Reverse Engineering Packet Structures
from Network Traces by Segment-based

Alignment

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by
Othman Esoul

Department of Informatics

University of Leicester

July 2018

To my loving parents

Reverse Engineering Packet Structures from Network

Traces by Segment-based Alignment

Othman Esoul

Many applications in security, from understanding unfamiliar protocols to fuzz-testing and
guarding against potential attacks, rely on analysing network protocols. In many situations
we cannot rely on access to a specification or even an implementation of the protocol, and
must instead rely on raw network data “sniffed” from the network. When this is the case, one
of the key challenges is to discern from the raw data the underlying packet structures — a task

that is commonly carried out by two steps: message clustering, and message Alignment.

Clustering quality is critically contingent upon the selection of the right parameters. In this
thesis, we experimentally investigated two aspects: 1) the effect of different parameters on
clustering, and 2) whether suitable parameter configuration for clustering can be inferred for
undocumented protocols (when messages classes are unavailable). In this thesis, we have
quantified the impact of specific parameters on clustering, and used clustering validation
measures to predict parameter configurations with high clustering accuracy. Our results
indicate that: 1) The choice of the distance measure and the message length has the most
substantial impact on cluster accuracy. 2) The Ball-Hall intrinsic validation measure has

yielded the best results in predicting suitable parameter configuration for clustering.

While clustering is used to detect message types (similar groups) within a dataset, sequence
alignment algorithms are often used to detect the protocol message structure (field partition-
ing). For this, most approaches have used variants of the Needleman-Wunsch algorithm to
perform byte-wise alignment. However, they can suffer when messages are heterogeneous,
or in cases where protocol fields are separated by long variable fields. In this thesis, we
present an alternative alignment algorithm known as segment-based alignment. The results
indicate that segmented-based alignment can produce highly accurate results than traditional

alignment techniques especially with long and diverse network packets.

Preface

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part for

consideration for any other degree or qualification in this, or any other university.

This dissertation is my own work and contains nothing which is the outcome of work done in

collaboration, except as specified in the Acknowledgements.

The names of all products referred to in this dissertation are acknowledged as the trademarks

of their respective owners.

Othman Esoul

July 2018

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Neil Walkinshaw. It is his advice,
encouragement, and enormous patience that helped me get this far. Dr. Neil has taught me
how do research, write an academic paper, and grow as a reseracher. His enormous energy for
teaching, attending conferences, and performing research have made him a very busy person,
but he has always had time for our meetings. I would like to thank him for his outstanding

supervision, and the tremendous support he offered me throughout my PhD.

I also would like to thank all my friends who helped during this period especially Salah
Albukhasheim and his wife for their encouragement and endless support. It is impossible to

enumerate the generosity and ways in which they have helped during this journy.

Finally, I am grateful to my family in Libya. To my parents for their unwavering love
and support for my education, and to my bothers and sisters for their encouragement and

dedication to help.

Contents

1 Introduction

1.1 Introduction
1.2 Purpose of This Thesis
1.3 Contributions L
1.4 Thesis Structure
1.5 Publications

2 Background

2.1 Network Protocols
2.1.1 Communication Models
2.1.2 Protocol Message Structure
2.2 Knowledge Discovery and Data Mining
22.1 General Process
222 DataClustering e
2.2.3 Sequence Alignment
224 Segment-based Alignment L.

23 ResearchDesign

Contents

2.3.1 Experimental Design 44
232 EffectSize 47
24 Summary e e e e e e e 51
Related Literature & Motivations 52
3.1 Protocol Reverse Engineering 52
3.1.1 Protocol Reversing form Network Traffic 55
3.2 Motivationso e e e 59
3.2.1 Investigating Clustering Factors 59
3.2.2 Improving Message Alignment. 61
33 Summary e 63
A Framework For Experimentation 64
4.1 Properties e 64
42 Design e e 65
4.2.1 BuildingBlocks o 67
422 AnalysisEngine 68
43 Implementation L 75
4.4 Limitations e e e 76
4.5 Summary e e e e e 77
Investigating Clustering Factors 78
5.1 Introduction 78
5.1.1 Clustering Factors 78

5.1.2 Clustering Configurations 80

Contents xiii
5.2 Experiment e 81
52,1 Datasets 83

5.2.2 Experimental Variables L. 83

523 Methodology 89

524 Results&Discussion Lo 92

5.2.5 Performance of the AHC Algorithm 112

5.2.6 Threatsto Validity 116

5.3 Summary ... L 117

6 Segment-based Alignment and Message Structure Extraction 119
6.1 Segment-based Alignment, 119
6.1.1 Applying the Algorithm 122

6.1.2 Re-engineering Dialign 128

6.1.3 ACaseStudy 130

6.2 Extracting Message Structureo 134
6.2.1 Expected Quality of the Message Pattern 140

6.3 Summary e 143

7 Evaluation 144
7.1 Experimental Evaluation 144
7.1.1 SubjectProtocols 146

7.1.2 Experimental Set-up 147

7.1.3 Methodology 149

7.1.4 Results 151

7.1.5 Threatsto Validity 153

Xiv Contents

7.2 Comparative Alignment Evaluation 154
7.2.1 Methodology 156

722 Results 158

7.3 DISCUSSION v v vt e e e e e e e 162

8 Conclusions & Future Work 166
8.1 Impact of Factors on Clustering 166

8.2 Optimal Factor Configuration for Clustering 167

8.3 Improving Message Alignment 168

84 Future Work 169

85 FinalNotes 172
Appendices 175
A Performance of External Clustering Validation Measures 176

B Extracted message patterns in the hexadecimal format 185

Bibliography 189

List of Tables

3.1

3.2

3.3

3.4

5.1

52

5.3

54

5.5

6.1

A selected list of 25 state-of-the-art projects. It shows the adopted inference

scenarios, application domain as well as the inferred specification.

An alignment of a set of multiple HTTP messages using the Needleman-

Wunsch algorithm and the Progressive Alignment heuristic.
Two slightly different sets of HTTP GET messages.

Alignments of the HTTP messages by Needleman-Wunsch with the standard

parameters (Match=1, Mismatch=0, Gap=0).

A selected list of previous network-based projects shows the approach-
dependent factors, their location within the inference process, and their

default values.
A list of parameters used in our approach and their default values.
Summary of protocol samples and trace-dependant variables.

Best variable combination for each protocol and their correspondent ARI

scores using the Agglomerative Hierarchical Clustering (AHC) algorithm. .

Performance of internal validation measures in predicting optimal variable

configuration for clustering. L L oo

Internal parameters of segment-based alignment.

53

101

Xvi List of Tables
6.2 A set of five basic messages messages of the HTTP protocol in the text
format (ASCII) and their equivalent Hexadecimal format. 130
6.3 Alignment generalisation of multiple HTTP messages in the hexadecimal
format. 135
6.4 Alignment generalisation of five HTTP messages in their ASCII format. . . 136
6.5 A Position Weight Matrix generated from the set of aligned HTTP messages
introduced in the background (see Table 6.4). It shows on the top the number
of columns (positions) and the alphabet as the matrix rows. To preserve
space, the matrix only shows the used characters of the alphabet. 137
7.1 Summary of network traces and the lengths of n-grams chosen for clustering. 146
7.2 Description of the selected clusters and their messages attributes. 155
7.3 Ten synthesised HTTP GET messages. 157
8.1 An example of message patterns (shown on the left) generated with two
different thresholds (7 = 0.8 & T = 0.6), and the grammar (on the right)
produced by SEQUITUR. In the original patterns, we have replaced gaps
with the token [VAR] denoting a variable field. We have also replaced the
space character with the [SP] token and escaped the character “\”” due to their
special meaning within the SEQUITUR program [1] 169
B.1 A Position Weight Matrix generated from the set of aligned HTTP messages
in hexadecimal format introduced in chapter 5. It shows on the top the
number of columns (positions) and the expected hexadecimal alphabet as the
MATIX TOWS. © . . v v vttt e et e e e e e e 185

List

2.1
2.2
2.3
24
2.5

2.6

2.7

2.8

2.9
2.10

2.11

of Figures

Client-Server Communication Model 11
TCP/IP Protocol Suite. 13
Simple illustration of the Read/Write message structure for the TFTP Protocol. 17
The process of knowledge discovery (From [2]). 19
An example of a data set with a clear cluster structure 23

A dendrogram consists of 15 data objects, cut off at a level 0.4 creating 3

distinctclusters. 25
Alignment of pair of sequences using the Needleman-Wunsch algorithm. . . 27

The alignment of multiple sequences using the progressive approach and the

inferred consensus sequence (marked in red) below the alignment. 30
Fragments (aka diagonals) as they appear in the dot matrix. 33
Assessing significance of fragments in segment-based alignment. 37

Consistent and non-consistent collection of fragments. Figure (a) shows a
consistent set of fragments composed of three sequences while (b) & (c¢)
show non-consistent fragments. In (b), the first ’B’ in the third sequence is
assigned to two different characters in the first sequence while (¢) shows a

cross-over assignments of characters between the first and the third messages. 39

xviii

List of Figures

2.12

2.13

2.14

2.15

2.16

3.1

3.2

4.1

4.2

4.3

5.1

Consistency bounds for character x (sequence 3, position 6) given a set of
fragments (bold lines) that are already accepted in alignment procedure.
by(x,1) =5, by(x,1) =9, i.e., character x can be aligned with all characters

between position 5 and 9 in sequence S;. For sequence Sy, b (x,2) = 4, and

A generic cause-effect experimental model with controlled inputs, and out-

puts, and possibly uncontrolled (latent) inputs. 45
The cause-effect relationship between an independent variable X (e.g., fuel
type), and a dependent variable Y (e.g., car speed), and the possible exis-

tence of a third confounding variable Z (e.g., fuel filter) associated with the

independent variable. 47
Mean difference as a measure for effectsize. 49
A Forest Plot shows 9 fictitious tests and their effect size mean estimates.

It also shows the confidence intervals for each test as well as the level of

confidence under which these tests are carriedout. 50

The inference of protocol specifications (the message format & state machine). 54

A common approach of inferring protocol message structures from network

Traffic. s 57

Architecture of application-level protocol reverse engineering framework.
Modules in grey are the building blocks and were previously available.

Modules above the building blocks are the analysis engine of the framework. 66
Pre-processing captured network traffic. 0. 70

A simple HTTP (GET) message and its encoding in Hexadecimal Format. . 71

A correspondent path diagram of factors listed in Table 5.2. 81

List of Figures

Xix

5.2

54

5.5

5.6

5.8

59

Validating clustering results using external/internal validation measures. It
shows show how ground truth labels are extracted from the captured traffic
using the tShark network analyser, and fed into the external measure (ARI)

along with the message clusters produced by the clustering algorithm.

Forest plots showing the effect of variables on clustering accuracy. The
figures show the estimated effects of the pairwise tests on the adjusted Rand
scores between variable values as well as the aggregate affect of each variable.

It also, shows the corresponding 95% confidence intervals for each test.

Forest plots showing the effect of variables on clustering time. The figures
show the estimated effects of the pairwise tests on the recorded time between
variable values as well as the aggregate affect of each variable. It also, shows

the corresponding 95% confidence intervals foreach test.

Box plot showing clustering accuracy for each protocol (a-d). Each plot
shows the different combinations of variables and the correspondent cluster-

ing score of the Adjusted Rand Index (ARI).
Three-dimensional projection of protocol samples on the first three principal
COMPONENES. o ot s e e e e e
The total within sum of squares using the hierarchical clustering against the

number of clusters. The so-called elbow method is used to select the optimal

number of clusters for protocol samples.

90

94

XX

List of Figures

5.10 Performance of the Agglomerative Hierarchical Clustering (AHC) algorithm

6.1

6.2

6.3

6.4

6.5

against other clustering algorithms. The best factor configurations extracted
in RQ3 (shown in Table 5.4) are used as a baseline for the comparison. The
performance is measured using the score of the Adjusted Rand Index (ARI)
as well as the matching number of clusters. The actual number of clusters for

each sample is marked in red in the horizontal axis, and the correspondent

cutting point in the dendrogram (for the AHC) is indicated as a large red circle.114

The concept of a segment and fragment applied on two basic HTTP messages.
The figure shows two simple request messages using (GET method) encoded
in both ASCII and hexadecimal formats, and a segment and a fragment of

the same length extracted from both encoded messages (shown on the left) .

A identity matrix contains all possible hexadecimal numbers expected in the
trace and their similarity scores. The assigned score is 1 for a match and 0

foramismatch.

Architecture of the segment-based alignment tool (a reduced version of

Dialign-2 [3]). o e
Input/Output protocol messages in a FASTA file format.

Pairwise Alignment of two basic HTTP messages (in Hexadecimal) as con-
structed by our segment-based alignment tool. The tool has selected two
fragments for the final alignment. Details of the selected fragments include:
their start positions on both messages, fragment length, and the assigned
weights to each fragment. The details also show on which iteration the

fragmentisidentified. oL o

121

List of Figures xxi

6.6

6.7

6.8

6.9

7.1

7.2

7.3

7.4

1.5

7.6

7.7

Segmented-to-segment alignment of five basic HTTP messages as con-
structed by our segment-based alignment tool. The tool has selected two
fragments for the final alignment. Details of the selected fragments include:
their start positions on both messages, fragment length, and the assigned
weights to each fragment. The details also show on which iteration the

fragmentisidentified.o L 133

The extracted message patterns from the correspondent PWM using different

values for the generalisation threshold (7). 139

An XML message structure derived from the inferred message pattern shown

in Figure 6.7 (d)when 7 =0.8.. 141

Partial Specification of the HTTP Request Message Format (from RFC 2616).143

Evaluation methodology for the inferred request/response message patterns. 147
Number of syntactically valid/invalid message patterns - as indicated by
Wireshark - in relation to the choice of the generalisation threshold (7). . . 151
Number of valid/invalid message requests - returned by protocol servers - in

relation to the choice of the generalisation threshold (7). 152

Accuracy of HTTP patterns inferred by Segment-based Alignment and the
Protocol Informatics tool (PI) - in relation to the choice of the generalisation

threshold (7). e 158

Accuracy of SIP patterns inferred by the Segment-based alignment tool and
the Protocol Informatics (PI) - in relation to the choice of the generalisation

threshold (T). e 159

Alignment results produced by the Protocol Informatics project using the

default user parameters (match=1,mismatch=0,gap=0). 161

Alignment results produced by our segment-based alignment tool. 162

xxii

List of Figures

7.8

A.l

A2

A3

A4

B.1

Choosing suitable length for the n-gram using the Ball-Hall index.

Box plot comparison showing the performance of different external clustering
validation measures for the TFTP protocol(a-d). Each plot shows the different
configuration of factors and the correspondent clustering score of the chosen

measurc. L L e s e

Box plot comparison showing the performance of different external clustering
validation measures for the DNS protocol (a-d). Each plot shows the different
configuration of factors and the correspondent clustering score of the chosen

measure. L L o o e s e s e s e e e e e e e e e e e e e e e e e

Box plot comparison showing the performance of different external clustering
validation measures for the SMB protocol (a-d). Each plot shows the different
configuration of factors and the correspondent clustering score of the chosen

measure. L L e

Box plot comparison showing the performance of different external clustering
validation measures for the HTTP protocol (a-d). Each plot shows the
different configuration of factors and the correspondent clustering score of

the chosen measure.

The extracted message patterns (in Hexadecimal) from the correspondent

PWM using different values for the generalisation threshold (7).

165

187

Chapter

Introduction

1.1 Introduction

Protocol reverse-engineering (or protocol inference) is concerned with the challenge of
inferring a specification of a network protocol from its available artefacts. It is often that
application protocols are targeted for reverse engineering because many application protocols
are undocumented or have no publicly available specification (closed). Inferred protocol
specification can be valuable in a multitude of scenarios, such as intrusion detection systems
(IDS) [4], protocol fuzz testing [5—T], application fingerprinting (8], traffic classification
[9, 10], detecting implementation deviations from original protocol specifications [11], and

in generic network protocol analysers [12].

For such applications, it is generally necessary to have an existing model that describes the
expected behaviour of the network protocol. In practice however, such models tend to be
only readily available for generic protocols with well-established characteristics. Generat-
ing such specifications by hand can be an arduous, error-prone task, especially when the
protocol in question is unfamiliar and not accompanied by detailed documentation (e.g. the

implementation is provided in a third-party component). It took more than a decade for

2 Introduction

a team of reverse engineering experts to infer specifications of the Server Message Block
protocol (SMB) [13] into an open source project known as SAMAB [14]. Also, the process
of protocol reverse engineering is not a once-and-done matter; existing protocols are often
extended to support new commands and functionalities. Therefore, automating the process

can successfully speed up the inference time and preserve the effort.

Specifications for open protocols such as the File Transfer Protocol (FTP) [15] can be
retrieved by accessing public documents (e.g., Request For Comments (RFC) [16]), or in
some cases, derived from the available source code. However, there are many closed and
proprietary protocols that have no released specifications, such as the Skpe protocol [17];
protocols used by instant messaging clients such as AOL’s ICQ [18]. Also, Malware (e.g.,
Botnets [19]) use undocumented command-and-control (C&C) protocols to facilitate stealthy
communications between the controlling server and infected clients [20-22]. Earlier studies
report that more than 40% of the internet traffic belongs to unknown protocols [23] and there

is no sign that this trend is going to decrease in the years ahead.

Specifications for closed protocols need to be reverse engineered. Currently, there are two
common approaches for this task: (1) by reverse engineering executables of the network
protocol (e.g., sever), and (2) by analysing captured network traffic. Typically, the first ap-
proach is carried out through the dynamic analysis of the program which involves monitoring
the execution of the protocol binary at run-time, i,e,.analysing the program execution in
terms of machine entities such as instructions, registers and memory locations. The second
approach is normally is based on the captured trace which is generated by the protocol

program (client/server).

Typically, protocol reverse engineering comprises of two steps: (1) extracting the protocol
message formant, which captures the structure of all message types in the protocol, and (2)
constructing the protocol state machine, which describes the sequences of messages that

represent valid protocol sessions.

1.2 Purpose of This Thesis 3

This thesis focuses on inferring the protocol message structure using captured network traces,
and leaves state machine inference to future work. Also, this thesis deals with application

protocols that do not encrypt or obfuscate their communications.

1.2 Purpose of This Thesis

The process of protocol reverse engineering from network traces is complex. The foremost
difficultly is that protocol reverse engineering is not a term for a single integrated technique
with well-defined rules; rather it is an umbrella for a collection of heuristic procedures,
diverse elements of data mining algorithms and applied statistics. Generally, protocol reverse
engineering is a process often based on two aspects of data mining: data clustering, and
sequence alignment algorithms. However, these two aspects have their own limitations (as

discussed below) when applied to protocol inference.

A crucial step in protocol inference from network traces is to classify captured messages
of the same type into separate groups. Most approaches [24—-27, 23] accomplish this step
by identifying common patterns within the data by way of an unsupervised' data mining
technique known as clustering [28]. Clustering can empirically elucidate the “natural”,
unknown and ideally interesting groups of messages within the captured network trace. These
groups can then be used to identify the possible structures of message types implemented in

the protocol.

Most of protocol inference approaches that involve clustering follow a common sequence of
steps, but vary substantially in terms of the specific methods or parameters that they adopt
with respect to the clustering step. For example, they might pre-process the data in different

ways (e.g. limit messages to the first 32, 64 bytes etc., or tokenise messages into tokens such

Unsupervised learning mostly refers to data mining techniques that group data items without pre-specified
class labels.

4 Introduction

as n-grams etc.). They might adopt different combinations of “distance measures”. They

might be tailored towards text-based protocols or binary ones.

It is important to understand that clustering is often combined with a set of factors applied
on the natural structure of the dataset. The extent to which these factors distort or improve
the structure is considered an ever present risk. The fact that different set of factors can
suggest different clustering results when applied on the same dataset signifies the importance

of understanding the influence of these parameters on the inferred model.

Most of the empirical results are presented with respect to a fixed configuration of clustering
parameters. However, the sensitivity of clustering algorithms to their parameters suggests
that performance could vary significantly [29, 30], depending on factors such as the type
of protocol, the choice of distance measure, the amount of data, etc. A review of previous
applications is not very helpful because authors typically give only their final selections and
rarely provide any insight into the process leading to the choices. A reverse engineering
analyst who has a set of messages to be clustered faces quite a number of questions such as:
How does one choose among similarity measures, packet lengths and sample sizes? What is
the effect of choosing certain factors on clustering quality? What is the effect of these factors
on clustering time? What is the best factor configuration for clustering? Such vital questions

are left unidentified by previous approaches.

This part of the thesis aims to provide an approach to answering such questions as well as
an empirical evaluation on realistic protocols that demonstrates the effect of such factors on

clustering as well as detecting the best factor combinations for clustering.

Another important step for a protocol inference technique is to infer the packet structures
from the data — to identify within packets the various data fields and field headers. Current
approaches [24, 31-33, 26, 34, 23] tend to identify common patterns by attempting to align

classified (clustered) protocol packets. Aligning a large number of packet sequences can

1.2 Purpose of This Thesis 5

identify commonalities and variances, which can in turn be used to identify, for example, the

tokens that are used to delimit packets, the key field identifiers, and the data fields.

Although there has been a substantial amount of research in the area, most of the emphasis
has been placed on either stages prior to the alignment [24, 23] or on challenges such as the
inference of the protocol state machine (once packet types have been identified) [31, 27, 35—
37]. The underlying algorithm that is used to align packets to identify their structure tends to

be the same for most techniques — the Needleman-Wunsch algorithm [38].

Although well suited for its original purpose of protein sequence alignment, Needleman-
Wunsch can become problematic when applied to sequences of bytes from network packets.
For one, it is highly sensitive to various parameters (such as the “gap-penalty” parameter)
that, though honed through decades of use on protein sequences, are far from straightforward
to identify for network packets (and in all likelihood need to be varied on a per-protocol
basis). Secondly, it can produce highly inaccurate results when messages have an identical

packet structure, but happen to contain variable-length data fields.

In this thesis, we propose the use of segment-based sequence alignment [39] to align network
messages. Instead of aligning messages on a character-by-character basis, segment-based
alignment constructs alignments in terms of entire sub-strings. The algorithm is not dependent
upon any user-defined parameters. Also, because it operates in terms of sub-sequences, it
is more forgiving of slight discrepancies when comparing protocol messages that would
confound Needleman-Wunsch. The approach has proven to be a successful replacement for
Needleman-Wunsch within bioinformatics, and in this thesis we seek to show that it can

provide a similar replacement with respect to protocol reverse-engineering.

6 Introduction

1.3 Contributions

The purpose of this thesis is to investigate and improve the process of protocol reverse

engineering from network traffic. Accordingly, this thesis makes the following contributions:

* It presents an empirical study investigating the impact of various process factors on
clustering accuracy and clustering time. The study also demonstrates that intrinsic
validation measures for clustering can be used to determine suitable factor configura-
tions to achieve highly accurate clustering when message classes (types) are unknown,

which is often the case for undocumented protocols.

* This thesis proposes the use of segment-based alignment to address some of the
limitations of traditional alignment algorithms (e.g., Needleman-Wunsch), which
is used to identify packet structures from network traces. The proposed technique
depends on less user parameters and yields significantly higher accurate alignment
especially with long and diverse protocol messages that contain different compositions

of protocol fields.

* The proposed solution of segment-based alignment has been implemented into a
framework that is capable of reverse engineering the message structure from captured
network data. Unlike previous approaches, the framework works in a completely
protocol-independent fashion, i.e., no information is used from other protocols in the
protocol stack (other than the application protocol) and no assumption is made about
the nature of protocol type (text/binary), or its behaviour (synchronous/asynchronous).
Also, the framework does not assume that the first constant bytes of a packet describe
the complete structure of an application protocol as described in previous projects,
or assumes any prior knowledge about protocol delimiters that separate the different

fields in a message. Generally, the framework takes the captured network traffic as the

1.4 Thesis Structure 7

input and automatically outputs the inferred protocol message structures in a form of

message patterns.

* This thesis also proposes a novel approach to evaluate the accuracy of the inferred
message structures. Instead of relying on the conventional analytical approach of scru-
tinising inferred packet structures, we use what we consider to be a more empirically
valid approach. We use the inferred packet structures to synthesise protocol messages,

which we send to servers, and track whether or not the packet is parsed as valid or not.

* Finally, this work offers preliminary insights (presented as a future work) into finding
the hierarchical structure (context-free grammar) of the inferred message patterns. The
contribution of this part demonstrates how the SEQUITUR algorithm ? could be used

to infer the hierarchical message structure for text-based protocols.

1.4 Thesis Structure

The rest of the thesis is laid out as follows:

Chapter 2 gives a background related to the thesis, and divides it into three sections: network
protocols, data mining, and research design. The first section is served as an introduction to
network protocols and discussed from two perspectives: protocol models for communications
and the protocol message structure. Section 2.2 explains selected subjects on data mining and
knowledge discovery that are associated with this work. This involves: data clustering, and
sequence alignment. This chapter concludes with a background on experimental research

and the statistical tests (effect size) that relate to the empirical study carried out in this thesis.

Chapter 3 consists of two sections. Section 3.1 provides a comprehensive review of previ-
ous protocol reversing approaches with special emphasis on the network-based inference

approach. This chapter also highlights the common steps that is usually followed in protocol

%A recursive algorithm that infers hierarchical structure from a sequence composed of discrete symbols.

8 Introduction

inference from network traces. The final section of this chapter discusses the motivations of

the thesis.

Chapter 4 gives details of the design and implementation of a generic framework for reverse
engineering the message format of application protocols from captured data. The first section
in this chapter discusses the key desired properties for the envisioned framework. While
section 4.2 gives details of the blueprints and building blocks of the framework, section
4.3 describes its implementation details. The last section highlights some of the known

limitations of framework.

Chapter 5 addresses the first motivation of this thesis. It demonstrates how the constructed
framework is used to conduct an empirical study on a number of protocol traces. Section
5.1 explains the different types of process factors and how they are generated within the
inference process. Section 5.2 give details on the conducted experiment which includes: the
subject protocols, selected variables for the experiment, methodology, and the results of the
experiment. The final section of this chapter highlights some of threats to validity that might

have affected the experiment.

Chapter 6 covers two closely related subjects within the inference process: message align-
ment using the segment-based alignment approach, and extracting message structure using an
alignment generalisation technique. Accordingly, section 6.1 explains how the segment-based
alignment approach is applied within the context of protocol reversing which includes: ex-
plaining the necessary modifications to the weighting scheme as well as the implementation
details of the segment-based alignment algorithm. A case study aimed to demonstrate the
operational aspects as well as the practicality of the approach is also explained at the end
of this section. Section 6.2 explains how an alignment generalisation technique is used to

extract message patterns which serves to describe the overall structure of the message.

Chapter 7 discusses how the quality of the inferred message structure is evaluated. Section

7.1 describes subject protocols, evaluation methodology as well as the results of the evaluation.

1.5 Publications 9

Section 7.2 conducts a quantitative and qualitative comparative evaluations between the
segment-based alignment and another Needleman-Wunsch based alignment technique. The

last section provides further discussions on the evaluation and the adopted inference approach.

1.5 Publications

This thesis comprises of a work appeared in one conference. The article appeared in the
proceedings of the 2017 IEEE International Conference on Software Quality, Reliability &
Security (QRS 2017). The paper entitled: Using Segment-based Alignment to Infer Network
Packet Structures from Network Traces [40]. The paper highlighted the common weaknesses
of current message alignment approaches and proposed the use of segment-based alignment

to overcome these problems.

Chapter

Background

The purpose of this chapter is to establish a general background on the diverse subjects
involved in this thesis. First, we begin with a general snapshot of network protocols focusing
on the related technologies and terminologies related to our work. The second part of this
chapter gives a general description of the process of data mining and the relevant techniques
to protocol inference (data clustering and sequence alignment). Finally, the chapter gives a
background on the experimental research design and the effect size statistical measure that is

related to the empirical study conducted in this thesis.

2.1 Network Protocols

This section provides an overview of network protocols, protocol models and how they are
used for communication. This section also explains protocol messages, types of protocol
messages and how they are structured emphasising on the main elements connected to this

thesis.

2.1 Network Protocols 11

| Request
> EEE—
Client Machine S /
Ny < <«
=_ / Response

Figure 2.1 Client-Server Communication Model

Server Machine

2.1.1 Communication Models

A network protocol is a set of rules that control communications between two (or more)
computer programs. Typically, these rules define the structure and the meaning of the
exchanged messages as well as the correct order of the exchanged messages based on a well-
defined model for communication. A communication model can be defined as an abstract
representation that describes the communication infrastructure involving the communicating

parties, means for communication, as well as the assigned roles to them.

There are a number of protocol communication models, such as the Peer-to-Peer [41] and
Client-Server models [42]. We will be focusing on the client-server model since it is the most
common model of communication. The client-server model consists of three elements: a
Client program, a Server program, and a network medium that facilitates the communications
between the client and server as illustrated in Figure 2.1. The client-server model is a two-
way communication model where the client is the service requester and server is the service
provider. The client and server programs are normally set-up on two separate machines

connected by a network.

Protocol Hierarchy

Communication between client and sever programs is not direct. In order for the client and

server to communicate, their exchanged messages have to go through several stages. There are

12 Background

multiple intermediate communication interfaces that need to handle specific communication

tasks.

Technically, each of these interfaces is implemented in a separate protocol and organised as
layers of protocols where each layer is able to interact with the layer above or below it. The
basic idea behind the layered protocol architecture is that each layer offers a different level
of abstraction and performs a separate function. Each layer offers specific services to the
layer above it through a well-defined interface. The interfaces are dependent on each other

and collectively deliver the intended function of the protocol.

The number of layers and functions for each layer normally follows a specific model. The
best known models are the Open System Interconnection model (OSI) [43], and the TCP/IP
model [16]. The OSI model consists of seven layers and considered the standard for the
layered protocol architecture. In practice, however, protocol implementations do not really
adhere to the standard OSI architecture. Instead, they use the TCP/IP model, which is based
only on four layers. Since our work is based on network protocols that have adopted the

TCP/IP model, we will focus our background discussion on TCP/IP model.

The TCP/IP model is a combination of several protocols. The TCP and IP are only two of
the protocols (layers) in the stack. Each layer hosts one or more protocols communicating
with its peer at the same layer on the other side, as illustrated in Figure 2.2. The model of

TCP/IP consists of the following layers:

1. The Link Layer: The link layer normally incorporates two elements: the device
driver (e.g., Ethernet and Token ring) and the hardware interface. Together they handle
the physical interaction with the network media. This layer is also responsible for
masking any transmission errors and regulating transmission speed between connected

computers.

2.1 Network Protocols 13

7 Application L 4 .
Client Program . Applca tion Layer (4)__ > Server Program

%

TCP/UDP R LT R e e - TCP/UDP

! !

IP,ICMP, IGMP {« - - -~—-—- 2 520 > IPICMP, IGMP

! !

Driver & Hardware Driver & Hardware AN

uonensdeouy eieq
Data De-encapsulation

Figure 2.2 TCP/IP Protocol Suite.

2. The Network Layer: This is sometimes called the Internet Layer. This layer controls
the flow of packets around the network by determining how packets are routed from
the source computer to the destination computer. This layer typically includes the im-
plementation of the IP (Internet Protocol), ICMP (Internet Control Message Protocol),

and IGMP (Internet Group Management Protocol).

3. The Transport Layer: The basic function of the transport layer is to make certain
that transmitted data between the computers are provided for the application programs
above it (client/server) and communication port numbers are defined as well. The
TCP/IP model includes two different mechanisms of transport implemented in two
separate protocols: TCP (Transmission Control Protocol) and UDP (User Datagram
Protocol). TCP provides a reliable exchange of application data by acknowledging
received data and setting time-outs for the applications to acknowledge sent packets,
fragmenting and assembling data into transmittable units, and verifying the integrity
of the transmitted data (e.g., use of checksums). The UDP protocol on the other hand
provides a more basic service to applications. It sends data known as Datagrams from

one the source computer to a destination, but without making sure that these datagrams

14 Background

are actually received on the other end, a task that is left to protocol applications to

handle.

4. The Application Layer: The application layer is responsible for handling application
details. This layer represents the implementations of a variety of user applications, such
as accessing and retrieving documents, and emails, file sharing, video conferencing,

etc.

Implementations of application protocols are commonly targeted for reverse engineering and
testing because they tend to be undocumented, and more likely to contain bugs [5], whereas

other protocols in the TCP/IP stack are well-documented and have been debugged for years.

Protocol Communications

In the TCP/IP model, when one application sends data to another, the data is passed down
through each layer in the protocol stack until it is transmitted as a stream of bits to the other
end. In this process, each protocol in the stack prepends specific information known as
headers, and sometimes appends trailers as well to the data (e.g., the Ethernet protocol in
Link layer [16]). This process is called Data Encapsulation. When the data reaches the other
end, the encapsulation process is executed in reverse where the transmitted data starts its way
up and all attached headers (and trailers) are parsed and removed by the appropriate protocol
peer. This process is called Data De-encapsulation (or Demultiplexing [16]), as shown in
Figure 2.2.

Typically, Each layer in the TCP/IP has its own Data Unit. The unit of the data that the
transport layer passes to the network layer is called a Segment, and the unit of data that the
network layer sends down to the data link layer is called a Packet. The unit of data that the

data link layer sends to the hardware interface is often known as a Frame. Because there is

2.1 Network Protocols 15

no common defined data unit for the application layer [16], we will refer to the data unit

passed by application protocols to the transport layer as a Message.

The TCP and UDP transport protocols identify the application protocol by its port number
assigned for communications. Typically, protocol servers are known by their associated port
numbers. For example, the FTP (File Transfer Protocol) sever provides that service on TCP
port 21, and TFTP (Trivial File Transfer Protocol) provides its service through UDP port 69.
The standardisation of port numbers is managed by the Internet Assigned Numbers Authority

(IANA) [44].

Network protocols are normally categorised into two categories: text protocols and binary-
based protocols. In text based protocols, data communicated between the the client and
server mostly fall within the printable ASCII characters and the exchanged messages are
human-readable. There are several examples of text protocols such as the Hypertext Transfer
Protocol (HTTP) [45] and the File Transfer Protocol (FTP) [15]. For binary protocols, on the
other hand, data is communicated as stream of bits and the messages contain characters that
are not particularly meaningful to humans. The Trivial File Transfer Protocol (TFTP) [46]

and Domain Name Service (DNS) [47] are both binary protocols.

The way protocols communicate depends on the application. For certain applications the
protocol may require the server to treat each request from the client as an independent
transaction that is unrelated to previous requests so the communications between the client
and server consists of separate pairs of request/response messages. In this case the protocol
is called a Stateless (or Connectionless) protocol. For other applications the protocol may
require the server keeping the internal state of previous sessions because recent message
requests depend on it. In such case the protocol is known as a Stateful (or a connection-

oriented) protocol [41].

16 Background

2.1.2 Protocol Message Structure

To give a basic idea of the message structure and field definitions within the message header,

we will be using the Trivial File Transfer Protocol (TFTP) [46] as an illustrative example.

TFTP is a trivial file transfer protocol (as the name suggests). It is also used for other
purposes, such as the remote booting of disk-less devices, and even for malicious purposes

[32]. TFTP is implemented on top of the User Datagram Protocol (UDP) transfer protocol.

The protocol supports five simple operations (five types of messages). In TFTP, each message
is composed of a number of fields. Each message consists of an Opcode (Operation Code)
to indicate the type of the operation and a few other fields for other purposes. The overall
number of fields in each message varies from one message to another depending on the

operation type.

For instance, the Read and Write messages are exactly the same apart from the value of
the Opcode, as illustrated in Figure 2.3. The format of the Read (and Write) messages
consists of five fields. The first field is of a two-byte length and used to indicate the operation
type (01 for read, and 02 for write), immediately followed by another field for holding the
file name that we want to read or write. At the end of the file name, a field of one-byte is
used to indicate the end of the string (null character). The message also contains a field for
the communications mode, which indicates the method that should be used for encoding
data before transmission. TFTP supports three modes of communications: "ascii", "octet"

and "mail". Each Read/Write message ends with a one-byte field contains a null character

signalling the end of the message.
As shown in Figure 2.3, fields in a protocol message differ in length, type (numeric, string
etc.), and purpose. Accordingly, a field in a protocol message may fall in one or more of the

following categories:

2.1 Network Protocols 17

Fixed Variable Fixed Variable Fixed
Field 1 Field 2 Field 3 Field 4 Field 5
Name: Opcode Name: File Name Name: Delimiter ~ Name: Mode Name: Delimiter
Length: 2 bytes Length: N bytes Length: 1 byte Length: N bytes Length: 1 byte
Value: 01/02 Value: String Value: Null Value: ascii,octet, Value: Null
mail

Figure 2.3 Simple illustration of the Read/Write message structure for the TFTP Protocol.

* Fixed-length: Each field in the protocol message is either of a fixed length or variable
length. The length of the fixed-length field does not change across multiple instances
of the same message. Normally, the lengths of fixed-length fields are specified in the
protocol specifications and should be known to the protocol implementers. Fixed-
length fields are typically used when maintaining certain field lengths is needed in a

protocol message. In the TFTP example, the Opcode field is a fixed-length field.

* Variable-length: The length of a variable length field is dynamic, therefore, it changes
across multiple instances of the same message. Protocol designers should explain how
the boundary of a variable-length fields should be determined in the specifications.
Typically, Delimiters or Length Fields are used to mark the end of a variable-length field.
Variable-length fields are commonly used by the applications when the protocol data
maintain no structure. The File-name field in the TFTP example is a variable-length

field.

* Length-Field: For some protocols, a message may contain a field to describe another
field such as a length field. A length field is a field that holds the length of another
field of a variable-length. Typically, a length field always proceeds its variable-length

field in the protocol message. The unit used to measure the length is in bits or bytes

18 Background

(depending on what is described in the specifications). Length fields are commonly

used in text-based protocols such as the HTTP protocol.

* Delimiters: Delimiters are special characters used to mark the end of variable-length
fields. A delimiter may consist of a single byte or multiple bytes and always appears at
the end of a variable-length field. Delimiters are part of the protocol specifications and
known to the developers. The Null character in the TFTP example is a delimiter used
to indicate the end of two fields of variable length: the file-name field, and the mode

field.

* Keywords: Keywords are special strings or numbers (or sometimes a combination
of both). Keywords are typically used as part of the protocol Commands, Requests
and Responses. Keywords are sometimes also used for information purposes. They
are determined by the protocol specifications and have to be known to the protocol

developers.

Typically, the format of the protocol message is part of the protocol specification. Protocol
specifications are normally documented in an official document know as Request For Com-
ments (RFC)!. An RFC document normally contains information on the protocol elements
such as the communication rules and message formats, as well as the design decisions and
the correct implementation of the protocol. An RFC document also explains any security
considerations that need to be addressed. The TFTP specification is publicly available in

RFC-1350 [46].

2.2 Knowledge Discovery and Data Mining

In this section, we will provide an introductory overview to the general process of knowledge

discovery using data mining techniques. First, we explain the main steps of the process,

IThere are RFCs published for only information purposes and not considered official [16].

2.2 Knowledge Discovery and Data Mining 19

D«A\‘& (A"\Q“

a0
690‘00659“%
'y

Figure 2.4 The process of knowledge discovery (From [2]).

then we narrow down our discussion on two data mining techniques (Data Clustering
and Sequence Alignment) which are considered the foundation of many protocol reverse

engineering approaches.

2.2.1 General Process

The process of knowledge discovery is defined as the extraction of useful and novel knowl-
edge from large data sets using data mining algorithms [2]. The goal of the process is to turn
large, unstructured and detailed volumes of data into concise, structured and more useful

descriptions that can be interpreted and understood by humans or processed algorithmically.

The process of knowledge discovery is often interactive and iterative, and involves a number

of steps [2]. Figure 2.4 shows the main steps of the process.

1. Data Selection: After developing a good understanding of the application domain
and the goals have been determined, data samples should be identified. This requires
knowledge of the type and size of the data. This step is the foundation that we base or
evidence upon to construct our patterns and models. Therefore, it is imperative to select

a good representative data sample. However, collecting, organising, and operating

20

Background

on complex and large data is expensive and time-consuming, and there should be a

trade-off between the size of the sample and the other factors affecting the process.

. Data Preprocessing: Having understood the goals, and selected a representative

sample from the data set, the preprocessing step aims to enhance the reliability of the
chosen sample. It does so by eliminating outliers (noisy elements), removing redundant
data, and handling missing values (if any). This step may contain within it a variety
of statistical methods for filtering data. This step is essential because it can reduce
the processing time and significantly enhance the accuracy of the inferred pattern or

model.

. Data Transformation: Data mining algorithms expect the data sample to be in the

shape and form that allows the algorithm to effectively produce the desired output. It is
often that data needs to be reshaped or transformed prior forwarding it to data mining
step (next step). For example, for some data mining algorithms (e.g., clustering), in
order to work effectively, they cannot simply differentiate between raw data items
within the sample unless these data elements are translated or fragmented into a set of
discriminative tokens (’features’ [48]). That enables the mining algorithm to determine

the level of association between the identified features and data.

It is also common that features are not all "important" for the inference - i.e., large
parts of the features may be noise (irrelevant features). Therefore, eliminating such
features can improve the accuracy of the algorithm and reduces the processing time
[49]. The process of reducing (or transforming) an n dimensional data to an m dimen-
sional representation (while m < n) is often known as Dimension Reduction. There are
several techniques that are used to reduce data dimensions which generally fall within
two categories: feature selection and feature extraction techniques [50, 51, 48, 52, 53].
Feature selection is a process that selects a subset of the original features, while feature

extraction is a process of extracting a set of new features from the original features

2.2 Knowledge Discovery and Data Mining 21

normally through some functional mapping (transformation), such as principal compo-
nent analysis (PCA) [54, 50]. The main idea of principal component analysis (PCA)
is to reduce the dimensionality of a dataset consisting of many variables correlated
with each other while retaining the variation in the dataset up to the maximum extent.
The same is done by transforming these variables to a new set of variables known as
the principal components (or simply, PCs) and are orthogonal, ordered such that the
retention of variation present in the original variables decreases as we move down in the
order. So, in this way, the first principal component retains the maximum variation that
was present in the original components. In chapter 5, Section 5.2.4, we will use PCA
to visualise the datasets involved in the empirical study. Typically, feature selection
algorithms are preferred as they operate on the original attributes of the dataset [50].
Normally, this step is application-specific as we will elaborate more on it in section 3.1

and in Chapter 4, section 4.2.2.

4. Data Mining: This step is about identifying and using the appropriate data mining
approach (e.g., Classification, Clustering , Regression etc.) and algorithm that suit our
application at hand. This is mostly depends on the what want to infer from our data

and the type of data available for the analysis .

Typically, there are two broad goals from carrying out data mining: Prediction and
Description [2]. Accordingly, most data mining algorithms are based on approaches
where a model/pattern is inferred. Prediction is often based on a supervised learning
process, where data items are labelled and assigned to classes, and the underlying as-
sumption is that the inferred model is applicable to future cases. Descriptive inference,
however, is often based on an unsupervised learning process, where data classes are

unknown (e.g., clustering), and a pattern is inferred to describe the data.

It is important to know how to employ the data mining algorithm and integrate it within

the process. It is often the case that multiple data mining algorithms are used to carry

22 Background

out a specific task. Choosing the right order and selecting the right control parameters
for each algorithm is important as will be explained in more detail within the context

of protocol reversing engineering ahead (section 3.1).

5. Interpretation & Evaluation: The last step in the process is how to interpret and
evaluate the results. Results are typically evaluated against the goals set out prior to the
commencement of the process. This step focuses on evaluating the inferred model (or
pattern) with respect to its usefulness, and accuracy. This can involve evaluating the
empirical prediction accuracy for an inferred model, or how well the inferred pattern

describes the data included in the test.

2.2.2 Data Clustering

Clustering [29] is an important technique in data mining. It can be defined as the process
of partitioning a dataset into distinctive groups under some criterion of similarity such
that objects in each group are more similar to each other than objects in different groups
[55]. Clustering is the subject of extensive research and, has been embraced in a variety of
disciplines and applications, especially for pattern analysis and understanding correlations in

large datasets [56].

The goal of clustering is often descriptive. Typically, it is used to empirically elucidate the
"natural”, unknown and ideally interesting groups of objects within a dataset as shown in
Figure 2.5. It is normally applied when there are no predefined classes in the dataset, for this
reason, it is known as an Unsupervised Learning [28]. In data mining, the information gained
from clustering is either used separately or as a preprocessing step for further experiments.
There are several approaches to clustering, such as Hierarchical Clustering, Partitional

Clustering, and Density Clustering [28].

2.2 Knowledge Discovery and Data Mining 23

—4-

cluster 1@ 2 3

Figure 2.5 An example of a data set with a clear cluster structure

Hierarchical clustering can be used in a variety of applications. However, it is commonly
used in biological and social sciences because of the need to construct taxonomies and
understand relationships between the clustered objects. Partitional clustering, however, has
been preferred in certain engineering applications [56]. In this section, we are restricting our
discussion to hierarchical clustering since it is the approach used in this thesis. More detailed

discussions on clustering approaches and algorithms are found in [56, 57].

Hierarchical Clustering

Hierarchical clustering can be performed either by recursively merging smaller clusters into
larger ones, or starting with a large cluster and recursively splitting it into smaller clusters.
The first is a bottom-up approach and known as Agglomerative Hierarchical Clustering
(AHC), while the second is top-down and known by Divisive Hierarchical Clustering (DHC)
[56].

24 Background

The agglomerative hierarchical clustering starts by placing each data item into individual
disjoint clusters. Algorithms in this category will merge (nest) the most similar clusters first
to form a second cluster, and then the second cluster will be merged with another cluster to
form a third cluster, and so on. While the process is repeated to form a set of nested clusters,
the number of clusters decreases until a single cluster is created which contains all objects in

the dataset. A divisive clustering algorithm will perform the task in reverse order.

The process of hierarchical clustering is normally captured by a special tree structure that
provides a picture on how these clusters are formed. The generated tree is called a dendro-
gram. Cutting the dendrogram horizontally at a desired level (hight) defines clustering, and

identifies clusters as shown in Figure 2.6.

Unlike other clustering approaches, the number of clusters is not required a priori for
hierarchical clustering algorithms. Hierarchical clustering outputs a structure that that is more
informative than the unstructured set of clusters that can be produced by partitional clustering
because the visual impact of hierarchical clustering can provide invaluable information about
the data being explored. A dendrogram enables us to see how objects are merged into
clusters at successive levels of proximities. Also, we can determine whether the generated
dendrogram describes our data at some fixed level that seems more sensible for the application

at hand.

Clustering Method. In agglomerative hierarchical clustering, clustering proceeds accord-
ing to the chosen clustering method. This is a merging method that determines which clusters
to be merged to form one cluster. Many Methods for hierarchical clustering have been
proposed, such as the single linkage method which merges clusters based on their nearest
neighbours, the average linkage method merges clusters based on their centre neighbours,

and the complete linkage which merges clusters based on the farthest neighbours.

2.2 Knowledge Discovery and Data Mining 25

«Q _|
o
© _]
o
-
=
2
& —
T ©
N
o
o JII [L |
o
O ~ N MO A~ I 4 O 0 W Mo N S S O
— — — — — -« - —

Figure 2.6 A dendrogram consists of 15 data objects, cut off at a level 0.4 creating 3 distinct
clusters.

Different clustering methods can produce totally different clustering results. The choice of
clustering criteria is difficult to determine. There is no list of characteristics exist that enable

us to determine how and when to choose a clustering method in a rational manner [56].

Distance Measures

Most clustering algorithms require a measure of similarity to be defined between every
pair of objects in the dataset. The similarity measure is often expressed as a distance (or
dissimilarity) and the distance scores between objects are represented in a symmetric distance
matrix in which rows and columns correspond to data objects. The more a and b data items
resemble each other, the smaller the distance. A distance measure is a function d(a,b) that
takes two points in space as arguments and produces a real number reflects the distance

between them. A distance measure is called a true distance measure (i.e., metric) only if

26 Background

it satisfies certain mathematical properties 2. There are several metric distance measures
described in the literature, such as the Euclidean and Manhattan distance measures [49, 57].
Distance measures can also be calculated based on a variety of similarity coefficients such as
the Jaccard index and the Cosine similarity measure [58]. Hierarchical algorithms can be
seen as a way of transforming a distance matrix into a dendrogram. The hight of the cross-bar
in the dendrogram reflects the contrast between clusters within dataset as shown in Figure
2.6. Choosing a suitable distance measure is very important; unless a suitable measure of a

distance has been established, clustering results may have no real meaning [56].

Clustering Validation

Clustering validation is the process of evaluating the result of a clustering algorithm. For
many applications, it is important to validate clustering results in terms of the ’goodness’
of partitions. In general, clustering validation can be divided into two categories, external
validation and internal validation. The main difference between the two categories whether
external information is used in the validation process. External validation measures require
the actual (ground truth) classes to be known to validate clustering. There are several external

validation measures such as, the Rand Statistic, and the Folks and Mallows index (FM) [28].

Internal measures validate the goodness of clustering based on the intrinsic aspects of the
data (e.g., compactness and separation) without the need to the external information. There
are a number of internal clustering validation measures such as, the Dunn index [59] and
Davies-Bouldin index [60]. External validation measures are mainly used for choosing
between clustering algorithms that suits best for clustering. Internal measures can be used to
determine the best clustering algorithm as well as the optimal number of clusters without the

need for external information [61].

2 As described in [29, 56], a true distance measure needs to satisfy three conditions: For all data items a &
b, 1) d(a,a)=0, 2) d(a,b) =d(b,a) ,and 3) d(a,b)>0.

2.2 Knowledge Discovery and Data Mining 27

(a) Non-aligned sequences

ABCDEFGHIJKLM
AOPQRTUVKXM

(b) Aligned sequences

K
K

AIBCDEFGHTIJ
Al[OPQRTUV - -

M
M

Figure 2.7 Alignment of pair of sequences using the Needleman-Wunsch algorithm.

L
X

2.2.3 Sequence Alignment

Sequence alignment algorithms have long been used in bioinformatics [62], for example to
identify relationships between protein sequences. An alignment can show precisely where
two sequences are identical — which zones of the two sequences match each other, potentially
indicating that they are related in some way. The basic task for a sequence alignment
algorithm is to determine how two sequences are related. The algorithm aligns the two
sequences by comparing characters from both sequences revealing similarities, differences,

and missing residues by inserting gaps if the sequences are not of the same length.

For example, in Figure 2.7, the alignment algorithm takes as input a pair of non-aligned
sequences and produces an alignment that identifies the elements *A’, ’K’ and "M’ as similar
(marked as red). Also, it shows that there are two gaps inserted in the second string, because
the first one has two additional elements. The alignment also shows where the two strings

contain different elements at different positions.

Global vs. Local Alignment

There are two common types of alignments; global (e.g., Needlman-Wunsch algorithm

[38]) and local (e.g., Smith-Waterman [62]). Global alignment algorithms have the goal of

28 Background

matching entire sequences with each other (i.e. finding a corresponding position for every
element from the start to the end). Local alignment algorithms on the other hand merely
focus on identifying regions that are strongly similar. Global alignment algorithms tend to be
better suited to pairs of sequences that are broadly of a similar content, whereas the latter
is better suited to sequences that are more diverse in nature. The Needleman-Wunsch and
Smith Waterman are both based on Dynamic Programming (DP). Dynamic programming is
a method based on the divide-and-conquer principle used to solve a complex problem by
braking it down into smaller sub-problems that can be solved separately; once a solution is

found to a sub-problem, it can be used to solve other sub-problems [63].

Scoring Scheme

Most alignment algorithms employ some sort of a scoring scheme to calculate the similarity
between sequences. Based on the scoring scheme, the alignment algorithm seeks to max-
imise the alignment score in order to find the best possible alignment between sequences.
Alignment algorithms based on dynamic programming guarantee an alignment with optimal

score [62].

The scoring scheme can be as simple as assigning 1 for a character match, and O for a
mismatch. A gap is normally penalised by giving it a negative score. Typically, an identity
matrix can be generated from this simple scoring scheme where, for example, similar
characters are given positive scores, and dissimilar ones are assigned negative or no scores.
For its use in bioinformatics, there is the additional complication that characters are not
simply identical or different. Different pairs of characters (proteins) can share varying degrees

of similarity which makes the task for coming up with a scoring scheme quite difficult.

2.2 Knowledge Discovery and Data Mining 29

Multiple Sequence Alignment

Traditional global and local alignment algorithms are based on dynamic programming which
cannot be easily extended to align more than two sequences as it becomes prohibitively
expensive. For this reason, various approaches have been developed to align multiple
sequences, leading to a huge number of algorithms using fundamentally different approaches
such as progressive, iterative, hybrid, etc. Traditionally, the most common approach has
been the progressive alignment. This approach operates by initially aligning two sequences
(typically the most similar pair) using Needleman Wunsch algorithm, and then ‘progressively’
adding additional (more distant) sequences to this fixed alignment. A number of programs

based on the progressive approach has been developed [62].

Progressive alignment methods strongly depend on the initial alignments, and once a sequence
has been aligned and added to the alignment list, its alignment is not considered again. While
this approach offers speedy alignment for large data sets, it comes at the cost of sacrificing

some accuracy [64].

Recently, several alignment algorithms have been proposed using an iterative (aggressive)
procedure, and some times a hybrid of both. Iterative alignment works similarly to the
progressive method but it aims to improve the accuracy of the alignment by repeatedly
visiting and re-aligning initial sequences as well as adding new sequences to the alignment
list. Iterative alignment algorithms can offer better alignment. However, they are slower than
progressive alignments [64, 65]. Segment-based alignment (discussed below) is an alignment

approach which is based on the iterative approach [39].

Figure 2.8 shows one possible multiple alignment of five different sequences using the
progressive approach. Note that similar characters are aligned to one another. Gaps are also
inserted into sequences 2,3,4, and 5 to align them with sequence number 1. The sequence

shown below the alignment is the generalisation sequence which will be explained ahead.

30 Background

(a) Non-aligned Sequences:

ABCDEFGHIJKLMNOPQRSTUVWXY?Z
ABCDEFGHIJLMNOPQSTWXYZ
ABDEFGHIJKLMNOPQRSTUWXYZ
ABDEFGHJLMNOPSTUVWXYZ
ABCDWXYZ

(b) Aligned Sequences:
AB|ICIDIEFGHIJKLMNOPQRSTUVIWXYZ
AB|ICIDIEFGHIJ-LMNOPQ-ST--WXYZ
AB|-IDIEFGHIJKLMNOPQRSTU-|WXYZ
AB|-IDIEFGH-J-LMNOP--STUVIWXYZ
AB|ICID|l- - - - === === - - - - - - - WXYZ
¥R X 2227272272277 7 %k k%
AB?D?7?27272?7272?27?2727?727?27?2?7TWXYZ

Figure 2.8 The alignment of multiple sequences using the progressive approach and the
inferred consensus sequence (marked in red) below the alignment.

Alignment Generalisation

The outcome of the alignment step can be quite daunting to understand when large data sets
are involved because the general structure cannot be easily observed. For this reason, it is
important to produce a generalised result after the alignment step. The generalisation step

serves as a summary of the alignment outcome.

A common method used to generalise the results of sequence alignments in bioinformatics is
known as the consensus sequence [66]. A consensus sequences is a sequence that simplifies
the alignment result by separates static regions from dynamic regions within the aligned
sequences, underlying the similarities shared by all sequences. Revisiting the example shown
in Figure 2.8, we notice that similar characters ("A","B","D","W","X","Y" and "Z") which
appeared in the same positions of the five sequences are shown below the alignment, while
different and infrequent characters are filled with gaps. Alignment generalisation gives an

abstract description of how sequences are structured.

2.2 Knowledge Discovery and Data Mining 31

Another (more informative) method used for alignment generalisation is known as a sequence
logo [67]. A Sequence logo is a graphical representation of generating the alignment in
which the size of character is related to the frequency of that character occurring at certain
position. Sequence logos use the information theory to quantify the information content (IC)

for each aligned character [66].

2.2.4 Segment-based Alignment

In this subsection we provide a background on Segment-based alignment. First, we give
an overview on the alignment procedure, then we explain the scoring scheme adopted by
this approach. We conclude this subsection with a brief discussion on the time complexity

involves the alignment procedure.

Overview

The basic idea of the segment-based approach is to align sequences by comparison of whole
segments of the sequences rather than comparison by single characters. A segment is a
contiguous sub-sequence of characters within a sequence. Segment-to-segment alignment
operates by identifying similar pairs of segments of equal length within the sequences that
it seeks to align. This local alignment (sub-alignment) of matched pairs of segments is

commonly known as a fragment.

In segment-based alignment, each fragment is given a non-negative weight (score) that
reflects its significance among other fragments (detailed below). The approach then seeks to
find a collection of fragments that produce optimal (or near optimal) alignment. Fragments
which are chosen to construct optimal alignment must satisfy two conditions: 1) produce the
highest alignment score when their weights are summed up, and 2) meet certain consistency
criteria. A collection of fragments is called consistent if the overall order of the positions in

each sequence is respected, i.e., there is no conflicting double or cross-over assignment of

32 Background

characters between the compared sequences. Fragments may overlap only when different
pairs of sequences are involved [68, 69]. The concept of consistency is explained in more

detail ahead.

Mismatches are allowed within fragments, however they should not contain gaps in them.
When the alignment involves multiple sequences, the segment-based approach offers an extra
(optional) weighting mechanism known as an overlap weight which reflects the fragment
weight as well as the degree of overlap with other fragments, that is to favour patterns
occurring in more than two sequences in the alignment process. Although, overlap weights
improve the alignment quality, however, this step is time consuming (and normally switched

off) when the number of sequences exceeds certain threshold.

In segment-based alignment, the quality of the alignment largely depends on the fragments
selected for the alignment. However, similar to the progressive approach, once a fragment is

selected, it becomes part of the alignment and cannot be removed at later stages [70].

In the early versions of segment-based alignment which is implemented in a project known
as Dialign-1 [39], fragments were also known as diagonals since pair of segments appear as
diagonals in the dot matrix [71]. The dot matrix is a visualization method used to compare and
observe potential matches between two sequences. Figure 2.9 shows fragments (diagonals)
in a dot matrix created from aligning sequence ABABABCA against sequence ADBABABA.

For simplicity, a dot is placed where characters match, otherwise is left blank.

The segment-to-segment approach is especially suitable when sequences involved are not
globally related but share only local similarities [72]. Also, It is clear from the procedure
outlined ahead that gaps are not considered in the calculation of the alignment score which
avoids the well-known difficulties concerning choosing appropriate gap penalty parameters

in classical alignment approaches.

2.2 Knowledge Discovery and Data Mining 33

Sequence 1

A B A B A B C A

A ° ° ° °
D

B ° ° °

A ° °

Sequence 2

s [o] o] |-
el :
s | o] o] |-

Figure 2.9 Fragments (aka diagonals) as they appear in the dot matrix.

Similar to the Dialign project [39], there is another project known as Blast [73, 74] (Basic
Local Alignment Search Tool) that uses a similar approach to calculate the significance of

fragments.

The Algorithm

In the segment-based approach [39] (shown in algorithm 1), the optimal pairwise alignment
(maximum sum of weights) is determined using a modified version of conventional dynamic
programming known as fragment-chaining [39, 75, 76] where the optimisation problem of
aligning pairs of sequences is to find a chain of fragments f1,f>,,.., fx such that the sum of
these fragments is maximal, and in both sequences, the end positions of a fragment f; are
strictly smaller than the respective beginning positions of a fragment f; (For mathematical
definition, see [75, 76]).

Because direct extension of the pairwise alignment increases the computational complexity

of the algorithm exponentially, a greedy heuristic (based on the pairwise alignment) is used

34 Background

to align multiple sequences [39, 70]. The multiple-sequence alignment steps (for a set of N

sequences) can be summarised in algorithm 1 and explained as follows:

First, for each pairwise comparison, weights for all possible fragments are calculated. Based
on these weights, all optimal pairwise alignments are computed, i.e., for every pair of
sequences, a collection of fragments with maximum sum of weights is determined. We refer
to the set of the identified fragments from this step as L; in algorithm 1. Then, the overlap
weights for these fragments are calculated (if enabled). To this end, L; is sorted according
to their fragment weights and their overlap weights (again if enabled). Staring with the
fragment of maximum weight, fragments are incorporated one by one into another set L,

provided they are consistent with fragments already added.

The above steps (weight computation, optimal pairwise alignment, calculation of overlap
weights, sorting fragments as well as filtering inconsistent fragments) are iterated until
no more fragments can be found. When the alignment involves only two sequences, the
alignment requires only one iteration to complete, however, the alignment process takes

maximum of three iterations when the number of sequences are more than two.

The final step in the alignment procedure, gaps are inserted into the input sequences until
all positions of the selected fragments (contained in L) are matched. The above steps for

segment-based alignment are outlined in algorithm 1.

Clearly from the algorithm, the segment-to-segment approach depends on a number of
steps. However, the approaches needs to handle three major steps: 1) an efficient segment-
based scoring method to reflect the similarity between pairs of segments (fragments), 2) an
alignment algorithm that is able to find a set of fragments to produce the optimal (or near
optimal) alignment, and 3) finally, a mechanism to check that the selected fragments are

consistent. The following subsections explain more of these steps.

2.2 Knowledge Discovery and Data Mining 35

input :Sequences, N, Probs, Overlap
/* N=Number of Sequences, probs=probability estimates &
overlap= boolean variable */

output : AlignedSequences

repeat
for all sN(N — 1) pairwise comparisons do
W <ComputeWeights(Seql,Seq2,Probs)
Ly <—ComputeOptimalPairwise(W)
if Overlap then
| Wy<—ComputeOverlapWeights(W)

end
Sort(L1,W,W,)
foreach fragment €L, do

if consistent(fragment) then

| Ly <Accept(fragment)

end
end
14 end
15 until no additional fragments found
16 Insert gaps into sequences until selected fragments in L are matched

o X NN A R W N -

—
N =S

[
w

Algorithm 1: Segment-based Alignment.

Weighting Fragments

In this section we give more details on how weights for fragments are computed. The
scoring scheme is based on two essential aspects: 1) establish a measure of similarity between
characters within each pair of segments (fragment), and ii) defining a weighting function that

assesses the overall significance of each fragment.

Measuring Similarity. To compute fragment scores it is first necessary to provide a matrix
that defines the similarity between any given pair of characters in the set of characters being
considered (for all characters expected to appear in the input sequences). In bio-informatics,
similarity between single residues in sequences are represented in many different formats

such as identify scores where score 1 is assigned for a match and O for a mismatch in the

36 Background

matrix, and substitution scores where the similarity scoring between residues is based on the

observed substitution or mutation of these residues in the sequences.

In segmental alignment, the scoring for a particular fragment (consisting of a pair of segments
x and y) is computed first of all by summing up the similarity scores (according to the

aforementioned scoring matrix) for every pair of characters. This score is denoted f(x,y).

Weighting Function. Once the similarity score is computed, each fragment f is assigned
a weight w(f). The weight function for fragments is based on a probabilistic approach
[70, 68]. This is computed by establishing the probability P(f) of the random occurrence of
a fragment of the same length that results in the same score. The intuition behind this is that
the less likely a given collection of fragments is to occur just by chance, the more likely it is
to be related so the higher its score should be (for a mathematical definition on the measure
see [77, 39)).

Although many fragment properties could be considered in finding interesting fragments,
only two properties have been considered: its length and cost (similarity). This in fact
makes the measure for fragment similarity more generic and less dependent on any specific

properties of the biological residues (e.g., protein, nucleic acid, etc.).

In segment-based alignment, sub-strings (fragments) in the diagonal path does not require
gap insertion and deletion, thus the algorithm cleverly avoids dealing with determining
gap costs. The key question is how one determines “interesting” fragments when we have
a collection of fragments with different lengths and scores, ie., which fragment is more
important to us, a fragment of length 25 and 5 mismatches or a fragment of length 50 with 18
mismatches? Segment-based alignment answers this question by calculating the significance

of the fragment and determining which one is less likely to occur by chance.

An important advantage of segment-based alignment is that mathematical results show is

that the statistical significance of pair of segments (fragment) can be estimated using an

2.2 Knowledge Discovery and Data Mining 37

Input
Sequences

Similarity Random Probability Probability Weight Fragment
Matrix Experiments Estimates Estimates Calcualtion Weights
Step A (off-line) Step B (on-line)

Figure 2.10 Assessing significance of fragments in segment-based alignment.

appropriate random sequence model [77, 73]. A random model means (in this context)
that these sequences are independent and identically distributed sequences (iid) where each

symbol occurs at any position within a sequence has the same probability as the others [78].

Given a random sequence model, and a set of similarity scores, it is simple to calculate
the probability that two random segments of length / will have a score at least S. i.e, the

probability of a hit is arising from an arbitrary pair of segments in the input sequences.

Since the introduction of the Dialign project [39], it has gone under several improvements [72,
70, 78, 69], particularly, concerning computing fragment probabilities. To overcome some
of the shortcomings of the probability function adopted in Dialign-1 [39], The probability
formula was modified to take into consideration the length of the input sequences as well
and introduced in a new version known as Dialign-2 [68]. In later versions, Dialign-T [78]
and Dialign-TX [69] they have included the length of the fragment as well to be taken into
consideration. In this thesis, we use the refined formula adopted in later versions of Dialign-T
and Dialign-TX. The probability for a fragment is calculated on two (separate) steps as

follows:

 Step A: The probability of a fragment of a particular length obtaining a given score
is established experimentally [79, 78]. Specifically, the probability P’(s,!) of finding

a fragment f” of length [and with a score > s in random sequences is computed

38

Background

where the length of these randomly generated sequences is twice the maximum length

assigned for the fragment [78].

The calculation of the probability estimates depends on the similarity matrix which is
used to generate the random sequences from its characters set as well as determining
fragment scores as illustrated in 2.10 (Step A). The random experiments are carried
out by starting with the trivial case for a given score s and length /=1, and then for
[=2, and so forth, up to the maximum length assigned for the fragment. Generally, the

probability estimates are computed using the equation [78]:

Pi(s,0).(1+1)?, if Pi(s,).(I1+1)><P(s,1—1)
P(s,]) = 2.1)

Poplsh), otherwise

From this step, a probability table is generated, whereby the probabilities for large
numbers of fragments of a given length and score are computed. Since this step is
computationally expensive, and the calculation of these probabilities do not depend
on the actual input sequences, they are pre-calculated (off-line) and saved externally.

Typically, this step is only required once per each similarity matrix.

Step B: Probability estimates produced in the previous step (step A) are used to
calculate the probabilities for the actual fragments as shown in Figure 2.10 (Step B).
The probability P’(s,n) is used to estimate the probability P(s,) for finding a fragment

f" of length [and with a score > s in the input sequences using the equation [78]:

1—(1—=P'(s,0))""/" if > Pp
P(s,]) = (2.2)

P'(s,1).n1.ny/ (412), otherwise

, where n1 and n; are the lengths for both sequences involved in the alignment, and Pr

is a probability threshold which normally fixed to a specific value (e.g., 107).

2.2 Knowledge Discovery and Data Mining

39

(©

Figure 2.11 Consistent and non-consistent collection of fragments. Figure (a) shows a
consistent set of fragments composed of three sequences while (b) & (c) show non-consistent
fragments. In (b), the first B’ in the third sequence is assigned to two different characters in
the first sequence while (c) shows a cross-over assignments of characters between the first

and the third messages.

Once P(s,1) is computed for all possible fragments identified in the input sequences,

the weight for a fragment f can be defined as:

w(f) =—log(P(s,l))

(2.3)

Because this step is not computationally demanding, it is performed during the align-

ment process.

Checking Fragment Consistency.

An important step in segment-based alignment is the concept of consistency. As shown

in algorithm 1, the algorithm needs to decide whether a fragment is consistent with the

fragments already added into the alignment. Making sure that fragments participating in the

40 Background

M /

Sa ¢ ° o o °
A

S3 ° °

Figure 2.12 Consistency bounds for character x (sequence 3, position 6) given a set of
fragments (bold lines) that are already accepted in alignment procedure. b;(x,1) = 5,
by(x,1) =9, i.e., character x can be aligned with all characters between position 5 and 9 in
sequence S;. For sequence Sy, by (x,2) =4, and by (x,2) =17.

final alignment are consistent is part of most segment-based alignment approaches, i.e., every

iterative alignment approach has to resolve the consistency problem [80].

In segment-based alignment, an alignment is defined as a consistent equivalent relations
applied on all positions of all sequences involved. It simply means that the overall order
of the positions in each sequence is maintained, i.e., a collection of fragments is called
consistent if there is no conflicting double or cross-over assignment of characters (see Figure

2.11).

To determine whether a fragment is consistent with other fragments already included in the
list, the so-called consistency bounds need to be recorded and updated. For example, for
a character x and a sequence s, by (x,s) and b, (x,s) need to be calculated, where b (x,s) is
the position of the left-most character in the sequence s that can be aligned with x without
causing inconsistencies, and b, (x, s) is the position of the right-most character (see Figure
2.12 for more details.). For a complete mathematical discussion of the consistency problem,

see [39, 80].

2.2 Knowledge Discovery and Data Mining 41

Chaining Fragments

In segment-based alignment, the pairwise alignment is a fragment-chaining procedure where
the optimisation problem is to find a chain of fragments that yields the maximal overall
score. The chain may contain fragments of different lengths, and fragments may contain

mismatches.

A number of solutions have been proposed to solve the fragment chaining problem when
the set of fragments are known. However, in this thesis, we will be explaining the solution
followed by the Dialign project. The concept was originally introduced in [39] and later
revised in [75, 76] to improve its space efficiency. One of the main objectives of this
approach was to propose a solution that solves segment-to-segment alignment where gaps

within segment pairs are not allowed.

The concept of fragment-chaining is based on a modification of the conventional dynamic
programming followed in traditional alignment algorithms (e.g., Needleman-Wunsch). The
idea is to form an optimal alignment using previous solutions for optimal alignments of small

sub-sequences.

In Needleman-Wunsch, finding an optimal alignment for a pair of sequences X = (xy,...,xz,)
and Y = (y1,...,y1,) is normally performed in three steps: First, a comparison matrix of
size L1 xL, is constructed where L; and L, are the length of sequence 1 and sequence
2 respectively. Both sequences need to be placed at the both edges of the matrix and
perpendicular to each other. Second, for all positions (i, j) in the comparison matrix (where
1>i<Ljand 1> j<L,), the score Scr|i, j] is recursively computed. Initially, we fill the
matrix from the top left to bottom right according to the similarity scores between characters.
If we know the scores of Scr[i —1,j— 1], Scr[i — 1, j] and Scrli, j — 1], it is possible to

calculate Scr|i, j] using the equation shown in 2.4.

42 Background

;

Scr[iaj_l]_g7

Serli, jl = max< Serfi—1,] - g, (2.4)

Scr[i—1,j— 1]+ S(xi,yi)

where S is the similarity score between character xi and y; in sequences X and Y, and g is
the gap penalty. The equation is applied repeatedly to fill in all matrix positions. As we fill in
the Scr[i, j] values, a pointer to each cell from which Scrli, j] is derived is stored. The value
in the final cell of the matrix Scr[L;,L;] is the best score for the alignment which is what we
are after. The final step is the back-tracking procedure by building the alignment in reverse
starting from the final cell in the matrix and tracing our way back (using the pointers that
we stored when building the matrix) up to the starting position. (see [62, 24, 76] for more

detailed discussion on how Needleman Wusnch aligns a pair of sequences).

The fragment chaining procedure used in segment-based alignment is similar to the Needlman-
Wunsch method. However, the comparison is between pairs of segments rather than single
characters and the scoring is based on fragments’” weights. The procedure is summarised in

the following steps:

1. First, for every pair of positions (i, j) in the comparison matrix, starting at position

(1,1) and for all possible fragment lengths, positive weights are determined.

2. The score Scrli, j] of the prefixes xi,...,x;, and yj,...,y; are recursively calculated

using the equation 2.5

(

Serli, j—1],

Scrl(i, j| = max § Scr[i—1, j], (2.5)

max{Scr[i—z,j—z] w(fig) 21

2.2 Knowledge Discovery and Data Mining 43

where [denotes to the length of the fragment, and w(f; ; ;) is the weight of the fragment

ending in position i and j.

3. The last fragment Prli, j] in the optimal chain of the prefixes xi,...,x; and yy,...,y;

is computed using the equation 2.6:

7

Pl”[i,j—l] 7lf SCF[i,j]:SCI’[i,j—l],

Prii, jl=qPrli—1,j] ,if Serfi,j]=Serli—1,J],

\fij Jif Scrli, j| = max{Scr[i— 1], j— 1]+ w(f) : f ending in(i, j),
(2.6)
4. Once Scrli, j| and Pr[i, j] have been calculated for all positions (i, j) in the comparison
matrix, a backtracking process is carried out in order to retrieve an optimal alignment.
At position (Ly, L), there is a pointer to the last fragment of an optimal alignment of x
and y which, in turn, has a pointer to the second-last fragment in this optimal alignment

etc.

Time Complexity

As described in section 2.2.4, segment-based alignment is performed in multiple steps. If the
algorithm is used to align pairs of sequences, an optimal pairwise alignment can be found
in O(L?) time where L is the maximum length of the two sequences that is because there
are O(L?) possible fragments in the fragment comparison matrix and all of these fragments
need to be considered. However, this time is reduced to O(L?) time because the length of the

fragments is restricted to a specific length [70, 69].

When multiple sequences are involved (N > 2), all optimal pairwise alignments are computed

first, that is in a O(N?) time, then for checking and filtering inconsistent fragments this step

44 Background

requires O(N? x L) for every fragment added to the new set. If the average number of
fragments in these pairwise alignments is denoted by n,, then the first set S; consists of
O(N? x n,) fragments. The time needed for calculating the overlap weights (if enabled) is
O(N* x n2), and the gaps insertion in the final step requires O(N? x L?).

The algorithm time crucially depends on the average number of fragments used in the optimal
pairwise alignment, and the number of fragments considered for alignment depends on the

degree of similarity between the input sequences.

The overall time complexity (worst case) for the algorithm is O(N4 X L2) where N is the

number of sequences, and L is the maximum length of sequences [70].

2.3 Research Design

This section provides an introduction to the subjects used in the empirical study presented
in Chapter 5. It begins with a general overview on the experimental design, then explains
the experimental variables that needs to be identified, and how these variables are used in a

statistical technique known as the Effect Size.

2.3.1 Experimental Design

There are two types of research design: Experimental, and Observational (aka quasi-
experimental) [81, 82]. In experimental, design some degree of manipulation is involved
because the intention is to exert some control over as many experimental factors as possible,
on the other hand, observational research design is less invasive where the experimenter can

only observe and interpret what is present in the experiment.

In this thesis, we are concerned with experimental design. Specifically, our focus is on
identifying a relationship between a cause and its effect as well as whether we are able to

quantify this effect. This type of experimental research is part of a larger subject known as

2.3 Research Design 45

Uncontrolled Inputs
(Latent Factors)

l

PROCESS

Outputs
(Responses)

Controlled Inputs
(Factors)

Uncontrolled Inputs
(Latent Factors)

Figure 2.13 A generic cause-effect experimental model with controlled inputs, and outputs,
and possibly uncontrolled (latent) inputs.

causal inference [83, 84] which is the act of using evidence to make an inference about a
cause. However, in this thesis, we merely interested in investigating whether an independent

variable (a cause) can have an effect on a dependent variable and measuring this effect.

Experimental Variables

A key step in experimental design is known as Operationalisation [82]. This is the step that
links scientific concepts to the experimental data. It defines the variables and the measures
which are the quantities of interest. In cause-effect experimental design, there are at least
three type of variables that need to be considered. These types of variables are shown in

Figure 2.13 and explained as follows:

* Independent Va