
Towards verified file systems

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Andrea Giugliano

Department of Informatics

supervised by

Dr. Tom Ridge

December 6, 2018

ii

iii

Abstract

The formal methods community aims to provide a stack of verified software to
users. Verified software is proven to be reliable. The rigour of mathematical logic
makes it possible to prove that software meets the designer expectations. File
system software enables organized data storage, and in most software systems
this functionality is critical. This work provides the basis on which to build a
formally verified file system. Firstly, a formal and mechanized specification of
POSIX (and Linux, Mac OS X, FreeBSD) is defined and used as an oracle to test
if modern implementations behave correctly; then it is shown how to extend this
specification with timestamps and the challenges this extension entails; finally
the definition of an immutable B-tree and the mathematical verification of its
operations are mechanically formalized. operations are mechanically formalized.
These achievements bring the development of a verified file system within reach.

iv

Acknowledgements

There are a number of people without whom this thesis might not have been
written, and to whom I am greatly indebted.

My supervisor Dr. Tom Ridge guided me into the world of research, by supporting
me in many moments of disorientation and teaching me the concept of elegant
simplicity by example.

My colleagues Thomas Türk, David Sheets, Anil Madhavapeddy and Peter Sewell
who supported me during the research and that shared the effort needed to publish
part of this work.

The people at Microsoft Research Limited who believed in the potential of this
work and who decided to fund this Ph.D. position.

My family that enriched my studies and allowed me to study abroad, and so to
achieve an MSc, realize that not everyone eats pasta, and open a path to some
interesting research.

My beautiful girlfriend who enlightened (and is currently enlightening) the last
part of this journey.

My warmest thanks to the Informatics department, formerly the Computer Science
department, of the University of Leicester, which gave me the opportunity to meet
fantastic people who generously shared their knowledge and time with me.

My dearest thanks to the Leicester community who made my stay in this city so
profound: poets such as Bobba Cass taught me that poetry needs to be in your
life before it is in your pen; writers at the Phoenix Writers Club taught me how
to write for an erudite and enthusiastic public; orchestra directors such as Paul
Jenkins who taught me how to sing and perform opera; runners at the Parkour
society who helped me discover how obstacles can become exciting opportunities;
children who educated me in how to teach African drumming; street artists who
taught me that music is from the heart rather than from the brain; homeless
people who taught me to not forget.

Thanks also to those who left a sign in history and made me bloom as a person:
philosophers, poets, writers and singers such as Alan Watts, Kahlil Gibran, Oscar
Wilde and Angelo Lo Forese, respectively.

ii

Contents

1 Introduction 1
Overview of thesis . 5

2 SibylFS: a formal file system specification 7
2.1 Overview . 8
2.2 Introduction . 8
2.3 Technical challenges . 13
2.4 Model . 19
2.5 Test suite and harness . 25
2.6 Evaluation and test results . 30
2.7 Related work . 36

3 SibylFS extended with timestamps 41
3.1 Overview . 42
3.2 Prelude . 42
3.3 Introduction . 49
3.4 Technical challenges . 67
3.5 Model . 69
3.6 Oracle . 75
3.7 Results . 80
3.8 Related work . 86

4 B-trees, formally 89
4.1 Overview . 90
4.2 Basics . 90
4.3 B-tree definition . 98
4.4 Overview of approach to correctness 99

iii

iv CONTENTS

4.5 Framestacks: a concrete representation of context 100
4.6 Find . 102
4.7 Insert . 106
4.8 Refinement to block device . 111
4.9 Related work . 114

5 Conclusion and further work 119

Appendix A: SibylFS main excerpts 121

Appendix B: SibylFS extended with timestamps main excerpts 131
Periodic update events . 131
Examples of manual test traces . 133

Appendix C: B-tree main excerpts 147
5.1 B-tree wellformedness . 147
5.2 B-tree find . 154
5.3 B-tree insert . 157

Appendix D: trace that shows ext4 periodicity 163

Bibliography 169

List of Tables

3.1 Number of states obtainable from single transitions 46
3.2 Statistics about checking a periodic trace consisting of a sequence

of mkdir calls . 85
3.3 Statistics about growth of states 86

v

vi LIST OF TABLES

List of Figures

1.1 SibylFS as a specification or as an implementation 5

2.1 File system testing and trace checking 8
2.2 Modular structure of the model 17
2.3 The model, non-comment lines of specification 20

3.1 Example of syscall execution . 46
3.2 Example of syscalls updating and observing file time 47
3.3 Example of syscalls modeled with logical time 48
3.4 Non-deterministic state space explosion 58
3.5 Non-deterministic state space explosion for two transitions 68
3.6 Algorithm to use SibylFS with timestamp as an oracle 74
3.7 Creating observed timestamps from system call output 76
3.8 Mitigating the time non-determinism of Figure 3.5 79
3.9 Checking a trace involving chmod and timestamps 81
3.10 Checking an invalid trace involving chmod and timestamps 82
3.11 Checking a concurrent trace involving chmod and timestamps . . 83
3.12 Visualization of the state explosion for a trace that just repeats

mkdir commands . 85
3.13 Non-determinism explosion for first transition of mkdir trace . . . 86

4.1 Example of search tree with integer keys 91
4.2 Example of descending a search tree by using a framestack 95
4.3 Equivalence of tree and map’s find 96
4.4 Equivalence of tree and map’s find without arguments 97
4.5 Equivalence of tree and map’s find with steps 97
4.6 Correctness refinements . 99

vii

viii LIST OF FIGURES

4.7 Context refinement from a graph view to an abstract and concrete
algebraic view . 100

4.8 Example of algebraic context and framestack equivalence 102
4.9 Example of insert with splitting 107
4.10 Example of insert with splitting and merging of root 108
4.11 Algebraic view of a B-tree . 112
4.12 Block view of a B-tree . 112
4.13 A B-tree according to Bayer and McCreight with branching factor 4 114
4.14 A B*-tree according to Knuth with branching factor 4 115
4.15 A B+ tree according to Knuth with branching factor 4. The empty

boxes in the leaf nodes hold the data entries 116
4.16 Copy-on-write example on a CoW B-tree 116

1
Introduction

Software engineering is complex. Complexity causes errors, and the experience of
software malfunctions is common. Although one can deal with an unresponsive
phone by trying to restart it, there are situations in which software errors are not
affordable: some unfortunate examples of this important issue happened in the
medical field [45], the space field [18, 59, 66], the military field [72, 73], and in
security [19]. For instance, in 1999 a NASA mission worth $327.6 million failed
because a team of engineers used a different measurement unit to calculate velocity
than the one used by the other components of the system: the Mars Climate
Orbiter disappeared in space before accomplishing all the mission’s targets [67].

In such cases the aim should be to eliminate the risk of malfunction. Although
standard techniques provide sufficiently reliable software [32], in mathematics one
can certify correctness using proof, and one can apply proof to software also. This
process is called software formal verification. The computer science community
has built numerous tools to make formal verification more practical. Part of
the community considers formal methods essential to obtain software correctness
[33, 77]. Yet, formal verification is not suitable in all occasions: indeed, it is a
complex process and the automation provided by tools available today makes it
only just feasible for relatively small examples [2]. One can divide tools for formal
verification in two broad categories [5]:

1

2 CHAPTER 1. INTRODUCTION

model checkers check the design with respect to the specified properties encoded
in a modeling language. A model checker will attempt to do so automatically
with limited human intervention and return one of three results:

1. Properties are satisfied by the design.
2. Properties are not satisfied, for which a counterexample will be given.
3. Indeterminate. The state space is such that the tool cannot compute a

result in a reasonable amount of time.

proof assistants combine automated techniques with manual guidance to prove
correctness. They are generally more powerful than model checkers; develop-
ers can use built-in tactics or develop new ones that aid in proving safety
and security propositions.

In general, model checkers (e.g., the boolean satisfiability solver are able to prove
many things automatically, by limiting the expressivity of the language and
properties that are verified, while proof assistants (e.g., Isabelle/HOL [57]) support
rich languages but need human intervention for complex proofs such as those
involving induction [11]. The flexibility of proof assistants makes them usable to
verify complex software.

Another problem is that in building a software application for a user, one always
relies on the correctness of other components (e.g., a software library, the operating
system, the drivers, the compiler, the hardware, etc. . .). This means that even after
verification, its correctness is strictly bound to the correctness of its dependencies.

Indeed, the formal methods community is trying to build a stack of verified
software which can provide a correct basis to build new software applications. For
example they already delivered CompCert, a compiler for the C programming
language [44]; CompCertTSO, the same compiler with concurrency [70]; CakeML,
a verified compiler from core ML to machine code [41]; Vellvm, a verified LLVM
optimization pass [80]; RockSalt, a verified software-based fault isolation (SFI) for
x86 architectures [54]; seL4 a verified hypervisor [40]; NetSem, a formal specification
of network semantics [8, 60]; and verified low-level crypto-protocol implementations
[37].

A verified file system implementation is necessary in order to build verified systems
that make use of a file system as a trusted component. Such a verified implemen-
tation should ideally be competitive with state of the art file systems. Because
file systems are complex, their behavior must be formalized and their components

3

need to be mechanically verified, aiming for simplicity and modularity.

Along with networking and core OS functionalities such as process and memory
management, the file system is a key part of most systems. A rigorous approach
to identify software errors is formalizing a test oracle [76]. To implement this
approach, both specification and implementation of a software must exist as source
code. The specification is simpler as it behaves as the implementation but does not
include unnecessary details (such as optimizations). Having a formal specification
and an implementation available, one should expect that the same input values will
produce the same results. A mismatching result signals that there is an incongruity
between what the designer aimed and the implementation is achieving. In some
cases, the mismatch can be due to an erroneous specification. A specification can
be wrong if it does not consider all the use cases of the implementation, or if it
defines the wrong feature behaviour: in such cases the specification needs to be
updated until it reflects the intention of the designer. Having a formal specification
removes ambiguities and inconsistencies, which affect most of natural language
specifications.

A critical aspect is the correctness of the model: an implementation that satisfies
a wrong specification is wrong. Errors in the specification are more likely if the
targeted system is complex. However, one can mitigate this issue if existing
implementations of the targeted system are available. Indeed, one can compare
the behaviors of the specification and the implementations to validate and enhance
the specification.

In the case of file systems there is no need to design a new specification, since a well
known operating system specification that includes the behaviour of file systems
already exists: the POSIX (Portable Operating System Interface) specification
developed by IEEE and the Open Group, which is an IEEE, ISO/IEC and Open
Group Technical standard [74].

POSIX is not a formal specification and it is inconsistent and ambiguous as the
Open Group mailing list testifies. When these issues appear in documents as large
as POSIX, their significance worsen as even fixing simple incongruities becomes
difficult, since multiple experts need to be consulted to find a suitable solution. A
mechanized specification can solve the issues caused by informality, as a computer
system is capable of checking the consistency of definitions in an insignificant
amount of time.

4 CHAPTER 1. INTRODUCTION

A mechanized and formal specification for the POSIX file system is SibylFS [62],
see Chapter 2. This models in high order logic not only the subset of the POSIX
file system semantics, but also the divergences from POSIX that Linux, Mac OS
X and FreeBSD have implemented in their own designs. SibylFS is a specification
of a non-deterministic system, as its commands may have more than a single
allowed output and many concurrent processes use the file system. A test oracle
can take an observed trace and it can determine if it matches the behaviour of
known systems (e.g., Linux). This feature helps to find errors in the specification
and compare file system behaviours between platforms.

Lem is the high order language used to specify SibylFS [55]. Lem syntax is similar
to the one of functional languages of the ML family, and it is, indeed, translatable
to OCaml for testing, and Coq, HOL4, and Isabelle/HOL for proving properties of
the specification. This choice makes SibylFS usable as an OCaml test oracle and
at the same time discloses the specification to a wider audience of proof assistant
users.

SibylFS was designed to be modular in order to easily add the features that
current file systems already offer. For example, modern file systems maintain
data describing files and directories, such as who is authorized to change them
(permissions) or when these have been accessed or modified (timestamps). This
work demonstrates how to formalize POSIX timestamps in SibylFS and what
challenges it entails (Chapter 3).

The modular design of SibylFS makes it both usable as an oracle and suitable to
be the basis of a verified file system: at the heart of SibylFS there are two maps,
one from file identifiers to files and one from directory identifiers to directories;
by substituting these two maps with a correct storage model (this must provide a
synchronization, writing and reading mechanism), the file system specification can
be instantiated to a file system implementation that respects the specification. A
good candidate to a storage model is the B-tree data structure. The B-tree data
structure implements a persistent on-disk map, which can substitute the maps at
the heart of SibylFS specification (Figure 1.1).

The B-tree data structure has various desirable properties such as offering a search
algorithm that remains efficient also when applied to big quantities of data. A
correct B-tree specification for the find and insert operations was achieved during
this study (Chapter 4). Isabelle/HOL is the high order language used to define

5

Figure 1.1: SibylFS as a specification or as an implementation

the B-tree and its operations. The proofs of correctness for the B-tree operations
are encoded in the procedural style of the Isabelle/HOL proof assistant. The
Isabelle/HOL proof assistant is enriched by a library of proved lemmas, which
facilitate the proof process. It also allows to translate definitions in various
languages (e.g., OCaml, Haskell and Scala), making possible to test definitions
and their properties before developing proofs.

The design chosen for the B-tree data structure was extensively reworked to
simplify the proof process [85]. The proofs aim to show that the B-tree implements
a Map data structure. Knowing that the B-tree interfaces are isomorphic to the
interfaces of a Map guarantees that the data structure behaves correctly. Having a
correct storage model permits the generation of a verified file system via SibylFS.

This is sufficient to provide a basic functioning file system. However, to produce a
file system with performance equivalent to existing modern file systems requires
additional components discussed in Chapter 5.

Overview of thesis

The content of this thesis is divided as follows: Chapter 2 presents the SibylFS
formal specification and its oracle use case; Chapter 3 presents the timestamp
extension to SibylFS; Chapter 4 presents a formal specification of the B-tree data
structure and a mechanized proof of correctness for its operations; Chapter 5
summarizes future work to achieve the verification of a usable file system.

6 CHAPTER 1. INTRODUCTION

2
SibylFS: a formal file system specification

2.1 Overview . 8
2.2 Introduction . 8
2.3 Technical challenges . 13
2.4 Model . 19
2.5 Test suite and harness . 25
2.6 Evaluation and test results . 30
2.7 Related work . 36

7

8 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

2.1 Overview

Some systems depend critically on the behaviour of file systems, but that be-
haviour differs in many details, both between implementations and between each
implementation and the POSIX (and other) prose specifications.1 Building robust
and portable software requires understanding these details and differences, by
systematically describing, investigating, or testing file system behaviour across this
complex multi-platform interface. In this chapter we discuss how to characterise
the envelope of allowed behaviour of file systems in a form that enables practical
and highly discriminating testing. We see a mathematically rigorous model of file
system behaviour, SibylFS, that specifies the range of allowed behaviours of a file
system for any sequence of the system calls within the formal specification scope.
This can be used as a test oracle to decide whether an observed trace is allowed
by the model, both for validating the model and for testing file systems against it.
SibylFS is modular enough to not only describe POSIX, but also specific Linux,
Mac OS X and FreeBSD behaviours. An extensive test suite of over 21 000 tests
complements the model; this can be run on a target file system and checked in less
than five minutes, making it usable in practice. Finally, we see experimental results
for around 40 configurations of many file systems, identifying many differences
and some serious flaws.

2.2 Introduction

The process of testing a file system and checking the resulting traces with SibylFS
is depicted in Figure 2.1.

Figure 2.1: File system testing and trace checking

The process starts with a set of test scripts, organized into groups according
1Most of this chapter is based on material from a published paper in SOSP2015 [62] which

includes the current author as coauthor.

2.2. INTRODUCTION 9

to the libc functions they target. The bulk of these test scripts are generated
automatically by the test generator, and are supplemented by hand-written test
scripts. Test scripts contain sequences of file system commands that are used by
the test harness to drive the real-world file system under test, via the libc interface.
An example excerpt from a test script is:

@type script
Test rename___rename_emptydir___nonemptydir
mkdir "emptydir" 0o777
mkdir "nonemptydir" 0o777
open "nonemptydir/f" [O_CREAT;O_WRONLY] 0o666
rename "emptydir" "nonemptydir"

after the header, each line is the data for a single libc call (more complex test
scripts can involve multiple processes). Each script sets up whichever file system
state it needs, starting from an empty file system; they involve up to several
hundred libc function calls. The resulting behaviour is recorded in a trace file, as:

@type trace
Test rename___rename_emptydir___nonemptydir
3: mkdir "emptydir" 0o777
RV_none
... [further calls and return values] ...
6: rename "emptydir" "nonemptydir"
EPERM

in this example we see the interleaving of commands from the script with the
responses received from the real-world system. The RV_None return value
indicates the call completed successfully.

These trace files are processed by SibylFS to check for conformance with the model.
The main part of the SibylFS checker is the model itself, automatically translated
from Lem to OCaml and then linked together with a small OCaml wrapper.
Checking is done with respect to a particular variant of the model (POSIX, Linux
or OS X); in addition, various flags control further checking parameters, such as
whether the initial process runs with root privileges or not. The output from this
checking phase is a set of checked traces. An excerpt from an example failing trace
is:

6: rename "emptydir" "nonemptydir"

10 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

EPERM
Error: 6: EPERM
unexpected results: EPERM
allowed are only: EEXIST, ENOTEMPTY
continuing with EEXIST, ENOTEMPTY
trace not accepted

For steps in the trace that conform to the model, the checked trace resembles the
original trace. For steps that are non-conformant, the checked trace includes an
error message and (if possible) diagnostic information to help identify why the
behaviour is non-conformant. In the example above the error message indicates
that at line 6 in the trace file the real-world file system returned EPERM, but
the specification allowed only EEXIST or ENOTEMPTY. Note that the example is
an excerpt of a checked rename trace from SSHFS/tmpfs 2.5 on Linux 3.19.1.
Individual trace files may contain multiple test calls, and so it is important that
the checker tries to continue even when an individual step fails. In the example
above SibylFS continues checking the trace under the assumption that EEXIST or
ENOTEMPTY was returned rather than EPERM. Analysis of the results also requires
automation to assist with the volume of data, as each run produces tens of
thousands of checked traces per platform, and the results must be compared
between file systems and between model versions (during model development).
Checked traces can be rendered to HTML, along with autogenerated indexes and
summaries of check results. To analyse the results of multiple runs, typically for
different file systems on the same operating system, the system can intelligently
combine the results across many different platforms, merging behaviours common
to many runs and highlighting the differences. In addition, a model-debugging tool
allows model developers to analyze the checking process itself, taking a trace and
producing a description of the real-world states that were being tracked by SibylFS
at every step of the trace. This has been extremely useful for developing the model,
although end users of SibylFS should not need it. The process of constructing
the model has been intimately entwined with testing: testing (particularly on new
operating systems and file systems) uncovers new real-world behaviours, which are
then incorporated into the model; new tests are added and the updated model is
then used for another round of testing, with those behaviours now not generating
discrepancies. This represents a virtuous circle: at each stage the model becomes
more accurate and comprehensive, and the test suite accumulates more and more
tests.

2.2. INTRODUCTION 11

2.2.1 Motivation

File systems, in common with several other key systems components, have some
well-known but challenging properties:

• they provide behaviourally complex abstractions;

• there are many important file system implementations, each with its own
internal complexities;

• different file systems, while broadly similar, behave quite differently in some
cases; and

• other system software and applications often must be written to be portable
between file systems, and file systems themselves are sometimes ported from
one OS to another, or written to support application portability.

Thus file system behaviour, and especially these variations in behaviour, must
be understood by those developing file systems, by those aiming to write robust
and secure software above them, and by those porting file systems or applications.
Normal practice has for decades relied on prose standards and documentation (the
POSIX standard [74], Linux Standard Base (LSB) [46], man pages) and on test
suites [47, 75]. Indeed, this is so well established that many practitioners would not
imagine that any alternative exist. But normal practice does not support any of
the above: prose documents generally cannot be made complete and unambiguous;
they cannot be used as a test oracle to automatically determine whether some
observed behaviour is allowed or not; and building test suites without a test oracle
requires manual curation of the intended outcome of each test. As we will see
from the test results of this work, behavioural differences between file systems
have proliferated, some intentional and many clearly bugs.

2.2.2 Scope and limitations

Scope

POSIX describes many aspects of operating systems, but the model considered in
this work covers only the part that is relevant to file systems. The specification
includes the libc commands: close, closedir, link, lseek, lstat, mkdir, open,
opendir, pread, pwrite, read, readdir, readlink, rename, rewinddir, rmdir,

12 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

stat, symlink, truncate, unlink, and write. This covers the essential commands
that are necessary to manipulate and interrogate the directory structure and file
contents, and the functions dealing with symlinks (readlink, symlink). Together
this is sufficient to cover a broad range of uses. The model also includes a
model of processes and the operating system, again focusing on those aspects
that are relevant to file systems. Processes can be created and destroyed. Each
process has a working directory which is mainly used when resolving relative
paths. For this reason we include chdir. Additional per-process structures that
we model include the file-descriptor table and the process run state. We also model
permissions, including chmod, chown, and umask, and a model of users, groups,
and which users belong to which groups. POSIX includes notions of undefined,
unspecified and implementation-defined behaviour. Undefined behaviour results
from using a libc function with arguments that are invalid according to POSIX.
Unspecified behaviour results from a libc function call with arguments that are
valid, but for which POSIX leaves the behaviour unspecified. Implementation-
defined behaviour is similar to unspecified behaviour, though it is expected that
conforming implementations explicitly document their behaviour in such cases. The
aforementioned model covers all these cases for the POSIX platform. The variants
of the model for real-world platforms describe the actual real-world behaviour,
even where POSIX declares the behaviour to be undefined.

Limitations

Currently the model does not include host crash-failure. It includes concurrent
file system API calls, and the checking infrastructure supports them, but the test
harness does not force libc calls from different processes to overlap in time (e.g.,
so that both calls execute in-kernel simultaneously). The test harness and test
suite do cover interleaved calls from multiple processes, which is important when
modeling and testing permissions. It does not include unusual file types (such as
FIFO special files) or signals and the associated EINTR error. Also it excludes
exotic errors such as EIO (a physical I/O error has occurred) and ENOMEM; from
a modeling perspective such errors could potentially occur at any time. It also does
not model many resource exhaustion behaviours, such as exceeding the maximum
number of entries in a directory or using all available inodes. It does not currently
model the *at forms of functions, although it should be straightforward to adapt it
to include them. It does not model free space or storage media behaviour in general.
One can imagine future work developing, for a particular file system of interest, an

2.3. TECHNICAL CHALLENGES 13

executable abstraction function that reads a concrete volume state (perhaps after
a host crash and recovery) and calculates the corresponding abstract state of the
model. Testing the correspondence between implementation and model at each
step, analogously to [60], would likely be extremely discriminating. The model
parameterization, while desirable and necessary, also has a cost: running SibylFS
is low-cost, but adapting SibylFS to model a file system with significantly different
behaviour can involve substantial work (though with a big pay-off: characterizing
that behaviour in detail).

2.3 Technical challenges

2.3.1 Non-determinism

In writing a model to be used as a test oracle (i.e., to compute whether observed
traces are allowed by the model or not), the treatment of non-determinism is a
key issue. If both the model and the implementations are entirely deterministic,
at the abstraction level at which they are being observed, then one could just
run the model and an implementation on the same input and check whether
they have equal output. But for real-world software that is rarely the case:
implementation behaviour typically varies, both between implementations and
depending on implementation-internal runtime choices, and specifications are often
deliberately loose. For example, for file systems:

• Some API calls could give rise to several distinct errors, e.g., EISDIR, EEXIST
or ENOTEMPTY when renaming a file to a non-empty directory; which error is
actually returned may be determined by the order the checks are made in
the file system implementation code.

• The number of bytes returned by a read may be less than the number
requested, determined by the implementation internal state.

• The order in which readdir returns entries from a directory with multiple
entries will depend on the implementation and on details of the storage layout
of the directory data (neither of which belong in an abstract specification).

• The behaviour of concurrent API calls may be determined by scheduling.

A sound specification must be loose enough to accommodate all such variation

14 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

(we should not confuse looseness with the question of whether a specification is
precise: we want a mathematically precise model, but one that admits a range of
allowable behaviours). However, checking a trace against such a specification poses
an algorithmic problem, especially when there is internal non-determinism that is
not immediately observable. In general one must effectively track the set of all
possible implementation states (abstracted to what can affect external observation)
at every step of the trace, or, equivalently, calculate the set of constraints on the
specification state that arise from a trace of observations. The NetSem project
of Bishop et al. [9] produced a specification and trace-checker in that form for
TCP/IP and the Sockets API, but it required a sophisticated higher-order logic
constraint solver and a backtracking search process, and checking around 1000
traces (of broadly similar character and size to ours) took 2500 CPU-hours, at the
limits of practicality. At the same time, there is a tension between writing a model
to be as clear as possible and one that supports efficient checking (both quite
different from writing a file system implementation, of course). As much as possible
we want to avoid polluting the model with algorithmic concerns. Accordingly,
for SibylFS we took great care up-front to write the model in a way that would
remain clear and be efficiently checkable, without the need for backtracking search
or sophisticated constraint solving. SibylFS incorporates different strategies for
different sources of non-determinism, as follows.

Simple non-determinism via possible next-state enumeration At the top
level the model consists of a type of abstract file system states and a function
that, given such a state and an API event (call, return, etc.), returns a finite
set of possible next states. We will go into more detail in §2.4. For the
simple case of multiple possible API error return values, the model explicitly
calculates the set of all expected errors (using novel and concise combinators,
as described in §2.3.2) and a subsequent state for each, then when the
real-system return value is observed we simply choose the corresponding
state. The model uses a similar approach to deal with the number of bytes
processed by a read or write, by just enumerating the possible immediate
next states. This is attractively simple and suffices for testing. However,
it does involve some unnecessary cost for tests with large reads or writes,
enumerating many next-states. This blowup is resolved at the next step in
the trace, when the actual number of bytes read by the real-world process
becomes known. To test with very large reads and writes one could refactor
the model slightly to produce continuations abstracted on the API return

2.3. TECHNICAL CHALLENGES 15

values, to check them and calculate a single next state. A disadvantage of
doing this uniformly is that it makes it hard for the checker to describe, for
a failing step, the set of values that would have been allowed (as we saw in
the example trace of Chapter 1).

Directory listing non-determinism by hand-crafted specification The
readdir command is challenging to specify. A process can request a
directory handle using opendir and then use readdir to return the directory
entries. These can be returned in any order, therefore this command gives
rise to significant non-determinism. However, the real challenge in specifying
this command is to deal with modifications of the directory (either by the
same process or a different process) while the directory handle2 is open. If
the directory is not modified at any point, then readdir returns all the
entries in the directory, and each entry is returned exactly once. The POSIX
intent is to provide a similar guarantee when the directory is modified, and
real-world file systems also provide this guarantee, as far as we can observe:
for any entry, if that entry is not modified from the time the directory
handle is opened, then that entry will be returned by readdir exactly once.
If an entry is deleted, and if it has not already been returned by readdir,
then it may be returned by subsequent calls to readdir (if it has already
been returned, then it is not returned again if it is deleted). Similarly, if
an entry is added, then it may be returned by subsequent calls. So far,
the semantics could be modeled by taking a snapshot of the entries when
opendir is called, and recording which entries have already been returned
by readdir. On subsequent calls to readdir, the entries in the directory
at that point could be examined, and the possible entries that could be
returned at that point could be determined. The problematic case arises for
entries that are initially in the directory, then deleted, then added again (or,
vice versa, those that are added then deleted). According to POSIX, these
entries may (but need not) be returned. In order to model this behaviour,
we are forced to track all changes to a directory from the point that opendir
is called, as well as the entries that have already been returned by readdir.
With this information, it is possible to determine the set of entries that must
be returned, and those that may be returned, and thus to give a semantics
to the whole command. In fact, we need to maintain (rather than compute)
sets of must and may entries in a directory. Whenever a directory handle

2A directory handle is an identifier that references the contents of a directory.

16 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

is read from, it accesses the changes since the last time it was read from,
and updates the must and may sets, before non-deterministically splitting
to allow any of the entries in must or may be read. This non-determinism
is resolved at the next step, when the label reveals the entry actually
read. It is worth noting that this is an area where a good specification is
conceptually more complicated than any particular implementation: the
latter just returns some list of names, while the model has to capture all
allowable sequences, ruling out all those that are not possible.

Interleaving concurrency non-determinism via state sets Non-determinism
from multiple user processes executing file system API calls concurrently
also results in non-deterministic behaviour, e.g., if one process renames
a file while another removes it. The SibylFS model and trace checker
cope with this by maintaining explicit sets of possible (model) file system
states. Currently our test infrastructure cannot generate traces in which
individual calls overlap: typically the first call will complete before the
second is executed, and the call-and-return pairs will be interleaved. The
proposed test suite does not contain tests of this kind: systematically
testing non-interleaved concurrent interaction would require extensive
additional effort. Typically OS kernels handles parallelism through locking
mechanisms [65]. The interleaving approach models the results of parallel
calls. When these locking mechanisms are not well implemented, calls may
result in race conditions, which may cause system crashes. The current
SibylFS model does not aim to model these errors. Another way to avoid
internal non-determinism is to expose the implementation behaviour by
instrumenting it, so that all internal choices that affect external behaviour
are captured as trace events. For a single implementation that might
be viable (and indeed desirable, as it would permit checking of internal
invariants). But for checking many file systems, the black-box approach that
we consider here is more tractable.

2.3.2 Complexity

To give an idea of the challenges in identifying and describing complex real-world
behaviours, we can take as an example the process of updating the model for OS
X. Variants for POSIX and Linux were already available. In order to understand

2.3. TECHNICAL CHALLENGES 17

what parts of OS X behaviour were different from the available variants, we needed
to run the tests on OS X with the default HFS+ file system, and check the traces
against the POSIX variant of the model. The result would be thousands of failing
traces (around 5 000 for open alone).

We would manually analyze the failing OS X traces to identify why they were not
allowed according to our understanding of POSIX. This was painstaking work, that
took roughly four to six weeks (though still small compared with the effort required
to implement a production file system). The next step was to rework the model to
incorporate these new OS X behaviours, while remaining concise, structured, and
readable. The process is one of inferring, from thousands of observed behaviours,
a compact description of those behaviours (as a higher-order logic specification).
To make it feasible to write the model and to extend it in this way, it was essential
to structure the model in various ways. Different mechanisms have been useful to
address different kinds of complexity.

Modules The model is written in a mathematically rigorous language, the typed
higher-order logic of the Lem tool [55]. Lem provides a notion of module: a
collection of type, pure function, and inductive relation definitions (analogous
to the modules of OCaml and other ML-like languages). We used these to
structure the model as a set of independent modules, with clearly defined
interfaces, as shown in Figure 2.2.

Figure 2.2: Modular structure of the model

A file system has to maintain the directory structure and the contents of files,
typically using references. This is managed by the state module. The path
resolution module defines how paths reference particular files and directories.
The file system module represents the bulk of the model. It describes how
each command (link, rename, etc.) behaves, including how they modify the
state, and the many possible error cases, but working over fully resolved
paths. Finally, the POSIX API module glues those together and includes
the behaviour of libc and the operating system, introducing the notion of a

18 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

process, and per-process data structures. This is the top-level module which
exposes the interface used for trace checking. The model’s module structure
does not represent the structure of the existing POSIX specification or the
internal structure of any file system implementation; rather, it is the result of
an attempt to identify the conceptually key components and their interfaces,
while simultaneously minimizing the overall complexity of the model. An
important decision was to separate path resolution from the semantics of
each command. When processing a command such as rename p1 p2, the
POSIX API module first resolves the paths p1 and p2 to obtain two resolved
paths. These are then used when invoking the file system module equivalent
of the rename function. Thus, internally to the model, the file system module
API is expressed in terms of resolved paths, not raw strings. This means that
the file system model is clean, and unpolluted by the tricky details of path
resolution which have been confined in a separate module. Because they
have pure value-passing interfaces, modules can be considered in isolation,
allowing important invariants to be established. Modularization also allows
unit testing of individual modules, which has been useful particularly to get
the details of path resolution correct.

Traits Aspects of the model that cut across the modular structure but which
are conceptually distinct have been isolated using a trait-like mechanism:
there is a core model on top of which the user can mix in further traits for
particular functionality. The permissions trait defines the behaviour of file
permissions including functions such as umask. The timestamps trait defines
how the timestamp information on files is updated, as we will see in Chapter
3.

Monads and combinators Higher-order logic is based on the notion of (pure)
functions. Furthermore, various functional programming structuring tech-
niques are introduced in the model, including monads and associated combi-
nators, to give a uniform structure to definitions. The following specification
excerpt illustrates the use of the parallel combinator ||| to specify the checks
that the rename function must perform.

let fsop_rename_checks ... = ...
if (fsop_rename_same_rsrc_rdst env rsrc rdst s0) then

fsm_do_nothing
else

2.4. MODEL 19

(fsop_rename_checks_rsrc_rdst env rsrc rdst
||| fsop_rename_checks_root env rsrc
||| fsop_rename_checks_subdir env rsrc rdst
||| fsop_rename_checks_parentdirs env rsrc rdst
||| fsop_rename_checks_perms env rsrc rdst)

The conditional first checks whether the source and destination are the same,
in which case the rename is a no-op, and the checks do nothing. Otherwise the
rename function needs to check various conditions: fsop_rename_rsrc_rdst
checks various combinations of the source and destination that result
in errors (for example, ENOENT may be raised if the source is missing);
fsop_rename_checks_root checks attempts to rename the root directory;
fsop_rename_checks_subdir checks attempts to rename a directory to a
subdirectory of itself; fsop_rename_checks_parentdirs checks that the
parent of the source and destination directory can be found (this check
should always succeed; it is included to cover the case that a disconnected
file or directory is involved in the rename); fsop_rename_checks_perms
checks the permissions involved in the rename. Each of these checks may
raise many different errors. Moreover, as discussed in §2.3.1, and unlike an
implementation, we have to loosely specify the behaviour: any error that
arises from any of the checks is valid behaviour. The parallel combinator
conceptually allows these checks to be carried out in parallel, and the
resulting error may be from any of the individual checks. The shown excerpt
concisely and readably expresses all the checks involved, and the use of the
parallel combinator emphasizes that none of the errors arising from the
individual checks has priority over any of the others. The precision and
clarity of this model can make it a useful complement to the existing POSIX
standard.

2.4 Model

Our model is about 6 000 lines of higher-order logic. In Figure 2.3 we can see the
line count for each part of the model.

In this chapter we give only the main types involved, and representative excerpts

20 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

Main modules loc
State 502
Path resolution 291
File system 1388
POSIX API 818

Others loc
Prelude 156
Types 888
Monads 130
Permissions 208
Formal properties 1103
Support files 497

Total 5981

Figure 2.3: The model, non-comment lines of specification

from the model to make the discussion manageable.3 We start by introducing
the notion of a labeled transition system: a mathematical way to specify complex
real-world systems. We then explore the main modules that make up our model,
following Figure 2.2.

2.4.1 Labeled transition systems

Conceptually, SibylFS simply defines a labeled transition system: a non-
deterministic infinite-state automaton where the states are abstract (model)
file system states and the transitions (mostly) correspond to libc API calls and
returns, and are labeled with the call parameter values and return values.

Formally, an LTS can be thought of as a tuple (S ,L,S0 ,R), where S is a set of
states, L is a set of labels, S0 ⊆ S is a set of start states, and R ⊆ S × L × S is a
set of triples (known as the transition relation): a triple (s, lbl, s′) indicates that,
from state s, a transition labeled with lbl to state s′ is possible.

We are interested in the subset of LTS that is finite.

Finite LTS S0 is finite and ∀s ∈ S .{(s, l, s′)|(s, l, s′)← T} is finite.

In other words, an LTS is finite when from every state it can only transition to a
finite number of states.

LTS example States have only a counter.

L is {Step(n)}.

T is {< counter = n >
Step(n)−−−−→< counter = n + 1 >}.

3The interested reader can find explore the model at http://sibylfs.github.io/

http://sibylfs.github.io/

2.4. MODEL 21

S0 is {< counter = 0 >}.

An example of trace for this LTS is Step(0)−−−−→ Step(1)−−−−→ ...
Step(n)−−−−→.

2.4.2 POSIX API module

The POSIX API module defines a labeled transition system. Labels correspond to
relevant events: those for a process calling a libc function, a value being returned
to a process from a call, process creation and destruction, and internal τ events.
These are modeled using the Lem type os_label.

type os_label =
| OS_CALL of (ty_pid * ty_os_command)
| OS_RETURN of (ty_pid * error_or_value ret_value)
| OS_CREATE of (ty_pid * uid * gid)
| OS_DESTROY of ty_pid
| OS_TAU

This defines a new datatype (similar to a tagged union or variant type) where
values may be one of the five possible variants, distinguished by constructors such
as OS_CALL, and each holding an immutable tuple of the associated type. For
example, if the value pid is of type ty_pid (representing a process id) and c is of
type ty_os_command (representing a particular instance of a libc function call such
as link), then OS_CALL(pid , c) is a value of type os_label (representing the
event where process pid makes a libc call c). The type ty_os_command (used in
the OS_CALL constructor) models the various libc functions and their arguments:

type ty_os_command =
| OS_CLOSE of ty_fd
| OS_LINK of (cstring * cstring)
| ...

The states of the model must represent real-world system states, including processes,
open file descriptors, file descriptions and so on. The key type of model states,
ty_os_state, is a Lem record type:

type ty_os_state ... = <
oss_fid_table : fmap ty_fid (fid state 'dir_ref 'file_ref);
oss_group_table : fmap gid (finset uid);

22 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

oss_pid_table : fmap ty_pid (per_process_state 'dir_ref);
...>

The field oss_fid_table is a finite map from open file description references
(ty_fid) to the state of the file description (fid_state ′dir_ref ′file_ref); here
the pre-primed identifiers are generic type variables, and fid_state is actually
a type constructor parameterized on arbitrary ′dir_ref and ′file_ref types. The
field oss_group_table is the mapping from group ids to (sets of) user ids. The
field oss_pid_table holds the per-process information tracked by the operating
system. This includes the current working directory, file descriptors and directory
handles, process run state, and various permissions-related state, such as the
file creation mask, and the real and effective user ids. We have now defined the
states and the labels of our LTS. For the transition relation one might expect
a relational definition, specifying a set of triples (s, lbl, s′). In this context we
prefer a definition that is more computationally convenient, but mathematically
equivalent: a function that takes a state and a label, and returns a (finite) set of
states. Indeed, we have a top-level function os_trans with that type:

val os_trans : ty_os_state -> os_label -> finset os_state_or_special

There is a subtlety here: the type finset os_state_or_special represents a
finite set of elements, which are either normal states, or special states which cor-
respond to POSIX undefined, unspecified and implementation-defined behaviours,
as described in §3.3.3. If we ignore special states, the result type indeed represents
a set of file system states.

The remainder of the model defines the transition relation: given a state, and
a label corresponding to a libc function call, the definition of os_trans uses the
path resolution module to resolve paths, and then calls the file system module to
process the function itself. In addition to this, os_trans must deal with processes
and concurrency, open file descriptors, file descriptions and so on.

A trace such as that shown in Chapter 1 is a sequence of labels. SibylFS checks a
trace step by step. At each step i of the trace, SibylFS maintains a finite set Si of
values of type ty_os_state, which represents all the states that the real-world file
system might be in. For each label lbli , SibylFS applies os_trans to each element
of Si , and takes a union of the resulting sets to form the set of values Si+1 at the
next step. The initial set S0 consists of a single state s0 representing an empty
file system. In effect, given S0 and the sequence of labels, SibylFS computes a

2.4. MODEL 23

sequence S0
lbl1→ S1

lbl2→ S2 If the end of the trace is reached at lbln and the set
Sn is non-empty, then the trace is accepted by the model. If the set Si of possible
file system states at step i is ever the empty set, then this indicates that the trace
is not accepted by the model.

Path resolution module Path resolution is complicated for several reasons.
The resolution of even simple paths (no symlinks, no permissions) can be
counter-intuitive on real-world systems, particularly when the path ends in a
trailing slash e.g., the path /tmp/f.txt/ is sometimes resolved successfully
under Linux, even when f.txt is a non-directory file. Symlinks introduce
much additional complexity. For example, symlinks that occur as the last
component of a path are sometimes followed and sometimes not, depending
on the libc function involved and flags such as those for open; this "follow
last symlink" behaviour is further complicated by trailing slashes on the path
(a trailing slash makes it more likely the symlink is followed). Permissions
further complicate matters. For example, there is the question of how
permissions interact with path resolution, and what permissions should be
assigned to symlinks.

Our model clearly describes the behaviour of path resolution in terms of the
inputs to path resolution, and the output resolved path. The result of path
resolution is captured by the resolved name type res_name:

type res_name 'dir_ref 'file_ref =
| RN_dir of ('dir_ref * ...)
| RN_file of ('dir_ref * name * 'file_ref * ...)
| RN_none of ('dir_ref * name * ...)
| RN_error of (error * ...)

Intuitively path resolution can give four possible results: the path can resolve
to a directory (constructor RN_dir), a non-directory file (RN_file), or an
error can occur during resolution (RN_error), or the path might resolve to
"none" (RN_none), representing a non-existent entry in a directory. This last
possibility occurs, for example, for functions such as mkdir, where the given
path is intended to reference a non-existing entry that will be created by the
function.

File system module The file system module defines the behaviour of individual
functions such as link and rename. Internal to the model, its API is

24 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

expressed using resolved names. In §2.3.2 we saw an excerpt from the file
system module: the checks that the rename command must make.

State module The state module provides a simple model of directory and file
contents. The main type is a record type which includes a field dhs_dirs (a
finite map from directory references to directories) and a field dhs_files (a
finite map from file references to files):

type dir_heap_state_fs = <
dhs_dirs : fmap dh_dir ref_dh_dir;
dhs_files : fmap dh_file ref_dh_file;
... >

The interface to the state model is expressed in terms of references to files
and directories (types dh_dir_ref and dh_file_ref). The state-model API
permits arbitrary linking and unlinking, in particular, our model can handle
directory links, and disconnected files and directories can also be modeled
(a disconnected file is one that does not appear in the directory tree, but is
still accessible).

Contrasting this to the block-structured storage state one might find in a
typical file system implementation is instructive: the model can abstract from
all the implementation detail while still correctly describing the envelope of
allowed behaviour visible at the API we consider, and that abstraction is
essential to make the model simple.

2.4.3 Model validity

SibylFS formalizes a subset of the POSIX specification. It also formalizes the
behavior of other implementations when these do not respect POSIX definitions.

We can automatically validate that SibylFS models an implementation behavior
by using it as a test oracle: if the implementation produces results expected by
SibylFS, then SibylFS models the implementation correctly §2.3.2.

However, validate that SibylFS models POSIX is more challenging: although many
operating systems claim to be POSIX compliant, the complexity and strictness of
POSIX make it possible that they are not §2.6.

2.5. TEST SUITE AND HARNESS 25

In this work two approaches minimize the possibility that SibylFS deviates from
POSIX:

• each SibylFS definition matches a POSIX definition:

most of SibylFS definitions are annotated to record the decision process
behind the definition. For example, the annotation

(* posix/mkdir.md ENOENT:4; probable POSIX spec error;
confirmed on austin group mailing list 2014-06-16
by Geoff Clare *)

refers to the definition that POSIX gives for the mkdir in case of ENOENT
error. This example also shows how the development of SibylFS improved
the original POSIX model as a side effect. In general definitions are named
to match POSIX terms, so that the interested reader can look up the POSIX
specification. This approach to validity is similar to the one used in [10],
where the authors annotate formal definitions to show the relation between
formal and informal specifications.

• SibylFS is used as a test oracle against multiple implementations which are
inspired by the POSIX standard:

assuming that file systems deviate only slightly from POSIX, most of their
behavior should be POSIX compliant. The intersection of these behaviors
can help validating that SibylFS models POSIX. If SibylFS accepts the
intersection of behaviors, it is POSIX compliant (for at least that set of
behaviors). Since SibylFS can be used as a test oracle, at each test run
deviations were carefully evaluated, and or the model was updated or a
deviation was identified for the file system.

Although these cannot prove that SibylFS is equivalent to the subset of POSIX
definitions relevant to the file system, in conjunction they simplify the detection
of deviations.

2.5 Test suite and harness

In §2.1 we gave an overview of the system, and described the virtuous circle formed
by testing and revising the model. We now examine the tests and test execution

26 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

in more detail.

2.5.1 The tests

Autogenerated scripts test commands such as link and rename where combinatorial
testing is straightforward, feasible, and expected to cover all static real-world
behaviour. The combinatorial nature of the tests means that functions such as
link and rename which take two arguments have many more tests than functions
such as rmdir which take only one. The open function has an especially large
number of tests because one argument is a bitfield of open flags.

To reduce the test cases to a finite number, we use equivalence partitioning, which
requires identifying classes of inputs where a function is assumed to behave “the
same”, and testing only one member of each class. For example, in a given
file system state where neither f1 nor f2 exist, the behaviour of rename f1 f1
should be the same as rename f2 f2, so it suffices to test only one of these two
possibilities: the assumption is that the exact name of a file is irrelevant. A
potential weakness is that these assumptions might not actually hold for real-world
file systems. For example, even if neither f1 nor .snapshot exist, it could be that
any reference to .snapshot triggers unusual file system behaviour so that rename
.snapshot .snapshot behaves differently to rename f1 f1. The proposed tests
would typically fail to establish this difference. However, this is an inherent
weakness in equivalence partitioning, not specific to the presented use.

The equivalence classes are based on properties (of file system state, and the file
system API calls) which we believe affect file system behaviour. For example,
properties of paths used in API calls include: whether the path ends in a slash;
whether it starts with 0, 1, 2, or ≥ 3 slashes; whether it is the empty string;
whether it is a single slash; the type of the resolved path (file, directory, symlink,
nonexistent, error); if the resolved path is a directory, then the number of entries
in the directory; and whether the path has a symlink component or not. These
properties are used to construct equivalence classes. We then make sure that we
have at least one test case for each logically-possible combination of properties.
For API calls involving two paths (such as rename) we consider all combinations
of properties of each path individually, together with equivalence classes based
on properties of two paths: whether they are equal or not; whether they are
different paths to the same file (hard links); and whether one path is a proper

2.5. TEST SUITE AND HARNESS 27

prefix of the other. Again, we need to ensure we have at least one test case for
each logically-possible combination of properties.

The construction of equivalence classes is carried out manually to achieve the
smallest possible set of useful tests: extensive human involvement is necessary to
determine which combinations of properties are logically possible. For example, it
makes no sense to require that a path corresponds to an empty directory, and is
at the same time a proper prefix of a path that corresponds to a file (or directory
or symlink). Potentially the model itself could be used to determine that certain
combinations are not possible. Maybe this could be done automatically, but
would require a significant proof effort for each combination, and there are many
logically-impossible combinations. We chose to leave the automatic generation
of equivalence classes as future work. Even if we could automatically determine
whether a combination was logically possible, constructing missing test cases
requires human involvement (see below). Instead of using the model, we should
manually inspect each combination for which no test case is available, to certify
that the combination is indeed impossible. This takes significant effort, and there
is the danger that the human mistakenly labels some combination as impossible,
and thereby omits an interesting test case. If a combination is possible, but no
test case exists, we manually examine the combination, identify (at least one)
missing test case, and extend our automatic test generation to include this case.
As an example of the missing test cases our approach uncovered, for commands
involving a single path, our test suite initially lacked test cases which resulted in a
path resolution error, where the error was not due to a trailing slash on the end
of a file. The fix was to include commands that attempt to resolve a nonexistent
file in a nonexistent directory; a nonexistent file (in an existing directory) does
not suffice since it resolves to RN_none rather than RN_error. OCaml was used
to model properties and equivalence classes, and mechanically verify that all
logically-possible combinations were matched by at least one test case. The OCaml
equivalence classes are defined as sum types which may look like:

type single_path_props =
...
| Is_empty_string
| Is_slash
...

These types are then interpreted to predicates:

28 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

let rec sem1 prop p0 = (
match p0 with
| None -> false (* check for null path *)
| Some p -> (

match prop with
...
| Is_empty_string -> (p = [""]) (* path was "" *)
| Is_slash -> (p = ["";""])

...

These predicates are used to construct test inputs from predefined partial inputs
which may look like:

...
let other_paths = [
(* must have nonexist paths, and some must end in / *)
["nonexist_1"]; ["";"nonexist_1";"nonexist_11"]; ["";"nonexist_2"]; ["";"nonexist_2";"nonexist_22"];
(* we also need nonexistent path in an empty dir *)
["empty_dir1";"nonexist_3"];

...

For commands such as read and write we need to test sequences of calls, which
is inherently hard to test combinatorially. Extensive manual tests were written,
attempting to cover all possible behaviours. Preliminary investigation of automated
generation of tests was done for these calls but this is future work. An alternative
is to use randomized testing.

The standard Open Group POSIX test suite includes hand-written code to check
the results of calling libc functions. The use of combinatorial testing, made possible
by the SibylFS oracle, allows us to test many more cases: 2 500 autogenerated
scripts for rename alone, supplemented by further hand-written scripts, whereas
the Open Group test suite for rename includes around 50 tests. On the other hand,
they test a wide range of POSIX functionality, whereas here we test file system
functions only.

Testing, interleaving, concurrency and races

The SibylFS model allows interleaving and concurrent behaviours and many test
scripts involve multiple processes making interleaved libc calls. However, in-kernel
racy behaviours are inherently difficult to elicit from real-world systems, and such

2.5. TEST SUITE AND HARNESS 29

racy behaviour, although modeled, is not currently tested. In this section we
examine the nature of the interleaving and concurrent behaviours allowed by the
SibylFS oracle, and the difficulty in testing racy behaviours.

A file system API function call and return is not modeled as an atomic event.
Instead, there is an initial event corresponding to the call, a second internal τ event
corresponding to the libc/OS/file system processing the call, and a final event
corresponding to the return from the libc call. Additionally, the model satisfies a
receptivity property: at any time, any running process can make a libc call, at
which point the process blocks until the call returns. This model allows multiple
processes to execute calls concurrently. Test scripts can involve multiple processes,
each making calls to libc. For example, many of the hand-written test scripts
involve multiple processes making interleaved calls to libc, in order to test file
system features such as ownership and permissions. The test infrastructure will
execute a script line-by-line and no attempt is made to execute calls from different
processes at the same time: typically a libc call from one process will complete
before the test infrastructure executes a call from another process.

It should be possible to extend the test infrastructure to initiate libc calls from
different processes simultaneously, perhaps by assigning different processes to
different cores. This would at least make it possible for concurrent calls to race in
the kernel, but the probability of a race actually occurring would likely be very
low (there is no way to force calls to race in the kernel). The next step would be
to run such potentially-racy tests many times, to try to increase the chance of
racy behaviour being observed. However, the time cost of doing this for a large
test suite such as the presented one is prohibitive, and such racy testing should
probably be restricted to particular test scenarios where the racy behaviour is
expected to be "interesting".

2.5.2 Script execution

Test scripts may involve multiple processes making libc file system calls. Each test
script execution forks an interpreter process from the controller process to provide
signal and fault isolation. The interpreter process then reads, parses, and dispatches
script commands over a high-fd UNIX socket to worker processes running in a
chroot jail. Each worker runs with real user and group IDs and supplementary
group IDs generated to match the permissions relations for the corresponding

30 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

process in the script. Using chroot jails means that we can effectively test as if the
file system namespace is empty. This design trades off complete accuracy regarding
the behaviour of the root directory (e.g., in a chroot jail the root directory link
count is typically off-by-one compared to a non-chroot setup), for fast, reliable
execution.

2.6 Evaluation and test results

Testing focused on the Linux and OS X operating systems for which we have
models. On Linux, we tested tmpfs, Btrfs, ext2, ext3, ext4, F2FS, XFS, HFS+,
MINIX, NILFS2, NFSv3/tmpfs, NFSv4/tmpfs, fusexmp/tmpfs (the example
FUSE pass-through backed by tmpfs), SSHFS/tmpfs, bind/tmpfs, posixovl/vfat,
posixovl/NTFS-3G, aufs/tmpfs/ext4, overlay/tmpfs/ext4, GlusterFS/XFS,
and OpenZFS. On OS X, we tested HFS+, NFSv3/HFS+, fusexmp/HFS+,
SSHFS/HFS+, fuse-ext2, Paragon ExtFS, and OpenZFS. In addition, on Linux
we compared the standard libc (glibc) and the lightweight libc musl, and kernels
3.13, 3.14, and 3.19.

An individual test run currently executes 21 070 tests and produces 46MB of trace
data. Because manually analysing system traces of this volume is difficult, we
index, filter, and highlight specification deviations in HTML. These tools can also
produce merged test runs comparing local specification deviations across multiple
platforms with platform differences identified and highlighted. With appropriate
experimental design, OS, file system, and libc defects are easy to find.

2.6.1 Performance

To use our specification during file system development or behavioural exploration,
individual script execution and trace checking must run quickly. As described
in §2.3.1, non-determinism can, without careful management, lead to very long
run times. In the checking system, the specification is engineered to control
non-determinism and take advantage of trace independence for parallel speedup.

Trace checking the entire test suite with four processes on a machine running Linux
3.14-2 with an Intel Core i7-3520M 2.90GHz CPU with performance governor,
Samsung 840 PRO SSD, and 12GB RAM takes about 79s, which is a mean rate of

2.6. EVALUATION AND TEST RESULTS 31

266 test traces per second. With test suite execution on Linux tmpfs clocking in
at 152s, it takes less time to check a trace set than it does to execute the test suite.
Our naive single-threaded HTML generator takes about 48s to process a single,
unmerged test run. Thus, it seems that the performance of SibylFS is suitable for
use during development and continuous integration. The slowest phase of testing
is due to user and group creation: we need to employ application-level locking to
avoid race conditions on Linux, OS X, and FreeBSD; these race conditions have
been reported upstream. The test harness and the checker architecture are not
aggressively optimized: for example, a new process is spawned for each trace being
checked.

2.6.2 Test results

Trace acceptance

For the "standard" Linux platforms (Linux 3.19, with glibc and either ext2, ext3, or
ext4), all but nine of 21 070 traces are accepted by SibylFS. The nine failures are
mostly due to the use of a chroot jail for testing, i.e., they do not represent real
deviations of the underlying file system from the SibylFS model. For other Linux
platform variations, failing traces differ mostly in aspects that POSIX indicates
are implementation-defined or unspecified. These include default permissions for
symlinks, writing zero bytes to bad file descriptors, and specific errors due to
removal or renaming of the root directory. On OS X 10.9.5 with the default HFS+
file system, the script which tests pwrite with a negative offset fails to execute to
completion due to an integer underflow bug in OS X. In total, 34 traces fail to
check, due to a handful of issues similar to the Linux failures, and the resolution
of symlinks with trailing slashes. The FreeBSD results are similar.

Test coverage

To understand the completeness of the test suite, we can use as a measure the
proportion of lines in the model that are covered by a test run. The ideal
target of 100% coverage is not possible for two reasons: some lines of the model
correspond to situations that are impossible to reach, and clauses for particular
platform behaviour will not be exercised when checking traces for another platform.
Taking these factors into account, our tests currently cover 98% of the model.
The remaining 2% consist of lines that probably could be tested (for example,
test process destruction during a test is not currently exercised), and lines for

32 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

unused internal definitions generated by Lem (which should be excluded from
the analysis). The high level of coverage is partially attributable to the decision
to use automatically generated test cases in an attempt to exhaustively explore
all behaviours. Related work [28] has used randomized testing of the POSIX
file system interface applied to a novel file system implementation, achieving
89.06% coverage of the implementation code. If one considers the model as a
(non-deterministic) reference implementation, there is a sense in which these figures
are comparable.

The coverage figures come with a caveat: these figures show only that the test
scripts produce traces whose checking exercises almost all of the model. As
noted earlier, it may still be the case that the assumptions underlying equivalence
partitioning are invalid or that some real-world behaviour, unrepresented in the
model, is not being tested.

The tests aim for complete implementation code coverage, but consider coverage of
the model, rather than coverage of the implementations, for two main reasons. First,
there is the belief that the model is detailed and accurate (although admittedly
this belief partly depends on the testing itself), so that tests which cover the model
should also exercise all interesting behaviours of the implementations. Second,
attempting to measure implementation coverage is difficult. There are at least
three distinct pieces of code which form an implementation (the libc library, the
OS, and the file system implementation code), and only parts of each piece are in
the domain of the SibylFS model. In order to measure implementation coverage,
we would first need to determine, for each of the three pieces, which lines of code
are relevant, and which are not, so that we can restrict our coverage checking to the
relevant lines. This requires expert knowledge of libc, the OS and the file system
code, but should be possible for a single test platform, and there is belief that
this would provide further evidence that the tests provide high coverage. However,
providing such implementation coverage for each of the many combinations of libc,
OS and file system that we consider, would surely be infeasible.

2.6.3 Survey results

During the testing of over 40 different system configurations, numerous deviations
from the specification ranging from mundane to critical were discovered. We see a
classification of file system defects found during this survey by increasing severity.

2.6. EVALUATION AND TEST RESULTS 33

Issues in the POSIX specification

POSIX specifies the behaviour of each libc function separately, with clauses for
common errors duplicated between functions. Almost inevitably it is difficult to
keep these clauses in sync when updating the POSIX text, and minor mistakes have
crept in. This formal model is in part a formal counterpart to the informal POSIX
specification, and clauses in the formal model that were not uniform suggested
underlying issues with the POSIX specification. For link, mkdir and open the
POSIX specification was queried of the allowable errors on the Austin Group
mailing list; new issues were recorded and subsequently resolved on the Austin
Group bug tracker [34].

POSIX specification violation

Core behaviour

If we restrict to successful invocations of libc functions, for file system states which
do not contain symlinks, and paths that do not end in a trailing slash, and if we
ignore permissions and work with a single process, then the behaviour across most
system configurations is very similar. On some file systems, specific features such
as directory link counts are not supported. Btrfs, SSHFS/tmpfs, and Linux HFS+
all exhibit this violation with SSHFS/tmpfs also not supporting link counts for
regular files due to limitations in the SFTP protocol.

Error codes

POSIX often allows different errors in a given circumstance, and this looseness is
present in implementations: Linux is substantially different from OS X and, even
on the same operating system, different file systems can return different errors in
the same situation. There are also cases where error codes not allowed by POSIX
are returned; for example, Linux follows the LSB for unlink of directories and
returns EISDIR, where OS X follows POSIX and returns EPERM. On OS X, when
attempting to rename the root directory, EISDIR is returned instead of EBUSY or
EINVAL.

Path resolution, trailing slashes, and symlinks

Trailing slashes on paths, even without symlinks, are treated in what appears
to be an ad hoc manner. For example, if f.txt is a path to a file, then f.txt/
intuitively should result in an error, but often such a path is resolved successfully.
For example, on Linux link /dir/ /f.txt/ can return EEXIST to indicate that

34 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

the file f.txt exists (this is not allowed by POSIX), whereas one might expect
ENOTDIR to indicate that the path /f.txt/ cannot be resolved because f.txt is
not a directory. Symlinks introduce further complications. For example, a path to
a symlink followed by a trailing slash is often used to mean "resolve to the target
of the symlink (even if a file)", but this is not universally followed on either Linux
or OS X. The behaviour when symlinks to symlinks are involved can be confusing.
For example, if s1 is a symlink to a directory, and s2 is a symlink to s1, then
on OS X, readlink s2/ will return the contents of the symlink s1, whereas one
might expect that the trailing slash would force the path to be resolved to the
directory, resulting in an EINVAL error returned by readlink. Creation of hard
links to symlinks using link is permitted by Linux and support is specified as
implementation-defined. Notably, HFS+ on Linux returns EPERM when this is
attempted rather than either linking the symlink or following the symlink as OS
X does. This behaviour is likely a portability compromise for removable volumes.

Invariants

POSIX specifies that calling open with flags O_CREAT, O_DIRECTORY and O_EXCL
on a symlink to an existing directory should fail with EEXIST. FreeBSD instead
returns ENOTDIR. POSIX also mandates a strong invariant: a libc call which returns
with an error should leave the underlying file system state unchanged. On Linux
and OS X this invariant holds for all our tests. However, in the above scenario, as
well as returning the ENOTDIR error, FreeBSD deletes the symlink and replaces it
with a newly created file. This breaks the POSIX invariant. If the symlink points
to a non-existent target rather than a directory, and the flag O_EXCL is omitted,
then the new file is created as the target of the symlink and ENOTDIR is returned,
again violating the invariant.

Platform conventions

Some platforms, such as Linux, have well-known and longstanding defects in their
POSIX compliance. For example, on Linux, calling pwrite on a file descriptor
opened with O_APPEND will ignore the offset and instead append data to the
file. It is crucial that any file system or application software ported to or from
Linux follows this convention on Linux and provides or expects POSIX compliance
on operating systems that attempt POSIX compliance. This specification and
development process ensures that we explicitly express and check behaviour of
this kind.

2.6. EVALUATION AND TEST RESULTS 35

Defects likely to cause application failure

A comparison of SSHFS/tmpfs mount options

An organization’s system administrator might consider deploying a shared
SSHFS/tmpfs mount to their users and wonder what mount options to use in the
configuration scripts. With SibylFS, the administrator can easily compare, in
under an hour, the behaviour of various mount configurations in their specific
deployment of SSHFS/tmpfs and conclude that, using only allow_other is
dangerous because it allows users to violate permissions, using allow_other
and default_permissions is safer but still is not adequate for a shared mount
deployment due to SSHFS/tmpfs’s unconfigurable default creation ownership
set to the mount owner (root). Additionally, without a mount option umask, a
user process’s umask is bitwise ORed with 0022 (regardless of the parent process’s
umask) but when setting a mount option umask of 0000, a user process’s umask is
ignored entirely. Using this empirical evidence, the system administrator is now
informed enough to reject SSHFS/tmpfs for this deployment scenario.

OS X VFS pwrite integer underflow and signal

POSIX specifies a negative offset to pwrite should return an EINVAL error. Pre-
mature, potentially unclean process termination has been observed for this simple
error condition. An hypothesis is that the OS X VFS layer incorrectly uses an
unsigned integer type for the offset argument to pwrite which causes negative
values to be interpreted as extremely large positive values, and the operating
system then sends a SIGXFSZ signal to the process which almost certainly does
not handle it.

Various issues in deployed but older versions of Linux

In Ubuntu "Trusty" Linux 3.13.0-34, HFS+ did not support chmod and would
return EOPNOTSUPP for every chmod call. This was not the case in Debian "sid"
Linux 3.14-2. In OpenZFS 0.6.3-2~trusty, also on Ubuntu "Trusty" Linux 3.13.0-34,
files opened with O_APPEND would not seek to the end of the file before either
write or pwrite potentially resulting in application malfunction and data loss or
corruption.

Defects causing a system halt, data loss, or resource exhaustion

*posixovl/VFAT 1.2 storage leak

36 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

posixovl is an overlay file system which provides POSIX functionality on file systems
such as VFAT. The test suite revealed that posixovl/VFAT fails to decrement the
hard link count correctly in certain rename scenarios. A simple C program to
repeatedly create 64MB files with hard links and delete them using rename was
written. On Linux 3.14, this resulted in the process receiving a SEGFAULT. On
Linux 3.19, we found that the open with O_CREAT libc call would fail with ENOENT.
In both cases, the file system would have no remaining space despite being empty
- even through an unmount cycle.

OpenZFS on OS X unkillably spins processes in a disconnected directory case

OpenZFS 1.3.0 on OS X 10.9.5 has a defect which, after executing the following
sequence of function calls,

mkdir("deserted",0700);
chdir("deserted");
rmdir("../deserted");
open("party",O_CREAT | O_RDONLY,0600);

causes the calling process to consume 100% CPU and ignore all signals. The file
system is still usable by other processes at this time but the OpenZFS volume
cannot be unmounted and the machine cannot be shutdown. Force unmounting
the OpenZFS volume may succeed and release the storage device or may cause
the storage device to become unusable until the next restart.

2.7 Related work

2.7.1 Model checking

Yang et al. [78] have used model checking to find serious file system errors. Their
FiSC tool included a simple model of file system state (name, size and link count
for files and directories), sufficient for finding errors, but not intended as a realistic
model of file systems in the way that SibylFS is. FiSC requires intrusive access to
file system internal state: ReiserFS took between one and two weeks of effort to
run in FiSC as it violated one of the larger assumptions we made . In contrast,
SibylFS tests file systems solely via the libc interface, making it trivial to test new
file systems. FiSC is also focused on errors typically arising from host crashes.

2.7. RELATED WORK 37

SibylFS does not currently model such scenarios at all.

2.7.2 Ad hoc models

FiSC includes a simplified, ad hoc file system model. Such models are reasonably
common. For example, the COMMUTER tool [14] includes a model expressed
in a symbolic variant of Python. The model is simplified, e.g., filenames have
no structure and can only be compared for equality, and there is no support for
symlinks. Even these simplified models can take significant time to develop, and
are typically not reused across projects. There is reason to believe that the SibylFS
model is more detailed and better validated, and hopefully it will be reused in place
of such ad hoc models in future file system research projects. The COMMUTER
project is similar to this work in other respects. They use equivalence partitioning
to ensure only a finite number of tests are generated, which nevertheless "cover
all possible paths and data structure access patterns in the model". As with
this work, they focus on coverage of the model, rather than implementation code.
Moreover, their tests are somewhat simplified because, in addition to the model
simplifications described above, their test cases do not deal with directories (other
than the root directory).

2.7.3 Differential testing

Differential testing compares the behaviour of multiple implementations to identify
possible errors without a reference model [52]. In some cases it can be very
effective, e.g., for C compilers [79]: by restricting the domain to C programs that
(according the C standard) should be deterministic, any behavioural difference in
compiled programs identifies a compiler bug. File systems are more complicated
to test because of non-determinism, with a large envelope of allowable behaviours
within which file systems are expected to behave differently, so one cannot simply
compare runtime behaviours without a reference model that identifies when they
are sufficiently similar. SibylFS instead allows differential testing of multiple file
systems taking this allowable variability into account. In this sense it improves on
differential testing, but the downside is the effort needed to construct the model.
Differential testing has also been applied to a novel file system implementation
[28] to ensure it behaved the same as a reference implementation (tmpfs on Linux).

38 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

The paper also applied randomized testing to file systems, a low-cost alternative
(that SibylFS also supports) to the model checking approach described earlier.
SibylFS can also be used as a reference implementation by determining the model
(selecting one of the many possible states at each step) and previous versions of
SibylFS have worked as prototype FUSE file systems under Linux. The good
performance of the SibylFS test oracle should also make it feasible to integrate
with dynamic verification engines such as EnvyFS [6] or Recon [25].

2.7.4 Formal methods

Previous models of file systems [24, 53] do not aim to capture the full complexity of
POSIX or real world file systems. As a result they are usually much simpler than
the proposed model: symlinks, permissions and timestamps are ignored, and there
is no model of concurrent processes and per-process data structures. Recently
Schierl et al. gave an abstract specification of a single file system: UBIFS [69].
However, this is not a general model of POSIX. Work on verified implementations
is complementary to this work: it should be possible to prove that a verified
implementation behaves according to our model. Implementations of file systems
have previously been formally verified [16, 17, 22, 24, 31, 38], but these are highly
idealized and do not represent realistic file system implementations. The seL4 team
previously produced a verified operating system [40], and some of the researchers
are now working on a formally verified file system implementation [39]. Another
approach [12] uses a modified Hoare logic inside the Coq theorem prover to attempt
to prove correctness of a novel file system implementation. The specification is
based on POSIX, but does not attempt to deal with the full variability allowed
by POSIX and real-world implementations, since the focus is on a single verified
implementation. The authors note, "we found that significant care is needed when
writing specifications [. . .] it is easy to write an incomplete specification that does
not eliminate the possibility of some bugs". As with other ad hoc models, SibylFS
could be used as an alternative, high-quality specification. Recently Ernst et al.
[20, 58, 68] achieved a significant milestone by producing a verified implementation
based on UBIFS that is actually usable as a flash file system.

Preliminary work on specifying the semantics of storage stacks in Isabelle/Isar has
been carried out by Alagappan et al. [1]. The researchers argue for expressive
logics to capture specifications of each layer, and theorem prover support for

2.7. RELATED WORK 39

proving that file system stacks satisfy the desired guarantees. The researchers list
"obtaining specifications" as one of the main challenges. At least for the uppermost
layer that is exposed to the application, SibylFS can provide such a specification.
For reasoning about POSIX file system behaviour, Gardner et al. [26] proposed a
variation of separation logic. The SibylFS model could be used as a basis to prove
soundness for this logic.

2.7.5 File system innovation

Recent studies have shown that the workloads imposed on POSIX file systems
now vary widely [30], and there are also many new FUSE-based file systems such
as Ori [50], OptFS [13], and kernel-based ones such as Betrfs [36] and ReconFS
[48] that optimize particular use cases. File system evolution in this style often
results in subtle semantic and data corruption bugs [43], and SibylFS is the first
rigorous specification that can be used, in a developer-friendly way, to test directly
that these implementations remain POSIX compliant.

40 CHAPTER 2. SIBYLFS: A FORMAL FILE SYSTEM SPECIFICATION

3
SibylFS extended with timestamps

3.1 Overview . 42
3.2 Prelude . 42
3.3 Introduction . 49
3.4 Technical challenges . 67
3.5 Model . 69
3.6 Oracle . 75
3.7 Results . 80
3.8 Related work . 86

41

42 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

3.1 Overview

SibylFS, as described in the previous chapter, does not model timestamps. File
systems store three timestamps associated to each file and directory. SibylFS does
not model these. This chapter starts with a preliminary section that describes
abstractly the approach chosen in modeling time, and the challenges it entails
§3.2. Then we introduce why timestamps are useful and we state the definitions
of POSIX relevant to timestamps §3.3. We then address the technical challenges
in modeling timestamps §3.4, and proposes a model of POSIX timestamps that
addresses these challenges §3.5. Finally we present how to use the extended
specification for testing purposes §3.6, and its limitations §3.7.

3.2 Prelude

In this section we introduce the reader to the complexity of checking timestamps
consistency in an operational semantics setting. We also show how one can mitigate
this complexity by abstracting the notion of time, and how this can be leveraged
to test the timestamps of system calls traces. Subsequent sections will use and
expand the concepts introduced here.

3.2.1 Naive trace checking algorithm

Given a trace we can check if a given labeled state transition system (LTS §2.4.1)
can produce it. Here we provide a naive algorithm to do so.

Algorithm Maintain a set R of reachable states.

R is initially S0 .

For an observed trace l0−→ l1−→ l2−→ ...
ln−→.

Compute R0 = S0 ; R1 = T (R0 , l0) where T (X , l) is the set of states S ′

reachable by the l transition from s ∈ X ; R2 = T (R1 , l1) etc. . .

Definition A trace is valid iff Rn+1 is non-empty.

Example Step(0)−−−−→ Step(1)−−−−→ ...
Step(n)−−−−→ is valid:

3.2. PRELUDE 43

R0 = {< counter = 0 >}; R1 = {< counter = 1 >}; R2 = {< counter =
2 >}; R3 = {< counter = 3 >}; etc. . .

3.2.2 State space explosion

This algorithm may become expensive in a computational setting. Indeed, Ri may
become large.

Example T = {< counter = n >
Step(n)−−−−→< counter = m >}, where n ≤ m ≤ 2 n.

The algorithm can still check in this scenario, but the state space becomes
large.

3.2.3 Mitigation through symbolic state

A way to solve the state space explosion problem of the algorithm presented earlier
is to use a symbolic representation.

In our previous examples where the state is a counter, symbolic representation
means to work with a single state < count = n >, which represents all < counter =
m > where m ≤ 2 n.

Example We show how the representation of transitions changes with the symbolic
representation.

Previous Transitions were < counter = n >
Step(n)−−−−→< counter = m > where

n ≤ m ≤ 2 n

Now < count = m >
Step(j)−−−−→< count = m + 1 > where 0 ≤ j ≤ 2 m

With this representation we can use the naive algorithm on this transition system
without state space explosion.

In summary, a trace is valid for a transition system iff the same trace is valid for
the corresponding symbolic transition system.

3.2.4 Types of transition systems

The following diagram shows different types of transition systems that variate on
how time is constrained.

44 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

discrete :

{clock = n} tick−−→ {clock = n + 1}

non deterministic :

n < m.{clock = n} time passes...−−−−−−−−−→ {clock = m}

bounded non deterministic :

n < m < n + δ.{clock = n} time passes...−−−−−−−−−→ {clock = m}

real valued :

r1 < r2 .{clock = r1}
time passes...−−−−−−−−−→ {clock = r2}

bounded real valued :

r1 < r2 < r1 + δ.{clock = r1}
time passes...−−−−−−−−−→ {clock = r2}

with internal actions :

r1 < r2 < r3 < r4 .

{clock = r1}
time passes...−−−−−−−−−→ {clock = r2}

τ−→ {clock = r3}
time passes...−−−−−−−−−→ {clock = r4}

In a discrete transition system the time of a transition is a discrete value. In a
non-deterministic system, instead, the time of a transition belongs to a infinite
range of values whose only lower bound is defined. In a bounded non-deterministic
system we constrain this range to not exceed a certain threshold: suppose we
have a file system trace of an execution taking a second; we can safely assume
that the time of a transition cannot be more than a second. However this kind
of assumption only reduces non-determinism. Both real valued and bounded real
valued transition systems differ from their discrete counterparts only for the values
they handle: real values introduce a far larger non-determinism than discrete values
(e.g., natural numbers). Finally, we introduce a transition system which exposes

3.2. PRELUDE 45

the characteristics of file system traces. In a transition system with internal actions
there are transitions, labeled as τ , which are not observable.

Note Observations of the state obtained after a transition may happen or not,
according if a command that observes the time details is run. In the case of τ
transitions no observation is possible. The lack of observations for transitions
prevents the reduction of non-determinism in the system.

46 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

In the following table we compare these types of transition system on the number
of states obtainable from one of their transitions.

Table 3.1: Number of states obtainable from single transitions

Type of transition system Possible number of states after transition

Discrete 1
Non-deterministic ∞
Bounded non-deterministic δ − 1
Real valued ∞
Bounded real valued ∞
With internal actions ∞

3.2.5 How a system call executes

A process executes syscalls. The operating system (OS) executes internal actions
concurrently with processes.

Figure 3.1: Example of syscall execution

Figure 3.1 shows the execution of a syscall from the time perspective of processes
and OS: initially the process and the OS are working independently; then the
process calls the OS to execute a syscall; the OS performs operations during the
time intervals t1, t2 and eventually the syscall returns its output to the caller at
the end of t4; finally the process and the OS may execute tau actions.

An indicative example of real-world recorded trace is:

call−−→ return−−−→

In general a trace records only the sequence of calls followed by returns that a
syscall causes. In particular we are not seeing any time-passing transition and any

3.2. PRELUDE 47

internal transition of the process or the OS. This characteristic of recorded traces
causes two problems:

1. No time transition observed
2. No internal OS transition observed

For problem (1) we would like to record the time transitions. However for OS
internal transitions this would mean to instrument the OS which requires deep
understanding of its internals and which is an expensive operation; for process
transitions this is difficult as even measuring time involves a syscall, which would
change the observed trace.

For problem (2) we can mitigate the problem by requiring that a single internal
transition happens between any observed call and return transition. This transition
would aggregate any number of internal transitions that happened between call
and return in an opaque internal transition. However this model may be not
accurate if the OS takes multiple steps and multiple things happen at different
times.

3.2.6 Syscalls and file system

The OS has an internal clock. File system’s objects get updated with the value of
the OS clock. The clock value is not observable until (long) after syscalls return,
if at all.

Let’s consider as an example the update of the file access time (atime). We write
f [t] for a file with atime t.

Figure 3.2: Example of syscalls updating and observing file time

In Figure 3.2 we show how the state of the OS clock and of the file’s atime change
according to the process and OS transitions. These transitions firstly update the

48 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

file atime with the touch syscall and then observe the file atime through the stat
syscall. As we start we do not know the value of atime, but we determine it after
the stat syscall.

Note that each non-observed time transition introduces a large (perhaps finite)
amount of non-determinism.

3.2.7 Logical time as a set of states

As noted in an earlier example we can solve the huge non-determinism by working
with symbolic representations of many states. We call this symbolic representation
logical time.

Figure 3.3: Example of syscalls modeled with logical time

Figure 3.3 shows how we can express the example in Figure 3.2 in logical time
terms. The main difference is that the OS clock now uses logical times. When the
real time t is returned by the stat call, we know the value of the logical time l3.
We also have a constraint on the logical times such that

l1 < l2 < ... < ln < ...

This constraint is useful as later in the trace we can discover further constraints
between logical times and reduce the possible states according to the resolution of
this set of constraints.

3.2.8 Logical time and observed times

Sometimes (e.g., stat call) the actual value of a logical time can be observed.
More generally, we become aware of some constraints on the logical time. In

3.3. INTRODUCTION 49

general we have a set of constraints C on the logical time variables. In the trace
we took as an example in Figure 3.3 the constraints are of form:

• li = r : we know the actual time of li
• li < li+1 : wellformed time

In order to check traces we need to determine whether at each point the set C is
satisfiable or not. If the set of constraints is not satisfiable then we know that the
trace does not conform to the model of the state transition system.

For the forms of constraints we are taking in consideration it suffices to work with
a partial map from logical times to real world times. We call this partial map an
LP-map.

For example a constraint li = r is recorded in the map as li → Some(r).

So an LP-map is a concrete representation of a set of constraints arising from
trace checking with symbolic logical times and restricted with the given form of
constraints.

3.3 Introduction

This section describes POSIX timestamps and different strategies for updating
them §3.3.2, the scope of this study §3.3.3, a naive model for timed transitions
§3.3.4 §3.3.5, and why one cannot use such a naive model to model the POSIX
standard §3.3.6. Finally it describes how to check whether a real world trace of
observed file system interaction involving timestamps conforms to the specification
§3.3.7.

3.3.1 Motivation

File timestamps are widely used by applications. For instance the Make utility [35]
uses these to decide if it needs to update a file or not. Even now timestamps are
changing: for example with high resolution timers the developers are improving
the accuracy of timestamps interfaces [51]. Higher time resolution is necessary
to improve systems based on time, such as user interfaces which become more
responsive if they move from a millisecond to a microsecond resolution. Also
some file systems update timestamps in a delayed fashion: for example a newly

50 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

created file can obtain earlier timestamps of its parent directory. An observation
of this behavior for the ext4 file system obtained through SibylFS test harness is
in Appendix D. Such an observation required many attempts as the system needs
to be heavily loaded to capture this delay, but it motivates the formalization of
this behavior. The POSIX specification models this update strategy, which we
refer to us periodic strategy. In this chapter we aim to extend SibylFS with a
formal model of timestamps. Most of the complexity of this extension derives from
modeling the periodic strategy.

3.3.2 Terminology

A timestamp represents the unique moment in time when an event occurs. Issues
arising from timestamps granularity make timestamps stand for intervals of time.

Timestamp granularity Timestamp granularity indicates how precise the sys-
tem is at recording times. In general granularity is a monotonic map from
real world time to some notion of discrete time, such as the integers or
natural numbers. We will call grain the unit of discrete time. Supposing such
a monotonic map from real numbers to integers, the system would report
two events occurring at the same time when their real numbers map to the
same integer. So two events occurring separately in time may be recorded as
having the same timestamps by the operating system if the distance between
them is less than the timestamp granularity. For instance, given an event
a happened at time 0.001 and an event b happened at time 0.002 and a
grain being one second, one would not know the order of these events, as
both a and b would be considered happening at time 0. Note that when
we say that granularity is one second, this is an informal statement, as the
system clock is not perfectly accurate. The granularity is one second means
that the size of the set of real numbers which map to the same integer is a
second. Naturally, even the concept of second is not accurate as it abstracts
over the mechanical clock of the system, which may be imprecise.

The main impact of granularity on the specification is that we may require
the timestamps corresponding to two nearby time points to be only less than
or equal, while in the real world one may have occurred before the other.

A file system object is a file or a directory. The POSIX standard [74] includes
three timestamps associated as metadata to each file system object:

3.3. INTRODUCTION 51

struct timespec st_atim // Last data access timestamp.
struct timespec st_mtim // Last data modification timestamp.
struct timespec st_ctim // Last file status change timestamp.

[Source: Opengroup Base Defns. sys/stat.h Description section]1

Each of these records a different type of event:

• the access time records the last time the object was read;

• the modification time records the last time the object content was written;

• the change time records the last time the object’s metadata were updated.

A command is a POSIX API call. Calls to the POSIX interface are essentially
syscalls. Examples of commands are:

• mkdir creates a new directory and alters the timestamps of the parent
directory;

• chmod changes the object permissions and alters the object timestamps;
• close closes a file descriptor for the current process; if the target file is not

open by any other process this causes timestamps to be updated;
• stat returns the object metadata; all timestamps must have a time value

before this command returns.

An update is the association of a time value to a marked timestamp.

Mark for update When a command alters an object timestamp, it does not
necessarily set the time immediately; instead the timestamp is marked
for update. A mark for update represents a delayed update. A marked
timestamp holds a marker for a future value.

There are two update strategies a POSIX-compliant operating system can use:

An implementation may update timestamps that are marked for update
immediately, or it may update such timestamps periodically.2

Note that this definition does not specify if a timestamp update should be persisted
on disk. In general POSIX focuses on operations working in main memory.
Presumably the definition considers writing to disk, as it seems unnecessary to

1http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_stat.h.html
2Opengroup Base Defns. General Concepts.http://pubs.opengroup.org/onlinepubs/

9699919799/basedefs/V1_chap04.html

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sys_stat.h.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html

52 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

distinguish between immediate and periodic updates for inexpensive in-memory
updates.

An immediate update strategy indicates that as soon as timestamps are marked
by a command, they are also updated. A periodic update strategy means that the
marked timestamps of an object may be updated at any time (as required by the
operating system), or if one of the following events happens:

1. one of the commands in the stat family (i.e., stat, lstat, fstat and
fstatat) is called on the object;

2. the close command is called on a file descriptor referring to an object that
is not opened by any other process.

The rationale behind the periodic update strategy is that delaying updates means
delaying writing metadata to disk: for instance, a common operation such as
listing the content of a directory may force a file system to write the directory
metadata to disk, as the access timestamp for that directory has changed. This
rationale would be unnecessary if applied to the main memory, as in this context
updates are inexpensive. It is not clear if there is any other motivation behind
the periodic strategy. The reader may be interested in whether or not periodic
updates are observable in the real world. An example of a real world trace that
identifies periodic update behavior can be found in Appendix D.

3.3.3 Scope and Limitations

The specification extension discussed in this chapter models exclusively POSIX
time for file system operations. The formalized specification can work as a test
oracle to check the operating system timestamp implementation agrees with POSIX
definitions. It achieves this only by assessing the expected order for a sequence
of time values reported in a file system trace of execution: this implies that it is
necessary that during the execution, stat or lstat command are called, as these
are the only commands that return timestamps associated to file system objects
(without the *stat family of commands there is virtually no observable difference
between timestamps and specification without timestamps). One could use kernel
debugging to observe when timestamps are updated, but this requires a detailed
knowledge of file system internals and so it is impractical to analyze the behavior

3.3. INTRODUCTION 53

of many file systems.3

The extended specification can only be used as a test oracle for small traces.
As discussed in §3.5, the main reason is that POSIX allows operating system
implementations to delay timestamp updates in order to improve performance.
This introduces a large amount of non-determinism into our model of timestamps
(as discussed in §3.2). A more detailed examination of this problem is in §3.4 and
§3.6.

Non-determinism Non-determinism is the behaviour of a system when its state
can transit to multiple and distinct states and it is not decidable in advance
which transition will happen. Non-determinism is important because how
it is modeled in the specification has a significant impact on testing and
the feasibility of testing. In extending SibylFS with timestamps there are
multiple sources of non-determinism to consider:

• Physical time: the new time value obtained by a timestamp depends
strictly on details out of the specification scope (e.g., operating system
internals, hardware, physical world effects on the hardware, etc. . .); the
proposed specification deals with this issue both by adding the concept
of logical time that maintains the time ordering and by maintaining a
map between logical times and physical times.

• Periodic update: POSIX provides a timestamp update strategy which
allows the operating system to optimize when to assign a value to
marked timestamps, but this optimization mechanism of the operating
system is out of this specification scope; our timestamps specification
abstracts over all possible particular update strategies. So different
implementations will have different strategies which should conform to
POSIX, and our model should abstract over all of these. A possible
reason why the periodic update exists in POSIX may be the problem
introduced by the access time: every read of the file’s data apparently
causes a write. Modern operating systems, such as Linux, allow mount
options where the access time is not updated in this fashion; also
caching may further alleviate the possible performance implications of
this read-caused update.

Since the specification can be used as a test oracle only for small traces (less than
3not considering the risk of altering the file system behaviour.

54 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

eight commands), it is not possible to verify with great certainty if Linux and Mac
OS X implementations of file systems agree with POSIX. This is considered the
main flow in the approach we use here. Approaches to improve the specification
are discussed in §3.6.2.

3.3.4 Modeling time

Consider the file system executing the following sequence of commands:

mkdir p // e1
stat p // e2
mkdir p/dir // e3
stat p/dir // e4

Assume that each command associates the current time with the relevant file
system object.4

If commands are executed sequentially (suppose for example that time(mkdir(p))
indicates the time at which the mkdir(p) command is run), one may require that:

time(e1) < time(e2) < time(e3) < time(e4)

and that, therefore, the time data associated to each of the directories respects
this order:5

timestamp(p) < timestamp(p/dir)

One could validate the model by observing the execution trace of the previous
sequence of commands:

The application calls mkdir p
mkdir p
The operating system completes that call and returns None
(i.e., no errors encountered)

4POSIX commands have a start and an end time, rather than considered happening at a
single time. We bind commands to a single time to simplify the discussion.

5One should consider that two events can be considered happening in the same time grain
even if they really happened one after the other if the granularity issue is taken in consideration
§3.3.2. In this case the ordering operator will be ≤ rather than <.

3.3. INTRODUCTION 55

RV_None
The application calls stat p
stat p
The operating system returns a stat structure
with the timestamp associated to p:
for directory p the timestamps value is 1
RV_stats {timestamp = 1}

mkdir p/dir
RV_None

stat p/dir
RV_stats {timestamp = 2}

In this case the model predicts that the sub-directory’s timestamp would be
updated later than the parent’s timestamp. Such a model would reject as invalid
the following trace:

mkdir p
RV_None

stat p
RV_stats {timestamp = 1}

mkdir p/dir
RV_None

stat p/dir
RV_stats {timestamp = 0}

The time associated with p/dir is 0, which is earlier than the time associated with
p, whereas the sequence of events shows that the p/dir was created after p.

It might appear that the following trace should be rejected:

mkdir p
RV_None

stat p
RV_stats {timestamp = 1}

mkdir p/dir
RV_None

stat p/dir
RV_stats {timestamp = 1}

With the timestamp granularity of one second we may want to accept this trace

56 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

as the creation of p/dir has happened in the same grain of time in which p was
created.

Note that testing the file system time model against a file system implementation
needs to rely on the objects timestamps, since they maintain time information
regarding the execution of commands.

3.3.5 Naive model

A naive approach to define a formal time model is to use a transition system.
Its transitions are labeled with a command call and the duration of command
execution. A transition is defined as s command−−−−−→

dur
s′ and s′ is the state achieved after

running command with a transition of duration dur from the state s (transition
results are ignored to keep the syntax minimal).6

Here is an example trace that may be produced by such a model:

s0
mkdir(p)−−−−−→

dur0
s1

τ−−→
dur1

s2
stat(p)−−−→
dur2

s3
τ−−→

dur3
s4

mkdir(p/dir)−−−−−−−→
dur4

s5
τ−−→

dur5
s6

stat(p/dir)−−−−−−→
dur6

s7

This states that a mkdir(p) takes dur0 to complete before state s1 is reached. Note
that this transition system needs to consider operating system internal actions
(and their duration) as special transitions labeled τ . However, in the remainder
of this chapter the notation will keep these τ transitions implicit for simplicity.
The τ introduces an additional problem: the checking process becomes even more
complicated as we have to consider that between any two observable events there
may be a finite sequence of τ transitions that we do not observe, and we ignore
the time at which they occur.

In order to check time order in such a model, one would need an initial time t0 ,
which corresponds to the time of s0 , and also know the duration of the commands
and τ transitions. Indeed, one could calculate the timestamp associated with an
object by adding the previous commands duration to the time associated with
object, e.g.,

6As before, we ignore start and end times of commands to simplify the discussion.

3.3. INTRODUCTION 57

time(p/dir) = t0 +
4∑

n=0
durn

The specification aims to abstracts over all possible implementations. At the level
of abstraction at which the specification operates there is no fixed duration for
each call. Without expected values for the timestamps, the specification cannot
check that they respect any order. Indeed, if an arbitrary time to execute each
command is allowed, given the same initial time t0 in the following trace:

mkdir p
RV_None
stat p
RV_stats {timestamp = 1}
mkdir p/dir
RV_None
stat p/dir
RV_stats {timestamp = x}

the x can stand for any number greater than 1, potentially introducing a huge
amount of non-determinism. Any state containing a timestamp reflecting the
expected time order is acceptable. The trace checker should then keep track of
the fact that any trace which has a timestamp equal to a particular value would
be valid.

It is possible to avoid this non-determinism by abstracting the concept of time
from a real world clock value to a so called logical time §3.3.6 and by introducing
a consistency test on these timestamps §3.3.7.

3.3.6 Logical time

When one wants to check that the timestamps of an execution trace conform to
the constraints of POSIX, one has to deal with non-determinism. For instance, in
the trace:

mkdir p
RV_None
stat p
RV_stats {timestamp = 1}

58 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

before the observation through stat, the timestamp could have any value. An
observation reduces infinite amounts of possible states in a single one (Figure 3.4).

Figure 3.4: Non-deterministic state space explosion

This reduction makes easier to check that timestamps conform to POSIX constraints
through our model.

Recall the transition sequence example presented earlier:

s0
mkdir(p)−−−−−→

dur0
s1

stat(p)−−−→
dur1

s2
mkdir(p/dir)−−−−−−−→

dur2
s3

stat(p/dir)−−−−−−→
dur3

s4

In order to check this trace we require that the timestamp of p is less than p/dir
(less than or equal to if we are taking in account the granularity issue).

One way to achieve this is to work with logical time rather than physical time.
Using logical times the transition sequence seen above becomes:

s0
mkdir(p)−−−−−→

l1
s1

stat(p)−−−→
l2

s2
mkdir(p/dir)−−−−−−−→

l3
s3

stat(p/dir)−−−−−−→
l4

s4

The logical times are l1 , l2 , l3 and l4 . Here l1 represents the time at which s1 was
created. We have the constraint that i < j implies li < lj , and each li corresponds
to a real world time pi .

Now the timestamp model can work with only logical time and is still able to check
that the timestamps observed through the stat command respect the transition
sequence order: in the example, l2 < l3 implies time(p) < time(p/dir).

Formulating a toy model of timestamp specification may be useful to explore

3.3. INTRODUCTION 59

these concepts in greater detail. This shows the reader two aspects of the final
specification in a simplified fashion:

1. how to associate time constraints to file system objects through the use of
logical times;

2. how to evaluate if the system state is consistent each time a new physical
timestamp is observed.

A starting point for this toy model is to discriminate logical and physical time.

type logical_time = int
type physical_time = float

A system as whole has a global clock which measures logical time, and every step
increases the logical time by one.

type clock = logical_time

To each file we associate a logical timestamp. Since we are considering a simplified
model, we define a logical file as follows:

type logical_file = L_file of logical_time

In this toy model the state contains a single file with a single timestamp, the clock
and the last observed time. The last observed time is a relation between a logical
time and a physical time observed through a stat transition. There are two types
of transitions available: a generic transition that updates the logical timestamp of
the file, and a stat transition that updates the last observed timestamp of the file.

type transition_label = Stat | Modifying_timestamps_command
type last_observed_time = (logical_time * physical_time)
type observed_result = Modifying_command_result

| Stat_result of physical_time
type specification_state =

State of (clock * last_observed_time * logical_file)

(* val tick_clock : specification_state -> specification_state *)
let tick_clock (State(c,lo,lf)) =
(State(c+1,lo,lf))

A transition is a function from a state, a label and an observed result to an optional
new state: if the transition produces a result that disagrees with the observed

60 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

result the new state is invalid, and the transition system returns nothing.

(* val transition : specification_state -> transition_label ->
observed_result -> specification_state option *)
let transition s l o = (

The clock is the current logical time of the system. Each system transition
increments the clock value (tick_clock below).

let s = tick_clock s in
let (State (c,ot,f)) = s in
(match l with

If the transition alters the timestamps, it can only be a transition labeled with
Modifying_timestamps_command.

| Modifying_timestamps_command -> (
match o with

| Stat_result t -> None (*unexpected result *)

If the received object is the result of a modifying command, the transition runs the
command on the specification state in order to obtain the next system state. The
result of running the command in the specification (e.g., the status code) should
match the observed result, although in this discussion this is not shown to let the
reader focus on the time aspect.

| Modifying_command_result ->
(*assume that command result agrees with the observed result *)

Some (State(c,ot,(L_file c)))
)

If the transition observes timestamps, it can only be a Stat.

| Stat -> (
match o with
| Modifying_command_result -> None (*unexpected result*)

When a Stat command introduces a newly observed timestamp, the specification
needs to assess if its state remains consistent in terms of time. In this toy model
the logical times maintain the consistency constraints: when we observe a physical
time for the file it is bound to its logical time. The last observed time holds a
binding between an old logical time and its related physical time. So the relation

3.3. INTRODUCTION 61

between the physical times needs to reflect the file logical time and the old logical
relation. Note that we use ≤ for the physical times in respect to the granularity
issue described before.

| Stat_result t ->
let (l_t, p_t) = ot in
let L_file(file_l_t) = f in
let times_are_consistent =

(l_t = file_l_t and p_t = t)
or
(l_t < file_l_t and p_t <= t)

in
if times_are_consistent
then (Some(State(c,(file_l_t, t),f)))
else None

)))

In the following there are some examples states of this toy model:

let s0 = (State(0,(0, 0.0),(L_file 0)))

let s1 = (State(1,(1,1.0),(L_file 1)))

let s2 = (State(2,(2,0.5),(L_file 2)))

An example of valid transition is:

s0 Modifying_timestamps_command−−−−−−−−−−−−−−−−−−−→
Modifying_command_result

s1

indeed, the constraint l0 < l1 implies p0 ≤ p1 as in this case we have that 0 < 1
implies 0 .0 ≤ 1 .0 . An example of invalid transition is:

s1 Modifying_timestamps_command−−−−−−−−−−−−−−−−−−−→
Modifying_command_result

s2

indeed, the observed timestamp does not satisfy the constraint as the physical
times are 1 .0 > 0 .5 .

62 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

3.3.7 LP-map wellformedness

The previous section introduced the notion of logical time in order to reduce the
complexity of trace checking. Each logical time is associated with a physical time.
This approach be generalized to work with multiple and distinct timestamps for
each object. This also means that the time observations obtained through the
stat command are more complex than what we have encountered so far. For
simplicity, we introduce some additional non-POSIX commands to use in this
simplified model:

1. the time(object) command, similar to a stat, returns the timestamps;
2. the update_t1(object) command updates the first timestamp;
3. the update_t2(object) command updates the second timestamp;
4. the update_all(object) command updates all timestamps.

A way to generalize the solution from the previous section is to build the set of
constraints discussed in §3.2.8 as a map between logical times and physical times
that checks the coherence of new logical-physical bindings at their insertion. We
call this LP-map.

Consider the following transitions sequence:

s0
update_all(o)−−−−−−−→

l1
s1

time(o)−−−−→
l2

s2
update_t2 (o)−−−−−−−→

l3
s3

time(o)−−−−→
l4

s4

Note, the logical times represent events: for instance, logical clock for s1 is l1 .

A real world trace corresponding to these transitions is:

mkdir p
RV_None
stat p
RV_stats {t1 = 0.1; t2 = 0.1; t3 = 0.1}
mkdir p/dir
RV_None
stat p/dir
the observed result is invalid:
RV_stats {t1 = 0; t2 = 0; t3 = 0}

When we observe that t1 = 0 .1 , t2 = 0 .1 , and t3 = 0 .1 then we can complete

3.3. INTRODUCTION 63

the LP-map like this: [1 → 0 .1].

However, attempting to insert the second observed time results in the LP-map
[1 → 0 .1 , 2 → 0 .0], which is invalid as the logical and physical times do not
follow the same temporal order.

Also the LP-map [1 → 0 .0 , 1 → 0 .1] is invalid, as a logical time corresponds to a
single real world value.

In summary, there are two restrictions in updating the map:

1. once a logical time is assigned a physical time one cannot change that binding,

2. the order of logical times should match the order of physical times (i.e.,
li < lj =⇒ pi ≤ pj).

We formalize these restrictions as a predicate to check before inserting a new
binding in the map.

Note that the monotonicity property applies also when different files delay the
timestamp update by different amounts: the τ transitions model the delays (they
can take any time to complete), the logical times are issued during these transitions,
and the logical times bind physical times. An example may help in clarifying this
aspect:

consider the trace

mkdir p1
RV_None
mkdir p2
RV_None
the OS assigns the physical time 0.0 to p2's timestamps
the OS assigns the physical time 1.0 to p1's timestamps
stat p1
RV_stats {t1 = 1.0; t2 = 1.0; t3 = 1.0}
stat p2
RV_stats {t1 = 0.0; t2 = 0.0; t3 = 0.0}

here the OS assigns physical time values to the timestamps with different delays.
The specification models these commands and returns as follows:

{s0}
mkdir(p1)−−−−−−→ {s1 m} τ−→ {s1 m, s1 u}...

64 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

A τ transition happens in between a command transition and its return. A com-
mand transition only marks timestamps for update (s1 m). During a τ transition
marked timestamps of a new state are updated (s1 u). The example trace is
acceptable for the state in which the τ transition after mkdir p2 updates the
timestamps of p2: indeed, the stat p1 forces the marked timestamps of p1 to
be set to the current time (i.e., 1.0). In this state indeed the logical times are
lp2 < lp1 as the physical times 0 .0 <= 1 .0 .

Again, a toy model may be useful to show the time validity check based on a
logical-physical map.

Firstly, we needed to discriminate between logical and physical time.

type logical_time = int
type physical_time = float

The map can be implemented as a list of bindings.

(* the map is a list of bindings *)
type lp_map = (logical_time * physical_time) list

It is required to search a timestamp in the map.

(* val find_pt : logical_time -> lp_map -> physical_time option*)
let find_pt lt m =

if (mem_assoc lt m)
then Some (assoc lt m)
else None

A map must be valid after an insertion, so we define the two properties that must
hold: logical times must be distinct and physical times reflect the time order of
the associated logical times.

let distinct_map m =
let logical_times_in_map = (map fst m) in
(* check that each logical time
is present at most once in the map *)
(fold_left
(fun acc e ->

acc &&
(1 = (length (find_all (fun e'-> e = e') logical_times_in_map))))

3.3. INTRODUCTION 65

true
logical_times_in_map)
in

We can define the distinct property as distinct_map:

(*val distinct_map : lp_map -> bool *)
let distinct_map m =

∀l1 l2 .l1 < l2 =⇒ p1 < p2

in

We can define the ordering property as time_ordered_map:

let time_ordered_map =

We associate each logical time in the map with all the other logical times.

let all_logical_time_pairs =
...
in

Take only logical times that were associated in order (e.g., the pair (2,1) is
rejected, while the pair (1,2) is accepted).

let only_ordered_lt_pairs =
filter
(fun (lt,lt') -> lt < lt')
all_logical_time_pairs
in

We check that physical times reflect the logical time ordering: ∀li lj .li < lj =⇒
pi ≤ pj .

let check_physical_times_order (lt,lt') =
let pt = find_pt lt m in
let pt' = find_pt lt' m in
(* lt < lt' then physical times must reflect this order*)
(* equivalence is allowed
for the time granularity issue *)

(pt <= pt')

66 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

in
for_all check_physical_times_order only_ordered_lt_pairs

And we check that the properties hold:

(* val is_wellformed : lp_map -> bool*)
let is_wellformed m = (

(*map property (1) *)
(distinct_map m)
&&
(*map property (2) *)
(time_ordered_map m))

Finally, the map supports insertion. Insertion returns a new map only if this map
is wellformed.

Adding a binding in the map appends a pair of logical-physical time to a LP-map,
and can be defined as a function:

(* val add_binding :
logical_time ->
physical_time ->
lp_map ->
lp_map option *)

let add_binding lt pt m = ...

If lt is already in the domain of m, the bound physical time must be equal to pt.

Otherwise, we add the new binding to m, and check that the new map is wellformed.

Some examples of valid and invalid insertions are:

(* create a simple function to extract valid maps
from the optional constructor *)

let dest_some (Some x) = x
(* create a valid map by adding the logical-physical time pairs

(0,0.0) and (1,1.0) *)
let m = dest_some (add_binding 1 1.0 (dest_some

(add_binding 0 0.0 [])))

(* trying to insert a new physical time for a logical time

3.4. TECHNICAL CHALLENGES 67

already in [m] produces an invalid map *)
let _ = assert (None = (add_binding 1 2.0 m))

(* trying to add a physical time that is smaller than
those already present in [m] breaks the order
and so produces an invalid map *)

let _ = assert (None = (add_binding 1 0.0 m))

The predicate is_wellformed checks that the map respects (1) and (2). Asserting
the validity of this property after each insertion guarantees that the map is always
wellformed.

3.4 Technical challenges

The main challenge in extending SibylFS with a timestamp model is to preserve
its test oracle capabilities: indeed, it is hard to discriminate a file system imple-
mentation trace of execution that is inconsistent with POSIX time definitions.
The fact that only the *stat commands allow to observe timestamps implies that
only those traces using these commands have a chance to be evaluated.

The same challenge is exacerbated by the definition of periodic update that POSIX
gives §3.5.3: as this introduces a serious source of non-determinism. Indeed, the
operating system can update timestamps of any object in a delayed fashion. Figure
3.5 shows how the non-deterministic growth of states behaves for the transitions:

s0
mkdir(p)−−−−−→ s1

mkdir(p/dir)−−−−−−−→ s2

from an initial state s0 that does not contain any file system object, making a
directory p results in two possible states where all timestamps have a value or
are marked; using the new states as initial states and making a subdirectory
p/dir results in multiple states, as the creation of a subdirectory modifies also the
timestamps of the parent directory.

The specification cannot anticipate the operating system choices for delayed
updates, since it does not aim to model every aspect of an operating system.
With the extension presented in this work using the specification as a test oracle
for periodic traces is rather limited: when used as a test oracle the specification

68 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

Figure 3.5: Non-deterministic state space explosion for the transitions s0
mkdir(p)−−−−−−→ s1

mkdir(p/dir)−−−−−−−−→ s2 ;
note that any file system object can be updated by the operating system

3.5. MODEL 69

needs to compute all the valid states achievable for a transition, and with multiple
transitions the discussed non-determinism introduces an exponential growth of
states as shown in §3.7. An approach that appears promising, and that we could
not investigate due to time constraints, is to use logical constraints (Chapter 5) to
represent the timestamp order.

3.5 Model

This section discusses how to integrate the time model presented in the previous
sections with the original data structures of the SibylFS §3.5.1; how to alter the
transition system mechanism to model a clock §3.5.2 and immediate and periodic
update strategies §3.5.3.

3.5.1 Time data structures

A starting point to formalize the POSIX time model is defining the data structure
used by the POSIX stat command. POSIX calls the time data structure timespec,
and states that it must contain at least the following members:

time_t tv_sec;
long tv_nsec;

where time_t is the type that represents seconds, and long is the integer type
which can represents numbers in the range between -2147483647 and +2147483647.

We define these as:

type t_time = nat
type long = int64

(* [ty_os_time] is our corresponding type
for the POSIX timespec. *)

type ty_os_time =
<| tv_sec:t_time ; tv_nsec:long |>

Using natural numbers (in the language used to define SibylFS this is called the
nat type) has also the advantage of excluding negative values for seconds.

70 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

The data structure ty_os_time represents a timestamp value observed in the real
world.

As discussed in §3.3.4, the definition of logical time is:

type ty_logical_time = nat

A timestamp may be updated or marked for update, so the datatype needs to
model this behaviour as well:

type ty_logical_timestamp =
Logical_timestamp of ty_logical_time
| Marked_for_update

Having a model of time permits the addition of a logical time field in the file
system state representing a clock. This maintains the current time, which the
system uses when it needs to update timestamps.

As there is a distinction between internal (logical) and external (physical) repre-
sentations of time attributes, there are two types of stat data:

type ty_real_stats =
<| r_st_dev : int; (** Device number *)
...
r_st_atime : ty_os_timestamp; (** Last access time *)
r_st_mtime : ty_os_timestamp; (** Last modification time *)
r_st_ctime : ty_os_timestamp; (** Last status change time*)
|>

type ty_logical_stats =
<| l_st_dev : int;
...
l_st_atime : ty_logical_timestamp;
l_st_mtime : ty_logical_timestamp;
l_st_ctime : ty_logical_timestamp;
|>

These types distinguish explicitly between specification results and real world
results (see §3.6).

3.5. MODEL 71

3.5.2 Logical clock update

The logical clock increases at each operating system transition. In the model a
transition is a call to the function os_trans §2.4.2, so the clock increment must
happen during its execution:

val os_trans :
ty_os_state->
os_label ->
finset (os_state_or_special)

let os_trans s0 lbl = (
let env = s0.oss_env in

#ifdef aspect_time
(* clock ticks *)
let s0 =

dest_OS_normal(increment_time env (OS_normal s0))
in

#endif
...

The function increment_time returns a state with the logical clock increased by
one. The #ifdef aspect_time ... #endif syntax defines pre-processor declara-
tions, which allow to add or ignore time definitions according to the pre-processor
settings. A side effect of this technique is that it makes evident where definitions
relevant to time are located.

It is worth mentioning again that one should not expect two distinct logical times
to represent two different physical times: for example, given two logical times l1
and l2 that are ordered (i.e., l1 < l2), the corresponding physical times p1 and p2

reflect the same order if their granularity can represent |p1 −p2 | (e.g., a granularity
in seconds cannot represent |0 .1s − 0 .2s|).

3.5.3 Immediate and periodic transitions

In SibylFS a command involves three transitions: one to call the command (Call
transition), one to allow some operating system internal behaviour (τ transition),
and one to return the result of the command (Return transition). So, calling a

72 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

command marks timestamps for update, and issuing a τ transition updates their
values.

A Call transition invokes the command. Introducing the time behaviour involves
an extension of the command semantic. Subsequently we will use the mkdir
command to illustrate how to introduce time definitions. The mkdir command
creates a new directory, and POSIX expects that it marks all the timestamps of
the new directory and the mtime and ctime of the parent directory (mtime because
the parent content is changed and ctime because the file status, for example the
attribute nlink, is changed as well). The extended definition is the following:

let fsop_mkdir_core env rpath mode =
fsm_get_state >>= (fun s0 ->
(match rpath with
| RN_none(d0_ref,n,_) -> (

(* create the new directory and get a reference to it back *)
let (s1, d1_ref) = env.env_ops.fops_mkdir s0 d0_ref n in

#ifdef aspect_time
let s1 =

(* see MKDIR_TS:1 in fs_spec/posix/mkdir.md *)
mark_timestamps (env.env_ops) s1

[TS_Access; TS_Modification; TS_Change]
(Dir_ref_entry d1_ref)

in
let s1 =

(* see MKDIR_TS:2 in fs_spec/posix/mkdir.md *)
mark_timestamps env.env_ops s1

[TS_Modification;TS_Change]
(Dir_ref_entry d0_ref)

in
#endif
...

fsm_put_state s1)
| _ ->

fsm_special Impossible "error raised before"
end))

The original definition uses a monad to model the behaviour of the commands.

3.5. MODEL 73

This monad composes functions which transform file system states. We extend the
original definitions with a sequence of functions that implement the time trait. Our
additions can be easily distinguished as they are wrapped in the pre-processor direc-
tives as mentioned earlier. So in adding the time definitions we alter the file system’s
monadic state s1, which is finally returned using the function fsm_put_state.
Note that comments like see MKDIR_TS:1 in fs_spec/posix/mkdir.md refer to
quotations extracted from the POSIX specification [74]: these references pro-
vide future readers a one to one mapping of the formal specification and POSIX
definitions.

A τ transition assigns the clock value to marked timestamps according to the
update strategy in use. In the immediate update strategy τ assigns the cur-
rent clock to all marked timestamps (update_all_marked_timestamps). In the
periodic update strategy τ emulates the behaviour of the operating system: it
may update the timestamps of any file system object with marked timestamps
(do_periodic_update). This makes the transition non-deterministic as it may
return multiple new valid states: it creates a new state for each file system object
with marked timestamps. A visual representation of the update algorithm is given
in Figure 3.6.

The following extracts show that the specification is parameterized by a flag which
controls whether or not updates are periodic or immediate:

...

#ifdef aspect_time
(* OS_DEFINED_TS in
fs_spec/posix/base_definitions/ch_4_general_concepts *)

(* in immediate mode there are no Mup timestamps;
these only arise in Tau transitions *)

let ss = (
match lbl with
| OS_TAU -> (

if ((architecture_of_ty_arch env.env_arch).arch_is_periodic)
then finset_bigunion_image (do_periodic_update env) ss
else finset_image (update_all_marked_timestamps env) ss)

| _ -> ss end)
in

74 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

Figure 3.6: Algorithm to use SibylFS with timestamp as an oracle

3.6. ORACLE 75

#endif
ss)

The characteristics of the operating system running the file system are in the
data record env.env_arch. The boolean field arch_is_periodic discriminates
the update strategy used. Given an immediate architecture and a set of ini-
tial states, for each state the function update_all_marked_timestamps updates
marked timestamps. Given a periodic architecture and a set of initial states,
the do_periodic_update function is applied to each of the initial states. The
do_periodic_update takes a state and produces a set of states, which represent
all the possible results after a periodic update. In each of these result states only
one of the marked file system objects obtains concrete time values, while the others
remain marked. The sets of result states are then merged in a single set of states
(this is done with finset_bigunion_image which first applies the function and
then flattens the result).

3.6 Oracle

This section describes how to extend the oracle capabilities of SibylFS to consider
timestamps §3.6.1, and an attempt to mitigate the state explosion generated by
the periodic update strategy §3.6.2.

3.6.1 Extending the SibylFS oracle to handle the LP-map

According to what we discussed in §3.3.7, SibylFS needs to maintain a LP-map in
order to discriminate states that are inconsistent in terms of time.

The first step is to make possible to collect physical timestamps. The testing
framework needs to parse the time data in the return of the *stat commands, insert
these into the timespec format and finally add them into the ty_real_stats
data structure. The transformation is summarized in Figure 3.7

The second step is to add the LP-map in the operating system state:

type ty_os_state 'dir_ref 'file_ref 'jimpl = <|
...

76 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

Figure 3.7: Creating observed timestamps from system call output

oss_realtime_table: fmap ty_logical_time ty_os_time
|>

A specification state is consistent in terms of time if it contains a wellformed
LP-map. So, every insertion in the LP-map must leave it wellformed. Running
*stat command implies a new insertion. When the LP-map becomes malformed,
there are no reachable states for the current *stat transition: this means that the
file system implementation under test does not assign timestamps correctly.

The following excerpt shows how the specification inserts observed timestamps in
the LP-map for a stat return:

...
| (Value(RV_logical_stats stats1),
Value(RV_real_stats stats2)) -> (
match (differ_only_on_time_formats env stats1 stats2) with
| false -> (finset_empty ())
| true -> (

let r =
insert_new_entries_in_realtime_map s0
[(dest_logical_timestamp stats1.l_st_atime,

dest_os_timestamp stats2.r_st_atime);
(dest_logical_timestamp stats1.l_st_mtime,

dest_os_timestamp stats2.r_st_mtime);
(dest_logical_timestamp stats1.l_st_ctime,

dest_os_timestamp stats2.r_st_ctime)]

3.6. ORACLE 77

in
(match r with

| Nothing -> (finset_empty ())
| Just s1 -> (
finset_singleton

(OS_normal (update_run_state s1 pid RUNNING)))
end)) end)
...

The function differ_only_on_time_formats returns true if all the at-
tributes (aside from the timestamps) are equal in the two stat results.
The timestamp check is left to the insertion function. The function
insert_new_entries_in_realtime_map has the following signature:

val insert_new_entry_in_realtime_map :
ty_os_state ->
(ty_logical_time * ty_os_time) ->
(maybe ty_os_state)

This function takes an operating system state and a pair of logical-physical times
and may return a new state. It is isomorphic to the add_binding function shown
in the LP-map example in §3.3.7: it tries to insert each logical-physical time pair
into the LP-map, and if after the insertion the LP-map is malformed, it returns
nothing.

3.6.2 Mitigating the state explosion

It is not possible to observe marked timestamps in a file system implementation
(without instrumenting the OS, which is difficult and not scalable). Since POSIX
allows the operating system to update the marked timestamps of file system
objects at its own discretion, the specification needs to maintain all the possible
states that a file system can reach. The test oracle feature of the specification (as
shown in §2.5) is significantly limited due to the state explosion caused by the
non-determinism of the periodic updates. As a test oracle SibylFS declares a file
system trace acceptable if the specification can validate the trace results. Since the
trace represents a sequence of commands that act on a file system state, the test
oracle needs to run the corresponding sequence of specification transitions. Each
transition may produce many states or none. Each transition is applied on the

78 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

states obtained by the previous transition. If the transition is deterministic, the set
of states will always be a singleton; if, otherwise, the transition is non-deterministic,
the set will contain multiple states. As the number of states to check grows, the
testing process becomes computationally more expensive (hence slow). If possible,
one should avoid this kind of state growth in the first place.

As we have seen, the periodic update strategy introduces a source of non-
determinism in the specification. A naive approach we investigated is to embed
its non-deterministic information into a single state. In the periodic update
strategy we need to create a new state for each marked file system object to reflect
the possible operating system updates. It seems wasteful to duplicate whole
states that differed only on a single object’s timestamps, so we tried to store this
information in the marked timestamps. So a marked timestamp would accumulate
the times at which the operating system may have issued an update:

type ty_logical_timestamp =
Logical_timestamp of ty_logical_time
| Marked_for_update of ty_logical_time list

With this change non-deterministic transitions as those shown in Figure 3.5 would
produce a single state shown in Figure 3.8.

Although, this approach may seem powerful in reducing the cost of non-
determinism, it has two problems:

1. unexpected states become valid:

for example in Figure 3.8 the directory p is allowed to have timestamps
[a_tim=0;m_tim=1;c_tim=0], although this configuration is not achievable
by any of the final states in Figure 3.5;

2. non-determinism is only postponed:

every time we run a *stat transition on an object, the suppressed non-
determinism unfolds as the insertion in the LP-map has to assess if the new
observed timestamps breaks the time order.

Although (1) is solvable by adding some sort of dependency information to the
accumulated times, (2) has not a straightforward solution.

Another approach available to mitigate non-determinism is to store timestamp
configurations in the specification state. For example, we may maintain a map that

3.6. ORACLE 79

Figure 3.8: Mitigating the time non-determinism of Figure 3.5

has file system objects as keys and sets of timestamps triples as values. In this way
the information about timestamps remains precise and the non-determinism does
not affect the oracle feature of the model for traces that do not involve timestamps
(i.e., those traces that do not invoke *stat commands). Only a rough prototype of
this approach was made and was not refined further due to time constraints. Also
this approach suffers from (2), although promises to be more resilient in multiple
ways:

• keeping track of non-determinism simply means updating the state map with
new configurations instead of the duplication of state of the naive model;

• allows to unfold only part of the non-determinism efficiently (i.e., stat f1
would lookup for all the timestamps configurations of the f1 object present
in the state rather than performing the command on each available state as
happens in the naive model);

• choosing a more suitable data structure to support retrieval of valid con-
figuration would significantly extend the usage of the extended SibylFS to
bigger traces (the naive model chosen can only check traces consisting of
about eight commands).

80 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

This last approach clearly moves towards enhancing the extended specification with
a constraint solver: instead of storing timestamps configurations for file system
objects, we should encode these into time constraints and logically exclude the
predicates that cannot hold during validation. This is mentioned in Chapter 5 as
future work.

We decided that trying to make these models fit would have complicated matters,
and we preferred to propose the simplest model available to the reader. For this
reason, the models were not implemented in the final deliverable of this work.

3.7 Results

This section discusses how we validated the timestamp extension, and how the
immediate and periodic model behaviours relate to a file system implementation.

3.7.1 Validating traces

After implementing the time specification, one can check that it behaves as expected
through testing §2.5. In this section we present a minimal collection of tests to
validate the most interesting behaviour. These tests fall in three categories (see
Appendix C for examples of these traces):

1. positive tests: commands alter timestamps according to POSIX definitions.
These tests are subdivided in tests for immediate mode and tests for periodic
mode.

2. negative tests: commands alter timestamps differently from what POSIX
states and so the specification rejects the trace.

3. concurrent tests: commands run concurrently.

Examples for each of these subsets are in Figures 3.9, 3.10, and 3.11: they use
the command chmod, which changes the change timestamp other than the object
permissions.

3.7. RESULTS 81

Figure 3.9: Checking a trace involving chmod and timestamps

3.7.2 Immediate tests

The granularity issue, discussed in §3.3.2, can hide the periodic behaviour of a
file system implementation as the applied delay is typically below the granularity
threshold. In most cases an implementation that uses the periodic update strategy
would satisfy the immediate tests. This makes the validation unreliable.

However one can expose the periodicity of a file system by heavily exercising it
and detecting incongruities of timestamps assignment. A behaviour observed in
testing ext4 (Appendix D) may be: let tsa be a timestamp and let tsb be another
timestamp, such that tsa < tsb; let dir1 be a directory having a modification time
equal to tsb and dir1/dir2 a subdirectory having modification time equal to tsa.
The last modification to dir1 was to add dir1/dir2 .

But here tsa < tsb, so it appears that the modification time for dir1 is updated
after dir1/dir2 ’s timestamp, whereas in immediate mode, the timestamps should
be updated at the same time.

82 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

Figure 3.10: Checking an invalid trace involving chmod and timestamps

3.7. RESULTS 83

Figure 3.11: Checking a concurrent trace involving chmod and timestamps

84 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

3.7.3 Periodic tests

The periodic flavour of the specification cannot currently be used to test implemen-
tations as explained in §3.4. We present here the limits of the periodic specification.
Running the specification as a test oracle against a simple trace can provide data
to show that the growth of states is exponential. The trace will contain a sequence
of mkdir calls as this command creates new file system objects:

@type trace

at this point we have already the root directory with timestamps
marked for update

mkdir /d1 0o000
Tau
RV_none

mkdir /d2 0o000
Tau
RV_none

mkdir /d3 0o000
Tau
RV_none

mkdir /d4 0o000
Tau
RV_none

mkdir /d5 0o000
Tau
RV_none

mkdir /d6 0o000
Tau
RV_none

3.7. RESULTS 85

mkdir /d7 0o000
Tau
RV_none

mkdir /d8 0o000
Tau
RV_none

Figure 3.13 shows the states obtainable from two mkdir transitions.

In the following table we can see how the time grows in the previous trace:

Table 3.2: Statistics about checking a periodic trace consisting of a sequence of mkdir calls

mkdir calls # of dirs # of states Elapsed time User CPU time System CPU time

1 2 4 0m0.001s 0m0.001s 0m0.000s
2 3 24 0m0.001s 0m0.000s 0m0.001s
3 4 192 0m0.002s 0m0.001s 0m0.000s
4 5 1920 0m0.011s 0m0.009s 0m0.001s
5 6 23040 0m0.137s 0m0.132s 0m0.004s
6 7 322560 0m3.347s 0m3.253s 0m0.093s
7 8 5160960 6m2.876s 6m1.113s 0m1.807s
8 9 ? ? ? ?

Figure 3.12: Visualization of the state explosion for a trace that just repeats mkdir commands

86 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

Table 3.3: Statistics about growth of states

#commands # of states f=fact(#commands) g=2 #commands−1 f * g

1 1 1 1 1
2 4 2 2 4
3 24 6 4 24
4 192 24 8 192
5 1920 120 16 1920
6 23040 720 32 23040
7 322560 5040 64 322560
8 5160960 40320 128 5160960

Figure 3.13: Non-determinism explosion for first transition of mkdir trace

Figure 3.12 shows that the growth of states follows roughly an exponential distri-
bution.

3.8 Related work

In 1978, Lamport [42] explores an algorithm to achieve a total order for timed
events in a multiprocess distributed system, and he introduces the idea of logical
clocks as opposed to a physical clock. He defines the algorithm and associated
invariants in terms of logical clocks and then he describes how to relate logical
clocks to observed real world clocks. We share the time abstraction with Lamport
work, and the total order constraint on logical and physical times that we implement
through the LP-map.

3.8. RELATED WORK 87

In 1990 Nicollin and Sifakis introduce a timed process algebra which adds a special
χ action to label transitions that represent the passage of time [56]. This χ action
is equivalent to the τ transition of the SibylFS extension, as during this transition
a new logical time is assigned to marked timestamps (so introducing passage of
time). Another similarity with this work is the differentiation between abstract
and physical time to separate the complexity introduced by the execution time
of processors: the SibylFS extension however needs to keep track of the physical
time to validate traces, while in a timed process algebra context the physical time
is just abstracted away.

Alur and Dill define a time theory for automata in [3]. The authors show how to
annotate automata with timing constraints, and show that the universality problem
(if the timed automata accept all timed traces) is decidable for deterministic systems
and undecidable for non-deterministic ones. Although this study annotates a non-
deterministic LTS with timing constraints, the problem is decidable as it is very
specific: we need to check that only a single trace is acceptable. This is currently
unfeasible due to the state explosion generated.

88 CHAPTER 3. SIBYLFS EXTENDED WITH TIMESTAMPS

4
B-trees, formally

4.1 Overview . 90
4.2 Basics . 90
4.3 B-tree definition . 98
4.4 Overview of approach to correctness 99
4.5 Framestacks: a concrete representation of context 100
4.6 Find . 102
4.7 Insert . 106
4.8 Refinement to block device . 111
4.9 Related work . 114

89

90 CHAPTER 4. B-TREES, FORMALLY

4.1 Overview

File systems need to move data to and from the disk. Accessing the disk is more
expensive than in-memory file system operations. Since accessing the disk is
mandatory to persist data, we use data structures that minimize the accesses
needed for their operations.

In this chapter we formalize and prove the correctness of one of these optimizing
data structures: the B-tree. The definitions and the proofs discussed in this work
are mechanized in the Isabelle/HOL theorem prover [85].

This chapter presents an approach to mechanically verify a B-tree. It starts with
the basic notions required to formalize the B-tree §4.2, then defines the B-tree we
use in this work §4.3. Then the approach to prove the correctness of the B-tree
is given §4.4. This approach will require the notion of framestacks §4.5. At this
point the reader has enough context to understand how B-tree operations can be
defined and proved correct §4.6 §4.7. Finally the chapter discusses a way to refine
the model into a B-tree implementation §4.8, and related work in this area §4.9.

4.2 Basics

This section defines the basic concepts required to understand the B-tree formal-
ization.

4.2.1 Maps, keys, values and total orders

A B-tree is an implementation of a map, specialized for block storage. A block
storage is the most commonly used software interface to interact with hardware
that stores data.

A map is a set of pairs (k, v), where k is the key and v is the value. At most one value
is associated to each key. In computer science, maps are finite functions: i.e., the
set of pairs are finite. A possible notation for maps can be (k1 → v1 , k2 → v2 , ...).

Maps support three fundamental operations: find, insert, and delete.

• find k m: return the value, if any, associated to k in map m,

4.2. BASICS 91

• insert k v m: add (k, v) to m, or destructively update the pair if k is in m,
returning the updated map,

• delete k m: remove all pairs of the form (k, v) from m and return the resulting
map, which can be m itself if there was no pair (k, v) in m.

Typically, keys are totally ordered in map implementations.

Definition A relation ≤ on a set S is a total order iff it is a partial order which
satisfies the trichotomy law: for all a ∈ S , b ∈ S we have a ≤ b or b ≤ a.

The name of the law arises from the version of the axiom that uses the
strictly-less operation: a < b ⊕ a = b ⊕ b < a, where ⊕ here stands for a
mutually exclusive ∨.

Typical examples of total orders are: natural numbers, integers, reals, strings
(ordered lexicographically).

4.2.2 Search trees as implementations of maps

A B-tree is a type of balanced search tree. There are multiple B-trees defined in
literature, see §4.9.1 for a brief summary of these. Search trees are well known
structures, often covered in basic computer science courses. These are fundamental
structures designed to provide efficient search algorithms, which makes them
suitable to use as map implementations. An example of a search tree is:

Figure 4.1: Example of search tree with integer keys

In this example, keys are integers. Leaves contain lists of (key,value) pairs, but
values have been omitted and only the keys are shown. However, it is worth
remembering that for every key (such as 5) in a leaf there is an associated value
(e.g., v5). Leaves cannot be empty, and contain a given key at most once. An
exception to this is the empty tree, which is represented by an empty leaf.

The set of pairs (k, v) in the leaves of a search tree constitutes a map.

A node consists of (typically pointers to) children separated by keys. The keys are
in increasing order. For example, a tree t has a root t0 , k0 , t1 , ..., kn−1 , tn, where ti

92 CHAPTER 4. B-TREES, FORMALLY

is the subtree i of t, and k0 < k1 < ... < kn−1 . Again, nodes cannot be empty, and
a usual restriction is that they must contain at least one key and two children.

A typical node t is a tree:

t0 k0 t1 k1 ... kn−1 tn

A search tree t satisfies the following property: for every node t = t0 , k0 , ...

we have ki−1 ≤ keys(ti) < ki , where keys(t) denotes all the keys in the (nodes
and leaves of) tree t. If i = 0 we may take k−1 to be negative infinity, so that
keys(t0) < k0 . Similarly for i = n we may take kn to be positive infinity, so that
kn−1 ≤ keys(tn).

The fact that this property holds for every node means that every subtree of a
search tree is itself a search tree.

An alternative description for the above property can be achieved by considering
the keys k0 , ..., kn−1 partition the space of keys into K0 ,K1 , ...,Kn, such that
K0 < k0 ≤ K1 < k1 ...kn−1 ≤ Kn, and the union Ki is the set of all keys. Note
that in this context the < and ≤ operators establish an order relation between
an element and all the elements in a partition (e.g., K0 < k0 is an abbreviation
of ∀x ∈ K0 .x < k0). This guarantees that for any k there is a unique i such that
k ∈ Ki .

For a particular search tree t = t0 , k0 , ... we have keys(ti) ⊆ Ki . This allows
us to state things succinctly: for example, rather than saying "find i such that
ki−1 ≤ k < ki", we can say instead "find i such that k ∈ Ki".

Given a key of interest k, a search tree provides an efficient way to navigate to the
leaf that possibly contains k and its associated value v.

Informally the algorithm for find is as follows: given a search key k, and an initial
search tree t, starting at the root node

• in a non-leaf node, find i such that k ∈ Ki (i.e., ki−1 ≤ k < ki), with subtree
ti (which possibly contains k) and descend to child ti .

• stop when you reach a leaf; return the value (if any) associated with k in
the leaf.

Given k and t, the find algorithm returns the value v associated with k in t (if
any). It follows that the algorithm returns v iff the pair (k, v) is in the map

4.2. BASICS 93

corresponding to t. We might call this map m(t) or mt .

Definition The Isabelle/HOL definition of mt used in this work is:

definition tree_to_map :: "Tree => (key,value_t) map" where
"tree_to_map t = (map_of (List.concat(tree_to_leaves t)))"

The tree_to_map definition concatenates all the key-value pairs in the leaves
and produces a map through map_of. The gathering of pairs is achieved
through the tree_to_leaves definition:

function tree_to_leaves :: "Tree => leaf_lbl_t list" where
"tree_to_leaves t0 = (case t0 of
Node(l,cs) => (
(cs |> (List.map tree_to_leaves)) |> List.concat
)
| Leaf(l) => [l]
)
"

This definition applies recursively on all the subtrees until it reaches the
leaves, from which it can produce the key-value pairs.

Then there are two versions of find: findm k m which operates on maps, and
findt k t which operates on search trees. Normally we omit the subscripts, since
the particular version of find is determined by the type of the last argument (map
or tree).

So, the algorithm above implements find k t for the tree t, and this function
"behaves the same as" find k mt in the sense that find k t = find k mt. In later
sections we treat more complicated variants of the "behaves the same as" concept.

Lemma findt is correct, in the sense that: for all k, t we have find k t = find k mt .

Proof We show ∀ t k. find k t = find k mt by induction on the size of t. The
leaf case is trivial. For the non-leaf case, we have that t = t0 , k0 , There
is a unique i such that k ∈ Ki . Consider ti . Apply induction hypothesis
to obtain find k ti = find k mti . Moreover . . . = find k mt since mt is the
disjoint union of mti . Finally find k t = find k ti by definition of findt .

94 CHAPTER 4. B-TREES, FORMALLY

4.2.3 State transition systems and invariants

We defined labeled transition systems in §2.4.1. A state transition systems is
equivalent to a labeled transition system without labels. We refer to the set of
states as S , the set of initial states as Sinit , and the set of transitions as T .

We use the notation s T s′ to represent (s, s′) ∈ T .

A transition sequence (or T-sequence) is a (finite or infinite) sequence s0 , s1 ,. . .
where for each pair of states (si , si+1), the pair is a valid transition s T s′.

A trace is a T-sequence where the initial state s0 is drawn from Sinit .

A property is, for our purposes, a subset of S . In other words, a property P picks
out elements of S that "satisfy the property". P(s) is true iff s ∈ P . Alternatively,
we may say that P holds for s. The notation P(s) is often used to emphasize that
P is a property of state s.

A T-invariant is a property such that the following holds: if P(s) and s T s′, then
P(s′). An invariant is relative to the set of transitions T . The word "T-invariant"
emphasizes the role of T . This is useful when we work with state transition
systems (S ′,T ′) that are restrictions of some (S ,T). In this settings, when we can
distinguish a T-invariant from a T’-invariant, and any T-invariant is T’-invariant.
This definition considers transitions sequences and not traces, as the initial state
is unconstrained.

A trace-invariant of a state transition system (S ,T) is a property P(t) that is a
T-invariant and which holds for all initial states.

A state is reachable when there is some trace that includes the state.

An invariant of a state transition system (S ,T) is a property P(s) that holds for
all reachable states.

Essentially, showing that some property is an invariant of a state transition system
usually involves showing that the property is a trace-invariant, which in turn
requires showing that the property is a T-invariant. However, it is often useful to
separate these concepts.

4.2. BASICS 95

Figure 4.2: Example of descending a search tree by using a framestack

4.2.4 Traversing a tree, context and focus

Tree algorithms typically involve traversing the tree from top to bottom. The
algorithm starts at the root of the tree, labeled (a) in Figure 4.2, and descends to
a child (b) until finally reaching a leaf (c).

We may view the algorithm as operating on the "root node", and at each step we
move to a child node. This is the "graph" view of an algorithm. It emphasizes that
nodes are considered in isolation, and pointers are followed to reach other nodes.

Alternatively, we may view the algorithm initially operating on the whole tree,
and at each step changing focus to operate on a subtree. This is the "algebraic
datatype" view of an algorithm. This viewpoint abstracts over pointers, which
simplifies reasoning over the operational semantics and as a consequence this
simplifies formal proofs.

In this work, we emphasize the "algebraic" viewpoint. When dealing with real
blocks and pointers between blocks we are forced to consider the "graph" view.

At (a), the focus is on the entire tree. The context, which is the part of the tree
that we do not focus on, is empty. At (b), we focus on the light-gray subtree,
which contains 15, 12, and 19. The context is "the rest of the tree", this refers to
all nodes and edges not in the light-gray subtree. The context is comparable to
the whole tree, but with a "gap" or "hole" where the subtree (b) should be. We
will consider how to model this hole in later sections.

At (c), we focus on the dark-gray subtree containing a single leaf node. The context
is "the rest of the tree", that is the whole tree but with a gap or hole where the
leaf should be.

Informally, a focus is the subtree we are currently dealing with, and the context is

96 CHAPTER 4. B-TREES, FORMALLY

the remaining part of the tree which we use to assemble the final result.

The syntax t[s] is the tree t with subtree s as focus. When we want to refer to the
context we write t[]. When we want to emphasize the location of the focus s in the
original tree t we write t[s]p, where p is the path from the root of t to the focus s.

As we will see in later sections, for find the focus is always a subtree and for insert
the focus is two trees separated by a key as this operation may cause the split of
the tree.

4.2.5 Refinement, small step vs big step

"Mathematical" functions map an argument to a result. There is no notion of the
"steps" of the function, since the underlying model of a function is as a set of pairs.

In computer science, however, programs typically do take several steps to execute.
The distinction is important when the step-based nature of the computation can
be observed. Concurrency is one way that the internal workings of an algorithm
may be observed by another process. However, even for a single process, we may
wish to model the program’s steps explicitly. In the case of a B-tree, disk reads
and writes can be observed by other processes, but even for a single process we
want to argue that, say, the algorithm behaves correctly in the presence of host
failure (which may occur at any point during the program’s execution). A host
failure causes the whole system to enter a "halt" state, which it exits when the user
restarts the host. Since the failure can occur at any point, the essential step-based
nature of programs that use the disk is observable: a subset of the reads and writes
may have happened before the host failed with the possibility of exposing a state
different from the one obtained without host failure.

So far, we have considered the find operation executing on a map and on a tree.

Figure 4.3: Equivalence of tree and map’s find

4.2. BASICS 97

In Figure 4.3 we show (bottom left) the tree t, and the operation find k t evaluating
to t (unchanged) and the result v. The top of the diagram shows the equivalent
"mathematical function" evaluating on the map mt . The vertical arrows represent
the relation between t and mt .

In this diagram, both versions of find take a single step to evaluate. We now wish
to address a more complicated scenario where the implementation of find on a
search tree takes multiple steps. Each of these steps nominally corresponds to at
most one disk operation, so that we properly capture the fact that disk accesses
(or, more exactly, requests for disk accesses) occur in sequence over a period of
time.

In Figure 4.4, we simplify the previous diagram by suppressing the arguments t
and mt .

Figure 4.4: Equivalence of tree and map’s find without arguments

In Figure 4.5, we include multiple steps for the implementation findt. In this
diagram we have used the notation t[s] to make clear that the implementation
descends from the root of the tree to the subtree s, and then to the subtree s′.

Figure 4.5: Equivalence of tree and map’s find with steps

The sequence of steps of the implementation constitute a "refinement" of the single
step of findm.

It is possible to use the formal notion of state transition systems to make the

98 CHAPTER 4. B-TREES, FORMALLY

"refinement"1 notion precise. For the moment it suffices to understand that
an implementation is a refinement of a specification when operations, such as
find, "behave the same" given that we choose to ignore some details of how
the implementation behaves (in this case, we choose to ignore the fact that the
implementation takes multiple steps whilst the specification consists of only one).

4.3 B-tree definition

In this section we give the formal definition of a B-tree. B-trees are search trees
which are:

• balanced (every leaf is at the same distance from the root)
• have minimum and maximum bounds on the sizes of nodes and leaves;

individual nodes and leaves can vary in size between these bounds

The bounds on the sizes of nodes and leaves are chosen for performance reasons,
and to match the blocksize of the backing block device.

The fact that the tree is balanced, together with a reasonably chosen minimum
node size (e.g., half the maximum node size), guarantees O(log n) access to any
leaf.

The use of minimum and maximum bounds, rather than a fixed size, means
that (potentially expensive) tree rebalancing occurs rarely, when compared to, for
example, a binary search tree.

A B-tree is a tree where nodes are of the form t = t0 , k0 , ..., kn−1 , tn and leaves
are of the form (k0 , v0), (k1 , v1), Keys in nodes and leaves are ordered in
strictly-increasing order.

Definition The Isabelle/HOL definition for a tree is

datatype Tree = Node "node_lbl_t * Tree list" | Leaf "leaf_lbl_t"

where node_lbl_t stands for a list of keys and leaf_lbl_t for a list of
key-value pairs.

1In the Oxford English Dictionary, one definition of refinement is: "the improvement or
clarification of something by the making of small changes". Here we clarify HOW the find
operation is implemented. The move from a single step to multiple small steps also recalls the
essential "breaking down" and "separating out" aspects of refining in various forms.

4.4. OVERVIEW OF APPROACH TO CORRECTNESS 99

This inductive definition only defines a tree, the B-tree constraints are
validated through a predicate which is given in Appendix C. This predicate
is of key importance for proving that the operations provided always produce
wellformed B-trees.

Additionally the following are satisfied:

• the tree is balanced
• all nodes and leaves (except possibly the root) have sizes consistent with the

min/max bounds
• for a node t = t0 , k0 , ..., have ti ⊆ Ki

A B-tree is, therefore, simply a balanced search tree with size constraints on nodes
and leaves.

4.4 Overview of approach to correctness

Our approach to showing the correctness of the B-tree involves two refinements.

Figure 4.6: Correctness refinements

At the top level, we have the specification, which is simply the "mathematical"
description of a map. Each operation "completes" in a "single step". No tree-like
data structures are present.

The map level is expressed at a high level of abstraction. The map interface is
exposed to users, who are already familiar with the map operations. However,
at this level it is not possible to understand the on-disk behaviour of the B-tree,
including how it behaves when the host fails.

At the next level, we have the B-tree modeled as an algebraic datatype. At this
level the operations take multiple steps (corresponding to disk accesses), but there
are no blocks or pointers. It is at this level that the most interesting aspects of
B-trees can be captured, including the rebalancing required during insert and

100 CHAPTER 4. B-TREES, FORMALLY

delete operations. However, this level is still not sufficiently detailed to capture
the behaviour when the host fails.

At the lowest level, we have the B-tree modeled in full implementation detail,
with disk blocks, and pointers between blocks. Caching and the behaviour of the
underlying disk are all important at this level. It is at this level that the behaviour
under host failure can be expressed.

Each level is a refinement of the level above.

We show the correctness of the datatype level by showing it is a refinement from the
map specification. And then there is a further refinement from the datatype to the
"blocks and pointers" version of the code. The algebraic operations are expressed
in small-step semantics in order to guarantee that the proofs of correctness remain
valid also under concurrent usage.

4.5 Framestacks: a concrete representation of
context

In previous sections we discussed how the find algorithm descended a search tree.
At each step the algorithm focused on a subtree, and the rest of the tree was
dubbed the "context". We now make this notion more precise.

Figure 4.7: Context refinement from a graph view to an abstract and concrete algebraic view

In the diagram of Figure 4.7 we start off with the notion of a position in a tree.
This is the "graph" view, where algorithms operate on single nodes in a tree and
follow pointers to child nodes. For concreteness, a position or path in a tree might
be the sequence of child indexes to reach a particular node. Thus (0 , 1) represents
the node that can be found by following the 0th child from the root, and then
following the 1st child from that node (indexing from 0).

4.5. FRAMESTACKS: A CONCRETE REPRESENTATION OF CONTEXT101

For the "datatype" view, it is more natural to identify a particular position in a
tree with the subtree at that position. Then we need to find a way to formalize
the context of the "rest of the tree". We could, as above, maintain the original tree
and a path to the "current" subtree. However, we choose to develop a different
notion of context based on framestacks. The reason is that we need to implement
algorithms on the context, and these algorithms can be more easily expressed
using framestacks.

The lowest level in the diagram involves reifying the notion of "tree context" as a
concrete data structure called a framestack.

Definition A frame is a node with a "missing" child; for a node t = t0 , k0 , ..., a
frame is a pair (t0 , k0 , ..., ki−1), (ki , ti+1 , ...). Compared to the original node,
the child ti is missing.

We may write a frame as t/ti or t[]i , meaning that in node t the ith child is missing.

Definition A framestack is a list of frames fn, ..., f0 . The frame f0 corresponds
to the root node, and the frame fn corresponds to the parent node of the
current subtree.

The Isabelle/HOL definition of framestack is:

datatype 'f framestack = Frame_stack "'f focus_t * context_t"

Where a focus is defined as a generic data type to allow its specialization for
the specific operation (i.e., find or insert):

datatype 'f focus_t = Focus 'f

And a context is defined as a list of tuples that contain the parent leftmost
and rightmost keys (bounds) and a pair consisting of the subtree (i.e., node_t)
associated with its index in the parent node:

type_synonym context_t = "(left_bound * (node_t * nat) * right_bound) list"

In Figure 4.8 we show the framestack produced by descending a simple tree. We
aim to reach the leaf with the key 19 . At the beginning we have an empty
framestack, and take the root as our initial frame. We then pick as new frame
the child node corresponding to the last key that is smaller than 19 , and add the

102 CHAPTER 4. B-TREES, FORMALLY

Figure 4.8: Example of algebraic context and framestack equivalence

current frame (labeled as f0) to the framestack. We then choose as next frame
the leaf with the key we are looking for and the current frame is added to the
framestack (labeled as f1). At this point we have reached the bottom of the tree.

It is possible to reconstruct a tree given a context and a focus.

Definition given an initial tree, a context is a framestack and a focus is a tree
such that the context and focus can be combined to give the initial tree.

The algorithm to combine a framestack and a focus to obtain the initial tree can
be expressed formally as:

• if framestack is empty, return the focus;
• otherwise pop the stack, fill the hole with the focus (this may require

restructuring, see §4.7), and reiterate by using the obtained tree as the focus.

Given a framestack ctxt and a focus t, we use the notation ctxt(t) to express that
we are combining the framestack and focus to obtain a complete tree.

4.6 Find

We are now in a position to describe the find implementation formally.

4.6.1 Descending a search tree

We define find as a transition sequence. Each transition (or step) operates on a
state. The state is composed by:

• the context (ctxt), as a framestack;
• the focus (t), as a tree;

4.6. FIND 103

• the key (k) we are looking for;
• lower (l) and upper (u) bounds on keys appearing in the focus.

We include bounds on keys because they will be significant in our discussion of
insert and delete, although they are not relevant for find. However find can be
used as a subroutine for insert and delete, where these bounds are relevant.

A find state can be then defined as s = (ctxt, t, k, l, u). Descending the tree is
equivalent to the sequence s T s1 , ..., sn−1 T sn, where sn corresponds to a state
where the focus is a leaf.

4.6.2 Basic algorithm

We define the find step in pseudo-code as follows (we provide the formal definition
in Appendix C):

// k - the search key (constant for duration of find steps)
// ctxt - the context (a framestack)
// t - the focus (a tree)
// l,u - lower and upper bound on keys appearing in the focus t
define find_step(ctxt,t,k,l,u) = {

if (t is a leaf) then return (ctxt,t,l,u)
// NB t is a node...
// (t0,k0,...,k(n-1),t(n))

i <- get_child_index (k0,...) k // find i st k(i-1)<=k<k(i)
frame <- t/t_i // new frame, with hole at t(i)
ctxt <- cons(frame,ctxt) // add frame to context
t <- t(i) // set focus to child t(i)
l <- if i>0 then k(i-1) else l // update l
u <- if i<n then k(i) else u // update u
return (ctxt,t,l,u) // return updated values

}

Here the state remains unaltered if the focus is a leaf, otherwise we select the child
that may contain the target key, we create a frame without this child, we update
the bounds on the keys and return the updated state.

In the initial state the context is an empty framestack, the focus is the original

104 CHAPTER 4. B-TREES, FORMALLY

tree and our bounds are respectively +∞,−∞2 to represent that the root tree has
no bounds on keys.

Then we define find as the transition sequence:

define find(k,t) = {
ctxt <- empty // initial values...
l <- -inf
u <- +inf
while(t is not a leaf) { // repeatedly apply find_step

ctxt,t,l,u <- find_step(k,ctxt,t,l,u)
}
// t is a leaf
return (value associated with k in leaf t, if any)

}

4.6.3 Wellformedness

We say that a tree is wellformed when it satisfies the definition given in §4.3 (a
formal definition of wellformedness can be found in Appendix C).

This can be summarized in the following property over a tree: wellformed =
wf_size ∧ wf_ks_rs ∧ balanced ∧ keys_consistent ∧ keys_ordered, where
wf_size and balanced enforce the B-tree specific properties (e.g., boundaries on the
node size) and the others check the search tree properties (e.g., the total strictly
increasing order of the keys).

We use the wellformedness predicate on the tree to define when the find operation
is in a wellformed state.

We say that the state of the find operation is wellformed when:

• any tree in the framestack is wellformed;
• any tree in the focus is wellformed;
• the lower and upper bounds are the limits of Ki , where i corresponds to the

tree missing in the parent frame.

We will refer to this wellformedness property as W (s).
2In the Isabelle definitions the bounds are represented as options.

4.6. FIND 105

Now we want to say that, given the initial state is wellformed W (s0), there is a
T-invariant W (s) on find: this means that find’s state remains wellformed for any
find transition, which implies that all the trees involved stay wellformed as well.

We can prove trivially that this invariant holds using the W (s0) hypothesis, as
this implies that all subtrees are wellformed and find transitions do not alter trees
and choose bounds according to W (s) definition.

4.6.4 Correctness

The find operation is correct when its output is the same as calling findm on mt .
This is equivalent to say that when we reach a leaf l, the bounds have been correctly
chosen, ctxt(l) is the original tree and (k, v) ∈ map(ctxt(l)) ⇐⇒ (k, v) : l.

The proof of correctness relies on the fact that the keys are in a total strictly-
increasing order: on this hypothesis we know that if a pair (k, v) exists, it can only
be in the leaf l and that if it does not exist in l, it cannot exist in any other leaf.

We formalize this lemma as:

definition invariant_map_equivalence_find :: "bool" where
"invariant_map_equivalence_find == (
! fs.
let map_equivalence_find =
(
case step_fs fs of
Some fts' =>
let k = fst (dest_f_frame_stack fs) in
let m = fs_to_map fs in
let m' = fs_to_map fs' in
((m k) = (m' k))
| _ => True

)
in
total_order_key_lte -->
wellformed_fs fs --> map_equivalence_find

)"

where total_order_key_lte and wellformed_fs_fs represent the total order

106 CHAPTER 4. B-TREES, FORMALLY

and W (s0) hypothesis; fst (dest_f_frame_stack fs) returns they key we are
looking for; fs_to_map is equivalent to ctxt(l); step_fs represents the find step
on the framestack.

We prove the lemma by inducting on ctxt(l); if it is a leaf, then this is trivial
as the total order guarantees the uniqueness of the keys; if it is a node we know
that there is only one child which contains k for the total order, so we can apply
the induction hypothesis over the disjoint union of the children. The mechanized
proofs for this command are available at [85].

4.7 Insert

The insert operation is more complicated than find, because it potentially involves
splitting nodes that are too big.

4.7.1 Inserting in a tree

Insert uses find to locate the leaf in which to insert a new (k, v) pair.

For concreteness, we define a version of find that is used by insert (and delete):

define find' (k,t) = {
ctxt <- empty // initial values...
l <- -inf
u <- +inf
while (t is not a leaf) { // repeatedly apply find_step

ctxt,t,l,u <- find_step(k,ctxt,t,l,u)
}
// t is a leaf
return (ctxt,t,l,u)

}

Note that, compared to find, find ′ returns a lot more information: the context,
the leaf, and the lower and upper bounds are all returned.

Suppose the leaf is of the form (k0 , v0), (k1 , v1), ..., (kn, vn). If the leaf is not already
at the maximum size allowed (i.e., n < max_size), we can just insert the new

4.7. INSERT 107

key-value pair to obtain a new leaf. We can then combine this new leaf with the
context to obtain a new tree.

If the leaf already contains k, we can update it with the new key-value pair even if
the leaf has achieved its maximum size.

However a more difficult case to handle occurs when the leaf has its maximum
size (i.e., n = max_size), and the key is not already present in the leaf. Adding
the new pair would result in a leaf that is too big. In this case, the leaf of length
max_size + 1 is divided in two leaves, separated by a key. Suppose we divide at
position i. Then the first leaf is leaf1 = (k0 , v0), (k1 , v1), ..., (ki−1 , vi−1), while the
second leaf is leaf2 = (ki , vi), (k1 , v1), ..., (kn, vn). The key that separates them is
kl , in the sense that leaf1 , kl , leaf2 represents a valid partition of the original leaf.
Figure 4.9 shows the result of inserting the pair (4 , v) (we ignore the value for
simplicity) in a tree with a full leaf.

Figure 4.9: Example of insert with splitting

Suppose the context has frame (..., ti−1 , ki−1), (ki , ti+1 , ...) at the head (correspond-
ing to the parent of the leaf). At this point, one possible scenario is that we could
insert the new leaves to get a new node (..., ki−1 , l1 , kl , l2 , ki , ...). However, the
other possible scenario is that this node in turn is too big, since it has one more
child than the original. In this case, we must again split the node, and repeat with
the next frame on the framestack.

Eventually we may end up with a root that is too big, at which point we split the
root in two, and create a new root with two children. Now, the height of the tree
grows by one. Figure 4.10 shows the result of inserting the pair (6 , v) in a tree
with a full leaf: firstly we insert the key 6 in the leaf that contains already keys 4
and 5 (only keys are considered for simplicity); we obtain an oversized leaf; then
we split this leaf and create a focus with a leaf containing 4 , the key 5 and a leaf
containing 6 , and we insert the focus in the context; at this point we try to add
key 5 into the parent node and obtain an oversized node; after creating a new
focus with the two nodes obtained from splitting and the key 4 , finally, we create

108 CHAPTER 4. B-TREES, FORMALLY

a new root with the key 4 .

Figure 4.10: Example of insert with splitting and merging of root

4.7.2 Basic algorithm

The operation insert has three stages: the first stage involves descending the tree
to a particular leaf of interest, the second stage involves altering that leaf to get a
new leaf with an extra key or two new leaves separated by a key, and the stage
where we assemble the tree to insert the tree (or trees) in the focus, potentially
splitting the obtained tree if they become oversized. In the pseudo-code below,
we wrap this information in a sum datatype (a formal definition can be found in
Appendix C):

data insert_stage x = Desc(x) | Bot(x) | Asc(x)

Now we can define the insert step in pseudo-code as follows:

// ist - the stage of the insert step
// fts - the stage of the find step (i.e., (k,ctxt,t,l,u))
// (k,v) - the key and the value to insert
// (constant for duration of insert steps)
// ctxt - the context (a framestack)
// t - the focus (a tree when descending,
// may be also a triple (t1,k_m,t2) when ascending)
// l,u - lower and upper bound on keys appearing
// in the focus t
define insert ist = {

case ist of
| Desc(fts,v) ->

if (t is not a leaf)
then // descends one level of the tree

4.7. INSERT 109

ctxt',t',l',u' <- find_step fts
Desc((k,ctxt',t',l',u'),v)

else // sets up for inserting (k,v) in the leaf
Bot(fts,v)

| Bot(fts,v) ->
k,ctxt,t,l,u <- fts // NB: t is a leaf a this point
t' <- insert (k,v) t // obtains a new leaf

// from adding (k,v)
// (or updating
// if key is already in t).
// NB: this must keep
// the keys ordered.

if (size of t' >= max size)
then // only if it was an addition

(t',k_l,t'') <- split_leaf t' // it partitions
// the oversized leaf
// in a triple (t1,k_m,t2)

return Asc(ctxt,(t',k_l,t''),l,u)
else Asc(ctxt,t',l,u)

| Asc(ctxt,t,l,u) ->
if (ctxt empty)
then // if the context is empty, t is the root:

// no need to ascend further
return t

t',ctxt',l',u' <- pop ctxt // pop the head of ctxt and
// get the lower and upper
// bounds of the upper node

t' <- fill_hole t' t // fill the node with a missing child
// with t

if (size of t' >= max size)
then // if t was a triple, then t' may need splitting too

t' <- split_node t' // it partitions the oversized node
// in a triple (t1,k_m,t2)

Asc(ctxt',t',l',u')
}

Here we have different cases according to the stage of the operation. If descending,

110 CHAPTER 4. B-TREES, FORMALLY

we just apply the find step described earlier. If we reach the leaf, we update the
leaf with the pair (k, v). If the obtained leaf is oversized, we divide it into (l1 , kl , l2)
and use this as the focus for ascending the tree. If ascending, we check that there
are parent nodes to ascend: if not the insertion is complete. Otherwise, we obtain
the parent node with the hole in it (t ′) and fill the hole with the focus t. Filling
the hole may be as simple as inserting t as the missing child or it may need the
addition of a km and a second tree t2 , in this case t ′ was divided into t1 , kl , t2 . If
t ′ was divided in this manner, inserting more than one child into the hole may
imply a new splitting of the focus. This can cascade to the point that a new root
is created.

Similarly to what we have done for find, we define insert as the transition sequence:

define insert((k,v),t) = {
ctxt <- empty // initial values...
l <- -inf
u <- +inf
fts <- k,ctxt,l,u
ist <- Desc(fts,v)
while(ist is not the new root) { // repeatedly apply insert_step

ist <- insert_step(ist)
}
// ist is the new root
return ist

}

4.7.3 Wellformedness

We say that an insert stage is wellformed when:

• any tree in the framestack is wellformed;
• any tree in the focus is wellformed and the dividing key kl of the focus (if

any) is ∀ki ∈ Ki , kj ∈ Ki+1 .ki < kl ≤ kj ;
• the lower and upper bound are the limits of Ki , where i corresponds to the

tree missing in the parent frame.

Now we can say that, given the initial state is wellformed W (s0), there is a
T-invariant W (s) on insert.

4.8. REFINEMENT TO BLOCK DEVICE 111

We can prove that this invariant holds using the W (s0) hypothesis. Note that
this proof is more laborious than the one for the find operation as we have to
demonstrate that the invariant holds for all states of insert and for each kind of
focus we operate upon (i.e., both the single tree and the partion t1 , km, t2).

4.7.4 Correctness

The insert operation is correct when its output is the same as calling insertm on
mt . This is equivalent to say that:

1. when we reach a leaf l, the bounds have been correctly chosen, ctxt(l) is the
original tree and (k, v) ∈ map(ctxt(l)) ⇐⇒ (k, v) : l;

2. after inserting (k, v) in l we obtain l ′ such that ctxt(l ′) = (ctxt(l) + (k, v));

3. given a framestack ctxt and a focus t, and their immediate parent ctxt ′ and
focus t ′, we have ctxt(t) = ctxt(t ′)

We have already shown (1) for the find operation. We can prove (2) similarly by
showing that the original map is the union of all the maps obtainable from the leaves
ctxt(l ′) = ml1 + ..+ ml′ + ...+ mln ; so we are left to show ml1 + ..+ ml′ + ...+ mln =
ml1 + ..+ ml + ...+ mln + m(k, v), which is trivial as k only belong to l and l ′ for
the total order hypothesis. We can prove (3) by showing that the ascending step
does not alter the tree contents. The mechanized proofs for this command are
available at [85].

4.8 Refinement to block device

So far, we have dealt with B-trees as algebraic datatypes, i.e., as trees. Real
storage hardware, such as hard disk drives (HDD) and solid-state drives (SSDs),
work with blocks of bytes. Whilst the algebraic viewpoint suffices to discuss the
correctness of operations - such as find, insert and delete - we need to explain how
to extend our treatment to deal with the additional complexities of block storage.

What are block devices? Most storage operates in terms of a block model. A block
is simply a large contiguous chunk of bytes, for example, 1024 bytes or 4096 bytes
are common block sizes. Blocks are read and written as a whole, and addressed by
block number. Thus, block reads and writes must occur at a byte address that is

112 CHAPTER 4. B-TREES, FORMALLY

a multiple of the block size. For example, if the block size is 1024, it is possible
to read 1024 bytes from position 2048 (a multiple of the block size) in a single
operation, but to read 1024 bytes from position 2049 would require two block
reads (one at offset 2048, and one at 3096).

The performance of file systems depends on minimizing the number of block
operations. The B-tree data structure allows the branching factor of nodes, and
the size of leaves, to be chosen so that a full node fits exactly in one block. This
typically reduces the number of block operations needed when executing the B-tree
map operations, and therefore makes B-trees a very good fit for block devices. It
is worth to note, however, that B-trees impose some "organizational" overhead as
well, for instance maintaining the tree structure rather than indexing directly into
the data.

The algebraic model treats a tree as a node consisting of children which are subtrees
(Figure 4.11).

Figure 4.11: Algebraic view of a B-tree

When dealing with block devices, we instead model the children via pointers
(Figure 4.12).

Figure 4.12: Block view of a B-tree

Here ri is the pointer to the block representing the root of ti . Given a pointer
r to a block representing the root of a tree, it is easy to reconstruct the tree as
an algebraic structure. Thus, the block model is a refinement of the tree model:
what is represented is the algebraic tree structure, but the block model exposes
the pointers that are used to encode this structure on top of a block device.

4.9. RELATED WORK 113

The real-world nature of block devices requires us to take extra care because all
operations may potentially fail in a number of ways. At the most extreme, a
USB device can be unplugged at any point, causing the entire block device to
disappear. More mundanely, the device may become full and unable to service
further requests. These complexities can be dealt with uniformly through the
use of a monad (a technique from functional programming) to syntactically hide
the numerous error cases which otherwise would cause the B-tree code to become
unreadable.

The use of a block device also entails that we must somehow keep track of which
blocks are in use. There are several ways to implement this. Perhaps the simplest
maintains the "minimum free block" number, and simply increments this when
blocks are allocated. When free blocks are exhausted, we can simply transfer all
in-use blocks to another device, and continue. This has the downside that one
needs two block devices, and most of the time one of the devices is inactive. To be
usable, the transfer must occur ahead of time, and asynchronously, so that there is
no perceptible pause while the transfer takes place. An alternative is to maintain
an explicit free map on the block device itself. Yet another alternative is to reuse
an existing logical block manager such as is found in Linux LVM.

Beyond this, we must also address mundane issues such as how to marshal a tree
node (with pointers!) to a block-sized byte sequence. Typically nothing depends
on exactly how this is done, and we are free to choose whichever marshalling
scheme is most suitable.

Suprisingly it is possible to deal with all these issues whilst still keeping the
essential B-tree routines short and readable. The main additions to the code are
explicit block allocations and frees. To see how this is done, we refer the interested
reader to [85], which also includes the development of delete routines, and further
B-tree operations such as list all keys . Executable OCaml code, extracted from
the formal development and packaged so that it is accessible as an OCaml library,
can also be found in [84].

114 CHAPTER 4. B-TREES, FORMALLY

Figure 4.13: A B-tree according to Bayer and McCreight with branching factor 4

4.9 Related work

4.9.1 Proposed versions of the B-tree data structure

Bayer and McCreight introduced the term B-tree for the first time in 1970 [7]
(Figure 4.13), and their definition is the following:

Def. 2.1. Let h ≥ 0 be an integer, k a natural number. A directed tree
T is in the class τ (k, h) of B-trees if T is either empty (h = 0) or has
the following properties:

i) Each path from the root to any leaf has the same length h, also
called the height of T , i.e., h = number of nodes in path.

ii) Each node except the root and the leaves has at least k+1 sons.
The root is a leaf or has at least two sons.

iii) Each node has at most 2k + 1 sons.

iv) Each node holds between k and 2k keys except the root node which
may hold between 1 and 2k keys.

Then they discuss the properties that a B-tree must have in order to allow retrieval
from the store:

To repeat, the pages on which the index is stored are the nodes of a
B-tree [. . .] and can hold up to 2k keys. In addition the data structure
for the index has the following properties:

i) Each page holds between k and 2k keys (index elements) except the
root page which may hold between 1 and 2k keys.

ii) Let the number of keys on a page P , which is not a leaf, be l. Then
P has l + 1 sons.

iii) Within each page P the keys are sequential in increasing order: x1,
x2, . . . xl; k ≤ l ≤ 2k except for the root page for which 1 ≤ l ≤ 2k.

4.9. RELATED WORK 115

Furthermore, P contains l + 1 pointers p0,p1,. . . pl to the sons of P.
On leaf pages these pointers are undefined.

iv) Let P(pi) be the page to which pi points, let K (pi) be the set of
keys on the pages of that maximal subtree of which P(pi) is the root.
Then for the B-trees considered here the following conditions shall
always hold:

(∀y ∈ K (p0))(y < x1),

(∀y ∈ K (pi))(xi < y < xi+1); i = 1 , 2 , ..., l − 1 ,

(∀y ∈ K (pi))(xi < y).

Less than a decade later B-trees are "de facto, a standard for file organization"
[15] at least in databases [27]. During the 1980’s this data structure was further
developed, and Knuth proposed two versions: the B*-tree and the B+ tree. The
B*-tree is a B-tree in which nodes must be at least two-thirds full (Figure 4.14);
the main benefits of such a constraint are an optimized utilization of capacity
(at least 66%), and a faster lookup phase, since this variant has a smaller height
compared to traditional B-trees.

Figure 4.14: A B*-tree according to Knuth with branching factor 4

The B+ tree is a B-tree with keys also in the leaf nodes and with leaf nodes linked
together (Figure 4.15); the main benefits of using the B+ tree are evident for
sequential operations, because accessing many sequential entries requires a single
lookup operation to reach the intial entry and then follow the link between leaves.

In 2008 Rodeh introduces a persistent copy-on-write B+ tree [63]. The persistence
of the B+ tree enables the cheap implementation of features such as clones and
snapshots. The persistent B+ tree works through a copy-on-write mechanism:
every time there is a modification in the tree, the current tree remains intact, and
only a copy of the path from the root to the leaf is modified (Figure 4.16). The
Btrfs file system implements features like snapshots directly from Rodeh’s ideas
[64].

116 CHAPTER 4. B-TREES, FORMALLY

Figure 4.15: A B+ tree according to Knuth with branching factor 4. The empty boxes in the leaf
nodes hold the data entries

Figure 4.16: The addition of an element in a leaf requires shadowing up to the root

The new tree is achievable by taking the modified path root. With this mechanism
one can maintain multiple versions of the same tree by storing the old root and
not deleting the nodes belonging to the old path. This B+ tree does not chain its
leaves in a linked list, since it makes the copy-on-write mechanism too expensive:
the modification of a linked leaf requires the copy of all predecessors and successors
in order to have an updated list; but copying all leaves would mean changing every
path to the root, i.e., copy the whole tree at any modification. This B+ tree is
known in literature as the CoW B-tree.

4.9.2 B-tree verification

In literature there are various attempts to formalize and verify B-trees. These
attempts target two different abstract types: ephemeral and persistent ones. Harper
distinguish these abstract types as follows:

The distinction is best explained in terms of the logical future of a value.
Whenever a value of an abstract type is created it may be subsequently
acted upon by the operations of the type (and, since the type is abstract,
by no other operations). Each of these operations may yield (other)

4.9. RELATED WORK 117

values of that abstract type, which may themselves be handed off
to further operations of the type. Ultimately a value of some other
type, say a string or an integer, is obtained as an observable outcome
of the succession of operations on the abstract value. The sequence
of operations performed on a value of an abstract type constitutes a
logical future of that type — a computation that starts with that value
and ends with a value of some observable type. We say that a type is
ephemeral iff every value of that type has at most one logical future,
which is to say that it is handed off from one operation of the type
to another until an observable value is obtained from it. This is the
normal case in familiar imperative programming languages because in
such languages the operations of an abstract type destructively modify
the value upon which they operate; its original state is irretrievably
lost by the performance of an operation. It is therefore inherent in the
imperative programming model that a value have at most one logical
future. In contrast, values of an abstract type in functional languages
such as ML may have many different logical futures, precisely because
the operations do not "destroy" the value upon which they operate, but
rather create fresh values of that type to yield as results. Such values
are said to be persistent because they persist after application of an
operation of the type, and in fact may serve as arguments to further
operations of that type. [29]

After providing an implementation of an ephemeral B-tree in Pascal, Fielding
proposes a pen-and-paper proof using two refinements with an intermediate level
of nested sets [23].

Ernst et al. produced a mechanized verification of an ephemeral B+ tree by
integrating shape analysis and interactive theorem proving techniques [21].

Additionally Malecha et al. produced a mechanized verification of an ephemeral
B+ tree by using a separation logic framework for the Coq theorem prover [49]; in
this work they divide the logic of B-tree operations from the implementation by
creating a "p-tree" layer bound to the implementation, and also divide the proof
for B-tree validity in geography (the height and arity of the nodes) and keys order,
similarly to Sexton and Thielecke. approach [71].

The work of Sexton and Thielecke is probably the closest in the literature to the

118 CHAPTER 4. B-TREES, FORMALLY

work we present here. They present proofs of correctness for find and insert, and
operate on a version of B-trees where leaf nodes have sibling pointers. The main
similarities and differences with our work are:

• They work with a data structure with explicit links between sibling leaves.
Our B-trees are simpler, with no links between leaves. Their presentation is
closer to traditional B-trees, whereas ours is similar to recent copy-on-write
presentations, where leaf links are omitted [63].

• We have mechanized our definitions and proofs [85]. For non-mechanized
proofs, there are (almost inevitably) errors and typos.

• Both works make use of operational semantics.

• They additionally use separation logic. The use of separation logic affects
the presentation of lemmas and proofs, but one could argue that this is not
a huge difference, since separation logic assertions could be translated into
operational equivalents fairly directly.

• They operate on the level of stores, where (for example) page identifiers are
explicitly present in the proof. We have proofs at the level of abstract tree
datatypes (with framestacks), and the refinement to working with a block
device is presented as a further step. This further step additionally includes
aspects of separation that they treat using separation logic. Thus, we have
separated out the algebraic aspect from the separation/store aspect, whereas
they treat both simultaneously.

• Our presentation is in terms of a small-step semantics. If the data structures
are not altered by concurrent processes, then the proofs remain essentially
the same, and so proofs directly accommodate other concurrent users of the
store. Their proofs can perhaps be extended to cope with concurrency (for
example, by using a rely/guarantee version of separation logic), but this at
best is not immediately clear.

• Their proofs tend to involve inductions on the tree structure, and are (to
our taste) rather complicated. Our proofs are direct inductions on the steps
taken by the algorithm, to show that various invariants hold. Correctness of
the operations follows directly from the invariants. Thus, the proof structure
differs between these two works.

5
Conclusion and further work

In the previous chapters we discussed why file systems need verification, we
formalized the interesting subset of an existing operating system specification and
used it as an oracle against existing file systems. We showed how to extend this
formal specification with the timestamps feature, and we formalized a model of
copy-on-write B-tree and mechanically verified its commands in order to provide a
correct and efficient storage model for future file systems. These achievements are
the basis on which one can implement a verified file system that may be attractive
for industrial use.

We left unexplored some of the interesting riddles that this study conducted us to:

1. an efficient oracle for SibylFS extended with timestamps:

in §3.7.3 we demonstrated that validating file system implementations be-
havior for timestamps is limited to the execution of few commands. We
decided to propose the naive timestamp extension to keep the discussion clear.
However we considered exploring a timestamp model based on constraints.
The core idea is that, in order to avoid the state explosion (due to assigning
a value to marked timestamps), we should compute timestamp value directly
from the time constraints we extract from a trace. Accumulating time con-
straints (e.g., t1 < t2) should not affect the file system state of the model.

119

120 CHAPTER 5. CONCLUSION AND FURTHER WORK

The LP-map approach we showed accumulates time constraints, affecting
the file system state of the model. Such a system would leave the burden of
validating the consistency of observed timestamps in a trace to a constraint
solver;

2. specify and verify the B-tree delete operation:

for completeness and real world usability of the B-tree we need to formalize
and verify the last basic operation of the B-tree following the approach
described in Chapter 4;

3. provide an optimized refinement of the B-tree for the block device:

we used the algebraic view of the B-tree to model its formal specification,
but this needs to be refined to work optimally using the block device. Not
only the refined B-tree operations need to store the data fitting the blocks
size and blocks representation, but they have also to handle the erroneous
cases that a physical device comes with (e.g., a full device). This model has
also to manage the blocks used for the B-tree and the references to them.
Finally, it needs to be optimized to compete with industrial storage model
for file system (e.g., by implementing caching mechanisms for operations);

4. develop a future file system:

finally we can use all of these achieved artifacts to produce a verified file
system. Ideally, we could do this by injecting the refined B-tree as the
storage model of SibylFS. This would reuse the file system definitions of the
specification as the core of the file system.

We know that some of these open points are already being addressed (e.g., modelling
the delete operation and refining the B-tree to the block storage layer [61]) and we
have faith that a future file system will soon be born.

In summary, this work does not only show that formal methods are a valid tool
to achieve industrial results, but also that the effort they require can produce a
plethora of benefits: the identification of numerous specification and implemen-
tation inconsistencies, the discovery of simpler models and the development of
functionally correct software.

Appendix A: SibylFS main excerpts

This appendix is a short introduction to the internal mechanisms of SibylFS. The
building blocks of the specification are the abstract datatypes representing POSIX
basic types useful to define the file system behaviour:

type ty_bytes = T_list_array.t

type file_contents = ty_bytes

(* a C string, it may be a null pointer *)
type cstring = CS_Null | CS_Some of string

(*file descriptors*)
type ty_fd = FD of nat

(*directory handlers*)
type ty_dh = DH of nat

type inode = Inode of nat

type error =
E2BIG

| EACCES
| EAGAIN
| ...

type open_flag =
| O_EXEC

121

| O_RDONLY
| ...

Some abstract datatypes are useful to model the file system as a labeled transition
systems. The ty_os_command datatype for example labels operating system tran-
sition which execute commands on the file system. It is a sum type which defines
the commands considered by the specification. For instance, the specification
considers the link command, whose signature expects two strings as arguments
(representing the source and the target paths).

type ty_os_command =
| OS_CLOSE of ty_fd
| OS_LINK of (cstring * cstring)
| ...

So the ty_os_command type labels a transition with the command and inputs to
execute the command through the operating system layer, during this execution
another transition may happen in the file system layer (most of the commands
modeled have an effect on the file system). The function which runs the command
on the file system is the following:

let os_run_os_command env pid cmd s0 = begin
...
(* some setup that requires OS information *)
let pp path =

process_path env s0.oss_fs_state ppstate.pps_cwd cmd path in

let run_fs_cmd fs_cmd = os_run_fs_command env pid fs_cmd s0 in
...

let run_os_cmd (cmd : ty_os_command) = (
match cmd with
(* real os-commands *)
| OS_CLOSE fd -> ...
...
| OS_LINK (s,d) -> (run_fs_cmd (FS_LINK(pp s, pp d)))

The os_run_os_command arguments are:

• env a record data structure containing information about the file system

122

(e.g., is a POSIX, Linux, Mac OS X, or FreeBSD file system? Are hard links
to directories permitted? Etc. . .)

• pid the identifier of the process that should run the command
• cmd the command label (e.g., OS_LINK path1 path2)
• s0 the current state of the specification

Note how run_fs_cmd requires operating system information to work. For instance,
each operating system process has a current working directory which is a necessary
information to resolve path correctly (i.e., process_path in the code above).

The function that runs the file system command is the following:

let os_run_fs_command env pid cmd s0 = begin
let rs = fs_trans env s0.oss_fs_state cmd in

let monad_state_to_os_state (ms : monad_state 'impl ret_value) =
(match ms with

| Normal_state(fs_st,v) ->
OS_normal

(update_pending_return_and_fs_state s0 pid (Value v) fs_st)
| Error_state(fs_st,e) ->

OS_normal
(update_pending_return_and_fs_state s0 pid (Error e) fs_st)

| Special_state(special,s) -> (OS_special(special,s))
end) in
finset_image monad_state_to_os_state rs

end

The function finset_image applies a given function to each element of a set. The
file system state is a monad in order to make the design uniform and modular
§2.3.2.

The function monad_state_to_os_state transforms the file system monadic state
to its operating system counterpart. Normal states model successful executions, er-
ror states erroneous ones, and special states model behaviours that the specification
does not aim to consider.

The fs_trans function executes the command and returns all the reachable states:

123

...

let fsop_link env spath dpath = (fsm_get_state >>= (fun s0 ->
let spath = (

if (is_mac_os_x_arch env) then
(mac_os_x_map_rpath env s0 spath)

else spath)
in
fsop_link_checks env spath dpath >>=

(fun _ -> fsop_link_core env spath dpath)))

...
let fs_link = fsop_link
...

let ty_fs_command_to_fsmonad env cmd = match cmd with
| FS_LINK (s,d) -> (fs_link env s d)
...

...

let fs_trans env s0 cmd = (
let m = ty_fs_command_to_fsmonad env cmd in
let rs = run_fsmonad m s0 in
rs)

So the function fs_trans prepares the file system monad through the call to
ty_fs_command_to_fs_monad, and then it discloses the reachable states from the
monad with run_fsmonad.

The function ty_fs_command_to_fs_monad binds a command label with a com-
mand definition. For instance, the FS_LINK label is bound to the fs_link function,
which models the link command.

The link command source path resolution changes slightly according to the file
system architecture considered (see is_mac_os_x_arch case in the above excerpt).

Note that the fsop_link function uses the monad to compose the error checking
fsop_link_checks and the command execution fsop_link_core.

124

The error checking returns a set of erroneous states. For instance, erroneous state
would result by giving the link command arguments such as an existing target
path or a not existing source path:

let fsop_link_checks env spath dpath = (
fsm_get_state >>= fun s0 ->
(* sanity check spath in parallel with dpath *)
(match dpath with

| RN_error(e,<|re_rn=fopt|>) -> (
fsm_cond_raises [

(e,true);
(* tr/23 probable non-POSIX Linux behaviour

(path should not resolve) *)
(* coverage:mac_os_x:posix:irrelevant *)
(EEXIST, is_linux_arch env

&& isJust fopt
&& (e = ENOTDIR));

(* tr/27 apparent non-POSIX behaviour
- symlink is followed but a different error results *)

(* coverage:linux:posix:irrelevant *)
(EEXIST, is_mac_os_x_arch env

&& isJust fopt
&& (e = ENOTDIR))

])
| RN_file _ -> (fsm_raise EEXIST) (* posix/link.md EEXIST:1 *)
| RN_dir _ -> (fsm_raise EEXIST) (* posix/link.md EEXIST:1 *)
| RN_none (d0_ref,n,rp) -> (

let cwd = rp.rp_cwd in
let nl = rp.rp_nl in
let path =

CS_Some(Resolve.ty_name_list_to_string nl)
in
let b0 =

Resolve.res_name_is_symlink env.env_ops
s0
(Resolve.process_path_no_follow_no_trailing_slash

env

125

s0
cwd
path)

in
(if (is_linux_arch env ||

(is_mac_os_x_arch env && not b0))
&& rn_ends_with_slash dpath

then
(* tr/24, mac hfsplus_loop/link/results/

check_exec_link___link_nonempty_dir2__
f2.txt___nonexist_2__-int.trace *)

fsm_raise ENOENT
else

fsm_do_nothing)
|||
((* a symlink to a non-existing entry on mac

is treated as though the path resolved
to the symlink itself
hfsplus_loop/link/results/
check_exec_link___link_empty_dir1_____
nonempty_dir1__d2__sl_dotdot_no_such_
target-int.trace *)
if is_mac_os_x_arch env &&

b0 &&
not (rn_ends_with_slash dpath)

then fsm_raise EEXIST
else fsm_do_nothing))

end
) ||| (

match spath with
| RN_error(e,_) -> (fsm_raise e)
| RN_none _ -> (fsm_raise ENOENT) (* posix/link.md ENOENT:2 *)
| RN_file _ -> (

let cond =
is_linux_arch env &&
Resolve.res_name_is_symlink env.env_ops s0 spath &&

126

rn_ends_with_slash spath
in
fsm_cond_raises

[(ENOTDIR, (is_RN_none dpath &&
rn_ends_with_slash dpath &&
(not (is_mac_os_x_arch env)))

); (* posix/link.md ENOTDIR:4
hfsplus_loop/link/results/
check_exec_link___link_nonempty_dir1__
d2__f3.txt___nonempty_dir1__d2__sl_
dotdot_no_such_target__-int.trace *)

(ENOTDIR, cond); (* FIXME tr/?? *)
(EPERM, cond); (* FIXME tr/?? *)
(ENOENT, cond)]) (* FIXME tr/?? *)

| RN_dir(d0_ref, _) -> (
(* FIXME we should check link

/a/exist_dir /b/f1.txt/ *)
#ifdef aspect_perms

if (env.env_prms.cp_has_dir_link_create_privilege s0 d0_ref
&& arch_allows_dir_links env) then

#else
if (arch_allows_dir_links env) then

#endif
fsm_special

FIXME "link: directory links unsupported in this spec"
else

fsm_raise EPERM) (* posix/link.md EPERM:2 *)
end)

#ifdef aspect_perms
||| fsop_link_checks_perms env spath dpath

#endif
)

Notice that the #ifdef blocks are the specification extension points referred as
traits in §2.3.2. The aim of the error checking phase is to return the set of all
reachable error states. Indeed, the state combinator ||| merges the erroneous
states in the monad:

127

let fsm_parallel_composition_drop m1 m2 = Fsmonad (fun s ->
let (st_s1_n, st_s1) =

finset_partition is_Normal_state (run_fsmonad m1 s) in
let (st_s2_n, st_s2) =

finset_partition is_Normal_state (run_fsmonad m2 s) in

let res = finset_union st_s1 st_s2 in
(* remove obvious duplicates *)
let res' = finset_cleanup monad_state_shallow_eq res in
if (finset_is_empty st_s1_n || finset_is_empty st_s2_n) then

res'
else

finset_insert (Normal_state (s, dummy_return_value)) res'
)

let (|||) = fsm_parallel_composition_drop

If there are no error states, the main core behaviour of link will produce a set of
normal states:

let fsop_link_core env spath dpath = (
fsm_get_state >>= fun s0 ->
(match (spath, dpath) with

| (RN_file(_,_,i0_ref,_), RN_none(d0_ref, n, _)) -> (
let s0 = env.env_ops.fops_link_file s0 i0_ref d0_ref n in
fsm_put_state s0)

| _ -> fsm_special Impossible "error raised before"
end))

The env.env_ops.fops_link_file function provides the algorithmic behaviour
of the command. The specification provides an in memory model of link since its
present use case is to be an oracle for existing file systems:

let dhops_link s0 ent d0_ref name = (
let s1 = dh_update_dir_entries s0 d0_ref name (Just ent) in
(* increase st_nlink for the fs object *)
match ent with
| File_ref_entry(f_ref) ->

128

let file = fromJust(dh_lookup_file s1 f_ref) in
dh_update_files

s1
f_ref
(Just(<|file with dhf_nlink=(file.dhf_nlink+1)|>))

| Dir_ref_entry(d_ref) ->
let dir = fromJust(dh_lookup_dir s1 d_ref) in
(* increase the link count of the parent *)
let parent = fromJust (dh_lookup_dir s1 d0_ref) in
let s1 =

dh_update_dirs
s0
d0_ref
(Just(<|parent with dhd_nlink=(parent.dhd_nlink+1)|>))

in
(* increase the link count of the dir *)
dh_update_dirs

s1
d_ref
(Just(<|dir with dhd_nlink=(dir.dhd_nlink+1)|>)) end

)

This link implementation uses heaps to store files and directories. The link
function adds the given file to the contents of the directory that should include
the new link.

129

130

Appendix B: SibylFS extended with
timestamps main excerpts

This appendix provides excerpts of SibylFS extended with the timestamps feature
[4], mainly focusing on the timestamp update events and examples of traces used
to validate the time features of the specification.

Periodic update events

The stat update

The stat update requires that all the timestamps marked for update obtain a
time value:

val fsop_stat_core:
fs_ops ->
res_name ->
fsmonad

let fsop_stat_core ops rn = (
fsm_get_state >>= (fun s0 -> (
(match rn with
| RN_file(d0_ref,n,i0_ref,rp) ->
#ifdef aspect_time
let s0 = (* see STAT_TS in fs_spec/posix/timestamps *)
update_timestamps_fs_state ops s0
(File_ref_entry i0_ref)

131

in
#endif
(fsm_put_state_return s0
(RV_logical_stats (ops.fops_stat_file s0 i0_ref)))

| RN_dir(d0_ref,rp) ->
#ifdef aspect_time
let s0 = (* see STAT_TS in fs_spec/posix/timestamps *)
update_timestamps_fs_state ops s0 (Dir_ref_entry d0_ref)

in
#endif
(fsm_put_state_return s0
(RV_logical_stats (ops.fops_stat_dir s0 d0_ref)))

| _ -> fsm_special Impossible "error raised before" end))))

where update_timestamps_fs_state assigns logical clock value to the marked
timestamps.

The close update

The close update happens when the operating system attempts to close the last
file descriptor that is still open for a file system object. The definition of the
close event concerns both the file system, which may need to assign the current
clock value to marked file, and the operating system state, which contains the
list of open objects. In SibylFS this scope is available during the translation from
operating system label to file system label:

...
let run_os_cmd (cmd : ty_os_command) = (
match cmd with
(* real os-commands *)
| OS_CLOSE fd ->

#ifdef aspect_time
(* we need to check that the fd is valid *)

let fid_of_fd = lookup_fid_of_fd s0 pid fd in
match fid_of_fd with
| Nothing ->

(* if the fd does not exist

132

we do not need to update timestamps *)
(os_close env pid fd s0)

| Just (_,fid_state) ->
(* we need the entry corresponding

to the to-be-closed fd *)
let entry = fid_state.fids_entry in
(* see FILE_CLOSED_TS in fs_spec/posix/timestamps*)
finset_image

(update_timestamps_for_entry_if_no_open_fds
env entry)

(os_close env pid fd s0)
end

#else
(os_close env pid fd s0)

#endif
...

The function update_timestamps_for_entry_if_no_open_fds takes the oper-
ating system states generated by the close command, and for each of these it
updates the timestamps of the given entry, if no other process has an open file
descriptor for it.

Examples of manual test traces

This section provides an example trace for each test category. As a reminder, a
positive trace tests that the specifications accepts valid timestamps updates; a
negative trace tests that the specification rejects invalid updates; a concurrent
trace tests that the specification can handle concurrent updates.

All the examples use the command chmod: this command changes the object
permissions and alters the change timestamp.

Positive trace

@type trace
#chmod test on file

133

4: open "/f1.txt" [O_CREAT;O_RDWR] 0o644
Tau
RV_num(3)

6: close (FD 3)
Tau
RV_none

end of state setup

10: lstat "/f1.txt"
Tau
RV_stat {

st_dev=36;
st_ino=34396;
st_kind=S_IFREG;
st_perm=0o644;
st_nlink=1;
st_uid=0;
st_gid=0;
st_rdev=0;
st_size=0;
st_atim={tv_sec=1428336036;tv_nsec=0;};
st_mtim={tv_sec=1428336036;tv_nsec=0;};
st_ctim={tv_sec=1428336036;tv_nsec=0;}; }

12: chmod "/f1.txt" 0o1750
Tau
RV_none

chmod should update the st_ctime of the file
(see CHMOD_TS in fs_spec/posix/chmod)

16: lstat "/f1.txt"
Tau

134

RV_stat {
st_dev=36;
st_ino=34396;
st_kind=S_IFREG;
st_perm=0o1750;
st_nlink=1;
st_uid=0;
st_gid=0;
st_rdev=0;
st_size=0;
st_atim={tv_sec=1428336036;tv_nsec=0;};
st_mtim={tv_sec=1428336036;tv_nsec=0;};
st_ctim={tv_sec=1428336036;tv_nsec=1;}; }

18: dump-result "/"
"/"|D|st_dev=36;

|st_ino=36065;
|st_kind="S_IFDIR";
|st_perm=511;
|st_nlink=2;
|st_uid=0;
|st_gid=0;
|st_rdev=0;
|st_size=60;
|st_atim={tv_sec=1428336036;tv_nsec=0;};
|st_mtim={tv_sec=1428336036;tv_nsec=0;};
|st_ctim={tv_sec=1428336036;tv_nsec=0;};

"/f1.txt"|F
|"da39a3ee5e6b4b0d3255bfef95601890afd80709"
|st_dev=36;
|st_ino=34396;
|st_kind="S_IFREG";
|st_perm=1000;
|st_nlink=1;
|st_uid=0;
|st_gid=0;

135

|st_rdev=0;
|st_size=0;
|st_atim={tv_sec=1428336036;tv_nsec=0;};
|st_mtim={tv_sec=1428336036;tv_nsec=0;};
|st_ctim={tv_sec=1428336036;tv_nsec=1;};

end dump-result

This trace firstly calls an lstat to see the timestamps that the new file has (i.e.,
the stat implies an addition of an entry logical-physical time in the LP-map),
then calls chmod and finally calls dump (i.e., a command that lists time metadata
for all the objects present in the file system) to show that the specification accepts
the correct timestamp being updated.

The relative chmod periodic trace is:

@type trace
#chmod test on file

4: open "/f1.txt" [O_CREAT;O_RDWR] 0o644
Tau
RV_num(3)

6: close (FD 3)
Tau
RV_none

end of state setup

10: lstat "/f1.txt"
Tau
RV_stat {

st_dev=36;
st_ino=36516;
st_kind=S_IFREG;
st_perm=0o644;
st_nlink=1;
st_uid=0;
st_gid=0;

136

st_rdev=0;
st_size=0;
st_atim={tv_sec=1428336896;tv_nsec=0;};
st_mtim={tv_sec=1428336896;tv_nsec=0;};
st_ctim={tv_sec=1428336896;tv_nsec=0;}; }

12: chmod "/f1.txt" 0o1750
Tau
RV_none

dump-internal

chmod should update the st_ctime of the file
(see CHMOD_TS in fs_spec/posix/chmod)

16: lstat "/f1.txt"
Tau
RV_stat {

st_dev=36;
st_ino=36516;
st_kind=S_IFREG;
st_perm=0o1750;
st_nlink=1;
st_uid=0;
st_gid=0;
st_rdev=0;
st_size=0;
st_atim={tv_sec=1428336896;tv_nsec=0;};
st_mtim={tv_sec=1428336896;tv_nsec=0;};
st_ctim={tv_sec=1428336896;tv_nsec=1;}; }

the dump sees that the ctime of f1.txt and
the root dir have been updated at the same time
(periodic update)

18: dump-result "/"

137

"/"|D|st_dev=36;
|st_ino=36513;
|st_kind="S_IFDIR";
|st_perm=511;
|st_nlink=2;
|st_uid=0;
|st_gid=0;
|st_rdev=0;
|st_size=60;
|st_atim={tv_sec=1428336896;tv_nsec=1;};
|st_mtim={tv_sec=1428336896;tv_nsec=1;};
|st_ctim={tv_sec=1428336896;tv_nsec=1;};

"/f1.txt"|F
|"da39a3ee5e6b4b0d3255bfef95601890afd80709"
|st_dev=36;
|st_ino=36516;
|st_kind="S_IFREG";
|st_perm=1000;
|st_nlink=1;
|st_uid=0;
|st_gid=0;
|st_rdev=0;
|st_size=0;
|st_atim={tv_sec=1428336896;tv_nsec=0;};
|st_mtim={tv_sec=1428336896;tv_nsec=0;};
|st_ctim={tv_sec=1428336896;tv_nsec=1;};

end dump-result

This trace is similar to the previous, although it tests that update delays are
supported by the specification. Notice that the periodicity is given by the times-
tamps of the root directory, which are updated at the same time of the change
timestamps of the file.

138

Negative trace

@type trace
#chmod test on file

4: open "/f1.txt" [O_CREAT;O_RDWR] 0o644
Tau
RV_num(3)

6: close (FD 3)
Tau
RV_none

end of state setup

10: lstat "/f1.txt"
Tau
RV_stat {

st_dev=36;
st_ino=39492;
st_kind=S_IFREG;
st_perm=0o644;
st_nlink=1;
st_uid=0;
st_gid=0;
st_rdev=0;
st_size=0;
st_atim={tv_sec=1428343545;tv_nsec=1;};
st_mtim={tv_sec=1428343545;tv_nsec=1;};
st_ctim={tv_sec=1428343545;tv_nsec=1;}; }

12: chmod "/f1.txt" 0o1750
Tau
RV_none

chmod should update the st_ctime of the file

139

(see CHMOD_TS in fs_spec/posix/chmod)

we try to go back in time on the timestamp to update
18: dump-result "/"

"/"|D|st_dev=36;
|st_ino=39489;
|st_kind="S_IFDIR";
|st_perm=511;
|st_nlink=2;
|st_uid=0;
|st_gid=0;
|st_rdev=0;
|st_size=60;
|st_atim={tv_sec=1428343545;tv_nsec=1;};
|st_mtim={tv_sec=1428343545;tv_nsec=1;};
|st_ctim={tv_sec=1428343545;tv_nsec=1;};

"/f1.txt"|F
|"da39a3ee5e6b4b0d3255bfef95601890afd80709"
|st_dev=36;
|st_ino=39492;
|st_kind="S_IFREG";
|st_perm=1000;
|st_nlink=1;
|st_uid=0;
|st_gid=0;
|st_rdev=0;
|st_size=0;
|st_atim={tv_sec=1428343545;tv_nsec=1;};
|st_mtim={tv_sec=1428343545;tv_nsec=1;};
|st_ctim={tv_sec=1428343545;tv_nsec=0;};

end dump-result

we try to alter the wrong timestamp

18: dump-result "/"

140

"/"|D|st_dev=36;
|st_ino=39489;
|st_kind="S_IFDIR";
|st_perm=511;
|st_nlink=2;
|st_uid=0;
|st_gid=0;
|st_rdev=0;
|st_size=60;
|st_atim={tv_sec=1428343545;tv_nsec=1;};
|st_mtim={tv_sec=1428343545;tv_nsec=1;};
|st_ctim={tv_sec=1428343545;tv_nsec=1;};

"/f1.txt"|F|"da39a3ee5e6b4b0d3255bfef95601890afd80709"
|st_dev=36;
|st_ino=39492;
|st_kind="S_IFREG";
|st_perm=1000;
|st_nlink=1;
|st_uid=0;
|st_gid=0;
|st_rdev=0;
|st_size=0;
|st_atim={tv_sec=1428343545;tv_nsec=1;};
|st_mtim={tv_sec=1428343545;tv_nsec=2;};
|st_ctim={tv_sec=1428343545;tv_nsec=1;};

end dump-result

18: dump-result "/"
"/"|D|st_dev=36;

|st_ino=39489;
|st_kind="S_IFDIR";
|st_perm=511;
|st_nlink=2;
|st_uid=0;
|st_gid=0;

141

|st_rdev=0;
|st_size=60;
|st_atim={tv_sec=1428343545;tv_nsec=1;};
|st_mtim={tv_sec=1428343545;tv_nsec=1;};
|st_ctim={tv_sec=1428343545;tv_nsec=1;};

"/f1.txt"|F|"da39a3ee5e6b4b0d3255bfef95601890afd80709"
|st_dev=36;
|st_ino=39492;
|st_kind="S_IFREG";
|st_perm=1000;
|st_nlink=1;
|st_uid=0;
|st_gid=0;
|st_rdev=0;
|st_size=0;
|st_atim={tv_sec=1428343545;tv_nsec=1;};
|st_mtim={tv_sec=1428343545;tv_nsec=1;};
|st_ctim={tv_sec=1428343545;tv_nsec=2;};

end dump-result

This trace attempts invalid updates according to the POSIX specification: firstly we
try to assign a smaller time value than the current clock to the change timestamp;
then we try to update a timestamp different from the one chmod would update.
The last dump command is successful as we gave the dump-result of the correct
update to test that the timestamp was update correctly.

Concurrent trace

@type trace
concurrent chmod tests for timestamp
updates (valid for both immediate and periodic)

Pid 2 -> create User_id 2 Group_id 2
Pid 3 -> create User_id 2 Group_id 2
Pid 4 -> create User_id 2 Group_id 2

142

Pid 1 -> add_user_to_group User_id 2 Group_id 2
Tau
Pid 1 <- -

Pid 1 -> add_user_to_group User_id 3 Group_id 2
Tau
Pid 1 <- -

Pid 1 -> add_user_to_group User_id 4 Group_id 2
Tau
Pid 1 <- -

Pid 2 -> open /f1.txt [O_CREAT;O_RDWR] 0o666
Tau
Pid 2 <- -

Pid 2 -> close (FD 3)
Tau
Pid 2 <- -

end state setup

Pid 2 -> stat /f1.txt
Tau
Pid 2 <- RV_stat {st_dev=2049;

st_ino=2;
st_kind=S_IFREG;
st_perm=0o644;
st_nlink=1;
st_uid=2;
st_gid=2;
st_rdev=0;
st_size=0;
st_atim={tv_sec=9;tv_nsec=0;};
st_mtim={tv_sec=9;tv_nsec=0;};
st_ctim={tv_sec=9;tv_nsec=0;};}

143

Pid 3 -> chmod /f1.txt 0o755
Pid 4 -> chmod /f1.txt 0o757
Pid 2 -> chmod /f1.txt 1000

Tau
Tau
Tau

Pid 3 <- -
Pid 4 <- -
Pid 2 <- -

Pid 2 -> stat /f1.txt
Tau
Pid 2 <- RV_stat {st_dev=2049;

st_ino=2;
st_kind=S_IFREG;
st_perm=0o1750;
st_nlink=1;
st_uid=2;
st_gid=2;
st_rdev=0;
st_size=0;
st_atim={tv_sec=9;tv_nsec=0;};
st_mtim={tv_sec=9;tv_nsec=0;};
st_ctim={tv_sec=10;tv_nsec=0;};}

Pid 3 -> stat /f1.txt
Tau
Pid 3 <- RV_stat {st_dev=2049;

st_ino=2;
st_kind=S_IFREG;
st_perm=0o1750;
st_nlink=1;
st_uid=2;

144

st_gid=2;
st_rdev=0;
st_size=0;
st_atim={tv_sec=9;tv_nsec=0;};
st_mtim={tv_sec=9;tv_nsec=0;};
st_ctim={tv_sec=10;tv_nsec=0;};}

Pid 4 -> stat /f1.txt
Tau
Pid 4 <- RV_stat {st_dev=2049;

st_ino=2;
st_kind=S_IFREG;
st_perm=0o1750;
st_nlink=1;
st_uid=2;
st_gid=2;
st_rdev=0;
st_size=0;
st_atim={tv_sec=9;tv_nsec=0;};
st_mtim={tv_sec=9;tv_nsec=0;};
st_ctim={tv_sec=10;tv_nsec=0;};}

This trace creates three operating system processes, and alters simultaneously the
permissions of the same object. As for the earlier traces, timestamps are observed
before and after using chmod. Note that the specification handles concurrency
with non-determinism: it maintains multiple valid states representing the possible
parallel runs.

145

146

Appendix C: B-tree main excerpts

A Tree is a recursive type. A Leaf contains an equal number of keys and values,
while a Node contains a list of keys of length n and a list of children of length
n + 1 :

type_synonym leaf_lbl_t = "(key * value_t) list"
type_synonym node_lbl_t = "key list"

datatype Tree = Node "node_lbl_t * Tree list" | Leaf "leaf_lbl_t"

Note that we may use the term treestack as equivalent to the framestack discussed
in §4.5.

5.1 B-tree wellformedness

A Tree is a wellformed B-tree if it satisfies the following property:

definition wellformed_tree :: "ms_t => Tree => bool" where
"wellformed_tree ms t0 == (

let b1 = wf_size ms t0 in
let b2 = wf_ks_rs t0 in
let b3 = balanced t0 in
let b4 = keys_consistent t0 in
let b5 = keys_ordered t0 in
let wf = b1&b2&b3&b4&b5 in

wf
)"

147

The definition of wellformedness changes slightly according to the size of the node
under examination (see the wf_size predicate). We introduce a type ms_t to flag
when leaves and nodes have sizes smaller than the allowed minimum (to handle
the root cases and support the delete operation):

datatype min_size_t = Small_root_node_or_leaf
| Small_node
| Small_leaf

type_synonym ms_t = "min_size_t option"

Each predicate in the wellformedness definition is applied recursively to each
subtree contained in the given node (i.e., when the Tree is not a leaf).

The properties definitions:

Wf_size The size of a leaf is the number of entries it contains, while the size of
a node is its number of children. All the nodes in a B-tree have an upper
bound on their size, and non-root nodes have also a lower bound.

consts min_leaf_size :: nat
consts max_leaf_size :: nat
consts min_node_keys :: nat
consts max_node_keys :: nat

Although one can obtain a valid B-tree with whatever value of the constants,
we designed the B-tree commands assuming the following properties on the
constants:

definition wellformed_constants :: "bool" where
"wellformed_constants == (
let wf_node_constants =
(1 <= min_node_keys
&
(max_node_keys = 2 * min_node_keys
| max_node_keys = Suc (2 * min_node_keys))
)
in
let (wf_leaf_constants) =

148

(1 <= min_leaf_size
&
(max_leaf_size = 2 * min_leaf_size
| max_leaf_size = Suc (2 * min_leaf_size))
)
in
wf_node_constants & wf_leaf_constants
)"

So minimal boundary should be greater than 0, and the maximum can be
equal to the doubled minimal boundary or the successor number to allow
odd keys sizes.

This property changes slightly, if it is dealing with a Leaf root:

definition get_min_size :: "(min_size_t * Tree) => nat" where
"
get_min_size mt == (
case mt of
(Small_root_node_or_leaf,Node _) => 1
| (Small_root_node_or_leaf,Leaf _) => 0
| (Small_node, Node _) => min_node_keys-1
| (Small_leaf,Leaf _) => min_leaf_size-1
| (_,_) => undefined
)
"
definition wf_size_1 :: "Tree => bool" where
"wf_size_1 t1 == (
case t1 of
Leaf xs => (
let n = length xs in
(n >= min_leaf_size) & (n <= max_leaf_size))
| Node(l,cs) => (
let n = length l in
(1 <= n) & (n >= min_node_keys) & (n <= max_node_keys)

)
)

149

"

definition wf_size :: "ms_t => Tree => bool" where
"wf_size ms t0 == (
case ms of
None => (forall_subtrees wf_size_1 t0)
| Some m => (
let min = get_min_size (m,t0) in
case t0 of
Leaf xs =>
let n = length xs in
(min <= n) & (n <= max_leaf_size)
| Node(l,cs) => (
let n = length l in
(min <= n) & (n <= max_node_keys)
& (List.list_all (forall_subtrees wf_size_1) cs))
))"

Indeed, when the type ms_t is Some Small_root_node_or_leaf and the
Tree is a Leaf, the Leaf can be empty. When it is a Node, it must contain
at least a child, and the children must satisfy the wf_size_1 predicate. If
the Node is not the root of the whole Tree, it must satisfy the wf_size_1
predicate as its children. Note that at least a child must exist, as an empty
Node is considered meaningless.

Wf_ks_rs In a well formed tree each Node has n keys and n+1 children:

definition wf_ks_rs_1 :: "Tree => bool" where
"wf_ks_rs_1 t0 == (
case t0 of Leaf _ => True
| Node(l,cs) => ((1+ length l) = (length cs))
)"

definition wf_ks_rs :: "Tree => bool" where
"wf_ks_rs t0 == forall_subtrees wf_ks_rs_1 t0"

Balanced In a wellformed B-tree every path from the root to any Leaf should
have the same length. The height of a Tree is the number of steps to reach a

150

Leaf from the given Tree:

function height :: "Tree => nat" where
"height t0 = (
case t0 of
Leaf _ => (1::nat)
| Node(_,cs) => (1 + Max(set(List.map height cs)))
)"

A Tree is balanced if all the children have the same height:

definition balanced_1 :: "Tree => bool" where
"balanced_1 t0 == (
case t0 of Leaf(l) => True
| Node(l,cs) => (
(cs = []) | (
List.list_all (% c. height c = height (cs!0)) cs))
)"

definition balanced :: "Tree => bool" where
"balanced t == forall_subtrees balanced_1 t"

Keys_consistent In a wellformed B-tree the keys of the children are always bound
by the keys of the current node. So for example:

Consider the following root node:
Node([key1,key2],[child1,child2,child3]).

Represented as the mixed list:

| child1 | key1 | child2 | key2 | child3 |

There are three consistency constraints over the node keys:

1. child1 keys are smaller than key1

2. child2 keys are bigger or equal than key1
and smaller than key2

151

3. child3 keys are bigger or equal than key2

The following definition expresses this property:

definition keys_1 :: "Tree => key list" where "keys_1 t0 ==
(case t0 of Leaf xs => (List.map fst xs)
| Node (l,cs) => (l)
)"

definition keys :: "Tree => key list" where
"keys t0 ==

(t0 |> tree_to_subtrees |>
(List.map keys_1) |> List.concat)"

definition key_indexes :: "Tree => nat list" where
"key_indexes t == (

case t of
Leaf xs => (upt 0 (length xs))
| Node (l,_) => (upt 0 (length l)))"

definition keys_consistent_1 :: "Tree => bool" where
"keys_consistent_1 t0 == (
case t0 of Leaf(l) => True
| Node(label,children) => (
let b1 = (! i : set(key_indexes t0).

let k0 = label!i in
let kls = keys(children!i) in
check_keys None kls (Some k0))

in
let b2 = (! i : set(key_indexes t0).

let k0 = label!i in
let krs = keys(children!(i+1)) in
check_keys (Some k0) krs None)

in
b1 & b2
))
"

152

definition keys_consistent :: "Tree => bool" where
"keys_consistent t == forall_subtrees keys_consistent_1 t"

The snippet ! i : set is the Isabelle/HOL textual representation for: ∀i ∈
set, which means that all elements of the set must satisfy the given predicate.

The definition keys is recursive and collects all the keys of a Tree.

The following definition checks that a list of keys ks is in the interval defined
by kl and kr :

definition check_keys
:: "key option => key list => key option => bool"

where
"check_keys kl ks kr == (
let b1 = (
case kl of None => True
| Some kl => (! k : set ks. key_le kl k)
)
in
let b2 = (
case kr of None => True
| Some kr => (! k : set ks. key_lt k kr)
)
in
b1 & b2
)"

where key_lt stands for "key less than other key" and key_le for "key less
than or equal other key", they are parametric definition standing for ordering
operators over keys. These operators are made generic to make them reusable
in other contexts:

consts key_lt :: "key => key => bool"

definition key_eq :: "key => key => bool" where
"key_eq k1 k2 == (~ (key_lt k1 k2)) & (~ (key_lt k2 k1))"

definition key_le :: "key => key => bool" where

153

"key_le k1 k2 == (key_eq k1 k2) | (key_lt k1 k2)"

The generality can be achieved by leaving the key_lt operator dependent
on the type of the key, and building the other operators on it.

Keys_ordered The lists of keys contained in any kind of node must be sorted in
ascending order; this enforces that all the key in a node are different. This
is defined in the following:

definition keys_ordered_1 :: "Tree => bool" where
"keys_ordered_1 t0 == (
let is = set (butlast (key_indexes t0)) in
case t0 of
Leaf xs =>

let ks = (xs |> List.map fst) in
! i : is. key_lt (ks!i) (ks!(i+1))

| Node (ks,_) =>
! i : is . key_lt (ks!i) (ks!(i+1))

)
"

definition keys_ordered :: "Tree => bool" where
"keys_ordered t == forall_subtrees keys_ordered_1 t"

The ascending order is enforced by key_lt, that is the less than operator on
the Key type.

5.2 B-tree find

The find command returns the value corresponding to the given key k, or nothing,
if the tree does not contain such an association. The find step function returns
the leaf node reached by looking up k. The focus for find contains the searched
key and a subtree:

type_synonym f_focus_t = "key * Tree"

The find step takes a framestack (here called f_tree_stack) and may or may not
return a new framestack. Indeed, the step searches for the key k in the focus’ tree:
if it is a node the search is not finished and a new framestack is returned; if it is a

154

leaf nothing is returned, as the search is already completed and the leaf is in the
focus of the given framestack.

definition step_fts
:: "f_tree_stack => f_tree_stack option"
where
"step_fts fts == (
(* we extract the key we are looking for,

the tree in which to search,
and the context we got so far *)

let (k,t,ctx) = dest_f_tree_stack fts in
(* we get the lower and upper bounds of the parent node *)
let (lb,rb) =
case ctx of Nil => (None,None)
| (lb,_,rb)#_ => (lb, rb)
in
(case t of
(* if the tree in which to search is a Leaf, we can stop *)
Leaf _ => None
(* if the tree in which to search is a Node,

we need to descend further *)
| Node(ks,rs) =>
(* we find the index of the first key that is bigger than our key *)
let i = search_key_to_index ks k in
(* we find the lower and upper bound for the current tree *)
let (l,u) = get_lower_upper_keys_for_node_t ks lb i rb in
(* we add the tree to the context *)
let ctx2 = (l,((ks,rs),i),u)#ctx in
(* we create a new stack with the ith child as focus

and the new context *)
Some(Tree_stack(Focus(k,(rs!i)),ctx2))
))"

Note that when a leaf node is reached, find does not return a key value pair to
make the algorithm reusable for insert: once in a leaf, another function looks up
for the value.

The complete find would loop the step until a leaf is reached, and return the value

155

corresponding to the key, if there is one.

5.2.1 Find correctness

Two properties are needed to prove find correctness:

1. the preservation of B-tree wellformedness:

definition invariant_wf_fts :: "bool" where
"invariant_wf_fts == (
! fts.
let wellformed_fts' =
(
let fts' = step_fts fts in
case fts' of None => True
| Some fts' => wellformed_fts fts'
)
in
total_order_key_lte -->
wellformed_fts fts --> wellformed_fts'

)"

each step must leave the tree stack well formed, which implies that the final
tree is well formed as well.

2. the Map find interface equivalence:

definition invariant_map_equivalence_find :: "bool" where
"invariant_map_equivalence_find == (
! fts.
let map_equivalence_find =
(
case step_fts fts of
Some fts' =>
let k = fst (dest_f_tree_stack fts) in
let m = fts_to_map fts in
let m' = fts_to_map fts' in
((m k) = (m' k))
| _ => True

156

)
in
total_order_key_lte -->
wellformed_fts fts --> map_equivalence_find

)"

the Map obtained by the descended framestack is equivalent to the one
obtained from the initial framestack.

5.3 B-tree insert

The insert command returns a new tree containing the given (key,value) pair.
This command uses three types of steps: locating the relevant leaf where the new
(k,v) will be inserted; adding the entry; restructure the tree to satisfy the B-tree
properties (if needed).

The find step is reused to descend the tree. The insert step is a bit more complicated
when it deals with corner cases: for instance inserting in a full leaf requires tree
restructuring. In these cases the insert algorithm splits the node. So the insert
focus can both contain a single tree or two trees separated by a separating key:

datatype its_focus_t =
Inserting_one "Tree"
| Inserting_two "Tree * key * Tree"

The high level algorithm is defined as:

definition its_step_tree_stack
:: "its_state => (its_state) option"
where
"its_step_tree_stack ist == (
case ist of
(* if the tree stack allows find transitions we descend the tree *)
Its_down (fts,v0) =>
let fts1 = step_fts fts in
(case fts1 of
(* if running a step returns nothing we have reached a Leaf *)
None =>

157

(* when a Leaf is reached we can insert the key-value pair
and start ascending *)

Option.bind (step_bottom fts v0) (% x . Some (Its_up x))
(* if running a step returns some tree stack we have to keep descending*)
| Some x => Some(Its_down(x,v0)))
(* if the tree stack allows only insert transitions we ascend the tree*)
| Its_up ts => Option.bind (step_up ts) (% x . Some (Its_up x)))
"

The find steps descend the tree, labeling the state as Its_down. At the bottom of
the tree, find steps cannot be applied anymore, and the insertion of the given pair
takes place, and start to ascend the tree to restore the validity properties (labeling
the state as Its_up).

5.3.1 Insert correctness

Showing the two properties for the insert interface is more demanding than showing
the ones for find:

1. the preservation of B-tree wellformedness:

find steps do not invalidate this property, but both bottom and ascending
steps may do it. So, the property that must be invariant for step_up follows:

definition invariant_wf_ts :: "bool" where
"invariant_wf_ts == (
(*assume ts' is a valid tree stack that results

from an ascending transition on ts*)
in

total_order_key_lte -->
wellformed_constants -->
wellformed_ts ts --> wellformed_ts'

)
"

The property means that given a total order on the keys, valid constants (e.g.,
minimum size of a node is half than the maximum size), and a wellformed
framestack, an ascending transition on the original framestack must produce
a wellformed one.

158

This proof is particularly challenging, as we need to prove both the well-
formedness of the focus (which can be a single tree or a pair of trees), and
the wellformedness of the head of the framestack updated with the tree(s) in
the focus.

Then a similar proof must be developed for step_bottom and the other
transitions:

definition wf_its_state :: "its_state => bool" where
"wf_its_state its == (
case its of
Its_down (fts,_) => wellformed_fts fts
| Its_up its => wellformed_ts its
)"

definition invariant_wf_its_state :: "bool" where
"invariant_wf_its_state == (
(*assume ts' is a valid tree stack that results

from a descending transition on ts*)
in

total_order_key_lte -->
wellformed_constants -->
wf_its_state its --> wf_its_state_its'

)
"

2. the Map insert interface equivalence:

definition invariant_insert_map_its :: "bool" where
"invariant_insert_map_its = (
!its.
(case its of
Its_down(fts,_) =>
(case step_fts fts of
None => invariant_step_bottom_map_its
| _ => invariant_map_equivalence_find)

| _ => invariant_step_up_map_its))
"

159

the correctness of the insert step depends on the correctness of each of its
phases. The descending invariant was covered in §5.2, while the bottom and
ascending are shown below:

definition invariant_step_bottom_map_its :: "bool" where
"invariant_step_bottom_map_its = (
!fts k v.
let its = step_bottom fts v in
let m_eq_m' = (
let m = fts_to_map fts in
(case its of None => True
| Some its =>
let m' = its_to_map its in
m' = m(k \<mapsto> v)))

in
total_order_key_lte -->
wellformed_fts fts -->
m_eq_m')"

m, the Map corresponding to the initial framestack, and m′ , the Map
corresponding to the framestack after an insertion, must differ only on a
single binding (k,v).

definition invariant_step_up_map_its :: "bool" where
"invariant_step_up_map_its = (
!its.
let its' = step_up its in
let m_eq_m' = (
let m = its_to_map its in
(case its' of None => True
| Some its' =>
let m' = its_to_map its' in
m = m'))

in
total_order_key_lte -->
wellformed_ts its -->
m_eq_m')
"

160

m, the Map corresponding to the initial framestack, and m′, the Map
corresponding to the framestack after an ascending transition, must be
equivalent.

161

162

Appendix D: trace that shows ext4
periodicity

Using the dbench [81] tool on a machine running Linux 3.14-2 with an Intel Core
i7-4600M 2.90GHz CPU with performance governor, ATA3 OPAL2.0 SSD, and
16GB RAM an example of the periodic update behaviour manifested in running a
trace on the ext4 file system.

The following trace does the following:

1. creates a directory dir_1;
2. creates two broken symlinks;
3. creates a subdirectory dir_1/dir_2;
4. creates another broken symlink.

As the ext4 file system applies a periodic strategy to timestamps update, it can
happen that the timestamps attributed to the created files do not follow the order
1 < 2 < 3 < 4 . Indeed, in the following trace 3 < 1 holds: the subdirectory has
earlier timestamps than the parent directory.

@type trace

test mkdir

5: mkdir "/dir_1" 0o777
Tau
RV_none

7: symlink "justwaiting" "/s"
Tau

163

RV_none

9: symlink "justwaiting" "/s1"
Tau
RV_none

11: mkdir "/dir_1/dir_2" 0o777
Tau
RV_none

13: symlink "blabla" "/symlink_1"
Tau
RV_none

15: lstat "/dir_1"
Tau
RV_stat { st_dev=2053;
st_ino=3195944;
st_kind=S_IFDIR;
st_perm=0o755;
st_nlink=3;
st_uid=0;
st_gid=0;
st_rdev=0;
st_size=4096;
st_atim=
{tv_sec=1421231636;
tv_nsec=225414037;
};
st_mtim={tv_sec=1421231636;
tv_nsec=229413986;
};
st_ctim={tv_sec=1421231636;
tv_nsec=229413986;
};

164

}

17: lstat "/s"
Tau
RV_stat { st_dev=2053;
st_ino=3195952;
st_kind=S_IFLNK;
st_perm=0o777;
st_nlink=1;
st_uid=0;
st_gid=0;
st_rdev=0;
st_size=11;
st_atim=
{tv_sec=1421231636;
tv_nsec=225414037;
};
st_mtim={tv_sec=1421231636;
tv_nsec=225414037;
};
st_ctim={tv_sec=1421231636;
tv_nsec=225414037;
};

}

19: lstat "/s1"
Tau
RV_stat { st_dev=2053;
st_ino=3195977;
st_kind=S_IFLNK;
st_perm=0o777;
st_nlink=1;
st_uid=0;
st_gid=0;
st_rdev=0;

165

st_size=11;
st_atim=
{tv_sec=1421231636;
tv_nsec=225414037;
};
st_mtim={tv_sec=1421231636;
tv_nsec=225414037;
};
st_ctim={tv_sec=1421231636;
tv_nsec=225414037;
};

}

21: lstat "/symlink_1"
Tau
RV_stat { st_dev=2053;
st_ino=3195982;
st_kind=S_IFLNK;
st_perm=0o777;
st_nlink=1;
st_uid=0;
st_gid=0;
st_rdev=0;
st_size=6;
st_atim=
{tv_sec=1421231636;
tv_nsec=229413986;
};
st_mtim={tv_sec=1421231636;
tv_nsec=229413986;
};
st_ctim={tv_sec=1421231636;
tv_nsec=229413986;
};

166

}

23: lstat "/dir_1/dir_2"
Tau
RV_stat { st_dev=2053;
st_ino=3195979;
st_kind=S_IFDIR;
st_perm=0o755;
st_nlink=2;
st_uid=0;
st_gid=0;
st_rdev=0;
st_size=4096;
st_atim=
{tv_sec=1421231636;
tv_nsec=225414037;
};
st_mtim={tv_sec=1421231636;
tv_nsec=225414037;
};
st_ctim={tv_sec=1421231636;
tv_nsec=225414037;
};

}

This happens because ext4 is periodic and divides the update into two steps:

1. setting flag bits on the in-memory representation of the inode indicating that
a given timestamp must be updated before writing to disk or begin observed
(e.g., see ext4’s chown command ctime update [83]);

2. assigning the current clock value to timestamps, if the flag bits require
it, before observing or writing then to disk (see ext4’s routine to update
timestamps [82]).

167

168

Bibliography

[1] Alagappan, R., Chidambaram, V., Pillai, T.S., Arpaci-Dusseau, A.C. and
Arpaci-Dusseau, R.H. 2015. Beyond storage APIs: Provable semantics for storage
stacks.

[2] Alglave, J., Donaldson, A.F., Kroening, D. and Tautschnig, M. 2011. Making
software verification tools really work.

[3] Alur, R. and Dill, D. 1991. The theory of timed automata. Springer.

[4] Andrea Giugliano, T.R. 2015. Posix Formal Timestamps Specification. https://
github.com/sibylfs/sibylfs_src/tree/sibylfs_with_POSIX_timestamps. Accessed:
2018.05.10.

[5] Armstrong, R.C., Punnoose, R.J., Wong, M.H. and Mayo, J.R. 2014. Survey
of existing tools for formal verification. Sandia Report SAND2014-20533, Sandia
National Laboratories, Albuquerque. (2014).

[6] Bairavasundaram, L.N., Sundararaman, S., Arpaci-Dusseau, A.C. and Arpaci-
Dusseau, R.H. 2009. Tolerating file-system mistakes with EnvyFS. USENIX Asso-
ciation.

[7] Bayer, R. and McCreight, E. 1970. Organization and maintenance of large
ordered indices. ACM.

[8] Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M. and Wansbrough,
K. 2006. Engineering with logic: HOL specification and symbolic-evaluation testing
for TCP implementations.

[9] Bishop, S., Fairbairn, M., Norrish, M., Sewell, P., Smith, M. and Wansbrough,
K. 2005. Rigorous specification and conformance testing techniques for network
protocols, as applied to TCP, UDP, and Sockets.

169

https://github.com/sibylfs/sibylfs_src/tree/sibylfs_with_POSIX_timestamps
https://github.com/sibylfs/sibylfs_src/tree/sibylfs_with_POSIX_timestamps

[10] Bodin, M., Charguéraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudz-
iuniene, D., Schmitt, A. and Smith, G. 2014. A trusted mechanised JavaScript
specification. ACM.

[11] Bridge, J.P. 2010. Machine learning and automated theorem proving. University
of Cambridge, Computer Laboratory.

[12] Chen, H., Ziegler, D., Chlipala, A., Kaashoek, M.F., Kohler, E. and Zeldovich,
N. 2015. Specifying crash safety for storage systems.

[13] Chidambaram, V., Pillai, T.S., Arpaci-Dusseau, A.C. and Arpaci-Dusseau,
R.H. 2013. Optimistic crash consistency. ACM.

[14] Clements, A.T., Kaashoek, M.F., Zeldovich, N., Morris, R.T. and Kohler, E.
2015. The scalable commutativity rule: Designing scalable software for multicore
processors. ACM Transactions on Computer Systems (TOCS). 32, 4 (2015), 10.

[15] Comer, D. 1979. Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (Jun. 1979),
121–137.

[16] Damchoom, K. and Butler, M. 2009. Applying event and machine decomposi-
tion to a flash-based filestore in Event-B. Springer.

[17] Damchoom, K., Butler, M. and Abrial, J. 2008. Modelling and proof of a
tree-structured file system in Event-B and Rodin. Formal Methods and Software
Engineering. (2008), 25–44.

[18] Dowson, M. 1997. The Ariane 5 software failure. ACM SIGSOFT Software
Engineering Notes. 22, 2 (1997), 84.

[19] Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F.,
Weaver, N., Amann, J., Beekman, J., Payer, M. and others 2014. The matter of
heartbleed. ACM.

[20] Ernst, G., Schellhorn, G., Haneberg, D., Pfähler, J. and Reif, W. 2014.
Verification of a virtual filesystem switch. Springer.

[21] Ernst, G., Schellhorn, G. and Reif, W. 2011. Verification of B+ Trees: An
experiment combining shape analysis and interactive theorem proving. Springer-
Verlag.

[22] Ferreira, M. and Oliveira, J. 2009. An integrated formal methods tool-chain
and its application to verifying a file system model. Formal Methods: Foundations

170

and Applications. (2009), 153–169.

[23] Fielding, E. 1980. The specification of abstract mappings and their imple-
mentation as B Trees. Oxford University Computing Laboratory, Programming
Research Group.

[24] Freitas, L., Woodcock, J. and Fu, Z. 2009. POSIX file store in Z/Eves: An
experiment in the verified software repository. Sci. Comput. Program. 74, 4 (Feb.
2009), 238–257.

[25] Fryer, D., Sun, K., Mahmood, R., Cheng, T., Benjamin, S., Goel, A. and
Brown, A.D. 2012. Recon: Verifying file system consistency at runtime. USENIX
Association.

[26] Gardner, P., Ntzik, G. and Wright, A. 2014. Local reasoning for the POSIX
file system. Springer.

[27] Graefe, G. and others 2011. Modern B-tree techniques. Foundations and
Trends in Databases. 3, 4 (2011), 203–402.

[28] Groce, A., Holzmann, G.J. and Joshi, R. 2007. Randomized differential testing
as a prelude to formal verification.

[29] Harper, R. 2001. Programming in standard ML. (2001).

[30] Harter, T., Dragga, C., Vaughn, M., Arpaci-Dusseau, A.C. and Arpaci-Dusseau,
R.H. 2012. A file is not a file: Understanding the I/O behavior of Apple desktop
applications. ACM Trans. Comput. Syst. 30, 3 (2012), 10.

[31] Hesselink, W. and Lali, M. 2009. Formalizing a hierarchical file system.
Electronic Notes in Theoretical Computer Science. 259, (2009), 67–85.

[32] Hoare, C.A.R. 1996. How did software get so reliable without proof? Springer.

[33] Hoare, C.A.R., Misra, J., Leavens, G.T. and Shankar, N. 2009. The verified
software initiative: A manifesto. ACM Comput. Surv. 41, 4 (2009).

[34] IEEE, T. and Group, T.O. 2013. Austing group bug tracker. http://
austingroupbugs.net. Accessed: 2018.05.10.

[35] IEEE, T. and Group, T.O. 2013. POSIX make definition. http://pubs.
opengroup.org/onlinepubs/9699919799/utilities/make.html. Accessed: 2018.05.10.

[36] Jannen, W. et al. 2015. BetrFS: A right-optimized write-optimized file system.

171

http://austingroupbugs.net
http://austingroupbugs.net
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html

USENIX Association.

[37] Jurjens, J. 2005. Verification of low-level crypto-protocol implementations
using automated theorem proving. IEEE Computer Society.

[38] Kang, E. and Jackson, D. 2008. Formal modeling and analysis of a flash
filesystem in Alloy. Abstract state machines, B and Z. (2008), 294–308.

[39] Keller, G., Murray, T., Amani, S., O’Connor, L., Chen, Z., Ryzhyk, L., Klein,
G. and Heiser, G. 2014. File systems deserve verification too! ACM SIGOPS
Operating Systems Review. 48, 1 (2014), 58–64.

[40] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H. and
Winwood, S. 2009. SeL4: Formal verification of an OS kernel. ACM.

[41] Kumar, R., Myreen, M.O., Norrish, M. and Owens, S. 2014. CakeML: A
verified implementation of ML. ACM.

[42] Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM. 21, 7 (1978), 558–565.

[43] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, Shan Lu
2013. A Study of Linux File System Evolution.

[44] Leroy, X. 2009. Formal verification of a realistic compiler. Commun. ACM.
52, 7 (Jul. 2009), 107–115.

[45] Leveson, N.G. and Turner, C.S. 1993. An investigation of the Therac-25
accidents. Computer. 26, 7 (1993), 18–41.

[46] Linux Foundation Linux Standard Base (LSB). http://www.linuxfoundation.
org/collaborate/workgroups/lsb. Accessed 2018.05.10.

[47] Linux Test Project Linux Test Project testsuite. http://linux-test-project.
github.io/. Accessed 2018.05.10.

[48] Lu, Y., Shu, J. and Wang, W. 2014. ReconFS: A reconstructable file system
on flash storage. USENIX.

[49] Malecha, J.G., Morrisett, G., Shinnar, A. and Wisnesky, R. 2010. Toward a
verified relational database management system.

[50] Mashtizadeh, A.J., Bittau, A., Huang, Y.F. and Mazi‘eres, D. 2013. Replica-

172

http://www.linuxfoundation.org/collaborate/workgroups/lsb
http://www.linuxfoundation.org/collaborate/workgroups/lsb
http://linux-test-project.github.io/
http://linux-test-project.github.io/

tion, history, and grafting in the Ori file system. ACM.

[51] Mathur, A., Cao, M., Bhattacharya, S., Dilger, A., Tomas, A. and Vivier, L.
2007. The new ext4 filesystem: Current status and future plans. Citeseer.

[52] McKeeman, W.M. 1998. Differential testing for software. Digital Technical
Journal. 10, 1 (1998), 100–107.

[53] Morgan, C. and Sufrin, B. 1984. Specification of the Unix filing system.
Software Engineering, IEEE Transactions on. 10, 2 (1984), 128–142.

[54] Morrisett, G., Tan, G., Tassarotti, J., Tristan, J.-B. and Gan, E. 2012.
RockSalt: Better, faster, stronger SFI for the x86. ACM.

[55] Mulligan, D.P., Owens, S., Gray, K.E., Ridge, T. and Sewell, P. 2014. Lem:
Reusable engineering of real-world semantics.

[56] Nicollin, X. and Sifakis, J. 1994. The algebra of timed processes, ATP: theory
and application. Inf. Comput. 114, 1 (1994), 131–178.

[57] Nipkow, T., Paulson, L.C. and Wenzel, M. 2002. Isabelle/HOL: A proof
assistant for higher-order logic. Springer Science & Business Media.

[58] Pfähler, J., Ernst, G., Schellhorn, G., Haneberg, D. and Reif, W. 2014.
Crash-safe refinement for a verified flash file system. University of Augsburg.

[59] Reeves, Glenn E., Neilson, Tracy A. 2005. The Mars Rover Spirit FLASH
anomaly. Pasadena, CA: Jet Propulsion Laboratory, National Aeronautics; Space
Administration, 2005.

[60] Ridge, T., Norrish, M. and Sewell, P. 2008. A rigorous approach to networking:
TCP, from implementation to protocol to service.

[61] Ridge, T. and others 2017. A B-tree library for OCaml. (2017).

[62] Ridge, T., Sheets, D., Tuerk, T., Giugliano, A., Madhavapeddy, A. and Sewell,
P. 2015. SibylFS: Formal specification and oracle-based testing for POSIX and
real-world file systems.

[63] Rodeh, O. 2008. B-trees, shadowing, and clones. Trans. Storage. 3, 4 (Feb.
2008), 2:1–2:27.

[64] Rodeh, O., Bacik, J. and Mason, C. 2013. BTRFS: The Linux B-tree filesystem.
ACM Transactions on Storage (TOS). 9, 3 (2013), 9.

173

[65] Rubini, A. and Corbet, J. 2001. Linux device drivers. " O’Reilly Media, Inc.".

[66] Sagdeev, R. and Zakharov, A. 1989. Brief history of the Phobos mission.
Nature. 341, 6243 (1989), 581–585.

[67] Sauser, B.J., Reilly, R.R. and Shenhar, A.J. 2009. Why projects fail? How
contingency theory can provide new insights–a comparative analysis of nasa’s mars
climate orbiter loss. International Journal of Project Management. 27, 7 (2009),
665–679.

[68] Schellhorn, G., Ernst, G., Pfähler, J., Haneberg, D. and Reif, W. 2014.
Development of a verified flash file system. Springer Berlin Heidelberg.

[69] Schierl, A., Schellhorn, G., Haneberg, D. and Reif, W. 2009. Abstract
specification of the UBIFS file system for flash memory. FM 2009: Formal
Methods. (2009), 190–206.

[70] Sevcík, J., Vafeiadis, V., Nardelli, F.Z., Jagannathan, S. and Sewell, P. 2013.
CompCertTSO: A verified compiler for relaxed-memory concurrency. J. ACM. 60,
3 (2013), 22.

[71] Sexton, A. and Thielecke, H. 2008. Reasoning about B+ Trees with operational
semantics and separation logic. Electron. Notes Theor. Comput. Sci. 218, (Oct.
2008), 355–369.

[72] Skeel, R. 1992. Roundoff error and the Patriot missile. SIAM News. 25, 4
(1992), 11.

[73] Slabodkin, G. 1998. Software glitches leave navy smart ship dead in the water.
Government Computer News. 13, (1998), 33727–1.

[74] The IEEE and The Open Group 2008. The Open Group Base Specifications
Issue 7 – IEEE Std 1003.1, 2008 Edition. IEEE.

[75] The Open Group POSIX Conformance Test Suite. http://www.opengroup.
org/testing/downloads.html. Accessed 2018.05.10.

[76] Weyuker, E.J. 1982. On testing non-testable programs. The Computer Journal.
25, 4 (1982), 465–470.

[77] Woodcock, J., Larsen, P.G., Bicarregui, J. and Fitzgerald, J.S. 2009. Formal
methods: Practice and experience. ACM Comput. Surv. 41, 4 (2009).

[78] Yang, J., Twohey, P., Engler, D. and Musuvathi, M. 2006. Using model

174

http://www.opengroup.org/testing/downloads.html
http://www.opengroup.org/testing/downloads.html

checking to find serious file system errors. ACM Trans. Comput. Syst. 24, 4 (Nov.
2006), 393–423.

[79] Yang, X., Chen, Y., Eide, E. and Regehr, J. 2011. Finding and understanding
bugs in C compilers. SIGPLAN Not. 46, 6 (Jun. 2011), 283–294.

[80] Zhao, J., Nagarakatte, S., Martin, M.M. and Zdancewic, S. 2012. Formalizing
the LLVM intermediate representation for verified program transformations. ACM.

[81] Dbench webpage. https://dbench.samba.org/. Accessed 2018.05.10.

[82] Ext4 file system attr.c - routine updating timestamps periodically. https:
//github.com/tytso/ext4/blob/v3.10-rc7/fs/attr.c#L199. Accessed 2018.05.10.

[83] Ext4 file system open.c - chown flagging ctime time attribute. https://github.
com/tytso/ext4/blob/v3.10-rc7/fs/open.c#L534. Accessed 2018.05.10.

[84] Tjrbtree repository. https://github.com/tomjridge/tjr_btree. Accessed
2018.05.10.

[85] https://github.com/ag91/isa_btree. Accessed 2018.05.10.

175

https://dbench.samba.org/
https://github.com/tytso/ext4/blob/v3.10-rc7/fs/attr.c#L199
https://github.com/tytso/ext4/blob/v3.10-rc7/fs/attr.c#L199
https://github.com/tytso/ext4/blob/v3.10-rc7/fs/open.c#L534
https://github.com/tytso/ext4/blob/v3.10-rc7/fs/open.c#L534
https://github.com/tomjridge/tjr_btree
https://github.com/ag91/isa_btree

	Introduction
	Overview of thesis

	SibylFS: a formal file system specification
	Overview
	Introduction
	Technical challenges
	Model
	Test suite and harness
	Evaluation and test results
	Related work

	SibylFS extended with timestamps
	Overview
	Prelude
	Introduction
	Technical challenges
	Model
	Oracle
	Results
	Related work

	B-trees, formally
	Overview
	Basics
	B-tree definition
	Overview of approach to correctness
	Framestacks: a concrete representation of context
	Find
	Insert
	Refinement to block device
	Related work

	Conclusion and further work
	Appendix A: SibylFS main excerpts
	Appendix B: SibylFS extended with timestamps main excerpts
	Periodic update events
	Examples of manual test traces

	Appendix C: B-tree main excerpts
	B-tree wellformedness
	B-tree find
	B-tree insert

	Appendix D: trace that shows ext4 periodicity
	Bibliography

