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Abstract

Optical tweezing can be used to isolate single, micrometre sized particles. This is facilitated by
a gradient force from a tightly focussed laser beam. The optical tweezing microscope at the Uni-
versity of Leicester has been integrated with instrumentation for spectroscopic detection. In this
work, both elastic and inelastic light scattering techniques are used to monitor physical changes
in lipid vesicles and liquid aerosol droplets. Alongside this experimental work, numerical meth-
ods and mathematical models have been used to produce images of the coalescence of liquid
droplets. The goal of this project was to refine mathematical models for shape transformations
in microparticles and further develop elastic light scattering techniques.

Individual unilamellar vesicles have been optically trapped and, by measuring the intensity mod-
ulation of elastic back scattered light, changes in the biophysical properties of lipid bilayers
were revealed. Our approach offers unprecedented temporal resolution and, uniquely, physical
transformations of lipid bilayers can be monitored on a length scale of micrometers. As an ex-
ample, the deformation of a membrane bilayer following the gel to fluid phase transition in a
pure phospholipid vesicle was observed to take place across an interval of 54 ± 5 ms.

The binary coalescence of liquid microdroplets is investigated by both experimental and compu-
tational methods in chapter 6. Different theoretical models are explored for simulating the shape
transformations occurring during aerosol droplet coalescence. A finite element model was iden-
tified as most suitable for precisely mapping the morphological changes. This model was then
compared to experimental recordings of elastic light scattering over a coalescence, for droplets
of different viscosity and coalescence trajectory.

The visualization software was explored further in an investigation of shape transformations of
minimal surfaces. By expressing a minimal surface as the real part of a holomorphic function,
the surface may be transformed to create new families of minimal surfaces. In chapter 7 these
transformations are applied to the minimal surface known as the k-noid. The properties of the
resulting surfaces are then investigated.
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1 Overview of project

Initially, the goal of this project was to investigate the coalescence of aqueous microdroplets both

experimentally and theoretically. Two liquid droplets dispersed in air of micrometer size can be

held stably in 3 dimensions using modern optical tweezers. The position of the optical traps

can be adjusted on a micrometer scale. This allows coalescence to be induced by dragging one

optically trapped droplet toward another. This was initially investigated in [1]. The composite

droplet will become fully relaxed after several microseconds, therefore, even with modern high

frame rate cameras imaging the coalescence of aqueous micrometer sized droplets is challenging.

Despite this, elastic back scattered light can be sampled at a much quicker rate. In [1] the

intensity of light scattering is observed to oscillate over the coalescence.

This oscillation can be corresponded with the classical theory of Lord Rayleigh [2]. When the

droplets initially make contact, they pass from a state of low potential energy to high potential

energy. Largely, the energy is dissipated through a viscously damped oscillation. The theory

developed by Rayleigh describes the amplitude and period of this oscillation depending on the

surface tension and viscosity of the fluid, however it does not provide images. One goal of

this project was to correspond the light scattering results with a mathematical simulation of

coalescence, capable of producing images of the relaxing droplet.

Optical tweezers are used to isolated micrometer sized particles, the technique was first devel-

oped by Arthur Ashkin in the 1980’s [3]. They are constructed from a tightly focused Gaussian

laser beam. The intensity gradient of the beam creates a force propelling the particle toward

the center of the beam. The particle eventually becomes stably trapped above the beams focus.

In this thesis holographic optical tweezers are used, here the phase pattern of the beam is con-

trolled using a spatial light modulator. This allows for multiple traps to be constructed and for

18



the position to be adjusted on a micrometer scale. The optical tweezers used at the University

of Leicester have also been integrated with spectroscopic apparatus capable of recording elastic

and inelastically scattered light.

The coalescence phenomena has also received considerable attention as a fluid mechanics prob-

lem. The coalescence is initiated by a handle forming between two touching droplets. This has

been observed to form experimentally [4]. The growth of this handle has been resolved ana-

lytically [5], however to give a complete description of the evolution of the composite droplet

numerical methods are required.

Recently, a finite element based programme has been developed at the University of Warwick

to numerically resolve various different wetting problems [6]. A solution for the coalescence is

produced by numerically solving Navier-Stokes type equations in the bulk of the fluid and at the

boundary. This can produce coordinates for the coalescence over time. In this work, we consider

the effect of the viscosity of the droplet on the dynamics of coalescence.

Alongside our interest in using optical tweezers to analyse coalescence, another goal of the

project was to develop the optical tweezers to observe morphological changes in biological

membranes. Generally, in a cell membrane there are several different components which can

significantly complicate physical interactions in the membrane. The cell membrane is composed

of lipids and proteins. Of particular importance to the composition of the cell membrane are

phospholipids.

To study specific physical interactions in cell membranes liposomes are used as they have the

same structure as a cell membrane, but do not have the complex interior. Liposomes are largely

composed of phospholipids but can be prepared so that they are composed of the lipids and

proteins involved in a certain physical interaction. Because of this, liposomes are often used as
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simplified models for cells.

As well as their role as models for cell membranes, liposomes can be used as carriers for

medicine. There are several ways by which a liposome can release an interior solution to the

body allowing for a highly targeted drug delivery. One example is through a temperature transi-

tion [7]. As a liposome is heated, it is known to pass from a gel like state where the liposome has

low permeability to a liquid crystalline state where the permeability has been increased. This is

due to a decrease in the electrostatic attraction between the lipid tails. Therefore, as the liposome

is heated it will release part of the interior solution. The transition from the gel to liquid phase

decreases the rigidity of the bilayer.

Spectroscopy has been used to analyse the gel-to-liquid crystalline transition for samples of

liposomes [8], however characterizing the properties of individual cells and liposomes remains

a challenging problem. In chapter five we investigate the gel-to-liquid crystalline transition for

a single optically trapped liposome. Previously it has been shown by calorimetry that the gel-

to-liquid crystalline transition occurs over approximately 1 ◦C [9]. We are able to show that

for a single liposome the change in rigidity of the bilayer occurs on a millisecond time-scale

corresponding to a significantly smaller temperature difference.

Raman spectroscopy has been used to observe the gradual decrease in molecular ordering for

optically trapped liposomes. Most scattered light is scattered elastically, whereby the momentum

and wavelength of the light is unchanged. However, it is also possible for a molecule to change

the momentum of an incident photon, the light is said to be scattered inelastically. As momentum

is inversely proportional to wavelength, the wavelength is also changed. The momentum of

scattered photon is dependent on the vibrational modes of the incident molecule. Therefore by

recording the intensity of inelastic scattering at multiple wavelengths the chemical composition
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of a material can be characterized. This technique is known as Raman spectroscopy.

Inelastic scattering techniques are often used to characterize the composition of cells and lipo-

somes. The Raman scattered light corresponding to vibrational modes of the C-H bonds of a

lipid tail are known to provide a way to measure the molecular ordering of a bilayer [10]. In

chapter 5, sets of Raman spectra for optically trapped vesicles of different lipid blends are pre-

sented. This allowed for the change in molecular packing order over temperature transitions to

be characterized.

The visualization software used to produce images of the coalescence was also used to investi-

gate shape transformations of minimal surfaces. Minimal surfaces locally take on the smallest

possible area on a given boundary. Because of this they are of significance in engineering and

physics. Lagrange, who coined the term minimal surface found the plane as an example [11].

Later on, Meusnier discovered that the helicoid and catenoid were also examples. Minimal sur-

faces are now one of the best understood classes of surfaces due to links with complex analysis.

As a conformal minimal immersion f : M → R3, where M is a Riemann surface, is a harmonic

map, a minimal surface may be thought of as the real part of certain holomorphic functions

Φ : M → C3. Further conditions are needed to ensure that the converse holds. A holomorphic

function Φ satisfying these conditions is called a holomorphic null curve. One way to gener-

ate holomorphic null curves is the Weierstrass-Enneper formula. By specifying a meromorphic

function g : M → C and a holomorphic 1-form ω : T M → C an integral formula produces

a holomorphic null curve. The formula was independently discovered by Weierstrass [12] and

Enneper [13].

There are several transformations that may be applied to a holomorphic null curve to create new

examples of minimal surfaces. Multiplication of a holomorphic null curve by a complex constant
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preserves holomorphicity, the conformality condition and the immersion condition. The resulting

family of minimal surfaces is known as the associate family. The special case when the constant

is i gives the imaginary part of Φ as the minimal surface, this surface is called the conjugate

surface. Since multiplication by a real number is only a scaling of the surface one restricts to

unit complex numbers.

As well as the associate family matrix transformations have also been used to give new examples

of minimal surfaces. Any multiplication of the holomorphic null curve by a complex orthogonal

matrix gives a new holomorphic null curve. This is referred to as a Goursat transformation. Of

particular interest is the special case of the Lopez-Ros deformation. It was used to show that

the only complete, embedded, finite total curvature minimal surface with genus zero is either the

catenoid or plane [14].

Minimal surfaces may also be thought of as examples of Willmore surfaces. Willmore surfaces

are critical points of the Willmore energy which physically depicts the bending energy of the

surface. A family of flat connections dµ with µ ∈ C∗ may be associated with a Willmore surface,

and conversely, every family of flat connections of an appropriate form describes a Willmore

surface. A dressing may then be applied to this family of connections to give new Willmore

surfaces. By dressing we denote a gauge of the family dµ by a matrix-valued map depending

smoothly on a point on the surface and meromorphically on the spectral parameter µ. Generally,

finding explicit dressings for a Willmore surface is not possible. However, in the case of a

minimal surface and a dressing matrix with a simple pole, the resulting minimal immersion may

be given explicitly by a quaternionic formulation. This transformation is known as the simple

factor dressing [15]. It turns out that the Lopez-Ros deformation is a special case of the simple

factor dressing.
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In chapter 7 of this thesis we apply the simple factor dressing to a special class of minimal

surface, the k-noids. The simplest case of a k-noid is the catenoid for k = 2, for higher k, the

k-noid has k ends asymptotically approaching the end of a catenoid. We construct k-noids from

their symmetries. The visualization software JReality, which has also been used to create videos

of the coalescence, allowed to implement this to obtain highly detailed images of a k-noid. The

software is also compatible with the transformations of minimal surfaces and hence, the simple

factor dressing can be applied to our implementation of the k-noid. The periodicity and symmetry

of the simple factor dressing of the k-noid is analysed and illustrated.

Our interest in minimal surfaces is linked to the interest in coalescence of liquid microdroplets.

Both phenomena are described by the Young-Laplace equation, it is given by

∆p = 2σH,

where ∆p is pressure difference across the interface, σ is the surface tension at the interface

and H is the mean curvature. Therefore if the minimal surface is considered as a soap film,

there is equal pressure either side of the film. In the case of a liquid sphere, pre-coalescence

there is a constant pressure difference around the sphere. Spheres are part of the related class of

constant mean curvature (CMC) surfaces. Constant mean curvature surfaces minimize surface

area around a given volume. In the case of coalescence, once contact is made between the

droplets, the composite droplet is no longer CMC. The droplet attempts to recover the spherical

shape and minimize the surface area.

Chapter 2 of this thesis provides an introduction to colloidal dispersions and the experimental

techniques which have been used to observe morphological changes in colloidal particles. In

chapter 3, the preliminary theory of minimal surfaces is recapped. Shape deformations that have
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been applied to the k-noid are also discussed. The optical tweezers used at the University of Le-

icester are described in detail in chapter 4. Other experimental and computational techniques are

also described in chapter 4. In chapter 5, temperature transitions and microdomain formation and

dissolution are analysed for a single optically trapped lipid vesicle. To do so, changes in elastic

and inelastic scattered light were observed. Chapter 6 contrasts experimental observations of the

coalescence of optically trapped microdroplets with a finite element based simulation. Modula-

tions in elastic scattering are compared with the simulated aspect ratio over the coalescence. The

k-noid has been implemented so that the transformations discussed in chapter 3 may be applied

to it to create new families of minimal surfaces. The geometric properties of the resultant sur-

faces are investigated in chapter 7. Chapter 7 also describes how the k-noid has been constructed

from its symmetries.
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Part I

Preliminaries
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Chapter Two - Introduction
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2 Introduction

An introduction to the experimental techniques of optical tweezing and microspectroscopy is

given below. In the first section, the initial work on optical trapping by Arthur Ashkin and the

theory of modern optical tweezers is discussed. In the subsequent section, the spectroscopic

techniques that can be used in conjunction with optical trapping are described. Section 2.3

gives a general introduction to the types of colloidal particles that have been studied in this

thesis, and the changes in morphology that have been observed. In the last section classical

and modern mathematical models that can be used to describe the coalescence of two aqueous

aerosol droplets are discussed.

2.1 Optical trapping

Optical trapping is a technique whereby a laser beam can be used to manipulate dielectric objects

of nanometre to micrometer size. The technique was first developed by Arthur Ashkin at Bell

laboratories in the 1970s [16]. He demonstrated that radiation pressure could affect the motion

of micron sized droplets and latex spheres. He developed the technique to create a single-beam

3D gradient force optical trap which is now known as optical tweezers [3]. Optical tweezers are

now commonly used in chemistry, biology and physics to study the physical properties of single

particles, such as emulsion droplets, aerosol droplets, vesicles and biological cells.

2.1.1 First demonstrations of optical trapping

Arthur Ashkin designed several experiments to observe radiation pressure that led him to create

optical tweezers. In his initial experiment he demonstrated that micron sized beads could be
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accelerated by photons from a laser beam. An aqueous suspension of 1 µm diameter latex spheres

was placed in a glass cell into which a continuous wave TEM00 mode of an argon-ion (514.5 nm)

laser was focused to a tight waist [16]. He observed that the spheres would flow along the

propagation of the laser light and deposit at the edge of the glass window from which the laser

exited the chamber. The spheres would also be drawn toward the waist of the laser beam. The

force responsible for drawing particles into the beam waist would later be exploited by Ashkin

to develop gradient force trapping that became known as optical tweezing.

In the same paper, he also demonstrated that the radiation pressure along the axis of the propa-

gation of light could be used to isolate a microsphere in the centre of the sample if an identical

beam from a counter propagating laser entered from the opposite side of the cell. This type of

trap was referred to as an “optical bottle”; the radiation pressure from the counter propagating

lasers is balanced in order for the particle to become trapped in the centre of the cell [16].

In 1971 Ashkin created another form of optical trap capable of levitating water droplets dispersed

in air [17]. In this experiment, a focused TEM00 argon-ion laser with a wavelength of 514.5

nm was directed vertically at a sample of water droplets in a glass cell. The water droplets

were generated using a nebulizer. The radiation pressure is controlled by adjusting the lasers

power. By balancing the radiation pressure from the laser against gravity an equilibrium could

be reached where the droplet would be stably trapped in the centre of the cell.

2.1.2 Single-beam gradient force optical trap

In [3] Ashkin developed the first single-beam gradient force optical trap. Rather than using the

linear radiation pressure from counter-propagating lasers, this trap is created by a gradient force

that draws the particle to the waist of the beam. This type of trap is preferable to the optical bottle
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and levitation trap as it creates a potential energy minimum in all 3 dimensions (i.e perpendicular

and parallel to the direction of propagation of the laser). The experimental setup is also easier to

configure and only uses a single laser beam. The single-beam gradient force trap is now referred

to as optical tweezers.

To create optical tweezers, a high numerical aperture microscope is used to focus the laser beam

tightly. Ashkin used a 1.25 numerical aperture water-immersion objective and an argon-ion laser

with wavelength of 514.5 nm. The high numerical aperture lens focuses the laser beam to a tight

waist, significantly increasing the gradient of the intensity profile of the Gaussian beam at the

focus. He demonstrated that the single-beam gradient force could trap droplets of diameter from

25 nm to 10 µm.

The phenomenon of optical tweezing can be rationalized by considering the change in momen-

tum of the photons interacting with a dielectric particle possessing a high refractive index com-

pared to the surrounding medium. However, to accurately describe the forces involved, a more

detailed approach than given below is needed in order to take account of the size of the droplet

compared with the wavelength of the trapping laser. When the laser interacts with a droplet, a

fraction of the light will either be absorbed or scattered. The latter creates a scattering force fscat,

along the direction of propagation of light. Transmitted light will be refracted by the droplet

from the initial direction of propagation. As the direction of these photons has changed, the mo-

mentum of the photons has also changed. Due to Newtons third law, there will be an equal and

opposite reaction on the droplet. The reaction against the change in the direction of the refracted

photons can account for the force pulling the particle toward the centre of the beam. This force

is called the gradient force fgrad; this is shown in figure 2.1.

The figure shows a dielectric particle with a high refractive index interacting with a tightly
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Figure 2.1: A tightly focused Gaussian laser interacting with a transparent particle (grey circle).
The intensity profile is shown the gradient red line. The laser applies forces onto the particle fscat

and fgrad.

focused Gaussian laser beam. The beam applies two forces to the particle fscat and fgrad. In

Ashkin’s initial experiment, the scattering force fscat pushes the particle along the direction of

propagation of light to the edge of the cell. In the design illustrated in figure 2.1, the gradient

force fgrad is pushing the droplet toward the centre of the beam. The force fscat depends on the

intensity of the beam and fgrad on the intensity gradient (dictated by the numerical aperture of

the objective lens).

The magnitude of the forces involved in an optical trap depend on the size of the particle relative

to the wavelength of the trapping laser. This gives rise to three different trapping regimes, the

Rayleigh regime where the particle size is small compared to the laser wavelength, the Mie

regime where the particle size is similar to the laser wavelength, and the geometric regime where

the particle is significantly larger than the laser wavelength. To quantify the strength of the forces
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involved in an optical trap each regime needs its own consideration.

In the Rayleigh case, the trapped droplet can be seen as an infinitesimal point dipole in an inho-

mogeneous electromagnetic field [3]. By applying Maxwells equations to the Lorentz force, the

following equations for fscat and fgrad can be derived,

fscat =
I0

c
128π5r6

3λ4

(
m2 − 1
m2 + 2

)2

nb, (1)

and

fgrad = −
n3

br3

2

(
m2 − 1
m2 + 2

)
δE2, (2)

where I0 is the initial intensity of the beam, r is the particle radius, m is the refractive index of the

particle, nb is the refractive index of the medium, λ is the wavelength of the light, c is the speed

of light in a vacuum and E is the electric field. Typically the Rayleigh regime is considered an

appropriate description for optical traps with 2r < 1
10λ.

For stable trapping, these forces must be balanced, that is fscat = fgrad. As the force fscat depends

on intensity of the beam and fgrad depends on the gradient of the beam intensity, this can be

accomplished by adjusting the laser power. Ashkin initially postulated that Rayleigh trapping

could be used for optically trapping of atoms. Several groups are now using optical tweezers to

trap and cool atoms [18] [19].

In the geometric regime, the wavelength of the scattered light is significantly larger than the par-

ticle diameter, and the radiation forces can be described using a ray optics model. In figure 2.2,

a dielectric sphere of high refractive index is shown interacting with a tightly focused Gaussian

laser beam. The intensity gradient is illustrated on the figure indicating that the beam intensity

increases towards the centre line. The black lines (1) and (2) show two rays within the aperture
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Figure 2.2: A spherical microparticle entering the optical trap in the ray optics regime. The laser
has been focussed to a narrow waist by the objective lens, the intensity profile of the beam is
shown below the laser. Due to the gradient of the intensity profile, the ray (1) at the centre of the
beam puts a greater force, F1 onto the droplet than ray (2). The total force causes the droplet to
move toward the central axis.

of the lens. Due to the intensity profile of the Gaussian beam ray (1) has a higher intensity than

(2). The sphere refracts both rays of light, and there is a change in the momentum of the refracted

photons in each ray. As a consequence of an equal and opposite reaction forces F1 and F2 there

is an overall force that will act on the droplet, fgrad, which will propel the droplet towards the

centreline of the axis of propagation of the laser. The ray tracing model allows the refractive

force from a single ray on the droplet to be calculated. To calculate the total force on the sphere,

Ashkin numerically integrated across all possible rays in [20].

The high refractive index sphere will become stably trapped at a position above the laser beams

focus. The condition for equilibrium is illustrated in figure 2.3. As the position of the sphere
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Figure 2.3: A stably trapped microparticle in the ray optics regime. The refractive forces due to
rays (1) and (2), F1 and F2 are equal due to the symmetry of the intensity gradient. This causes
the droplet to become stable in the optical trap slightly above the focus of the laser beam.

is also symmetric about the centreline of the beam, the refractive forces labelled F1 and F2 are

equal in magnitude. By considering all rays acting on the particle the refractive forces will

balance in the horizontal plane. The gradient and gravitational forces can counterbalance the

radiation pressure leading to a stable optical tweezing.

In the Mie regime, the diameter of the droplet is similar to the wavelength of light. Neither the

ray optics model or the point dipole model (described later) are suitable to describe the forces of

the optical tweezers. The Mie-Lorenz theory can be applied to give values for the forces, fscat

and fgrad [21], if the incident light is expressed as a series of transverse electric and magnetic

waves. Simulations utilizing the Mie-Lorenz theory have been compared to experimental data

and shown to be in reasonable agreement [22]. The optical trapping based experiments in this
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thesis fall into the Mie trapping regime.

Ashkin later used the optical tweezers to trap yeast cells, red blood cells and spirogyra [23]. He

demonstrated that an infared laser caused significantly less optical damage to a cell than the 514.5

nm laser used in previous studies [24]. This can be attributed to reduced absorption leading to

lower heating or photochemical damage to the cell. Previously, there were few methods to study

single living cells without causing significant damage to them, Ashkin’s work demonstrated that

optical trapping could potentially be used as a new method to isolate single cells.

Optical trapping has previously been used at the University of Leicester to analyse the binary

coalescence process of two micron sized aqueous droplets [1]. In chapter six these results are

compared with both traditional and modern mathematical models. Optical trapping has been

shown to have many applications in physics, chemistry and biology. Once integrated with spec-

troscopic techniques, it can be used to study cells, aerosol and other colloidal particles. Optical

tweezers have also been particularly useful for measuring picoNewton forces on microparticles.

A detailed review of these types of studies can be found at [25]. In chapter 5 of this thesis optical

tweezers are used in a new study of the biophysical properties of lipid vesicles.

2.2 Light scattering

Optical trapping can facilitate a wide range of spectroscopic measurements on single micropar-

ticles. Spectroscopic methods have been shown to be capable of probing many different physical

properties of single particles such as morphology [26] and molecular structure [27]. For exam-

ple, changes in morphology have been observed by monitoring elastic light scattering from the

optically trapped particle. This type of measurement can be made in the direction of the prop-

agation of light (i.e. forward scattered), or in the opposite direction (i.e. back scattered). In
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addition, a photon can be scattered inelastically and the wavelength of the scattered light can be

used to deduce information on the composition and structure [27]. Measurements of both elastic

and inelastic light are discussed in this thesis.

2.2.1 Elastic light scattering

In elastic scattering, the scattered light has the same wavelength as the incident light. Similar

to the theory of optical trapping, elastic light scattering by microspheres needs to be considered

in three different regimes based on the particle size compared to the wavelength of the incident

light. The theory of elastic light scattering is not limited to spheres and is also well understood

for other shapes despite the increased complexity of mathematical modelling.

As described earlier, the Rayleigh scattering regime refers to when the wavelength of the incident

light is significantly larger than the diameter of the scattering particle; the Mie regime, when the

wavelength of the incident light is comparable to the diameter of the particle; and, the geometric

regime, when the particle is much larger than the wavelength of the incident light.

In the Rayleigh regime, the intensity and angular dependency of the elastic light scattering can

be modelled by representing the scattering particle as a point dipole inside an electric field. The

intensity of the scattered light from a spherical particle is given by

I = I0
1 + cos2(θ)

2R2

(
2π
λ

)4 (
m2 − 1
m2 + 2

)2 (
d
2

)6

, (3)

where I is the intensity of the scattered light, I0 is the intensity of the incident light, θ is the

scattering angle, R is the distance from the particle to the detector, λ is the wavelength of light,

m is the refractive index of the particle and d is the diameter of the particle. Typically this model
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Figure 2.4: A polar plot of the Rayleigh scattering angular dependency for a 0.1 µm diameter
water droplet dispersed in air scattering 1070 nm unpolarized light, the plot was created using
the MiePlot software [29].

is considered suitable for a particle with d < 1
10λ.

Equation (3) highlights some significant properties of the angular dependence of the Rayleigh

scattering. As I is inversely proportional to λ4, the intensity of Rayleigh scattering is higher

for shorter wavelengths of light; this was originally derived by Lord Rayleigh in [28]. The

intensity I is also proportional to d6 indicating that larger particles scatter significantly more

than smaller ones. The symmetry of the scattering pattern is also illustrated by equation (3). As

I(θ) = I(θ + π) and I(θ) = I(−θ) there are equal proportions of light scattered in the forward and

backward hemisphere scattered, as shown in figure 2.4. The scattering pattern in figure 2.4 was

generated using the software MiePlot [29].
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Mie scattering requires more sophisticated modelling than the Rayleigh or geometric regimes

as neither the point dipole model of a scattering particle or a ray optics consideration can pro-

vide an accurate description. To model Mie scattering, the Mie-Lorenz theory must be used.

Although the solutions are complex, there are several software packages available in Mathemat-

ica and Matlab to model this scattering regime. The intensity of the Mie scattering in spherical

coordinates is given as the solution to the scalar wave differential equation:

1
r2

δ

δr

(
r2 δψ

δr

)
+

1
r2 sin(θ)

δ

δθ

(
sin(θ)

δψ

δθ

)
+

(
1

r2 sin(θ)
δ2ψ

δφ2

)
+ k2ψ = 0,

where k2 = ω2µε; ω is the frequency of the incident field; µ is the magnetic permeability; and ε

is the electric permittivity.

Though the theory of Mie scattering is complex, the fundamental characteristics for the nature

of the scattering and its angular dependency are known. The intensity and angular dependency

of Mie scattering are not strongly affected by the wavelength of the incident light. It is also well

known that in the limiting case of d ≈ λ, the Mie and Rayleigh regimes converge. A standard

Mie scattering pattern is shown in figure 2.5, which was created using the programme MiePlot

[29]; the same programme has been used to model many different Mie scattering problems [30].

The plot shows a particle scattering more light in the forward hemisphere; this is a characteristic

property of Mie scattering. The programme used to create the plot has a wide range of functions

and is also capable of plotting Rayleigh scattering.

In geometric light scattering, the diameter of the droplet is significantly larger than the wave-

length of the incident light. Geometric scattering can be modelled by consideration of a ray

tracing diagram. To calculate the angular dependence of the geometric scattering is challenging

but there are various models proposed in the literature [31]. In the geometric regime more light
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Figure 2.5: A polar plot on a logarithmic scale of the Mie scattering angular dependency for a
1µm water droplet dispersed in air scattering 1070 nm unpolarized light. The plot was created
using the MiePlot software [29].

is scattered in the forward hemisphere. Although this is similar to the Mie regime, the effect is

stronger in the geometric regime.

2.2.2 Inelastic light scattering

In inelastic scattering, the momentum of the incident photons is not conserved. The molecules

exchange energy with the photon and, therefore, the momentum of the scattered photon is

changed. Both the energy and momentum of a photon is inversely proportional to wavelength,

and, therefore, the wavelength of the photon is also changed. This is given by equation 4, where

λ is the wavelength, p is the momentum of the photon and h is Planck’s constant
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λ =
h
p
. (4)

By measuring the intensity of the inelastically scattered light at different wavelengths information

describing the molecular structure of the scattering material can be obtained. This is because the

change in photon energy can be correlated to the separation of vibrational energy levels. Raman

scattering was first observed by Chandrasekhara Venkata Raman, for which he was awarded the

Nobel prize for physics in 1930 [32].

Raman scattering can occur by two different mechanisms, where the wavelength of the photon

can be increased or decreased. Figure 2.6 is a vibrational energy level diagram illustrating the

transfer of energy by both infra-red absorption of light, and the different Raman scattering mech-

anisms. The elastic Rayleigh scattering process is also illustrated in the diagram. In infra-red

absorption, the frequency of the incident light must be resonant with the energy gap between the

vibrational levels of the molecule. Techniques for measuring the frequencies of absorbed infra-

red light are known as infra-red spectroscopy [33]. In Rayleigh scattering, the vibrational energy

of the molecule is unchanged and the scattered photon has the same wavelength as the incident

light. In Stokes Raman scattering, the molecule is excited into a higher vibrational energy state,

and the scattered photon has lower energy and hence a longer wavelength. In anti-Stokes Raman

scattering, the vibrational energy of the molecule is decreased and the photon energy is increased

and the wavelength shortened.

By measuring the intensity of the inelastically scattered light at different wavelengths, a Raman

spectrum can be produced. As the vibrational frequencies of molecules depend on the connec-

tivity of atoms and their environment, Raman can be used to characterize the molecular structure

of materials. Not all vibrational motion in molecules can be excited to induce Raman scattering.
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Figure 2.6: Energy level diagram for infrared absorption, Rayleigh scattering, Stokes Raman
scattering and Anti-Stokes Raman scattering regimes.

The vibrational modes that can be excited are referred to as Raman active.

Only about 1 in 107 photons are scattered inelastically meaning that the Rayleigh scattering is

much more stronger than Raman. Because of this, high sensitivity detectors are used to measure

Raman scattering, and Rayleigh scattered light must be filtered ahead of the detector.

As well as providing a unique fingerprint, the individual Raman peaks can reveal several impor-

tant details of molecular properties of a material. The relative intensity of a peak is proportional

to the concentration of a component. The width of the peak can often be related to the homo-

geneity of the molecular packing. The polarization of the Raman scattered light is not necessarily

the same as the incident light. The ratio of polarized to unpolarized or perpendicular to parallel
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Raman scattered light is dependent on the incidence angle and the symmetry of the molecular

packing.

The intensity of the Raman scattering I, is inversely related to λ4 where λ is the wavelength of the

incident light. Shorter wavelength excitation lasers produce higher intensity Raman scattering.

However shorter wavelength lasers also can also cause significant optical damage to cells and

induce auto-fluorescence. The choice of wavelength of the laser in a Raman measurement will

depend on the material being analysed.

There are several forms of Raman spectroscopy allowing for a microscopic analysis. Optical

tweezers have previously been used in conjunction with Raman to record spectra for a single

microparticle in an emulsion [34]. This type of Raman configuration is referred to as Raman

tweezers. This has been particularly useful for studying biological cells. Both Raman scattering

and optical trapping can be configured to cause minimal optical damage to the single cell. If a

single trapping and spectroscopic laser are used, selecting an appropriate wavelength laser can be

challenging. In [35], a 785 nm laser is used as a Raman tweezer for red blood cells and yeast. The

laser was shown not to cause significant optical damage allowing Raman spectra of living cells

to be recorded. Raman tweezers can also be configured to allow separate lasers for trapping and

Raman excitation. Higher wavelength lasers are often favoured for optical tweezing experiments

but this results in reduced Raman scattering. By using a shorter wavelength excitation laser at a

low power combined with higher wavelength trapping laser, high resolution Raman spectra can

be recorded without optical damage. This is shown in [36] for yeast cells.

Raman scattering is highly dependant on the polarization of the incident light, typically in Ra-

man spectroscopy unpolarized light is used to excite the vibrational modes of the molecules. If

the light is polarized it will only activate certain active vibrational modes depending on the ori-
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Dispersed phase
Gas Liquid Solid

Continuous phase
Gas None known Liquid aerosol Solid aerosol

Liquid Foam Emulsion Sol
Solid Solid foam Gel Solid sol

Table 2.1: The eight different types of colloidal dispersions.

entation of the molecule. This means that the Raman spectra generated from unpolarized light

will ensure a complete spectrum of all Raman active modes.

2.3 Colloids

A colloidal suspension is a mixture in which microparticles are dispersed in a continuous phase.

Table 2.1 shows the different types of colloidal suspensions. To be classified as a colloid the

microparticles in the dispersed phase must be significantly larger than a molecule in the contin-

uous phase. Colloidal particles can have a diameter of approximately 1 nm-1000 nm. There are

many examples of colloids in everyday life such as milk (an emulsion), smoke (solid aerosol)

and clouds (liquid aerosol).

There are several physical and chemical interactions within a colloidal suspension. Despite the

diversity and importance of colloidal chemistry, the interactions of individual microparticles are

poorly characterized. Optical trapping provides an opportunity to isolate transparent micropar-

ticles in a colloid. In this thesis, optical trapping is used to study liquid aerosol (water droplets

dispersed in air) and lipid vesicles (liposomes) dispersed in an aqueous solution. These two types

of colloids will be described below.
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2.3.1 Liposomes

A liposome consists of a lipid bilayer enclosing an aqueous core. Liposomes were first created in

Cambridge in the 1960s [37]. Liposomes mimic the structure of a cell membrane. Because they

do not have the same complex interior structure as a cell, they can be used as simple models to

explore the physical interactions and processes taking place within a cells membrane. Liposomes

are also of interest for drug delivery, where the therapeutic agent can be packaged in the interior

solution. There are many ways that a liposome can be made to release part of its interior contents

allowing for a targeted drug delivery. Several techniques have been used to isolate single cells and

liposomes including micropipette manipulation [38], microfluidics [39] and magnetic selection

[40]. In chapter five, the techniques described in the previous sections have been used to study

temperature transitions of single optically trapped liposomes.

A cell membrane is composed of a lipid bilayer containing several different lipid molecules.

Lipids comprise a broad group of molecules that are insoluble in water but soluble in organic

solvents. The lipids in a cell membrane can be classified into three major groups: phospholipids,

glycolipids and cholesterol.

The principal component of a cell membrane is the phospholipid group. Phospholipids have a

non-polar hydrophobic tail and a negatively charged hydrophilic head. The head group is ap-

proximately 1 nm in diameter and the tail group is approximately 1.6 nm long. Glycolipids are

similar to phospholipids with the addition of a carbohydrate chain attached to the head group.

Cholesterol is significantly smaller than the other lipids in a cell membrane, it is approximately

1.6 nm long and 0.5 nm wide. Cholesterol is largely hydrophobic, and embeds in the membrane

between lipid tails, increasing the rigidity of the bilayer. Figure 2.8 shows the hydrophilic and

hydrophobic parts of the important membrane lipids. It is also possible to create membrane like
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Figure 2.7: Chemical formulas for POPC top, a cerebroside (middle) and cholesterol (bottom).

structures from just phospholipids. Phospholipids can arrange themselves in various energeti-

cally favourable ways:

(i) As a monolayer consisting of a single layer of lipids. The head groups must be located at

an interface with an aqueous solution and the tails at the interface with the non-aqueous

solution (i.e. oil).

(ii) As a bilayer consisting of two layers of lipids formed by placing the hydrophobic tails

together. The lipid bilayer has a thickness of roughly 5 nm.

(iii) As a micelle consisting of lipids in a spherical structure with the hydrophobic tails directed

to the interior of the sphere and the heads on the exterior surface, interfacing with an
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Figure 2.8: The three main lipid components of a cell membrane, phospholipids, glycolipids and
cholesterol (left to right). The phospholipid has a large hydrophilic head and two fatty acid chains
forming the hydrophobic tail. The glycolipid is similar to a phospholipid, there is a carbohydrate
chain (green circles) attached to the head. The cholesterol head is significantly smaller than the
other lipid heads, making cholesterol largely hydrophilic.

aqueous solution.

(iv) As a liposome/vesicle consisting of a spherical bilayer (as in ii) encapsulating an aqueous

core. Though the bilayer is primarily made of phospholipids it can also be enriched with

other lipids; these structures are still referred to as liposomes. The external surface of the

liposome also interfaces with an aqueous phase.

Liposomes typically have diameter between 20 nm-200 µm. Below 100 nm they are known
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as small vesicles, 100 nm-1 µm as large vesicles, greater than 1 µm as giant vesicles. In the

work presented in this thesis we focus on large unilamellar vesicles (typically with diameter

of 1 µm). This vesicle size is straightforward to optically trap and sensitive to light scattering

measurements.

A liposome can be multilamellar, unilamellar or multivesicular; they are illustrated in figure 2.9.

A unilamellar vesicle has one bilayer encapsulating the interior solution; this type of liposome

can be utilized as a cell membrane model. In a multilamellar or multivesicular liposome, other

bilayers form within the interior. Multilamellar refers to the existence of multiple layers of lipid

molecules and multivesicular to the existence of smaller vesicles encapsulated by an outer lipid

bilayer. Multilamellar and multivesicular liposomes can be used to encapsulate and separate

several solutions within the outer bilayer.

Figure 2.10 shows a phospholipid unilamellar liposome. The individual lipids are tightly packed

together and separating the interior and exterior solutions. The hydrophobic heads are orientated

toward the aqueous exterior and interior solutions and the tails are enclosed within the bilayer.

Liposomes can be used to model cell membrane behaviour and can be used to study specific

membrane components within the cell. For example liposomes have been used to model exo-

cytosis [41], endocytosis [42], and cell adhesion [43]. Typically giant unilamellar vesicles are

most appropriate models because they are similar in size to a mammalian cell. There are large

levels of complexity in cells depending on which organism they are found in. Liposomes offer

an opportunity to study the permeability and physical properties of the cell membrane without

interference from the structures within the cell. To do so, liposomes can be enriched with other

lipids and proteins found in cell membranes.

Liposomes are also of great interest in drug delivery, they can allow for highly targeted drug
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Figure 2.9: A unilamellar, multilamellar and multivesicular liposome (left to right). The unil-
amellar liposome consists of a single bilayer (blue and yellow circle) encapsulating the interior
solution. In the multilamellar case multiple vesicles are encapsulated within each other. In the
multivesicular case the outer bilayer encapsulates multiple vesicles.

delivery. They have been shown to be efficient carriers for anti-cancer drugs [44], antifungal

agents [45] and DNA [46]. Once a solution of liposomes with different exterior and interior

solutions has been prepared there are many ways that the liposomes can release their interior

contents. Liposomes are capable of gradually or rapidly releasing their interior solution. In

[47] release rates are investigated for several lipid blends. Faster release can be achieved with

ultrasound techniques [48], photosensitive release [49], and a pH sensitive release [50]. Another

mode of release is through a temperature-induced phase transition. The review article [51] gives

47



Figure 2.10: A unilamellar liposome, the bilayer is arranged as an energetically favourable
sphere. The hydrophilic heads face toward the aqueous interior and exterior solutions and the
tails are attracted to each other. The bilayer has low permeability and the lipid solution can be
prepared so that there are different interior and exterior solutions.

an overview of temperature based drug release. Chapter 5 of this thesis focuses on analysing

temperature induced phase transitions for a single optically trapped vesicle, a detailed discussion

of phase transitions will be given in the introduction to that chapter. Aside from phase transitions,

there are other methods allowing for highly targeted drug delivery. One such example is by fusion

of a liposome onto a cell membrane, facilitated by the addition of a fusion agent. Under these

conditions, the liposome can merge with another bilayer and transfer part of its interior solution

to the cell [52]. Liposome fusion was investigated as part of this research work for single vesicles

using elastic light scattering and fluorescence techniques, and some details are provided about
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these experiments at the end of chapter 5.

Though the principal component of a cell membrane is the phospholipids, the cell membrane

will typically be enriched with other lipids, cholesterol and proteins. This can create complex

interactions within the bilayer affecting the physical properties of the cell membrane which is an

enriched lipid bilayer. The fluid-mosaic model describes the self-organisation, and lateral and ro-

tational diffusion, of lipids and proteins embedded in the bilayer structure of cellular membranes

[53]. The model explains how the presence of certain proteins or cholesterol limit the ability of

lipid molecules to interchange with each other, thus increasing the rigidity of a lipid bilayer.

Optical trapping has previously been used to study the physical properties of liposomes and cells.

As discussed in section 2.1 Ashkin first demonstrated that long wavelength lasers could be used

to optically trap a cell without significant damage [23]. In [54], it was demonstrated that giant

unilamellar vesicles could be captured using optical trapping; the vesicles had a diameter of 10

µm which is an appropriate model for a mammalian cell. It has also been demonstrated that small

unilamellar vesicles with a diameter of 50 nm vesicles can also be optically trapped [55]; as the

vesicles are below the diffraction limit they are monitored using fluorescence techniques.

Elastic light scattering measurements have also previously been made on optically trapped vesi-

cles and cells. The angular dependence of the scattering of an optically trapped cell was con-

sidered in [56]. The scattering was compared to the Mie-Lorenz theory of scattering for spheres

to study the cells orientational dynamics within the optical trap. In [57] a clearing agent (glyc-

erol/glucose water) was added to red blood cells which reduced the scattering intensity. By

reconciling the angular scattering of an optically trapped red blood cell with Mie theory, the

authors obtained values for the refractive index of a red blood cell.

There is a large amount of literature on the Raman scattering from lipid bilayers of synthetic vesi-
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cles. It has been shown to be a powerful method for characterizing the structure of lipid bilayers

and to identify healthy cells. In [58] and [59], the authors show that there is a significant decrease

in the size of the Raman peaks attributed to DNA and protein for dead cells. A set of spectra

for 35 different lipids is presented in [60]. Raman spectra have previously been recorded for

pure phospholipid liposomes containing hydrocarbon chains with different degrees of saturation

using confocal Raman tweezers [61]. A method is also being developed to use Raman scattering

to identify cancerous cells in skin and breast tissue. Cancerous cells produce visibly different

Raman spectra to healthy cells [62]. This approach has the advantage over current methods in

tissue pathology as Raman measurement and analysis can be carried out significantly quicker.

2.3.2 Liquid aerosol

An aerosol consists of a liquid or solid phase dispersed in a gas phase. Aerosols are of interest in

many areas of science: environmental science (clouds or fog), medicine (inhalers) and industry

(fuel injection systems). The coalescence and agglomeration of liquid aerosol microdroplets is

also an important phenomena in such areas. The interactions between individual droplets can

affect the properties of the entire aerosol. The coalescence of micrometer sized droplets has been

suggested to affect cloud formation [63], ink-jet printing [64] and spray drying [65]. In chapter

6, the binary coalescence is analysed for micrometer sized droplets by making a comparison

between mathematical models and optical tweezers based experiments.

The average size of droplets within an aerosol can vary widely. For example, in clouds or fog,

the average diameter is on a micrometer scale, however, in rain, the droplets are on a millimetre

scale. Different methods are required to study different sized aerosol droplets. The dynamics

of the coalescence process are also strongly dependant on droplet size. Using high speed imag-
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ing, a frame rate of 10 kHz is required to observe droplet coalescence on a millimetre scale.

To accurately characterize the coalescence process for droplets on a micrometer scale, a MHz

frame rate camera would be required. Even at this frame rate, the coalescence process would be

complete after just a few frames of the video recording. Illumination of the coalescence event

to obtain a clear contrast of the droplets in video images also becomes increasingly challenging

at microsecond exposure times. In addition, high-speed cameras capable of recording sequences

of images at MHz frame rates are expensive. Elastic light scattering can be sampled much faster

(GHz rates) so can often be a more suitable way to probe shape deformations occurring during

the coalescence of aerosol droplets.

There are several methods which may be used to isolate pairs of aerosol droplets and then induce

and measure coalescence. A review of techniques for isolating micrometer sized particles can

be found in [66]. Typically these methods are only suitable for droplets of diameter smaller than

100 µm as for droplets larger than this the coalescence cannot be resolved by video imaging

due to the short coalescence time. One such method is through the use of microfluidic devices.

In [67], aqueous droplets with radius greater than 100 µm are dispersed in oil in a microfluidic

device. The flow allows the droplets to be isolated such that they are separated by a small film.

Coalescence is then induced by removing the film.

Electrostatic levitation can be used to isolate charged aerosol particles. In Milikans oil drop

experiment, a negatively charged and a positively charged plate are used to create a DC elec-

tric field in an isolated chamber. The electric field balances the gravitational force on the oil

droplet against gravity leading to stable levitation. To create an electrodynamic balance, another

electrode is added to form an AC electric field, which provides lateral and axial trapping capa-

bility. The electrodynamic balance can be integrated with a spectroscopic apparatus to measure

physical and chemical properties of the isolated aerosol droplets. It has been shown that an
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electrodynamic balance is capable of trapping micro particles of radius 1 µm to 100 µm.

An electrodynamic balance has also been used in conjunction with Raman spectroscopy to char-

acterize the chemical composition of aerosol droplets [68]. In [69], the electro-dynamic balance

was used to analyse collisions of microdroplets, two droplets of different chemicals were collided

and Raman spectra were then taken to observe if any chemical reaction had taken place.

In previous work at the University of Leicester, a pair of liquid aerosol droplets of radii 1 µm -

6 µm have were isolated using optical tweezers [1]. The position of the optical traps was then

adjusted, using a spatial light modulator, to induce coalescence. The time from initial contact of

the two droplets to a fully relaxed spherical droplet was recorded by measuring changes in elastic

back scattered light. Light scattered as a result of photons from the trapping laser was recorded

on a photodiode connected to an oscilloscope capable of recording data points every 100 ns. The

modulation of the intensity of light scattering during the coalescence event is shown in figure

2.11 (the data was taken from [1]). The experiment shows an overall decline in the intensity

of light scattering over the course of the coalescence. This can be explained by Mie theory

due to an increase in droplet size. The initial point of contact is marked by a large increase in

scattering between t=0 µs and t=1 µs. Between t=1 µs and t=17 µs six periods of an oscillation

were observed. This experimental result is analysed using mathematical modelling techniques in

chapter 6.

The periodicity and damping of the oscillation can be quite accurately described by the theory

of Lord Rayleigh. When two liquid droplets first coalesce they pass from a low potential energy

state to a high potential energy state, this energy is lost through a viscously damped oscillation.

Rayleigh showed that the period of oscillation caused by surfaces forces alone was given by,
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Figure 2.11: The 532 nm elastic back scattered light over the coalescence of two aqueous
aerosols, taken from [1].

ωl =
l(l − 1)(l + 2)σ

r3ρ

whereωl is the period of the oscillation, l is the mode of the oscillation, σ is the surface tension of

the droplet, ρ is the droplets density and r is the droplet radius [2]. The mode of the oscillation l,

describes the shape of the oscillating droplet. Each mode produces a distinct shape deformation

described by the Legendre polynomial. The l = 2, 3, 4, 5 modes of an oscillation of a circular

shape are shown in figure 2.12, the image was taken from [70]. The shape oscillates between the

blue and red curves before eventually becoming a stable circle.

The effect of viscosity on the rate of damping was later considered by Lamb [71], the damping

constant τ1 is given by

τl =
r2ρ

(l − 1)(2l + 1)η
,
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Figure 2.12: The l = 2, 3, 4, 5 modes of an oscillation of a sphere, the figure was taken from [70].

where η is the dynamic viscosity. The amplitude of the oscillation is given by

A(t) =
∑

l

exp(
t
τ1

)A0,l cos(ωlt),

where A0,l is the initial amplitude of the lth oscillation.

The theory of Rayleigh and Lamb provides a description of the period and damping rate of the

oscillation undergone by the composite droplet, however it does not describe the magnitude of

the deformations of the oscillating droplet. To give a complete image of the coalescence, a

complete consideration of the Navier-Stokes type equations is required. Analytic methods can

resolve parts of the coalescence, however in order to provide a complete description, numerical

methods are needed.

Raman tweezers have previously been used to compare the initial and final states in the binary

coalescence of aqueous microparticles [72]. The volume of two optically trapped droplets was

measured using cavity enhanced Raman spectroscopy (the droplets had radii 3.014 µm and 4.083

µm). After coalescence was induced, the volume of the composite droplet was measured in the
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same way showing that volume is conserved. In [73], Raman spectra taken from optically trapped

aerosol were used to characterize the size and composition of micrometer sized droplets.

2.4 Mathematical modelling of the coalescence of aqueous droplets

As discussed above, characterizing the dynamics of the coalescence of aqueous aerosols with

diameters of less than 100 µm remains a challenging problem due to the speed of the process.

The elastic light scattering data shows that the oscillation predicted by Rayleigh can be observed

experimentally. However neither the theory of Rayleigh or the elastic light scattering results can

be used to produce a visual representation of the process.

Alongside the attention the problem has received experimentally, it has also been of significant

interest in computational fluid mechanics. Under certain assumptions, the early stages of coa-

lescence can be described reasonably well without the use of numerical simulations. Recently

a purpose built finite element based simulation has been developed at the University of War-

wick describing both the early stages of coalescence and the subsequent shape transformations

that take place prior to equilibration [74]. Chapter 6 presents a comparison of the elastic light

scattering data recorded from an optical tweezers experiment and the finite element simulation.

2.4.1 The initial point of contact

In this work we are primarily interested in the internal capillary forces acting during the coa-

lescence event, however we will also note the conditions for coalescence. The conditions for

coalescence after a collision is also a significant area of study [75]. After a collision of unequal

sized droplets, there are 4 possible types of events.
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(i) Coalescence, where the droplets merge into a single larger droplet.

(ii) Bouncing, where the droplets do not make full contact and instead, the impact causes the

droplets to repel each other.

(iii) Head on separation, where the kinetic energy of the collision is too high to be dissipated

through oscillations in surface deformation and the composite droplet subsequently breaks

apart.

(iv) Off centre separation, where rather than a head on collision, one droplet grazes the other,

and the grazing causes a rotation, increasing centrifugal forces on the composite droplet

which causes it to break apart.

The outcome is dependant on the ratio of the Weber number to the impact factor. The Weber

number We and impact factor B are defined as follows,

We =
2rρu2

σ
, B =

χ

2r
,

where u is the relative velocity and χ is the distance from the centres of droplet projected in the

direction normal to the relative velocity vector. For a figure showing the boundaries of these

domains, and more detailed discussion of the theory of droplet collision, the reader is referred to

[75].

In this section, the effect of initial velocity will not be considered. This is because the approach

of a pair of droplets takes place with a low speed in the optical tweezing experiment. After the

initial contact it is a standard assumption that a meniscus forms connecting the two droplets.

The mechanism for the formation of the meniscus is unknown, however it has been observed

experimentally [76] and is widely considered to be a reasonable assumption, though an interface
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Figure 2.13: The meniscus between two merging droplets, adapted from [5].

formation model has also recently been considered [77]. The meniscus is shown in figure 2.13,

two droplets of radius r have made contact, a meniscus of height rm and width ∆ has formed

between them.

Once a meniscus is formed the dynamics of the coalescence event are determined by the Reynolds

number, the Reynolds number describes the ratio of inertial to viscous forces. It is given by

Re =
σrm

ρν2 ,

where σ is the surface tension of the fluid, ρ is the density, ν is the kinematic viscosity and rm is

the height of the meniscus. Therefore in the initial stages of coalescence, where rm is small, the

flow is driven by the viscous forces and the inertial forces may be neglected. Once rm has grown

sufficiently, so that inertial forces may no longer be neglected, the flow is said to be in the inertial

driven stage. The stage occurs when the Reynolds number Re � 1, or once rm is greater than the

viscous length scale,

lv =
ρν2

σ
.

Typically the value of lv is very low, in [78] the author calculates that, for water, lv = 13.8 nm

and, for mercury lv = 0.42 nm.
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In the viscously driven domain, the evolution of the shape of the meniscus over time depends

on whether the exterior fluid may be modelled as inviscid. Hopper found that in the case of an

inviscid exterior fluid, the height of the meniscus, rm, evolves according to:

rm(t) = −
1
π

t ln(t), (5)

for t → 0 [79]. The flow is initially driven by the region of high curvature at the meniscus. To

find a value for rm(t) an expression for the force distribution around the meniscus (over length

∆) is integrated in [5]. The following expression is derived by the same method for a viscous

exterior fluid,

rm(t) = −
1

4π
t ln(t), (6)

which is four times slower than Hopper’s solution. In [5], the author also uses the same compu-

tation to derive Hopper’s solution.

After the initial stage of coalescence, the flow may be modelled as being inviscid, hence the

Euler equations may be applied. Egger’s proposed the following proportionality expression for

rm for rm � lv,

rm(t) ∝
(
σr
ρ

) 1
4

t
1
2 , (7)

where the proportionality constant Ci is generally considered to be between 1 and 1.7. A numer-

ical investigation by the same author found that Ci = 1.62 [80] however experimentally it has

been predicted that Ci is significantly lower. For example, an analysis of the coalescence of a

pendant and sessile droplets (millimetre dimension scale) found a prefactor of 1.14 for water. In
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[81], two water droplets of approximately 0.1 cm in diameter are brought into contact by use of

syringes, and a prefactor of Ci = 1.09 ± 0.08 was determined.

2.4.2 A finite element based analysis of coalescence

The descriptions of the early stages of coalescence outlined above, give expressions for the

growth of the meniscus. The initial stages of coalescence are challenging to visualize experi-

mentally for the sub-10 µm sized aerosol droplets we wish to study. Our objective is to reconcile

the oscillations seen in figure 2.11 with a visual representation of the coalescence. To do so, the

experimental data will be compared with results from a finite element based simulation originally

presented in [74]. The bulk flow of the liquid is governed by the incompressible Navier-Stokes

equations with classical boundary conditions applied at the free-surface. The complexity of the

problem is such that numerical methods are required to obtain a solution for the profile of the

droplet surface. Ultimately the code produces sets of coordinates for the boundary of the surface

for each time stamp giving a complete description of the coalescence.

The finite element model used to produce images of the coalescing droplet solves Navier-Stokes

equations at the boundary (free surface) and in the bulk flow. We will recap the main principles

of the procedure, for a complete exposition on the numerical method the reader is referred to

[82] and for details on the initial conditions [74]. The problem is firstly normalized against

the initial radii of the droplets so that the precursor droplets are both of radii 1. It is assumed

that, instantaneously, the two touching spheres transform to two spheres connected by a small

handle of height 10−12. The handle is assumed to be circular. Due to the symmetry of the

problem only one quadrant needs to be considered with symmetry and smoothness conditions at

the boundaries.
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The flow is then discretized into triangular elements with the condition that nodes on the free

surface stay on the free surface and nodes in the bulk flow are free to move around. The mesh

uses bipolar coordinates (ρ, σ) which are related to the Cartesian coordinates (x, y) by the trans-

formation,

x = a
sinh(ρ)

cosh(ρ) − sin(σ)
, y = a

sin(σ)
cosh(ρ) − sin(σ)

.

The transformation creates smaller elements around the meniscus which drives the coalescence.

Initially, the velocity of the flow at t = 0 is assumed to be zero. The flow is driven by the region of

high curvature at the meniscus. The pressure and velocity of all nodes are then transformed into

the weak form, that is, they are approximated by their value at each node and an interpolating

function associated with the node. The interpolating functions are quadratic for velocity and

linear for pressure. The interpolating functions have value one at the node they are associated

with and zero at every other node. A solution is approximated by multiplying the interpolating

function by the value at each node. This solution is then substituted into the Navier-Stokes

equations governing the problem. As the solution is not exact this gives a residual.

The aim of the finite element model is to reduce these residuals to zero. To do so the Galerkin

method is used. The residuals are multiplied by a series of weighting functions, which are the

same form as the interpolating functions. By insisting that the integrals vanish, the coefficients

of the interpolating functions can be found and hence an approximate piecewise solution that is

linear for pressure and quadratic for velocity is found. These equations are then solved using

a Gaussian quadrature method. It is important to ensure that the solution is independent of the

temporal resolution. The chosen time-step is adaptive, the error can be estimated and if it is

greater than a certain threshold, a smaller time-step is chosen.
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The mathematical modelling in [74] has been compared with the scaling law given by equation

7 in [6]. Firstly, the problem is formulated so that it is dimensionless, that is the droplets have

initial radii 1, and the height of the dimensionless meniscus is given by r̄b. The finite element

model is then fitted against equation 7 for different values of Ci. For the early stages (r̄b < 0.15),

a value of Ci = 1.5 gives a reasonable approximation to equation 7, however, the error quickly

becomes significant. For Ci = 1.25, a reasonable fit is made for 0.1 < r̄b < 0.75, however, the

error is significant for r̄b < 0.1. The viscosity driven phase is also examined using the finite

element based solution [83]. By comparing when the finite element simulations coincide with

the equations 5, 6 and 7 boundaries for the viscously driven regime, the inertial regime and the

”transition regime” are established.

Outside of the standard coalescence, where the merging droplets are surrounded by another fluid,

the finite element based simulation has also been used to analyse the jumping phenomena [84].

This is where two spherical droplets coalesce on an ultra hydrophobic surface coalesce and the

resulting droplet is observed to jump from the surface. The process has been called coalescence-

induced jumping. In this example, the excess energy which is normally lost through viscously-

damped oscillations is converted into translational kinetic energy causing the droplet to detach

from the surface.

2.5 Summary

The aim of the research undertaken for this thesis was to compare the elastic light scattering

results for the coalescence of optically trapped aerosol droplets previously reported in [1] with a

mathematical model of the process. The results of a finite element based method were shown to

be in strong agreement with both the classical theory and elastic light scattering results. This was
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then applied to droplets of varying viscosity. During the project the optical tweezing apparatus

was also developed to analyse the shape transformations and phase transitions of unilamellar,

micron-sized lipid vesicles. The experiments showed that the change morphology of a single

vesicle over the phase transition takes place across a very narrow range of temperature, which is

much narrower than the width of the thermotropic transition observed in bulk samples of lipids.

Alongside the computer simulations of coalescence of aerosol droplets, the visualization soft-

ware was used to implement the minimal surface known as the ”k-noid”. New minimal surfaces

can be generated from others if a Weierstrass representation for the surface is known. For the

k-noid, new minimal surfaces were generated using the Lopez-Ros deformation and the simple

factor dressing. The symmetries and periodicity of these surfaces was then considered. The next

chapter will give a short introduction to the theory of minimal surfaces.
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Chapter Three - Minimal surfaces
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3 Minimal surfaces

This chapter provides an introduction to the theory of minimal surfaces. In the first section some

elementary results from manifold theory and differential geometry are recapped. Following this,

links between minimal surface theory and complex analysis are discussed. The final section

explains how new minimal surfaces may be created by applying a simple factor dressing to a

known minimal surface.

3.1 Preliminaries

A minimal surface is given by an immersion of a Riemann surface into R3. The Riemann surface

significantly contributes to the geometry of a minimal surface. We will briefly recap the notion

of smooth manifolds and Riemann surfaces, for a detailed discussion the reader is referred to

[85]. This section also gives a brief introduction to the basics of differential geometry, for a more

detailed discussion the reader is referred to [86].

3.1.1 Manifolds

Surfaces can be thought of as two dimensional manifolds. Therefore before we define a minimal

surface, we shall recap the notion of a manifold.

Definition 3.1.1. A topological space M is called a manifold of dimension n, if every point p ∈ M

has a neighbourhood homeomorphic to Rn. A two dimensional manifold is called a surface.

To define a notion of smoothness we will also need to consider the charts and transition maps of

a manifold.
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Definition 3.1.2. A chart for a manifold M is a pair (U, ϕ), such that U is open in M and ϕ : U →

V is a homeomorphism, where V is an open subset ofRn. An atlas is a collection of charts, (Ui, ϕi)

such that
⋃
i∈I

Ui = M. A parametrization is a homeomorphism φ : V → U.

Definition 3.1.3. A transition map of manifold M is a map,

r = ϕ ◦ ϕ̃−1 = ϕ̃(U ∩ Ũ)→ ϕ(U ∩ Ũ),

where (U, ϕ) and (Ũ, ϕ̃) are charts of M, and U ∩ Ũ , ∅.

U Ũ

V Ṽ

ϕ̃ϕ

M

ϕ ◦ ϕ̃−1

Figure 3.1: Two charts and a transition map for manifold M.

Definition 3.1.4. A smooth manifold is a manifold such that all transition maps are smooth.

The use of transition maps also allows other geometric properties of a manifold to be described.

This notion of smoothness will allow a tangent space to be defined at each point on the manifold.

Definition 3.1.5. Let p be a point on a smooth manifold M, with chart ϕ : U → V, where U

is a neighbourhood of p and V ⊂ R2 is open. If λ1 : (−ε, ε) → M and λ2 : (−ε, ε) → M are
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curves on M with λ1(0) = λ2(0) = p, they are said to be equivalent at p if their derivatives at

t = 0 are equal. The set of equivalence classes of such curves is said to be the tangent space

to M at p, and is denoted by TpM. The differential dpϕ : TpM → Rn of a chart ϕ is defined, as

dpϕ(v) = d
dt (ϕ ◦ λ) |t=0, where λ : (−ε, ε)→ M, λ(0) = p, λ′(0) = v.

The notion of a tangent space allows us to define a differential of smooth maps between smooth

manifolds.

Definition 3.1.6. A map f : M → M̃ is said to be smooth at p if for charts (U, ϕ) and (Ũ, ϕ̃) of

M and M̃ respectively, with p ∈ U and f (p) ∈ Ũ, the map

ϕ̃ ◦ f ◦ ϕ−1 : ϕ(U)→ ϕ̃(Ũ),

is smooth.

Definition 3.1.7. Consider two smooth manifolds M and M̃, and a smooth map f : M → M̃

between them. In this case, the differential of f , at point p ∈ M, d fp : TpM → T f (p)M̃ is given

by:

d fp(v) = ( f ◦ λ)′(0),

where v ∈ TpM, and λ is a curve in M with λ(0) = p, λ′(0) = v.

This allows us to define an immersion from a manifold to R3. We will look at the case of minimal

surfaces immersed in R3, however the definition is given for any differentiable map between two

manifolds.

66



Definition 3.1.8. A map f : M → M̃ is said to be an immersion if its differential is everywhere

injective.

In the study of minimal surfaces, embedded minimal surfaces are also of special interest.

Definition 3.1.9. An immersion f : M → M̃ is said to be an embedding if f is injective.

U

V

φ

M f

f ◦ φ

M̃

Figure 3.2: An immersion from manifold M to manifold M̃, and the composition map, f ◦
φ : Rn → M̃, where φ : V → U is a parametrization for the manifold.

By composing the immersion with a parametrization of M, local coordinates are given on M̃.

By defining the notion of an inner product on the tangent space several geometric properties such

as angles and lengths can be defined on the tangent space of a manifold.

Definition 3.1.10. A Riemannian manifold is a smooth manifold M, with an inner product gp on

TpM, such that for all vector fields X,Y ∈ Γ(T M) the function p→ gp(X(p),Y(p)) is smooth.

Later on we will often need to consider the universal cover of a manifold.
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Definition 3.1.11. The universal cover of a connected topological space M, is the simply con-

nected topological space M̃ together with the mapping π : M̃ → M which is continuous and

surjective, such that every point p ∈ M̃ has a neighbourhood homeomorphic to a disjoint union

of open sets in M.

Note that the universal cover will always exist if M is connected, locally pathwise connected and

semilocally simply connected, see [87] for details.

3.1.2 Surfaces

For surfaces immersed in R3, the notion of curvature comes from looking at how the normal

varies across the surface.

Definition 3.1.12. For an immersion f : M → R3, a Gauss map N : M → S 2 is a smooth map

such that N(p) is perpendicular to dp f (TpM) for every point p ∈ M and ‖N(p)‖ = 1. If f has a

Gauss map the surface is called orientable.

From now on, we assume that the surfaces we consider are orientable. For an immersion f : M →

R3 it is well known that the normal can be expressed in terms of the partial derivatives of f ◦ φ,

where φ is a parametrization of M. From now, in abuse of notation we identify a map F : M → M̃

with the map with coordinates, F ◦ φ : V → M̃, where φ is a parametrization of M. In R3 there

are two choices for the normal. We will assume without loss of generality that the surface is

parametrized so that the Gauss map is given by

N =
fu × fv

|| fu × fv||
.

Definition 3.1.13. The first fundamental form of an immersion f : M → R3 is the induced metric
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on M. That is,

I(X,Y) = 〈d fp(X), d fp(Y)〉,

where X,Y ∈ TpM.

Definition 3.1.14. The second fundamental form of an immersion f : M → R3 is the bilinear

form

II(X,Y) = −〈dNp(X), d fp(Y)〉,

where X,Y ∈ TpM.

Given a parametrization φ of M at p, the coefficients of the first fundamental form are given by

E = 〈 fu, fu〉, F = 〈 fu, fv〉, G = 〈 fv, fv〉,

so that I =

E F

F G

 is a matrix representation of the first fundamental form with respect to the

basis fu, fv.

Similarly, the coefficients of the second fundamental form given by

e = 〈 fuu,N〉, f = 〈 fuv,N〉, g = 〈 fvv,N〉,

give II =

e f

f g

, a matrix representation for the second fundamental form.

To define a notion of curvature the Weingarten map (or shape operator) must be defined.
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Definition 3.1.15. For an immersion f : M → R3 with Gauss map N the Weingarten map at

point p is the map from the tangent space (when identifying TpM and d fp(TpM)) defined by

Wp = −dNp.

This allows us to define the mean and Gaussian curvature:

Definition 3.1.16. For an immersion f : M → R3 the mean curvature H is given by the trace of

the Weingarten map W and the Gaussian curvature K is given by the determinant:

H = tr(W), K = det(W).

By use of the Weingarten equations, the Weingarten map can expressed in terms of the first

and second fundamental forms locally. This can be used to compute the mean and Gaussian

curvature:

H =
eG − 2 f F + gE

2(EG − F2)
, K =

eg − f 2

EG − F2 .

We also have a special interest in the average Gaussian curvature across the surfaces.

Definition 3.1.17. For any immersion f : M → R3 the total curvature KT , is defined as

KT =

∫
M

KdA,

where K is the Gaussian curvature of f . If the total curvature is finite, the surface is said to be

of finite total curvature.

There are several possible definitions of a minimal surface. We use the definition of vanishing
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mean curvature.

Definition 3.1.18. Let f : M → R3 be an immersion from a two dimensional manifold. Then f

is said to be minimal if H = 0.

Geodesics on a surface describe the shortest path between two points on the surface. Later on,

we will use geodesics to extend minimal surfaces by reflection. To do so we extend the well

known Schwarz reflection principle for holomorphic maps to minimal surfaces.

Definition 3.1.19. For a surface S parametrized by immersion f : M → R3 a curve λ : (−ε, ε)→

S is said to be a geodesic if its geodesic curvature given by κg = 〈λ′′,N×λ′〉

〈λ′,λ′〉
3
2

vanishes.

Geodesics also allow us to define complete surfaces.

Definition 3.1.20. A surface S is said to be complete if the induced metric space on S is complete

in the usual sense.

3.1.3 Riemann surfaces

To define a minimal surface using harmonic maps an underlying Riemann surface is used. Rie-

mann surfaces are a case of the larger class of complex manifolds:

Definition 3.1.21. A manifold is said to be complex if the transition maps between charts are

holomorphic. That is, if U, Ũ ∈ M are open sets and ϕ : U → V and ϕ̂ : Ũ → Ṽ are charts of M,

with V, Ṽ ⊂ Cn, then the transition map

ϕ ◦ ϕ̃−1 : ϕ̃(U ∩ Ũ)→ ϕ(U ∩ Ũ),

is holomorphic.
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Restricting to the two dimensional manifold case, the manifold locally resembles C. In this case

the manifold is called a Riemann surface. As the inverse of a transition map is also a transition

map, all transition maps of a complex manifold must be biholomorphic.

Example 3.1.1. As an example consider the 2-sphere S 2, which will become important later on

since the k-noid is an immersion from a punctured S 2 to R3. The 2-sphere S 2 is described by the

two charts (U, ϕ) and (Ũ, ϕ̃) where

U = S 2 \




0

0

1




, Ũ = S 2 \




0

0

−1




.

Writing

S 2 =




x1

x2

x3


∈ R3 : x2

1 + x2
2 + x2

3 = 1


,

the charts ϕ : U → C and ϕ̃ : Ũ → C are given by

ϕ(x1, x2, x3) =
x1 + ix2

1 − x3
, ϕ̃(x1, x2, x3) =

x1 − ix2

1 + x3
,

which are the stereographic projections of the sphere from the north and south pole respectively.

The map r : ϕ(U)→ ϕ̃(Ũ) with r(z) = 1
z is the transition map for these charts as,

r
(

x1 + ix2

1 − x3

)
=

1 − x3

x1 + ix2
=

(1 − x3)(x1 − ix2)
x2

1 + x2
2

=
(1 − x3)(x1 − ix2)

1 − x2
3

=
x1 − ix2

1 + x3
.
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Thus, S 2 is a Riemann surface.

For a complex manifold M it is possible to canonically define an almost complex structure J on

the tangent space TpM, that is a linear operator on the tangent space, with J2 = −1. Manifolds

that admit an almost complex structure J, that is, a smooth section J ∈ Γ(End(T M)) with J2 =

−1, are said to be almost complex. Generally, it is not the case that almost complex manifolds are

complex. If the manifold M is complex and has a chart ϕ : U → V and a vector X in the tangent

space, the complex structure J is given by dpϕ(JX) = idpϕ(X). In this case the almost complex

structure is referred to as the complex structure.

In the case of a two dimensional real manifold, almost complex manifolds are known to be

complex manifolds. To prove this the Newlander-Nirenberg theorem is used [88].

Theorem 3.1.22. An almost complex manifold M is complex if and only if the Nijenhuis tensor,

N(X,Y) = 2([JX, JY] − [X,Y] − J[X, JY] − J[JX,Y])

vanishes, where X,Y ∈ Γ(T M) and [A, B] indicates the Lie bracket on vector fields, where A, B ∈

Γ(T M).

To prove this theorem, a detailed description of manifold theory is required. A proof can be

found in [89].

Theorem 3.1.23. If the real dimension of a manifold M is two, then M is complex if and only if

M is almost complex.

Proof. Assume that M is almost complex and let J be the almost complex structure on M, and

N the Nijenhuis tensor as defined above. In the two dimensional case, X and JX form a basis for
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TpM, and we only need to show that N[X, JX] = 0, to do this we use the property that the Lie

bracket is anticommutative. We have

N[X, JX] = 2([JX,−X] − [X, JX] − J[X,−X] − J[JX, JX])

= 2([X, JX] − [X, JX] + J[X, X] − J[JX, JX])

= 0.

Therefore, if M is an almost complex manifold of dimension two, then M is complex. The

converse is also clear. �

We will often need to consider holomorphic maps from complex manifolds into C.

Definition 3.1.24. A map f : M → C from a complex manifold M to C is holomorphic if d f is

complex linear. That is d f (JX) = id f (X).

Example 3.1.2. For a holomorphic map f : C→ C where f (x, y) = u(x, y) + iv(x, y) the Cauchy-

Riemann equations can be derived from the above definition. Let z = x + iy, then the vectors ∂
∂x

and ∂
∂y form a basis for TC � C with J ∂

∂x = ∂
∂y . Therefore

d f
(
∂

∂y

)
= d f

(
J
∂

∂x

)
= id f

(
∂

∂x

)
,

which implies that ∂ f
∂y = i∂ f

∂x . This can be written in terms of u and v giving that

uy + ivy = iux − vx.
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By comparing real and imaginary parts we recover the Cauchy-Riemann equations.

Holomorphic maps may be extended by reflection, this is known as the Schwarz reflection prin-

ciple. We will later extend this to a reflection principle for minimal surfaces, allowing a k-noid

to be constructed from its symmetries.

Theorem 3.1.25. Let f : G → C be a holomorphic function where G ⊂ C, such that the boundary

of G contains a line segment δ and assume ∆ = f (δ) is also a line segment. Let G∗ be the reflection

of G in the boundary δ and z∗ be the reflection of point z across δ. Consider f ∗ : G∗ → C such

that f ∗(δ) = f (δ) and f ∗(z) is the reflection of f (z) across ∆. Then f ∗ : G∗ → C is holomorphic.

Proof. Without loss of generality we may assume that δ is part of the real line and so for z ∈ G we

have z∗ = z̄. We may also assume that ∆ is part of the real axis as G and G∗ may be transformed by

a Mobius transformation preserving the holomorphicity and continuity of f so that ∆ is mapped

to a straight line on the real axis. We also have that f ∗(z∗) = f (z). Therefore, the analytic

expansion of f ∗(z∗) around z∗0, where z0 ∈ G, is

f ∗(z∗) = f (z) =

∞∑
n=0

an(z − z0)n =

∞∑
n=0

ān(z̄ − z̄0)n =

∞∑
n=0

ān(z∗ − z∗0)n.

Hence, we see that f ∗ : G∗ → C is holomorphic. �

The notions of poles, zeroes and meromorphic functions can be extended to complex manifolds

by considering the parametrization of the manifold.

Definition 3.1.26. Let M and M̃ = M \ {φ(p)} be Riemann surfaces with parametrizations

φ : V → U and φ̃ : V \ {p} → U \ {φ(p)} respectively. Consider a map f such that f : M̃ → C is

holomorphic but f : M → C is not. Then f is said to have a pole at φ(p) if f ◦ φ̃ : V \ {p} → C
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has a pole at p in the usual sense. That is, if V \ {p} is an open subset of C and F : V \ {p} → C

is a holomorphic map, then F has a pole of order n at p if there exists holomorphic function

g : V → C, with g(p) , 0, such that,

f (z) =
g(z)

(z − p)n ,

where z is a coordinate of V. If the pole has order 1 it is called a simple pole.

Definition 3.1.27. If M is a Riemann surface with parametrization φ : V → U and f : M → C is

a holomorphic map and coordinate z, then f is said to have a zero at φ(p) if f ◦ φ : V → C has a

zero at p in the usual sense. That is, if V is an open subset of C and F : V → C is a holomorphic

map, then F has a zero of order n at p if there exists a holomorphic function g : V → C with

g(p) , 0, and

f (z) = g(z)(z − p)n,

where z is a coordinate of V. If the zero has order 1, it is called a simple zero.

Definition 3.1.28. A function f : M → C is said to be meromorphic if it is holomorphic on M

except a set of isolated poles.

Definition 3.1.29. For a Riemann surface M, a linear map α : T M → C, is called a holomorphic

1-form if it can be described locally as α = f (z)dz, where f is a holomorphic function and

z = u + iv is a local coordinate on M.

76



3.2 Minimal surfaces

This section will focus on how holomorphic and meromorphic functions can be used to generate

minimal surfaces. Before we can do so, we must briefly recap the notion of a conformal map.

3.2.1 Conformal maps

Conformal maps can be thought of as maps that preserve angles and orientation of vectors on

the tangent space of a Riemannian manifold. Formally this condition is given by the following

definition.

Definition 3.2.1. Consider two Riemannian manifolds (M, g) and (M̃, g̃), and let f : M → M̃

be an immersion between them. Then f is said to be conformal if it preserves angles and maps

equal length vectors to equal length vectors, that is, if ‖X‖ = ‖Y‖ then ‖d fp(X)‖ = ‖d fp(Y)‖ and

θg(X,Y) = θg̃(d fp(X), d fp(Y)), where X,Y ∈ TpM and θg(X,Y) is the angle between X and Y,

with respect to the metric g.

The following theorem provides a simple way to check if an immersion is conformal.

Theorem 3.2.2. Let (M, g) and (M̃, g̃) be Riemannian manifolds, and f : M → M̃ be an immer-

sion between them. Let m = dim M and {X1, . . . , Xn} be an orthonormal basis of TpM for p ∈ M.

Then f is conformal at p if and only if for all p, we have that,

‖d fp(Xi)‖ = ‖d fp(X j)‖ ∀i, j, and g̃ f (p)(d fp(Xi), d fp(x j)) = 0, ∀i , j.

Proof. If f is conformal then f preserves angles and lengths, therefore the orthonormal basis is

mapped to an orthogonal basis with ‖d fp(Xi)‖ = ‖d fp(X j)‖, for all i, j.
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Conversely, consider two vectors X and Y in TpM with, ‖X‖ = ‖Y‖ and the angle between them

θg(X,Y) which is given by, cos(θg(X,Y)) =
gp(X,Y)
‖X‖‖Y‖ .

Let X =
∑

xiXi and Y =
∑

yiXi where Xi are the basis vectors for TpM, then by the linearity of

d fp we have,

g̃ f (p)(d fp(X), d fp(Y)) =
∑

i, j

xiy jg̃ f (p)(d fp(Xi), d fp(X j)).

By assumption all terms with i , j are equal to zero, this gives that:

g̃ f (p)(d fp(X), d fp(Y)) =
∑

i

xiyig̃ f (p)(d fp(Xi), d fp(Xi)).

We also have that g̃ f (p)(d fp(Xi), d fp(Xi)) = g̃ f (p)(d fp(X j), d fp(X j)) for all i, j, with λ =

g̃ f (p)(d fp(Xi), d fp(Xi)) > 0 so therefore,

g̃ f (p)(d fp(X), d fp(Y)) = λ
∑

i

xiyi = λgp(X,Y).

Now consider the function θg̃(d fp(X), d fp(Y))

cos(θg̃(d fp(X), d fp(Y))) =
g̃ f (p)(d fp(X), d fp(Y))
‖(d fp(X)‖ ‖(d fp(Y)‖

=
λgp(X,Y)
λ‖X‖ ‖Y‖

=
gp(X,Y)
‖X‖ ‖Y‖

= cos(θg(X,Y)),

showing that angles are preserved. We also need to show that is if ‖X‖ = ‖Y‖ then ‖d fp(X)‖ =

‖d fp(Y)‖. Consider a pair of equal length vectors X,Y ∈ TpM, then
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‖d fp(X)‖2 = g̃ f (p)(d fp(X), d fp(X)) = λ‖X‖2 = λ‖Y‖2 = ‖d fp(Y)‖2,

shows the claim.

�

Definition 3.2.3. For a Riemann surface M a coordinate (x, y) is called a conformal coordinate,

if the parametrization map φ : V → M, with φ(u, v) = (x, y), is conformal.

Given a conformal coordinate φ of M, an immersion f : M → R3 is conformal if and only if

| fu| = | fv| and 〈 fu, fv〉 = 0. This follows from theorem 3.2.2 since for a conformal coordinate,

X = φu and Y = φv are perpendicular tangent vectors of M, and d fp(φu) = ( f ◦ φ)u and d fp(φv) =

( f ◦ φ)v. Note that we have equipped the manifold R3 with the standard metric. Therefore for a

conformal immersion into R3, the coefficients of the first fundamental form can be reduced to

E = 〈 fu, fu〉 = 〈 fv, fv〉 = G, F = 0.

Therefore in the case of a conformal immersion the mean curvature H is given by,

H =
e + g
2E

.

This allows us to show that harmonic, conformal immersions are minimal immersions.

Theorem 3.2.4. If an immersion f : M → R3 is conformal then ∆ f = 0 if and only if H = 0.

Proof. Let (u, v) be a conformal coordinate on M, as f is conformal we have that E = G and

F = 0. Now consider 〈 fuu + fvv, fu〉,
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〈 fuu + fvv, fu〉 = 〈 fuu, fu〉 + 〈 fvv, fu〉

=
1
2
〈 fu, fu〉u − 〈 fuv, fv〉

=
1
2

(〈 fu, fu〉u − 〈 fv, fv〉u)

= 0.

A similar argument can be used to show that 〈 fuu + fvv, fv〉 = 0. This implies that ∆ f is parallel

to N. Since f is conformal we have H =
e+g
2E , so that

2EH = 〈 fuu,N〉 + 〈 fvv,N〉,

which shows that 2EHN = ∆ f . So if H = 0 we have a harmonic map and vice versa.

�

3.2.2 Holomorphic null curves

It is a well known result in complex analysis that a harmonic map f : M → R can be thought

of as the real part of a holomorphic function. In this section a discussion of the link between

holomorphic and harmonic maps is given. This can be used to generate minimal surfaces from

holomorphic functions.

Theorem 3.2.5. If Φ : Ω → C is a holomorphic function, where Ω is an open subset of C, with

Φ(x, y) = u(x, y) + iv(x, y), then u(x, y) and v(x, y) are real valued harmonic functions.

Proof. Since Φ is a holomorphic function, the Cauchy-Riemann equations hold, that is, ux = vy
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and uy = −vx, so that,

uxx = vyx = vxy = −uyy.

This gives that uxx + uyy = 0, which is the harmonicity condition. A similar argument can be

applied for v.

�

Theorem 3.2.6. If u : Ω→ R is a harmonic function on simply connected region Ω, then u is the

real part of holomorphic function Φ on Ω.

Proof. The function ψ = ux − iuy satisfies the Cauchy-Riemann relations since u is harmonic.

Let Φ = U + iV =
∫
ψdz be the primitive of ψ, and note that,

∂

∂z
(Φ(z)) =

1
2

(
∂

∂x
− i

∂

∂y

)
(U(x, y) + iV(x, y)) =

1
2

((
∂U
∂x

+
∂V
∂y

)
+ i

(
∂V
∂x
−
∂U
∂y

))
.

By applying the Cauchy-Riemann equations we get that,

Φ′ = Ux − iUy. (8)

We also have that Φ′ = ψ so,

Ux(x, y) − iUy(x, y) = Φ′ = ψ = ux − iuy.

Therefore U = u + c where c is a real constant, giving that u = Re (Φ + c). As Φ is holomorphic

Φ + c will also be holomorphic giving that u is the real part of holomorphic function. �
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Therefore for a simply connected region Ω, the real part of a holomorphic function Φ : Ω → C3

will generate a minimal surface if the real part of Φ is a conformal immersion. To ensure that

Re (Φ) is conformal, Φ is also required to satisfy the null condition.

Theorem 3.2.7. If Φ : Ω → C3 is a holomorphic function then f = Re (Φ), is conformal if and

only if the null condition

〈Φ′,Φ′〉 = Φ′1
2 + Φ′2

2 + Φ′3
2 = 0,

is satisfied, where Φ′i = ∂
∂zΦi. Here, 〈, 〉 denotes the standard bilinear complex form on C3.

Proof. Firstly, let Φ(z) = f (x, y) + ig(x, y) where z = x + iy, we wish to show that if the null

condition is satisfied then ‖ fx‖ = ‖ fy‖ and 2〈 fx, fy〉 = 0. By using (8) and the Cauchy-Riemann

equations we have,

∂

∂z
(Φ(z)) =

∂ f
∂x

+ i
∂g
∂x
.

Therefore, we can compute 〈Φ′,Φ′〉 using the Cauchy-Riemann equations,

〈Φ′,Φ′〉 = 〈Φx,Φx〉

= 〈 fx + igx, fx + igx〉

= 〈 fx, fx〉 − 〈gx, gx〉 + 2i〈 fx, gx〉

= 〈 fx, fx〉 − 〈 fy, fy〉 − 2i〈 fx, fy〉

= ‖ fx‖
2 − ‖ fy‖

2 − 2i〈 fx, fy〉.
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By comparing real and imaginary parts, we see that 〈Φ′,Φ′〉 = 0 is equivalent to ‖ fx‖ = ‖ fy‖ and

2〈 fx, fy〉 = 0 which are the conformality conditions. �

We also wish to ensure that Re (Φ), is an immersion, to do so the following result is used.

Theorem 3.2.8. Let Φ : M → C3 be a holomorphic null curve from a Riemann surface M. Then

f = Re (Φ) is an immersion if

|Φ′1|
2 + |Φ′2|

2 + |Φ′3|
2 , 0. (9)

Proof. Firstly note that (9) is equivalent to 〈Φ′, Φ̄′〉 , 0. Recall that Φ′ = fx − i fy, hence we have

that

〈Φ′, Φ̄′〉 = 〈 fx − i fy, fx + i fy〉 = ‖ fx‖
2 + ‖ fy‖

2.

So that (9) holds if and only if ‖ fx‖
2 = ‖ fy‖

2 , 0 (as f is conformal). Now, d f = fxdx + fydy is

injective if ker d f = {0}. Since f is conformal this is equivalent to ‖ fx‖ = ‖ fy‖ , 0. �

This now allows us to generate minimal immersions using holomorphic null curves.

Definition 3.2.9. Let M be a Riemann surface and M̃ be its universal cover. A function Φ : M̃ →

C3 is said to be a holomorphic null curve, if Φ is holomorphic with |Φ′1|
2 + |Φ′2|

2 + |Φ′3|
2 , 0 and

the null condition,

〈Φ′,Φ′〉 = 0,

is satisfied. The real part of Φ, f = Re (Φ) is a minimal immersion.

Note that we have defined the holomorphic null curve Φ on the universal cover M̃ of the Riemann

surface M. In general the minimal immersion f = Re (Φ) : M̃ → R3 is also only defined on the
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universal cover M̃. However, if Re (Φ ◦ π−1) : M → R3 is well defined we say that Re (Φ) is

single-valued on M, then in abuse of notation we will write f = Re (Φ ◦ π−1) : M → R3.

3.2.3 The Weierstrass-Enneper representation

The problem of finding minimal surfaces is therefore reduced to finding holomorphic null curves.

The celebrated Weierstrass-Enneper parametrization provides a method to generate holomorphic

null curves from a meromorphic function g and holomorphic 1-form ω. It was discovered by

Weierstrass [12] and independently by Enneper [13].

Theorem 3.2.10. Consider a meromorphic function g and holomorphic 1-form ω on a Riemann

surface M, such that when g has a pole of order m at p, then ω has a zero of order greater than

or equal to 2m. Then,

Φ =


Φ1

Φ2

Φ3


=

∫ 
1
2ω(1 − g2)

i
2ω(1 + g2)

gω


,

is a holomorphic null curve, and f : M̃ → R3 with f = Re (Φ) is a minimal surface (if g has

a pole of order m at p and the corresponding zero of ω has order greater than m then f is a

branched immersion).

Proof. As 1
2ω(1 − g2), i

2ω(1 + g2) and gω are all holomorphic Φ will also be holomorphic. Next

we check the null condition, consider,
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〈Φ′,Φ′〉 = (
1
2
ω(1 − g2))2 + (

i
2
ω(1 + g2))2 + (gω)2 = 0.

If the order m of the pole of g is twice the order of the zero of ω then:

|Φ′1|
2 + |Φ′2|

2 + |Φ′3|
2 =

1
4
|ω|2|1 − g2|2 +

1
4
|ω|2|1 + g2|2 + |g|2|ω|2 =

1
2
|ω|2(1 + |g|2)2 , 0.

If the order of the zero of ω is greater than m then this condition will no longer be satisfied and

f will no longer be an immersion, therefore the pole p is a branch point of f . �

There are multiple forms of the Weierstrass representation, often it is convenient to write it in

terms of the height differential dh = gω, giving,

Φ =


Φ1

Φ2

Φ3


=

∫ 
1
2 (1

g − g)

i
2 (1

g + g)

1


dh.

Conversely, if Φ is a holomorphic null curve, the Weierstrass data (g,ω) is given by,

g =
dΦ3

dΦ1 − idΦ2
, ω = dΦ1 − idΦ2. (10)

We can also write the Gauss map N, and Gaussian curvature K in terms of the Weierstrass data

[90].

Theorem 3.2.11. For any minimal surface generated by Weierstrass data (g,ω) the normal N

and Gaussian curvature K can be expressed as follows,
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N =
1

|g|2 + 1


2 Re (g)

2 Im (g)

|g|2 − 1


, K = (

−4|dg|
|ω||1 − g2|2

)2.

The theorem shows that for a minimal surface generated by Weierstrass data (g, ω), the normal

N does not depend on ω. It is also apparent that g is the stereographic projection of the normal,

because of this g is sometimes also referred to as the Gauss map.

U

V

φ

M
f N

g

σ

Figure 3.3: A minimal immersion, the Gauss map N and Gauss map g. The minimal surface
is generated by immersion f : M → R3 where M is a Riemann surface with parametrization
φ : V → U. The Gauss map N is the map N : R3 → S 2, and σ is the stereographic projection
from S 2 into R2. Therefore the Gauss map g can be considered as the composition of functions
g = σ ◦ N ◦ f ◦ φ.
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Minimal surface ω(z) g(z)
Enneper’s surface 1 z
Catenoid 1

(z2−1)2 z
Scherk’s surface 4

1−z4 iz
Helicoid i

(z2−1)2 z

Table 3.1: The Weierstrass data for four minimal surfaces.

Table 3.1 gives Weierstrass data for four minimal surfaces, images of the surfaces are shown in

figure 3.4, all pictures of minimal surfaces shown in this chapter were produced using the soft-

ware ”Surface Lab” created at the University of Leicester [91]. The surface lab software utilizes

the software package ”JReality” [92] to produce an image of a surface from a parametrization.

The software package ”jTEM (Java tools for experimental mathematicians)” [93] was also used

to create the parametrization. The surface lab has been extended to show the coalescence of

aqueous aerosols and generate images of the minimal surface known as the k-noid. These are

shown in chapters 6 and 7 respectively.
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Figure 3.4: Four examples of minimal surfaces. They are Enneper’s surface (top left), the
catenoid (top right), Scherk’s surface (bottom left) and the helicoid (bottom right).

The surfaces shown in the figure, are the Enneper surface, catenoid, Scherk’s surface and the

helicoid. It is notable that for the catenoid if (g,ω) is the Weierstrass data, then (g,iω) is the

Weierstrass data for the helicoid. This is because if Φ is a holomorphic null curve the imaginary

part Im (Φ), also generates a minimal surface, that is:

Definition 3.2.12. If Φ : M̃ → C3 is a holomorphic null curve and f : M → R3 is a minimal
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surface where Re (Φ) = f , then the imaginary part of Φ, Im (Φ) is also a minimal surface. The

minimal surface f ∗ = Im (Φ) is called the conjugate surface to f = Re (Φ).

Hence, the helicoid is the conjugate surface to the catenoid (and vice versa), as a transformation

of the Weierstrass data (g, ω)→ (g, iω) is equivalent to multiplying holomorphic null curve Φ by

i. Note that if f is defined on M = C \ {0} the conjugate surface may be defined on the universal

cover M̃. This is the case for the catenoid and helicoid. The catenoid is defined on a Riemann

surface M and the helicoid on its universal cover M̃, hence the helicoid is multivalued on M and

is a periodic surface.

Definition 3.2.13. Let M be a compact Riemann surface , and {p1, . . . , pk} a finite number of

points in M. Consider a minimal immersion f : M̂ → R3, where M̂ = M \ {p1, . . . , pk}. The

image E j = f (B j) of a punctured disk around B j around p j is called an end of f .

The behaviour of the ends is determined by the residue at the poles, this is due to the following

theorem, see [15].

Theorem 3.2.14. Let f : M → R3 be a minimal surface with a complete end at p. Let z be a

conformal coordinate of M at the end p which is defined on a punctured disc D∗ = D \ {0} and is

centred at p.

Then the following statements are equivalent:

• f has an embedded finite total curvature end at p.

• dΦ has order -2 at z = 0 and Res (dΦ, 0) is real.

If Res (dΦ, 0) = 0 then the end is planar, otherwise, it is catenoidal.
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The residues at the poles of the holomorphic null curve Φ : M̃ → C3 can also be used to calculate

the translation periods of possibly multivalued conjugate surface f ∗ : M̃ → R3.

Theorem 3.2.15. Let f : M → R3 be a minimal surface and Φ : M̃ → C3 its holomorphic null

curve. Let f ∗ : M̃ → R3 be the conjugate surface of f . Then for any end at p j of M either f ∗ is

defined on M near p j, or f ∗ has translational period τ∗j = 2πRes (Φ′, p j).

Proof. If p j is a pole of holomorphic function Φ : M̃ → C3 then the integral of Φ′ of curve λ

around p j is given by ∮
λ

Φ′(z)dz = 2πi Res (Φ′, p j).

If f is single valued on M then
∮
λ

Φ′(z)dz is an imaginary number so
∮
λ

Φ′(z)dz = ai where

a ∈ R3. Therefore either a = 0 in which case f ∗ is defined on M near p j, or the translational

period of f ∗ is given by 2πRes (Φ′, p j). �

The introduction of the conjugate surface allows us to formulate the reflection principle for min-

imal surfaces. It will be used in our construction of the k-noid and its conjugate surface. It is a

consequence of the Schwarz reflection principle for holomorphic maps outlined in the previous

section.

Lemma 3.2.16. Suppose that f : M → R3 is a minimal surface and f ∗ : M̃ → R3 is its conjugate

surface, then the planar geodesics on f correspond to straight lines on f ∗. Moreover, the straight

line is perpendicular to the plane containing the geodesic.

Proof. To show this consider the shape operator W∗
p of the conjugate surface, and note that due

to the Cauchy-Riemann of relations of Φ = f + i f ∗ we have that d f (X) = fxdx(X) + fydy(X) =

f ∗y dx(X) − f ∗x dy(X) = −d f ∗(JX), hence d f ∗(X) = −d f (JX). Therefore, since d fp(Wp(X)) =

−dNp(X) and f ∗ has the same Gauss map as f we have that W∗
p = JWp.
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To show that planar geodesics on the surface correspond to straight lines on the conjugate we

must consider the curvature κ and torsion τ of a curve on the surface. We can assume that

λ = f (λ̃) is a unit speed curve, where λ̃ is a curve on M. We denote by g the induced metric of f

on M. For a unit speed space curve, curvature and torsion are given by,

κ = 〈n, t′〉 τ = 〈−n, (t × n)′〉,

where n is the normal to the curve and t is the tangent (this is known as the Frenet frame). In the

case of a geodesic we have that 〈λ′′, (N ◦ λ̃) × λ′〉 = 〈(N ◦ λ̃), λ′ × λ′′〉 = 0. Since the binormal

to λ is given by λ′×λ′′

‖λ′×λ′′‖
we see that for a geodesic the normal n is equal to the normal ±N to the

surface (up to change of sign). Since t is also tangent to the surface, that is 〈t,N ◦ λ̃〉 = 0, we see

that 〈N ◦ λ̃, t′〉 = −〈(N ◦ λ̃)′, t〉. Therefore

κ = ±〈N ◦ λ̃, t′〉 = ∓〈(N ◦ λ̃)′, t〉 = ∓〈d f (Wp(λ̃′)), d f (λ̃′)〉 = ∓gp(Wp(λ̃′), λ̃′),

and

τ = ±〈(N ◦ λ̃)′, (t × N)〉 = ∓〈d f (Wp(λ̃′)), d f (Jλ̃′)〉 = ∓gp(Wp(λ̃′), Jλ̃′).

Here we used that in the case of a conformal map we have d f (JX) = N × d f (X) for X ∈ T M

and thus (t × N) = −(N × t) = −d f (Jλ̃′). It is also known that for a curve having κ = 0 implies

the curve is a straight line and τ = 0 implies the curve is a planar curve, where the plane is

perpendicular to the binormal. As we have that W∗
p = JWp we see that

κ = ∓gp(Wp(λ̃′), λ̃′) = ∓gp(JWp(λ̃′), Jλ̃′) = ∓gp(W∗
p(λ̃′), Jλ̃′) = ∓τ∗,
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and

τ = ∓gp(Wp(λ̃′), Jλ̃′) = ±gp(JWp(λ̃′), λ̃′) = ±gp(W∗
p(λ̃′), λ̃′) = ±κ∗.

Therefore in the case of a minimal surface f , if a curve λ on f has vanishing torsion the cor-

responding curve λ∗ on the conjugate f ∗ must have vanishing curvature and vice versa. Hence

planar geodesics on minimal surface f correspond to straight lines on the conjugate. We also

wish to show that the straight line λ∗ is perpendicular to the plane containing the planar geodesic

λ. It is known that a curve with torsion zero lies in the plane perpendicular to the binormal [86],

thus we need to show that the tangent t∗ to λ∗ is essentially the binormal to λ. Consider the

binormal b = t × n to the planar geodesic,

b = t × (±(N ◦ λ̃)) = ∓d f (Jλ̃′) = ±d f ∗(λ̃′) = ±t∗.

�

Theorem 3.2.17. Suppose a minimal surface f : M → R3 contains a straight line or a pla-

nar geodesic. Then the surface can be rotated 180◦ around the line, or reflected in the plane

containing the geodesic continuing the minimal surface.

Proof. Without loss of generality it may be assumed that the geodesic λ lies in the x − y plane

and λ = f ◦ λ̃. Then f ∗ ◦ λ̃ is a straight line in the z axis. Consider the image of λ̃ under the

holomorphic null curve Φ,

Φ ◦ λ̃ =


f1 ◦ λ̃ + i( f ∗1 ◦ λ̃)

f2 ◦ λ̃ + i( f ∗2 ◦ λ̃)

f3 ◦ λ̃ + i( f ∗3 ◦ λ̃)


=


f1 ◦ λ̃

f2 ◦ λ̃

i( f ∗3 ◦ λ̃)


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We may assume that Φ3 is the conformal coordinate on M as it is a holomorphic on M and

therefore λ̃ is a segment of the imaginary axis. Therefore, the standard reflection principle can

be applied. The Schwarz reflection principle allows us to extend Φ1 and Φ2 by reflection across

the real axis and Φ3 across the imaginary axis, that is, there is an extension of Φ(z) given by Φ̃(z∗)

Φ̃(z∗) =


Φ1(z)

Φ2(z)

−Φ3(z)


=


f1(z) − i f ∗1 (z)

f2(z) − i f ∗2 (z)

− f3(z) + i f ∗3 (z)


,

which is a reflection of f in the x − y plane and a 180◦rotation of f ∗ around the z axis.

�

There are several transformations that can be applied to a holomorphic null curve to create new

minimal surfaces. The most simple of these is the one parameter deformation known as the

associate family.

Theorem 3.2.18. Let Φ : M̃ → C3 be a holomorphic null curve, then the function Φθ : M̃ → C3

with Φθ = eiθΦ where θ ∈ [0, 2π], is also a holomorphic null curve. Hence fθ = Re (Φθ) is also

a minimal surface.

Proof. As eiθ is a complex constant, it is clear that Φθ will also be holomorphic. To check the

null condition is also straightforward, consider,

〈Φ′θ,Φ
′
θ〉 = 〈eiθΦ′, eiθΦ′〉 = e2iθ〈Φ′,Φ′〉 = 0.

To check the immersion condition is also straightforward,
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|Φ′1θ |
2 + |Φ′2θ |

2 + |Φ′3θ |
2 = |eiθΦ′1|

2 + |eiθΦ′2|
2 + |eiθΦ′3|

2 = |Φ′1|
2 + |Φ′2|

2 + |Φ′3|
2,

showing that Φθ is a holomorphic null curve. �

In the case of θ = π
2 then fθ is the conjugate surface f ∗. It can be useful computationally to express

the associate family as a linear combination of f and f ∗, fθ = cos(θ) f + sin(θ) f ∗. In terms of the

Weierstrass data the associate family can be thought of as the transformation (g, ω)→ (g, eiθω).

94



Figure 3.5: The catenoid (top left) and the associate family for θ = π
6 (top right), θ = π

3 (bottom
left), and f ∗ (the helicoid) (bottom right).

The associate family has the property that the Gaussian curvature K is preserved across it.

Theorem 3.2.19. The Gaussian curvature K is preserved throughout the associate family.

Proof. With the Theorem Egregium it is sufficient to show that all immersions of the associate

family are local isometries. Consider the first fundamental form of f in terms of the conformal
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coordinate z = u + iv.

E = G = 〈 fu, fu〉, F = 0

Consider the first coefficient of the first fundamental form Eθ for the associate family and note

that f ∗u = − fv due to the Cauchy-Riemann relations.

Eθ = 〈 fu cos(θ) + f ∗u sin(θ), fu cos(θ) + f ∗u sin(θ)〉

= 〈 fu cos(θ) − fvsin(θ), fu cos(θ) − fvsin(θ)〉

= cos2(θ)〈 fu, fu〉 − 2 cos(θ) sin(θ)〈 fu, fv〉 + sin2(θ)〈 fv, fv〉

= E

A similar argument can be used to show that Gθ = G and Fθ = F, which shows that fθ is isometric

to f . �

As well as the associate family there are several other ways to generate new holomorphic null

curves from old. One such transformation is by the Lopez-Ros deformation originally described

by Lopez and Ros in [14]. The authors used the deformation to show that the catenoid and plane

are the only embedded complete minimal surfaces of genus zero and finite total curvature in R3.

Theorem 3.2.20. Let λ be a positive real number and Φ : M̃ → C3 be a holomorphic null curve

given by Weierstrass data (g, ω), generating a minimal immersion f : M → C3, where f =

Re (Φ). Then the Weierstrass data (λg, 1
λ
ω) generates a new holomorphic null curve Φλ : M̃ →

C3, and fλ : M̃ → R3 where fλ = Re (Φλ) is also a minimal surface.

Proof. The Weierstrass data (λg, 1
λ
ω) will preserve the poles, holomorphicity and meromorphic-

ity of g and ω as λ is a non-zero real number. Therefore the Weierstrass data (λg, 1
λ
ω) can be
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used to generate a new holomorphic null curve, Φλ. �

Figure 3.6: The Lopez-Ros deformation of the catenoid for λ = 1
2 (top left), λ = 1 (top right),

λ = 2 (bottom left) and λ = 3 (bottom right).

The Lopez-Ros deformation can be expressed in a much simpler form using matrix multiplica-

tion, this was shown in [15], the authors also show that the Lopez-Ros deformation is part of the

larger class of simple factor dressings which are discussed in the next section.

Theorem 3.2.21. If λ = es ∈ R+, and s ∈ R, then the Lopez-Ros deformation with parameter λ
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of holomorphic null curve Φ : M̃ → C3 is given by, Φλ = AΦ, where,

A =


cosh(s) i sinh(s) 0

−i sinh(s) cosh(s) 0

0 0 1


.

Therefore fλ : M̃ → R3 with fλ = Re (AΦ) =


cosh(s) f1 − sinh(s) f ∗2

cosh(s) f2 + sinh(s) f ∗1

f3


is a minimal surface.

Proof. Consider Φλ = AΦ′, then

Φ′λ = AΦ′ =


cosh(s)Φ′1 + i sinh(s)Φ′2

cosh(s)Φ′2 − i sinh(s)Φ′1

Φ′3


Recall that the Weierstrass data is given by (10). Therefore the Weierstrass data (gλ, ωλ) for AΦ′

can be calculated,

ωλ = (Φλ)′1 − i(Φλ)′2

= Φ′1(cosh(s) − sinh(s)) + iΦ′2(sinh(s) − cosh(s))

=
1
λ

(Φ′1 − iΦ′2)

=
1
λ
ω.

For gλ we compute that,
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gλ =
(Φλ)′3
ωλ

=
Φ′3

1
λ
(Φ′1 − iΦ′2)

= λg,

thus we obtain the Weierstrass data of the Lopez-Ros deformation.

�

This shows that the Lopez-Ros deformation is part of the much larger class of Goursat deforma-

tions.

Theorem 3.2.22. Let Φ : M → C3 be a holomorphic null curve and A ∈ O(3,C). Then ΦA = AΦ

is also a holomorphic null curve and therefore Re(ΦA) generates a minimal surface.

The matrix representation of the Lopez-Ros deformation can be used to show that it is an example

of the more general simple factor dressing.

3.3 The simple factor dressing

So far we have focused on transforming holomorphic null curves to create new minimal surfaces.

Aside from this certain harmonic maps associated to the minimal immersion can also be trans-

formed to give new harmonic maps and therefore new minimal immersions. It can be shown

that in some cases these transformations are Goursat deformations and therefore can be given a

matrix representation.

From this point onwards it will be convenient to express minimal immersions as quaternions.

This allows for straightforward computations of rotations. Therefore we will briefly recap some

elementary results concerning quaternions.
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3.3.1 Quaternions

The quaternions are a 4-dimensional extension of the complex numbers. We define them as

follows.

Definition 3.3.1. The space of quaternions H is defined as H = span(1, i , j ,k ) where:

i 2 = j 2 = k 2 = −1, i j = k , i j = −j i .

The space of imaginary quaternions is defined as Im (H) = span(i , j ,k ) = R3.

As the space of imaginary quaternions can be identified with R3 the immersion generating min-

imal surface f : M → R3 can be identified with the immersion f = f1i + f2j + f3k . There are

several advantages to using this identification. One of these is that a rotation can be expressed in

terms of quaternions using the following theorem, taken from [94].

Theorem 3.3.2. Let p ∈ ImH and q = cos(θ)+q1 sin(θ) ∈ H where q1 ∈ ImH. The the operator

Rq(v) = qpq−1 is a rotation of 2θ through the imaginary part of q.

To prove this theorem the identity that for two imaginary quaternions a, b ∈ ImH the quater-

nionic product ab may be written as ab = −〈a, b〉 + a × b, this formula will later be relevant for

our computation of the simple factor dressing. It is also worth noting that if |q| = 1 then q−1 = q̄.

The theorem can also be extended for rotations in R4. That is if p ∈ H represents a point in R4

and m and n are quaternions the operator Rm,n(p) = npm−1 represents a rotation in R4.
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3.3.2 Willmore surfaces

To apply the simple factor dressing to a minimal surface we will consider minimal surfaces as

examples of the more general Willmore surfaces.

Definition 3.3.3. An immersion f : M → R3 is said to be a Willmore surface if it is a critical

point of the Willmore energy

W( f ) =

∫
M

(H2 − K)dA.

The harmonic map which we apply the simple factor dressing to is the conformal Gauss map, we

will use the result that in the case of a Willmore surface it is harmonic [95].

Definition 3.3.4. For a surface in R3 the conformal Gauss map S : H2 → H2 is given by,

S = G

N 0

H −N

G−1,

where G =

1 f

0 1

.
In the case of a minimal immersion the conformal Gauss map can be expressed in terms of the

support function u = 〈N, f 〉.

Example 3.3.1. Let f : M → R3 be a minimal immersion then the conformal Gauss map of f , S

is given by

S =

N 2u

0 −N

 .
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This follows, since for H = 0 we have that

S = G

N 0

0 −N

G−1 =

N −N f − f N

0 −N

 ,
however f and N are both imaginary quaternions so −N f − f N = 2〈N, f 〉.

The following theorems characterize Willmore surfaces in terms of a condition on the conformal

Gauss map, see [96], [95].

Theorem 3.3.5. If f : M → R3 is a Willmore surface then its conformal Gauss map S is har-

monic, that is if and only if

d ∗ A = 0,

where A the Hopf field of f given by 4 ∗ A = G

0 0

ω 2(dN)′′

G−1, with ω = −dH − N ∗ dH + H ∗

(dN)′′ and d is the trivial connection.

Here, ∗ is the negative Hodge star operator, that is if δ is a one-form on the tangent bundle T M

of a complex manifold M, then for X ∈ T M we have ∗δ(X) = δ(JX).

Theorem 3.3.6. If a conformal immersion f : M → R3 is minimal then it is Willmore.

Proof. To prove this result we will show that in the case of f being a minimal conformal immer-

sion we have that (dN)′ = 1
2 (dN − N ∗ dN) = 0. Firstly note that d ∗ d f = d(− fxdy + fydx) =

−∆ f dx ∧ dy and then for a conformal coordinate x = x + iy,

dN ∧ d f = d ∗ d f = −∆ f dx ∧ dy = 0.
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On the one hand

dN ∧ d f = dN ∗ d f − ∗dNd f = dN ∗ d f + ∗dNN ∗ d f = (dN − N ∗ dN) ∗ d f = (dN)′ ∗ d f ,

so therefore (dN)′′ = dN. Thus, the Hopf field ∗A has, since H = 0, the explicit form,

2d ∗ A =
1
2

G

0 0

0 2(dN)′′

G−1 =

0 f

0 1

 dN.

Thus,

2d ∗ A = d


0 f

0 1

 dN

 =

0 d f

0 0

 ∧ dN = 0.

�

The above theorem shows that minimal surfaces have a harmonic conformal Gauss map. The

following theorem allows us to generate a family of flat connections for any Willmore surface.

Theorem 3.3.7. If f : M → R3 is a Willmore surface then the connection

dµ = d + (µ − 1)A1,0 + (µ−1 − 1)A0,1

is flat for all µ ∈ C∗ = C \ {0}, where

A1,0 =
1
2

(A − I ∗ A) A0,1 =
1
2

(A + I ∗ A),

and I indicates right multiplication by the unit quaternion i .
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The Willmore surface can be recovered from its family of flat connections dµ. In particular if one

can construct new families of flat connections with the same symmeteries and reality conditions

as dµ, then one can construct new Willmore surfaces. For many of these constructions one needs

to find parallel sections of dµ. In the case of a minimal surface parallel sections ϕ of the flat

connection dµ can be written in the form,

ϕ =

10
α +

 f

1

 β,
where α = − f ∗ − f m i(1+µ)

1−µ and β = Nm + m i(1+µ)
1−µ with µ ∈ C∗ and m ∈ H.

3.3.3 The simple factor dressing

The theory described in the previous subsection shows that new minimal surfaces may be gener-

ated by applying a dressing to the associated family of flat connections (if the minimal surface is

thought of as a Willmore surface). In general the dressing of a Willmore surface is not straight-

forward to express, however for a simple factor dressing, that is a gauge of dλ by a λ dependant

matrix with simple pole, of a minimal surface the simple factor dressing f̂ of f may be expressed

relatively simply.

So far this chapter has focussed on minimal immersions f : M → R3, however it is also possible

to define a minimal immersion f : M → R4. In short if φ : M̃ → C4 is a holomorphic null curve

then Re (φ) can be thought of as a minimal immersion f : M̃ → R4. As we can identify the space

of quaternionsHwith R4 in general the simple factor dressing of minimal immersion f : M → R3

will generate a minimal immersion f̂ : M̃ → R4. This is shown by the following expression for

the simple factor dressing [15].
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Theorem 3.3.8. In the case of a minimal surface f : M → R3 with conjugate surface f ∗ : M̃ →

R3 the simple factor dressing of f is given by f̂ : M̃ → R4 where

f̂ = − f
m(a − 1)m−1

2
+ f ∗

mbm−1

2
− n

b
a − 1

n−1
(

f
mbm−1

2
+ f ∗

m(a − 1)m−1

2

)
,

where m, n ∈ H, a =
µ+µ−1

2 , b = iµ
−1−µ

2 and µ ∈ C\{0, 1}.

It is straightforward to show that if m = n then the simple factor dressing will generate a minimal

immersion f̂ : M̃ → R3 as if f̂ is considered as an imaginary quaternion then its real part is zero.

In the case of n = m = 1 we refer to this as the simple factor dressing with parameter µ, we write

the simple factor dressing with parameter µ as f µ. Computationally it is convenient to express

the simple factor dressing as a rotation of the simple factor dressing with parameter µ.

Theorem 3.3.9. The simple factor dressing with parameters (µ,m, n), f̂ can be expressed as

f̂ = Rn,m((R−1
n,m( f ))µ) = n((n−1 f m)µ)m−1.

In [15] the authors also show that the simple factor dressing with parameter µ can be expressed

as a Goursat deformation.

Theorem 3.3.10. Let φ : M̃ → C3 be a holomorphic null curve and f : M → R3 be a minimal

immersion where f = Re (φ), then the function φµ : M̃ → C3 with φµ = Aφ where

A =


1 0 0

0 cosh(w) i sinh(w)

0 −i sinh(w) cosh(w)


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with w ∈ C, is also a holomorphic null curve. Hence f µ : M̃ → R3 where f µ = Re (φµ) is the

simple factor dressing with parameter µ and is also a minimal surface.

Figure 3.7: The simple factor dressing with parameter µ for the catenoid and values of µ = 1
2 ,

µ = 1 top right, µ = 2 bottom left and µ = 3 top right.

It is a straightforward computation to see that the simple factor dressing with parameter µ is a

Goursat deformation.

Theorem 3.3.11. The simple factor dressing with parameter µ is a Goursat deformation.
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Figure 3.8: The simple factor dressing with m = n = 1 + k for the catenoid and values of µ = 1
2 ,

µ = 1 top right, µ = 2 bottom left and µ = 3 top right.
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Proof. As the simple factor dressing with parameter µ can be thought of as a matrix transforma-

tion all that we need to show is that A ∈ O(3), that is AAT = 1. Consider

AAT =


1 0 0

0 cosh(w) i sinh(w)

0 −i sinh(w) cosh(w)




1 0 0

0 cosh(w) −i sinh(w)

0 i sinh(w) cosh(w)


=


1 0 0

0 1 0

0 0 1


.

�

As Rn,m and R−1
n,m are also complex orthogonal matrices it is clear that the simple factor dressing

is a Goursat deformation.

The following theorem allows us to easily compute the translational period τ̂ of the simple factor

dressing of a minimal surface.

Theorem 3.3.12. If f : M → R3 is a periodic minimal surface with translational period τ then

the simple factor dressing f µ : M̃ → R3 with parameter µ is periodic with translational period

τµ where,

τµ =


τ1

cos(t)(τ2 cosh(s)τ∗3 sinh(s)) − sin(t)(τ3 cosh(s) + τ∗2 sinh(s))

sin(t)(τ2 cosh(s)τ∗3 sinh(s)) + cos(t)(τ3 cosh(s) + τ∗2 sinh(s))


.

Here τ∗ =


τ∗1

τ∗2

τ∗3


denotes the translational period of the conjugate surface.

It can also be shown that the Lopez-Ros deformation is an example of a simple factor dressing.
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Theorem 3.3.13. The simple factor dressing with m = n =
1−i−j−k

2 is the Lopez-Ros deformation.

Proof. Firstly note that for the quaternions m =
1−i−j−k

2 ∈ H and f = f1i + f2j + f3k ∈ ImH the

operators m f m−1 and m−1 f m are given as follows,

m f m−1 = f2i + f3j + f1k , m−1 f m = f3i + f1j + f2k .

Therefore the simple factor dressing is given by,

m((m−1 f m)µ)m−1 = m(( f3i + f1j + f2k )µ)m−1

= m( f3i + (cosh(w) f1 − sinh(w) f ∗2 )j + (sinh(w) f ∗1 + cosh(w) f2)k )m−1

= (cosh(w) f1 − sinh(w) f ∗2 )i + (sinh(w) f ∗1 + cosh(w) f2)j + f3k .

By theorem 3.2.21 this is the Lopez-Ros deformation. �

In the case of m , n the simple factor dressing gives a minimal immersion f̂ : M̃ → R4. As the

simple factor dressing with parameter µ may be represented as a matrix transformation similar

to that shown in theorem 3.3.10 with

A =



1 0 0 0

0 1 0 0

0 0 cosh(w) i sinh(w)

0 0 −i sinh(w) cosh(w)


,

the simple factor dressing of a minimal surfaces in R4 is straightforward to compute in terms of
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quaternions via a rotation operator.
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Chapter Four - Experimental and compu-

tational methods
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4 Experimental and computational methods

In this chapter the experimental methods used to monitor the morphological changes of lipo-

somes is described. The apparatus was previously used to study the binary coalescence of

aerosol droplets. Firstly, a description for the components of the optical tweezing set-up used at

the University of Leicester is given. The optical tweezers have been integrated with a range of

spectroscopic techniques, which is also described in this chapter.

The theory of dynamic light scattering is discussed. This technique has allowed us to measure

the effect of temperature induced phase transitions on the average diameter of liposomes. A short

description of the protocol used make a large unilamellar (LUV) sample of liposomes in a bulk

sample is also given.

Computational methods were also used to analyse Raman spectra obtained from optically trapped

liposomes. Raman spectra could be split into multiple pure components using a multivariate

analysis algorithm. The principles of this algorithm are outlined at the end of this chapter.

4.1 Introduction

The optical tweezing apparatus used in this work is a bespoke inverted microscope that enables

spatial and temporal control of the trapping laser. The apparatus is configured for measurements

of elastic light scattering, Raman scattering and fluorescence. The optical tweezing apparatus

can be sub-divided into different functional components for optical manipulation.

A highly simplified illustration of optical tweezers is shown in figure 4.1. The path of the trap-

ping laser is shown in red. Firstly a collimated laser is transmitted by a dichroic mirror onto a

microscope objective. The laser beam must over-fill the back aperture of the microscope objec-

112



Figure 4.1: A simplified optical trap. The trapping lasers path is shown in red and the light from
the LED is shown in grey, a dichroic mirror is allowing the trapping laser to pass but reflecting
light from the LED to pass through to the CCD. A bright field image of an optically trapped
particle taken on the CCD is also shown.

tive. The microscope objective focuses the beam to a tight waist, dependent on the objective’s

numerical aperture, creating the optical trap in the object plane of the microscope. The sample

is illuminated from above by an LED. The light transmitted from the LED is reflected by the

dichroic mirror onto a CCD for imaging of the optically trapped particle.

The addition of steering lenses and mirrors would allow the position of the trapping laser to be

adjusted in 2 dimensions. The position of the trapping laser can be adjusted in 3 dimensions by

use of a spatial light modulator (see below).

4.2 Detailed description of optical tweezing apparatus

This section gives a complete description of the optical tweezers and the spectroscopic apparatus

used to make light scattering measurements on optically trapped microparticles. New exper-
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imental data is reported later in this thesis that illustrates how the light scattering intensity is

modulated during a temperature induced phase transition of a liposome. Earlier data recorded

for the binary coalescence of aerosol droplets, using the same apparatus, was used to validate a

theoretical model. Figure 4.2 is a schematic of the optical tweezing apparatus. The optical layout

will be sub-divided into 4 components which will be described individually:

(i) The optical tweezers utilizing a 1070 nm wavelength laser.

(ii) The light scattering source utilizing a 488 nm wavelength laser.

(iii) Bright field imaging and elastic light scattering measurement.

(iv) Inelastic (Raman) light scattering spectrometer.

The optical tweezers apparatus is mounted on a optical table (Thorlabs) which rests on air springs

to isolate the table from vibrations within the building. The optical elements in the system are

attached to 30 mm cage mounts (ThorLabs), making it possible to precisely align the system.

In brief there are two lasers, at wavelengths of 488 nm (spectroscopy) and 1070 nm (trapping),

overlapped in the sample plane. The lasers are both steered by a series of mirrors to the micro-

scope objective where they are focussed to a narrow waist. Illumination from above the sample

plane by an LED allows an image to be formed on a CCD. Elastic back scattered light from both

the 488 nm and 1070 nm lasers can be recorded; however, Raman scattered light can only be

recorded from the 488 nm laser as the spectrograph is insensitive to Raman scattering from the

1070 nm laser. For the elastic light scattering measurements, visible and near-infrared photodi-

odes can be used interchangeably. Each component will now be described in detail.
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Figure 4.2: A full schematic of the optical tweezers used at the University of Leicester. The
trapping lasers path is shown by the red line, the 488 nm spectroscopic lasers path is shown by
the blue line, light to be measured as elasticity scattered light and light from the LED is shown
as the purple line and light to be recorded inelastically is shown as the green line. The schematic
shows a series of lenses, mirrors, dichroic mirrors, notch filters, 50:50 beam splitters and beam
blockers marked: L, M, DC, NF, BS and BB respectively.

4.2.1 The optical tweezers

In this section a description of the components used to create the optical trap is given. The optical

design of the tweezers is shown in figure 4.3.

The laser used to create the optical trap was a 1070 nm Ytterbium fibre laser (YLR-LP series,

IPG photonics). The output beam has a diameter of 7 mm and is linearly polarized. The laser

first passes through a 1
2 wave plate (Thorlabs); which can rotate the plane of polarized light. This

element is used in conjunction with the polarizing beam splitter to attenuate the power of the
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Figure 4.3: The path of the 1070 nm trapping laser, it is shown as a red line.

laser. The polarizing beam splitter used is Glen-Taylor polarizing beam splitter (Thorlabs), it

reflects the vertically polarized light onto a beam block and transmits the horizontally polarized

beam. Horizontally polarized light is required by the spatial light modulator.

The laser is then steered using mirrors M1 and M2 (all lenses and mirrors sourced from Thorlabs)

onto a Keplerian telescope made up of two plano-convex lenses, L1 and L2 of focal lengths 5

cm and 15 cm respectively. Figure 4.4 shows a general Keplerian telescope made of two lenses

labelled L1 with front focal distance f1, and L2 with a back focal distance f2. The telescope is

configured so that the lenses are separated by a distance of f1 + f2. The telescope increases the

beam diameter by a factor of f2
f1

meaning that the diameter of the exit beam d2 is d2 = d1
f2
f1

where

d1 is the initial diameter of the beam. Thus, the lenses L1 and L2 are separated by a distance
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Figure 4.4: A general Keplerian telescope, the beam has initial diameter of d1, lenses L1 and L2
have front and back focal planes at f1 and f2 respectively. This means that the emergent beams
diameter d2 is given by d2 = d1

f2
f1

. The lenses are separated by a length of f1 + f2 so that their
front and back focal planes coincide.

of 20 cm which results in a magnification factor of 3, creating a beam of diameter 21 mm. This

beam diameter is matched to the screen of the spatial light modulator.

The spatial light modulator (SLM; Hamamatsu) imparts a phase-only pattern on the 1070 nm

laser. The position of the optical tweezers can then be adjusted in three dimensions by changing

the phase pattern. Different phase patterns can be used to create multiple optical traps which

will be relevant to the work on the coalescence of aerosols presented in chapter 6. The SLM

is an electrically addressed liquid crystal device consisting of a liquid crystal layer between a

transparent electrode and a pixel arranged electrode. A voltage can be adjusted throughout the

pixel arranged electrode causing the liquid crystals to rotate relative to the voltage, changing the

phase pattern of the reflected light. A LabView computer program produced at the university

of Glasgow was used to operate the SLM [97]. The position of the trap can be adjusted to
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a nanometre scale in three dimensions. The SLM requires low angle of incidence to function

optimally; in the set-up the angle of incidence is <10◦.

The SLM forms holographic optical tweezers. It creates a phase pattern on the trapping laser

allowing multiple traps to be created. The technology was first developed by use of an address-

able liquid crystal filter in [98], allowing an adjustable trap in two dimensions. The same group

developed this technique to create multiple traps in three dimensions [99].

The SLM projects the beam onto lens L3 which forms another Keplerian telescope with lens

L4. They have focal lengths of 40 cm and 20 cm respectively and are separated by a distance of

60 cm. This reduces the beams diameter to 10.5 mm, which over-fills the back aperture of the

objective lens. Between the lenses L3 and L4 there are three steering mirrors M3, M4 and M5.

The path length between the SLM and the back aperture of the objective lens corresponds to a

4 f optical system with lenses L3 and L4; i.e. the distance between the SLM and L3 is 40 cm and

the distance between L4 and the back aperture is 20 cm.

DC3 and DC1 are dichroic mirrors, that allow longer wavelength light to pass but will reflect

shorter wavelength light. DC3 allows 95% of the 1070 nm laser to pass through and DC1 trans-

mits 50% of the 1070 nm laser. The function of the dichroic mirrors to enable imaging and

spectroscopic measurements is explained later on.

The microscope objective used was a high numerical aperture (1.25) infinity-corrected micro-

scope objective (MRP01902 CF1, Nikon UK). The high numerical aperture of the objective

brings the laser beam to a tight waist. The diameter of the laser beams focus d can be calculated

by the equation derived by Lord Rayleigh [100]:

d =
1.2197λ

NA
=

1.2197 × 1070nm
1.25

= 1040nm,
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Figure 4.5: An infinity corrected optical system (top) and a finite correction optical system (bot-
tom). In the finitely corrected optical system the microscope objective converges to the specified
focal length f1, in a typical finitely corrected system f1 would be 160 mm. In the infinity optical
system the light does not converge, a tube lens is used to focus the light to the eyepiece.

where NA is the numerical aperture and the value 1.2197 is the first zero of the Bessel function

divided by π. The equation shows that the higher the numerical aperture of the microscope

objective, the tighter the focus of the beam and therefore the more powerful gradient force of the

optical trap.

A small amount of immersion oil was placed on the objective lens to create an index match

between the microscope objective and a cover glass.

As the microscope objective is infinity-corrected, it collimates transmitted light from the LED

and scattered laser light from a trapped particle. As the light is collimated, it is easier to include

additional components for spectroscopy-based experiments than it would be a for finite objec-
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tives. Figure 4.5 shows a ray tracing diagram for a general infinity-corrected lens and a finitely

corrected lens.

4.2.2 Light scattering source (488 nm laser)

A 488 nm laser is used for Raman spectroscopy and light scattering measurements. The model

is a JDSU fibre based system with initial diameter of 1.4 mm. Firstly, the laser passes through

a laser line filter (Semrock) which blocks other modes in the laser output. The blue laser light

is initially linearly polarized however the 1
4 wave plate (Thorlabs) changes this to a circular

polarization. In Raman analysis typically a circularly polarized excitation laser is used as it will

excite all Raman active vibrations. If the excitation light is polarized then only vibrational modes

in suitably orientated molecules will be excited.

The laser is then steered by mirrors M6 and M7 onto lens L5. A neutral density filter (Thorlabs)

can be placed between mirror M7 and the lens L5 to attenuate the beam if required. L5 and L6

are also plano-convex lenses which form a Keplerian telescope to resize the diameter of the 488

nm beam to approximately the same size as the back aperture of the objective lens. L5 and L6

have focal lengths of 19 mm and 100 mm, respectively, expanding the beam to 7.5 mm, filling

the back aperture of the objective. The expanded beam is then reflected onto beam splitter 50:50

BS1 by mirror M8. DC1 transmits 95% of the 488 nm laser light to the objective lens. The

purpose of the 50:50 beam splitter is explained in the next section. The objective lens focuses

the 488 nm beam to a tight waist which can be located inside the beam waist of the 1070 nm

beam by adjusting the position of the near IR beam using the SLM.
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Figure 4.6: The 488 nm lasers path, it is shown as the blue line.

4.2.3 Bright field imaging and measurements of the intensity of elastic light scattering

A particle that is optically trapped above the microscope objective will scatter both the 1070 nm

and 488 nm light. The back scattered component will then be collected by the objective. This can

then be observed on a camera or photodiode. DC1 reflects 50% of the 1070 nm and 95 % of the

488 nm back scattered light toward the photodiode and camera. Mirror M9 reflects the light onto

the beam splitter which reflects 50% of this light toward the camera. The light is then focused

by a 16 cm tube lens L7, where an adjustable iris is placed in the front focal plane set onto an

adjustable iris. This is used to isolate light scattered by the particle, and eliminate reflections

from optical surfaces. L8 (a 16 cm tube lens) collimates the light before another tube lens, L9,
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Figure 4.7: The path of the light scattered onto the photodiode or CCD, it is shown by the purple
line.

focuses the light onto both the camera and the photodiode. The light can be split at different

ratios, a 50% beam splitter can be used to give equal light on the camera and photodiode or a

dichroic mirror can be used to reflect 95% of elastic scattered light at 488 nm or 1070 nm onto

the photodiode if high sensitivity is required. Between the beam splitter/dichroic mirror and the

charge coupled device (CCD) a notch filter can be placed to remove scattered light from the 1070

nm laser, allowing images of a trapped particle to be taken.

In this work, two photodiodes have been used to take light scattering measurements at high and

low temporal resolution. For the low resolution measurements, an ordinary silicon photodiode

(DET36A, ThorLabs) was used. This component is capable of recording both 1070 nm and 488

nm wavelengths of light. The low temporal resolution photodiode was connected to the data ac-

quisition (DAQ) module (National Instruments, USB-6211) with a resistance load of 1 MΩ. The

photodiode detector had a 0.1 ms rise-time response. For the high resolution measurements an
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avalanche photodiode (APD 130A, ThorLabs) detector was used. This detector was not sensitive

to the 1070 nm light. The detector had a rise-time response of 20 ns and was used to record data

points every 4 µs. The DAQ is connected to a computer and a custom LabView programme was

used to record the light scattering data with a corresponding time stamp. Temperature was also

recorded using a LabView compatible thermocouple module.

4.2.4 The Raman spectroscopy configuration

The inelastically scattered 488 nm laser light is used to measure the Raman spectrum of an

optically trapped particle; see figure 4.8. Back scattered Raman wavelengths are collected by

the objective lens. 95% of the light is transmitted by DC1 for λ >490 nm. Dichroic mirror DC3

transmits 95% of the Raman light onto the lens L10, which has a focal length of 16 cm. At

the focal point the light passes through a 75 µm pinhole PH, isolating the light scattered by the

trapped particle from the background light. The Raman light is re-collimated by L11, a lens of

focal length 20 cm, following reflection by mirror M10. Mirror M12 reflects the light onto NF2

which blocks out any residual light from the 488 nm laser. A lens of focal length 5 cm L13,

focuses the Raman light onto the entrance slits of the spectrograph.

The spectrograph used was a SpectraPro 2500i, Acton Research Corporation. Figure 4.9 shows

the configuration of the spectrograph. The light is reflected and collimated by the concave mirror

M1 onto the grating. The grating has 1800 lines/mm and 500 nm blaze wavelength. The grating

separates the light into its wavelength components. The light is then reflected and focused by

concave mirror M2 onto the detector.

Spectral data points were measured in increments of 0.018 nm ( 0.5 cm−1); the optical resolution

of the spectrograph is 2 cm−1, and the precision of a wave-number measurement is 0.5 cm−1. The
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Figure 4.8: The path of the light scattered onto the spectrograph, it is shown by the green line.

acquisition time for the spectra presented in this thesis was 30 seconds. Spectra with a low signal

to noise ratio could be recorded continuously at the shorter acquisition time of 1s. This could be

used to align the optical pathway for the Raman-scattered light. Bright field illumination had to

be halted during the aquisition of Raman spectra.

The detector (Princeton Instruments Inc., Pixis 100B) is a back illuminated CCD type detector

with a 1340×100 pixel array and 20×20µm pixel size. It is cooled to -80◦C to reduce the dark

current produced by the CCD. The spectrograph is connected to a laptop computer and the spectra

are recorded using the programme WinSpec (Princeton instruments).

4.3 Other experimental techniques

In this section the experimental techniques used to support the information obtained from single

droplet experiments are explained. As well as the optical trapping based experiments, dynamic
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Figure 4.9: The mirrors grating and detector within the spectrograph. A) shows that the light has
been split into its wavelength components by the diffraction grating.

light scattering was used to obtain size distributions, average size, and the polydispersity index

for liposome samples. The method used to prepare large unilamellar vesicles is also described.

4.3.1 Dynamic light scattering

Dynamic light scattering (DLS) is a technique used to measure the size distribution of solid

or liquid particles dispersed in a liquid solution. DLS can measure the size of particles to a

nanometre scale. It can also measure the number of particles in a sample of a certain size. The

apparatus used in this project for dynamic light scattering was a Malvern Zetasizer Nano ZS.

In dynamic light scattering, a laser is shone through a sample and the elastic light scattering
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is measured at a fixed angle. Due to diffusion within the sample the intensity of the scattered

light fluctuates at the fixed angle position. By considering the rate of fluctuations in scattering

the diffusion constant can be calculated. This can then be used in conjunction with the Einstein

relation to determine particle size. The equation relates the diffusion rate of the particles to size,

is given by,

D =
κtT

6πηr
, (11)

where D is the diffusion constant, T is the absolute temperature, κt is the Boltzmann constant, η

is the dynamic viscosity and r is the particles radius. To calculate size using DLS, the dynamic

viscosity of the sample must be known.

Dynamic light scattering is used in this work to calculate the size distribution in liposome sam-

ples. For all liposome samples used in this work, dynamic light scattering measurements were

taken to ensure that the sample consisted of monodisperse large unilamellar vesicles.

4.3.2 Liposome preparation

The method used to prepare liposomes is based on the method described in [101]. Here, the

method is described for making DPPC liposomes, the method was the same for the other lipid

blends. 10 mg of the lipid DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) (Avanti) was

dissolved in 1 ml of chloroform. The chloroform was then evaporated off by placing the solution

under a stream of dry nitrogen in a fume hood for two hours to yield a lipid film. The lipid

film was then rehydrated with the buffer solution which in this case was Milli-Q water. The

rehydrated lipid suspension was then heated to above the main phase transition temperature of

41 ◦C, to 50 ◦C and extruded through a 1 µm polycarbonate membrane 25 times on an Avanti

extruder stand to give large unilamellar vesicles (LUV). The lipid suspension was then stored in
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a fridge and used within 2 weeks.

To produce the lipid sample of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) (Avanti)

and cholesterol (Avanti) at a molar ratio 1:1 molar mass, an identical method was used. For the

lipid sample of POPC/cholesterol/sphingomyelin a molar ratio of 1:1:1 was used. In both cases

the buffer used was PBS (Phosphate-buffered saline) and during the extrusion process both sam-

ples were heated to 50 ◦C.

4.4 Computational analysis

Sets of Raman spectra have been analysed using computational techniques. The set of spectra

may be deconvolved into a multi-component form. By fitting the set of spectra into this form,

gradual changes in molecular structure can be observed.

4.4.1 Multivariate analysis of Raman spectra

Raman spectra could be continuously recorded for a single optically trapped particle, the spectra

were recorded every 30 seconds. Therefore as a liposome was being heated a set of spectra could

be recorded. A multivariate-curve resolution (MCR) algorithm was then used to analyse this

sequence of spectra. The algorithm has been described in [102]. By writing the set of spectra as

a n × m matrix D, with n data points per spectra and m spectra D can be written as,

D = CS T = cAsT
A + cBsT

B.. = A =

k∑
I=1

cI sT
I

where sT
I is an intensity profile of the pure spectra (n dimensional row) and cI corresponds to the

concentration profiles for the sequence of recorded spectra (m dimensional vector), k corresponds
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to the number of components.

The algorithm to find the optimal fit to the experimental data employed an iterative least-squares

method to minimize the error matrix E = D − C f itS T
f it. The algorithm minimizes the variance

in the components across the family of spectra. For the liposome experiments, the set of spectra

were recorded in the C-H stretching band (2783.1 to 3028.9 cm−1). The spectra were normalized

and background subtracted before the analysis was done. The algorithm this is based on is

described in [103].
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Part II

Results and discussion
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Chapter Five - Monitoring phase behaviour

and the mechanical properties of optically

trapped liposomes using light scattering
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5 Monitoring phase behaviour and the mechanical properties

of optically trapped liposomes using light scattering

This chapter describes how the spectroscopic methods discussed in chapters 2 and 4 have been

used to study phase behaviour of optically trapped liposomes. The optical tweezers were used

to isolate an individual unilamellar 1 µm diameter liposome, which was then heated on a custom

designed microscope stage. Three different lipid blends were used in this work to observe the

gel-to-liquid phase transition and changes in the microdomain structure of lipid bilayers. Elas-

tic and inelastic light scattering techniques were used to report on these thermodynamic and

structural changes in the liposome. These experimental measurements on singles liposomes are

contrasted with dynamic light scattering and differential scanning calorimetry results taken on

bulk samples of lipid suspensions. Although phase transitions in lipid bilayers have previously

been observed in cells [104], the complexity of the cell membrane makes identifying these transi-

tions challenging. Therefore, this chapter will focus exclusively on synthetic phospholipid based

bilayer structures.

The first section of this chapter will give a general introduction to the different phase transitions in

lipid bilayers. The second section will provide a detailed description of the specific spectroscopic

techniques used in conjunction with the optical tweezers. In the third section the results of the

experiments are presented with a discussion of their relevance to similar experiments reported in

the literature. Finally some concluding remarks and suggestions for future work are given. The

results presented in this chapter have previously been published in [105].
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5.1 Introduction

It is well known that lipid bilayers exhibit temperature sensitive phase behaviour. Heating or

cooling of a lipid bilayer is accompanied by a change in fluidity and rigidity of the membrane.

In the fluid phase of a lipid bilayer the lipids able to diffuse laterally and rotate about an axis

perpendicular to the membrane. Whilst the lipid bilayer is in the gel phase, the molecules are

constrained in a lattice. Transitions between the two phases can be induced by changing the tem-

perature. The addition of cholesterol, proteins and lipids of other blends to the bilayer affects the

intermolecular forces between lipid molecules and can change the nature of any phase transition

or induce more complex phases in the lipid bilayer.

5.1.1 The main gel to liquid transition

The gel to fluid transition is observed in pure phospholipid bilayers. In this phase transition the

lipid bilayer undergoes the main process from a gel state Lβ, to liquid crystalline state Lα. This

process is known as melting. The main transition occurs at a characteristic temperature, Tm.

There is also a pre-transition leading to the formation of a ripple phase Pβ, the ripple phase is

similar to the gel phase, and exists in a narrow range of temperature immediately below the main

transition. The ripple phase is characterized by undulations on the bilayer surface.

The characteristic gel-to-liquid crystalline transition temperature is governed by the van der

Waals interaction between the hydrophilic tails of lipid molecules. The hydrocarbon chains in

two adjacent lipid molecules are attracted to each other due to the electrostatic forces between

them. The van der Waals interaction is temperature sensitive, and as temperature is increased the

attraction is weakened, due to increasing distance between the hydrocarbon chains of adjacent

lipid molecules in the bilayer.
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Figure 5.1: Fluid phase lipid bilayers showing a pair of lipid molecules diffusing across the
membrane. The top image shows two lipids interchanging laterally, this is shown by a double
arrow. The image below shows the flip-flop interchange of two lipid molecules, a significantly
less energetically favourable way for the lipids to diffuse.

At the transition temperature Tm, the van der Waals forces of interaction have decreased suffi-

ciently so that the lipids may interchange with each other. This can happen by a lateral inter-

change or by a flip-flop mechanism involving the opposing lipid molecule; this is illustrated in

figure 5.1. A lateral interchange is common in the fluid phase, however, the flip-flop mechanism

is not energetically favourable and is much less common.

The transition temperature Tm is determined by the length of the lipid tails. For a longer lipid tail

with more carbon atoms so the van der Waals attraction is stronger and, therefore, more thermal

energy must be supplied for the gel-to-liquid crystalline transition to take place. It is also possible

for some lipids to contain a double bond between the carbon atoms. Lipids with a double bond

are said to be unsaturated. The double bond causes a kink in the lipid tail, increasing the distance

between the adjacent lipid molecules. This can significantly decrease the strength of the van der

Waals attractions between the molecules and thus significantly reduce the transition temperature.
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Tail length Double bonds Transition temperature ◦C
12 0 -1
14 0 23
16 0 41
18 0 55
20 0 66
22 0 75
24 0 80
18 1 1
18 2 -53
18 3 -60

Table 5.1: The transition temperature from the gel-to-liquid crystalline state for lipid bilayers
depending on the tail lengths and the number of double bonds. The table was taken from [106].

Table 5.1 gives the transition temperature for different lipid tail molecules with variable lengths

and number of double bonds. The table shows that the addition of one double bond can decrease

the transition temperature by up to 54 ◦C.

As well as the main gel-to-liquid transition, there is also a pre-transition leading to a state called

the ripple phase. The formation of the ripple phase is not well understood though there are

several theories in the literature, reviewed in [107], it has also been suggested that there may be

several types of ripple phase.

The gel, ripple and fluid phases are illustrated in figure 5.2. The top row shows a cross section

of the lipid bilayer and the bottom row shows the packing order of the lipid heads. The gel and

ripple phases are similar, where the lipids are tightly packed in a triangular lattice configuration

and the tails are in an all-trans straight conformation. The lipid tails are not perpendicular to

the bilayer and the angle to the normal of the bilayer is known as the tilt angle. Whilst the lipid

bilayer is flat in the gel phase, it has a sawtooth structure in the ripple phase [108]. In the fluid

phase, the packing order has been disrupted and the tails are no longer straight. The lipid tails
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Figure 5.2: The gel, ripple and fluid phases of a liposome, the top row shows a cross section of
the lipid bilayer and the bottom row shows the respective packing order.

have partially undergone trans-gauche isomerization at the C-C bonds. A sub-gel transition has

also been identified in lipid bilayers which we have not explored. The sub-gel phase is similar to

the gel, the area per lipid molecule is decreased and the titlt angle is increased [109].

The main transition temperature is an important consideration for liposomes prepared for drug

delivery. In [7] the author investigated optimising a lipid blend to have a transition temperature

slightly below body temperature. When liposomes transition from a gel state to a fluid state they

become more permeable and can slow release their content to the exterior solution. The review

article [110] provides an overview of temperature triggered drug release.

Differential scanning calorimetry (DSC) can be used to investigate the gel-to-liquid crystalline

transition in a lipid bilayer. A DSC measurement is performed by parallel heating of a sample

and a blank reference: maintaining both the sample and reference at the same temperature and

recording the differential rate of heating. Thermocouples are used to independently regulate the
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rate of heating of sample and reference so both are kept at the same temperature. The differ-

ential heat flux versus the temperature exhibits a sharp feature at the transition temperatures.

Differential scanning calorograms for phospholipid bilayers are given in [9].

The gel-to-liquid crystalline transition has also been monitored using spectroscopic experiments.

In [111] and [8], elastic light scattering was used to observe the transition in a suspension of

liposomes. A 633 nm laser passed through suspensions of 100 nm liposomes [111]. By measur-

ing the mean count rate of reflected photons at a 90◦ scattering angle the authors were able to

see a change in intensity of scattered light when the gel-to-liquid crystalline transition occurred

during a temperature ramp. The transition was observed at the known transition temperature of

a saturated phosphocholine lipid across a full-width of 1◦C.

Whilst earlier methods required dispersions of lipids, Raman spectroscopy has been used to mon-

itor affects below and above the gel-to-liquid crystalline transition of a single optically trapped

liposome. In [112], Raman spectra were recorded for an optically trapped DPPC liposome pre

and post transition. Raman scattering is induced by the C-H and C-C vibrational frequencies.

These are effected by the phase of the lipid bilayer, this will be discussed in detail in the results

section.

Their experiment also investigated the permeability of the membrane and the release of the in-

terior solution following the transition. The authors were able to show a gradual release of the

interior solution after reaching the transition temperature Tm. The transition temperature can also

be changed by binding a drug (tricyclic antidepressants ) to the membrane. Raman spectroscopy

has also been used to fully characterize the release of a drug from a single optically trapped

liposome [113].
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5.1.2 The liquid crystalline state in multi-component lipid bilayers and mixed phase be-

haviour

In a cell, the phosphocholine bilayer will be enriched with proteins, sterols and other types of

lipid molecule. Because of this, cell membranes tend not to have easily observable temperature

transitions. It is well known that the presence of cholesterol lowers the gel-to-liquid crystalline

transition temperature and broadens the temperature range over which the transition occurs [114].

In a cell, cholesterol is an essential component that adds rigidity to the bilayer. The addition of a

sterol such as cholesterol to the lipid blend is known to induce the formation of other phases on

the lipid bilayer, at certain temperatures.

Cholesterol disrupts the packing order and can limit the ability of the lipids to interchange lat-

erally and rotationally. Cholesterol is largely hydrophobic and therefore becomes embedded

between two lipids tails as shown in figure 5.3. As the attractions between the long chain lipid

and cholesterol molecules are strongly dependent on temperature this induces new phase tran-

sitions of the fluid bilayer. Within the fluid state, the liquid ordered Lo and liquid disordered

Ld phases can exist. The liquid ordered phase resembles the gel phase, in terms of the lipid

molecules being predominately in an all-trans configuration, but unlike the gel phase, the lipid

molecules are free to interchange and diffuse laterally in the membrane. In the liquid disordered

phase, the local packing order is reduced and the tails undergo a trans-gauche isomerization. The

liquid ordered and disordered phases are illustrated for a lipid bilayer enriched with cholesterol

in figure 5.3.

In addition to the pure phases, the liquid ordered and disordered phases are believed to be able

to co-exist together in a single thermotropic phase (Ld + Lo). In a binary mixture of cholesterol

and phospholipid, the phases Lo, Ld and Ld + Lo have defined boundaries depending on the molar
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Figure 5.3: Two lipid bilayers enriched with cholesterol in the liquid-ordered and disordered
phases. In the liquid-ordered phase (left), the cholesterol (yellow) is limiting the phospholipids
ability to interchange. The tails are also in the all trans conformation. In the liquid-disordered
phase (right), the tails are no longer in the trans configuration and the local packing order has
been reduced.

properties of the different lipid components and temperature.

Figure 5.4 shows the boundaries between Lo, Ld + Lo and Ld phases for a 1-palmitoyl-2-oleoyl-

sn-glycero-3-phosphocholine (POPC) and cholesterol lipid blend. The figure shows that at lower

proportions of cholesterol (or alternatively at higher temperature), the packing order will be de-

creased. The sharpness of the curves show that small increases in the ratio of cholesterol to POPC

can significantly increase the transition temperature. The data shown in figure 5.4 was obtained

by measuring changes in the diffusion constant for fluorescent-labelled lipid molecules embed-

ded in the bilayer structure. It has not been possible to confirm thermotropic phase transitions

Lo ↔ Ld + Lo ↔ Ld by directly measuring enthalpy changes (for instance by DSC).

A 1:1 molar ratio of POPC and cholesterol, at 20 ◦C, will produce a bilayer in the Lo phase.

In this chapter we have used this lipid blend to observe the changes in structure in the vicin-

ity of the proposed transition between liquid ordered and liquid disordered phases. The figure

also suggests that the liquid disordered regime would be observed at a ambient temperature for

POPC/cholesterol bilayers at low concentrations of cholesterol. However, it is preferable to use

the ternary mixture POPC/cholesterol/sphingomyelin as a low concentration of cholesterol could
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Figure 5.4: A phase boundary diagram for a POPC/cholesterol lipid blend taken from [115], the
x axis shows the molar ratio of cholesterol to POPC.

result in a sample with an uneven distribution of lipid components.

The effect of the interaction between POPC, cholesterol and sphingomyelin (SM) on packing

order and thermotropic phases is complex. In the work reported here, egg SM has been used

which has an acyl chain length of 16, (similar to POPC). SM also has a hydrophilic head and

hydrophobic tail, and the molecules are also able to diffuse readily in the bilayer. By the addition

of SM to the lipid mix, the relative concentration of cholesterol has been reduced, this decreases

the ordering of the lipid bilayer.

A phase diagram for the ternary mix of POPC/cholesterol/SM at 37 ◦C is shown in figure 5.5.

The diagram shows that phase boundaries for the Lo, Lo/Ld, Ld and other complex phases relative

to the proportions of POPC, cholesterol and SM. The diagram shows that reducing the proportion

of either SM or cholesterol reduces the degree of ordering of the lipid bilayer, leading eventually
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to a pure liquid-disordered phase. Reducing the concentration of cholesterol reduces ordering

much more significantly than reducing the concentration of SM. As the temperature is increased

the dashed lines shown in figure 5.5 will rise to higher values of xchol and xS M. For a 1:1:1 ternary

mixture it is anticipated that a transition from Lo + Ld to Ld will occur between 30 ◦C and 60 ◦C.

But as for the example of POPC/cholesterol bilayers the phase diagram shown in figure 5.4 was

derived from measuring changes in the diffusion constant for fluorescent labelled lipid molecules

embedded in the bilayer structure. It has not been possible to confirm thermotropic phase transi-

tions between the liquid phases by directly measuring changes in enthalpy via calorimetry.

In addition to the phase behaviour described above, there can also be non-homogeneous diffusion

leading to the segregation of lipid components in a fluid lipid bilayer. This can lead to ordered

microdomains (which are also know as lipid rafts). These have been postulated to be involved in

membrane signalling and trafficking [116]. Although ordered microdomain structures, enriched

in cholesterol and sphingolipids, have been observed to float freely in the fluid matrix of artificial

membranes, there is still controversy surrounding the dimensions of lipid rafts, and whether or

not their existence is only transient in cellular membranes. The ordered microdomain structure

of lipid rafts should not be equated to thermotropic phase-separation (i.e. to regions of Lo phase

surrounded by a wider Ld phases), as the lipid rafts are not thermodynamically stable. Lipid

rafts are microdomains with a lipid structure that only resembles the liquid-ordered (Lo) phase of

model membranes. These ordered raft microstructures could still exist in regions where a single

homogeneous Ld phase is expected to be present. However, lipid rafts are anticipated to be more

widely present in regions of Lo + Ld co-existence [117]. Thus, the model bilayers used to study

the phenomena of lipid rafts will typically be comprised of lipid components in mole fractions

expected to form a mixed phase Lo + Ld bilayer (i.e., in accord with figure 5.4 and 5.5).
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Figure 5.5: A phase diagram for a POPC/cholesterol/SM lipid blend at 37 ◦C taken from [115].
The black dashed lines show the boundaries between the Lo, Lo + Ld, Ld phases.

5.2 Experimental details

The experimental techniques used to observe the temperature induced phase transitions of indi-

vidual vesicles will be described. An explanation of optical trapping, light scattering, Raman

scattering and dynamic light scattering has already been given in the previous chapter. In this

section, the specific experimental techniques relating to the set up of the optical tweezers for

observing phase behaviour of liposomes and dynamic microdomain structures will be explained.
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5.2.1 Microscope apparatus

This section describes the alignment of the microscopes stage, and the optical tweezing laser.

The optimal position for optical trapping of a particle is at a height of approximately 50 µm

above the surface of the cover glass. In the first instance, the 1070 nm filter NF1 shown in figure

3.2 was removed and the power of the laser was attenuated in order to view the Airy pattern on

the camera, resulting from the reflection of the laser from the cover glass. By looking at the

separation of the rings of the Airy pattern, the z position of the objective could be adjusted to

place the focus of the laser beam at the upper surface of the cover glass and then raised to the

required distance of 50 µm above.

A custom made heating plate was used to heat the sample. The design of the plate is specified in

an appendix of this thesis. The appendix also details how the temperature of a trapped particle

can be estimated from the recorded value for the temperature of the surface of the microscope

stage.

The IR-trapping laser was always used at the highest possible power (10 W), as this condition

leads to the most stable operation. To reduce the power of the beam to an optimal value for

optical trapping, the 1
2 -wave plate could be adjusted so that the polarizing beam splitter would

reflect more light onto the beam block. The power of the laser was measured in front of the

spatial light modulator. The beam was attenuated so that the power measured approximately 150

mW at this position (see figure 3.3). The power was measured at this position for convenience

in placing the power meter and ensuring consistent conditions in different experiments. Between

the spatial light modulator and the sample plane there is a further attenuation in laser power. The

final power of the laser in the sample plane is estimated to be approximately 20 mW. The output

power of the 488 nm laser, used for light scattering experiments, was initially set internally to
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12.5 mW. The final power in the sample plane was estimated to be 3 mW.

The dichroic mirror DC2 (see figure 3.3) was adjusted to optimize the back scattered light onto

the photodiode. The adjustable iris was then reduced to a small aperture in order to isolate the

scattered light originating from the trapped particle and eliminate reflected light from the op-

tical surfaces. The position of the trapping laser was then adjusted in three dimensions (on a

sub-micrometer scale) using the spatial light modulator. This was controlled with the LabView

software on the computer. The position could be set on a sub-micrometre scale in three dimen-

sions. By adjusting the position of the trapping laser, the particle could be located in the waist of

the 488 nm laser.

To optimize the detection of Raman scattered laser the spectrometer was initially set to record

at low time resolution (one spectra per second). Despite the weak intensity of the Raman peaks,

by comparing the intensity of the C-H band due to molecules in the trapped particle against the

background peak due to water, the alignment of the particle in the waist of the 488 nm laser could

be refined.

5.3 Results and discussion

Temperature-induced changes in the bending modulus and fluidity of the lipid bilayer in an iso-

lated optically trapped vesicle have been determined by measuring the modulated intensity of

elastic back scattered light. Morphological changes to the lipid vesicle that are a consequence of

the formation or dissolution of microdomains in a fluid bilayer, or transitions between structures

resembling the ideal lamellar phases, have been observed. Raman measurements on optically

trapped vesicles are also reported. The latter technique has been widely used to report on the

short-range packing order of the hydrocarbon chains and rotational diffusion of lipids in bilay-
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ers.

5.3.1 The gel-to-liquid crystalline transition of an optically trapped DPPC liposome

To observe the gel-to-liquid crystalline transition, liposomes containing a single lipid component,

DPPC, were used. DPPC has an acyl chain length of 16 and no double bonds. Table 5.1 gives

an expected main transition temperature of 41 ◦C. In the gel phase, the lipid heads are tightly

packed and arranged in a triangular lattice configuration. The tilt angle of lipid molecules is

32◦ at 19 ◦C and the area occupied per lipid molecule on the bilayer is 0.472±0.005 nm2 [118].

The pre-transition from the gel to the ripple phase is known to occur between 33 ◦C and 35 ◦C

causing a bilayer volume change of of 330±50×10−5 ml/g [119]. Over the main transition, the

area occupied per lipid molecule increases to a value of 0.64 nm2 at 50 ◦C. A bilayer volume

change of 3700±200×10−5ml/g [119] has also been reported.

The sample of liposomes was prepared using an extrusion based method as described in the pre-

vious chapter. The extruded sample was then diluted at a ratio of 1:1000 for the optical tweezing

experiments. The stage was adjusted along the x and y axes in order to locate a liposome. The

z position of the stage was then lowered a further 60 microns after optical trapping to allow for

the thermal expansion of the heating plate. At room temperature, the liposome was located ∼

160 µm above the surface of the cover glass for these experiments. The position of the laser

could then be adjusted in three dimensions using the spatial light modulator to optimize the light

scattering signal recorded on the photodiode or spectrometer.

Figure 5.6 shows the temperature dependence of the back scattered light of the optically trapped

liposome. At 44 ◦C, there is an increase of voltage from 0.235 V to 0.27 V. This is marked on

the figure by the red dotted line labelled Tm.
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The voltage was recorded every 0.25 seconds and the increase in light scattering at 44 ◦C occurs

over only two data points, corresponding to a temperature difference of approximately 0.006 ◦C.

44 ◦C is approximately 3 ◦C higher than the reported temperature. This can be accounted for

by a temperature difference between the sample and the thermocouple. It is conceivable that the

reported temperature difference over this period is not entirely accurate due to small fluctuations

in the heating rate as shown in figure 5.7. In the vicinity of the main transition, the ramp was

approximately +29 m◦C s−1. The heating rate was not regulated, leading to a non-linear increase

but minimising transient fluctuations in temperature. The transition is significantly sharper than

the value of 0.15 ◦C given in the literature for a bulk sample taken by differential dilatometry

[120].

The pre-transition causes a small change in the intensity of back scattered light. In figure 5.6, it

is shown as the red dotted line. It occurs between 40 ◦C and 40.5 ◦C which is also significantly

higher than predicted in the literature. The pre-transition occurs over 4 seconds corresponding to

a temperature difference of approximately 0.14 ◦C. The change in intensity is subtle compared

to the large increase seen for the main transition.

The dramatic change in light scattering, indicating the main transition occurs at a similar tem-

perature to that previously recorded by DSC. A DSC thermogram has been recorded for a DPPC

sample and is shown in figure 5.8. The sharp change in heat flow at approximately 41 ◦C in-

dicates the main transition, and is consistent with the literature. This is shown for both heating

and cooling experiments. 41 ◦C is 3 ◦C lower than that shown by elastic scattering. This can be

accounted for by a temperature difference between the value recorded at the thermocouple and

at the waist of the beam. A detailed explanation of this is given in the appendices of this thesis.

The example shown in figure 5.6 is representative of the light scattering trace of several different
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Figure 5.6: The back scattered 1070 nm light from an optically trapped DPPC liposome over the
unregulated temperature ramp of 0.025 ◦C per second at low temporal resolution. A significant
rise in light scattering is seen at 44 ◦C indicating the main transition from the ripple phase to
fluid phase, this is marked by the red dotted line labelled Tm. The pre-transition between the gel
phase and ripple phase is also indicated between 40 ◦C and 41 ◦C by a small increase in light
scattering.

experiments. Seven examples are shown in figure 5.9 and 5.10. The examples shown in figure

5.10 also include the elastic light scattering (red) as the liposome was cooled. No temperature

transition can be detected by light scattering as the liposome was cooled. The only explanation
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Figure 5.7: The heating rate of the aluminium plate, between 38 ◦C and 48 ◦C (left) and between
43.9 ◦C and 44 ◦C (right).

Figure 5.8: Differential scanning calorimetry thermograms of DPPC. A 20 µg sample of the
concentrated suspension of liposomes was used; the scan rate was 0.5 ◦C/min. The black line
shows the heating trace and the red line shows the cooling trace.

for the absence of an abrupt change is supercooling of the fluid phase of the vesicle. This effect

leads to a dramatic difference between the heating and cooling profiles for light scattering in

comparison to the minor hysteresis in the main transition temperature observed by differential
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Figure 5.9: The profile of the back scattered intensity, at 1070 nm, measured for 4 different
optically-trapped DPPC liposomes during the heating stage of a temperature ramp. The data for
Liposome D is also shown in figure 5.6.

scanning calorimetry, shown in figure 5.8. The reason that the difference is pronounced must be

the result of the small amount of lipid present in a single isolated vesicle, the relative high rate

of cooling in the light scattering experiment and the absence of large numbers of discontinuities

or defects in the lipid bilayer structure of a single vesicle. The light-scattering measurement

would be insensitive to a liquid-to-gel transition that is delayed (by minutes) as the result of

supercooling.

In figure 5.6 the main transition occurred over only one data point. To accurately time the length

of the transition, a higher time resolution photodiode was used. This photodiode was not sensitive
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Figure 5.10: The profile of the back scattered intensity, at 1070 nm, measured for 3 different
optically-trapped DPPC liposomes during the heating (black) and cooling (red) stages of a tem-
perature ramp.

to infra-red laser light, and so the 488 nm laser was used as the scattering laser. The high

resolution photodiode recorded 250000 data points per second. The 488 nm laser is significantly

less powerful than the 1070 nm laser, so it is not capable of optical trapping, the 1070 nm laser

was used to optically trap the liposome. As the pre-transition occurred over several data points

there was no need to investigate this further.

Figure 5.11 shows the high temporal resolution scattering intensity against time over three sec-

onds. An increase in scattering intensity is shown at ∼ 1.1 s. The time for the scattering intensity

to go from minimum to maximum is 54±5 ms, corresponding to a temperature difference of

0.001◦C. The figure also shows gaps in the scattering intensity corresponding to the time when

the computer was acquiring the 250000 data points from the DAQ module, they are approxi-

mately 0.1 seconds in width.
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Figure 5.11: The 488 nm back scattered light of an optically trapped liposome against time and
temperature taken at high temporal resolution. An increase in scattered light is seen just after 1
second, the width is highlighted in red to show the length of the transition 54±5 ms.

Both light scattering profiles, in figures 5.6 and 5.11, show an increase in intensity following the

main transition, from ripple to fluid. An increase in the back scattered intensity appears to be a

consequence of deformation of the lipid membrane during the course of the phase transition, re-

sulting in a larger area of lipid bilayer located in regions of higher power density of the trapping

laser; and a smaller vesicle diameter along the equatorial axis. Images of the light scattering pro-

file, recorded on a charge-coupled device, from an optically-trapped DPPC liposome are shown

in figures 5.13 and 5.12 just below and just above the temperature where the dramatic change in

the intensity of light scattering is detected. The acquisition rate was 1 frame per second with an

80 ms integration time.

The change in the diameter of the diffraction rings observed in the images support a conclusion

that the light scattering change could arise from deformation of the lipid membrane with an

increase in the polar length and a concomitant decrease in the equatorial length. That is, the

liposome deforms from a sphere to prolate sphere, a prolate spheroid is shown in figure 5.14.

The image shown in figure 5.12 is a characteristic example of the change in elastic scattering
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Figure 5.12: Images of the back scattered light, at 1070 nm, from an optically-trapped DPPC
liposome. Snapshots of the diffraction pattern of scattered light were recorded at a 1 s interval
during a temperature ramp. The images shown were recorded (a) immediately before, and (b)
immediately after, a dramatic change in the overall scattering intensity was observed; i.e. across
the ripple to fluid transition. A bright field image of a graticule (-10 to +10 µm) is reproduced in
the centre panel.

seen on the camera, another example is shown in figure 5.13.

The magnitude of the gradient force exerted on a liposome in an optical trap is sub-pN, and this

has been shown to be sufficient to deform liposomes, with a spherical diameter of approximately

1 µm-diameter, to bring more lipid into the trap [121]. The gel-to-liquid crystalline transition

significantly decreases the rigidity of the bilayer such that the sub-pN force may be sufficient to

drag part of the bilayer toward the centre of the beam and thus increase the light scattering signal.

Recently it has been shown that for a fluid 100 nm DPPC liposome a 500 pN would be required
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Figure 5.13: Images of the back-scattered light, at 1070 nm, from an optically-trapped DPPC
liposome. Snapshots of the diffraction pattern of scattered light were recorded at a 1 s interval
during a temperature ramp. The images shown were recorded (A) and (B) immediately before,
(C) during and (D) immediately after, a dramatic change in the overall scattering intensity was
observed.

Figure 5.14: A prolate spheroid, the y axis is the polar length and the equatorial length is the x
axis.

to produce a 1.5% elongation in size [122]. In our case of a 1 µm liposome the curvature has been

significantly reduced and so a much smaller force would be required to produce a deformation

in size. As there is also 3-4 times increase in bending modulus when moving from the gel to

liquid crystalline phase, it is conceivable that the increase in light scattering partly arises due to

a deformation induced by the optical tweezers and increase in fluidity of the bilayer.
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5.3.2 Raman measurements of liposomes

Raman spectroscopy was used to observe the changes in molecular structure over the temperature-

induced transition. Figure 5.15 shows three Raman spectra in the C-H region for an optically

trapped DPPC liposome in the gel (a), ripple (b) and fluid phases (c). For a DPPC liposome

the C-H region comprises the symmetric (d+ 2840 cm−1) and antisymmetric (d− 2870 cm−1 )

methylene stretch, the Fermi resonance of the symmetric methyl stretch (r+
FR 2920 cm−1 ) and

the antisymmetric methyl stretch (r− 2960 cm−1). A weak band is also observed at 3030 cm−1

for the antisymmetric CH3 stretch of the choline head group. The notation and values for these

peaks are taken from [123]. Spectra a) is also consistent with the Raman spectra reported in [61]

and [121]. Raman spectra for DPPC have previously been obtained for a supported lipid bilayer

[124] and an optically trapped liposome [125] in the gel, ripple and fluid phases.

Some background on other spectral regions will be discussed here. The main features in Raman

spectra of lipid molecules are analogous to those of long chain n-alkanes. There are distinct

Raman bands within the C-C stretching region corresponding to tight and loose packing of the

hydrocarbon chains in different thermotropic phases, namely: the asymmetric and symmetric

C-C stretching bands at 1060 cm−1 and 1130 cm−1, which originate from all-trans C-C bonds;

and the skeletal C-C stretching band at 1080 cm−1 from gauche segments of the alkyl chain. The

relative intensity of the bands at 1130 cm−1 and 1080 cm−1 has been used to estimate the number

of trans-conformational segments per alkyl chain [126]. The intensities of all the bands in the C-

C stretching region are significantly lower than the bands in the C-H region, which is the reason

why the latter was recorded in our experiments.

In a further spectral region, a blue-shift in the CH2 twisting mode at 1300 cm−1 is also consis-

tent with the disordered phase of lipid bilayers and structures that contain a broader distribution
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Figure 5.15: Three Raman spectra of an optically trapped DPPC liposome in the C-H region.
Spectra a) is at 20 ◦C in the gel phase spectra b) is in the ripple phase and c) is in the liquid
phase.

of gauche rotamers. The packing of the hydrocarbon chains also strongly affects the relative

intensity of bands for the CH2 twisting mode and the CH2 scissor mode at 1440 cm−1 but, un-

like bands in the C-C stretching region, these methylene bands are not unique for trans and

gauche segments, i.e. ordered and disordered lipid structures. The frequencies of the bending

and stretching methylene modes are sensitive to the number of gauche segments. This is due to

increasing steric repulsion between neighboring chains. However, the blue shift can be difficult

to resolve in the C-H stretching region due to the overlapping band structure. All the methlyene

bands in this region are much weaker than the C-H stretching bands. The CH2 wagging mode at

1370 cm−1 is an extremely weak band.

The intensity ratio between the d− and d+ bands, d+

d− , or, alternatively, the d− and r+
FR bands r+

FR
d− ,
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has been reported in the literature to provide a qualitative measure of short-range packing order

of the hydrocarbon chains, where a larger ratio is indicative of greater order [10]. In figure 5.15,

the decrease in both of these ratios above the main transition for a single DPPC liposome is

consistent with previous measurements. As with the elastic light scattering measurements, the

gel-to-ripple pre-transition is subtle in comparison with the ripple-to-fluid transition. Raman

measurements are unsuitable for high temporal resolution analysis and so the sharp width of the

transition shown with the elastic scattering results cannot be reproduced for Raman.

5.3.3 Dynamic light scattering

The change in size and rigidity of the lipid bilayer was also investigated using dynamic light

scattering. In both the high and low temporal resolution experiments, the droplet size is similar

to the wavelength of the scattering laser. This means that the scattering falls into the Mie regime.

In the Mie scattering regime, an increase in light scattering is expected when there is a decrease in

droplet size. Figure 5.6 and figure 5.11 both show increases in light scattering. The change in size

over the temperature-induced transition was recorded using dynamic light scattering. To record

DLS, a 1 ml sample of a 1:100 diluted lipid solution was placed in a cuvette in the Zetasizer.

The scattering intensity was recorded at 20 ◦C and 50 ◦C and used to calculate average liposome

size, polydispersity index and a size by number distribution. This was calculated using software

within the Zetasizer.

Figure 5.16 shows the number distribution for a sample of DPPC liposomes at 20 ◦C and 50 ◦C.

The figure shows two peaks indicating the size distribution by number of the sample at 20 ◦C

(red) and 50 ◦C (green). The values of the average diameter of the liposomes and polydispersity

index are given in table 5.2. The dynamic light scattering results show that at room tempera-
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Figure 5.16: The number distribution of a 1 ml sample of DPPC liposomes at 20 ◦C red, and 50
◦C green calculated using dynamic light scattering.

ture the average diameter of the liposomes was 973.1 nm, figure 5.16 also shows a single peak

centred at approximately 1 µm indicating that the extrusion process had been successful. The

polydispersity index (PDI) describes homogeneity of the particle size. A PDI of less than 0.2

is considered to be a monodisperse sample. At both 20 ◦C and 50 ◦C, the PDI is below 0.2

indicating a monodisperse sample.

These results also show a significant decrease in the size of the liposome over the main transition

of the lipid bilayer: zavg decreases from 973.1 nm to 349.1 nm. This corresponds to the results

from the optical tweezing experiments, where a significant increase in scattering is seen which

implies a decrease in particle size in accord with the Mie scattering theory. The reduction in

the interior aqueous volume could be attributed to a decrease in stiffness of the lipid bilayer and

an increase in membrane permeability in the fluid phase leading to the partial collapse of the

spherical shape of the vesicle.

156



Temperature zavgnm PDI
20 ◦C 973.1 0.177
50 ◦C 349.1 0.175

Table 5.2: The average diameter zavg and polydispersity index of a sample of a 1ml DPPC lipo-
somes at 20 ◦C and 50 ◦C.

5.3.4 Microdomain behaviour in fluid POPC/chol bilayers

The addition of cholesterol to the phosphocholine lipid vesicle results in more complex phase

behaviour. A lipid bilayer can exist in a liquid ordered Lo phase and a mixed liquid ordered/dis-

ordered phase Lo/Ld, where transient ordered microdomains can also appear, and a liquid disor-

dered Ld phase. In our experiments the lipid POPC was mixed with cholesterol to create binary

1:1 liposomal bilayers.

As shown in figure 5.3, the intercalation of cholesterol disrupts the triangular lattice configuration

of the phosophocholine lipid molecules. In the fluid phase, a straight trans conformation of

the hydrocarbon chains is favoured, where the lipids tilt angle is negligible. This results in a

higher degree of short-range order than typical in the fluid phase of a lipid bilayer. For a single

component POPC lipid bilayer the average area per lipid molecule is 0.683 nm2 [127], but this

can decrease by 40% with a mole fraction of cholesterol of > 0.5 [128].

The experimental details were similar to previous experiments. After the lipid sample of POPC/-

cholesterol had been extruded, a 1:1000 diluted sample of POPC/cholesterol and buffer (PBS)

was prepared. A 50 µl drop was then pipetted onto a 1.5 cover glass resting on the heating plate.

The liposome was then optically trapped by adjusting the position of the stage.

As before the sample was heated and the 1070 nm light scattering was recorded at low temporal

resolution. The left side of figure 5.17 shows the low time resolution temperature dependence of
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Figure 5.17: The back scattered 1070 nm light from an optically trapped POPC/cholesterol lipo-
some over the unregulated temperature ramp of 0.025 ◦C per second at low temporal resolution
(left). A small rise in light scattering is seen between 47 ◦C and 47.5 ◦C. The back scattered 488
nm light from an optically trapped POPC/cholesterol liposome taken at high temporal resolution
(right). The full width of the transition is 4±2 ms illustrated by the red box, labelled Tm.

the 1070 nm light scattering for an optically trapped POPC/cholesterol liposome. An unregulated

temperature ramp of approximately 0.025 ◦C s−1 was applied to observe the transition between

the Lo phase and co-existing Lo/Ld phases. The example shown in figure 5.17 is a representative

trace, it is shown for two liposomes in figure 5.19.

This increase in scattering can be considered as a cause of a deformation from a spherical shape

to a prolate spheroid aligned along the propagation of light, this could be attributed to the force

from the trapping laser. Like the gel-to-liquid transition the Young’s modulus of lipid bilayers

in disordered and ordered phases is considered in [122]. It is shown that for higher proportion

cholesterol bilayers, larger forces are required to make a significant deformation of the bilayer.

A DSC trace is shown for a sample of POPC/cholesterol in figure 5.18. Although a change in

membrane fluidity has been observed over a heating ramp for POPC/cholesterol in [115] and

a change in elastic scattering has also been observed for a single optically trapped liposome in
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Figure 5.18: Differential scanning calorimetry thermograms of POPC/cholesterol. A 20 µg sam-
ple of the concentrated suspension of liposomes was used; the scan rate was 0.5 ◦C/min. The
black line shows the heating trace and the red line shows the cooling trace.

Figure 5.19: The profile of the back scattered intensity, at 1070 nm, measured for 2 different
optically-trapped POPC/cholesterol liposomes during the heating stage of a temperature ramp.
The data for Liposome A is also shown in Figure 5.17.

figure 5.17, no enthalpy change is detected by DSC. As such, a true thermotropic phase transition

cannot be confirmed for the transition from an ordered lipid bilayer to the ordered/disordered

bilayer.

A small rise in light scattering was observed over two data points corresponding to a temperature

difference of 0.006 ◦C. The transition was observed at 47.3 ◦C, which is consistent with reported
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diagrams shown in figure 5.4. The figure shows a small increase in intensity of the light scat-

tering. In the Mie regime an increase in the intensity of back scattered light would normally be

due to a decrease in the size of the vesicle. The magnitude of the intensity change, relative to the

signal noise, is much lower than for the gel-liquid crystalline transition. This could be attributed

to the subtle nature of transitions between liquid disordered and liquid ordered domains.

As the transition occurred over only two data points, to accurately time the morphological change

of the liposome over the transition, the higher temporal resolution photodiode was used. The

right side of figure 5.17 also shows the high resolution light scattering time dependence of the 488

nm light of an optically trapped POPC/cholesterol liposome. Like the low temporal resolution

data, a small increase in scattering intensity is seen, between 0.2 s and 0.3 s. The transition was

observed across 4±2 ms, which is highlighted in red, this corresponds to a temperature difference

of 0.0001 ◦C.

Figure 5.20 shows a set of Raman spectra in the C-H stretching region, recorded from an op-

tically trapped POPC/cholesterol liposome taken as it was heated from 20 ◦C to 50 ◦C. Raman

spectra for lipid bilayers comprising of 1:1 POPC/cholesterol and 1:1 DPPC/cholesterol have

been shown in [129] for a range of temperatures. For the POPC/cholesterol bilayer this work

showed a decrease in the ratio of peaks, d+

d− between 50 K and 315 K, between 200 K and 315

K this decrease was from 1.3 to 1. Figure 5.20 shows a small increase in the ratio d+

d− between

temperatures 298 K and 315 K from 0.95 to 1.1.

The small increase in the ratio d+

d− would normally indicate greater packing order across the

bilayer, however it would be expected that between the Lo and Lo/Ld phases there would be a

decrease in local packing order. This is perhaps due to the 488 nm laser only probing a relatively

small layer of the bilayer.
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Figure 5.20: a) A set of Raman spectra for an optically trapped POPC/cholesterol heated from
20 ◦C to 60 ◦C. Spectra were recorded every 30 seconds. b) The two principle components
of the set of spectra. c) The component concentrations for the set of spectra shown in (a). d)
The residual for the 35th spectrum, recorded after 17 minutes, following optimisation of the
component profiles.

The results of multivariate curve resolution on the sequence of Raman spectra is shown in the

figure labelled (b) and (c). A fitting of two components captured 99.0% of the variance in the

experimental data. In (d), the residual is shown for a representative example from the sequence

of experimental spectra shown in (a). The residual in (d) corresponds to 19 minutes, where the
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component concentrations are approximately equal. The signal remaining in (d) appears to be

stochastic, without any trace of the C-H stretching band, and hence supports the suitability of the

multivariate model. The chemometric analysis suggests that the Raman intensity profile changes

continuously, and smoothly, between 20 and 60 ◦C. The fitted components, A and B, bear a close

resemblance to the initial and final experimental spectra, respectively. The gradual change in

the intensity profile for the sequence of Raman spectra in Figure(a) contrasts with the discrete

change in the light-scattering profile assigned to the Lo → Lo/Ld transition in figure 5.17. Hence

elastic-light scattering and Raman spectroscopy are sensitive to different physical changes in the

lipid bilayer. While a discrete phase transition can be determined by elastic-light scattering, the

changes in ensemble-averaged properties of the lipid molecules in the bilayer are reported in

the Raman spectra. The ensemble averages for the lateral packing of hydrocarbon chains and

rotational diffusion of lipids appear to change continuously across a broad range of temperature

near the phase boundary according to the Raman spectral profiles.

To characterize the change in size of POPC/cholesterol liposomes as they were heated dynamic

light scattering was used. A sample of POPC/cholesterol and buffer at a dilution of 1:100 was

used. Figure 5.21 shows the size distribution by number for a 1 ml sample of POPC/cholesterol

at 20 ◦C (red) and 50 ◦C (green). As before the red peak is centred around 1 µm, indicating a

successful extrusion.

Table 5.3 shows the values of zavg and PDI taken from the DLS experiment. The table shows a

small increase in size from 811.9 nm to 869.5 nm between the two temperatures. As the change

in size is small it is likely that the change in elastic scattering shown in figure 5.17 is largely due

to a decrease in rigidity. The table also shows the PDI at 20 ◦C and 50 ◦C, at both temperatures

it is low enough for the sample to be considered monodisperse. There is also a significant rise in

the PDI between the two temperatures.
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Figure 5.21: The number distribution of a 1 ml sample of POPC/cholesterol liposomes at 20 ◦C
(red), and 50 ◦C (green) calculated using dynamic light scattering.

Temperature zavg nm PDI
20 ◦C 811.9 0.084
50 ◦C 869.5 0.15

Table 5.3: The average diameter zavg and polydispersity index of a sample of 1:1 POPC/choles-
terol liposomes at 20 ◦C and 50 ◦C.

5.3.5 Microdomain behaviour in fluid POPC/chol/SM bilayers

To observe the transition from the liquid ordered/disordered phase to liquid disordered phase a

ternary mix of POPC, cholesterol and sphingomyelin (SM) was prepared with 1:1:1 molar mass.

This gives a liquid ordered/disordered bilayer Lo/Ld at 20 ◦C and liquid disordered bilayer Ld at

50 ◦C. For the optical tweezing experiments, the extruded sample was diluted 1:1000 in PBS and

a 50 µl droplet of this solution was pipetted onto a No 1.5 thickness glass slide resting on the

heating plate. A liposome was then optically trapped by adjusting the stages position in the x

and y directions. The liposome was heated using an unregulated temperature ramp of 0.025 ◦C

per second.
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Figure 5.22: The back scattered 1070 nm light from an optically trapped POPC/cholesterol/SM
liposome over the unregulated temperature ramp of 0.025 ◦C per second at low temporal resolu-
tion (left). A rise in light scattering is seen between 42 ◦C and 43 ◦C. The back scattered 488 nm
light from an optically trapped POPC/cholesterol/SM liposome taken at high temporal resolution
(right). The full width of the transition is 30 ± 5 ms illustrated by the red box.

The left side of figure 5.22 shows the temperature dependency of 1070 nm light scattering at low

temporal resolution from an optically trapped POPC/cholesterol/SM liposome. The increase in

scattering occurs over only two data points corresponding to a temperature difference of 0.006

◦C. Much like the liquid ordered to liquid ordered/disordered the change in intensity is much

subtler than for the gel-to-liquid crystalline transition. The phase transition was observed at 42.1

◦C, which is consistent with reported phase diagrams. The trace shown on the left side of figure

5.22 is a representative example, it is shown for two liposomes in figure 5.24. Again the increase

in scattering can be attributed to a deformation of the bilayer from the decrease in rigidity as

described in [122].

A DSC trace is shown for a sample of POPC/cholesterol/SM in figure 5.23. Like the POPC/c-

holesterol sample, no enthalpy change can be detected in the sample. Therefore no thermotropic
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Figure 5.23: Differential scanning calorimetry thermogram of POPC/cholesterol/SM. A 20 µg
sample of the concentrated suspension of liposomes was used; the scan rate was 0.5 ◦C/min. The
black line shows the heating trace and the red line shows the cooling trace.

Figure 5.24: The profile of the back-scattered intensity, at 1070 nm, measured for 2 different
optically-trapped POPC/cholesterol/sphingomyelin liposomes during the heating stage of a tem-
perature ramp. The data for Liposome B is also shown in figure 5.22.

phase transition can be confirmed for the dissolution of ordered microdomains within the largely

disordered bilayer.

The right side of figure 5.22 shows the time dependency of the 488 nm light scattering at high

temporal resolution. The transition, Lo/Ld to Ld, is shown by an increase in scattering from
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approximately 0.2 V to 0.24 V, the width of the transition is highlighted in red in the figure. The

highlighted red area corresponds to a time of 30±5 ms and the lower limit for the full width is

0.001 ◦C. In [130], the width of this transition was measured using imaging techniques (iSCAT)

as being less than 100 ms, though this was the limit of the experiments temporal resolution.

Figure 5.25 a) shows a set of Raman spectra recorded for a single optically trapped POPC/choles-

terol/SM liposome as it was heated from 20 ◦C to 60 ◦C. Spectra were recorded every 30 seconds

and there are a total of 66 spectra. The relative intensity of the spectra rises over the temperature

ramp due to the thermal expansion of the heating plate. The difference in ratios d−
d+ , r+

FR
d− can again

be used as a measure of packing order. There is a small increase in the ratio d−
d+ between the first

and last spectra. This is contrary to the expected result for a decrease in packing order. However

there is also a strong increase in r+
FR
d− , which is known to indicate a decrease in packing order.

Using the multivariate Raman analysis algorithm the set of spectra shown in a) can be split into

a component form. The algorithm splits the set of spectra into two components accounting for

99.4% of the variance of the fit. The fitted components, A and B, bear a close resemblance to the

initial and final recorded spectra, respectively. The result of the multivariate analysis is shown

in c), the spectra are marked with circles and the component concentrations are shown as red

and blue lines. The analysis shows a gradual linear change in the concentration of the respective

components.

In Figure 5.25 (d), the residual is shown for a representative example from the sequence of

spectra to illustrate the quality of the analytical fit to the experimental data. The example in

figure 5.25 (d) corresponds to the measurement at 17 minutes, which contains approximately

equal concentrations of the two components and exhibits the most significant residual.
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Figure 5.25: a) A set of Raman spectra for an optically trapped POPC/cholesterol/SM heated
from 20 ◦C to 60 ◦C. Spectra were recorded every 30 seconds. b) The two principle component
profiles of the set of spectra c) The component concentrations for the set of spectra shown in (a).
d) The residual for the 35th spectrum, recorded after 17 minutes, following optimisation of the
component profiles.

5.4 Conclusions and future work

The results described in this chapter demonstrate that the temperature-induced phase transitions

and the formation and dissolution of ordered microdomains in a single liposome can be moni-
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tored by light scattering.

A more complete study of the temperature-induced transitions could be undertaken for lipid

mixes with different acyl chain lengths, different numbers of double bonds and of different sizes.

To carry out this work a more refined system for controlling and recording temperature could be

used to give a precise reading of the temperature difference over the transition. One possibility

is to design a small environmental chamber that is compatible with the optical tweezers and can

control the temperature ramp with high precision. This could potentially also resolve the problem

of the heating plate expanding.

The Raman spectra shown in this chapter and the literature show a gradual change in the local

molecular packing order of the lipid bilayers, over the temperature ramp, for three different lipid

blends. This can be contrasted with the sharp changes in elastic light scattering occurring at

the established transition temperatures. It can be inferred that there is a continuous change in

packing order as a bilayer is heated, eventually leading to a sharp change in the droplets size or

rigidity.

The experiments discussed in this chapter also investigate the formation and dissolution of or-

dered microdomains within a lipid bilayer. There is controversy surrounding the behaviour of

lipid rafts, it is unclear whether the structure of POPC/cholesterol bilayers should be described

by phase separated ordered and disordered regimes or a gradual change in homogeneity. By mea-

suring an area of the spherical bilayer corresponding to a few micrometers we are able to show a

change in elastic scattering corresponding to a change in bending modulus (a decline in rigidity)

at the reported temperatures for the dissolution of ordered microdomains. It is likely that these

abrupt changes correspond to the point when ordered microdomains cease to exist or appear in

a largely disordered bilayer. The DSC results showed no change in heat flux at the correspond-
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Figure 5.26: A microfluidic device, there are two inlets typically one is used for liposomes and
the other filtered inlet is used for solutions of the toxin or a fusion agent. The speed of the inlet
flows is configured so that the two solutions form a laminar flow, separating the two solutions. A
liposome can then be optically trapped and dragged into the other solution.

ing temperatures, this can be compensated for as the ordered microdomains are continuously

assembling and disassembling.

The bending rigidity for cholesterol enriched lipid bilayers has previously been investigated for

giant unilamellar vesicles of approximately 20 µm diameter in [131]. By video microscopy, the

bending modulus of the liposome is recorded for liposomes at different temperatures and different

cholesterol concentrations. Though the experiment did not show a likely decrease in rigidity

of the bilayer it is likely that the optical tweezing experiment is significantly more sensitive

to the subtle change in rigidity. The optical tweezers are likely to deform the liposome to a

prolate sphere and therefore induce an increase in light scattering. The molecular diffusion across

a phosphocholine/cholesterol has previously been observed to exhibit a smooth change with

increases in temperature [132], however it is relatively likely that the diffusion in the disordered

bilayer is unaffected by the local formation of ordered microdomains within the bilayer.
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Overall optical trapping has been shown to be a valuable method to study changes in an individ-

ual liposomes structure, elastic scattering and Raman scattering can be used to probe changes

in molecular structure and morphology. Outside of temperature-induced transitions there are

many other phenomena that could be observed for a single vesicle using optical tweezing. The

absorption of a membrane protein on a liposomal bilayer could be observed using both elastic

and inelastic techniques. The fusion of two liposomes could also be observed using elastic light

scattering techniques, like temperature transitions liposome fusion is used as a method for drug

delivery.

These types of experiment rely on being able to expose an optically trapped liposome to another

solution, this can be accomplished using microfluidic devices. The optical tweezing group at

the University of Leicester is currently investigating both protein absorption and liposome fu-

sion. Silicon microfluidic devices fhave already been designed and built, a diagram showing the

structure of such a device is shown in figure 5.26.
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Chapter Six - Elastic light scattering and

mathematical modelling of the coalescence

of aerosol microdroplets
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6 Elastic light scattering and mathematical modelling of the

coalescence of aerosol microdroplets

This chapter contrasts experimental elastic light scattering measurements with the mathematical

modelling of the coalescence of liquid aerosol droplets. The results presented in this chapter have

previously been published in [133]. The introduction to this thesis describes how the coalescence

process is driven by the Reynolds number which describes the ratio of inertial to viscous forces.

The early stages of coalescence are divided into two regimes, an initial viscous regime and then

an inertial regime [5]. After the two droplets make contact, the composite droplet undergoes a

viscously damped oscillation [2]. In the case of a highly viscous droplet the oscillation is said

to be over damped by viscosity, the spherical shape of the composite droplet is recovered by a

gradual increase in the height of the handle. In this chapter both over damped and under damped

droplets are considered.

The orientation of the coalescence event in the optical trap is also considered (i.e. transverse and

parallel to the imaging plane). The elastic light scattering trace is dependant on the position of

the droplet (relative to the propagation of light). These are shown to probe different modes of the

oscillation with different sensitivities. Mathematical modelling allows for a complete analysis of

this behaviour.

The results presented in this chapter focus on droplets of radius 6-10 µm. The aspect ratio of the

simulations is shown to correspond with the oscillation observed by elastic back scattered light

measurements. In the viscous case, the gradual fall in light scattering following coalescence is

also fitted against the aspect ratio. Here, images taken using a high frame rate camera can also

be compared with simulated images. In this chapter, high frame rate camera images, elastic light

172



scattering and mathematical modelling techniques are compared to analyse the coalescence of

aerosol droplets with different viscosities. The initial trajectory of the moving droplet relative to

the optical trap is also considered.

6.1 Experimental and computational techniques

This section will give a brief description of the experimental and computational techniques used

to analyse the coalescence of liquid aerosol droplets. As a description of the design of holo-

graphic optical tweezers has already been given in chapter four this will not be discussed in

depth again. The elastic light scattering measurements of the coalescence of optically trapped

aerosol droplets shown in this chapter were taken at the University of Bristol. Rather than give

a complete description of these optical tweezers the important differences between those used at

the University of Leicester will be outlined.

Similarly, as the finite element procedure to used model the coalescence has been described in

detail in chapter two this will not be described again. As the process produces a set of coordinates

in two dimensions and a time stamp for each stage of the coalescence, the processes used to

recover the aspect ratio over time of the droplet will be given. A description will be given of

how the coordinates are used to produce videos of the coalescence using the JReality software

package.

6.1.1 Optical tweezers measurements

The optical tweezers used at the University of Bristol are similar to those used in the previous

chapter. The trapping laser is guided by a series of mirrors and lenses onto a spatial light modu-

lator which sets the phase pattern on the beam. The trap is created by an inverted high numerical
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Figure 6.1: A simplified schematic of the optical tweezers used at the University of Bristol.

aperture microscope objective. Dichroic mirrors are used to reflect light from the LED and scat-

tered light onto a photodiode and CCD. A simplified schematic is shown in figure 6.1; it was

produced at the University of Bristol.

The trapping laser used was a visible 532 nm laser. The 532 nm laser is known to produce

an optical heating effect of 1-10 mK on the aerosol droplet whereas the 1070 nm laser gives

a heating effect on the order of 1 K [134]. Previously the coalescence experiment has been

compared between a 1070 nm and 532 nm trapping laser [1]. If the 1070 nm laser is used to trap

the droplet, then the composite droplet undergoes heating leading to evaporation.

The aerosol flow was generated inside a sealed chamber using a nebulizer (Omron NE U22),

the trapping chamber is isolated from the microscope with a cover slide (Chance Glass, # 0
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thickness). It was also possible to flow dry and humidified nitrogen into the chamber to control

the relative humidity (RH). The RH could then be measured at the outlet of the flow using a

capacitance probe. The aerosols viscosity is strongly effected by changes in RH. This allows the

coalescence to be recorded at different viscosities.

The spatial light modulator could be used to create two optical traps above the microscope ob-

jective. The SLM is controlled in the same way as discussed in chapter four, the position can be

adjusted in 3 dimensions at sub-micrometer accuracy. As the SLM is controlled using a com-

puter the position of one trap can be dragged toward the other, once the droplets are sufficiently

close together the coalescence process will begin. This could be done so that the coalescence

was triggered parallel to the trapping laser or transverse to the propagation of light. The elastic

light scattering from the 532 nm laser was then recorded on a high resolution photodiode. The

photodiode was connected to an oscilloscope. The oscilloscope was triggered so that once the

coalescence process began it would acquire the modulated intensity of the light scattering.

Images could also be recorded using a high frame rate camera (time resolution < 10 µs)(Vision

Research, Phantom v. 7.3), this temporal resolution is shown to be appropriate for high viscosity

droplets, but is unable to capture detailed features from low viscosity aerosol. Images were

collected, and the contrast of these images was enhanced using the ImageJ software package in

order to more clearly show the position and shape of the droplets.

6.1.2 Computer simulations

The finite element procedure described in the introduction chapter has been used to simulate the

coalescence of aqueous aerosol. The simulation gives a complete description the dimensions

of the droplet over time. It produces coordinates in x and y for one quadrant of the compos-
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ite droplet. These coordinates are then rotated to produce 3D images, this can be done as the

coalescence is equivalent in 2 and 3 dimensions [5].

The oscillation in elastic back scattered light for coalescing optically trapped aerosol droplets is

compared to the oscillation in aspect ratio for the simulated coalescence. That is for each time

step, the value of y at x = 0 is divided by the value of x at y = 0 (in top right quadrant). The code

used to calculate the aspect ratio is given in appendix B.

In the high viscosity case, the light scattering measurement is inappropriate to probe the mor-

phological change. Instead images are taken of the coalescence using the high speed camera

allowing for a direct comparison of the shape of the droplet. The high speed camera has a time

resolution of <10 µs and so an exact time stamp cannot be specified, therefore the simulated

images correspond to the midpoint of the exposure time.

6.2 A comparison of mathematical modelling with previous light scatter-

ing results

Firstly, the mathematical modelling techniques will be compared to the coalescence results pre-

sented for aqueous aerosol in [1] which were also recorded at the University of Leicester. In [1],

an aqueous solution of aerosols were nebulized with an NaCl content of 35 gL−1. A droplet was

then optically trapped with the 532 nm optical trap. Another droplet was then allowed to flow

into the trap freely to induce coalescence.

For water, the values of the physical properties at room temperature governing the coalescence

process are given by surface tension σ=73 mNm−1 and shear viscosity 1.0 mPa s. The nebulizer

is known to generate droplets of radius 1-6 µm, the droplets were modelled as having radius r =4

µm.
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Figure 6.2: The scaled high resolution elastic light scattering of optically trapped aqueous
droplets over the coalescence. The light scattering is sampled at 1 GHz with 14 ns rise time,
the figure was taken from [1].

Figure 6.2 shows the elastic back scattered light during the coalescence of the two aqueous

aerosol droplets as presented in [1]. The light scattering shows approximately 6 periods of the

oscillation. The frequency of the oscillation is approximately 2 MHz. The sharp peak seen at

t = 0 marks the initial point of contact of the droplets. The initial contact of the two droplets

is challenging to resolve in the scattering theory, however, the finite element model can produce

images of this stage.

The elastic light scattering and simulated aspect ratio are shown together in figure 6.3. The light

scattering trace has been normalized so that the baseline is set to zero to simplify comparisons to

mathematical modelling (the original figure showed a baseline of 0.5 V). The initial peak at t = 0

has also been removed as this stage cannot be resolved using light scattering. The simulated
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Figure 6.3: The simulated aspect ratio and light scattering trace plotted over each other. The
aspect ratio has been scaled so that it may be fitted over the light scattering data.

aspect ratio has been normalized so that it may be fitted over the light scattering trace. The first

periods of the oscillations are then fitted together. From the figure, it is clear that the oscillation

in simulated aspect ratio corresponds to the oscillation in back scattered light.

Images of the coalescence of 4 µm radius droplets are shown in figure 6.4. A video showing the

full evolution is available at [135]. One frame of the video corresponds to 0.27 µs and there are

20 frames per second. The oscillation in aspect ratio is clear. The composite droplet oscillates

between a prolate and oblate sphere.
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Figure 6.4: Images of the simulated coalescence of aqueous aerosol droplets. There are 20
timesteps between each image.

6.3 Results and discussion

Elastic light scattering measurements were taken for the coalescence of high and low viscosity

droplets. The intensity of the light scattering was shown to be in strong correlation with finite

element based simulations of the aspect ratio and radius of the droplet. The intensity of the back

scattered light is dependant on the orientation of the droplet in the optical trap. The mathematical

modelling allows the coalescence to be viewed from any orientation and hence can be compared

to the two orientations we consider. As the finite element simulations gives all coordinates of
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the oscillating droplet, these results could also be compared with images of the high viscosity

droplets taken on the high time resolution camera.

6.3.1 Analysis of low viscosity droplets, the affect of droplet orientation

As discussed in the introduction, Egger’s showed that the coalescence phenomena for spheres

is equivalent in two and three dimensions, i.e. the oscillating droplet is a surface of revolution.

Therefore, the intensity of light scattering could potentially be affected by the orientation of

the merging droplet. This is illustrated in figure 6.5. The direction of back scattered light is

considered to be along the y axis and is shown by the green arrow. The left image shows a

coalescence transverse to the direction of scattered light. The position of this composite droplet

relative to the optical traps is dependant on the initial size of the droplets [136]. As the droplets

are assumed to be of equal size, it can be assumed that the composite droplet lies approximately

equidistant between the optical traps. The right image shows a coalescence transverse to the

back scattered light. The figure shows that in each case the beam is probing different areas of the

droplet. In the transverse case the laser probes the meniscus which is driving the coalescence. In

the parallel case, the laser probes the expanding and contracting circular region of the droplet.

The effect of the droplet’s orientation within the optical trap has been considered experimentally

and computationally. Figures 6.6 and 6.7 present images and light scattering traces for the merg-

ing droplet in the transverse and parallel direction. Figure 6.6 shows high frame rate images (8

µs time resolution) of the oscillation induced by the coalescence in the transverse direction. At

time t < 0, the two precursor droplets are visible at the top and bottom of the image. The image

has been cropped so that only the region of interest is included. After time t = 0, the composite

droplet is observed to oscillate in shape, with the distortion decreasing with time until the droplet
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Figure 6.5: Two possible orientations for a merging droplet in an optical trap, the green arrow
shows the direction of the back scattered light. In the left image the coalescence is transverse to
the laser beam, the right image the coalescence is parallel to the beam.

achieves a spherical shape at t ≈ 60 µs. The progression in shape indicates the dominance of the

l = 2 oscillation mode, which corresponds to an oscillation between oblate and prolate shape (see

introduction). Additionally, the location of the composite droplet is at a position approximately

equidistant from the original droplets. A movement of the composite droplet away from the

optical traps supports a conclusion that optical forces are much smaller than the forces driving

coalescence [137]. Time-dependent aspect ratios ( ay

ax
) for the composite droplet shown in a) are

plotted in b). They illustrate the damped oscillator form of the shape relaxation.

The elastic back scattered light measured by the oscilloscope for the same coalescence event is

shown in b). The oscilloscope records data with a time resolution of ∼100 ns, which is nearly two

orders of magnitude improvement over the resolution provided by the high frame rate camera. A

correspondence is clear between the aspect ratio and light scattering intensity, the aspect ratio is

shown by the red circles. The maximum of the light scattering corresponds to the frames where

the droplet is elongated in the y axis (high aspect ratio), and the minimum corresponds to the

frames where the droplet is elongated in the x axis (low aspect ratio). Note that the optical traps

are located at the top and bottom of the image, so a higher light scattering intensity is expected

for high aspect ratio droplets. That is in the high aspect ratio case the laser probes a greater area
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Figure 6.6: Coalescence along an axis transverse to the trapping beam of two sodium chloride
droplets doped with the surfactant sodium dodecyl sulfate. (a) High frame rate camera images of
the coalescence event. Time ranges underneath each image provide the exposure period during
which the image was taken. Aspect ratios are also reported for each image after the coalescence
time. (b) elastic back scattered light (EBL) collected after coalescence (left axis, time t = 0
corresponds to the moment of coalescence) and droplet aspect ratios (ay/ax) determined from
high frame rate imaging (right axis). (c) Fast Fourier transform of the light scattering trace gives
the frequency of the shape oscillation (the higher order features observed correspond to Fabry-
Perot type interference resonances).

of the droplet and so a higher intensity of scattering would be expected.

In c), a fast Fourier transformation is applied to the light scattering trace, this allows the intensity

of the modes of the oscillation to be identified. c) shows the fast Fourier transform of the light

scattering trace shown in b), giving the frequency of the shape oscillation and confirming that the

l = 2 mode is predominately excited upon coalescence. The broad, low intensity peaks at higher

frequency correspond to the l = 3 and l = 4 modes.

Figure 6.7 shows a coalescence event where the precursor droplets initially have different heights

above the cover slip. As a result, a droplet in one trap migrates onto the axis of the adjacent

trapping beam and coalesces with the other droplet along an axis parallel to the trapping beam.
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Consequently the images do not capture the oscillation between an oblate and prolate spheroid

shown in figure 6.6. The asymmetrical shape distortion of the composite droplet which was

seen in the high frame rate images in figure 6.6, occurs in vertical planes parallel to the beam

axis. The shape distortion recorded in figure 6.7 a) is symmetrical with a periodically increasing

and decreasing radius that is difficult to resolve from the camera images. Although the shape

distortion is unclear in the experimental images, it is evident from the variation in light scattering

intensity in b).

There are many similarities to the trace shown in figure 6.6 b), most notably the periodic changes

in intensity. However, there are two key differences. First, there are fewer additional features in

the light scattering trace. This difference probably arises from the fact that, in this geometry, the

coalesced droplet is entirely contained within one optical trap. Therefore, interference features

present in the transverse coalescence geometry, which results in shape oscillations that intercept

the light in both optical traps, are not present. Secondly, the fast Fourier transform of the elastic

light scattering intensity (figure 6.7 c) shows that the magnitude of the l = 2 mode is decreased

relative to that of the l = 3 and l = 4 modes (at higher frequencies). This difference is likely to be

the result of the modest distortion in shape for the l = 2 mode perpendicular to the beam path for

axial relative to transverse coalescence geometries. The observation of a coalescence event with

an axial geometry enables the existence of higher order modes to be identified in the fast Fourier

transform, which are not as clearly resolved in a measurement from a transverse geometry due

to the dominance of the l = 2 mode and additional noise from the higher frequency interference

features.

The simulated aspect ratio and radius may be measured for composite droplet from both orienta-

tions. This is shown in figure 6.8. As expected the aspect ratio for the parallel coalescence shown

in b) remains constant at 1. This is because we are recording the aspect ratio of an expanding and
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Figure 6.7: Coalescence along an axis parallel to the trapping beam of two sodium chloride
droplets doped with the surfactant sodium dodecyl sulfate. (a) High frame rate camera images of
the coalescence event. Time ranges underneath each image provide the exposure period during
which the image was taken. (b) elastic light scattering collected after coalescence (time t = 0
corresponds to the moment of coalescence). (c) Fast Fourier transform of the light scattering
trace gives the frequencies of the shape oscillations.

contracting circle. Instead, the oscillation may be identified with the radius over time which is in

phase with the oscillation in aspect ratio. Videos are available for the coalescence viewed from

both transverse [135] and parallel directions [138]. The videos and figure show the coalescence

for a droplet with η= 1 × 10−3 Pa s, σ = 72 mN m−1, and ρ = 1 g cm−3. Each frame of the

videos corresponds to a time-step of 0.27 µs with 20 time steps per second. If different values

for the physical properties of the fluid (in the under-damped regime) were taken the behaviour

would largely be the same. For a higher Reynolds number fluid the frequency and intensity of

the oscillation would increase.

For the coalescence examples shown above, the change in shape of the droplet has been shown

to occur on a microsecond time-scale, both experimentally and theoretically. The orientation in

which it is viewed is shown to affect how elastic scattering probes the coalescence. The initial
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Figure 6.8: The top left shows the aspect ratio of the merging droplet when viewed in the x-z
plane an example image of the merging droplet is shown on the top right. The bottom left shows
the aspect ratio and relative radius of the merging droplet over time when viewed in the y-z
plane, an example image of the merging droplet is shown in the bottom right. Simulated droplet
properties are η= 1 × 10−3 Pa s, σ = 72 mN m−1, and ρ = 1 g cm−3.

position of the droplet within the optical traps also influences the reorientation of the composite

droplet. This occurs on a millisecond time-scale. Figure 6.9 shows the light scattering and

images of the composite droplet showing processes occurring during the milliseconds before

and after coalescence for transverse a) and parallel b) coalescence. In both, the large spike in

light scattering at time t = 0 corresponds to the moment of contact where the meniscus forms.

For the transverse coalescence a), a gradual decrease in light scattering intensity is observed over

the first 2 ms after the end of the shape oscillation (which occurs in between the two optical

traps).

From the high frame rate images, it is clear that this gradual decrease results from the recapture

of the composite droplet in one of the optical traps. On the other hand, for the coalescence
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Figure 6.9: Expanded view of the two coalescence events in figures 6.6 and 6.7 to show features
of the light scattering that occur on the millisecond time scale. (a) Coalescence transverse to
the trapping beam. (b) Coalescence parallel to the trapping beam. Images at different moments
during each coalescence are provided as insets.

occurring parallel to the trapping beam b), the droplet coalescence occurs in one of the optical

traps. A gradual shift in light scattering intensity is not observed after coalescence because

the coalescence occurs when both droplets are already confined within one of the optical traps.

However, the light scattering intensity changes before coalescence as a droplet is gradually pulled

from one trap into the other, eventually inducing coalescence. This phenomenon is illustrated

by the images in b). At 19 ms before coalescence, two droplets are stably trapped. Over the

intervening period until coalescence, the droplet located at a higher position is pulled into the

axis of the adjacent laser beam, and just before coalescence, it is almost completely obscured by

the other droplet located at the beam waist. The trajectory of this droplet gives rise to the slow

changes in the light scattering intensity before the coalescence event, similar to the previous
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observations of coalescence between a free-flowing and optically trapped droplet [1].

The combination of the two approaches shows that two time scales can be discriminated dur-

ing coalescence in a dual optical trap. Shape distortion occurs on the microsecond time scale.

Migration of the composite droplet into one of the optical traps (coalescence transverse to the

trapping beam) or of a precursor droplet from one trap to another (coalescence parallel to the

trapping beam) occurs on the millisecond time scale. Understanding and distinguishing these

two processes is essential to confidently identify which portion of the light scattering trace is

relevant to the coalescence event. Secondly, the coalescence geometry has an impact on the ob-

served form of the elastic light scattering, and this arises due to the location of the coalescence

event relative to the positions of the optical traps and the axis along which the shape distortion is

viewed. Correctly assigning the origin of the key features in the elastic light scattering permits

more confident determination of the oscillation frequency and relaxation time.

6.3.2 Viscous aerosol

The coalescence process is governed by the Reynolds number Re = σr
ρν2 , therefore for liquids

of different surface tension and viscosity the timing and the intensity of the oscillation can be

altered. By decreasing the relative humidity of the trapping chamber the viscosity of the droplets

is increased significantly. As an increase in viscosity increases the time taken for the composite

droplet to recover it is possible to take several images of the coalescence. The oscillation is

also damped by viscosity, by varying the value of viscosity we are able to compare elastic back

scattered light, high resolution images, simulated images and simulated aspect ratio to analyse

the coalescence process.

The oscillations of a viscous droplet can be divided into two regimes based on the droplet’s
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viscosity. It has been shown that there is a critical value of viscosity ηcrit dividing the two regimes

[70], where ηcrit is given by,

ηcrit = 0.76
√
σrρ.

If the viscosity of the fluid η is less than ηcrit the droplet oscillates rapidly, the oscillation is

eventually damped by viscosity. In the case of η > ηcrit the oscillation is over damped and the

droplet slowly deforms into a sphere. If the viscosity of the fluid is similar to ηcrit the oscillation

is said to be critically damped.

Optical trapping has previously been used to analyse the coalescence of viscous aerosol droplets

by measuring elastically back scattered light in the over damped, under damped and critically

damped cases [139]. The authors estimate the value of ηcrit to be 0.01 Pa s for droplets of initial

radius of approximately 5 µm with surface tension and density similar to water. In this work,

for over damped droplets, the use of the high speed camera and mathematical modelling allows

images to be taken alongside elastic light scattering traces. Videos have been produced for the

simulated coalescence for droplets with surface tension σ = 72 mN m−1, r = 8 µm and ρ = 1

g cm−3 and varying viscosity. The coalescence is shown for droplets of 1 mPas (under damped)

[135], 10 mPas (critically damped) [140], 100 mPas (over damped) [141] and 1 Pas [142] (over

damped) with each frame corresponding to 0.27 µs. The videos show 20 frames per second.

Figure 6.10 shows images and light scattering of the coalescence of sucrose at 89% RH, where

the droplet has a viscosity estimated at 90 mPas, which is reasonably close to the critical value

of viscosity. In this case, relaxation to a sphere is very fast, occurring within about 60 µs from

coalescence. Indeed, relaxation occurs so quickly that even with a time resolution of 10 µs, only

3-4 images showing a distorted droplet shape are captured. The light scattering intensity shows
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a clear initial increase, this is due to the intersection of the two trapping beams. After which

there is a rapid decrease in intensity that corresponds to the later stages of droplet relaxation to

a sphere. Note that the maximum in light scattering intensity corresponds to a maximum inter-

ception of the trapping beams by the distorted droplet surface area. Fitting exponential decays to

both the elastic light scattering trace and the droplet aspect ratios gives a relaxation time constant

of 13±1 µs from the light scattering and 12±1 µs from the images, which is remarkable agree-

ment considering the additional features in the light scattering and the small number of images

captured during relaxation (along with the relatively wide time window for each image). The

good agreement between the measured relaxation time constants indicates that both approaches

are essentially equivalent.

The computation of the relaxation time allows the viscosity of the fluid to be estimated. Previ-

ously, physical properties of fluids have been measured by comparing the elastic light scattering

over a coalescence with the theory developed by Rayleigh and Lamb [143][139]. If the time con-

stant is taken from the high frame rate images then using the equation for the damping constant

in the overdamped regime

τl =
2(2l2 + 4l + 3)rη
l(l + 2)(2l + 1)σ

=
38η
40σ

(12)

where the viscosity can be estimated. Note here we assumed that the l = 2 is the dominant mode

and the droplets radius is 8 µm, the equation was taken from [144]. This gives a value of η = 113

mPa s if the relaxation time is given as 12 µs.

A comparison of the aspect ratio given by the finite element model and images from the high

speed camera is shown in figure 6.11. The simulated and scaled aspect ratio is shown by the

black line and the aspect ratio taken from the high speed camera is shown by the red squares.
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Figure 6.10: Coalescence of sucrose droplets at 89% RH (ηest = 90mPas. The image on the
left is a light scattering scattering trace with black dots showing the aspect ratio of images taken
using the camera, the dotted line shows a decay curve fitted to the images aspect ratio. The right
shows images of the droplet where the top row were captured using the camera and the bottom
row are simulations.

The black line has been shifted to coincide with the triggering of the oscilloscope. Note also

that both aspect ratios have been inverted to allow analysis of the earlier stages of coalescence.

Largely, there is a clear correspondence between the aspect ratio of the images and the simulated

aspect ratio. The first image differs from the curve by approximately 10 microseconds. This can

be accounted for by the inaccuracy of the time stamp given to the images. All points were plotted

at the average of the range of possible time stamps.

Figure 6.12 shows the coalescence of sucrose droplets at 86% RH, which is considerably more

viscous (ηest = 350 mPa s), the droplet can be considered to be in the over damped regime. There

is a significant increase in the time-scale of the coalescence relative to figure 6.10. In this case,

relaxation occurs over hundreds of microseconds and tens of images are recorded that show the

relaxation in droplet shape. A strong agreement is shown between the relaxation time constants

fit from the light scattering (52±4 µs) and the droplet aspect ratios (48±4 µs). Equation (12)

produces a reasonable estimate of 454 mPa s for the viscosity of the droplet, if the τ is taken
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Figure 6.11: The simulated aspect ratio (black line) and aspect ratio of images (red squares) for
the coalescence of sucrose droplets at 89% RH (ηest = 90 mPas).

from the decay in aspect ratio.

The images from the high speed camera have been corresponded to the simulated aspect ratio for

the droplets of 350 mPa s, this is shown in figure 6.13. This was fitted in the same way as in figure

6.11. Again there is a strong correspondence between the images and the simulations though the

early stages are not completely aligned. This could again be attributed to the inaccuracy of the

time stamp from the camera or the challenges in resolving the early stages of coalescence.

Figure 6.14 shows the coalescence of sucrose droplets at 82% RH, which corresponds to droplets

with a viscosity about an order of magnitude larger than those shown in figure 6.12. The viscosity

was estimated as ηest = 6400 mPa s. In this case, relaxation occurs over several milliseconds and
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Figure 6.12: Coalescence of sucrose droplets at 86% RH (ηest = 350 mPa s. The image on the
left is a light scattering scattering trace with black dots showing the aspect ratio of images taken
using the camera. The right shows images of the droplet where the top row were captured using
the camera and the bottom row are simulations.

it is clear that the fit obtained from the light scattering (360±30 µs) does not agree well with

that obtained from the droplet aspect ratios (870±60 µs). The reason for this relates to the time-

scale of droplet recapture into the optical traps. The coalescence was induced in the transverse

direction, as seen from figure 6.9 the recapture of the droplet in the optical trap occurs on a

millisecond time-scale. As a result, the coalescence is still occurring while the droplet is being

recaptured, significantly complicating the light scattering trace. To separate the two processes in

the light scattering trace would be challenging.

The two processes can be distinguished from the experimental images of figure 6.14. Initially

(see image at 661-678 µs) the composite droplet is located between the two optical traps, which

are located at the top and bottom of the image. As the coalescence progresses, the droplet

gradually relaxes to a sphere, but the droplet position shifts upwards over the same time period

as it migrates to the upper trap (image at 2113-2130 µs). Although these are two relatively

simple processes to distinguish in the images, they convolute the elastic light scattering, giving
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Figure 6.13: The simulated aspect ratio (black line) and aspect ratio of images (red squares) for
the coalescence of sucrose droplets at 86% RH (ηest = 350 mPa s).

a relaxation time constant that is smaller than that determined from the droplet aspect ratios. In

short, these observations indicate that once coalescence times last for more than a millisecond,

light scattering is no longer an effective approach to quantitatively infer changes in droplet shape.

Though light scattering may be unsuitable for the very high viscosity coalescence the images

from the camera can be corresponded with the simulated coalescence. This is shown in figure

6.15. In this case the simulated aspect ratio is in almost perfect alignment with the aspect ratio

from the images. This correspondence further validates the use of high frame rate cameras to

analyse the coalescence of high viscosity droplets. The aspect ratio of the droplet taken from

the images provides an estimated value of approximately viscosity of 8242 mPa s, which is in
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Figure 6.14: Coalescence of sucrose droplets at 82% RH (ηest = 6400 mPa s). The image on the
left is a light scattering scattering trace with black dots showing the aspect ratio of images taken
using the camera. The right shows images of the droplet where the top row were captured using
the camera and the bottom row are simulations.

reasonable agreement with the estimated value.

A similar process can be used to analyse coalescence in the under damped regime. By fitting

maxima in light scattering intensity and aspect ratio to a decay curve the decay rates can be

compared. Figure 6.16 shows the coalescence for droplets with an estimated viscosity of 0.67

mPa s. The black circles show the maxima of aspect ratio of images taken on the high frame rate

camera and the green triangles show the maxima of light scattering intensity. The corresponding

dotted lines give the best fit of exponential decay for these quantities, the straight line corresponds

to the mathematical model.

The agreement between the observed aspect ratio and simulated aspect ratio/light scattering in-

tensity is less strong than for the higher viscosity droplets. This can be accounted for due to the

exposure time of the camera. The simulations show that time period for the droplet to deform

most prolate to most oblate spheroid is approximately 5 µs which is under the cameras exposure

time of 8 µs. As such recording elastic light scattering is a more effective way to determine

194



Figure 6.15: The simulated aspect ratio (black line) and aspect ratio of images (red squares) for
the coalescence of sucrose droplets at 82% RH (ηest = 6400 mPa s).

relaxation time, however there is still a minor difference from the simulation. This difference

is caused by broad maxima in light scattering intensity which is due to light scattering being

recorded from two optical traps.

6.4 Conclusions

The results presented in this chapter show a strong correspondence between elastic light scatter-

ing of coalescing aerosol droplets and the aspect ratio of numerical simulations of the coales-

cence. This has been shown for different values of viscosity. The comparison validates both the

assumptions used in the mathematical modelling and the assumption that in the low viscosity
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Figure 6.16: Coalescence of the sodium dodecyl sulfate-doped sodium chloride droplets, the
viscosity is estimated as 0.67 mPa s. Circles represent droplet aspect ratio maxima (left axis)
whereas triangles represent light scattering intensity maxima (right axis). The corresponding
dotted line gives the exponential fit for each measurement. The solid line represents the simulated
droplet aspect ratios.

case the trapping laser does not interfere with the dynamics of the coalescence. By considering

the different possible orientations for the merging droplet in the optical trap we show that the

reorientation of the droplet in the optical tweezers occurs on millisecond time-scale, whereas

generally, the droplet is fully coalesced after microseconds. An exception to this is the case of

a highly viscous droplet, where the coalescence will occur on a millisecond time-scale. In this

case light scattering is unsuitable to probe the coalescence, however modern high speed cameras

allow for a detailed analysis of the dynamics. The images allow the relaxation to a sphere and

movement into an optical trap to be distinguished.

The finite element based model also allowed for high quality images of coalescing droplets to be

produced. Classical techniques have been able to model the frequency of the oscillation of the

particle, however our approach is also able to produce coordinates for the droplet in three dimen-

sions. In the case of a low viscosity droplet the simulated aspect ratio is shown to oscillate at the
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Figure 6.17: A) shows the aspect ratio of a simulated coalescence for droplets with σ = 72 mN
m−1, r=8 µm, ρ = 1 g cm−3, and viscosity of 0.67 mPa s (left). B) shows the aspect ratio over the
first 20 microseconds in greater detail. C) shows the light scattering trace shown in figure 6.2 for
the first 6 microseconds.

same frequency of the elastic scattering. In the over damped case the fall in light scattering also

corresponds with the fall in simulated aspect ratio. By comparison with equation 12, values for

viscosity can be recovered for the fluid, shown to be in reasonable agreement with the estimated

value.

The high speed camera is able to capture images of the droplet over the coalescence. In the under

damped regime the camera does not record images at sufficient time resolution to completely

record the oscillation, although 4-5 images of the oscillating droplet are shown in figure 6.6. In

the over damped regime several images can be captured so that the early stages where a bridge

forms connecting the two droplets can be viewed.

197



As well as supporting an analysis of the coalescence of high viscosity droplets and droplet posi-

tion the mathematical modelling techniques have been used to look at the aspect ratio of lower

viscosity droplets. The left side of figure 6.17 shows the aspect ratio over time for a coalescence

with initial droplets having σ = 72 mN m−1, r=8 µm, ρ = 1 g cm−3, and viscosity of 0.67 mPa s.

As well as the oscillation shown in figure 6.2, the graph shows an additional feature on the first

period of the oscillation, it is highlighted by the red circle. The region of interest is shown inset,

in the top right of the figure and is labelled B). The otherwise gradual decline in aspect ratio

over this period is disturbed by a small rise. A video (at 45◦ to the collision axis) showing this

phenomena is available at [145], each frame corresponds to 0.267 µs and there are three frames

per second. The effect can be seen between approximately the seventh and eighth second of the

video.

A similar feature can also be identified in the light scattering data shown in figure 6.2, between

approximately 1 µs and 2 µs. An expanded view of this region has been reproduced in figure

6.17C and highlighted with a red circle. A similar shoulder peak can be seen in both figures.

Potentially, a complete analysis of this behaviour could be undertaken by coalescing droplets

of lower viscosity (or alternatively higher surface tension). Theoretically this should exaggerate

this effect and therefore the feature would become clearer in the light scattering.
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Chapter Seven - The simple factor dressing
of the k-noid
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7 The simple factor dressing of the k-noid

In this chapter the transformations described in chapter 3 are applied to the k-noid and the ge-

ometric properties of the resultant surfaces are investigated. The Jorge-Meeks k-noid was first

described by Jorge and Meeks in 1983 [146], it is a minimal surface with k catenoidal ends.

They proved that it is a complete minimal surface with finite total curvature. In this chapter we

investigate the Lopez-Ros deformation and simple factor dressing of the k-noids.

The chapter is structured so that the first section provides an explanation of how the k-noid is

parametrized and constructed from its symmetries. This has been implemented as an extension

of the surface lab [91] so that the value of k may be adjusted. The second section investigates

the periodicity of the newly constructed minimal surfaces. The k-noid is globally defined on S 2 \

{p1 . . . pk}, where p j are the catenoidal ends, whereas its conjugate is doubly periodic. In general

simple factor dressings of the k-noid are doubly periodic, however under certain restrictions

singly periodic minimal surfaces in R3 can be constructed. The third section investigates the

symmetries of the newly constructed surfaces. Finally, some concluding remarks and ideas for

future work are discussed.

7.1 Constructing the k-noid

In topological terms the k-noid is a sphere with k punctures which correspond to catenoidal ends,

that is, a minimal, conformal immersion f : S 2\{p1, . . . pk} → R
3, where the points pi correspond

to catenoidal ends.

We will consider the k-noid defined by its simplest Weierstrass data.

Theorem 7.1.1. The Weierstrass data g(z) = zk−1 and ω(z) = 1
(zk−1)2 where z ∈ {C ∪ ∞} \
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{p1, . . . , pk} with p j = e
2πi j

k , and k ≥ 2 generates a k-noid.

Recall from Example 3.1.1 that S 2 is a Riemann surface described by charts as stereographic

projections and r(z) = 1
z as a transition map.

Using this Weierstrass data we obtain the holomorphic null curve Φ =


Φ1

Φ2

Φ3


with

Φ1(z) =
1
2

∫
1 − z2k−2

(zk − 1)2 dz, Φ2(z) =
i
2

∫
1 + z2k−2

(zk − 1)2 dz, Φ3(z) =

∫
zk−1

(zk − 1)2 dz.

We shall consider this Weierstrass data in terms of both charts. Firstly note that for a holomorphic

one form ω(z)dz described by a local coordinate z, if we wish to make a change of coordinates

z = z(w), then ω(z)dz = ω(z(w))z′(w)dw. In our case we have that ω(z) = dz
(zk−1)2 which under

change of coordinates z → 1
z is given by ω

(
1
z

)
= − 1

z2
dz

( 1
zk −1)2 . Therefore we may compute the

holomorphic null curve under the change of coordinates r(z) = 1
z by considering Weierstrass

data g
(

1
z

)
and ω

(
1
z

)
, we compute that the holomorphic null curve is given by

Φ

(
1
z

)
=


Φ1(z)

−Φ2(z)

−Φ3(z)


.

The Weierstrass representation above given in terms of coordinate z can be integrated to give a

parametrization for the k-noid in terms of the hypergeometric function:

Theorem 7.1.2. The holomorphic null curve of the k-noid is given by:
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Φ1(z) =
−1

2kz(1 − zk)

(
(k − 1)(zk − 1)2F1(1,

−1
k
,

k − 1
k

, zk) − (k − 1)z2(zk − 1)2F1(1,
1
k
,

1 + k
k

, zk)

− kzk + z2 + k − 1
)
,

Φ2(z) =
i

2kz(1 − zk)

(
(k − 1)(zk − 1)2F1(1,

−1
k
,

k − 1
k

, zk) + (k − 1)z2(zk − 1)2F1(1,
1
k
,

1 + k
k

, zk)

− kzk − z2 + k − 1
)
,

Φ3(z) =
1

k(1 − zk)
.

Here 2F1 is the hypergeometric function given by

2F1(a, b, c, z) =

∞∑
n=1

a(n)b(n)

c(n)

zn

n!
,

and q(n) is the rising Pochammer symbol given by:

q(n) =


1 if n = 0,

q(q + 1)...(q + n − 1) if n > 0.

Note that we write q(n) to distinguish the Pochammer symbol q(n) from the standard exponentia-

tion qn. We also have that

2F1(1, b, c, z) =

∞∑
n=1

b(n)

c(n) zn, (13)

since 1(n) = n!. To compute the parametrization later on we will also need to consider the falling

Pochammer symbol q(n).
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q(n) =


1 if n = 0,

q(q − 1)...(q − n + 1) if n > 0.

Proof. To show that the parametrization given above is indeed formed from the Weierstrass data

( 1
(zk−1)2 , zk−1) we must now integrate Φ′. To integrate Φ′3 is a straightforward substitution using

u = zk, however integrating Φ′1 and Φ′2 is more challenging. To obtain Φ1 and Φ2 we decompose

their integrands into a part that can be easily integrated and a part that can be expanded binomially

and then integrated to a hypergeometric function. For Φ1(z) this is

Φ1(z) =
1
2

∫ k
(
−z2k + zk+2 + zk − 1

)
+

(
−z2 − 1

) (
zk − 1

)
kz2 (

zk − 1
)2 −

(k − 1)
(
z2 + 1

)
kz2 (

zk − 1
) dz.

Firstly recall Newton’s binomial formula [147] in terms of the falling Pochammer symbol given

by

(x + y)r =

∞∑
n=0

r(n)

n!
xr−nyn.

In our case let x = −1 and zk = y and consider,

(
z2 + 1

)
z2 (

zk − 1
) =

1(
zk − 1

) +
1

z2 (
zk − 1

)
=

∞∑
n=0

(
(−1)(n)

n!
(−1)−1−nzni

)
+

1
z2

∞∑
n=0

(
(−1)(n)

n!
(−1)−1−nzni

)
.

Since (−1)(n) = 1(n)

(−1)n we can rewrite the above as
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(
z2 + 1

)
z2 (

zk − 1
) = −

 ∞∑
n=0

zni +

∞∑
n=0

zni−2

 .
We are now able to integrate the expression above, that is

∫ (
z2 + 1

)
z2 (

zk − 1
) = −

 ∞∑
n=0

(
1

ni + 1
zni+1

)
+

∞∑
n=0

(
1

ni − 1
zni−1

) ,
= −

z ∞∑
n=0

1
ni + 1

zni +
1
z

∞∑
n=0

1
ni − 1

zni

 .
To write the above function in terms of the hypergeometric function we wish to express 1

ni+1 and

−1
ni−1 in terms of the rising Pochammer symbol. It can be easily verified that

1
ni + 1

=
( 1

k )(n)

(1+k
k )(n)

,
−1

ni − 1
=

(−1
k )(n)

( k−1
k )(n)

.

This gives, recalling (13),

∫ (k − 1)
(
z2 + 1

)
kz2 (

zk − 1
) = −

z(k − 1)
k

∞∑
n=0

(1
k )(n)

( 1+k
k )(n)

zni +
(k − 1)

kz

∞∑
n=0

(−1
k )(n)

( k−1
k )(n)

zni

= −2F1(1,
1
k
,

1 + k
k

, zk)
z(k − 1)

k
+2 F1(1,−

1
k
,

k − 1
k

, zk)
(k − 1)

kz
.

Combining this with the remainder of the integral,

∫ k
(
−z2k + zk+2 + zk − 1

)
+

(
−z2 − 1

) (
zk − 1

)
2kz2 (

zk − 1
)2 dz =

−kzk + k + z2 − 1
2kz

(
1 − zk) ,

we compute that
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Φ1(z) =
−1

2kz(1 − zk)
((k−1)(zk−1)2F1(1,

−1
k
,

k − 1
k

, zk)−(k−1)z2(zk−1)2F1(1,
1
k
,

1 + k
k

, zk)−kzk+z2+k−1).

A similar argument can be applied to integrate Φ′2. �

7.1.1 The behaviour of the poles

The parametrization above defines a k-noid on the unit disc with k punctures at the roots of unity,

these points correspond to the catenoidal ends. Recall Theorem 3.2.14 that if a pole p of Φ′ is

of order 2 and that if the residue Res (Φ′, p) is real then the minimal surface has an embedded

finite total curvature end at p. If the residue is non-zero the end is catenoidal and if it is zero the

end is planar.

We will now calculate the residues for the differential of the holomorphic null curve Φ of the

k-noid. Firstly consider the derivative of Φ

Φ′1(z) =
1
2

(1 − z2(k−1))
(zk − 1)2 , Φ′2(z) =

i
2

(1 + z2(k−1))
(zk − 1)2 , Φ′3(z) =

zk−1

(zk − 1)2 . (14)

Let p = e
2πi j

k be a jth root of unity where j ∈ {0, . . . , k − 1}, these points are the poles of the

derivative of the holomorphic null curve (of order 2). Noting,

(zk − 1) = (z − p)
k−1∑
j=0

z j pk− j−1,
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we will use the following function

w(z) =

k−1∑
j=0

z j pk− j−1,

to apply the Cauchy integral formula to calculate the residue of Φ′ at p, so that

Φ′(z) =


1
2

(1−z2k−2)
(z−p)2w(z)2

i
2

(1+z2k−2)
(z−p)2w(z)2

zk−1

(z−p)2w(z)2


.

The derivative of w is given by,

w′(z) =

k−1∑
j=1

jz j−1 pk− j−1.

If we put p into w(z) and w′(z) it is straightforward to see that

w(p) = kpk−1, w′(p) = pk−2
k−1∑
j=1

j = pk−2 k(k − 1)
2

.

To apply the Cauchy integral formula consider

ψ(z) =



1
2

(1 − z2(k−1))
w(z)2

i
2

(1 + z2(k−1))
w(z)2

zk−1

w(z)2


. (15)

Note that ψ(z) = (z − p)2Φ′(z) and ψ′(z) is given by
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ψ′(z) =


−

(k−1)z2(k−1)−1

w(z)2 −
(1−z2(k−1))w′(z)

w(z)3

i(k−1)z2(k−1)−1

w(z)2 −
i(z2(k−1)+1)w′(z)

w(z)3

(k−1)zk−2

w(z)2 −
2zk−1w′(z)

w(z)3


.

Finally evaluating at p = e
2πi j

k gives

ψ′(p) =


−

(k−1)p−2k−1(p2k+p2)
2k2

i(k−1)p−2k−1(p2k−p2)
2k2

0


=


−

cosh( 2πi j
k )(k−1)
k2

i sinh( 2πi j
k )(k−1)
k2

0


=


−

cos( 2π j
k )(k−1)
k2

−
sin( 2π j

k )(k−1)
k2

0


. (16)

Here we applied the identities cosh(iz) = cos(z) and sinh(iz) = i sin(z).

We can evaluate now the residue of Φ′ at p using the Cauchy integral formula. Let e
2πi j

k = p

where j ∈ {0 . . . k − 1} and λ be a circular closed curve around p. Then,

Res (Φ′, p) =
1

2πi

∮
λ

Φ′(z)dz =
1

2πi

∮
λ

ψ(z)
(z − p)2 dz = ψ′(p) =


−

cos( 2π j
k )(k−1)
k2

−
sin( 2π j

k )(k−1)
k2

0


. (17)

Therefore, Res (Φ′, p) is always real and thus using Theorem 3.2.14, we have proved:

Theorem 7.1.3. The k-noid has k catenoidal ends at the roots of unity.

Recall that the translational period of the conjugate surface is given by 2πRes (Φ′, p). Therefore

the conjugate surface has periods, τ∗j =


−

2π cos( 2π j
k )(k−1)

k2

−
2π sin( 2π j

k )(k−1)
k2

0


. If k > 2, then τ0 and τ1 form a basis for

{τ j} and the conjugate surface is a doubly periodic surface. In the case of k = 2, the catenoid the

207



conjugate surface (the helicoid) is singly periodic since τ0 = −τ1 in this case.

7.1.2 The geodesics of the k-noid

The series of the hypergeometric function 2F1(a, b, c, z) is not defined for |z| > 1, however 2F1

can be analytically extended to the whole complex plane. For k-noids this can be understood in

terms of the reflection principle. Recall that the reflection principle states that a minimal surface

containing a planar geodesic may extended by reflection across the plane. On the conjugate

surface this corresponds to a 180 degree rotation around the corresponding straight line. To

visualize the k-noid we use the reflection principle extensively and therefore will need to show

which curves are planar geodesics. To show a curve on the k-noid is a planar geodesic we

will show that the corresponding curve on the conjugate is a straight line (that is, has vanishing

curvature).

Lemma 7.1.4. Let f be a k-noid. Then the image λ j(t) = f (te
i jπ
k ), t ∈ R \ {1}, j ∈ {1, . . . , 2k − 1},

of the straight line connecting 0 and e
i jπ
k under f is a planar geodesic. Moreover, the image

γ(t) = f (e
tπi
k ), t ∈ R, t , 2 j, of the unit circle under f is a planar geodesic.

Proof. Firstly let us show that λ j(t) = f (te
πi j
k ) are planar geodesics. To do so we will show that

the corresponding curves on the conjugate, λ∗j(t) = f ∗(te
πi j
k ) are straight lines, that is the curvature

κ∗ = ‖λ∗′×λ∗′′‖
‖λ∗′‖3

is equal to zero. Since λ j(t) + iλ∗j(t) = Φ(te
πi j
k ) and recalling (14) we have that

d
dt

Φ(te
πi j
k ) = e

πi j
k Φ′(te

πi j
k ) =



e
iπ j
k

1−(te iπ j
k

)2(k−1)
((−1) jtk−1)2

ie
iπ j
k

1+

(
te

iπ j
k

)2(k−1)
((−1) jtk−1)2

2(−1) jtk−1

((−1) jtk−1)2


,
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which has imaginary part

λ∗j
′(t) = Im (

d
dt

Φ(te
πi j
k )) =



sin
(
π j
k

)
((−1) jtk−1)2 +

t2k−2 sin
(
π j
k

)
((−1) jtk−1)2

cos
(
π j
k

)
((−1) jtk−1)2 +

t2k−2 cos
(
π j
k

)
((−1) jtk−1)2

0


=

1 + t2k−2(
(−1) jtk − 1

)2


sin

(
π j
k

)
cos

(
π j
k

)
0


.

Since λ∗j
′(t) = υ(t)


sin

(
π j
k

)
cos

(
π j
k

)
0


with υ(t) = 1+t2k−2

((−1) jtk−1)2 we have that λ∗j
′×λ∗j

′′ = 0, and λ∗j is a straight

line.

Using Theorem 3.2.17 we see that λ j is a curve in the plane perpendicular to


sin

(
π j
k

)
cos

(
π j
k

)
0


.

By the same method we will show that γ is a planar geodesic. Consider Φ(e
iπt
k ) = γ(t) + iγ∗(t),

d
dt

Φ(e
iπt
k ) =

iπ
k

e
iπt
k Φ′(e

iπt
k ) =



iπe
iπt
k

(
1−

(
e

iπt
k

)2k−2)
k
(
−1+

(
e

iπt
k

)k)2

−
πe

iπt
k

(
1+

(
e

iπt
k

)2k−2)
k
(
−1+

(
e

iπt
k

)k)2

2iπ
(
e

iπt
k

)k

k
(
−1+

(
e

iπt
k

)k)2


=


−
π csc2( πt

2 ) sin
(
π(k−1)t

k

)
2k

π csc2( πt
2 ) cos

(
π(k−1)t

k

)
2k

−
iπ csc2( πt

2 )
2k



which has imaginary part,
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γ∗′(t) = Im (
iπ
k

e
iπt
k Φ′(e

iπt
k )) =


0

0

−
π csc2( πt

2 )
2k


,

thus γ∗′(t) × γ∗′′(t) = 0 and γ∗(t) is a straight line parallel to the z axis. �

As γ∗ is parallel to the z axis we see that γ(t) is contained in the x − y plane and therefore the

k-noid may be extended by reflection across the x − y plane. This shows that the Weiestrass data

given by Theorem 7.1.1 can be extended to C \ {p j}.

For the implementation of the k-noid we will restrict to smaller domains and use the additional

symmetries given by the curves λ j. Since λ j is a planar geodesic in the plane orthogonal to
sin

(
π j
k

)
cos

(
π j
k

)
0


, we know that f (D) is invariant under matrices of the form,

R j =


cos

(
2 jπ
k

)
− sin

(
2 jπ
k

)
0

− sin
(

2 jπ
k

)
− cos

(
2 jπ
k

)
0

0 0 1


.

Clearly the reflection in the x − y plane is given by

T =


1 0 0

0 1 0

0 0 −1


,

which we also know f (D) to be invariant under. Therefore if the k-noid is given by f : M → R3
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then R j f and T f are equivalent to f . We are now able to construct the k-noid from its symmetries.

We therefore can restrict to implementing a fundamental piece of the k-noid and obtain the re-

mainder of the surface by applying 2k + 1 reflections. For the conjugate surface we need to

implement the periods giving three stages to the implementation of a k-noid.

(i) Implement a fundamental piece of the k-noid.

(ii) Use the reflection principle to complete the k-noid and its conjugate.

(iii) Add multiple periods of the conjugate.

The following subsection will provide a detailed description of how each stage is implemented.

The code used to generate images of the k-noid can be found in the appendices of this thesis.

7.1.3 Constructing the k-noid from its symmetries

As discussed, the k-noid is defined on S 2\{p j} =
(
C \ {p j}

)
∪{∞}where {p j} are the roots of unity

p j = e
2πi j

k , with j ∈ {0, . . . , k − 1}. The k-noid has 2k + 1 symmetries, on
(
C \ {p j}

)
∪ {∞}. The

punctured unit circle gives a geodesic on the k-noid and thus, the image of D = {z ∈ C | |z| < 1}

can be reflected across the plane orthogonal to the z axis. However, for the conjugate surface the

image of the arcs A j = {z ∈ C | z = eiθ, where 2π j
k < θ < 2π( j+1)

k } are k different straight lines

parallel to the z axis.

Therefore, the punctured unit disc has to be split into 2k pieces using the lines passing through the

origin and z j. These pieces are then reflected across the unit circle, giving a total of 4k domains.

Figure 7.1 shows lines corresponding to the symmetry planes on the unit disc for the 4-noid, a

neighbourhood has also been removed around the poles p j.
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1

e
iπ
2

−1

e
3iπ
2

Figure 7.1: The domain on which the k-noid has been implemented for k = 4. An open disc
around the poles is indicated by the red arc. For the general k-noid the domain is given by
Ω = {C ∪∞} \ {Bε(1), Bε(e

2πi
k ), . . . Bε(e

(2k−2)πi
k )}.

For implementation, we need our parameters to have positive distance to the punctures. There-

fore, we take as the domain for a fundamental piece of the k-noid a segment of the unit disc with

an open disc around the puncture removed, it is shown in figure 7.3. To fit with the requirements

of the surface lab [91], we need a rectangular domain Uε
1 = [ε, 1] × [0, π2 ], which will be mapped

to the annulus Uε
2 = {z ∈ C | z = ueiv, (u, v) ∈ Uε

1} by polar coordinates. Now, we use the map

υ : Uε
2 → C given by,

υ(u, v) =
1 − u2 − v2

v2 + (1 + u)2 + i
2v

v2 + (1 + u)2 ,

where z = u + iv ∈ Uε
2. The map υ is the restriction of the map whose image of a punctured unit

disc is an open disc around z = 1. The radius ε of the disc can be calculated as follows,

ε = υ(0, 0) − υ(ε, 0) = 1 −
1 − ε
1 + ε

=
2ε

1 + ε
.
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Figure 7.2: The image of the map υ for z ∈ Uε
2. The image was generated using Mathematica.

We will only consider z = υ(u, v) with arg(z) 6 π
k . This gives our fundamental domain D0, where

D0 = {reiθ ∈ C | 0 6 r 6 1, 0 6 θ 6
π

k
} \ Bε(1),

and Bε(1) is a ball of radius ε around 1. This is shown in figure 7.3. This allows us to now

generate a fundamental piece of the k-noid given by f (D0), for k = 3 this shown in figure 7.4.

The k-noid is defined on
(
C \ {p j}

)
∪ {∞} where {p j} are the roots of unity p j = e

2πi j
k , with

j ∈ {0, . . . , k − 1}. This means we require a domain

Ω = {C ∪∞} \ {Bε(1), Bε(e
2πi
k ), . . . Bε(e

(2k−2)πi
k )},

so that balls of equal radii are removed around the roots of unity p j. This can be achieved by

applying the reflection principle to f (D0). As f (te
i jπ
k ), t ∈ R \ {1}, j ∈ {0, . . . , 2k − 1}, and f (e

tπi
k ),
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e
iπ
k

0

Figure 7.3: The fundamental domain D0 of the k-noid.

t ∈ R, t , 2 j, are planar geodesics, f (D0) may be reflected to define f on Ω. This will be

described in detail below.

The construction of the completed trinoid is shown in figure 7.5. For the general k-noid, the

fundamental piece f (D0) = P1 is reflected in the plane containing the geodesic which is the

image of the straight line connecting 0 and 1. Recall that, G j = f (te
i jπ
k ), with t ∈ (0, 1) and

j ∈ {0, . . . , 2k − 1} are planar geodesics of the k-noid. We shall refer to the reflection of surface

piece P in the plane containing planar geodesic G as Ref (P,G). Note that the plane containing

G0 is orthogonal to


0

1

0


. The reflection of the fundamental piece P1, P2 where P2 = Ref (P1,G0)

creates a pair of fundamental pieces as shown in the centre of the top row of figure 7.5 (for k = 3),

which we shall refer to as Q1 = P1 ∪ P2. To create the second pair of fundamental pieces Q2, Q1

is then reflected in the plane containing the geodesic G1 that is Q2 = Ref (Q1,G1), Q2 is shown

in the top right of figure 7.5. To create the jth pair of fundamental domains Q j the original pair

is reflected in a series of planes so that

Q j = Ref (. . . Ref ( Ref (Q1,G1),G3) . . .G2 j−1).
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Figure 7.4: A fundamental piece of the trinoid.

To complete one half of the k-noid shown in the bottom left of figure 7.5, the reflection,

Qk = Ref (. . . Ref ( Ref (Q1,G1),G3) . . .G2k−1),
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Figure 7.5: The construction of the trinoid from one fundamental piece.

is used, so that the one half of the k-noid T1 = Q1 ∪ Q2 . . . ∪ Qk.

The planar geodesics f (e
tπi
k ), t ∈ R, t , 2 j, all lie in a single plane orthogonal to the z axis.

Therefore, to complete the k-noid the set of fundamental pieces T1 is reflected in the plane

orthogonal to


0

0

1


. That is, T2 = Ref (T1, G̃), where G̃ = f (e

tπi
k ), with t ∈ (0, 2). The completed

trinoid T1 ∪ T2 is shown in the bottom right of figure 7.5.

A goal of this work was to implement the k-noid in the surface lab so that the value of k may be

adjusted on a slider. Images of the k-noid for k = 3, 4, 5, 6 are shown in figure 7.6.

The part of the conjugate surface which corresponds to the upper half of the k-noid is shown on
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Figure 7.6: The k-noid for k = 3 (top left), k = 4 (top right), k = 5 (bottom left), and k = 6
(bottom right).
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the left of figure 7.7. We will denote this part of the conjugate surface by T ∗1 = f ∗(Dint), where

Dint = {reiθ ∈ C | 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π} \ {Bε(1), Bε(e
2πi
k ), . . . Bε(e

(2k−2)πi
k )}.

For the k-noid, the curves G j = f (te
i jπ
k ), t ∈ R \ {1}, j ∈ {0, . . . , 2k − 1} are planar geodesics, for

the conjugate surface L j = f ∗(te
i jπ
k ), t ∈ R\ {1}, j ∈ {0, . . . , 2k−1} are straight lines perpendicular

to the z axis. The part T ∗1 of the conjugate surface corresponding to the top half T1 of the k-noid is

created in a similar way as T1 where the reflections in the plane containing G j are replaced with

180 degree rotations around L j. We will refer to pairs of fundamental pieces of the conjugate as

Q∗j with j ∈ {1, . . . , k} and the fundamental pieces are referred to as P∗j with j ∈ {0, . . . , 2k − 1}

with Q∗j = P∗2 j+1 ∪ P∗2 j.

To create the bottom half of the k-noid T2, a single reflection was used. We will denote the

corresponding part of the conjugate by T ∗2 . Note that T2 and T ∗2 are defined on

Dext = ({
1
r

eiθ ∈ C | 0 < r ≤ 1, 0 ≤ θ ≤ 2π} ∪ {∞}) \ {Bε(1), Bε(e
2πi
k ), . . . Bε(e

(2k−2)πi
k )}.

To create T2, a single reflection can be used since the geodesics, which are the images of the arcs

on the unit disc connecting the poles, all lie in the same plane. For the conjugate this is not the

case. Each path between e
2 jπi

k and e
2( j+1)πi

k on the unit circle corresponds to a distinct straight line

on the conjugate. This is due to the fact that k poles lie on the unit disc and there is a discontinuity

when the curve crosses a pole.

We will denote the straight lines as W j = f ∗(e
tπ ji

k ), t ∈ (2 j, 2( j + 1)), where j ∈ {0, . . . , k− 1}. The

straight lines are found numerically within the implementation. That is, W j is the line passing

through f ∗(e
(2 j+1)πi

k ) which is parallel to the z axis.
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Figure 7.7: The interior of the conjugate surface to the k-noid (left) and both the interior and
exterior parts (right).

To complete the exterior of the conjugate surface we will need to consider the set of pairs of

fundamental pieces {Q∗1, . . . ,Q
∗
k} as a set of fundamental pieces {P∗1, . . . , P

∗
2k}, where Q∗j = P∗2 j−1∪

P∗2 j. A pair of fundamental pieces P∗2 j∪P∗2 j+1 are rotated around the straight line W j to give a pair

of exterior pieces R∗j. The set of pieces R∗1 ∪ R∗2 . . . ∪ R∗k is equal to T ∗2 . Therefore, {Q∗1, . . . ,Q
∗
k} ∪

{R∗1, . . .R
∗
k, } = T ∗1 ∪ T ∗2 is the whole conjugate surface shown on the right of figure 7.7.

From the figure it is clear that the conjugate could be extended by further rotations. Rather than

rotating part of the conjugate around one of the straight lines parallel to the z axis, the interior

surface could be rotated. This would create a doubly periodic surface in the x and y directions.

We have already shown using the residue of the holomorphic null curve that the conjugate is

doubly periodic.

For the case of k = 3, the process to create a ring of trinoid conjugates is shown in figure 7.8.

The interior part is shown in the top left of the figure, this can then be rotated around any of

the straight lines formed from the paths connecting the 3 poles. In the figure, the straight line
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chosen is the one formed from the arc connecting 1 and e
2πi
3 . This then produces two new straight

lines which an interior part can be rotated around, hence the surface could be extended infinitely.

Therefore a ring of conjugate trinoids can be produced as shown in the bottom left of the figure.

This can then be further extended by rotating the ring of conjugates around one of the remaining

straight lines, as shown in the bottom right.

This now gives us a complete implementation of the k-noid and its conjugate which the simple

factor dressing can be applied to, as well as all transformations discussed in Chapter 3. We

will now investigate the surfaces created by applying these transformations to the k-noid. The

implementation will allow use to visualize these surfaces.

As an example, the Lopez-Ros deformation with λ = 2 of the k-noid is shown in figure 7.9, where

the conjugate has the same number of periods as shown in figure 7.8. The bottom right of the

figure shows that the Lopez-Ros deformation of the k-noid is a doubly periodic surface. Recall

from Theorem 3.3.12 that calculating the translational periods of the simple factor dressing of a

minimal surface is equivalent to substituting the translational periods of f and f ∗ into the simple

factor dressing.

For the Lopez-Ros deformation, fλ : M̃ → R3 then the translational periods of fλ, are given by

τλ = 2πRes (Φλ, p j). Therefore, we may calculate the translational periods τλ, for the Lopez-Ros

deformation fλ : M̃ → R3, using τ∗j =


−

2π cos( 2π j
k )(k−1)

k2

−
2π sin( 2π j

k )(k−1)
k2

0


,
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Figure 7.8: The construction of the periodic conjugate surface using its rotational symmetries.
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τλ =


cos(t)(τ1 cosh(s) − τ∗2 sinh(s))

cos(t)(τ2 cosh(s) + τ∗1 sinh(s))

τ3


=


− cos(t)τ∗2 sinh(s)

cos(t)τ∗1 sinh(s)

0


=


cos(t) sinh(s) 2π sin( 2π j

k )(k−1)
k2

− cos(t) sinh(s) 2π cos( 2π j
k )(k−1)

k2

0


.

Thus, we see that the Lopez-Ros deformation of the k-noid is a doubly periodic surface for s , 0

and k > 2.

7.2 The periodicity of the simple factor dressing of the k-noid

In this section the periodicity and the behaviour of the catenoidal ends of the k-noid under the

simple factor dressing is considered. We have already seen from Theorem 3.2.15 that the period-

icity of the conjugate of a minimal surface is determined by the value of the residue at the poles.

From Theorem 3.2.14, we see that a catenoidal end at p j is mapped to a catenoidal end under

the simple factor dressing if the residue of Φ̂′ remains real and non-zero. Put differently, if the

simple factor dressing of the k-noid has no periods at end p j, then the simple factor dressing of

the k-noid has an end at p j and it is catenoidal.

Let us first find the simple factor dressings which preserve at least one of the catenoidal ends of

the k-noid. First, note that for the simple factor dressing of a minimal surface

Res (Φ̂, p j) = R−1AR Res (Φ, p j), (18)

where R is a rotation matrix and A is the matrix representation, see Theorem 3.3.10 of the simple

factor dressing with parameter µ. This allows us to prove the following theorem.
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Figure 7.9: The Lopez-Ros deformation of the k-noid with λ = 2 with multiple periods shown.
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Theorem 7.2.1. The simple factor dressing of the k-noid inR3 will preserve at least one catenoidal

end of the k-noid if and only if m = m1 + (m1(cot( 2π j
k ) + csc( 2π j

k ))k , where m1 ∈ R. If k is odd

then only the end at e
2π ji

k is preserved. If k is even the ends at e
2π ji

k and e
(2π j+kπ)i

k are preserved. In

both cases the simple factor dressing is independent of the choice of m1.

Proof. Consider the translational period of the simple factor dressing of the k-noid in R3, note

that we calculate τ̂ from (18),

τ̂ j = 2π



2(k−1) sinh(s) sin
( 2π j

k

)
(m1m3−m2m4)

k2(m2
1+m2

2+m2
3+m2

4)

−
2(k−1) sinh(s) cos

( 2π j
k

)
(m1m3−m2m4)

k2(m2
1+m2

2+m2
3+m2

4)
(k−1) sinh(s)

(
sin

( 2π j
k

)
(m2

1+m2
2−m2

3−m2
4)−2 cos

( 2π j
k

)
(m1m4+m2m3)

)
k2(m2

1+m2
2+m2

3+m2
4)


,

where m = m1 + m2i + m3j + m4k and m1,m2,m3,m4 ∈ R. Solving the equation τ̂ j = 0 gives,

m = m1 + m1(cot( 2π j
k ) + csc(2π j

k ))k or m = m1 + m1(cot( 2π j
k ) − csc(2π j

k ))k as a solution. Note that

both of these produce the same simple factor dressing, and do not depend on the choice of m1.

A simple factor dressing with s = 0 would also solve τ̂ j = 0, however this would generate the

k-noid so we do not include it.

Therefore the simple factor dressing in R3 with m = m1 − (m1(cot(2π j
k ) + csc(2π j

k ))k preserves

the catenoidal structure of the end at e
2π ji

k . If k is even then the catenoidal end at e
(2π j+kπ)i

k is also

preserved, due to the trigonometric identity that csc(θ + π) = − csc(θ).

The simple factor dressing with m = n = m1 + (m1(cot( 2π j
k ) + csc(2π j

k ))k is independent of the

choice of m1 for all minimal surfaces f : M → R3. It is straightforward to compute that for

general quaternion f , we have that m((m−1 f m)µm−1 does not depend on m1. �

So in the case of k being an odd number the simple factor dressing with m = m1 + m1((cot( 2π j
k ) +
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csc( 2π j
k ))k will preserve one catenoidal end at e

2πi j
k . This is shown in figure 7.10 for the trinoid

with µ = 1
2 and j = 1, 2, 3.

Figure 7.10: The simple factor dressing of the trinoid with µ = 1
2 and m = m1 + (m1(cot( 2π j

k ) +

csc( 2π j
k ))k , for j = 1 (top left), j = 2 (top right) and j = 3 (bottom).

In the case of k being even two ends are preserved by the simple factor dressing with m =

m1 + (m1(cot( 2π j
k ) + csc(2π j

k ))k . It is shown in figure 7.11 for µ = 1
2 and j = 1, 2, 3, 4.
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Figure 7.11: The simple factor dressing of the 4-noid with µ = 1
2 and m = m1 + (m1(cot( 2π j

k ) +

csc( 2π j
k ))k , for j = 1 (top left), j = 2 (top right), j = 3 (bottom left) and j = 4 (bottom right).

From the figures we see that in this case that the simple factor dressing with m = m1+(m1(cot( 2π j
k )+

csc( 2π j
k ))k of the k-noid does not depend on j up to a rotation of the surface. This will become

clear from the symmetry relations on f and f ∗. Consider Re ((m−1Φm)µ), where Φ = f + i f ∗,
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Re ((m−1Φm)µ) =


f2 sin

(
2π j
k

)
− f1 cos

(
2π j
k

)
f ∗3 sinh(s) − cosh(s)

(
f1 sin

(
2π j
k

)
+ f2 cos

(
2π j
k

))
f3 cosh(s) − sinh(s)

(
f ∗1 sin

(
2π j
k

)
+ f ∗2 cos

(
2π j
k

))

.

As f and f ∗ are both invariant under a rotation of 2π j
k around the z axis, we see that Re ((m−1Φm)µ)

is the same surface for all j up to rotation and hence so is the simple factor dressing with m =

m1 + (m1(cot( 2π j
k ) + csc(2π j

k ))k .

We have already seen that a minimal surface has a catenoidal end at point p j if the residue at pole

p j of the derivative of the holomorphic null curve Res (Φ′, p j) is real and non zero. Moreover,

the translational period of the conjugate is given by 2πRes (Φ′, p j). Therefore, if λ j is a curve

around p j generating the translational period τ j and if there is a catenoidal end at p j, then the

translational period of the surface vanishes. If one translational period has been closed and a

catenoidal end at p j has been preserved it is a natural question to ask how the other catenoidal

ends at pl where l ∈ {1, . . . , k} \ { j} and their translation periods τl behave. It is straightforward to

calculate that for the simple factor dressing with m = m1 + (m1(cot( 2π j
k ) + csc(2π j

k ))k the residue

of φ̂′ at pl is,

Res (Φ′, pl) =


0

−
(k−1) sinh(s) sin

( 2π j
k +2πl+t

)
k2

(k−1) sinh(s) cos
( 2π j

k +2πl+t
)

k2


,

which does not depend on l. We also see that multiple periods cannot be closed at the same

time and therefore no non-periodic minimal surfaces can be generated in R3 from a simple factor

dressing of the k-noid. The simple factor dressing of the trinoid with m4 = 0 (i.e. j = 3) is shown
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in figure 7.12, where extra periods have been added.

Figure 7.12: The simple factor dressing of the trinoid with µ = 1
2 and the first period has been

closed by setting m4 = 0. The transformation does not depend on m1.
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7.3 Symmetries of the simple factor dressing of the k-noid

We have already discussed the symmetries of the k-noid and its conjugate by considering the

geodesics and applying the reflection principle. We will now consider the symmetries of the

Lopez-Ros deformation and simple factor dressings of the k-noid in R3. From the images shown

in this chapter, it is clear that the symmetries of these surfaces are dependent the choice of the

quaternion m. For instance, recall that figure 7.9 shows the Lopez-Ros deformation. Figure 7.9

shows a highly symmetric surface, however, the simple factor dressing with parameter µ shown

in figure 7.12 appears to have one reflective symmetry.

We will now consider the symmetries of the simple factor dressing and investigate under what

conditions they are preserved. Firstly consider the definition of an isometry on the Riemann

surface M.

Definition 7.3.1. If M and M̃ are Riemannian manifolds the map α : M → M̃ is said to be a

isometry if the metric is preserved that is for X,Y ∈ TpM we have

gp(X,Y) = g̃α(p)(dα(X), dα(Y)).

In the case of S 2 \ {p1, . . . , pk}, the functions

α j(z) = e
2πi j

k z, β j(z) = e
πi j
k z̄, γ(z) =

1
z
,

are the only automorphisms, since the set of punctures must be preserved under an automor-

phism. The following theorem of Meeks and Hoffman [148] allows us to relate the symmetries

of a minimal immersion to the symmetries of the domain.
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Theorem 7.3.2. If f : M → R3 is a minimal immersion and A ∈ O(3) is a symmetry of f then an

automorphism α is induced on M, that is

f ◦ α = A f .

That is, if A is a symmetry on f (M) an automorphism α must exist on M. We will consider the

rotation symmetries of the simple factor dressing of the k-noid, that is f̂ (e
2πi j

k z). We will prove

the following:

Theorem 7.3.3. If f̂ : M̃ → R3 is the simple factor dressing of the k-noid then f̂ preserves all

rotational symmetries of the k-noid if and only if

m = m1 + m2i − m1j + m2k ,

with m1,m2 ∈ R.

Proof. To prove the above recall from section 7.1.2 that f and f ∗ have the same symmetry

relations f (e
2πi j

k z) = R j f (z) and f ∗(e
2πi j

k z) = R j f ∗(z) where R j is a matrix representing a rotation

by 2π j
k around the z axis, and note Φ(e

2πi j
k z) = R jΦ(z). Consider the matrix representation of the

simple factor dressing f̂ of α j(z) = e
2πi j

k z, Re (M−1BMΦ(e
2πi j

k z)), where B represents the simple

factor dressing with parameter µ and M is a rotation in R3. Note we only need to consider

Re (BMΦ(e
2πi j

k z)), then,

M f̂ (e
2πi j

k z) = Re (BMΦ(e
2πi j

k z)) = Re (BMR jΦ(z)) = Re (CBMΦ(z)) = Re (C)M f̂ − Im (C)M f̂
∗

,
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where, C = BMR jM−1B−1. We wish to find under what conditions Re (C)M f̂ − Im (C)M f̂
∗

is a rigid motion of M f̂ (e
2πi j

k z). Therefore, we require that Im (C) = 0 and Re (C) is an or-

thogonal matrix, as Im (C)M f̂
∗

cannot be written in terms of f̂ , as f̂ is not self-conjugate. It is

straightforward to compute that we require that

m = m1 + m2i − m1j + m2k ,

completing the proof.

�

Recall from theorem 3.3.13 that the Lopez-Ros deformation is the simple factor dressing in

R3 with m =
1−i−j−k

2 . Therefore, putting m1 = 1
2 and m2 = −1

2 we see that the Lopez-Ros

deformation satisfies the conditions of the previous theorem:

Corollary 7.3.4. The Lopez-Ros deformation preserves the rotational symmetries of a k-noid.

7.4 Conclusions

In this chapter we have applied the simple factor dressing to the k-noid and investigated the re-

sulting minimal surfaces. To do so, the Jorge-Meeks k-noid was implemented as an extension of

the surface lab which was developed using the JReality software package. This type of imple-

mentation allows for a high degree of control and transformations can easily be applied to the

surface. The k-noid required multiple domains to be created to allow the conjugate surface to be

correctly implemented. This allowed for the simple factor dressing to be visualized.

Our first interest was in the periodicity of the resulting surfaces, this is defined by the value of
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the residue at the poles. The k-noid is defined on the punctured sphere whereas the conjugate

surface in general is doubly-periodic. For an appropriate choice of the parameter m of the simple

factor dressing, we have shown that the simple factor dressing is singly-periodic.

Finally, we investigated the symmetries of the simple factor dressings. In particular, we proved

that the Lopez-Ros deformation preserves the rotational symmetries of the k-noid. Looking

forward, the reflective symmetries of the simple factor dressing could also be investigated. Figure

7.11 indicates that a single reflective symmetry could be preserved, dependant on the value of j.

Additionally to the Jorge-Meeks k-noid a similar process to that described in this chapter could be

used to investigate other minimal surfaces. For example one could investigate the simple factor

dressing of k-noids of higher genus or lower symmetry, see [149] for work on these surfaces.

Since the relationship between the genus and number of catenoidal ends of a minimal surface

has been of particular interest [150], potentially by investigating a k-noid of arbitrary genus and

its simple factor dressing a better understanding of this relationship could be developed.
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Chapter Eight -Conclusions
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8 Conclusions

This chapter will conclude and summarise this thesis. Potential future work is also discussed.

The work presented in this thesis analyses temperature-induced transitions in lipid bilayers, co-

alescence of aqueous aerosol droplets and transformations of minimal surfaces. Resultant mor-

phology changes were analysed using optical tweezers, light scattering, mathematical modelling

and visualization techniques. The initial goal of the project was analyse the coalescence of

micrometer sized liquid droplets both experimentally with optical tweezers and theoretically.

This was achieved by comparing elastic light scattering over the coalescence with simulations

of the composite droplets aspect ratio. Additionally, we wished to explore the capability of

the optical tweezers and spectroscopic detection to analyse morphological changes in biological

membranes. The optical tweezers were configured to analyse temperature-induced transitions in

micron sized liposomes using elastic and inelastic scattering techniques.

Initially, for the coalescence, it was hoped that by modelling the precursor and composite droplet

as constant mean curvature surfaces coordinates for the composite droplets could be produced

as it coalesces. A literature search revealed that this type of model would be inappropriate,

though analytic techniques have given expressions for the shape of the meniscus connecting the

precursor droplets. To produce coordinates for the coalescing droplet numerical methods are

required. A finite element process was used to solve the Navier-Stokes type equations governing

the process. The work on constant mean curvature surfaces lead us to investigate the related class

of minimal surfaces (H = 0). A k-noid was implemented using the JReality package allowing for

high quality images of the surface to be produced. The simple factor dressing was then applied

to the k-noid to create new families of minimal surfaces. The symmetry and periodicity of these

surfaces was then analysed.
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In chapter 5, elastic and Raman scattering was used to probe temperature-induced transitions

in lipid bilayers. For the main gel-to-liquid crystalline transition of a single optically trapped

liposome a sharp change in the intensity of elastically scattered light was recorded over the main

transition. Previous work on liposome suspensions showed a gradual transition occurring over

approximately 1 ◦C, we are able to probe the transition of a single liposome over a temperature

difference of 1 m◦C. An analysis of the diffraction pattern allow us to conclude that this change in

scattering can be attributed to a loss of rigidity of the bilayer as it enters the fluid phase. Raman

spectra were recorded in the C-H region for a single optically trapped liposome in the gel, fluid

and ripple phases. The spectra are understood to show a decrease in molecular packing order as

would be expected over the temperature ramp.

Other temperature sensitive behaviour was induced by the intercalation of cholesterol and sph-

ingomeylin on the lipid bilayer. Transitions from an ordered bilayer to a disordered bilayer with

ordered microdomains, and a disordered bilayer with ordered microdomains to a uniform disor-

dered bilayer were considered. The change in rigidity of the bilayer was recorded using elastic

scattering. Again this showed a sharp change in rigidity of the bilayer on the scale of m◦C.

The multicomponent lipid bilayers were also analysed using Raman spectroscopy. Sets of spec-

tra were recorded for single optically trapped liposomes over the temperature ramp showing a

gradual change in molecular ordering.

The results demonstrate the capability of optical trapping to analyse physical change in lipo-

somes. Potentially, a complete study of temperature transitions for single optically trapped li-

posomes could be undertaken for liposomes with different physical properties. To do so a more

refined system for controlling temperature would be required. Outside of temperature transitions,

the use of microfluidic devices is now being investigated as a means to expose liposomes to an-

other solution. This would allow several phenomena including liposome fusion and the infection
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of a liposome to be analysed using spectroscopic methods.

The coalescence of liquid droplets is analysed in chapter 6 using both experimental and compu-

tational techniques. A finite element based procedure was used to model coalescence. The model

was contrasted with experimental results recorded at the University of Bristol using holographic

optical tweezers. The coalescence process was analysed for variable viscosity fluids and for

differently orientated composite droplets within the optical trap using mathematical modelling,

elastic light scattering and a high speed camera.

Coalescence was induced both parallel and transverse to the direction of propagation of light.

The mathematical modelling was used to illustrate both cases. From the videos, it becomes clear

that the light scattering probes significantly different regions of the composite droplet in either

case. In the transverse case, the coalescence takes place in between the two optical traps, sup-

porting the conclusion that forces driving coalescence are stronger than those of the optical trap.

Higher order modes of the oscillation become clearer in the elastic scattering when coalescence

is induced in the parallel direction. This behaviour can also be analysed by considering the aspect

ratio of the simulated composite droplet. In the transverse case, the laser is probing the region of

high curvature around the meniscus, whereas in the parallel case the laser probes an expanding

and contracting spherical region.

Viscosity of the droplet could be increased by adjusting the relative humidity of the chamber.

The dynamics of coalescence are determined by the Reynolds number, which describes the ratio

of inertial to viscous forces. There is a critical value of viscosity at which the oscillation in shape

is overdamped by viscosity. In this case, the mathematical model shows a coalescence where the

predominant feature is the evolution of the meniscus.

Experimentally, the aspect ratio of images taken using the high speed camera could be compared
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to the elastic light scattering and simulated aspect ratio. For lower viscosity droplets, where the

coalescence occurs on a microsecond time-scale, the high frame rate images and elastic scattering

are essentially equivalent. For higher viscosity droplets, where the coalescence occurs on a

millisecond time-scale the elastic scattering is distorted by the repositioning of the composite

droplet in an optical trap. However images taken using the high speed camera may still be

compared to simulated images, validating the approach.

Overall we have demonstrated the ability of the finite element procedure to analyse several dif-

ferent types of coalescence dependant on viscosity and the droplets orientation. Looking further,

simulated results for a low viscosity fluid (or equivalently higher surface tension) suggest addi-

tional features may be present in the coalescence. An complete analysis of coalescence of such

a fluid could be undertaken experimentally to explore these features further.

In chapter 7 the simple factor dressing is applied to the k-noid. The k-noid and its conjugate

surface have been implemented using the JReality software package allowing for the simple

factor dressing to be visualized. The conjugate surface is a doubly periodic minimal surface.

However, for some choices of the parameter of the simple factor dressing the resulting surfaces is

a singly periodic surface in R3. The symmetry of simple factor dressings in R3 is also considered.

Apart from the Jorge Meeks k-noid there are other minimal surface classes this work could be

applied to. For example, it is possible to create a k-noid of higher genus or with less symmetries.

There are several open problems in the theory of minimal surfaces relating to the possible number

of catenoidal ends and genus of a minimal surface. Potentially, by investigating transformations

of a higher genus k-noid a better understanding of these problems could be developed.
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Figure A.1: Schematic of the heating plate.

Appendices

A Customised heating stage plate

A custom built delrin and aluminium plate was used to heat samples dispensed onto the micro-

scope stage. The plate consisted of a rectangular delrin base of dimensions 10×5×1 cm with

a rectangular alluminum heating plate 8×4×0.5 cm attached. Both plates had a 4 cm diameter

aperture in the centre. Between the delrin and aluminium layer a ring-shaped kapton-insulated

flexible heater (50 mm-outer diameter, 25 mm-inner diameter; Minco Products Inc.) was bonded

onto the lower surface. The temperature was monitored with a K-type thermocouple on the edge

of the aluminium plate. The thermocouple was connected to the computer and by a LabView

programmes.

A schematic of the heating plate is shown in figure A.1. A limitation of the design is that an

accurate temperature cannot be measured at the precise position of an optically trapped particle.
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In our experiments, the temperature is reported based on a measurement with a contact K-type

thermocouple positioned at the edge of the heated aluminium plate. the profile of the temperature

across the aluminium plate, and the coverglass on which the sample is dispensed is considered

below.

Figure A.1 shows 3 points the on stage, (1) at the thermocople, (2) directly above the heating

element and (3) where the liposome is optically trapped. There was a positive temperature gra-

dient between the edge of the aluminium plate (1) and the surface area of the aluminium plate

that was actually in contact with the coverglass (2); this area of the aluminium plate is directly

above the bonded-Kapton flexible element. Furthermore, there was a negative temperature gra-

dient between the area of the coverglass in contact with the heating plate (2) and the centre of

the coverglass (3); the liposome was optically-trapped at a height of 50 µm above the centre of

the coverglass.

An estimate of the magnitude of the temperature difference, ∆T(1,3) between (1) and (3), when

the bonded thermocouple at the edge of the aluminium plate reports a temperature, T3, of 44 ◦C

can be made; i.e. the temperature at which the main phase transition of the DPPC liposomal

bilayer was observed.

Firstly we measure the temperature difference between (1) and (2), ∆T(1,2) by placing a 2nd

(non-bonded) K-type thermocouple in contact with the upper surface of the aluminium plate at

(2). When the bonded thermocouple reported a temperature of 44.0 ◦C at (1), the non-bonded

thermocouple reported a temperature of 42.2 ◦C at (2). Thus, ∆T(1,2) is 1.8 ◦C, when T1 = 44 ◦C.

The coverglass can be assumed to be in good thermal contact with the aluminium plate, and the

surface of the coverglass at (2) is at the same temperature as the aluminium plate. The tempera-

ture difference between (2) and (3) ∆T(2,3) is estimated from measurement of temperature at (2)
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and (3) using a non-contact IR thermometer. Absolute temperature values cannot be measured

directly by the IR thermometer because the emissivity e of the surface and of the coverglass is un-

known. A linear dependence was assumed between ∆T(1,2) and the magnitude of T1 above room

temperature; i.e. T2 = T1 + 1.8 (T1−22)
22 . The emissivity of the coverglass surface was estimated by

assuming the energy E radiated by the surface, per second per unit area, follows Stefan Boltz-

manns law, E = σeT 4
2 , where σ is Stefan-Boltzmanns constant. ∆T(2,3) can now be determined

from the difference in energy radiated by surface of the coverglass at (2) and (3).

The actual temperature at (1) (Al plate) and (2) (centre of coverglass) is shown in figure A.2 as

a function of the temperature reported by the bonded thermocouple. The literature value for the

main transition in DPPC bilayers (41.6 ◦C see table 5.1) is shown relative to the reported temper-

ature of 44 ◦C at (1). The precision of a temperature measurement by the infrared thermometer

at (2) was ±0.5 ◦C. The error reported in figure A.1 for T3 takes into account the uncertainty in

the emissivity value and the precision of T2.
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Figure A.2: Comparison of the temperature recorded at the thermocouple and the estimated
temperature of the sample.

As the plate is heated, thermal expansion will result in the upward displacement of the sample

relative to the objective. To compensate for this the adjustable stage was lowered a further 60

micrometres below the focus of the laser after the liposome had been optically trapped. This

means that during the course of the experiment, the liposome is first located at approximately

110 µm above the surface of the cover glass, and is finally located at a height of approximately

30 µm above the surface of the cover glass.
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B Code relating to coalescence of aqueous droplets

The following piece of code recovers the simulated aspect ratio for the imported points.

p u b l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) {
double [ ] x=new double [ 1 2 5 5 0 1 ] ;
double [ ] y=new double [ 1 2 5 5 0 1 ] ;
x=G e t x P o i n t s ( ) ;
y=G e t y P o i n t s ( ) ;

f o r ( i n t i =1; i <500; i ++){
System . o u t . p r i n t l n ( x [ ( i )∗2 5 1 + 1 ] / y [ i ∗ 2 5 1 ] ) ;
}

}

The code below produces images of the coalescence using the JReality software.

i n t r o t =200;
i n t p = ( i n t ) domain . getMinY ( ) ;

double [ ] x=new double [ 5 0 6 0 2 ] ;
double [ ] y=new double [ 5 0 6 0 2 ] ;
x=G e t x P o i n t s ( ) ;
y=G e t y P o i n t s ( ) ;

I n d e x e d F a c e S e t F a c t o r y p s f= new I n d e x e d F a c e S e t F a c t o r y ( ) ;
double [ ] [ ] v e r t i c e s = new double [ 2 0 2∗ ( r o t + 2 ) ] [ 3 ] ;
f o r ( i n t j =0; j < r o t +2; j ++){
f o r ( i n t i =0; i <201; i ++){

i f ( i <101) {
v e r t i c e s [ i + j ∗202 ] [0 ]=10∗Math . cos ( j ∗2∗Math . PI / ( r o t ) ) ∗ x [ ( p∗101)− i +101] ;
v e r t i c e s [ i + j ∗202 ] [1 ]=10∗Math . s i n ( j ∗2∗Math . PI / ( r o t ) ) ∗ x [ ( p∗101)− i +101] ;
v e r t i c e s [ i + j ∗202][2]=10∗ − y [ ( p∗101)− i +101] ;

} e l s e {
v e r t i c e s [ i + j ∗202 ] [0 ]=10∗Math . cos ( j ∗2∗Math . PI / ( r o t ) ) ∗ x [ ( p ∗101)+ i −9 9 ] ;
v e r t i c e s [ i + j ∗202 ] [1 ]=10∗Math . s i n ( j ∗2∗Math . PI / r o t )∗ x [ ( p ∗101)+ i −9 9 ] ;
v e r t i c e s [ i + j ∗202 ] [2 ]=10∗ y [ ( p ∗101)+ i −9 9 ] ;

}

}

}

i n t [ ] [ ] f a c e I n d i c e s = new i n t [ 2 0 1∗ ( r o t + 1 ) ] [ 4 ] ;

f o r ( i n t i =0; i <201∗( r o t +1 ) ; i ++){
f a c e I n d i c e s [ i ] [ 0 ] = i ;
f a c e I n d i c e s [ i ] [ 3 ] = i +1;
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f a c e I n d i c e s [ i ] [ 1 ] = i +202;
f a c e I n d i c e s [ i ] [ 2 ] = i +203;

}

p s f . s e t V e r t e x C o u n t ( 202∗ ( r o t + 2 ) ) ;
p s f . s e t V e r t e x C o o r d i n a t e s ( v e r t i c e s ) ;
p s f . s e t F a c e C o u n t ( 201∗ ( r o t + 1 ) ) ;

p s f . s e t F a c e I n d i c e s ( f a c e I n d i c e s ) ;
p s f . s e t G e n e r a t e E d g e s F r o m F a c e s ( t rue ) ;
p s f . s e t G e n e r a t e F a c e N o r m a l s ( t rue ) ;

p s f . u p d a t e ( ) ;
c . s e tGeome t ry ( p s f . ge tGeomet ry ( ) ) ;
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C An implementation of the k-noid

The following piece of code creates the holomorphic null curve generating the k-noid and its
conjugate.
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p u b l i c Complex [ ] HvalueAt ( double u , double v ) {

i n t nods =( i n t ) ge tNumberOfCa teno ida lEnds ( ) ;
/ / t h e k−no id r e q u i r e d 4 k domains

double k=nods ∗ . 2 5 ;

i n t r e a l n o d=nods ∗ ( nods / 4 ) + 1 ;
setNumberOfDomains ( r e a l n o d ) ;

nos=ge tAeroso lNumberOfSphere ( ) ;

Complex FirstHypGeom=new Complex ( ) , SecondHypGeom=new Complex ( ) ;
Complex i = new Complex ( 0 , 1 . 0 ) ;

Complex a = new Complex ( ) , b = new Complex ( ) , c =new Complex ( ) ;
Complex a r e f = new Complex ( ) , b r e f = new Complex ( ) ,

c r e f =new Complex ( ) ;
Complex z = new Complex ( u , v ) ;
Complex Bound=

new Complex ( Math . cos ( Math . PI / k ) , Math . s i n ( Math . PI / k ) ) ;
/ / L i n e s below t r a n s f o r m u n i t c i r c l e t o p u n c t u r e d u n i t c i r c l e

i f ( nos %2==0)

{

double p= (1−u∗u−v∗v ) / ( v∗v+(1+u )∗ (1+ u ) ) ;
double q= −2.0∗v / ( v∗v+(1+u )∗ (1+ u ) ) ;
z . a s s i g n ( p , q ) ;
}

e l s e
{ v=−v ;

double p= (1−u∗u−v∗v ) / ( v∗v+(1+u )∗ (1+ u ) ) ;
double q= −2.0∗v / ( v∗v+(1+u )∗ (1+ u ) ) ;
z . a s s i g n ( p , q ) ; }

/ / Numer ica l methods re−shape t h e domain t o t h e
r e q u i r e d p u n c t u r e d c i r c l e segment

i f ( nos %2==0) {

i f ( z . a r g () >Math . PI / k ) {
double l e n g t h =z . abs ( ) ;
z . a s s i g n ( Bound ) ;
z . a s s i g n T i m e s ( l e n g t h ) ;

} }

e l s e
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{ i f ( z . a r g ()<−( Math . PI / k ) ) {

double l e n g t h =z . abs ( ) ;
z . a s s i g n ( Bound ) ;
z . a s s i g n T i m e s ( l e n g t h ) ;
z . im=z . im ∗ ( −1 . 0 ) ;

} }

/ / L i n e s below c r e a t e t h e ho lomorph ic n u l l c u r v e
Complex a1= new Complex ( 1 , 0 ) , a2= new Complex ( −1 . 0 / k , 0 ) ,

a3= new Complex ( ( k − 1 . 0 ) / k , 0 ) , a4 = new Complex ( 1 . 0 / k , 0 ) ,
a5=new Complex ( 1 . 0 + ( 1 / k ) , 0 ) ;

Complex a p a r t 1 = new Complex ( ) , a p a r t 2 = new Complex ( ) ;
Complex b p a r t 1 = new Complex ( ) , b p a r t 2 = new Complex ( ) ;
i . a s s i g n ( 0 , 1 . 0 ) ;
Complex zpowk = new Complex ( ) ;
zpowk . a s s i g n ( z ) ;
zpowk . ass ignPow ( k ) ;

FirstHypGeom . a s s i g n ( de . j t em . mfc . s p e c i a l F u n c t i o n s .
HyperGeometr ic2F1 . e v a l u a t e S e r i e s ( a1 , a4 , a5 , zpowk ) ) ;
SecondHypGeom . a s s i g n ( de . j t em . mfc . s p e c i a l F u n c t i o n s .
HyperGeometr ic2F1 . e v a l u a t e S e r i e s ( a1 , a2 , a3 , zpowk ) ) ;

Complex kz=new Complex ( ) ;
kz . a s s i g n ( k ) ;
kz . a s s i g n T i m e s ( z ) ;

Complex kzpowerk=new Complex ( ) ;
kzpowerk . a s s i g n ( k ) ;
kzpowerk . a s s i g n T i m e s ( z . pow ( k ) ) ;

Complex z s q u a r e d=new Complex ( ) ;
z s q u a r e d . a s s i g n ( z ) ;
z s q u a r e d . a s s i g n T i m e s ( z ) ;

Complex zpowerkminus1 = new Complex ( ) ;
zpowerkminus1 . a s s i g n ( zpowk ) ;
zpowerkminus1 . a s s i g n M i n u s ( 1 ) ;

Complex zpowerkminus1 t imeskminus1 = new Complex ( ) ;
zpowerkminus1 t imeskminus1 . a s s i g n ( zpowerkminus1 ) ;
zpowerkminus1 t imeskminus1 . a s s i g n T i m e s ( k −1 ) ;
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Complex zpowerkminus1 t imeskminus1zqua red = new Complex ( ) ;
zpowerkminus1 t imeskminus1zqua red . a s s i g n ( zpowerkminus1 t imeskminus1 ) ;
zpowerkminus1 t imeskminus1zqua red . a s s i g n T i m e s ( z . pow ( 2 ) ) ;

Complex oneminuskpowz = new Complex ( ) ;
oneminuskpowz . a s s i g n ( 1 ) ;
oneminuskpowz . a s s i g n M i n u s ( zpowk ) ;

Complex F i r s t F r a c = new Complex ( ) ;
F i r s t F r a c . a s s i g n ( − . 5 ) ;
F i r s t F r a c . a s s i g n D i v i d e ( kz ) ;

F i r s t F r a c . a s s i g n D i v i d e ( zpowerkminus1 ) ;

Complex SecondFrac= new Complex ( ) ;
SecondFrac . a s s i g n ( i ) ;
SecondFrac . a s s i g n D i v i d e ( kz ) ;

SecondFrac . a s s i g n D i v i d e ( zpowerkminus1 ) ;
SecondFrac . a s s i g n T i m e s ( . 5 ) ;

Complex T h i r d F r a c = new Complex ( ) ;
T h i r d F r a c . a s s i g n ( 1 ) ;
T h i r d F r a c . a s s i g n D i v i d e ( oneminuskpowz ) ;
T h i r d F r a c . a s s i g n D i v i d e ( k ) ;

a p a r t 1 . a s s i g n ( SecondHypGeom ) ;
a p a r t 1 . a s s i g n T i m e s ( zpowerkminus1 ) ;
a p a r t 1 . a s s i g n T i m e s ( k −1 ) ;
a p a r t 2 . a s s i g n ( FirstHypGeom ) ;
a p a r t 2 . a s s i g n T i m e s ( zpowerkminus1 ) ;
a p a r t 2 . a s s i g n T i m e s ( k −1 ) ;
a p a r t 2 . a s s i g n T i m e s ( z ) ;
a p a r t 2 . a s s i g n T i m e s ( z ) ;
a p a r t 1 . a s s i g n M i n u s ( a p a r t 2 ) ;
a p a r t 1 . a s s i g n M i n u s ( kzpowerk ) ;
a p a r t 1 . a s s i g n P l u s ( z s q u a r e d ) ;
a p a r t 1 . a s s i g n M i n u s ( 1 . 0 ) ;
a p a r t 1 . a s s i g n P l u s ( k ) ;

247



a p a r t 1 . a s s i g n T i m e s ( F i r s t F r a c ) ;
a . a s s i g n ( a p a r t 1 ) ;

b p a r t 1 . a s s i g n ( SecondHypGeom ) ;
b p a r t 1 . a s s i g n T i m e s ( zpowerkminus1 ) ;
b p a r t 1 . a s s i g n T i m e s ( k −1 ) ;
b p a r t 2 . a s s i g n ( FirstHypGeom ) ;
b p a r t 2 . a s s i g n T i m e s ( zpowerkminus1 ) ;
b p a r t 2 . a s s i g n T i m e s ( k −1 ) ;
b p a r t 2 . a s s i g n T i m e s ( z ) ;
b p a r t 2 . a s s i g n T i m e s ( z ) ;
b p a r t 1 . a s s i g n P l u s ( b p a r t 2 ) ;
b p a r t 1 . a s s i g n M i n u s ( kzpowerk ) ;
b p a r t 1 . a s s i g n M i n u s ( z s q u a r e d ) ;
b p a r t 1 . a s s i g n M i n u s ( 1 . 0 ) ;
b p a r t 1 . a s s i g n P l u s ( k ) ;
b p a r t 1 . a s s i g n T i m e s ( SecondFrac ) ;
b . a s s i g n ( b p a r t 1 ) ;

c . a s s i g n ( T h i r d F r a c ) ;

a r e f . a s s i g n ( a ) ;
b r e f . a s s i g n ( b ) ;
c r e f . a s s i g n ( c ) ;

/ / Holomorphic n u l l c u r v e i s e v a l u a t e d , now r o t a t i o n s
/ / and r e f l e c t i o n s are used t o g i v e v a l u e on o t h e r domains
/ / L i n e s below t r a n s l a t e k no id p l a n e o f symmetry t o x−y p l a n e

Complex H e i g h t P o i n t = new Complex ( Math . cos ( Math . PI / k ) ,
Math . s i n ( Math . PI / k ) ) ;
Complex [ ] H e i g h t P o i n t V a l u e s=KNoidValues ( k , H e i g h t P o i n t ) ;

double h e i g h t =H e i g h t P o i n t V a l u e s [ 2 ] . r e ;
c . r e=c . re −h e i g h t ;

/ / L i n e s below do r e q u i r e d r e f l e c t i o n s and r o t a t i o n s t o c r e a t e t o p h a l f
/ / o f k−no id and i n t e r i o r o f t h e c o n j u g a t e

Complex [ ] m a i n s u r f a c e 1=new Complex [ 3 ] ;
Complex [ ] m a i n s u r f a c e 2=new Complex [ 3 ] ;
Complex [ ] m a i n s u r f a c e 3=new Complex [ 3 ] ;
Complex [ ] m a i n s u r f a c e 4=new Complex [ 3 ] ;
Complex [ ] m a i n s u r f a c e 5=new Complex [ 3 ] ;
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Complex [ ] C o n j u g a t e s u r f a c e 2 =new Complex [ 3 ] ;

double p o i n t s [ ]= new double [ 3 ] ;
i f ( nos %2==1){
i f ( nos >2) {
m a i n s u r f a c e 3= s u r f a x r o t ( 1 , k , . 9 ∗ . 9 ∗ . 9 ) ;
m a i n s u r f a c e 4= s u r f a x r o t ( 1 , k , . 9 ∗ . 9 ∗ . 9 ∗ . 9 ) ;
m a i n s u r f a c e 5= s u r f a x r o t ( 1 , k , . 9 ∗ . 9 ∗ . 9 ∗ . 9 ∗ . 9 ) ;

p o i n t s = r e f ( a . re , b . re , c . re , m a i n s u r f a c e 3 [ 0 ] . re ,
m a i n s u r f a c e 3 [ 1 ] . re , m a i n s u r f a c e 3 [ 2 ] . r e

, m a i n s u r f a c e 5 [ 0 ] . re ,
m a i n s u r f a c e 5 [ 1 ] . re , m a i n s u r f a c e 5 [ 2 ] . re ,
m a i n s u r f a c e 4 [ 0 ] . re ,
m a i n s u r f a c e 4 [ 1 ] . re , m a i n s u r f a c e 4 [ 2 ] . r e ) ;

a . r e= p o i n t s [ 0 ] ;
b . r e= p o i n t s [ 1 ] ;
c . r e= p o i n t s [ 2 ] ;
i f ( nos >4) {
p o i n t s = r o t 1 8 0 1 ( a . re , b . re , c . re , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , − 1 . 0 , ( double )
( ( nos −3) )∗Math . PI / ( k ) ) ;
a . r e= p o i n t s [ 0 ] ;
b . r e= p o i n t s [ 1 ] ;
c . r e= p o i n t s [ 2 ] ;

}

m a i n s u r f a c e 1= s u r f a x r o t ( ( nos −1 ) / 2 , k , . 9 ) ;
m a i n s u r f a c e 2= s u r f a x r o t ( ( nos −1 ) / 2 , k , . 9 ∗ . 9 ) ;
m a i n s u r f a c e 3= s u r f a x r o t ( ( nos −1 ) / 2 , k , . 9 ∗ . 9 ∗ . 9 ) ;
m a i n s u r f a c e 4= s u r f a x r o t ( ( nos −1 ) / 2 , k , . 9 ∗ . 9 ∗ . 9 ∗ . 9 ) ;
m a i n s u r f a c e 5= s u r f a x r o t ( ( nos −1 ) / 2 , k , . 9 ∗ . 9 ∗ . 9 ∗ . 9 ∗ . 9 ) ;
double [ ] newim= r o t 1 8 0 1 ( a . im , b . im , c . im ,
m a i n s u r f a c e 2 [ 0 ] . im ,
m a i n s u r f a c e 2 [ 1 ] . im ,
m a i n s u r f a c e 2 [ 2 ] . im ,

m a i n s u r f a c e 2 [ 0 ] . im−m a i n s u r f a c e 3 [ 0 ] . im ,
m a i n s u r f a c e 2 [ 1 ] . im−m a i n s u r f a c e 3 [ 1 ] . im ,
m a i n s u r f a c e 2 [ 2 ] . im−m a i n s u r f a c e 3 [ 2 ] . im ,
Math . PI ) ;

a . im=newim [ 0 ] ;

249



b . im=newim [ 1 ] ;
c . im=newim [ 2 ] ;
}

}

e l s e {

i f ( nos >2) {

m a i n s u r f a c e 3= s u r f a x r o t ( 1 , k , . 9 ∗ . 9 ∗ . 9 ) ;
m a i n s u r f a c e 4= s u r f a x r o t ( 1 , k , . 9 ∗ . 9 ∗ . 9 ∗ . 9 ) ;
m a i n s u r f a c e 5= s u r f a x r o t ( 1 , k , . 9 ∗ . 9 ∗ . 9 ∗ . 9 ∗ . 9 ) ;

p o i n t s = r e f ( a . re , b . re , c . re , m a i n s u r f a c e 3 [ 0 ] . re ,
m a i n s u r f a c e 3 [ 1 ] . re ,
m a i n s u r f a c e 3 [ 2 ] . re ,
m a i n s u r f a c e 5 [ 0 ] . re ,
m a i n s u r f a c e 5 [ 1 ] . re ,
m a i n s u r f a c e 5 [ 2 ] . re ,
m a i n s u r f a c e 4 [ 0 ] . re ,
m a i n s u r f a c e 4 [ 1 ] . re ,
m a i n s u r f a c e 4 [ 2 ] . r e ) ;
a . r e= p o i n t s [ 0 ] ;
b . r e= p o i n t s [ 1 ] ;
c . r e= p o i n t s [ 2 ] ;

i f ( nos >4) {
p o i n t s = r o t 1 8 0 1 ( a . re , b . re , c . re , 0 . 0 , 0 . 0 , 0 . 0 ,
0 . 0 , 0 . 0 , − 1 . 0 , ( double ) ( ( nos −4) )∗Math . PI / ( k ) ) ;

a . r e= p o i n t s [ 0 ] ;
b . r e= p o i n t s [ 1 ] ;
c . r e= p o i n t s [ 2 ] ;
}

m a i n s u r f a c e 1= s u r f a x r o t ( ( nos −2 ) / 2 , k , . 9 ) ;
m a i n s u r f a c e 2= s u r f a x r o t ( ( nos −2 ) / 2 , k , . 9 ∗ . 9 ) ;
m a i n s u r f a c e 3= s u r f a x r o t ( ( nos −2 ) / 2 , k , . 9 ∗ . 9 ∗ . 9 ) ;
m a i n s u r f a c e 4= s u r f a x r o t ( ( nos −2 ) / 2 , k , . 9 ∗ . 9 ∗ . 9 ∗ . 9 ) ;
m a i n s u r f a c e 5= s u r f a x r o t ( ( nos −2 ) / 2 , k , . 9 ∗ . 9 ∗ . 9 ∗ . 9 ∗ . 9 ) ;
double [ ] newim= r o t 1 8 0 1 ( a . im , b . im , c . im , m a i n s u r f a c e 2 [ 0 ] . im ,
m a i n s u r f a c e 2 [ 1 ] . im ,
m a i n s u r f a c e 2 [ 2 ] . im ,
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m a i n s u r f a c e 2 [ 0 ] . im−m a i n s u r f a c e 3 [ 0 ] . im ,
m a i n s u r f a c e 2 [ 1 ] . im−m a i n s u r f a c e 3 [ 1 ] . im ,
m a i n s u r f a c e 2 [ 2 ] . im−m a i n s u r f a c e 3 [ 2 ] . im ,
Math . PI ) ;
a . im=newim [ 0 ] ;
b . im=newim [ 1 ] ;
c . im=newim [ 2 ] ;
} }

/ / L i n e s below c r e a t e bo t tom h a l f o f k no id and c o r r e s p o n d i n g p a r t o f t h e c o n j u g a t e

i f ( nos%nods >( nods /2 −1) )
{ c . r e=c . r e ∗ −1 .0 ;
i f ( nos %2==1){
i n t a x i s =nos−nods / 2 ;
C o n j u g a t e s u r f a c e 2= c o n j s u r f a x r o t ( a x i s , k , 0 ) ;
double [ ] newim2= r o t 1 8 0 1 ( a . im , b . im , c . im ,
C o n j u g a t e s u r f a c e 2 [ 0 ] . im ,
C o n j u g a t e s u r f a c e 2 [ 1 ] . im ,
C o n j u g a t e s u r f a c e 2 [ 2 ] . im ,
0 . 0 , 0 . 0 , 1 . 0 , Math . PI ) ;

a . im=newim2 [ 0 ] ;
b . im=newim2 [ 1 ] ;
c . im=newim2 [ 2 ] ;

}

e l s e {
C o n j u g a t e s u r f a c e 2= c o n j s u r f a x r o t ( nos −3 ,k , 0 ) ;
double [ ] newim2= r o t 1 8 0 1 ( a . im , b . im , c . im , C o n j u g a t e s u r f a c e 2 [ 0 ] . im ,
C o n j u g a t e s u r f a c e 2 [ 1 ] . im ,
C o n j u g a t e s u r f a c e 2 [ 2 ] . im ,
0 . 0 , 0 . 0 , 1 . 0 , Math . PI ) ;

a . im=newim2 [ 0 ] ;
b . im=newim2 [ 1 ] ;
c . im=newim2 [ 2 ] ; } }
/ / Re tu rn t h e 3 complex numbers g i v i n g k−no id and i t s c o n j u g a t e
re turn new Complex [ ] { a , b , c } ;
}
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