
EXPLICIT REPRESENTATIONS OF

PERIODIC SOLUTIONS OF NONLINEARLY

PARAMETERIZED ORDINARY

DIFFERENTIAL EQUATIONS AND THEIR

APPLICATIONS TO INVERSE PROBLEMS

Thesis submitted for the degree of

Doctor of Philosophy

at the

University of Leicester

by

Jehan Mohammed Al-Ameri

Department of Mathematics

University of Leicester

October 2018

http://www.le.ac.uk
http://www.le.ac.uk

Abstract
Developing mathematical models involves joining theory and experimental or ob-

servational data. The models often depend on parameters which are not always

known or measured. A major task in this process is therefore to determine param-

eters fitting empirical observations. In this work we consider the fundamental chal-

lenge of inferring parameters of systems of ordinary differential equations (ODEs)

from the values of their solutions and/or their continuous mappings. To achieve

this aim we developed a method for deriving computationally efficient representa-

tions of solutions of parametrized systems of ODEs. These representations depend

on parameters of the system explicitly, as quadratures of some known parametrized

computable functions. The method applies to systems featuring both linear and

nonlinear parametrization, and time-varying right-hand side; which opens possibil-

ities to invoke scalable parallel computations for numerical evaluation of solutions

for various parameter values.

In the core of the methods the idea is to use availability of parallel compu-

tational streams offered by modern computational technology and hardware, such

as GPUs. This, if used efficiently, drastically reduces the amount of time spent on

solving direct problems. This opens up new possibilities for dealing with inverse

problems by employing the methods that have not been possible to use to date

due to massive computational costs involved.

We illustrate our method with parameter estimation problems for classical

benchmark models of neuron cells, Hodgkin–Huxley and Morris–Lecar models.

These applications enable to assess potential computational advantage, of the

method relative to other procedures known in the literature; they also offer new

ways to more forward.

Acknowledgements

As I near the end of a long academic journey, I should like to thank all

those wonderful people who helped me along the way.

First, my supervisor Prof. Ivan Tyukin, who offered his invaluable expe-

rience. Thank you for your untiring patience and guidance at every stage of my

work! Then, Mrs. Tatiana Tyukina, without whose caring support I would never

have learnt Cuda programming!

My husband Akram Rodeen and my beautiful children Mohammed, Ismael

and Ibrahim were always there for me, with their unquestioning faith in me, and

their love!

I want to humbly, deeply express my thanks to all the members of my

family - my parents, Mohammed Khudhir and Sadiyah Hadi; sisters, Eman, Jenan,

Heba, Esraa and Soad; brothers, Asaad and Amjad, and my uncle, Miyah Rodeen.

They have always prayed for success in my life, and in my studies. I would to

acknowledge the kindness and guidance my brother Dr. Amjad Miyah Rodden

provided throughout my studies and my life.

I am also deeply grateful to my teachers at Basrah university - Mathematics

department: Ass.Prof. Basil Luqa, Ass.Prof. Abdul Nabi Ibrahim, Prof. Raad

Mahdi, Prof. Husam Luti and Dr. Ayad Raysan. They always encouraged and

supported me when I was an undergraduate student and when I was studying for

my Master’s. They have unceasingly been a source of wisdom, help and constancy,

right until this moment, as I am completing my Ph.D.

Big thanks to the Programme administrator of Mathematics department in

Leicester University, Miss. Charlotte Langley for her fast reply and help for any

enquiry I have.

I am also greatly indebted to my sponsor - the Ministry of Higher Education

in Iraq - for offering me this unique opportunity to study for a doctorate outside

Iraq.

I would like to thank Prof. Alexander Gorban and Prof. Jeremy Levesley

and everybody at Leicester university - Mathematics department. I would also to

thank all my colleagues in the UK and Iraq, without whom it would have been a

iii

hard and lonely time. They gave me so much - their companionship, their advice,

their suggestions, ideas, inspiration and endless good humour.

To all of you, the warmest thanks imaginable, and my sincerest apprecia-

tion of everything you have done for me!

Yours,

Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

Notations . 2
Abbreviations . 2
Glossary . 2

1 Introduction 3
1.1 Publications . 12

2 Numerical Methods for solving Non-linear Parametrized Sys-
tems Of Ordinary Differential Equations and Case Studies 13
2.1 Parameter Estimation for Ordinary Differential Equations 13
2.2 Shooting Methods . 14

2.2.1 Single Shooting Method . 14
2.2.2 Multiple Shooting Method 15

2.3 Derivative approximation method: B-spline Collocation Method . . 15
2.4 Sensitivity Functions . 19
2.5 Nelder-Mead Simplex algorithm . 21

2.5.1 Statement of the algorithm 22
2.6 Case Studies . 27

2.6.1 Hodgkin-Huxley model . 27
2.6.2 ECG System . 32

3 Explicit Parameter-dependent Representations of Periodic So-
lutions for a Class of Nonlinear Systems for Parameter Estimation 40
3.1 Identifiability of Mathematical Models 40
3.2 Problem Formulation . 43

3.2.1 System definition . 43
3.2.2 Problem statement . 46

v

Contents vi

3.3 Main Result . 49
3.3.1 Indistinguishable parametrizations of (3.11) and (3.10) . . . 49
3.3.2 Integral parametrization of periodic solutions of (3.10) . . . 52
3.3.3 Integral parametrization of periodic solutions of (3.11) . . . 55

3.4 Examples . 62
3.4.1 Predator-Prey system . 62
3.4.2 Hodgkin-Huxley system . 67
3.4.3 Morris-Lecar system . 71

4 Approximating periodic solutions of linear Integral Equations
Based on the RBFs 76
4.1 Scattered Data Approximation Problem 77
4.2 Radial Basis Function and Approximation Principle 78
4.3 K-Means Clustering Algorithm . 83
4.4 Parameter Inference with Approximated Variables of Linear Equa-

tions by The Radial Basis Approximation 84
4.5 Experimental Results of RBF Approximation 85

5 Conclusion, Discussion and Future Challenges 91
5.1 Conclusion . 91
5.2 Discussion and Future Challenges 92

Bibliography 104

List of Figures

1.1 (a) and (b) show physical variables of cell’s membrane and the mea-
sured membrane potential variable, respectively. (c) and (d) show
Moris–Lecar example and the behaviour of membrane potential at
some estimated values of parameters, respectively. 7

2.1 Nelder-Mead moves in two dimensions. 26
2.2 The six possible moves in the original Nelder-Mead algorithm are

shown in two dimensions. The original simplex is surrounded by
a black line, and its worst vertex sp+1 is labeled sw. The point sc
is the average (centroid) of the two best vertices. The blue figures
are Nelder-Mead simplices following refection, expansion, outside
contraction, inside contraction, and shrink, respectively, where sic
is the inside contraction vertex, sr is the reflection Point, soc is the
outside contraction vertex, se is the expansion vertex, sN is the
next worst vertex sp, ssh is the shrink vertex s and the best vertex
(lowest vertex) is labelled sL. 27

2.3 Voltage Change curves (Runge-Kutta method) at the nominal value
of parameters ϑ1, ϑ2, ϑ3 and ϑ4 (blue curve), and at the estimates
resulting from the single shooting method (red curve). 30

2.4 Voltage Change curves of Hodgkin Hukley Model (Runge–Kutta
method) at the nominal value of parameters ϑ1, ϑ2, ϑ3 and ϑ4 (blue
curve), and at the estimates resulting from the multiple shooting
method (red and grean curves). 31

2.5 Morphology of a mean PQRST-complex of electrocardiogram sig-
nals (ECG). 32

2.6 (x∗, y∗, z) trajectory generated by the dynamical model (2.33) in 3
dimensional space. 33

2.7 Voltage change curve of ECG Model (by Runge–Kutta method) at
the nominal value of parameters (blue curve) and at the estimates
resulting from the multiple shooting method (red curve). 35

2.8 Voltage change for ECG model (by Runge–Kutta method) at the
nominal values of the parameters aτ , bτ and θτ for τ = 1, 2, 3, 4, 5
and the coefficients γj, j = −1, 0, ..., 259 (blue curve), and at the
estimates resulting from the spline collocation method (red curve). . 37

3.1 Workflow of the direct and proposed appraches. 47

vii

List of Figures viii

3.2 Left panel: the values of y(t) = x(t; t0, (x0, z0), λ) and ŷ(λ̃, t) as
functions of t for λ = (p1, p2, · · · , p6) and initial conditions speci-
fied by (3.43). Black circles indicate starting and ending points of
the periodic trajectory y(t). The values of y(t) (blue curve) were
obtained by numerical integration of (3.42) by Runge Kutta of 4th
order method with integration step 0.001. The values of ŷ(λ̃, t)
(dashed red curve) have been computed from representation (3.50)
numerically by simple right-hand rectangular integration with the
same integration step. Right panel: the values of relative error,
e(t) = (ŷ(λ̃, t)− y(t))/‖y(t)‖∞,[t0,t0+∞] as a function of t. 64

3.3 Estimates and true values of p1, p2, p4, p5, p6. 65
3.4 T-periodic trajectories of y(t) (blue curve) and ŷ(λ, t) (dashed red

curve). 68
3.5 The values of relative error e(t) = (ŷ(λ, t) − y(t))/‖y‖∞,[t0,t0+∞]

as a function of t by the representations (3.24)(left panel) and
(3.39)(right panel). 71

3.6 Estimated (blue) and true (red) values of the parameters gK , gNa,
V1, V2, V3, V4, V5, V6. 71

3.7 T-periodic trajectories of y(t) (blue curve) and ŷ(λ, t) (dashed red
curve). 73

3.8 The values of relative error e(t) = (ŷ(λ, t) − y(t))/‖y‖∞,[t0,t0+∞]

as a function of t by the representations (3.24)(left panel) and
(3.39)(right panel). 74

3.9 Estimated(blue) and true(red) values of the parameters gK , gCa, V1,
V2, V3, V4, T0. 75

4.1 Example of RBF . 79
4.2 The data curve (blue) and the fitted curve (red) of q by the inter-

polation (4.16). 87
4.3 Histograms of the distributions of d(ν), ν = 1, · · · , 1000 (left panel),

and least square errors LS =
∑N

i=1(q(ti, λ)−Sq(ti, λ̂))2 (right panel)
prior to any estimation. 89

4.4 Histograms of the distributions of d1(ν), ν = 1, · · · , 1000 (left
panel) and LS =

∑N
i=1(q(ti, λ) − Sq(ti, λ̂))2 (right panel) after op-

timization. To see finer detail of the tails zoomed-in version of the
histograms are shown under the original ones, respectively. 89

4.5 Histogram of the distribution of the distances d2(ν), ν = 1, · · · , 1000
for the real and the estimated values of parameters gL, I and the
initial point x0. 90

1 Prefix sum on array of eight elements. 103

List of Tables

2.1 Estimated values of the initial condition v0 and the unknown param-
eters ϑ1, ϑ2, ϑ3 obtained using a Nelder–Mead–based single shooting
method starting with (v0, ϑ0); we put ε = 3 and ε = −40. We used
one node point and 2501 data points. The least square error is
3.503357e− 9 and the simplex size is 6.695736e− 11 obtained over
651 iterations. 30

2.2 Estimated values of the initial condition v0 and the unknown pa-
rameters ϑ1, ϑ2, ϑ3 obtained using a Nelder–Mead–based multiple
shooting method starting with (v0, ϑ0); we put ε = 1 and ε = 1.
We used 5 node points and 501 points in every segment. The least
square value is 2.952988e−10 and the simplex size is 8.885229e−11
obtained over 321 iterations. 31

2.3 Parameters of the ECG model. 34
2.4 Estimated values of the initial condition z0 and the unknown pa-

rameters aτ , bτ and θτ for τ = 1, 2, 3, 4, 5 obtained using a Nelder–
Mead–based multiple shooting method starting with (z0, ϑ0); we
put different values of ε for parameters and ε = 0.5. We used 6
node points and 44 points in every segment. The least square error
is 4.701174e− 9 and the simplex size is 9.806092e− 6 obtained over
4475 iterations. 35

2.5 Values of Bj and B′j. 36
2.6 Estimated values of the initial condition z0 and the unknown param-

eters aτ , bτ and θτ for τ = 1, 2, 3, 4, 5 obtained using a Nelder–Mead–
based shooting method starting with (z0, ϑ0); we put ε = 0.001 and
ε = 0.5. We used 6 node points and 44 points in every segment.

The least square error is
259∑
k=1

‖
261∑
j=1

γjBj(t
∗
k)− y(t∗k) ‖2= 0.208098. . . 38

3.1 True (first row), Initial (second row), and Estimated (third row)
parameter values of (3.45). 65

3.2 Time for 1000 evaluations of y. 66
3.3 True (first row) and Estimated (second row and third row) of λ and

θ, and the initial value x0 by the representations (3.24) and (3.39),
respectively. 69

3.4 Time and number of iterations on a standard PC in Matlab R2015a. 69
3.5 Time and number of iterations on GPU. 69

ix

List of Tables x

3.6 Initial (first row) and Estimated (second row) values of λ in the
above table by the representation (3.24). The estimated values of
θ, and the initial value x0 are in the below table. The least square
error at the estimates is 0.0009204794. 70

3.7 Initial (first row) and Estimated (second row) values of λ in the
above table by the representation (3.39). The estimated values of
θ, and the initial value x0 are in the below table. The least square
error at these estimated values is 0.01025706. 70

3.8 Time for 1000 evaluations of y . 71
3.9 Time and number of iterations on a standard PC in Matlab R2015a. 73
3.10 True (first row) and Estimated (second row and third row) of λ and

θ, and the initial value x0 by the representations (3.39) and (3.24),
respectively. 74

3.11 Time for 1000 evaluations of y . 75

4.1 Some commonly used radial basis functions. 80
4.2 The least square error LS =

∑N
i=1(q(ti, λ)−Sq(ti, λ)))2 and the con-

sumed time of RBFs interpolating for different number of samples
of parameters. 87

“Remember to look up to the stars and not down at your

feet. Try to make sense of what you see and wonder about

what makes the universe exist. Be curious. And however

difficult life may seem, there is always something you can

do and succeed at. It matters that you don’t give up.”

—Stephen Hawking

xi

Notation and Abbreviations

Notations

• Symbol R denotes the field of real numbers, and Rn stands for the n−dimensional

real space, Cr denotes the space of continuous functions that are at least r

times differentiable.

• ‖x‖ =
√∑n

i=1 |xi|2 is the Euclidean norm for x = col(x1, x2, · · · , xn) ∈ Rn.

• The notation | · | stands for the absolute value of a scalar.

• L∞,[t0,t0+T] denotes the space of all functions f : [t0, t0 + T]→ Rn such that

‖f‖∞,[t0,t0+T] = maxτ∈[t0,t0+T] ‖f(τ)‖ < ∞, and ‖f‖∞,[t0,t0+T] stands for the

L∞,[t0,t0+T] norm of f(·).

• ϑ ∈ Ωϑ ⊂ Rp denotes the unknown parameters of the system of ordinary

differential equations ẋ = f(t, x, ϑ).

• Solutions (if they exist) of the system of ordinary differential equations ẋ =

f(t, x, ϑ), where f : R× Rn × Rp → Rn, passing through the point x0 ∈ Rn

at t = t0 are denoted by x(t; t0, x0, ϑ).

• Suppose that we have a continuous functional π mapping a function y : R→

Rn to an element of R. We will refer to this functional as π([y]).

1

Chapter 1 Notation and Abbreviations 2

• The symbol In represents the identity matrix in Rn×n while the system 0p×1

represents the zero vector in Rp×1.

Abbreviations

ODEs Ordinary Differential Equations

NLP Non-Linear Programming Problem

BVP Boundary Value Problem

IVP Initial Value Problem

NM Nelder Mead Algorithm

INM Improved Nelder Mead Algorithm

RBFs Radial Basis Functions

CPU Central processing unit (standard computers).

GPU Graphics processing unit.

CUDA Programming parallel computing platform.

Chapter 1

Introduction

Many physical process are modelled by systems of linear or non-linear ordinary

differential equations (ODEs). These equations generally depend on parameters,

some of which have physical meaning. Ability to measure these parameters with

known accuracy is therefore a prerequisite for scientific discovery and progress.

Despite the substantial progress that has been made to date to improve our abil-

ity to measure physical variables which are relevant for more developments (for

instance [83], [20], [1], [101]), the challenge of measuring parameters remains open;

this is particularly true in areas such as cell physiology, high performance engi-

neering, and studies of complex chemical reactions. In these areas, measuring all

relevant quantities directly is either technically challenging (e.g. measuring pres-

sure at the tip of the drilling bores) or too invasive (isolation of individual currents

in neural membranes) [21]. In some cases, indirect observation for some variables

and physical quantities is possible, on the basis of knowledge of underlying physi-

cal and mathematical models (e.g. [30], [29]). Therefore, it is necessary to know

first if inference of their values is at all possible. If so then the challenge is to

estimate these parameters precisely. Variables unavailable for direct observation

may include the state and parameter values of the model. In the context of this

thesis, such models are defined as systems of ODEs of the first order:

ẋ = f(t, x, ϑ); x(t0) = x0 ∈ Rn

y = h(x)
(1.1)

3

Chapter 1 Introduction 4

In this system, x ∈ Rn denotes the state vector, ϑ ∈ Rp is the vector of unknown

parameters, x0 is the initial condition and f : R × Rn × Rp → R is a vector field

describing the dynamics of the system, y ∈ R is the “measured” quantity. The

“measurement” process is modelled by a continuous map h : Rn → R.

Without imposing any conditions on the function f the differential equation

(1.1) may not have a solution for all t ≥ t0, and the uniqueness of the solution of

the system is not guaranteed. The existence and uniqueness the solution of the

system can be guaranteed in D (open subset of R×Rn), however, by requiring that

the function f satisfies ‖f(t, x, ϑ)−f(t, x′, ϑ)‖ < LD‖x−x′‖ for all (t, x) and (t, x′)

∈ D ⊂ R×Rn and for some fixed LD ∈ R>0, known as the Lipschitz continuity on

the domain D. A sufficient condition for a function f to be Lipschitz is that the

Jacobian, ∂f/∂x, is uniformly bounded in t for all (t, x) in D [6]. Unless stated

otherwise we shall assume that these conditions hold.

Many strategies for addressing parameter estimation problems in this sim-

ilar setting have been developed to date, including but not limited to shooting

methods [14], sensitivity functions [8], splines [116] and adaptive observers [10],

[75], [12], [31], [108], [106] (see also [65], [100] for system-identification take on the

problem). All these methods involve fitting of modelled trajectories or variables

to empirical data. However, such methods are often difficult to apply in practice

because of various specific issues; examples of these issues include but are not lim-

ited to the necessity to access derivatives of x, general nonlinear parametrization,

slow convergence, ill-conditioned problems, etc.

State and parameter estimation of linear and nonlinear systems has been an

active research topic for many decades [64, 71, 72, 115, 50]. In the case of system

parameters being unknown, an effective method is the utilisation of an adaptive

observer1 for simultaneous estimation of states and parameters. Consequently,

over the last decades, a very active and extensive research area into the design of

adaptive observers has arisen. In general, adaptive observers have two tasks to

perform: a) to provide an estimation of the initial values of state variables and b)

1An observer is an auxilary system of differential equations ˙̂x = f̃(t, x̂); x̂(t0) = x̂0 ∈ Rn
whose outputs are the estimates of the state variables of the system as in (1.1). These outputs
must converge to x(·; t0, x0) in forward time. In a special case, when these outputs coincide with
x̂, the latter condition can be formalized lim

t→∞
(x(t; t0, x0)− x̂(t; t0, x̂0)) = 0.

Chapter 1 Introduction 5

at the same time to provide an estimation of the unknown (constant) parameters.

The use of such observers is especially significant in applications of a challenging

nature, i.e. adaptive control and fault detection and isolation (see for instance [4]

and [118]). The seminal contributions in adaptive observer design (see for instance

[70] and [60]) have largely focused on linear time-invariant systems. Investigations

into linear time varying systems have recently been carried out within deterministic

and stochastic contexts [118], [88]. A variety of approaches have been employed

to regarding the design of adaptive observers for nonlinear systems.

A large proportion of recent developments in the field of adaptive observers

concerns a dynamic transformation of the original system into an observer canon-

ical form [75, 76, 77, 74]. In [75] the author demonstrated that adaptive observer

can be applied to solve a class of single-output nonlinear systems which are lin-

ear with respect to an unknown constant parameter vector. He proposed a simple

adaptive observer that achieves convergence of the state estimate without requiring

for persistent excitation (PE)2 of the state variables explicitly. A filtered nonlinear

transformation, namely a transformation that depends upon the unknown parame-

ters to enlarge the class of nonlinear systems that can be turned into the adaptive

observer form, has been given in [76]. It showed that any system in a (global)

observer canonical form can be put into a (global) adaptive observer form, thus

admits which is the so called Marino-Tomei observer. Another adaptive observer

was proposed in [77] with the presentation of an arbitrary fast exponential rate

of convergence for both parameters and state estimates. [74] presented robust

adaptive observers for a class of nonlinear systems, subject to a number of suffi-

cient conditions for a state estimate to converge asymptotically. Primarily, major

body of work on adaptive nonlinear observer design has been focused on systems

with linear parametrizations(see i.g. [55], [70], [102]); some results on nolinear

parametrized systems can be found in [31, 66, 59, 58, 99, 108, 113].

Notwithstanding the progress, we first note that all these works (including

the current thesis) are based on several fundamental assumptions: about models

and their parameters. True values of model parameters are the ones that are
2Recall that a function Θ : R → Rι is PE if there exist L, δ > 0 such that∫ t+L

t
Θ(τ) ΘT (τ)dτ > δIι for all t [67]. In this definition, the notation

∫ t+L
t

Θ(τ) ΘT (τ)dτ > δIι

is to be understood that the matrix
∫ t+L
t

Θ(τ) ΘT (τ)dτ − δIι is positive-definite.

Chapter 1 Introduction 6

supposed to reflect relevant physical meaning or properties of the phenomenon

captured by the model. These parameters can be given by experts or otherwise

chosen. We do not like to question these choices here. We assume that they

exist and are defined somehow. We also assume that, for these true parameter

values, the model behaviour and the data match each other in some metrics. For

example, measured data, if represented by a continuous function, is close to model

trajectories in L∞ or L2 norm on some domain of relevance. These two assumptions

form the basis on our subsequent mathematical problem statement.

Consider an example of modelling steps illustrating these assumptions for

the problem of parameter estimation. The diagram (a) in Figure 1.1 shows a basic

phenomenological prescription of how currents propagate through a patch of the

cell’s membrane where there is number of voltage-dependent channels, such as for

Ca, Na and K depicted in the figure. Recording currents through a single channel

in the membrane is not always possible [106]. Thus they must be estimated from

available measurements, such as the membrane potentials represented in Figure

1.1 (b). This figure represents the membrane potential of the neuron at time t

for relevant true values of parameters; it exhibits oscillations to mimic the spiking

behaviour. We consider Morris–Lecar system in (c) as a simple example of a

mathematical model of neuron cells. Parameters of this model are not linked

directly to kinetic parameters of the ion pumps. These parameters do, however,

represent the pumps functionally. In this respect, there is a demand for robust

methods to estimate parameters from data, even when these parameters are not

“physical” variables or quantities. These parameters do, however, translate into

physically meaningful behaviour as is shown in (d).

Modelling behaviour of such parametrized problems requires tools for ob-

taining accurate numerical solutions of systems of ordinary differential equations.

Here we are dealing with uncertain systems in which the parameters in the right-

hand side of the corresponding differential equations enter the equations nonlin-

early. These are needed for both direct and inverse problems.

This problem alone, i.e. nonlinear parametrization, presents a major the-

oretical and practical issue. Despite this area has seen significant progress to

Chapter 1 Introduction 7

Figure 1.1: (a) and (b) show physical variables of cell’s membrane and the
measured membrane potential variable, respectively. (c) and (d) show Moris–
Lecar example and the behaviour of membrane potential at some estimated

values of parameters, respectively.

date ([108], [21], [5], [63], [31], etc), the existing solutions typically assume mono-

tonicity of nonlinearities or their application is limited to functions in which the

nonlinearity is “low-dimensional” (see i.e. [107] for more details on this partic-

ular approach and interpretation). Alternative yet popular approaches, such as

swarm optimization [97], genetic algorithms [114] often lack sufficient mathemat-

ical rigor; sensitivity functions [42] are local and computationally expensive. All

these methods, additionally require efficient solvers of the direct problem.

Chapter 1 Introduction 8

The main focus and motivation of my thesis are standing on the following

hierarchical lines of inquiries:

Q1 - How can we efficiently estimate unknown parameters and state variables of

nonlinear systems of ODEs (1.1) with nonlinearly parametrized so that the

measured output of the model matches the data?

Q2 - How do we know that the estimate ϑ̂ of ϑ is closed enough to the unknown

ϑ in some sense?

Q3 - How to employ scalable parallel computations for numerical evaluations of

the representations solutions of nonlinear systems to make the calculations

faster?

We attempt to answer all these inquiries in this thesis.

The approach we took can be expressed as “what if” scenario. If solutions

of system of nonlinear ODEs would be known, as explicit and easily computable

functions of parameters and initial conditions, then the problem would be reduced

to standard nonlinear programming problems (NLP) with known cost functions.

Finding a solution of a system of ODEs is often understood as determining a finite

sum of elementary functions which satisfies the given ODE systems and initial

conditions. This process involves integration of a given function (as is example

the case for separable variables equations).

In the 19th century Liouville stated and proved an influential theorem which

roughly states that if the integral of an elementary function is elementary, then it

can be expressed using only functions that appear in the integrand and a linear

combination of logarithms of such functions [103]. This theorem is now known as

Liouville’s theorem; its statement is presented bellow:

Theorem 1.1. (Liouville)[56] If y and z are algebraic functions of x whose deriva-

tives, dy
dx
, dz
dx
, are each algebraic functions of x,y and z, and if P is an algebraic

function of x,y and z such that
∫
Pdx is a finite function, then

∫
Pdx = a+ A log b+B log c+ · · ·+D log d, (1.2)

Chapter 1 Introduction 9

where A,B, · · · , D are constants, and a, b, c, · · · , d are algebraic functions of x,y

and z.

An algebraic function y = f(x1, x2, · · · , xn) can be defined as the root of

an (n+ 1) polynomial equation P(x1, x2, · · · , xn, y) = 0; its values are determined

by the values of n independent variables, x1, x2, · · · , xn. Algebraic functions are

algebraic expressions with a finite number of terms, involving only the algebraic op-

erations addition, subtraction, multiplication, division, and raising to a fractional

power. The equation P = 0 can be solved explicitly for y, but y is an algebraic

function of the other quantities in the equation; examples of these quantities are

(which we focus on in this thesis) parameters and initial points. We show some

examples to what Liouville calls a finite function, and what we now call an elemen-

tary function. Liouville showed that some integrals can be expressed as finite sum

of elementary functions, for example,
∫
ex

2
ydx if y is an algebraic function in x.

This, however, is impossible if the integrand P is not merely algebraic but rational

in x,y, for example, ex2y/x and sinxy/(1 + x2) (further details can be found in

[56]). During the rest of 19th and through the 20th centuries some developments

were made on Liouville’s theorem, such as [47], [92], [95], [93], [94]. Some of them

provided algorithms for integrating functions. These, however, require multiple

substitutions and can lead to large systems of equations to be solved symbolically.

Additionally, other computational difficulties may arise as is exemplified in [95].

Despite of the “prohibitively” looking statement of the Liouville’s theorem

and its other developments over many years we have seen significant technological

progress that radically effects our computational capability. We may not be able

to write the solutions down but we can estimate them numerically. Parallel and

cheap computing create unprecedented opportunities to speed up the calculations;

seizing on this opportunities is the focus of this work. The advanced programming

parallel computing platform and programming model developed by NVIDIA for

general computing on graphical processing units (GPUs). With CUDA, developers

are able to dramatically speed up computing applications by harnessing the power

of GPUs.

The aim of this thesis is to produce efficient derivation of solutions of sys-

tem of ordinary differential equations, including linear and nonlinear equations.

Chapter 1 Introduction 10

The long-standing challenge relates to methods for representing the solution of

such systems as integrals of known functions. This contrasts with Liouville’s am-

bition to find finite-sum representation of solutions. But nevertheless, it is a step

forward from numerical methods perspective. The motivation is to use the adap-

tive observer design to create our representations under the periodicity condition.

Different representations of periodic solutions of such systems of nonlinear ordi-

nary differential equations are suggested (see published papers [107] and [82]).

We demonstrate that these methods are faster, if run on parallel computational

streams, than similar-accuracy conventional iterative numerical routines. Further-

more, with the use of Radial Basis functions, we were able to offer next avenues

for further improvements. We also show that our adaptive algorithm operates well

from the point of view of accuracy, contrasting with estimator methods such as

the shooting methods discussed in Chapter 2 regarding estimating the initial con-

ditions of the state variables of ODE systems. Moreover, we show that the RBF

approximations can be employed to numerically solve this problem efficiently (de-

tails of numerical simulations are given in Chapter 4). For this sort of problems,

we did not aim at achieving the best possible accuracy of estimation. Instead, the

aim was to demonstrate feasibility.

The thesis is organised as follows. In Chapter 2, we consider the numerical

methods, single and multiple shooting methods, and illustrate their applications

for solving relevant practical problems. These applications are considered for two

biological models, Hodgkin–Huxley and ECG models. In Chapter 3 we proposed

two different representations of periodic solution of systems of ODEs and explained

in details. The first representation was published in [107], and the second one is

presented in IFAC 2017 world Congress and published in [82]. These represen-

tations contrast with all the foregoing methods of observation. They allow for

the reconstruction of parameters entering the model nonlinearly. In certain cir-

cumstances, these methods encompass not only parameters entering the model

nonlinearly but also state variables. A higher computational cost will be involved,

however, as constant computational re-evaluation of certain integrals is required

as the exploration proceeds. In Section 3.4 the efficiency of the representations

in solving systems of ODEs is illustrated in detail with the Hodgkin–Huxley and

Chapter 1 Introduction 11

Morris–Licar models. Results of the estimation for both observers are presented

and compared. To show how the methods speed up the calculations, we imple-

mented these methods by CUDA on GPU. In Chapter 4 we present an approach

how Gaussian radial basis functions can be used to approximate some integrals in

the final formulae.

Chapter 1 Introduction 12

1.1 Publications

The contribution of this research has been disseminated in the following papers:

1. Mohammed, J. A. and Tyukin, I. (2017). Explicit parameter-dependent

representations of periodic solutions for a class of nonlinear systems. IFAC-

PapersOnLine, 50(1):4001–4007.

2. Tyukin, I. Y., Gorban, A., Tyukina, T., Al-Ameri, J., and Korablev, Y.

A. (2016). Fast sampling of evolving systems with periodic trajectories.

Mathematical Modelling of Natural Phenomena, 11(4):73–88.

3. Adebayo, D., Al-Ameri, J., Tyukin, I., & Rona, A. (2018). Linear stability

analysis of the flow between rotating cylinders of wide gap. European Journal

of Mechanics-B/Fluids, 72, 567-575.

4. Tyukin, I. Y., Al-Ameri, J. M., Gorban, A. N., Levesley, J., & Terekhov,

V. A. (2018, June). Fast Numerical Evaluation of Periodic Solutions for a

Class of Nonlinear Systems and Its Applications for Parameter Estimation

Problems. In International Conference on Optimization Problems and Their

Applications (pp. 137-151). Springer, Cham.

Chapter 2

Numerical Methods for solving Non-linear

Parametrized Systems Of Ordinary

Differential Equations and Case Studies

2.1 Parameter Estimation for Ordinary Differen-

tial Equations

Consider a system of first-order ordinary differential equations:

ẋ = f(t, x, ϑ); x(t0) = x0 ∈ Rn

y = x1,
(2.1)

where x is the state variable, y is the output variable, f is a nonlinear function

of the vector of model parameters ϑ, state variable x. It is assumed that f is

Lipschitz in x, and continuous in ϑ and t, so that (2.1) has an unique solution.

The parameterized system can be represented in the extended form:

ẋ = f(t, x, ϑ); x(t0) = x0 ∈ Rn

ϑ̇ = 0p

y = x1.

(2.2)

where 0p is a p×1 zero vector. The objective is to find a set of parameter estimates,

ϑ̂, given one measurement of the response outputs at the time t ∈ [t0, t0 + T], y =

x1(t), so that the output predicted by the model within the estimated parameters,

13

Chapter 2 Parameter Estimation Methods 14

ϑ̂, is as close as possible to the true process response.

A common approach for determining ϑ̂ [78] is the so called Nonlinear Least-

Squares (NLS) method in which the sum of squared deviations of the model pre-

dictions from the measured output is minimized:

ϑ̂ = argmin
ϑ
{
N∑
i=1

(y(ti)− ŷ(ti, ϑ))2}

subject to

ẋ = f(t, x, ϑ); x(t0) = x0 ∈ Rn

ϑ̇ = 0p

y = x1

(2.3)

for some given N ∈ Z+. The sum could be replaced with an integral.

In NLS a nonlinear minimization technique is employed along with an ODE

solver to find the optimal set of parameter estimates [90, 62, 37]. Popular sets of

these methods are single and multiple shooting methods [43], sensitivity functions

[7], and spline collocation methods [116].

We will briefly review these methods and give examples for some of them

to illustrate difficulties that these methods may lead to.

2.2 Shooting Methods

2.2.1 Single Shooting Method

Single shooting methods are utilized to solve (2.1). In the single shooting method,

we first use initial guesses for ϑ0 and x0 to numerically solve the initial value prob-

lem (forward problem) using single- or multi-step methods such as Runge Kutta

methods [51, 18]. The least square error in (2.3) is computed as the next step,

and then new values for ϑ0 and x0 can be found, depending on the optimization

strategy, for example, gradient-based strategies such as Gauss-Newton methods

or direct search approaches such as the Nelder-Mead Method which we will be

explained in detail in section 2.5. This process continues until we find ϑ̂ and x̂0

which are expected to be within the same neighbourhood of optimal values, with

Chapter 2 Parameter Estimation Methods 15

a pre-defined optimality tolerance (alternatively, they could be local minima). In

practice, we never know the values, and hence some indirect stopping rules are

used: errors between y(·, ϑ) and ŷ(·, ϑ̂) are small enough.

There could, however, be some issues with single shooting method. For

example, the error may be large, the convergence can be quite slow, in addition

to that the boundary value problem might be unstable, even when it is well-

conditioned [119]. A solution of the initial value problem may not exist over the

whole interval for a given ϑ0 and x0 . Resolving these disadvantages of the single

shooting method can be carried out by utilising what is known as the multiple

shooting method.

2.2.2 Multiple Shooting Method

Multiple shooting method divides the relevant time interval [t0, t0 + T] for the

model into K smaller subintervals, introduces K shooting nodes, x0(tκ), κ =

0, 1, · · · , K − 1 for each subinterval, and solve the individual initial value problem

(2.2) on each subinterval using single- or multi-step methods such as Runge–Kutta

methods. As this method reformulates the problem as a constrained optimization

(2.3) for every subinterval, it is more robust in comparison with the single shooting

method because it matches many segments which decreases the error of fitting

the nodes of the segments. However, there may be difficulties in finding initial

guesses of x(tκ) for every segment. In practice, the last point in every segment is

considered as a starting point in the following segment, except the first segment.

The dimension of the space in which a direct search is performed, and a number

of unknown variables are significant factors affecting performance of single and

multiple shooting methods.

2.3 Derivative approximation method: B-spline Col-

location Method

In the spline collocation method, the state trajectories are approximated by piece-

wise polynomial functions, where coefficients γj and a set of basis functions Bj

Chapter 2 Parameter Estimation Methods 16

can be found to represent the solution globally for j = 0, 1, ..., Nt. Optimiza-

tion problem (2.3) is formulated, so that its solutions are the coefficients γj for

j = 0, 1, ..., Nt. Additionally, forcing the piecewise polynomial to satisfy the or-

dinary differential equations model at certain specified points, termed collocation

points [3], determines constraints on the polynomial coefficients as well as the

unknown parameters. There are many types of spline collocation methods exists,

including the B-spline collocation, which may be linear, quadratic, cubic according

to the given equation, orthogonal and others.

Numerical integration is used to represent the solution globally with a set of

convenient basis functions Bj(t), j = 1, 2, ..., Nt defined over the domain [t0, t0 +T]

with nodes tj, j = 0, 1, ..., Nt. The design of these functions, termed B-spline

functions, is to facilitate generalisation of polynomials for the approximation of

a variety of functions. Subsequently, the collocation constraints at finite set of

nodes, tj, which reside on the Cartesian abscissa axis, should be satisfied by the

said approximated solution.

We start to define the B-spline base functions for using in the solution

procedure of Equation (2.1). Four additional nodes t−2,t−1,tNt+1 and tNt+2 are

introduced such that t−2 < t−1 < t0 and tNt < tNt+1 < tNt+2. The B-splines Bi(t),

i = −1, 0, 1, ..., Nt + 1, at the nodes tj are described over the interval [t0, t0 +T] as

Bj(t) =
1

6h3



(t− tj−2)3 tj−2 < t ≤ tj−1

h3 + 3h2(t− tj−1) + 3h(t− tj−1)2 − 3(t− tj−1)3 tj−1 ≤ t ≤ tj

h3 + 3h2(tj+1 − t) + 3h(tj+1 − t)2 − 3(tj+1 − t)3 tj ≤ t ≤ tj+1

(tj+2 − t)3 tj+1 ≤ t < tj+2

0 otherwise
(2.4)

where h = T/Nt is the spacing between the nodes tj.

A basis is generated for the functions defined over [t0, t0 + T] by the set of

B-splines

{B−1(t), B0(t), B1(t), · · · , BNt+1(t)}. (2.5)

Chapter 2 Parameter Estimation Methods 17

Thus, we can write an approximation solution U(t) in terms of the cubic B-splines

trial functions as:

U(t) =
Nt+1∑
j=−1

γjBj(t). (2.6)

From (2.4) we observe that for t−1 < t < tNt+2 in equation (2.6) reduces to

U(t) = γj−1Bj−1(t) + γjBj(t) + γj+1Bj+1(t) + γj+2Bj+2(t), j = 0, 1, ..., Nt. (2.7)

Furthermore, evaluating at the nodes tj, we have

U(tj) = γj−1Bj−1(tj) + γjBj(tj) + γj+1Bj+1(tj)

= 1
6
γj−1 + 2

3
γj + 1

6
γj+1, j = 0, 1, ..., Nt.

(2.8)

This can be written in matrix form as

U(t−1)

U(t0)

U(t1)
...

U(tNt)

U(tNt+1)


=

1

6



4 1 0 · · · 0

1 4 1 · · · 0

0 1 4 · · · 0
...

...
...

...
...

0 · · · 1 4 1

0 · · · 0 1 4





γ−1

γ0

γ1

...

γNt

γNt+1


, (2.9)

where U(t−1) and U(tNt+1) are auxiliary values used purely to give a well deter-

mined system, which determines the behaviour of U at the boundaries and can,

for instance, be chosen to set the second derivative of U at the boundaries to 0

(a so-called natural cubic B-spline). The matrix in (2.9) is explicitly invertible.

This shows that we can either parametrize the spline U(t) using the coefficients

γj, or using its value at the nodes points U(t0), U(t1), · · · , U(tNt). This makes it

straightforward to obtain a spline that interpolates a given set of points.

The Bj are piece-wise polynomials and hence using equation (2.6), we can

easily differentiate U and substitute the derivative into equation (2.1), then have

the following equation:

Nt+1∑
j=−1

γj
dBj(t)

dt
= f(t,

Nt+1∑
j=−1

γjBj(t), ϑ). (2.10)

Chapter 2 Parameter Estimation Methods 18

We can choose a finite number of so-called collocation points ti, i = 0, 1, · · · , N in

the interval [t0, t0 + T] and require (2.10) to hold at these points.

Note that U , as solution of (2.2) depends on x0, ϑ and t0. If Bj are fixed

for all j = 1, 2, · · · , N , then the only way such dependence can be accounted for

x0, ϑ and t0 through the coefficients γj. This implies that in Equation (2.10) γj

depends on the values of x0, ϑ and t0.

The derivatives dBj(t)

dt
can be easily computed for the given set of basis

functions and collocation points, so that equation (2.10) represents a system of

algebraic equations for γ = {γ0, γ1, · · · , γNt}, or for the values U(t0), U(t1), · · · ,

U(tNt) via equation (2.9). We note that the way equation (2.10) was constructed

is independent of the particular choice of spline, or indeed other basis functions.

Given an appropriate choice of splines and collocation points, the system

(2.10) is well determined and can be solved to yield the coefficients of the approx-

imate solution of the differential equation.

In the case of parameter fitting, the minimization of the error which has to

be carried out simultaneously with the solution of equation (2.10) and is defined

as follow:

E(γ) =
N∑
i=1

(y(ti)−
Nt+1∑
j=−1

γjBj(ti))
2. (2.11)

Hence, we have the following optimization problem:

min
(γ)

E(γ)

subject to
Nt+1∑
j=−1

γj
dBj(t)

dt
= f(t,

Nt+1∑
j=−1

γjBj(t), ϑ).

(2.12)

Necessary optimality tests for (2.12) follow Karush-Kuhn-Tucker (KKT)

conditions [110]. In practice, however, solving (2.12) can be achieved via using

e.g. the penalty functions approach [16] followed by the application of the Nelder–

Mead algorithm for solving the resulted unconstrained optimization problem.

In order to solve the optimization problem initial guesses for γ and ϑ should

be introduced.

Chapter 2 Parameter Estimation Methods 19

2.4 Sensitivity Functions

Sensitivity functions [7] are used in mathematical modelling to investigate varia-

tions in the output of a model resulting from variations in the parameters and the

initial conditions. For the purpose of quantifying the variation in the state variable

x(t) relating to changes in the parameter ϑ and the initial condition x(t0), as a

natural consequence consideration must be given to sensitivity functions defined

by the derivatives

Υϑi(t) =
∂x

∂ϑi
(t), i = 1, · · · , p

and

Υx0l(t) =
∂x

∂x0l

(t), l = 1, · · · , n,

where x0l is the l−th component of the initial condition x0. If the function f of

system (1.1) is sufficiently regular, the solution x is differentiable with respect to

ϑi and x0l, and therefore the sensitivity functions Υϑi and Υϑi are well defined.

From the sensitivity analysis theory for dynamical systems, one finds that

Υ1 = (Υϑ1 , · · · ,Υϑp) is an n× p vector function that satisfies the ODE system

Υ̇1(t) = fx(t, x(t), ϑ)Υ1(t) + fϑ(t, x(t), ϑ)

Υ1(t0) = 0n×p.
(2.13)

Here fx = ∂f
∂x
, fϑ = ∂f

∂ϑ
are the derivatives of f with respect to x and ϑ, respectively.

In a similar manner, the sensitivity functions with respect to the components of

the initial condition x0 define an n × n vector function Υ2 = (Υx01 , · · · ,Υx0n),

which satisfies
Υ̇2(t) = fx(t, x(t), ϑ)Υ2(t)

Υ2(t0) = In×n.
(2.14)

The equations (2.13) and (2.14) are used in conjunction with equation (1.1) to nu-

merically compute the sensitivities Υ1 and Υ2 for general cases when the function f

is sufficiently complicated to prohibit a closed form solution by direct integration.

Determining Υ1, Υ2 requires solutions of (2.13), (2.14). In general, these

are not available analytically but numerical integrates are used to derive Υ1, Υ2.

To define a cost function and perform an optimization problem, data y is

Chapter 2 Parameter Estimation Methods 20

produced by evaluating the numerical solution of (2.1) with the actual value of

parameters ϑ at ti, i = 0, 1, · · · , N . Hence, we consider an efficient optimiza-

tion algorithm, such as Nelder–Mead and Newton methods, to minimize the cost

function
N∑
i=1

(y(ti)− ŷ(ti, ϑ̂))2 (2.15)

with respect to ϑ and using an initial guess ϑ0 for the optimization algorithm,

where ŷ(ti, ϑ̂) = x1(t; t0, x0, ϑ̂).

There are various uses for sensitivity information, such us in gradient-based

optimization. Using such efficient method, gradient-based optimization, that ac-

curately calculate sensitivities is extremely important. However, the calculation

of gradients is often the most costly step in the optimization cycle, ; it is not

efficient method for solving complex problems with a large number of variables

and parameters, since it requires, however, to solve large number of equations,

(n × n) + (n × p). For example, if we consider the Hodgkin–Huxley system of 4

variables and 23 parameters, then this requires to solve (4×4)+(4×23) equations

in every step of estimation.

This method is not practicable in all real-time applications. In order to

alter the unknown parameters a root finding method is used to set the sensitivity

(derivative of the cost with respect to the parameters) to zero, allowing the de-

termination of the effectiveness and rapidity of convergence for this method. For

instance, in order to employ a steepest descent method [40] toward the minimum

cost function it requires to determine an appropriate step size to alter the pa-

rameters with respect to computed gradients. Using Newton method [111] might

achieve a more rapid convergence rate. Although it is a more robust method,

the calculation of the Hessian (second vector derivative) of the cost function is

required. So, the second derivative of the system regarding the parameters of in-

terest is necessary. However, utilising the subsequent operation, as can be seen

in the next derivation, would increase the computational cost of using such an

algorithm significantly.

Several methods are similar in their behaviour to with either the method

of steepest descent or first order methods of feasible directions, with slow con-

vergence when faced with relatively ill-conditioned problems. Approaches for the

Chapter 2 Parameter Estimation Methods 21

solution of non-differentiable problems need to be taken into consideration, and

the purpose of this thesis is to consider a method the implementation of which

is not complex, being quite broad in its scope, and reliant on a philosophy which

diverges completely from those underlying methods already available. To be able

to solve optimization problems with non-differentiable cost functional, particularly

minimum problems, practical methods and approaches, such as the Nelder–Mead

algorithm, are currently undergoing development. It is this algorithm, then, that

will constitute a practical direct search method in all the examples of the works

of this thesis.

2.5 Nelder-Mead Simplex algorithm

The Nelder-Mead is one of the derivatives-free known multidimensional uncon-

strained optimization methods, proposed by Nelder and Mead in 1965 [86]. De-

spite it has been proposed more than fifty years ago, it is still the method of

choice in applications because it is easy to code and to use. Note though that its

convergence is still an open question [46]. It belongs to a class of methods which

do not require derivatives and which are often claimed to be robust for problems

with discontinuities or where the function values are noisy [91]. This method can

be tried for problems with non-smooth functions since no derivative information

is required. It is used in cases when the function values are uncertain or subjected

to noise [2]. The goal of the Nelder and Mead algorithm is to solve the following

unconstrained optimization problem:

min
s
F (s),

where s ∈ Rp, p is the number of unknown parameters and F : Rp −→ R is the

objective function.

This algorithm is based on the iterative update of a simplex made of p+ 1

points, {s1, s2, ..., sp+1}, as explained in the following definition:

Definition 2.5.1 (Simplex). [11]: A simplex S in Rm is the convex hull of all p+ 1

vertices, that is, a simplex S = {sJ}p+1
J=1 is defined by its p+ 1 vertices sJ ∈ Rp for

J = 1, 2, ..., p+ 1.

Chapter 2 Parameter Estimation Methods 22

Each point in the simplex is called a vertex and is associated with a func-

tion value F (s) for all s point. If we consider the dimension p, the number of

unknown parameters that need estimation, the (p+ 1) vertices will arise. In each

evolution the simplex may move, expand or shrink or contract. When all the

vertices finally converge to a single point, the stopping criterion is satisfied. The

number of variables of the system of equations affects the accuracy in finding the

minimum point. It has been stipulated that there is relationship between the di-

mension of the algorithm and the mean number of the evaluations for convergence

[61]. The major drawback of Nelder–Mead simplex method is that it does not

define its moving directions well enough by simple geometrical movements in high

dimensional cases. This explains why Nelder–Mead method is a simple and fast

algorithm but is not stable in optimizing multi-dimensional problems. To illus-

trate this problem in this algorithm we will consider two different high dimensional

parameter estimation problems in examples.

2.5.1 Statement of the algorithm

The Nelder–Mead algorithm uses four scalar parameters, the coefficient of re-

flection α, expansion β, contraction γ and shrinkage σ. When the expansion or

contraction steps are performed, the shape and the size of the simplex is changed.

These parameters should satisfy the following inequalities [11]:

α > 0, β > 1, β > α, 0 < γ < 1 and 0 < σ < 1.

The standard choices for these parameters are:

α = 1, β = 2, γ = 0.5 and σ = 0.5. (2.16)

Fuchang Gao and Lixing Han [38] proposed to choose the expansion, contraction,

and shrinkage parameters adaptively according to the problem dimension M to

reduce the use of reflection steps for uniformly convex functions in high dimensional

space. These parameters are chosen for large p in the following form:

α = 1, β = 1 + 2/p, γ = 0.75− 1/2p and σ = 1− 1/p. (2.17)

Chapter 2 Parameter Estimation Methods 23

The new β can help prevent the simplex from bad distortion caused by expansion

steps in high dimensions, using the new γ instead of 0.5 can alleviate the reduction

of the simplex diameter when p is large and the purpose for using the new σ instead

of 0.5 is to prevent the simplex diameter from sharp reduction when p is large.

At the beginning of the first iteration we guess the initial point s0 as a point in

Rp and then find the other p simplex vertices by using the following parameters

P,Q > 0 [11, 104]:

Ps = (
√

(p+ 1) + p− 1)/(p
√

2)

Qs = (
√

(p+ 1)− 1)/(p
√

2).
(2.18)

The first vertex of the simplex is the initial guess and the other vertex coordinates

are subsequently defined depending on the length of all the edges of the simplex

shape. Spendley, Hext and Himsworth [11] use a regular simplex by supposing

that all the edges of the simplex shape have the same length ` > 0 which keeps

the shape regular. So the other vertices are defined by:

sJ(j) = s0(j) +

 `Ps j = J − 1

`Qs j 6= J − 1
(2.19)

where J = 2, 3, ..., p+1 and j = 1, 2, ..., p. Then we have p+1 vertices s1, s2, ..., sp+1

and every vertex is a vector of the order p. On the other hand, the axis-by-axis

simplex explained in [11] does not depend on the parameters Ps, Qs but it supposes

that the edges of the simplex have different length and the other vertices are defined

by:

sJ(j) =

 s0(j) + `j j = J − 1

s0(j) j 6= J − 1
(2.20)

for J = 2, 3, ..., p + 1 and j = 1, 2, ..., p. For example, for a problem in two-

dimensional design space equations (2.18) and (2.19) or (2.20) lead to an equilateral

triangle of side `. After defining all the vertices s1, s2, ..., sp+1 we can start using

the algorithm where these vertices are changed by the following different steps:

1. Order: The vertices are sorted by increasing function values so that the

best vertex has index 1 and the worst vertex has index p+ 1 as follow:

F (s1) ≤ F (s2) ≤ · · · ≤ F (sp+1).

Chapter 2 Parameter Estimation Methods 24

The s1 vertex is called the best vertex because it is associated with the low-

est function value F (s1) while the worst point sp+1 is associated with the

highest function value F (sp+1).

2. Centroid: Define sc centroid of the p best vertices except the worst vertex

sp+1 , which has the maximum value of F , by equation:

sc =

∑p
J=1 sJ
p

. (2.21)

3. Reflect: We perform a reflection with respect to the worst vertex sp+1,

which creates the reflected point sr from the equation:

sr = sc + α(sc − sp+1), (2.22)

and then compute the function value of the reflected point as Fr = F (sr).

From that point, there are several possibilities, which are listed below by the

next steps. Most steps try to replace the worst vertex sp+1 by a better point,

which is computed depending on the context.

4. Expand: If Fr ≤ F1 calculate the expansion point se:

se = sc + β(sr − sc), (2.23)

and evaluate Fe = F (se). If the expansion point allows to improve the func-

tion value, i.e Fe ≤ Fr, the worst vertex (sp+1) is rejected from the simplex

and the expansion point se is accepted. This step is performed when the

simplex is far away from the optimum vertex. Then the direction of de-

scent is followed and the worst vertex is moved into that direction. While,

if Fr ≥ F1 and Fr < Fp, then the reflection point sr is accepted without

needing to compute the expansion point.

5. Contract: If Fr ≥ Fp, perform a contraction between sc and the better of

sp+1 and sr. The contraction steps are performed when the simplex is near

Chapter 2 Parameter Estimation Methods 25

the optimum, which allows to decrease the size of the simplex.

a- Outside contraction: If Fr < Fp+1, perform an outside contraction and

calculate

soc = sc + γ(sr − sc), (2.24)

and evaluate Foc = F (soc). If Foc ≤ Fr we accept soc and replace sp+1 by sr

then perform contraction otherwise a shrink step (6) is performed where all

vertices are moved toward the best vertex.

b- Inside contraction: The inside contraction vertex is calculated if Fr ≥

Fp+1 by the equation:

sic = sc + γ(sp+1 − sc), (2.25)

and evaluate Fic = F (sic). If Fic ≤ Fp+1, we accept sic and replace sp+1 by

sic otherwise a shrink step is performed.

6. Shrink: This step is confirmed after the contraction one and the shrink

vertices is defined by:

sJ = s1 + σ(sJ − s1), J = 2, 3, ..., p+ 1. (2.26)

The unordered vertices of the simplex at the next iteration consist of s1, s2,

s3,· · · , sp+1.

Figure (2.1) presents the detailed situations in two dimension when each type of

step occur. These figures been created in order to illustrate the following specific

points of the algorithm. We suppose that sw is the worst point and sL and sN are

the lowest and the next worst (the second worst) vertices. The simplex steps are

explained in Figure (2.2) which take search directions to reach the optimal vertex

where the size of the simplex is increased by the contraction and shrinking steps.

Chapter 2 Parameter Estimation Methods 26

Figure 2.1: Nelder-Mead moves in two dimensions.

In every step the worst vertex should be replaced by the vertex which

has the least evaluation and the algorithm should be repeated for a considerable

number of iterations until the error is reduced. The standard error stopping criteria

for the Nelder-Mead algorithm, proposed by Dennis and Woods in 1987 [25], is

based on the size of the simplex. Thus, the shrinking steps in the algorithm work

to satisfy this criterion [104]. The criterion is:

(1/∆) max ||sJ , s1|| < ε, (2.27)

where the maximization is over all the points from 1 to p in the current simplex,

∆ = max(1, ||s1||) and ε = 10−ε, ε > 0. Increasing the value of ε means that

the simplex size decreases, with the distance between all the p+ 1 simplex vectors

being shrunk. So the number of iterations depends on satisfying the Equation

(2.27). The Nelder-Mead algorithm shrinks the simplex size automatically. Then

the algorithm in the last iteration gives the best estimation for the parameters.

Chapter 2 Parameter Estimation Methods 27

Figure 2.2: The six possible moves in the original Nelder-Mead algorithm are
shown in two dimensions. The original simplex is surrounded by a black line,
and its worst vertex sp+1 is labeled sw. The point sc is the average (centroid)
of the two best vertices. The blue figures are Nelder-Mead simplices following
refection, expansion, outside contraction, inside contraction, and shrink, respec-
tively, where sic is the inside contraction vertex, sr is the reflection Point, soc is
the outside contraction vertex, se is the expansion vertex, sN is the next worst
vertex sp, ssh is the shrink vertex s and the best vertex (lowest vertex) is labelled

sL.

2.6 Case Studies

2.6.1 Hodgkin-Huxley model

Hodgkin–Huxley equations [17] are phenomenological model representing the cur-

rent flow and voltage dynamics in neural membranes. The current is carried

through the cell membrane due to the membrane capacitance or movement of

ions through the conductances in parallel with the capacitance. The conductances

are generally time varying and voltage dependent, and are modelled by ordinary

Chapter 2 Parameter Estimation Methods 28

differential equations. The equations are presented as follows:

v̇ = (1/Cmc)(I − (gNaq
3
2q3(v − ENa) + gKq

4
1(v − EK) + gleak(v − Eleak))

q̇1 = α1(v)(1− q1)− β1(v)q1

q̇2 = α2(v)(1− q2)− β2(v)q2

q̇3 = α3(v)(1− q3)− β3(v)q3,

(2.28)

where v(t) is the measured voltage and the variables q1, q2 and q3 dependent on

both time and membrane potential, and represent the variability of the ion chan-

nels.

The functions α1, β1, α2, β2, α3, β3 : R→ R are defined as:

α1 = 0.01(v + 50)/(1− e(−0.1(v+50))), β1 = 0.125e(−(v+60)/80)

α2 = 0.1(v + 35)/(1− e(−0.1(v+35))), β2 = 4e(−0.0556(v+60))

α3 = 0.07e(−0.05(v+60)), β3 = 1/(1 + e(−0.1(v+30))),

(2.29)

and the initial value of the variables q1, q2 and q3 are defined by the following

equations [98]:

q10 = α1(v0)/(α1(v0) + β1(v0))

q20 = α2(v0)/(α2(v0) + β2(v0))

q30 = α3(v0)/(α3(v0) + β3(v0)).

(2.30)

The parameters ENa, EK , ELeak are the Nernst potentials for the calcium, potas-

sium and leakage channels respectively, while gNa, gK , gLeak represent the conduc-

tances for the calcium, potassium and leakage channels, respectively.

The system (2.28) was solved using a Runge-Kutta scheme of order 4 with

an integration time step 0.01 by Siciliano in [98]. It was furthermore observed

that the Runge-Kutta method gives the most accurate results when its solution

compared with the exact solution after setting the sodium and the potassium

conductances equal to zero for a step size of 0.04. This was performed because the

model does not have an exact solution for other values of the conductances. The

values ϑ1 = gNa, ϑ2 = ENa, ϑ3 = EK , ϑ4 = Eleak can, in certain circumstances,

be regarded as typical but ultimately should be regarded as unknown parameters

requiring observation since they are the result of a curve-fitting process. In our

computer simulations, we will take capacitance Cmc = 0.01 and I = 0.1 and

Chapter 2 Parameter Estimation Methods 29

assume that the states v, q1, q2 and q3 are bounded in forward time.

For the purposes of illustration at least, we take gNa, ENa, EK , ϑ4 =

Eleak ∈ R as unknown values. The values of parameters gK , gLeak ∈ R, however,

may vary substantially from one cell to another, they depend upon the density of

ion channels in a patch of the membrane. Hence, in order to model the dynamics

of individual cells, we need to be able to obtain the unknown parameters from

data.

In the simulation, we set the unknown and known parameters of the Hodgkin–

Huxley model (2.28) to the following: gNa = 1.2, ENa = 55.17, EK = −72.14,

Eleak = −49.42, gK = 0.36, gLeak = 0.003.

We used the Runge–Kutta 4th order algorithm to find numerical solutions

of the systems, and the Nelder–Mead algorithm as an optimization routine. A

starting simplex was constructed around an initial parameter estimate V0 by

ϑ0 = ϑi + ειi, (2.31)

and an initial value for x0 by

v0 = v(t0) + ειj, (2.32)

where ε, ε are constants, and ιi and ιj are the unit vectors in the i−th, j−th

coordinate directions, respectively. The initial value v0 combined the parameters,

i.e. (v0, ϑ). By using this initial point the other variables q1, q2 and q3 were

calculated by Equation (2.30). The values of t were chosen from the 0.01-spaced

points in [0, 25] which shows two uniform spikes for the first variable V of the

system. Table 2.1 shows the estimated values of the unknown parameters and v0,

and Figure 2.4 shows the fitting curves. The 2nd column of all the shown tables

of this section represents the true values of the parameters and v0.

Chapter 2 Parameter Estimation Methods 30

Parameters Estimated Values Actual Values Parameter Estimation Error
v0 -60.00000 -60 5.86907e-6
gNa 1.19999 1.2 6.95908e-7
ENa 55.17004 55.17 3.56341e-5
EK -72.13999 -72.14 1.74518e-6
Eleak -49.41998 -49.42 2.01932e-5

Table 2.1: Estimated values of the initial condition v0 and the unknown pa-
rameters ϑ1, ϑ2, ϑ3 obtained using a Nelder–Mead–based single shooting method
starting with (v0, ϑ0); we put ε = 3 and ε = −40. We used one node point and
2501 data points. The least square error is 3.503357e − 9 and the simplex size

is 6.695736e− 11 obtained over 651 iterations.

Figure 2.3: Voltage Change curves (Runge-Kutta method) at the nominal
value of parameters ϑ1, ϑ2, ϑ3 and ϑ4 (blue curve), and at the estimates resulting

from the single shooting method (red curve).

To apply multiple shooting method the time interval [0, 25] was divided into

5 subintervals where the first point of 501 points in each interval represents the

shooting node. Table 2.2 shows the estimated values of v0, ϑ1, ϑ2, ϑ3, ϑ4. Figure

2.4 and Table 2.2 show the results of applying multiple shooting method using

Nelder-Mead algorithm.

Chapter 2 Parameter Estimation Methods 31

Parameters Estimated Values Actual Values Parameter Estimation Error
v0 -60.00000 -60 1.65796e-10
gNa 1.20000 1.2 4.41639e-7
ENa 55.16997 55.17 2.60501e-6
EK -72.14000 -72.14 6.07513e-6
Eleak -49.41996 -49.42 3.43414e-5

Table 2.2: Estimated values of the initial condition v0 and the unknown param-
eters ϑ1, ϑ2, ϑ3 obtained using a Nelder–Mead–based multiple shooting method
starting with (v0, ϑ0); we put ε = 1 and ε = 1. We used 5 node points and
501 points in every segment. The least square value is 2.952988e − 10 and the

simplex size is 8.885229e− 11 obtained over 321 iterations.

Figure 2.4: Voltage Change curves of Hodgkin Hukley Model (Runge–Kutta
method) at the nominal value of parameters ϑ1, ϑ2, ϑ3 and ϑ4 (blue curve), and
at the estimates resulting from the multiple shooting method (red and grean

curves).

The above methods were implemented in Matlab2015. One choice of initial

values of parameters and initial condition was applied to the 2501 time point

dataset. Convergence to the global minimum occurred and these successful runs

both started with the same initial values of parameters and v0. The duration

of the runs was consistently high, almost always taking more than half hour to

converge. In order to provide the best chance of success, the test was performed

with a large dataset; a reduction in the dataset would render the parameter space

more complex and make convergence to the optimal solution harder.

We conclude that shooting methods using Nelder–Mead can give good esti-

mates for parameters, but requires a lot of time tuning the minimization algorithm

Chapter 2 Parameter Estimation Methods 32

for success. These conclusions will apply to any global minimization method that

relies on single shooting to determine the error function. Multiple shooting can

help to regularize the parameter space and generally provides a more robust algo-

rithm.

2.6.2 ECG System

A single norm cycle is the ECG represents atrial depolarization or repolarization

and ventricular depolarization or repolarization which occurs with every heart-

beat. This can be approximately associated with the peaks and troughs of the

ECG waveform labeled P,Q,R, S and T as shown in Figure 2.5 adopted from

[79]. P,Q,R, S and T are waves in every cycle of the ECG which represent atrial

depolarization, the first wave of the ventricular depolarization QRS, the initial

positive deflection, the negative deflection following the R wave and ventricular

repolarization, respectively [79].

Figure 2.5: Morphology of a mean PQRST-complex of electrocardiogram sig-
nals (ECG).

The horizontal axis and vertical axis represent the time (ms) and voltage

(mV). The dynamical model of ECG is based on three ordinary differential equa-

tions which is capable of generating realistic synthetic electrocardiogram signals.

The dynamical equations are given by [79]:

ẋ∗ = υx∗ − ωy∗

ẏ∗ = υy∗ + ωx∗

ż = −
∑

τ∈P,Q,R,S,T aτ∆θτe
(− ∆θ2τ

2b2τ
)− (z − z0),

(2.33)

Chapter 2 Parameter Estimation Methods 33

where υ = 1 −
√
x∗2 + y∗2, ∆θτ = (θ − θτ)mod2π, θ = atan2(x∗, y∗) and ω is

the angular velocity of the trajectory as it moves around the limit cycle. The

(x∗, y∗, z) ECG trajectory generated by the model is illustrated in Figure 2.6 [79].

This figure illustrates the process of the waves P,Q,R, S, T around one unit circle

in the (x∗, y∗) plane. These waves are placed at fixed angles θP , θQ, θR, θS and

θT along the unit circle. The small circles in the figure show the position of the

P,Q,R, S, T which are represented by the values aτ and bτ in the model (2.33).

We have the values of these parameters as shown in Table 2.3 where the position

of the R-peak specifics the time and the angles θ. The variables x∗ and y∗ depend

on which is called respiratory frequency f2, the angular velocity ω and the time t

as in the equations [79]:

x∗ = cos(tw + f2)

y∗ = sin(tw + f2).

The baseline value z0 in (2.33) is coupled with the respiratory frequency f2 using

z0(t) = A sin(2πf2t),

where A = 0.15 mV .

If the respiratory frequency f2 equals to 0, the initial value z0 = 0. Hence the

system is transformed into the system of one non-linear ordinary differential equa-

tion:

ż = −
∑

τ∈P,Q,R,S,T

aτ∆θτexp(−∆θ2
τ

2b2
τ

)− z. (2.34)

Figure 2.6: (x∗, y∗, z) trajectory generated by the dynamical model (2.33) in
3 dimensional space.

Chapter 2 Parameter Estimation Methods 34

Parameter P Q R S T
time -0.2 -0.05 0 0.05 0.3
aτ 1.2 -5.0 30.0 -7.5 0.75
bτ 0.25 0.1 0.1 0.1 0.4
θτ -1/3 π -1/12 π 0 1/12 π 1/2 π

Table 2.3: Parameters of the ECG model.

The parameterized system of ECG is represented as follows:

ż = −
∑

τ∈P,Q,R,S,T aτ∆θτexp(−∆θ2τ
2b2τ

)− z

ȧτ = 0

ḃτ = 0

θ̇τ = 0

y = z,

(2.35)

where âτ = aτ 0, b̂τ = bτ 0 and θ̂τ = θτ 0 for all τ = 1, 2, 3, 4, 5.

The methods applied in this example use some common steps for minimizing

the least square error of the optimization problem (2.3) subject to the system

(2.35).

Multiple shooting method was performed for 6 segments where every seg-

ment has 44 points. We found the initial values of the parameters by Equation

(2.31), and the initial value z0 as explained in Equation (2.32). The estimations

of the parameters and z0 are shown in Table 2.4, and Figure 2.7 represents the 6

segments of the the voltage by red and green colours.

Chapter 2 Parameter Estimation Methods 35

Parameters Estimated Values Actual Values Parameter Estimation Error
z0 -0.00617 -0.0063 0.00013
a1 1.26989 1.2 0.06989
a2 -5.31679 -5.0 0.31679
a3 30.22360 30.0 0.22360
a4 -6.08688 -7.5 1.41312
a5 0.71935 0.75 0.03065
b1 0.25105 0.25 0.00105
b2 0.09876 0.1 0.00124
b3 0.10212 0.1 0.00212
b4 0.11128 0.1 0.01128
b5 0.41820 0.4 0.01820
θ1 -1.29476 -1.2217 0.07306
θ2 -0.30044 -0.2618 0.03864
θ3 -0.00981 0 0.00981
θ4 0.26204 0.2618 0.00024
θ5 1.81601 1.7453 0.07071

Table 2.4: Estimated values of the initial condition z0 and the unknown pa-
rameters aτ , bτ and θτ for τ = 1, 2, 3, 4, 5 obtained using a Nelder–Mead–based
multiple shooting method starting with (z0, ϑ0); we put different values of ε for
parameters and ε = 0.5. We used 6 node points and 44 points in every segment.
The least square error is 4.701174e − 9 and the simplex size is 9.806092e − 6

obtained over 4475 iterations.

Figure 2.7: Voltage change curve of ECG Model (by Runge–Kutta method)
at the nominal value of parameters (blue curve) and at the estimates resulting

from the multiple shooting method (red curve).

On the other hand, we applied the cubic B-splines for the same system. We

considered a partition of [−0.5, 0.5] equally divided by nodes tj into N subinterval

Chapter 2 Parameter Estimation Methods 36

[tj, tj+1], where j = 0, 1, · · · , N . When the dataset is relatively large (N = 258

time points), we tried to obtain parameter estimates using N splines.

The approximation U(t) based on the collocation approach, which can be

expressed as:

U(t) =
N+1∑
j=−1

γjBj(t). (2.36)

The approximated solution can be substituted in the model to have the following

equation:

N+1∑
j=−1

γjB
′
j(t) = −

∑
τ∈P,Q,R,S,T aτ∆θτexp(−∆θ2τ

2b2τ
)−

N+1∑
j=−1

γjBj(t). (2.37)

To obtain the approximations of the solutions, the values of Bj and its derivative

at the nodes are required. Since the values vanish at all other nodes, they are

omitted from Table 2.5. Equation (2.38) explains the first derivative of Bj.

B′j =



1

2h3
(t− tj−2)2 tj−2 < t ≤ tj−1

1

2h
+

1

h2
(t− tj−1)− 3

1

2h3
(t− tj−1)2 tj−1 ≤ t ≤ tj

− 1

2h
− 1

h2
(tj+1 − t) + 3

1

2h3
(t− tj−1)2 tj ≤ t ≤ tj+1

− 1

2h3
(t− tj−2)2 tj+1 ≤ t < tj+2

0 otherwise

(2.38)

tj−2 tj−1 tj tj+1 tj+2

Bj 0 1/6 4/6 1/6 0
B′j 0 1/2h 0 -1/2h 0

Table 2.5: Values of Bj and B′j .

Then we have :

U(tj) = 1
6
γj−1 + 2

3
γj + 1

6
γj+1, j = 0, 1, ..., N, (2.39)

and

U ′(tj) =
1

2h
γj−1 −

1

2h
γj+1 = 129γj−1 − 129γj+1, j = 0, 1, ..., N. (2.40)

Chapter 2 Parameter Estimation Methods 37

Hence the ECG system will be presented as follows:

129γj−1 − 129γj+1 = −
∑

τ∈P,Q,R,S,T aτ∆θτexp(−∆θ2τ
2b2τ

)− 1
6
γj−1 − 2

3
γj − 1

6
γj+1.

(2.41)

We have 259 × 259 the system of linear equations and 261 unknown variables

γj, j = −1, 0, ..., 259. Then we need to find the boundary conditions:

U(t0) = 1
6
γ−1 + 2

3
γ0 + 1

6
γ1 = −0.0063

U(tN) = 1
6
γN−1 + 2

3
γN + 1

6
γN+1 = −0.0063

(2.42)

to have the matrix form of linear equations system (2.9) which is so easily to solve

by supposing that the approximate spline polynomial (2.36) satisfies the equation

(2.34) and then the coefficients γj, j = −1, 0, · · · , 259 can be calculated.

The unknown parameters aτ , bτ and θτ for τ = 1, 2, 3, 4, 5 and the coeffi-

cients γ are estimate by using Nelder-Mead method. The experimental data of

the ECG system has 258 points defined on the domain [−0.5, 0.5] with step size

h = 1/258. The spline curve is represented in Figure 2.8 and the estimated values

of the unknown parameters are obtained in Table 2.6.

Figure 2.8: Voltage change for ECG model (by Runge–Kutta method) at the
nominal values of the parameters aτ , bτ and θτ for τ = 1, 2, 3, 4, 5 and the
coefficients γj , j = −1, 0, ..., 259 (blue curve), and at the estimates resulting

from the spline collocation method (red curve).

We noticed that spline collocation method based on Nelder-Mead algorithm

spent more than one hour to estimate the parameters. This is not significantly

Chapter 2 Parameter Estimation Methods 38

Parameters Estimated Values Actual Values Parameter Estimation Error
a1 1.1901 1.2 0.0099
a2 -4.7099 -5.0 0.2901
a3 31.0901 30.0 1.0901
a4 -7.6099 -7.5 0.1099
a5 0.8301 0.012247 0.8179
b1 0.3451 0.25 0.0951
b2 0.2001 0.1 0.1001
b3 0.1911 0.1 0.0911
b4 0.2101 0.1 0.1101
b5 0.5201 0.4 0.1201
θ1 -0.9099 -1.22173 0.3118
θ2 -0.0599 -0.261799 0.2019
θ3 0.1901 0 0.1901
θ4 0.2401 0.261799 0.0217
θ5 2.2972 1.74533 0.5519

Table 2.6: Estimated values of the initial condition z0 and the unknown pa-
rameters aτ , bτ and θτ for τ = 1, 2, 3, 4, 5 obtained using a Nelder–Mead–based
shooting method starting with (z0, ϑ0); we put ε = 0.001 and ε = 0.5. We
used 6 node points and 44 points in every segment. The least square error is

259∑
k=1

‖
261∑
j=1

γjBj(t
∗
k)− y(t∗k) ‖2= 0.208098.

faster than using multiple shooting method, but the speed could be improved

considerably as the amount of data or the number of splines is reduced. Notice

that even shooting method was applied with very small amounts of segments, the

estimates still reasonably more accurate than using spline collocation method as

shown clearly in the figures 2.7 and 2.8.

Overviews and limitations: The classical and most commonly used

methods, as reviewed, offer convenient ways to find state and parameters of a

broad range of problems. They do, however, have shortcomings and limitations.

Numerical methods require a considerable number of iterations in order to ap-

proach solutions. The solution usually is not exact, and therefore they provide

approximated solutions which are required to use to estimate the unknown state

and parameters of systems.

The more serious limitation in spline collocation method is that the poly-

nomial degree is only one less than the number of collocation points. In a practical

situation we may be given several thousand points which would require a polyno-

mial curve of an impossibly high degree. To compute a point on a curve of degree

Chapter 2 Parameter Estimation Methods 39

Nt requires a number of multiplications and additions that are at best propor-

tional to Nt. If for example Nt = 1000, computer manipulations like plotting and

interactive editing of the curve would be much too slow to be practical, despite

the speed of computers developed over time. This was practically experienced in

second example; we supposed to handle number of splines as the same number of

collocation points.

In general, shooting and spline collocation methods cannot always be ap-

plied, and their numerical results cannot always be trusted. The disadvantage in

the linear case arise because the IVPs integrated in the process could be unstable,

even when the BVP is well-conditioned and hence the method is unstable. More-

over, if the initial values of the state variables are far away from the actual values,

the methods using any direct search algorithm may fail or cost time to obtain

accurate estimations. Notwithstanding the plausibility of numerical integration

of (2.1) in algorithms for state and parameter estimation, this operation is an

inherently sequential process. The amount of time needed for direct numerical in-

tegration of these systems over a grid of N points is at least O(N). This constrains

computational scalability of the problem, and as a result it imposes limitations on

the time required to derive a solution [107]. Therefore, we need to construct an

integral formula that allows for fast and efficient numerical evaluation of solutions

of ODE systems which may invoke parallel computational frame to speed up the

evaluation or solving parameterized problems.

In order to overcome this limitation we should propose to cast the inverse

problem in an alternative integral form in which the model output is defined as a

combination of indefinite integrals with known, explicit and computable kernels,

possibly dependent on x0, ϑ, and explicit functions of x0, ϑ. The advantage of such

integral formulations is that their computations are scalable and can be performed

using conventional prefix sum algorithms of which the execution time is of order

O(loga(N)), a = 2, 3, · · · [107]. The latter option compares favourably with O(N).

Chapter 3

Explicit Parameter-dependent

Representations of Periodic Solutions for a

Class of Nonlinear Systems for Parameter

Estimation

3.1 Identifiability of Mathematical Models

To determine parameters from measured projections/mappings, an assessment of

identifiability has to be carried out first. Sometimes, the knowledge or the lack

of identifiability of some parameters can lead to or even require a transformation

yielding a globally identifiable model. Informally, the question of identifiability of

a system can be posed as that of the uniqueness of the solution parametrization

given initial conditions, model structure, and measured data.

To formally introduce notions of the identifiability, consider the following

system of ODEs:

ẋ = f(t, x, ϑ); x(t0) = x0 ∈ Rn (3.1)

where x = col(x1, · · · , xn) is the system’s state vector, f : R×Rn×Rp → Rn is the

state evolution function which is assumed to be at least a piece-wise continuous

function so that solution exists. The initial state x0 can be known or unknown; in

the latter case it must be estimated from experimental data as well. Let [t0, t0 +

T] be an interval on which the solution x(t; t0, x0, ϑ) of (3.1) is defined. Let us

further suppose that the system’s state, x(t; t0, x0, ϑ), is not accessible for direct

40

Chapter 3 Explicit Parameter-dependent Representations 41

observation at any t ∈ [t0, t0 + T]. One can, however, observe the values

y(t; t0, x0, ϑ) = h(t, x(t; t0, x0, ϑ)) (3.2)

for every t ∈ [t0, t0 + T]. For the sake of simplicity we will refer to these values

as y(t) or y if the other arguments, t, x0, ϑ, are clear from the context. Let the

problem be to find ϑ′ ∈ Rp and x′0 ∈ Rn

y(t; t0, x0, ϑ) = y(t; t0, x
′
0, ϑ
′). (3.3)

We note that y is a function of state x, which in turn, is a function of t, x0, t0

and parameters ϑ. If t0 is fixed then each pair x0, ϑ corresponds to an observed

trajectory y(t; t0, x0, ϑ).

Deriving x, y governed by the initial value problem (3.1) is the so called for-

ward problem. It concerns predicting and simulating the values of measurements

or output variables for a given system with given parameters and initial conditions.

Solving (3.2) is the inverse problem. In this problem one uses the measurements

of some state or output variables to estimate the true values of parameters de-

termining given measurements and, implicitly, characterizing the system. This is

not a trivial problem especially for nonlinear ODE models without closed-form

solutions.

Existence of unique solutions to the inverse problem is closely related to

the notion of identifiability. Fundamental definitions of identifiability and uniden-

tifiability of ODE systems are introduced in [26]; here we adopt these definitions

for system (3.1) as follows:

Definition (Identifiability)

Consider system (3.1). Let x(t; t0, x0, ϑ) and x(t; t0, x
′
0, ϑ
′) be two solutions of (3.1)

corresponding to different parameter values and initial conditions defined over the

time interval [t0, t0 + T], then

1. the parameter ϑ of system (3.1) is said to be unidentifiable on [t0, t0 + T] if

for some given (x0, ϑ) there exists an infinite number of solutions of (3.3)

for ϑ.

Chapter 3 Explicit Parameter-dependent Representations 42

2. the parameter ϑ of system (3.1) is said to be identifiable on [t0, t0 + T] if for

every (x0, ϑ) there exists a finite number of solutions of (3.3) for ϑ.

3. the parameter ϑ of system (3.1) is said to be uniquely identifiable on [t0, t0 +

T] if for every (x0, ϑ) there exists a unique solution of (3.3) for ϑ.

Similar notions have been introduced in [80]; in terms of global and local

identifiability let us have the below remarks:

Remark 1: System (3.1) is globally identifiable if for any ϑ, ϑ′ in Rp, y(t; t0, x0, ϑ) =

y(t; t0, x
′
0, ϑ
′) for all t ∈ [t0, t0 + T] if and only if ϑ = ϑ′.

Remark 2: System (3.1) is locally identifiable if there exists an open neighbour-

hood W of (x0, ϑ) in Rn+p such that y(t; t0, x0, ϑ) = y(t; t0, x
′
0, ϑ
′) for (x0, ϑ), (x′0,

ϑ′) in Rn+p if and only if ϑ = ϑ′.

Note that, in general, solving (3.3) for ϑ is not independent on x0. As the

examples below show that ϑ and x0 in the inverse problem are related and linked.

Inferring true values of ϑ from output observations, y(t; t0, x0, ϑ), is not

always possible, even if the system is linearly parametrized and no unmodeled

dynamics are presented [108]. Let us explain this with two simple examples which

are considered by Ivan et al. in [108]. The first example considers the following

system of ODEs:

ẋ = Ax+

 1

1

 θ +

 1

0

λ,A =

 −a1 1

−a2 0

 , a1, a2 ∈ R>0

y = x1.

(3.4)

Let x(t; t0, x0, (θ, λ)) and x(t; t0, x
′
0, (θ

′, λ′)) be two solutions of (3.1) corresponding

to different parameter values and initial conditions, and let e(t) = col(e1(t), e2(t)) =

x(t; t0, x0, (θ, λ))− x(t; t0, x
′
0, (θ

′, λ′)). Picking e2(t0) = −θ + θ′, e1(t0) = 0 ensures

that e1(t) = 0 for all t ≥ t0. Another, albeit nonlinearly parameterized, example

is
ẋ = −x+ θ + [sin2(λ+ θ) + x2 + 1]−1

y = x
(3.5)

In this case e(t) = x(t; t0, x0, (θ, λ)) − x(t; t0, x
′
0, (θ

′, λ′)) = 0 for all t ≥ t0 if

λ′ = λ+ kπ, k ∈ Z, θ′ = θ.

Chapter 3 Explicit Parameter-dependent Representations 43

The difficulty in estimating the parameters in a quantitative mathematical

model is not so much how to compute them, but more how to assess the quality

of the obtained parameters. Identifiability arises in conjunction with the question

of observability, when the notion of states may be augmented to include both

the actual state variables of the dynamic system and its parameters. This results

in the formulation of a nonlinear augmented system even though the dynamic

equations of motion of the original system might be linear. The consequence of a

system being observable is that different states can be distinguished on the basis

of measurements. Consequently, when the system is not observable, a system

identification method cannot be expected to return the true value of the states

and parameters.

In what follows we will present non local identifiability conditions for (1.1)

and provide solution parametrizations that are a) suitable for scalable implemen-

tations and b) and unique in the sense that y(t; t0, x0, ϑ) = ŷ(t; t0, x
′
0, ϑ
′)⇔ ϑ = ϑ′,

x0 = x′0.

3.2 Problem Formulation

3.2.1 System definition

Consider the following class of nonlinear systems

ẋ = F (y, t)x+ Ψ(y, t)θ + g(y, λ, t)

y(t) = CT
1 x; x(t0) = x0,

(3.6)

where x ∈ Rn and y ∈ R are the state and the output of the system, respectively,

F (y, t) ∈ Rn×n is a known matrix dependent on y and t; λ ∈ Ωλ, Ωλ ⊂ Rp, θ ∈ Ωθ,

Ωθ ⊂ Rm are parameters, and C1 ∈ Rn: C1 = col(1, 0, · · · , 0). Other technical

assumptions are detailed in Assumption 1 below.

Assumption 1. The following properties hold for (3.6):

1. the solution of (3.6) is defined for all t ≥ t0, and it is T -periodic, T > 0;

2. the function F is continuous, bounded, and F (y(·), ·) is T -periodic;

Chapter 3 Explicit Parameter-dependent Representations 44

3. exact values of parameters λ and θ are unknown;

4. the values of y(t) for t ∈ [t0, t0 + T] are available and known;

5. the function Ψ : R × R → Rn×m is such that Ψ(y(·), ·) is T -periodic and is

in L∞[t0,∞) ∩ C0;

6. the function g : R×Rp ×R→ Rn is such that g(y(·), λ, ·) is T -periodic and

is in L∞[t0,∞) ∩ C1 for all λ ∈ Ωλ;

7. the observability Gramian matrix

G(T, t0) =

∫ t0+T

t0

ΦA(s, t0)CCTΦT
A(s, t0)ds,

C ∈ Rn+m, C = col(1, 0, . . . , 0),

where ΦA(t, t0), is the normalized (i.e. ΦA(t0, t0) = In+m) fundamental solu-

tion matrix of

χ̇ = A(y(t), t)χ,

A(y(t), t) =

 F (y(t), t) Ψ(y(t), t)

0 0

 ,
(3.7)

is of full-rank, i.e rank(G(T, t0)) = n+m.

Remark 3: Regarding condition 1, observe that T generally depends on

the unknown x0, θ, λ. We will, however, assume that the value of T is measured

and known. This, in what follow next, obviates the need to account for such

dependences within the scope of this work. We would, however, like to acknowledge

this for clarity here.

The class of equations (3.6) accommodates a broad set of technical and

natural systems ranging from models of [9], dynamics of populations [54], and

neural membranes [84]. In case the solutions are periodic it also may, after suitable

Chapter 3 Explicit Parameter-dependent Representations 45

modifications [107], include

ẋ = F (y, t)x+ Ψ(y, t)θ + g(y, q, λ, t)

q̇ = υ(y, λ, t)q + ω(y, λ, t)

y = CT
1 x; x(t0) = x0, q(t0) = q0.

(3.8)

Indeed, the variable q admits a closed-form solution

q(t; q0, λ, y) = e
∫ t
t0
υ(y(τ),λ,τ)dτ

q0 + e
∫ t
t0
υ(y(τ),λ,τ)dτ×∫ t

t0

e
−

∫ τ
t0
υ(y(s),λ,s)ds

ω(y(τ), λ, τ)dτ

q0 = (1− e−
∫ t0+T
t0

υ(y(s),λ,s)ds)−1

∫ t0+T

t0

e−
∫ t0+T
z υ(y(s),λ,s)dsω(y(z), λ, z)dz.

(3.9)

which can be explicitly satisfied into the first equation of (3.8).

In addition to the system (3.6) we will consider its special case of the form

ẋ = F0x+ bφ(y, t)T θ + g(y, q, λ, t)

q̇ = υ(y, λ, t)q + ω(y, λ, t)

y = CT
1 x; x(t0) = x0

(3.10)

where θ ∈ Rm, F0 =

 0 In−1

0 0

, φ : R × R → Rm and b = (1, b1, · · · , bn−1) is

such that the polynomial sn−1 + b1s
n−2 + · · ·+ bn−1 is Hurwitz and the properties

(1− 6) of the assumption 1 hold for the system (3.10). As we shall show later, for

this special class one can final a somewhat simpler solution of the inverse problem,

and the corresponding conditions are easier to check.

For notational convenience (cf. [105]), in what follows, we will combine the

state variable x and parameters θ entering the right-hand-side of (3.6) linearly

into a single variable χ and rewrite the system accordingly:

χ̇ = A(y, t)χ+

 g(y, λ, t)

0


y(t) = CTχ; χ(t0) = χ0.

(3.11)

Chapter 3 Explicit Parameter-dependent Representations 46

In (3.11) χ = (x, θ) is the combined state vector, matrix A(y, t) is defined as in

(3.7), and C ∈ Rn+m is C = col(1, 0, · · · , 0). Let us now proceed with the formal

definition of the problem.

3.2.2 Problem statement

Consider system (3.11), and suppose that the values of y(t) for t ∈ [t0, t0 + T] are

known and available a-priori. These values will depend on the parameters λ and

initial condition χ0 which themselves are assumed to be unknown. The question

is if there exists an operator F mapping y(·) over [t0, t0 + T] into an efficiently

computable quantity that does depend on the parameters λ explicitly? Formally

we are seeking to find an F(λ, y, t) such that

CTχ(t; t0, χ0, λ) = F(t, λ, [y])

F(t, λ, [y]) = π(t, λ, [y]) +

∫ t

t0

u(τ, λ, y(τ), [y])dτ

∀ t ∈ [t0, t0 + T], λ ∈ Ωλ

(3.12)

in which the functionals π and u are known and computable, e.g. in quadratures.

In some special cases the functionals π, u may not depend on χ0 as a parameter,

but nevertheless have to ensure that the required representation (3.12) holds. In

this thesis we will focus on these special cases. When such a representation is found

one can employ numerous off-line numerical optimization techniques to infer the

values of λ, θ, and initial conditions from the values of y in the interval [t0, t0 +T].

We will illustrate this step with examples in which the Nelder-Mead algorithm [86]

will be used for this purpose.

In Figure 3.1 we show the work-flow and illustrate the advantages of the

proposed method relative to the current state-of-the-art.

Now, the question is if there is an equivalent integral formulation such

as e.g. (3.12) for (3.11) and (3.10)? If such an integral formulation exists then

whether a reduced-complexity version of this formulation can be stated so that

the dimension of the parameter vector in the reduced formulation is smaller than

Chapter 3 Explicit Parameter-dependent Representations 47

 Direct Proposed

Sequential computations

Scalable computations, suitable for parallel

implementation

 𝑥̇ = 𝑓(𝑥, 𝑡, 𝜗),

 𝑥(𝑡0) = 𝑥0 ∈ ℝ𝑛

 𝑦 = ℎ(𝑥)

Adaptive observation design

𝑥̇ = 𝐹(𝑦, 𝑡)𝑥 + Ψ(y, t)𝜃 + g(𝑦, 𝜆, 𝑡),

 𝑦 = ℎ(𝑥) = 𝐶𝑇𝑥

Using numerical methods for solving the

nonlinear parametrized problem for 𝑥

and 𝜗. These methods require to

compute derivatives, Hessian matrices,

or to solve large systems of equations

sequentially (iteratively, non-scalable).

Transformation

Rewrite the system as in (3.9) and (3.10).

Define the representation of solutions of (3.9)

and (3.10) in the form of explicit defining

integrals:

𝐶𝑇𝜒(𝑡, 𝑡0, 𝜒0, 𝜆) = ℱ(𝑡, 𝜆, [𝑦])

ℱ(𝑡, 𝜆, [𝑦]) = 𝜋(𝑡, 𝜆, [𝑦]) + ∫ 𝑢(𝜏, 𝜆, 𝑦(𝜏), [𝑦])

𝑡

𝑡0

for all 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇], 𝜆 ∈ Ω𝜆 and 𝜋, 𝑢 are

operators dependent on the parameter 𝜆.

Required measurements are

related to the unknown

parameters and the state

variables.

 Main computational drawbacks:

 The numerical methods require

relatively large computational time.

 Evaluating derivatives and Hessian

matrices for large system of

equations is computationally

expensive and ill-conditioned.

 Main computational advantages:

 Scalable and fast.

 No need to evaluate derivatives.

Figure 3.1: Workflow of the direct and proposed appraches.

Chapter 3 Explicit Parameter-dependent Representations 48

that in the original problem? Answers to these questions are provided in the next

section.

The method that we propose is for explicit integral reformulation of inverse

problems for a class of nonlinear systems. The technique is aimed at using parallel

computational streams to reduce the time of calculations. It has been shown

that the method allows to reduce dimensionality of the problem to that of the

dimension n + p of the vector of parameters entering the right-hand side of the

model nonlinearly.

This uncertainty reduction could be achieved in the proposed method if all

functions in the right-hand side of (3.8) and (3.10) are T-periodic. Such periodicity

assumptions may not always hold. In these cases the general approach still applies

but the number of uncertainties becomes n+m+ p.

Considering the representation form of solution (3.12) of the ODE prob-

lem raises several questions which are generally corresponding to whether the

parametrization problem has finite solutions for λ? and if the solution is unique?.

In Lemma 3.1 and Corollary 3.2 we will answer these questions.

Remark 4: Note that the proposed “transformed” system (3.11) has a very

specific structure. In this structure the matrix F depends on y and y is a scalar.

Whilst this presents a clear constraint on the applicability of the method, the

class of systems (3.11) is reasonably broad. Moreover, the approach need not be

generally confined to (3.11) as the major motivation for (3.11) was existence of an

adaptive observer for x, ϑ for which a closed-form can be written down. If such an

observer exists for other systems, the method will apply to those too.

Chapter 3 Explicit Parameter-dependent Representations 49

3.3 Main Result

3.3.1 Indistinguishable parametrizations of (3.11)

and (3.10)

Lemma 3.1. Consider the following class of system

χ̇ = A0(t)χ+ u(t) + d(t),

y = CTχ, χ(t0) = χ0, χ0 ∈ R`
(3.13)

where

A0(t) =


α1(t) β2(t) β3(t) · · · β`(t)

α2(t)
... A∗0(t)

α`(t)


and u, d, α : R→ R`, β : R→ R`−1 , u ∈ C1, d, α, β ∈ C, α = col(α1(t), α2(t), . . . ,

α`(t)), β = (β2(t), β3(t), . . . , β`(t)), and assume that solutions of (3.13) are glob-

ally bounded in forward time. Let, in addition:

1) u, u̇, d, α, β be bounded: max{‖u(t)‖, ‖u̇(t)‖} ≤ B, ‖d(t)‖ ≤ 4ξ, ‖α(t)‖ ≤

M1, ‖β(t)‖ ≤M2 for all t ≥ t0.

2) there exist a b : R→ R`−1, b ∈ C, ‖b(t)‖ ≤M3 such that the zero solution of the

system

ż = Λ(t)z, Λ(t) = A∗0(t)− b(t)β(t),

is uniformly exponentially stable, and let ΦΛ(t, t0) be the corresponding fundamen-

tal solution: ΦΛ(t0, t0) = I`. Then the following statements hold:

1) If the solution of (3.13) is globally bounded for all t ≥ t0 then, for T sufficiently

large and for small positive ε, there are k1, k2 ∈ K :

‖y(t)‖∞,[t0,t0+T] ≤ ε⇒ ∃ t′(ε, x0) ≥ t0 : ‖h(t) + u1(t)‖∞,[t′,t0+T] ≤ k1(ε) + k2(4ξ),

(3.14)

Chapter 3 Explicit Parameter-dependent Representations 50

where h(t) = β(t)z,

ż = Λ(t)z +Gu,

G =
(
−b(t) I`−1

)
, z(t0) = 0,

(3.15)

2) If d(t) ≡ 0, then y(t) = 0 for all t ∈ [t0, t0 + T] implies existence of P ∈ R`−1:

β(t)ΦΛ(t, t0)P + h(t) + u1(t) = 0 (3.16)

for all t ∈ [t0, t0 + T].

The proof of the lemma 3.1 is provided in the Appendix.

According to Lemma 3.1 the set of parameters:

E(λ) = {λ′ ∈ Rp| ∃ P ∈ R`−1 : η(t, P, λ′, λ) = 0, ∀t ∈ [t0, t0 + T]} (3.17)

where

η(t, P, λ′, λ) = β(t)ΦΛ(t, t0)P + β(t)

∫ t

t0

ΦΛ(t, τ)

G(τ)

 g(y(τ), λ′, τ)− g(y(τ), λ, τ)

0

 dτ,

and Λ is defined as in (3.15), contains parameters λ′ producing measurements

y(t) = CTχ(t; t0, χ0, λ
′) that are indistinguishable from CTχ(t; t0, χ0, λ) on the

interval [t0, t0 + T]. If the set E(λ) contains more than one element then the

system (3.11) may not be uniquely identifiable on [t0, t0 + T]. Notwithsdanding

existence and possible utility of systems that are not uniquely identifiable, we will

nevertheless focus on systems (3.11) that are uniquely identifiable on [t0, t0 + T].

Thus we assume that the following holds:

Assumption 2. For every λ ∈ Ωλ, the set E(λ) consists of just one element.

Chapter 3 Explicit Parameter-dependent Representations 51

Corollary 3.2. Consider

χ̇ = A0x+ u(t) + d(t),

y = CT
1 x, x(t0) = x0, x0 ∈ Rn

(3.18)

where A0 =


α1

α2 In−1

...

αn 0

 , C1 = col(1, 0, · · · , 0) and x, u, d : R→ Rn, , α ∈ Rn,

u ∈ C1, d ∈ C. Let u(·), u̇(·), d(·) be bounded: max{‖u(t)‖, ‖u̇(t)‖} ≤ B, ‖d(t)‖ ≤

4ξ for all t ≥ t0. Then the following hold:

1) If the solution of (3.13) is globally bounded for all t ≥ t0 then, for T sufficiently

large, there are k1, k2 ∈ K: (3.14) holds where z1 = C1z,

ż = Λz +Gu, Λ =

 −b
...
...

In−2

0


G =

(
−b In−1

)
, z(t0) = 0,

(3.19)

and b = (b1, · · · , bn−1)T : real parts of the roots of sn−1 + b1sn−2 + · · · + bn−1 are

negative.

2) If d(t) ≡ 0, then y(t) = 0 for all t ∈ [t0, t0 + T] implies existence of

P ∈ Rn−1:

C1e
Λ(t−t0)P + z1(t) + u1(t) = 0 (3.20)

for all t ∈ [t0, t0 + T].

The corollary 3.2 is proved in the Appendix.

According to Corollary 3.2 the following sets of parameters, associated with

every θ,λ, need special consideration. The first set is defined as

E0(θ, λ) = {(θ′, λ′), θ′ ∈ Rm, λ′ ∈ Rp|bϕ(y(t), t)T (θ′ − θ)

+ g(y(τ), λ′, τ)− g(y(τ), λ, τ) = 0,∀t ∈ [t0, t0 + T]}.

Chapter 3 Explicit Parameter-dependent Representations 52

The set E0(θ, λ) contains all parametrizations of (3.10) which are indistinguishable

from each other providing that the values of x(t) are known for all t ∈ [t0, t0 + T].

That is, if x(t; t0, x0, θ, λ) = x(t; t0, x0, θ
′, λ′) for all t ∈ [t0, t0 + T] then (θ′, λ′) ∈

E0(θ, λ). Denote

η(t, p, θ′, λ′, θ, λ) = ϕ(y(t), t)(θ′ − θ) + g1(y(t), λ′, t)− g1(y(t), λ, t)

+ CT
1 e

Λ(t−t0)p+ z1(t; t0, λ
′)− z1(t; t0, λ),

where Λ,C1,z(t; t0, λ
′) are defined as in (3.19) with u(t) replaced by g(y(t), λ′, t).

The second set is defined as

E(θ, λ) = {(θ′, λ′), θ′ ∈ Rm, λ′ ∈ Rp| ∃ p ∈ R`−1 : η(t, p, λ′, λ) = 0,∀t ∈ [t0, t0 + T]}.

(3.21)

In accordance with Corollary 3.2 the set E(θ, λ) contains all parametrizations of

(3.10) that are indistinguishable on the interval [t0, t0 + T] on the basis of access-

ing only the values of y(x(t; t0, x0, θ, λ)). In other words, if y(x(t; t0, x0, θ, λ)) =

y(x(t; t0, x
′
0, θ
′, λ′)) for all t ∈ [t0, t0 + T] then (θ′, λ′) ∈ E(θ, λ). If E(θ, λ) contains

more than one element then (3.10) is not is not uniquely identifiable on [t0, t0 +T]

[27].

Here, for simplicity, we will focus on systems (3.10) that are uniquely iden-

tifiable on [t0, t0 + T]:

Assumption 3. Sets E0(θ, λ) and E(θ, λ) are coincide and contain no more than

one element.

3.3.2 Integral parametrization of periodic solutions

of (3.10)

Before we proceed with presenting an equivalent integral formulation of Prob-

lem (3.10) let us first introduce several additional components and corresponding

technical assumptions. Let l ∈ Rn be a vector satisfying the following condition:

P (F0 + lCT
1) + (F0 + lCT

1)TP = −Q, Pb = C1

Chapter 3 Explicit Parameter-dependent Representations 53

where P,Q are some symmetric positive definite matrices. According to the Meyer-

Kalman-Yakubovich-Popov lemma [22], such vector will always exist since the

polynomial sn−1 + b1s
n−2 + · · ·+ bn−1 is Hurwitz. Consider

˙̂χ =

 F0 + lCT
1 bφ(y(t), t)T

−φ(y(t), t)CT
1 0

 χ̂ (3.22)

and let Φ(t, t0) be its corresponding normalized fundamental solution matrix:

Φ(t0, t0) = In+m.

Theorem 3.3. Consider (3.10) and suppose that Assumption 3 holds. Let y(t),

φ(y(t), t), g(y(t), λ, t) be T−periodic on [0,∞) for all λ, and the function φ(y(t), t)

satisfy:

∫ t0+T

t0

φ(y(τ), τ)φ(y(τ), τ)Tdτ ≥ δIn+m, δ > 0. (3.23)

Then the following statements are equivalent:

1) ŷ(λ′, t) = y(t) for all [t0, t0 + T], where ŷ : Rp × R→ R:

ŷ(λ′, t) = (1 0 · · · 0)T
(
Φ(t, t0)χ̂0+

∫ t

t0

Φ(t, τ) g(y(τ), λ, τ)− ly(τ)

y(τ)φ(y(τ), τ)

 dτ
)
,

(3.24)

χ̂0 = (In+m − Φ(t0 + T, t0))−1

∫ t0+T

t0

Φ(t0 + T, τ) g(y(τ), λ, τ)− ly(τ)

y(τ)φ(y(τ), τ)

 dτ.

(3.25)

2) (1 0 · · · 0)x(t; t0, x0, θ̃, λ
′) = y(t) for all [t0, t0 + T].

Furthermore, the values of x0, θ̃ satisfy x0

θ̃

 = χ̂0. (3.26)

Chapter 3 Explicit Parameter-dependent Representations 54

Proof. Let us first show that 1) ⇒ 2). Recall (see e.g. [68]) that assumptions of

the theorem imply existence of positive numbers ρ,D > 0:

‖Φ(t, t0)‖ ≤ De−ρ(t−t0)

for all t ≥ t′0, t
′
0 ∈ [t0,∞).

Hence the matrix In+m−Φ(t0+T, t0) has no zero eigenvalues, and its inverse

matrix, (In+m − Φ(t0 + T, t0))−1, exists. Consider χ = (χ1, χ2):

d

dt

 χ1

χ2

 =

 F0 + lCT
1 bφ(y(t), t)T

−φ(y(t), t)CT
1 0

 χ1

χ2


+

 g(y(t), λ′, t)− ly(t)

y(t)φ(y(t), t)

 .

(3.27)

It is clear that solutions of (3.27) are defined for all t ≥ t0 providing that the

definition of y(·), g(y(t), λ′, t), and φ(y(·), ·) are extended (periodically) on the

interval [t0,∞). Introduce the function ζ(·) = (x(·, t0, x0, θ̃, λ̃), θ̃) (in which the

domain of the function x(·, t0, x0, θ̃, λ̃) definition is extended to [t0,∞)), and con-

sider the difference

ξ = χ− ζ.

Dynamics of ξ satisfy (3.22) with ξ1(t0) = χ1(t0)−x(t0), ξ2(t0) = χ2(t0)− θ̃.

Moreover, ŷ(λ′, t) = CTχ1(t) for all [t0, t0+T] (or in [t0,∞) if ŷ(λ′, ·) is periodically

extended on [t0,∞)).

Let ŷ(λ′, t) ≡ y(t). This implies that χ2 − θ̃ =const for all t ∈ [t0, t0 + T].

Hence according to Corollary 3.2 (χ2(t0), λ′) belong to E(θ̃, λ̃, T). Given that sets

E(θ̃, λ̃, T) and E0(θ̃, λ̃, T) coincide and contain just one element, θ̃, λ̃, we conclude

that χ2(t0) = θ̃, λ′ = λ̃.

Notice that lim
t→∞

ξ(t) = 0 for all χ2(t0), and that

Φ(t, t0)χ̂0 +

∫ t

t0

Φ(t, τ)

 g(y(τ), λ′, τ)− ly(τ)

y(τ)φ(y(τ), τ)

 dτ

Chapter 3 Explicit Parameter-dependent Representations 55

is the unique exponentially stable periodic solution of (3.27). This implies that

(3.26) holds.

Let us show that 2)⇒ 1). Let θ̃, λ′ be parameters for which the following identity

holds: y(x(t; t0, x0, θ, λ)) = y(t) for all [t0, t0 + T]. Consider the function ζ(·) de-

fined earlier. Given that (3.28) is the unique exponentially stable periodic solution

of (3.27), that lim
t→∞

ζ(t) = 0 for arbitrary choice of initial conditions (i.e. vectors

x(t0), θ̃, and χ1(t0), χ2(t0)) and that ζ(t) ≡ 0 if χ1(t0) = x(t0), χ2(t0) = θ̃, one

includes that ŷ(λ′, t) = y(x(t; t0, x0, θ, λ)) = y(t) for all [t0, t0 + T].

3.3.3 Integral parametrization of periodic solutions

of (3.11)

In addition to (3.11) consider the following auxiliary system:

˙̂χ = A(y(t), t)χ̂+

 g(y(t), λ′, t)

0

+R−1C(CT χ̂− y),

Ṙ = −δR− A(y(t), t)TR−RA(y(t), t) + CCT

χ̂(t0) = χ̂0 ∈ Rn+m, R(t0) ∈ R(n+m)×(n+m)

(3.28)

where χ̂ ∈ Rn+m is the observer’s state, R(t0) is a positive-definite symmetric

matrix, and δ ∈ R>0 is a positive parameter. Solutions of (3.28) are defined for

all t ≥ t0 (see items (1), (2) in Assumption 1), and hence, [44], R(t) is given by

R(t) =e−δ(t−t0)ΦA(t0, t)
TR(t0)ΦA(t0, t)+∫ t

t0

e−δ(t−s)ΦA(s, t)TCCTΦA(s, t)ds.
(3.29)

It is clear that R(t) is non-singular for all t ≥ t0, symmetric, and positive-definite.

Furthermore, if the value of the parameter δ > 0 is chosen so that

‖e−δ(t−t0)/2ΦA(t0, t)‖ ≤ De−a(t−t0), a > 0, (3.30)

then R(t) is bounded. In what follows the following additional assumption is

instrumental:

Chapter 3 Explicit Parameter-dependent Representations 56

Assumption 4. There exist t1 ≥ t0 and α(δ) > 0 such that

φ(t, δ) =

∫ t

t0

e−δ(t−s)ΦA(s, t)TCCTΦA(s, t)ds ≥ α(δ)In+m

for all t ≥ t1.

The next theorem specifies asymptotic behaviour of the observer system

(3.28) (adapted from [44]).

Theorem 3.4. Consider (3.28) and suppose that δ > 0 be chosen so that both

(3.30) and Assumption 4 hold, and λ′ = λ. Then there exists a t2 ≥ t0, such that:

‖χ̂(t; χ̂0)− χ(t;χ0)‖ ≤ ke−δ(t−t0)

for all t ≥ t2, where k is a constant dependent on δ, t0, χ0 and the initial state χ̂0

of the observer system (3.28).

Theorem 3.4 states the variable χ̂(t) asymptotically tracks χ(t), and that

the difference between the two converges to zero exponentially. Here, however,

we are interested in establishing finite-time relationships (3.12). To do so we

need another technical result establishing sufficient conditions for the existence of

unique periodic solutions of R. The result is provided in Lemma 3.5.

Lemma 3.5. Consider (3.28) with A(y(t), t) being T -periodic. Then, for suffi-

ciently large δ > 0, there exists a unique symmetric R(t0) ensuring that the func-

tion R(t) defined by (3.29) is T -periodic. If, in addition, (3.30) and Assumption

4 hold then R(t0) is positive-definite.

Proof. Consider R(t+ T) and its derivative wrt. t:

Ṙ(t+T) = −δR(t+T)−A(y(t+T), t+T)TR(t+T)−R(t+T)A(y(t+T), t+T)+CCT .

Since A(y(t+ T), t+ T) = A(y(t), t) for all t ≥ t0 , we have

Ṙ(t+T) = −δR(t+T)−A(y(t), t)TR(t+T)−R(t+T)A(y(t), t) +CCT . (3.31)

Chapter 3 Explicit Parameter-dependent Representations 57

Denoting E(t) = R(t+ T)−R(t) and invoking (3.31) we obtain:

Ė = −δE − A(y(t), t)TE − EA(y(t), t). (3.32)

If R(t0) = R(t0 + T) then E(t) = 0 is the unique (n+m) zero matrix solution of

(3.32). This implies that R(t) = R(t + T) for all t ≥ t0. Let us show that such

R(t0) exists. For R(t0) = R(t0 + T) to hold R(t0) must satisfy

R(t0) = e−δTΦA(t0, t0 + T)TR(t0)ΦA(t0, t0 + T)+∫ t0+T

t0

e−δ(T+t0−s)ΦA(s, t0 + T)TCCTΦA(s, t0 + T)ds.
(3.33)

Let us rewrite (3.33) as:

R(t0)−H1R(t0)H2 = B, (3.34)

where
H1 = e−δT/2ΦA(t0, t0 + T)T ,

H2 = e−δT/2ΦA(t0, t0 + T)

and

B =

∫ t0+T

t0

e−δ(T+t0−s)ΦA(s, t0 + T)TCCTΦA(s, t0 + T)ds.

The matrices H1, H2 are non-singular by construction, and hence (3.34) is equiv-

alent

H−1
1 R(t0)−R(t0)H2 = H−1

1 B. (3.35)

Moreover, H1 = HT
2 . The latter implies that if R(t0) is a solution of (3.34) then

so is R(t0)T :

R(t0)T = (H1R(t0)H2)T +BT = HT
2 R(t0)THT

1 +B.

Further, (3.35) is the Sylvester equation [24]; it has a unique solution if the spectra

of (n+m)× (n+m) matrices H−1
1 and H2 are disjoint (i.e. H−1

1 and H2 have no

Chapter 3 Explicit Parameter-dependent Representations 58

common eigenvalues). Note that

H−1
1 = eδT/2(ΦA(t0, t0 + T)T)−1,

and let α̃1, α̃2, . . . , α̃n+m and β̃1, β̃2, . . . , β̃n+m be the eigenvalues of (ΦA(t0, t0 +

T)T)−1 and ΦA(t0, t0 + T), respectively. The moduli of eigenvalues αi of H−1
1 and

eigenvalues βi of the matrix −H2 are:

|αi| = eδT/2|α̃i|,

|βi| = e−δT/2|β̃i|

for all i = 1, 2, · · · , n+m. Denote

αmax = max
i
{|α̃i|}, αmin = min

i
{|α̃i|}

βmax = max
i
{|β̃i}, βmin = min

i
{|β̃i}.

Given αmin 6= 0 one can pick the value of δ so large that

eδT >
βmax

αmin

.

Doing so implies that

eδT/2αmin > e−δT/2βmax.

This, in turn, results in

|αi| > |βj|,∀ i, j = 1, . . . , n+m.

Hence

αi 6= βj,∀ i, j = 1, . . . , n+m,

and there is a symmetric matrix R(t0) satisfying (3.35) and, consequently, (3.33).

Finally, let us show that if (3.30) and Assumption 4 hold then the corresponding

R(t0) is positive-definite. Let N be a non-negative integer. Given that R(t0) =

R(t0 +NT) we see that

R(t0) = e−δNTΦA(t0, t0 +NT)TR(t0)ΦA(t0, t0 +NT) + φ(t0 +NT, δ). (3.36)

Chapter 3 Explicit Parameter-dependent Representations 59

According to (3.30) the norm

‖e−δNTΦA(t0, t0 +NT)TR(t0)ΦA(t0, t0 +NT)‖

can be made arbitrarily small if N is large enough. At the same time, Assumption

4 guarantees that φ(t0 + NT, δ) ≥ α(δ) in (3.36) for all N that are sufficiently

large. Since the value of N in (3.36) can be chosen arbitrary large we conclude

that R(t0) is positive-definite too.

For notational convenience, let us rewrite auxiliary observer equations (3.28)

as:

˙̂χ = (A(t)−R−1CCT)χ̂+

 g(y(t), λ′, t)

0

+R−1Cy(t)

Ṙ = −δR− A(y(t), t)TR−RA(y(t), t) + CCT

χ̂(t0) = χ̂0 ∈ Rn+m, R(t0) ∈ R(n+m)×(n+m)

(3.37)

and additionally consider dynamics of the linear part of the first equation:

ξ =
(
A(y(t), t)−R−1(t)CCT

)
ξ. (3.38)

Let Φ(t, s) be the normalized fundamental solution matrix of (3.28), i.e. Φ(t, t) =

In+m and Φ(s, t) = Φ(t, s)−1.

Theorem 3.6. Consider system (3.28) and suppose that Assumptions 1 and 2

hold. In addition, suppose that condition (3.30) hold and the values of δ and

the initial condition R(t0) in (3.37) is chosen such that R(t) > 0 is T -periodic.

Consider the function ŷ : Rp × R→ R:

ŷ(λ′, t) = CT
(
Φ(t, t0)χ̂0+

∫ t

t0

Φ(t, τ)× R−1(τ)Cy(τ) +

 g(y(τ), λ′, τ)

0

  dτ
) (3.39)

Chapter 3 Explicit Parameter-dependent Representations 60

where

χ̂0 = (In+m − Φ(t0 + T, t0))−1

∫ t0+T

t0

Φ(t0 + T, τ)× R−1(τ)Cy(τ) +

 g(y(τ), λ′, τ)

0

  dτ.

(3.40)

Then

ŷ(λ′, t) = Cχ(t; t0, χ0, λ) ∀ t ∈ [t0, t0 + T]⇔ λ = λ′.

Proof. Sufficiency, i.e. implication ⇒. Assumption 1 implies that Assumption 4

holds along the solution of (3.37). This together with condition (3.30) assure that

there are positive constants ρ,D > 0 such that

‖Φ(t, t0)‖ ≤ De−ρ(t−t0).

Hence the matrix In+m − Φ(t0 + T, t0) has no zero eigenvalues, and its inverse

matrix, (In+m − Φ(t0 + T, t0))−1, exists. Thus ŷ(λ′, t) described by (3.39), (3.40)

is defined for all t ∈ [t0, t0 + T]. Periodicity of R(t) implies that

χ̂(t; t0, χ̂0, λ
′) = Φ(t, t0)χ̂0 +

∫ t

t0

Φ(t, τ)

 R−1(τ)Cy(τ) +

 g(y(τ), λ′, τ)

0

  dτ

with χ̂0 defined by (3.40) is the unique asymptotically stable periodic solution of

the χ̂-subsystem in (3.37). On this solution we have: CCT χ̂(t)−Cy(t) = 0 for all

t ∈ [t0, t0 + T]. Thus

˙̂χ = A(y(t), t)χ̂+

 g(y(t), λ′, t)

0

 , CT χ̂(t) = y(t).

Consider e = χ̂− χ:

ė = A(y(t), t)e+

 g(y(t), λ′, t)

0

−
 g(y(t), λ, t)

0

 .

According to Lemma 3.13 and Assumption 2 the set of indistinguishable parametriza-

tions E(λ) of (3.11) comprises of a single element, and hence λ′ = λ.

Chapter 3 Explicit Parameter-dependent Representations 61

Necessity, ⇐.

Let λ = λ′. According to assumptions of the theorem dynamics of χ̂ − χ

satisfies (3.38). The zero solution of the latter is globally asymptotically stable,

and hence limt→∞ χ̂(t)−χ(t) = 0. Noticing that (3.41) is the unique exponentially

stable periodic solution of the χ̂-subsystem in (3.37) we obtain that χ̂(t; t0, χ̂0, λ
′) =

χ(t; t0, χ0, λ) for all t ∈ [t0, t0 + T], and hence ŷ(λ′, t) = CTχ(t; t0, χ0, λ).

Remark 5: In the proposed methods, instead of dealing with continuous-

time signals, y(t), one may re-formulate the above results in the setting in which

model responses and data are compared at mereN discrete points {ti} in [t0, t0+T].

In this case sets of parameters E0 and E in Corollary 3.2 and E in Lemma 3.1 will

need to be re-defined so that the corresponding identities hold at the given finite

number of points {ti} rather than for all t ∈ [t0, t0 + T]. Discrete extension of the

theorems allows straightforward formulation of the inference problem as

λ̂ = arg min
λ∈Rp
{
N∑
i=1

(y(ti)− ŷ(ti, λ))2} (3.41)

Remark 6: To deal with discrete measurements using continuous-time

models, one can employ a suitable interpolation scheme providing that the outcome

of such an interpolation is phenomenologically adequate.

Remark 7: The methods, as formulated in Theorems 3.3 and 3.6, require

periodicity of y(t) as a function of t. Similar representations can be obtained for

models that do not necessarily produce periodic signals. This, however, will bear

additional costs. In absence of periodicity, χ̂0 in (3.24) and (3.39) will generally

be replaced by an unknown vector. Yet, due to the asymptotic stability of the

solutions of the observer, if the interval of observation is long enough then relative

contribution of this unknown term in y(λ, t) for t sufficiently large will be small.

Thus y(λ, t) becomes an approximation of the measured y(t) rather than an exact

match.

Chapter 3 Explicit Parameter-dependent Representations 62

3.4 Examples

3.4.1 Predator-Prey system

The mathematical problem of Predator Prey is considered in the following system

of equations:
ẋ = p1x(1− x

p2
)− p3zx

p4+x

ż = p5zx
p4+x
− p6z,

(3.42)

where x, z are population densities of prey and predator, respectively, and p =

(p1, p2, · · · , p6) are parameters that are subjected to evolutionary modifications.

Suppose that parameter values correspond to the unique stable limit cycle, and

for simplicity we assume that the system evolves on the cycle (or in its sufficiently

small vicinity). The corresponding parameter values and initial conditions are set

as follows:

p1 = 1, p2 = 1.3, p3 = 1, p4 = 1, p5 = 3, p6 = 0.1,

(x0, z0) = (0.0053, 0.2536).
(3.43)

Note that system (3.42) is not in the class of systems specified by (3.10) to which

Theorem 3.3 applies. It may, however, be transformed into this class as follows.

Given that p3, p5 6= 0 we will first introduce a new variable

q = x+
p3

p5

z.

Thus, in accordance with (3.42):

q̇ = p1x(1− x

p2

)− p3zx

p4 + x
+

p3zx

p4 + x
− p6

p3

p5

z, (3.44)

and the system equations in the new coordinates become:

ẋ = p1x(1− x

p2

)− p5(q − x)x

p4 + x

q̇ = p1x(1− x

p2

) + p6x− p6q.

(3.45)

Chapter 3 Explicit Parameter-dependent Representations 63

Equation (3.45) is in the original form of (3.10) before transformation. The latter,

in turn, can be transformed into (3.10) by means of the following closed form

expression for the variable q:

q(t, p1, p2, p6) = e−p6(t−t0)q0(p1, p2, p6)+e−p6t
∫ t

t0

ep6τ
(
p1x(τ)(1−x(τ)

p2

) +p6x(τ)

)
dτ.

(3.46)

The observed variable, x(·), is periodic with period T = 34.05, and p6 = 0.1 6= 0.

Therefore

q(t, p1, p2, p6) = (1− e−p6T)−1e−p6T
∫ t0+T

t0

ep6τ
(
p1x(τ)(1− x(τ)

p2

) + p6x(τ)

)
dτ.

(3.47)

Hence dynamics of x obeys

ẋ = p1x−
p1

p2

x2 +
p5x

2

p4 + x
− p5x

p4 + x
q(t, p1, p2, p6) (3.48)

which is of class (3.10) with

λ̃ = (p1, p2, p4, p5, p6).

Thus Theorem 3.3 applies, and observed periodic trajectory x(·) of system (3.42)

can be represented as an explicit integral.

Notice that the number of parameters in (3.48) is reduced to just 5 as

compared to 6 in the original equations. Moreover, since the right-hand side of

(3.48) is purely nonlinearly parameterized, there is no φ(·) in (3.24), F0 = 0, and

the fundamental solution matrix, Φ(t, t0), becomes

Φ(t, t0) = el(t−t0), l ∈ R, l < 0. (3.49)

Chapter 3 Explicit Parameter-dependent Representations 64

For the sake of simplicity we set l = −1. The corresponding expression for ŷ(λ̃, t)

is

ŷ(λ̃, t) = e−(t−t0)χ0(λ̃) +

∫ t

t0

e−(t−τ)

(
x(τ) + p1x(τ)− p1

p2

x2(τ)

+
p5x

2(τ)

p4 + x(τ)
− p5x(τ)

p4 + x(τ)
q(t, p1, p2, p6)

)
dτ

χ0(λ̃) = (1− e−T)−1

∫ t0+T

t0

e−(T−τ)

(
x(τ) + p1x(τ)− p1

p2

x2(τ)

+
p5x

2(τ)

p4 + x(τ)
− p5x(τ)

p4 + x(τ)
q(t, p1, p2, p6)

)
dτ.

(3.50)

0 5 10 15 20 25 30 35
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35

-1

-0.5

0

0.5

1

×10-6

Figure 3.2: Left panel: the values of y(t) = x(t; t0, (x0, z0), λ) and ŷ(λ̃, t)
as functions of t for λ = (p1, p2, · · · , p6) and initial conditions specified by
(3.43). Black circles indicate starting and ending points of the periodic tra-
jectory y(t). The values of y(t) (blue curve) were obtained by numerical inte-
gration of (3.42) by Runge Kutta of 4th order method with integration step
0.001. The values of ŷ(λ̃, t) (dashed red curve) have been computed from
representation (3.50) numerically by simple right-hand rectangular integration
with the same integration step. Right panel: the values of relative error,

e(t) = (ŷ(λ̃, t)− y(t))/‖y(t)‖∞,[t0,t0+∞] as a function of t.

Trajectories y(·) and ŷ(λ̃, ·) are shown in Figure 3.2. Notice that trajectories

y(·) and ŷ(λ̃, ·) nearly coincide with discrepancies of the order of 10−6 that are due

to the differences in numerical integration. Here the representation of (3.50) is

defined for x instead of using χ since there is not θ parameters defined in the

system (3.45), implies that χ0 = x0.

In order to illustrate how our method works for this class of systems let

us suppose that y(ti) = x(ti; t0, (x0, z0), p), i = 0, 1, · · · , N be the measured data,

Chapter 3 Explicit Parameter-dependent Representations 65

p1 p2 p4 p5 p6

1 1.3 1 3 0.1
0.2 0.2 0.2 1.0 0.01

0.99998 1.30178 0.99911 2.9966 0.1

Table 3.1: True (first row), Initial (second row), and Estimated (third row)
parameter values of (3.45).

0 200 400 600 800 1000 1200 1400 1600 1800

0

2

4

6

8

10

12

p5

p1 p6
p2

p4

Figure 3.3: Estimates and true values of p1, p2, p4, p5, p6.

and values of p1, p2, p4, p5, p6 be unknown. For this particular simulation ti formed

an equispaced grid in [t0, t0 + T] with ti+1 − ti = 0.001 for all i = 0, 1, · · · , N − 1.

The values y(ti), i = 0, 1, · · · , N were derived using the Runge Kutta 4th

order method. As a measure of closeness between y(·) and ŷ(λ̃, ·) we used the

sum
∑N

i=0(y(ti) − ŷ(λ̃, ti))
2, and as a parameter estimation routine we used the

Nelder Mead algorithm [86]. Behavior of parameter estimates are shown in Figure

3.3, and their initial and final values are provided in Table 3.1. As one can see

from the table and plots, after roughly 1710 steps the estimates are already in

close proximity of true values of model parameters. This particular simulation

took 27.229262 seconds in Matlab R2015b. Let us now consider another relevant

model that will enable us not only to demonstrate existence of explicit integral

representation of its solutions but also to illustrate the point that sometimes the

overall number of unknown parameters can be reduced as a result of the proposed

integral representation.

Integral representation (3.24)
CPU GPU Ratio

3.218992 0.000433 7434.16167

Chapter 3 Explicit Parameter-dependent Representations 66

Runge Kutta integration
CPU GPU Ratio

6.408423 0.000003 2136141

Table 3.2: Time for 1000 evaluations of y.

In order to assess potential computational advantage of the proposed inte-

gral representations we compared the time needed for 1000 evaluations of y(t) on

CPU and GPU by CUDA programming over the interval [t0, t0 + T] for 1000 ran-

domly chosen parameter values. The results are summarized in Table 3.2 (upper

table). CUDA with C++ is just one of the ways that we can create massively par-

allel computations. It uses the powerful C++ programming language to develop

high performance algorithms accelerated by thousands of parallel threads running

on GPUs. We see that GPU implementation of the same procedure resulted in the

39-fold performance gain. Our second set of experiments assessed the time needed

for running 1000 Runge Kutta integrations of 4th order over the same period and

for the same parameter values. The results are shown in Table 3.2. These ex-

periments showed that explicit integral representations, if implemented on GPU,

are approximately 14800 times faster than Runge Kutta integration on CPU. We

also notice that 1000 model evaluations using Runge Kutta integration on GPU

is approximately 144 times faster than the proposed integral implementations in

this problem, but, on CPU, our representation of y is approximately 2 times faster

Runge Kutta integration. Yet, our proposed scheme returns the estimates of all

initial conditions and parameters that enter the right-hand side linearly (no θ pa-

rameters and one initial condition for this example). Furthermore, it enables to

consolidate all computational power of the GPU into a single stream of compu-

tations which will be advantageous for local and inherently iterative optimization

methods such as e.g. gradient-based search. In this regards comparing amount of

time spent in integrating the corresponding sensitivity functions system with our

explicit integral representation would be a fairer setting. This will be done in our

future work.

Chapter 3 Explicit Parameter-dependent Representations 67

3.4.2 Hodgkin-Huxley system

Consider the following ordinary differential equations of Hodgkin Huxley system

which is describing the behaviour of nerve cells in a squid giant axon [48]:

ẋ = (1/Cmc)(I − gNaq3
2q3(x− ENa)− gKq4

1(x− EK)− gL(x− EL))

q̇1 = (1− q1)α1(x)− β1(x))q1

q̇2 = (1− q2)α2(x)− β2(x))q2

q̇3 = (1− q3)α3(x)− β3(x))q3

(3.51)

where

α1(x) = 0.01(x+ V1)/(1− e(−0.1(x+V1))), β1(x) = 0.125e−(x+V2)/80

α2(x) = 0.1(x+ V3)/(1− e(−0.1(x+V3))), β2(x) = 4e−(0.0556(x+V4))

α3(x) = 0.07e(−0.05(x+V5)), β3(x) = 1/(1 + e−(0.1(x+V6)))

(3.52)

where x(t) is the measured voltage and q1(t), q2(t), q3(t) are the giant variables.

This model describes the change of the voltage x(t) in the electrical potential in

the neuron cells over time depending on some parameters Cmc, EK , ENa, EL, gK ,

gNa, I, gL, V1, V2, V3, V4, V5, V6. Some of these parameters are assumed to be

known: Cmc = 1, EK = −110.14, ENa = 55.17, EL = 49.49; other parameters

may vary from cell to another, thus are considered unknown.

The explicit solutions of the linear equations of (3.51) are in the following

equations:

qi(t, λ, [y]) = e
−

∫ t
t0

(αqi (x(s))+βqi (x(s)))ds
qi(t0, λ, [y])+∫ t

t0

e−
∫ t
z (αqi (x(s))+βqi (x(s)))dsαqi(x(z))dz

qi(t0, λ, [y]) = (1− e−
∫ t0+T
t0

(αqi (x(s))+βqi (x(s)))ds)−1×∫ t0+T

t0

e−
∫ t
z (αqi (x(s))+βqi (x(s)))dsαqi(x(z))dz

for all i = 1, 2, 3, where T = 9.15 is the period of oscillations. This brings the

system (3.51) to be in the forms (3.10) and (3.8) with parameters λ =(gK , gNa,

V1, V2, V3, V4, V5, V6) and θ = (x0, gL, I). In particular, the estimation of I is

Chapter 3 Explicit Parameter-dependent Representations 68

not the value of θ2 but rather is (I − ELgL) and gL = −θ1 where g(t, λ, [y]) =

gNam
3h(x − ENa) + gKn

4(x − EK). T-periodic trajectories of y(t) and ŷ(λ, t)

(by the observer (3.39)) are shown in Figure 3.4. The values of ŷ(λ, t) have been

computed from the representation (3.39) numerically by simple right hand side

integration with the integration step size 0.0004, and y(t) is numerically solved by

the 4th order Runge-Kutta method with the same integration step at the nominal

values of parameters.

0 1 2 3 4 5 6 7 8 9
-120

-100

-80

-60

-40

-20

0

20

40

60

Figure 3.4: T-periodic trajectories of y(t) (blue curve) and ŷ(λ, t) (dashed red
curve).

In order to evaluate ŷ(λ, t) in Equation (3.39) as a function of parameters λ

one we need to find the fundamental solution matrices ΦA(t, t0) of the homogeneous

system χ̂ = A(y(t), t)χ for all t ∈ [t0, t0 +T] where A(y(t), t) =


F (t) 1 y(t)

0 0 0

0 0 0


and F (t) = 0. We set δ = 2 and used numerical estimates of the variable R(t). The

fundamental solution matrices Φ(t, t0) of the homogeneous system (3.38) are com-

puted for all t ∈ [t0, t0+T]. These matrices were constructed numerically using the

improved Euler method with step size 0.0004 from linearly independent solutions

of the homogeneous systems ż1 = A(y(t), t)z1 and ż2 = (A(y(t), t)−R−1C) z2

(starting from (1, 0, 0), (0, 1, 0), (0, 0, 1)). The value of R(t0) in (3.29) was chosen

to be the unique solution of the Sylvester equation (3.35) (see Lemma 3.5).

The parameterized representations (3.39) and (3.24) were later used, in

combination with the Nelder-Mead algorithm to recover the values of parameters

λ and θ. Results are provided in Table 3.3 and Figure 3.6 for parameters. The

Chapter 3 Explicit Parameter-dependent Representations 69

Vector λ = (gK , gNa, V1, V2, V3, V4, V5, V6)
gK gNa V 1 V 2 V 3 V 4 V 5 V 6
36 120 50 60 35 60 60 30
36.00115 119.68690 49.99090 60.02785 35.00185 59.84273 59.99556 30.00437
36 120 50 60 35 60 60 30

x0 and vector θ = (gL, I)
x0 gL I
−60 0.3 0.1
−59.99236 0.29849 0.27877
−60.00067 0.2999493 0.1018595

Table 3.3: True (first row) and Estimated (second row and third row) of λ and
θ, and the initial value x0 by the representations (3.24) and (3.39), respectively.

time of calculations and the number of iterations are shown in Tables 3.4 and 3.5.

Equation (3.39) (3.24)
Time(minute) 18 21
Iterations 14352 18244

Table 3.4: Time and number of iterations on a standard PC in Matlab R2015a.

Equation (3.39) (3.24)
Time(second) 12 45
Iterations 2790 9690

Table 3.5: Time and number of iterations on GPU.

However, to achieve these results it was required to select different initial

points to start the estimation. We selected the initial points (10, 50, 10, 20, 10, 20,

35, 15), (22, 108, 30, 45, 25, 42, 45, 12) on CPU and (20, 109, 35, 49, 26, 47, 43, 20),

(26, 102, 40, 50, 25, 50, 50, 20) for the requirements of evaluating y by the repre-

sentations (3.39) and (3.24), receptively.

Chapter 3 Explicit Parameter-dependent Representations 70

Vector λ = (gK , gNa, V1, V2, V3, V4, V5, V6)
gK gNa V 1 V 2 V 3 V 4 V 5 V 6
20 109 35 49 26 47 43 20
36.04396 120.75294 50.02992 59.76529 34.98947 60.02058 60.22761 30.05980

x0 and vector θ = (gL, I)
x0 gL I
−59.988889 0.341330 −4.628210

Table 3.6: Initial (first row) and Estimated (second row) values of λ in the
above table by the representation (3.24). The estimated values of θ, and the
initial value x0 are in the below table. The least square error at the estimates

is 0.0009204794.

Vector λ = (gK , gNa, V1, V2, V3, V4, V5, V6)
gK gNa V 1 V 2 V 3 V 4 V 5 V 6
26 102 40 50 25 50 50 20
36.00115 118.91595 49.99954 60.00571 35.00677 59.98465 59.42014 30.02750

x0 and vector θ = (gL, I)
x0 gL I
−60.000684 0.300011 0.102571

Table 3.7: Initial (first row) and Estimated (second row) values of λ in the
above table by the representation (3.39). The estimated values of θ, and the
initial value x0 are in the below table. The least square error at these estimated

values is 0.01025706.

The least square error
∑N

i=0(y(ti)−ŷ(λ, ti))
2 was measured between y(t) and

ŷ(λ, t). Since there is deferences in numerical integration we notice that trajectories

of y(t) and ŷ(λ, t) are nearly coincide with maximum relative error e(t) = (ŷ(λ, t)−

y(t))/‖y‖∞,[t0,t0+∞] approximately 10−4 as it is shown in right panel of Figure

3.5. Nelder-Mead algorithm [86] played the role of estimation and the values of

reflection, expansion, contraction and shrinking parameters were set to 1, 2, 0.5

and 0.5, respectively. In order to assess potential computational advantage of

the proposed integral form of equation (3.39) we compared the time needed for

1000 evaluations of y(t) on CPU by (3.39) and improved Euler integration over the

interval [t0, t0 +T]. The total time of running 1000 times is accounted for the same

values of chosen parameter values for both of the integration forms. The results

are shown in Table 3.8. This experiment shows that the integral presentation of

equation (3.39) on CPU is approximately 10 times faster than improved Euler

integration.

Chapter 3 Explicit Parameter-dependent Representations 71

0 1 2 3 4 5 6 7 8 9
-4

-2

0

2

4

6

8

10

12
×10-4

0 1 2 3 4 5 6 7 8 9
-8

-6

-4

-2

0

2

4
×10-4

Figure 3.5: The values of relative error e(t) = (ŷ(λ, t)−y(t))/‖y‖∞,[t0,t0+∞] as
a function of t by the representations (3.24)(left panel) and (3.39)(right panel).

Number of steps
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

P
ar

am
et

er
s

0

20

40

60

80

100

120

140

gK

gNa

V6 V3

V5 V1
V4V2

Number of steps
0 5000 10000 15000

P
ar

am
et

er
s

-20

0

20

40

60

80

100

120

140

160

180

gNa

V6 V3
gK

V1V5V4V2

Figure 3.6: Estimated (blue) and true (red) values of the parameters gK , gNa,
V1, V2, V3, V4, V5, V6.

Eq. (3.39) Improved Euler method Ratio
1.13308 minutes 8.80552 minutes 9.977401

Table 3.8: Time for 1000 evaluations of y

3.4.3 Morris-Lecar system

Consider the following simple point model of neural membrane activity [84]:

ẋ = gCam∞(x)(x− ECa) + gKq(V + EK) + gL(x+ EL) + I

q̇ =
−1

τ(x)
q +

ω∞(x)

τ(x)

y = x,

(3.53)

Chapter 3 Explicit Parameter-dependent Representations 72

m∞(x) = 0.5

(
1 + tanh

(
x− V1

V2

))
ω∞(x) = 0.5

(
1 + tanh

(
x+ V3

V4

))
τ(x) = T0/

(
cosh

(
x+ V3

2V4

))
.

(3.54)

Here x is the measured voltage, q is the recovery variable. Parameters ECa, EK , EL

are the Nernst potentials of which the nominal values are assumed to be known:

ECa = 55.17, EK = −110.14, EL = 49.49; other parameters may vary from one

cell to another and thus are considered unknown. Assume that the model operates

in the oscillatory regime which corresponds to periodic solutions of (3.53). For

practically relevant values of T0, V3, V4 the integral

∫ t0+T

t0

− 1

τ(s)
ds < 0

where T is the period of oscillations. Given that x(·) is T -periodic, the variable q

can be expressed as:

q(t) = e
∫ t
t0
− 1
τ(x(s))

ds
q0 +

∫ t

t0

e
∫ t
z −

1
τ(x(s))

dsω∞(x(z))

τ(x(z))
dz

q0 =
(

1− e
∫ t0+T
t0

− 1
τ(x(s))

ds
)−1

∫ t0+T

t0

e
∫ t0+T
z − 1

τ(x(s))
dsω∞(x(z))

τ(x(z))
dz.

This leads the equations of (3.51) to be in the forms (3.10) and (3.8). Denoting

g(t, λ, [y]) = gCam∞(x)(x−ECa)+gKq(x+EK), Ψ(t, y) = (y(t), 1), and combining

parameters as θ = (gL, I), λ = (V1, V2, V3, V4, T0, gCa, gK) we can rewrite (3.53) in

the form of equation (3.11) with

A(y(t), t) =


0 y(t) 1

0 0 0

0 0 0

 .

For this system and given nominal parameter values, the period of oscillations

is T = 15.169, and hence for convenience the integration interval is chosen as

[0, 15.169]. In what follows, numerical evaluation of integrals and solutions of all

auxiliary differential equations was performed on equi-spaced grids with the step

Chapter 3 Explicit Parameter-dependent Representations 73

size of 0.0004. Figure 3.7 shows T-periodic trajectories of y(t) and ŷ(λ, t) by the

observer (3.39). The estimation of I is not the value of θ2 but rather is the sum

(I + ELgL) and gL = θ1 for the both observers (3.39) and (3.24).

0 5 10 15
-40

-30

-20

-10

0

10

20

30

Figure 3.7: T-periodic trajectories of y(t) (blue curve) and ŷ(λ, t) (dashed red
curve).

The parameterized representations (3.39) and (3.24) were later used, in

combination with the Nelder-Mead algorithm [86] to recover the values of param-

eters λ and θ. Results are provided in Table 3.10 and Figure 3.9 for parameters.

The time of calculations and number of iterations are shown in Table 3.9.

We selected the initial points (0, 0, 0,−4, 4.5,−0.5, 0), (−1,0.01,0.01, −8,

11, −1.7, 2.4) for the requirements of evaluating y by the representations (3.39)

and (3.24), receptively.

Equation (3.39) (3.24)
Time(minute) 8 46
Iterations 2661 12775

Table 3.9: Time and number of iterations on a standard PC in Matlab R2015a.

According to Theorem 3.6, explicit parameter-dependent representation

of the observed quantity, ŷ(λ, t), is defined by (3.39), where C = (1, 0, 0), χ =

col(x, θ), and the fundamental solution (3× 3)-matrices Φ(t, t0) and ΦA(t, t0) are

computed for the linear systems χ̇ = (A(y(t), t) − R−1(t)CCT)χ, Ṙ = −δR −

A(y(t), t)TR − RA(y(t), t) + CCT , and χ̇ = A(y(t), t)χ, respectively, by the Im-

proved Euler method for t ∈ [0, 15.169]. The value of δ was set as δ = 2, and

numerical approximations of matrices ΦA(t, t0) were used to compute the matrices

Chapter 3 Explicit Parameter-dependent Representations 74

R(t) in accordance with equation (3.29). The value of R(t0) in (3.29) was chosen

to be the unique solution of the Sylvester equation (3.35) (see Lemma 3.5).

0 2 4 6 8 10 12 14 16
-3

-2

-1

0

1

2

3
×10-5

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
×10-3

Figure 3.8: The values of relative error e(t) = (ŷ(λ, t)−y(t))/‖y‖∞,[t0,t0+∞] as
a function of t by the representations (3.24)(left panel) and (3.39)(right panel).

We noticed that the estimating by using (3.24) required to start with an

initial point closed enough to the real values of unknown parameters. The results

are shown in Table 3.10(second row) and the Figure 3.9(left panel).

Figure 3.8 shows the relative errors, e(t) = (ŷ(λ, t) − y(t))/‖y‖∞,[t0,t0+∞],

between the proposed numerical representations (3.39), (3.24) and simulated y(t)

(Runge-Kutta, step size 0.0004) for nominal parameter values. Since there is

deferences in numerical integration we notice that trajectories of y(t) and ŷ(λ, t) are

nearly coincide with maximum relative error e(t) = (ŷ(λ, t) − y(t))/‖y‖∞,[t0,t0+∞]

with approximately 10−5 as shown in Figure 3.8(right panel).

Vector λ = (gK , gCa, V1, V2, V3, V4, T0)
gK gCa V1 V2 V3 V4 T0

-2 -1.1 -1 15 -10 14.5 3
-1.75755 -1.08292 -0.98639 14.72194 -8.03302 14.53612 2.64769
-2 -1.1 -1 15 -10.00000 14.50000 3.00000

x0 and vector θ = (gL, I)
x0 gL I
21.96388 -0.5 10
21.96641 -0.44589 9.00839
21.96477 -0.49982 9.99345

Table 3.10: True (first row) and Estimated (second row and third row) of λ and
θ, and the initial value x0 by the representations (3.39) and (3.24), respectively.

Chapter 3 Explicit Parameter-dependent Representations 75

Number of steps
0 2000 4000 6000 8000 10000 12000

P
ar

am
et

er
s

-15

-10

-5

0

5

10

15

20

V4

T0

V1/V2
gCagK

V3

V −1

2

0 500 1000 1500 2000 2500

Number of steps

-15

-10

-5

0

5

10

15

20

P
ar

am
et

er
s

V4

T0

V3

gK V1/V2
V −1

2
gCa

Figure 3.9: Estimated(blue) and true(red) values of the parameters gK , gCa,
V1, V2, V3, V4, T0.

Eq. (3.39) Improved Euler method Ratio
2.21311 minutes 10.43818 minutes 4.71652

Table 3.11: Time for 1000 evaluations of y

We compared the time required for 1000 evaluations of y(t) in Matlab ex-

pressed as in (3.39) and then computed by the Improved Euler method over the

interval [t0, t0 + T]. The results are summarized in Table 3.11. This experiment

shows that evaluation of the proposed representation, (3.39), in Matlab on CPU is

approximately and on average 5 times faster than the Improved Euler integration.

Chapter 4

Approximating periodic solutions of linear

Integral Equations Based on the RBFs

Representations (3.11) and (3.10) involve integrals of linear ODEs of system (3.11).

Straightforward, evaluating of these integrals, albeit scalable, could still be com-

putationally demanding.

Computational improvements might be possible and are practically viable

if certain variables in the representations are replaced by their reasonable sparse

Radial Basis Function approximations.

One of the key steps justifying incorporation of relevant class of equations

specified by (3.8) into the setting focusing on (3.6) was an assumption that the

variable q(t; q0, λ, y) is expressible as a known function of parameters, initial con-

ditions, and t. For example, if q relates to a single first-order equation then such

function can be computed as follows:

q(t; q0, λ, y) = e
∫ t
t0
υ(y(τ),λ,τ)dτ

q0 + e
∫ t
t0
υ(y(τ),λ,τ)dτ×∫ t

t0

e
−

∫ τ
t0
υ(y(s),λ,s)ds

ω(y(τ), λ, τ)dτ

q0 = (1− e−
∫ t0+T
t0

υ(y(s),λ,s)ds)−1

∫ t0+T

t0

e−
∫ t0+T
z υ(y(s),λ,s)dsω(y(z), λ, z)dz.

(4.1)

If the original problem is governed by (3.8) then availability of q(t; q0, λ, y) is re-

quired in our explicit parameter-dependent representation proposed, as explained

in Chapter 3. One way to resolve the problem is to numerically evaluate all inte-

grals involved. This, however, may not always be optimal. An alternative could

76

Chapter 4 Approximating periodic solutions of linear equations 77

be to use computationally efficient approximations of q(t; q0, λ, y) instead.

A possible way to derive such approximations is to approximate the function

using some “well- behaved” approximants. “Well-behaved” here is understood as

a property that the derivatives of the approximating function could be controlled

in some sense.

A conventional approximation task is to construct a function q̂(t; q0, λ, y)

which coincides in some sense with given measurements (data) at the correspond-

ing locations (data sites). Normally an approximant is a continuous mapping from

Rd to R (d is the dimension of the data). If the region on which the data sites

from a uniform or a regular grid then the process is called grid or mesh data

approximation, otherwise, it’s called scattered data approximation.

To better control/regulate behaviour of the function between nodes one

may relax the approximation requirement at all or some nodes, and allow for some

errors there. We will discus this later in the chapter. Sections 4.1–4.3 introduce the

radial basis function (RBF) approximation of scattered data points. Section 4.4

presents a new algorithm for evaluating q(t, λ) with their RBF approximations in a

generic optimization routine for inferring the values of θ and λ. In the last section

the method is illustrated with an example involving the Morris–Lecar equations.

4.1 Scattered Data Approximation Problem

Definition 4.1.1. (Scattered Data approximation) Let X = {X1, X2, · · · , XN} ⊂

Rd, for those points, given pairwise data (Xi; q(Xi)), i = 1, · · · , N , where q : Rd →

R. The scattered data approximation problem is to find a function Sq : Rd → R

such that Sq(Xi) = q(Xi), for all or some i = 1, · · · , N , where Sq is called the

approximant to the data. If Sq(Xi) = q(Xi) for all i = 1, · · · , N , then the problem

is referred to as the scattered data interpolation.

Here Xi, i = 1, · · · , N are the measurements locations, and q(Xi) are the

corresponding target function values at these locations, and the data set is hence

the pairs (Xi, q(Xi)). A convenient approach for solving the scattered data ap-

proximation problem is assuming that the approximant Sq is a linear combination

Chapter 4 Approximating periodic solutions of linear equations 78

of certain functions, φk(X)1, k = 1, · · · , N , i.e.,

Sq(X) =
N∑
k=1

ωkφk(X), X ∈ Rd. (4.2)

Solving e.g. the interpolation problem under this assumption, requires that

Sq(Xi) = q(Xi); i = 1, · · · , N (4.3)

holds. Alternatively

Aω = q, (4.4)

where the entries of the matrix A are given by Ai,j = φj(Xi) where j, i = 1, · · · , N

and ω = [ω1, · · · , ωN], q = [q1, · · · , qN].

If the matrix A is non singular, the unique solution of the problem exists.

The non-singularity of the matrix A is guaranteed under some mild restrictions

i.e., constant shape parameters and usually by adding a low order polynomial

P (X)[81]: as e.g.,

Sq(X) =
N∑
k=1

ωkφk(X) + P (X), X ∈ Rd. (4.5)

4.2 Radial Basis Function and Approximation Prin-

ciple

Radial basis functions (RBFs) are traditional and powerful tools for the meshless

interpolation and approximation of scattered data. These functions are real-valued

functions which depend only on the distance from the fixed center point. More

precisely, let us consider an univariate function:

φ : [0,∞]→ R. (4.6)
1Basis functions are elements of a particular basis for a function space such that Radial basis,

polynomial basis and Fourier basis, where every continuous function in the function space can
be represented as a linear combination of basis functions.

Chapter 4 Approximating periodic solutions of linear equations 79

Then the radial basis functions Φc : Rd → R are defined as:

Φc(X) = φ(r) = φ(‖X −Xc‖), (4.7)

where Xc = {Xc1 , Xck , · · · , XcM} ⊂ Rd is a set of M different points which called

centers and ‖·‖ is some norm on Rd (typically the Euclidean norm). For this finite

set of centers, Φc can be defined at any point X ∈ Rd as constant at any given

distance from the centers, i.e.

‖X1‖ = ‖X2‖ ⇒ Φc(X1) = Φc(X2), X1, X2 ∈ Rd. (4.8)

Thus, Φc is radially (or spherically) symmetric around its center. Example of a

such function can be seen in Figure 4.1.

Figure 4.1: Example of RBF

The function φ can be termed as a basic function whereas Φc as a basis

function, where one single basic function generates all of the basis functions which

we have used in the expansion (4.2)[23]. Radial functions become especially useful

for applications as the approximation problem becomes insensitive to the dimen-

sion d of the space wherein the data sites are found [117]; the same univariate

function φ for all choices of d can be utilised, rather than having to work with the

Chapter 4 Approximating periodic solutions of linear equations 80

multivariate function φ (whose complexity grows together with the growing space

dimension d).

Table 4.1 presents some widely utilised globally supported radial basis func-

tions.

Infinitely smooth RBFs Functional Form, φ(r) Parameters
Plyharmonic Spline rk k > 0, k 6∈ 2N
Gaussian e−(αr)2 α > 0
Multiquadric(MQ) (1 + α2r2)k/2 k > 0, k 6∈ 2N, α > 0
Inverse multiquadric (1 + α2r2)k/2 k < 0, k 6∈ 2N, α > 0

Table 4.1: Some commonly used radial basis functions.

Since the Gaussian has comparatively high accuracy and is infinitely dif-

ferentiable, many authors have a preference to utilise this in the literature and

show the accuracy, stability and ease of implementation , for example, [33, 49, 89].

In this chapter, Gaussian function is regarded as our basic function too. The

Gaussian function is defined as follows:

φ(‖X −Xc‖2) = e−(α‖X−Xc‖)2 , (4.9)

where α, the shape parameter, has a huge influence on the approximation quality.

For the above presentations, different choices of shape parameters can lead to

different shapes of RBFs, from peak to flat.

Let X = (t, λ) ∈ Rd be a vector accommodating relevant measurement

parameters, i.e. t and λ. The centres Xc could be selected from the given data

samples or derived via clustering algorithms.

Let

Sq(X) =
M∑
j=1

ωjφ(‖X −Xcj‖), X ∈ Rd (4.10)

be an RBF approximation of q(t; q0, λ, y) or simply q(t, λ), where ωj are unknown

coefficients that need to be determined. It is well-known that, for a broad range

of φ(·), any continuous function on a bounded domain can be approximated by

sums (4.10) with arbitrary accuracy in Lp-norm, p > 1, subject to the choice of

parameters Xcj , ωj, and M [87].

Chapter 4 Approximating periodic solutions of linear equations 81

The coefficients, ω, are chosen by enforcing the interpolation condition (4.3)

at a set of nodes that typically coincides with the centres. Enforcing the interpo-

lation condition at M centres results in a N ×M linear system

Aω = q,
φ(‖X1 −Xc1‖2) · · · φ(‖X1 −XcM‖2)

φ(‖X2 −Xc1‖2) · · · φ(‖X2 −XcM‖2)
...

...
...

...

φ(‖XN −Xc1‖2) · · · φ(‖XN −XcM‖2)




ω1

ω2

...

ωM

 =


q1

q2

...

qN

 ,
(4.11)

where the number of rows is N �M . The N ×M matrix A is called the interpo-

lation matrix or the system matrix and consists of constants serving as the basis

of the approximation space.

The linear system of equations (4.11) can be solved by the Gauss elimination

method or the LU decomposition, but when the number of data samples exceeds

the number of sites, the approximation problem can be cast as the unconstrained

quadratic programming problem:

min ‖Aω − q‖2
2, (4.12)

where the objective function represents the L2−norm of the linear system (4.11)

and its solution is:

ω = (ATA)−1AT q. (4.13)

Practically, the quadratic error functionals demonstrated many weaknesses

including high sensitivity to error/outliers and the curse of dimensionality. To

remedy these L2−norm is replaced with L1−norms or fractional norms Lp(0 <

p < 1). This generalizes the optimization problem (4.12) to

min ‖Aω − q‖p (4.14)

for p = 1 or 0 < p < 1. One of the drawbacks of these approaches is an increase

in computational costs for optimization and loss of complexity. In 2016, Gorban

et al [41] developed a theory and basic universal data approximation algorithms

Chapter 4 Approximating periodic solutions of linear equations 82

(K-means, principal components, principal manifolds and graphs, regularized and

sparse regression), based on piece-wise quadratic error potentials of subquadratic

growth (PQSQ potentials). The development is presented by implementing a

new and universal framework to minimize arbitrary sub-quadratic error potentials

using an algorithm with guaranteed fast convergence to the local or global error

minimum. Thus solving (4.14) breaks down to a sequence of quadratic problems

(4.12). This enables us to consider (4.12) as a suitable problem for the purposes

of our case-study in which we focus on computational efficiency.

As mentioned earlier, the shape of the RBF depends on the shape parameter

α. When the shape parameter is too large or too small (which can not be easily

quantified in practice), the results lose credibility. For α large the system becomes

too ill-conditioned and hence unstable. Furthermore, even though a low value of

α (α −→ 0) can offer a well-conditioned linear system, the resultant solution is

also inaccurate, as affirmed by Driscoll and Fornberg in [28]. Such observations

possibly indicate that there should be a reliable region for their shape parameters

for different RBFs with shape parameters. In 1995, Schaback [96] stated that a

balancing point between accuracy and good condition exists, but both cannot be

guaranteed. Later, applying the Contour-Padé algorithm [36] and the RBF-QR

method [35] was proposed for a more stable management of flatter RBFs. Two

significant developments then occurred: Fasshauer and Mccourt’s [32] introduced

a stable method with flat Gaussian kernels and Fornberg, Larsson and Flyer’s

[34] extended the RBF-QR approach to three dimensions. Recently, in [15] a

Variably Scaled Kernels (VSK) method in order to achieve a reduction of the

condition number by treating the shape parameter as an extra space variable was

put forward. To date, the optimal shape parameter remains an unsolved problem

in RBF research.

To select xcs when the member of data sites is large, one can use clustering

algorithms such as e.g. K–Means. Its basic description for consistency is provided

in Section 4.3.

Chapter 4 Approximating periodic solutions of linear equations 83

4.3 K-Means Clustering Algorithm

Clustering involves the task of dividing data points into homogeneous clusters

so that items in the same class are as similar as possible and items in different

classes are as dissimilar as possible. Clustering can also be thought of as a form

of data compression, where a large number of samples are converted into a small

number of representative clusters. A loose definition of clustering could be the

process of organizing objects into groups whose members are similar in some way.

A cluster is therefore a collection of objects which are ‘similar’ between them and

are ‘dissimilar’ to the objects belonging to other clusters [112, 85].

K-means is one of the simplest unsupervised learning algorithms that solve

the well known clustering problem [45]. The procedure of the K-means algorithm

follows a simple and an easy way to classify a given data set through a certain

number of clusters (assume K clusters) fixed a priori. The main idea is to define

K centroids, one for each cluster. These centroids should be placed in a cunning

way because of different location causes different result. So, the better choice is

to place them as much as possible far away from each other. The next step is

to take each point belonging to a given data set and associate it to the nearest

centroid. When no points remain, the first step is completed. At this point we

need to re-calculate K new centroids for the clusters resulting from the previous

step.

Algorithm 1 K-means clustering

1. pick the number M of centres and randomly assign the data points tcp to M
subsets.

2. Use the procedure of minimizing the sum squared clustering function

J =
M∑
i=1

∑
p∈Sj

‖tcp − µj‖2
2 (4.15)

to end up with a partition of the data points intoM disjoint sub-sets or clus-
ters Sj containing Nj data points, where µj = 1

Nj

∑
p∈Sj tcp , j = 1, · · · ,M .

Algorithm 1 shows the main process of finding the centre points. The

algorithm calculates the nearest mean µj to each data point tcp , reassigns the

Chapter 4 Approximating periodic solutions of linear equations 84

data points to the associated clusters Sj, and then recomputes the cluster means

µj. The clustering process terminates when no more data points switch from one

cluster to another. Multiple runs can be carried out to find the local minimum

with lowest J .

For further information on clustering and clustering algorithms, see [57, 19,

53, 52].

4.4 Parameter Inference with Approximated Vari-

ables of Linear Equations by The Radial Basis

Approximation

The method works with points scattered throughout the domain of interest, and

the RBF approximation of q is a linear combination of RBFs centred at the scat-

tered data points of X as follow:

Sq(X) =
M∑
j=1

ωje
−(α‖X−Xcj ‖2)2 , (4.16)

where Xcj = (tcj , λcj), j = 1, · · · ,M and λcj are the M points of the parameters

λ.

The coefficients ω are determined by Equation (4.13) and then the approx-

imant (4.16) is evaluated:

Sq(ti, λ) =
M∑
j=1

ωje
−(α‖(ti−tcj ,λ−λcj ‖2)2 (4.17)

for all i = 1, · · · , N .

To calculate M , k values of the m parameters, λ, are randomly selected,

implying M = km; therefore M clusters for (t, λ) are formed.

The identification procedure of the RBF includes estimating all or some of

parameters of the system. Using a nonlinear parameter optimization algorithm

to estimate parameters would not involve a large amount of computation because

it never invokes integrals specified by Equation (4.1) even when the number of

Chapter 4 Approximating periodic solutions of linear equations 85

the unknown parameters is large. The following heuristics is proposed to replace

repeat evaluations (4.1) of q(t, λ) with their RBF approximations in a generic

optimization routine for inferring the values of θ and λ.

Algorithm 2 Parameter inference with approximated variables

1. Initialization: set λ̂ as an initial guess of λ.

2. A set of M samples Xi = (tni , λmi) is randomly drawn from a relevant
domain. The domain, in general, may depend on λ̂. The values of tni , λmi
are taken from their relevant grids.

3. Group spatially close points using a suitable clustering algorithm (e.g. [57,
19, 53, 52]), and set the centers Xcj as the centres of these clusters.

4. Determine parameters ωj in (4.10) as the minimizer of
∑N

i=1(S(Xi) −
q(ti, λi))

2, N > 0. Note that adjustments of the shape parameter, α, might
be needed to ensure good approximation.

5. Using representation (3.39) and approximant (4.10) define:

ỹ(λ̂, t) = F (t, t0, θ, λ̂, q̂(λ̂, t))

q̂(λ̂, t) =
∑M

k=1 ωkφ(‖(t, λ̂)− (tck , λck)‖).
(4.18)

The function ỹ(λ̂, t) is an approximation of ŷ(λ̂, t).

6. Use ỹ(λ̂, t), to produce a refined guess of λ̂ and return to Step 1 if required.

In order to study the efficiency of the algorithm with regard to grids of

the points for t and λ, it will be useful to compare the results with that for the

representation ŷ(λ̂, t) in Equation (3.39) defined in chapter 3.

In the next section we illustrate an application the method with Algorithm

2 to the problem of parameter estimation for the Morris-Lecar system.

4.5 Experimental Results of RBF Approximation

To show feasibility of RBF approximations in this problem we repeated the ex-

periment for the Morris–Lecar system but this time with the variable q replaced

with its RBF approximation inside the optimization routine (Nelder-Mead). To

produce such approximations we followed steps of Algorithm 2.

Chapter 4 Approximating periodic solutions of linear equations 86

Recall that the Morris–Lecar equation is:

ẋ = gCam∞(x)(x− ECa) + gKq(V + EK) + gL(x+ EL) + I

q̇ =
−1

τ(x)
q +

ω∞(x)

τ(x)

(4.19)

where

m∞(x) = 0.5

(
1 + tanh

(
x− V1

V2

))
ω∞(x) = 0.5

(
1 + tanh

(
x+ V3

V4

))
τ(x) = T0/

(
cosh

(
x+ V3

2V4

))
.

(4.20)

Parameters ECa, EK , EL are the Nernst potentials of which the nominal

values are assumed to be known: ECa = 55.17, EK = −110.14, EL = 49.49; other

parameters may vary from one cell to another and thus are considered unknown.

The variables q and x, numerical evaluations of integrals and numerical

solutions, are generated by the scheme of 4th order Runge–Kutta method with

step size δt = 0.002. This data could be considered as an actual solution of the

system for comparison purposes.

Note that the variable q depends only on 3 components of the vector λ,

i.e. T0, V3, and V4. And hence all steps of the algorithm related to approximation

apply to these 3 relevant components and the variable t only, which resultsM = 8.

We considered an extremely sparse setting, in which each of the three parameters

have been sampled at 2 points per each relevant sample of t. The values of t where

chosen from the grid of 0.002-spaced points in [0, 15.1692] (N = 7586 points in the

grid). The shape parameter α was set to 0.2.

In Table 4.2, for different number of samples of parameters, we check how

well Sq(ti, λ) approximates q(ti, λ) as a function of ti at the same sample of pa-

rameters using the following simple criterion:

LS =
N∑
i=1

(q(ti, λ)− Sq(ti, λ))2. (4.21)

Chapter 4 Approximating periodic solutions of linear equations 87

Samples M Least Square Error Time(seconds)
2 8 0.53065 0.25031
4 64 0.31278 1.1116
7 343 0.31417 4.54909
10 1000 0.39148 14.19380
14 2744 0.14929 37.04459
18 5832 0.17759 87.18906

Table 4.2: The least square error LS =
∑N

i=1(q(ti, λ) − Sq(ti, λ)))2 and the
consumed time of RBFs interpolating for different number of samples of param-

eters.

0 2 4 6 8 10 12 14
-0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.2: The data curve (blue) and the fitted curve (red) of q by the
interpolation (4.16).

In order to judge the efficiency of the approach we run the algorithm 1000

times and recorded empirical errors between λi and their estimates λ̂i, and com-

puted their L2 distances as:

d1(ν) =

√√√√ 7∑
i=1

(λi − λ̂i(ν))2, (4.22)

where ν = 1, · · · , 1000 is the number of the experiment. Initial guesses for λ

were selected randomly in the n-cube [0, 1] + λi, i = 1, 2, · · · , 7, where λi are the

nominal values. Figure 4.3 shows histograms of (4.23), (4.22) at the initial step of

the algorithm.

Chapter 4 Approximating periodic solutions of linear equations 88

To see how well Sq(ti, λ̂) approximates q(ti, λ) as a function of ti the fol-

lowing simple criterion has been used:

LS =
N∑
i=1

(q(ti, λ)− Sq(ti, λ̂))2. (4.23)

Figure 4.4 shows histograms of the distributions of distances between λ and

λ̂ and the least square errors after the application of Nelder-Mead method with

Algorithm 2 used to approximate q(t, λ̂). We observe a pronounced shift of the

histograms to the left, where they concentrate around zero. This contrasts sharply

with the initial distributions of errors seen in Figure 4.3.

The overall estimation accuracy, including parameters x0, gL, I has also im-

proved dramatically. Initially the estimates of (x0, θ) = (x0, gL, I) varied widely in

the intervals [0.0027, 0.2393], [0.1269, 1.0254], [0.0632, 13.3767], respectively. After

the optimization, the distributions of

d2(ν) =

√√√√ 2∑
i=1

(θi − θ̂i(ν))2 + (x0 − x̂0(ν))2 (4.24)

shrunk and shifted to the left. The corresponding histograms are shown in Figure

4.5.

Based on the results shown in Figure 4.4 can we conclude that RBF ap-

proximation is a viable alternative method to solve linear ODEs.

For the 7-parameter example, we showed that the RBF approximation

method coupled with the Nelder–Mead algorithm offers reasonably accurate esti-

mations for parameters. However, for a computationally demanding Morris–Lecar

with 7 parameters, we noticed a drop in accuracy; this can be attributed to in-

creased errors of estimation of (4.1). A list of other particular issues when using

RBF approximation is summarized below.

1. The set of samples is randomly selected from the training set and the posi-

tions of the centers of the basis functions are set according to the samples.

The initial selection may affect the outcomes of K-means clustering.

Chapter 4 Approximating periodic solutions of linear equations 89

Figure 4.3: Histograms of the distributions of d(ν), ν = 1, · · · , 1000 (left
panel), and least square errors LS =

∑N
i=1(q(ti, λ) − Sq(ti, λ̂))2 (right panel)

prior to any estimation.

Figure 4.4: Histograms of the distributions of d1(ν), ν = 1, · · · , 1000 (left
panel) and LS =

∑N
i=1(q(ti, λ)−Sq(ti, λ̂))2 (right panel) after optimization. To

see finer detail of the tails zoomed-in version of the histograms are shown under
the original ones, respectively.

2. The matrix A of the linear system may become ill-conditioned for large

samples of parameters.

3. The shape parameter α for Gaussian basis function was determined ran-

domly; it provided acceptable solutions and estimation for parameters. How-

ever, from the experiment, it is difficult to say that the solutions are accrate

enough representations of the linear part in the Morris–Lecar system; this is

illustrated with the “nonoptimal” estimation of the parameters λ in Figure

4.4.

Chapter 4 Approximating periodic solutions of linear equations 90

Figure 4.5: Histogram of the distribution of the distances d2(ν), ν =
1, · · · , 1000 for the real and the estimated values of parameters gL, I and the

initial point x0.

These, however, open possibilities for future work and motivates develop-

ments of efficient methods for solving linear ODEs. These methods, RBF-based

or not, will have major influence on speed, efficiency, accuracy and robustness of

the approach overall.

Chapter 5

Conclusion, Discussion and Future

Challenges

5.1 Conclusion

In this thesis, instead of finding numerical solutions of IVPs and matching the re-

sults to an observed data, we searched for a representation of the problem as in the

general form (3.12). In Chapter 3, we presented two methods for computationally

efficient and explicit parameter-dependent representation of periodic solutions of

systems of nonlinear ODEs. These methods are rooted in the ideas from adap-

tive observers theory. In this work we focused on two “canonical” observer forms

determining the final representations. Different integral representations can be ob-

tained for other observer structures, including e.g. [69], followed by replacement

of condition (7) in Assumption 1 with the requirement of uniform persistency of

excitation of corresponding terms.

The computational advantage of the method is in a possible parallel im-

plementation of calculations. CPUs and GPUs have significantly different archi-

tectures. These different architectures are optimized for different tasks. GPU can

handle large amounts of data in many streams simultaneously, and significantly

different techniques are required to program GPUs. These different techniques

include new programming languages, modifications to existing languages, such as

CUDA, and new programming paradigms that are better suited to expressing a

computation as a parallel operation to be performed by many stream processors.

In addition to offering scalability and making use of parallel computations, the

91

Chapter 4 Approximating periodic solutions of linear equations 92

method offers reduction of dimensionality of the problem due to incorporating

linearly parameterized part of the model into internal variables of the proposed

representations. These internal variables are uniquely determined by parameters

entering the model nonlinearly and are computed as a part of the representation.

The viability of the methods was tested in two examples. The method per-

formed well in the example problems involving parameter estimation for Hodgkin–

Huxley and Morris–Lecar equations. We have also shown that the proposed ap-

proach greatly benefits from parallel implementation of explicit numerical integra-

tion involved. It would be interesting to see if the same approach could be applied

to a broader range of systems.

An interesting possibility to further improve computational efficiency of the

approach is to invoke RBF approximations in order replace numerical derivation of

some auxiliary integrals in the scheme. Viability of these combined approaches in

this setting has been demonstrated with a numerical example. We conclude that

overall, despite explicit numerical integration of (4.1) could provide better preci-

sion than the RBF approximation, the RBF approximation method still delivers

feasible accuracy at a reduced computational cost. In this latter case we observed

that accuracy of the estimation depends significantly on the choice of initial condi-

tions. The smaller distance from “nominal values” gives a better accuracy. Dealing

with this issue is a possible direction of my future study.

Other future research venues include the study of this technique as an ef-

fective scheme for the surface representation of large sets of scattered data and

parameters. We have not analyzed the theoretical properties of the RBF approxi-

mation for the one-dimensional of linear equation of Morris–Lecar problem. Global

RBF approximations as the ones used here are competitive for problems in one

or two space dimensions, but the computational cost can become prohibitive for

higher dimensional problems.

5.2 Discussion and Future Challenges

There are several issues that deserve further study.

Chapter 4 Approximating periodic solutions of linear equations 93

• It is important to understand the influence of the scaling parameters we

arrange for estimation and how to estimate them for a given data set.

• One should be aware of the possible misspecification of the models. Increas-

ing the model complexity might deteriorate the estimates, due to that the

problem may become ill-conditioned.

• An automated procedure for finding initial estimates of parameters and state

variables for the procedure would improve applicability of the overall ap-

proaches. This, however, is a general issue in many optimization scheme.

Moreover, particular improvements are required about using RBF approx-

imation method for solving linear differential equations. Chapter 4 of this thesis

is limited to the Gaussian RBF. This might be extended to other types of RBFs,

such as the multiquadric and inverse multiquadric. Another extension to this work

is to use radial basis neural networks. Further development can be made on how

to choose/find the best shape parameter which could improve the approximation.

The first future study is to apply an interpolation technique based on RBFs

proposed and implemented by Usta and Levesley in 2010 [109] for interpolating

high-dimensional functions. Their study introduced a new quasi-multilevel sparse

interpolation (Q-MuSIK); the algorithm is generally superior to the algorithm of

multilevel sparse kernel-based interpolation (MuSIK) in terms of run time in high-

dimensional interpolation problems. This method yields a solution directly with

no need to solve large algebraic systems.

We will try to solve linear ODEs with Q-MuSIK by considering the unknown

parameters ϑ instead of xxx. Even though we introduced two representations of

solutions of nonlinear ODEs, we still would need an alternative method like Q-

MuSIK method to solve linear ODEs. This method may provide an interpolated

data which, then, may improve the estimation of parameters.

Another interesting direction for solving linear ODEs to use what is called

“Magic Points”. Empirical Magic Point Interpolation method has been developed

in [39] in 2017 by Maximilian et al. to approximate parametric integrals of the

form

I(hϑ) =

∫
Ω

hϑ(z)dt, for ϑ ∈ Θ, z ∈ Ω (5.1)

Chapter 4 Approximating periodic solutions of linear equations 94

Magic point integration is a quadrature rule for integrating parametric functions,

where the interpolation nodes are chosen in a precomputation phase according to

a set of integrands hϑ(z) [73]. This set of integrands is associated with Θ as follow:

U = {hϑ : Ω→ R|ϑ ∈ Θ} (5.2)

For M ∈ N, a mapping IM defined from U to a tensor is denoted by

IM(hp)(ϑ, z), and the Magic Point Integration withM points is denoted by IM(hp)(z).

The purpose of this study is to test the empirical interpolation process in well-

documented situations in order to first measure where magic points, z∗1 , z∗2 , · · · , z∗M
∈ Ω, stand with respect to some optimal results. In other words, if IM denotes the

Magic Point Integration with M points, the algorithm chooses uM as the function

in the set U which is worst represented by the approximation with the previously

identified M − 1 magic points:

uM = argmax
u∈U
‖u− IM(z)‖∞ (5.3)

and the Mth magic point is defined:

z∗M = argmax
z∈Ω
‖uM(z)− IM(uM)(z)‖∞ (5.4)

Hence, for m = 1, 2, · · · ,M , the integral presented by linear combinations snap-

shot integrands hp∗m with coefficients βm1 , βm2 , · · · , βmM is defined:

IM(h)(ϑ) =
M∑
m=1

hp(z
∗
m)

M∑
j=1

βmj

∫
Ω

hp∗m(z)dz (5.5)

where p∗ ∈ Θ identifying uM in (5.3) are recalled as magic parameters.

This final equation shows that Magic Point Integration is an interpolation

method for parametric integrals in the parameter space.

This study shows that under suitable analyticity conditions, the approxi-

mation error of Magic Point Integration decays exponentially in M [39], whereas

standard integration routines suffer from the curse of dimensionality of the inte-

gration domain.

Chapter 4 Approximating periodic solutions of linear equations 95

Our next test, then, is to employ this method to integrate linear ODEs over

the time interval [t0, t0 + T].

Appendix A. Auxiliary Technical Results

Lemma .1. Consider ẏ = k(t)y + u(t) + d(t), k, u, d : R≥t0 → R, u ∈ C1, d ∈ C0,

and let max{|u(t)|, | ˙u(t)|} ≤ B, |d(t)| ≤ 4ξ, |k(t)| ≤ ρ. Finally, let T, ε be a

non-negative real numbers such that T >
√
ε. Then

‖y‖∞,[t0,t0+T] ≤ ε⇒ ‖u‖∞,[t0,t0+T) ≤ 2
√
ε(eρ

√
ε +B) +4ξ, ∀ t ≤ t0 + T.

Proof. Let L be an arbitrary element of [0, T]. Note that for all t ≥ t0 + L the

variable y(t) can be expressed as:

y(t) = y(t− L)e
∫ t
t−L k(τ)dτ +

∫ t

t−L
e
∫ t
τ k(τ1)dτ1(u(τ) + d(τ))dτ.

According to the mean value theorem there is a τ ′ ∈ [t− L, t]:

y(t)− y(t− L)e
∫ t
t−L k(τ)dτ = L e

∫ t
τ ′ k(τ1)dτ1(u(τ ′) + d(τ ′))

⇒ y(t)e−
∫ t
τ ′ k(τ1)dτ1 − y(t− L)e

∫ τ ′
t−L k(τ)dτ = L (u(τ ′) + d(τ ′))

⇒ |y(t)e−
∫ t
τ ′ k(τ1)dτ1|+ |y(t− L)e

∫ τ ′
t−L k(τ)dτ | ≥ L |u(τ ′) + d(τ ′)|

Given that:

|e
∫ τ ′
t k(τ1)dτ1| ≤ |e

∫ τ ′
t ρdτ1| , eρ(τ ′−t)

⇒ |e−
∫ t
τ ′ k(τ1)dτ1| ≤ eρ(τ ′−t) ≤ eρL

⇒ |e
∫ τ ′
t−L k(τ1)dτ1| ≤ |e

∫ τ ′
t−L ρdτ1| , eρ(τ ′−(t−L))

≤ eρ(τ ′−(t−L)) ≤ eρL

96

Appendix A 97

and invoking the mean value theorem we conclude that ∃ τ ′′ ∈ [τ ′, t]:

|u(t)| = |u(τ)− u(τ) + u(t)|

= |u(τ ′) + u′(τ ′′)(t− τ ′)− d(τ ′) + d(τ ′)|

≤ |u(τ ′) + d(τ ′)|+BL+4ξ

⇒ |u(τ ′) + d(τ ′)| ≥ |u(t)| −BL−4ξ

Hence

|u(t)| ≤ BL+4ξ +
2 ε

L
eρL, ∀ t ≤ t0 + L

Given that L can be chosen arbitrary in the interval [0, T], we let L =
√
ε, and

thus |u(t)|2 ε√
ε
eρ
√
ε+ ≤ BL+4ξ.

Finally, given that |u̇(t)| ≤ B for all t ∈ [t0, t0 + T] including in the interval

[t0, t0 +
√
ε], we conclude that

|u(t)| ≤ 2
√
ε(eρ

√
ε +B) +4ξ, ∀ t ≤ t0 + T

Corollary .2. Consider ẏ = ky + u(t) + d(t), k ∈ R, u, d : R≥t0 → R, u ∈ C1, d ∈

C0, and let max{|u(t)|, | ˙u(t)|} ≤ B, |d(t)| ≤ 4ξ. Finally, let T, ε be a non-negative

real numbers such that T >
√
ε. Then

|y|∞,[t0,t0+T] ≤ ε⇒ |u|∞,[t0,t0+T) ≤ 2
√
ε(1 + e|k|

√
ε +B) +4ξ, ∀ t ≤ t0 + T.

Proof. Let L be an arbitrary element of [0, T]. Noticing that y(t) for t ≥ t0 + L,

L > 0, can be expressed as: y(t) = y(t − L)ekL +
∫ t
t−L e

k(t−τ)(u(τ) + d(τ))dτ and

using the mean value theorem we obtain:

y(t)− y(t− L)ekL = L ek(t−τ ′)(u(τ ′) + d(τ ′)), τ ′ ∈ [t− L, t].

Hence ε(1 + ekL) ≥ Lek(t−τ ′)(|u| − LB −4ξ), and

4ξ + LB +
ε(1 + ekL)

Lmin{1, ekL}
≥ 4ξ + LB +

ε(1 + ekL)

Lmin{1, ek(t−τ ′)}
≥ |u(t)|.

Appendix A 98

Given that L can be chosen arbitrarily in the interval [0, T] we let L =
√
ε and

thus

|u(t)| ≤
√
ε(1 + ek

√
ε) max{1 + e−k

√
ε}+B

√
ε+4ξ ≤

√
ε(1 + e|k|

√
ε +B) +4ξ

for all t ∈ [t0 +
√
ε, t0 + T]. Finally, given that |u̇(t)| ≤ B for all t ∈ [t0, t0 + T],

including in the interval t ∈ [t0, t0 +
√
ε], we include that

|u(t)| ≤
√
ε(1 + e|k|

√
ε +B) +4ξ

for all t ∈ [t0, t0 + T].

Proof of Lemma 3.1

Let us rewrite the system (3.13) as

ẏ = CT χ̇ = χ̇1

= α1(t)χ1 + β(t)χ̃+ u1(t) + d1(t)
(6)

˙̃χ = A∗0(t)χ̃+ α̃(t)χ1 + b(t)u1(t)− b(t)u1(t) + ũ(t) + d̃(t)

= A∗0(t)χ̃+ α̃(t)y + b(t)u1(t) +G(t)u(t) + d̃(t)
(7)

where G(t) = (−b(t) I`−1) , α̃(t) = col(α2(t), . . . , α`(t)), β(t) = (β1(t), . . . , β`(t)),

d̃(t) = col(d2(t), . . . , d`(t)) and χ̃ = col(χ2, . . . , χ`).

Let ‖y(t)‖∞,[t0,t0+T] ≤ ε and denote e(t) = β(t)χ̃+ u1(t).

According to Lemma .1, there are v1, v2 ∈ K such that ‖e(t)‖ = ‖β(t)χ̃+u1(t)‖ ≤

v1(ε) + v2(4ξ) for all t ∈ [t0, t0 + T].

Using the notation above one obtains:

˙̃χ = (A∗0(t)− b(t)β(t))χ̃+ α̃(t)y +G(t)u(t) + b(t)e(t) + d̃(t)

= Λ(t)χ̃+ α̃(t)y +G(t)u(t) + b(t)e(t) + d̃(t).
(8)

Therefore,
‖u1(t) + h(t)‖ = ‖u1(t) + β(t)χ̃− β(t)χ̃+ h(t)‖

≤ ‖u1(t) + β(t)χ̃‖+ ‖β(t)χ̃− h(t)‖.

Appendix A 99

The solutions of (3.15) and (8) are:

z(t) = ΦΛ(t, t0)z0 +

∫ t

t0

ΦΛ(t, τ)G(τ)u(τ)dτ =

∫ t

t0

ΦΛ(t, τ)G(τ)u(τ)dτ,

χ̃(t) = ΦΛ(t, t0)χ̃0 +

∫ t

t0

ΦΛ(t, τ)(α̃(τ)(τ)y +G(τ)u(τ) + b(τ)e(τ) + d̃(τ))dτ.

Hence

∫ t
t0

ΦΛ(t, τ)G(τ)u(τ))dτ = χ̃(t)− ΦΛ(t, t0)χ̃0 −
∫ t
t0

ΦΛ(t, τ)(α̃(τ)y + b(τ)e(τ) + d̃(τ))dτ

Since the system ż = Λ(t)z is uniformly exponentially stable, there are D, k ∈ R>0

such that ‖Φ(t, t0)‖ ≤ De−k(t−t0).

Therefore,

‖β(t)χ̃(t)− β(t)z(t)‖ = ‖β(t)ΦΛ(t, t0)χ̃0 − β(t)

∫ t

t0

ΦΛ(t, τ)(M1y + b(τ)e(τ) + d̃(τ))dτ‖

≤M2De
−k(t−t0)‖χ̃0‖+

DM2

k
(1− e−k(t−t0))(M1ε+M3(v1(ε)

+ v2(4ξ)) +4ξ)

Noticing that h(t) = β(t)
∫ t
t0

ΦΛ(t, τ)Gu(τ)dτ , denoting κ(ε) = 2
DM2

k
(M1ε+

M3v1(ε)) + v1(ε), κ2(4ξ) = 2
DM2

k
(4ξ +M3v2(4ξ)) + v2(4ξ), and letting

t′(ε, χ0) = t0 +
1

k
ln

(
DM2‖χ0‖

ε

)

we conclude that there is a t′(ε, χ0) ≥ t0 such that

‖u1(t) + h(t)‖∞,[t0,t0+T] = κ(ε) + ε+ κ2(4ξ)

≤ κ1(ε) + κ2(4ξ)

for all t ∈ [t′(ε, χ0), t0 + T] : T is sufficiently large to satisfy t0 + T > t′(ε, χ0).

Appendix A 100

Noticing that if d(t) ≡ 0, then y ≡ 0 ⇒ ẏ ≡ 0 and we obtain that ∃ an

initial point P ∈ R:

e(t) = β(t)χ̃+ u1(t)

= β(t)ΦΛ(t, t0)P + β(t)

∫ t

t0

ΦΛ(t, τ)Gu(τ)dτ + u1(t)

= β(t)ΦΛ(t, t0)P + h(t) + u1(t)

then from equation (6) we get e(t) = 0 which ensures that (3.16) holds.

Proof of Corollary 3.2

Let us rewrite the system (3.18) as

ẏ = CT
1 ẋ = ẋ1

= α1(t)y + C̃χ̃+ u1(t) + d1(t)

˙̃x = Ã0x̃+ α̃x1 + bu1(t)− bũ(t) + d̃(t)

= Ã0x̃+ α̃(t)y + bu1(t) +Gu(t) + d̃(t)

where α̃ = col(α2, . . . , αn), C̃1 = col(1, 0, · · · , 0), d̃(t) = col(d2(t), . . . , d`(t)), and

G(t) = (−b In−1), Ã0 =

 0 In−2

0 0

 .

Let ‖y(t)‖∞,[t0,t0+T] ≤ ε and denote e(t) = C̃T
1 x̃+ u1(t).

According to Corollary .2, there are v1, v2 ∈ K such that ‖e(t)‖ = ‖C̃T
1 x̃+u1(t)‖ ≤

v1(ε) + v2(4ξ) for all t ∈ [t0, t0 + T].

Using the notation above we obtain:

˙̃x = (Ã0 − bC̃T
1)x̃+ α̃(t)y(t) +Gu(t) + be(t) + d̃(t) (9)

Matrix Ã0 − bC̃T
1 = Λ is Hurwitz, and hence there are D, k ∈ R>0 such that

‖eΛ(t−t0)‖ ≤ De−k(t−t0).

Appendix A 101

Therefore

‖C̃T
1 x̃(t)− C̃T

1

∫ t

t0

eΛ(t−τ)Gu(τ)dτ‖ ≤De−k(t−t0)‖x̃(t0)‖+
D

k
(‖a‖ε+ ‖b‖(v1(ε)

+ v2(4ξ)) +4ξ).

Noticing that z1 = C̃T
1

∫ t
t0
eΛ(t−τ)Gu(τ)dτ , denoting κ(ε) = 2D

k
(‖a‖ε + ‖b‖v1(ε) +

v1(ε), κ2(4ξ) = 2D
k

(4ξ + ‖b‖v2(4ξ)) + v2(4ξ), and

t′(ε, x0) = t0 +
1

k
ln

(
D‖x0‖
ε

)

we can conclude that there is a t′(ε, x0) ≥ t0 such that

‖z1(τ) + u1(τ)‖∞,[t0,t0+T] ≤ κ(ε) + ε+ κ2(4ξ) = κ1(εκ2(4ξ)).

for all t ∈ [t′(ε, x0), t0 +T], providing that T is sufficiently large to satisfy t0 +T >

t′(ε, x0). Noticing that y(t) ≡ 0⇒ e(t) ≡ 0 ensures that (3.20) holds too.

Appendix B. Parallel Prefix Sum

Algorithm for Integral Computation

Consider the finite integral defined over the interval [t0, t0 + T]:

I =

∫ t0+T

t0

u(τ, λ, y)dτ, (10)

and included in the explicit solution form (3.12).

In many practical situations, we do not have a formula for the integrand,

and in fact the value of u may only be known at a finite set of N data points, i.e

(t0, u0), (t1, u1), · · · , (tN−1, uN−1)

Matlab has commands for automatically computing “cumulative integrals”. These

are cumtrapz and trapz which take the same kind of input arguments, i.e. arrays of

ti and u(ti) values, and outputs a sequence of values approximating the cumulative

integral for u from t0 up to t0, t1, · · · , tN−1, for example, cumsum results in

[u0, (u0 + u1), · · · , u0 + u1 + · · ·+ uN−1] (11)

Prefix sum scan offers possibilities to invoke parallel processes to speed up

the calculations. One way to implement (11) is to add term sequentially. An

alternative is the so called parallel scan algorithm which which we describe in

detail below.

The sequential prefix sum of a sequence of N values is a new sequence of

N values where the value at position i is the sum of all the values in the input

sequence up to position i. If the sum includes the input value at position i, it

is an inclusive prefix sum. Otherwise, it is an exclusive prefix sum. Algorithm 3

102

Appendix B 103

shows sequential implementation computes the inclusive prefix sum of the values

in array u and stores the result back into the output array sum:

Algorithm 3 Sequential Implementation of prefix sum of order O(N).
sum[0] = u[0]
for i from 0 to N1 do
sum[i] = sum[i-1] + u[i]

This algorithm performs O(N) computations on N data. Due to the loop-

carried dependency, each iteration can only be executed after the previous iteration

has finished, making the code inherently sequential. However, several approaches

for computing prefix sums in parallel are known [13]. The order of their computa-

tional complexity is significantly less than O(N). Algorithm 4 and Figure 1 show

prefix sum computations of order log2(N); all the commutations are executed in

parallel.

Algorithm 4 Parallel prefix computation of order log2(N).
for j from 0 to (log2(N)− 1)
in parallel for k = 0 to N − 1 by 2j

u[j + 2k+1 − 1] = u[j + 2k − 1] + u[j + 2k+1 − 1]

Figure 1: Prefix sum on array of eight elements.

Bibliography

[1] Abarbanel, H. D., Brown, R., Sidorowich, J. J., and Tsimring, L. S. (1993).

The analysis of observed chaotic data in physical systems. Reviews of modern

physics, 65(4):1331.

[2] Anderson, E. J. and Ferris, M. C. (2001). A direct search algorithm for op-

timization with noisy function evaluations. SIAM Journal on optimization,

11(3):837–857.

[3] Ascher, U. M., Mattheij, R. M., and Russell, R. D. (1994). Numerical solution

of boundary value problems for ordinary differential equations, volume 13. Siam.

[4] Astolfi, A., Karagiannis, D., and Ortega, R. (2007). Nonlinear and adaptive

control with applications. Springer Science & Business Media.

[5] Astolfi, A. and Ortega, R. (2003). Immersion and invariance: A new tool for

stabilization and adaptive control of nonlinear systems. IEEE Transactions on

Automatic control, 48(4):590–606.

[6] Aström, K. J. and Murray, R. M. (2010). Feedback systems: an introduction

for scientists and engineers. Princeton university press.

[7] Banks, H., Dediu, S., and Ernstberger, S. L. (2007). Sensitivity functions and

their uses in inverse problems. Journal of Inverse and Ill-posed Problems jiip,

15(7):683–708.

[8] Banks, H. T., Robbins, D., and Sutton, K. (2012). Theoretical foundations for

traditional and generalized sensitivity functions for nonlinear delay differential

equations. Math. Biosci. Eng. CRSC-TR12-14.

104

Bibliography 105

[9] Bastin, G. and Dochain, D. (1990). On-line Estimation and Adaptive Control

of Bioreactors. Elsevier.

[10] Bastin, G. and Gevers, M. (1988). Stable adaptive observers for nonlinear

time-varying systems. IEEE Trans. on Automatic Control, 33(7):650–658.

[11] Baudin, M. (2009). Nelder mead user’s manual.

[12] Besançon, G. (2000). Remarks on nonlinear adaptive observer design. Systems

& control letters, 41(4):271–280.

[13] Bilgic, B., Horn, B. K., and Masaki, I. (2010). Efficient integral image com-

putation on the gpu. In Intelligent vehicles symposium (IV), 2010 IEEE, pages

528–533. IEEE.

[14] Bock, H. G., Kostina, E., and Schlöder, J. P. (2007). Numerical methods

for parameter estimation in nonlinear differential algebraic equations. GAMM-

Mitteilungen, 30(2):376–408.

[15] Bozzini, M., Lenarduzzi, L., Rossini, M., and Schaback, R. (2014). Inter-

polation with variably scaled kernels. IMA Journal of Numerical Analysis,

35(1):199–219.

[16] Bryan, K. and Shibberu, Y. (2005). Penalty functions and constrained opti-

mization. Dept. of Mathematics, Rose-Hulman Institute of Technology. http://

www. rosehulman. edu/˜ bryan/lottamath/penalty. pdf.

[17] Buhry, L., Saighi, S., Giremus, A., Grivel, E., and Renaud, S. (2008). Param-

eter estimation of the hodgkin-huxley model using metaheuristics: application

to neuromimetic analog integrated circuits. In Biomedical Circuits and Systems

Conference, 2008. BioCAS 2008. IEEE, pages 173–176. IEEE.

[18] Butcher, J. C. and Wanner, G. (1996). Runge-kutta methods: some historical

notes. Applied Numerical Mathematics, 22(1-3):113–151.

[19] Capoyleas, V., Rote, G., and Woeginger, G. (1991). Geometric clusterings.

Journal of Algorithms, 12(2):341–356.

Bibliography 106

[20] Carraro, T. (2005). Parameter estimation and optimal experimental design

in flow reactors. PhD thesis.

[21] Cole, D. R. F. (2014). Asymptotic state and parameter observation for dy-

namical systems with nonlinear parameterisation. PhD thesis, Department of

Mathematics.

[22] Collado, J., Lozano, R., and Johansson, R. (2001). On kalman-yakubovich-

popov lemma for stabilizable systems. IEEE Transactions on Automatic Con-

trol, 46(7):1089–1093.

[23] De Marchi, S. (2018). Lectures on radial basis functions.

[24] De Terán, F. and Dopico, F. M. (2011). Consistency and efficient solution of

the sylvester equation forâŃĘ-congruence. Electron. J. Linear Algebra, 22:849–

863.

[25] Dennis, J. and Woods, D. J. (1987). Optimization on microcomputers: The

nelder-mead simplex algorithm. New computing environments: microcomputers

in large-scale computing, 11:6–122.

[26] Distefano, J. and Cobelli, C. (1980a). On parameter and structural identifia-

bility: Nonunique observability/reconstructibility for identifiable systems, other

ambiguities, and new definitions. IEEE Transactions on Automatic Control,

25(4):830–833.

[27] Distefano, J. and Cobelli, C. (1980b). On parameter and structural identifia-

bility: Nonunique observability/reconstructibility for identifiable systems, other

ambiguities, and new definitions. IEEE Transactions on Automatic Control,

25(4):830–833.

[28] Driscoll, T. A. and Fornberg, B. (2002). Interpolation in the limit of increas-

ingly flat radial basis functions. Computers & Mathematics with Applications,

43(3):413–422.

[29] Eigen, M. (1967). Immeasurably fast reactions. Nobel Lecture, 11:1963–1979.

Bibliography 107

[30] Einstein, A. (1905). On the motion of small particles suspended in liquids

at rest required by the molecular-kinetic theory of heat. Annalen der physik,

17:549–560.

[31] Farza, M., M’Saad, M., Maatoug, T., and Kamoun, M. (2009). Adaptive

observers for nonlinearly parameterized class of nonlinear systems. Automatica,

45(10):2292–2299.

[32] Fasshauer, G. E. and McCourt, M. J. (2012). Stable evaluation of gaus-

sian radial basis function interpolants. SIAM Journal on Scientific Computing,

34(2):A737–A762.

[33] Fornberg, B., Larsson, E., and Flyer, N. (2011a). Stable computations

with gaussian radial basis functions. SIAM Journal on Scientific Computing,

33(2):869–892.

[34] Fornberg, B., Larsson, E., and Flyer, N. (2011b). Stable computations

with gaussian radial basis functions. SIAM Journal on Scientific Computing,

33(2):869–892.

[35] Fornberg, B. and Piret, C. (2007). A stable algorithm for flat radial basis

functions on a sphere. SIAM Journal on Scientific Computing, 30(1):60–80.

[36] Fornberg, B. and Wright, G. (2004). Stable computation of multiquadric

interpolants for all values of the shape parameter. Computers & Mathematics

with Applications, 48(5):853–867.

[37] Gábor, A. and Banga, J. R. (2015). Robust and efficient parameter estimation

in dynamic models of biological systems. BMC systems biology, 9(1):74.

[38] Gao, F. and Han, L. (2012). Implementing the nelder-mead simplex algo-

rithm with adaptive parameters. Computational Optimization and Applications,

51(1):259–277.

[39] Gaß, M., Glau, K., and Mair, M. (2017). Magic points in finance: Empirical

integration for parametric option pricing. SIAM Journal on Financial Mathe-

matics, 8(1):766–803.

Bibliography 108

[40] Goldstein, A. A. (1965). On steepest descent. Journal of the Society for

Industrial and Applied Mathematics, Series A: Control, 3(1):147–151.

[41] Gorban, A. N., Mirkes, E. M., and Zinovyev, A. (2016). Piece-wise quadratic

approximations of arbitrary error functions for fast and robust machine learning.

Neural Networks, 84:28–38.

[42] Gupta, N. and Mehra, R. (1974). Computational aspects of maximum likeli-

hood estimation and reduction in sensitivity function calculations. IEEE Trans-

actions on Automatic Control, 19(6):774–783.

[43] Hamilton, F. (2011). Parameter estimation in differential equations: A nu-

merical study of shooting methods.

[44] Hammouri, H. and de Morales, L. (1990). Observer synthesis for state-affine

systems. In Decision and Control, 1990., Proceedings of the 29th IEEE Confer-

ence on, pages 784–785. IEEE.

[45] Han, J., Pei, J., and Kamber, M. (2011). Data mining: concepts and tech-

niques. Elsevier.

[46] Han, L. and Neumann, M. (2006). Effect of dimensionality on the nelder–

mead simplex method. Optimization Methods and Software, 21(1):1–16.

[47] Hardy, G. H. (1916). The integration of functions of a single variable. Num-

ber 2. University Press.

[48] Hassard, B. (1978). Bifurcation of periodic solutions of the hodgkin-huxley

model for the squid giant axon. Journal of Theoretical Biology, 71(3):401–420.

[49] Hon, Y.-C. and Mao, X.-Z. (1999). A radial basis function method for solving

options pricing models. Journal of Financial Engineering, 8:31–50.

[50] Hou, M. and Muller, P. (1992). Design of observers for linear systems with

unknown inputs. IEEE Transactions on automatic control, 37(6):871–875.

[51] Immler, F. and Hölzl, J. (2013). Numerical analysis of ordinary differential

equations.

Bibliography 109

[52] Jain, A. K., Duin, R. P. W., and Mao, J. (2000). Statistical pattern recogni-

tion: A review. IEEE Transactions on pattern analysis and machine intelligence,

22(1):4–37.

[53] Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review.

ACM computing surveys (CSUR), 31(3):264–323.

[54] Jing, Z. and Chen, L. (1984). The existence and uniqueness of limit cycles in

general predator-prey differential equations. Chineese Sci. Bull., 9:521–523.

[55] Karabutov, N. and Karabutov, P. (2009). Adaptive observers for linear dy-

namic systems. Measurement Techniques, 52(8):813–820.

[56] Kasper, T. (1980). Integration in finite terms: the liouville theory. ACM

SIGSAM Bulletin, 14(4):2–8.

[57] Kaufman, L. and Rousseeuw, P. J. (2009). Finding groups in data: an intro-

duction to cluster analysis, volume 344. John Wiley & Sons.

[58] Kojić, A. and Annaswamy, A. M. (2002). Adaptive control of nonlinearly

parameterized systems with a triangular structure. Automatica, 38(1):115–123.

[59] Kojić, A., Annaswamy, A. M., Loh, A.-P., and Lozano, R. (1999). Adaptive

control of a class of nonlinear systems with convex/concave parameterization.

Systems & control letters, 37(5):267–274.

[60] Kreisselmeier, G. (1977). Adaptive observers with exponential rate of conver-

gence. IEEE transactions on automatic control, 22(1):2–8.

[61] Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E. (1998). Conver-

gence properties of the nelder–mead simplex method in low dimensions. SIAM

Journal on optimization, 9(1):112–147.

[62] Liang, H., Miao, H., and Wu, H. (2010). Estimation of constant and time-

varying dynamic parameters of hiv infection in a nonlinear differential equation

model. The annals of applied statistics, 4(1):460.

Bibliography 110

[63] Liu, X., Ortega, R., Su, H., and Chu, J. (2009). Adaptive control of nonlin-

early parameterized nonlinear systems. In American Control Conference, pages

11–13. July, San Luis, Mo., USA.

[64] Ljung, L. 1999, system identification: Theory for the user.

[65] Ljung, L. (1987). System Identification – Theory for the User. Prentice Hall,

Englewood Cliffs, New Jersy, USA.

[66] Loh, A.-P., Annaswamy, A. M., and Skantze, F. P. (1999). Adaptation in

the presence of a general nonlinear parameterization: An error model approach.

IEEE Transactions on Automatic Control, 44(9):1634–1652.

[67] Lorıa, A. (2004). Explicit convergence rates for mrac-type systems. Automat-

ica, 40(8):1465–1468.

[68] Lorıa, A. and Panteley, E. (2003). Uniform exponential stability of linear

time-varying systems: revisited. Systems & Control Letters, 47(1):13–24.

[69] Loria, A., Panteley, E., and Zavala, A. (2009). Adaptive observers for ro-

bust synchronization of chaotic systems. IEEE Trans. on Circ. Syst. I: Regular

Papers, 56(12):2703–2716.

[70] Luders, G. and Narendra, K. (1973). An adaptive observer and identifier for

a linear system. IEEE Transactions on Automatic Control, 18(5):496–499.

[71] Luenberger, D. (1966). Observers for multivariable systems. IEEE Transac-

tions on Automatic Control, 11(2):190–197.

[72] Luenberger, D. (1971). An introduction to observers. IEEE Transactions on

automatic control, 16(6):596–602.

[73] Maday, Y., Nguyen, N. C., Patera, A. T., and Pau, G. S. (2007). A general,

multipurpose interpolation procedure: the magic points.

[74] Marine, R., Santosuosso, G. L., and Tomei, P. (2001). Robust adaptive ob-

servers for nonlinear systems with bounded disturbances. IEEE Transactions

on automatic control, 46(6):967–972.

Bibliography 111

[75] Marino, R. (1990). Adaptive observers for single output nonlinear systems.

IEEE Transactions on Automatic Control, 35(9):1054–1058.

[76] Marino, R. and Tomei, P. (1992). Global adaptive observers for nonlinear

systems via filtered transformations. IEEE Transactions on Automatic Control,

37(8):1239–1245.

[77] Marino, R. and Tomei, P. (1995). Adaptive observers with arbitrary exponen-

tial rate of convergence for nonlinear systems. IEEE Transactions on Automatic

Control, 40(7):1300–1304.

[78] Marquardt, D. W. (1963). An algorithm for least-squares estimation of nonlin-

ear parameters. Journal of the society for Industrial and Applied Mathematics,

11(2):431–441.

[79] McSharry, P. E., Clifford, G. D., Tarassenko, L., and Smith, L. A. (2003).

A dynamical model for generating synthetic electrocardiogram signals. IEEE

transactions on biomedical engineering, 50(3):289–294.

[80] Miao, H., Xia, X., Perelson, A. S., and Wu, H. (2011). On identifiability of

nonlinear ode models and applications in viral dynamics. SIAM review, 53(1):3–

39.

[81] Micchelli, C. A. (1984). Interpolation of scattered data: distance matrices and

conditionally positive definite functions. In Approximation theory and spline

functions, pages 143–145. Springer.

[82] Mohammed, J. A.-A. and Tyukin, I. (2017). Explicit parameter-dependent

representations of periodic solutions for a class of nonlinear systems. IFAC-

PapersOnLine, 50(1):4001–4007.

[83] Moles, C. G., Mendes, P., and Banga, J. R. (2003). Parameter estimation in

biochemical pathways: a comparison of global optimization methods. Genome

research, 13(11):2467–2474.

[84] Morris, C. and Lecar, H. (1981). Voltage oscillations in the barnacle giant

muscle fiber. Biophys. J., 35:193–213.

Bibliography 112

[85] Munnoli, S. P. and Bapat, A. (2013). Clustering algorithms for radial basis

function neural network. Journal of Transactions on Electrical and Electronics

Engineering, 1(1):113–116.

[86] Nelder, J. A. and Mead, R. (1965). A simplex method for function minimiza-

tion. The computer journal, 7(4):308–313.

[87] Park, J. and Sandberg, I. W. (1991). Universal approximation using radial-

basis-function networks. Neural computation, 3(2):246–257.

[88] Perabò, S. and Zhang, Q. (2009). Adaptive observers for linear stochas-

tic time-variant systems with disturbances. International Journal of Adaptive

Control and Signal Processing, 23(6):547–566.

[89] Pettersson, U., Larsson, E., Marcusson, G., and Persson, J. (2008). Improved

radial basis function methods for multi-dimensional option pricing. Journal of

Computational and Applied Mathematics, 222(1):82–93.

[90] Poyton, A., Varziri, M. S., McAuley, K. B., McLellan, P., and Ramsay, J. O.

(2006). Parameter estimation in continuous-time dynamic models using princi-

pal differential analysis. Computers & chemical engineering, 30(4):698–708.

[91] Price, C. J., Coope, I. D., and Byatt, D. (2002). A convergent variant of

the nelder–mead algorithm. Journal of optimization theory and applications,

113(1):5–19.

[92] Risch, R. H. (1969). The problem of integration in finite terms. Transactions

of the American Mathematical Society, 139:167–189.

[93] Risch, R. H. (1970). The solution of the problem of integration in finite terms.

Bulletin of the American Mathematical Society, 76(3):605–608.

[94] Risch, R. H. (1979). Algebraic properties of the elementary functions of

analysis. American Journal of Mathematics, pages 743–759.

[95] Rothstein, M. (1977). A new algorithm for the integration of exponential and

logarithmic functions. In Proceedings of the 1977 MACSYMA users conference,

pages 263–274.

Bibliography 113

[96] Schaback, R. (1995). Error estimates and condition numbers for radial basis

function interpolation. Advances in Computational Mathematics, 3(3):251–264.

[97] Schwaab, M., Biscaia Jr, E. C., Monteiro, J. L., and Pinto, J. C. (2008).

Nonlinear parameter estimation through particle swarm optimization. Chemical

Engineering Science, 63(6):1542–1552.

[98] Siciliano, R. (2012). The hodgkin-huxley model.

[99] Skantze, F. P., Kojić, A., Loh, A.-P., and Annaswamy, A. M. (2000). Adaptive

estimation of discrete-time systems with nonlinear parameterization. Automat-

ica, 36(12):1879–1887.

[100] Soderstrom, T. and Stoica, P. (1988). System Identification. Prentice Hall,

Englewood Cliffs, New Jersy, USA.

[101] Stanway, R., Sproston, J., and Stevens, N. (1987). Non-linear modelling of an

electro-rheological vibration damper. Journal of Electrostatics, 20(2):167–184.

[102] Sugimoto, M., Ohmori, H., and Sano, A. (2000). Continuous-time adaptive

observer for linear system with unknown time delay. In Decision and Control,

2000. Proceedings of the 39th IEEE Conference on, volume 2, pages 1104–1109.

IEEE.

[103] Terelius, B. (2009). Symbolic Intergration. Skolan för datavetenskap och

kommunikation, Kungliga Tekniska högskolan.

[104] Tomick, J. J. (1995). On convergence of the nelder-mead simplex algorithm

for unconstrained stochastic optimization. Technical report, AIR FORCE INST

OF TECH WRIGHT-PATTERSON AFB OH.

[105] Torres, L., Besançon, G., Georges, D., and Verde, C. (2012). Exponential

nonlinear observer for parametric identification and synchronization of chaotic

systems. Mathematics and Computers in Simulations, 82:836–846.

[106] Tyukin, I. (2011). Adaptation in dynamical systems. Cambridge University

Press.

Bibliography 114

[107] Tyukin, I. Y., Gorban, A., Tyukina, T., Al-Ameri, J., and Korablev, Y. A.

(2016). Fast sampling of evolving systems with periodic trajectories. Mathe-

matical Modelling of Natural Phenomena, 11(4):73–88.

[108] Tyukin, I. Y., Steur, E., Nijmeijer, H., and Van Leeuwen, C. (2013). Adap-

tive observers and parameter estimation for a class of systems nonlinear in the

parameters. Automatica, 49(8):2409–2423.

[109] Usta, F. and Levesley, J. (2018). Multilevel quasi-interpolation on a sparse

grid with the gaussian. Numerical Algorithms, 77(3):793–808.

[110] Wallace, B. (2004). Constrained optimization: Kuhn-tucker conditions.

Royal Holloway, Egham.

[111] Wright, S. and Nocedal, J. (1999). Numerical optimization. Springer Science,

35(67-68):7.

[112] Xu, R. and Wunsch, D. (2005). Survey of clustering algorithms. IEEE

Transactions on neural networks, 16(3):645–678.

[113] Yan, X.-G., Spurgeon, S. K., and Edwards, C. (2013). State and parameter

estimation for nonlinear delay systems using sliding mode techniques. IEEE

Transactions on Automatic Control, 58(4):1023–1029.

[114] Yao, L. and Sethares, W. A. (1994). Nonlinear parameter estimation via the

genetic algorithm. IEEE Transactions on signal processing, 42(4):927–935.

[115] Zeitz, M. (1987). The extended luenberger observer for nonlinear systems.

Systems & Control Letters, 9(2):149–156.

[116] Zhan, C. and Yeung, L. F. (2011). Parameter estimation in systems biology

models using spline approximation. BMC systems biology, 5(1):1.

[117] Zhang, Q. (2016). Multilevel Adaptive Radial Basis Function Approximation

using Error Indicators. PhD thesis, Department of Mathematics.

[118] Zhang, Q. and Clavel, A. (2001). Adaptive observer with exponential for-

getting factor for linear time varying systems. In Decision and Control, 2001.

Proceedings of the 40th IEEE Conference on, volume 4, pages 3886–3891. IEEE.

Bibliography 115

[119] Zhang, W. (2012). Improved implementation of multiple shooting for bvps.

Computer Science Department, University of Toronto.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Notations
	Abbreviations
	Glossary

	1 Introduction
	1.1 Publications

	2 Numerical Methods for solving Non-linear Parametrized Systems Of Ordinary Differential Equations and Case Studies
	2.1 Parameter Estimation for Ordinary Differential Equations
	2.2 Shooting Methods
	2.2.1 Single Shooting Method
	2.2.2 Multiple Shooting Method

	2.3 Derivative approximation method: B-spline Collocation Method
	2.4 Sensitivity Functions
	2.5 Nelder-Mead Simplex algorithm
	2.5.1 Statement of the algorithm

	2.6 Case Studies
	2.6.1 Hodgkin-Huxley model
	2.6.2 ECG System

	3 Explicit Parameter-dependent Representations of Periodic Solutions for a Class of Nonlinear Systems for Parameter Estimation
	3.1 Identifiability of Mathematical Models
	3.2 Problem Formulation
	3.2.1 System definition
	3.2.2 Problem statement

	3.3 Main Result
	3.3.1 Indistinguishable parametrizations of (3.11) and (3.10)
	3.3.2 Integral parametrization of periodic solutions of (3.10)
	3.3.3 Integral parametrization of periodic solutions of (3.11)

	3.4 Examples
	3.4.1 Predator-Prey system
	3.4.2 Hodgkin-Huxley system
	3.4.3 Morris-Lecar system

	4 Approximating periodic solutions of linear Integral Equations Based on the RBFs
	4.1 Scattered Data Approximation Problem
	4.2 Radial Basis Function and Approximation Principle
	4.3 K-Means Clustering Algorithm
	4.4 Parameter Inference with Approximated Variables of Linear Equations by The Radial Basis Approximation
	4.5 Experimental Results of RBF Approximation

	5 Conclusion, Discussion and Future Challenges
	5.1 Conclusion
	5.2 Discussion and Future Challenges

	Bibliography

