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Abstract

This paper studies the effects of a specific affirmative action policy in complete

information all-pay auctions when players differ in ability. The contest organiser

splits the overall prize of the competition into a targeted and an untargeted prize.

The targeted prize is exclusively for disadvantaged (low-ability) agents and excludes

advantaged agents partially from the overall prize. We consider a setting with

one high-ability and two low-ability contestants and fully characterise equilibrium.

Assuming that the contest organiser aims to maximise expected total effort, we

show that (i) almost any targeted prize is preferable to a standard all-pay auction

without targeted prize; (ii) the exclusion principle (Baye, Kovenock and de Vries,

1993) can be implemented by a wide range of sufficiently large targeted prizes; and

(iii) partial exclusion by means of an appropriately chosen targeted prize benefits

the organiser more than complete exclusion. We also discuss the robustness of our

results in settings with more than three agents.
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1 Introduction

I don’t agree with opening up the Booker for the Americans, I think that’s

straightforwardly daft. The Americans have got enough prizes of their own.
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The idea of [the Booker] being Britain, Ireland, the old Commonwealth coun-

tries and new voices in English from around the world gave it a particular

character and meant it could bring on writers. If you also include Americans

- and get a couple of heavy hitters - then the unknown Canadian novelist hasn’t

got a chance.

- Julian Barnes, Man Booker winner in 20111

The above quote refers to a change in the rules for participation of the Man Booker

Prize for Fiction. Initially, only novelists from the UK, Commonwealth, Ireland and

Zimbabwe were eligible to receive the prize. With the new rules, all fiction in English

published worldwide is eligible. This, of course, increases competition. Barnes is con-

cerned that, because of the rule change, new novelists will lose against established writers

and find it more difficult to win recognition. In this sense, we can think of the prize with

the initial restricted participation rule as an affirmative action policy: The Booker prize

is a targeted prize for some competitors, in addition to the main competition in which

all novelists compete for recognition and book sales.2 The purpose of the present paper

is to investigate the incentive effects of such a policy. We do so using an all-pay auction,

which is a well-established tool for modeling competition. Our main result is that such a

prize enhances competition. Consequently, even a contest designer who is not interested

in affirmative action per se might decide to establish it.

The competition of novelists described above is a special case of a situation in which

players compete by investing a costly and sunk resource in order to increase their prob-

ability of winning. In addition, some contestants have more options to receive a reward

for their investment than others. This is not unusual.3 Consider funding for research

projects. All researchers in a given country might have access to funding from a central

Government agency but only some regions might offer funding through a regional funding

agency.4 Another example is Government funding for entrepreneurs. Young entrepreneurs

1See Mark Brown, ‘Julian Barnes: letting US authors compete for Booker prize is ‘daft’ ’, The

Guardian, 27, November 2016.
2There is also another related affirmative action policy, the Woman’s prize for fiction, “which was

established in 1996 after the Booker failed to shortlist a single woman.” See Alison Flood, ‘Kamila

Shamsie wins Women’s prize for fiction for ’story of our times’ ’, The Guardian, 27, June 2018.
3Of course, there are also other international awards complemented by a prize for national competitors.

For example, the City Council of Tarragona organises a fireworks competition that has an international

prize and a prize for Catalan competitors. In 2009 both prizes were won by the same competitor. Another

example is the category of Best Film. In 2011, the Catalan film ‘Black Bread’ won both the (Spanish)

Goya Award and the (Catalan) Gaud́ı Award. Other film festivals establish additional prizes for example

for youth, students or female contestants.
4Of course, besides affirmative action considerations, there could be other reasons to restrict compe-

tition to local competitors. At least in the Spanish research programme ‘Proyectos Europa Excelencia’

affirmative action considerations seem to be important, as participation requires that the proposal must

have competed unsuccessfully for a ‘Starting Grant’ of the European Research Council.
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might have access to funding programmes that are only open to them, in addition to fund-

ing competitions that are open to all entrepreneurs.5 A last example is a prize for the

best academic paper by a young scientist.

What distinguishes the examples above from the standard contest model of competi-

tion is that a player’s prospects of receiving a reward for sunk investment depends not

only on the magnitude of the investment but also on the player’s identity. Players that

belong to a disadvantaged group compete for a prize that others do not have access to.

This creates a very specific prize structure. All agents compete for the untargeted prize,

but only disadvantaged players contest the targeted prize. In this sense the competition

is characterized by targeted rewards for sunk investments. This implies that even though

there are two prizes, targeted prizes are different from second prizes. The reason is that

second prizes, or consolation prizes, are not targeted. They can be won by all agents and

change the prize structure for all agents in the same way. In contrast, targeted prizes re-

inforce the incentives of disadvantaged contestants to invest resources in the competition

without affecting the prize structure for other agents.6

We investigate the effects of targeted prizes in an all-pay auction under complete

information and with heterogeneous players. In our model agents differ in ability. The

contest organiser splits the overall prize of the competition into an untargeted and a

targeted prize. Only the low-ability agents contest the targeted prize. To discuss our

contribution, it is useful to follow Baye et al. (1996) and to think of contestants with

higher ability as stronger agents. Since in our model, however, a low-ability contestant

can potentially win both the untargeted and the targeted prize, his behaviour depends not

only on his ability but also on this split of the overall prize. To take this into account we

modify Siegel’s (2009) notion of the reach of a player to measure strength: a contestant’s

reach (or strength) is the highest effort level he can choose without obtaining a negative

payoff if he wins all prizes that he contests with certainty. Our contribution is twofold.

Our first contribution is to fully characterise equilibrium in a setting with one high-

ability and two low-ability contestants.7 We show that the introduction of the targeted

prize weakens the high-ability agent and strengthens low-ability contestants. In the ex-

treme, when the size of the targeted prize is large, the ranking of players in terms of

5Currently, the Spanish Ministry of Industry has such a programme for entrepreneurs younger than

40 years.
6Szymanski and Valletti (2005) investigate a contest between one strong and two weak contestants

with a second prize. Assuming an imperfectly discriminating Tullock contest success function, rather

than an all-pay auction, they show that with a second prize total effort might increase, provided the

disadvantage of the weak agents is large enough.
7We discuss the contest with more than three agents and the robustness of our results in Section 5.

Our initial restriction to three contestants allows us to show uniqueness of equilibrium for almost all sizes

of the targeted prize. This enables us to compare the contest with targeted prize unambiguously to a

standard contest without targeted price, even though in the latter there is a multiplicity of equilibrium.
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their strengths is reversed. In our model, the targeted prize stimulates participation of

disadvantaged contestants, because it will always be contested. Moreover, since disad-

vantaged contestants are symmetric, in equilibrium they use the same strategy. We show

that the equilibrium is unique, unless the size of the targeted prize is equal to the relative

difference in abilities and all agents are equally strong in terms of their reach.8

Our second contribution is to provide a deeper understanding of the exclusion principle

(Baye et al., 1993). This principle says that under some conditions the contest organiser

benefits from excluding the most competitive contestants. The reason is that this can

level the playing field and strengthen competition among the remaining agents. As a

result total expected effort might increase. Our model allows us to relate the size of the

targeted prize to the degree of exclusion of the advantaged player. Complete exclusion

and no exclusion are extreme cases. Complete exclusion is obtained when the targeted

prize is as large as possible and the untargeted prize is set to zero, while the contest

without targeted prize results in no exclusion. Intermediate sizes of the targeted prize

partially exclude the advantaged contestant from a part of the overall prize.

We show that complete exclusion is not necessary. Large targeted prizes weaken the

advantaged contestant enough so that in equilibrium he abstains with certainty from the

contest. This implies that partial exclusion via a targeted prize ‘implements’ complete

exclusion as if finalists were selected directly.9 Moreover, we show that complete exclu-

sion is not optimal. Choosing the size of the targeted prize roughly equal to the relative

difference in abilities, the contest organiser can induce considerably higher expected total

effort. Competition is strengthened, because this targeted prize levels the playing field

completely (in terms of the reach of players). Since the advantaged contestant is only

excluded from a part of the overall prize, a partial exclusion principle holds. Our analysis

also implies that almost any targeted prize is preferable to a standard all-pay auction.10

Lastly, we provide an extension of our analysis to more than three contestants and high-

light a novel finding. It might be beneficial for the contest organiser to design partial

exclusion via a targeted prize in such a way as to discourage participation of an advan-

8When all contestants have the same reach there is a continuum of equilibria that arises from the pos-

sibility that the advantaged player might abstain with different probabilities from the contest. Equilibria

with very related properties exist in the standard all-pay auction when agents have the same reach (Baye

et al., 1996).
9Complete exclusion might not be feasible, for instance, for legal reasons.

10The reason for why we do not claim that any targeted prize is preferable to a standard all-pay

auction is as follows. As the targeted prize goes to zero, the unique equilibrium becomes the equilibrium

of the standard all-pay auction in which symmetric players use symmetric strategies. In the standard

all-pay auction there is, however, another equilibrium in which only one of the symmetric players is active

that has higher expected total effort. Thus depending on how agents coordinate in the standard all-pay

auction, in equilibrium total expected effort might be higher in a standard all-pay auction than with a

very small targeted prize.
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taged agent of intermediate ability but to provide sufficient incentives for an advantaged

agent of high ability to participate. The targeted prize ‘implements’ a set of finalists in

which an agent with intermediate ability is excluded but agents with high and low abil-

ity are included. This differs from the original exclusion principle in Baye et al. (1993)

where the optimal set of finalists always includes pairs of adjacent contestants (in terms

of ability).11

Our results complement the analysis in Dahm and Esteve-González (2018). Dahm and

Esteve-González investigate targeted prizes in a model with an imperfectly discriminating

Tullock contest success function. In both models a targeted prize levels the playing field

and increases the strength of competition. But, contrary to the present paper, Dahm

and Esteve-González show that a targeted prize is only beneficial for intermediate levels

of heterogeneity. In this sense the effect of a targeted prize is stronger when the contest

success function is perfectly discriminatory. This helps to understand why the exclusion

principle discovered by Baye et al. (1993) holds in the all-pay auction but, as shown by

Fang (2002), does not hold in Tullock contests with economics of scale parameter equal

to one.12

Since in our model there is an untargeted prize and a targeted prize, our paper con-

tributes to the question under which conditions a contest organiser finds it optimal to

establish more than one prize in all-pay auctions under complete information.13 Glazer

and Hassin (1988) and Cohen and Sela (2008) provide conditions under which more than

one prize should be established. Barut and Kovenock (1998), however, show that in their

11In Baye et al. (1993) contestants differ in their valuations for the prize. This corresponds to the

abilities in our model.
12The exclusion principle does hold when the economics of scale parameter in a Tullock contest is large,

so that the contest approaches the all-pay auction (Alcalde and Dahm, 2010). There are also other not

perfectly discriminating contest success functions, different from Tullock’s proportional form, for which

the principle holds (Alcalde and Dahm, 2007). In recent work Matros and Rietzke (2017) investigate a

model of contests on networks and provide conditions on the network under which the exclusion principle

also applies to Tullock contests. A variation of the exclusion principle has also appeared in Konrad (2006).

When firms have silent ownership shares in rivals, then a firm may be able to commit to abstain from the

contest. This might be profitable, because it reduces the level of competition. Ownership shares, however,

can also increase the level of competition, see Fu and Lu (2013). Menicucci (2006) and Bertoletti (2008)

investigate the exclusion principle when the contest organiser is not fully informed about the contestants.
13The single-prize all-pay auction under complete information has been studied by Hillman and Samet

(1987) and Hillman and Riley (1989), and its equilibrium has been completely characterised by Baye et

al. (1996). An alternative to creating a targeted prize is to bias the selection rule in an all-pay auction.

Such a setting has been analysed in Fu (2006), Li and Yu (2012), Pastine and Pastine (2012) and Franke

et al. (2014 and 2018). Glazer and Hassin (1988), Barut and Kovenock (1998), Clark and Riis (1998) and

Cohen and Sela (2008) analyse multiple-prize all-pay auctions under different assumptions concerning

the contestants’ valuations for prizes. Recent work by Siegel (2009, 2010 and 2014) and Xiao (2016)

extends this model in many ways, including head starts. Sisak (2009) provides a review of the literature

on multiple-prize contests.
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model the organiser is indifferent between establishing one or several prizes.14 Our model

differs from these multiple-prize all-pay auctions, because in these papers prizes are not

targeted to specific groups of contestants.

The paper is organised as follows. The next section presents our model of targeted

prizes. We provide a full characterisation of equilibrium in Section 3. Section 4 investi-

gates expected total effort in equilibrium and establishes the partial exclusion principle.

The extension to more than three contestants is provided in Section 5 and the last section

contains concluding remarks. All proofs are relegated to an Appendix.

2 Model

There are three risk-neutral contestants with abilities αi. Agent 1 is advantaged and

has high ability, while agents 2 and 3 are homogeneous and have low ability, so that

α1 ≥ αd > 0 with d = 2, 3. Our equilibrium characterisation in Section 3 allows for

α1 = αd but for simplicity of the exposition in Section 4 we exclude the case in which all

agents have the same ability. Contestants compete exerting effort ei ∈ R+ and different

abilities are reflected in heterogeneous effort costs ci(ei) = ei/αi. Effort is not recovered.

Contestants compete simultaneously for a budget B, which without loss of generality

is normalized to one. The budget or overall prize is split into two prizes, the untargeted

prize (1−β) and the targeted prize β, with β ∈ [0, 1]. Contestant 1 competes only for the

untargeted prize (1 − β), while the disadvantaged contestants 2 and 3 compete for both

prizes. In other words, the set of contestants N = {1, 2, 3} compete for the untargeted

prize (UP) of size (1 − β) and the set of agents D = {2, 3} contest the targeted prize

(TP) of size β. Notice that this implies that, although contestants 2 and 3 exert effort

only once, they might win both prizes. This structure of targeted rewards distinguishes

our model from other contests with multiple prizes, including second prizes. The contest

designer chooses β in order to maximise total effort.15

We consider an all-pay auction setting in which prizes are assigned as follows. Given

a prize k ∈ {UP, TP}, let A(k) be the set of agents competing for this prize. Then, given

14Moldovanu and Sela (2001) analyse a different all-pay auction model with incomplete information

and show that when cost functions are convex several prices might be optimal; see also Liu and Lu (2017)

for a related model. Clark and Riis (1998) investigate whether in a multiple-prize all-pay auction prizes

should be awarded simultaneously or sequentially. Clark and Riis also show that the exclusion principle

does not necessarily hold in multiple-prize all-pay auctions. Arbatskaya (2003), however, builds on the

results by Barut and Kovenock (1998) and shows that a contest organiser might even in a symmetric

setting benefit from excluding contestants, provided valuations depend on the number of contestants.
15A contest designer could also have different objectives, like competitive balance or the quality of the

winner, see Serena (2017) for an insightful discussion. An interest in competitive balance or attaching

a value to the participation by disadvantaged agents (perhaps on affirmative action grounds) provide

different rationales for restricting competition than the logic highlighted in our analysis.
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a vector of efforts e = (e1, e2, e3), the win probability of agent i ∈ A(k) for prize k is

pki (e) =

{
1
h

if i ∈ A(k) and ei = maxj∈A(k){ej}
0 otherwise

, (1)

where h is the number of agents in A(k) exerting the highest effort (i.e., h = #{j ∈ A(k) :

ej ≥ ej′ ,∀j′ ∈ A(k)}). Thus, player i’s expected payoff is

Ui(e) = (1− β)pUPi (e) + ziβp
TP
i (e)− ei

αi
, (2)

where zi ∈ {0, 1} takes value 1 if i ∈ D, and value 0 otherwise. Note that this model

includes two special cases. When β = 0 or β = 1 we obtain a standard all-pay auction

without targeted prize in which the set of contestants is N or D, respectively.16

3 Equilibrium characterization

3.1 Preliminaries

It is useful to start by extending Siegel’s (2009) notion of the “reach” to our model. In

Siegel’s model a contestant can win at most one prize and the reach of a contestant is the

effort level at which the valuation for winning is zero. Since in our model a contestant

can win more than one prize, we define contestant i’s reach ri to be the effort level for

which his valuation for winning all prizes that he contests is zero. More precisely,

ri = max

{
ei ∈ R

∣∣∣∣(1− β) + βzi −
ei
αi

= 0

}
, (3)

with zi ∈ {0, 1} taking value 1 if i ∈ D, and value 0 otherwise. Since rewards are targeted

and the advantaged player does not compete for the targeted prize, (3) becomes

r1 = α1(1− β) and rd = αd, (4)

for d = 2, 3. It follows that the order of contestants by their reach depends on β. We have

that r1 ≥ rd if and only if the size of the targeted prize is at most equal to the relative

difference in abilities, that is,

β ≤ α1 − αd
α1

≡ β̂. (5)

16In these situations the value of β is such that there is only one prize. Consequently, the contes-

tants eligible for this prize compete as in a standard all-pay auction. A similar situation arises if one

disadvantaged agent does not contest the targeted prize. For instance, if agent 2 exerts zero effort with

probability one, then players 1 and 3 compete (for the untargeted prize) as in a standard all-pay auction.

The targeted prize is not contested and by exerting some positive effort contestant 3 receives it with

certainty. We will also use the term standard all-pay auction to refer to such a situation.
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We will see that, as in other all-pay auctions, the second highest reach plays an important

role in our analysis. In our simple three contestant model the second highest reach is rd
for any size of the targeted prize β.17

It is well known that in the standard all-pay auction without targeted prize there

is no Nash equilibrium in pure strategies. This remains true when a targeted prize is

introduced (formally this follows from Lemma 2 below). Consequently, we consider Nash

equilibria in mixed-strategies. We represent the equilibrium mixed-strategy of contestant

i by the cumulative distribution function (cdf) Gi(ei). Agent i randomises continuously

on an interval S if his mixed-strategy contains no mass points and has a strictly increasing

cdf almost everywhere on S. We denote by γi(ei) the mass placed at ei by contestant i’s

mixed strategy. We say that a contestant i is active if γi(0) < 1. When γi(0) = 1 we say

that contestant i abstains from the contest. Lastly, when γi(0) = 0 we say that contestant

i never abstains from the contest.

We are now in a position to describe some basic properties of the equilibrium.

Lemma 1. For any β > 0, in any equilibrium both disadvantaged contestants are active.

The previous lemma shows that a targeted prize is a powerful tool to make sure

disadvantaged agents compete. The targeted prize will always be contested. The next

lemma shows that disadvantaged contestants are not only active but never abstain. In

addition, the next lemma establishes further important equilibrium properties.

Lemma 2. For any β > 0, in any equilibrium the following holds:

1. Both disadvantaged contestants employ the same mixed-strategy G2 = G3 and obtain

an expected equilibrium payoff of zero.

2. For all i, there is no contestant i who places mass on (rd,∞), Gi contains no atoms

in the half open interval (0, rd] and the disadvantaged contestants do not place an

atom at zero.

As in other all-pay auctions, no contestant exerts more effort than the second highest

reach rd. Disadvantaged contestants use the same strategy, randomise continuously on

[0, rd], place no atom anywhere, and dissipate all rents from the competition. The advan-

taged agent, however, might place an atom at zero. As in the standard all-pay auction

without targeted prize, equilibrium implies that there are no atoms at points different

17Formally, the second highest reach is defined as r̂ ∈ {r1, r2, r3} such that the set {i|ri ≤ r̂} contains

at least two agents and the set {i|ri < r̂} contains at most one agent. Since r2 = r3 = rd, we have that

the second highest reach is rd for any size of the targeted prize β. In particular when β > β̂, we have

that rd > r1 but r̂ = rd, as there are two disadvantaged contestants.
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from zero. Importantly, since Lemma 2 rules out that at equilibrium disadvantaged con-

testants use different strategies, it must hold that the set of active agents is either D or

N . It also allows us to use the notation G1(e1) and Gd(ed) for the cdfs of the advantaged

and disadvantaged agents’ efforts e1 ≥ 0 and ed ≥ 0, respectively, with d = 2, 3.

3.2 Large targeted prizes

It is reasonable to expect that the size of the targeted prize determines the characteristics

of the equilibrium. On one hand, if the targeted prize is very small, one might expect it

not to affect behaviour much, so that the equilibrium is similar to the standard three agent

all-pay auction. On the other hand, if the targeted prize is very large, the advantaged

contestant is excluded from a large part of the overall prize and one might expect the

equilibrium to be similar to the standard two player all-pay auction among disadvantaged

agents. In the present and the following subsection we show that this intuition is indeed

true. We start with a large targeted prize.

Proposition 1. For any configuration of abilities α1 ≥ αd the following holds:

(i) If and only if β ≥ β̂, there is a mixed-strategy equilibrium in which the advantaged

agent abstains and disadvantaged agents play the same strategy characterized by the

probability distribution function Gd(ed) for efforts ed ≥ 0 with

Gd(ed) =

{
ed
αd

if ed ∈ [0, rd]

1 if ed ≥ rd
. (6)

The equilibrium payoff of all contestants is zero.

(ii) If β > β̂, then the equilibrium described in part (i) is unique.

Notice that the previous proposition covers the case in which β = 1, so that there

is only the targeted prize and no untargeted prize. In this case the contest reduces

to a standard all-pay auction in which only the disadvantaged agents compete, as the

advantaged agent is completely excluded. Theorem 1 in Baye et al. (1996) states that in

this case the unique equilibrium is as described in the statement.18 Proposition 1 shows

that this unique equilibrium remains unchanged, provided the targeted prize is strictly

larger than the relative difference in abilities. This implies that if there is not much

difference in abilities even a small targeted prize can already be sufficient to discourage

18For completeness we mention that in Baye et al. (1996) contestants differ in their valuations for the

prize, while in our model agents differ in ability. Starting with an equilibrium in Baye et al.’s model, it

is, however, straightforward to modify the cdfs and obtain an equilibrium in the standard all-pay auction

with heterogeneity in abilities.
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the advantaged agent from participating. The intuition for this is that, although in such

a case the advantaged contestant is formally only excluded from a small part of the

overall prize, this weakens him enough to convert the disadvantaged agents in the strong

contestants (as measured by the reach of agents). As in Theorem 1 of Baye et al. (1996)

a contestant exerts zero effort with probability one, if he competes against two strictly

stronger players.

3.3 Small targeted prizes

We turn now to small targeted prizes. Since Lemma 2 implies that disadvantaged agents

employ the same strategy, one might expect the equilibrium to be related to the symmetric

equilibrium in the standard three agent all-pay auction. This intuition turns out to be

correct. For convenience of the exposition we define the real number rl as the unique

positive solution of19

rl
αd

√
α1

(1− β)(α1(1− β)− αd + rl)
− β

1− β
= 0. (7)

We are now in a position to state the following result.

Proposition 2. For any configuration of abilities α1 ≥ αd the following holds:

(i) If and only if β ≤ β̂, there is a mixed-strategy equilibrium which is characterized by

probability distribution functions G1(e1) and Gd(ed) for the advantaged and disad-

vantaged agents’ efforts e1 ≥ 0 and ed ≥ 0, respectively, with

G1(e1) =


0 if e1 ∈ [0, rl]
e1
αd

√
α1

(1−β)(α1(1−β)−αd+e1)
− β

1−β if e1 ∈ [rl, rd]

1 if e1 ≥ rd

(8)

and

Gd(ed) =


ed
αdβ

if ed ∈ [0, rl]√
α1−αd

α1(1−β) + ed
α1(1−β) −

β
1−β if ed ∈ [rl, rd]

1 if ed ≥ rd

. (9)

The equilibrium payoff of the advantaged agent is β̂ − β, while the disadvantaged

agents earn zero.

(ii) If 0 < β < β̂, then the equilibrium described in part (i) is unique.

19In Appendix A.4 we show that for any α1, αd and β > 0, (7) has a unique solution rl > 0.
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In the equilibrium described in the previous proposition, the advantaged contestant

is aggressive, in the sense that he exerts a minimum effort of rl.
20 This allows him to

obtain a positive equilibrium payoff. Disadvantaged agents compete with the advantaged

contestant for high effort levels and compete with each other for the targeted prize for

low effort levels (lower than rl). In fact, for low effort levels the disadvantaged agents

compete as in (6) with the distributions rescaled by 1/β, the size of the targeted prize.

As a result, the rent of disadvantaged agents is completely dissipated.

Notice that Proposition 2 covers the case in which β = 0. In this case the contest

reduces to a standard all-pay auction for the untargeted prize and there is no targeted

prize. Baye et al. (1996) have shown that there is a continuum of equilibria, including

one in which the two disadvantaged agents play the same strategy. Indeed, for β = 0

we have that rl = 0 and (8) and (9) coincide with cdfs described in Theorem 2 in Baye

et al. (1996) when the two disadvantaged agents play the same strategy. Proposition 2

indicates how this equilibrium changes as the targeted prize is introduced. In particular,

it is straightforward to show that as β increases, the disadvantaged contestants become

more aggressive (in the sense of first-order stochastic dominance). In addition, when β

is small enough compared to β̂, the advantaged contestant also seems to become more

aggressive.21 We will discuss these issues further in Section 4.

3.4 Intermediate targeted prizes

We consider now the special case of an intermediate targeted prize, which is equal to the

relative difference in abilities. The analysis so far has already established that there exist

at least two equilibria – one in which the advantaged contestant abstains (γ1(0) = 1)

and one in which he never abstains (γ1(0) = 0). The next result shows that there is a

continuum of equilibria and that the two aforementioned equilibria are extreme cases of

this continuum. To state this result formally, it is convenient to introduce the following

notation. Given a parameter γ1(0) ∈ [0, 1], we define the real number

λ ≡ ((1− β)γ1(0) + β)2 αd. (10)

Notice that, since λ is strictly increasing in γ1(0), we have that λ ∈ [β2αd, αd].
22

Proposition 3. Let β = β̂. For any configuration of abilities α1 > αd there is a con-

tinuum of mixed-strategy equilibria in which disadvantaged agents play the same strategy

20A similar feature appears in a standard all-pay auction with additive bias in the function assigning

the win probabilities, see Li and Yu (2012).
21When β is close to β̂, one can find configurations of abilities for which an increase in β makes the

advantaged contestant less aggressive.
22For simplicity we write λ instead of λ(γ1(0)).
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and the advantaged contestant abstains with probability γ1(0) ∈ [0, 1], where γ1(0) is a free

parameter, and randomises continuously over the interval [λ, rd], where G1(λ) = γ1(0).

More precisely, the equilibrium is characterized by probability distribution functions G1(e1)

and Gd(ed) for the advantaged and disadvantaged agents’ efforts e1 ≥ 0 and ed ≥ 0, re-

spectively, with

G1(e1) =


γ1(0) if e1 ∈ [0, λ]
α1

αd

√
e1
αd
− α1−αd

αd
if e1 ∈ [λ, rd]

1 if e1 ≥ rd

(11)

and

Gd(ed) =


ed

((1−β)γ1(0)+β)αd
if ed ∈ [0, λ]√

ed
αd

if ed ∈ [λ, rd]

1 if ed ≥ rd

. (12)

In any equilibrium the equilibrium payoffs of all contestants are zero.

The previous proposition bridges the equilibria in Propositions 1 and 2. When γ1(0) =

1, then λ equals rd and (11) prescribes that the advantaged contestant abstains, while (12)

becomes (6). As γ1(0) decreases, λ decreases and the equilibrium has a similar structure to

the one in Proposition 2: there is an interval of high effort levels on which all contestants

are active and an interval of low effort levels on which only the disadvantaged agents are

active contesting only the targeted prize. Again, for low effort levels the disadvantaged

agents compete as in (6) with the distributions rescaled by 1/ ((1− β)γ1(0) + β), which

represents the part of the overall prize that is uncontested by the advantaged agent. In

the extreme, when γ1(0) = 0, then λ is largest and Proposition 3 becomes the special case

of Proposition 2 in which β = β̂.

Moreover, since in Proposition 3 the size of the targeted prize β̂ is equal to the relative

difference in abilities, all contestants have the same reach. This has two implications that

parallel the standard all-pay auction. First, all rents are completely dissipated and all

equilibrium payoffs are zero. Second, the possibility that one contestant places mass at

zero creates the possibility of equilibrium multiplicity. But while in Baye et al. (1996) the

identity of the agent placing mass at zero is arbitrary, in our model the existence of the

targeted prize implies that disadvantaged contestants never abstain from the contest.23

23The case of three contestants with equal valuations (and therefore the same reach) is a special case

of Theorem 1 in Baye et al. (1996). Proposition 3 covers this case by setting α1 = αd, implying that the

size of the targeted prize β̂ is equal to zero. In this case (11) and (12) coincide with the mixed-strategies

in Baye et al.’s symmetric three player example. Baye et al. have shown that there is a unique symmetric

equilibrium and that there is a continuum of asymmetric equilibria in which one contestant places mass

at 0. The only difference between (11) and (12) for α1 = αd and Baye et al. is that in our setting the

identity of the contestant placing mass at 0 is not arbitrary.
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4 A partial exclusion principle

In this section we use the equilibrium characterizations of the previous section to compare

partial exclusion of the advantaged agent by means of a targeted prize to two benchmarks.

These benchmarks are, on one hand, a standard all-pay auction without targeted prize

and, on the other hand, complete exclusion of the advantaged agent. As mentioned before,

our model reduces to these benchmarks by setting β = 0 and β = 1, respectively. Since

complete exclusion is only an interesting option for a contest organiser when abilities

differ, we assume in this section that α1 > αd.

Consider first the benchmark of β = 0, which has been analysed in Baye et al. (1996).

There is a continuum of equilibria that are not revenue equivalent. Revenue is maximized

in the equilibria in which one disadvantaged agent abstains. For later reference we call this

“best case” equilibrium the “asymmetric standard all-pay auction” equilibrium and state

that it generates an expected sum of effort of αd (αd + α1) / (2α1). Revenue is minimized

in the equilibrium in which the disadvantaged contestants use the same strategy. As we

have seen the symmetric equilibrium is closely related to the equilibrium in Proposition

2.

Consider now the case β = 1, which also has been analysed in Baye et al. (1996).

Complete exclusion of the advantaged contestant from the competition is a special case of

our Proposition 1 and yields an expected sum of effort equal to αd. Our setting is a special

case of Baye et al.’s (1993) exclusion principle. Consequently, our assumption α1 > αd
implies that the organiser of the competition benefits from complete exclusion, as total

expected effort in the “asymmetric standard all-pay auction” equilibrium is lower than αd.

Since we know from Proposition 1 that the unique equilibrium under complete exclusion

does not change for smaller but sufficiently large targeted prizes, we immediately have

the following variation of the exclusion principle.

Proposition 4. Compared to a standard all-pay auction, the contest organiser benefits

strictly from any targeted prize of size β > β̂, because it implements the exclusion princi-

ple.

This result is interesting, because it implies that complete exclusion of the advantaged

contestant is straightforward to implement. It is not necessary to formally exclude the

advantaged agent from the competition, which might not be feasible for legal or ethical

reasons. Such an explicit entry barrier can be avoided, because it suffices to establish

a targeted prize that is larger than the relative difference in abilities. Interestingly, if

this relative difference is small, say 1/6, then the targeted prize can be quite small, for

example 1/5.
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Given Proposition 4, an important question is whether the contest organiser can do

better than implementing the exclusion principle. Our main result reveals that this is the

case.

Proposition 5. Compared to complete exclusion of the advantaged agent, the contest

organiser benefits strictly from partial exclusion by means of a sufficiently large targeted

prize of size β < β̂.

The intuition for this result is simple. When the size of targeted prize is equal to the

relative difference in abilities, there is a continuum of equilibria (Proposition 3). Broadly

speaking these equilibria differ in the size of the atom that the advantaged contestant

places at the origin. The smaller the size of the atom, the more aggressive the advantaged

contestant becomes (in the sense of first-order stochastic dominance) and even though the

disadvantaged agents become less aggressive, the first effect is stronger than the second.

This implies that a targeted prize equal to the relative difference in abilities improves

almost always strictly over complete exclusion. The only exception is the equilibrium in

which the advantaged contestant plays a pure strategy and abstains from the contest, in

which case the same result as under complete exclusion is obtained.24 Consider now a

targeted prize of a size a little smaller than the relative difference in abilities. Because of

the continuity of the cdfs and because for smaller targeted prizes the equilibrium is unique

(Proposition 2), it follows that the contest organiser can be certain that partial exclu-

sion by means of an appropriately chosen targeted prize improves strictly upon complete

exclusion.

We summarise the discussion of this section with the help of Figure 1. The figure

displays five examples. In each example we fix α1 = 1, while αd takes values 1/10, 1/4,

1/2, 3/4 and 9/10. To distinguish these cases we denote the threshold β̂ by β̂αd . Given

the values for αd, the thresholds β̂αd are equal to 9/10, 3/4, 1/2, 1/4 and 1/10. The

horizontal axis indicates the size of the targeted prize β, while the vertical axis measures

the expected sum of effort. Each curve represents a different value for αd and includes for

β = 0 the equilibrium in which the disadvantaged contestants employ the same strategy.

The isolated point higher but very close to each curve at β = 0 indicates for each example

total expected effort in the asymmetric standard all-pay auction equilibrium. In line with

the exclusion principle, we see that β = 1 generates strictly higher total expected effort

than β = 0. We also see that complete exclusion can be implemented by a wide range

of sufficiently large targeted prizes. The vertical parts of the curves correspond to the

continuum of equilibria when β = β̂αd . Choosing a targeted prize equal to the relative

difference in abilities, the contest organiser cannot be worse-off than under complete

24In the proof of Proposition 5 in Appendix A.7 we provide expressions for individual and total expected

effort as a function of the atom that the advantaged contestant places at the origin.
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Figure 1: The size of the targeted prize and the sum of expected effort

exclusion. Total expected effort is maximized when the targeted prize is approximately

equal to the relative difference in abilities.25 Notice also that a wide range of sizes for the

targeted prize allow the contest organiser to strictly improve over complete exclusion and

that almost any targeted prize improves over a standard all-pay auction.

5 More than three agents

In this section we discuss the robustness of our results when relaxing the assumption that

there are only three agents. We start with the findings in Section 3 and show that in many

instances the equilibria remain an equilibrium when there are more than three agents. In

particular, this is true for the equilibrium in Proposition 3 that yields the highest sum of

expected effort when the advantaged agent never abstains. We turn then to a discussion

of the results of Section 4 and highlight a novel finding. It might be beneficial for the

contest organiser to choose a targeted prize that ‘implements’ a set of finalists in which

an agent with intermediate ability is excluded but agents with high and low ability are

25If the contest organiser is certain that the equilibrium is played in which the advantaged agent does

not place mass at zero, then it is optimal to set the targeted prize equal to β̂. If this is not the case, then

he can avoid coordination on an unfavourable equilibrium by reducing the targeted prize a little bit. A

technical issue concerns the existence of the optimal targeted prize. That may be solved by making the

realistic assumption that a smallest monetary unit exists.
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included.26

We first investigate the robustness of the equilibria described in Propositions 1–3 when

there are more than three agents. In order to do so we consider the original three-agent

game and a modified game that arises by adding further agents to the original game. The

next lemma relates the equilibrium of the original three-agent game to an equilibrium of

the modified game. More precisely, it provides a condition under which the additional

agents abstain from the contest and the original agents play the original equilibrium.

Lemma 3. Consider any β > 0 and any equilibrium described in Propositions 1–3. Sup-

pose the original game is modified by adding further agents. If

• for each additional disadvantaged agent, there exists a disadvantaged agent with

higher ability in the original game and

• for each additional advantaged agent, there exists either a disadvantaged agent with

higher ability in the original game or there exists an advantaged agent with higher

ability receiving an equilibrium payoff of zero in the original equilibrium,

then it is an equilibrium in the modified game that the additional agents bid zero with

probability one and the original agents bid as described in Propositions 1–3.

The intuition for this result is that the conditions in Lemma 3 identify for each ad-

ditional agent an original agent receiving an equilibrium payoff of zero. The additional

agent has, on one hand, higher effort cost than the original agent, as his ability is lower.

On the other hand, for a given effort level, he also has a lower win probability in the

modified game than the original agent in the original game, because the original agent

has some chance of winning the modified game. Hence, it must be less profitable to exert

this effort level than for the original agent and abstention is optimal.

Lemma 3 shows robustness of all the equilibria derived in Section 3 to the introduction

of additional disadvantaged agents and for most of these equilibria to the introduction of

additional advantaged agents. The only exception is the addition of advantaged agents

with high ability in the context of a small targeted prize, when the original advantaged

agent obtains positive equilibrium payoffs (Proposition 2). But it is clear that in such

a situation the creation of a targeted prize is less interesting. To see this, consider a

competition with two equally able advantaged agents. From Baye et al. (1993 and

1996) we know that (when α1 > αd) in the unique equilibrium the expected sum of

effort is α1, implying that this situation is already as competitive as possible and the

exclusion principle does not hold. For other situations in which there is room to increase

26This differs from the original exclusion principle in Baye et al. (1993) where the optimal set of

finalists always includes pairs of adjacent contestants (in terms of ability).
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the intensity of competition, however, Lemma 3 provides robustness. This includes the

equilibrium in Proposition 3 that yields the highest sum of expected effort when the

advantaged agent never abstains.

We turn now to the robustness of the results in Section 4. To fix ideas, suppose that

there is a second advantaged agent with ability α4 such that α1 > α4 > αd. Notice first

that Lemma 3 implies the robustness of Proposition 4. A sufficiently large targeted prize

implements the exclusion principle.27 Our main result in Proposition 5 is also robust in

the sense that the equilibrium strategies in Proposition 3 remain part of an equilibrium

in which the additional agents abstain. Introducing a targeted prize that provides partial

exclusion, the contest organiser can never do worse than excluding the advantaged agents

completely. But when in the competition with targeted prize the most advantaged agent

is active, the organiser is strictly better off.

We conclude this section highlighting a novel result. In Baye et al. (1993) it is never

beneficial for the contest organiser to choose a set of finalists that excludes an agent with

an ability (that is, valuation in their model) between the abilities of the agents in the set of

finalists. The reason is that the expected sum of effort is increasing in the second-highest

ability. This is no longer true in the all-pay auction with targeted prize. Suppose again

that there is a second advantaged agent with ability α4 such that α1 > α4 > αd but let

α4 be close to αd. When there is no targeted prize, we know from Baye et al. (1996) that

there is a unique equilibrium in which the two disadvantaged agents abstain. Since α4 is

close to αd, we know from Baye et al. (1993, p. 293) that the contest organiser benefits

from complete exclusion of both advantaged agents. Setting a targeted prize equal to the

relative difference in abilities β = β̂, however, weakens the advantaged agent with lower

ability sufficiently to induce him to abstain. As discussed before, with the exception of

the equilibrium in which the most advantaged agent bids zero with probability one, the

organiser is strictly better-off than with complete exclusion of both advantaged agents.

Thus, it is beneficial for the contest organiser to use the targeted prize to exclude only

the agent with the second-highest ability.

6 Concluding remarks

This paper analyses the effects of establishing a targeted prize for disadvantaged agents in

an all-pay auction under complete information. The overall prize value is split in a targeted

27The contest organiser benefits from complete exclusion, provided α4 is low enough. The precise

condition α4 (α4 + α1) / (2α1) < αd is the same as in Baye et al. (1993, p. 293). While a rigorous proof

of uniqueness of equilibrium is beyond the scope of this section, it should be noted that here and in the

following discussion there are at least two agents with strictly higher reach than agent 4 and that agent

4 competes only for the untargeted prize. In any equilibrium of the standard single-prize all-pay auction

such an agent bids zero with probability one, see Baye et al. (1996).
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prize and an untargeted prize. All types of contestants compete for the untargeted prize,

but only low-ability agents can win the targeted prize. We fully characterise equilibrium

in a setting with one high-ability and two low-ability contestants. Assuming that the

contest organiser aims to maximize expected total effort, our main result establishes

a partial exclusion principle. Partial exclusion of the advantaged agent from part of

the overall prize value by means of an appropriately chosen targeted prize benefits the

organiser more than complete exclusion.

We also show that almost any targeted prize is preferable to a standard all-pay auction.

This result is robust to a variation of our informational assumptions. Following Menicucci

(2006) and Bertoletti (2008) assume that the organiser knows less about abilities than

the agents. More precisely, suppose that the contest organiser can distinguish between

advantaged and disadvantaged contestants but does not know the exact abilities. In ad-

dition, assume that contestants still know each others’ abilities. In such a situation, given

a size of the targeted prize, the equilibria we have characterised will remain unchanged.

Without further information, however, the organiser will not be able to choose the size of

the targeted prize that maximises total expected effort. But as we have seen he will still

be very likely to be able to improve upon a standard all-pay auction. And if the organiser

has some idea about relative abilities, then he might even do considerably better than

with complete exclusion.

An interesting avenue for future research is to generalise the prize structure of our

model of targeted prizes to a more general model of targeted rewards for sunk investments.

For instance, our model is a special case of a multiple-prize all-pay auction in which the

set of agents competing for each of the prizes is (potentially) different. Such a model

might capture interesting features of real contests and might allow to ask novel questions

regarding contest design. Concerning design, one could ask which agents should compete

for which prizes in order, say, to maximise total effort. Concerning the task to build more

realistic contest models, consider lobbying. Interest groups are usually affected by many

different policies, but not all groups care about all issues. Our analysis of targeted prizes

suggests that interest groups affected by multiple issues compete harder. Lastly, consider

the contests for funding of research projects mentioned in the Introduction.28 Say there

are two regions. Each of the regions offers a funding competition, in addition to the

competition organised by the central Government agency. What is the optimal degree of

decentralization of research funds?

28Beviá and Corchón (2015) compare centralized and decentralized contests for example for research

funds but do not allow that a contestant competes at the same time in both contests.
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A Appendix

In this Appendix we provide a proof for the results stated in the main text. We use the

notation ui(ei, G−i) to indicate contestant i’s payoff from bidding ei when the other two

agents employ strategies G−i. We indicate by si and si the lower and upper bounds of the

supports of player i’s mixed-strategy, respectively. Contestant i’s expected equilibrium

payoff is indicated by u∗i .

A.1 Proof of Lemma 1

Without loss of generality suppose that contestant 2 abstains. In such a case agent 3

receives the targeted prize and competes with contestant 1 in a standard all-pay auction

for the untargeted prize of size (1−β). From Baye et al. (1996) we know that in the unique

equilibrium of this all-pay auction the upper bound of the mixed-strategies of contestants

1 and 3 is (1 − β)α3. Suppose now contestant 2 deviates and bids ê = (1 − β)α3. This

yields a higher expected payoff than abstaining, as u2(ê, G−2) = 1−(1−β)α3/α2 = β > 0,

since the disadvantaged contestants 2 and 3 have the same ability. Q.E.D.

A.2 Proof of Lemma 2

We prove Lemma 2 through a series of claims.

Claim 1. si ≤ rd for all i.

Proof: Notice that there is no contestant i who employs a strategy that places mass on

(ri,∞). The reason is that it implies strictly negative payoffs, while setting ei = 0 avoids

losses. Thus, we have si ≤ ri for all i. Suppose β ≥ β̂. In this case we have that r1 ≤ rd,

implying the statement. Suppose now β < β̂, in which case we have that r1 > rd. But

since disadvantaged agents do not put mass on (rd, r1], contestant 1 has no incentive to

use a strategy with s1 > rd. Q.E.D.

Claim 2. sd = 0, γd(0) = 0 and u∗d = 0, for d = 2, 3.

Proof: Suppose the first statement is not true and without loss of generality let s2 ≥ s3
with s2 > 0. There are three cases to consider.

1. s2 = s3 > 0. On one hand, if there does not exist d with d = 2, 3 such that

γd(sd) > 0, then u2(s2, G−2) = −s2/α2 < 0, as (irrespective of the advantaged

player 1’s effort) contestant 2 cannot win any of the prizes with positive probability

and does not recover his effort. On the other hand, if such a d exists, say d = 2,

then the other disadvantaged contestant 3 could profitably increase s3 slightly, as

this strictly increases at least the probability of winning the targeted prize and the

costs of the additional effort can be made arbitrarily small.
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2. s2 > s3 > 0. Similar to the previous case, we have that u3(s3, G−3) = −s3/α3 < 0

and contestant 3 could profitably reduce s3 to zero.

3. s2 > s3 = 0. There are again three cases.

(a) s2 = s1. On one hand, if γ2(s2) = 0, then u1(s1, G−1) = −s1/α1 < 0, as

contestant 1 cannot win the untargeted prize and expends effort. On the other,

if γ2(s2) > 0, then by analogous reasoning to the first case contestant 1 could

profitably increase s1 slightly.

(b) s2 > s1. It follows that s1 must be equal to zero, because otherwise u1(s1, G−1) =

−s1/α1 < 0. Similarly, for any i = 1, 3 bidding ei such that s2 > ei > 0 is

unprofitable and bidding ei = s2 can only be profitable if γ2(s2) > 0. In the

latter case, however, contestant i could, as in cases 1 and 3(a), profitably in-

crease ei slightly. Thus Gi(s2) = Gi(0) must hold for i = 1, 3. This implies

that contestant 2 could profitably decrease s2.

(c) s2 < s1. Again, any bid e3 with s2 > e3 > 0 is unprofitable and e3 with e3 = s2
can only be profitable if γ2(s2) > 0. In the latter case, however, contestant 3

could (similarly to case 1) profitably increase e3 slightly. Thus G3(s2) = G3(0)

must hold, in which case contestant 2 could profitably decrease s2.

This proves that sd = 0.

Consider now the second statement. Without loss of generality let γ2(0) > 0. Contes-

tant 3 has an incentive to raise s3 by ε > 0 but very small.

Lastly, consider the third statement. Without loss of generality consider contestant 2

and notice that γ3(0) = 0 implies u∗2 = u2(0, G−2) = 0. Q.E.D.

Claim 3. For all i, Gi contains no atoms in the half open interval (0, rd].

Proof: Suppose the cdf of one of the disadvantaged agents, say G2, has an atom at

ẽ2 ∈ (0, αd]. Suppose s1 ≥ ẽ2. In such a case contestant 3’s win probability for the

targeted prize of size β has an upward jump at ẽ2. Suppose s1 < ẽ2. In such a case

contestant 1’s win probability for the untargeted prize and contestant’s 3 win probability

for both prizes have an upward jump at ẽ2. In both cases adapting the argument in

the proof of Lemma 5 in Baye et al. (1996) allows to conclude that there must be an

ε-neighbourhood below ẽ2 in which neither contestant 1 nor 3 put mass, implying that

it is not an equilibrium strategy for agent 2 to put mass at ẽ2. Suppose now G1 has an

atom at ẽ1 ∈ (0, αd]. The fact that the win probability of contestants 2 and 3 for the

untargeted prize has an upward jump at ẽ1 allows to reach a similar contradiction.Q.E.D.

Claim 4. Suppose e ∈ (0, rd] is a point of increase in Gi for i ∈ D. Then e is also a

point of increase in Gj for all j ∈ D.

20



Proof: We start with an observation. Consider the disadvantaged contestants and denote

them i and j. If e ∈ (0, αd] is a point of increase in Gi, then contestant i must receive his

equilibrium payoff at e.29 Using claim 2 we see that

ui(e,G−i) = Gj(e) (G1(e)(1− β) + β)− e

αd
= 0. (13)

Since e might or might not be a point of increase in Gj it follows from claim 2 that

uj(e,G−j) = Gi(e) (G1(e)(1− β) + β)− e

αd
≤ 0. (14)

Expressions (13) and (14) imply that

(Gi(e)−Gj(e)) (G1(e)(1− β) + β) ≤ 0. (15)

Since G1(e)(1− β) + β > 0, we conclude that

Gi(e) ≤ Gj(e). (16)

Without loss of generality suppose that y ∈ (0, αd] is a point of increase in G2 but not

in G3. Since by Claims 2 and 3 there are no mass points in [0, αd] and using the definition

of a cdf, there must exist z 6= y with z ∈ (0, αd] such that G3(z) = G2(y) and z is a point

of increase in G3. There are two cases to consider.

1. z < y. Since z is a point of increase in G3, we can apply (16) and establish that

G3(z) ≤ G2(z). By the properties of a cdf we have that G2(z) ≤ G2(y). Thus we

obtain G3(z) ≤ G2(z) ≤ G2(y). Our initial assumption that G3(z) = G2(y) allows

to establish that

G3(z) = G2(z) = G2(y) (17)

must hold. Therefore each w ∈ (z, y) cannot be a point of increase in G2 and, since

each point must be a point of increase for at least two contestants (Lemma 7 in

Baye et al., 1996, applies), w must be a point of increase in G3. Applying (16)

allows then to establish that G3(w) ≤ G2(w). By the properties of a cdf we obtain

G3(z) ≤ G3(w) ≤ G2(w) ≤ G2(y). But from (17) we see that for each w ∈ (z, y)

these weak inequalities must hold with strict equality, contradicting that z is a point

of increase in G3.

29We use the following definition of a point of increase. Consider a function f : A → R, defined on a

convex set A ⊂ R. The point e0 is a point of increase in f if for all ε > 0, there exists e ∈ (e0, e0 + ε)

such that f(e) > f(e0).

21



2. z > y. Since y is a point of increase in G2, we can apply (16) and establish that

G2(y) ≤ G3(y). By the properties of a cdf we have that G3(y) ≤ G3(z). Thus we

obtain G2(y) ≤ G3(y) ≤ G3(z). Our initial assumption that G3(z) = G2(y) allows

to establish that

G2(y) = G3(y) = G3(z) (18)

must hold. Therefore each w ∈ (y, z) cannot be a point of increase in G3 and w must

be a point of increase in G2. Applying (16) allows then to establish that G2(w) ≤
G3(w). By the properties of a cdf we obtain G2(y) ≤ G2(w) ≤ G3(w) ≤ G3(z). But

from (18) we see that for each w ∈ (y, z) these weak inequalities must hold with

strict equality, contradicting that y is a point of increase in G2.

Q.E.D.

Claim 5. Suppose e ∈ (0, rd] is a point of increase in G2 and G3. Then G2 = G3 at e.

Proof: Claim 2 implies that (13) and (14) must both hold with equality. Thus (16) must

hold with equality too. Q.E.D.

Claim 6. sd = rd, for d = 2, 3.

Proof: Claims 4 and 5 imply s2 = s3. Let s2 = s3 < αd. Since s2 = s3 holds, contestant

1 has no incentive to use a strategy with s1 > s2. Consider the payoff to contestant 2

from bidding s2. This yields u2(s2, G−2) = 1− s2/αd > 0, contradicting Claim 2. Q.E.D.

Claim 7. G2(e) = G3(e), for all e ∈ [0, rd].

Proof: Since each point e ∈ (0, rd] must be a point of increase for at least two contestants

(Lemma 7 in Baye et al., 1996, applies) and using Claim 4, we conclude that each point

e ∈ (0, rd] is a point of increase for contestants 2 and 3. Applying Claim 5 we have that

G2(e) = G3(e), for all e ∈ (0, rd], implying that G2(e) = G3(e) must hold at e = 0.Q.E.D.

Lemma 2 follows directly from Claims 1–7. Q.E.D.

A.3 Proof of Proposition 1

We start with part (i). Under the assumption that disadvantaged agents employ (6), the

expected payoff of the advantaged contestant from any e1 is

u1(e1, G−1) =


(
e1
αd

)2
(1− β)− e1

α1
if e1 ∈ [0, αd]

(1− β)− e1
α1

if e1 ≥ αd
. (19)
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Suppose β ≥ β̂ and that disadvantaged agents employ (6). Since β ≥ β̂ is equivalent

to rd ≥ r1 and since agent 1 only considers deviations to e1 ∈ [0, r1], we have that

αd ≥ (1 − β)α1 ≥ e1 must hold. Hence for each such e1 we have that U1(e1) ≤ 0 if and

only if

e1 ≤
(αd)

2

α1(1− β)
, (20)

which under our assumptions is true. Lastly, observe that when the advantaged agent

exerts zero effort with probability one, the disadvantaged contestants compete as in a

standard two player all-pay auction. From Hillman and Riley (1989) and Baye et al.

(1996), we know that in such a situation the (unique) equilibrium is characterized by (6).

Thus, the strategies in the statement constitute an equilibrium, because for each agent,

given the strategies of the other players, there is no positive effort level that yields a

strictly higher payoff.

Now let β < β̂. Suppose that the advantaged agent 1 abstains and that disadvantaged

agents employ (6). Agent 1 can profitably deviate to e1 = αd, as

u1(e1, G−1) = (1− β)− αd
α1

> 0⇔ αd < (1− β)α1, (21)

which is equivalent to β < β̂.

Consider now part (ii). By Lemma 2 the set of active agents is either D or N . If

it is D, then, as already mentioned, the unique equilibrium is described in part (i). So

suppose the set of active agents is N . In such a case there must exist e ∈ (0, rd] which

is a point of increase for all three contestants. In the proof of Proposition 2 below we

show that the only compatible cdfs are described in (8) and (9) and that this implies

that u1(e,G−1) = β̂ − β < 0. Under the assumption that β > β̂, contestant 1 is strictly

better-off abstaining and thus the equilibrium is unique. Q.E.D.

A.4 Equation (7) has a unique solution

Notice that the left hand side of (7) is continuous. Moreover, since β > 0, (7) is strictly

negative at e1 = 0 and equal to one at e1 = αd. Applying Bolzano’s Theorem we conclude

that there exists rl such that (7) holds. It can be shown that the left hand side of (7) is

strictly increasing in rl. Thus there is a unique rl such that (7) holds. Q.E.D.

A.5 Proof of Proposition 2

Notice first that G1(e1) and Gd(ed) as defined in (8) and (9) are well defined distribution

functions. In particular, since the function in the second branch of (8) is the left hand

side of (7), we have already established that its density function is strictly positive. It

23



can also be shown that the first and the second branch of (9) intersect for the effort level

rl.
30

Consider now part (i). Suppose β ≤ β̂ and that contestant 1 and one disadvantaged

agent, say contestant 2, employ (8) and (9). The expected payoff of contestant 3 for any

e3 is then

u3(e3, G−3) =


e3
αdβ

β − e3
αd

if e3 ∈ [0, rl]√
α1−αd

α1(1−β) + e3
α1(1−β) −

β
1−β

e3
αd

√
α1(1−β)

α1(1−β)−αd+e3
− e3

αd
if e3 ∈ [rl, αd]

1− e3
αd

if e3 ≥ αd

.

(22)

Simplifying allows to conclude that for any e3 ≥ 0 we have u3(e3, G−3) ≤ 0, with strict

equality for e3 ∈ [0, αd].

Suppose now that agents 2 and 3 follow the strategies in the statement. Consider

agent 1. We have that

u1(e1, G−1) =


(

e1
αdβ

)2
(1− β)− e1

α1
if e1 ∈ [0, rl](

α1−αd

α1(1−β) + e1
α1(1−β) −

β
1−β

)
(1− β)− e1

α1
if e1 ∈ [rl, αd]

1− β − e1
α1

if e1 ≥ αd

. (23)

For e1 ∈ [rl, αd] we obtain u1(e1, G−1) = β̂ − β, while u1(e1, G−1) decreases strictly

with e1 for e1 > αd. Consider u1(e1, G−1) for e1 ∈ [0, rl]. It is straightforward to show

that u1(e1, G−1) is a strictly convex function that takes value zero at e1 = 0 and at

e1 = (αd)
2β2/(α1(1 − β)). Moreover, it is strictly decreasing at e1 = 0. Thus the most

profitable deviation is either e1 = 0 or e1 = rl. From the continuity of Gd and the

arguments for e1 ∈ [rl, αd], it follows then that the payoff for e1 ∈ [0, rl] cannot exceed

contestant 1’s equilibrium payoff. Thus, the strategies in the statement constitute an

equilibrium, because for each agent, given the strategies of the other players, there is no

positive effort level that yields a strictly higher payoff.

Suppose now β > β̂. Assume that contestant 1 and the disadvantaged agents employ

(8) and (9), respectively. By the same arguments as before, the expected payoff of con-

testant 1 is u1(e1, G−1) = β̂ − β. Under the assumption that β > β̂, this payoff is strictly

negative and contestant 1 can profitably deviate by reducing his bid to zero.

Consider now part (ii). By Lemma 2 the set of active agents is either D or N . If it

is D, then contestant 1 abstains and the unique equilibrium is described in Proposition

1. Consider contestant 1 and assume he bids e1 = αd. This yields u1(e1, G−1) = 1− β −
αd/α1 = β̂ − β > 0. Now suppose the set of active agents is N . Then by Claim 3 in the

proof of Lemma 2 and the fact that each point must be a point of increase for at least two

contestants (Lemma 7 in Baye et al., 1996, applies), there must exist e ∈ (0, rd] which is

30Details are available upon request.
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a point of increase for all three contestants. For each such e the only compatible cdfs are

described in (8) and (9). Lastly notice that we cannot have that s1 > rl, as this would

require that contestant 1 places an atom at zero and hence implies zero payoffs. Thus,

(8) and (9) describe the unique equilibrium. Q.E.D.

A.6 Proof of Proposition 3

Notice first that G1(e1) and Gd(ed) as defined in (11) and (12) are well defined distribution

functions.

Suppose β = β̂ and that contestant 1 and a disadvantaged agent, say contestant 2,

employ (11) and (12). The expected payoff of contestant 3 for any e3 is

u3(e3, G−3) =


e3

((1−β)γ1(0)+β)αd
((1− β)γ1(0) + β)− e3

αd
if e3 ∈ [0, λ]√

e3
αd

((
α1

αd

√
e3
αd
− α1−αd

αd

)
(1− β) + β

)
− e3

αd
if e3 ∈ [λ, αd]

1− e3
αd

if e3 ≥ αd

. (24)

Using that β = β̂ and simplifying, we obtain that u3(e3, G−3) ≤ 0, as

u3(e3, G−3) =


e3
αd
− e3

αd
if e3 ∈ [0, λ]√

e3
αd

√
e3
αd
− e3

αd
if e3 ∈ [λ, αd]

1− e3
αd

if e3 ≥ αd

. (25)

Suppose now that agents 2 and 3 follow the strategies in the statement. Consider agent

1. We have that

u1(e1, G−1) =


(

e1
((1−β)γ1(0)+β)αd

)2
(1− β)− e1

α1
if e1 ∈ [0, λ]

e1
αd

(1− β)− e1
α1

if e1 ∈ [λ, αd]

1− β − e1
α1

if e1 ≥ αd

. (26)

Again using that β = β̂ and simplifying, we obtain

u1(e1, G−1) =


(

e1
((1−β)γ1(0)+β)αd

)2
αd

α1
− e1

α1
if e1 ∈ [0, λ]

e1
α1
− e1

α1
if e1 ∈ [λ, αd]

αd

α1
− e1

α1
if e1 ≥ αd

. (27)

To conclude that u1(e1, G−1) ≤ 0 it remains to show that for e1 ∈ [0, λ] it holds that(
e1

((1− β)γ1(0) + β)αd

)2
αd
α1

− e1
α1

≤ 0⇔ e1 ≤ ((1− β)γ1(0) + β)2 αd = λ.

This, of course, is true in the first branch of (27).

Thus, the strategies in the statement constitute an equilibrium, because for each agent,

given the strategies of the other players, there is no positive effort level that yields a strictly

higher payoff. Q.E.D.

25



A.7 Proof of Proposition 5

We start with the following claim that characterises the expected sum of effort in the

continuum of equilibria for β = β̂.

Claim 8. The expected sum of effort in the continuum of equilibria for β = β̂ (described

in Proposition 3) is given by

αd +
α1 − αd

3

(
1−

((
1− β̂

)
γ1(0) + β̂

)3)
. (28)

This expression is strictly decreasing in γ1(0) and equals αd for γ1(0) = 1.

Proof: We first derive (28). The expected effort of contestant 1 is

E(e1) =

∫ αd

λ

g1(e1)e1de1 =

∫ αd

λ

α1

αd

√
e1

2
√
αd
de1 =

α1

αd

(e1)
3/2

3
√
αd

∣∣∣∣αd

λ

(29)

=
α1

3

(
1−

((
1− β̂

)
γ1(0) + β̂

)3)
.

The expected effort of a disadvantaged contestant is

E(ed) =

∫ λ

0

gd(ed)edded +

∫ αd

λ

gd(ed)edded (30)

=

∫ λ

0

ed

αd

((
1− β̂

)
γ1(0) + β̂

)ded +

∫ αd

λ

√
ed

2
√
αd
ded

=
(ed)

2

2αd

((
1− β̂

)
γ1(0) + β̂

)
∣∣∣∣∣∣
λ

0

+
(ed)

3/2

3
√
αd

∣∣∣∣αd

λ

=
αd
6

((
1− β̂

)
γ1(0) + β̂

)3
+
αd
3

The expected sum of effort is hence

α1

3

(
1−

((
1− β̂

)
γ1(0) + β̂

)3)
+
αd
3

((
1− β̂

)
γ1(0) + β̂

)3
+

2αd
3
, (31)

which is the same as (28). It is straightforward to verify that (28) equals αd for γ1(0) = 1

and strictly decreases with γ1(0) under our assumption that 0 < αd < α1. Q.E.D.

To conclude the proof notice that for β < β̂ the unique equilibrium is described in

Proposition 2. Moreover, since the associated density functions to the cdfs in (8) and (9)

are continuous in β, it follows that the expected sum of effort is also continuous in β.

In addition, the statement of Proposition 2 includes the case of β = β̂ in which case the

expressions in (8) and (9) reduce to the equilibrium in Proposition 3 described by (11)

and (12) with γ1(0) = 0. This implies that for β < β̂ large enough, the expected sum of

effort in the unique equilibrium is strictly larger than αd, the expected sum of effort when

the advantaged agent is excluded. Q.E.D.
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A.8 Proof of Lemma 3

Consider any β > 0 and any equilibrium described in Propositions 1–3. Notice that if the

additional agents bid zero with probability one, then it is an equilibrium in the modified

game that the original agents bid as in the original equilibrium. Hence, it remains to

show that if the original agents bid as specified in the original equilibrium and all but one

additional agent bid zero with probability one, then there is no positive effort level that

yields the remaining additional agent, say i, a strictly positive payoff.

Suppose first that there exists an agent, say j, of the same type (advantaged or dis-

advantaged) with higher ability αi ≤ αj in the original game. If this agent is advantaged

assume that the equilibrium payoff in the original equilibrium is zero. Notice that if agent

j is disadvantaged, from Propositions 1–3 we can conclude that agent j’s equilibrium pay-

off in the original equilibrium is zero, too. Thus, given the equilibrium strategies Gk and

Gh of the other original agents, with agent k disadvantaged, player j’s expected payoff

from any ê is

uj(ê, G−j) = Gk(ê) (Gh(ê)(1− β) + zjβ)− ê

αj
≤ 0, (32)

where zj ∈ {0, 1} takes value 1 if j ∈ D, and value 0 otherwise. Player i’s expected payoff

from the same effort level ê is then

ui(ê, G−i) = Gj(ê)Gk(ê) (Gh(ej)(1− β) + ziβ)− ê

αi
≤ 0, (33)

as Gj(ê) ≤ 1 and αi ≤ αj.

Suppose lastly that the additional agent i is advantaged and that there exists a dis-

advantaged agent j with higher ability αi ≤ αj in the original game. Agent j’s expected

payoff from any ê is

uj(ê, G−j) = Gk(ê) (Gh(ê)(1− β) + β)− ê

αj
≤ 0, (34)

while player i’s expected payoff from the same effort level ê is then

ui(ê, G−i) = Gj(ê)Gk(ê)Gh(ej)(1− β)− ê

αi
≤ 0, (35)

as zi = 0, Gj(ê) ≤ 1 and αi ≤ αj. Q.E.D.
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