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Abstract—In hyperspectral image processing, classification is
one of the most popular research topics. In recent years, deep
learning based hierarchical feature extraction and classification
has shown great power in many applications. In this paper,
we proposed a novel local space sequential method, which is
used in recurrent neural network (LSS-RNN).This model can
extract local and semantic information for hyperspectral image
classification. First, we extract low level features from hyper-
spectral images, including texture and differential morphological
profiles (DMP) feature. Second, we combine the low level features
together and propose a method to construct the local spatial
sequential (LSS) feature. Afterwards, we build a recurrent neural
network and use the LSS feature as the input to train the network
for the systematic parameters. Finally, the high level semantic
feature generated by RNN is fed into a softmax layer for the final
classification. In addition, a non-local spatial sequential method
is presented for recurrent neural network model (NLSS-RNN)
to further enhance hyperspectral image classification. NLSS-
RNN finds non-local similar structures to a given pixel and
extracts corresponding LSS features, which not only preserve
local spatial information, but also integrates the information
of non-local similar samples. The experimental results on three
common datasets approve that our proposed method can obtain a
competitive performance compared with several state-of-the-art
classifiers.

Index Terms—Hyperspectral image classification, deep learn-
ing, recurrent neural network (RNN), low-level feature, high level
semantic feature.

I. INTRODUCTION

Over the last decade, using spatial and spectral informa-
tion simultaneously, hyperspectral image (HSI) processing
has played an important role in many applications such as
the assessment of environmental damage, growth regulation,
land-use monitoring, urban planning, and reconnaissance [1],
[2]. HSI classification aims at classifying image pixels into
multiple categories, and many great classification methods
have shown their promising results.

Among of the existing classification methods, pixel-based
methods are one of the popularly used methods, based on the
individual pixels’ inherent information. Due to its performance
in high-dimensional space, support vector machine (SVM)
classifiers [3], [4] have become one of the most commonly
used and powerful classifiers for pixel-based HSI classifica-
tion. Chen et al. [5], [6] used sparse representation for HSI
classification, which regards a pixel as an approximated linear
combination of a few dictionary atoms, and drawing great
attention. Recently, people have found that HSIs usually have
strong local space consistency [7], [8], so a few methods take
both spectral and spatial (spectral-spatial) information into
consideration, and have achieved promising success. Chen et

al. proposed a joint sparse representation classifier based on
the joint sparsity model [9] with neighboring pixels containing
both spectral and spatial information. Li et al. [10] utilized the
standard collaborative representation (CR) mechanism [11],
[12] to support HSI classification. Some methods actually are
semi-supervised, achieving better classification results when
the number of the training samples is small [13], [14]. How-
ever most of these classification methods mentioned above
are based on low level features, e.g. original spectral features,
texture features [15], morphological features [16], etc. Con-
structing a more powerful and discriminative classifier using
the semantics of HSIs is still a challenge.

Nowadays, as an important technique in machine learning,
deep learning architectures have shown promising perfor-
mance in many research areas, including classification or
regression for images [17], [18], language [19], speech [20]
and remote sensing [21]-[23], where they have usually out-
performed traditional methods in large scale datasets. A deep
learning architecture is a multilayer stack of basic modules, all
(or most) of which are subject to learning, and many of which
compute non-linear input-output mappings [24]. Based on its
hierarchical feature representing mechanism, deep learning
methods are able to extract abstract concepts through stacked
layers composed of multiple non-linear transformations [25].
Typically, deep learning architectures include stacked (denois-
ing) auto-encoders (SAE) [26], deep belief networks (DBN)
[27], deep Boltzmann machines (DBM) [28], convolutional
neural networks (CNN) [29], recursive neural network [30],
recurrent neural networks (RNN) [31] [32], and long short ter-
m memory (LSTM) [33] [34] For specific tasks, these models
can efficiently extract high level abstract features from low
level features in individual ways. For example, in computer
vision, 2D colour images or 3D videos can be fed into a CNN
composed of two types of layers: convolutional and pooling
layers to generate high-level features. Overall, deep learning
architectures provide a general-purpose learning procedure that
can automatically fuse low-level features together to exploit
input signals property, and obtain higher-level features by
composing lower-level ones.

Since deep learning techniques can map different levels of
abstractions from images and combine them to form high level
features, it is possible to use a deep learning architecture as
an effective approach to optimally fuse low-level features of a
HSI to produce more abstract and powerful high-level features
describing the image itself for further classification task.
There have been some achievements deploying deep learning
architectures for processing HSIs. In [35], Yushi Chen et al.
verified the eligibility of SAE for spectral information-based
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Fig. 1. The framework of the proposed NLSS-RNN method.

classification. One year later, they proposed a new feature
extraction and classification framework for hyperspectral data
analysis based on deep belief network (DBN) [36]. In [37], Li
et al. also introduced DBN and restricted Boltzmann machine
(RBM) for hyperspectral image processing and feature extrac-
tion. Hu et al. employed CNN to classify hyperspectral images
in the spectral domain [38]. In [39], Mou et al. employed RNN
to classify hyperspectral images directly in spectral domain.
In [40], Rubwurm et al. employed LSTM networks to extract
temporal characteristics from a sequence of SENTINEL 2A
observations. Lyu et al. proposed a method that relies on
an improved LSTM model to acquire and record the change
information of long-term sequence remote sensing data in
[41]. In [42], Liu et al. employed Bidirectional-Convolutional
LSTM to classify hyperspectral images based on spectral-
spatial features. In these methods, deep learning architectures
have shown powerful performance and achieved competitive
results.

Although the methods mentioned above have justified the
ability of deep learning algorithms dealing with HSI features,
some issues still need to be solved. One of these methods’
shortcomings is that most of the methods directly deploy the
spectral features of the original image as the input which may
be insufficient to describe the image. Extracting other low-
level HSI features that can be more powerful and discrimina-

NLSS-ENN

Local and Non-local Space Sequence
Feature

tive than the original spectral features will benefit both high-
level feature extraction and classification. In terms of spatial
features, these methods often combine the neighboring pixels’
spectral features together into a vector as the input of the
deep learning network after having reduced the spectral feature
dimensionality, ignoring the relationship between the neigh-
boring pixels. Though most local space areas are homogeneous
in a HSI, simply selecting all the pixel information in a local
area creates some issues. For example, within a local window,
the pixels in the window may have significant appearance
variations and this probably affects the final classification
accuracy.

To deal with the problems mentioned above, in this paper,
we introduce a novel method for hyperspectral image clas-
sification based on recurrent neural network (RNN), named
local spatial sequential recurrent neural network (LSS-RNN),
which uses powerful low-level features instead of the original
spectral features. The proposed scheme not only extracts local
spatial information of a HSI, but also exploits the relationship
between the local regions to strengthen the “good” features
and reduce the impact of the “bad” features. Our work mainly
focuses on using RNN, which is one of the widely used deep
architecture-based models in natural language processing and
speech recognition fields to hierarchically generate high-level
contextual features from low-level features. Firstly, we extract
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traditional useful texture and morphological features as the
low-level features. Afterwards, in our method, local spatial
sequential (LSS) features are extracted as the input of the
RNN architecture, which not only utilizes both spetral and
spatial information, but also exploits the relationship between
the local neighboring pixels efficiently. As we know, a RNN
model has the ability to maintain the sequence information,
and our LSS features in the structure and concept are suitable
as the input vector of the RNN. For each local image area,
we enhance the influence of the supportive pixels, whilst
reducing the effect of other non-supportive pixels. Finally,
high level contextual features learned from LSS-RNN are fed
into the softmax layer of the RNN model for classification. In
summary, based on the conventional RNN model, we provide
a generic framework named LSS-RNN to extract low-level
features and combine them together with local space sequence
information to form powerful high-level contextual features for
better classification.

On the basis of LSS, inspired by non-local spatial features,
a hyperspectral classification method based on local and non-
local sequential recurrent neural networks (NLSS-RNN) is
proposed. Besides the local information, NLSS finds a number
of samples with similar structures in terms of the low-level
features from the perspective of the whole HSI data. Both
local and non-local similar pixels are adopted to construct the
sequential features of RNN. Compared with the local features,
NLSS can integrate the local and non-local information of the
samples, which is effective for hyperspectral image classifi-
cation tasks. The framework of the proposed NLSS-RNN is
shown in Fig. 1.

The remainder of this paper is organized as follows. Section
IT briefly introduces deep learning and the traditional RNN
model. In section III, the proposed classification framework
is introduced, including low-level feature extraction, LSS and
NLSS feature constructions, and LSS-RNN and NLSS-RNN.
Experimental results on three datasets are shown in section I'V.
Conclusion is given in the final section.

II. FEED-FORWARD NEURAL NETWORKS AND
RECURRENT NEURAL NETWORKS

A. Feed-forward Neural Networks

As a biologically inspired classification algorithm, feed-
forward neural networks [43] are regarded as the first and
simplest artificial neural networks in the community. As shown
in Fig. 2(a), the simplest feed-forward neural network com-
prises of an input layer, a hidden layer and an output layer,
and each layer contains several units. For a training example
(z,y), neural networks give a way of defining a complex, non-
linear form of the output vector ¢ through

hZJh(Wh$+bh) (1)
§=oy(Wyh+by) 2)

where h is the hidden layer state. §j denotes the prediction
result of the input vector z. Wj, and W, correspond to the
input-to-hidden and hidden-to-output weight matrices. by, and
b, denote the bias of the hidden and output units. o, and o,
denote the activation functions.

Output Layer

Hidden Layer

Input Layer

Fig. 2. Network architectures: (a) Feed-forward neural network. (b) Recurrent
neural network.

The cost function with respect to the input vector x is
defined as:

1
L(y,9) = 5lly =91 3)

Given a training set of M examples, the overall cost function
is defined as:

M
. 1 .
L(y,9) = 537 D v = 9ill® )
i=1

The ultimate goal is to minimize L(y, ) as a function of
parameters Wy, Wy, b, and by, and the stochastic gradient
descent can be used to efficiently solve this problem. Normally,
a back propagation technique [44] is used to train these
parameters.

B. Recurrent Neural Networks (RNNs)

Recurrent neural networks are feed-forward neural networks
augmented by the inclusion of edges that span adjacent time
steps, introducing a notion of time to the model [45]. Unlike
feed-forward neural networks that can only map from a single
input vector to an output vector, an RNN can in principle
map from the entire history of the previous inputs to each
output [46]. The idea behind RNN is to make use of sequential
information, and the reason why it is called ’recurrent’ is that
this architecture performs the same task for every element
of a sequence with the output depending on the previous
computation results. This means the recurrent connections
allow a memory of the previous inputs to persist in the
network’s internal state, and thereby influence the network
output [45].

As shown in Fig. 2(b), for a simple recurrent neural
network, let our input z be a sequence whose length is T,
x = {x1,x2,...,z7} and each item x; is a feature vector.
At time step ¢, given the previous hidden layer state h;_1, the
current hidden layer state h; and the output layer state y; can
be calculated by

hy = op,(Whay + Uphi—1 + bp,) (5)
ye = oy (Wyhi +by) (6)

where W), and W, denote the input-to-hidden and hidden-to-
output weight matrices, respectively. U}, is the matrix of the
recurrent weights between the hidden layer and itself at two
adjacent time steps. by, and b, are the biases. o, and o, denote
the activation functions.

At each time step, the input is propagated in a standard
feed-forward fashion, and then a learning rule is applied.
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The back connections lead to the result that the context units
always maintain a copy of the previous values of the hidden
units (since they propagate over the connections before the
learning rule is applied). Thus the network can maintain a
state, allowing it to perform such tasks as sequence-prediction
that are beyond the power of standard multilayer perception.

III. PROPOSED METHOD

In this section, we will introduce our proposed local spatial
sequential RNN (LSS-RNN) and nonlocal spatial sequential
recurrent neural networks (NLSS-RNN) methods based on
the improvement of the traditional RNN for hyperspectral
image classification. Briefly speaking, our approach is mainly
composed of four parts, including low level feature extraction,
local spatial sequential (LSS) and nonlocal spatial sequential
(NLSS) feature construction, training of RNN, and final clas-
sification. We introduce these parts below step by step.

A. Low-level Feature

Based on the fact that deep learning architectures are able
to extract robust abstract concepts from low level features [47]
through their layer-by-layer feature extraction mechanism, the
extraction of powerful and discriminative low-level features of
the original hyperspectral image plays an important role in the
classification stage.

Considering a hyperspectral image’s intrinsic properties,
combining multiple features together may enhance the dis-
criminability and be helpful to the classification task. In this
paper, we extract two low-level features widely used in the
hyperspectral image processing domain. The first one is hy-
perspectral image texture feature, extracted by Gabor filtering
[48], [49]. The other one is differential morphological profiles
(DMP) feature [50]-[53], representing the shape information
of the hyperspectral image.

1) Gabor Texture Features: Gabor transform fulfills human
visual characteristics and has an unique advantage to extract
texture features [54]. The kernel function of a 2-D Gabor filter
is shown as follows:

12 2,112
(,O(iEl, ylv fv 9, v 0) = exp <_ x;zy) COS(27Tf1'H + ¢)
o
(7
where 2" = 2’ cos 6+’ sin 0, ¢y’ = —x' sin 0+’ cos #, and z’

and y’ represent the coordinates of a pixel in the image. f and
# indicate the frequency and rotation of the sinusoidal plane
wave, respectively. ¢ is the phase of the Gabor function, and
o and +y are the radius and orientation angle of the Gaussian.

To sufficiently extract the texture information from a HSI,
a set of Gabor filters are constructed by setting differen-
t frequencies and rotations. Then, for a 3-D HSI dataset
D € RE\xK2XB \where K| and K, are length and width
respectively and B indicates the number of the spectral bands.
After having convolved D with the family of Gabor filters with
various frequencies and rotations, the Gabor texture features
Xiewture € REVXE2XL: “\where [, is the length of the Gabor
texture feature vector, can be obtained.

2) Differential Morphological Profiles Shape Features:
Differential morphological profiles (DMPs) [50], [53] features
represent the shape information of a HSI. Similar to the
extended morphological profiles (EMP) [51], the principal
components (PCs) of the HSI are used as the base images for
the construction of MPs in DMP. A series of morphological
opening and closing operations with a family of structuring
elements (SEs) of increasing sizes are performed to remove
small bright or dark details, while maintaining the overall
shape features.

For an image I, v*#(I) and ¢°F(I) are the morphological
opening and closing by reconstruction with SE. MPs are
defined by a series of SE with increasing sizes

MP., = {MP(I) = v*(I), VA € [0, n]} ®)
MP, = {MP}(I) = ¢*(I),VA € [0,n]} 9)

where A is the radius of the disk-shaped SE and \°(I) =
¢°(I) = I. Then DMPs are defined as the vectors where the
measures of the slopes of the MPs are stored for every step
of an increasing SE series:

DMP,, = {DMP}(I) = [MP}(I) - MP}""(I)|, A € [1,n]}
(10)
DMP, = {DMP}(I) = [MP}(I) - MP}~'(I)|, A € [1,n]}
(11

In our experiments, the first 5 PCs of the HSI dataset are
selected for extracting DMP shape features and deriving the
parameter A is set to (2,4,6,8,10). The final DMP shape
feature Xgpqpe € RE1*HK2Xls g constructed by concatenating
DMP, and DMP 4 together, where [, is the length of the DMP
shape feature vector. Experimentally, [ is ste to be 50.

B. Local Spatial Sequential (LSS) Features

The two low-level feature matrices do not contain enough
information for further processing. It has been widely recog-
nised that properly combining multiple features together may
result in good classification performance [55]. In this paper,
after having got the texture feature X;cy1yre and DMP shape
feature Xgpape, We stack them together to derive a more
powerful low-level feature matrix X = [Xiegiure Xshape] €
RExEaxl where | = I, + I, is the length of the composite
low-level feature vector.

Using the local homogenous property, we assume that the
pixels in a local region usually belong to the same class. A
number of methods have used local spatial information [5], [6],
[56]. In this paper, we collect the spatial information using a
w X w neighboring region of every pixel in the training and
testing examples. For the ease of understanding, w is regarded
as the local spatial window size.

RNN can process the sequential inputs by having a recurrent
hidden state whose activation at each step depends on that of
the previous step. In this manner, the network can exhibit dy-
namic temporal behavior. For the hidden layer state h? at time
t, we use h' as the memory of the network, which captures
information of what happens in all the previous time steps.
In order to deal with the problem that different pixels within
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Fig. 3. How z15g works in LSS-RNN.

the same local area may affect the classification result, we
propose a method to construct the local spatial sequence (LSS)
features, which efficiently exploit the relationship between the
local pixels.

For the pixels of a small region, we sort them by their
individual importance. The most important pixel (the “best”
one) is set to be the first time input vector, and the least
important pixel (the “worst” one) is set to be the last time
input vector. Actually, we treat the concept 'importance’ as
the degree of the similarity between a pixel and the given
pixel that we want to classify, hereby the center pixel of the
rectangle widow region. The final sorted pixel sequence is
called the LSS features.

More specifically, for a center pixel = (21, xa,...,2;) €
R!), the w x w neighboring region window contains n pixels,
Tiocar = {xt, 22, ..., 2"}, where n = w X w. Tjpeqr € R
can also be seen as a 2-D feature matrix of x consisting of
all n neighbor pixels. We use the Euclidean distance I, ,i)
to measure the similarity between the center pixel x and the
neighbor pixel z¢(i = 1,...,n)

Lty = /(@1 — 2)2 + (w2 — )2 4+ + (21— x})?
(12)
which represents the importance of the pixel ¢ (“good” or
“bad”).

Then all the pixels in xjocq; are sorted by I, ;¢ to obtain
the LSS feature 21,55 = {2155, T%55,---+T 1 g5} TLsS €
R™™ is a sequence feature constructed by n composite low-
level feature vectors. So the importance of each pixel decreases
gradually along the feature sequence, and the first input vector
of zsg is the center pixel z.

RNN models are good at dealing with these sorted sequence
features. The pixel z is the most important one and it is set
to the first time input vector. According to the RNN property
mentioned above, z influences the whole sequence. The pixel
most similar to z is set to the second time input vector,
affecting the rest sequence besides x, and so on. For the other
pixels, the less important they are, the latter input vector they
are set to (the less they can affect the classification result).
So, the positive influence of the “good” ones is strengthened
while the negative effects of the “bad” ones are reduced. In
other words, the concept of the time sequence has been applied
to the local spatial sequence, which is the LSS feature’s
contribution to the proposed model.

C. LSS-RNN

After having got the LSS features, it is time to construct
a RNN model so that the training examples can be fed into
the input layer to train the model. In this paper, we use a
fully connected RNN architecture as our basic RNN model.
The number of the time steps is set to n, which is exactly the
number of the pixels in a local spatial window. The output
dimension of the internal projections is set to [, which is the
dimension of the LSS feature matrix, also known as the low
level feature vector’s length. Then the LSS feature x1 55 can
be fed into the RNN model, and each low level feature vector
in x1gg corresponds to a time step input vector in the RNN.
For time step ¢ with the corresponding input feature vector
zhgg, t = 1,...,n, the hidden layer state h* and the output
layer state /* can be calculated by

h' = on(Waalhgs + Uph' ™! + bp)
Y = oy (Wyh' +,).

13)
(14)

In recent research on deep learning, there is a consensus that
for deep neural networks, rectified linear units (ReLUs) are
easier to train than the sigmoid or tanh units that were used for
many years [57]. In our work, ReLU is selected as the input-to-
hidden activation function oy,. Also, inspired by the approach
reported in [58], the recurrent weight matrix is initialized to
be the identity matrix and the biases are initialized to be zero.
In this way, the RNN is composed of rectified linear units
that are relatively easy to train whilst model the long-range
dependencies.

Then, the last time hidden layer output is a high level
contextual feature which can be fed into a softmax layer to
complete the classification task. So equation (14) is trans-
formed to

y" = softmax(W,h" + b,) (15)

where y" is the classification result. How z g5 works in LSS-
RNN is shown in Fig. 3 which makes it easier to understand.
As shown in Fig. 3, 2} ¢q,t € {1,...,n} represents the tth
low-level feature vector of the low-level feature matrix xgg.
We use the traditional cross entropy loss as the loss function.
Then back-propagation through time (BPTT) method [46] is
applied to train the network over time steps and this results in
conceptual simplicity and efficiency.

In this paper, we use ReLU as the activation function. The
learning rate is set to 0.0001, and the batch size is set to 100.
We provide training and validation loss curves as shown in Fig.
4 to demonstrate the convergence of the algorithm. From Fig.
4, we can see the loss values on the training set and the loss
on the validation set gradually decrease and finally converge,
showing that RNN works well on both the training set and the
validation set.

D. Local and Non-local Spatial Sequential (NLSS) Feature

Besides the local spatial information, the spatial information
from non-local regions is also important for HSI classification.
As we know, there are some pixels that have characteristic
similar to the original pixel, but locate at different regions.
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Fig. 4. Training and validation loss curves: (a) for Indian Pines; (b) for University of Pavia.

Exploring the non-local spatial information will further im-
prove the discriminability of the learned features. Instead of
extracting features from the local regions around the sample
only, we propose the feature extraction method of local and
non-local sequential features (NLSS) for HSI. Since both the
local and non-local spatial features are integrated together,
NLSS can enhance the classification performance.
Specifically, for a given center pixel x, we first find K non-
local neighbors Z,0n—1ocal = {21, 22, ..., 2%} which are de-
termined by the K nearest neighbor algorithm according to the
extracted low-level features. For every sample in Z,,0n—i0cals
the corresponding local spatial sequential feature is extracted
zh g, i=1,..., K. Stacking the LSS features of the original
sample and the K LSS of the non-local samples together,
we get the NLSS feature zx1ss = {715, 2755, - > TLss}

rrss € R*K, xnpss € RYX™ , Where [ denotes the length
of the positive and lower eigenvectors, n'=n x K denotes
the sequence length of NLSS feature, n = w x w denotes the
LSS feature sequence length of each sample, w denotes the
size of the local space window, and K denotes the number of
samples most similar to x.

For the NLSS features, the sample z itself and its LSS
feature x5 will locate at the front of the non-local features.
In detail, « will locate at the first place, then it will always
exist in the sequence by the mapping from layer to layer, thus
will maintain its effect to the whole sequence. The next place
will be the most similar sample to x and its LSS feature,
and the like. In the architecture of NLSS, the local regions
are first sorted according to the similarity between the center
pixel and z, and then pixels in each local region are sorted
like LSS does. So, the importance of a window is higher than
that of a pixel.

E. NLSS-RNN

Similar to the LSS model, after extracting NLSS feature of
the sample, the training samples and the corresponding class
labels are used as the inputs to train the related parameters of
the RNN model. The whole framework is called NLSS-RNN.

For the NLSS feature xn1ss of sample z, there are n’ low-
level features which are already sorted in order. Then a RNN

Fig. 5. AVIRIS the Indian Pines dataset false color composite image and
corresponding ground truth areas representing 16 land-cover classes.

network with n’ time steps is constructed. The NLSS feature
rn1ss 1s fed into the RNN model, and each low-level feature
vector in xn1gs corresponds to a time step input vector in
the RNN. For time step ¢ with the corresponding input feature
vector, the hidden layer state h is calculated by:

ht = o, (Wil gg + Unh'™ +by) (16)

where W} denotes the input-to-hidden matrices, U}, is the
matrix of the recurrent weights between the hidden layer and
itself at two adjacent time steps. b, is the biases, and oy,
denotes the activation function.

It should be noted that the hidden layer state of the last time
step is also used as a high level semantic feature. The NLSS
is a high level non-local semantic feature, and the time step
becomes n’, the value of which is K length of the local space
sequence n of the superposition, then the final output of the
classification y"/ , which is calculated by:

Y = softmax(Wyh”/ +by) (17)

where y”' is the classification result.

IV. EXPERIMENT RESULTS
A. Description of Datasets

In our study, three well-known hyperspectral datasets, in-
cluding Indian Pines and University of Pavia, with different
environmental settings are employed to evaluate the proposed
method. The Indian Pines dataset refers to a mixed vegetation
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TABLE I
LAND-COVER CLASSES AND NUMBERS OF PIXELS ON THE INDIAN PINES
DATASET.
Class No. of Samples
Code  Name Train Test
1 Alfalfa 5 41
2 Corn-notill 143 1285
3 Corn-mintill 83 747
4 Corn 24 213
5 Grass-pasture 48 435
6 Grass-trees 73 657
7 Grass-pasture-mowed 3 25
8 Hay-windrowed 48 430
9 Oats 2 18
10 Soybean-notill 97 875
11 Soybean-mintill 246 2209
12 Soybean-clean 59 534
13 Wheat 20 185
14 Woods 126 1139
15 Buildings-Grass-Tress 39 347
16 Stone-Steal-Towers 9 84
Total 1025 9224

site over the Indian Pines test area in Northwestern Indian. It
was gathered by Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) sensor. This dataset has 145 x 145 pixels and
220 spectral bands in the wavelength range of 0.4 — 2.5um.
After removing water absorption bands, the number of the
bands is reduced to 200. There are 16 different land-cover
classes in the ground truth. The false color composite image
and the ground truth maps are shown in Fig. 5. The numbers
of the samples of each class are displayed in Table 1.

The second dataset University of Pavia was recorded by
the reflective optics imaging spectrometer (ROSIS-3) over the
University of Pavia, Italy. It has 115 bands with 610 x 340
pixels (Fig. II). The image has a spatial resolution of 1.3m per
pixel and was collected in the spectral range of 0.43—0.86um.
In the experiments, 12 noisy channels are removed, and the
remaining 103 bands are used for the classification task. The
false color composite image and the ground truth maps of
University of Pavia are shown in Fig. 6. The numbers of the
samples of each class are displayed in Table II.

The final dataset was acquired over Salinas Vally, California
by AVIRIS sensor in 1998. The original dataset is composed
of 224 bands, with a spectral range of 0.4 to 2.5 um. The
image spatial resolution is 3.7m and it has a size of 512 x 217
pixels. Similar to other datasets, 20 water absorption bands are
removed and 204 bands are left. The false color image and 16
classes of the ground-truth are shown in Fig. 7. The numbers
of the samples of each class are listed in Table III.

B. Experimental Design

In order to investigate the effectiveness of the proposed
methods, we compare the results of LSS-RNN and NLSS-
RNN for the hyperspectral image classification task with
several well-known methods and deep learning architectures,
including SVM, Simultaneous Orthogonal Matching Pursuit
(SOMP), SAE and CNN [59]. It should be noted that the
parameters of SVM are obtained by cross-validation, and the
parameters setting of these methods which will be mentioned
below come from those reported in the references. On the

Asphalt
Meadows
Gravel

Trees

Metal sheets

Bare soil

Bitumen
Bricks
Shadows

Fig. 6. ROSIS-3: the University of Pavia dataset, false color composite image,
and the corresponding ground truth areas representing 9 land-cover classes.

TABLE 11
LAND-COVER CLASSES AND NUMBERS OF PIXELS ON THE UNIVERSITY
OF PAVIA DATASET.

Class No. of Samples
Code  Name Train Test
1 Asphalt 597 6034
2 Meadows 1678 16971
3 Gravel 189 1910
4 Trees 276 2788
5 Metal sheets 121 1224
6 Bare soil 453 4576
7 Bitumen 120 1210
8 Bricks 331 3351
9 Shadow 85 862

Total 3850 38926

Broccoli green weeds 1
Broccoli green weeds 2
Fallow

Fallow rough plow
Fallow smooth

Stubble

Celery

Grapes untrained

Soil vineyard develop
Corn senesced weeds
Lettuce romaine 4 weeks
Lettuce romaine 5 weeks
Lettuce romaine 6 weeks

%

Lettuce romaine 7 weeks
Vineyard untrained
Vineyard vertical trellis

Fig. 7. AVIRIS: the Salinas dataset, false color composite image, and the
corresponding ground truth areas representing 16 land-cover classes.

other hand, taking the Gabor-DMP features into consideration,
the different performance between individual features and
composite features is also demonstrated in our experiments.
We also implement specific experiment to explore the effect
of the window size on classification accuracy. For CNN based
method, we use a large neighborhood window (27 x 27) for
the first principal component as the input 2-D image for the
three datasets. When the spatial resolution of the image is not
very high, 4 x 4 kernel and 5 x 5 kernel can be selected to
run convolution and the 2 x 2 kernel is used for pooling. In
addition there are several parameters which should be selected
in the experiments. Considering the small size of these three
dataset, three convolution layers and three pooling layers are
used here. In the training procedure, we use mini-batch-based



JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 8

TABLE III
LAND-COVER CLASSES AND NUMBERS OF THE PIXELS ON THE SALINAS
DATASET.

Class No. of Samples

Code  Name Train Test
1 Broccoli green weeds 1 20 1989
2 Broccoli green weeds 2 37 3689
3 Fallow 20 1956
4 Fallow rough plow 14 1380
5 Fallow smooth 27 2651
6 Stubble 40 3919
7 Celery 36 3543
8 Grapes untrained 113 11158
9 Soil vineyard develop 62 6141
10 Corn senesced weeds 33 3245
11 Lettuce romaine 4 weeks 11 1057
12 Lettuce romaine 5 weeks 19 1908

13 Lettuce romaine 6 weeks 9 907
14 Lettuce romaine 7 weeks 11 1059
15 Vineyard untrained 73 7195
16 Vineyard untrained 18 1789
Total 543 53586

backpropagation method, where the size of mini-batch is set
as 100. The learning rate of all the CNNs is set to be 0.01
and the number of the training epochs of the CNN is 200.
For evaluating the performance of the proposed methods
efficiently, for each dataset, the labeled samples are separated
into a training set and a test set randomly. The numbers of
the sample selection process are shown in Tables I and II. To
be specific, we run the experiments more than 10 times with
different initial training samples and record the average results
of the measures, including overall accuracy (OA), average
accuracy (AA), Kappa coefficient and accuracy of each class.

C. AVIRIS Indian Pines

For the Indian Pines dataset, we randomly select 10%
examples per class as the training set and the remaining 90%
samples as the test set for all the methods. The numbers of
the training and test samples are shown in Table I. First of
all, to produce the Gabor texture features, the standard PCA
process is implemented on the Indian Pines dataset, and the
first 10 principle components (PCs) are selected. In our work,
4 orientations, 3 scales are considered to construct the Gabor
filters. For each PC, the length of the texture feature vector
is 12, and for the whole image, we have a texture feature
matrix Xeprure € R149%145%120 For the DMP morphological
features, we only use the first 5 PCs and the size of the
structure elements are set to 2, 4, 6, 8, 10. Then we have
the morphological feature matrix Xpqpe € R145x145x50 For
the proposed LSS-RNN method, the window size is 7 X 7,
and we have used 170 units (the same as the length of the
input feature vector) in the hidden layer. The number of the
iteration is set to 1000, which is large enough for our model to
converge. For the proposed NLSS-RNN method, the window
sizes is also set to 7 x 7, and 170 units in the hidden layer.
The number of the iteration is set to 1000, and the number of
nonlocal neighbors(K) is set to 2, other model parameters set
consistent with LSS-RNN. 32 4 x 4 convolution kernels and
one 2 X 2 pooling kernel are used in CNN for this dataset. The

quantitative results averaged over ten runs for various methods
are tabulated in Table IV.

In our experiments, for SVM and SVM (Gabor-DMP),
we use a one-against-one strategy with RBF kernels, and
the parameters are obtained by cross-validation. The LS-
RNN model only uses the local spatial (neighborhood) pixels
without sorting them by their importance. The window sizes
of SOMP and LS-RNN are also set to 7 x 7, the same as
that of the proposed LSS-RNN method. In the SAE, we
have used 90 units in the first hidden layer and 50 units
in the second hidden layer. A traditional softmax layer is
connected to complete the classification task. In Table IV,
for SVM(Gabor-DMP), SAE, LS-RNN, LSS-RNN and NLSS-
RNN, the composite Gabor-DMP features are used. As shown
in Table IV, for the SVM model, compared with the original
spectral features, the composite Gabor-DMP features clearly
lead to a better performance. Regarding the integration of
LSS-RNN with different features, the composite Gabor-DMP
features are more discriminative than individual Gabor or
DMP morphological features. On the other hand, different
features have different discrimination capabilities for hyper-
spectral images, for example, the DMP morphological features
perform much better than the Gabor texture features on class
1, 7, 10, 15. It is clear that local spatial information plays
an important role in the classification task. For LS-RNN and
LSS-RNN, because of the sorting by importance, the local
spatial sequence in the LSS-RNN model contains the center
pixel and its neighborhoods, reducing the influence of other
non-supportive pixels. In Table IV, we can see that the OA
of LSS-RNN have increased about 1.3 percentage than that
of LS-RNN. Local spatial sequences not only come up with
local spatial information, but also allow us to exploit the
relationship of pixels in a neighboring area, which is ignored
by SOMP. Thanks to local spatial sequential information, the
best result is obtained by LSS-RNN: OA=98.36%, AA=97.99,
and Kappa=0.9813. We can see that CNN gets a better result
than SVM, SVM (Gabor-DMP), SAE, LS-RNN, LSS-RNN
(Gabor), and LSS-RNN (DMP) on Indian Pines dataset. Our
proposed LSS-RNN (Gabor-DMP) method gets better results
in terms of OA and Kappa. Since NLSS-RNN maintains more
information than LSS-RNN by integrating local and non-local
sequence features of samples, it obtains better results in terms
of OA and AA.

The classification results obtained from the various methods
with the fixed training samples are shown in Fig. 8(c)-(1).
It is witnessed that because of the high discriminability of
composite Gabor-DMP feature, SVM (Gabor-DMP) can obtain
clear and accurate results than SVM. As shown in the regions
marked by the white ellipses, compared with the other indi-
vidual low-level features, the composite Gabor-DMP low-level
features help the methods achieve better results in some areas.
As we can see from Fig. 8, taking local spatial information
into consideration is beneficial for the hyperspectral image
classification task, especially for reserving local information
(marked by the white rectangles). Looking closely at Fig. 8(g)
and (j), LSS-RNN did achieve a better result than LS-RNN
and leads to more clear boundaries. Moreover, compared with
LSS-RNN, NLSS-RNN can get more accurate classification
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Fig. 8. For the Indian Pines image: (a) Training samples; (b) Test samples; (c) SVM; (d) SVM(Gabor-DMP); () SOMP; (f) SAE; (g) CNN; (h) LS-RNN
(i) LSS-RNN(Gabor); (j) LSS-RNN(DMP); (k) LSS-RNN; (1) NLSS-RNN.

TABLE IV
CLASSIFICATION ACCURACY (%) FOR THE INDIAN PINES IMAGE ON THE TEST SET.

Class SVM (Gabso\r/—thP) SOMP | SAE | CNN | LS-RNN L(SSASOI:I)N L?SﬁgN LSS-RNN | NLSS-RNN
1 63.42 95.10 89.80 | 90.24 100 90.24 82.93 95.12 95.12 95.12
2 81.17 95.30 89.78 | 91.75 | 96.34 98.13 91.52 97.12 97.51 98.21
3 70.55 98.80 90.41 93.57 | 99.49 97.72 93.98 97.46 97.05 99.60
4 53.52 93.40 87.68 | 90.14 100 96.24 92.49 97.18 94.37 97.18
5 91.72 98.62 94.87 | 93.79 | 99.91 94.71 97.01 94.48 98.16 97.93
6 93.91 98.50 99.11 94.82 | 99.75 96.19 98.48 97.87 97.87 98.33
7 76.00 92.00 41.67 | 84.00 100 84.00 68.00 84.00 96.00 96.00
8 94.65 100 99.77 100 10 99.53 98.60 100 100 100
9 2222 100 0 61.11 100 71.78 72.22 100 100 94.44
10 69.03 92.34 86.70 | 89.49 | 98.72 94.74 87.66 95.20 96.46 97.60
11 83.48 96.56 95.72 | 9430 | 95.52 98.55 95.88 98.64 99.59 99.28
12 71.16 96.63 89.33 | 93.45 | 9947 91.95 92.13 95.51 98.50 98.31
13 97.84 99.46 98.95 | 99.46 100 86.49 97.30 98.92 98.92 100
14 95.00 99.39 99.40 | 99.30 | 99.55 99.91 99.56 99.21 99.47 99.21
15 43.52 98.56 9240 | 88.18 | 99.54 97.12 89.34 98.27 98.85 98.85
16 92.86 97.62 9535 | 92.86 | 99.34 100 100 98.81 100 100

OA 81.05 96.96 93.51 93.93 | 97.56 97.09 94.50 97.61 98.36 98.75
AA 75.00 97.02 84.43 | 91.03 | 99.23 93.96 91.07 96.74 97.99 98.13
Kappa 0.78 0.97 0.93 0.93 0.97 0.97 0.94 0.97 0.98 0.99

B
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Fig. 9. For the Pavia image: (a) Training samples; (b) Test samples; (c) SVM; (d) SVM(Gabor-DMP); (e) SOMP; (f) SAE; (g) CNN; (h) LS-RNN; (i)

LSS-RNN(Gabor); (j) LSS-RNN(DMP); (k) LSS-RNN; (I) NLSS-RNN.

TABLE V
CLASSIFICATION ACCURACY(%) FOR THE UNIVERSITY OF PAVIA IMAGE ON THE TEST SET.
Class || SVM (Gabso\r/—l\]gMP) SOMP | SAE | CNN | LS-RNN L(Sgagg)N L?Si\l}gN LSS-RNN | NLSS-RNN
1 9256 98.99 9461 | 96.06 | 9936 | 96.85 99.24 99.57 99.80 99.67
2 97.00 99.59 99.91 | 99.06 | 99.36 | 99.32 98.92 99.70 99.75 99.90
3 71.20 97.17 96.60 | 87.59 | 99.69 | 99.69 94.55 98.32 99.06 99.69
4 93.40 99.39 91.04 | 9831 | 99.63 | 97.49 98.17 99.64 99.57 99.21
5 99.92 99.92 99.75 | 99.84 | 99.95 | 99.59 100 99.51 100 100
6 77.05 97.66 97.97 | 96.37 | 99.96 | 98.01 98.08 97.36 99.43 99.85
7 79.26 97.02 97.19 | 88.76 | 100 | 9835 95.12 96.36 99.50 99.34
8 84.09 99.22 96.81 | 96.06 | 99.65 | 99.07 97.91 97.94 99.22 99.67
9 98.26 99.88 86.08 | 98.61 | 99.38 | 98.38 98.61 99.42 99.65 100
OA || 90.90 99.04 97.40 | 97.10 | 99.54 | 98.61 98.42 99.06 99.63 99.77
AA || 8833 98.76 95.55 | 95.63 | 99.66 | 98.53 97.34 98.65 99.55 99.70
Kappa || 0.8 0.99 097 | 096 | 0994 | 098 098 0.98 0.99 0.997

results in some details, such as the area marked by white
ellipses. In summary, the proposed LSS-RNN and NLSS-
RNN (Gabor-DMP) methods achieve comparable performance
against the other traditional methods.

D. ROSIS-3 University of Pavia

In this experiment, for each of the 9 classes, 9% of the
labeled pixels are randomly selected for training, while the
rest 91% are used to test the classifiers (see Table II). The
Gabor and DMP feature are extracted using the same process
implemented on the Indian Pines dataset with the same param-
eters. Fig. 9 illustrates the classification results of the different
methods on the University of Pavia dataset.

Considering both the computing complexity of the training
model and classification accuracy, we set the local window
size of SOMP, LS-RNN, LSS-RNN and NLSS-RNN to 7 x 7
(w = 7). For NLSS-RNN, the number of the iteration is set to
1000, and the number of nonlocal neighbors(K) is set to 3. For
SAE, the numbers of the first and second hidden layers are
set to 90 and 50 respectively. For CNN, 64 5 x 5 convolution
kernels and one 2 x 2 pooling kernel are used. From Table V,
we have the same occlusion as that shown in the last section.
The methods containing local spatial features of hyperspectral
images have better classification accuracy than those classifiers
based on single pixels’ information. Composite Gabor-DMP
features are much more discriminative than individual Gabor
of DMP features. By exploiting the relationship of local pixels,
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Fig. 10. For the Salinas image: (a) Training samples; (b) Test samples; (c) SVM; (d) SVM(Gabor-DMP); (e) SOMP; (f) SAE; (g) CNN; (h) LS-RNN; (i)

LSS-RNN(Gabor); (j) LSS-RNN(DMP); (k) LSS-RNN; (I) NLSS-RNN.

LSS-RNN is more accurate than LS-RNN. Take a look at
classes 6 and 7, the LSS-RNN model achieves more than 99%
accuracy, much higher than the other methods. For OA, AA,
Kappa, LSS-RNN also achieves the best performance among
all the methods. At the same time, the validity of NLSS-RNN
algorithm is also proved. The highest classification accuracy is
obtained for the third, fifth, eighth and ninth classes, and OA,
AA, and Kappa are also the highest among the comparison
algorithms. The Kappa coefficient is even close to 1.

Fig. 9(c)-(1) shows the classification of the methods on the
fixed training samples. It is observed that the classification
results of those pixel-wise methods are very poor. Using local
area information, SOMP, LS-RNN and LSS-RNN can achieve
cleaner results (marked by the white rectangle). The proposed
LSS-RNN algorithm not only reduces the noise, but also keeps
clear boundaries and obtains better classification results in
many small regions (marked by the white ellipse). With the
powerful Gabor-DMP features, the Gabor features seem to
be more influential than the DMP features. The classification
of NLSS-RNN is more accurate and smooth in flat areas.
Overall, the proposed NLSS-RNN method outperforms the
other methods.

E. AVIRIS Salinas

For this dataset, as shown in Table III, we randomly select
about 1% samples from each class to form the training set and
the rest samples for testing. The classification results of the
different methods have been shown in Table VI and the best
results are marked in bold.

Due to the homogeneity of this image, the size of the local
spatial window 1is larger than those used on the Indian Pines
and University of Pavia datasets. For the Salinas dataset, the
window size is set to 9 x 9 for LS-RNN, LSS-RNN(Gabor),
LSS-RNN(Gabor) LSS-RNN and NLSS-RNN. For NLSS-
RNN, the number of nonlocal neighbors(K) is set to 2. The
window size used in SOMP is set to 15 x 15. It should be
noted that this window size such as 15 x 15 requires significant
computational complexity. Other parameters are the same as
those mentioned above. 128 4 x 4 convolution kernels and one
2 x 2 pooling kernel are used for this dataset.

From Table VI, we can see that CNN based method cannot
get a good performance in this dataset and all the other
methods have good classification results. Our method gets
best results. Especially for class 15 which contains more than
7000 pixels, compared with the other methods, LSS-RNN is
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Fig. 11.

Fig. 12.

of 94.66% which is much higher than the others. For most of
the classes, LSS-RNN achieves comparative high classification

TABLE VI
CLASSIFICATION ACCURACY (%) FOR THE SALINAS IMAGE ON THE TEST SET.

Class SVM (Gabso\r/-l\];[MP) SOMP | SAE | CNN | LS-RNN L(S(}S;E;;I)N L?Si\l/}PN)N LSS-RNN | NLSS-RNN
1 98.79 100 100 98.04 | 98.36 100 100 99.04 98.49 92.26
2 99.13 99.76 99.86 99.38 | 98.43 100 98.92 100 99.97 99.76
3 98.67 99.80 94.43 98.52 | 92.97 99.59 97.24 99.23 99.74 99.49
4 99.57 99.86 93.12 99.35 | 99.46 97.97 97.90 99.49 99.86 99.78
5 94.53 97.02 88.57 96.08 | 91.83 98.45 97.59 97.96 97.06 97.70
6 99.52 99.90 100 99.44 | 99.83 99.95 99.82 98.88 99.85 99.77
7 99.41 98.65 99.60 97.46 | 99.68 98.62 99.29 99.58 99.41 99.75
8 84.63 91.69 94.70 88.59 | 68.94 91.50 89.41 90.55 93.17 94.76
9 98.78 99.19 99.74 99.67 | 98.45 99.46 99.17 99.28 99.64 99.92
10 91.34 97.78 95.41 92.39 | 73.31 98.74 92.73 95.84 97.44 96.95
11 96.22 99.53 93.38 97.07 | 90.85 99.43 94.89 97.16 96.12 99.91
12 99.58 100 91.61 97.85 | 98.31 96.12 99.74 82.60 100 99.90
13 99.23 99.67 67.48 98.90 | 97.43 100 99.01 99.78 100 98.79
14 80.45 96.22 92.83 98.30 | 97.76 99.34 87.54 98.87 96.79 98.30
15 64.41 78.33 72.86 81.46 | 63.75 90.72 89.09 84.36 94.66 93.01
16 95.86 94.52 99.05 91.62 | 85.24 99.44 90.50 90.50 95.42 99.89

OA 90.22 94.59 92.81 93.58 | 85.24 96.43 94.69 94.58 97.11 97.23
AA 93.76 96.99 92.67 95.88 | 85.22 98.08 95.80 96.36 97.98 98.12
Kappa 0.89 0.94 0.92 0.93 0.85 0.96 0.94 0.94 0.97 0.97
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and AA, 97.11% and 97.98%, respectively. The OA, AA, and
Kappa coefficients of NLSS-RNN have been improved over

accuracy to the others. LSS-RNN also achieves the highest OA  LSS-RNN and achieve the best results among the comparison
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Fig. 13. Effects of the number of non-local neighbors and different window

algorithms.

Fig. 10(a) and (b) show the training and test samples, and
the classification results of the different methods have been
shown in Fig. 10(c)-(1). Fig. 10 shows that our methods get
more accurate and smoother classification results. It is clear
that the methods using local spatial information result in much
clean outlines of the regions (marked by the white rectangles).
The white ellipse region shows the ability of high-level contex-
tual feature to obtain more accurate detail information. Also,
the composite Gabor-DMP low-level features performs better
than the individual Gabor or DMP features. For LS-RNN and
LSS-RNN, comparing Fig. 10 (g) and (j), their classification
results look very similar, and they are also only about 1%
different in OA, shown in Table VI. This may be due to the fact
that because of the large homogeneity of the Salinas image,
the sorting procedure does not help much.

F. Parameter Analysis

In this section, we focus on the parameters influencing
classification results directly, including the size of the training
set and the local spatial window size. We intend to understand
how these parameters affect the different methods’ perfor-
mance on various datasets. We aim to find a general pattern of
parameters’ influence to our proposed LSS-RNN model. The
experiments are conducted five times and the average values of
the experiment results are recorded to avoid the bias induced
by random sampling.

1) Effect of the number of training samples: We implement
a few experiments to investigate the effect of the number of
the training samples. For each method, the number of the
selected training samples is the only parameter to be changed,
while the others are fixed. 1%, 2%, 5%, 10%, 15%, 20%,
25% and 30% of the labeled samples from each class are
selected randomly as the training sets for the analysis. The
OA results of the different methods on various sizes of training
sets are displayed in Fig. 11, (a) for Indian Pines and (b) for
University of Pavia, where the x-axis represents the percentage
of the training samples selected per class and y-axis denotes
the overall accuracy.
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sizes on NLSS-RNN: (a) For Indian Pines; (b) for University of Pavia.

From Fig. 11, we can see that for every method, as the
number of the training samples increases, OA also increases.
The LSS-RNN(Gabor-DMP) outperforms the other methods,
especially when the training sample set is small suc has 2%
to 10% for both the two datasets. When the number of the
training samples is large enough, the OA of each method tends
to be stable.

2) Effect of the local spatial window size: To investigate
the local spatial window size attributing to the system perfor-
mance, more experiments are performed to explore the effect
of window sizes. The window size is set to 3 x 3, 5 x5, 7 x 7,
9 x 9 and 11 x 11 individually. The OA of LSS-RNN with
different features are shown in Fig. 12. It is evident that at
the beginning, when the window size is between 3 to 9, as
the window size becomes bigger, more spatial information is
included and the OA increases correspondingly. If the window
size is large enough, the space information is more important
than the Gabor-DMP features, the classification accuracy will
decrease. It is crucial to choose an appropriate window size for
combining both the feature vectors and local spatial sequencial
information together.

3) Effect of the number of non-local neighbors and spatial
window size in NLSS-RNN: In NLSS-RNN, we adopt KNN to
search the non-local neighbors for a given pixel. To investigate
the effect of the number of non-local neighbors K and the local
window size w to the NLSS-RNN classification performance,
we implement the experiment with different values of K and
w. The number of non-local neighbors is set to 1,2,3,4,5 and
the window size is set to 3 X 3, 5 X 5 and 7 x 7 respectively.
The OA curves of NLSS-RNN with different parameter values
are shown in Fig. 13.

From Fig. 13, we can find that NLSS-RNN gets better
results with the local window size w = 7 for both the Indian
Pines dataset and Pavia University dataset. When the number
of non-local neighbors K is set to 2 or 3, NLSS-RNN can
get the best result. Large values of K not only increase
the computational cost, but also bring more irrelevant pixels
involved in NLSS feature learning, thus will lower the OA
value.



JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 14

V. CONCLUSION

In this paper, we have proposed a novel LSS-RNN deep
learning framework for hyperspectral image classification,
which constructs a powerful composite low-level feature and
not only extracts the local spatial information of a HSI, but
also exploits the relationship between local pixels to strengthen
the positive effects of “good” pixels and reduce the negative
impacts of “bad” pixels. Firstly, different types of low-level
features are extracted to construct more powerful composite
low-level features to represent the complete information of the
HSI. Secondly, in order to efficiently exploit the relationship
between local pixels, we construct the LSS features from
each sample based on the composite low-level feature matrix.
Then, the LSS features and the corresponding standard labels
of the training samples are fed into the standard RNN to
optimise the parameters using BPTT. Finally, the well trained
LSS-RNN model are used to classify test samples. Besides,
the non-local information is explored by constructing local
and non-local spatial senquece features and NLSS-RNN. The
method introduces non-local thinking, which not only retains
the excellent properties of LSS features, but also increases the
amount of information contained in features, and improves
the classification accuracy. The experimental results on three
datasets have proved that our methods outperform the other
state-of-the-art methods. Our further work will mainly focus
on improving the RNN framework by adapting different layer
architectures to the applications.
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