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Radar image recognition is a hotspot in the field of remote sensing. Under the condition of sufficiently labeled samples, recognition
algorithms can achieve good classification results. However, labeled samples are scarce and costly to obtain. Our major interest
in this paper is how to use these unlabeled samples to improve the performance of a recognition algorithm in the case of limited
labeled samples. This is a semi-supervised learning problem. However, unlike the existing semi-supervised learning methods, we
do not use unlabeled samples directly and, instead, look for safe and reliable unlabeled samples before using them. In this paper, two
new semi-supervised learning methods are proposed: a semi-supervised learning method based on fast search and density peaks
(S2DP) and an iterative S2DP method (IS2DP). When the labeled samples satisfy a certain requirement, S2DP uses fast search and
a density peak clustering method to detect reliable unlabeled samples based on the weighted kernel Fisher discriminant analysis
(WKFDA). Then, a labeling method based on clustering information (LCI) is designed to label the unlabeled samples. When the
labeled samples are insufficient, IS2DP is used to iteratively search for reliable unlabeled samples for semi-supervision.Then, these
samples are added to the labeled samples to improve the recognition performance of S2DP. In the experiments, real radar images
are used to verify the performance of our proposed algorithm in dealing with the scarcity of the labeled samples. In addition,
our algorithm is compared against several semi-supervised deep learning methods with similar structures. Experimental results
demonstrate that the proposed algorithm has better stability than these methods.

1. Introduction

Radar image recognition is a popular research area in the field
of remote sensing [1–3]. With the development of imaging
technologies and the expansion of radar image data, the
requirement of real-time and accuracy of data processing
becomes higher and higher. Under the condition where the
number of the labeled samples is sufficient, a recognition
algorithm can generally achieve satisfactory classification
results with a strong sample representation ability [2, 4].
However, the labeled radar images are scarce compared to the
case of optical images, and the cost of labeling is also very
expensive. They can usually be interpreted by an experienced

expert [5, 6]. Therefore, it is unrealistic to obtain a large
number of labeled samples by manual annotation.

This paper focuses on how to use these unlabeled samples
to improve the performance of a recognition algorithm in
the case of limited labeled samples. This is a semi-supervised
learning problem. Currently, semi-supervised deep learning
achieves promising recognition performance, such as Lad-
der Network [7] and Temporal Ensembling [8]. However,
unlike those existing semi-supervised learning methods,
we do not use unlabeled samples directly and, instead,
look for safe and reliable unlabeled samples and then use
these unlabeled samples to enhance the performance of the
recognition algorithm. This is because the unlabeled radar
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images need to go through the detection stage in the process
of acquisition [9, 10]. These samples may deteriorate the
semi-supervised algorithms’ learning, especially when the
number of the labeled samples and that of the unlabeled
samples are somehow unbalanced. This will influence the
performance of the semi-supervised algorithm. The negative
effects of these unreliable and unlabeled samples on semi-
supervised algorithms are analyzed comprehensively in [11,
12]. Therefore, it is very important for a semi-supervised
algorithm to identify reliable unlabeled samples before we
learn unlabeled samples’ features.

Effective use of unlabeled samples is a new and inter-
esting topic for semi-supervised methods. These emerging
semi-supervised methods are mainly divided into two cate-
gories: semi-supervision based on integrated resources and
safe semi-supervision based on weights. Semi-supervised
methods, based on integration resources, usually combine
multiple semi-supervised models, comprehensively analyse
the predictions of unlabeled samples, and choose reliable
unlabeled samples to improve the recognition performance
of the system. For example, Li et al. [13] proposed the S3VM-
us method, which consists of a semi-supervised support
vector machine (S3VM) [14] and a standard support vector
machine (SVM) [15]. The confidence of unlabeled samples
is determined by both classifiers. If the evaluation results are
consistent, the unlabeled samples are identified. Li et al. [16]
also proposed a safe S3VM method (S4VM). We understand
that the S3VM is based on the low-density hypothesis in
order to detect a significant interval along the low-density
boundary from the feature space to identify unlabeled sam-
ples. Unlike S3VM, S4VM was based on the fact that there
may be more than one low-density boundary in the feature
space. This approach considers all the possible situations,
equivalently, integrating multiple S3VMs to pinpoint reliable
unlabeled samples. Wang et al. [17] proposed a safety-aware
semi-supervised method. It consists of a semi-supervised
model and a supervised model, which minimized the square
loss between the two models in order to detect reliable
unlabeled samples. Similar to [17], Gan et al. [18] proposed
a safe semi-supervised method which added a Laplace
regularization term to the square loss function to enhance
the reliability of unlabeled sample selection. Persello et al.
[19] proposed a progressive S3VMwith diversity (PS3VM-D)
method. On the basis of multiple confidence measurements,
reliable unlabeled samples were obtained by querying the
samples nearby the margin band.

Weight-based semi-supervisory is based on the fact that
the more unlabeled samples with similar weights to the label-
ed samples, the more reliable the system becomes. Therefore,
the influence of unreliable unlabeled samples on the algorith-
mic performance is suppressed by reducing their weights. For
example, [20] considered the unlabeled samples nearby the
classification plane and suppressed their influence on the sys-
tem performance by reducing their weights. In addition, [21–
23] controlled the weights by density estimation, weighted
likelihood maximization, and graph modelling.

The above semi-supervised methods use unlabeled sam-
ples to some extent, however, they also ignore the number of

the labeled samples. If the labeled samples are too few, the
performance of these algorithms is difficult to be guaranteed,
which will inevitably affect the evaluation of the reliability
of unlabeled samples. In addition, they lack investigating
variability and similarity between unlabeled and labeled
samples, whichmakes it difficult to understand the dynamics
and interaction of unlabeled samples.Therefore, in this paper,
two new semi-supervised learning methods are proposed: a
semi-supervised learning method based on fast search and
density peaks (S2DP) and an iterative S2DPmethod (IS2DP).

When the labeled samples satisfy a certain number, S2DP
is used directly to identify reliable unlabeled samples. For
one thing, it works with a new sample weighted kernel Fisher
discriminant analysis (WKFDA) supervision method. Using
the difference between the samples, the WKFDA method
extracts the features of the labeled samples to help formulate
the distribution of the unlabeled samples’ features, solving
the problem of mismatch between them. And for another,
it is combined with a clustering method: fast search and
determination of density peaks (DP) proposed by Rodriguez
and Laio in 2014 [24]. Then, unlabeled sample features are
further investigated so that the reliable unlabeled sample
features are identified. Finally, an unlabeled sample labeling
method based on clustering information (LCI) is designed to
retrieve the labels of the unlabeled sample features.

When the labeled samples are insufficient, IS2DP is used
to iteratively render reliable unlabeled samples. Since the
labeled and the unlabeled samples may be uneven in num-
bers, the unreliable unlabeled samples tend to deteriorate
the semi-supervised algorithm. The IS2DP first divides the
unlabeled learning set into different subsets according to
the size of the labeled sample set. This not only prevents
the deterioration of the semi-supervised algorithm by a
large number of unreliable samples but also speeds up the
processing of the semi-supervised algorithm.Then, the S3VM
is exploited to go through the semi-supervised samples which
may be away from the hyperplane of the S3VM as the reliable
semi-supervised samples are added to the labeled samples to
improve the performance of the semi-supervised algorithm.

The rest of this paper is organized as follows. Section 2
gives a brief review of the approaches involved. Section 3
describes the proposed method in detail. Section 4 presents
the experiments for the SAR images targets recognition. The
conclusion is drawn in Section 5.

2. Preliminary

2.1. DP Algorithm. Clustering by fast search and detection of
density peaks (DP)[24] can quickly realize accurate detection
and clustering of various shapes. Moreover, it is used to
evaluate each cluster membership so as to determine reliable
clustermembers.TheDP algorithm ismainly divided into the
following three steps.

(1) Determination of Cluster Centers. In the DP, it is assumed
that the cluster centers are surrounded by the neighbors
with the lower local density and they are at a relatively large
distance from any points with a higher local density. Based
on the above cluster center assumption, for each sample 𝑖, two
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quantities are calculated: the local density𝜌𝑖 of the sample and
the distance 𝜎𝑖 from a sample to the other with a high local
density. In the decision map with 𝜌𝑖 and 𝜎𝑖 as the horizontal
and vertical coordinates, respectively, their product is

𝛾𝑖 = 𝜌𝑖𝜎𝑖 (1)

where the sample point with the larger 𝛾𝑖 is more likely to be
the cluster center. Therefore, only 𝛾𝑖 is sorted in a descending
order, and several corresponding samples are selected as the
clustering center from the largest value.

(2) Clustering of Samples. After the clustering center has
been determined, all the samples are assigned to be the
nearest cluster centers. Compared with the other clustering
algorithms, DP clustering process is simple and does not
require iterative optimization of the loss function.

(3) Automated Evaluation of Cluster Members. In the clus-
tering results, it is important to quantitatively evaluate the
credibility of each sample cluster. The DP algorithm has
this capability, compared to other clustering algorithms. It
firstly defines a neighbourhood for each cluster. Then, the
maximum value 𝜌𝑏 of the local density of the samples is
found in each neighbourhood. Finally, in each cluster, all the
samples with local density greater than 𝜌𝑏 are considered as
the cluster core candidates, otherwise, they are considered
as the cluster halo of the cluster. The samples in the cluster
core are very similar to the central samples and belong to
reliable samples.The samples in the cluster halo have a certain
distance from the central sample, which is very likely to be
noise and belongs to unreliable samples. In addition, there
are some cross-clustering and isolated samples that are also
unreliable.

In summary, after having clustered by the DP, the samples
located at the cluster core are considered to be reliable cluster
samples, whilst the others are unreliable samples. Compared
to the conventional clustering algorithms, such as Clara [25]
or Fanny [26], the DP has lower computational complexity
and less computational time. It also well characterizes the
distribution of the samples and achieves more accurate
clustering results. Besides, the reliability of the clustering
results can be provided, which makes the DP easy to be
interactive with other algorithms. However, only considering
the distance between the sample points can insufficiently
characterize the data because it cannot accurately describe the
samples with small difference between two categories. When
the sample dimension is high, the distance matrix is large,
which can reduce the efficiency of the algorithm. Therefore,
choosing the appropriate feature extraction method is a key
in the DP.

2.2. 𝑆3𝑉𝑀Method. TheS3VMis the extension of the support
vector machine (SVM). A standard SVM is based on the
structural risk minimization to classify the learning set by
extracting the support vectors from the training set to find
the optimal hyperplane. In case of the binary SVM, given the

training set L and the testing set U, we have the following
constriction optimization problem:

min Φ(𝑤) = 1
2 (𝑤𝑇𝑤) +

𝑛

∑
𝑖=1

𝑐𝑖𝜉𝑖

𝑠.𝑡. y𝑖 [𝑤𝑇Φ (𝑥𝑖) + 𝑏] ≥ 1 − 𝜉𝑖,

𝜉𝑖 ≥ 0, i = 1, 2, ⋅ ⋅ ⋅ , n

(2)

where 𝑥𝑖 is the training sample and 𝑦𝑖 is the corresponding
label, (𝑥𝑖,𝑦𝑖)∈ L; Φ (⋅) maps the data into the feature space;
𝑤 is the orthogonal vector between 𝑥𝑖 and the hyperplane;
𝑏 is the bias to measure the distance between L and the
hyperplane; 𝜉𝑖 is the slack variable to represent the offset of 𝑥𝑖;
𝑐𝑖 is the cost factor tomeasure the weight between the optimal
hyperplane and the minimum offset; 𝑛 is the number of the
training samples.

For the S3VM, the iterative process is operated and
the semi-labeled samples (selected from U in the previous
step) are added to L. Their confidence is diverse in different
iterative steps and they are given different cost factors, leading
to the following function:

min Φ(𝑤) = 1
2 (𝑤𝑇𝑤) +

𝑛

∑
𝑖=1

𝑐𝑖𝜉𝑖 +
𝑚

∑
𝑖=1

𝑐𝑗𝜀𝑗

𝑠.𝑡. y𝑖 [𝑤𝑇Φ (𝑥𝑖) + 𝑏] ≥ 1 − 𝜉𝑖,

𝜉𝑖 ≥ 0, i = 1, 2, ⋅ ⋅ ⋅ , n
∧𝑦𝑗 [𝑤𝑇Φ( ∧𝑥𝑗) + 𝑏] ≥ 1 − 𝜀𝑗,

𝜀𝑗 ≥ 0, j = 1, 2, ⋅ ⋅ ⋅ ,m

(3)

where ∧𝑥𝑗 is the semi-labeled sample selected fromU, with the
slack variable (𝜀𝑗), cost factor (𝑐𝑗) and semi-label ( ∧𝑦𝑗 ) and 𝑚
is the number of the semi-labeled samples.

The S3VM can deal with the nonlinear problem using
the kernel methods and its semi-supervised samples with
the bigger 𝑐𝑗. But when the sample dimension is high, the
computation speedwould decrease.Therefore, the dimension
reduction and effective semi-supervised samples are the
critical aspects to the S3VM.

3. Proposed Methods

This paper presents two methods: S2DP and IS2DP. When
the labeled samples exceeds a certain number, S2DP directly
performs screening and classification of the reliable unlabeled
samples. When the labeled sample is insufficient, IS2DP is
used to continuously query reliable unlabeled samples and
generate necessary samples to be added to the labeled samples
in order to improve the recognition performance of S2DP.The
S2DP and IS2DP are described below, respectively.

3.1. 𝑆2𝐷𝑃. Figure 1 shows the flowchart of the proposed
S2DP. First, we use WKFDA to extract the labeled sample
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SDP: Semi-supervised Learning Method Based on Fast Search and Find of Density Peaks.
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Figure 1: Basic flowchart of the S2DP.

features to build a new space. New features are obtained by
projecting unlabeled samples into this new space. In this
space, the new feature distributions are as close as possible
between the intraclass features with a certain weight, and
the interclass features are as far apart as possible to enhance
the separability between the features. Secondly, the DP is
used to cluster the generated features. Finally, the unlabeled
samples are identified by the labeling method based on the
DP clustering information (LCI). In Figure 1,L represents
a set of the labeled samples, andU represents a set of the
unlabeled samples, which respectively generate features with
the labeled information (i.e., labeled features) and features
without labeled information (i.e., unlabeled features) after
going through WKFDA;C represents the clustering results of
the DP. The WKFDA and LCI methods are described in the
following section.

(1) WKFDA. Assume that 𝑋 represents all the samples of L
and the 𝑖th category𝑋

𝑖
= [𝑥1𝑖, 𝑥2𝑖, . . . , 𝑥𝑁𝑖

𝑖] is the subset of𝑋,
where𝑁𝑖 is the samples’ number of𝑋𝑖. 𝑣𝑖 = [V1𝑖, V2𝑖, . . . , V𝑁𝑖

𝑖]
is the sample weight vector of 𝑋

𝑖
. It is used to control

intraclass samples as close as possible with certain weights.
In case of the binary classification, it cannot simply

multiply the weight by the corresponding sample. Firstly, the
weight matrices 𝑉

𝑖
and𝐻

𝑖
are generated:

𝑉
𝑖
= diag (V1𝑖, V2𝑖, . . . , V𝑁𝑖

𝑖)
𝑁𝑖∗𝑁𝑖

𝐻
𝑖
= [𝑣
𝑖
, 𝑣
𝑖
, . . . , 𝑣

𝑖
]𝑁𝑖∗𝑁𝑖

(4)

Secondly, the weight vector and the weight matrix are
normalized using

𝑣
𝑖
= 𝑣

𝑖

𝑠𝑢𝑚 (𝑣
𝑖
)

𝑉
𝑖
= 𝑁𝑖𝑉𝑖

𝑠𝑢𝑚 (𝑉
𝑖
)

𝐻
𝑖
= 𝐻

𝑖

𝑠𝑢𝑚 (𝐻𝑖)

(5)

where 𝑠𝑢𝑚(⋅) represents the summation. The above weight
matrix can be used to measure the information of the sample
itself. Although 𝑉

𝑖
and𝐻

𝑖
are made up of 𝑣

𝑖
, their elements

are different.The sumof each column’s elements of𝐻
𝑖
is equal

to 1, and the trace of𝑉
𝑖
is equal to𝑁𝑖. Thirdly, the projection

direction 𝑤 is calculated by Equation (6):

𝑤 =
𝑁

∑
𝑗=1

𝑎𝑗Φ(𝑥𝑗) V𝑗 =
𝑁

∑
𝑗=1

𝑎𝑗V𝑗Φ(𝑥𝑗) =
𝑁

∑
𝑗=1

𝛽𝑗Φ(𝑥𝑗)

= Φ (𝑋)𝛽
(6)

where 𝛽𝑗 = 𝑎𝑗V𝑗. Φ(⋅) is nonlinear mapping that maps the
samples to a new feature space. In this new space, the sample’s
mean, before and after the projection has been made, can be
calculated by

𝑚
𝑖

𝜙 = 1
𝑁𝑖

𝑁𝑖

∑
𝑗=1

Φ(𝑥𝑖𝑗) V𝑖𝑗 =
1
𝑁𝑖

Φ (𝑋
𝑖
) 𝑣
𝑖

𝑤
𝑇
𝑚
𝑖

𝜙 = 1
𝑁𝑖

𝑁

∑
𝑗=1

𝑁𝑖

∑
𝑘=1

𝛽𝑗Φ(𝑥𝑗)Φ (𝑥𝑖𝑘) V𝑖𝑘 =
1
𝑁𝑖
𝛽
𝑇
𝐾𝑖𝑣𝑖

(7)

The interclass scatter matrix 𝑤𝑇𝑆𝜙𝑏𝑤 and intraclass scatter
matrix 𝑤𝑇𝑆𝜙𝑤𝑤, after the projection has been achieved, are
calculated by

𝑤
𝑇
𝑆
𝜙
𝑏𝑤 = 𝑤𝑇 (𝑚𝜙1 −𝑚2𝜙) (𝑚𝜙1 −𝑚2𝜙)

𝑇
𝑤

= 𝛽𝑇𝑀𝛽

𝑤
𝑇
𝑆
𝜙
𝑤𝑤

=
2

∑
𝑖=1

𝑁𝑖

∑
𝑗=1

𝑤
𝑇 [Φ (𝑥𝑖𝑗) V𝑖𝑗 −𝑚𝑖𝜙] [Φ (𝑥𝑖𝑗) V𝑖𝑗 −𝑚𝑖𝜙]

𝑇
𝑤

= 𝛽𝑇𝐺𝛽

(8)

where 𝑀 = (𝐾1𝑣1/𝑁1 − 𝐾2𝑣2/𝑁2)(𝐾1𝑣1/𝑁1 −
𝐾2𝑣2/𝑁2)Tand 𝐺 = ∑2𝑖=1𝐾1(𝑉𝑖 − 𝐻𝑖)(𝑉𝑖 − 𝐻𝑖)T𝐾𝑖𝑇.
In order to satisfy the requirements of the maximum
interclass interval and the minimum intraclass interval, this
goal can be expressed as follows:

max 𝐽 (𝑤) = 𝛽
𝑇𝑀𝛽

𝛽𝑇𝐺𝛽
(9)
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which is called the generalized Rayleigh quotient. Then 𝛽
can be calculated according to the flowchart of the KFDA by
solving the following optimization problem:

max 𝛽𝑇𝑀𝛽

𝑠.𝑡. 𝛽𝑇𝐺𝛽 = 𝑐 ̸= 0
(10)

where 𝑐 is the constant. By introducing the Lagrange mul-
tiplier, the function can be transformed to a Lagrange
unconstrained extremum problem:

𝐿 (𝑤, 𝜆) = 𝛽𝑇𝑀𝛽 − 𝜆 (𝛽𝑇𝐺𝛽 − 𝑐) (11)

Let 𝜕𝐿(𝑤, 𝜆)/𝜕𝛽 = 0, 𝜕(⋅) represent the partial derivative. This
function solution 𝛽 is the eigenvector of𝐺−1𝑀. Once solving
𝛽, for any sample 𝑥, its projection is

𝑦 = ⟨𝑤, Φ (𝑥)⟩ =
𝑁

∑
𝑖=1

𝑎𝑗V𝑗𝑘 (𝑥𝑖,𝑥) = 𝛽𝑇𝐾𝑥 (12)

where𝐾𝑥 is the kernel matrix of all the training samples and
𝑥.

Adding weights to KFDA algorithm is a common way
to improve the KFDA algorithm. The aim is to make the
WKFDA algorithm better learn sample features. However,
differentways of addingweightsmake theWKFDAalgorithm
focus on learning sample features differently. For example,
[27] added weights to each kernel function. The purpose
was to introduce the prior knowledge of samples to enhance
the learning of sample features in the WKFDA algorithm.
Reference [28] added weights to the within-class scatter
matrix. The purpose was to make the WKFDA algorithm
not only learn the features of different types of samples
but also learn the features of same types of samples in the
process of finding the best vector. Unlike these algorithms,
theWKFDA algorithm in this paper adds weights to samples,
and these weights can be calculated by using the similarity
or iterative difference of the samples. The purpose is to make
the intraclass samples close to a certain distance, so that the
WKFDA algorithm can not only suppress overfitting due to
the small number of labeled samples but also facilitate the
absorption of spectral information of samples to improve the
learning of sample features. Although the binary WKFDA
is shown, the multi-WKFDA can be obtained in accordance
with the promotion of the kernel Fisher discriminant analysis
(KFDA) [29].

(2) LCI. After the labeled sample setL and the unlabeled
sample setU have been extracted by the WKFDA method,
the labeled and unlabeled features are obtained. Next, the
labeled and unlabeled features go into the DP to produce a
clustering resultC. The clustering resultC includes features
such as cluster center, clustering core, clustering halo, and
cross-clustering, but is insufficient to determine the labels of
the unlabeled features. To solve this problem, we develop the
LCI by using the clustering results and labeling information of
the labeled features. LCI is able to label the clustering results
of the unlabeled features. Because the unlabeled features are

generated from the unlabeled samples, the unlabeled features
and the unlabeled samples share the same labels. The basic
flowchart of the LCI is shown in Figure 2.

We know that the features of clustering halo and cross-
clustering are unreliable. Therefore, in Figure 2, the inter-
ference features inC need to be cleared to ensure that the
subsequent unlabeled features are reliable. TheC clearing the
interference is processed separately according to whether
the labeled features are included in the cluster core. If there
are labeled features in a certain cluster core, the unlabeled
features of the cluster core are very similar to the labeled
features. These unlabeled features are regarded as the best
learning features, combined with the corresponding labeled
features, for training the S3VM. At this time, in each iteration
of the S3VM, the labeled features from the unlabeled features
are added to the next iteration to improve the robustness
of the S3VM algorithm. For the clustering cores which
do not contain any labeled feature, the cluster centers are
extracted and sent to the trained S3VM to obtain their labels.
Once the unlabeled cluster centers are labeled, the unlabeled
features of the corresponding clustering core will be assigned
the label. In this way, all the clustering cores’ features are
labeled, and the features that are not labeled are removed as
noise. Finally, the unlabeled samples corresponding to the
unlabeled features also have corresponding labels.

3.2. 𝐼𝑆2𝐷𝑃. When the number of the labeled samples is small
but reaches a certain amount, the S2DP uses the labeled fea-
tures to investigate the distribution of the unlabeled features
and also use the labeled features and the clustering result
of the DP to obtain reliable unlabeled samples. However,
when the number of the labeled samples is small, after the
DP clustering has been achieved, the labeled features are not
necessary in the cluster core, resulting in a low correlation
between the labeled and unlabeled features. At this time,
the labelled samples are difficult to represent the unlabeled
samples, and S2DP is no longer applicable. In this case, the
common solution is that the semi-labeled sample from the
unlabeled set is queried in order to increase the number of the
original labeled samples. In order to obtain the reliable semi-
labeled samples, the S2DP needs to be modified iteratively.

The iterative semi-supervised method of the S2DP,
namely, the IS2DP, is shown in Figure 3, whereU is the
unlabeled learning set to query the semi-labeled samples,L
is the labeled training set, 𝐿∗ is the semi-labeled samples set
in each iteration, 𝐿󸀠 represents the final labeled training set,
andT is the testing set.

The IS2DP specific process is described as follows. Firstly,
in each iteration,U is randomly divided into several sub-
sets (𝑈

1
,𝑈
2
, . . . ,𝑈

𝑛
), which are combined withL to obtain

(𝑈
1
,𝐿), (𝑈

2
,𝐿), . . ., (𝑈

𝑛
,𝐿) as the input of the S2DP. Secondly,

the cluster cores are selected from (𝑈
1
,𝑈
2
, . . . ,𝑈

𝑛
) after the

S2DP as the candidate semi-labeled samples, and their cluster
centers are added to the training set as the labeled samples
to train S3VM. For one thing, the number of the labeled
samples sets is increased. And for another, it ensures that the
labeled samplesmatch the unlabeled samples since the cluster
center represents the features of all the other samples in the
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(a) (b)

(c) (d)

Figure 4: Optical images of four types of targets and corresponding
SAR images: (a) T72, (b) BMP2, (c) BTR70, and (d) SLICY.

cluster core.Therefore, the robustness of the S3VMis ensured.
Thirdly, the semi-supervised sample 𝐿∗ of each iteration is
obtained by S3VM. Finally, it needs to determine whether or
not the iteration’s termination condition is met so that the
number of the iteration is greater than the threshold. If not,L
is updated,U is reduced, and the iteration process continues.
Otherwise, the final labeled training 𝐿󸀠 is undertaken to
classify the testing setT by the S2DP.

When the labeled sample is insufficient and necessary to
query the semi-supervised samples, the IS2DP can query the
reliable semi-supervised samples and classify the unlabeled
samples. In fact, the IS2DP is equivalent to the S2DP when
the labeled samples reach a certain number.

4. Experiments

Our experiments use the SAR images from the Moving
and Stationary Target Acquisition and Recognition (MSTAR)
database, cofounded by National Defense Research Planning
Bureau and the US Air Force Research Laboratory. The
military targets contained in the database are collected at 15∘
and 17∘ depression angles, covering 360∘ azimuth angles. To
display the intermediate experimental results in geometric
space and highlight the significance and effectiveness of our
method, the experiments in this paper use three types of

military targets and one type of interference targets, which
are T72, BMP2, BTR70, and SLICY. Of course, you can also
choose other targets. Among these three types of military
targets, BMP2 and T72 also contain different version variants.
These variants have the same design blueprint, but from
different manufacturers, they are slightly different in color
and shape.

The optical images of the T72, BMP2, BTR70, and SLICY
targets and the corresponding SAR images are shown in
Figure 4. From optical images, the difference between these
four types of targets is significant. However, the corre-
sponding SAR images are difficult to distinguish by human
vision due to speckle noise and similar spatial and spectral
characteristics. The original resolution of these SAR image
slices are 128∗128 and 45∗45. To facilitate the processing,
we only take the 32∗32 resolution that contains the target
and flatten these 2D images into one dimension. In order to
show the separability of these data, we perform covariance
operations on them in order to establish correlations between
two-dimensional features. Figure 5 shows the correlation and
box plot of the first 5-dimensional features. Figure 5(a) is
the correlation of two dimension features, and Figure 5(b)
is the corresponding box plot. In Figure 5(a), the lower left
corner part is the scatter plot of two-dimensional features,
and the upper right part is the correlation coefficient corre-
sponding to the two-dimensional features. 𝐶𝑜𝑟 represents the
total correlation coefficient of the relevant two-dimensional
features. Positive numbers indicate positive correlations and
negative numbers indicate negative correlations. The greater
the absolute value of these numbers, the more relevant the
features of the corresponding two dimensions. From the
correlation coefficient, 𝐶𝑜𝑟’s absolute value is small which
shows that the correlation is low, indicating that they are
independent of each other. From the scatter plot, we observe
that they are very similar, which increases the difficulty of
the recognition algorithm. In addition, from the box plot,
there are abnormal points in the upper and lower bounds of
the data. If these points are not removed in the learning set
features, the performance of the algorithm will be affected.

In order to evaluate the performance of the proposed
method, we design three sets of experiments: the evaluation
experiment of effectiveness, the evaluation experiment of
generalization ability, and the experiment compared with
the semi-supervised deep learning method. Among them,
the first set of the experiments will be carried out under
standard operating conditions (SOC), the latter two sets
under different extended operating conditions (EOC). The
SOC mean that the testing and the training conditions are
very similar. For example, the target types of the training,
the learning, and the test sets are the same. On the basis of
SOC, the gap between the training and testing conditions
is gradually extended to form different EOC. For example,
the target types of training set, learning set, and test set
are different variants. Even the learning set contains other
interfering targets. Compared with SOC, EOC significantly
increases the recognition difficulty of the algorithm. We will
set up one SOC and two EOCs (EOC 1 and EOC 2) to
carry out the above three sets of experiments. The specific
configuration of these conditions is as follows.
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Figure 5: The correlation between the first 5-dimensional features after flattening SAR images of T72, BMP2, BTR70 and SLICY.
(a)Correlation between every two dimensions and (b) box plot.

(1) Data Configuration of the SOC. Table 1 shows the data
configuration of SOC. It contains two sets of data: data and
test sets. The data set is used for the algorithm training.
According to the label of the samples, the data set is divided
into the labeled and unlabeled samples. The labeled samples,
also known as the training set, have a number ranging from
3 to 40 per class. The unlabeled samples, also known as
the learning set, have 190 samples per class. Regardless of
the training or learning set, their target depression angle is
17∘. The testing set is used for algorithm testing. Its target
depression angle is 15∘. Regardless of data or test set, we use
the same variants of the targets, that is, T72 series sn 132
tanks, BMP2 series sn c21 armored vehicles, and BTR70
series sn c71 armored vehicles.Wewill verify the effectiveness
of the S2DP and IS2DP under these conditions in Section 4.1,
including their core components (LCI and WKFDA).

(2) Data Configuration of the EOC 1. Table 2 shows the data
configuration of EOC 1. InTable 2, the training set is the same
as that of Table 1. And the testing set is not the same version
variants as the training set and the learning set. For example,
the T72 is the sn s7 version in the test, but it is the sn 132
and sn 812 versions in the training and the learning sets,
respectively. These conditions will help increase the recogni-
tion difficulty of the algorithm. Other conditions shown in
Table 2, such as the number of data sets, the depression angle
of data sets, and the depression angle of the test set, are the
same as those shown inTable 1 and are not described here.We
will verify the generalization ability of the S2DP and IS2DP
under these conditions presented in Section 4.2.

(3) Data Configuration of the EOC 2. Table 3 shows the
data configuration of EOC 2. It is formed by adding the
interference target SLICY to the learning set of Table 2,
further increasing the recognition difficulty of the algorithm.
To highlight the advantages of the proposed algorithm, we
will compare the S2DP based IS2DP algorithm with the
semi-supervised depth learning method under EOC 2 in
Section 4.3.

4.1. Effectiveness Evaluation Experiment

4.1.1. The Effectiveness of the WKFDA Feature Extraction. To
verify the effectiveness of the WKFDA feature extraction,
it is compared with the KFDA, kernel local linear dis-
criminant analysis (KLFDA) [30], semi-supervised KLFDA
(Semi-KLFDA) [31] and kernel principal component analysis
(KPCA) [32]. After these algorithms have extracted features,
they all use the standard SVM as the final classifier. The
experimental data configuration is shown in Table 1, and
with the change of the number of the labeled samples, the
overall accuracy rates (OA) of differentmethods are obtained,
as shown in Figure 6. The horizontal axis represents the
number of each type of target labeled samples corresponding
to different experiments and the vertical axis represents the
overall accuracy rate.

In Figure 6, the classification accuracy difference between
the different algorithms is very clear. The WKFDA and
KFDA both show higher accuracy, followed by the KLFDA
and Semi-KLFDA, and finally KPCA. For the WKFDA and
KFDA, when the number of the labeled samples is less than
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Table 1: Data configuration of the SOC.

Data set Testing set
Training set (Labeled samples) Learning set (Unlabeled samples)

Target T72 BMP2 BTR70 T72 BMP2 BTR70 T72 BMP2 BTR70
Type sn 132 sn c21 sn c71 sn 132 sn c21 sn c71 sn 132 sn c21 sn c71
Quantity 3∼40 3∼40 3∼40 190 190 190 196 195 196
Depression 17∘ 17∘ 15∘

Table 2: Data configuration of the EOC 1.

Data set Testing set
Training set (Labeled samples) Learning set (Unlabeled samples)

Target T72 BMP2 BTR70 T72 BMP2 BTR70 T72 BMP2 BTR70
Type sn 132 sn c21 sn c71 sn 812 sn 9566 sn c71 sn s7 sn 9563 sn c71
Quantity 3∼40 3∼40 3∼40 190 190 190 196 195 196
Depression 17∘ 17∘ 15∘

Table 3: Data configuration of the EOC 2.

Data set Testing set
Training set (Labeled samples) Learning set (Unlabeled samples)

Target T72 BMP2 BTR70 T72 BMP2 BTR70 SLICY T72 BMP2 BTR70
Type sn 132 sn c21 sn c71 sn 812 sn 9566 sn c71 — sn s7 sn 9563 sn c71
Quantity 3∼40 3∼40 3∼40 190 190 190 190 196 195 196
Depression 17∘ 17∘ 15∘
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Figure 6: The OA trend chart of different feature extraction
algorithms with the number of labeled samples changes in SOC
experiment. Here, these feature extraction algorithms use SVM as
classifier.

24, the WKFDA’s classification results are better than the
KFDA. When the number of the labeled samples is greater
than 24, their classification results are almost the same. It
shows that KFDA and WKFDA have good feature extraction
capabilities, while the WKFDA is suitable for dealing with a
small quantities of labeled samples. For the KFDA and Semi-
KLFDA, when the number of the labeled samples is less than
20, the Semi-KLFDA’s classification results are better than the
KFDA. When the number of labeled samples is greater than

20, their classification results are almost the same. For the
KPCA, as the number of the labeled samples increases, its
classification results are always poor.

In order to understand the above experimental results, we
take a close look at the projections of the learning samples
under the condition that the same number of the labeled
samples is taken. Figures 7(a), 7(b), 7(c), 7(d), and 7(e) shows
the projection of the learning set for KPCA, KLFDA, Semi-
KLFDA, KFDA, and WKFDA algorithms respectively when
the number of the labeled samples is 20. As can be seen from
Figure 7, the projection result shown in (e) is the best, where
we can classify the three targets, second best is (d) and then
(c), (b), and (a). The quality of the projection results mainly
depends on whether or not the feature extraction algorithm
can effectively extract features from the SAR images.

For the KPCA algorithm, it only reduces the original
features of the SAR images. As the number of the labeled
samples increases, the classification accuracy of the KPCA
features continues to increase. The original features of the
SAR images are difficult to identify. Therefore, the classifica-
tion accuracy of SVM based on the KPCA features is poor,
shown in Figure 7(a).

For the KLFDA and Semi-KLFDA algorithms, they take
advantage of the difference between the sample classes and
extract features that are easily identifiable from the SAR
images to certain extent. Therefore, their projection looks
better than the KPCA algorithm. However, in the case
where the overall features are not separable, the KLFDA and
Semi-KLFDA algorithms overemphasize the local features,
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Figure 7: The projections of the learning set for KLFDA, Semi-KLFDA, and KPCA, respectively, when the number of the labeled samples is
20. (a)KPCA; (b)KLFDA; (c)Semi-KLFDA; (d)KFDA; (e)WKFDA.

resulting in more confusing clutters in the projection space.
This is observed from Figures 7(b) and 7(c).

For the KFDA and WKFDA algorithms, both of them
well use the difference between different classes and the sim-
ilarities in the same classes. Therefore, the projections shown
in Figures 7(d) and 7(e) are better than those of the other
methods. We know that the KFDA and WKFDA algorithms
are supervised algorithms which guide the projection of the
unlabeled sample features based on the features of the labeled
samples. Therefore, whether or not these algorithms are good
at learning the labeled sample features will affect the quality of
the projection of the unlabeled sample features. In the process
of the labeled sample feature learning, the KFDA algorithm
forces the interclass samples to be as far apart as possible
in addition to forcing the samples intraclasses to be as close
as possible. At the same time, it may cause the algorithm to
overfit and is difficult to guide the unlabeled sample features
to be projected onto the optimal direction. The WKFDA
algorithm is able to give the samples different weights so that
the intraclass samples are close to each other with a certain
weight. This can balance the concentration characteristics
of the samples (the intraclass samples aggregate with each
other and have a certain spatial structure) and can fully
utilise the spectral information of the samples and reduces
the algorithm’s overfitting. Therefore, the results shown in
Figure 7(e) seem better than those of Figure 7(d).

To further explore the impact of weighting on the
WKFDA algorithm, taking the same labeled samples, Figure
8 shows the results of the KFDA and WKFDA algorithms
for learning the features of the labeled samples. Figure 8(a)
shows the KFDA features. Although the interclass distance
is significant, the intraclass samples are concentrated, almost
grouping to a point, which is easy to cause overfitting of the
algorithm. Figure 8(b) shows the WKFDA features. Under
the condition that the interclasses is separable, the intraclass
distance is relatively large, which is easy to learn the sample
information and suppress the overfitting of the algorithm.
Here, Figure 8(b) also shows that different weights can result
in different intraclass distance. Compared with the weight of
100, the intraclass sample space is larger when the weight is
50, and the interclasses can be well spaced, which makes it
easier to learn sample information.

4.1.2. The Effectiveness of the LCI for Labeling Unlabeled
Samples. To verify the effectiveness of the LCI for label-
ing unlabeled samples, using the WKFDA features of the
Section 4.1.1 experiments, LCI is comparedwith the SVMand
S3VM classifiers under the DP clustering conditions. Using
Table 1 as the experimental data, the same number of the
labeled samples is selected from each type of targets in the
training set. With the change of the number of the labeled
samples, the OA trend chart of three methods is obtained, as
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Figure 8: The projection of the KFDA and WKFDA with the same
number of the labeled samples. (a)KFDA and (b)WKFDA.

shown in Figure 9.The horizontal axis represents the number
of each type of the labeled target samples corresponding to
different experiments, and the vertical axis represents the
overall accuracy rate. As can be seen from Figure 9, the
accuracy of LCI and S3VM is better than SVM. With more
and more labeled samples, the accuracy of LCI and S3VM is
almost the same.

We know that the SVM, as a supervised learning method,
requires a large number of labeled samples. Because the DP
algorithm cannot provide enough labeled samples for the
SVM, the SVM classification results are poor. For S3VM and
LCI, as a semi-supervised method, when the DP clustering
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Figure 9: The OA trend chart of the LCI, S3VM, and SVM
algorithms as the number of labeled samples changes in the SOC
experiment.

(a)
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Figure 10:The clustering results of DP on the learning set when the
number of the labeled samples is 21. (a) Red circle, green circle, and
blue circle are the cluster centers selected by theDP; (b)the clustering
results of the DP. ∙ are the cluster cores, ∘ are clustered halos, and ⊗
are clustering error samples.

outcome is reliable, they collect enough labeled samples to
improve the recognition performance. Figure 10 shows the
clustering results of the DP on the learning set when the
number of the labeled samples is 21. In Figure 10(a), red circle,
green circle, and blue circle are the cluster centers selected
by the DP. The DP algorithm recommends that the learning
set be divided into 3 categories, which is consistent with the
actual situation. Figure 10(b) shows the clustering results of
the DP. ∙ are the cluster cores, ∘ are clustered halos, and ⊗
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Figure 11: The OA trend chart of the S2DP, semi-supervised Clara, and semi-supervised Fanny with the number of labeled samples changes
in SOC experiment.

are clustering errors. From Figure 10(b), the DP clustering
has only minor errors and the result is quite accurate, further
demonstrating that the recognition accuracy of the S3VMand
LCI is equivalent. In addition, these errors are located in the
cluster halos. In the LCI algorithm, the cluster halos and the
cross-clustering samples will be deleted to ensure that the
final labeled samples are reliable. Therefore, compared to the
S3VM, the LCI recognition results are more consistent.

4.1.3. Verifying the Recognition Performance of 𝑆2𝐷𝑃. In
order to verify the recognition performance of S2DP, S2DP
is compared with its similar semi-supervised methods. These
similar semi-supervised methods are the semi-supervised
algorithms that replace DP in S2DP with other classical clus-
tering algorithms: Clara [25] and Fanny [26], namely, semi-
supervised Clara and semi-supervised Fanny. The experi-
mental data configuration is shown in Table 1. With the
changing numbers of the labeled samples, the OA trend chart
of three methods is obtained, as shown in Figure 11. The
horizontal axis represents the number of each type of labeled
target samples corresponding to different experiments, and
the vertical axis represents the overall accuracy rate.

By comparing the S2DP with the semi-supervised Clara
and semi-supervised Fanny, the classification results of the
different methods are greatly influenced by the number of
the labeled samples. When the number of the labeled samples
is less than 24, the overall accuracy of the three methods
is continuously improved with the increase of the labeled
samples. For the curve smoothness, the curve of the S2DP
looks consistent over the curves of the other two methods.
When the number of the labeled samples reaches 15, the
recognition accuracy of S2DP is higher than that of the
other two methods. When the number of the labeled samples
reaches 24, the three methods have the same recognition
accuracy and the curve trend is stable, but the S2DP is still
better than the other two methods. Therefore, the S2DP is
superior to the other two algorithms in terms of stability and
classification accuracy.

When the labeled samples are very few, the DP clustering
results of S2DP are too divergent to represent the unlabeled
samples. Only few labeled samples are generated from the
cluster core samples. In the end, the classification accuracy
of the S2DP will not be high. As the number of the labeled
samples increases, more and more labeled samples are gen-
erated by the cluster cores, which are also quite reliable. The
S2DP classification accuracy is greatly improved. The other
two methods are similar. However, as the number of the
labeled samples increases, it is difficult for semi-supervised
Clara and semi-supervised Fanny to guarantee the reliability
of the labeled samples from the unlabeled samples during the
clustering process. Therefore, their stability is not as good as
that of S2DP. Figure 12 shows the three algorithms generate
labeled samples from the learning set when the number of the
labeled samples is 21. ⊗ are clustering errors. Obviously, the
labeled samples generated by the S2DP algorithm are more
reliable than the other two methods.

The Sections 4.1.1–4.1.3 experimental results show the
relationship between the number of the labeled samples and
the S2DP, verifying the validity of the WKFDA, LCI, and
DP as the key step in the S2DP. It shows that the S2DP,
compared with the other two methods, can achieve the best
classification result when the initial labeled samples reach a
certain number. But when the labeled samples are too few, its
classification precision decreases. Therefore, the ability of the
modified IS2DP to query semi-supervised samples needs to
be verified.

4.1.4. Verifying the 𝐼𝑆2𝐷𝑃 in Ability to Query the Semi-
Labeled Samples. When the labeled samples are few, the
IS2DP can select the semi-labeled samples from the unlabeled
samples as the labeled samples. In the Section 1, we know that
PS3VM-D is also a semi-supervised method, which considers
reliable incremental samples as semi-supervised samples
by sample similarity. Therefore, PS3VM-D is selected as a
comparative semi-supervised algorithm. They are all based
on the extracted features by WKFDA.The experimental data
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Figure 12: The semi-supervised Clara, semi-supervised Fanny, and
S2DP generate reliable labeled samples from the learning set when
the number of the labeled samples is 21. ⊗ are clustering errors. (a)
The Clara clustering results; (b) the Fanny clustering results; (c) the
DP cluster cores.

configuration is shown in Table 1. With the change of the
number of the labeled samples, the OA trend chart of two
methods is obtained, as shown in Figure 13. The horizontal
axis represents the number of each type of the labeled
target samples corresponding to different experiments and
the vertical axis represents the overall accuracy rate.

When the number of the labeled samples is less than 25,
the classification accuracy of PS3VM-D is obviously lower
than that of IS2DP, indicating that IS2DP is more suitable for
the case of too few labeled samples. When the number of the
labeled samples is more than 25, the IS2DP and PS3VM-D
have the same accuracy. It shows that the PS3VM-D also gets
enough labeled sample information, and the classification
accuracy is improved.

We know that the core of PS3VM-D is SVM.The optimal
classification surface of PS3VM-D is mainly influenced by
SVM. The PS3VM-D relies heavily on the labeled samples.
It needs enough quantity to obtain a universal classification
surface. Therefore, its classification performance varies sig-
nificantly with the number of labeled samples and cannot
remain stable until the labeled samples are sufficient. The
classification performance of the IS2DP is largely determined
by the DP and WKFDA, which makes the IS2DPmore stable
and accurate when the labeled samples are very few due to the
sample description ability of the DP and the effective use of
the labeled samples by the WKFDA.

4.2. Evaluation of Generalization Ability. The following will
verify the generalization capabilities of S2DP and IS2DP
under the EOC 1.

4.2.1. Verifying the 𝑆2𝐷𝑃 Generalization Capabilities. In Sec-
tion 4.1.2, the comparison between LCI and S3VM algorithm
is actually the comparison of S2DP with S3VM based on
WKFDA and DP (WKFDA+DP+S3VM). The recognition
accuracy of S2DP and WKFDA+DP+S3VM is equivalent
in the SOC experiments. Here, we continue to compare
the S2DP and WKFDA+DP+S3VM. The experimental data
configuration is shown in Table 2. With the change of the
number of labeled samples, the OA trend chart of two
methods is obtained, as shown in Figure 14. The horizontal
axis represents the number of each type of the labeled target
samples corresponding to different experiments, and the
vertical axis represents the overall accuracy rate.

In Figure 14, the recognition accuracy of S2DP and
WKFDA+DP+S3VM algorithms increases with the increas-
ing number of the labeled samples, and their final accuracy
is equivalent. However, the curve of the S2DP is relatively
smooth. This shows that our method is stable and robust.

To verify this conclusion, we perform visual analysis of
the key steps of the two methods, when the number of
samples is 21. Figure 15(a) shows the features of the training
and learning sets after the WKFDA processing. ∙ represents
the learning samples and ∗ represents the initial labeled
sample. Figure 15(b) is the actual classification map of the
WKFDA features after the DP clustering has been achieved. ∙
represents the clustering core and ∘ represents the clustering
halo. Figure 15(c) is the true classificationmap of Figure 15(b).
∙ represents the clustering core, ⊗ represents the clustering
error sample, and ? represents the sample of the next step
of the algorithm to be identified. As can be seen from
Figure 15(a), the three types of targets are more confused
at the boundary, which means that, in the future, they will
affect the performance of the recognition algorithm if these
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Figure 13: The OA trend chart of the IS2DP and PS3VM-D as the number of the labeled samples changes in the SOC experiment.
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Figure 14: The OA trend chart of the S2DP andWKFDA+DP+S3VM as the number of labeled samples changes in the EOC 1 experiment.

samples are not cleared. As can be seen from Figure 15(b),
the DP algorithm divides theWKFDA features into 5 clusters.
Among these 5 clusters, clusters 1 and 3 have cluster haloes,
and clusters 2, 4, and 5 are all clustered cores. As can be seen
from Figure 15(c), the initial labeled samples ( ∗ samples) are
not included in clusters 4 and 5 and, therefore, the samples of
clusters 4 and 5 need to wait for the next step of the algorithm
to identify and label. Clusters 1, 2, and 3 contain initial labeled
samples (∗ samples), so they get the same label as the initial
labeled sample. In the clustering halos of clusters 1 and 3, there
are many clustering error samples (⊗ samples) caused by the
confused samples shown in Figure 15(a). This means that, in
the future, they will affect the performance of the recognition
algorithm if these ⊗ samples are not cleared.

For the WKFDA+DP+S3VM algorithm, in the S3VM
training process, for one thing, the S3VM cannot clear the ⊗
samples in Figure 15(c). And for another, for the ? samples in
Figure 15(c), the S3VM can only identify them by traversing
the samples. Therefore, the WKFDA+DP+S3VM algorithm
is unstable and inefficient. For the S2DP algorithm, once the

features of Figure 15(c) are input into the LCI, the LCI algo-
rithm removes the unreliable features such as the clustering
halos and cross-clustering features and makes full use of the
cluster cores as reliable samples. Once the labeled samples are
included in the cluster core, the other unlabeled samples are
labeledwith the labels of the labeled samples. For cluster cores
that do not contain labeled samples, only the clustering center
is identified, and the label of the whole cluster core can be
obtained, which greatly improves the recognition efficiency.
Figure 16 is a sequence diagram showing the recognition of
the DP clustering result of Figure 15(b) by the LCI in the
S2DP algorithm. Figure 16(a) is the visualization of the DP
clustering results after removing the interference samples.
Figure 16(b) is the result diagram of LCI’s final recognition
of the DP clustering. As can be seen from Figure 16(a), both
the confusing sample in Figure 15(a) and the ⊗ sample in
Figure 15(c) are removed, greatly improving the reliability
of sample identification. As can be seen from Figure 16(b),
clusters 4 and 5 are correctly identified, and at the same
time, only 5 samples with incorrect identification are in the
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Figure 15: In EOC 1 experiment, the visualization results of the first
two steps of the S2DP and WKFDA+DP+S3VM algorithms when
the number of the samples is 21. (a) WKFDA features: ∙ represents
the learning set and ∗ represents the initial labeled samples; (b)
actual classification map of WKFDA features after DP clustering
has been carried: ∙ represents the clustering core and ∘ represents
the clustering halo; (c) true classification map of (b): ∙ represents
the clustering core, ⊗ represents the clustering error sample, and
? represents the sample of the next step of the algorithm to be
identified.

expanded labeled samples.Thus, S2DP is quite reliable. In this
way, the above conclusions are verified.

4.2.2. Verifying the 𝐼𝑆2𝐷𝑃 Generalization Capabilities. In
Section 4.2.1, the S2DP is relatively stable, but its recognition
accuracy is relatively low when the number of the labeled
samples is less than 21. Therefore, the IS2DP is required to
generate a large number of the labeled samples to improve

BMP2
BTR70
T72

(a)

BMP2
BTR70
T72

(b)

Figure 16: The sequence diagram of the LCI algorithm for identi-
fying DP clustering results in Figure 15(b). (a) Visualization of DP
clustering results after removing the interference samples; (b) LCI’s
final recognition visualization of DP clustering. ∙ represents the
clustering core; ∗ represents the initial labeled sample; ? represents
the sample of the next step of the algorithm to be identified; ⊗
represents the sample for labeling errors.

the recognition accuracy of S2DP. Here, we compare the
IS2DP+S2DP and S2DP.The experimental data configuration
is shown in Table 2 with the change of the number of
the labeled samples, and the OA trend chart of the two
methods is obtained, as shown in Figure 17. The horizontal
axis represents the number of each type of target labeled
samples corresponding to different experiments; the vertical
axis represents the overall accuracy rate.

From Figure 17, we can see that when the number of the
labeled samples is less than 21, the recognition performance
of IS2DP+S2DP is 10% higher than that of S2DP. With the
number of labeled samples larger than 21, their classification
accuracy is equivalent. To verify this conclusion, we apply 100
iterations onto IS2DP when the number of labeled samples
is 15. The labeled samples generated by IS2DP are counted,
as shown in Table 4. The accuracy rate of labeled samples
generated from learning set is over 85%.
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Figure 17: The OA trend charts of the IS2DP+S2DP and S2DP with the number of labeled samples changes in EOC 1 experiment.
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Figure 18:TheOA trend charts of the IS2DP+S2DP, Ladder Network, and Temporal Ensembling with the number of labeled samples changes
in EOC 2 experiment.

4.3. Comparison with Semi-Supervised Deep Learning. The
semi-supervised deep learning algorithms, Ladder Network
[7] andTemporal Ensembling [8], which contain a supervised
and unsupervised learning process, similar to our algorithm.
Therefore, we choose these two methods to compare with the
IS2DP-based S2DP algorithm (IS2DP+S2DP). In addition to
using SAR images as experimental data, we also use a set of
publicly available optical image data to verify the effectiveness
of our algorithm.

4.3.1. Testing with SAR Images. The experimental data con-
figuration is shown in Table 3, and with the change of the
number of the labeled samples, the OA trend chart of three
methods is obtained, as shown in Figure 18. The horizontal
axis represents the number of each type of labeled target
samples corresponding to different experiments, and the
vertical axis represents the overall accuracy rate.

In Figure 18, the recognition accuracy of the three meth-
ods is increasing with the increase of the labeled samples.
From the curve smoothing, the accuracy curves of the Ladder

Network and the Temporal Ensembling are fluctuating,
especially the Temporal Ensembling. Comparing them, the
accuracy curve of the IS2DP+S2DP is relatively consistent.
From the classification accuracy, when the number of the
labeled samples is less than 33, the results obtained by
Ladder Network and Temporal Ensembling are not much
different, but significantly lower than that of IS2DP+S2DP.
When the number of the labeled samples reaches 33, the
classification accuracy of IS2DP+S2DP is slightly better than
that of Ladder Network. These results indicate that the
learning set containing the interference samples has a great
influence on the recognition performance of the Ladder
Network and Temporal Ensembling. Because the Ladder
Network and Temporal Ensembling were unable to remove
these interference samples during the training process, their
recognition accuracy was unstable and not high. Different
from them, the IS2DP+S2DP can select reliable unlabeled
samples and remove those interference samples, so its recog-
nition performance is relatively stable and the accuracy is
improved. When the number of the labeled samples is equal
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Table 4: The IS2DP generates labeled samples from the learning set when the number of labeled samples is 15 in EOC 1 experiment.

Target Learning set Generate labeled samples Reject Accuracy of each type of target(%)
Correct Error

T72 190 167 11 12 87.89
BMP2 190 163 13 14 85.79
BTR70 190 172 8 10 90.53
Overall accuracy 88.07

Table 5: Under EOC 2, when labeled samples number 21, recognition results (confusion matrix) of the learning set by trained Temporal
Ensembling.

T72 BMP2 BTR70 Accuracy of each type of target(%)
T72 65 3 122 34.21
BMP2 0 174 16 91.58
BTR70 0 0 190 100
SLICY 0 0 190 0
Overall accuracy 56.45

to 21, we will analyze the use of the learning set by the three
methods below.

In the Temporal Ensembling algorithm, one neutral
network conducts two different works, supervised learning
and unsupervised learning. Figures 19(a)–19(c), respectively,
show losses in these two processes and in the whole method.
Observed from the curve fluctuation, supervised learning
loss in Figure 19(a) is the most stable while unsupervised
learning in Figure 19(b) fluctuates significantly. It demon-
strates that neural network performs well in learning labeled
samples, but is still unstable to handle the learning set, thus
resulting in unstable overall loss as shown in Figure 19(c).
Finally, the Temporal Ensembling algorithm utilizes the
learning set by 56.45% only, which is calculated based on
the trained neutral network’s recognition of the learning
set. Recognition results of the learning set by the Temporal
Ensembling algorithm is displayed in Table 5 (confusion
matrix). Observed from the confusion matrix, the remaining
43.55% disturbs the learning process, for instance, by misrec-
ognizing SLICY as BTR70 targets.

Similar to temporal ensembling algorithm, the neu-
tral network in the Ladder Network algorithm consists
of supervised learning and unsupervised learning as well.
Figures 20(a)–20(c), respectively, show losses in these two
processes and by the whole method. Observed from the
curve fluctuation shown in Figure 20(a), supervised learning
loss significantly fluctuates, probably because of inadequate
labeled samples; in Figure 20(b), unsupervised learning per-
forms stably, probably resulting from unsupervised learning
(Autoencoder) embedded in the Ladder Network algorithm
which could learn and recognize unlabeled samples and
reduce certain interference. Thus, the overall loss shown in
Figure 20(c) performs stably.Therefore, comparingwith tem-
poral ensembling, Ladder Network improves the utilization
of the learning set to 68.42% (as shown in Table 6 confusion
matrix), enhancing its recognition performance as well.

Differing from temporal ensembling and ladder network,
the IS2DP+S2DP algorithm identifies reliable unlabeled sam-
ples by iterations before implementing feature learning,
instead of directly learning features from the unlabeled
samples. Here we employ 300 iterations on the IS2DP+S2DP
algorithm for fair comparison. Figures 21(a)–21(c) show the
screening of the reliable samples in the learning set during
one iteration: (a) projection of the WKFDA algorithm on
the learning set; (b) DP clustering result; (c) reliable samples
labeled by LCI. In Figure 21, red circle, green circle, light
blue circle, and blue circle represent BMP2, BTR70, T72,
and SLICY target samples, respectively, and ∗ represents the
labeled samples. Confused by SLICY interference targets, the
WKFDA algorithm has some issue in projecting the learning
set but performs well in dividing different samples during
the DP clustering, and successfully identify SLICY during
the LCI labeling process. Finally, IS2DP+S2DP improves the
utilization of the learning set to 82.76% (as shown in Table 7).
As 28.95% unreliable sample rejecting recognition will be
deleted, only 10% false samples affects the performance; thus
IS2DP+S2DP’s recognition performance can be improved.

4.3.2. Testing with Optical Images. To verify the effectiveness
of the proposed method on other data sets, we use optical
image data to test IS2DP+S2DP. These optical image data
come from somepublicly available databases, and the detailed
data configuration is shown in Table 8. The images of cats
and dogs are from the database of the Kaggle competition
platform [33]; the images of panda are from the ImageNet
database [34]; the images of airplanes, motorbike, and faces
are from the caltech101 database [35].

In Table 8, we set more stringent conditions than EOC 2
for SAR images, which is closer to the reality. Specifically,
our interested targets are cats, dogs and panda. However, our
learning set contains not only unlabeled interested targets,
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Table 6: Under EOC 2, when the labeled samples’ number is 21, the recognition results (confusion matrix) of the learning set by the trained
ladder network.

T72 BMP2 BTR70 Accuracy of each type of target(%)
T72 166 10 4 87.37
BMP2 12 178 0 93.68
BTR70 2 12 176 92.63
SLICY 67 53 70 0
Overall accuracy 68.42

Table 7: Under EOC 2, when labeled samples number 21, recognition results of the learning set by IS2DP+S2DP after 300 iterations.

Target Learning set Generate labeled samples Reject Accuracy of each type of target(%)
Correct Error

T72 190 155 12 23 81.58
BMP2 190 162 17 11 85.26
BTR70 190 147 22 21 77.37
SLICY 190 — 25 165 86.84
Overall accuracy 82.76

(a)

(b)

(c)

Figure 19: Under EOC 2, when labeled samples number 21, Tempo-
ral Ensembling losses during training: (a) supervised learning loss;
(b)unsupervised learning loss; (c) overall loss.

(a)

(b)

(c)

Figure 20: Under EOC 2, when labeled samples number 21, Ladder
Network losses during training: (a) supervised learning loss; (b)
unsupervised method loss; (c) overall loss.
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Figure 21: Under EOC 2, when the labeled samples number is 21, IS2DP+S2DP’s outcomes of the learning set: (a) WKFDA’s projection of
the learning set; (b) DP clustering result; (c) reliable samples selected and labeled by LCI. Red circle, green circle, light blue, and blue circle
represent BMP2, BTR70, T72, and SLICY target samples, respectively, and ∗ represents labeled sample.

but also other 3 types of interference targets (airplanes,
motorbike, and faces) with the same number of unlabeled
interested targets. Under such conditions, the Ladder Net-
work, Temporal Ensembling, and IS2DP+S2DP are tested and
compared. With the change of the number of the labeled
samples, the OA trend chart of three methods is obtained,

as shown in Figure 22. The horizontal axis represents the
number of each type of target labeled samples corresponding
to different experiments; the vertical axis represents the
overall accuracy rate.

In Figure 22, the identification accuracy of our method
IS2DP+S2DP is significantly better than Ladder Network and
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Table 8: Optical image data set-up of the EOC.

Data set Testing set
Training set (labeled samples) Learning set (unlabeled samples)

Interested Target cats dogs panda cats dogs panda cats dogs panda
Quantity 3∼40 3∼40 3∼40 200 200 200 200 200 200

Interferential Target — — — airplanes motorbike faces — — —
Quantity — — — 200 200 200 — — —
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O
ve

ra
ll 

ac
cu

ra
cy

 ra
te

 (O
A

) 

0.3

0.4

0.5

0.6

0.7

Number of labeled samples per class
5 10 15 20 25 30 35 40

I３2DP+３2DP

Figure 22: The OA trend charts of the IS2DP+S2DP, Ladder Network, and Temporal Ensembling with the number of the labeled samples
changes in the optical images testing experiment.

Temporal Ensembling. From the OA trend, the recognition
accuracy of Ladder Network and Temporal Ensembling does
not increase significantly with the increase of the number
of the labeled samples, while IS2DP+S2DP is significantly
improved. Compared with the results of the SAR image test
(Figure 18), the results of the three algorithms in the optical
image test are significantly lower. This may be because in the
learning set, we both increase the numbers of the target types
and the number of the confusion targets, which leads to the
less satisfactory results in learning the target features. From
Figure 22, the Ladder Network and Temporal Ensembling
algorithms are subject to more serious interference, and their
average recognition accuracy is about 45%, respectively. Our
algorithm IS2DP+S2DP is also subject to certain interference,
but when the number of samples per class reaches 21, its aver-
age recognition accuracy is about 70%, which is significantly
higher than the Ladder Network and Temporal Ensembling
algorithms. When the number of the labeled samples is equal
to 21, we will analyze the use of the learning set by the three
methods.

Figure 23 shows the use of the learning set by the Ladder
Network in the last 270 iterations during 1000 iterations
of training. Figure 23(a) is the recognition accuracy of the
learning set by Ladder Network; Figure 23(b) is the Ladder
Network’s loss value, where the blue line with square is the
overall loss, the black line with circle is the supervised loss,
and the green line with diamond is the unsupervised loss.
From Figure 23(a), we know that the recognition accuracy

is very low, about 33%. From Figure 23(b), we know that
the supervised loss is low, while the unsupervised loss is
high, which makes the overall loss difficult to reduce. Ladder
Network is a complex network, which is intertwined bymany
components, but its core part mainly includes adding noise
to samples, reconstructing samples and “skip connection”
[36]. It first augments the unlabeled samples by adding
noise to obtain a wider range of generalization information,
secondly retains the sample information as much as possible
by reconstructing the unlabeled samples in a regularized
manner, and finally combines unsupervised learning with
supervised learning to form semi-supervised learning by
skip connection. Compared with supervised learning, unsu-
pervised learning is more important in Ladder Network.
Therefore, although Ladder Network has been well learned in
the labeled samples, it has not been well learned in using the
unlabeled samples, resulting in the whole algorithm has not
been well trained. Finally, the Ladder Network recognition
accuracy is neither stable nor high.

Figure 24 shows the use of the learning set by the Tempo-
ral Ensembling in the last 270 iterations during 1000 iterations
of training. Compared with Figure 23, the recognition accu-
racy of Temporal Ensembling for the learning set is increased,
about 48%, but it is still relatively low. Different from the
Ladder Network, Temporal Ensembling adds noise to all the
samples, whichmakes the labeled samples augmented. At the
same time, in the initial stage of the training, the Temporal
Ensembling’s supervised learning plays an important role
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Figure 23: The use of the learning set by the Ladder Network in the last 270 iterations during 1000 iterations of training. (a) Recognition
accuracy of learning sets and (b) Ladder Network loss value.
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Figure 24: The use of the learning set by the Temporal Ensembling
in the last 270 iterations during 1000 iterations of training. (a)
Recognition accuracy of learning sets and (b) Temporal Ensembling
loss value.

because of the small value of the unsupervised loss weighting
function [8]. Therefore, the Temporal Ensembling is well
trained to some extent. As the value of the loss weighting
function increases, the unsupervised learning gradually plays
an important role in Temporal Ensembling. Although the
unsupervised loss is very low, Temporal Ensembling has
not been well trained in learning interested target features
because of the large number of unreliable samples in the
learning set. Finally, Temporal Ensembling still has low
recognition accuracy for interested targets.

Unlike the Ladder Network and the Temporal Ensem-
bling algorithms, the IS2DP+S2DP algorithm first removes
the interference samples in the process of using the learning
set and then learns the selected reliable samples. Table 9

shows the recognition results of IS2DP+S2DP algorithm for
learning set after 300 iterations. The average accuracy is 80%,
which is significantly higher than that of LadderNetwork and
Temporal Ensembling algorithms. Compared with Table 7,
the average accuracy of Table 9 is lower. However, the correct
rate of rejection of the 3 types interference target samples
has not been reduced, and these correct rates have reached
more than 80%. In addition, the rejection error rate of the
IS2DP+S2DP algorithm for the target samples is quite low;
for example, cats is 18/200 = 0.09; dogs is 15/200 = 0.075;
panda is 20/200 = 0.1. These experimental results show that
the proposed algorithm is effective in optical image testing.

5. Conclusions

In order to accurately identify remote sensing images when
there are few labeled samples, two new semi-supervised
learning algorithms have been proposed in this paper: S2DP
and IS2DP. They use labeled sample information to filter out
reliable unlabeled samples to improve the performance of the
semi-supervised algorithms.

The novelty of this paper lies in the following: (a) the
WKFDA has been derived to explore the features of the
images; (b) based on the clustering information of the DP,
the labeling method LCI has been designed to query reliable
unlabeled samples and accurately classify the unlabeled
samples; (c) in IS2DP, the unlabeled training set is divided
into different subsets, which suppresses the deterioration of
the algorithm by too many unreliable unlabeled samples in
the learning process. Moreover, IS2DP uses S3VM twice to
ensure reliable semi-supervised samples.

In the experiments for the actual SAR images recognition
from the MSTAR database, the S2DP has made a significant
improvement in terms of the classification accuracy and
the stability in comparison with other existing methods. In
addition, the IS2DP is effective and has applicable values to
query the semi-labeled samples and is more suitable to deal
with the situation where it lacks labeled samples.

How tomake full use of remote sensing images to improve
the performance of recognition algorithm has always been an
open problem. Although the semi-supervised deep learning
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Table 9: Recognition results of optical image learning set obtained after 300 iterations of the IS2DP+S2DP algorithm when the number of
samples equals 21.

Target Learning Set Generate labeled samples Reject Accuracy of each type of target(%)
Correct Error

cats 200 143 39 18 71.50
dogs 200 154 31 15 77.00
panda 200 165 15 20 82.50
airplanes 200 — 32 168 84.00
motorbike 200 — 40 160 80.00
faces 200 — 27 173 86.50
Overall accuracy 80.00

algorithm is susceptible to interfering samples, it has strong
feature learning capabilities once the interfering samples have
been removed. In the near future, we will try to further
improve the feature learning ability of the S2DP and IS2DP
algorithms by virtue of the semi-supervised deep learning.

Abbreviations

The following abbreviations are used in this manuscript:

DP: Clustering by fast search and find of
density peaks

EOC: Extended operating conditions
IS2DP: Iterative S2DP
KFDA: Kernel Fisher discriminant analysis
KLFDA: Kernel local Fisher discriminant analysis
KPCA: Kernel principal component analysis
LCI: Labeling method based on the DP

clustering information
MSTAR: Moving and Stationary Target Acquisition

and Recognition database
OA: Overall accuracy rate
PS3VM-D: Progressive semi-supervised SVM with

diversity
SAR: Synthetic aperture radar
Semi-KLFDA: Semi-semisupervised KLFDA
S2DP: Semi-supervised learning method based

on DP
SOC: Standard operating conditions
SVM: Support vector machine
S3VM: Semi-supervised SVM
S4VM: Safe S3VM
WKFDA: Weighted Kernel Fisher discriminant

analysis.
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