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Abstract

Space-based measurements of atmospheric carbon dioxide (CO2) provide global

coverage with repetition times on the order of days. These measurements are used

in combination with flux inversion models to track and identify sources and sinks of

carbon. The ultimate goal is a better understanding of natural and anthropogenic

contributions to the global carbon cycle, from which mitigation strategies and policies

can be derived to deal with the e�ects of climate change.

The algorithms responsible for inferring the atmospheric concentrations of CO2 from

the high-resolution spectroscopic measurements are the so-called retrieval algorithms.

This thesis focuses on two main aspects that are important for a successful retrieval

strategy, and both have applications beyond CO2 retreivals.

The first part of this thesis is centred around solar-induced chlorophyll fluorescence

(SIF), a naturally occurring radiance signal produced by vegetation as a by-product of

photosynthesis. Due to its spectral signature, it is observed by satellite measurements

in the O2 A-band at ∼0.76 µm. Based on an established retrieval concept, the SIF

retrieval was implemented and its impact on CO2 retrievals has been evaluated. The

SIF retrievals themselves are of great interest to carbon cycle science, and have been

used for two case studies: relating SIF to primary production, and tracking the

biosphere response to the 2012 North American drought.

In the second part, the focus of the thesis is on fast radiative transfer (RT) methods,

which are acceleration techniques to speed up the computationally very expensive

line-by-line RT calculations. A novel method based on principal component analysis

has been implemented and further advanced. This allowed for the PCA-based method

to be used in CO2 retrievals for measurements from the OCO-2 instrument. Finally,

for the first time, a comparison of three popular fast RT schemes has been performed

in a consistent way using the same retrieval algorithm.
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Preface and Thesis Structure

This thesis is the result of almost four years’ worth of e�orts and work as part

of the Earth Observation Science group at the University of Leicester. All of the

presented research revolves around the central topic of improving on the space-based

carbon dioxide retrievals. I was lucky to be tightly integrated in the greenhouse

gases-team and the ESA Climate Change Initiative project, which provided funding

for my research. It can be divided into two major parts: solar-induced chlorophyll

fluorescence and fast radiative transfer.

The research surrounding space-based measurements of fluorescence gained momen-

tum after Frankenberg, Fisher, et al. (2011) showed that physically reasonable values

could be retrieved on a global scale if an appropriate bias correction is applied. As my

very first task in June 2014, I implemented their retrieval scheme using the University

of Leicester Full-Physics (UoL-FP) algorithm and processed the then-available GOSAT

time series. During the preparation of the climate data research package (CRDP3)

XCO2 data, I have contributed to the logistics of the retrieval set-up and the last-

minute move to a di�erent computing infrastructure, which required an impromptu

re-write of major aspects of the processing pipeline. Along with the introduction

of the MACC-II/CAMS-based aerosol scheme (Leif Vogel), fluorescence was added

to the retrieval as a contribution to the radiances in the O2 A-band. This again

required modifications to the algorithm code to introduce fluorescence as a state

vector-element. I have derived a new calibration method that builds on the established

scheme, and also released a fluorescence data package for use by scientists in the

UK and international Earth Observation community. As part of the ECMWF project

CAMS41, I have set up a near-real time processing stream that acquires GOSAT data

from the ESA third-party archive, performs the necessary cloud clearing, fluorescence

retrieval and bias correction - every day. The finished daily data package is then

provided to ECMWF in a CF-compliant format. While the spatial sparsity of GOSAT

measurements made it di�cult for the project partners to utilise the data to its fullest

extent, I contributed with my data for a poster at the AGU 2017 Fall Meeting (Bacour

et al. 2017).

The second big research topic was fast radiative transfer. Originally born out of
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the need to increase the computational performance of the UoL-FP algorithm, the

task began with reviewing the then implemented radiative transfer models. I have

completely removed all traces of an outdated and rarely used model, as well as

updated both LIDORT and 2OS radiative transfer models to their newest versions.

Additionally, I have added the TWOSTR radiative transfer to the algorithm. Switching

out and adding a radiative transfer model was a major e�ort that took me the best

part of the 2015 summer, including all validation exercises to ensure that the forward

model output is consistent with older versions of the algorithm.

Using the new models, I started investigating state-of-the-art fast radiative transfer

models by implementing them. To facilitate a quicker development time for such a

complex problem, I have chosen to modify the UoL-FP code to allow for external

calls to arbitrary radiative transfer drivers. I achieved this by writing a module which

saves all required atmospheric and surface properties for a given band into an HDF

file, which can then be used by any external code. Once the external code finished

its calculations, the results are fed back into the algorithm and the computation

continues. Using this scheme I have written a fresh implementation of the LSI

algorithm, of which an older and outdated version was part of the UoL-FP code.

Having LSI as a reference, I began work on the PCA-based algorithm and thanks to

my supervisor, had the chance to work for two weeks closely with its inventor Vijay

Natraj at the California Institute of Technology. This visit allowed for some major

progress. Around six months later, the PCA-based method was fully implemented

and now accounted for the spectral variation of aerosol properties, which proved

to be a major problem beforehand. I started an extensive study on the impact of

this scheme on GOSAT retrievals, which culminated in a publication in the Journal

of Geophysical Research (Somkuti, Boesch, Natraj, et al. 2017a). Very early on,

I was interested in how di�erent fast RT methods would compare when they are

used consistently in one algorithm. By January 2018, I had finally implemented the

three major methods natively into the UoL-FP code without the use of the external

interface.

The thesis is structured in three parts. The first one (Page 5) discusses the overall

motivation for space-based carbon dioxide measurements and introduces the key

concepts needed to perform them. It includes a detailed description of the algorithm

as well as the utilised satellites and instruments. The second part (Page 58) deals with

fluorescence, both as an interesting phenomenon that can be related to vegetation

status, but also as an influence in XCO2 retrievals. The third and last major research

part (Page 140) contains a detailed description of atmospheric radiative transfer

and its application to trace gas retrievals. I introduce three established acceleration

methods, and study their e�ects on the final result of XCO2 retrievals.
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My work regarding the PCA-based fast RT scheme was published in the Journal

of Geophysical Research (see below), and contents therein are found throughout

Part III (Section 11.4).

This thesis contains 124 figures and 24 tables, the total word count of the main body

of the document obtained through texcount is 53 138.
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Chapter One

Motivation

1.1 The Global Carbon Cycle

E
arth’s atmosphere, excluding water vapour (H2O, ∼1 %), is composed of

mostly nitrogen (N2, 78.09 %) and oxygen (O2, 20.95 %), as well as a small

amount of argon (Ar, 0.93 %). The remaining fraction, about 0.04 %, is

collectively known as trace gases. With more than 90 %, the major component of the

trace gases is carbon dioxide (CO2).

Despite its deceivingly low abundance in the atmosphere, carbon dioxide plays a major

role in Earth’s climate and biosphere. A well-known consequence of atmospheric

carbon dioxide is the greenhouse e�ect. While being somewhat transparent to the

incoming short-wave solar radiation, CO2 in its gas phase absorbs strongly in the

infrared wavelength range at around 15 µm. Thus, the thermal long-wave radiation

leaving Earth will be partly absorbed by the atmosphere due to CO2 and other

greenhouse gases such as water vapour (H2O) and methane (CH4). CO2 is the

most important of the anthropogenic greenhouse gases due to both the amount in

the atmosphere as well as the longevity of the gas. As of 2018, the atmospheric

concentration of CO2 is steadily over 400 parts per million (ppm) - daily updated

measurements for the famous Manua Loa Observatory can be found at “The Keeling

Curve” (2018) (Figure 1.1). The growth rate of atmospheric CO2 has been over

1.5 ppmyr−1 for the last 15 years (NOAA 2018).

Apart from contributing to the “opaqueness” of Earth’s atmosphere to infrared

radiation and facilitating warming on a global scale, atmospheric carbon dioxide is

a key player in interactions with the biosphere. Carbon, as the basis of all organic

life on this planet, is found in various reservoirs. Not only in gaseous form in the

atmosphere as CO2 and CH4, but also in bound form in vegetation, soil, the oceans

and in permafrost. Carbon is regularly exchanged between reservoirs, via so-called

�uxes. A forest fire, for example, represents a carbon flux from the vegetation carbon

pool into the atmospheric one. Photosynthesis, the process by which plants sequester

atmospheric CO2 into sugars, is another example of a flux with the opposite sign

(atmosphere→ terrestrial biosphere). The sum of all reservoirs and fluxes on Earth
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1.1. The Global Carbon Cycle
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Figure 1.1: The famous Keel-
ing curve, recorded at the Manua
Loa Observatory from 1955 on-
ward in weekly intervals (Keeling
et al. 2001). The steady rise due
to anthropogenic emissions is su-
perposed on the strong seasonal
cycle. This cycle arises mainly
due to forest leaf-out in the north-
ern hemisphere causing a draw-
down in spring. Data taken from
“PrimaryMauna Loa CO2 Record
| Scripps CO2 Program” (2018).

is termed the global carbon cycle.

Highlighted and detailed in Wigley et al. (2005), the importance of the carbon

cycle has gained attention when in the mid-1990’s the Intergovernmental Panel on

Climate Change (IPCC) recognised the intricate, yet not well-understood link between

emissions and atmospheric concentrations. A schematic overview of the global carbon

cycle is shown in Figure 1.2.

According to IPCC (2014), the anthropogenic emissions since 1750 leading to an

increase of the atmospheric CO2 concentration have totalled 555 ± 85 PgC. It is

attributable mostly to fossil fuel combustion and cement production (375 ± 30 PgC)

as well as land use change (180 ± 80 PgC). Inspecting Figure 1.2, it becomes clear

that the anthropogenic fluxes (fossil fuel burning, cement production and land

use change) are dwarfed by both vegetation-driven fluxes and ocean gas-exchange.

Photosynthesis-driven gross primary production (GPP) causes the largest biospheric

carbon flux, however almost the same flux is seen going into the atmosphere (for

details on photosynthesis see Chapter 6, Page 61). The net flux is still negative (from

the point of view of the atmosphere), meaning that vegetation, on a global scale, is a

net sink of carbon. Similar net fluxes are observed at the ocean-atmosphere interface.

Balancing the estimated emissions due to human activities with the increase in

atmospheric concentrations of CO2 leads to a surprising result. Considering the

total amount of human emissions from 1750 to 2011 (555 ± 85 PgC), only about half

(240 ± 10 PgC) remained in the atmosphere! There is comparatively good agreement

regarding the carbon fluxes from the atmosphere to the ocean, which account for

155 ± 30 PgC yr−1. Land use change is less well constrained, and is potentially a net

positive flux to the atmosphere (1.1 ± 0.8 PgC yr−1). This imbalance has been known

for some time (Kerr 1977), and considerable e�ort was made to pin down this missing
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1.1. The Global Carbon Cycle
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Figure 1.2: Simplified summary of the major fluxes and pools of the global carbon
cycle. For a more complete illustration see e.g. IPCC (2014, Figure 6-1). Inspired
by the same figure. Values for carbon reservoirs are in PgC, fluxes (arrows) are in
PgCyr−1.

sink. One of the most recent syntheses on the global carbon budget was published by

Le Quéré et al. (2018). For the year 2016, they state the anthropogenic emissions to

be 9.9 ± 0.5 PgC yr−1 due to fossil fuels and industry, and another 1.3 ± 0.7 PgC yr−1

from land use change. A change in methodology regarding the missing terrestrial

carbon sink was introduced in Le Quéré et al. (2018). In previous versions of the

Global Carbon Budget, e.g. Le Quéré et al. (2016), the residual terrestrial sink was

calculated through a balance equation including estimated emissions, atmospheric

growth rate and the modelled ocean uptake. Le Quéré et al. (2016) state this residual

land sink as 1.9 ± 0.9 PgC yr−1. The new method involves dynamic global vegetation

models (DGVMs, previously only used to constrain emissions due to land use change)

and treats land carbon uptake explicitly, rather than just a residual. The remaining

budget imbalance is therefore much smaller (0.2 PgC yr−1 for 2016) when ocean

sinks (2.6 ± 0.5 PgC yr−1 for 2016) and land sinks (2.7 ± 1.0 PgC yr−1 for 2016) are

explicitly accounted for.
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1.1. The Global Carbon Cycle

Figure 1.3: Parti-
tioned carbon dioxide
sources and sinks,
taken from Le Quéré
et al. (2018).

Figure 1.3 shows how the increasing anthropogenic emissions due to fossil fuels and

industry were partially compensated for by land and oceans sinks. The terrestrial

carbon sink increased as a result of CO2 fertilisation, nitrogen deposition and longer

growing seasons due to the e�ects of climate change. The land sink, however, also

exhibits fluctuations up to 2 PgC yr−1, especially due to El Niño events which reduce

the uptake. These events can have lasting e�ects on the global carbon cycle, as shown

e.g. in the study by Poulter et al. (2014). They investigated the impact of the 2010-

2011 La Niña on the semi-arid ecosystems in Australia. The La Niña event triggered

several years of increased precipitation which led to a “greening” of Australia which

then was the major contribution of the 2011 land sink anomaly.

Local fluxes can be measured using various techniques, like the prevalent eddy co-

variance method which applies concentration measurements alongside with accurate

wind direction and wind speed measurements. Carbon flux is derived through the

assumed covariance between vertical wind speed and the concentration of carbon

dioxide. The so-called �ux towers are found throughout the globe, and more than

140 of those are part of the FluxNet global network (Baldocchi et al. 2001). Compre-

hensively discussed in Andrew D. et al. (2006), FluxNet can be exploited to calibrate

global production e�ciency models1 (PEMs), which then allow for a globally more

dense view on carbon uptake (compared to the rather sparse FluxNet coverage).

The PEM approach, however, essentially relies on a “simple” conversion of the

available radiation using other factors determining the uptake rate, such as leaf

coverage through the leaf area index (LAI), canopy greenness as described through

indices like the normalised di�erential vegetation index (NDVI), and so forth. The
1Models which predict carbon uptake by vegetation and are driven by satellite measurements of

absorbed photosynthetically available radiation (APAR).
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1.2. Space-Based CO2 Measurements and Flux Inversions

actual atmospheric concentration of CO2 is not taken into account.

A di�erent approach to inferring carbon fluxes are �ux inversions. While methodically

very di�erent from the eddy covariance technique, the principle behind it is quite

similar. Given measured concentrations and knowledge of meteorological conditions,

carbon fluxes can be estimated through an inverse procedure, similar to the inverse

method explained in Chapter 5 (Page 47). From a prior assumption on fluxes, con-

centration measurements are used to constrain fluxes with the help of an atmospheric

chemistry transport model. Ciais et al. (2000) describe how the inversion technique

can be used in combination with 77 GLOBALVIEW-CO2 monitoring sites providing

atmospheric concentrations from di�erent sources (surface, airborne, towers). They

found the largest land sinks to be in North America and Siberia.

1.2 Space-Based CO2 Measurements and Flux Inversions

Surface stations and aircraft campaigns provide concentration measurements that

make inversion studies possible in the first place. The sparsity of the measurement

locations, however, constitute a significant problem - especially when attempting to

quantify fluxes on a global scale. A map of the measurement locations (excluding

aircraft campaigns) of the most recent ObsPack (NOAA Earth System Research

Laboratory 2016) is shown in Figure 1.4. The map highlights the general issue that

most measurement infrastructure is found in Europe and North America. South

America with its biomass-rich Amazon region is not covered apart from a few surface

stations near the coast. Africa and most of Asia are not covered by the ObsPack

surface and tower stations.

Figure 1.4: ObsPack (NOAA Earth System Research Laboratory 2016) surface (red
circles) and tower (orange squares) measurement locations; aircraft measurements not
shown.

What Figure 1.4 means for flux inversion investigations, is that fluxes in some of the
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1.2. Space-Based CO2 Measurements and Flux Inversions

most productive regions on Earth, the tropical forests in Africa and South America,

are not constrained by measurements. Ideally, one would want spatially highly dense

measurements, across the globe, with a high repetition time. The answer to such a

requirement can only come by way of satellite remote sensing. As an example, the

moderate-resolution imaging spectroradiometer instruments (MODIS) on board the

Aqua and Terra satellites manage to image most parts of the Earth on a daily basis.

The first space-based instrument to infer atmospheric CO2 concentrations through the

measurement of back-scattered solar light in the short-wave infrared (SWIR) region

of the electromagnetic spectrum (see Chapter 2, Page 13 for details on the method)

was the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography

(SCIAMACHY) deployed on the ENVISAT satellite (launched 1st March 2002).

SCIAMACHY facilitated the first direct observation of the atmospheric CO2 growth

from space (Buchwitz et al. 2007) using SWIR bands. Studies using the thermal

infrared region have been performed before by Chedin et al. (2002) using a microwave

sounder on board the TIROS-N satellite. However, as Buchwitz et al. (2007) argue in

their corrigendum to the article, TIR radiances are strongly dependent on tempera-

ture, and only weakly dependent on CO2 concentration, whereas in the SWIR, it is

the other way round.

GOSAT (see Chapter 3, Page 22) was launched in 2009, three years before the

ENVISAT satellite was finally lost due to spacecraft failure. In a study published soon

after GOSAT’s launch, Chevallier et al. (2009) investigated its potential to inform

flux inversion systems. They found that GOSAT measurements will help reduce

the uncertainty in carbon fluxes by ∼30 % for most land regions, with a few regions

even showing a reduction of ∼60 %. For the planned Orbiting Carbon Observatory

mission (Crisp et al. 2004), Chevallier et al. (2007) have investigated the sensitivity

of inverted fluxes to systematic regional biases. Their far-reaching conclusion is that

measurement biases as low as a few tenths of a ppm can already lead to significant

di�erences in the inferred carbon fluxes, in their case more than 0.8 PgC yr−1 for the

Eurasian boreal region.

Almost ten years before the launch of GOSAT, Rayner et al. (2001) investigated

the precision requirement of space-based measurements in order to be equivalently

performing as surface stations (< 2.5 ppm). As part of the European Space Agency’s

Climate Change Initiative project for greenhouse gases (GHG-CCI), these require-

ments were re-evaluated and specified from a “user” point of view; the user here

being the inverse modelling community who makes use of space-based concentration

measurements. Formulated in Chevallier et al. (2016), the goal requirements on

systematic errors (biases) are stated as < 0.2 ppm. Single-sounding uncertanties2 are
2Note that Chevallier et al. (2016) use the term random error rather than “uncertainty”.
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1.2. Space-Based CO2 Measurements and Flux Inversions

required to be smaller than 0.3 ppm. Considering an atmospheric concentration of

400 ppm, the goal values in relative terms amount to 0.5 % and 0.75 % respectively!

These goals, unlike (Rayner et al. 2001), represent the requirements that space-borne

CO2 retrievals need to fulfil in order for flux inversions to be able to quantify car-

bon sources and sinks on a regional scale. Regarding the relationship between flux

inversions and the forest land sinks of the global carbon budget, the study by Pan

et al. (2011) highlights the importance of regional carbon budgets, especially for the

prediction of the future atmospheric growth rates.

Given these requirements, the development of a robust trace gas retrieval technique

is critical. The research in this thesis focuses on two particular topics relevant to

these broad goals: solar-induced chlorophyll fluorescence (Part II, Page 58) and fast

radiative transfer (Part III, Page 140).
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Chapter Two

Remote Sensing of Carbon Dioxide

S
pace-based remote sensing of atmospheric carbon dioxide is based on the

spectroscopic measurement of light in the vicinity of molecular rotational-

vibrational modes. This chapter introduces the basic fundamental principles

of molecular spectroscopy and how they are exploited in remote sensing applications.

The background on molecular spectroscopy follows Haken et al. (2003).

2.1 Molecular Speroscopy of O2 and CO2

The basic physical principle behind molecular spectroscopy is the quantum mechani-

cal nature of energy levels in molecules. A photon with frequency ν can be absorbed

by a molecule if and only if that molecule at energy state E can be excited into a new

energy state E′ > E, where ∆E = E′ − E = hν with h being the well-known Planck

constant. This principle gives rise to the typical discrete molecular spectra. The

available energy levels depend mainly on the geometry of the molecule and by the

degrees of freedom of the possible excitations. A semi-classical approach is helpful

in picturing the various excitation modes.

The most intuitive of excitations are rotations: a molecule of any given configuration in

a gas phase can be excited to rotate. The number of possible rotations is given by the

symmetry of the molecular configuration. Both molecular oxygen (O––O) and carbon

dioxide (O––C––O) are linear molecules, meaning that all (double) bond angles

within the respective molecule are 180°. This particular symmetry has consequences

for the available excitation energies. Considering rotations with rotation axes along

the symmetry axis, the associated moment of inertia is negligible compared to others.

With negligible moments of inertia, the associated angular momenta can be assumed

to be near-zero as well. Ignoring this negligible rotation, linear molecules have two

distinct rotational axes with the same moment of inertia.

Molecules are able to vibrate by changing the relative position of one or more atoms

in the molecule. There are several possibilities as to how vibrations can manifest

themselves, and they increase with the number of atoms. For molecular oxygen, there

is only one possible vibration type, the symmetric stretch. As a general rule, linear
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2.1. Molecular Spectroscopy of O2 and CO2

molecules with N atoms, can undergo 3N − 5 possible vibration types - thus resulting

in only one for molecular oxygen (N = 2).

CO2 on the other hand possesses 3 · 3 − 5 = 4 di�erent ways to vibrate, which are

illustrated in Figure 2.1.

O O

C

(a) Symmetric bend

O OC

(b) Symmetric stretch

O OC

(c) Symmetric bend

O OC

(d) Asymmetric stretch

Figure 2.1: Carbon dioxide vibration types. In Figure 2.1c, the cross and dot symbols
represent arrows pointing into and out of the plane respectively. The two bend modes
are energetically degenerate.

In gases, rotations and vibrations of molecules appear together, with rotations being

energetically much more favourable. From the quantised rotational-vibrational modes,

the most likely to occur are therefore rotational transitions from and into in the same

vibrational mode. A given vibrational mode is always accompanied by rotational

modes.

The total energy of a molecule can be written as a sum of its constituent parts, and

so can energy di�erences due to transitions:

∆E = ∆Erotation + ∆Evibration + ∆Eelectronic + ∆Eother. (2.1)

Changes in rotational states are related to the change in the total spin angular moment

quantum number, ∆ J , describing the change of J during a transition J ′→ J ′′. The

rotational energy can be semi-classically approximated as ∆Erotation ∝ J ′ J ′′ where

the proportionality constant determines the energy spacing between two adjacent

levels with the transition J ′′ = J ′±1. Vibrational energy states in first approximation

are introduced as a harmonic oscillator-type potential, Evibration(ν) ∝
(
1
2 + ν

)
.

Molecular spectroscopy relates the change of excitation state with the frequency

of photons via ∆E = hν. In order for a photon to be absorbed by a molecule to

then trigger rotations or vibrations, the transition must be favoured by the selection

rules of electromagnetic transitions. The notion of allowed and forbidden transitions
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2.2. The O2 A-band, and the Weak and Strong CO2 Bands

(transitions which obey selection rules, and those which do not) is slightly misleading,

as both can occur - forbidden transitions, however, occur at much lower rates.

Selection rules can be derived via first-principles from Fermi’s Golden Rule, which

discribes the first-order probability of a transition from an initial state |i 〉 to a final state��f 〉 under a small perturbation described byW , the Hamiltonian of the interaction.

The corresponding matrix element
〈
i
��W ��f 〉 then provides a proportionality constant

for the calculation of the probability with which the transition |i 〉 →
��f 〉 can occur.

Considering electric and magnetic dipole transitions, one finds that ∆ J = ±1 or

∆ J = 0 (however J = 0→ 0 is not allowed) so that
〈
J ′

��W �� J ′′〉 , 0. For vibrational

modes, the selection rules for dipole transitions state that the vibrational quantum

number ν must change by at least one ∆ν = ±1.

Analogously, electronic transitions have to be considered. These occur when bound

electrons of a molecule move to an unoccupied position. The electronic energy of a

molecule is usually written as the sum of all contributions from the electromagnetic

interactions between all constituents (Coulomb Hamiltonian). An electron moving to

a higher energetic state thus changes the total electronic energy of the molecule.

Other components to the total molecular energy, transitional and nuclear, are cur-

rently negligible for the purposes of remote sensing.

The symmetric stretching mode of carbon dioxide (Figure 2.1b) is infrared inactive,

since the permanent dipole moment of the molecule does not change as a result of the

oxygen atoms moving symmetrically relative to the carbon atom. The bending modes,

however, change the dipole moment of the molecule, thus results light absorption in

the thermal infra-red. The most important CO2 absorption band in that regime, the

vibrational mode ν2, is located at 15 µm (667 cm−1).

2.2 The O2 A-band, and the Weak and Strong CO2 Bands

The utilised bands in the GOSAT and OCO-2 missions are the O2 A-band at 0.76 µm,

the weak CO2 band at 1.6 µm and the strong CO2 band at 2.06 µm. The O2 A-band

is the result of an electronic transition (at ν = 0→ 0 and ν = 1→ 1), X 3Σ−g → b1Σ+g
in standard molecular term notation. As summarised by e.g. Wark et al. (1965)

and Brown et al. (2000), this is a forbidden magnetic dipole transition. The fact

that space-based instruments can still measure this band is solely due to the large

abundance of molecular oxygen in the atmosphere (∼20.95 %) that overcomes the

low occurrence of this transition. Figure 2.2 shows an example of absorption cross

sections (“GES DISC - ABSCO” 2018) in the O2 A-band at 290K temperature and

1120 hPa pressure. It shows the characteristic double-wing structure of rotational-

vibrational spectra, centred at around 13 125 cm−1. This gap is the location of the
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Figure 2.2: Absorption cross sections σ for molecular oxygen in the A-band, as seen
by an instrument with GOSAT-like resolution (see Table 3.1).

non-existent Q-branch, the term used for transitions in which the total spin angular

moment does not change: J = 0→ 0. For transitions ∆ J = 0, the change must come

from a change in the rotational axis, of which there are two in the case of O2. The

O2 A-band, however, is a transition from one excited Σ state to the triple-degenerate

ground state with the same Σ, where Σ denotes the projection of the total electron

angular momentum of 0 as projected onto the molecular bond axis. Thus, for this

spectral band, there is no Q-branch. Next to the missing Q-branch location, the band

is separated into a P- and an R-branch. Both are related to changes in the rotational

states via J ′′ = J ′ − 1 and J ′′ = J ′ + 1 respectively. The di�erent modes in the

P-branch are spaced further apart than those in the R-branch as a result of rotational-

vibrational coupling. The strength of each line is influenced by the temperature and

additionally follow a Boltzmann distribution. Actually three distinct bands can be

observed near 13 125 cm−1, which are due to oxygen isotopes, for molecules 16O17O

and 16O18O. Due to the low abundance of these molecules, they are not considered.

The O2 A-band features line pairs in both bands, more easily observed in the P-branch

due to the larger spacing of pairs. The pairs themselves are essentially a result of

electron spin, which adds to the total spin angular momentum J ; see for example

Geddes (2015, Chapter 2.2) and sources therein.

Molecular absorption lines as shown in Figure 2.2 do not only have a finite width

due to instrument limitations, but due to a number of physical e�ects. Each line

has a natural line width, determined by the time-energy uncertainty ∆E∆t∼~, where

∆t is the lifetime of the excited state. In addition to this, line broadening occurs

due to a combination of temperature and pressure. Temperature-dependent line

broadening arises due to the Doppler shift associated with the molecules moving at

a certain average velocity and results in a Gaussian line shape. Molecules moving

away from the detector would result in the shift of the line to higher wave numbers,
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2.2. The O2 A-band, and the Weak and Strong CO2 Bands

but molecules naturally also move towards the detector, causing a blue shift of the

line to lower wave numbers. Since the velocity vector directions of molecules average

out in the thermodynamic limit, finite temperature leads to a broadening of spectral

lines. Pressure broadening is more intricate, but a major contribution is collisions of

molecules which results in a Lorentzian shape. Such collisions may cause a molecule

to prematurely transition to a di�erent energy state, thus reducing the aforementioned

mean time of the excited state. Through the uncertainty principle, ∆E thus increases.

An example showing the e�ect of pressure on the line shape is depicted in Figure 2.3.
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Figure 2.3: The e�ect of pressure
broadening demonstrated on a line in
the O2 A-band. As opposed to Figure 2.2,
no convolution has taken place and the
cross sections are shown on a native grid
of 0.01 cm−1. T = 290K for both.

The so-called weak CO2 band is located at 1.6 µm (or 6228 cm−1) and originates

from a combination of the fundamental vibrational modes ν1 (1388 cm−1, symmetric

stretch) and ν3 (2349 cm−1, asymmetric stretch), and overtones of ν2 (667 cm−1, bend).

Overtones are transitions from the fundamental vibrational mode to a higher mode

0→ n > 1. For the weak band, the resulting central frequency is given by ν1+4ν2+ν3;

such a band is called combination band as di�erent vibrational modes are excited

simultaneously. The cross section for the band at 6228 cm−1 is shown in Figure 2.4,

along with spectral lines from CH4 and H2O. These gases appear in the weak band

along with CO2 and have to be accounted for in the set-up of the retrieval. As with

the O2 A-band, no Q-branch is present.

Finally, the strong CO2 band at 2.06 µm (4ν2 + ν3) is shown in Figure 2.5. The cross

sections in this window are larger than in the 1.6 µm band (hence the name strong

CO2 band), and methane lines are not present.

For the OCO mission (details introduced later in Section 3.1), it was found that

the then-available cross sections were not su�cient to meet the mission’s science

goals. Thus, the development of new tabulated cross sections was commissioned,

and the resulting data is now freely available at the OCO-2 Data Center (“GES

DISC - ABSCO” 2018). They are based on the works of Benner et al. (2016), Devi
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Figure 2.4: Weak CO2 band along with interfering species CH4 and H2O. The cross
sections for methane and water vapour were scaled for better visibility.
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Figure 2.5: Strong CO2 band at T = 290K and p = 1120 hPa. Compare the ordinate
tick labels with Figure 2.4, showing the significant di�erence in line strengths.

et al. (2016), and Drouin et al. (2017) and many others referenced within. These so-

called ABSCO tables contain the molecular cross sections in three- or four-dimensional

data structures, as a function of wavenumber, temperature, pressure and from version

4.2 onwards also relative humidity. In this thesis, GOSAT retrievals utilised version

4.1.1, whereas the OCO-2 retrievals were performed with the version 5.0 tables. These

tables however di�er from the publicly available ones, as they were calculated for 71

pressure levels instead of 64 - courtesy of Vivian Payne ( JPL).

2.3 Three-Band Approach to Concentration Measurement

GOSAT and OCO-2 (see Chapter 3) both utilise a three-band approach to measure

the atmospheric concentration of carbon dioxide. The CO2 bands described in

the previous section are located in the short-wave infrared (SWIR) part of the

electromagnetic spectrum, and the O2 A-band is part of the visible to near-infra red
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2.3. Three-Band Approach to Concentration Measurement

range (VIS-NIR). Compared to the various thermal bands of CO2, the SWIR bands

have an advantage with regards to the vertical measurement sensitivity. These bands

also feature small contamination from other gas species, with only water vapour and

methane lines additionally appearing in non-negligible quantities. The measured

signal in the SWIR band is sensitive almost all the way down to the surface, whereas

CO2 measurements in the thermal range are most sensitive in the mid-troposphere.

This is owed to the fact that absorption in the thermal range is highly dependent

on the temperature in a given atmospheric layer, which is not the case in the SWIR

range. Thus, through the contribution of all atmospheric layers through which the

light travels, sensitivity peaks in the mid-troposphere for thermal bands, and in the

lower troposphere for SWIR bands, where the number of CO2 molecules is highest.

The measurement concept utilised by GOSAT and OCO-2 relies on the inherent

relationship between molecular cross sections and the intensity of a light beam

travelling through a gas in which said molecular species occurs. Explained in more

detail in Section 10.1 (Page 141), the relationship is described through the Beer-

Lambert law:

I (λ) = I0(λ) exp
[
−

∫ L

0
σ(λ) · n(s ) ds

]
. (2.2)

Given an initial intensity I0, a monochromatic light beam of wavelength λ travelling

through a (mono-molecular) gas for a distance L, experiences an decrease in intensity.

The attenuation is determined by the cross section σ(λ) and the number density

of molecules n(s ) as a function of the geometric path length s . For satellite-based

observations, the intensity incident at the top of the atmosphere can be calculated

through solar models, or in some cases be measured by the satellite itself. The

viewing and solar geometry is generally known, and thus the geometric path through

the atmosphere can be determined. If now the cross sections are su�ciently well

known, the number density n integrated along the total line of view can be calculated

n∼ −
1

L · σ(λ)
ln
I (λ)
I0(λ)

. (2.3)

In a few words: through measuring the attenuation of the intensity, GOSAT and OCO-2 are

essentially counting molecules! The approach in Equation 2.3 is commonly known as

di�erential optical absorption spectroscopy (or DOAS ).

Unfortunately, the geometric path as determined by both solar and satellite positions

and viewing angles, is not the same as the optical light path. Earth’s atmosphere

does not just contain gases, but also particles suspended in the air, collectively

known as aerosols and clouds. Both are not only absorbing, but also cause light to

be scattered. Even the air molecules cause scattering due to the e�ect of Rayleigh

scattering. Several scatter events can cause an increase in the light path and thereby
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2.3. Three-Band Approach to Concentration Measurement

an additional attenuation compared to a non-scattering model calculation. Scattering

can also shorten the optical path, if for example high-altitude aerosols can cause

light to be scattered towards the satellite. This light will then not traverse the entire

atmosphere down to the surface. Not accounting for multiple scattering thus leads

(in general) to an overestimation of the gas concentration, while not account for

aerosols at all will generally lead to an underestimation.

Rather than inferring the absolute number of CO2 molecules, it is more appropriate

to normalise to the number of air molecules. The reasoning behind this choice is

the variation in surface pressure, which obviously changes between measurement

locations due to topographic variations, as well as times which change due to weather.

Going one step further, the amount of water vapour in the atmosphere can induce

similarly high variations. It is thus preferable to define a quantity XCO2, which is

the fraction of CO2 molecules per molecule of dry air:

XCO2 =
nCO2

ndry−air
. (2.4)

Space-based measurements performed by OCO-2 or GOSAT intrinsically measure

the total column of air, hence why Equation 2.4 is referred to as the column-averaged

dry-air mole fraction of carbon dioxide (along the geometric path s )

XCO2 =

∫
nCO2(s )ds∫
ndry−air(s )ds

. (2.5)

An alternative, but equivalent term is volume mixing ratio. It is usually given in parts

per million (10−6, ppm). O’Dell et al. (2012) have pointed out that the method of

averaging is not unique (e.g. weighting with regards to pressure, or total number of

air molecules), thus XCO2 values might di�er depending on the definition. In this

thesis, the column weighting is performed using pressure, as described in O’Dell

et al. (2012) (see Section 5.4, Page 52).

In the so-called three-band approach, the number density of air is informed by the

O2 A-band. The strong oxygen lines in this band carry information about surface

pressure (or the oxygen concentration) to then calculate XCO2 via Equation 2.5. Both

weak and strong CO2 bands naturally carry information on the amount of carbon

dioxide in the light path. The reasons for using more than one band for CO2 are

again related to scattering by aerosols. Since the bands are separated by roughly

0.4 µm, the retrieval algorithm can utilise the spectral information to constrain the

scattering properties of aerosols, which are potentially wavelength-dependent. The

O2 A-band, being another ∼0.85 µm away from the weak CO2 band, also provides

information about aerosols - as the path length increase due to scattering will be

di�erent for the various spectral bands.
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2.3. Three-Band Approach to Concentration Measurement

The term full-physics is not rigorously defined. Some refer to full-physics retrievals

as algorithms that not only account for scattering by aerosols and clouds, but also

attempt to retrieve information about them. In a more general sense, full-physics

algorithms can be defined as those algorithms, which attempt to describe every aspect

of the forward model through a physical model. Contrary to full-physics algorithms,

the DOAS approach treats light scattering as a broadband phenomenon which is

represented as an additive polynomial function.

Examples of the spectroscopic measurements are shown in Figure 2.6, which are

taken straight from simulations that correspond to a GOSAT measurement location

in Alaska, USA.
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Figure 2.6: Example of simulated spectra corresponding to the three bands, calculated
using the GOSAT instrument model (see Section 3.2). The radiances are normalised
with respect to the largest value in the band.
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Chapter Three

GOSAT and OCO-2

B
oth GOSAT and OCO-2 satellites are dedicated missions to measure con-

centrations of atmospheric carbon dioxide (and methane for GOSAT).

The measurement concept, i.e. the acquisition of high-resolution spectra

of the rotational-vibrational bands of CO2 in the short-wave infrared, is equally ap-

plied in both mission concepts. The satellites were originally planned to be launched

around the same time, which is why they feature complimentary sampling approaches.

GOSAT was designed to quantify continental-scale sources and sinks, whereas OCO-2

provides denser sampling and can even potentially provide information on point-like

sources. In this chapter, the missions and instruments are introduced and direct

comparisons, where applicable, are made to highlight the distinct characteristics.

The two instrument concepts lead to di�erent measurement acquisition rates, which

then result in di�erent global sampling strategies, which are discussed in the last

section of this chapter.

3.1 Mission and Spacecraft Description

GOSAT (Kuze et al. 2009; Yokota et al. 2009), the first satellite mission dedicated

to the measurement of atmospheric carbon dioxide, was developed by the Japanese

Aerospace eXploration Association ( JAXA), the National Institute of Environmental

Studies (NIES), and the Ministry of the Environment of Japan (MOE). It was launched

on 3rd January 2009. The satellite was placed into a polar, sun-synchronous low-earth

orbit at roughly 666 km altitude. It orbits Earth in about 98.2min, and the revisit

time for a measurement location is every three days. GOSAT’s equatorial crossing is

at 13:00 local time.

OCO-2 (Crisp et al. 2017), a mission by the National Aeronautics and Space Ad-

ministration (NASA), is a carbon-copy of the flight instrument OCO which met its

premature end as a result of a launch failure (24th February 2009) when the payload

fairing failed to separate from the spacecraft. It was finally launched on 2nd July 2014

into a polar, sun-synchronous low-earth orbit at 705 km altitude and 98.8min orbital

period. Nominal revisit time for a location is 16 days, and the equatorial crossing
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of OCO-2 is at 13:30 local time. OCO-2 is part of the so-called A-train (afternoon

train), a satellite constellation of six earth observation satellites.

OCO-2 has its ascending node on the illuminated side of Earth, i.e. they travel from

south to north for daytime measurements, whereas GOSAT orbits in the opposite

direction. GOSAT does have an additional spectral band in the thermal infrared,

which makes nighttime measurements of atmospheric CO2 and CH4 possible. Mission

objectives for both GOSAT and OCO-2 are similar, and science goals can be sum-

marised as follows: the satellites facilitate the measurement of atmospheric carbon

dioxide on a global scale, which subsequently allows tracking the sources and sinks

of carbon on continental and sub-continental scales.

3.2 The TANSO-FTS and OCO-2 Instruments

The instrument on board GOSAT responsible of measuring the high-resolution

spectra is the Thermal And Near-infrared Sensor for carbon Observation Fourier-

Transform Spectrometer (TANSO-FTS). This spectrometer type is based on the

Michelson interferometry principle: incoming light is divided at a beam-splitter into

two arms, at the end of which each beam is reflected back towards the splitter. The

combined beam is then directed towards a detector where the intensity is measured.

By extending the optical path length of one of beam arms, usually by moving one of

the mirrors, and thus inducing a path length di�erence, interference occurs due to

the two light beams having a relative phase di�erence. Recording the intensity at the

detector as a function of mirror position yields a so-called interferogram. Translating

the interferogram into wavenumber space through an inverse Fourier transformation

results in the commonly used spectra.

TANSO-FTS is a double-pendulum type spectrometer, a modification to the cube-

corner interferometer. The concept was first published by Jaacks et al. (1989), and

operates with the mirrors being statically mounted onto a double-pendulum structure.

By rotating the double-pendulum around its flex pivot for a distance x , the optical

path length di�erence changes by 4x (Gri�ths et al. 2007, Chapter 5.2.1). A simplified

schematic of the TANSO-FTS instrument is shown in Figure 3.1. Light is captured

through the two-axis main mirror which can point into both cross-track (±35°) and

along-track (±20°) directions. On 26th January 2015, the primary mirror was switched

o� in favour of the secondary one as a result of mechanical degradation. Each scene is

also imaged with a CMOS camera that shows the pointing location for every exposure.

The light then hits the beam splitter of the double-pendulum interferometer, which

induces the interference pattern through an optical path di�erence of ±2.5 cm. The

combined light then directed towards a collecting and a collimating mirror. For
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3.2. The TANSO-FTS and OCO-2 Instruments

each of the three bands, a separate dichroic filter and band pass is installed, after

which the light is split into two polarisation components P and S . This setup allows

simultaneous measurement of both P and S components. The first SWIR band is

measured through a silicon detector, whereas the second and third SWIR bands

operate via InGaAs detectors. TANSO-FTS has a fourth band for measurements in

the thermal infra-red, featuring a mercury cadmium telluride detector, however this

band is not relevant for the work in this thesis.

The readout mechanism for TANSO-FTS operates through an analogue-digital-

converter (ADC) to turn the electric signal of the interferograms into digital, process-

able values. As part of the pre-amplifier unit, two di�erent gain circuits are available.

For most scenes, TANSO-FTS operates using the high-gain mode, only for bright

scenes (mostly deserts), the medium-gain mode is activated. A slight non-linearity

in the analogue-to-digital conversion has been known to cause unphysical zero-level

o�sets in the spectra, which is the main reason why the fluorescence retrieval requires

a bias correction procedure (Section 7.7, Page 83).

The signal-to-noise ratio of a measured interferogram (and the converted spectrum)

for a given scene is mainly determined by the integration time, which is set to four

seconds. TANSO-FTS is capable of higher acquisition intervals, however there is a

lower limit imposed due to the turnaround-time of the pointing system (0.6 s).

The OCO-2 instrument, carrying the same name as the spacecraft, is a grating-type

spectrometer. In this instrument concept, light is focused on an optical element

with a series of regular grooves. The geometry of the grooves causes a relative path

di�erence between reflected light rays and cause interference at a detector. OCO-2 is

equipped with a common telescope for all SWIR bands. Again, three filters direct the

main beam to the respective section in the instrument, however the main di�erence

is that each band is equipped with a di�erent grating - compared to TANSO-FTS,

where the interference is generated for the common beam. Through the camera lens,

the di�racted beam is focused onto a focal plane array (FPA) with a total of 1024 by

1024 pixels. As with TANSO-FTS, OCO-2’s band 1 detector is silicon based, whereas

bands 2 and 3 are mercury cadmium telluride based (HgCdTe). A simplified version

of the optical schematic is shown in Figure 3.2, which represents one of the three

spectrometers. The incident light is fed through dichroic splitters and pre-disperser

filters that take the role of bandpass filters, and is then directed into the relay optics

of the given spectrometer. A polariser retains only the linearly polarised component

of the incident light that is perpendicular to the long axis of the entry slit (3mm by

0.25 µm), since the di�raction grating is most e�ective for this particular polarisation

direction. The light di�racted by the grating is then focused through the camera

lens onto the cooled FPA. In contrast to TANSO-FTS, the OCO-2 instrument does
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(until 26th January 2015)Fold mirror
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� = 1.0mm
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Figure 3.1: Simplified TANSO-FTS schematic showing the main components of the
instrument, inspired by the layout from JAXA/NIES (“TANSO-FTS - GOSAT - JAXA”
2018).

not feature two distinct gain-modes, meaning that all spectra are recorded using the

same pre-amplifier circuit and setting.

TANSO-FTS integrates one scene over four seconds, whereas OCO-2 performs

detector readouts with a frequency of 3Hz. The di�raction grating maps the incoming

light onto the two-dimensional detector, where now one dimension corresponds

to wavelength, and the other dimension represents a spatial coordinate. Due to

imperfect alignment of optical elements, this mapping is not always successful, and

spectral and spatial components are mixed. So-called “clocking-corrections” have

to be performed for the calibrated spectra in order to mitigate these e�ects, which

would otherwise result in discontinuities in the spectra. The spatial dimension is

binned to eight so-called footprints, each of them exhibiting slightly di�erent spectral

characteristics. One can consider the eight footprints almost to be eight di�erent

instruments - dispersion relation, residual waveforms and other spectrally dependent

quantities have to be considered for each footprint independently. This is attributed
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From telescope and
dichroic splitters

Relay
optics

Polariser, slit

Collimator

Di�raction
grating

Camera lensFocal plane array
(FPA)

Figure 3.2: Simplified schematic of one out of three (with same optical set-up,
di�erent components) spectrometers of the OCO-2 instrument. Inspired by Figure 2-3
from the OCO-2 Data User Guide.

to the fact that the radiometric calibration procedure is performed for each footprint

individually.

Table 3.1 lists the spectral ranges and resolution for TANSO-FTS and OCO-2. The

numbers provided by literature are not intuitively comparable as they are stated

in wave numbers for TANSO-FTS (as the more natural units used in Fourier spec-

troscopy), while values for OCO-2 are in wavelengths. Thus, converted values are

given as well. TANSO-FTS covers larger spectral ranges, especially in band 2, as it

was designed to measure CH4 as well. In terms of resolution, TANSO-FTS has higher

resolving power (λ/∆λ , ν/∆ν) in band 1 (∼36 000) compared to OCO-2 (∼18 000),

and are comparable in band 2 and 3 (∼21 000). Even though TANSO-FTS provides

higher-resolution spectra, OCO-2 has significantly higher signal-to-noise ratio for

comparable scenes.

The instantaneous field of view (IFOV) that TANSO-FTS sees is 15.8mrad, which

equates to a circular ground footprint at nadir with roughly 10.5 km diameter. For

OCO-2, the IFOV is 0.1°, and the ground footprint is determined by the integration

time for each exposure, and results in a maximal footprint size of 1.29 km by 2.25 km.

This footprint size, however, is dependent on the viewing geometry and can be

substantially smaller.

Both instruments can operate in similar measurement geometries. TANSO-FTS

achieves this exclusively via its pointing mirror(s). Apart from the down-looking

nadir-type measurements, ocean scenes are obtained additionally by pointing the

mirror towards the wide spot of specular reflection. In the same manner, TANSO-FTS

can select predefined targets, track coastlines, and so forth. The OCO-2 instrument

has a single static bore sight, which means that pointing the instrument to a specific
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Band 1 Band 2 Band 3
O2 A-band Weak CO2 Strong CO2

Spectral range

TANSO-FTS
12900 − 13200 5800 − 6400 4800 − 5200 [cm−1]
0.758 − 0.775 1.563 − 1.724 1.923 − 2.083 [µm]

OCO-2
0.758 − 0.772 1.594 − 1.619 2.042 − 2.082 [µm]
12953 − 13193 6177 − 6273 4803 − 4897 [cm−1]

Resolution (FWHM)
TANSO-FTS 0.3615 0.2575 0.2625 [cm−1]
OCO-2 0.042 0.076 0.097 [nm]

Resolving power
TANSO-FTS 36 000 23 500 19 000
OCO-2 18 000 21 500 21 000

Table 3.1: Spectral ranges and approximate resolution for TANSO-FTS and
OCO-2. Values for TANSO-FTS are taken from “TANSO-FTS - GOSAT -
JAXA” (2018) (resolution averaged for P and S ), values for OCO-2 are from
Frankenberg et al. (2015).

location involves rotating the entire spacecraft using its reaction wheels. OCO-2

routinely measures in nadir and glint modes. However, it is also capable of a special

target mode in which the instrument rotates during an orbit to keep the bore sight

pointed at the target location. This results in several thousands of measurements in

the vicinity of a chosen target, however no other nadir or glint-type measurements

can be taken on that orbit.

The higher readout frequency of OCO-2 increases the number of measurements in

a given time frame, when compared to GOSAT. While TANSO-FTS requires four

seconds per exposure, OCO-2 captures eight footprints three times per second. Thus,

OCO-2 captures about 96-times more spectra than TANSO-FTS.

3.3 Sampling Strategy

Due to the fundamental di�erences of the instruments themselves, the overall mea-

surement sampling pattern is di�erent between the missions. GOSAT employs a

pointing mechanism, compared to OCO-2’s imaging-like approach. Throughout their

mission lifetimes, the sampling pattern has undergone various updates. At mission

start, GOSAT was measuring along a regular 5-point cross-track (CT) pattern for

land scenes, in which 5 locations in a “row” were measured, as shown in Figure 3.3.

In August 2010, due to instrument stability issues at the extremes, the pattern was

changed to a 3-point mode, in which each row was reduced to three locations, and

every location was measured three times. In a further attempt to increase coverage
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over particularly cloudy areas, a dithering strategy was employed from 2014 onward.

This resulted in a more densely spaced pattern over problematic regions, like the

Amazon. The middle and rightmost panels in Figure 3.3 also shows GOSAT’s target

capability, in which specific points of interest can be targeted. For the middle panel,

target measurement locations were chosen to be along the Brazilian coastline near

São Paolo, and in the western Amazon basin for the right panel.

2009 2012

15th 16th 17th

2015

Figure 3.3: GOSAT sampling pattern over the Amazon for three days in September,
di�erent years. Inspired by a figure from Webb (2017, Figure 3.14). Starting from
a 5-point CT scan (left), GOSAT switched to a 3-point CT pattern (middle) and a
special dithering strategy for cloudy regions (right).

The locations in 3-point CT scanning mode are around 150 km apart, and allows

mapping continental and sub-continental areas. This measurement density provides

a near global coverage for land masses, if the season and solar position permit. In

addition to nadir-type land measurements, GOSAT also measures over the ocean in

nadir viewing geometry, however these measurements are generally not usable for

XCO2 retrievals as the surface reflectance of water is too low. For ocean measurements,

the glint-type geometry is preferred. Here, the instrument is pointed at the specular

reflection such that viewing and solar zenith angles are almost the same. The resulting

spectra exhibit high signal-to-noise ratios. Due to the geometry constraint of θ0 ≈ θ,

glint-type measurements are only possible within a limited latitude band, which

moves during the di�erent seasons of the year. An illustrative example is shown

in Figure 3.4, which displays the global measurement pattern for three days during

September 2014. From a global perspective, GOSAT covers the main land masses

every three days.

Owing to OCO-2’s di�erent instrument concept, its sampling strategy also di�ers

from GOSAT. Originally, the global sampling pattern consisted of 16-day intervals,

with nadir and glint observation models being exclusively utilised in each interval.

From 12th November 2015 onward, the strategy was further optimised to maximise
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17th 18th 19th

Figure 3.4: GOSAT sampling for three
consecutive days in September 2014 show-
ing the global coverage. These locations
are not screened for cloud cover; taken
from the UoL-FP pre-processing output,
only selected for the main L1B quality flag.

coverage and minimise the gap between nadir orbits. Nadir and glint orbits are

now alternating, which is advantageous for SIF retrievals - a gap of 16 days would

potentially lead to missed events. Additionally, if an orbit would cover mainly ocean,

then the instrument is positioned into glint observation mode. Figure 3.5 thus shows

a more dense coverage of the oceans. As opposed to GOSAT, OCO-2 also takes

measurements over land in glint mode.

Nadir

16
17

18
19

20
21

22
23

24
25

Glint

Figure 3.5: OCO-2 global measurement pattern, divided into nadir (left) and glint
(right) measurement geometries. These locations have passed a cloud-screening filter as
well as other quality criteria; the colour (see legend) represents the day of measurement
in September 2016.

Apart from the global sampling pattern, the ground footprint size has additional

consequences for the coverage. Figure 3.6 shows the increased measurement density

for OCO-2. One OCO-2 swath comprising eight footprints is approximately as wide
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as a single GOSAT footprint. Since OCO-2 measures continuously, the spatial vicinity

of the various footprints can be used to analyse the retrieved XCO2 with respect to

biases. Assuming that the CO2 concentration does not vary within a few kilometres

(in the absence of strong, local sources), the retrieved XCO2 should be near-constant

for all measurements. This way, retrieval biases related to the surface (e.g. albedo,

pressure) can be explored. Despite the OCO-2 swath being comparatively narrow, it

does allow for some applications involving an imaging-like approach.

GOSAT

0 2 5

km

OCO-2

Figure 3.6: Typical GOSAT and OCO-2 ground footprints. The GOSAT scene
(southern Illinois, USA) and the OCO-2 footprints (central Australia) are shown in
plots at almost equal scale. Background images acquired through the Esri ArcGIS
REST Services using the World_Imagery layer.

Nassar et al. (2017) have demonstrated that flux estimates from individual power

plants can be inferred from OCO-2 overpasses as long as the overpass was close

to the point-like source. They report their flux estimates to be between 1 to 17 % of

reported daily emissions. While they were using a simple Gaussian plume model,

their work shows the potential of future space-based carbon monitoring systems with

full imaging capability.
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Chapter Four

The University of Leicester Full-Physics

Algorithm

4.1 Overview and Work�ow Description

O
riginally descended from the Orbiting Carbon Observatory (OCO) retrieval

algorithm, the University of Leicester Full-Physics (UoL-FP) algorithm

was independently further developed by various members of the Earth

Observation Science research group at Leicester - mainly Hartmut Bösch, Robert

Parker, Austin Cogan, Will Hewson, and recently, myself. As part of the work towards

this thesis, I have put substantial e�ort into adding features to the algorithm, as well

as improving on existing ones.

The radiative transfer models in the algorithm, LIDORT (Spurr et al. 2001) and 2OS

(Natraj et al. 2007), were updated to the latest respective versions at the time. I have

conducted a number of detailed comparisons to ensure that the simulated radiances

did not change as a result of this update. To further increase the performance of the

algorithm, I have added the TWOSTR (Spurr et al. 2011) radiative transfer model to

the algorithm, a fast two-stream multiple-scattering solver for use in fast radiative

transfer schemes, which are the main focus of Part III. In addition, I have implemented

a new mode in the algorithm which bypasses the sophisticated radiative transfer

models altogether. Instead, a pure non-scattering Beer-Lambert-type propagation

of the radiances is calculated, including the necessary weighting functions. This

particular mode is significantly faster and was used to perform the fluorescence

retrievals in Part II. The fluorescence radiance itself was included as a state vector-

element in the algorithm such that it can be adjusted for during an XCO2 retrieval.

The implementation of the di�erent fast radiative transfer methods are discussed in

the beginning of Part III.

For the processing of OCO-2 measurements, Will Hewson adapted the algorithm to

ingest the operational OCO-2 L1B data files. Going forward, I set up and tested the

algorithm using both a self-developed pre-processing routine to sample all required

meteorological fields, as well a routine that makes use of the publicly available OCO-
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2-collocated MET data (“GES DISC” 2018). OCO-2 retrievals also require a residual

fitting technique, which I added to the algorithm as additional state vector-elements.

These empirical residual waveforms can be used in both OCO-2 and GOSAT retrievals

to fit systematic forward model shortcomings, usually related to the spectroscopy or

the solar model. Details are explained in Section 12.2.

The term algorithm refers here to the combination of the so-called forward model and

the inverse method (Chapter 5). The forward model produces modelled radiances

that can be compared to the measured ones, whereas the inverse method is a scheme

to infer information from the measurement. The algorithm requires a number of

inputs whose preparation is usually not considered to be part of the algorithm.

This so-called pre-processing involves the gathering of required meteorological data to

construct a model atmosphere, calculating an estimate of instrument noise, as well as

other scene-dependent quantities (e.g. surface elevation or surface reflectivity). The

methods are introduced in Chapter 4 and Chapter 5, and the details on a particular

retrieval setup, representative of many scenarios involving XCO2 retrievals, are found

in Section 5.5.

Figure 4.1 shows a simplified workflow diagram of the necessary tasks to run a full-

physics CO2 retrieval for GOSAT measurements using the UoL-FP algorithm. The

very first step involves acquiring the GOSAT L1B data from the GOSAT Data Archive

Service (GDAS) (“GOSAT Data Archive Service” 2018). “L1B” signifies that these

data packages include geolocated measurements and calibrated radiances. Meteoro-

logical data sets include vertically resolved specific humidity and air temperature,

as well as geopotential height and surface pressure. Elevation data is derived from

the Shuttle Radar Topography Mission (Farr et al. 2007) digital elevation map (30m

resolution). For the vertically resolved prior information on trace gas concentrations

(CO2, CH4), the LMDZ global climate model (constrained by in-situ measurements)

outputs (Hourdin et al. 2006) acquired through the MACC-II/CAMS services are

used. Similarly, aerosol mass mixing ratios (MMRs) for tropospheric aerosols from

MACC-II/CAMS are used to inform the aerosol scheme.

From here on, the pre-processor takes in a list of soundings, based on the contents

of the GOSAT L1B data, and prepares the algorithm inputs for every scene. This

involves sampling (in time and space) all meteorological data, aerosol MMRs and

trace gas priors, as well as the surface elevation (altitude) and surface pressure at the

specific GOSAT measurement locations. These inputs are all required to compute the

properties of the model atmosphere (see Section 4.2). Any required signal degradation

corrections to the calibrated radiances are performed by the pre-processor - however
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GOSAT L1B
(GDAS)

Aerosol MMRs
(MACC-II/CAMS)

CO2,CH4 Prior
(MACC-II/CAMS)

MET data
(ECMWF)

Elevation
(SRTM)

Archived input data

Pre-processor

Model atmosphere
Surface and instrument priors, noise

Calibrated radiances

Cloud clearing
(O2 A-band) Strong/weak CO2

retrieval
Fluorescence
retrieval

Clearlist generation
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( JPL)

Full-Physics CO2
retrieval

Figure 4.1: Simplified schematic to illustrate the data aggregation and computation
tasks required for a full-physics CO2 retrieval. Data-related items are shown as red
rectangles, computational items as blue rectangles with rounded corners and dashed
edges. Tasks involving the UoL-FP algorithm are shown as green rectangles with
rounded corners. Inspired by the schematic from Detmers et al.

since version V201.201 of the GOSAT L1B data, the radiances in the data files are

already corrected. Instrument dispersion, the relationship between detector pixel

number and wavelength or wavenumber, is performed by fitting the position of a

known, strong solar line. A per-pixel noise-equivalent radiance is assigned to every

spectral point, based on the radiances themselves. Finally, the Lambertian albedo of

the surface is estimated to provide the algorithm with a sensible prior value.

With the per-sounding preparation in place, the algorithm now has all required

inputs to perform retrievals. The cloud-clearing procedure is based on retrieving

the apparent surface pressure using exclusively the O2 A-band. It is assumed that

the surface pressure as given by ECMWF is an accurate prediction of the true

value. Should the measurement have been obstructed by a thick cloud, the apparent

surface pressure should be smaller than the true value. This is due to the high

reflectivity of clouds in the SWIR, resulting in a shorter light path, shallower oxygen

absorption lines and thus a reduced apparent surface pressure. In the current set-up,

a measurement is considered “clear” if the di�erence between the retrieved (apparent)
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and predicted value of the surface pressure is below an empirically derived threshold

of |∆psurf | < 20 hPa. The sub-set of soundings considered to be of low or no cloud

contamination is stored in the so-called clearlist.

The clearlist is the basis upon which a simplified XCO2 retrieval is subsequently run.

This strong/weak CO2 retrieval uses an aerosol-free model atmosphere and retrieves a

scaling factor to the a-priori CO2 profile. It is run for the strong and weak CO2 band

independently, and the scaling factor between the two bands are used to compute a

ratio. Ideally, the ratio is exactly one, and any deviation from one indicates heavy

influence due to aerosol scattering. Since for these retrievals, the data quality of the

full-physics retrievals tends to be low, it saves time to not attempt these retrievals in

the first place.

Fluorescence retrievals (see Chapter 7, Page 69) are based on a relaxed clearlist1 to

provide fluorescence radiances in the O2 A-band for the full-physics run.

Running the UoL-FP algorithm generally also requires a set of tabulated absorption

coe�cient tables (ABSCO, see Section 2.1) in order to calculate the wavelength-

dependent transmissivity of the atmosphere.

4.2 Pressure Grid and Model Atmosphere

To avoid confusion about the terminology of “scene”, here it is meant to describe all

relevant geophysical and instrument-related entities for a specific GOSAT measure-

ment. In the GOSAT documentation, the term scene is also used to specify a group

of measurements that are spatially close together and generally form 1/60 of an orbit.

During the pre-processing, the basic elements of a model atmosphere are constructed

for the specific location of the GOSAT measurement. Vertically resolved atmospheric

quantities are laid out on a pressure level grid: air temperature and volume mixing

ratios of CO2, CH4 and H2O (O2 is assumed constant). The pressure grid is con-

structed starting from the top of the atmosphere: five stratospheric levels at 10 Pa,

100 Pa, 10 hPa, 50 hPa and 80 hPa. The sixth level is situated halfway between 80 hPa

and the tropopause, whereas the seventh level lies at the tropopause itself. The

tropopause is estimated from the temperature profile following Reichler et al. (2003).

From the tropopause down to the surface pressure, the remaining levels are equally

spaced. As a last step, the bottom level pressure is increased by 40 hPa. A sketch of

the model atmosphere is shown in Figure 4.2. The model consists of N levels, where

the first index 0 refers to the level at the top of the atmosphere. The bottom-most

level is at a pressure below the surface pressure, the surface is indicated by the
1Threshold for |∆psurf | at 100 hPa instead of 20 hPa due to SIF being less a�ected by cloud

contamination, see Köhler et al. (2015).
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p0, T0 qg ,0
τ0, $0, β0
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pN −1, TN −1 qg ,N −1
τN −1, $N −1, βN −1
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θ

psurf

Figure 4.2: Layered model atmosphere which is the basis of the UoL-FP algorithm.
Every layer is considered to be optically homogeneous and plane-parallel to the surface.
Sun and satellite icons are taken from www.openclipart.org.

thick, brown line. For each level l at pressure pl , the corresponding temperatures

Tl and gas dry-air volume mixing ratios qg ,l for species g are obtained through the

pre-processing. The main reason for extending the bottom pressure level past the

surface pressure is that the UoL-FP algorithm may retrieve surface pressure as well,

which translates to a shift in the surface, usually between the two bottom layers

N − 1 and N . Should the surface pressure psurf shift to lower pressures during the

retrieval such that psurf < pN −1, the algorithm automatically drops the lowest level

and reorganises the model atmosphere. The retrieved surface pressure can also

increase (thus moving the surface level in Figure 4.2 “down”), which is the reason

why pN is deliberately chosen as psurf + 40 hPa. Should psurf become larger than pN ,

the algorithm fails.

While the pressure grid and associated gas volume mixing ratios are defined on levels,

the utilised radiative transfer models work exclusively on layers. This introduces

some complexity as the model atmosphere has to be translated into layer space, and

the resulting Jacobians (see Chapter 5) have to be translated back into level space.

There are several reasons as to why the retrieval algorithm was chosen to operate

on levels. First, one can argue that the notion of a volume mixing ratio is physically

more meaningful at a level, where such a ratio can be unambiguously calculated.

Secondly, when two levels are significantly far apart (as is the case for stratospheric

levels), the layer representation is a less accurate one. Since absorption cross sections

vary strongly and not linearly with temperature and pressure (see Figure 2.3), a large

spacing of pressure levels will not capture the variation due to the temperature profile

of the atmosphere. Another advantage is that many atmospheric models operate on

σ-levels (or σ coordinate system), and thus a translation or comparison between

them is easier achieved.
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4.3 Extinion due to Gas Absorption and Rayleigh Scattering

The model atmosphere is passed to the radiative transfer solver in layer coordinates

rather than levels. Every one of the plane-parallel, optically homogenous layers l is

solely characterised by the total optical depth τl , the total single-scattering albedo

$l , and the total composite phase function expansion coe�cients βl ,m (m being

the expansion order). See Chapter 10, Page 141 for details on these quantities and

how they enter the radiative transfer problem. For the calculation of gas optical

depths, every layer l is subdivided into Nsub (in pressure) equidistant sub-layers in

order to better capture the temperature and pressure dependence of gas absorption

cross-sections. This is especially important at higher altitudes, where pressure levels

are far apart. In every sub-layer m, the gas absorption optical depth for gas g is

calculated as

τ
(gas)
g ,l ,m (λ) =

qg ,l ,m(1 − q(H2O),l ,m)

gl ,mMdry
σ(λ, pl ,m,Tl ,m)∆p . (4.1)

Mdry ≈ 28.9644 gmol−1 is the molar mass of dry air, and gl ,m is the altitude-dependent

local acceleration due to gravity. The (dry-air) volume mixing ratios for sub-layer

boundaries are obtained through linear interpolation between the adjacent levels (in

log-space), and the mixing ratios q for the sub-layers are simply the average between

the sub-layer boundaries. The wavelength-dependent gas absorption coe�cient σ for

sub-layer-centre temperatures Tl ,m and pressures pl ,m are calculated through linear

interpolation based on the tabulated cross section tables at fixed T and p. The

total layer gas optical depth for a specific gas is simply the sum of all sub-layer

contributions. Finally, the total layer gas optical depth is the sum of all contributions

due to the considered gases:

τ
(gas)
l =

∑
g

Nsub∑
m=1

τ
(gas)
g ,l ,m . (4.2)

For the UoL-FP algorithm, Nsub = 10.

Rayleigh scattering is a direct result of light being scattered by air molecules in

the Earth’s atmosphere. The presence of these molecules gives rise to incoherent

scattering. Strictly speaking, the Rayleigh regime is found where the mean free path

between the scatterers is larger than the wavelength of the incident light d > λ , and

under the condition that the scatterers themselves are of negligible size compared to

d (Demtröder 2013, Chapter 10). Even though Rayleigh scattering is not a dominant

factor in the considered wavelength ranges near ∼1 µm, it is not negligible, especially

in the O2 A-band.

The scattering cross-section due to Rayleigh scattering can be fundamentally derived

by considering an incident light wave that is scattered by an externally forced,
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4.4. Aerosols and the Composite Phase Function

harmonic oscillator with a finite damping term. This physically corresponds to

an oscillating electron. The cross-section is heavily wavelength-dependent, see e.g.

Bucholtz (1995):

σ(Ray) =
24π3[n2s (λ) − 1]

2

λ4N 2
s [n2s (λ) + 2]2

6 + 3ρn(λ)
6 − 7ρn(λ)

. (4.3)

In above equation, ns (λ) is the refractive index of air and Ns is the molecular number

density of air in cm−3. ρn(λ) is the so-called depolarisation factor, a quantity that

reflects the (an)isotropy of the considered air molecules. Values for depolarisation

factors are taken from Young (1980), whereas the value for ns (λ) is calculated following

Allen et al. (1964). The optical depth due to Rayleigh scattering for layer l , τ(Ray)l , is

then

τ
(Ray)
l = σ(Ray)

NA ∆p
Mdry gl

. (4.4)

4.4 Aerosols and the Composite Phase Funion

Directional scattering properties of an atmospheric layer are characterised by the so-

called phase function P , and the fractional amount of scattering is determined by the

single-scattering albedo$. P is a function of an incoming and an outgoing angle, so in

polar coordinates becomes a function of four parameters: P (θ, φ, θ′, φ′), (θ, φ) denoting

the outgoing, and (θ′, φ′) denoting the incoming direction. As explained in more detail

in Section 10.2, phase functions are usually constructed to obey certain symmetries

(homogeneity and isotropy of the optical medium) such that they are only dependent

on the scattering angle Θ, where cosΘ = cos θ′ cos θ + sin θ′ sin θ cos(φ − φ′).

The phase function for molecular Rayleigh scattering can be analytically approximated

as P (Ray)(Θ) = 3
4 (1 + cos

2Θ). Considering the same anisotropy as for the Rayleigh

optical depth, the phase function becomes

P (Ray)(Θ) =
3

4(1 + 2γ)

[
(1 + 3γ) + (1 − γ) cos2Θ

]
, (4.5)

with γ = ρn/(2−ρn). This formulation goes back to Chandrasekhar (1960). Figure 4.3

shows the Rayleigh phase function in a polar representation.

While this particular phase function has a simple analytic form, aerosol phase func-

tions are, in general, much more complicated. Aerosols are large particles when

compared to the considered wavelength, and scattering thus belongs to a di�erent

regime. For perfectly spherical aerosols, for example, analytic solutions may be

found through Mie theory - an exact solution to the Maxwell equations consider-

ing the boundary conditions involving a particle with a given refractive index and

geometry. Mie theory also extends to any other symmetry or coordinate system

for which the Laplace operator can be separated, such as cylinder coordinates or
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4.4. Aerosols and the Composite Phase Function
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Figure 4.3: Rayleigh scattering phase
function from Equation 4.5.

various other ellipsoid coordinates. For aspherical scatterers whose size is compa-

rable or larger than the wavelength of the incident light, an analytic expression as

Equation 4.5 is no longer available. If P is only dependent on the scattering angle

Θ, a decomposition using Legendre polynomials Pm as basis functions is possible,

where P (Θ) =
∑
m βmPm(cosΘ), with m being the phase function expansion index,

and βm being the phase function expansion coe�cients or Legendre moments.

Deriving a set of βm for a specific aerosol type using an appropriate Mie solver, will

only result in a phase function that is valid for one specific orientation of the particle.

For spherical particles, this is su�cient; but for non-spherical scatterers this would

create an unrealistic configuration of aerosols in the atmosphere. It is a more realistic

assumption to consider aerosols being oriented randomly in the atmosphere, and

thus the phase function should reflect this. Accounting for this is achieved through

T-Matrix methods, described in e.g. Mishchenko et al. (1996) where an analytical

averaging over the orientation of particles is performed. One then must also consider

the fact that aerosols rarely have the same exact size. Real aerosols are polydisperse,

and their particle sizes follow certain distributions - usually some form of power law

or log-normal distribution.

The aerosol scheme used utilised in the UoL-FP algorithm was created by Leif

Vogel. It is based on the MACC-II/CAMS aerosol system, which incorporates five

di�erent tropospheric aerosol groups: sea salt (SS), dust (DU), black carbon (BC),

sulphates (SU) and organic matter (OM). The sea salt and dust groups are subdivided

into three di�erent size aggregates - for sea salt they are: [0.03 µm,0.05 µm] (SS1),

[0.05 µm,5 µm] (SS2) and [5 µm,20 µm] (SS3), for dust they are: [0.03 µm,0.55 µm]

(DU1), [0.55 µm,0.9 µm] (DU2) and [0.9 µm,20 µm] (DU3). Organic matter and

black carbon groups are subdivided into hydrophobic and hydrophilic subgroups. For

the hydrophilic group, the size of the particles are a function of the specific humidity.

The MACC-II/CAMS aerosol properties for dust are derived from spherically-shaped

particles. As this was found to be an unrealistic approach, the nonspherical dust
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4.4. Aerosols and the Composite Phase Function

types P19 and P21 from MISR2 (R. A. Kahn et al. 2015) retrievals are incorporated

in a replacement scheme (explained later in this section). A third aerosol mixture is

added to represent high-altitude cirrus clouds, where the mean altitude is derived

from climatology and a function of latitude (Eguchi et al. 2007).
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Figure 4.4: Phase functions of the base types - radial components of the plot are
logarithmically scaled. The hydrophilic black carbon type is not displayed, as it is
almost overlapping the hydrophobic type.

Figure 4.4 displays the phase functions for the MACC-II/CAMS base types at 755 nm,

and at 0 % relative humidity. The shape of the phase functions reveal some of the

fundamental properties of the scattering process itself. Larger aerosols (DU3, SS3,

P19, P21) exhibit a prominent forward peak (Θ = 0°), compared to smaller aerosols.

Measured spectra in the three-band approach for both GOSAT and OCO-2 do not

contain enough information to distinguish contributions from the di�erent base types,

so it is convenient to aggregate the base types into mixtures. Dependent on the
2Multi-angle Imaging SpectroRadiometer, a space-based mission dedicated to studying aerosols
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4.4. Aerosols and the Composite Phase Function

relative abundance of each aerosol type, two di�erent mixtures are constructed: one

large, and one small type. The small type mixture consists of both black carbon types,

both organic matter types, sulphates as well as a small dust type. The large type

mixture consists of all sea salt types and a large dust type. The briefly mentioned

replacement procedure for dust replaces the three MACC-II/CAMS dust types by

two dust types: a medium (P19) and a coarse type (P21). The replacement is done

in such a way that the scene-dependent total aerosol optical depth due to dust is

retained. The aerosol scheme provides the βm for the two mixtures separately, along

with so-called aerosol fractions for scattering (q (sca)) and extinction (q (ext)) at several

reference wavelengths near the edges of the three GOSAT/OCO-2 bands, as well as

the aerosol optical depths (τ(aer,ref)) at (usually) another reference wavelength.

The radiative transfer models utilised by the UoL-FP algorithm expect total phase

function expansion coe�cients. Therefore, for a scene in which more than one

aerosol mixture is present, the phase functions need to be converted into a composite

one. To calculate the appropriate composite βm , the layer-resolved optical depths of

the aerosols need to be considered.

First, aerosol fractions q (ext)a and q (sca)a , where the index a refers to one of Na aerosol

mixtures, need to be interpolated to every spectral point in the given band. This is

achieved using the Ångström exponent α

α = −
ln

(
q (beg)a /q (end)a

)
ln

(
λ (beg)/λ (end)

) , (4.6)

where qa is either q
(ext)
a or q (sca)a at the reference wavelengths λ (beg) and λ (end) for one

band. To obtain qa at any given wavelength λ i in that band, the exponent is used:

qi,a = q
(beg)
a

(
λ i

λ (beg)

)α
= q (end)a

(
λ i

λ (end)

)α
. (4.7)

In a similar fashion, the βm,a for mixture a is originally given at the two reference

wavelengths. Calculating the coe�cients for every spectral point i is too expensive to

be feasible for a retrieval scheme, hence why also here an interpolation is performed.

Over such a small spectral range, linear interpolation is considered to be su�cient to

capture the spectral dependency:

β
(aer)
i,m,a = (1 − ci ) · β

(aer,beg)
m,a + ci · β

(aer,end)
m,a , (4.8)

with

ci =
λ i − λ

(beg)

λ (end) − λ (beg)
. (4.9)

40



4.4. Aerosols and the Composite Phase Function

To obtain the extinction and scattering optical depth at any given wavelength, the

reference profile is multiplied by the extinction and scattering coe�cients, respectively:

τ
(aer−ext)
i,l ,a = q (ext)i,a · τ

(aer,ref)
l ,a , (4.10)

τ
(aer−sca)
i,l ,a = q (sca)i,a · τ

(aer,ref)
l ,a , (4.11)

Note that the reference wavelength for the aerosol optical depth can be di�erent from

both λ (beg) and λ (end), and is calculated only once for the entire retrieval, as opposed

to each band. The partial contributions due to each aerosol mixture a are summed

up to obtain the total aerosol optical depth due to extinction and scattering in any

given layer:

τ
(aer−ext)
i,l =

Na∑
a=1

τ
(aer−ext)
i,l ,a , (4.12)

τ
(aer−sca)
i,l =

Na∑
a=1

τ
(aer−sca)
i,l ,a . (4.13)

The total composite phase function expansion coe�cients are composed according

to the fraction of scattering that each aerosol mixture contributes:

βi,l ,m =

τ
(Ray)
i,l · β

(Ray)
i,l ,m +

Na∑
a=1

τ
(aer−sca)
a,i,l · β

(aer)
i,m,a

τ
(Ray)
i,l + τ

(aer−sca)
i,l

. (4.14)

So far, the expansion coe�cients were discussed only for the phase function, rather

than the phase matrix, which is the generalisation that takes into account the polarised

state of light. The formalism, however, is analogous for the other elements of the

phase matrix.

Finally, single-scattering albedos $i,l are calculated using the aerosol scattering

coe�cient q (sca)i,a :

$i,l =

τ
(Ray)
i,l +

Na∑
a=1

q (sca)i,a · τ
(aer,ref)
l ,a

τi,l
, (4.15)

with τi,l being the total layer optical depth

τi, j = τ
(gas)
i, j + τ

(aer−ext)
i, j + τ

(Ray)
i, j . (4.16)

With these quantities, the model atmosphere is fully defined for the radiative transfer

calculations.

Fluorescence Contributions to the O2 A-band

As an additive contribution to the TOA radiance, solar-induced chlorophyll fluo-

rescence (SIF, see Part II) emanating from the surface is added after the radiative
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4.5. Instrument Model

transfer calculations have taken place. Only the O2 A-band is considered, as the

fluorescence radiances are negligible in the other two bands. Over the small range

of the spectral band, the fluorescence radiance is assumed to vary only linearly,

hence a two-parameter characterisation is chosen for the signal at the bottom of the

atmosphere F BOA
s (λ):

F BOA
s (λ) = fλ2 + fλ2

λ1 − λ2
λ2 − λ1

(1 −
1
fratio
), (4.17)

where fλ2 is the fluorescence radiance at a reference wavelength (λ2 = 755 nm) and

fratio is the ratio between fλ2 and fλ1 (λ1 = 772 nm), and usually around ∼1.8. To

propagate the surface radiance to the top of the atmosphere, a simple non-scattering

approach is utilised, where the signal is modified by gas absorption:

Fs(λ) = F BOA
s (λ) exp

(
−
τ(gas)(λ)

cos θ

)
, (4.18)

with θ being the satellite viewing zenith angle. This is a novel addition to the UoL-

FP algorithm and was added as part of the research for this thesis. It was done

in particular to facilitate the investigation of the e�ect of fluorescence on XCO2

retrievals (Chapter 8, Page 102).

Radiative transfer calculations yield sun-normalised transmittances, which have to

be multiplied by a solar spectrum. In the UoL-FP algorithm, the solar model consists

of a Planckian black-body spectrum with atmoic spectral lines overlaid. The UoL-FP

algorithm uses an empirical line list, details are described in Boesch et al. (2006) and

sources therein.

4.5 Instrument Model

The radiative transfer calculations yield high-resolution top-of-atmosphere radiances

at a wavelength or wavenumber grid matching the native resolution of the tabulated

absorption coe�cients. The currently used tables feature a spectral resolution of

0.01 cm−1, so the number of spectral points per band is between ∼30 000 for the O2

A-band and ∼16 000 for the strong CO2 band. Incorporating the finite resolution

of the instrument in question is done via so-called instrument line shape functions

(ILSs). Within the remote sensing community, the ILS is also often referred to as

the instrument spectral response function (ISRF), instrument transfer function (ITF) or slit

function. It is conceptually the same idea that is behind the optical transfer function

in optics, or the impulse response in electrical engineering. The ILS characterises the

response of the instrument to an ideal (δ-like), monochromatic input signal.
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4.5. Instrument Model

Given a high-resolution intensity I (λ), the intensity measured by the instrument

I conv(λ) is obtained through convolution with the ILS h(λ′):

Iconv(λ) =
∫ ∞

−∞

I (λ′) h(λ − λ′)dλ′ , (4.19)

which is translated for discrete intensities at spectral indices i as

Iconv,i =
∑
i ′ Ii ′hi−i ′∆λ i ′∑
i ′ hi ′∆λ i ′

. (4.20)

ILSs for GOSAT and OCO-2 look fundamentally di�erent due to the nature of the

instruments (see Section 3.2). TANSO-FTS is a Fourier-transform type instrument,

hence the ILS takes the shape of a sin(x)/x function as the Fourier transform of

a boxcar function. The ILS for OCO-2 is closer to a Gaussian shape. While they

are generally the best-characterised aspect of an instrument, deficiencies in the

application or mis-characterisation can give rise to large biases in the retrieved

concentrations, as pointed out in a study by Connor et al. (2016). There are several

ways to include the ILS into the UoL-FP algorithm - either as a parametrised function

(Gaussian), or tabulated for specific wavelengths that can be interpolated between to

obtain the ILS at a given wavelength. The L1B data packages for OCO-2 include a

tabulated ILS for each spectral index.
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Figure 4.5: Example of the GOSAT and OCO-2 instrument line shape functions.
The GOSAT ILS (left) is taken for the reference wavenumber 13 200 cm−1 (O2 A-band),
whereas the one for OCO-2 (right) is taken from the same band, for footprint 1, and
the first detector sample.

Before the convolution takes place in the algorithm, optional corrections to the

spectrum can be performed, such as adding an additive radiance signal (zero-level

o�set), or scaling the entire spectrum by a constant factor (continuum scaling).

After the corrections and convolution, the radiances on the instrument spectral grid

can be further altered by employing the residual fitting technique. Mentioned in
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4.6. Derivatives with Respect to Atmospheric and Surface Parameters

Frankenberg et al. (2015), it is a method to mitigate systematic deficiencies of the

forward model. Analysing the spectral residuals3 of a large ensemble of retrievals, it

was found that several systematic spectral shapes were common for many scenes. It

became clear that these shapes can be related to imperfections in the modelling of

the gas absorption coe�cients. A technique to mitigate these e�ects is based on these

systematic shapes, which can be extracted from the residuals using e.g. principal

component analysis. N residual waveforms Rk (λ i ) are added back to the radiances

Iconv(λ i ) = I ∗conv(λ i ) +
N∑
k=1

rkRk (λ i ), (4.21)

where I ∗conv(λ i ) are the convolved radiances before the addition of the residual wave-

forms. The scaling coe�cients rk are then part of the state vector to be retrieved and

will generally scale linearly with the brightness of the scene.

Finally, mapping the spectral points i onto a wavelength or wavenumber grid is

achieved through a polynomial function

λ i =

N∑
j=0

i jd j (4.22)

and dispersion coe�cients d j . For most retrievals, a good first guess of the d j is

vital to the success of the algorithm - if the dispersion relation is o� by more than a

pixel4, the algorithm will most likely not be able to correct for that discrepancy. This

is mainly due to the strong non-linearity of the forward model with respect to the

dispersion relation. Sub-pixel deviations, however, can usually be accounted for by

retrieving a dispersion shift (d0) and/or a dispersion stretch (d1).

4.6 Derivatives with Respe to Atmospheric and Surface Pa-

rameters

In Chapter 5, the inverse scheme to solve the retrieval problem is introduced. In

addition to modelling the radiances I as they would be measured by the satellite, the

retrieval algorithm also requires partial derivatives with respect to certain atmospheric,

surface or instrumental parameters. There is a potential confusion regarding the

terminology - the partial derivatives of the radiances with respect to atmospheric or

surface parameters are usually referred to as weighting functions, whereas the partial

derivatives with respect to state vector elements (see Section 5.1) are called Jacobians.
3The di�erence between final modelled and convolved radiances, and the radiances measured by

the instrument, I conv − I meas.
4Here, “pixel” refers to a discrete unit at which a radiance value is given in L1B data, which is not

necessarily the smallest discrete unit on the detector.
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However, this distinction is not always made and the two terms are sometimes used

interchangeably.

The UoL-FP algorithm employs monochromatic radiative transfer models, which

produce Stokes vectors5 given a model atmosphere configuration: S = S(τ,$, β, s).

τ, $, β are the layer-resolved total optical depths, total single-scattering albedos and

composite phase function expansion coe�cients. The vector s contains the set of

surface parameters required by the surface model. In the simplest case, and regularly

employed for XCO2 retrievals, this is the Lambertian albedo ρ. The utilised RT

models are all linearised, meaning that not only the Stokes vector is calculated by an

RT model call, but upon request, the partial derivatives with respect to the (layer-

resolved) atmospheric and surface quantities are returned. Applying the chain rule

using these derivatives, the partial derivatives with respect to state vector elements

can be analytically calculated.

To calculate the Jacobians for gas concentration g , first the derivatives for gas optical

depth at layer l are written as

∂S

∂τ
(gas)
g ,l

=
∂S
∂τl

∂τl

∂τ
(gas)
g ,l

+
∂S
∂$l

∂$l

∂τg ,l
. (4.23)

The red-coloured derivatives of the Stokes vector with respect to the total optical

depths in layer l are provided by the radiative transfer model. From Equation 4.15,

∂$l
/
∂τg ,l = −$l/τl , and ∂τl

/
∂τ
(gas)
g ,l = 1:

∂S

∂τ
(gas)
g ,l

=
∂S
∂τl
−

∂S
∂$l

$l

τl
. (4.24)

From the derivatives of the layer-dependent optical depths, the derivatives with

respect to level concentrations qg ,l are obtained through the formalism detailed in

Spurr et al. (2014). Similar considerations are made for the temperature Jacobian.

Calculating the surface pressure Jacobian is more intricate, as all contributions to the

optical depth depend on it, however the general approach is the same: establishing

partial derivatives ∂τ(gas)g ,l

/
∂psurf and ∂$l

/
∂psurf and applying the chain rule. Details

are found in Crisp et al. (2010).

Jacobians for the layer-resolved aerosol optical depths for mixture a follow the same

approach, however the phase function contributions need to be taken into account:

∂S

∂τ
(aer−ext)
l ,a

=
∂S
∂τl
−

∂S
∂$l

$l

τl
+

6∑
s=1

LM∑
m=0

∂S
∂βl ,m,(s )

$
(aer)
l ,a

(
βm,a − βl ,m,(s )

)
τ
(Ray)
l + τ

(aer−sca)
l︸                       ︷︷                       ︸

∂βl ,m,(s )

∂τ
(aer−ext)
l ,a

, (4.25)

5See Section 10.1, Page 141 for the definition of the Stokes vector.
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with (s ) being one of the six independent elements6 of the phase matrix. Deriva-

tives with respect to the phase function expansion moments ∂S
/
∂βl ,m,(s ) can be

calculated by the radiative transfer models for all l ,m and (s ), however it would be

computationally very costly to do so. Each requested partial derivative adds to the

computation time, and the total number of Legendre moments LM is usually of

the order several dozen or hundreds. As a consequence of the linearised aspect of

the used radiative transfer models, the double sum is calculated internally, if the

input ∂βl ,m,(s )
/
∂τ
(aer−ext)
l ,a is provided to the models. From here on, the conversion

from layer to level derivatives (Spurr et al. 2014) is applied to obtain the aerosol

concentration derivatives at the layer boundaries.

Surface parameter Jacobians are straightforward for the case of a Lambertian surface,

which is defined solely by the albedo ρ. The radiative transfer models return ∂S/∂ρ

directly, so no further calculations are necessary. In the UoL-FP algorithm, the

surface albedo can be defined as a general polynomial of order Nρ, as a function of

wavelength λ :

ρ(λ) =

Nρ∑
k=0

ρ(k )(λ − λ0)
k , (4.26)

λ0 being a reference wavelength within the band, and ρ(k ) being the coe�cients,

where ρ(0) is the albedo, ρ(1) is the albedo slope and so on. Applying the chain rule

again, the derivatives with respect to the coe�cients are obtained as

∂S
∂ρ(k )

=
∂S
∂ρ

∂ρ

∂ρ(k )
=
∂S
∂ρ
(λ − λ0)

k . (4.27)

Other Jacobians which can not be easily computed using atmospheric or surface

weighting functions are obtained through finite di�erencing

∂S(x)
∂x
≈
S(x + ∆x) − S(x)

∆x
. (4.28)

This approach is feasible if the radiative transfer calculations are not required at

this point anymore, but relate to any manipulation to the high-resolution spectra.

The Stokes vector has to be evaluated twice for every finite-di�erence Jacobian.

Examples for which this is the preferred method are the instrument dispersion and

the parameters of a parametrised instrument line shape function. Both are highly

non-linear modifications to the final convolved spectrum and thus the change in the

radiances are best characterised by calculating S after a small perturbation of the

relevant state vector element.

6As a result of the symmetry and homogeneity of the aerosol mixtures. See Thomas et al. (2002)
and Mishchenko et al. (2006).

46



Chapter Five

Inverse Method

A
fter establishing the forward model of the UoL full-physics algorithm, a

scheme is needed to extract information from the measurement. A task

like this falls under the general class of inverse problems, a well-studied area

of research. The UoL-FP algorithm employs a Bayesian optimal estimation technique

- the motivation, and details are discussed following Rodgers (2000).

5.1 Inverse Problem Formulation

The relationship between a forward model F(x,b), which is a function of the state

vector x and auxiliary parameters b, and the measurement y is postulated as

y = F(x,b) + ε, (5.1)

where ε is the random measurement noise. The state vector x is a set of parameters

that are unknown and are to be informed by the measurement, for example a trace

gas concentration or surface reflectivity. Auxiliary parameters b are required by

the forward model, but are considered either known or not relevant in the current

retrieval problem, such as the viewing geometry or the surface altitude. As a short-

hand notation, the explicit mention of the auxiliary parameters can be dropped to

write F(x).

Given some assumptions on the measurement noise, the equation above would require

an inverse function F−1 in order to be solved trivially. For most applications, such an

inverse does not exist. The non-existence of a general inverse to the forward model

F gives rise to the many techniques to infer x from a given y.

Most strategies for solving Equation 5.1 require knowledge about the sensitivity of

the forward model with respect to a change in the state vector. Mathematically, this

corresponds to the Jacobian matrix, which is the first order derivative

K =
∂F(x)
∂x

. (5.2)

To demonstrate the usage of the Jacobian matrix, one can picture a case in which the

forward model is fully linear in x. Following (first-order) Taylor expansion around
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any state vector x0 is then exact:

F(x) = F(x0) +
∂F(x)
∂x
(x − x0). (5.3)

The above then reduces the inverse problem (dropping the measurement noise for

the time being) to following form

y = F(x0) +
∂F(x)
∂x

(x − x0) = F(x0) +K0(x − x0), (5.4)

where K0 is the Jacobian matrix evaluated at x0. The final state vector can then be

obtained as

x = x0 +K−10
[
y − F(x0)

]
. (5.5)

Thus, for the case of a fully linear retrieval problem, both the forward model and the

Jacobian matrix need to be evaluated only once for one given state vector x0.

In practice, the linearity assumption does not hold for many forward models and

state vectors. Formally, however, any forward model can be linearised at a given x,

F(x) ≈ F(x0) +K0(x − x0) (5.6)

where the linearity assumption approximately holds in a (small) region around x0.

When F is not linear, solving Equation 5.1 for x is often achieved through an iterative

technique: starting from a �rst guess for the state vector, x0, the output of the forward

model y0 = F(x0) is compared to the actual measurement y. After assessing the

di�erence between y and y0 as well as between x and x0, the state vector is updated

(x1) and the process is repeated. Once the di�erence between the forward model

output and the measurement is below a certain threshold, usually involving the

expected measurement noise, the iterative process is considered to be converged.

The state vector after the last update is then the retrieved or �nal state vector and

represents a possible solution of Equation 5.1.

The inverse problem (Equation 5.1) is turned into an optimisation problem, for

which there are again many methods. For a full-physics retrieval algorithm, there are

some criteria which the optimisation scheme has to fulfil. For one, the number of

forward model evaluations should (on average) not exceed more than e.g. 10. As

each evaluation of F (including Jacobian calculation) takes roughly a minute, it is

not feasible to utilise optimisation schemes related to Markov chain Monte Carlo

methods, which generally require many evaluations per iteration. Due to the necessity

of an initial guess, it is also important that the optimisation scheme is wrapped by a

statistical inference method, to allow for an interpretation of the results. A commonly

used technique, and the one incorporated into the UoL-FP algorithm, is Bayesian

optimisation in combination with the Gauss-Newton minimisation method.
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5.2. Bayesian Optimal Estimation

5.2 Bayesian Optimal Estimation

The premise of Bayesian optimal estimation (OE) is Bayes’ theorem, which provides

a way of calculating and interpreting the probability of an event E, given that H is

known to be true. P. M. Lee (2012) uses the term “degree of belief” to describe the

meaning of Bayesian probability. The notion of H , prior knowledge, is what distinctly

di�erentiates Bayesian statistics from frequentist statistics, in which probability is

related to the relative occurrence of an outcome given a large number of trials. The

theorem can be formally stated as

P (E |H ) =
P (H |E)P (E)

P (H )
. (5.7)

The probability of event E occurring, while H is known P (E |H ), is computed using

P (H |E), the conditional probability of event H assuming that E is true, P (E) and

P (H ) being the unconditional probabilities of E and H occurring independently of

each other.

Applying Equation 5.7 for the inverse retrieval problem is very easily done. The

event E is replaced by the state vector x, and H is replaced by the measurement y:

P (x|y) =
P (y|x)P (x)

P (y)
. (5.8)

The probability P now takes the more concrete meaning of a probability density function

(PDF). To solve an inverse retrieval problem, the desired quantity is the posterior

distribution P (x|y), which is the probability of a state vector x resulting in a measure-

ment y. Similarly, P (y|x) is the PDF describing knowledge about the measurement

given a certain state, and is thus straightfowardly related to measurement noise.

P (x) is the probability distribution of the state vector without the measurement, it

represents the prior knowledge about the state. Finally P (y) is related to our prior

knowledge about the measurement itself and is formally obtained by integration

of P (y|x) over all x. This integration is in practice di�cult to do, and serves as a

normalisation factor which in this case is not necessary as a specific PDF type will

be chosen. It is characteristic of the Bayesian approach that every variable, be it an

element from either x or y is represented by a PDF.

Rodgers (2000) emphasises that P (x|y) does not yield a result in terms of an inversion

of F, unless a specific x from the distribution is picked. The Bayesian framework

produces some insight as to how the measurement informs and potentially improves

on the prior knowledge of x.

At this stage, Equation 5.8 is a formulation independent of the type of PDF that

describes either P (x), P (y) or P (y|x). For practical reasons, a specific kind of PDF

has to be picked. A Gaussian distribution is the algebraically simplest choice and
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5.3. Iterative Approach to the Non-Linear Problem

has some physical footing - e.g. measurement noise is often of Gaussian nature. The

multivariate Gaussian distribution function in n dimensions for a random u is

P (u) =
1√

(2π)n Su
exp

[
−
1
2
(u − u)TS−1u (u − u)

]
, (5.9)

where u is the mean of the PDF, and Su is the symmetric covariance matrix. Using

the explicit representation of a PDF in Equation 5.9, Bayes’ theorem can be applied

by writing P (x), P (x|y) and P (y|x) down explicitly as well.

After some elementary algebraic manipulations (see Rodgers (2000) for details), the

two characteristic parameters of the Gaussian posterior PDF P (x|y) can be calculated

Ŝ = (KTS−1ε K + S−1a )
−1,

x̂ = xa + SaKT(KSaKT + Sε )−1(y −Kxa).
(5.10)

Understanding that the result of the Bayesian approach is P (x|y), rather than a

particular x, raises the question of how to represent the result. For practical reasons,

it is more convenient to pick a state vector from P (x|y) - but which one? An obvious

choice is to pick out the state x for which the PDF exhibits a maximum, another one

would be the mean state, which includes averaging all states, weighted by the PDF.

If the PDFs are reduced to Gaussian distributions, then the two are mathematically

the same. The former solution is called maximum a posteriori (MAP) state, the latter

solution is the expected value state. If P (x|y) is Gaussian, then the mean state of the

PDF, x̂ from Equation 5.10, is the MAP solution, with the posteriori covariance Ŝ

describing the “width” of the PDF.

5.3 Iterative Approach to the Non-Linear Problem

Usually, the forward model is not exactly linear, which means that either y , Kx

or the prior PDF is not Gaussian (or both). Rodgers (2000) classifies non-linear

problems into four classes, the most relevant here being the moderately non-linear one,

describing “problems where linearisation is adequate for the error analysis, but not

for finding a solution”. If the problem is non-linear, then the MAP solution x̂ from

Equation 5.10 will not be a satisfactory inversion of the problem y = F(x̂) + ε .

To tackle the non-linear problem, a standard strategy is an iterative approach. Starting

from a first-guess state vector x0 and the evaluation of the forward model and the

Jacobian matrix at this state, an update to the state vector is calculated to yield a new

x1. Ideally, the di�erence between the measurement y and the forward model at the

new state F(x1) has decreased (compared to |y − F(x0)|). This process is repeated

until a quantitative convergence criterion is reached, at which the state vector is

accepted as the MAP solution.
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5.3. Iterative Approach to the Non-Linear Problem

A suitable convergence criterion involves a cost function, which is sought to be min-

imised. For the non-linear problem, the chi-square statistic of the distribution P (y|x)

provides a cost function

χ2 =
(
y − F(x)

)T S−1ε (
y − F(x)

)︸                              ︷︷                              ︸
Measurement

+ (xa − x)TS−1a (xa − x)︸                      ︷︷                      ︸
Prior

(5.11)

that illustrates the Bayesian optimal estimation approach very well. The OE method

will attempt to find an x which minimises the di�erence between the forward model

and the actual measurement while at the same time weighing in the information

about the prior state through xa and Sa. If the measurement is characterised by

high levels of measurement noise, then x̂ will be closer to the prior, as the retrieval

considers the prior information “more trustworthy”. Similarly, for a situation where

the measurement noise is small compared to the prior covariance, the measurement

will play a bigger role and the retrieval will seek to minimise the di�erence between

y and F(x), even if that means that x̂ ends up being far away from the prior state xa.

UoL-FP utilises the Levenberg-Marquardt (LM) modification to the Gauss-Newton

method for updating the state vector between iterations. It introduces a damping term

γD, with γ ∈ R+. Using this damping constant, the LM method continuously scales

between the Gauss-Newton method (γ → 0) and the method of steepest descent

(γ →∞). The state vector update from iteration i to iteration i + 1 is given by

xi+1 = xi + (S−1a +K
T
i S
−1
ε Ki + γD)−1 (5.12)

×
[
KT
i S
−1
ε

(
y − F(xi )

)
− S−1a (x − xa)

]
. (5.13)

Note that an increased γ will force the step size |xi+1−xi | to be smaller. The Jacobian

matrices Ki have to be recalculated at every iteration step. For damping matrix D,

the choice D = S−1a is made.

Part of the LM strategy is to update γ based on whether the state vector update

results in an actual reduction of the cost function, or whether it ends up increasing it.

In the UoL-FP algorithm, the adjustment to γ depends on the quantity R:

R =
χ2i − χ

2
i+1,FC

χ2i − χ
2
i+1

, (5.14)

where χ2i and χ2i+1 are the χ2 values corresponding to iterations i and i + 1, and

χ2i+1,FC corresponds to the χ2 value forecast computed through Kixi . Clearly, if

the forward model is exactly linear, then χ2i+1,FC = χ2i+1, and thus R = 1. For any

0 ≤ R ≤ 1, the cost function has decreased as χ2i+1,FC < χ2i+1, signifying that the

retrieval is still exploring the forward model in a non-linear region. When R < 0, the

cost function increased. For the UoL-FP algorithm, an iteration step is considered
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5.4. Retrieval Characterisation and Errors

divergent, when R < 0.25. When R > 0.75, the value of γ is updated by γi+1 = γi/2,

and when R < 0, γi+1 = 10 γi . The initial value for γ is a matter of empirical

knowledge, and there does not seem to be a consistent and simple way of picking γ0.

The first-guess state vector x0 (iteration i = 0) does not have to be the prior mean

xa, but tends to be the obvious choice.

Finally, the convergence criterion is established using the posterior covariance matrix:

dσ2
i = dxTi+1 Ŝ

−1 dxi+1 , (5.15)

dxi+1 is the state vector update xi+1 − xi , where γ has been set to 0. The quantity

dσ2
i is the change in the state vector as a fraction of the posterior covariance matrix,

and once dσ2
i < n · f , the retrieval is considered converged. n is the length of the

state vector, and f is a real-valued scaling factor to adjust the convergence criterion.

5.4 Retrieval Charaerisation and Errors

The Bayesian approach provides not only a means of finding a state vector to solve

the original problem in Equation 5.1, but also o�ers a number of valuable and

quantitative ways to characterise various aspects of the retrieval itself. A quantity

that already appears in Equation 5.10 (for the linear case) is

G = SaKT(KSaKT + Sε )−1, (5.16)

and is called gain matrix. It can be thought of as the derivative of the MAP solution

with respect to the measurement (and roughly to the forward model), as can be seen

by calculating the partial derivative using Equation 5.10 explicitly:

∂x̂
∂y
= G ≈

∂x̂
∂F

. (5.17)

The gain matrix reveals the contribution to each state vector element with respect

to the measurement vector y and can reveal whether certain spectral ranges carry

information about the retrieved quantity or not, and how much.

Related to G, another quantity can be calculated as

A = GK =
∂x̂
∂x

(
=

∂x̂
∂F

∂F
∂x

)
, (5.18)

which is known as the averaging kernel matrix. It describes the sensitivity of the

retrieved state vector x̂ to the true state vector x. This notion seems particularly

confusing when talking about retrievals from real measurements. Strictly speaking,

this interpretation is only valid when the true state is known. For simulation studies,
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5.4. Retrieval Characterisation and Errors

the true state is obviously known, and as such the averaging kernel provides infor-

mation about the sensitivity of the retrieval. It can be used to design instruments,

choose spectral ranges, and determine where in the atmosphere the sensitivity of the

measurement to i.e. concentration of a certain trace gas is highest. When the true

state is not known, as in most retrievals involving real measurements, the Jacobian

matrix K in Equation 5.18 is not evaluated at the true state but rather at the final or

penultimate iteration. However, as long as those states are in the vicinity of x̂, an

argument can be made that the Jacobian matrix should be su�ciently similar when

evaluated at the MAP solution state.

Using the pressure weighting operator h (O’Dell et al. 2012), the elements of the state

vector that correspond to the CO2 profile can be converted into the column-averaged

XCO2 via

XCO2 = hTx̂, (5.19)

and the associated column averaging kernel is given by a = hTA. The corresponding

variance is calculated from the posterior covariance matrix as

σ2
XCO2

= hTŜ h. (5.20)

As an example, Figure 5.1 shows the column averaging kernels for GOSAT and

OCO-2 for ocean glint measurements from May 2016, divided into three solar zenith

angle bins. As per design, the kernels peak at lower altitude levels, showing that the
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Figure 5.1: GOSAT and OCO-2 column averaging kernels showing the near-surface
sensitivity for both instruments. The retrievals are taken from May 2016, and the three
lines correspond to solar zenith angle bins (in degrees) to which the retrievals were
grouped.

TANSO-FTS and OCO-2 instruments are most sensitive to concentrations in the
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5.4. Retrieval Characterisation and Errors

troposphere. Since the values are close to 1 until the bottom of the atmosphere, the

instruments are capable of providing information about near-surface concentrations.

Using the Bayesian approach, a variety of error characterisation metrics can be

calculated to assist in diagnosing the result of a retrieval. One major component is the

posterior covariance matrix itself, which straightforwardly represents the width of the

posterior distribution. It thus provides information about whether the measurement

added information compared to the prior. If for example hTŜ h < hTSa h, then the

measurement has indeed reduced the uncertainty with which XCO2 was known. The

aforementioned gain matrix can be used to map model errors into state vector space.

In Part III (Section 11.5) of the thesis, a fast radiative transfer method is analysed

regarding the XCO2 error that the approximation error induces. If F is a reference

forward model and f is another forward model with a known deficiency, such as an

approximation to the radiative transfer calculations, then the error to the state vector

is calculated as

∆x = G [F(x) − f(x)] . (5.21)

This equation is part of the linear analysis framework, which again formally requires

linearity over the range of change induced by f. Both F and f have to be evaluated at

the true state x and with auxiliary parameters b (not explicitly written) being the

same.

Ŝ is also extensively utilised in Part II (Section 7.6). While the diagonal elements are

the familiar variances of all elements within the state vector, o�-diagonal elements

can carry useful information about the retrieved state as well. Correlation coe�cients

Cij =
Ŝij√
Ŝii Ŝ j j

, (5.22)

defined between −1 and 1 reveal whether state vector elements are correlated in the

sense that the Jacobians associated with those elements are similar. If two state vector

elements are highly (anti)correlated, the forward model produces very similar results,

regardless of which of the two state vector elements are changed. Such correlations

in retrievals can potentially give rise to systematic biases.

There are many more aspects to error characterisation within the optimal estimation

approach, such as decomposing Ŝ into smoothing (errors due to the shape of the

column averaging kernel) and measurement error (contribution due to measurement

noise). The scope of this thesis, however, was not the development of an XCO2

retrieval, and apart from the mentioned concepts, no other error characterisation

was employed.
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5.5 General Retrieval Setup

In the retrievals presented in this thesis, the number of atmospheric levels (see

Figure 4.2) is 20 (19 layers) with the pressure grid described in Section 4.2. The

Lambertian surface model including an albedo slope is employed for simplicity, prior

values are estimated from the measured continuum level radiance I meas, the solar

zenith angle θ, and the solar irradiance (intensity) I0:

ρa =
πI meas

I0 cos θ
. (5.23)

Priors for albedo slopes are set to zero. Surface albedo is practically unconstrained,

and the associated prior covariance is σ2
ρ = 1. Dispersion coe�cient priors are either

taken directly from the L1B data package (OCO-2) or estimated using the known

location of a strong solar line at ∼12 985.163 cm−1 (∼770.1097 nm).

The CO2 volume mixing ratio profile at the 20 levels are part of the state vector. The

corresponding prior covariance matrix SCO2
a is designed to reflect the variability of

CO2 in the atmosphere with a total prior uncertainty of√
hTSCO2

a h∼12 ppm, (5.24)

and contains o�-diagonal elements to incorporate the correlations between levels

(O’Dell et al. 2012). The same SCO2
a (see Figure 5.2) is used for every scene.
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Figure 5.2: CO2 prior covariance matrix Sa (left) and the corresponding correlation
matrix C (right). The axes labels indicate the level (0 is the top of the atmosphere).
For the relationship between level index and pressure, see Section 4.2.

Apart from CO2, the gases H2O and CH4 (for GOSAT) are retrieved, as several

associated spectral lines appear in the GOSAT or OCO-2 windows. For the XCO2
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retrievals, the actual vertical distribution of these gases are assumed to be well-

represented by models, and hence a scaling approach is used. The prior profiles are

scaled by real-valued scaling factors cH2O and cCH4 , which are retrieved (prior values:

1).

To account for uncertainties in the meteorological data and real elevation of the satel-

lite footprint, the surface pressure psurf is retrieved. For most operational retrievals

for GOSAT, the UoL-FP algorithm uses a prior uncertainty equivalent of 4 hPa. A

strong deviation from the prior value generally results in a bias in XCO2. It indicates

that the true surface pressure is significantly far away from the prior value, and the

retrieved value still can be, and thus the wrong reference dry air mass will lead to a

biased XCO2 value.

In the state vector, aerosols are defined by their logarithmic extinction profiles per

pressure di�erence. The logarithmic transform is a common method to deal with

quantities that are physically bounded from below by zero. Performing the aerosol

retrieval in log-space therefore ensures that the back-transformed value never turns

negative. This choice comes with a number of drawbacks. A very small prior will

almost never move away from that initial value, unless a very large prior covariance is

employed. The current UoL-FP aerosol scheme calculates a prior covariance matrix

for each scene independently, where covariances are larger for low-AOD scenes, and

more restrictive for scenes with a high aerosol load. As can be seen on an example

of the aerosol prior covariance matrix for the small-type aerosol (Figure 5.3), the

profile is allowed to vary only in the troposphere, which is where the MACC-II/CAMS

models inform the aerosol scheme. The right panel of Figure 5.3 shows the high

correlations between the various layers.

It is important to realise that the GOSAT or OCO-2 spectra do not provide 20

individual pieces of information about every aerosol mixture. The actual degrees of

freedom for the aerosols in the retrieval is generally between ∼0.5 and ∼2.0 for the

small and large type aerosol mixtures, and between ∼0.5 and ∼1.0 for the cirrus type

mixture.

Fluorescence radiances are accounted for in land scenes, where priors come from the

fluorescence retrievals from Part II. Early tests have shown that due to the large single-

sounding uncertainty of the fluorescence retrieval, the XCO2 retrievals exhibited

some additional scatter related to the fluorescence priors. Therefore, a smoothing

operation is performed on the fluorescence values in both time and space, before the

actual value is used in the XCO2 retrievals. The smoothing procedure is based on a

simple Gaussian weighting: all fluorescence measurements within d < D = 250 km

and t < T = 30 day are collected. Spatial and temporal weights are then calculated
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Figure 5.3: Example of a prior covariance matrix for the small type aerosol mixture
(left). The values for stratospheric levels are very small, and will now allow the retrieval
to adjust the aerosol in those levels. Correlations (right) show that the aerosol extinction
at a given level is coupled to the levels below and above.

as

wd (d ) = exp
(
−

d 2

2(D/4)2

)
,

wt (t ) = exp
(
−

t2

2(T /4)2

)
,

(5.25)

and multiplied to yield w(d, t ) = wd (d ) · wt (t ), which is then used to calculate the

weighted mean

F avg
s =

∑
i w(di , ti )Fs(di , ti )∑

i w(di , ti )
. (5.26)

Instrument noise for GOSAT retrievals is estimated through the out-of-band portion

of the spectra. These portions of the spectra are accessible through the L1B files,

however have to be manually converted from Vcm to Wcm−2 sr−1 cm−1. Noise in

FTS-type devices is typically white noise, so the noise level inferred at the out-of-band

regions can be assumed to be valid for the entire band.
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Part II

Remote Sensing of

Chlorophyll Fluorescence
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Overview

Joiner et al. (2011) were first to retrieve fluorescence from GOSAT measurements on

a global scale. Using an additional spectral window, but still employing the same

basic retrieval principle, Frankenberg, Fisher, et al. (2011) showed that a simple bias

correction can rid the retrieved fluorescence of unphysical values over non-vegetated

areas. Soon, global fluorescence retrievals were performed using measurements

from SCIAMACHY (Joiner et al. 2012) and the moderate-resolution spectrometer

instrument GOME-2 (Joiner et al. 2013). The newest additions of space-based

fluorescence measurements are the 2014-launched OCO-2 (Sun et al. 2017), as well as

the recently launched Sentinel 5-Precursor whose TROPOMI instrument is capable

of measuring fluorescence as well (Guanter et al. 2015). These various instruments

capture chlorophyll fluorescence on di�erent scales (footprints), from 80 × 40 km2

(GOSAT) down to 1.29 × 2.25 km2 (OCO-2) and repetition times.

J.-E. Lee et al. (2013) analysed GOSAT-derived fluorescence data over the challenging

Amazon region and found that it better predicts water stress as quantified through

vapour pressure deficit (VPD), than the enhanced vegetation index (EVI). A very

comprehensive study using fluorescence data retrieved from GOME-2 measurements

was carried out in Joiner et al. (2014). They assessed the seasonal cycles of fluores-

cence sampled at flux tower sites across the globe and concluded that fluorescence

tracks the spring onset of photosynthesis well. Seeing as the absorbed photosyntheti-

cally active radiation tends to stay high even after the growing season, fluorescence

provides better information about photosynthetic activity and is better suited to con-

strain carbon uptake in models. The onset of photosynthetic activity in high-latitude

regions was studied by Luus et al. (2017). Similarly, they find that fluorescence

is a better predictor of spring onset than EVI, and thus highlight the advantage

of fluorescence over greenness indices to improve the modelling of the seasonal

cycle in the tundra. In a more global approach, Parazoo et al. (2014) have used

fluorescence in combination with an ensemble of dynamical global vegetation models

(DGVMs) to constrain carbon uptake. Their results suggest that some models are

over-sensitive to drivers of the growing season in the extra-tropics, while at the same

time underestimating the seasonal amplitude in the Amazon region. Regardless of

the value of fluorescence for the carbon science community, they also directly a�ect
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the quality of XCO2 retrievals, as shown by Frankenberg et al. (2012).

Fluorescence measurements from space will enter a new era in few years’ time,

due to the Fluorescence Explorer (FLEX) having been selected for a future Earth

Explorer mission by the European Space Agency - a detailed overview of the mission

is published in Moreno et al. (2015). FLEX will be solely dedicated to measuring

chlorophyll fluorescence using a push-broom-type imaging spectrometer (FLORIS)

to achieve the research objectives, which include the better understanding of the

dynamics of plant photosynthesis and its interactions in dynamic vegetation models.

The FLORIS instrument will measure both at low (2 nm) and very high (0.1 nm)

resolutions - low resolution is su�cient to capture the photochemical reflectance index

(PRI) as well as chlorophyll absorption, high resolution is needed to capture both the

O2-A and the O2-B bands in which the fluorescence signal lies. In terms of spatial

sampling, the FLEX mission will significantly reduce the footprint size compared

to current observations, and will deliver soundings at 300m × 300m resolution.

The small footprint size is needed to achieve the science objective related to the

identification of optimal management strategies for crop production. FLEX will be

flying in tandem with Sentinel-3 (Donlon et al. 2012) and use its assessment of the

atmospheric conditions to provide further information for the fluorescence retrieval.

The measurement swath is stated as 150 km for the intended sun-synchronous orbit

at 815 km, which then results in a revisit time of up to 19 days. FLEX is scheduled to

be launched in 2022.

In this part of the thesis I first introduce chlorophyll fluorescence in the context

of photosynthesis and explain how it arises on a microscopic level. I then lay

out the concept behind retrieving fluorescence from high-resolution spectroscopic

measurements and assess the result of processing a 7-year GOSAT record. Using

this comprehensive fluorescence record, I study a large continental-scale event, in

order to demonstrate the capabilities of fluorescence measurements to capture the

vegetation’s response to disruptions of the biosphere. Finally, I investigate the impact

of introducing well-calibrated a priori fluorescence radiances to full-physics XCO2

retrievals.
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Chapter Six

Solar-Induced Chlorophyll Fluorescence

S
olar-Induced chlorophyll fluorescence (SIF) is a byproduct of a chain of re-

actions that occur simultaneously alongside photosynthesis. To understand

how SIF arises in the first place, a detailed description of photosynthesis is

required. This chapter is heavily derived from the textbooks Taiz et al. (2010), and

Cooper et al. (2013).

6.1 Chloroplasts, Chlorophyll, and Photosystems

Photosynthesis occurs entirely within plant and algal cells, more precisely in organelles

(sub-structures of cells, dedicated to a specific task) called chloroplasts. Chloroplasts

are found in a variety of plant cells, mostly in parts of the plant that appear green,

such as leaves or the near the surface of the plant stem. They are between 5 µm and

10 µm long, and the number of chloroplasts per cell can vary with plant type as well

as with the surrounding environmental conditions.

Like plant cells, chloroplasts themselves have an inner structure, illustrated in Fig-

ure 6.1. Surrounded by a double membrane, the objects of interest are the so-called

thylakoids. Inside the double membrane, the actual thylakoids are found as intercon-

nected stacks of flat discs (grana lamellae) surrounded by a colourless fluid (stroma).

Thylakoids also feature a sub-structure, as they consist of the thylakoid lumen en-

veloped in the thylakoid membrane; the stacks are connected to each other through

the same kind of membrane (however unstacked) called stroma lamellae.

The photochemical reactions of photosynthesis all take place in the thylakoid mem-

brane and the stroma lamellae. Embedded in the thylakoid membrane are two

types of large photochemical protein complexes, the so-called photosystems (I and II,

abbreviated as PSI and PSII). For the understanding of SIF, the relevant elements

of the photosystems are the antenna complexes, an array of chlorophyll molecules

(and other carotenoid pigments) in which incoming light energy is absorbed, and

the respective reaction centres. Both reaction centres of PSI and PSII are chlorophyll

dimers, called P700 and P680, respectively. The numbers indicate the wavelength of

maximal spectral absorption in nano metres.
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Double membrane

Thylakoid
Grana lamellae

Stroma lamellae

Figure 6.1: Illustration of the inner structure of a chloroplast. The disk-shaped
thylakoids are arranged in stacks (grana lamellae), interconnected via the stroma
lamellae.
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Figure 6.2: Chlorophylls a (C55H72MgN4O5) and b (C55H70MgN4O6). The two
chloropylls are identical apart from the functional group R, which for chlorophyll a is
another methyl (CH3), and for chlorophyll b is an aldehyde (CHO).

The photosystems are physically separated from each other, PSI is found in the

stroma lamellae as well as the edges of the grana lamellae, whereas PSII mostly

resides in the grana lamellae. Both, however, are located in the thylakoid membrane.

The roles of each mentioned component within the photosynthetic apparatus are

explained in the following section.

6.2 Light-Dependent and Light-Independent Reaions

The process of photosynthesis is driven by two sets of reactions, one of them relying

on incident light (light-dependent reactions or thylakoid reactions), the other one being

independent on the presence of light energy (light-independent reactions or carbon

�xation reactions). Since electron transport is a fundamental aspect of the light-
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6.2. Light-Dependent and Light-Independent Reactions

dependent reactions, the preferred way to depict them is an energy diagram called

Z scheme (Figure 6.3). The name derives from the fact that the redox diagram

resembles a Z.

Photosystem II

P680

e−
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2H2O→ 4H+ +O2 + 4 e−

P700

P700∗

NADP+ + 2H+
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Photosystem I

electron

FRET

Figure 6.3: This illustration depicts a heavily simplified version of the Z scheme.

Following the Z scheme from left to right, the light-dependent reactions can be

summarised in a compact manner.

Incident light is absorbed by the chlorophylls of the antenna-complex of a PSII,

which leaves those chlorophylls excited for a short time. When an incident photon

is absorbed by an electron, this photon-absorbing electron is raised onto a higher

energy level and then subsequently returned to its former state. The excitation energy

(the di�erence between the excited and former state) is then transferred from one

chlorophyll molecule to a neighbouring one without any chemical reactions via Förster

(or �uorescence) resonance energy transfer (FRET). This type of energy transfer occurs

through dipole-dipole interactions, without any radiation being emitted, and is only

e�ective over short distances (∝ R−6).

Passed on between neighbouring chlorophylls, the excitation energy will eventually

reach the reaction centre of the PSII, P680, which is subsequently excited (P680∗).

Rather than passing on the excitation energy, the excited electron within P680∗ is

itself now ejected from the reaction centre. The oxidised (electron-deficient) P680∗

regains its missing electron through the oxygen-evolving complex (or water-splitting
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6.2. Light-Dependent and Light-Independent Reactions

complex), where water in the thylakoid lumen acts as electron donor:

2H2O→ O2 + 4H+ + 4 e−. (6.1)

As seen in the equation above, a total of four photons (one per released hydrogen

atom) is needed to oxidise two water molecules and provide four electrons to the

electron-deficient reaction centres of PSII. This specific reaction seems to be unique

amongst the currently known biochemical systems - practically all molecular oxygen

in the Earth’s atmosphere is a result of this particular reaction.

The ejected electron from the excited PSII reaction centre is carried through an

electron transport chain (ETC) and loses energy at each reaction within the ETC

(the details of the ETC are skipped here). At the end of the ETC, the electron arrives

at an excited reaction centre of PSI (P700∗), which was excited through the same

mechanism as P680. That is through transferred excitation energy coming from an

incident photon absorbed by a chlorophyll molecule in the surrounding antenna

complex. The electron that initially came from PSII is now used to replace the

missing one from the excited P700∗, which passed its excited electron on to another

ETC. As mentioned earlier, both P680 and P700 are named due to their absorption

maximum being around 680 nm and 700 nm respectively. Chlorophylls in the antenna

complexes exhibit a peak absorption at lower wavelengths, closer to ∼450 nm.

The first ETC provides energy for the synthesis of adenosine triphosphate from adenosine

diphosphate (ADP→ ATP), which in very simple terms can be described as an energy

storage molecule that can carry chemical energy to be used for various metabolic

functions within plant cells. At the end of the second ETC, the energised electron

(originating from P700) is used in the reduction of a chemical compound called

nicotinamide adenine dinucleotide phosphate (2NADP+ + 2H+ → 2NADPH).

Concluding the light reactions of photosynthesis, the relevant steps are as follows:

• Photons are absorbed by chlorophylls in the antenna complexes of the two pho-

tosystems, and the gained excitation energy is used to oxidise the photosystem

reaction centres P680 and P700

• The electron deficient P680 receives an electron through the splitting of water,

whereas the oxidised P700 obtains the electron ejected by P680

• Ejected electrons from both reaction centres pass through ETCs and are used

to create ATP and reduce NADP+ to NADPH

At this point, the designation of these reactions make sense, as they cannot take place

without photons that excite electrons in the reaction centres. The light-independent
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reactions follow up where the light reactions finished, they take place in the stroma.

Known as the Calvin–Benson–Bassham (CBB) cycle, this set of reactions, in which

both ATP and NADPH are utilised, ultimately leads to the fixation of atmospheric

CO2 into triose phosphate (G3P). The total (net) reaction of the CBB cycle is:

3CO2+5H2O+6NADPH+9ATP→ G3P+6NADP++3H++9ADP+8 Pi , (6.2)

with Pi being inorganic phosphates. The CBB cycle itself does not result in the

formation of sugars, however two G3P molecules can form one glucose molecule

(C6H12O6). The particular details of the CBB cycle are far outside the scope of this

thesis and do not directly relate to SIF, and are hence omitted here.

6.3 Non-Photochemical Quenching

In Section 6.1, photosystems were introduced as one of the fundamental building

blocks of the photosynthetic apparatus. The individual carotenoid pigments of the

surrounding antenna complexes only hold on to the incoming light energy for a very

short time, on the order of picoseconds (1 ps = 1 · 10−12 s). This quick dissipation

of excitation energy is referred to as quenching and plays a vital role in the health of

plants.

Since there is only a finite amount of photosystem reaction centres, not all excited

pigments can pass on their excitation energy immediately. Once a reaction centre

receives excitation energy and is in the process of passing it on to a mobile electron,

it is closed and not able to receive any further excitation energy until it is open again.

From receiving excitation energy to open up again, up to a millisecond can pass

(Krause et al. 1991). Thus, it takes orders of magnitude longer for the reaction

centres to open up again than the usual duration of a FRET process.

If a pigment is not able to pass on excitation energy, the excited state will be prolonged,

especially in an environment of high light intensity. The longer a pigment stays in

that singlet-excited state, the chances of a long-lived triplet excitation (3Chl*) are

increased, which in turn can cause the formation of the highly reactive and harmful

singlet oxygen (1O2*) (Müller et al. 2001).

One mechanism to counter the formation of harmful singlet oxygen is the so-called

non-photochemical quenching (NPQ), in which excess light energy is dissipated as heat.

Again, NPQ itself is a complex topic and the details are skipped here.
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6.4 Chlorophyll Fluorescence

Besides NPQ and photosynthesis, there is a third de-excitation pathway for pigments

to dissipate their photon-induced excitation energy: chlorophyll fluorescence. Here, a

small amount of the energy is turned into heat, whilst the majority is used to emit

photons in the far-red range of the wavelength spectrum (roughly 650 nm to 800 nm).

The spectral characteristic of the fluorescence signal should not be confused with

the absorption profile of the chlorophylls in the antenna complexes.

Generally, the e�ciency of photochemistry is above 90%, meaning that > 90% of the

incident light energy is used for photosynthesis. The e�ciency of SIF ranges between

0.6% and 3.0%, the remaining 7.0% to 9.4% is turned into heat via NPQ. As the level

of illumination increases, the e�ciency of the photochemistry pathway decreases as

both NPQ and SIF ramp up accordingly.

Spectrally, the SIF signal (see an example in Figure 6.4) consists of two distinct peaks

at around 685 nm and 750 nm. PSII contributes to both peaks, whereas PSI mostly

contributes to the peak at 750 nm.

650 700 750 800 850
Wavelength [nm]

R
ad

ia
nc
e
[a
.u
.]

O2 A-band Figure 6.4: This figure illustrates a typical broad-
band SIF emission spectrum. The shaded area
between 755 nm and 772 nm marks the location of
the O2 A-band as measured by GOSAT/TANSO-
FTS and other instruments. Note that the SIF
magnitude at 755 nm is about 1.8 times higher
compared to 772 nm. The emission spectrum was
calculated using FluorMODgui (Zarco-Tejada et
al. 2006).

The SIF yield does not only change with varying illumination scenario, it also directly

reflects other environmental parameters that a�ect the plant physiology. Willits

et al. (2001) have shown that SIF yield (as a fraction of the maximally obtainable

fluorescence signal) decreased significantly with leaf temperature, both in a laboratory

and a greenhouse environment. Another example is the study performed by Souza

et al. (2004), in which the SIF signal from cowpea plants (Vigna unguiculata) was

studied while the plants were experiencing water stress. The plants were withheld

water until the measured CO2 assimilation rate vanished, and were then watered

again. Several experiments within that study show similar results: water-stressed

plants exhibit lower photochemical quenching (qP, quenching due to photochemistry),

higher NPQ, and lower SIF yield.
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The intricate relationship between SIF and actual CO2 uptake has been recently

investigated by Magney et al. (2017). They employed a new leaf-level experimental

setup, which allows for the simultaneous measurement of SIF radiances and gas

exchange. The fluorescence signal was measured via a pulse-amplitude modulation

(PAM) fluorometer and a spectrometer, the gas exchange was measured using an

infra-red gas analyser (IRGA). In their Figure 4 (bottom row) they show again how

stressed vegetation emits lower-magnitude SIF radiances, while also showing that the

SIF signal increases with increasing incident light. Finally, they show relationships

between net CO2 assimilation (as derived from IRGA measurements) and steady-

state SIF. While roughly speaking, the SIF radiances increase with CO2 assimilation

rates (Anet) for non-stressed samples, the relationship is non-linear. Looking at the

stressed (increased ambient temperatures, reduced humidity) samples, Anet saturates

for both investigated plant species, however the magnitude of the SIF radiances

increases almost to unstressed levels. From the results shown in that figure, it does

not seem easily possible to distinguish a stressed from a unstressed sample based on

the leaf-level SIF radiances alone, using only one measurement.

6.5 SIF and Primary Produion

SIF and primary production are linked on a microscopic scale, as explained in

Section 6.2. Describing the link between SIF as a leaf-level phenomenon, and SIF

as recorded as an average over several square kilometres of vegetation, is not an

easy task. Porcar-Castell et al. (2014) have published an overview on the topic and

highlighted some of the current challenges, most of them pertain to the seasonality

of SIF and GPP - both a decoupling of SIF and GPP is needed on that time scale, as

are leaf-level measurements of SIF via PAM. The macroscopic relationship between

primary production and SIF is fairly straightforward. Going back to Monteith (1972),

primary production can be written using what is now called the light use e�ciency

(LUE) model:

GPP = PAR · fPAR · LUEp . (6.3)

GPP is simply a product of three terms. PAR is the photosynthetically active radiation and

describes the amount of down-welling radiation in the wavelength band between 400

to 700 nm. This particular band is the main spectral window in which Chlorophylls

absorb light (see Section 6.2), thus PAR represents the radiation which can be

harvested for photosynthesis. The second term, fPAR1, is the fraction of PAR that is

actually absorbed by a plant, so that the product of the first and second term is the

absolute radiation that is available for the plant for use in photosynthesis. The last
1Sometimes also written as fAPAR.
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term is the light use e�ciency itself (LUEp), which again is a fractional value and

describes how much of the available radiation is actually used for photosynthesis.

PAR is relatively easily calculated and depends mostly on the location and the time

of year, as well as cloud cover. fPAR is usually derived from measured surface

reflectance, taking into account specific biome types. LUEp is a more intricate

parameter, as it depends highly on the season, the plant type and the overall current

physiological condition of the plant, for example whether it is stressed or not. Plant

conditions are of course highly dependent on many environmental factors. The

LUE model is commonly used, such as in the MODIS GPP product (MOD17, Zhao

et al. 2005).

Analogous to Equation 6.3, a similar relationship can be proposed for SIF radiances

(Guanter et al. 2014):

SIF = PAR · fPAR · LUEf · fesc. (6.4)

Here, the first two terms are equal to those in Equation 6.3, however the light use

e�ciency term is di�erent. LUEf , is the fraction of absorbed radiation that is then

re-emitted as SIF. The last term fesc is the fraction of emitted SIF radiation that

makes it through the canopy (if there is one) to reach the sensor on a space-based

platform.

Ignoring fesc, GPP and SIF, as modelled through Equation 6.3 and Equation 6.4, can

be related easily as

GPP∼SIF ·
LUEp
LUEf

, (6.5)

which states that SIF and GPP are linearly related. If the two light use e�ciency

terms are varying in the same manner throughout the season for a specific plant

type, then the relationship between SIF and GPP is simply given by a scale factor,

as LUEp/LUEf can be assumed to be near constant. Guanter et al. (2014) point

out that the co-variation between LUEp and LUEf is shown through experimental

evidence in e.g. Zarco-Tejada et al. (2013).

Even though the linearity between GPP and SIF has been observed through space-

based measurements, the relationship is still poorly understood in the context of

other influential meteorological variables. In Section 9.1, the GOSAT-retrieved SIF is

compared to GPP models and measurements.
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Chapter Seven

SIF Retrieval from GOSAT

7.1 Fraunhofer Line Discrimination Principle

P
ractically all retrieval concepts employed for measurements from SCIA-

MACHY, GOME-2, GOSAT and OCO-2 are derived from the Fraunhofer

line discrimination (FLD) method, described first in Plascyk (1975), and

Plascyk et al. (1975). The FLD principle works on the basis that solar (Fraunhofer)

lines will be altered when an additional radiance signal from the surface is added

to the TOA radiance. This can be illustrated in a very simple example: consider a

single solar absorption line, centred around a wavelength λ in (Figure 7.1). Assume

λout λ in

Iin

Iout

Irradiance

λout λ in

Lin

Lout

Fs

Radiance

Figure 7.1: Illustration of the FLD principle, inspired by Alonso et al. (2008). The
solar line, centred at λ in, is filled in via the presence of the additive fluorescence
radiance Fs.

that the solar irradiance at the top of the atmosphere I is known for that particular

wavelength, as well as for another wavelength in the continuum, λout. Corresponding

to the known solar irradiances Iin and Iout, the radiances, as measured by a satellite,

Lin and Lout are also known. Irradiance and measured radiance can be related

through

Lout = Iout · R + f · Iout, (7.1)

Lin = Iin · R + f · Iout, (7.2)

where R is a reflectance term (i.e. related to Lambertian albedo), and f is the

additive fluorescence radiance Fs as a fraction of the continuum level solar irradiance
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f = Fs/Iout.

These two equations can be solved for R and f ,

R =
Lout − Lin
Iout − Iin

, (7.3)

Fs = f · Iout =
LinIout − LoutIin

Iout − Iin
. (7.4)

This demonstrates in a very simple way that reflectance can be decoupled from the

fluorescence signal if the solar irradiance is known and if two measurements, inside

and out of the solar line, are available. The characteristic change of the solar line in

the radiance signal (compared to the solar irradiance) is known as the in-�lling of

the solar line. While the absolute depth of the solar line Lout − Lin = R · (Iout − Iin)

only changes through the reflectance term R, the fractional line depth (relative to the

continuum level radiance) of the solar line

Lout − Lin
Lout

=
Iout − Iin
Iout

·
R

R + f
(7.5)

is a function of f .

7.2 Physically-based Retrieval

The physically-based SIF retrieval method, first discussed in Frankenberg, Butz, et

al. (2011) and employed in Frankenberg, Fisher, et al. (2011), is an implementation

of the FLD method discussed in Section 7.1. In this thesis, this approach was used to

produce the SIF data analysed in the later sections.

TANSO-FTS on board GOSAT provides high-resolution spectroscopic measurements

of the O2 A-band (see Section 3.2). Near the two edges of the band, several solar

lines are situated, as shown in Figure 7.2. Frankenberg, Fisher, et al. (2011) utilise

two separate spectral micro-windows, roughly at 755 nm and 772 nm and retrieve the

fluorescence signal independently.

The 755 nm window contains two strong solar lines, as well as half a solar line at the

very edge of the band. In previous versions (prior to V201) of the GOSAT L1B data,

the radiances extended to lower wavelengths, and thus included the entire solar line

at 757.61 nm. Throughout this thesis, the GOSAT L1B V201 and V202 were used,

which introduced a new data field radiance_BestEstimated. These radiances

come already calibrated and corrected for instrument degradation, requiring no

further treatment and is input into the retrieval algorithm.

The 772 nm window contains several solar lines, as well as two weak O2 doublettes

(red arrows in Figure 7.2, see Section 2.1, Page 13 for details). While there are more

70



7.2. Physically-based Retrieval
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Figure 7.2: A modelled O2 A-band spectrum with shaded regions marking the two
micro-windows at 755 nm and 772 nm that are utilised in the retrieval scheme. The two
red arrows mark the positions of two weak O2 doublettes in the 772 nm micro-window.
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Figure 7.3: Close-up of the two micro-windows used in the physically-based retrieval
scheme.
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solar lines in this window than in the 755 nm window, the SIF signal is only about

half as strong here. Figure 7.3 shows the two micro-windows close-up. Apart from

the weak O2 lines in the 772 nm micro-window, there are no absorbers in these two

spectral windows that can be resolved using GOSAT or OCO-2 measurements. This

means that SIF can be retrieved from these two windows without having to constrain

or retrieve additional gases, as no (or negligible) atmospheric absorption takes place

in those two small wavelength ranges - apart from the mentioned oxygen lines.

SIF can be represented in a straightforward fashion as the absolute radiance value,

or as a fraction of the continuum level radiance. The continuum level radiance is

very close to the maximum radiance value in the O2 A-band, I
(1)
max, so the relative

fluorescence can be calculated as

F (rel)s =
Fs

I (1)max − Fs
, (7.6)

since I (1)max already contains the fluorescence radiance.

7.3 Retrieval Set-Up

The state vectors for the two independent retrievals are as follows:

x755 = (c0, c1,d0,d1, z0) , (7.7)

x772 =
(
c0, c1,d0,d1, psurf, z0

)
. (7.8)

For both windows, two continuum scaling parameters c0 and c1 are retrieved. c0 is

a scaling factor with which the convolved spectrum is multiplied by, and c1 is the

corresponding gradient. These two parameters allow for an adjustment of surface

reflectance if the first guess albedo of the assumed Lambertian surface does not

match the measurement. The two dispersion parameters d0 (dispersion shift) and d1
(dispersion stretch) similarly are retrieved in case the first guess of the instrument

dispersion does not align the absorption lines fully. The zero-level o�set z0 is

essentially the SIF signal, which is assumed to be constant across the micro-window.

Due to the presence of oxygen absorption lines in the 772 nm, x772 also contains

surface pressure in order to match those lines to the measurement.

Rather than using a DOAS set-up to retrieve SIF from GOSAT, the UoL-FP algorithm

was utilised. While the computational e�ort is probably orders of magnitude higher,

the already available meteorological data, a working solar model, as well as compatible

inputs to the algorithm made it the obvious choice.

In order to speed up the retrieval, a new RTmodel was added to the UoL-FP algorithm.

Prior to this addition, the only radiative transfer option was the LIDORT model -
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a general purpose multiple-scattering code; however SIF retrievals do not need a

scattering RT model and would not benefit from a sophisticated MS code. The new

addition allows running the algorithm while skipping any calls to the sophisticated

RT codes, and use a simple non-scattering Beer-Lambert approach instead. Given

the layer-resolved (i = 1 . . .Nlay) total optical depths τi and the Lambertian surface

albedo ρ, the scalar TOA intensity can be written as:

LTOA = I0 · exp

[
−

∑Nlay

i τi

µ0

]
︸                   ︷︷                   ︸
incoming solar beam

·
ρ · µ0
π︸︷︷︸

surface reflectance

· exp

[
−

∑Nlay

i τi

µ

]
︸              ︷︷              ︸

reflected beam

, (7.9)

where µ0 and µ are the cosines of the solar zenith and viewing zenith angles, respec-

tively, and I0 is the incident solar irradiance. As no aerosols are considered in this

retrieval, and only oxygen contributes to molecular absorption, the optical depths τi
are a result of the extinction due to O2 absorption and Rayleigh scattering.

Since the surface pressure has to be retrieved for the larger-wavelength spectral

window, the layer-wise weighting functions (see Section 4.6, Page 44) for both op-

tical depth and single-scatter albedo have to be supplied to the algorithm for the

computation of the surface pressure Jacobians:

∂LTOA
∂τi

= −LTOA ·
(
µ−1 + µ−10

)
, (7.10)

∂LTOA
∂$i

= 0. (7.11)

The first guess for the state vectors are obtained exactly as for the UoL-FP CO2

retrievals: surface pressure is derived from ECMWF ERA-Interim and the SRTM

digital elevation map, the instrument dispersion is estimated through fitting of a

single, known solar line near 770.11 nm. Surface albedo is estimated though the

measured signal itself, and the first guess zero-level o�set is 1 · 10−8Wcm−2 sr−1 cm−1.

Regarding the prior covariances of the retrieval, they are set equally for every

sounding. z0 is very loosely constrained with σ = 1 · 10−4Wcm−2 sr−1 cm−1, as is

surface pressure for x772 with σ = 20 hPa. Both S- and P-polarised spectra, as well as

the averaged, unpolarised PS spectra were processed independently (see Section 3.2,

Page 23).

7.4 Collocation of Auxiliary Data

Since SIF is a surface parameter rather than an atmospheric one, it is convenient to

have additional surface-related data available to study the retrieval results. To this

end, several data sets have been sampled at the GOSAT measurement locations:
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1. ESA CCI Land Cover v2.0.7 (global, 300m resolution, 2009 − 2015)

2. ESA CCI Soil Moisture v3.2 (global, 0.25° resolution, 2009 − 2015)

3. MODIS/Aqua MYD13C1 V006 Vegetation Indices (global, 0.05° resolution,

2009 − 2016)

4. GOME-2 SIF (global, 80 km × 40 km footprint, 2009 − 2016)1

5. TRMM (3B43, multi-satellite) precipitation (global between −50° and 50° lati-

tude, 0.25° resolution, 2009 − 2016)

For all products, apart from the ESA CCI soil moisture data, the spatial extent of

the GOSAT footprint was fully taken into account. The elliptical footprint is given

by the longitude and latitude of the vertices and co-vertices. From these points, the

ellipse is fully defined and a polygon representing the instantaneous field of view

(IFOV) is constructed.

Figure 7.4 illustrates the idea of the collocation of the elliptical GOSAT footprint

with higher-resolution data, such as the ESA-CCI Land Cover product. First, both

the GOSAT footprint polygon as well as a subset of the LC data are transformed

into a local map coordinate system. The chosen coordinate system is the Lambert

conformal projection. Conformal projections are advantageous here, as the shape of

the ellipse is not distorted at high latitudes. Within that new local map coordinate

system, the pixels that lie fully within the elliptical footprint are collected, and the

fractional contribution of each land cover class, relative to the total number of pixels

considered, is stored.

57.7125°N

57.8125°N

57.9125°N

96.8653°W 96.6972°W 96.5292°W

Tree cover, needleleaved, evergreen, closed to open (>15%)

Tree cover, needleleaved, evergreen, closed (>40%)

Mosaic tree and shrub (>50%) / herbaceous cover (<50%)

Shrubland

Grassland

Sparse vegetation (tree, shrub, herbaceous cover) (<15%)

Tree cover, flooded, fresh or brakish water

Bare areas

Water bodies

Figure 7.4: Example of the collocation/aggregation of land cover data. This (al-
most circular) GOSAT footprint, located in Manitoba (Canada), contains about 65%
needleleaf evergreen tree cover, about 17% shrubland and about 17% water body LC
classes (total of ∼1800 pixels). Hatched pixels are not collocated, as the areal overlap
is < 100%.

MYD13C1 data are collocated in the same manner. However, due to the coarser

spatial resolution of the MYD13C1 data(0.05° climate model grid), the restriction
1Level 2 data produced by GFZ Potsdam / Philipp Köhler
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of fully enveloped pixels has to be loosened. Otherwise, the number of matches

would be greatly reduced. In the collocation calculation, the relative areal overlap

between the GOSAT footprint polygon and every rectangular pixel of the target data

is calculated as a percentage of the GOSAT footprint area (A f ). If the pixel is fully

within the GOSAT footprint, that overlap is 100 %, when located entirely outside, it

is 0 %, and so forth. For MYD13C1 collocations, the relative overlap is required to be

>50 % (see Figure 7.5a).

Collocation of the ESA CCI soil moisture data is handled slightly simpler. Located

on a 0.25° grid, the data is bi-linearly interpolated at the location of the GOSAT

footprint centre, and the spatial extent of the footprint is ignored (not pictured).

To collocate GOME-2 Level 2 SIF data, there is no sub-pixel treatment necessary,

as the GOME-2 footprint is much larger than the GOSAT footprint. All GOME-2

SIF retrievals, for which the centre of a GOSAT footprint lies within the GOME-2

footprint, are collocated, and the relative areal overlap is also stored (see Figure 7.5b).

0.156 0.174 0.192

EVI

(a) MYD13C1 / EVI variable
(0.05°), A f > 50%. (Same for
MYD11C2).

(b) GOME-2 (80 km × 40 km) foot-
print (yellow rectangle). The base
map was taken from the Esri Ar-
cGIS REST Services using the
World_Imagery layer†.

Figure 7.5: Collocation example for the various target data sets at di�erent resolutions
to illustrate how the spatial extent of the GOSAT footprint was taken into account.
Coordinate labels are suppressed here since the location of the footprint is the same as
in Figure 7.4. Hatched pixels are not aggregated. For (b), the projection was switched
to a cylindrical equal area map projection. †Sources: Esri, DigitalGlobe, GeoEye,
Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the
GIS User Community.

Additionally, every GOSAT measurement is also assigned to one of the eleven

TransCom regions over land (see Figure 7.6):

1. North American Boreal
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1

2

3

4

5

6

7

8

9

10

11

Figure 7.6: TransCom basis function map (“The Transcom Experiment” 2018), which
divides the landmasses (excluding Greenland and Antarctica) into 11 separate regions.
Ocean regions have been ignored in this visualisation.

2. North American Temperate

3. South American Tropical

4. South American Temperate

5. Northern Africa

6. Southern Africa

7. Eurasian Boreal

8. Eurasian Temperate

9. Tropical Asia

10. Australia (and New Zealand)

11. Europe

Unless stated otherwise, all maps and other visualisations using these auxiliary data

were created using the above methods and are thus sampled at GOSAT locations.

While this may produce di�erent results than taking the source data directly, this

makes sure that potential sampling biases are kept to a minimum and do not interfere

with the interpretation of the results.

7.5 Pre-seleion and Initial Filtering of the Retrieval Results

While Frankenberg, Fisher, et al. (2011) use the retrieval of the 772 nm window to

screen for cloudy scenes, here the pre-processing results of the UoL-FP pipeline were

used to select scenes with low cloud contamination. All scenes for which the apparent,

retrieved surface pressure deviated from the ECMWF-informed prior by more than

100 hPa were disregarded.
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7.5. Pre-selection and Initial Filtering of the Retrieval Results

For the analysis of the results, all retrievals (per sounding) were collected for which

the algorithm successfully2 finished for both micro-windows, and each of the three

polarisation states (P, S, PS) was treated independently.

Generally, retrievals for the 755 nm window show higher success rate than those for

772 nm. Depending on the month, sometimes up to 5% of retrievals of the 772 nm

micro-window failed due to the surface pressure exceeding the lowest level of the

model atmosphere.

The fit quality is assessed via the normalised χ2 statistic, which takes into account

instrument noise, as exemplified in Figure 7.7. The distributions of the χ2 are centred
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Figure 7.7: An example of a successful fit and corresponding residual. Radiances
and residuals are in units of 1 · 10−7mWm−2 sr−1 nm−1.

around 1, however there is a large variability associated with each distribution (σ∼0.5)

- which is likely due to a lack of re-scaling the instrument noise levels as described in

Crisp et al. (2012). The retrievals using the S-polarised spectra show systematically

lower χ2, when compared to the P- and PS-polarised retrievals (Figure 7.8). The

di�erence is believed to be of instrumental nature, but the causes were not identified

closer here.
2A retrieval is considered successful (not necessarily converged or “good”) if the algorithm finishes

the calculation, regardless of the quality or outcome of the retrieval. It is considered to have failed
if the algorithm aborts the calculation, for example when unphysical values for the surface albedo
(> 1.0) are encountered.
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S P PS
0.0

0.5

1.0

1.5

2.0

χ
2

755 nm

S P PS

772 nm

Figure 7.8: Two box plots showing the distributions of the χ2 for both micro-windows
and the three polarisations separately (only for the year 2010). The S-polarised retrievals
are closer to 1, and also exhibit lower spread than the P- or PS-polarised ones.

The initial filtering is tabulated in Table 7.1. Due to a lack of truth data, the initial

filtering is performed only to filter out large outliers and non-converged retrievals to

provide a better baseline for the bias correction.

Threshold(s) / Criteria

Fit quality 0.5 ≤ χ2 ≤ 2.0
Number of iterations Niter = 2
Signal-to-Noise ratio SNR > 50
Solar zenith angle SZA < 65°
Mean radiance in Band 1 1.5 · 10−7 < Ī (1) < 1.0 · 10−6

Relative ∆psurf 90 % < ∆prelsurf < 110 %

Table 7.1: Initial filter thresholds used to select retrievals for the further bias
correction procedure. Mean radiances are in units of Wcm−2 sr−1 cm−1.

7.6 Scale-O�set Correlation

The retrieval results can be further analysed by investigating the correlations between

the state vector elements. The correlation matrix can be obtained from the posterior

covariance matrix Ŝ:

Cij =
Ŝij√
Ŝii Ŝ j j

. (7.12)

Correlation coe�cients Cij can reveal whether state vector elements are coupled

due to the fact that the corresponding Jacobians are similar. The correlation matrix

in Figure 7.9 highlights two pairs of state vector elements that are very highly anti-

correlated. The elements d0 and d1, the dispersion shift and dispersion stretch,
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7.6. Scale-O�set Correlation

are unsurprisingly highly anti-correlated. For very narrow spectral windows, the

Jacobians are similar enough to give rise to such a correlation coe�cient close to −1.

c0 c1 d0 d1 z0

c0

c1

d0

d1

z0

-0.234

0.235 -0.208

-0.238 0.210 -0.999

-0.998 0.236 -0.240 0.242

psurf c0 c1 d0 d1 z0

psurf

c0

c1

d0

d1

z0

-0.321

0.211 0.043

0.018 -0.004 0.008

-0.031 0.008 -0.011 -0.947

0.342 -0.998 -0.035 0.004 -0.009

Figure 7.9: Mean correlation matrices for the 755 nm (left) and 772 nm (right) micro-
windows (S-polarised spectra depicted, but P and PS correlations are very similar).

More concerning is the high anti-correlation between c0 and z0, the scaling factor and

the zero-level o�set. An argument was presented earlier (see Section 7.1) explaining

that reflectance can be decoupled from fluorescence, as the fractional in-filling of the

solar lines is a result of fluorescence only. The correlation matrix shown in Figure 7.9,

however, suggests that this decoupling cannot be achieved, as the retrieval algorithm

can not distinguish between a reflectance scaling factor c0 and an additive component

z0.

High (anti-)correlations between these two state vectors are a result of the Jacobians

∂F(x)/∂c0 and ∂F(x)/∂z0 being very similar. The retrieval algorithm can "choose" to

adjust either z0 or c0 with almost the same e�ect to the forward model (taking into

account prior covariances for both).

The Jacobian of the zero-level o�set d0 is trivially just a constant 1, and the Jacobian

for the reflectance scaling factor c0 is the spectrum itself (see e.g. Figure 7.7). With f(x)

being the forward model without the applied scaling and zero-level o�set correction,

the full forward model can be written as:

F(x) = z0 + c0f(x), (7.13)

and the Jacobians are

∂F(x)
∂c0

= f(x), (7.14)

∂F(x)
∂z0

= 1. (7.15)
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7.6. Scale-O�set Correlation

Further following the argument, the similarity between the modelled spectra f(x)

and 1, can be assessed through the cosine similarity between two vectors, defined as

cos(θ) =
a · b
|a|2 |b|2

. (7.16)

Evaluating cos(θ) for the measured spectra and a unit vector of the same length

results in a similarity of cos(θ)∼0.997686 ± 0.00024 for about 15 000 spectra taken

from May 2013. While the above considerations are not to be read as a sophisticated

analysis of one similarity metric between the Jacobians associated with c0 and z0, it

is meant to show the following: high anti-correlation naturally arises due to

• the narrow spectral range of the micro-windows,

• around 90% of the spectral points belonging to the continuum, thus making

the spectra almost flat.

How is a retrieval of SIF then still viable if reflectance and zero-level o�set are so

highly anti-correlated? The prior information about the Lambertian surface albedo

is inferred directly from the spectra themselves. Surface reflectance is therefore

informed through the measurement, such that c0 is expected not to deviate from 1 by

more than a few percent. So if the prior information about the Lambertian albedo is

su�ciently close to the true value, c0 will be close to 1 and z0 in the same manner

will only lightly deviate from the true value as well. Since the first guess (equal to

prior) albedo is calculated as

ρa =
Ī (1)π

I0 cos(θ0)
, (7.17)

the retrieved albedo ρ̂ will always di�er from the prior, since Rayleigh scattering is

considered in the forward model, but not in the calculation of the prior value (θ0
being the solar zenith angle, Ī (1) the estimated continuum level radiance, and L being

the solar irradiance).

To estimate the magnitude of this potentially systematic bias, simulations were

performed for a set of discrete levels of surface albedos, SIF magnitudes and solar

zenith angles. Then, retrievals were run for each of these scenarios using the 755 nm

window, where the prior surface albedo was varied between 90 % and 110 % of the

true surface albedo of the simulation; the prior SIF magnitude was kept constant at

1 · 10−8Wcm−2 sr−1 cm−1.

Figure 7.10 depicts this systematic bias. First, the nature of the bias is almost linear in

the studied range. As expected from the negative correlation coe�cient (Figure 7.9),

the slopes of the fitted lines are negative as well. The figure reveals the consequences
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Figure 7.10: A systematic retrieval bias for two scenarios where only the true albedo
di�ered (SZA: 5°, true fluorescence: 3 · 10−8Wcm−2 sr−1 cm−1) with ρ = 0.25 and
ρ = 0.35. The markers are filled according to the prior albedo as a percentage of the
true albedo.

of the anti-correlation between c0 and z0. If the prior albedo is lower than the

true albedo, the retrieved albedo will be slightly underestimating the true value

(ĉ0 − c0 < 0) and thus results in an overestimation of SIF (ẑ0 − z0 > 0). In the opposite

case, where the prior albedo is larger than the true albedo, the retrieved scaling

factor will be slightly larger than the true value (ĉ0 − c0 > 0), which finally results in

an underestimation of the SIF (ẑ0 − z0 < 0).

The results of the full set of 200 scenarios (2 SZAs, 10 albedos, 10 SIF magnitudes)

is seen in Figure 7.11. It shows the maximal extent of the deviation of ẑ0-z0 when

the prior albedo is varied between 90 % and 110 % of the true albedo. The figure

makes it clear that the extent max(ẑ0-z0) −min(ẑ0-z0) is mostly dependent on the true

albedo and the solar zenith angle, and largely independent on the true SIF. The

extent of the deviation is roughly between 0.5 · 10−11 to 2 · 10−11Wcm−2 sr−1 cm−1,

which is about 2 orders of magnitude below the reported uncertainty of about

5 · 10−9Wcm−2 sr−1 cm−1.

7.6.1 Conclusions

To summarise and conclude this section, the c0-z0 anti-correlation is explained as

a result of the corresponding Jacobians being very similar - which again is mainly

due to the fact that the retrieval micro-windows are very narrow, and as such the

spectra consist largely of the continuum. To estimate the magnitude of this potentially

systematic bias, a number of simulations and retrievals spanning a range of albedos

and SIF magnitudes were performed. The simulations and retrievals confirmed that
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Figure 7.11: The di�erence between largest and smallest value of the deviations ẑ0−z0
(in units of 1 · 10−11Wcm−2 sr−1 cm−1) when the prior albedo is perturbed between 90 %
and 110 % of the true albedo.
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if the prior albedo is di�erent from the true albedo, both albedo and SIF cannot

be fully recovered. As predicted from the sign of the correlation coe�cient, an

underestimation of the scaling (or albedo) will result in an overestimation of SIF,

and vice versa.

For the simulations, the variation of the prior albedo was restricted to ±10 %, and the

absolute deviation of the retrieved SIF from the true SIF was less than three orders

of magnitude smaller than the true SIF value itself (2 · 10−11Wcm−2 sr−1 cm−1), and

two orders of magnitude less than the expected uncertainty.

Since the calculation of the a-priori albedo is performed without accounting for

Rayleigh scattering, the prior value will generally be higher than the retrieved value.

As a consequence, the retrieved scaling factor c0 will be overestimated, which leads

to a systematic underestimation of SIF. As the results of the simulations indicate,

this systematic underestimation is less than a percent of the typical SIF magnitude.

Considering these numbers, the conclusion is that this systematic underestimation of

SIF is not significant when compared to noise levels.

7.7 Bias Correion

After the initial filtering of the results, the retrieved z0 (raw SIF) can be plotted on

a global map, as done in Figure 7.12. While the map shows some of the expected

−0.49 −0.35 −0.21 −0.07 0.07 0.21 0.35 0.49

z0 [108 W cm−2 sr−1 cm−1]

Figure 7.12: Gridded (2° × 2°) retrieved z0 for the year 2012 (P-polarised, 755 nm
window).

features, such as the strong signals at the locations of tropical forests, there is a clear

negative bias throughout the rest of the globe. There are striking and unphysical
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negative values over the Sahara desert, the Arabian peninsula and central Australia.

As pointed out by Frankenberg, Fisher, et al. (2011), this is a result of an instrumental

artefact - a non-linearity issue originating in the analogue-to-digital conversion of the

FTS interferograms. If the conversion su�ers from unaccounted non-linearities, then

the resulting e�ect on the measured spectra will be very similar to the infilling of

spectral lines, and thus cannot be distinguished from SIF. This section explores the

nature of these biases as well as how they are compensated for.

Looking at the strong negative retrieved z0 over desert areas in Figure 7.12, they

coincide with the location of medium-gain measurements (see Figure 3.1, Page 25 for

an explanation of the gain modes). Since the source of the bias is instrumental, it

makes sense to investigate and apply any bias correction to the di�erent gain modes

as well as the di�erent micro-windows and polarisations separately.

The general treatment as laid out in Frankenberg, Fisher, et al. (2011) was followed to

characterise this instrumental bias. For every single observation, the mean radiance

in the O2 A-band Ī (1) is used as a proxy for the scene brightness. All scenes for

which there should not be any contribution due to SIF were then collected. While

Frankenberg, Fisher, et al. (2011) were using all of Antarctica for high-gain, and

a region in the Sahara desert for medium-gain spectra for this purpose, a more

advanced approached was used. All soundings for which over 95 % of the pixels

within the GOSAT footprint belong to the general land-cover classes (see Section 7.4)

urban (index: 190), bare area (indices: 200, 201, 202), or snow and ice (index: 220),

are considered to be devoid of vegetation. For these measurements, a true SIF

of 0Wcm−2 sr−1 cm−1 can be assumed, even though some areas might experience

nonzero SIF due to transient vegetation activity such as desert blooming. SIF

measurements would then be mis-attributed if the land cover map does not account

for these phenomena. The number of such SIF measurements are assumed to be

small, so the overall calibration should not be a�ected by e�ects like these. Whilst

the vast majority of selected measurements are indeed located over Antarctica in the

winter season, this approach allows for su�ciently enough measurements to fulfil the

selection criteria during other seasons. These sounding locations represent areas

that are permanently bare, such as ice shields or deserts, while areas that experience

a seasonal cycle are not considered. This guarantees that the approach is not a

self-fulfilling prophecy in which the SIF values for non-permanently vegetated areas

(e.g. forests during local winters) are calibrated to zero by default.

Figure 7.13 shows this bias for the P-polarised spectra, 755 nm micro-window, for

2012. The two gain modes behave very di�erently, as was already anticipated from

Figure 7.12. The bias shows a non-trivial dependency on the mean band radiance

for the high-gain measurements, with two kinks near 4 · 10−7Wcm−2 sr−1 cm−1 and
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Figure 7.13: Radiance-dependent bias for P-polarised spectra, split up into the two
micro-windows and the two gain modes. The solid, black line (derived using the
LOWESS technique) is used to highlight the shape of the bias.

5.5 · 10−7Wcm−2 sr−1 cm−1. These kinks were observed already for older versions of

the GOSAT L1B, however their positions are shifted compared to Figure 7.13. The

medium-gain measurements span a smaller range of scene brightnesses, and do not

exhibit any strong radiance-dependent shape, but rather a near-constant negative

bias of approximately 1.6 · 10−8Wcm−2 sr−1 cm−1. The ordinates in Figure 7.13 are

scaled the same for both micro-windows. It shows that the spread of raw SIF values

is systematically larger for the 755 nm window. This is explained by the posterior

uncertainty of the retrieved z0, which is, on average, twice as large as for the 772 nm

window.

The impact of measurement polarisation is shown in Figure 7.14. The bias in absolute

numbers is strongest for S-polarised spectra, and also systematically larger for the

772 nm retrievals. This is not surprising, as the S-polarised spectra are roughly 7 %

brighter than the P-polarised ones.

Figures 7.13 and 7.14 show the instrumental bias for all measurements in the year 2012.

The procedure to correct the raw SIF is to sample calibration curves (Figure 7.14)
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Figure 7.14: For easier visualisation, the point clouds as seen in Figure 7.13 are
replaced by LOWESS-smoothed curves. For both gain modes, the same observation is
made: S-polarised correction curves are shifted up (compared to P-polarised ones), as
are the curves for the 772 nm window.

and subtract the radiance-dependent value,

Fs = z0 − z
(corr)
0 , (7.18)

from the raw SIF. This leads to the selected soundings to be corrected such that they

are, on average, around zero. Mapping the same measurements as in Figure 7.12, but

displaying the bias-corrected values, results in a much more plausible distribution

and overall picture, as seen in Figure 7.15. The negative SIF values that cover large

areas in Figure 7.12 are largely gone and shifted towards zero. After bias correction,

large-scale features like tropical forests (e.g. Amazon, central Africa) and areas with

intense agricultural use (e.g. eastern US) stand out.

These maps and curves have been derived for selected retrievals from the year 2012.

There is, however, no reason to assume that the calibration curves did not change

throughout GOSAT’s operational lifetime from April 2009 onward. After all, the

source of the bias is instrumental, and both instrumental degradation as well as their

attempted correction in the L1B data might a�ect the radiance dependence of these

curves.

To show the time dependence of the bias, roughly half the time series (2009-2013) is

shown in Figure 7.16. Biases for both high- and medium-gain measurements exhibit a

time-dependence, most prominently as a strong initial decrease of the bias from 2009

to 2010 and then a slower decrease in the subsequent years. In the next chapter, time
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Figure 7.15: Same data as Figure 7.12, but using bias corrected values. Regions that
are considered permanently free of vegetation (Sahara, Antarctica, Greenland, etc.)
now exhibit roughly 0 fluorescence.
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Figure 7.16: The correction value z (corr)0 as a function of Ī (1) and time. The left-hand
(right-hand) side plot shows the values for high-gain (low-gain) measurements. As an
example, a trapezoidal area for a winter season is highlighted where measurements
over Antarctica dominate the derivation of the correction.
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series of the retrieved SIF are investigated. The bias corrected SIF, Fs, is directly

influenced by the correction term z (corr)0 (Equation 7.18), and any time-dependent

feature in the correction term will by mapped onto Fs. In order to account for the

this dependence, three approaches will be utilised.

The first one, is essentially what has been used throughout this section so far:

correction curves are derived on annual aggregates and applied to the raw SIF

depending on the year of the measurement. The second approach is similar, but the

time-base is reduced from annual aggregates to seasonal (3-monthly: DJF, MAM,

JJA, SON) ones. Seasonal aggregates have the advantage that variations of the

calibration curves within the year are captured better, with the obvious disadvantage

that there are (depending on the season) potentially far less measurements to extract

the curves from. As a third approach, the time dependence is taken into account

explicitly. Here, z (corr)0 in Figure 7.16 is split into bins along the Ī (1) dimension. Bin

boundaries are chosen such that the shape of the curves in Figure 7.14 is su�ciently

well captured. For every one of these bins, the data is then averaged in monthly bins

and a smoothing of the values is achieved through the LOWESS3 technique (see

Figure 7.17). This allows for the time-dependence and the inter-annual variations to

be accounted for. Other methods, such as fitting high-order polynomials or other

compound functions involving Fourier series were less successful in describing the

seasonal cycles.
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Figure 7.17: For the noted bin in Ī (1)-space, the values of z (corr)0 (S-polarised, 755 nm,
high-gain) are aggregated and the mean and standard deviation are shown in the above
figure.

z (corr)0 is sampled at the centres of the radiance bins and at monthly grid points

according to the LOWESS-smoothed curves (see Figure 7.17). To cover the full

radiance range between the filter thresholds (Table 7.1), the grid points at 1.5 · 10−7

3Locally weighted scatter plot smoothing - the implementation in the statsmodels Python package
was used.
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and 1 · 10−6Wcm−2 sr−1 cm−1 are obtained through linear extrapolation based on the

closest two points, however the time dependence is described through the same

curves as the closest grid point. Using the grid points, the function value at every

point between the grid points is obtained through a third order Spline interpolation.

The bias correction procedure is performed for all three polarisations, the two micro-

windows, and both absolute and relative SIF. In the following sections and chapters,

it is implied that only those measurements that passed the initial quality filtering are

considered.

7.8 Assessment of Retrievals and Comparison to GOME-2

After applying the bias correction and initial filtering, the total number of mea-

surements is around 4 million - less for P and PS, and a bit more for S-polarised

measurements (Figure 7.18). The largest contributor for measurements being filtered

out are low signal levels with a mean radiance below 1.5 · 10−7Wcm−2 sr−1 cm−1. Since

the same filter threshold was used for all polarisations, and the P-spectra are generally

slightly lower in radiance than the corresponding S-polarised ones, there are about

hundred thousand more accepted SIF retrievals for the S-polarised measurements.

P S PS
Polarisation

0

2

4

6

N
o.

of
so
un

di
ng

s
(M

ill
io
ns
)

Total Good

Figure 7.18: Out of roughly 4 million retrievals,
about 3.5 million pass the quality filtering, with
the S-polarised measurements surpassing the P-
and PS-polarised ones.

With no truth data being available on a relevant scale, the quality of the bias correction

can not be easily assessed. Its temporal stability, however, can be investigated. Taking

all bias-corrected Fs over non-vegetated regions (excluding Antarctica) as indicated

by the land cover map, time series can be constructed. Ideally, this series would be

flat over time exhibiting zero fluorescence. These series are shown in Figure 7.19

for the two micro-windows and the three calibration methods separately. They have

been re-sampled to semi-monthly periods, the solid line represents the mean of all

considered measurements in the re-sampling period. The mean of the time series

are unsurprisingly all below 0.015 · 10−8Wcm−2 sr−1 cm−1, and the root-mean-squares

suggest that the Spline-based calibration technique results in the smallest seasonal
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amplitude (listed in Table 7.2). Performing the same analysis for relative SIF, it

becomes clear that the Spline correction does not work as well as for absolute SIF

radiances.
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Figure 7.19: Stability of the bias-corrected SIF over Antarctica. Solid lines represent
means, while coloured and shaded areas are one standard deviation away from the mean
for that time period. The dashed, grey lines are the mean state vector uncertainties for
the entire time series. Absolute SIF are in units of mWm−2 sr−1 nm−1.

Mean RMS

755 nm 772 nm 755 nm 772 nm

Annual -0.0024 0.0044 0.031 0.035
Seasonal -0.0005 0.00022 0.024 0.024
Spline 0.0082 0.013 0.021 0.025

Table 7.2: Time series means and root-mean-squares (RMS) of SIF for
the three calibration modes as seen in Figure 7.19. Values are in units of
10−8Wcm−2 sr−1 cm−1. (S-polarised measurements only)

Figure 7.19 also confirms the magnitude of the reported uncertainty (as the square-

root of the corresponding diagonal element of Ŝ), since the value is close to the

standard deviation in any given temporal interval. The seasonal cycle that is seen in

the standard deviations in the time series is a result of Antarctica coverage increasing

during the winter seasons - and thus the large number of high-SNR (low-noise)

measurements are reducing the average uncertainty.
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Mean RMS

755 nm 772 nm 755 nm 772 nm

Annual -0.0043 0.0055 0.046 0.064
Seasonal -0.00012 -0.00047 0.035 0.042
Spline 0.012 0.014 0.028 0.038

Table 7.3: Same as Table 7.2, but for relative fluorescence (values in %).
Notably, the Spline-based correction procedure performs worse than the other
two methods in terms of the mean, the RMS is however lower.

In the supplementary materials of Frankenberg, Fisher, et al. (2011), the SIF retrievals

in the 772 nm window are shown to be expectedly lower than for the other micro-

window (see Figure 6.4, Page 66). For various maps and figures, a constant scale

factor is applied, such that F (755)s ∼1.8 · F (772)s . The performed retrievals here show

a similar trend, which is illustrated in Figure 7.20. SIF at 755 nm is systematically

higher than at 772 nm, and this enhancement is best seen in the eastern US and the

Eurasian forests.

755 nm 772 nm

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fs [mW m−2 sr−1 nm−1]

Figure 7.20: Full time-series averaged on 2° by 2° degree bins, P-polarised spectra.
The intensity of the green shading for tropical Africa and the eastern US clearly show
the stronger SIF signal for the 755 nm micro-window.

The mentioned scaling factor of roughly 1.8, however, could not be reproduced. By

dividing the gridded results from Figure 7.20, the scaling between the two retrieval

windows can be displayed on a map, as seen in Figure 7.21. This map reveals that

the overall scaling between the two retrieval windows does not quite reach 1.8 on a

global scale, and is far from being homogeneous. While a good portion of Europe

actually has a scaling factor higher than 1.75 (as does north-eastern China and the

Indian subcontinent), most of the eastern US shows a factor between 1.25 to 1.5, and

the tropical forests in Africa and South America even lower than 1.25. Figure 7.21,

however, resembles a map of plant functional types (PFTs) or biomes, suggesting

that the ratio is a function of vegetation type. The two maps have been created using
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Figure 7.21: Ratio F (755)s /F (772)s of SIF for the two retrieval windows. Grid cells with
values lower than 0.2mWm−2 sr−1 nm−1 were masked and appear white in order to
highlight areas with a strong SIF signal.

P-polarised spectra. While the same plots using the S-polarised measurements does

not exactly yield the same results, the di�erences are localised and most apparent

over Europe, where the scaling factors appear smaller for S-polarised SIF. Comparing

the polarisations side-by-side is shown in Figure 7.22, where the di�erence of the two

micro-windows to an assumed scaling factor of 1.8 is shown. What this representation

of the retrieval results shows is that the scaling factor of 1.8 is roughly realised for

the P-polarised spectra everywhere apart from the tropics.

Since Frankenberg, Fisher, et al. (2011) do not show the ratio (or its derivation)

explicitly, but rather scaled maps, it is di�cult to point out di�erences to the results

obtained in their publication. Figure 7.22 also suggests the P-polarised measurements

being more in line with the expected ratio.

Assessing the GOSAT SIF retrievals against fluorescence derived from GOME-2

measurements can provide an overall check on whether the magnitude and spatial

distribution are comparable. Following the procedure in Köhler et al. (2015), all

measurements with a latitude larger than 60°S (i.e. excluding Antarctica) from 2010

until the end of 2016 have been collected and gridded onto a regular 2° by 2° grid.

This 7-year average is then compared against a 7-year average of GOME-2 SIF, where

the data was re-gridded to the same regular grid (from 0.5° by 0.5°). After gridding,

all grid cells in which more than 100 valid GOSAT SIF retrievals fall into, and

which exhibit a grid cell standard deviation of less than 1.5mWm−2 sr−1 nm−1 (∼3000

grid cells for P-polarised, and ∼2700 for S-polarised spectra), are then compared

against GOME-2 SIF on a cell-by-cell basis for all overlapping cells. Figure 7.23 shows

this cell-by-cell comparison such that it can be compared to Figure 15 from Köhler

et al. (2015), although the multi-year average in that publication spans a shorter

range (only 2 years). What can be immediately noted is that the overall correlation

is significantly better (compare to R2 = 0.68), however the best-fit linear function

exhibits a smaller slope (compare to y = 0.26 + 2.19x).
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Figure 7.22: The maps show the di�erence between 1.8 · F (772)s and F (755)s for S- and
P-polarised spectra. The tropical forests in South America, Africa, and Indonesia
exhibit the largest di�erences. In these regions, F (755)s is considerably larger than
1.8 · F (772)s .

0 1

GOSAT [mW m−2 sr−1 nm−1]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
O
M
E
-2
[m

W
m
−
2
sr
−
1
nm
−
1 ]

R2 = 0.864

755 nm, P-polarised

y = (1.747 ± 0.000158) · x

0 1

GOSAT [mW m−2 sr−1 nm−1]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
O
M
E
-2
[m

W
m
−
2
sr
−
1
nm
−
1 ]

R2 = 0.833

772 nm, P-polarised

y = (2.207 ± 0.00032) · x

Figure 7.23: Overall comparison of Spline-corrected GOSAT SIF against GOME-2
SIF (Köhler et al. 2015). The 1:1 line is shown in solid, black; the best-fit line is dashed,
red.
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While Figure 7.23 shows the comparison for one polarisation and one calibration

mode, the coe�cients of determination (R2) are listed in Table 7.4. The good

agreement between the GOSAT SIF and GOME-2 SIF is not highly surprising, as

already Guanter et al. (2012) have shown that even using two di�erent retrieval

approaches for the same measurements will result in very similar SIF values. In

their Figure 10, the fitted linear function has a slope of 1.07, suggesting that the

SIF magnitude itself is independently captured in the same way by the two retrieval

methods.

P S PS

755 nm 772 nm 755 nm 772 nm 755 nm 772 nm

Annual 0.826 0.781 0.797 0.628 0.818 0.734
Seasonal 0.829 0.790 0.799 0.642 0.818 0.739
Spline 0.832 0.795 0.802 0.658 0.830 0.762

Table 7.4: R2 values between retrieved GOSAT SIF and GOME-2 SIF, com-
pared on a cell-by-cell basis. Retrievals in the 755 nm micro-window exhibit a
higher correlation, as do measurements using P-polarised spectra.

GOME-2 SIF is consistently larger than the values retrieved from GOSAT (in both

micro-windows), which is rooted in the GOME-2 retrieval using the wider spectral

window. As described in Köhler et al. (2015), the retrieval uses a spectral window that

spans the range from 720 to 758 nm and covering the second peak of the broadband

SIF spectrum (see Figure 6.4, Page 66). Given this broadband shape, scale factors

of ∼1.7 (755 nm) and ∼2.2 (772 nm) between GOSAT SIF and GOME-2 SIF seem

consistent. Another contribution to the GOME-2/GOSAT di�erences is the fact that

MetOp-A, which carries the GOME-2 instrument, is in an orbit with local equatorial

crossing time of 9:30h, compared to GOSAT’s 13:00h. The SIF emission scales

approximately with the cosine of the solar zenith angle (Frankenberg, Fisher, et

al. 2011), also shown in a study by Amoros-Lopez et al. (2008), in which laboratory

measurements using artificial illumination were conducted. The SIF emission at

9:30h is further away from the maximum of the diurnal cycle than the emission at

13:00h.

A comparison between the retrieved Fs and GOME-2 SIF has been established: due

to the di�erent spectral windows and the di�erent local measurement time, the values

obtained from GOSAT are systematically lower, and the scale factor is about 1.7 (2.2

for the 772 nm window). This relationship was established using the gridded L3 data

as well as the gridded retrieved Fs to comply with Köhler et al. (2015). Aggregating

this way, however, ignores the GOSAT-specific sampling pattern. In order to explore

this relationship for various regions independently, the collocation as described in
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Section 7.4 (Page 73) was used. Grouping this analysis into the di�erent TransCom

regions (Figure 7.6, Page 76), the slopes of the GOSAT to GOME-2 relationship

can be investigated for several continental-scale regions. Note that for the following

graphs, the axes were switched, such that GOME-2 SIF is now displayed on the

abscissa rather than the ordinate.

For all 11 TransCom regions over land, the SIF data was first sub-selected to contain

only those GOSAT measurements, which had a GOME-2 measurement on the same

day, with less than 5 hours di�erence between the two measurements. The GOSAT

footprint had to fulfil the criterion that 90 % of the footprint area overlapped with the

GOME-2 footprint, and the cloud fraction of the GOME-2 footprint (Wang et al. 2008)

had to be less than 0.25. This subset was then gridded into 2° by 2° bins, and the

entire time-series from April 2009 until December 2016 was considered.
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Figure 7.24: GOSAT/GOME-2 comparisons for various Transcom regions after 2°
by 2° binning. Only collocated GOME-2 measurements were used where the time
di�erence to the GOSAT measurement was less than 5 hours. The standard error of
the estimated slopes and intercepts is given as well. Note that the axes are switched
when comparing to Figure 7.23. This figure illustrates the region-dependent di�erences
between GOME-2 and GOSAT SIF.

A few examples are shown in Figure 7.24. These plots illustrate not only that the

overall relationship still holds when the data is sub-divided into regions, but also
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that the slope of the best-fit function can di�er between them. The slope di�erences

between e.g. North American Temperate and Europe are statistically significant, given

the standard errors on the slopes (±). Table 7.5 lists the determined slope for both

windows and all calibration modes for every TransCom region. The largest slopes

are seen in Southern Africa, the smallest ones in boreal North America. Significant

di�erences between slopes in this case are most likely caused by the di�erence in

overpass time, rather than being a result of the measurement approach.

755 nm 772 nm

TransCom region Annual Seasonal Spline Annual Seasonal Spline

NA Boreal 0.311 0.314 0.313 0.143 0.160 0.154
(0.197) (0.202) (0.201) (0.065) (0.074) (0.069)

NA Temperate 0.540 0.538 0.543 0.404 0.402 0.405
(0.720) (0.720) (0.723) (0.582) (0.577) (0.585)

SA Tropical 0.392 0.405 0.398 0.287 0.288 0.294
(0.288) (0.309) (0.302) (0.148) (0.147) (0.156)

SA Temperate 0.405 0.416 0.418 0.332 0.333 0.336
(0.694) (0.686) (0.688) (0.657) (0.649) (0.655)

Northern Africa 0.494 0.503 0.504 0.343 0.337 0.345
(0.710) (0.725) (0.722) (0.464) (0.457) (0.470)

Southern Africa 0.634 0.640 0.642 0.574 0.581 0.579
(0.778) (0.779) (0.780) (0.697) (0.693) (0.692)

Eurasian Boreal 0.409 0.413 0.415 0.243 0.257 0.254
(0.413) (0.420) (0.420) (0.256) (0.267) (0.263)

Eurasian Temperate 0.464 0.466 0.462 0.348 0.345 0.344
(0.641) (0.641) (0.638) (0.560) (0.548) (0.552)

Tropical Asia 0.596 0.586 0.596 0.664 0.646 0.659
(0.355) (0.349) (0.355) (0.407) (0.401) (0.409)

Australia 0.445 0.437 0.441 0.407 0.397 0.402
(0.288) (0.274) (0.282) (0.305) (0.286) (0.289)

Europe 0.411 0.410 0.414 0.237 0.251 0.254
(0.501) (0.501) (0.503) (0.336) (0.359) (0.367)

Table 7.5: Slopes of fitted linear functions between GOME-2 SIF and GOSAT
SIF (see Figure 7.24, intercepts are not shown). The values in brackets indicate
the R2 value for the subset, and bold-faced slopes are those for which the R2 is
larger than 0.5.

7.9 Uncertainties of the SIF Retrieval

The retrieval uncertainty is characterised by the square root of the corresponding

diagonal element of the a posteriori covariance matrix (see Equation 5.22, Page 54).

For most SIF retrievals, this uncertainty is around 100 % of the SIF value itself, making

the SIF retrieval a very noisy one. Figure 7.19 already showed that over time, the
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standard deviation of SIF values measured over bare surfaces is comparable to the

mean uncertainty.

For the application of SIF data in studies, it is important to establish that these

uncertainties truly reflect the random nature of measurement noise in the retrieval,

as well as provide the right magnitude. To demonstrate that this is indeed the case,

an analysis is performed on the bias corrected SIF retrievals over Antarctica. While

the bias correction does change the SIF value, the associated uncertainties are not

adjusted during the bias correction procedure. From the Antarctica SIF retrievals,

N values are randomly picked and their statistics are plotted in Figure 7.25 (for

one bias correction type). The error bar diagrams show both the SIF values of the

subset, as well as the values of the uncertainties of the subset. Means of subsets are

represented by round symbols, and the error bars extend by the standard deviation

of the subset. Again (similar to Figure 7.19, Page 90), the standard deviations of the

subsets are very close to the means of the retrieval uncertainties, if su�ciently many

SIF measurements are aggregated into the subsets.
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Figure 7.25: Fs (blue, circles) and associated uncertainties (orange, squares). Error
bars of Fs are close to the mean single-sounding uncertainties. This confirms that
the width of the posteriori distribution accurately represents the uncertainty of the
retrievals.

Through visual examination, the reported uncertainties are indeed normally dis-

tributed for larger N . Underlying this assessment with the Kolmogorov-Smirnov test

(KS-test) against a normal distribution (with µ and σ calculated from the subset) is

shown in Table 7.6, where the D -values and p -values of the test are shown. The table

shows that even for large N the hypothesis of the subset being drawn from a normal

distribution cannot be rejected.

From these results the following conclusions can be drawn. Bias-corrected SIF does

not show any systematic features, as the mean SIF value is close to zero. The

remaining variability has the characteristics of purely random noise, and follows a
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755 nm 772 nm

N Annual Seasonal Spline Annual Seasonal Spline

1 n/a n/a n/a n/a n/a n/a
2 0.26 / 1.00 0.26 / 1.00 0.26 / 1.00 0.26 / 1.00 0.26 / 1.00 0.26 / 1.00
5 0.25 / 0.92 0.25 / 0.91 0.24 / 0.93 0.21 / 0.98 0.25 / 0.92 0.22 / 0.97
10 0.24 / 0.52 0.25 / 0.50 0.23 / 0.58 0.21 / 0.74 0.19 / 0.86 0.19 / 0.86
20 0.12 / 0.94 0.12 / 0.95 0.12 / 0.95 0.11 / 0.97 0.09 / 1.00 0.09 / 1.00
50 0.07 / 0.95 0.07 / 0.97 0.08 / 0.86 0.08 / 0.94 0.06 / 0.99 0.07 / 0.96
100 0.06 / 0.89 0.05 / 0.97 0.05 / 0.94 0.06 / 0.91 0.07 / 0.69 0.06 / 0.86
1000 0.02 / 0.70 0.02 / 0.69 0.02 / 0.72 0.02 / 0.62 0.03 / 0.41 0.03 / 0.52

Table 7.6: For the subsets, in which N random retrievals (absolute SIF) over
the Antarctic are drawn, the D -values / p -values of the Kolmogorov-Smirnov test
are listed. The D -values are smaller than the p -values for all N , all windows,
and all calibration types, meaning that the test fails to reject the hypothesis of
the SIF values being drawn from a normal distribution.

normal distribution whose standard deviation is close to the value expected from the

a posteriori covariance matrix.

For a repeated set of N measurements of the same surface, the reported uncertainties

thus represent uncorrelated errors. The mean of the set

Fs =
1
N

N∑
i=0

Fs,i (7.19)

therefore comes with an error that scales with
√
N :

σFs =
σFs
√
N
. (7.20)

Since every measurement Fs,i has its own uncertainty σFs,i , the uncertainty on the

mean can also be calculated by applying Gaussian uncertainty propagation, which

yields

σFs =
1
N

√√√ N∑
i=0

σ2
Fs,i
. (7.21)

Clearly, if all σFs,i are the same, then Equation 7.21 reduces to Equation 7.20.

In later sections, regional means are computed where the region size varies from a

few km2 up to entire continents. For subsets like those, the above equations do not

fully hold, as they are sampling di�erent surfaces, and the truth is often not known.

In the case of Antarctica, the true value can be assumed, and thus the uncertainty

on the mean can be stated through Equation 7.20.

The variability of a continental-scale subset is a combination of the variability due to

di�erent surfaces (and true SIF) and the uncertainties due to measurement noise. If
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both components are uncorrelated, the total uncertainty on a regional subset can be

written as

σ(tot) =

√
1
N 2

∑
σ2
Fs,i
+ σ2

(Region). (7.22)

Realistically, the two uncertainties will not be entirely uncorrelated. Regions of low

photosynthetic activity, such as deserts, tend to exhibit a higher surface albedo,

therefore a higher signal-to-noise ratio, and thus a lower single-sounding uncertainty.

This, however, is a second-order e�ect and the regional uncertainties are expected to

be the largest contribution to the total uncertainty.

σ(Region) is the standard deviation of the regional ensemble, and has to be estimated.

If a large and heterogeneous region is chosen, such as various TransCom regions

(e.g. Europe, temperate regions) then the true SIF already has an intrinsic variability

for that region. To calculate the total uncertainty for large regions, following strategy

is employed. SIF data for a TransCom region is subdivided into clusters using two

di�erent methods:

• Using the k -means algorithm according to their longitude and latitude,

• Grouping the soundings by their land cover class.

The number of clusters for the k -means method is chosen by dividing the total number

of measurements per region by 100. For the land cover clustering, all soundings

with the same majority land cover class are grouped into the same cluster. For each

cluster, the standard errors of the mean SIF are calculated, and the mean of all

cluster-standard errors is then the estimated σ(Region) for that region. Regardless

of the method, if there are less than 50 measurements in any given cluster, that

cluster is disregarded. Initial cluster centroids for the k -means method are chosen

randomly, so re-running the analysis will lead to slightly di�erent values for that

method. The two clustering methods are fundamentally di�erent, as the land cover

method groups together soundings that have similar vegetation type but could be

significantly far away from each other, whereas the k -means procedure does the exact

opposite (grouping based on locality, potentially very di�erent vegetation types).

Using all quality-filtered measurements from February 2014, the results are shown in

Table 7.7; the results for July 2014 are listed in Table 7.8.

As expected, the values for the uncertainty on the means (σFs) are considerably

lower than the estimated regional uncertainties σ(Region). Both k -means and LC-

based methods yield similar values for σ(Region) regardless of the region. The only

larger outlier is the LC-based aggregation for Antarctica - however this is mainly

due to Antarctica being a large landmass with essentially only one land cover class
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(February 2014) All k -means LC

Region N σFs σ N Fs σ N Fs σ

NA Boreal 1763 0.02 1.08 14 −0.04 0.10 7 −0.06 0.09
NA Temperate 2053 0.02 1.26 18 0.05 0.12 10 0.00 0.12
SA Tropical 602 0.05 1.40 6 0.94 0.14 2 0.78 0.12
SA Temperate 1385 0.04 1.45 11 0.73 0.13 7 0.73 0.12
Northern Africa 3972 0.03 1.74 34 0.04 0.17 8 0.24 0.11
Southern Africa 1052 0.04 1.40 9 0.79 0.13 6 0.81 0.13
Eurasian Boreal 2603 0.02 1.09 20 −0.01 0.10 11 −0.02 0.09
Eurasian Temperate 5074 0.02 1.32 43 0.04 0.13 12 0.10 0.08
Tropical Asia 903 0.04 1.28 7 0.69 0.13 5 0.68 0.13
Australia 1275 0.04 1.35 12 0.24 0.14 6 0.23 0.11
Europe 986 0.03 1.13 9 0.13 0.11 6 0.10 0.11
Antarctica 18662 0.01 1.15 138 −0.02 0.11 1 −0.02 0.01

Global Mean σ 1.31 ± 0.19 0.12 ± 0.02 0.10 ± 0.03

Table 7.7: Estimation of regional uncertainties. In the first group, σ is the
regional standard deviation including all measurements. For the k -means and
land cover (LC) methods, N is the number of clusters with more than 50 sound-
ings. For means and uncertainties, values are in units of mWm−2 sr−1 nm−1.
The last row is the mean (± standard deviation) of all σ(Region).

( July 2014) All k -means LC

Region N σFs σ N Fs σ N Fs σ

NA Boreal 1955 0.02 1.17 17 0.26 0.11 8 0.20 0.09
NA Temperate 2688 0.02 1.42 24 0.79 0.12 10 0.69 0.11
SA Tropical 1762 0.03 1.37 15 1.08 0.13 5 1.00 0.14
SA Temperate 2309 0.02 1.23 22 0.31 0.12 9 0.34 0.09
Northern Africa 3466 0.03 1.87 31 0.29 0.18 8 0.50 0.11
Southern Africa 2411 0.02 1.09 21 0.21 0.11 9 0.18 0.10
Eurasian Boreal 3752 0.02 1.20 34 0.41 0.12 10 0.45 0.09
Eurasian Temperate 5479 0.02 1.45 47 0.32 0.13 14 0.52 0.11
Tropical Asia 608 0.05 1.44 6 1.16 0.15 3 1.14 0.13
Australia 2014 0.02 1.12 17 0.11 0.11 7 0.17 0.09
Europe 2692 0.02 1.24 23 0.72 0.12 11 0.63 0.10

Global Mean σ 1.32 ± 0.20 0.12 ± 0.02 0.10 ± 0.02

Table 7.8: Same as Table 7.7, but for July 2014. For this month, there are no
soundings over Antarctica.
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7.9. Uncertainties of the SIF Retrieval

(permanent snow or ice). Otherwise, the global overages for both methods are

0.10mWm−2 sr−1 nm−1 and 0.12mWm−2 sr−1 nm−1 per region.

The presented assessment of regional uncertainties, while cumbersome, o�ers a way

of calculating the uncertainties for continental-scale subsets.
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Chapter Eight

In�uence of SIF on XCO2 Retrievals

I
t has been shown by Frankenberg, Butz, et al. (2011) that neglecting the

fluorescence radiance in the O2 A-band will ultimately lead to systematic

biases in other retrieved quantities: surface albedo (∼1 %), aerosol optical

depths (∆τ∼0.1), aerosol layer height (∼5 km) and surface pressure (∼10 hPa). Investi-

gating these interferences with full-physics XCO2 retrievals was done by Frankenberg

et al. (2012). They obtained artificial measurements from an orbital simulator and

applied several retrieval configurations. These configurations consist of a test matrix

in which aerosols, surface pressure as well as fluorescence were retrieved both sepa-

rately, combined, or not at all. They found a substantial dependence of the retrieved

XCO2 on the true Fs with a slope of roughly ∼1 ppm%−1 (in units of relative SIF) if

SIF is not part of the state vector. Fitting SIF compensates the systematic bias to a

large degree.

For the generation of the ESA GHG-CCI Climate Research Data Package v41 full-

physics XCO2 data set at the University of Leicester, the opportunity arose to process

a large fraction of the GOSAT operational time frame both with and without a

derived SIF prior (see Equation 4.18, Page 42). Unlike Frankenberg et al. (2012),

the aim was not to make a set of controlled, simulated and noise-less observations,

but rather to assess the impact of omitting the SIF prior through a large set of real

retrievals. In this case, the true SIF value is unknown. It is important to note here

that the SIF priors used in this exercise are not the same as presented in the previous

sections, but the result of an earlier processing which used a monthly calibration

routine. The omission of SIF will naturally have an e�ect on the spatial distribution

of XCO2, as the Earth is not uniformly vegetated. Additionally, as SIF can have a

strong seasonal cycle, the seasonality of the XCO2 fields is expected to be altered.

The processed time-span ranges from January 2012 until December 2015, thus

comprising four full years. Both retrieval sets feature a zero-level o�set in Band 1,

and the fluorescence radiance is in both state vectors - keeping in mind that the a

priori covariance for the fluorescence (σ = 1 · 10−10Wcm−2 sr−1 cm−1) is not large

enough to allow for a significant departure from the prior value.
1For v3 see Buchwitz, Reuter, Schneising, Hewson, et al. (2017).
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8.1. Analysing Retrieval Results

8.1 Analysing Retrieval Results

In this section, the raw retrieval results for all soundings over land with a non-zero

SIF prior are compared against the same retrievals where the a priori SIF is set to

zero. The overall convergence2 is essentially unchanged, out of 534 475 retrievals that

satisfy the aforementioned criteria, 531 545 of the non-SIF set converged, whereas

the number for the SIF set is 531 658. The number of iterations shows a significant

change, as there are ∼16 % of retrievals that have less iterations using a non-zero SIF

prior, as well as ∼14 % that have more iterations. The number of divergent steps

are reduced for ∼7.5 % of retrievals, and increased for ∼11 %. Figure 8.1 shows the

change in the number of iterations compared to the noSIF case, broken down by

the number of iterations. For less than five iterations in the noSIF set, the change is

small as the bulk of retrievals exhibits the same number of iterations. For more than

five, a general reduction is seen.
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Figure 8.1: The violin plot visualises the change of number of iterations (SIF - noSIF)
when compared the set of retrievals with a zero SIF prior (noSIF). When more than four
iterations were required for the noSIF case, the SIF case shows less needed iterations
in general.

Fit quality for both sets is characterised by assessing the distribution of two related

variables: the reduced χ2 and the absolute root-mean-square radiance residuals for

the three bands. The medians as well as the interquartile ranges of the two retrieval

sets are listed in Table 8.1.

While the di�erences are not large, introducing the non-zero SIF prior results in a

slightly worse fit quality for bands 1 and 3. The di�erences in residuals are negligible,

and the number of iterations is reduced for cases in which the noSIF retrievals had
2See Section 5.3, Page 50 for convergence criteria.
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Median (SIF) Median (noSIF) IQR (SIF) IQR (noSIF)

χ2
(Band 1) 1.164 1.159 0.293 0.290
χ2
(Band 2) 1.124 1.126 0.337 0.338
χ2
(Band 3) 0.942 0.940 0.315 0.315

RMS(Band 1) 3.193 · 10−9 3.185 · 10−9 1.152 · 10−9 1.523 · 10−9

RMS(Band 2) 1.733 · 10−9 1.734 · 10−9 9.960 · 10−10 9.974 · 10−10

RMS(Band 3) 9.288 · 10−10 9.273 · 10−10 6.926 · 10−10 6.916 · 10−10

Table 8.1: A table summarising the fit quality indicators for both sets of
retrievals. Using a physical SIF prior appears to lead to overall slightly worse
fits.

originally more than four iterations. These cases, however, are less than 17 % of all

considered retrievals.

The dependence between Fs and the change in retrieved XCO2 as predicted by

Frankenberg et al. (2012) is not reproduced, as shown in Figure 8.2. Not only is

the gradient half as steep (∼0.5), but the correlation between F (rel)s and ∆XCO2 =

XCO(SIF)2 − XCO(noSIF)2 is very low (R2 = 0.048) as the data shows large scatter.
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Figure 8.2: XCO2 di�erences versus SIF prior on a sounding-by-sounding basis. The
while, dashed line indicates the gradient of 1 ppm%−1 (Frankenberg et al. 2012), and
the solid, black line is the actual best-fit to the data.

Figure 8.2 also shows that using the physical SIF prior alone is not a strong predictor

to predict the change in XCO2, at a single-sounding level. An attempt was made to

find a linear model using various physically relevant parameters that could predict the

∆XCO2 better than using the a priori SIF. However, no combination of parameters

could produce a better fit to the observed ∆XCO2. Already in Section 7.8 (Page 89)

the intercomparison between the SIF retrievals and GOME-2 has shown that due

to the large uncertainty for single retrievals, spatial and temporal aggregation is

necessary for a comparison to be successful. While the reported uncertainty of
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an XCO2 retrieval is generally less than a percent of the retrieved value, it is of

comparable size to the ∆XCO2, which is expected to be on the order of ∼1 ppm.

8.2 Spatial and Seasonal Patterns

Exploring the spatial and temporal patterns of the impact of SIF on the retrieved

XCO2 is done by aggregating the retrievals into 2° grid cells for each season, and

keeping only grid cells with more than 50 soundings. The four maps in Figure 8.3

reveal a clearer picture on the reduction of retrieved XCO2 as a consequence of a

non-zero SIF prior.

DJF MAM

JJA SON

−0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7
∆ XCO2 [ppm]

Figure 8.3: Seasonal maps of ∆XCO2 = XCO(SIF)2 − XCO(noSIF)2 showing the regional
pattern which correspond to the vegetated areas.

The pattern of ∆XCO2 closely follows the seasonal cycle of vegetation on a global

scale (see e.g. Figure 9.1, Page 113). Tropical South America exhibits a negative bias

throughout the year, and regions with large areas devoid of vegetation (Australia,

South Africa) only show slight changes during the local growing season. Using the

gridded data, rather than the soundings (Figure 8.2), the relationship between the

SIF prior and ∆XCO2 appears in a much clearer fashion. Although the R2 value

increases significantly for the gridded set (0.34 in DJF, 0.44 in MAM, 0.62 for JJA

and SON), the relationship is still noisy, as shown in Figure 8.4.

Frankenberg et al. (2012) have already explained the mechanistic influence of SIF

on the XCO2 retrieval. In the O2 A-band, the missing information about SIF is
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Figure 8.4: ∆XCO2 as a function of the SIF prior, like Figure 8.2, but with grid cell
averages, based on seasonal aggregation.

incorporated into a change in surface pressure and aerosol concentration. The

impact on aerosols is not straightforward, since in a three-band retrieval using the

strong CO2 band at 2.06 µm, the spectral properties of the aerosols are further

constrained. A change in retrieved surface pressure has a very direct e�ect on the

final retrieved XCO2 by simply altering the dry airmass to which XCO2 is normalised

to. Figure 8.5 shows the change in XCO2 as a percentage of the noSIF XCO2 as a

function of the relative change in surface pressure. The ∆psurf -to-∆XCO2 relationship

exhibits a higher correlation (0.56 < R2 < 0.73) than the relationship between

∆XCO2 and the a priori SIF. The slopes in Figure 8.5 were derived using a robust

linear model where no intercept was fitted. For all four seasons, the slope magnitudes

are similar, and suggest that for every 1 % of surface pressure change induced by the

di�erent SIF prior, XCO2 is reduced by about 2 %. One would naively assume that

the change in psurf fully maps into a change in XCO2. The introduction of a non-zero

SIF prior however also changes the retrieved aerosol optical depths. Using a linear

model to predict the change in XCO2 confirmed this assumption: when the changes

in aerosol optical depths are introduced to the linear model as explanatory variables,

the predictive capability of the model increased significantly.
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Figure 8.5: Seasonal aggregation as in Figure 8.4, but showing the e�ect on surface
pressure instead.

8.3 Time Series

As a consequence of Figure 8.2, the seasonal dependence of ∆XCO2 is naturally

stronger in regions with a strong vegetation cycle (boreal and temperate regions).

At the same time, the overall magnitude of ∆XCO2 in tropical regions (with higher

overall Fs) is larger, with a smaller seasonal component. Analysing time series for

region-averaged XCO2 provides a way of quantifying the impact of SIF on the scales

of TransCom regions.

The retrieved XCO2 is collected and grouped by TransCom region and then averaged

into semi-monthly bins. An example of such a resulting time series is shown in

Figure 8.6, which shows the XCO2 for the Tropical Asia region. The middle panel,

showing the XCO2 di�erence, exhibits a clear seasonal cycle that anti-correlates to

the SIF cycle. The lowest panel shows the deviation in the retrieved aerosol optical

depths for all three mixtures. All three mixtures are impacted by the presence of SIF,

which explains why the surface pressure change does not map into XCO2 di�erence

1:1.

From the ∆XCO2 time series, characteristic features can be extracted. The mean

magnitude ∆XCO2 (the mean of ∆XCO2) reflects the overall deviation compared to

a zero SIF prior. The seasonal amplitude of ∆XCO2 is calculated as the di�erence
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Figure 8.6: XCO2 for Tropical Asia. The middle panel shows the di�erence between
using a SIF prior, and not using one, ∆XCO2, along with the magnitude of the SIF prior.
For this specific region, Fs and ∆XCO2 are anti-correlated (R = −0.51). The bottom
panel shows the relative change in retrieved AOD for the three mixtures separately.

between highest and lowest value of ∆XCO2 in a given year, referred to as peak-to-peak

amplitude. The mean and standard deviation of these 4 annual values are retained.

Figure 8.7 shows the eleven regions in a space spanned by these two parameters.

According to Figure 8.7, the most a�ected regions are boreal regions with the large

seasonal amplitudes, tropical South America with its high productivity throughout

the year, as well as Europe and Tropical Asia. All these regions exhibit a mean

seasonal amplitude (in ∆XCO2) larger than 0.5 ppm.

Since the SIF seasonality is a periodic contribution that a�ects XCO2 retrievals every

year, the e�ect of SIF on the measured CO2 growth rate is very small. For northern

mid-latitudes (30°N - 60°N), the di�erences in annual growth rates between 2012 and

2015 is less than 0.01 ppmyr−1. Tropical regions (20°S - 20°N) as well as southern

mid-latitudes show less than 0.1 ppmyr−1 di�erence. Growth rates were calculated as

the di�erence of the concentration at a given month minus the concentration at the

same month for the year before.
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Figure 8.7: This figure maps each re-
gion into a space spanned by the mean
of the ∆XCO2 time series, and its sea-
sonal amplitude. Error bars represent
the standard deviation of the seasonal
amplitudes.

Figure 8.7 (along with Figure 8.3) also reveals that the overall e�ect of the SIF prior

is generally less than 1 ppm, or less than ∼0.25 %. The seasonal amplitudes of the

XCO2 time series themselves are several factors larger, ranging from ∼3.2 ppm for

Tropical South America, to almost 14 ppm for boreal North America. Table 8.2

summarises the mean seasonal amplitude (based on monthly aggregates) for both

XCO2 and ∆XCO2 for each region as well as the fraction ∆XCO2/XCO2, which

gives an indication about the SIF prior e�ect magnitude. The largest fraction is

unsurprisingly seen in the most productive region, Tropical South America, which

also has the smallest seasonal amplitude in general.

Seasonal Amplitude [ppm]

∆XCO2 XCO2 Fraction R

NA Boreal 1.2 ± 0.4 13.9 ± 3.9 8.60 % +0.31
NA Temperate 0.3 ± 0.0 5.3 ± 0.9 5.59 % +0.11
SA Tropical 0.6 ± 0.1 3.2 ± 0.8 18.95 % −0.07
SA Temperate 0.4 ± 0.1 4.0 ± 0.4 9.57 % +0.18
Northern Africa 0.3 ± 0.0 4.6 ± 0.2 6.60 % +0.56
Southern Africa 0.3 ± 0.1 7.4 ± 1.0 3.69 % −0.60
Eurasian Boreal 0.8 ± 0.3 10.6 ± 0.6 7.13 % +0.22
Eurasian Temperate 0.2 ± 0.0 6.0 ± 0.3 4.07 % +0.67
Tropical Asia 0.5 ± 0.1 5.6 ± 0.5 9.57 % −0.51
Australia 0.2 ± 0.1 4.3 ± 1.8 5.53 % +0.05
Europe 0.6 ± 0.1 6.5 ± 0.8 9.20 % +0.42

Table 8.2: Peak-to-peak seasonal amplitudes for both XCO2 and ∆XCO2 per
region. The third column is the ratio of the mean ∆XCO2/XCO2, expressed
as a percentage, the last column is the correlation coe�cient between Fs and
∆XCO2.
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8.4 E�e on Flux Inversions

Inclusion of the SIF prior results in sub-ppm, regional biases across the globe.

These systematic biases in the concentrations will cause di�erences in the result

of flux inversions. Without actually performing the inversions, however, it is not

straightforward to estimate the e�ect magnitude, given the di�erences in XCO23.

Chevallier et al. (2007) have investigated the sensitivity of an inversion system to

observational biases. The biases assumed in their study are related to sub-micron

aerosol particles, with an average magnitude of 0.29 ppm. As a result of the imposed

total mass conversation, fluxes are not only modified in the regions with a pronounced

XCO2 bias, but also elsewhere. Significant annual biases in net fluxes are seen

over Southern oceans (0.2 PgC yr−1) and Eurasian Temperate and Europe regions

(> 0.5 PgC yr−1).

These values are considerably high when they are compared to continental-scale net

fluxes - Reuter et al. (2014), for example, estimate the European terrestrial carbon

sink to be 0.58 ± 0.37 PgC yr−1, which is roughly the same value as the bias mentioned

in Chevallier et al. (2007).

The biases due to SIF shown in Figure 8.3 may be modified due to bias corrections

applied to XCO2 retrievals, especially if a�ected variables (e.g. psurf) are used in the

bias correction procedure. Since retrievals are usually adjusted towards a reference,

the di�erences between SIF and noSIF data after bias correction will likely be smaller

than the values presented in this section.

In Figure 8.8 the di�erence between XCO2 di�erences (SIF vs. noSIF) are shown to

illustrate the e�ect of bias correction for one specific bias correction procedure. The

bias correction in this case was taken from the UoL CCI product version 7.0. This

specific product is somewhat di�erent from previous versions and other products, as

the bias correction is only dependent on two variables: the retrieved zero-level o�set

(z0), and the CO2 profile gradient. The explicit formula to obtain the bias-corrected

XCO2 is

XCO(corr)2 = XCO2 −

(
−16.5754 + 100.72550 · z0 + 17.84797 · COgrad

2

)
. (8.1)

Figure 8.8 shows that the di�erence between bias-corrected ∆XCO2, compared to

non-corrected ∆XCO2, is slightly smaller (globally: 0.03 ± 0.24 ppm). The di�erences

do not fully follow the patterns of global vegetation, areas like the Sahel zone and

India exhibit a change where there was no noticeable di�erence before.

Of course, this assessment of bias correction is not fully genuine and comprehensive.

If noSIF and SIF XCO2 retrievals are retrieved independently, they also should go
3P. Palmer, private communication.
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Figure 8.8: Di�erences of ∆XCO2 = ∆XCO(corr)2 −∆XCO(nocorr)2 . This figure illustrates
the net e�ect of one particular bias correction (see Equation 8.1) on the concentration.
The di�erences tend to be lower than 0.1 ppm, however the spatial pattern still persists.

through the bias correction procedure independently. Since retrieved quantities, like

the retrieved surface pressure and the retrieved CO2 profile gradient will be di�erent,

the bias correction coe�cients would thus be di�erent for both sets. The final,

corrected concentrations would show smaller di�erences than depicted in Figure 8.8.
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Chapter Nine

SIF Case Studies

B
efore investigating more detailed regional case studies, a global picture

of SIF can be established first, which will also help identifying potential

discrepancies. The global vegetation pattern and their seasonal variation is

generally well-captured by greenness indices like NDVI and EVI.

The expectation is that SIF follows the seasonal cycle of forests, cropland and

grassland turning green in the local summers, and reducing their photosynthetic

activities during the local winters. Global maps of seasonally averaged SIF (gridded

to 2° by 2° degree cells), along with sampled EVI data and the grid cell counts, are

shown in Figure 9.1. Seasonal changes of the global patterns appear for the SIF as

they do for EVI. The eastern US is blooming during the MAM and JJA seasons,

as is Europe and eastern temperate Asia. The tropical forests in southern America,

Africa and Asia do not exhibit the same seasonality. A fairly large discrepancy

between the SIF and EVI is seen in northern boreal Asia. During the JJA season,

EVI shows the region to be very green, whereas the corresponding SIF panel shows

the northernmost areas to be close to zero. A look at the grid cell counts for the JJA

season reveals that this is not merely an artefact of sparse sampling in that specific

area. While not pictured, the maps for NDVI show similar patters with a di�erent

range of values.

Collapsing the maps in Figure 9.1 into latitudinal averages, the good correspondence

between SIF and the vegetation indices is further illustrated in Figure 9.2. As before,

SIF captures the overall latitudinal dependence of the two vegetation indices, and the

discrepancy in the JJA season for northern latitudes between 50° and 70° is highlighted

as well. The latitudinal aggregate of EVI correlates slightly better with SIF for all

seasons than NDVI, however the di�erence is only marginal.

In the next two sections, case studies are presented to demonstrate that SIF is capable

of detecting the response of the biosphere to events like drought or anomalously high

precipitation. Since the full time series of the processed GOSAT-SIF record spans

almost 8 years, anomalies occurring between April 2009 and December 2016 should

be detectable, as well as the return to a steady state.
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Figure 9.1: Seasonal averages for SIF (755 nm, P-polarised) and EVI. The rightmost
column shows the number of measurements in each grid cell.
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NDVI. EVI was scaled by a factor of 1.6 to make it align with the NDVI curve.
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9.1. SIF-GPP Relationship

9.1 SIF-GPP Relationship

The intrinsic relationship between primary production and SIF is explained in

Section 9.1. Deriving the relationship empirically has been already performed both

in the publication demonstrating the retrieval technique (Frankenberg, Fisher, et

al. 2011), as well as dedicated studies, such as done by Parazoo et al. (2014). In

their publication, they employed a Bayesian optimal estimation algorithm to relate

GOSAT SIF to GPP as described through an ensemble of eight dynamical global

vegetation models (DGVMs). Similar to Guanter et al. (2012), the relationship is

assumed to be dependent on the biome, and this is also reflected in the results: the

GPP∼SIF scaling factor is significantly di�erent for the various biomes; the largest

values are found for cropland, whereas the lowest ones are seen over shrubland.

While such an extensive study is not within the scope of this section, a simple linear

model can show whether the SIF data exhibits a similar relationship to primary

production. Rather than working on a grid-cell basis, the relationships here are

derived through the time-series themselves.

Primary production is assessed through the NASA-CASA (Carnegie-Ames-Stanford-

Approach)(Potter et al. 2003) gross ecosystem exchange (GEE) model output (1° ×

1.25°, global, 3-hourly). Matching GOSAT SIF measurements with the CASA data

set is done by picking the value from the grid cell in which the GOSAT footprint

lies, using the time coordinate closest to the GOSAT measurement time. Since

GOSAT SIF measurements only cover land areas, the uptake value is divided by the

land fraction c (land) of that cell, in order to normalise the flux to the amount that is

occurring over land surfaces.

GEE and GPP are synonymous terms used in di�erent fields of research, both meaning

the uptake of carbon into the ecosystem. For the rest of this section, when discussing

the relationship between SIF and uptake, “GPP” is used despite the CASA model

output having the label “GEE”. SIF generally follows the CASA GPP for large portions

of the globe, see Figure 9.3. Northern hemispheric temperate and boreal regions

exhibit the same seasonal cycle for both data sets, as shown in the first three panels of

the figure. For the Europe-subset, the NDVI time series exhibits an extended plateau

before it drops to the seasonal minimum in winter. This can be interpreted as a sign

that SIF captures the reduction of photosynthetic activity after the summer peak,

while the greenness index NDVI shows the leaves of the plants still being green.

The last two panels in Figure 9.3 show two regions, in which the seasonal cycles of

SIF and GPP do not line up. Over the South Asia region (essentially the Indian

subcontinent), the GPP cycle is delayed by roughly three months, whereas over the

Amazon, the cycle is shifted by six months, making it anti-cyclic. The mismatch in
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9.1. SIF-GPP Relationship

season cycle over tropical South America was already observed through flux inversion

studies using OCO-2 measurements, suggesting a deficiency in the CASA GPP.
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Figure 9.3: CASA uptake and MODIS NDVI compared to SIF for a few TransCom
regions. Temperate and boreal regions show that all time series are very much in sync
in terms of the seasonal cycle. For tropical regions, like South Asia and the Amazon,
the NDVI time series shows the same seasonal cycle as SIF, but the CASA uptake
exhibits a significant phase shift.

Parazoo et al. (2014) use the same SIF∼GPP relationship as the one investigated in

Frankenberg, Fisher, et al. (2011), which is a linear slope GPP = β · SIF. Instead of

the full-fledged optimisation scheme that Parazoo et al. (2014) employed, an attempt

is made to find a generally valid scaling factor β that holds for the majority of

regions. To that end, the monthly averaged SIF and the collocated CASA GPP are

compared. Collocated model GPP is sampled at the time of measurement, which

is not necessarily representative of the daily average due to local overpass times at

higher latitudes deviating from the equatorial one. Frankenberg, Fisher, et al. 2011

propose an up-scaling based on the local solar zenith θ0(t ) at the footprint location

and its value throughout the day. The daily averaged fluorescence Fs is approximated
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as

Fs =
Fs

cos θ0(t0)

∫ t=t0+0.5

t=t0−0.5
cos θ0(t ) dt, (9.1)

where the integration is performed over the local fractional day t between times

t0 − 0.5 and t0 + 0.51. Overall, Fs is roughly one third of Fs, but deviates more towards

higher latitudes.

9.1.1 Instantaneous to Daily

The collocated model GPP data at GOSAT overpass time itself has to be related to a

daily integrated value. For every grid cell, the 3-hourly fluxes are aggregated on a

daily basis, taking into account the local timezone of the grid cell location. These

instantaneous values correspond to the daily uptake maxima, and the total daily

uptake is calculated by integrating the values at the nine time steps throughout the

day using the trapezoidal rule. The up-scaling factor is then determined through

a linear model, which relates the daily maximal value �GPP to the daily integrated

value GPP. This calculation is based on the CASA GPP data for the year 2012, so

every grid cell contains 366 values which the linear model regression uses.
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Figure 9.4: Illustration of the global distribution of scale factors α (left), and as
latitudinal aggregates α(φ) (right).

The global distribution of scaling factors is shown in Figure 9.4. While there is still

a clear topographic pattern to be seen (especially towards the Himalayan plateau),

the scale factor is well-captured through a latitudinal dependence only, and the

relationship is found hold for all seasons of the year. The right panel in that figure

shows the mean value for the scaling factor, collated by latitudinal bin, and the

standard deviation is illustrated as the (barely noticeable) shaded area. The red,
1Note that Frankenberg, Fisher, et al. 2011 actually integrate from t0 to t0 + 1, which is math-

ematically the same since the cosine of the local solar zenith θ0 is periodic with a period of one
day.
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9.1.2. GOSAT to CASA

dashed line on top of the mean line is a 7th order polynomial fitted through the

latitudinal means,

GPP = α(φ) ·�GPP, (9.2)

α(φ) =

7∑
i=0

φiαi , (9.3)

with φ being the latitude in degrees, and the coe�cients αi from Table 9.1.

i αi

0 3.0324 · 10−1

1 −4.5488 · 10−4

2 1.7228 · 10−5

3 7.8438 · 10−7

4 1.0629 · 10−9

5 −2.8683 · 10−10

6 −8.5659 · 10−14

7 3.3928 · 10−14

Table 9.1: Coe�cients
αi for the polynomial
representation of α (see
Figure 9.4).

9.1.2 GOSAT to CASA

The result of the comparison is shown in Figure 9.5, and can be directly compared to

Figure 2 in Frankenberg, Fisher, et al. (2011). It is important to note that while the

both figures aim to visualise the same concept, i.e. the linear relationship between

scaled SIF and primary production, the underlying data is di�erently aggregated.

Frankenberg, Fisher, et al. (2011) use 4° × 4° grid cells where for each cell, the data

has been aggregated for an entire year. Each filled circle in Figure 9.5 represents

a monthly aggregate between April 2009 and December 2015, and the size of the

circle is related to the number of SIF measurements in that given month. For every

region (as labelled through the figure legend), the barycentre of the point cloud is

additionally marked by either a filled square or a filled triangle with the same colour.

Regions with less than 10 000 total measurements were skipped, and months with

less than 150 for that specific region are also dropped in this analysis. Compared to

Frankenberg, Fisher, et al. (2011), the spatial variability does not play a large role,

since large regions are aggregated, however the seasonality is captured much better

as there are monthly means from a 6-year time series available.

The red, dashed line in Figure 9.5 represents an ordinary least-square fit for the

model GPP = β · SIF, excluding the data pairs of regions which are labelled with a

triangle, i.e. the more productive areas that have been identified to have a mismatch
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Figure 9.5: SIF-GPP relationship for various TransCom regions, aggregated by season.
Each circle represents a monthly mean, and the size of the circle is proportional to
the standard deviation for that month. The value β is inferred through ordinary
least-squares.

with the SIF seasonal cycle. DJF, MAM and SON seasons overall exhibit a highly

linear SIF-GPP relationship throughout the various regions, as indicated by the R2.

Only during the JJA months is a more significant departure from a linear trend seen,

despite the still rather high value of R2 = 0.885. As already noted earlier, the high

correlation between SIF and GPP in this case is not surprising, nor should it be

over-emphasised. Both time series exhibit a seasonal cycle with the same period, and

as long as they are in phase and have a significant seasonal amplitude, R2 will be

large, regardless of the predictive capabilities of SIF.

Problematic regions where the SIF-GPP correspondence is less clear, some of which

were identified already in Figure 9.3, are mostly areas of high productivity with

evergreen vegetation, such as the Amazon or Tropical Asia. The scaling factor β ,

which lies between 20.67 and 23.99, is comparable to the values seen in Frankenberg,
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Fisher, et al. 2011, Figure 22.

9.1.3 GOSAT to FluxNet

A second option to derive β independently of models is a comparison to directly

measured fluxes from towers. The FluxNet network o�ers a compact set of GPP

measurements from tower sites situated mostly in North America and Europe, East

Asia and Australia. A smaller number of sites are located in South America and

Africa. The study by Guanter et al. (2014) exploited GOME-2 measurements to

compare SIF to GPP from a small subset of tower sites in the US Corn Belt and over

European grasslands.

GOME-2 measurements possess an advantage when performing comparisons against

flux towers: footprint size. With an average footprint area of 3200 km2, a single SIF

measurement can cover a much larger fraction of the flux tower footprint and is

less sensitive to surface in-homogeneity. GOSAT’s average footprint size of ∼85 km2

is not only much smaller than the one of GOME-2, but the distance between each

pointing location is usually more than 250 km apart. Even after the sampling pattern

change in 2011, there are at most three soundings near a specific pointing location

for a single overpass. In short, collocating GOSAT and FluxNet is a challenging task,

and ideally requires a more sophisticated method of interpolating between sounding

locations to get a good estimate of the SIF magnitude around the tower site.

Nevertheless, a simple collocation can reveal whether there are actually GOSAT

measurements close to tower sites, and whether a comparison to the measured GPP

results in similar values that were shown by Guanter et al. (2014). The collocation

procedure, which is repeated for each and every FluxNet site, is as follows: only

quality-filtered GOSAT measurements that are less than 50 km from the tower location

are considered. The SIF measurements are first aggregated into daily means, along

with the daily averaged GPP measurements, and then again sub-setted to those days

in which both a SIF measurement and a tower measurement have occurred. Then,

further aggregation into calendar months is done, and months in which less than three

GOSAT measurements occurred, are disregarded along with months that exhibit

negative average SIF and a standard deviation for that month > 2mWm−2 sr−1 nm−1.

Finally, all sites for which less than 10 monthly aggregates are available are thrown

out. For the remaining data pairs, the R2 values are calculated. A total of 30 tower

sites pass the criteria, and with a final selection criterion, 13 sites are picked which

exhibit an R2 value larger than 0.7: two in Australia (AU-Tum, AU-Whr), one in

Belgium (BE-Vie), three in Switzerland (CH-Cha, CH-Fru, CH-Lae), another three in
2No numbers are stated, but the best-fit slope appears to be close to 20.
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9.1.3. GOSAT to FluxNet

Germany (DE-Obe, DE-RuR, DE-Spw), and finally four in the United States (US-Los,

US-MMS, US-PFa, US-Syv).
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Figure 9.6: SIF from GOME-2 and GOSAT, compared to collocated FluxNet GPP
measurements as described in the text. Circles represent monthly average, and their
areas scale with the GOSAT SIF standard deviation of the measurements in that month.
Dashed, red lines are the best-fit linear models, whereas the dashed, blue lines represent
the 95 % confidence intervals for the model prediction.

Validating the simple collocation procedure is accomplished by using the GOME-2

SIF measurements that were aggregated on a per-sounding basis (see Section 7.4,

Page 73) - shown in Figure 9.6. The left panel of Figure 9.6 shows the (GOSAT-

collocated) GOME-2 SIF values against the FluxNet GPP measurements, where each

circle represents a monthly mean aggregate and the area of the circle is scaled to the

GOSAT SIF standard deviation for that month. Fitting a linear model through the

data results in a scaling coe�cient of β = 3.645 ± 0.107, which is close to the value

published by Guanter et al. (2014) (β = 3.723). The right panel shows the same

GOSAT sounding locations, but the abscissa now are the unscaled GOSAT SIF values

(Fs). Using the empirically derived relationship between GOME-2 SIF and GOSAT

SIF (Figure 7.23), the value of β = 6.087 ± 0.221 can be converted to a GOME-2

appropriate one: β = 3.484 ± 0.127, which is lower than the value derived from

GOME-2 SIF alone. Considering the simplicity of the collocation approach, both

values are well within 10 % of the published value. This shows that the selection of

FluxNet sites as a result of the collocation procedure provides a similar relationship

between midday SIF and measured fluxes as the established values. Visualising the
3Guanter et al. (2014) fit an intercept and do not provide a standard error on the linear fit.
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same collocated pairs, but using Fs is shown in Figure 9.6. This figure also shows the

mean slope from Figure 9.5 (β = 22.987) in addition to the best-fit slope. The slope

derived from FluxNet measurements is significantly lower than the value inferred

from CASA.
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Figure 9.7: Similar as Figure 9.6, but with scaled GOSAT SIF. The black line is the
linear function using the mean slope from Figure 9.5 (excluding DJF).

9.1.4 Sampling Issue

The results in Figures 9.5 to 9.7, and therefore the empirically derived results in

Guanter et al. (2014) and Frankenberg, Fisher, et al. (2011) do not seem to agree

at first glance. While Figure 9.5 agrees with Frankenberg, Fisher, et al. (2011)

with a slope of β = 22.987, and Figure 9.6 agrees with Guanter et al. (2014) for

unscaled SIF (β = 3.484), the two scale factors are inconsistent, as the scaled SIF

to FluxNet relationship is roughly 30 % lower than what is derived through CASA

comparisons (Figure 9.7). Using the same procedure as done in Figure 7.23, the

relationship between instantaneous GOME-2 SIF and scaled GOSAT SIF is derived as

y = (4.985±0.00163) ·x , which allows the value of β = 3.72 from Guanter et al. (2014)

to be re-scaled to a value appropriate to Fs. The resulting value is β = 18.54, which

is still below the value obtained from the continental-scale SIF-CASA comparisons.

The challenge of collocating GOSAT measurements with FluxNet towers was men-

tioned before, and is thought to be the underlying reason for the observed discrepancy.

To confirm a potential sampling issue, a sampling procedure similar to the GOSAT-

FluxNet collocation was performed. Thirteen locations that lie within the same
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TransCom regions as the selected towers from Figure 9.6 are randomly generated

to represent artificial tower locations. Then, GOSAT measurements are selected

that lie within 50 km, 250 km, 500 km or 1000 km of those locations - if less than ten

measurements are found, that location is rejected and another latitude-longitude pair

is drawn from a uniform distribution. These subsets are then aggregated into monthly

means, for which the scaled GOSAT SIF and the sampled CASA GPP (up-scaled to

daily averages) are compared like before. The R2 value, the best-fit slope β are again

stored. This entire procedure is repeated a hundred times for each collocation radius

to obtain di�erent sets of thirteen random locations.
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Figure 9.8: Each point corresponds in the left panel to a linear fit for a set of
collocation using the collocation radius indicated by the colour. The right panel shows
histograms of the fitted slopes β .

The resulting set of β is plotted in Figure 9.8, which shows the slopes as a function

of R2, as well as an overall histogram. For the three collocation radii, the standard

deviation of each distribution is around 2, however the means of the distributions vary

strongly with the radius. When a 500 km or 1000 km radius is used, the model fits are

generally good (R2 & 0.7) and the slope is similar to Figure 9.5, β500 = 19.46 ± 1.97

and β1000 = 21.87 ± 1.72. The total number of observations for a 500 km (1000 km)

radius is generally above 120 000 (500 000). Reducing the radius to 250 km (∼40 000

observations), also shifts the distribution down to β250 = 14.53 ± 2.11, as well as the

coe�cients of determination, which now lie closer to R2∼0.5. Using the same 50 km

collocation radius (∼2000 observations) as was done for the FluxNet comparisons

results in a set for which the fits are all R2 < 0.5, and the mean of the distribution of

the slopes is β50 = 6.34 ± 1.93 - although these predictive power of the model fits are

too low for these slopes to be meaningful.

This result clearly shows that the GOSAT-CASA comparison is heavily dependent on

the collocation radius. The dependence on the model fit R2 suggests further that the

more fundamental reason is the number of measurements that are used to derive the

relationship. To show this, the sampling procedure outlined in the above paragraph
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(the results shown in Figure 9.8) is repeated, however instead of the sampled and

up-scaled CASA GPP, another value is used: using β , the fluxes are converted into

scaled SIF. To incorporate the large single-sounding precision that is associated with

each measurement, rather than just dividing the CASA value by a β , a value is drawn

from a normal distribution for each measurement, where µ = CASA/β and σ = σFs .

The same model fit is then performed, and the expectation is for this new obtained

scaling factor to be β ′∼1, the model to be fitted is

Fs = β ′ ·
CASA
β

. (9.4)
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Figure 9.9: Illustrating the sampling bias, the fitted values for β ′ are shown like
in Figure 9.8 - the true value of β ′ = 1 is reached only for larger collocation radii
≥ 500 km.

Figure 9.9 confirms the sampling issue to be result of GOSAT’s measurement sparsity

and the high a posteriori uncertainty, rather than the variation in the CASA fluxes. β ′

approaches 1 with larger collocation radii, and the explanatory power of the fitted

models increases as well. With this result, an argument can be made that a scaling

factor closer to the result of Figure 9.5 (β = 22.987) is a more realistic representation

of the relationship between Fs and flux.

9.1.5 Total Annual Uptake

Using the SIF∼GPP relationship β from Figure 9.5, as well as the latitude-dependent

up-scaling factor α(φ), an instantaneous or daily-averaged SIF value as measured by

GOSAT can be converted into an integrated flux for the day of the measurement. To

build a more complete picture on the terrestrial carbon uptake, spatial averaging of

SIF measurements has to be performed. The quickest way to do this, is aggregation

into grid cells. The total uptake in any given grid cell is calculated in the following

way: all measurements (i . . .N ) that fall into a given grid cell, as well as between two

points in time, are collected and converted into daily integrated GPP:

GPPi = Fs ,i · β, (9.5)
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where Fs ,i is the i th scaled SIF measurement. Uncertainties for both SIF and β are

propagated to obtain an uncertainty on GPPi .

Within that grid cell and the given time boundaries, the GPPi represent a sample

of repetitively measured values of daily fluxes (gCm−2 day−1). Assuming that all

measurements are representative of the daily flux of the entire grid cell, the GPPi
can be averaged and multiplied by the number of days between the time boundaries

to obtain the total flux between those boundaries. Finally the area A of a grid cell

has to be taken into account, which is derived from elementary geometry:

A =
∫
Ωi

R2
e dΩ = R

2
e

∫ φmax+π/2

φmin+π/2

∫ ϕmax

ϕmin

sin φ dφ dϕ = (9.6)

= R2
e (ϕmax − ϕmin) (sin φmin − sin φmax) , (9.7)

where ϕ is the longitude, min and max denote the extent of the grid cell in terms

of latitude and longitude (in radians), and Re = 6371 km is the Earth radius. Since

grid cells are rather coarse units that will cover coastal areas, the grid cell area is

then multiplied by the land fraction within that grid cell. The land fraction c (land) is

calculated from the 300m CCI Water Bodies v4.0 product4 (Lamarche et al. 2017).

While static, the land-sea mask should still give a reasonable value for the amount of

land present in a grid cell.

Combining all of the above, the total uptake in a grid cell is

GPP(total) =

(
1
N

N∑
i=0

GPPi

)
· A · c (land) · Ndays. (9.8)

The above formulation is independent on the grid cell size, however due to GOSAT’s

sampling pattern, a strong dependency on any total regional or global flux will be

changing with the size of the grid cell. To show this, as well as a sanity check of

the formulation itself, the global annual carbon uptake is calculated for several grid

cell sizes, from 2.0° to 5.0° in 0.25° steps. For this annual uptake value, the time

boundaries where chosen to be the first and the last day of each year between 2010

and 2016. In this calculation, every grid cell represents the annual mean flux derived

from the annual mean SIF. Grid cells with less than three measurements are skipped

in the global sum.

The grid cell dependence curve in Figure 9.10 is explained by looking at the percentage

of grid cells which contain SIF measurements, compared to the total number of grid

cells with some amount of land in it (excluding Antarctica). For small grid cells, there

will always be a number of empty grid cells, in which no GOSAT measurement is
4https://esa-landcover-cci.org
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Figure 9.10: Global mean annual uptake between 2010 and 2016 and the correspond-
ing fractional cover of the globe in terms of the grid cells. Full coverage (100 %) is
obtained if all grid cells with a land fraction > 10 % contain valid SIF measurements.

taken. This can be seen easily in e.g. Figure 7.12 (Page 83), where there are stripe-like

features in the Sahara and the Amazon. For the calculation of the total global uptake,

the GPP(total) for all grid cells are simply added up. Any empty grid cells then are

implicitly counted as grid cells with 0 PgC yr−1, which results in a lower total global

value. Between grid cell sizes of 3.5° and 5°, the total global flux hovers around the

125 PgC yr−1 mark. The shaded area represents the mean uncertainty for the global

uptake, calculated as follows. For every grid cell, the uncertainty on the uptake is a

combination of the systematic uncertainty of β and the uncertainty on the mean SIF:

σGPP = GPP

√(
σFs

Fs

)2
+

(
σβ

β

)2
. (9.9)

σFs is the standard deviation of all SIF values in the grid cell, rather than a regional

uncertainty as described in Section 7.9. In this case, the grid cells are not large

enough to warrant the use of regional subsets within the grid cell. The annual

uncertainty is then simply the sum of the uncertainties in all grid cells.

However, not only the spatial aggregation, but also the temporal aggregation will

impact the estimated annual flux. To gain a rough estimate on the e�ect on temporal

aggregation, the annual fluxes were calculated for a grid cell size of 3.5° using four

di�erent aggregation periods: yearly, quarterly, monthly and semi-monthly.

Mean annual fluxes in Figure 9.11 range from ∼94 to ∼127 PgC yr−1. The right

panel in that figure shows the mean percentage of covered land grid cells (like in

Figure 9.10). Clearly, shorter aggregation periods result in lesser coverage, and finally

in a lesser value for the annual total uptake. To overcome the issue of coverage, a

sophisticated gap-filling mechanism would be needed to account for missing grid-cells

over land. The large variability seen in the total global uptake is not due to the
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Figure 9.11: Annual global fluxes and global land coverage using a grid cell size of
3.5° and four di�erent aggregation intervals. The significant coverage drop in the year
2014 for aggregation intervals smaller than a year is caused by a gap in the GOSAT
data stream between December 2014 and January 2015. The dashed lines in the left
panel show variability in the result due to σβ = 0.229.

uncertainty on either β , nor on the SIF measurement uncertainty, but rather due to

the methodology and lack of gap-filling.

The estimated total global uptake is comparable to the numbers reported by Zhang

et al. (2017) for the MODIS GPP data set (125.66 to 129.42 PgC yr−1). The SIF-

optimised GPP in Parazoo et al. (2014) is stated as 124.77 PgC yr−1. On the other

hand, Anav et al. (2015) list global annual mean GPP from various sources, which

range between 112 (MODIS) to 169 PgC yr−1 (IPSL-CM5A-MR Earth system model).

The value derived using flux tower measurements in the work of Beer et al. (2010) is

123 ± 8 PgC yr−1 for 2010. Integrating the fluxes directly from the CASA GPP data

set yields a mean annual uptake of 128.29 ± 1.06 PgC yr−1, making the SIF-derived

annual uptake consistent with this value as well.

Using a model to derive a SIF-GPP relationship results in a fairly stable conversion,

since the global coverage of the model allows for many pairs to be examined like in

Figure 9.4. The error on the scaling factor is small at roughly ∼1 %.

9.1.6 Summary

To summarise this section, the CASA GPP CO2 flux has been assessed against

GOSAT SIF retrievals for the duration between April 2009 and December 2015. For

non-JJA months, the SIF-GPP relationship agrees across various regions, whether

they are low (e.g. northern boreal regions during DFJ) or high (most tropical regions)

in terms of productivity. The departure that is seen during the JJA months and the
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phase shift for tropical seasons observed in Figure 9.3 give reason to assume that the

CASA model does not capture the seasonal cycle in the tropics well.

The same relationship was then derived through comparisons of GOSAT SIF mea-

surements and flux tower measurements from the FluxNet network. The conversion

factor β as calculated from FluxNet collocations was found to be ∼30 % lower than

the continental-scale comparison using the CASA model. It was shown that this

di�erence is explained as a purely statistical e�ect, caused by GOSAT’s sampling

sparsity, rather than an e�ect of collocation scale and biome.

Estimating the total annual global uptake from SIF results in a reasonable value

of ∼125 PgC yr−1. This value, however, does not arise spontaneously from the SIF

data itself, but only through conversion of the SIF measurements to fluxes using a

conversion factor that was derived on continental scales. As such, it is not surprising

that the SIF-estimated global-scale integrated flux resembles the value of the model

itself.

9.2 2012 North American Drought

During the summer of 2012, large parts of the northern American continent experi-

enced a drought. The drought itself has been studied in literature, several publications

have highlighted various regional aspects, for example Mallya G. et al. (2013) in-

vestigated the drought in the US Midwest, and Hoerling et al. (2013) have explored

in great detail the scale of the drought in the Great Plains, as well as their causes:

reduced atmospheric moisture combined with the lack of summertime thunderstorms.

In an initial step to reproduce the anomaly in the SIF time records, the collocated

soil moisture and precipitation data is analysed to confirm that the drought is indeed

captured through the GOSAT sampling pattern. In Figure 9.12, the precipitation

(TRMM 3B43) (Z. Duan et al. 2013) and soil moisture (Dorigo et al. 2017) (active

measurements) anomalies for the period between May and August clearly show the

continental-scale drought. The baseline for the anomalies are the years 2010 until

2016. 2009 data was skipped as the are no GOSAT soundings before April 2009.

The rainfall anomalies for 2012 are strongest east of the Rocky Mountains, covering

the Great Plains between Nebraska and Oklahoma, as well as extending eastwards as

far as Kentucky; additional patches of low precipitation are located near the Northern

Rockies as well as northern Mexico. Soil moisture anomalies appear roughly in the

same regions.

Roughly 23 000 considered GOSATmeasurements (S-polarised) fall into the bounding

box shown in Figure 9.12. The bounding box 100°W-85°W, 35°N-45°N defines the
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Figure 9.12: Precipitation and soil moisture anomalies for 2012 against a 2010 to
2016 baseline (gridded to 2° × 2° cells). TRMM precipitation data does not extend
further than 50°N. The bounding box shows the region of interest onto which the data
is sub-set for the following time-series analysis.

region of interest which will be referred to throughout this section. The selection

criteria were very basic: the soundings had to pass the quality filter (Table 7.1),

and 60 % of the GOSAT footprint had to cover a non-bare surface type, therefore

excluding mostly urban areas. The sampling density of the full time series is shown

in Figure 9.13.

0.25◦ Bins

100

101

102

C
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Figure 9.13: GOSAT sampling density for
2009-2016. The western half of the bounding
box is sampled through the regular pattern with
∼150 km distance between point triplets, as
well a track of more continuous measurements.
The eastern region is less densely sampled.

The time-series extracted from the collocated TRMM data set is shown in Figure 9.14.

Periods between May 1 and August 31 are explicitly marked by vertical grey bars, and

the corresponding parts of the time-series are highlighted as well. Representing the

precipitation measurements this way, it is clear to see that summer 2012 is indeed an

anomaly when compared to the other summers between 2009 and the end of 2016. By

2014, precipitation seems to reach pre-2011 levels again. Interestingly, precipitation

during summer 2011 was similarly low, compared to the 8-year average.

A similar picture is established for the soil moisture measurements, displayed in
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Figure 9.14: TRMM precipitation time-series. The measurements are re-sampled to
15 day intervals, and for every interval the mean (thick, blue line) and the standard
deviation (shaded area) are computed. For times between May and August of each
year, the values are highlighted. The horizontal, red-dashed line marks the mean
(standard deviation again shown shaded) of all values between May and August for all
years, thus representing the climatology for the region.

Figure 9.15. While the anomaly is indeed seen for passive measurements and the

combined data set, the most striking signal is observed using active measurements.

Here too, the pre-2012 levels are recovered by 2014.
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Figure 9.15: This figure is designed in the same way as Figure 9.14. Summer 2012
exhibits anomalously low soil moisture for all three time series, but is best seen for the
active measurements (middle panel).

As one final additional perspective, the standardised precipitation evapotranspiration

index (SPEI) is considered, which, like the well-known Palmer drought severity index

(PDSI), includes temperature data to characterise droughts based on supply and

demand. Constructing a similar time-series, the 2012 drought is clearly identified

with the mean curve exceeding −1 during the summer.
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Figure 9.16: The standardised precipitation-evapotranspiration index shows a signif-
icant departure from the average during the 2012 summer.

Figures 9.12 to 9.16 clearly show that the continental-scale drought in northern

America is captured well using various auxiliary data, taking into account the

GOSAT sampling pattern. The next step of the analysis is to find similar anomalies

within the SIF data. It was mentioned before in Section 7.7 that is not inherently

clear which polarisation, which retrieval window, and which calibration method

provides the best quality SIF data. Even though Figure 7.19 suggests that using the

Spline-based calibration is the least biased set of retrievals in terms of the stability of

the seasonally-dependent calibration (for absolute SIF), there is no straightforward

way of validating such a claim.

The three polarisations and three correction procedures form an ensemble of nine

data sets for both relative and absolute SIF, and the two retrieval windows each. The

variability of these nine distinct time series is shown in Figure 9.17. In this figure,

the solid line represents the ensemble median, and the shaded area is bounded by

the minimum and maximum value for that particular time interval. Clearly, the

variability between the nine time series is small, apart from the first few months in

the 772 nm data. The mean of the deviation max(Fs) −min(Fs) for the time series

is < 0.12mWm−2 sr−1 nm−1 for absolute, and < 0.15 % for relative SIF. Considering

the small di�erences between the calibrations and polarisations, the further analysis

is performed using only one of the time series (S-polarised, Spline-based correction).

It is to be noted here, this result does not imply a deviation on aforementioned level

on a per-sounding basis between polarisations, considering the large uncertainty

on every SIF retrieval. However, if SIF retrievals are averaged, as is done for the

time-series in this section, all nine derived SIF data sets become comparable.

Red lines in Figure 9.17 are placed at the maximum SIF for the period May to

August 2012. For all time-series apart from the relative SIF at 772 nm, the years

after 2012 exhibit a higher maximum during the same season, and lower values

compared to 2010. This result is again visualised in Figure 9.18, where the means

of the May-August period of each year are plotted, compared to the mean of the
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Figure 9.17: Ensemble medians (solid line) and ensemble maxima and minima
(shaded) show the relative consistency between polarisations and calibration methods.
The unphysical spikes near data gaps are a result of data sparsity.

same period in 2012 (red, dashed line). In this figure, the drop in SIF is seen for

all time-series - the strength of the signal, however, is not equally strong for all four

modes.
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Figure 9.18: Summer SIF di�erences ∆Fs compared to the 2012 level. All four data
sets (S-polarised) show similar trends with small deviations. For all sets, 2009 and
2012 summers are low compared to post-2012 levels. For relative SIF at 755 nm, the
summer average for 2009 was even lower than for 2012.

Using the conversion from SIF to carbon uptake discussed in Section 9.1, the SIF
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anomaly during 2012 can be expressed as a flux, tabulated in Table 9.2. Uncertainties

for SIF-derived uptake have been assessed through Equation 9.9, for CASA the

uncertainties are the standard deviation divided by the square root of soundings, and

for CASA†, they are the standard deviation divided by the square root of the number

of grid cells. Due to the way the three sets of data are accumulated, the uncertainties

represent a di�erent variability. For the SIF-derived GPP, the uncertainties of both

the SIF retrieval and the conversion factor β are propagated through. The GOSAT-

collocated CASA data carries uncertainties due to regional and temporal sampling of

the region of interest. CASA GPP taken directly from the gridded data shows higher

variability because of the full coverage of the region.

SIF-derived CASA CASA†

Year ∆GPP ∆GPP [%] ∆GPP ∆GPP [%] ∆GPP ∆GPP [%]

2011 −91 ± 161 −4.7 ± 8.4 −208 ± 41 −11.7 ± 2.3 −142 ± 177 −9.1 ± 11.3
2012 −228 ± 149 −11.8 ± 7.8 −69 ± 46 −3.9 ± 2.6 −33 ± 194 −2.1 ± 12.4
2013 −25 ± 195 −1.3 ± 10.1 −198 ± 51 −11.1 ± 2.9 −183 ± 198 −11.7 ± 12.7
2014 −203 ± 190 −10.6 ± 9.9 −140 ± 46 −7.8 ± 2.6 −116 ± 179 −7.4 ± 11.4
2015 −123 ± 96 −6.4 ± 5.0 −69 ± 41 −3.8 ± 2.3 −10 ± 196 −0.7 ± 12.5
2016 69 ± 190 3.6 ± 9.9 n/a n/a n/a n/a

Table 9.2: Mean annual SIF-derived and CASA-sampled fluxes as absolute and
relative di�erences to 2010 levels. Absolute fluxes are in units of gCm−2 yr−1.
The third column pair (CASA†) are the annual flux di�erences to 2010 using
non-collocated model data, where the entire region of interest was averaged,
not taking into account the GOSAT sampling.

The comparison between CASA and CASA† directly reveals the e�ect of GOSAT

sampling. While the trends and relative uptake di�erences are comparable, the

absolute values are lower for CASA sampled at GOSAT locations - the 2010 annual

uptake is ∼20 % lower in CASA† than in CASA.

The drought year 2012 is outstandingly low with a value of −228 ± 149 gCm−2 yr−1

(−11.8 ± 7.8 %) compared to 2010. Schwalm et al. 2012 have studied the (western)

North American (25°-50°N, 100°-125°W) drought between 2000 and 2004. Their

Figure 3 shows carbon fluxes against a 1997-2007 baseline (excluding the drought

years), and separated into three di�erent biomes. Summing up the anomalous

GPP during the drought period for all three biomes equals to a flux di�erence of

308 gCm−2 yr−1, or a relative drop of about 13 % compared to the baseline.

CASA and SIF tell a di�erent story, however. Evaluating the fluxes for the entire year

reveals that the annual uptake seen by SIF for the year 2012 is almost 12 % lower

than the value for 2010. Only 2012 and 2014 show this drastic reduction. CASA’s

annual fluxes, again as di�erences to the 2010 value, drop lower in 2011 and 2013,

whereas 2012 shows a smaller decrease. Considering these annual fluxes, CASA and
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SIF are out of phase, and interestingly, the relative di�erences align well if the SIF

values are considered to be delayed by one year.

Wolf et al. (2016) have already studied the 2012 drought, and have used MODIS GPP

in combination with 22 flux tower sites to assess the impact on the North American

carbon cycle. The main conclusion of their work is that the warm spring in 2012

reduced the impact of the drought by compensating for the low productivity in the

summer. The warm spring is visible in both SIF-derived GPP and CASA fluxes

(Figure 9.19). Due to the increased productivity in the 2012 spring, the total annual

fluxes are less indicative of a large drought event, when compared to the preceding

or succeeding years.
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Figure 9.19: Monthly mean gross uptake from CASA (left) along with the SIF-derived
uptake values (right). Both CASA and SIF show the same warm spring in 2012.

GPP measured via flux towers exhibit a similar response to the drought. The three

FluxNet sites US-PFa, US-Los and US-WCr are within 50 km of each other (north

Wisconsin), the station US-UMB is roughly 400 km to the east of this cluster, and a

fifth site, US-MMS, is found further south in central Indiana (about 600 km south of

US-UMB). A map indicating the locations of these five sites is shown in Figure 9.20.

Despite being very close to each other, US-PFa and US-WCr show di�erent behaviour

during the 2012 drought, as seen in Figure 9.21. The seasonal amplitude of US-PFa

is about half of US-WCr. US-Oho, US-UMB, US-WCr and US-MMS show very similar

behaviour, both in the seasonal cycle, and the relative drop during summer 2012. The

di�erences in the time series demonstrate very clearly that flux tower measurements

are representative of the local situation, which might not be in line with the response

of the biosphere on a sub-continental scale.

The upper panel of Figure 9.21 shows the relationship between monthly means of

SIF aggregated over the entire region of interest, against monthly means of GPP

measured by the various flux towers. The three stations US-Oho, US-MMS, US-UMB
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Figure 9.20: The location of five flux tower
sites, which have a comparatively long record
of measurements. Three sites (US-PFa, US-
Los and US-WCr, slightly outside the region
of interest outlined in Figure 9.12) are clus-
tered very closely together, the remaining
three sites, while still within the region of
interest, are several hundred kilometres to
the east and south.

and US-WCr exhibit slopes that are very close to the continental-scale value derived

from CASA (Figure 9.5), whereas the US-PFa and US-Los sites deviate significantly.

The Lost Creek station (US-Los) is situated in permanent deciduous shrub wetlands,

and the Park Falls site (US-PFa) is situated in a clearing, where the tower footprint

“encompasses a highly heterogeneous landscape of upland forests and wetlands

(forested and non-forested)”5. As such, the behaviour of the time series at those sites

is explained due to the fluxes being dominated by wetlands rather than vegetation.

Aggregating the four sites more representative of the Corn Belt vegetation (US-WCr,

US-UMB, US-Oho, US-MMS) into one time series is shown in Figure 9.22, along

with the mean scaled SIF for the large region of interest. Both time series exhibit

a smallest seasonal maximum in the 2012 summer, however the relative anomaly

is much larger for the SIF (∼16.8 %) signal, than it is for the flux tower aggregate

(∼9 %). The tower measurements, however, do not exhibit a flux reduction in the

2009 summer.

Overlaying the monthly mean fluxes in Figure 9.23 shows that the 2012 summer

decreases in productivity similar to SIF and CASA. Although the spring onset in the

drought year is less pronounced than in Figure 9.19, 2010 exhibits an early onset as

well. Integrating the monthly mean fluxes into annual values reveals that 2012 had

less total uptake compared to 2011.

Combining the mean annual fluxes (by integrating the monthly mean fluxes) from

Table 9.2 and Figure 9.22 is shown in Figure 9.24. Since the various data have di�erent
5http://sites.fluxdata.org/US-PFa/
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Figure 9.21: FluxNet GPP from the six selected locations compared to scaled SIF
for the entire region of interest. Both panels show monthly means.
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Figure 9.22: Monthly aggregated time series of the four stations US-WCr, US-UMB,
US-Oho, and US-MMS (blue) and the region-averaged scaled SIF. The dashed, red line
is the mean of the annual maxima of the full FluxNet time series from 1999 onward
(not shown).
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Figure 9.23: Monthly mean aggregates of
the four FluxNet sites from Figure 9.22, but
overlaid to show the early spring onset in
2012.

baselines, that figure shows the departure from the 2010 annual uptake in relative

terms. The four di�erent time series have in common that 2010 was a year of high

productivity, and the following years were less so. SIF-derived annual uptakes agree

better with FluxNet measurements than with CASA model calculations, despite there

being a larger di�erence between SIF and FluxNet for 2014. The discrepancy in 2013

is one between model and measurements mainly.
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Figure 9.24: Relative fluxes compared to the 2010 baseline (see Table 9.2).

The assessment so far was directed towards gross uptake. Flux inversions based

on space-based measurements, however, can provide information on net carbon

fluxes. Through a collaboration with the University of Edinburgh, in particular with

Liang Feng and Paul Palmer, in which they have provided flux inversions using

the GEOS-Chem transport model with UoL-FP derived XCO2 data6. This flux

inversion, however, has one specific modification made to the prior fluxes. As shown

in Figure 9.25 (left panel), the prior fluxes already exhibit the warm spring onset.
6Version 7.1, with revised bias correction terms, compiled by Jasdeep Anand (University of

Leicester).
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In order to see if the early onset is actually seen in the CO2 concentrations, the

prior was modified to use the 2011 values for the entire year of 2012. The results

of the inversion (right panel of Figure 9.25) show that the inversion process shifts

the prior flux towards the early onset that is seen in the SIF retrievals as well as the

models, confirming that the retrieved CO2 concentrations have already tracked this

large-scale phenomenon.

J F M A M J J A S O N D

−4

−2

0

2

M
on

th
ly

m
ea
n
[g
C
m
−
2
da
y−

1 ]

Prior

2010
2011
2012

2013
2014
2015

J F M A M J J A S O N D

UoL V7.1

Figure 9.25: Net fluxes as given by the CASA prior (left) and the inversion performed
by the University of Edinburgh, where prior fluxes for 2012 were set to be those of
2011 - thus showing the early onset is not merely a result of the prior.

As mentioned before, the early warm onset in 2012 over North America has been

studied already by Wolf et al. (2016), and in particular from a SIF perspective by

Sun Ying et al. (2015). The point of view from space-based observation of carbon

fluxes, however, has not been studied to the thesis author’s knowledge. Figure 9.25

already hints towards GOSAT having picked up this anomalous event in the North

American carbon cycle.
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Summary

I
n Part II of this thesis, I performed the retrieval of chlorophyll fluorescence

from GOSAT measurements and analysed the results. While the retrieval

scheme and the principle behind the bias correction was done following

Frankenberg, Fisher, et al. (2011), I introduced a new correction method. The

Spline-based correction explicitly takes the time-dependence of the bias into account.

Additionally, I made use of collocated land cover data on a sub-pixel level, which

allows regions other than Antarctica and Greenland to be used as reference soundings

(Section 7.7). The retrieval results themselves exhibit a high anti-correlation between

the retrieved reflectance and the retrieved fluorescence. At first glance, this suggests

that the underlying principle of the fluorescence retrieval is not viable, which asserts

a decoupling of reflectance from fluorescence. I conducted simulations and retrievals

using simulated radiances to confirm that there is indeed a strong coupling between

SIF and reflectance. The error due to this coupling, however, is on the order

of 1 % of the SIF radiances, and therefore has no significant e�ect in the case of

GOSAT retrievals (Section 7.6). I compared the retrievals from GOSAT to SIF

from GOME-2 (Section 7.8). The comparisons yield similar results as published by

Köhler et al. (2015) and are in line with the expectation, considering the di�erent

spectral windows and the di�erent overpass times. Uncertainty assessment is di�cult,

as there is no truth data available, apart from those regions in the world where

zero fluorescence can safely be assumed (Antarctica, most of Greenland). I then

introduced an approach based on regional clustering (Section 7.9) which allows for a

more realistic value of the regional uncertainty to be calculated, compared to simply

taking the standard deviation of SIF values of a large region.

SIF radiances have an impact on XCO2 retrievals. Ignoring these contributions

to the O2 A-band results in a change in other quantities, such as surface pressure

and aerosols. I retrieved four full years of GOSAT XCO2 both with and without

including the SIF radiances as priors. The di�erences in the retrieved CO2 column

are significant and can reach 1 ppm for some regions and seasons. Considering

time series, the seasonal amplitudes are modified between 4 to 10 %, with the South

American Tropics being a significant outlier with almost 19 % (Chapter 8).
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9.2. 2012 North American Drought

Finally, I analyse the SIF data itself to relate it to gross carbon uptake by vegetation.

Even though the CASA model aligns well with the GOSAT SIF retrievals when looking

at time series, some regions exhibit strong di�erences in the seasonal cycle. I attribute

this to CASA not producing the right cycle in the tropics. Nevertheless, I established

a global linear relationship between uptake and SIF through CASA (Section 9.1),

which turned out to be comparable to already published values. Comparisons to flux

tower sites, however, show a di�erent scaling factor between SIF and fluxes. I explain

this discrepancy through the sparse GOSAT sampling. Through a case study about

the 2012 continental-scale drought in North America, I show that a large disruption

of the photosynthetic activity can be tracked through the SIF time series over that

region (Section 9.2).
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Part III

Fast Radiative Transfer for

XCO2 Retrievals
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Chapter Ten

Atmospheric Radiative Transfer

F
or most remote sensing applications in the Earth sciences, atmospheric

radiative transfer is a fundamental and time consuming portion of the

forward model. Briefly summarised, radiative transfer (RT) in this context

describes the propagation of light through the atmosphere, and includes the various

interactions of light with the constituents of the atmosphere as well as the surface.

In full-physics XCO2 retrievals, RT produces radiances based on the model atmo-

sphere and its properties (see Section 4.2, Page 34), which can then be used by the

inverse method to fit the state vector elements to minimise the di�erence between

measurement and model. In this part of the thesis I first introduce the radiative

transfer equation (RTE) and common approaches to solve it. Then, I discuss various

strategies to accelerate those calculations. A major focus of this thesis is the novel

PCA-based approach, which I implemented and advanced to fully incorporate the

spectral dependencies of aerosol scattering properties. The PCA-based approach has

been used on retrievals from the NASA OCO-2 mission to demonstrate the advantage

over other methods.

10.1 The Radiative Transfer Equation

In contemporary literature, Lommel (1889) is often cited to have written the first

modern treatise on radiative transfer. He was motivated by experiments which

showed that the application of Lambert’s cosine law (Lambert 1760) alone does not

agree with the measurements for di�usely reflecting surfaces, which had significant

impact on the photometry of planets. Lommel’s derivation is phenomenological,

and describes the attenuation of light rays through scattering and absorption being

linearly related to the incident ray intensity and the thickness of the medium through

which it propagates. More than 120 years later, this way of introducing the RT

equation is still often followed, as it is both compact and illustrative.

The book of Mishchenko et al. (2006) (Chapter 8) provides, amongst other related

matters, a highly comprehensive treatment of the RTE. A full microscopic expla-

nation of the equation is given. In their work, they make it very clear that the
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10.1. The Radiative Transfer Equation

phenomenological explanation relies on postulates - the aforementioned linearity

between the attenuation and incident light intensity is never derived, even though

it can be experimentally demonstrated. Mishchenko et al. (2006) derive the RT

equation essentially from first principles - the Maxwell equations. The fundamental

objects are the electromagnetic fields rather than intensities. Certain phenomenologi-

cal postulates can be directly related to the corresponding phenomena that arise in

the microphysical treatment. In this section, the RTE is introduced via the simpler,

phenomenological approach.

The object of interest in RT is called speci�c intensity (or intensity), which upon

integration along the wavelength, solid angle, time and area dimensions, yields the

amount of transferred energy. Light energy is considered to travel along straight

lines, which puts RT into the context of geometrical optics. Again, a note should be

echoed from Mishchenko et al. (2006). Radiative transfer is not inherently tied to the

domain of geometrical optics, however when applied to the atmosphere, a number of

assumptions can be made which justify that simplification. Incident light coming from

the sun is naturally incoherent and one can further assume that no other phenomena

inside the atmosphere can give rise to coherence. As such, di�erent contributions can

be simply added incoherently without taking into account a potential relative phase

between each contribution. Using Stokes calculus, a light ray of arbitrary polarisation

state is represented through a real four-component Stokes vector:

S =

©«
I

Q

U

V

ª®®®®®¬
=

©«
I

I P cos 2ψ cos 2χ

I P sin 2ψ cos 2χ

I P sin 2χ

ª®®®®®¬
, (10.1)

where each component of S is incoherent. ψ here is the orientation of the polarisation

ellipse, tan 2ψ = U /Q , and χ is the so-called ellipticity angle, where tan 2χ =

V 2/(
√
Q 2 +U 2). P is known as the degree of polarisation, P 2 = (Q 2 +U 2 +V 2)/I 2,

which for natural, unpolarised light is zero. I is the intensity of the light ray, and the

three components Q , U and V describe the specific state of polarisation.

Chandrasekhar (1960) uses I rather than S to denote the Stokes vector. Note that

the variable I is now used as general radiance and the distinction between solar

irradiance and radiance is not made, as in Equation 7.9 (Page 73).

Superposing multiple light rays is then achieved by simply adding the various compo-

nents S (i ), Q (i ), U (i ) and V (i ) independently to the total Stokes vector S. Light rays

as well as each component of S are transversal, which again is not a general case. As

Mishchenko et al. (2006) point out, the superposition between an incident transversal

electromagnetic wave with a reflected spherical wave is neither transversal, nor does

it have a specific direction of propagation.
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10.1. The Radiative Transfer Equation

Coming back to the specific intensity, it is related to the transported energy in the

following way:

d4E(λ) = I (r, λ) cos θ dλ dσ dΩ dt, (10.2)

which describes the radiant energy E that passes through a surface element of area

dσ in a wavelength interval between λ and λ + dλ that is emitted towards a direction

of the unit vector r within a solid angle dΩ during the time dt . The angle θ is the

angle between r and the surface normal of dσ.

Textbooks like Chandrasekhar (1960) or Thomas et al. (2002) introduce the phe-

nomenological RTE in a similar manner: one considers a light ray passing through

a homogeneous optical medium. The Stokes vector S(r, λ) is then modified by an

amount dS(r, λ) while the ray is propagating an infinitesimal distance ds along the

direction r. Due to the incoherent nature of the considered light rays, the various

contributions can be summed up, and the resulting RTE in its di�erential form is

given by

dS(r, λ) = −K(r, λ) S(r, λ)ds︸                  ︷︷                  ︸
Extinction

+

∫
4π
Z(r, r′, λ) S(r′, λ)dΩ′︸                           ︷︷                           ︸

Emission

. (10.3)

Equation 10.3 is called the vector radiative transfer equation, referring to the fact that

it deals with the full Stokes vector quantity, rather than just the intensity. The first

term describes the change in the Stokes vector due to extinction in the medium. As

already described by Lommel (1889), the ray is reduced in intensity by an amount

that is proportional to the incident ray S(r, λ) and the travelled distance ds . The

proportionality is given by the extinction matrix K(r, λ), which is a four-by-four matrix.

The second term describes any emission that contributes to the radiation field into

the direction r that is caused by scattering - from rays not necessarily pointing into

direction r. In Equation 10.3, thermal emission is not accounted for - in this thesis, all

considered spectral ranges are below 2 µm wavelength, for which thermal radiation

can be neglected. Depending on the investigated scenario, more contributions

may be added which count as emission, such as fluorescence. The term emission in

Equation 10.3 can lead to confusion, as this is distinct from thermal emission. Thomas

et al. (2002) as well as other literature use this term to describe any contribution that

increases the specific intensity pointing towards r.

The quantity Z(r, r′, λ) is called the phase matrix. It relates an incoming Stokes vector,

coming from direction r′ to an outgoing one travelling towards direction r. To account

for the contributions to S(r, λ) due to scattering, all possible incoming directions r′

have to be considered, hence why the second term is an integral over the full 4π solid

angle dΩ′, and the weighting is given by the phase matrix.
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10.2. Solving the Scalar RT Equation

The emission term adds a significant amount of complexity to the RTE, so to

demonstrate a simpler case, let’s first consider a scenario without it. The vector RTE

then simplifies to
dS(r, s , λ)
S(r, s , λ)

= −K(r, λ)ds , (10.4)

where the location vector x has been replaced by the scalar path parameter s (x = s ·r).

The solution to Equation 10.4 is trivially obtained through elementary integration,

with the integration boundaries being s0 and s :

S(r, s , λ) = S(r, s0, λ) · exp
(
−

∫ s

s0
K(r, λ)ds ′

)
. (10.5)

Unsurprisingly, this is exactly the Beer-Lambert law, and very intuitively replicates

the exponential decrease of intensity in an optical medium in which extinction occurs.

For the cases that are encountered in this thesis, K(r, λ) is independent of the location

within the medium - the medium is assumed to be homogeneous.

Extinction is caused by absorption or scattering, thus K(r, λ) can be further decom-

posed into these two contributions:

K(r, λ) = A(λ) +
∫
4π
Z(r, r′, λ)dΩ′ . (10.6)

A(λ) is the absorption coe�cient matrix, and can generally be assumed to be of

diagonal form. Absorption only a�ects the intensity of a light ray, but does not

change its state of polarisation. Scattering, on the other hand, may change the

polarisation state of a ray. The second term in Equation 10.6 is similar to the last

term in Equation 10.3, and represents the fraction of intensity that is not scattered

away but still contributes to the Stokes field directed towards r.

The emission term in Equation 10.3,∫
4π
Z(r, r′, λ) I(r′, λ)dΩ′ , (10.7)

is the implementation of the phenomenon called multiple scattering. As mentioned

before, the integration is performed for all incident directions r′ where the phase

matrix is essentially the weighting function which determines which fraction of the

incident light is scattered towards direction r. Simply worded: to calculate the Stokes

vector pointing towards direction r requires knowledge of the entire Stokes field. The

appearance of the Stokes vector S(r′, λ) turns the RTE into an integro-di�erential

equation. So far, there are no general solutions to the full RTE.

10.2 Solving the Scalar RT Equation

Since general solutions to the full RTE do not exist so far, it is common practice to

reduce the RTE into less general forms and solve the simpler problem using very
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10.2. Solving the Scalar RT Equation

specific boundary conditions. In this section, the steps towards solving the RTE will

be done for a special case that can be applied to remote sensing. For the vast majority

of remote sensing applications, RT calculations are reduced to one dimension: the

position vector x is replaced by a scalar position s to represent distance along the

line of sight. This simplification significantly reduces the complexity of the problem

already.

Considering a homogeneous and isotropic plane-parallel optical medium through

which a light ray travels at an angle θ (measured towards the surface normal), the

RTE in one dimension can be rewritten as follows:

cos θ
d
ds

S(θ, φ, s ) = −K S(θ, φ, s ) +
∫
4π
Z(θ, φ, θ′, φ′) S(θ′, φ′, s )dΩ′ , (10.8)

where φ is the azimuthal angle of the ray. Compared to Equation 10.3, the extinction

matrixK is no longer dependent on either position or direction due to the assumption

of a stratified and homogeneous medium.

Solving the 1D vector RTE (Equation 10.8) numerically is still a computationally

very expensive procedure, and not always necessary. While TANSO-FTS on GOSAT

measures two linearly polarised radiances (P, S), exploiting its polarisation infor-

mation is not common practice despite studies showing promising results (Kikuchi

et al. 2016). They utilised a fully polarised BRDF and retrieved both P and S po-

larised radiances simultaneously. Their retrieval simulations show that errors in

XCO2 are reduced significantly for scenes with higher aerosol loadings. However,

the measured radiances can be averaged to yield unpolarised radiances with loss of

the polarisation information. For OCO-2, accounting for polarisation is necessary

because the instrument only measures one polarisation direction, meaning that at

least the first three components of the Stokes vector need to be computed.

Rather than tackling the full, polarised vector RTE, one strategy is to only solve

the intensity component of the equation. When averaging the radiances from

GOSAT/TANSO-FTS measurements, the intensity is su�cient. Extracting the first

row of Equation 10.8 yields

cos θ
d
ds
I (θ, φ, s ) = −K11I (θ, φ, s ) +

∫
4π
Z11(θ, φ, θ

′, φ′)I (θ′, φ′, s )dΩ′ . (10.9)

Note that in the above equation, the contributions from the phase matrix to the

intensity component, through Z12, Z13 and Z14, have been dropped. This is equivalent

to the notion of ignoring polarisation in the model, rather than just not calculating

the Q , U , and V components.

In the next step, the equation is transformed into optical depth space. Optical depth,

τ, is a quantity that arises from Equation 10.4, as the integral of the extinction
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10.2. Solving the Scalar RT Equation

coe�cient (or matrix) along the path:

τ ≡

∫ s

s0
kext ds ′ . (10.10)

Using dτ = kext ds and K11 = kext, and with µ = cos θ, the scalar RTE becomes

µ
d
dτ
I (θ, φ, τ) = −I (θ, φ, τ) +

$

4π

∫
4π
P (θ, φ, θ′, φ′) I (θ′, φ′, τ)dΩ′ . (10.11)

The quantity $ is called single-scattering albedo, and is related to both absorption

and scattering. Earlier (Equation 10.6) it was mentioned that extinction (and the

corresponding coe�cients) is fundamentally decomposed into a sum of two extinction

sources: absorption and scattering, such that kext = kabs + ksca. When rewriting the

RTE with the optical depth τ as the free coordinate, the (11)-component of the phase

matrix Z can be written as Z11(θ, φ, θ
′, φ′) = kscaP (θ, φ, θ′, φ′), P being the scalar

phase function. The single-scattering albedo $ is defined as

$ =
ksca
kext
=

ksca
ksca + kabs

. (10.12)

From a phenomenological point of view, $ describes the fraction of extinction that is

due to scattering and will depend on the optical medium and the material properties

of the scattering constituents itself.

An established method of solving the RTE, and the one utilised in the LIDORT and

TWOSTR models, is called discrete ordinates method. Its basic premise is outlined

in Appendix A, Page 213. A slightly di�erent approach is called successive orders

of scattering. Starting from the scalar RTE (Equation 10.11), the intensity can be

represented as a power series in $. This expansion is viable due to the single-scatter

albedo $ being less than 1 by definition:

I (θ, φ, τ) =
∞∑
k=0

$k I (k )(θ, φ, τ). (10.13)

Substituting the expression for the intensity from Equation 10.13 into and ordering

the terms by powers of $ gives (Mobley 2018)[
µ
d
dτ
I (0)(θ, φ, τ) + I (0)(θ, φ, τ)

]
+$

[
µ
d
dτ
I (1)(θ, φ, τ) + I (1)(θ, φ, τ) −

∫
4π
I (0)(θ′, φ′, τ)dΩ′P (θ, φ, θ′, φ′)

]
+$2

[
µ
d
dτ
I (2)(θ, φ, τ) + I (2)(θ, φ, τ) −

∫
4π
I (1)(θ′, φ′, τ)dΩ′P (θ, φ, θ′, φ′)

]
...

+$N
[
µ
d
dτ
I (N )(θ, φ, τ) + I (N )(θ, φ, τ) −

∫
4π
I (N −1)(θ′, φ′, τ)dΩ′P (θ, φ, θ′, φ′)

]
= 0,

(10.14)
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10.3. Implementations and Performance Considerations

where N →∞. Phenomenologically, the terms I (k )(θ, φ, τ) can be viewed as di�erent

contributions to the intensity, which have undergone k scattering events. Solving

the above equation is performed by considering a finite number in the expansion

series, e.g. N = 2. Since each bracket in Equation 10.14 has to be zero for the entire

equation to be balanced, the terms I (k )(θ, φ, τ) can be successively solved for each

k , starting with k = 0 and the increasing until k = N . The k th (for k > 0) equation

depends on the intensity of order k − 1, hence why the successive solving of the

equations is necessary.

10.3 Implementations and Performance Considerations

Implementing a full radiative transfer solver is a tremendous e�ort in itself, hence

why a number of ready-to-use software packages exist and are very popular in the

remote sensing community. For the UoL full-physics algorithm, several RT solvers

are used: LIDORT1 (Spurr et al. 2001), TWOSTR2 (Spurr et al. 2011) and 2OS3

(Natraj et al. 2007).

LIDORT is a general-purpose code and solves the 1D scalar RTE using the discrete

ordinates method, and adds several features that have not been discussed in the

previous section. The LIDORT model can be used in pseudo-spherical approximation

mode, in which for the incoming solar beam, the spherical curvature of Earth and

the atmosphere is considered, rather than relying on the assumption of plane-parallel

layers. In terms of surface models, a linear combination of up to three BRDFs can

be used to represent the reflective properties of the surface. The number of stream

directions (or streams) can be freely chosen in LIDORT.

TWOSTR (or 2Stream) is similar to LIDORT, as it is another implementation of the

discrete ordinates method for the 1D scalar RTE, with the main di�erence being that

the number of streams is n = 2 - one up-welling, and one down-welling stream. In

the two-stream approximation, several steps in the solution finding procedure can be

replaced by analytic solutions. Using TWOSTR is generally much faster than the

same model calculations with LIDORT using n = 2. Whereas LIDORT computes the

full intensity field, TWOSTR calculates the multiple-scattering contributions only.

2OS is a fast, linearised two orders of scattering model that computes the full Stokes

vector and returns the single-scattering results separately.

Using a full vector RTE implementation like VLIDORT4 (the vector version of

LIDORT) is computationally much more expensive then the scalar version. In the
1LInearized Discrete Ordinates Radiative Rransfer
2TWO STReam
32 Orders of Scattering
4See Spurr (2008).
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10.3. Implementations and Performance Considerations

UoL-FP algorithm, the models can be combined to calculate the total Stokes vector,

as laid out in Natraj et al. (2008):

©«
I

Q

U

V

ª®®®®®¬
=

©«
Iscat
0

0

0

ª®®®®®¬
+

©«
Icorr
Q2OS

U2OS

V2OS

ª®®®®®¬
(10.15)

Iscat is the intensity calculated by LIDORT, not taking into account polarisation.

The output of the 2OS model is then added to the scalar calculation. Icorr is the

correction to the intensity due to the mixing of components induced by the P1i and

Pi1 elements (i = 2 . . . 4). For n = 2 streams, the faster TWOSTR code is used to

calculate the multiple-scattering contributions, and the single-scatter contributions

are obtained through 2OS. In that case:

©«
I

Q

U

V

ª®®®®®¬
=

©«
IMS

0

0

0

ª®®®®®¬︸︷︷︸
LIDORT, TWOSTR

+

©«
ISS + Icorr
Q2OS

U2OS

V2OS

ª®®®®®¬︸         ︷︷         ︸
2OS

. (10.16)

If polarisation is not considered at all, the Icorr contribution is neglected and the

total intensity is given by

I = ISS + IMS. (10.17)

The aforementioned implementations are monochromatic, pure scattering models -

meaning that the only input apart from the viewing geometry and solar geometry,

are the layer-resolved total optical properties for a given wavelength: optical depths,

single-scatter albedos and phase function expansion coe�cients. The models are

blind to the various contributions to the optical properties.

Another crucial feature of the used models are their Jacobian capabilities. For retrieval

problems, it is not only necessary to calculate the intensities (or Stokes vectors) as

part of the forward model, but also the derivatives with respect to the optical property

inputs. Without Jacobian capabilities, layer-dependent derivatives can be calculated

through finite di�erencing. This method, however, is much slower - the models above

return the derivatives using one single call.
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Chapter Eleven

Fast Radiative Transfer Methods

11.1 General Overview and Motivation

R
educing the overall computation time for RT calculations is the main ob-

jective of fast radiative transfer (fast RT). The necessity of such techniques

arises due to either the forward model calculations taking long, or the

number of retrievals being too large, or a combination of the two. RT calculations

can easily be the single most computationally expensive portion in a retrieval, hence

why optimising this particular portion for speed will significantly decrease the overall

computation time for a retrieval. Without any acceleration technique, a typical

UoL-FP iteration, including the calculation of Jacobians (but without polarisation),

takes about 45min.

From the 2009-launched GOSAT to the 2014-launched OCO-2, the number of mea-

surements has increased 96-fold. Future missions, such as the geo-stationary GeoCarb

(Polonsky et al. 2014), will potentially increase the number of measurements by

another order of magnitude. Given the finite amount of computational resources

available, fast RT is a necessary technique to make global and operational retrievals

feasible.

When considering the accuracy requirement for the XCO2 retrievals, which is stated

as ∼0.3 % in Crisp et al. (2004), the RT computations have to be accurate to ∼0.1 % in

order to still allow for errors from other components of the retrieval (O’Dell 2010).

This puts another stringent requirement on fast RT methods - rather than merely

speeding up the RT calculations, they also need to retain the accuracy. Chevallier

et al. (2016) states even lower values on the required accuracy1 with < 0.2 ppm, which

is less than 0.1 %.

11.1.1 Correlated k-distribution Method

A historically popular and arguably one of the first methods is the so-called correlated

k-distribution technique, first described by Ambartzumian (1936). Like the methods
1In Chevallier et al. (2016), the term “systematic error” is used instead of accuracy.
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11.1.1. Correlated k-distribution Method

that will be discussed in the following sections, it belongs to the class of band methods,

which are designed to calculate top-of-atmosphere intensities for an entire spectral

band. Assuming a non-scattering atmosphere, the Beer-Lambert law can be used

to write the TOA intensity as a function of the wavelength-dependent total optical

depth τ(λ) or the equivalent formulation through the extinction coe�cient k and

optical path s , and the incident solar irradiance I02:

I = I [τ(λ)] = I0 exp [−τ(λ)] = I0 exp [−k (λ)s ] . (11.1)

The above formulation can be reordered to make the TOA intensity independent of

the incident solar irradiance and thus leads to the transmission Twritten as:

T(λ) =
I [τ(λ)]
I0

= exp [−τ(λ)] , (11.2)

and the corresponding absorptance

α(λ) = 1 −T(λ). (11.3)

In a wavelength interval ∆λ = λ1 − λ2, the transmission for a path s is obtained by

integrating T(λ) over that interval:

〈T(s )〉 =
1
∆λ

∫ λ2

λ1

exp [−k (λ)s ]dλ . (11.4)

This calculation of the average transmission for an entire band is thus performed

by repeatedly calculating Equation 11.4 for di�erent ∆λ for which k (λ) is close to

constant. Additionally, the calculation has to be separated for the various parts of the

optical path, pressures and temperatures, which all influence the extinction coe�cient.

The ansatz for the k-distribution method is to rearrange the extinction coe�cients

k (λ) in increasing order. Since many spectral points will share the same k (λ), like

points in the continuum, or line centres, this redundancy can be exploited to reduce

the number of calculations. The distribution of extinction coe�cients is defined as

f (k ) ≡
1
∆λ

N∑
i=0

dλ
dk
Wi (k ), (11.5)

whereWi (k ) is a window function that is equal to 1 when ki,min ≤ k ≤ ki,max and

otherwise 0. Using this distribution, the average transmission is rewritten as a sum

rather than an integral:

〈T(s )〉∼
N∑
i=1

∆ki f (ki ) exp [−ki s ] . (11.6)

2The explanation in Thomas et al. (2002) is followed here.
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11.2. Low-Streams Interpolation

The cumulative distribution function

g (kM ) ≡
M∑
i=0

∆ki f (ki ) (11.7)

can now be used to rewrite the transmission as

〈T(s )〉∼
N∑
i=1

∆gi exp [−ki s ] = ∆g1e−k1s + ∆g2e−k2s + · · · + ∆gN e−kN s . (11.8)

If the k-distribution is known (through look up tables of laboratory measurements, or

simulations), then Equation 11.8 can be calculated in a straightforward way.

While the fast RT methods presented in the next sections take a di�erent approach

and do not operate on the transmission quantity, the starting principle is the same.

One could say that the correlated-k method belongs to a more general class of (fast)

RT schemes that perform spectral binning of some variety. The main idea behind the

following methods is to group spectral points which share similar optical depth, and

then perform a small number of RT calculations that are representative for this group

to then map the results back to each spectral point individually. Since some spectral

groups can contain thousands of spectral points, the reduction in the number of RT

computations can easily be more than 95 %.

The following fast RT methods have been developed for XCO2 retrievals in the SWIR

part of the spectrum. While one cannot assume that these techniques work equally

well for other spectral ranges, there is nothing inherently restricting these methods

to the SWIR. These methods have also in common that they do not change the

underlying RT model calculations itself, but rather reduce the number of needed

calculations. This makes the methods theoretically independent of the chosen RT

models, however no such intercomparison has been done yet.

11.2 Low-Streams Interpolation

The Low-Streams Interpolation (LSI) technique was introduced by O’Dell (2010) to

accelerate retrievals from GOSAT and OCO measurements. LSI is motivated by the

same fact as the correlated-k method: many of the tens of thousands of spectral points

will share similar total gas optical depths. Expanding on the idea, the di�erence

between a high-accuracy and a low-accuracy RT calculation can be analysed. When

talking about accuracy in the context of the discrete ordinates-based RT models, the

term is synonymous with the number of quadrature streams Ns.

Using one sample scenario for the TANSO-FTS instrument, the high-resolution

intensities (no instrument line shape is applied) are calculated using Ns = 2 and
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11.2. Low-Streams Interpolation

Ns = 16, and their point-by-point di�erences ∆I = Ilow− Ihigh are shown in Figure 11.1

for each of the three bands. While the left panels show the intensity di�erences as a

function of wavelength, the right panels show them as histograms and functions of

the total optical depth due to gas absorption τ(gas). τ(gas) is simply calculated as the

sum of all layer gas optical depths. When the ∆I are displayed as a function of total

gas optical depth, they become smoothly varying, compared to the usual wavelength

representation.
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(c) Strong CO2 band.

Figure 11.1: Intensity di�erences ∆I = Ilow − Ihigh as functions of wavelength and
total gas optical depth. The right panels are a histogram rather than point plots,
and the point density is indicated by the hue (dark green = low, light yellow = high).
Residuals for the right column are in the same units as on the left.

In Figure 11.1 lies the motivation of the LSI method: if the di�erence between a

high- and a low-accuracy RT calculation is a slowly varying function of τgas, then

coarsely sampling that function can be used to reconstruct a high-accuracy result

from a low-accuracy calculation. A closer look at Figure 11.1c (and to a lesser extent

Figure 11.1b) reveals that the this error function ∆I (τ(gas)) might take a smooth, but

intricate form. The bifurcation seen for the strong CO2 band is the result of two

di�erent absorbers, namely CO2 and H2O. However, the reason for the bifurcation
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11.2. Low-Streams Interpolation

is not due to the gas species itself, but rather because of their vertical profiles. As

τgas is a sum of layered optical depths, profiles with di�erent shapes can end up

having the same total optical depth, despite their shapes being very di�erent. A

further complication is the fact that scattering layers can vary additionally to the gas

absorption profiles.

The LSI technique makes use of a quantity introduced by M. Duan et al. (2005) to

account for the di�erent vertical profiles. Defining a new unit-less quantity

ξ =
τ(gas)′

τ(gas)
, (11.9)

where τ(gas)′ is the gas optical depth of the column, integrated only up to the point

where the cumulative gas optical depth equals half the total-column optical depth

due to scattering (integrated from the top of the atmosphere downward). Figure 11.2

shows the error function (the same as in Figure 11.1c), but rather than coloured

by density, the colour now represents the value of
√
ξ . It clearly shows that the two

branches di�er significantly in terms of their vertical profiles and their scattering

behaviour.
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√ ξ Figure 11.2: The same intensity di�er-
ences as Figure 11.1c, but colours represent-
ing
√
ξ . For larger values of

√
ξ , the spectral

points lie mostly on the upper branch.

Based on Figure 11.1 and Figure 11.2, the LSI strategy can be formulated:

1. Every spectral point is assigned a bin in τ(gas)-space as well as one of two

bins in
√
ξ -space. Bins in τ(gas)-space are chosen to sample the error curves

in Figure 11.1 properly and depend on the band. The bins for
√
ξ are chosen

such that the lowest 25 % are assigned one bin, the rest of spectral points are

assigned the other bin.

2. For every bin in τ(gas)-
√
ξ -space, optical properties are constructed that are

representative of the current bin. Binned gas optical depths are calculated as

the average of all profiles in the bin, whereas scattering optical depths, single-

scattering albedo as well as phase function expansion coe�cients are taken

from the band centre.
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11.2. Low-Streams Interpolation

3. Given the binned profiles, errors between high- and low-accuracy RT model

calculations are computed for a given Stokes component S :

εS (i, j ) =
Slow(i, j ) − Shigh(i, j )

Ihigh(i, j )
, (11.10)

where i and j are the indices in τgas- and
√
ξ -space respectively signifying the

bin. Using a bilinear interpolation scheme3, the error εS (τ(gas),
√
ξ) for any

specific value of τ(gas) and
√
ξ (and implicitly λ) is obtained from the errors

related to the bin.

4. The approximation to the high-accuracy result on a point-by-point basis is

finally calculated through the errors εS (λ):

I (λ) =
Ilow(λ)
1 + εI (λ)

, (11.11)

and

S (λ) = Slow(λ) − εS (λ) · I (λ) (11.12)

for Stokes components S other than I .

To show an example, the LSI method is applied for the sample scenario using

Ns,low = 2 and Ns,high = 16, and the reconstruction accuracy is shown in Figure 11.3.

While the accuracy is clearly below 1%, the residual between ILSI and the full line-by-
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Figure 11.3: Example of reconstructed radiance in the strong CO2 band, normalised
to the maximal value of IFull to better highlight the residual slope.

line high-accuracy calculation IFull exhibits a very prominent slope. This slope is a

result of the spectrally-dependent aerosol scattering properties. Point 2 in the LSI

strategy states that scattering properties are to be taken from the band centre. This

step does not account for any spectral dependence, and thus a�ects the reconstruction

accuracy. In the sample scenario, the aerosol optical depth was chosen to be rather
3For details, see O’Dell (2010).
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11.2. Low-Streams Interpolation

high with τ(aer)∼0.6 which exacerbates the problem. In order to accommodate for

this issue, one additional set of binned calculations for a single bin is performed,

where the spectral properties are taken from one edge of the band, instead of the

centre. This adds a wavelength-dependent term to the error:

ε̃S (λ) = εS (λ) +
[
εS,edge(1,1) − εS (1,1)

] λc − λ

λc − λedge
. (11.13)

εS,edge(1,1) is the error (according to Equation 11.10) for the (1,1)-bin using scattering

properties from wavelength λedge. This additional calculation therefore provides a

slope with which the spectral dependence can be approximated linearly. For the

considered bands and the typical applications, a linear correction is generally enough

since the wavelength dependence is constructed to be linear (see Section 4.4, Page 37).

Applying the slope correction reduces the residual slope, as seen in Figure 11.4.
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Figure 11.4: LSI-reconstructed radiances with the applied slope correction (strong
CO2 band, same as in Figure 11.3). The residuals appear spectrally flat.

The reduction in computational speed comes through the reduction in the expensive

multiple scattering calculations IMS,high, even though the corresponding low-accuracy

calculations IMS,low are performed line-by-line. Rather than calling the MS code for

Ns,high up to 30 000 times for a line-by-line calculation, only 2 × (Nbin + 1)4 calls for

high-accuracy calculations have to be made. In O’Dell (2010), the number of Nbin is

18, 8, and 14 for the three GOSAT or OCO bands. The positions were empirically

determined. Also, not all τ(gas) bins are split into two
√
ξ bins, as for some bands

√
ξ

does not vary significantly for either low- or high-optical depth bins.

An advantage of LSI is that while Jacobians are not required for the calculation of

radiances, the Jacobians for any Stokes parameter can be calculated in a straightfor-

ward way by applying elemental di�erentiation rules to Equation 11.10, as well as

Equations 11.11 and 11.12.
4Nbin being the number of bins in τ(gas)-space.
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I have implemented the LSI method described in this section in the UoL-FP algorithm

based on a code that was provided by C.W. O’Dell. Prior to this, an older, unpublished

experimental version of the method was utilised the UoL-FP algorithm, which treated

absorption by water vapour as the “second coordinate”, rather than making use of

the dimensionless quantity ξ . All of the above figures were created through UoL-FP

calculations.

11.3 Linear-k

The linear-k method formulated by Hasekamp et al. (2008) is another spectral

binning technique in which the basic assumption is the representation of the multiple

scattering Stokes vector SMS in terms of the absorption optical depth τ(abs) as well as

a normalised vertical distribution n5:

SMS(λ) = SMS

[
τ(abs)(λ),n(λ)

]
, (11.14)

with

τ
(abs)
i (λ) = τ(abs)ni (λ), (11.15)

where

τ(abs) =

Nlay∑
i=1

τ
(abs)
i . (11.16)

Similar to LSI, Hasekamp et al. (2008) have adopted a method to incorporate the

vertical structure of the profiles, however in a more explicit way. As with other spectral

binning schemes, a small number of reference calculations are used to approximate

high-accuracy calculations. For linear-k , the assumption is that the di�erence between

the reference vertical distribution n j for bin j and the actual distribution n(λ) can

be used to map the reference calculation to each spectral point:

SMS

(
n(λ), τ(abs)

( j )

)
≈ SMS

(
n( j ), τ

(abs)
( j )

)
+
∂SMS

∂n

[
n(λ) − n( j )

]
. (11.17)

In the above formulation, MS Jacobians are only available at grid points, so linear

interpolation is used to estimate the derivatives at non-grid points. Equation 11.17

is suitable for cases in which both scattering as well as surface properties do not

depend on the wavelength, as otherwise residual slopes similar to Figure 11.3 remain.
5In Hasekamp et al. (2008), their Equation 7 is erroneous as confirmed through private communi-

cation with O. Hasekamp.
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11.4. PCA-based Fast RT Method

Correcting for this wavelength-dependence after the correction for the vertical profile

has been performed, is done via

SMS

(
τ
(sca)
1 , . . . , τ

(sca)
Nlay

,P1, . . . ,PNlay, ρ
)
= SMS(τ̃

(sca), P̃, ρ̃)

+

Nlay∑
i=1

∂SMS

∂τ
(sca)
i

(
τ
(sca)
i − τ̃

(sca)
i

)
+

Nlay∑
i=1

6∑
s=1

LM∑
l=0

∂SMS

∂αi,l ,s

(
αi,l ,s − α̃i,l ,s

)
+
∂SMS

∂ρ
(ρ − ρ̃) .

(11.18)

In Equation 11.18, the quantities with a tilde, e.g. τ̃(sca), refer to reference values

representative of the bin, and wavelength-dependence is not explicitly written. τ(sca)i

is the optical depth in layer i due to scattering, so essentially a sum of extinction

due to Rayleigh scattering and extinction due to aerosol scattering. The αi,l ,s are

the phase matrix expansion coe�cients (the vector equivalent of βi,l ) for layer i and

expansion order l ; the index s refers to one of the six independent entries of the

phase matrix P. The last term corrects for the wavelength-dependent surface albedo.

Partial derivatives are needed to evaluate Equation 11.18, which requires an RT

model capable of returning these Jacobians in order for linear-k to still be a feasible

method. Hasekamp et al. (2008) mention that the same principle is not applicable

to calculate the multiple scattering Jacobians, as that would require second-order

derivatives, which is not a standard feature of RT models. Instead, to obtain the

Jacobians for every single spectral point, interpolation is used.

The linear-k method has been implemented into the UoL-FP algorithm from scratch

without any third-party code. This specific implementation required significant

modifications to the scheme as published by Hasekamp et al. (2008). Rather than

using the partial derivatives with respect to scattering optical depth (which LIDORT

does not produce natively), I was forced to modify the portion of the scheme which

corrects for the varying scattering properties (Equation 11.18) and used a finite

di�erencing method instead.

11.4 PCA-based Fast RT Method

The method based on empirical orthogonal functions (EOFs) or principal component

analysis (PCA) was published first by Natraj et al. (2005), although Liu et al. (2006)
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have independently developed a similar technique. During the research performed

for this thesis, the PCA-based fast RT scheme was studied, implemented from scratch,

and improved upon. In particular, the formalism has been extended in order to deal

with spectrally varying scattering properties due to aerosols.

Similar to the LSI and linear-k methods, the PCA-based approach makes use of the

large amount of information redundancy within the spectral range of an absorption

band that is present in the optical properties. The representative profiles of the

optical properties can be inferred from PCA. Within the small spectral range of a

typical absorption band, the scattering properties and surface reflectance vary little

compared to the dynamic range of gas absorption. This is even more so if the spectral

points and the corresponding sets of optical parameters are previously divided into

bins that are defined in gas optical depth space, where ideally, all points within a

bin are optically similar. The computationally expensive MS calculations can be

performed for representative profiles for a bin (rather than for every point in the

bin), and the result for all points in that bin can then be derived from that rather

e�ortlessly. In this regard, the PCA-based method is very similar to LSI, as both

methods aim to correct a low-accuracy line-by-line calculation.

The following sections describe the steps needed to approximate a high-accuracy

RT calculation for a band using the PCA-based approach. Before these steps are

carried out, every spectral point in the band is assigned a bin, and each step has to

be repeated for every bin.

As was the case for the linear-k method, no prior code was available that could be

utilised to integrate the PCA-based method into the retrieval algorithm. I wrote two

versions of the method - one being an “o�ine” implementation that I used to study the

method, and then the final module that was then part of the UoL-FP algorithm. This

is the first time that this method has been implemented into a full-physics retrieval

scheme.

11.4.1 Preparation of Optical Properties

For every bin containing Ns spectral points, an Ns ×No matrixO is constructed which

contains a total of No layer-resolved, bulk or auxiliary optical properties. Auxiliary

optical properties are wavelength-dependent quantities which, while not directly

used in RT computations, are used to derive such quantities. An example would

be the aerosol interpolation fraction ci (Equation 4.9, Page 40). All properties may

be transformed using a suitable function beforehand, which is denoted as f F , and
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11.4.1. Preparation of Optical Properties

f F (O) = F. This function f F should have an inverse f B = (f F )−1 that transforms

the quantity back into its original space, such that f B (F) = O. Previous work (Natraj

et al. 2005; Natraj et al. 2010; Spurr et al. 2013; Kopparla et al. 2016) chose f F to be

the natural logarithm in order to compress the range of gas optical depths, which

results in less PCs needed to capture the same amount of variability. In general,

f F can be any bijective function f F : X →Y , as long as the optical properties are

elements of X . Di�erent functions could be applied to each type of optical property.

Similar to Natraj et al. (2005), Natraj et al. (2010), and Kopparla et al. (2016),

O is constructed using the total optical depth profiles τi, j . However, instead of

adding the single-scattering albedos ωi, j , the optical depth due to Rayleigh scattering

τ
(Ray)
i, j is used. The advantage of this choice is a better reconstruction of the single

scatter albedos as well as aerosol properties, which will be explained in more detail in

Section 11.4.4. To account for wavelength-dependent scattering properties of aerosols,

the aerosol scattering coe�cient q (sca)i,a (see Equation 4.7) for each of the Na aerosol

types is included. Additionally, the aerosol interpolation coe�cients ci are added

(see Equation 4.9). Finally, similar to Spurr et al. (2013), the last element are the

Lambertian surface albedos ρi as a bulk property. For di�erent surface models, the

surface albedo should be replaced or extended by any number of other spectrally

dependent parameters. For the ocean glint Cox-Munk kernel (Cox et al. 1954), this

parameter would be the relative refractive index of water. The order of all of the

mentioned quantities in the matrix O (the column position) is arbitrary as long as

the same position of each quantity is used during the reconstruction.

Summarising, the matrix F = f F (O) is written as in Equation 11.19, where the tilde

over any property signifies that it has been transformed via the function f F , i.e.

f F (x) = x̃ . Thus, the total number of columns in F is No = 2Nl + Na + 2 (for this

UoL-FP-specific implementation).

F =
©«
τ̃1,1 . . . τ̃1,Nl τ̃

(Ray)
1,1 . . . τ̃

(Ray)
1,Nl

q̃ (sca)1,1 . . . q̃ (sca)1,Na
ρ̃1 c̃1

...
. . .

...
...

. . .
...

...
. . .

...
...

...

τ̃Ns ,1 . . . τ̃Ns ,Nl τ̃
(Ray)
Ns ,1

. . . τ̃
(Ray)
Ns ,Nl

q̃ (sca)Ns ,1
. . . q̃ (sca)Ns ,Na

ρ̃Ns c̃Ns

ª®®®¬ (11.19)

Contrary to the other properties in O, ci can be negative, in which case the transfor-

mation into logarithmic space would fail. For the work in this thesis, f (x) = ln(x)

for all elements, however a constant value of 5 was added to every ci to avoid the

aforementioned issue, as all ci > −5. This constant value is then subtracted again

when calculating the binned optical properties.
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11.4.2 Varying Scattering Properties and Generalisation of the Method

The specific preparation of the aerosol optical properties, described in Section 11.4.1

(also see Section 4.4, Page 37), is not an integral part of the PCA-based approach

itself. Here, it was chosen to comply with the calculations within the UoL-FP retrieval

scheme. For applications in which the spectral dependence of extinction and scattering

properties of aerosols is ignored, the quantities q (sca), q (ext) and c can be omitted

in Equation 11.19. In this case, there is no need to reconstruct the phase function

expansion coe�cients, since they are the same for each spectral point. Similarly,

if the optical properties depend on additional quantities not mentioned here, then

these quantities must be incorporated inO in the same way. If the coe�cients are not

parametrised or interpolated in a similar way as shown here, but rather calculated

individually for every wavelength, then the PCA-based method would need to be

reviewed, as the decomposition in the following section potentially proves di�cult if

Nmom (LM ) is of the order of several hundred. On the other hand, for applications in

which Nmom is considerably smaller, it is conceivable to directly ingest them into the

optical property matrix O, thus allowing for a direct reconstruction of β j,m without

any auxiliary parameters.

Neglecting the wavelength dependence of the scattering properties, if it is part of

the forward model, will ultimately lead to an overall slope (with wavelength) in the

residuals, as seen in Figure 11.3 (Page 154). Contrary to LSI and linear-k , no further

RT computations are needed to correct for the varying scattering properties.

The method can potentially be generalised for other RT models. (V)LIDORT (Spurr

2008), TWOSTR (Spurr et al. 2011) and 2OS (Natraj et al. 2007) are models that

ingest total atmospheric optical properties (τ,ω, β). Therefore, O is set up such that

it contains all quantities to exactly calculate the inputs needed by the RT models, no

information loss has occurred yet.

It was demonstrated in Efremenko et al. (2014) that the PCA approach can be gener-

alised to other dimensionality reduction techniques, such as local linear embedding

methods or discrete linear transforms. They showed for a single example that higher

accuracies can potentially be achieved by employing e.g. local linear embedding

rather than PCA. As such there is the potential of improving on the results shown in

this chapter.

11.4.3 Calculation of the Empirical Orthogonal Funions

The principal components are calculated based on the mean-removed covariance

matrix C, which is constructed by first subtracting the spectral mean of each optical
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property from F, such that

F i,l = Fi,l −
1
Ns

Ns∑
i ′=1

Fi ′,l . (11.20)

The covariance matrix C is then given by

C =
1

Ns − 1

(
F
T
F
)
. (11.21)

Note the normalisation factor in Equation 11.21, which was not present in earlier

publications. The eigenproblem for the No × No matrix C is then:

CVk = ηkVk , (11.22)

with eigenvalues ηk that correspond to eigenvectors Vk . The eigenvectors V, also

called empirical orthogonal functions (EOFs), are scaled via the square root of their

corresponding eigenvalues,

Wk =
√
ηk Vk , (11.23)

and the PCs P are obtained by projecting F onto the EOFs:

Pk =
1
ηk

FWk . (11.24)

In practice, since C is real and symmetric, the LAPACK solver DSYEV or appropriate

wrappers, such as NumPy’s eigh (van der Walt et al. 2011) can be used to compute

all Vk and ηk . In terms of e�ciency, the LAPACK routine is able to solve the

eigenproblem for a 200 × 200 matrix in less than a second (Anderson et al. 2007);

therefore, its impact on the overall computational e�ort can be neglected.

The ηk are subsequently ranked by decreasing values, such that V1 is the EOF that

explains the largest amount of variability of F. Generally, the cumulative explained

variance for the first three EOFs tends to be > 99%. As stated in Natraj et al. 2005,

this implies that three to four EOFs are su�cient to reconstruct the optical properties

for every spectral point in the bin to high accuracy.

Due to the symmetry of C, all Eigenvalues are positive and real. Eigensolvers

such as the aforementioned DSYEV, however, might return some very small negative

Eigenvalues for larger k . Since the magnitude of these eigenvalues is small and their

contribution can be neglected, all eigenvalues and thus all corresponding scaled and

unscaled eigenvectors and PCs can be set to zero if ηk is su�ciently small:

|ηk | < 10−15 ⇒ Pi,k =Wl ,k = Vl ,k = ηk = 0, ∀ i, l . (11.25)

The eigenvalues satisfying the above condition are usually of high order, such that

they would not have been relevant at all for the reconstruction, which is often done

using less than ∼10 principal components.
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11.4.3. Calculation of the Empirical Orthogonal Functions

To visualise as well as give physical meaning to the principal component analysis, the

mean-removed, transformed optical state matrix F for the O2 A-band is visualised in

Figure 11.5 (first bin, continuum-level) and Figure 11.6 (last bin, line core).
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Figure 11.5: Representation of F (excluding the surface albedo) for the first bin in
the O2 A-band. Each colour represents a di�erent percentile based on the set of all
spectral points within the bin.

These two figures show the location of the ith percentile of the various components of

F apart from the surface albedo ρ, as in this particular example ρ was spectrally flat.

F is the quantity on which the principal component analysis is actually performed,

so in terms of the method, the deviations from the transformed mean optical profiles

are more significant than the (transformed) mean profiles themselves. For the bin

represented in Figure 11.5, the optical depths profiles are dominated by aerosol

extinction, as is easily seen in the two peaks representing the high-altitude cirrus layer

and the aerosol layer below. Especially in the O2 A-band, continuum-level spectral

points are spread out across the entire band, hence a large spectral variability is

inherent in the optical profiles. The top right panel in Figure 11.5 reveals the origin

of the spectral variation, which in this case is mostly due to the small aerosol type

mixture. It has a much larger spectral variability in this band, compared to the

large aerosol mixture or the cirrus mixture, which is spectrally almost flat. For the

Rayleigh extinction profiles, the deviations are layer-independent. For the line-core

dominated bin (Figure 11.6), the variability in optical depths is larger as can be seen

in the top-left panel, despite this bin having only about 10 % of the number of spectral

points.
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Figure 11.6: Same as Figure 11.5, but for the last bin (5 < τ ≤ ∞).
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Figure 11.7: The first five
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and last bins. For bin 22,
the components correspond-
ing to the Rayleigh optical
depth profiles, aerosol scat-
tering coe�cient and frac-
tion have been multiplied by
20 for visualisation purposes.
ρ was omitted.
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11.4.3. Calculation of the Empirical Orthogonal Functions

The scaled EOFs W (see Equation 11.23) represent mathematically the directions of

the largest variability of F in an No -dimensional space. The shapes of the profiles in

Figure 11.7 are similar to those seen in Figures 11.5 and 11.6. Principal components

are calculated by mapping the mean-removed and transformed optical property

matrix onto the new set of coordinates, spanned by the EOFs. An example of the

first five PCs is shown in Figures 11.8 and 11.9.
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Figure 11.8: PCs in the vicinity of three weak oxygen lines in the O2 A-band, from
the first bin.
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Figure 11.9: PCs at the position of a strong oxygen line, taken from bin number 21.

The first striking di�erence between Figure 11.8 and Figure 11.9 is the contribution

of the first EOF, which for the weak lines is much smaller than for the strong one.

For the strong absorption line, the first PC contributes a symmetric shape, whereas

the subsequent PCs add asymmetric components to the line shape, with the fourth

EOF strongly modifying the wings. This can be shown by performing the PCA
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11.4.4. Preparation of Binned Optical Properties

computation in reverse. F can be reconstructed through

F
′

i,l =

NEOF∑
k=1

Pi,kWk,l , (11.26)

which then can be used to obtain the reconstructed optical property matrix

O ′i,l = f
B

(
F
′

i,l +
1
Ns

Ns∑
i ′=1

Fi ′,l

)
. (11.27)

The number of EOFs to reconstruct O is given by NEOF. When all No EOFs are used,

then the reconstruction is performed without any information loss, such that O = O′.

Using the first Neof = 1 . . . 5 to reconstruct O, the optical depths near the strong O2

line from Figure 11.9 are shown as error percentages compared to the original values

in Figure 11.10. What this comparison shows is how the first two PCs are not quite

enough to reconstruct the shape of the absorption line to an acceptable degree. Note

that the errors for cases NEOF = 1,2 were re-scaled.
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Figure 11.10: Reconstruction of τ around a strong oxygen line using NEOF = 1 . . . 5
PCs. For NEOF = 1, the error (as a percentage of the original τ) was scaled by 0.1, and
for NEOF = 2 by 0.5 so that all five curves could be fit into the same graph.

11.4.4 Preparation of Binned Optical Properties

For every bin, a so-called mean optical state, O(0) is created by transforming the

spectrally averaged F back into its original space:

O (0)l = f
B

(
1
Ns

Ns∑
i=1

Fi,l

)
. (11.28)

Constructing the total optical depths for the mean state is straight forward, since

τ
(0)
l = O

(0)
l with l = 1 . . .Nl (see Equation 11.19). The other mean properties, such as

mean surface albedo, mean Rayleigh optical depth, and the mean auxiliary properties
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11.4.5. Binned Calculations and Radiance Reconstruction

c (0) and q (sca,0)a are obtained analogously. The single-scattering albedos ω(0)j , however,

are a composite quantity in terms of the contents of O, and they have to be calculated

from τ
(0)
j , τ(Ray,0)j and the mean aerosol scattering coe�cient q (sca,0)a (see Equation 4.15,

Page 41):

ω
(0)
j =

τ
(Ray,0)
j +

Na∑
a=1

q (sca,0)a · τ
(aer,755)
j,a

τ
(0)
j

. (11.29)

The final quantities needed for the binned calculations are the composite phase func-

tion expansion coe�cients β (0)j,m . As explained in Section 11.4.1, the phase function

expansion coe�cients related to aerosols β (aer)j,m are considered to be wavelength depen-

dent and are calculated for two points near the edges of the spectral band. Through

linear interpolation between the given points, the coe�cients are obtained for every

spectral point in the band. For the mean optical state, the mean interpolation factor

c (0) is used to calculate the β (aer,0)j,m,a via

β
(aer,0)
j,m,a = β

(aer,beg)
j,m,a · (1 − c (0)) + β (aer,end)j,m,a · c (0). (11.30)

The mean composite phase function expansion coe�cients can then be calculated as:

β
(0)
j,m =

τ
(Ray,0)
j · β

(Ray)
m, j +

Na∑
a=1

β
(aer,0)
j,m,a · q

(sca,0)
a · τ

(aer,755)
a, j

τ
(Ray,0)
j + q (sca,0)a · τ

(aer,755)
a, j

. (11.31)

With that, the total mean optical state is fully defined. The binned optical quantities

for the perturbed states +k and −k are computed by perturbing the mean optical

properties by the scaled EOFsW :

O (±k )l = f B
([

1
Ns

Ns∑
i=1

Fi,l

]
±Wk,l

)
. (11.32)

From O (±k )l , the perturbed properties, τ(±k )j , τ(Ray,±k )j , q (sca,±k )a , ρ(±k ) and c (±k ) are

obtained as before, and the composite quantities ω(±k )j and β
(±k )
j,m are calculated

analogously to Equations 11.29 to 11.31.

11.4.5 Binned Calculations and Radiance Reconstruion

For each bin, 2NEOF + 1 low-stream and high-stream (or first-order and second-order)

calculations are performed using LIDORT, 2Stream and 2OS, and the optical inputs

O(0) and O(±k ) that were prepared in Section 11.4.1. Further optimisation can be

achieved by choosing the number of EOFs individually for each bin, which could

reduce the total number of binned calculations.
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11.5. Detailed Analysis of the PCA-based Method

Using the notation in Spurr et al. (2013), the di�erences between high- and low-stream

binned calculations in logarithmic space are defined as

J (0)I = ln
[
ILD(O(0)) + IFO(O(0))
I2S(O(0)) + IFO(O(0))

]
(11.33)

and

J (±k )I = ln
[
ILD(O(±k )) + IFO(O(±k ))
I2S(O(±k )) + IFO(O(±k ))

]
(11.34)

for the mean and perturbed optical states respectively. The subscripts in J (k )I signify

that this formulation of the correction term is only valid for the intensity component

of the Stokes vector, as (modelled) intensities are always positive and hence taking

the logarithm will always be possible. For other Stokes components S , I , which can

be both positive and negative, a simple di�erence between second- and first-order

calculations is performed:

J (0)S = SO2(O(0)) − SO1(O(0)), (11.35)

and

J (±k )S = SO2(O(±k )) − SO1(O(±k )). (11.36)

Still in logarithmic space for the intensities, the second order central-di�erence

expansion is then applied, where the PCs transform the result back into the spectral

space:
CI ,i = exp

(
JI ,i

)
,

CS,i = JS,i .
(11.37)

with

JS,i = J (0)S +
NEOF∑
k=1

J (+k )S − J (−k )S

2
Pk,i +

NEOF∑
k=1

J (+k )S − 2 J (0)S + J
(−k )
S

2
P 2
k,i . (11.38)

The correction factors Ci are then used to reconstruct the approximate radiance for

each spectral point:
Iapprox,i =

[
IFO,i + I2S,i

]
·CI ,i ,

Sapprox,i = SFO,i +CS,i
(11.39)

Both atmospheric and surface weighting functions are calculated exactly like Stokes

components S , I .

11.5 Detailed Analysis of the PCA-based Method

Before the PCA-based method was actually implemented for use in XCO2 retrievals,

a comprehensive study on the e�ects of the approximation error was conducted using
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11.5. Detailed Analysis of the PCA-based Method

GOSAT instrument specifications. To realistically characterise retrieval errors and

the spectral residuals of the PCA-based method, a set of simulations was performed

that represent the global distribution of expected scenarios covering a wide range

of geophysical parameters. Roughly 30 000 model atmospheres have been used to

compute the TOA radiances which correspond to locations of GOSAT soundings

from two seasons: May, June and July 2011 (summer), and November, December

and January 2011/2012 (winter). The GOSAT soundings have been chosen for near-

uniform global coverage (cut-o� at 60◦ southern latitude to exclude Antarctica), such

that there are at most 5 clear-sky locations in every 2.0 by 2.0 degree grid box. The

cloud screening was carried out prior to the simulations via an O2 A-band fit, where

cloudy scenes were identified when the apparent surface pressure deviated more than

30 hPa from the value obtained from European Centre for Medium Range Weather

Forecasts (ECMWF) ERA-Interim data. For each season, simulations for ocean-glint

scenes have been performed as well, where the wind speed parameter is also taken

from ECMWF ERA-Interim. The two seasons are in contrast to each other mostly in

terms of solar zenith angles and the associated signal level.

The model atmospheres for each individual sounding are based on Boesch et al. (2013).

Temperature, humidity and gas profiles are extracted from ECMWF ERA-Interim

and the model CO2 from the Copernicus Atmosphere Monitoring Service (CAMS)

respectively; the spectrally invariant surface albedos (over land) per band are es-

timated from the radiances in the measured GOSAT spectra. Aerosol profiles are

calculated on a per-scene basis from CAMS and consist of five di�erent tropospheric

types (sea salt, dust, organic matter, black carbon and sulphate), which are partly

further di�erentiated by size bins and dependence on relative humidity. Every scene

contains a thin cirrus cloud aerosol mixture with a constant total optical depth of

0.005. The Gaussian height profile is parametrised by a latitude-dependent mean

height and width according to Eguchi et al. (2007).

Due to the global distribution of the sounding locations (see Figure 11.11), the

simulations cover a wide range of scenes with di�erent surface types, varying aerosol

loadings and solar zenith angles.

The linear sensitivity analysis framework described in Rodgers (2000) is applied

here, in which the retrieval error can be estimated from the forward model error,

which equals to the spectral error of the PCA-based fast RT method. The error of

the state vector ∆xEOF is then derived from the gain matrix G, which maps spectral

features into state vector space:

G = SaKT(KSaKT + Sε)−1, (11.40)

∆xEOF = G∆f = G
[
ftrue(x,b) − fapprox(x,b)

]
. (11.41)
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11.5.1. Spectral Residuals

0.0 0.2 0.4
Total Aerosol OD
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Figure 11.11: Locations for which forward model simulations are performed, and
corresponding total aerosol optical depths. For both seasons, the coverage is almost
global, where the shift towards high southern latitudes is due to the changing SZA
for the winter season. Note the two di�erent latitudinal bands covered by the glint
observations over the oceans in the two seasons. Apart from boreal forests and
Greenland, most landmasses are covered in both seasons.

Sa is the prior covariance matrix, and the noise covariance Sε is calculated from

the standard deviation of the GOSAT out-of-band signal. The weighting functions

K = ∂ftrue/∂x are obtained from the high-accuracy simulation ftrue, which is a line-

by-line simulation using 16 quadrature streams. fapprox is the simulation using the

PCA-based approach. Both simulations ftrue and fapprox are evaluated using the same

state vector x and auxiliary parameters b so that the only di�erence between the two

runs is the RT portion of the forward model. b contains non-statevector quantities

that are still needed for forward model computations, such as the volume mixing

ratios of non-retrieved gases (O2, CH4, H2O) and various instrument parameters.

The parts of the state vector error that correspond to the CO2 profile (∆xEOF (CO2))

are converted to a column-averaged value using the pressure weighting function h

(O’Dell et al. 2012):

∆XCO2 = hT∆xEOF (CO2). (11.42)

11.5.1 Speral Residuals

Spectral residuals are assessed using a quantity that gives the relative error of the

radiances on a per-wavelength basis with respect to the full line-by-line calculation

Ilbl,i for each wavelength index i as

∆Irel,i =
Iapprox,i − Ilbl,i

Ilbl,i
. (11.43)

Finally, residuals for the entire ensemble of simulations are investigated by assessing

the histograms of the IQRs in Figure 11.12. The histograms are generally consistent
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11.5.1. Spectral Residuals

with the intuitive expectation; increasing the number of EOFs typically reduces the

spectral residuals. For simulations that employ the Lambertian surface model (land),

both the O2 A-Band and the strong CO2 band show an improvement when increasing

the number of EOFs from 2 to 3, whereas the improvements for the weak CO2 band

are only marginal when considering the entire ensemble. For the Cox-Munk surface

model, on the other hand, the major improvement seems to be when going from 1 to

2 EOFs.
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Figure 11.12: Histograms of the spectral residuals. The abscissas represent the in-
terquartile ranges of the absolute values of the relative errors |Irel,i | (see Equation 11.43).
The inset text boxes in each sub-plot show the median and the interquartile ratios for
each distribution (number of EOFs).

Ocean glint scenes exhibit systematically higher residuals for the O2 A-band and the

strong CO2 band, and lower residuals for the weak CO2 band, when compared to

land scenes. This result is counter-intuitive, since glint scenes are more dominated

by the SS contributions, and thus have smaller MS contributions compared to the SS

magnitude. With a small MS contribution, the reconstruction accuracy will depend

linearly on the ratio of MS to SS radiances. However, when the MS contributions

are higher (in our case up to ∼120 % for land scenes, and ∼50 % for ocean scenes),

the linear regime is no longer valid. Here, the residuals depend on the observation

geometry, surface model, and aerosol scattering properties in a non-trivial fashion.

To explore the spatial structure of the error distribution in Figure 11.12, IQR(|Irel,i |)
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11.5.2. XCO2 Errors

is displayed on global maps in Figure 11.13. Due to the varying scales of the residuals

for each map, the respective data is scaled by a factor that is indicated in every

sub-plot. The maps reveal apparent drivers for the residuals. For glint simulations,

the largest residuals are seen in regions associated with heavy aerosol loadings, such

as the Mid-Atlantic ocean with its desert dust outflow, and larger viewing and solar

zenith angles. Over land, the residuals are larger with increasing solar zenith angles

as well as increasing aerosol optical depths.
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Figure 11.13: Global map of residual magnitudes when using 1 EOF. Bins for ocean
simulations have been chosen to be large enough to allow for continuous patches
despite the spacing of orbits (see Figure 11.11), which makes a visual assessment
easier. The factors shown in the top-right corner of each map indicate the factors, with
which the respective ensembles have been multiplied (L for land, G for glint) such
that the values can be plotted using the same colormap. Regions over land with larger
residuals are easily identified, being dusty deserts (Sahara, Arabian peninsula), regions
with large amounts of sea salt (high southern latitudes) and aerosol outflow regions
(mid-Atlantic, western North-Pacific) as well as high latitudes with higher solar zenith
angles.

11.5.2 XCO2 Errors

Section 11.5.1 highlights certain regions and scenarios for which the PCA-based

approach produces larger residuals. These regions, however, do not directly translate

into the regions with the largest XCO2 errors, as the signal-to-noise ratio and the

gain matrix a�ects those errors according to Equation 11.40.

Figure 11.14 shows the calculated errors for the two seasons distributed on global

maps as well as separate histograms for land and ocean simulations. There is a

notable di�erence, between the summer and winter seasons, in XCO2 error behaviour

for scenes over the Sahara, the Arabian peninsula and over parts of India; these are
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11.5.2. XCO2 Errors

all regions with high signal-to-noise ratio measurements (or equivalently, high albedo

in the strong CO2 band). For the summer season, the XCO2 error is larger over these

areas compared to others when 1, 2 or 3 EOFs are used. In contrast, for the winter

season, this is true only when 1 EOF is used.
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Figure 11.14: Estimated XCO2 errors displayed as both maps and histograms. For
the case of using only 1 EOF, the errors on the map were scaled by a factor of 0.1 such
that the same colorbar could be used. Regions with higher surface reflectance and
thus higher SNR clearly result in higher XCO2 errors (deserts) over land. Over ocean,
errors are increased in the mid-Atlantic due to larger AODs (compare Figure 11.11)
and the larger viewing angles at the edges of the glint observation bands.

This di�erence can be seen in the spectral residuals (Figure 11.13) and is driven

mainly by the changing solar zenith angle, which is roughly between 10◦ and 20◦ in

the summer and between 30◦ and 60◦ in the winter season.

The e�ect of changing the number of EOFs on the dependence of the residual errors

with respect to optical properties is also seen in Figure 11.14. For summer scenes

over the Sahara, the estimated XCO2 error is largely independent of the total AOD
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using only 1 EOF, but shows a rather clear dependence when using 2 or 3 EOFs.

The exact opposite behaviour is seen for the winter season. SNR-dependence of the

estimated error is similar to the AOD-dependence: for summer scenes, using more

than 1 EOF leads to a clear dependence, whereas for winter scenes, this dependence

is much weaker.

The generally larger spectral error for glint observations (see Figure 11.12), translates

into a larger mean XCO2 error. Land scenes in the summer season show a higher

error over the Sahara and Arabian peninsula, coinciding with those scenes with a

high signal-to-noise ratio. There is a change in sign for the overall error for land

observations, but the magnitude of the errors is already small with an IQR of the

distributions of around 0.06 ppm and lower. Glint-type soundings using the Cox-Munk

surface model show higher scatter for each season, when only 1 EOF is used, and is

comparable to land scenes when using 2 or 3 EOFs. To summarise the dependence

of the XCO2 error on the number of EOFs, the percentage of scenes with errors

larger than 0.1 ppm are stated in Table 11.1.

Summer Winter
# EOFs Land Glint Land Glint

1 67.09 % 82.10 % 78.85 % 76.84 %
2 5.59 % 1.36 % 5.76 % 0.29 %
3 5.63 % 0.75 % 2.18 % 0.47 %
5 0.39 % 0.78 % 0.21 % 0.40 %

Table 11.1: Percentage of scenes with XCO2 errors larger than ±0.1 ppm.

11.5.3 In�uence of Cirrus Optical Depth

To assess the errors induced by di�erent cirrus optical depths, the XCO2 errors of

a small subset of N ∼500, globally distributed scenes from the winter/land season

set was additionally simulated for four di�erent total optical depths of cirrus clouds:

0.01, 0.1, 0.25 and 0.5. Box plots illustrating the results are shown in Figure 11.15.

Since XCO2 retrievals tend to be filtered very restrictively using the total retrieved

cirrus OD (e.g. a filter threshold of < 0.05 as stated in Cogan et al. (2012)), the

cases of 0.01 and 0.1 are most relevant. For the latter case, the standard deviation

(as well as the IQR) of the errors in this subset increased roughly by a factor of 2 to

3 compared to the original scenario of 0.005. These IQRs do not exceed 0.7 ppm

using 1 EOF, and decrease to 0.05 ppm using 3 EOFs. Comparing these numbers to

the those in Figure 11.14 one can see that the IQRs of the respective distributions

roughly doubled/tripled when the total cirrus OD was increased to 0.1.
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Figure 11.15: XCO2 errors at various cirrus cloud optical depths for a small subset
of the winter season scenes. There is a dramatic reduction of the error magnitude
going from 1 EOF to 2 EOFs, especially for cases with cirrus optical depth larger than
0.1. The tick labels for the 1 EOF case are seen on the left hand side of the three plots,
whereas the tick labels for the cases of 2 and 3 EOFs are seen on the right hand side.
Whiskers in this plot have been suppressed.

The conclusion here is that high-altitude aerosols, such as cirrus clouds, have a similar

e�ect on the reconstruction accuracy, and ultimately the retrieval error, as aerosols

in the lower troposphere in the glint observation mode. The PCA-based approach

performs well for cirrus optical depths as large as 0.5 when 3 EOFs are used.

11.5.4 Investigating Di�erent Instrument Con�gurations

The XCO2 error from the PCA-based method will change for di�erent instruments.

To evaluate how the PCA-based approach performs for other instruments, linear error

analysis is performed for a subset (N ∼5500) of scenes using di�erent instrument

models. The assumed instrument models are described by their spectral resolution,

i.e. the full width at half maximum (FWHM) of the Gaussian instrument line shape

(ILS) functions, the noise model, and the dispersion relation as derived from the

sampling per FWHM. A potentially di�erent field of view or footprint size is not

taken into account, and neither is the sensitivity towards the state of polarisation.

The spectral windows and the viewing geometries also remain unchanged to allow

for a direct comparison between the simulations with the only di�erence being

the instrument models. The scenes themselves still correspond to specific GOSAT

sounding locations found in both the summer and winter season sets.

The subset of scenes was chosen to contain predominantly four di�erent surface

types: tree cover, bare areas, sparse vegetation and water. A scene falls into one of

these categories if at least 95% of the land cover class grid boxes enclosed by the

GOSAT footprint belong to one of the listed indices in Table 11.2.

Three additional instruments are considered, all of which are grating-spectrometer

types, as opposed to GOSAT being a Fourier-transform spectrometer. The first one
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Surface type Land cover class indices

Tree cover 50, 60, 61, 62, 70, 71, 72, 80, 81, 82, 90
Bare area 200, 201, 202
Sparse vegetation 120, 121, 122, 130, 140, 150
Water 220

Table 11.2: Land cover class indices according to the ESA-CCI Land Cover
map (epoch 2008-2012) associated with the four surface types.

is an OCO-2 like (Crisp et al. 2017) instrument that features high SNR and high

resolution across all three bands. The second instrument is to resemble the Earth

Explorer 8 candidate mission CarbonSat (Buchwitz et al. 2010) which has lower

resolution than the first instrument, especially in band 2 and 3. Finally, the last

instrument resembles Sentinel 5-like specifications (Ingmann et al. 2012), with a

much lower resolution in the O2 A-Band, but higher resolving power in the strong

CO2 band at 2.06 µm. The 2.06 µm band is not present in the design specifications

of Sentinel 5; the instrument characteristics for that band from earlier studies was

assumed (European Space Agency 2011b, 2011a). Table 11.3 lists the spectral

characteristics for the various instruments. Various noise models are utilised to

Instrument ILS FWHM Sampling Ratio

GOSAT 0.35,0.25,0.24 [cm−1] 1.4
A (OCO-2 like) 0.042,0.076,0.097 [nm] 2.5
B (CarbonSat like) 0.1,0.3,0.55 [nm] 3
C (Sentinel 5 like) 0.4,0.25,0.125 [nm] 3

Table 11.3: Instrument model characteristics, the FWHMs of the Gaussian
instrument line shape functions are stated for all three bands (O2 A-band, weak
CO2 and strong CO2). Sampling ratio is the number of spectral points per
FWHM.

simulate di�erent instruments in order to assess the impact of noise and spectral

resolution on the reconstruction accuracy. The noise model for instrument A (OCO-2

like) is a simplified version of the one stated in Eldering et al. (2015):

SNRA =

√√
L2

aC 2
back + bC

2
phL

, (11.44)

with L being the radiance value in units of ph s−1m−2 sr−1 µm−1. While in Eldering

et al. (2015), the coe�cients Cback and Cph are detector-pixel dependent, here they

were chosen to be constant values for each band. Similarly, for the CarbonSat like

instrument B, the following noise model was used (Buchwitz et al. 2010),

SNRB =
√
3
SNRref ·

L
Lref√

2 + L
Lref

. (11.45)
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Finally, instrument C was modelled after Sentinel-5 like specifications, with the noise

model

SNRC = SNRref

√
L
Lref

. (11.46)

The coe�cients used in the above noise models are summarised in Table 11.4.

Coe�cient O2 A-Band Weak CO2 Strong CO2

Instrument A (OCO-2 like)
a 4.9 · 1037 6.0025 · 1036 1.5625 · 1036

b 7.0 · 1018 2.45 · 1018 1.25 · 1018

Cback 0.00497 0.00671 0.0149
Cph 0.00961 0.00706 0.008

Instrument B (CarbonSat like)
SNRref 150 160 130
Lref 4.2 · 1019 1.5 · 1019 3.8 · 1018

Instrument C (Sentinel 5 like)
SNRref 500 300 100
Lref 4.49 · 1019 1.15 · 1019 5.0 · 1018

Table 11.4: Instrument model coe�cients. Radiances (L, Lref) and coe�cient
b are in ph s−1m−2 sr−1 µm−1, a in (ph s−1m−2 sr−1 µm−1)2, and Cback, Cph and
SNRref are unitless.

The comparison of the estimated XCO2 errors for the four instrument types is

visualised in Figure 11.16, where the scenes have been aggregated according to AOD

bins. For these simulations 3 EOFs were used for the radiance reconstruction.

Instrument C exhibits systematically larger errors than instrument B for all surface

types apart from ocean, indicating that the spectral resolution in the strong CO2

band is of higher relevance to the retrieval error than the noise levels. When only

1 EOF is used (not shown), the dependence on the AOD for all surface types and

instrument models is much higher.

From this analysis, it can be concluded that if 3 EOFs are used, the PCA-based

approach is able to reconstruct the radiances to an accuracy at which the forward

model errors result in less than ±0.2 ppm error in the retrieved XCO2 for a variety

of instrument models. Using only 1 EOF will inadvertently cause biases in high-AOD

scenes on the order of 1 ppm.

11.6 Performance Aspes of the Fast RT Methods

The three main fast RT methods presented here vary both in terms of the methodology,

complexity, as well as computational e�ciency and finally accuracy. To understand
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Figure 11.16: XCO2 errors (using 3 EOFs) of scenes grouped into aerosol optical
depth bins (the dashed, grey lines indicate the bin boundaries) for the four instruments
listed in Table 11.3 (left to right, GOSAT: grey, A: blue, B: red, C: green) for di�erent
surfaces.

the potential impact of choosing one method over the other, it is helpful to compare

them side by side and highlight the di�erences. It must be noted that a legitimate

comparison between the methods is only possible if all methods are implemented

consistently in the same retrieval framework. Naively comparing results across

publications (Hasekamp et al. 2008; O’Dell 2010; Somkuti, Boesch, Natraj, et

al. 2017a) is a flawed approach as they all use di�erent retrieval setups.

The PCA-based method and LSI are similar in their general approach - both methods

aim to correct a low-accuracy line-by-line calculation. The correction is done by

binning spectral points according to their optical depth, and performing both low-

and high-accuracy binned calculations for this small number of representative optical

profiles. Using the results of the binned calculations, a correction term is derived for

every spectral bin and subsequently applied to obtain an approximation to the full

high-accuracy calculation. Both methods also take into account the vertical structure

of the gas absorption, although in di�erent ways. LSI collapses the vertical profile

information in a single value ξ , whereas in the PCA-based method the variability

in the vertical profiles is directly embedded into the binned calculations and the

line-by-line principal components.

Linear-k takes a slightly di�erent approach by separating the SS and MS components
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from the start. Since the SS contribution can be calculated very quickly for a large

number of spectral points once the optical properties and the phase matrix are known,

the focus is to approximate the MS calculations through representative, binned ones.

The vertical profiles are taken into account directly by correcting the binned MS

calculations using the (analytic) derivative ∂S/∂n . The linear-k method does not

rely on line-by-line MS calculations, making it the fastest of the three schemes.

The computational e�ciency of the three methods is somewhat di�cult to measure,

as the performance will depend on the implementation as much as on the method

itself. While it is possible to simply measure the elapsed CPU time for a forward

model simulation or an entire retrieval, this number might be more representative

of the implementation into the retrieval algorithm than the fast RT scheme. This is

definitely the case for the UoL-FP algorithm. It is structured such that either SS, MS,

or a combination of both radiance calculations are carried out in a monochromatic

loop. This allows to exchange the underlying RT code(s) easily, without having to

modify any parts the main loop. Unfortunately this creates a very large overhead, for

example when only SS calculations are required, which could be performed in one

single, vectorised array operation. Comparing the elapsed CPU time for retrievals

using the UoL-FP algorithm would therefore penalise the linear-k method, as an

alternative SS implementation would reduce the computation times even further.

Rather than stating a measured, but biased value of the computation time of the

various methods, the computational e�ciency can assessed by the total number of

SS and MS calculations, and adjusting for whether Jacobians are needed or not.

O’Dell (2010) has discussed this, however did not provide any detailed numbers or

estimates for the speedup apart from a wide range of 1 to 2 orders of magnitude. The

speedup S is generally defined as the ratio between the durations of the approximated

calculations and the full line-by-line calculations

S=
t (line − by − line)
t(approximation)

. (11.47)

The duration for line-by-line calculations are easily written as the sum of MS and SS

durations multiplied by the number of spectral points Ns .

trad(line-by-line) = Ns
(
tSSrad + t

MS
rad,high

)
,

tjac(line-by-line) = Ns
(
tSSjac + t

MS
jac,high

)
.

(11.48)

In Equation 11.48, the t represent the CPU time needed for a single call to an RT

model, calculating either the SS or MS contribution to the total TOA radiance. The

subscripts rad or jac signify whether the RT model is assigned to calculate radiances

only, or to also calculate analytic weighting functions. For LSI, the duration due to
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RT calls is

t (LSI)rad =Ns
(
tSSrad + t

MS
rad,low

)
+

(
2Nbin − Nsingle + 1

)
·

(
tSSrad + t

MS
rad,low︸         ︷︷         ︸

low accuracy binned

+ tSSrad + t
MS
rad,high︸          ︷︷          ︸

high accuracy binned

)
, (11.49)

and analogously for when calculating weighting functions. Nbin represents the number

of bins and Nsingle is the number of bins for which only one
√
ξ bin is used, usually

for very low and very large gas optical depths. Similarly, the duration using the

PCA-based method can be written as

t (PCA)rad =Ns
(
tSSrad + t

MS
rad,low

)
+ Nbin (2NEOF + 1) ·

(
tSSrad + t

MS
rad,low︸         ︷︷         ︸

low accuracy binned

+ tSSrad + t
MS
rad,high︸          ︷︷          ︸

high accuracy binned

)
, (11.50)

assuming that the same number of EOFs are used for every bin. The final method is

linear-k , with a total computation time of

t (linear-k )rad =
(
Ns tSSrad

)
+

(
Nbin t

MS
jac1,high

)
,

t (linear-k )jac =
(
Ns tSSrad

)
+

(
Nbin t

MS
jac2,high

)
.

(11.51)

For linear-k , the MS computations for the binned calculations always require Jacobians

to be calculated as well. For radiance only computations, either one (Equation 11.17)

or more (Equation 11.18) atmospheric and surface weighting functions need to be

calculated. When Jacobians are also required, the same weighting functions need to

be calculated potentially in addition to those required by the retrieval algorithm.

To calculate the speedup for each method (and for each band), values for the per-point

RT calculation durations have to be simply entered into the relevant equations above,

along with the numbers of bins, EOFs and spectral points per band. As mentioned

before, the SS contributions alone can be very quickly calculated in a fully vectorised

array operation, as laid out in the ATBD of the SRON CCI-GHG full-physics XCO2

data product (Hasekamp et al. 2016). It is therefore reasonable to assume that in

an optimised implementation tSS � tMS in either Jacobian or radiance mode. After

neglecting the single-scatter contributions, a further simplification can be made,

which is to relate a high-accuracy to a low-accuracy computation duration through a

factor η = tMS
low/t

MS
high. This factor will be di�erent for radiance-only and Jacobian RT

model calls, and also depend on the number of Jacobians to be calculated, as well as

the number of layers in the model atmosphere. The speedup value for each of the
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three fast RT methods using these assumptions can thus be written as

S(LSI) =
Ns

ηNs + (2Nbin − Nsingle + 1)(η + 1)
, (11.52)

S(PCA) =
Ns

ηNs + Nbin(2NEOF + 1)(η + 1)
, (11.53)

S(linear-k ) =
Ns

Nbinη†
. (11.54)

It is important to note that η† is di�erent from η, since the linear-k method requires

Jacobians to be calculated even for radiance-only computations. η† is closer to

1, considering that only a few more Jacobians are added to the calculation. The

speedup values for an exemplary case are shown in the following figures, where

Ns = 30 000 which is roughly equivalent to an O2 A-band calculation on a 0.01 cm−1

grid. Obviously, η is highly dependent on the number of quadrature streams for the
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Figure 11.17: Speedup S as a function of η and the number of bins Nbin. For the
PCA-based method, the number of EOFs was fixed at 3 for every bin.

high-accuracy calculations, as well as the number of required atmospheric weighting

functions. Depending on the way of measuring η, the actual value ofScan significantly

vary, however a few general statements can be made (see Figure 11.17): both LSI and

EOF result in speedups of one to two orders of magnitude, with LSI being faster for

the same number of bins in τ(gas) space. Linear-k , due to the omission of low-accuracy

MS calculations, o�ers a speedup between two and three orders of magnitude. The

speedups presented in Figure 11.17 are extreme cases in which the SS calculations do

not play a role and are not quite representative of the speedup of an entire retrieval.
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Chapter Twelve

CO2 Retrievals from OCO-2

T
o retrieve XCO2 from OCO-2 measurements, the UoL-FP algorithm was

adapted to include instrument specific extensions to the forward model,

such as the footprint-dependent residual fitting technique. Using the PCA-

based radiative transfer acceleration technique discussed in Section 11.4, the OCO-2

retrievals were assessed against TCCON to validate the algorithm and the retrieval

setup.

An investigation of XCO2 errors due to the RT approximation technique, described

in Section 11.5, allowed the estimation of that quantity without having to actually

compute retrievals. The linear error analysis framework, however, assumes a fully

linear retrieval problem, which for XCO2 retrievals does not always hold.

In this chapter, the three methods described in the previous one were used for

retrievals using real OCO-2 measurements, and the results were compared. This,

again, is the first time three contemporary fast RT methods were implemented in a

consistent framework. This facilitates the study of the e�ect of the fast RT method

on the retrieved CO2 concentrations when every other aspect of the retrieval is kept

the same.

12.1 Retrieval Setup and Implementation of Fast RT Methods

The used retrieval setup is an adaption from the UoL-FP retrieval scheme used

in the GHG-CCI initiative (Buchwitz, Reuter, Schneising, Hewson, et al. 2017).

Meteorological data (surface pressure, humidity and air temperature profiles), already

sampled at the corresponding OCO-2 sounding locations, was obtained from “GES

DISC” (2018). SIF priors for land measurements are taken from the OCO-2 IDP v8

data product, available at the same data portal. Prior XCO2 profiles are informed

from the MACC 16r1 model. The UoL-FP aerosol scheme is employed with a minor

modification: a fourth aerosol mixture, based on a sulphate-type aerosol is added

as an optically thin (τ = 0.005) layer into the stratosphere at 20 km altitude and

3 km width. This is to mitigate a known issue, where ocean glint retrievals show
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an unphysical enhancement at high southern latitudes. Stratospheric sulphate-type

aerosols, also known as the Junge layer, are mostly due to volcanic eruptions.

The retrieval utilises a purely Lambertian, non-polarising BRDF for both land and

ocean scenes. Initial guesses (= a priori value) for the surface albedo are estimated

from the measured radiances:

ρa =
πI meas

µ0I0
, (12.1)

where I meas is the band-averaged continuum-level intensity, measured by the OCO-2

instrument, and µ0 is the cosine solar zenith angle. I0 is the intensity component of

the solar irradiance after application of the instrument Müller matrix

S0 =MS′0, (12.2)

with S′0 being the Stokes vector of the unpolarised solar irradiance S′0 = (I
′
0,0,0,0)

T,

the only relevant entry in M, m11 is usually 0.5 for the OCO-2 instrument. For

the three bands, I ′0 was set to 4.7 · 1021, 2 · 1021, and 1.3 · 1021 ph s−1m−2 sr−1 µm−1,

respectively.

Residual fitting, with residual waveforms having been derived through principal

component analysis from a previous run, is employed by fitting three waveforms

per band1. They are weighted by a coe�cient rk and added to the ILS-convolved

radiances I ∗conv(λ i ),

Iconv(λ i ) = I ∗conv(λ i ) +
N∑
k=1

rkRk (λ i ). (12.3)

These waveforms correct mostly for imperfections in the spectroscopic data, and it

is assumed that the choice of fast RT method does not influence the derivation of

the residual waveforms, or their e�ectiveness during the retrieval. Without applying

the waveforms, the final reduced χ2 values would not be close to 1, but rather five

to ten times larger. Waveforms are derived and applied for each OCO-2 footprint

individually, but not for the di�erent measurement modes or surface types. The

coe�cients rk are part of the state vector, and in this setup, three waveforms are used

for every band.

The retrieval setup di�ers between ocean and land scenes. For measurements over

land, the state vector includes the SIF radiance at 755 nm as well as the ratio of the

SIF radiances at 755 nm and 772 nm, therefore imposing a slope. Tests have shown

that better convergence is obtained if the initial value of the Levenberg-Marquardt

γ-parameter is changed. For ocean scenes a value of γ = 5000 is used, whereas
1The residual waveforms are often and confusingly called EOFs. In this thesis, the notion of

the EOF is reserved for the eigenvectors of the covariance matrix (see Equation 11.22), whereas the
principal components are the original data matrices projected onto the EOFs. The waveforms Rk (λ i )
should therefore be called PCs, rather than EOFs.
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for land scenes γ = 500. The main e�ect from increasing the initial value of γ

(compared to a GOSAT setup of γ = 10) is to reduce the step size of the state vector

changes between iterations, which resulted in many divergent steps due to the aerosol

extinction profiles exhibiting very large updates. For land retrievals, the convergence

criterion using the convergence scale factor (see Equation 5.15, Page 52) was loosened

by using a value of 10 rather than 3.

The code for the LSI method was provided by C. W. O’Dell and was then integrated

into the UoL-FP retrieval algorithm. The linear-k method was implemented indepen-

dently, however two minor modifications to the original publication by Hasekamp

et al. (2008) had to be made. First, rather than binning in τ(abs) space, a binning in

τ(gas) was used (as is done in the other two methods). Secondly, the partial derivatives

with respect to scattering optical depth, as well as phase function expansion coe�-

cients (see Equation 11.18) did not work as expected with the RT models present

in the UoL-FP algorithm. To achieve a similar correction for the spectrally varying

scattering and surface properties, the analytic derivative was essentially replaced

by a finite di�erence approach: for every binned calculation with the scattering and

surface properties taken from the centre of the band, a second binned calculation was

performed, but the scattering and surface properties were taken from one of the band

edges. While this e�ectively doubles the number of binned calculations, this approach

achieves the same e�ect as the use of the analytic derivatives. The essential portion

of the linear-k method, which is the correction for the vertical profiles, remains the

same. Using multiple grids for di�erent absorbers has also been omitted, as the net

gain in accuracy improvement are small, but would make the implementation more

complicated2. The PCA-based method was implemented as described in Section 11.4.

The binning strategy for each method was taken from the respective publications.

For LSI, the bin boundaries from Table 3 of O’Dell (2010) are used, which prescribes

18, 8, and 14 bins for the three bands. Linear-k bins were chosen similarly to the

description in Hasekamp et al. (2016), where the bins are logarithmically spaced in

τ(gas) space,

τ
(gas)
k = exp

{
log

(
τ
(gas)
min

)
+ (k − 1)

[
log

(
τ
(gas)
max

)
− log

(
τ
(gas)
min

)]
/N

}
(12.4)

Here, the largest total-column gas optical depth τ(gas)max is not limited to 15, as was

described in the ATBD, but left unchanged. This way, the bin boundaries are

constructed through the actual range of gas optical depths within the band. Should
2Private communication with O. Hasekamp.
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there be spectral points with τ(gas) = 0, these points are discarded for the purposes

of the bin boundary calculation, and are then assigned to the first bin. Tests have

revealed that this approach to generating the bin boundaries results in smaller

residuals, especially in the O2 A-band. For each band, 15 bins are generated. For the

PCA-based method, the binning strategy from Kopparla et al. (2017) was utilised

which results in 10 bins in gas optical depth space, where each bin is sub-divided

into two further bins along the median of ξ (see Equation 11.9), thus resulting in 20

bins in total.

For the calculation of the Jacobians, the interpolation and approximation is actually

performed on the atmospheric and surface weighting functions for all three methods.

12.2 OCO-2 Retrievals Using the PCA-based Method

The UoL-FP retrieval setup was historically tailored to process the GOSAT measure-

ment record. To confirm that the changes in the retrieval scheme and processing

pipeline work as intended for OCO-2, a set of scenes was retrieved and validated

against the Total Column Carbon Observing Network (TCCON). TCCON is a global

network of ground sites equipped with Fourier-transform spectrometers that perform

regular measurements. The instruments are pointed directly towards the sun, thus

guaranteeing a high signal-to-noise ratio. Wunch, Toon, et al. (2011) describe the

retrieval methodology in detail. In the development of globally-spanning satellite

records of atmospheric CO2, TCCON has proven to be an invaluable validation

source, as it allowed deriving quality filter criteria and explore biases in the XCO2

retrievals. Figure 12.1 shows the location of TCCON sites that were used to validate

the OCO-2 retrieval setup.

Figure 12.1: Location of
the 13 TCCON sites that were
used for the validation.

Matching a satellite overpass to a TCCON measurement is a di�cult task in itself, as

one must consider that given the meteorological conditions, a satellite measurement

at a distance away from the ground station potentially samples di�erent air masses.
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Wunch, Wennberg, Toon, et al. (2011) have proposed a method that uses the air

temperature at a pressure level of 700 hPa, T700, to determine collocation between

any satellite measurement and a coincident TCCON measurement. If T700 at the

satellite measurement location is within ∆T of T700 at the TCCON location, one can

consider the satellite sampling the same air parcel as the TCCON station. Thankfully,

OCO-2/TCCON pairings acquired via this method were provided by Brendan Fisher

from the Jet Propulsion Laboratory.

The supplied validation set using version 8 L1B radiances contains N ∼245 000

soundings from September 2014 to December 2016, in nadir and glint measurement

modes for both land and ocean surfaces. A basic filter was applied to retain only

converged retrievals for which the fit quality in each band fulfils 0.75 < χ2 < 2, and

less than three divergent steps were performed. This leaves about N ∼200 000 (∼80 %)

retrievals, of which N ∼175 000 had appropriate TCCON overpasses. The retrievals

were computed using the PCA-based fast RT method using 3 EOFs per bin.

A known feature of OCO-2 retrievals related to the instrument is the footprint-

dependent bias (Wunch et al. 2017). As each footprint can be treated as a separate

instrument (see Section 3.2, Page 23), and the footprints are spatially adjacent, a

bias can be inferred. Assuming that XCO2 is approximately constant across a frame

(all eight footprints), di�erences to the median value can be attributed to instrument

or retrieval biases. For the determination of the footprint bias, only frames with at

least six valid retrievals were taken into account. The derived footprint biases are

shown in Figure 12.2.
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Figure 12.2: Footprint biases for each measurement mode separately.

While there are slight di�erences in the di�erent measurement modes and surface

types, footprints number six and eight are large outliers for all modes, which is

similar to the biases reported in Osterman et al. (2017). Given that the biases are

found to be close to those published by Osterman et al. (2017), the biases are indeed
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likely to be related to the instrument or the instrument calibration, rather than the

algorithm. The median value of the footprint-dependent di�erences to the frame

medians (orange lines in Figure 12.2) is then subtracted from every retrieved XCO2

value according to the footprint number.

The comparison of the retrieved and footprint bias-removed XCO2 against the

TCCON-collocated measurements (for all stations) is shown in Figure 12.3 and

Figure 12.4.
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Figure 12.3: Comparison of land scenes (nadir & glint) against TCCON measure-
ments, which were collocated by Brendan Fisher ( JPL). The left panel shows the point
cloud coloured by the mode of the footprints within the bin. An apparent footprint
bias would be seen as di�erently coloured and distinct regions in the correlation plot.
Footprint number eight is slightly overrepresented in the sample, hence why they are
also represented as the dominant colour in this plot.

It has to be noted that the processed subset of OCO-2 soundings is pre-selected and

contains mostly “well-behaved” scenes, i.e. feature low aerosol loading. Hence the

statistics shown in those two figures are very favourable with a mean bias of ∼1 ppm.

Land scenes show a higher overall scatter with 1.6 ppm compared to the ocean

measurements with 1.1 ppm. The left panels in the figures show the distribution of

footprints. For every cell in the two-dimensional histograms, the colour is determined

by the most prevalent footprint number. The somewhat random-seeming distribution

of the colours associated with the footprints is a good indication that there are no

residual footprint-dependent features left. In Figure 12.3, footprint number eight

seems to be predominant in this TCCON comparison, however this is a result of a

non-uniform distribution of footprints in the data set (Figure 12.5).
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Figure 12.4: Same as Figure 12.4, but for ocean scenes.
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Figure 12.5: Distribution of foot-
prints in the subset after minimal fil-
tering for convergence and fit quality.

Retrieval biases were identified empirically by visually investigating diagnostic graphs

like Figure 12.6, in which a linear model is fitted to the UoL-FP/TCCON di�erences

as a function of a retrieval-related parameter.

For land retrievals, biases with respect to the following parameters were identified:

the di�erence between retrieved and prior surface pressure (∆psurf), the ratio of

retrieved albedos between the O2 A-band and the strong CO2 band, as well as the

ratio between the surface- and 15th-level of the retrieved CO2 profile (CO
grad
2 ). For

ocean scenes, bias correction parameters are the XCO2 uncertainty as well as ∆psurf .

The bias correction procedure was performed for land (nadir & glint) and ocean glint

measurements separately, and the derived coe�cients are tabulated in Table 12.1.
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Figure 12.6: This figure
demonstrates a systematic
surface pressure bias for land
retrievals, which explains
almost 23 % of the variance
of the UoL-FP/TCCON dif-
ferences. The bias is roughly
−0.35 ppmhPa−1. Inspired by
C.W. O’Dell’s diagnostic plots.

Coe�cient Land Ocean

Intercept −16.5573 1.9556
∆psurf −0.3195 −0.08235
ρ1/ρ3 0.2895 -

COgrad
2 15.7502 -

σXCO2 - −5.5233

Table 12.1: Bias correction coe�cients.

The bias-corrected XCO2 values are obtained by subtracting the bias term:

XCOcorr
2 = XCO2 −

(
Ncoef∑
i=0

bipi

)
, (12.5)

where bi are the bias correction coe�cients from Table 12.1, and the pi are the

corresponding parameters of the particular sounding (∆psurf, etc. ). After bias

correction, the values are compared against the matched TCCON measurements,

and summarised in Table 12.2. The overall bias is by definition 0 ppm, and the

overall scatter (standard deviation) is 1.2 ppm. The values are comparable with

Wunch et al. (2017) and thus show that the retrieval set-up produces results that are

comparable with the o�cial OCO-2 data product. Admittedly, the pre-selection and

filtering of soundings is an arduous and complicated task, which was already done

for the set of measurements provided by Brendan Fisher.

12.3 Intercomparison of Fast RT Methods

To visualise the radiance residuals for all three fast RT methods, a set of typical

retrieval scenarios was constructed for which full line-by-line calculations as well

as approximations were computed. The surface was chosen to represent a typical

grass-like biome with albedos 0.47, 0.29 and 0.07 for the three bands. The viewing
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Site ∆ [ppm] σ [ppm] N

Anmeyondo −0.38 1.53 721
Armstrong 0.40 1.54 17512
Ascension −0.13 0.93 8077
Bialystok −0.02 1.11 3182
Bremen 1.12 1.39 467
Caltech −0.09 1.41 1253
Darwin 0.22 0.91 22383
Garmisch 0.36 1.89 3101
Izana −0.70 1.18 795
Karlsruhe 0.93 1.31 4571
Lamont −0.14 1.10 63783
Lauder −0.17 0.72 7531
Manaus −0.38 1.47 5
Orleans 0.61 1.28 3635
Paris −0.06 1.42 3594
Park Falls −0.24 1.16 10736
Reunion −0.08 0.81 8269
Rikubetsu 0.55 1.04 1326
Saga −1.03 1.35 2878
Sodankyla 0.17 1.04 608
Tsukuba −0.16 1.95 1276
Wollongong −0.25 1.12 8366

Station-to-Station 0.02 0.30 -

All 0.00 1.20 174069
All (land) −0.02 1.28 131538
All (ocean) 0.07 0.90 42531

Table 12.2: Statistics (bias ∆ and scatter σ) of the UoL-FP/TCCON matching
and comparison, after the bias correction procedure. Station-wise biases are
calculated as the mean and standard deviation of the per-station means. Infor-
mation on the sites themselves can be found at the o�cial TCCON website
(“TCCON - Tccon-Wiki” 2018).

geometry was close to nadir with a 1° viewing zenith angle, and the solar zenith

angle was varied at either 15° or 65°. For each of the two solar geometries, four

di�erent aerosol scenarios were chosen which di�er in optical depth only. The aerosol

mixtures remained the same: a small-type carbonaceous, continental black carbon

type, as well as a large-type carbonaceous dusty mixture, corresponding to types

5c and 4c from R. Kahn et al. (2001), respectively. Height profiles of both mixtures

are parametrised as Gaussians with respect to altitude, the small one is centred at

2 km with a width (standard deviation) of 1.5 km, whereas the large type is centred at

1.5 km with a width of 1 km. Additionally, each scenario also features a cirrus cloud

aerosol type at 10 km altitude with 0.5 km width.
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12.3. Intercomparison of Fast RT Methods

The residuals for the most challenging case (AOD: 0.53) for both aerosol mixtures,

cirrus AOD: 0.15, solar zenith angle: 65°), are presented in Figures 12.7 to 12.9.

In those figures, the instrument-independent high-resolution residuals are assessed

through the relative values of the Stokes components (see Equation 11.43). The

radiance di�erences after multiplication with the high-resolution solar spectrum,

relevant entries of an instrument Müller matrix and convolution with an OCO-2

like instrument line shape (Table 11.3) are also shown in the last panel. The Müller

matrix coe�cients were chosen to be m11 = 0.5, m12 = 0.24, m13 = −0.44, m14 = 0.

For demonstration purposes, five EOFs were chosen for the PCA-based method. The

scenarios themselves represent rather extreme cases in terms of full-physics XCO2

retrievals, as most soundings with aerosol loadings & 0.3 end up being flagged during

quality filtering procedures. The same holds for large solar zenith angles. Residuals
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Figure 12.7: Residuals of the O2 A-band for a challenging scenario with high aerosol
loadings and large solar zenith angle. The top three panels show the relative point-by-
point residuals ∆Irel (as percentage), and Stokes fractions ∆q and ∆u . They are based
on the full SS+MS Stokes vectors and are thus instrument-independent. The last panel
shows the total intensity after S is multiplied with the Müller matrix components (m11,
m12, m13) and subsequently convolved with a Gaussian instrument line shape function.

are generally accentuated in line cores for most bands and methods, mainly due to
3Aerosol optical depth at 750 nm.
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Figure 12.8: Same as Figure 12.7, but for the weak CO2 band. Surprisingly, the
linear-k method exhibits the smallest residuals, however this can be explained through
the dynamic binning strategy that the implementation of the other two methods lack.

the way how Irel and the residual Stokes fractions ∆q and ∆u are calculated. For all

three methods and bands, the residuals appear mostly flat, despite the rather heavy

aerosol loading, showing that the various approaches to deal with spectrally varying

scattering parameters work well. A small residual slope for the Stokes fractions q

and u is seen for the LSI method in the O2 A-band. Looking at the residuals of the

convolved radiances, it becomes clear that the shape of the residuals is significantly

di�erent for the various fast RT methods.

Using linear error analysis, these spectral residuals can be translated into XCO2

errors, as was done in Section 11.5. Here, the gain matrix was calculated using the

Jacobians obtained by the PCA-based method, which provides the most accurate

reconstruction in that regard. Rather than reporting only one number, however, the

contributions of the bands to the total error are listed in the following tables. Along

with the XCO2 errors, the interquartile ranges of |∆Irel | are listed as well. Table 12.6

is a summary of the XCO2 errors that includes also a sum of all partial contributions

for each band.

While it is di�cult to draw universal conclusions from this very small number of

191



12.3. Intercomparison of Fast RT Methods

−2

0

∆
I r
el
[%
]

Strong CO2

linear-k
PCA
LSI

−0.0025

0.0000

0.0025

∆
q

−0.001

0.000

0.001

∆
u

2080.02071.752063.52055.252047.0
Wavelength [nm]

−4

−2

0

∆
I r
el
co
nv
.
[%
]

Figure 12.9: Same as Figure 12.7, but for the strong CO2 band.

scenarios, Tables 12.3 to 12.5 suggest the following. Reconstruction accuracies tend

to be best for the weak CO2 band, which is not surprising given the smaller range

of gas optical depths occurring in that band. It is surprising, though, that for that

particular band, the linear-k method performs so well and is easily outclassing even

the PCA-based method using five EOFs. This could be attributed to the binning

strategy, which is static for both PCA-based and LSI methods. In terms of residuals,

both the O2 A-band and the strong CO2 band show similar relative magnitudes,

however the XCO2 errors are larger for the strong CO2 band. Radiance errors in

the O2 A-band cause XCO2 errors due to errors in the retrieved surface pressure,

whereas in the CO2 bands, the mismatch of spectral lines is more directly responsible

for a di�erence in CO2 concentrations.

The general behaviour remains as expected, with increasing aerosol loadings as well

as increasing solar zenith angle, the residual magnitudes increase as well. Across

most scenarios and bands, the PCA-based method performs best in terms of both

residuals and XCO2 errors, where as LSI and linear-k are similar. For scenarios 5 and

8, the XCO2 errors for PCA-based method stem mostly from the weak CO2 band,

and these two cases are the only ones in which the linear-k method outperforms the

PCA-based approach.
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12.3. Intercomparison of Fast RT Methods

O’Dell (2010) does not state XCO2 errors as a result of the approximation error, and

the numbers reported in Hasekamp et al. (2008) are in line with the values listed in

Table 12.6.

O2 A-band

Aerosol 0.05 / 0.05 0.50 / 0.05 0.05 / 0.50 0.50 / 0.50
Cirrus 0.01 0.01 0.01 0.15
SZA 15° 65° 15° 65° 15° 65° 15° 65°

Scenario # 1 2 3 4 5 6 7 8

∆Irel
linear-k 0.79 1.30 0.95 1.69 2.17 2.56 2.84 4.09

LSI 1.51 3.67 1.99 5.56 3.06 8.21 2.35 5.44
PCA 0.04 0.08 0.12 0.25 0.13 0.28 0.10 0.24

∆q
linear-k 0.09 2.53 0.23 5.57 0.21 4.59 0.60 7.46

LSI 0.23 3.39 0.26 6.42 0.40 5.94 0.29 10.53
PCA 0.01 0.11 0.01 0.33 0.02 0.21 0.03 0.28

∆u
linear-k 0.04 0.93 0.09 2.04 0.08 1.68 0.23 2.74

LSI 0.09 1.24 0.10 2.36 0.16 2.17 0.12 3.86
PCA 0.00 0.04 0.00 0.12 0.01 0.08 0.01 0.10

∆Irel (conv.)
linear-k 2.41 2.88 5.35 4.13 8.62 8.28 9.50 10.52

LSI 1.96 5.76 2.77 9.40 4.37 13.38 4.13 10.31
PCA 0.08 0.24 0.22 0.55 0.29 0.70 0.23 0.42

∆XCO2

linear-k −0.04 0.02 0.07 −0.12 −0.49 0.33 1.22 −0.68
LSI −0.01 −0.51 −0.10 −0.65 −0.70 1.12 0.33 −0.56
PCA 0.00 −0.01 0.00 0.02 0.01 0.05 0.00 −0.04

Table 12.3: The first three lines in the table header define the scenario. Aerosol
optical depths for small and large-types, cirrus cloud optical depth, and solar
zenith angle. For each of the eight scenarios, the interquartile range of the
absolute value of the residuals are listed. ∆Irel and ∆Irel (conv.) are in units of
0.01 %, ∆q and ∆u are in units of 1 · 10−5. XCO2 errors are in ppm.

Performing linear error analysis on eight scenarios already reveals that for the globally

most common aerosol configuration (optical depth . 0.1), the estimated errors are

very small and thus will most likely not have any significant e�ect on the final XCO2

or any derived quantities (i.e. fluxes). Especially considering that bias correction

procedures a�ect the retrieved concentrations to a larger extent.

All three discussed fast RT methods were fully implemented into the UoL-FP retrieval

scheme. This allows running full end-to-end retrievals with one consistent algorithm

where only the fast RT method is changed between runs. Such an analysis has not

been published for XCO2 retrievals from the SWIR so far.

The selection of soundings to retrieve was based on a compromise between global

coverage, distribution of measurement modes (land nadir, land glint, and ocean glint),

as well as data volume (number of orbits). At the end, soundings (extracted from the

193



12.3. Intercomparison of Fast RT Methods

Weak CO2

Aerosol 0.05 / 0.05 0.50 / 0.05 0.05 / 0.50 0.50 / 0.50
Cirrus 0.01 0.01 0.01 0.15
SZA 15° 65° 15° 65° 15° 65° 15° 65°

Scenario # 1 2 3 4 5 6 7 8

∆Irel
linear-k 0.03 0.05 0.10 0.13 0.07 0.09 0.06 0.14

LSI 0.32 0.95 0.64 2.39 0.69 3.35 0.99 4.56
PCA 0.10 0.25 0.48 1.50 0.83 2.74 0.95 2.18

∆q
linear-k 0.00 0.01 0.01 0.04 0.01 0.03 0.02 0.05

LSI 0.02 0.25 0.14 2.01 0.64 0.81 1.42 1.40
PCA 0.01 0.13 0.04 1.26 0.09 1.13 0.12 1.54

∆u
linear-k 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.02

LSI 0.01 0.09 0.05 0.74 0.24 0.30 0.54 0.51
PCA 0.00 0.05 0.02 0.46 0.03 0.41 0.05 0.56

∆Irel (conv.)
linear-k 0.05 0.08 0.11 0.16 0.10 0.15 0.26 0.49

LSI 0.28 0.79 0.50 1.69 0.51 3.34 0.75 3.79
PCA 0.10 0.28 0.59 1.86 0.80 2.70 0.79 1.79

∆XCO2

linear-k 0.02 0.07 −0.02 0.02 −0.03 −0.03 0.12 −0.37
LSI −0.04 0.09 −0.03 −0.33 −0.24 0.21 0.31 0.17
PCA 0.00 −0.01 0.02 0.08 −0.02 0.54 0.09 0.62

Table 12.4: Same as Table 12.3, but for the weak CO2 band.

Strong CO2

Aerosol 0.05 / 0.05 0.50 / 0.05 0.05 / 0.50 0.50 / 0.50
Cirrus 0.01 0.01 0.01 0.15
SZA 15° 65° 15° 65° 15° 65° 15° 65°

Scenario # 1 2 3 4 5 6 7 8

∆Irel
linear-k 0.34 0.66 1.48 2.69 1.68 2.98 1.74 3.97

LSI 0.21 0.60 0.63 3.07 0.56 4.89 1.31 4.74
PCA 0.07 0.14 0.33 1.37 0.35 2.49 0.71 2.56

∆q
linear-k 0.04 0.60 0.21 6.91 0.24 6.96 0.56 12.42

LSI 0.11 1.96 1.81 20.08 2.21 13.41 3.36 20.22
PCA 0.07 0.88 1.07 12.97 1.33 10.96 2.25 15.72

∆u
linear-k 0.02 0.22 0.08 2.54 0.09 2.55 0.22 4.59

LSI 0.04 0.72 0.69 7.37 0.84 4.93 1.27 7.42
PCA 0.03 0.32 0.41 4.76 0.50 4.02 0.85 5.77

∆Irel (conv.)
linear-k 0.37 1.09 1.64 4.47 1.88 5.29 4.33 17.55

LSI 0.25 1.99 0.90 6.85 1.23 10.35 4.10 14.41
PCA 0.10 0.33 0.38 1.87 0.58 5.03 1.39 4.39

∆XCO2

linear-k −0.02 −0.07 −0.07 −0.27 −0.14 −0.16 −0.44 0.64
LSI 0.00 0.01 −0.03 −0.08 −0.04 −0.19 0.06 −0.39
PCA 0.00 −0.01 0.00 −0.06 −0.01 −0.03 0.09 0.09

Table 12.5: Same as Table 12.3, but for the strong CO2 band.
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XCO2 Errors [ppm]

Aerosol 0.05 / 0.05 0.50 / 0.05 0.05 / 0.50 0.50 / 0.50
Cirrus 0.01 0.01 0.01 0.15
SZA 15° 65° 15° 65° 15° 65° 15° 65°

Scenario # 1 2 3 4 5 6 7 8

O2 A-Band
linear-k −0.04 0.02 0.07 −0.12 −0.49 0.33 1.22 −0.68

LSI −0.01 −0.51 −0.10 −0.65 −0.70 1.12 0.33 −0.56
PCA 0.00 −0.01 0.00 0.02 0.01 0.05 0.00 −0.04

Weak CO2

linear-k 0.02 0.07 −0.02 0.02 −0.03 −0.03 0.12 −0.37
LSI −0.04 0.09 −0.03 −0.33 −0.24 0.21 0.31 0.17
PCA 0.00 −0.01 0.02 0.08 −0.02 0.54 0.09 0.62

Strong CO2

linear-k −0.02 −0.07 −0.07 −0.27 −0.14 −0.16 −0.44 0.64
LSI 0.00 0.01 −0.03 −0.08 −0.04 −0.19 0.06 −0.39
PCA 0.00 −0.01 0.00 −0.06 −0.01 −0.03 0.09 0.09

Total
linear-k −0.04 0.02 −0.02 −0.37 −0.66 0.14 0.89 −0.41

LSI −0.06 −0.41 −0.16 −1.06 −0.98 1.14 0.70 −0.78
PCA −0.01 −0.02 0.02 0.04 −0.03 0.57 0.18 0.67

Table 12.6: Summary of the XCO2 errors per band from Tables 12.3 to 12.5,
including the total error as the sum of all contributions.

OCO-2 L2 Lite data, version 8r) from every second day of May 2016 were considered.

From these, only every 10th OCO-2 frame is kept. In this subset, the number of ocean

glint measurements is still large compared to land ones, so as an additional filter,

only every 4th ocean glint sounding is kept. The warn-level classification present

in the OCO-2 L2 Lite data is not considered, as the maximal range of geophysical

parameters is desired. This produces a sounding list of roughly 130 000 soundings

from 222 di�erent orbits, where the three di�erent modes (land glint, land nadir and

ocean glint) are approximately equally represented (∼50 000, ∼43 000 and ∼36 000).

The resulting selection is therefore not fully representative of the actual OCO-2

sampling, however the aim here was not to produce a representative set of OCO-2

measurements, but rather to cover as much of the geophysical parameter space as

possible, while keeping the number of soundings small. Figure 12.10 shows the global

distribution of the sounding locations.
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Figure 12.10: Distribution of selected
OCO-2 soundings from May 2016, grid-
ded to a rough 2° by 2° grid. The set
covers most landmasses and oceans apart
from Antarctica and the southern oceans,
with some noticeable gaps near the In-
dian ocean, Patagonia, tropical Africa
and patches in Eastern Asia and Central
Northern America.
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To analyse the results, the retrievals are sub-setted so that only soundings which

were successfully completed by the algorithm, regardless of their outcome or quality.

For the LSI and linear-k methods, the completion rate4 was over 99 %, the retrievals

utilising the PCA-based method however exhibited a lower rate with ∼97.5 %. The

di�erence in completion rate is due to the eigenproblem solver DSYEV returning an

error during the computation of the eigenvectors and eigenvalues (see Equation 11.22,

Page 161) in some cases.

Before the retrieval results are assessed, the computation performance of the methods

can be compared. The total execution time of each retrieval is measured via the

UNIX date command. This way of measuring the runtime does not fully correspond

to CPU time, as any delay by I/O processes are included in the total runtime. In

Figures 12.11 and 12.12 the runtimes are visualised per iteration (runtime divided

by the sum of iterations), and show the expected trend - the two runs using the

PCA-based method are the slowest, and linear-k is the fastest. Since all retrievals

are performed using the same set-up (within the respective land/ocean group), the

width of each distribution represents the variability of the runtime due to various

influences, such as hard-drive access times or current CPU load on the computation

node. Table 12.7 lists the per-iteration runtimes as well as the total integrated runtime

for the subset of all retrievals that converged in all of the four runs.
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Figure 12.11: Retrieval run-
times per iteration in minutes,
showing that linear-k is, on aver-
age, 18 % shorter than LSI, which
is about 25 % shorter than the
PCA-based method using one
EOF. Using five EOFs increases
the runtime by roughly 65 % com-
pared to using only one EOF.

Apart from the number of utilised CPU hours, the retrievals themselves show signifi-

cant di�erences, as a quick look at the number of iterations and number of divergent

steps reveals the influence of the fast RT method. About 25 % of ocean retrievals, and

1 % of land retrievals exhibit a di�erent number of iterations between the four runs.

In terms of convergence rates, linear-k has the lowest value with 81 % (88 % for land),
4Fraction of successful executions of the retrieval algorithm compared to the total number of

executions.
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ure 12.11, but for land soundings.
The overall picture is the same,
however the distributions feature
more prominent tails.

Ocean Land
per iteration total runtime per iteration total runtime

PCA(5) 4.09 ± 0.75 8588 3.49 ± 0.92 17508
PCA(1) 2.47 ± 0.62 5184 2.42 ± 0.60 11965
LSI 1.86 ± 0.33 3933 2.19 ± 0.61 10998
linear-k 1.54 ± 0.38 3561 1.73 ± 0.61 9464

Table 12.7: Runtimes per iteration (in minutes) as well as total runtime in
hours for roughly 31 000 (ocean) and 85 000 (land) retrievals. A full line-by-line
computation takes about 45min per iteration.

whereas the other three runs have a 88 % (92 %) rate. Looking at the distribution of

iterations and divergent steps (Figure 12.13) shows that more retrievals using the

linear-k method encountered a fourth divergent step, at which the retrieval is aborted

and counted as non-convergent.
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Figure 12.13: Distributions of numbers of iterations (left) and numbers of divergent
steps (right) for ocean soundings. The retrievals were set up to abort after more than
3 divergent steps.
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Figure 12.14: Same as Figure 12.13 but for land soundings.

The fit quality, characterised by χ2, is similar for all three methods for the weak

and strong CO2 bands, but diverges slightly for the O2 A-band. Here, only those

retrievals are considered for which the respective method yielded a convergent

retrieval. Measurements near the South Atlantic Anomaly have been excluded as

well. For the O2 A-band, the LSI method exhibits on average slightly lower χ2 values,

and linear-k retrievals are on average higher. Box-plot representations of the χ2

distributions are shown in Figures 12.15 and 12.16, and highlight that the fit quality

of the ensemble of converged retrievals only significantly changes between runs for

the O2 A-band.
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Figure 12.15: Box-plots illustrating the χ2 values for the three bands and the four
di�erent runs (ocean retrievals).

The increased χ2 for land retrievals can be explained through the equally increased

SNR. While one would intuitively expect the SNR for ocean glint measurements

to be higher, the actual measurements show the opposite. This is the result of the

polarisation anomaly mitigation strategy (Crisp et al. 2017), in which the OCO-

2 spacecraft is rotated by 30° (yaw angle) for glint observations. The mitigation
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Figure 12.16: Same as Figure 12.15 but for land retrievals.

strategy was a response to a design mistake due to which the OCO-2 instrument’s slit

alignment was mistakenly constructed to attenuate the ocean glint signal. While this

modified yaw angle has very little e�ect for mostly unpolarising land surfaces, the

SNRs for ocean glint measurements are recovered to values between 200 and 600.

With increasing SNR, the impact of the residual waveforms to compensate for sys-

tematic errors in the forward model becomes more important. Ideally, there should

be no relationship between the SNR and the fit quality, as the reduced χ2 statistic

takes into account the expected noise level. Looking at 2D histograms between these

two quantities in Figure 12.17 reveals that there is a relationship for both land and

ocean retrievals. For land retrievals, however, the relationship is more striking as the

range of SNRs is greater.

Summarising the statistics regarding convergence, the linear-k runs show a higher

number of non-converging retrievals as well as a noticeably wider distribution of χ2

values for the O2 A-band, for both land and ocean scenes.

Further analysis of the retrieved quantities is performed on a subset of data, where

only those retrievals are included, for which the convergence criteria was met for all

four runs. This leaves the final subset with ∼32 000 land nadir, ∼36 000 land glint,

and ∼25 000 ocean glint retrievals.

A simple way of assessing the di�erences of the runs globally is to calculate averages

for latitudinal bins. Using 4° bins, means for XCO2 are calculated for every run

independently, and the latitudinal means are then subtracted from the bin median

across the four values. Figure 12.18 shows these di�erences and highlights that the

run using linear-k is consistently an outlier for all measurement geometries. For both

land and ocean glint modes, the linear-k retrievals diverge at northern latitudes past

20°. For the land nadir observation mode, the retrievals show the largest di�erences

at high northern latitudes, the tropics and southern mid-latitudes. In Figure 12.18,
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Figure 12.17: Fit quality (χ2) versus signal-to-noise ratio for the PCA(5) run.

the two runs using the PCA-based method are almost indistinguishable, whereas the

land retrievals utilising the LSI show di�erences in regions similar to the linear-k

runs, albeit of smaller magnitude. The di�erences in the latitudinal means confirm

the results from the linear error analysis (Table 12.6), which predicted errors up to

1 ppm, with di�erent signs.

The di�erences between the four runs are visualised in Figure 12.19. This matrix

of maps is to be read in the following way: in the outer rows and columns, maps of

the retrieved XCO2 are displayed - land scenes at the top row and rightmost column,

ocean scenes at the leftmost column and bottom row. XCO2 values are plotted using

a sequential colour map, darker colours representing higher concentrations. These

absolute concentration maps share the same colour mapping, the first map in the top

row as well as leftmost column feature an indicator which state the limits of the colour

map to give an indication of the value range. The inner maps of the matrix show the

pairwise di�erences between the four runs, where the (i, j )-th (row, column) map of

the inner matrix is calculated as XCO2(i ) −XCO2( j ). For example, the map of the

first row / last column (1,3) of the inner matrix is the di�erence between the PCA(5)

run and the linear-k run. The di�erences are calculated on a per-sounding basis

before the data is then gridded (4° grid cell size) and plotted on the map. For the

pairwise di�erences, a divergent red-blue colour map is used with red representing
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Figure 12.18: Latitudinally binned XCO2 displayed as di�erences to the median of
all four values of that bin (4° spacing). The shaded areas represent the standard error
of the latitudinal bin.

positive values, blue representing negative values, and white representing the central

data bins −∆x < x < ∆x .

Looking at the ocean glint measurement mode (lower triangle of the map matrix), the

di�erences between the two PCA runs and the LSI run behave very similarly, apart

from the magnitude. These three runs show pairwise di�erences in the southern

tropics and southern sub-tropics. A similar band is seen at higher northern latitudes.

In addition, the PCA(1) and PCA(5) runs show di�erences in the Atlantic ocean

at the dust outflow regions, hinting at a dependence on aerosol optical depth. The

linear-k run behaves di�erently, as the distinct band south of the equator is not present,

however di�erences at the dust outflow regions suggest a dependence on aerosol

loadings as well. The two runs using the PCA-based method show a surprisingly low

overall di�erence - for ocean scenes, the 95 % of retrievals exhibit a di�erence less

than 0.033 ppm.

For land scenes, the magnitude of di�erences is roughly two to three times larger

than for the ocean glint measurements. Intuitively, this is expected as the SNR for

land-type measurements is, on average, higher than for ocean glint observations.

The maps in Figure 12.19 show the spatial patterns of the di�erences, however also
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Figure 12.20: Di�erences between the respective retrieval runs to the median (like
in Figure 12.19) as functions of the prior aerosol optical depths (for small and large
type aerosol mixtures) and the geometric airmass factor. The shaded areas represent
the standard error of the ∆XCO2 values in the respective AOD or AMF bin.

obfuscate the geophysical parameters that cause them. The two main parameters

associated with RT approximation errors are the viewing geometry and aerosol

loading. Plots of the di�erences as functions of these parameters are shown in

Figure 12.20 for the three observation modes. The most distinct bias for the linear-k

method appears for ocean glint retrievals as a function of the small type aerosol optical

depth. The dependence for land measurements is not as clear, as the di�erences

become smaller for larger AOD. For the large type aerosol mixture, the bias is

similarly clear for ocean glint measurements - the retrieved XCO2 diverges with larger

AOD for the PCA-based and LSI methods. The AOD-dependence for land scenes

is not as straightforward, as for example the LSI runs diverge from the PCA runs

at lower AODs. For land nadir retrievals, the largest linear-k di�erences are seen at

larger airmass factors.

To investigate the cause of the large departures of the retrieved XCO2 for the linear-k

retrievals, the retrieved aerosol optical depths for the small-type, large-type and cirrus

mixtures are plotted as functions of prior AODs (and latitude for the retrieved cirrus)
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Figure 12.21: Similar to Figure 12.20 (and same colour coding), but with retrieved
AODs rather than the retrieved XCO2. For the last row (cirrus AODs), the retrievals
were binned according to their latitude, as the prior is the same for every scene.

in Figure 12.21. It becomes immediately clear that the XCO2 di�erences inherent in

the linear-k retrievals are linked to the retrieved aerosols. Retrieved aerosol optical

depths for linear-k retrievals substantially di�er from the other 3 runs for most prior

scenarios. Land glint and land nadir behave very similarly in that regard, whereas

the ocean glint retrievals are distinct, especially for the retrieved cirrus AOD.

A possible explanation as to why the retrievals using linear-k method show such

di�erent results points to the way that the method handles atmospheric weighting

functions (or Jacobians). As established in Section 11.3, linear-k approximates the

MS contributions and weighting functions, and adds them to the exactly calculated

SS contributions of the Stokes vectors. The method itself di�ers from LSI and the

PCA-based method (see also Section 11.6) in that the other two methods use a low-

accuracy MS calculation as a basis for the correction procedure. Linear-k lacks these

low-accuracy calculations and relies only on linear interpolation to obtain the MS

contributions to the weighting functions at every spectral point. For most weighting

functions, this appears to be a feasible procedure, as long as the MS contributions

to the total weighting function are not dominant. Since the UoL-FP algorithm uses
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full aerosol extinction profiles (for each mixture), the Jacobians for these state vector

elements are mostly MS dominated. The reconstruction accuracy for these Jacobians

is thus much lower when compared to calculations using LSI and the PCA-based

method. After the first iteration, the aerosol Jacobians drive the state vector into a

slightly di�erent direction and thus result in a di�erent final state vector.

12.4 Conclusions

The OCO-2 retrievals in Section 12.2 show that the UoL-FP algorithm was successfully

adapted to the OCO-2 instrument. When validated against the TCCON ground

network, the retrieved XCO2 exhibit standard deviations of σland = 1.28 ppm and

σocean = 0.90 ppm, which compare favourably against published values in Wunch

et al. (2017) (σocean = 1.42 ppm, σland−glint = 0.90 ppm, σland−nadir = 1.50 ppm);

keeping in mind that Wunch et al. (2017) used daily aggregates whereas individual

TCCON/OCO-2 collocations were used in Section 12.2.

Implementing three di�erent fast RT schemes into the same full-physics algorithm

has revealed interesting results in the final, retrieved XCO2. Considering only the

ocean retrievals, more than 98 % of the converged retrievals are less than 1 ppm apart,

however this percentage drops when considering land scenes (79 %). Both magnitude

and spatial pattern (see Figure 12.19) of the di�erences imply that the choice of

fast RT method does have a significant and systematic impact on the retrieved

atmospheric CO2 concentrations. As pointed out by Chevallier et al. (2007), even

sub-ppm regional biases can significantly a�ect fluxes obtained from the inversion of

satellite data.

The analysis in Section 12.3 does not factor in any aspect regarding bias correction

procedures (Wunch et al. 2017), which are done for most scientific data releases. It is

expected that any correction to some ground truth, be it either TCCON or models,

have the potential reduce the di�erences between the four results.
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Summary

I
have investigated various methods of accelerating radiative transfer calcula-

tions in Part III of the thesis. The general motivation for fast RT methods

was laid out as a result of logistic considerations regarding the large number

of measurements from current and future space-based missions. I have to emphasise

that the discussed fast RT schemes do not improve or alter the established ways of

solving the RT equation. Rather, they reduce the number of needed RT computations

by replacing the thousands of line-by-line calculations by a small set of representative

ones. The results of these representative calculations are then mapped onto all other

spectral points to yield an approximation to a high-accuracy line-by-line calculation.

Speed-ups of two orders of magnitude are common, and thus, these techniques make

the processing of large amounts of retrievals feasible in the first place. Approxi-

mations to full line-by-line calculations are required to be highly accurate. Despite

the fact that radiances are reconstructed with accuracies better than 0.1 % in most

cases, I could demonstrate that the retrieved XCO2 can show significant di�erences

depending on the utilised fast RT method.

I have reviewed three methods that are presently used in XCO2 retrievals from

the SWIR - LSI, linear-k and the PCA-based method - in Chapter 11. As part of

the research for this thesis, I have further developed the PCA-based method in

cooperation with V. Natraj5. The novel addition to the method is the inclusion of

aerosol extinction coe�cients q (sca) into the optical state matrix. Rather than just

using the aerosol scattering properties from the band centre, the quantities required

for the RT calculations (phase function expansion coe�cients and the phase matrix)

are reconstructed from the q (sca). This addition solves the issues related to systematic

residuals induced by the spectrally varying scattering properties of aerosols. While

in the case of the UoL-FP retrieval algorithm, the spectral variation is of a linear

nature, the scheme could deal with non-linear wavelength dependencies in broadband

spectral ranges. With the PCA-method now being able to intrinsically correct for

spectrally varying aerosol properties, I was able to fully implement the method into

the UoL-FP algorithm.
5Jet Propulsion Laboratory, Pasadena, CA, USA
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12.4. Conclusions

I demonstrated the capability of the PCA-based method in Section 11.5. For a

large set of real GOSAT scenes, I performed full line-by-line RT calculations and

compared them to approximations from the PCA-based method. I then analysed the

residuals and subsequently translated them into XCO2 errors (specific for the GOSAT

instrument) by virtue of the linear error analysis framework. From the analysis, I

conclude that XCO2 errors induced by the fast RT method are predicted to be below

0.6 ppm for both ocean or land scenes when two or more EOFs are used. So far,

this analysis is the most in-depth investigation of this fast RT method and has been

published in Somkuti, Boesch, Natraj, et al. (2017a).

Linear error analysis only provides an accurate estimate of the retrieval error if the

retrieval itself is highly linear. For XCO2 retrievals, this is not always the case. Thus,

to quantify the impact of the fast RT scheme, I conducted a more involved exercise.

Both LSI and linear-k methods were implemented into the UoL-FP algorithm to allow

for a fully consistent comparison of the three di�erent fast RT schemes. With the

standard UoL-FP retrieval set up, I find that linear-k is a consistent outlier when

comparing the retrieved XCO2. The underlying cause for the large departure from

the other runs is related to the atmospheric weighting functions that impact the

aerosol extinction profiles. Due to the smaller reconstruction accuracy for weighting

functions in which the MS contributions constitute a much larger part compared to

the SS ones, the aerosol-related Jacobians drive the retrieval into a di�erent region of

the state vector space. Because aerosols and XCO2 are correlated to some degree,

the final XCO2 value as well as the retrieved aerosol profiles depart significantly

from the other three runs. To my knowledge, the analysis of XCO2 retrievals using

three di�erent fast RT approaches that are consistently integrated into one single

algorithms has not been published.
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Final Remarks and Outlook

To conclude the thesis, I will summarise the conducted research and key findings.

The two main research areas, solar-induced chlorophyll fluorescence and fast radiative

transfer, revolve around the measurement of atmospheric carbon dioxide - in particular

the forward model. Space-based measurements of the column-averaged dry-air volume

mixing ratio of CO2 can be used inform flux inversion systems, which then allow the

deduction of regional carbon flux budgets on a global scale. XCO2 measurements

are not only of great interest to carbon cycle science, but also to the monitoring

of anthropogenic emissions to facilitate the meeting of emission targets set by the

COP21 / Paris Agreement. It is imperative that XCO2 retrievals meet the precision

and accuracy requirements needed in order to fulfil these goals. Both SIF and fast

radiative transfer are two components of the utilised retrieval algorithm, which have

a significant impact on the final XCO2 value and therefore need to be understood

and characterised.

Using an established method for the retrieval of solar-induced chlorophyll fluores-

cence, I have generated a SIF data-set spanning the GOSAT record from April 2009

until December 2016. SIF is present in the O2 A-band, which is utilised in XCO2

retrievals. Any contribution to the forward model through a non-zero SIF radiance

prior will therefore influence the retrieved CO2 concentrations. Due to the seasonal

nature of vegetation and SIF, this influence thus exhibits a similar seasonal cycle. I

have processed four years of GOSAT XCO2 retrievals, both with and without the

SIF influence, and directly compared them. I observe significant di�erences up to

about 0.5 ppm when averaged over subcontinental-scale regions. The di�erences are

explained due to a change in retrieved surface pressure as well as a change in retrieved

aerosol extinction. Unfortunately, it is not trivial to translate the spatio-temporal

pattern of the di�erences to estimate the e�ect on flux inversions without actually

performing them.

Apart from being a present contribution in the O2 A-band that impacts XCO2

retrievals, SIF is of great interest due to its inherent relationship to photosynthesis

and plant status. I have revisited the empirical relationship between SIF and GPP via

a process-based model (CASA) and measurements (FluxNet). I find that the derived
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factor relating SIF and CASA-GPP is comparable to the values published in literature.

Interestingly, however, I find that the seasonal cycle of GPP in tropical regions is out

of phase when compared to SIF. This is apparently already known in the OCO-2 flux

inversion community, yet unpublished. They find that posterior fluxes over tropical

regions are equally phase shifted compared to the CASA prior. When deriving the

same factor between GPP and SIF using FluxNet measurements, I find a significantly

lower value than the CASA-derived one. Considering the average footprint size of

flux towers (a few km2), I conclude that GOSAT’s sampling pattern is the main

cause of the di�erence, and I show this by investigating the sampling bias using

CASA model data. As a final item, I study the intense 2012 North American drought

using the SIF retrievals. I show that this large-scale drought event is evident in the

SIF measurements, regardless of the used micro-window, polarisation or calibration

technique. 2012 was special in that an early warm spring not only caused larger

productivity before the onset of summer, but was also responsible for exacerbating

the drought due to early depletion of water stored in the soil. I can observe the early

spring through SIF, while also relating the SIF anomaly to anomalous carbon uptake.

For the second part of the thesis, I investigate fast radiative transfer methods. Being

crucial for making full-physics XCO2 retrievals possible in the first place, I give an

overview of three state-of-the art methods. My main focus was then the PCA-based

method. I contributed to the further development of this particular fast RT scheme

by introducing a way to deal with spectrally varying aerosol scattering properties.

As all approximation methods come with reconstruction errors, I have conducted a

detailed study on the errors induced by the PCA-based method and applied linear

error analysis to estimate the error on the retrieved XCO2. This work was published

in Somkuti, Boesch, Natraj, et al. (2017a). While linear error analysis can produce

realistic estimates, the often non-linear nature of XCO2 retrievals cannot be taken into

account this way. Thus, I decided to commit to the arduous task of implementing the

three methods natively into the UoL-FP algorithm. This allowed to perform retrievals

in a consistent manner by just changing the RT portion of the forward model, and

leaving all other aspects unchanged. To demonstrate the e�ect that the fast RT

methods have on the final XCO2 value, I processed several hundred thousand OCO-2

soundings which took more than 70 000 CPU hours. The outcome of the analysis was

somewhat surprising, as the linear-k method stood out as a significant outlier. While

being the fastest of all three methods, it is also the technique with the least accurate

reconstruction of multiple-scattering related atmospheric weighting functions. As

a result, the retrieved aerosol properties diverge from those for the other methods.

It is conceivable that this result is only particular to the UoL-FP algorithm, which

retrieves a full extinction profile for every aerosol mixture. The di�erences between

the methods are generally less than 1 ppm, making them significant - especially since
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the di�erences are relatable to geophysical parameters such as aerosols or viewing

geometry. Similar to the discussion of the influence of SIF on the XCO2 retrievals,

the same arguments hold. Sub-ppm biases can significantly change the outcome

of flux inversions. But also here I must reiterate that bias correction procedures

can alter the results and potentially reduce the di�erences and lessen the impact

of the inaccuracies of the fast RT methods. The PCA-based method results in the

smallest radiance errors for scenes with high aerosol loadings, making it particularly

suitable for XCO2 retrievals near cities with a high degree of air pollution. Cities

will be a focus of future space-based missions to aid the monitoring of anthropogenic

emissions.

From the results obtained in this thesis, I can formulate three main items of relevance

that are worth investigating further.

• E�ect of SIF and fast RT schemes on bias corrections Both Chapter 8 and

Chapter 12 explore the e�ect of an aspect of the forward model on the final,

retrieved XCO2. While the results show that neither aspects can be neglected,

it is unclear how these di�erences would impact the bias correction procedures

which are routinely performed for public data releases. I expect the di�erences

to be reduced as the XCO2 data would be (per definition) corrected to match

up with some (ground) truth. However, it would not be surprising if there

would be di�erences left, and it would be interesting to see if either the fast RT

method or the non-zero SIF prior have any lasting e�ect on XCO2 biases.

• Future of Full-Physics XCO2 Retrievals I have shown that the PCA-based

method can provide the best approximation to full line-by-line MS calculations,

when compared to two other contemporary and established models. The

accuracy, however, comes at a computational cost. For the full GOSAT record

with a few million cloud-free measurements, this is not a big issue given the high-

performance computing resources that the University of Leicester has access to.

The data volume of OCO-2 is about a hundred times larger, meaning that it

would take approximately a day6 to process ∼60 000 cloud-free measurements

taken on a single day, even with a quicker fast RT scheme (such as linear-k).

Future satellite missions will further increase the data volume to be closer

to ∼10 000 000 measurements per day, at which point the full-physics scheme

must be revisited or replaced, unless the computing resources are scaled up by

the same amount. Machine learning techniques could provide an interesting

approach, in which a set of full-physics retrievals can be used to train a classifier.

The classifier could then produce the XCO2 value very quickly, given the
6Given the currently available computing resources at the University of Leicester and assuming

maximum utilisation
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measured radiances and other meteorological parameters. The issue is a rather

pressing one, as space-based retrievals will play a big role in the monitoring

and attribution of anthropogetic CO2 emissions in support of COP21 (Paris

Agreement). European contributions to emission monitoring in the near future

are the MicroCarb mission (Pascal et al. 2017), to be launched in 2020, as well

as the proposed Sentinel 7 mission, which is actually a constellation to allow

for short revisit times.

• Fluorescence for Monitoring Vegetation Health In this thesis, I have exclu-

sively focused on GOSAT for the retrieval of SIF. While many of the lessons

learned can be generalised to other and future satellite missions, GOSAT was

not designed to measure surface properties. As such, the GOSAT sampling

pattern has always been a limiting factor to study the terrestrial biosphere.

However GOSAT, along with GOME-2, have provided a historical set of mea-

surements spanning over 6 years, and are still ongoing (as of April 2018). More

recent (OCO-2, Sentinel 5-P) and future missions (FLEX) which can provide

SIF measurements on a much denser spatial sampling need to be compared to

each other and the long-term GOSAT record. This comparison however, needs

to be comprehensive and fully taking into account the footprint extent of all

involved instruments. Working exclusively on gridded L3 data, which is very

common in the land surface community, is not su�cient in this case.
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Appendix A

The Discrete Ordinates Method

While a number of simplifications were applied to yield the scalar RTE in Equa-

tion 10.11 (Page 146), it is still an integro-di�erential equation in I (θ, φ, τ). The phase

function P can be further simplified under the assumption of an optically isotropic

and homogeneous medium. Rather than being a function of both incidence angle

and outward scattered angle, P is only dependent on the scattering angle Θ:

cosΘ = cos θ′ cos θ + sin θ′ sin θ cos(φ − φ′). (A.1)

This specific structure of P (Θ) makes the so-called discrete ordinates method viable.

Already laid out in Chandrasekhar (1960), the solutions to the RTE can be approxi-

mated by replacing the integral in the emission term by a sum. In this section, the

implementation for the LIDORT radiative transfer model (Spurr 2008) is outlined,

which uses the discrete ordinate method to calculate approximate solutions to the

RTE.

The phase matrix P (Θ), now a function of the scattering angle Θ only, can be

expanded into a finite series using Legendre polynomials Pl :

P (Θ) =
LM∑
l=0

βlPl (cosΘ). (A.2)

The equality only strictly holds if the number of Legendre moments LM → ∞. In

practical terms, many phase functions are well-represented with LM being on the

order of a few hundred or a few thousand. Following e.g. Thomas et al. (2002),

the addition theorem for spherical harmonics can be exploited to rewrite the Legendre

polynomials in Equation A.2:

Pl (cosΘ) = Pl (µ
′)Pl (µ) + 2

l∑
m=1

Λ
m
l (µ

′)Λml (µ) cos [m(φ − φ
′)] , (A.3)

where again µ = cos θ (µ′ = cos θ′), and

Λ
m
l (µ) =

(l −m)!
(l +m)!

P ml (µ), (A.4)
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with P ml being the associated Legendre polynomials 1. Substituting the expression for

P (Θ) from Equation A.4 into Equation A.2 yields

P (Θ) =
LM∑
l=0

βl

{
Pl (µ

′)Pl (µ) + 2
l∑

m=1

Λ
m
l (µ

′)Λml (µ) cos [m(φ − φ
′)]

}
. (A.5)

The next step is to re-arrange Equation A.5 by re-ordering the two sums. First, the

large bracket can be expanded to

P (Θ) =
LM∑
l=0

βlPl (µ
′)Pl (µ) +

LM∑
l=0

l∑
m=1

2βlΛ
m
l (µ

′)Λml (µ) cos [m(φ − φ
′)] , (A.6)

after which one can make use of the property

LM∑
l=0

l∑
m=1

Alm =
LM∑
m=1

LM∑
l=m

Alm (A.7)

to obtain

P (Θ) =
LM∑
l=0

βlPl (µ
′)Pl (µ) +

LM∑
m=1

LM∑
l=m

2βlΛ
m
l (µ

′)Λml (µ) cos [m(φ − φ
′)] . (A.8)

The outer sum of the second term in Equation A.8 starts at m = 1, however that sum

can be written to start from m = 0, while also subtracting the corresponding term to

keep the equation balanced. Here, some fundamental properties of the associated

Legendre polynomials are used: P 0
l = Pl , which leads to Λ0l = Pl (see Equation A.4)

and thus

LM∑
l=m

2βlΛ
m
l (µ

′)Λml (µ) cos [m(φ − φ
′)]

m=0
→

LM∑
l=0

2βlPl (µ
′)Pl (µ), (A.9)

where the second term is just twice the first term in Equation A.8. Hence, Equation A.8

becomes

P (Θ) = −
LM∑
l=0

βlPl (µ
′)Pl (µ) +

LM∑
m=0

LM∑
l=m

2βlΛ
m
l (µ

′)Λml (µ) cos [m(φ − φ
′)] . (A.10)

Finally, the two sums in Equation A.10 can be pulled together by making use of the

same trick: when m = 0, the right sum essentially turns into the left one. The final

representation of the phase function is

P (Θ) =
LM∑
m=0

(
2 − δm,0

)
βl cos [m(φ − φ

′)]

LM∑
l=m

Λ
m
l (µ

′)Λml (µ). (A.11)

The form in Equation A.11 is made compact using the Kronecker-Delta symbol

(δa,b = 1 for a = b , otherwise 0). The dependence of the phase function has been
1The m in P ml is not to be read as an exponent, but as an additional index.
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separated into a polar part (µ, µ′) and an azimuthal part (φ − φ′). Equation A.11

has the form of a Fourier cosine series in terms of the relative azimuth. Similar to the

decomposition of the phase function, the intensity can be formally written as a series

as well:

I (θ, φ, τ) =
LM∑
m=0

I m(θ, τ) cos[m(φ0 − φ)]. (A.12)

Using this representation, the RTE can be written in terms of the Fourier com-

ponents I m(θ, τ). Within the integration over all incoming ray angles
∫
4π dΩ

′, the

phase function is multiplied with the intensity, so using the Fourier representation

(Equations A.11 and A.12), the emission part of the RTE reads:∫
4π

LM∑
m=0

(2 − δm,0) cos[m(φ − φ′)] cos[m(φ0 − φ)]
LM∑
l=m

βlΛ
m
l (µ

′)Λml (µ)dΩ
′ . (A.13)

Equation A.13 finally makes evident why the chosen representation of the phase

function and the intensity is useful. The integration over dΩ′ can now be separated

fully into azimuthal and polar components. The azimuthal dependence of the RTE

is reduced to a product of two cosine terms with two relative azimuth angles:∫ 2π

0

LM∑
m=0

cos[m(φ − φ′)] cos[m(φ0 − φ)]dφ′ (A.14)

×

∫ 1

−1

LM∑
m=0

(2 − δm,0)
LM∑
l=m

βl I
m(θ′, τ)Λml (µ

′)Λml (µ)dµ
′ . (A.15)

Azimuthal integration can be carried out using some elemental trigonometry,∫ 2π

0

LM∑
m=0

cos[m(φ − φ′)] cos[m(φ0 − φ)]dφ′ =
LM∑
m=0

π cos[m(φ0 − φ)]. (A.16)

The RTE for each of the m the Fourier components is then

µ
d
dτ
I m(θ, τ) = −I m(θ, τ) +

$

2

LM∑
l=m

βlΛ
m
l (µ)

∫ 1

−1
I m(θ′, τ)Λml (µ

′)dµ′ . (A.17)

Before Equation A.17 can be further simplified, the boundary conditions regarding

the intensity and its Fourier components have to be considered. Separating the

intensity into down-welling (I +, towards the surface) and up-welling (I −, away from

the surface) components, Spurr (2008) lays out three conditions which the intensity

field has to satisfy, when the model atmosphere is constructed as a set of Nlay optically

homogeneous, plane-parallel layers:

1. At the top of the atmosphere (upper boundary of layer n = 1), there is no

di�use intensity:

I m,+1 (θ, φ,0) = 0. (A.18)
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2. At layer boundaries between layer n − 1 and layer n, continuity of I is imposed:

I m,±n−1 (τn−1) = I
m,±
n (0). (A.19)

3. The lower layer boundary of the last layer n = Nlay (the surface) relates the

down-welling and up-welling intensities through the bi-directional re�ectance

distribution function (BRDF):

I m,−Nlay
(θ, φ, τn) = R(θ, φ, θ′, φ′) I

m,+
Nlay
(θ′, φ′, τn). (A.20)

In order to solve RTE, the BRDF R(θ, φ, θ′, φ′) has to be represented as a Fourier

cosine series as well.

To set up a way of numerically solving Equation A.17, the discrete ordinates method

relies on the Gauss-Legendre method (called Gauss’s formula in Chandrasekhar (1960),

Chapter 22). For a function f (µ), which is well-approximated through a polynomial

of order 2n − 1 or less, the following relationship holds:∫ 1

−1
f (µ)dµ =

n∑
i=1

wi f (µi ). (A.21)

Thomas et al. (2002) established that the application of the Gaussian quadrature rule

as above is potentially problematic near the surface and the top of the atmosphere

due to discontinuities. This is the reason why I (θ, τ) was separated into up-welling

and down-welling components. Using this Double-Gauss method, the intensity (or its

Fourier components) integration is performed like:∫ 1

−1
I (µ)dµ =

∫ 1

0
I +(µ) +

∫ 1

0
I −(µ) =

n∑
i=1

wi I +(µi ) +
n∑
i=1

wi I −(µi ). (A.22)

Note that the weights wi and the root µi are the same for both components of I (µ).

Comparing the Double Gauss method to Equation A.21 one can note the change

of the lower integration limit, such that the calculation of the weights is slightly

modified.

Replacing the polar angle integration by the Gauss-Legendre sum, the RTE for a

Fourier component m is obtained:

±µi
d
dτ
I ±,m(µi , τ) = ∓I ±,m(µi , τ) +

$

2

LM∑
l=m

βlΛ
m
l (±µi )

×

n∑
j=1

w j
[
I +,m(θ j , τ)Λml (µ j ) + I

−,m(θ j , τ)Λ
m
l (−µ j )

]
.

(A.23)

Equation A.23 is a system of coupled first-order linear di�erential equations to be

solved for I ±,m(µi , τ). The discrete polar angles µi (i = 1 . . . n) are often referred to
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as stream directions. The system consists of 2n equations, and the numerical e�ort of

solving the radiative transfer problem now becomes more apparent. The accuracy

of the solution generally increases with the chosen number of stream directions (or

streams), but also increases the computational e�ort, as the system of equations

grows in size.

Skipping the details of the solution methods here, the solutions are commonly found

through eigenvalue methods following an exponential ansatz. Ultimately, finding the

approximate intensities that satisfy the RTE means having to solve an eigenproblem

for each and every discrete ordinate, Fourier mode, layer and wavelength.

The abbreviated derivation of the discrete ordinate method presented here skipped a

few details. For one, the scalar RTE in Equation 10.11 did not include the scattering

of the attenuated solar ray, which merely adds another term

Q (θ, φ, τ) =
$

4π
P (θ,−θ0, φ − φ0)I0(θ, φ, τ) (A.24)

with θ0, φ0 and I0(θ, φ, τ) being the solar polar angle, the solar azimuth angle, and

the solar irradiance at the top of the atmosphere, respectively. In terms of the

derivation of Equation A.23, this inhomogeneous source term does not change the

strategy with which the discrete ordinate method was derived, especially since the

homogeneous and inhomogeneous part of the problem are solved separately. The

symmetry properties of phase matrices P and phase functions P was not further

discussed, apart from the fact they are dependent only on the scattering angle Θ. Both

P and P are usually defined for the scattering plane, rather than the meridian plane in

which the Stokes vector is represented. The phase matrix or phase function therefore

needs to be transformed into the correct coordinate system using an appropriate

rotation or transformation matrix. Finally, the intensity I (µ, τ) is considered to be

azimuthally averaged.
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Glossary

2OS 2 Orders of Scattering. A radiative transfer model that computes the full Stokes

vector for up to two orders of scattering.

ABSCO Tabulated absorption coe�cients or cross sections.

AOD Aerosol optical depth, in some literature also AOT (aerosol optical thickness).

The (column-integrated) optical depth due aerosol extinction (both scattering

and absorption).

BOA Bottom of the atmosphere. Usually refers to the surface layer or level in a

model atmosphere.

CAMS Copernicus Atmosphere Monitoring Service. Follow-up to MACC, a service

to provide near-real-time analysis and forecast data related to atmospheric

composition.

CASA Carnegie-Ames-Stanford-Approach. A process-based global terrestrial bio-

sphere model.

CCI Climate Change Initiative. A program by the European Space Agency to

facilitate the generation of high-quality long-term climate datasets.

ECMWF European Centre for Medium-range Weather Forecast.

EOF Empirical Orthogonal Function. The eigenvectors of the covariance matrix

that is analysed during PCA.

ESA European Space Agency.

EVI Enhanced Vegetation Index. Similar to NDVI, a reflectance-based vegetation

greenness index, which is more robust due to atmospheric corrections.

GOME-2 A moderate resolution spectrometer onboard the MetOp-A and MetOp-B

satellites, featuring a channel in the O2 A-band for SIF measurements.
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Glossary

GOSAT Greenhouse gases observing satellite, the first dedicated satellite mission

to measure atmospheric CO2; operated by the Japanese Aerospace Exploration

Agency ( JAXA).

GPP Gross Primary Production. The total amount of carbon uptake by vegetation,

soil or bacteria.

ILS Instrument line shape function, also instrument spectral response function

(ISRF).

IQR Interquartile Range. Di�erence between the 75th and the 25th percentile.

LIDORT Linearized Discrete Ordinates, a general purpose multiple-scattering RT

solver, created by R. Spurr.

LSI Low Streams Interpolation. A fast radiative transfer method involving a double

interpolation scheme.

Multiple Scattering (MS) Sometimes also di�use radiation. Contributions to the

total radiance due to secondary and higher-order scattering events in the

gaseous medium, caused by e.g. aerosols.

NDVI Normalised Di�erential Vegetation Index. A reflectance-based vegetation

greenness index involving radiances in the visual-red and near-infrared ranges.

OCO-2 Orbiting Carbon Observatory-2 mission, operated by the National Aeronau-

tics and Space Administration (NASA).

PCA Principal component analysis. The decomposition of a matrix into linearly

independent components, ranked by order of explained variance. The principal

components are calculated by projecting the original matrix onto the EOFs

(eigenvectors of the covariance matrix).

PDF Probability density function.

RT Radiative transfer. An algorithm to describe the propagation of light in an

absorbing and/or scattering (atmospheric) medium.

RTE Radiative transfer equation.

SIF Solar-induced Chlorophyll Fluorescence is a byproduct of plant photosynthesis.

Radiation in the visible to near-infrared is emitted as a means of reducing

surplus excitation energy that would otherwise damage the plant.
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Glossary

Single Scattering (SS) Contributions to the total radiance due to first-order scat-

tering events.

SNR Signal-to-noise ratio.

Solar Zenith Angle (SZA) Polar angle between the surface normal (zenith) and

the sun.

SWIR Short-wave infrared region of the electromagnetic spectrum, approximately

between 0.9 − 2.5µm (definition varies highly).

TANSO-FTS Thermal and near-infrared sensor for carbon observations. The

Fourier-transform spectrometer onboard GOSAT.

TCCON Total column carbon observing network. A global network of ground sta-

tions that regularly measure trace gases using Fourier-transform spectrometers.

TOA Top of the atmosphere. Usually refers to the topmost (altitude-wise) layer or

level in a model atmosphere.

TWOSTR (or 2STREAM) A fast linearised, two-stream multiple-scattering ra-

diative transfer code, written by R. Spurr and V. Natraj.

UoL-FP University of Leicester Full-Physics retrieval algorithm.

Viewing Zenith Angle (VZA) Polar angle between the surface normal (zenith)

and the satellite.

XCO2 Column-averaged dry-air volume mixing ratio of carbon dioxide.
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