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Abstract

High-Dimensional Bayesian Non-parametric Learning of

System Parameters in Different Data Scenarios

Kangrui Wang

The pursuit of the correlation structure of a high-dimensional random construct, underlines

my doctoral studies. This thesis reports on the development of methodologies that help un-

dertake learning of functional relationships between variables, given high-dimensional dis-

continuous data that exhibit non-stationary correlation structure, with such methods tying

in with methods needed to undertake such difficult correlation learning–and its possible in-

tuitive graphical representations as networks. These developed methods are then presented

in an application-ready format, in which the relevant inference is typically undertaken with

Markov Chain Monte Carlo methods.

I have worked on developing Bayesian methodologies for the supervised learning of the

functional relationship between a system vector and another tensor-valued observable that

affects the system vector, given real training data that consists of known pairs of values of

these variables. The probabilistic learning of the functional relation between these variables

is done by modelling this function with a high-dimensional Gaussian Process (GP), and the

likelihood is then parametrised by multiple covariance matrices. I have developed on the

method of nesting GPs of different dimensionalities, to render covariance kernels non-



stationary, by treating each kernel hyper-parameter as a realisation from a scalar-valued

GP. The inner layer of this learning strategy is then built of scalar-valued GPs, which are

nested within a tensor-valued GP, and inference is done with Metropolis-within-Gibbs.

It is natural that such interest includes the learning of the correlation structure of multi-

variate, rectangularly-shaped data, which is manifest in the sought graphical model of this

data, where I determine objective uncertainties in the learning of such a graphical models,

where such uncertainty learning allows me to quantify the correlation between a pair of

such datasets by computing the distance between the (posterior probability densities of the)

learnt graphical models of the respective datasets. Applications include the learning of the

very large, human disease-symptom network and computation of the distance between the

vino-chemical graphical models of red and white Portuguese wines.
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Aims & Summary of Content

Aims, Summary of Content, and New Methods

As we progress through the data revolution, learning the correlation structure of high-

dimensional objects becomes important. Knowing this, and if in information on one com-

ponent of the object becomes available, we can then predict possible values of any other

component. Such correlation learning forms the basic aim of my doctoral studies, where

my interest is in developing probabilistic – in particular, Bayesian – methodologies that

allow for such learning.

This thesis focuses on advancing methodologies that help undertake learning of func-

tional relationships between variables, given different difficult data situations, including

high-dimensional discontinuous data that exhibit non-stationary correlation structure. Thus

the methods discussed later in the thesis tie in with methods needed to undertake such dif-

ficult, (i.e. non-stationary) correlation learning, as well as its possible intuitive graphical

representations as networks. These developed methods are then presented in an application-

ready format, in which the relevant inference is typically undertaken with Markov Chain

Monte Carlo methods, and these methodologies are illustrated within the paradigm of real-

life problems, using real data sets.

Thus, one facet of my doctoral research has been dedicated to the development of

Bayesian methodologies for the supervised learning of the functional relationship between



a system vector and another tensor-valued (in general) observable that affects the system

vector, given the training data that consists of known pairs of values of these variables. The

data on this tensor-valued observable is then obtained by stacking multiple measurements

of this observable, and it thus becomes shaped as a hyper-cuboid. The probabilistic learn-

ing of the functional relation between these variables is done by assigning a probability

distribution to the sought function, i.e. by modelling this function with a stochastic pro-

cess. The stochastic process that I invoke for this purpose is a high-dimensional Gaussian

Process (GP), only because of ease of computation and modelling. The likelihood is then

rendered a tensor-Normal density that is parametrised by multiple covariance matrices. The

following chapters discuss the learning – and particularly – the parametrisation of the un-

known covariance matrices. Learning these is equivalent to parametrising the GP that the

sought function is a random realisation of. So once the GP is parametrised, we can sample

the sought function from it, and use this (sampled) function to predict the value of either of

the original two variables, at a test value of the other variable. This is the material covered

in the second chapter of the thesis.

It is natural that such interest includes the learning of the correlation structure of mul-

tivariate, rectangularly-shaped data, which is manifest in the sought graphical model of

this data, where I am keen on determining objective uncertainties in the learning of such

a graphical models, as is undertaken in the third chapter of this thesis. Such uncertainty

learning allows me to quantify the correlation between a pair of such datasets by comput-

ing the distance between the (posterior probability densities of the) learnt graphical models

of the respective datasets. This work allows for fast inference, and an application of this

therefore includes the learning of the very large, human disease-symptom network. Impor-

tantly, the work includes computation of the distance between the vino-chemical graphical
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models of red and white Portuguese wines, where this distance is defined in terms of the

distance between the posterior probability densities of the pair of graphical models that are

learnt given the respective data set. Thus the distance here is the value of a new metric that

is the Hellinger metric that is normalised by the uncertainty in the learnt graphical model.

This distance computation using this new metric is a new output of my thesis. The learning

of graphical models with uncertainties, is another new output from my work.

Returning to my interest in kernel parametrisation of covariance matrices, I have devel-

oped on the method of nesting GPs of different dimensionalities, to render covariance ker-

nels non-stationary, by treating each kernel hyper-parameter as a realisation from a scalar-

valued GP. This is discussed in the 2nd chapter. The inner layer of this learning strategy is

then built of scalar-valued GPs, which are nested within a tensor-valued GP, and inference

is done with MCMC.

Chapter Layout

The first chapter of this thesis is an introductory one. It introduces readers to contemporary

theoretical ideas in Bayesian learning. Thus, the chapter begins with an exposition of what

Bayesian supervised learning is, folding into itself, traditional regression, as well as con-

temporary Machine Leaping approaches, (while other forms of regression are dealt with

later in the chapter), followed by the connection with covariance functions. As classifica-

tion is another facet of such learning, discussion of classification methods is also included

for completion. Similarly, unsupervised learning is also touched upon, though I have not

worked in this area for my doctoral studies. The usage of GP-based models are particularly

useful when learning in high-dimensions, so this is included as part of the chapter. The

chapter ends with a discussion of graphical models which I have worked on extensively.
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The content of the second chapter is summarised above. This chapter gives the de-

tailed exposition on my doctoral work in the field of Bayesian supervised learning in high-

dimensions. I discuss the GP-model first, and then bring in the added complication of

modelling each of the hyper-parameters of the GP parameters, as realisations from another

GP still – in order to model discontinuous data. Different ways of parameter prediction

are then discussed. An application of the advanced method to such data is included in the

chapter as well.

The content of the third chapter is also summarised above. This chapter discusses my

work done on the learning of graphical models, at the learnt (partial) correlation structure

of the data at hand. Having discussed the model and inference that I make on the random

graph give the random partial correlation that is itself learnt given the data, I then discuss

the method of computing inter-graph distance, and apply this to a simulated and a real data.

Application to the learning of a large network is also included.
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Chapter 1

Introduction

1.1 Bayesian Supervised Learning

Supervised learning is defined as the learning of functional relationship between variables

given observations on these variables. So if the random variable X affects another random

variable Y, the aim of supervised learning would be to learn the function f (·), where Y =

f (X)–using the training data, if available, i.e. the set of observed pairs of values of X and

the corresponding y. Once the function f (·) is learnt, we can predict the value of one of

the variables that is realised at some newly measured value of the other variable.

For supervised learning to be accomplished, training data is necessary, as training data

will constrain the sought form of the function f (·). In the Bayesian approach, the su-

pervised learning problem is set in the paradigm of Bayes rule–the posterior probability

density of the sought function is written, given the training data. The marginal posterior

probability density of each unknown parameter–that characterises this functional form–is

then computed, given the data. Such marginals allow us to place comprehensive and ob-

jective uncertainties (credible regions) on each unknown–this comprises the learning of the

function. Prediction of the value of one of the variables at a newly measured value of the

other can proceed by first writing the posterior predictive density of the unknown parameter
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given the new measurement, and a model for the functional relationship between the two

variables, where this function is itself learnt given the training data. One could also attempt

at writing the joint posterior probability of the unknown value of one of the variables and

the functional relationship between the two variables, given the new measurement on the

other variable, and the training data. The incorporation of uncertainties in our prediction in

the two different approaches is then differently undertaken, and makes interesting study.

Let {x1, x2..., xn} be a set of design points, i.e. values of X that comprise the training

data that is available to learn function f (·) s.t. f (X) = Y. Let {y1, y2, ..., yn} be the

observed values of Y, i.e. values of f (X), where yi is known to correspond to, i.e. is

generated at xi; i = 1, . . . , n. Bayes rule suggests

p( f (·)|Y) ∝ p(Y| f (·))p( f (·))

Where f (·) is the functional relation we mention above, i.e. it is the mapping f : X −→ Y ,

where X ∈ X ⊆ R and Y ∈ Y ⊆ R. Here p( f (·)) is the prior of this function, bringing in

information about the function f (·), into the model from before the collection of data. In

parametric learning, this prior is presented as the prior probability density on the parameters

of the parametric model of this function [Tibshirani, 2014]. In non-parametric learning,

this probability can be related to the prior on hyper-parameters, or even on covariance

parameters of the likelihood function [Christian, 1994]. Informative priors bring usable

information into the model. Often, computational convenience motivates the prior and

posterior probability densities to be conjugates of each other. On the other hand, priors

can be non-informative, in which case, they do not imply preference for any identified

subset of the possible models. [Gelman et al., 2014] The other factor in the right-hand-

side (RHS) of the statement of Bayes rule above, is p(Y| f ) which is the likelihood of the
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model of of f (·) given the measured values of the observable Y. In supervised learning,

f (·) is assumed to be a one-to-one mapping from X to Y [Krishna B. Athreya, 2006].

p( f (·)|Y) is then the posterior probability density of function f (·), given observed value

of Y. As with the prior density, the posterior probability of function f (X) is presented as

the posterior of parameters/hyper-parameters of the model. Thus, in this framework, we

can get the probability distribution of the sought function f (X) given the available training

data, i.e. uncertainties of all learnt parameters are obtained.

1.1.1 Regression

The paradigm of supervised learning includes regression methods and classification meth-

ods. Regression is an exercise in estimating the function f (·), that as described above,

is the mapping f : X −→ Y , with the input variable X now considered vector-valued:

X ∈ X ⊆ Rm and Y ∈ Y ⊆ Rk. Then f (X) = Y , where all measurement errors in X

and Y are considered subsumed in this definition of the function f (·).

The simplest of the parametric models consider f (·) to be linear in X, such that values

of the observable Y can be expressed as

y = xβT + ǫ

where ǫ is the value of the error or residual parameter and the matrix β of value of coeffi-

cients of model parameters is s.t. β ∈ R(m×k). Let the residual parameter be ∈ Rk as is Y .

Learning the function f (·) then reduces to the problem of learning the coefficients, i.e. the

elements of β, as well as the parameters θǫ ∈ Rk of the probability distribution of the error

ǫ, when such is not known. For example, when errors are modelled as Normally distributed,

θǫ reduces to a scalar, namely, the variance σ2
ǫ of the Normal error density. We make in-
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ference on these unknown parameters by writing the posterior probability density of the un-

known parameters given the data, π(β11, . . . , β1k, β21, . . . , β2k, . . . , βm1, . . . , βmk, θǫ|{(xi, yi)}N
i=1),

which by Bayes rule is proportional to the likelihood of these unknown parameters given

the data and the prior probability density of these parameters. Then according to the Bayes

rule, we can have:

p(β, θǫ|x, y) ∝ p(y|β, x)p(β|x)p(x),

where β = {β11, . . . , β1k, β21, . . . , β2k, . . . , βm1, . . . , βmk} and p(y|β, x) is the likelihood

of the parameters, given the data.

Indeed, the linear model can be extended to a polynomial model in general, and this has

been addressed in the Bayesian setting by [Mitchell and Beauchamp, 1988; Seber and Lee,

2012; Box, 1973; Vaughn, 2008; Raftery et al., 1997].

In a polynomial model, the basis that the unknown f (X) is written in terms of, is

a polynomial in X, of a chosen degree. The basis functions are then of the form X0,

X1, . . . , Xn, with coefficients that are learnt. Likewise, other parametric models of the

sought function f (·) can also be invoked [Albert and Chib, 1993; Goldstein, 2006].

The much more interesting domain is that of non-parametric regression, in which the

sought function f (·) is not parametrised by some pre-defined model; rather, the function

under consideration is treated as a realisation from a chosen Stochastic Process, s.t. the

likelihood of this sought function given all data points, can be expressed by accumulating

values of the underlying probability density of this process, computed at each datum in the

available data set. [Rasmussen and Williams, 2006] In other words, the likelihood is that of

the parameters of this Stochastic Process given all data. [MacKay, 1998] If the data points

in the available data are iid, this accumulation of the underlying density of the process
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reduces to the product over the whole data set of the density computed at each datum. In

this treatment, the posterior probability density of the unknown function given the data is

then proportional to the likelihood just discussed, multiplied by the prior probability density

of the parameters of the stochastic process that f (X) is considered to be a realisation of.

Good choices for this stochastic process are a Gaussian or a t-Process for reasons of

computational convenience and generality of the ensuing model. [Rasmussen and Williams,

2006] In the later chapters, we will focus on our usage of the Gaussian process. An extra

advantage of this approach is that it allows us to extend to dimensionality of choice, i.e.

both for a scalar-variate unknown function of the design point variable, as well as for a

high-dimensional, tensor-variate version of this function. In the former case, the likelihood

of N realisations of the function–then scalar variate–is rendered Multivariate Normal, while

in the latter case, the likelihood is rendered Tensor Normal. Indeed, errors in the learning

of the function are reported within the adopted inference scheme, to perform such learning

in this modelling paradigm. Measurement errors can also be accounted for by including

the variance of the error density within the covariance structure of the Gaussian Process

invoked to model the sought function.

A fundamental advantage of this approach is the flexible learning of the covariance

structure that this offers in high-dimensional situations. Compared with standard fitting

methods (such as spline fitting/wavelets based learning) that cannot appropriately cap-

ture covariance structures of high dimensional functions, the covariance function defined

in the Gaussian process can efficiently achieve the correct covariance structure for high-

dimensional function. [Chakrabarty et al., 2015] The covariance function is defined by the

statistician, i.e. is chosen by us. Defining the covariance function is equivalent to defining

the way to generate the covariance structure of the Gaussian process. Hence, an improper
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choice of covariance function can lead the Gaussian process to be characterised by an in-

correct covariance structure. The choice of this covariance function is then important in the

Gaussian process based learning. Detailed discussions on the covariance function will be

undertaken in Section 1.2.

Another important advantage of Gaussian Process regression is that it allows us to apply

the prior distributions for all the model parameters and hyper-parameters. Furthermore,

when defining the covariance function, it is easy to add uncertainty of the parameters into

the covariance structure. Unlike the classical methods which the parameter uncertainty is

often ignored or artificially incorporated, the uncertainty in the Gaussian process regression

can be both defined by hand or leant as an outcome of the undertaken inferential scheme.

1.1.2 Gaussian Process regression

A Gaussian Process (GP) is a continuous valued stochastic process underpinned by the

Gaussian probability distribution. Thus, in the scalar-variate case, the stochastic process

{ f (x)}x∈R, indexed by the deterministic variable X is a Gaussian process, if and only

if, any finite set of realisations of this process, jointly follows the Multivariate Normal

distribution. The mean function of this Gaussian process can be defined as

µ(x) = E( f (x))

In some applications, this mean function is commonly taken as the sample mean of the

observations [Ley, 2016]

Modelling a Gaussian process, reduces to the problem of learning its covariance struc-

ture. The covariance function is defined as

K(xi, xj) = E(( f (xi)− µ(xi))( f (xj)− µ(xj)))
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One possibility is to represent this covariance function as a parametric function of the

input variables. Such a parametrisation then reduces the problem of learning the full co-

variance function, to the learning of the parameters of this chosen parametric model.

We seek the covariance function that leads to the learning of the function f (·). In the

scalar variate case, i.e. when the input variable is X ∈ X ⊆ R, we can write:

{ f (x1), . . . , f (xn)} ∼ N (0
¯
, K),

which, by virtue of the equation Y = f (X), is equivalent to:

{y1, . . . , yn} ∼ N (0
¯
, K),

where N (·, ·) is the multivariate normal density and K is the covariance matrix defined as

K = [Kij], with K(i, j) = K(xi, xj), i, j = 1, . . . , n.

Thus, in a regression exercise, looking at a Gaussian process as the distribution over

the functions f (·) where Y = f (X), it is the parameters of the covariance function that

become the sought parameters. Choosing one covariance function over another, can then

crucially affect the results of such a regression exercise. Commonly, the continuity of the

data drives the choice of the covariance function. In the recent years, many researches have

focused on defining different covariance functions for both continuous and discontinuous

data. Further discussions on the covariance functions are presented in Section 1.2.

When the random variable Y is vector-valued (referred to as Y), the function f (·) is also

rendered vector-variate (referred to as f (·)). Then a finite number of values of this higher-

dimensional function are jointly distributed as a Matrix-Normal distribution. In fact, we

will discuss the general higher dimensional version of this situation–when Y is a tensor,

so that f (·) is a tensor-variate function, rendering the set of realisations of this function,
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jointly Tensor-Normal. The m-th order Tensor-Normal density has m covariance matrices,

so the learning of the function f (·) given the training data then involves the learning of

these m covariance function. In Chapter 2 of the thesis, I will discuss this, supplemented

by the prediction of X at which a new measurement on Y–i.e. the test data–is realised.

Gaussian processes are widely used in Bayesian supervised learning. Compared to

parametric approaches to regression, Gaussian process-based regression is more flexible.

In the scalar-variate case, when the Squared Exponential covariance function is chosen as

the parametric model for the covariance structure of the Gaussian process, GP regression

is equivalent to kernel regression with infinite Gaussian kernels [Rasmussen and Williams,

2006] The complexity of Gaussian process regression depends on the complexity of the co-

variance functions. A complex covariance function with multiple hyperparameters is hard

to make inference on. Markov Chain Monte Carlo (MCMC) methods are best suited for in-

ference in such high-dimensional state spaces. Once we learn the covariance matrices, we

can write the posterior predictive distribution of the value of the input variable at which test

data is realised, given this test data and our learnt model for the Gaussian process. As said

in Section 1.1.1, we could alternatively write the joint posterior probability density of this

sought value of X and the model for the Gaussian process, given test and training data. In

principle inference is possible by maximising the posterior (MAP). But when the number

of parameters that are sought is high, i.e. the state space is high-dimensional, manifesting

a highly non-linear density, MCMC is a better alternative; importantly, MCMC techniques

allow for an organic way of computing the marginal distribution of each of the unknown

parameters, allowing for objective uncertainties (such as 95% Highest Probability Density–

or HPD–credible regions) to be easily computed for each variable. Additionally Gaussian

process regression allows prior distributions to be slapped on the hyper-parameters of the
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covariance matrix. Thus, one important advantage of using MCMC based inference meth-

ods is that information on prior distribution of any unknown parameter can be incorporated

into the inference, to ensure that the chain is avoiding sampling from irrelevant ranges of

parameter values, thereby easing convergence.

1.2 Covariance Functions

As we discuss above, if an observable–multiple observations of which make up the data–

is modelled as a realisation from a Gaussian process (GP), the relationship between such

observations (or different components of such a generic high-dimensional observable), is

modelled by the covariance functions of that GP. The selection of covariance function will

affect the learning performed with the corresponding GP model. As with any stochastic

process, a GP is referred to as stationary, if the joint probability density of n realisations

from this GP (i.e. n measurements of this observable), is shift invariant with respect to

translations in the input variable (that indexes the process, i.e. X for the purposes of our

discussions).

1.2.1 Stationary covariance functions

Stationarity of stochastic processes can be weak or strong. Strong stationarity is defined

above as the shift invariance of the joint probability p( f (x1), . . . , f (xn)) of the n realisa-

tions from the GP, with respect to translations in X.

Weak stationarity on the other hand demands shift invariance only from the first two

moments of the stochastic process, i.e. weak stationary for a Gaussian process over X is

defined as:

E( f (x)) = µ0,
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and

K(xi, xj) = K(xi + h, xj + h)

where K(xi, xj) is the covariance function computed at values xi and xj of X, and h is the

value of the shift or the lag parameter. This would require that the covariance function of

this GP is shift invariant, which would be ensured if the covariance function depends on the

Euclidean distance between any two values of X. In a non-stationary covariance function

computed at xi and xj, the dependence on these values of X is not via the Euclidean distance

between these vectors. In other words, for the covariance function, then, such a definition

of stationarity means that the function is established on the distance |xi − xj|, which is

non-negative. In the high dimensional cases, matrices generated by this distance function

are always positive definite.

Thus, one advantage of stationary covariance functions is that the covariance matrices

are rendered positive definite, as is required in computing square roots of the covariance

matrices–needed in the computation of the density of the parameters given the data, i.e. in

the computation of the likelihood. Covariance matrices that bear information about non-

stationary covariance functions, are not necessarily positive definite. Indeed, one of the

drivers that provides a constraint on the design of non-stationary covariance functions, is

the demand on the ensuing covariance matrix to be positive definite. However, when the

model is used to fit a discontinuous data set, the assumption of stationary covariance could

be inappropriate [Neal and Nayfeh, 1990]. In that situation, using a stationary covariance

function may lead to an incorrect covariance structure.

Stationary covariance functions abound in statistical literature [Rasmussen and Williams,

2006; Abramowitz and Stegun, 1964; Hensman et al., 2013]. The simplest such functional
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form is the power exponential family [Biegler et al., 2011]:

K(xi, xj) = A × exp

[
−
(

d

ℓ

)v]
(1.1)

where d := |xi − xj| and ℓ > 0 is the scale-length parameter, while A > 0 is the amplitude

parameter. The length-scale parameter ℓ controls how fast the covariance changes over a

given distance d. This hyper-parameter then inversely determines the smoothness of the

sample function. A sampled function marked by more similar functional values at two

values of the input variable separated by a given distance d, than another, is smoother

than the latter. Then in this smoother of the two functions, the distance in input space

over which the functional value remains similar, is higher, i.e. in the smoother of the two

functions, covariance declines more slowly for a given d, i.e. ℓ is lower. So we interpret ℓ

as the inverse of the smoothing parameter, i.e. this scale-length parameter ℓ could also be

referred to as the reciprocal of the smoothness parameter. In this definition, the parameter

v is the power of the scaled distance between the two points at which covariance is being

computed.

When v = 2, this function becomes the Squared Exponential function or SQE [Lawrence,

2003], which is one of the most commonly used covariance functions in supervised learn-

ing. This covariance function is infinitely differentiable and makes the model function very

smooth. When the underlying data structure has a rough distribution, the SQE function can-

not fit the model well, due to the strong smoothness assumption. The advantage of using

the SQE covariance is that the hyperparameters are easy to estimate/learn. Compared with

other covariance functions, the power exponential covariance function has the least number

of hyperparameters [Rasmussen and Williams, 2006]. Learning the v and ℓ parameters is

important when using the power exponential covariance–this can be done given the data,
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using MCMC. Alternatively, if we knew the roughness of the function, we can determine

the v parameter before we learn the other hyper-parameters.

However, the power exponential covariance function is less flexible than the Matern

covariance which is defined by Rasmussen and Williams [2006] as:

K(xi, xj) =
1

Γ(v)2v−1

(
2
√

vd

ℓ

)v

Kv

(
2
√

vd

ℓ

)
, d = |xi − xj|, (1.2)

where Γ(v) is the Gamma function of parameter v > 0 [Sebah and Gourdon, 2002], and

Kv(·) is the Modified Bessel function with parameter v. When v = 0.5, the Matern covari-

ance function transforms to the power exponential covariance function.

Using this covariance function, we can model an Ornstein-Uhlenbeck (OU) process in

1 dimensional case which is a stochastic process defined as [Jacobsen et al., 1996]:

Xt = c + pXt−1 + ǫt

Where Xt is the observed value of OU process at index t and ǫt a random variable that

follows the normal distribution. In time series analysis, we refer to the OU process as the

AR(1) process. Generally, when the hyper-parameter v in the Matern covariance has the

form: v + 1/2 = p, where p ∈ Z, the continuous AR(p) process results.

When v → +∞, the Matern covariance function converges to a squared exponential

covariance function (SQE). It is the parameter v that controls the roughness of the sampled

function. Since the functions learnt from the Matern covariance do not need to be infinitely

differentiable, the Matern covariance is a more general model than the SQE covariance. In

fact, the observed function is not differentiable for v = 0.5. For v > 7/2, the function

sampled from a GP characterised by the Matern covariance, will be very similar to the

function sampled when using the SQE covariance. Thus, we see that the Matern covariance
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function is more flexible than the power exponential function, as we discussed above, in

the sense that the Matern covariance has more hyper-parameters to control the smoothness

of the estimated function. For v = 0.5, the estimated function can be very rough.

Rational Quadratic (RQ) Covariance Function is another widely used covariance func-

tion [Berger et al., 2001]. This function can be written as:

K(xi, xj) =

(
1 +

d2

2αℓ2

)−α

, where d := |xi − xj|

This kind of covariance function can be regarded as an infinite sum of SQE covariance

functions with an inverse gamma prior placed on the length scale ℓ. This is clarified in the

following. Assume r = ℓ−2 follows the Gamma distribution. We then have the posterior

of this inverse squared length parameter to be

p(r|α, β) ∝ rα−1exp(−αr/β),

using which, we can marginalise over the r dependent covariance kernel, to give the kernel

function to be:

K(xi, xj) =
∫

p(r|α, β)K(xi, xj|r)dr

∝

∫
rα−1exp

(
−αr

β

)
exp

(
−rd2

2

)
dr ∝

(
1 +

d2

2αl2

)−α

, (1.3)

so that when α −→ ∞, the RQ covariance function will approach the SQE covariance

function with length scale ℓ. In this sense, the RQ covariance can be regarded as a more

general form of the SQE covariance. In this section, we have introduced three basic co-

variance functions. These are: power exponential covariance function, Matern covariance

function and rational quadratic covariance function. However, it is easy to use these covari-

ance functions to then define other, new covariance functions. To achieve this, we use the
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property that the sum and product of the stationary covariance function are also valid co-

variance functions [Rasmussen and Williams, 2006]. Thus, the sum of the two covariance

functions give: [Hastie and Tibshirani, 1990]

f (x) = f1(x) + f2(x); K(xi, xj) = K1(xi, xj) + K2(xi, xj)

where f1(x) and f2(x) are two different and independent functions that are sampled from

GPs that are characterised by the covariance functions K1(·, ·) and K2(·, ·) respectively.

This equation can then be used to combine the covariance functions with different length

scales.

Again, the product of the covariance functions yields another covariance function, as

given by:

f (x) = f1(x) f2(x); K(xi, xj) = K1(xi, xj)K2(xi, xj).

If the functions f1(x) and f2(x) are sampled from Gaussian processes, the product of the

two functions is not a Gaussian process necessarily. However, the Gaussian process with

the covariance function K(xi, xj) can be regarded as an approximation that characterises

the GP, that function f (x) is sampled from [Park and Choi, 2010; Seo et al., 2000].

Thus, combinations of stationary covariance functions are usually valid covariance

functions that can still be stationary covariance function. However, if a non-stationary

covariance function is added to a stationary covariance function, the new covariance func-

tion will be a non-stationary covariance [Rasmussen and Williams, 2006]. Importantly, the

adding of non-stationary covariance functions does not lead to a valid covariance function

in general.
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1.2.2 Non-stationary covariance functions

In general, the assumption of stationarity is an appropriate approximation for a continuous

data [Shinozuka and Deodatis, 1991]

However, when the data is not continuous, assuming stationarity of the underpinning

Gaussian process is not correct. The concept of the covariance kernel is to connect proxim-

ity in values of the input variable X, to that in values of the function, where the functional

value is also given by the value of the output variable, i.e. the observable Y . Stationary

covariance functions are structured to establish this connection between the proximity of

the values of X and Y . Then if it so happens, that the data in Y is discontinuous, then

proximity–or rather the lack of the same–in values of X is no longer connected directly

to the lack of proximity in values of Y that is manifest in the discontinuous data. In other

words, then, stationary covariance kernels do not provide adequate parametrisation of the

covariance structure.

The stationary covariance function is defined as a function of the Euclidean distance.

The important characteristic of stationary covariance functions is that it generates a sym-

metric matrix as the covariance matrix for the Gaussian process. Given a stationary covari-

ance kernel, such as the Matern class of covariances, the simplest way to counter station-

arity is to use a non-diagonal matrix for the length parameters. [Paciorek and Schervish,

2004] Then recalling the Matern covariance function from Equation 1.2, we can have a

non-stationary form of Matern covariance as:

K(xi, xj) =
|Σi|

1
4 |Σj|

1
4

Γ(v)2v−1

∣∣∣∣∣
Σi + Σj

2

∣∣∣∣∣

− 1
2 (

2
√

vd

ℓ

)v

Kv

(
2
√

vd

ℓ

)
, d = |xi − xj|,

where Σi and Σj are the covariance matrices at xi and xj. As with the stationary Matern

covariance, when v → +∞, the above non-stationary covariance function converges to the
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SQE form:

K(xi, xj) = (xi − xj)
T

(
(Σi + Σj)

2

)−1

(xi − xj)

.

Another simple non-stationary covariance function is the inner product covariance func-

tion [MacKay, 1998]

K(xi, xj) = σ2
0 + σ2

1 xi · xj

If σ2
0 = 0, this covariance function reduces to being stationary. This covariance function

can be easily extended in terms of basis functions. Assume that we have a basis function

(φ(X)) of X, We can then define a linear kernel as:

K(xi, xj) = σ2
0 + σ2

1 φ(xi)φ̇(xj)

However, deciding the number of basis functions is also a challenge when using this

kernel. For non-linear datasets, one may use a large number of basis functions. On the

other hand, this makes the computation of the kernel time-consuming and unrealistic in

applications. One way of solving this problem is to assume an infinite number of basis

functions and integrate them out.

It is also easy to extend stationary covariance functions to periodic non-stationary co-

variance functions. Inspired by the SQE covariance function discussed above in Equation

1.1, one form of the periodic covariance function can be written as:

K(xi, xj) = A × exp

(
−2sin2(

xi−xj

2 )

ℓ2

)
.

This can help us achieve a quasi-periodic covariance. This covariance is widely used when

analysing time series analysis.
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The Wiener process (Brownian motion) can also be presented as a Gaussian process

with special covariance function [Revuz and Yor, 2013]. Brownian motion is defined as a

continuous-time stochastic process:

Xt = µt + σWt

Where Xt is the observed data at time t and Wt follows the normal distribution N(0, t).

The covariance function for the Brownian motion can be written as:

K(xi, xj) = min(xi, xj)

Assume B(x) is a standard Brownian motion. The covariance between B(xi) and B(xj) is:

Cov(B(xi), B(xj) = E[B(xi)B(xj)]− E[B(xi)]E[B(xj)] = E[B(xi)B(xj)]

When xi > xj, we can have:

E[B(xi)B(xj)] = E[B2(xj)]− E[B(xj)(B(xi)− B(xj))]

= E[B2(xj)] = xj

Similarly, when xi < xj, we can have E[B(xi)B(xj)] = xi. Thus, this covariance function

yields results that are not based on the Euclidean distance, and therefore, this covariance

function is a non-isotropic and non-stationary covariance function.

1.3 Other regression methods

Kernel regression is a non-parametric regression method used in Statistics and machine

learning. The simplest version of it is the Nadaraya-Watson kernel regression method
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[Koistinen and Holmström, 1992; Diack, 1999]. In Nadaraya-Watson regression, the kernel

function k(·, ·) is defined as in:

y(x) =
∑

n
i=1 k(x, xi)yi

∑
n
i=1 k(x, xi)

These kernel functions can be regarded as the distance between the observation (yi) and

prediction (y(x)). Thus, these kernel functions are by definition, non-negative functions.

Like in other nonparametric regression methods, the parameters of the kernel functions

serve up to be the hyperparameters in the model. However, the optimisation of those hy-

perparameters is hard to achieve. One widely used way to make inference on the hyper-

parameters is Markov Chain Monte Carlo (MCMC). When dealing with complex kernel

functions, the usage of MCMC might be time consuming. Since the kernel function is

user-defined, it is easy to control the number of hyperparameters in the kernel function.

Here are some examples of kernel functions:

Gaussian Kernel:

k(xi, x) = exp(−r(xi − x)2)

Multiquadric Kernel:

k(xi, x) =
√

1 + r(xi − x)2

Inverse quadratic:

k(xi, x) =
1

1 + r(xi − x)2

The Gaussian kernel is also used in the local linear regression. In that case, the regres-

sion function can be written as:

f (x) =
N

∑
i=1

(ai + bi(x − ci))K(x, ci)
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where ai and bi are the weight parameters for the linear function. ci is the mid-point of the

i-th kernel function. Parameters of the kernel regression can be estimated using classical

methods, such as least squared estimation. However, a higher order linear term can also be

added into this function. When choosing the appropriate Gaussian kernel, local regression

can give a good approximation for the observed function. Normally, this approximation

is smoother than the original function. This is because the Gaussian kernel will smooth

the observed data to some extent. Choosing a small bandwidth parameter will release this

problem, though constraining the bandwidth using the available data is not straightforward,

i.e. the effect of this choice can affect results in an arbitrary way.

Kernel functions are widely used in regression and classification problems. Using the

kernel functions, the non-linear observed data can be presented as a linear dataset in a

high dimensional Euclidean space. Thus, the regression/classification problem can be

solved by the learning in the transformed Euclidean space. In machine learning, many

supervised learning algorithms are developed based on kernel function [Nasrabadi, 2007;

Hofmann et al., 2008].

Usage of kernel functions can be extended to ridge regression, or more specifically, the

kernel ridge regression [Vovk, 2013]. Ridge regression has the advantage of being a fast

method, and can be used as an online algorithm. The cost function for the classical ridge

regression can be written as:

C(W) = ∑
i

(yi − WTxi)
2 + λ||W||2

where W is the vector of parameters in the linear regression. and λ||W||2 is the penalty

cost function.

We aim to minimise the cost function. The solution for the parameter vector W can be
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written as:

W = (∑
i

xix
T + λI)−1 ∑

i

xiyi

Then the function f (x), once placed into a high dimensional feature space, where the

function is transformed to φ(x), the cost function can be written as:

C(W) = ∑
i

(yi − WTφ(xi))
2 + λ||W||2

Then, the solution for the new cost function is written as:

W = (∑
i

φ(xi)φ(xi)
T + λI)−1 ∑

i

φ(xi)yi

We can re-write K(xi, xj) = φ(xi)φ(xj)
T where K(xi, xj) is the kernel function. The ad-

vantage of using the kernel ridge regression is that it releases the over-fitting problem of

kernel regression. However, the parameter in the penalty cost function is hard to estimate,

though this can be tackled using cross validation or leave-one-out estimation. These val-

idation techniques are now briefly discussed. Cross-validation is a technique that is used

to validate a model, i.e. to determine the applicability of a model to any new data set that

is distinct from the training data that was used to train this model in the first place. In the

current context, “applicability” of the model refers to its ability to predict, given a new (or

test) data set, where the model itself was inferred upon given the training data. Thus, cross-

validation can detect concerns such as overfitting. It can be carried out by scanning across

different partitions of the whole of the available data set, into a training part and another

mutually exclusive test (or validation part), such that these two parts exhaust the consid-

ered data. So for example, the leave-p-out-cross-validation technique works by scanning

across partitions of the whole data set into a validation data that comprises p data points,

and a training data that is built of the remaining data points; for every considered partition,
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prediction using the p-sized validation data is undertaken, subsequent to the training of

the model on the rest of the data points. Thus, there are (n
p) number of partitions that the

technique will have to rotate through, for an original data set that comprises n data points.

When p = 1, the method is referred to as leave-one-out-cross-validation (LOOCV). In-

deed, then ( n
1=n) takes less time than general cross-validation (i.e. for non-unit p), but in

spite of this less computational expense, LOOCV estimates might have higher variance

[Hastie et al., 2009], though isses regarding variance are also affected by n. It is also pos-

sible to undertake non-exhaustive cross-validation in which not all ways of splitting the

original sample are undertaken.

With the help of high-dimensional kernels, kernel regression methods can also be ex-

tended into high dimensional Euclidean space. For three-dimensional data, this kind of

problem is known as surface fitting. However, dimensionality of state space can be much

higher, as in the problems that we discuss later in Chapters 2 and 3. A well known kernel

regression method is the support vector machine.

We can use the kernel density estimation to approximate the probability density func-

tion for a random variable. Usually, this kind of approximation is used in complex, low-

dimensional (1 to 2 dimensional) distribution, in which the density function is hard to

parametrise. The kernel density estimator can be calculated as:

f (x) =
1

nh

n

∑
i=1

K(
x − xi

h
)

where f (x) is the estimated density function and K(·) is the kernel function for the esti-

mated density. h is the smoothing parameter which is also called the bandwidth parameter.

A good choice of bandwidth can make the function more accurate with less kernels. The

most common optimality criterion used to select this parameter is the expected risk func-
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tion. However, the bandwidth parameter can also be learnt using MCMC.

Neural networks are another set of powerful methods useful for supervised learning

[Demuth et al., 2014; Rowley et al., 1998; Specht, 1991]. The idea of a neural network

comes from modelling the brain. All neural network algorithms are based on a group of

neural functions. Each neural function is a simple function that can be user-defined, where

the general form of the neural network can be written as:

f (x) = K(∑
i

wigi(x))

where f (x) is the function defined on the observation x. K(·) is the activation function for

the neural functions, gi(·) is the neural function and wi is the weight for the neural function.

For the simplest neural network, the neural function will be connected in one layer. This

makes the function quite similar to a kernel regression function. However, the complex

neural network algorithms will have many layers. The activation function K(·) makes the

neural network model flexible–using the activation function, the relationship between the

different neural functions can be expressed as a direct graph.

Learning of the neural network function is a problem of reducing the cost function.

Choosing an appropriate cost function can make the model much easier to fit and get less

number of layers of neural functions. One simplest cost function is quadratic:

C = E[( f (x)− y)2]

where C is the cost function and f (x) is the predicted value from the neural network func-

tion. y is the observed value of function f (x). Once the cost function is minimised, the

neural network function is correctly estimated.

Most neural networks have a specified, fixed number of neural functions. However,
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increasing the number of hidden neurals to infinity is possible. In that case, the neural

network is equivalent to a Gaussian Process with a certain covariance kernel [Neal, 2012].

1.4 Unsupervised Learning

Distinguished from supervised learning (in which a training data set is required), the main

characteristic of unsupervised learning is that it does not have a training data set to calibrate

the model, [Hastie et al., 2009]. Assume an observed data on an input space variable:

D = {x1, . . . , xn}. Then supervised learning models require measurements {y1, . . . , yn}

on a related dependent variable Y , in order to train the model. This variable Y can be a

desired class label in classification or the value of a variable in regression models. The

basic idea behind supervised learning is to learn the functional relationship between X and

Y : Y = f (X), where a model for f (·) is trained using the available training data.

In unsupervised learning, we only have the observed data set X = {x1, . . . , xn} but

no data on the dependent variable Y . Unsupervised learning algorithms often focus on

modelling the underlying data structure, instead of trying to learn the function f (·).

A commonly used unsupervised learning method is clustering-based [Coates et al., 2011;

Weber et al., 2000; Cios et al., 2007]. From the observed data D on X, where D =

{x1, . . . , xn}, the clustering methods aim to find the partition S = {S1, . . . , Sk} of the

data set, where k is the number of subsets of the observed data [Hartigan and Hartigan,

1975]. Then a function is defined over the number of partitions variable. One such method

that seeks k, is the k-means method, in which the idea is to perform partition of the set of

observations within the nearest mean [Wagstaff et al., 2001].

As the unsupervised learning methods are oblivious to a training dataset, almost all the

unsupervised learning methods avoid over-fitting problems. However, the main concern in
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unsupervised learning is the accuracy of the model. This is primarily caused by the lack of

training data set.

1.5 Methods for modelling tensor-variate data

Tensors are widely used in physics, mathematics, and often when image processing is un-

dertaken. We refer to Y ∈ Rk1×...×km−1 as a tensor of order m − 1. Indeed, often in real

life applications, an observable is found to be tensor-valued, so that n measurements of

this m − 1-th order tensor-valued observable is then an m-th order tensor itself. A tensor of

order 1 is a vector; one of order 0 is scalar; a tensor of order 2 is a matrix–though not all ma-

trices are tensors of order 2 of course. This is evident in a simple example that follows. Let

us define a vector A ∈ Rd expressed in the basis S = {e1, . . . , ed}, as A = M · α, where

α ∈ Rd and the matrix M ∈ Rd×d, then if on changing the basis to S/ = {e/
1 , . . . , e/

d}, α

changes to the vector α/, and matrix M changes to the matrix M/, s.t. M/ · α/ yields A/.

If we find A to have changed to A/ in the same way as α changes to α/, then matrix M is

a tensor (of order 2).

The outer product or tensor product (for vectors, matrices and tensors) is defined as

follows. Outer product of 2 vectors:

Let A be an m-dimensional vector: A = (A1, . . . , Am)T.

Let B be an ℓ-dimensional vector: B = (B1, . . . , Bℓ)
T.
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Then the outer product:

A ⊗ B =




A1B1 A1B2 . . . A1Bℓ

A2B1 A2B2 . . . A2Bℓ

...
...

. . .
...

AmB1 AmB2 . . . AmBℓ




Outer product of 2 matrices:

Let A be an m1 × m2-dimensional matrix: A = [Aij].

Let B be an ℓ1 × ℓ2-dimensional matrix: B = [Bpq].

Then the outer product

[AijBpqe
jq
ip],

where the matrix e := [e
jq
ip], s.t. e has dimensions of m1ℓ1 × m2ℓ2, with the entry of 1 in

the (i − 1)ℓ1 + p-th row and the (j − 1)ℓ2 + q-th column, and entries of 0 elsewhere.

Thus, the outer product of




a11 a12

a21 a22


⊗




b11 b12

b21 b22


 is




a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22a11 a22b12

a21b21 a21b22 a22a21 a22b22




A tensor A of order m with dimensions d1 × . . . × dm, will form an outer product with the

tensor B that is of order ℓ, with dimensions h1 × . . . × hℓ, to produce the tensor C of order

m + ℓ, with dimensions g1 × . . . × gm+r, s.t.

C = A ⊗ B Cdh = AdBh.

On the other hand, inner products of tensors are more simply defined.

The inner product of two tensors of order m and ℓ is either m + ℓ-2 or 0, whichever is

greater.
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The inner product of two 2nd-ordered tensors, i.e. matrices is then the standard matrix

product in which the product of two matrices A that is m1 × m2-dimensional and B that

is ℓ1 × ℓ2-dimensional, is allowed only if m2 = ℓ1 and the inner product is itself a matrix

of dimensions m1 × ℓ2. Many multi-variate distributions can be extended to tensor-variate

distributions [Xu and Yan, 2015; Guilleminot and Soize, 2010]. The computation of the

likelihood will then involve tensor products. An example of this is the extension of the

multivariate normal distribution (parametrised by a mean vector and covariance matrix)

[Hoff et al., 2011] to the the tensor normal distribution (discussed again in chapter 2); if

the latter distribution (in the tensor-valued variable D ∈ Rk1×...×km) is m-th order tensor

normal, then it is parametrised by a mean µ ∈ Rk1×...×km that is an m-th order tensor, and

m covariance matrices Σ1, . . . , Σm. The density of this distribution [Basser and Pajevic,

2003] is

f (D|µ, Σ1, . . . , Σm) ∝

exp
(
− ‖ (D − µ)×1 A−1

1 ×2 A−1
2 . . . ×m A−1

m ‖2 /2
)

, (1.4)

where

Σj = Aj A
T
j

, j = 1, . . . , m, i.e. Aj is the unique square root of the j-th covariance matrix.

(Y ×i X)p1 p2...pi−1qi pi+1...pk
:= ∑

pi

yp1 p2...pi−1 pi pi+1...pk
xqirj

,

where the ij-th element of matrix X is xqirj
, qi = 1, . . . , q, rj = 1, . . . , r. The p1p2 . . . pk-th

element of tensor Y is yp1 p2...pi−1 pi pi+1...pk
. As an example, if in Equation1.4, m = 3, i.e.
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X_1

X_2

X_3

=

i X j X k
pX qX r

iXp

j X q

k X r

Figure 1.1: Cartoon to represent the sequential multiplication of 3 matrices with a core

tensor of order 3, to convert the original core tensor dimensions to that of the final 3-rd

ordered tensor. Th Xi in the figure represents the mode-i multiplication between a tensor

and a matrix, i = 1, 2, 3.

if the tensor D is a 3rd ordered tensor, (and so is µ then), multiplying D ∈ Rp×q×r with a

matrix B ∈ Rs×q via mode-2 multiplication, will yield the tensor C ∈ Rp×s×r:

C = D ×2 B,

cijk = ∑
t

ditkbjt.

Thus, in this equation, by such mode-c multiplications–c = 1, 2, 3 in this example–the core

tensor D − µ that is say of dimensions p × q × r, gets tranformed into a tensor of dimen-

sions i × j × k, where the dimensions of the square, covariance matrices Σc (and therefore,

the Ac) matrices are i× i, j× j, and k× k, respectively, for c = 1, 2, 3 [De Lathauwer et al.,

2000; Ben-Israel and Greville, 2003; Kolda and Bader, 2009]. This can be visually ex-

pressed in Figure 1.1.

Following this general idea of mode multiplications of tensors and matrices, one can

then express a k-th ordered tensor X as a “unit” k-th ordered tensor Z , multiplied via
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mode-i multiplications to k number of square matrices A1, . . . , Ak:

X = Z ×1 A1 ×2 A2... ×k Ak.

Hoff et al. [2011] introduced this form of expression of a general tensor in terms of

matrix-valued “factors” and uses the maximum likelihood estimation to calculate those

matrix-valued factors. However, the maximum likelihood estimation is not the only solu-

tion to get the matrix valued factors. Learning directly using MCMC is another possibility.

1.5.1 Tensor-variate Gaussian Process

Assume the k − 1-dimensional random variable is modelled by a tensor-variate Gaussian

process; then collating the measurements of this random variable, we obtain the available

data D on this variable, which turns out to be a k-th ordered tensor. Then from the defiition

of Gaussian Processes, joint of all these measurements of this variable, i.e. the probability

of this k-th ordered data tensor D, is the k-dimensional tensor normal distribution. We can

write:

D ∼ TN (M, Σ1, ..., Σk ),

where M is the mean tensor of the tensor-Normal density and Σp is the p-th covariance

matrix of this density; p = 1, . . . , k. The bc-th element of Σp is given by the covariance

between the b-th and c-th slices of the data, where each of these slices of the data tensor is

realised at a point along the p-th direction in input space. Thus,

p(D|M, Σ1, ..., Σk) ∝ exp(−‖(D − M)×1 A−1
1 ... ×k A−1

k ‖2/2)

where the covariance matrix Σp = Ap AT
p , the array norm ‖X‖2 is calculated as: ‖X‖2 =

∑i1
... ∑ik

x2
i1..ik

.
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The square matrix Ap can be any of the square root of the positive semi-definite covariance

matrix Σp. As the covariance matrices are defined as positive semi-definite, the Cholesky

decomposition is one of the solution for the square root matrices (Ap) [Higham, 1990]. In

the two dimensional cases, the tensor variance normal distribution will converge into the

matrix normal distribution and Ap will be the square root of the two covariance matrices.

Hoff et al. [2011] used a plugin estimate of these covariance matrices in the application he

undertook. However, plugin estimates approximate the truth, with sample-size crucially

affecting the value. On the other hand these covariance matrices can be sampled from

MCMC, as long as Σp is not too high in its dimensionality. If its size is big (& 10 × 10),

we will need to fall back on plugin estimates; else, learning the elements of Σp directly

fom MCMC is possible. If Σp is such that we know the value of the input space variable

at which the b-th slice is realised, we can express the covariance between the b-th and c-th

slices of the data as a decreasing parametric function of the distance in input space between

these slices, i.e. the difference between the input space variable value at which the b-th

slice is realised, and the value at which the c-th slice is realised. Here, the b-th and c-th

slices of the data D are as defined above, as slices realised at two aribtarily chosen points

along the p-th direction in input space.

1.5.2 Other tensor-variate distributions

Many distributions can be extended into their tensor variate version; Xu and Yan [2015]

extended the t-distribution to tensor variate t-distribution and developed Bayesian mod-

els with the tensor variate t-distribution. The t-distribution can be regarded as a sum of

Gaussian distributions. Usually, when we have less observations, the t-distribution can get

better results than the normal distribution. For a k-dimensional tensor D ∈ Rn1×...×nk , the
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tensor-variate t-distribution can be defined as:

p(D|M, Σ1, ..., Σk) =
Γ(n+v

2 )∏
k
p=1 |Σp|−

n
2np

Γ( v
2 )(vπ)

n
2

(1+
1

v
‖(D− M)×1 A−1

1 ...×k A−1
k ‖2)−

1
2 (n+v)

where the covariance matrix Σp = Ap AT
p , the array norm ‖X‖2 is calculated as: ‖X‖2 =

∑i1
... ∑ik

x2
i1..ik

. The parameter v is the degree of freedom in the tensor variate t-process

and v > 2.

As the tensor variate Gaussian process, the parameters and covariance matrices in the tensor

variate t-process can be estimated by the maximum likelihood estimation. However, a

method for learning the covariance matrices is sampling using MCMC.

When undertaking tensor classification, another important method is the tensor-variate

kernel function [Zhao et al., 2014]. Since the labels for the tensor classification are usu-

ally scalar, tensor classification can be regarded as a functional learning problem in which

we write: Y = f (X), where Y is the label parameter for the classification and X is the

observed tensor. In this situation, one method is to model the observation X using a tensor-

variate stochastic process and use the covariance function to map the label values y into

this stochastic function. This method is discussed in the section 1.4.1. However, another

method is to model the label values as a stochastic process. Since the labels are just scalar,

we can use a classic stochastic process to build the model. As we still need to build the

one-to-one mapping between labels and the tensor-variate observation. The input for the

covariance function will be the tensor variate observation. This kind of covariance func-

tion is called tensor variate kernel. Much work has been done to build the tensor variate

kernel function. The simplest way to build such kernel is based on the Chordal distance

[Signoretto et al., 2011]. Here are some examples for the tensor variate kernel in Chordal

distance:
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Linear kernel: k(X i, X j) =~(Xi)~(Xj)
′

Gaussian kernel: k(X i, X j) = exp(− ‖X i−X j‖2

l )

Where X is the observed tensor variable and l is the hyper-parameter in the kernel function.

As discussed in the section 1.2. The covariance functions above are stationary covariance

functions since the covariance structure are only based on some distance measurement.

As most of the stationary kernel, the advantage of using this kernel is it simplifies the

covariance structure. The hyper-parameters in the covariance function are easy to learn.

However, the covariance structure is more flexible when modelling the observation directly

as a tensor variate process.

1.6 Graphical models

The graph of a given data is an intuitive and illustrative way of representing the correlation

structure of the data. So if the data set at hand is shaped like a matrix–composed of n mea-

surements of an observable X ∈ Rp–then we could construct one graph that represents the

correlation amongst the columns of this matrix, and another to represent that amongst the

rows of this matrix. The graph G(V , E) consists of nodes, s.t. the i-th node represents the

i-th component of the variable X = (X1, . . . , Xp)T, with the vertex set V = {1, 2, . . . , p}.

The edges connecting any pair of nodes then is an element in the set E. An edge may or

may not exist between the i-th and j-th nodes,where i 6= j; i, j ∈ V . In a random graph,

i.e. when the graph G(V , E) is itself a random variable, it is possible for the ij-th edge

(edge between the ij-th pair of nodes) to exist with some probability φ that is a constant

irrespective of i and j–such graphs are referred to as homogeneous graphs. On the other

hand, the probability for the ij-th edge to exist could be φij, with the matrix Φ = [φij], i.e.

the probability for an edge to exist varies from one pair of nodes to another, as would be the
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case in inhomogeneous graphs. In light of this, we could change our notation for the graph

to G(V , Φ)–this is the notation that we use henceforth. Then a random inhomogeneous

graph defined over the vertex set V , would be a member of a family of graphs, or a graph-

ical model GV (Φ), i.e. G(V , Φ) ∈ GV (Φ). The learning of the graphical model given a

data set, can be undertaken Bayesianly or within a frequentist approach. The main classes

of graphs include factor graphs, directed graphs, undirected graphs. Common examples

of directed graphs are Bayesian networks, while common examples of undirected graphs

are Markov networks. Above, one idea that we presented without examination is in regard

to the shape of the data set. We said that the data is matrix-shaped above, comprised of

n observations of the p-dimensional vector-valued variable X. But observed variables are

not necessarily vectors–in fact, as we saw in Section 1.5, in general, the observed variable

could be a tensor, rendering the data set a tensor as well (one order up on the order of the

observable tensor). In such a case, a graphical model that presents the correlation structure

of the data is high-dimensional too. But that would render the visualisation of the graphical

model difficult, and in fact, defeat the whole purpose of presenting correlation structures

via graphs, which as we say above, are quick and easy illustrations of this correlation struc-

ture. Thus, in such cases, we could learn the graphical model of each matrix-shaped slice

of this tensor-shaped data, and then learn a distance between the other pairs of indepen-

dent slices of this data. For example, if the data were cuboidal-shaped, i.e. a 3rd-ordered

tensor with dimensions n, p, k, then we could learn the graphical model of each of the k,

n × p-dimensional matrices, and then find the distance between the graphical model learnt

for the m-th and m/-pairs; m, m/ = 1, . . . , k; m 6= m/. One possible such distance (or

affinity measure) that can be computed between Bayesianly learnt graphical models, is the

Hellinger distance which we discuss in Section 3. So the purpose of this section is to discuss
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the construction of a link between the dependence structure of the data and its graphical

representation [Sachs et al., 2005], as proxied by conditional independence (denoted by

⊥P) between the components Xi and Xj of the observable X, and “graphical separation”

(denoted with ⊥G), where such “separation” is defined (in terms of cliques in undirected

graphs, eg. Markov networks, or in terms of parents in directed graphs, eg. Bayesian net-

works). The mapping from the space of such dependency structure of the data to the space

of graphical model is called a D-map, while the inverse mapping, i.e. the mapping of the

space of graphical separation, into the space of independence amongst components of the

observable, is referred to as an I-map.

A graph G(V , E) is a dependency-map, i.e. D-map of the probabilistic dependence

structure P of X, if there is a one-to-one correspondence between the random variables

X1, . . . , Xp and the nodes in V , s.t. for all disjoint subsets A, B, C of X we have

A ⊥P B|C =⇒ A ⊥G B|C

.

Again, G(V , E) is an independency-map (or I-map) of P if

A ⊥P B|C ⇐= A ⊥G B|C

.

Being an I-map guarantees that two disjoint sets of nodes A and B found to be separated

by another set C in the graph (according to the characterisation of separation for the class

of graph under consideration) correspond to independent sets of variables, i.e. components

of X. If the graphical model given a data is both a D and I-map, then it is called a “perfect”

map; P is then isomorphic to G(·, ·). If the dependence structure P of X can be expressed
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Figure 1.2: Panel (a) represents an undirected graph; (b), (d) and (c) DAGs each, with panel

(b) representing a serial graph, (c) a diverging and (d) a converging graph.

by multiple graphs, we must use the one with the minimum number of edges–this defines

a minimal I-map.

Above, we have mentioned the idea of “separation”, and indicated that the definition of

separation varies with the class of graphical models that is pertinent (i.e. if the graph is

directed or undirected, etc.). We define this for the two main classes first and examine the

idea thereafter using some simple examples. In undirected graphs, if A, B and C are three

disjoint subsets of nodes, then C is said to separate A from B, (denoted A ⊥G B|C), if

every path between a node in A and a node in B contains at least one node in C.

In directed acyclic graphs, for the same three disjoint subsets of nodes A, B and C are , C

is said to d-separate A from B, (denoted A ⊥G B|C), if in every path between a node in A

and a node in B, there is a node v that is in C where C has no converging edges, or, where

none of the descendants from v is in C.

Let us look at the example of an undirected graph (panel (a) of Figure 1.2) and of 3 basic

directed acyclic graphs or DAGs (panels (b), (c), (d), of Figure 1.2).

Let us examine the P structure, i.e. the joint probability distribution of x1, . . . Xp in each

of these examples.

• (a) A ⊥ B|C =⇒ Pr(A, B, C) = Pr(A|C)Pr(B|C)Pr(C).
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• (d) A 6⊥ B|C =⇒ Pr(A, B, C) = Pr(C|A, B)Pr(B)Pr(A).

• (c) A ⊥ B|C =⇒ Pr(A, B, C) = Pr(B|C)Pr(A|C)Pr(C), which is the same as

• (b) A ⊥ B|C =⇒ Pr(A, B, C) = Pr(B|C)Pr(C|A)Pr(A).

Thus we see that for each of the directed graphs, the global probability distribution can be

factorised at each node in terms of the parents of that node. Factorisation of the global

distribution is also possible in undirected graphs, but this is fundamentally different from

the way factorisation proceeds in DAGs. In DAGs, it is the Markov property that defines

decomposition of the global distribution of the data into a set of local distributions which

are each represented as the probability of the local node conditional on the parents, i.e.

Pr(X) =
p

∏
i=1

Pr(Xi|ΠXi
)

where ΠXi
are the parents of Xi. Note that the local distributions are given by the distribu-

tion of the single node Xi and the joint distribution of its parents. However, in undirected

graphs, the Markov property that defines decomposition of the global distribution of the

data into a set of local distributions is clique-by-clique. Here, by a clique we imply the

maximal subset of nodes in which each element is adjacent to the others, where adjacency

is defined as being exactly 1-edge away. Thus, a clique is a complete sub-graph. Then, in

a graph that has k cliques C1, . . . , Ck,

Pr(X) = ∏
Ci∈C

ψ(Ci)

where ψ· is a potential function that has a non-negative value representing the relative

probability mass of a clique. This potential reduces to a proper pd f only if the graph is

decomposable, or chordal, i.e. any cycle of length ≥ 4 in the graph has a chord, i.e. an
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edge between 2 nodes that is not in the cycle itself. Then in an undirected graph, the global

distribution factorises as

Pr(X) =

∏
Ci∈C

Pr(Ci)

∏
Si∈S

Pr(Si)
,

where Si is a (minimal) separator, i.e. a set of nodes s.t. removal of Si from the graph will

separate the graph into two connected components Ci and C̄1 such that each vertex in Si

is adjacent to some vertices in Ci as well as some in C̄1. Then going back to example on

simple Markov network as the graph in panel (a) of Figure 1.2, we see that this Markov

network has 2 cliques: C1 = {A, C} and C2 = {B, C}, separated by the separator S1 =

{C}. Then the above factorisation for this undirected graph implies

Pr(X) =
Pr(A, C)Pr(B, C)

Pr(C)
= Pr(A|C)Pr(B|C)Pr(C),

as we know this probability to be.

1.6.1 Graphical models via Gaussian process

Thus we see clearly that the learning of the graphical model of a given (matrix-shaped)

data set is reliant upon the learning of the correlation between the vectors Y i and Y j, where

i, j = 1, . . . , p, with Y i the n-dimensional vector that comprises the n number of mea-

surements of the observed variable Xi; X = (X1, . . . , Xp). The data D is then n × p-

dimensional. Then if we defined the “between-columns” correlation matrix ΣC = [Sij],

it is the ij-th element of ΣC that tells us about the covariance Sij between the Xi and Xj.

Of course, if the data is standardised (by its empirical mean and variance), this covariance

matrix is equivalent to a correlation matrix. The conditional dependencies that comprise

the joint probability distribution of variables X1 to Xp, are however equivalent to partial
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correlations, since the effect of Xi conditional on Xj is sought, with the effect of all Xm

held fixed, where m 6= j; m = 1, . . . , p, in a generic example. Thus, in order to learn

the graphical model of the data, we need to learn the partial correlation matrix, any non-

diagonal element of which gives the partial correlation between a pair of distinct columns

of the given data. One way to achieve this is by learning the between-columns correlation

matrix of the data, and then converting the correlation matrix into the partial correlation

matrix–using which the graphical model of the data is learnt. As we saw in Section 1.1.2,

It is possible to learn the correlation structure of the data by modelling the observable X (n

realisations of which comprise the data D) using some underlying generative process, such

as the Gaussian process or a t-process. Choosing to model X as a realisation from a GP

of corresponding dimensions, it then implies that the joint probability distribution of the n

realisations of X must be the matrix-normal GP that is parametrised by the matrix-valued

mean µ and the two covariances: between-columns covariance ΣC and between-rows co-

variance ΣR. But the the n realisations of X constitute the data D. In other words, the

probability distribution of the data is matrix-normal, i.e. the likelihood of µ, ΣC and ΣR,

given the data Dis matrix-normal. While likelihood maximisation techniques can in prin-

ciple be invoked at this stage in frequentist approaches, in the Bayesian framework, this

likelihood is used–along with judiciously chosen priors–to define the posterior of the un-

known GP parameters given the data. Posterior sampling using MCMC-based inference

schemes can be undertaken to give rise to the joint posterior probability density of all un-

knowns given the data, which can be used to compute the marginal posterior probability

density of each unknown given the data. Such marginal distributions can then be used to

compute the 95% Highest Probability density credible regions on each unknown given the

data. Once the between-columns correlation ΣC is learnt in this way, it can be implemented
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to help learn the graphical model of the data. However this approach is still silent about

how to learn this graphical model with Bayesianly interpretable uncertainties on the graph

that are learnt given the data, where the graph itself being a random variable, so that its full

probability distribution should be inferred upon in a Bayesian setup. Importantly, a robust

way of propagating the uncertainties in the learning of ΣC given the data–especially in the

presence of measurement uncertainties–is not presented in the literature. We will address

these shortcomings in Chapter 3.
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Chapter 2

Tensor variate Gaussian process

2.1 Introduction

Statistical modelling allows for the learning of the relationship between two variables,

where the said relationship is responsible for generating the data available on the variables.

It then follows that such learning should be inclusive of the errors made in predicting the

value of one of the variables, given the other. Thus, let X be a random variable that rep-

resents a behavioural or structural parameter of the system, and Y is another variable that

bears influence on X in either the sense that if value of X is changed, Y changes, or in the

sense that if X changes, then a set of other variables: W1, . . . , Wn change, and the change

in W i, causes the value of Y to change, where i ∈ {1, . . . , n}. In either case, if we are

to represent the relationship between X and Y as: Y = f (X), then the functional relation

f (·) that we seek to learn, is endowed with information about the error made in predicting

the values of Y (or X) at which the noise-included measurement of X (or Y) has been re-

alised. In other words, the errors of the learning of the sought functional relationship f (·),

are considered subsumed within f (·).

In the above discourse, we did not commit to the structure of the two variables. In gen-

eral, either of both variables could of course be tensor-valued, such that, data comprising
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measurements of either variable, is then shaped as a hypercuboid. Typically, the struc-

ture/behaviour of a system is parametrised using a set of scalar-valued parameters, (say d

number of such parameters), which can, in principle be collated into a d-dimensional vec-

tor. In other words, in the jargon motivated in the last paragraph, the random variable X

is a d-dimensional variable. We write, X ∈ X ⊆ Rd. This is the typical structure of the

system parameter vector X.

The other, observed variable Y , that–as we say above–bears influence on X, can be

tensor-valued in general. Let Y be a k-th ordered tensor-valued variable, i.e. is m1 ×

m2 × . . . × mk-dimensional, where mi ∈ Z, ∀ i = 1, . . . , k. Then we write, Y ∈ Y ⊆

Rm1×m2×...×mk .

Given this structure of Y , and the schematic relationship Y = f (X) between X and Y ,

we realise that the sought function f ()̇ is a map of the following nature; f : X ⊆ Rd −→

Y ⊆ Rm1×m2×...×mk , i.e. f (·) is itself a high-dimensional function. To be precise, it is a

k-ordered tensor-variate function of dimensions m1 × m2 × . . . × mk.

What does this “tensor-variate” function f (·) mean? Learning f (·) is in fact equivalent

to learning all the
k

∏
i=1

mi-number of component functions, with these components suffering

inter-correlations. Thus, the learning of f (·) is equivalent to learning the multiple func-

tions, and such learning is inclusive of learning the correlation amongst these component

functions.

If, in the definition of Y as a k-ordered tensor-valued r.v., k=2, i.e. Y is a vector (∈

Rq, say), then f (·) would be rendered a vector-variate function, i.e. a function with q

number of component functions, f1(·), . . . , fq(·), s.t. at X = xi, f j(xi) = y
(i)
j , j =

1, . . . , q; i = 1, . . . , N, where the q-dimensional vector yi = (y
(i)
1 , . . . , y

(i)
q )T, and the

correlation amongst y
(i)
1 , . . . , y

(i)
q is the same as that amongst f1(xi), . . . , fq(xi). Now I
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seek the inverse of this function f (·), We will define this as the q-dimensional vector of the

inverses of the component functions. So to find the value x(new) of the d-dimensional X, at

which a new (measured) value y(new) of Y is realised, we compute:

x(new) := f−1(Y)|Y=y(new) .

Here, the q-dimensional vector y(new) := (y
(new)
1 , . . . , y

(new)
q )T. Then I will in fact have

to operate the inverse of the j-th component function on the j-th component Yj of Y , and

compute this at Yj = y
(new)
j , and do this ∀j = 1, . . . , q. The first point that we realise is

that, for the above equation to hold, and offer solutions, we require d ≤ q. Secondly, the

equation fundamentally represents an over-determined system, and unique solutions are not

expected unless d = q, though, correlation amongst the q-number of component functions

is s.t. f−1
j (y

(new)
j ) and f−1

j/
(y

(new)

j/
) ensure consistency within the uncertainty levels in the

values of each component of x(new). The over-determinedness is not expected to always

be exactly compensated by the learnt correlation structure, but in a Bayesian setting, the

non-uniqueness of the solutions only contributes to inflating the 95% Highest Probability

Density credible regions on the learnt function.

The learning of this “tensor-variate” function discussed above, is of course challenging.

In particular, capturing the correlation structure amongst the component functions of such

a high-dimensional function is a daunting task. We realise that the correlation amongst the

different components of f (·), at each realisation of the variable X, is in fact, synonymous

to the correlation amongst the different components of the realisation of f (X), i.e. of Y

(by virtue of the equation Y = f (X)). Thus, learning the correlation structure of the data

on Y is closely related to us seeking the form of the function f (·). Of course, we do not

want to just stop at learning this function, but thereafter, employ it, to predict a value for X
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(or Y) at which, a recorded value of Y (or X) is realised.

In summary, we state that interest in learning such a high-dimensional function f (·),

given hypercuboidally-shaped data comprising multiple measurements of a tensor-valued

variable Y , is indeed an exercise involving “big data”, i.e. data that is “big” in the sense

that it is high-dimensional, as manifest in its hypercuboidal morphology. But one may ask

why we would not resort to seek the vector-variate function that takes the tensor-valued

variable Y as the input, and offer a vector-valued output, namely, X. Why indeed do we

instead opt to undertake the harder task of learning the higher-dimensional, tensor-variate

function f (·) that takes the vector X as the input, and outputs the tensor-valued Y?

This is an important question–in fact, fundamental to the study that I undertake during

the main part of my Ph.D.

The answer to this question relates mainly to the question of why we want to learn

the function f (·) that describes the functional relationship between the vector-valued X,

and the tensor-valued Y? Having learnt the functional relationship between the variables,

ultimately, we would like to predict one variable, given a measured value of another. So

the question posed in the last paragraph reduces to the following: is it feasible to invert a

(learnt) mapping that maps a high-dimensional domain to a lower dimensional one, or is

the converse true?

To answer this question let us consider the pair of ways in which we can express the

functional relationship betwen two differently dimensional, example random variables, S

and V . Let us consider the mapping from the space of d-dimensional vectors to that of

reals, as g : Rp −→ R, so that, if the r.v. V ∈ Rp and the r.v, S ∈ R, we can write

S = g(V). Then assuming that g(·) is learnt, prediction of the value s(new) of S at which a

measured value v(new) of V is realised, is possible as s(new) := g(V)|V=v(new) . Similarly,
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if we want to predict the value of V , at which a new datum on S has been measured, we

would think that this sought value of V can imply be defined as v(new) := g−1(S)|S=s(new) .

However the RHS of this suggested equation is a scalar, while the LHS is a p-dimensional

vector, i.e. this equation is valid only for p = 1, 0. Thus it is clear that inverse prediction

of the high-dimensional argument (as compared to a lower-dimensional output) of a learnt

function is not possible.

However, if we were to consider the mapping h : R −→ Rp, so that, if the r.v. V ∈ Rp

and the r.v, S ∈ R, we can write V = h(S). Then if the vector-variate function h(·) is

learnt, prediction of the value of V at which a measured value of S is realised, is possible,

using the forward operation of h(·) on S, computed at this new measured value. Also,

the inverse prediction of the value s(new) of S, at which a measured value v(new) of V is

realised, is given by: s(new) := h−1(V)|V=v(new) ; this is indeed an overdetermined system,

so multiple solutions exists, but the situation stands mitigated in light of the fact that not all

the p equations (that this single equation includes) will bear independent information, since

the p-number of component functions of h(·) are correlated. However in the modelling of

the function with a higher-dimensional input than output (as in the example function g(·)

discussed in the previous paragraph), the solution to the inverse prediction does not exist.

Thus, using this example of the two ways according to which we can exress the relation

between a pair of example random variables, that are differently dimensional, we realise

that we need to define our sought functional relationship between the vector-valued X

and the tensor-valued Y , as f (·), where Y = f (X), (and not as the unknown function

f−1(·)), so that we are in principle, not incapacitated from performing prediction of either

variable, given a measured value of the other. This holds, even though, it is harder to

learn the tensor-variate function f (·), than the lower-dimensional, vector-variate function

43



f (−1)(·), i.e. there are more component functions to be learnt. This is a fundamental

concept in inverse problems.... In addition, there are other advantages of modelling the

sought functional relationship as f (·), than f (−1)(·), such as inclusion of measurement

uncertainties; we discuss this in greater detail below. We now discuss the connection of the

sought learning and prediction, with the availability of data.

To understand how data guides a model for the sought function f (·), let us consider the

simple scalar-variate case first. The learning of the function f (·)–where, Y = f (X); f :

R −→ R–is possible, as long as we have access to pairs of (N number of) known values of

X, and the corresponding Y, i.e. the training dataset {(xi, yi)}N
i=1. Then we can in principle

learn which curve f (·) is to be passed through these points that comprise the training

data. Thus, the training data consists of pairs of: chosen or designed value of X, and the

corresponding value of Y that maybe is known by some means–empirical observations,

experiments, surveys, etc. The upshot is that training data is available, i.e. pairs of (xi, yi)

are known, and we want to find the function f (·) that is defined via Y = f (X).

Similarly, in the situation that we discuss above, in which X is a vector-valued and Y

is a tensor-valued r.v., s.t. f (·) is tensor-variate–we learn the unknown function as long as

we have access to the training data D := {(xi, yi)}N
i=1. Our ulterior aim is the prediction

of either of Y or X, given test data on X or Y respectively. In conventional framework, the

inverse prediction of X = x(test), at which test datum y(test) on Y is realised, is undertaken

as:

x(test) := f−1(Y)|y(test)

. However, this formulation renders the learning of the uncertainty in the prediction diffi-

cult, and there is no clear way on including the uncertainties learnt in the learning of the
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function f (·), to propagate into the uncertainty of this prediction. This leads us to consider

Bayesian prediction of one variable, given test data on the other, subsequent to the Bayesian

learning of the function f (·). Before we discuss this, let us better motivate the need for a

Bayesian framework.

Indeed, the curve-fitting exercise could be handled using fitting based on Ordinary Least

Squares, or fitting that employs splines/wavelets. However, such fitting methods fumble un-

der multiple realistic complications. Firstly, the measured values of both/either of the r.v.s

X and Y, can be accompanied by measurement errors; in light of this, it becomes difficult

to infer the function that fits the data the best. In fact, the uncertainty in the learning of the

sought function is also then difficult to quantify–how to identify the set of functions that

“best fit” the training data? Secondly, how do we judge what the smoothness of the curve

should be? So for scalar-valued r.v.s X and Y, that are related via the sought f (·), how do

we know what the smoothness of the curve should be between the successive points (xi, yi)

and (xi+1, yi+1), (i = 1, . . . , N − 1), in the training data? Ideally, we would prefer to learn

this smoothness from the data itself. However, there is nothing intrinsic to the fitting-with-

splines/wavelets method that can in principle, quantity the smoothness of the curve, given

a training data. Lastly, when Y is an r.v. that is no longer a scalar, but higher-dimensional

(say tensor-valued in general), fitting with splines/wavelets starts to become useless, since

in such cases of sought tensor-variate function f (·) (in general), the component functions

of f (·) are correlated, but methods such as parametric fitting approaches, cannot capture

such correlation, given the training data. As we have remarked above, such correlation

amongst the components functions of f (·) is the same correlation structure amongst the

components of the tensor-valued Y–so in principle, the sought correlation can be learnt

from the training data.
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In this case, given the general vector-valued X, and the tensor-valued Y (of order k,

say), the sought function is rendered a k-th ordered tensor-variate function. One objective

way of learning the set of functional forms for the relationship between X and Y , i.e. for

f (·), is then to sample a function from a “bag of functions”, in which functions exists with

varying posterior probabilities given the data at hand. But what is such a “bag of functions”,

if not a Stochastic Process, for Stochastic Processes are distributions over function space.

So, we identify a relevant Stochastic Process that can give a general, non-restrictive descrip-

tion of the sampled functions–a Gaussian Process for example–and for a set of functions

sampled from the identified process, we will attempt to compute the posterior probability

density of this set of realisations from this Stochastic Process, given the training data. Of

course, the parameters of the Process that generates these functions are not fixed arbitrarily,

but are learnt from the data, so that learning these Process parameters then enables us to

generate the very functions that are compatible with the data at identified probabilities. In

other words, when we speak of computing the posterior probability density of a set of func-

tions sampled from the Process, it is synonymous to us computing the posterior probability

density of the Process parameters given the data. Generating samples from this posterior

density then allows for the identification of the 95% HPD credible regions on these Process

parameters, i.e. on the learnt function f (·). It is possible to learn the smoothness of the

function generated from this Process, via parameterisation of the covariance kernels of the

covariance structure of the Stochastic Process under consideration. Thus, one of the major

sources of worry for us will be the pursuit of adequate covariance kernel parametrisation.

Once the Process parameters are learnt (via sampling from the posterior probability

density of these parameters given the data), the inverse prediction of the value of X, given

test data on Y , can be considered by writing the posterior probability density of X given
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the test data, and the learnt model of the function f (·), i.e. the parameters of the Stochastic

Process from which this function is generated. This can be undertaken by two ways: either

by writing the posterior predictive density of X given the test data and the learnt Process

parameters, or by writing the joint posterior probability density of the sought value of X and

all Process parameters, given test and training data. Our favoured method of generation of

posterior samples, namely MCMC techniques, then allows for the learning of the marginals

of each sought parameter, and the corresponding 95% HPD credible interval. The latter

approach (sampling from the joint posterior density) acknowledges errors of learning and

prediction well.

A last point that remains to be addressed in this introductory section of the 2nd chapter,

is the relevance of high-dimensional data. Are there really hypercuboidally-shaped data

that show up in real-world applications, that we need to find the correlation structure of,

and/or, perform learning+prediction with? The answer is an emphatic yes [Mardia and Goodall,

1993; Bijma et al., 2005; Werner et al., 2008; Theobald and Wuttke, 2008; Barton and Fuhrmann,

1993]. For example, in computer vision, the image of one person might be a matrix of

dimensions a × b, i.e. image with resolution of a pixels by b pixels. Then, repetition

across n persons inflates the data to a cuboidally-shaped dataset. Examples of handling

high-dimensional datasets within computer vision exist [Dryden et al., 2009; Fu, 2016;

Pang et al., 2016; Wang, 2011; Qiang and Fei, 2011]. In health care, the p number of

health parameters of n patients, when charted across k time-points, again generates a high-

dimensional data, which gets further enhanced, if the experiment involves tracking for

changes across ℓ groups of n patients each, where each such group is identified by the level

of intervention [Chari, Thu, Wilson, Lockwood, Lonergan, Coe, Malloff, Gazdar et al., 2010;

Chari, Coe, Vucic, Lockwood and Lam, 2010; Clarke et al., 2008; Oberg et al., 2015; Sarkar,
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2015; Wang et al., 2015; Fan, 2017]. That we treated these groups as independent–or for

that matter, even the variation in health parameter values of any group across the k time

points, is ignored, and a mere snapshot of each group at a given time is all that is tradition-

ally considered–is a shortcoming, of the traditional modelling strategies. We are advancing

a method for the consideration of parameters across all relevant levels within one integrated

framework, to enable the learning of correlations across all such levels, thus permitting the

prediction of a health parameter (of a patient at some desired time and identified patient

group), with meaningful uncertainties and avoiding information loss associated with cate-

gorisation of data. Again, in ecological datasets, there could be n spatial locations at each

of which, p traits of k species could be tracked, giving rise to a high-dimensional data

[Leitao et al., 2015; Warton, 2011; Dunstan et al., 2013].

That we treated these groups as independent–or for that matter, even the variation in

parameter values of any group across the k time points, is ignored, and a mere snapshot of

each group is traditionally considered one at a time–is a shortcoming, of such traditional

modelling strategies. In this work, we advance a method for the consideration of parameters

across all relevant levels of measurement, within one integrated framework, to enable the

learning of correlations across all such levels, thus permitting the prediction of the system

parameter vector, with meaningful uncertainties and avoid information loss associated with

categorisation of data.

While discussing the generic methodology that helps address the problem of learn-

ing the inter-variable relationship f (·), given general hypercuboid-shaped data–comprising

multiple measurements of the observable Y , where each value of Y is generated at a given

value of the system parameter X–we focus on developing such learning when this data

displays discontinuities. In such a learning exercise, the functional relation f (·) between
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the variables needs to be modelled using a high-dimensional stochastic process (a tensor-

variate Gaussian Process, for example), the covariance function of which is non-stationary.

The correlation between a pair of data slices, (defined by two such measured values of Y ,

each realised at two distinct values of the system parameter X), is sometimes parametri-

cally modelled as a function of the distance between the values of the system parameter at

which these slices are realised, i.e. “similarity” in values of Y can be modelled as a func-

tion of “similarity” in the corresponding X values. However, if there are discontinuities in

the data, then such a mapping between “similarities” in X and Y no longer holds. In other

words, discontinuities in data call for a model of the correlation that adapts to the disconti-

nuities in the data. We present such correlation modelling in this paper, by modelling each

scalar-valued hyperparameter of the correlation structure of the high-dimensional stochas-

tic process, as a random function of the sample path of that process; this random function

then, can itself be modelled as a realisation of a scalar-variate stochastic process–a scalar-

variate Gaussian Process (GP) for example. Thus, the learning of f (·) is double-layered

in which multiple scalar-variate GPs inform a high-dimensional (tensor-variate) GP. The

data on the observable Y can be shown to be sampled from a compound tensor-variate and

multiple scalar-variate Gaussian Processes.

Acknowledgement of nonstationarity in correlation learning is not new [Paciorek and Schervish,

2004]. In some approaches, a transformation of the space of the input variable is suggested,

to accommodate non-stationarity [Sampson and Guttorp, 1992; Schmidt and O’Hagan, 2003;

Snoek et al., 2014]. When faced with learning the dynamically varying covariance struc-

ture of time-dependent data, others have resorted to learning such a covariance, using

Generalised Wishart Process [Wilson and Ghahramani, 2010]. In another approach, la-

tent parameters that bear information on non-stationarity, have been modelled with GPs
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and learnt simultaneously with the sought function [Tolvanen et al., 2014], while others

have used multiple GPs to capture the non-stationarity [Gramacy, 2005; Heinonen et al.,

2016]. However, what has not been presented, is a template for including non-stationarity

in high-dimensional data, by nesting lower-dimensional Gaussian Processes with distinct

covariances, within a tensor-variate GP (Section 2.2), using a Metropolis-within-Gibbs in-

ference scheme (Section 2.4), to perform with-uncertainties learning of a high-dimensional

function, given discontinuities that show up in the hypercuboidally-shaped datasets in gen-

eral, and illustration of the method on a cuboidally-shaped, real-world dataset (Section 2.5,

Section 2.6). This is what we introduce in this paper. Our model is capacitated to learn the

temporally-evolving covariance of time-dependent data, if such is the data at hand, but the

focus of our interest is to follow the learning of the sought tensor-valued functional relation

between a system parameter vector and a tensor-valued observable, with inverse Bayesian

prediction of the system parameter values, at which test data on the observable is measured

(Section 2.7, Section 2.6). Additionally, flexibility of our model design allows us to under-

take both inverse and forward predictions. So we also predict new data at chosen system

parameter values given our model and results, and perform model checking, by comparing

such generated data against the empirically observed data (Section 2.8).

2.2 The model

We define the relationship between k − 1 dimensional observable V and model parameter

S as V = ξ(S), where V ∈ Rm1×m2...×mk−1 and mi is a positive integer. The k − 1

dimensional function ξ()̇ is defined as an unknown function with parameter S ∈ Rd. We

are going to estimate value s(test) of using test data v(test). To do this, we need to estimate

function ξ(·) given the training data D = {(s1, v1), · · · , (sn, vn)} where si is the i-th
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point that the value of the function is observed. This kind of supervised learning can be

done using parametric regression technique like splines/wavelets. The disadvantage of

using the splines/wavelets is that it cannot learn the correlation between the components

in the high dimensional function ξ(·). Furthermore, such parametric regression causes

computational difficulties when the dimensionality of the observation increases. Thus, we

are using a high-dimensional Gaussian Process (GP) , i.e. a tensor-variate GP, to the model

this high-dimensional data. We treat the k − 1 dimensional tensor-variate observation as a

set of realisation from a k − 1 dimensional tensor variate GP. By learning the parameters

of this k − 1 dimensional GP using the training data, we are able to predict the value of s∗

from the posterior distribution of S given training data and GP parameters. We learn the

GP parameters and the posterior distribution for S via MCMC based inference scheme.

2.2.1 Method

We treat the observation v = ξ(·), as a realisation from a k − 1 dimensional tensor-variate

GP. Then, the likelihood function of a set of n realisations of V (that reside within the train-

ing data), follows the k dimensional tensor normal distribution [Kolda and Bader, 2009;

Richter et al., 2008; McCullagh, 1987; Manceur and Dutilleul, 2013]. As introduced in

Chapter 1, the covariance tensor of a k-th order tensor normal distribution, can be decom-

posed by Tucker decomposition, into k different covariance matrices [Manceur and Dutilleul,

2013; Hoff et al., 2011; Manceur and Dutilleul, 2013; Kolda and Bader, 2009; Xu and Yan,

2015]. The parameters of this tensor normal distribution are a k-th ordered mean tensor M

of dimensions m1 × . . . × mk, and the k number of covariance matrices, Σ1, . . . , Σk, where

the i-th covariance matrix Σj is an mj × mj-dimensional square matrix, j = 1, . . . , k. Then

the observed values v1, . . . , vn of V–where the i-th such observation occurs at the i-th
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design point in the training dataset D = {(si, vi)}–has the following joint distribution.

[v1, . . . , vn] ∼ TN (M, Σ1, . . . , Σk),

. s.t., the density of this joint probability distribution of the n observations on V in the

training data, is the Tensor-Normal density [Manceur and Dutilleul, 2013; Hoff et al., 2011;

Kolda and Bader, 2009]. Let the n observed values of the k − 1-th ordered tensor-valued

variable V be collated to form the k-th ordered tensor DV , i.e DV := (v1,
..., v2,

..., . . . ,
..., vn),

s.t. DV ∈ Rm1×...×mk . Then the joint probability density of the observations is tensor-

normal, as stated in the following.

f (DV |M, Σ1, ..., Σk) ∝ exp(−‖(DV − M)×1 A−1
1 ×2 A−1

2 ... ×k A−1
k ‖2/2), (2.1)

where the covariance matrix Σj = Aj A
T
j ,j = 1, ..., k, i.e. Aj is the unique square-root

of the positive definite covariance matrix Σj. One example of a computational algorithm

that can be invoked to realise such a square root of a matrix, is Cholesky decomposi-

tion [Dereniowski and Kubale, 2003; Higham, 1990; Krishnamoorthy and Menon, 2013].

Equation 2.1 is equivalent to suggesting that the likelihood of the mean M and covariance

matrix parameters (Σ1, . . . , Σk) of the k-th ordered tensor-normal density, given the obser-

vations that comprise the tensor DV , is k-th ordered tensor-normal. We will employ this

likelihood to write the joint posterior probability density of the GP parameters, given the

data. But prior to doing that, we examine the possibility of reducing the number of param-

eters that we seek to learn. In other words, we review the mean and covariance structure of

the tensor-variate GP that we invoke to model the data with, to identify those parameters–if

any–that can be estimated in a pre-processing stage of the inference, in order to reduce

the computational burden of inference. At this point, we also note that seeking to learn
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any of the relevant GP parameters implies the need to learn multiple scalar components

of these tensor/matrix-valued parameters. Therefore, it would be useful to find ways of

parametrising the sought GP mean-tensor/covariance-matrices, thereby reducing the num-

ber of parameters that we need to learn in reality. We will achieve this, via kernel-based

parametrisation of covariance matrices, when possible.

We will in fact, embark upon the modelling of some covariance matrices using a kernel

parametrisation technique that allows for the potently simple–though unrealistic–assumption

of stationarity to be included in the global structure of the covariance matrix, while then

allowing for the modelling of the parameters of such a simplistic kernel using independent

Gaussian Processes. This then effectively challenges the original stationarity assumption,

and renders the covariance structure realistic given the expected discontinuities in real-life

datasets.

To this effect, we undertake the estimation of the mean tensor is M ∈ Rm1×m2...×mk .

It may be estimated as the sample mean v of the sample {v1, . . . , vn}, s.t. n repetitions

of v form the value m of M. Then once m is removed from the data DV , the data can be

modelled with a zero-mean k-th ordered tensor-variate GP. A general method of estimation,

like maximum likelihood estimation or least square estimation, can be used, [Hoff, 1997;

Veraart et al., 2013]. Then, the Gaussian Process can be converted into a zero mean GP.

However, if necessary, the mean tensor itself can be regarded as a random variable and

learnt from the data [Chakrabarty et al., 2015], The modelling of the covariance structure

of this GP is discussed in the following subsection.

Once we can write the joint posterior probability density of the relevant unknowns,

given the data, we will generate marginals for each unknown separately using, to then

identify the 95% Highest Probability Density credible regions (HPDs) on each unknown.
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We will employ flavours of MCMC that will suit our purpose best.

Of course, the whole point in learning ξ(·) (where the tensor-valued output variable V is

related to the vector-valued input variable S as in V = ξ(S)), is to predict the value of either

variable, at which a new or test data on the other variable is observed. So when it comes to

the inverse prediction of the value s(test) of the input variable S, at which test data v(test)

on V is realised, we can use two approaches. Under one, we sample from the posterior

probability density of S given the test data v(test), and the tensor-valued parameters of

the k-th ordered tensor-variate GP invoked to model ξ(·)–learnt using the training data.

Another is to write the joint posterior probability density of s(test) and all other parameters

of this tensor-variate GP given training data, as well as test data, and sample from this joint

posterior density using MCMC, for the 95% HPDs on s(test).

To discuss the relative merits of these two methods of prediction, we realise that for

a large and diverse training data set, the two methods will give similar results. However,

since the marginal distribution for GP parameters are learnt additionally in the first method,

the computational speed of the first approach, is much higher. On the other hand, when the

training data is small, or if the training data is not representative of the test data at hand,

the learning of s(test) via the first method may affect the learning of the GP parameters,

and worries about misrepresentative training data stand mitigated under the second method

of sampling from the joint posterior density of all unknowns, given all data. The other,

slight concern about sampling from the posterior density of s(test) given the test data, at

parameters of the tensor-variate likelihood is that we need to choose which summary of the

marginal distribution of any such parameter (given the training data) we will perform the

prediction of s(test) at. In general, we choose to perform prediction at the learnt modal value

of any such parameter (given the training data), but other summaries – such as median,
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mean – are also possible.

2.2.2 Covariance structure

Tucker decomposition of the k-th ordered covariance tensor is employed to obtain the k-

number of covariance matrices Σ1, . . . , Σk of the k-th ordered tensor-variate Gaussian Pro-

cess. A k-th ordered random tensor Σ ∈ Rm1×m2...×mk can be decomposed to a unit k-th

ordered tensor (Z) and k number of covariance matrices Σ1, . . . , Σk by Tucker product

[Hoff, 1997; Manceur and Dutilleul, 2013]:

Σ = Z ×1 Σ1 ×2 Σ2... ×k Σk, (2.2)

where the j-th covariance matrix is an mj ×mj matrix; mj ∈ Z>0, mj ∈ {m1, m2, . . . , mk}.

The notation ×j in Equation 2.2 presents the j-mode product of a matrix and a tensor

[Oseledets, 2011]. It can be proved that all tensors can be decomposed into a set of covari-

ance matrices [Xu and Yan, 2015]. However, the disadvantage is that the decomposition of

many tensors is not unique. In other words, some tensors can be decomposed into multiple

sets of matrices. This may cause difficulty in finding the correct combination of covariance

matrices that present the correlation structure of the data at hand. One way to solve this

problem is to use a prior probability density for the covariance parameters.

The k-th ordered tensor-normal density that represents the likelihood of the mean and

covariance parameters of the high-dimensional GP that is invoked to model the data, can

easily incorporate the Tucker decomposition of the covariance tensor of this GP. Recalling

this density, we can get:
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f (M, Σ1, ..., Σk|DV ) = (2π)−m/2
k

∏
i=1

|Σi|−m/2mi)

× exp(−‖(V − M)×1 A−1
1 ×2 A−1

2 ... ×k A−1
k ‖2/2

(2.3)

where m = ∏
k
i=1 mi and Σj = Aj A

T
j . Any kind of the matrix factor can be used here to

get the Aj.

This probability density function is well structured. As discussed above the mean tensor

M can be estimated using maximum likelihood, so that the learning problem can be reduced

to the problem of learning the covariance structure of a zero-mean, tensor-normal GP. We

can in principle learn all the covariance matrices directly, given the data. [Hoff, 1997]

discusses the implementation of a maximum likelihood estimation technique to estimate

the covariance matrices of such a tensor-variate GP. This is however an approach that is

inadequate when the sample size is small because the sample-based estimate will tend to be

incorrect; indeed discontinuities and steep gradients in the data-especially a small sample

and high-dimensional data–will render such estimates of the covariance structure incorrect

representation of the correlation structure of such data. Importantly, such an approach does

not leave any scope for identifying the smoothness in the function ξ(·) that represents the

functional relationship between the input and output variables. Lastly, the uncertainties in

the estimated covariance structure of the GP remain inadequately known.

Instead, we learn the covariance structure of the GP whenever we can, using Bayesian

inference (MCMC techniques) that allows for proper learning of the uncertainties (as the

95% HPDs). Our employment of kernel parametrisation techniques will also allow for an

organic learning of the smoothing length scales of the function ξ(·) sampled from the high-

dimensional GP. Lastly, our Bayesian framework allows us to use prior probability densities

56



for the covariance matrices. As discussed above, some covariance tensors may have multi-

ple decompositions into the covariance matrices. The application of even weak priors allow

for the elimination of solutions that are rendered inappropriate given the data at hand. For

both the maximum likelihood approach and our Bayesian method, the computational com-

plexity increases with dimensionality of the data. The total number of distinct parameters

in the (symmetric) j-th covariance matrix that is mj × mj-dimensional, is
(mj + 1)× mj

2
.

So if all the scalar components of all the k covariance matrices were to be learnt directly

by MCMC, we could end up learning a very large number of parameters indeed, with

the number of sought parameters increasing quadratically with both dimensionality of the

data tensor and size of the dataset. This could rise an unaffordable calculating time. One

solution is to implement a parametric model for the covariance matrices, such as kernel

parameterisation. This could efficiently reduce the number of parameters in the covariance

matrix thus parametrised. Another advantage of kernel parameterisation is that it guides the

covariance structure to not go into wrong solutions, given the data at hand, while also al-

lowing for–in principle–for smoothing of the functions sampled from the GP, to be learnt.

Kernel functions are usually distance based. Thus, the function itself, together with the

distance observations, will bring in the information about the covariance structure. The

trick is in choosing a kernel function that is as less restrictive in form as possible, so that

it gets guided well by data than be model-driven, while at the same time, not allowing for

an inflation in the number of sought parameters to avoid an insurmountable computational

challenge.
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2.2.3 Different ways of learning covariance matrices

As discussed above, we can learn elements of covariance matrices–or at least of the square-

root of each such matrix–directly, by treating each of these scalar-valued components as

unknowns. Then however, we will need to learn a very large number of parameters, and this

number will only increase as the number and dimensionality of observations increases. The

computational complexity of learning the elements of covariance matrices, then increases

rapidly with number of observations, rendering the inference task infeasible. In order to

reduce the number of parameters in the covariance matrices, one possibility is to use kernel

parametrisation of one or more of the covariance matrices Σ1, ..., Σk, and then learn the

parameters of these kernels using MCMC.

For the p-th covariance matrix, let the ij-th element be σ
(p)
ij , i.e. Σp = [σij], where

Σp is mp × mp-dimensional, so that j, i = 1, . . . , mp. Then σ
(p)
ij bears information about

the covariance amongst the i-th and j-th slices of the data, where the data being shaped as

as a k-th ordered tensor, such i-th and j-th “slice” is each shaped like a k − 1-th ordered

tensor. We recall that the training data D comprises pairs of chosen (or designed) value of

the input parameter S and the corresponding value of the k − 1-th ordered tensor-valued

output variable V , realised at this design point (i.e. chosen value of S). In other words,

D = {(sq, vq)}n
q=1, where V = ξ(S). Then the i-th “slice” of the data is the value vi

of the k − 1-th ordered tensor-valued variable V that is realised at the i-th design point.

Similarly, the j-th slice is vj that is realised at the value sj of the input variable S.

The correlation–and therefore, the covariance σ
(p)
ij –between the i-th and j-th slices of

the data then decreases as the slices get increasingly more disparate. This disparity between

a pair of slices realised at respective values of input variable S, can be treated as increasing,
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with increasing difference in the values of S at which these slices are realised, i.e. with

increasing |si − sj|. In fact, we can model the correlation σ
(p)
ij between the i-th and j-th

slices of the data as a decreasing function of this disparity, i.e. of |si − sj|. In an even more

generalised model, σ
(p)
ij may be modelled as a decreasing function of some components of

si − sj, but trending differently with other components of si and sj, where S is a higher-

dimensional than a scalar. In either modelling strategy, we suggest that σ
(p)
ij be modelled as

a function K(si, sj). One of the simplest of these modelling strategies will then model this

component σ
(p)
ij of the covariance matrix Σp, using a “stationary kernel” that is a function

of the Euclidean distance between si and sj, i.e. when K(si, sj) = f ((si − sj)
α), where

f (·) is any mapping from Rd × Rd to R (recalling that S ∈ Rd) and α ∈ R/{0}.

So in general, we can then define σ
(p)
ij = Kp(si, sj), where Kp(si, sj) is the kernel

function Kp(·, ·), computed at the i-th and j-th input variables. Thus, the number of distinct

unknown parameters involved in the learning of Σp would reduce from mp(mp + 1)/2,

to the number of hyper-parameters that parametrise the kernel function Kp(·, ·). Thus,

the exact reduction in the number of sought parameters will vary with the choice of the

kernel function; for example, in an SQE kernel (discussed in Chapter 1), in which the

hyper-parameters are the length scales along each direction in input space, the number

of hyper-parameters of Kp(·, ·) is simply the dimensionality of the input space. So, such

kernel parametrisation does help reduce the number of unknowns that need to be sampled

by MCMC.

However, kernel parametrisation is not always possible. There are two situations when

we clearly cannot use kernel parametrisation. Firstly, this parametrisation may cause infor-

mation loss and this may not be acceptable [Aston and Kirch, 2012]. One example of this

occurs when one uses stationary kernel to model the covariance structure of discontiuous
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data. Although this can be solved by changing into an appropriate, non-stationary kernel

function, condensing all the information of the covariance matrix through such parametri-

sation may not be necessarily be lossless; so ideally, one may wish to learn each element of

the covariance matrix directly (perhaps using MCMC, to gain the advantage of comprehen-

sive 95% HPDs). Another situation when we will necessarily avoid kernel parametrisation

of a covariance matrix, is when we cannot find input parameters, at which the correspond-

ing slices in the data are realised, where the covariance matrix in question is composed of

elements that are each, the pairwise covariance between a pair of such slices.

In such situations, we will learn the elements of the covariance matrix directly using

MCMC. However, as discussed above, this can entail the learning of an infeasibly large

number of parameters. So a direct learning of all distinct elements of Σp is feasible, as long

as total number of all unknowns learnt by MCMC . 200. One way to solve this problem

is to use an empirical estimation for the covariance matrix. An empirical estimation of

Σp can be performed by collapsing each of the mp number of high-dimensional (k − 1-th

ordered tensor-shaped) slices of the data, along all-but-one axis in output space, i.e. the

native space of V , namely along the p-axis. Such an operation then reduces each of the

high-dimensional mp slices to a vector. The covariance computed using a pair of such

vectors (adjusted for sample size), is then an element of Σp. Each such reduced vector

then possesses the compressed information from all the relevant dimensions of the data.

The covariance matrix Σp is thus approximated by an empirical estimate of the covariance

amongst such vectors.

Indeed such an empirical estimate of any covariance matrix may then be easily gen-

erated, but it indulges in linearisation amongst the different dimensionalities of the ob-

servable V . So when the Σp covariance matrix bears information about the mp number
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of high-dimensional slices of the data, such linearisation will cause loss of information

about the covariance structure amongst the components of these high-dimensional slices.

Also, smaller sample sizes will render the empirical estimate a worse approximation of the

covariance matrix, than larger samples.

In summary, we model the covariance matrices as kernel parametrised, or empirically-

estimated, or learnt directly using MCMC.

An accompanying computational worry is the inversion of any of the covariance ma-

trices; for a covariance matrix that is an mp × mp-dimensional matrix, the computational

order for matrix inversion is well known to be O(m3
p) [Knuth, 1997].

Often, including in our first application, a simple stationary covariance kernel, such

as the Squared Exponential (SQE) covariance kernel is used. The SQE kernel computed

at two values si and sj of the input space variable S, depends on the Euclidean distance

between si and sj as:

K(si, sj) = aij exp
(
−(si − sj)

TQ−1(si − sj)
)

(2.4)

where Q is a diagonal matrix, the diagonal elements of which are the length scale param-

eters of the covariance matrix. These (unknown) length scales bear information about the

extent of input space, over which correlations persist, within a function that is sampled from

the (high-dimensional) GP, a covariance matrix of which is being modelled using the SQE

kernel above. These length scale parameters ℓ1, . . . , ℓd tell us how quickly the correlation

fades away along a given direction in the input space, i.e. the space of the d-dimensional

vector-valued input variable S; thus, higher is ℓq, the correlation persists over longer in-

tervals of Sq, where S = (S1, . . . , Sd)
T and q = 1, . . . , d. Then the matrix Q−1 is the

inverse of the diagonal matrix of the length scales, and is therefore diagonal itself, with the
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diagonal elements given as
1

ℓ1
, . . . ,

1

ℓd
, where we interpret 1/ℓq as the smoothness param-

eter, given that it is the reciprocal of the length scale parameter ℓq. These are d-number of

unknown parameters that we learn from the data, using MCMC; indeed, these are treated

as the hyperparameters of the covariance kernel. Here aij is the amplitude of the covari-

ance matrix. We can learn all the aij parameters directly from MCMC. It merits mention

that the SQE model is designed s.t. identifiability of both aij, and ℓq is assured. In other

words, it is not possible to subsume the aij in the definition of the SQE covariance kernel

(Equation 2.4), into the length scale parametrisation, since any attempt towards subsuming

the i, j-dependent aij parameter into the i, j-independent length scale, that will result in a

new length scale parameter that will not be independent of i, j any more (as easily verified

using the example of a 1-dimensional input space, i.e. for d=1). However, learning the

aij parameters directly from MCMC will amount to a very large number of parameters of

the covariance matrix that we will then need to make inference upon. To avoid this, we

interpret the SQE kernel parametrisation to be endowed a global amplitude instead, while

the length scale parameters are also left as unknowns that are learnt from the data. The

resulting covariance structure then crucially depends on the distance between the pair of

values of the input variable S that the kernel is computed at. Below, we state the kernel

function that we will use to parametrise our covariance matrices with–when in possession

of information about the value of the input variable that a slice of the data is realised at,

where covariance between a pair of such slices comprises an element of the covariance

matrix in question.

K(si, sj) := A
[
exp

(
−(si − sj)

TQ−1(si − sj)
)]

,

where A is a global scale. An interpretation of this is that we have scaled all local ampli-
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tudes aij to be < 1 using the global factor A, and these scaled local amplitudes are then

subsumed into the argument of the exponential in the RHS of the last equation, s.t. the

reciprocal of the correlation length scales, that are originally interpreted as the elements

of the diagonal matrix Q−1, are now interpreted as the smoothing parameters modulated

by such local amplitudes. The global scale A is itself subsumed as a scale factor, in one

of the covariance matrices of the tensor-normal distribution at hand–this is the matrix, the

distinct elements of which are learnt directly using MCMC, i.e. without resorting to any

parametrisation or to any form of empirical estimation. If we do not use any empirical

estimation or do not have any covariance matrices learnt directly, we can still learn this

parameter using MCMC. However, it has to be kept in mind that the above interpretation

is only loose, since the same smoothness parameters cannot accommodate all (scaled by

a global factor) local amplitudes∈ (0, 1], for all si − sj. This is why, our definition of

the kernel function K(si, sj) is best understood as our choice of model for the covariance

kernel (see last equation). This model helps to reduce our number of parameters that are

learnt y MCMC.

Let us revisit our likelihood stated in Equation 2.1. We had stated that the likelihood is

f (DV |M, Σ1, ..., Σk) ∝ exp(−‖(DV − M)×1 A−1
1 ×2 A−1

2 ... ×k A−1
k ‖2/2), (2.5)

where the covariance matrix Σp = Ap AT
p ,p = 1, ..., k. However, we recall that some of

our covariance matrices might be parametrised using kernel functions, that depend on the

design points. In light of this, we need to update our statement for the likelihood of the

mean and covariance parameters of the tensor-normal density that is the joint probability

density of mk ≡ n realisations of the output variable V , given the n observations on V , as

well as the corresponding design point at which each observation of V is realised, i.e. the
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likelihood is the probability density not only of v1, . . . , vn, but also of s1, . . . , sn, or to put

is succinctly, of training data D := {(si, vi)}n
i=1–given the mean tensor M and covariance

matrices Σ1, . . . , Σk. Indeed we estimate M and subtract this estimated value from the

data. Indeed, it is understood hereon, that the data D discussed above is the data reduced

by the estimated mean. Using this likelihood and adequately chosen prior probability den-

sities on the unknown parameters, we can write the joint posterior probability density of

the unknown parameters given the training data, where the unknowns include parameters

of the covariance matrices–if kernel parametrised, or elements of such a matrix itself–if

being directly learnt using MCMC. Once this is achieved, we use the MCMC techniques

to sample from the joint posterior probability density of the unknown parameters of each

covariance matrix and mean tensor, given the training data. Thus, the updated statement of

the likelihood is

f (D|Σ1, ..., Σk) ∝ exp(−‖(D)×1 A−1
1 ×2 A−1

2 ... ×k A−1
k ‖2/2), (2.6)

where the covariance matrix Σp = Ap AT
p ,p = 1, ..., k.

We generate the marginal posterior probability densities of each unknown parameter

given training data, and identify the 95% Highest Probability Density (HPD) credible re-

gions on each parameter.

Thereafter, the prediction of s(test) can be performed, by generating posterior samples

using MCMC from the posterior predictive of S given all data and the learnt/estimated GP

mean and covariance structures. We also write the joint posterior probability density of

s(test) and all the other GP parameters given test+training data and then use MCMC to

identify the marginal distribution of S given the test data and training data, in addition to

the marginals of the tensor-variate parameters.
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2.3 Imposing non-stationarity by modelling hyperparam-

eters of covariance kernels as realisations of Stochastic

Process

In our definition of the kernel function that we employ to parametrically model a covariance

matrix Σ
(mp×mp)
p , we have included a smoothing parameter (reciprocal of the correlation

length scale), and a global amplitude, as the hyperparameters of the kernel. As is the

convention, these hyperparameters are treated as unknown constants, that we aim to learn

from the data. Then by definition of this kernel function, (Equation 2.2.3), all sample

paths are endowed with the same smoothing parameters ℓ1, . . . , ℓd, and global amplitude

A–each with the 95% HPD uncertainty that its MCMC-based learning entails. However,

if the sampled function ξ(·)–in our original definition of the problem as V = ξ(S)–is in

itself a discontinuous function, then defining the correlation between ξ(si) and ξ(sj), as

dependent on si and sj, only via the Euclidean distance between them, will be an incorrect

representation of the correlation at these two points in the input space. Indeed, if the data

on the output variable V is not continuous, i.e. if the sampled function is discontinuous,

such a stationary definition of the correlation between any pair of points in the function

domain, i.e. ∀si, sj, is wrong. In other words, it is not correct to define the covariance

matrix that bears information about covariance between any pair of slices of the data–with

each slice realised at a given point in the input space–using a stationary kernel.

One way to generalise the model for the covariance kernel is to suggest that the hyper-

parameters vary with the sample path. We understand the effect of this undertaking, using

the following construction. Consider a sample path of the tensor-variate Gaussian Process

that we invoke to model the sought function ξ(·). Now maintaining everything else, in-
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troduce stochasticity to this particular sampled function, by varying the hyperparameters

of the kernel function that is used to parametrically model a covariance matrix Σp of the

tensor-normal likelihood. At every value of ℓ1, . . . , ℓd, A, record the value ξ(si), where si

is arbitrarily chosen. For each choice of ℓ1, . . . , ℓd, A, we record the value of ξ(si), and

include each such generated ξ(si) in the sample called S1, Then each element of sample S1

is generated by at different set of kernel hyperparameter values. Also, at a fixed set of val-

ues of the kernel hyperparameters, define sample S2 that comprises values of ξ(S), across

a set of values of the input variable: s1, s2, . . . , smax. Thus, while sample S1 is generated

by sampling across kernel hyperparameter values, S2 is generated by sampling across input

space variable values. Then if ergodicity is assumed to hold in the system, distribution of

S1 and S2 will be the same. Loosely speaking, trends in the distribution of elements of both

samples will be the same.

However, what we need to assume, is weaker than ergodicity, namely, lack of continu-

ity in the variation within elements of one sample suggests the same within elements of the

other sample. Then it follows that:

discontinuous variation amongst members of sample S2 =⇒ discontinuity amongst ele-

ments of sample S1,

i.e. discontinuities in variation amongst ξ(s1), . . . , ξ(smax) =⇒ discontinuity within S1,

i.e. discontinuities in variation amongst v1, . . . , vmax =⇒ discontinuity within S1,

i.e. discontinuities in the data on V =⇒ discontinuities amongst values of ξ(si) generated

by spanning across the kernel hyperparameter values – effectively creating different sample

paths in the process.

So one way of acknowledging discontinuities in data, is by relaxing the restriction that

the same hyperparameter values parametrise all sampled functions; instead, stochastically
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varying hyperparameters are sought.

In this model, the kernel hyperparameters are themselves randomly varying, to accom-

pany every realisation of a sample function from the tensor-variate GP. Thus, we propose

treating each kernel hyperparameter as a realisation from a stochastic process. Such a

stochastic process is independent of the tensor-variate GP of course. Indeed, we sample

each hyperparameter from a distinct Gaussian Process. In practice, it is only the correla-

tion length scale parameters ℓ1, . . . , ℓd that we model in this way.

The underlying principle then is to sample a new length scale parameter of the kernel

function that parametrises a covariance matrix of the tensor-normal likelihood, at every

new realisation of the tensor-variate function ξ(·). To be clearer, we suggest modelling ℓc

as a function of ξ(·), where this function is then modelled as a realisation from a Gaussian

Process; c = 1, . . . , d. But, within our MCMC-based inference procedure, a new ξ(·)

function is sampled from the tensor-variate GP, at each iteration. The equivalent statement

of this is, that at the t-th iteration, ℓc = gc(t), ∀c = 1, . . . , d, where t = 0, 1, . . . , tmax, i.e.

the MCMC chain that we run, starts with the 0-th and ends with the tmax-th iteration. Here,

the function gc(·) that is modelled using a scalar-variate GP. Then at the t-th iteration,

a new function is sampled from the tensor-variate GP, the covariance structure of which

is specified in that iteration, upon the sampling of the ℓ1, . . . , ℓd parameter values from

d distinct and independent scalar-variate GPs. Thus we suggest an ordered sequence of

sampling–first of the length scale parameters, each from the d-number of scalar-variate

GPs–and then at the sampled ℓc values that fix the covariance structure of the generative

tensor-variate GP, of the high-dimensional function ξ(·). Such an ordered sequence of

sampling is possible within a Metropolis-within-Gibbs scheme that we propose for our

inference (discussed below).
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As the length scale parameter ℓc is modelled as a function of (the sampled function

ξ(·), and thereby of) the iteration number variable T ∈ Z≥0, the scalar-variate GP that it

is sampled from, in this modelling strategy, is given as ℓc = gc(T), , ∀c = 1, . . . , d, s.t.

the joint probability distribution of t0 number of ℓc values, with each value realised from

this scalar-variate GP, at each of t0 number of iterations, is multivariate normal, with mean

vector Mc and a covariance matrix Sc, i.e.

[gc(t − t0), . . . , gc(t − 2), gc(t − 1)] ∼ MN (Mc, Sc),

where Mc is a t0-dimensional vector and Sc is a t0 × t0-dimensional covariance matrix.

It is to be noted that there is no data-driven constraint on what we can choose for the

number t0 that gives the sample size of the realisations of each of the d length scale pa-

rameters. On the other hand, the value of t0 is driven to ensure feasibility of computational

manipulation of working with structures, the dimensionality of which is affected by t0.

One such structure is the t0-dimensional mean vector Mc, which is estimated as the empir-

ical mean of ℓc, given by a t0-dimensional vector, all components of which are given by the

scalar m
(t)
c := [gc(t− t0)+ . . .+ gc(t− 2)+ gc(t− 1)]/t0 ≡ [ℓ

(t−t0)
c + . . .+ ℓ

(t−1)
c ]/t0,

i.e. the empirical mean of the realisations of ℓc in the t − 1-th iteration, to the t − t0-th

iteration. Thus, computational load is not affected by t0 as far as this mean vector is con-

cerned. In fact, in the t-th iteration, upon the empirical estimation of the mean as given

above, it is subtracted from the “data” D
(t)
c′ := {ℓ(t−t0)

c , . . . , ℓ
(t−1)
c }, so that the subse-

quent mean-subtracted data D
(t)
c := {ℓ(t−t0)

c − m
(t)
c , . . . , ℓ

(t−1)
c − m

(t)
c }. It is indeed this

mean-subtracted sample that we model using a scalar-variate, zero-mean GP, s.t. the joint

probability distribution of elements of this sample (of size t0) is multivariate normal with

mean vector 0 and covariance matrix Sc, (∀c = 1, . . . , d, where d is the dimensionality of
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the input variable S in the definition of the original learning problem: V = ξ(S)).

Thus, the likelihood of the covariance matrix Sc, given realisations of the c-th length

scale parameter, in the last t0 number of iterations is

L(Sc|D(t)
c ) = MN (0, Σc), , ∀c = 1, . . . , d,

where for t ≥ t0, we model Sc as Sc = [s
(c)
αβ ], with

s
(c)
ab = ac exp

[
− (α − β)2

2δ2
c

]
, α, β = t − t0, . . . , t − 1, ∀c = 1, . . . , d.

Thus, we model the covariance structure of the scalar-variate GP that the c-th length scale

parameter is considered a realisation from, using a Square Exponential kernel function, the

global amplitude parameter of which is ac, and the length scale parameter of which is δc.

We will learn the hyperparameter values ac and δc, ∀c = 1, . . . , d, from the data. We realise

that the q-th diagonal element of Sc is ac, ∀q = 1, . . . , t0.

In the following section, we discuss the learning of the hyperparameters of the scalar-

variate GPs, that the hyperparameters of the covariance kernels of the generative tensor-

variate GP–that generates samples of the function ξ(·).

2.4 Inference

We discuss the MCMC-based inference on the unknowns here. To begin with, we will

discuss inference for the model in which each of the length scale hyperparameters of the

covariance kernel functions, is modelled using a scalar-variate, zero-mean GP, the covari-

ance matrix of which parametrised by a stationary kernel, thereby prompting the need to

learn the two scalar-valued hyperparameters of each such kernel function. This illustrative

case is succinctly referred to as the “nested-GP” model. To summarise, the unknowns in

this “nested GP” model include
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1(a) hyperparameters (global amplitude ac and correlation length scale δc) of the c-th ker-

nel function that parametrises the covariance matrix of the zero-mean multivariate

normal likelihood that equivalently represents the joint probability density of t0 real-

isations of the c-th length scale ℓc: c = 1, . . . , d. These hyperparameters are relevant

at the t-th iteration, where t ≥ t0. At such iterations, the updated values of ac and

δc for each c will provide a value for ℓc in each iteration. Here ℓ1, . . . , ℓd are the

unknown correlation length scales of one of the covariance matrices of the k-th or-

dered tensor normal likelihood that represents the joint probability of n realisations

of the observable V , where V = ξ(S), with S ∈ Rd. For our illustration of the

suggested inference, we will assume that only one of the covariance matrices (say

Σp, where p ∈ {1, 2, . . . , k}) of this tensor-normal density is kernel parametrised,

so that we need to model only the d length scale parameters of this matrix, each as a

realisation from a scalar-variate GP, with the global amplitude parameter of this ker-

nel, subsumed as a global scale for other covariance matrices that are learnt directly

from MCMC. Thus, in this illustration, there are 2d kernel hyperparameters to learn

in total: a1, . . . , ad, δ1, . . . , δd.

1(b) the correlation length scales ℓ1, . . . , ℓd of the kernel function that parametrises Σp,

at the t-iteration, where t < t0. At such early iterations, the hyperparameters of

the kernel function that parametrises Σp, are not modelled as realisations of a scalar-

variate GP, but are learnt directly using MCMC.

2 distinct elements of other covariance matrices of the tensor-normal density men-

tioned in the last bullet point, that are learnt directly using MCMC. We use the

qualification “distinct” to clarify that we seek only the upper (or lower) triangle of
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these symmetrical covariance matrices. Let these elements be jointly referred to as

{σq}qmax

q=1 , where qmax is known, given the number of such covariance matrices (out

of the total of k − 1 that are not kernel parametrised) that are directly inferred upon

by MCMC, and the dimensionality of each such matrix.

We undertake a Metropolis-within-Gibbs strategy to implement the MCMC-based in-

ference. For all iterations with iteration-number t ≥ t0, we partition the sought unknowns

to 2 sets: {ac, δc}d
c=1 and {σq}qmax

q=1 , and update the first set of unknowns in the first block

update, while the second set is updated in the second block update, at the updated values of

{ac, δc}d
c=1. For t < t0, we learn ℓ1, . . . , ℓd in the first block update and the σq parameters

in the next. The algorithm for the inference strategy is as follows.

1 In the 0-th iteration, set all unknown parameters to arbitrarily chosen seed values :

ac is set to the seed a
(0)
c and δc is set to the seed δ

(0)
c ∀c = 1, . . . , d; σq is set to the

seed σ
(0)
q ∀q = 1, . . . , qmax. We also set the length scales of the kernel-parametrised

covariance matrix Σp to their respective seed values, i.e. set ℓc := ℓ
(0)
c ∀c = 1, . . . , d.

2(a) At the beginning of the t-th iteration, for t < t0, the current value of the ellc parame-

ter is ℓ
(t−1)
c . We propose the new value, ℓ

(t⋆)
c from a Gaussian distribution, the mean

of which is the current value of this parameter, namely ℓ
(t−1)
c , and the variance of

which is chosen experimentally, to be the constant vc, i.e.

ℓ
(t⋆)
c ∼ N (ℓ

(t−1)
c , vc).

This proposing is undertaken ∀c = 1, . . . , d. We choose adequate prior probability

densities (often Gaussian priors with mean ℓ
(0)
c and large constant variances) on all

the ℓc parameters. We refer to these prior probability densities as π0(ℓ1, . . . , ℓd). The
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proposed ℓc parameters then inform the kernel function Kp(·, ·) that is used to kernel

parametrise the covariance matrix Σp, s.t. the proposed kernel-parametrised covari-

ance matrix in the t-th iteration, t < t0, is Σ
(t⋆)
p = A

(t⋆)
p (A

(t⋆)
p )T, while the current

values of the ℓc parameters suggest that the current kernel-parametrised covariance

matrix is Σ
(t−1)
p = A

(t−1)
p (A

(t−1)
p )T. We compute Σ

(t⋆)
p =

[
exp

(
− (si−sj)

2

2(ℓ(t⋆))2

)]
,

where ℓ(t⋆) := (ℓ
(t⋆)
1 , . . . , ℓ

(t⋆)
d )T. Similarly, Σ

(t−1)
p is defined in terms of the vector

of the length scales, ℓ(t−1) that is the current value of the end of the t− 1-th iteration.

3(a) We compute the ratio of the posterior probability densities of the proposed ℓc param-

eters given the training data D to the posterior density of the current ℓc values. The

ratio of the proposal densities does not get invoked since the proposal is symmetric.

Thus, the ratio that we compute is

r :=
exp(−‖(D)×1 A−1

1 . . . ×p (A
(t⋆)
p )−1 . . . ×k A−1

k ‖2/2)π0(ℓ
(t⋆)
1 , . . . , ℓ

(t⋆)
d )

exp(−‖(D)×1 A−1
1 . . . ×p (A

(t−1)
p )−1 . . . ×k A−1

k ‖2/2)π0(ℓ
(t−1)
1 , . . . , ℓ

(t−1)
d )

,

and compare r with the value of the uniform random variate U ∼ U[0, 1].

–If u ≥ r, we reject the proposed values ℓ
(t⋆)
1 , . . . , ℓ

(t⋆)
d , and set the current value of the ℓc

parameter at the end of the t-th iteration to be ℓ
(t)
c = ℓ

(t−1)
c ∀c = 1, . . . , d.

–If u < r, we accept the proposed values ℓ
(t⋆)
1 , . . . , ℓ

(t⋆)
d , and set the current value of the ℓc

parameter at the end of the t-th iteration to be ℓ
(t)
c = ℓ

(t⋆)
c , ∀c = 1, . . . , d.

Thus, for iterations t < t0, the first block update is a manifestation of Random Walk.

2(b) If the iteration number t is s.t. t ≥ t0, then we model the ℓc parameters, each as a realisation

from a distinct scalar-variate GP, the covariance structure of which is kernel-parametrised s.t.

these kernel hyperparameters are ac and δc, ∀c = 1, . . . , d. Then the counterpart of point

2(a), within the “nested GP” approach, is now discussed. Let the current values of ac and δc

be a
(t−1)
c and δ

(t−1)
c . We propose values of these parameters in the t-th iteration, respectively

from a Truncated-Normal density (left-truncated at 0, mean a
(t−1)
c , and experimentally cho-

sen constant variance v
(c)
a ), and a Normal (mean δ

(t−1)
c , and experimentally chosen constant

variance v
(c)
δ ), i.e.

a
(t⋆)
c ∼ TN (a

(t−1)
c , 0, v

(c)
a ), ∀c = 1, . . . , d,

δ
(t⋆)
c ∼ N (δ

(t−1)
c , 0, v

(c)
δ ), ∀c = 1, . . . , d.

Now the GP that ℓc is modelled with, currently has a covariance structure that is parametrised

by the t0 × t0-dimensional covariance matrix Sc s.t. currently the ij-th element of this matrix

is the covariance between the value of ℓc that was current in the t− i-th iteration and the value

current in the t − j-th iteration, i.e. S
(t−1)
c =

[
a
(t−1)
c exp

(
− (i−j)2

2(δ
(t−1)
c )2

)]
; i, j = 1, . . . , t0.
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Thus, at any fixed value (say i) of the input variable–the iteration number–the i-th diagonal

element a
(t−i)
c of the covariance matrix S, gives the variance of the Gaussian distribution

that ℓ
(t−i)
c can be considered to be sampled from. Following this, we reduce this scalar-

variate GP to a Gaussian distribution, by fixing the value of the input-space variable, (which

in this situation is the iteration number), to t. Then the proposed variance of the Gaussian

distribution that ℓc is sampled from, at the t-th iteration, is the proposed value of the ac

parameter in this iteration, i.e. a
(t⋆)
c . Under a Random Walk paradigm, the mean of this

Gaussian distribution is the current value of the ℓc parameter. In other words, the model

suggests that

ℓ
t⋆
c ∼ N (ℓ

(t−1)
c , a

(t⋆)
c ).

This is essentially suggesting an adaptive Random Walk updating scheme for the ℓc parame-

ter, ∀c = 1, . . . , d.

3(b) This is the counterpart of point 3(a) for the t ≥ t0 iterations, i.e. when the “nested GP”

model is in play. Again, as during the discussion of 3(a), here we compute the ratio of

the posterior probability densities of the proposed to the current values of the unknowns

that are updated in the first block. This posterior density has the contribution from the k-

th ordered tensor-normal likelihood that the observable V (= ξ(S)) is modelled as a re-

alisation from. But the covariance matrix Σp of this tensor-normal likelihood is kernel-

parametrised, with a GP prior imposed on each length scale parameters ℓ1, . . . , ℓd of this

kernel function. Then the joint probability density of the set of t0 number of realisations

{ℓ(t−t0)
c , . . . , ℓ

(t−1)
c } of the parameter ℓc, from the scalar-variate, zero-mean GP, is multi-

variate normal with mean vector 0 and covariance matrix Sc = [s
(ij)
c ], which is kernel-

parametrised as s
ij
c = ac exp

[
− (i − j)2

2δ2
c

]
, s.t. the current value of the covariance matrix in

the t-th iteration is S
(t−1)
c =

[
a
(t−1)
c exp

[
− (i − j)2

2(δ
(t−1)
c )2

]]
, and the proposed value of the

covariance matrix in the t-th iteration is S
(t⋆)
c =

[
a
(t⋆)
c exp

[
− (i − j)2

2(δ
(t⋆)
c )2

]]
. In other words,

the prior probability density on the t0-dimensional vector ℓ
(t0)
c := (ℓ

(t−t0)
c , . . . , ℓ

(t−1)
c )T of

values of the c-th length scale parameter, over the last t0 iterations is multivariate normal,

with mean vector 0 and covariance matrix S, i.e.

π0(ℓ
(t−t0)
c , . . . , ℓ

(t−1)
c ) =

1√
det(2πS)

exp

[
−1

2
(ℓ

(t0)
c )TS−1(ℓ

(t0)
c )

]
,

where ℓ
(t0)
c and the current and proposed S (as a function of current and proposed ac and δc

values) are defined above. This is true ∀c = 1, . . . , d. Then the ratio of the posterior prob-
ability density of the proposed to the current values of the unknowns a1, . . . , ad, δ1, . . . , δc,
given the data is

r :=

exp(−‖(D)×1 A−1
1 . . . ×p (A

(t⋆)
p )−1 . . . ×k A−1

k
‖2/2)

d
∏

c=1

1√
det(2πS(t⋆) )

exp

[
− 1

2 (ℓ
(t0)
c )T (S(t⋆))−1(ℓ

(t0)
c )

]
d
∏

c=1
TN (a

(t⋆)
c , 0, v

(c)
a )

exp(−‖(D)×1 A−1
1 . . . ×p (A

(t−1)
p )−1 . . . ×k A−1

k
‖2/2)

d
∏

c=1

1√
det(2πS(t−1) )

exp

[
− 1

2 (ℓ
(t0)
c )T (S(t−1))−1(ℓ

(t0)
c )

]
d
∏

c=1
TN (a

(t−1)
c , 0, v

(c)
a )

,
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and compare r with the value of the uniform random variate U ∼ U[0, 1].
–If u ≥ r, we reject the proposed values of the unknowns, and set the current value of the

δc and ac parameters at the end of the t-th iteration to be a
(t)
c = a

(t−1)
c , δ

(t)
c = δ

(t−1)
c , ∀c =

1, . . . , d.

–If u < r, we accept the proposed values, and set a
(t)
c = a

(t⋆)
c , δ

(t)
c = δ

(t⋆)
c , ∀c = 1, . . . , d.

Thus, the updating for the δc parameters is Random Walk as they are proposed from a Gaus-

sian.

4 In this point, we discuss the updating of the remaining unknowns, σ1, . . . , σqmax , i.e. the el-

ements of covariance matrices of the tensor-normal joint probability distribution of a set of

realisations of V (= ξ(S)), that are not kernel-parametrised, but learnt directly by MCMC.

These elements can in general be positive or negative, and so, in the t-th iteration, we propose

them from a Truncated Normal with mean given by their current value σ
(t−1)
q , and experi-

mentally fixed variance vq, q = 1, . . . , qmax, i.e. the proposed value is

σ
(t⋆)
q ∼ TN (σ

(t−1)
q , vq) ∀q = 1, . . . , vq.

Then using these proposed values of the elements, the proposed values of all covariance ma-

trices other than Σp that is kernel-parametrised, are Σ
(t⋆)
1 , . . . , Σ

(t⋆)
p−1, Σ

(t⋆)
p+1, . . . , Σ

(t⋆)
k , while

their current values (populated by the current values σ
(t−1)
q of elements) are:

Σ
(t−1)
1 , . . . , Σ

(t−1)
p−1 , Σ

(t−1)
p+1 , . . . , Σ

(t−1)
k . The prior probability densities on the σq parameters

are treated as Gaussians with mean given by the seed value of σ
(0)
q and experimentally chose,

large variance, to suggest vague priors. Thus, the ratio of the posterior probability of the pro-
posed and current σ1, . . . , σqmax , parameters, given the training data D, at the already updated

Σp to value Σ
(t)
p = (A

(t)
p )T A

(t)
p , is

r :=
exp(−‖(D)×1 (A

(t⋆)
1 )−1 . . . ×p−1 (A

(t⋆)
p−1)

−1 ×p (A
(t)
p )−1 ×p+1 (A

(t⋆)
p+1)

−1 . . . ×k (Ak(t⋆))
−1‖2/2)π0(σ

(t⋆)
1 , . . . , σ

(t⋆)
qmax )

exp(−‖(D)×1 (A
(t−1)
1 )−1 . . . ×p−1 (A

(t−1)
p−1 )−1 ×p (A

(t⋆)
p )−1 ×p+1 (A

(t−1)
p+1 )−1 . . . ×k (Ak(t − 1))−1‖2/2)π0(σ

(t−1)
1 , . . . , σ

(t−1)
qmax )

,

and compare r with the value of the uniform random variate U ∼ U[0, 1].
It is possible that some of these k − 1 covariance matrices are not learnt using MCMC, but

empirically estimated–in that case, the empirically estimated value of the corresponding co-

variance matrix is used in both denominator and numerator in the definition of the likelihood

above, instead of its current and proposed values respectively. –If u ≥ r, we reject the

proposed values of the unknowns, and set the current value of the σq at the end of the t-th

iteration to be σ
(t)
q = σ

(t−1)
q , ∀q = 1, . . . , qmax.

–If u < r, we accept the proposed values, and set σ
(t)
q = σ

(t⋆)
q , ∀q = 1, . . . , qmax.

Thus, the updating for the σq parameters is Random Walk as they are proposed from a Gaus-

sian.

5 Repeat steps 2-5 until t = tmax, the length of the chain.

From an inference point of view, it is important to remind ourselves that only those kernels

that allow for positive definiteness of the corresponding covariance matrix, are to be used.
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Since in this work, Σp is kernel parametrised, s.t. the diagonal elements of Σp designed

to be unity, and any off-diagonal element is less than unity. So its positive definiteness

is assured. The proposing of the diagonal elements (as well as the off-diagonal ones) of

the other covariance matrices that are learnt directly from MCMC, is from a truncated

Normal, thus ensuring positive definteness of the diagonal elements. In addition, at every

iteration we will need to keep an eye on the overall adherence to postive definteness, and

reject samples that imply deviation from positive definiteness of such covariance matrices

that are learnt directly from MCMC. This is done in the application discussed below, by

checking that the determinant of the only relevant, directly-learnt covariance matrix (that

is 2×2-dimensional), is always positive.

If the “nested GP” model is not invoked at all, i.e., the length scale parameters ℓ1, . . . ℓd

of the kernel function of the kernel-parametrised covariance function Σp are treated as un-

known constants that are learnt using MCMC, then steps 2(b) and 3(b) can be ignored in the

above algorithm, and steps 2(a) and 3(a) imposed for all iterations, for all t = 1, . . . , tmax.

In that case, marginals (allowing for 95% HPDs) of σ1, . . . , σqmax, ℓ1, . . . , ℓd are learnt. On

the other hand, when the “nested GP” model is invoked, with the “lookback time” chosen

to be set as t0 iterations behind the current iteration, then marginals (with 95% HPDs) on

σ1, . . . , σqmax, a1, . . . , ad, δ1, . . . , δd are obtained. We can, in this case, also generate values

of ℓ1, . . . , ℓd at the end of the first block update (on the ac, δc parameters) in every iteration

past iteration number t0, since the generative GP that ℓc is a realisation of, is updated in this

block update. Thus, values of ℓ1, . . . , ℓd are predicted at every iteration, when this “nested

GP” model is invoked.
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2.5 Application

We are going to illustrate our method using an application on astronomical data. In this

application, we are going to learn the location of Sun in the two dimensional Milky Way

(MW) disk. The training dataset comprises a set of 2-dimensional velocity vectors of a

sample of stars around the Sun, where such velocity vectors are generated via numerical

simulations conducted with varying astronomical models of the Galaxy. Given each such

astronomical model of the Galaxy, a set of 2-dimensional vectors of this sample of stars

is recorded, i.e. the data recorded at each choice of the Galactic model, is a set of p = 2

velocity components of the same k = 50 stars, rendering the data recorded for each choice

of the galactic model, a matrix with k = 50 rows and p = 2 columns. In fact, a total

of n = 216 of such Galactic models were chosen, s.t. the full training data is a cuboid

comprising n = 216 number of matrices, each of which is 50 × 2-dimensional. Each

such chosen Galactic model corresponds to a choice of a 2-dimensional vector S that bears

information about the Milky Way features. Then we treat this situation to state that at

each value of the d = 2-dimensional vector-valued input variable S = (S1, S2)
T, a k × p-

dimensional (50 × 2-dimensional) matrix-valued observable V is generated. There are

n = 216 such choices of values of S, i.e. there are n design points, and the value of

the observable V at each of the n design points, is identifiable. Thus, the training data is

D = {(si, vi)}n
i=1.

At the same time, there exists the test data v(test) that comprises the p = 2-dimensional

velocity vectors of the same k = 50 number of stellar neighbours of the Sun, as measured

by the Hipparcos satellite [Chakrabarty, 2007]. However, we do not know the real Milky

Way feature parameter vector s(test) at which V = v(test) is realised.
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We frame this problem to state that V = ξ(S), and we want to predict the value s(test)

of S, at which V = v(test), upon learning ξ(·), using the training data D.

Since we are observing the velocities of stars around the Sun, the observed velocities

will be impacted by certain Galactic features. These features include location of the Sun.

In other words, the observed velocities of our stellar neighbours, as expressed as the matrix

v(test) that is the measured test data, can be regarded as resulting from the Galactic features

(including the sought solar location) to bear certain values. Put another way, the matrix of

the observed velocities V is treated to be (functionally) related to the location vector of the

Sun S, and this way we can write V = ξ(S). On galactic length scales, the Earth-bound

observer’s location in the Milky Way disk is equivalent to the location of eh Sun in the

Miky Way disk. So in the discussion below, the “observer’s location” is held the same as

the solar location.

Here for V ∈ Rm1×m2×m2 and S ∈ Rd, ξ : Rd −→ Rm1×m2×m3 . So, an observer

located at the location S = s1 will observe the neighbouring stars to have a velocity matrix

that is different from the velocity matrix of the neighbouring stars measured by another

observer at S = s2, and the velocity matrix measured by observer at location si bears the

stamp of this location, i = 1, . . . , n.

We learn this function ξ(·) using training data which includes n pairs of values of chosen

solar location vector and the stellar velocity matrix observed at this solar location. Thus, the

full training data is a 3-dimensional tensor which has the dimensionality of m1 × m2 × n.

For the i-th slice of the tensor is a m2 × m1 matrix, which is observed at the location si,

i = 1, . . . , n. We use the astronomical simulated data (presented by [Chakrabarty, 2007])

as our training data. In this application, we will learn the covariance structure of the training

data and predict the value of the solar/observer location parameter S, at which the measured
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or test data is realised.

In [Chakrabarty et al., 2015], the matrix of velocities was vectorised, so that the observ-

able was then a vector. In our case, the observable is V–a matrix.

By this process of vectorisation, [Chakrabarty et al., 2015] miss out on the opportu-

nity to learn the covariance amongst the columns of the velocity matrix, (i.e. amongst the

components of the velocity vector), distinguished from the covariance amongst the rows,

(i.e. amongst the stars that are at distinct relative locations with respect to the observer).

Our work allows for clear quantification of such covariances. More importantly, our work

provides a clear methodology for learning given high-dimensional data comprising mea-

surements of a tensor-valued observable.

In our application we realise that the location vector of the observer is 2-dimensional,

i.e. d=2 since the Milky Way disk is assumed to be 2-dimensional. Also, each stellar ve-

locity vector is also 2-dimensional, i.e. m1=2. [Chakrabarty, 2007] generated such training

data by first placing a regular 2-dimensional polar grid on a chosen annulus in an astronom-

ical model of the MW disk. In the centroid of each grid cell, an observer was placed. There

were n grid cells, so, there were n observers placed in this grid, such that the i-th observer

measured the velocities of m2i stars that landed in her grid cell, at the end of a simulated

evolution of a sample of stars that were evolved in this model of the MW disk, under the

influence of the feature parameters that mark this MW model. We indexed the m2i stars by

their location with respect to the observer inside the grid cell, and took a stratified sample

of m2 stars from this collection of m2i stars while maintaining the order by stellar location

inside each grid; i = 1, . . . , n. Thus, each of the observers records a sheet of information

that contains the 2-dimensional velocity vectors of m2 stars, i.e. the training data D com-

prises n-number of m2 × 2-dimensional matrices, with each generated at a design point.
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Then the velocity matrices that contribute to the training data is a 3-tensor. We call this

the “observed tensor”: D
(2×m2×n)
V . We realise that the i-th velocity matrix or sheet in the

training data D, is realised at the observer location si that is the i-th design point in our

training data. We use n=216 and m2=50. The test data measured by the Hipparcos satellite

is then the 217-th sheet, except we are not aware of the value of S that this sheet is realised

at. We clarify that in this polar grid, observer location S is given by 2 coordinates: the first

S1 tells us about the radial distance between the Galactic centre and the observer, while the

second coordinate of S2 denotes the angular separation between a straight line that joins

the Galactic centre to the observer, and a pre-fixed axis in the MW. This axis is chosen to

be the long axis of an elongated bar of stars that lies pivoted at the Galactic centre, as per

the astronomical model of the MW that was used to generate the training data.

As mentioned above, the maximum likelihood estimate of the mean tensor is removed

from the data to allow us to work with a zero mean tensor normal density that represents

the likelihood.

Since the data is the oserved 3-tensor DV (built of n observations of the 50 × 2-

dimensional matrix-variate observable V ), the likelihood is a 3rd-order tensor Normal dis-

tribution, with zero mean tensor (following the removal of the estimated mean) and 3 co-

variance matrices that measure:

–amongst-observer-location covariance (Σ
(216×216)
3 ),

–amongst-stars-at-different-relative-position-w.r.t.-observer covariance (Σ
(50×50)
2 ), and

–amongst-velocity-component covariance (Σ
(2×2)
1 ).

We perform kernel parametrisation of Σ3, using the SQE kernel such that the jp-th

element of Σ3 is kernel-parametrised as [σjp] = exp
(
−(sj − sp)

TQ−1(sj − sp)
)

, j, p =

1, . . . , 216. Since S is a 2-dimensional vector, Q is a 2× 2 square diagonal matrix, the
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elements ℓ1 and ℓ2 of which, represent the the correlation length scales.

Indeed, unless the “nested GP” model is invoked, this model of the covariance function

suggests the same correlation length scales between the values the sampled function at

any two points in its support, any two values of the input space variable S, and this is a

simplification. However, this non-nested GP model still implies that the learning of the

216 × 216-dimensional covariance matrix Σ3, has been reduced to the learning of 2 length

scale parameters ℓ1, ℓ2. Here the global amplitude of the kernel function is subsumed into

the global scale that multiplies the covariance matrix Σ1, elements of which are learnt

directly by MCMC.

Under the “nested GP” model, ℓc is modelled as a realisation from a scalar-variate, zero-

mean GP, s.t. the joint probability of t0-number of realisations of ℓc–obtained over the last

t0 iterations of the Metropolis-within-Gibbs chain–is multivariate normal, with covariance

matrix Sc = [s
(c)
αβ ] =

[
ac exp

(
− (α − β)2

2δ2
c

)]
, α, β = t − t0, . . . , t − 1, c = 1, 2. We are

free to choose t0, and choose it as large as possible, urged to achieve as wide a coverage

of the chain’s history as possible, subject to computational constraints–after all, the bigger

is t0, the larger is the matrix S, and therefore more computationally challenging is the

inversion of S, that we need to undertake at every iteration of our MCMC-based inference

scheme, (see point 3(b) of the algorithm, discussed above). In light of this challenge, we use

t0 to typically be about 102, with t0 ≤ 500 in all our experiments. Thus, at each iteration,

under the invoked “nested GP” model, we update a1, a2, δ1, δ2, and sample a value of each

of ℓ1 and ℓ2, from the updated scalar-variate, zero-mean GP that this parameter is treated as

a realisation from. For the 0-th to the t0 − 1-th iterations however, the “nested GP” model

is not implemented, and we learn the ℓ1 and ℓ2 parameters only, in the first block update of

our Metropolis-within-Gibbs scheme.
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Σ1 measures covariance amongst the matrices or sheets obtained at distinct components

of the velocity vector. As there are only such 2 components, there are 2 such sheets. How-

ever, we are not aware of any input variable at which these sheets are realised. Therefore

we need to learn the 4 elements of this matrix directly from MCMC. As the covariance

matrix is symmetric, we need to learn only 3 of the 4 parameters. We are going to learn the

two diagonal elements and one non-diagonal element in the Σ1 matrix. The two diagonal

elements will be learnt by our MCMC algorithm directly. However, the non-diagonal ele-

ment σ
(1)
12 can be written as σ

(1)
12 = ρ

√
σ
(1)
11 σ

(1)
22 where ρ is the correlation amongst these

two vertical sheets in the training data on the observable V . Thus, instead of learning the

σ
(1)
12 directly, we choose to learn the correlation parameter ρ, using our MCMC algorithm.

The elements of the m2 × m2 = 50 × 50-dimensional Σ2 covariance matrix are not

learnt by MCMC. Firstly, there is no input space variable that can be identified, at which the

ij-th element of Σ2 can be considered to be realised, where i and j are arbitrarily assigned

indices of a pair of stars observed in the 50-star-strong sample of stellar neighbours of the

Sun, i.e. i, j = 1, . . . , 50. So, the ij-th element of Σ2 gives the covariance amongst the i-th

and j-th, 216-dimensional matrices of the 2-dimensional velocity vectors respectively, of

the i-th and j-th sampled stars, generated in the astronomical simulation (that generates the

training data), at the 216 different chosen values of the Sun’s location on the Milky Way

disk; ∀i, j = 1, . . . , 50. Effectively, the 41st star could have been referred to as the 3rd star

in this sample, and the vice versa, i.e. there is no meaningful ordering in the labelling of

the sampled stars with these indices. Therefore, we cannot use these labels as input space

variable, in terms of which, the covariance between the i-th and j-th 216 × 2-dimensional

velocity matrices can be kernel-parametrised. One possibility then is to learn elements in

the upper (or lower) triangle of Σ2 directly, using MCMC. However, there are 25 × 49
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number of such elements, which is too large a number to allow for direct MCMC-based

learning. In light of this, we will perform empirical estimation of the elements of Σ2.

So the ij-th element of Σ2, i.e. the covariance between the 216 × 2-dimensional matrix

V i := [v
(i)
pq ] of the i-th and the matrix V j := [v

(j)
pq ] of the j-th labelled sampled stars,

(p = 1, . . . , 216; q = 1, 2), is estimated as σ̂
(2)
ij , where:

σ̂
(2)
ij =

1

2 − 1
×

2

∑
q=1

[
1

216
×
(

216

∑
p=1

(v
(i)
pq − v̄

(i)
q )× (v

(j)
pq − v̄

(j)
q )

)]
,

where v̄
(i)
q =

(
∑

216
p=1 v

(i)
pq

)

216
is the sample mean of the q-th column of the matrix V i = [v

(i)
pq ].

Thus, within the non-”nested GP” model, from the training data, we have 5 parameters

to learn: ℓ1,ℓ2,σ
(1)
11 ,ρ,σ

(1)
22 , where these parameters are defined as in:

Q =



ℓ1 0

0 ℓ2


 ; Σ3 =




σ
(1)
11 σ

(1)
12

σ
(1)
12 σ

(1)
22


 ; ρ =

σ
(1)
12√

σ
(1)
11 σ

(1)
22

The likelihood of the GP parameters given the training data is then given as per Equa-

tion 2.1:

f (D|ℓ1, ℓ2, σ
(1)
11 , σ

(1)
22 , ρ) = (2π)−m/2(

3

∏
i=1

|Σi|−m/2mi)

× exp(−‖(D − M̂)×1 A1
−1 ×2 Â2

−1 ×3 A−1
3 ‖2/2).

(2.7)

where Σp = Ap AT
p , p = 1, 2, 3 and M̂ is the empirical estimate of the mean tensor and

Σ̂2 is the empirical estimate of the covariance matrix Σ2 such that Σ̂2 = Â2Â2
T

. Here

m3 = 216, m2 = 50, m1 = 2, and m = m1m2m3.

This allows us to write the joint posterior probability density of the unknown parameters

given the training data D. We generate posterior samples from it using MCMC. To write

this posterior density, we impose non-informative prior probability densities π0(·) on each
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of our unknowns (Gaussian with wide, experimental chosen variances, and mean that is the

arbitrarily chosen seed value of ℓ·, and Jeffry’s on Σ1). The posterior probability density of

our unknown GP parameters, given the training data is then

π(ℓ1, ℓ2, σ
(1)
11 , σ

(1)
22 , ρ|D) ∝

ℓ(D|Σ1, Σ3)× π0(ℓ1)π0(ℓ2)π0(Σ1).

(2.8)

The results of our learning and estimation of the mean and covariance structure of the GP

used to model this tensor-variate data, is discussed below in Section 2.7.

Within the ”nested GP” model, from the training data, we have 7 parameters to learn:

a1, a2, δ1,δ2,σ
(1)
11 ,ρ,σ

(1)
22 , where the learnt values of ac, δc, (c = 1, 2) inform on the zero-

mean multivariate Normal joint probability density of t0 realisations of the length scale

parameter ℓc. In every iteration, a value of ℓc is sampled, from the updated (at the updated

ac, δc values), scalar-variate GP that is the generative process for ℓc.

The joint posterior probability density of the unknown parameters given the training

data D, under the “nested GP” model is given by

π(δ1, δ2, a1, a2.ℓ1, ℓ2, σ
(1)
11 , σ

(1)
22 , ρ|D) ∝

(2π)−m/2(
3

∏
i=1

|Σi|−m/2mi)

× exp(−‖(D − M̂)×1 A1
−1 ×2 Â2

−1 ×3 A−1
3 ‖2/2)

×
2

∏
c=1

1√
det(2πS)

exp

[
−1

2
(ℓ

(t0)
c )TS−1(ℓ

(t0)
c )

]
× π0(Σ1),

(2.9)

where ℓ
(t0)
c := (ℓ

(t−t0)
c , . . . , ℓ

(t−1)
c )T, and Sc =

[
ac exp

[
− (i − j)2

2(δc)2

]]
.

We generate posterior samples using MCMC, to identify the marginal posterior proba-

bility distribution of each unknown. The marginal then allows for the computation of the

95% HPD.
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2.6 Predicting

The aim of learning all GP parameters, i.e. parametrising the generative process that gives

rise to the function ξ(·) (where the observable V = ξ(S)), is that we are going to predict

the value s(test) of the input variable S, at which test data on V is realised. In the context of

our application, s(test) is the location vector of the Sun in the Milky Way disk, i.e. it is the

location of the observer who observes the velocity matrix of a sample of nearby stars, as

included in the test data. This test data v(test) is a 50× 2 matrix that includes measurements

of velocities of 50 stars that are neighbours of the Sun. We use two different methods for

making inference on s(test) = (s
(test)
1 , s

(test)
2 )T, in next section.

In one method we learn the GP parameters and s
(test)
1 and s

(test)
2 simultaneously from

the same MCMC chain run using both training and test data. The tensor that includes

both test and training data has dimensions of 217 × 50 × 2. We call this augmented data

D∗ = {v1, ..., v50, v(test)}, to distinguish it from the observed tensor DV that contributes to

the training data D. This 217-th sheet of (test) data is realised at the unknown value s(test)

of S, and upon its addition, the updated covariance amongst the sheets generated at the

different values of S, is renamed Σ
∗
1 , which is now rendered 217 × 217-dimensional. Then

Σ
∗
1 includes information about s(test) via the SQE-based kernel parametrisation discussed

in Section 2.2.1. The effect of the inclusion of the test data on the other covariance matrices

is less; we refer to them as (empirically estimated) Σ̂
∗
2 and Σ

∗
3 . The updated (empirically

estimated) mean tensor is M̂
∗
. The likelihood for the augmented data is:

f (D∗|s(test), Σ
∗
1 , Σ

∗
3) = (2π)−m/2

(
3

∏
i=1

|Σ∗
i |−m/2mi

)
×

exp
[
−‖(D∗ − M̂

∗
)×1 (A∗

1)
−1 ×2 (Â∗

2)
−1 ×3 (A∗

3)
−1‖2/2

]
(2.10)

where Â∗
2 is the square root of Σ̂

∗
2 . Here m1 = 217, m2 = 50, m3 = 2, and m = m1m2m3.
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Here A∗
1 is the square root of Σ

∗
1 and depends on s(test).

The posterior probability density of the unknowns given the test+training data is:

π(s
(test)
1 , s

(test)
2 , Σ

∗
1 , Σ

∗
3 |D∗) ∝

f (D∗|s(test)
1 , s

(test)
2 , Σ

∗
1 , Σ

∗
3)×

π0(s
(test)
1 )π0(s

(test)
2 )π0(q

(∗)
2 )π0(q

(∗)
1 )π0(Σ

∗
3)

.

(2.11)

As discussed above, we use non-informative prior probability densities on all GP parame-

ters and uniform priors on s
(test)
1 and s

(test)
2 . So π0(s

(test)
p ) = U(lp, up), p = 1, 2, where lp

and up are chosen depending on the spatial boundaries of the fixed area of the Milky Way

disk that was used in the astronomical simulations of [Chakrabarty, 2007]. Recalling that

the observer is located in a two-dimensional polar grid, [Chakrabarty, 2007] set the lower

boundary on the value of the angular position of the observer to 0 and the upper boundary

is π/2 radians, i.e. 90 degrees, where the observer’s angular coordinate is the angle made

by the observer-Galactic centre line to the long-axis of the elongated Galactic bar made

of stars that rotates pivoted at the Galactic centre (discussed in Section 1). The observer’s

radial location is maintained within the interval [1.7,2.3] in model units, where the model

units for length are related to galactic unit for length, as discussed in Section 2.7.2.

In the second method, we infer s(test) by sampling from the posterior density of s(test)

given the test+training data and the modal values of the parameters q1, q2, σ
(1)
11 , ρ, σ

(1)
22 that

were learnt using the training data. The modal value of Σ3, learnt using trainng data alone is

[(σ
(M)
3 )jp]

217,217
j=1;p=1, where Σ

⋆
3 = (σ

(M)
3 )jp =

[
exp

(
−(sj − sp)TQ(M)(sj − sp)

)]
, with

the unknown s217 = s(test) and the diagonal elements of Q given as the modal values q
(M)
1

and q
(M)
2 that were learnt using training data alone. Similarly, Σ1 is retained as the modal
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value Σ
(M)
1 that was learnt using the training data alone.

The posterior probability density of s(test), at learnt (modal) values is then

π(s
(test)
1 , s

(test)
2 |D∗, Σ

(M)
1 , Σ

⋆
3) ∝

f (D∗|s(test)
1 , s

(test)
2 , Σ

(M)
1 , Σ

⋆
3)× π0(s

(test)
1 )π0(s

(test)
2 )

× π0(q
(M)
2 )π0(q

(M)
1 )π0(Σ3)|V∗).

(2.12)

where f (D∗|s(test)
1 , s

(test)
2 , Σ

∗
1 , Σ

(M)
3 ) is as given in Equation 2.3, with Σ

∗
3 replaced by Σ3,

and Σ1 replaced by its modal value σ
(M)
1 . The prior probability densities on s

(test)
1 and

s
(test)
2 are as discussed above. For all parameters, we use Normal proposal densities that

have experimentally chosen variances.

Prediction according to this second method is faster, since the number of parameters

that we are learning is less than when we sample according to the first method suggested

above, i.e. sampling from the joint posterior of all uknowns (s(test) as well as relevant

uknown parameters of the general tensor-Normal density that represents our likelihood),

given all data (training and test). In fact, in that first method, we are suggesting making

inference on all relevant parameters anew, every time we have a new test datum. This may

indeed be an overkill. However, in this method, concerns about mis-representative nature

of the training data, may stand mitigated. For the sake of quicker prediction, the second

method of predicting is used.

2.7 Results

In this section, we present the results of learning the unknown parameters of the 3rd-order

tensor-normal likelihood, given the training as well as the training+test data.

While Figure 2.1 and Figure 2.2 depict results obtained from using the “non-nested”
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Figure 2.1: Results from run done with observed matrix DV that contributes to the training

data D, with only the top layer of GP included in the model, are shown in grey (or red

in a coloured or the electronic copy of the thesis) while results from run undertaken with

training and test data, D⋆, in this “non-nested” model, are depicted in black. Traces of the

logarithm of the likelihood are displayed from the two runs in the top left panel. Reciprocal

of the length scale parameters are the shown in the top middle and right panels; here qc =

ℓ−1
c , c = 1, 2. Traces of the learnt diagonal elements σ

(1)
11 and σ

(1)
22 , of the covariance

matrix Σ1, are shown in the mid-row, left and middle panels. Trace of the correlation

ρ =
σ12√

σ
(1)
11 σ

(1)
22

is displayed in the mid-row right panel. Prediction of the values of the

input parameter S = (S1, S2)
T is possible only in the run performed with both training

and test data. Traces of S1 and S2 values learnt via MCMC-based sampling from the joint

posterior probability density of all unknown parameters given D⋆, are shown in the lower

panel.

.
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Figure 2.2: Results from run done with observed matrix DV that contributes to the training

data D, with only the top layer of GP included in the model, are shown in grey (or red in a

coloured or the electronic copy of the thesis) while results from run undertaken with train-

ing and test data, D⋆, in this “non-nested” model, are depicted in black. The histograms

presented here represent histograms of the marginal posterior probability distributions of a

parameter given training data D (in grey broken lines–or red broken lines, in the electronic

version), and given test+training data D⋆ in black solid lines.

.
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GP, in the Figures 2.3, 2.4, 2.5, 2.6, results of the learning of from the “nested” GP models

are included. In this “nested” GP model, the covariance matrix Σ3 (that bears information

about the covariance structure between sheets of data generated at different values of the

input variable S = (S1, S2)
T), is parameterised using a kernel, each length-scale hyperpa-

rameter of which is itself considered sampled from a GP. For each such scalar-variate GP

that generates the length-scale ℓc, c = 1, . . . , d = 2 the covariance matrix is itself kernel-

parametrised using a stationary kernel, with an amplitude parameter Ac and length-scale

parameter δc. Figures 2.3 to 2.6 that depict results from the nested-GP approach will then

include results of the learning of values of these Ac and value δc of the reciprocal of the δc

parameters. Also, our modelling under the nested-GP paradigm relies on a lookback-time

parameter T0, which gives a chosen number of iterations. To quickly recap the essence

of T0 as discussed earlier in Section 2.5: we model ℓc as a function of the iteration num-

ber, where this function is modelled as a realisation from a scalar-variate GP, s.t. the joint

probability of t0-number of realisations of this function (i.e. the t0-number of values of ℓc

generated in these t0 iterations), is Multivariate Normal–the t0 × t0 covariance matrix of

which is kernel-parametrised using the stationary kernel with hyperparameters Ac and δc.

Thus, T0 is a global model parameter, which once set, gives rise to a nested-GP model. As

said above in Section 2.5, we do not exceed t0 = 500 in any of our runs.

One difference between the learning of parameters from the nested-GP, as distinguished

from the non-nested GP models is the quality of the inference, in the sense that the uncer-

tainty of parameters (i.e. the 95% HPDs) learnt using the nested-GP models, is less than

that learnt using the non-nested GP models. This difference in the learnt HPDs is most

marked for the learning of values of Q1 and S1, and S2 is a lesser extent. We will attempt

explaining this later, by invoking the discontinuity in the data, the kernel-parametrised (as
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Figure 2.3: Results from run done with test+training data D⋆ within the nested-GP model,

shown in black, as distinguished from the results of learning given the same data, and the

“non-nested” GP model depicted in grey (or red in the electronic copy of the thesis). Here

the used value of T0 is 200 iterations. Histograms approximating the marginal posterior

probability densities of each sought unknown is depicted. Here dc is defined as the value of

the reciprocal of δc. Indeed, the hyperparameters Ac and δc are relevant only to the nested-

GP model (c = 1, 2). Here, we have undertaken sampling from the joint posterior of all

parameters, including the input parameter values s
(test)
1 and s

(test)
2 , at which the test data are

realised. Histograms approximating marginal posterior probability densities of each learnt

unknown are presented.

.
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Figure 2.4: Results from run done with observed tensor DV that contributes to the train-

ing data, within the nested-GP model, shown in black, as distinguished from the results of

learning given the same data, and the “non-nested” GP model depicted in grey (or red in

the electronic copy of the thesis). Here the used value of T0 is 200 iterations. Histograms

approximating the marginal posterior probability densities of each sought unknown is de-

picted. Here dc is defined as the value of the reciprocal of δc. Indeed, the hyperparameters

Ac and δc are relevant only to the nested-GP model (c = 1, 2). Histograms approximating

marginal posterior probability densities of each learnt unknown are presented.

.
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Figure 2.5: Same as in Figure 2.4, except that here we present traces of learnt parameters.

Traces of parameters learnt within the non-nested are in grey (or red in the e-version) while

the traces obtained using the nested-GP model are shown in black.

.

a function of S) covariance matrix (Σ3) of which, is affected by a sharply discontinuous

probability distribution of S1, and a less sharp discontinuity in the distribution of S2.

We refer to Figure 8 of Chakrabarty [2007] (that corresponds to the base astronomical

model used in the simulations that generate the training data that we employ), in evidence;

this figure tells us about the distribution of location S, by compatibility of the stellar ve-

locity matrix v = ξ(s) realised (in astronomical simulations) at an s, to the test velocity

matrix v(test) (recorded by the Hipparcos satellite). 50 × 2-dimensional matrix-variate,

stellar velocity r.v. V , takes This is a contour plot of the distribution of such a compati-

bility parameter, in the space D–where S ∈ D ⊂ R2; here the two components of S are

represented in polar coordinates, with S1 the radial and S2 the angular component. We

see clearly from this figure, that the distribution across S1 is highly discontinuous, at given
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values of S2 (i.e. at fixed angular bins). In fact, this distribution is visually more discontin-

uous, than the distribution across S2, at given values of S1, i.e. at fixed radial bins (each of

which is represented by an arcs between two bounding radii). In other words, the velocity

matrices that are astronomically simulated at different S values, are differently compatible

with a reference velocity matrix (v(test))–and, this difference is discontinuous across vales

of S. Thus, this figure indicates the discontinuity in the training data, with the input-space

variable S. Then, it is incorrect to use a stationary kernel to parametrise the covariance Σ3,

that informs on the covariance between such velocity matrices. Our implementation of the

nested-GP model tackles this shortcoming of the model. However, when we implement

the non-nested GP model, the inferential algorithm (Metropolis) needs to explore a wider

volume of the state space to accommodate parameter values, given the data at hand–and

even then, there is a possibility for incorrect inference under the stationary kernel model.

This explains the noted trend of higher 95% HPDs on most parameters learnt using the

non-nested GP model, compared to the nested-GP model, as observed in comparison of

results from runs done with training data alone, or both training and test data (i.e. when

prediction from the joint posterior probability density of all parameters give all data is un-

dertaken, to learnt s(test)); see Figure 2.3, Figure 2.4, Figure 2.5. Indeed, this also explains

the bigger difference noted in these figures when we compare the learning of q1 over q2, in

runs that use the stationary model, as distinguished from the non-stationary model. After

all, the discontinuity across S1 is discussed above, to be higher than across S2.

To check for the effect of the lookback time (parametrised by T0) we present traces

of the parametrised kernel parameters and hyperparameters learnt from runs undertaken

within the nested-GP model, at different T0 values of 50 and 100, in Figure 2.6, which

we can compare to the traces obtained in runs performed under the nested-GP model, with
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Figure 2.6: Comparison of traces of unknown smoothness parameters of Σ3 and hyper-

parameters of GPs invoked to model these parameters, obtained in runs performed with

training data D and t0 = 50 (in grey, or red in the e-version) and t0 = 100 (in black).

.

t0 = 200, as displayed in Figure 2.5.

It is indeed interesting to note the trends in traces of the smoothness, i.e. the reciprocal

of ℓ parameters, and the amplitude A and value δ of the correlation-length hyperparameters

(evidenced in Figure 2.6 and the results in black in Figure 2.5). We note the increase in

the amplitude of the fluctuations in the traces of these hyperparameters with decreasing t0.

For smaller values of lookback time T0, the average covariance between gc(t1) and gc(t2)

is higher than when t0 is higher, where the averaging is performed over a t0-iteration long

interval that has its right edge on the current iteration; here c = 1, 2 and as introduced

above, we model the length scale parameter of the kernel that parametrises Σ3, as ℓc =

gc(T). Here gc(·) is modelled as a realisation from a scalar-variate GP with covariance

matrix Sc that is itself kernel-parametrised using an SQE kernel with amplitude Ac and
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correlation-length δc. Then higher covariances between values of g(·) at different T-values

in general would suggest higher values of the global amplitude of this parametrised kernel,

and higher values of the length-scales of this SQE kernel.

A very interesting trend noted in the parameter traces presented in Figure 2.6 for t0 =

50, 100, and to a lesser extent for t0 = 200, in the results in black in Figure 2.5, is the global

near-periodic existence of crests and troughs in these traces. This periodic fluctuation is

more marked for q1 values and the parameters of the scalar-variate GP used to model g1(·)

from, (where the reciprocal of the smoothness Q1 is ℓ1 = g1(T)), than for q2 (and a2

and δ2). Let us first seek an explanation for this observed global periodic trend–which is a

difficult undertaking in itself, and then explore comparison of the strength of this periodicity

across different sets of parameters.

Above, we have convinced ourselves of the fact that the covariance (Σ3) amongst veloc-

ity slices simulated (astronomically) at different S values, is incorrectly parametrised with

a stationary kernel, and that a non-stationary kernel is required to model such covariance.

We implement such non-stationarity by kernel parametrising Σ3 using a kernel, the length-

scale ℓ of which is itself stochastic–this stochasticity is generated by a scalar-variate GP

according to our model. At any given iteration of our inference scheme, the said model is

informed by invoking the past t0 realisations from such a stochastic process. Then, loosely

speaking, the value of ℓ in any iteration, is a moving average over the values indicated over

this t0-iterations wide window–and such a moving average will manifest the result of su-

perposition of the different (discontinuous) modal neighbourhoods present in the data. The

more multimodal the data, i.e. larger the number of “classes” (by correlation-length scales)

of functional form ξ(·) sampled from the tensor-variate GP, superposition of the sample

paths will cause a washing-out of the effect of the different modes, and a less prominent
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global trend will be manifest in the traces. However, for data that is globally bimodal, the

superposition of the two “classes” of sampled functions ξ(·) will create a periodicity in the

global trend of the generated ℓ values (and thereby of the smoothness parameter values q,

where q = ℓ−1).

Again, the larger the value t0 of the lookback-time parameter, the moving average is

over a larger number of samples, and hence greater is the washing-out effect. In fact,

depending on the discontinuity in the data, it is anticipated that there is range of optimal

lookback-time values, s.t. the global periodicity is most marked. Thus, the trace of q1 at

t0 = 100 displays the global periodicity more strongly than that at t0 = 200 (see Figure 2.6

and Figure 2.5). At the same time, the expected higher amplitude in the trace of q1 with

decreasing t0, also make the visual identification of this trend more difficult at lower, than

at higher t0; this is clear in the comparison of the trends of the trace of q1 generated at

t0=50, as compared to t0=100 (see Figure 2.6). Another point is that the strength this

global periodic trend will be stronger for the correlation-length scale along that direction

in input-space, the discontinuity along which is stronger. Indeed, as we have discussed

above, the discontinuity in the data along S1 is anticipated to be higher than along S2. So

we would expect a more prominent periodic trend in the trace of q1 than q2. This is indeed

what to note in Figure 2.6. A simulation study can be undertaken to explore the effects of

empirical discontinuities.

The arguments above qualitatively explain the observed trends in the traces of the hy-

perparameters, obtained from runs using different t0. That in spite of discrepancies in Ac

and δc, with t0, values of the length scale parameter ℓc (and therefore its reciprocal qc) are

concurrent within the 95% HPDs, is testament to the robustness of the model. Stationar-

ity of the traces betrays the achievement of convergence of the chain. 95% HPD credible
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regions computed on each learnt parameter given training data alone, are displayed in Ta-

ble 2.1.

Table 2.1: 95% HPD credible regions on each learnt parameter, using three different infer-

ence schemes
Parameters using only training data sampling from posterior predictive sampling from joint posterior density

q1 [4572.4,5373.2] [4566.8,5460.4]

q2 [82.50,93.12] [82.30,93.44]

σ
(1)
11 [0.9884,1.0337] [0.9848,1.0310]

ρ [-0.0627,-0.0310] [-0.0620,-0.0304]

σ
(1)
22 [0.4087,0.4270] [0.4116,0.4306]

s1 - [1.7496,2.0995] [1.7547,2.0816]

s2 - [0.079,0.7609] [0.0393,0.8165]

From Table 2.1, we notice that the reciprocal correlation length scale q1 is a couple of

orders of magnitude higher than q2; correlation between values of the sampled function

ξ(·), at 2 different S1 values (at the same s2), then wanes more quickly than correlation be-

tween sampled functions computed at same s1 and different S2 values. Here s = (s1, s2)
T

and given that S is the location of the observer who observes the velocities of her neigh-

bouring stars on a two-dimensional polar grid, S1 is interpreted as the radial coordinate of

the observer’s location in the Galaxy and S2 is the observer’s angular coordinate. Then

it appears that the velocities measured by observers at different radial coordinates, but at

the same angle, are correlated over shorter radial-length scales than velocities measured

by observers at the same radial coordinate, but different angles. This is understood to be

due to the astro-dynamical influences of the Galactic features included by [Chakrabarty,

2007] in the simulation that generates the training data that we use here. This simulation

incorporates the joint dynamical effect of the Galactic spiral arms and the elongated Galac-

tic bar (made of stars) that rotate at different frequencies (as per the astronomical model

97



responsible for the generation of our training data), pivoted at the centre of the Galaxy.

An effect of this joint handiwork of the bar and the spiral arms is to generate distinctive

stellar velocity distributions at different radial (i.e. along the S1 direction) coordinates, at

the same angle (s2). On the other hand, the stellar velocity distributions are more similar

at different S2 values, at the same s1. This pattern is borne by [Chakrabarty, 2004], in

which the radial and angular variation of the standard deviations of these bivariate velocity

distributions are plotted. Then it is understandable why the correlation length scales are

shorter along the S1 direction, than along the S2 direction. Furthermore, for the correlation

parameter ρ, physics suggests that the correlation will be zero among the two components

of a velocity vector. These two components are after all, the components of the velocity

vector in a 2-dimensional orthogonal basis. However, the MCMC chain shows that there is

a small (negative) correlation between the two components of the stellar velocity vector.

2.7.1 Predicting s(test)

In one method, we perform posterior sampling using Metropolis-Hastings, from the joint

posterior probability density of all parameters (GP parameters as well as solar location vec-

tor), given test+training data. In Figure 2.1 and Figure 2.2, we present respectively, traces

and histogram-representations of marginal posterior probability densities of the solar loca-

tion coordinates s
(test)
1 , s

(test)
2 ; q1 and q2 that get updated once the test data is added to aug-

ment the training data, and parameters σ1
11, σ1

22 and ρ that are learnt given this augmented

data. 95% HPD credible regions computed on each parameter in this inference scheme,

are displayed in Table 2.1. These figures display these parameters in the non-nested GP

model. When the nested-GP model is used, histogram-representations of the marginals of

the aforementioned parameters, are displayed in Figure 2.3.
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We notice that the values of the inverse correlation length are almost the same as the

values with training data only.

Prediction of s(test) using the nested GP models gives rise to very similar results as

when the non-nested models are used, (see Figure 2.3 that compares the marginals of the

solar location parameters sampled from the joint posterior density of all unknowns, given

all data, in nested GP models, against those obtained when non-nested GP models are

used).

The marginal distribution of s
(test)
1 indicates that the marginal is unimodal and con-

verges well, with modes at about 2 in model units. The distribution of s
(test)
2 on the other

hand is quite strongly skewed towards values of s
(test)
2 . 1 radians, i.e. s

(test)
2 . 57 degrees,

though the probability mass in this marginal density falls sharply after about 0.4 radians,

i.e. about 23 degrees. These values tally quite well with previous work [Chakrabarty et al.,

2015]. In that earlier work, using the training data that we use in this work, (constructed

using the astronomical model sp3bar3 18 discussed by [Chakrabarty et al., 2015]), the

marginal distribution of s
(test)
1 was learnt to be bimodal, with modes at about 1.85 and 2, in

model units. The distribution of s
(test)
2 found by [Chakrabarty et al., 2015] is however more

constricted, with a sharp mode at about 0.32 radians (i.e. about 20 degrees). We do notice

a mode at about this value in our inference, but unlike in the results of [Chakrabarty et al.,

2015], we do not find the probability mass declining to low values beyond about 15 de-

grees. One possible reason for this lack of compatibility could be that in [Chakrabarty et al.,

2015], the matrix of velocities V was vectorised, so that the training data then resembled

a matrix, rather than a 3-tensor as we know it to be. Such vectorisation could have led to

some loss of correlation information, leading to the results of [Chakrabarty et al., 2015].

When we predict s(test) using test+training data, at the (modal values of the) GP pa-
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rameters that are learnt from the training data, we generate samples from the posterior

predictive of s(test) (Equation 2.12) using Metropolis-Hastings. The results are presented

in Table 2.1.

2.7.2 Astronomical implications

The radial coordinate of the observer in the Milky Way, i.e. the solar radial location is

dealt with in model units, but will need to be scaled to real galactic unit of distance, which

is kilo parsec (kpc). Now, from independent astronomical work, the radial location of the

Sun is set as 8 kpc [Binney and Merrifield, 1998]. Then our learnt value of S
(test)
1 is to

be scaled to 8 kpc, which gives 1 model unit of length to be
8kpc

our estimate of S
(test)
1

. Our

main interest in learning the solar location is to find the frequency Ωbar with which the

Galactic bar is rotating, pivoted at the galactic centre, loosely speaking. Here Ωbar =

v0

1 model unit of length
, where v0 = 220 km/s (see [Chakrabarty, 2007] for details). The

solar angular location being measured as the angular distance from the long-axis of the

Galactic bar, our prediction for S2 actually tells us the angular distance between the Sun-

Galactic centre line and the long axis of the bar.

Table 2.2: 95% HPD on each Galactic feature parameter learnt from the solar location

coordinates learnt using the two predictive inference schemes listed above and as reported

in a past paper for the same training and test data.

95% HPD for Ωbar (km/s/kpc) for angular distance of

bar to Sun (degrees)

from posterior predictive [48.11, 57.73] [4.53, 43.62]
from joint posterior density [48.25, 57.244] [2.25, 46.80]
from Chakrabarty et. al (2015) [46.75, 62.98] [17.60, 79.90]

Table 2.2 displays the Galactic feature parameters that are derived from the learnt so-

lar location parameters, under the different inference schemes using the non-nested model,
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namely, sampling from the joint posterior probability of all parameters given all data, and

from the posterior predictive of the solar location coordinates given all data and GP param-

eters already learnt from training data alone. The derived Galactic feature parameters are

the bar rotational frequency Ωbar in the real astronomical units of km/s/kpc and the angu-

lar distance between the bar and the Sun, in degrees. The table also includes results from

Chakrabarty et. al (2015). As we see, the bar in the Milky Way galaxy is a relatively fast bar

with its predicted rotational frequency Ωbar that accommodates the suggested frequency of

[54.1,60.2] in km/s/kpc advanced by [Chakrabarty, 2007] on the basis of numerical mod-

elling of the MW disk. The low angular separation of Sun-Galactic-centre line from the

long-axis of the bar, is also corroborated by that earlier work, and multiple astronomical

references cited therein.

2.8 Model Checking

One way to check for the model and results, given the data at hand, is to generate data from

the learnt model, and then compare this generated data with the observed data. Now, the

model that we learn, is essentially the tensor-variate GP that is used to model the functional

relationship ξ(·) between the observable V and the input-space parameter S. By, saying

that we intend on generating new data, we imply the prediction of a new value of V , given

the learnt model of this GP.

This prediction of new datum on V , is fundamentally different from the inverse predic-

tion of the value s(test) of the input-space parameter S that we have undertaken–as discussed

above in Section 2.6–where the sought s(test) is the value of S at which test data v(test) on

V is recorded. There is no closed-form solution to the posterior predictive of s(test) given

the test data and the learnt GP parameters.
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In fact, at chosen values of S–chosen to be the design points in the training data, for

convenience–the covariance function Σ3 of this GP, (modelled as a GP with an estimated

mean), is known, given the learnt values of the parameters of the kernel used to parametrise

Σ3. However, in our Bayesian inference, we do not really learn a value of any parameter,

but learn the marginal posterior density of each unknown parameter, given the data. Thus,

in order to pin the value of the covariance matrix, we identify the parameter value cor-

responding to a selected summary of this posterior distribution. For example, we could

choose to define Σ3 at pairs of known design points si, sj, and the modal value of ℓc–

identified from the marginal posterior density of ℓc inferred upon, given the data. Here

i, j ∈ {1, . . . , n = 216}. The resulting value of the ij-th element of Σ3 will then provide

one summary, of the covariance between the 50 × 2 stellar velocity matrix vi realised at

S = si, and vj realised at S = sj. Similarly, the learnt modal values of the parameters σ
(1)
11 ,

σ
(1)
22 and ρ define one summary of the covariance matrix Σ1 that informs on te covariance

between the 2 216× 50-dimensional sheets of data on each component of the 2-imensional

stellar velocity vector. Again, other summaries of the parameter values could be used as

well, for example, the parameter value identified at the mean of the marginal posterior

density of this parameter, as learnt given the training data, is also used.

In this model checking exercise, the unknowns are certain elements of the cuboidally-

shaped data comprising the 216 number of 50 × 2-dimensional stellar velocity matrices

generated by astronomical simulation, at chosen design points s1, . . . , s216, i.e. the 3rd-

order tensor DV := {v1,
...v2,

... . . . ,
...v216}. In the first attempt to model checking, we model

all elements of the r-th such simulated stelar velocity matrix vr, (that is generated at the

known design point sr), to be the 50 × 2 = 100 unknowns. We refer to these unknown

elements of vr as v
(r)
11 , v

(r)
12 , v

(r)
21 , . . . , v

(r)
50,2. The 3rd-ordered tensor without the r-th slice, is
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referred to as D
(−r)
V := {v1,

...v2,
... . . . ,

...vr−1,
...vr+1,

...v216}. The joint posterior probability

density of the 100 unknowns, at the learnt modal values r
(mode)
1 , r

(mode)
2 , σ

(1,mode)
11 , σ

(1,mode)
22 , ρ(mode)

is

π
(

v
(r)
11 , v

(r)
12 , v

(r)
21 , . . . , v

(r)
50,2|D

(−r)
V

)
∝ TN 2×50×216(M̂, Σ

(mode)
1 , Σ̂2, Σ

(mode)
3 ),

where,

–the 3rd-ordered tensor-valued data that enters the parametric form of the 3rd-ordered

tensor-normal density on the RHS, has elements of its r-th slice, (of the total of 216

slices), unknown. All other elements of this 2 × 50 × 216-dimensional tensor are known;

–uniform priors are used on the unknowns; –Σ
(mode)
1 is the learnt modal value of the 2× 2-

dimensional covariance matrix Σ1 s.t. its 1, 1-th element is σ
(1,mode)
11 , 2, 2-th element is

σ
(1,mode)
22 , 1, 2-th element is ρ(mode)

√
σ
(1,mode)
22 σ

(1,mode)
11 , and the 2, 1-th element is equal to

the 1, 2-th element (as this is a covariance matrix);

–Σ
(mode)
3 is the learnt modal value of the 216 × 216-dimensional covariance matrix Σ3, s.t.

its ij-th element is exp
[
−(si − sj)

TQ(mode)(si − sj)
]
, with the non-zero elements of the

diagonal 2 × 2-dimensional Q(mode)-matrix given by r
(mode)
1 and r

(mode)
2 . si being the i-th

design point, is known ∀i, j = 1, . . . , 216.

To learn the 100 unknowns v
(r)
11 , v

(r)
12 , v

(r)
21 , . . . , v

(r)
50,2, we run a Random Walk (RW)

Metropolis-Hastings chain, with the data defined as above, the known 216 number of

design points, and all the learnt, modal parameter values. The joint posterior probabil-

ity density of the unknowns that defines the acceptance ratio in this chain, is given as in

the last equation. The chain is run for 20,000 iterations, for r=200, and the mean of the

last 1000 samples of v
(200)
ij is recorded, where i = 1, . . . , 50, j = 1, 2. These sample

means v̄
(200)
ij then constitute the learnt value of the 100 elements of the 200-th stellar ve-
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Figure 2.7: Left: Comparison of the observed and predicted values of elements of the r-

th 50 × 2-dimensional stellar velocity matrix vr, where 216 such matrices constitute the

training data DV (on velocities of 50 stellar neighbours of the Sun) that is generated by

astronomical simulations. The predicted or learnt values are obtained from a Random Walk

(RW)-MCMC chain undertaken with the all elements of the 3rd-order tensor DV known,

except for the elements of its r-th slice, and the learnt values of the parameters of the GP

used to model the data at hand, at a chosen summary, namely the mode, of the marginal

posterior density of each such learnt GP parameter. Here r=200. Equality of the observed

and predicted values of he elements of vr is indicated by the point lying on the drawn

straight line with unit slope; the predicted values are found to lie close to this line. Middle:

Depicts a similar comparison, as displayed in the left panel, but for 20 distinct values of r,

namely for r = 190, 191, . . . , 210. Right: Depicts the same comparison of observed and

predicted values of elements of 20 slices v190, . . . , v210, but this time, the employed GP

parameters are the means of their respective marginals. Thus, this model-checking exercise

checks for the used models and results obtained (given the data at hand) at the mean of the

respective posterior density.

.
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locity matrix v200. We plot the pairs of learnt value v̄
(200)
ij of elements of the v200 matrix,

against the empirically observed value of this element, ∀i = 1, . . . , 50, ∀j = 1, 2. The

plot is presented in the left panel of Figure 2.7. Thus, each point on this plot is a pair

(empirically observed value of v
(200)
ij , v̄

(200)
ij ), and there are 50 × 2 = 100 points in this

plot. The points are found to lie around the straight line with slope 1. In other words, the

values of the elements in the r-th (=200-th) slice of the training data that we learn using our

model, are approximately equal to the empirically observed values of these elements. This

is corroboration of our models and results.

We attempt a similar prediction of elements of the training data for other values of r,

namely for r = 190, . . . , 210. The learnt values of elements of vr, for each r, is plotted

against the empirically observed elements of vr. We have superimposed results for all 20

values of r in the same plot, resulting in the middle panel of Figure 2.7. Again, the values

predicted for all 20 slices, are found to be close to the empirical observations, as betryaed

by the points lying close to the straight line of unit slope.

Lastly, we wanted to ensure that the encouraging results from our model checking ex-

ercise are robust to changes in the posterior density summary of the learnt GP parameters.

Thus, we switch to using the mean of the parameter marginal posterior from the posterior

mode, and carry out the same exercise of predicting elements of slices v190, . . . , v210. Re-

sults are displayed in the right panel of Figure 2.7. Again, very encouraging corroboration

of our used models and results (of learning the GP parameters) is noted. Indeed, in such

model checking exercises, encouraging match between the predictions and the empirical

observations lends confidence in the used models and results obtained therefrom, given the

data at hand–such models and results are the inputs to this exercise. However, if lack of

compatibility is noted in such a model checking exercise, between empirical observations
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and predictions, then it implies that either the used modelling is wrong, and/or the results

obtained there from given the data are wrong. However, the model checking exercise that

we undertake, vindicates our models and results, given the data at hand.

2.9 Conclusion

In this chapter I have presented work a method for learning tensor-valued functional rela-

tions between two random variables, where at least one of the variables is high-dimensional,

i.e. tensor-valued in general. This situation then renders the unknown (and sought) func-

tional relation between the variables to be a tensor-valued function, if we express the model

of the relationship between the variables to be s.t. it retains capability to predict either

variable, given test data measured on the other. The sought function is treated as a random-

valued function that is learnt probabilistically, i.e. a probability distribution is assigned

to it, which is equivalent to stating that this function is treated as a random realisation

from a stochastic process. The particular stochastic process that we choose to work with is

a high-dimensional (tensor-variate) Gaussian Process, of corresponding dimensionalities,

s.t. the joint probability density of a finite number of values of this function (at each of

the design points in the trainning data), is the high-diemsnional equivalent of a multivariate

Normal, namely a Tensor Normal density. In other words, the likelihood is Tensor Nor-

mal, and we use this in Bayes rule with chosen prior probability densities to write the joint

posterior probability desity of the parameters of the Tensor Normal likelihood, given the

training data. We sample from this posterior density using MCMC. The focus of my work

has been hypercuboidally-shaped data, that is in general not continuous, thus demanding

a non-stationary covariance structure of the invoked tensor-variate GP. Such a covariance

structure is attained by generalising a stationary covariance to one in which the hyperpa-
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rameters (correlation length scales along each direction in input space) are treated as depen-

dent on the sample function of the invoked GP, i.e. as a dynamically varying, scalar-valued

function that is modelled as a realisation from a scalar-variate GP with distinct covariance

structure, that we parametrise. We employ Metropolis-within-Gibbs-based inference. Sub-

sequent to the learning of the sought tensor-valued function, we make an inverse Bayesian

prediction of the system parameter values at which test data on the observable is realised.

Thus this work permits methodology for learning given discontinuous data.

107



Chapter 3

With-uncertainty Graphical Models and

Inter-graph Distance

3.1 Introduction

Graphical models of a complex, highly multivariate dataset, manifest an intuitive illus-

tration of the correlation structure of the data, and are of interest in different disciplines

[Benner et al., 2014; Airoldi, 2007; Carvalho and West, 2007; Bandyopadhyay and Canale,

2016; Whittaker, 2008]. Much work has been undertaken to study the correlation of a

rectangularly-shaped, multivariate dataset, by treating the vector-valued observable–multiple

measurements of which comprise the data–as a realisation from a Gaussian Process (GP),

rendering the likelihood of the unknown GP parameters given the data, a matrix-normal

distribution [Wang and West, 2009; Ni et al., 2017; Gruber and West, 2016].

In this chapter, I discuss the simultaneous Bayesian inference on the partial correla-

tion structure and graphical model of a multivariate dataset, learning each, along with

well-defined uncertainties, namely, HPDs, while acknowledging possible errors of mea-

surement. It is to this effect that we perform a Metropolis, by a 2-block-update version of

MCMC [Robert and Casella, 2004], on the correlation matrix given the data, and on the

graph given the updated correlation.
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Objective and comprehensive uncertainties on the Bayesianly learnt graphical model of

the given multivariate data, are sparsely available in the literature. Such uncertainties can

potentially be very useful in informing us about the range of models that describe the par-

tial correlation structure of the data at hand, where by a model, we refer to an identified set

of nodes that are connected by edges, at learnt probabilities. Madigan and Raftery [1994]

discuss a method for computing model uncertainties by averaging over a set of identified

models, and they advance ways for computing the posterior probabilities, by taking advan-

tage of the graphical structure, for two classes of considered models, namely, the recursive

causal models [Kiiveri et al., 1984] and the decomposable loglinear models [Goodman,

1970]. This method allows them to select the “best models”, while accounting for model

uncertainty.

On the other hand, the method of simultaneous learning of correlation strcture and

graphical model of a rectangularly-shaped data set that is introduced in this chapter, pro-

vides a simple and well-defined way of learning uncertainties of the graphical model of a

given multivariate data.

At every update of the graphical structure of the data, the graph is updated; graphs thus

learnt, if identified to lie within an identified range of values of the posterior probability

values, comprise the uncertainty-included graphical model of the data. Thus, the method

allows for acknowledgement of uncertainties in the learning of the graphical model of the

data. In addition, this method permits incorporation of measurement errors into the learn-

ing of the graphical model, and permits fast learning of large networks (demonstrated on

the learning of the human disease-symptom network, with ≥8000 nodes). The uncer-

tainty learning mentioned above is empirically illustrated in Section 3.3, (along with model

checking and effect of measurement error incorporation), on a small simulated dataset,
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as well as on the learning of the graphical models of the real vino-chemical datasets of

Portuguese red and white wine samples.

In fact, via this vino-chemical example, we illustrate an important contribution of our

work, namely, the computing of inter-graph distances. Hoff et al. [2011]; Xu and Yan

[2015]; Wang & Chakrabarty (under preparation), advance methods to learn the corre-

lation in data that is high-dimensional in general, eg. a cuboidally-shaped dataset that

comprises multiple measurements of a matrix-variate observable. In the general case, a

k-th ordered tensor-variate observable is then modelled using a high-dimensional Gaus-

sian Process, rendering the likelihood, k + 1-variate Tensor Normal. The pioneering work

by Wang and West [2009] allows for the learning of both the between-rows and between-

columns covariance matrices of a rectangularly-shaped multivariate dataset, and therefore,

of two graphical models for such data. Ni et al. [2017] extend this approach to high-

dimensional data. However, a high-dimensional graph showing the correlation structure

amongst the multiple components of a general hypercuboidally-shaped dataset, is not easy

to visualise or interpret. Instead, in this paper, we treat the data to be built of correlated

rectangularly-shaped slices, given each of which, the between-columns (partial) correlation

structure and graphical model are Bayesianly learnt, along with uncertainties, subsequent

to our closed-form marginalisation over all between-rows correlation matrices (unlike in

the work of Wang and West [2009]). We then compute the Hellinger distance [Matusita,

1953; Banerjee et al., 2015] between the posterior probability densities of the pair of graph-

ical models that are learnt given the respective pair of such rectangularly-shaped data slices.

Such a distance will then tell us about the independence of the probability density functions

that each such data slice is sampled from.

For example, as Guinness et al. [2014] state, the presence of spatial correlation amongst
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sets of multivariate observations in a given dataset, cannot be correctly captured by “com-

puting partial correlation coefficients and by specifying and fitting more complex graphical

models”. However, we suggest treating each such set of multivariate observation as a sepa-

rate (rectangularly-shaped) dataset–where one such dataset is correlated with another–and

learn the partial correlation structure and graphical model of each dataset, followed by

computing the pairwise Hellinger distance between posterior probability densities of each

learnt pair of graphs. The corresponding Hellinger affinity measure then bears informa-

tion about the correlation between the original sets of multivariate observations. Indeed

our method offers the inter-graph distance between two differently sized datasets, i.e. even

when the two datasets contain different numbers of multivariate observations.

Our learnt graphical model of the given data, comprises a set of random inhomoge-

neous graphs [Frieze and Karonski, 2016] that lie within the credible regions that we de-

fine, where each such graph is a generalisation of a Binomial graph [Frieze and Karonski,

2016], in which the probability of existence of the edge between a given pair of vertices

is dependent on the partial correlation of the components of the observable vector corre-

sponding to these vertices, where the partial correlation matrix is itself computed using

the correlation matrix that is updated given the data at hand, within a Metropolis with a

dual-block updated-based Bayesian inference scheme [Robert and Casella, 2004].

In our used inference scheme, we do not make inference on the graph (writing its poste-

rior) clique-by-clique, and neither are we reliant on the closed-form nature of the posteriors

to sample from. In other words, we do not need to invoke conjugacy to affect our learning–

either of the partial correlation structure of the data or of the graphical model. Often, in

Bayesian learning of Gaussian undirected graphs, a Hyper-Inverse-Wishart prior is typi-

cally imposed on the covariance matrix of the data, as this then allows for a Hyper-Inverse-
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Wishart posterior of the covariance, which in turn implies that the marginal posterior of

any clique is Inverse-Wishart–a known, closed-form density [Dawid and Lauritzen, 1993;

Lauritzen, 1996].

Inference is then rendered easier, than when posterior sampling from a non-closed form

posterior needs to be undertaken, using numerical techniques such as MCMC. Now, if the

graph is not decomposable, and a Hyper-Inverse-Wishart prior is placed on the covariance

matrix, the resulting Hyper-Inverse-Wishart joint posterior density that can be factorised

into a set of Inverse-Wishart densities, cannot be identified as the clique marginals. Ex-

pressed differently, the clique marginals are not closed-form when the graph is not decom-

posable. However, this is not a worry in our learning, i.e. we can undertake our learning

irrespective of the validity of decomposability.

3.2 Learning correlation matrix and graphical model given

data, using block-update Metropolis

Let X ∈ X ⊆ Rp be a p-dimensional observed vector, with X = (X1, . . . , Xp)T. Let

there be n measurements of Xj, j = 1, . . . , p, so that the n × p-dimensional matrix D =

[xij]
n;p
i=1;j=1 is the data that comprises n measurements of the p-dimensional observable X.

Let the i-th realisation of X be xi, i = 1, . . . , n.

We model X using a high-dimensional GP, so that the set of realisations of this variable

that comprises the data D, is jointly matrix-normal, i.e.

{x1, . . . , xn} ∼ MN (µ, ΣR, ΣC),

where this matrix-normal density is parametrised by an n × p-dimensional mean matrix

µ, an n × n-dimensional covariance matrix ΣR, an element of which is the covariance
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between a pair of rows in D, and a p × p-dimensional covariance matrix ΣC that manifests

information about between-columns covariance in data D. This is synonymous to saying

that the likelihood of µ, ΣC and ΣR, given data D, is matrix normal.

3.2.1 Learning the correlation structure in the data

We standardise the data D by the empirical mean and standard deviation, to then model

this standardised data DS using a high-dimensional GP with zero mean. Thus, the n × p-

dimensional matrix DS = [zij], with zij =
xij − x̄j

Υj
, where x̄j :=

n

∑
i=0

xij

n
and Υ2

j :=

n

∑
i=0

x2
ij

n
−




n

∑
i=0

xij

n




2

. Then modelling the standardised observable Z = (Z1, . . . , Zp)T

with a zero-mean high-dimensional GP, we get the joint probability distribution of the n

values of Z that comprise DS to be

{z1, . . . , zn} ∼ MN (0, Σ
(S)
R , Σ

(S)
C ),

i.e. the likelihood of the covariance matrices Σ
(S)
R and Σ

(S)
C , given data DS, is matrix-

normal:

ℓ(Σ
(S)
R , Σ

(S)
C |DS) =

1

(2π)
np
2 |Σ(S)

C | p
2 |Σ(S)

R | n
2

× exp

[
−1

2
tr
{
(Σ

(S)
R )−1DS(Σ

(S)
C )−1(DS)

T
}]

,

(3.1)

Here Σ
(S)
R generates the covariance between the standardised variables Zi and Zi/ , i, i/ =

1, . . . , n, (while ΣR generates the covariance between X i and X i/). In other words, Σ
(S)
R

generates the correlation between rows of the standardised data set DS. Similarly, Σ
(S)
C

generates the correlation between columns of DS.
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Importantly, we use uniform prior on Σ
(S)
C , and Jeffry’s prior on Σ

(S)
R : π0(Σ

(S)
R ) =

∣∣∣Σ(S)
R

∣∣∣
α
, α = −

(n

2
+ 1
)

.

Theorem 3.2.1. The joint posterior probability density of the correlation matrices Σ
(S)
C , Σ

(S)
R ,

given the standardised data DS is
[
Σ
(S)
C , Σ

(S)
R |DS

]
∝ ℓ(Σ

(S)
R , Σ

(S)
C |DS)

[
Σ
(S)
C , Σ

(S)
R

]
,

where ℓ(Σ
(S)
R , Σ

(S)
C |DS) is the likelihood of Σ

(S)
R , Σ

(S)
C given data DS. This can be marginalised

over the n × n-dimensional between-rows’ correlation Σ
(S)
R , to yield

[Σ
(S)
C |DS] ∝

1

c
(

Σ
(S)
C

) ∣∣∣Σ(S)
C

∣∣∣
p/2∣∣∣DS(Σ

(S)
C )−1(DS)T

∣∣∣
n+1

2

,

where the prior on Σ
(S)
C is uniform; prior on Σ

(S)
R is the non-informative π0(Σ

(S)
R ) =∣∣∣Σ(S)

R

∣∣∣
α
, α = −n

2
− 1, and Σ

(S)
C is assumed invertible. Here, c

(
Σ
(S)
C

)
is a function of Σ

(S)
C

that normalises the likelihood.

Proof. The joint posterior probability density of Σ
(S)
C , Σ

(S)
R , given data DS:

[
Σ
(S)
C , Σ

(S)
R |DS

]
∝ ℓ

(
Σ
(S)
R , Σ

(S)
C |DS

) [
Σ
(S)
C , Σ

(S)
R

]
, i.e.

[
Σ
(S)
C , Σ

(S)
R |DS

]
∝

1

(2π)
np
2

∣∣∣Σ(S)
C

∣∣∣
p
2
∣∣∣Σ(S)

R

∣∣∣
n
2

×

exp

[
−1

2
tr
{
(Σ

(S)
R )−1(DS)(Σ

(S)
C )−1(DS)

T
}] ∣∣∣Σ(S)

R

∣∣∣
− n

2−1
,

(3.2)

using the likelihood from Equation 3.1; using prior on Σ
(S)
R to be π0(Σ

(S)
R ) =

∣∣∣Σ(S)
R

∣∣∣
α

where α = −n

2
− 1; using prior on Σ

(S)
C to be uniform.

Marginalising Σ
(S)
R out from the joint posterior

[
Σ
(S)
C , Σ

(S)
R |DS

]
, we get:

[
Σ
(S)
C |DS

]
∝

1
∣∣∣Σ(S)

C

∣∣∣
p
2

×
∫

R

1
∣∣∣Σ(S)

R

∣∣∣
n
2

∣∣∣Σ(S)
R

∣∣∣
− n

2−1
× exp

[
−1

2
tr
{
(Σ

(S)
R )−1DS(Σ

(S)
C )−1(DS)

T
}]

d(Σ
(S)
R )

(3.3)

Here Σ
(S)
R ∈ R ⊆ R(n×n). Now,
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– let Y := (Σ
(S)
R )−1. Then d(Σ

(S)
R ) = |Y |−(n+1)dY [Mathai and G.Pederzoli, 1997],

– let V−1 := DS(Σ
(S)
C )−1(DS)

T, =⇒ tr
[
(Σ

(S)
R )−1DS(Σ

(S)
C )−1(DS)

T
]
≡ tr

[
V−1Y

]

(using commutativeness of trace),

so that in Equation 3.3, we get

[
Σ
(S)
C |DS

]
∝

1
∣∣∣Σ(S)

C

∣∣∣
p
2

∫

R

|Y | n
2 |Y | n

2+1 × exp

[
−1

2
tr
{

V−1Y
}]

|Y |−(n+1)dY .

(3.4)

The integral in the RHS of Equation 3.4 represents the unnormalised Wishart pd f Wn(V , q),
over all values of the random matrix Y , where the scale matrix and degrees of freedom of

this pd f are V and q = n + 1 respectively, i.e. q > n − 1.

Thus, integral in the RHS of Equation 3.4 is the integral of the unnormalised pd f of

Y ∼ Wn(V , q), over the full support of Y

(
≡
(

Σ
(S)
R

)−1
)

,

i.e. the integral in the RHS of Equation 3.4 is the normalisation of this pd f :

2
qn
2 Γn

(q

2

)
|V |

q
2 ≡

2
(n+1)(n)

2 Γn

(
n + 1

2

) ∣∣∣
(

DS(Σ
(S)
C )−1(DS)

T
)−1 ∣∣∣

n+1
2

,

i.e. integral on RHS of Equation 3.4 is proportional to

∣∣∣
(

DS(Σ
(S)
C )−1(DS)

T
)−1 ∣∣∣

n+1
2

, i.e.

[
Σ
(S)
C |DS

]
∝

1
∣∣∣Σ(S)

C

∣∣∣
p
2

∣∣∣
(

DS(Σ
(S)
C )−1(DS)

T
)−1 ∣∣∣

n+1
2

(3.5)

Now, if DS(Σ
(S)
C )−1(DS)

T is invertible,

∣∣∣
(

DS(Σ
(S)
C )−1(DS)

T
)−1 ∣∣∣

·
=
∣∣∣DS(Σ

(S)
C )−1(DS)

T
∣∣∣
−·

.

– It is given that Σ
(S)
C is invertible, i.e.

(
Σ
(S)
C

)−1
exists.

– The original dataset is examined to discard rows that are linear transformations of

each other, leading to data matrix DS, no two rows of which are linear transforma-

tions of each other

=⇒ DS(Σ
(S)
C )−1(DS)

T is positive definite, i.e. DS(Σ
(S)
C )−1(DS)

T is invertible,

=⇒
∣∣∣
(

DS(Σ
(S)
C )−1(DS)

T
)−1 ∣∣∣

(n+1)/2
=
∣∣∣DS(Σ

(S)
C )−1(DS)

T
∣∣∣
−(n+1)/2

.
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Using this in Equation 3.5:

[
Σ
(S)
C |DS

]
∝

∣∣∣Σ(S)
C

∣∣∣
−p/2∣∣∣DS(Σ

(S)
C )−1(DS)

T
∣∣∣
−(n+1)/2

. (3.6)

This posterior of the between-columns correlation matrix Σ
(S)
C given data DS, is nor-

malised over all possible datasets, where the possible datasets abide by a column-correlation

matrix of Σ
(S)
C , as:

c
(

Σ
(S)
C

)
=
∫

Z

. . .
∫

Z

1
∣∣∣
(

D/(Σ
(S)
C )−1(D/)T

) ∣∣∣
n/+1

2

dz/
11dz/

11 . . . dz/
n/ p

, (3.7)

where D/ = [z/
ij]

i=n/;j=p
i=1;j=1 is a dataset with n/ rows and p columns, comprising values

of random standardised variables Z/
ij ∈ Z, simulated to bear between-column correlation

matrix of Σ
(S)
C , s.t. D/(Σ

(S)
C )−1(D/)T is positive definite ∀D/ ∈ D . Choosing the same

number of rows for all choices of the random data matrix D/, i.e. for a constant n/,

D ⊆ R(n/×p). Then c
(

Σ
(S)
C

)
is a positive definite function of Σ

(S)
C .

Using this normalisation on the posterior of Σ
(S)
C given DS, in Equation 3.6 we get

π
(

Σ
(S)
C |DS

)
=

1

c
(

Σ
(S)
C

) ∣∣∣Σ(S)
C

∣∣∣
p
2

1
∣∣∣
(

DS(Σ
(S)
C )−1(DS)T

) ∣∣∣
n+1

2

, (3.8)

where c
(

Σ
(S)
C

)
> 0 is defined in Equation 3.7.

The posterior
[
Σ
(S)
C |DS

]
as given by Theorem 3.2.1, suggests that we have to com-

pute the normalisation c
(

Σ
(S)
C

)
, in every iteration, i.e. for every updated value of Σ

(S)
C .

We recall that this normalisation is given by Equation 3.7, where the standardised Z/
ij , i =

1, . . . , n/; j = 1, . . . , p are simulated s.t. the column correlation between (Z/
1m, . . . Z/

n/m
)T

and (Z/
1q, . . . Z/

n/q
)T is smq, with Σ

(S)
C = [Smq]

m=p;q=p
m=1;q=1 . However, it is hard to compute

c
(

Σ
(S)
C

)
, defined in Equation 3.7, as a closed-form integral. Instead, we define an estima-

tor ĉt of the integral representing the all-data averaged normalisation, in the t-th iteration

of the N-iteration long MCMC chain that we run, (t = 0, . . . , N).

116



So, we estimate the integral in the RHS of Equation 3.7 using its unbiased estimator.

We rephrase the integrand as h(Z/
11, . . . , Z/

n/ p
, Σ

(S)
C ), i.e.

h(Z/
11, . . . , Z/

n/ p
, Σ

(S)
C ) :=

1
∣∣∣
(

D/(Σ
(S)
C )−1(D/)T

) ∣∣∣
n/+1

2

.

Then the estimator of the normalisation in Equation 3.7 is

ĉ
(

Σ
(S)
C

)
= E

Z/

n/ p

[
. . .
[
E

Z/
11

[
h(Z/

11, . . . , Z/
n/ p

, Σ
(S)
C )
]]

. . .
]
.

However, it is difficult to implement this estimator by sequentially computing expectations

w.r.t. distribution of each of the elements of D/. Instead, we compute the expectation w.r.t.

the block D/ of these elements, where D/ abides by a column-correlation of Σ
(S)
C , i.e., we

compute

ĉ/
(

Σ
(S)
C

)
= E

D/
S

[
h(Z/

11, . . . , Z/
np, Σ

(S)
C )
]
.

During the t-th iteration of the MCMC chain, let the column correlation matrix be

Σt and the normalisation be ĉt. Then ĉt is defined using Σt and the sample of n/ × p-

dimensional data sets {Dt/
1 , . . . , Dt/

K }, s.t. Dt/
k (Σt)−1(Dt/

k )T is positive definite ∀k =

1, . . . , K, at each t. Then:

ĉt :=
1

K

K

∑
k=1

1
∣∣∣
(

Dt/
k (Σt)−1(Dt/

k )T
) ∣∣∣

n/+1
2

. (3.9)

3.2.2 Learning the graphical model

Bayesian learning of the inhomogeneous, Generalised Binomial random graph, is under-

taken, given the learnt p× p-dimensional, between-columns correlation matrix Σ
(S)
C , of the

multivariate data set DS := (Z1,
..., . . . ,

..., Zp)T, that results from the standardisation of the

available data D := (X1,
..., . . . ,

..., X p)T.
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The graph G(p, R) is a random variable in this learning, and it gets updated in every

iteration of the used Bayesian inference scheme (Metropolis with 2-blocks update), at the

updated (partial) correlation matrix given the data. Here, the graph G(p, R), has the vertex

set V and the between-columns partial correlation matrix of data DS is R = [Rij], s.t. Rij

takes the value ρij, i 6= j, and ρii = 1. The vertex set is V = {1, . . . , p} s.t. vertices

i, j ∈ V , i 6= j, are joined by the edge Gij that is a random binary variable taking values of

gij, where gij is either 1 or 0, and is the ij-th element of the edge matrix G = [Gij].

Given a learnt value of the between-columns correlation matrix Σ
(S)
C , to compute the

value ρij of the partial correlation variable Rij, we first invert Σ
(S)
C to yield: Ψ :=

(
Σ
(S)
C

)−1
; Ψ =

[ψij], s.t.

Rij = −
ψij√
ψiiψjj

, i 6= j, (3.10)

and ρii = 1 for i = j.

The posterior probability density of the graph G(p, R) defined for the edge matrix G,

is given as

π(G12, . . . Gp p−1|R) ∝ ℓ(G12, . . . Gp p−1|R) π0(G11, G12, . . . Gp p−1),

where π0(G12, . . . Gp p−1) is the prior probability density on the edge parameters {Gij}p
i 6=j;i,j=1,

and ℓ(G12, . . . , G1p, G21, G23, . . . , Gp p−1|R) is the likelihood of the edge parameters, given

the partial correlation matrix R (that is itself computed using the between-columns corre-

lation matrix Σ
(S)
C , learnt given DS, (see Equation 3.8).

The prior on Gij is set as Bernoulli(0.5), i.e. π0(G12, . . . Gp p−1) =
p

∏
i,j=1;i 6=j

0.5gij0.51−gij ;

thus, the prior is independent of the edge parameters.

The likelihood of any edge parameter given the corresponding partial correlation, is
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defined to be a Normal density. Thus, likelihood of the edge parameters given R is

p

∏
i 6=j;i,j=1

1√
2πσij

exp

[
−
(
Gij − Rij

)2

2σ2
ij

]
,

where the variance parameters {σij}p
i 6=j;i,j=1 are indeed hyperparameters that are also learnt

from the data; these variance parameters have uniform prior probabilities imposed on them.

In light of the fact that parameters that are learnt, are the edge parameters as well as the

variance parameters, the likelihood is rephrased as:

ℓ(G12, . . . , G1p, G23, . . . , G2p, G34, . . . , Gp p−1, σ12, . . . , σ1p, σ21, σ23, . . . , σp p−1, |R) =

p

∏
i 6=j;i,j=1

1√
2πσij

exp

[
−
(
Gij − Rij

)2

2σ2
ij

]
.

(3.11)

3.2.3 Inference using Metropolis-with 2-block update

The p-dimensional vector-valued observable (n realisations of which together comprise

the standardised data DS), is modelled using a Gaussian Process, s.t. the joint probability

distribution of the n realisations of this observable is Matrix-Normal with zero mean; while

the between-row matrix can be marginalised out from this likelihood, the between-columns,

p × p-dimensional correlation matrix Σ
(S)
C is learnt given data DS. Upon learning Σ

(S)
C –

using which the partial correlation matrix R is computed–the graphical model comprising

the credible-region defining set of random Binomial graphs {G(p, R)} is learnt, where the

vertex set of each graph in this set is fixed as V ; the “credible region” in question is defined

below in Section 3.2.5.

Metropolis-with 2-block update-based inference is carried out on the unknowns. Then,

at the beginning of any iteration, Σ
(S)
C is updated given DS, following which, G(p, R) is

updated at the newly updated Σ
(S)
C .
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To be precise, updating Σ
(S)
C implies updating the

p2 − p

2
non-diagonal terms of the up-

per (or lower) triangle of the symmetric p × p correlation matrix Σ
(S)
C , i.e. the parameters

S12, S13, . . . , S1p, S23, . . . , S2p, S34, . . . , Sp−1 p. Given the nature of the likelihood of the Sij

parameters, i < j; i, j = 1, . . . , p, (see Equation 3.8), this updating involves inversion of

Σ
(S)
C , and computing of the determinants of Σ

(S)
C and DS

(
Σ
(S)
C

)−1
(DS)

T
. The inversion

and determinant computation will need to be undertaken in every iteration. Such is possible

with the computation of the square root of the column correlation matrix Σ
(S)
C , as well as

the factorisation of DS

(
Σ
(S)
C

)−1
(DS)

T
into two triangular matrices, since determinant of

a triangular matrix is easily computed, as the product of the diagonal elements of such a

matrix. Thus, in any iteration, we can compute the p × p-dimensional, (lower by choice)

triangular matrix, that is the square root L
(S)
C of Σ

(S)
C , i.e. Σ

(S)
C = L

(S)
C (L

(S)
C )T. Here L

(S)
C is

computed via Cholesky decomposition. Cholesky decomposition of DS

(
Σ
(S)
C

)−1
(DS)

T

into the (lower) triangular matrix L and LT is also undertaken, following the inversion of

Σ
(S)
C into (Σ

(S)
C )−1. Since the factors of Σ

(S)
C are already computed (Cholesky decom-

posed) as L
(S)
C and (L

(S)
C )T, the inversion of Σ

(S)
C is undertaken using a forward sub-

stitution algorithm, i.e. we set (Σ
(S)
C )−1 =

(
(L

(S)
C )T

)−1
(L

(S)
C )−1, where (L

(S)
C )−1 is

computed using L
(S)
C in a forward substitution scheme; here (L

(S)
C )−1L

(S)
C = I. Then

DS

(
(L

(S)
C )T

)−1
(L

(S)
C )−1 (DS)

T
is Cholesky decomposed into L and LT. The underly-

ing schemes for forward substitution and Cholesky Decomposition are discussed in Sec-

tion 3.2.4.

It is assumed that at every iteration, the proposed Σ
(S)
C and DS

(
Σ
(S)
C

)−1
(DS)

T
are

positive definite–to implement which, we start by identifying rows in the original data set

that are linearly dependent; for each set of rows that are identified as linearly dependent,
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only one row is retained and the rest discarded from the original data set. While this is

undertaken prior to the initiation of the MCMC chain, it is still possible that during an

iteration, a proposed Σ
(S)
C is s.t. its square root L

(S)
C is not positive definite, within some

pre-set numerical threshold. One possible solution to this problem is numerical, for exam-

ple, implementing ridge adjustment [Wothke, 1993], i.e. adding a “small” number to the

diagonal elements of L
(S)
C , where “small” is typically . 10−14times a diagonal element

of the matrix in our implementation. Another, less ad hoc solution is to propose L
(S)
C in

any iteration–instead of Σ
(S)
C –where the diagonal elements of L

(S)
C are proposed as positive

definite, while ensuring that the Σ
(S)
C generated as L

(S)
C (L

(S)
C )T abides by the constraints

of a correlation matrix, i.e. the diagonal elements are 1 and non-diagonal elements are

∈ [−1, 1]. Adhering to such constraints is as difficult a numerical challenge as the orig-

inal one. Given this, we opt to propose Σ
(S)
C in every iteration and perform its Cholesky

decomposition, while implementing the ridge adjustment discussed above.

As we saw in Section 3.2, the joint posterior probability density of the elements Sij

of the (p2 − p)/2 upper/lower triangle of the correlation matrix, given data DS, is nor-

malised, with the normalisation factor that needs updating at each update of Σ
(S)
C ; i <

j; i, j = 1, . . . , p. This normalisation factor is c
(

Σ
(S)
C

)
defined in Equation 3.7. An esti-

mator ĉt of this normalisation in the t-th iteration is given in Equation 3.9–as the arithmetic

mean of K number of random realisations of the integrand in the integral representing the

normalisation c
(

Σ
(S)
C

)
. Each such realisation results from a sampled data set Dt/

k , that

bears the column correlation matrix that is the column correlation updated in this t-th iter-

ation of the MCMC chain; t = 0, . . . , N, k = 1, . . . , K. Here, each of the K sampled data

sets is generated with n/ rows (and the p columns, as Σ
(S)
C is p × p-dimensional). To gen-

erate Dt/
k as a randomly sampled n/ × p-sized data set with column correlation as in the
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t-th iteration, we use established sampling techniques for sampling data given a correlation

structure.

The algorithm followed for our Metropolis-with 2-block-update-based inference is the

following.

1(i) At the 0-th iteration, a seed value Σ0 of the correlation matrix Σ
(S)
C is chosen. To be

precise, we choose a seed value s
(0)
ij of the parameter Sij, i < j; i = 1, . . . , p. At

this iteration–as at every iteration–Cholesky decomposition of the column correlation

matrix is undertaken. Thus, in the 0-th iteration, we compute the p × p-dimensional,

lower (by choice) triangular matrix that is the square root L0 of Σ0, i.e. Σ0 = L0LT
0 .

The Cholesky decomposition of Σ0 is performed as delineated in Section 3.2.4. This

allows for |Σ0| to be computed as square of the product of the diagonal elements of

L0. Using L0, its inverse L−1
0 is computed using the forward substitution algorithm

delineated in Section 3.2.4, and the inverse Σ
−1
0 of Σ0 is then Σ

−1
0 = (L−1

0 )T L−1
0 .

Next, DSΣ
−1
0 (DS)

T is Cholesky decomposed, to allow for the determinant of this

matrix to be computed. Using the computed precision matrix Σ
−1
0 in the 0-th it-

eration, the partial correlation matrix R0 in this iteration is computed, i.e. ρ
(0)
ij is

computed ∀i 6= j; i, j = 1, . . . , p, where R0 takes the value [ρ
(0)
ij ]. For this seed

correlation Σ0, the estimator of the normalisation factor ĉ0 is computed using Equa-

tion 3.9, following the random selection of K number of n/ × p-dimensional data

sets D0/
k with column correlation Σ0, k = 1, . . . , K. We use n/ = n. The joint pos-

terior probability density π(s
(0)
12 , . . . , s

(0)
p−1 p|DS) of the non-diagonal, upper triangle

elements of Σ0, is computed, given data DS, using Equation 3.8.

1(ii) In the 0-th iteration, seed values (g
(0)
ij = 1) of the edge parameter Gij, are assigned.
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In addition, seed values σ
(0)
ij are assigned to the σij parameter; i < j; i, j ∈ V . The

joint posterior probability density of g
(0)
ij and σ

(0)
ij , ∀i, j = 1, . . . , p; i < j, is given

as the product of the likelihood in Equation 3.11, the uniform prior on each variance

parameter and the Bernoulli prior with rate parameter 0.5 on each edge parameter.

2(i) As the t-th iteration begins, t = 1, . . . , N, a value s
(t∗)
ij for the ij-th element of the

correlation matrix Σ
(S)
C is proposed, such that the proposed value of this matrix is Σ

⋆
t

in the t-th iteration. This is done by proposing s
(t∗)
ij from a Truncated Normal density

that is left truncated at -1 and right truncated at 1, i.e.

s
(t∗)
ij ∼ TN (s

(t∗)
ij ; s

(t−1)
ij , vij,−1, 1), , ∀ i, j = 1, . . . , p; i 6= j,

where vij is the experimentally chosen variance of the Truncated Normal proposal

density, and the mean of this density is the value s
(t−1)
ij that is the current value of the

parameter Sij at the end of the t − 1-th iteration. Here the current correlation matrix

is Σt−1, and v0 = vij∀ i, j by choice. We refer to the estimator of the normalisation at

the proposed Σ
⋆
t as ĉ⋆t , and compute it using the generated sample {Dt/

1 , . . . , Dt/
K } in

Equation 3.9. The current normalisation ĉt−1 at the current correlation matrix Σt−1

is computed using the generated sample {Dt−1/
1 , . . . , Dt−1/

K } in Equation 3.9. Then

we accept the proposed Σ
⋆
t , at a probability of

a(Σ⋆
t , Σt−1) := min

(
1,

ĉt−1 × π (Σ⋆
t |DS)

ĉ⋆t × π (Σt−1|DS)

TN (Σt−1; Σ
⋆
t , v0,−1, 1)

TN (Σ⋆
t ; Σt−1, v0,−1, 1)

)
,

where π(·|Ds) is given in Equation 3.6, as ∝

∣∣∣Σ(S)
C

∣∣∣
−p/2∣∣∣DS(Σ

(S)
C )−1(DS)

T
∣∣∣
−(n+1)/2

.

If a(Σ⋆
t , Σt−1) > u, where u ∼ U[0, 1], the correlation matrix is updated to Σt =

Σ
⋆
t ; else Σt = Σt−1. We then invert the correlation matrix that is current in the t-

th iteration, and employ Σ
−1
t to compute the current value of the partial correlation
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matrix Rt = [ρ
(t)
ij ] (see Equation 3.10).

2(ii) At the 2nd stage of the t-th iteration, the graph variable G(p, R) is updated, given the

current partial correlation matrix Rt. To be precise, we propose g
(t⋆)
ij ∼ Bernoulli(g

(t⋆)
ij ; ρ

(t)
ij )

pmf, ∀ i, j = 1, . . . , p; i < j. Also, for each i, j, we propose σ
(t⋆)
ij from a Nor-

mal density N (σ
(t⋆)
ij ; σ

(t−1)
ij , w2

ij), where w2
ij are the experimentally chosen variance

of the proposal density and the mean of this density is the value of σij that is cur-

rent at the end of the t − 1-th iteration. Then we accept the proposed g
(t⋆)
ij , σ

(t⋆)
ij ,

∀i < j; i, j = 1, . . . , p, at the probability of

min


1,

p

∏
i<j;i,j=1

N
(

g
(t⋆)
ij ; ρ

(t)
ij , σ

(t⋆)
ij

)

p

∏
i<j;i,j=1

N
(

g
(t−1)
ij ; ρ

(t)
ij , σ

(t−1)
ij

)
Bernoulli(g

(t−1)
ij ; ρ

(t)
ij )

Bernoulli(g
(t⋆)
ij ; ρ

(t)
ij )


,

where N
(

gij; ρij, σij

)
=

1√
2πσij

exp

[
−
(

gij − ρij

)2

2σ2
ij

]
. If the acceptance proba-

bility > u/, where u/ ∈ U[0, 1], we accept the proposed values of the edge and

variance parameters, i.e. set g
(t)
ij = g

(t⋆)
ij and σ

(t)
ij = σ

(t⋆)
ij , ∀ i < j; i, j ∈ V. Oth-

erwise, the proposed values of the parameters are rejected and we set the current

values in iteration t to be those of the previous iteration. The graph at the end of the

t-th iteration is G(t)(p, Rt), where Rt is the updated partial correlation matrix in the

t-iteration.

3 Stop if t = N; else repeat Steps 2.

124



3.2.4 Cholesky Factorisation and Matrix Inversion by Forward Sub-

stitution

Let a p × p-square positive-definite (correlation) matrix be Σ
(S)
C = L

(S)
C (L

(S)
C )T. The

Cholesky factorisation of Σ
(S)
C = [sij] into its unique square root L

(S)
C = [lij] can be shown

to be defined by the following scheme:

l11 =
√

s11,

li1 =
si1

l11
, i = 1, . . . , p,

lij =

√
sij −

j−1

∑
k=1

liklkj

ljj
j = 1, . . . , i − 1; i = 1, . . . , p,

lii =

√√√√sii −
i−1

∑
k=1

l2
ik i = 2, . . . , p,

(3.12)

while forward substitution seeks L−1
C s.t. LCL−1

C = I, where I is the pXp-dimensional

identity matrix. Then the scheme for forward substitution is the following:

m11 =
1

l11
,

li1 =
si1

l11
, i = 1, . . . , p,

lij =

√
sij −

j−1

∑
k=1

liklkj

ljj
j = 1, . . . , i − 1; i = 1, . . . , p,

lii =

√√√√sii −
i−1

∑
k=1

l2
ik i = 2, . . . , p,

(3.13)
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3.2.5 Definition of 95% HPD credible regions on the random graph

variable and the learnt graphical model

Bayesian inference is made on the random graph variable G(p, R), leading to one sampled

graph at the end of each of the N + 1 iterations of our inference scheme (Metropolis-with

2-block-update). The sample of graphs obtained from the post-burnin part of the MCMC

chain then encompasses the learning of the graphical model of the data DS. In order to

acknowledge uncertainties in the Bayesian learning of this graphical model, we need to

include in its definition, only those sampled graphs that lie within an identified 95% HPD

credible region. How can we model this uncertainty, and in particular, present a single

representation of the learnt graphical model of DS, inclusive of such learnt uncertainties?

This concern is addressed by defining the fraction Nij of the post-burnin number Npost

of iterations (where Npost < N + 1), in which the ij-th edge exists, i.e. Gij takes the value

1, ∀ i, j = 1, 2, . . . , p, i 6= j. Thus, the variable Nij is defined to take the value

nij :=

N

∑
t=N−Npost+1

I1(g
(t)
ij )

Npost
, i < j; i, j = 1, . . . , p, (3.14)

where the indicator function

I1(g
(t)
ij ) = 1 if g

(t)
ij = 1

I1(g
(t)
ij ) = 0 if g

(t)
ij = 0

Then Nij is the fractional number of sampled graphs, in which an edge exists between

vertices i and j. This leads us to interpret {Nij}i,j∈V; i<j as carrying information about the

uncertainty in the graph learnt given data DS; in particular, nij approximates the probability

of existence of the edge between the i-th and j-th nodes in the graphical model of the data

at hand. Indeed the Nij parameters are functions of the partial correlation matrix R that is
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learnt given this data, but for the sake of notational brevity, we do not include this explicit

R dependence in our notation to denote the edge probability parameters.

So the set {G(p, Rt)}N
t=N−Npost+1 of graphs on vertex set V = {1, . . . , p} and edge

matrix Gt that is updated given Rt, is treated equivalently as the post-burnin sample

{g
(t)
12 , g

(t)
13 , . . . , g

(t)
1p , g

(t)
23 , . . . , g

(t)
p p−1}N

t=N−Npost+1 of edge parameters. Only those edge pa-

rameters are included in the defined 95% HPD credible region, that occur with probability

≥ 0.05 in this sample. In other words, only for ij pairs s.t. Nij ≥ 0.05, define the gij

parameters included in the set that comprises the 95% HPD credible region on the edge pa-

rameters, in our definition. Indeed, the graphical model of the data is then the set of those

graphs on vertex set V = {1, . . . , p}, the existing edges of which are those Gij parameters

that lie within this defined 95% HPD credible region.

Theorem 3.2.2. The graphical model of data DS for which the between-column partial

correlation matrix is R, is the R-dependent set or family Gp,Φ(R) of all inhomogeneous

Binomial graphs G(p, R), the edge probabilities in which is given by the matrix Φ(R) =
[φij(Rij)], s.t. probability of the edge between the i-th and j-th nodes (i 6= j; i, j ∈ V) is

φij(Rij) =
[
H(nij − 0.05)

]
nij. (3.15)

Here, nij is the value of the parameter Nij defined in Equation 3.14, and H(·) is the Heav-

iside function [Duff and Naylor, 1966] s.t. the Heaviside or step-function of A ∈ R is

H(a) = 1 if a ≥ 0

= 0 if a < 0.

Only edges with non-zero edge probability φij(Rij), are marked on the learnt graphical

model, and the corresponding value of Nij is written next to each such marked edge. Then

by this definition, any graph G(p, R) ∈ Gp,Φ(R) is sampled from within the 95% HPD

credible region on inhomogeneous random Binomial graphs given the partial correlation

matrix R of the data.

Thus, the binary edge parameter Gij between the i-th and j-th nodes, takes the value 1

(i.e. the edge exists), with a learnt probability–in fact, the joint posterior of all Gij param-

eters is learnt given the learnt correlation structure of the data, while acknowledging the

127



propagation of uncertainties in our learning of the correlation given the data, into the learn-

ing of the distribution of the Gij parameters given this learnt partial correlation matrix R. A

summary of this learnt distribution is then the edge probability parameter φij(Rij), the value

of which is marked on the visualisation of the graphical model of the data against the edge

between the i-th and j-th nodes, as long as φij(Rij) > 0, i.e. nij ≥ 0.05; i 6= j; i, j ∈ V . In

other words, only edges occurring with posterior probabilities in excess of 5% are included

in this graphical model.

3.2.6 Incorporating measurement uncertainties in the learnt graphi-

cal model

If measurement errors affect the values of the i-th component Zi of the p-dimensional

vector-valued observable Z, where measurements of Zi comprise the i-th column of data

DS, (i = 1, . . . , p), the variance of the probability distribution of such errors–if unknown–

can be learnt given the data. So let the error in Zi be ǫi that we assume is Normally

distributed with variance vǫi
, i.e. ǫi ∼ N (0, vǫi

). Then if the unknown error variance vǫi

is proposed in the t-th iteration of our MCMC chain to be v
(t⋆)
ǫi

, the correlation s
(t⋆)
ij has to

be adjusted by the factor 1/

√
1 + v

(t⋆)
ǫi

, ∀j 6= i.

3.3 Empirical illustration: simulated data

The simulated data used in this section, is a 5-columned data set Dorig (p=5) with number of

rows norig = 4000, where Dorig is simulated to bear a chosen between-columns correlation
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matrix Σ
(true)
C that is given as:




1 0.9914 −0.8964 0.02526 0.0656

1 −0.8916 0.01981 0.6647

1 −0.009747 −0.06140

1 0.03622

1




which when inverted, allows for the computation of the empirical partial correlation matrix,

following Equation 3.10. This empirical partial correlation matrix is R(true):




1 0.9574 −0.2114 0.004786 0.005037

1 −0.04897 0.03900 0.01206

1 0.02736 −0.006288

1 0.03527

1




We randomly sample n (=300 typically) rows from this simulated data set Dorig, to

define our toy data set DT, that we will implement in the method, to

– learn the between-columns correlation matrix Σ
(S)
C = [Sij]

n,p
i=1;j=1 given the standard-

ised version D
(S)
T of DT, and thereafter, learn the graphical model of data D

(S)
T , as

defined in Definition 3.2.2 with p=5 and partial correlation matrix R = [Rij]
n,p
i=1;j=1,

where elements of R are computed using the learnt Σ
(S)
C in Equation 3.10. Here D

(S)
T

comprises n simulated values of the variables Z1, . . . , Z5.

– perform model checking using D
(S)
T . To be precise, we predict the distribution of Zi

when in the identified test data, Zj is restricted to take values in the chosen, narrow
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interval [z
(0)
j − δj, z

(0)
j + δj], for j 6= i; i, j = 1, . . . , 5–and then compare the empiri-

cal distribution of Zi in the test data, with the posterior predictive distribution of Zi,

given the correlation matrix learnt using D
(S)
T . Also, given D

(S)
T and Zj, MCMC-

based sampling is performed from the joint posterior of {Zi}i=p
i=1;i 6=j and Σ

(S)
C . This

is discussed in Section 3.3.

– learn the correlation matrix and graphical model of the data, where a chosen mea-

surement error is placed on Zi, i = 1, . . . , p; the unknown variance vǫi
of this error

density is also learnt.

Plots of Zi against Z1 are included in Figure 3.1; i = 2, 3, 4, 5.

Figure 3.1: Plots of Zi against Z1 in the standardised version of the toy data D
(S)
T simulated

to bear the empirical column-correlation matrix Σ
(true)
C ; here i = 2, 3, 4, 5. The toy data

D
(S)
T comprises n measurements of the variables Z1, ..., Z5, with a typical n of 300.

3.3.1 Learning correlation matrix & graph given toy data D
(S)
T

The between-columns correlation matrix Σ
(S)
C is learnt, given the standardised toy data

D
(S)
T by employing the algorithm discussed in Section 3.2.3. Here n = 300, p = 5, and

with the aim of estimating the normalisation ĉt of the posterior in the t-th iteration, K = 20
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is the chosen number of sampled data sets with n/ rows and p columns, generated in each

iteration, to bear the column-correlation matrix proposed in that iteration. Indeed, we set

n/ = n. Here t = 0, . . . , N.

In the t-th iteration of our MCMC chain, the first block update in our Metropolis-with

2-block-update-based inference scheme, leads to the updating of the column correlation

matrix to Σt given the data D
(S)
T , using which the value of the partial correlation matrix

Rt = [ρ
(t)
ij ] is computed in this iteration. Then the second block update leads to the up-

dating of the values of the binary graph edge parameters to g
(t)
ij and variance parameters

to σ
(t)
ij , given Rt. Traces of the marginal posterior probability of five of the Sij parameters

given data D
(S)
T are shown in the top left panel Figure 3.2, while the joint posterior of all

Gij and σij parameters given the learnt partial correlation matrix, is shown in the top left

panel Figure 3.3. Histograms representing approximations of marginals of individual Rij

and σij parameters, given the data and the learnt partial correlation respectively, occupy

other panels of Figure 3.2 and Figure 3.3 respectively. Here i < j; i, j = 1, . . . , p.

The graphical model of the data D
(S)
T is presented in Figure 3.4. The fraction nij of

post-burnin samples of gij with a value of 1, i.e. an approximation to the probability of

existence of the edge joining nodes i and j, is marked next to each edge of the graph, as

long as nij ≥ 0.05, i.e. the edge probability parameter φij(Rij) is non-zero.

We note that the column correlation matrix Σ
(S)
C of the Gaussian Process that models

the data, is such that the partial correlation ρ12 between Z1 and Z2 is learnt to be in the

95% HPD credible region of ∈ [0.86, 0.95] approximately, which is close to the empirical

value of 0.96. Again, the empirical value of ρ13 is about -0.2, and the learnt value is

∈ [−0.44,−0.27] approximately; empirical value of ρ23 is about 0.04, and the learnt value

is ∈ [−0.11, 0.05] approximately. The other partial correlation parameters have smaller
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Figure 3.2: Figure showing traces and marginal posterior probability densities (as his-

tograms) of elements of the correlation matrix Σ
(S)
C , and partial correlation matrix R, learnt

given the toy data D
(S)
T , in the method in which the data is modelled using a matrix-

variate Gaussian Process, and the likelihood obtained by marginalising over the between-

row correlation matrix. The top panel displays traces of the five correlation parameters

s12, s13, s14, s15, s23 given this toy data. The lower-most panel displays traces of the partial

correlation parameters ρ12, ρ13, ρ23, computed using correlation matrix Σ
(S)
C learnt given

D
(S)
T , in Equation 3.10. The middle panel presents the marginals of these partial correlation

parameters as histograms.
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Figure 3.3: Top left: trace of joint posterior probability density of the graph edge parameters

gij and variance parameters σ2
ij, given the partial correlation matrix learnt in the first block

update of our Metropolis-with 2-block-update inference scheme, given the 5-columned toy

data set D
(S)
T . Other panels: histogram approximations to the marginal posterior probabil-

ity density of three of the variance parameters.

values in the chosen correlation structure that the data is simulated to bear–each of which

is close to the corresponding learnt value. This offers confidence in our method of learning

the correlation matrix Σ
(S)
C of the standardised toy data D

(S)
T .

3.3.2 Effect of measurement uncertainties in learning of correlation

and graph

As discussed in Section 3.2.6, in this approach, incorporate measurement errors in one or

more of the variables Z1, . . . , Zp, can be incorporated into the learning of the between-

columns correlation structure given the toy data set D
(S)
T , that then affects the learning of

the graphical model of this data. Let the unknown variance of the error distribution of Zi be

vǫi
, (i = 1, . . . , p). Then, one model of the total variance of Zi is s2

ii + vǫi
, where s2

ii would
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Figure 3.4: Figure showing graphical model of toy data D
(S)
T –learnt in the Metropolis-with

2-block-update inference scheme in which the correlation matrix Σ
(S)
C of the data is learnt,

simultaneously with the graph. The observables Z1, ...Z5, measurements of which comprise

the data, are marked by filled red circles, as the 5 nodes in this graph. The probability of

the edge parameter gij to exist (i.e. for gij to be 1)–i 6= j, i, j = 1, . . . , 5–is approximated

by the fraction nij of post-burnin iterations in which the current value of gij is 1. This value

of nij is marked against the edge joining the i-th and j-th nodes, as long as nij > 0.05.

be the variance of Zi, had Zi been free of any measurement errors. However, Zi results

from standardising the i-th observable Xi, by its empirical variance, i.e. s2
ii is unity by

design. Thus, when measurement error is no longer absent, the variance of Zi increases to

1 + vǫi
assuming Zi to be independent of the error in Zi, so that the variances add linearly.

Indeed, in the presence of measurement error in Xi, the absolute value of the correlation sij

between Zi and Zj decreases (by a factor of
√

1 + vǫi
in the model in which variances add

linearly).

On the other hand, the partial correlation ρij may increase or decrease [Liu, 1988]. That

such is a possibility, is corroborated in the correlation and partial correlation structures of

an example data set that comprises measurements of a 3-dimensional observable vector
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(Z1, Z2, Z3)
T. Then, ρij =

sij − siksjk√
(1 − s2

ik)(1 − s2
jk)

, i 6= j, i 6= k, k 6= j; i, j, k = 1, 2, 3. It

follows that if |sij| and |sik| decrease, ρij can either increase or decrease. But ρij is the

probability for the edge between the i-th and j-th nodes of the graph of this data, to exist,

i.e. ρij = Pr(gij = 1). Then it is possible that while in the absence of measurement errors,

gij = 1 during a fraction nij < 0.05 of the number of post-burnin iterations, in the presence

of measurement error in Xi, ρij increases sufficiently to ensure that the fraction of iterations

during which this edge exists is in excess of 0.05. If this happens, the edge between the

i-th and j-th nodes will be included in the graphical model of the data when measurement

error in Xi is acknowledged, but not when such error is not. In other words, ignoring

measurement uncertainties can lead to a potential misrepresentation of the graphical model

of the data at hand.

It is possible to produce graphs while ignoring, as well as acknowledging the measure-

ment uncertainty in one or more components of the p-dimensional observable vector, n

measurements of which results in the rectagularly-shaped data at hand. In fact, it is also

possible to learn the variance of the error density of the components of this observable.

This is demonstrated in the experiment discussed below.

In this implementation, we add measurement error to the 2nd component X2 of the

5-dimensional observable vector, n standardised measurements of which comprise data

D
(S)
T . Let us impose Gaussian measurement errors on Z2, s.t. this Gaussian error density

is ǫ2 ∼ N (0, 0.01). We then define a data set that is the same as D
(S)
T , except that the

2-nd column of this data is now sampled from a Gaussian with zero mean and variance

given by 1+0.01, i.e. sampled from the convolution of a standard Normal, with the density

N (0, 0.01). The resulting data set is referred to as D
(err)
T . Thus, the true value of the
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variance vǫ2 of the 2nd column of the data D
(err)
T is 0.01. We will treat this variance as an

unknown and in fact, learn this value using D
(err)
T .

We learn the column-correlation matrix of this data using the method delineated in

Section 3.2.3 above, using an MCMC chain that we run with this data D
(err)
T . The only

exception to the method of learning the sij parameters is that the correlation between the Zi

and Zj is given by
sij√

(1 + vǫi
)(1 + vǫj

)
in the model in which the variances are assumed

to add linearly; i 6= j; i, j = 1, . . . , p. Thus, in addition to the p(p − 1)/2 number of

sij parameters, we now also learn the p number of vǫi
parameters, where the latter is the

variance of the error distribution of Zi. We actually learn the standard deviation of the error

density on Zi, namely γi, i.e. vǫi
= γ2

i . In the t-th iteration, we propose γi from a Gaus-

sian proposal density that has the mean given by the current value of the parameter in this

iteration, and an experimentally chosen variance. Here t = 0, . . . , N. This is undertaken

∀i = 1, . . . , p. The Sij parameters are always proposed from Truncated Normal proposal

densities that are left and right truncated at -1 and 1 respectively and have mean given by the

current parameter value, while the variance is fixed. Then the correlation parameters that

define the correlation matrix in the t-th iteration, are s
(t⋆)
ij /

√
(1 + (γ

(t⋆)
ǫi

)2)(1 + (γ
(t⋆)
ǫj

)2),

i 6= j; i, j = 1, . . . , p. Gaussian priors are used for the Sij parameters, where such a Gaus-

sian is centred on the empirical correlation between Zi and Zj in the data, while uniform

priors are used on all other parameters. Using the proposed and current correlation matrices

in our Metropolis-Hastings inferential scheme, we compute the marginals of the individual

Sij parameters as well as the γi parameters (γ2
i = vǫi

).

Histogram representations of the marginals (normalised to 1 at the mode), of some of

these parameters are displayed in Figure 3.5. The 95% HPD credible region on γ2 that are
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learnt given this data is [-0.2,0.2] approximately. The learnt standard deviations of the error

densities of variables other than Z2, are 0 approximately. We also note from this figure that

the changes in the partial correlations introduced by the introduction of the measurement

error in one variable, can be both an increase and decrease–this is discussed above. The

effect on introducing this measurement error on Z2, on the graphical model of the data

D
(err)
T , is presented in Figure 3.6. In this graphical model, the edge G23 between the 2-nd

and 3-rd nodes takes the value 1, with probability of about 0.16, while n23 was less than

0.05 in the graphical model of data DT–which differs from D
(err)
T only in that the 2nd col-

umn is imposed with a Gaussian error of variance 0.01. Thus, the effect of introducing this

error to measurements of the variable Z2 propagates into the (partial) correlation structure

of the data, to then affect the graphical model. Comparing this learnt graph to the graph of

the toy data D
(S)
T , we recognise that measurement errors can distort the graphical model of

a data.

3.4 Model checking

Section 3.3 discusses the learning of Σ
(S)
C using the n rows of the standardised toy data

D
(S)
T , which is a 300-row subset from the 5-columned simulated dataset Dorig, discussed

in the previous section, where Dorig is generated to abide by a chosen correlation matrix

Σ
(true)
C that is defined above in Section 3.3. Then D

(S)
T comprises 300 different measure-

ments of the 5-columned vector Z := (Z1, Z2, Z3, Z4, Z5)
T, where Zi is a standardised

variable i = 1, . . . , 5. Having learnt the parameters of the Gaussian Process in Section 3.3–

of which the standardised observable Z ∈ Rp is a realisation–here we want to predict

values of Zi for values of Zj as given in a new or test data, (j 6= i; i, j = 1, . . . , p); for

our purposes, p=5. This test data Dtest is built to be independent of the training data D
(S)
T ,
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Figure 3.5: Top panels: comparison of histogram representation (in black) of the marginal

posterior density of some partial correlation parameters (ρij) learnt given toy data D
(S)
T ,

with the marginals (in grey, or red in the electronic version), of the same parameter, learnt

given the data D
(err)
T , which differs from D

(S)
T , in only that Gaussian errors of variance

0.01 are imposed on the variable Z2. i.e. the 2nd component of the 5-dimensional ob-

servable vector (Z1, Z2, Z3, Z4, Z5)
T, measurements of which comprise the data. Here

i, j = 1, ..., 5; i 6= j. From left to right, are presented the results for ρ12, ρ13 and ρ23. Lower

panels: histogram representations of the standard deviation γi of the error density in the

measurement of Zi, learnt using data D
(err)
T , for i = 2, 1, 3 from the left to the right pan-

els, where in this data, Z2 is the only one of the 5 variables that has an error (of standard

deviation 0.1) imposed on it.

as q rows of the standardised version of the bigger data set Dorig–of which D
(S)
T is also a

subset–although the q rows of Dorig that comprise Dtest, are chosen as distinct from the n

rows of the training data D
(S)
T . The standardised test data Dtest has p = 5 columns and q

rows; in fact, q is set s.t. q = n.

Though the first part of this paragraph was suggested performing model checking using
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Figure 3.6: Figure showing graphical model of data D
(err)
T that differs from the toy data

D
(S)
T only in that Gaussian errors (with variance 0.01) are added to the 2nd column of D

(S)
T ,

to realise D
(err)
T . The inclusion of measurement noise in this column of the toy data is noted

in the learnt graphical model of the resulting error-bearing data D
(err)
T , which manifests the

edge between variables Z2 and Z3, while this edge is absent in the graphical model of the

error-free data D
(S)
T ; see Figure 3.4.

predicted and true values of all 4 of Z2 to Z5, at given values of Z1, given that the simulated

Z5 is known to be uncorrelated to Z1, and occupying the interval [-1,1] uniformly, at any

z1. So it only Z2, Z3, Z4 that are predicted at each of the known q (=n) values of Z1 in

the test data Dtest, given the GP parameters (i.e. the between-columns covariance matrix

Σ
(S)
C ) that we learn using the training data. No prediction of Z5 is undertaken as Z5 is

not correlated . In fact, we will sample from the posterior predictive density of Z2, Z3, Z4,

given the correlation matrix learnt using training data D
(S)
T , and values of Z1 in the test

data Dtest. We compare the predicted values of Z2, Z3, Z4 against their empirical values in

the test data. Such a comparison constitutes the checking of our models s well as the results

(of the learning of Σ
(S)
C given the training data D

(S)
T ). We clarify this prediction now.
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As we learn the marginal posterior probability density of each correlation parameter

Sij given D
(S)
T , we need to choose a summary of this marginal distribution, at which the

prediction of the zik is undertaken, i = 2, 3, 4, k = 1, . . . , n. We choose the mode of the

marginal as this summary. Denoting the value of Zi in the k-th row of the test data as zik,

(k = 1, . . . , q = n), the learning of {z2k, z3k, z4k}n
k=1 is undertaken, in the test data Dtest,

given values of {z1k}n
k=1 in Dtest and the modal values of Sij learnt using the training data

D
(S)
T . In this Bayesian, MCMC-based inferential approach, this learning is equivalent to

sampling from the posterior predictive of the unknowns, i.e. performing MCMC-based

posterior sampling from

π(z21, z31, z41, . . . , z2n, z3n, z4n|z11, . . . , z1n, s
(M)
12 , . . . , s

(M)
1p , s

(M)
23 , . . . , s

(M)
2p , . . . , s

(M)
p−1 p),

where s
(M)
ij represents the modal value of the correlation parameter Sij that we learn given

the training data D
(S)
T . The learnt “modal” correlation matrix is defined to be Σ

(M)
C =

[s
(M)
ij ].

In the t-iteration, a value z
(t⋆)
ik is proposed from a Gaussian proposal density with mean

given by the current value z
(t−1)
ik of this variable, and fixed variance νik, i.e. the proposed

value is z
(t⋆)
ik ∼ N (z

(t−1)
ik , νik); this is done for i = 2, 3, 4 and ∀k = 1, . . . , n, at each t =

0, . . . , N. Then the proposed data in the t-th iteration is D(t⋆) =
(

z1, z
(t⋆)
2 , z

(t⋆)
3 , z

(t⋆)
4 , z5

)
,

where zi = (zi1, . . . , zin)
T, i = 1, . . . , 5. The posterior of the unknowns is then given as in

Equation 2.8, with the data given by D(t⋆) and the modal correlation matrix given by Σ
(M)
C

learnt using the training data set D
(S)
T . The normalisation of the posterior is computed in

the t-th iteration in the way described above in SEction 3.2.1, at the Σ
(M)
C . Uniform pri-

ors are used on all unknowns. So in each iteration, we (use Random-Walk Metropolis to)

sample from the posterior of the unknown variables, given Σ
(M)
C and the data on the q = n
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number of Z1 values in the test data Dtest. We implement such posterior sampling to com-

pute marginal predictive of each of the unknowns. We compare this marginal predictive

of of Z2, Z3, Z4, to the empirical distribution of Z2, Z3, Z4 in the test data Dtest. We also

compare the plots of the predicted Zi and the known Z1 values, to the corresponding plot

of empirical value of Zi and Z1; i = 2, 3, 4. The results of this comparison for Z2, Z3 and

Z4 are included in Figure 3.7.

Figure 3.7 shows that the plots of the predicted values of Zi, i = 2, 3, 4, against Z1

(in red filled circles in the electronic version, and grey circles in the monochrome ver-

sion), compare favourably–visually speaking–to the plots of the empirical Zi (in the test

data), against Z1. To be precise, the red (or grey) circles comprise predicted (or learnt) pair

(z1k, z
(mode)
ik ) for k = 1, . . . , q = n, where z

(mode)
ik is the modal value of the marginal pos-

terior density of Zik given known values of Z1 in the test data, and the (modal) correlation

matrix Σ
(M)
C (itself learnt given the training data). The black circles represent the empirical

values (z1k, zik) for k = 1, . . . , n, i.e. the pair in the k-th row of the test data. We also plot

the marginal of the learnt values of Zi given the data, superimposed on the frequency dis-

tribution of the empirical value of Zi in the test data–we do this for each i = 2, 3, 4. Again,

the overlap between the results is encouraging. Thus, the predictions offer confidence in

our model, as well as the results of our learning of the correlation structure of the data.

However, conditioning the posterior predictive of Zi on a summary–modal in our earlier

implementation–correlation matrix learnt given training data D
(S)
T is restrictive in that this

approach ignores the learnt distribution of the correlation matrices. After all, learning of

the correlation matrix given D
(S)
T is MCMC-based, generating a value of Σ

(S)
C in each

iteration. In light of this, the marginal posterior of Zi obtained by marginalisation over the

joint posterior probability density of all unknown components of Z and Σ
(S)
C is a possibility.
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Figure 3.7: Top panels: figures comparing plots of empirical and predicted values of Zi

against values of Z1, for i = 2, 3, 4 moving from left to the right panel. Grey (red in the

electronic version) circles depict pairs of (z1k, zik) in the test data Dtest, while black circles

depict Zi values learnt given the first column of the test data and the modal correlation

matrix Σ
(M)
C that is itself learnt using the training data set D

(S)
T . Lower panels: marginal

of Zi given 1st column of test data and Σ
(M)
C , plotted as a histogram in grey (or red in the

electronic version), over its empirical distribution in black, i.e. the histogram of the i-th
column of the test data. Here, i = 2, 3, 4 as we move from left to right.

Thus, we learn Σ
(S)
C simultaneously with Z2, Z3, Z4, i.e. the 2nd, 3rd and 4th columns of

the test data, given the training data and the 1st column of the test data. Subsequently,

MCMC-based posterior sampling is performed from the joint posterior probability density:

π
(

s12, . . . , s1p, s23, . . . , s2p, . . . , sp−1 p, z21, . . . , z2n, z31, . . . , z3n, z41, . . . , z4n|z11, z1n, D
(S)
T

)
.

(3.16)

In order to implement this, propose z
(t⋆)
21 , . . . , z

(t⋆)
2n , z

(t⋆)
31 , . . . , z

(t⋆)
3n , z

(t⋆)
41 , . . . , z

(t⋆)
4n in each

of the t iterations, t = 0, . . . , N. Each of these parameters is proposed from a Gaussian

proposal density (with mean given by the current value and an experimentally chosen vari-

ance). At the same time, the sij parameters, i 6= j, i, j = 1, . . . , p are proposed from a
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Truncated Normal proposal density, truncated at -1 and 1, with mean given by the current

value of the parameter, and chosen variance.

Figure 3.8: Top panels: grey (red in the electronic version) coloured histograms represent

the marginal posterior density of Sij learnt, (along with the Zi parameters; i = 2, 3, 4), given

the training data D
(S)
T , and the known 1st column of the test data Dtest. This is compared

to the marginal of Sij learnt (when the column-correlation matrix is learnt alone), given

training data–presented as the histograms in black. Panels from left to right correspond

to the results for S12, S13 and S23 respectively. The lower panels present the comparison

between the empirical distribution of the i-th column of the test data Dtest–in black–and the

joint posterior of Zi, (learnt along with the Sij parameters), given D
(S)
T , and the 1st column

of Dtest, (in grey, or red in the electronic version). Here i = 2, in the bottom left panel and

i = 3 in the right.

For this implementation, at the t-th iteration, the augmented data D
(t⋆)
A is defined; this

is the training data D
(S)
T , augmented by the data set D(t⋆) proposed in the t-th iteration,

(defined above), where the 1st and 5th columns of D(t⋆) are the known 1st and 5th columns

of the test data Dtest, and the i-th column is the proposed vector (zt⋆
i1 , . . . , zt⋆

in)
T, i = 2, 3, 4.

Thus, as the proposed D(t⋆) varies from one iteration to the next, the augmented data D
(t⋆)
A
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also varies. This augmented data then has p columns nd n + q rows, i.e. 2n rows, given

our choice of q = n. In the t-th iteration, the posterior probability density of the unknowns

given this augmented data D
(t⋆)
A is computed, using the posterior defined in Equation 2.8

of WMC in which the generic data DS is now replaced by D
(t⋆)
A . While uniform priors

are placed on the zik parameters, Gaussian priors on sij are used, with such a prior centred

at the empirical value of the correlation between the i-th and j-th columns of the data,

(i, j = 1, . . . , p); the variance of these Gaussian priors are experimentally chosen.

Some results of sampling from the joint defined in Equation 3.16 are shown in Fig-

ure 3.8. These include comparison of the histogram representations of the marginals of

3 correlation parameters S12, S13, S23, learnt in this implementation given the augmented

data, with the marginal of the same correlation parameter learnt given training data D
(S)
T .

The figure also includes a comparison of the empirical and predicted marginals of Z2 and

Z3.

3.5 Implementation on real data

This section presents a real-data application of the Bayesian learning of the between-

columns correlation matrix of a multivariate data set, and simultaneous learning of the

graphical model of the data at hand, given the updated correlation structure. We use the rel-

atively well-known data sets on 11 different chemical attributes and “quality” classes of red

and white wines, grown in the Minho region of Portugal (referred to a “vinho verde”); these

data sets have been considered before by Cortez et al. [1998] and discussed in the web-

site https://onlinecourses.science.psu.edu/stat857/node/223. The

data consists of information on 1599 red wines and 4898 white wines. Each of these data

sets consists of 12 columns that contain information on physiochemical attributes of the
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sampled wines; these properties are assigned the following names: “fixed acidity” (X1),

“volatile acidity” (X2), “citric acid” (X3), “residual sugar” (X4), “chlorides” (X5), “free

sulphur dioxide” (X6), “total sulphur dioxide” (X7), “density” (X8), “pH” (X9), “sulphates”

(X10), “alcohol” (X11) and “quality” (X12). Then the n-th row and i-th column of the data

matrix carries measured/assigned value of the i-th property of the n-th wine in the sample,

where i = 1, . . . , 12 and n = 1, . . . , norig = 1599 for the red wine data D
(red)
orig , while

n = 1, . . . , norig = 4898 for the white wine data D
(white)
orig . We refer to the i-th vinous

property to be Xi. Then Xi ∈ R≥0 ∀i = 1, . . . , 11, while X12 that denotes the perceived

“quality” of the wine is a categorical variable. Each wine in these samples was assessed by

at least three experts who graded the wine on a categorical scale of 0 to 10, in increasing

order of excellence. The resulting “sensory score” or value of the “quality” parameter was a

median of the expert assessments [Cortez et al., 1998]. We seek the graphical model given

each of the wine data sets, in which the relationship between any Xi and Xj is embodied,

i 6= j; i, j = 1, . . . , 12. Thus, we seek to find out how the different vino-chemical attributes

affect each other, as well as the quality of the wine, in the sample at hand.

Here, X1, . . . , X11 are real-valued, while X12 is a categorical variable, and our method-

ology allows for the learning of the graphical model of a data set that in its raw state bears

measurements of variables of different types. In fact, we standardise our data, s.t. Xi is

standardised to Zi, i = 1, . . . , p, p = 12. We work with only a subset data set, (comprising

only n < norig rows of the available D
(·)
orig; n = 300 typically). Thus, the data sets with n

rows, containing Zi values, (i = 1, . . . , p = 12), are n × p-dimensional matrices each; we

refer to these data sets that we work with, as D
(white)
S and D

(red)
S , respectively for the white

and red wines.

The aim here is to learn the between-column correlation matrix Σ
(m)
S given data D

(m)
S ,
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and simultaneously learn the graphical model of this data using the methodology developed

above; m = white, red;

The motivation behind choosing these data sets are basically three-fold. Firstly, mul-

tivariate, rectangularly-shaped, real-life data were sought, where such data would admit

graphical modelling of the correlations between the different variables involved. Also, we

wanted data, results from–at least a part of–which exists in the literature. Comparison of

these published results, with our independent results can then illustrate strengths of our

method. Thirdly, treating the red and white wine data as data realised at different exper-

imental conditions, we would want to address the question of the distance between these

data, and this is done by computing the distance between the graphical models of the two

data sets. Hence our choice of the popular Portuguese red and white wine data sets, as the

data that we implement to illustrate our method on. It is to be noted that a rigorous vina-

ceous implications of the results, is outside the scope and intent of this paper. However, we

will make a comparison of our results with the results of the analysis of white wine data that

is reported in: https://onlinecourses.science.psu.edu/stat857/node/223

precludes analysis of the red wine data.

3.5.1 Results given data D
(white)
S

As per the underlying principle of our Bayesian learning methodology discussed above

(Section 3.2), we model the observable vector (Z1, . . . , Zp)T using a Gaussian Process.

Within a Metropolis-with 2-block-update inferential scheme (discussed in Section 3.2.3),

we first perform the updating of the p(p − 1)/2 parameters S12, . . . , Sp−1 p that are the

elements of the upper triangle of the between-column correlation matrix Σ
(white)
S , given

data D
(white)
S that has n = 300 number of rows and p = 12 number of columns. The
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proposal and prior densities on the Sij parameters are as discussed in Section 3.2. The

posterior probability density of the unknowns given the data is computed using these chosen

priors and likelihood that is given in Equation 3.8. The updated correlation matrix is then

used to compute the updated partial correlation matrix, given which, we update the binary

graph edge parameters Gij and the parameters σ2
ij that provide the variance of the likelihood

function defined in Equation 3.11. Priors and proposal densities of the unknowns are as

discussed in Section 3.2.2. Marginals of all unknowns are computed, and traces of the

joint posterior probability density in each of the two block updates in our MCMC chain,

are examined. The graph edge probability parameter φij(Rij) is also computed from the

graphs sampled in the post-burnin part of the MCMC chain.

The top left-hand panel of Figure 3.9 presents the trace of the joint posterior probabil-

ity density of the correlation parameters Sij given the data D
(white)
S . All the other panels of

this figure include marginal posterior probabilities of some of the partial correlation param-

eters, with value ρij, where the i-th variable is the i-th vinous parameter listed above, with

i = 1, . . . , 12; j 6= i, j = 1, . . . , 12. Figure 3.10 presents the trace of the joint posterior

of the Gij and σ2
ij parameters, updated in the 2nd block of each iteration of our MCMC

chain, at the updated (partial) correlation matrix. The other panels of this figure depict the

histogram representation of the marginals of some of the σ2
ij parameters. Thus the sample

of graphs, {G(t)(p, Rt)}N
t=N−Npost+1, was obtained, where each graph is on the vertex set

V = {1, . . . , p} and is learnt given the partial correlation matrix Rt in the t-th iteration

of our MCMC chain. The graph edge probability parameter φij(Rij) is computed for each

ij-pair of nodes in this sample, and include only those edges in the graphical model of the

D
(white)
S data, that have non-zero φij(Rij), i.e. nij ≥ 0.05 (see Section 3.2.5). For these

edges, the value nij is marked against the edge between the i-th and j-th nodes in the repre-
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Figure 3.9: Top left panel: trace of the joint posterior probability density of the elements of

the upper triangle of the between-columns correlation matrix of the standardised version of

the real data D
(white)
S on Portuguese white wine samples [Cortez et al., 1998]; this data has

n = 300 rows nd p = 12 columns, and is constructed as a randomly sampled subset of the

original data, the sample size of which is 4898. All other panels: histogram representations

of marginal posterior probability densities of some of the partial correlation parameters

computed using the correlation matrix learnt given data D
(white)
S . Random variable indexed

with “1” is fixed acidity ; with ’2’ is volatile acidity; with ’3’ is citric acid; with ’4’ is

residual sugar; with ’5’ is chlorides; with ’6’ is free sulphur dioxide; with ’7’ is total

sulphur dioxide; with ’8’ is pH; with ’9’ is sulphate; with ’10’ is alcohol;

sentation of this graphical model of this white wine data set, that is shown in Figure 3.11.

Here i 6= j, i, j = 1, . . . , p = 12.

3.5.1.1 Comparing against previous work done with white wine data

The graphical model of the white wine data presented in Figure 3.11 is strongly cor-

roborated by the simple empirical correlations between pairs of different vino-chemical
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Figure 3.10: Top left panel: trace of the joint posterior probability of the graph edge

parameters Gij and the variance parameters σ2
ij that are the variances used in the like-

lihood function defined in Equation 3.11; these parameters are updated within the 2nd

block update of our Metropolis-with 2-block-update inferential scheme, at the correlation

matrix that is updated given the data D
(white)
S of Portuguese white wine samples. Here

i 6= j; i, j = 1, . . . , 12. All other panels: histogram representations of marginal posterior

probability densities of some of the variance parameters learnt given the correlation matrix

that is itself learnt, given data D
(white)
S .

properties–this correlation structure is apparent in the “scatterplot of the predictors” in-

cluded as part of the results of the “Exploratory Data Analysis” reported in:

https://onlinecourses.science.psu.edu/stat857/node/224 on the white

wine data. They use the full white wine data set D
(white)
orig , to construct a matrix of scatter-

plots of Xi against Xj, where i 6= j; i, j = 1, . . . , 11. It is to be noted that in the data

analysis reported in:

https://onlinecourses.science.psu.edu/stat857/node/224, the ma-
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Figure 3.11: Figure showing graphical model of standardised version of the real data

D
(white)
S on Portuguese white wine samples [Cortez et al., 1998]. Each of the first 11

columns of this data gives the measured value of each of 11 different vino-chemical prop-

erties of the wines in the sample–marked as nodes in the graph above, by filled red (or grey

in the printed version) circles, with the name of the property included in the vicinity of the

respective node. The 12-th column in the data includes values of the assessed quality of

a wine in the sample, (a node that we mark with a green circle in the electronic version;

the bigger grey circle in a monochromatic version of the paper). The probability for an

edge to exist in the post-burnin sample of graphs generated in our MCMC-based inferen-

tial scheme, is marked against an existing edge, where edges with such probabilities that

are < 0.05 are omitted from this graphical model, as included within a pre-defined 95%
HPD credible region (defined in Section 3.2.5) on the MCMC-based sample of graphs.

trix of scatterplots of pairs of variables i and j was included, where this set of variables

excluded the last column of the white wine data–the column that informs us of the assessed

“quality” of the wine.
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When comparing the learnt graphical model with the results of this reported “Ex-

ploratory Data Analysis”, we recall that partial correlation (that drives the probability of

the edge between the i-th and j-th nodes), is often smaller than the correlation between

the i-th and j-th variables, computed before the effect of a third variable has been removed

[Sheskin, 2004]. If this is the case, then an edge between nodes i and j in the learnt graph-

ical model, is indicative of a high correlation between the i-th and j-th variables in the

data. However, in the presence of a suppressor variable (that may share a high correlation

with the i-th variable, but low correlation with the j-th), the absolute value of the partial

correlation parameter can be enhanced to exceed that of the correlation parameter. In such

a situation, the edge between the nodes i and j in the learnt graphical model may show

up (within our defined 95% HPD credible region on edge probabilities, i.e. at probability

higher than 0.05), though the empirical correlation between these variables is computed

as low [Sheskin, 2004]. So, to summarise, if the empirical correlation between two vari-

ables reported for a data set is high, our learnt graphical model should include an edge

between the two nodes. But the presence of an edge between pair of nodes is not neces-

sarily an indication of high empirical correlation between a pair of variables–as in cases

where suppressor variables are involved. Guessing the effect of such suppressor variables

via an examination of the scatterplots is difficult in this multivariate situation. Lastly, it

is appreciated that empirical trends are only indicators as to the Gaussian-process based

model of the learnt correlation structure (and the graphical model learnt thereby) given the

data at hand.

As mentioned above, in this comparative exercise, i 6= j; i, j = 1, . . . , 11. (Existence

of edges to/from Z12, i.e. the “quality” variable is corroborated by examining results re-

ported in https://onlinecourses.science.psu.edu/stat857/node/225
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on regressing this variable against the others). Indeed, these empirical scatterplots visually

appear to suggest stronger correlations between fixed acidity and pH; residual sugar and

density; free sulphur dioxide and total sulphur dioxide; density and total sulphur dioxide;

density and alcohol; alcohol and density–than amongst other pairs of variables. In our

learnt graphical model, these are in fact the very node pairs that are identified to have edges

(at probability in excess of 0.05) between them. Also, in

https://onlinecourses.science.psu.edu/stat857/node/225, the mul-

tiple and polynomial regression analysis of the predictors X1, . . . , X11 on the response vari-

able termed “quality”, i.e. X12, suggested the variables alcohol and volatile acidity to have

maximal effect on quality; again, alcohol and volatile acidity are the two variables included

in this work for further attempts at classification of the white wines in the sample (using

tree-based regression and random forests). Indeed, this is corroborated in the learning of the

graphical model presented above as this manifests edges between the nodes corresponding

to variables: alcohol-quality, and volatile acidity-quality.

3.5.2 Results given data D
(red)
S

The D
(red)
S data is the standardised version of a subset of the original red wine data set

D
(red)
orig . D

(red)
S comprises n = 300 rows and p = 12. Thus, the D

(red)
S data comprises

n measurements of the p-dimensional observable vector (Z1, . . . , Zp)T, where Zi is the

standardised Xi, where Xi has been described above in Section 3.2; i = 1, . . . , p = 12. As

with the white wine data, we implement data D
(red)
S in a Metropolis-with 2-block-update-

based inference scheme to learn the between-column correlation matrix Σ
(red)
S of the red

wine data, and learn the graphical model of data D
(red)
S , given the learnt correlation Σ

(red)
S .

The inferred graphical model of the red wine data is included in Figure 3.15. The
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Figure 3.12: Matrix of scatterplots of the 11 different vino-chemical variables X1, . . . , X11

that form the first 11 columns of the red wine data D
(red)
orig . Here Xj is plotted against Xi,

i 6= j, i, j = 1, . . . , 11. The Xi relevant to the i-th row is named in the diagonal element of

the i-th row; j increases from 1 to 11 from left to right.
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Figure 3.13: Output of ordinary least square analysis of regressing residual sugar on the

other 10 vino-chemical attributes in the red wine data. Here X1 is the notation used in the

MATLAB output table for “fixed acidity”, X2 for “volatile acidity”, X3 for “citric acid”,

X4 for “residual sugar”, X5 for “chlorides”, X6 for “free sulphur dioxide”, X7 for “total

sulphur dioxide”, X8 for “pH”, X9 for “sulphate”, X10 for “alcohol”.
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Figure 3.14: Output of ordinary least square analysis of regressing quality on the vino-

chemical attributes of red wine samples in the red wine data.

marginal posterior of some of the partial correlation parameters ρij computed using the

elements of the correlation matrix Σ
(red)
S that is updated in the first block of Metropolis-

with 2-block-update, are presented in Figure 3.16. In the second block, the edge parameters
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Gij of the graph G(p, R) are updated, given the newly updated R. Figure 3.17 presents the

trace of the joint posterior probability of the Gij parameters and the variance parameters

σ2
ij (of the Normal likelihood). The marginal of some of the variance parameters are also

shown in the other panels of this figure.
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Figure 3.15: Graphical model of standardised version of the real data D
(red)
S on Portuguese

red wine samples [Cortez et al., 1998]. Figure is similar to Figure 3.11, except that this is

the graphical model learnt for the red wine data.

3.5.2.1 Comparing against empirical work done with red wine data

To the best of my knowledge, analysis of the red wine data has not been reported in the

literature. In lieu of that, I present a matrix of pairwise scatterplots of the first 11 columns
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of the red wine data in Figure 3.12. Firstly, the learnt correlations (see plots of R1j, for

j = 2, . . . , 9, as displayed in Figure 3.16), are compared to the correlations manifest in

this matrix of scatterplots, to check for compatability between the learnt and empirical

results. We note that all moderately correlated variable pairs, as represented in the scat-

terplots in Figure 3.12, are joined by edges in our learnt graphical model of the red wine

data–as is to be expected if the learning of the graphical model is correct. Such pairs in-

clude fixed acidity-citric acid, fixed acidity-density, fixed acidity-pH, volatile acidity-citric

acid, free sulphur dioxide-total sulphur dioxide, density-alcohol. However, an edge may

exist between a pair of variables even when the apparent empirical correlation between

these variables is low (see Section 3.5.1.1); this owes to the effect of other variables. Such
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Figure 3.16: The marginal posterior of some of the partial correlation parameters ρij com-

puted using the elements of the correlation matrix Σ
(red)
S that is updated in the first block

of our MCMC chain, run with the red wine data D
(red)
S of Portuguese red wine samples;

i 6= j; i, j = 1, . . . , p = 12. The top left hand panel of this figure presents the trace of the

joint posterior probability density of the elements of the upper triangle of Σ
(red)
S .
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Figure 3.17: The upper panel of this figure presents the trace of the joint posterior prob-

ability of the Gij parameters and the variance parameters σ2
ij (of the Normal likelihood)

used in this second block update of our MCMC chain, run with the red wine data D
(red)
S of

Portuguese red wine samples; i 6= j; i, j = 1, . . . , p = 12. The marginal of some of the

variance parameters are also shown in the other panels of this figure.

effects give rise to the remaining edges seen in our learnt graphical model of the red wine

data, namely, the edges between residual sugar-density and residual sugar-alcohol. Indeed,

this is examined more closely by regressing residual sugar against the remaining 10 vari-

ables (other than quality); the results of this Ordinary Least Squares regression exercise

are included in Figure 3.13. It shows that in this regression model, Z7 (density) and Z10

(alcohol) affect residual sugar more than any of the other covariates–indeed, in the learnt

graphical model of the red wine data, it is density and alcohol that residual sugar has edges

with, respectively.

Modelling of the relationship between the response variable “quality” (Z12) and the

other 11 covariates (Z1 to Z11), via an OLS regression is undertaken. In this model, quality

is regressed over the other vino-chemical attributes. This modelling suggests the strongest
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effect of alcohol and volatile-acidity on quality (see Figure 3.14); this trend is replicated in

the learnt graphical model of the red wine data.

3.6 Hellinger distance between posterior probability den-

sities of graphs given white and red wine datasets

We are interested in answering the question of whether two multivariate datasets D1 and

D2, are independent of each other or not; in effect, the question addresses the possible in-

dependence of the pd f s that the two data sets at hand are sampled from. This is of course

a hard question to address when the data comprise unequal, but large number of measure-

ments (n1 and n2 respectively) of two high-dimensional vector-valued observables, s.t. Dm

comprises measurements of the standardised variable Zm ∈ Zm ⊆ Rp, m = 1, 2. This is

addressed by learning the graphical model of each dataset as per the methodology discussed

above, and then by computing the Hellinger distance between the posterior probability den-

sity of the graphical model Gp,Φ1(R1)
of data D1, the between-columns partial correlation

matrix of which is R
(p×p)
1 , and the posterior of the graphical model Gp,Φ2(R2) given the

other data set, the partial correlation matrix of which is learnt to be R
(p×p)
2 . Here Φm(Rm)

is the matrix, the ij-th element of which is the edge probability φij(Rij) = nij if nij ≥ 0.05

and φij(Rij) = 0 if nij < 0.05. i 6= j; i, j = 1, . . . , pm; m = 1, 2. We need to consider the

Hellinger distance between the posteriors of the graphical models of two data sets with the

same number of columns, as this distance is defined between densities that share a common

domain.

First let us remind ourselves of the Hellinger distance between two generic densities,

and then clarify the computation of this distance in the context of the distance between the

posterior probability densities of the edge parameters of the graphical model given a data
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set, and that given another data set. Lastly, such a computation is contextualised to the

graphical models learnt given the standardised versions of the real Portuguese white and

red wine data sets D
(white)
S and D

(red)
S respectively, to probe the independence of these two

data that report the vino-chemical attributes of the red and white wine samples.

The square of the Hellinger distance between two probability density functions g(·)

and h(·) over a common domain X ∈ Rm, with respect to a chosen measure, is

D2
H(g, f ) =

∫ (√
g(x)−

√
h(x)

)2

dx

=
∫

g(x)dx +
∫

h(x)dx − 2
∫ √

g(x)
√

h(x)dx

= 2

(
1 −

∫ √
g(x)

√
h(x)dx

)
. (3.17)

Thus we see that D2
H(·, ·) takes values in [0,2], where the value of 0 is attained when the

two densities are equal, and the value of 2 is attained when the densities are singular. The

Hellinger distance is closely related to the Bhattacharyya distance between two densities:

DB(g, f ) = −log

[∫ (√
g(x)

√
h(x)

)2

dx

]
[Bhattacharyya, 1943].

For the standardised wine data D
(m)
S where m = red, white, the posterior probability

density of the graph edge parameters G
(m)
ij is π(G

(m)
11 , G

(m)
12 , . . . , G

(m)
p p−1|Rm), where the

partial correlation matrix Rm is learnt, given this data. Indeed, during the second block up-

date of the Metropolis-with 2-block-update inference, the value of the joint posterior prob-

ability of all the Gij and σ2
ij parameters is computed, given the partial correlation matrix–

that is updated given the data during the first block update. So we marginalise the σ2
ij out

of this joint posterior of all edge and variance parameters, i.e. marginalise out all σ2
ij for all

i, j = 1, . . . , p i 6= j, to achieve the joint posterior probability density of the graph edge

parameters given the partial correlation matrix of the data at hand.

So, at the end of the t-th iteration, value of the posterior π(G
(mt)
11 , G

(mt)
12 , . . . , G

(mt)
p p−1|Rmt),
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t = 0, . . . , Niter is computed. Given the availability of the posterior at discrete points in its

support, implementation of the integral of the relevant posterior probability density in the

definition of the Hellinger distance is replaced by the discretised version of this definition.

So the square of the Hellinger distance D2
H(white, red) between the posterior probability

densities

pwhite := π(G
(white)
11 , G

(white)
12 , . . . , G

(white)
p p−1 |Rwhite)

and

pred := π(G
(red)
11 , G

(red)
12 , . . . , G

(red)
p p−1|Rred)

is discretised as

D2
H(pwhite, pred) =

Niter

∑
t=Nburnin+1

(√
p
(t)
white −

√
p
(t)
red

)2

Niter − Nburnin
, (3.18)

where for the m-th data set, m = white, red, p
(t)
m is the value of the posterior of the graph

edge parameters given the partial correlation matrix, in the t-th iteration, and only post-

burnin posterior samples are considered for the computation of the Hellinger distance. In

other words, p
(t)
m := π(G

(mt)
11 , G

(mt)
12 , . . . , G

(mt)
p p−1|Rmt). The Bhattacharyya distance can

be similarly discretised.

However, MCMC does not provide normalised posterior probability densities–as uni-

form priors on the variance parameters are employed, the marginalised posterior probability

of the edge parameters is known only up to an unknown scale. In fact, what is recorded at

the end of the t-th iteration, is the logarithm ln(p
(t)
m ) of the un-normalised posterior of the

edges of the graph given the m-th data (m = red, white). Hence the Hellinger distance

between the red and white wine graphs that is computed is only known upto a constant

normalisation S that scales p
(t)
white and p

(t)
red, ∀ t = 0, . . . , Niter. Let this scale parameter S,
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be chosen to ensure that the scaled, log posterior of the graph in the t-th iteration, is easily

exponentiable, as in exp

(
ln(p

(t)
m )

s

)
. One way of achieving this is to choose the global scale

S as: max{(ln(p
(0)
red), ln(p

(1)
red), . . . , ln(p

(Niter)
red ), ln(p

(0)
white), . . . , ln(p

(Niter)
red )}. Indeed, this

definition yields the value of the global scale S to be s = ln(p
(1474)
red ) ≈ 142.7687; we then

use exp(ln(p
(t)
m )/s) in Equation 3.18. The computed Hellinger distance will of course

be affected by the global scaling parameter that is uses. The Bhattacharyya distance can

be similarly computed, using the (similarly scaled) logarithm of the posterior values as

obtained from MCMC; again the Bhattacharyya distance is unnormalised given the incom-

pleteness of knowledge of the posterior of the graph at any iteration.

Alternatively, a (discretised version of the) odds ratio of unscaled logarithm of the

unnormalised posterior densities of the graphical models can be defined, where the said

graphical models are learnt using MCMC, given the two real wine data sets, as

∫
(log(g(x))− log(h(x))) dx

; such is then a divergence measure that is defined as

Oπ(pwhite, pred) :=
Niter

∑
t=Nburnin+1

[
log(p

(t)
white)− log(p

(t)
red)
]
. (3.19)

Then scaling the log posterior given either data set, at any iteration, by the scale value

of s=142.7687 approximately–which is the maximal value of the log posterior of the graph

in the 1474-th iteration, given the red wine data– DH(pwhite, pred) ≈ 0.1153, so that the

logarithm of this value of the Hellinger distance is ln(0.1153) ≈ −2.1602. Similarly,

using the same scale, the Bhattacharyya distance is DB(pwhite, pred) ≈ −1.7623, where is

is recalled that this measure is a logarithm of the distance. Indeed, values of these distances

are affected by our choice of the scale S.

162



However, what is of interest is the comparison of the ratio of the Hellinger distance

between posterior probability of graphical models given two datasets, for a given choice of

the scale S, to the uncertainty inherent in the graphical model of either data, as computed

at that chosen S. This uncertainty inherent to the graphical model given the m-th data can

be computed as the difference

Dmax,s(m) := max{exp(ln(p
(0)
m )/s), exp(ln(p

(1)
m )/s), . . . , exp(ln(p

(Niter)
m )/s)} −

min{exp(ln(p
(0)
m )/s), exp(ln(p

(1)
m )/s), . . . , exp(ln(p

(Niter)
m )/s)},

computed for this choice of S. By this definition, Dmax,s(m) provides the separation be-

tween the maximal and minimal posteriors of graphs scaled by a chosen scale S, generated

in the MCMC run using the m-th data; m = white, red. So for a chosen scale, the ratio

of the distance between the two graphical models is computed, to the uncertainty inher-

ent in a graphical model, namely

√
D2

H(pwhite, pred)/Dmax,s(red), and compare that with
√

D2
H(pwhite, pred)/Dmax,s(white).

This comparison is depicted in the left panel of Figure 3.18 that shows that the differ-

ence Dmax,s(white) between the scaled posterior of graphs given the white wine data is

about 0.0694 while Dmax,s(red) given the red wine data is about 0.05521, These values are

compared to the Hellinger distance (between scaled posteriors) of about 0.1153, between

graphs given the red and white wine data. Thus, DH(pred, pwhite) is about 1.66Dmax,s(white)

and about 2.1Dmax,s(red), i.e. the distance between the graphical models given the two data

sets is higher than the internal uncertainties within the graphs inferred upon, given either

data set. Then intuitively speaking, the Hellinger distance between the graphical models

given the red and white wine datasets, may suggest independence of the data sets, but the

question of interpretation of the computed values of distance/divergence between a pair of
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graphs, cannot be properly addressed unless a test of hypothesis can be undertaken to test

if the computed distance is different from 0, i.e. the two graphical models (given the real

red and white wine Portuguese data sets in our work), are different.

Compared to these, the sample mean of the log odds of the posterior of the graphs

generated in the post-burnin iterations, given the two data is 18.9273, which is about 1.9

times the maximal difference between the log posterior values of graphs achieved in the

MCMC run with the white wine data, and about 2.4 times that for the red wine data (see

Figure 3.18). Again, this suggests that the log odds as a measure of distance between the

graphical models given these two wine data sets, is significantly higher than the uncertainty

internal to the results for each data.

Figure 3.18: Left: minimum and maximum values of the scaled posterior probability den-

sity of the graph sampled in an iteration in the MCMC chain run with the red wine data,

plotted in dotted lines against the number of the iteration. The difference between these val-

ues is depicted within the band delineated by these lines. The broken lines show the same

for the results obtained from the MCMC chain run using the white wine data. The value of

the Hellinger distance DH(pred, pwhite) computed using the scaled posterior probabilities

of the graphical models given the two wine data sets, is also marked, as about 0.1153. All

log posterior values are scaled by a chosen global scale and exponentiated (as discussed in

the text). Right: similar to the left panel, except that here, the ratio of the logarithm of the

unscaled posteriors is used; the value of the log odds between the posteriors of the red and

white wine data sets is marked to be about 18.927.
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This work shows a simple and easily calculable method for comparing multiple, high-

dimensional data sets, for their independence.

3.7 Learning the human disease-symptom network

The methodology for learning the graphical model of a given data, can be implemented

even for a highly multivariate data, i.e. one that generates a graph with a very large number

of nodes. In this section, I discuss such a graph (with &8000 nodes) that describes the

correlation structure of the human disease-symptom network.

3.7.1 Background

Hoehndorf et al. [2015] (HSG hereon) learn this network by considering the similarity pa-

rameter for each pair of diseases that are elements of an identified set of diseases in the

Human Disease Ontology (DO), that contains information about rare and common dis-

eases, and spans heritable, developmental, infectious and environmental diseases. Here,

the “similarity parameter” between one disease and another, is computed using the ranked

vectors of “normalised pointwise mutual information” (NMPI) parameters for the two

diseases, where the NMPI parameter describes the relevance of a symptom (or rather, a

phenotype), to the disease in question. HSG define the NMPI parameter semantically,

as the normalised number of co-occurrences of a given phenotype and a disease in the

titles and abstracts of 5 million articles in Medline. To do this, they make use of the

Aber-OWL: Pubmed infrastructure that performs such semantical mining of the Med-

line abstracts and titles. The disease-disease pairwise semantic similarity parameters–

computed using the degree of overlap in the relevance ranks of phenotypes associated

with each disease–result in a similarity matrix, which HSG turn into a diseasedisease net-
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work based on phenotypes. To do this, they only choose from the top-ranking 0.5% of

disease-disease similarity values. The phenotypes associated with the diseases, and the cor-

responding scoring functions (such as the NPMI), exist in the file “doid2hpo-fulltext.txt.gz”

at http://aber-owl.net/aber-owl/diseasephenotypes. In fact, at the site

http://aber-owl.net/aber-owl/diseasephenotypes/data/, HSG have

uploaded all the data that they have used. this file ”doid2hpo-fulltext.txt.gz” contains infor-

mation about Ndis diseases, and the semantic relevance of each of the Npheno phenotypes

to each disease, as quantified by NPMI parameter values, in addition to other scores such

as t-scores and z-scores. In this file, Ndis is 8676 and Npheno is 19323.

In the phenotypic similarity network between diseases that HSG report, diseases are

the nodes, and the edge between two nodes exists in this undirected graph, if the similarity

between the nodes (diseases) is in the highest-ranking 0.5% of the 38,688,400 similarity

values. They remove all self-loops from the network and all nodes with a degree of 0. Their

network is presented in http://aber-owl.net/aber-owl/diseasephenotypes/network/

The network analysis was performed using standard softwares and they identify multiple

clusters in their network, with agglomerates of some clusters (of diseases), found to cor-

respond to known disease-classes. The “Group Selector” function on their visualisation

kit, allows for the identification of 19 such clusters in their disease-disease network, with

each cluster corresponding to a disease-class. This function also allows identification of

the number of diseases (i.e. nodes) in each disease-class (see left panel of Figure 3.20).

The sum of the number of nodes over their identified 19 clusters, is 5059. The number

of edges in their network is reported to be 65,795. The average node degree is then about

26.2. The right panel of Figure 3.20 displays the ratio of intra-class variance to the inter-

class variance of each disease-class; the value of the area under the Receiver Operating
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Characteristic Area Under the Curve (ROCAUC) for each cluster is opverplotted, where

the ROCAUC value for the i-th cluster can be interpreted as the probability that a randomly

chosen node is ranked as more likely to be in the i-th class than in the j-th class, with

i 6= j; i, j = 1, . . . , 19 [Hajian-Tilaki, 2013].

3.7.2 Learning of the disease-disease network in phenotype space us-

ing our graphical models learning

HSG’s network then manifests a similarity-structure that is computed using the available

NPMI parameter values. The interest here, is in learning the disease-disease graphical

model, with each edge of such a graphical model learnt to exist at a learnt probability. Such

learning is performed using the NPMI semantic-relevance data that is made available for

each of the Ndis number of diseases, by HSG–this data is referred to as the human disease-

phenotype data DDPh. Using DDPh, we first compute the partial correlation between any

pair of diseases, for each of which, information on the ranked (semantic) relevance of each

of the Npheno phenotypes exist, in this given dataset. Upon computation of the pairwise

partial correlations, the graphical model for the DDPh data is learnt.

The partial correlation Rij between the i-th and j-th diseases in the DDPh data, is com-

puted (i, j = 1, . . . , Ndis, i 6= j), in the following way. The NPMI parameter values for

the i-th disease and each of the Npheno phenotypes are ranked, with the phenotype of the

highest semantic relevance to the i-th disease assigned a rank 1. Let the rank vector of

phenotypes, by semantic relevance to the i-th disease take the value ri and similarly, the

rank vector of phenotypes relevant to the j-th disease is rj. The Spearman rank correla-

tion s
(rank)
ij , of vectors ri and rj, is computed. Then we compute the partial correlation Rij

∀ i, j = 1, . . . , Ndis; i 6= j, between the i-th and j-th nodes of our undirected graph, using
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the computed values of the Spearman rank correlation in {s
(rank)
ij }. It is useful to define the

partial correlation using the Spearman rank correlation, rather than the correlation between

the vector of normalised NPMI values, since we intend to correlate the i-th disease with the

j-th disease depending on how relevant a given list of phenotypes is, to each disease, i.e.

depending on the ranked relevance of the phenotypes.

To learn the graphical model given this partial correlation structure in R = [Rij], that

is itself computed from the data DDPh), as explained in the previous sections, using an

MCMC-based inference strategy, that helps us learn the edge parameters, as well as the

variance of the likelihood. However, the data that we want to learn the graphical model for,

is so highly multivariate–i.e. there are so many edges in the proposed graph–that we forego

iterating over the multiple samples of edge and variance parameter values, and compute

the graphical model for this data, by computing the posterior probability for each edge,

given the computed partial correlation structure. In fact, the graphical model of data DDPh

that is presented, comprises only those edge parameters, the posterior probability of which

exceeds 0.9.

Here, the posterior probability density of the edge Gij (=0 or 1) between the i-th and

j-th diseases, is proportional to the likelihood and prior:

π(Gij|Rij) ∝ ℓ(Gij|Rij)π0(Gij),

where the prior on Gij is Bernoulli(0.5) ∀i, j, and the likelihood is the Normal likelihood

that we chose to work with in our learning, as discussed before in Section 3.2.2, i.e. likeli-

hood given R = [Rij] is

Ndis

∏
i 6=j;i,j=1

1√
2πσij

exp

[
−
(
Gij − Rij

)2

2σ2
ij

−
(
Gij + Rij

)2

2σ2
ij

]
,

where the variance parameters {σij}p
i 6=j;i,j=1 are defined as σ2

ij = Rij(1 − Rij).

168



3.7.3 Results

The visualised graph is a sub-graph of the full graph G(Ndis, R) of data DDPh, the between-

columns partial correlation matrix of which is R = [Rij], i 6= j, i, j = 1, . . . , Ndis, such

that this visualised graph is defined to consist only of edges in the set: E/ := {Gij =

1|π(Gij|Rij) ≥ 0.9; i 6= j, i, j = 1, . . . , Ndis}. This visualised graph has 6052 number

of nodes (diseases) and 145210 edges, so that the average node degree is about 24. It is

a random undirected graphical model and represents our learning of the human disease

phenotype graph (displayed in Figure 3.19). Diseases belonging to the same medically-

recognised disease-class are displayed in our learnt network in the same colour and symbol-

type. We find in our learnt network that diseases of the same class often tend to sit in a

cluster inside this network.

3.8 Conclusion

This work presents a methodology that allows for the simultaneous learning of the inter-

column correlation of a rectangularly-shaped dataset, and the graphical model of such data,

where this undirected graphical model comprises random edge variables that can take val-

ues of either 1 or 0.

Thus, the between-columns correlation matrix and the graph of the data, are both treated

as random variables, and learnt within a Metropolis-with 2-block-update inference scheme

in which the correlation matrix is first updated given the data, and the graph is then up-

dated at the freshly updated correlation, without requiring to resort to the assumption of

decomposability. We marginalise over all between-row correlation matrices, to achieve

a closed-form likelihood for the between-column correlation matrix, given the data. The
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Figure 3.19: The human disease phenotype graphical model that we learn using the disease-

disease partial correlation obtained using the computed Spearman rank correlation between

the rank vectors of a list of phenotypes, where the phenotype ranking reflects semantic rele-

vance of a phenotype to the disease in question (quantified by HSG as the NPMI parameter

in the DDPh dataset). Only edges with posterior probability ≥ 0.9 are included in this

graph, and nodes that have edges with posterior less than 0.9, are discarded, resulting in

6052 diseases (nodes) remaining in this graph. There are 145210 edges in the displayed

graph. All diseases identified by name by HSG, to belong to one of the 19 given disease

class, are presented above in the same colour; the colour key identifying these classes, is at-

tached. To draw the graph, we used a Python-based code that implements the Fruchterman-

Reingold force-directed algorithm.
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Figure 3.20: Left: comparison of the relative number of nodes (diseases) that are recovered

in each of the 19 disease classes that HSG classify their reported network to be classified

into, with the relative class-membership reported by HSG. Our results are shown as filled

circles joined by solid lines. In open circles threaded by broken lines, we overplot the rel-

ative number of diseases in each of the 19 classes, as reported by HSG. Similarity of the

relative populations in the different disease classes, indicate that the learnt clustering dis-

tribution is similar to that obtained by HSG. Right: computed ratios of the averaged intra-

class to inter-class variance for each of the 19 classes, shown in filled circles; the ROC

Area Under Curve values reported by HSG for each class, is overplotted as open circles

joined by broken lines. The disease class indices, from assigned values of 1 to 19, are the

following respectively: cellular proliferation diseases, integumentary diseases, diseases of

the nervous system, genetic diseases, diseases of metabolism, diseases by infectious agents,

diseases of mental health, physical disorders, diseases of the reproductive system, of the

immune system, of the respiratory system, of the muscleoskeletal system, syndromes, gas-

trointestinal diseases, cardiovascular diseases, urinary diseases, viral infections, thoracic

diseases, diseases of the endocrine system.

likelihood of an edge parameter of the graph, given the between-columns correlation, is

chosen to be the Normal density with mean given by the corresponding partial correlation

(computed using the updated correlation matrix) and variance that is also learnt.

Consequently, the method is capable of acknowledging errors in the measurement of

any observable–repeated measurement of which comprise a column in the dataset. The ef-
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fect of ignoring such existent measurement errors, on the learning of the between-columns

correlation matrix, and ultimately on the graphical model of the data, is demonstrated using

a simple, low-dimensional simulated dataset. Even in such a low-dimensional example, the

difference made to the graph, by the inclusion of measurement errors, is clear.

In addition, the method allows for the learning of the correlation matrix and the graph-

ical model with objective uncertainties, namely the 95% HPD credible regions. On the

graphical model, these uncertainties are imposed by choosing to compose the model with

only those edges, the probability of existence of which (within the post-burnin part of the

MCMC run), is ≥ 0.05. Each included edge is presented with this probability of existence

marked against the graph.

Upon learning the graphical model given a data set, the distance between the graphs

can then be computed. This is demonstrated by computing the distance between the learnt

graphical model of 11 different vino-chemical parameters of a sample of Portuguese white

wines, and that of Portuguese red wines. The Hellinger distance between the posterior

probability of the graphical models, given the red and white wine datasets, was expressed

in units of the uncertainty in learning either graphical model. This inter-graphical-model

distance is sufficiently higher than the intra-graphical-model distance, for both the red-wine

and the white wine datasets, to intuitively suggest inequality of the pd f s that the red and

white wine vino-chemical datasets are sampled from.

While in the learning of the correlation structure and graphical model of a given dataset,

we have in general employed MCMC-based inference methods, (Metropolis-with 2-block-

update, to be precise), we can avoid such inference, when faced with the task of learning

very large graphs, i.e. a graphical model of a highly multivariate dataset. Such a graphical

model–comprising ≥ 8000 nodes–is learnt, without resorting to MCMC-based inference.
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This was the human disease-symptom network that expresses correlation between the i-

th and j-th diseases based on the (rank) correlation of the vector of symptoms, where the

symptoms for the i-th disease is ranked by relevance, ∀ i, j = 1, . . . , Ndis; i 6= j. The rank-

ing of a given vector of symptoms was performed based on the frequency of co-occurrences

of the text for that symptom, with the i-th disease, in a documented set of titles and abstracts

of medical science articles. This existing text-mined information was converted into a vec-

tor of ranks for a given set of symptoms. The Spearman rank correlation is then computed

between the (symptom) vector of ranks for the i-th and j-th diseases, to thereafter compute

the partial correlation structure of this disease-symptom dataset. The likelihood of the ij-th

edge of the sought disease-symptom graphical model was defined as Normal density with

mean given by the partial correlation ρij computed from the rank correlation between the

ij-th disease pair, and variance that we fixed to ρij(1 − ρij). (In contrast, in the MCMC

chain we ran, this variance was treated as an unknown, and learnt). Bernoulli priors with

rate 0.5 was imposed on the edge between these diseases, and the posterior probability of

each edge in this graphical model was computed. Only edges with posterior in excess of

0.9 were retained in the final graphical model.

This is a very useful and practical way of learning very large networks, in real time,

as long as the correlation structure is empirically known. This is often possible when

the problem of learning the correlation can be cast into a semantic context–as was done

in the example we consider, in learning the disease-disease correlation in terms of the

associated symptoms, ordered by relevance. Other situations also admit such possibilities,

for example, the product-to-product, or service-to-service correlation in terms of associated

emotion, (or some other response parameter), can be semantically gleaned from the corpus

of customer reviews uploaded to a chosen internet facility, and the same used to learn the
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network of products/services. Importantly, this method of probabilistic learning of small

to large networks, is useful for the construction of networks that evolve with time, i.e. of

dynamic networks.
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Chapter 4

Conclusions

4.1 Conclusions summarised

My doctoral work that is reported in this thesis is aimed at making methodological advances

in the area of learning correlation structures in demanding information paradigms, using

Bayesian inference. The ulterior aim is to present generic methodologies that can then

be tuned to address real-world problems, and with this in mind, I illustrate the developed

methodologies that I have discussed in previous chapters, on applications that use real

data. thus, to summarise, My doctoral thesis results in multiple new methodologies, which

are subsequently illustrated using simulated and real datasets. First, I enumerate the new

methods that I have put forward in my doctoral work:

1. Modelling a discontinuous, tensor-valued function as a realisation from tensor-variate

Gaussian Process that is compounded with multiple scalar-variate GPs.

2. Learning correlation matrices of general tensor-Normal likelihoods in three different

ways.

3. Learning graphical model of a multivariate, rectangular-shaped data, with uncertain-

ties.
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4. Learning the graphical model of noisy,multivariate data, while acknowledging mea-

surement noise.

5. Computing the distance between 2 learnt graphical models (given their respective

dataset), using a new metric that is similar to a Hellinger metric that is normalised by

the learnt uncertainty in the graphical model.

I illustrated these newly developed methodologies, on making the following applica-

tions, given real and simulated data.

1. Further work: application made to learn the location of the Sun in the Milky Way

disc, after modelling the relationship between Galactic parameters (i.e. solar lo-

cation), and matrix-valued measurements of velocity vectors that land in the solar

neighbourhood – either in real life, as manifest in the data recorded by the Hipparcos

satellite, or in astronomical simulations in which a bunch of stars were allowed to

evolve in the Milky Way disk from a primordial time, and velocity vectors of the

stars that land at a design solar location, are collated into the velocity matrix for that

(designed) value of the solar location.

2. Application made to learn the with-uncertainty graphical model of a small, toy dataset,

where the graphical model learning takes measurement uncertainty into account.

3. Application made to learn the graphical models of vino-chemical datasets of red and

white Portuguese wine samples. Distance between the learnt graphical models is

computed.

4. Application made to learn the large human disease-disease network, in phenotype

space.
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There are multiple areas of my doctoral work that could be improved upon. As always,

my work motivates multiple other strands that I would like to explore in the future.

1. Firstly, I would like to illustrate our very potent methodology for learning challenging

correlation structure of high-dimensional data, on a higher dimensional application

than the one I worked on in my doctoral thesis. I hope to address an application that

is marked by a diverse correlations between the multiple k-th ordered tensor-valued

slices of the k+ 1-th ordered tensor-valued observable (measurements of which com-

prise the hyper-cuboidally shaped dataset). Such an application would be a bigger

challenge.

2. The method can be implemented to learn correlations in high-dimensional time series

data, with temporally evolving correlation structure, to then undertake forecasting.

3. I would very much like to undertake the learning of the correlation between the

sought pair of graphical models of respective rectangularly-shaped data, where the

2 datasets in question have been realised at tow different time points. Thus, we are

considering the case of a multivariate, rectangularly-shaped dataset that is temporally

evolving, and I learn the temporally evolving graphical models of such data realised

at any 2 time points. The distance between the of such graphical models realised at

the current, and current-but-one times, then tracks the evolving nature of the (partial)

correlation of the data.

4. Ultimately, such graphical models learning can be extended to with-uncertainty learn-

ing of directed graphs. This could be pursued using relative causal effects, in addi-

tion to invoking the simultaneously learnt partial correlation matrix that results in
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the Bayesian learning of with-uncertainty undirected graphical model, that I have

undertaken here.
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Appendix A

Splitting methods

As part of an initial numerical warm-up exercise, I undertook the writing of a programme

(in C++) that serves as the main code that implements the method that we have written

about and submitted a paper on arxiv (Chakrabartty, Wang & Chakrabarty, 2015). In this

exercise, we try to develop a method to find two parallel sub-groups of a given data set

that is multivariate and big. By “parallel” sub-groups, we mean subsets of data that have

the same mean and nearly the same variance as each other. I describe the context of these

“groups” in the following subsection. In one of our implementations, the observed data

set is a 912 × 50-dimensional matrix and we allot the elements of each row to either one

sub-group or another, so that at the end of splitting the whole observed data set, we end up

with two sub-groups with the same mean and nearly same variance.

Introduction to the underlying problem

Examinee ability is measured by the scores obtained by an examinee in a test designed

to assess such ability. As with all other measurements, this ability measurement too is

fundamentally uncertain or inclusive of errors. In Classical Test Theory, quantification of

the complementary certainty, or reliability of a test, is defined as the ratio of the true score
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variance and the observed score variance i.e. reliability is defined as the proportion of

observed test score variance that is attributable to true score. Here, the observed score is

treated as inclusive of the measurement error. This theoretical definition notwithstanding,

there are different methods of obtaining reliability in practice, and problems arise from the

implementation of these different techniques even for the same test. Importantly, it is to be

noted that the different methods of estimating reliability coefficients differently from the

aforementioned classical or theoretical definition of reliability. This can potentially result

in different estimates of reliability of a particular test even for the same examinee sample.

As a result, a method of obtaining reliability of a test under its theoretical definition is

needed.

Calculating Reliability

According to the classical definition, the test score X is the true score (T) added to the error

(e). As a result, the reliability of a test (rtt) is defined classically as the ratio of the variance

of true test score (S2
T) and the variance of observed test score (S2

X), i.e.

rtt =
S2

T

S2
X

This ratio also can be calculated by the variance of error score(S2
e ) and the variance of

observed data set:

rtt =
S2

T

S2
X

= 1 − (Se)2

S2
X

(2.1)

The reliability measurement is then very difficult to calculate since we do not know either

Se or ST. In our method, we focus on finding the variance of the error (S2
e ). We split the

“test” into two ”parallel” halves, where ”parallel” implies equal sum of scores, which re-

sults in nearly equal variances of scores. By “test” above, we imply the matrix of scores
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(either 1 or 0) obtained by each of the N examinees in each of the n multiple-choice ques-

tions of the test. The data matrix is then N × n. We choose half the scores of the i-th

examinee to be the i-th row of a N × (n/2) data matrix and other scores obtained by the

same examinee to be the i-th row of another N × (n/2) data matrix. We refer to these

data matrices as the g-th and h-th sub-tests. The observed score (Xi) for i-th examinee is

the sum of the scores X
(g)
i and X

(h)
i in i-th rows of the two sub-tests. Thus, when splitting

into two subgroups, X
(g)
i and X

(h)
i imply the observed scores for i-th examinee in the two

subgroups(g and h).

The observed score({Xi}N
i=1) can be regarded as the sum of true score({Ti}N

i=1) and error

score({Ei}N
i=1). In each parallel subgroup, we can get equation below for any examinee:

X
(g)
i = T

(g)
i + E

(g)
i , X

(h)
i = T

(h)
i + E

(h)
i

The true score in each group is a function for the exam ability. The same examinee will

maintain the same exam ability for all questions (or items) of the test (assumed). When split

into two parallel subgroups ({X
(g)
i }N

i=1 and {X
(h)
i }N

i=1), the true score of any examinees in

each subgroup will be same(T
(g)
i = T

(h)
i ). Thus, we can get X

(h)
i − X

(g)
i = E

(h)
i − E

(g)
i .

We can write down the variance of error as:

‖ Xg ‖2 + ‖ Xh ‖2 −2 ‖ Xg ‖‖ Xh ‖ cos θgh

=‖ Eg ‖2 + ‖ Eh ‖2= N(S
(g)
e )2 + N(S

(h)
e )2 = 2N(S

(g)
e )2 (2.2)

Where Xg and Xh is the vector includes all the observed scores for subgroup g and h. θgh is

the angle between vectors Xh and Xg. Eh and Eg is the vector for error scores in subgroup

g and h. We assume the error scores for examinees are independent of each other. Then the

covariance for error score will be zero which implies the angle for the two error vectors is
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90 degrees. We ensure that each subgroup contains the same number of questions, and we

assume the error distribution for each subgroup is the same. Thus, the variance for error

scores in two subgroups is equal.

Then the term 2 ‖ Xg ‖‖ Xh ‖ cos θgh can be re-written as:

2 ‖ Xg ‖‖ Xh ‖ cos θgh = 2
N

∑
i=1

X
(g)
i X

(h)
i (2.3)

Using the equation (2.2) and (2.3), we can easily calculate the variance of error score by

splitting the observed data set into two parallel groups:

S2
e =‖ Xg ‖2 + ‖ Xh ‖2 −2

N

∑
i=1

X
(g)
i X

(h)
i

As a result, the reliability of a test can be calculated using equation (2.1).

Splitting method

Chakrabartty (2011) gave a method for splitting a test into 2 parallel halves. Here we give a

novel method of splitting a test into 2 parallel halves–g and h–that have nearly equal means

and variances of the observed scores. The splitting is initiated by the determination of the

item-wise total score for each item. So let the j-th item in the test have the item-wise score

τj :=
N

∑
i=1

X
(j)
i , where X

(j)
i is the i-th examinee’s score in the j-th item, j = 1, . . . , n. Our

method of splitting is as follows.

Step-I The item-wise scores are sorted in an ascending order resulting in the ordered se-

quence τ1, τ2, . . . , τn. Following this, the item with the highest total score is iden-

tified and allocated to the g-th sub-test. The item with second highest total score

is then allocated to the h-th test, while the item with the third highest score is as-

signed to h-th test and the fourth highest to the g-th test, and so on. In other words,

allocation of items is performed to ensure realisation of the following structure.
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sub-test g sub-test h difference in item-wise scores of 2 sub-test

τ1 τ2 τ1 − τ2 ≥ 0

τ4 τ3 τ4 − τ3 ≤ 0

...
...

...

where we assume n to be even; for tests with an odd number of items, we ignore the

last item for the purposes of dichotomisation. The sub-tests obtained after the very

first slotting of the sequence {τk}n
k=1 into the sub-tests, following this suggested

method of distribution, is referred to as the “seed sub-tests”.

Step-II Next, the difference of item-wise scores in every item of the g-th and h-th sub-tests

is recorded and the sum S of these differences is computed (total of column 3 in the

above table). If the value of S is zero, we terminate the process of distribution of

items across the 2 sub-tests, otherwise we proceed to the next step.

Step-III We identify rows in the above table, the swapping of the entries of columns 1 and

2 of which, results in the reduction of |S |, where | · | denotes absolute value. Let

the row numbers of such rows be ρ(⋆ℓ), ℓ = 1, 2, . . . , n(⋆) where n(⋆) ≤ n/2. We

swap the ρ(⋆ℓ)-th item of the g-th sub-test with the ρ(⋆ℓ)-th item of the h-th sub-test

and re-calculate sum of the entries of the revised g-th sub-test and h-th sub-test. If

the revised value of |S | is zero or a number close to zero that does not reduce upon

further iterations, we stop the iteration; otherwise we return to the identification of

the row numbers ρ(⋆ℓ) and proceed therefrom again.

197



Empirical illustration of the splitting method

Since a large test usually involves thousands of examinees, the splitting algorithm should

be efficient. The dimensionality of the test score matrix, which is N × n, shows that the

number of columns which presents the number of questions in exam usually much less than

the number of rows which presents the number of examinees in the test. As a result, we

focus on finding the equal-mean and nearly equal variance groups by using column swap

method.

We conducted a number of experiments with finding reliabilities of larger test data sets

that were simulated. The simulations were performed such that the test score variable has a

Bernoulli distribution with parameter p. In these simulations, we chose pi as fixed for the i-

th examinee, with pi randomly sampled from a chosen Gaussian pd f , i.e. pi ∼ N (0.5, 0.2)

by choice, i = 1, . . . , N. We simulated different test score data sets in this way, including

– a test data set for 5×105 examinees taking a 50-item test.

– a test data set for 5×104 examinees taking a 50-item test.

– a test data set for 1000 examinees taking a 100-item test.

– a test data set for 1000 examinees taking a 1000-item test.

In each case, the test data was split using our method and reliability of the test was com-

puted as per the classical definition. The 4 simulated test data sets mentioned above, yielded

reliabilities of 0.96, 0.98, 0.93, 0.85, in order of the above enumeration. Histograms of the

sub-tests obtained by splitting each test data were over-plotted to confirm their concur-

rence.

Importantly, the run-time of reliability computation of these large cohorts of examinees
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(N=500,000 and 50,000), who take the 50-item long test, is very short–from about 0.8 sec-

onds for the 50,000 cohort to about 6.2 seconds for the 500,000 cohort. On the other hand

the order of our splitting algorithm being O((n/2)2), the run-times increase rapidly for the

1000-item test, from the 100-item one, with the fixed examinee number. These experiments

indicate that the computation of reliabilities for very large cohorts of examinees, in a test

with a realistic number of items, is rendered very fast indeed, using our method.

Figure A.1: Histogram of scores obtained by

5e5 and 5e4 number of examinees

Figure A.2: Histogram of scores obtained by

100 and 1000 questions

Figure 1 shows the histogram obtained by 5 × 105 and 5 × 104 number of examinees from

50 questions. Figure 2 shows the histogram from 100 questions and 1000 questions by

1000 examinees. The nearly coincident histogram for subgroups in same exam indicates

that our algorithm works well. As mentioned, the order of our splitting algorithm being

O((n/2)2). All this indicates the algorithm solves the large data set efficiently.

Code for the splitting method

In this section, I present the code used to implement the splitting method. The array

“h[]” and “g[]” stores the split item-wise scores from 100 items and the C++ function

“find parallel()” finds the parallel splitting for the two group.
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void f i n d p a r a l l e l ( long h [ ] , long g [ ] , long sum h , long sum g ,

long d i f f e r e n c e [ ] )

{

long i , j , temp , k ,m;

j =sum h−sum g ;

m=1;

whi le (m==1)

{

m=0;

f o r ( i =1 ; i <51; i ++)

{

temp=sum h−sum g−2∗ d i f f e r e n c e [ i ] ;

i f ( abs ( temp )<abs ( j ) )

{

j =temp ;

k= i ;

m=1;

}

}

i f (m==1)

{

sum h=sum h−d i f f e r e n c e [ k ] ;
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sum g=sum g+ d i f f e r e n c e [ k ] ;

swap ( h [ k ] , g [ k ] ) ;

d i f f e r e n c e [ k]=− d i f f e r e n c e [ k ] ;

temp=sum h−sum g ;

}

}

}

i n t main ( )

{

. . .

f o r ( j =1 ; j <51; j ++)

{

d i f f e r e n c e [ j ] = 0 ;

h [ j ]= s c o r e n o [ j ∗2−1];

g [ j ]= s c o r e n o [ j ∗ 2 ] ;

i f ( j %2==0)

swap ( h [ j ] , g [ j ] ) ;

sum h=sum h+ s c o r e [ h [ j ] ] ;

sum g=sum g+ s c o r e [ g [ j ] ] ;

d i f f e r e n c e [ j ]= s c o r e [ h [ j ]]− s c o r e [ g [ j ] ] ;
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}

f i n d p a r a l l e l ( h , g , sum h , sum g , d i f f e r e n c e ) ;

. . .

}
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Appendix B

Code for Tensor variate MCMC

In this section, I present the numerical implementation of the MCMC algorithm for the

Tensor variate GP, as a code in C++:

1. sampling parameters (stored in array Q1 and Sigma c) from random walk, where

the gaussrand() function is a random function for sampling random variables distributed

according to the standard Normal, i.e. N (0, 1); array a[][2] stores the jump scale for the

random walk sampling:

. . .

Q1 [ 1 ] [ 1 ] = q1 [ 1 ] [ 1 ] + a [ 1 ] [ 2 ] ∗ g a u s s r a n d ( ) ;

Q1 [ 2 ] [ 2 ] = q1 [ 2 ] [ 2 ] + a [ 2 ] [ 2 ] ∗ g a u s s r a n d ( ) ;

Sigma c [ 1 ] [ 1 ] = Q3 [ 1 ] [ 1 ] + a [ 3 ] [ 2 ] ∗ g a u s s r a n d ( ) ;

Sigma c [ 2 ] [ 2 ] = Q3 [ 2 ] [ 2 ] + a [ 6 ] [ 2 ] ∗ g a u s s r a n d ( ) ;

Q3 [ 3 ] [ 1 ] = Q3 [ 3 ] [ 2 ] + a [ 5 ] [ 2 ] ∗ g a u s s r a n d ( ) ;

Sigma c [ 1 ] [ 2 ] = Q3 [ 3 ] [ 1 ] ∗ pow ( ( long double ) Sigma c

[ 1 ] [ 1 ] , 0 . 5 ) ∗pow ( ( long double ) Sigma c [ 2 ] [ 2 ] , 0 . 5 ) ;
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Sigma c [ 2 ] [ 1 ] = Sigma c [ 1 ] [ 2 ] ;

. . .

2. Calculate the kernel parameterised covariance matrix and the tensor variate the 3rd-order

Tensor Normal likelihood. The three covariance matrices of the 3-rd order Tensor Normal

density, is stored in array Sigma a, Sigma b and Sigma c. Function cholsl() calculates the

factors of the relevant matrix, using Cholesky Decomposition. Function inverse() calculates

the inverse of an input matrix. Function MatMultt(),MatMultt2(),MatMultt3() calculates

the multiplication of 3rd-order tensor and matrix, in 3 different dimensions:

c h o l s l ( 3 , Sigma c , s i g m a c ) ;

i f ( ( Sigma c [ 1 ] [ 1 ] <0 ) | | ( Sigma c [ 2 ] [ 2 ] <0 ) ) c o n t i n u e ;

i f ( ( Q1 [ 1 ] [ 1 ] <0 ) | | ( Q1 [ 2 ] [ 2 ] <0 ) ) c o n t i n u e ;

i f ( ( Q2 [ 1 ] [ 1 ] <0 ) | | ( Q2 [ 2 ] [ 2 ] <0 ) ) c o n t i n u e ;

f o r ( i =1 ; i <217; i ++)

f o r ( j =1 ; j <217; j ++)

{

Sigma a [ i ] [ j ] = ( long double ) exp ( − (( s [ 1 ] [ i ]− s [ 1 ] [ j ] )

∗Q1 [ 1 ] [ 1 ] ∗ ( s [ 1 ] [ i ]− s [ 1 ] [ j ] ) +( s [ 2 ] [ i ]− s [ 2 ] [ j ] ) ∗

Q1 [ 2 ] [ 2 ] ∗ ( s [ 2 ] [ i ]− s [ 2 ] [ j ] ) ) ) ;

}
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c h o l s l ( 2 1 7 , Sigma a , s i g m a a ) ;

f o r ( i =1 ; i <217; i ++)

f o r ( j =1 ; j <217; j ++)

{

I n v a [ i ] [ j ] = 0 ;

i f ( i == j ) I n v a [ i ] [ j ] = 1 ;

temp [ i ] [ j ]= s i g m a a [ i ] [ j ] ;

}

i n v e r s e ( 2 1 7 , temp , I n v a ) ;

f o r ( i =1 ; i <217; i ++)

f o r ( j = i +1 ; j <217; j ++)

{

I n v a [ i ] [ j ]= I n v a [ j ] [ i ] ;

I n v a [ i ] [ j ] = 0 ;

}

c h o l s l ( 5 1 , Sigma b , s igma b ) ;

f o r ( i =1 ; i <51; i ++)

f o r ( j =1 ; j <51; j ++)

{
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I n v b [ i ] [ j ] = 0 ;

i f ( i == j ) I n v b [ i ] [ j ] = 1 ;

temp [ i ] [ j ]= s igma b [ i ] [ j ] ;

}

i n v e r s e ( 5 1 , temp , I n v b ) ;

f o r ( i =1 ; i <51; i ++)

f o r ( j = i +1 ; j <51; j ++)

{

I n v b [ i ] [ j ]= I n v b [ j ] [ i ] ;

I n v b [ i ] [ j ] = 0 ;

}

f o r ( i =1 ; i <3; i ++)

f o r ( j =1 ; j <3; j ++)

{

I n v c [ i ] [ j ] = 0 ;

temp [ i ] [ j ]= s i g m a c [ i ] [ j ] ;

}

I n v c [ 1 ] [ 1 ] = 1 ;

I n v c [ 2 ] [ 2 ] = 1 ;

e=temp [ 1 ] [ 1 ] ;

f o r ( j =1 ; j <=2; j ++)
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{

temp [ 1 ] [ j ]= temp [ 1 ] [ j ] / e ;

I n v c [ 1 ] [ j ]= I n v c [ 1 ] [ j ] / e ;

}

I n v c [2][1]= − I n v c [ 1 ] [ 1 ] ∗ temp [ 2 ] [ 1 ] ;

temp [ 2 ] [ 2 ] = temp [2] [2] − temp [ 2 ] [ 1 ] ∗ temp [ 1 ] [ 2 ] ;

e=temp [ 2 ] [ 2 ] ;

f o r ( j =1 ; j <=2; j ++)

{

temp [ 2 ] [ j ]= temp [ 2 ] [ j ] / e ;

I n v c [ 2 ] [ j ]= I n v c [ 2 ] [ j ] / e ;

I n v c [ 1 ] [ j ]= I n v c [ 1 ] [ j ]− temp [ 1 ] [ 2 ] ∗ I n v c [ 2 ] [ j ] ;

}

f o r ( i =1 ; i <3; i ++)

f o r ( j = i +1 ; j <3; j ++)

{

I n v c [ i ] [ j ]= I n v c [ j ] [ i ] ;

I n v c [ i ] [ j ] = 0 ;

}

MatMul t t ( 5 1 , 2 1 7 , 3 , Inv b , vv , tem ) ;

MatMul t t2 ( 5 1 , 3 , 2 1 7 , Inv c , tem , tem2 ) ;
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MatMult t3 ( 2 1 7 , 5 1 , 3 , Inv a , tem2 , tem ) ;

sum =0;

f o r ( i =1 ; i <217; i ++)

f o r ( j =1 ; j <3; j ++)

f o r ( k =1; k<51;k ++)

sum=sum+tem [ i ] [ j ] [ k ]∗ tem [ i ] [ j ] [ k ] ;

d e t 3 =Sigma c [ 1 ] [ 1 ] ∗ Sigma c [2] [2] − Sigma c [ 1 ] [ 2 ] ∗ Sigma c

[ 2 ] [ 1 ] ;

d e t 1 =0;

f o r ( i =1 ; i <20; i ++)

{

d e t 1 = d e t 1 + l o g ( s i g m a a [ i ] [ i ] ) ;

}

d e t 2 =0;

f o r ( i =1 ; i <20; i ++)

{

d e t 2 = d e t 2 + l o g ( s igma b [ i ] [ i ] ) ;

}
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prob=−sum/2 −216∗2∗50∗( d e t 1 / ( 2 1 6 ) + l o g ( d e t 3 ) /4+ d e t 2

/ ( 5 0 ) ) ;

3. Calculate the logarithm of the acceptance ratio and determine whether to accept the new

sampled value or not.

u =( long double ) r a nd ( ) /RAND MAX;

uu =( long double ) prob−p r e p r o b ;

u= l o g ( u ) ;

i f ( u<uu )

{

p r e p r o b = prob ;

f o r ( i =1 ; i <3; i ++)

f o r ( j =1 ; j <3; j ++)

{

Q3 [ i ] [ j ]= Sigma c [ i ] [ j ] ;

q1 [ i ] [ j ]=Q1 [ i ] [ j ] ;

q2 [ i ] [ j ]=Q2 [ i ] [ j ] ;

}

Q3 [ 1 ] [ 2 ] = Q3 [ 3 ] [ 1 ] ;

}
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Appendix C

Code for graphical model

In this section I present the MCMC algorithm for the graphical model of the real wine

datasets:

1. Calculate the likelihood of the between-columns correlation matrix given the data,

using the closed-form likelihood we present in the text (Chapter 3). Function cholsl()

calculates the factors for the relevant matrix using Cholesky Decomposition. Function

inverse() calculates the inverse of input matrix. Function MatMult() calculates the matrix

multiplication:

. . .

f o r ( i =1 ; i<param ; i ++)

f o r ( j = i +1 ; j<param ; j ++)

{

Sigma c [ i ] [ j ]= prop [ i ] [ j ] [ 0 ] + g a u s s r a n d ( ) ∗0 . 0 0 5 ;

Sigma c [ j ] [ i ]= Sigma c [ i ] [ j ] ;

}
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f o r ( i =1 ; i<param ; i ++)

{

Sigma c [ i ] [ i ] = 1 ;

f o r ( j =1 ; j<param ; j ++)

temp [ i ] [ j ]= Sigma c [ i ] [ j ] ;

}

e r r o r = c h o l s l ( param , temp , s i g m a c ) ;

d e t c =0;

f o r ( i =1 ; i<param ; i ++)

d e t c = d e t c + l o g ( s i g m a c [ i ] [ i ] ) ;

f o r ( i =1 ; i<param ; i ++)

f o r ( j =1 ; j<param ; j ++)

temp [ i ] [ j ]= Sigma c [ i ] [ j ] ;

e r r o r = i n v e r s e ( param , temp , Inv C ) ;

/ / c a l c u l a t e da ta ∗Sigmaˆ−1∗ da ta ’

MatMult ( l i n e , param , param , d a t a s , Inv C , tem2 ) ;

MatMult ( l i n e , param , l i n e , tem2 , d a t a s T , tem ) ;
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e r r o r = c h o l s l ( l i n e , tem , tem3 ) ;

/ / c a l c u l a t e t h e d e t o f da ta ∗Sigmaˆ−1∗ da ta ’

sum =0;

f o r ( i =1 ; i< l i n e ; i ++)

{

sum=sum+ l o g ( tem3 [ i ] [ i ] ) ;

}

prob =0;

t =param ;

/ / c a l c u l a t e t h e m a r g i n a l l i k e l i h o o d

prob =prob−d e t c ∗ ( t −( long double ) 1 . 0 )−sum∗ t ∗ ( long

double ) 2 . 0 ;

p r i o r =0;

f o r ( i =1 ; i<param ; i ++)

f o r ( j = i +1 ; j<param ; j ++)

{

p r i o r = p r i o r −(Sigma c [ i ] [ j ]−M[ i ] [ j

] ) ∗ ( Sigma c [ i ] [ j ]−M[ i ] [ j ] ) / ( 2 ∗

p r i v a r [ i ] [ j ] ) ;

}
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prob = prob + p r i o r ;

uu=prob−p r e p r o b ; / / a c c e p t r a t i o

u =( long double ) r a nd ( ) / RAND MAX;

i f ( l o g ( u )<uu )

{

f o r ( i =1 ; i<param ; i ++)

f o r ( j = i +1 ; j<param ; j ++)

prop [ i ] [ j ] [ 0 ] = Sigma c [ i ] [ j ] ;

p r e p r o b = prob ;

c t sum =sum ;

c t d e t = d e t c ;

}

2. Calculates the particle correlation from the correlation matrix. The correlation matrix

is stored in array [covariance] and the particle correlation is stored in array [p corr]

e r r o r = i n v e r s e 2 ( param , c o v a r i a n c e , i n v c o ) ;

f o r ( i =1 ; i <13; i ++)

f o r ( j =1 ; j <13; j ++)

{

p c o r r [ i ] [ j ]=− i n v c o [ i ] [ j ] / s q r t ( i n v c o [ i ] [ i ]∗ i n v c o
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[ j ] [ j ] ) ;

i f ( i == j )

{

p c o r r [ i ] [ j ]= s q r t (1−1/ i n v c o [ i ] [ j ] ) ;

}

}

3. Update the graph using the particle correlation matrix.

. . .

l i k e l i h o o d =0;

f o r ( i =1 ; i <13; i ++)

f o r ( j = i +1 ; j <13; j ++)

{

g [ i ] [ j ]= b i o r n d ( p c o r r [ i ] [ j ] ) ;

g [ j ] [ i ]= g [ i ] [ j ] ;

i f ( g [ i ] [ j ]==1) p r o b g r a p h = p r o b g r a p h +g [ i ] [ j ]∗

l o g ( p c o r r [ i ] [ j ] ) ;

i f ( g [ i ] [ j ]==0) p r o b g r a p h = p r o b g r a p h +(1−g [ i ] [ j

] ) ∗ l o g (1− p c o r r [ i ] [ j ] ) ;

t 5 = l e n g t h s c a l e [ i ] [ j ] ;

t 2 =( long double ) exp(−pow ( g [ i ] [ j ]− p c o r r 2 [ i ] [ j

] , 2 ) / ( t 5 ) ) +exp(−pow ( g [ i ] [ j ]+ p c o r r 2 [ i ] [ j ] , 2 )

/ ( t 5 ) ) ;
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l i k e l i h o o d =( long double ) l i k e l i h o o d + l o g ( t 2 )−l o g (

s q r t ( t 5 ) ) ;

}

u =( long double ) r a nd ( ) / ( long double )RAND MAX;

uu= l i k e l i h o o d −p r o b g r a p h−p r e p r o b g r a p h ;

u= l o g ( u ) ;

i f ( u<uu )

{

p r e p r o b g r a p h = l i k e l i h o o d −p r o b g r a p h ;

p r e l i k e l i h o o d = l i k e l i h o o d ;

f o r ( i =1 ; i <13; i ++)

f o r ( j =1 ; j <13; j ++)

G[ i ] [ j ]= g [ i ] [ j ] ;

}

. . .
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