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“I can calculate the movement of the stars, but not the madness of men"

Sir Isaac Newton after losing a fortune in the South Sea Bubble



Abstract

In this thesis we develop dynamic cooperative investment schemes in discrete and

continuous time. Instead of investing individually, several agents may invest joint

capital into a commonly agreed trading strategy, and then split the uncertain

outcome of the investment according to the pre-agreed scheme, based on their

individual risk-reward preferences. As a result of cooperation, each investor is able

to get a share, which cannot be replicated with the available market instruments,

and because of this, cooperative investment is usually strictly profitable for all

participants, when compared with an optimal individual strategy. We describe

cooperative investment strategies which are Pareto optimal, and then propose a

method to choose the most ‘fair’ Pareto optimal strategy based on equilibrium

theory. In some cases, uniqueness and stability for the equilibrium are justified.

We study a cooperative investment problem, for investors with different risk prefer-

ences, coming from expected utility theory, mean-variance theory, mean-deviation

theory, prospect theory, etc. The developed strategies are time-consistent; that

is the group of investors have no reasons to change their mind in the middle of

the investment process. This is ensured by either using a dynamic programming

approach, by applying the utility model based on the compound independence

axiom.

For numerical experiments, we use a scenario generation algorithm and stochastic

programming model for generating appropriate scenario tree components of the

S&P 100 index. The algorithm uses historical data simulation as well as a GARCH

model.
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Chapter 1

Introduction

1.1 Criteria for comparing portfolios

Portfolio optimisation is the process of selecting a trading strategy for a financial
market, such that the resulting outcome, which is the rate of return of the final
portfolio, often modeled as a random variable (r.v.), is “optimal” for the investor,
with respect to some criterion. The choice of a reasonable criterion is of central
importance. The theory of choice under uncertainty suggest a number of possible
criteria based on preference modeling axioms. In the thesis, we mainly focus on
the investors whose preferences are described by modern portfolio theory, expected
utility theory or prospect theory. We show that in all these theories, the investors
having different preferences can use cooperation to achieve strictly better outcomes,
compared to optimal individual investment.

Modern portfolio theory, originated by Markowitz [106], states that an investor
aims to minimise portfolio risk, subject to achieving a pre-specified level of ex-
pected return. In Markowitz [106], risk is measured by the standard deviation of
the portfolio’s rate of return. Later, a number of alternative ways for measuring
risk have been suggested. For example, Artzner et al. [13], presented and justified
a set of four properties for measure of risk, which is named coherent risk measure.
A similar approach was suggested by Rockafellar et al. [122] who suggested re-
placing standard deviation by a general deviation measure, that is, functionally
satisfying four axioms: non-negativity, sub-additivity, positive homogeneity, and
lower semi continuity. For background literature of risk measures and many of
their applications we refer to [54, 51, 59].

1



Introduction 2

Another popular theory for comparing uncertain outcomes comes from von Neu-
mann and Morgenstern (1953) who proved that any investor whose risk preferences
satisfy four basic assumptions, or axioms, should maximise the expected utility of
his/her uncertain outcome for some utility functions, which are normally assumed
to be convex and increasing. This theory is called expected utility theory (EUT),
and is still very popular nowadays, along with Markowitz’s mean-variance theory.
The relation between these two theories was discussed where mean-variance ap-
proach does not conform with the expected utility theory unless uncertain outcome
is normal distributed or a utility function is quadratic, for more discussion about
the relation see, [94] and [99].

However, Allais [3] demonstrated that the main axiom of EUT is often violated,
which motivated the development of alternative theories for comparing uncertain
outcome. Maybe the most successful one is prospect theory, proposed by Kahne-
man and Tversky [83], or, more precisely, its cumulative version, see Tversky and
Kahneman [138]. Prospect theory describes the way of how the person (investors)
measures his/her gain or loss relative to the natural reference level. While in the
case of the normal distribution there is no significant difference between the mean
variance analysis and prospect theory, in general they differ significantly. Prospect
theory is able to describe both risk-averse and risk-seeking investors, while mean-
variance analysis assumes that investors are always risk-averse. Prospect theory
suggests that the investor or agents make their decision based on the change of the
wealth as gain or loss relative to the natural reference point, using some value func-
tion. Moreover, the possible choices for value functions are discussed, for example
in Tversky and Kahneman [138] and Prelec [113]. Koszegi and Rabin [90, 91, 92]
make an important attempt to explain how people think about either gain and
loss. In addition, Tversky and Kahneman [138] provide brief guidance on how to
choose an appropriate reference point. But, many researchers are working in this
direction to determine the natural reference level, as well as clarifying other rele-
vant aspects. For example, Schmidt [129] suggested that the reference point may
be stochastic, while Benartzi and Thaler [22] said that the reference point is not
static and actually it will adapt with the market and may change from the initial
price with a relevant change in the security price. Gneezy [64] chooses reference
point as a historical peak point. Oden [111] focuses his study on real estate and
claims that the reference point is the buying price. Moreover, initial price was
considered as a reference point by Shefrin and Statman [134]. Barberis et al.[14]
claim that the reference point is scaled up by the risk-free rate. We will use the
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latter idea in this thesis.

1.2 The idea of cooperation

Once the method for comparing the outcomes from trading strategies is chosen by
the investor, the optimal strategy can be found from a straightforward optimisation
problem. However, it is known (see e.g. Grechuk and Zabarankin [68]) that, for
any group of investors with different risk preferences, it is better to join their
capital, develop a common cooperative investment strategy, and then divide the
outcome of this strategy optimally among participants. To illustrate this we use
the following simple example from Grechuk and Zabarankin [68] and modify it
slightly, see Almualim [5].

Example 1.1 (cash-or-nothing binary options). A cash-or-nothing binary option
O pays some fixed amount of cash C(O) if the option expires in-the-money but
nothing otherwise. Suppose a market offers two cash-or-nothing binary options
A and B for the same price p with C(A) = 2p and C(B) = 3p. Then invest-
ing capital x into option A and capital y into option B, one earns: −x − y if
none of the options pays, x − y if only option A pays, −x + 2y if only option B

pays, or x + 2y if both options pay. For simplicity, we assume that these four
outcomes are equally probable. Thus, investment profits are random variables on
a four-element probability space and will be denoted as four-component vectors
X = (x1, x2, x3, x4); where each element xi represents the amount of money which
we get in the corresponding scenario. Suppose there are two agents with initial
capital of $1 each. The first one is risk neutral with utility function U1(X) being
the expected profit: U1(X) = 1

4

∑4
i=1 xi, whereas the second one is risk averse with

utility function U2(X) being the second worst outcome of X, i.e. if the components
of X are ordered as x1 ≤ x2 ≤ x3 ≤ x4, then U2(X) = x2. Both agents maximise
their corresponding utility functions.

Each agent can invest capital x into option A and capital y = 1 − x into option
B, which would result in profit X = (−x − y, x − y,−x + 2y, x + 2y). For the
first agent, the optimal investment is, obviously, x = 0 and y = 1 with the profit
X∗1 = (−1,−1, 2, 2) for which U1(X

∗
1 ) = E[X∗1 ] = 0.5. For the second agent,

U2(X) = min{x− y,−x+ 2y} attains a maximum when x− y = −x+ 2y, so the
optimal investment is x = 0.6 and y = 0.4 with the profit X∗2 = (−1, 0.2, 0.2, 1.4)

for which U1(X
∗
2 ) = 0.2. Now suppose that the agents agree to invest two units of
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their combined capital into a joint portfolio with x = 0.7 and y = 2− x = 1.3, and
agree to divide the resulting joint profit X∗ = (−x − y, x − y,−x + 2y, x + 2y) =

(−2,−0.6, 1.9, 3.3) into two shares: Y1 = (−1,−1, 1.5, 2.9) for the first agent and
Y2 = X∗ − Y1 = (−1, 0.4, 0.4, 0.4) for the second agent. Then U1(Y1) = E[Y1] =

0.6 > 0.5 = U1(X
∗
1 ) and U2(Y2) = 0.4 > 0.2 = U2(X

∗
2 ), so each agent has the

value of his/her utility function being strictly greater than that from the optimal
individual investment.

The study of cooperative investment divides naturally into the following parts;

(i) Finding an investment strategy, optimal for the group of investors. In the
example above, was the joint portfolio with x = 0.7 and y = 1.3 optimal, or
does a better one exist?

(ii) For the resulting investment outcome, find the way to divide it optimally
among investors. In the example above, was the suggested way to divide
X∗ = (−2,−0.6, 1.9, 3.3) optimal, or does a better one exist?

In (i)-(ii), the notion of ‘optimal’ needs clarification. It is easy to divide X∗ into
shares Y ′1 and Y ′2 such that U1(Y

′
1) > U1(Y1) but U2(Y

′
2) < U2(Y2), that is, the

first investor is better at the cost of the second one (see below). The investment
strategy, together with the method of outcome division, is called Pareto optimal
if there are no other investment strategies and outcome divisions, which is strictly
better for at least one investor, and at the same time not worse for all other
investors.

(iii) After solving (i)-(ii), we end up with a set of Pareto optimal strategies,
some of which are better for one investor, and some of which are better for
others. So, which one would it be fair to choose? In the example above
we could divide the same X∗ = (−2,−0.6, 1.9, 3.3) as X∗ = Y ′1 + Y ′2 , where
Y ′1 = (−0.9,−0.9, 1.6, 3) and Y ′2 = X∗ − Y1 = (−1.1, 0.3, 0.3, 0.3). Then
U1(Y

′
1) = 0.7 > 0.5 = U1(X

∗
1 ) and U2(Y

′
2) = 0.3 > 0.2 = U2(X

∗
2 ). So,

once again, each agent utility function is strictly greater than that from the
optimal individual investment. So, would it be fair to choose the division
(Y1, Y2), (Y ′1 , Y

′
2), or some third one?

In some cases, see for example Grechuk et al. [67], it is possible to prove that the
group of investors behave as a single investor with some ‘group’ utility function
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U∗, and then (i) reduces to a standard portfolio optimisation problem with U∗.
In turn, problem (ii) for optimal division of fixed outcome is known as a problem
of optimal risk sharing, which is a well-studied problem that has a long history
in insurance as well as in mathematical economics, starting from the 60s of the
last century. Borch [32] studied Pareto optimal risk exchanges for investors using
EUT, and showed that in many cases it will lead to familiar linear quota-sharing
of the total losses known as stop-loss contracts. Additionally, the problem has
been studied in various contexts in hundreds of papers, including Dana [47] and
related papers [109, 105, 103, 30, 67]. For more details see Grechuk et al. [67]
and references therein. The problem (iii) of fair division is also well-studied and a
standard approach to it uses equilibrium theory, see the end of this introduction
for a detailed discussion.

However, in most cases sub-problems (i)-(iii) cannot be solved separately; it is un-
clear what trading strategy would be optimal for coalition on stage (i) before the
method of fair division is agreed on stage (iii). While there is plenty of literature
studying portfolio optimisation, risk sharing, and equilibrium theory separately,
the theme of cooperative investment is much less studied. Grechuk et al. [67]
solved the cooperative investment problem for investors using general deviation
measures in a one-period model. In the dynamic settings, the problem was stud-
ied in Parkes [113] for agents using expected utility theory, where he suggested
that the simple communication mechanism of explicit hint exchange yields an in-
creased performance. He also studied multi-agents in multi-period and showed
that a system of independent agents will outperform a single agent. Furthermore,
this system can improve their performance by sharing a short-term portfolio strat-
egy. Additionally, he showed that the communication through hint exchange is
considered redundant in a stochastic market, and at the same time it satisfied
the Capital Asset Pricing Model (CAPM). Later, Xia [143] studied a cooperative
investment problem in the expected utility framework, and he gave a character-
isation of Pareto optimal strategies. Also, the problem was studied in Grechuk
and Zabarankin [68] for investors using a cash invariant utility function, with
the special focus on so-called drawdown risk measure. The theme of this thesis
is a systematic study of the dynamic cooperative investment problem in various
utility models, including EUT, mean-variance model, mean-deviation model, and
prospect theory, illustrating it with case studies with real market data. We will
show that cooperation is almost always strictly profitable for all participating in-
vestors, and hence should be extensively used in practice.
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1.3 Time consistency of dynamic strategies

One of the main issues in dynamic portfolio selection is the issue of time incon-
sistency. To illustrate this, imagine you have won the possibility to participate
in one of the following two games of your choice. A fair coin is tossed twice, and
the first game pays you 5 million in case of HH and nothing otherwise, while
the second game pays you 1 million is cases HH and HT and nothing otherwise.
Assume that your risk preferences are such that you would prefer a 25% chance
to get 5 million to a 50% chance to get 1 million, because of the much higher
expected profit. However, you would prefer to get 1 million for sure rather than
a 50% chance to get 5 millions, because 1 million is a huge amount of money for
you, and, having a chance to get this much for sure, you would prefer to avoid any
risk. Given that, which game would you select, the first one or the second one? It
seems that, given your risk preferences, you would initially select the first one, but
then, after the first H happened, you would regret your risky decision, and ask
if it is possible to switch to the second game. A similar situation can happen in
portfolio optimisation: you may initially select some trading strategy only because
it promises you good profit as a result of risky decisions in the last period, but
then, when it is time to implement that risky decision, you would rather prefer a
safer one with lower profit.

The situation becomes much worse in the context of dynamic cooperative invest-
ment, as studied in this thesis. While investing individually you could change
your mind, but participation in a cooperative investment scheme assumes that all
investors sign a contract and are obliged to follow a pre-specified trading strategy
until the very end. It may happen that all investors in the group would prefer
to change their mind, and then it seems illogical to follow the strategy they have
agreed.

Can we develop a time-consistent trading strategy, that is, one that we will be
happy to follow at any moment during its implementation? Bellman [20] suggested
using the dynamic programming technique, that is, start from the last period and
find the optimal strategy for it, then, assuming we know how we will behave during
the last period, find the optimal strategy for the pre-last one, and so forth, until
we arrive at the first period. In the example above, we first analyse the last period
and decide that game 2 should be selected, and then, based on this, we select
game 2 at the beginning as well. There is a lot of literature investigating opti-
mal individual investments, in both pre-commitment and time-consistent settings.
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Dynamic mean-variance portfolio optimisation was studied in [100, 95, 24], and
by many other authors. The problem of finding the best time-consistent trading
strategy was studied in Bjork and Murgoci [25], who study time-inconsistence in
the sense that they do not admit the Bellman optimality principle, see [25]. In my
thesis we study time-inconsistence for mean-variance portfolio optimization where
the term (E[X])2 in variance causes time-inconsistence. Actually, we studied this
problem by viewing them within a game theoretic framework, and we looked for
the trading strategy as a function instead of being constant. Bodnar et al. [27]
derived the close form solution for exponential utility function in multiple periods
which admits a Bellman equation of the dynamic portfolio choice problem, both
with and without a risk-less asset under rather weak assumptions. Furthermore,
along this line there are many works in either discrete or continuous time; see e.g.
[26, 137, 144, 57, 44].

An alternative way to theoretically justify time consistent trading strategies is
based on compound independence axioms, together with refuting the reduction
axiom, see Segal [132, 133] and [53]. In the example above, reduction axiom states
that receiving 5 million in case of HH (and nothing otherwise) is equivalent to a
one-round lottery of receiving 5 million with a probability of 25% (and nothing
otherwise). That is, we look only at the final outcome, how much will be got with
what probability, ignoring all the dynamics. Segal argues that people do not think
like this; dynamics matter, and this provides a solution to the described paradox.
With this theory, an investor can analyse the problem from the end, and replace
any optimal portfolio received during the last period by its certainty equivalent.
This simplified the problem for the pre-last period, and so on. This procedure
resembles dynamic programming, but there is a crucial philosophical difference:
at time t, we care about the certainty equivalent of the portfolio we receive at time
t + 1, not about the final wealth. Deep theoretical work of Segal [132, 133] and
[53], confirmed by significant empirical investigation, argues that this method is a
better approximation to the way people actually think.

We have applied this idea to the cooperative investment problem, and developed
a method for finding the approximation of certainty equivalent observed for each
investor and for the coalition. Then we complete the process in the recursive
manner until we arrive at the first period. We notice that this procedure has a
significant reduction in computational process compared to other methods. We
solve the dynamic cooperative investment (DCI) problem in various utility models.
In some cases, we find both an optimal pre-commitment trading strategy and



Introduction 8

an optimal time-consistent trading strategy based on the dynamic programming
technique. While the first one provides better Pareto optimal solutions, the second
one has the advantage of avoiding the break-down of the contract between the
investors in the middle of the investment period. In Chapter 4 we will explain
more about how can we use dynamic programming in cases of discrete time and
continuous time.

1.4 Modelling the market with GARCH model

While working with historical data, one of the main problems that we will face is
how to generate the scenario trees for future tiers of returns in multiple periods.
We study several ways to generate the scenario tree. The first one, a method uses
simulation and a randomised clustering approach, see Nalan Glupiner [70] and
Chen and Xu [41] and the second method by using binary tree. In our experiments
we generate scenario trees by using all the described methods, and use clustering
in such a way that we get the same number N of scenarios at each node in each
period, avoiding the exponential growth. To make the model realistic, we should
check that it is arbitrage-free, and for this we use an algorithm developed by
Klaassen [88].

There are many economic models, such as ARCH,ARMA,GARCH,NGARCH

IGARCH, are used to characterise and model observed time series. We will ap-
ply a GARCH(p, q) (Generalised AutoRegressive Conditional Heteroscedasticity
of lag p and q) model, which was introduced by Bollerslev in 1986 [29]. The
(GARCH(p, q) model is designed in order to describe and capture the ‘volatility
clustering’ effect in returns. Moreover, in continuous time the volatility is highly
heteroskedastic. In most cases, we will use the GARCH(1, 1) time series model
which is becoming widely used in econometrics and finance, and is considered as
one of the most common and simplest ways to produce estimates of current and
future levels of volatilities by using historical data. The main idea is describing a
volatile σt as a random variable, e.g. an asset price on day t, as estimated at the
end of the previous day t− 1, see [50].

In continuous time it is natural to model the logarithm of the asset price, that is
Gt = lnPt. The continuous version of GARCH(1, 1) has abbreviation
COGARCH(1, 1). In financial econometrics, COGARCH(1, 1) is used in mod-
elling irregularly spaced data. COGARCH(1, 1) was recently constructed and
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studied by Nelson [110] and Kluppelberg [89], who show that the COGARCH(1, 1)

model is an analogue of the discrete time GARCH(1, 1) model, based on a single
background driving Levy process. Since the wealth of the investor, X(t) satisfies
the stochastic differential equation (SDE); we will solve the SDE by using back-
ward numerical approximation; then we complete our solution by using dynamic
programming the same way as in the discrete time. Furthermore, we will solve the
stochastic differential equation by numerical methods. One of these models we use
is due to Euler-Maruyams (1955), which is considered as an analogue of the Euler
method for ordinary differential equations. Alternatively, the other method which
could be applied to solve SDE is called the Milstein Method, a method which has
order one. Moreover, the Euler-Maruyams and Milstein methods are identical in
cases where there is no X term in the diffusion part of b(X, t) of the SDE equation.
Parallel to this, and in the same line of numerical methods, there are many liter-
ature reviews which have other numerical methods to solve stochastic differential
equations with higher orders, which give more accurate results, such as Runge-
Kutta methods of order one, as well as Taylor methods of order 1.5. The higher
order methods can develop the numerical solution for SDE, but become a much
more complicated solution corresponding to the degree at which the order grows,
so that in my thesis we solve SDE of portfolio wealth by using Euler-Maruyams.
In this work, firstly we will use the GARCH(1, 1) diffusion approximation of Nel-
son [110]. Then we solve the corresponding SDE by using the Euler-Maruyams
method, since it allows one to solve the cooperative investment in simplistic and
realistic ways.

1.5 Choosing a fair allocation using equilibrium

theory

Chapter 5 of this thesis studies the equilibrium-based method for selecting the
fair allocation point among Pareto optimal ones, which means selecting the fair
division of uncertain outcome at the end of the investment period among partici-
pants. Intuitively, the group of investors can earn some extra profit as a result of
collaboration, and we need to find a method for how this extra profit should be
divided among all participating investors (agents) in a fair way. For this, equilib-
rium theory has been applied to find a fair allocation point, which is also called
fair equilibrium allocation. The idea is that we allow the agent to ‘trade’, that is,
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selling their parts of risk, and buying other parts of risk from different participants.
Because investors value risks differently, such trading may benefit all of them. Af-
ter some time, this ‘market’ would converge to the equilibrium state, where the
supply and demand for any risk equalise, and the price at which this happens is
called the equilibrium price. This price can be used to calculate how extra profit
from cooperation should be divided among participating investors. This method
will be called equilibrium allocation, and will be considered as a ‘fair’ method.

In case of cooperative investment portfolio optimization in multiple periods, we
need to find the equilibrium allocation and equilibrium price corresponding to it,
which are found by solving maximized individual objective function in order to get
the equilibrium allocation in terms of equilibrium price. Thus, the formalization of
the notion of efficiency and competitive equilibrium can find the pair of equilibrium
allocation and equilibrium price, and this method was developed by Bergson [23].
A few years later, two fundamental theorems of welfare economics were developed
by Arrow and Debreu [9], which give us the basic concept of equilibrium and
show that every equilibrium allocation is Pareto optimal among all the Pareto
optimal sets, which is considered as a key word. For the study of equilibrium in
(multi-period) dynamic settings, see Hu et al. [78], who defined the equilibrium
via open loop controls, while Debreu [49] and Henriksen and Spear [74] studied
multi-period equilibrium as a sequence of equilibrium allocations and a sequence
of equilibrium prices, which is one that applied in this thesis. In addition, an
important part of this research direction is questions of the existence, uniqueness
and stability of the equilibrium. Some of the literature review which shows a
way to prove the existence of the equilibrium comes from global analysis, by using
Sard’s lemma and the Baire category theorem, see [49, 135], in other words solving
maximized individual objective function. Moreover, in this thesis we use that
fact from Levin [81] and Quah [117], where Levin [81] shows that the number of
the equilibriums should be finite and odd according to the regular economy ‘risk
sharing’, while Quah [117] shows the sufficient condition that guarantees that the
unique equilibrium is held by satisfying some conditions of local weak axioms.

Thus, in this thesis we derive an explicit formula to find a ‘fair’ equilibrium al-
location as a function of equilibrium price. A version of the first fundamental
theorem of welfare economics in our setting guarantees that equilibrium alloca-
tions are always Pareto optimal. Moreover, we study the conditions under which
the equilibrium is unique in our settings. Also, we study the stability level of
the fair equilibrium point, which is related to the uniqueness. In addition, the
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uniqueness of the equilibrium allocations and equilibrium price is shown under
some conditions, see [117]. Furthermore, the local stability is also discussed.

1.6 Thesis contribution and outline

In Chapter 2, we document some definitions, and we formulate the problem of
individual and cooperative investment in a single period. Also, we describe our
framework for numerical experiments. We solve a cooperative investment in single
period for investors whose preferences are described by expected utility theory and
Markowitz’s mean-variance model, as well as prospect theory. Then, we replace
standard deviation in Markowitz’s model by other deviation/risk measures such
as standard lower and semi-deviation or coherent risk measure such as conditional
value at risk and mix-conditional value at risk, as well as expected utility function
and value function from prospect theory. In this chapter we show that the risk
from cooperative investment for each investor is less than the risk from individual
investment for each participant. On the other hand, the expected return from the
cooperative investment for each investor is greater than the return from individual
investment for each participant.

Chapter 3 focuses on cooperative investment in a multi-period setting and solves
it using the dynamic programming approach. In addition, we solve it again in
an alternative way by assuming utility model based on compound independence
axiom by force in back technique, then finding the certainty equivalent for the
corresponding one-period in each step. The numerical experiments based on his-
torical data simulation are observed, and we concentrate on the mean-variance
model. We calculate the trading strategy by solving the problem in a recursive
manner; furthermore, stability of the results for the whole investment period is
discussed, we compare between the efficient frontier from dynamic programming
with a time-inconsistent and efficient frontier from a global solution for cooperative
investment with a pre-commitment trading strategy. In this chapter we show the
contribution of this thesis which is solving cooperative investment in multi-period
by using dynamic programming since the mean-variance and mean-semi-variance
problem in multi-period face time in-consistency, so we treat this problem in dif-
ferent ways: firstly, by using dynamic programming technique according to Bjork
and Murgoci, see [25] and secondly, by finding the certainty equivalent according
to Segal [132, 133] and [53].
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While Chapters 2 and 3 use naive historical simulations for numerical experiments,
Chapter 4 solves the cooperative investment problem in discrete and continu-
ous time assuming that the underlying rates of return follow the GARCH(p, q)

model. Actually, we applied this model in discrete time and COGARCH(p, q)

in continuous time. We show how can we derive the rate of return according to
GARCH(p, q) and COGARCH(p, q) models. Then, we solve cooperative invest-
ment and dynamic cooperative investment for the mean-variance model in either
discrete time or continuous time, as well as the numerical experiments support-
ing our result. In this chapter according to numerical experiments we show that
applying GARCH(1, 1) in discrete and continuous time in order to forecast the
future return in a more realistic way can preserve the main result in our thesis
which is the risk from cooperative investment for each investor being less than
the risk from individual investment for each investor, and conversely the expected
return from cooperative for each investor is greater than the return from individ-
ual investment for each investor. Graphically, it represents as an efficient frontier
curve. In addition, the difference between the efficient frontier comes from solving
cooperative investment without dynamic programming (global solution) and with
dynamic programming is not being very significant.

In chapter 5 we derive an explicit formula to get the fair allocation based on
equilibrium allocation and equilibrium price according to risk-reward preferences,
expected utility model and certainty equivalent. Moreover, the uniqueness and
stability of equilibrium allocation is also investigated for some cases, and relevant
numerical experiments are performed. We prove that forming a coalition, investing
together, and then dividing the outcome based on equilibrium allocation is (with
minor additional assumptions) strictly preferable to an individual investment. In
this chapter we determine the fair allocation point for each investor at the end
of the investment period, which is called the equilibrium allocation point and is
represented in an explicit formula.

The conclusion and summary of the thesis, as well as the future works, are shown
in Chapter 6. Thus, in the thesis, we mainly focus on the investors whose prefer-
ences are described by modern portfolio theory, expected utility theory or prospect
theory. We show that in all these theories, the investors having different prefer-
ences can use cooperation to achieve strictly better outcomes, compared to optimal
individual investment.



Chapter 2

Cooperative Investment in single

period

The material in this chapter is also the basis for papers by Almulaim [5, 4].

2.1 Problem formulation for individual investment

We start with a one-period model where the portfolio is formed from n risky
instruments A1, ..., An. Suppose the current price of the instrument i is P ′i , and
the price at the end of investment period is Pi. Then ri =

Pi−P ′i
P ′i

is the return of
the asset i. A risk-free instrument A0 with constant rate of return r0 may also be
included.

In the one-period model, the rates of returns of financial instruments are modeled
as random variables (r.v.s), which are the measurable functions from some prob-
ability space Ω = (Ω,M,P) to the real line R, where Ω is the set of future states
ω,M is a σ-algebra of sets in Ω, and P is a probability measure on (Ω,M). Let
Lp(Ω) be the space of r.v.s X with finite norm ||X||p = (E|X|p)1/p. A cumulative
distribution function (cdf) of r.v. X is a function FX(x) := P[X ≤ x].

Let F is the set of all feasible investment opportunities. If risk-free asset is available
on the market, then F includes it. However, an investor may decide to invest fixed
amount of capital into risky assets only, and then feasible set F do not contain
risk-free assets. In most (but not all) of our examples and applications, we assume

13
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that risk-free asset is available, and then (in single period). If there are one risk-
free r0 and n risky instruments A1, ..., An with the returns r1, ....rn and initial
capital W0 , then the set of feasible portfolios is

F = {X = (W0 −
n∑
i=1

wi)r0 +
n∑
i=1

wiri, s.t

n∑
i=1

wi = 1}

where wi ∈ R are the proportions of capital invested in the instrument Ai.

Investor i introduces preference relation �i on Lp(Ω), that is, X �i Y if he/she
weakly prefers the portfolio with rate of return X to the one with rate of return
Y . We will write X �i Y if X is strictly preferable over Y , and X ∼i Y if the
investor is indifferent between X and Y . We assume that �i is complete, reflexive
and transitive, and has a numerical representation Ui, that is X �i Y if and only if
Ui(X) ≥ Ui(Y ). Functional Ui : Lp(ω)→ [−∞,∞) will be called utility functional
of investor i. For any portfolio X, its certainty equivalent for investor i is a real
number C such that Ui(X) = Ui(C).

Traditionally, portfolio optimisation means that a single investor acts alone and
wants to achieve his/her investment goals. The individual portfolio optimisation
problem for investor i to find maximum of utility function can be formulated as

max
X∈F

Ui(X) (2.1)

Next we discuss several forms of utility functional that an investor may choose.

2.1.1 Expected utility

Maybe the most popular form for utility functional U is the expected utility model:
U(X) = E[u(X)] for some utility function u : R→ R.

The basic axioms underlying the expected utility model are formulated in terms
of lotteries. A p-lottery between r.v.s X and Y is an r.v. Z = pX ⊕ (1 − p)Y

corresponding to getting X with probability p and Y with probability 1 − p. In
other words, Z is an r.v. with cdf FZ(x) = pFX(x) + (1− p)FY (x).

If the complete transitive preference relation � satisfies in addition
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i- Continuity: If X � Z � Y , then there exists a p ∈ [0, 1] such that pX⊕ (1−
p)Y ∼ Z; and

ii- Independence: If X � Y , then for any Z and p ∈ (0, 1),

pX ⊕ (1− p)Z � pY ⊕ (1− p)Z.

Independence axioms means that preference ordering of two r.v.s is not
changed if each of them is mixed with a third r.v. in the same way.

Then the corresponding utility functional U can be represented in the expected
utility form

U(X) = E[u(X)]

for some utility function u. Sometimes additional properties of u are assumed,
such as continuity, monotonicity or concavity, see e.g. Follmer and Schied [59].

The portfolio optimisation problem for expected utility maximiser can be written
as

max
X∈F

E[u(X)]. (2.2)

Problem (2.2) can also be rewritten as follows:

max
w

E[u(X)]

s.t.
n∑
i=1

(wi) = 1,

X = wT r

(2.3)

where r = (r1, . . . , rn) is the return vector of risky instruments, w = (w1, . . . , wn)

is the vector of weights, and T is the symbol for matrix transposition. We can
also add the constraint w ≥ 0 if there is no short selling allowed.

Definition 2.1. [59] Let S ⊆ R, where R is the real line and u : S → R be a
twice continuously differentiable and strictly increasing function on S. Then

α(x) =
−u′′(x)

u′(x)
, x ∈ S

is called the Arrow-Pratt coefficient of absolute risk aversion of u at level x.
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The following classes of utility functions u and their corresponding coefficients of
risk aversion are standard examples, see [59]:

• Constant absolute risk aversion (CARA): α(x) equals some constant α and
utility function u(x) = a − b exp(−αx), where a ∈ R, and b, α > 0. Note
that u can be normalised to u(x) = 1− exp(−αx).

• Hyperbolic absolute risk aversion (HARA): α(x) = (1− γ)/x on S = (0,∞)

and for some γ < 1. Up to affine transformations, we have

u(x) = log(x), for γ = 0

u(x) =
1

γ
xγ for γ 6= 0

Note that sometimes these functions are also called CRRA utility functions,
because their relative risk aversion xα(x) is constant. In addition, these
utility functions can be shifted to any interval S = (a,∞). The risk neutral
limiting case γ = 1 would correspond to an affine function u(x) = x.

• Quadratic utility function which represents it as u(x) = x−αx2, where α > 0

is the risk aversion, S = R and α(x) = 2α
1−2αx .

2.1.2 Mean-deviation approach

As an alternative method, Markowitz in 1952 [106] suggested that investors can
minimise the risk of their portfolios subject to the constraint that the expected
return should be at least at the specified level π. He used the variance of the final
wealth, or equivalently standard deviation, as the measure of risk, and formulated
the portfolio optimisation problem as follows:

min
X∈F

σ2(X)

s.t.

E[X] ≥ π

(2.4)

If the portfolio optimal in (2.4) also achieves the maximum expected level of return
among the portfolios which have the same variance, it is said to be efficient. Then
we call the pair of the minimum variance and the maximum expected level of
return the efficient frontier. For a portfolio consisting of n risky assets we have
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σ2(X) = w′V w where V is the variance-covariance matrix with entries Cov(ri, rj),
i, j = 1, . . . , n, w = (w1, . . . , wn), X = (1−

∑n
i=1(wi))r0 +wT r and r0 is the return

of the risk-free instrument. The exact solution of problem (2.4) is

w =
(π − r0)V −1(E[r]− r0e)

(E[r]− r0)TV −1(E[r]− r0e)

where e = (1, 1, ....1) is the n− dimensional unit vector, see Markowitz [106].

Standard deviation σ is not an ideal objective function to minimise in (2.4), be-
cause it is, for example, symmetric, and penalises losses and profits equally. Rock-
afellar et al. [122] suggested to replace it by a general deviation measure. firstly,
we will define a feasible set as follows:
Let F be a feasible set which is non-empty subset of locally convex topological
vector space X . Typical settings X = LP(Ω) = LP(Ω,M,P), where ω ∈ Ω and Ω

denoting the designated space of future states ω, M is a field of set in Ω and P
is probability measure on (Ω,M). In my thesis we use L2(Ω) to ensure the σ(yi)

and σ−(yi) exist and finite.

Definition 2.2. [66] General deviation measure is a functional D : L2(ω)→ [0,∞]

satisfying axioms
(1) D(X) = 0 for constant X, but D(X) > 0 otherwise (nonnegative);
(2) D(λX) = λD(X) for all X and λ > 0 (positive homogeneity);
(3) D(X + Y ) ≤ D(X) +D(Y ) for all X and Y (subadditivity); and
(4) set {X ∈ L2(ω)|D(X) ≤ C} is closed for all C <∞ (lower semicontinuity).

Then portfolio optimisation problem (2.4) for individual investment can be ex-
tended to the form:

min
X∈F
D(X)

s.t.

E[X] ≥ π

(2.5)

Examples of deviation measures are standard deviation

σ(X) =
√
E[X − E[X]]2,

and standard lower semi-deviation

σ−(X) =
√
E[[X − E[X]]−]2,
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where the minus subscript means taking the negative part, g− = max{−g, 0}, and
mean absolute deviation

MAD(X) = ||X − EX||1,

see [122] for more examples.

General deviation measure D has a close correspondence with coherent risk mea-
sure R by four axioms that introduced by Artzner et al.[13] in the following defi-
nition.

Definition 2.3. [13] A function R is called a coherent risk measure if it satisfies
the following axioms
(1) R(X1) ≥ R(X2) if X1 ≤ X2 (monotonicity);
(2) R(tX1 + (1 − t)X2) ≤ tR(X1) + (1 − t)R(X2) for all X1, X2 and all t ∈ (0, 1)

(convexity);
(3) R(λX) = λR(X) for all λ > 0 (positive homogeneity); and
(4) R(c+X) ≤ R(X)− c for any X and any positive c (translation equivariance).

A popular example of coherent risk measure, which is often used to reduce the
probability that a portfolio will incur large losses, is the conditional value at risk,
defined as

CV aRα(X) =
1

α

∫ α

0

V aRβ(X) dβ,

where
V aRα(X) = −inf{x|P(X ≤ x) ≥ α},

is called the value at risk of X at confidence level α ∈ (0, 1).

Another example is Mixed Conditional Value at Risk MCV aRα,λ(X), defined as

MCV aRα,λ =
L∑
k=1

λkCV aRαk(X),

where α = (α1, . . . , αL) is such that αk ∈ (0, 1), k = 1, . . . , L, and λ = (λ1, . . . , λL),
where λk ≥ 0, k = 1, . . . , L and

∑L
k=1 λk = 1.
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If the risk preferences of an investor are represented by a coherent risk measure
R, the portfolio optimisation problem for individual investment becomes

min
X∈F

R(X)

s.t.

E[X] ≥ π

(2.6)

Note that the relation between the problem (2.5) and (2.6) just replaced the de-
viation measure D by coherent risk measure R.

2.1.3 Prospect theory

Prospect theory (PT) is the one of the behaviour economic theories in recent
years that people use to make decisions based on the potential value of losses
and gains rather than the final outcome. Hence, it considers preferences as a
function decision weight and we assume that the weight is not necessary to match
with probability. That means there is no conception of different domains of gains
and losses and the decision weight add up to one. If all outcomes (excess rate
of return) were in the domain of gains then the summation of decision weight is
equal to one and similarly if all the outcome were in the domain of losses then
the summation of decision weight is equal to one. Specially, PT suggests that
decision weight tends to overweight small probabilities and underweight moderate
and high probabilities. Moreover, in order to describe how investors perceive risk
and with appropriate modelling it can be made consistent with rational decision
making, so this theory describes it very well.

Prospect theory was created in 1979 and developed in 1992 (under the name of
cumulative Prospect theory CPT) by Daniel Kahneman and Amos Tversky [83],
[138] as a psychologically more accurate description of decision making compared
with the expected utility theory. Moreover, investors tend to evaluate prospects
or discrete (r.v.s) in terms of gains and losses relative to some natural reference
point rather than the final state of wealth. The reference point could be initial
wealth, see Shefrin and Statman [134], status quo wealth, average wealth and
rational expectations of future wealth (Koszegi and Rabin [90, 91, 92]), historical
peak (Gneezy [64]), the purchase price in the real state market (Odean[111]), or
uncertain stochastic point (Schmidt [129]).
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In this thesis, we assume that in the context of portfolio optimisation, the nat-
ural choice for the reference point is the risk-free rate of return r0, see [14]. For
simplicity, we will describe CPT for the case when risks of returns are mod-
elled as discrete r.v.s. For any portfolio A, let X = rA − r0 be the differ-
ence between rate of return of portfolio A and the risk-free rate r0, where X
is also called excess return. We assume that X can take M negative and N

positive outcomes, sort all outcomes in the increasing order, and denote them
x−M < x−M+1 < ...... < x−1 < x0 = 0 < x1 < ....xN . Let outcome xt,
t = −M, . . . , N , happen with probability pt. For such an r.v., we will use the
following notation

X = (x−m, p−m;x−m+1, x−m+1; ......;x−1, p−1;x0, p0;x1, p1;x2, p2; ....;xn, pn)

Example 2.1. Suppose that the risk free rate is 5%, and the rate of return of risky
asset can be 35% or −5% with 0.5 probabilities for each. Then the investor can
gain 30% or lose 10%, compared to the risk-free rate. Hence, in this case,

X = (−0.1, 0.5; +0.3, 0.5)

.

Definition 2.4. [138] According to the CPT, the value of the discrete r.v.s X
(called ‘prospect’ in [138]) is given by

U(X) =
N∑

t=−M

πtν(xt), (2.7)

where v : R→ R is the value function satisfying

• ν(0) = 0 (reference dependence);

• ν(x) is convex for x ≤ 0 declining sensitivity for losses;

• ν(x) is concave for x ≥ 0 declining sensitivity for gains; and

• −ν(−x) > ν(x) for x > 0 loss aversion.

and πt are decision weights which are defined differently for the domain of gain
and loss.
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Definition 2.5. [2]
Domain of gain

πN = w+(pN)

πN−1 = w+(pN−1 + pn)− w+(pN)

πi = w+(
∑N

j=i pj)− w+(
∑N

j=i+1 pj)

π1 = w+(
∑N

j=1 pj)− w+(
∑N

j=2 pj)

Domain of Loss

π−M = w−(p−M)

π−M+1 = w−(p−M+1 + p−m)− w−(p−M)

πj = w−(
∑j

i=−M pi)− w−(
∑j−1

i=−M pi)

π−1 = w−(
∑−1

i=−M pi)− w−(
∑−2

i=−M pi)

where w+(.) and w−(.) are weighing functions for the domains of gains and losses
are defined from [138] or [116], respectively. Also, we need w+(.) and w−(.) to
calculate a value function as shown below.

Examples of value function

• Tversky and Kahnman [138] suggested to use the following value function

ν(x) =

xα if x ≥ 0

−λ(−x)β if x < 0

with parameters α = β = 0.88 and coefficient of loss aversion λ = 2.25. They
also suggested [138] that weighing functions w+(p) and w−(p) [138] and the
definition (2.5) can be chosen as

w+(p) =
pγ

(pγ + (1− p)γ)γ

while
w−(p) =

pδ

(pδ + (1− p)δ)δ

where γ = 0.61 and δ = 0.69.

• Prelec [116] suggested the power value function ν is given by

ν(x) =

xφ+ if x ≥ 0

−(−x)φ− if x < 0
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where φ+ and φ− are equal to 0.88 as in Tversky and Kahneman [138], and
weighting functions are defined as

w+(p) = exp(−β+(− ln p)α)

w−(p) = exp(−β−(− ln p)α)

where α = 0.65, β+ = 1 , β− = 0.99. The Prelec value function ν(x) has
S-shape. It is then strictly convex for low probabilities (loss case) w−(p),
while strictly concave for high probabilities (gain case) w+(p), see Prelec
[116].

Problem formulation for the individual investor is given by (2.1) with U given by
(2.7).

Example 2.2. This example shows how to apply the prospect theory for individual
investors. Suppose that the first investor follows the value function see [138] and
the second investor follows the value function by Prelec in [116], where risk-free
rf,t = 3%. Hence, the return of risky asset, excess return and value functions
are shown in the following table the value function for each investor are shown in

probability return of ri xt excess return value function 1st value function 2nd

0.1770 -21 % -24 % -32.7895% -14.573 %
0.1917 3% 0 0 0
0.1990 33% 30% 19.9465 % 19.9465 %
0.2015 34% 31% 20.5304 % 20.5304 %
0.2309 46% 43% 27.3811% 27.3811%

Table 2.1: Example of value function

Table 2.1 and the decision weights for the first investor and second investor are
shown in Table 2.2.

π weight decision for 1st weight decision for 2nd

π−1 0.2572 0.2763
π0 0.136018 0.16139
π1 0.10536 0.13695
π2 0.1067 0.1325
π3 0.2796 0.2774

Table 2.2: Example of decision weight

Note that π−1 = w−(p−1), π3 = w+(p3),π2 = w+(p3 + p2) − w+(p3), π1 =

w+(p3 + p2 + p1)−w+(p3 + p2), and π0 = w+(p3 + p2 + p1 + p0)−w+(p3 + p2 + p1)
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for both investors according to gain and loss of returns. However, w+(p), w−(p)

for the first and second investors are defined by Tversky and Kahneman [138] and
Prelec [116], respectively.
Now, we need to compute the value function for both investors; according to def-
inition (2.7) the value function for the first investor = 3.514581 while the value
function for the second investor = 0.090209.
In addition, in order to find the certainty equivalent for the first investor and sec-
ond investor by using the formula U(X) = U(C) where U(X) from (2.7) which
implies C = U−1U(X) then we get
for the first investor the certainty equivalent computed as

π−1(−(2.25)(−C)β + π0(C)β + π1(C)β + π2(C)β + π2(C)β =
3∑

t=−1

πtν(xt)

=

0.2572(−(2.25)(−C)β+0.136018(C)β+0.10536(C)β+0.1067(C)β+0.796(C)β = 3.514581

hence C = (2.25)(3.514581
0.048978

)1/0.88 = 128.51% ≈ 1.2851.
Similarly for the second investor we can find the certainty equivalent as follows:

π−1(−C)φ + π0(C)φ + π1(C)φ + π2(C)φ + π3(C)φ =
3∑

t=−1

πtν(xt)

=

0.2763(−C)φ + 0.16139(C)φ + 0.13695(C)φ + 0.1325(C)φ + 0.2774(C)φ = 0.090209

Hence C = 0.0661

2.2 Cooperative investment in single period

We argue that it would be beneficial for the investors to cooperate with each other
for many reasons, such as: (i) the risk may be too high for a single investor to
undertake, (ii) the capital of a single investor may not be sufficient for single period
trade without borrowing.
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Cooperative investment suggests that m agents/investors with utility functional
U1, . . . , Um collect all their initial capitals Si i = 1, ...m and invest the total capital
S =

∑m
i=1 Si in a common portfolio, and finally, divide the uncertain outcome

X ∈ F optimally among all the participants at the end of the investment period
such that

∑m
i=1 yi = X, yi be shares of investor i. Then, the cooperative investment

problem is formulated as follows:

max
X∈F

(U1(y1), U2(y2), ...., Um(ym)) s.t
m∑
i=1

yi = X, X ∈ F (2.8)

Problem (2.8) is a multi-objective portfolio optimisation problem and each investor
‘agent’ participate in ‘ cooperative investment’, and therefore the solution should
be understood in the sense of Pareto optimality. Pareto optimality for cooperative
investment in a single period can be described as a state of affairs in which resources
are distributed in such a way that it is impossible to improve a single individual
without causing at least one other person to become worse off than before the
change, see Pareto [112]. In an other words, for any vector (y1, y2, ...., ym) is called
a pareto optimal allocation, if there is no allocation (y′1, y

′
2, ...., y

′
m), such that

Ui(y
′
i) ≥ Ui(yi), with at least one inequality to be strict. Moreover, any vector

Y = (y1, y2, ..., ym), where yi, i = 1, . . . ,m are r.v.s will be called allocation. The
allocation Y = (y1, y2, ..., ym) is called feasible if

∑m
i=1 yi = X ∈ F . We say that

allocation Z = (z1, z2, ..zm) dominates Y = (y1, y2, ..., ym) if Ui(zi) ≥ Ui(yi) for
i = 1, ...m, with at least one inequality being strict. Allocation Y = (y1, y2, ..., ym)

is called Pareto optimal if there are no feasible allocations dominating it.

Remark 2.6. Cooperative investment problems with agents using expected utility
theory is (2.8) with Ui = E[ui(X)] for i = 1, . . . ,m. For agents using, for example,
prospect theory we have

Ui(X) =
N∑

t=−M

πtνi(xt),

where πt is independent of investor i = 1, ..m, see Tversky and Kahnman[138].
Agents using coherent risk measures can solve (2.8) with Ui(X) = −Ri(X) for
some coherent risk measures R1, . . . , Rm, or Ui(X) = −Di(X), Di is deviation
measure.

The key benefit from cooperative is that investors use different utility functions or
different risk measures, and therefore can act as insurers for each other. Moreover,
Assume that individual preferences of investors i = 1, . . . ,m are given by (2.5) for
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some deviation measures D1, . . . , Dm and some desired levels of expected returns
π1, . . . , πm, such that πi > r0, i = 1, . . . ,m. In this case, Grechuk et al. [66] show
that investors can form a “cooperative portfolio” that solves problem (2.5) for a
single investor with certain deviation measure Ds given by the following definition.

Definition 2.7. [66]
Let risk preferences of investor i be expressed by a law-invariant deviation measure
Di, and let m investors form a collation s. Then, a functional defined by

Ds(X) = inf
y∈A(X)

max{D1(y1), D2(y2), ...Dm(ym)}

is called a deviation measure of the collation s, where A(X) be the set of divisions
of the uncertain outcome X among investors i = 1, ..m.

Let H = {y = (y1, y2, ....ym), yi ∈ L2(ω)} be a Hilbert space with the inner
product < y, z >=

∑n
i=1E[yizi], and let A(X) = {y ∈ H : X =

∑n
i=1 yi} be the

set of divisions of the uncertain pay off X among investor i = 1, ..m, see Grechuk
et al. [66]. In this case, the cooperative investment problem will be of the form:

min
X∈F

max(D1(y1), D2(y2), ...Dm(ym))

s.t.

E[X] ≥ π
m∑
i=1

yi = X

X ∈ F

(2.9)

Example 2.3. Assume that there are m = 2 investors whose preferences are
given by (2.5). Then the cooperative investment problem which is quadratic for
D1(y1) = σ(y1) and D2(y2) = σ−(y2), and it can be written as follows:

min
y1,y2

D1(y1)

s.t.

D2(y2) ≤ β

E[y1] ≥ π1

E[y2] ≥ π2

y1 + y2 = X, X ∈ F

(2.10)
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Here, β is the maximum level of deviation that the second investor is willing to
take.

Example 2.4. Similarly, if preferences of m = 2 investors are described by coher-
ent risk measures R1 and R2, the cooperative investment problem which is linear
programme can be written as follows:

min
y1,y2

R1(y1)

s.t.

R2(y2) ≤ β

E[y1] ≥ π1

E[y2] ≥ π2

y1 + y2 = X, X ∈ F

(2.11)

where π1 and π2 is the expected return for each investor and β is the maximum
level of risk that the second investor is willing to take; which are chosen after
solving individual investments for each investor to have more return and less risk,
where R1(y1) = CV aRα1(y1), and R2(y2) = CV aRα2(y2). Moreover,we can solve
(2.10) in case of utility function u(.) where U(.) = E[u(.)] as follows:

max
y1,y2

U1(y1)

s.t.

U2(y2) ≥ β

y1 + y2 = X, X ∈ F

(2.12)

Note that, the case of 2 investors is the simplest non-trivial case of cooperation,
which already contains many ideas which can be applied to the more general cases.
It also has a practical importance, because it may be easier for an investor to
find one partner whom he/she would trust, than to form a big coalition. We have
demonstrated that even this simple coalition of 2 investors already can achieve
strictly better results than optimal individual investment. The choice of variance
and semi-variance in (2.10) is because these are the most popular risk measures
used in portfolio optimization, see [54, 51, 59].

For instance, the investors have different risk measures, with deviation measure
such as standard deviation σ for the first investor and standard lower semi-
deviation σ− for the second investor. Hence, D1(y1) = σ(y1) and D2(y2) = σ−(y2).
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In the numerical experiment we will focus on problem (2.10), (2.11) and (2.12)
with Ui(X) = E[ui(X)].

Instruction for Solving Cooperative Investment Numerically

In the above examples, we will illustrate how to solve cooperative investment in
a single period with m = 2 investors; let us have a portfolio consisting of n risky
assets and one risk-free asset r0 and the uncertainty outcome X which represents
the return of the portfolio at the end of this period, where X = (X1, X2, ...Xn)

and the division of this uncertainty between two investors are y1 = (y11, y
2
1, ....y

n
1 )

and y2 = (y12, y
2
2, ..y

n
2 ) respectively. Note that feasible set

F = {X = (W0 −
n∑
i=1

wi)r0 +
n∑
i=1

wiri, s.t

n∑
i=1

wi = 1}

where W0 is initial joint capital between the investor and the rate of return for
risky assets ri and proportion of capital ωi for asset i. Now we need to find the
return ri that computes as follows: let us have historical price matrix P = (pi,j) for
time i = 1, ..., n and asset j = 1, ..., T weekly, daily, etc. Thus, price matrix P of
size t×n then we will compute the return matrix R = (ri,j) where ri,j =

pi,j+1−pi,j
pi,j

.
Thus return matrix R of size n× (T − 1). Then we need to compute the expected
return of matrix R we get r = E[R] which is vector of size n×1 and r = (r1, ..., rn)

and ω = (ω1, .....ωn). Hence, we can define X = (ω1r1, ....ωnrn) which is vector of
size n × 1 and it is called uncertain outcome and E[X] = w.r′. Also, D1(y1) =√
E[(y1 − E[y1])2] and D2(y2) =

√
E[([y2 − E[y2]]−)2]. Then, plug in the value of

D1(y1), D2(y2) and X in problem (2.10) and solve it by CVX in MATLAB over
y1, y2 to get the the optimal values of D1(y1) for first investor and D2(y2) for
second investor. Note that, we can replace deviation measure Di(.) by coherent
risk measure Ri(.) and solve problem (2.11). Also, we can replace Di(.) by utility
function u(.) and solve problem (2.12) by following the same Instruction, where
how to write coherent risk measure Ri(.) in the code in CVX in MATLAB are
shown in the Remark (2.8), see the code in Appendix A.

2.3 Numerical experiments

We will solve the problems (2.10) as a cooperative investment.
1) Our assumption is that we have a portfolio containing one hundred risky as-
sets which are selected from S&P 100. Also, weekly closing prices of these stocks
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from 1/January/2010 to 1/June/2012, are downloaded from Yahoo Finance. Con-
sequently, historical price provides us with 95 total returns for each stock after
that we need to compute the expected return of matrix R we get vector r of size
1×100. Then, we will solve the problem by minimising the risk subject to portfolio
expected return exceeding some desired level πi i = 1, 2 greater than level r0 (risk
free), see Remark (2.8) below. The problems (2.4) and (2.5) are for individual
investment (IV) and (2.10) for cooperative investment(CI) where β is chosen as
the risk level for second investor which should be less than the risk that we have it
from solving (IV) for second investor with the same preferences, where π = 0.0002,
r0 = 0.0001 and m = 2, which is two investors.

Remark 2.8. All the codes for these experiments are shown in Appendix A, and
also we can check about the result by using linear programme and quadratic pro-
gramme in the optimisation toolbox, MATLAB. Moreover, we checked the result
for the problem (2.4) by using the exact solution by Markowitz [106]. Hence, the
Tables below illustrate the optimal value for cooperative and individual invest-
ments in a single period where the Tables show the risk of portfolio return that
the investor faced during the investment period as well as the profit in case of
expected utility and prospect theory just we need to follow instruction to solve
cooperative investment in single period numerically.

• 1) In case of standard deviation σ(X) which is defined as
D(X) =

√
E[(X − E[X])2] and in case we defined it for first investor we

will rewrite it in the code as follow: D(y1) =
√
E[(y1 − E[y1])2], where share

division y1 for first investor is a vector of size 100× 1 in my experiment.

• 2) In case of standard lower semi-deviation D(X) =
√
E[([X − E[X]]−)2].

Note that using the writing code by using the CVX-file for convex optimi-
sation problem in MATLAB, we can write the minus subscript that means
taking the negative part, g− = max{−g, 0} as square − pos(−(X − EX)),
where − between square and pos is underscore symbol. Then take the square
root of it to get standard lower semi-deviation. Note that this is a convex
optimisation in quadratic form as well as standard deviation.

• 3) In case of risk measure defined as R1(X) = E[X] − inf(X) or R2(X) =

sup(X)− inf(X) will be a linear programming. In this case we need to find
sup(X), inf(X)orE[X] in order to construct the deviation risk measure.

• 4) In case of R(X) = MAD(X), where the MAD(X) = E[|X−EX|] which
is mean absolute deviation measure and is also a linear programme.
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• 5) In case of R(X) = CV aRα(X). Firstly, we need to define CDF of r.v. X
where in my experiment X has an uniform distribution. Then use it to find
the quantile function qα(X) = inf{X|FX(x) > α} and V aRα(X) = −qα(X)

, see the code in Appendix A. Taking in account that α is the confidence
level, we already get V aRα which is the value at risk with confidence level α,
where usually α is very close to 1. Than, when an extreme loss occurs, V aRα

is exceeded. Consequently, the actual loss can be much higher than value at
risk. So that, we can employ a coherent risk measure to better quantify and
note that V aRα is not a coherent risk measure because of a lack sub-additive
axioms. So that we deal with expected shortfall which is called conditional
value at risk. We can consider that the CV aRα is called conditional value
at risk or expected short full, too. Also, this will be a linear programme.

Risk measure optimal value for CI optimal value for IV (CI-IV) × 100
σ(X) +0.000179576 +0.00100099 -0.082 %
σ−(X) +0.0002 +0.00043462 -0.023 %

Table 2.3: Optimal value for cooperative investment (2.10) in single period
with σ(x) for first investor and σ−(x) for second investor

Risk measure optimal value for CI optimal value for IV (CI-IV)×100
E(X)− inf(X) +0.000370372 +0.02 -1.9 %
sup(X)− inf(X) +0.01 +0.667155 -65.7 %

Table 2.4: Optimal value for cooperative investment (2.10) in single period
with E(X)− inf(X) for first investor and sup(X)− inf(X) for second investor

Risk measure optimal value for CI optimal value for IV (CI-IV)×100
MAD(X) +1.68867×10−10 +0.0490376 - 4.9%
σ(X) +0.0001 +0.00100099 -0.09%

Table 2.5: Optimal value for cooperative investment (2.10) in single period
with MAD(X) for first investor and σ(x) for second investor

Risk measure optimal value for CI optimal value for IV (CI-IV)×100
MCV aRα(X) +0.00987789 +0.0197558 -0.98%
CV aRα=99%(X) +0.01 +0.0237576 -1.3%

Table 2.6: Optimal value for cooperative investment (2.11) in single period
withMCV aRα(X) = λ1CV aRα=95%(X)+λ2CV aRα=97%(X), where λ1 = 0.25

and λ=0.75 for first investor and CV aRα=99%(X) for second investor
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Risk measure optimal value for CI optimal value for IV (CI-IV)×100
CV arα=95%(X) +0.00790429 +0.012508 -0.4603%
CV arα=99%(X) +0.01 +0.0237576 -1.3%

Table 2.7: Optimal value for cooperative investment (2.11) in single period
with CV aRα=95%(X) for first investor and CV aRα=99%(X) for second investor

• 6) Solving quadratic utility function see Table 2.8.

utility function optimal value for CI optimal value for IV (CI-IV)×100
u1(X) = X − α1X

2 +0.7336 +0.0511391 68.2%
u1(X) = X − α2X

2 +0.500 +0.0100631 48.9%

Table 2.8: Optimal value for cooperative investment(2.8) in single period with
quadratic utility function, where α1 = 0.5 and α2 = 0.25

• 7) Solving exponential utility function see Table 2.9.

utility function optimal value for CI optimal value for IV (CI-IV)×100
u1(X) = 1− exp(−α1X) +1.7433 +0.800372 94.2%
u1(X) = 1− exp(−α2X) +0.4 +0.0553202 34.4 %

Table 2.9: Optimal value for cooperative investment(2.8) in single period with
exponential utility function, where α1 = 0.5 and α2 = 0.25

• 8) Solving cooperative investment in multi-period with prospect theory, see
Table 2.10.

utility function optimal value for CI optimal value for IV (CI-IV)×100
ν1(X) +3.843 +3.073 77%
ν2(X) +6.3287 +3.019 33.09%

Table 2.10: Optimal value for cooperative investment in prospect theory in
single period with solving the problem (2.8) where ν1(X) see [138] and ν2(X)

see [116]

Note that, according to all the Tables in these experiments we notice that when we
solve cooperative investment with risk measure we find that the risk from coopera-
tive investment for each investor is less than the risk from individual investment for
each investor which cause sign −. On the other hand, when we solve cooperative
investment with utility function we find that the expected return from cooper-
ative for each investor is greater than the expected return by solving individual
investment for each investor.
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2.4 Discussion and concluding remarks

The experiments in this chapter showed that the risk from cooperative investment
for each investor Ri(yi) will be less than the risk from individual investment for
each investor Ri(xi) i = 1, 2 and R could be coherent risk measure or deviation
measure R = D. However, the expected return from cooperative investment for
each investor it will be greater than the expected return from individual investment
for each investor i, where i = 1, 2. Generally, optimal cooperative investment has
two advantages for the investor: agent sharing creates instruments that, firstly,
satisfy individual risk preferences; and, secondly, they are not available on the
market unless we have cooperative investment.



Chapter 3

Cooperative Investment in

Multi-Period with Dynamic

Programming Approach

The material in this chapter is also the basis for papers by Almualim [5, 4].

In this chapter we formulate the dynamic cooperative investment problem in multi-
period setting, and solve this problem for the case of two investors, who wants
to minimise the deviation of their final outcome subject to the constraint on the
expected return. The first investor minimises standard deviation, while the second
one minimises standard lower semi-deviation.

First, we find the optimal pre-commitment strategy for them, and show how to
construct the set of Pareto optimal allocations. Then we show that this strategy
is unstable, meaning that the investors would want to change their minds in the
middle of the investment period. We then formulate the problem of finding an
optimal strategy amongst those, which are stable, or time consistent, see Bjork
and Murgoci [25]. We first use a dynamic programming approach, which breaks
down the problem into sub-problems and solve it recursively, so that it transforms
a complex problem into a sequence of simpler problems; its essential characteristic
is the multi-stage nature of the optimisation procedure, see Bjork and Murgoci
[25] and Cui. et al.[44].

Alternatively, we suggest an approach based on a compound independence axiom,
see Segal [132, 133]. In this approach, each investor replaces an uncertain future

32



Cooperative Investment in MP with DP 33

outcome from investment by its certainty equivalent, which simplifies the compu-
tation significantly. This approach also results in the trading strategy which is
stable for the investment period.

3.1 Problem formulation

In this section we generalise the method to solve cooperative investment (CI) in a
single period to the multi-period setting, see Xia [143], and Follmer [59].

Let (Ω,M, P ) be a complete probability space. We assume that the rate of re-
turn ri,t of asset i at time t is a random variable on Ω, and that vector rt =

(r1,t, r2,t, ....rn,t) is measurable with respect to σ-algebraMt ⊂ M. Furthermore,
a family (Mt)0≤t≤T of σ-algebras satisfying M0 ⊂ M1 ⊂ M2 ⊂ .... ⊂ MT is
called a filtration. In case (Ω,M, (Mt)t=0,...,T , P ) is called a filtered probability
space, and to simplify we assume,M0 = {∅,Ω},MT =M see Follmer [59] chap-
ter 6. The positive number T is a fixed and finite time horizon. A stochastic
process R = (rt)t=0,..T is called adapted with respect to the filtration (Mt)t=0,...T

if each rt is (Mt) measurable.

A stochastic process Z = (zt)t=0,..T is called predictable with respect to the filtra-
tion (Mt)t=0,...T if each zt is (Mt−1) measurable. A predictable Rn-valued process
zt = (z1,t, z2,t, ....zn,t) is called a trading strategy. zi,t is the proportion of total capi-
tal an agent invests into asset i at time t. A trading strategy is called self-financing
if all the money we get after time period t − 1 is invested at time period t. Let
X(zt) be a random variable written as a linear combination of rate of return of
the final outcome and a self-financing trading strategy zt see example of uncertain
outcome X in Algorithms 3.2 and 3.3. The set of all possible r.v.s X(zt) with be
denoted F , and called the feasible set.

Then individual and cooperative investment problems in multi-period can be writ-
ten as follows:

• Individual investment
max
X∈F

U(X), (3.1)

• cooperative investment

max
X∈F

(U1(y1), U2(y2), ...., Um(ym)) s.t
m∑
i=1

yi = X, X ∈ F , (3.2)
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where Ui(.) is the utility functional representing the preferences of agent i.
Note that yi i = 1, ...,m is r.v so it is measurable and moreover yi ∈ L2.

• in case of 2 agents and U(.) = −R(.) the problem is written as follows:

min
X∈F

R1(y1) s.t R2(y2) ≤ β, , E[y1] ≥ π1, E[y2] ≥ π2 y1 + y2 = X, X ∈ F ,
(3.3)

Note that β represents the level of risk for a second investor which can be chosen
to be less than the risk for the same investor in an individual investment. Also,the
optimal trading strategy in (3.1),(3.3) and (3.2) may be time inconsistent, that
is, unstable during investment period. We propose the dynamic programming
method for finding the best time-consistent trading strategy in both individual
and cooperative investment cases.

Definition 3.1: Bellman [20]
Dynamic programming means breaking down the problem like (3.1), (3.3) or (3.2)
into sub-problems and solving it into a recursive algorithm by shifting the time
recursively until the initial period.

First of all we explain the recursive algorithm procedure for the individual in-
vestor using the following illustrating example, in which we derive the optimal
stable trading strategy for one risky asset and two periods. After that, we de-
velop a general framework for n risky assets and T periods in case of cooperative
investment which is our goal in this thesis.

3.1.1 Dynamic programming for individual investment: An

example

We consider two investment periods, during which an agent may invest either into
a risk-free asset with r0 = 0, or into the risky asset whose rate of return after each
period is an r.v. assuming values 2 and −1 with equal probabilities. That is, if we
invest x to the risky asset, it either returns 3x, or nothing.

In this simple case, all possible investment strategies are completely described by
3 numbers, (x, y, z), where

x is the proportion of money invested into the risky asset in the first; period



Cooperative Investment in MP with DP 35

y is the proportion of money invested into the risky asset in the second
period, provided that its price went down during the first period; and

z is the proportion of money invested into the risky asset in the second
period, provided that its price went up during the first period.

Then all possible outcomes can be visualised as follows:

1−x

1− x− y

1− x+ 2y

1 +

2x

1 + 2x+ 2z

1 + 2x− z

Let X = X(x, y, z) be an uncertain final outcome from the trading strategy
(x, y, z). Then X is an r.v. assuming values of each outcome with equal probabil-
ities.

In this example, the mean-variance portfolio optimisation problem can be formu-
lated as follows:

min
x,y,z

σ2(X)

s.t.

E[X] ≥ π

− 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1, − 1 ≤ z ≤ 1,

(3.4)

The portfolio positions are always between 0 and 1 if the short sales are not
allowed. We decided to relax this assumption to the positions between −1 and
1 to allow reasonable short sales. However, we think that allowing unbounded
short sales is unrealistic. Let π = 1.7. The optimal value for the individual
investment in a two-period problem (3.4) is σ2 = 2.0889, and the optimal trading
strategy is x = 0.736838, y = 0.884193, and z = 0.44213. However, this solution
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is time-inconsistent: after investing x = 0.736838 in the first period, and getting
1 + 2x back, an investor with mean-variance risk preferences will not invest y =

0.884193 into a risky asset during the second period since this problem faced time-
inconsistency.

Our aim is to find the best strategy that an investor would actually follow. For this,
we use a recursive algorithm that breaks down the problem into two sub-problems
(A and B) as follows: A

1 +

2x

1 + 2x− z

1 + 2x+ 2z

B

1−x

1− x− y

1− x+ 2y

• Firstly, we will solve the mean-variance problem (3.4) for (A) in order to
find the trading z as a function of x and by using Lagrange-multiplier we
get z(x) = 2(π − 1)− 4x directly from constraint E[X] ≥ π. Note that the
observation uncertain outcome X has two random variables as shown in A.

• Similarly, we will solve the mean variance problem (3.4) for (B) in order to
find the trading y as a function of x and by using Lagrange-multiplier we get
y(x) = 2(π − 1) + 2x directly from constraint E[X] ≥ π. Finally, we plug
the z(x) and y(x) into problem (3.4). Note that in this case the problem will
be with one variable x only, where the X will be a random variable which
depends only on x. Thus, we can solve the one-parameter optimisation
problem to get x = 0.14 and the optimal value +3.969 . So that we get the
optimal value of trading strategy x then plug the value of x into functions
z(x) and y(x) to get the trading strategy for z and y corresponding to the
value of x.
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Remark 3.1. We will note that the optimal value V1 for the problem (3.4) by
solving the individual investment directly in two periods over the variables x, y
and z will be less than the the optimal value V2 for the problem (3.4) by solving
the problem by using a recursive algorithm (force in back technique). In addition,
if we fix the value of x that comes from optimisation over the variables x, y and
z and plugging the value of x = 0.736838 into the function z(x) and y(x) . Then
resolve the optimisation problem over one variable x we get the optimal value V3
and we will notice that V1 < V2 < V3 which means that the optimal value V1 is the
best one since it is a global solution. Furthermore, we will explain the meaning
of that in the next section and we will illustrate it in the efficient frontier for the
problem (3.4) in order to find the best trading strategy that is stable during whole
investment periods.

3.1.2 Certainty equivalent for individual investment

An alternative method to solve time-inconsistent trading strategy by using utility
model based on the compound independence axiom of Segal [132, 133] implies
that an uncertain outcome during each period can be replaced by its certainty
equivalent which has less computational than dynamic programming shown in
the previous section, and also has deep theoretical work confirmed by empirical
investigation for decision-makers. In order to understand what is the certainty
equivalent in the mean-variance model, we need to formulate the portfolio optimi-
sation problem using utility functional U as a function of 2 variables, U = U(µ, σ).

It is easy to see that the linear combination U(µ, σ) = µ− σ
2ρ
, where ρ is the risk

aversion, is positive homogeneous and cannot be used to identify optimal portfolio.
Hence, we need to find a non-linear combination between σ and µ, that is non-
linear utility function U(µ, σ). Once U is found, we can easily find the certainty
equivalent C of any portfolio X by equation U(X) = U(C) according to Segal
[132, 133].

Sargent [125] suggests to use the following non-linear function

U(µ, σ) = µ− σ2

2ρ
. (3.5)

Because U(C) = U(C, 0) = C− 02

2ρ
= C for any constant C, this leads to the same

certainty equivalent: C = µ− σ2

2ρ
.
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We justify this choice of U using analogy with expected utility theory. In general,
there are three types of risk attitudes for decision maker; risk-averse, risk-neutral
and risk-seeking. Moreover, the risk-averse is the most common one. Thus, the
risk-attitude for a rational decision maker assumed it to be proper risk attitude.
Within the framework of expected utility theory, utility functions representing the
risk-averse attitude are usually assumed to be differentiable, increasing and con-
cave. An important example is exponential utility function u(X) = −exp(−λX),
where λ indicates less risk-averse of a rational decision maker. Let C(X) be the
corresponding certainty equivalent found from the equation E[u(X)] = E[u(C)].

Proposition 3.2. If X is normally distributed with mean µ and variance σ2, then
C(X) = µ− σ2

2ρ
.

Proof. The details of how to derive this formula see Sargent [125], page.155.

Proposition 3.2 justifies the choice of utility function (3.5): the corresponding
certainty equivalents will coincide at least for exponential utility and normal dis-
tributions.

Similarly, for an investor using standard lower semi-deviation σ− as deviation
measure, we suggest to use the following certainty equivalent

U(µ, σ−) = µ−
σ2
−

ρ
, (3.6)

which is motivated by the following Proposition.

Proposition 3.3. If X is normally distributed with mean µ and lower semi-
variance σ2

−, then C(X) = µ − σ2
−(X)

ρ
, where C(X) is the certainty equivalent

for exponential expected utility function defined before Proposition 3.2 and ρ is
risk aversion.

Proof. Since semi-variance = 1
2
variance for normal distribution. This also comes

from the fact that (X − µ)− = (X − µ)+, where
σ2
− = E[(X − µ)−)]2, thus σ2

− = 1
2
σ2. Hence, from the proposition (3.2) we

have the utility U(µ, σ−) = µ − 2σ2
−

2ρ
, then U(µ, σ−) = µ − σ2

−
ρ
. In other words,

we can find this relation directly from moment-generating function for normal
distribution. Moreover, the E(C) = C and σ2

−(C) = 0 so that the approximation
of U(X) = U(C) implies C = µ(X)− σ2

−(X)

ρ
.
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3.1.3 Two-period Example: First investor

In this section we explain time consistent mean-variance model based on compound
independent axiom using this illustrate example. Let the first investor wants to
maximise C = µ − σ2

2ρ1
. We suppose that the risk free rate is 0 and single risky

assets has statistically independent rate of return a,−b with probability p and
1 − p respectively. Where (a ≥ 0), (b ≥ 0), (0 ≤ p ≤ 1). Then, after the first
period the investment outcome will be

X1 = X1(x) =

1 + ax with prob. p

1− bx with prob. 1− p

Note that, the x is a fraction of the initial unit capital invested in the risky asset,
so that after the second period

X2 = X2(x) =



1 + ax+ ay with prob. p2

1 + ax− by with prob. p(1− p)

1− bx+ az with prob. (1− p)p

1− bx− az with prob. (1− p)2

It follows directly from compound independent axiom, that every outcome of any
two-stage lottery can be replaced by its certainty equivalent, thus reducing a two-
stage lottery to a one-stage one. This suggests the following dynamic programming
approach to any multi-period portfolio optimisation. Solve-one period portfolio
optimisation at the last stage. We will find the certainty equivalent of the optimal
portfolio, that we will use compound independence axiom to reduce T period
portfolio optimisation problem to T − 1 period one. Suppose the first investor
(individual investment) wants to

maxy E[X2]−
σ(X2)

2

2ρ1

where ρ1 is the risk aversion for the first investor. Now, we will find the certainty
equivalent at the second period for first scenario, since we start from the last period
to find y and find C as constant and does not depend on x. The scenario will be
as following

X2 = X2(y) =

1 + ax+ ay with prob. p

1 + ax− by with prob. 1− p
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since the σ2(X2) in this scenario will be σ2 = (a+b)2y2p(1−p) and the expectation
is E[X2] = 1+ax+(pa−b(1−p))y since the objective function E[X2]− σ(X2)2

2ρ1
to find

the optimal value of y. By plunging the value of the variance and expectation on
the objective function and solve it by maximize the function U , where U=E[X2]−
σ(X2)2

2ρ1
. We get

∂U

∂y
= pa− b(1− p)− 2

2ρ1
(a+ b)2yp(1− p) = 0

Hence, y∗ = [(−b(1−p)+ap)]ρ1
(a+b)2p(1−p)

with certainty equivalent of the optimal value portfolio given by

EX ′2(y
∗)− σ(X2)2

2ρ1
= 1 + ax+ (ap−b(1−p))2ρ1

(a+b)2p((1−p) −
1

2ρ1

(a+b)2p(1−p)(ap−b(1−p))2ρ21
(a+b)4(p(1−p))2

by simplifying to get the optimal
1 + ax+ (ap−b(1−p))2ρ1

(a+b)2p(1−p) −
ρ1
2

(ap−b(1−p))2
(a+b)2(p(1−p))

= 1 + ax+ 1
2
(ap−b(1−p))2ρ1
(a+b)2(p(1−p) Hence, the optimal

X1 = X1(x) =

1 + ax+ C with prob. p

1− bx+ C with prob. 1− p

where C = ρ1(ap−b(1−p))2
2(a+b)2p(1−p) which is constant function and does not depend on x as

well as we can show that y∗= z∗ by similar argument. Finally we need to find the
optimal value of x∗. Then, the optimal objective value
EX ′1(x

∗))− σ(X1)2

2ρ1
where

EX ′1(x
∗)) = 1 + (pa− (1− p)b)x+ C, and

σ(X1)
2 = (a+ b)2x2p(1− p)

plug them in the objective function we get:

EX ′1(x
∗)) − σ(X1)2

2ρ1
= 1 + (pa − b(1 − p)) [(ap−b(1−p)]ρ1

(a+b)2p(1−p) + ρ1[ap−b(1−p)]2
2(a+b)2p(1−p) −

1
2ρ1

(a +

b)2 [ap−b(1−p))ρ1]
2

[(a+b)2p(1−p)]2 p(1− p)
=

Thus, the optimal trading strategy is

x∗ = y∗ = z∗ =
[(−b(1− p) + ap)]ρ1

(a+ b)2p(1− p)
,

Note that, x∗ = z∗ = y∗ is due to simplicity of this example. In general, these
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equalities do not hold. Moreover, the E(C) = C and σ2(C) = 0 so that the
approximation of U(X) = U(C) implies C = µ(X)− σ2(X)

ρ
.

The optimal objective value will be

1 +
[pa− b(1− p)]2ρ1
(a+ b)2p(1− p)

3.1.4 Two-period Example: Second investor

Similar to the example in section 3.1.3 in 2-periods with binomial tree. Now, we
suppose the second investor has a rational decision maker that can measured by
C so he/she wants to maximise µ − σ2

−/ρ2. We need to prove that the certainty
is constant and does not depend on x. Similar to example 1 we start by the last
period X2(y) in order to find the optimal value of y∗ and we need to compute
σ2
−(X2(y)) and E[X2(y)]. Where
σ2
−(X2(y)) = p[max(b(p − 1)y, 0)]2 + (1 − p)[max((a + pb)y, 0)]2 and E[X2(y)] =

1 + ax+ pay − b(1− p)y by plugging the value of semi-variance and the expected
return in the objective function, then solve the problem by maximize the function
U , where U = µ− σ2

−/ρ2. Then, plug in the value of E[X2(y)] and σ2
−(X2(y)) we

get
U = 1+ax+pay−b(1−p)y− 1

ρ2
[p[max(b(p−1)y, 0)]2+(1−p)[max((a+pb)y, 0)]2]

∂U
∂y

= p+b(1−p)− 1
ρ2

[2pmax(b(p−1)y, 0)(b(p−1))+2(1−p)max((a+pb)y, 0)(a+pb)]

and we have two cases

∂U

∂y
=

p+ b(1− p)− 1
ρ2

[2(1− p)(a+ bp)2y] with y ≥ 0

p+ b(1− p)− 1
ρ2

[2p(b(b(p− 1))2y] with y ≤ 0

• First case if y ≥ 0 so that to complete and find the optimal value of y∗ by
solving ∂L

∂y
= 0

[p+ b(1− p)− 1

ρ2
(2(1− p)(a+ pb)2)y] = 0

implies that
1

ρ2
[2(1− p)(a+ pb)2y] = p+ b(1− p)

solve last equation in y
Hence,
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=
y∗ =

ρ2(p+ b(1− p))
2(1− p)(a+ pb)2

where x∗ = z∗ = y∗

Now, to find the certainty equivalent in this case by plugging the value of y∗

in E(X2)−
σ2
−(X2)

ρ2

1+ax+pa[
ρ2(p+ b(1− p))
2(1− p)(a+ pb)2

]−b(1−p)[ ρ2(p+ b(1− p)
2(1− p)(a+ pb)2

]− 1

ρ2
[
ρ22(p+ b(1− p))2

4(1− p)(a+ pb)2

simplifying

1 + x+ ρ2
(2pa+ 2b(1− p))(p+ b(1− p)) + (p+ b(1− p))2

4(1− p)(a+ pb)2

Thus
C = ρ2

(2pa+ 2b(1− p))(p+ b(1− p)) + (p+ b(1− p))2

4(1− p)(a+ pb)2

• Second case if y ≤ 0 hence the optimal value of y∗ by solving ∂L
∂y

= 0 then

p+ b(1− p)− 1

ρ2
[2p(b(p− 1)y(b(p− 1))]

solving last equation in y which implies

y∗ =
ρ2(p+ b(1− p))

2p(b(p− 1))2

where x∗ = z∗ = y∗

Now, to find the certainty equivalent in this case by plugging the value of y∗

in E(X2)−
σ2
−(X2)

ρ2
, then

1 + ax+ pay − b(1− p)y − 1

ρ2
[b2(p− 1)2y2]

=

1+ax+pa[
2ρ2(p+ b(1− p))
4(p(b(p− 1)))2

]−b(1−p)[2ρ2(p+ b(1− p))
4(p(b(p− 1)))2

]− 1

ρ2
[
b2(p− 1)2ρ2

4(p(b(p− 1)))2
]
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simplifying

1 + ax+ ρ2
b2(p− 1)2 + (2pa− 2b(1− p))(p+ b(1− p))

4(p(b(p− 1)))2

hence,

C = ρ2
b2(p− 1)2 + (2pa− 2b(1− p))(p+ b(1− p))

4(p(b(p− 1)))2

Thus,

∂L

∂y
=

p+ b(1− p)− 1
ρ2

[2(1− p)(a+ bp)2y] with y ≥ 0

p+ b(1− p)− 1
ρ2

[2p(b(b(p− 1))2y] with y ≤ 0

implies that the solution ‘optimal trading strategy’ y∗

y∗ =


ρ2(p+b(1−p))
2(1−p)(a+pb)2 when y ≥ 0

ρ2(p+b(1−p))
2p(b(p−1))2 when y ≤ 0

where x∗ = y∗ = z∗.

• Now, to find the objective value for X1(x), where

X1 = X1(x) =

1 + ax+ C with prob. p

1− bx+ C with prob. 1− p

and
µ1 = E[X1(x

∗)]= 1 + (pa− (1− p)b)x+ C

σ2
−(X1) = p[max((p− 1)(a+ b)x, 0)]2 + (1− p)[max(p(a+ b)x, 0)]2

Hence, the objective function will be as follows:

µ1 −
σ2
−(X1)

ρ1
=

1 + (pa− (1− p)b)x+ C − (1−p)[p(a+b)x]2
ρ1

with x ≥ 0

1 + (pa− (1− p)b)x+ C − p[(p−1)(a+b)x]2
ρ1

with x ≤ 0

plug in the value of C and the value of x∗ for the objective function to get
the optimal objective value O.V in each case and simplifying we get

O.V =

1 + pa+ ρ2
[2+(2pa+2b(1−p)](p+b(1−p))+[1−p2(a+b)2](p+b(1−p))2

4(1−p)(a+pb)2) with x ≥ 0

1 + ρ2
[(a+b)2(p+b(1−p))2+2p(pa−(1−p)b)(p+b(1−p))(1+b2(p−1)2)]

4(pb(p−1))2 with x ≤ 0
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According to requirement to maximise the objective value µ1 = E[X1(x
∗)],

the optimal trading strategy will be

x∗ = z∗ = y∗ =
ρ2(p+ b(1− p))
2(1− p)(a+ pb)2

Note that, Note that, x∗ = z∗ = y∗ is due to simplicity of this example. In
general, these equalities do not hold. Moreover, the E(C) = C and σ2

−(C) =

0 so that the approximation of U(X) = U(C) implies C = µ(X)− σ2
−(X)

ρ
.

The optimal objective value will be

1+ρ2
[(a+ b)2(p+ b(1− p))2 + 2p(pa− (1− p)b)(p+ b(1− p))(1 + b2(p− 1)2)]

4(pb(p− 1))2

3.1.5 Two-period Example: Cooperative Investment

We continue to discuss the two-periods example introduced in section 3.1.3 with
binomial tree. Now, suppose the two agents (investors) agree to invest their joint
capital into the risky instrument. Then, divide the random variable X by the
amount of money investors (agents) get at the end of the investment period, where
y1 and y2 are the optimal allocation of the first and second agents, respectively,
such that X = y1 + y2. Furthermore, the investors (agents) have different risk
measures. For instance, variance for first investor and semi-variance for second
investor or equivalently standard deviation and standard lower semi-deviation,
respectively. Now, the portfolio optimisation for the individual investment for
first and second investors is formulated as follows:

min
x,y,z

σ2[X]

s.t.

E[X] ≥ π1

X ∈ F

− 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1, − 1 ≤ z ≤ 1,

(3.7)
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Individual investment for the second investor

min
x,y,z

σ2
−[X]

s.t.

E[X] ≥ π2

X ∈ F

− 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1, − 1 ≤ z ≤ 1,

(3.8)

Corresponding to the cooperative investment of the form

min
x,y,z

σ2[y1]

s.t.

σ2
−[y2] ≤ β

E[y1] ≥ π1

E[y2] ≥ π2

y1 + y2 = X

X ∈ F

− 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1, − 1 ≤ z ≤ 1

(3.9)

Hence, we will solve the problems (3.9) as a cooperative investment in multi-period
over the variables (x, y and z), and N is the number of nodes in the scenario tree
at period t. In our example, we have binomial tree and two periods, then we
will solve the problem again by using the recursive algorithm and break down the
problem (3.9) into sub-problems at each node. Note that, if we have N nodes at
time t, then we will have N sub-problems.

Now, to solve this problem with dynamic programming we will complete, which
means a recursive manner. Furthermore, the other types of the problems (3.7),
(3.8) and (3.9) can be written with constant absolute risk aversion during the
investment period as follows:
1) Individual for first investor

min
x,y,z

σ2[X]− α1E[X]

s.t.

X ∈ F

− 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1, − 1 ≤ z ≤ 1

(3.10)
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2) Individual for second investor

min
x,y,z

σ2
−[X]− α2E[X]

s.t.

X ∈ F

− 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1, − 1 ≤ z ≤ 1

(3.11)

3) Cooperative between two investors (agents)

min
x,y,z

σ2[y1]− α1E[y1]

s.t.

σ2
−[y2]− α2E[y2] ≤ β

y1 + y2 = X

X ∈ F

− 1 ≤ x ≤ 1, − 1 ≤ y ≤ 1, − 1 ≤ z ≤ 1

(3.12)

Note that, the portfolio positions are always between 0 and 1 if the short sales
are not allowed. We decided to relax this assumption to the positions between −1

and 1 to allow reasonable short sales. However, we think that allowing unbounded
short sales is unrealistic.

Algorithm 3.1:
Suppose we have two-periods with a binomial tree, which an agent may invest
either into a risk-free asset with r0 = 0, or into risky assets, where the rate of re-
turn after each period is an r.v. assuming values 2 and -1 with equal probabilities.
That is, if we invest x in the risky asset, it either returns 3x, or nothing. Hence,
at the end of two-investment periods with a binomial tree, the possible invest-
ment strategies are completely described by three numbers, (x, y, z) where x is the
proportion of money invested into the risky asset in the first period and y is the
proportion of money invested into the risky asset in the second period, provided
that its price went down during the first period, and z is the proportion of money
invested into the risky asset in the second period, provided that its price went
up during the first period. Also F = {X = (X(ω1), X(ω2), X(ω3), X(ω4))| − 1 ≤
x ≤ 1,−1 ≤ y ≤ 1,−1 ≤ z ≤ 1}, where we have four scenarios at the end of the
investment represented as follows:
X(ω1) = 1 + 2x+ 2z;
X(ω2) = 1 + 2x− z;
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X(ω3) = 1− x+ 2y; and
X(ω4) = 1− x− y.
a- In order to solve the problems (3.7) and (3.8), or for the other type (3.10) and
(3.11), note that each of these problems has four scenarios solved by CVX in MAT-
LAB over three variables x, y and z, where σ2(X) = 1

4

∑4
i=1(Xi)

2 − (1
4

∑4
i=1Xi)

2

or another individual investment problem defined with
σ2
−(X) = 1

4

∑4
i=1(max(−(Xi − (1

4

∑4
i=1Xi)), 0))2, E[X] = 1

4

∑4
i=1Xi, and the re-

sult is that we get the optimal value for the investor individually.
b- In order to solve the problems (3.9), or for the other type (3.12) as a coopera-
tive investment over the variables x, z and y and as a cooperative investment in
multi-periods, note that we need to write the share division for each investor y1
and y2 as a vector of the same size of X(ω) in my case y1 = (y11, y

2
1, y

3
1, y

4
1) and y2 =

(y12, y
2
2, y

3
2, y

4
2). Hence, in this cooperative investment we need to write σ2(y1) =

1
4

∑4
i=1(y

i
1)

2 − (1
4

∑4
i=1 y

i
1)

2 and σ2
−(y2) = 1

4

∑4
i=1(max(−(yi2 − (1

4

∑4
i=1 y

i
2)), 0))2,

E[y1] = 1
4

∑4
i=1 y

i
1, and E[y2] = 1

4

∑4
i=1 y

i
2. Then, plugging the value of σ2(y1),

σ2
−(y2), E[y1] and E[y2] into problems (3.9) or (3.12) in order to solve portfolio

optimization over the variables x, y and z with four scenarios yi1 + yi2 = X(ωi) for
i = 1; 2; 3; 4. Note that we need to choose β to represent the level of risk for a
second investor, which is chosen to be less than the optimal value that we got from
step a. Consequently, we get the optimal value for first investor which denote by
σ(β). Then, repeating the last step with a different value of β we get the whole
efficient frontier which represents the optimal value for the first investor in the x-
axis and optimal value for the second investor in the y-axis, which approximately
represents the value of β.
c- In order to solve the problems again by using the recursive algorithm and break
down the problems (3.9) or for the second type (3.12) into sub-problems at each
node.

• i−We have a two-periods model with a binary tree. Then, we will have N =

2 sub-problems. In our case, since we have a binomial tree then we have two
sub-problems as shown in A and B, shown below. Hence, we need to solve
three portfolio optimization problems. Firstly, according to A we solve (3.12)
or (3.9) as cooperative investments in a single period by CVX in MATLAB
over variables x and z where we have just two scenarios X(ω1) = 1 + 2x+ 2z

and X(ω2) = 1 + 2x − z. Note that y1 = (y11, y
2
1) as well as y2 = (y12, y

2
2),

where yi1+yi2 = X(ωi) for i = 1, 2. Also, σ2(y1) = 1
2

∑2
i=1(y

i
1)

2−(1
2

∑2
i=1 y

i
1)

2

and σ2
−(y2) = 1

2

∑2
i=1(max(−(yi2 − (1

2

∑2
i=1 y

i
2)), 0))2, E[y1] = 1

2

∑2
i=1 y

i
1, and
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E[y2] = 1
2

∑2
i=1 y

i
2. Then, plug in the value of σ2(y1), σ2

−(y2), E[y1] and E[y2]

in problems (3.9) or (3.12) in order to solve portfolio optimization over the
variables x and z in this stage we will get the value of trading strategy z(X)

as a function of x. Also, choose the value of β as exactly the same value of
β in step b.

• ii− Similarly, according to B we will solve (3.12) or (3.9) as a cooperative
investment in a single period by Lagrange multiplier over variables x and y
where we have two r.v. in this case, which is represented as follows: X(ω1) =

1−x+2y and X(ω2) = 1−x−y and similarly to the previous step yi1 +yi2 =

X(ωi) for i = 1, 2 in order to solve portfolio optimization over the variables
x and y. In this stage we will get the value of the trading strategy y(x) as a
function of x. Also, choose the value of β as exactly the same value of β in
step b.

• iii− Plug in the value of z(x) and y(x) in problems (3.9) or (3.12) and
solve them again over one variable x. Note that, in this case we have
four r.v. x(ωi) for i = 1, 2, 3, 4, where X(ω1) = 1 + 2x + 2z(x); X(ω2) =

1 + 2x− z(x); X(ω3) = 1−x+ 2y(x); and X(ω4) = 1−x− y(x). Then com-
pute σ2(y1) = 1

4

∑4
i=1(y

i
1)

2− (1
4

∑4
i=1 y

i
1)

2 and σ2
−(y2) = 1

4

∑4
i=1(max(−(yi2−

(1
4

∑4
i=1 y

i
2)), 0))2, E[y1] = 1

4

∑4
i=1 y

i
1, and E[y2] = 1

4

∑4
i=1 y

i
2. Then, plug in

the value of σ2(y1), σ2
−(y2), E[y1] and E[y2] in problems (3.9) or (3.12) in or-

der to solve portfolio optimization over the variables x, and yi1 +yi2 = X(ωi).
Also, choose the value of β as exactly the same value of β in step b. Con-
sequently, we get the optimal value for the first investor which is denoted
by σ(β). Then, repeating the last step with a different value of β we get
the whole efficient frontier which represents the optimal value for the first
investor in the x-axis and the optimal value for the second investor in the
y-axis, which approximately represents the value of β.

d- Finally, we will compare between plotting the efficient frontier that comes from
step (b) for solving CI and step(c) part(iii) for DCI, respectively.

Example 3.1

First of all, we will solve the problems (3.10) and (3.11) as individual investments
and we will choose the α1 = 0.5 and α2 = 0.25 as a risk aversion for first and
second investor shown in the previous section. Then we will solve the problem
(3.12) as a cooperative investment in two periods over the variables x, y and z.
We will plot the efficient frontier by changing the value of β as shown in Figure
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3.1. Since this efficient frontier is unstable, which means the mean-variance prob-

Figure 3.1: Example showing comparison between the optimal individual and
cooperative investment solving problem (3.12) with U(.) = −R, and R = D2

i −
αiE[yi] where D1 = σ and α1 = 0.5, and D2 = σ− and α2 = 0.25

lem faced time inconsistency where the term of E[X2] from the definition of σ(X)

cause time inconsistent. Actually, the part E[y2i ], i = 1, 2 in the definition of
σ2(y1) and σ2

−(y2) cause time-inconsistency. Thus, we resolved it by solving the
problem (3.12) as in force in back technique as follows:
1) We will break down the scenario tree

1−x

1− x− y

1− x+ 2y

1 +

2x

1 + 2x+ 2z

1 + 2x− z

to solve the problem (3.12) into two sub-problems as shown in (A) and (B).
Note that, (A) and (B) as CI in single period and over the variables z and y

respectively, Firstly, we take the problem (A).
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A

1 +

2x

1 + 2x− z

1 + 2x+ 2z

Furthermore, we will solve the problem (3.12) as cooperative investment in single
period as shown in A above, which means in this part we have only two scenarios.
Also, we will solve the problem A over the variables x and z and fix β = 0.7 to
get the value of z and x will be arbitrary. Then, we will resolve the same problem
after fixing the value of z at β = 0.7 to get the efficient value of x at β = 0.7.
2) Similarly, we will break down the problem (3.12) into sub-problems as shown
in (B).
B

1−x

1− x− y

1− x+ 2y

Note that in this part we have only two scenarios. Also, we will solve the problem
B over the variables x and y and fix the β = 0.7 we got y and x will be arbitrary.
Then, we will resolve the same problem after fix the value of y at β = 0.7 to get
the efficient value of x at β = 0.7.

From the Algorithm 3.1 step c we have the value of z = 0.5548 and y = 0.7807 for
arbitrary value at x. Then we plug the values of z and y into the problem (3.12).
Hence, this problem will be over one variable x and we solve it again in order to
get the optimal trading strategy x. Now, change the value of β in order to get
the whole efficient frontier which is the optimal and stable efficient frontier for the
whole problem as shown in Figure 3.2.

Definition 3.4. The efficient frontier is the set of points (R1, R2) ∈ F , where F
is convex set that offers the best optimal value for investor i, i = 1, 2. Moreover,
there exists a strategy such that the risk of investor i is Ri i = 1, 2 but cannot be
improved upon, which means there is no point (R′1, R

′
2) ∈ F such that R′1 ≤ R1

and R′2 ≤ R2, and at least one of inequality being strict.

Theorem 3.5. The set F for portfolio optimisation problem (3.3) in multi-period
is convex, provided that R1 and R2 are convex.
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Figure 3.2: Efficient frontier curve for problem (3.12) with U(.) = −R, and
R = D2

i − αiE[yi] where D1 = σ and α1 = 0.5, and D2 = σ− and α2 = 0.25

where the curve of dynamic cooperative investment comes from solve cooperative
investment in step b in Algorithm 3.1 and the curve dynamic cooperative invest-
ment by using DP comes from solve cooperative investment in recursive manner
as in step c part iii in Algorithm 3.1. In addition, the difference between efficient
frontier is not very significant. Thus, the investor follows the trading strategies
come from solving problem (3.12) by using dynamic programming.

Proof. The proof for this theorem in single period is represented in De la Fuente,
theorem 1.13 [48] and the proof for multi-period is similar.

3.1.6 Dynamic cooperative investment in real data

In this section we develop and present a novel technique for solving large-scale
multi-period cooperative investment problems with real data, obtained as a result
of historical simulation. We assume the scenario tree comes from the historical
simulation. We will address several aspects of this problem.

- First, we need to check that the scenario tree obtained from the data is
arbitrage free, otherwise the model would be unrealistic.



Cooperative Investment in MP with DP 52

Figure 3.3: The efficient frontier of DCI with T = 2

- Second, we will find an optimal time-consistent trading strategy, so that
the group of investors would not change their minds in the middle of the
investment period. For this, we will use the dynamic programming approach.

- Third, we introduce an approximation procedure which allow us to avoid the
exponential growth of scenario trees.

In this section we will study only the case of two investors; one uses the mean-
variance approach to portfolio optimisation, and the second uses the mean-semi-
variance since this problem faced time-inconsistent and we need to show how
to solve it again by DP to get the time-consistent trading strategy. In this case,
cooperative investment in multi-period can be written as the following optimisation
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problem

min
x,zi,t

σ2[y1]

s.t.

σ2
−[y2] ≤ β

E[y1] ≥ π1

E[y2] ≥ π2

y1 + y2 = X

X ∈ F
n∑
i=1

zi,t = 1

− 1 ≤ zi,t ≤ 1 for t = 1, ..T

(3.13)

where π1 is the fixed return level for the first investor, and π2 is the fixed return
level for the second investor and β is the fixed σ− level for the second investor. The
trading strategy zt is a vector of function zt = {z1,t(.), ....zn,t(.)}, T is the number
of scenarios, and period t. The choice of variance and semi-variance in (3.13) is
because these are the most popular risk measures used in portfolio optimization.
The next algorithm defines the solution of problem (3.13).

Algorithm 3.2:
a- Let ri,t, i = 1, . . . , n, t = 1, . . . , T be the historical rate of return of instrument
i at time t. We use them to generate the two-period scenario tree as follows. We
assume that there are T scenarios at the first period, and then from each node T
scenarios at the second period, totalling in T 2 scenarios at the second period. We
denote these scenarios as (t1, t2), t1 = 1, . . . , T , t2 = 1, . . . , T . Let a(t1,t2),i be the
(predicted) rate of return of asset i under scenario (t1, t2). Numbers a(t1,t2),i form
a matrix A of size T 2 × n. In this section, we use a historical simulation method,
and assume that

a(t1,t2),i = (1 + rt1,i)(1 + rt2,i)− 1, ,∀t1, t2, i.

In the next section we will use the GARCH model for much better prediction for
a(t1,t2),i.
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Next we do the following trick to reduce the number of scenarios. We sort the
rows of matrix A such that

1

n

n∑
i=1

ah1,i ≤
1

n

n∑
i=1

ah2,i

for every row 1 ≤ h1 ≤ h2 ≤ T 2. Then, to reduce the size of the scenario tree, we
group ‘good’ scenarios with ‘good’ ones, and ‘bad’ scenarios with ‘bad’ ones, that
is, take

bh,i =
1

T

hT∑
t=(h−1)∗T+1

at,i, h = 1, ....T, i = 1, . . . , n.

where bh,i is the average of the matrix A after sort it. This reduces T 2× n matrix
from two-period simulation to just T × n matrix. Note that, we can do the same
process for many time periods T if we want more periods by just repeating the
same process for each time period. This step will let us to avoid exponential
growth for the number of scenarios.

We have no formal proof that this approximation is acceptable, but it works sur-
prisingly well in numerical computations. Namely, we solve the problems of mod-
erate size exactly (without this averaging procedure), and then with it, and the
resulting optimal portfolio agreed and coincide (in my experiment they are agreed
up to 5-digit).

b- Now to solve cooperative investment after we set up the scenario tree with two-
periods, where (ri) is the rate of return for a risky asset i, i = 1, ..n in first period,
bh,i is the expected rate of return for asset i, i = 1, ...n node h in the scenario
tree, h = 1, ...T and x = (x1, x2, ....xn) is the trading strategy at first period t = 1

and zt = (z1,t, z2,t, ....zn,t), t = 1, ..., T where each zi,t is a number of the trading
strategy at each node for each risky asset i, i = 1, ...n, note that the number of
nodes are equal to the number of scenarios h = t = 1, ...., T in my scenario tree
and −1 ≤ zi,t ≤ 1 and the initial capital is W0 with risk-free r0.

• i- In order to solve the problems (3.13) as cooperative investment over the
variables x and zt = (z1,t, z2,t, .zi,t...zn,t), t = 1, ...., T and where zt is the
trading strategy at node t, where −1 ≤ zi,t ≤ 1 for all risky assets i, also∑n

i=1 zi = 1. Hence, we have T scenarios X = (X(ω1), ......., X(ωT )) where
X(ωt) = (W0 −

∑n
i=1 x)r0 + xr′) −

∑n
i=1 zi,t)r0 + ztb

′
h,i, for t = 1, ...T and

similarly as in Algorithm 3.1 we have y1 = (y11, ..., y
n
1 ) as well as y2 =

(y12, ......, y
n
2 ), where yt1 + yt2 = X(ωt) for t = 1, 2, ..T . Also, σ2(y1) =
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1
n

∑n
i=1(y

i
1)

2−( 1
n

∑n
i=1 y

i
1)

2] and σ2
−(y2) = E[(max(−(yi2−( 1

n

∑n
i=1 y

i
2)), 0))2],

E[y1] = 1
n

∑n
i=1 y

i
1, and E[y2] = 1

n

∑n
i=1 y

i
2. Then, plug in the value of

σ2(y1),σ2
−(y2), E[y1] and E[y2] in problems (3.13) and solve it by CVX over

the variables x and zt, where the value of β is chosen to be less than the op-
timal value for the second investor from individual investment. Then, after
we get the value of x and zt, t = 1, ....., T and the optimal value for the first
investor σ(β). Then, repeat the last step with a different value of β to get
the whole efficient frontier.

• ii- In order to solve the problems again by using the recursive way and break
down the problems (3.13) into sub-problems in our case we have T sub-
problems. Note that in this case we have the random variables X(ωt) =

(W0−
∑n

i=1 x)r0 +xr′)−
∑n

i=1 zi,t)r0 +zta
′
(t1,t2),i

, for t = 1, ...T and similar to
Algorithm 3.1. Fix the same value of β as in step i. Then, we will solve it as
a cooperative investment (3.13) in a single period at each node individually.
Note that, for these problems, we will solve them over the variable x and zt
where zt is the trading strategy at node and has a size 1 × n as a function
of x which is formulated of the form zt = {z1,t(x), .., zi,t(x)....zn,t(x)}. Then
repeat this process for each node to get all of trading strategy zt as a function
of x at each node in each period. Note that the number of nodes is equivalent
to number of sub-problems.

• iii- Plug the zt(x) for t = 1, ...T into the problem (3.13) in order to get
the value of x which is the trading strategy at the first period. Similar to
Algorithm 3.1, we have T scenarios of X = (X(ω1), X(ω2), .....X(ωT ), where
X(ωt) = (W0 −

∑n
i=1 xi)r0 + xr′)−

∑n
i=1 zi,t(x))r0 + zt(x)b′h,i, for t = 1, ...T .

In this stage we will solve it as a cooperative investment in multi-periods
over one variable x. Fix the same value of β as in step i. Then, after we get
the value of x and the optimal value for the first investor σ(β) we can now
repeat the last process with a different value of β to get the whole efficient
frontier.

e- Finally, we will compare between the efficient frontier coming from steps (i) and
(iii) to show the difference between the curves and how are they significant.
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3.1.7 Dynamic cooperative investment with certainty equiv-

alent

For cooperative investment portfolio optimisation our problem can be written as
follows:

max
X∈F

µ1 −
σ(y1)

2

2ρ1

s.t.

µ2 −
σ−(y2)

2

ρ2
≥ π

y1 + y2 = X

X ∈ F

(3.14)

In this problem we will solve the time inconsistent mean-variance model based
on compound independence axioms. We will start with the last period and find
the certainty equivalent for each scenario at each node for both investors C1 =

µ1− σ(y1)2

2ρ1
and C2 = µ2− σ−(y2)2

ρ2
and actually C2 ≈ π since we fixed it. Then Carry

on the process for each scenario at each period. Note that we start with the last
and use force in back technique until we arrive at the first period. We will solve
the problem in two ways as illustrated in the following algorithm. Moreover, the
reason to solve problem (3.14) by certainty equivalent is shown in section (3.1.2).

Algorithm 3.3:
First way

Solve the problem (3.14) globally which means writing the uncertain outcome
for each scenario X(ω) exactly as in Algorithm 3.2 part (i) and X(ω) = (W0 −∑n

i=1 xi)r0 + x′ri)−
∑n

i=1 z
i
1)r0 + z′1.r1,t1)−

∑n
i=1 z

i
2)r0 + z′2.r2,t2 this is in the case

of three periods T = 3 and complete the same for more period. Then, solve it over
the trading strategy(x, z1, z2); in this alternative method of dynamic programming
we are looking for the optimal value for each investor, where C1 = µ1 − σ(y1)2

2ρ1
and

C2 = µ2 − σ−(y2)2

ρ2
and actually C2 ≈ π according to problem (3.14), π is the fix

level for the second investor and it is chosen to be greater than the optimal value
for the individual investment for the second investor. Thus, we get the optimal
value U1(π) for the first investor and repeat the same process for a different value
of π to get the whole efficient frontier.



Cooperative Investment in MP with DP 57

Second way

• a) We will solve the problem (3.14) by setting up a time consistent mean
variance model based on compound independence axioms, so that we will
solve the problem by the force in back technique and we will break down
the problem (3.14) into T sub-problems at each period see Algorithm 3.2
the same as part (ii). But, in this case we are looking for the optimal
value for each investor instead of the trading strategy (x, z1, z2) and will
solve problem (3.14) for each node separately as cooperative investment in
a single period. Thus, for the first scenario up to T = 3 we have Xt3(ω) =

((((W0−
∑n

i=1 xi)r0 +x′ri)−
∑n

i=1 z
i
1)r0 + z′1.r1,t1)−

∑n
i=1 z

i
2)r0 + z′2.r2,t2 and

solve problem (3.14) over x, z1, z2, where in this stage we get the trading
strategy z2 as a function of x and z1, but we are looking to find the optimal
amount of cash for each investor, which is the optimal value for each investor
C1,t3 = µ1− σ(y1)2

2ρ1
and C2,t3 = µ2− σ−(y2)2

ρ2
so that the whole amount of money

that the investors have in this period at this node is Ct3 = C1,t3 + C2,t3

and similarly we will complete recursively for the previous node; we have
Xt2(ω) = (((W0−

∑n
i=1 xi)r0 +x′ri)−

∑n
i=1 z

i
1)r0 +z′1.r1,t1) and again we will

solve problem (3.14) over x, z1, where in this case the trading strategy z1 will
be as a function of x, but the same as previously in this alternative method we
are looking at the optimal amount of cash for each investor C1,t2 = µ1− σ(y1)2

2ρ1

and C2,t2 = µ2− σ−(y2)2

ρ2
so that the whole amount of money that the investors

have in this period at this node is Ct2 = C1,t2 + C2,t2 .

• b) Plug the value of Cti i = 2, 3 into the scenario tree from step a until
reaching to the first period.

• c) Solve the problem (3.14) at the first period over one variable x which is
the trading strategy at the first period; exactly the same procedure as in
Algorithm 3.2 part (iii) where the uncertainty outcome X(ω) can be written
in this case as follows: X(ω) = (W0−

∑n
i=1 xi)r0 +x′iri+

∑T=3
i=2 Cti whereW0

is the initial capital and r0 is risk-free. In this stage we get the optimal value
for each investor C1 and C2 , where C1 = E(y1]− σ(y1)2

2ρ1
which is represented

on x-axis and C2 = E(y2]− σ−(y2)2

ρ2
which is represented on y-axis. Repeat the

same process in this step for a different value of π to get the whole efficient
frontier. More explanation for the Algorithm is shown in Figure 3.4.

• d) Comparing between the efficient frontier comes from the first way and
the second way at step c.
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Figure 3.4: Scenario tree with certainty equivalent where Pi and ri,ti represent
the probability and return at the asset i at period ti and we assume that all

scenarios has equivalent probability

3.2 Numerical experiments

In my following experiments we show that the difference between the curves comes
from cooperative investment in multi-period with pre-commitment trading strat-
egy and cooperative investment by dynamic programming with time-consistent
trading strategy is not very significant.

• First Experiment :

Suppose we have one risk free asset and n = 6 risky assets
(APPL,APA,ABBU,ALL,BA,and BK) chosen randomly from S&P 100 and
each stock has a weekly return from 1-1-2010 to 1-1-2013. Thus, each risky
asset has 100 scenarios and T = 2 periods and we will solve the problem
(3.13) according to Algorithm 3.2 with utility function σ2(yi)−αiE[yi], where
σ for the first investor and σ− for the second investor.
Now, by solving (3.13) and suppose that α1 = 0.5 and α2 = 0.25, we will get
the efficient frontier for cooperative investment in multi-period directly and
in the dynamic programming case as shown in Figure 3.5.

• Second Experiment :

We consider a portfolio consisting of n = 6 risky assets, the same in the first
experiment. We will solve the problem (3.13) for utility function D2(yi) −
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Figure 3.5: Comparison between efficient frontier CI and DCI (3.13) with
T = 2 and utility function D2(yi) − αiE[yi] where D = σ for the first investor

and D = σ− for the second investor

αiE[yi] where D = σ for the first investor and D = σ− for the second investor
and in binary scenario tree where we have T = 4 periods. Note that the
trading strategy zi,t is a function of T −1 variable the arbitrary according to
the optimisation problem, where t = 2, 3, 4. we follow the trading Algorithm
3.2 and do not need to reduce the number of scenarios since the number is
not too great. With the same r0 = 0.000136, π1 = 0.00016 and π2 = 0.00019

,α1 = 0.5 and α2 = 0.25. Thus, the result we get is shown in Figure 3.6.

• Third Experiment :

We will solve the problem (3.13) and suppose we have one risk free and 6

stocks and each observation (rate of return)for each stock has 30 scenarios.
Then, we will fix the values of π1 and π2 which are the expected return for
first and second investors, respectively. In our case we assume that risk free
r0 = 0.00013, π1 = 0.00016 and π2 = 0.00019, where π1+π2 > r0. Otherwise,
the investor will not invest in risk assets any more if the risk free assets give
them more return than risky assets and T = 2. By following the Algorithm
3.2 we get the Figure 3.7. Then, find trading strategy zi,t,h recursively until
we get zi,t1 = (z1(z0,t1), ....zT (z0,t1)} as a function of x which is the trading
strategy from period t = 0 to t = 1.

• Fourth Experiment :

We will solve the problem (3.13) and suppose we have one risk free and 6
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Figure 3.6: Comparison between efficient frontier CI and DCI (3.13) with
T = 4 and utility function D2(yi) − αiE[yi] where D = σ for the first investor

and D = σ− for the second investor

Figure 3.7: Comparison between efficient frontier CI and DCI (3.13) with 30
scenarios at each node and T = 2

stocks that arrange in a binary tree and T = 2 periods. The same as in the
third experiment we will fix the values of π1 and π2 which are the expected
returns for first and second investors, respectively. Note that the trading
strategy zi,t is a function of z0, at t1 variable we can select the arbitrary
according to the optimisation problem. Moreover, at the end we will plug in
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all the trading strategies zi,t to get the optimal trading strategy z0,t1 between
the period t = 0 and t = 1. Hence, the result is as shown in Figure 3.8.

Figure 3.8: Comparison between efficient frontier CI and DCI (3.13) with 120
scenarios at each node and T = 2

• Fifth Experiment : We will solve the problem (3.13) and suppose we
have one risk free and 6 stocks that arrange in a historical simulation and
T = 10 periods. The same as in the third experiment, we will fix the
values of π1 and π2 which are the expected returns for first and second
investors, respectively. Note that the trading strategy zi,t is a function of
T − 1 variable and we can select the arbitrary according to the optimisation
problem. Moreover, at the end we will plug in all the trading strategies zi,t
to get the optimal trading strategy z0,t1 between the period t = 0 and t = 1.
Hence, the result is as shown in Figure 3.9.

• Sixth Experiment :

We will solve the problem (3.14) and suppose we have one risk free and 6

stocks that are arranged 30 scenarios and T = 2 periods. The same as in the
third experiment, we will fix the values of π, namely the expected returns
for second investors. Moreover, π is chosen to be greater than the optimal
value for the second investor when he/she solve the individual investment.
By following the Algorithm 3.3 to get the optimal value for each investor and
plot the efficient frontier for the optimal value for first investor C1 which is
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Figure 3.9: Comparison between efficient frontier CI and DCI (3.13) with
30 scenario at each node and T = 10, where the cooperative investment curve
means solving cooperative investment in multi-period to find global solution,
while dynamic cooperative investment curve means solve cooperative investment

in in multi-period by using DP

representd on the x-axis and the optimal value for second investor C2 which
is represented on the y-axis. Hence, the result is as shown in Figure 3.10.

In addition, there are the same general notes from all experiments. We note the
difference between the efficient frontiers is not very significant, which implies that
the investor will follow the trading strategy until the end of the investment period
which comes from solving cooperative investment in multi-periods with dynamic
programming in order to avoid breaking down the contract between investors in
the middle of the investment period.

3.3 Discussion and concluding remarks

In this chapter we formulated and solved (numerically) the cooperative investment
problem (3.13) and (3.14) by following Algorithm 3.1, 3.2, and 3.3 in two ways:
(i) finding an optimal pre-commitment strategy (global solution), which, however,
may be unstable (time-in consistent); and (ii) finding an optimal strategy using
a dynamic programming approach. This strategy is stable (time-consistent) dur-
ing the investment periods. Consequently, we avoid breakdown of the contract
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Figure 3.10: Comparison between efficient frontier CI and DCI (3.14) with 30
scenarios at each node and T = 2 with certainty equivalent

between the investors. Thus, in my contribution of this thesis we show how to
solve cooperative investment in multi-period and how to get the stable trading
strategies that let the investor follows until the end of investment periods.

We have observed from the Figures (3.2), (3.5), (3.6), (3.7),
(3.8), (3.9) and (3.10) that the efficient frontier which comes from the dynamic
programming model is relatively close to the efficient frontier coming from the
global solution of cooperative investment. Note that the efficient frontier shown in
Figures (3.5) and (3.6) are straight lines since we use the utility function U(µ, σ)

which is positive homogeneous. So that in this chapter we focus on mean-variance
portfolio optimisation (3.13) for risk measure D2(yi) where D = σ for the first
investor and D = σ− for the second investor. Moreover, when we apply certainty
equivalent to solve dynamic cooperative investment we have less computational
procedure in the case of a recursive manner technique.



Chapter 4

Dynamic Cooperative Investment

on GARCH Model

The majority of this Chapter has been published in Almualim [6].

In the previous chapter, all numerical examples for solving the dynamic cooper-
ative investment (DCI) problem used a naive historical simulation method: we
assumed that future rate of return of every financial instrument follows the distri-
bution created using historical data. In this Chapter we consider a more realistic
model, in which the distribution of future rates of return follow the Generalized
Autoregressive Conditional Heteroskedastic (GARCH) model. The model has been
introduced by Bollerslev [29], has two parameters (lags) p and q, and the usual
notation is GARCH(p,q). The model has been designed in order to capture
the volatility clustering effect in return. Furthermore, GARCH(1, 1) is considered
as one of the most common and simplest ways to produce and estimate future
levels of volatilities as random process r.v. Moreover, GARCH(1, 1) can model
the dependence in the square returns which means the random process for vari-
ance is written in terms of square returns. In addition, in continuous-time, many
economic studies have documented that financial time series tend to be highly
heteroskedastic. Hence, we will develop the volatility process to have the autocor-
relation function of a continuous time and the term of diffusion approximation is
also existing based on Nelson [110] and Klüppelberg [89].

64
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4.1 Problem formulation in discrete time

In this section we study how to apply the GARCH model as the economic model in
order to estimate conditional variance as a random variable (r.v) and then generate
future return of the stock price. Firstly, the basic idea we want to describe here
is a volatility σt as a random variable (r.v) ‘volatility clustering of, e.g., an asset
price, on day t as estimated at the end of the previous day t−1 where the variance
will be as a random variable rather than constant as in previous chapters. As well
as studying how to do it in the most accurate and easiest way, before to begin we
need to introduce same conceptions and definitions.

Definition 4.1. [35] Let {Yt} be a time series with EY 2
t < ∞, t = 1, 2, 3, . . . .

The mean function of Yt is
µY (t) = E[Yt]

The covariance function of Yt is

γY (r, s) = Cov(Yr, Ys) = E[(Yr − µY (r))(Ys − µY (s))]

for all integer r, s and t.

Definition 4.2. [35] {Yt} is weakly stationary, or just stationary, if

• µY is independent of t;and

• γY (t+ h, t) is independent of t for each h.

Definition 4.3. [35] Let {Yt} be a stationary time series. The autocovariance
function (ACVF) of Yt

γY (h) = Cov(Yt+h, Yt)

The autocorrelation function (ACF) of Yt is

ρY (h) =
γY (h)

γY (0)
= Cor(Yt+h, Yt)

Note that, the partial autocorrelation function (PACF) can be interpreted as a
regression of the series against its past lags, which is consider only the direct
correlation between Yt and Yt−h. Thus

PACF (k) = Cor(Yt, Yt−k)
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Definition 4.4. [35] A time series is called a white noise if it is a sequence of
independent and identically distributed random variables with finite mean and
variance.

In this thesis we will use the white noise model with zero mean, WN ∈ N(0, σ2).

Definition 4.5. [75] Backward shift operator is a short hand for shift backward
in the time series βYt = Yt−1, βpYt = Yt−p.

The time series of rates of return pf−pc
pc

, where pc is the current price of the asset,
and pf is its (random) future price, is usually not stationary, and is therefore
difficult to forecast. For this reason, in this section we will work with log-return
r = log

pf
pc

instead. Let Yt be the log-return of a financial instrument at time t.
To effectively forecast Yt, we will use the Generalized AutoRegressive Conditional
Heteroscedasticity GARCH(p, q) model which was described by Bollerslev [29] in
1986.

Generally, GARCH(p, q) is the Generalized Autoregressive Conditional Heteroskedas-
tic of lag p and lag q. Let the time series estimate be Yt = µY + σtεt, where
εt ∈ N(0, 1) is a white noise, and σt can be found from the following formula for
the variance which is a random variable and can be estimated as

σ2
t = α + βi

p∑
i=1

σ2
t−i + γj

q∑
j=1

a2t−j

where all the parameters α, βi and γj are ≥ 0 for i = 1, ..., p and j = 1, .., q. Also,∑p
i=1 βi +

∑q
j=1 γj < 1 , σ2

t−i is estimated by using EWMA, see remark 4.7 below,
and at−i = σt−iεt is called the residual part.

Definition 4.6. [96] GARCH(1, 1) is the Generalized Autoregressive Conditional
Heteroskedastic of lag 1 and lag 1. Let the time series estimate be Yt = µY + σtεt,
where σt can be found from the following formula for the variance

σ2
t = α + βσ2

t−1 + γa2t−1

where all the parameters α, β and γ are ≥ 0. Also, β+γ < 1, and a2t−1 = (σt−1εt)
2

is called the residual part.

In our experiments, we choose GARCH(1, 1) since it is the common way to esti-
mate variance as a random process. To apply GARCH(1, 1) we need to test the
stationary and correlation of the observation Yt as follows.
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Firstly : Testing stationary of {Yt} by checking about the stationary by using
Augmented Dickey Fuller test in MATLAB/ STATISTIC TOOLBOX [69].

Secondly : We can check qualitatively for correlation in the raw time series {Yt}
in MATLAB) plot ACF (Autocorrelation Function) and PACF (Partial Autocor-
relation Function) as shown in definition (4.3).

Thirdly : We need to decide whether to use ARCH or GARCH. The standard
test for this is Engle’s test [69]. The test always returns either 1 or 0. If the test
returns 0, then you can use a simpler ARCH model. However, if the test returns 1,
then the ARCH model is unacceptable, and you need to use more general GARCH
model. Thus, the ARCH model is written as

σ2
t = α + βσ2

t−1

and generalised this method is called the GARCH model

σ2
t = α + βσ2

t−1 + γa2t−1

Remark 4.7. In this remark we will show how to apply exponential weighting
moving average (EWMA) as well as how to estimate the parameters in the GARCH
formula in defintion (4.6)

• EWMA [72] σ2
t−1 can be found it by using EWMA (Exponential Weight

Moving Average) and then use it to estimate the variance σ2
t byGARCH(1, 1).

It is considered one of the alternative models in a separate class of exponen-
tial smoothing models. EWMA is introduced by λ, which is called a smooth
parameter. Actually, it has some attractive properties such as it placing a
great weight upon recent observations, as well as some drawbacks such as
arbitrary decay factors that introduce the subject into the estimation.

σ2
t = λσ2

t−1 + (1− λ)Y 2
t−1 (4.1)

where λ < 1 is an input parameter. Hence today’s variance is a function
of yesterday’s weighted variance and yesterdays’ weighted, squared return:
where σt−1 can be calculated using the same formula (4.1): σ2

t−1 = λσ2
t−2 +

(1− λ)Y 2
t−2. Substituting this into (4.1), we get

σ2
t = λ2σ2

t−2 + λ(1− λ)Y 2
t−2 + (1− λ)Y 2

t−1,
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where σ2
t−2 can be again estimated in the same way. After m such iterations,

we get an expression of σ2
t as a function of σ2

t−m and Yt−1, . . . , Yt−m. For
more explanation see David Harper [72].

• Parmeters Estimation : We will estimate the parameters ofGARCH(1, 1)

by using the maximum likelihood principle, see Yang [145].

This can be done numerically by MATLAB/STATISTIC TOOLBOX [69] by
using two following steps
ToEstMdl = garch(1,1);
EstMdl = estimate(ToEstMdl,{Yt}).

Algorithm 4.1 : This algorithm explains how to apply GARCH(1, 1) on data
where ri,1, ..., ri,T are realisations of the stationary process Yi,t for each instrument
i.
1- To begin we need to test the observation ri,t to see if it is stationary or not by
using Augmented Dickey Fuller test in MATLAB/ STATISTIC TOOLBOX [69].
If it is not stationery, we conclude that this instrument is too difficult to forecast,
and therefore exclude it from consideration. If it is stationary, proceed to step 2.
2- Test series ri1, ..., riT for correlation by plotting ACF (Autocorrelation Func-
tion) or PACF (Partial Autocorrelation Function) in MATLAB. If the correlation
in ri1, ..., riT is not significant, we can check it for the series r2i1, ..., r2iT instead, see
[35].
3- Next we decide which model to use: ARCH or GARCH by using Engle’s ARCH
test to detect the presence of ARCH effects. The corresponding MATLAB com-
mand is
[h, p, fstat, crit] = archtest(rit,

′ lags′, 1) with more explanation in MATLAB/
STATISTIC TOOLBOX[69].
4- After all previous steps hold we can estimate σ2

t by GARCH(1, 1); we use the
formula

σ2
t = α + βσ2

t−1 + γa2t−1 (4.2)

where σ2
t−1 can be found by using EWMA from the formula σ2

t−1 = λσ2
t−2 + (1 −

λ)r2i,t−2, where σ2
t−2 can be found from the same formula and so on, in a recursive

way. Then, plug in the value of σ2
t−1 in (4.2) to estimate σ2

t by GARCH. In
addition, if the test on step 3 shows to use ARCH, we can use the same formula
(4.2) with γ = 0. Thus, after we fit σ2

t−1 by using EWMA, we can estimate σ2
t by

(4.2).
5- Then, estimate all the parameters using likelihood method



Dynamic Cooperative Investment on GARCH modle 69

ToEstMdl = garch(1,1);
EstMdl = estimate(ToEstMdl,rit) Then, plug all of them in equation (4.2) and we
get the variance σ2

t .
6- Estimating the ri,T+t for t = 1, ..n, where ri,T+t = µi + σi,T+tεt, the average
mean µi= 1

T

∑T
t=1 ri,t and is the white noise εt ∈ N(0, 1).

7- Do the same process for each instrument i.

Example 4.1. In this example, we choose the stock price BK chosen randomly
from S&P 100 from 1/1/2011 to 1/1/2012. daily log return. Then, we need to
check about the stationary of the observation. To solve this example:

• Firstly, we will check about the stationary time for the rate of return of stock
price BK. According to Algorithm (4.1) step (1) we observed that the rate
of return of stock price BK is stationary.

• Secondly, we will check about the qualitative for correlation in the raw
return series by plotting the autocorrelation function (ACF) and partial-
autocorrelation function(PACF), respectively. Note that the partial auto-
correlation function (PACF) can be interpreted as a regression of the series
against its past lags.

Figure 4.1: Sample autocorrelation function

and plot PACF ( Partial Autocorrelation Function): The Autocorrelation Function
(ACF) computes it and the plot of it displays the sample ACF of the daily log
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Figure 4.2: Sample partial autocorrelation function

returns, along with the upper and lower standard deviation confidence bounds,
based on the assumption that all autocorrelations are zero beyond lag zero. Then,
similarly, the plot of Partial Autocorrelation Function (PACF) displays PACF
with upper and lower confidence bounds. Although the ACF of the observed
returns exhibits little correlation, the ACF of the square returns may still indicate
significant correlation and persistence in the second-order moments. Notice that
for ARCH process ARCH effect, the process is non-correlated but, square process
r2 has significant correlation, as shown for r2 in the Figure 4.3. The square return
dies out slowly, indicating the variance process may be non-stationary. To make
sure about stationary, we will use Engle ARCH by Engle [58]. Now we need
to detect ARCH effects by using Engle’s test for the presence of Arch effects by
applying this test in GARCH ToolBox/MATLAB [69]. If the output H=1, it means
that significant correlation exists. Consequently, we can complete our example to
find σ2

t by using GARCH(1, 1) in order to get the volatility clustering, where the
parameters are estimated by by using maximum likelihood by Yang see [145], are
α = 2.5459 × 10−1, β = 0.917453 for GARCH term at lag(1), γ = 0.0449573 for
ARCH term at lag(1).
Hence, the the variance will be shown in Figure 4.4. Thus, according to Figure
4.4 homoskedasticity is satisfied which means that the computed variance of data
is not constant over the time. In fact, time periods with high (low) volatility are
followed by time periods with high (low) volatility.
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Figure 4.3: Sample PACF for r2, has significant correlation which is persistence
in the second order moments.

Figure 4.4: Estimated σ2t by GARCH(1,1) model

Finally, the return for the stock price by using GARCH(1, 1) is shown in Figure
4.5. Now after we fit the σ2

t we need to plug it into rt for each stock price. Then,
we will composite the return of portfolio.
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Figure 4.5: Estimated return rt by GARCH(1,1) model, stock BK chosen from
S&P 100 from January, 2011 to January 2012

4.1.1 Generating scenario tree

We need to generate the scenario tree after estimating the future return and con-
ditional variance by using the GARCH(1, 1) model. Then, we will generate and
construct a scenario tree that is a calibrated representation of the randomness in
risky asset returns; see [50]. For portfolios that consist of n risky assets after we
fit rt by GARCH model, we need to design a scenario tree in two ways, as follows:

• Simulation and randomised clustering approach “sequential simulation”; see
Glupiner et al. [70].

– 1) (Initialisation) create a root node, with T scenarios. Let ri,t, i =

1, . . . , n, t = 1, . . . , T be the rate of return of instrument i at time t
which is estimated by GARCH model.

– 2) (Simulation) we use ri,t to generate the next-period scenario tree as
follows. We assume that there are T scenarios at the first period, and
then from each node T scenarios at the second period, totalling in T 2

scenarios at the second period. We denote these scenarios as (t1, t2),
t1 = 1, . . . , T , t2 = 1, . . . , T . Let a(t1,t2),i be the (predicted) rate of
return of asset i under scenario (t1, t2). Numbers a(t1,t2),i form a matrix
A of size T 2 × n. In this step, we use a historical simulation method,
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and assume that

a(t1,t2),i = (1 + rt1,i)(1 + rt2,i)− 1, ,∀t1, t2, i.

Hence, we have a matrix of size T 2 × n.

– 3) (Randomised seeds) randomly choose a number of distinct scenarios
b1, ..., bT from matrix A around which to cluster the rest corresponding
to bj, j = 1, ...., T , where the size of bj is 1×n and n is number of risky
assets.

– 4) (clustering) group each scenario bj, j = 1, ..., T with each scenarios
from step 3 to which it is the closest. In an other words, we calculate
euclidean distance between each scenario from step 3 bj, j = 1, ...T

to the rest of scenarios in matrix A of size T 2 × n. If the result is
unacceptable (too far) according to Euclidean distance, return to step
3.

– 5) (Centroid selection) for each cluster, find the scenario which is the
closest to its center ‘ random scenario chosen in step 3’, and desig-
nate it as the centroid. In other words, we have matrix of size T × n
corresponding to each scenario from step 3.

– 6) (Queuing) create a child scenario tree node for each cluster. This
step need just calculate the average mean for each matrix T × n cor-
responding to each scenario from step 5 and the output, we have T
scenarios in period T = 2.

– 7) Now for further period, for example for period T = 3 at each scenario
as node from step 6 we calculate µ and σ, then corresponding to each
scenario create matrix with random variables by using formula σ+(µ−
σ) ∗ rand(T 2, n). At each scenario we get the matrix of size T 2 × n

and then repeat the process from step 3 to 6. Thus, output at each
node from step 6 has child ‘scenarios’, which represent in a matrix of
size T × n. Thus, we have T scenario at first period and T scenarios
at second period and T scenario at third period. The procedure of this
construction to avoid growth of scenario tree, instead of getting T in
first period and T 2 in second period and so on we get TN in N period.

– 8) Repeat process from step 7 for further periods.
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• We also generate future return by using binary tree, where probability for
the gain p = er

t
n−d
u−d where u = eσ

√
t
n and in case of loss we have proba-

bility 1 − p and d = e−σ
√

t
n , at time t and n risky asset. To apply this

method, firstly, we estimate return vector rt = (r1, ...rn) (observation) from
GARCH(1, 1). Then from this vector we calculate σ as formal definition
σ(rt) =

√
E[(rt − E[rt])2] and it is variance of rt which is constant in this

case. Then use σ to construct binary tree. Hence, the root will be rt which
is estimated by GARCH model and the next period we have urt when the
return goes up and drt when the return goes down and the second period
with four scenarios will be as follows: u2rt,udrt, durt and d2rt and complete
the scenario tree in the same way for more periods.

4.1.2 Dynamic cooperative investment with GARCH in dis-

crete time

Now we apply the cooperative investment in multi-period and it will be written
as an optimisation problem over the trading strategy as follows:

min
x,zi,t

σ2[y1]

s.t.

σ2
−[y2] ≤ β

E[y1] ≥ π1

E[y2] ≥ π2

y1 + y2 = X

X ∈ F
n∑
i=1

zi,t = 1

− 1 ≤ zi,t ≤ 1 for t = 1, ..T

(4.3)

where π1 is the fixed return level for the first investor, and π2 is the fixed return
level for the second investor and β is the fixed σ− level for the second investor.
While, zt is the trading strategy where for each node T scenarios and zt of size
(1, n) as a function which is formulated as zt = {z1,t(.), z2,t....zn,t(.)}. Note that
the number of nodes equal to the number of scenarios t, t = 1, ....T .
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Alternatively, with the “certainty equivalent” approach of section 3.1.7 which are
the same for cooperative investment portfolio optimisation can be written as fol-
lows:

max
x,zi,t

µ1 −
σ(y1)

2

2ρ1

s.t

µ2 −
σ−(y2)

2

ρ2
≥ π

y1 + y2 = X

X ∈ F
n∑
i=1

zi,t = 1

− 1 ≤ zi,t ≤ 1 for t = 1, ..T

(4.4)

where π is the fixed level for utility function for the second investor, and where
zt is the trading strategy where for each node T scenarios and zt of size (1, n) as
a function which is formulated as zt = {z1,t(.), z2,t....zn,t(.)} and number of nodes
equal to number of scenarios t, t = 1, ...T . Note that, problem (4.4) can be solved
by using dynamic cooperative investment directly, but we choose to solve it by
using certainty equivalent in a recursive manner to have less computational. In
addition, the difference between the problem which written in section 3.1.7 and
the problem (4.4) is just predicting the future return by historical simulation and
GARCHG(1, 1), respectively.

Algorithm 4.2

• Apply GARCH(1,1) model for each stock by using the process shown in the
Algorithm 4.1.

• Then, solve problem (4.4) for cooperative investment directly then solve it
again by using force in back technique by following the same process as in
Algorithm 3.3 in Chapter 3.

Numerical experiments in discrete time

In my following experiments we show how applied Algorithm 4.2 in order to get the
global solution for cooperative investment in multi-period and dynamic solution
for comparative investment in multi-period and the difference between the curves
are not very significant.
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• We will solve the problem (4.3) and suppose we have one risk free and 6 risky
assets (APPL,APA,ABBU,ALL,BA,BK) are chosen randomly from S&P 100

and found them by using GARCH(1, 1) and each (daily rate of return)
observation for each stock has binary scenarios, and has T = 5 periods. We
will fix the values of π1 and π2 which are the expected returns for the first
and second investor, respectively. The initial capital for all examples is $100

and each investor participates with $50. Furthermore, in our case we assume
that risk-free asset r0 = 0.000068, π1 = 0.0000821 and π2 = 0.000109, where
π1 + π2 > r0, otherwise the investor will not invest in risk assets any more
if the risk free give them more return. By following the Algorithm 4.2, then
solve DCI and CI as in Chapter 3. Hence, we get Figure 4.6.

Figure 4.6: Efficient frontier by GARCH(1,1) with binary tree and T = 5
periods, where the cooperative investment curve means solving cooperative in-
vestment in multi-period to find global solution, while dynamic cooperative in-
vestment curve means solve cooperative investment in in multi-period by using

DP

• In another experiment we have a portfolio consisting of one risk-free assets
and 3 stocks (APA,BA,BK) are chosen randomly from S&P 100, and we find
the return at time t by using GARCH(1, 1). We have a daily rate of return
(January.2011) - (January.2012) for each risky asset. Then, generate the
scenario tree, we get the scenario tree for 3 periods which is a symmetrical
tree, where at the first period each branch has Nt1 = 5 scenarios and at the
T=2 period each node has Nt2 = 3 scenarios. Moreover, at the last period
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T = 3 we have Nt3 = 2 scenarios, then we will solve problem (4.3) as a
cooperative investment in multi-period directly and in dynamic programming
case as shown in Chapter 3.

Figure 4.7: Efficient frontier by GARCH(1,1) and T = 3 periods, where the co-
operative investment curve means solving cooperative investment in multi-period
to find global solution, while dynamic cooperative investment curve means solve

cooperative investment in in multi-period by using DP

• For the third experiments we will choose one risk-free asset and 3 risky as-
sets
(APA,BA,BK) are chosen from S&P 100 and find the daily return (Jan-
uary.2011) - (January.2012) for the risky asset by using GARCH(1, 1). Then
generate the scenario tree that has 100 scenarios at each node and T = 30

periods and we choose risk-free r0 = 0.000068, π1 = 0.0000821 and π2 =

0.000109, by following Algorithm 4.2. Hence, our result is shown in Figure
4.8.

• Secondly : Experiment in Certainty equivalent In this experiment we
will choose one risk-free asset and 3 risky assets (APA,BA,BK) are chosen
from S&P100 and find the daily return (January.2011) - (January.2012) for
the risky assets by using GARCH(1, 1). Then generate the scenario tree
that has 100 scenarios at each node and T = 30 periods and we choose risk-
free r0 = 0.000068, π1 = 0.0000821 and π2 = 0.000109. Then, we will solve
problem (4.4) by following Algorithm 4.2 and we get the Figure 4.9.
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Figure 4.8: Efficient frontier by GARCH(1,1) with 100 scenarios at each node
and T = 30

Figure 4.9: Efficient frontier by GARCH(1,1) with certainty equivalent by
solving problem (4.4), where R1 in figure = ρ1 = 0.5, and R2 =ρ2 = 0.25 and

T = 10

Generally, according to the experiments we get the difference between the efficient
frontiers is not very significant which implies that the investor will follow the
trading strategy until the end of the investment period which comes from solving
cooperative investment in multi-periods with dynamic programming in order to
avoid breaking down the contract between investors in the middle of the investment
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period.

4.2 Problem formulation in continuous time

In this section we study how to apply the continuous GARCH ‘COGARCH’ model
as the economic model in order to get the return of the stock price and the volatility
of the return. In financial econometrics, discrete times of GARCHmodel are widely
used to model the return of stock price at regular intervals on stocks. However,
the interest in continuous time models is used to model irregularly spaced data.
Consequently, the discrete time model help us to obtain a continuous time model
in much the same way as Klüppelberg [89]. If we making data stationary as well
as if we have a serial correlation between residual and ARCH effect terms, then
we need to estimate σ2 by the GARCH model. Hence, in continuous time it is
natural to model the logarithm of the asset price itself, that is Gt = lnPt, rather
than its increments as in discrete time. Then, the COGARCH(1, 1) equations
are obtained by replacing the driving noise sequence (εn), ε ∈ N by the jumps
(4Lt = Lt − L−)t≥0 of a Lèvy process, as shown in Klüppelberg [89]. Otherwise,
the process has two independent Brownion motions as shown in Nelson [110].
Firstly : [7]
Notable among these attempts is the GARCH diffusion approximation of Nelson
[110]. Although the GARCH process is driven by a single noise sequence, there are
two independent Brownian motions (W

(1)
t )t ≥ 0 and (W

(2)
t )t ≥ 0 . For example,

the GARCH (1,1) satisfies

dGt = σtdW
(1)
t

dσ2
t = θ(λ− σ2

t )dt+ ρσ2
t dW

(2)
t

(4.5)

where θ ≥ 0, λ ≥ 0 and ρ ≥ 0 are constant. Note that the behaviour of this diffu-
sion limit is therefore rather different from that of the GARCH process itself since
the volatility process (σ2

t )t ≥ 0 evolves independently of the process (W
(1)
t )t ≥ 0

in the first equation (4.5).
Secondly : Klüppelberg [89]
In another way, to construct COGARCH(1,1) by the following the Klüppelberg
[89] method who showed a continuous time analogue of the GARCH(1,1) pro-
cess, denoted COGARCH(1,1). This model, based on a single background driving
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jump-Lévy process, for more details of his method see Klüppelberg [89]. The
COGARCH(1,1) model has the basic properties of discrete time GARCH process.
The COGARCH(1,1) process (Gt)t ≥ 0 is defined in terms of its stochastic differ-
ential dGt, such that

dGt = σtdLt, t ≥ 0

dσ2
t = θ(λ− σ2

t )dt+ ρσ2
t−d[L,L]t, t ≥ 0

(4.6)

where θ ≥ 0, λ ≥ 0 and ρ ≥ 0 are constant. Note that from proposition 3.2 in
Klüppelberg [89] , (σ2

t )t ≥ 0 satisfies the stochastic differential equation (4.6) and
we have

σ2
t = θλ+ log ρ

∫ t

0

σ2
sds+ (λ/ρ)

∑
0<s<t

σ2
s(4Lt)2 + σ2

0, t ≥ 0 (4.7)

where Euler approximation is used for the integral
∫ t
0
σ2
sds ≈ σ2

t−1 and∑
0<s≤t σ

2
s(4Lt)2 ≈ (Gt − Gt−1)

2 ≈ (σnεn)2, where Gt = lnPt and since 4Ls
is usually not observable, we can find that the equation (4.7) is analogue of
GARCH(1, 1) in discrete time as follows: since the discrete time GARCH(1, 1)

satisfies
σ2
n+1 − σ2

n = θλ− (1− θ)σ2
n + ρσ2

nε
2
n, n ∈ N

which by summation yields

σ2
n = θλn− (1− θ)

n−1∑
i=0

σ2
i + ρ

n−1∑
i=0

σ2
i ε

2
i + σ2

0

where the last equation is analogously to (4.7), note that Klüppelberg [89] used
(σ2

n)n∈N to denote the sequared discrete time GARCH volatility process, and (σ2
t )

to denote the continuous time process. Hence, we will get the value of volatility
by using the equations (4.5) or (4.6) in order to use it to predict the stock returns.
Now, after we fit the COGARCH(1,1) model and apply it to get the future return
for each risky asset we need to observe the wealth of the portfolio for the investor
in continuous time, where the portfolio consists of one risk-free asset and n risky
assets. Hence,
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• The price process of the risk-less assets, S0(t), is subject to the following
ordinary differential equation

dS0(t) = r(t)S0dt, t ≥ 0, S0(0) = s0 > 0 (4.8)

where deterministic function r(t) is the interest rate, and it is easy to see
the solution of this ordinary differential equation will be

S0(t) = S0e
(
∫ t
0 r(s)ds)

• Besides that, the price processes of the other n risky assets, S1(t), S2(t), .....Sn(t),
generated setting for underlying asset price S in the black- scholes model is
that S follows a Gometric Brownion motion GBM where the price process
for one share of the stocks model by following stochastic differential equa-
tions (SDE) as follows:

dSi(t) = Si(t)(bi(t)dt+
n∑
i=1

σij(t)dW
j(t)), t ≥ 0

Si(0) = si > 0, i = 1, 2, ...., n

(4.9)

where (W 1(t), .....W n(t)) is the n− dimensional Brownian motion defined on
a probability space (Ω,F, P ) and all b = (b1, ....., bn), and σij, i, j = 1, .....n

is denoted by σ, also b and σ are F-predictable, see Yu [146] p.337. In
addition, the filtration F = {Ft : t ≥ 0} is generated by Wt . Moreover, the
differential dWt of Brownian motion Wt is called weight noise. Furthermore,
we a assume for constant δ > 0, such that σ(t)σ(t)′ ≥ δIn, where In is
n× n identity matrix. Moreover the solution of equation (4.9) is illustrated
∀t ∈ [0, T ], where σ(t) = (σij(t))m×n and δ > 0 as the black-scholess formula
so that
we will rewrite the equation (4.9) as dSt = St(b dt+ σ dW ).

Then the solution as follows:

St = S0e
((b− 1

2
)t+σWt).

See Pliska [115]
Now, to define the wealth of the portfolio let ui(t), i = 1, .....n be the amount
of money which an investor invests in the risky asset at time t.
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• The wealth process of the investor, X(t), then satisfies the following stochas-
tic differential equation

dx(t) = (r(t)x(t)+
n∑
i=1

(bi(t)−r(t))ui(t))dt+
n∑
j=1

n∑
i=1

σij(t)ui(t)dW
j(t) (4.10)

x(0) = x0 > 0, (4.11)

dX(t) = (r(t)x(t) +
n∑
i=1

(bi(t)− r(t))ui(t))dt+
n∑
j=1

n∑
i=1

σij(t)ui(t)dW
j(t)

X(0) = x0 > 0, i = 1, 2, ...., n

(4.12)

Solve the stochastic differential equation (4.12) by numerical approximation,
particularly by the Euler Maruyama method on 55some interval of time
[0, T ].

Then the Euler Maruyama approximation to the true solution X is the Markov
chain Y defined as follows:

• Partition the interval [0, T ] into N equal sub-intervals of width ∆t > 0.

• 0 = t0 < t1 < .... < tN = T and ∆t = T/N . Hence, solving SDE equation
(4.12) by using Eueler Maruyama methods to find the iteration formula
which is set Y0 = x0.

• Recursively define Yi for 1 ≤ i ≤ N by

Yi+1 = Yi + a(Yi)∆ti + b(Yi)∆Wi

applying this formula on equation (4.12) we get

Yi+1 = Yi + (r(ti)Yi +
n∑
i=1

(bi(t)− r(ti))ui(ti))∆ti +
n∑
j=1

n∑
i=1

σij(ti)ui(ti)∆Wi

where ∆ti = ti − ti−1, ∆Wi = zi
√

∆ti, also zi ∈ N(0, 1) and it is (i.i.d).

Now we will solve the problem (4.3) by applying the continuous GARCH. Since
problem (4.3) faced time-inconsistent, thus we need to revise the solution by using
the dynamic programming model. This is referred to mean-variance portfolio
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selection under pre-commitment. Hence, we will revise the solution in order to
obtain the efficient frontier by using Dynamic Programming. Thus, the following
algorithm explains how to solve the problem (4.3) by applying COGARCH(1,1).

Algorithm 4.3.

• Apply COGARCH(1,1) model for each stock by using Nelson method in
equations (4.5). Note that Gt = lnPt, and we solve equation (4.5) as a
stochastic difference equation ‘numerical simulation of SDE’. In order to
find σt this is done in MATLAB SDE Toolbox; choose Ito SDE, and put the
value of drift term and diffusion term from equation (4.5). Then we compute
σi,j = σtσ

′
t.

• Instead of constructing a scenario tree of Algorithm 3.2, we will solve the
equation (4.12) by simulation SDE, ‘ Euler Maruyama approximation’, which
obtains the wealth X(ωT ), where T is the end of the investment period,
Graphically we get many trajectories which depend on the number of par-
titions N and the interval [0, T ]. This step is also done in MATLAB SDE
Toolbox, similar to the previous step, by choosing the value of [t0, T ], where
t0 is the start of the investment period and T is the end of investment period
and N is the number of partitions in the interval [t0, T ].

• Now for solving cooperative investment problem (4.3) in the case of global
solutions, we solve cooperative investment in multi-periods exactly as in
discrete time, since the wealth X(ωT ) solved it by (4.12) by numerical ap-
proximation for SDE over the trading strategy ui(ti). This is done by just
following Algorithm 3.2 just we need to rewrite X(ωT ) by (4.12). Thus, the
result in this step is that we find ui(ti) for partition of each trajectory and
the optimal value for the first investor σ(β) which is correspond to the value
of β chosen to be less than optimal value for individual investment for the
second investor. Repeat this process with a different value of β to get the
whole efficient frontier.

• In case of solving cooperative investment problem (4.3) by dynamic pro-
gramming, the only step we need is to break down each trajectory X(ωT )

and solve it the same as in Algorithm 3.2 as force in back technique note
that we break down the trajectory according to ∆t = T/N as step size in
order to get the best trading strategy ui(ti) one after another until reaching
the first period, and fix all the trading strategies ui(ti) for i = 1, ....T and
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resolve again cooperative investment problem (4.3) to get the best trading
strategy at first period ui(t0) which is the same procedure as shown in Al-
gorithm 3.2. In other words, in this Algorithm, in order to solve dynamic
programming (recursive manner) we only need to partition each trajectory
instead (scenario tree) into N sub-interval and hence we need to solve N
sub-problems for each trajectory. Thus, in this step the result we get ui(ti)
at each partition is complete recursively until we arrive at the first period,
repeating the same process for each (trajectory). Consequently, similar to
Algorithm 3.2 we plug all the value of ui(ti) and solve it over one variable
ui(t0) at the first period and get the optimal value for each investor, σ(β)

for the first investor and choose β the same as in the global solution, then
repeat the same process for different values of β to get the whole efficient
frontier in case of dynamic programming, where σ(β) is represented in x-axis
and β is represented in y-axis.

• Similar to the previous Algorithms (3.2) we compared between the efficient
frontiers from a global solution and by using the dynamic programming.

Remark 4.8. In case if we have the closed form solution of SDE in equation (4.12),
we can follow the method by Czichowsky [45] claiming ‘the justify the continuous
time formulation by showing that it coincides with the continuous time limit of
the discrete-time formulation’. Consequently, in discrete time, this leads to deter-
mining the optimal strategy by a backward recursion starting from the terminal
date. For continuous time formulation one has to combine this recursive approach
to time inconsistency with a limit argument. Moreover, the recursive optimal-
ity can be characterised by a system of partial differential equations (PDE) called
Hamililton-Jacobian-Bellman equations, and one can provide verification theorems
which allow to deduce that if one has a smooth solution to the PDE, it gives a
solution to the optimal control problem. In our thesis we will use backward SDE
approximation, see Czichowsky [45].

4.3 Numerical experiments in continuous time

In continuous time, we will solve the problem (4.3) in continuous time and suppose
we have one risk free and 3 stocks
(APA,BA,BK) chosen randomly from S&P 100 and found them by using
COGARCH(1, 1) and T = 10 years. Note that we deal with a log daily of rate
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of return. Then we generate the trajectory of the wealth by solving the stochastic
differential equation (4.12) where x0 = 1, and we will fix the values of π1 and
π2 which are the expected returns for the first and second investors, respectively.
In our case we assume that risk free r0 = 0.0000136, π1 = 0.00016 and π2 =

0.0001917, where π1 + π2 > r0, since the most well known examples of Lévy
processes are Brownian motion. So in this example we model the return of stock
based on the Klüppelberg formula to model the return of stocks where the portfolio
consists of 3 risky assets and one risk-free asset and by following the Algorithm
4.1 these are chosen randomly from S&P 100 (January.2011) - (January.2012), By
using Yang [145] method to get the parameters of GARCH we can check the result
by GARCH ToolBox/MATLAB in order to get the parameters θ = 2.5459× 10−1,
λ = 0.917453, ρ = 0.0449573 and then the Brownian motion is shown as in Figure
4.10.

Figure 4.10: Brownian motion to solve COGARCH

• Now in order to get the wealth for the investor in continuous time, which
can be traded continuously in the market, it can be can be found by solving
the stochastic differential equation (4.12) by choosing the Euler Maruyama
method. Hence the following example illustrates the wealth of a portfolio
that consist of 3 risky assets (APA,BA,BK) and one risk-free asset. Also
we chose x0 = 1 and has 900 trajectories as shown in Figure 4.11. Hence,
the solution of DCI and CI in multi-period of the problem (4.3) is shown
in Figure 4.12. Note that, the difference between the efficient frontiers is
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not very significant which implies that the investor will follow the trading
strategy until the end of the investment period which comes from solving
cooperative investment in multi-periods with dynamic programming in order
to avoid breaking down the contract between investors in the middle of the
investment period.

Figure 4.11: The wealth of 3 portfolios that consist of 3 risky assets and one
risk-free asset. and chose x0 = 1 and has 900 trajectory, T = 10

Figure 4.12: Efficient frontier by COGARCH(1,1), with 900 trajectory and
T = 10
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4.4 Discussion and concluding remarks

In this chapter, we applied an economic model GARCH(1, 1) in order to build a
more realistic model to forecast the future returns of financial instruments as a
stochastic process in discrete and continuous time. Solving problem (4.3) and (4.4)
where the results are shown in the Figures 4.6, 4.7, 4.8, 4.9 in discrete time and
4.12 show that the efficient frontier by using numerical approximation of prob-
lem (4.3) in the case of COGARCH(1, 1) in continuous time is smother than
that in discrete time. In addition, we solved the COGARCH by using numerical
approximation. Also, the efficient frontier which comes from force in back tech-
nique is more stable which means it is ‘ time-consistent’ than efficient frontier that
solves the cooperative investment in multi-period directly without recursive man-
ner. Furthermore, we show the distance between two efficient frontiers is relatively
small. Consequently the investor can follow the stable trading strategy without
hesitation, which should make him/her happy.



Chapter 5

Equilibrium

In the previous chapter we have developed methods for finding optimal dynamic
cooperative investment strategies, and characterising the set of all Pareto optimal
allocations, which can be visualised as the efficient frontier. In this chapter we
address the question of how to select a unique ‘fair’ point on the efficient frontier.
We show that in many cases the efficient frontier contains a special point which
is called ‘equilibrium allocation’, and suggest that namely this point should be
selected. In some cases, an explicit formula for equilibrium allocation is derived,
and the uniqueness and local stability for equilibrium is also shown.

Let I = {1, 2, . . .m} be the set of agents/investors. An allocation yi, i ∈ I is a set
of r.v.s., yi ∈ L2(Ω) for some probability space Ω that ensures the σ(yi) and σ−(yi)

exist and finite. An allocation yi, i ∈ I is called feasible ifX :=
∑

i∈I yi ∈ F , where
F is a feasible set defined in section 3.1.

A functional price P is a linear continuous functional P : L2(Ω) → R, such that
P (X) > 0 whenever X > 0 with probability 1. Without loss of generality, we can
also assume normalisation P (1) = 1.

Definition 5.1. Follmer and Schield [59]
A functional price P together with a feasible allocation (yi)i∈I is called Arrow
-Debreu equilibrium if each yi solves the utility maximisation problem

max Ui(yi)

s.t

P (yi) ≤ 0

(5.1)

88
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of agents i with respect to the price P . In this case, P is called the equilibrium
price, and the pair (P, (yi)i∈I) is called Walrasian equilibrium.

Every Walrasian equilibrium is Pareto optimal according to the first Welfare the-
orem.

Equilibirium in Single Period

We will illustrate the general background of the equilibrium in single period. Usu-
ally, the notion of equilibrium as a ‘fair’ point from Pareto optimal set is used
in the context of the risk sharing problem. In this problem, there are m agents
with utility functions u1, . . . , um, where Ui(.) = E[ui(.)] and initial endowments
W1, . . . ,Wm, modelled as random variables. In this context, allocation (yi)i∈I is
called Arrow-Debreu equilibrium , for investor i and I is the setof all investors. If
each yi solves the utility maximisation problem

max Ui(yi)

s.t

P (yi) ≤ P (Wi)

(5.2)

In the cooperative investment problem, we suppose that no initial endowment
is available, and therefore the familiar condition P (yi) ≤ P (Wi) is replaced by
P (yi) ≤ 0, hence (5.2) is reduced to (5.1). We will call the price functional P
consistent if P (X) = 0 for any X ∈ F . Furthermore, from definition of efficient
frontier for cooperative investment, see Definition (3.4) we get the set of all Pareto
optimal and from first Welfare theorem that every equilibrium allocation is Pareto
optimal. Thus, we need only solve the problem (5.2) to get the equilibrium alloca-
tion and equilibrium price which are represented in a pair (P, (yi)i∈I), I is the set
of all investor i. The pair is considered to be the fair element in the Pareto optimal
set and it is also called F -equilibrium for some consistent pricing functional P .

5.1 Problem formulation for Dynamic Equilibrium

The natural question now how is can we find equilibrium in the multi-period case.
According to Henriksen and Spear [74] the equilibrium in multi-period must be
generated recursively. Hence, an equilibrium is a sequence of allocation (yi)t∈T

where the time horizon is finite and a sequence of price Pt∈T such that:
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each individual solves her/ his optimisation problem subject to budget constraint

max Ui(yi,t)

s.t

Pt(yi,t) ≤ 0,

(5.3)

where yi,t is an allocation for investor i at time t, satisfying
∑

i∈I yi,T = X, where
X ∈ F is uncertainty outcome at the end investment period and F is the feasible
set.

Assuming that we have a finite number N of scenarios, any r.v. X can be written
as X = (x1, . . . , xN), where xi is the value of X under scenario i, and the price
functional Pt can be written as

Pt(X) =
N∑
i=1

Pi,txi

for some non-negative real number Pi,t. Normalisation Pt(1) = 1 implies that
N∑
i=1

Pi,t = 1 for every t.

In the following propositions we will derive an explicit formula for equilibrium
allocation and then we will check about the feasibility of equilibrium allocation.

Proposition 5.1. If the risk preferences of the first investor are given by

U1(y1) =

−σ2(y1) if E(y1) ≥ π1

−∞ if E(y1) ≤ π1

then the explicit formula for his/her component of the equilibrium allocation at
each t ∈ T is given by

yi1,t = π1 +
(1− Pi,tNt)π1

Nt

∑Nt
i=1 P

2
i,t − 1

, i = 1, .., Nt,

where Nt is the number of states of the word at time t, and yi1,t is the share of
investor 1 at time t under scenario i. Thus, the final equilibrium allocation for the
first investor is y1 = (y11,T , y

2
1,T , ....y

NT
1,T ).

Proof. It is clear that in optimalityE(y1,t) = π1, hence let U1(y1) = −σ2(y1) if E[y1,t] ≥
π1. We will solve (5.3) by using Lagrange multipliers where L = 1

Nt

∑Nt
i=1(y

i
1,t)

2 −
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( 1
Nt

∑Nt
i=1 y

i
1,t)

2 +α(− 1
Nt

∑Nt
i=1 y

i
1,t + π1) + λ(

∑Nt
i=1 pi,ty

i
1,t) = 0. We need to find the

derivative of L with respect to yi1,t

∂L

∂yi1,t
=

2

Nt

yi1,t − 2π1(
1

Nt

)− α

Nt

+ λPi,t = 0 (5.4)

now multiplying (5.4) by Nt
2

we get

yi1,t = π1 +
α

2
− λPi,t

Nt

2
(5.5)

Now multiplying (5.4) by Pi,t into sides and summing we get
2
Nt

∑Nt
i=1 Pi,ty

i
1,t − 2π1

Nt

∑Nt
i=1 Pi,t −

α
Nt

∑Nt
i=1 Pi,t + λ

∑Nt
i=1 P

2
i,t = 0

where
∑Nt

i=1 Pi,t = 1 and
∑Nt

i=1 Pi,ty
i
1,t = 0. Hence, last equation reduce to

λ
Nt∑
i=1

P 2
i,t =

α

Nt

+
2π1
Nt

(5.6)

Now summing all the equations i in (5.4) we get

2

Nt

Nt∑
i=1

yi1,t − 2π1 − α + λ
Nt∑
i=1

Pi,t = 0 (5.7)

where
∑Nt
i=1 y

i
1,t

Nt
= π1 as well as

∑Nt
i=1 Pi,t = 1. Hence last equation implies to

2π1 − 2π1 − α + λ(1) = 0

Thus,
α = λ

now plugging α = λ in (5.6) to get the value of α

α

Nt∑
i=1

P 2
i,t −

α

Nt

=
2π1
Nt

Thus, α(
∑Nt

i=1 P
2
i,t− 1

Nt
) = 2π1

Nt
in this case we have assumption that all Pi,t are not

the same, since if P1,t = P2,t = .... = PNt,t then
∑Nt

i=1 P
2
i,t = 1

Nt
. Hence, we have

the assumption that Pi,t are not the same, so that α = 2π1/Nt

(
∑Nt
i=1 P

2
i,t−

1
Nt

)
. Thus,

α =
2π1

N
∑Nt

i=1 P
2
i,t − 1

= λ
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Now plugging the value of α and λ in (5.5) where α = λ we get

yi1,t = π1 + (
1

2
− Pi,tNt

2
)α

=
yii,t = π1 + (

1

2
− Pi,tNt

2
)

2π1

Nt

∑Nt
i=1 P

2
i,t − 1

Hence,

yi1,t = π1 +
(1− Pi,tNt)π1

Nt

∑Nt
i=1 P

2
i,t − 1

for each i = 1, .....Nt. Then, fair allocation for first investor y∗1 = (y11,t, y
2
1,t, ...y

Nt
1,t).

Proposition 5.2. If the risk preferences of the second investor are given by

U(y2) =

−σ2
−(y2) if E(y2) ≥ π2

−∞ if E(y2) ≤ π2

then the explicit formula for his/her component of the equilibrium allocation at
each t ∈ T is given by

yi2,t = π2 +
λNt

2
(PNt,t − Pi,t), i = 1, ..,m

yi2,t =
−π2Nt(

m
Nt
− 1)

(Nt −m)
− λNtPNt,t

2(Nt −m)
+
λNt(1− (Nt −m)PNt,t)

2(Nt −m)
, i = m+ 1, .., Nt

where assuming the price P1,t ≥ P2,t ≥ ... ≥ PNt,t, Nt is the number of states of the
word at time t, m is the minimal number such that Pm+1,t = Pm+2,t = ..... = PNt,t,
and

λ =
2[NtPNt,t(

m
Nt
− 1) + (1− (Nt −m)PNt)]

Nt[P 2
Nt,t
− 2PNt,t(1− (Nt −m)PNt,t) +

∑m
i=1 p

2
i,t]

yi2,t is the share of investor 2 at time t under scenario i. Thus, the equilibrium
allocation for the second investor is y∗2 = (y12,t, y

2
2,t, ....y

Nt
2,t).

Proof. It is clear that in optimality E(y2,t) = π2. As in the previous proposition
solving the individual problem

max U(y2), s.t P (y2) ≤ 0 (5.8)

which can be rewritten as
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max U(y2) =

−σ2
−(y2,t) if E(y2,t) ≥ π2

−∞ if E(y2,t) ≤ π2

s.t Pt(yi,t) ≤ 0

where the semi-variance is similar to variance; however, it only considers observa-
tions below the mean. Hence, semi variance defined as σ2

− = 1
Nt

∑Nt
i=1(max(−(yi2,t−

1
Nt

∑Nt
i=1 y

i
2,t), 0))2 while for portfolio or asset analysis semi-variance only looks at

the negative fluctuations of an asset. Thus,
L = 1

Nt

∑Nt
i=1(max(−(yi2,t− 1

Nt

∑Nt
i=1 y

i
2,t), 0))2+α(− 1

Nt

∑Nt
i=1 y

i
2,t+π2)+λ(

∑Nt
i=1 Pi,ty

i
2,t)

then

∂L

∂yi2,t
=

 2
Nt
yi2,t − 2π2(

1
Nt

)− α
Nt

+ λPi,t = 0 if yi2,t ≤ 1
Nt

∑Nt
i=1 y

i
2,t

0− α
Nt

+ λPi,t = 0 yi2,t >
1
Nt

∑Nt
i=1 y

i
2,t

To begin the proof, let y12,t, ......, y
Nt
2,t be the optimal solution for solving the individ-

ual problem (5.8) we assume P1,t ≥ P2,t...... ≥ PNt,t Then we have four statements
we need to prove to avoid cases and get a system, where the statement are

• 1) In optimality equalities hold E[y2] = π2 and P (y2) = 0.

• 2) If Pi,t = Pj,t then yi2,t = yj2,t. If not replace yi2,t, y
j
2,t by average yi2,t+y

j
2,t

2
,

then E[y2] would not change, P (y2) would not change, but σ−(y2) would
decrease (or stay the same) by proposition (3.2) in Grechuk et al. [66].

• 3) y12,t ≤ y22,t ≤ ..... ≤ yNt2,t . Indeed, assume that yi2,t > yj2,t for i < j. Then
consider solution y′2 = (y12,t, y

2
2,t, ......, y

i−1
2,t , y

j
2,t, y

i+1
2,t , ...., y

j−1
2,t , y

i
2,t, y

j+1
2,t , ....., y

Nt
2,t)

with i and j interchanged. Then σ−(y′2) = σ−(y2), E[y′2] = E[y2] = π2, but
P (y′2) < P (y2) ≤ 0, which is contradictory to (1). Indeed,
P (y2)− P (y′2) = Pi,ty

i
2,t + Pj,ty

j
2,t − (Pi,ty

j
2,t + Pi,ty

i
2,t) equal to

Pi,t(y
i
2,t − y

j
2,t) + Pj,t(y

i
2,t − y

j
2,t)

= (Pi,t − Pj,t)(yi2,t − y
j
2,t) > 0 if Pi,t > Pj,t

and if Pi,t = Pj,t then yi2,t = yj2,t by (2).

• 4) Obviously, yNt2,t ≥ 1
Nt

∑Nt
i=1 y

i
2,t, then

−α
Nt

+ λPNt,t = 0, thus PNt,t = α
Ntλ

from the second terms of ∂L
∂yi2,t

= 0.
Now, letm be the minimal number such that Pm+1,t = Pm+2,t = .....PNt,t then
by (2) we have ym+1

2,t = ..... = yNt2,t . Then for any i ≤ m Pi,t > PNt,t = α
Ntλ

so



Equilibrium 94

−α
Nt

+λPi,t 6= 0 then yi2,t ≤ 1
Nt

∑Nt
i=1 y

i
2,t this implied the first term of ∂L

∂yi2,t
= 0

which is 2
Nt
yi2,t − 2π2(

1
Nt

)− α
Nt

+ λPi,t = 0.

Hence, according to four statements we have a linear system which is
1) 2

Nt
yi2,t − 2π2(

1
Nt

)− α
Nt

+ λPi,t = 0 which include m equations
2) ym+1

2,t = ...... = yNt2,t which include m−Nt − 1 equations
3) α

Ntλ
= PNt,t which includes one equation

4) 1
Nt

∑Nt
i=1 y

i
2,t = π2 which includes one equation.

5)
∑Nt

i=1 Pi,ty
i
2,t = 0 which includes one equation.

Hence, we have a system of Nt + 2 equation with Nt + 2 variables which are
y12,t, ....., y

Nt
2,t , α, λ.

Actually, this system can solve it numerically as solving a system of linear equa-
tions as in linear algebra, but we will solve this system analytically to find the
explicit formula for y2 in terms of equilibrium price P which is done as follows:
from (1) in the system we can rewrite it as follows: where the first term of ∂L

∂yi2,t
= 0

implies
yi2,t = π2 +

α

2
− λNt

2
Pi,t (5.9)

multiply (5.9) by Pi,t and sum up to m we get∑m
i=1 y

i
2,tPi,t = π2

∑m
i=1 Pi,t + α

2

∑m
i=1 Pi,t −

λNt
2

∑m
i=1 P

2
i,t where∑m

i=1 y
i
2,tPi,t =

∑Nt
i=1 y

i
2,tPi,t−

∑Nt
i=m+1 y

i
2,tPi,t = 0−(Nt−m)PNt,ty

Nt
2,t , since

∑Nt
i=1 y

i
2,tPi,t =

0, thus
∑m

i=1 y
i
2,tPi,t = −(Nt −m)PNt,ty

Nt
2,t .

Also,
∑m

i=1 Pi,t =
∑Nt

i=1 Pi,t −
∑Nt

i=m+1 Pi,t, since
∑Nt

i=1 Pi,t = 1, thus
∑m

i=1 Pi,t =

1− (Nt −m)PNt,t so last equation is equal to∑Nt
i=1 y

i
2,tPi,t − (Nt −m)PNt,ty

Nt
2,t = π2(1 − (Nt −m)PNt) + α

2
(1 − (Nt −m)PNt) −

λNt
2

∑m
i=1 P

2
i,t simplifying this equation we get

− (Nt −m)PNt,ty
Nt
2,t = π2(1− (Nt −m)PNt) +

α

2
(1− (Nt −m)PNt)−

λNt

2

m∑
i=1

P 2
i,t

(5.10)
Now sum (5.9) up to m we get∑m

i=1 y
i
2,t = π2m+ α

2
m− λNt

2

∑m
i=1 Pi,t which is equal to 1

Nt

∑Nt
i=1 y

i
2,t−

(Nt−m)
Nt

yNt2,t =
π2m
Nt

+ αm
2Nt
− λ

2
(1− (Nt −m)PNt,t)

which is equivalent to
π2 − (Nt−m)

Nt
yNt2,t = π2m

Nt
+ αm

2Nt
− λ

2
(1− (Nt −m)PNt,t) hence,

yNt2,t =
−π2Nt(

m
Nt
− 1)

(Nt −m)
− α

2(Nt −m)
+
λNt(1− (Nt −m)PNt,t)

2(Nt −m)
(5.11)
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plug the equation (5.11) in (5.10) to get the value of λ in terms of α we get
−(Nt−m)PNt,t[

−π2Nt( mNt−1)
(Nt−m)

− α
2(Nt−m)

+
λNt(1−(Nt−m)PNt,t)

2(Nt−m)
] = π2(1−(Nt−m)PNt,t)+

α
2
(1− (Nt −m)PNt,t)− λNt

2

∑m
i=1 P

2
i,t

simplifying we get
−π2Nt(

m
Nt
−1)PNt,t+

αPNt,t
2
− λNtPNt,t(1−(Nt−m)PNt,t)

2
= π2(1−(Nt−m)PNt,t)+ α

2
(1−

(Nt −m)PNt,t)− λNt
2

∑m
i=1 P

2
i,t

more simplifying we get
α
2
PNt,t − α

2
(1 − (Nt − m)PNt,t) = π2Nt(

m
Nt
− 1)PNt,t + π2(1 − (Nt − m)PNt,t) −

λNt
2

∑m
i=1 P

2
i,t +

λNtPNt,t(1−(Nt−m)PNt,t)

2

which is equal to
α
2
[PNt,t − (1 − (Nt − m)PNt,t)] = π2[PNt,tNt(

m
Nt
− 1) + (1 − (Nt − m)PNt,t)] +

λNt
2

[PNt,t(1− (Nt −m)PNt,t)−
∑m

i=1 P
2
i,t] so that we get

α

2
=
π2[PNt,tNt(

m
Nt
− 1) + (1− (Nt −m)PNt,t)] + λNt

2
[NtPNt,t(1− (Nt −m)PNt,t)−

∑m
i=1 P

2
i,t]

[PNt,t − (1− (Nt −m)PNt,t)]
(5.12)

Now, from the equation (3) in the system, we have α
Ntλ

= PNt,t this implies

α = NtλPNt,t (5.13)

then plug the equation (5.13) into (5.12) to get the value of λ as follows:
NtλPNt,t

2
=

π2[PNt,tNt(
m
Nt
−1)+(1−(Nt−m)PNt,t)]+

λNt
2

[NtPNt,t(1−(Nt−m)PNt,t)−
∑m
i=1 P

2
i,t]

[PNt,t−(1−(Nt−m)PNt,t)]

multiplying two sides by [PNt,t − (1− (Nt −m)PNt,t)] and simplifying we get
Ntλ
2

[(P 2
Nt,t
− PNt,t(1 − (Nt − m)PNt,t)) − PNt,t(1 − (Nt − m)PNt,t) +

∑m
i=1 P

2
i,t] =

π2[NtPNt,t(
m
Nt
− 1) + (1− (Nt −m)PNt,t)]

simplifying we get the value of λ

λ =
2[NtPNt,t(

m
Nt
− 1) + (1− (Nt −m)PNt,t)]

Nt[P 2
Nt,t
− 2PNt,t(1− (Nt −m)PNt,t) +

∑m
i=1 P

2
i,t]

(5.14)

since we have the value of α and λ we can get the value of yi2,t from (5.9) and yNt2,t

from (5.11) and since that ym+1
2,t = ym+2

2,t = .... = yNt2,t from (2) in the system. Thus,

yi2,t = π2 +
λNtPNt,t

2
− λNt

2
Pi,t, i = 1, ...,m

and

yi2,t =
−π2Nt(

m
Nt
− 1)

(Nt −m)
− λNtPNt,t

2(Nt −m)
+
λNt(1− (Nt −m)PNt,t)

2(Nt −m)
, i = m+ 1, ..., Nt
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where
λ =

2[NtPNt,t(
m
Nt
− 1) + (1− (Nt −m)PNt,t)]

Nt[P 2
Nt,t
− 2PNt,t(1− (Nt −m)PNt,t) +

∑m
i=1 P

2
i,t]

Hence, yi2,t is the share of investor 2 at time t under scenario i. Thus, the final
equilibrium allocation for the second investor is y∗2 = (y12,t, y

2
2,t, ....y

Nt
2,t).

Proposition 5.3. For exponential utility function U = E[u(X)], where u(X) =

1 − exp(−α1X), is the utility of uncertain profit at end of the investment period,
α1 is the risk aversion. Then, at each t ∈ T and let Nt is the number of states
of the word. Then, there is fair allocation ‘equilibrium allocation’ for the investor
in terms of equilibrium price, and the equilibrium allocation can be written in an
explicit formula as follows:
yi1,t = 1

α1
[
∑Nt

i=1 Pi,tln(Nt
α1
Pi,t)] − ( 1

α1
ln(Nt

α1
Pi,t)), where i = 1, 2, ..., Nt. Then y∗1,t =

(y11,t, y
2
1,t, ..y

Nt
1,t).

Proof. To find the explicit formula for equilibrium allocation (fair allocation), we
will solve

maxE[u(y1)] s.tP (y1) ≤ 0

by Lagrange multipliers as follows: then

∂U

∂yi1,t
= λPi,t, i = 1, ...., Nt (5.15)

implies
α1

Nt

exp(−α1y
i
1,t) = λPi,t, (5.16)

Solving (5.16) in yi1,t. Then, yi1,t = − 1
α1
ln( N

α1
Pi,t) − 1

α1
ln(λ) where i = 1, ..., Nt,

then multiplying yi1,t by Pi,t, i = 1, ...., Nt, taking into account that the normal-
isation of price function

∑Nt
i=1 Pi,t = 1 and

∑Nt
i=1 Pi,ty

i
1,t = 0 it should be from

the constraint and definition of price function. Then, solve these equations by
taking the summation of these equations in order to get the value of λ where∑Nt

i=1 Pi,ty
i
1,t =

∑Nt
i=1−

Pit
α1

(Nt
α1
Pi,t)− 1

α1
ln(λ)

∑Nt
i=1 Pi,t then we will get:

−1
α1
ln(λ) =

∑Nt
i=1

1
α1

[Pi,tln(Nt
α1
Pi,t)]

substituting the value of λ in (yi1,t), i = 1, ..., Nt

to get the value of yi1,t as a function of Pi,t, i = 1, ..., Nt then
yi1,t =

∑Nt
i=1

1
α1

[Pi,tln(Nt
α1
Pi,t)]− ( 1

α1
ln(Nt

α1
Pi,t)), where i = 1, 2, ..., Nt.

Proposition 5.4. Quadratic utility function of the form u(X) = X − α1X
2,

is the utility of uncertain profit at the end of the investment period, α1 is the
risk aversion, and let Nt be the number of scenarios at time t. Then, at each
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t ∈ T there is fair allocation ‘equilibrium allocation’ for the investor in terms
of equilibrium price, and the equilibrium allocation can be written in an explicit
formula as follows:

yi1,t =
1

2α1

[1− Pi,t∑Nt
i=1 P

2
i,t

], i = 1, ..Nt

Proof. Similar to all previous proofs by straightforwardly using maximum util-
ity function to solve max E[u(y1)] s.t P (y1) ≤ 0, where U = E[u(.)] and U =
1
Nt

[
∑Nt

i=1(y
i
1,t − α1(y

i
1,t)

2]. Hence, by maximisation of utility function we have

∂U

∂yi1,t
= λPi,t, i = 1, ....., Nt

implies
1

Nt

[1− 2α1y
i
1,t] = λPi,t

thus,
yi1,t =

1

2α1

[1−NtλPi,t], i = 1, ..., Nt (5.17)

multiplying yi1,t by Pi,t i,= 1, ...Nt, taking into account that the normalisation of
price function

∑Nt
i=1 Pi,t = 1 and from consistent price function we have

∑Nt
i=1 Pi,ty

i
1,t =

0. Then, solve these equations by taking the summation of these equations in order
to get the value of λ where,

Nt∑
i=1

Pi,ty
i
1,t =

1

2α1

Nt∑
i=1

Pi,t −
Nt

2α1

λ
Nt∑
i=1

P 2
i,t

thus,
λ =

1

Nt

∑Nt
i=1 P

2
i,t

plugging the value of λ into the value of yi1,t from equation (5.17) we get

yi1,t =
1

2α1

[1− Pi,t∑Nt
i=1 P

2
i,t

], i = 1, 2, ..., Nt.

Thus, y∗1,t = (y11,t, y
,
1,t....y

Nt
1,t)
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5.1.1 Certainty equivalent

In this section we will find the fair allocation point for the problem (4.4) in Chapter
4 by using certainty equivalent.

Proposition 5.5. A fair allocation for the investor in terms of equilibrium price
where the certainty equivalent for the investor is expressed as C = U(y1), where
U(y1) = E[y1] − σ2(y1)

2ρ1
where E[y1] = 1

Nt

∑Nt
i=1 y

i
1,t and ρ1 is the risk aversion.

Then, the explicit formula for equilibrium allocation at each t ∈ T can be written
as follows:

yi1,t = ρ1Nt

Nt∑
i=1

P 2
i,t[1−

Pi,t∑Nt
i=1 P

2
i,t

]

where i = 1, ...Nt. Thus, an equilibrium allocation for investor is y1,t = (y11,t, y
2
1,t, ...y

Nt
1,t),

and Nt is the number of the states of the word.

Proof. Straightforward by using maximum of the function U which is written as

max U(y1) s.t P (y1) ≤ 0

Thus, we will solve this individual problem in order to get the explicit formula
for equilibrium allocation for the investor as follows: OU = λ P where U(y1) =

E[y1]−σ(y1)2

2ρ1
which is equal to U(y1) = 1

Nt

∑Nt
i=1 y

i
1,t− 1

2ρ1
[ 1
Nt

∑Nt
i=1(y

i
1,t)

2−( 1
Nt

∑Nt
i=1 y

i
1,t)

2].
Then, ∂U

∂yi1,t
= λPi,t which is implied

1

Nt

− 1

2ρ1
[

2

Nt

y1,i − 2(
1

Nt

Nt∑
i=1

yi1,t)
1

Nt

] = λPi,t (5.18)

simplifying we get

1

Nt

− 1

2ρ1
[

2

Nt

(yi1,t −
1

Nt

Nt∑
i=1

yi1,t)] = λPi,t

multiplying the last equation by Pi,t in two sides for each i and summing both
sides, and taking into account that

∑Nt
i=1 y

i
1,tPi,t = 0 is from the constraint and

the definition of price function, as well as
∑Nt

i=1 Pi,t = 1 and E[y1] = 1
Nt

∑Nt
i=1 y

i
1,t.

Then we get

1

Nt

− 1

2ρ1
[

2

Nt

Nt∑
i=1

yi1,tPi,t −
2

Nt

(
1

Nt

Nt∑
i=1

yi1,t)
Nt∑
i=1

Pi,t] = λ

Nt∑
i=1

P 2
i,t
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simplifying we get

1

Nt

− 1

2ρ1
[− 2

Nt

(
1

Nt

Nt∑
i=1

yi1,t)] = λ
Nt∑
i=1

P 2
i,t

Thus,

λ =
1

Nt

∑Nt
i=1 P

2
i,t

+
( 1
Nt

∑Nt
i=1 y

i
1,t)

Ntρ1
∑Nt

i=1 P
2
i,t

plug the value of λ into equation (5.18) we get

1

Nt

− 1

2ρ1
[

2

Nt

yi1,t −
2( 1

Nt

∑Nt
i=1 y

i
1,t)

Nt

] =
Pi,t

Nt

∑Nt
i=1 P

2
i,t

+
( 1
Nt

∑Nt
i=1 y

i
1,t)Pi,t

Ntρ1
∑Nt

i=1 P
2
i,t

(5.19)

hence,

yi1,t
Ntρ1

=
1

Nt

+
( 1
Nt

∑Nt
i=1 y

i
1,t)

ρ1Nt

− Pi,t

Nt

∑Nt
i=1 P

2
i,t

−
( 1
Nt

∑Nt
i=1 y

i
1,t)Pi,t

Ntρ1
∑Nt

i=1 P
2
i,t

multiplying each side by Ntρ1 we get

yi1,t = ρ1 + (
1

Nt

Nt∑
i=1

yi1,t)−
Pi,tρ1∑Nt
i=1 P

2
i,t

−
( 1
Nt

∑Nt
i=1 y

i
1,t)Pi,t∑Nt

i=1 P
2
i,t

(5.20)

simplifying and delete ρ1 in the second term we get

yi1,t = ρ1 + (
1

Nt

Nt∑
i=1

yi1,t)−
Pi,tρ1∑Nt
i=1 P

2
i,t

−
( 1
Nt

∑Nt
i=1 y

i
1,t)Pi,t∑Nt

i=1 P
2
i,t

(5.21)

Now, sum all last equation for each i = 1, ...Nt and divided it by Nt we get

(
1

Nt

Nt∑
i=1

yi1,t) = ρ1 + (
1

Nt

Nt∑
i=1

yi1,t)−
ρ1

∑Nt
i=1 Pi,t

Nt

∑Nt
i=1 P

2
i,t

−
( 1
Nt

∑Nt
i=1 y

i
1,t)

∑Nt
i=1 Pi,t

Nt

∑Nt
i=1 P

2
i,t

(5.22)

simplifying, where
∑Nt

i=1 Pi,t = 1 we get

(
1

Nt

Nt∑
i=1

yi1,t) = ρ1 + (
1

Nt

Nt∑
i=1

yi1,t)−
ρ1

Nt

∑Nt
i=1 P

2
i,t

−
( 1
Nt

∑Nt
i=1 y

i
1,t)

Nt

∑Nt
i=1 P

2
i,t

(5.23)

solve equations (5.21) and (5.23) to delete ( 1
Nt

∑Nt
i=1 y

i
1,t) or simplifying equation

(5.23) and plug it in equation (5.21), where 1
Nt

∑Nt
i=1 y

i
1,t = E[y1], then we get
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yi1,t = ρ1(Nt

Nt∑
i=1

P 2
i,t − 1)[1− Pi,t∑Nt

i=1 P
2
i,t

] + ρ1[1−
Pi,t∑Nt
i=1 P

2
i,t

]

simplifying the last equation we get

yi1,t = ρ1Nt

Nt∑
i=1

P 2
i,t[1−

Pi,t∑Nt
i=1 P

2
i,t

]

Thus, the fair allocation for the investor is y∗1,t = (y11,t, y
2
1,t, ...y

Nt
1,t).

Proposition 5.6. A fair allocation for the investor in terms of equilibrium price
where the certainty equivalent for the investor is expressed as C = U(y2), where
U(y2) = E[y2]−

σ2
−(y2)

ρ2
where E[y2] = 1

Nt

∑Nt
i=1 y

i
2,t and ρ2 is the risk aversion, where

assuming the price P1,t ≥ P2,t ≥ ....... ≥ PNt,t, Nt is the number of the states of
the word, and m is the minimal number such that Pm+1,t = Pm+2,t = ..... = PNt,t.
Then, the explicit formula for equilibrium allocation at each t ∈ T can be written
as follows:

yi2,t =
ρ2
2
{1− Pi,t

PNt,t
−

2[m
2
− 1

PNt,t
+ 1

2P 2
Nt

∑m
i=1 P

2
i,t + (Nt −m)]

[Nt + ρ2(m+ 1
PNt,t

− (Nt −m))]
}

this for i = 1, ....,m and

yi2,t =
ρ2

2(Nt −m)
{−m+

1

PNt,t
(1− (Nt −m)PNt,t)

+ 2Nt(1 +
mρ2
Nt

)
[m
2
− 1

PNt,t
+ 1

2P 2
Nt,t

∑m
i=1 P

2
i,t + (Nt −m)]

[Nt + ρ2(m+ 1
PNt,t

− (Nt −m))]
}

this for i = m+ 1, ...., Nt

Thus, an equilibrium allocation for investor is y2,t = (y12,t, y
2
2,t, ...y

N
2,t).

Proof. Straightforward by using maximum of the function U which is written as

max U(y2) s.t P (y2) ≤ 0

Thus, we will solve this individual problem in order to get the explicit formula
for equilibrium allocation for the investor as follows: OU = λP where U(y2) =

( 1
Nt

∑Nt
i=1 y

i
2,t)−

σ−(y2)2

ρ2
which is equal to
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U(y2) = 1
Nt

∑Nt
i=1 y

i
2,t− 1

ρ2
[ 1
Nt

∑Nt
i=1(max(−(yi2,t− 1

Nt

∑Nt
i=1 y

i
2,t), 0))2]. Then, ∂U

∂yi2,t
=

λPi,t which is implied

∂U

∂yi2,t
=

 1
Nt
− 1

ρ2
[ 2
Nt
yi2,t − 2

Nt
( 1
Nt

∑Nt
i=1 y

i
2,t]− λPi,t = 0 if yi2,t ≤ 1

Nt

∑Nt
i=1 y

i
2,t

1
Nt
− λPi,t = 0 yi2,t >

1
Nt

∑Nt
i=1 y

i
2,t

Hence, we need four statements as in proposition (5.2) to avoid cases where the
first statement
(1) In optimality equation P (y2) = 0 is held.
The statements (2), and (3) are the same as the statements (2), and (3) in propo-
sition (5.2), also E[y2] is not fixed and E[y2] 6= π2.
4) Obviously, yNt2,t ≥ 1

Nt

∑Nt
i=1 y

i
2,t, then

1
Nt
− λPNt,t = 0, thus PNt,t = 1

Ntλ
from

the second terms of ∂L
∂yi2,t

= 0. Now, let m be the minimal number such that
Pm+1,t = Pm+2,t = .....PNt,t then by (2) we have ym+1

2,t = ..... = yNt2,t . Then for any
i ≤ m Pi,t > PNt,t = 1

Ntλ
so 1

Nt
− λPi,t 6= 0 then yi2,t ≤ 1

Nt

∑Nt
i=1 y

i
2,t this implied the

first term of ∂L
∂yi2,t

= 0 which is 1
Nt
− 1

ρ2
[ 2
Nt
yi2,t− 2

Nt
( 1
Nt

∑Nt
i=1 y

i
2,t)]−λPi,t = 0. These

statements imply a system of linear equations as follows:

• 1) 1
Nt
− 1

ρ2
[ 2
Nt
yi2,t − 2

Nt
( 1
Nt

∑Nt
i=1 y

i
2,t)]− λPi,t = 0 which include m equations

• 2) ym+1
2,t = ym+2

2,t = .... = yNt2,t which include m−Nt − 1 equations.

• 3) 1
Nt

= λPNt,t which includes one equation.

• 4)
∑Nt

i=1 Pi,ty
i
2,t which includes one equation.

Thus the system includeNt+1 equation withNt+1 variables which are y12,t, ......, y
Nt
2,t , λ.

This system can be solved numerically as solving a system of linear equations as
in linear algebra, but we will solve this system analytically to get the explicit for-
mula for equilibrium allocation in terms of equilibrium price as follows: we have
m equations from (1) in the system

1

Nt

− 1

ρ2
[

2

Nt

yi2,t −
2

Nt

(
1

Nt

Nt∑
i=1

yi2,t)]− λPi,t = 0 (5.24)

multiply (5.24) by Pi,t and sum up to m we get
1
Nt

∑m
i=1 Pi,t −

2
Ntρ2

∑m
i=1 Pi,ty

i
2,t + 2

Nt
( 1
Nt

∑Nt
i=1 y

i
2,t)

∑m
i=1 Pi − λ

∑m
i=1 P

2
i,t = 0

where
∑m

i=1 Pi,t =
∑Nt

i=1 Pi,t −
∑Nt

i=m+1 Pi,t = 1− (Nt −m)PNt and
∑m

i=1 Pi,ty
i
2,t =
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0− (Nt −m)PNty
Nt
2,t = −(Nt −m)PNty

Nt
2,t .

Thus the last equation is equivalent to

1

Nt

(1− (Nt −m)PNt,t)−
2

Ntρ2
(−(Nt −m)PNt,ty

Nt
2,t)

+
2

Nt

(
1

Nt

Nt∑
i=1

yi2,t)(1− (Nt −m)PNt,t)− λ
m∑
i=1

P 2
i,t = 0

(5.25)

additionally we can simplify (5.25) to write it in yNt2,t as follows:

yNt2,t =
−ρ2

2(Nt −m)PNt,t
(1− (Nt −m)PNt)

− ρ2
(Nt −m)PNt,t

(
1

Nt

Nt∑
i=1

yi2,t)(1− (Nt −m)PNt,t)

+
Ntρ2λ

2(Nt −m)PNt,t

m∑
i=1

P 2
i,t

(5.26)

Now sum (5.24) up to m where 1
Nt

∑Nt
i=1 y

i
2,t = E[y2], then we get

1
Nt
m− 2

ρ2Nt

∑m
i=1 y

i
2,t − 2

Nt
( 1
Nt

∑Nt
i=1 y

i
2,t)m− λ

∑m
i=1 Pi,t = 0

simplifying we get
2

ρ2Nt

∑m
i=1 y

i
2,t = m

Nt
− 2m

Nt
( 1
Nt

∑Nt
i=1 y

i
2,t)− λ

∑m
i=1 Pi,t

dividing the last equation by Ntρ2
2

we get∑m
i=1 y

i
2,t = ρ2m

2
−mρ2( 1

Nt

∑Nt
i=1 y

i
2,t)−

Ntρ2
2
λ
∑m

i=1 Pi,t

plug the value of
∑m

i=1 y
i
2,t and divided over Nt we get

1
Nt

∑Nt
i=1 y

i
2,t−

(Nt−m)
Nt

yNt2,t = ρ2m
2Nt
− mρ2

Nt
( 1
Nt

∑Nt
i=1 y

i
2,t)−

ρ2λ
2

(1− (Nt−m)PNt,t) which
is equal to
( 1
Nt

∑Nt
i=1 y

Nt
2,t)−

(Nt−m)
Nt

yNt2,t = ρ2m
2Nt
− mρ2

Nt
( 1
Nt

∑Nt
i=1 y

i
2,t)−

ρ2λ
2

(1− (Nt −m)PNt,t)

simplifying we get
− (Nt−m)

Nt
yNt2,t = ρ2m

2Nt
− ( 1

Nt

∑Nt
i=1 y

i
2,t)(1 + mρ2

Nt
)− ρ2λ

2
(1− (Nt −m)PNt,t), thus

yNt2,t =
−ρ2m

2(Nt −m)
+(

1

Nt

Nt∑
i=1

yi2,t)
Nt

(Nt −m)
(1+

mρ2
Nt

)+
ρ2Ntλ

2(Nt −m)
(1−(Nt−m)PNt,t)

(5.27)
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Now the equality of equations (5.26) equal to (5.27) held which we need to delete
the value of ( 1

Nt

∑Nt
i=1 y

i
2,t) we get

−ρ2m
2(Nt −m)

+ (
1

Nt

Nt∑
i=1

yi2,t)
Nt

(Nt −m)
[1 +

mρ2
Nt

] +
ρ2Ntλ

2(Nt −m)
(1− (Nt −m)PNt,t)

=
−ρ2

2(Nt −m)PNt,t
(1− (Nt −m)PNt,t)−

ρ2(
1
Nt

∑Nt
i=1 y

i
2,t)

(Nt −m)PNt,t
(1− (Nt −m)PNt,t)

+
Ntρ2λ

2(Nt −m)PNt,t

m∑
i=1

P 2
i,t

simplifying last equation where λ = 1
NtPNt,t

and we assume PNt,t 6= 0 we get

(
1

Nt

Nt∑
i=1

yi2,t)[
Nt

(Nt −m)
+ ρ2(

m

(Nt −m)
+

1

(Nt −m)
PNt,t − 1)]

= ρ2[
m

2(Nt −m)
− 1

(Nt −m)PNt,t
+

1

2(Nt −m)P 2
Nt,t

m∑
i=1

P 2
i,t + 1]

(5.28)

thus, from (5.24) we have

yi2,t =
ρ2
2
− (

1

Nt

Nt∑
i=1

yi2,t)−
ρ2

2PNt,t
Pi,t (5.29)

Hence, just by plugging the expression from (5.28) multiply by ( 1
Nt

∑Nt
i=1 y

i
2,t) in

to equation (5.27) and (5.29), then the optimal sharing (equilibrium allocation in
terms of equilibrium price is as follows:

yi2,t =
ρ2
2
{1− Pi,t

PNt,t
−

2[m
2
− 1

PNt,t
+ 1

2P 2
Nt

∑m
i=1 P

2
i,t + (Nt −m)]

[Nt + ρ2(m+ 1
PNt,t

− (Nt −m))]
}

this for i = 1, ....,m and

yi2,t =
ρ2

2(Nt −m)
{−m+

1

PNt,t
(1− (Nt −m)PNt,t)

+ 2Nt(1 +
mρ2
Nt

)
[m
2
− 1

PNt,t
+ 1

2P 2
Nt,t

∑m
i=1 P

2
i,t + (Nt −m)]

[Nt + ρ2(m+ 1
PNt,t

− (Nt −m))]
}
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this for i = m+ 1, ...., Nt.

Thus, an equilibrium allocation for the investor is y2,t = (y12,t, y
2
2,t, ...y

N
2,t).

5.1.2 Finding the equilibrium price P

• Firstly, we express each equilibrium allocation as a function of equilibrium
price P , we can then find P from the system of equations

yi1(P ) + yi2(P ) = Xβ(ωi), i = 1, ..., Nt

P (Xβ(ωi)) = 0

σ2
2(y2) = β

(5.30)

where Xβ(ωi) is the uncertain outcome of the optimal portfolio at the end
of the investment period.

• Secondly, The system (5.30) can be solved as a feasibility problem for the
optimisation problem

min
p

0

s.t

yi1(P ) + yi2(P ) = Xβ(ωi), i = 1, ...., Nt

σ2
2(y2) = β

P (Xβ(ωi)) = 0.

(5.31)

Note that, Xβ(ωi) depends on β but does not depend on price P and we
solve problem (5.31) over P . Also, Xβ(ωi), i = 1, ...Nt is arbitrary and
can be found just by solving cooperative investment problem, for example,
problem (4.3) and the purpose of solving the problem (5.31) is to check the
feasibility of y1(P ) and y2(P ). Hence we find the value of equilibrium price
P and then we can calculate the value of y1(P ) and y2(P ) which are an
equilibrium allocation ‘fair point’ for each investor. In addition, the size of
P is equal to the size of uncertain outcome Xβ(ωi), y1 and y2 where the size
is 1 × Nt, and Nt is the number of the scenario tree. Moreover, the whole
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process from begin of solving cooperative investment problem until to find
the ‘fair point’ equilibrium allocation will be shown in Algorithm 5.15.

Remark 5.7. Now in case of two investors, after we solve the problem (4.4) in
Chapter 4 by following the Algorithm 4.2, we need to find the fair allocation and
check the feasibility by solving the problem (5.31) for m = 2. Note that, for
example the fair allocation can be written from proposition 5.5 which is yi1,t(P )

for the first investor and proposition 5.6 yi2,t(P ) for the second investor, and plug
the value of yi1,t(P ) and yi1,t(P ) in (5.31) where yi1,t + yi2,t = Xβ(ωi) and Xβ(ωi) is
uncertain outcome at the end of investment period at scenario i. More details to
solve problem (5.31) is shown in Algorithm 5.15. Also, Xβ(ωi) depends on β so
that we need to fix the value of σ2

−(y2) = β in the whole curve in efficient frontier
as shown in section (5.1.2).

5.2 Uniqueness and stability

Now the natural question after finding the explicit formula for equilibrium alloca-
tion is that we need to study the uniqueness and stability of equilibrium price since
the equilibrium allocation is written as a function of equilibrium price. According
to Welfare’s theorems, every Walrasian equilibrium allocation is a Pareto optimal.
Hence, we need to prove the uniqueness of Walrasian equilibrium for cooperative
investment.

Grechuk and Zabarankin [68] demonstrated the connection between Walrasian
equilibrium for cooperative investment and standard Walrasian equilibrium (5.2)
for the risk sharing problem. In particular, if equilibrium is unique in the risk
sharing problem for any set of initial endowments Wi such that

∑m
i=1Wi = X,

that it is unique for the cooperative investment problem with optimal portfolio
X. Motivated by this, we will study the uniqueness and stability questions in the
context of problem (5.2).

We will assume the following properties for agent’s utility functions ui, where
Ui = E[ui(.)]

A1) For all agents i ∈ I, ui is continuous.
A2) For all agents i ∈ I, ui is increasing, i.e. ui(yi) > ui(xi) whenever
P (yi ≥ xi) = 1 and P (yi > xi) > 0.
A3) For all agents i ∈ I, ui is concave.
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The second Welfare theorem says that if we start from initial endowment we can
redistribute the resource and set price that ensures the allocation is Walrasian
equilibrium. Now, Z(P,W ) is the aggregate demand function, Debreu [49]. It is
defined as Z(P,W ) =

∑2
i=1 yi(P ) −W , where W ∈ R is the initial endowment,

and P is the equilibrium price vector at the end of investment period, in my
experiments yi(P ) that comes from an explicit formula from propositions in section
5.2. Thus, Zi(Pi,t,W ) = yi1,t(P )+yi2,t(P )−Wi. Note that we start to find y1(P ) and
y2(P ) from propositions in section 5.2 and we used them to get the equilibrium
price P from solving problem (5.31), then we find Z(P,W ) and we use it to
investigate the uniqueness of equilibrium price. In addition, in this section we
assume that no initial endowment available so that we will get yi(P ), i = 1, 2

from problem (5.3) instead of problem (5.2). Furthermore, with these general facts
we will start with some basic concepts and definitions from the Welfare theorems
that show the efficiency properties of equilibrium that imply the efficient condition
to prove the uniqueness of equilibrium under certain conditions. Consequently,
we will investigate the level of stability of equilibrium corresponding to unique
equilibrium.

Proposition 5.8. See proposition 4 in [81] and [11]
The aggregate demand function Z(P,W ), W ∈ R and price P ∈ Rn satisfies
i- Z is continuous on P ;
ii- Z is homogeneous of degree zero;
iii-Z(P,W ) = 0 for all P (Walras’ law);
iv- for some Z > 0, Zl(P,W ) > −Z for every l ∈ L and all P ; and
v- if P n −→ P , where P 6= 0 and Pl = 0 for some l, then
max Zl(P

n,W ), .., ZL(P n,W ) −→∞.

For more information about the details of the proof the reader may look at Levin
[81], Arrow and Debreu [11].

In addition, the definition of normalisation of equilibrium price P is as follows: let
A= 4N , where 4N = {P ∈ RN :

∑N
i=1 Pi,t = 1}. Note that the set 4N is closed,

bounded and convex.

Proposition 5.9. [81] Take the aggregate excess demand function Z(P,W ) that
fulfills all the properties of the proposition (5.8). Then there exists an equilibrium
price vector P such that Z(P,W ) = 0.
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Proof. The details of this proof can be seen in Levin [81] and Quah [117].

Number of equilibiria [81]
Since the aggregate demand satisfies the Walras’ Law, then Z(P,W ) : RN −→ RN

fully characterises the economy, where the economy in my case is the risk sharing.

Moreover that ∂Z(P,W ) be the matrix of size (N × N) which is the matrix of
price effect at normalised price Pt.

Definition 5.10. [81] An equilibrium price vector P ∗ = (P1, .....PN) is regular,
if the ∂Z(P,W ) has full rank N . If every normalised equilibrium price vector is
regular then economy is regular.

Proposition 5.11. [81] For any regular economy ‘risk sharing’, the number of
equilibrium is finite and odd.

5.2.1 Uniqueness

Theorem 5.12. [81] The excess demand function Z(P,W ) satisfies the weak ax-
iom of the revealed preferences, if for any vectors P, P ′ we get

Z(P,W ) 6= Z(P ′,W ) and P.Z(P ′,W ) ≤ 0 implies P ′.Z(P,W ) > 0.

where P.Z(P ′,W ) is the inner product between vector price P and excess demand
function Z(P,W ) at vector price P ′ and initial endowment W , and the size of
vector price P ′ is the same size of P equal to 1×Nt, Nt is the number of scenarios.
Thus, P.Z(P ′,W ) =

∑Nt
i=1 Pi.Zi(P

′,W ).

Now we are ready to prove the uniqueness of the equilibrium.

Proposition 5.13. [81] If Z. satisfies the weak axiom, then for any rate of re-
turns the set of equilibrium price vectors is convex. If the economy is regular, the
equilibrium price is unique.

Now in order to prove the uniqueness we need to just prove the weak axiom
on aggregate demand function. According to Quah [117] the aggregate demand
function satisfies the weak axioms. In particular, he studied local weak axiom and
found the condition which guarantees that the economy excess demand function
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obeys the local weak axioms near equilibrium price. Hence, the weak axioms is
satisfied, where the weak axioms defined in Theorem (5.12). We will illustrate
that in the following Remark.

The quote of the following Remark is taken from Quah [117].

Remark 5.14. Note that since the agent’s individual excess demand function is
derived from utility maximisation, it will satisfy strong structural properties like
the weak and strong axioms. But aggregate excess demand function may not have
those properties. Hence, we need to find important conditions on agent’s prefer-
ences as follows:
i) If the utility function is not strictly concave and there is no risk aversion such
as U(x) = −σ(x) if E[X] ≥ π, then the sufficient condition for the local weak
axioms requires ζ ∈ RN to obey the differentiable weak axiom at price P which is
the negative definite on the set P⊥ = {ζ ∈ RN : ζTP = 0} i.e ζT∂PZ(P,W )ζ < 0

for all ζ 6= 0 in P⊥, where Z(P,W ) is aggregate excess demand.
ii) In case of the utility function ∈ C2 and if its strictly positive, differentiable
strictly concave then the utility function is called regular. Then the utility func-
tions straightforwardly and satisfies the minimal model program (MMP). On an-
other word, the utility function needs to verify the condition (5.32) below is called
(MMP) coefficient which guarantees that the aggregate demand function obeys
the weak axioms, where MMP- coefficient can be defined as

ψu(x) = −x
T∂2u(x)x

∂u(x)x
(5.32)

hence,
ψ�(x) = infu∈U(x)ψu(x) (5.33)

where U is the collection of regular and concave utility functions of u(.), so tht U
is always not empty, since u is concave, then ψu(x) ≥ 0, so ψ�(x) ≥ 0 for all x,
see [117]. Note that there is no restriction on ψ�(x) which guarantees the local
weak axioms.

iii) In case if the utility function is not regular ‘ which means the utility function is
not strictly positive or not strictly concave’ and defined over contingent constraint
in N state of the world and u has the expected utility form U(.) = E[u(.)]. In
this case, one could show that the coefficient of MMP is satisfied if the agent’s
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coefficient of relative risk aversion does not vary by more than 4, i.e.

maxx>0(−
ru′′(x)

u′(x)
)−minx>0(−

ru′′(x)

u′(x)
) < 4 (5.34)

Now, we will illustrate some examples in each case in Remark (5.14).

5.2.2 Examples

Example 1:
First, we illustrate the issue using a simple example. Assume that during each
period of time there exists a risk-free asset with 0 return and a single risky asset
with statistically independent rate of return, with probabilities p, 1 − p, corre-
spondingly 0 ≤ p ≤ 1, so that we invest a for risky asset with the return 8

5
and

(1 − a) for risk-free asset with 0 return in this case the uncertainty outcome will
be written as follows X(ω1) = (1 − a) + 8a

5
, thus, X(ω1) = 3a

5
. Also, in case of

price going down we will invest a in risky asset with the return 4
5
and (1 − a) in

risk-free asset with the return zero, so that we can write the uncertainty outcome
X(ω2) = (1 − a) + 4a

5
. Thus, X(ω2) = −a

5
, where −1 ≤ a ≤ 1 and a does not

depend on initial endowment W = (W1,W2) = 0.

S0 =

5

S1,d =

4

S1,u =

8

Firstly, we need to write excess demand function for the cooperative investment
which in this case will be of the form: Zi(P,W ) = yi1(P ) + yi2(P ) − Wi where
i = 1, 2 and W = (W1,W2) = (0, 0) which means no initial endowment exist.
Suppose first investor has a variance as a risk preference and the second investor
has semi-variance as a risk preference. Also, we fixed levels of return for each
investor are π1 = 0.65 and π2 = 0.26, where the explicit formula for an individual
investor uses the propositions (5.1) and (5.2) and used it in order to write the
aggregate demand function for investors.
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Note that, the Walras’ law holds from the fact that the price function is consistent
P (X) = 0 for all the X ∈ F . Now, for the existence: suppose MN= {P ∈ RN :∑N

i=1 Pi = 1} and note that the MN is closed and bounded and convex, which is
called dimensional unit simplex as shown from normalisation of functional price
P .

Now, to check about the regularity of economy ‘ risk sharing’ in this example we
need to check about the ∂Z(P,W ) being 2×2 matrix of price effect at normalised
price P , where

∂Z(P,W ) =

[
∂z1(p,W )
∂P1

∂z2(p,W )
∂P1

∂z1(p,W )
∂P2

∂z2(p,W )
∂P2

]
should be of rank 2 to check that we need to find
Z1(P,W ) = y11(P ) + y12(P )−W1 which is equal to
Z1(P,W ) = (π1 + (1−2P1)π1

2
∑Nt
i=1 P

2
i,t−1

) + π2 + (P2−P1)(1−P2)

(P 2
1−P 2

2+2P2)
−W1

and Z2(P,W ) = y21(P ) + y22(P )−W2 which is equal to
Z2(P,W ) = π1 + (1−2P2)π1

2
∑2
i=1 P

2
i −1

+ π2 + (1−2P2)2

(P 2
1−P 2

2+2P2)
−W2

∂Z1(p,W )
∂P1

= −2π1
2(P 2

1+P
2
2 )−1
− 4(1−2P1)π1P1

(2(P 2
1+P

2
2 )−1)2

− (1−2P2)

(P 2
1−P 2

2+2P2)
− (P2−P1)(1−2P2)2P1

(P 2
1−P 2

2+2P2)2

∂Z2(p,W )
∂P1

= −4(1−2P1)π1P2

(2(P 2
1+P

2
2 )−1)2

− 2(1−2P2)2P1

(P 2
1−P 2

2+2P2)2

∂Z1(p,W )
∂P2

= −4(1−2P2)π1P1

(2(P 2
1+P

2
2 )−1)2

− 1−4P2+2P1

(P 2
1−P 2

2+2P2)
− (P2−P1)(1−2P2)

(P 2
1−P 2

2+2P2)2

∂Z2(p,W )
∂P2

= −2π1
2(P 2

1+P
2
2 )−1
− 4(1−2P2)π1P2

(2(P 2
1+P

2
2 )−1)2

+ −4(1−2P2)

(P 2
1−P 2

2+2P2)
− (1−2P2)2(−2P2+2)

(P 2
1−P 2

2+2P2)2

To calculate these derivatives we need the value of P1 and P2 so that, before
checking uniqueness of equilibrium price we need to find the value of P1 and P2.
Firstly, we need to solve problem (4.3) in two dimensions to find the value of Xβ.
From solving problem (4.3) we have a = 0.65 at β = 0.0001 and then plug the
value of a in Xβ(ω1) and Xβ(ω2) and plug the value of Xβ(ω1) and Xβ(ω2) in the
following system to check about feasibility and find P as follows:

min
p

0

s.t

π1 +
(1− 2P1)π1

2
∑2

i=1 P
2
i − 1

+ π2 +
(P2 − P1)(1− 2P2)

(P 2
1 − P 2

2 + 2P2)
= 1 +

3a

5

π1 +
(1− 2P2)π1

2
∑2

i=1 P
2
i − 1

+ π2 +
(1− 2P2)

2

P 2
1 − P 2

2 + 2P2

= 1− a

5

(
3

5
)P1 − (

1

5
)P2 = 0

σ2
−(y2) = β

(5.35)
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Hence, solve the problem (5.35) by Lagrange multipliers, where first and second
conditions comes from yi1(P ) + yi2(P ) = Xβ(ωi) for i = 1, 2 and third con-
straint from P (X) = 0 implies the factor of a equal to zero since a 6= 0. Then, let
L = 0+λ1(y

1
1(P )+y12(P )−(1+ 3a

5
))+λ2(y

2
1(P )+y22(P )−(1− a

5
)))+λ3((

3
5
)P1−(a

5
)P2).

We find ∂L
∂a

= 0 and ∂L
∂λi

= 0 where i = 1, 2, 3.
Then, from the condition ∂L

∂a
= 0 we get λ2 = 3 λ1 and from condition ∂L

∂λ3
= 0 im-

plies that P2 = 3P1, from normalization of vector price we have P1+P2 = 1, hence
P = (1

4
, 3
4
) then plug the value of P2 in the equations ∂L

∂λ1
= 0 and ∂L

∂λ2
= 0, then we

solve the problems over one variable P1 and by simplifying we get the equilibrium
price vector P = (1

4
, 3
4
). Hence, we plug in the values of P1 and P2 in ∂Z(P,W )

and we get ∂Z(P,W ) is full rank =2 which implies that the economy is regular and
there is finite number and finite odd number of the equilibrium price. Hence, there
exists a local equilibrium price P ∗. Then, to show the uniqueness we need to satisfy
the sufficient condition in Remark (5.14) part (i) in order to check about the condi-
tion for local weak axioms. On other hand, we need to satisfy the negative definite
conditions, which is the sufficient condition in order that the aggregate demand
functions obey the local weak axioms, since ∂PZ(P,W ) is matrix 2 ×2 after plug-
ging the values of P1 and P2 we get ∂PZ(P,W ) = [−0.82,+0.6002; +0.5801,−2.24]

that is approximately ∂PZ(P,W ) = [−0.82,+0.60; +0.60,−2.24] which is a sym-
metric matrix and has two eigenvalues, γ1 = −2.4596 and γ2 = −0.6004 and
determinant of this matrix is positive and first component in first row is greater
than zero. Thus, this matrix is negative definite and hence for any ζ we have
ζT∂PZ(P,W )ζ < 0 negative definite; which satisfies the sufficient condition for
local axioms which guarantees that the equilibrium price is local unique near quil-
brium price P , see Remark (5.14) part (i) . Hence the equilibrium allocation in
our case is obtained by plugging the value of P1 and P2 in proposition (5.1). Then,
y1 = (1.9506,−0.502),
Similarly for the second investor by plugging the value of P in proposition (5.2)
in order to get y2 = (−0.5606, 1.372),
To check the value of y1 and y2 we will compute the expectation for each of them we
get E[y1] = 0.6502 = π1 and E[y2] = 0.2637 = π2 as well as y1+y2 = (1.39, 0.87) =

(1 + 3a
5
, 1− a

5
) = (Xβ(ω1), Xβ(ω2)) = Xβ(ω), at β = 0.0001.

Example 2:
For the expected utility function U(X) = E[u(X)], where u(X) = 1− exp(−αX)

of profit X, where α is risk aversion and the utility is strictly concave and strictly
positive from the Remark (5.14). The sufficient condition in order to get the
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unique solution is the utility function is regular where
u′(X) = α exp(−αX) and u′′(X) = −α2exp(−αX). Then the u ∈ C2 and straight
forward the utility satisfies the MMP as shown in Remark (5.14), since u is concave,
then ψu(x) ≥ 0, so ψ�(x) ≥ 0 for all x. Note that, there is no restriction on ψ�(x)

which guarantees the local weak axioms.
Now, to solve the cooperative investment problem and find the equilibrium price
and equilibrium allocation where risk aversion α1 = 0.25 for the first investor and
α2 = 0.5 for the second investor for the following example.

S0=5

S1,d =

4

S2=3, (ω4)

S2=6, (ω3)

S1,u =

8

S2=6, (ω2)

S2=9, (ω1)

The cooperative investment problem will be as follows:

maximisea,b,c E[u1(y1] = 1/4
4∑

k=1

[1− exp(−α1y
i
1)] (5.36)

subject to

E[u2(y2)] ≥ µ

yi1 + yi2 = Xµ(ωi)

where, i = 1, 2, 3, 4, (Xµ(ω1), Xµ(ω2), Xµ(ω3), Xµ(ω4) ) ∈ F feasible set by chang-
ing of the value of µ ∈ (0, 1) the curve which is the efficient frontier ‘Pareto
Optimal’ for the expected utility for both agents where
Xµ(ω1) = (−a+ 8a

5
)− b+ (9b

8
) ,

Xµ(ω1) = (−a+ 8a
5

)− b+ (6b
8

) ,
Xµ(ω1) = (−a+ 4a

5
)− c+ (6c

4
) ,

Xµ(ω1) = (−a+ 4a
5

)− c+ (3c
4

) .
Also,by changing the value of µ in problem (5.36), we get the whole efficient
frontier curve as shown in Figure 5.1. Now, from this efficient frontier ‘ Pareto
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Figure 5.1: Solving (5.36) for cooperative investment and determine the IV
point for each investor

Optimal’ curve we need to find the equilibrium allocation corresponding to equi-
librium price: we need to resolve the problem as follows:
First of all, we need to rewrite the allocation y1 and y2 as a function of equi-
librium price, see proposition (5.3), where Nt = 4 and P (y1) =

∑4
i=1(Piy

i
1),

P = (P1, P2, P3, P4), and y1 = (y11, y
2
1, y

3
1, y

4
1). Then, the value of yi1(P ) in terms of

equilibrium price will be
yi1 = 1

α1
[
∑4

i=1 Piln( 4
α1
Pi)]− ( 1

α1
ln( 4

α1
Pi))

Similarly, the second agent(investor) has a different preference which is repre-
sented in his utility function U2(y2) = 1−exp(−α2(y2)) with absolute risk aversion
α2 = 1/4. Hence, the value of y2(P ) is the same as y1(P ) and replace α2 instead
of α1.
Now, we need to check about the feasibility of y1 = (y11, y

2
1, y

3
1, y

4
1) and y2 =

(y12, y
2
2, y

3
2, y

4
2) by solving the feasibility problem and finding the equilibrium price

P = (P1, P2, P3, P4), by solving feasibility problem as follows:

find P (5.37)

subject to

yi1(P ) + yi2(P ) = Xµ(ωi)

4∑
i=1

(PiXµ(ωi)) = 0
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U2((y2) = µ

where, i = 1; 2; 3; 4. Note that the last constraint can be rewritten as

P1Xµ(ω1) + P2Xµ(ω2) + P3Xµ(ω3) + P4Xµ(ω4) = 0 (5.38)

by substituting the value of Xµ(ωi) in (5.38) we get
[(−P1 + (8

5
P1) − P2 + (8

5
P2) − P3 + (4

5
P3) − P4 + (4

5
P4)]a + [−P1 − P2 + (9

8
P1) +

(6
8
P2)]b+ [−P3 − P4 + (6

4
P3) + (3

4
P4)]c = 0

Simplifying the last equation and substituting in (5.38), and taking in account
that trading strategies a, b and c do not equal zero. Then our feasibility problem
reduces to

min
p

0 (5.39)

subject to

yi1(P ) + yi2(P ) = Xµ(ωi)

3

5
P1 +

3

5
P2 −

1

5
P3 −

1

5
P4 = 0

1

8
P1 −

2

8
P2 = 0

1

2
P3 −

1

4
P4 = 0

U2(y2) = µ

where i = 1; 2; 3; 4. Solving problem (5.39) is just to find equilibrium price P and
taking into account that there is no objective function specified, the problem is
interpreted as a feasibility problem, which is the same as performing a minimisa-
tion with the objective function set to zero. Solving (5.39) by CVX in MATLAB,
in this case optimal value is 0, so a feasible point is found. Then, we will get the
value of equilibrium price
P = [0.1667, 0.0833, 0.2500, 0.500].
Then, we need to substitute the value of P in y1(P ) = (y11, y

2
1, y

3
1, y

4
1) and y2(P ) =

(y12, y
2
2, y

3
2, y

4
2) in order to get the equilibrium allocation.

Hence, y1 = [1.1855, 2.5730, 0.3750,−1.0114] and y2 = [2.3709, 5.1460, 0.7499,−2.0228].
Then substituting the value of y1 and y2 in the utility function for the first agent
and the second agent we get: the optimal value for the first agent (investor)=
+0.1670, and the optimal value for the second agent (investor)= +0.1709 which
is a fair allocation, which is strictly preferable than individual one and in this
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example µ = +1.7 , see Figure 5.2.

Figure 5.2: Solving (5.36) for DCI and determine the fair allocation for the
investors in DCI and IV

Example 3: This example shows how to prove uniqueness of equilibrium in Re-
mark (5.14) part (iii) for the Logarithm utility function U(X) = X1−ρ−1

1−ρ and
U ′(X) = X−ρ and U ′′(X) = −ρX−ρ−1. Then the sufficient condition by Remark
(5.14) part (iii) and applying (5.34 ) we have, maxx (ρ) - minx (ρ) =0 < 4 , where
the interest rate r. Then the condition holds. Thus, the uniqueness of equilibrium
is available.

5.2.3 Stability

Since the aggregate demand function satisfies the Walras law which means that
there exists the equilibrium price which is the Walrasian equilibrium price such
that Z(P,w) = 0. Then, an equilibrium price vector P can naturally be said
to be locally stable if the price adjustment rule converges to P . In addition, of
course dP

dt
= 0, since Z(P,w) = dP

dt
, for more details see Arrow et al. [12]. But

the relative equilibrium price obtained by solving the feasible system (5.31) to the
equilibrium price is the local stable since in multi-period we solve the equilibrium
in the recursive manner.
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Definition 5.15. [12] An equilibrium price P ∗ is said to be locally stable if there
exists a neighbourhood N(P ∗) of P ∗ such that for any point P of the neighbour-
hood N(P ∗) every solution of the fixed point f converges to P ∗. Consequently, at
each local uniqueness equilibrium price, it is a local stable at this price.

In addition, the global and local stability was studied in the famous paper by Scarf
[127] and he insure of stability of Walrasian equilibrium price by Arrow [9]. Also,
Xia [143] paper about the cooperative investment game shows that the cooperative
investment is not empty by using the scarf theorem, Scarf [128] where at least local
stability corresponds to local unique of equilibrium.

Algorithm 5 15.

Step 1 : Solve cooperative investment problem (4.3) and find y1 +y2 = Xβ, where
Xβ depends on β and Xβ ∈ F , where F is feasible set. See example 2 in this
chapter to be more clear.
Step 2 : Each individual solves her/his optimisation problem subject to budget
constraints as in section 5.1.

max
yi

Ui(yi)

s.t

Pt(yi) ≤ 0

(5.40)

for each time t, we find equilibrium allocation yi(P ), i = 1, 2 in terms of equilib-
rium price P as an explicit formula.
Step 3 : The equilibrium allocation satisfies yi1(P )+yi2(P ) = Xβ(ωi), where yi1(P )

and yi2(P ) as a term of equilibrium price that can be found from the proposi-
tions (5.1) and (5.2), respectively. Note that, you can change the risk prefer-
ences and then the explicit formula in terms of equilibrium price will change as
in propositions in section 5.1, depending on which preference modeling that in-
vestor will choose. Xβ(ωi), i = 1, ...., Nt is the uncertainty outcome at the end
of investment period and can be written exactly as Algorithms 3.2 or 4.3, de-
pending on β see step 1, where for example in case of two periods Xβ(ωi) =

((W0 −
∑n

i=1 xi)r0 + xr′) −
∑n

i=1 zi,t)r0 + z′tri,2t where W0 is initial capital, x is
trading strategy at the first period, zt is trading strategy at the second period and
r is the rate of return at the first period and ri,t2 is the rate of return at scenario
i at the second period.
Step 4 : Plug in the value of Xβ(ωi), i = 1, ...., Nt that we got from step 1 in the
next step, then
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Step 5 : Check about feasibility and find the equilibrium price as follows:

min
p

0

s.t

yi1(P ) + yi2(P ) = Xβ(ωi), i = 1, ...., Nt

σ2
2(y2) = β

P (Xβ(ωi)) = 0.

(5.41)

Remark 5.16. In Algorithm (5.15), Xβ(ωi) depends on β but does not depend
on price P and we solve problem (5.41) over P . Also, Xβ(ωi), i = 1, ...Nt

is arbitrary and can be found just by solving cooperative investment problem,
for example, problem (4.3) and the purpose of solving the problem (5.41) is to
check the feasibility of y1(P ) and y2(P ) and find P . Hence we find the value of
equilibrium price P and then we can calculate the value of y1(P ) and y2(P ) which
are an equilibrium allocation ‘fair point’ for each investor. In addition, the size
of P is equal to the size of uncertain outcome Xβ(ωi), y1 and y2 where the size is
1×Nt, and Nt is the number of the scenario tree.

5.3 Numerical experiment

In this section we complete our experiments in Chapter 4 for discrete time and
continuous time cases to find the fair equilibrium allocation among all the elements
from efficient frontier set.

• For the first experiments we will choose one risk-free asset and 3 risky assets
chosen from S&P 100 and find the return for the risky assets by using
GARCH(1,1) as in Chapter 4, see numerical experiment Example 3 in
discrete time. Then, generate the scenario tree for T=30 periods with 100

scenarios at each node where the first investor has σ(y1) a risk measure and
the second investor has σ−(y2) as a risk measure. As well we choose risk
free r0 = 0.000068, π1 = 0.0000821 and π2 = 0.000109. Hence, the fair
allocation according to Algorithm (5.15) are shown in Figure 5.3. Note that,
the difference between the efficient frontiers is not very significant which
implies that the investor will follow the trading strategy until the end of
the investment period which comes from solving cooperative investment in



Equilibrium 118

multi-periods with dynamic programming in order to avoid breaking down
the contract between investors in the middle of the investment period.

Figure 5.3: Finding equilibrium allocation for DCI according to Algorithm
(5.15) where the equilibrium allocation for first investor from Proposition (5.1)
and Proposition (5.2) for second investor and solving CI and DCI as shown in

Chapter 4 for discrete time

• Solving problem (4.4) for portfolio consisting of one risk-free asset and 3 risky
assets is chosen from S&P 100 and find the return for the risky asset by using
GARCH(1,1) as in Chapter 4, see numerical experiment in Chapter 4.
Then the equilibrium allocation point will exist by following the Algorithm
(5.15) and shown in the Figure 5.4. Note that, the difference between the
efficient frontiers is not very significant which implies that the investor will
follow the trading strategy until the end of the investment period which
comes from solving cooperative investment in multi-periods with dynamic
programming in order to avoid breaking down the contract between investors
in the middle of the investment period.

• In continuous time, we will complete solving dynamic cooperative invest-
ment DCI problem (4.3) as in Chapter 4 in continuous time to find fair
allocation and suppose we have one risk free and 3 stocks chosen randomly
from S&P 100 and found by using COGARCH(1,1). Let T = 10 years
where the first investor has σ(y1) as a risk measure and the second investor
has σ−(y2) as a risk measure. We will fix the value of π1 and π2 which are the
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Figure 5.4: Finding equilibrium allocation for DCI according to Algorithm
(5.15) where the equilibrium allocation for first investor from Proposition (5.5)
and Proposition (5.6) for second investor and solving CI and DCI as shown in

Algorithm 4.2, where R1 in this Figure = ρ1 = 0.5, and R2 =ρ2 = 0.25

expected returns for first and second investor, respectively. In our case we as-
sume that risk free r0 = 0.0000136, π1 = 0.00016 and π2 = 0.0001917, where
π1+π2 > r0. Hence, the fair allocation by following Algorithm (5.15) and our
result is shown in Figure 5.5. Note that, the difference between the efficient
frontiers is not very significant which implies that the investor will follow the
trading strategy until the end of the investment period which comes from
solving cooperative investment in multi-periods with dynamic programming
in order to avoid breaking down the contract between investors in the middle
of the investment period.

• Certainty equivalent: In our experiment we will choose a portfolio con-
sisting of one-risk free asset and three risky assets chosen randomly from
S&P 100. Firstly, we solve problem (4.4) to find the certainty equivalent,
where each investor has $50 a initial wealth, hence the total initial wealth
they are begin with is $100. Moreover, solve two period problem with 30
scenarios at each node and solve the problem as a global case as shown in
the Algorithm 4.2. Also, we will resolve the same problem (4.4) by using
force in back technique (dynamic program) as a second way, then apply the
Algorithm (5.15) and comparing the result as shown in the following Table
5.1. We notice that we get the same value for the certainty equivalent or
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Figure 5.5: Finding equilibrium allocation for DCI according to Algorithm
(5.15) where the equilibrium allocation for first investor from Proposition (5.1)
and Proposition (5.2) for second investor and solving CI and DCI as shown in

Chapter 4 for continuous time

methods C for 1st C for2sd

global solution +50.039 +50.18
dynamic solution +50.007 +50.18
individual solution +50.00035 +50.0017

Table 5.1: Example of certainty equivalent with T=2 and 30 scenarios

cash amount for the second investor since we solve the problem at fixed level
for π = 50.18 in problem (4.4).
Extension period:
We solve the same problem (4.4) but in T = 20 periods and 50 scenarios at
each node in each period and exactly the same way as in the second period
we solve it in the case of a global solution as well as in the dynamic solution
where we fix the π = 101.2175 as the initial wealth each investor has $100,
hence the result we get is shown in the following Table 5.2.

methods C for 1st C for2sd

global solution +101.06752 +101.2175
dynamic solution +101.01311 +101.2175
individual solution +100.0071 +100.00862

Table 5.2: Example of certainty equivalent with T=20 and 50 scenarios
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Numerical solution for prospect theory:
In this experiment we will solve the problem (3.3) with ν chosen from Tversky
and Kahnmanand [138] for the first investor and Prelec [116] for the second
investor.
Firstly : we will solve the problem (3.3) in the two-period model and 30

scenarios at each node. In case of global solution and dynamic solution the
way to process is as in the Algorithm (5.15). where the portfolio contains
one risk-free asset and three risky assets chosen randomly from S&P 100.
Secondly :

We will solve the problem (3.3) by using force in back technique (dynamic
solution), where each investor has $50 as initial wealth and note that the
reference point is the risk-free return rf = r0 = 2.5. Then our results are
shown in the following Figure 5.6 and Table 5.3.

Figure 5.6: Finding equilibrium allocation for DCI, problem (3.3) with Cer-
tainty equivalent for prospect theory according to Algorithm (5.15)

methods C for 1st C for2sd

global solution +51.36407 +50.088
dynamic solution +51.00232 +50.088
individual solution 50.224 +50.012

Table 5.3: Example of certainty equivalent by using prospect theory and solv-
ing problem (3.3) with T=2 and 30 scenarios

Extension period: In this experiment, we need to extend the problem and
resolve it in T = 20 periods and 50 scenarios at each node, with the same
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risk-free rate and the initial wealth for each investor will be $100. Thus our
result can be illustrated as in the following Table 5.4.

methods C for 1st C for2sd

global solution +101.4956 +100.046
dynamic solution +101.0131 +100.046
individual solution +100.009 +100.012

Table 5.4: Example of certainty equivalent by using prospect theory and solv-
ing problem (3.3) with T=20 and 50 scenarios

Note that, the experiments show that the investors having different preferences
can use cooperation to achieve strictly better outcome which is presented as equi-
librium allocation, compared to optimal individual investment.

5.4 Discussion and concluding remarks

In this chapter, we addressed the question of selecting a ‘fair’ point from the Pareto
optimal set, and suggest that ‘fair’ allocation corresponds to an equilibrium one.
In some cases, we derive an explicit formula for equilibrium allocation for each
investor according to their preferences. Then, the questions of uniqueness and
stability of the equilibrium price are addressed. We developed the sufficient condi-
tions that guarantee that the local equilibrium price is unique for the cooperative
investment case such as for the first investor having a standard deviation as risk
preference and standard lower semi-deviation for the second investor. We also
determined the unique equilibrium allocation corresponding to cooperative invest-
ment problems with risk measure preferences as well as for certainty equivalent and
prospect theory formulations. In all numerical experiments, the suggested “fair”
allocation in strictly better for every investor than optimal individual investment,
which provides a strong motivation for cooperation.



Chapter 6

Conclusion and Future Work

The thesis studies the dynamic cooperative investment problem, in which m = 2

investors collect their initial capital, invest the joint capital into a trading strategy,
and then divide the terminal wealth among them in an ‘optimal’ way. The case of
2 investors is the simplest non-trivial case of cooperation, which already contains
many ideas which can be applied to the more general cases. It also has a practical
importance, because it may be easier for an investor to find one partner whom
he/she would trust, than to form a big coalition. We have demonstrated that
even this simple coalition of 2 investors already can achieve strictly better results
than optimal individual investment .This problem was studied before only in a
few special cases, such as agents with expected utility preferences, see Parkes [113]
and Xia [143], mean-deviation preferences in a one-period model, see Grechuk and
Zabarankin [66], or multi-period model with drawdown constraints, see Grechuk
and Zabarankin [68].

The summary of solving dynamic cooperative investment problem in this thesis
consists of the following parts.

(i) Preference modelling. First, understand how agents would invest individ-
ually, that is, what are their utility/risk preferences in the financial market
in one-period and dynamic cases. We study these questions in Chapters 2
and 3. As a result we investigate the behaviour of agents in the context
of expected utility theory, mean-deviation analysis, mean-risk analysis, and
prospect theory. In the dynamic setting, we also distinguish between op-
timal pre-commitment strategies, which may however be time-inconsistent,

123
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and optimal time-consistent strategies. Thus, the best treatment of this
problem resolving cooperative investment by using dynamic programming.

(ii) Market modelling. Second, we developed methods for forecasting the
future behaviour of rates of return of financial instruments as random vari-
ables/stochastic processes. Here, we use the naive approach with historical
simulation, as well as a more economically meaningful approach using simula-
tion with the GARCH model. This model applied to numerical experiments
as shown in Chapters 3 and 4.

(iii) Optimal trading strategies and Pareto optimal allocation. Third,
given investors’ risk preferences (step (i)) and forecasts of future market
behaviour (step (ii)), hence we can develop optimal trading strategies for the
group of investors, and an optimal way to divide the resulting terminal wealth
among them. Here, by ‘optimal’ we mean Pareto optimal, that is, there is
no way for all investors to be better simultaneously. For two investors, we
graphically present the corresponding ‘efficient frontiers’ between them. See
Chapters 3 and 4.

(iv) Fair allocation. Finally, we address the question of selecting a ‘fair’ point
from the Pareto optimal set. We solve this question by using equilibrium
theory. We present an explicit formula for each investor in case of standard-
deviation and semi-deviation for first and second investor, respectively. The
explicit formulas are presented in propositions 5.1, and 5.2 which are the
most significant mathematical part in this thesis, see Chapter 5.

As a result of this thesis, the main benefit from cooperative investment is that
the terminal wealth at the last stage may be divided in an arbitrary way, and the
agent may therefore create ‘shares’ which are not available at the initial incomplete
market. As a result, the agents can have either shares with strictly less risk
compared to the optimal individual investment, or with the same risk and strictly
greater expected return. This is demonstrated numerically in Chapter 2, Tables
(2.3),(2.4),(2.5),(2.6),(2.7),(2.8) and (2.9) for one-period model, and in Chapters
3 and 4, Graphs (3.2),(3.5),(3.6),(3.7),(3.8),(3.9),(3.10),(4.6),(4.7),(4.8),(4.9) and
(4.12) in multi- period and continuous time models.

While working in a multi-period setting in Chapter 3, we notice that optimal pre-
commitment strategy is hard to compute and time-inconsistent. We have therefore
solving it, complemented it by a dynamic programming technique (see Bielecki et
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al. [24] and Bjork and Murgoci [25]), and, alternatively, by a new technique based
on compound independent axioms of Segal [133]. In the latter method, an uncer-
tain outcome from investment on the last period can be replaced by its certainty
equivalent, and then this process is repeated until the first period is reached. The
resulting strategies are worse than the pre-commitment strategy, but are dynam-
ically stable, so that investors will not want to break down the contract between
them during the process. We remark, however, that the difference between efficient
frontiers resulting from optimal pre-commitment and optimal stable strategies is
not very significant.

In the result in Chapter 4, we address the question of realistic market modelling, to
get the realistic one we apply the GARCH(1, 1) model in discrete time as well as
the COGARCH(1, 1) model in continuous time, see Nelson [110] and Kluppelberg
[89]. Based on these models, we have designed a scenario tree as shown in Glupiner
et al. [70] and binary tree. We then check that the resulting tree is arbitrage free
using the method from Klassen [88].

Resulting in Chapter 5, we address the last main question in this dissertation,
which is finding the fair division among the participants from the set of Pareto
optimal divisions. We argue that the fair allocation should be based on the concept
of equilibrium. In particular, in Chapter 5 we derive an explicit formula to find
a fair equilibrium allocation according to equilibrium price for each investor. The
explicit formulas are presented in propositions 5.1, and 5.2 which are the most
significant mathematical part in this thesis. Using the formulas that shown in
section 5.1, we were able to numerically find equilibrium prices for investors using
different risk preferences. We also show that a sufficient condition for the local
uniqueness of equilibrium, see Quah [117], holds in many of the cases considered
in this dissertation; see Remark 5.13.

We argue that the result of the thesis may have practical importance. Resulting
from numerical experiments Table(2.3),(2.4),(2.6),(2.7),(2.8) and (2.9) for a one-
period model and Graphs (3.2),(3.5),(3.6),(3.7),(3.8),(3.9),(3.10), (4.6),(4.7),(4.8),
(4.9) and (4.12) in multi-period and continuous time clearly show that it is strictly
beneficial to invest cooperatively rather than individually. Most of the programmes
developed in the thesis can be used by practitioners. In summary, a group of
investors should (i) decide what are their corresponding utility/risk functions, and
which of these should be considered in this thesis, (ii) download historical data
for the financial instruments they want to invest in, and (iii) use the programmes
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developed in Appendix A in the thesis to see how they should invest during each
period, and, at the end, how they should distribute the final wealth among them
see propositions (5.1)-(5.6). The detailed step-by-step user guide on how to do this
is presented in Appendix B. In addition, all the MATLAB code used is presented
in Appendix A, so that advanced users could modify it for their special needs.

In future work, we would like to investigate the effect of the model of consumption
utility function as shown in Rabin [118] and Khoszegi [92] and the cooperative
investment model with agents using prospect theory. In addition, we would like to
use the developed methods to find a closed form solution for dynamic cooperative
investment for the prospect theory case. We would also like to extend the results
of this thesis to the markets with transaction cost. It would also be interesting to
solve the stochastic differential equation (4.12) by using the spline interpolation
method, which would lead to a more accurate solution of CI and DCI in continuous
time.
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Some codes in MATLAB for IV, CI,

DCI and equilibrium

Some code solving IV CI and DCI in single period

All of the following code that solve the problem which shown in the numerical
experiment in Chapter 2. We use Price matrix that download from Yahoo finance,
this shows the price matrix forS&P100 with weekly closed price of these stocks
from 1/January/2011 to 1/January/2013, where the price matrix is P96,100 matrix
and Return matrix is R95,100. Note that, between cvx begin and cvx end it is
underscore symbol.

• 1) Cooperative Investment between two investors, D1(y1) is standard devi-
ation σ =

√
σ2 , and D2(y2)= is standard lower semi deviation σ− =

√
σ2
−.

function [ w,val] = minvar119( P)
% P=[],pricing matrix
% variance and semi variance , cooperative investment
[m,n]=size(P)
% For Return matrix
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
% for expected return
N=100;
for i=1:1:m-1

127
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for j=1:1:n
E=sum(R)./N
end
end
R=R;
E=E;
r=E
rr=sum(R);
size(R);
size(E);
c=cov(R);
v= diag(c)
vv=(v’)*v
c=corrcoef(R);
s=vv*c
pi=0.6 % π > r0

n=100;
cvx-begin
variable w(n);
variable y1(n);
variable y2(n);
Erp=E*w
X=r’.*w
D1=square(y1-(sum(y1)/n)) % first investor has D1(y1)= variance (y1)
DD1=sum(D1)/n
for i=1:1:100
D2= square-pos(sum((max(-y2(i)+((sum(y2))/100),0))))/100 % second in-
vestor has
D2(y2)= standard lower deviation.
end
% note that semi variance is square-neg but this is not working in cvx except
sequre-pos so that, we multiply - between -(X-EX)
Ds=max(DD1,D2)
minimize(Ds)
subject to
sum(w)==1;
w>=0;
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Erp>=pi
y1+y2==X
cvx-end
y1=y1
y2=y2
W=w
end

Figure A.1: Result in MATLAB for CI with variance and semi variance
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• 2) Individual investment for investor has a variance as risk preferences
function [ w,val] = minvar112( P)
% P=[],pricing matrix
% standard deviation σ=

√
σ2,as individual investment

[m,n]=size(P)
% For Return matrix
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
% for expected return
N=100;
for i=1:1:m-1
for j=1:1:n
E=sum(R)./N;
end
end
R=R;
E=E;
r=E
rr=sum(R);
size(R);
size(E);
pi=0.03;
n=100;
cvx-begin
variable w(n);
Erp=E*w
X=r’.*w
xs=size(X)
D1=square(X-(sum(X)/n))
DD1=sum(D1)/n
minimize(DD1)
subject to
sum(w)==1;
w>=0;
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Erp>=pi
cvx-end
W=w
end

Figure A.2: Result in MATLAB for IV with variance
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• 3) Individual investment for investor has a semi variance as risk preferences
function [ w,val] = minsemvar1113( P,pi)
% P=[],pricing matrix
% variance from formula, individual investment r0=1
[m,n]=size(P)
% For Return matrix
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
% for expected return
N=100;
for i=1:1:m-1
for j=1:1:n
E=sum(R)./m
end
end
R=R;
E=E;
r=sum(R)
rr=sum(R);
size(R);
pi=0.020; % Pi1 > r0

cvx-begin
variable w(n);
Erp=E*w
X=r’.*w
xs=size(X)
% for i=1:1:n
% D1= square-pos(((max(-X(i)+Erp,0))))
% D1=square(X-(sum(X)/n))
D1= square-pos((-X+(sum(X)/n)))
DD1=sum(D1)/n
minimize(DD1)
subject to
sum(w)==1;
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w>=0;
Erp>=pi
cvx-end
W=w
rrr=r’
EE=E’
end

Figure A.3: Result in MATLAB for IV with semi variance
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• 4) Cooperative investment between MAD(y1) and standard lower semi-
deviation σ− =

√
σ−2 for second investor.

function [ w,val] = MADmean4(P)
% P=[],pricing matrix
% variance from formula and MAD for cooperative case
%P=[],pricing matrix
[m,n]=size(P)
% For Return matrix
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
% for expected return
N=100;
for i=1:1:m-1
for j=1:1:n
E=sum(R)/N
end
end
E=E;
n=100;
pi=0.05;
c=cov(R);
E=sum(R)/N
n=100;
cvx-begin
variable w(n);
variable y1(n);
variable y2(n);
Erp=E*w
X=Erp
size(w)
ab=sum(abs(y1-(sum(y1)./n)))./n % first investor D1(y1)=MAD(y1)
sab=size(ab)
MAD= sum(ab)*1/100
D1=MAD
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D2b=(sum((y2-(sum(y2)./n)))2)./n % second investor D2(y2)= varince
D2=sum(D2b)
Ds=max(D1,D2)
minimize(Ds)
subject to
sum(w)==1;
y1+y2==X
w>=0;
sum(Erp)>=pi
cvx-end
W=w
end

Figure A.4: Result in MATLAB for CI with mean absolute deviation
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• 5) Individual investment for MAD(X)
function [ w,val] = MADmean3(P )
% P=[],pricing matrix
% MAD formula, individual investment
% P=[],pricing matrix
[m,n]=size(P)
% For Return matrix
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
% for expected return
N=100;
for i=1:1:m-1
for j=1:1:n
E=sum(R)/N
end
end
E=E;
n=100;
r=sum(R);
pi=0.03 % pi>r0
E=sum(R)/n
n=100;
cvx-begin
variable w(n);
Erp=E*w
X=r’.*w
EX=sum(X)/n
size(w)
ab=abs(EX-X)
sab=size(ab)
MAD= sum(ab)*1/n
MMAD= avg-abs-dev(X)
% note that the formula MMAD= that calculate MAD by CVX the same
exactly as we calculate it by MAD
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minimize(MAD)
subject to
sum(w)==1;
w>=0;
sum(Erp)>=pi
cvx-end
W=w
end

Figure A.5: Result in MATLAB for IV with mean absolute deviation
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• 6) Cooperative investment between D1(y1)=Ey1-inf(y1), D2(Y2)=Sup(y2)-
inf(Y2)
function [ w,val] = Exinfmeancoopr(P)
% P=[],pricing matrix
% variance from formula
% P=[],pricing matrix
% with D1 and D2( collation)
r0=0.01;
R=sum(P)
[m,n]=size(P)
% For Return matrix
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
% for expected return
N=100;
for i=1:1:m-1
for j=1:1:n
E=sum(R)/N
end
end
E=E;
n=100;
r=sum(R)
pi=0.06 % pi>r0
r=sum(R);
cvx-begin
variable w(n);
variable y1(n);
variable y2(n);
Erp=R*w
X=r’.*w
size(w)
D1=(sum(y1)/100)-min(y1) % first investor has D1(y1)=EX-inf(X)
D2=max(y2)-min(y2) % second investor has D2(y2)= sup(X)-inf(X)
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Ds=max(D1,D2) % deviation measure for coalition S, max between D1, and
D2
minimize(Ds)
subject to
sum(w)==1;
w>=0;
sum(Erp)>=pi
y1+y2==X
cvx-end
W=w
y1=y1;
y2=y2;
end

Figure A.6: Result in MATLAB for CI with inf(X) and sup(X)
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• 7) Individual investment, D1(X)=EX-inf(X) or D2(X)=sup(X)-inf(X)
function [ w,val] = Exinfmeanindvdual(P)
% P=[],pricing matrix
%P=[],pricing matrix
% with variance and semi ( collation)
% D1(x)=EX-inf(x),or D1(X)=sup(X)-inf(X), individual investment
[m,n]=size(P)
% For Return matrix
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
% for expected return
N=100;
for i=1:1:m-1
for j=1:1:n
E=sum(R)/N
end
end
E=E;
n=100;
r=sum(R)
pi=0.02
cvx-begin
variable w(n);
Erp=E*w
X=r’.*w
size(w)
D1=(sum(X)/N)-min(X)
% D1=max(X)-min(X)
minimize(D1)
subject to
sum(w)==1;
w>=0;
Erp>=pi
cvx-end
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W=w
ssss=sum(w)
end

Figure A.7: Result in MATLAB for IV with EX − inf(X))

Figure A.8: Result in MATLAB for IV with sup(X)− inf(X))
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• 8) Individual investment with risk measure is CVaR(X)
function [ w,val] = MixCVARmean4(P)
% P=[],pricing matrix
% Mix CVar from formula
%P=[],pricing matrix
% mix CVar and CVar( collation)
N=3;
r0=0.01; % r0=1
[m,n]=size(P)
% For Return matrix
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
% for expected return
N=100;
for i=1:1:m-1
for j=1:1:n
E=sum(R)./N
end
end
R=R;
E=E;
r=sum(R);
pi=0.02;
n=100;
u=mean(E);
vv=var(E);
q=quantile(E,0.95);
PDF=unidpdf(E,100);
%this is probability distribution function for random variable of rate of re-
turn for portfolio and n=100,
CDF=unidcdf(E,100);
% this is Cumulative distribution function
alpha1=95;
alpha2=97;
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cvx-begin
variable w(n);
Erp=E*w
X=r’.*w
XX=X’
size(w)
lambda1=0.25;
lambda2=0.75;
Cvar1=sum((X(1:95)))*1/n
CCvar1=(sum(X)/n)-(1/alpha1)*(Cvar1)
% second CVar
Cvar2=sum((X(1:97)))*1/n
CCvar2=(sum(X)/n)-(1/alpha2)*(Cvar2)
CCvar=(lambda1*CCvar1)+(lambda2*CCvar2)
minimize(CCvar)
subject to
sum(w)==1;
w>=0;
sum(Erp)>=pi
cvx-end
W=w
e=E’
end
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Figure A.9: Result in MATLAB for IV with mix-CV AR(X)

• 9) Cooperative case Mix-CVAR
function [ w,val] = MixCVARmeancooprat(P)
% P=[],pricing matrix
% Mix Cvar from formula
%P=[],pricing matrix
% CVar and Mix- Cvar ( collation)
N=3;
r0=0.01; % r0=1
[m,n]=size(P)
% For Return matrix
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
% for expected return
N=100;
for i=1:1:m-1
for j=1:1:n
E=sum(R)./N
end
end
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R=R;
E=E;
r=sum(R);
pi=0.02;
n=100;
u=mean(E);
vv=var(E);
q=quantile(E,0.95);
PDF=unidpdf(E,100);
% this is probability distribution function for random variable of rate of
return for
portfolio and n=100,
CDF=unidcdf(E,100);
% this is Cumulative distribution function
alpha1=95;
alpha2=97;
cvx-begin
variable w(n);
variable k(1);
Erp=E*w
X=r’.*w
XX=X’
y1=X-k;
y2=X-y1;
size(w)
lambda1=0.25;
lambda2=0.75;
Cvar1=sum((y1(1:95)))*1/n
CCvar1=(sum(y1)/n)-(1/alpha1)*(Cvar1)
% second CVar
Cvar2=sum((y1(1:97)))*1/n
CCvar2=(sum(y1)/n)-(1/alpha2)*(Cvar2)
CCvar=(lambda1*CCvar1)+(lambda2*CCvar2)
% second investor
alpha3=99;
Cvar3=sum((y2(1:99)))*1/n
CCvar3=(sum(y2)/n)-(1/alpha3)*(Cvar3)
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% second CVar
Ds=max(CCvar,CCvar3)
minimize(Ds)
subject to
sum(w)==1;
w>=0;
sum(Erp)>=pi
y1+y2==X
cvx-end
W=w
end

Figure A.10: Result in MATLAB for CI with mix-CV AR(X)
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• CI in multi period and DCI The following codes are solve CI and DCI
follow example in Pliska (1997) [115] as shown in the table

Table A.1: Observing security price

ωk t=0 t=1 t=2
ω1 S0=5 S1=8 S2=9
ω2 S0=5 S1=8 S2=6
ω3 S0=5 S1=4 S2=6
ω4 S0=5 S1=4 S2=3

• 10) Cooperative investment solving problem directly
function [OPtimal] = copraminvarmeanvarsemiexample(beta,r0,pi1,pi2)
% this programme to find a fair allocation for mean-variance function ,where
Cooperative Investment between two investors, D1(y1) is standard deviation
σ =
√
σ2 , and D2(y2)= is standard lower semi deviation σ− =

√
σ2
−.

N=4;
cvx-begin
variable a(1,1);
variable b(1,1);
variable c(1,1);
variable y1(N,1);
variable y2(N,1);
%i=the number of scenario of the second period , i=1„....N, to get
%first scenario of uncertainty outcome for all
Xw11=((-1*a)+(8*a/5))-b+(b*(9/8))
Xw21=((-1*a)+(8*a/5))-b+(b*(6/8))
Xw31=((-1*a)+(4*a/5))-b+(c*(6/8))
Xw41=((-1*a)+(4*a/5))-b+(c*(3/8))
Xw=[Xw11,Xw21,Xw31,Xw41];
D1= square((y1-(sum(y1)/N)))
svary1=sum(D1)/N
Ey2=((sum(y2)/N))
Ey1=((sum(y1)/N))
D2= square-pos((-y2+(sum(y2)/N)))
EX=sum(Xw)/N
vary2=sum(D2)/N
Ey2=((sum(y2)/N))
Ey1=((sum(y1)/N))
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D2= square((y1-(sum(y1)/N)))
D1= square-pos((-y2+(sum(y2)/N)))
svary21=sum(D1)/N
Ey2=((sum(y2)/N))
minimize(vary1)
subject to
svary21<=beta
Ey1>=pi1
Ey2>=pi2
y1+y2==Xw’
a>=-1
a<=1
b>=-1
b<=1
c>=-1
c<=1
cvx-end
a=a
b=b
c=c
y1=y1
y2=y2
end
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Figure A.11: Result in MATLAB for DCI,T=2 for global solution

• 11) Dynamic cooperative investment
The following problem used to find the optimal strategy c and b as separated
code by solve cooperative investment in single period for each one. firstly
by put % for variable c as well as for Xw31 and Xw41 and solve to get the
optimal b. Secondly, by put
% for variable b as well as for Xw11 and Xw21 . Hence find the optimal
strategy c. D1(y1) is standard deviation σ =

√
σ2 , and D2(y2)= is standard

lower semi deviation σ− =
√
σ2
−.

function [OPtimal] = copraminvarmeanvarsemiexampledy(beta,r0,pi1,pi2)
% Dynamic cooperative investment , hence we have two sub problems in
% single -period for example pi2 = 0.3, pi1 = 0.2;N = 2, we will use this
% program to solve dynamic programming first case we will solve over the
% variable a,b, and we will choose Xw11 and Xw21. second case to find
% trading strategy c by choose Xw11 and Xw21 and a will be arbitrary
N=2;
cvx-begin
variable a(1,1);
%variable b(1,1);
variable c(1,1);
variable y1(N,1);
variable y2(N,1);
%k =the arrange of scenario of the second period , k = 1, , ....N , to get
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% the all scenarios in the second period , if we put k = 1 they will get
% the first set of scenarios at T = 2, and if you put,k = 2, we get the
% second set of all scenarios at T = 2

% first scenario for all
% Xw11=((-1*a)+(8*a/5))-b+(b*(9/8))
% Xw21=((-1*a)+(8*a/5))-b+(b*(6/8))
Xw31=((-1*a)+(4*a/5))-c+(c*(6/8))
Xw41=((-1*a)+(4*a/5))-c+(c*(3/8))
Xw=[Xw31,Xw41];
D2= square((y1-(sum(y1)/N)))
vary1=sum(D2)/N
Ey2=((sum(y2)/N))
Ey1=((sum(y1)/N))
D1= square-pos((-y2+(sum(y2)/N)))
EX=sum(Xw)/N
vary1=sum(D2)/N
Ey2=((sum(y2)/N))
Ey1=((sum(y1)/N))
D2= square((y1-(sum(y1)/N)))
D1= square-pos((-y2+(sum(y2)/N)))
svary21=sum(D1)/N
Ey2=((sum(y2)/N))
minimize(vary1)
subject to
svary21<=beta
Ey1>=pi1
Ey2>=pi2
y1+y2==Xw’
a>=-1
a<=1
% b>=-1
% b<=1
c>=-1
c<=1
cvx-end
a=a
%b=b
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c=c
y1=y1
y2=y2
end

Figure A.12: Result in MATLAB for DCI,T=2 find trading strategy b

Figure A.13: Result in MATLAB for DCI,T=2 find trading strategy c
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• 12) Fixed the trading strategy and solve it in recursive manner
over one variable a
This programme to find optimal strategy a at first period and fix the optimal
strategy b and c which are found it from previous code for DCI.
function [OPtimal] = copraminvarmeanvarsemiexampledyfix(beta,r0,b,c,pi1,pi2)
%Dynamic cooperative investment, hence we have two sub-problem in
% single − period for example 4 pi2 = 0.3, pi1 = 0.2; N = 2, we will use
this
% program to solve dynamic programming after we fix the trading strategy
%band c and solve the problem over one variable a. D1(y1) is standard devi-
ation σ =

√
σ2 , and D2(y2)= is standard lower semi deviation σ− =

√
σ2
−.

N=2;
N=4;
cvx-begin
variable a(1,1);
variable y1(N,1);
variable y2(N,1);
% k= the arrange of scenario of the second period , k=1„....N, to get
% the all scenarios in the second period , if we put k = 1 they will get
% the first set of scenarios at T = 2, and if you put, k = 2, we get the
%second set of all scenarios at T = 2

% first scneario for all
Xw11=((-1*a)+(8*a/5))-b+(b*(9/8))
Xw21=((-1*a)+(8*a/5))-b+(b*(6/8))
Xw31=((-1*a)+(4*a/5))-b+(c*(6/8))
Xw41=((-1*a)+(4*a/5))-b+(c*(3/8))
Xw=[Xw11,Xw21,Xw31,Xw41];
D2= square((y1-(sum(y1)/N)))
vary1=sum(D2)/N
Ey2=((sum(y2)/N))
Ey1=((sum(y1)/N))
D1= square-pos((-y2+(sum(y2)/N)))
EX=sum(Xw)/N
vary1=sum(D2)/N
Ey2=((sum(y2)/N))
Ey1=((sum(y1)/N))
D2= square((y1-(sum(y1)/N)))
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D1= square-pos((-y2+(sum(y2)/N)))
svary21=sum(D1)/N
Ey2=((sum(y2)/N))
minimize(vary1)
subject to
svary21<=beta
Ey1>=pi1
Ey2>=pi2
y1+y2==Xw’
a>=-1
a<=1
cvx-end
a=a
end

Figure A.14: Result in MATLAB for DCI,T=2 find trading strategy a, first
period
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• 13) Equilibrium price for DCI
This code used to check feasibility problem and to find the equilibrium price
for mean-variance problem.
function [OPtimal] = equilalloprice(pi1,pi2)
%Equilibrium for feasibility
% this programe to find a fair allocation for mean variance function as
% with four random variable.D1(y1) is standard deviation σ =

√
σ2 , and

D2(y2)= is standard lower semi deviation σ− =
√
σ2
−.

n=1;
cvx-begin
variable p(4,n)
variable a(n)
variable b(n)
variable c(n)
% for the first agent
pq=square-pos (p)
spq=sum(pq)
ssppq= sum-square (p)
ppq=4*ssppq/pi1
y11=pi1-(pi1*p(1,1))/spq
size(y11)
y12=pi1-(pi1*p(2,1))/spq
y13=pi1-(pi1*p(3,1))/spq
y14=pi1-(pi1*p(4,1))/spq
% for the second agent
pqq=4*ssppq/pi2
y21=max (pi2-(pi2*p(1,1))/spq,0)
y22=max (pi2-(pi2*p(2,1))/spq,0)
y23=max (pi2-(pi2*p(3,1))/spq,0)
y24=max (pi2-(pi2*p(4,1))/spq,0)
% the random variable of uncertainty outcome
w1=((1-a)+8*a/5)-b+(9*b/8)
w2=((1-a)+8*a/5)-b+(6*b/8)
w3=((1-a)+4*a/5)-c+(6*c/8)
w4=((1-a)+4*a/5)-c+(3*c/8)
minimize(0)
subject to
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(y11+y21)-w1==0
(y12+y22)-w2==0 % y1+y2 in F feasible set
(y13+y23)-w3==0
(y14+y24)-w4==0
p(1,1)+p(2,1)+p(3,1)+p(4,1)==1
(-p(1,1)+((8/5)*p(1,1))-p(2,1)+((8/5)*p(2,1))-p(3,1)+((4/5)*p(3,1))-p(4,1)
+((4/5)*p(4,1)))==0
(-p(1,1)-p(2,1)+((9/8)*p(1,1))+((6/8)*p(2,1)))==0
(-p(3,1)-p(4,1)+((6/4)*p(3,1))+((3/4)*p(4,1)))==0
b>-1
b<1
cvx-end
p=p
a=a
b=b
c=c
end

Figure A.15: Result in MATLAB for equilibrium allocation for σ and σ−
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Another example :

• 14) Equilibrium for exponential utility function
This code used to check feasibility problem and to find the equilibrium price
for exponential utility function.
function [OPtimal] = equilallo(alpha1,alpha2) % this programme to find a
fair allocation for exponential function as % utility function when alpha =

1/4 % with four random variable % alpha is a risk aversion %U(W ) =

−exp(alpha ∗W ), the same for second investor where alpha2 = 1/2

n=1;
cvx-begin
variable p(4,n)
variable a(n)
variable b(n)
variable c(n)
%for the first agent
y11=(-2*(((log(8*p(1,1))))+((log(8*p(2,1))))+((log(8*p(3,1))))
+((log(8*p(4,1))))))-(2*log(8*p(1,1)))
size(y11)
y12=(-2*(((log(8*p(1,1))))+((log(8*p(2,1))))+((log(8*p(3,1))))
+((log(8*p(4,1))))))-(2*log(8*p(2,1)))
y13=(-2*(((log(8*p(1,1))))+((log(8*p(2,1))))+((log(8*p(3,1))))
+((log(8*p(4,1))))))-(2*log(8*p(3,1)))
y14=(-2*(((log(8*p(1,1))))+((log(8*p(2,1))))+((log(8*p(3,1))))
+((log(8*p(4,1))))))-(2*log(8*p(4,1)))
% for the second agent
y21=(-4*(((log(16*p(1,1))))+((log(16*p(2,1))))+((log(16*p(3,1))))
+((log(16*p(4,1))))))-(4*log(16*p(1,1)))
y22=(-4*(((log(16*p(1,1))))+((log(16*p(2,1))))+((log(16*p(3,1))))
+((log(16*p(4,1))))))-(4*log(16*p(2,1)))
y23=(-4*(((log(16*p(1,1))))+((log(16*p(2,1))))+((log(16*p(3,1))))
+((log(16*p(4,1))))))-(4*log(16*p(3,1)))
y24=(-4*(((log(16*p(1,1))))+((log(16*p(2,1))))+((log(16*p(3,1))))
+((log(16*p(4,1))))))-(4*log(16*p(4,1)))
% the random variable of Uncertainty outcome
w1=((-a)+8*a/5)-b+(9*b/8)
w2=((-a)+8*a/5)-b+(6*b/8)
w3=((-a)+4*a/5)-c+(6*c/8)
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w4=((-a)+4*a/5)-c+(3*c/8)
minimize(0)
subject to
(y11+y21)-w1==0
(y12+y22)-w2==0 % y1+y2 in F fesiable set
(y13+y23)-w3==0
(y14+y24)-w4==0
(-p(1,1)+((8/5)*p(1,1))-p(2,1)+((8/5)*p(2,1))-p(3,1)+((4/5)*p(3,1))-p(4,1)
+((4/5)*p(4,1)))==0
(-p(1,1)-p(2,1)+((9/8)*p(1,1))+((6/8)*p(2,1)))==0
(-p(3,1)-p(4,1)+((6/4)*p(3,1))+((3/4)*p(4,1)))==0
p(1,1)+p(2,1)+p(3,1)+p(4,1)==1
a>=-1
a<=1
b>=-1
b<=1
c>=-1
c<=1
cvx-end
p=p
a=a
b=b
c=c
end
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Figure A.16: Result in MATLAB for equilibrium allocation for 1−exp(−αX)

• 15) Detection of Arbitrage
function [OPtimal] =generalmulti2assetarabitrage6b(P)
r0=0.10
[m,n]=size(P)
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
N=100; % for example
for i=1:1:m-1
for j=1:1:n
E=sum(R)./N
end
end
R=R;
[M,n]=size(R)
ss=1+R
cvx-begin
variable v(1,M)
maximize(0)
f=sum(v*ss)
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subject to
sum(v*ss)==1
(v)>=0
cvx-end
end

• 16) Solving the CI to get the Certainty equivalent that shown in Chapter 5
function [OPtimal] = copraminvarmeanvarsemiexamplCEGlobal5(r0,R1,R2,K)
N=4;
% where c1 ≈ U1 = µ− σ2

2R
and c2 ≈ U2 = µ− σ2

−
R

cvx-begin
variable a(1,1);
variable b(1,1);
variable c(1,1);
variable y1(4,1);
variable y2(4,1);
firstly: scenario for all at the end period
Xw11= 1+(8/5)*a+b*(8/5)
Xw21=1+(8/5)*a-b*(6/5)
Xw31=1-(6/5)*a+c*(8/5)
Xw41=1-(6/5)*a-c*(6/5)
D2=var(y1)
Xw=[Xw11,Xw21,Xw31,Xw41];
vary1=sum(D2)/N
Ey2=((sum(y2)/N))
Ey1=((sum(y1)/N))
D1= square-pos((-y2+(sum(y2)/N)))
EX=sum(Xw)/N
sdy2=sum(D1)/N
Xw=[Xw11,Xw21];
EX=sum(Xw)/N
U1=Ey1-((vary1)/2*R1)
U2=Ey2-((sdy2)/R2)
maximize(U1)
subject to
U2>=K
a>=-1
a<=1
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b>=-1
b<=1
c>=-1
c<=1
y1(1,1)+y2(1,1)==Xw11
y1(2,1)+y2(2,1)==Xw21
y1(3,1)+y2(3,1)==Xw31
y1(4,1)+y2(4,1)==Xw41
cvx-end
a=a
b=b
c=c
end

Figure A.17: Result in MATLAB for with certainty equivalent
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In all of my following code the figures show the result for n=6 risky asset
with N=30 scenario and up to T=20 according to my experiments in this
thesis. pi1 = 0.003, pi2 = 0.0004, w0 = 100, r0 = 0.0001, where D1(y1) is
standard deviation σ =

√
σ2 , and D2(y2)= is standard lower semi deviation

σ− =
√
σ2
−.

• Cooperative investment with real data
% the following codes that solve min var(y1) s.t svar(y2)
% N= number of scenario , h= number of node 1:N
% N= number of scenario , h= number of node 1:N at time T
% Note that in case of multi period we need to write the uncertainty outcome
which will written as follows
% (W0−sum(x))r0+x′∗r here r is a vector m×1 and x is trading strategies
at period t1 and w0 is the initial capital. Then, we will reinvest the whole
amount which we have in to the next period as ((w0− sum(x))r0 + x′ ∗ r(:
, 1))− sum(zt1) ∗ r0 + z′t1 ∗ r(m ∗N + 1 : 1)

% where zt1 is the trading strategy for first node for second period and so
on complete each period. in the codes below, we will reinvest the amount of
money which we have from previous period up to period T . Also, see cooprat-
meanvarco.m, coopratmeanvarcody.m,and coopratmeanvarcodyfix.m. note
that, by changing the value of β in the code e coopratmeanvarco.m,and
coopratmeanvarcodyfix.m. we will get the whole efficient frontier.

• 17) Cooperative investment with real data global solution
function [ w,val] = coopratmeanvarco(P,beta,w0,r0, N,T,pi1,pi2)
[m,n]=size(P)
Rr=[];
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
rt1=R(1:(m-1)/2 ,:);
rt2=R(((m-1)/2)+1:m-1,:);
rt11=rt1+1
rt21=rt2+1
[k, n]=size(rt21)
for i=1:k
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a(:,1)=(rt11(:,1)*rt11(i,1)’)-1
A=a
end
s=sum(R);
s=sum(R);
ss=mean(R);
vv=var(R);
r=mean(ss);
v=var(vv);
[M,h]=size(R)
for i=1:1:N
rr(i,:)=R(i,:);
end
rs=size(r)
rrs=size(rr)
cvx-begin
variable x(n,1);
variable z(n,N);
variable y1(N,1);
variable y2(N,1);
for k=1:N
% xww=(((w0-sum(x))*T*r0+x’*rr(k,:)’)-sum(z(:,k)))*(T-k)*r0+z(:,k)’*a((k-
1)*N+1:k*N,:)’ % for many period t.
xww=((((w0-sum(x)) *(T*r0))+x’*rr(2,:)’)-sum(z))*(T-h)*r0
end
for k=1:1:N
sxww=sum(xww)/N
end
Xw=sxww;
EX=sum(Xw)/N
D2= square((y1-(sum(y1)/N)))
EX=sum(Xw)/N
vary1=sum(D2)/N
Ey2=((sum(y2)/N))
Ey1=((sum(y1)/N))
D1= square-pos((-y2+(sum(y2)/N)))
svary21=sum(D1)/N
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Ey2=((sum(y2)/N))
minimize(vary1)
subject to
svary21<=beta
Ey1>=pi1
Ey2>=pi2
y1+y2==Xw’
sum(x)==1
sum(z)==1
z>=-1
z<=1
x>=-1
x<=1
cvx-end
x=x
z1t1=z(:,1);
z2t1=z(:,2);
z3t1=z(:,3);
end

Figure A.18: Result in MATLAB for CI for global solution with GARCH,
each x is the trading strategy at first period and z is a matrix of size T ×N and
each column of each row contains of trading strategy zn,t period t and node n
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Figure A.19: Result in MATLAB for CI for global solution with historical
data simulation, each x is the trading strategy at first period and z is a matrix
of size T × N and each column of each row contains of trading strategy zn,t

period t and node n

• 18) Dynamic code to find each trading at each node in each period
function [ w,val] = coopratmeanvarcody(P,beta,w0,r0, N,h,T,pi1,pi2)
% this is program that solve min var(y1) s.t svar(y2)
% N= number of scenario , h= number of node 1:N
% N= number of scenario , h= number of node n=1:N
s=sum(R);
% N= number of scenario , h= number of node n=1:N
% k=the arrange of scenario of the T period , k=1„....N, to get
% the all scenarios in the T, if we put k=1 they will get
% the first set of scenarios at T, and if you put, k=2, we get the
% second set of all scenarios at T, where T begin of 2,...in my case I applied
it up to T=50
[m,n]=size(P)
Rr=[];
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
rt1=R(1:(m-1)/2 ,:);
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rt2=R(((m-1)/2)+1:m-1,:);
rt11=rt1+1
rt21=rt2+1
[k, n]=size(rt21)
for i=1:k
a(:,1)=(rt11(:,1)*rt11(i,1)’)-1
A=a
end
s=sum(R);
s=sum(R);
ss=mean(R);
vv=var(R);
r=mean(ss);
v=var(vv);
[M,h]=size(R)
for i=1:1:N
rr(i,:)=R(i,:);
end
rs=size(r)
rrs=size(rr)
cvx-begin
variable x(n,1);
variable z(n,1);
variable y1(N,1);
variable y2(N,1);
% Xw= ((((w0-sum(x)) *(T*r0))+x’*rr(2,:)’)-sum(z))*(T-h)*r0
+z’*a((i*N)+1:(i+1)*N,:)’ % for many period t
Xw=((((w0-sum(x)) *(T*r0))+x’*rr(2,:)’)-sum(z))*(T-h)*r0
D2= square((y1-(sum(y1)/N)))
vary1=sum(D2)/N
Ey2=((sum(y2)/N))
Ey1=((sum(y1)/N))
D1= square-pos((-y2+(sum(y2)/N)))
svary21=sum(D1)/N
Ey2=((sum(y2)/N))
minimize(vary1)
subject to
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svary21<=beta
Ey1>=pi1
Ey2>=pi2
y1+y2==Xw’
sum(x)==1
sum(z)==1
x>=-1
x<=1
z>=-1
z<=1
cvx-end
x=x
z=z;
end

Figure A.20: Result in MATLAB for DCI for each node with GARCH, each
x is the trading strategy at first period and z is a vector of size m× 1 contains

of trading strategy zn,t period t and node n
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• 19) Dynamic code at first period after fix all the trading strategy at each
node in each period. then, save them in matrix z of size T × N and use it
as input in the following code.
function [ w,val] = coopratmeanvarcofix(P,z,beta,w0,r0,N,T,pi1,pi2)
% this is program that solve min var(y1) s.t svar(y2)
% N= number of scenario , h= number of node 1:N
% N= number of scenario , h= number of node n=1:N
s=sum(R);
% N= number of scenario , h= number of node n=1:N
[m,n]=size(P)
Rr=[];
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
rt1=R(1:(m-1)/2 ,:);
rt2=R(((m-1)/2)+1:m-1,:);
rt11=rt1+1
rt21=rt2+1
[k, n]=size(rt21)
for i=1:k
a(:,1)=(rt11(:,1)*rt11(i,1)’)-1
A=a
end
s=sum(R);
s=sum(R);
s=sum(R);
ss=mean(R);
vv=var(R);
r=mean(ss);
v=var(vv);
[M,h]=size(R)
for i=1:1:N
rr(i,:)=R(i,:);
end rs=size(r)
rrs=size(rr)
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cvx-begin
variable x(n,1);
variable y1(N,1);
variable y2(N,1);
for k=1:N
xww=((((w0-sum(x)) *(T*r0))+x’*rr(2,:)’)-sum(z))*(T-h)*r0
% xww=(((w0-sum(x))*T*r0+x’*rr(k,:)’)-sum(z(:,k)))*(T-k)*r0+z(:,k)’*a((k-
1)*N+1:k*N,:)’ % for many period t.
end
for k=1:1:N
sxww=sum(xww)/N
end
Xw=sxww;
EX=sum(Xw)/N
D2= square((y1-(sum(y1)/N)))
EX=sum(Xw)/N
vary1=sum(D2)/N
Ey2=((sum(y2)/N))
Ey1=((sum(y1)/N))
D1= square-pos((-y2+(sum(y2)/N)))
svary21=sum(D1)/N
Ey2=((sum(y2)/N))
minimize(vary1)
subject to
svary21<=beta
Ey1>=pi1
Ey2>=pi2
y1+y2==Xw’
sum(x)==1
x>=-1
x<=1
cvx-end
x=x
end
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Figure A.21: Result in MATLAB for DCI for first period recursively with
GARCH, each x is the trading strategy at first period

• 20) Finding equilibrium for N scenario at period T , and the fair allocation
for σ and σ− for first and second investors, respectively.
function [ w,val] = equilbgeneral2(R,x,z,w0,r0, N,h,T,pi1,pi2)
% this is program that solve min var(y1) s.t svar(y2)
% N= number of scenario , h= number of node 1:N
% N= number of scenario , h= number of node n=1:N
s=sum(R);
% N= number of scenario , h= number of node n=1:N
[M,h]=size(R)
for i=1:1:N
rr(i,:)=R(i,:);
end
for i=1:1:N-1
r((i*N)+1:(i+1)*N,:)=R((i*N)+1:(i+1)*N,:);
end
rs=size(r)
rrs=size(rr)
cvx-begin
variable P(N,1);
% k=the arrange of scenario of the T period , k=1„....N, to get
% the all scenarios in the T, if we put k=1 they will get
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% the first set of scenarios at T, and if you put, k=2, we get the
% second set of all scenarios at T, where T begin of 2,...in my case I applied
it up to T=50
Xw = ((((w0− sum(x)) ∗ T ∗ r0 + x′ ∗ rr(h, :)′)− sum(z))) ∗ (T − h) ∗ r0 +

z′ ∗ r((h− 1) ∗N + 1 : h ∗N, :)′

% Xw is a matrix consist of n rows=number of scenarios
% and one column = uncertainty outcome
% for the first agent
pq=square-pos (p)
spq=sum(pq)
ssppq= sum-square (p)
ppq=N*ssppq/pi1
for i=1:1:N
y1(i)=pi1-(pi1*p(i,1))/spq
end
pqq=N*ssppq/pi2
for i=1:1:N
y21=max (pi2-(pi2*p(i,1))/spq,0)
end
D2= square((y1-(sum(y1)/N)))
vary1=sum(D2)/N
Ey2=((sum(y2)/N))
vary1=var(y1)
Ey1=((sum(y1)/N))
D1= square-pos((-y2+(sum(y2)/N)))
svary21=sum(D1)/N
Ey2=((sum(y2)/N))
minimize(0)
subject to
(y1+y2)-Xw ==0
sum(p)==1
for i=1:1:N
((T − i) ∗ r0)− (ones(1, N)− (T − i) ∗ r0 ∗ r((h− 1) ∗N + 1 : h ∗N, :)′)
end
cvx-end
end
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Figure A.22: Result in MATLAB to find fair equilibrium allocation for N
nodes and T , for σ and σ− for first and second investors, respectively.

• 21) finding equilibrium price for real data
function [OPtimal] = equilbgeneral(P,N,w0,r0,T,pi1,pi2)
alpha1=pi1;
alpha2=pi2;
[m,n]=size(P)
% For Return matrix
Rr = [];
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
% N= number of scenario , h= number of node n=1:N
s=sum(R);
[M,h]=size(R)
for i=1:1:N
rr(i,:)=R(i,:);
end
rrs=size(rr)
nn=1;
cvx-begin
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variable p(N,1)
variable x(n,1);
variable z(n,N);
% for the first agent
a=alpha1*1/2
b=alpha2*1/2
for j=1:1:N
for k= 1:N
y1(j)=(-(1/a)*(sum(log((1/2*a)*p(k,1)))))-((1/a)*log((1/2*a)*p(j,1)))
end
end
% for second agent
for j=1:1:N
for k= 1:N
y2(j)=(-(1/b)*(sum(log((1/2*b)*p(k,1)))))-(1/b)*(log((1/2*b)*p(j,1)))
end
end
for i=1:1:N
rr(i,:)=R(i,:);
end
for k=1:N
xww=((((w0-sum(x)) *(T*r0))+x’*rr(2,:)’)-sum(z))*(T-h)*r0
% xww=(((w0-sum(x))*T*r0+x’*rr(k,:)’)-sum(z(:,k)))*(T-k)*r0
+z(:,k)’*a((k-1)*N+1:k*N,:)’ % for many period t.
end
for k=1:1:N
sxww=sum(xww)/N
end
Xw=sxww;
EX=sum(Xw)/N
minimize(0)
subject to
(y1+y2)-sxww<=0
sum(x)==1
sum(z)==1
z>=-1
z<=1
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x>=-1
x<=1
((w0-sum(x))*(T*r0))*p(N,1)==0
x’*rr(k,:)’*p(N,1)==0
sum(z))*(T-h)*r0*p(N,1)==0
sum(p)==1
p>=-1
p<=1
cvx-end
p=p
x=x
y1=y1’;
y2=y2’;
vy1=var(y1);
end

• 22) Estimate return for risky asset by GARCH(1, 1)

note that, all of these steps can dot it directly in commend window in MAT-
LAB
function [ R,val] = GARCH(P)
% the fist few steps can do it directly in the commend window in MATLAB
as
% well as can do it in Excel.
[m,n]=size(P)
% For Return matrix
Rr=[];
for i=1:1:m-1;
for j=1:1:n
R(i,j)=(P(i+1,j)-P(i,j))/P(i,j);
end
end
% check for correlation
%1- plot autocorreletion function (ACF), choose the risky asset to check
%its correlation
autocorr(R(:,i)) % for i=1,...n
% plot partial-autocorrelation (PACF)
parcorr(R(:,1))
% re turn the same process for R2
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autocorr(R(:, i).2) % for i=1,...n
autocorr(R(:, i).2) % for i=1,....n
% detect Arch effect
[h, p, fstat, crit]archtest(R(; , i),′ lags′, 1) % for i=1,......,n
% if I got is H=1, means that no hypothesis of effect is rejected
% now, to estimate the parameters as following or likelihood method
ToEstMdl = garch(1,1);
EstMdl = estimate(ToEstMdl,R(:,i)) % for i=1,....n
% after estimate EWMA
lamndda=94/100 % 94 %

w1=1-lambda % weight for moving average
w2=w1*(94/100) % weight for the second row
EWm1= R(1,i)*w1 % i=1, for first weighting moving average
Ewm2=R(2,i)*w2 % for i=2 for second weighting moving average and com-
plete the same
for i=3:1:n
w(i,1)=w(i-1)*w(i+1)
Ewm=w(i, 1) ∗R(:, i)2

end
% now to estimate conditional variance just plug in the formula of GARCH(1,1)
% fid at-1=at1
u=mean(R(:,i); %for i=1,....n
at1=R(; , i)2 − u;
% the epsilon
et=normrand(0,1);
% now to estimate conditional variance just plug in the formula of GARCH(1,1)
v2=alph0+alpha1at1.2 + beta ∗ Emw2

% estimate the return for each risky asset
at=sqrt(v2)*et;
rt=u+at; %for each i=1,...n , n risky asset
% find the whole return matrix for each risky asset
R = [rt(i)] % rti is the return vector for risky asset i
end

• 23) Generate scenario tree by using clustering method in particularly we use
euclidean distance in this code, where N = 30 in my experiment.
function [Odis] =distanceofmean2(R, N)
% this code to generate scenario tree for future return
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% N is the number of scenario at each node in my experiment N = 30,
we start from return matrix for risky asset at first period t = 0 and e will
generate scenario tree form it
[m,n]=size(R)
u(i)=R(i,:) % for i=1,.....N choose N arbitrary row and calculate the eu-
clidean distance from return matrix.
for j=1:1:N
for i=1:1:m
% d(i)=abs(sum(R(i,:)-u))
d(i,j)=(R(i,:)-u(i))*(R(i,:)-u(i+1))’; D=d(i,j)’
end
end
Des=sort(D)
dd=d(i,j)’;
size(dd);
size(Des)
DD=[d(i, j)];
size(DD);
A=DD;
[M, I] = min(A, [], 2);
for j=1:1:N
v(j)=A(j,I(j));
end
V=v’;
Z=zeros(N,N*N);
for k=1:1:N
Z(k,I(k))=V(k);
D2=DD-Z;
size(D2)
end
for j=1:1:N
for h=1:1:N
D(h,I(h))= NaN;
A(j)=D;
[M(j), I(j)]=min(A(j),[],j);
end
end
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I=[I(j)]

RR1=R(I,:);
size(RR1);
for i=1:N
ro1(i)=R(((i*N-N)+1:i*N,:);
end
for i=1:N
r(i)=mean(ro1(i))
R=[r(i)];
end
R=R;
end

• 24) Finding historical return matrix
% P=[],pricing matrix
[m,n]=size(P)
for i=1:1:m-1;
for j=1:1:n
Rr(i,j)=P(i+1,j)-P(i,j)/P(i,j);
end
end
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User guide for real data

• 1) Download MATLAB to the computer and then download CVX: Matlab
Software for Disciplined Convex Programming from
http://cvxr.com/cvx/download/

• 2) Download the price matrix Pi,t from yahoo finance, which is the price at
asset i and i = 1, ..n, where we have n instruments and time t weekly or
daily,..etc.

• 3) Plug the price matrix P in the following codes coopratmeanvarco.m,
coopratmeanvarcody.m, coopratmeanvarcodyfix.m. We will get the whole
efficient frontier by changing the value of β or see next step.

• 4) Determine specific point in efficient frontier by two ways
4a− Choose specific point by yourself.
4b− Use equilibrium to determine specific point, this step by following Al-
gorithm 5.15.
In case of equilibrium we just need to find a fair allocation y1 and y2 in
terms of equilibrium price according to risk preferences or utility function
for investor by running the code equialloprice.m in case of variance and semi
variance. Otherwise run the code equilallo.m for the utility function as in-
vestor preferences. Note that, in real data run equilbgeneral.m. Note that,
in this step you can change the risk preference and then change the explicit
formula for equilibrium allocation as shown in propositions in section 5.1.

Thus, the output of the codes equialloprice.m or quilallo.m will get the fair
allocation y1 and y2, and the optimal value will be 0 that show the feasibility
of the problem.

177



Appendix B 178

• 5) Finding the trading strategy Zi,t,h which is the proportion of money that
I will invest in risky asset i at time t node h, where h = 1, ...N .
By running the following codes coopratmeanvarco(P,beta,w0,r0, h,T,pi1,pi2).m,
coopratmeanvarcody(P,beta,w0,r0, N,h,T,pi1,pi2).m, and coopratmeanvar-
codyfix((P,z,beta,w0,r0,N,T,pi1,pi2).m. Note that, P is price matrix from
step 2, β is the determined point from step 3 which is a specific point for
y2, w0 is initial capital and r0 is risk-free , and pi1 and pi2 is the fixed level
of expected return for each investor, at node h, h = 1, ...N . Note that the
number of scenario N is equal to the number of node h in my scenario tree
for future return.

5a- Global solution, run coopratmeanvarco.m which is code to solve CI in
multi-period directly so you will get the global solution. The output will be
as follows
i− x is the trading strategy at first period t = 1

ii− choose number of node h = 1, ....N and t = 2, 3......, T . You will get the
trading zi,t,h. Then repeat the process to get the whole trading strategy zi,t,h
at each risky asset i, time t, and node h = 1, ....N .

5b) Dynamic programming, run the two following codes:
i- Run the coopratmeanvarcody.m code to solve the DCI at each node in
a recursive manner. The output is the trading strategy zi,t,h at each risky
asset i, time t, and node h = 1, ....N . Note that, we will choose the number
of node and time in order to find zi,t,h one after another, as in a recursive
manner. Then arrange all the outputs zi,t,h in a matrix Z = [zi,t,h] in order
to use it as input for the next code.

ii- Run coopratmeanvarcodyfix.m: this code solves DCI after we fix the
trading strategy from Z = [zi,h,t] that we got from the previous code. Thus,
the code will solve DCI over one variable x and, after running this code the
output will be the trading strategy x at the first period.
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