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Abstract

The work concerns the problem of reducing a pre-trained deep neuronal network to a smaller network, with just few layers,
whilst retaining the network’s functionality on a given task. In this particular case study, we are focusing on the networks
developed for the purposes of face recognition. The proposed approach is motivated by the observation that the aim to deliver
the highest accuracy possible in the broadest range of operational conditions, which many deep neural networks models
strive to achieve, may not necessarily be always needed, desired or even achievable due to the lack of data or technical
constraints. In relation to the face recognition problem, we formulated an example of such a use case, the ‘backyard dog’
problem. The ‘backyard dog’, implemented by a lean network, should correctly identify members from a limited group of
individuals, a ‘family’, and should distinguish between them. At the same time, the network must produce an alarm to an
image of an individual who is not in a member of the family, i.e. a ‘stranger’. To produce such a lean network, we propose
a network shallowing algorithm. The algorithm takes an existing deep learning model on its input and outputs a shallowed
version of the model. The algorithm is non-iterative and is based on the advanced supervised principal component analysis.
Performance of the algorithm is assessed in exhaustive numerical experiments. Our experiments revealed that in the above
use case, the ‘backyard dog’ problem, the method is capable of drastically reducing the depth of deep learning neural
networks, albeit at the cost of mild performance deterioration. In this work, we proposed a simple non-iterative method
for shallowing down pre-trained deep convolutional networks. The method is generic in the sense that it applies to a broad
class of feed-forward networks, and is based on the advanced supervise principal component analysis. The method enables
generation of families of smaller-size shallower specialized networks tuned for specific operational conditions and tasks
from a single larger and more universal legacy network.
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context of face recognition [4], these include the need for
larger volumes of high-resolution and balanced training
and validation data as well as the inevitable presence of
hardware constraints limiting training and deployment of
large models. Consequences of imbalanced training and
testing data may have significant performance implications.
At the same time, hardware limitations, such as memory
constraints, restrict adoption, development and spread
of technology. These challenges constitute fundamental
obstacles for creation of universal data-driven Al systems,
including for face recognition.

The challenge of overcoming hardware limitations whilst
maintaining functionality of the underlying Al received
significant attention in the literature. Heuristic definition
of an efficient neural network was proposed in 1993:
delivery of maximal performance (or skills) with minimal
number of connections (parameters) [7]. Various algorithms
of neural networks optimization were proposed in the
beginning of the 1990s [8, 9]. MobileNet [10], SqueezeNet
[11], DeepRebirth [12] and EfficientNets [13] are more
recent examples of the approaches in this direction.
Notwithstanding, however, the need for developing generic
and flexible universal systems for a wide spectrum of tasks
and conditions, there is a range of practical problems in
which such universality may not be needed or required.
These tasks may require smaller volumes of data and could
be deployed on cheaper and accessible hardware. It is hence
imperative that these tasks are identified and investigated,
both computationally and analytically.

In this paper, we present and formally define such a
task in the remit of face recognition: the ‘backyard dog’
problem. The task, on the one hand, appears to be a
close relative of the standard face recognition problem.
On the other, it is more relaxed which enables us to
lift limitations associated with the availability of data
and computational resources. For this task, we propose
a technology and an algorithm for constructing a family
of the ‘backyard dog’ networks derived from larger pre-
trained legacy convolutional neural nets (CNN). The idea
to exploit existing pre-trained networks is well known in
the face recognition literature [ 14—18]. Our algorithm shares
some similarity to [18] in that it exploits existing parts
of the legacy system and uses them in a dedicated post-
processing step. In our case, however, we apply these
steps methodically across all layers; at the post-processing
step, we employ advanced supervised principal component
analysis (PCA) [19, 20] rather than conventional PCA, and
do not use support vector machines.

Implementation of the technology and performance
of the algorithm is illustrated with a particular network
architecture, VGG net [15], and implemented on two
computational platforms. The first platform was Raspberry
Pi 3B with Broadcom BCM2387 chipset, 64-bit CPU
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1.2 GHz Quad-Core ARM Cortex-A53 and 1 GiB memory
with OS Raspbian Jessie. We will refer to it as ‘Pi’. The
second platform was HP EliteBook laptop with Intel Core
i7-840QM (4 x 1.86 GHz) CPU and 8 GiB of memory
with OS Windows 7. We refer to this platform as ‘Laptop’.
In view of Pi3 memory limitations (1 GiB), we required
that the ‘backyard dog’ occupies no more than than 300
MiB. The overall workflow, however, is generic and should
transfer well to other models and platforms.

The manuscript is organized as follows: in Section
“Preliminaries and Problem Formulation”, we review the
conventional face recognition problem, formulate the ‘back-
yard dog’ problem, assess several popular deep network archi-
tectures and select a test-bed architecture for implementa-
tion; Section “The ‘backyard dog’ Generator” describes the
proposed shallowing technology for creation of the ‘back-
yard dog’ nets and illustrates it with an example; Section
“Conclusion” concludes the paper.

Preliminaries and Problem Formulation

Face recognition is arguably among the hardest technical
and computational problems. If posed as a conventional
multi-class classification problem, it is ill-defined as acquir-
ing samples from all classes, i.e. all identifies, is hardly
possible. Therefore, state-of-the-art modern face recogni-
tion systems do not approach it as the multi-class classifica-
tion problem. Not at least at the stage of deployment. These
systems are often asked to answer another question: whether
two given images correspond to the same person or not.
The common idea is to map these images into a ‘feature
space’ with some metric (or a similarity measure) p. The
system is then trained to ensure that if x and y are images
corresponding to the same person then, for some ¢ > O,
p(x,y) < &, and p(x,y) > & otherwise. At the decision
stage, if p(x, y) < ¢ then x, y represent the same person,
and if p(x, y) > € then they belong to different identities.
The problem with these generic systems is that validation
and performance quantification for such systems is chal-
lenging; they must work well for all persons and images,
including for identities these systems have never seen before.
It is thus hardly surprising that reports about performance
of neural networks in face recognition tasks are often over-
optimistic, with the accuracy of 98% and above [15-17]
demonstrated on few benchmark sets. There is a mounting
evidence that the training set bias, often present in face
recognition datasets, leads to deteriorated performance in
real-life applications [23]. If we use a human as a benchmark,
trained experts make 20% mistakes on the faces they
have never seen before [24]. Similar performance figures
have been reported for modern face recognition systems
when they assessed identities from populations that were
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underrepresented in the training data [23]. Of course, we
must always strive to achieve most ambitious goals, and the
grand face recognition challenge is not an exception. Yet, in
a broad range of practical situations, generality of the classical
face recognition problem is not always needed or desired.

In what follows, we propose a relaxation of the face
recognition problem that is significantly better defined and
is closer to the standard multi-class problem with known
classes. We call this problem the ‘backyard dog’ problem of
which the specification is provided below.

The ‘backyard dog’ problem (Task) Consider a limited
group of individuals, referred to as ‘family members’
(FM) or ‘friends’. Individuals who are not members of
the family are referred to as ‘strangers’. A face recog-
nition system, ‘the backyard dog’, should (i) separate
images of friends from that of strangers and, at the same
time (ii) should distinguish members of the family from
each other (identity verification).

More formally, if ¢ is an image of a person p, and
Net is a ‘backyard dog’ net, then Net(g) must return an
identity class of g if p € FM and a label indicating the
class of ‘strangers’ if p ¢ FM.

The ‘backyard dog’ problem (Constraints) The ‘backyard
dog’ must generate decisions within a given time frame
on a given hardware and occupy no more than a given
volume of RAM.

The difference between the ‘backyard dog’ problem
and the traditional face recognition task is twofold. First,
the ‘backyard dog’ should be able to reliably discriminate
between a relatively small set of known identity classes
(members of the family in the ‘backyard dog’ problem) as
opposed to the challenge of reliable discrimination between
pairs of images from a huge set of unknown identity classes
(traditional face recognition setting). This is a significant
relaxation as existing collections of training data used to
develop models for face recognition (see Table 1) are several
orders of magnitude smaller than 7.6 billion of the total
world population [25]. In addition, the ‘backyard dog” must
separate a relatively small set of known friends from the
huge but unknown set of potential strangers. The latter
task is still challenging but its difficulty is largely reduced

relative to the original face recognition problem in that it is
now a binary classification problem.

In the next sections, we will present a solution to the
‘backyard dog’ problem in which we will take advantage
of the availability of a pre-trained deep legacy system.
Before, however, presenting the solution lets us first select
a candidate for a legacy system that would allow us to
illustrate the concept better. For this purpose, below we
review and assess some of the well-known existing system.

VGG

The Oxford Visual Geometry Group (and hence the name
VGG) published their version of CNN for face recognition
in [15]. We call this network VGGCNN [26]. The network
was trained on a database containing facial images of
2622 different identities. Small modification of this network
allows to compare two images and decide whether these two
images correspond to the same person or not.

VGGCNN contains about 144M of weights. The
recommended test procedure is as follows [15]:

1. Scale detected face to three sizes: 256, 384 and 512.

2. Crop a 224x224 fragment from each corner and from
the centre of the scaled image.

3. Apply horizontal flip to crops.

Therefore, to test one face (one input image), one has to
process 30 pre-processed images: 3(scales) x 5(crops) x
2(flip) = 30(images).

Processing one image in the MatLab implementation
[27] on our Laptop took approximately 0.7s. TensorFlow
implementation [28] of the same required circa 7.3s.

FaceNet

Several CNNs with different architectures have been
associated with the name [16]:

— NNI1 with images 220x 220, 140M of weights and 1.6B
FLOP,

— NN2 with images 224 x224, 7.5M of weights and 1.5B
FLOP,

Table 1 Comparison of the datasets used to develop face recognition systems: (the table is presented in [15])

Dataset Identities Images Link

LFW 5749 13,233 http://vis-www.cs.umass.edu/lfw/#download
WDRef [21] 2995 99,773 N/A

CelebFaces [22] 10,177 202,599 N/A

VGG [15] 2622 2.6M http://www.robots.ox.ac.uk/~vgg/data/vgg_face/
FaceBook [17] 4030 4.4M N/A

Google [16] SM 200M N/A
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Table2 Memory requirements and computation resources needed: “Weights’ is the number of weights in the entire network in millions of weights;
‘Features’ is the maximal number of signals, in millions, which are passed from one layer to the other in a given network

Developer Family name Name Weights Features FLOP Image
M) M) ™M) size
VGG group VGGCNN [15] VGG16 144.0 6.4 15,475 224
Google FaceNet [16] NN1 140.0 1.2 1606 220
NN2 7.5 2.0 1600 224
NN3 7.5 NA 744 160
NN4 7.5 NA 285 96
FaceBook DeepFace [17] DeepFace-align2D 118.0 0.8 805 152

— NN3 with images 160x160, 7.5M of weights and
0.744B FLOP,

— NN4 with images 96x96, 7.5M of weights and 0.285B
FLOP.

Here, FLOP stays for floating point operations per image
processing. The testing procedure for FaceNet uses one
network evaluation per image.

DeepFace

FaceBook [17] proposed DeepFace architecture which,
similarly to VGG face, is initially trained within a multi-
class setting. At the evaluation stage, two replicas of the
trained CNN assess a pair of images and produce their
corresponding feature vectors. These are then passed into
a separate network implementing the predicate ‘The same
person/Different persons’.

Datasets

A comparison of the different datasets used to train the
above networks is presented in Table 1. We can see that the

dataset used to develop VGG net is apparently the largest,
except for the datasets used by Google, Facebook, or Baidu,
which are not publicly available.

Comparison of VGGCNN, FaceNet and DeepFace

In addition to the training datasets, we have also compared
the volumes of weights (in MiBs) and computational
resources (in FLOPs) associated with each of the above
networks. We did not evaluate their parallel/GPU-optimized
implementations since our aim was to derive ‘backyard
dog’ nets suitable for single-core implementations on the
Pi platform. Results of this comparison are summarized
in Tables 2 and 3. Distributions of weights, features
and time needed to propagate an image through each
network are shown in Figs. 1, 2, 3 and 4. Figures 1-
4 also show that the interpretation of the notion of
a ‘deep’ network varies for different teams: from 6
layers with weights in DeepFace to 16 such layers
in VGG16.

According to Table 3, a C++ implementation for the
Pi platform is comparable in terms of time with the
TensorFlow (TF) implementation. Nevertheless, we note

Table 3 Computational time needed for passing one image through different networks

Developer Family name Name Laptop Laptop Pi TF Pil
ML TF core C++
VGG group VGGCNN [15] VGG16 0.695 4.723 75.301 65.909
Google FaceNet [16] NNI1 0.072 0.490 7.815 6.840
NN2 0.072 0.488 7.786 6.815
NN3 0.033 0.227 3.620 3.169
NN4 0.013 0.087 1.387 1.214
FaceBook DeepFace [17] DeepFace-align2D 0.036 0.246 3.917 3.429

For MatLab (ML) and TensorFlow (TF) realizations of VGGCNN on the Laptop platform, time was measured explicitly. All other values were
estimated using FLOP data shown in Table 2 and taking VGGCNN data as a reference. Values for the Pi platform were estimated on the basis of
explicit measurements for the reduced network (so that it fits into the system’s memory) and then scaled up proportionally
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Fig. 1 Distribution of the numbers of weights, features and required
FLOP along the VGG16 network from the first layer (left) to outputs
(right)

that we did not have control over the TF implementation
in terms of enforcing the single-core operation. This may
explain why single image processing times for the C++ and
the TF implementations are so close.

In summary, we conclude that all these networks require
at least 30 MiB of RAM for weights (7.5 x 4 MiB)
and 3.2 MiB for features. Small networks (NN2-NN4)
satisfy the imposed memory restrictions of 300 MiB.
Large networks like VGG16, NN1 or DeepFace require
more than 100 M of weights or 400 MiB and hence do
not conform to this requirement. Time-wise, all candidate
networks needed more than 1.2 s, with the VGGCNN
requiring more than a minute on the Pi platform to process
an image.

Having done this initial assessment, we therefore chose
the largest and the slowest candidate as the legacy network.
The task now is to produce a family of the ‘backyard
dog’ networks from this legacy system which fit the
imposed hardware constraints and, at the same time, deliver
reasonable recognition accuracy. In the next section, we
present a technology and an algorithm for creation of the
‘backyard dog’ networks from a given legacy net.
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Fig. 2 Distribution of the numbers of weights, features and required
FLOP along the NN1 network from the first layer (left) to outputs
(right)
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Fig. 3 Distribution of the numbers of weights, features and required
FLOP along the NN2 network from the first layer (left) to outputs
(right)

The ‘backyard dog’ Generator

Consider a general legacy network, and suppose that we
have access to inputs and outputs for each layer of the
network. Let the input to the first layer be an RGB image.
One can now push this input through the first layer and
generate this layer’s outputs. Output of the first layer
becomes the first-layer features. For a multi-layer network,
this process, if repeated throughout the entire network, will
define features for each layer. At each layer, these features
describe image characteristics that are relevant to the task
which the network was trained on. As a general rule of
thumb, as features of the deeper layers show higher degree
of robustness. At the same time, this robustness comes at the
price of increased memory and computational costs.

In our approach, we propose to seek a balance
between the requirement of the task at hand, robustness
(performance) and computational resources need. To
achieve this balance, we suggest to assess suitability of the
legacy system’s features layer by layer whereby determining
the sufficient depth of the network and hence computational
resources. The process is illustrated with Fig. 5. The
‘backyard dog’ net is a truncated legacy system whose
outputs are fed into a post-processing routine.
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Fig. 4 Distribution of the numbers of weights, features and required
FLOP along the DeepFace network from the first layer (left) to outputs
(right)
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Fig.5 Construction of a
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In principle, all layer types could be assessed. In practice,
however, it may be beneficial to remove all fully connected
layers from the legacy system first. This allows using image
scaling as an additional hyper-parameter. This was the
approach which we adopted here too.

The post-processing routine itself consisted of several
stages:

—  Centralization; subtraction of the mean vector calcu-
lated on the training set.

— Spherical projection; projection of the data onto a
unit sphere centered at the origin (normalize each data
vector to unit length).

—  Construction of new fully connected layer; the output of
this (linear in our case) layer is the output feature vector
of the ‘backyard dog’.

Operational structure of the resulting network is shown
in Fig. 6. Note that the first processing stage, centralization,
can be implemented as a network layer subtracting a
constant vector from the input. The second stage is a well-
known L, normalization used, for example, in NN1 and
NN2 [16]. As for the third stage, several approaches may
exist. Here we will use advanced supervised PCA (cf. [18]).
Details of the calculations used in relevant processing stages
as well as interpretation of the ‘backyard dog’ net outputs
are provided in the next section.

v

The ’backyard dog’ net

Interpretation of the ‘backyard dog’ Output Vector

Consider a set of identities, P = {p1,..., pn}, Where n
is the total number of persons in the database. A set of
identities FM = {f1, f>, ..., fm} forms a family (m is the
number of FMs in the family). All identities, which are not
elements of FM, are called ‘other persons’ or ‘strangers’.
For each person f, Im(f) is the set of images of this person,
and |Im(f)] is the total number of these images.

For an image g, we denote network output as Out(q).
Consider:

d(g) = min  min ||Out(g) — Out(r)|. €))

fieFM relm(f;)
Let ¢ > be a decision threshold. If d(g) > ¢ then the image
q is interpreted as that of a non-family member (image of a
‘stranger’). If d(g) < t, then we interpret image g as that of
FM f*, where f*

f*=arg min min ||Out(g) — Out(r)| (2)

fieFM relm(f;)

Three types of errors are considered:

MF: Misclassification of a FM. This error occurs when an
image ¢ belongs to a member of the set FM but Out(gq)
is interpreted as ‘other person’ (a ‘stranger’).

Input Truncated Subtract
image VGG16 \?;i?gr
(IN) (VGG) (C)

Transform Project Output
to unit onto
length PCs vector
V) (PPC) (Out)

Fig.6 Structure of created NN, abbreviations in brackets define notation of corresponding vectors
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MO: Misclassification of a ‘stranger’. This corresponds to
a situation when an image g does not belong to any of
identities from FM but Out (g) is interpreted as FM.

MR: Misrecognition of a FM. This is an error when an
image belongs to a member f; of the set FM but Out(gq)
is interpreted as an image of another FM.

Error rates are determined as the fractions of specific
error types during testing (measured in %). The rate of
MF + MO is the error rate of the ‘friend or foe’ task.

Construction of the ‘backyard dog’ Fully Connected
(Linear) Layer

Interpretation rules above induce the following require-
ments for the new fully connected linear layer: we need
to find an n-dimensional subspace S in the space of out-
puts such that the distance between projections onto S of
the outputs corresponding to images of the same person is
small and the distance between projections onto S of the
outputs of images corresponding to different persons is rela-
tively large. This problem has been considered and studied,
for example, in [20, 29, 30]. Here we follow [19]. Recall
that projection of the vector x onto the subspace defined by
orthonormal vectors {v'} is Vx, where V is a matrix whose

ith rows are v/ (i = 1, ..., n). Select the target functional
in the form:
ok
Dc = Dp — — Dy, — max, 3
c B~y ; 17 (3
where

k is the number of persons in the training set,

Dp is the mean squared distance between projections
of the network output vectors corresponding to different
persons:

D= ———r— 1
S m(pollIm(py)]
k

Sy Yo%

r=1s=r+1xelm(p,) yelm(ps)

Vx = VylP,

“

Dy, is the mean squared distance between projections
of the network output vectors corresponding to person

pi:

IVx—Vyl|l?,

1
D L =
Y I (o)l (Im (pi) | — 1) 2

x,yelm(pi), x#y

&)

parameter « defines the relative cost for the output
features corresponding to images of the same person
being far apart.

The space of the n-dimensional linear subspaces of a finite-
dimensional space (the Grassmannian manifold) is compact;
therefore, the solution of Eq. 3 exists. The orthonormal basis
of this space (the matrix V) is, by the definition, the set
of the first n advanced supervised principal components
(ASPC) [19]. They are the first n principal axis of the
quadratic form defined from Eq. 3 [19, 20].

Training and Testing Protocol

In our case study, we used a database containing 25,402
images of 654 different identities [31] (38.84 images per
person, on average). First, 327 identities were randomly
selected from the database. These identities represented the
set T of non-family members. Remaining 327 identities
were used to generate sets of family members. We denote
these identities as the the set of family members candidates
(FMC). Identities from this latter set with less than 10
images were removed from the set FMC and added to the set
T of non-family members. From the set FMC, we randomly
sampled 100 sets of 10 different identities, as examples
of FM. We denote these sampled sets of identities as T;,
i = 1,...,100. Elements of the set FMC which did not
belong to any of the generated sets 7; were removed from
the set FMC and added to the set T. As a result of this
procedure, the set T contained 404 different identities.

For each truncated VGG16 network, and each image ¢
of every identity in the training set 7', we derived output
vectors VGG (gq) and determined their mean vector MV GG

1
MVGG = ————— VGG(q). ()
PRI >y @) (6)

ST gelm(f)

This was used to construct the subtraction layer of which the
output was defined as:

C(q) = VGG(q) — MVGG. ©)

Each such vector C(g) was then normalized to unit length.

Next, we determined ASPCs over the set of all vectors
C(q) associated with identities in the set 7" by solving (3).
The value of alpha was varying in the interval [0.9, 2.3]. The
value of r was chosen to minimize the rate of MF+MO error,
for the given test set 7;, given value of o and the number of
ASPCs. To determine optimal values of o and the number
of ASPCs, we derived the mean values of MF, MO and MR
across all 7;:

100 100
MF = = > MF(T;), MO = == 5 \MO(T)),
i=1 i=l1
100
MR = — MR(T; 8
100; () ®)
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Table 4 Time, in seconds, spent on processing of a single image by different ‘backyard dog’ networks, columns T1 and T2 show outcomes of two
identical tests executed at different times

Image Layers ML TF Laptop TF Pi C++
size T1 T2 T1 T2 T1 T2 Laptop Pi
224 37 0.67 0.72 7.35 7.05
224 35 0.73 0.67
224 31 0.62 0.66
128 31 0.25 0.24
96 31 0.19 0.21 0.96 0.95 17.08 17.31
64 31 0.07 0.07 0.61 0.64 11.32 11.28
96 24 0.12 0.13 0.59 0.43 7.44 8.91
64 24 0.06 0.06 0.35 0.35 7.20 7.27 1.21 5.69
64 17 0.81 3.66
64 10 0.39 1.61
64 05 0.17 0.70
Table 5 Error rates for NO5,
N10, N17 and N24 without Layers MR MF MO MF+MO
PCA improvement
24 11.00 11.00 0.01 11.01
17 14.39 14.39 2.82 17.22
10 16.71 16.71 5.86 22.57
5 12.58 12.58 2.57 15.14
Error rates are evaluated as the maximal numbers of errors for 100 test sets (9)
Table 6 Error rates for NO5,
N10, N17 and N24 without Layers MR MF MO MF+MO
PCA improvement
24 4.16 4.13 1.09 5.22
17 7.69 7.65 1.75 9.39
10 10.94 10.82 3.64 14.46
5 6.58 6.52 2.01 8.53
Error rates are evaluated as the average numbers of errors for 100 randomly selected test sets (8)
Table 7 Error rates for
networks with 5 and 17 layers Layers MR MF MO MF+MO
and optimal number of ASPCs.
Error rates are evaluated as the 17 4.80 4.80 1.22 6.02
maximal numbers of errors for 5 9.69 8.16 2.06 10.22
100 randomly selected test sets
©
Table 8 Error rates for
networks with 5 and 17 layers Layers MR MF MO MF+MO
and optimal number of ASPCs,
errors are evaluated as the 17 2.50 2.46 0.81 3.27
average numbers of errors for 5 4.39 4.30 1.48 5.78

100 randomly selected test sets

®
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as well as their maximal values

MF = max MF(T;), MO = max MO(T;),
1 1

MR = max MR(7}). (€))
l

For each of these performance metrics (Egs. 8 and 9), we
picked the number of ASPCs and the value of o which
corresponded to the minimum of the sum MF+MO.

Results

Results of experiments are summarized in Tables 4, 5, 6, 7
and 8. Table 4 shows the amount of time each ‘backyard
dog’ network required to process a single image. Tables 5-8
show performance of ‘backyard dog’ networks for varying
depths (the number of layers). The best model for networks
with 17 layers used 70 ASPCs, and the optimal network with
5 layers used 60 ASPCs.

The 5 layer network with 60 ASPCs processed a single
64 x 64 image in under 1 s on 1 core of Pi. It also
demonstrated a reasonably good performance, with the
MF+MO error rate below 6%. We note, however, that the
reported performance levels in the ‘backyard dog’ problem
are not to be confused with the system’s performance in
more generic face recognition tasks. Note also that the
maximal value of the MF+MO rate over 100 randomly
selected sets 7; is 1.8 times higher than the average MF+MO
rate for both 17 layer deep and 5 layer deep networks (with
optimal number of ASPCs).

Conclusion

In this work, we proposed a simple non-iterative method
for shallowing down legacy deep convolutional networks.
The method is generic in the sense that it applies to a
broad class of feed-forward networks, and is based on the
ASPCA. We showed that, when applied to the state-of-
the-art models developed for face recognition purposes,
our approach generates a shallow network with reasonable
performance in a specific task. The method enables one to
produce of families of smaller-size shallower specialized
networks tuned for specific operational conditions and tasks
from a single larger and more universal legacy network.
The approach and technology were illustrated with a
VGG-16 model. They will, however, apply to other models,
including the popular MobileNet and SqueezeNet architec-
tures. In this respect, our contribution is complementary to
these works. Thanks to sufficiently large number of ASPCA
projections used to produce ‘backyard dog’ net’s output,
errors of the ‘backyard dog’ net may be reduced further
using the error correction approach presented in [32-34].
Exploring this as well as testing the proposed approach on

other models, including MobileNet and SqueezeNet, will be
the subject of our future work.
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