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Abstract

This thesis has aimed to analyse non-linearity in dynamic models. Attention has
focused on the class of dynamic models that accommodate the possibility of dis-
tributional modification in the models. In chapter 1, I have studied the non-linear
effects of policy shocks in the classical DSGE model. The analysis of such model is
subject to two types of shocks, technology and monetary policy. I have extended the
analysis of classical model by allowing for the distributional modification of mone-
tary policy shock using WSN distribution. This study reveals the extent to which
the distribution of macroeconomic variables may response to policy actions and out-
comes involved. Moreover, in classical monetary model the long run behaviour of
the level of inflation with respect to the inflation uncertainty has investigated.

I have also analysed the dynamic model of AR-GARCH time series. I have inves-
tigated the possible non-linear and asymmetric effects of distributional assumptions
on the behaviour of the QMLE of the parameters in AR(1)-GARCH(1,1) model.
A Monte Carlo experiment is set up to evaluate the distributional misspecifica-
tion in aforementioned model by applying both symmetric and asymmetric WSN
distribution across a range of mean and volatility persistence. The other contribu-
tion in chapter 2 is computing the quantiles under distributional misspecification
in AR-GARCH model. In terms of the accuracy of the estimated quantiles, I have
implemented the bootstrap technique.

In addition, in chapter 3 the attention has concentrated on the procedures with
suitable technique for the analysis of unit root tests. The usefulness of bootstrap
technique is investigated in the context of unit root test applying in stock indices
and exchange rate series. I evaluate the popular unit root tests including Augmented
Dickey Fuller(ADF) and Phillips Perron(PP) as well as DF-GLS. Furthermore, this
chapter attempts to answer the question of how the difference in frequency of em-
pirical data say, monthly, weekly, and daily might affect the unit root results.
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Introduction

In recent years, there has been considerable interest in non-linear models and their

effects in economics. The growth in the power of computing more sophisticated

models in recent years has made it possible to analyse and develop a very wide

variety of non-linear models.

This thesis has aimed to analyse non-linearity in dynamic models. Attention has

focused on the class of dynamic models that accommodate the possibility of modifi-

cation (including distributional assumption) in the models. I have considered their

application in the study of non-linear effects of policy shocks in the classical DSGE

model. Regarding the classical monetary model, money balance in utility function

has been considered in the general equilibrium model of a monetary economy (see,

Woodford (2003)). Similarly, Walsh (2003), analyzes the equilibrium properties of

a real business cycle model with money in the utility function. He concludes that

real variables are independent of monetary policy even under a utility which is non-

separable in real balances. However, Gali (2007) notes that in contrast with real

variables, monetary policy can have an important implication for the behaviour of

nominal variables and in particular, of inflation. Therefore, it is important to con-

sider the effect of policy shocks on the nominal variables in the economy. Hence,

the first chapter focuses on the analysis of classical monetary model. The analy-

sis of such model which is found in Gali (2007) is subject to two types of shocks,

technology and monetary policy. Gali has investigated the effect of these shocks on

macroeconomic variables in which the shocks are defined as AR(1) processes with

normally distributed error terms. As a consequence of this stochastic assumption,
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in equilibrium the conditional distribution of macroeconomic variables are normal

distribution which can not explain the empirical behaviour and asymmetries of such

variables, specially during period of financial distress. Therefore, in this chapter

I have extended the analysis of classical model by allowing for the distributional

modification of monetary policy shock, motivated by the policy actions involved.

The analysis of classical model is conducted by changing the stochastic assump-

tion of model which is normally distributed policy shock and using WSN distribution

instead. This distribution was recently developed by Charemza, Diaz and Makarova

(2013) where the parameters of this distribution can be interpreted economically

related to the monetary policy actions and outcomes. In chapter 1, first, the non-

linearity effect of policy actions on the volatility of policy shock is analysed using

stochastic simulation. Then, the extent to which the distribution of macroeconomic

variables may response to policy actions and outcomes is investigated. The dynamics

of classical model has been analysed by deriving impulse response analysis. Finally,

in order to explain the response of inflation’s mean to policy shock, the relationship

between inflation’s level and uncertainty are examined.

Chapter 2 analyses the dynamic model of AR-GARCH time series. The GARCH

model was first introduced by Bollerslev (1986) as an extension of the ARCH model

developed by Engle (1982) in time series modelling. As the GARCH process has

received considerable attention from applied and theoretical point of view, many

researchers have tried to expand and use these type of models in several applications.

In the extension model of AR-GARCH the conditional mean is given as an AR

process where the error term of this process follows a GARCH process. I have

also investigated the possible non-linear and asymmetric effects of distributional

assumptions on the behaviour of the quasi maximum likelihood estimation of an

interest parameter in AR(1)-GARCH(1,1) model. The contribution of this chapter is

to evaluate distributional misspecification in aforementioned model by applying both

symmetric and asymmetric WSN distribution. The properties of quasi maximum

likelihood estimator of model parameters are investigated under both correct and
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incorrect model specification respectively normal and WSN distribution. A Monte

Carlo experiment is set up in which a range of WSN distribution is employed in

comparison with normal distribution considering a range of mean and volatility

persistence. The Monte Carlo experiment is used to explore the issue of how bias,

RMSE, skewness and kurtosis of parameters’ estimators vary with sample size under

the distributional misspecification.

The other contribution also in chapter 2 is computing the quantiles under dis-

tributional misspecification in AR-GARCH model. These quantiles are used in

hypothesis testing and practical problems as critical values. In terms of the accu-

racy of the estimated quantiles, the attention has focused on the implementation of

bootstrap technique. This technique can be used for estimating the standard errors

when the theoretical calculation is difficult or mathematically intractable.

In addition, in chapter 3 attention has concentrated on the procedures with

suitable technique for the analysis of unit root tests. The problem of determining

whether a time series contains a unit root has received a great attention among

the both statisticians and econometricians. The bootstrap technique in recent years

also has become increasingly popular and has been applied to a wide range of topics

including nonstationary time series. The bootstrap method introduced by Efron

(1979) is a resampling procedure which is designed to approximate the sampling

distribution of a statistic of interest. Bootstrap tests constitute an attractive ap-

proaches rather than tests based on asymptotic distributions. Therefore, the useful-

ness of bootstrap technique is investigated in the context of unit root test obtained

from Park (2003) applying in stock market and exchange rate data. Chapter 3

evaluates the traditional and popular unit root tests including Augmented Dickey

Fuller(ADF) and Phillips Perron(PP) as well as DF-GLS. Furthermore, this chapter

attempts to answer the question of how the difference in frequency of empirical data

say, monthly, weekly, and daily might affect the unit root results.

All of the analysis in this thesis has been done using MATLAB programming

where the codes are available in Appendixes.
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Chapter 1

Using the WSN distribution to

examine the monetary shocks in

the classical DSGE model
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1.1 Introduction

Monetary policy shock is one of the main factors which economists have attempted

to quantify the effect of that in the economy. In this chapter the effect of monetary

policy shocks is investigated not empirically but through a particular real business

cycle model. In early equilibrium real business cycle models which were influenced

by the monetarist tradition notably Milton Friedman, unanticipated changes in the

money supply played a key role in generating fluctuations in aggregate real variables

and explaining the correlation between real and nominal variables(Lucas (1972)).

In the early 1980s, researchers have focused on the models in which fluctuations

associated with the business cycle, are subject to exogenous technology shocks.

These models, which were originally developed by Kydland and Prescott (1982) and

Long and Plosser (1983), have been criticized for not taking money into account.

It has been argued that money causes changes in real variables in economy(see e.g.

Bollerslev (1986), Eichenbaum and Singleton (1986)). Lucas(1987) also argued that

money has some role over and above technology shocks. After that, a monetary

section in real business cycle model is introduced by Cooley and Hansen (1989).

They studied the role of money in a real business cycle model through the anticipated

inflation operating. They explained that people substitute away from the activities

that require cash, such as consumption for activities without any need for cash, such

as leisure. Therefore, in this structure there is not any role for unanticipated money.

This real business cycle model with monetary section is referred to as the classical

monetary model.

By ”classical”, Gali (2007) defines that the economy’s equilibrium is described

by the assumption of perfect competition in all markets and fully flexible prices

and wages and no other frictions (other than those associated with the existence of

money). The classical monetary model focuses on the behaviour of the economy by

analysing the interaction of many microeconomic decisions. Regarding the money,

its effect is considered by assuming the non-separability of real balance in the model.

However, under the seperable utility function equilibrium values for nominal vari-
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ables like inflation, output and nominal interest rate can be determined without any

reference to monetary policy and the description of monetary policy includes only

the quantity of money in circulation that the central bank needs to supply in order

to support the nominal interest rate in equilibrium. In summary, monetary policy is

neutral with respect to those variables. Therefore, introducing real balances in the

non-separable utility function, where the elasticity of substitution is different from

the relative weight of real balances in utility, can solve the problem of neutrality of

money and monetary policy.

At the same time in this model, the economy is affected by another random

shock such as technological changes. Gali (1999) identifies the assumption that the

level of labour productivity can be affected only by technology shocks in the long

run. According to his estimates with positive technology shocks, there is a negative

correlation between output and the hours worked. However, Christiano et al. (2003)

applying the same identifying assumption as Gali (1999), Gali et al. (2003), and

Francis and Ramey (2005) but with different specification of hours worked. They

argue that hours of worked is increasing with the same technology shock. Gali and

Rabanal (2005) estimated the empirical effects of technology shocks on macroeco-

nomic variables and evaluated quantitatively the contribution of those shocks and

also policy shocks to business-cycle fluctuations. They found that technology shocks

can explain 22% of the variability of output growth while the effect of monetary pol-

icy shocks on the volatility of inflation is 27%.

From other point of view, Walsh (2003) discusses the classical monetary models

with cash-in-advance constraints and their implications for the role of monetary

policy. Furthermore, Woodford (2003) introduces the monetary assets in the model

and assumes that the transaction costs can be reduced by a household’s holding of

monetary assets. He analyses the implications of this assumption on the specification

of utility and concludes that the real variables are not affected by monetary policy

in the economy. Therefore, the specification of monetary policy in the classical

monetary model can play a role only for the determination of nominal variables.
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However, according to the fact that monetary policy is neutral with respect to real

variables and this is at odds with the effectiveness of policy on the output and

employment in the economy, the classical monetary model is adopted to basic New

Keynesian model by assuming the product of differentiated goods, monopolistic

competition, and staggered price setting (see Gali and Gertler (2007)).

The existing literature has not found a generally accepted framework that pro-

vides a unified explanation of monetary policy asymmetries in the classical model

and the movements of economic aggregate. However, in the vast majority of litera-

ture, regime switching models have been used in business cycle analysis since they

were introduced by Hsieh (1989). Recently, Foerster (2016) examines the effect of

two different monetary policy switching assumptions on the long-run behaviour of

macroeconomic variables. He studies the extent to which the distribution of macroe-

conomic variables may response to policy switches of changing inflation targets and

varying inflation responses. He finds that the level of the economy is affected by

switching inflation targets, whereas the variance is affected by switching inflation

responses. Moreover, in order to examine the impact of monetary policy shocks on

key macroeconomic variables Allen and Robinson (2015) utilize a threshold vector

autoregression (TVAR) model. They investigate the influence of the policy under

multiple regime classified as tight, neutral, and loose. They find that there is an

asymmetric response to policy action as the response to the tight regime is in the op-

posite direction of the neutral monetary policy regime. They prove that the response

to the exchange rate and the inflation has longer and more persistent effects under

neutral monetary policy regime. In addition, in some other applications the regime

switching models characterize recessions (expansions) as switches by negative (pos-

itive) shocks and have been highly productive paths for empirical macroeconomic

analysis. Recently work by Tenreyro and Thwaites (2015) has addressed the analysis

of monetary policy in expansions and recessions using regime switching in US data.

They utilize impulse response analysis and investigate how a range of real and nom-

inal variables may response to the estimate of monetary policy shocks introduced
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by Romer and Romer (2004). They employ local projection model and conclude

that there is a strong evidence of the powerful impact of monetary policy on real

and nominal variables in expansions than in recessions. In contrast, in classical

model in order to address the different conditions in the economy such as recessions

and expansions, I apply an alternative approach where monetary policy shocks are

generated by WSN distribution with different set of parameters. This distribution

could shed some light on the analysis of classical model by considering monetary

policy actions and outcomes.

Although a majority of empirical research has focused on studying the impact of

monetary policy shocks on the economy, changes in the volatility of monetary pol-

icy is still one of the important concerns for policy makers. According to Primiceri

(2005) the estimated volatility of the U.S. monetary policy shock raises by more than

100% during the early 1980s. Moreover, Mumtaz and Zanetti (2013) study the time

varying variance of monetary policy shocks using a structural vector autoregression

model. The results of their analysis explain that an increase in the volatility of the

monetary policy shock causes a decline in the nominal interest rate, inflation and

output growth (further studies concerning the estimation of VAR with heteroscedas-

tic shocks see e.g. Bernanke and Mihov (1998); Cogley and Sargent (2005); Sims

and Zha (2006)). Overall, the literature has missed the relevance of monetary policy

volatilities in the classical monetary model. Hence, I intend to assess how monetary

policy actions and outcomes might change the volatility of policy shock in classical

monetary model by applying WSN distribution.

According to the classical monetary model and using a stochastic framework,

Gali (2007) assumes AR(1) process with normally distributed error term specifying

monetary policy shocks in the model. As a consequence of this assumption, the

conditional distribution of macroeconomic variables in equilibrium are normally dis-

tributed. Also, skewness and excess kurtosis of empirical data can not be specified

by normal distribution which is the drawback of this distribution. Although, in

order to address the significant distributional asymmetries the Gaussian Mixture
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distribution has been used widely specially in the field of finance, but an alternative

approach is to use the WSN distribution with a different selection of parameters to

be able to address the asymmetry and skewness of the monetary policy distribu-

tion. Moreover, the empirical behaviour of economic variables presents asymmetries

in the tails of the distribution of variables particularly if there is a financial dis-

turbance. However, as heavy tail characteristic in macroeconomic data is not as

extreme as financial data, the study on heavy tail with macroeconomic data is lim-

ited. Significant positive skewness of US inflation data was reported by Corrado and

Holly (2003). Charemza et al. (2005) claim that the distribution of inflation is often

leptokurtic, differing significantly in shape from the Normal distribution. Recently,

heavy tail characteristic of macroeconomic data was confirmed by Hurlimann (2012)

who also found in the autoregressive(AR) process of inflation that the observed sam-

ple residual errors indicate more skewness and also higher kurtosis than is allowed

by a normal distribution. Furthermore, some authors test for skewness in macroe-

conomic time series. For example, Bai and Ng (2005) reject asymmetry for output,

industrial production and unemployment in U.S. but find the evidence of skewness

in inflation. Grabek et al. (2011) reports skewness coefficients for five macro aggre-

gates in Australia, Canada, Newzealand and United Kingdom. They find that in

all of the countries inflation is positively skewed. Real output growth rate, in turn,

tends to be more often below the average which has negative skewness. Nominal

interest rate and exchange rate also reveal moderate and positive skewness, whereas

absolute changes of terms of trade do not exhibit a consistent pattern of skewness.

Hence, the study of various time series, consist of inflation data, has discovered a

clear evidence of dependence and asymmetry in the distributional characteristic of

the data. Given these considerations and as distributional problems are missed from

the classical monetary models, this chapter builds on the classical monetary model

in Gali (2007) and explores some methodological modifications to the distribution of

monetary policy shock, motivated by the policy actions involved. It is also interest-

ing to investigate the extent to which the distribution of macroeconomic variables
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may response to policy actions and outcomes.

On the other hand, identifying the effects of monetary policy actions on macroe-

conomic variables specially inflation require confronting a challenges of inflation

uncertainty. The relationship between inflation and inflation uncertainty is still ar-

guable since the publication of Friedman (1977) Nobel lecture. Friedman (1977) was

the first who studied the causal influence of inflation on inflation uncertainty. Then,

Ball (1992) formalized Friedman’s result by considering an asymmetric information

about the type of policy maker which leads to the uncertainty. Therefore, the basic

idea regarding positive causality from inflation to inflation uncertainty as proposed

by Friedman (1977) and thereafter its formalization by Ball (1992) in a game theo-

retic framework is known as Friedman-Ball hypothesis (for empirical studies see e.g.

Fountas (2001)). In contrast to the Friedman-Ball view, Cukierman and Meltzer

(1986) show that average inflation is rising by higher inflation uncertainty. They

claimed that in the presence of more inflation uncertainty, inflation surprises can

be created by policy makers in order to stimulate output growth. In support of

Cukierman-Meltzer hypothesis Grier and Perry (1998) found the evidence for Japan

and France among the G7 countries. Moreover, Fountas and Karanasos (2007) per-

formed the analysis of inflation for UK, Germany, Canada and Japan using GARCH

model. Their analysis revealed the strong evidence of Cukierman-Meltzer hypothe-

sis in the UK. Therefore, this chapter also has a fresh look in relationship between

inflation and its uncertainty in the classical model in which the variance of policy

shock is used as a measure of uncertainty.

In summary, the application of WSN distribution as the engine of analysis for

the monetary policy in classical model raises a number of issues. First, how does the

volatility of monetary policy change by different policy actions? Second, what are

the dynamics of classical model in response to technology shock, and different mon-

etary policy shocks defined by WSN distribution? Third, what is the relationship

between average inflation and inflation uncertainty in the classical model? Hence,

the analysis of these issues, which is focusing on the behaviour of macroeconomic

10



dynamics under monetary policy shocks, forms the core of the present chapter.

Therefore, the contents of this chapter is as follows. First it defines the dis-

tribution of policy shock to WSN distribution which was recently developed by

Charemza, Diaz and Makarova (2013). The advantage of WSN is that parameters

of this distribution can be interpreted in relation to the monetary policy outcomes

and actions. It allows me to assess not only how the variation of monetary policy

outcomes and actions might change the volatility of policy shock, but also how these

actions and outcomes represented by WSN parameters can affect the behaviour of

the first two moments of inflation, nominal interest rate and output in the economy

through classical model. This is conducted by simulating the macroeconomic dy-

namics in classical monetary model as explained in Gali (2007). In the stochastic

simulation I replace the assumption of normally distributed policy shocks by WSN

distribution. The results of the analysis show the extent to which the responses of

the macroeconomic variables change due to the different monetary policy strength

and high forecast accuracy. This chapter’s major contribution to the existing lit-

erature is the finding that in the long run response of the mean of inflation, the

greater is the uncertainty the higher would be the level of inflation. Therefore, the

classical monetary model represented by Gali can confirm the Cukierman-Meltzer

hypothesis.

The remainder of this chapter is organized as follows. Section 2 provides an

overview of the classical monetary model. Section 3 presents the definition of WSN

distribution and its parameters’ interpretation related to the monetary policy actions

and outcomes. Section 4 briefly describes the simulation design for analysing the

dynamics of economy. Section 5 describes the simulation results. Section 6 concludes

all of the findings.
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1.2 Model overview

This section summarizes a classical monetary model to investigate how changes in

the monetary policy actions and outcomes translate into movements in inflation,

nominal interest rate and the output distributional characteristic. To implement

the analysis, a classical monetary model which is documented by Gali (2007) is

modified by changing the distributional assumption of policy shock. According to

Gali (2007) it is assumed that firms maximize profits. It is also assumed that the

households tend to maximize a non-separable utility function over consumption,

labour effort and real balance.

1.2.1 Households

According to Gali (2007) the representative household would maximize the objective

function

E0

∞∑
t=0

βtU(Ct,
Mt

Pt
, Nt) (1.1)

where β ∈ (0, 1) is the discount factor and Ct is the consumption quantity of the

single good. In this function, Mt stands for holding of money in period t and Nt

denotes hours of work. A key feature of the discounted utility is that an individual’s

preferences over the factors in utility function in any period are independent of that

factors in any other period.

The household’s utility function is assumed to have the nonseperable functional form

U(Ct,
Mt

Pt
, Nt) =

X1−σ
t

1− σ
− N1+ϕ

t

1 + ϕ

where 1
ϕ

represents the elasticity of labour supply and measures how labour supply

increases when the real wage increases. 1
σ

denotes the elasticity of intertemporal

substitution in Xt. Composite index of consumption and real balances is represented
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by Xt which U(Ct) depends on Mt

Pt
in any period. Thus, Xt

1 can be defined as:

Xt ≡

[
(1− ϑ)C1−ν

t + ϑ

(
Mt

Pt

)1−ν
] 1

1−ν

for ν 6= 1 (1.2)

Xt ≡ C1−ϑ
t

(
Mt

Pt

)ϑ
for ν = 1 (1.3)

with 1
ν

representing the elasticity of substitution between consumption and real

balances, and ϑ is the relative weight of real balances in utility. As Gali (2007)

explained maximization of (1.1) is subject to a sequence of flow budget constraints,

taking the form

PtCt +QtBt +Mt ≤ Bt−1 +Mt−1 +WtNt − Tt (1.4)

where Pt is the price of consumption good and Wt expresses the nominal wage.

Bt represents the quantity of one-period discount bonds purchased in period t and

maturing in period t+1 and Qt
2 is the price of each bond at maturity. Tt represents

lump-sum additions or subtractions to period income. By assuming Ft ≡ Bt−1+Mt−1

refer to total financial assets at the beginning of the period t, the budget constraint

(1.4) can be rewritten as

PtCt +QtFt+1 + (1−Qt)Mt ≤ Ft +Mt−1 +WtNt − Tt (1.5)

Now, the representation of the previous budget constraint can be corresponding to

that an economy in which all financial assets yield a gross nominal return Q−1t =

exp{it}, and agents can purchase the utility yielding services of money balances at a

unit price (1−Qt) = 1−exp{−it} ' it. Hence, the implicit price for money services

1It is standard to have real money balance in the utility of household as a shortcut to getting
money valued in equilibrium. Therefore, it is assumed that household gain utility from holding
money. This utility approximates benefits from using money in transactions.

2The yield on the one period bond is defined by Qt ≡ (1 + yield)−1. Notice that it corresponds
to the log of the gross yield on the one-period bond and referred to as the nominal interest rate,
where it ≡ −logQt = log(1 + yieldt) ' yieldt

13



approximately refers to the nominal interest rate.

According to Gali (2007) the optimality conditions of household’s problem, im-

plied by the maximization of (1.1) subject to (1.5) plus solvency constraint, for

t = 0, 1, 2, ... are given by

− Un,t
Uc,t

=
Wt

Pt
⇒ Wt

Pt
= Nϕ

t X
σ−ν
t Cν

t (1− ϑ)−1 (1.6)

Qt = βEt{
Uc,t+1

Uc,t

Pt
Pt+1

} ⇒ Qt = βEt

{(
Ct + 1

Ct

)−ν (
Xt + 1

Xt

)ν−σ
Pt

Pt + 1

}
(1.7)

Um,t
Uc,t

= 1− exp{−it} ⇒ Mt

Pt
= Ct(1− exp{−it})−

1
ν

(
ϑ

1− ϑ

) 1
ν

(1.8)

Equation (1.6) implies labour supply equation and its log linear form can be

obtained by

wt − pt = σct + ϕnt + (ν − σ)(ct − xt) (1.9)

and determining the quantity of labour supplied as a function of real wage given

the marginal utility of consumption which is influenced by the level of real balances

through the dependence of the Xt.

Equation (1.7) reflects the household’s preferences for consumption smoothing.

The level of real balances can effect the preferences of households over the depen-

dence of the index Xt. Also, the level of real balances, in turn, is influenced by the

nominal interest rate as in (1.8) which is defined as money demand equation. These

characteristics indicate that monetary policy is not neutral with nonseparable utility

function.

The log-linear form of equation (1.8) can be obtained by applying the first-order

Taylor approximation3 as

mt − pt = ct − ηit
3First order Taylor approximation: log(1− exp{−it}) ' const + it

exp{i}−1
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where η ≡ 1
ν(exp{i}−1) '

1
νi

4 is the implied interest semi-elasticity of money de-

mand. Therefore, according to Gali (2007) after some simple manipulation and

combining the resulting expression with (1.8) log-linearization of (1.6) around a

zero inflation steady state can be defined as

wt − pt = σct + ϕnt + χη(ν − σ)it (1.10)

where χ ≡ ϑ
1
ν (1−β)1−

1
ν

(1−ϑ)
1
ν +ϑ

1
ν (1−β)1−

1
ν
∈ [0, 1).

Optimality condition (1.10) can be rewritten in terms of the steady state ratio

km ≡
M
P

c
which is the inverse consumption velocity. Using the money demand

equation, km =
(

ϑ
(1−β)(1−ϑ)

) 1
ν

and χ = km(1−β)
1+km(1−β) and using the definition of η

evaluated at the zero inflation steady state, the optimality condition (1.10) can be

rewritten as

wt − pt = σct + ϕnt + ωit (1.11)

where ω ≡ kmβ(1−σν )
1+km(1−β) and represents the quantity of labour supply at any given

real wage. According to Gali (2007), the sign of ν − σ determines the sign of the

effect of the nominal interest rate on labour supply. When ν > σ which is implying

ω > 0, a rise in the nominal rate, declines the real balances. Then a fall in the real

balances reduces the marginal utility of consumption which is followed by decreasing

the quantity of labour supplied at any given real wage. The opposite effect can be

obtained when ν < σ.

1.2.2 Firms

According to Gali (2007) a representative firm seeks to maximize profits

PtYt −WtNt (1.12)

4i coresponds to a constant interest rate for all t which is consistent with a steady state with
zero inflation.
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subject to the production function

Yt = AtN
1−α
t (1.13)

where α is the partial elasticity of output with respect to labour. At represents

the level of technology and at ≡ logAt indicate exogenously some stochastic process.

The firm’s optimality condition by maximization of (1.12) subject to (1.13) becomes

Wt

Pt
= (1− α)AtN

−α
t (1.14)

which means that the firm hires labour up to the point that marginal product equals

to the real wage. The log-linear form given by

wt − pt = at − αnt + log(1− α) (1.15)

can be interpreted as labour demand equation, determining the quantity of labour

demanded as a function of the real wage, given the level of technology.

1.2.3 Equilibrium Dynamics

In order to determine the equilibrium path of output, inflation and nominal interest

rate, on the one hand, combining households’ optimality condition (1.11) with the

labour demand equation (1.15) generates the labour market clearing condition (Gali

(2007))

σct + ϕnt + ωit = yt − nt + log(1− α)

This condition can be rewritten, using the goods market clearing condition (yt =

ct) and the log-linear production relationship (yt = at + (1− α)nt), as

yt = ψyaat − ψyiit (1.16)

where ψya ≡ 1+ϕ
σ(1−α)+ϕ+α , ψyi ≡ ω(1−α)

σ(1−α)+ϕ+α .

16



Alternatively, log-linear approximation to equation (1.7), combining with goods mar-

ket clearing condition (yt = ct) is determined as

yt = Et{yt+1} −
1

σ
(it − Et{πt+1} − ωEt{∆it+1} − ρ) (1.17)

which is relating the nominal interest rate to the expected path of output and

expected inflation. Moreover, the central bank adjusts the nominal interest rate

according to the simple inflation-based rule as follows

it = ρ+ φππt + υt (1.18)

where υt represents an exogenous policy disturbance, assumed to follow the station-

ary AR(1) process (0 < ρυ < 1) with i.i.d (independently and identically distributed)

error term which is distributed by normal with zero mean and variance equals to 1

as

υt = ρυυt−1 + ευt

It is worth to mention that monetary policy shocks are formed when monetary au-

thorities receive signals from forecasters related to a possible inflationary disturbance

and the authorities therefore act if they think this disturbance can be a nuisance for

the policy conducted. Also, assuming that the technology parameter at follows the

stationary AR(1) process (0 < ρa < 1) with i.i.d error term, which is distributed by

normal distribution with mean and variance equal to 0 and 1 respectively.

at = ρaat−1 + εat

Therefore, according to Gali (2007) the equilibrium level of inflation, nominal

interest rate, and output are determined by using (1.18) to eliminate the nominal

rate in (1.16) and (1.17) as follows

πt = − σ(1− ρa)ψya
φπ(1 + ωψ)(1−Θρa)

at −
1 + (1− ρυ)ωψ

φπ(1 + ωψ)(1−Θρυ)
υt (1.19)
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it = − σ(1− ρa)ψya
(1 + ωψ)(1−Θρa)

at −
ρυ

φπ(1 + ωψ)(1−Θρυ)
υt (1.20)

yt = ψya

(
1 +

σ(1− ρa)ψyi
(1 + ωψ)(1−Θρa)

)
at +

ρυψyi
φπ(1 + ωψ)(1−Θρυ)

υt (1.21)

where Θ ≡ 1+ωψφπ
(1+ωψ)φπ

and ψ ≡ α+ϕ
σ(1−α)+ϕ+α .

It can be seen that the equilibrium dynamics of inflation, nominal interest rate

and output are affected by changes in the level of technology and monetary policy

disturbance. However, as Gali(2007) stated in classical monetary model, rate of

change of inflation with respect to the rate of change of interest rate is defined as

dπt
dit

=
dπt/dυt
dit/dυt

= (1 + (1− ρυ)ωψ)ρ−1υ > 0

The above equation expresses a relation between inflation and the interest rate,

considering the effect of monetary policy. In response to a monetary policy shock

that increases the nominal interest rate and decreases output, inflation tends to

rise. This is in contrast with the economy’s response to the contractionary mone-

tary policy shock. With regard to the definition of contractionary monetary policy,

the money supply needs to be reduced and this is expected to lower inflation in

the economy. Hence, the conflict between the theoretical model and evidence is

the drawback of the classical monetary models, where the response of inflation to

monetary policy shock is at odds with the evidence. In this regard, Castelnuovo

and Surico (2005) study empirically the effect of contractionary monetary policy

shocks on inflation in the period of pre and post-inflation targeting using UK data.

They argue that the effectiveness is significantly different whereas according to the

impulse response analysis, inflation responses positively and largely in the pre infla-

tion targeting period, but the response is negative and small after inflation targeting

regime. However, in order to address the effect of contractionary monetary policy
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on the inflation in the classical model, this chapter focuses on the analysis of the

relationship between inflation and its uncertainty.

1.2.4 Baseline Calibration

In order to analyse the dynamic effects of a monetary policy shock in the economy,

I need to define the numerical values for the model’s parameters. I have chosen the

values from the baseline calibration of the model as they are consistent with the em-

pirical evidence. In the baseline calibration of the model according to Gali (2007), it

is assumed that discount factor β = 0.99, which explains a steady state real return

on financial assets of about 4 percent. It is also assumed that σ = 1(inverse elas-

ticity of intertemporal substitution among goods), φ = 1(inverse elasticity of labour

supply) and α = 1
3
(partial elasticity of output with respect to labour). Coefficient

in interest rate rule equals 1.5 (φπ = 1.5) which is consistent with observed variation

of U.S. Federal Funds rate over the Greenspan era. Also, interest semi elasticity of

money demand η which is proportional to the elasticity of substitution between real

balances and consumption ν−1 is equal to 4. According to the definition of ω, and

noting that ν ' 1
iη

is likely to be larger than σ for any reasonable values of η and

σ and also by using M2 as the definition of money, km ' 3, and so ω = 3. More-

over, autoregressive coefficients equal 0.5 (ρa = ρυ = 0.5) which implies a moderate

persistent shock.
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1.3 Weighted Skew Normal distribution

The classical monetary model in Gali (2007) is characterized by two shocks, technol-

ogy and monetary policy. According to the classical model, it is assumed that both

shocks are AR(1) process with normal error term. However, I change the stochastic

assumption of normality only in monetary policy shock’s process and apply WSN

distribution instead.

The Skew Normal distribution is a continuous probability distribution that ex-

tends the normal distribution, allowing for the presence of skewness which is pro-

posed by Azzalini (1985). The distribution of a random variable Z defined by skew

normal distribution with parameter λ denoted by Z ∼ SN(λ), if its density is given

by f (z, λ) = 2Φ(λz)φ(z) where Φ and φ respectively are the standard normal cumu-

lative distribution function and probability density function, and z and λ are real

numbers.

SN(λ) is limited by the fact that, moderate values of (λ) causes almost all the

mass accumulates, either on the positive or negative numbers, as determined by the

sign of (λ). To relax this limitation, Weighted Skew Normal(WSN) distribution ex-

hibits a better behaviour, specially at the side with smaller mass. WSN distribution

includes the Skew Normal distribution as a special case.

WSN distribution is recently introduced by Charemza, Diaz and Makarova (2013).

WSN distribution consists of a family of distribution possibly skewed with all mo-

ments finite. As macroeconomic distributions frequently display moderate skewness,

WSN distribution allows us to consider the nature of the asymmetry in the analysis

and macroeconomic modelling.

According to Charemza, Diaz and Makarova (2013) WSN distribution with pa-

rameters α∗, β∗,m, k, r is defined by

Z = X + α∗.Y.IY >m + β∗.Y.IY <k (1.22)
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where (X, Y ) ∼ N


 0

0

 ,
 σ2 rσ2

rσ2 σ2


 with 0 ≤ r < 1

IY >m =

 1 if Y > m;

0 otherwise.

and

IY <k =

 1 if Y < k;

0 otherwise.

and α∗ ∈ R, β∗ ∈ R, m ∈ R, k ∈ R.

Probability density function of WSN distribution is given by

fWSN(t) =
1√
Aα∗

φ

(
t√
Aα∗

)
Φ

(
Bα∗t−mAα∗√
Aα∗(1− r2)

)

+
1√
Aβ∗

φ

(
t√
Aβ∗

)
Φ

(
Bβ∗t+ kAβ∗√
Aβ∗(1− r2)

)
+φ(t).

[
Φ

(
m− rt√

1− r2

)
− Φ

(
k − rt√
1− r2

)]
(1.23)

where φ, Φ denote respectively, the density and cumulative distribution functions of

the standard normal distribution and

Aα∗ = 1 + 2α∗r + α∗2 Bα∗ = α∗ + r

Aβ∗ = 1 + 2β∗r + β∗2 Bβ∗ = β∗ + r

For α∗ = −2r and β∗ = m = 0 in 1.23, pdf of WSN distribution corre-

sponds to Azzalini skew normal SN(λ) distribution with pdf function of fSN(t;λ) =

2φ(t)Φ(λt) where λ = −r√
1−r2 . If α∗ = β∗ = 0 the WSN distribution coincides with

normal distribution.

Figure 1.1 depicts Normal, symmetric and asymmetric WSN densities. For the

sake of comparison, the symmetric and asymmetric densities’ parameters include as:

Symmetric WSN parameters: α∗ = −0.9, β∗ = −0.9,m = −k = 1, r = 0.9

Asymmetric WSN parameters: α∗ = −0.9, β∗ = −0.1,m = −k = 1, r = 0.9

According to Charemza, Diaz and Makarova (2013) WSN distribution has a
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Figure 1.1: Probability density for normal, symmetric WSN and asymmetric WSN
distributions
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moment generating function given by

RWSN(u) = e
u2

2
Aα∗Φ(Bα∗u−m) + e

u2

2
Aβ∗Φ(k−Bβ∗u) + e

u2

2 [Φ(m− ru)−Φ(k− ru)]

(1.24)

The expected value, variance and skewness of Z can be derived using the moment

generating function 1.24 as follows:

E(Z) = α∗.φ(m)− β∗.φ(k)

E(Z2) = Aα∗ + [1−Aα∗ ]Φ(m) + [B2
α∗ − r2]mφ(m) + [Aβ∗ − 1]Φ(k) + [B2

β∗ − r2]kφ(k)

E(Z3) = φ(m).
{
Bα∗ .

[
3Aα∗ +B2

α∗(m2 − 1)
]
− r.

[
3 + r2(m2 − 1)

]}
+ φ(k).

{
−Bβ∗ .

[
3Aβ∗ +B2

β∗(k2 − 1)
]
− r.

[
3 + r2(k2 − 1)

]}
V ar(Z) = E(Z2)− [E(Z)]2

Sk(Z) =
E(Z3)− 3.E(Z2).E(Z) + 2. [E(Z)]3

[V ar(Z)]
3
2

1.3.1 Interpretation of WSN parameters

It is assumed that monetary policy is undertaken in association with the level of infla-

tion. Monetary authorities are undertaking an anti-inflationary and pro-inflationary

decisions if they receive a signal from forecasters about high and low level of future

inflation respectively. According to Charemza et al. (2014), it is assumed that infla-

tion in time t+ h, πt+h, is a random variable consists of two parts: predictable and

non predictable from the past. Within the context of Gali model the predictable

part is the non stochastic part of the model which is indexed by t − 1, and non

predictable part from the past corresponds to the stochastic part which is given at

time t. Monetary authorities are making decisions in time t regarding the inflation’s

forecast of time t+ h, where h is the forecast horizon.

Let us consider the distribution of monetary policy shock as WSN in which
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ευt ∼ WSN(α∗, β∗,m, k, r) and interpret the parameters of distribution related to

monetary policy as in Charemza et al. (2014).

1. Random variable X consists of two components; the first part is related to

the fact that future inflation is the random and the second part is related to the

incomplete knowledge of the inflation’s forecaster.

2. Random variable Y relates to the disagreement of expert forecasters where

each forecaster has their own source of information. It is necessary to mention that

monetary policy is based on experts’ forecasts Y and monetary authorities react

only to information passed to them through Y .

3. Parameter r is the correlation coefficient between X and Y and expressed

the accuracy of experts’ forecasts. r = 0 states that X is totally unpredictable or

the experts are ignorant. The higher is the value of r, the experts become more

knowledgeable (e.g. the knowledge becomes perfect if r = 1). It is also assumed

that the variances of X and Y are identical which is denoted as σ2. This assumption

shows that in the absence of knowledge of forecasters in X, disagreement between

the experts has the same variability as the random behaviour of the future inflation

in X. Furthermore, as the experts’ forecasts can not be negatively related to the

X, therefore 0 ≤ r < 1.

4. The parameters m and k represent respectively high and low thresholds for

imperfect knowledge Y . If m is reached from below, it is a signal to the policy

makers the necessity of undertaking an anti-inflationary policy, or pro-inflationary

policy if k is reached from above.

5. The parameters α∗ and β∗ denote respectively the effectiveness of anti-

inflationary and pro-inflationary policies. They express the strength of these policies

and to what extent the anti-inflationary and pro-inflationary policies can effect the

inflation and other variables in the economy. The greater the absolute value of α∗

and β∗, the higher will be the effects of the monetary policy on macroeconomic

variables.

Regarding the rational behaviour of the policy makers and forecasters, the pa-
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rameters space can be defined as: α∗ ≤ 0 , β∗ ≤ 0 , m ≥ 0 , k ≤ 0 and 0 ≤ r ≤ 1.

1.3.2 Volatility and skewness of policy shock with respect

to the policy actions

In order to assess the distributional characteristic of policy shocks it is interesting

to evaluate the dependence of the variance which is defined as volatility and also

the skewness of policy shocks to the strength of policies which is described by α∗

and β∗ and to the accuracy of inflation forecast measured by r. I simulate volatility

and skewness of policy shocks with respect to the different policy strengths.

In Figure 1.2 left panel represents variance of WSN distribution with respect to

the parameter α∗ and parameter r ∈ {0.1, 0.3, 0.5, 0.7, 0.9} in symmetric case where

α∗ = β∗ and m = −k = 1. Therefore, in this case the strength of both policies

including anti-inflationary and pro-inflationary are identical and monetary policy

shocks’ volatility is plotted when strength of policy is varying from 0 to -0.99 as

weakest to strongest respectively. It is obvious from Figure 1.2 that with the most

accurate forecast when r = 0.9, the higher is the strength of policy, the smaller would

be the volatility of policy shock. However, with the worst forecast accuracy when

r = 0.1 even the strength of monetary policy actions can not decrease the policy

shocks’ volatility(volatility is increasing from 1 to 1.6 for weakest and strongest

policy respectively). Moreover, right panel displays the non-linear characteristic

between the parameters and volatility of monetary policy shock. The minimum

volatility is about 0.36 for the most accurate forecast and the strong monetary

policy. The variance also reaches maximum of about 1.78 for the strongest policy

and the worst forecast.

Figure 1.3 indicates the case of an asymmetric policy where only anti-inflationary

policy is effective and m = 1, β∗ = 0. In this case, in the same way as symmet-

ric case the nonlinearity between the parameters of policy shock distribution and

its volatility is obvious. However in compare to the symmetric case with strong

monetary policy, volatility is about 0.62 and 1.34 for the best and worst forecast

25



respectively.

Figures 1.2 and 1.3 provide interesting insight into the differences between the

effects of forecast accuracy on the volatility of policy shock with the strongest policy

in symmetric and asymmetric cases. In symmetric case with the 22% increase in

forecast accuracy, the volatility of policy shocks is falling 45% . However, with the

same increasing rate of forecast accuracy in asymmetric case the volatility declines by

the rate of 19%. Hence, the rate of change of volatility in symmetric case decreases

twofold in comparison with asymmetric case. This is suggestive of a stronger effect

of forecast accuracy when both anti and pro-inflationary policies are of identical

strength.

Figure 1.4 describes the skewness of monetary policy shock distribution with

respect to the policy’s strength and forecast accuracy in symmetric and asymmetric

cases. In the case of symmetric (right panel) the skewness of distribution of policy

shock is zero. However, in asymmetric case (left panel) there is a nonlinear char-

acteristic between the parameters of policy shock and its skewness. With the best

forecast and strongest policy the degree of skewness is -0.42. Moreover, as obvious

from Figures 1.2-1.4 with no policy the skewness and variance of policy shock is 0

and 1 respectively. Hence, if there is no effective policy, then policy shock distri-

bution would be standard normal distribution. Therefore, comparing the WSN and

the normal distributions the advantage of the WSN is that with changing the range

of parameters of the distribution, it is possible to consider the monetary policies

with different strength and asymmetries. However, the normal distribution is the

special case of WSN distribution where the effectiveness of policies is equal to zero.
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Figure 1.2: Volatility of monetary policy with respect to the policy strength and
forecast accuracy in symmetric case (α∗ = β∗,m = −k = 1)
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Figure 1.3: Volatility of monetary policy with respect to the policy strength and
forecast accuracy in asymmetric case (β∗ = 0,m = −k = 1)
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1.4 Stochastic Simulation

Now, in order to answer to the question that how monetary policy actions affect the

distribution of macroeconomic variables, I use a stochastic scheme to simulate the

variables and shocks using random number generators. Also, in order to randomly

assign the policy shocks, I need a different random numbers for each simulated

variables.

According to Kleijnen et al. (2003), simulation based study can be more produc-

tive if statistical theories have been applied in the design of the experiment. Mont-

gomery (2008) argues that the experiment can be defined as a test or as a series of

tests. He explains that the proposed changes are applied on the input variables of

a process or system to observe how the output variable will change. Proper design

of the experiment will improve the performance of the output variable, instead of a

trial-and-error method.

Simulation may not always produce accurate results as it works on logical ma-

nipulation, whereas analytical results are truthful as these are found by proven

mathematical manipulation. However, simulation is most useful when there is a

lack of analytic tractability or when we have a highly multidimensional problem.

The term ”Stochastic Simulation” refers to the simulation method in which the

variables can change randomly with certain probabilities. Its necessary technique is

to use random number generators. A random number generator produces a sequence

of numbers that are draws from a specific independently and identically distributed

random variable. Therefore, this is a mathematical algorithm that creates a series

of so-called pseudo random numbers. Also, in simulation experiments apart from

random number generator, one should specify the statistical model and Data Gen-

erating Process(DGP). This implies that the assumption of the deterministic parts

of the model as well as the exact parameters of the distribution of the stochastic

term is necessary.
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1.4.1 Random Number Generation

According to Charemza, Diaz and Makarova (2013), the algorithm for generating

random numbers from WSN(α∗, β∗,m, k, r) is:

Step(1) generate a pair of random numbers (x, y) from a bivariate normal dis-

tribution with zero means, unitary variance and covariance equal to r.

Step(2)

(a) if y ≤ m and y ≥ k , return z = x;

(b) if y > m , return z = x+ α∗y;

(c) if y < k , return z = x+ β∗y.

1.4.2 Data Generating Process

I generate the data from the equations 1.19-1.21 as shown in the below with the

parameter values as in the baseline calibration in 1.2.4 and with the following AR(1)

processes,

πt = − σ(1− ρa)ψya
φπ(1 + ωψ)(1−Θρa)

at −
1 + (1− ρυ)ωψ

φπ(1 + ωψ)(1−Θρυ)
υt

it = − σ(1− ρa)ψya
(1 + ωψ)(1−Θρa)

at −
ρυ

φπ(1 + ωψ)(1−Θρυ)
υt

yt = ψya

(
1 +

σ(1− ρa)ψyi
(1 + ωψ)(1−Θρa)

)
at +

ρυψyi
φπ(1 + ωψ)(1−Θρυ)

υt

at = ρaat−1 + εat εa1 ∼ N(0, 1) t = 1, 2, ..., 10 (1.25)

υt = ρυυt−1 + ευt ευ1 ∼ WSN(α∗, β∗,m, k, r) t = 1, 2, ..., 10 (1.26)

where ρa = ρυ = 0.5 are fixed coefficients. The initial value in (1.25) and (1.26)

is set to 0 (a0 = υ0 = 0). Regarding WSN parameters, a set of parameters is used
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to obtain symmetric and asymmetric policy actions based on the high forecast accu-

racy. In symmetric case where anti-inflationary and pro-inflationary policy has the

identical strength, parameter α∗ = β∗ and m = −k = 1 and r = 0.9. In asymmetric

case where only anti-inflationary policy is effective, parameter β∗ = 0, m = −k = 1

and r = 0.9. In order to analyse the effect of policy from weakest to strongest in both

symmetric and asymmetric cases parameter α∗ ∈ {0,−0.25,−0.50,−0.75,−0.99}.

1.4.3 Impulse Response Analysis

In this study impulse response describes the reaction of two first moments of en-

dogenous macroeconomic variables with respect to the volatility of monetary policy

shocks. The variables include inflation, nominal interest rate and output, obtained

at the occurrence time of the monetary policy shock and over subsequent points

in time. In order to design the simulation, single technology and monetary policy

shocks are generated in t = 1 as in (1.25) and (1.26) which are not related to each

other. Then according to the equations (1.19), (1.20) and (1.21) I simulate en-

dogenous variables and set the parameters’ values as in baseline calibration (1.2.4)

setting. I simulate 10000 realisations of inflation, nominal interest rate and output

π
(R)
t , i

(R)
t and y

(R)
t , R = 1, 2, ..., 10000, t = 1. Then I compute the mean and

variance of macroeconomic variables in t = 1, ..., 10.

32



1.5 Simulation Results

In this section, I analyse the mean and variance of three macroeconomic variables

inflation, interest rate and output by impulse response analysis considering the nor-

mal distribution for technology shock and the WSN distribution for monetary policy

shock in three cases:

Case1. Normal policy shock

Case2. Symmetric policy shock

Case3. Asymmetric policy shock

1.5.1 Case1

The impulse response of macroeconomic variables are simulated when the technology

and policy shocks are both normally distributed. According to Figure 1.5, inflation’s

and output’s mean decline by −0.85× 10−3 and -0.008 respectively whereas interest

rate’s mean increases in response to these shocks reaching about 1.3× 10−4. More-

over, volatility of macroeconomic variables raises by approximately about 0.7, 0.05

and 1.2 respectively for inflation, interest rate and output.

1.5.2 Case2

The effect of fully symmetric monetary policy shock is investigated for the different

forecast accuracy, high, medium and low when the policy strength is varying. The

parameters of the policy shocks’ distribution are:

α∗ = β∗ ∈ {0,−0.25,−0.50,−0.75,−0.99}, m = −k = 1 and r = 0.9, 0.5, 0 for high,

moderate and low accuracy of forecast respectively.

Figure 1.6, 1.7 and 1.8 plot the impulse response of inflation, interest rate and

output to the technology and symmetric monetary policy shocks in three different

scenarios with low, moderate and high forecast accuracy respectively. It can be

seen that the inflation’s mean decreases in response to these shocks in the cases of
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low and moderate forecast accuracy where the stronger is the policy, the smaller

would be the inflation’s mean. However, with the most accurate forecast, inflation’s

mean increases reaching about 0.25 × 10−3 and 1.5 × 10−3 respectively for weakest

and strongest policy. Furthermore, volatility of inflation rises as policy strength is

increasing in the both cases of low and moderate forecast accuracy. But with high

forecast accuracy, volatility declines from 0.68 to 0.27 as policy changes from weak

to strong. Interest rate’s mean follows an inverse pattern of inflation’s mean in the

case of most accurate forecast, rising by 4.2× 10−4 and 7.2× 10−4 for the weak and

strong policy respectively. However, volatility of interest rate decreases from 0.048

to 0.022 as the policy strength is increasing. It is also interesting to note that in the

case of high forecast accuracy with the 63% declining in the volatility of policy shock

(according to Figure 1.2), volatility of inflation and interest rate fall 60% and 54%

respectively. However, the changes in the volatility of the aforementioned variables

is very slight when the policy is varying from moderate to strongest. In terms of

output, it is obvious that its mean and variance are affected only by the technology

shock and variation in both, strength of symmetric monetary policy and forecast

accuracy has no effect on the output.
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Figure 1.5: Effects of the Technology and Normal Monetary Policy Shocks on
macroeconomic variables
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Figure 1.6: Effects of the Technology and Symmetric Monetary Policy Shocks on
macroeconomic variables with low forecast accuracy
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Figure 1.7: Effects of the Technology and Symmetric Monetary Policy Shocks on
macroeconomic variables with moderate forecast accuracy
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Figure 1.8: Effects of the Technology and Symmetric Monetary Policy Shocks on
macroeconomic variables with high forecast accuracy
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1.5.3 Case3

The effect of the technology shock and the asymmetric monetary policy shock is

investigated in the model with the high, moderate and low forecast accuracy when

the policy strength is varying. The variation of policy strength is expressed by

parameter α∗ of the WSN distribution as: α∗ ∈ {0,−0.25,−0.50,−0.75,−0.99} and

also because of asymmetric policy shock β∗ = 0, m = −k = 1 and due to high,

moderate and low forecast accuracy r = 0.9, 0.5, 0.

Figures 1.9, 1.10 and 1.11 display the mean and variance of macroeconomic

variables with low, moderate and high forecast accuracy respectively when only

anti-inflationary policy is undertaking. In this case the direction of changes in the

mean and variance of variables is in the same way as symmetric case. However, with

the strongest anti-inflationary policy, inflation’s and interest rate’s mean increases

about 0.2 and 0.05 respectively which is higher than symmetric case. Regarding the

variance of variables, inflation’s volatility declines from 0.67 to 0.44 whereas this

reduction is from 0.048 to 0.034 for interest rate. Thus, the amount of decreasing in

the volatility of inflation and interest rate correspond to the strength of monetary

policy, in asymmetric case is lower than symmetric case. It can be also seen that

38% reduction in the variance of policy shock according to the weakest to strongest

policy can explain 34% and 29% of decline in the inflation’s and interest rate’s

volatility respectively. Moreover, as shown in Figure 1.11 the mean of output is

falling by around -0.053 for the strongest policy where its variance is not affected

by the change of anti-inflationary policy strength.
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Figure 1.9: Effects of the Technology and Asymmetric Monetary Policy Shocks on
macroeconomic variables with low forecast accuracy
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Figure 1.10: Effects of the Technology and Asymmetric Monetary Policy Shocks on
macroeconomic variables with moderate forecast accuracy
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Figure 1.11: Effects of the Technology and Asymmetric Monetary Policy Shocks on
macroeconomic variables with high forecast accuracy
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1.5.4 Discussion

Using stochastic simulation and comparing the impulse responses of macroeconomic

variables with respect to the normal, symmetric WSN and asymmetric WSN dis-

tributions, I found that the mean of inflation is increasing in Gali model when

anti-inflationary policy (asymmetric WSN case) is undertaking. This is the draw-

back of classical monetary models that the response of inflation to contractionary

monetary policy is at odds with the evidence. I am going to explain this phenomena

in the light of Cukierman-Meltzer hypothesis. Cukierman and Meltzer (1986) anal-

ysed the relationship between inflation uncertainty and the level of inflation. They

showed that increses in inflation uncertainty raise the optimal average inflation rate.

Hence, there is a positive causality from inflation uncertainty to inflation level.

In order to explain the Cukierman-Meltzer hypothesis in Gali model I analyse

the long-run response of the mean of inflation with respect to the increases of un-

certainty. The overall uncertainty is defined by the variance of policy shock. In

Figure 1.12 I have plotted two scenarios with the same variances. The first one is

the case with no monetary policy in which α∗ = β∗ = 0 and it is shown with blue

solid line in the Figure 1.12. In the second case I introduce monetary policy with

non zero α∗ and β∗ and is plotted with the red solid line. It can be seen that in the

long-run the greater is the uncertainty, the higher would be the mean of inflation.

Therefore, using the analysis of long run mean of inflation, I have provided strong

evidence in favour of the hypothesis that high inflation uncertainty in Gali model are

associated with high inflation’s level. This analysis can shed light on the explaining

the drawback of Gali model.

The analysis of inflation uncertainty in Gali model carry noteworthy implica-

tions for policy making and macroeconomic modelling. According to the validation

of Cukierman-Meltzer hypothesis in Gali model it can be suggested that central

banks and policy makers might adjust their rate of money growth differently to

inflation uncertainty depending on their relative preference toward inflation and

output stabilization.
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1.6 Conclusion

This chapter relaxes the stochastic assumption of normality for monetary policy

shock in the classical monetary model and applies WSN distribution instead. This

is an important insight as research often depends on the distributional assumptions

of the shocks. This modification allows for analysing the macroeconomic variables

in the model considering the monetary policy actions and outcomes which are rep-

resented by parameters of WSN distribution. WSN parameters have potential im-

plication related to monetary policy actions using the assumption that monetary

authorities are making decisions on the basis of forecasts of future’s inflation. The

contribution of this chapter is twofold. First, it investigates the volatility of mone-

tary policy in two cases, symmetric and asymmetric.

The analysis of monetary policy’s volatility in both symmetric and asymmetric

cases shows that there is a nonlinear characteristic between forecast accuracy, policy

action and volatility of monetary policy shock. It also displays that the movements in

the volatility of monetary policy is highly affected by accuracy of inflation’s forecast

where the lowest volatility is related to the high forecast accuracy.

Second, it provides the distributional analysis of macroeconomic variables with

respect to the different monetary policy shocks distribution, normal, symmetric

WSN and asymmetric WSN using impulse response analysis.

The policy shocks with normal distribution implies that the inflation’s and out-

put’s mean decline whereas interest rate’s mean increases. In addition, variance of

all three macroeconomic variables raises where the output’s variance has the largest

change among the others.

Regarding the distributional effect of symmetric and asymmetric policy shocks

on macroeconomic variables, this study reveals the extent to which the responses

of the endogenous variables change through time, due to the different monetary

policy strength with different forecast accuracy. The results show that with high

forecast accuracy, the percentage change in the volatility of inflation and interest rate

becomes small as strength of policy is growing. However, monetary policy strength
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in both symmetric and asymmetric cases has no effect on output’s volatility. Also

comparing the normal case, symmetric and asymmetric WSN cases it can be said

that output’s volatility is affected only by technology shock. Moreover, monetary

policy shock affects the level of output only in the case that anti-inflationary policy

is effective. In terms of inflation and interest rate, the results show that the greater

is the strength of monetary policy, the bigger would be the impact of the asymmetric

shocks on the variable’s distribution. However, the responses of mean of inflation

which is increasing with anti-inflationary policy is at odds with the evidence. The

inflation is increasing when the anti-inflationary policy is undertaking in Gali model.

This phenomena explained by Cukierman-Meltzer hypothesis and conclude that

in classical monetary model represented by Gali there is a positive causality from

inflation uncertainty to inflation level. Therefore, the increases of inflation level

might be caused by inflation uncertainty.
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Chapter 2

Performance of the QMLE under

misspecification
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2.1 Introduction

Time series models of conditional heteroskedasticity have a long history in statis-

tics and econometrics. Engle (1982) proposed a popular model of conditional het-

eroskedasticity. His concept of autoregressive conditional heteroskedasticity (ARCH)

literally revolutionized empirical work for example in financial economics, where pri-

marily stock returns, foreign exchange rates, and interest rates have been modelled

with this type of time series. ARCH specifies the conditional variance as a linear

function of the squares of the previous innovations which can be estimated by maxi-

mum likelihood method. Recent contributions have extended the ARCH model to a

wider class of specifications, the most important of which is the generalized ARCH

(GARCH) model of Bollerslev (1986).

In earlier literature from GARCH models maximum likelihood estimation is

based on the conditional Gaussian assumption on the innovation distribution. Al-

though, unconditional distribution of ARCH/GARCH residuals might not be Gaus-

sian, but there is more evidence that financial returns are not well approximated

by Gaussian distribution. In particular, it is often found that market returns dis-

tribution has negative skewness and excess kurtosis. This extreme realization of

returns can have adverse effect on the performance of estimation. But this type of

realizations is particularly true for ARCH and GARCH models whose estimation

of variances are sensitive to large innovations. Some of empirical evidence has ad-

dressed heavy tailed and asymmetric distribution of innovation. Bollerslev (1987)

estimated a GARCH (1,1) model with a conditional Student-t distribution for daily

observations of the U.S. dollar/British pound and the U.S. dollar/deutsche mark

from 1980 to 1985. Hsieh (1988) had the longest daily time series so far for five cur-

rencies and for nine years of data, from 1974 to 1983, but the model he estimated

was a restricted ARCH model. He concluded that generally, the ARCH and GARCH

models are successful in accounting for most of the heteroscedasticity of exchange

rate data, but in none of these works the type of heteroscedasticity is identified

properly in the data generation process. Hence, Hsieh (1989) uses a wider class of
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non-normal error densities to improve the fit of the model. He found that residuals

from ARCH/GARCH models using standard normal density are highly leptokurtic

but non-normal distributions fit the data quite well. However, Hall and Yao (2003)

presented that for heavy tailed errors, whose squares have regularly varying tail with

index α ∈ [1, 2), the asymptotic distributions of QMLE of parameters in ARCH and

GARCH models are nonnormal, and are specially not easy to estimate directly using

standard parametric methods. Chen et al. (2012) consider a modification of quasi-

maximum likelihood estimator(QMLE) for GARCH(1,1) process with the errors of

α-stable distribution, whose squares have regularly varying tail with index α, α > 0.

They show that the estimator is unbiased and the asymptotic distribution of that

is normality regardless of the non-normal error distribution. In addition, regarding

the impact of an incorrect error distribution of GARCH model, the performance

of QMLE has been investigated by several researchers. For instance, Engle and

Gonzalez-Rivera (1991) confirm a loss of efficiency of the QMLE of the model pa-

rameters under non-normal innovations. Gonzlez-Rivera and Drost (1999) find that

the efficiency of the QMLE is affected by the skewness as well as the kurtosis of the

conditional error distribution. Furthermore, Bellini and Bottolo (2008) identify the

impact of misspecification on the volatilities through Monte Carlo simulation study

and fitting the GARCH(1,1) model. Their results display a systematic overestimate

of volatilities in the case that the tails of the underlying innovations are heavier than

the fitting innovations.

In this chapter I investigate QMLE properties in a GARCH model with dy-

namics introduced into the mean equation, including AR(1)-GARCH(1,1) when a

normal log-likelihood is maximized but distributional misspecification in conditional

error term is assumed and normality assumption is violated. The quasi-maximum

likelihood estimation is very popular amongst various GARCH type models. This

approach has the advantage that it does not rely on the distribution information

of the process. The procedure starts by imposing a postulated distribution on the

i.i.d. innovation process, whose actual distribution is unknown. In practice, the
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most common substitute is the Gaussian distribution that the obtained estimator

is known as the Gaussian QMLE. In contrast, there is a limited number of studies

focusing on non-Gaussian QMLE which is based on non-Gaussian likelihoods. Re-

cently, Fan et al. (2014) consider non-Gaussian QMLE of GARCH model with heavy

tailed likelihoods, and investigate the consistency of the estimator. They identify

the inconsistency of the estimator because of the density misspecification, and pro-

pose a novel approach by introducing a scale adjustment parameter and a three

step quasi maximum likelihood procedure with non-Gaussian likelihood function.

However, a majority of literature prefer applying Gaussian QMLE as this is robust

against misspecification of error distribution, while using non-Gaussian QMLE is

not. Bollerslev and Woodridge (1992) provide Monte Carlo evidence for the AR(1)-

GARCH(1,1) model to investigate finite sample performance of estimators in both

the normally distributed case and under the assumption of student t distribution.

They find that for the sample sizes of 100, 200 and 400 the biases in the QMLE

are relatively minor. However, they study the efficiency of the QMLE under non-

normality and conclude that the QMLE loses little efficiency with symmetrically

t-distributed errors, but the efficiency loss can be marked under asymmetric er-

ror distributions. In contrast, Yaya et al. (2014) study AR-GARCH process under

misspecified probability distribution. They sampled the GARCH process using one

of the distributions of normal, student t, and generalized error distribution (GED).

Then they analysed the performance of AR(1)-GARCH(1,1) model based on the pa-

rameter estimation, volatility, excess kurtosis, and forecast evaluation criteria. The

Monte Carlo simulation results reveal that the AR-GARCH model when data gen-

erating process assumed GED, performed better on the three assumed distribution.

Moreover, Iglesias and Phillips (2008) provide simulation results concerning the finite

sample properties of QMLE in AR(1)-ARCH(1) model. They find that mean square

error of the estimator of the AR(1) parameter is significantly reduced as conditional

heteroskedasticity increases. In another example Lumsdaine (1995) investigates the

finite sample properties of the maximum likelihood estimator in GARCH(1,1) and
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IGARCH(1,1) models via a Monte Carlo simulation. He concludes that the estima-

tors of the parameters particularly those of the ARCH parameters are skewed in

small samples.

From other point of view regarding the impact of a range of mean and volatility

persistence on the performance of QMLE for AR(1)-GARCH(1,1) model there is not

enough related literature. However, Zhou (2000) studies a Monte Carlo experiment

on QMLE, Maximum Likelihood Estimation (MLE), Efficient Method of Moments

(EMM), and Generalised Method of Moments (GMM) for a continuous time square

root model under two scenarios; mean persistence and volatility cluster. He finds

that in both scenarios MLE get the highest efficiency and QMLE stands out in the

second place. He also concludes that QMLE is straight forward to implement and

it can be reliable in the case that the specification information is included in the

conditional mean and variance.

To examine the effects of distributional misspecification in the AR(1)-GARCH(1,1)

models in this chapter, I consider the light tail WSN distribution in both symmetric

and asymmetric cases. I investigate the properties of the QMLE of model parameters

under both correct and incorrect model specifications. I study the bias, root mean

square error(RMSE), skewness, and kurtosis of the QMLE of model’s parameters

derived under the assumption of Normal distribution (i.e., under correct model spec-

ification), as well as WSN distribution (i.e., under model misspecification). Here,

I numerically evaluate how quasi maximum likelihood estimate of parameters vary

according to the misspecification in distribution of innovations and whether the

mean and volatility persistence has an impact on the behaviour of QMLE. I fo-

cus on maximum likelihood estimators because they are used widely in practice. I

also investigate maximum likelihood estimators of quantiles under a distributional

misspecification in the models using simulation.

In practical problems and hypothesis testing, quantiles are proper distributional

summaries as facilitate interpretation of attribute values represented in graphics

such as histograms or density plots. According to Breidt (2004) quantiles of a
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known distribution are often difficult to obtain analytically or numerically. There-

fore, practically it is common to use the order statistics for estimating the quantiles

of the distribution.

Now the question is that how accurate is the estimation of quantiles? The

bootstrap method is a general methodology for answering this question. It is a

computer-based method which is proposed by Efron (1979) to study the properties

of parameter estimates or test statistics. One approach of bootstrap technique is in

hypothesis testing. Although testing a hypothesis is a central concern of economet-

rics, the distributions of the most frequently used test statistics are identified only

asymptotically. Thus inference on the basis of asymptotic distribution can be risky.

Therefore, the bootstrap technique is an approach developed to solve this issue. In

the last two decades, using the bootstrap technique to present hypothesis testing

in econometrics has become common; see e.g. Horowitz (1994), Horowitz (1997),

Nankervis and Savin (1996) and Davidson and MacKinnon (1999). Moreover, for

estimating the standard errors the bootstrap technique can be used as an alterna-

tive method while mathematically the theoretical calculation is intractable. This

method can be implemented by constructing a number of re-samples with replace-

ment from original data. According to Efron (1979) the non-parametric bootstrap

might be applied as a valid appropriate tool for statistical inference. However, Bickel

and Freedman (1981) show that the non-parametric bootstrap can fail in a situa-

tion like the consistent estimate of the distribution function of the quantiles with

the maximum of a sample size n(referred to as n out of n bootstrap). They rec-

tify the method by re-sampling smaller bootstrap sample m instead of re-sampling

bootstrap samples of size n, where m → ∞ and m
n
→ 0. This adaptation of the

bootstrap sample size is called the m out of n bootstrap. In a similar way Janssen et

al. (2001) show that in the estimate of the distribution function of the U-quantiles

by using n out of n re-sampling scheme, the rate of consistency is slower than the

rate obtained by using m out of n bootstrap (further studies concerning the m out

of n bootstrap, see e.g. Swanepoel (1986), Bickel et al. (2012), Bickel and Sakov
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(2008) and Cheung and Lee (2005)). However, computation of sample quantiles in

the tailes (e.g. quantile is close to 0 or 1) is inefficient when sample size is small. In

the Monte Carlo simulation, one solution is to use importance sampling for variance

reduction. It can apply by generating more samples around a neighbourhood of

the interesting quantile. Hult and Svensson (2009) show that design of importance

sampling algorithms can significantly improve the inefficiency of the extreme quan-

tiles. In this chapter I apply n out of n bootstrap technique in order to compute

the standard errors of quantiles.

Since reviewing the literature on Monte Carlo investigation into GARCH type

models which nothing has been done with WSN distribution, it is interesting to ex-

amine the behaviour of QMLE with symmetric and asymmetric WSN distributions.

The purpose of this chapter is twofold. First, it investigates the finite sample prop-

erties of QMLE in AR-GARCH model with symmetric and asymmetric WSN which

is defined as misspecified error distribution using a range of mean and volatility

persistence as well as correctly specified error terms. Second, this chapter com-

putes quantiles of the simulated finite sample distributions of test statistics and also

computes bootstrapped standard errors of the estimated quantiles.

The structure of this chapter is as follows. Section 2 provides an overview of

the time series models. Section 3 presents the definition of bootstrap technique, its

application in hypothesis testing and computing standard errors. Section 4 briefly

describes the simulation design and data generating processes for analysing the

finite sample properties and computing the quantiles. Section 7 concludes all of the

findings.
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2.2 Time series model

In earlier literature, ARCH/GARCH models are employed to analyse the volatilities

of financial and economic data. However, according to Li et al. (2001) although the

volatilities of the data might be key interest of researchers, the specification of

the conditional mean and the estimation of it are still significant. Therefore, many

researchers have tried to expand and use these type of models in several applications.

One of these extensions is AR-GARCH model.

2.2.1 AR(1)-GARCH(1,1) model

In AR-GARCH model the conditional mean is given as an AR model and the error

term in AR process follows a GARCH process. This is the type of model discussed

by Li and Li (1996), Ling (1999), Li et al. (2001), and Meitz and Saikkonen (2011).

Specifically, the AR(1)-GARCH(1,1) model has the form

yt = ρyt−1 + εt (2.1)

εt =
√
htηt ht = ω + αε2t−1 + βht−1 (2.2)

where ηt is a sequence of independently and identically distributed (i.i.d.) ran-

dom variables with zero mean and unit variance. The parameters in (2.1) and (2.2)

consist of two sets: one set includes the parameter of the conditional mean, denoted

by θ, and another set includes the parameters of the conditional variance ht, denoted

by λ. Hence, θ = (ρ), λ = (ω, α, β)′ are the parameter vectors, with restriction spec-

ified by

|ρ| < 1 , ω > 0 , α > 0 , β > 0 (2.3)

Therefore, Θ ⊂ ]−1, 1[× ]0,+∞[× ]0,+∞[× ]0,+∞[ denotes parameter space. The

above condition 2.3 is quite standard in the AR and GARCH literature. Bollerslev

(1986) specifies the conditions as α ≥ 0 and β ≥ 0. However, noticing that when
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β = 0 the model reduces to an ARCH case and when α = 0 it becomes rather trivial,

I want to exclude these scenarios by using the strict inequality as in 2.3.

2.2.2 Estimation of AR(1)-GARCH(1,1)

Corresponding to the model, let {yt} be a random sample of length T generated

by stationary and ergodic process defined by equations 2.1 and 2.2 and let ϑ0 =

(θ0, λ0) = (ρ0, ω0, α0, β0) denotes the true parameter values which is assumed to be

known. The parameter of interest is autoregressive parameter ρ which is estimated

by maximum likelihood estimation method. Pantula (1989) shows that the MLE

is more efficient than the LSE for the AR model with ARCH(1) errors. Since the

conditional error ηt is not assumed to be normal, the resulting estimator is called the

quasi-maximum likelihood estimator (QMLE). According to Ling and Li (1997c),

the Gaussian quasi-likelihood function of this model(ignoring constants) is given by

LT (θ) =
1

T

T∑
t=1

lt(θ) , lt(θ) = −1

2
lnht −

ε2t
2ht

where ht is treated as a function of yt and θ, and is calculated through the following

recursion:

ht = ω + αε2t−1 + βht−1

and h0=a positive constant.

The QMLE is then defined as

θ̂ = argminLT (θ)

Here (θ) is just the argument of the quasi-likelihood function that needed to be

minimized to obtain the QMLE.

Weiss (1986) shows that the QMLE is consistent and asymptotically normal

under the existence of the finite fourth moment(E(η4t ) < ∞). From Ling and Li
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(1997c), also for the ARMA-GARCH model there exists a locally consistent and

asymptotically normal QMLE if it has finite fourth moment. However, Ling and

McAleer (2002b) show the global consistency of QMLE for the ARMA-GARCH

model under a finite second moment condition(E(η2t ) < ∞). For the GARCH(1,1)

model also Lumsdaine (1996) proves that the quasi-maximum likelihood estimators

of the parameters are consistent and asymptotically normal even in the absence of

a finite fourth moment.

In order to have the consistent and asymptotically normal QMLE, I follow Francq

and Zakoian (2004) and make the following assumptions about the true parameter

vector, ϑ0 = (ρ0, ω0, α0, β0), and the distribution of ηt.

1. ηt is a sequence of i.i.d. random variables such that E[ηt] = 0;

2. η2t has a non-degenerate distribution;

3. E(η4t ) = κ <∞ for all t;

4. θ0 ∈ Θ and Θ is compact;

5. α0 + β0 < 1, the roots of the characteristic polynomial evaluated at the true

parameters are outside the unit circle;

6. Elog {α0η
2
t + β0} < 0.

Assumption 2 is necessary to ensure that ht is not almost surely (a.s.) a constant.

When assumption 3 holds the strong consistency and asymptotic normality of its

global QMLE were proved by Francq and Zakoian (2004), while the consistency

and asymptotic normality of its local QMLE were given by Ling and Li (1997c).

Assumption 4 is necessary for the asymptotic normality of QMLE and implies the

stationarity, invertibility and identifiability of 2.1. Assumption 5 is sufficient condi-

tion to ensure that GARCH process 2.2 has a finite variance. Assumption 6 implies

that εt in 2.2 is strictly stationary and ergodic and εt =
√
ht(λ0)ηt is the unique

strictly stationary and ergodic solution of the GARCH(1,1) model specified by equa-

tions 2.2. Taking a closer look at assumption 6 by Jensen’s inequality we know that

E log
{
α0η

2
t + β0

}
≤ logE

{
α0η

2
t + β0

}
= log{α0 + β0}
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Therefore, when α0 + β0 < 1 we have E log {α0η
2
t + β0} < log 1 = 0 in which case

the GARCH process εt is strictly stationary and ergodic.

2.3 Bootstrap Technique

The bootstrap method is a resampling procedure which is designed to approximate

the sampling distribution of a statistic of interest. It is becoming more popular

method because of its wide application and the high capability of computers. The

term ”bootstrap” is a English phrase which refers to the process that can proceed

from an existing sample without using external samples.

As mentioned in the introduction, Efron (1979) introduced a general re-sampling

method that attempts to estimate or approximate the sampling distributions of

statistics. In time series literature, when asymptotic theory delivers poor approxi-

mations to the finite sample distributions bootstrap appear to be quite useful method

to improve small sample properties. Efron and Tibshirani (1985) summarize that

one of the important benefits of the bootstrap methodology is that it can answer

questions which are too complicated to analyse by traditional statistical methods.

MacKinnon (2006) explains that bootstrap method involves estimating a model

many times using simulated data. Then quantities computed from the simulated

data are used to make inferences from the actual data.

2.3.1 Bootstrap in AR-GARCH model

In regression and time series models I re-sample the residuals which bootstrap pro-

cedure is as follows:

First, consider the following AR(1)-GARCH(1,1) model for t = 1, ..., T :

yt = ρyt−1 + εt (2.4)

εt =
√
htηt ηt ∼ iid(0, 1) ht = ω + αε2t−1 + βht−1 (2.5)
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Given a time series sample ε1, ..., εT , I estimate the AR(1)-GARCH(1,1) model by

means of QMLE, yielding the vector of estimated model parameters ϑ̂ = (ρ̂, ω̂, α̂, β̂).

Then the residual sample bootstrap consists of the following steps. A random sam-

ple of length T is drawn with replacement from the estimated AR-GARCH model’s

returns η̂1, ..., η̂T , yielding η̂∗1, ..., η̂
∗
T . Next ϑ̂ and Equations 2.4-2.5 are used to re-

cursively generate values ε∗1, ..., ε
∗
T and then y∗1, ..., y

∗
T .

2.3.2 Bootstrap Standard Errors

The bootstrap was primarily suggested as a method for computing standard er-

rors; see Efron (1979) and Engle (1982). It can be valuable for this purpose when

other methods are computationally difficult, are unreliable or are not available at

all. Therefore, bootstrap technique can be used to avoid the calculation of the es-

timated asymptotic variance, or in other words, to obtain standard error without

programming out the asymptotic variance formula. This can be perhaps the most

common reason to use bootstrap in applied work in economics because many eco-

nomic models are so complicated that computing the standard error analytically

using asymptotic distribution is very difficult.

If θ̂ is a parameter estimate, θ̂∗j is the corresponding estimate for the jth bootstrap

replication, and the θ̄∗ is the mean of the θ̂∗j , then the bootstrap standard error is

s∗(θ̂) =

(
1

B − 1

B∑
j=1

(θ̂∗j − θ̄∗)2
) 1

2

This is simply the sample standard deviation of the θ̂∗j . We can use s∗(θ̂) in the

same way as we would use any other asymptotically valid standard error to con-

struct asymptotic confidence intervals or perform asymptotic tests.
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2.4 Simulation Studies

In this section, the results from two simulation studies are presented to illustrate

the performance of the QMLE under misspecification. The simulations’ results are

demonstrated across the range of mean and volatility persistence.

2.4.1 Data Generating Process

In the simulations, I generate the data from following process as:

DGP: I consider AR(1) model that residuals of this model follow generalised au-

toregressive conditional heteroskedasticity process of order (1,1). Thus, GARCH

process is presented in residuals and data is generated from AR(1)-GARCH(1,1)

model given by

yt = ρyt−1 + εt

εt =
√
htηt

ht = ω + αε2t−1 + βht−1

where ηt is a sequence of independent and identically distributed (i.i.d.) random

variable such that E(η2t ) = σ2
η. ht is the conditional variance and can be defined as an

autoregressive moving average[ARMA(1,1)] process in the innovation ε2t . Also, true

value of parameters in AR(1)-GARCH(1,1) process is set as explained in the next

subsection. In data generating process, three different choices of error distributions

are considered:

(i) i.i.d. Normal;

(ii) i.i.d. symmetric WSN-Weighted Skew Normal distribution;

(iii) i.i.d. asymmetric WSN

The symmetric and asymmetric WSN distributions are generated by following set

of WSN parameters, P1 and P2 respectively.

P1: a = −0.6145, b = −0.6145, m = 1, k = −1, r = 0.6

P2: a = −0.9217, b = 0, m = 1, k = −1, r = 0.784
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The first set of WSN parameters (P1) corresponds to symmetric WSN by setting

a = b and m = −k where the second set of parameters explain asymmetric WSN.

In second case, asymmetry is demonstrated by b = 0 and m = −k.

It is noteworthy that in DGP, mean and variance of innovations with normal

distribution as well as WSN distributions are 0 and 0.7117 respectively. The reason

of choosing 0.7117 for the variance is that variance of WSN distribution is equal to

1 only for a = b = 0. Therefore, it is impossible to get variance 1 for symmetric

distribution with a = b 6= 0 as well as asymmetric case. The variance is plotted for

aforementioned three cases as shown in Figure 2.1 which the minimum variance is

0.7117. For the sake of comparison I also consider the normally distributed inno-

vations in both DGPs with variance equals to 0.7117. I have plotted the variance

of WSN distribution respect to the variation of parameter a which is varying from

-1 to 0. I have also assumed the value of parameter r equals to 0.6 and 0.784 in

symmetric and asymmetric cases respectively by try and error just in order to find

the equal minimum variance (here is 0.7117) in both cases. Then I have found in

both cases the optimal value of parameter a corresponds to the minimum variance.
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Figure 2.1: Variance of WSN distribution respect to the variation of parameter a
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2.4.2 Different set of mean and volatility persistence

I analyse the performance of QMLE under misspecification in where the error distri-

bution is misspecified by symmetric and asymmetric WSN distribution. The analysis

is expressed in different scenarios according to the wide range of mean and volatility

persistence as follows:

A) ρ0 = 0.5, ω0 = 0.01, α0 = 0.05, β0 = 0.8

B) ρ0 = 0.5, ω0 = 0.01, α0 = 0.05, β0 = 0.85

C) ρ0 = 0.5, ω0 = 0.01, α0 = 0.05, β0 = 0.9

D) ρ0 = 0.5, ω0 = 0.01, α0 = 0.1, β0 = 0.8

E) ρ0 = 0.5, ω0 = 0.01, α0 = 0.1, β0 = 0.85

where in scenarios A, B, C the variance parameter β0 is increased by 0.05. Regard-

ing the scenarios A and D with the fixed variance parameter β0 = 0.8, the mean

parameter α0 is increased from 0.05 to 0.1. Also, comparing two scenarios of B and

E with the fixed β0 = 0.85 mean parameter is raised from 0.05 to 0.1. Furthermore,

two scenarios of A and E describe the change in the mean and variance persistence

simultaneously that mean parameter α0 is increased from 0.05 to 0.1, and variance

parameter β0 is increased from 0.8 to 0.85.

I run the simulation using ALICE High Performance Computing Facility at

University of Leicester. I have developed the MATLAB code written by Junhui

Qian 1 from maximum likelihood estimation of GARCH(1,1) process, to AR(1)-

GARCH(1,1). For maximization of likelihood function I used the constrained opti-

mization algorithm and defined all the parameter restrictions in the QMLE. There-

fore, optimization needed to compute the QMLE was performed using MATLAB’s

fmincon2 function in optimization toolbox with medium-scale ”SQP” algorithm3.

The starting values for the optimization were taken from the true parameter values.

The number of bootstrap replication used to calculate the standard errors of criti-

1available at www.jhqian.org/ts/index.htm
2fmincon finds a minimum of a constrained nonlinear multivariable function.
3SQP (Sequential Quadratic Programming) algorithm allows to mimic Newton’s method for

constrained optimization. At each iteration, an approximation is made of the Hessian of the
Lagrangian function using a quasi-Newton updating method. An overview of SQP is found in
Fletcher (1987) and Gill et al. (1981)
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cal values in simulation study 2 is n = 100, 500, 1000 respectively for sample sizes

T = 100, 500, 1000.

2.4.3 Simulation Study 1: Finite Sample Properties of pa-

rameter estimators in AR(1)-GARCH(1,1) model

In this study I examine the finite sample properties of the estimator using 5000

Monte Carlo replication. I consider the impact of varying the sample size T among

T = 100, 500, 1000 in the performance of the estimator of the parameters across the

range of mean and volatility persistence. As T increases, we may investigate the

convergence of QMLE as well as its distributional properties. I consider the skewness

and kurtosis of estimator with making distributional assumption in the model. The

following steps are carried out to obtain the bias and RMSE of parameter estimation

using Monte Carlo simulation method.

1- Specify the DGP and generate a sample of T

2- Estimate the interest parameter in DGP using maximum likelihood estimation

method

3- Repeat steps 1 and 2, M times to obtain ϑ̂1(T ), ϑ̂2(T ), ..., ϑ̂M(T )

4- Compute the bias and RMSE as

ϑ̄ =
1

M

M∑
i=1

ϑ̂i

bias = ϑ̄− ϑ

RMSE =

√√√√ 1

M

M∑
i=1

(ϑ̂i − ϑ)2

5- Compute skewness and kurtosis of estimated parameter in step 3

Tables 2.1-2.5 report the bias and RMSE as well as the skewness and kurtosis

of the estimators based on the three different distributional assumptions, and five

different set of mean and volatility persistence. Negative bias shows that model pa-
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rameters are underestimated. The overall convergence trend also is quite apparent

from the tables. A pattern of convergence to zero of the bias and RMSE is obvious

from the simulations when T increases. It is clear that RMSE decreases steadily as

the sample size increases. Therefore, a larger sample size enables us to obtain more

accurate estimates, and the estimates will eventually converge to the true value as

sample size increases. But, comparing the tables with symmetric and asymmetric

WSN distributions, it can be seen that the asymmetric is the innovations, the larger

would be the bias and RMSE of the estimators. Moreover, the coefficients of skew-

ness and kurtosis suggest that the empirical distribution of the QML estimator of

parameters particularly ARCH and GARCH parameters are different from the sym-

metrical distribution; the distribution of ρ̂ and α̂ is always negatively skewed while

the skewness coefficient of β̂ is positive. However, it is convincing from simulations

that the distribution of estimators will converge slowly to a Gaussian distribution

which skewness and kurtosis are 0 and 3 respectively. In addition, the results of

simulation suggest that QMLE is consistent even if the true distribution of the

process misspecified with WSN distribution. The basic statistics of estimator with

symmetric WSN are very close to normal case. Moreover, under the asymmetric

WSN innovations, the rate of convergence is slower in general. This fact indicates

that although the asymmetric WSN may not have an impact on the consistency of

estimator, it may have an influence on other aspects such as efficiency of estimates,

rate of convergence, etc. Also, the results confirm that in the models that residuals

follow GARCH process, skewness and kurtosis are higher than the simple AR model.

Comparing the simulation results with those of Lange et al. (2011) and Jardet et al.

(2009) I found that the performance of QMLE is consistent with their estimators.

Lange et al. (2011) examine finite sample properties of modified QMLE (MQMLE)

in autoregressive model with autoregressive conditional heteroscedastic errors (AR-

ARCH) and normally distributed innovations by selecting the censoring constant

to avoid the need for moment restrictions. The performance of their estimator of

the autoregressive parameter confirms negative bias and negative skewness in the
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finite sample distribution of estimator. Jardet et al. (2009) also investigate finite

sample and asymptotic properties of OLS estimator in AR(1) model with normally

distributed error term. They found the left asymmetry in the distribution of OLS

estimator of autoregressive parameter.

2.4.3.1 Comparing a range of volatility persistence

In order to provide clear comparison of how low and high volatility persistence might

have an impact on the estimation of parameters in AR(1)-GARCH(1,1) model with

misspecified WSN distribution, I compared the results of Tables 2.1-2.3.

According to the results of bias of QMLE of AR parameter ρ, I found that the

performance of estimator is quite similar in both normal and symmetric WSN cases

using different volatility persistence. However, using asymmetric WSN distribution

it is obvious that the higher is the volatility persistence, the smaller would be the

bias of AR parameter estimator. Moreover, the results of RMSE show that volatility

persistence affects the estimator performance only in the case of asymmetric WSN

distribution with large sample size.

According to the results of bias and RMSE in QMLE of ARCH parameter it can

be said that in the cases of symmetric and asymmetric WSN distribution with large

sample size, as the volatility persistence is getting higher, the bias and RMSE of

estimator is getting bigger. However, with small sample size the amount of bias and

RMSE is getting smaller. In the case of normal distribution, higher is the volatility

persistence, smaller would be the bias and RMSE of QMLE.

According to the results of bias and RMSE in QMLE of GARCH parameter, it

is obvious that the same as QMLE of ARCH parameter with large sample size the

bias and RMSE of estimator are decreasing as the volatility persistence is increasing.

Also, the bias and RMSE are increasing corresponding to the change of volatility

persistence from low to high.

Comparing the results of skewness and kurtosis, the empirical distribution of

estimated parameters exhibit third and forth moment higher than the normal value
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of 0 and 3 respectively, which represents the fat tail. Moreover, it can be said

that volatility persistence does not have any impact on the skewness and kurtosis of

estimator as the amount of these two statistics does not change with volatility persis-

tence movements. However, in the case of estimated ARCH and GARCH parameters

with three scenarios of normal, symmetric and asymmetric WSN, the higher is the

volatility persistence, the fatter would be the tail of empirical distribution.

2.4.3.2 Comparing a range of mean persistence

I compared the simulation results of Tables 2.1, 2.4 and 2.2, 2.5 to demonstrate how

the results change across the range of mean persistence.

According to the results of bias and RMSE, mean persistence does not have any

impact on the performance of QMLE of AR parameter in normal and symmetric

WSN cases. However, in asymmetric WSN case the amounts of bias and RMSE are

decreasing in order to respond to high mean persistence.

According to the results of skewness and kurtosis, mean persistence does not

have noticeable impact on the empirical distribution of QMLE of AR parameter

using three distributional assumption of normal, symmetric and asymmetric WSN.

According to the results of bias and RMSE in the case of ARCH parameter es-

timator using normal distribution, I found that the higher is the mean persistence,

the smaller would be the bias and RMSE. However, using symmetric WSN distri-

bution the changes of bias and RMSE are in the opposite direction of normal case

whereas high mean persistence increases the amount of bias and RMSE. Moreover,

in the case of asymmetric WSN within the small sample size, higher mean persis-

tence has a negative effect whereas within the larger sample size the amount of bias

and RMSE are increasing, and higher mean persistence has a positive impact on the

performance of QMLE.

According to the results of skewness and kurtosis it can be said that the higher

is the mean persistence, the smaller would be the skewness and kurtosis of empirical

distribution of QMLE of ARCH parameter in all three distributional cases of normal,
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symmetric and asymmetric WSN.

According to the results of bias and RMSE of GARCH parameter estimator,

I noticed that the mean persistence has a negative impact on the performance of

QMLE as in all three distributional cases of normal, symmetric and asymmetric

WSN, the amount of bias and RMSE are decreasing.

According to the results of skewness and kurtosis, it can be said that the higher

is the mean persistence in the model, the greater would be the skewness and kurto-

sis of the empirical distribution. This fact indicates that the fatter tail of empirical

distribution of QMLE of GARCH parameter in all three distributional assumptions

of normal, symmetric and asymmetric WSN corresponds to the higher mean persis-

tence.

2.4.3.3 Comparing a range of mean and volatility persistence simulta-

neously

Simulation results of Tables 2.1 and 2.5 demonstrate the case that mean and volatil-

ity persistence change simultaneously.

According to the results of bias and RMSE of AR parameter estimator, it is

clear that changing both mean and volatility persistence do not seem to affect the

performance of QMLE of AR parameter in the cases of normal and symmetric WSN

distribution. However, in the case of asymmetric WSN distribution with small

sample sizes, the higher is the mean and volatility persistence, the lower is the bias

of AR parameter estimator while the bias is getting larger in large sample size.

According to the results of skewness and kurtosis, it can be observed that empir-

ical distribution of QMLE of AR parameter is not affected by changing in mean and

volatility persistence using three distributional assumption of normal, symmetric

and asymmetric WSN.

According to the results of bias and RMSE of ARCH parameter estimator, in the

case of normal distribution, it is clear that how the bias and RMSE decreases while

the mean and volatility persistence increases. However, in the cases of symmetric
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WSN, and asymmetric WSN with large sample size I can observe how the higher

mean and volatility persistence value, the greater value the bias and RMSE have.

According to the results of skewness and kurtosis of ARCH parameter estimator,

it is noted that the value of third and forth moments of estimator’s distribution

decrease corresponding to the changes of the mean and volatility persistence from

low to high.

According to the simulation results of bias and RMSE of GARCH parameter

estimator, in all three distributional assumption of normal, symmetric and asym-

metric WSN distributions with small sample sizes, the value of bias is not affected

by the movement of both mean and volatility persistence, while with large sample

size the higher are the mean and volatility persistence, the lower would be the bias

and RMSE of the estimator.

According to the simulation results of skewness and kurtosis of GARCH parame-

ter estimator, it can be said that the higher mean and volatility persistence increase

the value of third and forth moment of empirical distribution of the estimator.
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Table 2.1: Finite sample properties of parameter estimators in AR(1)-GARCH(1,1)
model- case A (ρ0 = 0.5, ω0 = 0.01, α0 = 0.05, β0 = 0.8)

AR ARCH GARCH

normal

T=100

Bias -0.0300 0.0208 -0.1751
RMSE 2.1218 1.4706 12.3839

Skewness -0.3057 1.6389 -0.7580
Kurtosis 3.1184 6.3537 2.3150

T=500

Bias -0.0052 0.0073 -0.1268
RMSE 0.3659 0.5177 8.9678

Skewness -0.1532 0.9209 -1.2875
Kurtosis 3.0179 4.0440 3.8405

T=1000

Bias -0.0028 -0.0040 -0.0805
RMSE 0.1989 0.2859 5.6920

Skewness -0.0755 0.7057 -1.7675
Kurtosis 3.0490 3.7869 6.1330

symmetric WSN

T=100

Bias -0.0297 0.0110 -0.1711
RMSE 2.1010 0.7813 12.965

Skewness -0.3345 1.9608 -0.7380
Kurtosis 3.0292 7.6015 2.2660

T=500

Bias -0.0056 -0.0055 -0.1469
RMSE 0.3981 0.3872 10.3870

Skewness -0.1950 1.1581 -1.0684
Kurtosis 3.0425 4.8242 3.1045

T=1000

Bias -0.0026 -0.0090 -0.1131
RMSE 0.1829 0.6378 8.0001

Skewness -0.1559 0.8295 -1.3837
Kurtosis 3.0050 3.9076 4.1776

asymmetric WSN

T=100

Bias -0.0291 0.0167 -0.1775
RMSE 2.0597 1.1818 12.5532

Skewness -0.2922 1.9320 -0.7242
Kurtosis 3.0948 8.6011 2.2416

T=500

Bias -0.0037 -0.00054 -0.1414
RMSE 0.2650 0.0388 9.9955

Skewness -0.1688 1.0535 -1.1320
Kurtosis 3.0011 4.4053 3.3242

T=1000

Bias -0.00077 -0.0028 -0.0953
RMSE 0.0547 0.1952 6.7357

Skewness -0.1656 0.7306 -1.5913
Kurtosis 2.9015 3.8206 5.2322
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Table 2.2: Finite sample properties of parameter estimators in AR(1)-GARCH(1,1)
model- case B (ρ0 = 0.5, ω0 = 0.01, α0 = 0.05, β0 = 0.85)

AR ARCH GARCH

normal

T=100

Bias -0.0300 0.0198 -0.2052
RMSE 2.1247 1.3973 14.5115

Skewness -0.3018 1.6756 -0.8726
Kurtosis 3.1115 6.7174 2.5548

T=500

Bias -0.0052 0.0076 -0.1212
RMSE 0.3650 0.5387 8.5704

Skewness -0.1493 0.9765 -1.7332
Kurtosis 3.0098 4.4431 5.4485

T=1000

Bias -0.0028 0.0037 -0.0634
RMSE 0.1985 0.2646 4.4830

Skewness -0.0768 0.7413 -2.5252
Kurtosis 3.0461 4.1060 10.6759

symmetric WSN

T=100

Bias -0.0297 0.0104 -0.2117
RMSE 2.1016 0.7353 14.9678

Skewness -0.3303 1.9686 -0.7927
Kurtosis 3.0278 7.7171 2.3867

T=500

Bias -0.0056 -0.0054 -0.1566
RMSE 0.3967 0.3785 11.0725

Skewness -0.1955 1.2012 -1.3161
Kurtosis 3.0437 5.1831 3.7954

T=1000

Bias -0.0026 -0.0090 -0.1081
RMSE 0.1817 0.6348 7.6447

Skewness -0.1567 0.8958 -1.8072
Kurtosis 3.0034 4.2776 5.8258

asymmetric WSN

T=100

Bias -0.0290 0.0159 -0.2153
RMSE 2.0513 1.1278 15.2253

Skewness -0.2899 1.9498 -0.7994
Kurtosis 3.0823 8.6333 2.3887

T=500

Bias -0.0036 0.00039 -0.1404
RMSE 0.2560 0.0277 9.9283

Skewness -0.1695 1.1218 -1.4822
Kurtosis 3.0076 4.8551 4.4344

T=1000

Bias -0.00067 -0.0029 -0.0821
RMSE 0.0475 0.2056 5.8073

Skewness -0.1636 0.8257 -2.2221
Kurtosis 2.9016 4.2961 8.4021
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Table 2.3: Finite sample properties of parameter estimators in AR(1)-GARCH(1,1)
model- case C (ρ0 = 0.5, ω0 = 0.01, α0 = 0.05, β0 = 0.9)

AR ARCH GARCH

normal

T=100

Bias -0.0302 0.0166 -0.2268
RMSE 2.1358 1.1706 16.0351

Skewness -0.3056 1.7619 -1.0266
Kurtosis 3.1102 7.4001 2.9046

T=500

Bias -0.0051 0.0060 -0.0887
RMSE 0.3615 0.4214 6.2733

Skewness -0.1538 1.0160 -2.6473
Kurtosis 3.0099 4.8403 10.3308

T=1000

Bias -0.0028 0.0024 -0.0345
RMSE 0.1967 0.1674 2.4416

Skewness -0.0768 0.7340 -4.4561
Kurtosis 3.0539 4.2722 30.6368

symmetric WSN

T=100

Bias -0.0296 0.0079 -0.2442
RMSE 2.0929 0.5573 17.2664

Skewness -0.3322 2.0277 -0.8964
Kurtosis 3.0318 8.1243 2.6194

T=500

Bias -0.0056 -0.0061 -0.1429
RMSE 0.3961 0.4291 10.1041

Skewness -0.2003 1.2945 -1.7935
Kurtosis 3.0516 5.8930 5.4838

T=1000

Bias -0.0025 -0.0097 -0.0816
RMSE 0.1796 0.6856 5.7665

Skewness -0.1587 0.9805 -2.6903
Kurtosis 3.0083 4.7557 10.7038

asymmetric WSN

T=100

Bias -0.0290 0.0126 -0.2351
RMSE 2.0491 0.8929 16.6224

Skewness -0.2884 1.9797 -0.9588
Kurtosis 3.0853 8.7899 2.7424

T=500

Bias -0.0034 -0.00064 -0.1114
RMSE 0.2434 0.0459 7.8774

Skewness -0.1653 1.2120 -2.1933
Kurtosis 3.0083 5.6024 7.5403

T=1000

Bias -0.00052 -0.0039 -0.0517
RMSE 0.0369 0.2755 3.6563

Skewness -0.1587 1.0143 -3.5967
Kurtosis 2.8982 5.5841 18.9410
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Table 2.4: Finite sample properties of parameter estimators in AR(1)-GARCH(1,1)
model- case D (ρ0 = 0.5, ω0 = 0.01, α0 = 0.1, β0 = 0.8)

AR ARCH GARCH

normal

T=100

Bias -0.0299 0.0100 -0.1666
RMSE 2.1125 0.7081 11.7811

Skewness -0.3002 1.2835 -0.9116
Kurtosis 3.1230 5.3692 2.7817

T=500

Bias -0.0050 0.0037 -0.0549
RMSE 0.3534 0.2595 3.8812

Skewness -0.1408 0.5556 -2.3490
Kurtosis 2.9977 3.5842 10.5640

T=1000

Bias -0.0027 0.00084 -0.0205
RMSE 0.1914 0.0598 1.4474

Skewness -0.0752 0.3204 -2.2162
Kurtosis 3.0606 3.2391 15.5631

symmetric WSN

T=100

Bias -0.0297 -0.0138 -0.1741
RMSE 2.0995 0.9738 12.3130

Skewness -0.3313 1.5662 -0.8027
Kurtosis 3.0504 6.0721 2.4983

T=500

Bias -0.0056 -0.0239 -0.0844
RMSE 0.3963 1.6865 5.9690

Skewness -0.1942 0.8128 -1.7519
Kurtosis 3.0350 4.1966 6.0617

T=1000

Bias -0.0025 -0.0265 -0.0427
RMSE 0.1745 1.8728 3.0161

Skewness -0.1601 0.4943 -2.3022
Kurtosis 2.9895 3.4897 10.8801

asymmetric WSN

T=100

Bias -0.0274 -0.00092 -0.1765
RMSE 1.9359 0.0651 12.4818

Skewness -0.2938 1.4490 -0.8362
Kurtosis 3.0995 6.2068 2.5704

T=500

Bias -0.0020 -0.0112 -0.0655
RMSE 0.1391 0.7912 4.6340

Skewness -0.1656 0.7426 -2.0639
Kurtosis 3.0010 4.0771 8.2083

T=1000

Bias 0.00093 -0.0130 -0.0299
RMSE 0.0662 0.9184 2.1137

Skewness -0.1611 0.4749 -2.4179
Kurtosis 2.8956 3.6981 13.7964
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Table 2.5: Finite sample properties of parameter estimators in AR(1)-GARCH(1,1)
model- case E (ρ0 = 0.5, ω0 = 0.01, α0 = 0.1, β0 = 0.85)

AR ARCH GARCH

normal

T=100

Bias -0.0300 0.0062 -0.1766
RMSE 2.1181 0.4365 12.4861

Skewness -0.3059 1.2810 -1.1685
Kurtosis 3.1359 5.4738 3.4227

T=500

Bias -0.0050 0.0018 -0.0315
RMSE 0.3533 0.1277 2.2274

Skewness -0.1511 0.5257 -3.1657
Kurtosis 3.0047 3.6932 21.4439

T=1000

Bias -0.0027 0.00007 -0.0115
RMSE 0.1895 0.0055 0.8134

Skewness -0.0783 0.2669 -1.4626
Kurtosis 3.0764 3.0847 9.8310

symmetric WSN

T=100

Bias -0.0296 0.156 -0.1948
RMSE 2.0904 1.1029 13.7725

Skewness -0.3322 1.6283 -0.9833
Kurtosis 3.0384 6.5456 2.8688

T=500

Bias -0.0056 -0.0245 -0.0649
RMSE 0.3925 1.7320 4.5875

Skewness -0.1930 0.9085 -2.6005
Kurtosis 3.0387 4.8840 11.1045

T=1000

Bias -0.0025 -0.0271 -0.0276
RMSE 0.1733 1.9184 1.9519

Skewness -0.1559 0.8295 -3.5154
Kurtosis 2.9982 3.8392 24.4687

asymmetric WSN

T=100

Bias -0.0273 -0.0041 -0.1885
RMSE 2.1181 0.4365 13.3304

Skewness -0.3059 1.2810 -1.0658
Kurtosis 3.1359 5.4738 3.0936

T=500

Bias -0.0016 -0.0122 -0.0462
RMSE 0.1157 0.8622 3.2683

Skewness -0.1624 0.7854 -3.1194
Kurtosis 3.0048 4.7310 16.6558

T=1000

Bias 0.0013 -0.0136 -0.0175
RMSE 0.0891 0.9647 1.2389

Skewness -0.1548 0.4301 -2.9176
Kurtosis 2.8966 3.5099 23.163873



2.4.4 Simulation Study 2: Quantiles of Estimated AR pa-

rameter in AR(1)-GARCH(1,1) model

I compute quantiles of the simulated finite sample distribution of test statistic under

the null (ρ = 0) which might be used as critical values. The data is generated by

DGP in 2.4.1 . Simulation design is in the same way as simulation study 1 in 2.4.3,

but instead of steps 4 and 5, I compute the quantiles. However the standard error

for each quantile is calculated using the bootstrap method. The n out of n boot-

strap technique is carried out by simulating T bootstrap samples from the sample

of residuals. Then after estimating the parameter in each bootstrap sample and

obtaining the t-statistics, quantiles are computed in each Monte Carlo replication.

Hence, in order to compute the standard errors of quantiles, I compute the sample

standard deviation of each quantile. I report simulation of the quantile estimates,

and of the standard errors in parentheses in Tables 2.6-2.10.

The bootstrapped standard errors in the above tables consistent with the fact

that the smallest standard error corresponds to the estimation of median. Thus,

the standard errors increase in the side of estimated quantiles in which standard

errors of estimated quantiles in the tails are bigger than the standard error of esti-

mated median. This result is aligned with the argument concluded by Cuddington

and Navidi (2011). They found that there is greater uncertainty associated with

the critical values for extreme quantiles. However, aforementioned standard errors

are decreasing in right tail quantiles as sample size and consequently bootstrap

replication increases. Therefore, the simulation study illustrates the estimation of

quantiles with small bootstrapped standard errors and determines that when the

model is misspecified by error distribution, the quantiles’ estimator can allow us to

conduct valid hypothesis test.

Also, I have compared the results of Tables 2.6-2.10 in order to find out the

extent to which the impact of range of mean and volatility persistence on quantile

estimation of AR parameter ρ̂ in the AR-GARCH model. According to the Tables

2.6, 2.7 and 2.8 which correspond to the range of volatility persistence, and Tables
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2.6 and 2.9 which correspond to the mean persistence I found that by considering

distributional assumptions of normal, symmetric and asymmetric WSN, mean and

volatility persistence do not have any noticeable impact on the quantile estimation

of AR parameter ρ̂.
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Table 2.6: Estimated quantiles of ρ̂ - Case A (ρ0 = 0.5, ω0 = 0.01, α0 = 0.05,
β0 = 0.8)

0.50 0.90 0.95 0.975 0.99

Normal

T=100 -0.1922 1.0809 1.3646 1.6309 1.8602
(0.0899) (0.0967) (0.1019) (0.1215) (0.1295)

T=500 -0.0587 1.0838 1.5153 1.8947 2.4405
(0.0801) (0.0949) (0.1163) (0.1227) (0.1356)

T=1000 -0.1172 1.2945 1.6890 2.0551 2.5890
(0.0878) (0.0958) (0.1087) (0.1201) (0.1326)

Symmetric WSN

T=100 -0.2285 0.9232 1.1605 1.4132 1.5968
(0.0806) (0.0901) (0.1040) (0.1122) (0.1310)

T=500 -0.0875 1.0688 1.3511 1.5968 1.9838
(0.0809) (0.0915) (0.1098) (0.1236) (0.1332)

T=1000 -0.1566 1.1228 1.5297 1.9191 2.3449
(0.0857) (0.0932) (0.1038) (0.1291) (0.1378)

Asymmetric WSN

T=100 -0.2603 0.8889 1.2798 1.5381 1.8157
(0.0845) (0.0921) (0.0968) (0.1174) (0.1365)

T=500 -0.0123 1.1372 1.4910 1.8736 1.9676
(0.0888) (0.0909) (0.1097) (0.1201) (0.1334)

T=1000 0.0500 1.3190 1.5826 1.8910 2.1701
(0.0813) (0.0996) (0.1047) (0.1143) (0.1393)
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Table 2.7: Estimated quantiles of ρ̂ - Case B (ρ0 = 0.5, ω0 = 0.01, α0 = 0.05,
β0 = 0.85)

0.50 0.90 0.95 0.975 0.99

Normal

T=100 -0.1911 1.0798 1.3533 1.6446 1.8697
(0.0856) (0.0965) (0.1064) (0.1237) (0.1295)

T=500 -0.0531 1.0685 1.5285 1.8356 2.4273
(0.0896) (0.0974) (0.1104) (0.1272) (0.1319)

T=1000 -0.1107 1.2826 1.6761 2.0616 2.6013
(0.0864) (0.0943) (0.1190) (0.1241) (0.1296)

Symmetric WSN

T=100 -0.2387 0.9282 1.1495 1.4279 1.6104
(0.0881) (0.0994) (0.1027) (0.1150) (0.1311)

T=500 -0.0782 1.0555 1.3483 1.5959 1.9724
(0.0873) (0.0988) (0.1083) (0.1162) (0.1302)

T=1000 -0.1491 1.1119 1.5466 1.9192 2.3470
(0.0831) (0.0905) (0.1009) (0.1173) (0.1264)

Asymmetric WSN

T=100 -0.2566 0.9085 1.2734 1.5556 1.8511
(0.0889) (0.0917) (0.1089) (0.1143) (0.1366)

T=500 -0.0241 1.1645 1.5382 1.8114 1.9937
(0.0828) (0.0952) (0.1056) (0.1129) (0.1298)

T=1000 0.0523 1.3344 1.5650 1.8727 2.1563
(0.0876) (0.0956) (0.1034) (0.1197) (0.1343)
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Table 2.8: Estimated quantiles of ρ̂ - Case C (ρ0 = 0.5, ω0 = 0.01, α0 = 0.05,
β0 = 0.9)

0.50 0.90 0.95 0.975 0.99

Normal

T=100 -0.1958 1.0936 1.3755 1.6446 1.8749
(0.0835) (0.0909) (0.1079) (0.1138) (0.1346)

T=500 -0.0545 1.0715 1.4724 1.7463 2.3840
(0.0861) (0.0910) (0.0968) (0.1118) (0.1261)

T=1000 -0.1200 1.3039 1.6737 2.0543 2.6057
(0.0750) (0.0825) (0.0856) (0.1081) (0.1104)

Symmetric WSN

T=100 -0.2306 0.9414 1.1692 1.4208 1.6498
(0.0812) (0.0894) (0.0937) (0.1147) (0.1204)

T=500 -0.0814 1.0552 1.3512 1.6254 1.9508
(0.0959) (0.0998) (0.1088) (0.1133) (0.1211)

T=1000 -0.1460 1.1329 1.5806 1.9011 2.3397
(0.0816) (0.0993) (0.1048) (0.1059) (0.1163)

Asymmetric WSN

T=100 -0.2605 0.9186 1.2399 1.5680 1.7895
(0.08468) (0.0923) (0.0966) (0.1120) (0.1396)

T=500 -0.0237 1.1878 1.5890 1.7805 1.9873
(0.0771) (0.0885) (0.0923) (0.1157) (0.1320)

T=1000 0.0644 1.3597 1.5670 1.8416 2.1514
(0.0816) (0.0860) (0.0950) (0.1040) (0.1255)
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Table 2.9: Estimated quantiles of ρ̂ - Case D (ρ0 = 0.5, ω0 = 0.01, α0 = 0.1,
β0 = 0.8)

0.50 0.90 0.95 0.975 0.99

Normal

T=100 -0.2021 1.0851 1.4109 1.6734 1.8803
(0.0885) (0.0967) (0.1010) (0.1236) (0.1358)

T=500 -0.0444 1.0847 1.5252 1.8053 2.4355
(0.0868) (0.0953) (0.1031) (0.1179) (0.1310)

T=1000 -0.1196 1.2693 1.6205 2.0521 2.5937
(0.0895) (0.0964) (0.1013) (0.1250) (0.1342)

Symmetric WSN

T=100 -0.2370 0.9469 1.1754 1.4896 1.6439
(0.0820) (0.0991) (0.0998) (0.1002) (0.1279)

T=500 -0.0650 1.0757 1.3842 1.6516 1.9800
(0.0905) (0.0974) (0.1026) (0.1158) (0.1205)

T=1000 -0.1614 1.1464 1.5538 1.9585 2.3632
(0.0885) (0.0958) (0.1072) (0.1262) (0.1363)

Asymmetric WSN

T=100 -0.2366 0.9665 1.3120 1.6496 1.7615
(0.0860) (0.0941) (0.0989) (0.1105) (0.1244)

T=500 0.0169 1.2161 1.6126 1.8966 2.0836
(0.0912) (0.0989) (0.1051) (0.1165) (0.1237)

T=1000 0.0819 1.3796 1.6334 1.9209 2.2948
(0.0818) (0.0949) (0.1048) (0.1162) (0.1202)
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Table 2.10: Estimated quantiles of ρ̂ - Case E(ρ0 = 0.5, ω0 = 0.01, α0 = 0.1,
β0 = 0.85)

0.50 0.90 0.95 0.975 0.99

Normal

T=100 -0.1897 1.0850 1.3914 1.6827 1.8929
(0.0866) (0.0916) (0.1160) (0.1233) (0.1340)

T=500 -0.0431 1.0961 1.5142 1.7879 2.3948
(0.0863) (0.0958) (0.1017) (0.1289) (0.1323)

T=1000 -0.1361 1.2476 1.6176 2.0391 2.5695
(0.0850) (0.0915) (0.1057) (0.1210) (0.1315)

Symmetric WSN

T=100 -0.2384 0.9487 1.2443 1.4696 1.6394
(0.0826) (0.0914) (0.1118) (0.1248) (0.1384)

T=500 -0.0695 1.0459 1.3852 1.6586 1.9430
(0.0897) (0.1013) (0.1075) (0.1218) (0.1327)

T=1000 -0.1622 1.1788 1.5942 1.9617 2.3804
(0.0831) (0.0914) (0.1092) (0.1125) (0.1387)

Asymmetric WSN

T=100 -0.2377 0.9220 1.2542 1.6403 1.8082
(0.0865) (0.0947) (0.1093) (0.1123) (0.1387)

T=500 0.0647 1.2117 1.5473 1.8873 2.0875
(0.0929) (0.1068) (0.1141) (0.1224) (0.1376)

T=1000 0.1075 1.3890 1.6348 1.9317 2.2754
(0.0809) (0.1037) (0.1242) (0.1261) (0.1391)
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2.5 Conclusion

This chapter has examined the AR(1)-GARCH(1,1) model from the quasi maximum

likelihood viewpoint, and presented numerical simulation results regarding the finite

sample properties of QMLE for this model considering a range of mean and volatility

persistence. Finite sample properties of estimator is examined using Monte Carlo

simulation. The impact of different sample sizes as well as various mean and volatil-

ity persistence are investigated in the performance of the estimator of the model

parameters. The bias, RMSE and distributional properties of estimators are anal-

ysed in three cases when the distribution of the error term in the model is normal

distribution and when it is misspecified with symmetric and asymmetric WSN dis-

tributions. Also, quantiles of the simulated finite sample distribution of test statistic

is computed in the case of AR parameter in the model.

Regarding the effect of sample size, in all three cases of different distributional

assumption, this study reveals a pattern of convergence to zero of a bias and RMSE

when sample size increases. Moreover, the empirical distribution of estimated pa-

rameters exhibits skewness and kurtosis higher than the normal value of 0 and 3

respectively, and therefore, represents the fatter tail. However, the results of skew-

ness and kurtosis of empirical distributions change across the range of mean and

volatility persistence. I found that with all three distributional assumptions, mean

and volatility persistence have no effect on the distributional properties of QMLE of

AR parameter in the model. Moreover, in the case of QMLE of ARCH parameter,

the higher is the mean persistence, the smaller would be the skewness and kurtosis

of empirical distribution of estimator. In contrast, the effect of volatility persistence

is in the other direction as higher volatility persistence corresponds to the larger

skewness and kurtosis of empirical distribution of QMLE of ARCH parameter. Fur-

thermore, using a range of mean and volatility persistence, the results of skewness

and kurtosis of QMLE of GARCH parameter indicate that in all three distributional

assumptions of normal, symmetric and asymmetric WSN the higher is the mean and

volatility persistence, the fatter would be the tail of empirical distribution of esti-
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mator.

Regarding the effect of mean and volatility persistence on the performance of

AR parameter estimator, I found that there is no noticeable impact in the cases of

normal and symmetric WSN as the amounts of bias and RMSE are not changing

according to the range of mean and volatility persistence. However, in asymmetric

WSN case the higher is the volatility persistence, the greater would be the bias and

RMSE and therefore, less accurate would be the estimate of the parameter. Also,

regarding the mean persistence in the case of asymmetric WSN, the higher is the

mean persistence, the more accurate would be the estimate of AR parameter.

Regarding the QMLE of ARCH and GARCH parameters, I found that in the

cases of symmetric and asymmetric WSN distribution with small sample size, higher

volatility persistence corresponds to the smaller bias and RMSE of both parameter

estimators. However, in the cases of symmetric WSN as well as asymmetric WSN

with large sample size, the higher is the mean persistence, the greater would be

the amount of bias and RMSE of ARCH parameter estimator. But, in the case of

QMLE of GARCH parameter, with all three distributional assumption of normal,

symmetric and asymmetric WSN, I noticed that higher mean persistence results in

a smaller bias and RMSE and consequently more accurate estimate of parameter.

In addition, from the simulations I observed that the changes in bias, RMSE,

skewness, and kurtosis of QMLE of parameters corresponding to simultaneous mean

and volatility persistence are greater than the cases of either mean or volatility

persistence.

This chapter also has computed the quantiles of estimated AR parameter in

AR(1)-GARCH(1,1) model across a range of mean and volatility persistence by

considering distributional assumption of normal, symmetric and asymmetric WSN

distributions. Then, the standard error of each quantile is calculated using bootstrap

technique. I found that mean and volatility persistence can not significantly affect

on the quantiles of estimated AR parameter in the model.
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Chapter 3

Empirically comparing the

p-values of unit root tests

obtained from the Park bootstrap

and asymptotics
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3.1 Introduction

In recent years the application of bootstrap to non-stationary series has become

increasingly popular due to the fact that this technique has a good performance

in finite samples for stationary processes. This chapter will consider one specific

application of the bootstrap, namely unit root testing. The problem of determining

whether a time series contains a unit root has received a great deal of attention in

both the statistics and econometrics literature (see e.g., Dickey and Fuller (1979);

Said and Dickey (1984); Phillips and Perron (1988); Phillips and Xiao (1998) for a

survey).

Bootstrap theories have previously been investigated in unit root models by,

among others, Basawa et al. (1991a), Basawa et al. (1991b), Datta (1996), Park

(2002), Chang and Park (2003), Park (2003), Paparoditis and Politis (2003) and

Smeekes (2006). Most studies of bootstrap methods for unit root tests have been

concerned with type I errors and, in particular, the question of whether the sizes

of the tests correspond to the nominal levels. Ferretti and Romo (1996) consider

a bootstrap unit root test in AR(l) model. Through Monte Carlo experiment they

compare the power of the bootstrap test with the previously existing methods like

the Ljung-Box statistic, the Dickey-Fuller statistic and the Phillips-Perron statistic.

They find that bootstrap test is more powerful for small samples.

Bootstrap tests constitute an attractive approaches rather than the tests based

on the asymptotic distributions. Bootstrap procedures are able to take into account

the impact of factors such as sample size, initial conditions and error distributions

which typically do not affect asymptotic distributions. In the context of hypothesis

testing, this implies that the empirical size of bootstrapped tests is in overall closer

to the nominal size than that based on asymptotic critical values. Therefore, the

bootstrap unit root tests relying on the bootstrap critical values, appear particularly

attractive in this respect. Chang et al. (2016) consider parametric bootstrap method

to the Covariates Augmented Dickey Fuller (CADF) unit root test which is suggested

in Hansen (1995). They compared the finite sample performances of CADF and
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bootstrap CADF tests with popular univariate unit root tests. They argue that the

asymptotic and the finite sample size performances of the CADF test is improved

significantly by using bootstrap method. Also, by applying bootstrap CADF to the

empirical data they find that compare to the univariate unit root tests, bootstrap

CADF can reject the null hypothesis of a unit root for more series. For most of

the commonly used unit root tests, the size distortions are known to be large and

often too large for the tests to be any reliable. It is now well perceived that the

bootstrap, if applied appropriately, helps to compute the empirical distribution of

the estimated parameter or test statistics and also critical values more accurately

in finite samples. Beran (1988) showed through simulation experiment that the test

using bootstrap-based critical value can provide better control over the rejection

probability than the test using asymptotic-theory-based critical value(see also Hall

(1992) and Horowitz (1994)).

The two popular bootstrap technique for the test of a unit root are the sieve

bootstrap and the block bootstrap. The sieve bootstrap introduced by Buhlmann

(1997) attempts to approximate the model using a parametric model. However,

the block bootstrap methods which is proposed by Kunsch (1989), attempts to use

blocks of consecutive observations instead of individual observations in resampling.

Palm et al. (2008) study the behaviour of a set of bootstrap unit root tests based

on the use of block bootstrap that blocks of residuals are resampled, and sieve

bootstrap that fits an AR model to the residuals and then resamples the residuals

obtained from this model. They find that sieve tests perform better than block tests

in terms of size. They also prefer sieve bootstrap practically as the selection of lag

length based on an information criterion is quite easy. But there are no satisfactory

methods to choose the block length. Moreover, the sieve bootstrap has been applied

to Dickey-Fuller unit root test by Park (2003) and Chang and Park (2003). This

method seems to work quite well and they argue that the bootstrap can provide

some improvements over the asymptotic.

It has indeed been observed by various authors including Ferretti and Romo
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(1996) and Nankervis and Savin (1996) that the bootstrap tests have actual rejection

probabilities that are much closer to their nominal values based on the assumption

that the innovations are iid in an AR model with one lag. Furthermore, Gospodinov

and Tao (2011) propose a bootstrap unit root test in models with GARCH(1,1)

errors and study empirically this test as well as bootstrap DF test in U.S. interest

rates data. The data used in the analysis include the Federal Funds rate, 3-month

Treasury bill rate, 1-, 5- and 10-year Treasury bond yields and the default premium

rate. They find that the bootstrap p-values of the DF test provide no evidence

against the null of a unit root. However, the bootstrap p-values of their proposed

test can reject the null of a unit root at 5% significance level for all interest rates

except for the 10-year yield. Moreover, Park (2003) investigates through simulation

the effectiveness of the bootstrap method in rejection probabilities. He considers

unit root models driven by Gaussian and non-Gaussian innovations. His results are

consistent with the results obtained by Ferretti and Romo (1996) and Nankervis

and Savin (1996). He suggests that the distributional characteristics of innovations,

the sample size and the presence of deterministic trends can affect the magnitude

of improvements of rejection probabilities. He finds that bootstrap provides better

approximations for the models including time trends and for the samples of small

sizes.

Since reviewing the literature on empirically studies of unit root tests obtained

from the bootstrap and not finding any studies that consider how different frequen-

cies of empirical data can affect the unit root results, it is interesting to investigate

through empirical studies how much evidence against unit root tests in stock market

data and exchange rate series can be found by using bootstrap technique proposed

in Park (2003). The analysis includes monthly, weekly and daily frequencies of these

series and compare the bootstrap method in unit root models including Augmented

Dickey-Fuller (ADF), Phillips-Perron (PP), and DF-GLS which was developed by

Elliott, Rothenberg and Stock (1996) as a modification of ADF test. I compute the

p-values under the null hypothesis of unit root in exchange rate of 30 countries as
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well as 30 stock market indices.

The rest of the chapter is organized as follows. The model and simulation de-

sign of bootstrapped unit root tests are introduced briefly in Section 2. Section 3

describes the empirical results of bootstrap unit root tests. Section 4 concludes.

3.2 Bootstrap unit root tests

In this section three unit root tests including ADF, PP and DF-GLS tests are

described in terms of the model and bootstrap simulation design.

3.2.1 Augmented Dickey-Fuller(ADF) test

3.2.1.1 The model

For a time series process yt without and with deterministic trend, the ADF test is

carried out by estimating the following equation for t = 1, ..., T when H0 : ρ = 1,

yt = ρyt−1 +

p∑
i=1

ρi4 yt−i + εt (3.1)

yt = Dt + ρyt−1 +

p∑
i=1

ρi4 yt−i + εt (3.2)

where 3.1 defines as the ADF equation without deterministic trend and Dt in 3.2

is the deterministic trend specified as µ or µ+ βt, 4 is the difference operator and

the augmented terms, 4yt−i, are included to ensure a lack of serial correlation in

the disturbances, εt.

Practically, selection of lag length p in ADF test is a major concern. With the

selection of too small p, the test will be biased with the remaining serial correlation

in the errors. Also, with too large p, the test will lost the power. Said and Dickey

(1984) suggested that the order of T
1
3 is sufficient for the select of lag length. Ng

and Perron (1995) proposed to set the upper bound pmax for p and estimate the
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ADF test regression with p = pmax. For determination of pmax, Ng and Perron

(1995) used the rule suggested by Schwert (1989) as pmax =

12.

(
T

100

)1

4

. Other

suggestions in the literature include the determination of lag length by using the

Akaike Information Criterion (AIC) or the Schwartz Bayesian Criterion(SBC) to

insure that residuals in 3.2 is white noise. These order selection criterions set the

AR order increasing at a logarithmic rate.

A unit root test is a hypothesis test for testing if yt is a unit root process based

on the observations y1, ..., yT and our interest is in the null hypothesis H0 : ρ = 1

which implies the yt is integrated of order one.

The unit root hypothesis is tested using the t-statistic on ρ in regression 3.1.

The parameter ρ is estimated by the ordinary least square (OLS) estimator and

according to Park (2003) the test statistic based on ρ̂ is the ADF test statistic as

Fn =
ρ̂− 1

σn
(∑n

t=1 py
2
t−1
)− 1

2

where σ2
n is the variance estimator of the regression errors and pyt−1 defined as

pyt−1 = yt−1 −

(
n∑
t=1

yt−1x
′
t−1

)(
n∑
t=1

xt−1x
′
t−1

)−1
xt−1

xt−1 = (4yt−1, ...,4yt−p)′

The sample distribution of the statistic Fn is unknown and it has the Dickey

Fuller type of asymptotic distribution (see, e.g.,Stock (1994) and Park (2003)),

Fn →d F =

∫ 1

0
WtdWt(∫ 1

0
W 2
t dt
) 1

2

where W is standard Brownian motion. When the innovation sequence {εt} is

independent and identically distributed, the limiting distribution of the statistics

are independent of nuisance parameters. Since F does not depend on any nuisance
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parameter, the asymptotic distribution of Fn applies for ADF as well.

For ADF model with deterministic trends as explained in Chang and Park (2002)

the asymptotic distribution is given with demeaned (W µ
t ) and detrended (W β

t ) Brow-

nian motions in place of standard Brownian motion W as

W µ
t = Wt −

∫ 1

0

Wsds

W β
t = Wt + (6t− 4)

∫ 1

0

Wsds − (12t− 6)

∫ 1

0

sWsds

3.2.1.2 Design of Bootstrapped ADF test

For implementation of the bootstrap method in the unit root model, I follow the

method which is proposed in Park (2003).

1. Fit the regression model 4yt = Dt +
∑p

i=1 ρi 4 yt−i + εt into the original data

and obtain the coefficient estimate (ρ̂i), test statistic Fn and fitted residuals (ε̂t);

2. Obtain the centred residuals (ε̂t −
∑T
i=1 ε̂i
T

) to get the zero mean of bootstrap

samples;

3. Draw the bootstrap samples for the innovations (ε∗t ) from centred residuals;

4. Construct the values for (u∗t ) recursively from (ε∗t ) as

u∗t =

p∑
i=1

ρ̂iu
∗
t−i + ε∗t

starting from (u0, ..., u1−p) equal zero;

5. Obtain bootstrap samples y∗t for yt as

y∗t = y∗t−1 + u∗t = y∗0 +
t∑
i=1

u∗i

starting from y∗0 = y0 = 0;

6. Calculate the bootstrap test statistic F ∗ from the bootstrap sample in the same

way as Fn is constructed from original data;

7. Set the number of bootstrap replications B and repeat step 3 to step 6 B times
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to obtain B bootstrap statistics {F ∗1 , ..., F ∗B};

8. Calculate the P-value of the bootstrap test as

p =
1

B − 1

B∑
b=1

I {F ∗b < Fn}

It is worth to mention that with respect to obtaining the bootstrap residuals in

step 2, two different approaches can be distinguished, the difference-based approach

and the residual-based approach. In the difference-based approach, the bootstrap

errors are obtained with the restriction ρ = 1, i.e. ε̂t = yt − yt−1. This approach

is used in, for example, Psaradakis (2001) and Park (2003). In the residual-based

approach, on the other hand, the bootstrap errors are obtained by estimating ρ

without restriction, i.e.ε̂t = yt − ρ̂yt−1. This approach is used in Paparoditis and

Politis (2003). In general, both approaches do not affect the consistency of the

bootstrap. However, as argued in Paparoditis and Politis (2005), the residual-based

approach will have a better power property, especially when the true DGP is from

the alternative hypothesis.

3.2.2 Phillips-Perron(PP) Test

3.2.2.1 The model

Phillips and Perron (1988) developed a generalization of the ADF test procedure

to test for the existence of a unit root. PP test is a nonparametric modification to

the standard Dickey-Fuller test statistic to account for the autocorrelation of the

error terms. While the ADF methodology addresses this issue by adding lagged

differenced terms in the regression equation, the PP test makes a correction to

the t-statistic of the autoregressive coefficient from the regression model. The unit

root is tested with hypothesis H0 : ρ = 1 and H1 : ρ < 1 based on the following

AR(1)regression with deterministic trends as:

yt = ρyt−1 + εt t = 1, ..., T (3.3)
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yt = Dt + ρyt−1 + εt t = 1, ..., T (3.4)

where Dt is the deterministic trend defined as µ or µ + β(t− 1
2
T ) and εt ∼ (0, σ2

ε).

According to Phillips and Perron (1988) consistent estimate of variance of errors

(σ2
ε) is provided by s2ε = T−1

∑T
1 (yt − yt−1)2 under the null hypothesis ρ = 1. Also,

consistent estimate of the long-run variance or the variance of the sum of errors

(σ2) are provided in the context of weighted variance estimates by Newey and West

(1987) as

s2T l = T−1
T∑
t=1

ε2t + 2T−1
l∑

s=1

wsl

T∑
t=s+1

εtεt−s

where wsl = 1− s

l + 1
is nonnegative. They showed that s2T l is a consistent estimator

of σ2 if l → ∞ as T → ∞ such that l = o
(
T

1
4

)
. Therefore, Phillips and Perron

(1988) defined the transformation of the t statistic of parameter ρ from regression

3.4 while Dt = µ as

Z(tρ̂) = (
sε
sT l

)Gn − λ′
sT l

m̄
1
2
yy

and also it is defined with Dt = µ+ β(t− 1
2
T ) as

Z(tρ̂) = (
sε
sT l

)Gn − λ′
sT l

M
1
2

where Gn is the usual regression test statistic for testing the null hypothesis in 3.4

and

λ′ =
(s2T l − s2ε)

2s2T l

m̄yy = T−2
∑

(yt − ȳ)2

M = (1− T−2)myy − 12m2
ty + 12(1 + T−1)mtymy − (4 + 6T−1 + 2T−2)m2

y

myy = T−2
∑

y2t

mty = T
−5
2

∑
tyt

my = T
−3
2

∑
yt
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3.2.2.2 Design of Bootstrapped PP test

With the observations y1, ..., yT , a bootstrap unit root test can be conducted as fol-

lows:

1. Fit the regression model M yt = Dt + εt into the original data and obtain the

coefficient estimate (ρ̂), test statistic (Gn) and fitted residuals (ε̂t);

2. Obtain the centred residuals (ε̂t −
∑T
i=1 ε̂i
T

);

3. Obtain the bootstrap errors, ε∗1, ..., ε
∗
T from centred residuals;

4. Construct the bootstrap samples y∗1, ..., y
∗
T with y∗t = y∗t−1 + ε∗t , starting from

y∗0 = y0 = 0;

5. Calculate the bootstrap test statistic G∗ from the bootstrap sample in the same

way as step 1;

6. Repeat step 3 to step 5 B times to obtain B bootstrap statistics {G∗1, ..., G∗B};

7. Calculate the p-value of the bootstrap test with p = 1
B−1

∑B
b=1 I{G∗b < Gn}

3.2.3 DF-GLS Unit Root Test

In order to improve the Dickey-Fuller type tests, Elliott, Rothenberg and Stock

(1996) advocate a local-to-unity GLS detrending procedure. This is the so-called

DF-GLS unit root test, that is a DF test (see Dickey and Fuller (1979)) applied

to the regression residual, which results from the GLS estimators employed in the

original regressions (Vougas (2007)). The reason for considering the DF-GLS test,

originally proposed by Elliott, Rothenberg and Stock (1996) is that this test has

much smaller size distortions than traditional unit root tests when the errors have

strong negative serial correlation.

DF-GLS proceeds by first detrending the series as

ydt = yt − β̂xt
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where β̂ is obtained by regressing ȳ on x̄ which is defined as follows,

ȳ = [y1, (1− ρL)y2, ..., (1− ρL)yT ]

x̄ = [x1, (1− ρL)x2, ..., (1− ρL)xT ]

where yt is the original time series and ρ = 1 − c
T

. Elliott, Rothenberg and Stock

(1996) determine the value of c = −7 when xt = 1 in which the local power of

the test is close to that of the optimal test and show that DF-GLS test has the

same asymptotic distribution as ADF t-test. Also, they determine c = −13.5 when

xt = [1, t] which in this case the asymptotic distribution of DF-GLS test is different

from the ADF t-test. However, they demonstrate that asymptotic power of DF-GLS

test is the same as point optimal test and also is higher than DF t-test against local

alternatives.

After detrending the series, the DF-GLS proceeds on the similar way as the

traditional ADF test with null hypothesis of a unit root (H0 : ρ = 0) which can be

tested in the following regression:

4ydt = ρydt−1 +
k∑
j=1

βj 4 ydt−j + ut

According to Stock (1994) and Park (2003) the asymptotic distribution of local

to unity model can be defined as

Fn →d F (c) = −c
(∫ 1

0

Wc(t)
2dt

) 1
2

+

∫ 1

0
Wc(t)dW (t)(∫ 1

0
W (t)2dt

) 1
2

where Wc(t) = Wt − c
∫ t
0
e−c(t−s)W (s)ds is the Ornstein-Uhlenbeck process which is

determined as the solution to the stochastic differential equation dWc(t) = −cWc(t)dt+

dW (t).

After detrending the series, a bootstrap unit root test can be designed in the

similar way as ADF test in 3.2.1.2.

93



3.3 Empirical results

This chapter investigates the hypothesis of a unit root in stock market indices and

exchange rate series. The data is collected from Datastream and consists of monthly,

weekly and daily data of 30 major stock indices as well as 30 exchange rate series.

The list of indices are AEX, BEL20, CAC 40, DAX30 Performance, Dow Jones In-

dustrials, Euro Stoxx, Euro Stoxx50, FTSE 100, FTSE 250, Hang Seng, IBEX35,

MDAX Frankfurt, MSCI Europe, MSCI World, Nasdaq Composite, Nasdaq100,

EuroNext100, Next150, Nikkei225 Stock Average, Nyse Composite, OMX Stock-

holm30, Russell2000, SBF120, S&P 200, S&P 500 Composite, S&P 500 Growth,

Stoxx Europe600E, Stoxx Europe50, Swiss Market, and Topix. For the analy-

sis of exchange rate series, the list of countries including: Argentina, Australia,

Brazil, Bulgaria, Canada, Chile, China, Colombia, Croatia, Czech Republic, Den-

mark, Germany, Greece, Hong Kong, Hungary, Iceland, Indonesia, Israel, Japan,

Malaysia, Mexico, Norway, Russia, Singapore, South Africa, South Korea, Sweden,

Switzerland, Taiwan, and Thailand. The monthly, weekly and daily analysis covers

the period of 2009.01.01 to 2016.12.01, 2009.01.01 to 2016.12.15, and 2009.01.01 to

2016.12.16 respectively with the sample size of 96, 416, and 2077.

In this chapter, I focus on the time series properties of the stock indices and

exchange rate series, which are drawing more attention among researchers in eco-

nomics. The purpose of this chapter is to investigate how much evidence against

unit roots in these series with different frequencies of monthly, weekly, and daily is

found using the bootstrap method. The empirical analysis covers the result of three

unit root tests including ADF, PP and DF-GLS. I analyse and compare the results

of the both bootstrap and asymptotic p-values based on the proportions statistical

test. The results of p-values using three aforementioned unit root tests with drift

and trend reported in Tables 3.1 to 3.12. I have selected the lag order of the ADF

test using SBC and also for the bandwidth parameter in the PP test I have chosen

12.

In the case of ADF test with drift, according to the Table 3.1 the results of the
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asymptotic p-values show that the unit root null can be rejected in 9 stock indices

(1 at 1%, 3 at 5% , and 5 at 10% significance level) using weekly data. However,

the bootstrap p-values represent that the null hypothesis of the unit root can be

rejected for 1, 4, and 4 respectively at 1%, 5% and 10% level of significance. In the

case of daily stock market data, both asymptotic and bootstrap p-values provide

evidence of rejection for 3 out of 30 stock indices. Also, according to Table 3.7

both asymptotic and bootstrap p-values show that the ADF test can reject the null

hypothesis for 2 and 3 countries respectively using monthly and weekly exchange

rate data. However, using daily exchange rate data, the bootstrap p-values provide

evidence of rejecting one more countries relative to the asymptotic p-values.

In the case of ADF test with trend as shown in the Tables 3.2 and 3.8, the

bootstrap can provide the significant improvement over the asymptotic in the case

of monthly data of stock indices and exchange rate, in which the bootstrap can

reject the unit root null of 20 stock indices at 1% significance level and 15 exchange

rate series where the asymptotic can not reject the null hypothesis neither in stock

market nor in exchange rate series. Furthermore, using weekly stock market and

exchange rate data and based on the bootstrap p-values, ADF test provides enough

evidence against the unit root hypothesis(13 out of 30), whereas the asymptotic can

reject the null of the unit root for 10 and 6 out of 30 series respectively using market

indices and exchange rate series. However, the results with daily data show that the

bootstrap can provide enough evidence of improvement over the asymptotic only in

the case of exchange rate series.

In the case of PP test with drift and using monthly stock indices, the results

of Table 3.3 show that according to the asymptotic p-values the unit root null can

be rejected in 2 indices, 1 at 10% and 1 at 5% significance level, where using the

bootstrap technique only 1 index at 5% significance level is stationary. However,

using the monthly stock indices according to the results of Table 3.9 it is possible

to reject the null for one more index using the bootstrap relative to the asymptotic.

In the case of PP test with trend the results of Table 3.4 indicate that only in
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monthly stock data, the bootstrap can make an improvement over the asymptotic as

it can reject the null of unit root test in 3 indices whereas based on the asymptotic

p-values only in one index the unit root null can be rejected. Furthermore, according

to Table 3.10 there is no evidence of improvement using the bootstrap method over

the asymptotic in exchange rate data with different frequencies of monthly, weekly,

and daily.

In the case of DF-GLS test with drift, the results of the asymptotic and the boot-

strap p-values in Table 3.5 demonstrate that using weekly and daily stock indices,

there is enough evidence that the bootstrap can reject the null of the unit root in

3 and 2 more indices respectively respect to the asymptotic. However, according

to Table 3.11 the number of stationary series using both the asymptotic and the

bootstrap p-values is equal(1 and 3 respectively for weekly and daily exchange rate

data). Moreover, there is no evidence against the unit root hypothesis in monthly

exchange rate data. But, the bootstrap can reject the null of unit root in one country

at 10% significance level using monthly data.

In the case of DF-GLS test with trend, the results of Tables 3.6 and 3.12 show

that the number of stationary series with different frequencies is the same as the

case of DF-GLS test with drift. Also, it is obvious that in the case of weekly stock

indices, the power of rejection of the unit root null can be improved significantly as

the stationary series at 10% significance level based on the asymptotic p-values is

corresponding to the 5% significance level using the bootstrap p-values.

Now, in order to compare the results of the bootstrap and asymptotic p-values

I conduct a hypothesis test of two population proportions to determine whether

the difference between two proportions of stationary series using the bootstrap and

asymptotic p-values is significant. The appropriate test statistic is a z-value defined

by the following equation as:

H0 : Pboot = Pasymp

H1 : Pboot 6= Pasymp
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z =
(P̂boot − P̂asymp)√
P̂0(1−P̂0)

n1
+ P̂0(1−P̂0)

n2

p̂0 =
n1p̂boot + n2p̂asymp

n1 + n2

where P̂boot and P̂asymp are the proportions of stationary series using bootstrap and

asymptotic p-values respectively. p̂0 defines the estimate for the common overall

proportion. n1 is the size of sample of the bootstrap p-values and n2 is the sample

size of the asymptotic p-values. In this case n1 = n2 = n = 60 (30 stock indices

and 30 exchange rate series). I calculate the number of stationary series based on

the asymptotic and bootstrap p-values of ADF, PP and DF-GLS tests with differ-

ent data frequencies which are presented in Tables 3.1 to 3.12. I also determine

the proportions of stationary series in relation to the bootstrap and the asymptotic

p-values. Then, I calculate the test statistic of a z-value as well as a p-value associ-

ated with the test statistic using the standard normal table. I can decide whether

to accept the null or the alternative hypothesis by examining the p-values. The null

hypothesis is rejected at 5% significance level if p − value ≤ 0.05. It is failed to

reject if p− value > 0.05.

Table 3.13 shows the results of sample proportions of bootstrap and asymptotic

as well as the test statistics and p-values corresponding to ADF, PP and DF-GLS

using data frequencies of monthly, weekly and daily. The results reveal that in the

case of ADF test with trend using monthly and weekly data, the null hypothesis is re-

jected at 5% and 10% significance level respectively. Therefore, there is a significant

evidence of a difference between the bootstrap and the asymptotic in proportions

of stationary series. Hence, the bootstrap technique can provide enough evidence of

an improvement over the asymptotic in the case of ADF unit root test with trend

using monthly and weekly frequencies of data. In contrast, in the cases of PP and

DF-GLS tests the null hypothesis can not be rejected and so the implementation of

the bootstrap does not seem to improve the number of stationary series compared
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to the asymptotic.

However, according to the Table 3.4 and using monthly stock indices data, the

empirical results show that the null hypothesis of a unit root is rejected for two more

series by the PP test with trend. Moreover, using exchange rate series the results

of Table 3.9 show that there is one more stationary series by using the bootstrap

technique in the PP with drift unit root test. In the case of DF-GLS test according

to Tables 3.5, 3.6, 3.11 and 3.12 the null hypothesis of a unit root is rejected for more

series using weekly and daily stock indices as well as monthly exchange rate series.

So, there is an improvement of the bootstrap in comparison with the asymptotic in

the cases of the PP and DF-GLS unit root tests. Therefore, in order to explain the

reason for no improvement of the bootstrap based on the proportions statistical test,

I can expect that because of the small number of stationary series corresponding to

the PP and DF-GLS tests, the conditions of hypothesis testing for the proportions

which are defined by np̂0 ≥ 10 and n(1− p̂0) ≥ 10, are not satisfied.
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Table 3.1: Stock Market Data-ADF test with drift

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

AEX 0.8548 0.7917 0.1633 0.1418 0.4148 0.4054
Bel20 0.8845 0.7813 0.3689 0.3341 0.4969 0.5046
CAC40 0.8164 0.7917 0.3284 0.2885 0.3353 0.3365
DAX30 0.7106 0.7500 0.3763 0.3413 0.4566 0.4714
DJI 0.4086 0.6250 0.2453 0.2260 0.5859 0.6033
Euro Stoxx 0.7987 0.7500 0.3010 0.2692 0.3536 0.3515
Euro Stoxx50 0.6485 0.5625 0.2395 0.2212 0.2079 0.2051
FTSE100 0.4208 0.5729 0.0151** 0.0072** 0.1400 0.1435
FTSE250 0.6301 0.6771 0.0511*** 0.0481** 0.1313 0.1314
Hang Seng 0.2689 0.3646 0.0010* 0.0000* 0.0038* 0.0024*
IBEX35 0.1588 0.1042 0.2961 0.2548 0.2148 0.2104
MDAX 0.5575 0.6979 0.0932*** 0.1082*** 0.4357 0.4429
MSCI Europe 0.5704 0.5833 0.0177** 0.0120** 0.0586** 0.0510**
MSCI World 0.6580 0.7500 0.0932*** 0.0962*** 0.2872 0.2624
Nasdaq Composite 0.6930 0.7396 0.2850 0.2500 0.4520 0.4665
Nasdaq100 0.5704 0.6875 0.1740 0.1683 0.3552 0.3587
EuroNext100 0.8467 0.8333 0.3084 0.2861 0.4420 0.4429
Next150 0.8210 0.7708 0.2197 0.1995 0.3354 0.3332
Nikkei225 0.8847 0.8021 0.8207 0.7933 0.8110 0.8122
NYSE Composite 0.6232 0.6875 0.0970*** 0.0986*** 0.3248 0.3149
OMX Stockholm30 0.5978 0.6250 0.0817*** 0.0841*** 0.0826*** 0.0838***
Russell2000 0.5086 0.5208 0.2337 0.2139 0.4687 0.4699
SBF120 0.8398 0.8333 0.3436 0.3125 0.4013 0.4011
S&P 200 0.7556 0.7396 0.1161 0.1034 0.1537 0.1507
S&P 500 0.6565 0.7396 0.2963 0.2524 0.5671 0.5883
S&P 500 Growth 0.5879 0.7083 0.2733 0.2428 0.5365 0.5561
Stoxx Europe600E 0.7175 0.7500 0.1041 0.1106 0.3251 0.3110
Stoxx Europe50 0.6799 0.7396 0.0553** 0.0673** 0.1863 0.1844
Swiss Market 0.7471 0.6563 0.2618 0.2308 0.4773 0.4752
Topix 0.8373 0.7396 0.8176 0.7909 0.4773 0.4752

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.2: Stock Market Data-ADF test with trend

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

AEX 0.4910 0.0000* 0.1369 0.1322 0.1631 0.1517
Bel20 0.5650 0.0000* 0.5080 0.4976 0.4985 0.4834
CAC40 0.5602 0.0000* 0.4013 0.4207 0.2471 0.2195
DAX30 0.6059 0.0000* 0.1420 0.1298 0.0871*** 0.0896***
DJI 0.8591 0.8750 0.0940*** 0.0962*** 0.0844*** 0.0934***
Euro Stoxx 0.5531 0.0000* 0.4037 0.4303 0.2878 0.2571
Euro Stoxx50 0.5003 0.0000* 0.4651 0.4874 0.2841 0.2513
FTSE100 0.6087 0.6875 0.0379** 0.0361** 0.1264 0.1247
FTSE250 0.4973 0.0104* 0.0524*** 0.0553*** 0.1263 0.1234
Hang Seng 0.4200 0.0000* 0.0034* 0.0000* 0.0334** 0.0000*
IBEX35 0.4088 0.0000* 0.5644 0.5769 0.4904 0.4762
MDAX 0.5628 0.0000* 0.0450** 0.0433** 0.1714 0.1675
MSCI Europe 0.9112 0.8854 0.1735 0.1635 0.2852 0.2653
MSCI World 0.8323 0.8021 0.1000*** 0.0865*** 0.1620 0.8469
Nasdaq Composite 0.8213 0.7604 0.0920*** 0.0721*** 0.0593*** 0.0631***
Nasdaq100 0.8512 0.7917 0.0605*** 0.0457** 0.0416** 0.0409**
EuroNext100 0.5839 0.0000* 0.3528 0.3606 0.2709 0.2393
Next150 0.5593 0.0000* 0.1360 0.0000* 0.2809 0.0000*
Nikkei225 0.3459 0.0000* 0.6349 0.0024* 0.6188 0.6216
NYSE Composite 0.8077 0.7188 0.0977*** 0.0841*** 0.1756 0.1825
OMX Stockholm30 0.3627 0.0000* 0.0876*** 0.0913*** 0.0840*** 0.0838***
Russell2000 0.6541 0.5833 0.1079 0.1082 0.1172 0.1156
SBF120 0.5710 0.0000* 0.3539 0.3654 0.2361 0.2099
S&P 200 0.3678 0.0000* 0.1853 0.1971 0.1577 0.1632
S&P 500 0.8812 0.8333 0.1520 0.1442 0.1084 0.1016
S&P 500 Growth 0.9540 0.9375 0.1792 0.1707 0.0841*** 0.0838***
Stoxx Europe600E 0.6444 0.0000* 0.1738 0.1587 0.2280 0.2138
Stoxx Europe50 0.6854 0.0000* 0.1712 0.1755 0.1938 0.1873
Swiss Market 0.7578 0.0000* 0.7334 0.7308 0.5573 0.5527
Topix 0.3955 0.0000* 0.5987 0.0000* 0.6582 0.6533

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.3: Stock Market Data-PP test with drift

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

AEX 0.4295 0.5104 0.4534 0.5000 0.3845 0.3727
Bel20 0.5139 0.5938 0.5397 0.6106 0.5112 0.5238
CAC40 0.4556 0.4792 0.4156 0.4688 0.3343 0.3178
DAX30 0.6092 0.7083 0.6439 0.7115 0.6046 0.6105
DJI 0.7291 0.7396 0.7507 0.7981 0.7109 0.7039
Euro Stoxx 0.4671 0.5208 0.4492 0.5144 0.3913 0.3784
Euro Stoxx50 0.3058 0.3438 0.2772 0.2837 0.2057 0.2022
FTSE100 0.3399 0.4063 0.3321 0.3582 0.2538 0.2378
FTSE250 0.1003*** 0.1979 0.1552 0.1707 0.1931 0.1940
Hang Seng 0.0280** 0.0417** 0.0171** 0.0216** 0.0154** 0.0164**
IBEX35 0.1883 0.2292 0.1658 0.1707 0.1527 0.1478
MDAX 0.5228 0.6042 0.6250 0.6947 0.6300 0.6394
MSCI Europe 0.1839 0.1771 0.1317 0.1659 0.1147 0.1141
MSCI World 0.4379 0.4271 0.4532 0.4688 0.4287 0.4160
Nasdaq Composite 0.3824 0.3646 0.5182 0.5625 0.5333 0.5359
Nasdaq100 0.1475 0.1667 0.3422 0.3293 0.4177 0.4131
EuroNext100 0.5300 0.6042 0.5272 0.6106 0.4623 0.4540
Next150 0.3137 0.3438 0.3582 0.3846 0.3641 0.3736
Nikkei225 0.8314 0.8646 0.8428 0.8606 0.8254 0.8190
NYSE Composite 0.4788 0.4896 0.4838 0.5000 0.4518 0.4357
OMX Stockholm30 0.1275 0.1458 0.1822 0.1923 0.1877 0.1834
Russell2000 0.6156 0.5938 0.6234 0.6683 0.5872 0.5912
SBF120 0.5269 0.5833 0.4999 0.5721 0.4298 0.4194
S&P 200 0.2971 0.2813 0.2840 0.3197 0.2094 0.2277
S&P 500 0.6705 0.7083 0.7142 0.7740 0.6849 0.6885
S&P 500 Growth 0.4890 0.5000 0.6148 0.6707 0.6187 0.6351
Stoxx Europe600E 0.3907 0.4375 0.4211 0.4543 0.3848 0.3693
Stoxx Europe50 0.3296 0.3750 0.2934 0.2861 0.2243 0.2162
Swiss Market 0.5227 0.5521 0.5369 0.5841 0.4853 0.4689
Topix 0.8300 0.8542 0.8404 0.8702 0.8337 0.8334

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.4: Stock Market Data-PP test with trend

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

AEX 02675 0.3229 0.1415 0.1346 0.0940*** 0.1011***
Bel20 0.4502 0.5521 0.4110 0.4014 0.3870 0.3601
CAC40 0.2624 0.3125 0.1588 0.1587 0.1367 0.1444
DAX30 0.2330 0.3021 0.0930*** 0.0793*** 0.0844*** 0.0867***
DJI 0.0951*** 0.0729*** 0.1242 0.1346 0.0866*** 0.0871***
Euro Stoxx 0.3448 0.4167 0.2224 0.1947 0.1979 0.1979
Euro Stoxx50 0.3064 0.3958 0.2166 0.1947 0.1810 0.1709
FTSE100 0.4207 0.5208 0.2042 0.2284 0.1263 0.1295
FTSE250 0.3351 0.4167 0.1734 0.2091 0.1373 0.1565
Hang Seng 0.1729 0.2188 0.0950*** 0.1298 0.0875*** 0.0958***
IBEX35 0.4713 0.5521 0.4319 0.4183 0.4089 0.3722
MDAX 0.5231 0.6042 0.2075 0.2115 0.1933 0.2027
MSCI Europe 0.5184 0.6146 0.3403 0.3822 0.3141 0.3028
MSCI World 0.3336 0.3333 0.2347 0.2813 0.1866 0.1950
Nasdaq Composite 0.1748 0.2083 0.1211 0.1250 0.0641*** 0.0727***
Nasdaq100 0.1672 0.1979 0.0827*** 0.0721*** 0.0369** 0.0414**
EuroNext100 0.3198 0.4063 0.1844 0.1827 0.1514 0.1550
Next150 0.3493 0.4696 0.2486 0.2572 0.2775 0.2730
Nikkei225 0.4942 0.6250 0.5172 0.5457 0.4969 0.5002
NYSE Composite 0.2739 0.2500 0.2262 0.2620 0.1687 0.1748
OMX Stockholm30 0.2995 0.3229 0.1358 0.1298 0.1152 0.1353
Russell2000 0.1985 0.1979 0.1997 0.2139 0.1500 0.1623
SBF120 0.2827 0.3438 0.1576 0.1466 0.1388 0.1497
S&P 200 0.2419 0.2604 0.2616 0.2716 0.1642 0.1738
S&P 500 0.1172 0.0938*** 0.1210 0.1394 0.0780*** 0.0780***
S&P 500 Growth 0.1180 0.0938*** 0.1017 0.1178 0.0460** 0.0462**
Stoxx Europe600E 0.4518 0.5833 0.1957 0.1683 0.1558 0.1598
Stoxx Europe50 0.3993 0.4792 0.1711 0.1683 0.1304 0.1271
Swiss Market 0.6561 0.7500 0.5172 0.5361 0.4344 0.4068
Topix 0.5364 0.6250 0.5329 0.5457 0.5411 0.5455

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.5: Stock Market Data-DF GLS test with drift

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

AEX 0.8269 0.6250 0.4290 0.3005 0.3425 0.2248
Bel20 0.7287 0.5417 0.3852 0.2452 0.3655 0.2403
CAC40 0.5494 0.3542 0.0591*** 0.0409** 0.0425** 0.0250**
DAX30 0.7826 0.5833 0.3521 0.2236 0.2445 0.1502
DJI 0.9017 0.7813 0.3772 0.2644 0.3398 0.2061
Euro Stoxx 0.5562 0.3750 0.1231 0.0721*** 0.0782*** 0.0496**
Euro Stoxx50 0.3452 0.1979 0.0503** 0.0361** 0.0254** 0.0159**
FTSE100 0.7796 0.5729 0.3810 0.2332 0.2994 0.1767
FTSE250 0.8760 0.7500 0.8426 0.7139 0.8053 0.6827
Hang Seng 0.6381 0.3958 0.4696 0.3005 0.5111 0.3558
IBEX35 0.0192** 0.0208** 0.0804*** 0.0505** 0.0354** 0.0226**
MDAX 0.8173 0.6250 0.5375 0.3846 0.5484 0.4073
MSCI Europe 0.5576 0.3333 0.4696 0.3317 0.4092 0.2715
MSCI World 0.8755 0.7083 0.5246 0.3966 0.4555 0.3202
Nasdaq Composite 0.9315 0.8333 0.7821 0.6538 0.6403 0.5176
Nasdaq100 0.9362 0.8333 0.8899 0.7909 0.7903 0.6765
EuroNext100 0.7256 0.5208 0.2633 0.1587 0.1962 0.1213
Next150 0.8545 0.6875 0.6287 0.4976 0.6112 0.4906
Nikkei225 0.4560 0.3646 0.2308 0.1298 0.1708 0.0876***
NYSE Composite 0.8697 0.6979 0.4680 0.3486 0.4252 0.2759
OMX Stockholm30 0.8379 0.6875 0.7718 0.6250 0.6481 0.5123
Russell2000 0.8673 0.7292 0.3340 0.1947 0.3482 0.2287
SBF120 0.6695 0.4792 0.1387 0.0769*** 0.0931*** 0.0587***
S&P 200 0.6933 0.4583 0.3919 0.2332 0.2940 0.1776
S&P 500 0.8883 0.7396 0.5028 0.3798 0.4400 0.2990
S&P 500 Growth 0.8987 0.8021 0.7083 0.5913 0.6016 0.4766
Stoxx Europe600E 0.8062 0.6458 0.5380 0.4255 0.4479 0.3303
Stoxx Europe50 0.6649 0.4792 0.4142 0.2740 0.2760 0.1738
Swiss Market 0.6223 0.4271 0.4926 0.3389 0.3657 0.2422
Topix 0.2962 0.2292 0.1858 0.0986*** 0.1868 0.0992***

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.6: Stock Market Data-DF GLS test with trend

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

AEX 0.8435 0.6771 0.4520 0.3221 0.3462 0.2277
Bel20 0.7655 0.5521 0.4063 0.2692 0.3690 0.2436
CAC40 0.5817 0.3958 0.0632*** 0.0457** 0.0428** 0.0250**
DAX30 0.8218 0.6354 0.3754 0.2524 0.2484 0.1521
DJI 0.9231 0.8021 0.4094 0.2837 0.3444 0.2109
Euro Stoxx 0.5866 0.3958 0.1334 0.0817*** 0.0791*** 0.0496**
Euro Stoxx50 0.3659 0.1979 0.0531*** 0.0361** 0.0255** 0.059**
FTSE100 0.8075 0.5938 0.4028 0.2572 0.3030 0.1796
FTSE250 0.8887 0.7500 0.8530 0.7260 0.8077 0.6875
Hang Seng 0.6481 0.4167 0.4774 0.3077 0.5126 0.3572
IBEX35 0.0198** 0.0208** 0.0808*** 0.0505** 0.0354** 0.0226**
MDAX 0.8518 0.6667 0.5687 0.4135 0.5539 0.4121
MSCI Europe 0.5662 0.3333 0.4763 0.3365 0.4105 0.2725
MSCI World 0.8908 0.7188 0.5449 0.4135 0.4590 0.3216
Nasdaq Composite 0.9470 0.8437 0.8066 0.6827 0.6457 0.5234
Nasdaq100 0.9505 0.8750 0.9024 0.80209 0.7960 0.6798
EuroNext100 0.7604 0.5521 0.2831 0.1731 0.1987 0.1233
Next150 0.8705 0.6875 0.6475 0.5144 0.6153 0.4940
Nikkei225 0.4906 0.3958 0.2383 0.1394 0.1718 0.0886***
NYSE Composite 0.8850 0.7083 0.4902 0.3678 0.4289 0.2831
OMX Stockholm30 0.8497 0.7083 0.7868 0.6418 0.6519 0.5185
Russell2000 0.8865 0.7604 0.3625 0.2188 0.3525 0.2306
SBF120 0.7051 0.5313 0.1504 0.0841*** 0.0942*** 0.0597***
S&P 200 0.7099 0.4688 0.4078 0.2380 0.2970 0.1791
S&P 500 0.9133 0.8125 0.5331 0.4014 0.4449 0.3014
S&P 500 Growth 0.9228 0.8229 0.7376 0.6130 0.6068 0.4800
Stoxx Europe600E 0.8212 0.6458 0.5555 0.4423 0.4510 0.3312
Stoxx Europe50 0.6789 0.4792 0.4273 0.2933 0.2785 0.1762
Swiss Market 0.6424 0.4479 0.5048 0.3534 0.3677 0.2455
Topix 0.3076 0.2396 0.1871 0.0986*** 0.1870 0.0992***

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.7: Exchange rate Data-ADF test with drift

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

Argentina 0.8080 0.6771 0.9519 0.9495 0.9350 0.9355
Australia 0.8691 0.8021 0.5041 0.5048 0.4584 0.4646
Brazil 0.9454 0.9167 0.9299 0.8942 0.9524 0.9514
Bulgaria 0.9077 0.8958 0.8239 0.7644 0.8261 0.8170
Canada 0.8074 0.6563 0.8584 0.8221 0.8652 0.8642
Chile 0.8969 0.8434 0.8691 0.8558 0.8000 0.7949
China 0.4200 0.1875 0.8563 0.8245 0.9453 0.9129
Colombia 0.6938 0.5000 0.9056 0.9135 0.9326 0.9268
Croatia 0.8840 0.8333 0.8273 0.7740 0.8177 0.8031
Czech republic 0.9484 0.9479 0.8659 0.8221 0.7839 0.7800
Denmark 0.8922 0.8646 0.8168 0.7764 0.8121 0.7944
Germany 0.9025 0.9063 0.8270 0.7813 0.8182 0.8084
Greece 0.9068 0.8958 0.8250 0.7957 0.8249 0.8161
Hong Kong 0.3315 0.3438 0.1762 0.1442 0.0154** 0.0135**
Hungary 0.9374 0.9375 0.8331 0.8221 0.7738 0.7891
Iceland 0.0069* 0.0000* 0.2279 0.2476 0.0817** 0.0852**
Indonesia 0.8473 0.7604 0.9282 0.9231 0.9488 0.9446
Israel 0.0906*** 0.0313** 0.0277** 0.0264** 0.2373 0.2523
Japan 0.6305 0.5521 0.8345 0.8077 0.8916 0.8931
Malaysia 0.9589 0.9063 0.9508 0.9495 0.9770 0.9803
Mexico 0.9968 0.9792 0.9987 0.9976 0.9914 0.9918
Norway 0.9504 0.9271 0.9465 0.9231 0.9319 0.9283
Russia 0.7921 0.7188 0.8902 0.8582 0.9192 0.9201
Singapore 0.4867 0.4792 0.2966 0.2552 0.3977 0.4174
South Africa 0.8784 0.7188 0.9491 0.9351 0.9554 0.9547
South Korea 0.3213 0.3229 0.0045* 0.0048* 0.0115** 0.025**
Sweden 0.9568 0.9271 0.8475 0.8149 0.8240 0.8291
Switzerland 0.3817 0.3646 0.0943*** 0.0841*** 0.1081 0.0944***
Taiwan 0.4604 0.3958 0.2236 0.1995 0.2700 0.2465
Thailand 0.7159 0.7396 0.6406 0.6514 0.7180 0.7323

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.8: Exchange rate Data-ADF test with trend

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

Argentina 0.5216 0.0000* 0.6535 0.6538 0.5970 0.6004
Australia 0.4937 0.5625 0.0956*** 0.0962*** 0.2600 0.2340
Brazil 0.4494 0.0000* 0.1249 0.0000* 0.1539 0.8479
Bulgaria 0.7599 0.0000* 0.4073 0.0000* 0.3908 0.3818
Canada 0.6139 0.5938 0.0990*** 0.0865*** 0.2408 0.2340
Chile 0.6711 0.5833 0.4289 0.3966 0.2872 0.8830
China 0.9990 0.9792 0.9990 0.9952 0.9990 0.9494
Colombia 0.6946 0.0000* 0.4283 0.4255 0.7301 0.8960
Croatia 0.5931 0.0000* 0.1647 0.5000 0.2137 0.8811
Czech republic 0.6488 0.6458 0.1721 0.1923 0.1117 0.8050
Denmark 0.7102 0.0000* 0.3837 0.0000* 0.3474 0.0000*
Germany 0.7523 0.0000* 0.4087 0.0000* 0.3662 0.2662
Greece 0.7659 0.0104* 0.4008 0.0000* 0.3766 0.0019*
Hong Kong 0.1590 0.0104* 0.3146 0.2500 0.0444** 0.0371**
Hungary 0.5385 0.0313** 0.0284** 0.0000* 0.1477 0.1526
Iceland 0.0248 0.0000* 0.5659 0.5841 0.2686 0.8946
Indonesia 0.4239 0.0000* 0.0117** 0.0120** 0.2159 0.8782
Israel 0.2551 0.0000* 0.1050 0.0000* 0.5308 0.5460
Japan 0.1848 0.0000* 0.3520 0.7909 0.8041 0.0000*
Malaysia 0.8242 0.7396 0.7718 0.0000* 0.8989 0.8657
Mexico 0.9875 0.9792 0.9277 0.9303 0.8944 0.8994
Norway 0.8727 0.8333 0.6064 0.6322 0.4672 0.4665
Russia 0.5897 0.0000* 0.5644 0.9327 0.5873 0.9008
Singapore 0.7145 0.6667 0.7146 0.7043 0.8505 0.8117
South Africa 0.2097 0.2813 0.0097* 0.0024* 0.0293** 0.0270**
South Korea 0.7403 0.8229 0.0835*** 0.0986*** 0.0988*** 0.8440
Sweden 0.9017 0.8646 0.6648 0.6514 0.7401 0.7415
Switzerland 0.8431 0.7292 0.4910 0.4519 0.4614 0.4588
Taiwan 0.6362 0.5833 0.4778 0.8462 0.5832 0.8926
Thailand 0.3519 0.3229 0.4558 0.6274 0.6695 0.9547

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.9: Exchange rate Data-PP test with drift

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

Argentina 0.9373 0.8958 0.9316 0.8990 0.9391 0.9336
Australia 0.4278 0.3750 0.4847 0.5144 0.5139 0.5388
Brazil 0.9057 0.8750 0.9401 0.9231 0.9555 0.9523
Bulgaria 0.7054 0.7708 0.9519 0.7716 0.7608 0.7679
Canada 0.8026 0.7708 0.8638 0.8534 0.8531 0.8532
Chile 0.7223 0.7500 0.7677 0.7596 0.7686 0.7761
China 0.6826 0.6875 0.8650 0.8630 0.9293 0.9292
Colombia 0.9190 0.8750 0.9080 0.8966 0.9312 0.9384
Croatia 0.7199 0.7708 0.7424 0.7716 0.7718 0.7694
Czech republic 0.8090 0.8542 0.8044 0.7885 0.7930 0.7785
Denmark 0.6989 0.8500 0.7560 0.7716 0.7725 0.7718
Germany 0.7312 0.7708 0.7921 0.8029 0.8005 0.7944
Greece 0.7328 0.7708 0.7950 0.7957 0.8032 0.7930
Hong Kong 0.0025* 0.0000* 0.0040* 0.0024* 0.0030* 0.0043*
Hungary 0.5941 0.7188 0.5740 0.5962 0.5924 0.6206
Iceland 0.0963*** 0.1250 0.0846*** 0.0865*** 0.0785*** 0.0862***
Indonesia 0.9090 0.9063 0.9302 0.9183 0.9557 0.9605
Israel 0.1236 0.0938*** 0.1426 0.1466 0.1932 0.2003
Japan 0.7853 0.7708 0.8554 0.8870 0.8886 0.8864
Malaysia 0.9733 0.9688 0.9722 0.9736 0.9808 0.9812
Mexico 0.9972 0.9896 0.9951 0.9928 0.9865 0.9884
Norway 0.8669 0.8333 0.9340 0.9279 0.9222 0.9119
Russia 0.9387 0.9479 0.8629 0.8750 0.9266 0.9206
Singapore 0.4854 0.4792 0.5538 0.5913 0.5803 0.6134
South Africa 0.9385 0.9167 0.9493 0.9519 0.9413 0.9302
South Korea 0.1624 0.0521*** 0.1154 0.1250 0.0933*** 0.1021
Sweden 0.7944 0.7708 0.8482 0.8389 0.8307 0.8315
Switzerland 0.2481 0.2500 0.1981 0.2067 0.1660 0.1714
Taiwan 0.3855 0.3854 0.3866 0.4207 0.4397 0.4506
Thailand 0.5904 0.6250 0.6548 0.6923 0.7505 0.7684

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.10: Exchange rate Data-PP test with trend

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

Argentina 0.5473 0.5521 0.5484 0.6058 0.5652 0.5806
Australia 0.4024 0.3750 0.3787 0.4351 0.3846 0.3813
Brazil 0.2050 0.2396 0.1834 0.2188 0.1811 0.1873
Bulgaria 0.3971 0.4167 0.4435 0.4952 0.4863 0.5017
Canada 0.4567 0.4792 0.4259 0.4784 0.4103 0.4237
Chile 0.2366 0.1771 0.2156 0.2019 0.2225 0.2186
China 0.9990 0.9896 0.9990 0.9976 0.9990 0.9995
Colombia 0.8424 0.8229 0.7046 0.7284 0.7198 0.7439
Croatia 0.2776 0.2396 0.3032 0.3341 0.3723 0.3654
Czech republic 0.4203 0.4896 0.3316 0.3582 0.3335 0.3182
Denmark 0.3913 0.4167 0.4474 0.5168 0.5015 0.5094
Germany 0.4095 0.4271 0.4607 0.5240 0.5024 0.5094
Greece 0.4093 0.4375 0.4636 0.5240 0.5056 0.5099
Hong Kong 0.0086* 0.0104* 0.00928 0.0168** 0.0072* 0.0116**
Hungary 0.1507 0.1354 0.1010*** 0.1466 0.1504 0.1608
Iceland 0.3308 0.3125 0.2966 0.3510 0.2748 0.2677
Indonesia 0.3970 0.3646 0.3664 0.3606 0.3606 0.3399
Israel 0.3804 0.3646 0.4032 0.4255 0.4788 0.4762
Japan 0.6987 0.7813 0.7389 0.7572 0.8011 0.7978
Malaysia 0.9740 0.9583 0.9359 0.9231 0.9397 0.9345
Mexico 0.9780 0.9583 0.9302 0.9447 0.8704 0.8690
Norway 0.4732 0.4688 0.4729 0.5216 0.4539 0.4405
Russia 0.8145 0.7813 0.6519 0.7043 0.8037 0.7915
Singapore 0.9359 0.9063 0.9324 0.9519 0.9307 0.9297
South Africa 0.1859 0.1458 0.1881 0.2239 0.1824 0.1926
South Korea 0.4421 0.4271 0.4037 0.4111 0.3485 0.3481
Sweden 0.8841 0.9167 0.8588 0.9063 0.8167 0.8223
Switzerland 0.6174 0.6354 0.5541 0.5962 0.5018 0.4935
Taiwan 0.7983 0.7708 0.7292 0.7452 0.7769 0.7848
Thailand 0.7452 0.7917 0.6650 0.7067 0.7046 0.7222

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.11: Exchange rate Data-DF GLS test with drift

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

Argentina 0.3146 0.3021 0.5265 0.4207 0.4208 0.3317
Australia 0.3819 0.3438 0.5300 0.5433 0.5486 0.5431
Brazil 0.1751 0.1875 0.3343 0.3149 0.3677 0.3062
Bulgaria 0.2222 0.2396 0.2073 0.2115 0.2416 0.2369
Canada 0.1636 0.1250 0.4569 0.4784 0.4740 0.4627
Chile 0.2544 0.1563 0.4096 0.2764 0.4428 0.2975
China 0.2415 0.3229 0.5021 0.4111 0.5119 0.3606
Colombia 0.2183 0.1563 0.4070 0.2236 0.3632 0.2119
Croatia 0.2256 0.1667 0.2328 0.1875 0.2234 0.3191
Czech republic 0.2294 0.1875 0.2857 0.1827 0.3016 0.1955
Denmark 0.2126 0.1771 0.2019 0.1370 0.2373 0.1324
Germany 0.1815 0.2188 0.2035 0.2212 0.2414 0.2167
Greece 0.1851 0.1771 0.2034 0.1490 0.2442 0.1358
Hong Kong 0.3633 0.3021 0.1777 0.1178 0.0302** 0.0221**
Hungary 0.5132 0.4167 0.3120 0.2115 0.2109 0.1358
Iceland 0.1414 0.0833*** 0.3018 0.2091 0.0849*** 0.0448**
Indonesia 0.1156 0.1354 0.4217 0.2885 0.3989 0.2504
Israel 0.1309 0.1250 0.0161** 0.0096* 0.0999*** 0.0655***
Japan 0.1761 0.1875 0.3222 0.2284 0.2880 0.1550
Malaysia 0.3362 0.3021 0.3893 0.3510 0.3724 0.2600
Mexico 0.2766 0.1771 0.3155 0.2452 0.3028 0.1907
Norway 0.2024 0.1667 0.3287 0.2716 0.3861 0.2667
Russia 0.1732 0.2083 0.2701 0.1563 0.3335 0.2460
Singapore 0.4412 0.4063 0.5095 0.5000 0.5165 0.4275
South Africa 0.1130 0.1146 0.3561 0.2716 0.3919 0.2687
South Korea 0.5100 0.3333 0.3976 0.2644 0.3045 0.1892
Sweden 0.3690 0.2500 0.4157 0.3173 0.4045 0.2754
Switzerland 0.4469 0.4479 0.3514 0.3558 0.3346 0.3385
Taiwan 0.4659 0.3438 0.4475 0.3149 0.4386 0.3062
Thailand 0.4223 0.3229 0.4856 0.3101 0.4680 03115

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.12: Exchange rate Data-DF GLS test with trend

Monthly Weekly Daily

Asymp boot Asymp boot Asymp boot
p-value p-value p-value p-value p-value p-value

Argentina 0.3536 0.3229 0.5492 0.4327 0.4253 0.3341
Australia 0.3836 0.3438 0.5315 0.5433 0.5489 0.5441
Brazil 0.1747 0.1875 0.3343 0.3149 0.3677 0.3062
Bulgaria 0.2483 0.2604 0.2081 0.2115 0.2416 0.2369
Canada 0.1645 0.1250 0.4572 0.4784 0.4741 0.4627
Chile 0.2548 0.1563 0.4099 0.2764 0.4429 0.2975
China 0.2473 0.3229 0.5025 0.411 0.5119 0.3603
Colombia 0.2191 0.1563 0.4070 0.2236 0.3632 0.2191
Croatia 0.2701 0.1875 0.2347 0.1875 0.2235 0.1391
Czech republic 0.2341 0.1875 0.2857 0.1827 0.3015 0.1955
Denmark 0.2371 0.1875 0.2027 0.1370 0.2372 0.1324
Germany 0.1947 0.2188 0.2039 0.2212 0.2413 0.2167
Greece 0.1989 0.1771 0.2037 0.1490 0.2441 0.1358
Hong Kong 0.3771 0.3125 0.1810 0.1178 0.0304** 0.0221**
Hungary 0.6024 0.5208 0.3164 0.2188 0.2114 0.1367
Iceland 0.1434 0.0833*** 0.3022 0.2091 0.0850*** 0.0448**
Indonesia 0.1155 0.1250 0.4216 0.2885 0.3989 0.2504
Israel 0.1381 0.1458 0.0164** 0.0096* 0.1000*** 0.0655***
Japan 0.1755 0.1875 0.3221 0.2260 0.2881 0.1550
Malaysia 0.3360 0.3021 0.3893 0.3510 0.3723 0.2600
Mexico 0.2768 0.1771 0.3156 0.2452 0.3028 0.1907
Norway 0.2016 0.1667 0.3285 0.2692 0.3861 0.2667
Russia 0.1724 0.2083 0.2714 0.1587 0.3339 0.2475
Singapore 0.4477 0.4167 0.5113 0.5000 0.5168 0.4275
South Africa 0.1132 0.1146 0.3562 0.2716 0.3920 0.2687
South Korea 0.5214 0.3542 0.4036 0.2740 0.3055 0.1892
Sweden 0.3686 0.2500 0.4159 0.3173 0.4046 0.2756
Switzerland 0.4587 0.4479 0.3553 0.3606 0.3353 0.3394
Taiwan 0.4751 0.3542 0.4507 0.3149 0.4392 0.3072
Thailand 0.4254 0.3229 0.4865 0.3125 0.4682 0.3115

* reject at 1% level of significance
** reject at 5% level of significance
*** reject at 10% level of significance
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Table 3.13: Comparison of the results of the bootstrap and asymptotic p-values
based on proportions statistical test

P̂boot P̂asymp z-value p-value

ADF test-drift
monthly 0.033 0.033 0.0000 1.0000
weekly 0.200 0.200 0.0000 1.0000
daily 0.117 0.100 0.2937 0.7718

ADF test-trend
monthly 0.583 0.000 7.0294 0.0000*
weekly 0.433 0.267 1.9139 0.0561**
daily 0.2171 0.167 0.6958 0.4839

PP test-drift
monthly 0.067 0.067 0.0000 1.0000
weekly 0.050 0.050 0.0000 1.0000
daily 0.050 0.067 -0.3895 0.6965

PP test-trend
monthly 0.067 0.033 0.8377 0.4009
weekly 0.050 0.067 -0.3895 0.6965
daily 0.150 0.150 0.0000 1.0000

DF GLS test-drift
monthly 0.033 0.017 0.5847 0.5619
weekly 0.117 0.067 0.9491 0.3421
daily 0.167 0.133 0.5113 0.6100

DF GLS test-trend
monthly 0.033 0.017 0.5847 0.5619
weekly 0.117 0.067 0.9491 0.3421
daily 0.167 0.133 0.5113 0.6100

* reject at 5% level of significance
** reject at 10% level of significance
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3.4 Conclusion

This chapter attempts to answer the two following questions: Does the use of boot-

strap technique in 3 unit root tests including ADF, PP and DF-GLS result in sig-

nificant support for stationarity of exchange rate and stock market data? How does

the difference in data frequency affect the unit root results?

I tested the stationarity of 30 stock indices and 30 exchange rate series, both

with the frequencies of monthly, weekly and daily. I used aforementioned three

unit root tests with drift and trend. I applied the bootstrap technique proposed by

Park (2003) and conducted a hypothesis test based on the proportions statistical

test. According to the results of z-value and p-value, I found that in ADF test with

trend and data including monthly stock and exchange rate, bootstrap technique can

provide enough evidence of improvement over the asymptotic whereas the bootstrap

can reject the unit root null of 20 stock indices at 1% significance level and 15

exchange rate series (1 at 5% and 14 at 1% significance level) where the asymptotic

can not reject the null hypothesis neither in stock indices nor in exchange rate series.

Therefore, the bootstrap technique increases significantly the number of stationary

series with monthly and weekly data using ADF unit root test with trend.
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Chapter 4

Concluding Remarks

The thesis has made significant contributions in six main areas.

First, it has contributed to the development of the analysis of dynamic models

including classical monetary models, focusing on the monetary policy shocks’ dis-

tribution. It modifies the stochastic assumption of normality of monetary policy

shocks’ distribution and employs WSN distribution, both symmetric and asymmet-

ric, instead. This is an important insight as research often depends on the dis-

tributional assumptions of the shocks. The monetary policy’s volatility is analysed

considering the monetary policy actions and outcomes. The results revealed the non

linearity between policy actions and the volatility of policy shock in both symmetric

and asymmetric cases. It also showed that the volatility of policy shock is highly

affected by accuracy of inflation’s forecast. The higher is the forecast accuracy, the

lower would be the volatility of policy shock.

Second, in order to investigate the dynamics of macroeconomic variables in the

economy appropriate technique has been derived. Specifically, the impulse response

analysis has been investigated using normal, symmetric and asymmetric WSN dis-

tributions correspond to the monetary policy shock. The impulse response analysis

can be useful in characterising the extent to which shocks can effect the first and

second moments of macroeconomic variables.

Regarding the distributional effect of both symmetric and asymmetric policy
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shocks on macroeconomic variables, I investigated the extent to which the responses

of the endogenous variables correspond to the various monetary policy strength and

forecast accuracy. The results explained that in both symmetric and asymmetric

cases with high forecast accuracy, the percentage change in the volatility of infla-

tion and interest rate becomes small while strength of policy is growing. However,

output’s volatility is not affected by monetary policy shock, instead the technology

shock has an impact on it. In addition, monetary policy shock affects the level of

output only in the case that anti-inflationary policy is effective. Also, in the cases

of inflation’s and interest rate’s level, the greater is the strength of monetary policy,

the bigger would be the impact of the asymmetric shocks on the variable’s mean.

Third, Using stochastic simulation and comparing the impulse responses of macroe-

conomic variables with respect to the normal, symmetric WSN and asymmetric

WSN distributions, I found that the responses of mean of inflation which is increas-

ing with anti-inflationary policy is at odds with the evidence. According to this

fact I provided a clear illustration of the role of Cukirman-Meltzer hypothesis in

classical monetary model. Therefore, in classical monetary model represented by

Gali there is a positive causality from inflation uncertainty to inflation level. Hence,

the increases of inflation level when anti-inflationary policy is undertaking might be

caused by inflation uncertainty.

Fourth, significant progress has been made in the evaluation of the AR(1)-

GARCH(1,1) with distributional misspecification in the model. The finite sample

properties of QMLE of model’s parameters has been examined using Monte Carlo

simulation and considering a range of mean and volatility persistence. The bias,

RMSE and distributional properties of estimator including skewness and kurtosis

have been analysed when the error term in the model is misspecified with symmetric

and asymmetric WSN distribution. The simulation results revealed a pattern of con-

vergence to zero of a bias and RMSE when sample size increases. Also, skewness and

kurtosis of parameters’ estimator represent the fatter tail of empirical distribution.

Regarding the effect of the range of mean and volatility persistence on the per-
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formance of QMLE of parameters, I found that neither distributional properties nor

bias and RMSE of QMLE of AR parameter are affected significantly by mean and

volatility persistence in the cases of normal and symmetric WSN distributions. How-

ever, in asymmetric WSN case the higher is the volatility persistence, the greater

would be the bias and RMSE and therefore, less accurate would be the estimate of

the AR parameter. Moreover, in the cases of symmetric and asymmetric WSN with

small sample size, higher volatility persistence corresponds to the smaller bias and

RMSE of QMLE of ARCH and GARCH parameters.

In addition, from the simulations I observed that the changes in bias, RMSE,

skewness, and kurtosis of QMLE of parameters corresponding to simultaneous mean

and volatility persistence are greater than the cases of either mean or volatility

persistence.

Fifth the quantiles of the simulated finite sample distribution of test statistic

was computed under the null hypothesis of autoregressive parameter equals to zero

to obtain the critical values. These critical values can be used in hypothesis testing

which might be addressed in future work. A bootstrap technique offer a practical

alternative way to calculate the standard error when the theoretical calculation is

difficult. The results of bootstrapped standard errors illustrate the possibility of

conducting valid hypothesis test when the model is misspecified by WSN distribu-

tion.

Sixth, the bootstrap technique has been applied to the problem of unit root test

in order to analyse stock market and exchange rate data. Three unit root tests

including ADF, PP, and DF-GLS all with drift and trend have been applied to

the empirical data with the frequencies of monthly, weekly, and daily. Comparing

the p-values of the unit root tests obtained from the Park bootstrap as well as

the asymptotic and applying the proportions statistical test, it can be concluded

that bootstrap technique can affect the results of the ADF test with trend using

monthly and weekly data. Therefore, the bootstrap can provide enough evidence of

an improvement over the asymptotic in the case of ADF test with trend. In contrast,
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in the cases of PP and DF-GLS tests the null hypothesis of the unit root can not be

rejected at 5% significance level and so the implementation of the bootstrap does

not seem to improve the number of stationary series compared to the asymptotic.
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Appendix A

MATLAB codes-chapter1

1 %% −−−−−−−−−−−−−−WSN Dis t r ibu t i on−−−−−−−−−−−−−%%
2

3 c l e a r a l l
4 c l c
5 c l o s e a l l
6

7 alpha =−0.9;
8 beta =−0.9;
9 m=1;

10 k=−1;
11 rho =0.9 ;
12 i =−4:0 .1 :4 ;
13

14 f 2=ze ro s ( numel ( i ) , 1 ) ;
15 X1=ze ro s ( numel ( i ) , 1 ) ;
16 X2=ze ro s ( numel ( i ) , 1 ) ;
17 X3=ze ro s ( numel ( i ) , 1 ) ;
18 X4=ze ro s ( numel ( i ) , 1 ) ;
19 X5=ze ro s ( numel ( i ) , 1 ) ;
20 X6=ze ro s ( numel ( i ) , 1 ) ;
21

22 A alpha=1+2∗alpha∗ rho+alpha ˆ2 ;
23 A beta=1+2∗beta∗ rho+beta ˆ2 ;
24 B alpha=alpha+rho ;
25 B beta=beta+rho ;
26 i =0;
27 f o r t =−4:0 .1 :4 ;
28

29 f o r i =i +1;
30 X1=t / s q r t ( A alpha ) ;
31 X2=(B alpha∗t−m∗A alpha ) /( s q r t ( A alpha∗(1− rho ˆ2) ) ) ;
32 X3=t / s q r t ( A beta ) ;
33 X4=(−B beta∗ t+k∗A beta ) /( s q r t ( A beta∗(1− rho ˆ2) ) ) ;
34 X5=(m−rho∗ t ) / s q r t (1−rho ˆ2) ;
35 X6=(k−rho∗ t ) / s q r t (1−rho ˆ2) ;
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36 X7=t ;
37 f =(1/ s q r t ( A alpha ) ) .∗ normpdf (X1) .∗ normcdf (X2) +(1/ s q r t (

A beta ) ) .∗ normpdf (X3) .∗ normcdf (X4)+normpdf (X7) . ∗ (
normcdf (X5)−normcdf (X6) ) ;

38 f 1=log ( f ) ;
39

40 f 2 ( i , 1 )=f ;
41

42 end
43 end
44 p lo t ( i , f 2 ) ;

***********************************************************************************************************

1 %% −−−−−−3D Graph o f WSN Variance and Skewness in Symmetric
case−−−−−−%%

2

3

4 c l o s e a l l
5 c l e a r a l l
6 c l c
7

8 n=20;
9 m=1;

10 k=−1;
11 Na=30;
12 Nr=30;
13 MZ=ze ro s (Na , Nr) ;
14 VZ=ze ro s (Na , Nr) ;
15 [ a , r ]= meshgrid ( l i n s p a c e (−0.99 ,0 ,Na) , l i n s p a c e ( 0 , 0 . 9 , Nr) ) ;
16 i =0;
17 f o r a=l i n s p a c e (−0.99 ,0 ,Na) ,
18

19 b=a ;
20 home
21 i =i +1;
22 i j =0;
23

24 f o r r=l i n s p a c e ( 0 , 0 . 9 , Nr) ,
25 i j=i j +1;
26

27 x=randn (n , 2 ) ;
28 c=horzcat (1 , r ) ;
29 d=horzcat ( r , 1 ) ;
30 covar=ve r t c a t ( c , d ) ;
31 ch=cho l ( covar ) ;
32 x=(ch ’∗ x ’ ) ’ ;
33 z=x ( : , 1 )+a∗x ( : , 2 ) .∗ gt ( x ( : , 2 ) ,m)+b∗x ( : , 2 ) .∗ l e ( x ( : , 2 ) , k ) ;
34 %% WSN−moments
35 aa=1+2∗a∗ r+a ˆ2 ;
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36 ab=1+2∗b∗ r+b ˆ2 ;
37 ba=a+r ;
38 bb=b+r ;
39 ez=a∗normpdf (m, 0 , 1 )−b∗normpdf (k , 0 , 1 ) ;
40 ez2=aa+(1−aa )∗normcdf (m, 0 , 1 ) +(baˆ2−r ˆ2)∗m∗normpdf (m, 0 , 1 )

+(ab−1)∗normcdf (k , 0 , 1 )−(bbˆ2−r ˆ2)∗k∗normpdf (k , 0 , 1 ) ;
41 varz=ez2−ez ˆ2 ;
42 ez3=normpdf (m, 0 , 1 ) ∗( ba∗(3∗ aa+ba ˆ2∗(mˆ2−1) )−r∗(3+ r ˆ2∗(m

ˆ2−1) ) )+normpdf (k , 0 , 1 ) ∗(−bb∗(3∗ab+bbˆ2∗(kˆ2−1) )+r∗(3+
r ˆ2∗(kˆ2−1) ) ) ;

43 skz=(ez3−3∗ez2∗ ez+2∗ez ˆ3) / varz ˆ(3/2) ;
44

45

46 MZ( i j , i )=ez ;
47 VZ( i j , i )=varz ;
48 SK( i j , i )=skz ;
49 end
50 end
51

52 f i g u r e (1 )
53 s u r f ( r , a ,SK)
54 x l a b e l ( ’ r ’ )
55 y l a b e l ( ’ a ’ )
56 z l a b e l ( ’ Skewness ’ )
57

58

59 f i g u r e (2 )
60 s u r f ( r , a ,VZ)
61 x l a b e l ( ’ r ’ )
62 y l a b e l ( ’ alpha∗ ’ )
63 z l a b e l ( ’ Variance (WSN) ’ )

***********************************************************************************************************

1

2 %% Plo t t i ng macroeconomic va r i ab l e s ’ mean and var iance in
Normal ca s e s f o r vary ing alpha∗ and constant Ph i p i

3

4

5 c l e a r a l l
6 c l c
7 c l o s e a l l
8

9

10 n=10;
11 Na=5;
12 NMC=10000;
13 t =1:n ;
14 sigma1 =1;
15
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16

17 vt ALL=ze ro s (NMC, n) ;
18 at ALL=ze ro s (NMC, n) ;
19 pit ALL=ze ro s (NMC, n) ;
20 it ALL=ze ro s (NMC, n) ;
21 yt ALL=ze ro s (NMC, n) ;
22

23 a f1=ze ro s (n+1 ,1) ;
24 pa=ze ro s (n+1 ,1) ;
25

26 f o r nMC=1:NMC,
27

28 sa=normrnd (0 , sigma1 , n+1 ,1) ; %normal random
number

29 z1=normrnd (0 , sigma1 , n+1 ,1) ; %normal random
number

30

31 a f1 (2 , 1 )=z1 (2 , 1 ) ;
32 pa (2 , 1 )=sa (2 , 1 ) ;
33 eps v t =(a f1 ) ’ ;
34 ep s a t =(pa ) ’ ;
35

36 rho a =0.5; % AR c o e f f
37 rho v =0.5 ; % AR c o e f f
38 at (1 ) =0; % i n i t i a l va lue
39 vt (1 ) =0; % i n i t i a l va lue
40

41 %% Constant Parameters ( Base l i n e Ca l i b ra t i on )
42 phi =1;
43 sigma =1;
44 alpha =1/3;
45 omega=3;
46 p h i p i =1.5 ;
47

48

49 %% Parameters in Gal i model
50

51 Ps i ya=(phi+1)/( sigma+phi+alpha∗(1−sigma ) ) ;
52 P s i y i=omega∗(1−alpha ) /( sigma+phi+alpha∗(1−sigma ) ) ;
53 Psi=(alpha+phi ) /( sigma∗(1−alpha )+alpha+phi ) ;
54 Theta=(1+omega∗Psi ∗ p h i p i ) /((1+omega∗Psi )∗ p h i p i ) ;
55 A=−(sigma∗Ps i ya ∗(1− rho a ) ) /( p h i p i ∗(1+omega∗Psi )

∗(1−Theta∗ rho a ) ) ;
56 B=−(1+(1−rho v )∗omega∗Psi ) /( p h i p i ∗(1+omega∗Psi )∗(1−

Theta∗ rho v ) ) ;
57 C=−(sigma∗Ps i ya ∗(1− rho a ) ) /(1+omega∗Psi )∗(1−Theta∗

rho a ) ;
58 D=−rho v /( p h i p i ∗(1+omega∗Psi )∗(1−Theta∗ rho v ) ) ;
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59 E=Psi ya ∗(1+( sigma∗P s i y i ∗(1− rho a ) ) /(1+omega∗Psi )
∗(1−Theta∗ rho a ) ) ;

60 F=(rho v ∗P s i y i ) /( p h i p i ∗(1+omega∗Psi )∗(1−Theta∗
rho v ) ) ;

61

62 %% To speed up loop c a l c u l a t i o n s !
63 at=ze ro s (1 , numel ( t ) ) ;
64 vt=ze ro s (1 , numel ( t ) ) ;
65 p i t=ze ro s (1 , numel ( t ) ) ;
66 i t=ze ro s (1 , numel ( t ) ) ;
67 yt=ze ro s (1 , numel ( t ) ) ;
68

69

70 f o r i t e r =2:n+1;
71 at ( i t e r )=rho a ∗at ( i t e r −1)+eps a t ( i t e r ) ; %

technology shock
72 vt ( i t e r )=rho v ∗vt ( i t e r −1)+eps vt ( i t e r ) ; %monetary

p o l i c y shock
73

74 p i t ( i t e r )=A∗at ( i t e r )+B∗vt ( i t e r ) ; %i n f l a t i o n in
Gal i model

75 i t ( i t e r )=C∗at ( i t e r )+D∗vt ( i t e r ) ; %i n t e r e s t
r a t e in Gal i model

76 yt ( i t e r )=E∗at ( i t e r )+F∗vt ( i t e r ) ; %output in
Gal i model

77

78

79 end
80

81 at=at ( 2 : n+1) ;
82 vt=vt ( 2 : n+1) ;
83 p i t=p i t ( 2 : n+1) ;
84 i t=i t ( 2 : n+1) ;
85 yt=yt ( 2 : n+1) ;
86

87 at ALL (nMC, : )=at ;
88 vt ALL (nMC, : )=vt ;
89 pit ALL (nMC, : )=p i t ;
90 it ALL (nMC, : )=i t ;
91 yt ALL (nMC, : )=yt ;
92

93 end
94 M=mean( pit ALL ) ; %mean o f i n f l a t i o n ( change

i t f o r i n t e r e s t r a t e and output )
95 V=var ( pit ALL ) ; %var iance o f i n f l a t i o n (

change i t f o r i n t e r e s t r a t e and output )
96

97
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98 subplot (211) , p l o t (M’ ) , y l a b e l ( ’ I n f l a t i o n mean ’ )
99 subplot (212) , p l o t (V’ ) , y l a b e l ( ’ I n f l a t i o n var i ance ’ )

***********************************************************************************************************

1

2 %% Plo t t i ng macroeconomic va r i ab l e s ’ mean and var iance in
symmetric and asymmetric ca s e s f o r vary ing alpha∗ and
constant Ph i p i

3

4

5 c l e a r a l l
6 c l c
7 c l o s e a l l
8

9

10 n=10;
11 m=1;
12 k=−1;
13 r =0.9 ;
14 b=0; %asymmetric case
15 Na=5;
16 NMC=10000;
17 t =1:n ;
18 sigma1 =1;
19

20 f o r i n =1:Na
21 i =0;
22 f o r a=l i n s p a c e (0 ,−0.99 ,Na)
23 % b=a %symmetric case%
24 home
25 i =i +1;
26

27 vt ALL=ze ro s (NMC, n) ;
28 at ALL=ze ro s (NMC, n) ;
29 pit ALL=ze ro s (NMC, n) ;
30 it ALL=ze ro s (NMC, n) ;
31 yt ALL=ze ro s (NMC, n) ;
32

33 a f1=ze ro s (n+1 ,1) ;
34 pa=ze ro s (n+1 ,1) ;
35

36 f o r nMC=1:NMC,
37 %% WSN random number
38 randn ( ’ seed ’ ,nMC+i ) ;
39 x=randn (n , 2 ) ;
40 c=horzcat (1 , r ) ;
41 d=horzcat ( r , 1 ) ;
42 covar=ve r t c a t ( c , d ) ;
43 ch=cho l ( covar ) ;
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44 x=(ch ’∗ x ’ ) ’ ;
45 z=x ( : , 1 )+a∗x ( : , 2 ) .∗ gt ( x ( : , 2 ) ,m)+b∗x ( : , 2 ) .∗ l e ( x ( : , 2 ) ,

k ) ;
46

47 sa=normrnd (0 , sigma1 , n+1 ,1) ; %normal random
number

48

49 a f1 (2 , 1 )=z (2 , 1 ) ;
50 pa (2 , 1 )=sa (2 , 1 ) ;
51 eps v t =(a f1 ) ’ ;
52 ep s a t =(pa ) ’ ;
53

54 rho a =0.5; % AR c o e f f
55 rho v =0.5 ; % AR c o e f f
56 at (1 ) =0; % i n i t i a l va lue
57 vt (1 ) =0; % i n i t i a l va lue
58

59 %% Constant Parameters ( Base l i n e Ca l i b ra t i on )
60 phi =1;
61 sigma =1;
62 alpha =1/3;
63 omega=3;
64 p h i p i =1.5 ;
65

66

67 %% Parameters in Gal i model
68

69 Ps i ya=(phi+1)/( sigma+phi+alpha∗(1−sigma ) ) ;
70 P s i y i=omega∗(1−alpha ) /( sigma+phi+alpha∗(1−sigma ) ) ;
71 Psi=(alpha+phi ) /( sigma∗(1−alpha )+alpha+phi ) ;
72 Theta=(1+omega∗Psi ∗ p h i p i ) /((1+omega∗Psi )∗ p h i p i ) ;
73 A=−(sigma∗Ps i ya ∗(1− rho a ) ) /( p h i p i ∗(1+omega∗Psi )

∗(1−Theta∗ rho a ) ) ;
74 B=−(1+(1−rho v )∗omega∗Psi ) /( p h i p i ∗(1+omega∗Psi )∗(1−

Theta∗ rho v ) ) ;
75 C=−(sigma∗Ps i ya ∗(1− rho a ) ) /(1+omega∗Psi )∗(1−Theta∗

rho a ) ;
76 D=−rho v /( p h i p i ∗(1+omega∗Psi )∗(1−Theta∗ rho v ) ) ;
77 E=Psi ya ∗(1+( sigma∗P s i y i ∗(1− rho a ) ) /(1+omega∗Psi )

∗(1−Theta∗ rho a ) ) ;
78 F=(rho v ∗P s i y i ) /( p h i p i ∗(1+omega∗Psi )∗(1−Theta∗

rho v ) ) ;
79

80 %% To speed up loop c a l c u l a t i o n s !
81 at=ze ro s (1 , numel ( t ) ) ;
82 vt=ze ro s (1 , numel ( t ) ) ;
83 p i t=ze ro s (1 , numel ( t ) ) ;
84 i t=ze ro s (1 , numel ( t ) ) ;
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85 yt=ze ro s (1 , numel ( t ) ) ;
86

87

88 f o r i t e r =2:n+1;
89 at ( i t e r )=rho a ∗at ( i t e r −1)+eps a t ( i t e r ) ; %

technology shock
90 vt ( i t e r )=rho v ∗vt ( i t e r −1)+eps vt ( i t e r ) ; %monetary

p o l i c y shock
91

92 p i t ( i t e r )=A∗at ( i t e r )+B∗vt ( i t e r ) ; %i n f l a t i o n in
Gal i model

93 i t ( i t e r )=C∗at ( i t e r )+D∗vt ( i t e r ) ; %i n t e r e s t
r a t e in Gal i model

94 yt ( i t e r )=E∗at ( i t e r )+F∗vt ( i t e r ) ; %output in
Gal i model

95

96

97 end
98

99 at=at ( 2 : n+1) ;
100 vt=vt ( 2 : n+1) ;
101 p i t=p i t ( 2 : n+1) ;
102 i t=i t ( 2 : n+1) ;
103 yt=yt ( 2 : n+1) ;
104

105 at ALL (nMC, : )=at ;
106 vt ALL (nMC, : )=vt ;
107 pit ALL (nMC, : )=p i t ;
108 it ALL (nMC, : )=i t ;
109 yt ALL (nMC, : )=yt ;
110

111 end
112 M=mean( yt ALL ) ; %mean o f i n f l a t i o n ( change

i t f o r i n t e r e s t r a t e and output )
113 V=var ( yt ALL ) ; %var iance o f i n f l a t i o n (

change i t f o r i n t e r e s t r a t e and output )
114

115 M1( i , : )=M;
116 V1( i , : )=V;
117

118 end
119

120

121

122 end
123

124 subplot (211) , p l o t (M1’ ) , y l a b e l ( ’ Output mean ’ )
125 subplot (212) , p l o t (V1 ’ ) , y l a b e l ( ’ Output var iance ’ )
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***********************************************************************************************************

1 %% Long run response o f mean o f i n f l a t i o n
2

3 c l e a r a l l
4 c l c
5 c l o s e a l l
6

7 n=12;
8 m=1;
9 k=−1;

10 r =0.9 ;
11 Na=5;
12 NMC=10000;
13 t =1:n ;
14 sigma1 =1;
15 sigma2 = 1 : 0 . 5 : 6 . 5 ;
16

17 f o r i i i =1:n ;
18

19 f o r i n =1:Na
20 i =0;
21 f o r a=l i n s p a c e (0 ,−0.99 ,Na)
22 b=a ;
23 home
24 i =i +1;
25

26 vt ALL=ze ro s (NMC, n) ;
27 at ALL=ze ro s (NMC, n) ;
28 pit ALL=ze ro s (NMC, n) ;
29 it ALL=ze ro s (NMC, n) ;
30 yt ALL=ze ro s (NMC, n) ;
31

32 a f1=ze ro s (n+1 ,1) ;
33 pa=ze ro s (n+1 ,1) ;
34

35 f o r nMC=1:NMC,
36

37 randn ( ’ seed ’ ,nMC+i ) ;
38 x=normrnd (0 , sigma2 ( i i i ) ,n , 2 ) ;
39 c=horzcat (1 , r ) ;
40 d=horzcat ( r , 1 ) ;
41 covar=ve r t c a t ( c , d ) ;
42 ch=cho l ( covar ) ;
43 x=(ch ’∗ x ’ ) ’ ;
44 z=x ( : , 1 )+a∗x ( : , 2 ) .∗ gt ( x ( : , 2 ) ,m)+b∗x ( : , 2 ) .∗ l e ( x ( : , 2 ) , k ) ;
45

46 sa=normrnd (0 , sigma1 , n+1 ,1) ;
47 a f1 (2 , 1 )=z (2 , 1 ) ;
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48 pa (2 , 1 )=sa (2 , 1 ) ;
49

50 eps v t =(a f1 ) ’ ;
51 ep s a t =(pa ) ’ ;
52

53 rho a =0.5; % AR c o e f f
54 rho v =0.5 ; % AR c o e f f
55 at (1 ) =0; % i n i t i a l va lue
56 vt (1 ) =0; % i n i t i a l va lue
57

58 %% Constant Parameters ( Base l i n e Ca l i b ra t i on )
59 phi =1;
60 sigma =1;
61 alpha =1/3;
62 omega=3;
63 p h i p i =1.5 ;
64

65 %% f i x e d parameters in Gal i model
66

67 Ps i ya=(phi+1)/( sigma+phi+alpha∗(1−sigma ) ) ;
68 P s i y i=omega∗(1−alpha ) /( sigma+phi+alpha∗(1−sigma ) ) ;
69 Psi=(alpha+phi ) /( sigma∗(1−alpha )+alpha+phi ) ;
70 Theta=(1+omega∗Psi ∗ p h i p i ) /((1+omega∗Psi )∗ p h i p i ) ;
71 A=−(sigma∗Ps i ya ∗(1− rho a ) ) /( p h i p i ∗(1+omega∗Psi )∗(1−Theta∗

rho a ) ) ;
72 B=−(1+(1−rho v )∗omega∗Psi ) /( p h i p i ∗(1+omega∗Psi )∗(1−Theta∗

rho v ) ) ;
73 C=−(sigma∗Ps i ya ∗(1− rho a ) ) /(1+omega∗Psi )∗(1−Theta∗ rho a ) ;
74 D=−rho v /( p h i p i ∗(1+omega∗Psi )∗(1−Theta∗ rho v ) ) ;
75 E=Psi ya ∗(1+( sigma∗P s i y i ∗(1− rho a ) ) /(1+omega∗Psi )∗(1−Theta∗

rho a ) ) ;
76 F=(rho v ∗P s i y i ) /( p h i p i ∗(1+omega∗Psi )∗(1−Theta∗ rho v ) ) ;
77

78

79 %% To speed up loop c a l c u l a t i o n s !
80 at=ze ro s (1 , numel ( t ) ) ;
81 vt=ze ro s (1 , numel ( t ) ) ;
82 p i t=ze ro s (1 , numel ( t ) ) ;
83 i t=ze ro s (1 , numel ( t ) ) ;
84 yt=ze ro s (1 , numel ( t ) ) ;
85

86

87 f o r i t e r =2:n+1;
88 at ( i t e r )=rho a ∗at ( i t e r −1)+eps a t ( i t e r ) ; %technology

shock
89 vt ( i t e r )=rho v ∗vt ( i t e r −1)+eps vt ( i t e r ) ; %monetary

p o l i c y shock
90
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91

92 p i t ( i t e r )=A∗at ( i t e r )+B∗vt ( i t e r ) ; %i n f l a t i o n
in Gal i model

93 i t ( i t e r )=C∗at ( i t e r )+D∗vt ( i t e r ) ; %i n t e r e s t
r a t e in Gal i model

94 yt ( i t e r )=E∗at ( i t e r )+F∗vt ( i t e r ) ; %output in
Gal i model

95

96

97 end
98

99 at=at ( 2 : n+1) ;
100 vt=vt ( 2 : n+1) ;
101 p i t=p i t ( 2 : n+1) ;
102 i t=i t ( 2 : n+1) ;
103 yt=yt ( 2 : n+1) ;
104

105 at ALL (nMC, : )=at ;
106 vt ALL (nMC, : )=vt ;
107 pit ALL (nMC, : )=p i t ;
108 it ALL (nMC, : )=i t ;
109 yt ALL (nMC, : )=yt ;
110

111 end
112 M=mean( pit ALL ) ;
113 M1( i , : )=M;
114

115 end
116

117 end
118 M11=sum(M1’ ) ;
119 p bar ( : , i i i )=M11 ’ ;
120 end
121

122 p lo t ( sigma2 , p bar ’ )
123 t i t l e ( ’ Long run mean o f I n f l a t i o n ’ )
124 x l a b e l ( ’ Uncerta inty ’ )
125 y l a b e l ( ’ i n f l a t i o n mean ’ )

***********************************************************************************************************
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Appendix B

MATLAB codes-chapter2

1 %% p l o t t i n g WSN var iance with d i f f e r e n t parameter ’ a ’ va lue s
in symmetric case when a=b

2 %% f i n d i n g optimal ’ a ’ cor re spond ing to minimum var iance
3

4 c l e a r a l l
5 c l c
6 c l o s e a l l
7

8 %% WSN parameters
9 n=100;

10 m=1;
11 k=−1;
12 r =0.6 ;
13 Na=30;
14

15 i =0;
16 f o r a=l i n s p a c e (−0.99 ,0 ,Na) ,
17 b=a
18 home
19 i =i +1
20

21

22 %%WSN random number
23 x=randn (n , 2 ) ;
24 c=horzcat (1 , r ) ;
25 d=horzcat ( r , 1 ) ;
26 covar=ve r t c a t ( c , d ) ;
27 ch=cho l ( covar ) ;
28 x=(ch ’∗ x ’ ) ’ ;
29 z=x ( : , 1 )+a∗x ( : , 2 ) .∗ gt ( x ( : , 2 ) ,m)+b∗x ( : , 2 ) .∗ l e ( x ( : , 2 ) , k ) ;
30

31 %%WSN var iance
32 aa=1+2∗a∗ r+a ˆ2 ;
33 ab=1+2∗b∗ r+b ˆ2 ;
34 ba=a+r ;
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35 bb=b+r ;
36 ez=a∗normpdf (m, 0 , 1 )−b∗normpdf (k , 0 , 1 ) ;
37 ez2=aa+(1−aa )∗normcdf (m, 0 , 1 ) +(baˆ2−r ˆ2)∗m∗normpdf (m, 0 , 1 ) +(ab

−1)∗normcdf (k , 0 , 1 )−(bbˆ2−r ˆ2)∗k∗normpdf (k , 0 , 1 ) ;
38 varz=ez2−ez ˆ2 ;
39

40 VZ( i , : ) =[a varz ] ;
41

42 end
43

44 MIN=f i n d (min (VZ( : , 2 ) )==VZ( : , 2 ) ) ; %minimum var iance%
45 a be s t=VZ(MIN, 1 ) ; %parameter a

cor re spond ing to minimum var iance%
46 p lo t (VZ( : , 1 ) ,VZ( : , 2 ) )
47 x l a b e l ( ’ parameter a ’ )
48 y l a b e l ( ’ Variance (WSN) ’ )

***********************************************************************************************************

1 %% p l o t t i n g WSN var iance with d i f f e r e n t parameter ’ a ’ va lue s
in asymmetric case when b=0

2 %% f i n d i n g optimal ’ a ’ cor re spond ing to minimum var iance
3

4 c l e a r a l l
5 c l c
6 c l o s e a l l
7

8 %% WSN parameters
9 n=100;

10 m=1;
11 k=−1;
12 r =0.784;
13 b=0;
14 Na=30;
15

16 i =0;
17 f o r a=l i n s p a c e (−0.99 ,0 ,Na) ,
18 home
19 i =i +1
20

21

22 %%WSN random number
23 x=randn (n , 2 ) ;
24 c=horzcat (1 , r ) ;
25 d=horzcat ( r , 1 ) ;
26 covar=ve r t c a t ( c , d ) ;
27 ch=cho l ( covar ) ;
28 x=(ch ’∗ x ’ ) ’ ;
29 z=x ( : , 1 )+a∗x ( : , 2 ) .∗ gt ( x ( : , 2 ) ,m)+b∗x ( : , 2 ) .∗ l e ( x ( : , 2 ) , k ) ;
30
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31 %%WSN var iance
32 aa=1+2∗a∗ r+a ˆ2 ;
33 ab=1+2∗b∗ r+b ˆ2 ;
34 ba=a+r ;
35 bb=b+r ;
36 ez=a∗normpdf (m, 0 , 1 )−b∗normpdf (k , 0 , 1 ) ;
37 ez2=aa+(1−aa )∗normcdf (m, 0 , 1 ) +(baˆ2−r ˆ2)∗m∗normpdf (m, 0 , 1 ) +(ab

−1)∗normcdf (k , 0 , 1 )−(bbˆ2−r ˆ2)∗k∗normpdf (k , 0 , 1 ) ;
38 varz=ez2−ez ˆ2 ;
39

40 VZ( i , : ) =[a varz ] ;
41

42 end
43

44 MIN=f i n d (min (VZ( : , 2 ) )==VZ( : , 2 ) ) ; %minimum var iance%
45 a be s t=VZ(MIN, 1 ) ; %parameter a cor re spond ing

to minimum var iance%
46 p lo t (VZ( : , 1 ) ,VZ( : , 2 ) )
47 x l a b e l ( ’ parameter a ’ )
48 y l a b e l ( ’ Variance (WSN) ’ )

***********************************************************************************************************

1 %%Simulat ion study 1
2

3 c l e a r a l l
4 c l c
5 c l o s e a l l
6

7 a =0.5 ; %AR c o e f f i c i e n t
8 n=100; %Sample s i z e
9 m=n+1;

10 m1=1;
11 k=−1;
12 r =0.6 ;
13 a1=−0.6145;
14 b1=−0.6145;
15 %b1=0;
16 nmc=5000; %number o f Monte Carlo r e p l i c a t i o n
17 X a l l=ze ro s (n+1,nmc) ;
18 e a l l=ze ro s (n , nmc) ;
19 w a l l=ze ro s (n , nmc) ;
20 a h a t a l l=ze ro s (1 ,nmc) ;
21 a l p h a h a t a l l=ze ro s (1 ,nmc) ;
22 b e t a h a t a l l=ze ro s (1 ,nmc) ;
23

24

25 f o r NMC=1:nmc ;
26 %% WSN random numbers f o r case ’ skewed ’
27 randn ( ’ seed ’ ,NMC) ;
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28

29 x1=randn (n+1 ,2) ;
30 c1=horzcat (1 , r ) ;
31 d=horzcat ( r , 1 ) ;
32 covar=ve r t c a t ( c1 , d) ;
33 ch=cho l ( covar ) ;
34 x1=(ch ’∗ x1 ’ ) ’ ;
35 z=x1 ( : , 1 )+a1 .∗ x1 ( : , 2 ) .∗ gt ( x1 ( : , 2 ) ,m1)+b1∗x1 ( : , 2 ) .∗ l e ( x1

( : , 2 ) , k ) ;
36

37

38 %% GARCH induced by normal and wsn
39 n1 = 2 ;
40 cc = 0 . 0 1 ; aa = 0 . 0 5 ; bb = 0 . 8 ;
41 w = ze ro s (m−1 ,1) ;
42 eps = ze ro s (m, 1 ) ;
43

44 SELECT MOD=’ garch wsn ’ ;
45

46 switch SELECT MOD
47 case ’ garch normal ’
48 eps=randn (m, 1 ) ;
49

50 case ’ garch wsn ’
51 eps=z ;
52

53 end
54

55

56

57 sigma2 = ze ro s (m, 1 ) ; %
58 sigma2 (1 ) = cc /(1−aa−bb) ;
59

60 f o r i i =2:m %
61 sigma2 ( i i ) = cc + aa∗w( i i −1)ˆ2 + bb ∗ sigma2 ( i i −1) ;
62 w( i i ) = s q r t ( sigma2 ( i i ) ) ∗ eps ( i i ) ;
63 end
64

65 w=w( 2 :m) ;
66 x=w;
67 e=w;
68

69 %% AR s imu la t i on
70

71 X = ze ro s (n+1 ,1) ;
72 X(1) = 0 ;
73

74 f o r i = 2 : n
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75 X( i ) = e ( i ) + a ’∗X( i −1) ;
76

77 end
78 %% Estimation o f AR(1)−GARCH(1 ,1 ) model
79 Mdl=garchse t ( ’R ’ ,1 , ’P ’ ,1 , ’Q ’ ,1 , ’ Display ’ , ’ o f f ’ ) ;
80 [ Coeff , Errors ]= g a r c h f i t (Mdl ,X) ;
81

82 a hat=Coef f .AR; %est imated AR parameter%
83 a lpha hat=Coef f .ARCH; %est imated ARCH parameter%
84 beta hat=Coef f .GARCH; %est imated GARCH parameter%
85

86 X a l l ( : ,NMC)=X;
87 e a l l ( : ,NMC)=e ;
88 a h a t a l l ( : ,NMC)=a hat ;
89 a l p h a h a t a l l ( : ,NMC)=alpha hat ;
90 b e t a h a t a l l ( : ,NMC)=beta hat ;
91

92

93 end
94

95 a bar=sum( a h a t a l l ) /nmc ;
96 b ia s1=a bar−a ;
97 RMSE1=s q r t ( ( sum( a h a t a l l−a ) ˆ2) /nmc) ;
98 S1=skewness ( a h a t a l l ) ;
99 K1=k u r t o s i s ( a h a t a l l ) ;

100

101 a lpha bar=sum( a l p h a h a t a l l ) /nmc ;
102 b ia s2=alpha bar−aa ;
103 RMSE2=s q r t ( ( sum( a l p h a h a t a l l−aa ) ˆ2) /nmc) ;
104 S2=skewness ( a l p h a h a t a l l ) ;
105 K2=k u r t o s i s ( a l p h a h a t a l l ) ;
106

107 beta bar=sum( b e t a h a t a l l ) /nmc ;
108 b ia s3=beta bar−bb ;
109 RMSE3=s q r t ( ( sum( b e t a h a t a l l−bb) ˆ2) /nmc) ;
110 S3=skewness ( b e t a h a t a l l ) ;
111 K3=k u r t o s i s ( b e t a h a t a l l ) ;
112

113 di sp ( ’ b i a s a : ’ )
114 di sp ( b ia s1 )
115

116 di sp ( ’RMSE a : ’ )
117 di sp (RMSE1)
118

119 di sp ( ’ skewness a : ’ )
120 di sp ( S1 )
121

122 di sp ( ’ k u r t o s i s a : ’ )
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123 di sp (K1)
124

125

126 di sp ( ’ b i a s a lpha : ’ )
127 di sp ( b ia s2 )
128

129 di sp ( ’ RMSE alpha : ’ )
130 di sp (RMSE2)
131

132 di sp ( ’ skewness a lpha : ’ )
133 di sp ( S2 )
134

135 di sp ( ’ k u r t o s i s a l p h a : ’ )
136 di sp (K2)
137

138 di sp ( ’ b i a s b e t a : ’ )
139 di sp ( b ia s3 )
140

141 di sp ( ’RMSE beta : ’ )
142 di sp (RMSE3)
143

144 di sp ( ’ skewness beta : ’ )
145 di sp ( S3 )
146

147 di sp ( ’ k u r t o s i s b e t a : ’ )
148 di sp (K3)

***********************************************************************************************************

1 %%Simulat ion Study 2
2

3 c l e a r a l l
4 c l c
5 c l o s e a l l
6

7 a =0.5 ;
8 n=100;
9 m=n+1;

10 N=100;
11 m1=1;
12 k=−1;
13 r =0.6 ;
14 a1=−0.6145;
15 b1=−0.6145;
16 %b1=0;
17 nmc=500;
18 X a l l=ze ro s (n+1,nmc) ;
19 e a l l=ze ro s (n , nmc) ;
20 w a l l=ze ro s (n , nmc) ;
21 a h a t a l l=ze ro s (1 ,nmc) ;
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22 a l p h a h a t a l l=ze ro s (1 ,nmc) ;
23 b e t a h a t a l l=ze ro s (1 ,nmc) ;
24

25 XX=ze ro s (n , 1 ) ;
26 s e a l l=ze ro s (1 ,nmc) ;
27 t s t a t a l l=ze ro s (1 ,nmc) ;
28 prcboot=ze ro s (nmc , 5 ) ;
29

30

31 f o r NMC=1:nmc ;
32 %% WSN random number
33 randn ( ’ seed ’ ,NMC) ;
34

35 x1=randn (n+1 ,2) ;
36 c1=horzcat (1 , r ) ;
37 d=horzcat ( r , 1 ) ;
38 covar=ve r t c a t ( c1 , d) ;
39 ch=cho l ( covar ) ;
40 x1=(ch ’∗ x1 ’ ) ’ ;
41 z=x1 ( : , 1 )+a1 .∗ x1 ( : , 2 ) .∗ gt ( x1 ( : , 2 ) ,m1)+b1∗x1 ( : , 2 ) .∗ l e ( x1

( : , 2 ) , k ) ;
42

43

44

45 %% GARCH induced by normal and wsn
46 n1 = 2 ;
47 cc = 0 . 0 1 ; aa = 0 . 0 5 ; bb = 0 . 8 ;
48 w = ze ro s (m−1 ,1) ;
49 eps = ze ro s (m, 1 ) ;
50

51 SELECT MOD=’ garch wsn ’ ;
52

53 switch SELECT MOD
54 case ’ garch normal ’
55 eps=randn (m, 1 ) ;
56

57 case ’ garch wsn ’
58 eps=z ;
59

60 end
61

62

63

64 sigma2 = ze ro s (m, 1 ) ; %
65 sigma2 (1 ) = cc /(1−aa−bb) ;
66

67 f o r i i =2:m %
68 sigma2 ( i i ) = cc + aa∗w( i i −1)ˆ2 + bb ∗ sigma2 ( i i −1) ;
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69 w( i i ) = s q r t ( sigma2 ( i i ) ) ∗ eps ( i i ) ;
70 end
71

72 w=w( 2 :m) ;
73 x=w;
74 e=w;
75

76 %% AR s imu la t i on
77

78 X = ze ro s (n+1 ,1) ;
79 X(1) = 0 ;
80

81 f o r i = 2 : n
82 X( i ) = e ( i ) + a ’∗X( i −1) ;
83

84 end
85 %% Estimation o f AR(1)−GARCH(1 ,1 ) model
86 Mdl=garchse t ( ’R ’ ,1 , ’P ’ ,1 , ’Q ’ ,1 , ’ Display ’ , ’ o f f ’ ) ;
87 [ Coeff , Errors ]= g a r c h f i t (Mdl ,X) ;
88

89 a hat=Coef f .AR;
90 a lpha hat=Coef f .ARCH;
91 beta hat=Coef f .GARCH;
92 cc hat=Coef f .K;
93

94 X a l l ( : ,NMC)=X;
95 e a l l ( : ,NMC)=e ;
96 a h a t a l l ( : ,NMC)=a hat ;
97 a l p h a h a t a l l ( : ,NMC)=alpha hat ;
98 b e t a h a t a l l ( : ,NMC)=beta hat ;
99

100 se=Errors .AR;
101 s e a l l (1 ,NMC)=se ;
102 t s t a t a l l =( a h a t a l l−a ) . / s e a l l ;
103

104 f o r j =2:n
105 e hat ( j )=X( j )−a hat ∗X( j−1) ;
106 s igma2 hat ( j )=cc hat+alpha hat ∗ e hat ( j−1).ˆ2+ beta hat ∗

sigma2 ( j−1) ;
107 eps hat ( j )=e hat ( j ) / s q r t ( s igma2 hat ( j ) ) ;
108 end
109

110

111 rng d e f a u l t ;
112 nN=N∗N;
113 Xboot=randsample ( eps hat ,nN, t rue ) ;
114 Xboot=reshape ( Xboot ,N,N) ;
115
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116 p r c b o o t t a l l=ze ro s (N, 5 ) ;
117 a h a t b o o t a l l=ze ro s (1 ,N) ;
118 s e b o o t a a l l=ze ro s (1 ,N) ;
119 t b o o t s t a t a l l=ze ro s (1 ,N) ;
120

121 f o r B=1:N
122 eps hat boot=Xboot ( : ,B) ;
123

124 f o r j j =2:N
125 e hat boot ( j j )=s q r t ( s igma2 hat ( j j ) )∗ eps hat boot ( j j

) ;
126 XX( j j )=e hat boot ( j j )+a hat ∗XX( j j −1) ;
127 end
128

129 Mdl B=garchse t ( ’R ’ ,1 , ’P ’ ,1 , ’Q ’ ,1 , ’ Display ’ , ’ o f f ’ ) ;
130 [ CoeffB , ErrorsB ]= g a r c h f i t (Mdl B ,XX) ;
131

132

133 a hatboot=CoeffB .AR;
134 seboot=ErrorsB .AR;
135

136 s e b o o t a a l l=seboot ( 1 , : ) ;
137 a h a t b o o t a l l ( : ,B)=a hatboot ;
138

139 t b o o t s t a t =(a hatboot−a ) . / seboot ;
140 t b o o t s t a t a l l ( : ,B)=t b o o t s t a t ;
141

142 end
143 prcboot t=p r c t i l e ( t b o o t s t a t a l l , [ 5 0 , 9 0 , 9 5 , 9 7 . 5 , 9 9 ] ) ;
144 prcboot (NMC, : )=prcboot t ;
145

146

147 end
148 p r c t=p r c t i l e ( t s t a t a l l , [ 5 0 , 9 0 , 9 5 , 9 7 . 5 , 9 9 ] ) ;
149 SE=std ( prcboot ) ;
150

151 di sp ( ’ Quant i l e s : ’ )
152 di sp ( p r c t )
153

154 di sp ( ’SE−Quant i l e s : ’ )
155 di sp (SE)

***********************************************************************************************************
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Appendix C

MATLAB codes-chapter3

Bootstrapped ADF test

1

2 %%Bootstrap ADF uni t root t e s t
3

4 c l e a r a l l
5 c l c
6 c l o s e a l l
7

8 T = 3 ;
9 n=92; % sample s i z e

10 N=n+T;
11 XX=ze ro s (n+T, 1 ) ;
12 Y star=ze ro s (n+T, 1 ) ;
13 Y=ze ro s (n+T, 1 ) ;
14

15 A=load ( ’ Data ’ ) ;
16 Y=log (A. Data ) ;
17

18 [ h , pValue , s tat , cValue , reg ]= a d f t e s t (Y, ’ model ’ , ’TS ’ , ’ l a g s ’ , 12)
;

19 ADF=s t a t ; %t−s t a t i s t i c o f o r i g i n a l data%
20 pval=pValue ; %p−value o f o r i g i n a l data%
21 se1=reg . se ;
22 e=reg . r e s ; %r e s i d u a l s%
23 e hat=e−mean( e ) ; %cente red r e s i d u a l s%
24 %% Bootstrapping
25 rng d e f a u l t ;
26 nN=(N) ∗(N) ;
27 Xboot=randsample ( e hat ,nN, t rue ) ; %resample r e s i d u a l s

with replacement by n∗n boots t rap technique%
28 Xboot=reshape ( Xboot ,N,N) ;
29 s t a t a l l=ze ro s (1 ,N) ;
30 c o e f f a l l=ze ro s (1 ,N) ;
31 s e a l l=ze ro s (1 ,N) ;
32 t a l l=ze ro s (1 ,N) ;
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33 u s t a r (1 ) =0;
34 u s t a r (2 ) =0;
35 u s t a r (3 ) =0;
36 u s t a r (4 ) =0;
37 u s t a r (5 ) =0;
38 u s t a r (6 ) =0;
39 u s t a r (7 ) =0;
40 u s t a r (8 ) =0;
41 u s t a r (9 ) =0;
42 u s t a r (10) =0;
43 u s t a r (11) =0;
44 u s t a r (12) =0;
45 y s t a r (1 )=Y(1) ;
46 y s t a r (2 )=Y(2) ;
47 y s t a r (3 )=Y(3) ;
48 y s t a r (4 )=Y(4) ;
49 y s t a r (5 )=Y(5) ;
50 y s t a r (6 )=Y(6) ;
51 y s t a r (7 )=Y(7) ;
52 y s t a r (8 )=Y(8) ;
53 y s t a r (9 )=Y(9) ;
54 y s t a r (10)=Y(10) ;
55 y s t a r (11)=Y(11) ;
56 y s t a r (12)=Y(12) ;
57 y s t a r a l l=ze ro s (N, n+T−2) ;
58 rho1=reg . c o e f f ( 3 ) ;
59 rho2=reg . c o e f f ( 4 ) ;
60 rho3=reg . c o e f f ( 5 ) ;
61 rho4=reg . c o e f f ( 6 ) ;
62 rho5=reg . c o e f f ( 7 ) ;
63 rho6=reg . c o e f f ( 8 ) ;
64 rho7=reg . c o e f f ( 9 ) ;
65 rho8=reg . c o e f f (10) ;
66 rho9=reg . c o e f f (11) ;
67 rho10=reg . c o e f f (12) ;
68 rho11=reg . c o e f f (13) ;
69 rho12=reg . c o e f f (14) ;
70

71

72 f o r B=1:N
73 e s t a r=Xboot ( : ,B) ;
74 f o r j j =13:N
75 u s t a r ( j j )=rho1∗ u s t a r ( j j −1)+rho2∗ u s t a r ( j j −2)+rho3∗

u s t a r ( j j −3)+rho4∗ u s t a r ( j j −4)+rho5∗ u s t a r ( j j −5)+rho6
∗ u s t a r ( j j −6)+rho7∗ u s t a r ( j j −7)+rho8∗ u s t a r ( j j −8)+
rho9∗ u s t a r ( j j −9)+rho10∗ u s t a r ( j j −10)+rho11∗ u s t a r ( j j
−11)+rho12∗ u s t a r ( j j −12)+e s t a r ( j j ) ;

76
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77 y s t a r ( j j )=y s t a r ( j j −1)+u s t a r ( j j ) ;
78

79 end
80

81 y s t a r a l l ( : ,B)=y s t a r ;
82 [ h , pValue , s tat , cValue , reg ]= a d f t e s t ( y s ta r ’ , ’ model ’ , ’TS ’ ,

’ l a g s ’ ,12) ;
83 s t a t a l l (1 ,B)=s t a t ;
84

85 end
86

87 g r e a t e r t=f i n d ( s t a t a l l<=ADF) ;
88 pvalue boot=numel ( g r e a t e r t ) /(B+1) ;
89

90 di sp ( ’p−value : ’ )
91 di sp ( pval )
92

93 di sp ( ’ boots t rap p−value : ’ )
94 di sp ( pva lue boot )

***********************************************************************************************************

1

2 %%Bootstrap PP uni t root t e s t
3

4 c l e a r a l l
5 c l c
6 c l o s e a l l
7

8 T = 3 ;
9 n=92; % sample s i z e

10 N=n+T;
11 XX=ze ro s (n+T, 1 ) ;
12 Y star=ze ro s (n+T, 1 ) ;
13 Y= ze ro s (n+T, 1 ) ;
14

15 A=load ( ’ Data ’ ) ;
16 Y=log (A. Data ) ;
17

18 [ h , pValue , s tat , cValue , reg ]= pptes t (Y, ’ model ’ , ’TS ’ , ’ l a g s ’ , 12) ;
19 rho=reg . c o e f f ( 2 ) ;
20 pp1=s t a t ;
21 se1=reg . se (2 ) ;
22 e=reg . r e s ;
23 pval=pValue ;
24 e hat=e−mean( e ) ;
25 %% Bootstrapping
26 rng d e f a u l t ;
27 nN=(N) ∗(N) ;
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28 Xboot=randsample ( e hat ,nN, t rue ) ; %resample r e s i d u a l s
with replacement by n∗n boots t rap technique

29 Xboot=reshape ( Xboot ,N,N) ;
30 s t a t a l l=ze ro s (1 ,N) ;
31 c o e f f a l l=ze ro s (1 ,N) ;
32 s e a l l=ze ro s (1 ,N) ;
33 t a l l=ze ro s (1 ,N) ;
34 u s t a r (1 ) =0;
35 y s t a r (1 )=Y(1) ;
36 y s t a r a l l=ze ro s (N, n+T−2) ;
37 f o r B=1:N
38 e s t a r=Xboot ( : ,B) ;
39 f o r j j =2:N
40 y s t a r ( j j )=y s t a r ( j j −1)+e s t a r ( j j ) ;
41 end
42

43 y s t a r a l l ( : ,B)=y s t a r ;
44 [ h , pValue , s tat , cValue , reg ]= pptes t ( y s ta r , ’ model ’ , ’TS ’ , ’

l a g s ’ , 12) ;
45 s t a t a l l (1 ,B)=s t a t ;
46 c o e f f a l l (1 ,B)=reg . c o e f f ( 2 ) ;
47 s e a l l (1 ,B)=reg . se (2 ) ;
48 t a l l (1 ,B)=( c o e f f a l l (1 ,B)−1) . / s e a l l (1 ,B) ;
49 end
50

51

52 g r e a t e r t=f i n d ( s t a t a l l<=pp1 ) ;
53 pvalue boot=numel ( g r e a t e r t ) /(B+1) ;
54

55 di sp ( ’p−value : ’ )
56 di sp ( pval )
57

58 di sp ( ’ boots t rap p va lue : ’ )
59 di sp ( pva lue boot )

***********************************************************************************************************

1

2 %%Bootstrap DF−GLS uni t root t e s t
3

4 c l e a r a l l
5 c l c
6 c l o s e a l l
7

8 T = 3 ;
9 n=92;

10 N=n+T;
11 XX=ze ro s (n+T, 1 ) ;
12 Y star=ze ro s (n+T, 1 ) ;
13 Y=ze ro s (n+T, 1 ) ;
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14 Y2=ze ro s (n+T+1 ,1) ;
15 c bar =−13.5;
16

17 a lpha bar=1+(c bar /(n+T+1) ) ;
18 x=ones (1 , n+T+1) ;
19

20 A=load ( ’ Data ’ ) ;
21 Y=log (A. Data ) ;
22

23 y bar=ze ro s (1 , n+T+1) ;
24 x bar=ze ro s (1 , n+T+1) ;
25 y bar (1 )=Y(1) ;
26 x bar (1 )=x (1) ;
27

28 f o r k=2:n+T+1
29 y bar ( k )=Y( k )−a lpha bar ∗Y(n+T) ;
30 x bar ( k )=x ( k )−a lpha bar ∗x (n+T) ;
31 end
32 A1=mean( x bar ) ;
33 A2=mean( y bar ) ;
34 B1=x bar−A1 ;
35 B2=y bar−A2 ;
36 B3=B1 .∗B2 ;
37 B4=B1 .∗B1 ;
38 beta hat=sum(B3) /sum(B4) ;
39

40 Y mad=Y’−( beta hat ∗x ) ;
41

42

43 f o r t =2:n+T+1
44 A1( t )=Y( t−1)∗Y( t ) ;
45 B1( t )=Y( t−1)∗Y( t−1) ;
46 end
47 rho hat=sum(A1) /sum(B1) ;
48

49

50 [ h , pValue , s tat , cValue , reg ]= a d f t e s t (Y mad , ’ l a g s ’ , 12) ;
51

52 ADF=s t a t ;
53 se1=reg . se ;
54 e=reg . r e s ;
55 pval=pValue ;
56 e hat=e−mean( e ) ;
57

58 %% Bootstrapping
59 rng d e f a u l t ;
60 nN=(N) ∗(N) ;
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61 Xboot=randsample ( e hat ,nN, t rue ) ; %resample r e s i d u a l s
with replacement by n∗n boots t rap technique

62 Xboot=reshape ( Xboot ,N,N) ;
63 s t a t a l l=ze ro s (1 ,N) ;
64 c o e f f a l l=ze ro s (1 ,N) ;
65 s e a l l=ze ro s (1 ,N) ;
66 t a l l=ze ro s (1 ,N) ;
67 u s t a r (1 ) =0;
68 u s t a r (2 ) =0;
69 u s t a r (3 ) =0;
70 u s t a r (4 ) =0;
71 u s t a r (5 ) =0;
72 u s t a r (6 ) =0;
73 u s t a r (7 ) =0;
74 u s t a r (8 ) =0;
75 u s t a r (9 ) =0;
76 u s t a r (10) =0;
77 u s t a r (11) =0;
78 u s t a r (12) =0;
79 y s t a r (1 )=Y(1) ;
80 y s t a r (2 )=Y(2) ;
81 y s t a r (3 )=Y(3) ;
82 y s t a r (4 )=Y(4) ;
83 y s t a r (5 )=Y(5) ;
84 y s t a r (6 )=Y(6) ;
85 y s t a r (7 )=Y(7) ;
86 y s t a r (8 )=Y(8) ;
87 y s t a r (9 )=Y(9) ;
88 y s t a r (10)=Y(10) ;
89 y s t a r (11)=Y(11) ;
90 y s t a r (12)=Y(12) ;
91 y s t a r a l l=ze ro s (N, n+T−2) ;
92 rho1=reg . c o e f f ( 2 ) ;
93 rho2=reg . c o e f f ( 3 ) ;
94 rho3=reg . c o e f f ( 4 ) ;
95 rho4=reg . c o e f f ( 5 ) ;
96 rho5=reg . c o e f f ( 6 ) ;
97 rho6=reg . c o e f f ( 7 ) ;
98 rho7=reg . c o e f f ( 8 ) ;
99 rho8=reg . c o e f f ( 9 ) ;

100 rho9=reg . c o e f f (10) ;
101 rho10=reg . c o e f f (11) ;
102 rho11=reg . c o e f f (12) ;
103 rho12=reg . c o e f f (13) ;
104

105 f o r B=1:N
106 e s t a r=Xboot ( : ,B) ;
107 f o r j j =13:N
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108

109 u s t a r ( j j )=rho1∗ u s t a r ( j j −1)+rho2∗ u s t a r ( j j −2)+rho3∗
u s t a r ( j j −3)+rho4∗ u s t a r ( j j −4)+rho5∗ u s t a r ( j j −5)+rho6
∗ u s t a r ( j j −6)+rho7∗ u s t a r ( j j −7)+rho8∗ u s t a r ( j j −8)+
rho9∗ u s t a r ( j j −9)+rho10∗ u s t a r ( j j −10)+rho11∗ u s t a r ( j j
−11)+rho12∗ u s t a r ( j j −12)+e s t a r ( j j ) ;

110

111 y s t a r ( j j )=y s t a r ( j j −1)+u s t a r ( j j ) ;
112

113 end
114

115 y s t a r a l l ( : ,B)=y s t a r ;
116 [ h , pValue , s tat , cValue , reg ]= a d f t e s t ( y s ta r ’ , ’ l a g s ’ , 12) ;
117 s t a t a l l (1 ,B)=s t a t ;
118

119 end
120

121

122 g r e a t e r t=f i n d ( s t a t a l l<=ADF) ;
123 pvalue boot=numel ( g r e a t e r t ) /(B+1) ;
124

125 di sp ( ’p−value : ’ )
126 di sp ( pval )
127

128 di sp ( ’ boots t rap p va lue : ’ )
129 di sp ( pva lue boot )
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