
From marine bands to hybrid flows: Sedimentology of a
Mississippian black shale

JOSEPH F. EMMINGS*† , SARAH J. DAVIES*, CHRISTOPHER H. VANE† ,
VICKY MOSS-HAYES† and MICHAEL H. STEPHENSON†
*School of Geography, Geology and the Environment, University of Leicester, University Road,
Leicester, LE1 7RH, UK (E-mail: josmin65@bgs.ac.uk)
†British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK

ABSTRACT

Organic-rich mudstones have long been of interest as conventional and

unconventional source rocks and are an important organic carbon sink. Yet

the processes that deposited organic-rich muds in epicontinental seaways

are poorly understood, partly because few modern analogues exist. This

study investigates the processes that transported and deposited sediment

and organic matter through part of the Bowland Shale Formation, from the

Mississippian Rheic–Tethys seaway. Field to micron-scale sedimentological

analysis reveals a heterogeneous succession of carbonate-rich, siliceous, and

siliciclastic, argillaceous muds. Deposition of these facies at basinal and

slope locations was moderated by progradation of the nearby Pendle delta

system, fourth-order eustatic sea-level fluctuation and localized block and

basin tectonism. Marine transgressions deposited bioclastic ‘marine band’

(hemi)pelagic packages. These include abundant euhaline macrofaunal tests,

and phosphatic concretions of organic matter and radiolarian tests inter-

preted as faecal pellets sourced from a productive water column. Lens-rich

(lenticular) mudstones, hybrid, debrite and turbidite beds successively over-

lie marine band packages and suggest reducing basin accommodation pro-

moted sediment deposition via laminar and hybrid flows sourced from the

basin margins. Mud lenses in lenticular mudstones lack organic linings and

bioclasts and are equant in early-cemented lenses and in plan-view, and are

largest and most abundant in mudstones overlying marine band packages.

Thus, lenses likely represent partially consolidated mud clasts that were

scoured and transported in bedload from the shelf or proximal slope, as a

‘shelf to basin’ conveyor, during periods of reduced basin accommodation.

Candidate in situ microbial mats in strongly lenticular mudstones, and as

rip-up fragments in the down-dip hybrid beds, suggest that these were

potentially key biostabilizers of mud. Deltaic mud export was fast, despite

the intrabasinal complexity, likely an order of magnitude higher than similar

successions deposited in North America. Epicontinental basins remotely

linked to delta systems were therefore capable of rapidly accumulating both

sediment and organic matter.
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INTRODUCTION

Syn-rift to early post-rift epicontinental seaways,
such as the Mississippian Rheic-Tethys, were
distinct from ‘static’ interior seaways such as
the Cretaceous Western Interior Seaway (Schie-
ber, 2016). These extensional epicontinental
marine settings are often associated with the
accumulation of organic-rich sediments (Etten-
sohn, 1997) and are therefore important sinks in
terms of element cycling and hydrocarbon
prospectivity. Yet the sedimentary processes
operating in epicontinental rifted seaways are
spatially and temporally transient (Cope et al.,
1992) and typified by highly variable sediment
supply rates, with potential for development of
highly complex successions.
The depositional processes that operated in the

Mississippian Rheic-Tethys seaway are poorly
understood partly because modern analogues are
rare (Nyberg & Howell, 2015). This is especially
true for the organic-rich upper unit of the Bow-
land Shale Formation (Upper Bowland Shale;
herein ‘Bowland Shale’), deposited in the Rheic-
Tethys seaway, defining a key transition between
the carbonate-dominated Lower Bowland Shale
(Newport et al., 2018) and the Millstone Grit
Group, a siliciclastic toe of slope fan system
(Holdsworth & Collinson, 1988; Aitkenhead
et al., 1992; Martinsen et al., 1995; Waters et al.,
2009). The Bowland Shale is also the primary tar-
get for unconventional hydrocarbon exploration
in the UK (Andrews, 2013; Clarke et al., 2018)
and in equivalents across Europe, including the
Geverik Member (Epen Formation, Netherlands;
e.g. Nyhuis et al., 2015) and Upper Alum Shale
Formation, Germany (Kerschke & Schulz, 2013).
The Bowland Shale is partly age equivalent to the
Barnett Shale, a producing unconventional
hydrocarbon reservoir (Titus et al., 2015). Despite
this interest, the Bowland Shale is poorly under-
stood beyond a few regional (Fraser & Gawthorpe,
1990) and basin-specific studies (Davies et al.,
2012; K€onitzer et al., 2014; Słowakiewicz et al.,
2015; Fauchille et al., 2017; Hennissen et al.,
2017; Newport et al., 2018).

To investigate mechanisms of sediment input,
transport and deposition, sedimentological
observations at field/core to micron-scale were
integrated with geochemical proxies for auto-
chthonous [total organic carbon (TOC), carbonate
and silica] and allochthonous components (Ti
and Zr). This analysis was conducted for three
time-equivalent sites in the Craven Basin, UK
(Kirby et al., 2000), a basin with ongoing uncon-
ventional hydrocarbon exploration (DECC, 2016;
Clarke et al., 2018). This study shows that
organic-rich sediments accumulated in a dynamic
environment host to pelagic to hemipelagic depo-
sition and a variety of subaqueous density flows,
moderated by fourth-order eustatic sea-level fluc-
tuation, delta progradation and slope instability,
and under variable bottom water salinity. This
complexity means that sedimentary packages are
interpreted in terms of changing basin accommo-
dation rather than strictly within a sequence
stratigraphic framework. Sea-level fall enhanced
a shelf to basin bedload conveyor of sand to
gravel-sized partially-consolidated mud clasts, as
modelled by Schieber et al. (2010), which was
remotely linked to a mud-rich delta system. The
current study contributes to the debate (Schieber,
1994) that shows accumulation of organic-rich
sediments is not necessarily coupled to the depo-
sitional ‘energy’ of bottom waters (sensu Tissot &
Welte, 1978). These findings are important for
understanding sedimentary processes and con-
trols on organic carbon burial in epicontinental
basins (Berner & Canfield, 1989; Schieber, 2016)
and understanding hydrocarbon resource poten-
tial (Aplin & Macquaker, 2011).

GEOLOGICAL SETTING

Bowland Shale sediments were deposited in a
palaeoequatorial seaway comprising several epi-
continental basins that extended from present-
day North America to Poland (Davies et al.,
1999). This seaway developed in response to
oblique collision between Gondwana and Lau-
russia (Warr, 2000), including phases of

Fig. 1. Palaeogeographic reconstructions during the Mississippian (A) Late Brigantian and (B) Early Arnsbergian
of the British Isles. Based upon Waters et al. (2009) and Dean et al. (2011), with the permission of the British Geo-
logical Survey, after Cope et al. (1992). AsB: Askrigg Block, CB: Craven Basin. (C) Generalized Visean–Serpukho-
vian lithochronostratigraphy. Ages from Waters & Condon (2012) after Gastaldo et al. (2009) and Davydov et al.
(2010). Craven Basin composite after Newport et al. (2018) and Brandon et al. (1998). Estimated areal extent for
marine bands from Waters & Condon (2012), including diagnostic ammonoid fauna from Riley (1990). Mesothem
definitions from Ramsbottom (1973, 1977). HS: Hind Sandstone Member, PG: Pendle Grit Member, including the
Surgill Shale (S), as part of the Pendleton Formation, RC: Rogerley Channel (Dunham, 1990).
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extension (for example, active rifting), thermal
subsidence, strike-slip and compression tecton-
ism. Mississippian extension (Leeder, 1982)
generated a series of graben and half-graben
structures, separated by platform ‘blocks’ and
‘highs’, referred to as a ‘block and basin’

topography (Figs 1A and 2A) (Waters & Davies,
2006). Transition from active rifting to thermal
subsidence broadly aligns with subdivision of
the Bowland Shale Formation into lower and
upper units at the Visean–Serpukhovian bound-
ary (Bisat, 1923; Earp, 1961; Waters et al., 2009)
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Fig. 2. (A) Inherited Late Brigantian palaeogeography, with approximate positions of Hind Clough (location A),
MHD4 (location B) and Cominco S9 (location C) (red circles). After Aitkenhead et al. (1992); Brandon et al.
(1998); Fraser & Gawthorpe (1990, 2003); Riley (1990); Kane (2010); Waters & Condon (2012). AA: Aughton Anti-
cline, ABFZ: Artle Beck Fault Zone, AH: Ashnott High, BF: Barnoldswick Fault, BH: Bowland High, BL: Bowland
Line, CA: Clitheroe Anticline, CFZ: Clitheroe Fault Zone, CLA: Catlow Anticline, CLF: Claughton Fault, CLH:
Central Lancashire High, DF: Dent Fault (Line), EA: Eshton Anticline, FF: Foxdale Fault, GA: Gisburn Anticline,
HA: Hetton Anticline, HHT: Horrocksford Hall Thrust, KFS: Knotts Fault System, MHF: Millers House Fault,
NCF: North Craven Fault, PF: Pendle Fault (monocline), QF/HM: Quernmore Fault/Hutton Monocline, QS: Quern-
more Syncline, SA: Sykes Anticline, SCFS: South Craven Fault Zone, SF: Stauvin Fault, SHF: Smeer Hall Fault,
SLA: Slaidburn Anticline, SLDH: Southern Lake District High, SWA: Swinden Anticline, TA: Thornton Anticline,
WA: Ward’s Stone Anticline. Structures developed in response to phases of basin rifting and inversion (e.g.
Arthurton, 1984; Gawthorpe, 1987; Kirby et al., 2000), some of which may have been absent, inactive, or intermit-
tently active, during the Pendleian. (B) Location map with main structural elements (after Fraser & Gawthorpe,
2003). Outcrop extent data based on DigMapGB-625, with permission of the British Geological Survey. British
National Grid projection.

Fig. 3. (A) Summary sedimentary logs through the Bowland Shale section exposed at Hind Clough and borehole
sections Marl Hill 4 (MHD4) and Cominco S9 (letters in red; correspond to Fig. 2). Biostratigraphy from Arthurton
(1972), Riley (1988) and Brandon et al. (1998), respectively. Please see the text for full lithofacies descriptions
including definition based on grain-size. Approximate mud lens (intraclast) grain size (Ø) is interpolated between
thin sectioned samples. (B) Log–log mean sediment accumulation rate (SAR) plotted versus time span (115 120
binned data points, with calculated median values and 1r (thick) and 3r (thin) error bars), for siliciclastic sedi-
mentary systems, after Sadler (1981), Sadler (1999) and Sadler & Jerolmack (2014). Mean SARs are also estimated
for the Upper Bowland Shale (this study), and the Lower Bowland Shale (Newport et al., 2018), Barnett Shale
(Loucks & Ruppel, 2007), Morridge Formation (Gross et al., 2015; Hennissen et al., 2017), Woodford Shale (Harris
et al., 2013), Holywell Shale (Newport et al., 2018) and Kansas-type cyclothems (Algeo et al., 2008).

© 2019 The Authors. Sedimentology published by John Wiley & Sons Ltd on behalf of

International Association of Sedimentologists., Sedimentology

4 J. F. Emmings et al.



0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

105

110

124

115

M

A
B

C

D

E

F

G

H
I
J

M

M

M

M

M

M

M

Lo
w

er
 B

ow
la

nd
 S

ha
le

U
pp

er
 B

ow
la

nd
 S

ha
le

E1a1-a 
C. leion

E1a1-b

E1a1-c?

Fig. 5 (log)

Fig. 4
(log)

Fig. 6 (log)

Figs.11A
14H

Fig.10H

Fig. 15E

Fig. 8E
(photograph)

Fig. 8D
(photograph)

E1b1? 
C. brandoni?

E1c 
C. malhamense

Pendle Grit

Grain Size Grain size

Grain size

Interpolated mud lense grain size

F Clay Silt
SandMud

F M CC
SandMud

Clay Silt >Silt

F > M

A: Hind Clough

B: MHD4

C: Cominco S9

Biostratigraphy after Brandon et al. (1998)

Depth/height (m)

Biostratigraphy from 
Arthurton (1972)

Hind Sandstone
Member (medium to 
coarse sandstone),
muds poorly exposed

E1b2-b? 
T. pseudobilinguis

E1b2-a?

Biostratigraphy from 
Riley (1988)

E1c1
C. malhamense

?

Inferred position of marine 
flooding surface (incl. faunal 
phase 6; Ramsbottom, 1962)
Not exposed

Lithofacies (A to J)

S
ili

ci
cl

as
tic

C
ar

bo
na

te
 a

nd
 s

ili
ca

-r
ic

h
S

ili
ca

-r
ic

h

Fine mudstone*#

Commonly:
*Micaceous #Argillaceous

Coarse mudstone to 
medium sandstone*#

Sandstone

Moderately to
strongly lenticular
weakly siliceous to
siliceous mudstone#

Organic-laminated
strongly lenticular 
mudstone#

Limestone (spherulitic)

Bioclastic
+

Weakly to moderately
calcareous, moderately 
siliceous, weakly to 
moderately lenticular 
mudstone#

Weakly to moderately
calcareous, moderately 
siliceous mudstone#, 
mud-cap
Moderately calcareous
to calcareous,
moderately siliceous 
to siliceous mudstone#,
mud-cap

Pendleton Formation

A

Fig. 7
(log)

M

Fig.15D

B

104 106 108

10-4

10-2

100

102

Duration (year)

M
ea

n 
se

di
m

en
t a

cc
um

ul
at

io
n 

ra
te

 (m
m

 y
ea

r–1
)

104 106 108 104 106 108

10-4

10-2

100

102 Turbidite fans
Abyssal plain DeltasAbyssal rise

Continental
shelf

Continental
slope

Kansas-type cyclothems

Upper Bowland Shale (this study)
Lower Bowland Shale Morridge Formation

Holywell Shale

Barnett Shale Woodford Shale

© 2019 The Authors. Sedimentology published by John Wiley & Sons Ltd on behalf of

International Association of Sedimentologists., Sedimentology

Mississippian black shale sedimentation 5



(Fig. 1A to C). The Upper Bowland Shale (this
study) was deposited from the early to late Pen-
dleian in the Craven Basin (ca 330�0 to
330�7 Ma; Gastaldo et al., 2009; Davydov et al.,
2010; Waters & Condon, 2012; Fig. 1C).
Upper Bowland Shale sediments initially accu-

mulated in inherited Visean syn-rift depocentres
(Fig. 2A; e.g. Fraser & Gawthorpe, 2003), in water
depths ranging from ca 100 to 200 m (Holdsworth
& Collinson, 1988; Davies, 2008) or several hun-
dred metres (Davies et al., 1993) in the Craven
Basin. The basinal slope was likely relatively
steep (>1°). Adjacent shelves in the north were
likely at least 50 km wide (Waters et al., 2009),
including the Askrigg Block and Southern Lake
District High, bounded by the Craven Fault Zone
and Dent Fault. The Central Lancashire High in
the south-east is bounded by the Pendle mono-
cline (Fig. 2A) (e.g. Aitkenhead et al., 1992). The
Bowland High, a relatively large intrabasinal
titled block (Lawrence et al., 1987), separates the
Lancaster Fells and Bowland sub-basins (Bran-
don et al., 1998) (Fig. 2A) and possibly connects
to the Askrigg Block in the north-east (Arthurton
et al., 1988). These adjacent shelves and highs
were ‘shallow’ water settings (Elliott, 1975; Dun-
ham & Wilson, 1985; Fairbairn, 2001), and assum-
ing relatively sheltered conditions (Peters & Loss,
2012), likely <50 m deep.
In the earliest Pendleian, basinal highs and

lows supported highly localized ‘platform and
ramp carbonate’ and ‘hemipelagic’ regional facies
belts (Fig. 1A), respectively (e.g. Dean et al.,
2011). This represented a short-lived inheritance
of the Lower Bowland Shale carbonate to mixed
sedimentary system (Newport et al., 2018). Mud
mounds, patch reefs and/or similar carbonate
accumulations likely fringed the Craven Basin
during this early stage of post-rift fill (Fig. 2A;
e.g. Cope et al., 1992; Waters et al., 2009; Dean
et al., 2011). This included localized deposition
of Wendsleydale Group crinoidal limestones, and
brachiopod–mollusc-rich Sugar Loaf Shales and
Sugar Loaf Limestone. These accumulated along
the south-west margin of the Askrigg Block on a
series of relay ramps across the Craven Fault
Zone (Fig. 1) (Arthurton et al., 1988; Fairbairn,

2001). The Bowland High, in addition to other
intrabasinal highs such as the Ashnott High, also
hosted localized carbonate accumulations (Riley,
1990; Brandon et al., 1998).

Marine bands

Onset of fourth-order (Mitchum & Van Wagoner,
1991) sea-level fluctuation prompted deposition
of discrete, macrofauna-bearing, commonly car-
bonate-rich sedimentary packages termed ‘mar-
ine bands’ during the Namurian (Fig. 1C) (e.g.
Ramsbottom, 1977). On shelves, marine bands
are comparable to the ‘condensed sections’ of
Loutit et al. (1988). These packages typically
mark the base of marine to non-marine coarsen-
ing-upward packages of the classic ‘Yoredale’
cyclic regional facies (‘cyclothems’), comprising
limestone–shale–sandstone triplets commonly
capped by coal (Hampson et al., 1997; Waters
et al., 2009; Dean et al., 2011). In basins, marine
bands are typically <2 m thick and often overlie
‘transitional’, fossil-’barren’ mudstones (Martin-
sen et al., 1995). Together these mudstone pack-
ages are often overlain by turbidite siltstones
and sandstones (Martinsen et al., 1995). Basinal
marine band packages and underlying ‘transi-
tional’ mudstones were likely deposited during
maximum marine flooding (Martinsen et al.,
1995) and the maximum rate of transgression
(Posamentier et al., 1988), respectively.
The Upper Bowland Shale includes four

index marine bands; E1a1 to E1c1 (e.g. Brandon
et al., 1998) spanning ca. 400 ka (Waters & Con-
don, 2012). Multiple flooding surfaces are recog-
nized for E1a1 (a, b and c) and E1b2 (a and b)
marine bands (Fig. 1C), potentially linked to
sub-100 ka precession or obliquity forcing
(Waters & Condon, 2012): E1a1 and E1c1 are also
thought to represent peak highs associated with
eccentricity (Maynard & Leeder, 1992; Waters &
Condon, 2012). Marine band cyclicity in the
Namurian was likely a response to far-field ice-
sheet volume on Gondwana (Veevers & Powell,
1987). Marine band cycles are possibly superim-
posed onto 1�1 to 1�35 Ma duration Namurian
‘mesothem’ cycles (Ramsbottom, 1979), which

Fig. 4. Sedimentary log through the Upper Bowland Shale in borehole Marl Hill 4 (MHD4). Hand specimen
description based on Lazar et al. (2015). Biostratigraphy from Riley (1988). See Materials and methods for a
description of methods, including sedimentary classification scheme and derivation of excess Si. Approximate
mud lens (intraclast) diameter (Ø) and abundance estimated for thin sectioned samples only. HB = high basin
accommodation, DB = decreasing basin accommodation, LB = low basin accommodation, IB = increasing basin
accommodation. See Discussion for further details and Fig. 3 for lithofacies descriptions based on composition.
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may represent third-order sequences (Posamen-
tier et al., 1988) or avulsive shifts of sediment
depocentres in response to localized tectonic
uplift and subsidence effects (Holdsworth & Col-
linson, 1988; Martinsen et al., 1995). Estimates
for the amplitude of sea-level cycles ranges
between 42 m (Maynard & Leeder, 1992) and 60
to 100 m (Church & Gawthorpe, 1994; Rygel
et al., 2008).
Basinal marine bands typically lack or exhibit a

low diversity of ichnofossils (e.g. Ramsbottom
et al., 1962; Baines, 1977; Eagar et al., 1985; con-
tra Loutit et al., 1988) but contain a framework of
abundant, low diversity, thin-shelled and thick-
shelled macrofaunal body fossils hosted within a
mud-rich matrix (e.g. Bisat, 1923; Ramsbottom
et al., 1962). Macrofauna are used to differentiate
the marine bands from intervening mudstones
and permit a high-resolution biostratigraphic
framework (Ramsbottom & Saunders, 1985; Holds-
worth & Collinson, 1988). Marine bands and over-
lying mudstones may exhibit a complete faunal
succession (phases 6 to 1); thick shelled goniatites
(6), thin shelled goniatites (5), molluscan spat (4),
lingula (3), planolites (2), fish remains (1) and bar-
ren zones (Ramsbottom et al., 1962; Baines, 1977;
Ramsbottom, 1977). These faunal phases are
thought to indicate cycling between euhaline (6)
and freshwater conditions (1) (Ramsbottom et al.,
1962; Holdsworth & Collinson, 1988).

The Pendle delta system

The inherited carbonate to mixed syn-rift system
was gradually inundated by siliciclastic sedi-
ments ultimately attributed to the ‘millstone grit’
(deltaic) regional lithofacies (Fig. 1B). Siliciclastic
sediments were supplied primarily from advanc-
ing fluvio-deltaic and turbiditic systems, linked to
the Pendle delta system in the north to north-east
(Pendleton Formation; Waters et al., 2009), across
and around the Askrigg Block (Arthurton et al.,
1988; Martinsen, 1993; Fraser & Gawthorpe, 2003;
Kane, 2010). Presence of relatively large distribu-
tary channels towards the north of the Askrigg
and Alston Blocks, such as the 50 m deep

Rogerley Channel, suggest that the Pendle delta
likely discharged a large volume of freshwater
particularly during flood events (Dunham, 1990;
Waters & Condon, 2012). Despite proximity to the
Pendle delta, fault activity likely maintained
sharp and steep basin margins (i.e. probably 2 to
10°) rather than ramps (Collinson, 1988; Martin-
sen et al., 1995), which were likely prone to fail-
ure (Talling, 2014).
Siliciclastic facies include the Hind Sandstone

Member (Moseley, 1952, 1962; Aitkenhead
et al., 1992), a sandstone injectite (Kane, 2010)
and a variety of ‘turbidite’ facies often banked
against topographic slopes (Collinson, 1988).
These were followed by deposition of delta-top
facies on the Askrigg Block and a turbidite fan
in the basin (Fraser & Gawthorpe, 1990; Kirby
et al., 2000) (Fig. 1C). Detrital kaolinite and
mixed-layer illite–smectite typically dominate
the allochthonous mud fraction in approxi-
mately equal proportions (Spears, 2006). Subor-
dinate detrital quartz, feldspar, muscovite and
chlorite are often partitioned into the silt to
sand-sized fraction (Brandon et al., 1998;
Spears, 2006). These components were probably
derived from drainage of a variety of igneous
and metamorphic rocks in the hinterland (Drew-
ery et al., 1987; Collinson, 1988).

MATERIALS AND METHODS

Three localities in the Craven Basin were
selected for analysis; the outcrop at Hind Clough
(grid ref: 364430 453210, British National Grid
projection) and boreholes Marl Hill 4 (MHD4)
(367426 446752) and Cominco S9 (383090
463300) (Fig. 2B). Hind Clough and MHD4 are
located on a basinal low and high, respectively.
Cominco S9 is located on the north-east basin
slope proximal to the Pendle palaeodelta. The
stratigraphic framework was based on ammo-
noid biozones identified by Brandon et al.
(1998), Riley (1988) and Arthurton (1972),
respectively. The ca 124 m thick section at Hind
Clough is exposed as a stream-cut and

Fig. 5. Sedimentary log through the E1a biozone at Hind Clough. Hand specimen description based on Lazar et al.
(2015). Biostratigraphy from Brandon et al. (1998). See Materials and methods for a description of methods,
including sedimentary classification scheme and derivation of excess Si. Approximate mud lens (intraclast) dia-
meter (Ø) and abundance estimated for thin sectioned samples only. HB = high basin accommodation, DB = de-
creasing basin accommodation, LB = low basin accommodation, IB = increasing basin accommodation.
LTPF = Lower Transitional Plug Flow, QLPF = Quasi-Laminar Plug Flow. See Discussion for further details; Fig. 3
for lithofacies descriptions based on composition and Fig. 4 for legend.
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Fig. 7. Sedimentary log through the Upper Bowland Shale in borehole Cominco S9 (spanning probable E1b2 to
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on composition and Fig. 4 for legend.
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weathered slope, located on the edge of the Rib-
blesdale Fold Belt (Fig. 2B). This is a set of
north-east/south-west trending folds, thrust
folds and monoclines that developed during
Variscan inversion of the basin (Arthurton,
1984). True thicknesses were estimated using
the dip and strike of bedding with an Abney
level. Sampling was primarily conducted
directly within the stream section, in order to
minimize the effect of chemical weathering, as
described by Emmings et al. (2017c). Where
stream sections were poorly exposed, logging
and sampling was conducted on the adjacent
slope. Samples were screened for alteration
using visual assessment and site-specific geo-
chemical proxies for weathering, including
cross-plots of Cs/Cu and oxygen index used as a
local weathering proxy (Emmings et al., 2017c).
‘Unaltered’ samples are defined with respect to
the sedimentological and geochemical analyses
applied in this study.
Field/borehole and sample descriptions,

including estimates for grain size, composition
and bioturbation index, was based on the Lazar
et al. (2015) method. This included generation of
a ternary compositional plot (Appendix S1). Sev-
eral facies are ‘lenticular’; this is defined as a mud
lens-rich (intraclastic) texture within an argilla-
ceous clay-sized matrix. Thus, in terms of grain
size (sensu Lazar et al., 2015), several facies are
described as ‘sandy’ mudstones to ‘sandstones’.
In terms of composition, these facies are primarily
‘argillaceous mudstones’. Additional thresholds
of ‘weakly’ and ‘moderately’ used to indicate mud
lenses, carbonate and/or quartz abundances of
>2�5% and >10% of the bulk composition, respec-
tively. ‘Strongly’ is used to indicate mud lens
abundance of >50% of the bulk composition.
Sedimentary facies were defined at the bed

scale, typically millimetres to centimetres in
thickness. ‘Mud-cap’ laminae are defined as
mud-rich layers, typically microns to millime-
tres-thick, which lack internal structure and
exhibit uniform composition and texture. Strata
between successive marine bands are not neces-
sarily genetically linked (Hampson et al., 1997)
and were also subject to local factors such as
differential subsidence and changing sediment
supply rate (Holdsworth & Collinson, 1988; Gal-
loway, 1989). The bases of marine bands are the
most prominent and laterally widespread sur-
faces, whereas erosion surfaces are laterally dis-
continuous and may be poorly defined in
basinal settings. Therefore, packages are inter-
preted in terms of changing basin

accommodation rather than strictly within a
sequence stratigraphic framework (e.g. Posamen-
tier et al., 1988). Sedimentary packages are
defined on the basis of increasing, high, decreas-
ing and low basin accommodation (IB, HB, DB
and LB, respectively). These stacking patterns
may equate to transgressive, highstand, falling
stage and lowstand systems tracts of Posamen-
tier et al. (1988), respectively.
One hundred and ten samples were selected

for geochemical analysis (including nine unal-
tered samples described by Emmings et al.,
2017c), with 37 subsamples thin sectioned.
Thus, the confidence of grain-size estimates is
robust for samples calibrated with thin sections.
Samples were selected in order to attain appro-
priate temporal and spatial coverage across all
sedimentary facies. Whole rock powder X-ray
diffraction (XRD) data were collected on a
Bruker D8 Advance Powder Diffractometer
equipped with a LynxEye Position Sensitive
Detector (Bruker, Billerica, MA, USA) with a
Bragg Brentano, flat plate h-h geometry using
CuKa radiation (see Appendix S1 for data exam-
ple). Scanning electron microscopy (SEM) was
conducted on uncoated ultrathin sections using
an S-3600N Hitachi microscope (Hitachi, Tokyo,
Japan) with an Oxford INCA 350 energy disper-
sive spectrometer (EDS) (Oxford Instruments,
Abingdon, UK). Electron microphotographs were
acquired using backscattered electrons (BSE).
False colour composite images were compiled
using Fiji (ImageJ) software and are overlain on
each corresponding BSE microphotograph. Ele-
ment maps (using SEM–EDS) were mapped to
red (R), green (G) or blue (B) channels. Total sul-
phur (S) was determined using a LECO CS 230
elemental analyzer (LECO Corporation, St.
Joseph, MI, USA). X-ray fluorescence (XRF) data
were acquired on fused beads (109 samples) and
powder briquettes (108 samples) with a PAN-
alytical Axios Advanced XRF spectrometer
using default PANalytical SuperQ conditions
(Malvern PANalytical, Malvern, UK). Pyrolysis
was conducted using a Rock-Eval 6TM apparatus
(Vinci Technologies, Nanterre, France) at the
British Geological Survey.
Titanium and zirconium are utilized as prox-

ies for the detrital fraction, particularly heavy
minerals (Hild & Brumsack, 1998). ‘Excess sil-
ica’ is defined as: Siexcess = Sitotal�(2�5 9 Altotal),
sensu Sholkovitz & Price (1980), for samples
where Sitotal/Altotal > 2�5 (i.e. ca 2�5 is the local
detrital Sitotal/Altotal, using Facies G to I). Excess
silica is used as a proxy for the biogenic
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(radiolarian) Si pool. Siliceous mudstones are
silica-rich and contain abundant authigenic
quartz cements. Siliciclastic mudstones contain
quartz that is considered to be dominantly detri-
tal rather than authigenic in origin. A full
description of methods is provided in Appendix
S2. Data are available via open access (Emmings
et al., 2017a,b).

RESULTS

Sedimentary logs for each basin position indi-
cate that the Bowland Shale comprises lime-
stone, and carbonate-bearing, siliceous and
argillaceous mudstones (on the basis of compo-
sition; Figs 3 to 7; Appendix S1). Ten sedimen-
tary facies (A to J; Table 1) were defined using
observations at field/core-scale through to scan-
ning electron microscopy (Figs 8 to 15). Facies
A to J are classified and ordered along a spec-
trum of decreasing carbonate and/or biogenic sil-
ica, and increasing siliciclastic content (Table 1;
Fig. 3). Facies A to F lack bioturbation (bioturba-
tion index = 0; based on Lazar et al., 2015).
Facies A limestone is the carbonate end-mem-
ber. Facies B and C are lenticular mudstones
with an increasingly diminished carbonate com-
ponent and moderate to high Si excess. Facies D
and E exhibit highly variable, but typically low,
carbonate content and moderate to high Si
excess. Facies D deposits are typically well-
bedded, well-sorted and moderately to highly
carbonate-bearing. Facies E deposits are typi-
cally chaotic, poorly sorted and weakly carbon-
ate-bearing. Facies F contains minimal carbonate
and exhibits variable Si excess. Facies G lenticu-
lar mudstones contain trace carbonate and lack
excess Si. Facies H to J represent the siliciclastic
fine (H) to coarse (I) mudstone and sandstone (J)
end-members. Figures 9 to 15 are ordered to
match the Facies A to J spectrum.

Limestones

At outcrop, Facies A beds are competent and
blocky, with slightly diffuse upper and lower
contacts. Facies A comprises >90% calcite
cement (Figs 4, 5 and 9A) present as discrete,
poorly developed spherules, and is therefore
defined as spherulitic limestone (Table 1). Cal-
cite spherules are commonly fan-shaped and
slightly elongate, and may radiate from a central
nucleus, with individual spherule diameters (Ø)
between 50 lm and 200 lm (Fig. 9A). Spherule
long axes are typically perpendicular to discon-
tinuous, wavy parallel organic-rich laminae.
Widely spaced, sub-vertical wavy calcite veins
(ca 10 to 20 lm thick) cross-cut calcite spher-
ules and laminae. Extinction of each spherule
under cross-polarized light is uniform. Facies A
is interbedded with Facies B and C (Figs 4 and
5). Facies A samples exhibit very low total
organic carbon (TOC), low silica excess, very
high inorganic C and low Ti and Zr content
(Fig. 4).

Carbonate-bearing and siliceous mudstones

Facies B and C are blocky to flaggy at outcrop
(Fig. 8A), where moderately cemented beds are
readily distinguished due to greater resistance to
modern weathering (Fig. 8B and C). Facies B
(Figs 10A to F and 11A) and C (Fig. 11A to F)
exhibit a homogenous (Fig. 10C and D) and
rarely deformed (Figs 10E and 11A) sedimentary
fabric at the centimetre-scale. Facies B and C are
typically weakly to moderately lenticular
(Table 1; Fig. 10C to E) at the micron-scale and
are compositionally defined as weakly to moder-
ately carbonate-bearing, moderately siliceous,
argillaceous mudstones. Planar to slightly wavy,
parallel, homogenous laminae comprising fine
mud-sized grains (dominantly clay; ‘mud-caps’)
are rare to moderately common in Facies B and

Fig. 8. Field photographs from Hind Clough. (A) Plan-view of a mixed carbonate-phosphate lens or replaced bio-
clast (black arrow), 0�68 m above base, P2c biozone, Lower Bowland Shale. (B) Contrasting responses to weather-
ing (competent and fissile) demonstrate interbedded carbonate-cemented (strataform dolomite) and poorly
cemented lithologies from the E1a marine band. (C) Despite compositions prone to weathering, stream sections
expose unaltered material. The stream confluence (black arrow) was used as one of several anchor points during
logging and sampling, at 32�0 m above base. (D) Erosional base (white arrows) to hybrid mass transport deposit
(Facies E), E1a biozone at 48�8 m above base. Sample 73A is from the underlying mudstone (mud-cap) and sample
75A is from the basal part of the bed. (E) Extensive slope exposure spanning the E1a to probable E1b1 biozones.
Relatively planar, laterally extensive hybrid mass transport deposits crop out across the slope. Sedimentary logs
with interpreted basin accommodation are superimposed. Length of pen and hammer are 0�15 m and 0�30 m,
respectively. The true vertical thickness of the visible outcrop section in (C) is ca 10 m.
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C (Fig. 10A and B). Carbonate, quartz and clays
are present in approximately equal proportions
(Appendix S1). Facies B and C samples typically
exhibit moderate to high TOC, moderate to high
silica excess, moderate inorganic C and low to
moderate Ti and Zr content (Figs 4 to 7).
Quartz cement in Facies B and C (for example,

Fig. 9B) is apparently widespread compared to
detrital quartz grains. Bioclasts in Facies B
include body fossils such as goniatites, trilo-
bites, posidoniid bivalves, mollusc spat and fish
debris (for example, Fig. 10F), and abundant
mud to sand-sized shell fragments (for example,
Fig. 10C). Bioclasts and shell fragments are often
replaced and mantled by finely crystalline cal-
cite cements (including scattered dolomite;
Fig. 9C). Facies B also contains rare dispersed
single calcite spherules (rounded, spherical, ca
30 lm Ø) with sweeping extinction. Phosphatic
concretions and lenses in Facies B and C tend to
exhibit a ‘birds-eye’ appearance (sensu Selley,
2000, after Illing, 1954) with long axis lengths
ranging from 500 lm to several millimetres
(Fig. 9D to F). Phosphatic concretions comprise
amorphous organic matter (OM) and bioclasts
(including abundant radiolarian tests) rafted in a
mixed phosphate and calcite cement (Fig. 9F).
Phosphatic lenses contain mud lenses
(Fig. 11B). Facies B mudstones in the E1b2-b bio-
zone also contain siderite nodules (typically 0�1
to 0�5 m Ø, which are spherical to sub-spherical;
Fig. 6). Facies C lacks bioclasts but contains
finely crystalline carbonate cement.
Facies D and E are blocky at outcrop, and

where beds are sufficiently thick, these com-
monly form conspicuous beds on the slope

(Fig. 8D and E). Facies D and E are moderately
to strongly carbonate-bearing, and weakly to
moderately carbonate-bearing, respectively. Both
are typically moderately siliceous, argillaceous,
coarse mudstones (i.e. equivalent to siltstones;
Lazar et al., 2015) and rarely sandstones
(Table 1). Facies D is often wavy parallel-lami-
nated towards the base of each bed and homoge-
nous towards the top of each bed (Fig. 10G and
H). Laminae often exhibit erosive bases and
‘load and flame’ contacts with the underlying
mudstone (Figs 10G and 15A). Laminae com-
prise calcareous bioclastic fragments (typically
coarse mud to fine sand-sized; <200 lm Ø),
detrital quartz and are cemented with carbonate
and silica (Fig. 10H). Rarely laminae are cemen-
ted with euhedral pyrite. Quartz, carbonate and
clays in Facies D and E account for approxi-
mately >40%, <20% and <40% of the bulk com-
position, respectively. Facies D and E samples
typically exhibit low to moderate TOC, high sil-
ica excess, variable inorganic C and moderate to
high Zr and Ti content (Fig. 5).
Facies E typically exhibits chaotic textures

towards the base of beds, including deformed
laminae (Fig. 12A). Towards the top of each
bed, Facies E exhibits homogenous ‘starry-night’
texture (i.e. ‘mud-caps’, sensu Fonnesu et al.,
2017) (Fig. 12B). The centre of Facies E beds
exhibits high-angle discontinuous curved and
climbing cross-laminae (Fig. 12C and D), frayed
fragments of OM (Fig. 12D and E), and abundant
gravel-sized carbonate and quartz cemented
clasts and lenses (Fig. 12C to G). This sequence
of textures is not always present in every bed.
The carbonate and silica-cemented clasts and

Fig. 9. Examples of diagenetic textures, including spherulitic limestones (Facies A), carbonate-bearing, siliceous
mudstones (Facies B) and booky kaolinite (Facies F to G). (A) XPL (cross-polarized) microphotograph, Facies A,
HB package, Sample SSK60776, 13�44 m below surface, MHD4. Spherules are fan-shaped (see inset) and often
radiate from a central nucleus (thin white arrow). (B) and (C) Facies B, HB package, Sample 22A, 22�27 m above
base. (B) Composite SEM–EDS element map. Macrocrystalline silica cements are readily distinguished from detri-
tal quartz because the former typically exhibits an irregular morphology and commonly infills sheltered pores,
such as inside a trilobite test. Note partially dissolved calcite in contact with subsequent silica cements. (C) Com-
posite SEM–EDS element map. Skeletal debris are often recrystallized and mantled by calcite cements (red arrow)
and scattered dolomite replacement of calcite [white arrows in (B) and (C)]. (D) to (F) Facies B. (D) Cut-sample
microphotograph, sample SSK60782, E1a marine band, 15�45 m below surface, with many early-cemented phos-
phate concretions (black arrows) and phosphatic lenses (white arrows). (E) and (F) Phosphate concretion, sample
SSK60808, MHD4, 24�30 m below surface, HB package, microphotograph. (F) SEM–EDS composite element map
within a concretion, comprising amorphous organic matter and bioclasts ‘rafted’ in a two-phase phosphate and
calcite cement. Radiolarian tests (red arrow) are replaced by clays or preserved as organic linings. Presence of sil-
ica cement (white arrows) within this early-cemented phosphate concretion suggests biogenic silica was a source
of Si for cements. (G) Facies F, sample DC11A, 33�40 m above base, E1a biozone, DB package, with booky kaolinite
fill inside organic matter (white arrow). (H) Facies G, sample 188, 83�60 m above base, DB package, booky kaolin-
ite nodule with pyrite euhedra.
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lenses are typically rounded and partially
deformed (Fig. 12G), and are often concentrated
at the base of each cross-lamina (for example,
Fig. 12C). These clasts commonly contain sand-
sized euhedral pyrite. Some clasts represent sin-
gle bioclasts replaced by carbonate and silica
cement. In plan-view, coarse mud-rich (silty)
laminae are curved, and the carbonate and sil-
ica-cemented clasts and lenses are rounded,
equant to elongate and aligned (Fig. 12F). These
clasts occasionally exhibit tapered edges
(Fig. 12G). Facies D and E are commonly
interbedded with Facies B, C and F (Figs 5 and
6). Upper contacts of Facies D and E beds and
solitary ‘mud-cap’ laminae are typically sharp
(Figs 5, 6, 10A and 10B) and occasionally
reworked (Fig. 15A). Facies D and E bed bases
are typically sharp, planar to wavy (Figs 8D,
10G, 10H and 15A).
At outcrop, weathering of Facies F generates

highly fissile ‘paper shale’ in slope sections
(Fig. 8C), so that individual beds are difficult to
recognize. At Hind Clough, shoaling of the incli-
nation of bedding by ca 3° (Fig. 8D) coincides
with similar inclination observed in hand speci-
men and thin section at the contact (Fig. 11C to
E). Facies F is defined compositionally as
weakly siliceous to siliceous argillaceous mud-
stone and is moderately to strongly lenticular
(Table 1). Quartz and clay content is highly vari-
able but typically <40% and >60% of the bulk
composition, respectively. Facies F contains
trace carbonate (Figs 5 and 6) and rarely con-
tains carbonate, pyrite or silica-replaced bioclast
casts or as moulds. Facies F samples typically
exhibit moderate to high TOC, low to high silica
excess, very low inorganic C and moderate to

high Zr and Ti content (Figs 5 and 6). Facies F
is rarely interbedded with Facies B to E. Planar
to slightly wavy, parallel ‘mud-cap’ laminae are
common in Facies F.
The clay to fine sand-sized ‘matrix’ of Facies

B to F comprises framboidal pyrite (ca 5 lm
Ø), rare pyrite euhedra and sphalerite, isolated
and patchy macro-crystalline to micro-crystal-
line silica and/or calcite cement, abundant
authigenic clay minerals (including illite and/or
smectite–illite clays – Fig. 9C; and ‘booky’
kaolinite – Fig. 9G) and scattered dolomite that
partially replaces calcite when present (Figs 9B
to C and 12G). Unambiguous examples of
detrital quartz in Facies B to F are rare and
typically limited to Facies D basal laminae
(Fig. 10A), although it is possible that the
widespread silica cements (for example,
Fig. 9B) are cored by detrital quartz (sensu
Schieber et al., 2000). The matrix of Facies F
lacks carbonate and contains abundant isolated
silica cement, authigenic feldspar and authi-
genic and detrital clay minerals (Fig. 13A to G).
Deformed, wavy to crinkled micron-scale to
millimetre-scale elongate to platy fragments of
OM are common in Facies E and rare to com-
mon in Facies B to F (Figs 10C, 12D, 12F and
13D). Spherical (ca 20 to 30 lm Ø) particles of
OM are also present in Facies B and C and
common in Facies F (Fig. 13E). The OM pores
in Facies B to F contain silica cement, scattered
pyrite framboids and microcrysts (Fig. 13D and
E) and locally ‘books’ of kaolinite in Facies F
(Fig. 9G). Sulphate-bearing laminae in Facies F
contain Ca-rich sulphate (anhydrite or gypsum)
within OM pores (Fig. 11G) but otherwise the
sedimentary matrix is similar to the bulk.

Fig. 10. Carbonate-bearing, siliceous mudstones, including Facies B weakly to moderately lenticular mudstones
and well-bedded Facies D. (A) to (F) Facies B. (A) LB package, sample SSK60797, 19�80 m below surface, thin
section scan, including planar to wavy parallel laminae (mud caps). (B) DB package, sample SSK60804, 22�35 m
below surface, thin section scan, including planar parallel laminae (mud caps). (C) HB package, sample 21A,
22�02 m above base, including fragments of organic matter (white arrow), coarse mud-sized to sand-sized bioclasts
(partially replaced by calcite) and mud lenses (black arrows). (D) LB package, sample SSK60794, 18�97 m below
surface, including relatively large sand-sized mud lenses (white arrow) and few sand-sized calcareous bioclasts
(red arrow). Inset = E1c1 marine band, HB package, sample SSK61404, 40�72 m below surface, Cominco S9,
including small bioclasts (red arrow), fragments of organic matter and fine lenticular texture. (E) HB package, sam-
ple 174A, 76�10 m above base, Hind Clough, including large bioclast (white arrow) with soft-sediment deforma-
tion textures (black arrow). (F) Sample SSK60812, 26�44 m below surface, P2c biozone, cut-sample photograph,
including relatively large trilobite test and phosphatic debris. (G) and (H) Facies D. (G) Sample 117A, Hind
Clough, LB package, E1a biozone, 59�37 m above base, cut-sample photograph, and sample 50A (inset), Hind
Clough, 35�60 m above base. Laminae exhibit erosive bases (black arrow), ‘load and flame’ structures (inset, black
arrow) and are cemented by calcite. (H) Sample 02A, 0�68 m above base, IB(?) package beneath E1a, P2c(?) biozone.
Basal wavy-parallel laminae (white arrows) comprise sand-sized calcareous bioclasts and detrital quartz grains
cemented by carbonate and silica and are overlain by homogenous mud.
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Siliciclastic mudstones

Facies G is defined compositionally as argilla-
ceous mudstone and is strongly lenticular
(Table 1; Fig. 14A to F). Facies G also contains
organic-rich laminae and a matrix of authigenic
and detrital clay minerals (Fig. 14C to G; includ-
ing authigenic ‘booky’ kaolinite – Fig. 9H), pyr-
ite euhedra and nodules (0�5 to 20 mm Ø,
rounded, spherical; Fig. 9H) and detrital quartz.
Facies G is typically laminated with homoge-
nous ‘mud-caps’ (for example, Fig. 14C). The
Facies G bulk sediment comprises approxi-
mately 90% clays, 10% quartz and trace carbon-
ate (Appendix S1). Facies G samples typically
exhibit moderate TOC, very low inorganic C and
high Ti and Zr content and lack excess silica
(Fig. 6). Single pyritized burrows in Facies G
(Fig. 14G) exhibit individual burrow Ø of ca
50 lm to 1 mm and burrow depth up to ca
2 mm (bioturbation index = 1; Lazar et al.,
2015).
Facies H and I appear homogenous or exhibit

normal grading with sharp bases (Fig. 15B) and
are argillaceous fine to coarse, sandy mudstones
and medium sandstones (i.e. siltstones; Table 1),
respectively. Facies H is typically interbedded
with Facies G (at Hind Clough). Facies H and I
are also typically interbedded. Facies I also
exhibits sand-filled scours along basal contacts
(Fig. 15B) that are partially comparable to basal
laminae in Facies D (Fig. 15A). The matrix of H
and I comprises fine to coarse mud-sized detrital
quartz, feldspar, chlorite, muscovite mica, other
fine clay minerals (kaolinite, illite group), terres-
trial OM and rare euhedral pyrite and is weakly
siderite-cemented (Fig. 15C). Micas, clays and
heavy minerals typically account for >60% of
the bulk composition, with subordinate detrital
quartz. Facies H and I also occasionally contain
organic-rich laminae comparable to Facies G

(Fig. 15E and F). Facies H and I exhibit low to
moderate TOC, low inorganic C and high Ti and
Zr content (Fig. 7) and lack excess Si.
In Cominco S9, Facies H and I are typically

bioturbated, including ‘mantle and swirl’ tex-
tures (Lobza & Schieber, 1999) (Fig. 15F),
although well-defined burrows are rare (span-
ning bioturbation indices 0 to 5 of Lazar et al.,
2015). Facies H and I at Cominco S9 exhibit
TOC/S > 10 (Fig. 7) whereas all other facies
exhibit TOC/S ca 1�2. Facies J defines all sand-
stones, including the Hind Sandstone injectite
at Hind Clough (Fig. 15D; Kane, 2010) and the
overlying Pendleton Formation (Waters et al.,
2009).

Lenticular fabrics and grain size

Mud lenses in Facies B, C and F typically lack
the pyrite framboids and OM that are present in
the matrix, and comprise abundant kaolinite
and subordinate illite, mica, quartz and feldspar
(for example, Fig. 13B to F). Mud lenses in
Facies G also lack OM that is present in the
matrix. Mud lenses in Facies B, C, F and G are
flattened in bedding-perpendicular sections
(Figs 10C to E, 11B, 13A, 13B, 13G, 14A and C
to E) and equant and rounded in phosphatic
lenses (Fig. 11F) and in plan-view (Figs 11F,
13H, 14B and 14F). Lenses also rarely exhibit
imbrication and deformation textures (Fig. 13A).
An early phosphate cement preserves mud
lenses with pre-compaction geometry (Figs 11B
and F) and suggests that the compacted thick-
ness is ca 45% of the original thickness. Facies
B and C mud lenses are rare to moderately com-
mon and exhibit 50 to 300 lm Ø (i.e. coarse
mud to medium sand-sized; Figs 10C to E and
13H). Therefore, on the basis of grain size, mod-
erately lenticular Facies B and C are medium to
coarse sandy mudstones and sandstones. In

Fig. 11. Facies B and C highly to weakly carbonate-bearing, siliceous, weakly to moderately lenticular mudstones.
(A) Facies B, sample 13A, 11�60 m above base, microphotograph including dewatering structure (arrow). (B)
Facies C, sample 31A, 25�52 m above base, HB package. An early phosphate cement preserves mud lenses (exam-
ples: arrows) with pre-compaction geometry. Comparison of cemented and compacted geometries (examples:
arrows) indicates that the compacted thickness is ca 45% of the original thickness. (C) to (E) Facies C. Bed dip
shoals across the contact in sample 35A, 27�80 m above base. (C) Thin section scan, image rotated so that the base
is horizontal. Microphotographs demonstrate the inclined lenticular fabric (D) is ca 3°, or a pre-compaction
palaeoslope gradient of ca 7°, steeper than the horizontal fabric (E). (F) An early phosphate cement preserves mud
lenses (examples: arrows) with pre-compaction geometry. Cemented mud lenses exhibit comparable shape to com-
pacted lenses in plan-view (inset). See also (B). (G) Facies F. Moderately lenticular mudstone with sulphate-bear-
ing lamina, sample DC11A, 33�4 m above base, DB package, optical and BSE microphotographs. Ca-sulphate
crysts are present within organic pores (white arrows). Note also presence of pyrite euhedra and framboids in the
adjacent lamina matrix (red arrow).
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Facies F, mud lenses are 50 to 500 lm Ø (coarse
mud to coarse sand-sized) and moderately com-
mon to abundant (Figs 13A, 13B, 13G, 14A and
14B). Thus, on the basis of grain size, Facies F
is defined as sandy mudstone to sandstone.
Lenses in Facies G are 0�5 to 4�0 mm Ø (medium
sand to pebble-sized; Fig. 14C to F). Therefore,
on the basis of grain size, Facies G is defined as
medium sandstone to fine conglomerate. The
size and abundance of lenses in Facies F typi-
cally increase with height towards the base of
Facies G at Hind Clough (for example, Figs 5
and 6; compare Figs 13A, 14A and 14B). ‘Com-
posite’ lenses, comprising multiple smaller
lenses, are present within Facies F directly
beneath Facies G at Hind Clough (Fig. 14B).

Sedimentary packages and geochemistry

The abundance of detrital elements (for exam-
ple, Ti and Zr) strongly declines, whereas TOC,
carbonate content and excess silica content
increase, through each increasing basin accom-
modation (IB) package (Figs 4 to 7). In Com-
inco S9 a lower package (IBa) delineates onset
of TOC/S < 10 (Fig. 7). An upper package (IBb)
defines the increase in TOC, carbonate and
excess silica content (Fig. 7). High basin accom-
modation (HB) packages exhibit initially rela-
tively high TOC, carbonate and excess silica
content that gradually decrease towards the top
(Figs 4 to 7). Similarly, detrital elements gradu-
ally increase in abundance through each HB
package. Decreasing basin accommodation (DB)
packages generally exhibit stable TOC, decreas-
ing or no excess silica content and increasing
abundance of detrital elements towards the top
of each package (Figs 4 to 7). Low basin accom-
modation (LB) packages tend to exhibit moder-
ate to high detrital element content, whereas
carbonate, TOC and excess silica content are
highly variable (Figs 5 to 7).

DISCUSSION

Subaqueous sediment density flows

Facies D coarse mudstones (Figs 10G, 10H and
15A) are interpreted as mud-rich low density
calciturbidites (Fig. 16A to C; defined by Stow &
Shanmugam, 1980) that were in some cases
reworked during deposition of overlying lenticu-
lar muds (Facies B, C or F). Basal sandy to
coarse muddy wavy laminae (Fig. 10G and H)
are interpreted as the TD division of Bouma
(1962) that grade into TE-1 of Piper (1978). These
laminae possibly formed via deposition of coarse
mud in a turbulent boundary layer beneath a
dilute suspension (Stow & Bowen, 1978) or in a
shear zone beneath a relatively concentrated
gelled fluid mud layer (McCave & Jones, 1988).
The typically sharp grain-size break between
TE-1 and TE-2 is a feature common to many
mud-rich low density turbidites and likely
relates to flow transition from non-cohesive to
cohesive behaviour (Talling et al., 2012). Mas-
sive to weakly graded fine mud-rich laminae
and beds overlying Facies D coarse mudstones
(Figs 10G, 10H and 15A) are interpreted as the
TE-2 and TE-3 turbidite divisions of Piper (1978).
Homogenous ‘mud-cap’ laminae lack underly-

ing coarse mud or sandy laminae so that turbu-
lent, hybrid or laminar flows were all potentially
viable depositional mechanisms (Fig. 16H).
Facies B (Fig. 10A and B), Facies C (Fig. 11C),
Facies F (Fig. 13A), Facies G (Fig. 14C), Facies H
(Fig. 15E) and Facies I (Fig. 15F) all include
examples of these ‘mud-cap’ laminae. A lack of
intraclasts observed within the ‘mud caps’ sug-
gests that these deposits did not form via rework-
ing of flocs as bedload on the lee face of ripples
beneath relatively fast flows (Schieber et al.,
2007a; Talling et al., 2012).
A variety of sedimentary structures suggest

that Facies E beds were deposited by hybrid

Fig. 12. Facies E chaotic, weakly carbonate-bearing, siliceous mudstones. (A) Sample 147, E1b1(?) zone, 68�32 m
above base, IB package debrite, cut-sample photograph, including contorted basal shear zone overlain by mud
containing many cemented and fluidized bioclastic coarse mud-rich chaotica (water escape) and/or bioturbation
(black arrow). (B) Sample 73A, E1a zone, LB package, ‘starry-night’ turbidite mud-cap, 48�14 m above base,
microphotograph. (C) to (F) Sample 75A, E1a zone, 48�82 m above base, LB package. (C) Cut sample photograph.
(D) Thin section scan with climbing ripples and truncated cross-laminae, and (E) microphotograph, including
mud-rich microbial mat rip-up clast (inset). (F) Plan-view equivalent of (D), with many aligned discontinuous
laminae and lenses of calcite and silica-replaced bioclasts and fragments of organic matter. Truncated surfaces are
curved in plan-view, whereas cross-laminae are linear. (G) Sample 89A, 52�17 m above base, E1a biozone, cross-
laminated mudstone with many calcite and silica cemented lenses and fragments of organic matter. Lenses exhibit
rounded edges, tapered geometry and partial fragmentation (inset, cross-polarized light).
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flows, with turbulent and laminar components
(Figs 12A to G and 16D to G; defined by Haugh-
ton et al., 2009). Facies E beds undergo a dis-
tinctive transition through the section at Hind
Clough. The lowest Facies E beds at Hind
Clough exhibit sharp, planar basal contacts and
are homogenous or occasionally weakly graded
(Fig. 5) and are therefore interpreted as the
deposits from mud-rich turbidity currents (Tal-
ling et al., 2012). Above these mud-rich tur-
bidites, Facies E beds exhibit the greatest
diversity of sedimentary structures (Figs 8D and
12A to F) that compare best to sediment deposi-
tion from ‘lower transitional plug flows’
(Fig. 16G), characterized by moderate clay con-
centration and extensive top-down reworking by
long-lived post-deceleration steady flows (Baas
et al., 2009, 2011). The complete lack of any
homogenous basal sand is interpreted as deep
scour (for example, Fig. 8D) and complete
reworking by the flow. Younger flows were
apparently less erosive, because erosive bases,
mud clasts and possible microbial mat fragments
become increasingly rare (Fig. 5).
Hybrid beds gradually exhibit the characteris-

tics of ‘quasi-laminar plug flows’ (Baas et al.,
2009, 2011). These beds are equivalent to the
Type IV deposits of Sumner et al. (2009). Above
the E1b1 marine band, hybrid beds are inter-
preted as a variety of ‘quasi-laminar plug flows’
(Fig. 16D), linked-debrites (Fig. 16E) and
ungraded mud-caps interpreted as the TE-3 divi-
sions of Piper (1978). The high clay and organic
content likely sufficiently damped flow turbu-
lence in order to generate such hybrid beds
(Baas et al., 2011).
Facies I scours are filled with homogenous

sand (Fig. 15B), indicative of a high density
(and likely strongly bypassing) element of turbu-
lent flow (TA division) (Talling et al., 2012).
Sand to coarse mud-rich normally-graded beds

in Facies H and I (Fig. 15E to F) are interpreted
as the TD to TE-1 divisions of Piper (1978).
Facies H and I muds overlying sand-filled scours
(Fig. 15B) are interpreted as the TD and/or TE-1,
TE-2 and TE-3 divisions. Given the thin bedded
nature of these deposits, Facies I muds were
likely deposited from dilute low density turbid-
ity currents (Stow & Bowen, 1978).
Occasionally Facies H and I exhibit draped

mudstone (TE) and deformation of basal coarse
mud (silty) laminae (Fig. 15E and F). These tex-
tures are comparable to deposits interpreted as
tempestites (Schieber, 1986, 2016). Rare symmet-
rical coarse mud (silty) laminae in Facies I
(Fig. 15E) suggests deposition from waxing and
waning of hyperpycnal flows (Li et al., 2015;
Schieber, 2016). This is plausible given that a
strong halocline probably existed at the basin
margins, considering that Facies H and I at Com-
inco S9 were deposited under a freshwater col-
umn (Fig. 7; Berner & Raiswell, 1984).

Origin of mud lenses
Mud lenses in Facies B, C, F and G (Figs 10C,
10F, 11A to G, 13A to H and 14A to H) are inter-
preted as clasts that were transported as par-
tially consolidated muds in the bedload of
bottom currents (Schieber et al., 2010). Rarity of
pyrite framboids within partially consolidated
clasts (Fig. 13C) suggests that the solutes
required for pyrite precipitation were largely
unavailable. A relatively low clast permeability
compared to surrounding sediments potentially
limited infiltration by syngenetic and/or diage-
netic (sulphidic) pore-fluids. Figure 11F demon-
strates that lenticular mudstones were clast-
supported prior to compaction. A rip-up inter-
pretation is supported by dominantly equant
lens shape geometry in un-compacted (Fig. 11F)
and plan-view (Figs 11F, 13H, 14B and 14F),
increasing clast diameter and abundance

Fig. 13. Comparison of lenticular fabrics and organic matter, including Facies F moderately to strongly lenticular
siliceous mudstones. (A) to (F) Facies F, sample DC01, 38�22 m above base, DB package, microphotographs (A)
and (B) and BSE microphotographs (C) to (F). Mud lenses are present throughout – examples: white arrows in (A).
The fine mud-rich, pyritic (dark) planar, parallel laminae contains few, relatively small lenses. Note also deformed
lenses and multiple examples of imbricated lenses – red arrows in (A). BSE microphotograph lens and ‘matrix’
comparison. The sediment matrix (D) and (E) comprises pyrite framboids (pf), organic matter, macrocrystalline sil-
ica cement (si), illite laths (white arrows), and mixed fine clays and quartz. Organic matter exhibits two geome-
tries; sheets (D) and equant particles (E). Mud lenses (F) contain illite laths (white arrows), mica, kaolinite (black
arrow), feldspar (albite, with alteration rim) and fine quartz and kaolinite, and typically lack organic matter and
pyrite. (G) Sample DC04, 37�37 m above base, DB package, microphotograph with strong lenticular texture (white
arrows) and organic matter (red arrows). (H) Facies C, sample 31, 25�52 m above base, HB package, plan-view
microphotograph, including organic matter (organominerallic aggregates; white arrow), mud lenses (black arrow)
and carbonate and quartz grains (red arrow).
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towards the base of Facies G at Hind Clough
(Figs 3, 5 and 6; also compare Figs 13A, 14A
and 14B) and imbrication/stacking of lenses
(Figs 13A and 14H). Dominance of clay (kaolin-
ite) and lack of OM and bioclasts in mud lenses
(Fig. 13F) precludes a faecal-pellet origin (e.g.
R€ohl et al., 2001). In some cases, lenses are com-
posites of several smaller lenses (Fig. 14B),
which may represent clasts of Facies G. Thus,
the dense accumulations of lenses in Facies G
(Fig. 14C to F) were potentially intermittently
scoured to produce larger, composite ‘clasts of
clasts’ observed downslope in Facies F (Fig. 14A
and B).
Where Facies B, C or F overlie ‘mud-cap’ lam-

inae, the contact is often sharp to slightly dif-
fuse (Fig. 10A and B), suggesting that bottom
currents at the site were capable of depositing
mud clasts without substantial scour of the
underlying deposits. A sharp transition from tur-
bidite laminae into overlying lenticular muds
(Facies B; Fig. 10B) also demonstrates that mud
lenses are unlikely to represent burrows, on the
basis that upper contacts were not homogenised.
Bioturbated upper turbidite contacts in Facies H
and I (Fig. 15F) are dissimilar to the lenticular
fabrics observed elsewhere.
Namurian deltas generally lack sedimentary

features indicative of tidal currents and to some
extent wave action, suggesting river-dominance
(Collinson, 1988). The region was probably
shielded from high-energy waves, and long, con-
stricted and shallow connections between basins
potentially damped tidal forcing and wave
energy (Keulegan & Krumbein, 1949). Yet tidal
and/or wind-driven currents are thought to gen-
erate mud-rich rip-up clasts (Schieber, 2016).
Bottom currents are amplified by suitable bathy-
metric roughness and shape (Klein & Ryer, 1978;
Sztan�o & Boer, 1995; Schieber, 2016), and/or
favourable water depth and stratification (Egbert

et al., 2004). Thus, is it possible that bottom cur-
rents were locally amplified in the Craven Basin.
This is supported by presence of tempestites in
Facies H and I, suggestive of intermittently vig-
orous storm-driven bottom currents with poten-
tial for seabed scour. Microbial mats potentially
also promoted biostabilization and consolidation
of mud at the seabed (see below).

Particulate organic matter and candidate
microbial mats

Most micron to millimetre-scale OM particles in
Facies A to F (for example, Figs 13D, 13E and 14H)
are interpreted as organominerallic aggregates
(Tyson, 1995; Macquaker et al., 2010). Lack of
compaction of the spherical OM particles
(Fig. 13E) indicates very early cementation around
and/or within the particles. Juxtaposition of spher-
ical and elongate forms of OM is important
(Fig. 13C to E). This suggests that elongate parti-
cles are not compressed versions of originally
spherical particles and supports a distinctive ori-
gin for micron-scale elongate forms of OM.
Organominerallic aggregates likely represent

phytodetritus, a type of ‘marine snow’ (e.g. All-
dredge & Silver, 1988; Macquaker et al., 2010).
This is common beneath productive water col-
umns (Riley, 1971) where OM aggregates with
detritus through grain collision and clumping
with extracellular polysaccharides (Alldredge &
Silver, 1988), precipitates from dissolved
organic matter (Bowen, 1984; Velimirov, 1987;
Mann, 1988) or are the faecal pellets of zoo-
plankton (e.g. Porter & Robbins, 1981). Although
the microscopic techniques utilized could not
fully resolve nanoscale structures, Facies B to F
contain finely (i.e. less than micron-sized) dis-
seminated OM associated with the clay matrix
(Fig. 13F) (Salmon et al., 2000; Kennedy et al.
2014). Organic matter in Facies B to F is

Fig. 14. Strongly lenticular fabrics, including Facies G siliciclastic strongly lenticular mudstones. (A) and (B)
Facies F, sample 184, 83�60 m above base, DB package, microphotograph with wide ranging size of mud lenses.
This sample is near to the basal contact with Facies G – see (C) to (G). (B) Plan-view image, thin section scan,
including large ‘composite’ lens (i.e. a lens comprising multiple lenses, white arrow). (C) to (G) Facies G, DB pack-
age, sample 188, 83�60 m above base, microphotographs [(C) to (E), plan-view: (F) inset], plan-view thin section
scan (F) and BSE microphotograph (G). Facies G exhibits layering of large and abundant mud lenses (black
arrows), ‘mud-cap’ laminae of similar composition to mud lenses and organic-rich laminae (examples: white
arrows). Note also kaolinite nodules cemented by pyrite euhedra (see also Fig. 9H) and pyritized burrows – red
arrow in (G). Mud lenses are coarse sand to gravel-sized and equant in plan-view (F). Organic-rich laminae exhibit
‘roll-up’ texture – white arrow in (E) (sensu Schieber, 2004) and are deformed beneath burrows (G). (H) Facies B,
sample 13A, 11�60 m above base, HB package, microphotograph, including abundant mud lenses, dewatering
structures and stacked lenses coupled with organic-rich fragments (red arrows).
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therefore comparable to the Chattanooga Shale
and Marcellus Shale (Camp et al., 2013). Con-
versely in Facies H and I, OM is in discrete,
rounded to angular, spherical to elongate forms
which are not mineral-bound. This texture is
comparable to the Stuart Range Formation (Rah-
man et al., 2017). Organic matter in Facies H
and I (for example, Fig. 15C) is interpreted pri-
marily as terrigenous to mixed in origin.
Organic-rich clasts in Facies E exhibit frayed

edges (Fig. 12E), a feature that suggests these are
fragments of microbial mats (Schieber, 1986,
2004; Schieber et al., 2007b; Davies et al., 2016).
Relatively large elongate OM in Facies A to F
also potentially represent mat fragments (for
example Fig. 10C) or sheet-like organominerallic
aggregates (e.g., Riley, 1971; Macquaker et al.,
2010; see also review by Turner, 2015; Fig. 13D).
The organic laminae in Facies G (Fig. 14C to G)
are interpreted as in situ microbial mats, similar
to those described by Schieber (2004). The anas-
tomosing nature of laminae could also support
the existence of mats, although differential com-
paction around the mud lenses could also pro-
duce this texture (Schieber et al., 2007b). Facies
G is comparable to modern sedimentary and
microbial textures associated with oxygen and
salinity restricted conditions in similar water
depth (Virtasalo et al., 2011). Rare ‘roll-over’ of
organic-rich laminae (Fig. 14E) suggests that the
mats were intermittently locally re-worked.
Organic-rich clasts in Facies E resemble Facies
G (Figs 5, 6, 12D and 12E), and are therefore
potentially down-dip, transported fragments
scoured from Facies G during passage of density
flows. Organic-rich laminae in Facies A are diffi-
cult to interpret due to distortion by calcite
spherules but could also represent microbial
mats, which were possibly a catalyst for spher-
ule growth (Dupraz et al., 2004).
Upslope colonization by microbial mats could

explain the origin and relatively high abundance
of mud lenses observed in Facies B to F and G.

Microbial mats bind sediment, increasing the
sediment tensile strength, limiting short-term
erodibility and therefore initially protect muds
from bottom currents that would otherwise
induce scour (Neumann et al., 1970). This is
supported by the presence of dewatering struc-
tures (Figs 11A and 14H) and microfaulting
(Figs 4 to 7, 12A and 14H) in underlying Facies
B to F, and early diagenetic nodular (pyrite and
kaolinite) cements (Figs 9H and 14C) and pyri-
tized burrows (Fig. 14G) in Facies G. These
observations suggest that sulphidic porewaters
gently advected through, or stagnated in, rela-
tively cohesive sediment (e.g. Rickard, 2012)
beneath the candidate microbial mats in Facies
G muds. Inherent instability of large microbial
mats (Vignaga et al., 2013), coupled with period-
ically stronger currents, would trigger periodic
catastrophic failure of the mat and re-suspension
of mat fragments and semi-consolidated (biosta-
bilized) mud clasts. Thus, mud clasts and micro-
bial mats were potentially genetically linked.
Rare coupling of mud lenses and organic frag-
ments ‘stuck’ together as single larger rip-up
clasts supports this hypothesis (Fig. 14H).
Organic matter is enriched in muds via sea-

sonal or persistent bottom water anoxia (Demai-
son & Moore, 1980; Tyson & Pearson, 1991),
high organic loadings under productive water
columns (Calvert et al., 1992), sorption onto clay
mineral surfaces (Keil et al., 1994) and/or low
sediment accumulation rate (Tyson, 2001). The
presence of phosphatic fish faecal pellets and
radiolaria is suggestive of at least moderate rates
of primary productivity, perhaps triggered by
nutrient upwelling or loading at the front of the
Pendle delta. Presence of phosphate and chert
nodules on the Askrigg shelf edge suggests that
these conditions were relatively widespread
(Davies et al., 1993; Fairbairn, 2001). Facies D
and E tend to exhibit relatively high Ti and Zr
content compared to Facies B and C, and high
excess Si content compared to Facies F. This

Fig. 15. Mostly examples of Facies H and I siliciclastic mudstones. (A) Facies D, sample 125A, 62�4 m above base, IB
package, thin section scan, laminae comprise detrital quartz, carbonate grains and bioclasts, and exhibit sharp, erosive
bases. (B) and (C) Facies I. Sample SSK61356, Cominco S9, DB package, 13�32 m below surface, cut-sample pho-
tograph, with sand-filled scours and overlying mud-cap. (C) Sample SSK61352, Cominco S9, 11�89 m below surface,
DB package, BSE microphotograph, including mica laths (white arrows), chlorite, feldspar and quartz (black arrows).
(D) Facies J, Hind Sandstone injectite, 96�0 m above base, thin section scan (sample HC03) and microphotographs
(sample HC02, plane and cross-polarized light). (E) Facies H, DB package(?), sample HC01, 118�0 m above base, thin
section scan, including laminae of detrital quartz coarse mud (silt), often overlain by normally graded coarse mudstone
and organic-rich laminae (black arrows). Coarse mudstone laminae are often bioturbated (white arrows). (F) Facies I,
sample SSK61384, Cominco S9, 28�86 m below surface, thin section scan, moderately bioturbated (white arrows)
including ‘mantle and swirl’ textures (black arrow; sensu Lobza & Schieber, 1999).
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suggests that the reduced TOC in this interval is
primarily a function of dilution by siliciclastic
sediment and silica cement.
Abundant framboidal pyrite and lack of biotur-

bation in Facies A to F is consistent with the
interpretation that sediment porewaters at seabed
(at least) were likely euxinic and therefore toxic to
infaunal organisms (Wang & Chapman, 1999).
Emmings et al. (2017c) suggested that bottom
waters were also (at least intermittently) anoxic
during deposition of Facies F muds (above the
E1a1 marine band; see Fig. 5). Several redox-sensi-
tive trace elements (e.g. Tribovillard et al., 2006),
such as Mo, are enriched in Facies F and were
likely fixed in association with solid sulphides
(Emmings et al., 2017c). These conditions appar-
ently persisted despite relatively vigorous bottom
current conditions, and were likely inhospitable
to all aerobic, benthic (including infaunal, epifau-
nal and nektobenthonic) organisms. Clearly the
relatively high TOC in Facies A to F is linked to at
least moderate rates of OM export into anoxic

bottom waters. Yet these processes are interlinked
and often coupled. Interpretation is further com-
plicated by the effects of changing sediment accu-
mulation rate, autodilution (for example,
radiolarian Si) and remineralization of OM during
diagenesis.
Facies H and I exhibit lower TOC concentration

than any other facies (excluding Facies A). Biotur-
bation in these facies suggests that bottom waters
were at least intermittently oxygenated and sup-
ported benthic fauna (Eagar et al., 1985). Thus,
oxygenated bottom waters, increased bioturbation,
dilution by detrital sediment, weaker organic load-
ings, change in mineralogy, change in sediment
properties (for example, porosity) and/or change in
OM type and distribution are all viable mecha-
nisms for the relatively low TOC in Facies H and I.

Marine bands

Discrete and repeated packages of carbonate-rich
macrofauna-bearing Facies B interbedded with
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Fig. 16. Idealized subaqueous sediment density flow deposits in the Bowland Shale at Hind Clough. (A) to
(C) Wavy-parallel laminated basal laminae and mud-caps of Facies D calciturbidites. (C) Cut-out low-density tur-
bidite of Facies D (Talling et al., 2012). (D) to (G) Density flows of Facies E. Mud-caps may be present without
basal sections. (D) Microbial-mat-rich debrite comparable to ‘quasi-laminar plug flows’ of Baas et al. (2009) and
‘Type IV’ deposits of Sumner et al. (2009). (E) Cemented clast-rich linked-debrite with deformed basal zone (e.g.
Haughton et al., 2003) comparable to ‘quasi-laminar plug flows’ of Baas et al. (2009) and ‘Type III’ deposits of
Sumner et al. (2009). (F) Clast and lens-rich debrite comparable to ‘quasi-laminar plug flows’ of Baas et al. (2009)
and ‘Type IV’ deposits of Sumner et al. (2009). (G) High angle cross-laminated clast-and-lens-rich debrite with
claystone and microbial mat clast-rich basal zone, similar to ‘lower transitional plug flows’ (LTPFs) (Baas et al.,
2011). (H) ‘Mud-caps’ at the top of Facies D and E and commonly as thin laminae in Facies B and C and F and G.
These are slightly graded to ungraded deposits likely from dilute expanded suspensions (Stow & Bowen, 1978) or
dense fluid mud layers (McCave & Jones, 1988; Talling et al., 2012).
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Facies A, C and D fit with definitions of marine
bands (Ramsbottom, 1977; Waters & Condon,
2012). Facies B and C (Figs 9B to F, 10C to E
and 11B to F) are interpreted as mixed pelagic
and hemipelagic sediments (Table 1), interbed-
ded with calciturbidites (Facies D), deposited
during periods of increasing to high basin (IB to
HB) accommodation (Posamentier et al., 1988;
Martinsen et al., 1995).
Facies B body fossils are primarily euhaline

(‘normal marine’) and pelagic (e.g. Fl€ugel, 2004),
equivalent to the faunal phases 4 to 6 of Rams-
bottom et al. (1962). Goniatites were nektonic
and probably relatively intolerant to basin
desalination events (Ramsbottom & Saunders,
1985). The Pendle delta system likely induced a
strong salinity gradient (Collinson, 1988) with
potential for euhaline faunal occlusion. This
explains why Facies H and I, deposited under a
freshwater column (TOC/S > 10), are ‘barren’
(Fig. 7). Freshwater likely prograded as a plume
from the Pendle delta, and was not basin-wide.
All other mudstones were likely deposited in
marine conditions, on the basis of low TOC/S
(Berner & Raiswell, 1984). Lack of bioclasts in
Facies C (Fig. 11B and F) suggests either that
conditions in the water column were unfavour-
able for colonization, perhaps due to reduced
salinity (Ramsbottom et al., 1962), or that the
aragonitic bioclasts (e.g. Fl€ugel, 2004) were not
preserved at the seabed (Ku et al., 1999).
Mississippian trilobites (Fig. 10E) were pri-

marily benthic organisms (e.g. Fl€ugel, 2004).
This suggests that bottom water anoxia, as a pos-
sible explanation for the relatively high TOC,
was transient or that the trilobites were tolerant
to sub-oxic conditions (Fortey & Wilmot, 1991).
Nyhuis et al. (2015) favoured this explanation
for the presence of trilobites in concomitant
rocks. Alternatively, trilobites and mud lenses
were potentially transported together, from a
nearby oxic and euhaline basinal high, down-
slope, into anoxic bottom waters. This is the
favoured explanation for presence of benthic
fauna in the contemporaneous US Barnett Shale
(Loucks & Ruppel, 2007).
Relatively small mud lenses in marine bands

(Figs 3 to 7) possibly indicates that the prove-
nance of mud lenses shifted further away onto
adjacent shelves (Figs 2A and 10C to E) and that
clasts were fractionated over a longer run-out
distance during marine transgressions. The basal
Facies B package in the E1a1 marine band is an
exception to this pattern, however, because it
contains relatively large mud lenses similar to

Facies F (Fig. 5). Perhaps these large clasts were
shed initially from relatively steep and mud-rich
(syn-rift) slopes on adjacent highs (Fig. 2A) dur-
ing the E1a1 marine transgression (Fig. 1). Subse-
quent marine bands possibly lack these
relatively large lenses because local highs lacked
available mud, perhaps because the inherited
syn-rift structures became progressively infilled
and smoothed during progradation of the Pendle
delta. Relatively abundant and large clasts in
Facies F, likely deposited during periods of
reduced basin accommodation (Figs 13A, 13B,
14A and 14B), suggests that clasts were sourced
nearby or that bottom currents were enhanced.
In Cominco S9 mudstones in the E1c marine

band are finely lenticular, whereas the underly-
ing and overlying Facies H and I lack mud
lenses and instead comprise coarse mud (silt)
and fine sand (Fig. 7; Fig. 10D versus Fig. 15B
and C). The switch from marine band fine mud-
stone to coarse mudstone, is indicative of the
movement of a pseudo-’mudline’ in response to
eustatic sea-level fluctuation (Weaver, 1989).
During periods of high sea-level, mud-rich sedi-
ments accumulated close to Cominco S9 (i.e. on
the Askrigg Block or adjacent slope) and were
intermittently scoured and transported as rip-up
clasts to be deposited as part of the E1c marine
band. In more distal and older marine bands,
pelagic components tend to dominate over mud
lenses, possibly because bottom currents trans-
porting lenses had run-out. During the subse-
quent sea-level fall, coarse mud (silt) was
deposited primarily via turbidity currents at
Cominco S9, whereas mud likely bypassed this
proximal site.

Phosphate concretions
Phosphatic concretions in Facies B (Fig. 9D to
F) are interpreted as early-cemented faecal pel-
lets, possibly from fish (Saba & Steinberg, 2012;
Zato�n & Rakoci�nski, 2014). These are composi-
tionally similar to phosphatic bromolites
described by Hunt et al. (2012) and geometri-
cally comparable to siderite-cemented coprolites
in the Mississippian Lower Oil Shale Group
(Bojanowski & Clarkson, 2012). Preservation of
contents, such as radiolarian tests (mostly
spumellarian entactinids; Casey, 1993), skeletal
material and amorphous OM (Fig. 9F; e.g.
Tyson, 1995) in unflattened geometry indicates
that cementation occurred very early. Radiolar-
ian tests are preserved within the phosphate
concretions as thin organic linings rafted in
phosphate cement (Fig. 9F). Radiolarian silica
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dissolved and locally precipitated within each
concretion as patchy quartz cements (Fig. 9F).
Modern radiolaria often host symbionts as mixo-
trophs (Mitra et al., 2016). This means that radi-
olaria are important primary producers in some
marine environments (e.g. Caron et al., 1995)
and that radiolarian OM could have contributed
significantly to the organic fraction in these
rocks. The presence of radiolaria is further evi-
dence for at least intermittently euhaline upper
water column conditions (e.g. Fl€ugel, 2004).
Absence of radiolarian tests outside concre-

tions suggests that the relatively labile silica
tests completely dissolved and, in the absence
of the protective early phosphate cement, silica-
rich fluids then re-precipitated in pores as clay
and/or quartz cement during early diagenesis
(e.g. Taylor & Macquaker, 2014). The high abun-
dances of radiolarian linings preserved in the
concretions and pervasive quartz cements else-
where is important. Interpreting concretion con-
tents as an approximation for the local pelagic
fraction deposited at each site, this supports a
pelagic and biogenic origin for the excess silica,
and for many or all of the patchy quartz and
clay mineral cements in the matrix (Figs 9B, 9C
and 13D). It is beyond the scope of this paper to
further discuss diagenetic phases (e.g. Curtis,
1977; Kastner et al., 1977; Moore et al., 2004;
Macquaker et al., 2014). These phases include
spherulitic calcite (Facies A; Fig. 9A), patchy
calcite (Fig. 9C), fine framboidal (Fig. 13A to E)
and euhedral and nodular (Fig. 14C to G) pyrite,
sulphate (Fig. 11G), scattered dolomite replacing
calcite (Figs 9B, 9C and 12G), quartz (Fig. 9B)
and clay mineral cements (Fig. 9G and H).

Controls on Craven Basin infill

Field to micron-scale analysis of the Upper
Bowland Shale demonstrates that the epiconti-
nental Craven Basin received sediment from
three provenances. Firstly, detrital clay, coarse
mud (silt) and sand supplied via turbulent and
hybrid flows, including direct supply from the
Pendle delta system; secondly, clay-rich mud
clasts scoured from nearby mud-rich, potentially
biostabilized, slopes; and, finally, pelagic and
hemipelagic sediment, rich in clays, OM and
biogenic carbonate and, silica. Changing basin
accommodation, moderated by eustatic sea-level
fluctuation, delta progradation and fault instabil-
ity at the basin margins moderated the supply of
sediment from these provenances.

Changing basin accommodation
At Hind Clough relatively thin packages of mar-
ine band Facies B and/or C, interbedded with
low density turbidites of Facies D, are inter-
preted as deposition during periods of increas-
ing basin (IB) accommodation (Figs 5 to 7).
Siliciclastic turbidites in IB packages could rep-
resent the final flows through shelf to basin con-
duits (for example, canyons), such as via the
Dent Fault between the Southern Lake District
High and Askrigg Block (Fig. 2). Such flows
were potentially cut-off by rising sea-level (Piper
& Normark, 2009; Talling, 2014). Turbidites
could also represent failure of sediments that
accumulated at canyon heads by longshore drift
(Covault & Graham, 2010). Calciturbidity cur-
rents were also potentially sourced by slope fail-
ure of the flank of the Askrigg Block and local
highs, by loading via carbonate accumulation on
slopes, or possibly thicker and/or warmer water
column (e.g. Maslin et al., 2004; Talling, 2014).
Increasing basin (IB) packages (Figs 4 to 7)

record the increasing and decreasing input of
(hemi)pelagic mud and turbidity currents with
time, respectively. This is consistent with
increasing rarity of thin calciturbidite beds
(Facies D; Figs 10H and 15A) and progressive
dominance of calcareous lenticular mudstones
(Facies B and C). Juxtaposition with overlying
marine bands suggests that IB packages were
deposited during rising eustatic sea-level driven
by onset of deglaciation on Gondwana (Veevers
& Powell, 1987). The IB packages may therefore
correspond to the transgressive systems tract
(Posamentier et al., 1988). At MHD4, an equiva-
lent IB package is highly condensed (Fig. 4)
likely because the isolated basinal high position
further limited sediment supply.
The contact between the IB packages and

overlying carbonate-rich packages is relatively
sharp at Hind Clough and MHD4, and is attribu-
ted to the transition from increasing to high
basin (HB) accommodation. The HB packages
best fit the definition of marine bands. The HB
packages were almost certainly deposited during
periods of high eustatic sea-level (e.g. Ramsbot-
tom, 1979; Fig. 17A) and therefore represent
deposition initially during the maximum rate of
transgression and the subsequent highstand sys-
tems tract (high to slightly decreasing basin
accommodation) (Posamentier et al., 1988). Rela-
tively high TOC, carbonate and excess silica
content in HB packages (Figs 4 to 7) is consis-
tent with a dominance of calcareous, weakly
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lenticular mudstones (Facies B and C; for exam-
ple, Fig. 10E). Calciturbidity currents (of Facies
D; for example, Fig. 10G and H) were probably
delivered by shedding from local carbonate-rich
highs (Fig. 17A). These calciturbidites are more
abundant in older marine bands (E1a and E1b1)
possibly because fringe reefs/carbonate accumu-
lations on the shelf or slope were relatively
widespread (Fig. 2A).
At Hind Clough, lenticular Facies F and G

commonly overlie the HB packages and are col-
lectively interpreted as deposition during peri-
ods of decreasing basin (DB) accommodation.
Persistence of DB packages above HB packages
suggests a common driver. Decreasing basin
packages may therefore form part or all of the
falling stage systems tract (Posamentier et al.,
1988). Accommodation in shallow waters
reduced sufficiently to permit scour of previ-
ously deposited (and biostabilized) muds and
transport as clasts into the basin. Above the
E1a1-b marine band, a conformable package (DBa)
is overlain by an inclined package (DBb) (Figs 5
and 11C to E). The majority of scoured sedi-
ments were possibly initially trapped in proxi-
mal positions because clasts are typically small
in DBa (Fig. 17B). An increasing supply of mud
lenses and thin ‘mud-cap’ laminae (Facies F; for
example, Figs 11C to E and 13A to G) during
falling sea-level is consistent with an increasing
abundance of detrital elements towards the top
of each DB package (Figs 4 to 7).
Given that the primary source of sediment

was likely from the north-east (e.g. Collinson,
1988), the inferred angle of palaeodip (towards
the north-east) of package DBb is the reverse of
the expected direction for progradational clino-
forms (e.g. Hampson, 2010) from the Pendle
delta (north-east). Lack of deformation structures
probably also discounts a slope failure origin for
this structural change. This geometry could rep-
resent an aggradational and onlapping package
of lenticular sediments that accumulated on a
gently sloping seabed. Bottom currents trans-
porting the mud clasts rapidly decelerated, and
aggraded, on the relatively low-gradient seabed
at Hind Clough. Given that lenses are typically
larger and more abundant than the conformable
DBa package beneath, this implies a phase of
more significant sea-level fall, increased sedi-
ment supply and/or tectonic uplift (Fig. 17C).
Intermittent presence of goniatite moulds,
cemented lenses, increased excess silica and
Facies D interbeds (Fig. 5) in package DBb sug-
gests a pulse of increased basin accommodation

(possibly the E1a1-c flooding event; Fig. 1C, per-
haps local rather than regional). This increase in
basin accommodation was insufficient to isolate
the basin from the primary source of rip-up
clasts.
Above the DBb package at Hind Clough, the

succession of density flow deposits (Facies E)
(Figs 5 and 16) is interpreted as deposition dur-
ing a period of decreasing to low basin (LB)
accommodation (Fig. 17D). Delta progradation
coupled to falling sea-level and/or slope insta-
bility at the fault-bound basin margins could
have triggered these mass transport processes
(Piper & Normark, 2009; Talling, 2014). This is
consistent with the relatively high abundance of
detrital elements in LB packages. Beneath the
E1a1 marine band in MHD4, a discrete package
of Facies B and C with slump structures is also
interpreted as a LB package (Fig. 4).
The transition between types of hybrid flows

in Facies E (Figs 5 and 6) potentially relates to
changing sea floor geometry or the type of sedi-
ment entrained in the flow. At the onset of
deposition of the E1a LB package at Hind
Clough, flows potentially passed over a low-gra-
dient and/or irregular seabed relief defined by
the underlying onlapping DBb package
(Figs 11C to E and 17D). This relief probably
promoted rapid deceleration of the flow and
scour of underlying sediment. Following this
initial deceleration, steady flows were appar-
ently long-lived. Gradual infill and/or smoothing
of the basin sea floor could therefore explain the
transition between deposit types. A reduction in
clay content, possibly due to increased input of
coarse mud and sand from the Pendle delta,
changing seabed geometry, a change in the type
of failed sediment and/or reduced entrainment
of clays and OM during passage, promoted sedi-
ment deposition from more turbulent flows
above the E1b1 marine band. The succession
between E1b1 to E1b2-b marine bands (Figs 6, 17D
and 17E) is interpreted as a combination of
changing basin accommodation and mass trans-
port processes potentially triggered by slope fail-
ure at the fault-bound margins of the basin
(Fig. 2A).
The E1b2-b DB package is associated with colo-

nization and biostabilization of the seabed by
candidate microbial mats at Hind Clough (Facies
G). Such mats potentially occupied a niche envi-
ronment linked to delta progradation (Fig. 17F),
perhaps associated with a high redox gradient at
seabed (Grunke et al., 2011). Overlying the
E1b2-b DB package at Hind Clough, Facies H to J
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(Fig. 3A) are collectively interpreted as a LB
package. This package represents a significant
step-change in the basin evolution, however,
with the introduction of coarse siliciclastic fill
as the turbidite-fronted Pendle delta (e.g. Collin-
son, 1988). This explains the enrichment in
detrital elements through the E1c1 LB package
(Fig. 7). Shelfal and basinal barriers had become
sufficiently infilled and/or breached, ultimately
permitting development of the Pendle Grit toe of
slope fan in the Craven Basin (Martinsen et al.,
1995). This was potentially fed by a lowstand-
dominated river-fed canyon system (Covault &
Graham, 2010), perhaps as a breach along the
Dent Line between the Askrigg Block and South-
ern Lake District High (Fig. 2A). Thus, the E1c1

DB package was potentially originally much
thicker in Cominco S9 but was scoured during
deposition of the overlying LB package (Figs 7
and 15B). Associated with this increased silici-
clastic input, a plume of freshwater extended
from the Pendle delta outflow across the adja-
cent Askrigg Block to (at least) the proximal
margins of the Craven Basin.

Delta progradation and slope instability
The potential for complex sediment routing and
sediment lock-up in more proximal basins
towards the north-east of the Askrigg Block (for
example, Stainmore Trough) meant that the Pen-
dle delta system was poorly (but increasingly)
connected to the Craven Basin during deposition
of the Bowland Shale. Siliciclastic turbidity cur-
rents supplied directly from river-fed canyons
likely initially followed circuitous routes first
through adjacent basins (for example, the Cleve-
land Basin to the east), around the Askrigg
Block (perhaps through the Dent Line; Fig. 2A),
before deposition into the Craven Basin (Bran-
don et al., 1998; Fraser & Gawthorpe, 2003). The
entrance points in adjacent basins were likely
poorly connected to the Pendle river system,
with potential for stranding of canyons at the
shelf break (for example, lowstand-dominated;
Covault & Graham, 2010).
Mud lenses typically increase in size and

abundance in Facies F through the section at
Hind Clough, because adjacent intrabasinal mud
traps, such as on the South Craven Fault, were
progressively infilled with mud sourced from
the Pendle delta (for example, Fig. 17E). There-
fore, a greater area of (potentially biostabilized;
Fig. 17B) mud-rich seabed was likely exposed to
erosion by wave shear and/or storm-driven cur-
rents. Thus, biogenic input (delivered via

bedload or pelagic settling) was increasingly
diluted by the escalating input of rip-up clasts
and hemipelagic settling of detrital clays. Whilst
the main basin margin with the Askrigg Block
likely retained the sharp ‘block-edge’ geometry
(Fig. 2A) into the E2c biozone (Martinsen et al.,
1995), mud was likely available on the Askrigg
Block (Hudson, 1940) as a source for mud clasts.
Unconformities north of the Middle and South

Craven faults suggest periods of inversion, espe-
cially within the E1a biozone (Hudson, 1940;
Rowell & Scanlon, 1957; Arthurton et al., 1988).
‘Limestone boulders’ in the footwall of the
South Craven Fault (Arthurton et al., 1988) are
broadly contemporaneous with the Facies E
beds observed at Hind Clough. Therefore at least
some of the hybrid flows were likely fed by
slope failure on the scarps of the Middle &
South and/or North Craven faults (for example,
Fig. 17D) or other fault-bound highs. Both Mid-
dle and South and North Craven faults bounding
the Craven Basin were intermittently active and/
or the basin flexed at these points, in order to
accommodate the basin subsidence required for
accumulation of the several kilometre-thick
Millstone Grit Group succession on top of the
Bowland Shale in the Craven Basin (e.g. Fraser
& Gawthorpe, 2003).

Synthesis

Figure 18 is a conceptual cross-section across
the Craven Basin (Fig. 2A) which integrates
findings across the three sites and stratigraphic
relationships on the Askrigg Block and slope. It
simplifies the expected heterogeneities in sedi-
ment package geometries, particularly across
intrabasinal highs and lows. The strong asym-
metry of packages is characteristic of sediments
deposited under the combined influence of
eustatic sea-level fluctuation and basin subsi-
dence (e.g. Martinsen et al., 1995). Initially the
basin exhibited steep bounding slopes (‘block-
edge’ geometry) and fringing reefs on both South
and North Craven faults (e.g. Wensleydale
Group; Arthurton et al., 1988). Thus the Lower
Bowland Shale in the Craven Basin represents a
carbonate-dominated succession fed by unstable
basin margins (Newport et al., 2018). Linked-
debrites of Facies E are similar, although not
equivalent, to Facies 5 of Newport et al. (2018).
Shedding of carbonate from reefs (e.g. Riley,
1990) contributed to the comparatively large car-
bonate component, with potential for basinal
thickening, in the E1a1 marine band. These
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calciturbidites (Facies D) are partially equivalent
to the homogenous and lag-containing Facies 1
in the contemporaneous Morridge Formation, in
the Widmerpool Gulf (K€onitzer et al., 2014) and
Facies 4 of Newport et al. (2018).
Progressive basin infill and cessation of rifting

(Leeder, 1982) smoothed and infilled intrabasi-
nal structures. This regional shift in intraplate

deformation style promoted deposition of dis-
crete marine band packages (Facies A to C) in
the Upper Bowland Shale, driven by fourth-
order eustatic sea-level cyclicity. Equivalents are
observed in many other Namurian successions
(see Waters & Condon, 2012), such as Facies 1
of K€onitzer et al. (2014). These ‘marine band’
packages are also texturally comparable to
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several intervals in the Lower Bowland Shale
(Facies 1 and/or 2; Newport et al., 2018), which
are relatively diffuse, likely due to the combined
effects of active rifting and diminished glacio-
eustasy (Veevers & Powell, 1987).
Packages are likely to be most spatially com-

plex in the E1a1 biozone, and progressively sim-
plify as the basin evolved towards a muddy
ramp-type system. Lenticular muds are present
in both the Upper (Facies F) and Lower Bow-
land Shale (Facies 3 of Newport et al., 2018),
and are common in many epicontinental succes-
sions (for example, Facies 3, 4a and 4c of
K€onitzer et al., 2014). Highly lenticular Facies G
may represent a clast-rich version of Facies 3, or
Facies 4a, of K€onitzer et al. (2014). Abundant
and relatively large rip-up clasts in DB packages
suggest that scour of shelfal mud-rich succes-
sions is the most likely provenance for such
clasts. Linkage between highly lenticular,

microbial-mat-bearing Facies G deposited during
delta progradation (Fig. 17F) suggests that clasts
were sourced specifically from prodeltaic and
biostabilized muds trapped on shelves and
slopes. Under a thermal sag regime, proximal
basins, such as the Stainmore Trough (e.g.
Waters et al., 2009), were infilled by the Pendle
delta system and ultimately connected the Cra-
ven Basin with the Pendle prodelta. Unconfined
delta progradation triggered the development of
a toe of slope fan system in the Craven Basin,
recognized as Facies H to J. These facies are par-
tially comparable to Facies 4a and 5 in the Mor-
ridge Formation (K€onitzer et al., 2014).
Taking 100 m of uncompacted lenticular sedi-

ment (assuming 55% compaction) (Fig. 11B and
F), deposited over ca 400 ka (spanning E1a1–E1b2

marine bands; Waters & Condon, 2012), yields
an estimated ca 0�250 mm year�1 mean sedi-
ment accumulation rate (SAR; Fig. 3B).
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Assuming deposition over ca 1�8 Myr (using the
chronostratigraphy of Waters et al., 2011), an
uncompacted sediment thickness of 100 m (as-
suming 55% compaction), the Lower Bowland
Shale basinal high succession (P2 biozone)
described by Newport et al. (2018) exhibits a
SAR of ca 0�055 mm year�1. This compares with
ca 0�080 mm year�1 SAR calculated for an aver-
age Lower Bowland Shale thickness in the Lan-
caster Fells sub-basin (after subtraction of the
Pendleside Sandstone member; Brandon et al.,
1998). Similarly, SARs of 0�013 mm year�1 and
0�002 to 0�008 mm year�1 are estimated for the
contemporaneous Barnett Shale (Loucks & Rup-
pel, 2007) and North American Late Pennsylva-
nian Midcontinent Seaway cyclothems (Algeo
et al., 1997, 2008), respectively (Fig. 3B).
Attaining an appropriate estimate for SARs

across different settings is clearly problematic
and depends on an appropriate assignment and
understanding of sedimentary facies. Lenticular
mudstones are perhaps best interpreted as
deposits on a continuum of processes (e.g.
Rebesco et al., 2014) between mud densite (Tal-
ling et al., 2012) and (hemi)pelagite end-mem-
bers. Weakly to moderately lenticular ‘marine
band’ mudstones (Facies B and C) are domi-
nated by hemipelagic and pelagic components
and are therefore interpreted as (hemi)pelagites
with subordinate densite mud. Strongly lenticu-
lar mudstones (Facies F and G) are interpreted
primarily as mud densites mixed with subordi-
nate hemipelagite.
The estimated SAR calculated for the Bow-

land Shale is an order of magnitude higher than
the Barnett Shale. This cannot be explained
solely by different timespans (i.e. frequency of
hiatuses). Clearly the export of mud from the
Pendle delta system was large and relatively
fast, despite shielding by the Askrigg Block and
intrabasinal complexity. The SARs estimated for
the Bowland Shale and contemporaneous Mor-
ridge Formation are closest to the ‘deltaic’ med-
ian SAR (Fig 3B; after Sadler, 1999). This high
SAR is linked to the evidence for widespread
and sustained deposition both from bedload
and suspension. All other the organic-rich mud-
stone successions are closest to abyssal plain,
abyssal rise, continental slope and/or turbidite
fan median SARs (Fig. 3B). Considering that the
Bowland Shale is up to 500 to 700 m thick into
the deeper basin (Aitkenhead et al., 1992; Bran-
don et al., 1998; Kirby et al., 2000; Clarke et al.,
2018), a relatively large volume of sediment
likely also bypassed the studied sites. This is

consistent with the interpretation of deposition
of rip-up clasts by laminar flows, and passage of
hybrid flows with variable degrees of turbulence
damping. ‘Allogenic’ megaflutes in the Hind
Sandstone (Kane et al., 2009) also support this
interpretation.
The Bowland Shale is heterogeneous, with a

significant clay component, compared to the
Barnett Shale (Loucks & Ruppel, 2007). Whilst
the marine bands of the Upper Bowland Shale
are likely the most prospective horizons (high
TOC, carbonate and quartz cementation and
widespread occurrence; Jarvie et al., 2007), the
composition of each marine band varies consid-
erably depending on basin position and age.
Marine bands deposited during the early stages
of basin infill, within inherited rift structures,
are likely to be more complex than younger mar-
ine bands. Hybrid event beds exhibit lower TOC
but are compositionally varied, due to their
probable slope failure origin. Given the exten-
sive cementation in these units, hybrid event
beds may be considered prospective for uncon-
ventional hydrocarbon extraction. However, the
geometry of such deposits is likely to be com-
plex. Hind Clough is located in a relatively deep
and confined part of the basin (Fig. 2A; see also
Kane, 2010), which likely explains the relatively
abundant hybrid deposits.

CONCLUSIONS

The Bowland Shale is an organic-rich mudstone
that exhibits substantial compositional hetero-
geneity. Geochemical and sedimentological anal-
yses at the bed, hand specimen and thin section
scale from three localities in the Craven Basin
demonstrate:
1 The epicontinental Craven Basin was sup-
plied by three sediment provenances. Firstly,
detrital clay, coarse mud (silt) and sand sup-
plied via turbulent and hybrid flows, including
direct supply from the Pendle delta system;
secondly, clay-rich mud clasts scoured from
nearby mud-rich, potentially biostabilized
slopes; and finally, pelagic and hemipelagic
sediment, rich in clays, organic material (OM)
and carbonate.
2 A variety of laminar, turbulent and hybrid
flows developed during periods of reduced basin
accommodation and/or fault activity.
3 Lenticular fabrics indicate persistent deposi-
tion of mud clasts from bedload. Mud clasts are
interpreted as rip-up clasts, generated by bottom
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current scouring of partially consolidated mud.
Lenticular mudstones represent mixtures of
(hemi)pelagic and densite muds. Mud clasts
were potentially biostabilized by microbial mats.
The Pendle prodelta was likely the primary
source for these mud clasts, demonstrating the
far-reaching effects of the delta system.
4 Marine transgressions (‘marine bands’) pro-

moted pelagic and hemipelagic settling, includ-
ing fixation of abundant biogenic silica, and
diminished mud density flows.
5 Lack of bioturbation and benthic faunal tests

during the early phases of basin infill and in all
marine bands suggests that bottom waters were
at least intermittently anoxic.
6 Abundant organominerallic aggregates, silica

enrichment, phosphatic faecal pellets containing
radiolaria and pelagic macrofauna suggests that
the water column was productive.
7 Candidate in situ microbial mats, and as rip-

up clasts in a variety of down-dip hybrid event
beds, were potentially important consolidators
of mud and burial of OM.
8 The Bowland Shale accumulated an order of

magnitude faster than other epicontinental mud-
stones, such as the Barnett Shale, and the Lower
Bowland Shale unit.

Epicontinental basins remotely linked to delta
systems, such as the Craven Basin, were capable
of rapidly accumulating both sediment and OM.
This rapid accumulation has implications for
understanding the role of epicontinental sea-
ways as a carbon sink and the present day
hydrocarbon prospectivity of these mudstones.
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