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Abstract

The mechanisms for the initiation and maintenance of
atrial fibrillation (AF) are still poorly understood. Iden-
tification of atrial sites which are effective ablation tar-
gets remains challenging. Supervised machine learning
has emerged as an effective tool for handling classifica-
tion problems with multiple features. The main goal of
this work is to use learning algorithms in predicting the
responses of ablating electrograms and their effect on ter-
minating AF and the cycle length changes. A total of 3,206
electrograms (EGMs) from ten persistent AF (persAF) pa-
tients were used. 5-fold cross-validation was applied, in
which 80 % of the data were used as training set and 20
% used as validation. Dominant frequency (DF) and or-
ganisation index (OI) were calculated from EGMs (264
seconds) for all patients and used as input features. A
k-nearest neighbour (KNN) classifier was trained using
ablation lesion data and deployed in additional 17,274
EGMs that were not ablated. The classification accuracy
of 85.2 % was achieved for the KNN classifier.
We have proposed a supervised learning algorithm using
DF features, which has shown the ability of accurately
performing EGM signal classification that could be poten-
tially used to identify ablation targets and become a robust
real-time patient diagnosis system.

1. Introduction

Atrial fibrillation (AF) is the commonest cardiac ar-
rhythmia in clinical practice, affecting 1-2 % of the gen-
eral population [1]. The loss of effective atrial contraction
in AF patients may result in blood clots in the atria, which

increases the risk of stroke five-fold [2]. Although catheter
ablation techniques are widely applied to treat AF patients,
the underlying pathophysiological mechanisms of persis-
tent AF (persAF) remain unclear [3]. Atrial sites host-
ing high dominant frequency (DF) might be the important
sites for the maintenance of AF [4]. DF has shown to be
spatiotemporally unstable [5], and temporally stable DF
showed the potential to represent relevant and stable focal
drivers [6]. Panoramic mapping using electrogram (EGM)
recordings with longer duration provides excellent data for
assessing frequency features such as DF and organisation
index (OI) and their temporal stability and variation. Ma-
chine learning techniques have been successfully used in
variety of scientific fields, including medicine [7]. The k-
nearest neighbour (KNN) algorithm as one of the simplest
among machine learning algorithms, despite its simplic-
ity, can often outperform more powerful classifiers. In this
study, we aim to investigate the performance of KNN algo-
rithm in predicting the ablation responses of atrial EGMs.

2. Materials and Methods

2.1. Data Acquisition

Ten persAF patients undergoing first time left atrial
(LA) catheter ablation were enrolled. High DF regions
in the LA were identified as described before [5] and 30s
of LA non-contact electrograms (EGMs, Ensite Array, St
Jude Medical, 2048 channels) were exported to our Mat-
lab platform [8] to guide ablation targeting DF. Four out of
ten patients had AF terminations before pulmonary veins
isolation (PVI). There were no adverse events in all ten
patients. Pre-ablation EGMs up to 5 min duration were
exported offline for training and validation for all patients.



Figure 1. Flow chart of data assembly, processing, and
analysis.

2.2. Training Data Labelling

AF cycle lengths (AFCL) before and after ablating each
atrial DF site (a cluster of lesion points defined by re-
visiting DF from 30-second data before ablation) were
recorded in LabsystemTM Pro EP Recording System. Four
classes of data were considered as labels: 1) AF termina-
tion, 2) AFCL increase (≥10ms), 3) AFCL unchange and
4) AFCL decrease (≤10ms). Classes 1 and 2 were consid-
ered as positive ablation results. As illustrated in Figure
1 (left panel), a total of 51 atrial locations (3,206 nodes)
were ablated: 16 with AFCL increase (1,182 nodes), 4 ter-
minated AF (308 nodes), 7 AFCL decrease (381 nodes)
and 24 no AFCL change (1,335 nodes).

2.3. Signal Processing

The 5-min EGMs were sampled at 2034.5 Hz and then
re-sampled to 512 Hz to reduce processing time and save
storage using cubic interpolation method. Ventricular far-
field activity present in the EGMs might appear as mislead-
ing frequency components on the atrial frequency spec-
trum, affecting the accuracy of DF identification, and
QRST subtraction was performed as described in our pre-
vious work (see middle panel Figure 1) [9].
The EGMs were then divided into 4 seconds windows with
a 50% overlap. For each window, spectral analysis was
carried out by performing fast Fourier transform (FFT). A
zero padding factor of 5 was applied when performing the
FFT, resulting in a frequency step of 0.05 Hz. A Hamming
window was used to reduce the amplitude of the side lobes
around the DF peak in the power spectrum. DF was de-
fined as the frequency peak in the power spectrum within

the physiological range of 4-10 Hz. OI is defined as the
ratio of the area of the DF peak (± 0.25 Hz) together with
its harmonics, and the total area of the power spectrum (up
to 20 Hz).

2.4. Feature Extraction

The shortest recording duration among the ten patients
was used, which is 264 seconds, resulting in 131 windows
(4-second long). Four features were extracted for each
long EGM segment: average DF, average OI, standard de-
viation of DF (std DF) and standard deviation of OI (std
OI). A feature matrix of 4× 3206 was generated to use as
input/predictor of the training model. A categorical matrix
of labels (1× 3206) was used as responses.

2.5. Classification Model Training

Training and classification was implemented in Matlab
environment. 5-fold cross-validation was applied as only a
total of 51 atrial locations (3,206 nodes) were available for
training and validation. A KNN classifier was trained on
80 % of data as a train set, and the accuracy was evaluated
on 20 % of data as a test set. In KNN classification, an
object is usually classified by a majority vote of its neigh-
bours, where the object is consequently assigned to the
class that is most common among its KNN. Factors such
as k value, distance calculation and choice of appropriate
predictors all have significant impact on the model perfor-
mance. We have tested several training configurations and
the one with highest classification accuracy was selected,
where k is configured as 10 with the square-inversed Eu-
clidean as distance measurements.

2.6. Model Deployment

After the model was trained using ablation lesion data,
predictions were also made on the EGMs that were not
ablated (17,274) for all patients.

2.7. Statistical Analysis

All continuous normally distributed variables are ex-
pressed as mean ± SD. Unpaired t test with Welch’s cor-
rection and one-way ANOVA were applied among each
two classes and four classes for all features. P-values of
less than 0.05 were considered statistically significant.
To generate receiver operating characteristic (ROC) curve
for multi-class classification, it is necessary to transform
the output to binary. One-vs-rest (OvR) approach was used
and generated four ROC curves and their corresponding
area under the curve (AUCs) for each class, considering
all three other classes as negative label.



Figure 2. The confusion matrix of the trained KNN clas-
sifier. (boxed number and percentage of EGMs predicted
for each class)

Figure 3. The Receiver operating characteristic Curves of
the positive classes.

3. Results and Discussions

A total of 3,206 EGMs from ten persAF patients were
used, 2,565 were used as training set and 641 used as val-
idation. Four-class KNN classifier was trained with the
classification accuracy of 85.2 % achieved.

3.1. ROC Analysis

In Figure 2, the confusion matrix of the KNN classier
shows the number of EGMs and the true positive rate of
each class comparing to the true class. Figure 3 illustrates
the ROC curves of the positive classes: AF termination
class (AUC=0.98) and AFCL increase class (AUC=0.96).
For AF termination classification from all four classes, a
sensitivity of 87 % and a specificity of 98 % were achieved,
whilst classifying AFCL increase group resulted in a sen-
sitivity of 84 % and a specificity of 92 %.

Figure 4. A. The parallel coordinates plot of 4 features
for each class; B. The bar graphs of the 4 features for each
class.

Table 1. Table of p values of t tests between classes (T:
AF termination; ↑: AFCL increase; ∼: AFCL unchange;
↓: AFCL decrease; ns: not significant).

mean DF std DF mean OI std OI
T vs ↑ <0.0001 <0.0001 <0.0001 <0.0001
T vs ∼ <0.0001 <0.0001 <0.0001 <0.0001
T vs ↓ <0.0001 <0.0001 <0.0001 <0.0001
↑ vs ∼ <0.001 <0.0001 ns ns
↑ vs ↓ ns <0.001 <0.0001 <0.0001
∼ vs ↓ <0.001 <0.0001 <0.0001 <0.0001

3.2. Feature Analysis

Figure 4 A shows the parallel coordinates plot illustrat-
ing the multi-dimension data consisting of 4 features for
each class: mean DF and OI, standard deviation of DF and
OI (full line is median, dotted lines are the 25th and 75th
percentile). The vertical axis is normalised per index, and
minimum and maximum values are shown on top and bot-
tom. In Figure 4 B, the bar graphs summarise the mean and
standard deviations of all features for each class and the p
values between each two classes were calculated (Table 1).
The mean DFs of the four classes were 4.94 ± 0.23, 5.38
± 0.67, 5.48 ± 0.71 and 5.33 ± 0.69 (p < 0.0001). The
temporal DF standard deviations were 0.39± 0.11, 0.69±
0.28, 0.64± 0.23 and 0.75± 0.29 (p < 0.0001). The mean
OIs of the four classes were 0.39 ± 0.3, 0.35 ± 0.06, 0.35
± 0.05 and 0.32 ± 0.05 (p < 0.0001). The temporal OI



Figure 5. 3D LA colour-coded by classification labels.

standard deviations were 0.11± 0.01, 0.10± 0.02, 0.10±
0.02 and 0.09 ± 0.01 (p < 0.0001). It is notable that most
features in the AF termination class were significantly dif-
ferent from all other classes, indicating that atrial regions
that are responsible for AF termination did show distinct
characteristics, and termination data from more patients
may improve the classification dealing with future data.

3.3. Classification Model on New Data

Figure 5 is a 3D example of one patient with the clas-
sification model applied on all data points (2048) includ-
ing the nodes/EGMs that were not ablated, to predict the
response of ablation measured by AFCL changes and clas-
sified into four classes. The LA is colour-coded by the
prediction of using the trained KNN classifier whilst the
colour-coded dots are the ablation lesions with the actual
AFCL responses. It is expected that a larger atrial region
would be labelled as each class, but the accuracy of the
unablated regions can not be verified. More ablation data
from more patients would help to further refine the clas-
sifier and enrich the knowledge of the classifier,especially
on the inter-patient differences.

4. Conclusions

This paper presents a framework to identify EGMs that
are responsible for maintenance of persAF and potential
targets for catheter ablation using panoramic non-contact
mapping. Features based on DF and OI were extracted and
used to train a KNN classifier to classify the EGMs into AF
termination, AFCL increase, AFCL unchange and AFCL
decrease. AF termination class showed lower signal fre-
quency, higher temporal stability, higher organisation and
lower organisation stability. These important findings may
suggest that targeting atrial regions with appropriate fre-
quency characteristics might improve ablation outcome in
persAF. The promising results of this study warrant future
study with a larger data set and real time implementation

of software tool to guide ablation. The proposed algorithm
using shorter signal length should be evaluated in future
studies.
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