DtβudBu +Dtαudu

for all u > t. Let f (u) = Qu which is a function of u and a constant with

respect to Wu, and then

dQu = f ′ (u) du.

Since the representation of the Equation B is DtXu = f (u),


Dtαu = f ′ (u) a.s.
Dtβu = 0 a.s.
βt = Mt = Qt = f (t) a.s..

Then, former set is equivalent to

{
Xu = X0 +

∫ u
0
αsds+

∫ u
0
f (s) dBs a.s.

Dtαu = f ′ (u) a.s..

It can be seen that this method is complicated in solving equation B if the

higher-order derivative of f (u) is still differentiable with respect to u. It

even produces a recurrence in solving the Equation B if f (u) are exponential

functions. Next example is a case which can be solved directly by this method,

since f ′ (u) = 0.

Example 5.2.5. Solve the Ito-Malliavin type equation

DtXu = C

where C is a constant.
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Assume that

Xu = X0 +

∫ u

0

αsds+

∫ u

0

βsdBs,

where αs and βs are Fs adapted. Then, for u > t,

DtXu = βt +

∫ u

t

DtβsdBs +

∫ u

t

Dtαsds = Mu.

Then,


Dtαu = 0 a.s.
Dtβu = 0 a.s.
βt = C a.s..

Therefore,

Xu = X0 + φu + CBu

= φ̃u + CBu

where φ̃u is an arbitrary non-random function of u.

The Equation B can be solved by applying former method n times if f (u) is a

known continuous function of u with continuous derivative up to order n and

f (n) (u) = 0. Next, an improved method is introduced to solve a more general

case.

Assume that

Xu = g (u) + h (u) X̃u,
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where g (u) and h (u) 6≡ 0 are non-random function and X̃u is a continuous

martingale. By the chain rule of the Malliavin derivative ( Proposition 3.4.3 )

and the constant rule of the Malliavin derivative ( Proposition 3.4.5 )

DtXu = h (u)DtX̃u.

Since X̃u is a continuous martingale, assume that

X̃u = X̃0 +

∫ u

0

β̃sdBs

where β̃s is Fs adapted. The entire reason of setting dt term to zero can be

found from Chapter 7 Section 5 of ”A First Course in Stochastic Processes”

[23] and Chapter 15 Section 12 of ”A Second Course in Stochastic Processes”

[24]. Applying Lemma 3.4.7 to X̃u,

DtX̃u = β̃t +

∫ u

t

Dtβ̃sdBs.

Then,

DtXu = h (u) β̃t + h (u)

∫ u

t

Dtβ̃sdBs = f (u) .

Now, it is equivalent to solve the equation set

{
Dtβ̃s = 0 a.s.

h (u) β̃t = f (u) a.s..

Therefore, β̃t = f (u) /h (u) for all t < u. According to the constant rule of the

Malliavin derivative ( Proposition 3.4.5 ), β̃t = C where C is a constant since

β̃s is Fs adapted. Then, h (u) = Cf (u). Finally, after substitute all preceding

results into Xu,
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Xu = g (u) + h (u) X̃0 + h (u)

∫ u

0

f (u)

h (u)
dBs

= g (u) + Cf (u) X̃0 + f (u)Bu

= φu + f (u)Bu,

where φu is an arbitrary non-random function of u.

Example 5.2.6. Solve the Ito-Malliavin type equation

DtXu = eu.

According to the aforementioned method, assume that

Xu = g (u) + h (u) X̃u,

where g (u) and h (u) 6≡ 0 are non-random function and

X̃u = X̃0 +

∫ u

0

β̃sdBs,

where β̃s is Fs adapted. Then,

DtX̃u = β̃t +

∫ u

t

Dtβ̃sdBs,

and therefore

DtXu = h (u) X̃u

= h (u) β̃t + h (u)

∫ u

t

Dtβ̃sdBs

= eu.
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Finally, it can be seen that

Xu = φu + euBu

where φu is an arbitrary non-random function of u.

Similarly, some crucial properties of Xu are illustrated next.

Lemma 5.2.4. (Linearity)

Assume that Xu and Yu are respective solutions of

DtXu = f (u) (1)

where f (u) is a continuous function of u and

DtYu = g (u) (2)

where g (u) is a continuous function of u. Then, αXu + βYu is the solution of

DtZu = αf (u) + βg (u)

where α and β are two constants.

Proof.

The equation α · (1) + β · (2) is

α (DtXu) + β (DtYu) = αf (u) + βg (u) .

By linearity of Dt, the left hand side of α · (1) + β · (2) equals to
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Dt (αXu + βYu) .

Therefore, Zu = αXu + βYu satisfies the equation

DtZu = Dtαf (u) + βg (u) .

Lemma 5.2.5. (Uniqueness)

Assume that X
(1)
u and X

(2)
u are two solutions of

DtXu = f (u)

where f (u) is a continuous function of u. Then,

X(1)
u = X(2)

u + C (u) a.s.

where C (u) is a function of u.

Proof.

Let Yu = X
(1)
u − X

(2)
u = C (u). By Lemma 5.2.4, it suffices to prove that

Yu = C (u) is the almost surely solution of

DtYu = 0.

Then, by constant rule of the Malliavin derivative ( Proposition 3.4.5 ),

Yu = C (u) .

This completes the proof.
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Lemma 5.2.6. (Convergence)

Let
{
X

(m)
t : t > 0,m→∞

}
be sequence of adapted stochastic processes with

respect to a filtration {Ft : t > 0} which satisfies

X
(m)
t → Xt

in L2 (P ). Then,

DtX
(m)
u → DtXu

in L2 (P × λ) with respect to m→∞.

proof.

This is a direct result of Lemma 3.4.1.

5.2.3 Equation C

The method to solve the Equation C defined in 5.1 is similar to the second

method of the Equation B introduced in 5.2.2.

First, assume that

Xu = g (u) + h (u) X̃u

where g (u) and h (u) 6≡ 0 are non-random function and X̃u is a continuous

martingale. By the chain rule of the Malliavin derivative ( Proposition 3.4.3 )

and the constant rule of the Malliavin derivative ( Proposition 3.4.5 )

DtXu = h (u) X̃u.
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Since X̃u is a continuous martingale, assume that

X̃u = X̃0 +

∫ u

0

β̃sdBs

where β̃s is Fs adapted. Applying Lemma 3.4.7 to X̃u,

DtX̃u = β̃t +

∫ u

t

Dtβ̃sdBs.

Then,

DtXu = h (u) β̃t + h (u)

∫ u

t

Dtβ̃sdBs = f1 (u) f2 (t) .

Now, it is equivalent to solve

{
Dtβ̃s = 0 a.s.

h (u) β̃t = f1 (u) f2 (t) a.s..

Therefore, β̃t = (f1 (u) f2 (t)) /h (u) for all t < u. According to the constant

rule of the Malliavin derivative ( Proposition 3.4.5 ), β̃t = Cf2 (t) where C

is a constant since β̃s is Fs adapted. Then, h (u) = Cf1 (u). Finally, after

substitute all preceding results into Xu,

Xu = g (u) + h (u) X̃0 + h (u)

∫ u

0

f1 (u) f2 (s)

h (u)
dBs

= g (u) + Cf1 (u) X̃0 + f1 (u)

∫ u

0

f2 (s) dBs

= φu + f1 (u)

∫ u

0

f2 (s) dBs

where φu is an arbitrary non-random function of u.

The next example is related to the Example 3.7.1 which is about the Brownian

bridge.
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Example 5.2.7. Solve the Ito-Malliavin type equation

DtYu =
1− u
1− t

for all u > t.

Assume that

Yu = f (u) + g (u) Ỹu

where f (u) and g (u) 6≡ 0 are non-random function and

Ỹu = Ỹ0 +

∫ u

0

β̃sdBs

where β̃s is Fs adapted. Then,

DtỸu = β̃t +

∫ u

t

Dtβ̃sdBs,

and therefore

DtYu = g (u)DtỸu

= g (u) β̃t + g (u)

∫ x

t

Dtβ̃sdBs

=
1− u
1− t

.

It can be seen that

Yu = φu + (1− u)

∫ u

0

1

1− s
dBs

where φu is an arbitrary non-random function of u by aforementioned method.
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Note that the Brownian bridge introduced in Example 3.7.1 is a special case

of the solution of former Ito-Malliavin type equation. This is the inspiration

of the Equation C comes from.

Next, some crucial properties of Xu are given here.

Lemma 5.2.7. (Linearity)

Assume that Xu and Yu are respective solutions of

DtXu = f1 (u) f2 (t) (1)

where f1 (u) is a continuous function of u and f2 (t) is a continuous function

of t and

DtYu = g1 (u) g2 (t) (2)

where g1 (u) is a continuous function of u and g2 (t) is a continuous function

of t. Then, αXu + βYu is the solution of

DtZu = αf1 (u) f2 (t) + βg1 (u) g2 (t)

where α and β are two constants.

Proof.

The equation α · (1) + β · (2) is

α (DtXu) + β (DtYu) = αf1 (u) f2 (t) + βg1 (u) g2 (t) .

By linearity of Dt, the left hand side of α · (1) + β · (2) equals to
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Dt (αXu + βYu) .

Therefore, Zu = αXu + βYu satisfies the equation

DtZu = αf1 (u) f2 (t) + βg1 (u) g2 (t) .

Lemma 5.2.8. (Uniqueness)

Assume that X
(1)
u and X

(2)
u are two solutions of

DtXu = f1 (u) f2 (t)

where f (u) is a continuous function of u. Then

X(1)
u = X(2)

u + C (u) a.s.

where C (u) is a function of u.

Proof.

Let Yu = X
(1)
u − X

(2)
u = C (u). By Lemma 5.2.7 it suffices to prove that

Yu = C (u) is the almost surely solution of

DtYu = 0.

Then, by constant rule of the Malliavin derivative ( Proposition 3.4.5 )

Yu = C (u) .

This completes the proof.
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Lemma 5.2.9. (Convergence)

Let
{
X

(m)
t : t > 0,m→∞

}
be a sequence of adapted stochastic processes with

respect to a filtration {Ft : t > 0} which satisfies

X
(m)
t → Xt

in L2 (P ). Then,

DtX
(m)
u → DtXu

in L2 (P × λ) with respect to m→∞.

Proof.

This property is exactly the same as Lemma 5.2.6.

5.3 Stratonovich-Malliavin type equations

As a extension of the Ito-Malliavin type equations, the definition of the Stratonovich-

Malliavin type equations is given here.

Definition 5.3.1. (Stratonovich-Malliavin type equations)

Assume that Xt is an unknown adapted Gaussian process and g (u,Wu) is a

known Fu measurable function where Wu is a Wiener process. Then equations

of the form

Dt

∫ T

0

Xu ◦ dWu = Xt +

∫ T

0

g (u,Wu) ◦ dWu

are called the Stratonovich-Malliavin type equations.
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According to Lemma 4.3.2,

Dt

∫ T

0

Xu ◦ dWu = Xt +

∫ T

0

DtXu ◦ dWu.

By Definition 5.3.1, compare the former equation with the Stratonovich-Malliavin

type equations and obtain

∫ T

0

DtXu ◦ dWu =

∫ T

0

g (u,Wu) ◦ dWu.

Then, by Lemma 4.2.2, the Stratonovich-Malliavin type equations are equiv-

alent to

DtXu = g (u,Wu) .

To solve these equations, use exactly the same method that one solve the

Equation A of the Ito-Malliavin type equations.

Here is an example of the Stratonovich-Malliavin type equations.

Example 5.3.1. Solve the Stratonovich-Malliavin type equation

Dt

∫ T

0

Xu ◦ dBu = Xt +

∫ T

0

nHn−1 (u,Bu) ◦ dBu

where Hn (T,BT ) , n > 2 is the Hermite polynomial defined by Definition 3.5.1

and t is fixed. The initial value of the Gaussian process is X0 = 0.

By Lemma 4.3.2 and Definition 5.3.1,

∫ T

0

DtXu ◦ dWu =

∫ T

0

nHn−1 (u,Bu) ◦ dBu.
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Then, by Lemma 4.2.2,

DtXu = nHn−1 (u,Bu) .

Assume that

Xu = X0 +

∫ u

0

pmdm+

∫ u

0

qmdBm.

Combining former results, it can be seen that

DtXu = qt +

∫ u

t

Dtpmdm+

∫ u

t

DtqmdBm

= nHn−1 (t, Bt) + n (n− 1)

∫ u

t

Hn−2 (m,Bm) dBm.

Therefore, this Stratonovich-Malliavin type equation is equivalent to


Dtpm = 0 a.s.
qt = nHn−1 (t, Bt) a.s.
Dtqm = n (n− 1)Hn−2 (m,Bm) ,

which has been solved in Example 5.2.2.
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Part 2 :

A General Stroock Lemma

Main definitions from the discrete Malliavin calculus, the generating function

and a derivative of a nature number are introduced in Chapter 6. Chapter

7 contains several examples and lemmas on delta operator and the discrete

Stratonovich integral. Three types of the Stroock lemma are the main results

in Chapter 8 based on [10].
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Chapter 6

Terminology and Methods

In this chapter, all crucial notations and methods are introduced in details in-

cluding definitions and properties. These concepts will be applied throughout

this part. Numerous important lemmas with proofs are also given here.

6.1 Discrete Malliavin calculus

In a real situation, the discrete version of Malliavin calculus along with the

binomial tree can be applied to calculating Greeks according to Yoshifumi

Muroi et al. in their paper [35].

In this section, basic knowledge about the discrete Malliavin calculus is given.

This section follows Martin Leitz-Martini [33] and H. Holden et al. [18] [19].

There are more interesting details in papers written by Martin Leitz-Martini

[33] and Nicolas Privault [46].
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6.1.1 Definitions, notations and propositions

Let N ∈ N and ∆t = 1/N . Then

Λ = {0,∆t, · · · , (N − 1) ∆t}

is a discrete time set. The uniform counting measure assigns µ (A) = |A|/N for

A ⊂ Λ. The discrete version of the Lebesgue space ([0, 1] ,B, λ) is (Λ,P (Λ) , µ).

According to Martin Leitz-Martini, each element in the set

Ω = {ω|ω : Λ→ {−1, 1}}

can be treated as a Bernoulli random variable. On P (Ω) the uniform proba-

bility measure P for every subset S ⊂ Ω is given by P (S) = |S|/|Ω| = |S|/2N .

The space L2 (Ω, P ) with the inner product

〈X,Y〉L2 =
∑
ω∈Ω

X (ω)Y (ω)P (ω)

is the discrete version of the Wiener space with respect to P . The dimension

of the space L2 (Ω, P ) is 2N .

Definition 6.1.1. For A ∈ P (Λ), the functions χA : Ω→ R are defined by

χA (ω) =
∏
s∈A

ω (s) .

Proposition 6.1.1. The set {χA}A∈P(Λ) is a basis for L2 (Ω, P ).
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To simplify notations, set

Pn = {A ∈ P (Λ) : |A| = n}

and

P = P (Λ) = ∪̇nPn,

where ∪̇nPn = ∪nPn −
∑

i,j=1,··· ,n;i 6=j Pi ∩ Pj.

Definition 6.1.2. (Walsh decomposition)

For X ∈ L2 (Ω, P ), the Walsh decomposition of X is

X =
∑
A∈P

X (A)χA =
∑
n

∑
A∈Pn

X (A)χA.

Definition 6.1.3. (Wick product)

Let X =
∑

A∈P X (A)χA and Y =
∑

B∈P Y (B)χB be random variables. Then

the Wick product X �Y is defined by

X �Y =
∑
C∈P

(∑
A∪̇B

X (A)Y (B)

)
χC ,

where A∪̇B = A ∪B − A ∩B.

Note that

χA � χB =

{
χA∪B = χA · χB, if A ∩B = ∅,
0, otherwise.
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Definition 6.1.4. (discrete analogue)

(1) A discrete stochastic process is a family of random variables (Xs)s∈Λ, i.e.

a map X : Ω × Λ → R such that for each fixed s ∈ Λ the map X (·, s) is in

L2 (Ω, P ).

(2) The discrete Brownian motion B is the random walk

B : Ω× Λ→ R,B (ω, t) =
∑
s<t

ω (s)
√

∆t.

(3) The forward increment of B is defined by

∆Bt = ∆B (ω, t) = B (ω, t+ ∆t)−B (ω, t) = ω (t)
√

∆t.

(4) Let (Xs)s∈Λ be an adapted discrete stochastic process. Then the Ito integral

is defined by

∫
XdB =

∫
XsdBs =

∑
s

Xs ·∆Bs.

To compare with the continuous time theory, Martin Leitz-Martini defines

the symmetric functions to be zero on diagonals since he points out that the

diagonals do not have measure zero in a discrete measure space in his work

[33].

Let X =
∑

A∈P X (A)χA be the Walsh decomposition of X. For n > 0 the

symmetric function Xn on Λn is defined by

Xn (t1, · · · , tn) =

{ (
∆t

n
2 n!
)−1

X ({t1, · · · , tn}) , if ti 6= tj for i 6= j,
0, otherwise.
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where X ({t1, · · · , tn}) is the Walsh component to A = {t1, · · · , tn}. For n = 0,

X0 = X (∅) = E [X]. According to these definitions,

X =
∑
A∈P

X (A)χA

=
∑
n

∑
A∈Pn

X (A)χA

=
∑
n

∑
{t1,··· ,tn}∈Pn

X ({t1, · · · , tn})ω (t1) · · ·ω (tn)

=
∑
n

∑
(t1, · · · , tn) ∈ Λn

t1 < · · · < tn

n!Xn ({t1, · · · , tn}) ∆t
n
2ω (t1) · · ·ω (tn)

=
∑
n

∑
(t1,··· ,tn)∈Λn

Xn ({t1, · · · , tn}) ∆B (t1) · · ·∆B (tn)

which is the discrete version of the Wiener-Ito chaos decomposition for random

variables X ∈ L2 (Ω, P ).

6.1.2 Conditional expectations

For B ⊂ Λ, FB is the σ-algebra on Ω generated by the random variables

{ω (s) : s ∈ B}.

Proposition 6.1.2. Let X =
∑

A⊂Λ X (A)χA and FB be given. Then the

conditional expectation of X with respect to FB is given by

E [X|FB] =
∑
A⊂B

X (A)χA.

Proposition 6.1.3. Let A,B ⊂ Λ and X,Y ∈ L2 (Ω, P ). Assume A ∩ B = ∅

and that X is FA-measurable and Y is FB-measurable. Then
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X �Y = X ·Y.

Martin Leitz-Martini introduces the σ-algebras which constitute the discrete

filtration in his definition. In these algebras, the information of the present is

excluded.

Definition 6.1.5. For t ∈ Λ the past algebra is defined by

Ft = σ − alg [{ω (s) |s < t}]

= σ − alg [{{ω : ω (s) = −1} , {ω : ω (s) = 1}} |s < t]

A random variable X is said to be Ft-adapted if

E [X|Ft] = X.

This means that the Walsh decomposition of X has the form

X =
∑
A⊂[0,t)

X (A)χA

with

[0, t) = {s ∈ A : s < t} .

A discrete stochastic process (Xt)t>0 is adapted if the random variable Xt is

Ft-adapted for each t ∈ Λ.
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Proposition 6.1.4. For every process (Xt)t∈Λ with Walsh decomposition Xt =∑
A⊂Λ X (A; t)χA,

E [Xt|Ft] =
∑
A⊂[0,t)

X (A; t)χA =
∑
A ⊂ Λ

maxA < t

X (A; t)χA.

6.1.3 Discrete Skorohod integral

Definition 6.1.6. (discrete Skorohod integral)

Let X : Ω × Λ → R be a discrete stochastic process. The Skorohod integral of

X with respect to the discrete Brownian motion B is defined by

∫
XδB =

∫
XsδBs =

∑
s∈Λ

Xs �∆Bs =
∑
s∈Λ

Xs � χ{s}
√

∆t.

Proposition 6.1.5. Let

Xs =
∑
n

∑
(t1,··· ,tn)∈Λn

Xn,s (t1, · · · , tn) ∆B (t1) · · ·∆B (tn)

be the discrete Wiener-Ito decomposition of the discrete process Xs.

(1) If the discrete stochastic process Xs is adapted then the Skorohod integral

reduces to the Ito integral.

(2)

∫
XsδBs =

∑
n

∑
(t1,··· ,tn+1)∈Λn+1

X̂n+1 (t1, · · · , tn+1) ∆B (t1) · · ·∆B (tn+1)

whereby X̂n+1 (t1, · · · , tn+1) is the symmetrization of the coefficient function

Xn,s (t1, · · · , tn) with respect to the process variable s.
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Proof.

(1) Take A < s as notation for maxA < s. Since Xs is adapted it has the

Walsh decomposition Xs =
∑

A<sX (A; s)χA. Hence A and {s} are disjoint,

∫
XsδBs =

∑
s

∑
A<s

X (A; s)χA � χ{s}
√

∆t

=
∑
s

∑
A<s

X (A; s)χA · χ{s}
√

∆t

=
∑
s

Xs ·∆Bs

=

∫
XsdBs

by proposition 6.1.3.

(2)

∫
XδB

=
∑
s

Xs � χ{s}
√

∆t

=
∑
s

(∑
n

∑
A∈Pn

X (A; s)χA

)
� χ{s}

√
∆t

=
∑
s

∑
n

∑
(t1,··· ,tn)∈Λn

Xn,s (t1, · · · , tn)χ{t1,··· ,tn}∆t
n
2

 � χ{s}√∆t

with Xn,s (·) the symmetric functions in the Wiener-Ito decomposition of Xs.

Let s = tn+1 and the symmetric functions X̂n+1 of n+ 1 arguments by

X̂n+1 (t1, · · · , tn+1) = 0

if ti = tj for some i 6= j and
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X̂n+1 (t1, · · · , tn+1) =
1

n+ 1

(
n+1∑
k=1

Xn,tk (t1, · · · , tk−1, tk+1, · · · , tn+1)

)

=
1

n+ 1

(
n+1∑
k=1

Xn+1 (t1, · · · , tk−1, tn+1, tk+1, · · · , tn)

)

otherwise. Then, changing the sum over s inside,

∫
XδB

=
∑
n

∑
(t1,··· ,tn+1)∈Λn+1

X̂n+1 (t1, · · · , tn+1)χ{t1,··· ,tn+1}∆t
n+1

2

=
∑
n

∑
(t1,··· ,tn+1)∈Λn+1

X̂n+1 (t1, · · · , tn+1) ∆B (t1) · · ·∆B (tn+1) .

6.1.4 Discrete Malliavin derivative

For s ∈ Λ and ω ∈ Ω, ω+
s and ω−s are defined by

ω±s (t) =

{
ω (t) , for t 6= s,
±1, for t = s.

Definition 6.1.7. (discrete Malliavin derivative)

For every random variable X ∈ L2 (Ω, P ) the Malliavin derivative (DtX)t>0

are defined by the family (Dt)t>0 of operators on L2 (Ω, P ):

DtX (ω) =
X
(
ω+
t

)
− X

(
ω−t
)

2
√

∆t
.
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This family of operators can be seen as an operator

D : L2 (Ω, P )→ L2 (Ω× Λ, P × µ) .

Proposition 6.1.6. Let

X =
∑
n

∑
(t1,··· ,tn)∈Λn

Xn (t1, · · · , tn) ∆B (t1) · · ·∆B (tn) .

Then

DtX =
∑
n

∑
(t1,··· ,tn−1)∈Λn−1

nXn,t (t1, · · · , tn−1) ∆B (t1) · · ·∆B (tn−1) .

I.e. the Malliavin derivative acts on the discrete Wiener-Ito decomposition as

multiplication by the level number n and then just leaving aside the integration

over ∆B (tn).

Proof.

Clearly, (Dt)t>0 is linear. Then, by Definition 6.1.7 and Definition 6.1.1,
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DtX (ω) = Dt

∑
n

∑
(t1<···<tn)∈Λn

n!Xn (t1, · · · , tn) ∆t
n
2χ{t1,··· ,tn} (ω)


=

∑
n

∑
(t1<···<tn)∈Λn

n!Xn (t1, · · · , tn) ∆t
n
2

χ{t1,··· ,tn}
(
ω+
t

)
− χ{t1,··· ,tn}

(
ω−t
)

2
√

∆t

=
∑
n

∑
(t1<···<tn)∈Λn

n!Xn (t1, · · · , tn) ∆t
n−1

2 ·

·1
2

 ∏
s∈{t1,··· ,tn}

ω+
t (s)−

∏
s∈{t1,··· ,tn}

ω−t (s)


=

∑
n

∑
(t1 < · · · < tn) ∈ Λn

t ∈ {t1, · · · , tn}

n!Xn (t1, · · · , tn) ∆t
n−1

2 χ{t1,··· ,tn}\{t} (ω)

=
∑
n

∑
(t1<···<tn−1)∈Λn−1

n!Xn,t (t1, · · · , tn−1) ∆t
n−1

2 χ{t1,··· ,tn−1} (ω)

=
∑
n

∑
(t1,··· ,tn−1)∈Λn−1

nXn,t (t1, · · · , tn−1) ∆B (t1) · · ·∆B (tn−1) .

Privault points out the convergence of DX [46]. He defines the L2 domain of

D as the space of functional X such that

E
[
‖DX‖2

L2(Ω×Λ)

]
<∞,

or equivalently

∑
n

nn!‖Xn‖2
L2(Λn) <∞

if X =
∑

nXn.
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6.2 A derivative of a natural number

This section follows Victor Ufnarovski et al. [53] where also proofs are pro-

vided.

6.2.1 Definition

Let n be a positive integer. Victor Ufnarovski et al. define a derivative n′

of n which ignore linearity and use Leibnitz rule only [53]. This derivative is

defined by using two natural rules:

(1) p′ = 1 for any prime p,

(2) (mn)′ = m′n+mn′ for any a, b ∈ N (Leibnitz rule).

Lemma 6.2.1. (Well-defined)

The derivative n′ can be well-defined as follows: if n =
∏k

i=1 p
ni
i is a factor-

ization in prime powers, then

n′ = n
k∑
i=1

ni
pi
.

This is the only way to define n′ that satisfies desired properties. [21]

Note that 1′ = (1 · 1)′ = 1′ · 1 + 1 · 1′ = 2 · 1′. It is clear that 1′ = 0. Let

n =
∏k1

i=1 p
ni
i and m =

∏k2

i=1 q
mi
i . Then according to lemma 6.2.1 the Leibnitz

rule looks as

mn

(
k1∑
i=1

ni
pi

+

k2∑
i=1

mi

qi

)
=

(
m

k2∑
i=1

mi

qi

)
n+m

(
n

k1∑
i=1

ni
pi

)
.
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6.2.2 Properties

Some useful properties of the derivative of a nature number defined by Victor

Ufnarovski et al. [53] are given in this section.

Lemma 6.2.2. Let p be a prime and a = p+ 2. Then 2p is a solution for the

equation n′ = a.

Corollary 6.2.1 is a direct result of lemma 6.2.2.

Corollary 6.2.1. Let p, q be two primes and b = p+ q. Then pq is a solution

for the equation n′ = b.

Lemma 6.2.3. The differential equation n′ = 1 in nature numbers has only

primes as solutions.
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Chapter 7

Simple Results

In this chapter, numerous examples and lemmas are treated as simple results

here.

7.1 Delta operator

The idea of this entire section follows Professor Utev. In this section, another

approach of Ito integral and Stratonovich integral is introduced here through

defining a delta operator. It is necessary to mention that this approach is

different to the discrete Ito integral.

7.1.1 Definition

Definition 7.1.1. (Delta Operator)

If f is a continuous function of x, then the delta operator can be defined as

∆f (x) = f (x+ ∆x)− f (x) .
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According to Definition 7.1.1, if f is a continuous function of a standard Brow-

nian motion Bt, then

∆f (Bt) = f (Bt+∆t)− f (Bt) .

Next example shows how delta operator works on random variable.

Example 7.1.1.

Let Bt be a standard Brownian motion. By definition of the delta operator (

Definition 7.1.1 ),

∆B2
t = B2

t+∆t −B2
t

= (Bt+∆t −Bt +Bt)
2 −B2

t

= (Bt+∆t −Bt)
2 + 2 (Bt+∆t −Bt)Bt +B2

t −B2
t .

Since

∆Bt = Bt+∆t −Bt,

the former equation becomes

∆B2
t = (∆Bt)

2 + 2Bt∆Bt.

Note that

dB2
t = (dBt)

2 + 2BtdBt

= dt+ 2BtdBt

by Ito formula.
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Example 7.1.2.

Consider a more general case Bm
t where m ∈ N. According to Definition 7.1.1,

∆Bm
t = Bm

t+∆t −Bm
t

= (Bt+∆t −Bt +Bt)
m −Bm

t

= (∆Bt +Bt)
m −Bm

t

=
m∑
k=1

(
m

k

)
(∆Bt)

k Bm−k
t .

Let O
[
(∆Bt)

3] represents the infinitesimal asymptotics of (∆Bt)
3. Therefore,

∆Bm
t = mBm−1

t ∆Bt +
m (m− 1)

2
Bm−2
t (∆Bt)

2 +O
[
(∆Bt)

3] .
Note that

dBm
t =

m (m− 1)

2
Bm−2
t (dBt)

2 +mBm−1
t dBt

=
m (m− 1)

2
Bm−2
t dt+mBm−1

t dBt

by Ito formula.

Let Nt be a Possion process. Then, by similar calculation of ∆Bm
t ,

∆Nm
t =

m∑
k=1

(
m

k

)
(∆Nt)

kNm−k
t .

Note that (∆Nt)
k 9 0, k ∈ N in L2.
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7.1.2 Another delta operator

Let ∆ be the delta operator defined in Definition 7.1.1 and f is a continuous

function. According to the Taylor series,

f (Bt+∆t) = f (Bt) + f ′ (Bt) ∆Bt +
1

2
f ′′ (Bt) (∆Bt)

2 +O
[
(∆Bt)

3]
where O

[
(∆Bt)

3] represents the infinitesimal asymptotics of (∆Bt)
3. Since

(∆Bt)
2 = ∆t+O

(
∆t3/2

)
,

f (Bt+∆t) = f (Bt) + f ′ (Bt) ∆Bt +
1

2
f ′′ (Bt) ∆t+O

(
∆t

3
2

)
.

Then, by the definition of the delta operator ( Definition 7.1.1 ),

∆f (Bt) = f ′ (Bt) ∆Bt +
1

2
f ′′ (Bt) ∆t+O

(
∆t

3
2

)
.

Now define a new delta operator as

∆̃f (Bt) = ∆f (Bt)−
1

2
f ′′ (Bt) ∆t.

Furthermore,

∆̃f (Bt) = f ′ (Bt) ∆Bt +O
(

∆t
3
2

)
.

Next example shows how this operator works on random variable.

Example 7.1.3.
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Let Bt be a standard Brownian motion. By Example 7.1.1,

∆B2
t = (∆Bt)

2 + 2Bt∆Bt

= ∆t+ 2Bt∆Bt +O
(

∆t
3
2

)
.

Then, by the definition of ∆̃,

∆̃B2
t = ∆B2

t −∆t

= 2Bt∆Bt +O
(

∆t
3
2

)
= 2Bt∆̃Bt +O

(
∆t

3
2

)
.

Note that

B2
t =

∫ t

0

2BsdBs +

∫ t

0

dt

=

∫ t

0

2Bs ◦ dBs

by Stratonovich integral.
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Chapter 8

A General Stroock Lemma

The Stoock lemma is a fundamental concept of the Malliavin calculus. This

lemma can be used in solving various equations. In this chapter, this lemma

is illustrated through several different cases.

8.1 Discrete Stroock lemma

The idea of the discrete Stroock lemma, which can be treated as the coun-

terpart of the Stroock lemma in discrete Malliavin calculus, is inspired by the

corresponding lemma in continuous Malliavin calculus. Comparing with the

continuous Malliavin calculus, the discrete version of Stroock lemma is slightly

different.

8.1.1 Discrete Stroock lemma

Before introducing the discrete version of the Stroock lemma, an important

property is given first.
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For each fixed t, the discrete Wiener-Ito decomposition

Xs,t =
∑
n

∑
(t1,··· ,tn)∈Λn−1

nXn−1,s,t (t1, · · · , tn−1) ∆B (t1) · · ·∆B (tn)

equals to zero for s = t by default.

Lemma 8.1.1. (Discrete Stroock lemma)

Let

Xs =
∑
n

∑
(t1,··· ,tn)∈Λn

Xn,s (t1, · · · , tn) ∆B (t1) · · ·∆B (tn)

and

Xs,t = DtXs =
∑
n

∑
(t1,··· ,tn)∈Λn−1

nXn−1,s,t (t1, · · · , tn−1) ∆B (t1) · · ·∆B (tn)

be the discrete Wiener-Ito decomposition of Xs and Xs,t respectively. (Dt)t>0

are the derivative operators defined in Definition 6.1.7. Assume that Xn,s is a

symmetric function of n arguments t1, · · · , tn. Assume also that

E
[
‖Xs‖2

L2(Ω×Λ)

]
<∞

and

E
[
‖Xs,t‖2

L2(Ω×Λ2)

]
<∞.

Then,

Dt

(∫
XsδBs

)
= Xt +

∫
DtXsδBs.
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Note that the condition ’Xn,s is a symmetric function of n arguments t1, · · · , tn’

is necessary in former lemma. The reason will be shown by the proof of Lemma

8.1.1 in the next section.

8.1.2 Proof of Lemma 8.1.1

The proof of lemma 8.1.1 consists of three parts.

(1) For n = 1, let

Y(1)
s =

∑
t1∈Λ

Y1,s (t1) ∆B (t1) .

According to Proposition 6.1.5 and Proposition 6.1.6,

Dt

(∫
Y(1)
s δBs

)

= Dt

 ∑
(t1,t2)∈Λ2

1

2
[Y1,t2 (t1, t2) + Y1,t1 (t2, t1)] ∆B (t1) ∆B (t2)


= Dt

 ∑
(t1,t2)∈Λ2

Ŷ2 (t1, t2) ∆B (t1) ∆B (t2)


=

∑
t1∈Λ

2Y1,t (t1) ∆B (t1) ,

where Ŷ2 (t1, t2) is the symmetrization of Y1,s (t1) and

∫
DtY

(1)
s δBs =

∫
Y0,t,s (∅) δBs

=
∑
t1∈Λ

1

2
[Y1,t1 (t, t1) + Y1,t (t1, t)] ∆B (t1)

=
∑
t1∈Λ

Y1,t (t1) ∆B (t1) .
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Concluding all former results,

Dt

(∫
Y(1)
s δBs

)
= Y

(1)
t +

∫
DtY

(1)
s δBs.

(2) For n = 2, let

Y(2)
s =

∑
(t1,t2)∈Λ2

Y2,s (t1, t2) ∆B (t1) ∆B (t2) .

According to Proposition 6.1.5 and Proposition 6.1.6,

Dt

(∫
Y(2)
s δBs

)

= Dt

 ∑
(t1,t2,t3)∈Λ3

1

3
[Y3 (t1, t2, t3) + Y3 (t1, t3, t2) + Y3 (t3, t1, t2)]

∆B (t1) ∆B (t2) ∆B (t3))

= Dt

 ∑
(t1,t2,t3)∈Λ3

Ŷ3 (t1, t2, t3) ∆B (t1) ∆B (t2) ∆B (t3)


=

∑
(t1,t2)∈Λ2

3Y2,t (t1, t2) ∆B (t1) ∆B (t2) ,

where Ŷ3 (t1, t2, t3) is the symmetrization of Y2,s (t1, t2) and

∫
DtY

(2)
s δBs =

∫ (∑
t1∈Λ

2Y1,t,s (t1) ∆B (t1)

)
δBs

=
∑

(t1,t2)∈Λ2

2 · 1

2
[Y2,t (t1, t2) + Y2,t (t2, t1)] ∆B (t1) ∆B (t2)

=
∑

(t1,t2)∈Λ2

2Y2,t (t1, t2) ∆B (t1) ∆B (t2) .

Concluding all former results,
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Dt

(∫
Y(2)
s δBs

)
= Y

(2)
t +

∫
DtY

(2)
s δBs.

(3) For n = k,

Y(k)
s =

∑
(t1,··· ,tk)∈Λk

Yk,s (t1, · · · , tk) ∆B (t1) · · ·∆B (tk) .

According to Proposition 6.1.5 and Proposition 6.1.6,

Dt

(∫
Y(k)
s δBs

)

= Dt

 ∑
(t1,··· ,tk+1)∈Λk+1

Yk+1 (t1, · · · , tn, tn+1) + · · ·+ Yk+1 (tn+1, t1, · · · , tn)

k + 1

∆B (t1) · · ·∆B (tk+1))

= Dt

 ∑
(t1,··· ,tk+1)∈Λk+1

Ŷk+1 (t1, · · · , tn, tn+1) ∆B (t1) · · ·∆B (tk+1)


=

∑
(t1,··· ,tk)∈Λk

(k + 1)Yk,t (t1, · · · , tk) ∆B (t1) · · ·∆B (tk) ,

where Ŷk+1 (t1, · · · , tn, tn+1) is the symmetrization of Yk,s (t1, · · · , tk) and

∫
DtY

(k)
s δBs

=

∫  ∑
(t1,··· ,tk−1)∈Λk−1

kYk−1,t,s (t1, · · · , tk−1) ∆B (t1) · · ·∆B (tk−1)

 δBs

=
∑

(t1,··· ,tk)∈Λk

k · 1

k
[Yk,t (tk, t1, · · · , tk−1) + · · ·+ Yk,t (t1, · · · , tk−1, tk)] ·

·∆B (t1) · · ·∆B (tk)

=
∑

(t1,··· ,tk)∈Λk

kYk,t (t1, · · · , tk) ∆B (t1) · · ·∆B (tk)
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Concluding all former results,

Dt

(∫
Y(k)
s δBs

)
= Y

(k)
t +

∫
DtY

(k)
s δBs.

In general, let

Xs =
∑
n

Y(n)
s

and

Xs,t =
∑
n

DtY
(n)
s = Dt

∑
n

Y(n)
s = DtXs.

Since E
[
‖Xs,t‖2

L2(Ω×Λ2)

]
<∞ and E

[
‖Xs‖2

L2(Ω×Λ)

]
<∞,

Dt

(∫
XsδBs

)
= Xt +

∫
DtXsδBs.

8.2 A generalised Stroock lemma

A generalised Stroock lemma and the related duality lemma are introduced in

this section.

8.2.1 A Generalised Stroock lemma

Consider two linear operators D and δ. Define Dt as the original derivative

operator, which means

DtF = F ′ (t) ,
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where F : R→ R is an arbitrary differentiable function. Let uh (t) : R×R→

R+ be an non-negative integrable function with respect to tinR and h. Suppose

that Dt satisfies the Stroock lemma

Dt (δ (uh (t))) = δ (Dt (uh (t))) + uh (t) .

After given all definitions and conditions, the first problem is what kind of

operator δ satisfies the former equation. To solve this problem, it is necessary

to introduce the following lemma.

Lemma 8.2.1. Let uh (t) = eht. Define the derivative operator Dt as before.

Dt satisfies the Stroock lemma

Dt (δ (uh (t))) = δ (Dt (uh (t))) + uh (t) .

Then

δ (uh (t)) = (t+ Ch)uh (t)

where Ch is a function of h.

Proof.

Applying Dt to uh (t),

Dt (uh (t)) = heht.

Then, by aforementioned assumption,
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Dt (δ (uh (t))) = δ (Dt (uh (t))) + uh (t)

= δ (huh (t)) + uh (t)

= hδ (uh (t)) + uh (t)

= hδ
(
eht
)

+ eht.

Fix h and define δ (uh (t)) = δ
(
eht
)

= X (t), the former equation becomes

X ′ (t) = hX (t) + eht,

which is an ordinary differential equation. Solve this equation and the result

is

X (t) = (t+ Ch) e
ht

= (t+ Ch)uh (t)

= δ (uh (t)) ,

which completes the proof.

Here consider δ (uh (t)) = tuh (t) only, since Ch is a constant with respect to t.

Applying Dt to δ (uh (t)),

Dt (δ (uh (t))) = Dt (tuh (t)) = uh (t) + tu′h (t) .

Then, applying δ to Dt (uh (t)), one can obtain

δ (Dt (uh (t))) = tDt (uh (t)) = tu′h (t) .
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After concluding all former results, δ still satisfies

Dt (δ (uh (t))) = δ (Dt (uh (t))) + uh (t)

which is a generalised Stroock lemma.

Lemma 8.2.2. (A generalised Stroock lemma)

Let uh (t) be a non-negative integrable function with respect to t. Define the

operator Dt by

Dt (uh (t)) = u′h (t)

and the operator δ by

δ (uh (t)) = tuh (t) .

Then,

Dt (δ (uh (t))) = δ (Dt (uh (t))) + uh (t) .

8.2.2 A Generalised duality lemma

The second problem is what kind of duality formula do those aforementioned

Dt and δ satisfy. To deduce such kind of duality formula, it is necessary to

consider a bilinear map B. Then, for all non-negative integrable functions

uh (t) : R × R → R+ and φg (t) : R × R → R+, the duality formula can be

represented as

B (Dt (δ (uh (t))) , φg (t)) = B (uh (t) , δ (Dt (φg (t)))) .
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By linearity of the bilinear map B and the generalised Stroock lemma ( Lemma

8.2.2 ), the left hand side of the former equation can be simplified as

B (Dt (δ (uh (t))) , φg (t)) = B
(
(tuh (t))′ , φg (t)

)
= B (tu′h (t) + uh (t) , φg (t))

= B (tu′h (t) , φg (t)) + B (uh (t) , φg (t)) , (1)

and the right hand side of this equation is

B (uh (t) , δ (Dt (φg (t)))) = B
(
uh (t) , tφ′g (t)

)
.

Now, this problem becomes to find that what kind of bilinear map B satisfy

B (tu′h (t) , φg (t)) + B (uh (t) , φg (t)) = B
(
uh (t) , tφ′g (t)

)
. (2)

The following two lemmas show that the duality formula in this case is not as

simple as before.

Lemma 8.2.3. Suppose that Dt and δ satisfy (2). Assume that the bilinear

map B satisfies the commutative law, which means

B (x (t) , y (t)) = B (y (t) , x (t)) .

Then, for all x (t) and y (t),

B (x (t) , y (t)) = 0.
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Proof.

By the commutative law of the bilinear map B,

B (tu′h (t) , φg (t)) = B (φg (t) , tu′h (t)) .

Then, according to equation (2), B
(
uh (t) , tφ′g (t)

)
is equivalent to

B (φg (t) , tu′h (t)) + B (uh (t) , φg (t)) .

Applying (2) to the first term of the former polynomial,

B (φg (t) , tu′h (t)) = B
(
tφ′g (t) , uh (t)

)
+ B (φg (t) , uh (t)) .

Therefore, by the commutative law of the bilinear map B again,

B
(
uh (t) , tφ′g (t)

)
= B

(
tφ′g (t) , uh (t)

)
+ B (φg (t) , uh (t)) + B (uh (t) , φg (t))

= B
(
uh (t) , tφ′g (t)

)
+ 2B (uh (t) , φg (t)) .

After comparing former equation and the right hand side of (2),

B (uh (t) , φg (t)) = 0,

which completes the proof.

Lemma 8.2.3 shows that the generalised duality formula does not satisfy the

commutative law in general.
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Lemma 8.2.4. Let Dt and δ satisfy (2). If B (x (t) , y (t)) 6= 0, there is no

such a constant a that

B (x (t) , y (t)) = aB (y (t) , x (t))

for all x (t) and y (t).

Proof.

Suppose such kind of a exists. Therefore,

B (tu′h (t) , φg (t)) = aB (φg (t) , tu′h (t)) .

Then, the left hand side of (2) is equivalent to

aB (φg (t) , tu′h (t)) + B (uh (t) , φg (t)) .

Applying (2) to the first term of the former polynomial,

B (φg (t) , tu′h (t)) = B
(
tφ′g (t) , uh (t)

)
+ B (φg (t) , uh (t)) .

Then,

aB (φg (t) , tu′h (t)) + B (uh (t) , φg (t))

= a
(
B
(
tφ′g (t) , uh (t)

)
+ B (φg (t) , uh (t))

)
+ B (uh (t) , φg (t))

= aB
(
tφ′g (t) , uh (t)

)
+ a2B (uh (t) , φg (t)) + B (uh (t) , φg (t))

= a2B
(
uh (t) , tφ′g (t)

)
+
(
a2 + 1

)
B (uh (t) , φg (t)) .

After comparing former equation and the right hand side of (2),
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{
a2 = 1,
a2 + 1 = 0,

since B (x (t) , y (t)) 6= 0 for all x (t) and y (t). This equation set has no possible

solution, which completes the proof by contradiction.

To find a possible generalised duality formula, consider a basis
{
tk
}∞
k=0

on the

algebra of polynomials. Let uh (t) = u = tk and φg (t) = φ = tm. Then, the

left hand side of (2) becomes

B
(
ktk, tm

)
+ B

(
tk, tm

)
= kB

(
tk, tm

)
+ B

(
tk, tm

)
and the right hand side of (2) becomes

B
(
tk,mtm

)
= mB

(
tk, tm

)
,

since B is a bilinear map. Let B
(
tk, tm

)
= βk,m. Therefore, solving (2) is

equivalent to solving

βk,m (k + 1−m) = 0 (3)

under this basis. Here omit the solution βk,m ≡ 0, because this is a meaningless

solution of (3). Hence, the remaining solution of (3) is k + 1−m = 0 and

{
βk,k+1 6= 0,
βj,i = 0, i 6= j + 1.

(4)

Then, by (4),
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βk,k+1 =

( k − 1 k k + 1

· · · 0 1 0 · · ·

)
(βi,j)i,j=0,1,···



...

0

k + 1 1

0
...


where

(βi,j)i,j=0,1,··· =



0 1 2 3 · · ·

0 0 β0,1 0 0 · · ·

1 0 0 β1,2 0 · · ·

2 0 0 0 β2,3

...
...

...
...

. . .


.

Now consider a more general situation. Let uh (t) = u =
∑M

j=0 xjt
j and

φg (t) = φ =
∑N

i=0 yit
i be two sequences of partial sums associated to two

series. Then,

B (u, φ) =

(
x0 x1 · · · xM 0 · · ·

)
(βi,j)i,j=0,1,···



y0

y1

...

yN

0
...


.

Without loss of generality, suppose that M > N . Therefore,
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B (u, φ) = B

(
M∑
j=0

xjt
j,

N∑
i=0

yit
i

)

=
M∑
j=0

N∑
i=0

(xjyi) B
(
tj, ti

)
=

M∑
j=0

(xjyj+1) B
(
tj, tj+1

)
=

M∑
j=0

(xjyj+1) βj,j+1,

by (4). Let xj = hj/j! and yi = gi/i!. Then, the left hand side of (2) is

B

(
t
M∑
j=1

hj

j!
jtj−1,

N∑
i=0

gi

i!
ti

)
+ B

(
M∑
j=0

hj

j!
tj,

N∑
i=0

gi

i!
ti

)

= B

(
M∑
j=0

j
hj

j!
tj,

N∑
i=0

gi

i!
ti

)
+ B

(
M∑
j=0

hj

j!
tj,

N∑
i=0

gi

i!
ti

)

=
M∑
j=0

j (xjyj+1) βj,j+1 +
M∑
j=0

(xjyj+1) βj,j+1

=
M∑
j=0

(j + 1) (xjyj+1) βj,j+1

and the right hand side of (2) is

B

(
M∑
j=0

hj

j!
tj, t

N∑
i=1

gi

i!
iti−1

)
= B

(
M∑
j=0

hj

j!
tj,

N∑
i=0

i
gi

i!
ti

)

=
M∑
j=0

(j + 1) (xjyj+1) βj,j+1,

since i = j + 1 from (4). Assume that limM→∞
∑M

j=0 (j + 1) (xjyj+1) βj,j+1

exists. Then,
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B

(
∞∑
j=0

hj

j!
tj,

∞∑
i=0

gi

i!
ti

)
= B

(
eht, egt

)
,

and therefore,

B

(
t
∞∑
j=1

hj

j!
jtj−1,

∞∑
i=0

gi

i!
ti

)
+ B

(
∞∑
j=0

hj

j!
tj,

∞∑
i=0

gi

i!
ti

)

= B

(
∞∑
j=0

hj

j!
tj, t

∞∑
i=1

gi

i!
iti−1

)

= lim
M→∞

M∑
j=0

(j + 1) (xjyj+1) βj,j+1.

According to the former equation, the bilinear map B which satisfies (2) exists

under the aforementioned assumption. Let βj,j+1 = j!. Then,

lim
M→∞

M∑
j=0

(j + 1) (xjyj+1) βj,j+1 = lim
M→∞

M∑
j=0

(j + 1) (xjyj+1) j!

= lim
M→∞

M∑
j=0

(j + 1)
hj

j!
· gj+1

(j + 1)!
j!

= lim
M→∞

M∑
j=0

g (gh)j

j!

= gegh.

Hence B
(
eht, egt

)
= gegh. To find a more general bilinear map B, it is neces-

sary to use inverse Laplace transform.

Lemma 8.2.5. (A generalised duality lemma)

Define the bilinear operator B by B
(
eht, egt

)
= gegh. Let S be a space of all

functions which have the inverse Laplace transform. If F ∈ S,
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B
(
eht, f (t)

)
= f ′h (h) ,

where f (t) be a piecewise-continuous and exponentially-restricted real function

which is the inverse Laplace transform of F .

Proof.

The inverse Laplace transform of the function F is

f (t) = L−1 {F (g)} (t) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
egtF (g) dg

where γ is a vertical contour in the complex plane chosen so that all singular-

ities of F are to the left of it. It is equivalent to prove that

B
(
eht,L−1 {F (g)} (t)

)
= B

(
eht,

1

2πi
lim
T→∞

∫ γ+iT

γ−iT
egtF (g) dg

)
=

(
L−1 {F (g)} (h)

)′
h

=
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
geghF (g) dg,

since F ∈ S. Then, by the definition of the bilinear operator B,

B
(
eht,L−1 {F (g)} (t)

)
=

1

2πi
lim
T→∞

∫ γ+iT

γ−iT
B
(
eht, egt

)
F (g) dg

=
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
geghF (g) dg,

which completes the proof.
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8.3 Stroock lemma for the derivative of a nat-

ural number

Consider a stochastic process {Xt : t > 0}. Let Xt ≡ C for t > 0 where C is

a constant, whereupon this process is not random. Then, it is interesting to

introduce a new concept introduced by Victor Ufnarovski et al. [53] which is

the derivative of a natural number.

Now, consider the derivative given by Lemma 6.2.1 which is

D (n) = n′ = n
k∑
i=1

ni
pi

where n =
∏k

i=1 p
ni
i is a factorization in prime powers. To seek a proper

operator δ in the related Stroock lemma

Dδ = I + δD,

it is necessary to use Lemma 6.2.2 and Corollary 6.2.1 given before.

Note that p = q is possible in Corollary 6.2.1 due to (p2)
′
= 2p. Since p, q are

two primes, one can obtain

D (pq) = (pq)′ = p′q + pq′ = p+ q

by using Leibnitz rule and the fact that p′ = 1 for any prime p.

Corollary 6.2.1 gives an idea to define a linear operator δp (q) = pq where p

is a fixed prime and q is an arbitrary prime. This operator together with the

derivative of the natural number satisfy
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Dδ = I + δD

which is the Stroock lemma ( I is the identity operator ).

Lemma 8.3.1. (Stroock lemma for the derivative of a prime number)

Let p be a fixed prime and q be an arbitrary prime. The operator D is given

by Lemma 6.2.1 and the linear operator δp is defined as δp (q) = pq. Then,

Dδp (q) = I (q) + δpD (q) .

Proof.

The left hand side of the former equation is

Dδp (q) = D (pq)

= p′q + pq′

= q + p.

The right hand side of the former equation is

I (q) + δpD (q) = q + δp (q′)

= q + p.

Note that p′ = 1 and q′ = 1. Comparing two sides of the equation, the proof

is finish.

The definition of q in Lemma 8.3.2 can be extended to all natural number.

This leads to the following corollary.
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Corollary 8.3.1. Let n be a positive integer and p be a fixed prime. The

operator D is given by Lemma 6.2.1 and the linear operator δp is defined as

δp (n) = pn. Then,

Dδp (n) = I (n) + δpD (n) .

Proof.

The left hand side of the former equation is

Dδp (n) = D (pn)

= p′n+ pn′

= n+ pn′.

The right hand side of the former equation is

I (n) + δpD (n) = n+ δp (n′)

= n+ pn′.

Note that p′ = 1. Comparing two sides of the equation, the proof is finish.

The next question is whether the restriction of choosing p as a prime number

in Lemma 8.3.1 and following corollary is necessary or not. Lemma 6.2.3 is

the key point to answer this.
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Lemma 8.3.2. (Stroock lemma for the derivative of a natural number)

Let n be a positive integer and m be a fixed positive integer. The operator D

is given by Lemma 6.2.1 and the linear operator δm is defined as δm (n) = mn.

If these two operators satisfy the Stroock lemma

Dδm (n) = I (n) + δmD (n) ,

the fixed positive number m must be a prime.

Proof.

The left hand side of the former equation is

Dδm (n) = D (mn)

= m′n+mn′.

The right hand side of the former equation is

I (n) + δmD (n) = n+ δm (n′)

= n+mn′.

Comparing the former two equations, it is clear that D and δ satisfy

Dδm (n) = I (n) + δmD (n)

if and only if m′ = 1. Lemma 6.2.3 shows that m must be a prime.
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Part 3 :

A Discrete Differential
Dynamics

Main definitions from the finite fields and the q-derivative are introduced

in Chapter 9. Chapter 10 contains several examples and lemmas on semi-

derivation on finite commutative algebras over finite fields and partial q-

derivative. A discrete differential dynamics and application to the Cox-Ross-

Rubinstein model are the main results in Chapter 11 and Chapter 12 based

on [11].
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Chapter 9

Terminology and Methods

In this chapter, all crucial notations and methods are introduced in details in-

cluding definitions and properties. These concepts will be applied throughout

this part. Numerous important lemmas with proofs are also given here.

9.1 Finite fields

The definition of finite fields is given in this section, which will be used many

times later. There are more details in the book written by Pierre Samuel [49]

and the materials of Gilberto Bini et al. [2] and other books about number

theory.

Let K be a field. There is a unique ring homomorphism φ : Z→ K ( defined

by φ (n) = 1 + 1 + · · ·+ 1, n times, for n > 0 and by φ (−n) = −φ (n) ). If φ

is not injective, its kernel is an ideal pZ where p > 0; then Z/pZ is identified

with a subring of K; thus Z/pZ is a field from which it follows that p is a

prime number. K is of characteristic p. Such K is a finite field. The subfield,
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Z/pZ, of K is the smallest subfield of K; it is called the prime subfield of K.

Here, write Fp for Z/pZ.

A finite field is defined on a finite set with four operations multiplication,

addition, subtraction and division ( excluding division by zero ). In other

words, these four operations are well-defined on this finite set. Since the

calculations of multiplication, addition and subtraction for Fp are obvious,

division is the only operation explained specifically in this part. To define the

operation division for Fp is equivalent to define the multiplicative inverse for

Fp. For instance, the following four tables give the multiplicative inverse for

each nonzero element a of F3, F5 F7 and F11. Generally, the multiplicative

inverse for an element a of a finite field can be calculated by many different

ways such as Brute-force search, extended Euclidean algorithm, subtraction

of logarithms and so on. There are more details about division of nonzero

elements of a finite field in Chapter 10 of the book written by Rudolf Lidl et

al. [30].

a 1 2
1/a 1 2

Table 9.1: The multiplicative inverse for an element a of F3.

a 1 2 3 4
1/a 1 3 2 4

Table 9.2: The multiplicative inverse for an element a of F5.

a 1 2 3 4 5 6
1/a 1 4 5 2 3 6

Table 9.3: The multiplicative inverse for an element a of F7.

Next lemma shows that the characteristic of a finite field Fp can only be prime

number.
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a 1 2 3 4 5 6 7 8 9 10
1/a 1 6 4 3 9 2 8 7 5 10

Table 9.4: The multiplicative inverse for an element a of F11.

Lemma 9.1.1. The ring Fp is a field if and only if p is a prime number.

The entire proof of Lemma 9.1.1 can be found in the book written by Ian

Stewart [51]. Here quotes how to find the multiplicative inverse for a given

element only.

Putting n ∈ pZ. Let n + r be a non-zero element of Z/pZ. Since r and p are

coprime then by Bezout’s lemma of Z there exist integers a and b such that

ar + bp = 1. Then

(n+ a) (n+ r) = (n+ 1)− (n+ p) (n+ b) = n+ 1

and similarly

(n+ r) (n+ a) = n+ 1.

Since n+1 is the identity element of Z/pZ, there exists a multiplicative inverse

for the given element n + r. Thus every non-zero element of Z/pZ has an

inverse.

Next lemma shows some possible methods to find the multiplicative inverse

for some particular elements in a finite field of order p.

Lemma 9.1.2. Let Fp be a finite field of order p. The following four state-

ments are valid for all primes p > 2:

1) The multiplicative inverse of p− 1 in Fp is itself.

129



2) There exists a non-negative integer n such that p − 2|1 + np in Z and the

multiplicative inverse of p− 2 in Fp is n+ 1;

3) If m is the multiplicative inverse of n in Fp, then p−m is the multiplicative

inverse for p− n;

4) The multiplicative inverse of any non-zero element n in Fp is np−2.

Proof.

1) The proof is clear since (p− 1) · (p− 1) = 1 in Fp.

2) Rewrite 1+np by 1+np = n (p− 2)+2n+1. Since all primes p > 2 are odd,

there exists a non-negative integer n such that p−2 = 2n+1 and n = (p− 3) /2.

Therefore, (p− 2) · (n+ 1) = 1 + np in Z and (p− 2) · (n+ 1) = 1 in Fp.

3) Since m is the the multiplicative inverse for n of Fp, m · n = 1. Therefore,

(p−m) · (p− n) = m · n = 1.

4) To prove this, the following lemma is introduced here first.

Lemma 9.1.3. If F is a finite field with m elements, then every n ∈ F satisfies

nm = n. [30]

By Lemma 9.1.3, for each non-zero element n of Fp, np−1 = 1. The proof is

clear.

Note that Lemma 9.1.3 is famous and has various statements. There are

some connections between this lemma and Fermat’s little theorem, but this is

irrelevant to the main topic and is not discussed here.
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Generally, consider a finite field Fpn of order pn with prime number p and

positive integer n. Note that all fields of this order are isomorphic. Given

m = pn with n > 1, the finite field Fm for non-prime m can be constructed

by the quotient ring Fm = Fp (x) / (P ) where P is an irreducible polynomial

in Fp (x) of degree n. W. H. Bussey illustrated tables of some no-prime finite

fields in his papers [3], [4].

Next example is given here to show that how to construct a specific no-prime

finite field.

Example 9.1.1.

According to the preceding concept of Fpn , F4 = F2 (x) / (P ) where P =

x2 + x + 1 since this is the only irreducible polynomial of degree 2 over F2.

Let a be a root of P = 0 in F4. The set {0, 1, a, 1 + a} along with addition,

subtraction, multiplication and division defined on it forms F4. Note that a is

the generator of the cyclic group formed by the non-zero element of F4 along

with multiplication.

Proposition 9.1.1. The sum of all elements of a finite field is 0 except for

F2

Proof.

Let f : F → F be a bijection such that
∑

x∈F x =
∑

x∈F f (x). Since F has

more than two elements, pick α ∈ F\ {0, 1} and x 7→ αx is such a bijection.

Therefore, (1− α)
∑

x∈F x = 0 and 1− α 6= 0, i.e.
∑

x∈F x = 0.
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9.2 q-Derivative

This section follows by Victor Kac et al. [21] and J. Koekoek et al. [27]. There

are more details from the book written by A. Aral et al. [1].

Since there is no non-zero semi-derivation D on finite commutative algebra

over finite field which satisfies ’ordinary’ product rule ( see 12.1 ), it is inter-

esting to investigate if there exists another kind of derivation satisfying other

special kind of product rule. This is the reason why q-derivation is taken into

consideration.

The definitions of the q-differential and the q-derivative of the function f (x)

are given below.

Definition 9.2.1. (q-derivative)

Consider an arbitrary function f (x). Its q-differential is

dqf (x) = f (qx)− f (x) .

The following expression,

Dqf (x) =
dqf (x)

dqx
=
f (qx)− f (x)

(q − 1)x
,

is called the q-derivative of the function f (x).

Note that

lim
q→1

Dqf (x) =
df (x)

dx
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if f (x) is differentiable.

The q-derivative Dq has the linear property that for any constants a and b,

Dq (af (x) + bg (x)) = aDqf (x) + bDqg (x) .

The q-derivative Dq also have the q-product rule that

Dq (f (x) g (x)) = f (qx)Dqg (x) + g (x)Dqf (x) .

By symmetry,

Dq (f (x) g (x)) = f (x)Dqg (x) + g (qx)Dqf (x) .

Note that there does not exist a general chain rule for q-derivatives, though

some special cases may exist.

The higher order q-derivative is illustrated here. The second q-derivative of

the arbitrary function f (x) is

D2
qf (x) = Dq (Dqf (x)) =

f (q2x)− (q + 1) f (qx) + qf (x)

q (q − 1)2 x2
.

Lemma 9.2.1. If q1 6= q2, then Dq1Dq2f (x) 6= Dq2Dq1f (x) for arbitrary

function f (x).

Proof.

According to the Definition 9.2.1, one has

Dq1Dq2f (x) = Dq1 (Dq2f (x)) =
f (q1q2x)− f (q1x)− q1f (q2x) + q1f (x)

q1 (q1 − 1) (q2 − 1)x2
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and

Dq2Dq1f (x) = Dq2 (Dq1f (x)) =
f (q1q2x)− f (q2x)− q2f (q1x) + q2f (x)

q2 (q1 − 1) (q2 − 1)x2
.

Since q1 6= q2, the result is clear.
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Chapter 10

Simple Results

In this chapter, numerous examples and lemmas are treated as simple results

here. These results may help to understand not only several lemmas given

before but the inspiration of this part as well. Note that these lemmas given

here will be applied in following chapters.

10.1 Semi-derivation on finite commutative al-

gebras over finite fields

Definition 10.1.1. (semi-derivation and derivation)

Let R be a ring. A mapping δ : r ∈ R→ r′ ∈ R is a semi-derivation if

(r1r2)′ = r1r
′
2 + r′1r2

for all r1, r2 ∈ R. This is the Leibniz rule or product rule. A semi-derivation

is a derivation if

(r1 + r2)′ = r′1 + r′2
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for all r1, r2 ∈ R also holds. This is additivity or the additivity rule. [6]

An example is given here to explain the existence of derivation on finite com-

mutative algebras.

Example 10.1.1.

Consider a pair (x, α) where x, α ∈ Fp. The operation ”+” and ”·” are defined

by

(x, α) + (y, β) = (x+ y, α + β)

and

(x, α) · (y, β) = (αy + βx, αβ) ,

respectively. Since (x, α) (0, 1) = (x, α), {(x, α) : x, α ∈ Fp} along with two

operations ”+” and ”·” forms a finite commutative algebra. Let D be the

derivation on the preceding finite commutative algebra which can be repre-

sented by

D (x, α) = (Dx, 0) .

It is sufficient to check that D satisfies the Leibniz rule according to the fol-

lowing statement:

D [(x, α) (y, β)] = (αDy + βDx, 0) = (x, α)D (y, β) + (y, β)D (x, α) .

Therefore, the following lemma is clear.
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Lemma 10.1.1. In general, there exists non-zero derivation on finite commu-

tative algebras.

The preceding lemma gives a general result to this topic. The counterexample

shows that the non-zero derivation satisfying the Leibniz rule can be defined

on the finite commutative algebra with some special definitions of operation.

In other words, there exists non-zero derivation on several typical finite com-

mutative algebras.

Consider a set An,p = {(f1, · · · , fn)T : fi ∈ Fp} together with vector addition

and scalar multiplication which is a vector space over a finite field Fp spanned

by the standard basis. The operation ’⊗’ is the tensor product defined by

f ⊗ g = (f1 · g1, · · · , fn · gn)T

where f, g ∈ An,p. The set An,p along with the operation ’⊗’ forms a commu-

tative monoid with identity element 1 = (1, · · · , 1)T . This set together with

two operations ’+’ and ’⊗’ forms integral domain (or non-zero commutative

ring) since it satisfies

f ⊗ (g + h) = (f1 · (g1 + h1) , · · · , fn · (gn + hn))T

= (f1 · g1, · · · , fn · gn)T + (f1 · h1, · · · , fn · hn)T

= f ⊗ g + f ⊗ h

where f, g, h ∈ An,p (distributivity of multiplication over addition). Note that

f ⊗ f is simply denoted by f 2.
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Let D be a semi-derivation operator which can be represented as a n × n

matrix. Assume that this operator satisfies the Leibniz rule (or called product

rule) which means that it satisfies the chain rule as well. Next lemma gives a

general result which is also a crucial reason that q-derivative is applied here

in this part.

Lemma 10.1.2. Let An,p along with ’⊗’ be a finite commutative algebra over

the finite field Fp (p > 2) with unity and D be a semi-derivation on An,p defined

before. Then, D ≡ 0.

Proof.

For every f ∈ An,p, applying the semi-derivation D to fp, one has

Df p = f ⊗Df p−1 + fp−1 ⊗Df

due to the product rule. Then, by induction and the property of Fp, it is

equivalent to prove that D ≡ 0 is the only solution of the equation

Df p = pfp−1 ⊗Df ≡ 0.

According to Lemma 9.1.3 and Lemma 9.1.1, it is clear that fpi = fi for every

fi ∈ Fp and p can only be a prime number or a finite power of a prime number.

Therefore, one has fp = f and Df p = Df . Concluding all former results, one

can discover Df ≡ 0, and thus D ≡ 0 on account of arbitrariness of f .
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10.2 Partial q-derivative

On the basis of q-derivative, the partial q-derivative is defined by following

definition.

Definition 10.2.1. (partial q-derivative)

Let f (x, y) be an arbitrary function of x and y. The partial q-derivative with

respect to x is

Dqxf (x, y) =
f (qxx, y)− f (x, y)

(qx − 1)x
.

The cross partial q-derivative with respect to x and y is

Dqxqyf (x, y) = Dqx

(
Dqyf (x, y)

)
by taking the partial q-derivative of f with respect to y, and then taking the

partial q-derivative of the result with respect to x.

Lemma 10.2.1. The cross partial q-derivative is unaffected by which variable

the partial q-derivative is taken with respect to first and which is taken second.

That is,

Dqxqyf (x, y) = Dqyqxf (x, y) .

Proof.

By Definition 10.2.1,
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Dqxqyf (x, y)

=
f (qxx, qyy)− f (qxx, y)− f (x, qyy) + f (x, y)

(qy − 1) y (qx − 1)x

= Dqyqxf (x, y) .
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Chapter 11

A Discrete Differential
Dynamics

For a given polynomial F (x) ∈ Fpn (x) the definition of the derivative at

a ∈ Fpn (x) \ {0} given by E. Pasalic et al [43]. is DaF (x) = F (x+ a)−F (x).

Here the concept of q-derivative gives another possible method to define the

derivation on finite fields. It describes the relations between some different

states since there is no non-zero semi-derivation on finite commutative algebra

over finite field except some specific multiplicative operator satisfying classic

product rule. A discrete differential dynamics system can be created by choos-

ing some special q-derivation operators. Here consider the vector space with

dimension pn where p is a prime number and n is a positive integer due to the

definition of finite fields.

11.1 Lemmas

All main results of this part are demonstrated in this section.
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Let Fp be a finite field and n be a positive integer elements,An,p = {(f1, · · · , fn)T :

fi ∈ Fp} be a vector space of Fp-valued functions and OAn,p→An,p be a class of

matrices from An,p to An,p. More exactly, the dynamics of q-type derivation

operators in OAn,p→An,p are analysed. Here define Dqf̃ = 0 where Dq is a

q-type derivation operator, f̃ = (f0, f0, · · · , f0)T and f̃ ∈ An,p. Note that all

q-derivation operators are q-type derivation operators.

11.1.1 Differential dynamics of q-derivations on Fp

For general prime p (p > 2), the following lemmas are true:

Lemma 11.1.1. Let q = p − 1, n = q/2 and mi = 1/ (2i) for all 1 6 i 6 n.

Then, the q-derivation operator Dq in OAp,p→Ap,p is given by

Dq =

 0 0

0 D̃q


p×p

where the submatrices of D̃q are

Di =


i p− i

i mi p−mi

p− i mi p−mi

, 1 6 i 6 n.

Moreover, D2
q = 0.

Lemma 11.1.2. Let q = 0, r = p−1, n = r/2 and mi = 1/i for all 1 6 i 6 n.

Then, the q-derivation operator D0 in OAp,p→Ap,p is given by
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D0 = (aij)p×p , 0 6 i, j 6 p− 1

where



a00 = 0;
a0i = mi, 1 6 i 6 n;
a0i = p−mr+1−i, n+ 1 6 i 6 r;
aii = p−mi, 1 6 i 6 n;
aii = mr+1−i, n+ 1 6 i 6 r;
aij = 0, i 6= 0, i 6= j.

11.1.2 Characterization of q-type derivations on Fp-valued
vectors

Since q = 1 is meaningless for q-derivative, the q-type derivation operator D1

for Fp is not taken into account. Next lemma ( which is a special case of

Lemma 10.1.2 ) shows that there is no such derivation operator D satisfying

the q-product rule of q-derivation when q = 1 unless D ≡ 0.

Lemma 11.1.3. Let r = p− 1 and D = (aij)p×p , 0 6 i, j 6 r. Then, there is

no non-zero derivation operator D satisfying

D (f ⊗ g) = f ⊗ (Dg) + g ⊗ (Df)

where f, g ∈ Ap,p.

For general prime p (p > 2), the following lemmas are true:
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Lemma 11.1.4. Let q = p − 1 and D(q=p−1) = (aij)p×p , 0 6 i, j 6 q in

OAp,p→Ap,p. For general Fp, there are pq−1 possible q-type derivation operators

satisfying

D(q=p−1) (f ⊗ g) =
(
D(q=p−1)f

)
⊗ g + f̄ ⊗

(
D(q=p−1)g

)
where f̄ = (f0, fq, . . . , fq2)T valid for all f, g ∈ Ap,p. Let n = q/2. These pq−1

possible q-type derivation operators have the following representation:

D(q=p−1) =

 0 0

0 D̃(q=p−1)


p×p

.

The submatrices of D̃(q=p−1) are

Dk =


k p− k

k ai,i ai,p−i

p− k aj,p−j aj,j

, 1 6 k 6 n

where ai,i + ai,p−i = 0, 1 6 i 6 n and aj,p−j + aj,j = 0, n + 1 6 j 6 q.

Moreover, any power of the q-type derivation operator D(q=p−1) is included in

aforementioned pq − 1 cases plus zero matrix.

Lemma 11.1.5. Let q = 0, r = p − 1 and D(q=0) = (aij)p×p , 0 6 i, j 6 r in

OAp,p→Ap,p. For general Fp, there are pr−1 possible q-type derivation operators

satisfying

D(q=0) (f ⊗ g) =
(
D(q=0)f

)
⊗ g + f̄ ⊗

(
D(q=0)g

)
where f̄ = (f0, f0, · · · , f0)T valid for all f, g ∈ Ap,p. These pr − 1 possible

q-type derivation operators have the following representation:
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D(q=0) = (aij)p×p , 0 6 i, j 6 p− 1

where


a00 = 0;
a0i + aii = 0, 1 6 i 6 p− 1;
aij = 0, i 6= 0, i 6= j.

11.1.3 Differential dynamics of q-derivations on Fpn

Given a non-prime finite field Fpn = Fp/ (P ) with prime p and integer n > 2

where P is an irreducible polynomial in Fp (x) of degree n. Let a be a root of

P = 0 in Fpn . Then, the following lemma is true:

Lemma 11.1.6. Let m = pn and q = ak for integer 1 6 k 6 m − 2. Then,

the q derivation operator Dq in OAm,m→Am,m is given by

Dq = (dij)m×m , 0 6 i, j 6 m− 1

where



di0 = d0j = 0, 0 6 i, j 6 m− 1;

dij =
1

(ak − 1) ai−1
, 1 6 i 6 m− 1− k, j = i+ k;

dij =
1

(ak − 1) ai−1
,m− 1− k < i 6 m− 1, j = i+ k − (m− 1) ;

dij =
p− 1

(ak − 1) ai−1
, 1 6 i 6 m− 1, j = i;

dij = 0, other.

Corollary 11.1.1. The trace of the q-derivation operator Dq = (dij)m×m , 0 6

i, j 6 m− 1 derived in lemma 11.1.6 is 0.
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11.1.4 Characterization of q-type derivations on Fpn-valued
vectors

Consider a non-prime finite field Fpn = Fp/ (P ) with prime p and integer n > 2

where P is an irreducible polynomial in Fp (x) of degree n. For the root a of

P = 0 in Fpn , the following lemma is true:

Lemma 11.1.7. Let m = pn and D(q=ak) = (dij)m×m , 0 6 i, j 6 m in

OAm,m→Am,m. For general Fpn, there are mm−1 − 1 q-type derivation opera-

tors satisfying

D(q=ak) (f ⊗ g) =
(
D(q=ak)f

)
⊗ g + f̄ ⊗

(
D(q=ak)g

)
where f̄ =

(
f0, fq, · · · , fq(m−1)

)T
valid for all f, g ∈ Am,m. These m(m−1) − 1

possible q-type derivation operators have the following representation:

D(q=ak) = (dij)m×m , 0 6 i, j 6 m− 1

where


di0 = d0j = 0, 0 6 i, j 6 m− 1;
dii + dij = 0, 1 6 i 6 m− 1− k, j = i+ k;
dii + dij = 0,m− k 6 i 6 m− 1, j = i+ k − (m− 1) ;
dij = 0, other.

11.2 Proofs and properties

All proofs of lemmas introduced before and several properties are given in this

section.
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11.2.1 Differential dynamics of q-derivations on Fp

Proof of Lemma 11.1.1:

Consider the finite field Fp where p is a prime and p > 2. Let f be a func-

tion in Ap,p. Suppose q equals to p − 1. Applying the q-derivation operator

Dq (= Dp−1) to f in Ap,p. Let Dqf = g = (g0, g1, · · · gq)T . By assumption,

g0 = 0. Let n = q/2. For each 1 6 i 6 n,

gi =
1

2i
fi +

1

p− 2i
fp−i

and for n+ 1 6 j 6 q,

gj =
1

2 (p− j)
fp−j +

1

2j − p
fj.

Let mi = 1/ (2i). By Lemma 9.1.2 3), p−mi = 1/ (p− 2i). Since 1 6 p−j 6 n,

the proof is clear. For all submatrices Di, 1 6 i 6 n, D2
i = 0, and therefore

D2
q = 0.

Since multiplication, addition, subtraction and division (or multiplicative in-

verse) for Fp are well-defined, the q-derivation operator Dq is well-defined as

well.

Let mi = 1/ (2i) for 1 6 i 6 n. Note that

{mi : 1 6 i 6 n} ∪ {p−mi : 1 6 i 6 n} = {1, 2, · · · , q} .

Proof of Lemma 11.1.2:
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Suppose q equals to 0. Applying the q-derivation operator D0 to f in Ap,p.

Let Dqf = g = (g0, g1, · · · gq)T . By assumption, g0 = 0. Let r = p − 1. For

each 1 6 i 6 r,

gi =
f0

p− i
+
fi
i
.

Let mi = 1/ (p− i). By Lemma 9.1.2 3), p−mi = 1/i. Note that for r/2+1 6

j 6 r, 1 6 p− j 6 r/2. Then the proof is clear.

Note that Dp
0 = D0.

11.2.2 Characterization of q-type derivations on Fp-valued
vectors

Proof of Lemma 11.1.3:

It is equivalent to prove that aki ≡ 0, i = 0, 1, · · · , r (r = p − 1) are the only

solutions of

r∑
i=0

akifigi = fk

r∑
i=0

akigi + gk

r∑
i=0

akifi (18)

for all k ∈ {0, 1, · · · , r}. The the right hand side of equation (18) equals to

r∑
i=0

(fkakigi + gkakifi) .

Then, comparing both sides of equation (18),

r∑
i=0

aki (figi − fkgi − figk) = 0.
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To find the value of each aki, set fi = gi = 1 for fixed i and others zero since f

and g are arbitrary functions in Ap,p. Therefore, aki ≡ 0 where i = 0, 1, · · · , r.

Proof of Lemma 11.1.4:

Let q = p− 1. The q-product rule is equivalent to

q∑
i=0

akifigi = f(qk)

q∑
i=0

akigi + gk

q∑
i=0

akifi (19)

for all k ∈ {0, 1, · · · , q}. The right hand side of equation (19) equals to

q∑
i=0

(
f(qk)akigi + gkakifi

)
.

Let i′ = qk and i′′ = k. Note that i′ = p − k. Then, comparing both sides of

equation (19),

∑
i 6=i′,i′′

akifigi =
∑
i 6=i′,i′′

(
f(qk)akigi + gkakifi

)
+ gkaki′fi′ + fi′aki′′gi′′

for each k. Therefore,

∑
i 6=i′,i′′

aki
(
figi − f(qk)gi − gkfi

)
= 0

and

gkak,p−kfp−k + fp−kakkgk = 0.

To find the value of each aki which i 6= i′, i′′, set fi = gi = 1 for fixed i and

others zero since f and g are arbitrary functions in Ap,p. Thus, aki ≡ 0 if

i 6= k, p− k and ak,p−k + akk = 0 for each k ∈ {0, 1, · · · , q}.
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For any prime p > 2 there are p different ordered pairs (x, y) in Fp satisfying

x+y = 0 and D(q=p−1) 6= 0. These are the reasons why there are pq−1 possible

q-type derivation operators satisfying the product rule.

Let n = q/2. Without loss of generality, consider a submatrix of one particular

q-type derivation operator D(q=p−1) out of aforementioned pq − 1 cases,

Dk =


k p− k

k aii p− aii

p− k p− ajj ajj

, 1 6 k 6 n

where 1 6 i 6 n and n+ 1 6 j 6 q. Then,

D2
k =

 a2
ii + aiiajj −a2

ii − aiiajj

−ajjaii − a2
jj ajjaii + a2

jj


which is also a submatrix of one particular q-type derivation operator D(q=p−1)

out of aforementioned pq − 1 cases since

a2
ii + aiiajj − a2

ii − aiiajj = 0

and

−ajjaii − a2
jj + ajjaii + a2

jj = 0.

This shows that any power of the q-type derivation operator D(q=p−1) can be

found in aforementioned pq − 1 cases plus zero matrix.

Proof of Lemma 11.1.5:

Let r = p− 1. The q-product rule is equivalent to
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r∑
i=0

akifigi = f(0)

r∑
i=0

akigi + gk

r∑
i=0

akifi

for all k ∈ {0, 1, · · · , r}. The right hand side of preceding equation equals to

r∑
i=0

(
f(0)akigi + gkakifi

)
.

By similar way in proving Lemma 11.1.4, the designing results are clear.

11.2.3 Differential dynamics of q-derivations on Fpn

Proof of Lemma 11.1.6:

Consider the finite field Fm = Fpn where p is a prime and the integer n > 2.

Note that P is an irreducible polynomial in Fp (x) of degree n, a is a root

of P = 0 in Fm and am−1 = 1. Let f be a function in Am,m. Suppose q

equals to ak, 1 6 k 6 m − 2. Applying the q-derivation operator Dq = Dak

to f . Let Dqf = g = (g0, g1, · · · gm−1)T . By assumption, g0 = 0. Then, for

1 6 i 6 m− 1,

gi =
p− 1

(ak − 1) i
fi +

1

(ak − 1) i
faki.

According to the definition of the non-prime finite field, ar = ar−(m−1) for any

m− 1 < r < 2 (m− 1). The proof is clear.

Proof of Corollary 11.1.1:

For the q-derivation operator Dq = (dij)m×m , 0 6 i, j 6 m−1 given in Lemma

11.1.6, to prove tr (Dq) ≡ 0 is equivalent to prove
∑m−1

i=1 dii ≡ 0 since d00 ≡ 0.

According to Lemma 11.1.6,
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m−1∑
i=1

dii =
m−1∑
i=1

p− 1

(ak − 1) ai−1

=
p− 1

(ak − 1) am−2

m−1∑
i=1

am−i−1

=
p− 1

(ak − 1) am−2

m−2∑
i=0

ai.

Note that the sum of all elements of a finite field is 0 except for F2 ( Proposition

9.1.1 ). Thus,
∑m−2

i=0 ai ≡ 0.

11.2.4 Characterization of q-type derivations on Fpn-valued
vectors

Proof of Lemma 11.1.7:

Let m = qn. The q-product rule is equivalent to

d00f (0) g (0) +
m−1∑
j=1

d0jf
(
aj−1

)
g
(
aj−1

)
= f (0) d00g (0) + g (0) d00f (0) + f (0)

m−1∑
j=1

d0jg
(
aj−1

)
+g (0)

m−1∑
j=1

d0jf
(
aj−1

)
(20)

and

152



di0f (0) g (0) +
m−1∑
j=1

dijf
(
aj−1

)
g
(
aj−1

)
= f (0) di0g (0) + g (0) di0f (0) + f

(
ak+i−1

)m−1∑
j=1

dijg
(
aj−1

)
+g
(
ai−1

)m−1∑
j=1

dijf
(
aj−1

)
(21)

for all i ∈ {1, · · · ,m− 1}. By comparing both sides of equation (20) and (21),

di0 = d0j = 0, 0 6 i, j 6 m− 1. Therefore, equation (21) equals to

m−1∑
j=1

dijf
(
aj−1

)
g
(
aj−1

)
= f

(
ak+i−1

)m−1∑
j=1

dijg
(
aj−1

)
+ g

(
ai−1

)m−1∑
j=1

dijf
(
aj−1

)
for all i ∈ {1, · · · ,m− 1− k} and

m−1∑
j=1

dijf
(
aj−1

)
g
(
aj−1

)
= f

(
ak+i−m)m−1∑

j=1

dijg
(
aj−1

)
+ g

(
ai−1

)m−1∑
j=1

dijf
(
aj−1

)
for all i ∈ {m− k, · · · ,m− 1} since am−1 = 1 in Fm. By similar way in

proving Lemma 11.1.4,


dii + dij = 0, 1 6 i 6 m− 1− k, j = i+ k;
dii + dij = 0,m− k 6 i 6 m− 1, j = i+ k − (m− 1) ;
dij = 0, other.

For any prime p and positive integer n > 2, there are m different ordered pairs

(x, y) in Fm satisfying x+ y = 0 and D(q=ak) 6= 0. Note that for each non-zero
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element ak, 0 6 k 6 m − 2 the inverse element of ak is unique. These shows

that there are mm−1 − 1 possible q-type derivation operators satisfying the

q-product rule.

11.3 Examples

In this section, several examples are given here to explain preceding lemmas.

11.3.1 Differential dynamics of q-derivations on Fp with
small p

Differential dynamics of Dp−1 on Fp with small p

Example 11.3.1.

Consider a finite field F3. Let f = (f0, f1, f2)T be a function in A3,3. Suppose

q equals to 2. Applying the q-derivation operator D2 in OA3,3→A3,3 to f . Then,

D2 =


0 0 0

0 2 1

0 2 1

.
The next step is to investigate whether the q-product rule of D2 is satisfied in

F3. To see this, it is sufficient to check

D2 (f ⊗ g) = (D2f)⊗ g + f̄ ⊗ (D2g) , (1)

where the function g has the same form as f and f̄ = (f0, f2, f1)T . By standard

calculation, D2 does satisfy (1) and D2
2 = 0.
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Example 11.3.2.

Consider a finite field F5. Suppose q equals to 4. By similar calculation, the

q-derivation operator D4 in OA5,5→A5,5 has the following form:

D4 =



0 0

3 2

4 1

4 1

0 3 2


.

This operator D4 has the q-product rule,

D4 (f ⊗ g) = (D4f)⊗ g + f̄ ⊗ (D4g) ,

where f̄ = (f0, f4, f3, f2, f1)T , f = (f0, f1, f2, f3, f4)T and g ∈ A5,5. Note that

D2
4 = 0.

Example 11.3.3.

As F3 and F5 given before, other cases for small primes are given below. For

F7,
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D6 =



0 0

4 3

2 5

6 1

6 1

2 5

0 4 3


in OA7,7→A7,7 and D2

6 = 0. For F11,

D10 =



0 0

6 5

3 8

2 9

7 4

10 1

10 1

7 4

2 9

3 8

0 6 5


in OA11,11→A11,11 and D2

10 = 0. Here omit all calculations for former matrices

because these specific processes are complicated.
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Differential dynamics of D0 on Fp with small p

Example 11.3.4.

Consider a finite field F3. Let f = (f0, f1, f2)T be a function in A3,3. Suppose

q equals to 0. Applying the q-derivation operator D0 in OA3,3→A3,3 to f . Then,

D0 has the form

D0 =


0 0 0

2 1 0

1 0 2

.
This operator D0 has the q-product rule,

D0 (f ⊗ g) = (D0f)⊗ g + f̃ ⊗ (D0g) ,

where f̃ = (f0, f0, f0)T , f = (f0, f1, f2)T and g ∈ A3,3. Note that D3
0 = D0.

Example 11.3.5.

Consider a finite field F5. Suppose q equals to 0. By similar calculation, the

q-derivation operator D0 in OA5,5→A5,5 has the form

D0 =



0 0

4 1

2 3

3 2

1 4


.
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This operator D0 has the q-product rule,

D0 (f ⊗ g) = (D0f)⊗ g + f̃ ⊗ (D0g) ,

where f̃ = (f0, f0, f0, f0, f0)T , f = (f0, f1, f2, f3, f4)T and g ∈ A5,5. Note that

D5
0 = D0.

Example 11.3.6.

As F3 and F5 given before, other cases for small primes are given below. For

F7,

D0 =



0 0

6 1

3 4

2 5

5 2

4 3

1 6


in OA7,7→A7,7 and D7

0 = D0. Here omit all calculations for former matrices

because these specific processes are complicated.

Differential dynamics of other possible q-derivation operators on Fp
with small p

Example 11.3.7.

Consider a finite field F5. Suppose q equals to 2. By the method given before,

the q-derivation operator D2 in OA5,5→A5,5 has the form
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D2 =



0 0

4 1

2 3

2 3

0 4 1


.

This operator D2 has the q-product rule,

D2 (f ⊗ g) = (D2f)⊗ g + f̄ ⊗ (D2g) ,

where f̄ = (f0, f2, f4, f1, f3)T , f = (f0, f1, f2, f3, f4)T and g ∈ A5,5. Note

that D4
2 = 0. Suppose q equals to 3. By similar calculation, the q-derivation

operator D3 in OA5,5→A5,5 has the form

D3 =



0 0

2 3

4 1

4 1

0 2 3


.

This operator D3 has the q-product rule,

D3 (f ⊗ g) = (D3f)⊗ g + f̄ ⊗ (D3g) ,

where f̄ = (f0, f3, f1, f4, f2)T , f = (f0, f1, f2, f3, f4)T and g ∈ A5,5. Note that

D4
3 = 0.

Example 11.3.8.
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As F5 given before, other cases for small primes are given below. For F7 and

q = 2,

D2 =



0 0

6 1

3 4

2 5

2 5

3 4

0 6 1


in OA7,7→A7,7 and D3

2 = 0. For F7 and q = 3,

D3 =



0 0

3 4

5 2

6 1

6 1

5 2

0 3 4


in OA7,7→A7,7 and D6

3 = 0. Here omit all calculations for former matrices

because these specific processes are complicated.
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11.3.2 Characterization of q-type derivations on Fp-valued
vectors with small p

Characterization of q-type derivations on F3-valued vectors

Example 11.3.9.

Consider a finite field F3. Let D = (aij)3×3 , 0 6 i, j 6 2 be a q-type derivation

operator in OA3,3→A3,3 . Suppose this operator satisfies the q-product rule which

can be represented as

D (f ⊗ g) = (Df)⊗ g + f̄ ⊗ (Dg) , (2)

where f = (f0, f1, f2)T , f̄ = (f0, f2, f1)T and g ∈ A3,3. It is interesting to

find how many such kind of q-type derivation operators exist in F3 and some

related properties of these operators if they exist.

The left hand side of equation (2) is equivalent to

h0 = a00f0g0 + a01f1g1 + a02f2g2, (3)

h1 = a10f0g0 + a11f1g1 + a12f2g2 (4)

and

h2 = a20f0g0 + a21f1g1 + a22f2g2, (5)

where D (f ⊗ g) = h = (h0, h1, h2)T . The right hand side of equation (2) is

equivalent to
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¯̄f0g0 + f0 ¯̄g0 = (a00f0 + a01f1 + a02f2) g0 + (a00g0 + a01g1 + a02g2) f0, (6)

¯̄f1g1 + f2 ¯̄g1 = (a10f0 + a11f1 + a12f2) g1 + (a10g0 + a11g1 + a12g2) f2 (7)

and

¯̄f2g2 + f1 ¯̄g2 = (a20f0 + a21f1 + a22f2) g2 + (a20g0 + a21g1 + a22g2) f1, (8)

where f̄ = (f0, f2, f1)T , g = (g0, g1, g2)T , ¯̄f =
(

¯̄f0,
¯̄f1,

¯̄f2

)T
and ¯̄g = (¯̄g0, ¯̄g1, ¯̄g2)T .

Comparing (3) and (6), (4) and (7), (5) and (8). Then, a00 = a01 = a02 = 0,

a11 + a12 = 0, a10 = 0, a21 + a22 = 0, a20 = 0.

Concluding all former results, there are 8 q-type derivation operators (D 6= 0)

satisfying the q-product rule (equation (2)), which are

D(1) =


0 0 0

0 2 1

0 1 2

, D(2) =


0 0 0

0 1 2

0 2 1

, D(3) =


0 0 0

0 2 1

0 2 1

,

D(4) =


0 0 0

0 1 2

0 1 2

, D(5) =


0 0 0

0 2 1

0 0 0

, D(6) =


0 0 0

0 1 2

0 0 0

,

D(7) =


0 0 0

0 0 0

0 2 1

, D(8) =


0 0 0

0 0 0

0 1 2

.
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Note that D(3) is the q-derivation operator defined by q-derivation.

Now consider the dynamics of the former 8 q-type derivation operators in A3,3.

It is can be seen that

D2
(3) = 0 = Dn

(3), n > 2

and

D2
(4) = 0 = Dn

(4), n > 2.

For D(1), the second order derivation is

D2
(1) =


0 0 0

0 2 1

0 1 2

 = D(1) = Dn
(1), n ∈ N.

Then,

ezD(1) = I +
∞∑
n=1

Dn
(1)

zn

n!

= I +D(1)

(
∞∑
n=1

zn

n!

)
= I +D(1) (ez − 1) .

Similarly, for D(6) and D(7), the second order derivation are

D2
(6) = D(6) = Dn

(6), n ∈ N

and
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D2
(7) = D(7) = Dn

(7), n ∈ N

respectively. Then,

ezD(6) = I +D(6) (ez − 1)

and

ezD(7) = I +D(7) (ez − 1) .

For D(2), the second order derivation is

D2
(2) =


0 0 0

0 2 1

0 1 2

 = D(1) = D2k
(2), k ∈ N

and the third order derivation is

D3
(2) =


0 0 0

0 1 2

0 2 1

 = D(2) = D2k−1
(2) , k ∈ N.

Here D3
(2) = D(2)

(
D(2)D(2)

)
=
(
D(2)D(2)

)
D(2) since D(2) is symmetric. Note

that the multiplication of two matrices A = (aij)n×n and B = (bij)n×n satisfy-

ing AB = BA (law of commutation) if and only if
∑

i,j,k aijbjk =
∑

i,j,k bijajk.

Then,
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ezD(2) = I +
∞∑
n=1

Dn
(2)

zn

n!

= I +D(2)

(
∞∑
k=1

z2k−1

(2k − 1)!

)
+D(1)

(
∞∑
k=1

z2k

(2k)!

)
= I +D(2) (i sin (iz)) +D(1) (cos (iz)− 1) .

Similarly, for D(5), the second order derivation is

D2
(5) = D(6) = D2k

(5), k ∈ N

and the third order derivation is

D3
(5) = D(5) = D2k−1

(5) , k ∈ N.

For D(8), the second order derivation is

D2
(8) = D(7) = D2k

(8), k ∈ N

and the third order derivation is

D3
(8) = D(8) = D2k−1

(8) , k ∈ N.

Then,

ezD(5) = I +D(5) (i sin (iz)) +D(6) (cos (iz)− 1)

and

ezD(8) = I +D(8) (i sin (iz)) +D(7) (cos (iz)− 1) .
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Characterization of q-type derivations on F5-valued vectors

Example 11.3.10.

Consider a finite field F5. Let D = (aij)5×5 , 0 6 i, j 6 4 be a q-type derivation

operator in OA5,5→A5,5 . Suppose that this operator has the q-product rule

which can be represented as

D (f ⊗ g) = (Df)⊗ g + f̄ ⊗ (Dg) , (9)

where f = (f0, f1, f2, f3, f4)T , f̄ = (f0, f4, f3, f2, f1)T and g ∈ A5,5. Similarly,

it is interesting to find how many such kind of q-type derivation operators exist

in OA5,5→A5,5 and some related properties of these operators if they exist.

Similarly,


a00 = a01 = a02 = a03 = a04 = 0,
a10 = a12 = a13 = 0, a11 + a14 = 0 (10),
a20 = a21 = a24 = 0, a22 + a23 = 0 (11),
a30 = a31 = a34 = 0, a32 + a33 = 0 (12),
a40 = a42 = a43 = 0, a41 + a44 = 0 (13).

Concluding all former results, there are four pairs of non-zero integers satis-

fying equation (10), (11), (12) and (13) respectively, which are (4, 1), (1, 4),

(2, 3) and (3, 2). Then, there are 624 (= 54 − 1) (D 6= 0) possible q-type

derivation operators satisfying the product rule (equation (9)) including the

q-derivation operator defined by q-derivation.

Now consider the dynamics of these possible q-type derivation operators in

OA5,5→A5,5 . Since there are 624 possible q-type derivation operators, only four

examples are given here to explain some typical cases. The first one is exactly
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the same q-derivation operator defined by q-derivation as mentioned in last

section, which is

D(1) =



0 0

3 2

4 1

4 1

0 3 2


.

It is clear that

D2
(1) = 0 = Dn

(1), n > 2.

Note that there are 24 (= 52−1) out of the 624 cases owning similar property.

The second one is

D(2) =



0 0

3 2

0 0

0 0

0 2 3


.

For D(2), the second order derivation is

D2
(2) = D(2) = Dn

(2), n ∈ N.

Then,

ezD(2) = I +D(2) (ez − 1) .
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Note that there are at least 9 out of the 624 cases owning similar property.

The third one is

D(3) =



0 0

2 3

0 0

0 0

0 3 2


.

For D(3), the second order derivation is

D2
(3) = D(2) = D2k

(3), k ∈ N

and the third order derivation is

D3
(3) = D(3) = D2k−1

(3) , k ∈ N.

Here D3
(3) = D(3)

(
D(3)D(3)

)
=
(
D(3)D(3)

)
D(3) since D(3) is symmetric. Then,

ezD(3) = I +D(3) (i sin (iz)) +D(2) (cos (iz)− 1) .

Note that there are at least 9 out of the 624 cases owning similar property.

The fourth one is

D(4) =



0 0

4 1

0 0

0 0

0 1 4


.
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Let

D(5) =



0 0

1 4

0 0

0 0

0 4 1


.

For D(4), the second order derivation is

D2
(4) = D(3) = D4k−2

(4) , k ∈ N,

the third order derivation is

D3
(4) = D(5) = D4k−1

(4) , k ∈ N,

the fourth order derivation is

D4
(4) = D(2) = D4k

(4), k ∈ N,

and the fifth order derivation is

D5
(4) = D(4) = D4k−3

(4) , k ∈ N.

Here D5
(4) = D(4)

(
D(4)

(
D(4)

(
D(4)D(4)

)))
=
(((

D(4)D(4)

)
D(4)

)
D(4)

)
D(4) since

D(4) is symmetric. Then,
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ezD(4) = I +
∞∑
n=1

Dn
(4)

zn

n!

= I +D(4)

(
∞∑
k=1

z4k−3

(4k − 3)!

)
+D(3)

(
∞∑
k=1

z4k−2

(4k − 2)!

)

+D(5)

(
∞∑
k=1

z4k−1

(4k − 1)!

)
+D(2)

(
∞∑
k=1

z4k

(4k)!

)
.

Similarly,

ezD(5)

= I +D(5)

(
∞∑
k=1

z4k−3

(4k − 3)!

)
+D(3)

(
∞∑
k=1

z4k−2

(4k − 2)!

)

+D(4)

(
∞∑
k=1

z4k−1

(4k − 1)!

)
+D(2)

(
∞∑
k=1

z4k

(4k)!

)
.

Note that there are at least 18 out of the 624 cases owning similar property.

Other situations

As F3 and F5 given before, for F7 and F11, there are 76−1 and 1110−1 possible

q-type derivation operators satisfying the following q-product rule:

D (f ⊗ g) = (Df)⊗ g + f̄ ⊗ (Dg) ,

where f = (f0, f1, · · · , fq)T , f̄ = (f0, fq, · · · , fq2)T and g ∈ A7,7 (Here q = 6

for p = 7 and q = 10 for p = 11).
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11.3.3 Differential dynamics of q-derivations on Fpn with
small p and n

Differential dynamics of Da on Fp2 with small p

Example 11.3.11.

Consider a finite field F4. The element a is a root of x2 + x + 1 = 0 in

F4. Let f = (f0, f1, fa, fa2)T = (f0, f1, fa, f1+a)
T be a function in A4,4 and

D = (aij)4×4 , 0 6 i, j 6 3 be a q-derivation operator in OA4,4→A4,4 . Suppose q

equals to a. Applying the q-derivation operator Da in OA4,4→A4,4 to f . Then,

Da has the form

Da =


0 0

a a

1 1

0 1 + a 1 + a


.

This operator Da satisfies the q-product rule,

Da (f ⊗ g) = (Daf)⊗ g + f̄ ⊗ (Dag) ,

where f̄ = (f0, fa, fa2 , f1)T and g ∈ A4,4. Note that D3
a = 0.

Example 11.3.12.

Consider a finite field F9. The element a is a root of x2 = x+ 1 in F9. Let

f = (f0, f1, fa, fa2 , fa3 , fa4 , fa5 , fa6 , fa7)T

= (f0, f1, fa, f1+a, f1+2a, f2, f2a, f2+2a, f2+a)
T
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be a function in A9,9. By similar calculation, the q-derivation operator Da in

OA9,9→A9,9 has the form

Da =



0 0

2a a

2 1

2a+ 1 a+ 2

a+ 1 2a+ 2

a 2a

1 2

a+ 2 2a+ 1

0 a+ 1 2a+ 2


9×9

.

This operator Da satisfies the q-product rule,

Da (f ⊗ g) = (Daf)⊗ g + f̄ ⊗ (Dag) ,

where f̄ = (f0, fa, fa2 , fa3 , fa4 , fa5 , fa6 , fa7 , f1)T and g ∈ A9,9.

Differential dynamics of Da on F8

Example 11.3.13.

Consider a finite field F8. The element a is a root of x3 = x+ 1 in F8. Let

f = (f0, f1, fa, fa2 , fa3 , fa4 , fa5 , fa6)T

= (f0, f1, fa, fa2 , f1+a, fa+a2 , f1+a+a2 , f1+a2)T
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be a function in A8,8. By similar calculation, the q-derivation operator Da in

OA8,8→A8,8 has the form

Da =



0 0

a2 + a a2 + a

a+ 1 a+ 1

a2 a2

a a

1 1

a2 + 1 a2 + 1

0 a2 + a+ 1 a2 + a+ 1


8×8

.

This operator Da satisfies the q-product rule,

Da (f ⊗ g) = (Daf)⊗ g + f̄ ⊗ (Dag) ,

where f̄ = (f0, fa, fa2 , fa3 , fa4 , fa5 , fa6 , f1)T .

Differential dynamics of D1+a on F4

Example 11.3.14.

Let F4 be the finite field given before. Suppose q equals to 1+a. Applying the

q-derivation operator D1+a in OA4,4→A4,4 to f . Then D1+a has the following

form:
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D1+a =


0 0

1 + a 1 + a

a a

0 1 1


.

This operator D1+a has the q-product rule,

D1+a (f ⊗ g) = (D1+af)⊗ g + f̄ ⊗ (D1+ag) ,

where f = (f0, f1, fa, f1+a)
T and f̄ = (f0, f1+a, f1, fa)

T . Note that D3
1+a = 0.

Differential dynamics of D0 on F4

Example 11.3.15.

Let F4 be the finite field given before. Suppose q equals to 0. Applying the

q-derivation operator D0 in OA4,4→A4,4 to f . Then, D0 has the following form:

D0 =


0 0

1 1

1 + a 1 + a

a a


.

This operator D0 satisfies the q-product rule,

D0 (f ⊗ g) = (D0f)⊗ g + f̃ ⊗ (D0g) ,

where f = (f0, f1, fa, f1+a)
T and f̃ = (f0, f0, f0, f0)T . Note that D4

0 = D0.
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11.3.4 Characterization of q-type derivations on Fpn-valued
vectors with small p and n

Characterization of q-type derivations on F4-valued vectors

Example 11.3.16.

Consider a finite field F4. Let D = (aij)4×4 , 0 6 i, j 6 3 be a q-type derivation

operator in OA4,4→A4,4 . Suppose that this operator satisfies the q-product rule

which can be represented as

D (f ⊗ g) = (Df)⊗ g + f̄ ⊗ (Dg) , (14)

where f = (f0, f1, fa, f1+a)
T , f̄ = (f0, fa, f1+a, f1)T and g ∈ A4,4. Similarly, it

is interesting to find how many such kind of q-type derivation operators exist

in OA4,4→A4,4 and some related properties of these operators if they exist.

Then,


a00 = a01 = a02 = a03 = 0,
a10 = a13 = 0, a11 + a12 = 0 (15),
a20 = a21 = 0, a22 + a23 = 0 (16),
a30 = a32 = 0, a31 + a33 = 0 (17).

Concluding all former results, there are three pairs of non-zero elements sat-

isfying equation (15), (16) and (17) respectively, which are (1, 1), (a, a) and

(1 + a, 1 + a). Then, there are 63 (= 43−1) (D 6= 0) possible q-type derivation

operators satisfying the product rule (equation (14)) including the q-derivation

operator defined by q-derivation.

Similarly, there are 63 (= 43− 1) (D 6= 0) possible q-type derivation operators

satisfying the following product rule:
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D (f ⊗ g) = (Df)⊗ g + f̄ ⊗ (Dg) ,

where f = (f0, f1, fa, f1+a)
T , f̄ = (f0, f1+a, f1, fa)

T and g ∈ A4,4. By standard

calculation,


a00 = a01 = a02 = a03 = 0,
a10 = a12 = 0, a11 + a13 = 0,
a20 = a23 = 0, a21 + a22 = 0,
a30 = a31 = 0, a32 + a33 = 0.
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Chapter 12

Application to
Cox-Ross-Rubinstein Model

An effective way to simulate a realistic situation is replacing continuous model

by discrete model through letting the time period sufficient small like Yoshi-

fumi Muroi et al. [35] did in their paper. They calculate Delta, Gamma and

Vega by means of binomial tree and discrete Malliavin calculus.

The discrete differential dynamics is an important topic in this thesis. This

concept can be applied to the binomial options pricing model. In original

Cox-Ross-Rubinstein model the commutativity of the random steps makes

sure that the share price at each point does not depend on its path. If this

proposition does not work in this model, it gives an opportunity to investigate

the distinction. For instance the application of no commutative derivation

operator in high dimensional Cox-Ross-Rubinstein model has been introduced

in part 3. Beside the q-derivation on finite fields introduced in this thesis,

there are many other possible derivative such as the derivative defined by E.

Pasalic et al. [43] in their paper. Matsumura Hideyuki even gives another

product rule of derivation in his research [17].
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12.1 Cox-Ross-Rubinstein model via deriva-

tion operator

The original Cox-Ross-Rubinstein model is introduced by Cox J. et al. in

their paper [7], which is a simple discrete-time model for valuing options. This

simple but powerful model is commonly used to clarify option pricing. In this

section, the binomial model is derived into matrix form.

Consider a share Sn defined by the geometric random walk

Sn = DnSn−1 = Dn (Dn−1 (· · · (D1S0)))

where Di ∈ {Du, Dd}. Let the initial value of this share be S0 = (s0, α) which

is the pair defined in 10.1.1. Let Dy be the derivation operator defined in

the same section and Dy (s0, α) = (s0y, 0). Suppose y takes two values u and

d with probability p and 1 − p respectively. Note that the operator Dy is

commutative. The first two steps of this geometric random walk are given

below.

S0

DuS0

DdS0

DuDuS0

DuDdS0

DdDdS0

t = 0 t = 1 t = 2
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Therefore, by Markov property the time 0 option price of the European call

option claim S1 is

OP (S1|0) = (1 + r)−1 [tr (DuS0) qu + tr (DdS0) qd] .

where r is the fix interest rate and tr (·) is the trace of the matrix. By the

no-arbitrage condition OP (S1|0) = s0, the Q-probability qu and qd are

qu =
1 + r − d
u− d

, qd = 1− qu.

Note that the Q-probability exists if d < 1 + r < u.

12.2 Cox-Ross-Rubinstein model via q-derivation

operator

In former section, the original Cox-Ross-Rubinstein model can be represented

into matrix form. The operator Di ∈ {Du, Dd} is commutative. It is inter-

esting to consider the situation of the non-commutative operator such as the

q-derivation operator.

Replace Dy by the q-derivation operator D. For any aforementioned particular

finite field Fpn the set of all pn − 1 possible q-derivation operator (q 6= 1)

along with multiplication forms a semigroupoid. This semigroupoid is non-

commutative by Lemma 9.2.1.

Take q-derivation operator D for F4 as an example. First let Dy ∈ {Da, D1+a}.

From preceding results,
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DaD1+a =


0 0

a 1 + a 1

a 1 + a 1

0 a 1 + a 1


, D1+aDa =


0 0

1 + a 1 a

1 + a 1 a

0 1 + a 1 a


and D3

y ≡ 0. Therefore this geometric random walk only has two meaningful

steps. Note that a is merely a symbol and can be replaced by any real number

in this model. Suppose y takes two values a and 1 + a with probability p1 and

1 − p1 respectively. Let the initial value of the share be s0 and S0 = s0 · I

where I is the identity matrix. The first two steps of this geometric random

walk are given below.

S0

DaS0

D1+aS0

DaDaS0

D1+aDaS0

DaD1+aS0

D1+aD1+aS0

t = 0 t = 1 t = 2

Let the weight matrix be ρ = (ρij) , 0 6 i, j 6 3, ρij = 0 if i 6= j and∑3
i=0 ρii ≡ 1 by default. Then, by Markov property the time 0 option price of

the European call option claim S1 is

OP (S1|0) = (1 + r)−1 s0 [tr (ρDa) q1 + tr (ρD1+a) (1− q1)]
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where r is the fix interest rate. To search the Q-probability, let OP (S1|0) = s0

by no-arbitrage condition. Therefore,

q1 =
1 + r − tr (ρD1+a)

tr (ρDa)− tr (ρD1+a)
.

Note that the q1 exists if

max {tr (ρD1+a) , tr (ρDa)} < 1 + r < min {tr (ρD1+a) , tr (ρDa)} .

The time 0 option price of option claim S2 is

OP (S2|0)

= (1 + r)−2 s0 [ tr
(
ρD2

a

)
q2

2 + (tr (ρD1+aDa) + tr (ρDaD1+a)) q2 (1− q2)

+tr
(
ρD2

1+a

)
(1− q2)2 ] .

By letting OP (S2|0) = s0, the Q-probability can be found by solving

0 = q2
2

[
tr
(
ρD2

a

)
− tr (ρD1+aDa)− tr (ρDaD1+a) + tr

(
ρD2

1+a

)]
+q2

[
tr (ρD1+aDa) + tr (ρDaD1+a)− 2tr

(
ρD2

1+a

)]
− (1 + r)2 + tr

(
ρD2

1+a

)
and discard the negative results according to the choice of a and ρ. If q2 exists,

q1 6= q2 in general.

Now take the q-derivation operator D0 for F4 into consider. This means Dy ∈

{D0, Da, D1+a} and D3
y 6≡ 0. This is a much more complicated case than

previous one. The Q-probabilities in calculating the option price of the share

Sn at different time spots are different since Dy is not commutative, which

makes the no-arbitrage condition more complicated as well.

181



Appendix

Ito multiplication table

The following Ito multiplication table has been used many times as known

condition through this article. The proof of this table is given here in this

section. Some clues of the proof can be found in Chapter 7 of ”A First Course

in Stochastic Processes” written by Samuel Karlin and Howard M.Taylor [23]

[24] and more details in [25].

dt dBt

dt 0 0
dBt 0 dt

The proof of the Ito multiplication table here is separated into two parts, which

are (dBt)
2 = dt and (dBt) (dt) = 0 respectively.

(1). (dBt)
2 = dt.

Proof.
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Let Bt be standard Brownian motion. For every fixed t > 0, it is sufficient to

show that

lim
n→∞

2n∑
k=1

[
B

(
k

2n
t

)
−B

(
k − 1

2n
t

)]2

= t.

Let ∆nk = B (kt/2n) − B ((k − 1) t/2n) , k = 1, 2, · · · , 2n and Xnk = ∆2
nk −

t/2n, k = 1, 2, · · · , 2n. Therefore, to show

2n∑
k=1

∆2
nk → t

is equivalent to show

2n∑
k=1

Xnk → 0.

For each n, it is clear that {Xnk : k = 1, 2, · · · , 2n} are independent, identically

distributed random variables, and

E [Xnk] = E
[
∆2
nk

]
− t

2n
= 0.

Then, the second moment is

E
[
X2
nk

]
= E

[(
∆2
nk −

t

2n

)2
]

= E

[
∆4
nk +

t2

4n
− 2t∆2

nk

2n

]
=

2t2

4n
.

Since E [XnkXnj] = 0 if j 6= k,
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E

{ 2n∑
k=1

Xnk

}2
 =

2n∑
k=1

E
[
X2
nk

]
= 2n

2t2

4n

=
2t2

2n
→ 0

as n → ∞. This immediately shows that
2n∑
k=1

Xnk converges to 0 in mean

square sense.

(2). (dBt) (dt) = 0.

Proof.

Since (dBt)
2 = dt has already been proved in former part, it can be seen that

(dBt) (dt) = (dBt)
3 .

Let Bt be standard Brownian motion. For every fixed t > 0, it is sufficient to

show that

lim
n→∞

2n∑
k=1

[
B

(
k

2n
t

)
−B

(
k − 1

2n
t

)]3

= 0.

Let ∆nk = B (kt/2n)− B ((k − 1) t/2n) , k = 1, 2, · · · , 2n and Xnk = ∆3
nk, k =

1, 2, · · · , 2n. For each n, it is clear that {Xnk : k = 1, 2, · · · , 2n} are indepen-

dent, identically distributed random variables, and

E [Xnk] = E
[
∆3
nk

]
= 0.

Then, the second moment is
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E
[
X2
nk

]
= E

[
∆6
nk

]
= 5 · 3 ·

(
t

2n

)3

=
15t3

23n
.

Since E [XnkXnj] = 0 if j 6= k,

E

{ 2n∑
k=1

Xnk

}2
 =

2n∑
k=1

E
[
X2
nk

]
= 2n

15t3

23n

=
15t3

4n
→ 0

as n → ∞. This immediately shows that
2n∑
k=1

Xnk converges to 0 in mean

square sense.
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