
Time Optimal Control of
Variable Stiffness Actuated Systems

Altay Zhakatayev, Member, IEEE, Matteo Rubagotti, Member, IEEE, Huseyin Atakan Varol, Senior Member, IEEE

Abstract—Variable-stiffness actuation exhibits promising fea-
tures for obtaining human-like behavior and safer human robot
physical interaction. Task planning and closed-loop control of
these systems pose many challenges due to their complicated
structure, and the need of satisfying many constraints during
task execution. This paper introduces a framework for the design
and numerical solution of time-optimal control problems for VSA
systems. Two different time-optimal control problems, namely
“minimum time for target performance” and “minimum time for
maximum performance”, are formally defined, and methods for
solving them are presented based on existing numerical software
tools for nonlinear optimization. Two experimental case studies,
focusing on ball throwing tasks with antagonistically-actuated
VSA systems, are used to test the presented methods and show
their validity.

Index Terms—Variable stiffness actuation, variable impedance
actuation, nonlinear optimization, time-optimal control, robotics.

I. INTRODUCTION

In the structured environment of factories, robots outperform
human workers in tasks requiring fast, repetitive and precise
manipulation. Their performance leaves a lot to be desired in
unstructured, human-oriented manipulation environments. A
vivid example of this was the recent Darpa Grand Challenge
assessing the potential of humanoid robots in disaster settings
[1]. Robots were assigned rather simple tasks such as opening
a door, climbing a ladder and grabbing a tool, most of which
are easily doable by a kindergarten-age child. The first iteration
of this challenge fell short of meeting the expectations. Reach-
ing human agility, dexterity and versatility for task execution
in unstructured environments will remain as a central research
problem for years to come. While one part of this enigma
lies in the perception and machine intelligence, another vital
component is biomimetic actuation.

In order to achieve human-level performance and safety in
human-robot interaction, researchers concentrated their efforts
on the development of a new actuation paradigm called
variable impedance actuation [2]. In these systems, robot
joints are decoupled from links using passive energy storing
and/or dissipating elements. The robot, using multiple degrees
of actuation for a link, can simultaneously change the position

This work was partially supported by the Ministry of Education and Science
of the Republic of Kazakhstan under grant “Optimal Design and Control of
Variable Impedance Actuated Robots”.

A. Zhakatayev and H. A. Varol are with the Dept. of Robotics and
Mechatronics, Nazarbayev University, 53 Kabanbay Batyr Ave, Z05H0P9 As-
tana, Kazakhstan. Email: {azhakatayev,ahvarol}@nu.edu.kz. Cor-
responding author: H. Atakan Varol.

M. Rubagotti is with the Department of Engineering, University of Leices-
ter, Leicester LE1 7RH, United Kingdom (e-mail: mr298@le.ac.uk).

and also the physical impedance parameters of the link. The
advantages of this type of robots compared to the traditional
rigid ones are discussed in [3]. While researchers continue to
work on ingenious mechanical designs for variable impedance
actuation [4]–[8], the control of these systems started to
attract more attention [9]–[12]. Task planning and control
of these robots are daunting problems due to the highly-
constrained and nonlinear nature of these systems. Braun et al.
[9] formulated motor trajectory generation of variable stiffness
actuated (VSA) robots as an optimal control problem (OCP).
Zhakatayev et al. [10] utilized nonlinear model predictive
control (NMPC) for the closed-loop control of VSA robots
to reliably track the references obtained from the solution of
an OCP. These developments enable the treatment of a wider
family of optimal control problems for VSA robots such as
time and energy optimal control.

In particular, the definition of time-optimal trajectories in
robotic manipulators was first considered in [13] and [14]:
these two works independently proposed similar methods
for time-optimal control of rigidly actuated systems with a-
priori specified paths, and upper bounds on control variables
(actuator forces and torques). Afterwards, time-optimal control
problems for robot manipulators were developed to handle
more complex tasks (e.g., point-to-point motion [15] and
motion in dynamic environments [16]), recently exploiting
advances in optimization algorithms and related software
tools [17]–[20]. Verscheure et al. [18] transformed the time-
optimal tracking problem for robot systems into a convex
OCP by utilizing nonlinear change of variables and convexity-
preserving extensions . Stochastic planning using cubic splines
was employed for minimum-time trajectory planning of a five-
bar parallel robot in [20].

The time-optimal control of VSA robots was first con-
sidered for the so-called safe brachistochrone problem, de-
fined for variable-stiffness and variable-impedance actuators
in [21]–[23], with emphasis on analyzing the optimal stiff-
ness/impedance modulation during the robot motion for simple
configurations, rather than on defining numerical tools to be
used with general robot topologies. In [24], a closed-form
solution was determined for reaching maximum link speed in
minimum time for robots with elastic joints, to analytically
determine suitable stiffness values for executing explosive
motions. In [25], the problem of braking a visco-elastic joint
in minimum time was considered, and the result was then
extended to a near-optimal real-time control of elastic robot
manipulators with an arbitrary number of degrees of freedom.

In this work, we present a general framework for the time-
optimal motion planning of VSA robots with any kind of



2

topology, subject to any type of set-membership constraints on
inputs and states (e.g., limits on actuator torques and velocities,
maximum extension or compression of the elastic elements,
maximum link speeds, etc.). After recalling the general mod-
eling framework for VSA robots (Section II), two different
types of optimal control problems (OCPs) are considered. The
first, namely “minimum time for target performance” (Section
III), aims at finding the control (and corresponding state)
signals that minimize the time for executing a task, while
achieving a given performance (e.g., throwing an object at
a specific distance). The proposed formulation allows one to
minimize the overall execution time, including events that take
place after the robot motion, but are influenced by the motion
itself (e.g., one can minimize the time from when the object-
throwing motion starts, until the moment when the object is
supposed to touch the ground). The second, “minimum time
for maximum performance” (Section IV), has the objective of
minimizing the time in which the robot motion happens, at
the same time maximizing the obtainable performance (e.g.,
minimize the time for the throwing motion, while throw-
ing the object at the maximum achievable distance for the
given robot configuration and constraints). For both kinds of
problems, which in general can be formulated as nonlinear
programs, the solution is determined numerically, by using
the ACADO Toolkit [26]. The obtained control sequences are
not provided to the robot when executing the task: instead,
the corresponding state trajectories are provided as reference
to an NMPC scheme, which allows closed-loop control (with
consequent reduction of sensitivity to external disturbances
and parameter uncertainties) while at the same time enforcing
constraint satisfaction. The NMPC controller, briefly described
in Section V, is designed as described in [10], and tested
experimentally on a ball throwing task. More precisely, the
“minimum time for target performance” problem is tested on
a two-link antagonistically actuated VSA manipulator, and the
“minimum time for maximum performance” problem is tested
on a single link planar manipulator augmented with a reaction
wheel (Section VI). To the best of the authors’ knowledge,
the presented general framework for minimum-time control
of VSA systems has never been reported in the literature. Our
main contribution is in the definition of a practical method to
allow engineers to plan minimum-time tasks by using a single
software tool for a variety of different VSA systems.

II. MODELING FRAMEWORK FOR VSA SYSTEMS

For the modeling framework of VSA systems, the same
approach as in [9], [10] will be followed, which divides the
set of coordinates into two subsets. The motor-side coordinates
θ ∈ Rnθ describe the angular positions (reflected through gear
reduction) of the electrical servomotors in the compliant actu-
ators. The link-side coordinates q ∈ Rnq describe the angles of
robot joints and possibly reaction wheels added to the robot
structure. The addition of reaction wheels makes it possible
to exploit reactive torques, so as to improve performance for
the given task [27]. The position control of servomotors is
performed by an internal control loop, which receives the
vector of angular position references θd ∈ Rnθ . Under the

standard assumption, for the servomotors, of high transmission
ratio and/or of high-gain feedback position controllers, the
motor-side dynamics can be considered as decoupled from the
link-side (see [9, Sec. III]). The closed-loop dynamics of each
servomotor, given by the action of an embedded controller, can
be typically represented by a second-order critically-damped
linear system

θ̈i + 2κiθ̇i + κ2i θi = κ2i θd,i, i = 1, . . . , nθ (1)

where θi and θd,i are the components of θ and θd, respectively,
while κi ∈ R>0 are constants that describe the dynamics of the
closed-loop system. The link-side dynamics (which includes
the dynamics of reaction wheels) is described by

M(q)q̈ + C(q, q̇)q̇ +Dq̇ +G(q) = τE(τd, q, θ) (2)

where the inertia matrix M(q) ∈ Rnq×nq is such that
M = M ′ � 0 (i.e., M is symmetric and positive definite),
C(q, q̇) ∈ Rnq×nq is the matrix of Coriolis and normal inertial
forces, Dq̇ ∈ Rnq describes the effect of viscous friction,
while G(q) ∈ Rnq is the gravity force term. The value of
τE(τd, q, θ) ∈ Rnq includes instead the joint torques generated
by the elastic elements, together with the torques generated
directly by current-controlled electric motors which actuate
the reaction wheels. The torques actuating the reaction wheels
can be compactly represented in a vector τd ∈ Rnd , nd being
the number of reaction wheels.

In order to define the optimal control problem, a nonlinear
state-space model of the whole system is necessary, which
includes the dynamics of motor-side and link-side variables.
In particular, the input vector is defined as

u ,
[
θ′d τ ′d

]′ ∈ Rnu , (3)

where nu , nθ + nd, while the state vector is

x ,
[
q′ q̇′ θ′ θ̇′

]′ ∈ Rnx , (4)

where nx , 2nq + 2nθ. The state-space dynamics can be
written as

ẋ=f(x, u)=


q̇

−M−1(C(q, q̇)q̇ +Dq̇ +G(q)−τE(τd, q, θ))

θ̇

−Bθ̇ −Kθ +Kθd


(5)

where B , diag{2κi} ∈ Rnθ×nθ and K , diag{κ2i } ∈
Rnθ×nθ are matrices describing the motor-side dynamics.

III. MINIMUM TIME FOR TARGET PERFORMANCE

In the first type of problems considered in this paper, it is
assumed that the robot has to satisfy a specific goal, referred
to as target performance, in minimum time. A formulation of
this class of problems is given in the following subsection.

A. Problem formulation

Let u(t) ∈ Rnu be a realization of the control input,
and let u[0,T ) represent the time evolution of u(t) in [0, T ),
T ∈ R≥0. In general, the OCP determines the length T = T ∗

of the minimum-time interval in which the target performance



3

can be achieved, and the control signal u∗[0,T∗) that leads to
such an achievement. The OCP formulation only provides an
optimal planning for the system dynamics, without considering
problems related to model mismatches and external distur-
bances, therefore resulting in an open-loop control problem. A
feedback scheme based on NMPC, briefly described in Section
V, will be implemented to make the actual evolution of the
system variables as close as possible to the planned one. A
rigorous formulation of the OCP is now given, and each term
in it is explained[

T ∗, u∗[0,T∗)

]
= arg min

[T, u[0,T )]
T + D(x(T ), u(T )) (6a)

subject to x(t) = x(0) +

∫ t

0

f(x(τ), u(τ))dτ (6b)

[x(t) u(t)]′ ∈ Z,∀t ∈ [0, T ] (6c)
φ(x(T ), u(T )) ∈ Φ (6d)

In (6a), T is the time required for the robot to execute the
part of the task in which it is directly involved, while the
term D(x(T ), u(T )) accounts for a time interval during which
the task is completed without direct involvement of the robot
(if not needed, one can simply set D(x(T ), u(T )) = 0). To
clarify, imagine that the end effector of a robot has to hit
a cart, and push it against a wall. If the task consists of
minimizing the time at which the cart hits the wall, it is not
possible to achieve it by simply minimizing T . In such a case,
D(x(T ), u(T )) would be the time required for the cart to hit
the wall, after being hit at time T by the robot. Condition
(6b), in which x(0) is the fixed initial state, integrates the
state equation (5), thus introducing the system dynamics in
the OCP. In (6c), Z ∈ Rnx+nu is a set defined in the space of
state and input variables, which describes the constraints that
have to be satisfied for proper operation of the robot. Typical
examples are upper and lower bounds on angular positions
and velocities of the actuators and of the links, and minimum
and maximum displacement for the elastic elements. Condition
(6d) imposes that a map φ(x(T ), u(T )) : Rnx+nu → Rφ
belongs to a given set Φ ∈ Rφ at time T : this is the constraint
that imposes the target performance. In the mentioned example
of the robot hitting the cart, φ(x(T ), u(T )) ∈ R can be the
distance that the cart needs to travel in order to hit the wall,
and is a function of robot variables at the time when the cart
is hit. Imagine that the wall is situated at a distance of 1 m
from the initial position of the cart. In such a case, Φ can be
the set of distances greater or equal to 1 m, and (6d) would
be expressed as φ(x(T ), u(T )) ≥ 1.

The performance index φ(·, ·) only accounts for the system
variables at time T , which is suitable for explosive movement
tasks. A generalization can be made by simply adding another
term, which would account for the system evolution in [0, T ],
cf. [10, Eq. 6e].

Another relevant example that can be formulated using (6)
is the minimum-time execution of a point-to-point motion. For
instance, a humanoid robot with a VSA arm similar to the one
in [28] is given a task of hammering nails on an assembly line.
The arm needs to move from an initial position and reach a
specific position at a desired velocity. Minimizing the time of

this task would increase throughput, and hence productivity.
In the following, the evolution of the state variables as-

sociated with the optimal input u∗(t) is denoted as x∗(t).
In order to find them, a numerical solution of the OCP (6)
is obtained (for the shown experimental results, using the
ACADO Toolkit), as described in the following subsection.

B. Numerical solution

In order to describe the input signal u∗(t) in a time
interval [0, T ), an analytical solution is needed. Since this is
not possible in any practical case, OCP (6) is solved using
numerical methods. In particular, the ACADO Toolkit [26] is
employed in this paper. The infinite-dimensional description
of the input signal is discretized, by assuming that the control
signal u(t) is piecewise constant with discretization step equal
to Td , T/Nd ∈ R>0, where Nd is the a-priori fixed number
of nodes along the time interval [0, T ). The cost function
will therefore be determined by Td, and by the value of
D(x, u) evaluated at T = NdTd. For the examples shown in
this paper, we choose to employ the standard settings of the
ACADO Toolkit, using a multiple shooting discretization with
Nd nodes, with the numerical integration of the continuous-
time differential equations performed via 4th or 5th-order
Runge-Kutta methods. The discretized mathematical program
is solved via sequential quadratic programming (SQP).

IV. MINIMUM TIME FOR MAXIMUM PERFORMANCE

In some cases, instead of defining a target performance,
the objective can consist of maximizing such performance,
and finding the minimum time interval in which this can be
achieved. For instance, in the previous example, if no wall
is present, the task might be to maximize the distance at
which the cart will eventually stop due to friction. In order
to define a well-posed problem, we need to assume that the
obtainable performance is a bounded function of the execution
time, which is a reasonable assumption in most practical cases.
In case the performance can be indefinitely increased as the
available time interval increases, this kind of problem cannot
be formulated. Again in the considered cart example, given
the constraints on robot motion, the force with which the
cart can be hit is also bounded, and cannot be indefinitely
increased as the number of swings of the arm increases.
Considering the increased level of complexity of this kind
of problem as compared to that described in Section III,
the term D(x(T ), u(T )) is not taken into account. For the
described cart example, this corresponds to minimizing the
time when the robot touches the cart, having this latter stop
at the maximum possible distance.

A. Problem formulation

Formally, the performance φ∗ associated with the optimal
time interval T ∗ and corresponding control signal u∗[0,T∗) will
have to satisfy

φ∗ = max
T∈[0,+∞)

φ∗T (7)

where
φ∗T , max

u[0,T )

φ(x(T ), u(T )). (8)



4

In (8), φ∗T is the maximum achievable performance for all
possible control sequences u[0,T ) in the fixed time interval
[0, T ). The control sequence that maximizes φ(x(T ), u(T ))
in (8) is referred to as u∗[0,T ). Given all possible fixed time
intervals [0, T ), φ∗ in (7) is therefore the maximum (bounded
by assumption) achievable performance in all possible time
intervals. The OCP for maximum performance is formulated
as [

T ∗, u∗[0,T∗)

]
= arg min

[T, u[0,T )]
T (9a)

subject to φ(x(T ), u(T )) + δ ≥ φ∗ (9b)
(6b), (6c) (9c)

Condition (9b) imposes performance maximization. The fixed
scalar δ ∈ R≥0 can be set equal to zero, in case the
performance has to be exactly maximized. In the case when
a performance slightly lower than the maximum φ∗ is satis-
factory, δ can be defined as positive. This can significantly
reduce the value of T ∗, in cases when, after a given time
interval T , the performance has a negligible increase, which
does not constitute a real difference for the task at hand.
A positive δ would also eliminate possible problems related
to small numerical errors in the solutions. Notice that the
constraint on target performance (6d) in OCP (6) is here
substituted by (9b), which requires performance maximization.
OCP (9) is more complex than (6), because the term φ∗ in
the constraint (9b) is in turn defined as the outcome of the
maximization described in (7)-(8). As a consequence, one
cannot numerically solve it as a single optimization problem
(for instance using the ACADO Toolkit) as described in
Section III-B: a reformulation of problem (9) is therefore
needed.

B. Solution via time axis grid

In order to find a solution to OCP (9), some observations
are necessary. For a fixed value of T , one can define an OCP
for maximizing performance

u∗[0,T ) = arg max
u[0,T )

φ(x(T ), u(T )) (10a)

subject to (6b), (6c) (10b)

OCP (10) can be solved by setting up a nonlinear program with
the ACADO Toolkit. Compared to the procedure described in
Section III-B, the difference would be that the time interval
Td is fixed as Td = T/Nd, instead of being determined by the
numerical algorithm.

Moreover, T is a scalar, so one can define a method for
solving (9) based on solving different instances of (10) for
different values of T . In particular, in the general case in which
φ∗T has no particular properties, a practical solution consists
of producing a sufficiently dense grid of values of T within
a given interval [0, Tmax], and then finding graphically the
desired value of T = T ∗, given the values of φ∗ and δ (see
(7), (9)). A graphical representation of the described method is
depicted in the left side of Fig. 1: the solid red line represents
the value of φ∗T as a function of T , and the maximum value φ∗

in the interval [0, Tmax] is represented by the dashed horizontal

line. In this example, the value of T ∗ is determined graphically,
in the simple case in which δ = 0.

Fig. 1: Graphical representation of the time-axis-grid method
(left) and of the bisection method (right).

C. Solution via bisection

Producing a grid of values of the T axis, in which each
point is obtained by solving (10), is typically computationally
expensive. An alternative way for solving (10) is hereafter
proposed. The method is based on the result proven in the
following proposition.

Proposition 1: Assume that, given x(0), there exists u0 ∈
Rnu such that f(x(0), u0) = 0. Then, recalling the definition
of φ∗T in (8) for a given T ∈ R≥0, for two fixed values T1
and T2 one has that

T1 ≤ T2 ⇒ φ∗T1
≤ φ∗T2

, (11)

i.e., φ∗T is a monotonically non-decreasing function of T .
Proof: For a given x(0) and time interval T1, let the

corresponding maximizer be u∗[0,T1)
= u∗1(t). We will refer

to this maximization problem as “Problem 1”. By defining
∆T , T2 − T1 ≥ 0, a feasible control signal ũ2(t) in
[0, T2] (i.e., for what we call “Problem 2”) can be obtained
as ũ2(t) ≡ u0 for t ∈ [0,∆T ), and ũ2(t) = u∗1(t −∆T ), for
t ∈ [∆T, T2].

It is immediate to verify that, since u∗1(t) corresponds
to a feasible solution of the OCP (9) for Problem 1, so
does ũ2(t) for Problem 2, as explained in the following.
By assumption, (x(0), u0) is an equilibrium pair. Therefore,
x(∆T ) obtained by applying ũ2(t) = u0 in [0,∆T ] is equal
to x(0). Hence, φ∗T1

= φ̃T2
, the latter being defined as

φ̃T2
, φ(x(T2), ũ2(T2)), obtained by applying ũ2(t) to Prob-

lem 2. The corresponding optimal solution will be satisfying
φ∗T2
≥ φ̃T2 by definition, which concludes the proof.

This result shows that, with a larger time interval at our
disposal, the achievable performance will not degrade. The
assumption requiring f(x(0), u0) = 0 indicates that the
robot is at rest at the initial time instant. The need for this
assumption can be explained by the following consideration:
in the example of the robot arm hitting the cart, if the arm is
already in motion at the initial time instant, it might be more
convenient to hit the cart immediately, because, due to energy
dissipation, the force with which it is hit might decrease if
more swings of the robotic arm are performed. Therefore, the
distance reached by the cart will not necessarily be a non-
decreasing function of T .

The right side of Fig. 1 shows an example of φ∗T (solid red
line) as a monotonically non-decreasing function of T . Also in



5

this case, the value of φ∗ is indicated by the dashed horizontal
line. The monotonicity result in Proposition 1 allows us to
use a bisection routine to solve (10). Fig. 1 also gives a
graphical representation of the sequence of intervals resulting
from the bisection algorithm, which is explained in detail in
Algorithm 1. In this algorithm, in addition to δ, the sampling
interval Ts of the closed-loop implementation is used as
another tolerance value. The value of Ts is used to formulate
the termination criterion, and the optimal time value T ∗ is
finally found as T ∗ = ceil(Tl, Ts), defined as the smallest
integer multiple of Ts which is greater or equal than Tl, this
latter being the lower bound of the interval determined at the
end of the bisection interval.

Remark 1: The result provided in Proposition 1 would be
valid for any nonlinear dynamical system, including other
types of mechatronic systems other than VSA robots. How-
ever, its importance in this context is given by the fact that
using OCPs for formulating tasks is a common procedure
when working with VSA robots. Furthermore, in order to find
φ∗T in (8) for a VSA robot, a numerical solution of a medium-
sized optimization problem has to be found, which requires
a non-negligible computation time. Thus, the possibility of
using the proposed bisection algorithm rather than proceeding
as described in Section IV-B would save computation time.

Algorithm 1: Bisection Routine for OCP (9)
Input: Tmax, OCP (10), constants Ts, δ ∈ R≥0
Output: Optimal time T ∗, optimal control signal u∗[0,T∗)

Tl ← 0; /* initial lower limit */
φ∗l ← solution of OCP (10) for T = Tl;
Tu ← Tmax; /* initial upper limit */
φ∗u ← φ∗max ← solution of OCP (10) for T = Tu;

while Tu − Tl > Ts do
Tm ← (Tl + Tu)/2;
φ∗m ← solution of OCP (10) for T = Tm;
if φ∗m ≤ φ∗max − δ then

Tl ← Tm
else

Tu ← Tm

T ∗ ← ceil(Tl, Ts);
u∗[0,T∗) ← optimizer of OCP (10) for T = T ∗;
return T ∗, u∗[0,T∗).

V. FEEDBACK CONTROL SCHEME

The ideal scheme considered during task planning is re-
ported in the upper part of Fig. 2. After the optimal input signal
is calculated either solving OCP (6) or (9), the corresponding
reference motor positions θd and torques τd are provided to the
system, in order to execute the task. However, this would lead
to a system evolution different from the expected one, due to
the unavoidable presence of external disturbances and model
mismatches. Therefore, the task is implemented by executing
the scheme in the bottom part of Fig. 2. The ideal motor
references, together with the corresponding evolution of the
state variables, are resampled with sampling time Ts (which

Fig. 2: The task planning scheme (upper part), and its closed-
loop implementation (lower part).

can differ from the discretization step Td), and provided
as reference to a closed-loop controller. This is an NMPC
controller, which reads state variables from sensors at every
sampling interval Ts, and determines the inputs in real time,
by solving a finite-horizon optimal control problem online.
This latter enforces constraint satisfaction, at the same time
tracking the ideal evolution of the system states. In this way,
the actual execution of the task is closer to the ideal evolution
than directly applying the computed optimal input signal in
open loop. In-depth formulation and implementation of the
NMPC controller is presented in [10].

The problem of finding the NMPC control variables is for-
mulated by solving a numerical optimization problem online.
Its formulation is analogous to that of the previously-described
OCPs, but is tailored for real-time execution, limiting a-priori
the number of SQP iterations. For the details of the mentioned
numerical methods, which are also briefly recalled in [10], the
reader is referred to [26] and the references therein.

VI. EXPERIMENTS

The two approaches for minimum-time trajectory planning
described in Sections III and IV are tested in two case studies
described in the remainder of the paper.

A. Case Study 1: Two-link planar VSA manipulator

1) Experimental setup: The system considered for the case
study is a planar two-link manipulator, the schematic drawing
of which is shown in Fig. 3. A ball is attached to the end
effector through an electromagnet, and the task consists of
throwing the ball at a given distance in minimum time. The
same type of robotic system was also used to demonstrate the
closed-loop control scheme presented in [10]. The main mod-
eling aspects are here recalled for the sake of completeness,
and a picture of the manipulator is shown in Fig. 4. For further
details of the experimental setup, the reader is referred to [10].

The system is actuated by four servomotors Dynamixel MX-
28T, connected to four nonlinear elastic elements (NEEs). As
for the motor-side dynamics, the parameters κi in (1) have
been found by system identification to be equal for all four
motors, and precisely κi = 40.0. The vector of link-side angles
describing the orientation of the two links (see (2)) is defined
as q = [q1 q2]′ ∈ R2. Again with reference to (2), the inertia



6

Fig. 3: Schematic drawing of the two-link planar VSA manip-
ulator with a ball for Case Study 1.

Fig. 4: Experimental setup with labeled elements for Case
Study 1.

matrix M(q) is defined as

M(q) =

[
m11 m12

m12 m22

]
(12)

where m11 = I1 + m1L
2
c1 + I2 + m2(L2

1 + 2L1Lc2 cos q2 +
L2
c2) +m3(L2

1 + 2L1L2 cos q2 + L2
2), m12 = I2 +m2(L2

c2 +
L1Lc2 cos q2) +m3(L2

2 +L1L2 cos q2), m22 = I2 +m2L
2
c2 +

m3L
2
2, in which mi, Ii, Li, Lci are, respectively, the mass,

the moment of inertia about the center of mass, the length
and the distance from the rotation point of the i-th link, up to
the center of mass of the same link (i = 1, 2). Their values
have been obtained as described in [10], and are equal to:
m1 = 0.674 kg, m2 = 0.307 kg, I1 = 5.08 · 10−3 kg·m2,
I2 = 6.92 · 10−3 kg·m2, L1 = 0.330 m, L2 = 0.433 m,
Lc1 = 0.116 m, Lc2 = 0.222 m. The mass of the ball is

m3 = 0.074 kg. Other terms in (2) for the case study are

C(q, q̇) = −(m2Lc2 +m3L2)L1 sin q2

[
2q̇2 q̇2
−q̇1 0

]
,

and D =

[
b1 0
0 b2

]
, where b1 = 0.010 N·m·s and b2 = 0.006

N·m·s are viscous damping coefficients. The last term in (2)
to be described for this case study is G(q) =

[
g1 g2

]′
, in

which g1 , g(m1Lc1 + m2L1 + m3L1) cos q1 + g(m2Lc2 +
m3L2) cos(q1+q2), and g2 , g(m2Lc2+m3L2) cos(q1+q2).

In order to achieve variable-stiffness behavior, an antag-
onistic configuration of the NEEs is implemented in both
joints (implying that two NEEs are present in each joint). In
particular, NEE 1 and NEE 2 belong to the first joint, and
NEE 3 and NEE 4 belong to the second joint. Vector τE ,
containing the elastic joint torques, is expressed as

τE =

[
τ1
τ2

]
= ρ

[
(T1 − T2)
(T4 − T3)

]
(13)

with Ti, i = 1, .., 4 being the tensions in each of the four
tendons, and ρ = 0.013 m being the radius of both joints.
The tendon tensions are quadratic polynomial functions of
tendon displacements, according to the expression Ti =
αiδi

2 + βiδi, i = 1, .., 4, δi being the tendon displacement,
and αi, βi being design coefficients (precisely, α1 = 12400
N/m2, β1 = 1360 N/m, α2 = 13600 N/m2, β2 = 1350
N/m, α3 = 5320 N/m2, β3 = 1500 N/m, α4 = 13700
N/m2, β4 = 1410 N/m). The value of δi for each tendon
is computed as δ1 = δ0 − ρ(q1 + π

2 ) + ρp(θ1 − θ01), δ2 =
δ0 + ρ(q1 + π

2 )− ρp(θ2 − θ02), δ3 = δ0 + ρq2 + ρp(θ3 − θ03),
δ4 = δ0 − ρq2 − ρp(θ4 − θ04), where ρp = 0.026 m and
δ0 = 0.005 m are the radius of the pulleys on all motors and
the initial displacement of the NEEs, respectively. The values
of θ0i , i = 1, .., 4 represent the initial servomotor positions
corresponding to the initial NEE displacement.

The stiffness of NEEs and the elastic energy stored in them
can be found accordingly as σi = 2αiδi + βi, i = 1, .., 4, and
Ei = αiδi

3/3+βiδi
2/2, i = 1, .., 4. The stiffness of the joints

can be found from (13), as

σE =

[
σE,1
σE,2

]
= ρ2

[
(2α1δ1 + β1 + 2α2δ2 + β2)
(2α4δ4 + β4 + 2α3δ3 + β3)

]
(14)

For a different VSA system the equation connecting link-
side and actuator-side dynamics will be different than (13), but
the general procedure for the OCP solution will not change.
For more information about the design of these types of NEE
and their characteristics, the reader is referred to [10] and [29].
The dynamics of the whole system can be expressed as in
(5), with 12 states and 4 controlled inputs. In particular, we
can define x = [q1 q2 q̇1 q̇2 θ1 θ2 θ3 θ4 θ̇1 θ̇2 θ̇3 θ̇4]′ and
u = [θd,1 θd,2 θd,3 θd,4]′.

The objective of the OCP in form (6) is to minimize the time
interval from the initial time instant until the ball touches the
ground. Therefore, T in (6a) represents the time interval up
to the release moment, while the flight time for the ball, only
dependent on the state variables at time T , is

D(x(T )) =
1

g

(
ẏr +

√
ẏ2r + 2g(yr +H)

)
(15)



7

Fig. 5: Plot of experimental link angular positions and velocities for three cases: Φ = 1 m, Φ = 2 m, Φ = 3 m.

where H = 0.810 m is the height from the ground to
the origin of the reference frame, g = 9.81 m/s2, yr =
L1 sin(q1) + L2 sin(q1 + q2) is the release vertical position,
and ẏr = L1 cos(q1)q̇1+L2 cos(q1+q2)(q̇1+ q̇2) is the release
vertical velocity, in which all variables are evaluated at time T .
In (6b), the initial condition x(0) is defined by setting vertical
hanging position of the two links (q1 = −π2 , q2 = 0), zero
link velocities (q̇1 = q̇2 = 0), zero motor velocities (θ̇i = 0,
i = 1, . . . , 4), and initial motor positions corresponding to
initial NEE displacements. The constraint set Z in (6c) is
defined directly referring to physical quantities, as the set of
states x and inputs u, such that the following inequalities hold:

−170π/180 ≤ q1 ≤ −10π/180, [rad] (16a)
−90π/180 ≤ q2 ≤ 90π/180, [rad] (16b)

−1.8 ≤ θ̇i ≤ 1.8, [rad/s] (16c)
0 ≤ θd,i ≤ 2π, [rad] (16d)
0 ≤ Ti ≤ 0.9, [Nm] (16e)

0.005 ≤ δi ≤ 0.025, [m] (16f)

where Ti = Tiρp, i = 1, . . . , 4, are the motor torques. The
inequalities in (16) impose limits on states (link positions and
motor velocities) in (16a)-(16c), on controls (desired motor
positions) in (16d) and on variables (motor torques and spring
compressions), that are functions of states and control inputs,
in (16e)-(16f). Notice that all inequalities in (16) are functions
of the components of x and u.

The performance index in (6d) is the distance reached by
the ball, which is expressed as a function of the state vector
x at the release time T , as

φ(x(T )) = xr + ẋr
ẏr +

√
ẏ2r + 2g(yr +H)

g
, (17)

where xr = L1 cos(q1) + L2 cos(q1 + q2), ẋr =
−L1 sin(q1)q̇1 − L2 sin(q1 + q2)(q̇1 + q̇2), evaluated at time
T . The set Φ is defined in this case study as a singleton.
Specifically, three different OCPs in form (6) are considered,
with three different values Φ = 1 m, Φ = 2 m, Φ = 3 m, each
of them enforcing a different throwing distance.

Target Performance
Φ = 1 m Φ = 2 m Φ = 3 m

T 1.86 s 2.96 s 4.00 s
D(x(T )) 0.34 s 0.56 s 0.68 s

T + D(x(T )) 2.20 s 3.52 s 4.68 s

TABLE I: Minimum values of T + D(x(T )) and their com-
ponents (robot motion time T and ball flight time D(x(T )))
in the case of minimum time for target performance.

In order to solve the three OCPs in form (6), we used
the ACADO Toolkit (Version 1.2.0 beta) set up as described
in Section III-B, setting the so-called KKT tolerance (which
defines the SQP termination criterion) to 10−5, and the number
of nodes Nd = 200. The computation time of the OCP on a
desktop computer with 3.2 GHz Intel Core i5-3470 processor
and 16 GB of memory was (for each of the three problems)
approximately 50 minutes, which is an acceptable computation
time for offline trajectory planning. The fact that the time to
solve the OCP for each of the three cases was approximatively
the same is due to the same value of Nd used in each of the
three cases, which made their complexity comparable.

2) Experimental results: In order to experimentally test our
method, an NMPC controller was implemented as described
in Section V, and with more detail in [10, Sections V and
VI.D]. The NMPC controller acted with a sampling interval
Ts = 20 ms, reading motor and link positions from high-
resolution capacitive incremental encoders, and generated the
motor reference positions θd in real time, in order to track
the robot motion planned by the OCP (see Fig. 2). For the
closed-loop experiments, the system constraints were slightly
loosened to better compensate for the effect of possible
external disturbances and model uncertainties, as explained in
detail in [10].

As a result of the three OCPs, the minimum-time intervals
T + D(x(T )) were obtained equal to 2.20 s for Φ = 1 m,
3.52 s for Φ = 2 m, and 4.68 s for Φ = 3 m. Table I
presents rounded results of OCP solutions for three different
Φ values for the case of minimization of the sum of robot
motion time T and ball flight time D(x(T )). As a side note,
we would like to remark that, when large values of Φ are



8

imposed, such as Φ = 4 m, the OCP becomes infeasible,
because it is impossible to reach such a distance without
violating the imposed constraints. The experimental results,
making use of the NMPC controller, led to actual distances
equal to approximately 1.0 m, 1.9 m, and 2.8 m, respectively.

Fig. 5 shows the experimental time evolution of link angular
positions and velocities for the three considered experiments.
In addition, a video showing the three closed-loop experiments
is available in the supplementary material. The difference
between the real and the ideal distance, at least in the second
and third case, is due to parameter uncertainties and model
inaccuracies, such as hysteresis in the NEEs behavior and un-
accounted frictional forces. The variations of joint stiffnesses,
and of energies and stiffnesses of NEEs are shown in Fig. 6.
Joint stiffnesses vary from 0.45 Nm/rad up to 0.6 Nm/rad,
while NEE stiffnesses vary from 1200 N/m up to 2000 N/m.
It can be observed that at the beginning of link motions, joint
stiffnesses are set to low (loose) values, which is necessary to
store energy in the NEEs. Close to the ball release moment,
joint stiffnesses are set to high (stiff) values, which is beneficial
for increasing the ball flight distance. The same behavior of
stiffness variation of joints can be observed when humans
throw objects with their arms. At the beginning of the swinging
motion, elbow and shoulder muscles are loose, while close to
the release moment these muscles are tightened.

The imprecision in task execution is strongly reduced, if
compared with the application of the reference motor position
obtained from the OCP in open loop, directly employing
the task planning scheme for execution (cf. [9]). The corre-
sponding experimental distances by directly applying the task
planning scheme are indeed equal to 0.8 m for Φ = 1 m,
1.4 m for Φ = 2 m, and 1.8 m for Φ = 3 m, respectively.

The minimum time for maximum performance problem was
also solved for this experimental setup, minimizing the release
time T . OCP (10) has been solved for T ranging from 0 to
7 s, with a grid resolution of 0.2 s in order to obtain the
dependence of φ∗T as a function of T . Fig. 9a shows the
results of applying the bisection algorithm to the two-link
manipulator, with parameters set to Tmax = 7 s and δ = 0.05
m. The green dot represents the final optimal point, while the
red dots represent the iteration steps of the bisection algorithm.
For the sake of clarity, bisection iteration points numbered 8
and 9 are not shown. The total computation time to obtain the
results in the grid is 7720 minutes, while the time spent on
bisection algorithm is 2273 minutes, which is 3.4 times faster.
Table II summarizes the results of the bisection algorithm.
The maximum obtainable throwing distance is φ∗max = 3.72
m (obtained for T = 7 s), and the optimal time value
T ∗ = 5.12 s was obtained, corresponding to a throwing
distance φ = 3.67 m.

We also conducted simulation experiments to show the
advantages of VSA systems compared to rigid ones. For this,
the minimum time for maximum performance problem was
solved, via time-grid method, for a modified version of the
two-link manipulator. The only difference was the assumption
that the actuators are rigidly connected to the links at the
joints (one actuator per joint), with torque limits set (in the
OCP constraints) to twice the Dynamixel motor torque limit

Fig. 6: Stiffness variations of joints and of stiffness and energy
variations of NEEs for Φ = 1 m, Φ = 2 m, Φ = 3 m.

Iteration Tl [s] Tu [s] φ∗l [m] φ∗u [m]
1 0.00 7.00 0.00 3.72
2 3.50 7.00 2.63 3.72
3 3.50 5.26 2.63 3.70
4 4.38 5.26 3.41 3.70
5 4.82 5.26 3.59 3.70
6 5.04 5.26 3.65 3.70
7 5.04 5.16 3.65 3.69
8 5.10 5.16 3.66 3.69
9 5.10 5.14 3.66 3.69

10 5.12 5.14 3.67 3.69

TABLE II: Bisection results for Case Study 1. Bold numbers
denote the outputs of the current iteration.

in (16e). In the time grid, T was ranging from 0 s to 7 s
with 0.2 s intervals. The maximum distance was obtained at
T ∗ = 0.60 s as φ = 1.2 m, while the two-link VSA system had
achieved, at T ∗ = 5.12 s, the maximum distance of φ = 3.67
m. We speculate that the VSA system is advantaged because
the maximum joint velocity is not limited by the maximum
actuator velocity thanks to the decoupling of actuators and
links via NEEs.

B. Case Study 2: Reaction wheel augmented VSA system
1) Experimental setup: We employed another experimental

setup for solving the minimum time for maximum perfor-



9

mance problem, in order to demonstrate the applicability of
our methodologies for different types of VSA robots. The
experimental setup is also a planar manipulator, but only one
link is present, together with a reaction wheel. The latter
generates reactive torques and thus serves as an additional
actuation degree-of-freedom, enriching the dynamics of the
system. The schematic drawing of this robot is shown in Fig.
7, while the corresponding experimental setup is shown in Fig.
8. The system consists of one link, one joint, two servomotors,
a reaction wheel, an electromagnet and a ball. The task is to
throw the ball to the maximum possible distance in minimum
time. Two Dynamixel MX-28T servomotors drive the link
motion as in the previous case study, and the reaction wheel
is driven by a Maxon EC-45 brushless motor. For a detailed
description of the experimental setup, see [27].

Similarly to Section VI-A, a vector q = [q1 q2]′ ∈ R2 is
defined: q1 describes the angular position of the only link, and
q2 accounts for the angular position of the reaction wheel. With
reference to (2), the inertia matrix is defined with the same
form of equation (12), but now with different terms m11 =
I1+m1L

2
c1+I2+m2L

2
c2+m3L

2
1, m12 = m22 = I2, in which

mi, Ii, Lci are, respectively, the mass, the moment of inertia
about the center of mass and the distance from the rotation
point of the link, up to the center of mass of link (i = 1) and
wheel (i = 2), respectively, while L1 is the length of the link.
The system parameters for this case study are the following:
m1 = 0.559 kg, m2 = 0.277 kg, I1 = 9.64 · 10−3 kg·m2,
I2 = 0.35 · 10−3 kg·m2, L1 = 0.433 m, Lc1 = 0.166 m,
Lc2 = 0.100 m. Due to the assumption that the mass of the
reaction wheel is located on its axis of rotation, there are no
Coriolis forces present, i.e., C(q, q̇) =

[
0 0

]′
.

Fig. 7: Schematic drawing of the single link planar robot
manipulator with reaction wheel for Case Study 2.

The other terms in (2) are defined as D =

[
b1 0
0 b2

]
, where

b1 = 0.006 N·m·s and b2 = 1.55 ·10−4 N·m·s are the damping
coefficients of the link and the reaction wheel, respectively,
and G(q) =

[
g1 g2

]′
, in which g1 , g(m1Lc1 + m2Lc2 +

m3L1) cos q1 and g2 , 0.
The variable stiffness behavior is achieved by the two NEEs

(NEE1 and NEE2), connected to the first link and described in
Section VI-A1. The relations between tendon tension, spring
displacement, link positions and motor positions, and initial
conditions, are given by the same equations reported in Section

Fig. 8: Experimental setup with labeled elements for Case
Study 2.

VI-A1 for the first link of the robot in Case Study 1. Also
stiffness variation of the NEEs and of the joint are given by
the same equations as for the first joint in VI-A1. The vector
of elastic torques for Case Study 2 is written as

τE =

[
τ1
τ2

]
=

[
ρ(T1 − T2)

τd

]
(18)

where τd = kwIw is the (scalar) input torque of the brushless
motor driving the reaction wheel, while kw = 0.131 N·m/A
and Iw are the torque constant and current of the motor
driving the reaction wheel. Overall, the system dynamics can
be written as in (5), with 7 states and 3 control inputs as
x = [q1 q̇1 q̇2 θ1 θ2 θ̇1 θ̇2 ]′ and u = [θd,1 θd,2 τd ]′. Notice that
the description of the state vector x defined above has a form
slightly different from the general one reported in (4), since
the angular position q2 should also be present in it. However,
q2 is not necessary for describing the system dynamics in the
considered task, and has therefore been omitted.

OCP (9) is defined for Case Study 2 as the problem of
achieving the maximum throwing distance φ(x(T )) while min-
imizing the time interval until the release time T . The throwing
distance has the same form reported in (17), but the terms
therein are defined for this case study as xr = L1 cos(q1),
yr = L1 sin(q1), ẋr = −L1 sin(q1)q̇1, ẏr = L1 cos(q1)q̇1,
again evaluated at time T . In (9c), the initial condition x(0) is
defined by setting vertical hanging position of the link (q1 =
−π2 ), zero link and reaction wheel velocities (q̇1 = q̇2 = 0),
zero servomotor velocities (θ̇i = 0, i = 1, 2), and initial motor
positions corresponding to initial displacements of two NEEs.
The constraint set Z in (9c) is defined based on the physical
limitations of the system depending on states x and inputs u:

−225π/180 ≤ q1 ≤ 45π/180, [rad] (19a)
−200 ≤ q̇2 ≤ 200, [rad/s] (19b)

−2.0 ≤ θ̇i ≤ 2.0, [rad/s] (19c)
−2π ≤ θd,i ≤ 3π, [rad] (19d)

−2.29 ≤ Iw ≤ 2.29, [A] (19e)
0 ≤ Ti ≤ 0.9, [Nm] (19f)

0.003 ≤ δi ≤ 0.025, [m] (19g)



10

where i = 1, 2. Similarly to the previous case study, the
inequalities in (19) impose limits on states (link position,
reaction wheel and motor velocities) in (19a)-(19c), on con-
trols (desired servo motor positions and input current for
the brushless motor) in (19d)-(19e) and, in (19f)-(19g), on
variables (motor torques and spring compressions) that can be
expressed as functions of states and control inputs.

The OCP was formulated using the ACADO Toolkit in the
same general way as described in subsection VI-A1. One can
verify that, for the considered case study, the assumptions
required for the satisfaction of Proposition 1 are met. More
precisely, the initial condition corresponds to an equilibrium
point (the robot is in rest position). As a consequence, the
bisection method described in Algorithm 1 was used, by
experimentally choosing Tmax = 3 s and δ = 0.05 m.

Fig. 9: OCP solution for the ball throwing distance d, for
each corresponding execution time T . The red dots represent
the steps of the bisection algorithm, with their corresponding
iteration number, while the optimal point is shown as a green
dot. The green line denotes the φ∗max − δ boundary. Results
for: a) double-link manipulator (bisection algorithm results for
points 8 and 9 in this case are not shown for clarity), and b)
single-link manipulator with the reaction wheel.

2) Experimental results: In order to provide an overview
of φ∗T as a function of T , the OCP was solved for T ranging
from 0 to 3 s, with a grid resolution of 0.1 s, (see Fig.
9b). The bisection algorithm, whose steps are also shown
as red dots in Fig. 9b, was also used to find the optimal
point. It took 8 iterations for the bisection algorithm to
converge to the optimal point (shown as a green dot). Table
III summarizes the execution of the bisection algorithm. As a
result, with the maximum obtainable throwing distance equal

Iteration Tl [s] Tu [s] φ∗l [m] φ∗u [m]
1 0.00 3.00 0.00 3.52
2 1.50 3.00 2.79 3.52
3 1.50 2.26 2.79 3.52
4 1.88 2.26 3.38 3.52
5 1.88 2.08 3.38 3.51
6 1.98 2.08 3.40 3.51
7 2.04 2.08 3.46 3.51
8 2.06 2.08 3.47 3.51

TABLE III: Bisection results for Case Study 2. Bold numbers
denote the outputs of the current iteration.

to φ∗max = 3.52 m (obtained for T = 3 s), an optimal time
value T ∗ = 2.06 s was obtained, corresponding to a throwing
distance φ = 3.47 m. The total time spent to solve all the OCP
problems in the grid is 161 minutes, while the total time spent
to solve the eight OCP problems in the bisection algorithm is
52 minutes, which is about 3.1 times faster. Comparing these
results with the two-link manipulator results shows that the
more complicated is the system, the more time is saved by
applying the bisection algorithm. Notice that, even if φ∗T is in
theory a monotonically increasing function of T , for values of
T ∈ [2, 3], φ∗T presents small positive and negative variations,
due to numerical inaccuracies in solving the OCP: this proves
the usefulness of introducing the use of δ.

An NMPC controller was implemented with sampling time
Ts = 20 ms. The reaction wheel has faster dynamics than
the links, therefore some adjustments to the implementation
of the NMPC controller were made, as described in [27]. The
experimental value of the throwing distance was 3.42 m, which
is very close to the expected value of 3.47 m. Angular position
and velocity of the link, angular velocity of the reaction wheel
and reaction wheel input torque for this experiment are shown
in Fig. 10. Finally, a video of this experiment is provided as
a supplemental material.

Fig. 10: Plot of experimental link angular position (q1) and
velocity (q̇1), of reaction wheel angular velocity (q̇2) and input
torque (τd) for Case Study 2.

VII. CONCLUSIONS

We presented a general framework for defining reference
trajectories leading to time-optimal task execution, for VSA
robots of any topology. These methods were tested experimen-
tally on a ball throwing task on two VSA system prototypes,
by following the generated trajectories using an NMPC control



11

scheme. The results, both in terms of computation time and
performance, are encouraging, and can be considered as a
further step to use VSA robots reliably in a wider set of
scenarios. Even if an antagonistic configuration of NEEs is
used in the two cases considered above, our method can be
applied to any configuration of the joint-actuator connection.

REFERENCES

[1] E. Guizzo and E. Ackerman, “The hard lessons of DARPA’s robotics
challenge,” IEEE Spectrum, vol. 52, no. 8, pp. 11–13, 2015.

[2] A. Verl, A. Albu-Schffer, O. Brock et al., Soft robotics: Transferring
theory to application. Springer-Verlag, 2015.

[3] W. Sebastian, B. Thomas, C. Maxime et al., Soft Robotics with Variable
Stiffness Actuators: Tough Robots for Soft Human Robot Interaction.
Berlin: Springer, 2015, pp. 231–254.

[4] S. Pfeifer, A. Pagel, R. Riener et al., “Actuator with angle-dependent
elasticity for biomimetic transfemoral prostheses,” IEEE/ASME T.
Mech., vol. 20, no. 3, pp. 1384–1394, 2015.

[5] F. Petit, W. Friedl, H. Hppner et al., “Analysis and synthesis of the
bidirectional antagonistic variable stiffness mechanism,” IEEE/ASME T.
Mech., vol. 20, no. 2, pp. 684–695, 2015.

[6] G. Mathijssen, D. Lefeber, and B. Vanderborght, “Variable recruitment
of parallel elastic elements: Series-parallel elastic actuators (SPEA) with
dephased mutilated gears,” IEEE/ASME T. Mech., vol. 20, no. 2, pp.
594–602, 2015.

[7] A. Jafari, N. G. Tsagarakis, I. Sardellitti et al., “A new actuator
with adjustable stiffness based on a variable ratio lever mechanism,”
IEEE/ASME T. Mech., vol. 19, no. 1, pp. 55–63, 2014.

[8] S. S. Groothuis, G. Rusticelli, A. Zucchelli et al., “The variable stiffness
actuator vsaUT-II: Mechanical design, modeling, and identification,”
IEEE/ASME T. Mech., vol. 19, no. 2, pp. 589–597, 2014.

[9] D. J. Braun, F. Petit, F. Huber et al., “Robots driven by compliant ac-
tuators: Optimal control under actuation constraints,” IEEE T. Robotics,
vol. 29, no. 5, pp. 1085–1101, 2013.

[10] A. Zhakatayev, M. Rubagotti, and H. A. Varol, “Closed-loop control of
variable stiffness actuated robots via nonlinear model predictive control,”
IEEE Access, vol. 3, pp. 235–248, 2015.

[11] ——, “Integrated optimal design and control of variable stiffness actu-
ated robots,” in Proc. European Contr. Conf., 2015, pp. 1100–1105.

[12] F. Petit, A. Daasch, and A. Albu-Schffer, “Backstepping control of
variable stiffness robots,” IEEE T. Contr. Syst. Tech., vol. 23, no. 6,
pp. 2195–2202, 2015.

[13] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control of
robotic manipulators along specified paths,” Int. J. Robot. Res., vol. 4,
no. 3, pp. 3–17, 1985.

[14] K. G. Shin and N. D. McKay, “Minimum-time control of robotic
manipulators with geometric path constraints,” IEEE T. Autom. Contr.,
vol. 30, no. 6, pp. 531–541, 1985.

[15] S. Dubowsky and T. D. Blubaugh, “Planning time-optimal robotic
manipulator motions and work places for point-to-point tasks,” IEEE
T. Robotics Autom., vol. 5, no. 3, pp. 377–381, 1989.

[16] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” Int. J. Robot. Res., vol. 17, no. 7, pp. 760–
772, 1998.

[17] M. Diehl, H. G. Bock, H. Diedam et al., “Fast direct multiple shooting
algorithms for optimal robot control,” in Fast Motions in Biomechanics
and Robotics. Springer, 2006, pp. 65–93.

[18] D. Verscheure, B. Demeulenaere, J. Swevers et al., “Time-optimal path
tracking for robots: A convex optimization approach,” IEEE T. Autom.
Contr., vol. 54, no. 10, pp. 2318–2327, 2009.

[19] T. Lipp and S. Boyd, “Minimum-time speed optimisation over a fixed
path,” Int. J. Control, vol. 87, no. 6, pp. 1297–1311, 2014.

[20] F. Bourbonnais, P. Bigras, and I. A. Bonev, “Minimum-time trajec-
tory planning and control of a pick-and-place five-bar parallel robot,”
IEEE/ASME T. Mech., vol. 20, no. 2, pp. 740–749, 2015.

[21] A. Bicchi, G. Tonietti, M. Bavaro et al., “Variable stiffness actuators for
fast and safe motion control,” in Proc. Int. Symp. Robot. Res., 2005, pp.
527–536.

[22] A. Bicchi and G. Tonietti, “Fast and “soft-arm” tactics,” IEEE Robotics
& Automation Magazine, vol. 11, no. 2, pp. 22–33, 2004.

[23] G. Tonietti, R. Schiavi, and A. Bicchi, “Optimal mechanical/control de-
sign for safe and fast robotics,” in Experimental Robotics IX. Springer,
2006, pp. 311–320.

[24] S. Haddadin, K. Krieger, N. Mansfeld et al., “On impact decoupling
properties of elastic robots and time optimal velocity maximization on
joint level,” in Proc. IEEE/RSJ Int. Conf. Int. Robots Sys., 2012, pp.
5089–5096.

[25] N. Mansfeld and S. Haddadin, “Reaching desired states time-optimally
from equilibrium and vice versa for visco-elastic joint robots with
limited elastic deflection,” in Proc. IEEE/RSJ Int. Conf. Int. Robots Sys.,
2014, pp. 3904–3911.

[26] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit - An open-
source framework for automatic control and dynamic optimization,” Opt.
Contr. Appl. Methods, vol. 32, no. 3, pp. 298–312, 2011.

[27] A. Baimyshev, A. Zhakatayev, and H. A. Varol, “Augmenting variable
stiffness actuation using reaction wheels,” IEEE Access, vol. 4, pp. 4618–
4628, 2016.

[28] M. Grebenstein, A. Albu-Schffer, T. Bahls et al., “The DLR hand arm
system,” in Proc. IEEE Int. Conf. Robot. Autom., May 2011, pp. 3175–
3182.

[29] S. A. Migliore, E. A. Brown, and S. P. DeWeerth, “Biologically inspired
joint stiffness control,” in Proc. IEEE Int. Conf. Robot. Autom., April
2005, pp. 4508–4513.

Altay Zhakatayev (M’15) received the B.S. degree
in aerospace engineering from Texas A&M Uni-
versity, College Station, TX, USA, in 2010, and
the M.S. degree in mechanical engineering from
University College London, London, UK, in 2012.
Since 2012, he has worked at the Advanced Robotics
and Mechatronics Systems (ARMS) Laboratory of
Nazarbayev University, Astana, Kazakhstan as a
research assistant. His research interests include
optimal control and design of variable impedance
actuated robots using numerical optimization.

Matteo Rubagotti (S’07-M’11) received the Ph.D.
degree in electronics, computer science, and electri-
cal engineering from the University of Pavia, Italy,
in 2010. Since 2015 he has been a lecturer of con-
trol engineering at the University of Leicester, UK.
Before that, he was a postdoc at the University of
Trento, Italy, and at the IMT Institute for Advanced
Studies, Lucca, Italy, and then an assistant professor
of robotics and mechatronics at Nazarbayev Uni-
versity, Astana, Kazakhstan. His research interests
include the theory of model predictive control and

sliding mode control, and their applications to robotics and energy systems.
He has published over 40 technical papers in international journals and
conferences.

Huseyin Atakan Varol (M’09-SM’16) received the
B.S. degree in mechatronics engineering from Sa-
banci University, Istanbul, Turkey, in 2005, and the
M.S. and Ph.D. degrees both in electrical engineer-
ing from Vanderbilt University, Nashville, TN, USA,
in 2007 and 2009, respectively. From August 2009
to August 2011, he was first a postdoctoral research
associate and then a research assistant professor with
the Center for Intelligent Mechatronics, Department
of Mechanical Engineering, Vanderbilt University,
Nashville, TN, USA. In 2011, he joined the faculty

of Nazarbayev University, Astana, Kazakhstan, as an associate professor of
robotics, where he currently chairs the department and directs the Advanced
Robotics and Mechatronics Systems (ARMS) Laboratory. His research inter-
ests include biomechatronics, variable impedance actuation, machine learning,
and embedded systems. He has published over 50 technical papers on related
topics in international journals and conferences.


