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"Your time is limited, so don’t waste it living someone else’s life. Don’t be trapped

by dogma - which is living with the results of other people’s thinking. Don’t let the

noise of others’ opinions drown out your own inner voice. And most important,

have the courage to follow your heart and intuition."

Steve Jobs

"Mathematics is a game played according to certain simple rules with meaningless

marks on paper."

David Hilbert

"It is not knowledge, but the act of learning, not possession but the act of getting

there, which grants the greatest enjoyment."

Carl Friedrich Gauss
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Abstract

Gaussian process regression (GPR) is a kernel-based nonparametric method that

has been proved to be effective and powerful in many areas, including time series

prediction. In this thesis, we focus on GPR and its extensions and then apply them

to financial time series prediction. We first review GPR, followed by a detailed

discussion about model structure, mean functions, kernels and hyper-parameter

estimations. After that, we study the sensitivity of hyper-parameter and perfor-

mance of GPR to the prior distribution for the initial values, and find that the

initial hyper-parameters’ estimates depend on the choice of the specific kernels,

with the priors having little influence on the performance of GPR in terms of pre-

dictability. Furthermore, GPR with Student−t process (GPRT) and Student−t

process regression (TPR), are introduced. All the above models as well as au-

toregressive moving average (ARMA) model are applied to predict equity indices.

We find that GPR and TPR shows relatively considerable capability of predicting

equity indices so that both of them are extended to state-space GPR (SSGPR)

and state-space TPR (SSTPR) models, respectively. The overall results are that

SSTPR outperforms SSGPR for the equity index prediction. Based on the detailed

results, a brief market efficiency analysis confirms that the developed markets are

unpredictable on the whole. Finally, we propose and test the multivariate GPR

(MV-GPR) and multivariate TPR (MV-TPR) for multi-output prediction, where

the model settings, derivations and computations are all directly performed in

matrix form, rather than vectorising the matrices involved in the existing method

of GPR for multi-output prediction. The effectiveness of the proposed methods

is illustrated through a simulated example. The proposed methods are then ap-

plied to stock market modelling in which the Buy&Sell strategies generated by our

proposed methods are shown to be profitable in the equity investment.

ii



Acknowledgements

It is pleasure to acknowledge the help and support I have received from many
people during the four-year PhD study at the University of Leicester. I would like
to take this opportunity to acknowledge a few.

Firstly, I would like to express my utmost gratitude to my supervisors, Professor
Alexander N. Gorban and Dr Bo Wang, for their supports, time and patience, who
also have been my inspiration throughout my studies. I must say thanks to them
for all of the help, encouragement and suggestions which are by no means limited
to my research but have also proven valuable in my life. This thesis draws on their
talents, knowledge and contribution.

I would like to thank all of the staff in the Department of Mathematics for their
help and making so many things easier. I am grateful to Dr Evgeny Mirkes and
Prof. Sergei Petrovskii.

On a personal level, I would like to thank all of my friends in Michael Atiyah
building, Juxi, Ruhao, Peter etc. A special thanks goes to Yanshan, Wenyan and
Isaudin Ismail who provided all the ultimate care, support and enjoyable time.

Finally, it gives me the most pleasure to thank my parents for the love, faith and
support as well as my girlfriend Yujin. Without their help, this thesis would not
be possible.

iii



Contents

Abstract ii

Acknowledgements iii

List of Figures viii

List of Tables xii

Abbreviations xv

Ticker Symbols xvii

Notations xix

1 Introduction 1
1.1 The predictability of financial time series . . . . . . . . . . . . . . . 1
1.2 Gaussian process for machine learning and its extensions for finan-

cial time series prediction . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Contributions and outline of thesis . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Gaussian process and Student−t process . . . . . . . . . . . . . . . 9

2.1.1 Gaussian distribution and process . . . . . . . . . . . . . . . 9
2.1.2 Fat-tailed distribution . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Student−t distribution and process . . . . . . . . . . . . . . 10

2.2 Matrix-variate distributions . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Matrix-variate Gaussian distribution . . . . . . . . . . . . . 13
2.2.2 Matrix-variate Student−t distribution . . . . . . . . . . . . 14

2.3 Matrix algebra theory . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Matrix identities . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Matrix decompositions . . . . . . . . . . . . . . . . . . . . . 17

2.3.2.1 Cholesky decomposition . . . . . . . . . . . . . . . 17
2.3.2.2 Singular value decomposition . . . . . . . . . . . . 18

2.4 Autoregressive moving average model . . . . . . . . . . . . . . . . . 19

3 Gaussian process regression 21

iv



Contents v

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 Weight-space view . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1.1 Bayesian linear regression . . . . . . . . . . . . . . 21
3.1.1.2 Projections of inputs into feature space . . . . . . 23

3.1.2 Function-space view . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Squared exponential . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Periodic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.3 Local periodic . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Spectral mixture . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Mean function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4 Model parameters estimation . . . . . . . . . . . . . . . . . . . . . 32
3.5 Model evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Initial hyper-parameters selection 38
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 Sensitivity of prior distributions for initial hyper-parameters . . . . 39
4.3 Prior distributions of initial hyper-parameters . . . . . . . . . . . . 40

4.3.1 Vague priors . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.2 Data-dominated priors . . . . . . . . . . . . . . . . . . . . . 41

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.1 Samples from Gaussian process . . . . . . . . . . . . . . . . 42

4.4.1.1 Squared exponential kernel . . . . . . . . . . . . . 43
4.4.1.2 Periodic kernel . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Samples from time series . . . . . . . . . . . . . . . . . . . . 47
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Financial time series prediction using Gaussian process regression
and its extensions 51
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Gaussian process regression with Student−t likelihood . . . . . . . 52
5.3 Student−t process regression . . . . . . . . . . . . . . . . . . . . . . 53

5.3.1 Predictive model . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3.2 Parameters estimation . . . . . . . . . . . . . . . . . . . . . 54
5.3.3 Relation to Gaussian process . . . . . . . . . . . . . . . . . . 55

5.4 Experiments of model comparisons . . . . . . . . . . . . . . . . . . 56
5.4.1 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . 57

5.4.1.1 Zero-mean normalisation . . . . . . . . . . . . . . . 58
5.4.1.2 Simple return and logarithmic return . . . . . . . . 58

5.4.2 The comparison of GPR, GPRT and TPR for equity index
series prediction . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.4.3 Further comparison of GPR, GPRT, TPR and ARMAmodel
for equity index series prediction . . . . . . . . . . . . . . . 61

5.4.4 Model validation of GPR and TPR . . . . . . . . . . . . . . 62
5.4.4.1 Leave-one-out cross-validation . . . . . . . . . . . . 63



Contents vi

5.4.4.2 k-fold cross-validation . . . . . . . . . . . . . . . . 65
5.4.4.3 Sliding window . . . . . . . . . . . . . . . . . . . . 67

5.5 State space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5.1 Model of state space . . . . . . . . . . . . . . . . . . . . . . 72
5.5.2 Experiments for equity index series prediction . . . . . . . . 74

5.6 Stock market efficiency analysis . . . . . . . . . . . . . . . . . . . . 76
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6 Multivariate Gaussian and Student−t process regression for multi-
output prediction 81
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2 Multivariate process definitions . . . . . . . . . . . . . . . . . . . . 82
6.3 Multivariate process regression models . . . . . . . . . . . . . . . . 83

6.3.1 Multivariate Gaussian process regression . . . . . . . . . . . 83
6.3.2 Multivariate Student−t process regression . . . . . . . . . . 85

6.4 Covariance functions . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.5 Parameters estimation . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.5.1 Estimation of parameters in multivariate Gaussian process
regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5.2 Estimation of parameters in multivariate Student −t process
regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.6 Experiments and applications . . . . . . . . . . . . . . . . . . . . . 89
6.6.1 Simulated example . . . . . . . . . . . . . . . . . . . . . . . 89
6.6.2 Real Data Examples . . . . . . . . . . . . . . . . . . . . . . 93

6.6.2.1 Air quality prediction . . . . . . . . . . . . . . . . 93
6.6.2.2 Bike rent prediction . . . . . . . . . . . . . . . . . 95

6.6.3 Application to stock market investment . . . . . . . . . . . . 96
6.6.3.1 Data preparation . . . . . . . . . . . . . . . . . . . 96
6.6.3.2 Prediction model and strategy . . . . . . . . . . . . 97
6.6.3.3 Chinese companies in NASDAQ . . . . . . . . . . . 98
6.6.3.4 Diverse sectors in Dow 30 . . . . . . . . . . . . . . 101

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Conclusions and future work 109
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

A Graphs of predictions by Gaussian process regression, Gaussian
process regression with Student−t likelihood and Student−t pro-
cess regression models for INDU, NDX, SPX, and UKX 112

B Graphs of predictions by Gaussian process regression, Gaussian
process regression with Student−t likelihood, Student−t process
regression and ARMA(1,1) models for DAX, HSI, INDU, NDX,
NKY, SENSEX, SPX, and UKX 115



Contents vii

C Negative log marginal likelihood and gradient evaluation for mul-
tivariate Gaussian and Student−t process 120
C.1 Multivariate Gaussian process regression . . . . . . . . . . . . . . . 120
C.2 Multivariate Student−t process regression . . . . . . . . . . . . . . 122

D Investment details of three Chinese stocks listed in NASDAQ 124

E Investment details of the stocks listed in Dow 30 129
E.1 Final stock investment details . . . . . . . . . . . . . . . . . . . . . 129
E.2 Stock investment on diverse sectors . . . . . . . . . . . . . . . . . . 130
E.3 The details of stock investments in the period . . . . . . . . . . . . 137
E.4 Industrial sector portfolio investment . . . . . . . . . . . . . . . . . 153

Bibliography 156



List of Figures

2.1 Density of the Student−t distribution for 1, 2, 5 and 10 degrees of
freedom compared to the standard Gaussian distribution. . . . . . . 11

3.1 The samples of GP over kernel SE and SEard. (a): 5 samples of GP
over kernel SE with parameters [`, sf ] = [0.2, 1]. (b): A sample of
2-dimensional GP over kernel SEard with parameters [`1, `2, sf ] =
[0.2, 0.2, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 The samples of GP over kernel PER and PERard. (a): 5 samples
of GP over kernel PER with parameters [`, p, sf ] = [0.5, 2, 1]. (b):
A sample of 2-dimension GP over kernel PERard with parameters
[`1, `2, p1, p2, sf ] = [0.5, 0.5, 2, 2, 1]. . . . . . . . . . . . . . . . . . . . 29

3.3 The samples of GP over kernel LP and LPard. (a): 5 samples of
GP over kernel LP with parameters [`, sf ] = [0.5, 1] for PER and
[`, p, sf ] = [0.5, 2, 1] for PER. (b): A sample of 2-dimension GP over
kernel LPard with parameters [`1, `2, sf ] = [0.5, 0.5, 1] for SEard and
[`1, `2, p1, p2, sf ] = [0.5, 0.5, 2, 2, 1] for PERard. . . . . . . . . . . . . 30

3.4 The samples of GP over kernel SM. (a): 5 samples of GP over ker-
nel SM with parameters [w1, µ1,

√
ν1, w2, µ2,

√
ν2] = [1, 2, 1, 1, 2, 1].

(b): A sample of 2-dimension GP over kernel SM with parameters

[w1, µ
(1)
1 ,

√
ν

(1)
1 , µ

(2)
1 ,

√
ν

(2)
1 , w2, µ

(1)
2 ,

√
ν

(1)
2 , µ

(2)
2 ,

√
ν

(2)
2 ] = [1, 2, 1, 2, 1,

1, 2, 1, 2, 1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 The effect of GPR models with the simple mean functions. The

flat(zero-offset) mean function is used in the left panel while the
exponential decay mean function is used in the right panel . . . . . 31

4.1 Positions of the estimated hyper-parameters for the SE kernel. Top
to bottom: Priors 1, 2 and 3. . . . . . . . . . . . . . . . . . . . . . 44

4.2 GP predictions with SE kernel using Prior 1. (a) and (b): interpo-
lations; (c) and (d): extrapolations. (a) and (c): θact = [5, 2]; (b)
and (d): θact = [15, 7]. . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Positions of the estimated hyper-parameters for the PER kernel.
The priors for the p term are: (a) Prior 1, (b) Prior 5, (c) Prior
6, (d) Prior 7 and (e) Prior 9. . . . . . . . . . . . . . . . . . . . . 46

viii



List of Figures ix

5.1 Graph of LOO-CV for the index and log-return prediction in terms
of MAE and RMSE using GPR, TPR and liner predictor. Blue line
stands for GPR model, orange stands for TPR model and gray line
stands for linear predictor (Blue line is almost covered by orange
line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Graph of 10-fold cross-validation for the index and log-return pre-
dictions in terms of MSER and MAER using GPR and TPR models. 67

5.3 Graph of how sliding window partitions the data set . . . . . . . . . 68
5.4 Graph of sliding window analysis of h-day-ahead index and log-

return prediction in terms of MSER and MAER using GPR and
TPR models. Blue line stands for 5-day-ahead prediction (h = 5)
and orange line stands for 20-day-ahead prediction (h = 20). . . . 71

5.5 The SRMSE of prediction with the increasing L from 5 to 20. . . . 75
5.6 The median SRMSE of 10 indices’ predictions . . . . . . . . . . . . 76
5.7 The SRMSE of sliding window analysis using SSGPR and SSTPR

(5-day-ahead prediction, L days lagged ). . . . . . . . . . . . . . . . 77
5.8 Box plot and error plot of 16 times experiments for 10 indices. . . . 78
5.9 Graph of two market indices in the two years period between 2013

and 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 5 samples of matrix-variate process over SE kernel. Left panel:
MV-GP with parameter [`, s2

f ] = [log(0.5), log(1.5)]; Right panel:
MV-TP with parameter [ν, `, s2

f ] = [3, log(0.5), log(1.5)] . . . . . . . 86
6.2 5 samples of matrix-variate process over PER kernel. Left panel:

MV-GP with parameter [`, p, s2
f ] = [log(2), log(2), log(2)]; Right

panel: MV-TP with parameter [ν, `, s2
f ] = [3, log(2), log(2), log(2)] . 87

6.3 Predictions for MV-GP noise data using different models. From
panels (a) to (d): predictions for y1 by MV-GPR, MV-TPR, GPR
and TPR. From panels (e) to (h): predictions for y2 by MV-GPR,
MV-TPR, GPR and TPR. The solid blue lines are predictions, the
solid red lines are the true functions and the circles are the obser-
vations. The dash lines represent the 95% confidence intervals . . . 91

6.4 Predictions for MV-TP noise data using different models. From
panels (a) to (d): predictions for y1 by MV-GPR, MV-TPR, GPR
and TPR. From panels (e) to (h): predictions for y2 by MV-GPR,
MV-TPR, GPR and TPR. The solid blue lines are predictions, the
solid red lines are the true functions and the circles are the obser-
vations. The dash lines represent the 95% confidence intervals . . . 92

6.5 The movement of invested $100 in 200 days for 3 Chinese stocks in
the US market. The top 4 lines in legend are Buy&Sell strategies
based on 4 prediction models, MV-GPR, MV-TPR, GPR, and TPR,
respectively. The last 4 lines are Buy&Hold strategies for the stock
and 3 indices, INDU, NASDAQ, and NDX, respectively . . . . . . . 100

6.6 The estimated degrees of freedom for the given stocks under the 7
industries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 Correlation matrix plots of the 7 industries . . . . . . . . . . . . . . 104



List of Figures x

6.8 Stock distribution under the 7 industries based on the estimated
degree of freedom and mean of correlations with other stocks in the
same industry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.9 Stock distribution in the 7 different industries. For all sub-figures,
y-label: the estimated degree of freedom. x-label: the mean of
correlations with other stocks in the same industry. . . . . . . . . . 106

6.10 Scatter plot for the stocks using optimum investment strategy (or
strategy group) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.1 INDU predictions by GPR, GPRT and TPR respectively. Solid
colourful dark lines are predicted values and light colourful regions
are two-sigma 1 confidence intervals. . . . . . . . . . . . . . . . . . 113

A.2 NDX predictions by GPR, GPRT and TPR respectively. Solid
colourful dark lines are predicted values and light colourful regions
are two-sigma confidence intervals. . . . . . . . . . . . . . . . . . . 113

A.3 SPX predictions by GPR, GPRT and TPR respectively. Solid
colourful dark lines are predicted values and light colourful regions
are two-sigma confidence intervals. . . . . . . . . . . . . . . . . . . 114

A.4 UKX predictions by GPR, GPRT and TPR respectively. Solid
colourful dark lines are predicted values and light colourful regions
are two-sigma confidence intervals. . . . . . . . . . . . . . . . . . . 114

B.1 DAX predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light
colourful regions are two-sigma confidence intervals. . . . . . . . . . 116

B.2 HSI predictions by GPR, GPRT, TPR and ARMA(1,1) respectively.
Solid colourful dark lines are predicted values and light colourful
regions are two-sigma confidence intervals. . . . . . . . . . . . . . . 116

B.3 INDU predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light
colourful regions are two-sigma confidence intervals. . . . . . . . . . 117

B.4 NDX predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light
colourful regions are two-sigma confidence intervals. . . . . . . . . . 117

B.5 NKY predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light
colourful regions are two-sigma confidence intervals. . . . . . . . . . 118

B.6 SENSEX predictions by GPR, GPRT, TPR and ARMA(1,1) re-
spectively. Solid colourful dark lines are predicted values and light
colourful regions are two-sigma confidence intervals. . . . . . . . . . 118

B.7 SPX predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light
colourful regions are two-sigma confidence intervals. . . . . . . . . . 119

B.8 UKX predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light
colourful regions are two-sigma confidence intervals. . . . . . . . . . 119

E.1 Stock investment in Oil & Gas sector . . . . . . . . . . . . . . . . . 130



List of Figures xi

E.2 Stock investment in Industrials sector . . . . . . . . . . . . . . . . . 131
E.3 Stock investment in Consumer Goods sector . . . . . . . . . . . . . 132
E.4 Stock investment in Health Care sector . . . . . . . . . . . . . . . . 133
E.5 Stock investment in Consumer Services sector . . . . . . . . . . . . 134
E.6 Stock investment in Financials sector . . . . . . . . . . . . . . . . . 135
E.7 Stock investment in Technology sector . . . . . . . . . . . . . . . . 136
E.8 Oil & Gas portfolio investment . . . . . . . . . . . . . . . . . . . . 153
E.9 Industrials portfolio investment . . . . . . . . . . . . . . . . . . . . 153
E.10 Consumer Goods portfolio investment . . . . . . . . . . . . . . . . . 153
E.11 Health Care portfolio investment . . . . . . . . . . . . . . . . . . . 154
E.12 Consumer Services portfolio investment . . . . . . . . . . . . . . . . 154
E.13 Financials portfolio investment . . . . . . . . . . . . . . . . . . . . 154
E.14 Technology portfolio investment . . . . . . . . . . . . . . . . . . . . 155



List of Tables

4.1 Results of GP predictions with SE kernel (the standard errors are
given in the brackets) . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Results of GP predictions with PER kernel (the standard errors are
given in the brackets) . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Results of GP predictions with LP kernel for ARMA data (the stan-
dard errors are given in the brackets) . . . . . . . . . . . . . . . . . 49

4.4 Results of GP predictions with SM kernel for ARMA data (the
standard errors are given in the brackets) . . . . . . . . . . . . . . . 49

5.1 10 main equity indices in the world . . . . . . . . . . . . . . . . . . 57
5.2 The training and test sets for the four equity indices in Experiment

5.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Results of the four equity indices predictions using GPR, GPRT

and TPR models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 The training and test sets for different equity indices in Experiment

5.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 Results of eight equity indices predictions using GPR, GPRT, TPR

and ARMA(1,1) model . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6 The training and validation sets (jth validation) for 10 equity indices

in Experiment 5.4.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.7 The RMSE of LOO-CV using GPR and TPR models . . . . . . . . 64
5.8 The jth validation set for 10 equity indices in Experiment 4 . . . . . 66
5.9 The SRMSE of 10-fold cross-validation for the index and log-return

predictions using GPR and TPR models . . . . . . . . . . . . . . . 67
5.10 The jth training and test sets for 10 equity indices in Experiment 5 69
5.11 The SRMSE of sliding window analysis of h-day-ahead index and

log-return predictions using GPR and TPR models . . . . . . . . . 70
5.12 The SRMSE of sliding window analysis of 5-day-ahead predictions

using SSGPR and SSTPR models . . . . . . . . . . . . . . . . . . . 75

6.1 The ARMSE by the different models (multivariate Gaussian noisy
data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 The ARMSE by the different models (multivariate Student−t noisy
data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3 Air quality prediction results based on MSEs and MAEs . . . . . . 94
6.4 Bike rent prediction results based on MSEs and MAEs . . . . . . . 95
6.5 Buy&Sell strategy of dD100 investment . . . . . . . . . . . . . . . . 97
6.6 Three biggest "Chinese concept" stocks . . . . . . . . . . . . . . . . 99

xii



List of Tables xiii

6.7 Stock components of Dow 30 . . . . . . . . . . . . . . . . . . . . . . 102
6.8 Stock investment ranking under different strategies . . . . . . . . . 102
6.9 Industry portfolio investment ranking under different strategies . . 107

D.1 The movement of invested $100 for 200 days split in to 20 periods
(Stock: BIDU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

D.2 The movement of invested $100 for 200 days split in to 20 periods
(Stock: CTRP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

D.3 The movement of invested $100 for 200 days split in to 20 periods
(Stock: NTES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

D.4 The detailed movement of invested $100 for last 10 days period
(Period 20, Stock: BIDU) . . . . . . . . . . . . . . . . . . . . . . . 126

D.5 The detailed movement of invested $100 for last 10 days period
(Period 20, Stock: CTRP) . . . . . . . . . . . . . . . . . . . . . . . 127

D.6 The detailed movement of invested $100 for last 10 days period
(Period 20, Stock: NTES) . . . . . . . . . . . . . . . . . . . . . . . 128

E.1 The detailed stock investment results under different strategies . . . 129
E.2 The detailed industry portfolio investment results under different

strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
E.3 The movement of invested $100 for 200 days split in to 20 periods

(Stock: CVX; Industry: Oil & Gas) . . . . . . . . . . . . . . . . . . 137
E.4 The movement of invested $100 for 200 days split in to 20 periods

(Stock: XOM; Industry: Oil & Gas) . . . . . . . . . . . . . . . . . . 137
E.5 The movement of invested $100 for 200 days split in to 20 periods

(Stock: MMM; Industry: Industrials) . . . . . . . . . . . . . . . . . 138
E.6 The movement of invested $100 for 200 days split in to 20 periods

(Stock: BA; Industry: Industrials) . . . . . . . . . . . . . . . . . . . 138
E.7 The movement of invested $100 for 200 days split in to 20 periods

(Stock: CAT; Industry: Industrials) . . . . . . . . . . . . . . . . . . 139
E.8 The movement of invested $100 for 200 days split in to 20 periods

(Stock: GE; Industry: Industrials) . . . . . . . . . . . . . . . . . . . 139
E.9 The movement of invested $100 for 200 days split in to 20 periods

(Stock: UTX; Industry: Industrials) . . . . . . . . . . . . . . . . . . 140
E.10 The movement of invested $100 for 200 days split in to 20 periods

(Stock: KO; Industry: Consumer Goods) . . . . . . . . . . . . . . . 141
E.11 The movement of invested $100 for 200 days split in to 20 periods

(Stock: MCD; Industry: Consumer Goods) . . . . . . . . . . . . . . 141
E.12 The movement of invested $100 for 200 days split in to 20 periods

(Stock: PG; Industry: Consumer Goods) . . . . . . . . . . . . . . . 142
E.13 The movement of invested $100 for 200 days split in to 20 periods

(Stock: JNJ; Industry: Health Care) . . . . . . . . . . . . . . . . . 143
E.14 The movement of invested $100 for 200 days split in to 20 periods

(Stock: MRK; Industry: Health Care) . . . . . . . . . . . . . . . . 143
E.15 The movement of invested $100 for 200 days split in to 20 periods

(Stock: PFE; Industry: Health Care) . . . . . . . . . . . . . . . . . 144



List of Tables xiv

E.16 The movement of invested $100 for 200 days split in to 20 periods
(Stock: UNH; Industry: Health Care) . . . . . . . . . . . . . . . . . 144

E.17 The movement of invested $100 for 200 days split in to 20 periods
(Stock: HD; Industry: Consumer Services) . . . . . . . . . . . . . . 145

E.18 The movement of invested $100 for 200 days split in to 20 periods
(Stock: NKE; Industry: Consumer Services) . . . . . . . . . . . . . 145

E.19 The movement of invested $100 for 200 days split in to 20 periods
(Stock: WMT; Industry: Consumer Services) . . . . . . . . . . . . . 146

E.20 The movement of invested $100 for 200 days split in to 20 periods
(Stock: DIS; Industry: Consumer Services) . . . . . . . . . . . . . . 146

E.21 The movement of invested $100 for 200 days split in to 20 periods
(Stock: AXP; Industry: Financials) . . . . . . . . . . . . . . . . . . 147

E.22 The movement of invested $100 for 200 days split in to 20 periods
(Stock: GS; Industry: Financials) . . . . . . . . . . . . . . . . . . . 147

E.23 The movement of invested $100 for 200 days split in to 20 periods
(Stock: JPM; Industry: Financials) . . . . . . . . . . . . . . . . . . 148

E.24 The movement of invested $100 for 200 days split in to 20 periods
(Stock: TRV; Industry: Financials) . . . . . . . . . . . . . . . . . . 148

E.25 The movement of invested $100 for 200 days split in to 20 periods
(Stock: V; Industry: Financials) . . . . . . . . . . . . . . . . . . . . 149

E.26 The movement of invested $100 for 200 days split in to 20 periods
(Stock: AAPL; Industry: Technology) . . . . . . . . . . . . . . . . . 150

E.27 The movement of invested $100 for 200 days split in to 20 periods
(Stock: CSCO; Industry: Technology) . . . . . . . . . . . . . . . . . 150

E.28 The movement of invested $100 for 200 days split in to 20 periods
(Stock: IBM; Industry: Technology) . . . . . . . . . . . . . . . . . . 151

E.29 The movement of invested $100 for 200 days split in to 20 periods
(Stock: INTC; Industry: Technology) . . . . . . . . . . . . . . . . . 151

E.30 The movement of invested $100 for 200 days split in to 20 periods
(Stock: MSFT; Industry: Technology) . . . . . . . . . . . . . . . . 152



Abbreviations

ARD Automatic Relevance Determination

ARMA Autoregressive Moving Average

ARMSE Average Root Mean Square Error

CG Conjugate Gradient

EM Expectation Maximization

EMH Efficient Market Hypothesis

GMV-GP Matrix-variate Gaussian Process

GMV-GPR Matrix-variate Gaussian Process Regression

GMV-TP Matrix-variate Student−t Process

GMV-TPR Matrix-variate Student−t Process Regression

GP Gaussian Process

GPR Gaussian Process Regression

GPRT Gaussian Process Regression with Student−t Likelihood

LIN Linear

LL Log Loss

LOO-CV Leave-one-out Cross Validation

LP Local Periodic

MAE Mean Absolute Error

MAER Mean Absolute Error Ratio

MSE Mean Squared Error

MSER Mean Squared Error Ratio

MSLL Mean Standardized Log Loss

MV-GP Matrix-variate Gaussian Process

MV-TP Matrix-variate Student−t Process

xv



Abbreviations xvi

PCA Principal Component Analysis

PER Periodic

PSD Positive semi-definite

RMSE Root Mean Square Error

RQ Rational Quadratic

SE Squared Exponential

SM Spectral Mixture

SRMSE Standardized Root Mean Square Error

SSGPR State-Space Gaussian Process Regression

SSTPR State-Space Student−t Process Regression

SVM Support Vector Machine

TP Student−t process

TPR Student−t Process Regression

VB Variational Bayesian



Ticker Symbols

Ticker Index (Exchange)
DAX Deutscher Aktienindex (Frankfurt Stock Exchange, Germany)

HSI Hang Seng Index (Hong Kong Stock Exchange, Hong Kong)

INDU Dow Jones Industrial Average (New York & NASADAQ Stock

Exchange, US)

NDX NASDAQ 100 Index (NASDAQ Stock Exchange, US)

NKY Nikkei 225 (Tokyo Stock Exchange, Japan)

SENSEX Standard & Poor’s Bombay Stock Exchange Sensitive Index (

Bombay Stock Exchange, India)

SHSZ300 China Securities Index (Shanghai&Shenzhen Stock Exchange,

China)

SPX Standard & Poor’s 500 (New York & NASADAQ Stock

Exchange, US)

UKX Financial Times Stock Exchange 100 Index (London Stock

Exchange, UK)

XU100 Borsa Istanbul 100 Index (Istanbul Stock Exchange, Turkey)

Ticker Company (Exchange)
BIDU Baidu, Inc. (NASDAQ)

CTRP Ctrip.com International, Ltd. (NASDAQ)

NTES NetEase, Inc. (NASDAQ)

xvii



Ticker Symbols xviii

MMM 3M (NYSE)

AXP American Express (NYSE)

AAPL Apple (NASDAQ)

BA Boeing (NYSE)

CAT Caterpillar (NYSE)

CVX Chevron (NYSE)

CSCO Cisco Systems (NASDAQ)

KO Coca-Cola (NYSE)

DD DuPont (NYSE)

XOM ExxonMobil (NYSE)

GE General Electric (NYSE)

GS Goldman Sachs (NYSE)

HD The Home Depot (NYSE)

IBM IBM (NYSE)

INTC Intel (NASDAQ)

JNJ Johnson & Johnson (NYSE)

JPM JPMorgan Chase (NYSE)

MCD McDonald’s (NYSE)

MRK Merck (NYSE)

MSFT Microsoft (NASDAQ)

NKE Nike (NYSE)

PFE Pfizer (NYSE)

PG Procter & Gamble (NYSE)

TRV Travelers (NYSE)

UNH UnitedHealth Group (NYSE)

UTX United Technologies (NYSE)

VZ Verizon (NYSE)

V Visa (NYSE)

WMT Wal-Mart (NYSE)

DIS Walt Disney (NYSE)



Notations

Generalities

R real number set

N nature number set

X Input space

p dimensionality of the input space

d number of outputs

n number of data points per output

m number of test (predictive) points

` input scale of the kernels based on SE and PER

s2
f output-scale amplitude of the kernels

p period term of the kernels with periodicity

x(or x) input point, 1-dimension ( p-dimension)

y(or y) target point, 1-dimension ( d-dimension)

z(or z) input point, 1-dimension ( p-dimension)

X set of training input data, X = {xi}ni=1 or {xi}ni=1

Z set of test (predictive) inputs, Z = {zi}mi=1 or {zi}mi=1

Y set of training target data, Y = {yi}ni=1 or {yi}ni=1

D training set, D = {X,Y}

Operators

E[·] expected value

cov[·, ·] covariance operator

tr(·) trace of a matrix

etr(·) exponential trace of a matrix

xix



Notations xx

L Lag operator

〈·, ·〉 inner product

b·c largest integer toward negative infinity

det(·) determinant of a square matrix.

log(·) natural logarithm of a positive number

∝ proportional to

vec(·) vectorization of a matrix

AT(or A∗) transpose (conjugate transpose) of matrix A

A⊗B Kronecker product between matrices A and B

Functions

f(x) or f(x) real-valued function evaluated at x or x

f(x) or f(x) vector-valued function, f(x) = [f1(x), . . . , fd(x)]

or f(x) = [f1(x), . . . , fd(x)]

µ(x) or µ(x) real-valued mean function evaluated at x or x

u(x) or u(x) vector-valued mean function, u(x) = [µ1(x), . . . , µd(x)]

or u(x) = [µ1(x), . . . , µd(x)]

k(x, x′) or k(x,x′) covariance (kernel) function evaluated at (x, x′) or (x,x′)

δij Kronecker delta, δij = 1 if i = j, otherwise δij = 0

Matrices

X training inputs, X = [x1, · · · , xn]T or [x1, · · · ,xn]T

y or Y training targets, y = [y1, · · · , yn]T or Y = [yT
1 , · · · , yT

n ]T

Z test (predictive) inputs, Z = [z1, · · · , zn]T or [z1, · · · , zn]T

µ mean vector, µ = [µ1, . . . , µn]T

M n× d mean matrix with Mij = µj(xi) or µj(xi)

Σ covariance matrix (inputs), Σij = k(xi, xj) or k(xi,xj)

Ω scale covariance matrix (outputs)

In identity matrix of size n

Distributions

Uniform(a, b) uniform distribution in the range of (a,b)



Notations xxi

N (µ,Σ) (multivariate) normal distribution with parameter µ,Σ

T (ν,µ,Σ) (multivariate) Student−t distribution with parameter ν,

µ,Σ

MN (M,Σ,Ω) matrix-variate normal distribution with parameter M,Σ,Ω

MT (ν,M,Σ,Ω) matrix-variate Student−t distribution with parameter ν,M ,

Σ,Ω

Processes

GP Gaussian process

T P Student−t process

MGP matrix-variate Gaussian process

MT P matrix-variate Student−t process



To my family

xxii



Chapter 1

Introduction

1.1 The predictability of financial time series

A time series is a series of data points indexed in time order. Time series analysis,
which comprises methods for analysing time series in order to capture meaningful
statistics and other information of the data [1], has many applications in economics
and finance. The analysis of financial time series is involved with the theory and
the practice of financial market valuation over time [2]. Unlike other time series
analysis, uncertainty is a key feature, with statistical theory and methods playing
an essential role in financial time series [2]. One of the most noteworthy problems
is forecasting. The predictability of financial time series has to be explicit before
prediction. Indeed, the effectiveness of forecasting financial time series in various
markets leads to a heated debate [3].

Undoubtedly, investors are particularly eager to find a useful method to forecast
the future and generate extraordinary profits. However, the efficient market hy-
pothesis (EMH) given by Eugene Fama in 1970, significantly hits their endeavours.
In the last half century, EMH, which describes the random walk behaviour of price
in financial markets, has been accepted by many economics and finance scholars
[4]. The EMH asserts that financial markets are "informationally efficient", mean-
ing that information will be immediately incorporated into the price when news
appears because of the efficient spread of information [4]. As a result, investors
cannot consistently obtain excess returns on a risk-adjusted basis, given the infor-
mation available at the time that the investment is made.

In summary, the EMH briefly contains the following three main points:

1
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(i) In the market, everyone is rational and every stock market company is under
strict monitoring by rational people. Investors can utilise available informa-
tion to generate higher rates of remuneration.

(ii) The reaction of security markets to new market information is rapid and
accurate, with stock prices fully reflecting all the available information.

(iii) Competition in the market leads the stock price from the old equilibrium
transition to a new equilibrium, while the new information corresponding to
the price change is independent and random.

Besides, the EMH can be divided into three forms (weakly, semi-strongly and
strongly efficient markets) depending on the degree of information efficiency. The
details of these three forms are presented in the following.

(i) In a weakly efficient market, stock prices already reflect all past information,
which can be derived by examining trading such as historical prices, volumes,
short interest and so on. That is to say, the future price cannot be predicted
by analysing the past, with even technical analysis useless in a weak efficient
market [5]. However, a fundamental analysis is still valid.

(ii) In a semi-strongly efficient market, stock prices already reflect all publicly
available information, including price-earnings ratios, cash flows earnings
forecasts, company management and so on. As a result, neither fundamental
analysis nor technical analysis can reliably produce excess returns. However,
insider information can produce abnormal profits [5, 6].

(iii) In a strongly efficient market, stock prices already reflect all relevant infor-
mation to a firm, and even includes insider information. That is, the stock
price is immediate self-adjusting and reflects all available private and pub-
lic information. As a result, no one can earn excess returns, including fund
managers or investors who have a monopolistic access to information [5].

The technical analysis, fundamental analysis and insider information have to be
verified by testing whether the market is weakly, semi-strongly or strongly efficient,
respectively. Technical analysis consists of a variety of forecasting techniques based
on historical trading data, such as chart analysis, pattern recognition analysis and
computerised technical trading systems. Fundamental analysis, in accounting and
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finance, is the analysis of a business’s financial statements (usually to analyze the
business’s assets, liabilities, and earnings) and its competitors and markets.

As mentioned, technical analysis contradicts weak form efficiency but it is widely
used by many investors. Over last decades, the dominance of the EMH in the
research field has become far less prominent [4] at the beginning of the 21st cen-
tury. An increasing number of finance and economics scholars have started to
believe that financial markets are partially predictable [4]. The technical analy-
sis researchers even suggest that a suitable strategy could be built into financial
markets to generate extra profits (see, e.g., [6, 7, 8]).

The psychological and behavioural elements are gradually being considered as
the increasing prominence in the determination of stock price, with future stock
prices somewhat more predictable based on historical price patterns and certain
fundamental valuations [4]. In 2004, Lo offered an alternative market theory to
EMH from a behavioural perspective, according to which markets are adaptable
and switch between efficiency and inefficiency at different periods [9].

Of course, the predictability of time series strongly depends on the efficiency of the
market, with a large volume of literature existing on the predictability of financial
time series using diverse methods in various markets. For instance, Ankit Agar-
wal tested the weak form of Indian stock market by using simple technical trading
rules to find high predictability of Indian stock markets considering transaction
costs [5]. Yanshan Shi discusses the predictability of kNN based on four equity
indices (FTSE100, DAX, HANGSENG and NASDAQ), highlighting that the fu-
ture index can be predicted by using historical information in the HANGSENG
market. Using a technical analysis probably leads to generating excess profits in
this case [10]. Other prevailing methods, such as dividend yields [11], support
vector machines [12], Bayesian models [13, 14], are also widely used to analyse the
predictability of financial time series and have the capacity of making considerable
predictions in several major equity markets over the world. Actually, the debate
about EMH and technical analysis is located in whether historical trading data
can help investors consistently generate excess profits. An interesting study of
20 new equity markets in emerging economies indicates that developing markets
can gain more expected returns and have higher volatility when compared with
developed countries’ markets [15]. That is to say, more opportunities in emerg-
ing economies can be achieved by investors taking advantage of technical analysis
based on historical data because these markets are more inefficient.
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The predictability of financial time series is also associated with test methods
including in-sample and out-of-sample. Empirical studies show that in-sample
tests have relatively strong predictability, while out-of-sample tests are weak. This
is because an out-of-sample (extrapolation) test may fail to discover predictability
in a population, while the in-sample (interpolation) test can correctly discover it
(see, e.g., [4, 13, 16, 17]).

As a result, it is also essential to analyse the predictability of financial time se-
ries and to investigate prediction problems when predictability is positive because
traders can take advantage of effective predictions, such as signalling of changes
and trends, to discover the trading points or detect crises so that they can make
critical preparations before an extreme situation occurs [18]. For instance, corre-
lation and variance will be gradually higher before a crisis, making it a valid signal
of an impending financial crisis [19, 20, 21].

1.2 Gaussian process for machine learning and its

extensions for financial time series prediction

Over the last few decades, Gaussian processes regression (GPR) has been proven
to be a powerful and effective method for non-linear regression problems due to
many desirable properties, such as ease of obtaining and expressing uncertainty
in predictions, the ability to capture a wide variety of behaviour through a simple
parameterisation and a natural Bayesian interpretation [22]. Neal [23] reveals that
many Bayesian regression models based on neural networks converge to GPs in
the limit of an infinite number of hidden units [24]. GPs have been suggested as
a replacement of supervised neural networks in non-linear regression [25, 26] and
classification [25].

In particular, GPR has an excellent capability of forecasting time series [27, 28, 29].
As a powerful non-parameter tool, it has been widely used in financial market pre-
diction and has shown a superior ability in forecasting [29, 30, 31, 32]. Forecasting
financial time series is an attractive topic for investors and scholars since a finan-
cial market is a complicated dynamic system with a huge volume of time series
data. An effective prediction can help investors generate excess profits. However,
the EMH developed by Fama asserts that one cannot constantly obtain excess
returns from an efficient market [33]. In other words, historical data cannot be
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used to predict and beat the efficient market. Nevertheless, the predictability of
financial markets remains a hot topic [3].

With the development of financial market theory, many researchers have already
found evidence that the distribution of financial time series is not Gaussian [34, 35].
Specifically, the empirical distributions of financial data have heavier tails in the
two sides than those from a Gaussian distribution [34]. As a result, some fat-tailed
distributions, such as Student−t distribution, Pareto distribution, Lévy distribu-
tion [36], and the family of stable distributions, are applied in various financial
time series models [34]. Some heavy-tailed distributions are used in the exten-
sion of GPR. For instance, in 2009, Vanhatalo et al. pointed out that Gaussian
likelihood of GPR models can be replaced by Student−t likelihood to adapt the
heavily-tails of financial data, namely GPR with the Student−t likelihood (GPRT)
model. Although the Student−t likelihood is considered in GPRT, which can re-
duce the influence of outlying observations and improve the prediction, the latent
process is still GP [37]. If the latent GP is replaced by Student−t process (TP),
GPR model is extended to a Student−t process regression (TPR) model, which is
used to capture the fat-tails. Shah et al.[38] show that TP can be an alternative to
GP as a non-parametric method in prediction problems because TP can retain the
desirable properties of a GP model, such as non-parametric representation given
a known kernel, analytic marginal and predictive distribution, and easy model
choice based on covariance functions [38]. For example, in 2015, Arno Solin and
Simo Särkkä predicted the share price of Apple Inc. using both GPR and TPR,
and the result is that TPR could have a comparatively better performance than
GPR.

Although EMH claims that the current price reflects all the past information on
a stock in an efficient market. However, not all the markets are efficient. The
current price cannot be independent of historical prices for all the markets [3]. In
other words, historical prices are able to particularly influence the current price.
The prediction of price tomorrow can be regarded as a function of previous prices
and today’s price; that is, it is state-space model, where the state consists of
the historical prices. It is a natural and direct idea for traders and investors
because they all want to generate excess profits from the analysis of historical
data, including trading information and operation records of firms. As a result,
both GPR and TPR are extended to state-space GPR (SSGPR) and state-space
TPR (SSTPR) models given by [39]. For stock market prediction using SSGPR
and SSTPR, the historical prices can be treated as the state in the state-space
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model to predict the next few days’ prices using the iterative multi-step-ahead
method.

Despite the popularity of GPR in various modelling tasks, there still exists a
conspicuous imperfection, that is, the majority of GPR models are implemented
for single response variables or considered independently for multiple responses
variables without consideration of their correlation [40, 41]. However, some cor-
relations between financial time series cannot be ignored. For example, "Chinese
concept stocks", which refer to the stock issued by firms whose asset or earning
have essential activities in Mainland China, are heavily influenced by the political
and economic environment of China together. For this reason, all these stocks
have the potential and unneglectable correlation theoretically, which is probably
reflected in the movement of the stock price. Furthermore, the diverse industrial
sector, which includes some stocks in a similar industrial group, usually has a joint
price trend or distribution during a period. The correlations between the stocks in
the same industrial sector should not be ignored and the predictions for the whole
industrial sector together are desirable. In order words, multi-output problems
have to be considered in financial time series prediction.

In order to resolve the multi-output prediction problem, Gaussian process re-
gression for vector-valued functions regarded as a pragmatic and straightforward
method, is proposed. The core of this method is to vectorise the multi-response
variables and to construct a "big" covariance, which describes the correlations be-
tween the inputs as well as between the outputs [40, 41, 42, 43]. This modelling
strategy is feasible due to that the matrix-variate Gaussian distributions can be re-
formulated as multivariate Gaussian distributions [42, 44]. Intrinsically, Gaussian
process regression for vector-valued functions is still a conventional Gaussian pro-
cess regression model since it merely vectorises multi-response variables of which
are assumed to follow a developed case of GP with a "big" kernel.

One important issue is how to apply the results of prediction models to the financial
market investments. For example, it is known that the accurate prediction of the
future for an equity market is almost impossible. Admittedly, the more realistic
idea is to make a strategy based on the Buy&Sell signals in different prediction
models [45]. The Buy&Sell strategy based on an effective prediction models should
be required to have more profits than Buy&Hold strategy, which means buying
shares of stock without selling.
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1.3 Contributions and outline of thesis

The main topic of this thesis is to develop Gaussian process regression methods
and then apply them to stock market prediction. The main contributions of this
thesis are covered in Chapter 4, 5, 6 and Appendix A, B, C, D, E. Two papers
including one revised manuscripts and one submission have been produced during
the course of this thesis:

• Zexun Chen and Bo Wang. How priors of initial hyperparameters affect
Gaussian process regression models, Neurocomputing, 2016, submitted; E-
print: arXiv:1605.07906 [stat.ML].

• Zexun Chen, Bo Wang and Alexander N. Gorban. Multivariate Gaussian
and Student−t Process Regression for Multi-output Prediction, Entropy,
2017, revised; E-print: arXiv:1703.04455 [stat.ML].

The rest of the thesis is organised as follows.

Chapter 2 contains some useful preliminaries about Gaussian and Student−t dis-
tribution, Gaussian and Student−t process, matrix-variate distribution and matrix
algebra, and classical financial time series models.

Chapter 3 reviews Gaussian process regression from weight-space and function-
space perspectives in detail, including all the assumptions and derivations. In
addition, extra attentions are given to several important parts of GPR, including
kernel, mean function and hyper-parameter estimation.

In Chapter 4 we study the sensitivity of the hyper-parameter estimation and the
performance of GPR to the prior distribution for the initial values. The vague
and data-dominated priors are taken for the initial values of hyper-parameters
over several commonly used kernels and then the influence of the priors on the
performance of GPR model is investigated. The results show that the sensitivity of
the the hyper-parameter estimation depends on the choice of kernels, but the priors
have little influence on the performance of GPR models in terms of predictability.

In Chapter 5, several Gaussian process regression extensions, including Gaussian
process regression with Student−t process (GPRT) and Student−t process regres-
sion (TPR), are introduced, with all the above models then applied to predict
10 main equity indices spread throughout the world. The experiments include a
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comparison of GPR, GPRT and TPR, and the classical time series model ARMA.
We find that GPR and TPR shows relatively considerable capability of predict-
ing equity indices so that leave-one-out cross-validation (LOO-CV), k−fold cross
validation and sliding window methods are used to make a further model evalua-
tion of GPR and TPR. Furthermore, GPR and TPR are extended to state-space
Gaussian process regression (SSGPR) and state-space Student−t process regres-
sion (SSTPR) models in order to make an effective prediction for the stock markets
based on the historical trading data in dynamic system. The overall results are
that SSTPR outperforms SSGPR for the equity index prediction. Based on the
detailed results, a brief market efficiency analysis confirms that the developed
markets are unpredictable on the whole.

In Chapter 6, we propose the multivariate Gaussian process regression (MV-GPR)
and Student−t process regression (MV-TPR) for multi-output prediction, where
the model settings, derivations and computations are all directly performed in
matrix form, rather than vectorizing the matrices involved in the existing meth-
ods of Gaussian process for vector-valued function model. The effectiveness of
the proposed methods is illustrated through a simulated example. The proposed
methods are then applied to stock market modelling in which the Buy&Sell strate-
gies generated by our proposed methods are shown to be profitable in the equity
investment.

Some discussions and future work are presented in Chapter 7.

Appendix A shows the graphs of predictions by GPR, GPRT, TPR models for
INDU, NDX, SPX,and UKX.

Appendix B presents the graphs of predictions by GPR, GPRT, TPR and ARMA(1,1)
models for DAX, HSI, INDU, NDX, NKY, SENSEX, SPX, and UKX.

The details of negative log marginal likelihood and gradient evaluation for MV-
GPR and MV-TPR are described in Appendix C.

Appendix D contains the details of investment for three Chinese stocks listed in
NASDAQ.

Appendix E contains the details of investment for the stocks listed in Dow 30.



Chapter 2

Preliminaries

2.1 Gaussian process and Student−t process

2.1.1 Gaussian distribution and process

A Gaussian process is a collection of random variables, any finite number of which
have (consistent) Gaussian distribution. Mathematically, for any set X 1, a Gaus-
sian process (GP) on X is a set of random variables (f(x), x ∈ X ) such that, for
any n ∈ N and x1, . . . , xn ∈ X , (f(x1), . . . , f(xn)) is (multivariate) Gaussian.

As a Gaussian distribution is specified by a mean vector and a covariance matrix,
a GP is also fully determined by a mean function and a covariance function. In
other words, we have [46, 47]:

Theorem 2.1 (Gaussian Processes). For any set X , any mean function µ : X 7→
R and any covariance function (also called kernel) k : X ×X 7→ R, there exists a
GP f(x) on X , s.t. E[f(x)] = µ(x), cov(f(xs), f(xt)) = k(xs, xt),∀x, xs, xt ∈ X .
It is denoted by f ∼ GP(µ, k).

Additionally, a Gaussian distribution also has the Gaussian marginal distribution
and conditional distribution.

1Although X can be any set, it usually is R or Rn.

9
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Theorem 2.2 (Marginalization and conditional distribution). Let y ∼ N (µ,Σ),
and partition y,µ and Σ as

y =

[ ]
y1 n1

y2 n2

, µ =

[ ]
µ1 n1

µ2 n2

Σ =

[ ]
Σ11 Σ12 n1

Σ21 Σ22 n2

n1 n2

where y,µ ∈ Rn and Σ ∈ Rn×n.Then, y1 ∼ N (µ1,Σ11) and,

y2|y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

2.1.2 Fat-tailed distribution

In mathematics, a fat-tailed distribution is a probability distribution that has the
property, along with the other heavy-tailed distributions that it exhibits large
extremely large kurtosis particularly relative to the ubiquitous normal which itself
is an example of an exceptionally thin tail distribution. Fat-tailed distributions
have been empirically encountered in a variety of areas: economics, physics, and
earth sciences. The definition in probability theory is in the following.

Definition 2.3. The definition of a random variable X is said to have a fat tail if

Pr(X > x) ∼ x−α as x→∞, α > 0,

where Pr(·) is the probability function. That is, if X has probability density
function fX(x),

fX(x) ∼ x−(α+1) as x→∞, α > 0.

Here the notation "∼" refers to the asymptotic equivalence of functions.

2.1.3 Student−t distribution and process

It is known that the Student−t distribution is an extension of the Gaussian dis-
tribution, which is also symmetric and bell-shaped, but has heavier tails. The
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probability density function of Student−t distribution is

p(x) =
Γ(ν+1

2
)

√
νπΓ(ν

2
)

(
1 +

x2

ν

)− ν+1
2

.

According to the definition of fat-tailed distribution, it’s easy to verify that Student−t
distribution is a fat-tailed distribution since (1 + x2)−

ν+1
2 ∼ x−(ν+1) as x→∞.

Compared with Gaussian distribution, there is an important parameter ν in the
probability density function. In fact, ν is the degree of freedom in the Student−t
distribution, which control how fat the tails are. The Figure 2.1 shows the density
of the Student−t distribution for increasing values of ν . The normal distribution is
shown as a red line for comparison. Note that the t-distribution (red line) becomes
closer to the normal distribution as ν increases. In fact, the Student−t distribu-
tion goes to Gaussian distribution as the degree of freedom tends to infinity. For
demonstration, Figure 2.1 shows the density density of the Student−t distribu-
tion for 1, 2, 5 and 10 degrees of freedom compared to the standard Gaussian
distribution.

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Gaussian distribution
t-distribution with ν = 1
t-distribution with ν = 2
t-distribution with ν = 5
t-distribution with ν = 10

Figure 2.1: Density of the Student−t distribution for 1, 2, 5 and 10 degrees
of freedom compared to the standard Gaussian distribution.

With the popularity of GPR over the last decade, it is natural to consider more
general families of elliptical process, such as Student−t process (TP), where any
collection of function values has a desirable extension distribution of the Gaussian
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distribution [48]. Some basic knowledge related to the Student−t process described
in [38] are introduced below.

Definition 2.4 (Multivariate Student−t distribution). A random vector y ∈ Rn is
said to have a multivariate Student−t distribution with parameters ν ∈ R+\ [0, 2],
µ ∈ Rn and Σ ∈ Rn×n if and only if its probability density function is given by

p(y|ν, µ,Σ) =
Γ(ν+n

2
)

((ν − 2)π)
n
2 Γ(n

2
)
(detΣ)−

1
2 ×

(
1 +

(y − µ)TΣ−1(y − µ)

ν − 2

)− ν+n
2

.

(2.1)
We denote this by y ∼ T (ν,µ,Σ).

Lemma 2.5. If y ∼ T (ν,µ,Σ), then, E[y] = µ, cov[y] = Σ.

Similar to multivariate Gaussian distributions, multivariate Student−t distribu-
tions are also consistent with marginalization and conditional distribution.

Theorem 2.6 (Marginalization and conditional distribution). Let y ∼ T (ν,µ,Σ),
and partition y,µ and Σ as

y =

[ ]
y1 n1

y2 n2

, µ =

[ ]
µ1 n1

µ2 n2

Σ =

[ ]
Σ11 Σ12 n1

Σ21 Σ22 n2

n1 n2

where y,µ ∈ Rn, ν ∈ R+ \ [0, 2] and Σ ∈ Rn×n. Then,

y1 ∼ T (ν,µ1,Σ11), y2|y1 ∼ T (ν̂, µ̂2,
ν + β − 2

ν + n1 − 2
× Σ̂22),

where ν̂ = ν +n1, µ̂2 = µ2 + Σ21Σ−1
11 (y1−µ1), β = (y1−µ1)TΣ−1

11 (y1−µ1), Σ̂22 =

Σ22 − Σ21Σ−1
11 Σ12.

Given the definition of multivariate Student−t distribution, a Student−t process
is naturally defined as a collection of random variables which have the joint mul-
tivariate Student−t distribution. Like GP, a Student−t process with a specific
degree of freedom is fully specified by a mean function and a covariance function
[38].
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Theorem 2.7 (Student−t process). For any set X , any mean function µ : X 7→ R

and any covariance function (also called kernel) k : X × X 7→ R, there exists a
TP f(x) with the degree of freedom ν ∈ R+ \ [0, 2] on X ,s.t. E[f(x)] = µ(x),
cov(f(xs), f(xt)) = k(xs, xt),∀x, xs, xt ∈ X . It denotes f ∼ T P(ν, µ, k).

2.2 Matrix-variate distributions

Matrix-variate distributions have many useful properties, as discussed in the lit-
erature [44, 49, 50]. Below we list some of them which are used in this thesis.

2.2.1 Matrix-variate Gaussian distribution

Definition 2.8 (Matrix-variate Gaussian distribution). The random matrix X ∈
Rn×d is said to have a matrix-variate Gaussian distribution with mean matrix
M ∈ Rn×d and covariance matrix Σ ∈ Rn×n and Ω ∈ Rd×d if and only if its
probability density function is given by

p(X|M,Σ,Ω) = (2π)−
dn
2 det(Σ)−

d
2 det(Ω)−

n
2 etr(−1

2
Ω−1(X −M)TΣ−1(X −M)),

(2.2)
where Ω and Σ are positive semi-definite. It denotes X ∼MN n,d(M,Σ,Ω).

Like multivariate Gaussian distributions, matrix-variate Gaussian distributions
also hold several important properties as follows.

Theorem 2.9 (Transposable). If X ∼MN n,d(M,Σ,Ω), then

XT ∼MN d,n(MT,Ω,Σ).

Matrix-variate Gaussian distributions are related to the multivariate Gaussian
distributions in the following way.

Theorem 2.10 (Vectorizable). X ∼MN n,d(M,Σ,Ω) if and only if

vec(XT) ∼ Nnd(vec(MT),Σ⊗ Ω).

Furthermore, matrix-variate Gaussian distributions are consistent under the marginal-
ization and conditional distribution.
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Theorem 2.11 (Marginalization and conditional distribution). Let
X ∼MN n,d(M,Σ,Ω), and partition X,M,Σ and Ω as

X =

[ ]
X1r n1

X2r n2

=

[ ]
X1c X2c

d1 d2

, X =

[ ]
M1r n1

M2r n2

=

[ ]
M1c M2c

d1 d2

Σ =

[ ]
Σ11 Σ12 n1

Σ21 Σ22 n2

n1 n2

and Ω =

[ ]
Ω11 Ω12 d1

Ω21 Ω22 d2

d1 d2

Then,

(i) X1r ∼MN n1,d (M1r,Σ11,Ω),

X2r|X1r ∼MN n2,d

(
M2r + Σ21Σ−1

11 (X1r −M1r),Σ22·1,Ω
)

;

(ii) X1c ∼MN n,d1 (M1c,Σ,Ω11),

X2c|X1c ∼MN n,d2

(
M2c + (X1c −M1c)Ω

−1
11 Ω12,Σ,Ω22·1

)
;

where Σ22·1and Ω22·1 are the Schur complements [51] of Σ11 and Ω11, respectively,

Σ22·1 = Σ22 − Σ21Σ−1
11 Σ12, Ω22·1 = Ω22 − Ω21Ω−1

11 Ω12.

If we assume d = 1 and Ω = 1, the matrix-variate Gaussian distribution degen-
erate to multivariate Gaussian distribution. As a result, multivariate Gaussian
distribution is a special case of matrix-variate Gaussian distribution.

2.2.2 Matrix-variate Student−t distribution

Definition 2.12 (Matrix-variate Student−t distribution). The random matrix
X ∈ Rn×d is said to have a matrix-variate Student t distribution with the mean
matrix M ∈ Rn×d and covariance matrix Σ ∈ Rn×n,Ω ∈ Rd×d and the degree of
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freedom ν if and only if its probability density function is given by

p(X|ν,M,Σ,Ω) =
Γn[1

2
(ν + d+ n− 1)]

π
1
2
dnΓn[1

2
(ν + n− 1)]

det(Σ)−
d
2 det(Ω)−

n
2×

det(In + Σ−1(X −M)Ω−1(X −M)T)−
1
2

(ν+d+n−1), (2.3)

where Ω and Σ are positive semi-definite, and

Γn(λ) = πn(n−1)/4

n∏
i=1

Γ(λ+
1

2
− i

2
).

We denote this by X ∼MT n,d(ν,M,Σ,Ω).

Theorem 2.13 (Expectation and covariance). Let X ∼MT (ν,M,Σ,Ω), then

E(X) = M, cov(vec(XT)) =
1

ν − 2
Σ⊗ Ω, ν > 2.

Theorem 2.14 (Transposable). If X ∼MT n,d(ν,M,Σ,Ω), then

XT ∼MT n,d(ν,MT,Ω,Σ).

Theorem 2.15 (Asymptotics). Let X ∼MT n,d(ν,M,Σ,Ω),then

X
d→MN n,d(M,Σ,Ω) as ν →∞,

where " d→" denotes convergence in distribution.

Theorem 2.16 (Marginalization and conditional distribution). Let
X ∼MT n,d(ν,M,Σ,Ω), and partition X,M,Σ and Ω as

X =

[ ]
X1r n1

X2r n2

=

[ ]
X1c X2c

d1 d2

, X =

[ ]
M1r n1

M2r n2

=

[ ]
M1c M2c

d1 d2

Σ =

[ ]
Σ11 Σ12 n1

Σ21 Σ22 n2

n1 n2

and Ω =

[ ]
Ω11 Ω12 d1

Ω21 Ω22 d2

d1 d2

Then,
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(i) X1r ∼MT n1,d (ν,M1r,Σ11,Ω),

X2r|X1r ∼ MT n2,d

(
ν + n1,M2r + Σ21Σ−1

11 (X1r −M1r),Σ22·1,

Ω + (X1r −M1r)
TΣ−1

11 (X1r −M1r)
)

;

(ii) X1c ∼MT n,d1 (, ν,M1c,Σ,Ω11),

X2c|X1c ∼ MT n,d2
(
ν + d1,M2c + (X1c −M1c)Ω

−1
11 Ω12,

Σ + (X1c −M1c)Ω
−1
11 (X1c −M1c)

T,Ω22·1

)
;

where Σ22·1and Ω22·1 are the Schur complements of Σ11 and Ω11, respectively,

Σ22·1 = Σ22 − Σ21Σ−1
11 Σ12, Ω22·1 = Ω22 − Ω21Ω−1

11 Ω12.

If we assume d = 1 and Ω = ν−2, the matrix-variate Student−t distribution degen-
erate to multivariate Student−t distribution. As a result, multivariate Student−t
distribution is a special case of matrix-variate Student−t distribution.

2.3 Matrix algebra theory

Matrix algebra is one of the most important areas of mathematics for data analysis
and for statistical theory. Several useful properties are listed below.

2.3.1 Matrix identities

The matrix inversion theorem, also called the Woodbury, Sherman & Morrison
formula, (see, e.g. [52] ).

Theorem 2.17 (Matrix Inversion). For matrices G,W,U, and V, assuming G

and W are invertible, G is n×n, W is m×m, U and V are n×m, there exists,

(G + UWVT)−1 = G−1 −G−1U(W−1 + VTG−1U)−1VTG−1.

The matrix derivative with respect to a parameter involved in the matrix can be
shown as follow [53].
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Theorem 2.18 (Matrix derivative with respect to a parameter). For matrix A,
there exists,

∂

∂θ
A−1 = −A−1∂A

∂θ
A−1,

where ∂A/∂θ is a matrix whose entries are the derivatives of entries in A. If A
is positive definite, there exists,

∂

∂θ
log detA = tr(A−1∂A

∂θ
).

According to the chain rule of derivatives of a matrix, there exists [53]:

Theorem 2.19 (Matrix derivative with respect to a matrix). Let U = f(X), then
the derivative of the function g(U) with respect to X,

∂g(U)

∂Xij

= tr

[(
∂g(U)

∂U

)T
∂U

∂Xij

]
.

At the same time, there are another two useful formulas of derivatives with respect
to X,

∂ log det(X)

∂X
= (XT)−1,

∂

∂X
tr(AX−1B) = −(X−1BAX−1)T,

where A and B are constant matrices.

2.3.2 Matrix decompositions

In linear algebra, a matrix decomposition is a factorization of a matrix into a
product of matrices. In numerical analysis, matrix decompositions are used to
implement efficient matrix algorithms. Two important matrix decompositions are
introduced as following.

2.3.2.1 Cholesky decomposition

The Cholesky (Chol) decomposition of a Hermitian positive definite matrix A is
a decomposition of the form,

A = LL∗,

where L denotes a lower triangular matrix with real positive diagonal entries, and
L∗ is the conjugate transpose of L. If all entries of A are real, conjugate transpose
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means only transpose and Hermitian positive definite is only symmetric positive
definite. The result is also true if A is (Hermitian) positive semi-definite where
the diagonal entries of L are allowed to be zero.

Cholesky decomposition is widely used in solving linear system. For example, if
Ax = b, then the following steps are applied:

Step 1: Solving triangular system Ly = b;

Step 2: Solving another triangular system LTx = y.

Besides, the determinant computation is efficient using Cholesky decomposition,

detA =
n∏
i=1

L2
ii,

log detA = 2
n∑
i=1

logLii,

where Lii, i = 1, 2, · · · , n are the diagonal elements of L.

2.3.2.2 Singular value decomposition

The Singular Value Decomposition (SVD) is a factorization of a real or complex
matrix. It is actually the generalization of the eigendecomposition of a positive
semi-definite normal matrix 2. It has many useful applications in signal processing
and statistics. The SVD form of m× n matrix A is,

A = UDV∗,

whereU is am×m unitary matrix, D is a diagonalm×nmatrix with non-negative
real number on the diagonal, and V is a n× n unitary matrix.

The SVD is very general since it can be applied to any m×n matrix. As we know,
eigendecomposition is another similar matrix decomposition method, though it
can only be applied to certain classes of square matrices. Nevertheless, the two
decompositions are related. Given an SVD of A, as described above, the following

2A complex square matrix A is normal if A∗A = AA∗
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two relations hold [54]:

A∗A = VD∗U∗UDV∗ = V(D∗D)V∗

AA∗ = UDV∗VD∗U∗ = U(DD∗)U∗

If A is a normal matrix, which by definition must be square, the spectral theorem
says that it can be unitarily diagonalized using a basis of eigenvectors, so that
it can be written as A = UDU∗, where U is unitary matrix and D now is a
diagonal matrix. In a further special case, if A is also positive semi-definite, the
decomposition A = UDU∗ is also a singular value decomposition [54].

2.4 Autoregressive moving average model

In the statistical analysis of time series, autoregressive moving average (ARMA) is
a classical model constructed by two polynomials: one for the autoregression and
the other for the moving average. The first description of general ARMA model
was introduced in 1951 [55], and was then popularised in 1971 [56].

The notation ARMA(p, q) refers to the model with p autoregressive terms and q
moving average terms. It can be specified in terms of the lag operator L, where
LiXt = Xt−i. The AR(p) model is given by

εt = (1−
p∑
i=1

ϕiL
i)Xt = ϕ(L)Xt

where ϕ represents the polynomial ϕ(L) = 1−
∑p

i=1 ϕiL
i, the random variable εt

is white noise, {ϕi}pi=1 are parameters. Then the MA(q) model is given by

Xt = (1 +

q∑
i=1

θiL
i)εt = θ(L)εt,

where θ represents the polynomial θ(L) = 1 +
∑1

i=1 θiL
i and {θi}qi=1 are the pa-

rameters. Finally, the combined ARMA(p, q) model is given by,

(1−
p∑
i=1

ϕiL
i)Xt = (1 +

q∑
i=1

θiL
i)εt.
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It can be rewritten as,

ϕ(L)Xt = θ(L)εt or
ϕ(L)

θ(L)
Xt = εt.

If ϕ(L) = 1, ARMA process becomes MA(q) while the ARMA process degenerates
to AR(p) if θ(L) = 1.

The ARMA(p, q) process is widely used in the analysis of time series and is one of
the classical methods for prediction. The estimation of parameters in ARMA(p, q)

process is facilitated by plotting the partial autocorrelation functions for a rough
estimate of p, and similarly using the autocorrelation functions for an approximate
estimate of q. Furthermore, the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) are also usually recommended to find appropriate val-
ues of p and q [57, 58].



Chapter 3

Gaussian process regression

3.1 Introduction

GP provides a practical probabilistic approach to supervised learning, which can be
divided into regression and classification problems. It is known that the responses
for classification are the discrete class labels whereas regressions consider outputs
as continues variables [59]. There are several ways to derive GPR models, mainly
including weight-space view and function-space view. The former interpretation
is from the view of the Bayesian framework while the latter considers GP as a
defining a distribution over functions, and inference performing directly in the
space of functions [59]. We introduce GPR models from these two ways.

3.1.1 Weight-space view

The simple linear regression models have been well studied and used extensively.
Our introduction for GPR starts from Bayesian linear regression and then we
make a simple enhancement to this class of models by projecting the inputs into
a high-dimensional feature space and using the linear model there.

3.1.1.1 Bayesian linear regression

We review the Bayesian analysis of standard linear regression model with Gaussian
noise

f(x) = xTw, y = f(x) + ε, (3.1)

21
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where x is the multi-dimensional input vector, w is a vector of weights of this
model (the size equals the dimension of the input x), and f is the function value
and y is the target value. Let D be a training set D = (X,y) = {(xi, yi)|xi ∈
Rp, yi ∈ R, i = 1, · · · , n}. We assume that the noise follows an independent,
identically distributed Gaussian with zero mean and variance σ2

n,

ε ∼ N (0, σ2
n).

Given the model assumptions, the likelihood function is obtained by

p(y|X,w) =
n∏
i=1

p(yi|xi,w) =
1

(2πσ2
n)n/2

exp

(
− 1

2σ2
n

(y −XTw)2

)
= N (XTw, σ2

nIn). (3.2)

Inference in this linear regression model is based on the posterior distribution over
the weights, computed by Bayes’ rule [59]

p(w|D) =
p(y|X,w)p(w)

p(y|X)
=

p(y|X,w)p(w)∫
p(y|X,w)p(w)dw

∝ p(y|X,w)p(w), (3.3)

where ∝ means "proportional to". Assuming that the prior of w is a Gaussian
distribution with zero mean and covariance matrix Σp, w ∼ N (0,Σp), the distri-
bution of the weights given the training set D are computed by,

p(w|D) ∝ exp

(
− 1

2σ2
n

(y −XTw)T(y −XTw)

)
exp

(
−1

2
wTΣ−1

p w

)
∝ exp

(
−1

2
(w − µw)TΣ−1

w (w − µw)

)
, (3.4)

where µw = σ−2
n (σ−2

n XX
T + Σ−1

p )−1Xy,Σw = (σ−2
n XX

T + Σ−1
p )−1. In fact, it is

Gaussian distribution with mean µw and covariance matrix Σw.

p(w|D) ∼ N (µw,Σw).

To make predictions for test points, we integrate over all the possible parameters,
weighted by their posterior probability. The predictive distribution for f∗ = f(z)

given by averaging the output of all possible linear models with respect to the
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Gaussian posterior

p(f∗|z,D) =

∫
p(f∗|z,w)p(w|D)dw

= N (zTµw, z
TΣwz). (3.5)

According to Eq.(3.5), the predictive distribution is again Gaussian, with a mean
given by the posterior mean of the weights from (3.4) multiplied by the test input.
The predictive variance is a quadratic form of the test input with the posterior
covariance matrix, which means that predictive uncertainties increase with mag-
nitude of the test input [59].

Finally, considering noise part, y∗ is given by

p(y∗|z,D) = N (zTµw, z
TΣwz + σ2

nI). (3.6)

3.1.1.2 Projections of inputs into feature space

The main drawback of standard linear regression model is that the output is lim-
ited to be a linear combination of the inputs. That is to say, if the relationship
between input and output cannot be approximated by a linear function, the model
performance is poor [59]. A simple approach to overcome this problem is projec-
tions of inputs into feature space, which is to initially project the inputs into some
high dimensional space using a set of basis functions and then apply Bayesian
linear regression in this space [59].

Now we consider a basis function of form φ(‖x − xi‖), where φ is a non-linear
function and ‖x − xi‖ is the distance of the vector x from the prototype vector
xi, where the distance could be defined in all Hilbert spaces. For the case of n
training points, where each point is presented as a prototype, the mapping can be
defined by,

f(x) =
n∑
i=1

wiφ(‖x− xi‖) = φ(x)Tw, (3.7)

where φ(x) = [φ(‖x− x1‖), · · · , φ(‖x− xn‖)]T. The model considering noise is

y = φ(x)Tw + ε. (3.8)
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Let the matrix Φ(X) be the aggregation of columns φ(x) for all the training
inputs,

Φ(X) =


φ(‖x1 − x1‖) · · · φ(‖x1 − xn‖)

... . . . ...
φ(‖xn − x1‖) · · · φ(‖xn − xn‖)

 =


φ(x1)T

...
φ(xn)T

 .

The analysis for this model is similar to the standard Bayesian linear model ex-
cept that everywhere Φ = Φ(X) is substituted for X and z is replaced by φ(z).
Therefore, the predictive distribution in Eq.(3.5) becomes

p(f∗|z,D) = N (φT
∗µ
′
w,φ

T
∗Σ′wφ∗), (3.9)

where φ∗ = φ(z),µ′w = σ−2
n (σ−2

n ΦΦT + Σ−1
p )−1Φy,Σ′w = (σ−2

n ΦΦT + Σ−1
p )−1.

Conveniently, Eq.(3.9) could be rewritten as follow,

p(f∗|z,D) = N (φT
∗ΣpΦ(K + σ2

nI)
−1y,

φT
∗Σpφ∗ − φT

∗ΣpΦ(K + σ2
nI)
−1ΦTΣpφ∗). (3.10)

where K is defined by K = ΦTΣpΦ.

The equivalence between Eq.(3.9) and Eq.(3.10) is shown in the below. From the
view of mean

σ−2
n Φ(K + σ2

nI) = σ−2
n Φ(ΦTΣpΦ + σ2

nI)

= σ−2
n ΦΦTΣpΦ + Φ

= (σ−2
n ΦΦT + Σ−1

p )ΣpΦ. (3.11)

Therefore, σ−2
n (σ−2

n ΦΦT + Σ−1
p )−1Φ = ΣpΦ(K + σ2

nI)−1 (assuming all the matrices
here are invertible) and the equation is

φT
∗µ
′
w = φT

∗ σ
−2
n (σ−2

n ΦΦT + Σ−1
p )−1Φy

= φT
∗ΣpΦ(K + σ2

nI)−1y. (3.12)

From the view of variance, it can be proved using matrix inversion Theorem 2.17
by setting G−1 = Σp,W

−1 = σ2
nI, and V = U = Φ.
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It is noted that the feature space usually enters in the form of φT
∗ΣpΦ,φ

T
∗Σpφ∗,

ΦTΣpφ∗ in Eq.(3.10). The entries of these matrices are invariably of form

φ(x)TΣpφ(x′),

where x and x′ are either the training or the test sets.

According to the definition in [59], k(x,x′) = φ(x)TΣpφ(x′), where k(·, ·) is called
kernel or covariance function. In fact, the kernel can be rewritten in inner product
form using Theorem 3.2 (in next section),

k(x,x′) = φ(x)TΣpφ(x′)

= 〈ψ(x), ψ(x′)〉. (3.13)

In particular, if we consider dot product as inner product, there is a simple ex-
pression for k(·, ·) using ψ(x). Since Σp is positive semi-definite we can define
Σ

1/2
p and thus Σp = (Σ

1/2
p )2. According to Singular Value Decomposition (SVD),

Σp = UDUT, where D is diagonal, then Σ
1/2
p = UD1/2UT. Hence, defining ψ(x) =

Σ
1/2
p φ(x) and it is a simple dot product representation k(x,x′) = ψ(x) ·ψ(x′) [59].

Based on the discussions above, we can find that the kernel contains all the in-
formation of feature vectors so that it is a convenient alternative as the feature
vectors. That is also a reason why the discussions of kernel of GP are primary.

3.1.2 Function-space view

An alternative approach of obtaining the identical results is derived in the function-
space directly [59]. As we know, GP is a collection of random variables, any finite
number of which have a joint Gaussian distribution.

According to Theorem 2.1, a Gaussian process is completely specified by its mean
function and kernel, that is

µ(x) = E[f(x)]

k(x, x′) = cov(f(x), f(x′)).

It can be denoted f(x) ∼ GP(µ, k). For example, Bayesian linear regression model
f(x) = φ(x)Tw with prior w ∼ N (0,Σp), thus the mean and kernel function is
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obtained

µ(x) = E[f(x)] = φ(x)TE[w] = 0,

k(x,x′) = E[f(x)f(x′)] = φ(x)TE[wwT]φ(x′) = φ(x)TΣpφ(x′),

so that f(x) ∼ GP(0,φ(x)TΣpφ(x′)).

Now we consider a general regression model y = f(x) + ε, where f(x) ∼ GP(µ, k)

and ε ∼ N (0, σ2
n). Given n pairs of observations {(xi, yi)}ni=1,xi ∈ Rp, yi ∈ R, it

yields that [f(x1), . . . , f(xn)] follow a multivariate Gaussian distribution

[f(x1), f(x2), . . . , f(xn)]T ∼ N (µ, K),

where µ = [µ(x1), . . . , µ(xn)]T is the mean vector and K is the n × n covariance
matrix of which the (i, j)-th elementKij = k(xi,xj). In order to predict f∗ = f(Z)

at the test locations Z = [z1, · · · , zm]T, the joint distribution of the training
observations y and the predictive targets f∗ are given by[

y

f∗

]
∼ N

([
µ(X)

µ(Z)

]
,

[
K(X,X) + σ2

nI K(Z,X)T

K(Z,X) K(Z,Z)

])
, (3.14)

where µ(X) = µ, µ(Z) = [µ(z1), . . . , µ(zm)]T, K(X,X) = K, K(Z,X) is an
m× n matrix of which the (i, j)-th element [K(Z,X)]ij = k(zi,xj), and K(Z,Z)

is an m×m matrix with the (i, j)-th element [K(Z,Z)]ij = k(zi, zj). Thus, taking
advantage of Theorem 2.2, the predictive distribution is

p(f∗|X,y, Z) = N (µ̂, Σ̂), (3.15)

µ̂ = K(Z,X)T(K(X,X) + σ2
nI)
−1(y − µ(X)) + µ(Z), (3.16)

Σ̂ = K(Z,Z)−K(Z,X)T(K(X,X) + σ2
nI)
−1K(Z,X). (3.17)

Taking noise part into consideration, the predictive distribution of targets y∗ given
the training set and the test locations are finally written by

p(y∗|X,y, Z) = N (µ̂, Σ̂ + σ2
nI), (3.18)
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3.2 Kernels

It can be seen from Eq.(3.16) and Eq.(3.17) that the kernel k(·, ·) plays a crucial
role in the predictive mean and variance. As discussed in [59], kernels contain our
presumptions about the function we wish to learn and define the closeness and
similarity between data points. As a result, the choice of kernel has a profound
impact on the performance of a GPR model, just as in activation function, learning
rate can affect the result of a neural network [60].

It is known that a symmetric n× n matrix C is said to be a positive semi-definite
(PSD) if for any non-zero column vector λ ∈ Rn, λTCλ ≥ 0. Before listing several
useful kernels, we introduce the definition of positive semi-definite kernels.

Definition 3.1. A positive semi-definite kernel (also called covariance function)
on X is a function k : X × X 7→ R, s.t.∀n ∈ N,∀x1, . . . , xn ∈ X , the matrix C is
positive semi-definite, where Cij = k(xi, xj).

For example, X = Rd, k(x,y) = xTy, hence C = xxT. Letting a ∈ Rn, then
aTCa = aTxxTa = (axT)2 ≥ 0. Therefore, the bivariate function k(x,y) = xTy

is a PSD kernel. A general method of reproducing a proper kernel is introduced
in the following and more details can be found in [61, 62].

Theorem 3.2. A function k : X×X 7→ R can be written as k(x, y) = 〈Φ(x),Φ(y)〉,
where Φ(x) is a feature map: x 7→ Φ(x) ∈ H (Hilbert space) and 〈·, ·〉 is an inner
product on H, if and only if k(x, y) is PSD kernel.

Some commonly-used kernels are listed as follows.

3.2.1 Squared exponential

The most widely-used kernel in GPR is Squared Exponential (SE), which is defined
as

kSE(x, x′) = s2
f exp(−‖x− x

′‖2

2`2
),

where ‖ · ‖ is L2-norm (Euclidean norm), s2
f is the signal variance and is also

considered as an output-scale amplitude [63] and the parameter ` is the input
(length or time) scale [63]. The kernel can also be defined by Automatic Relevance
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Determination (ARD).

kSEard(x,x
′) = s2

f exp(−(x− x′)TΘ−1(x− x′)
2

),

where Θ is a diagonal matrix with the element components {`2
i }
p
i=1, which are the

length scales for each corresponding input dimension. Some samples of GP over
kernel SE and SEard are demonstrated in Figure 3.1.
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Figure 3.1: The samples of GP over kernel SE and SEard. (a): 5 samples of GP
over kernel SE with parameters [`, sf ] = [0.2, 1]. (b): A sample of 2-dimensional

GP over kernel SEard with parameters [`1, `2, sf ] = [0.2, 0.2, 1].

3.2.2 Periodic

The Periodic (PER) kernel is used to model functions which exhibit a periodic
pattern. An effective method is the warping production (see, e.g. [64]) where the
1-dimensional input variable x is mapped to the 2-dimension to make a periodic
function of x

kPER(x, x′) = kSE($(x), $(x′)) = s2
f exp(−

2 sin2(π (x−x′)
p

)

`2
),

where $(x) = [sin(πx/p), cos(πx/p)]T and p is the period. The second equation is
due to (sin(πx/p)−sin(πx′/p))2+(cos(πx/p)−cos(πx′/p))2 = 4 sin2(π(x−x′)/2p).
Like SEard kernel, the ARD kernel for PER is defined by

kPERard(x,x
′) = kSEard($(x), $(x′))

= s2
f exp(−2 sin(

π(x− x′)
p

)TΘ−1 sin(
π(x− x′)

p
)),
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where sin(x/p) = [sin(x1/p1), . . . , sin(xp/pp)] and p = {pi}pi=1 are the periods for
each corresponding input dimension. Some samples of GP over kernel PER and
PERard are demonstrated in Figure 3.2.
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Figure 3.2: The samples of GP over kernel PER and PERard. (a): 5 samples
of GP over kernel PER with parameters [`,p, sf ] = [0.5, 2, 1]. (b): A sam-
ple of 2-dimension GP over kernel PERard with parameters [`1, `2,p1, p2, sf ] =

[0.5, 0.5, 2, 2, 1].

3.2.3 Local periodic

As shown in [65], the positive semi-definite kernels are closed under addition and
multiplication. Local Periodic (LP) is such a composite kernel which is obtained
by multiplying SE and PER [65]. That is,

kLP (x, x′) = kSE(x, x′)× kPER(x, x′),

kLPard(x,x
′) = kSEard(x,x

′)× kPERard(x,x′).

It is a well-known kernel to capture locally periodic structure of data hence can
be applied to many kernel-based models. Some samples of GP over kernel LP and
LPard are shown in Figure 3.3.
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Figure 3.3: The samples of GP over kernel LP and LPard. (a): 5 samples of GP
over kernel LP with parameters [`, sf ] = [0.5, 1] for PER and [`,p, sf ] = [0.5, 2, 1]
for PER. (b): A sample of 2-dimension GP over kernel LPard with parameters
[`1, `2, sf ] = [0.5, 0.5, 1] for SEard and [`1, `2, p1, p2, sf ] = [0.5, 0.5, 2, 2, 1] for

PERard.

3.2.4 Spectral mixture

The Spectral Mixture (SM) kernel was introduced by Wilson [66] and is defined
as a scaled mixture of Q Gaussians:

kSM(x,x′) =

Q∑
q=1

wq

n∏
i=1

exp(−2π2τ 2
i ν

(i)
q ) cos(2πτiµ

(i)
q ),

where τi is the ith component of the p dimensional vector τ = x−x′, {wq}Qq=1 are
the weights, the inverse means for ith component {1/µ(i)

q }Qq=1 represent the compo-

nent periods and each inverse standard deviations for ith component {1/
√
ν

(i)
q }Qq=1

represents the length scales [66]. Some samples of GP over kernel SM with com-
ponent Q = 2 are shown in Figure 3.4.

3.3 Mean function

As a GP is specified by the mean function and the kernel, there is no doubt that
the mean function has an influence on the performance of GP, so that it must be
selected with this in mind [63]. In the majority of studies, the zero-offset mean
function is usually used. Of course, simplifying the model is another important
reason. All the data can be centralized so that the data can satisfy the zero mean
assumption. Additionally, the mean function only dominate the predictions in
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Figure 3.4: The samples of GP over kernel SM. (a): 5 sam-
ples of GP over kernel SM with parameters [w1, µ1,

√
ν1, w2, µ2,

√
ν2] =

[1, 2, 1, 1, 2, 1]. (b): A sample of 2-dimension GP over kernel SM with pa-

rameters [w1, µ
(1)
1 ,

√
ν

(1)
1 , µ

(2)
1 ,

√
ν

(2)
1 , w2, µ

(1)
2 ,

√
ν

(1)
2 , µ

(2)
2 ,

√
ν

(2)
2 ] = [1, 2, 1, 2, 1,

1, 2, 1, 2, 1].

region far from the training data [63]. For the forecasting problems, long term
forecasting is influenced by the mean function more significantly than the short
term forecasts.
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Figure 3.5: The effect of GPR models with the simple mean functions. The
flat(zero-offset) mean function is used in the left panel while the exponential

decay mean function is used in the right panel

For example, we consider the case in which we know that the observed points
consist of a deterministic part with noise. That is, the training data are generated
by

y = f + ε,with f = exp(−0.2x),
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where ε ∼ N (0, 0.022) and the 7 points of x are equally spaced in [0, 3]. Therefore,
our GPR model is considered as

y = f + ε, f ∼ GP (µ(x; θµ), k(x, x; θk)) , ε ∼ N (0, σ2),

where the mean function µ has hyper-parameters θµ that incorporate the informa-
tion of the deterministic part and the kernel k has hyper-parameters θk [63]. In this
case, our observations are generated by an exponential decay function with noise.
Hence, the mean function we choose is in form of µ(x) = a exp(−bx), where a, b
are unknown hyper-parameters of the mean function. Figure 3.5 (left panel) shows
the GPR with SE kernel and flat mean function are used to model the 7 noisy
data drawn from an exponential decay function. The GPR performs well on the
training data but long term predictions are actually dominated by the flat mean
function. In the right panel of Figure 3.5, the GPR with the same kernel is used,
but the mean function is an exponential decay with unknown hyper-parameters.
Admittedly, 7 points are sufficient for inferring the hyper-parameters in the expo-
nential function, however, it results in long-term forecasts are dominated by the
specific mean function (exponential decay) [63].

According to the simple example, an appropriate mean function significantly im-
prove the performance of prediction of GPR. However, the effective mean function
is not easy to pick up for complicated data, especially financial data. Thus the
zero-offset mean functions are usually adopted in this thesis.

Given the mean function µ(x) being zero, the predictive mean in Eq.(3.16) and
variance in Eq.(3.17) are given by

µ̂ = K(Z,X)T(K(X,X) + σ2
nI)
−1y, (3.19)

Σ̂ = K(Z,Z)−K(Z,X)T(K(X,X) + σ2
nI)
−1K(Z,X). (3.20)

3.4 Model parameters estimation

In the previous sections, we have seen how to construct a Gaussian process re-
gression model using a given kernel and zero mean function. The predictive mean
and variances can be obtained as long as all the undetermined hyper-parameters
are learned from the data. By the Bayesian method, we need to define a prior
distribution on the hyper-parameter and integrate over them in order to make
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predictions, this is to say, we need to find

p(y∗|Z,D) =

∫
p(y∗|Z,θ)p(θ|D)dθ, (3.21)

where y∗ is the sum of f∗ and the noise and θ = {θ1, θ2, · · · } contains all the hyper-
parameters. However, this integral is usually analytically intractable. There are
two useful methods to overcome this weakness [64]:

1. Approximating the integral by using the most reasonable values of the hyper-
parameters θR, that is, p(y∗|Z,D) = p(y∗|Z,D,θR).

2. Performing the integration over θ numerically using Monte Carlo methods
[26, 23].

Despite Monte Carlo methods can perform GPR without the need of estimating
hyper-parameters [26, 28, 67, 64], the common approach is approximating the in-
tegral by using the most reasonable values of the hyper-parameters due to the high
computational cost of Monte Carlo methods. If the most reasonable value means
the most probable value, this method is called maximum marginal likelihood. We
compute the marginal likelihood in the below.

For a noisy regression, the marginal likelihood function p(y|X,θ) is represented
as

p(y|X,θ) =

∫
p(y|f,X,θ)p(f |X,θ)df. (3.22)

In GPR models, the prior is Gaussian and the likelihood is also Gaussian

p(f |X,θ) = N (0, K), (3.23)

p(y|f,X,θ) = N (f, σ2
nI). (3.24)

Given Eq.(3.23) and Eq.(3.24), the marginal likelihood is still Gaussian

p(y|X,θ) =

∫
N (f, σ2

nI)N (0, K)df = N (0, K + σ2
nI) = N (0,Σθ), (3.25)

where we denote Σθ = Kθ + σ2
nI = K + σ2

nI since θ is involved in the covari-
ance matrix K. The commonly used negative log marginal likelihood (NLML) is
denoted by

L = − log p(y|X,θ) =
1

2
yTΣ−1

θ y +
1

2
log det Σθ +

n

2
log 2π. (3.26)
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The partial derivatives of NLML with respect to the hyper-parameters are given
by

∂L
∂θi

=
1

2
tr(Σ−1

θ

∂Σθ

∂θi
)− 1

2
yTΣ−1

θ

∂Σθ

∂θi
Σ−1
θ y. (3.27)

In fact, the noisy GPR models can also be considered as the noise-free regression
with a noisy kernel,

y = f, f ∼ GP(0, k′),

where k′ = k′(xi, xj) = k(xi, xj) + δijσ
2
n and δij = 1 if i = j, otherwise δij = 0.

The marginal likelihood is regarded as the Gaussian prior multiplying the identity
likelihood, and of course, it remains Gaussian. It is the same expression as the
noisy regression model since

p(y|X,θ) = p(f |X,θ) = N (0, K ′) = N (0, K + σ2
nI) = N (0,Σθ), (3.28)

where K ′ = K ′(X,X) = K(X,X) + σ2
nI. The third equality is due to the def-

inition of the kernel and the covariance matrix. In this case, the estimation of
hyper-parameters must contain the noise level and then the NLML is rewritten as
L(θ, σ2

n). The partial derivatives of NLML with respect to σ2
n are given by

∂

∂θi
L(θ, σ2

n) =
1

2
tr(Σ−1

θ

∂Σθ

∂θi
)− 1

2
yTΣ−1

θ

∂Σθ

∂θi
Σ−1
θ y, (3.29)

∂

∂σ2
n

L(θ, σ2
n) =

1

2
tr(Σ−1

θ )− 1

2
yTΣ−1

θ Σ−1
θ y. (3.30)

It is noted that the disadvantages of maximum marginal likelihood cannot be ig-
nored. Firstly, for many kernels the marginal likelihood function is not convex
with respect to the hyper-parameters, thus the optimisation algorithm may con-
verge to a local optimum whereas the global one may provide better results [65].
Consequently, the optimised hyperparameters achieved by maximum likelihood
estimation and the performance of GPR may depend on the initial values of the
optimisation algorithm [26, 28, 66, 64]. Secondly, the computation cost is also a
problem. The evaluation of the gradient of the log likelihood requires the com-
putation of the inverse matrix, which has associated computational cost that is
of order n3 and thus computing gradients is a time-consuming task for large data
sets [64].

In addition to Monte Carlo and maximum marginal likelihood, cross-validation can
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be considered as an effective method to select a kernel and estimate the parame-
ters, which compares various models and then choose the one with the least error
[68]. It has been shown that cross-validation can outperform maximum likelihood
estimation when the kernel is misspecified [68].

Admittedly, maximum marginal likelihood is still a mainstream approach in imple-
menting GPR models and we adopt this method in the further study. Faced with
the sensitivity of initial value, a common strategy adopted by most GPR practi-
tioners is a heuristic method. That is, the optimisation is repeated using several
initial values generated randomly from a simple prior distribution, which is often
selected based on their expert opinions and experiences. The final estimates of the
hyper-parameters are the ones with the largest likelihood values after convergence
[26, 28, 66]. Further discussions about how priors of initial hyper-parameters affect
the GPR models are shown in Chapter 4.

3.5 Model evaluation

One question of the essence in modelling is how to evaluate a model. We need to
make sure that the predictions made by our models actually make sense and that
we can depend on the models for further analysis or decision making. The principle
of model evaluation is to compare the predicted values with the actual values. Of
course, one asset of the Gaussian process regression model consists predictive mean
and variance and both of them should be analysed in model evaluation.

Firstly, there are several ways to evaluate the accuracy of the mean predictions,
including mean squared error (MSE), and mean absolute error (MAE), which are
defined by

MSE =
1

m

m∑
i=1

(ŷi − yi)2, MAE =
1

m

m∑
i=1

|ŷi − yi|,

where {ŷi} and {yi}, i = 1, 2, . . . ,m, are the predicted mean values and the actual
test values, respectively. Sometimes, MSE is used as root mean squared error
(RMSE),

RMSE =

√√√√ 1

m

m∑
i=1

(ŷi − yi)2.

The RMSE can be affected seriously by the overall scale of the output values, thus
we utilize the standardized root mean squared error (SRMSE) which is normalized
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by the standard deviation of {yi}, i.e.

SRMSE =
RMSE
σy

,

where σ2
y is the standard deviation of {yi}, i = 1, 2, . . . ,m. This implies any model

which can provide the prediction close to the sample mean of the test targets to
have an SRMSE of approximately one [59]. In other words, any prediction model
with the SRMSE around 1 is satisfactory.

Another measure considering both predictive mean and predictive variance is log
loss. As the predictive distribution for each test point is Gaussian or Student−t
(it is useful in Student−t related models), this log loss is defined by

LL =


1
2

log(2πσ̂2
i ) + (yi−ŷi)2

2σ̂2
i
, i = 1, 2, . . . ,m, if model is GPR

1
2

log((ν̂ − 2)πσ̂2
i ) + (yi−ŷi)2

(ν̂−2)σ̂2
i
, i = 1, 2, . . . ,m, if model is TPR

,

where {σ̂i}mi=1 are the predictive variances and ν̂ is the predictive degree of freedom
in TPR model. This loss can be standardized by subtracting the loss that would be
obtained by the null model which predicts using a Gaussian with the sample mean
and sample variance of the training outputs [59]. And the mean standardized
log loss (MSLL) is the average of the standardized log loss for i = 1, 2, . . . ,m.
Therefore, the MSLL is zero for null model, and the smaller value means better
model in terms of loss [59].

When it comes to compare two predictions, the mean squared error ratio (MSER)
and mean absolute error ratio (MAER) are defined by

MSER1−2 =
MSE1

MSE2

, MAER1−2 =
MAE1

MAE2

,

where MSEi,MAEi, i = 1, 2 are the MSE and MAE for predictor 1 and predictor 2,
respectively. If MSER or MAER is smaller than 1, it indicates that the predictor
1 outperforms predictor 2, and vice versa.

3.6 Summary

In this chapter, we introduce Gaussian process regression from weight-space view
and function-space view in details, including all the assumptions and derivations.
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In addition, the extra attentions are paid on the several important parts of GPR,
including model structure, kernel, mean function and parameters estimation.

The kernel contains our presumptions about the function we wish to learn and
define the closeness and similarity between data points while mean function dom-
inates the predictions in the region far from training data. When it comes to
parameter estimation, it is essential that the predictive mean and variances can
be obtained only if all the undetermined parameters are learned from the data. At
last, several model evaluation approaches are introduced and they will be widely
used in the rest of the thesis.



Chapter 4

Initial hyper-parameters selection

4.1 Introduction

As discussed in the previous chapters, GPR is a kernel-based nonparametric
method, which relies on the appropriate selection of kernel [60] and the hyper-
parameters involved. The choice of the kernel has a profound impact on the
performance of a GPR model, just as activation function, learning rate can af-
fect the result of a neural network [60]. Once a kernel is selected, the unknown
hyper-parameters involved in the kernel need to be estimated from the training
data. Although Monte Carlo methods can perform GPR without the need of es-
timating hyper-parameters [26, 67, 28, 64], the common approach is to estimate
the hyper-parameters by means of maximum marginal likelihood [25] due to the
high computational cost of Monte Carlo methods. Unfortunately, marginal like-
lihood functions are not usually convex with respect to the hyper-parameters,
which means local optima may exist [65] and the optimised hyper-parameters,
which depend on the initial values, may not be the global optima [26, 28, 64, 66].

A common approach to tackle this issue is to use multiple starting points ran-
domly selected from a specific prior distribution and after convergence chooses the
optimised values with the largest marginal likelihood as the estimates. Therefore,
the choice of prior distribution may play a vital role in the performance of GPR
model. However, there exists little research in the literature to study the impact
of the prior distributions on the hyper-parameter estimation and the performance
of GPR. Most researchers using GPR tend to choose a simple prior distribution
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based on their expert opinions and experiences, such as the uniform distribution
in the range of (0,1) [26, 28, 66].

In this chapter, we study the sensitivity of the hyper-parameter estimation and the
performance of GPR to the prior distributions for the initial values. We consider
different types of priors, including vague and data-dominated priors, for the initial
values of hyper-parameters over some commonly-used kernels and investigate the
influence of the priors on the performance of GPR model.

4.2 Sensitivity of prior distributions for initial hyper-

parameters

According to Eq.(3.26), we find that the likelihood functions for many kernels are
not always convex with respect to the hyper-parameters, therefore the optimi-
sation algorithm may converge to a local optimum whereas the global one may
provide better results [65]. As a result, the optimised hyper-parameters achieved
by maximum likelihood estimation and the performance of GPR may depend on
the initial values of the optimisation algorithm [26, 28, 64, 66].

A common strategy adopted by most GPR practitioners is a heuristic method.
That is, the optimisation is repeated using several initial values generated ran-
domly from a simple prior distribution, which is often selected based on their
expert opinions and experiences. The final estimates of the hyper-parameters are
the ones with the largest likelihood values after convergence [26, 28, 66]. It is,
therefore, interesting to know how prior distributions affect the performance of
GPR since the above strategy can not guarantee a global maximum of the likeli-
hood function is found, or the sensitivity of prior distributions to the performance
of GPR, which, to the best of our knowledge, has not been studied in the litera-
ture. In this thesis, we consider several different priors and study their influences
to the estimates of the hyper-parameters and the performance of GPR models for
some commonly used kernels.
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4.3 Prior distributions of initial hyper-parameters

The prior distributions considered include non-informative [60] and data-dominated
[66], which are briefly introduced as follows.

4.3.1 Vague priors

In the cases when there is little information about the data, vague prior distri-
butions are often selected with the intention that they should have slight or no
influence on the inferences [69, 70]. Many justifications and interpretations of
non-informative priors have been proposed over the years, including invariance
[71] and maximum entropy [72]. However, with small amounts of data, the use
of non-informative prior may be problematic and a vague prior distribution may
lead to significant influence on any inference made because the results are easily
sensitive to the selection of prior distributions [69].

Let θi be the notation for a hyper-parameter in a given kernel and the uniform
distribution be denoted as Uniform(a, b). Below we list the weakly informative
prior distributions which are discussed in this thesis.

Prior 1

θi ∼ Uniform(0, 1).

This is probably the most common prior distribution. Actually, it is not strictly a
‘vague’ prior since the range of the distribution is restricted. However, this prior
is widely used for the estimation of the unknown parameters in GPR models.

Prior 2

log(θi) ∼ Uniform(−1, 1).

This prior distribution is uniform on the log hyper-parameters in (−1, 1), so the
range of the hyper-parameters is (1/e, e).

Prior 3

log(θi) ∼ Uniform(−10, 10).

This prior is similar to Prior 2 with much larger range. So the range of the hyper-
parameters is approximately (0, e10).

Prior 4

θi ∼ N (0, 1).
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The standard normal prior is a popular and simple choice. It is not strictly a
‘vague’ prior either, and cannot be used for positive parameters.

Prior 5
π

θi
∼ Uniform(0, 1).

This prior is specified for the period parameter for kernels that contain periodic
part. The range of the parameter is (π,+∞).

Prior 6

log(
π

θi
) ∼ Uniform(−5, 5).

This prior is also specified for the period parameter. It is similar to Prior 5 but
with a range (πe−5, πe5).

4.3.2 Data-dominated priors

Data-dominated priors are incorporated with some information inferred from train-
ing data, such as the possible range of the initial hyper-parameters. The following
data-dominated priors are used in this study.

Prior 7

θi ∼ Uniform(0,Nyq).

This prior is also specified for the period parameter and is based on Nyquist
frequency [73], where Nyq equals half the sampling rate of the data, or the half
of the largest interval between input points if the data are not regularly sampled
[66]. Nyquist frequency can be used to find the approximate period of data in
signal processing and spectral analysis. For example, Wilson [66] used this prior
to initialise the SM kernel.

Prior 8
1

θi
∼ T N (MaxI),

where T N (MaxI) is the truncated normal distribution with mean proportional to
the maximal range of the inputs (MaxI) [66]. It is an improved version of Prior 4
and is used by Wilson [66] for the length scale in the SM kernel.

Prior 9
π

θi
∼ Uniform

( π

MaxI
, πNyq

)
.
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This prior is also specified for the period parameters and has the range (1/Nyq,MaxI).
It was first used in [66] to find a suitable range for the initial hyper-parameters.

4.4 Experiments

4.4.1 Samples from Gaussian process

In this section, we study how the priors of initial hyper-parameters affect the
estimates of the hyper-parameters and the performance of GPR models using data
generated from specified Gaussian processes. Since the true models are known,
the accuracy of the estimates can be compared.

Letting xi = i for i = 1, 2, . . . , 400, we generate samples {yi} from GPs with zero
mean and SE and PER kernels, respectively. These two kernels are used as the
demonstration because SE is the most widely-used kernel in GPR while PER is the
simplest kernel which may suffer from the problem of local optima in optimisation
procedure because integer multiples of the true period, such as harmonics, are
often local optima [65].

To evaluate the influences of the prior distributions on the hyper-parameter esti-
mation, ten values randomly generated from each prior distribution discussed in
Section 4.3 (where applicable) are used as the starting values for the maximum
likelihood procedure, implemented by the conjugate gradient algorithm. Among
the ten estimates after the procedure converges the one with the largest maximum
likelihood is chosen as the optimal estimate, denoted by θfinal, and is compared
with θact.

To study the impact of the priors on the predictability of GPR, we consider two
types of prediction: interpolation and extrapolation. Denote the whole data set
by Ω = {(i, yi); i = 1, 2, . . . , 400}. For interpolation, the test set is given by
DI2 = {(i, yi); i = 5j + 1, j = 0, 1, . . . , 79} and the training set is DI1 = Ω − DI2.
For extrapolation, the training set is DE1 = {(i, yi); i = 1, 2, . . . , 320} and the test
set is DE2 = Ω−DE1.
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4.4.1.1 Squared exponential kernel

As can be seen in Section 4.3, not all of the priors are suitable for every hyper-
parameter. For the SE kernel, we use Prior 1, Prior 2, Prior 3 for both hyper-
parameters ` and sf . The data are generated by using θact = [`, sf ] = [5, 2].

To compare θact and θfinal, Figure 4.1 illustrates their visual positions, where “�”

represents θact , “?” represents θfinal, the “+”s are the intermediate values during
the process of optimisation and the colour of the symbols stands for the value of
the negative log marginal likelihood (NLML).

Apparently, regardless of the priors, the optimisation converges very fast and the
estimated hyper-parameter θfinal is always very close to θact.

We now test the prediction performance by the GPR with SE kernel. Only Prior

1 is used since the estimated hyper-parameters from different priors are almost
the same. The samples are generated using two GP models with two different
hyper-parameters: θact = [5, 2] and θact = [15, 7], respectively. And the above ex-
periment is repeated 20 times and the average results are reported in Table 4.1. As
demonstration, Figure 4.2 shows typical predictions of GP and the corresponding
SRMSEs and MSLLs.

It is obvious that the mean estimate of θfinal is very close to θact with small
standard errors for both cases, and the GPR model performs well and stably for
both interpolation and extrapolation predictions.

Table 4.1: Results of GP predictions with SE kernel (the standard errors are
given in the brackets)

Interpolation

θact θfinal SRMSE MSLL

` 5 4.97 (0.133)
0.03 (0.004) -3.48 (0.130)sf 2 2.00 (0.187)

` 15 14.95 (0.467)
0.01 (0.002) -4.74 (0.229)sf 7 6.94 (1.110)

Extrapolation

θact θfinal SRMSE MSLL

` 5 4.98 (0.165)
1.02 (0.141) -0.14 (0.114)sf 2 1.97 (0.210)

` 15 15.01 (0.495)
1.19 (0.535) -0.56 (0.322)sf 7 7.01 (1.242)
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Figure 4.1: Positions of the estimated hyper-parameters for the SE kernel.
Top to bottom: Priors 1, 2 and 3.
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Figure 4.2: GP predictions with SE kernel using Prior 1. (a) and (b): inter-
polations; (c) and (d): extrapolations. (a) and (c): θact = [5, 2]; (b) and (d):

θact = [15, 7].

4.4.1.2 Periodic kernel

Three parameters [`, p, sf ] are involved in the PER kernel. We consider five priors
(Prior 1, Prior 5, Prior 6, Prior 7 and Prior 9) for the p term and Prior 1

for the parameters ` and sf . In the following experiment, the data are generated
using the true parameters θact = [5, 7, 2].

Figure 4.3 shows the visual positions of θact and θfinal, where the symbols have
the same meanings as in Figure 4.1. It can be seen that, for all the priors consid-
ered, the estimates θfinal are always far away from the true value θact. Therefore,
it is difficult to achieve the global maximum by the maximum marginal likeli-
hood method for the PER kernel, and the estimates are very sensitive to prior
distributions of the initial hyper-parameters.

The same strategy as for the SE kernel is used to test the prediction performance
by the GPR with PER kernel, and the results are reported in Table 4.2. It can be
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Figure 4.3: Positions of the estimated hyper-parameters for the PER kernel.
The priors for the p term are: (a) Prior 1, (b) Prior 5, (c) Prior 6, (d) Prior

7 and (e) Prior 9.



Initial hyper-parameters selection 47

seen that the averages of the estimated hyper-parameters are very different than
the true values either, which confirms that the estimates obtained by numerical
optimisation of likelihood function are biased. However, both the means and stan-
dard deviations of SRMSE and MSLL are very small, which indicates that the
GPR models perform very well and stably for both interpolation and extrapola-
tion, despite the poor estimates of the hyper-parameters. Therefore, although the
parameter estimation for the PER kernel is sensitive to prior distributions, the
GPRs still provide good results and the performance is hardly influenced by the
choice of priors.

4.4.2 Samples from time series

It is of interest to investigate how prior distributions of the hyper-parameters
influence the predictability of GPR if the data are generated from other models.

We consider a simple time series model ARMA(2,1) with autoregressive coeffi-
cient [0.8,−0.45] and moving average coefficient −0.5, and generate 400 samples
{yi, i = 1, 2, . . . , 400} with xi = i and the starting values y1 = y2 = 1. Here we
consider extrapolation only as this type of prediction is more meaningful in time
series modelling. We select the first 320 data points as the training data and the
rest as the test data. The GPR models are applied using two composite kernels:
local periodic (LP) and spectral mixture (SM) with 4 components, both of which
are known as useful kernels for data with complex pattern [66]. For LP kernel,
different priors are used for the p parameter while Prior 1 is used for all the re-
maining parameters. For SM kernel, the three parameters [wq, µq, νq] are involved.
However, wq can be initialised as constants proportional to the standard deviation
of the data [66]. Therefore we only focus on the remaining hyper-parameters µq
and νq (since only 1-dimension input, µ(1)

q = µq and ν
(1)
q = νq). We denote

[µq,
√
νq] ∼ PSij, if µq ∼ Prior i and √νq ∼ Prior j,

where i = 5, 6, 7, 9 and j = 1, 8. Here PS78 is the priors used by Wilson [66].

For comparison of the performance, the prediction is also performed using the true
model ARMA(2,1) with the true parameters. The experiment is repeated 20 times
and the averages and the standard deviations are reported in Tables 4.3 and 4.4,
respectively.
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Table 4.2: Results of GP predictions with PER kernel (the standard errors are
given in the brackets)

Interpolation

Prior θact θfinal SRMSE MSLL

Prior 1

` 5 0.25 (0.170)

0.35 (0.454) -1.44 (1.205)p 7 1.98 (2.807)
sf 2 2.41 (2.453)

Prior 5

` 5 4.24 (8.968)

0.48 (0.815) -1.63 (1.365)p 7 4.81 (1.293)
sf 2 95.98 (205.308)

Prior 6

` 5 1.19 (0.713)

0.28 (0.252) -1.50 (0.705)p 7 2.98 (2.288)
sf 2 3.58 (6.246)

Prior 7

` 5 1.45 (1.289)

0.28 (0.253) -1.48 (0.696)p 7 0.34 (0.143)
sf 2 1.51 (0.838)

Prior 9

` 5 1.67 (1.978)

0.28 (0.252) -1.51 (0.712)p 7 13.54 (16.614)
sf 2 39.26 (80.484)

Extrapolation

Prior θact θfinal SRMSE MSLL

Prior 1

` 5 1.23 (1.048)

0.14 (0.041) -1.98 (0.287)p 7 0.40 (0.254)
sf 2 1.43 (1.230)

Prior 5

` 5 17.87 (47.950)

0.24 (0.119) -1.52 (0.492)p 7 7.73 (3.126)
sf 2 56.50 (214.170)

Prior 6

` 5 2.01 (2.023)

0.24 (0.120) -1.51 (0.493)p 7 2.20 (1.323)
sf 2 2.38 (3.984)

Prior 7

` 5 24.18 (87.495)

0.17 (0.103) -1.91 (0.538)p 7 0.25 (0.117)
sf 2 139.47 (612.532)

Prior 9

` 5 4.07 (6.696)

0.18 (0.106) -1.82 (0.563)p 7 5.80 (2.898)
sf 2 4.71 (9.551)
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Table 4.3: Results of GP predictions with LP kernel for ARMA data (the
standard errors are given in the brackets)

GPR with LP kernel ARMA(2,1)

Priors SRMSE MSLL SRMSE MSLL

Prior 1 1.006 (0.0221) -0.001 (0.0151)

1.006 (0.0143) -0.002(0.0077)
Prior 5 1.007 (0.0223) -0.001 (0.0154)
Prior 6 1.006 (0.0219) -0.001 (0.0150)
Prior 7 1.006 (0.0219) -0.001 (0.0150)
Prior 9 1.005 (0.0225) -0.002 (0.0149)

Table 4.4: Results of GP predictions with SM kernel for ARMA data (the
standard errors are given in the brackets)

GPR with SM kernel ARMA(2,1)

Priors SRMSE MSLL SRMSE MSLL

PS51 1.008 (0.0251) 0.001 (0.0207)

1.006 (0.0143) -0.002 (0.0077)

PS61 1.007 (0.0236) -0.001 (0.0187)
PS71 1.009 (0.0255) 0.001 (0.0210)
PS91 1.006 (0.0252) -0.002 (0.0188)
PS58 1.036 (0.0498) 0.038 (0.0415)
PS68 1.043 (0.0509) 0.036 (0.0450)
PS78 1.019 (0.0350) 0.012 (0.0351)
PS98 1.032 (0.0490) 0.028 (0.0441)

The results show that for both LP and SM kernels, the performance of the GPR
models has no significant differences using different prior distributions, and is
comparable to that by the true model. In other words, the performance of GPR
models is not sensitive to the choice of prior distributions and is as good as the
true model as far as this experiment concerns.

4.5 Summary

In this chapter, we conduct the simulation studies to investigate the influences
of various prior distributions of the initial hyper-parameters in GPR models to
the parameter estimation and the predictability of the models when numerical
optimisation of likelihood function was utilised. Nine commonly used priors and
four kernels, including two basic kernels (SE and PER) and two composite kernels
(LP and SM), are considered.
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The numerical results show that the sensitivity of the hyper-parameter estimation
depends on the choice of kernels. The estimates for SE kernel are robust regardless
of the prior distributions, whilst they are very different using different priors for
PER kernel which implies that the prior distributions have a huge impact on
the estimates of the parameters. However, it is interesting to see that the GPR
models always perform well in terms of predictability, despite the poor estimates
of the hyper-parameters in some cases. Particularly the performances of the GPR
models using various priors are consistently comparable with that of the true time
series model in terms of prediction. Overall, the prior distributions of the hyper-
parameters have little impact on the performance of GPR models.



Chapter 5

Financial time series prediction

using Gaussian process regression

and its extensions

5.1 Introduction

The financial market is a complicated dynamic system with a massive amount of
time series trading data, including price (opening, closing, high, low and adjusted
closing price) and volume. Therefore, it is natural to study how to forecast the
financial time series using the trading data. It is an attractive topic for investors
and scholars since a successful prediction can help the investors make excess profits.

As discussed in the previous chapters, GPR has been widely used in the finan-
cial market prediction, and as a powerful non-parameter tool, shows the superior
ability in forecasting [29, 30, 31, 32]. It is known that Gaussian distribution is an
important assumption of GPR. A Gaussian distribution assumes that all values
in the sample will be distributed equally around the mean given enough observa-
tions. Approximate 99.73% of all variations falls within three standard deviations
of the mean and hence there is the only 0.27% chance of an extreme event occur-
ring. This property is essential because nearly all the classical models in economics
assume normality. However, the financial market is a dynamic complex system,
far less than perfect and heavily influenced by unpredictable human behaviours
leading to the fat tails’ risk. Briefly, according to these uncontrolled factors to
the financial market, the real market has far more than 0.27% chance to occur
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an extreme event. Indeed, the conventional financial wisdom was faced with a
huge challenge, especially after the 2008 Financial Crisis. Even when everything
is in normal operation, unexpected and uncontrolled events can still pose a threat.
These potentially catastrophic events lay stress on the ongoing relevance of heavy
tails throughout the finance industry [35].

With the development of financial market theory, many researchers have already
found evidence that the distribution of financial time series is not Gaussian [34, 35].
Specifically, the empirical distributions of financial data have heavier tails in the
two sides than those from a Gaussian distribution [34]. As a result, some fat-tailed
distributions, such as Student−t distribution, Pareto distribution, Lévy distribu-
tion, and the family of stable distribution, are applied in various financial time
series models [34]. Some heavy-tailed distributions can be used in the extension of
GPR. As a result, some extensions of Gaussian process, such as Gaussian process
regression with Student−t likelihood and Student−t process regression, can be
applied to financial time series to capture the heavy tails of financial time series.

5.2 Gaussian process regression with Student−t like-
lihood

Considering the fat tails, the simple approach is to substitute Gaussian noise in
the regression model for Student−t noise, that is, Gaussian process regression with
Student−t likelihood (GPRT). The likelihood satisfies Student−t distribution,

p(y|f) = T (ν,0, σ2
nI). (5.1)

where ν is the degree of freedom and σ2
n is the scale parameter, which has the

similar meaning to Gaussian noise [74].

Unfortunately, the integral of Gaussian multiplying Student−t likelihood is ana-
lytically intractable, resulting in that the marginal likelihood has to be approx-
imated by some numerical methods, including Expectation Maximisation (EM),
Variational Bayesian(VB) and Laplace approximation [37]. More details can be
found in [37].
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5.3 Student−t process regression

Although GPRT adapts the fat-tailed time series to some degree, the latent process
is still GP [37]. If the latent GP is replaced by Student−t process (TP), GPR
model is extended to Student−t process regression (TPR) model, which is used to
capture the fat-tails. Shah et al.[38] point out that TP can be an alternatives to
GP as a non-parametric method in prediction problems because TP can retain the
desirable properties of GP model, such as non-parametric representation given a
known kernel, analytic marginal and predictive distribution, and easy model choice
based on covariance functions [38]. A brief introduction of Student−t process
regression(TPR) model is reviewed as follows.

Analogous to GPR model, our discussions are from function-space view since the
Student−t distribution also has the analytic marginal and predictive properties as
same as normal distribution. It is noted that TPR model is only discussed in noise-
free regression with a noisy kernel since the sum of two independent Student−t
distribution is analytically intractable [38].

5.3.1 Predictive model

Given n pairs of observations {(xi, yi)}ni=1,xi ∈ Rp, yi ∈ R, we assume the follow-
ing TPR model

f ∼ T P(ν, µ, k), yi = f(xi), i = 1, . . . , n. (5.2)

Similarly, in order to predict f∗ = f(Z) at the test locations Z = [z1, · · · , zm], the
joint distribution of the training observations y and the predictive targets f∗ are
given by [

y

f∗

]
∼ T

(
ν,

[
µ(X)

µ(Z)

]
,

[
K(X,X) + σ2

nI K(Z,X)T

K(Z,X) K(Z,Z)

])
, (5.3)

where ν is the degree of freedom and other symbols are the same in Eq.(3.14).
Therefore, taking advantage of Theorem 2.6, the predictive distribution is

p(f∗|X,y, Z) ∼ T
(
ν̂, µ̂, Σ̂

)
,
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where ν̂ = ν + n, β = (y − µ(X))TK(X,X)−1(y − µ(X)) and,

µ̂ = K(Z,X)TK(X,X)−1(y − µ(X))− µ(Z), (5.4)

Σ̂ =
ν + β − 2

ν + n− 2

(
K(Z,Z)−K(Z,X)TK(X,X)−1K(Z,X)

)
. (5.5)

The predictive mean and covariance given the test locations and training set are

E[f∗|X,y, Z] = µ̂, cov[f∗|X,y, Z] = Σ̂. (5.6)

Similarly, the zero mean function is usually used in TPR model and the expressions
of the predictive mean and covariance are

E[f∗|X,y, Z] = K(Z,X)TK(X,X)−1y, (5.7)

cov[f∗|X,y, Z] =
ν + β − 2

ν + n− 2

(
K(Z,Z)−K(Z,X)TK(X,X)−1K(Z,X)

)
, (5.8)

where β = yTK(X,X)−1y.

5.3.2 Parameters estimation

Analogue to GPR model, all the undetermined parameters, containing hyper-
parameters in the kernel and the degree of freedom, have to be estimated by
maximum likelihood. The numerical method for optimisation is also the conjugate
gradient method. As the definition of TPR model, it is noise-free model, and thus
the negative log marginal likelihood given training inputs X, hyper-parameters θ,
and the degree of freedom, is

L = − log p(y|X,θ, ν)

=
ν + n

2
log(1 +

β

ν − 2
) +

1

2
log detKθ +

n

2
log((ν − 2)π)

+ log Γ(
ν

2
)− log Γ(

ν + n

2
), (5.9)

where β = yTK−1
θ y and Kθ = K(X,X). Using the matrix calculus equalities, we

obtain the partial derivatives of NLML with respect to the different undetermined
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hyper-parameters and the degree of freedom,

∂L
∂θi

=
1

2
tr(K−1

θ

∂Kθ

∂θi
)− ν + n

2(β + ν − 2)
· yTK−1

θ

∂Kθ

∂θi
K−1
θ y, (5.10)

∂L
∂ν

=
1

2
log

(
1 +

β

ν − 2

)
− β(ν + n)

2(ν − 2)(β + ν − 2)

+
n

2(ν − 2)
+

1

2
ψ(
ν

2
)− 1

2
ψ(
ν + n

2
), (5.11)

where ψ(x) is the derivative of Γ(x).

In Chapter 3.4, we have discussed the noise-free regression model with a noisy
kernel. This method is reasonable for TPR, namely, adding the noise in the kernel.
It is necessary and useful since noise is unavoidable in financial time series [38].
Adding the noise in the kernel, the negative log marginal likelihood is L(ν,θ, σ2

n)

and the partial derivatives of the negative log marginal likelihood with respect to
three parameters are

∂

∂ν
L(ν,θ, σ2

n) =
1

2
log

(
1 +

β

ν − 2

)
− β(ν + n)

2(ν − 2)(β + ν − 2)

+
n

2(ν − 2)
+

1

2
ψ(
ν

2
)− 1

2
ψ(
ν + n

2
), (5.12)

∂

∂θi
L(ν, θ, σ2

n) =
1

2
tr(Σ−1

θ

∂Σθ

∂θi
)− ν + n

2(β + ν − 2)
· yTΣ−1

θ

∂Σθ

∂θi
Σ−1
θ y, (5.13)

∂

∂σ2
n

L(ν, θ, σ2
n) =

1

2
tr(Σ−1

θ )− ν + n

2(β + ν − 2)
· yTΣ−1

θ Σ−1
θ y, (5.14)

where Σθ = Kθ + σ2
nI and now β = yTΣ−1

θ y.

The non-convexity of the marginal likelihood function is inescapable so that TPR
is faced with the sensitivity of initial hyper-parameters. As a consequence, we take
the same heuristic method as GPR to address this problem in the further studies.

5.3.3 Relation to Gaussian process

Apparently, the model representations of GPR and TPR are similar. In partic-
ular, the predictive mean of TPR is the same as GPR explicitly conditioned on
the same kernel with the same hyper-parameters [38], by comparison of Eq.(3.19)
and Eq.(5.7). However, these two models do not have the same result because the
marginal likelihoods of GPR and TPR are different, resulting in different estima-
tions of the undetermined parameters. When it comes to predictive covariance,
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there is an essential difference. From the view of Eq.(3.20) and Eq.(5.8), the
predictive covariance of TPR explicitly relies on the training observations while
GPR’s predictive covariance is independent of training set. Obviously, the predic-
tive covariance of TPR definitely differs from that of GPR, after learning kernel
hyper-parameters [38].

It is known that the degree of freedom of Student−t distribution controls how
heavy-tailed the distribution is. A smaller value of the degree of freedom corre-
sponds to the fatter tails. If the degree of freedom goes to infinity, the Student−t
distribution converges to Gaussian distribution as well as the relationship between
GP and TP.

Theorem 5.1. Let f ∼ T P(ν, µ, k) and g ∼ GP(µ, k). Then f tends to g in
distribution as ν →∞.

In addition to Theorem 5.1, Shah et al. [38] point out that, perhaps less intuitively,
the predictive distribution converges to a GP as n goes to infinity. In fact, GPR
is a special case of TPR with the infinite degree of freedom. Therefore, TPR
can resolve some problems that GPR model cannot do, without loss the ability
of prediction performance at the expense of one more parameter estimation, and
may capture more characteristics of data.

5.4 Experiments of model comparisons

In this section, we apply all the models discussed above to several real financial
time series prediction. The 10 major equity indices we selectively use are listed in
Table 5.1 and all the data is collected from Bloomberg Terminal. The outline of
model comparison experiments are described in the following.

Firstly, GPR, GPRT, and TPR models are used to predict four equity indices,
including INDU, NDX, SPX, and UKX, over the 2013 - 2014 period, called Exper-
iment 5.4.2. It is a glance at the overall perspective of the performances of these
models.

Secondly, we further consider GPR, GPRT, TPR, and ARMAmodels in the predic-
tions of eight equity indices, including DAX, HSI, INDU, NDX, NKY, SENSEX,
SPX, and UKX, over the 2013 - 2014 period, called Experiment 5.4.3. Com-
pared with the first comparison experiment, one more classical time series model,
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Table 5.1: 10 main equity indices in the world

Country/Region Ticker Equity Index

US NDX NASDAQ 100 Index
US INDU Dow Jones Industrial Average
US SPX S&P 500 Index
Germany DAX DAX Index
UK UKX FTSE 100 Index
Japan NKY Nikkei 225 Index
Hong Kong HSI Hong Kong Hang Seng Index
India SENSEX S&P BSE SENSEX Index
Turkey XU100 Borsa Istanbul 100 Index
China SHSZ300 Shanghai Shenzhen CSI Index

ARMA, is considered and four more equity indices, namely, DAX, HSI, NKY, and
SENSEX, are used for predictions.

Thirdly, the model validations of GPR and TPR predictions, including leave-
one-out cross validation (LOO-CV), k-fold, and sliding window, are extensively
studied for all the listed equity indices over the 2013- 2014 period. These experi-
ments are called Experiment 5.4.4.1, Experiment 5.4.4.2, and Experiment 5.4.4.3,
respectively.

5.4.1 Data pre-processing

Before starting the discussion of model comparison experiments, the data pre-
processing has to be discussed at first. The historical trading data of the stock
market mainly contains closing prices, opening prices, high prices, low prices and
volumes over the specific period, e.g. day, week, month, quarter and year. Many
investors and traders pay more attentions on the closing price since it has been the
value of a stock on a trading period until it changes on the next trading period.

Compared with the closing price, the adjusted closing price is more widely con-
sidered. The adjusted closing price is a stock’s closing price on any given day
of trading that has been amended to include any distributions and corporate ac-
tions that occurred at any time prior to the next period’s opening, including the
dividends, stock splits, and new stock offerings. The adjusted closing price is com-
monly used in data analysis because it can ensure all the data more smooth and
accurate without too much excessive fluctuation. Of course, if we just consider
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the equity indices, there are no adjusted closing index, hence we just take closing,
opening, high, low index and volume into account.

Besides, further data pre-processing has to been operated before modelling since
the trading data is quite complicated and rambling. Briefly, there are two ap-
proaches as follows.

5.4.1.1 Zero-mean normalisation

Zero-mean normalisation is a common tool to do data pre-processing in machine
learning. The zero-normalized data {ỹi}ni=1 is defined by original data {yi}ni=1 as

ỹi =
yi − µ
σ

,

where µ and σ are the mean and standard deviation of the sample data {yi}ni=1

respectively.

5.4.1.2 Simple return and logarithmic return

Simple return and logarithmic return(log-return) are widely-used in finance, espe-
cially in quantitative finance.

Let pt be the price (volume) at time t, then the simple return at time t is defined
by,

rt =
pt − pt−1

pt−1

.

The advantage of using simple return rather than prices is normalisation, which
measures all variables in a comparable metric. Thus it can ensure evaluation of
analytic relationship amongst two or more variables despite originating from price
series of unequal values, which is essential in many multi-dimensional problems
in machine learning[75]. For example, interpreting an equity covariance matrix is
performed reasonably when the variables are both measured in percentage [75].

The log-return Rt at time t can also be defined by,

Rt = log(1 + rt) = log
pt
pt−1

.
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The strength of using Log-return is also apparent. According to the logarithmic
identity, we can obtain

n∑
i=1

Ri =
n∑
i=1

log
pi
pi−1

= log
n∏
i=1

pi
pi−1

= log
pn
p0

That is to say, compounding returns over n periods is the same as the log return
between initial and final periods. From the view of algorithmic complexity, this
result reduces O(n) multiplications to O(1) additions [75]. Moveover, this sum
is powerful for cases in which returns diverge from normal since the central limit
theorem tells us that the sample average of that sum can converge to normality
[75].

It is noted that log-return is called continuous return occasionally and the length
of return series is one less than the original series.

5.4.2 The comparison of Gaussian process regression, Gaus-

sian process regression with Student−t likelihood and

Student−t process regression for equity index series

prediction

We firstly consider a simple example (called Experiment 5.4.2) to show the per-
formances of GPR, GPRT and TPR models for the equity index predictions. The
selected indices are INDU, NDX, SPX and UKX over 2013-2014 period. For each
of the indices, we denote the whole data set as D = {(xi, yi)}n+m

i=1 , where N = n+m

is the number of trading days, yi is the closing index after zero-normalization and
xi is the time. To simplify the models, we assume xi = i and the training set
and test set are denoted by D1 = {(xi, yi)}ni=1,D2 = {(xi, yi)}n+m

i=n+1, respectively.
We fix 40 days1 in the test set, with Table 5.2 presenting the training and test
sets for different indices. The data pre-processing method for the closing index is
zero-normalisation.

In this experiment, we attempt to make the satisfying predictions based on the
simple models so that we use a linear mean function. In addition, we use SM

1Generally speaking, 40 days include eight trading weeks (five trading days in a week), which
is actually two trading months (four weeks in a month). It is a suitable forecasting length for
the prediction based on nearly two years’ data.
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Table 5.2: The training and test sets for the four equity indices in Experiment
5.4.2

N D1 D2

INDU 504 {(i, yi)}464
i=1 {(i, yi)}504

i=465

NDX 504 {(i, yi)}464
i=1 {(i, yi)}504

i=465

SPX 504 {(i, yi)}464
i=1 {(i, yi)}504

i=465

UKX 506 {(i, yi)}466
i=1 {(i, yi)}506

i=467

with 10 components 2 as Wilson used in [66], which can discover complex pattern
effectively. The performance of these predictions are shown in Appendix A and
Table 5.3 presents the detailed statistics.

Table 5.3: Results of the four equity indices predictions using GPR, GPRT
and TPR models

GPR GPRT TPR

INDU SRMSE 1.719 1.942 1.326
MSLL -2.477 - -2.627

NDX SRMSE 2.165 2.232 2.151
MSLL -2.259 - -2.573

SPX SRMSE 1.169 2.177 1.093
MSLL -2.696 - -3.918

UKX SRMSE 1.389 1.417 1.330
MSLL 0.320 - 0.804

For the four equity indices predictions, it can be seen that TPR outperforms GPRT
and GPR in terms of SRMSE. The result is confirmed by comparing the MSLLs
of these models, where TPR predictions in INDU, NDX, and SPX have smaller
MSLLs.

2In fact, the number of components should be determined by the analysis of spectral density.
However, it is too difficult to do that in analysing the financial data. Hence, we use 10 components
as default, which are considered as the sufficient number of components in [66]
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5.4.3 Further comparison of Gaussian process regression,

Gaussian process regression with Student−t likelihood,

Student−t process regression and ARMA model for

equity index series prediction

A further experiment (called Experiment 5.4.3) using more equity indices is car-
ried out by comparing GPR, GPRT, TPR and classical time series models for
index series prediction. The selected indices are DAX, HSI, INDU, NDX, NKY,
SENSEX, SPX and UKX over the 2013-2014 period. In this experiment, we de-
termine 60 days3 in the test set, with other details presented in Table 5.4. The
data pre-processing method for closing index is zero-normalisation.

Table 5.4: The training and test sets for different equity indices in Experiment
5.4.3

N D1 D2

DAX 505 {(i, yi)}445
i=1 {(i, yi)}505

i=446

HSI 491 {(i, yi)}431
i=1 {(i, yi)}491

i=432

INDU 504 {(i, yi)}464
i=1 {(i, yi)}504

i=465

NDX 504 {(i, yi)}464
i=1 {(i, yi)}504

i=465

NKY 489 {(i, yi)}429
i=1 {(i, yi)}489

i=430

SENSEX 494 {(i, yi)}434
i=1 {(i, yi)}494

i=435

SPX 504 {(i, yi)}464
i=1 {(i, yi)}504

i=465

UKX 506 {(i, yi)}466
i=1 {(i, yi)}506

i=467

ARMA(1,1) is used for comparison since ARMA is the classical time series model,
where ARMA(1,1) is the simplest one. We use GPR, GPRT, TPR and ARMA(1,1)
to do the eight equity indices predictions based on the training and test sets.
It is worth noting that the mean functions in GPR, GPRT and TPR are zero-
offset because we cannot find significant effect of composite mean function in the
predictions through the last experiment. At the same time, admittedly, SM kernel
is still used, the number of components decreases from 10 to 2 because we find
that the prediction curves using SM with 10 components vibrate too heavily (just
like white noise) and are time consuming during computation. The performance of
these predictions are shown in Appendix B, with Table 5.5 presenting the detailed
statistics.

3In fact, 60 days = 12 trading weeks = 3 trading month = 1 trading quarter. Compared with
40 day forecasting, 60 day test set is better to be considered.
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Table 5.5: Results of eight equity indices predictions using GPR, GPRT, TPR
and ARMA(1,1) model

GPR GPRT TPR ARMA(1,1)

DAX
SRMSE 1.252 0.844 0.894 1.001
MSLL -0.286 - -0.632 -

HSI
SRMSE 1.888 2.042 1.493 1.558
MSLL -0.067 - -0.336 -

INDU
SRMSE 1.078 0.954 0.948 1.312
MSLL -1.452 - -1.577 -

NDX
SRMSE 1.650 0.799 0.745 0.957
MSLL -1.560 - -1.677 -

NKY
SRMSE 1.659 2.389 1.350 1.449
MSLL -0.758 - -0.683 -

SENSEX
SRMSE 1.025 1.047 0.865 0.959
MSLL -0.720 - -3.591 -

SPX
SRMSE 1.064 0.950 0.854 1.137
MSLL -1.482 - -1.203 -

UKX
SRMSE 0.938 1.108 0.891 1.046
MSLL -0.105 - -0.160 -

As the demonstration shows in Appendix B, TPR performs better than GPRT,
GPR and ARMA on the whole. This result is also confirmed by Table 5.5 in terms
of SRMSE. Additionally, TPR predictions are also proven better in terms of MSLL
because of the six equity indices predictions with smaller MSLLs.

5.4.4 Model validation of Gaussian process regression and

Student−t process regression for equity index series

prediction

The two experiments we have conducted above have a fixed forecasting horizon
(40 days and 60 days) in the predictions and the results are obvious and intuitive,
even though the statistics might be unconvincing because each experiment for
each index prediction has only been conducted once. Therefore, model validation
is necessary in the further studies. According to the results of the previous two ex-
periments, GPRT and ARMA model do not provide an outstanding performance,
thus we just select GPR and TPR to compare the model validation. The methods
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of model validation we have chosen are leave-one-out cross-validation (LOO-CV),
k-fold and sliding window.

5.4.4.1 Leave-one-out cross-validation

In statistics, cross-validation is a model validation technique for assessing how the
results of a statistical analysis will generalise to an independent data set. It is
a useful approach to combine average prediction error measures, which is defined
as a different loss function, to derive a more accurate evaluation of the model’s
predictive performance [76]. In a prediction problem, the whole data set contains
two parts: a training set and test set. The purpose of cross-validation is to choose
a data set to "test" the model based on the training set, i.e. the validation set. In
particular, LOO-CV is useful and it is one of the most widely used cross-validation,
taking one observation as the validation set and the remaining observations as the
training set. This is repeated for all the observations picked in the validation set.

Table 5.6: The training and validation sets (jth validation) for 10 equity indices
in Experiment 5.4.4.1

N D1 D3 j

DAX 505 {(i, yi)}505
i=1,i 6=j (j, yj) 1, 505 4

HSI 491 {(i, yi)}491
i=1,i 6=j (j, yj) 1, 491

INDU 504 {(i, yi)}504
i=1,i 6=j (j, yj) 1, 504

NDX 504 {(i, yi)}504
i=1,i 6=j (j, yj) 1, 504

NKY 489 {(i, yi)}489
i=1,i 6=j (j, yj) 1, 489

SENSEX 494 {(i, yi)}494
i=1,i 6=j (j, yj) 1, 494

SHSZ300 483 {(i, yi)}483
i=1,i 6=j (j, yj) 1, 483

SPX 504 {(i, yi)}504
i=1,i 6=j (j, yj) 1, 504

UKX 506 {(i, yi)}506
i=1,i 6=j (j, yj) 1, 506

XU100 501 {(i, yi)}501
i=1,i 6=j (j, yj) 1, 501

Currently, we apply LOO-CV to the equity indices predictions using GPR and
TPR (called Experiment 5.4.4.1). The selected indices are 10 equity indices in
Table 5.1 over the 2013-2014 period. The training set and the validation set
denoted by D3 of jth validation are shown in Table 5.6. We take advantage of
GPR and TPR models when undertaking these indices predictions based on these

4 n, n+m,n,m ∈ N means n, n+ 1, · · · , n+m.
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training and validation sets. The mean functions of GPR and TPR are all zero-
offset and the kernel is SE. Based on the results of the previous experiments, we
find that SM kernel have little improvement of GPR, GPRT and TPR models with
much computing time so that we use SE kernel, which only needs to estimate two
undetermined parameters. The RMSEs 5 of LOO-CV experiment using GPR and
TPR models are reported in Table 5.7(a).

Table 5.7: The RMSE of LOO-CV using GPR and TPR models

(a) Index prediction

GPR TPR

DAX 0.107 0.107
HSI 0.166 0.166
INDU 0.084 0.084
NDX 0.055 0.055
NKY 0.122 0.122

SENSEX 0.063 0.063
SHSZ300 0.104 0.101
SPX 0.067 0.067
UKX 0.147 0.147
XU100 0.190 0.190

(b) Log-return prediction

GPR TPR

DAX 1.004 1.003
HSI 0.999 0.998
INDU 1.004 1.003
NDX 1.002 1.002
NKY 1.002 1.002

SENSEX 0.989 0.986
SHSZ300 0.999 0.997
SPX 1.002 1.001
UKX 1.002 1.003
XU100 1.000 1.002

Actually, only zero-normalization of the closing index is used in all the experiments
above and it needs to consider log-return series prediction 6 using GPR and TPR.
That is, all the targets in GPR and TPR models are indices’ log-return series rather
than the closing indices. The results are reported in Table 5.7(b). According to
both Table 5.7(a) and Table 5.7(b), TPR perform as well as GPR, even outperform
in some cases, especially in terms of log-return series. This empirical result is
consistent with the theoretical conclusion in Section 5.3.3. Furthermore, linear
predictor is taken into comparison with GPR and TPR. Given a time series {yi}ni=1

with equal width increment, the linear predictor y̌i is defined by

y̌i =


yi+1, if i = 1

yi−1+yi+1

2
, if i = 2, . . . , n− 1

yi−1, if i = n.

5Here we use RMSE rather than SRMSE because the SRMSE is the RMSE divided by the
standard deviation of test points where only one test point in Experiment experiment:LOOCV

6The length of log-return series is one less than the original index series
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In order to measure the predictive performance, we use mean absolute error (MAE)
and root mean square error (RMSE). Figure 5.1 shows that GPR and TPR have the
same predictive performance, of which both perform as well as a linear predictor,
and in particular, a little better in log-return series prediction.
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Figure 5.1: Graph of LOO-CV for the index and log-return prediction in terms
of MAE and RMSE using GPR, TPR and liner predictor. Blue line stands
for GPR model, orange stands for TPR model and gray line stands for linear

predictor (Blue line is almost covered by orange line).

5.4.4.2 k-fold cross-validation

It is known that the daily fluctuation of a stock index is usually between ±3%,
maximum ±10%. This may be the reason why the difference between the models
is very small based on LOO-CV. As a result, another cross-validation, named k-
fold cross-validation, is under consideration. In k-fold cross-validation, the original
sample is randomly partitioned into k equal sized sub-samples. Among the k sub-
samples, a single sub-sample is considered as the validation data and the remaining
k − 1 sub-samples regarded as training data. The cross-validation process is then
repeated k times, with each of the k sub-samples used only once as the validation
set. The strength of this approach is that all observations are used for both training
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and validation, with each observation only used for validation once. Among k-fold,
10-fold cross-validation is widely used [77].

In particular, one approach applies the k-fold cross-validation to the equity indices
predictions using GPR and TPR (called Experiment 5.4.4.2) in a special case. The
special case of k-fold means that the original sample is specifically partitioned into
k continuous equal sized sub-samples 7 and k = 10 is used in this experiment. The
detailed jth validation set of 10 major equity indices are shown in Table 5.8 and
the training set is the remaining observations in the original data set. The number
of validation are all 10 since it is 10-fold cross-validation (j = 1, 10).

Table 5.8: The jth validation set for 10 equity indices in Experiment 4

N D3

DAX 505 {(i+ 50(j − 1), yi+50(j−1))}55
i=6

HSI 491 {(i+ 49(j − 1), yi+49(j−1))}50
i=2

INDU 504 {(i+ 50(j − 1), yi+50(j−1))}54
i=5

NDX 504 {(i+ 50(j − 1), yi+50(j−1))}54
i=5

NKY 489 {(i+ 48(j − 1), yi+48(j−1))}57
i=10

SENSEX 494 {(i+ 49(j − 1), yi+49(j−1))}53
i=5

SHSZ300 483 {(i+ 48(j − 1), yi+48(j−1))}51
i=4

SPX 504 {(i+ 50(j − 1), yi+50(j−1))}54
i=5

UKX 506 {(i+ 50(j − 1), yi+50(j−1))}56
i=7

XU100 501 {(i+ 50(j − 1), yi+50(j−1))}51
i=2

Consequently, we predict these equity indices using GPR and TPR. The mean
function and the kernel we select are the same as in Experiment 5.4.4.1. The
mean and standard error (given in the brackets) of 10 validations’ SRMSE are
reported in Table 5.9(a). The experiment is also carried out for the log-return
series, with the results presented in Table 5.9(b).

Visually, we draw Figure 5.2 to show the result of 10-fold cross-validation for both
index and log-return predictions in terms of MSER and MAER8. Figure 5.2 shows
that the TPR make the considerable predictions in the equity markets as well as
GPR because both MSER and MAER are almost all around one (Only SENSEX

7For an ordinary k-fold, all the points, including continuous data set and discontinuous data
set are considered in sub-samples. However, the discontinuous prediction of the stock market
time series is useless. Hence we use the special case of k-fold

8Without special definitions, the MSER is MSERGPR−TPR and MAER is MAERGPR−TPR
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Table 5.9: The SRMSE of 10-fold cross-validation for the index and log-return
predictions using GPR and TPR models

(a) Index prediction

GPR TPR

DAX 2.727(1.541) 2.727(1.541)
HSI 1.498(0.455) 1.498(0.455)
INDU 2.565(1.239) 2.565(1.239)
NDX 4.557(4.122) 4.557(4.122)
NKY 1.905(1.229) 1.905(1.229)

SENSEX 4.545(2.318) 4.545(2.318)
SHSZ300 2.171(1.354) 2.163(1.370)
SPX 3.375(1.976) 3.375(1.976)
UKX 1.387(0.542) 1.387(0.542)
XU100 1.813(1.336) 1.813(1.336)

(b) Log-return prediction

GPR TPR

DAX 1.003(0.011) 1.003(0.011)
HSI 0.995(0.006) 0.994(0.006)
INDU 0.999(0.012) 1.001(0.015)
NDX 0.993(0.003) 0.993(0.003)
NKY 0.998(0.009) 0.998(0.009)

SENSEX 0.999(0.013) 1.000(0.012)
SHSZ300 1.023(0.049) 1.023(0.049)
SPX 0.994(0.005) 0.994(0.005)
UKX 0.995(0.006) 0.995(0.006)
XU100 1.001(0.014) 1.001(0.014)
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Figure 5.2: Graph of 10-fold cross-validation for the index and log-return
predictions in terms of MSER and MAER using GPR and TPR models.

is smaller than one and SHSZ300 is larger than one obviously). This also serves
as another piece of evidence for the theoretical conclusion in Section 5.3.3.

5.4.4.3 Sliding window

Compared with LOO-CV and k-fold, the sliding window is a more reliable and
preferable approach for evaluating a prediction model in the stock market because
not only traders but also researchers focus considerably on dynamic future fore-
casting, rather than a historical interpolation or a static prediction. The sliding
window is widely used for backtesting a statistical model using historical data to
dynamically evaluate stability and the predictive accuracy of a time series model
[78]. Backtesting works in the following way on the whole. The historical data
is firstly divided into a training sample and a test sample. The model is then
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estimated using the training sample and some days’ predictions made for the test
sample. The training sample is then rolled ahead using a given increment, with
the training and test exercises repeated until it is not possible to make any predic-
tion. The algorithm of the sliding window analysis for the predictive performance
is presented in Algorithm 1.

Algorithm 1 Sliding Window Analysis for Predictive Performance
1: Select a sliding window size, w, i.e., the number of consecutive observation in

each sliding window.
2: Select a forecast horizon (the number of test points), h. The forecast horizon

depends on the application and periodicity of the data. The Figure 5.3 shows
how the sliding window partitions the data set.

3: Select the increments between successive rolling windows, τ . If τ is 1 period,
then partition the entire data set into n = N − w + 1 subsamples. The first
sliding window contains observations for a period 1 through w, the second
sliding window contains observations for period 2 through w + 1, and so on.
The Figure 5.3 shows the partitions.

4: For each sliding window sub-sample, make predictions using GPR and TPR,
then compute the SRMSE of these two models.

5: Compute the mean and standard derivation of all the sliding window subsam-
ples’ SRMSE, and also compute MSER and MAER.

6: Compare the SRMSE between GPR and TPR. The model with the smallest
SRMSE has the best predictive performance. Besides, the predictive perfor-
mance of GPR and TPR are also directly reflected by MSER and MAER

Figure 5.3: Graph of how sliding window partitions the data set

In our new experiment (called Experiment 5.4.4.3), all the 10 indices’ trading
data are used by setting τ = 1 and h = 5, as well as h = 20. Since there are
different trading days in the indices, we set w = bN/2c, where b·c means the
nearest integers towards minus infinity and N the number of trading days. The
details of jth training and test sets for 10 equity indices in Experiment 5.4.4.3 are
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reported in Table 5.10 (in each sub-experiment, h = 5 and h = 20, respectively).
In each sliding window sub-sample, the zero-offset mean function, and SE kernel

Table 5.10: The jth training and test sets for 10 equity indices in Experiment
5

N D1 D2 j

DAX 505 {(i, yi)}253+j−h
i=j {(i, yi)}253+j

i=254+j−h 1, 252

HSI 491 {(i, yi)}246+j−h
i=j {(i, yi)}246+j

i=247+j−h 1, 245

INDU 504 {(i, yi)}252+j−h
i=j {(i, yi)}252+j

i=253+j−h 1, 252

NDX 504 {(i, yi)}252+j−h
i=j {(i, yi)}252+j

i=253+j−h 1, 252

NKY 489 {(i, yi)}245+j−h
i=j {(i, yi)}245+j

i=246+j−h 1, 244

SENSEX 494 {(i, yi)}247+j−h
i=j {(i, yi)}247+j

i=248+j−h 1, 247

SHSZ300 483 {(i, yi)}240+j−h
i=j {(i, yi)}242+j

i=241+j−h 1, 241

SPX 504 {(i, yi)}252+j−h
i=j {(i, yi)}252+j

i=253+j−h 1, 252

UKX 506 {(i, yi)}254+j−h
i=j {(i, yi)}254+j

i=255+j−h 1, 253

XU100 501 {(i, yi)}251+j−h
i=j {(i, yi)}251+j

i=252+j−h 1, 250

are used in both GPR and TPR models.

All the results of the sliding window analysis of the 5-day and 20-day-ahead pre-
dictions, including index and log-return, are reported in Table 5.11. The results,
with respect to the fluctuation of MSER and MAER, are visualized in Figure 5.4.

For the 5-day-ahead prediction, TPR outperforms GPR in the HSI and UKX eq-
uity markets in terms of index prediction, while TPR performs better in the DAX,
INDU, NDX, SENSEX and SHSZ300 markets in terms of log-return series predic-
tion according to Table 5.11(a) and 5.11(c). For the 20-day-ahead prediction, GPR
outperforms TPR in the SENSEX, SHSZ300, SPX, and UKX markets in terms
of index prediction, while GPR nearly loses the weak superiority of prediction in
these four markets according to Table 5.11(b) and 5.11(d). These results are also
found in Figure 5.4.

When reading Table 5.11 from left to right (compare Table 5.11(a) and Table
5.11(b), and comparing Table 5.11(c) and Table 5.11(d), respectively), there is an
interesting fact that, with the increase in the number of forecasting days, TPR no
longer performs better in any of the markets when compared with GPR (compare
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Table 5.11: The SRMSE of sliding window analysis of h-day-ahead index and
log-return predictions using GPR and TPR models

(a) h = 5 (Index)

GPR TPR

DAX 2.922(2.351) 2.950(2.431)
HSI 2.848(5.199) 2.833(5.198)
INDU 3.381(3.256) 3.406(3.271)
NDX 3.903(3.992) 3.904(3.992)
NKY 3.851(3.820) 3.891(4.021)

SENSEX 3.519(3.550) 3.538(3.565)
SHSZ300 4.260(3.305) 4.282(3.332)
SPX 3.982(4.485) 3.972(4.489)
UKX 2.655(2.088) 2.624(2.028)
XU100 2.880(2.821) 2.880(2.821)

(b) h = 20 (Index)

GPR TPR

DAX 3.410(2.929) 3.416(2.925)
HSI 2.119(1.548) 2.120(1.545)
INDU 4.353(3.088) 4.364(3.080)
NDX 5.637(4.087) 5.637(4.087)
NKY 3.220(2.429) 3.220(2.441)

SENSEX 5.450(3.530) 5.458(3.535)
SHSZ300 4.698(3.891) 4.707(3.906)
SPX 5.468(3.992) 5.498(3.993)
UKX 2.397(2.103) 2.411(2.161)
XU100 2.945(2.579) 2.945(2.579)

(c) h = 5 (Log-return)

GPR TPR

DAX 1.048(0.190) 1.046(0.187)
HSI 1.066(0.270) 1.065(0.270)
INDU 1.041(0.169) 1.040(0.168)
NDX 1.040(0.234) 1.039(0.233)
NKY 1.057(0.222) 1.057(0.222)

SENSEX 1.082(0.275) 1.077(0.272)
SHSZ300 1.083(0.385) 1.082(0.382)
SPX 1.037(0.173) 1.036(0.173)
UKX 1.054(0.197) 1.051(0.191)
XU100 1.034(0.194) 1.034(0.194)

(d) h = 20 (Log-return)

GPR TPR

DAX 1.003(0.029) 1.003(0.029)
HSI 1.001(0.031) 1.001(0.030)
INDU 1.007(0.050) 1.007(0.051)
NDX 1.005(0.042) 1.005(0.041)
NKY 0.998(0.029) 0.998(0.029)

SENSEX 1.014(0.047) 1.015(0.047)
SHSZ300 1.010(0.050) 1.010(0.049)
SPX 1.004(0.046) 1.004(0.046)
UKX 1.004(0.034) 1.004(0.036)
XU100 1.003(0.033) 1.003(0.034)

Table 5.11(a) and Table 5.11(b)), even though the difference is not apparent actu-
ally. A similar result is shown in Figure 5.4(a); that is, 5 equity (DAX, HSI, NDX,
NKY, SENSEX, SHSZ300, and SPX) markets’ MSER for the 5-day-ahead predic-
tion are larger than those of the 20-day-ahead prediction, with 3 equity (INDU,
UKX and XU100) markets showing opposite results. Hence, TPR gradually loses
potential superiority in equity index prediction when the prediction horizon is
increased to some extent.

However, Figure 5.4(b) related to the other indicator, MAER, shows a completely
opposite result, with there being no apparent result based on the log-return sub-
experiment according to Figure 5.4(c) and Figure 5.4(d). Therefore, the above
conclusion remains to be verified later.
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Figure 5.4: Graph of sliding window analysis of h-day-ahead index and log-
return prediction in terms of MSER and MAER using GPR and TPR models.
Blue line stands for 5-day-ahead prediction (h = 5) and orange line stands for

20-day-ahead prediction (h = 20).

5.5 State space model

As discussed previously, EMH claims that the current price reflects all past infor-
mation on a stock in the efficient market. However, not all markets are efficient,
so there is no doubt that the current price cannot be independent of historical
prices in all markets [3]. In other words, the historical prices can determine the
current price to some degree. As a result, the prediction of price tomorrow can be
regarded as a function of previous prices and today’s price, that is, the state-space
model and historical prices construct the state. This is a natural and direct idea
for traders and investors because they all want to obtain excess profits from ex-
plicit analysis of historical data, including trading information and the operation
records of firms.

Although GPR has a noisy regression model and TPR does not have an analytically
tractable noisy representation, both GPR and TPR models can be extended to
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the state-space Gaussian process regression (SSGPR) and state-space Student−t
process regression (SSTPR) models. A brief market efficiency analysis can be
conducted based on the results of the SSGPR and SSTPR prediction models for
several markets because no technical model offers a satisfactory prediction ability
to obtain excess profits in an even weakly-form efficient market, even though some
methods may exist that are able to offer outstanding performance in inefficient
markets.

5.5.1 Model of state space

Recalling the regression model in Chapter 3.1.2, xi is considered in Rp as the
function of previous outputs yi. Briefly, we take advantage of the discussion of the
state-space model in [79] as follows. Consider the time series yt1 , . . . , yt and the
state-space model {

xti = [yti−1, . . . , yti−L]T,

yti = f(xti) + εti ,
(5.15)

where the state x at time ti consists of previous outputs,up to a given lags L (now
the dimension of input space p = L ) and εti is the noise as the same in Chapter
3.1.2 with zero mean and variance σ2

n. In addition, f ∼ GP(0, kard), where kard is
the ARD kernel.

In fact, this is a one-step-ahead prediction, with the multi-step-ahead being our
focus. The simplest method is to repeat the one-step-ahead prediction many times,
which is a multi-step-ahead prediction, namely, the iterative method. The detailed
iterative h-step-ahead forecasting method is illustrated as follows: it forecasts only
one-step-ahead, using the estimate of the output of the current forecasting, and
the previous outputs (up to the lag L), as the input for forecasting the next time
step, until the forecasting h-step-ahead is made [79].
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By means of the model (5.15) and assuming all the data is known up to time step
t, the forecasting of y at t+ h is obtained by

xt+1 = [yt, yt−1, . . . , yt+1−L]T ⇒ f(xt+1) ∼ N
(
µ(xt+1), σ2(xt+1)

)
,

ŷt+1 = µ(xt+1)

xt+2 = [ŷt+1, yt, . . . , yt+2−L]T ⇒ f(xt+2) ∼ N
(
µ(xt+2), σ2(xt+2)

)
,

ŷt+2 = µ(xt+2)
...

xt+h = [ŷt+h−1, ŷt+h−2, . . . , ŷt+h−L]T ⇒ f(xt+h) ∼ N
(
µ(xt+h), σ

2(xt+h)
)
,

ŷt+h = µ(xt+h),

where the one point predictive mean µ(xt+h−i) and variance σ2(xt+h−i) are com-
puted using Eq.(3.19) and Eq.(3.20). The above steps do not consider uncertainty
information since ŷt+i equals the predictive mean, rather than following a normal
distribution.

Girard et al. point out in [79] that the predictive mean is consistent after propagat-
ing uncertainty information, while the predictive variance will be more complicated
but more realistic. In order to simplify the model, we consider the model without
uncertainty information only since the predictive mean is more meaningful to us.

Similarly, we attempt to achieve SSTPR model. The state-space model is now{
xti = [yti−1, . . . , yti−L]T,

yti = f(xti),
(5.16)

where f ∼ T P(ν, 0, kard), where ν is the degree of freedom and kard is the noisy
ARD kernel, and other parameters have the same meaning in Eq.(5.15). Therefore,
the prediction of y at t+ h is computed via

xt+1 = [yt, yt−1, . . . , yt+1−L]T ⇒ f(xt+1) ∼ T
(
ν1, µ(xt+1), σ2(xt+1)

)
,

ŷt+1 = µ(xt+1)

xt+2 = [ŷt+1, yt, . . . , yt+2−L]T ⇒ f(xt+2) ∼ T
(
ν2, µ(xt+2), σ2(xt+2)

)
,

ŷt+2 = µ(xt+2)
...

xt+h = [ŷt+h−1, ŷt+h−2, . . . , ŷt+h−L]T ⇒ f(xt+h) ∼ T
(
νh, µ(xt+h), σ

2(xt+h)
)
,

ŷt+h = µ(xt+h),
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where the one point predictive mean µ(xt+h−i) and variance σ2(xt+h−i) are com-
puted using Eq.(5.7) and Eq.(5.8). Of course, the predictive degree of freedom
and variance are also inaccurate because we do not consider the uncertainty of in-
puts. Similar to SSGPR, we focus on the predictive mean and consider the model
without uncertainty information.

5.5.2 Experiments for equity index series prediction

According to the models above, we consider the L days’ historical closing prices of
equity index as the state in the SSGPR and SSTPR to predict the next few days
prices using iterative h-step-ahead method. This is Experiment 5.5.2.

The data used in this experiment is all the closing trading prices of the 10 equity
indices. Due to the expensive computation, we initially do the 10-fold cross-
validation for the whole data set of each index, and only selected the last fold’s
data as the test set. The dynamic analysis is necessary and thus the sliding window
analysis is used in this experiment, fixing the prediction horizon at h = 5 and the
increments at τ = 5. Furthermore, we consider 10 and 20 historical days’ prices as
the state in the sub-experiments respectively so that the lag is L = 10 and L = 20.
Similarly, due to the different trading days in the indices and the different lags,
the sliding window size of each equity index is computed as

w = 9× bN/10c − L+ 1.

In each sliding window sub-sample, the zero-offset mean function, and SE kernel
are used in both GPR and TPR models. Table 5.12 shows the results of 5-day-
ahead prediction using SSGPR and SSTPR with L = 10 and L = 20, respectively.

It can be seen that SSTPR clearly outperforms SSGPR in the major equity markets
when the model considers L = 10 days’ historical indices as the state to forecast the
following 5 days’ indices. The result is less apparent when the number of historical
days’ indices increases to L = 20 days. In other words, SSTPR gradually lose
superiority in the prediction of equity indices after comparison with SSGPR when
the historical data information becomes sufficient according to this experiment.

To further analyse SSGPR and SSTPR, we repeated Experiment 5.5.2 by increas-
ing L from 5 to 20, denoted as Experiment 5.6. The SRMSEs of the 10 indices’
performances are demonstrated in Figure 5.5. Roughly speaking, DAX predic-
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Table 5.12: The SRMSE of sliding window analysis of 5-day-ahead predictions
using SSGPR and SSTPR models

(a) L = 10

SSGPR SSTPR

DAX 1.805(0.961) 1.651(0.774)
HSI 1.708(1.478) 1.631(0.958)
INDU 11.087(17.576) 5.417(7.496)
NDX 8.182(8.691) 4.374(3.554)
NKY 2.942(2.395) 2.661(1.383)

SENSEX 9.458(21.797) 5.001(5.894)
SHSZ300 4.742(4.593) 4.701(4.413)
SPX 3.616(2.919) 4.528(3.757)
UKX 1.973(1.415) 1.938(1.037)
XU100 2.383(1.347) 2.108(1.637)

(b) L = 20

SSGPR SSTPR

DAX 1.871(1.109) 2.135(1.388)
HSI 1.826(0.938) 1.595(0.545)
INDU 9.652(14.517) 12.98(24.272)
NDX 7.942(6.550) 7.367(5.129)
NKY 4.145(4.521) 5.134(4.880)

SENSEX 8.871(11.590) 8.182(12.837)
SHSZ300 5.212(5.091) 5.662(4.594)
SPX 6.478(8.194) 4.657(4.478)
UKX 1.529(0.742) 1.889(1.428)
XU100 3.005(3.591) 2.564(1.545)
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Figure 5.5: The SRMSE of prediction with the increasing L from 5 to 20.
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tions by both SSGPR and SSTPR models are always satisfying since the SRMSEs
are all smaller than 1. However, INDU, SENSEX and SPX predictions are not
stable and sometimes they have very bad performances because the SRMSEs are
sometimes greater than 1.5. From the view of the increasing of lag L, the median
SRMSE of 10 indices’ predictions by SSGPR and SSTPR are shown in Figure 5.6.

Overall, SSTPR outperforms SSGPR throughout the period, even though both
experience some fluctuation. SSTPR is at a great advantage when it has a signif-
icantly lower median SRMSE value before the lag reaches 8. As the lags increase,
the gap between SSTPR and SSGPR narrows, with SSGPR beating SSTPR twice
when the lag arrives at 9 and 13, respectively. When the lag continues to rise to
14, a drastic drop is seen in SSTPR prediction, showing that SSTPR regains its
advantage at this point, with this positive feature remaining stable until the end
when the lag climbs to 20, in which there is a similar performance for SSGPR.
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Figure 5.6: The median SRMSE of 10 indices’ predictions

5.6 Stock market efficiency analysis

As previously discussed, the technical analysis is based on historical trading data,
including a variety of technical prediction models and heavily depending on market
efficiency. For example, in a weakly-formed efficient market, no technical model
can make an outstanding prediction. As a consequence, the market efficiency is
reflected by the usefulness of technical forecasting models. Therefore, we undertake
a further market efficiency analysis based on the results of our SSGPR and SSTPR
models.



Financial time series prediction using Gaussian process regression and its
extensions 77

(a) L = 10 (b) L = 20

Figure 5.7: The SRMSE of sliding window analysis using SSGPR and SSTPR
(5-day-ahead prediction, L days lagged ).

Initially, in order to show the results of the performance of SSGPR and SSTPR
predictions in different markets visually, we draw a bar chart in Figure 5.7 based
on the average value of SRMSEs using SSGPR and SSTPR in Table 5.12(a) and
Table 5.12(b).

It can be seen that INDU and SENSEX have the largest SRMSE among the 10
equity indices, no matter what state-space model we choose and no matter how
many days historical indices we consider as the state. Therefore, INDU (US)
undoubtedly has strong efficiency in our market list. Of course, as our know, the
Dow Jones Industrial Average (INDU) is a stock market index that shows how 30
large publicly owned companies based in the United States have traded during a
standard trading session in the stock market and that it is the one of the most
developed stock markets throughout the world. Concerning SENSEX, it looks
abnormal because the Indian market is emerging and should be less inefficient,
something which will be discussed later.

Scientifically, the explicit results should be tested using an adequate experimental
analysis. We further study the results of Experiment 5.6, which is actually Ex-
periment 5.5.2 repeated 16 times from lag L = 5 to L = 20, using a box plot and
error bar to graphically depicting the 16 times SRMSEs of the 10 indices. The
box plot is useful for identifying outliers and for comparing distributions of data,
with the error bar a graphical representation of the variability of data. The box
plot and error bar analysis of the 16 times experiments is presented in Figure 5.8.

According to Figure 5.8, NDX and SENSEX have the worst predictability since
both have a comparatively tall box plot with several outliers and long error bars
with comparatively large means and standard deviations, of which both are mainly
greater than one. This suggests that the NDX and SENSEX markets are the most
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Figure 5.8: Box plot and error plot of 16 times experiments for 10 indices.

efficient during this period when compared to the other markets. NDX comprises
100 of the largest domestic and international non-financial securities listed on
The NASDAQ stock exchange and based on market capitalization. The index
reflects companies across major industry groups of the US stock market, with there
being no doubt that NDX is proven to be efficient. An interesting result is from
SENSEX and shown in Figure 5.9(a). Ankit Agarwal (2006) tested the weak form
of the Indian stock market using the simple technical trading rules, finding high
predictability of Indian stock markets, even after regarding transaction costs [5].
However, Gourishankar and Jyoti (2014) point out that the Indian stock market is
becoming efficient [80]. Compared to these two conclusions, our interesting result
from SENSEX can serve as evidence supporting the latter inference. In addition,
it can be seen that HSI has a comparatively short box plot and error bar, of which
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both are great than one. Concerning DAX, both the box plot and error bar are
under one. These results reveal that the HSI market is more efficient and that DAX
is less efficient. For other markets, we cannot conclude any explicit result because
the means and medians of SRMSES for the remaining indices are all around one,
with a moderate box plot and error bar.
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Figure 5.9: Graph of two market indices in the two years period between 2013
and 2014.

Another confusing result concerns the Chinese SHSZ300. Compared with NKY,
SHSZ300 seems to have more efficiency, but actually the Chinese market is an
emerging market, while the stock market in Japan is comparatively developed. The
candle chart for SHSZ300 is shown in Figure 5.9(b), highlighting that SHSZ300
rises perpendicularly all of a sudden at the end of 2014. It is an abnormal rise
influenced by complicated economic and political efforts, which are impossible to
reflect in previous trading data. Maybe these special influences can account for
abnormal efficiency in the Chinese market.

5.7 Summary

This chapter mainly introduce GPR and its extensions, including GPRT and TPR,
showing TPR as an alternative to GPR when undertaking financial time series
prediction. We have taken advantage of 10 equity indices from 1 January 2013
to 31 December 2014, to test and compare these models using various methods,
containing leave-one-out cross-validation (LOO-CV), k-fold cross-validation and
sliding window. The results can be concluded as follows.
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By simply comparing GPR, TPR and Gaussian Process Regression with Student−t
likelihood (GPRT) using INDU, NDX, SPX and UKX indices with 40 test days, we
have found that TPR completely outperform GPR. This conclusion is consistent
after another simple comparison of GPR, GPRT, TPR and the classical time
series model ARMA(1,1) using many more indices, DAX, HSI, INDU, NDX, NKY,
SENSEX, SPX and UKX with 60 test days.

However, the conclusion is not so apparent in the more statistic based experiments.
After comparing GPR and TPR based on 10 major equity indices from around
the world using LOO-CV and k-fold cross-validation, the performance of TPR is
the same as GPR. Specifically, the performance of GPR and TPR are not good in
terms of index prediction in LOO-CV, with even GPR and TPR not have better
index prediction than simple linear predictor.

When our discussion consider sliding window analyses, the TPR model has a
slightly better predictive performance than GPR, especially when making short-
term predictions, e.g. a one-week-ahead prediction in specific markets. To con-
clude, GPR and TPR can make a considerable prediction of equity indices. The
frameworks of GPR and TPR are flexible and easy to extend, so we can take other
historical trading information, such as opening price, highest price, lowest price
and volume, into consideration when using GPR and TPR models.

Furthermore, we introduce all the GPR and TPR models in state-space, namely,
SSGPR and SSTPR. They are more realistic models because all the historical
prices are taken into account when we predict the next day’s or next few days’
prices. This is attractive for traders and investors because they all want to obtain
excess profits from the explicit analysis of historical data. Of course, the premise is
the inefficient market. We apply SSGPR and SSTPR models to the dynamic pre-
dictions of 10 indices using sliding windows. The overall results are that SSTPR
outperforms SSGPR for the equity index prediction. Based on the detailed re-
sults, a brief market efficiency analysis confirms that the developed markets are
unpredictable on the whole. Admittedly, there are several outliers and it needs
to be considered that these results are just a naive glimpse into market efficiency
analysis.



Chapter 6

Multivariate Gaussian and

Student−t process regression for

multi-output prediction

6.1 Introduction

It has been shown that GPR and its extensions are proved to be useful in financial
time series prediction. Despite the popularity of GPR in various modelling tasks,
there still exists a conspicuous imperfection, that is, the majority of GPR mod-
els are implemented for single response variables or considered independently for
multiple responses variables without consideration of their correlation [40, 41]. In
order to resolve multi-output prediction problem, Gaussian process regression for
vector-valued function is proposed and regarded as a pragmatic and straightfor-
ward method. The core of this method is to vectorise the multi-response variables
and construct a "big" covariance, which describes the correlations between the
inputs as well as between the outputs (see, e.g. [40, 41, 42, 43]). This modelling
strategy is feasible due to that the matrix-variate Gaussian distributions can be re-
formulated as multivariate Gaussian distributions [42, 44]. Intrinsically, Gaussian
process regression for vector-valued function is still a conventional Gaussian pro-
cess regression model since it merely vectorises multi-response variables of which
are assumed to follow a developed case of GP with a reproduced kernel. Although
this vectorisation method of conventional GPR model has been proven to be a use-
ful tool to deal with multiple response variable prediction, it cannot be extended
to more general elliptical processes model such as Student−t process regression
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(TPR) for vector-valued function, because the equivalence between matrix-variate
and multivariate Student−t distributions does not exist under the vector operator
[44].

To overcome this drawback, we propose another derivation of dependent Gaus-
sian process regression, named as multivariate Gaussian process regression (MV-
GPR), where the model settings, derivations and computations are all directly
performed in matrix form, rather than vectorizing the matrices as done in the
existing methods. MV-GPR is a more straightforward method, and can be im-
plemented in the same way as the conventional GPR. Based on the derivation of
MV-GPR, we further introduce the multivariate Student−t process and then derive
a new considerable method, multivariate Student−t process regression (MV-TPR)
for multi-output prediction. The usefulness of proposed methods are illustrated
through several simulated examples. Furthermore, we also verify empirically that
MV-TPR has superiority in the prediction based on some widely-used datasets,
including air quality prediction and bike rent prediction. The proposed methods
are then applied to stock market modelling and shown to make the profitable stock
investment strategies.

In this chapter, (1), We propose a concise and straightforward derivation of de-
pendent Gaussian process regression, MV-GPR. (2), Based on the derivation of
MV-GPR, we can easily extend to MV-TPR. (3), The effectiveness of the proposed
MV-GPR and MV-TPR are illustrated through several simulated examples. (4),
We apply MV-GPR and MV-TPR to produce profitable investment strategies in
the stock markets. (5), MV-TPR shows its superiority in the air quality prediction
and the bike rent prediction.

6.2 Multivariate process definitions

Following the definition of Gaussian process, a multivariate Gaussian process
should be a collection of random vector-valued variables, any finite number of
which have matrix-variate Gaussian distribution. Therefore, we define a multi-
variate Gaussian process as follows.

Definition 6.1 (MV-GP). f is a multivariate Gaussian process on X with vector-
valued mean function u : X 7→ Rd, covariance function (also called kernel)
k : X × X 7→ R and positive semi-definite parameter matrix Ω ∈ Rd×d if any
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finite collection of vector-valued variables have a joint matrix-variate Gaussian
distribution,

[f(x1)T, . . . ,f(xn)T]T ∼MN (M,Σ,Ω), n ∈ N,

where f ,u ∈ Rd is a row vector which components are the functions {fi}di=1 and
{µi}di=1 respectively. Furthermore, M ∈ Rn×d with Mij = µj(xi), and Σ ∈ Rn×n

with Σij = k(xi, xj). Sometimes Σ is called the column covariance matrix while Ω

is the row covariance matrix. We denote f ∼MGP(u, k,Ω).

Furthermore, we define the multivariate Student−t process based on the definition
of MV-GP and Student−t process proposed by [38].

Definition 6.2 (MV-TP). f is a multivariate Student−t process on X with pa-
rameter ν > 2, vector-valued mean function u : X 7→ Rd, covariance function
(also called kernel) k : X × X 7→ R and positive semi-definite parameter matrix
Ω ∈ Rd×d if any finite collection of vector-valued variables have a joint matrix-
variate Student−t distribution,

[f(x1)T, . . . ,f(xn)T]T ∼MT (ν,M,Σ,Ω), n ∈ N,

where f ,u ∈ Rd is a row vector which components are the functions {fi}di=1 and
{µi}di=1 respectively. Furthermore, M ∈ Rn×d with Mij = µj(xi), and Σ ∈ Rn×n

with Σij = k(xi, xj). We denote f ∼MT P(ν,u, k,Ω).

6.3 Multivariate process regression models

6.3.1 Multivariate Gaussian process regression

For a Gaussian process regression, the noisy model, y = f(x)+ε is usually consid-
ered. However, for a MV-TPR, there may exist the same analytically intractable
problems. In order to unify the model derivation, we adopt the same method used
in [38] for both MV-GPR and MV-TPR and consider a noise free regression model
with noise-incorporated kernel.
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Given n pairs of observations {(xi,yi)}ni=1,xi ∈ Rp,yi ∈ Rd, we assume the fol-
lowing model

f ∼ MGP(u, k′,Ω),

yi = f(xi), for i = 1, · · · , n,

where k′ = k(xi,xj) + δijσ
2
n, δij = 1 if i = j, otherwise δij = 0. Similarly, we

assume u = 0 as commonly done in GPR.

By the definition of MV-GP, the collection of functions [f(x1), . . . ,f(xn)] follow
a matrix-variate Gaussian distribution

[f(x1)T, . . . ,f(xn)T]T ∼MN (0, K ′,Ω),

where K ′ is the n × n covariance matrix of which the (i, j)-th element [K ′]ij =

k′(xi,xj). In order to predict f∗ = f(Z) at the test locations Z = [z1, · · · , zm]T,
the joint distribution of the training observations observations Y = [yT

1 , · · · ,yT
n ]T

and the predictive targets f∗ are given by[
Y

f∗

]
∼MN

(
0,

[
K ′(X,X) K ′(Z,X)T

K ′(Z,X) K ′(Z,Z)

]
,Ω

)
, (6.1)

where K ′(X,X) is an n × n matrix of which the (i, j)-th element [K ′(X,X)]ij =

k′(xi,xj), K ′(Z,X) is an m× n matrix of which [K ′(Z,X)]ij = k′(xn+i,xj), and
K ′(Z,Z) is an m × m matrix with [K ′(Z,Z)]ij = k′(xn+i,xn+j). Thus, taking
advantage of conditional distribution of MV-GP, the predictive distribution is

p(f∗|X, Y, Z) =MN (M̂, Σ̂, Ω̂), (6.2)

where

M̂ = K ′(Z,X)TK ′(X,X)−1Y, (6.3)

Σ̂ = K ′(Z,Z)−K ′(Z,X)TK ′(X,X)−1K ′(Z,X), (6.4)

Ω̂ = Ω. (6.5)
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As a result, the expectation and the covariance are obtained

E[f∗] = M̂ = K ′(Z,X)TK ′(X,X)−1Y, (6.6)

cov(vec(fT
∗ )) = Σ̂⊗ Ω̂

= [K ′(Z,Z)−K ′(Z,X)TK ′(X,X)−1K ′(Z,X)]⊗ Ω. (6.7)

6.3.2 Multivariate Student−t process regression

Multivariate Student−t process regression model can be formulated along the same
line as MV-GPR and it briefly presented below.

Given n pairs of observations {(xi,yi)}ni=1,xi ∈ Rp,yi ∈ Rd, we assume

f ∼ MT P(ν,u, k′,Ω), ν > 2,

yi = f(xi), for i = 1, · · · , n,

where ν is the degree of freedom of Student−t process and the remaining pa-
rameters have the same meaning of MV-GP regression model. Consequently, the
predictive distribution is obtained as

p(f∗|X, Y, Z) =MT (ν̂, M̂ , Σ̂, Ω̂), (6.8)

where

ν̂ = ν + n, (6.9)

M̂ = K ′(Z,X)TK ′(X,X)−1y, (6.10)

Σ̂ = K ′(Z,Z)−K ′(Z,X)TK ′(X,X)−1K ′(Z,X), (6.11)

Ω̂ = Ω + Y TK ′(X,X)−1Y. (6.12)

According to the expectation and the covariance of matrix-variate Student−t dis-
tribution, the predictive mean and covariance are given by

E[f∗] = M̂ = K ′(X∗, X)TK ′(X,X)−1Y, (6.13)

cov(vec(fT
∗ )) =

1

ν + n− 2
Σ̂⊗ Ω̂

=
1

ν + n− 2
[K ′(X∗, X∗)−K ′(X∗, X)TK ′(X,X)−1K ′(X∗, X)]

⊗ (Ω + Y TK ′(X,X)−1Y ). (6.14)
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6.4 Covariance functions

Despite there are two covariance matrices, column covariance and row covariance,
in both MV-GPR and MV-TPR, only the column covariance depended on inputs
is considered as kernel since it contains our presumptions about the function we
wish to learn and define the closeness and similarity between data points [59].
Of course, the choice of kernel also has a profound impact on the performance
of MV-GP as well as MV-TP. Several samples over two typical kernels, Squared
Exponential (SE) and Periodic (PER) are listed as follows.

The samples of MV-GP and MV-TP over SE kernel are shown in Figure 6.1, where
the input x has 100 equally spaced values in [0, 5] and the row covariance matrix
Ω = ( 1.5 0.5

0.5 2.5 ).
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Figure 6.1: 5 samples of matrix-variate process over SE kernel. Left panel:
MV-GP with parameter [`, s2

f ] = [log(0.5), log(1.5)]; Right panel: MV-TP with
parameter [ν, `, s2

f ] = [3, log(0.5), log(1.5)]

The samples of MV-GP and MV-TP over PER kernel are shown in Figure 6.2,
where the input x has 100 equally spaced values in [0, 5] and the row covariance
matrix Ω = ( 1.5 0.5

0.5 2.5 ).

6.5 Parameters estimation

Similar to GPR models, the hyper-parameters involved in the kernel of MV-GPR
as well as MV-TPR need to be estimated from the training data. Although Monte
Carlo methods can perform GPR without the need of estimating hyper-parameters
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[26, 28, 67, 64], the common approach is to estimate them by means of maximum
marginal likelihood due to the high computational cost of Monte Carlo methods.

The undetermined parameters contain the hyper-parameters in the kernel, noisy
level σ2

n and the row covariance parameter matrix Ω. Due to positive semi-definite,
Ω can be denoted Ω = ΦΦT, where

Φ =


φ11 0 · · · 0

φ21 φ22 · · · 0
...

... . . . ...
φd1 φd2 · · · φdd

 .

To guarantee the uniqueness of Φ, the diagonal elements are restricted to be pos-
itive and denote ϕii = log(φii) for i = 1, 2, · · · , d.

6.5.1 Estimation of parameters in multivariate Gaussian pro-

cess regression

In the MV-GPR model, the observations are followed by a matrix-variate Gaussian
distribution Y ∼MN n,d(0, K

′,Ω) whereK ′ is the noisy column covariance matrix
with element [K ′]ij = k′(xi, xj) so that K ′ = K+σ2

nI where K is noise-free column
covariance matrix with element [K]ij = k(xi, xj). As we know there are hyper-
parameters in the kernel k so that we can denote K = Kθ. The hyper-parameter
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set denotes θ = {θ1, θ2, . . .}, thus

∂K ′

σ2
n

= In,
∂K ′

∂θi
=
∂Kθ

∂θi
.

According to the matrix-variate distribution, the negative log marginal likelihood
of observations is

L =
nd

2
log(2π) +

d

2
log det(K ′) +

n

2
log det(Ω) +

1

2
tr((K ′)−1Y Ω−1Y T). (6.15)

The derivatives of the negative log marginal likelihood with respect to parameter
σ2
n, θi, φij and ϕii are as follows

∂L
∂σ2

n

=
d

2
tr((K ′)−1)− 1

2
tr(αK′Ω

−1αT
K′),

∂L
∂θi

=
d

2
tr

(
(K ′)−1∂Kθ

∂θi

)
− 1

2
tr

(
αK′Ω

−1αT
K′
∂Kθ

∂θi

)
,

∂L
∂φij

=
n

2
tr[Ω−1(EijΦ

T + ΦEij)]−
1

2
tr[αΩ(K ′)−1αT

Ω(EijΦ
T + ΦEij)],

∂L
∂ϕii

=
n

2
tr[Ω−1(JiiΦ

T + ΦJii)]−
1

2
tr[αΩ(K ′)−1αT

Ω(JiiΦ
T + ΦJii)],

where αK′ = (K ′)−1Y , αΩ = Ω−1Y T, Eij is the d × d elementary matrix having
unity in the (i,j)-th element and zeros elsewhere, and Jii is the same as Eij but
with the unity being replaced by eϕii . The details can be found in C.1.

6.5.2 Estimation of parameters in multivariate Student −t
process regression

In the MV-TPRmodel, the observations are followed by a matrix-variate Student−t
distribution Y ∼MT n,d(ν,0, K ′,Ω). The negative log marginal likelihood is

L =
1

2
(ν + d+ n− 1) log det(In + (K ′)−1Y Ω−1Y T) +

d

2
log det(K ′) +

n

2
log det(Ω)

+ log Γn

(
1

2
(ν + n− 1)

)
− log Γn

(
1

2
(ν + d+ n− 1)

)
+

1

2
dn log π

=
1

2
(ν + d+ n− 1) log det(K ′ + Y Ω−1Y T)− ν + n− 1

2
log det(K ′) +

n

2
log det(Ω)

+ log Γn

(
1

2
(ν + n− 1)

)
− log Γn

(
1

2
(ν + d+ n− 1)

)
+

1

2
dn log π.
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Therefore the parameters of MV-TPR contains the all the parameters in MV-GPR
and one more parameter: the degree of freedom ν. The derivatives of the negative
log marginal likelihood with respect to parameter ν,σ2

n, θi, φij and ϕii are as follows

∂L
∂ν

=
1

2
log det(U)− 1

2
log det(K ′) +

1

2
ψn(

1

2
τ)− 1

2
ψn

(
1

2
(τ + d)

)
,

∂L
∂σ2

n

=
(τ + d)

2
tr(U−1)− τ

2
tr((K ′)−1),

∂L
∂θi

=
(τ + d)

2
tr

(
U−1∂Kθ

∂θi

)
− τ

2
tr

(
Σ−1∂Kθ

∂θi

)
,

∂L
∂φij

= −(τ + d)

2
tr[U−1αT

Ω(EijΦ
T + ΦEij)αΩ] +

n

2
tr[Ω−1(EijΦ

T + ΦEij)],

∂L
∂ϕii

= −(τ + d)

2
tr[U−1αT

Ω(JiiΦ
T + ΦJii)αΩ] +

n

2
tr[Ω−1(JiiΦ

T + ΦJii)],

where U = K ′+Y Ω−1Y T, τ = ν+n−1 and ψn(·) is the derivative of the function
log Γn(·) with respect to ν. The details can be found in C.2.

In fact, the sensitivity of initial hyper-parameter also exists because the negative
log marginal likelihood is not convex and there may exists local optima, like con-
ventional GPR and TPR. The same heuristic methods resolving the problems in
GPR and TPR, is adopted for MV-GPR and MV-TPR.

6.6 Experiments and applications

In this section, we demonstrate the usefulness of the matrix-variate process re-
gression models using some numerical examples, including simulated data and
real data.

6.6.1 Simulated example

We first consider a simulated data from two specific functions. The true model
used to generate data is given by,

y = [f1(x), f2(x)] + [ε(1), ε(2)],

f1(x) = 2x · cos(x), f2(x) = 1.5x · cos(x+ π/5),
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where the vector noise produced from a sample of multivariate Gaussian process
[ε(1), ε(2)] ∼MGP(0, kSE,Ω) . We select kSE with [`, s2

f ] = [log(1.001), log(5)] and
Ω = ( 1 0.25

0.25 1 ). The covariate x has 100 equally spaced values in [-10, 10] so that
a sample of 100 observations for y1 and y2 are obtained.

For model training, we try to use less points with one part missing so that the
zth data points where z = {3r+ 1}12

r=1 ∪ {3r+ 2}32
r=22 are selected for both y1 and

y2. The prediction is performed at all 100 covariate values equally spaced in [-10,
10]. The RMSEs between the predicted values and the true ones from f1(x) and
f2(x) are calculated. At the same time, the conventional GPR and TPR models
are conducted for the two outputs independently and the ARMSEs are compared
with the proposed models. The process above is repeated 1000 times and the
results are reported in Table 6.1 and an example of prediction is given in Figure
6.3. The ARMSE (Average Root Mean Square Error) for 100 points predictions
repeated 1000 times is defined by

ARMSE =
1

1000

1000∑
i=1

(
1

100

100∑
j=1

(ŷij − yij)2

) 1
2

,

where yij is the jth observation in ith experiment while ŷij is the jth prediction
in ith experiment.

Table 6.1: The ARMSE by the different models (multivariate Gaussian noisy
data)

Output 1 (y1) Output 2 (y2)

MV-GPR GPR MV-TPR TPR MV-GPR GPR MV-TPR TPR

1.540 1.594 1.258 1.585 1.749 2.018 1.518 2.017

The same experiment is conducted for the case where the vector noise is a sample
from multivariate Student−t process [ε(1), ε(2)] ∼ MT P(3, 0, kSE,Ω). We select
kSE with parameter [`, s2

f ] = [log(1.001), log(5)] and Ω = ( 1 0.25
0.25 1 ). The result of

ARMSEs are presented in Table 6.2 and an example of prediction is demonstrated
in Figure 6.4.

According to the tables and figures above, it can be seen that the multivariate
process regression models are able to discover a more desirable pattern in the
gap than using the conventional GPR and TPR model independently. It also
reveals that taking correlations between the two outputs into consideration im-
proves the accuracy of prediction compared with the methods of modelling each
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Figure 6.3: Predictions for MV-GP noise data using different models. From
panels (a) to (d): predictions for y1 by MV-GPR, MV-TPR, GPR and TPR.
From panels (e) to (h): predictions for y2 by MV-GPR, MV-TPR, GPR and
TPR. The solid blue lines are predictions, the solid red lines are the true func-
tions and the circles are the observations. The dash lines represent the 95%

confidence intervals
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Figure 6.4: Predictions for MV-TP noise data using different models. From
panels (a) to (d): predictions for y1 by MV-GPR, MV-TPR, GPR and TPR.
From panels (e) to (h): predictions for y2 by MV-GPR, MV-TPR, GPR and
TPR. The solid blue lines are predictions, the solid red lines are the true func-
tions and the circles are the observations. The dash lines represent the 95%

confidence intervals
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Table 6.2: The ARMSE by the different models (multivariate Student−t noisy
data)

Output 1 (y1) Output 2 (y2)

MV-GPR GPR MV-TPR TPR MV-GPR GPR MV-TPR TPR

1.441 1.505 1.238 1.503 1.636 1.941 1.464 1.940

output independently. In particular, MV-TPR performs better than MV-GPR in
the predictions of both types of noisy data. This may be explained by the fact
that MV-TPR has a better modelling flexibility with one more parameter which
can capture the degree of freedom of the data and take the correlations between
two responses into account. The reason will be further studied in the next real
data experiments.

It is notable that the predictive variance of MV-GPR is much smaller than the
independent GPR model. This is likely caused by the loss of information in the
independent model. As discussed in [81], the prediction uncertainty of GPR is
useful in building the predicting model by ensemble learning.

6.6.2 Real Data Examples

We further test our proposed methods on two real datasets 1. The selected mean
function is zero-offset and the selected kernel is SEard. Before the experiments,
all the data have been done zero-normalisation.

6.6.2.1 Air quality prediction

The dataset contains 9358 instances of hourly averaged responses from an array of
5 metal oxide chemical sensors embedded in an Air Quality Chemical Multisensor
Device with 15 attributes [82]. We delete all the points with missing attributes
(887 points remaining). The first 864 points are considered in our experiment
because the data is hourly observed (1 day = 24 hours) and the whole data set
is divided into 9 subsets (each subset has 4-days’ data points, totally 864 data
points). In the experiment, there are 9 attributes’ input, including time, true
hourly averaged concentration CO in mg/m3 (COGT), true hourly averaged over-
all Non Metanic HydroCarbons concentration in microg/m3 (NMHCGT), true

1These data sets are from the UC Irvine Machine Learning Repository: https://archive.
ics.uci.edu/ml/index.php.

https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
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hourly averaged Benzene concentration in microg/m3 (C6H6GT), true hourly av-
eraged NOx concentration in ppb (NOx), true hourly averaged NO2 concentra-
tion in microg/m3 (NO2), absolute humidity (AH), temperature (T) and relative
humidity (RH). The output consists of 5 attributes, including PT08.S1 (tin ox-
ide) hourly averaged sensor response, PT08.S2 (titania) hourly averaged sensor
response, PT08.S3 (tungsten oxide) hourly averaged sensor response, PT08.S4
(tungsten oxide) hourly averaged sensor response and PT08.S5 (indium oxide)
hourly averaged sensor response.

The cross-validation method is taken as k−fold, where k = 9. Each subset is
considered as test set and the remaining subsets are considered as training set.
Four models, containing MV-GPR, MV-TPR, GPR (predict each output inde-
pendently) and TPR (predict each output independently) are applied to make
multi-output prediction based on the divided training and test sets. The process
is repeated for 9 times.

For each subset’s prediction, MSE (mean square error) and MAE (mean absolute
error) are calculated and the median of the 9 MSEs and MAEs is used to evaluate
each output. Finally, the maximum median of all the outputs (MMO) is used to
evaluate the multi-dimensional prediction. The results are shown in Table 6.3 and
we can verify empirically that MV- TPR performs the best since it has smallest
maximum error in terms of MSE and MAE.

Table 6.3: Air quality prediction results based on MSEs and MAEs

(a) MSE

MV-GPR MV-TPR GPR TPR

PT08S1CO 0.091 0.065 0.079 0.074
Outputs PT08S2NMHC 8.16× 10−5 3.42× 10−5 1.91× 10−7 7.32× 10−8

(Median of 9 PT08S3NOx 0.036 0.027 0.022 0.025
subsets’ MSEs) PT08S4NO2 0.015 0.014 0.010 0.009

PT08S5O3 0.092 0.073 0.060 0.067

MMO 0.092 0.073 0.079 0.074

(b) MAE

MV-GPR MV-TPR GPR TPR

PT08S1CO 0.240 0.204 0.212 0.223
Outputs PT08S2NMHC 6.39× 10−3 1.15× 10−2 1.80× 10−4 9.26× 10−5

(Median of 9 PT08S3NOx 0.141 0.122 0.115 0.120
subsets’ MAEs) PT08S4NO2 0.095 0.089 0.079 0.073

PT08S5O3 0.231 0.210 0.199 0.205

MMO 0.240 0.210 0.212 0.223
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6.6.2.2 Bike rent prediction

This dataset contains the hourly and daily count of rental bikes between years 2011
and 2012 in Capital bikeshare system with the corresponding weather and seasonal
information [83]. There are 16 attributes. We test our proposed methods for
multi-output prediction based on daily count dataset. After deleting all the points
with missing attributes, we use the first 168 data points in the season Autumn
because the data is daily observed (1 week = 7 days) and the whole dataset is
divided into 8 subsets (each subset has 3 weeks’ data points). In the experiment,
there are 8 attributes’ input, including normalized temperature, normalized feeling
temperature, normalized humidity, normalized wind speed, whether day is holiday
or not, day of the week, working day or not and weathersit. The output consists
of 2 attributes, including the count of casual users (Casual) and the count of
registered users (Registered).

The cross-validation method is taken as k−fold, where k = 8. All the remaining
steps are the same as the air quality prediction experiment, except k is 8 so that
the process is repeated 8 times.

Table 6.4: Bike rent prediction results based on MSEs and MAEs

(a) MSE

MV-GPR MV-TPR GPR TPR

Outputs (median Casual 0.411 0.334 0.424 0.397
of 8 subsets’ MSEs) Registered 0.982 0.903 1.134 1.111

MMO 0.982 0.903 1.134 1.111

(b) MAE

MV-GPR MV-TPR GPR TPR

Outputs (median Casual 0.558 0.488 0.540 0.546
of 8 subsets’ MAEs) Registered 0.897 0.855 0.916 0.907

MMO 0.897 0.855 0.916 0.907

The results are shown in Table 6.4 and we can also verify empirically that MV-
TPR performs the best in terms of MSE and MAE.
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6.6.3 Application to stock market investment

In the previous subsections, the examples show the usefulness of our proposed
methods in terms of more accurate prediction. Furthermore, our proposed methods
can be applied to produce trading strategies in the stock market investment.

It is known that the accurate prediction of future for an equity market is almost
impossible. Admittedly, the more realistic idea is to make a strategy based on
the Buy&Sell signal in the different prediction models [45]. In this section, we
consider a developed Dollar 100 (dD100) as a criterion of the prediction models.
The dD100 criterion is able to reflect the theoretical future value of $100 invested
at the beginning, and traded according to the signals constructed by predicted
value and the reality. The details of dD100 criterion are described in Section
6.6.3.2.

Furthermore, the equity index is an important measurement of the value of a stock
market and is used by many investors making trades and scholars studying stock
markets. The index is computed from the weighted average of the selected stocks’
prices, thus it is able to describe how the whole stock market in the consideration
performs in a period and thus many trading strategies of a stock or a portfolio have
to take the information of the index into account. As a result, our experimental
predictions for specific stocks are based on the indices as well.

6.6.3.1 Data preparation

We collect daily price data, containing opening, closing, and adjusted closing for
the stocks (the details are shown in Section 6.6.3.3 and Section 6.6.3.4) and three
main indices in the US, Dow Jones Industrial Average (INDU), S&P500 (SPX),
and NASDAQ(NDX) from Yahoo Finance in the period of 2013 – 2014. The
log returns of adjusted closing price and inter-day log returns are consequently
achieved by definitions

Log return: LRi = log
ACPi
ACPi−1

,

Inter-day log return: ILRi = log
CPi
OPi

,

where ACPi is the adjusted closing price of ith day (i > 1), CPi is the closing
price of ith day, and OPi is the openning price of ith day. Therefore, there are
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totally 503 daily log returns and log inter-day returns for all the stocks and indices
from 2013 to 2014.

6.6.3.2 Prediction model and strategy

The sliding windows method is used throughout our prediction models, including
GPR, TPR, MV-GPR, and MV-TPR, based on the indices, INDU, SPX, and
NDX. The size of training sample is 303, which is used to forecast the next 10
days, and the training set is updated by dropping off the earliest 10 days and
added on the latest 10 days. The sliding-forward process ran 20 times, resulting
in a total 200 prediction days, in groups of 10. The updated training set allows all
the models and parameters to adapt the dynamic structure of the equity market
[45]. Specifically, the inputs consist of the log returns of 3 indices. The targets
are multiple stocks’ log returns. Due to the multi-dimensional inputs, Standard
Exponential with automatic relevance determination (SEard) is used kernel for all
of these prediction models.

Admittedly, we forecast the log returns of the specifically grouped stocks based on
the 3 main indices in the US. It is noteworthy that the predicted log returns of
stocks are used to produce a buy or sell signal for trading rather than to discover
an exact pattern in the future. The signal BS produced by the predicted log
returns of the stocks is defined by

BSi = L̂Ri − LRi + ILRi, i = 1, · · · , 200,

where {L̂Ri}200
i=1 are the predicted log returns of a specific stock, {LRi}200

i=1 are
the true log returns while {ILRi}200

i=1 are the inter-day log returns. The Buy&Sell
strategy relying on the signal BS is described in Table 6.5.

Table 6.5: Buy&Sell strategy of dD100 investment

Decision Condition

Buy L̂Ri > 0, & BSi > 0 & we have the position of cash
Sell L̂Ri < 0, & BSi < 0 & we have the position of share
Keep No action is taken for the rest of the option

It has to mention that the stock in our experiment is counted in Dollar rather than
the number of shares, which means we can precisely buy or sell a specific Dollar
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valued stock theoretically. For example, if the stock price is $37 when we only
have $20, we can still buy $20 valued stock theoretically rather than borrow $17
and then buy 1 share. Furthermore, it is also necessary to explain why we choose
the signal BS. By definition of signal, we rewrite it as

BSi = log(
ˆACP i

ACPi−1

)− log(
ACPi
ACPi−1

) + log(
CPi
OPi

)

= log(
ˆACP i

ACPi−1

)− log(
ACPi
ACPi−1

) + log(
ACPi
AOPi

)

= log(
ˆACP i

AOPi
),

where {ACPi}200
i=0 ar the last 201 adjusted closing prices for a stock, {CP}200

i=1 are
the last 200 closing prices, and {AOP}200

i=1 are the adjusted opening prices. If
BSi > 0, the predicted closing price is higher than adjusted opening price, which
means we can obtain the inter-day profit by buying the shares at the opening price
2 as long as the signal based on our predictions is no problem. Meanwhile, the
opposite performance based on BS strategy means that we can avoid the inter-
day loss by selling decisively at the opening price. Furthermore, the reasonable
transaction fee 0.025% is considered since the strategy might trade frequently 3.
As a result, this is a reasonable strategy since we can definitely obtain a profit
by buying the shares and cut the loss by selling the shares in time only if our
prediction has no serious problem. It is also an feasible strategy because the
decision is given by the next day’s reality and our prediction models.

At last, BS signal varies in different prediction models so that we denote these
Buy&Sell strategies based on MV-GPR, MV-TPR, GPR, and TPR model as MV-
GPR strategy, MV-TPR strategy, GPR strategy, and TPR strategy, respectively.

6.6.3.3 Chinese companies in NASDAQ

In recent years, the "Chinese concepts stock" has received extensive attention
among international investors owing to the fast development of Chinese economy
and an increasing number of the Chinese firms have been traded in the interna-
tional stock markets [84]. The "Chinese concepts stock" refers to the stock issued

2Actually, the value has to be considered as adjusted opening price since all the shares counted
as Dollar. The adjusted opening price is also easily to compute based on the real opening price
and the dividend information

3 The figure 0.025% is comprehensive consideration referred to the NASDAQ website:http:
//nasdaq.cchwallstreet.com/

http://nasdaq.cchwallstreet.com/
http://nasdaq.cchwallstreet.com/
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by firms whose asset or earning have essential activities in Mainland China. Un-
doubtedly, all these "Chinese concept stocks" are heavily influenced by the politi-
cal and economic environment of China together. For this reason, all these stocks
have the potential and unneglectable correlation theoretically, which is probably
reflected in the movement of stock price. The performance of multiple targets
prediction, which takes the potential relationship into consideration, should be
better. Therefore, the first real data example is based on three biggest Chinese
companies described in Table 6.6.

Table 6.6: Three biggest "Chinese concept" stocks

Ticker Exchange Company

BIDU NASDAQ Baidu, Inc.
CTRP NASDAQ Ctrip.com International, Ltd.
NTES NASDAQ NetEase, Inc.

We apply MV-GPR, MV-TPR, GPR and TPR models to Buy&Sell strategies,
with the results demonstrated in Figure 6.5. Furthermore, Table D.1, D.2 and
D.3 summarize the results by the period for each stock respectively. In particular,
the Buy&Sell signal examples for each stock are shown in Table D.4, D.5 and D.6
respectively, along with other relevant details.

According to Figure 6.5, there is no doubt that a $100 investment for each stock
has sharply increased over 200 days period using Buy&Sell strategies regardless
of the stock trend price during this period. In particular, the stock price of BIDU
and NTES rose gradually while CTRP hit the peak and then decreased on a
large scale. Anyway, the Buy&Sell strategies based on different prediction models
have still achieved more considerable profits than the Buy&Hold strategies for the
corresponding stock investment. However, the different prediction models have di-
verse performances for each stock. For BIDU, GPR-based models, including MV-
GPR and GPR, outperform TPR-based models, including MV-TPR and TPR.
For NTES, all the models for Buy&Sell strategy have the similar performance.
Admittedly, TPR-based models, especially MV-TPR, have an outstanding perfor-
mance for stock CTRP. The results indicate that multivariate process regression
models, including MV-GPR and MV-TPR, have a better prediction in some par-
ticular cases. To explore further, the degree of freedom of Student−t distribution
for each stock is estimated by MATLAB build-in function ’fitdist’ with parameter
’tLocationScale’ and the computation results are 5.87, 2.99 and 3.67 for BIDU,
CTRP, and NTES, respectively. As we know, the degree of freedom of Student−t
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Figure 6.5: The movement of invested $100 in 200 days for 3 Chinese stocks
in the US market. The top 4 lines in legend are Buy&Sell strategies based on 4
prediction models, MV-GPR, MV-TPR, GPR, and TPR, respectively. The last
4 lines are Buy&Hold strategies for the stock and 3 indices, INDU, NASDAQ,

and NDX, respectively
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distribution controls the fatness of tails, and thus it shows that the data of CTRP
is the heaviest tailed while BIDU is the lightest tailed. This may be the reason why
TPR-based model have an outstanding performance for CTRP while GPR-based
model outperforms for BIDU. Nevertheless, the more accurate inference remains
to be studied.

6.6.3.4 Diverse sectors in Dow 30

Owing to the globalisation of capital, there has been a significant shift in the
relative importance of national and economic influences in the world’s largest
equity markets and the impact of the industrial sector is now gradually replacing
that of country effects in these markets [85]. Therefore, a further example is carried
out under the diverse industrial sectors in Dow 30 from New York Stock Exchange
(NYSE) and NASDAQ.

Initially, the classification of stocks based on diverse industrial sectors in Dow 30
has to be done. There are two main industry classification taxonomies, including
Industry Classification Benchmark (ICB) and Global Industry Classification Stan-
dard (GICS). In our research, ICB is used to segregate markets into sectors within
the macro economy. The stocks in Dow 30 are classified in Table 6.7. Due to the
multivariate process models considering at least two related stocks in one group,
the first (Basic Materials), as well as last industrial sector (Telecommunications),
consisting of only one stock, are excluded. Our experiments are performed 7 times
from 7 grouped industrial sector stocks, including Oil&Gas, Industrial, Consumer
Goods, Health Care, Consumer Services, Financials and Technology, respectively.

Secondly, the four models, MV-GPR, MV-TPR, GPR and TPR, are similarly
applied and the stock investment ranking is listed in Table 6.8 (The detailed
results are summarised in Table E.1. All the figures of $100 stock investment on
the diverse industrial sectors are listed in Appendix E.2 and the tables are shown in
Appendix E.3 summarise the results by the period for each stock under the diverse
industrial sectors, respectively). On the whole, for each stock, there is no doubt
that using the Buy&Sell strategy is much better than using the Buy&Hold strategy
regardless of the industrial sector. Specifically, MV-GPR makes a satisfactory
performance overall in the industrial sector Industrials, Consumer Services and
Financials while MV-TPR has a higher ranking in Health Care in general.

4Note that the terms "industry" and "sector" are reversed from the Global Industry Classi-
fication Standard (GICS) taxonomy.
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Table 6.7: Stock components of Dow 30
Ticker Company Exchange Industry Industry 4(ICB)

DD DuPont NYSE Chemical industry Basic Materials
KO Coca-Cola NYSE Beverages Consumer Goods
PG Procter & Gamble NYSE Consumer goods Consumer Goods
MCD McDonald’s NYSE Fast food Consumer Goods
NKE Nike NYSE Apparel Consumer Services
DIS Walt Disney NYSE Broadcasting and entertainment Consumer Services
HD The Home Depot NYSE Home improvement retailer Consumer Services

WMT Wal-Mart NYSE Retail Consumer Services
JPM JPMorgan Chase NYSE Banking Financials
GS Goldman Sachs NYSE Banking, Financial services Financials
V Visa NYSE Consumer banking Financials

AXP American Express NYSE Consumer finance Financials
TRV Travelers NYSE Insurance Financials
UNH UnitedHealth Group NYSE Managed health care Health Care
JNJ Johnson & Johnson NYSE Pharmaceuticals Health Care
MRK Merck NYSE Pharmaceuticals Health Care
PFE Pfizer NYSE Pharmaceuticals Health Care
BA Boeing NYSE Aerospace and defense Industrials

MMM 3M NYSE Conglomerate Industrials
GE General Electric NYSE Conglomerate Industrials
UTX United Technologies NYSE Conglomerate Industrials
CAT Caterpillar NYSE Construction and mining equipment Industrials
CVX Chevron NYSE Oil & gas Oil & Gas
XOM ExxonMobil NYSE Oil & gas Oil & Gas
CSCO Cisco Systems NASDAQ Computer networking Technology
IBM IBM NYSE Computers and technology Technology
AAPL Apple NASDAQ Consumer electronics Technology
INTC Intel NASDAQ Semiconductors Technology
MSFT Microsoft NASDAQ Software Technology
VZ Verizon NYSE Telecommunication Telecommunications

Table 6.8: Stock investment ranking under different strategies

Ticker Industry Buy&Sell Strategy Buy&Hold Stragegy

MV-GPR MV-TPR GPR TPR Stock INDU NDX SPX

CVX Oil & Gas 3rd 4th 2nd 1st 8th 7th 5th 6th
XOM Oil & Gas 4th 2nd 3rd 1st 8th 7th 5th 6th

MMM Industrials 2nd 3rd 1st 4th 5th 8th 6th 7th
BA Industrials 1st 2nd 3rd 4th 8th 7th 5th 6th
CAT Industrials 3rd 4th 2nd 1st 8th 7th 5th 6th
GE Industrials 2nd 4th 3rd 1st 8th 7th 5th 6th
UTX Industrials 2nd 4th 3rd 1st 8th 7th 5th 6th

KO Consumer Goods 2nd 1st 3rd 4th 6th 8th 5th 7th
MCD Consumer Goods 2nd 4th 1st 3rd 8th 7th 5th 6th
PG Consumer Goods 3rd 4th 1st 2nd 5th 8th 6th 7th

JNJ Health Care 3rd 2nd 1st 4th 6th 8th 5th 7th
MRK Health Care 3rd 2nd 4th 1st 8th 7th 5th 6th
PFE Health Care 4th 1st 3rd 2nd 8th 7th 5th 6th
UNH Health Care 2nd 3rd 1st 4th 5th 8th 6th 7th

HD Consumer Services 1st 4th 3rd 2nd 5th 8th 6th 7th
NKE Consumer Services 2nd 3rd 4th 1st 5th 8th 6th 7th
WMT Consumer Services 1st 4th 3rd 2nd 5th 8th 6th 7th
DIS Consumer Services 3rd 2nd 1st 4th 5th 8th 6th 7th

AXP Financials 2nd 4th 1st 3rd 8th 7th 5th 6th
GS Financials 2nd 1st 3rd 4th 5th 8th 6th 7th
JPM Financials 2nd 4th 1st 3rd 6th 8th 5th 7th
TRV Financials 2nd 3rd 1st 4th 5th 8th 6th 7th
V Financials 1st 4th 3rd 2nd 5th 8th 6th 7th

AAPL Technology 4th 2nd 3rd 1st 5th 8th 6th 7th
CSCO Technology 2nd 1st 3rd 4th 5th 8th 6th 7th
IBM Technology 4th 1st 2nd 3rd 8th 7th 5th 6th
INTC Technology 3rd 4th 2nd 1st 5th 8th 6th 7th
MSFT Technology 2nd 4th 1st 3rd 5th 8th 6th 7th
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As we discussed before, the degree of freedom of Student−t distribution describes
how heavy the tails are and thus the estimated degree of freedom is probably
one of the determinative factors for the difference of 4 Buy&Sell strategies. The
estimated degrees of freedom for the given stocks under the 7 industries are shown
in Figure 6.6, where the degree of freedom of Student−t distribution for each
stock’ log returns is also computed by MATLAB build-in function ’fitdist’ with
parameter ’tLocationScale’.

KO MCD PG HD NKE WMT DIS AXP GS JPM TRV V JNJ MRK PFE UNH MMM BA CAT GE UTX CVX XOM AAPLCSCO IBM INTC MSFT
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Figure 6.6: The estimated degrees of freedom for the given stocks under the
7 industries

Additionally, the correlations among the multiple outputs, as the main supple-
mentary information, are taken into account in our multivariate process regression
models and hence the correlations with other stocks in the same industries are de-
served to be another important factor. The correlation matrices of the 7 industries
are visualised in Figure 6.7.

To further study the influence of the estimated degrees of freedom and correlations
with other stocks in the same industry on the performance of $100 investment, the
stock distribution under the 7 industries based on the estimated degree of freedom
and average correlation with other stocks in the same industry, is demonstrated
in Figure 6.8 and Figure 6.9.

Then a colour distinct classification of 28 stocks for the different Buy&Sell strate-
gies is in the scatter plot, Figure 6.10, where MV-based strategies contain MV-
GPR and TPR while Ind-based strategies contain GPR and TPR, and GPR-based
strategies contain MV-GPR and GPR while TPR-based strategies contain MV-
TPR and TPR. The coloured point of stock means that the coloured strategy (or
strategy group) for this stock performs better than the others. For example, the
point at the top of Figure 6.10(a) is blue (blue stands for MV-based strategies
here), which means that MV-GPR outperforms GPR and MV-TPR outperforms
TPR.
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(a) Consumer Goods (b) Consumer Services

(c) Financials (d) Health Care

(e) Industrials (f) Technology

(g) Oil & Gas

Figure 6.7: Correlation matrix plots of the 7 industries
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Figure 6.8: Stock distribution under the 7 industries based on the estimated
degree of freedom and mean of correlations with other stocks in the same indus-

try.

According to Figure 6.10(a) and 6.10(b), we find that MV-based strategies perform
more satisfactory in the middle of average correlation (from 0.25 to 0.60) with
the other stocks in the same industry and TPR-based strategies might have a
more considerable result only if the estimated degree of freedom is located in the
interval (4, 5.5). Specifically, the small estimated degree of freedom (nearly less
than 5) and medium-small average correlation (approximately from 0.25 to 0.5)
are the essential requirements for better performance of MV-TPR while MV-GPR
strategy is likely to obtain the profitable investment only if both the estimated
degree of freedom and the mean of correlations with others in the same industry
are moderate.

Furthermore, the industrial sector portfolio is taken into account, which consists
of these grouped stocks by the same weight investment on each stock. For ex-
ample, the Oil & Gas portfolio investment is $100 with $50 shares CVX and $50
shares XOM while the Technology portfolio investment is $100 with the same $20
investment on each stock in the industrial sector Technology. The diverse indus-
try portfolio investments’ ranking lists in Table 6.9 (The details are described in
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Figure 6.9: Stock distribution in the 7 different industries. For all sub-figures,
y-label: the estimated degree of freedom. x-label: the mean of correlations with

other stocks in the same industry.

Table E.2, all the figures of diverse industrial sector portfolio investment are pre-
sented in Appendix E.4). Apparently, the Buy&Sell strategies performed better
than the Buy&Hold strategies. MV-GPR suits better in three industries, includ-
ing Consumer Goods, Consumer Services, and Financials, followed by TPR which
performed best in Oil&Gas and Industrials. The optimum investment strategy in
Health Care is MV-TPR while in Technology industry, using GPR seems to be
the most profitable.

To sum up, despite the fact that the multivariate process regression models, includ-
ing MV-GPR and MV-TPR. cannot make the best performances in all the cases
compared with independent GPR and TPR, undeniably, the proposed models are
still applicable to stock market investment.
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Figure 6.10: Scatter plot for the stocks using optimum investment strategy
(or strategy group)

Table 6.9: Industry portfolio investment ranking under different strategies

Industry Portfolio Buy&Sell Strategy Buy&Hold Stragegy

MV-GPR MV-TPR GPR TPR Stock INDU NDX SPX

Oil & Gas 4th 3rd 2nd 1st 8th 7th 5th 6th

Industrials 2nd 4th 3rd 1st 8th 7th 5th 6th

Consumer Goods 1st 4th 2nd 3rd 7th 8th 5th 6th

Health Care 4th 1st 3rd 2nd 6th 8th 5th 7th

Consumer Services 1st 4th 3rd 2nd 5th 8th 6th 7th

Financials 1st 4th 2nd 3rd 5th 8th 6th 7th

Technology 4th 3rd 1st 2nd 5th 8th 6th 7th
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6.7 Summary

In this chapter, we propose an alternative derivation of dependent Gaussian pro-
cess regression for multi-output prediction, where the model settings, derivations
and computations are all directly performed in matrix form. MV-GPR is a more
straightforward method and can be implemented in the same way as conven-
tional GPR. Like the conventional Gaussian process for vector-valued function,
our models are also able to learn the correlations between inputs and outputs. In
comparison to the conventional Gaussian process for vector-valued function, our
formulations are more convenient and flexible.

Furthermore, we define the multivariate Student−t process and then derive a new
considerable method, MV-TPR for multi-output prediction. Both MV-GPR and
MV-TPR have closed form expressions for the marginal likelihoods and predictive
distributions. The usefulness of the proposed methods are illustrated through
several numerical examples.

The proposed methods are also applied to stock market modelling and are shown
to make profitable stock investment. Firstly, MV-GPR and MV-TPR are applied
to predict three "Chinese concept stocks" together as 3-dimension outputs. The
Buy&Sell strategies based on the proposed models have more satisfactory per-
formances compared with Buy&Hold strategies for the corresponding stocks and
three main indices in the US, especially the strategy based on MV-TPR has out-
standing returns for NetEase among three Chinese stocks. Secondly, our proposed
methods are applied to make Buy&Sell strategies from view of industrial sectors
in Dow 30 and their results indicate that the strategies based on MV-GPR gen-
erally has considerable performances in Industrials, Consumer Goods, Consumer
Services, and Financials sectors while the strategies based on MV-TPR can make
maximum profit in Health Care sector.



Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we introduce the framework of Bayesian non-parametric Gaussian
process regression and its extensions, including Gaussian process regression with
Student−t likelihood (GPRT), Student−t process regression (TPR), state-space
Gaussian process regression (SSGPR), state-space Student−t process regression
(SSTPR), multivariate Gaussian process regression (MV-GPR), and multivariate
Student−t process regression (MV-TPR). By applying all these models to stock
markets, GPR and its extensions show the powerful ability and usefulness in fi-
nancial time series prediction. This thesis is divided into 3 main parts.

In the first part, we carefully review Gaussian process regression from both weight-
space view and function-space view followed by a detailed introduction and discus-
sion of mean function, kernel, and hyper-parameter estimation. In particular, we
study the sensitivity of prior distribution for initial value to the hyper-parameter
estimation and the performance of GPR. The results of several numerical exper-
iments show that the sensitivity of the initial hyper-parameters depends on the
choice of the specific kernel, but the priors have little influence on the performance
of the GPR models in terms of predictability.

The second part introduce several Gaussian process regression extensions, includ-
ing Gaussian process regression with Student−t process (GPRT) and Student−t
process regression (TPR), with all the above models applied to predict 10 main
equity indices from all over the world. According to the experimental results, both
GPR and TPR show a considerable capability of predicting equity indices. Both
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GPR and TPR are extended to state-space Gaussian process regression (SSGPR)
and state-space Student−t process regression (SSTPR) models in order to make
an reasonable prediction of the selected stock markets based on historical trading
data in a dynamic system. In addition, a brief market efficiency analysis is also
conducted by taking advantage of the results of the SSGPR and SSTPR prediction
models for the equity indices.

The final part focuses on the multi-output prediction using Gaussian process. We
proposed a multivariate Gaussian process regression (MV-GPR) and a multivari-
ate Student−t process regression (MV-TPR) for multi-output prediction, where
the model settings, derivations and computations are all performed in matrix form
directly, rather than vectorising the matrices involved. Compared with the inde-
pendent Gaussian process regression and Student−t process regression models,
both MV-GPR and MV-TPR significantly show outstanding performances in the
simulated examples. The proposed methods are then applied to stock market mod-
elling. The Buy&Sell strategies, which are generated by our proposed methods,
are shown to be profitable when making stock market investments.

7.2 Future work

Short-term future work will be carried out on the remaining problems identified
in this thesis. Firstly, in Chapter 4, we have studied the sensitivity of the hyper-
parameter estimation and the performance of GPR on the prior distribution for
the initial value. It is noted that in terms of evaluating the influences of prior
distributions on the performance of GPR models, the study in this thesis is far from
comprehensive. More priors and kernels should be considered, as well as complex
data sets, including real data. The theoretical analysis might also be of importance
because it is not feasible for numerical examples to cover all scenarios. In addition,
according to Chapter 6, we assume that different outputs would be observed for
the same covariate values. In practice, different responses are sometimes observed
at several different locations. This is, however, difficult for the proposed method
for multi-output prediction since all the outputs have to be considered as a matrix
rather than a vector with adjustable length, leaving each response reliant on the
same input. Furthermore, the kernel in our model is squared exponentially and is
the same for each output, with it potentially being better to use different kernels
for different outputs [41]. All these problems remain to explore in future work.
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The further future work consists of three directions, including model extension
and specification, efficient implementation, and extensive application. From the
view of model extension and specification, GP has to be extended further in order
to learn more powerful representation of the data in this deep learning age. For
example, deep Gaussian process, of which the data is modelled as the output of a
multivariate GP and the inputs of that GP are then governed by another GP [86].
Of course, traditional GP models also deserve to be further studied, especially the
kernel selection. Although several sophisticated covariance functions have been
widely used [65, 66], the relationship between data characteristics and kernels still
need to be explored. For example, we will attempt to construct a complicated
kernel to capture the fluctuation of the stock market efficiently. In fact, though
GP is a rigorous model theoretically, the applications in industry are limited owing
to the high computational complexity of its inference method, especially when the
size of the training set is increasingly huge [87, 88, 89]. In order to resolve this
problem, many approximate inferences are proposed to reduce the running time
at the cost of accuracy. For instance, re-sampling the data sets to eliminate those
less informative points [90] and using sparse techniques to reduced the rank of the
kernel [91]. Therefore, it is necessary to study the efficient implementation of GP
at the expense of less accuracy loss. At last, GP models will have many useful
and worthy applications in other fields, such as biology, geography, and physics.



Appendix A

Graphs of predictions by Gaussian

process regression, Gaussian process

regression with Student−t likelihood

and Student−t process regression

models for INDU, NDX, SPX, and

UKX

1 Two-sigma confidence interval is the 95% confidence interval for Gaussian ,but it is not the
same as 95% confidence interval for Student−t distribution.

112



Appendix A. Graphs of predictions by GPR, GPRT and TPR models for INDU,
NDX, SPX, and UKX 113

Figure A.1: INDU predictions by GPR, GPRT and TPR respectively. Solid
colourful dark lines are predicted values and light colourful regions are two-sigma

1 confidence intervals.

Figure A.2: NDX predictions by GPR, GPRT and TPR respectively. Solid
colourful dark lines are predicted values and light colourful regions are two-sigma

confidence intervals.
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NDX, SPX, and UKX 114

Figure A.3: SPX predictions by GPR, GPRT and TPR respectively. Solid
colourful dark lines are predicted values and light colourful regions are two-

sigma confidence intervals.

Figure A.4: UKX predictions by GPR, GPRT and TPR respectively. Solid
colourful dark lines are predicted values and light colourful regions are two-sigma

confidence intervals.



Appendix B

Graphs of predictions by Gaussian

process regression, Gaussian process

regression with Student−t
likelihood, Student−t process

regression and ARMA(1,1) models

for DAX, HSI, INDU, NDX, NKY,

SENSEX, SPX, and UKX
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Appendix B. Graphs of predictions by GPR, GPRT, TPR and ARMA(1,1)
models for DAX, HSI, INDU, NDX, NKY, SENSEX, SPX, and UKX 116

Figure B.1: DAX predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light colourful regions

are two-sigma confidence intervals.

Figure B.2: HSI predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light colourful regions

are two-sigma confidence intervals.
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Figure B.3: INDU predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light colourful regions

are two-sigma confidence intervals.

Figure B.4: NDX predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light colourful regions

are two-sigma confidence intervals.
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models for DAX, HSI, INDU, NDX, NKY, SENSEX, SPX, and UKX 118

Figure B.5: NKY predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light colourful regions

are two-sigma confidence intervals.

Figure B.6: SENSEX predictions by GPR, GPRT, TPR and ARMA(1,1) re-
spectively. Solid colourful dark lines are predicted values and light colourful

regions are two-sigma confidence intervals.
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Figure B.7: SPX predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light colourful regions

are two-sigma confidence intervals.

Figure B.8: UKX predictions by GPR, GPRT, TPR and ARMA(1,1) respec-
tively. Solid colourful dark lines are predicted values and light colourful regions

are two-sigma confidence intervals.



Appendix C

Negative log marginal likelihood and

gradient evaluation for multivariate

Gaussian and Student−t process

C.1 Multivariate Gaussian process regression

For a matrix-variate observations Y ∼ MN n,d(M,Σ,Ω) where M ∈ Rn×d,Σ ∈
Rn×n,Ω ∈ Rd×d, the negative log likelihood is

L =
nd

2
log(2π) +

d

2
log det(Σ) +

n

2
log det(Ω) +

1

2
tr(Σ−1(Y −M)Ω−1(Y −M)T),

(C.1)
where actually Σ = K+σ2

nI As we know there are several parameters in the kernel
k so that we can denote K = Kθ. The parameter set denotes Θ = {θ1, θ2, . . .}.
Besides, we denote the parameter matrix Ω = ΦΦT since Ω is positive semi-definite,
where

Φ =


φ11 0 · · · 0

φ21 φ22 · · · 0
...

... . . . ...
φd1 φd2 · · · φdd

 .
To guarantee the uniqueness of Φ, the diagonal elements are restricted to be pos-
itive and denote ϕii = log(φii) for i = 1, 2, · · · , d. Therefore,

∂Σ

σ2
n

= In,
∂Σ

∂θi
=
∂K ′θ
∂θi

,
∂Ω

∂φij
= EijΦ

T + ΦEij,
∂Ω

∂ϕii
= JiiΦ

T + ΦJii,
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where Eij is the d× d elementary matrix having unity in the (i,j)-th element and
zeros elsewhere, and Jii is the same as Eij but with the unity being replaced by
eϕii .

The derivatives of the negative log likelihood with respect to σ2
n, θi, φij and ϕii

are as follows. The derivative with respect to θi is

∂L
∂θi

=
d

2

∂ log det(Σ)

∂θi
+

1

2

∂

∂θi
tr(Σ−1(Y −M)Ω−1(Y −M)T)

=
d

2
tr

[(
∂ log det(Σ)

∂Σ

)T
∂Σ

∂θi

]
+

1

2
tr

[(
∂tr(Σ−1G)

∂Σ

)T
∂Σ

∂θi

]

=
d

2
tr

(
Σ−1∂K

′
θ

∂θi

)
− 1

2
tr

(
Σ−1GΣ−1∂K

′
θ

∂θi

)
=

d

2
tr

(
Σ−1∂K

′
θ

∂θi

)
− 1

2
tr

(
αΣΩ−1αT

Σ

∂K ′θ
∂θi

)
, (C.2)

where G = (Y −M)Ω−1(Y −M)T and αΣ = Σ−1(Y −M).The fourth equality is
due to the symmetry of Σ.

Due to ∂Σ/∂σ2
n = In, the derivative with respect to σ2

n is:

∂L
∂σ2

n

=
d

2
tr(Σ−1)− 1

2
tr(αΣΩ−1αT

Σ). (C.3)

Letting αΩ = Ω−1(Y −M)T, the derivative with respect to φij is

∂L
∂φij

=
n

2

∂ log det(Ω)

∂φij
+

1

2

∂

∂φij
tr(Σ−1(Y −M)Ω−1(Y −M)T)

=
n

2
tr

(
Ω−1 ∂Ω
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2
tr

(
αΩΣ−1αT

Ω

∂Ω

∂φij
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=

n

2
tr[Ω−1(EijΦ

T + ΦEij)]−
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2
tr[αΩΣ−1αT

Ω(EijΦ
T + ΦEij)], (C.4)

where the third equation is due to the symmetry of Ω. Similarly, the derivative
with respect to ϕii is

∂L
∂ϕii

=
n

2

∂ log det(Ω)

∂ϕii
+

1

2

∂

∂ϕii
tr(Σ−1(Y −M)Ω−1(Y −M)T)

=
n

2
tr[Ω−1(JiiΦ

T + ΦJii)]−
1

2
tr[αΩΣ−1αT

Ω(JiiΦ
T + ΦJii)]. (C.5)
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C.2 Multivariate Student−t process regression

The negative log likelihood of observations Y ∼ MT n,d(ν,M,Σ,Ω) where M ∈
Rn×d,Σ ∈ Rn×n,Ω ∈ Rd×d, is

L =
1

2
(ν + d+ n− 1) log det(In + Σ−1(Y −M)Ω−1(Y −M)T)

+
d

2
log det(Σ) +

n

2
log det(Ω) + log Γn

(
1

2
(ν + n− 1)

)
+

1

2
dn log π

− log Γn

(
1

2
(ν + d+ n− 1)

)
=

1

2
(ν + d+ n− 1) log det(Σ + (Y −M)Ω−1(Y −M)T)− ν + n− 1

2
log det(Σ)

+ log Γn

(
1

2
(ν + n− 1)

)
− log Γn

(
1

2
(ν + d+ n− 1)

)
+
n

2
log det(Ω) +

1

2
dn log π.

Letting U = Σ + (Y −M)Ω−1(Y −M)T and αΩ = Ω−1(Y −M)T, the derivative
of U with respect to σ2

n, θi,ν, φij and ϕii are

∂U

∂σ2
n

= In,
∂U

∂θi
=
∂K ′θ
∂θi

,
∂U

∂ν
= 0, (C.6)

∂U

∂φij
= −(Y −M)Ω−1 ∂Ω

∂φij
Ω−1(Y −M)T = −αT

Ω

∂Ω

∂φij
αΩ, (C.7)

∂U

∂ϕii
= −(Y −M)Ω−1 ∂Ω

∂ϕii
Ω−1(Y −M)T = −αT

Ω

∂Ω

∂ϕii
αΩ. (C.8)

Therefore, the derivative of negative log marginal likelihood with respect to θi is

∂L
∂θi

=
(τ + d)

2

∂ log det(U)

∂θi
− τ

2

∂ log det(Σ)
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, (C.9)

where the constant τ = ν + n− 1.

The derivative with respect to σ2
n is

∂L
∂σ2

n

=
(τ + d)

2
tr(U−1)− τ

2
tr(Σ−1). (C.10)
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The derivative with respect to ν is
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log det(U)− 1

2
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2
ψn(

1

2
τ)− 1

2
ψn[

1

2
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where ψn(·) is the derivative of the function log Γn(·) with respect to ν.

The derivative of L with respect to φij is
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Similarly, the derivative with respect to ϕii is
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2
tr[U−1αT

Ω(JiiΦ
T + ΦJii)αΩ] +
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2
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Appendix D

Investment details of three Chinese

stocks listed in NASDAQ

Table D.1: The movement of invested $100 for 200 days split in to 20 periods
(Stock: BIDU)

Forecast terms Buy&Sell decisions by prediction models Buy&Hold stock/index

MV-GPR MV-TPR GPR TPR BIDU INDU NDX SPX

Beginning ($) 100 100

Period 1 103.53 100.97 103.53 100.97 97.14 101.20 98.70 100.71
Period 2 109.80 106.09 115.60 102.03 94.87 99.55 94.10 98.44
Period 3 108.37 104.71 115.96 100.71 93.89 101.50 96.64 100.62
Period 4 117.17 113.22 125.37 108.89 95.21 101.70 96.94 100.87
Period 5 127.84 123.52 136.79 118.80 102.22 102.22 100.79 102.55
Period 6 137.94 130.14 147.59 128.18 107.39 102.44 101.54 103.09
Period 7 146.20 137.93 156.43 135.86 112.11 103.12 103.25 104.54
Period 8 155.97 147.15 166.88 144.94 113.57 103.72 105.34 105.09
Period 9 177.94 167.88 175.27 152.21 138.22 103.82 106.98 105.67
Period 10 179.83 174.07 177.13 153.83 131.26 101.33 104.90 103.17
Period 11 179.08 173.35 176.05 153.19 130.71 104.07 109.34 106.20
Period 12 190.96 184.85 187.73 163.35 137.58 104.75 110.49 106.91
Period 13 201.08 194.63 204.44 177.89 131.12 105.12 109.57 106.52
Period 14 207.28 200.64 210.75 183.38 132.54 104.01 108.35 104.94
Period 15 210.54 203.80 214.06 186.26 132.19 100.39 104.41 101.70
Period 16 233.92 226.43 237.83 206.95 144.35 106.31 112.48 107.77
Period 17 252.47 233.71 256.69 223.36 148.99 108.03 113.68 109.03
Period 18 250.38 227.57 254.56 221.51 143.25 109.45 116.17 110.38
Period 19 260.24 223.38 264.59 230.23 134.23 104.49 110.33 105.37
Period 20 270.29 233.29 274.81 239.13 139.12 109.10 114.29 109.97
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Table D.2: The movement of invested $100 for 200 days split in to 20 periods
(Stock: CTRP)

Forecast terms Buy&Sell decisions by prediction models Buy&Hold stock/index

MV-GPR MV-TPR GPR TPR CTRP INDU NDX SPX

Beginning ($) 100 100

Period 1 105.67 105.67 105.67 105.67 100.78 101.20 98.70 100.71
Period 2 102.39 102.52 102.39 102.39 99.65 99.55 94.10 98.44
Period 3 102.77 102.90 102.77 102.77 91.63 101.50 96.64 100.62
Period 4 110.05 110.19 110.05 110.05 100.39 101.70 96.94 100.87
Period 5 121.51 121.66 121.51 121.51 108.33 102.22 100.79 102.55
Period 6 131.02 131.19 131.02 131.02 113.59 102.44 101.54 103.09
Period 7 138.90 139.08 144.25 138.90 120.90 103.12 103.25 104.54
Period 8 140.19 140.37 145.58 140.19 118.02 103.72 105.34 105.09
Period 9 150.29 146.38 151.82 146.20 131.35 103.82 106.98 105.67
Period 10 167.38 163.03 154.49 162.82 128.82 101.33 104.90 103.17
Period 11 166.33 162.01 154.28 161.80 127.37 104.07 109.34 106.20
Period 12 176.07 171.50 163.32 171.28 133.52 104.75 110.49 106.91
Period 13 176.00 171.43 163.25 171.21 117.53 105.12 109.57 106.52
Period 14 170.50 166.08 158.15 165.86 109.88 104.01 108.35 104.94
Period 15 178.68 174.04 165.73 173.82 108.35 100.39 104.41 101.70
Period 16 184.31 187.64 170.96 179.30 114.27 106.31 112.48 107.77
Period 17 183.77 191.85 176.72 180.87 115.96 108.03 113.68 109.03
Period 18 163.88 194.84 158.00 169.76 93.94 109.45 116.17 110.38
Period 19 169.89 201.99 163.80 176.73 80.69 104.49 110.33 105.37
Period 20 183.25 222.82 176.67 190.63 89.20 109.10 114.29 109.97

Table D.3: The movement of invested $100 for 200 days split in to 20 periods
(Stock: NTES)

Forecast terms Buy&Sell decisions by prediction models Buy&Hold stock/index

MV-GPR MV-TPR GPR TPR NTES INDU NDX SPX

Beginning ($) 100 100

Period 1 104.51 104.51 104.51 104.51 106.79 101.20 98.70 100.71
Period 2 106.19 106.19 106.19 106.19 106.35 99.55 94.10 98.44
Period 3 106.80 106.80 106.80 109.12 104.14 101.50 96.64 100.62
Period 4 115.90 115.90 115.90 114.28 108.66 101.70 96.94 100.87
Period 5 115.82 115.82 115.82 114.21 109.84 102.22 100.79 102.55
Period 6 120.96 117.65 120.73 115.20 116.55 102.44 101.54 103.09
Period 7 123.27 121.54 124.72 119.01 120.32 103.12 103.25 104.54
Period 8 127.77 125.33 128.62 122.73 117.34 103.72 105.34 105.09
Period 9 133.21 128.81 134.09 127.95 128.53 103.82 106.98 105.67
Period 10 133.36 128.96 134.24 128.09 127.40 101.33 104.90 103.17
Period 11 141.13 136.47 142.80 135.56 134.83 104.07 109.34 106.20
Period 12 141.45 136.78 139.44 135.87 137.23 104.75 110.49 106.91
Period 13 145.98 141.16 143.90 140.22 134.27 105.12 109.57 106.52
Period 14 147.95 144.00 145.84 143.04 129.90 104.01 108.35 104.94
Period 15 151.75 147.70 149.59 146.71 139.19 100.39 104.41 101.70
Period 16 158.59 154.36 156.33 153.33 144.80 106.31 112.48 107.77
Period 17 170.12 165.58 167.70 165.07 156.05 108.03 113.68 109.03
Period 18 177.19 171.24 174.67 171.93 162.04 109.45 116.17 110.38
Period 19 179.84 177.72 177.28 174.50 153.20 104.49 110.33 105.37
Period 20 188.32 176.70 180.31 177.48 153.52 109.10 114.29 109.97
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Appendix E

Investment details of the stocks

listed in Dow 30

E.1 Final stock investment details

Table E.1: The detailed stock investment results under different strategies

Ticker Industry Buy&Sell Strategy Buy&Hold Stragegy

MV-GPR MV-TPR GPR TPR Stock INDU NDX SPX

CVX Oil & Gas 134.97 133.69 143.47 143.81 99.38

109.10 114.29 109.97

XOM Oil & Gas 128.39 132.72 131.31 136.02 99.74

MMM Industrials 166.76 162.96 167.12 162.65 125.96
BA Industrials 160.12 159.98 158.60 157.38 106.39
CAT Industrials 142.58 138.45 146.13 151.75 97.16
GE Industrials 137.51 134.63 135.35 139.72 101.15
UTX Industrials 144.29 139.47 143.29 145.18 101.94

KO Consumer Goods 128.11 128.59 124.88 124.52 112.47
MCD Consumer Goods 120.69 117.09 122.19 119.59 98.81
PG Consumer Goods 126.62 123.32 127.14 127.10 117.04

JNJ Health Care 146.00 146.70 147.42 145.16 113.65
MRK Health Care 129.40 134.48 129.36 135.05 102.45
PFE Health Care 128.60 136.53 130.26 134.48 100.16
UNH Health Care 164.98 164.63 166.14 162.79 131.14

HD Consumer Services 171.46 165.74 169.55 170.18 133.33
NKE Consumer Services 147.17 146.13 142.36 148.26 122.27
WMT Consumer Services 136.50 132.59 133.77 135.67 117.31
DIS Consumer Services 168.19 168.43 168.51 168.12 115.97

AXP Financials 160.39 158.52 160.73 160.12 102.34
GS Financials 170.46 171.29 167.71 165.72 116.16
JPM Financials 174.90 170.07 176.48 172.12 110.09
TRV Financials 149.81 145.88 150.70 145.71 128.18
V Financials 161.50 153.48 157.04 158.70 116.37

AAPL Technology 201.82 206.64 203.45 208.07 147.34
CSCO Technology 159.13 164.88 158.61 155.92 131.34
IBM Technology 116.10 128.79 124.92 123.74 88.06
INTC Technology 183.80 179.45 185.52 188.22 149.24
MSFT Technology 173.61 166.09 176.57 172.76 120.01
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Table E.2: The detailed industry portfolio investment results under different
strategies

Industry Portfolio Buy&Sell Strategy Buy&Hold Stragegy

MV-GPR MV-TPR GPR TPR Stock INDU NDX SPX

Oil & Gas 131.68 133.20 137.39 139.92 99.56

109.10 114.29 109.97

Industrials 150.25 147.10 150.10 151.34 106.52
Consumer Goods 125.14 123.00 124.73 123.73 109.44

Health Care 142.24 145.59 143.30 144.37 111.85
Consumer Services 155.83 153.22 153.55 155.56 122.22

Financials 163.41 159.85 162.53 160.47 114.63
Technology 166.89 169.17 169.81 169.74 127.20

E.2 Stock investment on diverse sectors
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Figure E.1: Stock investment in Oil & Gas sector
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Figure E.2: Stock investment in Industrials sector
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Figure E.3: Stock investment in Consumer Goods sector
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Figure E.4: Stock investment in Health Care sector
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Figure E.5: Stock investment in Consumer Services sector
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Figure E.6: Stock investment in Financials sector
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Figure E.7: Stock investment in Technology sector
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E.3 The details of stock investments in the period

Table E.3: The movement of invested $100 for 200 days split in to 20 periods
(Stock: CVX; Industry: Oil & Gas)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR CVX INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 103.02 102.70 102.70 103.35 102.69 101.20 98.70 100.71
Period 2 104.55 104.23 104.23 104.89 103.81 99.55 94.10 98.44
Period 3 109.55 108.65 109.22 109.91 108.32 101.50 96.64 100.62
Period 4 109.78 109.20 109.44 110.13 109.10 101.70 96.94 100.87
Period 5 108.18 107.61 107.85 108.53 106.46 102.22 100.79 102.55
Period 6 110.53 109.95 110.32 110.89 109.76 102.44 101.54 103.09
Period 7 116.10 115.49 115.88 116.47 113.94 103.12 103.25 104.54
Period 8 114.07 113.47 113.67 114.25 111.81 103.72 105.34 105.09
Period 9 116.42 115.80 116.01 116.60 116.25 103.82 106.98 105.67
Period 10 118.64 118.02 118.23 118.84 111.28 101.33 104.90 103.17
Period 11 119.04 118.42 118.63 119.24 111.57 104.07 109.34 106.20
Period 12 120.06 119.43 119.64 120.25 110.78 104.75 110.49 106.91
Period 13 119.61 118.98 119.52 119.80 108.39 105.12 109.57 106.52
Period 14 118.33 117.71 118.24 118.52 103.65 104.01 108.35 104.94
Period 15 123.38 122.73 123.29 123.58 97.86 100.39 104.41 101.70
Period 16 133.41 132.71 133.31 133.62 102.50 106.31 112.48 107.77
Period 17 134.28 133.57 134.18 134.50 102.54 108.03 113.68 109.03
Period 18 131.59 130.90 139.87 140.21 101.01 109.45 116.17 110.38
Period 19 121.10 120.47 128.73 129.03 90.09 104.49 110.33 105.37
Period 20 134.97 133.69 143.47 143.81 99.38 109.10 114.29 109.97

Table E.4: The movement of invested $100 for 200 days split in to 20 periods
(Stock: XOM; Industry: Oil & Gas)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 104.59 105.54 104.59 104.59 103.25 101.20 98.70 100.71
Period 2 105.66 106.42 105.75 105.66 104.26 99.55 94.10 98.44
Period 3 109.34 109.69 109.45 109.34 108.20 101.50 96.64 100.62
Period 4 108.87 109.27 109.03 109.41 108.81 101.70 96.94 100.87
Period 5 109.36 109.70 109.53 109.91 107.72 102.22 100.79 102.55
Period 6 109.57 110.08 109.73 110.12 108.14 102.44 101.54 103.09
Period 7 110.81 112.03 111.67 111.37 108.53 103.12 103.25 104.54
Period 8 109.80 111.00 110.65 110.35 108.22 103.72 105.34 105.09
Period 9 112.53 113.77 112.41 113.09 109.75 103.82 106.98 105.67
Period 10 116.15 118.43 117.02 117.73 106.09 101.33 104.90 103.17
Period 11 115.42 117.68 116.44 116.98 105.50 104.07 109.34 106.20
Period 12 116.48 118.76 117.51 118.23 104.72 104.75 110.49 106.91
Period 13 115.89 118.16 117.84 117.63 103.40 105.12 109.57 106.52
Period 14 115.73 118.00 119.22 117.47 101.24 104.01 108.35 104.94
Period 15 120.63 123.00 124.28 122.44 98.30 100.39 104.41 101.70
Period 16 126.54 131.10 130.37 128.44 102.03 106.31 112.48 107.77
Period 17 127.07 131.90 130.91 128.98 102.61 108.03 113.68 109.03
Period 18 124.86 129.15 128.18 132.78 101.62 109.45 116.17 110.38
Period 19 119.98 124.11 123.18 127.60 93.22 104.49 110.33 105.37
Period 20 128.39 132.72 131.31 136.02 99.74 109.10 114.29 109.97
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Table E.5: The movement of invested $100 for 200 days split in to 20 periods
(Stock: MMM; Industry: Industrials)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 104.64 103.24 104.64 103.24 102.85 101.20 98.70 100.71
Period 2 106.35 104.41 106.35 104.93 101.01 99.55 94.10 98.44
Period 3 109.17 107.19 111.07 107.72 104.78 101.50 96.64 100.62
Period 4 112.25 111.18 114.21 110.76 106.67 101.70 96.94 100.87
Period 5 115.04 113.94 117.04 113.50 107.92 102.22 100.79 102.55
Period 6 116.85 115.73 118.88 115.29 108.44 102.44 101.54 103.09
Period 7 117.79 116.66 119.84 116.22 108.94 103.12 103.25 104.54
Period 8 119.61 118.46 121.69 118.01 109.37 103.72 105.34 105.09
Period 9 121.67 120.23 123.52 119.79 109.99 103.82 106.98 105.67
Period 10 124.33 122.85 126.22 122.40 106.75 101.33 104.90 103.17
Period 11 127.57 126.76 129.51 125.60 109.89 104.07 109.34 106.20
Period 12 127.99 126.95 129.23 125.78 110.47 104.75 110.49 106.91
Period 13 130.16 129.10 131.43 127.91 111.09 105.12 109.57 106.52
Period 14 132.06 130.99 133.35 129.78 107.00 104.01 108.35 104.94
Period 15 136.59 135.48 137.92 134.23 104.91 100.39 104.41 101.70
Period 16 148.64 147.43 150.09 146.07 116.88 106.31 112.48 107.77
Period 17 153.86 150.83 155.73 151.57 120.99 108.03 113.68 109.03
Period 18 158.35 154.50 158.45 154.21 123.10 109.45 116.17 110.38
Period 19 159.79 155.92 159.90 155.62 121.92 104.49 110.33 105.37
Period 20 166.76 162.96 167.12 162.65 125.96 109.10 114.29 109.97

Table E.6: The movement of invested $100 for 200 days split in to 20 periods
(Stock: BA; Industry: Industrials)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 105.88 105.41 105.41 105.88 103.13 101.20 98.70 100.71
Period 2 109.08 108.60 108.60 109.08 99.96 99.55 94.10 98.44
Period 3 114.65 114.14 114.14 114.65 103.78 101.50 96.64 100.62
Period 4 119.39 118.86 118.86 119.39 107.57 101.70 96.94 100.87
Period 5 122.74 122.73 122.73 122.74 109.31 102.22 100.79 102.55
Period 6 121.55 121.55 121.55 121.55 106.93 102.44 101.54 103.09
Period 7 118.08 118.08 118.08 118.08 103.55 103.12 103.25 104.54
Period 8 118.79 118.79 118.79 118.79 103.61 103.72 105.34 105.09
Period 9 116.59 115.99 116.58 116.59 99.66 103.82 106.98 105.67
Period 10 115.87 115.27 115.87 115.70 98.17 101.33 104.90 103.17
Period 11 123.14 122.51 123.14 122.96 103.73 104.07 109.34 106.20
Period 12 120.98 121.24 120.99 121.69 104.15 104.75 110.49 106.91
Period 13 122.27 122.54 122.29 122.99 104.66 105.12 109.57 106.52
Period 14 126.96 127.24 125.80 126.51 102.75 104.01 108.35 104.94
Period 15 130.54 130.83 129.34 130.08 101.16 100.39 104.41 101.70
Period 16 141.01 141.32 139.24 140.51 102.56 106.31 112.48 107.77
Period 17 144.35 145.51 142.53 143.84 105.12 108.03 113.68 109.03
Period 18 151.24 151.11 149.80 149.83 108.28 109.45 116.17 110.38
Period 19 151.14 151.01 149.70 149.73 101.70 104.49 110.33 105.37
Period 20 160.12 159.98 158.60 157.38 106.39 109.10 114.29 109.97
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Table E.7: The movement of invested $100 for 200 days split in to 20 periods
(Stock: CAT; Industry: Industrials)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 101.17 101.17 101.17 101.17 103.87 101.20 98.70 100.71
Period 2 106.53 106.53 106.53 106.06 106.67 99.55 94.10 98.44
Period 3 108.65 108.65 108.65 107.92 110.33 101.50 96.64 100.62
Period 4 109.95 110.43 110.43 109.70 111.52 101.70 96.94 100.87
Period 5 112.13 108.88 112.39 111.87 108.45 102.22 100.79 102.55
Period 6 117.88 114.46 118.15 117.60 111.64 102.44 101.54 103.09
Period 7 121.20 117.69 121.48 120.91 113.60 103.12 103.25 104.54
Period 8 123.41 119.83 123.69 123.12 115.11 103.72 105.34 105.09
Period 9 119.63 116.16 124.63 124.08 110.45 103.82 106.98 105.67
Period 10 124.35 120.75 129.55 128.98 108.80 101.33 104.90 103.17
Period 11 128.60 124.87 133.98 133.39 113.04 104.07 109.34 106.20
Period 12 129.80 126.04 134.71 134.11 113.68 104.75 110.49 106.91
Period 13 125.31 121.68 130.05 129.47 106.29 105.12 109.57 106.52
Period 14 126.81 123.13 131.60 131.02 103.24 104.01 108.35 104.94
Period 15 128.68 124.96 133.55 138.75 99.81 100.39 104.41 101.70
Period 16 135.91 131.97 141.05 146.54 106.38 106.31 112.48 107.77
Period 17 138.87 134.85 143.77 149.37 107.95 108.03 113.68 109.03
Period 18 136.56 132.61 141.39 147.21 105.63 109.45 116.17 110.38
Period 19 135.37 131.45 140.15 145.93 94.83 104.49 110.33 105.37
Period 20 142.58 138.45 146.13 151.75 97.16 109.10 114.29 109.97

Table E.8: The movement of invested $100 for 200 days split in to 20 periods
(Stock: GE; Industry: Industrials)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 101.08 101.08 101.08 101.08 100.90 101.20 98.70 100.71
Period 2 105.25 104.37 105.25 105.25 100.70 99.55 94.10 98.44
Period 3 107.98 108.05 107.98 107.98 104.88 101.50 96.64 100.62
Period 4 109.26 109.33 109.26 109.26 104.37 101.70 96.94 100.87
Period 5 110.64 110.71 110.64 110.64 104.29 102.22 100.79 102.55
Period 6 113.02 113.09 113.02 113.02 105.15 102.44 101.54 103.09
Period 7 114.54 114.61 114.54 114.54 103.38 103.12 103.25 104.54
Period 8 117.93 118.01 117.93 117.93 104.40 103.72 105.34 105.09
Period 9 116.59 116.22 116.59 116.59 101.41 103.82 106.98 105.67
Period 10 115.87 115.50 115.87 115.87 100.90 101.33 104.90 103.17
Period 11 118.96 118.57 119.80 119.80 102.83 104.07 109.34 106.20
Period 12 119.25 118.82 120.07 120.07 102.56 104.75 110.49 106.91
Period 13 121.88 121.45 122.96 123.71 103.42 105.12 109.57 106.52
Period 14 121.56 121.13 122.63 123.38 100.01 104.01 108.35 104.94
Period 15 122.87 123.00 123.96 124.71 99.26 100.39 104.41 101.70
Period 16 127.04 128.07 128.16 128.95 101.91 106.31 112.48 107.77
Period 17 130.43 130.82 131.73 132.33 105.52 108.03 113.68 109.03
Period 18 131.74 128.98 129.48 133.66 103.30 109.45 116.17 110.38
Period 19 130.96 128.22 128.71 132.86 97.12 104.49 110.33 105.37
Period 20 137.51 134.63 135.35 139.72 101.15 109.10 114.29 109.97
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Table E.9: The movement of invested $100 for 200 days split in to 20 periods
(Stock: UTX; Industry: Industrials)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 106.77 105.45 105.45 106.77 102.86 101.20 98.70 100.71
Period 2 110.74 109.37 109.37 110.74 101.05 99.55 94.10 98.44
Period 3 114.19 112.29 112.07 114.29 103.22 101.50 96.64 100.62
Period 4 114.98 113.06 112.84 115.07 102.85 101.70 96.94 100.87
Period 5 116.28 114.34 114.12 116.38 102.00 102.22 100.79 102.55
Period 6 118.56 116.58 116.36 118.66 102.44 102.44 101.54 103.09
Period 7 118.66 116.68 116.46 118.76 101.47 103.12 103.25 104.54
Period 8 118.24 116.27 116.05 118.34 100.05 103.72 105.34 105.09
Period 9 118.23 114.10 116.19 118.49 95.45 103.82 106.98 105.67
Period 10 119.48 115.30 117.16 119.47 92.89 101.33 104.90 103.17
Period 11 123.59 119.27 121.60 124.01 96.44 104.07 109.34 106.20
Period 12 121.56 117.31 119.27 121.23 95.74 104.75 110.49 106.91
Period 13 120.67 116.45 118.39 120.34 93.87 105.12 109.57 106.52
Period 14 123.80 119.47 121.46 123.46 91.88 104.01 108.35 104.94
Period 15 125.85 121.46 123.48 125.52 89.47 100.39 104.41 101.70
Period 16 133.37 130.22 132.39 134.57 93.72 106.31 112.48 107.77
Period 17 135.29 130.77 132.92 134.67 95.18 108.03 113.68 109.03
Period 18 137.00 132.41 136.04 137.84 97.22 109.45 116.17 110.38
Period 19 140.18 135.49 139.20 141.04 100.37 104.49 110.33 105.37
Period 20 144.29 139.47 143.29 145.18 101.94 109.10 114.29 109.97
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Table E.10: The movement of invested $100 for 200 days split in to 20 periods
(Stock: KO; Industry: Consumer Goods)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 100.92 100.92 100.14 100.92 100.13 101.20 98.70 100.71
Period 2 104.58 104.58 103.78 104.58 104.74 99.55 94.10 98.44
Period 3 106.17 105.82 105.00 105.82 106.33 101.50 96.64 100.62
Period 4 106.94 106.20 105.46 106.28 106.60 101.70 96.94 100.87
Period 5 107.91 107.16 106.41 107.24 106.00 102.22 100.79 102.55
Period 6 108.74 107.98 107.23 108.07 106.16 102.44 101.54 103.09
Period 7 112.52 111.74 110.96 111.83 110.39 103.12 103.25 104.54
Period 8 111.38 111.73 109.93 110.70 110.23 103.72 105.34 105.09
Period 9 109.23 109.70 107.80 108.55 107.69 103.82 106.98 105.67
Period 10 110.85 109.06 109.40 110.16 103.61 101.33 104.90 103.17
Period 11 115.55 113.35 114.04 114.83 108.00 104.07 109.34 106.20
Period 12 116.34 114.96 114.49 115.62 109.73 104.75 110.49 106.91
Period 13 119.24 117.13 116.71 117.81 111.70 105.12 109.57 106.52
Period 14 120.70 118.09 117.67 118.78 115.35 104.01 108.35 104.94
Period 15 120.92 122.04 118.90 118.99 114.53 100.39 104.41 101.70
Period 16 115.74 116.82 113.81 114.92 110.61 106.31 112.48 107.77
Period 17 118.01 119.48 115.03 117.97 113.55 108.03 113.68 109.03
Period 18 123.93 124.84 120.80 122.29 118.65 109.45 116.17 110.38
Period 19 120.33 121.21 117.29 118.73 107.60 104.49 110.33 105.37
Period 20 128.11 128.59 124.88 124.52 112.47 109.10 114.29 109.97

Table E.11: The movement of invested $100 for 200 days split in to 20 periods
(Stock: MCD; Industry: Consumer Goods)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 102.52 102.52 102.52 102.52 100.65 101.20 98.70 100.71
Period 2 104.00 104.00 105.18 104.28 103.66 99.55 94.10 98.44
Period 3 103.01 102.84 104.18 103.29 104.23 101.50 96.64 100.62
Period 4 104.77 104.59 105.96 105.05 105.92 101.70 96.94 100.87
Period 5 104.65 104.47 105.93 105.02 105.02 102.22 100.79 102.55
Period 6 104.91 104.73 106.19 105.28 103.39 102.44 101.54 103.09
Period 7 107.94 107.76 109.26 108.32 105.20 103.12 103.25 104.54
Period 8 107.85 106.80 109.17 107.64 104.02 103.72 105.34 105.09
Period 9 102.87 101.86 104.13 102.67 99.20 103.82 106.98 105.67
Period 10 103.82 102.00 105.09 103.62 96.95 101.33 104.90 103.17
Period 11 104.70 102.92 105.64 104.55 97.88 104.07 109.34 106.20
Period 12 103.46 101.71 105.58 103.32 96.69 104.75 110.49 106.91
Period 13 106.84 104.84 108.83 106.70 98.18 105.12 109.57 106.52
Period 14 110.68 108.60 112.74 110.53 98.09 104.01 108.35 104.94
Period 15 114.17 110.77 114.99 112.73 95.74 100.39 104.41 101.70
Period 16 116.89 113.40 117.72 115.41 97.85 106.31 112.48 107.77
Period 17 117.30 113.80 118.14 115.82 100.32 108.03 113.68 109.03
Period 18 118.37 114.85 119.22 116.68 100.30 109.45 116.17 110.38
Period 19 113.96 110.56 114.77 112.33 93.56 104.49 110.33 105.37
Period 20 120.69 117.09 122.19 119.59 98.81 109.10 114.29 109.97
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Table E.12: The movement of invested $100 for 200 days split in to 20 periods
(Stock: PG; Industry: Consumer Goods)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 101.40 101.40 102.95 102.64 100.83 101.20 98.70 100.71
Period 2 101.01 101.01 102.15 102.24 101.46 99.55 94.10 98.44
Period 3 102.30 103.50 103.45 103.55 104.43 101.50 96.64 100.62
Period 4 102.41 103.50 103.56 103.65 102.68 101.70 96.94 100.87
Period 5 102.33 103.43 103.48 103.58 101.71 102.22 100.79 102.55
Period 6 101.87 102.77 103.01 102.92 100.90 102.44 101.54 103.09
Period 7 102.46 103.38 103.62 103.53 99.46 103.12 103.25 104.54
Period 8 103.08 105.99 104.24 104.15 102.67 103.72 105.34 105.09
Period 9 103.34 106.26 104.50 104.41 101.45 103.82 106.98 105.67
Period 10 105.43 108.41 106.61 106.52 103.22 101.33 104.90 103.17
Period 11 108.04 111.09 109.25 109.16 106.33 104.07 109.34 106.20
Period 12 107.60 110.33 108.32 108.72 106.25 104.75 110.49 106.91
Period 13 109.44 112.06 109.46 110.01 108.15 105.12 109.57 106.52
Period 14 110.17 113.23 110.60 110.71 106.56 104.01 108.35 104.94
Period 15 114.42 114.45 113.58 113.69 107.34 100.39 104.41 101.70
Period 16 120.01 119.60 118.69 118.15 112.28 106.31 112.48 107.77
Period 17 122.40 121.14 121.44 120.51 112.87 108.03 113.68 109.03
Period 18 123.83 121.84 124.05 123.11 117.02 109.45 116.17 110.38
Period 19 123.26 121.27 123.47 122.25 114.82 104.49 110.33 105.37
Period 20 126.62 123.32 127.14 127.10 117.04 109.10 114.29 109.97
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Table E.13: The movement of invested $100 for 200 days split in to 20 periods
(Stock: JNJ; Industry: Health Care)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 104.06 104.06 103.60 103.60 104.31 101.20 98.70 100.71
Period 2 107.25 107.25 106.77 106.77 105.66 99.55 94.10 98.44
Period 3 107.67 107.63 107.49 107.49 107.88 101.50 96.64 100.62
Period 4 107.43 107.39 107.25 107.25 107.43 101.70 96.94 100.87
Period 5 108.55 108.58 108.36 108.36 108.07 102.22 100.79 102.55
Period 6 111.13 111.84 111.62 111.62 109.96 102.44 101.54 103.09
Period 7 115.09 115.82 115.59 115.59 113.31 103.12 103.25 104.54
Period 8 114.45 115.18 114.95 114.95 112.72 103.72 105.34 105.09
Period 9 113.25 113.97 113.74 113.74 109.51 103.82 106.98 105.67
Period 10 116.15 116.89 116.65 116.65 108.41 101.33 104.90 103.17
Period 11 120.15 120.92 120.68 120.68 111.32 104.07 109.34 106.20
Period 12 121.67 122.45 122.21 122.21 112.35 104.75 110.49 106.91
Period 13 125.59 126.39 125.80 125.80 116.48 105.12 109.57 106.52
Period 14 127.29 128.10 127.50 127.50 113.22 104.01 108.35 104.94
Period 15 132.15 133.00 133.15 132.37 107.11 100.39 104.41 101.70
Period 16 141.65 142.56 142.72 141.89 116.03 106.31 112.48 107.77
Period 17 140.65 141.55 141.71 140.88 116.94 108.03 113.68 109.03
Period 18 141.53 142.21 142.91 140.72 117.93 109.45 116.17 110.38
Period 19 143.08 143.77 144.48 142.26 111.68 104.49 110.33 105.37
Period 20 146.00 146.70 147.42 145.16 113.65 109.10 114.29 109.97

Table E.14: The movement of invested $100 for 200 days split in to 20 periods
(Stock: MRK; Industry: Health Care)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 101.86 104.90 101.86 104.53 99.45 101.20 98.70 100.71
Period 2 106.83 110.02 106.83 109.63 98.89 99.55 94.10 98.44
Period 3 109.70 113.78 109.70 112.57 103.32 101.50 96.64 100.62
Period 4 108.89 112.94 109.67 111.75 99.45 101.70 96.94 100.87
Period 5 110.89 115.02 111.69 113.80 101.80 102.22 100.79 102.55
Period 6 112.78 116.97 113.59 115.73 103.63 102.44 101.54 103.09
Period 7 114.80 119.07 115.63 117.81 104.04 103.12 103.25 104.54
Period 8 114.38 118.86 115.20 117.37 103.88 103.72 105.34 105.09
Period 9 113.60 118.06 114.42 116.58 103.37 103.82 106.98 105.67
Period 10 112.99 117.43 113.80 115.96 100.52 101.33 104.90 103.17
Period 11 117.90 122.53 118.74 120.99 105.18 104.07 109.34 106.20
Period 12 120.29 125.01 120.26 122.53 108.52 104.75 110.49 106.91
Period 13 120.52 125.25 120.49 123.54 108.47 105.12 109.57 106.52
Period 14 121.70 126.47 121.66 124.74 106.68 104.01 108.35 104.94
Period 15 124.87 129.77 124.83 127.99 96.78 100.39 104.41 101.70
Period 16 130.77 135.90 130.73 134.04 105.50 106.31 112.48 107.77
Period 17 130.43 135.55 130.39 133.70 106.47 108.03 113.68 109.03
Period 18 130.40 135.51 130.36 136.09 108.83 109.45 116.17 110.38
Period 19 128.96 134.02 128.92 134.59 102.47 104.49 110.33 105.37
Period 20 129.40 134.48 129.36 135.05 102.45 109.10 114.29 109.97
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Table E.15: The movement of invested $100 for 200 days split in to 20 periods
(Stock: PFE; Industry: Health Care)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 99.20 99.20 99.20 99.20 100.06 101.20 98.70 100.71
Period 2 100.46 101.34 100.46 101.62 93.61 99.55 94.10 98.44
Period 3 99.26 102.49 101.60 103.38 97.96 101.50 96.64 100.62
Period 4 95.17 98.26 97.42 99.12 91.95 101.70 96.94 100.87
Period 5 98.35 101.55 100.68 102.44 93.53 102.22 100.79 102.55
Period 6 98.07 101.68 100.39 102.14 93.06 102.44 101.54 103.09
Period 7 100.67 104.37 103.05 104.86 93.50 103.12 103.25 104.54
Period 8 104.00 107.83 106.46 108.33 95.01 103.72 105.34 105.09
Period 9 103.67 110.96 107.20 111.24 95.39 103.82 106.98 105.67
Period 10 105.54 112.44 108.63 112.73 90.34 101.33 104.90 103.17
Period 11 107.78 114.83 110.94 115.13 92.19 104.07 109.34 106.20
Period 12 110.75 117.14 114.00 118.14 93.72 104.75 110.49 106.91
Period 13 116.42 123.20 119.84 122.15 96.20 105.12 109.57 106.52
Period 14 116.20 122.96 119.60 121.91 92.98 104.01 108.35 104.94
Period 15 119.02 125.95 122.24 124.87 89.03 100.39 104.41 101.70
Period 16 125.72 130.66 126.82 129.55 96.23 106.31 112.48 107.77
Period 17 127.35 134.77 128.47 132.92 97.49 108.03 113.68 109.03
Period 18 126.86 134.25 128.48 132.93 101.51 109.45 116.17 110.38
Period 19 126.67 134.05 128.03 132.46 98.61 104.49 110.33 105.37
Period 20 128.60 136.53 130.26 134.48 100.16 109.10 114.29 109.97

Table E.16: The movement of invested $100 for 200 days split in to 20 periods
(Stock: UNH; Industry: Health Care)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 103.37 103.37 103.37 102.74 104.83 101.20 98.70 100.71
Period 2 104.90 104.90 104.90 104.26 101.84 99.55 94.10 98.44
Period 3 99.77 98.78 99.77 98.62 96.12 101.50 96.64 100.62
Period 4 103.34 102.06 103.34 102.15 98.85 101.70 96.94 100.87
Period 5 108.03 106.69 108.03 106.79 101.67 102.22 100.79 102.55
Period 6 108.54 107.19 108.54 107.29 102.23 102.44 101.54 103.09
Period 7 112.86 111.46 112.86 111.56 105.90 103.12 103.25 104.54
Period 8 114.48 113.76 115.19 113.86 106.65 103.72 105.34 105.09
Period 9 115.26 115.64 117.10 115.75 108.98 103.82 106.98 105.67
Period 10 114.43 114.81 116.25 114.91 103.11 101.33 104.90 103.17
Period 11 119.97 120.65 121.88 120.48 107.82 104.07 109.34 106.20
Period 12 125.01 126.75 126.72 124.18 113.13 104.75 110.49 106.91
Period 13 127.13 127.10 127.07 124.53 113.43 105.12 109.57 106.52
Period 14 132.08 132.04 132.02 129.38 109.97 104.01 108.35 104.94
Period 15 137.36 135.65 137.79 134.55 114.43 100.39 104.41 101.70
Period 16 148.22 147.43 149.76 145.19 122.60 106.31 112.48 107.77
Period 17 150.74 150.01 151.38 147.73 124.68 108.03 113.68 109.03
Period 18 152.78 152.46 153.86 150.76 129.02 109.45 116.17 110.38
Period 19 155.84 155.52 156.94 153.78 124.34 104.49 110.33 105.37
Period 20 164.98 164.63 166.14 162.79 131.14 109.10 114.29 109.97
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Table E.17: The movement of invested $100 for 200 days split in to 20 periods
(Stock: HD; Industry: Consumer Services)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 101.87 101.87 101.49 101.49 99.26 101.20 98.70 100.71
Period 2 102.91 102.91 102.13 102.53 94.90 99.55 94.10 98.44
Period 3 108.24 108.24 107.42 107.83 99.42 101.50 96.64 100.62
Period 4 108.13 107.70 107.31 107.72 95.42 101.70 96.94 100.87
Period 5 112.05 111.60 111.19 111.63 99.91 102.22 100.79 102.55
Period 6 113.47 111.99 112.61 113.04 98.65 102.44 101.54 103.09
Period 7 116.37 114.86 115.81 115.94 101.57 103.12 103.25 104.54
Period 8 117.32 115.79 116.75 116.88 100.13 103.72 105.34 105.09
Period 9 116.01 114.50 116.27 115.57 101.92 103.82 106.98 105.67
Period 10 119.15 117.60 119.42 118.70 103.68 101.33 104.90 103.17
Period 11 131.26 129.56 131.56 130.77 114.50 104.07 109.34 106.20
Period 12 136.53 131.96 134.66 136.02 114.81 104.75 110.49 106.91
Period 13 138.36 133.73 136.47 137.84 116.16 105.12 109.57 106.52
Period 14 142.83 138.05 140.88 142.30 117.89 104.01 108.35 104.94
Period 15 147.18 142.26 145.17 146.63 116.11 100.39 104.41 101.70
Period 16 154.16 149.01 152.06 153.59 121.47 106.31 112.48 107.77
Period 17 157.27 150.22 153.29 156.69 123.92 108.03 113.68 109.03
Period 18 157.23 152.56 155.48 156.64 124.68 109.45 116.17 110.38
Period 19 160.28 154.93 158.50 159.09 123.28 104.49 110.33 105.37
Period 20 171.46 165.74 169.55 170.18 133.33 109.10 114.29 109.97

Table E.18: The movement of invested $100 for 200 days split in to 20 periods
(Stock: NKE; Industry: Consumer Services)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 96.60 96.60 96.60 96.60 93.75 101.20 98.70 100.71
Period 2 98.20 98.20 98.20 98.20 91.09 99.55 94.10 98.44
Period 3 100.81 101.64 101.64 101.64 91.93 101.50 96.64 100.62
Period 4 103.36 104.21 104.21 104.21 92.73 101.70 96.94 100.87
Period 5 109.54 110.44 110.44 110.35 96.56 102.22 100.79 102.55
Period 6 107.81 108.70 108.70 108.61 94.53 102.44 101.54 103.09
Period 7 110.90 111.37 111.37 111.72 97.17 103.12 103.25 104.54
Period 8 110.95 111.75 111.43 111.77 97.71 103.72 105.34 105.09
Period 9 111.21 111.03 111.69 112.03 98.25 103.82 106.98 105.67
Period 10 113.76 113.57 112.54 114.60 97.42 101.33 104.90 103.17
Period 11 116.80 116.71 115.55 117.66 100.24 104.07 109.34 106.20
Period 12 120.85 121.49 120.28 121.74 104.49 104.75 110.49 106.91
Period 13 123.21 123.64 122.41 124.12 102.34 105.12 109.57 106.52
Period 14 127.64 125.11 123.86 128.59 113.13 104.01 108.35 104.94
Period 15 129.68 127.10 125.84 130.64 112.73 100.39 104.41 101.70
Period 16 137.04 134.33 132.99 138.06 118.50 106.31 112.48 107.77
Period 17 140.87 138.08 136.70 141.91 121.81 108.03 113.68 109.03
Period 18 144.36 142.43 139.29 145.43 124.32 109.45 116.17 110.38
Period 19 142.44 141.44 137.79 143.49 118.53 104.49 110.33 105.37
Period 20 147.17 146.13 142.36 148.26 122.27 109.10 114.29 109.97
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Table E.19: The movement of invested $100 for 200 days split in to 20 periods
(Stock: WMT; Industry: Consumer Services)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 103.38 103.38 103.38 104.77 102.96 101.20 98.70 100.71
Period 2 105.34 103.97 105.47 106.76 103.11 99.55 94.10 98.44
Period 3 108.22 106.33 108.35 109.68 106.91 101.50 96.64 100.62
Period 4 109.07 106.25 109.20 110.58 106.26 101.70 96.94 100.87
Period 5 109.11 106.29 109.23 110.62 102.54 102.22 100.79 102.55
Period 6 110.06 107.21 110.19 111.59 102.20 102.44 101.54 103.09
Period 7 109.28 106.45 109.40 110.79 101.09 103.12 103.25 104.54
Period 8 110.59 107.73 110.72 112.12 103.67 103.72 105.34 105.09
Period 9 110.19 107.34 110.32 110.96 102.52 103.82 106.98 105.67
Period 10 111.54 108.66 111.67 112.32 101.43 101.33 104.90 103.17
Period 11 113.90 110.95 114.03 114.69 102.87 104.07 109.34 106.20
Period 12 113.08 110.77 113.21 113.87 103.96 104.75 110.49 106.91
Period 13 113.29 110.49 113.43 114.09 103.66 105.12 109.57 106.52
Period 14 115.82 112.96 115.96 116.64 105.07 104.01 108.35 104.94
Period 15 117.80 114.88 117.94 117.02 102.07 100.39 104.41 101.70
Period 16 120.33 117.35 120.47 119.45 103.62 106.31 112.48 107.77
Period 17 129.16 125.97 126.73 128.22 113.52 108.03 113.68 109.03
Period 18 134.23 129.55 130.70 132.56 117.37 109.45 116.17 110.38
Period 19 131.44 126.85 127.98 129.80 113.32 104.49 110.33 105.37
Period 20 136.50 132.59 133.77 135.67 117.31 109.10 114.29 109.97

Table E.20: The movement of invested $100 for 200 days split in to 20 periods
(Stock: DIS; Industry: Consumer Services)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 105.31 105.31 105.31 105.31 99.17 101.20 98.70 100.71
Period 2 107.82 107.82 107.82 107.82 94.42 99.55 94.10 98.44
Period 3 110.75 111.33 111.33 111.33 96.46 101.50 96.64 100.62
Period 4 114.83 113.93 115.43 115.43 98.38 101.70 96.94 100.87
Period 5 119.36 118.42 119.99 119.99 102.16 102.22 100.79 102.55
Period 6 120.15 119.20 120.78 120.78 100.67 102.44 101.54 103.09
Period 7 122.87 121.90 123.51 123.51 102.67 103.12 103.25 104.54
Period 8 127.12 126.12 127.78 127.78 105.64 103.72 105.34 105.09
Period 9 125.30 124.31 126.18 125.89 104.84 103.82 106.98 105.67
Period 10 128.17 127.16 129.08 128.78 105.59 101.33 104.90 103.17
Period 11 132.54 131.50 133.47 133.16 110.02 104.07 109.34 106.20
Period 12 133.94 132.89 134.89 134.57 110.10 104.75 110.49 106.91
Period 13 135.73 135.12 136.68 136.37 108.56 105.12 109.57 106.52
Period 14 140.05 139.42 141.04 140.71 107.67 104.01 108.35 104.94
Period 15 146.39 145.73 147.42 147.08 103.98 100.39 104.41 101.70
Period 16 157.08 156.37 158.18 157.82 111.50 106.31 112.48 107.77
Period 17 154.85 155.24 157.04 156.68 109.92 108.03 113.68 109.03
Period 18 159.48 159.71 161.56 161.18 113.64 109.45 116.17 110.38
Period 19 159.68 159.92 159.99 159.62 111.02 104.49 110.33 105.37
Period 20 168.19 168.43 168.51 168.12 115.97 109.10 114.29 109.97
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Table E.21: The movement of invested $100 for 200 days split in to 20 periods
(Stock: AXP; Industry: Financials)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 103.45 103.45 103.45 103.45 99.45 101.20 98.70 100.71
Period 2 106.42 106.42 106.42 106.42 94.10 99.55 94.10 98.44
Period 3 107.23 107.23 107.23 107.23 95.62 101.50 96.64 100.62
Period 4 111.01 109.44 110.82 111.79 96.74 101.70 96.94 100.87
Period 5 116.13 114.49 115.93 116.94 99.83 102.22 100.79 102.55
Period 6 120.76 119.06 120.55 121.61 103.63 102.44 101.54 103.09
Period 7 121.57 119.86 121.36 122.43 103.13 103.12 103.25 104.54
Period 8 122.78 121.05 122.57 123.64 103.60 103.72 105.34 105.09
Period 9 121.29 119.58 121.08 122.14 100.81 103.82 106.98 105.67
Period 10 124.12 122.36 123.90 124.98 95.92 101.33 104.90 103.17
Period 11 125.43 124.30 125.87 126.97 97.47 104.07 109.34 106.20
Period 12 126.46 124.41 126.25 127.36 97.52 104.75 110.49 106.91
Period 13 129.98 129.45 129.63 130.76 97.59 105.12 109.57 106.52
Period 14 132.98 132.44 132.62 133.78 95.73 104.01 108.35 104.94
Period 15 142.18 140.52 140.71 141.94 92.40 100.39 104.41 101.70
Period 16 152.98 151.19 151.40 152.72 99.93 106.31 112.48 107.77
Period 17 151.56 149.78 151.87 151.30 99.13 108.03 113.68 109.03
Period 18 153.96 152.16 154.28 153.70 102.29 109.45 116.17 110.38
Period 19 150.80 149.04 151.12 150.55 97.06 104.49 110.33 105.37
Period 20 160.39 158.52 160.73 160.12 102.34 109.10 114.29 109.97

Table E.22: The movement of invested $100 for 200 days split in to 20 periods
(Stock: GS; Industry: Financials)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 102.14 103.33 102.14 102.14 98.47 101.20 98.70 100.71
Period 2 102.67 103.87 102.67 102.67 91.95 99.55 94.10 98.44
Period 3 109.34 110.61 106.99 106.99 94.85 101.50 96.64 100.62
Period 4 110.54 112.07 108.16 108.16 94.63 101.70 96.94 100.87
Period 5 114.53 116.12 112.07 112.07 95.73 102.22 100.79 102.55
Period 6 116.88 118.49 114.36 114.43 98.83 102.44 101.54 103.09
Period 7 119.76 121.42 117.18 117.25 100.06 103.12 103.25 104.54
Period 8 120.40 122.07 117.81 117.88 98.14 103.72 105.34 105.09
Period 9 128.62 130.40 124.67 124.74 104.46 103.82 106.98 105.67
Period 10 133.77 135.62 129.66 129.74 102.59 101.33 104.90 103.17
Period 11 135.77 137.64 131.60 131.68 104.50 104.07 109.34 106.20
Period 12 135.71 137.59 131.55 131.62 107.59 104.75 110.49 106.91
Period 13 137.95 139.10 135.34 133.79 110.69 105.12 109.57 106.52
Period 14 142.53 143.72 139.83 138.23 112.00 104.01 108.35 104.94
Period 15 145.15 146.71 142.74 141.11 106.24 100.39 104.41 101.70
Period 16 157.24 158.93 154.63 152.87 114.00 106.31 112.48 107.77
Period 17 157.39 158.17 154.86 153.02 113.46 108.03 113.68 109.03
Period 18 160.07 160.85 157.49 155.62 113.98 109.45 116.17 110.38
Period 19 160.53 161.32 157.94 156.07 109.86 104.49 110.33 105.37
Period 20 170.46 171.29 167.71 165.72 116.16 109.10 114.29 109.97
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Table E.23: The movement of invested $100 for 200 days split in to 20 periods
(Stock: JPM; Industry: Financials)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 105.37 104.09 105.37 105.37 104.62 101.20 98.70 100.71
Period 2 105.54 103.62 106.99 106.99 95.09 99.55 94.10 98.44
Period 3 108.51 106.66 109.59 109.59 97.14 101.50 96.64 100.62
Period 4 110.74 108.67 111.83 111.83 94.33 101.70 96.94 100.87
Period 5 113.41 111.29 115.86 114.45 96.69 102.22 100.79 102.55
Period 6 117.22 114.23 119.48 118.02 98.98 102.44 101.54 103.09
Period 7 119.25 115.52 120.83 119.36 99.59 103.12 103.25 104.54
Period 8 118.82 115.11 120.40 118.92 97.51 103.72 105.34 105.09
Period 9 123.94 120.07 125.58 124.05 103.12 103.82 106.98 105.67
Period 10 125.75 122.91 127.42 124.27 98.45 101.33 104.90 103.17
Period 11 131.23 127.17 131.84 128.58 102.21 104.07 109.34 106.20
Period 12 131.88 127.80 132.49 129.21 104.65 104.75 110.49 106.91
Period 13 137.59 133.33 138.23 134.81 106.44 105.12 109.57 106.52
Period 14 141.85 137.46 142.51 138.98 105.87 104.01 108.35 104.94
Period 15 143.93 139.48 144.60 141.02 99.62 100.39 104.41 101.70
Period 16 155.91 151.09 156.64 152.76 107.10 106.31 112.48 107.77
Period 17 154.67 149.89 155.39 151.55 106.22 108.03 113.68 109.03
Period 18 159.40 155.05 160.14 156.18 107.45 109.45 116.17 110.38
Period 19 163.34 158.88 164.10 160.04 102.79 104.49 110.33 105.37
Period 20 174.90 170.07 176.48 172.12 110.09 109.10 114.29 109.97

Table E.24: The movement of invested $100 for 200 days split in to 20 periods
(Stock: TRV; Industry: Financials)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 100.73 100.10 101.66 100.73 100.48 101.20 98.70 100.71
Period 2 102.35 101.71 103.30 103.05 102.26 99.55 94.10 98.44
Period 3 104.67 104.02 105.64 105.38 107.85 101.50 96.64 100.62
Period 4 107.16 106.49 108.15 107.89 110.31 101.70 96.94 100.87
Period 5 108.34 107.66 109.35 109.08 112.04 102.22 100.79 102.55
Period 6 109.63 109.09 110.65 110.52 113.77 102.44 101.54 103.09
Period 7 109.40 108.86 110.42 110.29 113.06 103.12 103.25 104.54
Period 8 109.13 108.59 110.15 110.02 113.38 103.72 105.34 105.09
Period 9 112.90 112.34 113.95 112.62 110.29 103.82 106.98 105.67
Period 10 115.19 114.62 116.26 114.91 108.35 101.33 104.90 103.17
Period 11 118.15 117.56 120.46 117.86 112.27 104.07 109.34 106.20
Period 12 119.17 118.58 121.50 118.89 112.35 104.75 110.49 106.91
Period 13 121.27 119.85 122.80 120.98 113.95 105.12 109.57 106.52
Period 14 125.25 123.79 126.83 124.12 114.07 104.01 108.35 104.94
Period 15 128.95 125.91 130.81 126.47 112.27 100.39 104.41 101.70
Period 16 138.18 132.97 139.00 134.39 120.40 106.31 112.48 107.77
Period 17 139.74 135.65 140.57 135.91 123.77 108.03 113.68 109.03
Period 18 143.94 139.82 144.80 140.00 125.76 109.45 116.17 110.38
Period 19 145.08 140.93 145.95 141.11 124.82 104.49 110.33 105.37
Period 20 149.81 145.88 150.70 145.71 128.18 109.10 114.29 109.97
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Table E.25: The movement of invested $100 for 200 days split in to 20 periods
(Stock: V; Industry: Financials)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 99.53 99.53 98.49 98.49 94.74 101.20 98.70 100.71
Period 2 102.66 102.66 101.58 101.58 90.04 99.55 94.10 98.44
Period 3 104.67 104.67 103.57 103.57 89.41 101.50 96.64 100.62
Period 4 108.45 108.45 107.31 107.09 92.78 101.70 96.94 100.87
Period 5 113.09 113.09 111.90 111.67 94.91 102.22 100.79 102.55
Period 6 111.86 111.86 111.00 110.46 93.63 102.44 101.54 103.09
Period 7 111.74 111.74 110.88 110.35 92.39 103.12 103.25 104.54
Period 8 116.95 116.95 116.06 115.49 95.94 103.72 105.34 105.09
Period 9 119.98 116.45 115.05 117.52 94.95 103.82 106.98 105.67
Period 10 120.63 116.74 115.50 118.15 93.05 101.33 104.90 103.17
Period 11 124.13 120.88 119.60 122.34 95.72 104.07 109.34 106.20
Period 12 123.16 118.48 119.66 121.32 95.58 104.75 110.49 106.91
Period 13 125.78 120.99 122.51 123.59 94.74 105.12 109.57 106.52
Period 14 127.13 122.30 124.82 124.93 93.82 104.01 108.35 104.94
Period 15 131.52 126.52 129.12 129.23 92.07 100.39 104.41 101.70
Period 16 138.83 133.55 136.30 136.42 106.99 106.31 112.48 107.77
Period 17 144.60 139.76 141.97 142.09 110.87 108.03 113.68 109.03
Period 18 152.06 145.73 149.30 149.43 115.40 109.45 116.17 110.38
Period 19 154.08 146.42 149.82 151.40 112.47 104.49 110.33 105.37
Period 20 161.50 153.48 157.04 158.70 116.37 109.10 114.29 109.97
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Table E.26: The movement of invested $100 for 200 days split in to 20 periods
(Stock: AAPL; Industry: Technology)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 100.00 100.70 100.70 100.70 101.76 101.20 98.70 100.71
Period 2 101.00 101.17 101.83 101.83 97.31 99.55 94.10 98.44
Period 3 101.79 106.42 102.63 103.72 110.86 101.50 96.64 100.62
Period 4 105.41 110.59 105.92 107.13 112.20 101.70 96.94 100.87
Period 5 112.20 117.70 112.61 113.89 120.04 102.22 100.79 102.55
Period 6 114.02 121.50 116.06 115.73 122.05 102.44 101.54 103.09
Period 7 114.27 121.75 116.32 115.99 120.21 103.12 103.25 104.54
Period 8 120.70 125.75 122.86 119.80 125.93 103.72 105.34 105.09
Period 9 127.96 133.32 130.25 127.01 129.17 103.82 106.98 105.67
Period 10 124.73 130.83 126.31 126.80 125.92 101.33 104.90 103.17
Period 11 133.34 139.92 134.45 134.77 134.66 104.07 109.34 106.20
Period 12 134.95 142.35 136.08 136.40 130.73 104.75 110.49 106.91
Period 13 146.01 149.82 147.23 147.58 134.32 105.12 109.57 106.52
Period 14 149.77 153.68 148.10 151.38 132.40 104.01 108.35 104.94
Period 15 156.71 164.87 154.96 158.39 132.59 100.39 104.41 101.70
Period 16 169.29 178.11 167.40 171.10 145.40 106.31 112.48 107.77
Period 17 177.27 187.22 175.29 179.17 152.16 108.03 113.68 109.03
Period 18 186.52 197.05 186.24 190.36 153.01 109.45 116.17 110.38
Period 19 191.11 193.82 192.65 197.02 142.49 104.49 110.33 105.37
Period 20 201.82 206.64 203.45 208.07 147.34 109.10 114.29 109.97

Table E.27: The movement of invested $100 for 200 days split in to 20 periods
(Stock: CSCO; Industry: Technology)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 107.89 107.11 107.89 105.06 107.41 101.20 98.70 100.71
Period 2 111.35 109.53 111.35 107.44 106.43 99.55 94.10 98.44
Period 3 111.04 112.65 111.04 108.72 107.46 101.50 96.64 100.62
Period 4 110.73 112.05 111.76 109.28 106.06 101.70 96.94 100.87
Period 5 112.28 114.67 114.38 110.81 114.76 102.22 100.79 102.55
Period 6 113.90 116.00 115.70 112.09 114.66 102.44 101.54 103.09
Period 7 113.70 115.88 115.49 111.89 114.62 103.12 103.25 104.54
Period 8 117.12 119.40 118.99 115.26 119.57 103.72 105.34 105.09
Period 9 118.56 121.59 120.10 116.68 121.68 103.82 106.98 105.67
Period 10 118.38 123.70 122.19 118.71 117.27 101.33 104.90 103.17
Period 11 117.35 123.69 120.48 117.04 115.49 104.07 109.34 106.20
Period 12 119.11 125.27 122.09 118.80 116.90 104.75 110.49 106.91
Period 13 119.94 126.25 123.19 119.63 116.99 105.12 109.57 106.52
Period 14 126.01 132.64 127.89 124.19 118.07 104.01 108.35 104.94
Period 15 125.35 131.94 127.66 123.54 108.25 100.39 104.41 101.70
Period 16 134.72 141.80 137.20 132.77 116.04 106.31 112.48 107.77
Period 17 143.55 151.10 144.93 141.48 124.97 108.03 113.68 109.03
Period 18 150.72 157.17 152.78 148.54 131.34 109.45 116.17 110.38
Period 19 150.17 154.88 150.55 148.00 125.53 104.49 110.33 105.37
Period 20 159.13 164.88 158.61 155.92 131.34 109.10 114.29 109.97
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Table E.28: The movement of invested $100 for 200 days split in to 20 periods
(Stock: IBM; Industry: Technology)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 100.00 107.98 106.87 106.87 104.80 101.20 98.70 100.71
Period 2 100.84 108.80 107.64 107.64 106.15 99.55 94.10 98.44
Period 3 99.81 107.69 107.91 107.91 105.86 101.50 96.64 100.62
Period 4 100.91 108.88 109.22 109.11 102.27 101.70 96.94 100.87
Period 5 100.37 108.29 108.84 108.51 99.59 102.22 100.79 102.55
Period 6 99.76 109.15 108.17 107.85 98.21 102.44 101.54 103.09
Period 7 100.45 109.45 109.37 108.60 97.75 103.12 103.25 104.54
Period 8 103.85 111.85 113.07 112.28 101.88 103.72 105.34 105.09
Period 9 107.38 115.66 116.92 116.10 105.35 103.82 106.98 105.67
Period 10 109.50 117.93 119.64 118.81 101.74 101.33 104.90 103.17
Period 11 111.69 119.92 122.04 121.19 103.80 104.07 109.34 106.20
Period 12 111.83 120.86 121.68 120.83 103.65 104.75 110.49 106.91
Period 13 113.75 123.82 123.74 122.87 105.27 105.12 109.57 106.52
Period 14 115.63 125.86 125.96 125.08 103.05 104.01 108.35 104.94
Period 15 109.65 119.35 119.45 118.61 92.18 100.39 104.41 101.70
Period 16 107.13 116.61 116.70 115.88 89.60 106.31 112.48 107.77
Period 17 108.62 119.38 118.30 117.47 90.10 108.03 113.68 109.03
Period 18 109.33 119.77 117.80 116.98 89.28 109.45 116.17 110.38
Period 19 109.07 119.85 117.36 116.25 83.10 104.49 110.33 105.37
Period 20 116.10 128.79 124.92 123.74 88.06 109.10 114.29 109.97

Table E.29: The movement of invested $100 for 200 days split in to 20 periods
(Stock: INTC; Industry: Technology)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 103.94 105.34 105.34 105.34 104.59 101.20 98.70 100.71
Period 2 108.94 110.41 110.41 110.41 107.73 99.55 94.10 98.44
Period 3 110.48 111.97 112.69 111.97 107.40 101.50 96.64 100.62
Period 4 110.80 111.82 112.75 112.29 106.87 101.70 96.94 100.87
Period 5 113.31 114.36 115.31 114.84 109.42 102.22 100.79 102.55
Period 6 117.07 118.15 119.13 118.65 113.48 102.44 101.54 103.09
Period 7 119.90 121.01 122.01 121.51 124.93 103.12 103.25 104.54
Period 8 122.67 123.44 124.47 124.32 126.84 103.72 105.34 105.09
Period 9 125.17 125.96 127.01 126.86 139.01 103.82 106.98 105.67
Period 10 126.44 127.24 128.30 128.14 133.19 101.33 104.90 103.17
Period 11 135.51 136.66 137.51 137.63 142.76 104.07 109.34 106.20
Period 12 136.58 138.30 138.59 139.66 144.35 104.75 110.49 106.91
Period 13 136.96 138.69 138.98 140.05 141.82 105.12 109.57 106.52
Period 14 140.10 141.87 142.16 144.46 139.36 104.01 108.35 104.94
Period 15 144.51 146.34 146.64 149.01 129.03 100.39 104.41 101.70
Period 16 157.43 159.42 159.75 162.33 140.18 106.31 112.48 107.77
Period 17 158.14 160.14 160.47 163.06 140.81 108.03 113.68 109.03
Period 18 176.46 175.92 178.12 181.11 154.63 109.45 116.17 110.38
Period 19 176.63 172.45 178.29 181.29 146.24 104.49 110.33 105.37
Period 20 183.80 179.45 185.52 188.22 149.24 109.10 114.29 109.97
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Table E.30: The movement of invested $100 for 200 days split in to 20 periods
(Stock: MSFT; Industry: Technology)

Forecast term Buy&Sell Buy&Hold

MV-GPR MV-TPR GPR TPR XOM INDU NDX SPX

Beginning($) 100.00 100.00

Period 1 105.51 105.71 106.22 106.22 104.94 101.20 98.70 100.71
Period 2 108.67 108.87 109.30 109.40 100.71 99.55 94.10 98.44
Period 3 108.86 109.07 112.11 109.60 102.36 101.50 96.64 100.62
Period 4 111.29 109.89 114.03 111.48 102.67 101.70 96.94 100.87
Period 5 112.69 111.27 115.54 112.88 102.93 102.22 100.79 102.55
Period 6 114.61 114.57 118.97 116.22 103.54 102.44 101.54 103.09
Period 7 116.49 116.45 120.91 118.13 106.45 103.12 103.25 104.54
Period 8 116.83 116.79 121.27 118.47 107.39 103.72 105.34 105.09
Period 9 126.28 124.47 131.08 128.06 113.54 103.82 106.98 105.67
Period 10 124.50 124.21 129.23 127.79 110.22 101.33 104.90 103.17
Period 11 130.93 130.08 137.37 134.40 115.92 104.07 109.34 106.20
Period 12 134.76 134.60 141.38 138.33 119.31 104.75 110.49 106.91
Period 13 137.53 135.94 142.79 139.71 120.82 105.12 109.57 106.52
Period 14 140.01 138.39 145.36 142.22 118.33 104.01 108.35 104.94
Period 15 145.97 144.29 151.56 148.28 113.17 100.39 104.41 101.70
Period 16 158.72 156.89 164.80 161.23 121.80 106.31 112.48 107.77
Period 17 165.48 163.57 171.81 168.10 126.98 108.03 113.68 109.03
Period 18 162.02 158.04 168.22 164.58 125.20 109.45 116.17 110.38
Period 19 161.76 157.79 167.95 164.32 116.67 104.49 110.33 105.37
Period 20 173.61 166.09 176.57 172.76 120.01 109.10 114.29 109.97
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E.4 Industrial sector portfolio investment
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Figure E.8: Oil & Gas portfolio investment
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Figure E.9: Industrials portfolio investment
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Figure E.10: Consumer Goods portfolio investment
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Figure E.11: Health Care portfolio investment
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Figure E.12: Consumer Services portfolio investment
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Figure E.13: Financials portfolio investment
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Figure E.14: Technology portfolio investment
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