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Abstract. The growth rate of atmospheric carbon dioxide
(CO2) reflects the net effect of emissions and uptake result-
ing from anthropogenic and natural carbon sources and sinks.
Annual mean CO2 growth rates have been determined from
satellite retrievals of column-averaged dry-air mole fractions
of CO2, i.e. XCO2, for the years 2003 to 2016. The XCO2
growth rates agree with National Oceanic and Atmospheric
Administration (NOAA) growth rates from CO2 surface
observations within the uncertainty of the satellite-derived
growth rates (mean difference± standard deviation: 0.0±
0.3 ppm year−1; R: 0.82). This new and independent data set
confirms record-large growth rates of around 3 ppm year−1

in 2015 and 2016, which are attributed to the 2015–2016 El
Niño. Based on a comparison of the satellite-derived growth
rates with human CO2 emissions from fossil fuel combustion
and with El Niño Southern Oscillation (ENSO) indices, we
estimate by how much the impact of ENSO dominates the
impact of fossil-fuel-burning-related emissions in explain-
ing the variance of the atmospheric CO2 growth rate. Our
analysis shows that the ENSO impact on CO2 growth rate

variations dominates that of human emissions throughout the
period 2003–2016 but in particular during the period 2010–
2016 due to strong La Niña and El Niño events. Using the
derived growth rates and their uncertainties, we estimate the
probability that the impact of ENSO on the variability is
larger than the impact of human emissions to be 63 % for
the time period 2003–2016. If the time period is restricted to
2010–2016, this probability increases to 94 %.

1 Introduction

Atmospheric carbon dioxide (CO2) is an important green-
house gas that causes global warming (IPCC, 2013). Sources
that emit CO2 into the atmosphere include anthropogenic and
natural sources at the surface, and the oxidation of carbon
monoxide and hydrocarbons in the atmosphere. The sinks
that remove CO2 primarily at the surface include biological
(photosynthesis) and physical (solubility) processes. Anthro-
pogenic emissions of CO2, primarily from fossil fuel com-
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bustion, have increased the atmospheric CO2 mixing ratios
at the surface by more than 40 % since pre-industrial times,
from less than 280 parts per million (ppm) to 402.8±0.1 ppm
in 2016 (Dlugokencky and Tans, 2017a). A global increase
of atmospheric CO2 by 1 ppm in a 1-year time period cor-
responds to an annual increase of 2.12 GtC year−1 (Ballan-
tyne et al., 2012). However, this increase in mass does not
directly correspond to the emissions. The reason is that only
a fraction of the emitted CO2 remains in the atmosphere, as
CO2 is partitioned between the atmosphere and ocean and
land carbon sinks. On average, somewhat less than half of
the emitted CO2 remains in the atmosphere but this “airborne
fraction” varies substantially from year to year (Le Quéré et
al., 2016, 2018). Variations of the airborne fraction are not
well understood, primarily because of an inadequate under-
standing of the terrestrial carbon sink, which introduces large
uncertainties for climate prediction (e.g. IPCC, 2013; Peylin
et al., 2013; Wieder et al., 2015; Huntzinger et al., 2017).
Identification of the origin of changes in the growth rate re-
quires additional information for the attribution to particu-
lar sources or sinks (Peters et al., 2017). Atmospheric CO2
growth rates inferred from in situ CO2 surface measurements
are regularly determined and published, for example by the
National Oceanic and Atmospheric Administration (NOAA)
(see https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.html, last
access: 24 November 2017). In this study, we present and in-
terpret atmospheric growth rates determined from the remote
sensing of CO2 vertical columns from space, which are de-
scribed in the following section.

2 Global satellite observations of atmospheric CO2
columns

Satellites provide retrievals of CO2 vertical columns in terms
of the CO2 column-averaged dry-air mole fraction, denoted
by XCO2. Although it is a relatively new field, satellite-based
XCO2 data products have already been used to improve our
knowledge of natural (e.g. Basu et al., 2013; Maksyutov
et al., 2013; Chevallier et al., 2014; Reuter et al., 2014a;
Schneising et al., 2014; Houweling et al., 2015; Parker et al.,
2016; Heymann et al., 2017; Kaminski et al., 2017; Liu et al.,
2017) and anthropogenic (e.g. Schneising et al., 2013; Reuter
et al., 2014b; Kort et al., 2012; Hakkarainen et al., 2016; Nas-
sar et al., 2017) CO2 sources and sinks, but only a few studies
explicitly present and discuss CO2 growth rates. Buchwitz et
al. (2007), analysed the first 3 years (2003–2005) of XCO2
retrievals from SCIAMACHY-ENVISAT (Burrows et al.,
1995; Bovensmann et al., 1999) generated using the WFM-
DOAS retrieval algorithm (Buchwitz et al., 2006). They com-
puted year-to-year CO2 variations and compared the XCO2
increase with the XCO2 increase computed from the out-
put of NOAA’s CO2 assimilating system CarbonTracker (Pe-
ters et al., 2007) and found agreement within 1 ppm year−1.
Schneising et al., 2014 computed growth rates from the
2003–2011 SCIAMACHY XCO2 record. They compared the

derived annual growth rates with surface temperature and
found that years having higher temperatures during the vege-
tation growing season are associated with larger growth rates
in atmospheric CO2 at northern midlatitudes. Growth rates
from GOSAT (Kuze et al., 2016) are published by the Na-
tional Institute for Environmental Studies (NIES), Tsukuba,
Japan (NIES, 2017).

In this study, we analyse a new satellite XCO2 data set cov-
ering 14 years (2003–2016) generated from SCIAMACHY-
ENVISAT and TANSO-FTS-GOSAT. We use the XCO2
data product Obs4MIPs (Observations for Model Intercom-
parisons Project) version 3 (O4Mv3), which is a gridded
(level 3) monthly data product at 5◦ latitude by 5◦ lon-
gitude spatial resolution in Obs4MIPs format (Buchwitz
et al., 2017a). Obs4MIPs (https://www.earthsystemcog.org/
projects/obs4mips/, last access: 10 October 2018) is an ac-
tivity to make observational products more accessible for cli-
mate model intercomparisons (e.g. Lauer et al., 2017). The
O4Mv3 XCO2 data product was generated by gridding (av-
eraging) the XCO2 level 2 (i.e. individual soundings) prod-
uct generated with the ensemble median algorithm (EMMA,
Reuter et al., 2013). EMMA uses as input an ensemble of
XCO2 level 2 data products (Reuter et al., 2013; Buchwitz
et al., 2015, 2017a, b) from SCIAMACHY-ENVISAT and
TANSO-FTS-GOSAT. To generate the O4Mv3 product, the
EMMA version 3.0 (EMMAv3, Reuter et al., 2017c) prod-
uct was used. The list of satellite products used for the
generation of the EMMAv3 level 2 product – and there-
fore also for the O4Mv3 level 3 data product used in this
study – is provided in Table 1. The quality of this product
relative to Total Carbon Column Observing Network (TC-
CON) ground-based observations (Wunch et al., 2011, 2015)
can be summarized as follows (Buchwitz et al., 2017c):
+0.23 ppm overall (global) bias, relative accuracy 0.3 ppm
(1σ ), and very good stability in terms of a linear bias trend
(−0.02± 0.04 ppm year−1).

Figure 1 presents an overview of the O4Mv3 product in
terms of time series and global XCO2 maps. The maps show
the typical coverage of XCO2 from SCIAMACHY (until
April 2012) and GOSAT (since mid-2009). As can be seen,
the time series for the three latitude bands shown in Fig. 1
have very similar slopes. They mainly differ in the amplitude
of the seasonal cycle, which reflects the latitudinal depen-
dence of uptake and release of atmospheric CO2 by the ter-
restrial biosphere (Schneising et al., 2014). These time series
have been used to compute annual mean CO2 growth rates as
will be explained in the following section.

3 Atmospheric CO2 growth rates from satellite
observations

The National Oceanic and Atmospheric Administra-
tion (NOAA) defines the annual mean CO2 growth rate for
a given year as the CO2 concentration difference at the
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Table 1. Satellite XCO2 data products. Individual satellite sensor XCO2 algorithms and corresponding level 2 data products used for gen-
erating the EMMAv3 level 2 (i.e. individual soundings) data product, which has been gridded to obtain the O4Mv3 level 3 data product
used in this study. GHG-CCI refers to the GHG-CCI project of ESA’s Climate Change Initiative (http://www.esa-ghg-cci.org/, last access:
10 October 2017) and C3S is the Copernicus Climate Change Service (https://climate.copernicus.eu/, last access: 11 January 2018).

Algorithm (version) Sensor Comment Reference

BESD (v02.01.02) SCIAMACHY-ENVISAT GHG-CCI/C3S product ID: CO2_SCI_BESD Reuter et al. (2011)
RemoTeC (v2.3.8) TANSO-FTS-GOSAT GHG-CCI/C3S product ID: CO2_GOS_SRFP Butz et al. (2011)
UoL-FP (v7.1) TANSO-FTS-GOSAT GHG-CCI/C3S product ID: CO2_GOS_OCFP Cogan et al. (2012)
ACOS (v7.3.10a) TANSO-FTS-GOSAT NASA’s GOSAT XCO2 product O’Dell et al. (2012)
NIES (v02) TANSO-FTS-GOSAT Operational GOSAT product Yoshida et al. (2013)

Figure 1. Time series and global maps of satellite-derived column-averaged dry-air mole fractions of carbon dioxide, i.e. XCO2. Data product
Obs4MIPs version 3 is shown (O4Mv3) based on an ensemble of SCIAMACHY-ENVISAT (until April 2012) and TANSO-FTS-GOSAT
(since mid-2009) individual sensor and individual sounding (level 2) data products. The three time series correspond to three latitude bands:
30–60◦N (red), 30◦ S–30◦N (green) and 60–30◦S (blue). The maps in the top left show monthly XCO2 for April and September 2003
(SCIAMACHY, land only) and the maps on the bottom right show monthly XCO2 for April and September 2016 (TANSO-FTS, land and
ocean glint).

end of that year minus the CO2 concentration at the begin-
ning of that year (Thoning et al., 1989; see also additional
explanations given on the NOAA/ESRL website; https://
www.esrl.noaa.gov/gmd/ccgg/about/global_means.html, last
access: 10 October 2017). As described below, our method
involves the following three steps: (i) computation of an
XCO2 time series (at monthly resolution and sampling) by
averaging the XCO2 in the region of interest (e.g. a latitude
band; see Appendix A, Fig. A1); (ii) computation of monthly
sampled XCO2 annual growth rates by computing the differ-
ence of the XCO2 value of month i minus the XCO2 value
of month i-12 and computation of the corresponding un-
certainty estimate; (iii) computation of annual mean growth
rates and their corresponding uncertainties from the monthly
sampled annual growth rates.

In the following, this method is described in detail us-
ing Fig. 2 for illustration. In Fig. 2a monthly satellite XCO2
(O4Mv3) is plotted, obtained by globally averaging all the
individual (5◦× 5◦) XCO2 values. To compute the spatially
averaged XCO2 time series (shown in Fig. 2a), we first lon-
gitudinally average the XCO2 followed by the computation
of the area-weighted latitudinal average of XCO2 by using
the cosine of latitude as weight. We consider surface area
because surface fluxes are linked to mass of CO2 (or num-
ber of CO2 molecules) rather than molecular mixing ratios
or mole fractions. As can be seen, the computed time series
does not start at the beginning of 2003 but in April 2003. As
explained in Buchwitz et al. (2017d) (see discussion of their
Fig. 6.1.1.1), the underlying SCIAMACHY BESD v02.01.02
XCO2 data product (see Table 1) apparently suffers from an
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Figure 2. Atmospheric CO2 and corresponding growth rates. (a) Monthly mean XCO2 (red line) as obtained from averaging XCO2 data
product O4Mv3 globally for each month. (b) Monthly sampled annual CO2 growth rates computed from the red curve shown in (a) including
1σ uncertainty (grey vertical bars). (c) Annual mean growth rates computed from averaging the values shown in (b) including 1σ error
estimates (vertical bars) (the numerical values are listed in Table A1 of Appendix A). The NOAA annual mean global growth rate is also
shown in (c) for comparison (in blue). Also listed in (c) is the linear correlation coefficient (R), the mean difference and the standard deviation
of the difference between the satellite and the NOAA growth rates for 2003–2016 and for 2004–2016.

approximately 1 ppm high bias in the first few months of
2003. The exact magnitude of this bias has not been quan-
tified due to a lack of TCCON validation data in this early
time period. As this bias in early 2003 is critical for the year
2003 growth rate, we have omitted the first 3 months of 2003
for the computation of the growth rates shown in this publi-
cation.

Figure 2b shows monthly sampled annual growth rates
computed from the monthly XCO2 values shown in Fig. 2a.
Each value is the difference between two monthly XCO2
values corresponding to the same month (e.g. January) but
different years (e.g. 2004 and 2005). For example, the first
data point (first diamond symbol) shown in Fig. 2b is the
difference of the April 2004 XCO2 value minus the April
2003 XCO2 value. The second data point corresponds to May

2004 minus May 2003, etc. The time difference between the
monthly XCO2 pairs is always 1 year and the time assigned
to each XCO2 difference is the time in the middle of that year.
Therefore, the time series shown in Fig. 2b starts 6 months
later and ends 6 months earlier compared to the time series
shown in Fig. 2a. Each XCO2 difference shown in Fig. 2b
therefore corresponds to an estimate of the XCO2 annual
growth rate and the position on the time axis corresponds
to the middle of the corresponding 1-year time period.

A 1σ uncertainty estimate has been computed for each of
the monthly sampled annual growth rates shown in Fig. 2b
(see grey vertical bars). They have been computed such that
they reflect the following aspects: (i) the standard error of the
O4Mv3 XCO2 values as given in the O4Mv3 data product
file for each of the 5◦× 5◦ grid cells, (ii) the spatial variabil-
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ity of the XCO2 within the selected region, (iii) the temporal
variability of the annual growth rates in the 1-year time inter-
val, which corresponds to the annual growth rate, and (iv) the
number of months (N ) with data located in that 1-year time
interval. The uncertainties have been computed as the mean
value of three terms divided by the square root of N . The
first term is the mean value of the standard error, the second
term is the standard deviation of the XCO2 values in the se-
lected region and the third term is the standard deviation of
the monthly sampled annual growth rates in the correspond-
ing 1-year time interval. We aimed to provide realistic error
estimates but we acknowledge that our uncertainty estimates
are not based on full error propagation, which would be dif-
ficult, especially due to unknown or not well enough known
systematic errors and error correlations. The reported uncer-
tainty estimates should therefore be interpreted as error indi-
cations rather than fully rigorous error estimates.

Figure 2c shows the final result, i.e. the annual mean
XCO2 growth rates and their estimated (1σ ) uncertainties.
The annual mean growth rates have been computed by aver-
aging all the monthly sampled annual growth rates (shown in
Fig. 2b), which are located in the year of interest (e.g. 2003).
For most years, 12 annual growth rate values are available
for averaging but there are some exceptions. For example,
for the year 2003 only three values are present, as can be
seen from Fig. 2b, and for the years 2014 and 2015 there are
only 11 values, as no data are available for January 2015 due
to issues with the GOSAT satellite. The uncertainty of the
annual mean growth rate has been computed by averaging
the uncertainties assigned to each of the monthly sampled
annual growth rates (shown as grey vertical bars in Fig. 2b)
scaled with a factor, which depends on the number of months
(N ) available for averaging. This factor is the square root of
12/N . It ensures that the larger the uncertainty, the fewer data
points there are available for averaging. Overall, our uncer-
tainty estimate is quite conservative, as we do not assume
that errors improve upon averaging. As a result of this pro-
cedure, the error bar of the year 2003 growth rate is quite
large (0.76 ppm year−1; see Table A1 in Appendix A, where
all numerical values are listed). This is because the monthly
sampled annual growth rate varies significantly in 2003 (see
Fig. 2b) and because only N = 3 data points are available
for averaging in 2003. In contrast, the year 2005 growth rate
uncertainty is much smaller (0.28 ppm year−1), because the
growth rates vary less during 2005 and because N = 12 data
points are available for averaging.

In Fig. 2c the NOAA global growth rates (Dlugokencky
and Tans, 2017b) are also shown. As can be seen, the
satellite-derived growth rates agree well with the NOAA
growth rates obtained from CO2 surface observations. For the
time period 2003–2016 the linear correlation coefficient R is
0.82 and the difference is −0.02± 0.28 ppm year−1 (mean
difference± standard deviation). Perfect agreement is not to
be expected as these two growth rate time series have been
obtained from CO2 observations which represent very differ-

ent vertical samplings of the atmosphere (surface (NOAA)
versus entire vertical column (satellite); see Fig. A3b in Ap-
pendix A for a comparison of XCO2 and surface CO2 growth
rates obtained using a global reanalysis CO2 data product).
Perfect agreement is also not to be expected because we
use different time periods for the computation of the an-
nual growth rates compared to NOAA (see Fig. A3c in Ap-
pendix A for a comparison of two different methods to com-
pute annual XCO2 growth rates).

As can also be seen from Fig. 2c, the largest growth
rates are approximately 3 ppm year−1 during 2015 and 2016.
These record-large growth rates (Peters et al., 2017) are at-
tributed to the consequences of the strong 2015–2016 El
Niño event, which produced large CO2 emissions from fires
and enhanced net biospheric respiration in the tropics rela-
tive to normal conditions (Heymann et al., 2017; Liu et al.,
2017). Many of these fires are initiated by humans, for exam-
ple, to clear tropical forests. In this study, human emissions
of CO2 are defined as emissions from fossil fuel combustion
and industry (Le Quéré et al., 2016, 2018) but do not include,
for example, CO2 emissions originating from slash and burn
agriculture.

4 Correlation of CO2 growth rates with fossil CO2
emissions and ENSO indices

It is well known that changes in the growth rate of atmo-
spheric CO2 have anthropogenic and natural causes (e.g.
Jones et al., 2001; Betts et al., 2016; Kim et al., 2016; Liu et
al., 2017; Chylek et al., 2018). In this section we are aiming
at answering the following question: “Assuming that the vari-
ability of the CO2 growth rate is dominated by ENSO and by
human emissions, which of the two considered causes dom-
inates the growth rate variability given the satellite-derived
growth rates and their uncertainty?”. To answer this question
we are using a simple linear statistical model and time se-
ries of human emissions and two ENSO indices, assuming
that these indices are appropriate proxies for ENSO-related
effects in the context of providing a reliable answer.

Figure 3 shows a comparison of the CO2 annual mean
growth rates (Fig. 3a) with annual global CO2 emissions
from fossil fuel combustion and industry (Fig. 3b) (Le Quéré
et al., 2018; GCP, 2017) (correlation of growth rate and hu-
man emissions: R2

= 31 %). As can be seen, the growth
rates vary significantly in recent years despite nearly con-
stant human emissions. Figure 3d shows two ENSO indices:
the Southern Oscillation Index (SOI, blue lines) (Ropelewski
and Jones, 1987; NOAA, 2017a) and the Oceanic Niño Index
(ONI, green lines) (NOAA, 2017b). Whereas SOI is defined
as the normalized pressure difference between Tahiti and
Darwin (values less than−1 indicate the presence of a strong
El Niño), ONI is based on sea surface temperature (SST) dif-
ferences (positive values correspond to El Niño). The dotted
lines correspond to the original (i.e. unshifted) annual mean
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Figure 3. Carbon dioxide global annual mean growth rates compared with human emissions and ENSO indices. (a) Satellite-derived global
annual mean growth rates (with 1σ uncertainty range shown as vertical lines). (b) CO2 emissions from fossil fuel and industry (the correlation
with the growth rate is R2

= 31 %). (c) Correlation in terms of R2 of growth rate and annual SOI (blue curve) and ONI (green curve) as
a function of time shift in months. (d) Annual SOI for no shift (blue dotted line, R2

= 10 %) and for a shift of 7 months (blue solid line,
R2
= 30 %) and annual ONI for no shift (green dotted line, R2

= 13 %) and for a shift of 4 months (green solid line, R2
= 35 %).

indices and the solid lines correspond to time-shifted ENSO
indices. Time shifts have been investigated to consider the
delay in atmospheric response to ENSO-induced changes. As
shown in Fig. 3c, the growth rate response as quantified by
R2 is largest after 4 months for ONI (R2

= 35 %) and af-
ter 7 months for SOI (R2

= 30 %). These maxima have been
adopted for the solid (shifted) lines in Fig. 3d. This finding
is consistent with results from other studies, where lags in

the range 3–9 months have been reported (Jones et al., 2001;
Kim et al., 2016; Chylek et al., 2018).

Figure 3 shows that the anthropogenic emission variabil-
ity is mostly linked to a trend, whereas the El Niño signal is
variable on much shorter timescales. Thus, the relative im-
pact of the anthropogenic and natural contributions depends
on the length of the time series. The shorter the time se-
ries, the smaller the anthropogenic variability is. It is there-
fore expected that the natural contribution to the variability
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of the growth rate increases for a shorter time series. In or-
der to separate and quantify the contributions of the human
CO2 emissions and ENSO to the growth rate variations, as
described by the two indices SOI and ONI, we employ the
method of “variation partitioning” (Peres-Neto et al., 2006).
To achieve this, we have fitted three basic functions to the
2003–2016 growth rate time series via linear least-squares
minimization (we explain the method in this paragraph using
SOI but the method does not depend on which ENSO index
is used): (i) a constant offset (variance zero), (ii) the human
CO2 emissions (Fig. 3b) and (iii) SOI shifted by 7 months
(blue solid line in Fig. 3d). The variance of the scaled emis-
sion, i.e. the human emission scaled with the corresponding
fit parameter, is 0.0758 ppm2 year−2 (note that in this sec-
tion we report numerical values with four digital places but
this shall not imply that all decimal places are significant).
The variance of the scaled SOI is 0.1070 ppm2 year−2 and
the variance of the fit residual is 0.0728 ppm2 year−2. The
sum of the three individual variances is 0.2557 ppm2 year−2,
whereas the variance of the annual mean growth rate is
0.2307 ppm2 year−2. This shows that the sum of the vari-
ances is 10.8 % larger than the variance of the growth rate;
i.e. the sum of the variances is not exactly equal to the vari-
ance of the sum. The reason for this is that the CO2 emis-
sion and the SOI time series are not uncorrelated (R = 0.14).
To account for correlations, we subtract the variance of the
residual from the variance of the growth rate. The result
is the part of the variance to be explained by the emis-
sions and by the SOI. The ratio of this to be explained
variance (0.1579 ppm2 year−2) and the sum of the variances
of the emissions and SOI (0.0758+ 0.1070 ppm2 year−2

=

0.1828 ppm2 year−2) is 0.8638. The latter is then used as a
scaling factor that is applied to the variances of the emissions
and of the SOI. The scaled variances are 0.0655 ppm2 year−2

for the emissions and 0.0924 ppm2 year−2 for SOI (note
that the sum of these scaled variances and the variance of
the residual is equal to the variance of the growth rate).
From this we conclude that the human emissions explain
28 % (= 0.0655/0.2307) of the variance of the growth rate
and that ENSO as quantified by the SOI explains 40 % (=
0.0924/0.2307). We computed (1σ ) uncertainties of these
estimates by numerically perturbing the satellite-derived an-
nual mean growth rates by taking into account their uncer-
tainty (see Figs. 2c and 3) and by subsequently repeating the
computations 10 000 times as explained above. The perturba-
tions correspond to random perturbations of the annual mean
growth rates assuming normal distributions for each year
and no correlation between the different years. This analysis
yields that 40 %± 13 % of the growth rate variation results
from the impact of ENSO and that 28 %± 14 % is due to the
human emissions of CO2. Using these simulations, we also
computed the fraction of cases where the ENSO impact dom-
inates the human emissions. This fraction is 63 % in this case,
i.e. when using SOI and when the analysis is applied to the
entire time period 2003–2016. This fraction is interpreted as

the probability that ENSO-induced impacts on the variation
of the growth rate dominates those of human emissions.

When using ONI instead of SOI, ENSO explains
37 %± 14 % of the growth rate variance during 2003–
2016, human emissions explain 24 %± 14 % and the frac-
tion which ENSO dominates is again 63 %. When restricting
the time period to 2010–2016, which is dominated by strong
2010–2012 La Niña events (Boening et al., 2012; Rodrigues
and McPhaden, 2014) and by the strong 2015–2016 El Niño,
the results are the following: using SOI analysis, we find that
ENSO explains 58 %± 19 % of the variance, human emis-
sions explain 2 %± 9 % and the probability that ENSO dom-
inates is 94 %. For the ONI analysis, we find that ENSO ex-
plains 59 %± 20 % of the variance, human emissions explain
3 %± 9 % and the probability that ENSO dominates is 94 %.
This analysis shows that the ENSO impact on CO2 growth
rate variations dominates that of human emissions through-
out the period 2003–2016 but in particular in the second half
of this period, i.e. during 2010–2016.

5 Conclusions

We presented a method for the computation of atmospheric
CO2 column annual mean growth rates from satellite XCO2
retrievals. The satellite XCO2 data product used is the
Obs4MIPs version 3 (O4Mv3) XCO2 data product based on
SCIAMACHY-ENVISAT and TANSO-FTS-GOSAT satel-
lite data. This product covers the time period 2003–2016 and
has monthly time and (5◦× 5◦) spatial resolutions.

The estimated uncertainty of the satellite-derived an-
nual mean growth rates is typically 0.3 ppm year−1 (1σ )
with the exception of the first year, 2003, where the un-
certainty is 0.76 ppm year−1, and of the last year, 2016,
where the uncertainty is 0.50 ppm year−1. The growth rates
agree with NOAA within the uncertainty of the satellite-
derived growth rates (mean difference± standard deviation:
0.0± 0.3 ppm year−1; R: 0.82). In agreement with NOAA,
we find that the growth rates are largest in the years 2015
and 2016. These growth rates are around 3 ppm year−1 and
are attributed to the 2015–2016 El Niño, resulting in large
CO2 emissions from fires and enhanced net biospheric respi-
ration in the tropics relative to normal conditions (Heymann
et al., 2017; Liu et al., 2017). Our analysis also shows that the
ENSO impact on CO2 growth rate variations dominates that
of human emissions throughout the period 2003–2016 (14
years) but in particular during the period 2010–2016 (second
half of the investigated time period) due to strong La Niña
and El Niño events. We estimate the probability that the im-
pact of ENSO on the variability is larger than the impact of
human emissions to be 63 % for the time period 2003–2016.
If the time period is restricted to 2010–2016 this probability
increases to 94 %.

In the future, we plan to regularly update the satellite-
derived XCO2 growth rates to monitor this important quan-
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tity. This will also include satellite XCO2 retrievals from
other satellite instruments such as XCO2 from NASA’s
OCO-2 mission (e.g. Eldering et al., 2017; Reuter et al.,
2017a, b).

Data availability. The O4Mv3 XCO2 (Reuter, 2018a) data prod-
uct (but also the underlying EMMAv3 (Reuter, 2018b) product
and those individual sensor level 2 input products which have
been generated with European retrieval algorithms) is available
via the Copernicus Climate Change Service (C3S, https://climate.
copernicus.eu/, last access: 11 January 2018) Climate Data Store
(CDS, https://cds.climate.copernicus.eu/, last access: 3 January
2018). Earlier versions are available from the GHG-CCI website
(http://www.esa-ghg-cci.org/, last access: 10 Otober 2017) of the
European Space Agency (ESA) Climate Change Initiative (CCI,
e.g. Obs4MIPs version 2 (O4Mv2) (Reuter, 2017), covering the
years 2003–2015).
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Appendix A

Growth rate time series have also been computed for sev-
eral latitude bands as shown in Fig. A1. As can be seen, the
growth rates agree within their 1σ uncertainty range in all lat-
itude bands including the global results (for numerical values
see Table A1).

The reason for this is that atmospheric CO2 is long-lived
and therefore well mixed. Because of this we expect sim-
ilar annual mean CO2 growth rates, i.e. agreement within
the measurement error, for the different latitude bands and
globally. Identical growth rates are not expected due to dif-
ferences in the sources and sinks and the time needed for
transport and mixing. The expectation of similar growth
rates is corroborated by Fig. A2, which shows a compari-
son of the uncertainty of the satellite-derived growth rates
(red bars) with the difference between two annual mean CO2
growth rate time series from NOAA, namely the time se-
ries from Mauna Loa, Hawaii, and the global time series ob-
tained from globally averaged marine surface data (both ob-
tained from https://www.esrl.noaa.gov/gmd/ccgg/trends/gr.
html). As shown in Fig. A2, the uncertainty of the satellite
data is similar (mean value: 0.34 ppm year−1) to the differ-
ence between the two NOAA time series (standard deviation:
0.21 ppm year−1). We acknowledge that the maximum dif-
ference between any two latitude bands may be somewhat
larger than the difference between the two NOAA time se-
ries shown in Fig. A2, but it is assumed that the difference
shown in Fig. A2 is at least a reasonable approximation.

The agreement shown in Fig. A1 is interpreted as an indi-
cation of the good quality of the satellite XCO2 data prod-
uct and of the adequacy of the method used to compute
the annual mean CO2 growth rates because we do not find
“strange values” in certain latitude bands or certain years,
which would be an indication of a potential problem.

Figure A3 shows a comparison of XCO2 and surface CO2
annual growth rates computed from a Copernicus Atmo-
sphere Monitoring Service (CAMS) global reanalysis CO2
data set (Chevallier, 2018). This CAMS atmospheric CO2
data set does not (in contrast to satellite data) suffer from
data gaps and measurement noise. Therefore, the annual
growth rate can simply be computed from the difference in
the (XCO2 or surface CO2) values at the end of a year and
the beginning of that year (method M1). Figure A3b con-
firms that growth rates computed (using method M1) from
XCO2 and from surface CO2 are very similar but not exactly
identical. Figure A3c shows that the satellite method (M2)
described in this publications provides annual XCO2 growth
rates, which are very similar to those obtained with the M1
method.
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Figure A1. Satellite-derived annual mean XCO2 growth rates: global (black), Northern Hemisphere (NH) midlatitudes (NHmidlat, 30–60◦N,
red), tropics (30◦S–30◦N, green), and Southern Hemisphere midlatitudes (SHmidlat, 60–30◦S, blue). The corresponding numerical values
are listed in Table A1.

Figure A2. Comparison of the 1σ uncertainty range of the satellite-derived growth rates (red bars) with the difference between two annual
mean growth rate time series obtained from NOAA, namely the time series from Mauna Loa (MLO), Hawaii, and the global time series
obtained from globally averaged marine surface data (black line and symbols).
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Figure A3. (a) Monthly mean global time series of XCO2 (red) and surface CO2 (blue) computed from a Copernicus Atmosphere Monitoring
Service (CAMS) CO2 reanalysis data product (version v17r1 obtained from http://apps.ecmwf.int/datasets/data/cams-ghg-inversions/ (last
access: 13 November 2018); Chevallier, 2018). The symbols correspond to the values at the beginning and end of each year. (b) Annual
XCO2 (red) and surface CO2 (blue) growth rates computed from the time series shown in (a) by computing for each year the difference
between the values at the end and the beginning of that year (method M1). Also listed is the linear correlation coefficient R, the mean
difference and the standard deviation of the difference. (c) The red symbols (and the red curve) show the same values as the red symbols
shown in (b); i.e. they show annual XCO2 growth rates computed using method M1. The green symbols also show XCO2 annual growth
rates but computed using the satellite method (M2), which is described in this publication.
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Table A1. Satellite-derived annual mean XCO2 growth rates in ppm year−1 including 1σ uncertainty (in brackets). Abbreviations: NH is
Northern Hemisphere and SH is Southern Hemisphere.

Year Latitude band region

Global NH midlatitudes Tropics SH midlatitudes
(30–60◦ N) (30◦ S–30◦ N) (60–30◦ S)

2003 1.66 (0.76) 1.99 (0.72) 1.54 (0.74) 1.77 (0.62)
2004 1.59 (0.30) 1.52 (0.29) 1.71 (0.29) 1.30 (0.23)
2005 2.16 (0.28) 2.51 (0.26) 1.99 (0.28) 2.17 (0.22)
2006 2.21 (0.27) 2.13 (0.25) 2.22 (0.27) 2.33 (0.21)
2007 2.26 (0.27) 2.33 (0.25) 2.20 (0.26) 2.34 (0.21)
2008 1.67 (0.29) 1.60 (0.27) 1.81 (0.28) 1.41 (0.20)
2009 1.77 (0.30) 1.75 (0.30) 1.86 (0.28) 1.70 (0.21)
2010 2.22 (0.29) 2.67 (0.29) 2.08 (0.27) 2.14 (0.20)
2011 1.86 (0.28) 1.69 (0.27) 1.86 (0.27) 2.19 (0.19)
2012 2.46 (0.29) 2.64 (0.28) 2.44 (0.27) 2.38 (0.21)
2013 2.27 (0.30) 2.38 (0.28) 2.27 (0.28) 2.10 (0.22)
2014 1.74 (0.31) 1.53 (0.30) 1.80 (0.29) 1.84 (0.23)
2015 2.89 (0.34) 2.89 (0.31) 2.97 (0.32) 2.54 (0.25)
2016 3.23 (0.50) 3.28 (0.46) 3.23 (0.48) 3.41 (0.36)
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