Graph Transformation Games for
Negotiating Features

Thesis submitted for the degree of
Doctor of Philosophy
at the University of Leicester

by

MOHAMMED A. ALABDULLATIF
DEPARTMENT OF INFORMATICS
UNIVERSITY OF LEICESTER

FEBRUARY 2017

Graph Transformation Games for Negotiating Features

Mohammed A. Alabdullatif

Abstract

The success of e-commerce applications and services depends on the outcomes of in-
teractions between the provider of the products or services and its requestors. The
flexibility of these agents to negotiate features of the products or services traded is
an important characteristic of face-to-face business interactions, but is often missing
in the online world. Flexibility is needed to discuss preferences and constraints in
order to determine a solution that benefits both parties. Game theory is a nat-
ural framework in which to pose such problems. This thesis is concerned with a
proposal-based negotiation: through which a service provider and requestor inter-
act by exchanging proposals. In particular, we propose negotiation games based on
feature models to design the flexible business interactions. Feature models are used
to represent service configurations in order to support the variability of negotiated
services, which increases the flexibility of the negotiators’ interactions. We introduce
graph transformation games to implement and analyse our negotiation games, mod-
elling the negotiation of features by representing the state of the game by a graph and
the moves of the players by graph transformation rules. We propose two analyses
of our graph transformation games in order to explore different negotiation strate-
gies. Firstly, we analyse our graph transformation games as extensive-form games, in
which backward induction technique is used to solve the game and determine the op-
timal strategies for the negotiators at each state of the game. Secondly, we analyse
our graph transformation games as two-player turn-based stochastic games using
the PRISM-games model checker. We define single-objective and multi-objective
properties in order to generate optimal strategies for the players. To evaluate our
approach, we applied it to a selection of feature models in order to test the scalability
of the graph transformation games’ generation and analysis time.

Acknowledgements

In the name of Allah, the Beneficent, the Merciful.

First and foremost, this work would not have been completed except by guidance
of the Almighty Allah, who allowed my dreams to come true. I would like to thank
Allah for giving me the power to believe in myself and pursue my dreams.

I would like to take this opportunity to extend my deepest gratitude to my academic
supervisor, Professor Reiko Heckel, for constantly offering adequate supervision, and
keeping me on the right path during the work on this thesis. He dedicated numerous
hours to giving me countless guidance and valuable suggestions. I greatly appreciate
his immeasurable efforts for bringing my dreams into reality.

I would like to thank my PhD co-supervisor, Professor Thomas Erlebach, and PhD
tutor, Dr Fer-Jan de Vries for their guidance and support during my PhD journey. 1
would also like to thank the members of my thesis examining committee, Dr Artur
Boronat, and Dr Radu Calinescu, for their valuable comments and suggestions.
Many friends and colleagues have shared time with me, and they helped to make
my PhD enjoyable and memorable. I would like to thank my best friend Abdullah
Algahtani for being my true brother and always being there when I needed someone
to talk to. I would also like to especially thank Dr Mohammad Kharabsheh, Dr Mo-
hammad Alshira’H, Dr Ayman Bajnaid, Dr Abdullah Alshanqiti, Marwan Radwan,
and Marco Hernandez. I would also like to take this opportunity to gratefully and
sincerely thank my sponsor, King Faisal University, for granting me full scholarship
to pursue my studies abroad.

I also extend my sincere gratitude to my lovely wife, Mona, who inspired me and
provided constant encouragement during the entire process. I also thank my won-
derful children: Abdulrahaman and Danah, for always making me smile and for
understanding on those weekends when I was working on this research instead of
playing games.

Last but not least, I would like to thank my parents for being there for the happy
times and tough times and for their guidance through my life. It would have been
harder without their warm prayers. I would also like to thank my sisters and my

brother for their support and help.

i

Contents

Abstract i
Acknowledgements ii
List of Figures viii
List of Tables xi
1 Introduction 1
1.1 Motivation 1
1.2 Problem Statement L 4
1.3 Solution 5
1.4 Thesis Outline 6

2 Background 10
2.1 Feature Modelling 10
2.1.1 Semanticso 11

2.1.2 Configurations 14

2.1.3 Methods 15

2.1.4 Feature Modelling and Web Services 16

2.2 Game Theory 18

il

Contents

221
2.2.2
2.2.3

224
2.2.5
2.2.6

Basic Conceptso
Nash Equilibrium,
Extensive-Form Games L.
2.2.3.1 Strategieso
2.2.3.2 Subgame Perfect Equilibrium
2.2.3.3 Backward Induction
Stochastic Gameso
PRISM-games Model Checker

Game Theory in Negotiation

2.3 Graph Transformation

2.3.1
2.3.2

2.3.3
234

Basic Concepts
Algebraic Approacho
2.3.2.1 Double Pushout Approach
Typed Attributed Graphs

Henshin Language and Tools

24 Summary

Graph Transformation Games for Negotiating Features

3.1 Motivating Example oo

3.2 Feature Negotiation Games

3.3 Graph Transformation Games

3.4 Implementation

3.4.1
3.4.2

Game Metamodel L
Game Rules oo
3.4.2.1 Alternating-offer Negotiation Protocol
3.4.2.2 Application to Running Example

3.4.2.3 The Graph Transformation Games in Henshin

44
45
47
50
52
93
95
o7
60

v

Contents

3.4.3 Generating the Transition System of the Game
3.4.4 Scalability

3.5 Summary . o.o.o. ..o

4 Extensive-Form Graph Transformation Games
4.1 Introduction
4.2 Overview of Game Analysis Method
4.3 Implementing Backward Induction
4.3.1 State Space Metamodel
4.3.2 Backward Induction Rules
4.3.3 Generating the State Space Instance
4.3.4 Application to Running Example
4.3.5 Scalability o

4.4 Summary

5 Stochastic Graph Transformation Games
5.1 Imtroduction
5.2 Generating the PRISM Game
5.3 Analysing the Game L
5.3.1 Single-objective Strategy
5.3.2 Multi-objective Strategy
5.4 Scalability

5.5 SUMMATYo

6 Related Work
6.1 Feature Models in Negotiation,
6.2 Feature Models and Graph Transformations

6.3 Feature Models and Game Theory

90
91
93
93
94
95
101
102
102
104

105
106
110
113
114
116
117
119

120
121
123
124

Contents

6.4 Game Theory in Web Services and E-commerce Negotiation
6.5 Game Theory and Graph Transformations

6.6 Summary

7 Conclusion and Future Work
7.1 Overall Summary
7.2 Contributions
7.2.1 Graph Transformation Games
7.2.2 Implementing Graph Transformation Games
7.2.3 Analysing Graph Transformation Games
7.3 Conclusion
74 Future Work
7.4.1 Further Evaluation
7.4.2 Scalable Protocol 0L
7.4.3 Incomplete Information
7.4.4 Compiler Approach

7.5 SUMMATY oo e

A Transformation Rules
A.1 Rules for Alternating-offer Protocol,

A.2 Backward Induction Rules

B Implementation
B.1 Generating Graph Transformation Games
B.2 Extensive-form Graph Transformation Games
B.2.1 Creating A State Space Metamodel and Instance

B.2.2 Generating An Instance L.

133
133
134
134
135
136
138
139
139
140
141
141

145

146
146
155

157
157
159
159
161

vi

Contents

B.3 Stochastic Graph Transformation Games 163
B.3.1 Mapping from Henshin to PRISM-games 163

B.32 SMGsFile 164

B.3.3 Strategy Exported File 165
Bibliography 166

vil

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2

Thesis Structureo 9
Holiday Services Feature Model 12
Graphical Notation of Relationships Between Features 12
An Optional Feature 13
A Mandatory Feature 13
An Alternative Group 14
An Or Group 14
Extensive-form Game Example 21
Subgame of the Extensive-form Game Example 24
Labelled Graph Example 32
A Graph Morphism From G1to G2 32
A Graph Transformation Rule sell_to 35
Attributed Graph Example L. 38
Attributed Graph (a), and Its Instance (b) 39
sellTo Transformation Rule 41
Computer Graph Transformation System Rules 42
Computer State Space 42
Travel Agency Feature Model 46
Metamodel for Negotiation 54

List of Figures

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

Alternating-offer Negotiation Protocol State-chart Diagram 59
Part of the Negotiation Game Tree 61
Transformation Rule Req propose_to_addOpt 63
Transformation Rule Req_propose_to_addOr 64
Transformation Rule Req propose_to_withdrawOpt 65
Transformation Rule Req_propose_to_withdrawOr 67
Transformation Rule Req propose_to_substitute 69
Transformation Rule Prov_accept_to_addOpt 70
Transformation Rule Prov_reject_to_addOpt 71
Transformation Rule Prov_accept_to_addOr 73
Transformation Rule Prov_reject_to_addOr 74
Transformation Rule Prov_accept_to_withdrawOpt 76
Transformation Rule Prov_reject_to_withdrawOpt 7
Transformation Rule Prov_accept_to_withdrawOr 79
Transformation Rule Prov_reject_to_withdrawOr 80
Transformation Rule Prov_accept_to_substitute 82
Transformation Rule Prov_reject_to_substitute 83
Transformation Rule Req propose_to_addOpt 84
An Overview of the Proposed Approach 91
State Space Metamodel 95
Backward Induction Algorithm [1] 96
Transformation Rule LeavesReq 98
Transformation Rule CompareReq 99
Transformation Rule CompareReql 100
An Overview of the Proposed Approach 107
Transformation Rule Req accept_to_addOpt 108

1X

List of Figures

7.1 Feature Models with Different Structures 140
A.1 Transformation Rule Req accept_to_addOpt 146
A.2 Transformation Rule Req accept_to_addOr 147
A.3 Transformation Rule Req accept_to_substitute 147
A.4 Transformation Rule Req accept_to_withdrawOpt 148
A.5 Transformation Rule Req accept_to_withdrawOr 148
A.6 Transformation Rule Req reject_to_addOpt 149
A.7 Transformation Rule Req reject_to_addOr 149
A.8 Transformation Rule Req_reject_to_substitute 150
A.9 Transformation Rule Req reject_to_withdrawOpt 150
A.10 Transformation Rule Req reject_to_withdrawOr 151
A.11 Transformation Rule Req Pass 151
A.12 Transformation Rule Prov_propose_to_addOpt 152
A.13 Transformation Rule prov_propose_to_addOr 152
A.14 Transformation Rule Prov_propose_to_substitute 153
A.15 Transformation Rule Prov_propose_to_withdrawOpt 153
A.16 Transformation Rule Prov_propose_to_withdrawOr 154
A.17 Transformation Rule Prov_Pass 154
A.18 Transformation Rule LeavesProv 155
A.19 Transformation Rule CompareProv 155
A .20 Transformation Rule CompareProvl 156
B.1 Creating A State Space Model and Instance 159
B.2 Generating A State Space Instance 161
B.3 Mapping from Henshin to PRISM-games 163
B4 SMGs File o 164
B.5 Strategy Exported File L. 165

List of Tables

3.1
3.2
3.3

4.1
4.2
4.3

5.1

0.2

2.3

0.4

2.9

2.6

6.1

7.1

The Cost, Price and Value of Each Feature 49
Generation Results Using Alternating-offer Negotiation Protocol (1) . 87

Generation Results Using Alternating-offer Negotiation Protocol (2) . 88

The Optimal Transitions for the Players in Our Running Example . . 102
Alternating-offer Negotiation Protocol (1) Backward Induction Results103

Alternating-offer Negotiation Protocol (2) Backward Induction Results103

Example of Generated Provider’s Strategy 115
Example of Generated Collaborative Strategy 116
The Results of Analysing Our Graph Transformation Games (1) Using

Provider’s Strategy 117

The Results of Analysing Our Graph Transformation Games (2) Using
Provider’s Strategy 118
The Results of Analysing Our Graph Transformation Games (1) Using
Collaborative Strategy L. 118

The Results of Analysing Our Graph Transformation Games (2) Using

Collaborative Strategy 119
Summary Comparison of the Reviewed Approaches 130
Generation Results for Feature Models with Different Structures . . . 140

X1

List of Tables

7.2 The Generation Results with Single-objective Strategies

7.3 The Generation Results with Multi-objective Strategies

patl

This thesis is lovingly dedicated to my beloved family

xiil

Chapter 1

Introduction

This chapter introduces the research topic of this thesis. Section 1.1 discusses the
context within which the research problems arise. Section 1.2 discusses the statement
of the problem. Section 1.3 presents the proposed solution and overall aim and

objectives. Finally, Section 1.4 presents the thesis outline.

1.1 Motivation

Web services and e-commerce technologies have dramatically changed the way re-
questors and providers conduct business. The trading environment is becoming more
complex due to the explosive growth of the number of services and products that are
supplied via electronic channels. This has led researchers in both academia and in-
dustry to adopt effective and efficient mechanisms in order to handle the interactions
between the providers of these services or products and their requestors. However,
one of the challenges facing online business is that interactions have to be standard-
ised to be automated which, for complex products with a range of configurations,

limits the ability of the provider to react in a flexible way to the diverse preferences

1

Chapter 1. Introduction

of their clients.

Moreover, in many scenarios, matching requestors’ requirements to the available de-
scriptions may result in a number of alternative, potentially partial, matches. For
example, a service provider offers different types of transportation for tourists, such
as train and airplane. In some cases, the transportation type depends on the holiday
location. If a service requestor asks for a certain type of transportation for a location
that is hard to reach by this type, they may get a limited number of exact matches as
many travel agencies do not offer this transportation type for the preferred location.
However, they may get partial matches which provide other types of transportation.
Thus, the service requestor may change their original requirements according to the
available matches. This is very common in today’s business.

Furthermore, the relationship that the provider wants to have with its customer
is not directly competitive because its ultimate goal is to do business and improve
customer satisfaction and so have a long-term relationship with that customer. How-
ever, providers and requestors inevitably have conflicting interests, as providers will
seek to maximise their profits by selling as many products as possible, preferably
those with the highest profit margin, while requestors will be driven by their desire
to obtain maximal value for minimal investment, usually on a limited budget.

To achieve business goals, service providers and service requestors need to interact
and eventually reach an agreement on certain quantities of interest. One type of
interaction that is gaining increasing interest in online business is negotiation |[2].
There are several definitions of negotiation, of which we give three examples. Mayer
in [3| define a negotiation as an “interaction in which people try to meet their needs
or accomplish their goals by reaching an agreement with others who are trying to get
their own needs met”. Bichler et al. in [4] describe a negotiation as an “iterative com-
munication and decision-making process between two or more parties, who cannot
achieve their objectives unilaterally, exchange information, deal with interdependent

tasks and search for a consensus”. Robinson et al. in [5]| view a negotiation as “a

2

Chapter 1. Introduction

method in which participants bring their goals to a bargaining table, strategically
share information, and search for alternatives which are mutually beneficial”.
Inspired by those definitions, we provide our definition of negotiation in web services
and e-commerce as an interaction between service providers and service requestors
who have relations that are characterised by different preferences and competition but
also shared interests, who are trying to come to a mutually acceptable agreement.
Negotiation is often complicated, time-consuming and costly for participants to reach
an agreement. According to [6], the complexity of negotiation is usually affected by
three factors: parties have distinct interests, parties do not have full information
about their counterparts, and parties are dependent on one another for agreement.
The behaviour and the outcomes of the negotiation are affected by the negotiation
type. Negotiation theorists have identified two types of negotiation: distributive
negotiation and integrative negotiation [7|. In distributive negotiations, the parties
behave competitively, trying to minimise each other’s gain rather than trying to col-
laborate for the benefit both. In game theory, this negotiation is called a zero-sum
game [8] in which, if one party gains, the other loses. In integrative negotiation,
parties view the negotiation as a non-zero-sum game. The parties do not behave
competitively, and they do not intend to minimise each other’s gain.

Negotiation has to follow a certain protocol. Protocol can be viewed as a set of rules
governing the interaction among participants. This includes the participant types,
the negotiation states and the permitted actions of the participants in particular
states [9]. A negotiation strategy determines the actions of the participants at each
state in order to achieve the business goal while using a particular negotiation pro-
tocol.

An effective negotiation framework including a simple protocol and a well-defined
negotiation strategy are required to enable flexible interactions that allow the par-

ticipants to discuss their preferences and reach an acceptable agreement.

Chapter 1. Introduction

1.2 Problem Statement

Negotiation has become increasingly important since automated interactions need
flexibility. The flexibility of negotiation with complex configurations of services or
products is rarely supported by the current frameworks, yet this flexibility is needed
to enhance the ability of the negotiation participants to achieve the best outcomes.
It is necessary for service providers to react more quickly to requestors’ diverse pref-
erences and take advantage of new opportunities. This requires a mechanism that
facilitates a dynamic customisation of supplied services for any service requestor,
which can also be used to offer alternative services or products to those requested.
Moreover, a need exists for a formal model that captures the relationship among
negotiation rules, constraints, strategies and goals in order to build an effective ne-
gotiation framework.

One of the key aspects of negotiation is the adoption of a negotiation protocol that
the participants need to adhere to. The design of appropriate negotiation protocols
is crucial and requires a careful consideration as it is closely connected to the domain
in which the negotiators will be acting. The negotiation protocols should be simple
and characterised by certain properties in order to provide the negotiators with a
suitable interaction environment. Given a particular negotiation protocol, typical

questions that arise are:
1. What type of negotiation should be considered? Is it integrative negotiation
or distributive negotiation?

2. How do the negotiators choose their actions efficiently? In other words, what

are their strategies while negotiating?

3. How much knowledge do the negotiators have about each other in order to

anticipate the other’s behaviour?

Chapter 1. Introduction

1.3 Solution

The goal of this research is to develop a new structured negotiation model that
enables the negotiators to discuss their preferences and interact in a flexible and
strategic way to reach an agreement that benefits both of them. This research
proposes a game-theoretic approach to proposal-based negotiation where the infor-
mation exchange between the participants is in the form of proposals which can be
accepted or rejected. To reduce the efforts required in generating proposals in the
negotiation process and increase the flexibility of participants’ interactions, feature
models are used to represent service configurations. The negotiation of features is
implemented as graph transformation games to model and analyse the providers
and requestors’ strategic choices. It aims to provide a negotiation framework us-
ing game-theoretic techniques. A graph transformation game is a state-based game
in which the states of the game are given by graphs. The rules of the game are
defined by graph transformation rules which determine the available actions of the
players. The rules are designed according to an introduced alternating-offer negotia-
tion protocol in which the negotiators interact by taking turns in making proposals.
We propose two analyses of our graph transformation games, one as extensive-form
games and the other one as two-player turn-based stochastic games. The results
that are obtained by these analyses determine the negotiators’ optimal strategies.

The main contributions achieved in this research are:

1. Graph transformation games.

2. Implementing graph transformation games:

(a) Developing a metamodel to define the negotiation entities.

(b) Designing negotiation rules to describe the actions of the negotiators.

3. Two different analyses of graph transformation games:

Chapter 1. Introduction

(a) Extensive-form graph transformation games.

(b) Stochastic graph transformation games.

4. Empirical scalability evaluations of both the implementation and the analysis

of graph transformation games.

Part of our work was presented as abstract papers at:

— STAF 2014 Doctoral Symposium. Mohammed Alabdullatif and Reiko Heckel.

A Game Theoretic Approach to Support Negotiation Based on Feature Models.

— Graphs as Models 2016. Mohammed Alabdullatif and Reiko Heckel. A Graph-

based Game to Negotiate Features.

We also published a paper at the Seventh International Workshop on Graph Compu-
tation Models (GCM 2016) affiliated with the Conferences on Software Technologies:
Applications and Foundations (STAF):

— Mohammed Alabdullatif and Reiko Heckel. Graph Transformation Games for
Negotiating Features. In Proceedings of the Seventh International Workshop
on Graph Computation Models (GCM 2016). July 2016.

1.4 Thesis Outline

The structure of the thesis is shown in Figure 1.1. The thesis is organised into seven

chapters as follows.

Chapter 1. Introduction

Chapter 2 presents background information on the research topic, which includes:

— feature modelling, where we discuss feature model semantics, configuration
techniques, modelling methods, supporting tools and the use of feature models

in web services.

— game theory, including basic game-theoretic concepts, extensive-form games,
stochastic games and the use of game theory in negotiation. We also provide

an overview of the PRISM-games model checker, which we use in our analysis.

— graph transformation and its main components, which are graphs and rules.
We also present basic concepts about the Henshin transformation language

and tool environment.

Chapter 3 presents the proposed graph transformation games. It provides the
detailed implementation steps for the graph transformation games, which include
defining the game metamodel, designing the game rules and generating the transition
system of the game. Experiments were conducted to measure the game state space

generation time and these are also presented in the chapter.

Chapter 4 introduces our approach to analysing graph transformation games as
extensive-form games. The graph transformation games were analysed using back-
ward induction in order to determine the players’ optimal moves, which represent the
Nash equilibrium. The scalability of this analysis was assessed by conducting exper-
iments to measure the time spent in applying backward induction and determining

the payoff obtained by reasoning backward.

Chapter 5 presents the proposed analysis of graph transformation games as two-

player turn-based stochastic games using the PRISM-games model checker. The
7

Chapter 1. Introduction

graph transformation games were generated from Henshin to PRISM-games format
by modifying Henshin source code. Single-objective and multi-objective properties
were defined in order to generate optimal strategies for the players. This analysis
was evaluated by conducting experiments to measure the time taken to construct

the model in PRISM-games and the time spent in generating the strategies.

Chapter 6 highlights approaches related to ours, and discusses their differences
to our approach in order to assess the research contribution and develop a clear
direction for the proposed approach. We categorise the related work into the follow-
ing: feature models in negotiation, feature models and graph transformation, feature
models and game theory, game theory in web services and e-commerce negotiation,

and game theory and graph transformations.

Chapter 7 provides the conclusions to the conducted research and describes fur-

ther research issues to be considered as future work.

Chapter 1. Introduction

Chapter 1:
Introduction

Chapter 2:
Background

Chapter 3:
Graph Transformation Games|
For Negotiating Features

Chapter 4: Chapter 5:
Extensive-Form Graph Stochastic Graph
Transformation Games Transformation Games

Chapter 6:

Related Work

Chapter 7:
Conclusion and Future Work

FIGURE 1.1: Thesis Structure

Chapter 2

Background

In this chapter, we provide the background information required to understand the
technical contribution. In Section 2.1, we discuss feature models including their
semantics, configuration techniques and methods in order to understand the required
concepts throughout the thesis. We also discuss the use of feature models to model
the variability of web services in Section 2.1.4. In Section 2.2, we discuss game
theoretic concepts and game types required to understand our analysis in Chapter 4
and Chapter 5. Section 2.3 presents the basic notions of graph transformations
including the definitions of graph and rules. We also discuss the Henshin tools that

will be used in our implementation.

2.1 Feature Modelling

Feature modelling is a key technique for modelling the commonalities and variabil-
ities of products in a Software Product Line (SPL) in terms of their features. It
has generated a lot of interest since its introduction by Kang et al. in the FODA

method [10]. We first describe the essential principles and semantic foundation of

10

Chapter 2. Background

feature models in Section 2.1.1. We then discuss the feature modelling configuration
techniques, methods, applications and tools of feature modelling in the following

sections.

2.1.1 Semantics

Features: each concept in a model represents a feature. There are several defi-
nitions of features [10-12]. For example, in [10], a feature has been defined as “a
prominent or distinctive user-visible aspect, quality, or characteristic of a software
system or systems”. It gives a part of the information of the complete model and it
is the main component of a feature model. A feature model represents the relation-
ships between different features involved in a model that give a global meaning to
the model. For example, transportation and accommodation can be used as features

in a Travel Agency feature model.

Feature Diagram: the features are organised into a tree which is called a feature
diagram [13]. In the literature, the terms feature model and feature diagram are
used interchangeably but feature diagrams are usually used to visually represent
feature models. A feature configuration is an instance of a feature model that can
be specified by selecting a set of features and it has to meet feature model constraints
[14]. The feature diagram depicted in Figure 2.1 compactly describes a family of
holiday services, where each member of the family corresponds to a combination of

features.

Feature Hierarchy: feature diagrams are used to model the commonalities and
variabilities of a software system in a hierarchical form [10]. The hierarchy is usually

represented as a rooted tree; the root feature denotes the main concept of the feature

11

Chapter 2. Background

Holiday Services

Location Transportation Catering
/‘\ Accommodation
Airplane Train
Hotel Caravan

FIGURE 2.1: Holiday Services Feature Model

diagram. Edges in feature diagrams model parent-child relations. The primary
purpose of a hierarchy is to organise a large number of features into multiple levels.
The general purpose of the product can be obtained from the root. Then, more
details can be explored after moving to the next level of nodes in the tree. Every
feature has exactly one type, which is given by the relation between the feature
and its parent. In our case, we have four types of features: mandatory, optional,
alternative, and or.

Figure 2.2 gives a representation of the graphical notation for common relationships
between a parent feature and its child features in a feature diagram. Throughout
the thesis, we will rely on the same graphical notation, proposed by Czarnecki et al.

in [11]. Following are the detailed explanations of the parent-child relationships.

A Lo

or alternative mandatory optional

FIGURE 2.2: Graphical Notation of Relationships Between Features

12

Chapter 2. Background

Optional feature: a feature that may or may not be selected when its parent is
selected. In the graphical representation, this type of feature is represented by a
simple edge from the parent feature ending with an unfilled circle. In Figure 2.3,
B may or may not be selected when A is selected. For example, the selection of

Catering is optional in the feature diagram shown in Figure 2.1.

FIGURE 2.3: An Optional Feature

Mandatory feature: the feature must be selected if its parent is selected. In the
graphical representation, this type of feature is represented by a simple edge from
the parent feature ending with a filled circle. In Figure 2.4, B must be selected when
A is selected. For example, Transportation is a mandatory feature in the feature

diagram shown in Figure 2.1.

| B

FIGURE 2.4: A Mandatory Feature

Alternative feature: exactly one of the features in this group must be selected if
its parent is selected. In the graphical representation, each set of alternative features
is represented by an arc, as shown in Figure 2.5, where exactly one of the features
B or C must be selected if A is selected. In Figure 2.1, there are two types of

Accommodation; exactly one of them must be chosen.

13

Chapter 2. Background

FIGURE 2.5: An Alternative Group

Or feature: at least one feature in this group must be selected if its parent is
selected. In the graphical representation, each set of or features is represented by a
black-filled arc, as shown in Figure 2.6, where at least one of the features B or C
must be selected if A is selected. In Figure 2.1, there are two Transportation types,
where at least one of them must be selected.

In addition to the hierarchy relations of the model, it is possible to add relations

between features to express dependencies. For example:

e Requires: the selection of a source feature implies the selection of its target

feature.

e Excludes: the selection of a feature implies the non-selection of another feature,

which means that the two features cannot be part of the same configuration.

FI1GURE 2.6: An Or Group

2.1.2 Configurations

Modelling variability of products is one of the most important aspects of feature
modelling. Depending on the relation types (constraints) in a feature model, vari-

ability defines the valid combinations of features, which are called configurations.

14

Chapter 2. Background

The validity of a configuration is determined by selecting features in a manner that
satisfies the variability constraints defined by the feature diagram. For example, in
Figure 2.1, Hotel and Caravan are mutually exclusive and cannot be selected at the
same time. The number of possible configurations grows as the variability increases.
Dealing with feature model configurations has generated a lot of interests for many
researchers. Various approaches have been proposed to deal with deriving feature
model configurations [13-17|. Moreover, several tools have been developed to help
reduce the complexity of the configuration process by automating the feature selec-
tion process [18-24].

In our work, we use feature models in negotiations to specify available configurations
of negotiated services. Deriving feature model configurations is one of the main as-
pects of our research. We used the configuration techniques to support the variability

of negotiated services in order to increase the flexibility of services negotiation.

2.1.3 Methods

In the literature, there are a number of feature modelling methods, such FODA [10],
FeatuRSEB [25], FORM [12] and the method proposed by Czarnecki et al. in [11].
Feature-oriented domain analysis (FODA) is considered to be the foundation of all
feature modelling methods [26]. In the following, we provide a brief description of

each method.

FODA: FODA [10] defines three relationships between features. The basic rela-
tionship that can occur between features is the consists-of relation. This relation
represents the mandatory features. Optional features can be used to represent that
a feature may be selected but is not required. Alternative features can be used to

indicate that exactly one of the features in the set of alternative features must be

15

Chapter 2. Background

selected. In addition, FODA defines two kind of composition rules: requires and

incompatible (excludes) rules.

FeatuRSEB: Griss et al. in [25] presented an extension of FODA feature dia-
grams. They used similar semantics to the FODA diagrams with new graphical
notations. The decomposition operator or is added to allow the selecting of one or

more of the decomposed features.

FORM: The feature-oriented reuse method (FORM) [12] is an extension of FODA.
One of the changes is the addition of two types of graphical relationships: generali-

sation/specialisation and implemented-by.

Czarnecki et al.: Czarnecki et al. [11] have studied feature diagrams in the
context of Generative Programming. Their conceptualisation of features is based
on FODA. Their feature diagram is a rooted tree with new graphical notation.
They categorise features as mandatory, optional, alternative, and or-features. As we
discussed in Section 2.1.1, the modelling method used here is the one proposed by

Czarnecki et al., for its simplicity and clarity.

2.1.4 Feature Modelling and Web Services

Feature models have been used in a wide variety of applications. In this section, we
focus on the use of feature models in web services to provide the flexibility in service
specification and simplify customisation processes. Several approaches have been
proposed to use feature models in web services specification and customisation. In

[27], a feature-oriented approach for web services customisation has been proposed

16

Chapter 2. Background

to reduce complexity, automate validation and dynamic deployment. Service cus-
tomisation is defined as activity performed by service consumers to customise service
interfaces described by the Web Service Description Language (WSDL). Firstly, a
service provider develops a customisable service using a feature model. Then, the
feature model is published to service registries. Thirdly, a service consumer discovers
the feature models of services it can customise. The approach was illustrated by a
scenario of a news posting web service that content providers use to submit news
entries to a Content Management System (CMS). A Content Provider can choose
either “Direct” or “External Resource” features for posting news entry. He can op-
tionally choose to update posting status with two alternative features: “Frequent
Update” or “On Demand Query”. He can also optionally request embedded format.
Robak et al. [28] proposed the use of feature diagrams for modelling flexibility of
web services. The knowledge contained in a feature diagram is then used to describe
the commonality and variability of web services that can be dynamically customised
for individual consumers.

In [29], the authors presented a methodology to model orchestration variability using
a feature diagram. The feature diagram specifies a product line of orchestrations
represented as configurations of invoked/rejected services. This methodology ap-
plied to the crisis management system case study. The Crisis Management System
(CMS) feature diagram contains several features to represent the crisis types such
as “Fire”, “Car Accident” and “Theft”. It also consists of features to represent the
communications such as “GSM Telephony” and “GPS Location”.

Naeem et al. in [30] proposed to use feature modelling techniques to specify the
variability of provided and required services in order to increase the flexibility of the
matching process. The feature models have been interpreted as linear logic formulas
to provide the semantics for matching. They used an on-line travel agent service as
a case study to illustrate their approach. The travel agent offers “Hotel” and “Flight”

reservations. It also offers an optional “Transport” for hotel reservations.

17

Chapter 2. Background

Inspired by these works, in this thesis, we propose to use feature models to increase

the flexibility of web services negotiation.

2.2 Game Theory

Game theory is a mathematical tool that analyses the strategic interactions among
multiple decision-makers [31]. In [32], game theory is defined as “the study of math-
ematical models of conflict and cooperation between intelligent rational decision-
makers”. Game theory can be applied whenever the actions of two or more parties
are interdependent [33]. The mathematical theory of games was invented by John
von Neumann and Oskar Morgenstern in [34], where they introduced the method
of finding mutually consistent solutions for two-person zero-sum games. Nowadays,
game theory has a wide range of applications, including economics, computer sci-
ence, engineering, political science and biology [35]. We will explain some important

concepts related to our work in the following sections.

2.2.1 Basic Concepts

In order to define a game in game theory, the type of interaction in the game should
be considered. There are two main types of games that depend on the interaction
types, strategic games and extensive-form games. In strategic games, players act
simultaneously whereas, in extensive games, players choose their actions sequentially
[31]. Simultaneous games are called static games whereas sequential games are called
dynamic games.

A game in strategic form is usually represented as a matrix in which players choose
their strategies at the same time. It has three elements: a set of players, a set of

pure strategies for each player and payoff functions. Each player chooses a strategy

18

Chapter 2. Background

without any knowledge of what the other player chooses. A game in an extensive
form is represented as a decision tree to model dynamic structure. It provides a
complete description of the choices available for each player and when each can
move. It has four elements: a set of players, a set of terminal histories (which is
the set of all complete sequences in the game), a player function, which indicates
who moves after each non-terminal history, and payoff functions to assign a payoff
to players at each terminal history.

In our research, we are interested in games in the extensive form, where players
choose their actions sequentially. We will discuss extensive-form games in more
detail in Section 2.2.3.

In the following, we list some important concepts in game theory and provide a brief

definition of each:

e Player: a player represents a decision-maker in the game.

e Strategy: in strategic-form games, a strategy is one of the possible actions
of a player whereas in extensive-form games, a strategy is a complete plan of

actions for a player in every possible state of the game.

e Strategy profile: this is a combination of strategies, one strategy for each

player.

e Payoff: payoff or utility represents the outcome (a real number) for each player
in the game. The payoff function is a function that indicates the outcome for

each player in each strategy profile or combination.

2.2.2 Nash Equilibrium

This concept was developed in 1950 by John Nash [36], who showed that every

finite non-cooperative (zero-sum) game has an equilibrium point. In [33], a Nash

19

Chapter 2. Background

Equilibrium is defined as “a list of strategies, one for each player, which has the
property that no player can unilaterally change his strategy and get a better payoft”.
In equilibrium, each player is acting optimally with respect to the other players’
behaviour. In other words, each player is playing a best response to the other
players’ strategies. Nash equilibrium provides us with a solution to analyse games.
However, it is not always the best possible solution globally that could be achieved.
In many cases, the Nash equilibrium is not Pareto optimal. Moreover, there may be
more than one Nash equilibrium or there may be no Nash equilibrium at all.

In our research, we use the Nash equilibrium to determine the individually optimal
actions for each negotiator at each stage of the negotiation game. This solution is

not necessarily the best joint outcome.

2.2.3 Extensive-Form Games

Extensive-form games are applicable when decisions are sequential rather than si-
multaneous. An extensive-form game is represented as a rooted tree, which is called
a game tree with nodes representing decision points and edges between nodes rep-
resenting players’ moves. The terminal nodes of the game tree hold the payoffs
for each player at the end of every possible play. Figure 2.7 shows an example of
extensive-form game.

We now provide a formal definition of extensive-form games with perfect informa-

tion. This definition follows the one given by Osborne et al. in [37].

Definition 2.1. (Extensive-Form Game [38-40]) A finite extensive-form game G
with perfect information is a quadruple G = (N, H, P, (u;)) containing the following

components:

e A finite set N ={1,2,...,n} of players.

20

Chapter 2. Background

e H is a set of sequences, the possible histories such that

- geH.

— For h € H, we denote A(h) = {a | ha € H} to be the set of actions

available at h.

— Z C H denotes the set of terminal histories, i.e., they are not subhis-

tories of any other sequence.

e A player function P that assigns to each nonterminal history h € H\Z a

member P(h) € N. P(h) is the player who acts at the history h.

e For each player i € N, a utility function u; : 7 — R that denotes the payoff

for player ¢ at each possible terminal history.

FIGURE 2.7: Extensive-form Game Example

We illustrate the above definition for the game shown in Figure 2.7.

N = {1,2} (The set of players)
H=1{2,U,D,(U,L),(U,R),(D,L'),(D,R")} (The set of histories)
A(@)={U,D}, A(U)={L,R}, A(D)={L,R'}
Z={(U,L),(U,R),(D,L"),(D,R")} (The set of terminal histories)
H\Z ={@,U,D}
21

Chapter 2. Background

P(@)=1, P(U)=2, P(D) =2 (Player function)
w (U, L) =1, wy(U,R) =1, (D, L) =2, wy(D,R") =0 (Payoff function for
player 1)
up(U, L) =2, ug(U,R) =1, us(D, L) = 1, us(D, R') = 0 (Payoff function for

player 2)

In our research, we analyse our graph transformation games as extensive-form games.

2.2.3.1 Strategies

In game theory, a strategy is one of the most important concepts. In extensive-form
games, a strategy is a complete contingent plan explaining what a player will do at
every situation [41, 42]. We now provide a formal definition of a pure strategy in an

extensive-form game.

Definition 2.2. (Pure Strategy [42]) A pure strategy for player ¢ in an extensive-
form game is a function s; : H; — A; such that H; is the set of histories at which
player i takes an action, A, is the set of actions available to player i and s;(h) € A(h)

for each h € H;.

Consider the game shown in Figure 2.7. Player 1 has two strategies: (U, D) and
Player 2 has four strategies: (L, L"), (L, R'), (R, L"), (R, R').

A strategy profile is a collection of strategies, one for each player. Let S; denote the
set of pure strategies for player ¢ and let S denote the set of strategy profiles. Every
strategy profile s € S defines a unique outcome path O(s) showing how the game
will proceed [43]. For example, in the game in Figure 2.7, the outcome paths are as

follows:

O(U, (L, I')) = (U, L),

22

Chapter 2. Background

O(U, (L, B)) = (U, L),
O(U, (R, I')) = (U, R),
O(U, (R, R")) = (U, R),
O(D, (L, ') = (D, L),
O(D, (L, &) = (D,),
O(D, (R, L)) = (D, L),
OD,(R,R))=(D,R).

Once the strategies are obtained for every player, the next step is finding the payoffs.
The payoffs can be obtained using the outcome path of the strategy profile. Thus,
the payoff of the player i is u;(O(s)) given a strategy profile s. For example, in
the game in Figure 2.7, the payoff of player 1 for the outcome path O(U, (L, L)) is:
w (O(U, (L, L)) =1.

Definition 2.3. (Nash Equilibrium [44]) A Nash equilibrium of an extensive-form
game with perfect information G = (N, H, P, (u;)) is a strategy profile s* such that
for each player i € N, u;(O(s*;,5;)) > u;(O(s*;, s;)) for all s5; € S;.

—1) 2%

2.2.3.2 Subgame Perfect Equilibrium

In game theory, a subgame perfect equilibrium is a refinement of a Nash equilib-
rium used in dynamic games that incorporate sequential rationality [45]. Sequential
rationality means that it is common knowledge that each player will act rationally
at each future state where he moves. Subgame perfect equilibrium concept was in-
troduced by Reinhard Selten in 1965 [46].

First let us define a subgame. A subgame is a subset of an extensive-form game that

constitutes a valid extensive-form game. Formally,

Definition 2.4. (Subgame [47]) The subgame of the extensive-form game with

perfect information G = (N, H, P, (u;)) that follows the history h € H\Z is the
23

Chapter 2. Background

extensive-form game G|, = (N, H|p, P|n, (u;]n)) that satisfies the following condi-
tions:

o Ve H|p <& (hh) e H.

o P|,(h')= P(h,n') for any b’ € H|}.

o u;|n(h') = u;(h,h') for any terminal history b’ € Z|, C H|,.

Figure 2.8 shows a subgame G|y of the game shown in Figure 2.7 that follows a

history U.

FIGURE 2.8: Subgame of the Extensive-form Game Example

We illustrate the above definition for the subgame shown in Figure 2.8.

N ={1,2}
Hly ={@2,L, R}
Zly ={L, R}
Hly\Z|v = {2}
P(o)=2

ulv(L) =1 u|v(R) =1 w|v(L) =2 wlv(R)=1

A strategy profile is a subgame perfect equilibrium if it represents a Nash equilibrium
of every subgame of the original game. Let S;|, denote the set of strategies for player

i in the game G|;.

24

Chapter 2. Background

Definition 2.5. (Subgame Perfect Equilibrium [44]) A subgame perfect equi-
librium of an extensive-form game with perfect information G = (N, H, P, (u;)) is
a strategy profile s* such that for each player i € N and each h € H\Z for which

P(h) = 1 we have, u;|n(On(s*;|n, $5|n)) = wiln(On(s*,|n, s:)) for all s; € S;|.

In the game in Figure 2.7, (D, (L, L')) is the unique subgame perfect equilibrium.

2.2.3.3 Backward Induction

Backward induction is a powerful technique that has been applied to many prob-
lems in computer science. It is known as Zermelo’s algorithm, after Ernst Zermelo
(1871-1953), who used it to analyse the game of chess [48]. In game theory, back-
ward induction is a method used to solve a finite extensive-form game with perfect
information by computing subgame perfect equilibria [33]. Zermelo’s theorem states
that “every finite game of perfect information has a pure strategy Nash equilibrium
that can be derived through backwards induction” [49].

The procedure of backward induction is based on the idea that the players will start
at the end of the game tree and determine the moves giving them the highest payoff,
and work backward until reaching the beginning of the game tree [50].

In our work, we use backward induction to determine the optimal actions for the
negotiators in our extensive-form graph transformation games, and to compute the

subgame perfect equilibrium.

2.2.4 Stochastic Games

Stochastic games generalise Markov decision processes (MDPs) with multiple players
and are a basic model in game theory [51]. In stochastic multi-player games (SMGs),

the successor states are either chosen randomly or nondeterministically and the

25

Chapter 2. Background

choice of actions at the states may belong to different players of the game [52].
Turn-based stochastic multi-player games are a special case of SMGs where the
choice of action at each state is under the control of exactly one player [53]. We
now provide a formal definition of turn-based stochastic multi-player games, which

we consider in analysing our graph transformation games.

Definition 2.6. (Turn-based Stochastic Game [54]) A (turn-based) stochastic
multi-player game (SMG) is a tuple G = (I1, S, A, (S;)ien, A, AP, x), where:

IT is a finite set of players.

S is a finite, non-empty set of states.

A is a finite, non-empty set of actions.

e (S;)ien is a partition of S.

A SxA—D(S)is a (partial) transition function, where D(S) is a discrete

probability distribution over states.

AP is a finite set of atomic propositions.

x : S — 247 is a labelling function.

In each state s € S of the SMG G, the set of available actions is denoted by A(s) o

{a € A| A(s,a) # L}. We assume that A(s) # @ for all s. The choice of action
to take in s is under the control of exactly one player, namely the player ¢ € II
for which s € S;. Once action a € A(s) is selected, the successor state is chosen
according to the probability distribution A(s, a). A path of G is a possibly infinite
sequence A = syaps ap... such that a; € A(s;) and A(sj, aj)(sj+1) > 0 for all j. A

finite path is a finite such sequence.

26

Chapter 2. Background

Definition 2.7. (Strategies [54|) A strategy for player ¢ € Il in G is a function
0; : (SA)*S; — D(A) which, for each path A-s € QF where s € S; and Qf is the set

of all finite paths, selects a probability distribution o;(A-s) over A(s).

Definition 2.8. (Strategy Profile [54]) A strategy profile 0 = 04, ..., oy comprises

a strategy for all players in the game.

Definition 2.9. (Rewards [55]) A reward function r : S — Q" assigns a reward
to each state s of the game G. Transition/action rewards are also possible in SMGs,
which can easily be encoded by adding an auxiliary state per transition/action to

the model.

2.2.5 PRISM-games Model Checker

PRISM-games [56] is an extension of the PRISM model checker [57|. It is the
first tool to provide modelling for stochastic multi-player games (SMGs) [56]. It
supports the verification of probabilistic systems as turn-based zero-sum stochastic
games. The games are specified using an extension of the existing PRISM modelling
language, which is a guarded-command-based language inspired by the Reactive
Modules formalism [58]. It is built upon Markov Decision Processes (MDPs). A
model in PRISM-games consists of modules that describe the behaviour of the play-
ers. The state is determined by a set of variables and the behaviour is specified by
guarded commands.

PRISM-games specifies properties in the temporal logic rPATL [53], which combines
features of the multi-agent logic ATL, the probabilistic logic PCTL and operators
to reason about several different notions of reward measures, numerical properties

and precise probability values [59].

27

Chapter 2. Background

rPATL: rPATL (Probabilistic Alternating-time Temporal Logic with Rewards) is
a CTL-style branching-time temporal logic for expressing quantitative properties of
SMGs [54]. In rPATL, state formulae (¢) and path formulae () are distinguish-
able. The coalition operator ((C)) of ATL [60] has been adopted, combining it
with the probabilistic operator P, and path formulae from PCTL [61, 62] and a
generalisation of the reward operator R/, from [63]. A typical rPATL property is
[64]:

<< 1>>P>=0.99 | F<=5 c=2 |

which states that player 1 has a strategy to ensure that the probability of reaching a
state satisfying c=2 within five time-steps is at least 0.99, regardless of the strategies

of any other player. Another example of reward-based properties [64] is as follows:

<<pl>> R{"r"}max=" | F "success"]

which asks, “What is the maximum expected amount of reward "r" accumulated
until reaching "success"?”

The semantics and operators of rPATL have been discussed extensively in [52-54].
Currently, PRISM-games supports turn-based, perfect-information SMGs. It ex-
tends the existing PRISM model checker by providing a modelling language for
stochastic multi-player games. It provides a graphical user interface with model
editor. It also provides a discrete-event simulation tool and graph-plotting function-
ality.

The core functionality of the tool comprises methods for verifying quantitative prop-
erties of stochastic games [53, 59| and support for synthesising optimal player strate-
gies, exploring or exporting them, and verifying other properties under the specified

strategy.

28

Chapter 2. Background

2.2.6 Game Theory in Negotiation

Game theory is concerned with the mathematical models of behaviour in strategic
situations. It studies interactive decision-making in which self-interested agents in-
teract with each other, taking into account each other’s strategic decisions [65]. In
negotiation, game theory offers a very powerful tool for the design of the negotiation
process. Since the agents in the negotiation are self-interested, trying to optimise
their own outcomes while taking into account the decisions that other agents may
take, game theory gives a way of formalising and analysing these negotiation situa-
tions.

Using game theory in negotiation assumes that the negotiators are the players of
the game who have individual and joint interests. These interests are measured
by a payoff function. The agreement may benefit both negotiators but they have
different preferences for different outcomes [66]. Game theoretic techniques can be
applied to two key problems: the design of an appropriate protocol that models the
interactions between the negotiators and the design of a strategy that negotiators
can use while negotiating [67].

In our research, we use game theory to formalise and analyse our negotiation games.

2.3 Graph Transformation

Graphs and diagrams have been used to represent a variety of problems in computer
science and software engineering [68]. They provide a simple and clear structure
of systems and services. Graph Transformation Systems (GTS) have been used to
model the dynamic behaviour of systems where graphs model the systems’ states
and their evolution is specified by graph transformation rules [69]. The conceptual

(type) level of the system is represented by a type graph and its instance level is

29

Chapter 2. Background

represented by an instance graph. A type graph is usually visualised using a class
diagram in Unified Modelling Language (UML) [70]. An instance graph is visualised
by an object diagram. Graph transformation rules describe pre and post conditions
of operations.

In our research, we use a type graph to describe the negotiation entities. The graph
transformation rules are used to specify the changes to the negotiation state for each
possible move.

In the following sections, we provide fundamental concepts of graphs and graph

transformations.

2.3.1 Basic Concepts

A (directed) graph consists of a set of vertices V' and a set of edges E. Each edge

has a source and a target vertex.

Definition 2.10. (Graph [71]) A graph G = (V, E,s,t) consists of a set V of
nodes (also called vertices), a set E of edges, and two functions s,¢: E — V | the

source and target functions:

S

_—
E V
S~ "

—
/
Graphs are related by graph morphisms, which preserve the source and target of

each edge.

Definition 2.11. (Graph Morphism [71]) Given graphs G; , Gy with G; =
(Vi, E;, siy t;) for @ = 1,2, a graph morphism f : Gy — Ga, f = (fy,fg) consists
of two functions fi, : Vi — Vs and fg : By — F, that preserve the source and target

functions, i.e. fV O 81 = S OfE and fV oty =10 fE:

30

Chapter 2. Background

A graph morphism f is injective (or surjective) if both functions fy , fg are injective
(or surjective, respectively); f is called isomorphic if it is bijective, which means

both injective and surjective.

Fact 2.12. (Composition of Graph Morphisms [71|) Given two graph mor-
phisms f = (fy,fg) : Gi — Gy and g = (gv,gr) : Go — Gs, the composition

gof=1(g9vofy,grofrg): Gy — Gsis again a graph morphism.

As discussed in Section 1.3, we developed a metamodel to define the negotiation
entities. The metamodel can be conveniently expressed as a type graph, which
defines a set of types for the nodes and edges of a graph.

Definition 2.13. (Typed Graph [71]) A type graph is a distinguished graph
TG = (Vre, Erg, Sta,tre). Vre and Epg are called the vertex and the edge
type alphabets, respectively.

A pair (G, type) of a graph G together with a graph morphism type: G — TG is
then called a typed graph.

Definition 2.14. (Typed Graph Morphism [71]) Given typed graphs G =
(G, typey) and Gyf = (Go, typey), a typed graph morphism f : G — GJ is a graph

morphism f : G; — Gy such that types o f = type;:

G f— G

7

AN
typer — types
RN ¥
TG

31

Chapter 2. Background

Definition 2.15. (Labelled Graph [71]|) A label alphabet L = (Ly, Lg) consists
of a set Ly of node labels and a set Lg of edge labels. A labelled graph G =
(V,E,s,t,ly,lg) consists of an underlying graph G° = (V, E,s,t) together with

label functions
lvi V—>LvandlE:E—>LE.

In Figure 2.9 an example of a graph with node and edge labels is given.

own sellTo sendTo —
Computerf<€ Company Customer

finishReparing

FIGURE 2.9: Labelled Graph Example

Definition 2.16. (Labelled Graph Morphism [71]) A labelled graph morphism
f: Gy — Gy is a graph morphism f : GY — GY between the underlying graphs which

is compatible with the label functions, i.e. by o fy =L v and b g o fg =l 5.

A graph morphism from G; to Gs is illustrated in Figure 2.10. The dashed ver-
tical arrows represent the morphism’s node and edge mapping components. This

morphism is injective but not surjective.

Gl own sellTo

|
G2
own sellTo sendTo

finishReparing

FI1GURE 2.10: A Graph Morphism From G1 to G2

Graph transformation is most commonly defined in terms of category theory. It is

important to show that graph structures lead to categories. For example [71]:

32

Chapter 2. Background

e The class of all graphs (as defined in Definition 2.10) as objects and of all
graph morphisms (see Definition 2.11) forms the category Graphs, with the
composition given in Fact 2.12, and the identities are the pairwise identities

on nodes and edges.

e Given a type graph TG, typed graphs over TG and typed graph morphisms

(see Definition 2.14) form the category Graphsrg.

2.3.2 Algebraic Approach

Various graph transformation approaches have been developed. A general approach
is called the algebraic approach, where an entire subgraph can be replaced by a
new subgraph. The algebraic approach is based on pushout constructions in the
category Graphs of graphs. Pushouts are used to model the gluing of graphs, which

is required to apply graph transformation rules to graphs.
Definition 2.17. (Pushout [71]) Given morphisms f : A - B and g: A — C in
a category C, a pushout (D, f’, ¢') over f and g is defined by:
e a pushout object D and
e morphisms f': C — D and ¢’ : B — D with ffog=¢'of
such that the following universal property is fulfilled: for all objects X and mor-

phisms h : B — X and k : C' — X with ko g = h o f, there is a unique morphism
z:D — X such that zo¢ =h and zo f' = k:

33

Chapter 2. Background

A—Ff—B

g = g

l f | =n

C—f—D
k:\x\
\\:

We write D = B 44 C for the pushout object D, where D is called the gluing of B
and C via A.

2.3.2.1 Double Pushout Approach

We consider graph transformation based on the algebraic double-pushout (DPO)
approach that covers the main ideas underlying the algebraic approach. Graph
transformation is based on graph productions (rules), which describe a general way
how to transform graphs. In the DPO approach, a production p consists of three
graphs L, K and R. L and R are called the left-hand side and right-hand side
respectively. K is referred to as the interface or gluing graph, which represents what
the left and right hand sides have in common. The left-hand side L represents the
preconditions of the rule, while the right-hand side R represents the postconditions.

K represents a graph part that has to exist to enable the application of the rule.

Definition 2.18. (Graph Production |71]) A (typed) graph production p = (L &
K 5 R) consists of (typed) graphs L, K, and R, called the left-hand side, gluing
graph, and the right-hand side respectively, and two injective (typed) graph mor-
phisms [and r. Given a (typed) graph production p, the inverse production is

defined by p~' = (R < K AN L).

Figure 2.11 gives an example of a graph transformation rule and a match for it in
G. A graph transformation starts by finding a match m of L in the source graph
34

Chapter 2. Background

B

hasCustomer

""" Customer

own

worksFor

1 1

1 "~ 1

1 e 1

1 ".u 1

:
““{Computer}---

: :

I I

1 1

-———] = - -

FI1GURE 2.11: A Graph Transformation Rule sell_to

G. Then, m(L\I(K)) are removed from G to create an intermediate graph D.
The match m has to satisfy the gluing condition (see Definition 2.20). The graph
D = (G\m(L))Um(I(K)) is obtained by removing the vertices and edges of L from
GG that are not in the image [. In the second step, a target graph H is produced by
gluing R\/(K) and D.

Definition 2.19. (Graph Transformation [71]) Given a (typed) graph production
p=(L PLI "GN R) and a (typed) graph G with a (typed) graph morphism m : L —
G, called the match, a direct (typed) graph transformation G = H from G to a
(typed) graph H is given by the following double-pushout (DPO) diagram, where

(1) and (2) are pushouts in the category Graphs (or Graphsrg, respectively):

A sequence Gy = Gy = --- = G, of direct (typed) graph transformations is called

a (typed) graph transformation and is denoted by Gy = G,,.
35

Chapter 2. Background

Definition 2.20. (Gluing Condition [71]) Given a (typed) graph production
p = (L LI G R), a (typed) graph G, and a match m : L — G with X =

(Vx, Ex,sx,tx) forall X € L, K, R, G, we can state the following definitions:

e The gluing points GP are those nodes and edges in L that are not deleted by
P, ie. GP = lv(VK) U lE(EK) = l(K)

e The identification points IP are those nodes and edges in L that are identified
by m,ie. IP={ve V,|Jwe Vi,w#v:myv)=my(w)} U{eecE|
If € Er, f # e:mp(e) = mg(f)}.

e The dangling points DP are those nodes in L whose images under m are the

source or target of an edge in G that does not belong to m(L), i.e. DP =

{ve V| 3ee Eg\mg(EL) : s¢(e) = my(v) or tg(e) = my(v)}.

Now we define the (typed) graph transformation systems that we consider in our
approach to implement our graph transformation games. A graph transformation

system is defined by applying a set of productions on a graph.

Definition 2.21. (Graph Transformation System [71]) A typed graph trans-
formation system GTS = (TG, P) consists of a type graph TG and a set of typed

graph productions P.

2.3.3 Typed Attributed Graphs

Graph transformation has been used as a meta-language to specify and implement
visual modelling techniques, like the UML [72]. In most visual modelling tech-
niques, (typed) attributed graphs are used as a representation mechanism [73]. An

attributed graph can be seen as a graph where attributes are assigned for the nodes

36

Chapter 2. Background

and edges [74]. Several different concepts for typed and attributed graph transfor-
mation have been proposed (e.g. [72-74]). These approaches followed the algebraic
approach to provide formal definitions of attributed graph transformation. In [72],
the authors introduced a new concept, which is called, E-graphs, which allows both

node and edge attributions.

Definition 2.22. (E-graph and E-graph Morphism [71]|) An E-graph G with

G = (Va, Vp, Eq, Ena, Ega, (source;, target;) je(c,na,pa}) consists of the sets:
e Vs and Vp, called the graph and data nodes (or vertices), respectively;
e g, Eya, and Egy, called the graph, node attribute, and edge attribute edges,
respectively;

and the source and target functions:

e sourceq : Fg — Vg, targetqg : Eq — V¢ for graph edges;
o sourceyy : Eya — Vg, targetya : Ena — Vp for node attribute edges; and

o sourcegs : Epa — Eg, targetgs © Egqa — Vp for edge attribute edges

Consider the E-graphs:

G' and G* with G* = (V§, V&, B, EE, Ef, (sourcey , target!)jeqa.na,pay) for k =
1,2. An E-graph morphism f : G1 — G2 is a tuple (fv,, fvy,s foes foyas fep,) With
fv. o Vi = VZand fg, : B} — E? for i € {G,D}, j € {G,NA, EA} such that f

commutes with all source and target functions, for example fy o sourcel, = source? o

fEG .

Definition 2.23. (Attributed Graph and Attributed Graph Morphism [71])

Let DSIG = (Sp, OPp) be a data signature with attribute value sorts S;, C Sp. An

37

Chapter 2. Background

attributed graph AG = (G, D) consists of an E-graph G together with a DSIG-
algebra D such that L.Jsegb D, = Vp.

For two attributed graphs AG' = (G',D') and AG? = (G?, D?), an attributed
graph morphism f : AG' — AG? is a pair f = (fg, fp) with an E-graph morphism

fo : GY — G? and an algebra homomorphism fp : D* — D?

Definition 2.24. (Typed Attributed Graph and Typed Attributed Graph
Morphism [71]) Given a data signature DSIG, an attributed type graph is an
attributed graph ATG = (TG, Z7), where Z is the final DSIG-algebra. A typed
attributed graph (AG,t) over ATG consists of an attributed graph AG together
with an attributed graph morphism ¢ : AG — ATG.

A typed attributed graph morphism f : (AGYt') — (AG? t?) is an attributed

graph morphism f : AG! — AG? such that t?> o f = t1.

In Figure 2.12, we give an example of an attributed type graph where we have graph
nodes and data nodes. Attributes can be inscribed within the object vertex they
belong to, as demonstrated in Figure 2.13a. In Figure 2.13b, we have an example of

a typed attributed instance graph.

| Y.
! - - -~ -
cuname_ <~ . °
: g Ty [0 Graph mdes
] ~ _. ’ G
tname) A ‘4 .
I !) Data nodes
1 N -
I (Vp)
———> Graph Edges
! ; ' (Eg)
! serialNo sold G
I .’ I Node
1 ’ - -
: QoS ‘\‘ .- Yo Attribute Edges
------ tid----» it " bool (Ey,)

~
-—-- L

~

FIGURE 2.12: Attributed Graph Example

38

Chapter 2. Background

Customer

cuname: string

hasCustomer

Technician Company Computer

tname: string worksFor cname: string brand: string
sold: bool
serialNo: int

tid: int

Customer

cuname =""Moh"'

hasCustomer

Technician Company Computer

tname ="Abd" |_WOrksFor |cname = "Tech” brand = "Mac"

tid = 12345 sold = false
serialNo = 9673

(b)

FIGURE 2.13: Attributed Graph (a), and Its Instance (b)

In our approach, we use the Henshin transformation tool [75], which has its roots
in attributed graph transformations. It offers a formal foundation for validation of
EMF model transformations. The EMF model can be seen as a type graph with
attribution, inheritance and multiplicities and its instance model can be seen as a

typed attributed graph [76].

2.3.4 Henshin Language and Tools

In this section, we introduce the Henshin transformation language and tool environ-
ment that we use in our implementation of graph transformation games. Henshin

[75] is an Eclipse plug-in that supports visual modelling and execution of rule-based

39

Chapter 2. Background

EMF model transformations. Henshin extends the transformation language of EMF
Tiger [77]. Its transformation rules are supported by powerful application conditions
and flexible attribute computations. They can be structured by means of transfor-
mation units that can control the order of rule applications. Currently, Henshin

comprises three modules:

1. a tree-based and a graphical editor for defining transformation systems.
2. a runtime component, currently consisting of an interpreter engine.

3. a state space generator and an extension point for analysis tools.

Before defining rules in Henshin, a metamodel should be created using the EMF
Eclipse plug-in. The rules can be applied to an instance model of the metamodel,
which can also be created using EMF tools.

Henshin offers a visual syntax, and sophisticated editing functionalities, execution
and analysis tools. There are two editors to define model transformations in Hen-
shin: i) a tree-based editor, generated by EMF itself, and ii) a graphical editor,
implemented using GMF.

The graphical editor shows rules in an integrated manner with the pattern to find
(left-hand side, LHS), the resulting pattern (right-hand side, RHS) and application
conditions. At the top of every rule, its name and parameters are specified. Inside
a rule, we create Nodes, Edges and Attributes. The nodes represent the classes of
the metamodel and the edges are used to specify the link between nodes. Nodes and

edges are annotated with stereotypes (actions). There are a number of actions:

e preserve: the node/edge is preserved during the rule application.

e delete: delete an existing node/edge after the rule application.

e create: create a new node/edge after the rule application.

40

Chapter 2. Background

e forbid: forbid the existence of a node/edge during the rule application.

Figure 2.14 illustrates how the rule sellTo would be represented in Henshin. In
this example, we show how the attribute sold value can be changed during the rule

transformation.

= Rule sellTo

hasCustomer
«preserve»

«preserve» own |[«preserve» own «preserve»
:Company oot :Computer :Customer
«delete» «create»

1 sold=false->true

FIGURE 2.14: sellTo Transformation Rule

Henshin also provides tools for generating and analysing the state spaces of model
transformation. It starts from some initial states and executes the transformation
rules until reaching the terminal states, where no rules can be applied. Figure 2.15
illustrates the transformation rules of a graph transformation system called Com-
puter. In Figure 2.16, we show the generated state space for the Computer graph
transformation system. Here, we use the instance graph in Figure 2.13b as an initial

graph.

2.4 Summary

In this chapter, we provided detailed information about feature modelling. We ex-
plained the semantics of feature models, the configuration techniques, the feature

modelling methods and the tools that support the creation of feature diagrams. We

41

Chapter 2. Background

'% Rule sellTo) 5 Rule SendTo
hasCustomer
«preserve» \|/
«preserve» «preserve» «preserve» «preserve» | repair «preserve» own «preserve»
:Company | °W"___:Computer OWn __ |:Customer :Technician :Computer :Customer
«delete» | o sold=false->true | “create» «create» = sold=true | «Preserve»

L

=» Rule return =» Rule finishRepairing

hasCustomer

«preserve» L

«preserve» own «preserve» own «preserve» «preserve» repair «preserve» own «preserve»
:Company :Computer :Customer :Technician :Computer :Customer
« » - «delete» .
create 1 sold=true->false «delete» = sold=true «preserve»
«preserve» L
repair :Technician
«forbid»

FI1GURE 2.15: Computer Graph Transformation System Rules

sellTo

return

finishRepairing

SendTo

FIGURE 2.16: Computer State Space

also discussed the use of feature models in web services to support service customi-
sation.

We moved on by giving basic game theoretic concepts related to our work, includ-
ing the definition of extensive-form games and stochastic games. We discussed the
PRISM-games model checker that we use in our analysis of our graph transformation
games. We also presented the use of game theory in negotiation.

At the end, we provided information about graph transformation and the algebraic
approach, including the formal definitions of graphs, graph morphism, graph produc-
tion and graph transformation system. We discussed typed attributed graphs and

their usage in our approach. Finally, we presented an overview about the Henshin

42

Chapter 2. Background

transformation language and tool environment that we use in our implementation.

43

Chapter 3

Graph Transformation Games for

Negotiating Features

The negotiation games proposed in this chapter model the interaction between a
provider and a requestor who use feature models to represent service configurations.
The approach seeks to enable the service provider and requestor to discuss their
preferences in order to reach an agreement that benefits both of them. The negoti-
ation depends on selecting and deselecting features which represent the services and
their characteristics.

The negotiation process may be represented graphically to show how a negotiation
state may actually change and evolve. For dynamic graph-like structures, graph
transformation provides a formal specification technique which supports visual and
rule-based transformation for graph structures. Therefore, graph transformation
games are proposed in order to model our negotiations and to analyse the providers
and requestors’ strategic choices. We aim to provide a negotiation framework using
game-theoretic techniques. A graph transformation game is a state-based game in
which the states of the game are given by graphs. The rules of the game are defined

by graph transformation rules which determine the players’ available actions.

44

Chapter 3. Graph Transformation Games for Negotiating Features

In this chapter, we start with a scenario to motivate and explain the proposed ap-
proach in Section 3.1. In Section 3.2, we discuss the feature negotiation games. Sec-
tion 3.3 presents the definition of graph transformation games. Section 3.4 provides
a detailed explanation of the implementation of the graph transformation games.

Section 3.5 concludes the chapter.

3.1 Motivating Example

To illustrate the approach, a small example is presented in this section and is used
as a running example throughout this thesis. It is concerned with the negotiation
between a travel agency (service provider) and a service requestor aiming to reach
an agreement and establish a contract. The travel agency offers different packages
of holiday services with specific variability of Location, Accommodation and Trans-
portation described in the feature model shown in Figure 3.1. The root feature
Holiday Services denotes the main concept of the feature model. Subsumed under
the root feature are four child features: Location, Transportation, Accommodation
and Catering. Location, Transportation and Accommodation are mandatory fea-
tures whereas Catering is an optional feature. Location is a required feature as it
indicates the location of the preferred holiday. Transportation has two features in
an Or group: Airplane and Train. The requestor of this service is required to choose
at least one transportation type if they select Transportation. Accommodation has
two features in an Alternative group: Caravan and Hotel. The travel agency offers
two types of accommodation; only one of them can be selected in a holiday service.
Catering can be offered as an Optional feature.

Let us consider that the service requestor is interested in booking a holiday with
specific requirements. For example, the requestor wishes to hire a private car for

transportation and a hotel for accommodation for a specific location.

45

Chapter 3. Graph Transformation Games for Negotiating Features

Holiday Services

Location Transportation Catering
/‘\ Accommodation
Airplane Train
Hotel Caravan

FIGURE 3.1: Travel Agency Feature Model

If we consider these requirements as a set of features, it is obvious that the travel
agency cannot provide these exact requirements as they do not offer a car for trans-
portation.

Therefore, in an inflexible scenario in which the requestor is not willing to change
their original requirements according to the available alternative offers, no business
will be conducted. Losing the deal may affect both the service provider, who wants
to gain more profits, and the service requestor, who is interested in making a deal
with a certain provider for some reasons, such as reliability, price, etc.

For the service requestor, in today’s business, it is necessary for them to be more
flexible and able to change their original requirements according to the available
offers. Therefore, a negotiation allows them to explore the possible solutions and
reach an agreement.

In this example, the provider initially offers airplane as an alternative feature to the
car requested. Then, the requestor can start a negotiation with the provider to add
or remove existing features. The provider can also start suggesting changes to the

original requirements which may be of interest to the requestor.

46

Chapter 3. Graph Transformation Games for Negotiating Features

3.2 Feature Negotiation Games

In our negotiation, there are two negotiators, service provider and service requestor,
a feature model describing the supplied services, a configuration representing a valid
combination of services, and a set of negotiation actions such as propose, accept
proposal and reject proposal. The negotiators can make proposals to add and with-
draw features to/from the configuration. They can respond to proposals by either
accepting or rejecting them.

In our running example, there are four available proposals which can be accepted or

rejected according to the negotiators’ preferences, as follows:

1. Add Catering feature: the negotiators can propose adding Catering to the

holiday as it is an optional feature.

2. Add Train feature: the negotiators can propose adding Train as another type
of transportation. This is correct according to the travel agency feature model

(Or group).

3. Withdraw Airplane feature: the negotiators can propose withdrawing Airplane
after accepting the addition of Train so at least one of them exists in the

configuration.

4. Add Caravan feature and withdraw Hotel feature: the negotiators can propose
adding Caravan and withdrawing Hotel as at most only one of them can be

selected.

In order to enable us to formulate a negotiation as a two-player negotiation game,

three assumptions are made:

47

Chapter 3. Graph Transformation Games for Negotiating Features

1. Information is complete. This assumption implies that each player has full
knowledge of the other’s preferences. Although games with incomplete in-
formation appear more realistic than games with complete information, the
proposed approach is an important step in solving incomplete information

games.

2. The rules of the game (protocol) are known, as these tell what actions are

permitted.

3. The feature model which describes the services is publicly known so the re-

questor can add and remove features based on the given feature model.

The negotiators can achieve a gain by reaching a satisfactory agreement. The service
provider can determine the gain of each feature by calculating the difference between
its cost and its price. Therefore, given the price P and the cost Co of a feature f,

the valuation function of the provider can be defined as:

Wepo(f) = P(f) = Co(f) (3.1)

This function returns a real value for a feature f to the service provider. Conse-
quently, the utility function of the provider returns the total value of all features in

the configuration C'; which can be defined as:
UPTO<C) = Z WPro(f) (32)

Similarly, the service requestor can determine their gain for each feature by calcu-
lating the difference between its price and its value. The value of a feature for the
service requestor cannot be measured directly but it can be measured indirectly.
Certain factors can be used to measure and determine these values. For example,

the service requestor may prefer Airplane to Train because the airplane is more

48

Chapter 3. Graph Transformation Games for Negotiating Features

comfortable and the trip duration is shorter, although the train is cheaper in price.
Thus, the values that the service requestor obtains from a feature may overcome its
price, although the price is high. Therefore, given the price P and the value V of a

feature f, the valuation function of the requestor can be defined as:

Wrey(f) = V() = P([) (3-3)

The utility function of the requestor returns the total value of all features in the

configuration C, which can be defined as:

UReq(C) = Z WReq(f) (3'4)

fec

In Table 3.1, we show the cost, price and value of each feature in our running ex-

ample.

Feature Cost Price Value
Transportation- Train 2 4 6
Transportation- Airplane 5 9 12
Accommodation- Caravan 3 5 9
Accommodation- Hotel 5 10 17
Catering 3 8 11

TABLE 3.1: The Cost, Price and Value of Each Feature

To play a game, we assume as given:

e Two players Pro, Req representing the provider and the requestor.

e A feature model FM describing the available services. It consists of a set of

features, F'.

e A feature configuration C' representing the configuration under discussion.

49

Chapter 3. Graph Transformation Games for Negotiating Features

e Two payoff functions Up,,(C), Uge,(C). Each negotiator has its own payoff
(utility) function, as shown in (3.2) and (3.4). These functions return real

values for every configuration C for the provider and the requestor.

In order to implement the feature negotiation games, the feature model, configura-
tion, negotiators and types of proposals must be defined. Moreover, the rules of the
games must be designed carefully to define the interaction of the negotiators, which

details what and when actions are permitted.

3.3 Graph Transformation Games

As an implementation of our feature negotiation games, we propose graph trans-
formation games which combine both graph transformation and game theoretical
concepts. We aim to use graph transformations to model the negotiation games as
state-based transformations while game theory is used to analyse the interactions
between states.

Using game theory in our negotiation assumes that the negotiators are the players
of the game, who have individual and joint interests. These interests are measured
by payoff functions.

In graph transformation, there are two main components: graphs and rules that can
be applied to these graphs. In the following, we describe the use of these components

in the implementation of our feature negotiation games:

Graphs: A graph transformation game is a game whose states are given by graphs.

Such a graph consists of:

1. A feature model describing the set of all possible configurations by listing the

existing features and their dependencies.

20

Chapter 3. Graph Transformation Games for Negotiating Features

2. The current configuration under discussion consisting of all features agreed

thus far.

3. A negotiation state, e.g., proposals to add or remove features, both current
and past (in order to avoid repetition of proposals), as well as information on

whose turn it is to accept or reject a feature or make a new proposal.

In each graph, we calculate the payoffs (utilities) of both players for the current
configuration under discussion. This means that, after accepting the addition of any
feature, the value of that feature will be added to the total payoffs of the current
configuration. Similarly, when removing a feature from the configuration, the value

of that feature will be deducted from the total.

Graph Transformation Rules: In graph transformation games, the players’
moves are defined by graph transformation rules. These moves are defined as oper-

ations in which the rules describe their pre and post conditions.

Graph Transformation Game:

The definition of a graph transformation game therefore consists of:

e A type graph TG to define the set of possible states G(TG).

A set of players P representing the provider and the requestor.

A set of rules R where R(p) C R is the set of rules for player p. The rules

describe the available moves of the players in the negotiation.

A start graph Gy as initial state.

For each player p a payoff function f,(G) = y that defines a real-valued eval-
uation for each graph G € G(TG). The value of each graph represents the

value of the configuration under discussion.

51

Chapter 3. Graph Transformation Games for Negotiating Features

As we will see in Section 3.4, our games are turn-based, where players take turns
when playing. Each state is under the control of exactly one player. The players
who control the states are determined by the rules. The implementation of the

turn-based interaction in our graph transformation games is illustrated as follows:

e The type graph T'G contains a superclass P with a set of subclasses { Py, ..., P, }
to represent the players and a class T to represent the turn. The turn T can

only be associated with exactly one player.

P

1ln:int

0..

p| - |P,

e For each r € R(i), the turn T is associated with the player i in the left-hand

side of the rule.

7] P V¢ rus
n =1

3.4 Implementation

In this section, we introduce the implementation of our graph transformation games.
We have developed a metamodel to define the negotiation entities and describe the
relationships between them in Section 3.4.1. Using this metamodel, the negotiation
of features can be precisely specified as graph transformation rules, as described in

Section 3.4.2.

52

Chapter 3. Graph Transformation Games for Negotiating Features

3.4.1 Game Metamodel

In Figure 3.2, we present a metamodel to define the negotiation entities and describe
the relationships between them. It will also be used as a type graph to implement our
transformation rules. It consists of three representations. The first representation
describes the feature model including the types of features and the relationships
between them. The second representation describes the configuration and its selected
features. The third representation describes the negotiation states including the
negotiators and the types of proposals. A Container class contains all other classes
and it will be used to create the dynamic instance graph. A Count is a class that
is used to indicate the time of each proposal. A Start class is used to specify who
starts the negotiation. A Make class indicates the time of making and responding
to proposals. A Move class is used to design taking turns and a Pass class is used
to allow passing turns. In the following, we describe each representation with its

concerned classes.

The Feature Model Representation: a FeatureModel class represents the
feature model that is used to describe the services. It has exactly one Root feature
and a set of SubFeature(s). Root and SubFeature(s) are specialisations of a
Feature class, so they inherit its functionality. A Feature has a name attribute of
type String to assign a name to every feature and an order attribute of type Integer
in case the features have to be proposed in a specific order. The SubFeature has
four subclasses, Mandatory, Alternative, Optional and Or classes. These are
the types of feature in every feature model. Every SubFeature has two attributes:
Rpayoff and Ppayoff, of type Integer. Rpayoff represents the value of the feature
to the requestor and Ppayoff represents the value of the feature to the provider.

Each SubFeature must have exactly one parent of type Feature and each Feature

23

Chapter 3. Graph Transformation Games for Negotiating Features

has zero or more children of type SubFeature. Also, the SubFeature can include

or exclude any other Subfeature.

hasMove
O"*
H Start H Make B Move H Pass
0..* hasPass
0..* 0..% 0..% 0..%
make 4os
currents tart maove p
sta
B Count " B Container party
= count : Elnt— count proposals
featuremodels
B)) FEmm -~ W= ISFE s === g1 = |7
| H FeatureModel hasConfig 0..4| E Configuration || H Party
| ||| = id: Elnt 0..* responsibleFor
| I = Rtotal : EInt || |
= Ptotal : EInt || 1..1
| Il 1|.|.1
hasRoot hasFeature
l I hasOccurences|I toConfig by/ |EReq | B Prov
=) Current || E Feature = =18 Occurrence|)
isCurrent| = name : EString (} = num : Elnt| || 0..*
0% = order : Elnt hasChild [: H Proposal

exclude | |
1 . L* 0.* I |
5 Root E SubFeature 1 [
hasParent | = Rpayoff : Elnt 0. || add l |

= Ppayoff : Elnt

|

|

|

|

|

|

|

|

I | = t: Elnt |
|

|

E Add | Withdraw I
|

|

|

|

|

|

|
|
|
l |
| 1l o
| 0. I l
. | 0..*

| 1 withdraw |
| include T |
| H Mandatory H Optional H Or |H Alternative I I|

|
| |l II
L - - ______ e L ___ _ P

. Configuration Negotiation States
Feature Model Representation . .
P Representation Representation

FIGURE 3.2: Metamodel for Negotiation

The Configuration Representation: the FeatureModel has a set of Con-
figuration(s). Each Configuration has a set of Occurrence(s) of Feature(s).
This means that these features have been selected in the configuration. The Con-
figuration has three attributes: a unique ID of type Integer, Rtotal of type Integer

to represent the value of all selected features in the configuration to the requestor,

o4

Chapter 3. Graph Transformation Games for Negotiating Features

and Ptotal of type Integer to represent the value of all selected features in the con-
figuration to the provider. These values are calculated according to utility functions

(3.2) and (3.4).

The Negotiation States Representation: a Prov (provider) and a Req (re-
questor) are subclasses of the Party class that represents the negotiators. The
Party is linked to the Configuration to represent who is responsible for making
changes to the resulting configuration. The Party can make any number of Pro-
posal(s). The Proposal has two subclasses, Add and Withdraw. The Party
can propose to Add or Withdraw any type of features specified by the rules. The

Proposal is linked to the Configuration to keep track of what has been proposed.

3.4.2 Game Rules

Based on the metamodel in Figure 3.2, we can define the rules that govern the
players’ moves as graph transformation rules. The design of an appropriate negotia-
tion protocol that governs the interactions between the negotiators is one of the key
problems that must be considered. For that reason, we outline the properties which

have been taken into account while designing our negotiation protocol as follows:

1. Flexibility: this property is concerned with the level of flexibility in terms of

what is allowed /not allowed to the negotiators at each state of the negotiation.

2. Simplicity: a protocol is simple if it is not complicated in its specifications

and implementations.

3. Applicability with feature modelling: our protocol is designed to define

the rules that can be applied to the feature modelling context. For example,

95

Chapter 3. Graph Transformation Games for Negotiating Features

the protocol should define the rules of adding and withdrawing features to the

feature model configuration.

4. Equality: this property means that both negotiators have the same rights
and equal access to all the negotiation aspects. Also, no negotiator has higher
power than others to force them to accept their proposals or terminate the

negotiation.

Before defining our negotiation protocol, the following are the actions for each player

based on the types of feature:

1. Actions for making proposals: the negotiators have five actions to propose
adding and withdrawing features from the feature Configuration depending on

the types of feature, as follows:

(a) Propose adding Optional feature: the negotiator proposes adding a new

Optional feature to the Configuration.

(b) Propose adding Or feature: the negotiator proposes adding a new Or

feature to the Configuration.

(c¢) Propose withdrawing Optional feature: the negotiator proposes with-

drawing an existing Optional feature from the Configuration.

(d) Propose withdrawing Or feature: the negotiator proposes withdrawing

an existing Or feature from the Configuration.

(e) Propose substituting Alternative feature: the negotiator proposes substi-
tuting an existing Alternative feature in the Configuration with another

Alternative feature.

2. Actions for responding to proposals: the negotiators have 10 actions to respond

to the proposals by either accepting and rejecting, as follows:

26

Chapter 3. Graph Transformation Games for Negotiating Features

(a)

Accept adding Optional feature: the negotiator accepts the other nego-

tiator’s proposal to add a new Optional feature.

Reject adding Optional feature: the negotiator rejects the other negotia-

tor’s proposal to add a new Optional feature.

Accept adding Or feature: the negotiator accepts the other negotiator’s

proposal to add a new Or feature.

Reject adding Or feature: the negotiator rejects the other negotiator’s

proposal to add a new Or feature.

Accept withdrawing Optional feature: the negotiator accepts the other

negotiator’s proposal to withdraw an existing Optional feature.

Reject withdrawing Optional feature: the negotiator rejects the other

negotiator’s proposal to withdraw an existing Optional feature.

Accept withdrawing Or feature: the negotiator accepts the other nego-

tiator’s proposal to withdraw an existing Or feature.

Reject withdrawing Or feature: the negotiator rejects the other negotia-

tor’s proposal to withdraw an existing Or feature.

Accept substituting Alternative feature: the negotiator accepts the other

negotiator’s proposal to substitute an Alternative feature.

Reject substituting Alternative feature: the negotiator rejects the other

negotiator’s proposal to substitute an Alternative feature.

3.4.2.1 Alternating-offer Negotiation Protocol

In this section, we introduce our negotiation protocol as an Alternating-offer Negoti-

ation Protocol in which the negotiators interact by taking turns in making proposals.

Alternating-offer protocols are widely used in negotiation to provide certain goals

o7

Chapter 3. Graph Transformation Games for Negotiating Features

and objectives. In our negotiation, the rules in the Alternating-offer protocol are
used to guide the negotiators in proposing and responding to proposals at specific
times.

The negotiators have the following possible actions:

1. Propose: the negotiators make proposals.
2. Respond: the negotiators accept or reject the proposals.

3. Pass turn: a negotiator passes its turn to the other negotiator if it does not

want to make a proposal at a certain time.

The design of the Alternating-offer Negotiation protocol depends on the idea that
the negotiation takes place over a sequence of rounds. Figure 3.3 describes the
Alternating-offer Protocol using a state-chart diagram. It shows how the negotia-
tors interact by taking turns to construct the negotiation game in a tree structure.
The protocol refers to the negotiators as Negotiator 1 and Negotiator 2. As dis-
cussed before, the assumption is that we have two negotiators, the service provider
and the service requestor (Negotiator 1 and Negotiator 2), who negotiate over a
feature model configuration by exchanging proposals for adding, withdrawing and
substituting features.

Given that domain, the Alternating-offer Negotiation Protocol is described in Fig-
ure 3.3 as follows: negotiation takes place by the negotiators taking turns, in which

each negotiator proposes and responds to proposals at a specific time.

o8

Chapter 3. Graph Transformation Games for Negotiating Features

Start

:

Negotiator 1 makes proposal

e,

Negotiator 2 responds to proposal

Negotiator 2 passes turn Negotiator 2 makes proposal

Negotiator 1 responds to proposal

Negotiator 1 passes turn

Negotiator 1 makes proposal —

No proposals

No proposals @

FIGURE 3.3: Alternating-offer Negotiation Protocol State-chart Diagram

Negotiator 1 begins at round 0 by making a proposal, to which Negotiator 2
can respond by either accepting or rejecting it. After responding to the proposal,
Negotiator 2 can either make a new proposal or pass turn to Negotiator 1. If
Negotiator 2 makes a new proposal, Negotiator 1 can respond to it by either
accepting or rejecting it. Then, Negotiator 1 can either make a new proposal
or pass turn to Negotiator 2. If Negotiator 2 passes turn to Negotiator

29

Chapter 3. Graph Transformation Games for Negotiating Features

1, again the same process is followed by allowing Negotiator 1 to make a new
proposal or pass turn to Negotiator 2. This process continues until there are
no proposals left to be made or if neither negotiator wants to make a new proposal,

and this can be achieved if both pass turns one after the other.

3.4.2.2 Application to Running Example

The initial configuration in our running example contains: Airplane for Transporta-
tion and Hotel for Accommodation. Figure 3.4 shows part of the negotiation game
tree, which is constructed based on the Alternating-offer Negotiation Protocol. It
provides an example of a sequence of rounds in which the negotiators take turns in
exchanging the proposals. In this example, it assumes that the requestor starts the
negotiation by making one of three available proposals at round 0. After that, the
provider can accept or reject the proposal and then make a new proposal or pass
turn and so on. In this figure, blue nodes represent the requestor’s decision nodes,
while red nodes represent the provider’s decision nodes. The terminal nodes of the
tree can be reached if there are no available proposals left or two pass actions have

been made one after the other.

3.4.2.3 The Graph Transformation Games in Henshin

In order to implement the available actions for the negotiators according to the
given interactions in Figure 3.3 in which the parties take turns, we divided our
rules into three categories. First, rules for starting the negotiation. Second, rules
for describing the moves of the requestor. Third, rules for describing the moves
of the provider. The names of the requestor rules start with “Req” prefix and the
names of the provider rules start with “Prov” prefix. We created two versions of

our negotiation rules. The first version allows the negotiators to make any available

60

Chapter 3. Graph Transformation Games for Negotiating Features

Propose to add Optional (Catering) Propose to substitute (Hotel,Caravan)
Propose to add Or (Train) \‘
Accept to add Optional Accept to add Or Accept to Substltute
Reject to add Optmna Re_]ect to add Or Re_]ect to Substitute
Round 1

Propose to add Or (Train)

Propose to substitute (Hotel Caravan)
Requeslor Requestor
Pass

Accept to add Or
Accept to add Substltute

RE’JCCT to add OT Reject to Subsntute

@

FIGURE 3.4: Part of the Negotiation Game Tree

Round 2

.

proposal at each proposing time. The second version explores the feature model in
a specific order in which only one feature can be proposed at each proposing time.
In this section, we firstly provide a detailed description of the first version of our
negotiation rules. Then, we present an example rule of the second version. In all
rules, the explanation of Count, Start, Make, Move and Pass instances are omitted
as they are only used to design the behaviour of the negotiators but not the actual

negotiation of features.

1. Five rules for making proposals:

(a) propose_to_addOpt: the negotiator proposes adding a new Optional

feature to the Configuration.

61

Chapter 3. Graph Transformation Games for Negotiating Features

In Figure 3.5, the Req_propose_to_addOpt rule is shown. It has four pa-
rameters, featureName, time, Pt, and Rt. According to its precondi-
tions, there should be an Optional feature, a Req, a Configuration,
a parent Feature of the Optional feature that has an Occurrence in
the Configuration, and a Container. The parent Feature is needed to
maintain the consistency of the Configuration because the child features
cannot be added without their parents. The Optional feature has an at-
tribute name which takes the value of the parameter featureName. The
Configuration has two attributes: Rtotal, which takes the value of the
parameter Rt, and Ptotal, which takes the value of the parameter Pt.
This rule has four negative application conditions. The Optional feature
has not been added before. The Optional feature has not been withdrawn
before. The Optional feature is not currently occurring in the Configura-
tion. The Optional feature is not excluded by a feature that is occurring
in the Configuration. The negative application conditions are expressed
by forbid actions.

In this case, the rule Req propose_to_addOpt can be applied with the re-
sult of preserving objects expressed by preserve actions and creating one
Add proposal instance in the current time (time+1). The Add object
has a link to the Optional feature that is proposed, a link to the Con-

figuration and a link the Req. These are expressed by create actions.

propose_to_addOr: the negotiator proposes adding a new Or feature to
the Configuration. In Figure 3.6, the Req_propose_to_addOr rule is shown.
It has four parameters, featureName, time, Pt, and Rt. According to
its preconditions, there should be an Or feature, a Req, a Configura-
tion, a parent Feature of the Or feature that has an Occurrence in

the Configuration, a sibling Or feature that also has an Occurrence in

62

Chapter 3. Graph Transformation Games for Negotiating Features

@ Rule Req_propose_to_addOpt(featureName, time, Rt, Pt)
«forbid#add» withdraw «forbid#withdraw»
:Add add
1 forbid#p:
«forbid#adds REseey dass
:Optional
wpreserves — hasP.
Eaatirs hasParent = name=featureName ok =
«preservef
«preserve «delete»
" hasMove F
eOkiTE exclyde A iReq ghiove
exclude «forbid#exclide» ockurs ang «delete»
presbrves «forbid#exclyder 1 N\ A
Hrespive «forbidi#occu» " By mave
«preserve» forbi forbid#foccu» ohte «delpter pass
:Occurrence :SubFeature \Ocourrence N «forbid¥passn
reate
:Add
odcurs = t=time+1
«forbidftexclude» hasOccurences
hasOcgurences «forbidfoccu» D §
«forbid#exclude» proposals for
"prajerve- :Occurrence togénfig :Make
aite
hasOccyrrences
«forbid#¢xclude» «preserve»
:Configuration
= Ptotal=Pt
“preserve» = Rtotal=Rt preserves|
:Start start — -G iner [
«preserve»
[nernates make ¢ padss \Cwn\tN
|Make | «ch’bid" ass» «presagver
| reaten S
L <preserve» ; forbi «preserven
:Prov hasPass :Pass :Count
«forbid#pass» = count=time->time+1

FiGURE 3.5: Transformation Rule Req_propose_to_addOpt

the Configuration, and a Container. The parent Feature is needed to
maintain the consistency of the Configuration. The sibling Or feature is
used to show that the existence of the parent requires the existence of at
least one Or child feature. The Or feature has an attribute name which
takes the value of the parameter featureName. The Configuration has
two attributes: Rtotal, which takes the value of the parameter Rt, and
Ptotal, which takes the value of the parameter Pt.

This rule has four negative application conditions. The Or feature has
not been added before. The Or feature has not been withdrawn before.
The Or feature is not currently occurring in the Configuration. The Or
feature is not excluded by a feature that is occurring in the Configuration.
The negative application conditions are expressed by forbid actions.
After applying the Req_propose_to_addOr rule, objects expressed by pre-

serve actions are preserved and one Add proposal instance is created in

63

Chapter 3. Graph Transformation Games for Negotiating Features

the current time (time-+1). The Add object has a link to the Or feature
that is proposed, a link to the Configuration and a link to the Req. These

are expressed by create actions.

$ Rule Req_propose_to_addOr(featureName, time, Rt, Pt)
- - forbid#add»
«forbid#with» i —
.Withdraw withdraw :Add «forbid#pass» | |«delete»
forbid#with» :Pass :Move
ad
«preserve» «preserve» «forbidfadd» I
:0r hasharent :Feature hasParent «preserve» hasHass adelbtes moye
«preserve» :Or foitidA «delete»
«preserve» »
pregany 1 name=featureName bl e
exclude «preserve»
" :Req
«forbid#gxclude»
\
ocqurs ocqure «forbid#exclude» exclude add
i ~
«presprve» «presprve» :SubFeature forbid#teyclude» ocdurs «Createn b
«forbid#occ» e . “Creafe
N
occrs «create
; :Add
«preserve» «forbid#gxclude» forbh :
:Occurrence «preserve» forbidffexclude» :Occurrence | D tetime+1
:Occurrence :Occurrence el
hasOccufgnces » g osall
! hasO P proposals
hasOcclrences hasOccurénces «forbldFexNudes i?mg‘.’ ”ig‘éfs L el
«preserve» «presprve»
e
«preserve» &~
:Configuration
“®| I Ptotal=Pt
= Rtotal=Rt
i «preserve»
Sproseives coun :Container
o o—!
:Count «preserve»
3 count=time->time+1 0
start
«presprve»
“preserve» «forbid#pass» «forbid#make» “oresie” «preserve»
:Prov hasPass :Pass :Make :Make :Start
«forbid#pass»

FIGURE 3.6: Transformation Rule Req_propose_to_addOr

(c) propose_to_withdrawOpt: the negotiator proposes withdrawing an ex-
isting Optional feature from the Configuration.
In Figure 3.7, the Req_propose_to_withdrawOpt rule is shown. It has four
parameters, featureName, time, Pt, and Rt. According to its precon-
ditions, there should be an Optional feature that has an Occurrence
in the Configuration, a Req, a Configuration, and a Container. The
Optional feature has an attribute name which takes the value of the
parameter featureName. The Configuration has two attributes: Rtotal,
which takes the value of the parameter Rt, and Ptotal, which takes the

value of the parameter Pt.

64

Chapter 3. Graph Transformation Games for Negotiating Features

This rule has three negative application conditions. The Optional feature
has not been added before. The Optional feature has not been withdrawn
before. The Optional feature is not included by a feature that is occur-
ring in the Configuration, because withdrawing this feature results in an
inconsistency of the Configuration. The negative application conditions
are expressed by forbid actions.

In this case, the rule Req propose_to_withdrawOpt can be applied with the
result of preserving objects expressed by preserve actions and creating
one Withdraw proposal instance in the current time (time-1). The
Withdraw object has a link to the Optional feature that is proposed,
a link to the Configuration and a link the Req. These are expressed by

create actions.

$ Rule Req_propose_to_withdrawOpt(featureName, time, Rt, Pt)
«forbid#add» «forbid#with» «forbid#pass» «deleter»
:Add :Withdraw :Pass :Move move.
«delete»
A
withdraw has| 0 N hasNove
, " «forbid#Pags» «delgte»
«forbid#with»
«preserve»
— :Req
«forbid#include» «preserve»
:SubFeature include :Optional
forbid#includé | hame-featureName b
~Withdraw creg!
ocqurs ocaurs credten.__
- «presprve» ~a«create»
«forbidffinclude» :Withdraw 1
«forbid#include» «preserve» = t=time+1
:Occurrence :Occurrence 7~ «forbid#make»
» a3 :Make
A tp/Conﬂg proposals
hasOgsurences hasOcgurences «creties FehtEs
«forbidiagiude» «DreSirve” / mal
el
«preserve» «preserve» v’ «forbid#make»
:Prov :Configuration
31 Ptotal=Pt «preserve»
3 Rtotal=Rt ‘Container |,
hasHass
A
«forbid§pass» start §“<
«presefve» crexte
«forbid#pass» 3
:Pass «preserve» «preserve» «create»
— :Count :Start :Make
1 count=time->time+1

FIGURE 3.7: Transformation Rule Req_propose_to_withdrawOpt

65

Chapter 3. Graph Transformation Games for Negotiating Features

(d)

propose_to_withdrawOr: the negotiator proposes withdrawing an ex-
isting Or feature from the Configuration.

In Figure 3.8, the Req_propose_to_withdrawOr rule is shown. It has four
parameters, featureName, time, Pt, and Rt. According to its precon-
ditions, there should be an Or feature that has an Occurrence in the
Configuration, a Req, a Configuration, a parent Feature of the Or fea-
ture that has an Occurrence in the Configuration, a sibling Or feature
that also has an Occurrence in the Configuration, and a Container.
The parent Feature and the Or sibling feature are needed to maintain
the consistency of the Configuration because the parent of the Or group
requires the existence of at least one Or child feature. The Or feature has
an attribute name which takes the value of the parameter featureName.
The Configuration has two attributes: Rtotal, which takes the value of
the parameter Rt, and Ptotal, which takes the value of the parameter
Pt.

This rule has three negative application conditions. The Or feature has
not been added before. The Or feature has not been withdrawn before.
The Or feature is not included by a feature that is occurring in the Con-
figuration because withdrawing this feature results in an inconsistency of
the Configuration. The negative application conditions are expressed by
forbid actions.

After applying the Req_propose_to_withdrawOr rule, objects expressed by
preserve actions are preserved and one Withdraw proposal instance is
created in the current time (time—+1). The Withdraw object has a link
to the Or feature that is proposed, a link to the Configuration and a link

to the Req. These are expressed by create actions.

propose_to_substitute: the negotiator proposes substituting an exist-

ing Alternative feature in the Configuration with another Alternative

66

Chapter 3. Graph Transformation Games for Negotiating Features

é Rule Req_propose_to_withdrawOrf(featureName, time, Rt, Pt)

«forbid#with» «forbid#add» «forbid#pass» «delete» move
:Withdraw :Add :Pass :Move
«delete»
Withdraw a hasRass hasNlove
«forbryith» «forbidgadd» «forbidipags» «delpter
«preserve»
«preserve» ‘Req
«preserve» «preserve» o -
‘Opr hasParent 'IEeature hasParent :Or
= name=featureName
«preserve» «preserve»
inclufle o
«forbid#include»
ocaurs occur _ ocaurs
«forbid#include» sreshrve
B «presprve»
«presprve» :SubFeature
«presgrve»
//'
«preserve» «preserve» ocgurs «preserve» y /
:Occurrence :Occurrence «forbid#include» :Occurrence toGehfig prop
N / P re
«forbid#include» 7
:Occurrence hasOccurences // TR
preserve» & " «forbid#make»
hasOacurences prosepe // :Make
hagOccurences /
«presprve» hasOcpurences 4 /
«forbid#include» _ |«preserve»
:Configuration mdke
““¥| & Ptotal=Pt «forbid#make» “preserve» gy
:Container | g,
1 Rtotal=Rt el
{ start
«praseTves «presgrve»
. £
«preserve» «forbid#pass» «preserve» “preserve»
:Prov hasPass :Pass :Count :Start

«forbid#pass»

=1 count=time->time+1

FIiGURE 3.8: Transformation Rule Req_propose_to_withdrawOr

feature.

In Figure 3.9, the Req_propose_to_substitute rule is shown. It has five pa-
rameters, featureName, featureNamel, time, Pt, and Rt. According
to its preconditions, there should be an Alternative feature (the fea-
ture to be withdrawn) that has an Occurrence in the Configuration, a
Req, a Configuration, a parent Feature of the Alternative feature that
has an Occurrence in the Configuration, a sibling Alternative feature
(the feature to be added) and a Container. The parent Feature and
the Alternative sibling feature are needed to maintain the consistency of
the Configuration because the parent of the Alternative group requires
exactly one Alternative child feature. The Alternative feature has an at-
tribute name which takes the value of the parameter featureName. The
sibling Alternative feature has an attribute name which takes the value

of the parameter featureNamel. The Configuration has two attributes:

67

Chapter 3. Graph Transformation Games for Negotiating Features

Rtotal, which takes the value of the parameter Rt, and Ptotal, which
takes the value of the parameter Pt.

This rule has five negative application conditions. The Alternative fea-
ture has not been added or withdrawn before. The sibling Alternative
feature has not been added or withdrawn before. The Alternative feature
is not included by a feature that is occurring in the Configuration because
withdrawing this feature results in an inconsistency of the Configuration.
The sibling Alternative feature is not excluded by a feature that is occur-
ring in the Configuration. The sibling Alternative feature is not currently
occurring in the Configuration. The negative application conditions are
expressed by forbid actions.

After applying Req_propose_to_substitute rule, objects expressed by pre-
serve actions are preserved and two proposal instances, Add and With-
draw, are created in the current time (time-+1). The Withdraw object
has a link to the Alternative feature, a link to the Configuration and a
link to the Req. Similarly, the Add object has a link to the sibling Alter-
native feature, a link to the Configuration and a link to the Req. These

are expressed by create actions.
2. Ten rules for responding to proposals:

(a) accept_to_addOpt: the negotiator accepts the other negotiator’s pro-
posal to add a new Optional feature.
In Figure 3.10, the Prov_accept_to_addOpt rule is shown. It has six param-
eters, featureName, R, P, Rt, Pt and id. According to its precondi-
tions, there should be an Optional feature, a Prov, a Configuration, an
Add proposal object that is linked to the Optional feature and the Con-
figuration, and a Container. The Optional feature has three attributes:

name, which takes the value of the parameter featureName, Rpayoff,

68

Chapter 3. Graph Transformation Games for Negotiating Features

3 Rule Req_propose_to_substitute(featureName, featureName?1, time, Rt, Pt)

«preserve» «forbid#add1» i i i «delete»
__.J:0ccurrence :Add i .Pass s .
rs
«preserves withdraw hasNlove
«forbid¥add1» has| move
«forbigtwith» o » « »

_ fr(A8l thnass d‘jﬁ’e «delefer
«forbid#include» epreserve» [«create» [«preserve»
:SubFeature include Alternative | withdraw__-,|:Withdraw by _|:Req

«forbid#include» 1 name=featureName e o tetimest |5
g 7
ocqurs / \ /
«forbid#nclude» Forbidfwith1» i proposals by’
:Withdraw « ven :Add / = >
TorbigFinciudes E——— progprve credlg» «cfeate
:Occurrence [«preserve» / \ //
] :Feature / A
id toConfig / \
w dopbidtadd» “cjbate / \
arent
hasO« s X
exclude / \
| de «preserven / «createn «preserve»

:SubFeature “forbid#exclude :Alternative Y add __|:Add proposals . Gontainer o—
/ «creat . creater [|
exclude = name=featureName1 | / ““/®7I¢ = t=time+1
/
ocedrs / >l
ocgurs «forbid#occ» id#occ» / toCorifig
i iden :Oc / -

acrb
E‘(‘ [
forbiafexciuder ¢ &
:Occurrence T mtpreserven mike
hasOccurences :C i
«forbid#exclude» = Ptotal=Pt cpfint «presefve» «cr T ten «forpid#fmake»
7| = Rtotal=Rt V(

!

«preser - “preserve» prorrrrren W oy W
«forbid#pass» hasPass «preserve» :Count :Start :Make :Make
:Pass :Prov — = o
«forbid#pass» = count=time->time+

F1GURE 3.9: Transformation Rule Req propose_to_substitute

which takes the value of the parameter R, and Ppayoff, which takes the
value of the parameter P. The Configuration has three attributes: ID,
which takes the value of the parameter id, Rtotal, which takes the value
of the parameter Rt, and Ptotal, which takes the value of the parameter
Pt.

This rule has three negative application conditions. The Optional feature
has not been withdrawn before. The Optional feature is not currently oc-
curring in the Configuration. The proposal Add has not been made by
the Prov itself. The negative application conditions are expressed by
forbid actions. After applying the Prov_accept_to_addOpt rule, objects
expressed by preserve actions are preserved and a new Occurrence
object is created and linked to both the Optional feature and the Config-
uration. Also, the value of the attribute Rtotal in the Configuration will
be changed from Rt to Rt+R and the value of the attribute Ptotal in the

Configuration will be changed from Pt to Pt+P. It means that we add

69

Chapter 3. Graph Transformation Games for Negotiating Features

the value of the feature to the total of the requestor and provider.

= Rule Prov_accept_to_addOpt(featureName, R, F, Rt, Pt, id)

«preserve»

occurs

«presgrve»

«preserve»
:Occurrence

«forbid#occu»
:Occurrence

hasOccurefces

hasOccu/r,énces

«CI j; D

«preserve»
:Add

propasals

brve»

)

«pres

«preserve»
:Container

N :Optional Md move
«forbid#with» : :Move
‘Withdraw withdraw = name=featureName
= Ppayoff=P i
«forbid#with» \
= Rpayoff=R hasMove
\ . _\.\
\ X
\ \
\ «preserve»
\ al :Prov
OCCIJQS «presayve»
«credte:
«preserve» \\ o
:Feature \
\ «forbid#by»

-

{

make

«preserve»
:Configuration

= Rtotal=Rt->Rt+R
1 Ptotal=Pt->Pt+P
o id=id->id+1

«delpte»

hasOccurences

«delete»

«preserve» :Make

F1GURE 3.10: Transformation Rule Prov_accept_to_addOpt

(b) reject_to_addOpt: the negotiator rejects the other negotiator’s pro-
posal to add a new Optional feature.
In Figure 3.11, the Prov_reject_to_addOpt rule is shown. It has six param-
eters, featureName, R, P, Rt, Pt and id. According to its precondi-
tions, there should be an Optional feature, a Prov, a Configuration, an
Add proposal object that is linked to the Optional feature and the Con-
figuration, and a Container. The Optional feature has three attributes:
name, which takes the value of the parameter featureName, Rpayoff,
which takes the value of the parameter R, and Ppayoff, which takes the
value of the parameter P. The Configuration has three attributes: ID,
which takes the value of the parameter id, Rtotal, which takes the value
of the parameter Rt, and Ptotal, which takes the value of the parameter

70

Chapter 3. Graph Transformation Games for Negotiating Features

Pt.

This rule has three negative application conditions. The Optional feature

has not been withdrawn before. The Optional feature is not currently oc-

curring in the Configuration. The proposal Add has not been made by

the Prov itself. The negative application conditions are expressed by for-

bid actions.

After applying the Prov_reject_to_addOpt rule, objects expressed by pre-

serve actions are preserved and the link toConfig between the Add object

and the Configuration is deleted. The deletion is expressed by delete ac-

tions.

é Rule Prov_reject_to_addOpt(featureName, R, B, Rt, Pt, id)

«forbid#with»
:Withdraw
witl W
«forbid®with»
«preserve»
:Optional
“preserve= = name=featureName
:Feature hasParent &
«preserve» = RS
= Rpayoff=R
occlrs ocfurs
«presdrve» «forbid#focc»
«preserve» «forbid#occ»
:Occurrence :Occurrence

hasOci hasOcdurences

«forbifi#occ»

«preserve»
:Configuration

= Ptotal=Pt
— Rtotal=Rt

= id=id->id+1

dd

«pres

toC
«dpttte»

en

ig

«Create»

:Move

hasMove

«preserve»
:Prov

by
«forbig#by»

«preserve»
:Add

propg@sals

”DYGSVVE“

«preserve»
:Container

-
-

¢

mgke
«delpte»

«delete»
:Make

FiGURE 3.11: Transformation Rule Prouv_reject_to_addOpt

71

Chapter 3. Graph Transformation Games for Negotiating Features

()

accept_to_addOr: the negotiator accepts the other negotiator’s pro-
posal to add a new Or feature.

In Figure 3.12, the Prov_accept_to_addOr rule is shown. It has six pa-
rameters, featureName, R, P, Rt, Pt and id. According to its pre-
conditions, there should be an Or feature, a parent Feature of the Or
feature that has an occurrence in the Configuration, a Prov, a Configu-
ration, an Add proposal object that is linked to the Or feature and the
Configuration, and a Container. The Or feature has three attributes:
name, which takes the value of the parameter featureName, Rpayoff,
which takes the value of the parameter R and Ppayoff, which takes the
value of the parameter P. The Configuration has three attributes: ID,
which takes the value of the parameter id, Rtotal, which takes the value
of the parameter Rt, and Ptotal, which takes the value of the parameter
Pt.

This rule has three negative application conditions. The Or feature has
not been withdrawn before. The Or feature is not currently occurring
in the Configuration. The proposal Add has not been made by the Prov
itself. The negative application conditions are expressed by forbid ac-
tions.

After applying the Prov_accept_to_addOr rule, objects expressed by pre-
serve actions are preserved and an Occurrence object is created and
linked to both the Or feature and the Configuration. Also, the value
of the attribute Rtotal in the Configuration will be changed from Rt to
Rt+R and the value of the attribute Ptotal in the Configuration will be
changed from Pt to Pt+P. It means that we add the value of the feature

to the total of the requestor and the provider.

reject_to_addOr: the negotiator rejects the other negotiator’s proposal

to add a new Or feature.

72

Chapter 3. Graph Transformation Games for Negotiating Features

% Rule Prov_accept_to_addOr(featureName, R, P, Rt, Pt, id)
«forbid#with»
:Withdraw
«create»
‘Move |
hasMove
regte
«preserve»
:Or
«preserve» «preserve»
:Feature hasParent =3 name=featureName “Prov
«preserve» =]
P! v 1 Ppayoff=P —
= Rpayoff=R create»
Y a b)
ocglirs océ\-\lrs \“;':h\«forbi by
«forbigftocc» «C «preserve»
«forbid#occ» e» :Add
ocdurs :Occurrence H rrence
«presprve» proposals
7 «presgrve»
hasOccuxences hasOcc,ﬁrences
n «preserve»
samic «crefte :Container
/ -
/
/
«preserve» }

- :Configuration make
«preserve» hasO «delgte»
:Occurrence astocurences = Ptotal=Pt->Pt+P

“profenver = Rtotal=Rt->Rt+R «deleter
:Make
= id=id->id+1

F1GURE 3.12: Transformation Rule Prov_accept_to_addOr

In Figure 3.13, the Prov_reject_to_addOr rule is shown. It has six parame-
ters, featureName, R, P, Rt, Pt and id. According to its preconditions,
there should be an Or feature, a parent Feature of the Or feature that
has an occurrence in the Configuration, a Prov, a Configuration, an
Add proposal object that is linked to the Or feature and the Configu-
ration, and a Container. The Or feature has three attributes: name,
which takes the value of the parameter featureName, Rpayoff, which
takes the value of the parameter R, and Ppayoff, which takes the value
of the parameter P. The Configuration has three attributes: ID, which
takes the value of the parameter id, Rtotal, which takes the value of the
parameter Rt, and Ptotal, which takes the value of the parameter Pt.

This rule has three negative application conditions. The Or feature has

73

Chapter 3. Graph Transformation Games for Negotiating Features

not been withdrawn before. The Or feature is not currently occurring
in the Configuration. The proposal Add has not been made by the Prov
itself. The negative application conditions are expressed by forbid ac-
tions.

After applying the Prov_reject_to_addOr rule, objects expressed by pre-
serve actions are preserved and the link toConfig between the Add
object and the Configuration is deleted. The deletion is expressed by

delete actions.

=
$ Rule Prov_reject_to_addOr(featureName, R, P, Rt, Pt, id)
«forbid#with» e
:Withdraw e
:Move
hasMove
rebte
“preservew | ¢ [(preserves «preserve» mave
:Feature asrarent Log :Prov
Presams — name=featureName
= Ppayoff=P
b
= Rpayoff=R d
occurs «forbid#by»
«preser
«presgrve» ocqurs =N «preserve»
«forbid#occn ‘Add
«preserve» «forbid#occ»
:Occurrence :Occurrence proposals
«pres Frve »
hasOecurences hasO [«preserve»
asvccUIpnoes :Container |,
«presewe» «forbig#occ»
1 ¥
«preserve» make
:Configuration «delbte»
1 Ptotal=Pt
«delete»
= Rtotal=Rt -Make
= id=id->id+1
L J

FIGURE 3.13: Transformation Rule Prouv_reject_to_addOr

(e) accept_to_withdrawOpt: the negotiator accepts the other negotiator’s
proposal to withdraw an existing Optional feature.

In Figure 3.14, the Prov_accept_to_withdrawOpt rule is shown. It has six
74

Chapter 3. Graph Transformation Games for Negotiating Features

parameters, featureName, R, P, Rt, Pt and id. According to its pre-
conditions, there should be an Optional feature that has an Occurrence
in the Configuration, a Prov, a Configuration, a Withdraw proposal
object that is linked to the Optional feature and the Configuration, and
a Container. The Optional feature has three attributes: name, which
takes the value of the parameter featureName, Rpayoff, which takes the
value of the parameter R, and Ppayoff, which takes the value of the pa-
rameter P. The Configuration has three attributes: ID, which takes the
value of the parameter id, Rtotal, which takes the value of the parameter
Rt, and Ptotal, which takes the value of the parameter Pt.

This rule has two negative application conditions. The Optional feature
has not been added before. The proposal Withdraw has not been made
by the Prov itself. The negative application conditions are expressed by
forbid actions.

After applying the Prov_accept_to_withdrawOpt rule, objects expressed by
preserve actions are preserved and the Occurrence object with its links
are deleted. Also, the value of the attribute Rtotal in the Configuration
will be changed from Rt to Rt-R and the value of the attribute Ptotal
in the Configuration will be changed from Pt to Pt-P. It means that we
subtract the value of the feature from the total of the requestor and the

provider.

reject_to_withdrawOpt: the negotiator rejects the other negotiator’s
proposal to withdraw an existing Optional feature.

In Figure 3.15, the Prov_reject_to_withdrawOpt rule is shown. It has six
parameters, featureName, R, P, Rt, Pt and id. According to its pre-
conditions, there should be an Optional feature that has an Occurrence
in the Configuration, a Prov, a Configuration, a Withdraw proposal

object that is linked to the Optional feature and the Configuration, and
75

Chapter 3. Graph Transformation Games for Negotiating Features

= Rule Prov_accept _to_withdrawOpt(featureName, R, P, Rt, Pt, id)

«create
:Move

<

«preserve» v
Forbidfaddn adid Optional hasMove
-Add 1 name=featureName
«forbid#add» = Ppayoff=P
«preserve»
=3 Rpayoff=R :Prov

ocgurs
b
«forbigi#by» e

«defbten

«delete»
:Occurrence

«preserve»
:Withdraw

hasOcclirences proposals

«delpte» «preserve»

«preserve»

:Configuration

«preserve»
= Ptotal=Pt->Pt-P :Container | g,
S
1 Rtotal=Rt->Rt-R
o id=id->id+1)

make
«delpte»

«delete»
:Make

F1GURE 3.14: Transformation Rule Prov_accept_to_withdrawOpt

a Container. The Optional feature has three attributes: name, which
takes the value of the parameter featureName, Rpayoff, which takes the
value of the parameter R, and Ppayoff, which takes the value of the pa-
rameter P. The Configuration has three attributes: ID, which takes the
value of the parameter id, Rtotal, which takes the value of the parameter
Rt, and Ptotal, which takes the value of the parameter Pt.

This rule has two negative application conditions. The Optional feature
has not been added before. The proposal Withdraw has not been made
by the Prov itself. The negative application conditions are expressed by
forbid actions.

After applying the Prouv_reject_to_withdrawOpt rule, objects expressed by
preserve actions are preserved and the link toConfig between the With-
draw object and the Configuration is deleted. The deletion is expressed

76

Chapter 3. Graph Transformation Games for Negotiating Features

by delete actions.

$ Rule Prov_reject_to_withdrawOpt(featureName, R, P Rt, Pt, id)

«createx
‘Move |
A
= «preserve» hasMove
«forbid#add» :Optional
-Add add i e
3 name=featureName -
= " «“preserve»
«forbid#add» = Rpayoff=R :Prov
1 Ppayoff=P
ocodrs withdraw by
«preserver “preserve «forbidi#by» ="
cregte:
«preserve» «preserves»
:Occurrence ‘Withdraw
hasOccurences propasals
«presefve»
«presgrve»

v «preserve»
«pres?lve»‘ :Container | ..
:Configuration i

=3 Rtotal=Rt 0
1 Ptotal=Pt
S make
= id=id->id+1 «delgte»
«delete»
:Make

F1GURE 3.15: Transformation Rule Prov_reject_to_withdrawOpt

(g) accept_to_withdrawOr: the negotiator accepts the other negotiator’s
proposal to withdraw an existing Or feature. In Figure 3.16, the Prov_acce
pt_to_withdrawOr rule is shown. It has six parameters, featureName,
R, P, Rt, Pt and id. According to its preconditions, there should be
an Or feature that has an Occurrence in the Configuration, a parent
Feature with another child Or feature who have occurrences in the Con-
figuration, a Prov, a Configuration, a Withdraw proposal object that
is linked to the Or feature and the Configuration, and a Container. The
Or feature has three attributes: name, which takes the value of the pa-

rameter featureName, Rpayoff, which takes the value of the parameter

7

Chapter 3. Graph Transformation Games for Negotiating Features

R, and Ppayoff, which takes the value of the parameter P. The Config-
uration has three attributes: ID, which takes the value of the parameter
id, Rtotal, which takes the value of the parameter Rt, and Ptotal, which
takes the value of the parameter Pt.

This rule has two negative application conditions. The Or feature has
not been added before. The proposal Add has not been made by the
Prov itself. The negative application conditions are expressed by forbid
actions.

After applying the Prov_accept_to_withdrawOr rule, objects expressed by
preserve actions are preserved and the Occurrence object with its links
are deleted. Also, the value of the attribute Rtotal in the Configuration
will be changed from Rt to Rt-R and the value of the attribute Ptotal
in the Configuration will be changed from Pt to Pt-P. It means that we
subtract the value of the feature from the total of the requestor and the

provider.

reject_to_withdrawOr: the negotiator rejects the other negotiator’s
proposal to withdraw an existing Or feature.

In Figure 3.17, the Prouv_reject_to_withdrawOr rule is shown. It has six
parameters, featureName, R, P, Rt, Pt and id. According to its pre-
conditions, there should be an Or feature that has an Occurrence in the
Configuration, a Prov, a Configuration, a Withdraw proposal object
that is linked to the Or feature and the Configuration, and a Container.
The Or feature has three attributes: name, which takes the value of the
parameter featureName, Rpayoff, which takes the value of the parameter
R, and Ppayoff, which takes the value of the parameter P. The Config-
uration has three attributes: ID, which takes the value of the parameter
id, Rtotal, which takes the value of the parameter Rt, and Ptotal, which

takes the value of the parameter Pt.

78

Chapter 3. Graph Transformation Games for Negotiating Features

Rule Prov_accept_to_withdrawOr(featureName, R, R, Rt, Pt, id)

«forbid#add»
:Add [«create»
:Move
«forbid#add» \
«preserve» hasMove
:Or crgate»
1 name=featureName «preserve»
= Ppayoff=P :Prov
3 Rpayoff=R
hasParent mave
«presefver Nurs by «crepte»
«preserve» «preserve» «delste» «forbidi#by»
:0r hasParent _|.reature
«preserve» «preserve»
<deleter :Withdraw
:Occurrence
ocgurs ocaurs
«presprve» «presgrve» proposals
«preserve» «preserve» hasOccgrences «presgrve»
:Occurrence :Occurrence
«preserve»
:Container |,
hasOccurences hasOccurences
«preseyve»
mgke
«preserve» «delgte»
:Configuration
9 «delete»
o Ptotal=Pt->Pt-P :Make
= Rtotal=Rt->Rt-R
1 id=id->id+1

FIGURE 3.16: Transformation Rule Prov_accept_to_withdrawOr

This rule has two negative application conditions. The Or feature has not
been added before. The proposal Withdraw has not been made by the
Prov itself. The negative application conditions are expressed by forbid
actions. After applying the Prov_reject_to_withdrawOr rule, objects ex-
pressed by preserve actions are preserved and the link toConfig between
the Withdraw object and the Configuration is deleted. The deletion is

expressed by delete actions.

accept_to_substitute: the negotiator accepts the other negotiator’s
proposal to substitute an Alternative feature.
In Figure 3.18, the Prouv_accept_to_substitute rule is shown. It has nine

parameters, featureName, featureNamel, R, R1, P, P1, Rt, Pt and

79

Chapter 3. Graph Transformation Games for Negotiating Features

§ Rule Prov_reject_to_withdrawOr(featureName, R, P, Rt, Pt, id)

«forbid#add»
:Add [«create |
:Move
<
S
aqd |
has!\"{ove
«forbidjfadd»
crefte»
| move
«preserve» «preserve» o .
:Or :Prov Cregte
1 name=featureName
= Rpayoff=R
2 Ppayoff=P bly
ocaurs «forbigi#by»
«presprve»

«preserve»
spreservas ‘Withdraw
:Occurrence

proposals
hasOc¢curences o 7 «preserven»

«pregerve» 0
elete» «preserve»
’ :Container |
«preserve»
:Configuration
make
2 Ptotal=Pt «delbten
J Rtotal=Rt ~delater
= id=id->id+1 :Make

F1GURE 3.17: Transformation Rule Prov_reject_to_withdrawOr

id. According to its preconditions, there should be an Alternative fea-
ture that has an Occurrence in the Configuration, a sibling Alternative
feature, a Prov, a Configuration, a Withdraw proposal object that is
linked to the Alternative feature and the Configuration, an Add proposal
object that is linked to the sibling Alternative feature and the Configu-
ration, and a Container. The Alternative feature has three attributes:
name, which takes the value of the parameter featureName, Rpayoff,
which takes the value of the parameter R, and Ppayoff, which takes the
value of the parameter P. The sibling Alternative feature has three at-
tributes: name, which takes the value of the parameter featureNamel,
Rpayoff, which takes the value of the parameter R1, and Ppayoff, which

80

Chapter 3. Graph Transformation Games for Negotiating Features

takes the value of the parameter P1. The Configuration has three at-
tributes: ID, which takes the value of the parameter id, Rtotal, which
takes the value of the parameter Rt, and Ptotal, which takes the value
of the parameter Pt.

This rule has one negative application condition. The proposals With-
draw and Add (Substitute) have not been made by the Prov itself. The
negative application condition is expressed by a forbid action.

After applying the Prov_accept_to_substitute, objects expressed by pre-
serve actions are preserved. The Occurrence object and its links are
deleted. The Add object with its links are deleted. A new Occurrence
object is created and linked to the sibling Alternative and the Configu-
ration. Also, the value of the attribute Rtotal in the Configuration will
be changed from Rt to Rt-R+R1 and the value of the attribute Ptotal in
the Configuration will be changed from Pt to Pt-P+P1. It means that
we subtract the value of the Alternative feature from the total and add
the value of the sibling Alternative feature to the total of the requestor

and the provider.

reject_to_substitute: the negotiator rejects the other negotiator’s pro-
posal to substitute an Alternative feature.

In Figure 3.19, the Prov_rejects_to_substitute rule is shown. It has nine
parameters, featureName, featureNamel, R, R1, P, P1, Rt, Pt and
id. According to its preconditions, there should be an Alternative fea-
ture that has an Occurrence in the Configuration, a sibling Alternative
feature, a Prov, a Configuration, a Withdraw proposal object that is
linked to the Alternative feature and the Configuration, an Add proposal
object that is linked to the sibling Alternative feature and the Configu-
ration, and a Container. The Alternative feature has three attributes:

name, which takes the value of the parameter featureName, Rpayoff,

81

Chapter 3. Graph Transformation Games for Negotiating Features

:} Rule Prov_accept_to_substitute(featureName, featureName1, R, R1, P. P1, Rt, Pt, id)
«preserve»
:Alternative
«delete» occurs
:Occurrence = name=featureName | .4 [«preserves «create
«delete» =31 Ppayoff=P ‘preserves [-Withdraw :Move
=3 Rpayoff=R /[

T/
hasOgdcurences hasParent o /
«delgte» “presg

— «forbidliby «ffeates
/
«presetves /

«preserve» «preserve» «preserve»

:Configuration :Feature :Prov magve
3 Ptotal=Pt->Pt-P+P1 -
= Rtotal=Rt->Rt-R+R1

hasParent
o id=id->id+1
to
0 o «preserve» b
hasOccurences
L «preserve» «forbjid#by1»
Gragse, :Alternative
«delete»
:w‘,v(fafev e = name=featureName1 add |:Add
:Occurrence «Creates = Ppayoff=P1 «delete»
= Rpayoff=R1 propqsals
«delet 4
«delete» K «preserve»
:Make Maxe <« Container
«delete»
)

FIGURE 3.18: Transformation Rule Prov_accept_to_substitute

which takes the value of the parameter R, and Ppayoff, which takes the
value of the parameter P. The sibling Alternative feature has three at-
tributes: name, which takes the value of the parameter featureNamel,
Rpayoff, which takes the value of the parameter R1, and Ppayoff, which
takes the value of the parameter P1. The Configuration has three at-
tributes: ID, which takes the value of the parameter id, Rtotal, which
takes the value of the parameter Rt, and Ptotal, which takes the value
of the parameter Pt.

This rule has two negative application conditions. The sibling Alterna-
tive feature is not currently occurring in the Configuration. The proposals
Withdraw and Add have not been made by the Prov itself. The negative
application conditions are expressed by forbid actions.

After applying the Prov_rejects_to_substitute rule, objects expressed by

82

Chapter 3. Graph Transformation Games for Negotiating Features

preserve actions are preserved and the link toConfig between Add ob-
ject and the Configuration is deleted, and the Withdraw object with its

links are deleted. The deletion is expressed by delete actions.

$ Rule Prov_reject_to_substitute(featureName, featureName1, R, R1, B P1, Rt, Pt, id)

«preserve»

:Alternative —
apreserve») «delete» «creates
:Occurrence | °°CU™S 1 name=featureName | Withdraw :Withdraw :Move

«preserve» = Ppayoff=P «deleter»
= Rpayoff=R A
hasOcgurences hasParent has_lvfove
«presgrve» «preserves by /{
«forbid#py» /
y mave
«preserve» 4
:Configuration «preserve» «preserve» ebte
:Feature :Prov
= Ptotal=Pt
= Rtotal=Rt
= id=id->id+1 g hasParent
«deleter~gpregerve» by
hasOcgurences
«forbid#occ» - «fcrbiﬁ#byh
«preserve»
«forbid#occ» :Alternative \ :ﬁt;?dsewe)
:Occurrence occurs = add _|:
Torbidfocey] = name=featureName1 preserve
= Ppayoff=P1
=3 Rpayoff=R1 propRgals
«presele»
«delete»
‘Make make «preserve»
: s “®:Container

FIGURE 3.19: Transformation Rule Prov_reject_to_substitute

In the second version of our rules, we assign a unique number to each feature in
ascending order starting from 0. These numbers are used to represent the order
in which the features can be proposed. In Figure 3.20, the Req_propose_to_addOpt
rule is shown. It is similar to the rule shown in Figure 3.5 except that the Optional
feature has an attribute Order, which takes the value of the parameter time. It
means that the feature cannot be proposed unless its order is equal to the value of

the parameter time, which increments with every proposal.

83

Chapter 3. Graph Transformation Games for Negotiating Features

@ Rule Req_propose_to_addOpt(featureName, time, Rt, Pt)
«forbid#add» dd withdraw «forbid#withdraw»
:Add cl i
1 forb
o » «preserve» :Pass
:Optional
«preserve» hasParent id hasP;
:Feature «preserve» = «forbi S»
1 order=time
«preserve» «delete»
R hasMove INiove
. exclyde e _—
uforbid#e)séﬁ‘_;‘:g «forbid#exclyde» occurs Yy
“presprve» «forbid#occu»
mave
«preserve» «forbid#exclude» forbi «Credter «delbte» pabs
:Occurrence :SubFeature -0ccurrence «forbidgpass»
«create»
:Add
ogcurs o t=time+1
«forbidffexclude» hasOccyrrences
hasOcgurences forbidfoccu»
T — «forbid#exclude» toCdhfi i
P :Occurrence 9 :Make
— «creatg»
hasOcctrences £
k Ll “preserves «fgbid#make»
:Configuration
3 Ptotal=Pt
«preserve» start =3 Rtotal=Rt [«preservex]
:Start .:Container
«preserve» -
[«create» count
make p
:Make forbidfipass» «preSagye»
preserves b [Forbidfpass» “preserven
:Prov hasPase :Pass :Count
«forbid#pass» 3 count=time->time+1

F1GURE 3.20: Transformation Rule Req_propose_to_addOpt

3.4.3 Generating the Transition System of the Game

We generate the graph transformation game in the form of a labelled transition
system using Henshin State Space tools. It starts from some initial states and
executes the transformation rules until reaching the terminal states where no rules
can be applied. The initial state in our game should include an initial configuration.
According to the design of our rules, the labelled transition system is generated as

a tree because of the following:

1. Only starting rules can be executed at the initial state, which creates a rooted

tree with only one player who can move.

2. The rules are designed to allow the taking of turns, which ensures that in any

state only one player can move.

84

Chapter 3. Graph Transformation Games for Negotiating Features

3. Making and responding to proposals are specified by the current time of
proposing, which means that making the same proposal at a different time
will lead to a different state. This ensures that each state has only one incom-

ing edge (a child can only have one parent).

4. The time parameter in the Count class also ensures that there is no transi-
tion cycling as the time increments with every proposal. Thus, there is no

possibility of going back.

The initial configuration in our running example contains: Airplane for Transporta-
tion and Hotel for Accommodation. In this case, our graph transformation game

state space is generated containing 3300 states and 3299 transitions.

Returning to the properties discussed in Section 3.4.2, in the following, we will
discuss how these properties have been considered in the implementation of our ne-
gotiation rules.

Firstly, our negotiation protocol is flexible in terms of allowing the negotiators to
choose among all available proposals according to their preferences. It also allows
them to pass turn if they do not want to make a proposal at a certain time. How-
ever, there is one restriction that limits its flexibility. Our negotiation rules disallow
the negotiators from re-proposing the addition/withdrawing of features that were
rejected once in order to generate a finite transition system. This may affect the ap-
plicability of our approach because some features may become relevant due to other
changes in a new configuration. For example, in our running example, a Train re-
jected at a stage may become relevant again when an alternative Accommodation
type is accepted.

When it comes to simplicity, our negotiation protocol is very simple in terms of the

communication language that is required to propose and respond to proposals.

85

Chapter 3. Graph Transformation Games for Negotiating Features

Our negotiation rules are clearly defined and implemented to be applicable with fea-
ture modelling. The implementation of our rules is based on the types of feature for
both making proposals and responding to them.

When it comes to equality, both negotiators have similar rules that allow them to

propose and respond to proposals and no one has higher power than others.

3.4.4 Scalability

We conducted experiments to evaluate the scalability of generating the graph trans-
formation game state space. We apply our transformation rules to different feature
models for both versions of our rules. In all experiments, we show the number of
features in the feature models, the number of proposed features (proposals), the
number of generated states, the number of transitions and the generation time. As
we discussed in Section 3.4.2, the number of proposals is based on the types of fea-
tures in each feature model example. Moreover, we use feature model examples with
similar structure so that all proposals can be made from the initial state in order
to generate larger state space. These experiments were conducted on 2.5 GHz Intel
Core i7 with 16 GB of main memory using Henshin 1.0.0. In Table 3.2, we show the
generation results after applying the first version of our negotiation rules. We applied
the transformation rules to different feature model examples. We started with exam-
ples containing one to five proposals. We stopped at the fifth proposal because the
expected state space for six proposals will be huge. This can be observed by looking

at the difference between the number of generated states in the fourth and fifth rows.

86

Chapter 3. Graph Transformation Games for Negotiating Features

Feature Model No of No of No of No of Generation
features | proposals states transitions | time (Seconds)
3 1 8 7 0.606
5 2 71 70 0.684
8 3 814 813 1.563
11 4 11501 11500 10.767
14 5 195956 195955 148.346

TABLE 3.2: Generation Results Using Alternating-offer Negotiation Protocol (1)

The generation results from applying the second version of our negotiation rules are

shown in Table 3.3. We applied the transformation rules to examples containing one

to 10 proposals. The results also show some improvements in the generation time

compared with the first version.

87

Chapter 3. Graph Transformation Games for Negotiating Features

Feature Model No of No of No of No of Generation
features | proposals | states | transitions time
(Seconds)
3 1 8 7 0.546
5 2 36 35 0.648
8 3 140 139 0.775
11 4 500 499 1.159
14 5 1716 1715 2.679
15 6 5748 5747 6.631
18 7 18996 18995 20.857
21 8 62260 62259 47.488
22 9 203060 | 203059 1566.107
25 10 660276 | 660275 3 174'71. !
(=~ 53 min)

TABLE 3.3: Generation Results Using Alternating-offer Negotiation Protocol (2)

88

Chapter 3. Graph Transformation Games for Negotiating Features

3.5 Summary

This chapter proposed graph transformation games that model the negotiation of
features between the provider and the requestor. The aim was to implement our
negotiation games, modelling the negotiation of features by representing the state
of the game by a graph and the moves of the players by graph transformation
rules. A type graph has been developed to represent the negotiation entities and to
implement our transformation rules. The rules have been implemented to model the
negotiation interactions defined by our negotiation protocol. Henshin transformation
tools have been used to implement the transformation rules and generate the game
state space. We conducted different experiments to evaluate our proposed approach.
The evaluation results show that the size of the game state space is affected by the
number of proposed features, which might cause problems with large feature models.
In the next chapters, we will present different types of games which will be used to

analyse our graph transformation games.

89

Chapter 4

Extensive-Form Graph

Transformation Games

In this chapter, we analyse our graph transformation games as two-player extensive-
form games. We will discuss how our graph transformation games can be analysed
using backward induction to determine the optimal action at each stage of the game
for each player. These extensive-form games are non-zero-sum games, which means
that the players do not play competitively and they do not intend to minimise each
other’s payoffs. However, each player will try to maximise its individual outcome
regardless of what the other player gets.

Section 4.1 introduces the idea of analysing our graph transformation games as
extensive-form games. Section 4.2 discusses how our graph transformation games
can be analysed using backward induction. In Section 4.3, we provide a detailed
explanation of the implementation of the backward induction algorithm. Section 4.4

summarises the chapter.

90

Chapter 4. FExtensive-Form Graph Transformation Games

4.1 Introduction

The scenario of the graph transformation game illustrates that it is a dynamic and
multi-stage game. It represents the structure of interaction between players, their
possible moves and their choices at every state. In game theory, this scenario can
be seen as a typical example of an extensive-form game in which the players move
sequentially by exchanging proposals. Thus, we propose to analyse our graph trans-
formation games as two-player non-zero-sum extensive-form games with complete
information. Figure 4.1 shows an overview of the proposed approach. Henshin
is used to generate our turn-based graph transformation games as extensive-form
games.

Extensive-form games are defined as games in a tree structure with payoffs at
the terminal nodes. Our graph transformation games, constructed based on our
Alternating-offer Negotiation Protocol, are generated in the form of a tree-like, la-
belled transition systems. They have similar characteristics to the extensive-form

games tree, as follows:
1. Only one player can start the game at the root, which is the requestor in our
graph transformation games.

2. Only one player can move at each state so the moves of the players are distin-

guishable.

3. The payoffs at the terminal states are determined according to every possible

play of actions.

Turn-based
Graph Transfor-
mation Games

Henshin Extensive-
form Games

FIGURE 4.1: An Overview of the Proposed Approach

91

Chapter 4. FExtensive-Form Graph Transformation Games

In extensive-form games, each player’s payoff /utility function is defined on terminal
histories. A terminal history is a sequence of actions for which no actions follow.
In our graph transformation games, the payoff functions return real values for each
player at each state of the game. Here, we are only interested in the payoffs at
the terminal states, which indicate the players’ outcomes at terminal sequences. A
terminal sequence is a transformation sequence that starts from the initial state and
terminates at a terminal state where no rule can be applied.

Given a set of rules R and start graph Gy, a transformation sequence G, =
Gi = ... 2 G, is a sequence of steps starting in the start graph Gy. A sequence is

terminal if in the last graph G, no rule » € R that can be applied.

Extensive-form Graph Transformation (Game Definition:

The definition of an extensive-form graph transformation game therefore consists of:

A type graph TG to define the set of possible states G(TG).

e A finite set N = {1,2,...,n} of players.

A set of rules R where R(i) C R is the set of rules for player i € N and for
i#j€N: RI)NRYG) = o.

A start graph Gy as initial state.

For i € N a payoff function payoff; : TS — R, defined for each terminal

sequence.

For i € N a strategy s;(G) = (r, m) that gives for each G € G(TG) a rule

r € R(i) and a match m for r in G.

A player function P : G(TG) — N that assigns a player i« € N to each
G € G(TG), P(G) = 1.

92

Chapter 4. FExtensive-Form Graph Transformation Games

4.2 Overview of Game Analysis Method

Extensive-form games with complete information can be analysed using backward
induction to determine a sequence of optimal actions. Backward induction assumes
that each player will act rationally at each future state in the game, which is called
sequential rationality. In our graph transformation games, backward induction is
used to analyse and solve the games. Backward induction is a classic and pow-
erful analytical tool for decision-making in settings that can be modelled as finite
extensive-form games and, as will see, is a fundamental analytical tool in negotiation
settings [65]. We analyse the graph transformation state space by reasoning back-
ward, starting from the terminal states until reaching the initial state. We select the
optimal transition at each state and eliminate non-optimal transitions. The result of
backward induction is a strategy profile containing a strategy for each player, which
is the Nash Equilibrium of the game. The strategies should tell the negotiators
how to act during the negotiation process, what to propose and how to respond to
the proposals. Solving the game by backward induction provides a Subgame Per-
fect Nash Equilibrium which represents a Nash equilibrium of every subgame of the
original game.

As we discussed above, the optimality in this solution refers to the individually op-
timal actions for each negotiator at each stage. This is not neccesarily the best joint
outcome. Moreover, there may be more than one Nash equilibrium as discussed in

Section 2.2.2.

4.3 Implementing Backward Induction

In this section, we introduce the implementation of backward induction. Based on

the given state space metamodel in Section 4.3.1, we define graph transformation

93

Chapter 4. FExtensive-Form Graph Transformation Games

rules that are used to apply the backward induction algorithm in Section 4.3.2. In
Section 4.3.3, we discuss the generation of the state space instance. In Section 4.3.4,
we show the results of applying backward induction rules to our running example
graph transformation game state space. In Section 4.3.5, we conduct some experi-

ments to evaluate the proposed approach.

4.3.1 State Space Metamodel

The state space metamodel is given by Henshin as an Ecore model and available at
[78]. This metamodel will be used as a type graph to design backward induction
rules which will be applied to the graph transformation game state space instance. In
Figure 4.2, we present the state space metamodel to define the state space elements.
We are interested in the classes that define StateSpace, State and Transition. We
modified the original metamodel by adding some attributes that will be used in the

analysis of the game. The following is the list of modifications:

1. We added ptotal attribute of type Integer to the State class, which will be
used to store the value of Ptotal attribute in the Configuration class in the

state graph. This attribute represents the payoff of the provider.

2. We added rtotal attribute of type Integer to the State class, which will be
used to store the value of Rtotal attribute in the Configuration class in the

state graph. This attribute represents the payoff of the requestor.

3. We added transitionLabel attribute of type String to the Transition class to

store the transition labels.

4. We added mover attribute of type String to the Transition class to specify

the movers at each state.

94

Chapter 4. FExtensive-Form Graph Transformation Games

4 IntegerArray B StringArray| # Match
[storage
= data : EString
& getData
& setData
{8 getData
& setData
& setData
| Transition H state
= match : Elnt N . = index : EInt
0..* outgoing
1 parameterCount : Eint = hashCode : EInt
. 0..* states
1 parameterKeys : IntegerArray = derivedFrom : EInt
. ’ 1
I transitionLabel : EString target 0. = open : EBoolean
= mover : EString = goal : EBoolean
@ getlabel 0..* incoming = pruned : EBoolean
= location : IntegerArray 0..* initialStates
E Model = objectCount : EInt
= objectKeys : IntegerArray
1 resource : EResource |
= ptotal : Eint
= eGraph : EGraph 0..1 model P
. = rtotal : EInt 0..* openStates
1 objectKeys : IntegerArray
= objectCount : Elnt & isinitial
& isTerminal
& getCopy
& getOutgoing

@ updateObjectKeys
& collectMissingRootObjects

objectHashCodes objectKeysMap
0. 0..*

E EObjectintegerMapEntry

= value : EIntegerObject

FIGURE 4.2: State Space Metamodel

4.3.2 Backward Induction Rules

5 EGraph

[statespace

stateCount : Eint
transitionCount : EInt
layoutZoomLevel : EInt
layoutStateRepulsion : EInt
layoutTransitionAttraction : Elnt
layoutHideLabels : EBoolean

layoutHidelndizes : EBoolean

ooooDooDoOao

maxStateDistance : EInt

= allParameterKeys : IntegerArray
& removeState

& updateEqualityHelper

& incTransitionCount

equalityHelper
0..1
| EqualityHelper
= checkLinkOrder : EBoolean
@ equals

& hashCode
i setStateSpace

Based on the metamodel in Figure 4.2, we can define the rules that are used to reason

through the state space backward starting from terminal states to the initial state.

Before defining our rules, we show the backward induction algorithm as described

in [1]. Then, we show how our rules will work to apply the backward induction

algorithm.

The backward induction procedure, shown in Figure 4.3, is as follows:

e Step 1: select any pen-terminal node, i.e., nodes preceding terminal nodes.

95

Chapter 4. FExtensive-Form Graph Transformation Games

e Step 2: select one move that gives the mover the highest payoff.
e Step 3: assign the payoff vector for both players to the node at hand.
e Step 4: eliminate all moves and terminal nodes following this node. We will

have a shorter game where this node will be a terminal node.

We repeat these steps until we only have the origin (initial node). The moves picked

are the outcome of the game and the result is a strategy profile.

A

Step 1 Take any pen-terminal node

\4

Pick one of the payoft vectors (moves) that gives

following the node

. Step 2 ‘the mover’ at the node the highest payoff
R \ 4

i Step 3 Assign this payoftf to the node at the hand
m———- \ 4

i Eliminate all the moves and the terminal nodes
i Step 4

Any non- Yes

terminal node

[The picked moves }

FIGURE 4.3: Backward Induction Algorithm [1]

In Henshin, we created different rules to apply the backward induction algorithm

to our graph transformation state space instance. The only difference is that, in

96

Chapter 4. FExtensive-Form Graph Transformation Games

Step 4, we do not eliminate all transitions and states but we eliminate non-optimal
transitions and keep the optimal transitions to show the strategy profile later. For
that reason, we created some rules to be applied first by selecting the pen-terminal
and terminal states to ensure that we started from the end of the tree. Then,
we created other rules to follow the same procedure with internal states but we
have to ensure that we have visited all successor states of the states at hand before
eliminating non-optimal transitions. We divided these rules into two categories
according to the mover, which can be either the requestor or the provider. The rules
in both categories are almost the same except for the mover of the transitions.

For brevity, we show the design of three rules as examples and how they follow the

procedure of the backward induction algorithm described above:

1. LeavesReq rule: this rule is used to select the highest payoff of the requestor in
pen-terminal states. In Figure 4.4, the LeavesReq rule is shown. It has seven
parameters, x, rt, pt, rtl, ptl, pt2 and rt2. According to its preconditions,
three State(s) have to be found.

The first State represents a pen-terminal state and it has two outgoing Tran-
sition(s) to the other two states. It has three attributes: data, which takes
the value of the parameter x, ptotal, which takes the value of parameter pt,
and rtotal, which takes the value of the paramter rt.

The second State has two attributes: ptotal, which takes the value of the
parameter ptl, and rtotal, which takes the value of the parameter rtl.

The third State has two attributes: ptotal, which takes the value of the pa-
rameter pt2, and rtotal, which takes the value of the parameter rt2.

Each Transition has an attribute mover, which takes a String “Req” to specify
that the mover is the requestor.

The rule has two negative application conditions. The second and third states

have no outgoing transitions, which means that they are terminal states. (Step

97

Chapter 4. FExtensive-Form Graph Transformation Games

1)

The rule has an attribute condition, which is that the value of rtl is greater
than or equal to the value of rt2. This means that we pick up the highest
payoff of the requestor. (Step 2)

After applying the LeavesReq rule, objects expressed by <<preserve>> ac-
tions are preserved. The values of both ptotal and rtotal in the first state are
changed from pt and rt to ptl to rtl respectively. This means that we assign
the highest payoff to the pen-terminal state. (Step 3)

The Transition object between the first and third states with its links are re-
moved (Step 4). Here, we only remove the non-optimal transitions as we keep
the picked ones.

In the first state, the value of attribute data is changed from x to a String

“Explored” to keep tracking of visited states.

—» Rule LeavesReq(pt, rt, pt1, rt1, rt2, pt2, x)

" Condition condition
rt1>=rt2

«preserve»

«preserve» EStalE
:Transition = ptotal=pt->pt1

= mover="Req" «preserve» = rtotal=rt->rt1 «delete» = mover="Req"

«delete»

outgoing :Transition

outgoing

1 data=x->"Explored"

incoming N I

incoming
«preserve»
«delpte»

«preserve» «preserve»
:State :State
= ptotal=pt1 = ptotal=pt2
= rtotal=rt1 outqoi = rtotal=rt2
° ing «forbi nsition2»
«forbid#transttieq] »
«forbid#transition1» «forbid#transition2»
:Transition :Transition

FIGURE 4.4: Transformation Rule LeavesReq

2. CompareReq rule: this rule is used to select the highest payoff of the requestor
in intermediate states.
In Figure 4.5, the CompareReq rule is shown. It is similar to the LeavesReq rule

except that the second and third states have no negative application conditions,

98

Chapter 4. FExtensive-Form Graph Transformation Games

which means that they are not terminal states. The second and third states
must be visited (explored). That means that their optimal transitions have
been picked up. This rule is only applied when the first state has only two
outgoing transitions. Thus, after applying this rule, only one optimal transition

is remaining and all non-optimal transitions have been eliminated.

—» Rule CompareReq(pt, rt, pt1, rt1, rt2, pt2, x)
= — = «preserve»
;' Condition condition Agtate v «forbid#transition»
rt1>=rt2 = - outgoing :Transition
=) PR «forbid#transition»
= rtotal=rt->rt1
1 data=x->"Explored"
outgeing outgaing
«preserve» «ddtete»
«preserve» «delete»
:Transition :Transition
= mover="Req" = mover="Req"
incoming incofing
«preserve» «delete»
«preserve» «preserve»
:State :State
= ptotal=pt1 = data="Explored"
I rtotal=rt1 = ptotal=pt2
1 data="Explored" = rtotal=rt2

FIGURE 4.5: Transformation Rule CompareReq

3. CompareReql rule: in Figure 4.6, we show the CompareReql rule. This rule
is similar to the CompareReq rule but here the rule can be applied if the first
state has more than two outgoing transitions. After applying the rule, the
attribute data in the first state will not be changed, which indicates that the

optimal transition has not been picked up yet.

In the following, we provide a brief description of how our backward induction rules

work to obtain a strategy profile which is a subgame perfect equilibrium.

e Determining the optimal transitions in pen-terminal states: we started

by determining the optimal transitions in the pen-terminal states as follows:

99

Chapter 4. FExtensive-Form Graph Transformation Games

—» Rule CompareReq1(pt, rt, pt1, rt1, rt2, pt2, x)

= = ™ «preserve»
R Condition condition .State «preserve»

t1>=rt2 outgoing :Transition
= ptotal=pt->pt1 [

= rtotal=rt->rt1

outgbing outgeing
«presérve» «dotete»

«preserve»

«preserve» «delete»

:Transition :Transition

= mover="Req" 1 mover="Req"
incoming incoming
«preserve» «delbte»

«preserve» «preserve»

:State :State

= ptotal=pt1 = data="Explored"

= rtotal=rt1 = ptotal=pt2

= data="Explored" = rtotal=rt2

FIGURE 4.6: Transformation Rule CompareReql

— Select any pen-terminal state.

— Pick up the transition that gives the mover the highest payoff.
— Assign this payoff to the state at the hand.

— Eliminate non-optimal transitions.

— Change the value of data attribute in the state at the hand to “Explored”.

e Determining the optimal transitions in intermediate states: after de-
termining the optimal transitions in all pen-terminal states, we move on to
determine the optimal transitions in the intermediate states. We follow the
same steps as in the pen-terminal states except that we need to check that
the value of data attribute of all successor states of the state at the hand is
equal to “Explored” which means that they have been visited and their optimal
transitions have been picked up. This ensures that all states have been visited

and their optimal transitions have been picked up before reaching the initial

state.

100

Chapter 4. FExtensive-Form Graph Transformation Games

The obtained optimal transitions constitute the strategy profile which is a subgame
perfect equilibrium.

The application of our rules can be described by the pseudo code in Algorithm 1:

Algorithm 1 Backward Induction
Input: Graph transformation state space instance with
set of states S,
and set of transitions T
Output: New graph transformation state space instance after eliminating non-
optimal transitions
while there exists a pen-terminal state p € S with more than one outgoing transition

do
Pick up optimal outgoing transition for the mover according to the payoffs in

the sucessor states,
Assign the selected payofts to p,
Set p as visited state,
Eliminate non-optimal outgoing transition
end
while there exists an intermediate state n € S with more than one outgoing transi-

tion and all its sucessor states are visited do
Pick up optimal outgoing transition for the mover according to the payoffs in

the sucessor states,

Assign the selected payoffs to n,

Set n as visited state,

Eliminate non-optimal outgoing transition
end

4.3.3 Generating the State Space Instance

As we discussed, we modified the original state space metamodel by adding new
attributes to the classes. In this phase, we encode the values of these attributes to
the graph transformation game state space instance. We extract the values from

each state graph and encode them to the state instance in our state space instance.

101

Chapter 4. FExtensive-Form Graph Transformation Games

4.3.4 Application to Running Example

We applied backward induction rules to our running example graph transformation
game state space. The result assigns 15 as the highest payoff for the requestor,
which also gives 16 to the provider for the configuration: Airplane and Train for
Transportation, Hotel for Accommodation, and Catering. This gives better results
for both negotiators than the initial configuration (Airplane for Transportation and
Hotel for Accommodation), in which the payoff of the requestor was 10 and the
provider was 9. The optimal transition for each player at each state represents the
strategy profile, which is the Nash Equilibrium of the game. In our running example
graph transformation game state space, we have 3300 states. In Table 4.1, we show

the optimal transitions for the players at the first 20 states.

State Transition State Transition
0 Req start to_addOr 10 Req accept to addOr
1 Prov_accept to addOpt 11 Req reject to substitute
2 Prov_accept to addOr 12 Req propose to substitute
3 Prov reject to substitute 13 Req accept to addOr
4 Prov_propose to addOr 14 Req reject to substitute
5 Prov propose to addOr 15 Req propose to substitute
6 Prov propose to withdrawOr 16 Req accept to addOpt
7 Prov_propose to substitute 17 Req reject to withdrawOr
8 Prov_propose to addOr 18 Req reject to substitute
9 Prov_propose to addOr 19 Req _propose to withdrawOr

TABLE 4.1: The Optimal Transitions for the Players in Our Running Example

4.3.5 Scalability

We conducted experiments to explore the scalability of our analysis. We apply back-
ward induction rules to the graph transformation games generated in Section 3.4.4.
We measure the speed in applying the rules, which represents the required analysis
time for each graph transformation input. In all experiments, we show the number

of states and transitions in the graph transformation game, the time to generate the

102

Chapter 4. FExtensive-Form Graph Transformation Games

state space instance, the number of rule applications and the total application time.

In Table 4.2, we show the generation results from applying our backward induction

rules to graph transformation games generated in Table 3.2. In Table 4.3, we show

the results from applying our backward induction rules to graph transformation

games generated in Table 3.3, in which the negotiators propose in a specific order.

In all experiments, the results show that the generation of backward induction

Graph Transformation Instance Backward induction rules
Game generation time
No of No of (Seconds) No of rules Application time
states transitions applications (Seconds)
8 7 3.435 1 0.986
71 70 5.528 19 1.192
814 813 6.203 245 15.100

TABLE 4.2: Alternating-offer Negotiation Protocol (1) Backward Induction Re-

sults
Graph Transformation Instance Backward induction rules
Game generation time
No of No of (Seconds) No of rules Application time
states transitions applications (Seconds)
8 7 3.358 1 0.991
36 35 5.554 9 1.091
140 139 5.643 41 1.460
500 499 5.964 153 5.980
1716 1715 7.407 537 173.153

TABLE 4.3: Alternating-offer Negotiation Protocol (2) Backward Induction Re-

sults

analysis is affected by the size of the graph transformation game. For that reason,

in Table 4.2, we stop at the third example because the generation of the fourth

example takes up too much time (= 4 hours) without returning any results. The

version in Table 4.3 provides better results because it produces smaller games.

103

Chapter 4. FExtensive-Form Graph Transformation Games

4.4 Summary

In this chapter, we proposed analysing our graph transformation games as two-player
non-zero-sum games in an extensive form. We showed how the graph transformation
games can be analysed using backward induction to obtain the game results, which
is considered as a Nash equilibrium of the game. We provided a detailed explanation
of the implementation of the backward induction algorithm. We conducted different
experiments to evaluate the proposed analysis. The evaluation results show that the

proposed analysis does not scale with large examples.

104

Chapter 5

Stochastic Graph Transformation

(Games

In this chapter, we analyse our graph transformation games as two-player turn-based
stochastic games using the PRISM-games model checker. We will discuss how to ex-
port the graph transformation games into the PRISM-games format, which includes
defining the players of the game, defining the modules to describe the possible states
and the ways in which the states change over time, and defining the players’ rewards.
We will also define the properties to be checked in PRISM-games. The specifica-
tion of the properties is based on the temporal logic rPATL. After checking the
properties, PRISM-games also supports strategy synthesis to generate the optimal
strategies for the players.

In this chapter, we introduce the idea of analysing our graph transformation games
as two-player turn-based stochastic games in Section 5.1. Section 5.2 presents the
generation of the graph transformation games into PRISM-games format. In Sec-
tion 5.3, we provide a detailed explanation of the analysis of our graph transfor-
mation games including defining properties and generating strategies. Section 5.4

presents some experiments for evaluation. Section 5.5 concludes the chapter.

105

Chapter 5. Stochastic Graph Transformation Games

5.1 Introduction

In our negotiation, the negotiators interact by taking turns in making and responding
to proposals. Each negotiator tries to maximise their gain by requesting features with
the highest gain. This negotiation situation can be modelled as a stochastic game
where the uncertainty in this problem comes from the negotiators’ unpredictable
reaction to proposals. The negotiators can behave erratically, either deliberately in
order to be less predictable or because their individual preferences differ from the
average. In such a situation, it is important to show how uncertainty affects the
negotiation outcome. Thus, we propose to analyse our graph transformation games
as two-player turn-based stochastic games using the PRISM-games model checker
by exploring different strategies for players.

In a turn-based multi-player stochastic game (SMG), there is a finite number of
players, a finite number of states and a finite set of actions. At each state, only one
player can choose from a set of available actions. In our graph transformation games,
the transition system of the game is finite because the number of configurations in
a feature model is finite. We have two negotiators who interact by taking turns.
The graph transformation rules are designed so that only one player can make a
move at any state. Therefore, our graph transformation games can be modelled as
turn-based multi-player stochastic games.

In Figure 5.1, we show two possible ways of generating our turn-based graph trans-
formation games to turn-based multi-stochastic games in PRISM-games. The first
way is by generating the labelled transition systems of our graph transformation
games from Henshin to PRISM-games format. The second way is by implementing
our negotiation of features using the PRISM-games model checker directly. In our
work, we consider the first way while we leave the second way for future work as

discussed in Section 7.4.4.

106

Chapter 5. Stochastic Graph Transformation Games

Turn-based

Stochastic Multi-

Graph Transfor-
player Games

mation Games

Henshin H

Labelled Tran-

% PRISM Games

sition Systems

FIGURE 5.1: An Overview of the Proposed Approach

In SMGs, reward structures assign a real value to each state, which the players re-
ceive as payoffs. It is also possible in SMGs to assign the rewards to transitions.
The total payoff over a path is the sum of the payoffs over each state in the path
[79]. Thus, in PRISM-games, the payoffs are calculated in a different way from the
original calculation in our graph transformation games. Here, we need to differen-
tiate between the payoff (reward) at each state and the total payoff over a path to
each state. Instead of giving the total value of selected features in each state, we
give a value to each state according to the changes to the configuration, except for
the initial state, which should have the total values of selected features in the initial
configuration. So, after adding a feature to the configuration, we assign its value as
a positive payoff to the current state. Similarly, if we withdraw a feature from the
configuration, we assign its value as a negative payoff to the current state. In case
there are no changes, we assign a zero payoff to the current state. However, the cur-
rent version of PRISM-games allows us to use mixed-sign reward structures although
the developers assume that the reward is either non-negative or non-positive for all
states in order to express minimisation problems via maximisation [52, 55, 80].

The total payoff at a state is the sum of the payoffs over each state in the path to
that state. This should give the total value of selected features in the configuration

at each state. In order to apply these changes to our graph transformation games,

107

Chapter 5. Stochastic Graph Transformation Games

we only modified the rules, in particular the Ptotal and Rtotal attributes’ values

in the Configuration instance to obtain the values as described here. For example,

in Figure 5.2, we show the Req_accept_to_addOpt rule after modifying the values of

these attributes. In this rule, the values of both Ptotal and Rtotal attributes in the

Configuration will be replaced with the values of Ppayoff and Rpayoff attributes of

the Optional feature, respectively, to indicate that the feature has been added to the

Configuration. In the original rules, the values of the added optional feature were

added to the total in the configuration.

$ Rule Req_accept_to_addOpt(featureName, R, P, Rt, Pt, id)

«forbid#with»
:Withdraw

withdraw

«forbig#with»

«preserve»
«pres » R i
preserve: hasParent Optional

:Feature .
«preserve»

1 Ppayoff=P

= Rpayoff=R

ocgurs

name=featureName

«preserve» ocgurs oé‘c\urs
«forbid#g@ccu» >raa

\
\

te»

d b
“preser «forbigl#by»
«preserve»

«preserve» «forbid#occu»
:Occurrence :Occurrence

«create»
:Occurrence

7

hasOccurences hasOcdurences hasQccurences

«forbid#§ccu» / 8

«preserve»

= Rtotal=Rt->R
1 Ptotal=Pt->P
= id=id->id+1

:Configuration

«presefve»

«create»

:Move

hasMove move

«preserve»
:Req

:Add

proposals

«presgrve»

«preserve»
:Container |, J

mdke
«delgte»

«delete»
:Make

FI1GURE 5.2: Transformation Rule Req_accept_to_addOpt

Stochastic Graph Transformation Game Definition:

The definition of a stochastic graph transformation game consists of:

e A type graph TG to define the set of possible states G(TG).

108

Chapter 5. Stochastic Graph Transformation Games

e A finite set N = {1,2,...,n} of players.

A set of rules R where R(i) C R is a set of rules for player ¢ € N and for
i#£j€N: RU)NRG) = ¢.

A start graph Gy as initial state.

e For i € N a payoff function payoff; : STS — R, where STS is the set of

transformation sequences.

e For i € N a strategy s;(G) = (r,m) that gives for each G € G(TG) a rule

r € R(i) and a match m for r in G.

A player function P : G(TG) — N that assigns a player i € N to each
G € G(TG), P(G) =i.

A labelling function label : R — L that assigns labels to the rules.

A rating function rate : R — R that assigns a rate to each rule.

As we discussed, the uncertainty in our negotiation comes from the unpredictable
behaviour of the negotiators, who have different levels of rationality. Thus, stochastic
concepts are required to model these negotiation situations. We define a stochastic
element in our stochastic graph transformation games by assigning rates to the
transitions (rules). The rates are used to specify the probability distribution over
the outgoing transitions with the same label from the same state.

The following function returns the set of outgoing transitions with label [from state

S:

Ty(s) = {s = &' | label(r) = I}

Stochastic games use MDP structures, where the total probability of transitions of

the same label outgoing from each state is one. Thus, we divide the rate of each

109

Chapter 5. Stochastic Graph Transformation Games

outgoing transition over the total rates of outgoing transitions with the same label.

The probability is computed by the following function:

rate(r)

> rate(r’)

v
SL)t/G Tlabel(T) (S)

prob(s = t) =

5.2 Generating the PRISM Game

We model our stochastic graph transformation games in PRISM-games as follows:

Players: we have two players, the provider and the requestor, who play by making
proposals to add and withdraw features from the configuration and responding to
them. The players and the distribution under their control are specified by player

. endplayer constructs.

Modules: a model in PRISM-games consists of modules that describe the be-
haviour of the players, the state is determined by a set of variables and the behaviour
is specified by guarded commands. We require one module whose state is defined
by a variable with value 0 to the maximum number of states in our graph. The

behaviour of the players is specified by a guarded command as follows:
laction] guard — > update;

The action(s) are the labels of the transitions (rules) in our graph transformation
games. Each action belongs to only one player. If the guard is satisfied, the module
updates its variable according to the update. For example, in our model, a guarded

command could be the following;:

[Req_propose_to_addOpt] s =1 — > (s’ = 2);
110

Chapter 5. Stochastic Graph Transformation Games

Rewards: the values of the features are represented as rewards associated with
states in PRISM-games. A positive reward indicates that a feature has been added
and a negative reward indicates that a feature has been withdrawn. A zero reward

in a state indicates that no feature has been added or withdrawn.

From Henshin to PRISM-games:

Henshin supports generating the state space to several formats such as continuous-
time Markov chain (CTMC) and Markov decision process (MDP) to be analysed
by the PRISM model checker. In our work, we modified Henshin source code, in
particular the one used to generate MDPs, to generate our state space in PRISM-

games format (SMGs) (see Appendix B.3.2) as follows:

e We used the smg keyword which indicates the SMG model instead of the mdp

keyword.

e We created two player ... endplayer constructs, one for the provider and
one for the requestor. We used the transition prefixes “Prov” and “Req” in
our graph transformation games to map the transitions under each player’s
construct. The pseudo code in Algorithm 2 describes how we create players’

constructs and transitions under each player’s construct.

e We created one module M that contains the guarded commands to spec-
ify the behaviour of the players as discussed above. In order to model the
stochastic element in our games, we relabelled both ‘accept’ and ‘reject’ tran-
sitions as ‘respond’ and assigned a probability distribution to them according
to their rates!. For example, if the rate of Req_accept_to _addOpt is 3 and

Req_reject_to_addOpt is 1, a ‘respond’ transition could be the following:

[Req_respond_to_addOpt] s =1 — > 0.75: (s =1) 4+ 0.25: (s’ = 2);

Knowledge of past behaviour of the players could be used to estimate these rates.

111

Chapter 5. Stochastic Graph Transformation Games

Algorithm 2 Players’ Constructs Creation
Input: Graph transformation state space instance,
S is the set of states,
T is the set of transitions,
stateCount is the number of states in the state space instance
Output: Players’ constructs for SMGs in PRISM-games
Write:("smg") \\ smg keyword
Write:("player requestor") \\ starting requestor’s construct
for (i=0; i< stateCount; i++) do
for (j=0; j< the number of outgoing transitions from S(i); j++) do
if (outgoing transition T(j) has a label starts with "Req") then
\\ we write the transition labels that start with prefix "Req'
Write:("["+ label of T(j) + "],")
end
end
end
Write:("endplayer") \\ closing requestor’s construct
Write:("player provider") \\ starting provider’s construct
for (i=0; i< stateCount; i++) do
for (j=0; j< the number of outgoing transitions from S(i); j++) do
if (outgoing transition T(j) has a label starts with "Prov") then
\\ we write the transition labels that start with prefix "Prov"
Write:("["+ label of T(j) + "],")
end
end
end
Write:("endplayer") \\ closing provider’s construct

This command means that the requestor accepts adding the optional feature
with a probability of 0.75 and rejects with a probability of 0.25. The pseudo
code in Algorithm 3 shows the implementation of the module with the guarded

commands.

e We created two reward structures, "prov" and "req", where "prov" assigns the
rewards for the provider at each state and "req" assigns the rewards for the
requestor at each state. In Algorithm 4, we show a pseudo code to describe

how reward structures are created.

112

Chapter 5. Stochastic Graph Transformation Games

Algorithm 3 Module Creation
Input: Graph transformation state space instance,
S is the set of states,
T is the set of transitions,
stateCount is the number of states in the state space instance
acceptRate is the rate for acceptance
rejectRate is the rate for rejection
Output: Module for SMGs in PRISM-games
Write:("module M") \\ starting module
Write:("s : [0.." + stateCount-1 + "| init 0") \\ state variable
for (i=0; i< the number of transition in T; i++) do
if (transition T(i) label does not contain "accept” or "reject”) then
\\ we write the guarded commands that have no probabilities
Write:("[" + label of T(i) + "] " + source state of T(i) + " -> " + target
state of T(i) +";")
end
\\ Only accept and reject transitions have probabilities here
if (transition T(i) label contains "accept”) then

Write:("|" + label of T(i) + "| " + source state of T(i) + " -> " + accep-
tRate/(acceptRate+rejectRate) + ":" + target state of T(i))

end

if (transition T(i) label contains "reject”) then
Write:(" + "+ rejectRate/(acceptRatetrejectRate) + ": " + target state
of T(i) + n;u>

end

end

Write:("endmodule") \\ closing module

5.3 Analysing the Game

PRISM-games supports strategy synthesis to obtain optimal strategies for the play-
ers. The strategy determines for each player at each state what action should be
taken. Each strategy can be analysed manually in the simulator view or exported to
a file. The exported file contains a matrix with two columns (see Appendix B.3.3).
The first column shows the list of states and the second column shows the choice
taken in each state. In this section, we explore different strategies and generate a

verified strategy satisfying certain minimal requirements.

113

Chapter 5. Stochastic Graph Transformation Games

Algorithm 4 Reward Structures Creation
Input: Graph transformation state space instance,
S is the set of states,
T is the set of transitions,
stateCount is the number of states in the state space instance
Output: Reward structures for SMGs in PRISM-games
Write:("rewards "req"") \\ starting "req" reward structure
for (i=0; i<stateCount; i++) do
int rTotal= the value of Rtotal attribute from the configuration in the state
graph of S(i)
Write:("s="+ 1+ ": " + rTotal + ";")
end
Write:("endrewards") \\ closing "req" reward structure
Write:("rewards "prov"") \\ starting "prov" reward structure
for (i=0; i<stateCount; i++) do
int pTotal= the value of Ptotal attribute from the configuration in the state
graph of S(i)
Write:("s="+ 1+ ": " + pTotal + ";")
end
Write:("endrewards") \\ closing "prov" reward structure

5.3.1 Single-objective Strategy

We define single-objective rPATL reward-based properties to explore the best indi-

vidual outcomes. These reward-based properties have the forms:

<<provider>> R{"prov" }jmax=" [F "deadlock" |

<<requestor>> R{"req"}max=" | F "deadlock" |

The first property asks PRISM-games to generate an optimal strategy for the provider.
It returns the maximum expected accumulated value of reward "prov" until reach-
ing deadlock states, which represent the terminal states in our state space. At the
same time, PRISM-games also generates the optimal strategy for a requestor seeking
to minimise the value of reward "prov" of the provider. That means the game is

considered a zero-sum game and the optimal strategies generated by PRISM-games

114

Chapter 5. Stochastic Graph Transformation Games

represent a Nash Equilibrium [79]. Similarly, the second property generates the op-
timal strategy for the requestor and returns the maximum expected accumulated
value of reward "req" until reaching deadlock states.

Clearly, this is too limited a point of view for a negotiation, where a joint optimum
needs to be found, but it helps to understand which rewards can be expected.

In our running example, we assigned equal rates to accept and reject transitions so
each negotiator accepts with a probability of 0.5 and rejects with a probability of 0.5.
PRISM-games returns 10 as the maximum expected reward that the provider can
guarantee and 10.25 as the maximum expected reward that the requestor can guar-
antee. In Table 5.1, we show a possible plan of actions generated by the provider’s
strategy. We manually added the proposed features.

The results show that, due to the competitive nature of the game and the probabil-
ity distribution over transitions, there is only a very small chance of achieving more
than what was present in the initial configuration. However, the results are affected
by the probability distribution over transitions. For example, if the negotiators ac-
cept with a probability of 0.25 and reject with a probability of 0.75, PRISM-games
returns 9.75 as the maximum expected reward for the provider, which is worse than
the previous results, but it returns 10.3 as the maximum expected reward for the

requestor, which is a slightly better than the previous results.

State | Feature Action Probability Reward
“prov”
9
1 Catering [Req start to addOpt] 1 0
4 [Prov respond to addOpt] 0.5 5
10 Train [Prov_propose to addOr] 1 0
45 [Req respond to addOr] 0.5 2
110 Hotel [Req propose to substitute] 1 0
239 [Prov respond to substitute] 0.5 -3
476 | Airplane | [Prov_propose to withdrawOr] 1 0
860 [Req respond to withdrawOr] 0.5 -4

TABLE 5.1: Example of Generated Provider’s Strategy

115

Chapter 5. Stochastic Graph Transformation Games

5.3.2 Multi-objective Strategy

We define a multi-objective reward-based property to achieve a more collaborative

negotiation as follows.

<<provider, requestor>> ((R{"prov"}>=pmax [C| & R{"req" } >=rmax [C]))

Here, pmaz is the maximum expected value of reward "prov" and rmaz is the max-
imum expected value of reward "req" generated by the previous strategies. This
property asks PRISM-games to generate a collaborative strategy for both players
which guarantees that the expected total reward values for reward structures "prov"
and "req" are at least pmaz and rmaz, respectively. In Table 5.2, we show a plan of
actions generated by the collaborative strategy. When collaborating, the maximum
reward that the provider can guarantee is 12.5 and the maximum reward that the
requestor can guarantee is 12.5. This indicates a better result than playing compet-
itively.

Returning to our running example, the negotiation game allows the requestor to ex-
plore the possible alternatives to its original requirements, in particular the car hire.

Its collaborative strategy with the provider gives better total value than playing

competitively.
State | Feature Action Probability Rewards
“req” | “prov”’

10 9

1 Catering [Req start to addOpt] 1 0 0

4 [Prov respond to addOpt] 0.5 3 5

10 Train [Prov_propose to addOr] | 0 0

45 [Req respond to addOr] 0.5 2 2

111 [Req pass] 1 0 0

245 [Prov pass] 1 0 0

TABLE 5.2: Example of Generated Collaborative Strategy

116

Chapter 5. Stochastic Graph Transformation Games

5.4 Scalability

We conducted experiments to investigate the scalability of our analysis. We use the

graph transformation games generated in Section 3.4.4. In all experiments, we mea-

sure the time taken to export our state space transition system to PRISM-games

format, the time taken to construct the SMG model in PRISM-games and the time

taken to generate the strategy. These experiments were conducted on a 2.5 GHz

Intel Core i7 with 16 GB of main memory using Henshin 1.0.0. In Table 5.3, we show

the results of analysing our graph transformation games generated in Table 3.2. We

use the provider’s strategy in these experiments.

Graph PRISM-games
Transformation
Game
No of No of Exporting time to | Construction time in Strategy
states transitions PRISM-games PRISM-games generation time
(Seconds) (Seconds) (Seconds)
8 7 0.205 0.03 0.001
71 70 0.273 0.032 0.003
814 813 0.835 0.062 0.015
11501 11500 6.383 10.981 2.769
195956 195955 90.588 7088.807 2462.566

TABLE 5.3: The Results of Analysing Our Graph Transformation Games (1) Using

Provider’s Strategy

In Table 5.4, we show the generation results from analysing our graph transforma-

tion games generated in Table 3.3. We also use the provider’s strategy in these

experiments. In Tables 5.5 and 5.6, we conducted the same experiments but here

we measure the time to generate the multi-objective strategy.

117

Chapter 5. Stochastic Graph Transformation Games

Graph PRISM-games
Transformation
Game
No of No of Exporting time to | Construction time in Strategy
states | transitions PRISM-games PRISM-games generation time
(Seconds) (Seconds) (Seconds)
8 7 0.189 0.035 0.001
36 35 0.22 0.033 0.003
140 139 0.371 0.038 0.004
500 499 0.645 0.048 0.01
1716 1715 1.558 0.198 0.057
5748 5747 2.706 1.965 0.696
18996 18995 7.97 33.229 7.21

TABLE 5.4: The Results of Analysing Our Graph Transformation Games (2) Using
Provider’s Strategy

In all experiments, constructing the models in PRISM-games and generating strate-
gies took up most of our time, especially with larger models. This is because we
constructed a flat labelled transition system in PRISM-games rather than its speci-
fication. Also, we observe that generating multi-objective strategies took more time
than generating single strategies. For example, in Table 5.4, the strategy generation
time in the last row is 7.21 seconds, while in Table 5.6, the strategy generation time

for the same example is 19.583 seconds.

Graph PRISM-games
Transformation
Game
No of No of Exporting time to | Construction time in Strategy
states transitions PRISM-games PRISM-games generation time
(Seconds) (Seconds) (Seconds)
8 7 0.205 0.031 0.048
71 70 0.273 0.041 0.066
814 813 0.835 0.087 0.289
11501 11500 6.383 16.187 7.669
195956 195955 90.588 8181.228 6457.284

TABLE 5.5: The Results of Analysing Our Graph Transformation Games (1) Using
Collaborative Strategy

118

Chapter 5. Stochastic Graph Transformation Games

Graph PRISM-games
Transformation
Game
No of No of Exporting time to Construction time in Strategy
states | transitions PRISM-games PRISM-games generation time
(Seconds) (Seconds) (Seconds)
8 7 0.189 0.018 0.005
36 35 0.22 0.02 0.013
140 139 0.371 0.029 0.043
500 499 0.645 0.038 0.145
1716 1715 1.558 0.254 0.607
5748 5747 2.706 3.177 2.561
18996 18995 7.97 48.229 19.583

TABLE 5.6: The Results of Analysing Our Graph Transformation Games (2) Using

5.5 Summary

Collaborative Strategy

In this chapter, we proposed analysing our graph transformation games as two-

player turn-based stochastic games using the PRISM-games model checker. We dis-

cussed how our graph transformation games can be modelled as turn-based stochastic

games. We presented the requirements of mapping our graph transformation games

from Henshin to PRISM-games format. We analysed the games by exploring differ-

ent strategies to optimise the negotiators’ rewards considering our running example

presented in Chapter 3. To evaluate the proposed analysis, we conducted some ex-

periments on different graph transformation games to measure the construction time

and strategy generation time in PRISM-games.

119

Chapter 6

Related Work

In this chapter, we discuss techniques addressing similar or related problems. To the
best of our knowledge, the use of graph transformation and game theory to imple-
ment and analyse the negotiation of features has not been explored elsewhere, one of
the reasons being that using feature models to increase the flexibility of e-commerce
negotiation has not attracted much attention from researchers in the literature. Also,
very few works have focused on the combination between graph transformations and
game theoretic techniques.

We start with the approaches available for using feature models in electronic ne-
gotiation in Section 6.1. In Section 6.2, we present different approaches that are
proposed to deal with feature diagrams using graph transformations. Section 6.3
presents the approaches available for using game theory to deal with configuration
techniques for feature modelling. Section 6.4 discusses the approaches related to
the use of game theory in e-commerce and web services negotiation. In Section 6.5,
we discuss related approaches that use a combination of game theory and graph

transformation. Section 6.6 concludes the chapter.

120

Chapter 6. Related Work

6.1 Feature Models in Negotiation

In this section, we discuss the works related to the use of feature models to decrease
the complexity of e-commerce and web services negotiation processes.

In [81], the authors proposed a software engineering approach for e-contract enact-
ment. It is based on software product lines and feature modelling, which allows
the representation of e-services by features. They developed a contract meta-model
based on feature modelling to offer contract templates to optimise the e-contract es-
tablishment process. The negotiation is performed according to configuration tech-
niques for feature modelling, in which mandatory features are kept whereas optional
and alternative features are chosen according to the negotiation between the involved
parties.

Fantinato et al. in 82| proposed a feature-based approach in order to decrease the
complexity in the establishment of web service e-contracts. It is similar to the ap-
proach presented in [81] but this approach is concerned with the specific web service
context besides other new extensions. The e-contract establishment activities, in-
cluding negotiation, are controlled by the feature model and configuration.

In [83], the same authors extended the two previous works with the new WS-contract
metamodel based on WS-BPEL and WS-Agreement. They also emphasised QoS
attributes. A prototype FeatureContract toolkit was developed to automatically
support the proposed approach. Two feature models are elaborated to represent
services and QoS attributes. The QoS attributes give multiple options and levels for
negotiation.

These works are related to our work in the sense that we also use feature models to
represent e-services and configuration techniques to support the variability of nego-
tiated services. However, their approaches do not discuss how the involved parties
should interact, whereas we focus on the design of an appropriate negotiation proto-

col. Moreover, they do not discuss the definition of the gain and how an acceptable

121

Chapter 6. Related Work

agreement can be reached, while our approach aims to provide an effective way to
reach a mutually acceptable agreement.

In [84], the authors presented an approach based on feature modelling for price
definition in the e-contract establishment of web services, extending the approach
presented in [83|. During the negotiation, the prices are already associated with the
e-services and the QoS levels in the feature models. The consumers are aware of the
prices and can negotiate based on them, with no need to query other sources.
Vecchiato et al. in [85] proposed an extension to the work presented in [83] to include
control operations to be performed in case of e-contract violation and to support ne-
gotiation and renegotiation. The control-operations feature is a sub-tree of a QoS
attribute to specify the operations to be executed when the QoS attribute levels are
not met.

In [86], the authors discussed the e-contract life cycle from negotiation, establish-
ment and enactment to renegotiation within the context of a feature-based BPM
infrastructure. They extended the FeatureContract toolkit presented in [83].

Our work is different in several aspects. As in the previous works, they did not dis-
cuss how the negotiation parties can achieve an acceptable agreement. Furthermore,
they used QoS attributes and control operations to control the negotiation process,
while in our approach we use game theory to analyse the negotiators’ strategic in-
teractions.

Silva et al. in [87] proposed an integrated web services negotiation process that
considers the human interaction and the use of different protocols. They focused
on the application of feature modelling to describe the negotiated services. Their
contributions include the definition of the negotiation process and the definition of
a conceptual model to support the negotiation of web services. Their negotiation
process can support the most common negotiation styles, such as bargain and auc-
tion. This work is related to our work in two aspects. First, as in all previous works,

feature models have been used to describe the negotiated services. Second, this work

122

Chapter 6. Related Work

focused on the actual negotiation process, including the role of the negotiators and
the negotiation protocols. However, the definition of the negotiation strategy and
the negotiation approach, e.g. cooperative, competitive etc., were not discussed in

this work, while it is one of our main contributions.

6.2 Feature Models and Graph Transformations

Some approaches have been proposed in different areas to use graph transformation
to deal with feature diagrams considering features’ relationships.

In [88], the authors presented a first proposal for automated support for feature
model refactoring based on graph transformation. They used the Attributed Graph
Grammar System (AGG) to implement their approach. They mapped the LHS and
RHS of the patterns of the feature model refactoring to the LHS and RHS of the
AGG transformation rule. They planned to integrate the automatic support for
feature model refactoring into the FAMA plug-in [19].

Segura et al. in [89] proposed using graph transformations to automate the merging
of feature models. They proposed a catalogue of 30 rules to merge feature mod-
els to be implemented using the AGG system. They extended their previous work
presented in [88] by showing their first results. They used a simplified version of
the metamodel for attributed feature models presented in [90] as a type graph to
implement graph transformation rules.

In [91], the authors proposed a rule-based approach to structural feature model
differencing, which is based on a graph representation of feature diagrams. They
developed a metamodel for feature diagrams to specify feature diagram edit opera-
tions as model transformation rules. They used the model transformation language
Henshin [75] for specifying edit operations.

Deckwerth et al. [92] proposed a conflict-detection approach based on symbolic

123

Chapter 6. Related Work

graph transformation to facilitate concurrent edits on extended feature models.
They defined edit operations on extended feature models by means of symbolic
graph transformation rules. A metamodel for extended feature models including
features’ attributes has been developed. They applied their conflict-detection no-
tion presented in [93] to analyse potential conflicts among concurrent edits. The
approach is implemented by combining eMoflon with an SMT solver.

These works overlap with ours in the sense that we also use graph transformations
to deal with feature models. However, they do not deal with feature model config-
urations, while we use graph transformations to deal with configurations of feature

models in the negotiation context.

6.3 Feature Models and Game Theory

The closest work to ours was proposed by Garcia-Galan et al. in [94], who suggested
an interpretation of multi-user configuration as a game theoretic problem. They
modelled variability-intensive systems as feature models, and user decisions as fea-
ture model configurations. Their approach focused on the conflicts that may arise
when different users make decisions on the same configuration concurrently. Thus,
they proposed an automated bargaining process, inspired by cooperative game the-
ory, to achieve conflict-free and satisfactory configurations. A set of trade-offs for
each user has been introduced to specify alternative decisions in case of conflicts, and
the impact over their satisfaction. These trade-offs are defined as a compensation
or compromise in the exchange of something. To automate bargaining, they defined
an arbitrator who should deal fairly and efficiently with the users. The arbitrator

considers a simultaneous and complete information cooperative game of N players.

124

Chapter 6. Related Work

As in their work, we use feature models to support variabilities of negotiated prod-
ucts and services using feature model configurations. We also use game theoretic
techniques to solve the conflicts that may arise in terms of negotiation games. How-
ever, their work differs from ours in certain aspects. In our approach, the negotia-
tors make decisions sequentially by making and responding to proposals according
to their preferences, and not simultaneously. Moreover, our negotiation takes place
between the negotiators directly and does not rely on any third party, such as an ar-
bitrator or a negotiation broker, which is more suitable for web services negotiation

in practice.

6.4 Game Theory in Web Services and E-commerce

Negotiation

Game-theoretic techniques have been previously applied to web services negotiation
to support e-commerce applications. In the following, we provide some of the avail-
able approaches that have used game theoretic techniques to support web services
and e-commerce negotiation.

Zheng et al. in |95] proposed the use of two-player bargaining games to represent
1-to-1 web services negotiation. They focused on the 1-to-1 web services negotiation
between a single service provider and a single service consumer. In the bargaining
game, one player makes an offer to the other player, who can accept or refuse it.
If it accepts the offer, the game is over. If it refuses the offer, it needs to make a
counteroffer. The process repeats until one of them accepts an offer, or no trade
occurs before a finite deadline. They introduced two reservation values for the play-
ers where a reservation value is a point beyond which a negotiator will walk away.
They also determined a Nash equilibrium that can be regarded as a fair solution.

This work is related to our work as we also apply game theoretic techniques to web

125

Chapter 6. Related Work

services negotiation. However, our work is different as, in theirs, bargaining games
can only be used to bargain over how to divide the gains by making offers and
counter offers, while, in our negotiation, the players exchange proposals to add and
withdraw features which can be either accepted or rejected.

In [96], the authors proposed a game theoretic model for negotiations between
providers and requestors. They formulated the negotiation as a game theoretic
model to analyse their strategic choices in one-time negotiation and repeated ne-
gotiation. They assumed that it is a static and complete information game. This
work is related to ours as we also formulate the negotiation between a provider and
a requestor using game theory. However, in our approach, we use dynamic games
while in their approach they used a static game which is not suitable for our scenario
where the negotiators interact by exchanging proposals.

Boella et al. in [97] developed a formal game-theoretic model to negotiate a decision
between agents about which behaviour to choose. They illustrated how agents use
the game theory within contract negotiation. They defined violation games between
an agent and the normative system in which the agent predicts the behaviour of the
normative system. However, this approach does not address the problem of equi-
librium analysis or the negotiation protocol to obtain an agreement, unlike in our
approach.

In [98], the authors discussed the theoretical difficulties and opportunities involved in
applying game theory and mechanism design to automated agents. They proposed
a two-player bargaining model within the ADEPT (Advance Decision Environment
for Process Tasks) format. However, as we discussed earlier in this section, bargain-
ing games cannot be used in our case.

Yan et al. in [99] proposed a framework in which the service consumer is rep-
resented by a set of agents who negotiate quality of service constraints with the
service providers for various services in the composition. A utility-function-based

decision-making model is proposed based on which agents can proactively decide

126

Chapter 6. Related Work

on the course of further actions. This work is related to ours as we also use utility
functions to decide the negotiators’ outcomes. However, this work focused on the
negotiation of the quality of services, while in our approach we focus on the negoti-
ation of the actual services.

In [100], the authors proposed a system named AutONA (Automated One-to-one
Negotiation Agent) to automate multiple 1-to-1 negotiation over the price for quan-
tities of a substitutable good subject to the organisation’s procurement constraints
of target quantity, price ceiling and deadline. The negotiation process was modelled
as a round-based multiple 1-1 negotiation game. This approach overlaps with ours
in the sense that we also use a negotiation game to model our negotiation process.
However, as in [99], this approach focused on the negotiation of quality of services,
in particular price and quantities.

Huang et al. in [101] presented a formal model for autonomous agents to negotiate
on the internet. The negotiation process is driven by the internal beliefs of partic-
ipating agents. In every negotiation iteration, an agent checks the history of the
process, updates its beliefs about its opponents and then tries to maximise its own
expected payoff based on its own subjective beliefs. The players choose their actions
simultaneously at each time period. Moreover, the authors conducted a series of
experiments to examine the impact of different beliefs on the outcomes of a basic
on-line negotiation scenario. Apart from the fact that their approach focused on
players’ beliefs and the use of iterated games for negotiation, the definition of their
formal model is closely related to the negotiation game definition.

In [102], the authors proposed a framework for negotiation processes that provides a
consistent model for supporting a comprehensive range of negotiations in a dynamic
eBusiness environment. The framework provides the foundation for constructing dy-
namic negotiation processes including negotiation protocol and negotiation strategy.
Once a protocol is selected and agreed, the negotiation becomes a game between the

selected negotiation partners where the rules are the negotiation protocol. However,

127

Chapter 6. Related Work

they did not focus on the type of the game and the strategies but on the message-
exchange activities in the negotiation protocol.

Shang et al. in [103] proposed a bilateral business negotiation model. They modelled
the negotiation as an incomplete information dynamic game. In the negotiation,
there is a bidder and an accepter in turn who can accept, refuse and bargain. If
the accepter chooses bargain, the role of the two sides will exchange. Whenever
a reaction of accept or refuse is chosen by one of the negotiators, the negotiation
process will come to an end. This approach is related to ours because we also use
game theory to model the negotiation but their approach cannot be used in our
case as they used bidding, which is suitable for competitive but not for cooperative
negotiation.

In [104], the authors proposed an automated negotiation mechanism that includes
a co-evolutionary mechanism to search complex and large spaces and a degree of
satisfaction. It allows the negotiating agents to express different levels of coopera-
tion in the negotiation and the degree of satisfaction without revealing the utility
function. However, they did not focus on the type of the game and the definition of
negotiation strategies.

Preibusch in [105] examined how service providers may resolve the trade-off between
their personalization efforts and users’ individual privacy concerns through negotia-
tions. They modelled the negotiation process as a Bayesian game where the service
provider faces different types of users. The framework for the negotiation process
is a dynamic game where the service provider has high bargaining power. In this
approach, the users are of certain types, which affects the players’ payoffs. In our
approach, we do not consider the player types but their strategies. Moreover, this
approach used a bargaining style of negotiation, which is not suitable in our case.
In [106], the authors proposed a game theory model for automatic SLA negotiation
between service customer and service provider where a service broker provides op-

timal value in price and quality to both of the parties. They considered the case

128

Chapter 6. Related Work

where both service provider and service requestor submit their SLA template to
the service broker and in turn the service broker provides them with the optimal
negotiated value for their SLA. The negotiation is represented as a static game in
which the players make their choices simultaneously. In our approach, we use dy-
namic games to represent our negotiation while static games are not suitable for our
scenario. Furthermore, we focus on a direct negotiation between the provider and
requestor and do not rely on a negotiation broker.

Table 6.1 presents a summary comparison of the approaches reviewed in this section
including our approach. In the (Game Type) column, we present the type of the
game, which can be either static or dynamic. The (Information) column specifies
whether the game is of complete or incomplete information. In the (Negotiation
Strategies) column, the ‘check’ mark indicates that the approach focused on the
definition of the negotiation strategies while negotiating. In the (Nash Equilibrium)
column, the ‘check’ mark indicates that the Nash equilibrium has been defined to

determine the optimal solution to the game.

6.5 Game Theory and Graph Transformations

In this section, we discuss the works related to the combination of game theory and
graph transformations.

Hindriks in [107] proposed generating game strategies using graph transformations
and is to our knowledge the closest work to ours in terms of the implementation. He
presented a system that allows the Minimax algorithm to be applied to the game.
The output of the algorithm is a strategy that provides a choice between possible
moves for any state of the game. The states of the games were modelled as graphs
and the moves as graph transformation rules. He used the GROOVE simulator tool

[108] to explore the game state space and calculate the Minimax value of all states.

129

Chapter 6. Related Work

. Negotiation Nash
Approach Game Type Information Strategies Equilibrium
Our Dynamic/Ne-
Approach gotiation Complete v v
Zheng et al. Dynam- Complete/In- v v
[95] ic/Bargaining complete
Sun et al. Static Complete v v
196]
Boella et al. | Dynamic/Ne-] " o
[97] gotiation
Binmore et Dynam- Incomplete y y
al. [98] ic/Bargaining P
Yan et al. Dynam- i v o
[99] ic/Bargaining
Byde et al. Dynam- i v o
[100] ic/Bargaining
Huang et al. Dynam-
[101] ic/Bargaining | Complete v X
Kim et al. Dynamic/Ne-] o o
[102] gotiation
Shang et al. Dynam-
[103] ic/Bargaining Incomplete v x
Chao et al. | Dynamic/Ne-
1104] gotiation Incomplete X X
Preibusch Dynam-
[105] ic/Bargaining Incomplete v s
Ray et al. Static : v v
[106]

TABLE 6.1: Summary Comparison of the Reviewed Approaches

A heuristic function was used to calculate the heuristic value of a given game state.
The approach was evaluated by generating strategies for a range of games.

The main difference between our approach and this approach is that this approach
focused on analysing zero-sum games using the Minimax algorithm, in which if one
player gains the other loses, while in our approach we explore both zero-sum and
non-zero-sum games for negotiation.

In [109], the authors proposed a generative model that combines graph transfor-

mations and game theory. They represented a complex network as a sequence of

130

Chapter 6. Related Work

node-based transformations determined by the interactions of nodes present in the
network. They used graph transformation to model the node-based transformation
while game theory is used to abstract the interaction between nodes. They proposed
a model called the dynamic spatial game and applied it to two biological examples.
They considered two-player symmetric games with two strategies, cooperate and de-
fect. Each node has an associated label that denotes its strategy and obtained value
according to its strategy. Each node executes an action according to the obtained
value. The action consists of the replacement of the node by means of an appropriate
production. This work is related to ours in the sense that we also use game theory to
analyse the interactions between states in state-based transformations. However, in
our approach, we use graph transformations to model dynamic games whose states
are modelled as graphs and the moves of the players as graph transformation rules,
while in this approach they modelled a symmetric game where its nodes represent
the strategies of the game and the actions are used to replace the nodes according to
a given production. Thus, it differs from ours in the type of game and the definitions
of the game states and moves.

In [110], the author proposed two-player zero-sum structure rewriting games in the
course of which a structure is manipulated by the players using rewriting rules. The
author provided a formal definition including the definition of the winning strategy.
Lukasz et al. in [111] introduced a general games model in which states are rep-
resented by relational structures and actions by structure rewriting rules. They
developed an algorithm that computes rational strategies for the players. They used
an evaluation game which is a statistical model used by the players to assess the
state after each move and to choose the next action. Our concern is with analysing
the negotiators’ strategic choices in order to determine a solution that benefits both

of them, beyond zero-sum games.

131

Chapter 6. Related Work

6.6 Summary

In this chapter, we reviewed the literature by providing a compilation of the most
relevant works in the areas of feature modelling, game theory and graph transforma-
tions. We classified these works into five categories: Feature Models in Negotiation,
Feature Models and Graph Transformations, Feature Models and Game Theory,
Game Theory in Web Services and E-commerce Negotiation and Game Theory and
Graph Transformations. We also discussed how our work is related to these works

and how it differs from them.

132

Chapter 7

Conclusion and Future Work

This chapter presents the conclusions to the thesis and suggestions for future re-
search work. Section 7.1 presents a summary of the research and its outcomes. In
Section 7.2, we discuss the main contributions of the thesis. Section 7.3 discusses
the conclusions of the conducted research. Finally, Section 7.4 lists suggestions for

further research directions.

7.1 Overall Summary

The work in this thesis highlights the important role that negotiation plays in the
success of e-commerce applications and services. It argues that the flexibility of a
provider and a requestor to negotiate is needed to discuss preferences and constraints
in order to determine a solution that benefits both of them. In order to achieve
this, feature models were used to increase the flexibility of agents’ interactions.
Negotiation games were proposed to model the interaction between a provider and
a requestor who use feature models to represent service configurations. They were

implemented as graph transformation games in which the states of the game are

133

Chapter 7. Conclusion and Future Work

given by graphs and the moves of the players by graph transformation rules. Such a
graph consists of a feature diagram, the current configuration under discussion and
a negotiation state. The graph transformation games were analysed to find optimal
strategies for the negotiators. Different experiments were conducted in order to

evaluate the approach.

7.2 Contributions

In this thesis, we proposed negotiation games, implemented as graph transformation

games. We categorise the contributions of the thesis into:

1. Graph Transformation Games.
2. Implementing Graph Transformation Games:

2.1. Defining game metamodel.

2.2. Designing game rules.
3. Analysing Graph Transformation Games:

3.1. Extensive-form graph transformation games.

3.2. Two-player turn-based stochastic games.

In the following subsections, we provide a summary of the above-mentioned contri-

butions.

7.2.1 Graph Transformation Games

We introduced graph transformation games that combine both graph transforma-

tion and game theoretical concepts to implement and analyse our negotiation games.

134

Chapter 7. Conclusion and Future Work

Graph transformation was used to model the negotiation games as state-based trans-
formations while game theory was used to analyse the interactions between states.
The states of the games are given by graphs and the rules of the games are defined

by graph transformation rules.

7.2.2 Implementing Graph Transformation Games

The implementation of our graph transformation games passed through two main

steps: defining the game metamodel and designing game rules.

Defining the Game Metamodel: a metamodel was developed to define the ne-
gotiation entities. It was used as a type graph to define graph transformation rules.
It contains three representations. First, the representation of the feature model,
which defines the relationships of features in the feature diagram. Second, the con-
figuration representation to represent the selected features. Third, the negotiation
state representation to negotiators and their proposals. Moreover, the metamodel
defines classes to represent the behaviour of the negotiators in which they interact

by taking turns.

Designing Game Rules: based on the game metamodel, the moves of the players
were defined as graph transformation rules. The players can make proposals and
respond to them by accepting or rejecting. The proposals were designed depending
on the types of features in the feature model, such as adding optional and substitut-
ing alternative features. The rules were created using the Henshin transformation
language and tool environment. We also used Henshin state space tools to generate
the game state space. We conducted different experiments to measure the speed in

generating the state space and test the scalability.

135

Chapter 7. Conclusion and Future Work

7.2.3 Analysing Graph Transformation Games

We proposed two different analyses of our graph transformation games, one in which
we analysed them as extensive-form games and the other in which we analysed them

as two-player turn-based stochastic games

Extensive-form Graph Transformation Games: we proposed to analyse our
graph transformation games as extensive-form games. The backward induction tech-
nique was adopted to reason our game state space backward in order to determine
the optimal moves of the players and therefore a Nash equilibrium of the game. The
result obtained by backward induction is the subgame perfect equilibrium, which
represents a Nash equilibrium of every subgame. The analysis was evaluated by
conducting different experiments on different graph transformation games to test

the scalability of the analysis.

Two-player Turn-based Stochastic Games: due to the uncertainty arising
from the unpredictability of negotiators’ reaction to proposals, we proposed analysing
our graph transformation games as two-player turn-based stochastic games using the
PRISM-games model checker. Firstly, we generated our graph transformation games
from Henshin to PRISM-games format by modifying the Henshin source code. Then,
we analysed the generated games by defining different reward-based properties in
order to generate optimal strategies for the players. We defined single-objective
properties to explore best individual outcomes. We also defined multi-objective
properties to achieve a more collaborative negotiation. Single-objective properties
are fixed and can be used in any example whereas multi-objective properties change
according to each example. Different experiments were conducted to measure the
construction time of the model in PRISM-games and the time spent in generating
the strategies.

136

Chapter 7. Conclusion and Future Work

Discussion: we applied both analysis methods to the same domain of feature
negotiation games in order to discover different analysis results. These methods
were presented as alternative to each other in analysing graph transformation games.
However, they have different requirements and provide different results. Thus, in the
following, we provide a brief comparison between these analysis methods, looking
in particular at the types of negotiation, the suitability and the scalability of each

method.

e Types of negotiation: each analysis method presents a different type of nego-
tiation. In extensive-form graph transformation games, the negotiators do not
behave competitively and they do not intend to minimise each other’s payoffs.
However, each negotiator will try to maximise its individual outcome regard-
less of what the other negotiator gets. Thus, the result of this analysis is not
necessarily the best joint outcome although it is better than behaving compet-
itively. In stochastic graph transformation games, we explored two different
types of negotiation, competitive and cooperative negotiation. In competitive
negotiation, the negotiators have completely opposite interests and try to min-
imise each other’s gain. The results of playing competitively show that there
is only a very small chance of achieving more than what was present before
starting the negotiation due to the competitive nature of the game and the
probability distribution over transitions. When cooperating, the negotiators
have joint strategy in order to achieve a particular goal. In our negotiation

games, the results of collaborating are better than playing competitively.

e Suitability: each analysis method is suitable for different scenario. Some real-
life negotiations can be described by extensive-form games with perfect infor-
mation, where the negotiators make choices sequentially and each negotiator
is perfectly informed of all previous actions. Analysing extensive-form games

with backward induction is suitable for scenarios, where each negotiator wants

137

Chapter 7. Conclusion and Future Work

to maximise its own individual outcome without any concern for what the
other negotiator gets. However, in many real-life negotiations, negotiators are
often concerned about reaching a higher joint outcome that is acceptable by
both parties rather than maximising their own individual outcomes. Moreover,
this analysis requires sequential rationality, where players must play optimally
at every point in the game. This assumption may not be possible in real-life
scenarios.

When uncertainty exists in the negotiation situations, stochastic games is suit-
able to analyse such situations. In some scenarios, the negotiators can behave
erratically and may have different levels of rationality that cause unpredictable
reaction to proposals. Thus, with stochastic games, the uncertainty is repre-
sented by assigning probabilities to negotiation actions. Analysing stochastic
games using PRISM-games allows synthesising optimal strategies for both com-
petitive and collaborative negotiations. However, it is very difficult in real-life
negotiation to obtain accurate probabilities for negotiation actions. This may

cause the negotiation to fail as it has high impact on the obtained results.

e Scalability: as we discussed in Chapter 4 and Chapter 5 both analysis meth-
ods have scalability issues with large graph transformation games. However,
synthesising strategies with PRISM-games is more scalable than computing
strategies in extensive-form games. Computing strategies in large extensive-
form games using backward induction demands an extraordinary amount of

computer memory and in some large examples does not return any results.

7.3 Conclusion

The aim of this thesis is to provide a flexible and structured negotiation process
that enables the negotiators to discuss their preferences and interact in a strategic

138

Chapter 7. Conclusion and Future Work

way to reach an agreement that benefits both of them. It has proposed graph trans-
formation games that combine game theoretic and graph transformation concepts.
The approach shows the usefulness of using game theory to provide a solution to the
negotiation by finding the optimal decision-making strategies. Graph transforma-
tion was used to provide a formal specification technique, which supports the visual
representation of the game.

We are interested in exploiting game theory as a software engineering tool, to analyse
requirements and design autonomous systems that interact in a flexible and coop-
erative way to maximise non-functional requirements expressed by payoffs. Synthe-
sising a strategy for such a system corresponds to the step from requirements to
design, while analysing a game can be a means by which to understand and validate

requirements.

7.4 Future Work

This research revealed some questions that need to be investigated in further studies.
In this section, we will highlight our future work, including further evaluation in
Section 7.4.1, investigating scalability in Section 7.4.2, further analysis techniques

in Section 7.4.3 and a compiler approach in Section 7.4.4.

7.4.1 Further Evaluation

The implementation of our graph transformation games was evaluated by exper-
iments to apply our transformation rules to different feature models with similar
structure, i.e. feature models with root and one level or two levels of sub-features.

Those experiments may not be sufficiently representative. Therefore, part of the

139

Chapter 7. Conclusion and Future Work

future work needs to apply the proposed approach to a wider range of different fea-
ture models with different structures. Moreover, it would be interesting to show the
effect of feature models’ structures on the size of the state space. For example, in
Figure 7.1, we show two feature model examples with a similar number of features
but in different structures. Table 7.1 shows the generation results for these two
examples. The number of states decreased by about 69% between the first and the
second example. The reason is that feature C in the second example cannot be
proposed to be added unless its parent B has been added to the configuration, while

in the first example both features B and C can be proposed at the same time.

A A
/\ fo)
B C B
o)
C

M 2

FIGURE 7.1: Feature Models with Different Structures

Feature model | No of states | No of transitions | Generation time (Seconds)
(D 71 70 0.684

Q) 22 21 0.587

TABLE 7.1: Generation Results for Feature Models with Different Structures

7.4.2 Scalable Protocol

This thesis pointed out a scalability issue with both implementing and analysing
our graph transformation games, caused by the dramatic increase in the size of

the games’ state space, which is affected by the number of features in the features

140

Chapter 7. Conclusion and Future Work

model. In future work, the top priority is to design different negotiation protocols
which might restrict the moves of the negotiators, yielding a smaller game size. For
example, in real business negotiations, the duration of the negotiation is very im-
portant as most of the negotiation processes are very time consuming. Furthermore,
the negotiators may have high sensitivity to time, which means that they value their
time and do not want to be involved in unnecessarily complex and time-consuming
negotiations. In our negotiation games, if the negotiators have hundreds of available
proposals, for example, it is not feasible to allow them to exchange all proposals
because the time spent negotiating should be reasonable. Thus, the duration of the

negotiation could be limited by a certain deadline.

7.4.3 Incomplete Information

This research presented two types of games that were used to analyse our graph
transformation games in Chapter 4 and Chapter 5. Further studies need to be
carried out to discover different types of games and strategies that might provide
better analysis results. Moreover, in both types of games we used, we assumed
that the game is of perfect information. This assumption is not always possible in
reality. Therefore, a focus on games of incomplete information could provide more
realistic results. The longer-term aim is to allow the use of this method to design
and optimise negotiation strategies as part of the development or customisation of e-
commerce applications or in the interaction between service requestors and providers

in a business-to-business context.

7.4.4 Compiler Approach

As discussed in Chapter 5, we generated graph transformation games from Henshin

to PRISM-games format for analysis as two-player turn-based stochastic games.

141

Chapter 7. Conclusion and Future Work

According to our experimental results, constructing the models in PRISM-games
and generating strategies took up most of our time, especially with larger models.
The reason is that we constructed a flat labelled transition system in PRISM-games
rather than its specification. Therefore, implementing our negotiation of features
using the PRISM-games model checker directly rather than in Henshin could produce
interesting results. We carried out an initial implementation and conducted some
experiments to provide preliminary results.

In PRISM-games, we model our negotiation of features as follows:

Players: similar to what we have carried out in our approach, we created two
constructs for players: one for the requestor and the other for the provider. Inside
each construct, we defined the transitions under the players’ control. The transitions
for the requestor start with the prefix “Req” and the transitions for the provider start
with the prefix “Prov”. The only difference is that we created a transition for each
specific feature rather than its type. For example, to define a transition for the
provider to accept adding the optional feature Catering, we created a transition

with the following label: [Prov_accept_to_add_Catering].

Module: we created one module to define the behaviour of the negotiators, in

which they take turns. The state of the module is defined by a set of variables.

Variables: we defined a set of variables as following:

1. We introduced a variable turn to schedule taking turns.

2. We defined an integer variable for each feature where its value represents a

feature’s status as follows:

(a) 0 indicates that the feature has not been selected in the configuration.

142

Chapter 7. Conclusion and Future Work

(b) 1 indicates that the feature has been selected in the configuration.

(c) 2 indicates that the feature has been proposed. This value is needed to

ensure not to make the same proposal again.

3. We defined two variables to control pass transitions, so if both players pass

turn, the game stops.

Rewards: in this implementation, we created two reward structures: "req" and
"prov". We assigned rewards to transitions to indicate accepting adding and with-
drawing features. For example, we assign a reward after accepting adding Catering

as follows:

[Prov_accept_to_add_Catering| turn=1: 5;

Experimental Results: we conducted some experiments to measure the model
construction time and strategy generation time. In all experiments, we used fea-
ture models with one level of optional sub-features. We also increased the memory
allocated to Java to 10GB in order to avoid lack of memory error. In Table 7.2,
we show the results generated using single-objective strategies. We used examples
containing three to 10 optional features. In Table 7.3, we show the results generated

using similar examples but with multi-objective strategies.

143

Chapter 7. Conclusion and Future Work

No of No of No of Construction time in Strategy
features states transitions PRISM-games generation time
(Seconds) (Seconds)
3 293 521 0.024 0.002
4 1059 2067 0.028 0.008
5 3657 7597 0.037 0.039
6 12299 26723 0.082 0.181
7 40701 91521 0.244 0.694
8 133251 307939 0.868 3.221
9 432833 1022981 4.783 13.753
10 1397259 3365139 16.112 35.548

TABLE 7.2: The Generation Results with Single-objective Strategies

No of No of No of Construction time in Strategy
features states transitions PRISM-games generation time

(Seconds) (Seconds)

3 293 521 0.024 0.081

4 1059 2067 0.028 0.267

5 3657 7597 0.037 0.926

6 12299 26723 0.082 3.363

7 40701 91521 0.244 11.454

8 133251 307939 0.868 36.464

9 432833 1022981 4.783 128.304
10 1397259 3365139 16.112 424.068

TABLE 7.3: The Generation Results with Multi-objective Strategies

These results show a significant improvement in both construction and strategy gen-
eration time compared to our approach. For example, in the third row in Table 7.2,
only 0.037 seconds are required to construct the model with five features and 0.039
seconds to generate the strategy, whereas in the last row in Table 5.3, 7088.807
seconds are required to construct a model with the same number of features and
2462.566 seconds to generate the strategy. However, one of the limitations of this
implementation is that, in order to keep the consistency of the configuration with
its feature model’s constraints, it is necessary to control this manually by using the
feature’s status variables described above.

As discussed above, generating our negotiation of features using the PRISM-games

model checker directly could yield a significant improvement in the generation and

144

Chapter 7. Conclusion and Future Work

analysis time. Therefore, we are very interested in providing an alternative approach

as part of our future work.

7.5 Summary

In this chapter, we covered the contributions presented in the thesis. We provided
three main contributions: graph transformation games, implementing graph trans-
formation games and analysing them. Negotiation games are implemented as graph
transformation games where the states of the games are given by graphs and the
rules of the games are defined by graph transformation rules. We discussed the steps
in implementing our graph transformation games, which include defining the game
metamodel and designing game rules. We also discussed the two different analyses
of our graph transformation games. Both the implementation and the analysis were
evaluated by different experiments. Then, we provided an overview of our future

work and possible open research directions.

145

Appendix A

Transformation Rules

A.1 Rules for Alternating-offer Protocol

$ Rule Req_accept_to_addOpt(featureName, R, P, Rt, Pt, id)
«forbid#with» «create»
:Withdraw :Move
Wihdraw hasMove move
«forbid#with» c
«preserve»
«preserve» :Optional
I hasParent «preserve»
:Feature = R
«preserve» -Heq
= Ppayoff=P
oceurs = Rpayoff=R d bj
«preserve» oc occurs «presel «forbigi#by»
«forbid#gccu» C o
«preserve»
«preserve» «forbi o :Add
:Occurrence :Occurrence :Occunence
proposals
'ﬂ «pres irvc—»
hasOccutences hasOcdurences has?ccurences
«preserve»
«preservey «forbid#dccu» / : iner | g
«preserve»
|:‘Configuration | mdke
= Rtotal=Rt->Rt+R «delpte»
= Ptotal=Pt->Pt+P dcieter
= id=id->id+1 :Make

FIGURE A.1: Transformation Rule Req_accept_to_addOpt

146

Appendix A. Transformation Rules

$ Rule Req_accept_to_addOr(featureName, R, P, Rt, Pt, id)

«crefate»

«forbid#with» «create»
:Withdraw :Move
«preserve»
«forbidftwith» «crpate»
«preserve»
:Or
«preserve» [«preserver»
:Feature hasParent = name=featureName Req
= Ppayoff=P
1 Rpayoff=R d
ocelrs occurs «preserug» «forbidi#by»
«forbigfocc» «crexte» «preserve»
ocaurs :Add
«forbid#occ» «create»
«presprve» :Occurrence :Occurrence
proposals
«presgrve»
hasOccukences hasOccurences toGenfig
«preserve»
«forbiddpce» «crpates «préserver :Container |,
[«preserve»
B i mgke
«preserve» «delpte»
:Occurrence hasOccurences = Ptotal=Pt->Pt+P
«preserve» — Rtotal=Rt->Rt+R «delete»
:Make
= id=id->id+1

FI1GURE A.2: Transformation Rule Req_accept_to_addOr

$ Rule Req_accept_to_

] 1, R, R1, B, P1, Rt, Pt, id)

«preserve»
v o :Alternative
:Occurrence oceurs 1 name=featureName | .. 4. «‘;;Iy';e::rve»
«delete» =1 Ppayoff=P .preserves [EEuCrawa)
=1 Rpayoff=R
b «create»
hasOccurences hasParent :Move
«deldte» «preservi «forbid#by»
hasMove
«gréater
«preserves» «preserve» «preserve»
:C i :Feature :Req
= Ptotal=Pt->Pt-P+P1 mave
= Rtotal=Rt->Rt-R+R1 h
asParent b «crepte»
= id=id->id+1 «dele «preserve»
} «forbidftby1»
hasOccurences \ [polcies
«Credten «preserve» :Add
:Alternative
«create» occurs =] 1 delet
‘Occurrence «create» =1 Ppayoff=P1 propodgals
= Rpayoff=R1
«delete» K «preserve»
:Make | :Container
«delete»

FIGURE A.3: Transformation Rule Req_accept_to_substitute

147

Appendix A. Transformation Rules

$ Rule Req_accept_to_withdrawOpt(featureName, R, P, Rt, Pt, id)

«create»
:Move
«preserve»
«forbid#add» add Options] hasMove move
:Add - = «crepte» —
«forbid#add» 1 Ppayoff=P «creafe»
«preserve»
= Rpayoff=R :Req
ocelrs withdraw
«dgfete» “preservey, b]
«forbid#by»
«delete» «preserven
:Occurrence :Withdraw
hasOccyrences
toCol
«delpte» proposals
«presefien
«preserver
«preserve»
:Configuration
«delete» K «preserve»
= Ptotal=Pt->Pt-P :Make messe :Container [
= Rtotal=Rt->Rt-R «delete»
= id=id->id+1

FIGURE A.4: Transformation Rule Req_accept_to_withdrawOpt

$ Rule Req_accept_to_withdrawOr(featureName, R, P, Rt, Pt, id)

«forbid#add»
:Add

«foFg%a{dd»

1 Ptotal=Pt->Pt-P
= Rtotal=Rt->Rt-R
= id=id->id+1

[«preserve»
:Or
3 name=featureName
=1 Ppayoff=P
= Rpayoff=R
hasParent
«preserve»
«preserve» «preserver ocdurs
o hasParent §
:Or :Feature «deter
«preserve»
ocgurs ocgurs «delete»
:Occurrence
«preserve» «presprve»
«preserve» «preserver
:Occurrence -:Occurrence hasOgcurences
toCenfig
«progerve»
hasOccurences hasOccurences
«preséxe» «presefve»
«preserve»
:Configuration

«create»
:Move

hasMove
«crepte»

«preserve»
:Req

move
by «create

«forbidl#by»

«preserve»
:Withdraw

proposals

«presgrve»

[«preserve»
Contel

mgke
«delpte»

«delete»
:Make

FIGURE A.5: Transformation Rule Reg_accept_to_withdrawOr

148

Appendix A. Transformation Rules

$ Rule Req_reject_to_addOpt(featureName, R, P, Rt, Pt, id)

«forbid#with» «create»
:Withdraw :Move
Witr" jow hastIove fiots
«forbidfwith» &
«crepte» «creaje»
«preserve»
:Optional SR
ger:tsfrr:e hasParent Cjbame:teatireiatie ‘Req
«preserve» = Ppayoff=P
= Rpayoff=R
pay dd b
occlrs ocqurs vpravee» «forbid#by»
«preserve» «forbid#occ» «preserve»
:Add
«preserve» «forbid#occ»
:Occurrence :Occurrence
propgsals
«presgrve»
hasOetences hasOcdurences toCofifig
. «géleter «preserve»
*PrasoR(e» sfarolffcesy :Container | g,
-
«preserve» (
:Configuration
onfiguratiol make
= Ptotal=Pt wdeibten
= Rtotal=Rt
R «delete»
= id=id->id+1 ‘Make

FIGURE A.6: Transformation Rule Req_reject_to_addOpt

= Rule Req_reject_to_addOr(featureName, R, R, Rt, P, id)
«forbid#with» ;
:Withdraw i"a':j:
withdraw
«forbidiwith» hasNlove
uclerte»
«preserve»
«preserve» :Or «preserve»
:Feature hasParent :Req
I nar ureiNam
«preserve» =] Ppayoff:P
1 Rpayoff=R b
El
ocagurs «presere» «forbid#by» mave
«preserve» ocqurs «crgate»
" «preserve»
«forbid#occ» -Add
«preserve» «forbid#occ»
:Occurrence :Occurrence proposals
«presgrve»
«preserve»
hasOccuregnces hasOccurgnces :gontaine:'
«presecve» «forbid#pce» >
«preserve» mdke
:Configuration «dplete»
= Ptotal=Pt
I Rtotal=Rt T;eﬂl:ée»
=3 id=id->id+1

FiGURE A.7: Transformation Rule Req reject_to_addOr

149

Appendix A. Transformation Rules

$ Rule Req_reject_to_substitute(featureName, featureName1, R, R1, B P1, Rt, Pt, id)

«preserve»
:Alternative
«preserve» . «delete»
:Occurrence oeeurs =1 name=featureName Withdraw _|.\withdraw proposals
«preserve» | Ppayoff=P «delete» «delete»
= Rpayoff=R Pt
hasOccurences :Move
by
«presgrve» «forbidl
ig Parent hasMove
e» «preserve»
«preserve»
:Configuration «preserve» «preserve»
T | :Feature :Req
= Ptotal=Pt ikl
= Rtotal=Rt
«cregte»
3 id=id->id+1 hasRarent by
«pregerve»
hasOcgurences «forbidtby1»
«forbig#occ»
] «preserve»
<forbid#occ» :Alternative FRroseves
:Occurrence oceurs ront add _[/Add
«forbid#occ» - Name! preserve:
= Ppayoff=P1
= Rpayoff=R1
«delete»
‘Make make «preserve»
«delete» :Container |,

FiGURE A.8: Transformation Rule Req reject_to_substitute

= Rule Req_reject_to_withdrawOpt(featureName, R, P, Rt, Pt ic)
«create»
:Move
e L «preserve» hasMove move
ST :Optional «rehter ucredter
:Add add : =
= 1 eName T
forbid#add» I *
= Rpayoff=R :Req
= Ppayoff=P
ogcurs withdraw by
«presérve» «preserver «forbidl#tby»
«preserve» «preserve»
:Occurrence :‘Withdraw
hasOccurences propgsals
«presefve» «preserve»
«preserve»
«preserve» «delete» :Container
:Configuration :Make make
1 Rtotal=Rt «delete»
1 Ptotal=Pt
= id=id->id+1

FIGURE A.9: Transformation Rule Req_reject_to_withdrawOpt

150

Appendix A. Transformation Rules

@ Rule Req_reject_to_withdrawOr(featureName, R, P, Rt, Pt, id)

«forbid#add»
:Add

aqd

«forbid#add»

«preserve»
:Or

=1 name=featureName
=1 Rpayoff=R
=1 Ppayoff=P

ocagurs

upreserve»

«preserve»
:Occurrence

hasOccurences

«presefve»

«preserve»
:Configuration

3 Ptotal=Pt
1 Rtotal=Rt
1 id=id->id+1

witl
«pres 2
toCo)
«dgleter»

«create»
:Move

has?Iove

«crepte»

«preserve»
:Req

by
«forbigi#by»

«preserve»
:‘Withdraw

proposals
«presgrve»

«preserve»
:Container

«crej

mao

mdke
«delpte»

«delete»
:Make

gte»

F1GURE A.10: Transformation Rule Req_reject_to_withdrawOr

é Rule Req_pass(Rt, Pt)

«preserve»
:Configuration

1 Ptotal=Pt->0
1 Rtotal=Rt->0

«create»
:Pass

«cred

»

:Pass

«forbid#pass»

hasH
«forbidig

N
ass

pass»

:Req

«preserve»

«delét

hasMove

:Move

«delete»

maqve

«dglete»

«preserve»
:Container | g, start

«preserve»

«forbid#pass»
:Pass

hasPpss
«forbid§pass»

«preserve»
:Prov

hasMove

«create»

«create»
:Move

«preserve»

:Start

FIGURE A.11: Transformation Rule Req_Pass

151

Appendix A. Transformation Rules

= Rule Prov_propose_to_addOpt(featureName, time, Rt, Pt)
«forbid#add» «forbid#pass»
:Add :Pass
\m\ h;}\éss o
«forbid#hass» move
<preserves ‘EIDeTYes <delater
-Feature: hasParent :Optional
“preserver =1 name=featureName haslove
«delpter
«preserve»
exclide exclude :Prov
ocaurs occrrs 3
«presprve» «forbid#pccu» “create,
b
«preserver [Lomiasancdes “TorbidRoceu «crefter
:Occurrence i ot :Occurrence «create»
:Add
= t=time+1
occprs
«forbid#gxclude» hasOcciirences proposals
«forbid#opcu» «cregte»
hasO
:0
«pregerve» preser
:Start
has rences
“wa[«preserver "
:Configuration createn
= Ptotal :Make «pregerve»
= Rtotal=Rt
TorbiaFRass preserve preserves Sortainer g
:Pass hasPass :Req Count | count 8
«forbidi#tpass») count=time->time+1 | “Preserve

FIGURE A.12: Transformation Rule Prouv_propose_to_addOpt

@ Rule Prov_propose_to_addOr(featureName, time, Rt, Pt)
«forbid#with»
‘Withdraw :Add :Pass
«delete»
:Move |, move
aqd
hasRass «deletg»
“preserve» | hasParent |‘Preserver hasParent «forbidftadd~ «forbid¥pass»
-or :Feature «preserve» hasNlove
: “preserver <preserver -Or
«delgte»
1 name=featureName
[«preserver
excllide it
«forbid#gxclude»
ocagurs ocgurs «forbid#exclude» £ © ocqurs by
«presprve» «presprves :SubFeature _ fpsbid#explude «craa
_ «forbidf#oce» «cregter»
oc «create»

i :Add
<preserve» +orbidigcludes :Occurrence =
:Occurrence. «preserve» forbidfexcluder = t=time+1

flo} -0
hasOgéurences
hasO¢curences hasOccurgnces ¢\ . proposals
A «forbid#exdudex e
preserve»
hasOccurerices :Configuration
«preserve» SBIclaRE
= Rtotal=Rt jior -
«create» «preserver
:Make :Container
“create» fo—
s(!}n
Serve»
«forbid#pass» «preserve» Yprosprver.
| hasPass Ik «preserve»
:Pass Req e «preserve»
«forbid#pass» Ol :Start
=] 1 il

FIGURE A.13: Transformation Rule prov_propose_to_addOr

152

Appendix A. Transformation Rules

$ Rule Prov_propose._to_substitute(featureName, featureName1, time, Rt, Pt)

«for cluder
:SubFeature

include

ocqurs.
«forbid#{nclude»

[«forbid#include»
:Occurrence

hasParent
«presgrven

«create»
:Withdraw

[«preserve»

withtigaw
«forbidwith1»

:Feature

2

toCénfig

«crehter

[«preserve»

«delpter

:Container

foglia#addn
hasOcclrences hasParent
«forbid#includes
«presgrve»
exclude
:SubFeature «forbid#texcluder i3 l
exclude F
| = name=featureName1 |
ofs
oodits erbid#occ»
«forbidfidxcludes
asQccurences

«forbid#pass»

[forbidFexciuden
:Occurrence hasOccurences \‘(prasewe'
T EE—— i
[omiorercuas
hasOccurences
preserver |
“preserver [forbid#pass»
:Req hasPass :Pass.

FIGURE A.14: Transformation Rule Prov_propose_to_substitute

@ Rule Prov_propose_to_withdrawOpt(featureName, time, Rt, Pt)

«forbid#add» «forbid#with» «forbid#pass» «delete»
:Add :Withdraw :Pass :Move move
«delete»
forbi d» Wit.hdraw hasNlove
«forbig#with» «delpte»
«forbid#include» X «preserve» «preserve»
:SubFeature include :Optional :Prov
[forbid#include» D namesteaturaName
ithd|
forbia#acluc oopurs - 3
P i » «
orbid#include «pregerves cred «cregte»
«forbid#include» «preserve» «create» «forbid#make»
:Occurrence :Occurrence i :Make
o t=time+1
hasOccurences
«presprve» toC
hasOccprences seréate» proposals
«forbid#|nclude» «preserve» crckat «forpid#make»
:Configuration i
=3 Ptotal=Pt
= Rtotal=Rt
«preserve» «preserve»
:Count count :Contai
= count=time->time+1 R
23(e
serve» «creat®:
«forbid#pass» «preserve» «preserve» [«create»
:Pass hasPass |.Re :Start :Make
«forbid#pass» 1 [

FI1GURE A.15: Transformation Rule Prov_propose_to_withdrawOpt

153

Appendix A. Transformation Rules

= Rule Prov_propose_to_withdrawOr(featureName, time, R, Pt)

«forbid#tadd»
:Add

«delete»
:Move

W wpreserver
0

forbid#pass»
:Pass

gdPass
«forbid#with» withdraw Helg ditpass»
:Withdraw e —rsrEFmR— = Name=featureName
“Forbidwith» moyve
include «delete»
«forbid#include» hasparent
priferver
«preserve» «preserve» occlirs
:0r hasParent | Feature
«presgrve»
«create»
‘Withdraw
ocaurs ocgurs = t=time+1
PrOSPIVEs rocerves “Presprves
«preserve» [«preserver [«preserve»
:Occurrence :Occurrence :Occurrence proposals
«crepten
ha r‘\ hasO 5 hasO 1\
toGonfig
«prosqrves “Pres§rves «preserve»
“orbiarmoider | 7 crpdfer
:SubFeature
<preserves forbid#make» preserver
oS :Configuration :Make make :Container
«forbid#include» 1 Ptotal=Pt forbid#make»
= Rtotal=Rt
. (..
«forbid#include» col
-0 hasO «pres
«forbid#pass» hasPass ‘«preserve» “preserve» «preserves
:Pass :Re :Count :Start

«forbid#pass» {

3 count=time->time+1

F1GURE A.16: Transformation Rule Prov_propose_to_withdrawOr

(= Rule Prov_pass(rt, Py

«preserve»
:Configuration

=1 Ptotal=Pt->0
3 Rtotal=Rt->0

«create»
:Pass

S
«creat

«forbid#pass»
:Pass «forbid#pass»
:Pass
Y
hasHass
«forbid§pass» hasHass
«preserve»
iProv «forbid#gass»
«preserve»
:Req
hagMove
«delpte»
«deleten has!‘Love
:Move «crepte»
«creates
p :Move
mgve
. «delpte» e
“ «Gp en
«preserve» «preserve»
:Container |, start :Start
«preserve»

FIGURE A.17: Transformation Rule Prov_Pass

154

Appendix A. Transformation Rules

A.2 Backward Induction Rules

V$ Rule LeavesProv(pt, rt, pt1, rt1, rt2, pt2, x)

" Condition condition

«forbid#tral

outgoing

«delete»
:Transition

pt1>=pt2
«preserve»
«preserve» outgoing ESials
:Transition 1 ptotal=pt->pt1
= mover="Prov" «preserve» = rtotal=rt->rt1
1 data=x->"Explored"
incoming
«preserve»
«preserve»
:State
1 ptotal=pt1
= rtotal=rt1

«forbid#transition1»
:Transition

«delete»

«forbid#

«forbid#transition2»

:Transi

ition

nsition2»

— mover="Prov"

incoming

«delpte»

«preserve»
:State

1 ptotal=pt2
1 rtotal=rt2

FIGURE A.18: Transformation Rule LeavesProv

é Rule CompareProv(pt, rt, pt1, rt1, rt2, pt2, x)

" Condition condition
pt1>=pt2

«preserve»
:Transition

= mover="Prov"

incoming

«preserve»

«preserve»
:State

1 ptotal=pt1
1 rtotal=rt1

= data="Explored"

«preserve»
:State

1 ptotal=pt->pt1
1 rtotal=rt->rt1
1 data=x->"Explored"

outgoing

outs

«forbid#transition»

ing

«deletey

«forbid#transition»
:Transition

«delete»
:Transition

1 mover="Prov"

incoming

«delete»

«preserve»
:State

1 data="Explored"
1 ptotal=|
1 rtotal=rt2

pt2

FIGURE A.19: Transformation Rule CompareProv

155

Appendix A. Transformation Rules

=> Rule CompareProv1(pt, rt, pt1, rt1, rt2, pt2,)
" Condition condition f‘gt':t?rve”
pt1>=pt2 = outdol «preserve»
= ptotal=pt->pt1 | g, utgoing :Transition
= rtotal=rt->rt1 «preserve»
outgeing
«detete»
«preserve» «delete»
:Transition :Transition
= mover="Prov" = mover="Prov"
. . incoming
incoming
«preserve» «delpte»
«preserve» «preserve»
:State :State
= ptotal=pt1 = data="Explored"
= rtotal=rt1 = ptotal=pt2
1 data="Explored" I rtotal=rt2

FI1GURE A.20: Transformation Rule CompareProvi

156

Appendix B

Implementation

B.1 Generating Graph Transformation Games

/%%

This code has been taken from the code provided with Henshin examples and

written by Christian Krause
*/
public class GenerateStateSpace {
public static final String PATH = "src/";
public static void run(String path){

System.out.println("Generating state spaces...");

System.out.println("MaxMemory: " + Runtime.getRuntime () .maxMemory ()

/ (1024 * 1024) + "MB\n");

// Load the state space and create a state space manager:

StateSpaceResourceSet resourceSet = new StateSpaceResourceSet(path);

StateSpace stateSpace =

resourceSet.getStateSpace("Test.henshin_statespace");

157

Appendix B. Implementation

StateSpaceManager manager = new
ParallelStateSpaceManager (stateSpace);
try {
System.out.println("States\tTrans\tGenTime") ;
// First reset the state space:
manager.resetStateSpace(false);
// Then explore it again:
long genTime = System.currentTimeMillis();
new StateSpaceExplorationHelper (manager) .doExploration(-1, new
NullProgressMonitor());
genTime = (System.currentTimeMillis() - genTime);
System.out.println(stateSpace.getStateCount() + "\t" +
stateSpace.getTransitionCount() + "\t" +
genTime) ;
}
catch (Exception e) {

e.printStackTrace();

}

finally {
manager . shutdown() ;

}

System.out.println();
}
public static void main(String[] args) {

run (PATH) ;

158

Appendix B. Implementation

B.2 Extensive-form Graph Transformation Games

B.2.1 Creating A State Space Metamodel and Instance

Create State Get State
Space Space Set Model
Metamodel Instance URI
Save Model Add New

Attributes

FIGURE B.1: Creating A State Space Model and Instance

// create a model of the state space
Model stateSpaceModel =
StateSpaceFactory.eINSTANCE. createModel (stateSpace.eResource());
// get the graph of the state space
EGraph stateSpaceGraph = stateSpaceModel.getEGraph();
// get the root object of the state space graph
EObject stateSpaceRoot = stateSpaceGraph.getRoots().get(0);
//get the EPackage of the model
EPackage stateSpacePackage = stateSpaceRoot.eClass().getEPackage();
//set the URI of the model package
stateSpacePackage.setNsURI("www.statespace.com");
// set the URI of the state space instance to be similar to the

model

stateSpaceRoot.eResource() .setURI(URI.createURI("www.statespace.com"));
// get Storage class

159

Appendix B. Implementation

EClass storageClass = (EClass) stateSpacePackage.eContents().get(5);
// get data attribute of the Storage Class and set its type to
String
storageClass.getEAttributes() .get (0) .setEType(EcoreFactory.eINSTANCE.
getEcorePackage () .getEString());
// create ptotal attribute
EAttribute ptotal = EcoreFactory.eINSTANCE.createEAttribute();
ptotal.setName("ptotal");
ptotal.setChangeable(true);
ptotal.setEType (EcoreFactory.eINSTANCE. getEcorePackage() .getEInt());
// create rtotal attribute
EAttribute rtotal = EcoreFactory.eINSTANCE.createEAttribute();
rtotal.setName("rtotal");
rtotal.setChangeable(true);
rtotal.setEType(EcoreFactory.eINSTANCE. getEcorePackage () .getEInt());
//get State Class
EClass stateClass = (EClass) stateSpacePackage.eContents().get(1);
//add ptotal attribute to State class
stateClass.getEStructuralFeatures() .add(ptotal);
//add rtotal attribute to State class
stateClass.getEStructuralFeatures() .add(rtotal);
// create mover attribute
EAttribute mover = EcoreFactory.eINSTANCE.createEAttribute();
mover.setName ("mover") ;
mover .setChangeable(true);
mover .setEType (EcoreFactory.eINSTANCE.getEcorePackage () .getEString()) ;
// create transitionLabel attribute
EAttribute transitionlabel =

EcoreFactory.eINSTANCE.createEAttribute();

160

Appendix B. Implementation

transitionLabel.setName("transitionLabel");

transitionlLabel.setChangeable (true);

transitionLabel.setEType(EcoreFactory.eINSTANCE. getEcorePackage() .

getEString());

//get State Class

EClass transitionClass = (EClass)
stateSpacePackage.eContents() .get (3);

transitionClass.getEStructuralFeatures().add(transitionLabel);

transitionClass.getEStructuralFeatures() .add(mover) ;

// save .core file after changing the type of data attribute

resourceSet.saveEObject (stateSpacePackage, "/Users/Mohammed") ;

B.2.2 Generating An Instance

Load State Get State Getl New
Space Graphs Attributes
Instance Values
Save Instance Encode New
Attributes

FIGURE B.2: Generating A State Space Instance

//load the EGraph of the StateSpace.xmi instance created by Create.java

EGraph graph = new
EGraphImpl (resourceSet.getResource("StateSpace.xmi"));

//get the root of the instance

161

Appendix B. Implementation

EObject instanceRoot = graph.getRoots().get(0);
//get all states objects from StateSpace.xmi
EObject stateInstance = instanceRoot.eContents().get(i);
//get the EGraph of each state in the stateSpace
Test .henshin_statespace
EGraph stateGraph =
manager . getModel (stateSpace.getStates() .get(i)) .getEGraph() ;
//get the root object of the stateGraph
EObject graphRoot = stateGraph.getRoots().get(0);
//get the featuremodel object
EObject featureModel = graphRoot.eContents().get(0);
//get the configuration object
EObject config = featureModel.eContents().get(0);
//get Ptotal value from the configuration
int pTotal = (int)
config.eGet(config.eClass() .getEStructuralFeature("Ptotal"));
//get Rtotal value from the configuration
int rTotal = (int)
config.eGet(config.eClass() .getEStructuralFeature("Rtotal"));
//encode the value of Ptotal to the State ptotal attribute
stateInstance.eSet(stateInstance.eClass() .getEStructuralFeature
("ptotal"), pTotal);
//encode the value of Rtotal to the State rtotal attribute
stateInstance.eSet(stateInstance.eClass() .getEStructuralFeature
("rtotal"), rTotal);
resourceSet.saveEObject (graph.getRoots() .get(0),

"/Users/Mohammed") ;

162

Appendix B. Implementation

B.3 Stochastic Graph Transformation Games

B.3.1 Mapping from Henshin to PRISM-games

//output header and keyword
writer.write(PRISMUtil.getModelHeader(timed ? "pta"
"smg"));

//players constructs
writer.write("player requestor\n");

for (int i=0; i<stateSpace.getStateCount(); i++) {
for (int j=0;

j<stateSpace.getStates().get(i).getOutgoing().size();
J++1

}

["+1.get(@>+"1");
for (int i=1; i<l.size(Q); i++) {
writer.write(",\n

["+1.get(id+"1"D;
}

writer.write("\nendplayer");

//create module

writer.write("\nmodule M"+ "\n\n");

// State and transition count:
writer.write(stateCount + " " +
stateSpace.getTransitionCount() + "\n");

// State variables:
writer.write(PRISMUtil.getVariableDeclarations(stateS
pace.getStateCount(), false));

//printing guarded command

writer.write("\t[" + label + "] " +
PRISMUtil.getPRISMState(s.getIndex(), guard, false) +
Y

//we assign the probabilities for the accept and
reject transitions

if (label.contains("accept")D{

writer.write("\t[" + label + "] " +
PRISMUtil.getPRISMState(s.getIndex(), guard, false) +
" -> " +acceptRate/(acceptRate+rejectRated+ ":");

}

writer.write("\nendmodule\n\n");

writer.write("rewards "+"\"reg\"\n");

//here should be states with rewards

for (int i=0; i<stateSpace.getStateCount(); i++) {
//get the EGraph of each state in the stateSpace
Test.henshin_statespace

EGraph stateGraph;

try {

stateGraph =

manager .getModel(stateSpace.getStates().get(i)).getEG
raphQ;

//get the root object of the stateGraph

EObject graphRoot = stateGraph.getRoots().get(@);
//get the featuremodel object

EObject featureModel = graphRoot.eContents().get(@);
//get the configuration object

EObject config = featureModel.eContents().get(@);

writer.write("endrewards\n");

smg keword

player constructs

module

rewards

smg

player requestor
[Req_start_to_addOpt],

[Req_start_to_addOr],
[Req_start_to_substitute],
[Req_respond_to_addOr],
[Req_respond_to_substitute],
[Req_propose_to_addOr],
[Req_propose_to_substitute],
[Req_pass],
[Req_respond_to_addOpt],
[Req_respond_to_withdrawOr],
[Req_propose_to_addOpt],
[Req_propose_to_withdrawOr]

endplayer

player provider
[Prov_respond_to_addOpt],

[Prov_respond_to_addOr],
[Prov_respond_to_substitute],
[Prov_propose_to_addOr],
[Prov_propose_to_substitute],
[Prov_pass],
[Prov_propose_to_addOpt],
[Prov_propose_to_withdrawOr],
[Prov_respond_to_withdrawOr]

endplayer

module M

5:[0..3299] init O;

[Req_start_to_addOpt] (s=0) -> (s'=1);
[Reqg_start_to_addOr] (s=0) -> (s'=2);
[Req_start_to_substitute] (s=0) -> (s'=3);
[Prov_respond_to_addOpt] (s=1) -> 0.5 :(s'=4) + 0.5 :
(s'=5);

[Prov_respond_to_addOr] (s=2) -> 0.5 :(s'=6) + 0.5 : (s'=7);
[Prov_respond_to_substitute] (s=3) ->0.5 :(s'=8) + 0.5 :
(s'=9);

[Prov_propose_to_addOr] (s=4) -> (s'=10);
[Prov_propose_to_substitute] (s=4) -> (s'=11);
[Prov_pass] (s=4) -> (s'=12);

[Prov_propose_to_addOr] (s=5) -> (s'=17);
[Prov_propose_to_substitute] (s=5) -> (s'=18);
[Prov_pass] (s=5) -> (s'=19);

endmodule

rewards "req"
$=0:10;s=1:0;s=2:0;5=3:0;5=4:3;5=5:0;5=6:2;
s=7:0; s -3; ;

s=10:0; s=11:0; s=12: 0; s=13: 0; =14 : 0; s=15 : 0; s=16
:0;5=17:0;s=18:0; s=19: 0; s=20:0; s=21:0; s=22: 0;
$=23:0; 5=24:0; s=25:0; s=26: 0; =27 : 0; s=28 : 0; s=29
:2;s=30:0;s=31:0;s=32:0;s=33:0;s=34:0;s=35:0;
$=36:0;5=37:3;5=38:0;5=39:-3;5=40: 0; s=41: -3;
s5=42:0;s=43 :3; 5=44 :0;5=45: 2;

endrewards

rewards "prov"
$=0:9;s=1:0;s=2:0;5=3:0;s=4:5;s5=5:0;5=6:2;s=7
:0;s=8:-3;s=9:0;
s=10:0; s=11:0; s=12 : 0; s=13: 0; s=14 : 0; s=15 : 0; s=16
:0;s=17:0;s=18:0; s=19: 0; s=20:0; s=21:0; s=22: 0;
$=23:0; 5=24:0; s=25:0; s=26: 0; s=27 : 0; s=28 : 0; s=29
:2;5=30:0;5=31:0;s=32:0;s=33:0;5=34:0;s=35:0;
s=36:0; s=37 : 5; s=38: 0; =39 : -3; 5=40: 0; s=41: -3;
s=42 :0;s=43 :5; s=44 : 0; s=45: 2;

endrewards

FiGURE B.3: Mapping from Henshin to PRISM-games

163

Appendix B. Implementation

B.3.2 SMGs File

smg

player requestor
[Req_start_to_addOpt],

[Req_start_to_addOr],
[Req_start_to_substitute],
[Req_respond_to_addOr],
[Req_respond_to_substitute],
[Req_propose_to_addOr],
[Req_propose_to_substitute],
[Req_pass],
[Req_respond_to_addOpt],
[Req_respond_to_withdrawOr],
[Req_propose_to_addOpt],
[Req_propose_to_withdrawOr]

endplayer

player provider
[Prov_respond_to_addOpt],

[Prov_respond_to_addOr],
[Prov_respond_to_substitute],
[Prov_propose_to_addOr],
[Prov_propose_to_substitute],
[Prov_pass],
[Prov_propose_to_addOpt],
[Prov_propose_to_withdrawOr],
[Prov_respond_to_withdrawOr]

endplayer

module M

s :[0..3299] init 0;
[Req_start_to_addOpt] (s=0) -> (s'=1);
[Req_start_to_addOr] (s=0) -> (s'=2);
[Req_start_to_substitute] (s=0) -> (s'=3);
[Prov_respond_to_addOpt] (s=1) -> 0.5 :(s'=4) + 0.5 : (s'=5);
[Prov_respond_to_addOr] (s=2) -> 0.5 :(s'=6) + 0.5 : (s'=7);
[Prov_respond_to_substitute] (s=3) -> 0.5 :(s'=8) + 0.5 : (s'=9);
[Prov_propose_to_addOr] (s=4) -> (s'=10);
[Prov_propose_to_substitute] (s=4) -> (s'=11);
[Prov_pass] (s=4) -> (s'=12);
[Prov_propose_to_addOr] (s=5) -> (s'=17);
[Prov_propose_to_substitute] (s=5) -> (s'=18);
[Prov_pass] (s=5) -> (s'=19);
[Prov_propose_to_addOpt] (s=6) -> (s'=13);
[Prov_propose_to_withdrawOr] (s=6) -> (s'=14);
[Prov_propose_to_substitute] (s=6) -> (s'=15);
[Prov_pass] (s=6) -> (s'=16);
[Prov_propose_to_addOpt] (s=7) -> (s'=20);
[Prov_propose_to_substitute] (s=7) -> (s'=21);
[Prov_pass] (s=7) -> (s'=22);
[Prov_propose_to_addOpt] (s=8) -> (s'=26);
[Prov_propose_to_addOr] (s=8) -> (s'=27);
[Prov_pass] (s=8) -> (s'=28);
[Prov_propose_to_addOpt] (s=9) -> (s'=23);
[Prov_propose_to_addOr] (s=9) -> (s'=24);
[Prov_pass] (s=9) -> (s'=25);
[Req_respond_to_addOr] (s=10) -> 0.5 :(s'=45) + 0.5 : (s'=46);
[Req_respond_to_substitute] (s=11) -> 0.5 :(s'=63) + 0.5 : (s'=64);
[Req_propose_to_addOr] (s=12) -> (s'=47);
[Req_propose_to_substitute] (s=12) -> (s'=48);
[Req_pass] (s=12) -> (s'=49);
[Req_respond_to_addOpt] (s=13) -> 0.5 :(s'=43) + 0.5 : (s'=44);
[Req_respond_to_withdrawOr] (s=14) -> 0.5 :(s'=72) + 0.5 : (s'=73);
[Req_respond_to_substitute] (s=15) -> 0.5 :(s'=58) + 0.5 : (s'=59);
[Req_propose_to_addOpt] (s=16) -> (s'=54);
[Req_propose_to_withdrawOr] (s=16) -> (s'=55);
[Req_propose_to_substitute] (s=16) -> (s'=56);
[Req_pass] (s=16) -> (s'=57);
[Reqg_respond_to_addOr] (s=17) -> 0.5 :(s'=29) + 0.5 : (s'=30);
[Req_respond_to_substitute] (s=18) -> 0.5 :(s'=39) + 0.5 : (s'=40);
[Req_propose_to_addOr] (s=19) -> (s'=34);
[Req_propose_to_substitute] (s=19) -> (s'=35);
[Req_pass] (s=19) -> (s'=36);
[Reqg_respond_to_addOpt] (s=20) -> 0.5 :(s'=37) + 0.5 : (s'=38);

[Req_respond_to_substitute] (s=21) -> 0.5 :(s'=41) + 0.5 : (s'=42);
[Req_propose_to_addOpt] (s=22) -> (s'=31);
[Req_propose_to_substitute] (s=22) -> (s'=32);

[Req_pass] (s=22) -> (s'=33);

[Req_respond_to_addOpt] (s=23) -> 0.5 :(s'=52) + 0.5 : (s'=53);
[Req_respond_to_addOr] (s=24) -> 0.5 :(s'=50) + 0.5 : (s'=51);
[Req_propose_to_addOpt] (s=25) -> (s'=60);
[Req_propose_to_addOr] (s=25) -> (s'=61);

[Req_pass] (s=25) -> (s'=62);

[Req_respond_to_addOpt] (s=26) -> 0.5 :(s'=70) + 0.5 : (s'=71);
[Req_respond_to_addOr] (s=27) -> 0.5 :(s'=65) + 0.5 : (s'=66);
[Req_propose_to_addOpt] (s=28) -> (s'=67);
[Req_propose_to_addOr] (s=28) -> (s'=68);

[Req_pass] (s=28) -> (s'=69);

[Req_propose_to_withdrawOr] (s=29) -> (s'=98);
[Req_propose_to_substitute] (s=29) -> (s'=99);

[Req_pass] (s=29) -> (s'=100);

endmodule

rewards "req"
s=0:10;5=1:0;5=2:0;s=3:0;5=4:3;s=5:0;s=6:2;s=7:0;5=8:-3;5=9:0;
$=10:0;5=11:0;s=12:0;5=13:0;s=14:0; s=15:0; s=16 : 0; s=17 : 0; s=18 :
0;5=19:0;5=20:0;5=21:0;5=22:0;5=23:0;5=24:0; s=25:0; s=26 : 0; s=27
:0;5=28:0;5=29:2;s=30:0;s=31:0;s=32:0;s=33:0;5=34:0;s=35:0;
$=36:0;5=37:3;5=38:0;5=39:-3;s=40:0;s=41:-3;s=42 :0; s=43:3;s=44 :
0; s=45:2; s=46 : 0; s=47 : 0; s=48 : 0; s=49 : 0; s=50: 2; s=51: 0; s=52: 3; s=53
:0;5=54:0;5=55:0;5=56:0;s=57:0;s=58:-3;s=59:0; s=60:0;s=61:0;
$=62:0; s=63 :-3; 5=64 : 0; =65 : 2; s=66 : 0; s=67 : 0; 5=68 : 0; s=69 : 0; s=70 :
3;5=71:0;s=72:-3;s=73:0;s=74:0;5=75:0;s=76:0; s=77 : 0; s=78 : 0; s=79
:0;s=80:0;5=81:0;5=82:0;5s=83:0;s=84:0; s=85:0; s=86:0; s=87:0;
5=88:0;5=89:0;5s=90:0;5=91:0;5=92:2;5=93:0;5=94:3;s=95:0;s=96 : -
3;5=97:0;5=98:0;5=99 : 0; s=100 : 0;

endrewards

rewards "prov"
$=0:9;5=1:0;s=2:0;s=3:0;5=4:5;s=5:0;s=6:2;s=7:0;s=8:-3;5=9:0;
$=10:0;s=11:0;s=12:0;s=13:0;s=14:0; s=15:0;s=16:0; s=17 : 0; s=18 :
0;s=19:0;5=20:0; 5=21:0; s=22 : 0; s=23: 0; s=24 : 0; s=25 : 0; 5=26 : 0; s=27
:0;5=28:0;5=29:2;s5=30:0;5=31:0;5=32:0;s=33:0;5=34:0;s=35:0;
$=36:0;5=37:5;5=38:0;5=39:-3;5=40:0; s=41:-3;5=42 :0; s=43 : 5; s=44 :
0;5=45:2;5=46:0;5=47 : 0; s=48 : 0; s=49 : 0; s=50: 2; s=51: 0; s=52: 5; s=53
:0;s=54:0;s=55:0;s=56:0;s=57:0;s=58:-3;s=59:0;s=60:0;s=61:0;
§=62 :0; 5=63 : -3; s=64 : 0; s=65 : 2; s=66 : 0; =67 : 0; s=68 : 0; s=69 : 0; s=70 :
5;s=71:0;5=72:-4;s=73:0;s=74:0; s=75:0; s=76 : 0; s=77 : 0; s=78 : 0; s=79
:0;5=80:0;5=81:0;5=82:0;5=83:0;5=84:0;5s=85:0;5=86:0;s=87:0;
5=88:0;5=89:0;5=90:0;5=91:0;s=92:2;5=93:0;s=94:5;5=95:0;5=96: -
3;5=97:0;s=98:0;s=99:0;s=100:0;

FIGURE B.4: SMGs File

164

Appendix B. Implementation

B.3.3 Strategy Exported File

SMD.strat-v0.1
Adv:
00
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

210
221
230
240
251
260
270
281
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430

440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660

670
680
690
700
710
720
730
740
751
760
770
780
791
800
810
821
830
840
850
860
871
880
891

900
911
920
930
940
950
960
970
980
990
1001
1010

FIGURE B.5: Strategy Exported File

165

Bibliography

1]

2]

5]

(6]

Muhamet Yildiz. Backward Induction: Lecture Notes (Eco-
nomic Applications of Game Theory). Massachusetts Institute of
Technology, 2012. Available at http://ocw.mit.edu/courses/

economics/14-12-economic-applications-of-game-theory-fall-2012/

lecture-notes/. Accessed: 2016-06-16.

Ronald Ashri, Iyad Rahwan, and Michael Luck. Architectures for negotiating
agents. In International Central and FEastern European Conference on Multi-

Agent Systems, pages 136-146. Springer, 2003.

Bernard Mayer. The dynamics of conflict resolution: A practitioner’s guide.

John Wiley & Sons, 2010.

Martin Bichler, Gregory Kersten, and Stefan Strecker. Towards a structured
design of electronic negotiations. Group Decision and Negotiation, 12(4):311—

335, 2003.

William N Robinson and Vecheslav Volkov. Supporting the negotiation life
cycle. Communications of the ACM, 41(5):95-102, 1998.

A Lax David and K Sebenius James. The Manager as Negotiator: Bargaining

for Cooperation and Competitive Gain. NY: Free Press, 1986.

166

http://ocw.mit.edu/courses/economics/14-12-economic-applications-of-game-theory-fall-2012/lecture-notes/
http://ocw.mit.edu/courses/economics/14-12-economic-applications-of-game-theory-fall-2012/lecture-notes/
http://ocw.mit.edu/courses/economics/14-12-economic-applications-of-game-theory-fall-2012/lecture-notes/

Bibliography

7]

19]

[10]

[11]

[12]

[13]

[14]

Gregory E Kersten. Modeling distributive and integrative negotiations. review
and revised characterization. Group Decision and Negotiation, 10(6):493-514,
2001.

Robert H Guttman and Pattie Maes. Cooperative vs. competitive multi-agent
negotiations in retail electronic commerce. In International Workshop on Co-

operative Information Agents, pages 135-147. Springer, 1998.

Nicholas R Jennings, Peyman Faratin, Alessio R Lomuscio, Simon Parsons,
Michael J Wooldridge, and Carles Sierra. Automated negotiation: prospects,
methods and challenges. Group Decision and Negotiation, 10(2):199-215, 2001.

Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson.
Feature-oriented domain analysis (foda) feasibility study. Technical Report
CMU /SEI-90-TR-021, Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, 1990.

Krzysztof Czarnecki and Ulrich W. FEisenecker. Generative Programming:
Methods, Tools, and Applications. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 2000.

Kyo C Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moon-
hang Huh. FORM: A feature oriented reuse method with domain specific

reference architectures. Annals of Software Engineering, 5(1):143-168, 1998.

Don Batory. Feature models, grammars, and propositional formulas. In Inter-

national Conference on Software Product Lines, pages 7-20. Springer, 2005.

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configu-
ration through specialization and multilevel configuration of feature models.

Software Process: Improvement and Practice, 10(2):143-169, 2005.

167

Bibliography

[15]

[16]

[17]

18]

[19]

[20]

[21]

Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing
cardinality-based feature models and their specialization. Software process:

Improvement and practice, 10(1):7-29, 2005.

Jules White, Douglas C Schmidt, David Benavides, Pablo Trinidad, and An-
tonio Ruiz-Cortés. Automated diagnosis of product-line configuration errors
in feature models. In Software Product Line Conference, 2008. SPLC"08. 12th
International, pages 225-234. IEEE, 2008.

Jules White, Brian Dougherty, Doulas C Schmidt, and David Benavides. Au-
tomated reasoning for multi-step feature model configuration problems. In

Proceedings of the 13th International Software Product Line Conference, pages
11-20. Carnegie Mellon University, 2009.

Goetz Botterweck, Daren Nestor, André PreuBner, Ciaran Cawley, and Steffen
Thiel. Towards supporting feature configuration by interactive visualisation.
In Software Product Lines, 11th International Conference, SPLC 2007, Ky-
oto, Japan, September 10-14, 2007, Proceedings. Second Volume (Workshops),
pages 125-131, 2007.

David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz Cortés.
Fama: Tooling a framework for the automated analysis of feature models.

VaMolS, 2007:01, 2007.

Mike Mannion. Using first-order logic for product line model validation. In
International Conference on Software Product Lines, pages 176-187. Springer,
2002.

Danilo Beuche. Variant management with pure::variants. Pure-systems GmbH,

Tech. Rep, 2003.

168

Bibliography

22]

23]

[24]

[25]

[26]

[27]

28]

Ross Buhrdorf, Dale Churchett, and Charles W Krueger. Salion’s experience
with a reactive software product line approach. In International Workshop on

Software Product-Family Engineering, pages 317-322. Springer, 2003.

Jules White, Douglas C Schmidt, Egon Wuchner, and Andrey Nechypurenko.
Automating product-line variant selection for mobile devices. In Software
Product Line Conference, 2007. SPLC 2007. 11th International, pages 129—
140. IEEE, 2007.

Samaneh Soltani, Mohsen Asadi, Dragan Gasevi¢, Marek Hatala, and Ebrahim
Bagheri. Automated planning for feature model configuration based on func-
tional and non-functional requirements. In Proceedings of the 16th Interna-

tional Software Product Line Conference-Volume 1, pages 56-65. ACM, 2012.

Martin L Griss, John Favaro, and Massimo d’Alessandro. Integrating fea-
ture modeling with the RSEB. In Software Reuse, 1998. Proceedings. Fifth
International Conference on, pages 76-85. IEEE, 1998.

Timo Asikainen, Tomi Méannist6, and Timo Soininen. Representing feature
models of software product families using a configuration ontology. In Proc of

the ECAI Citeseer, 2004.

Tuan Nguyen and Alan Colman. A feature-oriented approach for web service
customization. In Web Services (ICWS), 2010 IEEE International Conference
on, pages 393-400. IEEE, 2010.

Silva Robak and Bogdan Franczyk. Modeling web services variability with
feature diagrams. In Net. ObjectDays: International Conference on Object-
Oriented and Internet-Based Technologies, Concepts, and Applications for a

Networked World, pages 120-128. Springer, 2002.

169

Bibliography

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Ajay Kattepur, Sagar Sen, Benoit Baudry, Albert Benveniste, and Claude
Jard. Variability modeling and QoS analysis of web services orchestrations. In
Web Services (ICWS), 2010 IEEE International Conference on, pages 99-106.
[EEE, 2010.

Muhammad Naeem and Reiko Heckel. Towards matching of service feature
models based on linear logic. In Proceedings of the 15th International Software

Product Line Conference, Volume 2, page 13. ACM, 2011.

Martin J Osborne. An introduction to game theory. Oxford University Press

New York, 2004.

Roger B Myerson. Game theory: analysis of conflict. Harvard University,

1991.

Theodore L. Turocy and Bernhard von Stengel. Game theory. In Editor
in Chief: Hossein Bidgoli, editor, Encyclopedia of Information Systems, pages
403 — 420. Elsevier, New York, 2003.

J von Neumann, Oskar Morgenstern, et al. Theory of games and economic

behavior, volume 60. Princeton university press Princeton, 1944.

T. Roughgarden. An Algorithmic Game Theory Primer. In Proceedings of the
5th IFIP International Conference on Theoretical Computer Science (TCS).

An invited survey. Citeseer, 2008.

John Nash. Non-cooperative games. Annals of mathematics, pages 286295,

1951.

Martin J Osborne and Ariel Rubinstein. A course in game theory. MIT press,
1994.

170

Bibliography

[38]

[39]

[40]

[41]

[42]

[43]

|44]

[45]

Richard Gibson. Regret minimization in games and the development of cham-
pion multiplayer computer poker-playing agents. PhD thesis, University of
Alberta, 2014.

Ichiro Obara. Extensive Game with Perfect Information: Lecture Notes (Non-
cooperative Game Theory). University of California, Los Angeles, 2012. Avail-
able at http://www.econ.ucla.edu/iobara/201B.html. Accessed: 2016-07-

14.

Y. Narahari. Extensive Form Games: Lecture Notes (Game Theory). Indian
Institute of Science, 2012. Available at http://lcm.csa.iisc.ernet.in/

gametheory/lecture.html. Accessed: 2016-07-14.

Drew Fudenberg and Jean Tirole. Game Theory. MIT Press, Cambridge, MA,
1991.

Jonathan Levin. Extensive Form Games: Lecture Notes (Economics
208). Stanford University, 2002. Available at http://www.stanford.edu/

“jdlevin/teaching.html. Accessed: 2016-07-14.

M Utku Unver. Extensive-Form Games with Perfect Information:
Lecture Notes (Graduate Micro Theory II - 2). Boston College,
2013. Available at https://www2.bc.edu/ unver/teaching/gradmicro/

maingradmicro2-II.html. Accessed: 2015-01-28.

Geir B Asheim. FEaxtensive Games with Perfect Information: Lecture Notes
(Game Theory). University of Oslo, 2001. Available at http://folk.uio.no/

gasheim/game03t3.pdf. Accessed: 2017-01-12.

Wikipedia. Subgame perfect equilibrium, 2016. [Online; accessed 14-July-
2016].

171

http://www.econ.ucla.edu/iobara/201B.html
http://lcm.csa.iisc.ernet.in/gametheory/lecture.html
http://lcm.csa.iisc.ernet.in/gametheory/lecture.html
http://www.stanford.edu/~jdlevin/teaching.html
http://www.stanford.edu/~jdlevin/teaching.html
https://www2.bc.edu/~unver/teaching/gradmicro/maingradmicro2-II.html
https://www2.bc.edu/~unver/teaching/gradmicro/maingradmicro2-II.html
http://folk.uio.no/gasheim/game03t3.pdf
http://folk.uio.no/gasheim/game03t3.pdf

Bibliography

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

Reinhard Selten. Spieltheoretische behandlung eines oligopolmodells mit
nachfragetragheit: Teil i: Bestimmung des dynamischen preisgleichgewichts.
Zeitschrift fir die gesamte Staatswissenschaft/Journal of Institutional and

Theoretical Economics, pages 301-324, 1965.

Ichiro Obara. Subgame Perfect Equilibrium: Lecture Notes (Noncooperative
Game Theory (Economics 201B)). University of California, Los Angeles,
2012. Available at http://www.econ.ucla.edu/iobara/spe201b.pdf. Ac-
cessed: 2016-07-14.

Michael Wooldridge. Thinking backward with Professor Zermelo. IEEE Intel-
ligent Systems, 30(2):62-67, 2015.

Albert Banal-Estanol. Chapter 5: Backwards Induction and SPNE: Lecture
Notes (Game Theory). City University London, 2008. Available at http:

//albertbanalestanol.com/wp-content/uploads/gtc-chapter5.pdf. Ac-
cessed: 2016-07-15.

Emmanual N Barron. Game theory: an introduction, volume 2. John Wiley

& Sons, 2013.

Kousha Etessami and Mihalis Yannakakis. Recursive Markov decision pro-
cesses and recursive stochastic games. In International Colloquium on Au-

tomata, Languages, and Programming, pages 891-903. Springer, 2005.

Aistis Simaitis. Automatic verification of competitive stochastic systems. PhD

thesis, University of Oxford, 2014.

Taolue Chen, Vojtéch Forejt, Marta Kwiatkowska, David Parker, and Aistis
Simaitis. Automatic verification of competitive stochastic systems. In Pro-

ceedings of the 18th International Conference on Tools and Algorithms for the

172

http://www.econ.ucla.edu/iobara/spe201b.pdf
http://albertbanalestanol.com/wp-content/uploads/gtc-chapter5.pdf
http://albertbanalestanol.com/wp-content/uploads/gtc-chapter5.pdf

Bibliography

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Construction and Analysis of Systems, TACAS’12, pages 315-330. Springer-
Verlag, 2012.

Taolue Chen, Vojtéch Forejt, Marta Kwiatkowska, David Parker, and Aistis
Simaitis. Automatic verification of competitive stochastic systems. Formal

Methods in System Design, 43(1):61-92, 2013.

Taolue Chen, Vojtéch Forejt, Marta Kwiatkowska, Aistis Simaitis, and
Clemens Wiltsche. On stochastic games with multiple objectives. In Interna-

tional Symposium on Mathematical Foundations of Computer Science, pages

266-277. Springer, 2013.

Taolue Chen, Vojtéch Forejt, Marta Kwiatkowska, David Parker, and Aistis
Simaitis. PRISM-games: A model checker for stochastic multi-player games.
In International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, pages 185-191. Springer, 2013.

Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Ver-
ification of probabilistic real-time systems. In International Conference on

Computer Aided Verification, pages 585—591. Springer, 2011.

Rajeev Alur and Thomas A Henzinger. Reactive modules. Formal Methods in

System Design, 15(1):7-48, 1999.

Taolue Chen, Vojtéch Forejt, Marta Kwiatkowska, Aistis Simaitis, Ashutosh
Trivedi, and Michael Ummels. Playing stochastic games precisely. In Interna-

tional Conference on Concurrency Theory, pages 348-363. Springer, 2012.

Rajeev Alur, Thomas A Henzinger, and Orna Kupferman. Alternating-time

temporal logic. Journal of the ACM (JACM), 49(5):672-713, 2002.

173

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Andrea Bianco and Luca De Alfaro. Model checking of probabilistic and non-
deterministic systems. In International Conference on Foundations of Software

Technology and Theoretical Computer Science, pages 499-513. Springer, 1995.

Hans Hansson and Bengt Jonsson. A logic for reasoning about time and

reliability. Formal aspects of computing, 6(5):512-535, 1994.

Vojtéch Forejt, Marta Kwiatkowska, Gethin Norman, and David Parker. Au-
tomated verification techniques for probabilistic systems. In Formal Methods

for Eternal Networked Software Systems, pages 53—113. Springer, 2011.

http://www.prismmodelchecker.org/games/properties.php. Accessed:

2016-07-18.

Shaheen Fatima, Sarit Kraus, and Michael Wooldridge. Principles of auto-

mated negotiation. Cambridge University Press, 2014.

Jiangbo Dang. Autonomous Agents in Service-oriented Negotiation: Strategy,

Protocol, and Coordination. ProQuest, 2006.

Iyad Rahwan. Interest-based negotiation in multi-agent systems. PhD thesis,

The University of Melbourne, 2005.

Reiko Heckel. Graph transformation in a nutshell. FElectronic notes in theo-

retical computer science, 148(1):187-198, 2006.

Reiko Heckel and Ping Guo. Conceptual modeling of styles for mobile systems.

In Mobile Information Systems, pages 65—78. Springer, 2005.

Gregor Engels and Reiko Heckel. Graph transformation as a conceptual and
formal framework for system modeling and model evolution. In Interna-
tional Colloguium on Automata, Languages, and Programming, pages 127-150.

Springer, 2000.

174

http://www.prismmodelchecker.org/games/properties.php

Bibliography

[71]

[72]

73]

[74]

[75]

[76]

7]

78]

H Ehrig, K Ehrig, U Prange, and G Taentzer. Fundamentals of algebraic graph
transformation (Monographs in Theoretical Computer Science. an EATCS Se-

ries). Secaucus, 2006.

Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-
mental theory for typed attributed graphs and graph transformation based on
adhesive HLR categories. Fundam. Inf., 74(1):31-61, October 2006.

Reiko Heckel, Jochen Malte Kiister, and Gabriele Taentzer. Confluence of
typed attributed graph transformation systems. In International Conference

on Graph Transformation, pages 161-176. Springer, 2002.

Michael R Berthold, Ingrid Fischer, and Manuel Koch. Attributed graph trans-

formation with partial attribution, 2000.

Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and
Gabriele Taentzer. Henshin: advanced concepts and tools for in-place emf
model transformations. In Model Driven Engineering Languages and Systems,

pages 121-135. Springer, 2010.

Claudia Ermel, Enrico Biermann, Johann Schmidt, and Angeline Warning.
Visual modeling of controlled emf model transformation using henshin. FElec-

tronic Communications of the EASST, 32, 2011.

Enrico Biermann, Claudia Ermel, Leen Lambers, Ulrike Prange, Olga Runge,
and Gabriele Taentzer. Introduction to AGG and EMF Tiger by modeling
a conference scheduling system. International Journal on Software Tools for

Technology Transfer, 12(3-4):245-261, 2010.

http://git.eclipse.org/c/henshin/org.eclipse.emft.henshin.
git/tree/plugins/org.eclipse.emf.henshin.statespace/model/

statespace.ecore. Accessed: 2016-05-18.

175

http://git.eclipse.org/c/henshin/org.eclipse.emft.henshin.git/tree/plugins/org.eclipse.emf.henshin.statespace/model/statespace.ecore
http://git.eclipse.org/c/henshin/org.eclipse.emft.henshin.git/tree/plugins/org.eclipse.emf.henshin.statespace/model/statespace.ecore
http://git.eclipse.org/c/henshin/org.eclipse.emft.henshin.git/tree/plugins/org.eclipse.emf.henshin.statespace/model/statespace.ecore

Bibliography

[79]

[30]

[81]

[82]

[83]

[84]

Tushar Deshpande, Panagiotis Katsaros, Scott A Smolka, and Scott D Stoller.
Stochastic game-based analysis of the DNS bandwidth amplification attack

using probabilistic model checking. In Dependable Computing Conference
(EDCC), 2014 Tenth European, pages 226-237. IEEE, 2014.

Maria Svorenova and Marta Kwiatkowska. Quantitative verification and strat-
egy synthesis for stochastic games. European Journal of Control, 30:15 — 30,
2016. 15th European Control Conference, {ECC16}.

Marcelo Fantinato, Maria Beatriz Felgar de Toledo, and IM de S Gimenes.
A feature-based approach to electronic contracts. In The 8th IEEE Inter-
national Conference on E-Commerce Technology and The 3rd IEEE Inter-
national Conference on Enterprise Computing, E-Commerce, and E-Services

(CEC/EEE’06), pages 34-34. IEEE, 2006.

Marcelo Fantinato, [tana Maria de S Gimenes, and Maria Beatriz F de Toledo.
Web service e-contract establishment using features. In International Confer-

ence on Business Process Management, pages 290-305. Springer, 2006.

Marcelo Fantinato, Maria Beatriz Felgar De Toledo, and Itana Maria
De Souza Gimenes. WS-contract establishment with QoS: an approach based
on feature modeling. International Journal of Cooperative Information Sys-

tems, 17(03):373-407, 2008.

Felipe Gongalves Marchione, Marcelo Fantinato, Maria Beatriz F de Toledo,
and Itana Gimenes. Price definition in the establishment of electronic contracts
for web services. In Proceedings of the 11th International Conference on In-
formation Integration and Web-based Applications € Services, pages 217-224.
ACM, 2009.

176

Bibliography

[85]

[36]

[87]

33

[89]

[90]

[91]

192]

Daniel Avila Vecchiato, Maria Beatriz Felgar de Toledo, Marcelo Fantinato,
and Itana Maria de Souza Gimenes. Electronic contract negotiation and rene-

gotiation using features. In WEBIST (2), pages 313-318, 2010.

Daniel Avila Vecchiato, MBF Toledo, Marcelo Fantinato, and IMS Gimenes.
A feature-based toolkit for electronic contract negotiation and renegotiation.

In Proc. IADIS Int. Conf. WWW /Internet, volume 2010, pages 310, 2010.

Gabriel Costa Silva, Itana Maria de Souza Gimenes, Marcelo Fantinato, and
BF de Toledo. Towards a process for negotiation of e-contracts involving web
services. VIII Simpdsio Brasileiro de Sistemas de Informagao (SBSI 2012),
pages 267278, 2012.

S Segura, D Benavides, A Ruiz-Cortés, and P Trinidad. Toward automated
refactoring of feature models using graph transformations. VII Jornadas sobre

Programacion y Lenguajes, PROLE, pages 275-284, 2007.

Sergio Segura, David Benavides, Antonio Ruiz-Cortés, and Pablo Trinidad.
Automated merging of feature models using graph transformations. In Gen-
erative and Transformational Techniques in Software Engineering II, pages

489-505. Springer, 2008.

David Benavides, S Trujillo, and P Trinidad. On the modularization of feature

models. In First FEuropean Workshop on Model Transformation, 2005.

Johannes Biirdek, Timo Kehrer, Malte Lochau, Dennis Reuling, Udo Kelter,
and Andy Schiirr. Reasoning about product-line evolution using complex fea-

ture model differences. Automated Software Engineering, pages 1-47, 2015.

Frederik Deckwerth, Géza Kulcsar, Malte Lochau, Gergely Varro, and Andy
Schiirr. Conflict detection for edits on extended feature models using symbolic

graph transformation. arXiv preprint arXiv:1604.00347, 2016.

177

Bibliography

193]

[94]

[95]

196]

197]

98]

199]

Géza Kulcsar, Frederik Deckwerth, Malte Lochau, Gergely Varrd, and Andy
Schiirr. Improved conflict detection for graph transformation with attributes.

arXw preprint arXw:1504.02614, 2015.

Jesus Garcia-Galan, Pablo Trinidad, and Antonio Ruiz-Cortés. Multi-user
variability configuration: A game theoretic approach. In Automated Software
Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, pages
574-579. IEEE, 2013.

Xianrong Zheng, Patrick Martin, Wendy Powley, and Kathryn Brohman. Ap-
plying bargaining game theory to web services negotiation. In Services Com-
puting (SCC), 2010 IEEFE International Conference on, pages 218-225. IEEE,
2010.

Yi Sun, Zhigiu Huang, and Changbo Ke. Using game theory to analyze strate-
gic choices of service providers and service requesters. Journal of Software,

9(11):2918-2924, 2014.

Guido Boella and Leendert Van Der Torre. A game theoretic approach to
contracts in multiagent systems. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 36(1):68-79, 2006.

Ken Binmore and Nir Vulkan. Applying game theory to automated negotia-
tion. Netnomics, 1(1):1-9, 1999.

Jun Yan, Ryszard Kowalczyk, Jian Lin, Mohan B Chhetri, Suk Keong Goh,
and Jianying Zhang. Autonomous service level agreement negotiation for ser-

vice composition provision. Future Generation Computer Systems, 23(6):748—

759, 2007.

178

Bibliography

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Andrew Byde, Michael Yearworth, Kay-Yut Chen, and Claudio Bartolini. Au-
tona: A system for automated multiple 1-1 negotiation. In E-Commerce, 2003.

CEC 2003. IEEFE International Conference on, pages 59-67. IEEE, 2003.

Pu Huang and Katia Sycara. A computational model for online agent ne-
gotiation. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual
Hawaii International Conference on, pages 438-444. IEEE, 2002.

Jin Baek Kim and Arie Segev. A framework for dynamic ebusiness negotiation
processes. In E-Commerce, 2003. CEC 2003. IEEFE International Conference
on, pages 84-91. IEEE, 2003.

Wei Shang, Yi-Jun Li, and An-Shi Xie. A game-theory based knowledge pre-
sentation for bilateral business negotiation. In Machine Learning and Cyber-
netics, 2003 International Conference on, volume 5, pages 2650-2653. IEEE,
2003.

K-M Chao, Muhammad Younas, Rachid Anane, C-F Tsai, and V-W Soo.
Degree of satisfaction in agent negotiation. In E-Commerce, 2003. CEC 2003.
IEFEE International Conference on, pages 68-75. IEEE, 2003.

Soren Preibusch. Implementing privacy negotiation techniques in e-commerce.
In Seventh IEEE International Conference on FE-Commerce Technology
(CEC’05), pages 387-390. IEEE, 2005.

Benay Kumar Ray, Sunirmal Khatua, and Sarbani Roy. Negotiation based
service brokering using game theory. In Applications and Innovations in Mobile

Computing (AIMoC), 2014, pages 1-8. IEEE, 2014.

H.N. Hindriks. Generating game strategies using graph transformations. 21st

Twente Student Conference on IT, 21, 2014.

179

Bibliography

[108] Arend Rensink. The GROOVE simulator: A tool for state space generation.
In International Workshop on Applications of Graph Transformations with

Industrial Relevance, pages 479-485. Springer, 2003.

[109] Matteo Cavaliere, Attila Csikasz-Nagy, and Ferenc Jordan. Graph transfor-
mations and game theory: A generative mechanism for network formation.

University of Trento, Technical Report CoSBI 25/2008, 2008.

[110] Lukasz Kaiser. Synthesis for structure rewriting systems. In Mathematical

Foundations of Computer Science 2009, pages 415-426. Springer, 2009.

[111] Lukasz Kaiser and Lukasz Stafiniak. Playing general structure rewriting games.

In Proceedings of AGI ’10. Atlantis Press, 2010.

180

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Solution
	1.4 Thesis Outline

	2 Background
	2.1 Feature Modelling
	2.1.1 Semantics
	2.1.2 Configurations
	2.1.3 Methods
	2.1.4 Feature Modelling and Web Services

	2.2 Game Theory
	2.2.1 Basic Concepts
	2.2.2 Nash Equilibrium
	2.2.3 Extensive-Form Games
	2.2.3.1 Strategies
	2.2.3.2 Subgame Perfect Equilibrium
	2.2.3.3 Backward Induction

	2.2.4 Stochastic Games
	2.2.5 PRISM-games Model Checker
	2.2.6 Game Theory in Negotiation

	2.3 Graph Transformation
	2.3.1 Basic Concepts
	2.3.2 Algebraic Approach
	2.3.2.1 Double Pushout Approach

	2.3.3 Typed Attributed Graphs
	2.3.4 Henshin Language and Tools

	2.4 Summary

	3 Graph Transformation Games for Negotiating Features
	3.1 Motivating Example
	3.2 Feature Negotiation Games
	3.3 Graph Transformation Games
	3.4 Implementation
	3.4.1 Game Metamodel
	3.4.2 Game Rules
	3.4.2.1 Alternating-offer Negotiation Protocol
	3.4.2.2 Application to Running Example
	3.4.2.3 The Graph Transformation Games in Henshin

	3.4.3 Generating the Transition System of the Game
	3.4.4 Scalability

	3.5 Summary

	4 Extensive-Form Graph Transformation Games
	4.1 Introduction
	4.2 Overview of Game Analysis Method
	4.3 Implementing Backward Induction
	4.3.1 State Space Metamodel
	4.3.2 Backward Induction Rules
	4.3.3 Generating the State Space Instance
	4.3.4 Application to Running Example
	4.3.5 Scalability

	4.4 Summary

	5 Stochastic Graph Transformation Games
	5.1 Introduction
	5.2 Generating the PRISM Game
	5.3 Analysing the Game
	5.3.1 Single-objective Strategy
	5.3.2 Multi-objective Strategy

	5.4 Scalability
	5.5 Summary

	6 Related Work
	6.1 Feature Models in Negotiation
	6.2 Feature Models and Graph Transformations
	6.3 Feature Models and Game Theory
	6.4 Game Theory in Web Services and E-commerce Negotiation
	6.5 Game Theory and Graph Transformations
	6.6 Summary

	7 Conclusion and Future Work
	7.1 Overall Summary
	7.2 Contributions
	7.2.1 Graph Transformation Games
	7.2.2 Implementing Graph Transformation Games
	7.2.3 Analysing Graph Transformation Games

	7.3 Conclusion
	7.4 Future Work
	7.4.1 Further Evaluation
	7.4.2 Scalable Protocol
	7.4.3 Incomplete Information
	7.4.4 Compiler Approach

	7.5 Summary

	A Transformation Rules
	A.1 Rules for Alternating-offer Protocol
	A.2 Backward Induction Rules

	B Implementation
	B.1 Generating Graph Transformation Games
	B.2 Extensive-form Graph Transformation Games
	B.2.1 Creating A State Space Metamodel and Instance
	B.2.2 Generating An Instance

	B.3 Stochastic Graph Transformation Games
	B.3.1 Mapping from Henshin to PRISM-games
	B.3.2 SMGs File
	B.3.3 Strategy Exported File

	Bibliography

