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Abstract
Robustness Analysis of Feedback Linearisation for Uncertain Rational

Systems

Peter Norton

Feedback Linearisation (FL) is a nonlinear control technique that has gained a

lot of attention in the past 30 years. Due to its relatively simple synthesis, the use of

FL has been investigated particularly in the aerospace community, because aircraft

models are often highly nonlinear and a controller is needed that can guarantee good

performance over a wide range of operating conditions. However, mathematical

models of real-life physical systems always have a level of uncertainty on them, as

they are only ever approximations to the real system. In the current literature, the

robustness of FL control has been analysed by extensive simulations, which may

miss some worst-case combinations of uncertainties in the model. Alternatively, the

robustness of the controlled system has been analysed on simplified linear models,

using techniques from classical control, which do not well represent the inherently

nonlinear dynamics of the system. This thesis contributes to the literature by using

more recent techniques for analysis of nonlinear systems to assess robust stability

under FL control. We apply advanced robust and nonlinear analysis techniques

without the assumption that the controller has direct access to all the states of

the system, by including state estimation or sensors in the closed loop for analysis.

We also develop an existing analysis technique in the literature to show that a

system under approximate FL control does not violate position limits of the actuator,

despite uncertainty in the model, improving the rigour of the analysis. This is

applied to a high-fidelity model of an aircraft, designed for use in industry and

academia.
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Chapter 1

Introduction

1.1 Overview

Much of technology today relies on control systems for its operation from aerospace

applications such as aircraft, satellites and missiles, to control of nuclear reactors.

There has been a huge increase in the use of automatic control systems in technology

in general, much of it based on linear approximations to plant models, using methods

such as gain-scheduling to cover a wider range of operating conditions.

While control theory began with the development of controllers for linear sys-

tems, it has increasingly been accepted that real-world systems are inherently nonlin-

ear, and more complex control techniques have therefore been developed. Nonlinear

controllers take account of more complicated system dynamics and can potentially

provide good performance over a wider range of operating conditions than linear con-

trollers, without the need for relatively computationally demanding gain scheduling

techniques. However, rigorous robust stability guarantees for nonlinear systems,

particularly with uncertainty on the model, have not yet been developed fully.

This thesis concentrates on nonlinear controllers designed by feedback lineari-

sation, which is designed to cancel out the nonlinear behaviour of the plant and

replace it with the desired, generally linear, behaviour. This control method has

been developed in the literature over the past 30 years and has become a fairly ma-

ture technique, however the question of robust stability of the closed loop subject
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to imperfect knowledge of the plant dynamics and measurements remains an open

problem.

We focus here on using robust and nonlinear systems analysis techniques to

provide stability guarantees for restricted classes of nonlinear systems, namely those

in which the plant states and uncertain parameters appear rationally. We focus on

aerospace applications, as this control method is widely used in modern aerospace

control research, although in principle the techniques used in this thesis can be

applied to ther types of systems.

1.2 Thesis Structure

• Chapter 2 presents background on the development of feedback linearisation

and in particular its application in aerospace. This chapter sets out a review

of the literature in FL and raises the question of robust stability of systems

controlled by feedback linearisation (FL), in the presence of model uncertainty,

output feedback or actuator dynamics, something which is yet to be addressed

rigorously in the literature. This then motivates the research presented in this

thesis.

• In chapter 3 a nonlinear missile model with time-varying uncertain parameters

is controlled with a simple feedback linearisation and time-scale separation

design, with synthesis based on the nominal model and full state feedback. The

closed-loop system is then represented as a linear fractional transformation

(LFT). A robust H∞ filter is designed for the controlled plant, to estimate

unknown states. Robust stability of the closed-loop system is then verified by

using a scaled linear differential inclusion (LDI) technique.

• Chapter 4 presents the Aero-Data Model in a Research Environment (AD-

MIRE), which is a highly nonlinear aircraft model that has been studied in

the past particularly for applications of nonlinear control techniques. This is

the model that will be used in later chapters for robust stability analysis of

FL.

14



• In chapter 5 a pitch rate controller is designed for a linear parameter-varying

(LPV) model of the short-period longitudinal dynamics of ADMIRE, using

input-output linearisation. A scaled linear differential inclusion (LDI) tech-

nique is applied to verify stability of the parameter-varying zero-dynamics.

The parameters (Mach and altitude) are allowed to be time-varying. The

proposed controller is simulated in the nonlinear model of ADMIRE and on

the LPV model, with sensors, actuators and time-varying uncertainties on the

polynomial surface fits. A robust performance LMI condition is used to verify

an upper bound on the L2 gain of the full-order closed loop system, subject to

time-varying parametric uncertainty. This uses a linear fractional transforma-

tion (LFT) representation of the closed loop with block-diagonal structured

uncertainty.

• Chapter 6 develops a nonlinear, 3-axes polynomial model of ADMIRE’s short-

period dynamics. This is done to put the model, in particular the aerodynamic

force and moment coefficients, in a form that is conducive to robust stability

analysis for rational systems.

• In chapter 7 we use the polynomial model of ADMIRE to design a FL con-

troller, using the principle of time-scale-separation (TSS). The controller is

tuned on ADMIRE using a genetic algorithm, which optimises the perfor-

mance in a series of aggressive manoeuvres. The main contribution of this

chapter is that we then find a robust domain of attraction for the closed loop,

which provides a region of safe initial conditions within which the aircraft is

stable, and in which we guarantee that the actuators do not saturate.

• Chapter 8 consists of concluding remarks on the work in this thesis, its limi-

tations and possible directions for future research.
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Chapter 2

Background on Feedback

Linearisation and Analysis

Feedback linearisation (FL) is a method for either fully or partially transforming a

nonlinear system into a linear one, by appropriate choice of a nonlinear control law.

This is distinct from Jacobian linearisation (JL), which is a method for obtaining

a first-order Taylor expansion, which is an approximation of the original nonlinear

system, around some operating point (the term linearisation in control literature

usually refers to the latter, although it is usually clear from the context which

method is being referred to).

Feedback linearisation essentially appears in two forms: input-to-state linearisa-

tion or full-state linearisation refer to a situation where a nonlinear control law can

be found such that the resulting closed-loop system is entirely linear in the states,

in which case stability and performance of the closed loop can be analysed using

standard techniques for linear systems; input-output linearisation (IOL) refers to

finding a nonlinear control law that makes the input-output map of the closed loop

linear, but leaves part of the system nonlinear in the states, in which case stabil-

ity and performance of the closed loop depends on the behaviour of the remaining

nonlinear ’internal’ dynamics.

Rigorous development of FL began in the early 1980s, which followed from earlier

work on linearisability of a nonlinear system, using an invertible nonlinear coordinate
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change of the states (a diffeomorphism) [3]. Work in [3] developed conditions under

which a nonlinear control system could be transformed into an equivalent linear one,

by means of a suitable choice of diffeomorphism.

This lead to the derivation of conditions under which an appropriate choice of

nonlinear control law could transform a SISO nonlinear system into a linear closed-

loop system (input-to-state linearisation) [4], followed shortly by conditions for more

general multi-input systems [5] [6]. At around the same time it was shown in [7]

that nonlinear feedback could make the input-output map of a nonlinear (possibly

open-loop unstable) plant linear. The earlier work on input-to-state linearisation

was then quickly followed in [8] by necessary and sufficient conditions under which

feedback could produce a linear input-output response (IOL), where the system

is only partially linearised. Extended linearisation developed in [9] [10] [11] deals

with a slightly weaker goal - that of designing a control law such that the JL of the

closed-loop (nonlinear) system around some operating point (or a set of linearisations

around a set of operating points) is invariant and equal to the composition of the

JL of the plant with the JL of the controller.

2.1 Feedback Linearisation and Normal Form for

SISO Systems

In order to introduce the FL technique, we restrict our attention to a single-input,

single-output system, with state-feedback control,:

ẋ = f(x) + g(x)u(x) (2.1a)

y = h(x) (2.1b)

where f(x), g(x), u(x) and h(x) are smooth nonlinear functions of the states:

x ∈ R
n

u : Rn 7→ R

h : Rn 7→ R
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In this section, we show how to design a linearising controller for the system

(2.1). We also show how to transform the coordinates into ”normal form”, where

the control input appears only in one place. Note, we assume here a SISO system,

i.e. u and y in (2.1) are scalar. Putting a system in normal form separates the

system into internal dynamics and the input-output external dynamics. All the

theory on linearisation and normal form presented here is from [12].

2.1.1 Input-Output Linearisation

We seek a state-feedback controller of the form

u = α(x) + β(x)v (2.2)

such that the input-output map of (2.1) is linear. v is our new control input, called

the equivalent control. More generally, we cannot linearise the relation between

y and v directly, but we can linearise the relation between v and the ρ -th time

derivative of y, i.e.

y(ρ) = v (2.3)

where ρ is called the relative degree of the system. Hence, the input-output map is

actually a chain of integrators.

To find the linearising controller, we take the output (2.1b) and differentiate:

ẏ =
∂h

∂x
ẋ =

∂h

∂x
f +

∂h

∂x
gu (2.4)

If the coefficient of u in (2.4) is non-zero, we can use (2.2) to linearise the relation

between ẏ and v. Otherwise, we must continue to differentiate:

ÿ =
∂ẏ

∂x
ẋ =

(

∂

∂x

(

∂h

∂x
f

))

f +

(

∂

∂x

(

∂h

∂x
f

))

gu

Again, if the second term is non-zero, we can perform linearisation, otherwise we

must differentiate again:

...
y =

∂ÿ

∂x
ẋ =

(

∂

∂x

((

∂

∂x

(

∂h

∂x
f

))

f

))

f +

(

∂

∂x

((

∂

∂x

(

∂h

∂x
f

))

f

))

gu
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Obviously, this notation quickly becomes cumbersome, so we use the Lie derivative

notation [12]:

y(ρ) = Lρ
fh(x) + LgL

ρ−1
f h(x)u (2.5)

If ρ is the order of the derivative at which the control term u appears with

non-zero coefficient, then we can see from (2.5) that a linearising controller is given

by:

u =
1

LgL
ρ−1
f h(x)

[

−Lρ
fh(x) + v

]

(2.6)

Which will give us (2.3).

Hence, α(x) and β(x) in (2.2) are given by:

α(x) := −
Lρ
fh(x)

LgL
ρ−1
f h(x)

(2.7)

and

β(x) := (γ(x))−1 (2.8)

where:

γ(x) := LgL
ρ−1
f h(x) (2.9)

The controller is not necessarily valid globally. We can see from (2.6) that any

values of x such that γ(x) = 0 result in a control signal that is not well-defined.

Correspondingly, if γ(x) → 0 anywhere in the domain, the control signal becomes

arbitrarily large.

Internal Dynamics

Although application of (2.2) linearises the input-output relation (the external dy-

namics), some of the system dynamics become unobservable (the internal dynamics).

The internal dynamics may be unstable.

Stability of the internal dynamics is analysed by looking at the zero dynamics. The

zero dynamics result from setting the output identically to zero:

y(t) ≡ 0 ⇒ h(x) = Lfh(x) = · · · = Lρ−1
f h(x) = 0 (2.10)

We can see from (2.5) that this implies the control is given by:

uz(x) = α(x) (2.11)
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Therefore, substituting (2.11) in (2.1a) gives the zero dynamics of the system. The

system is said to be minimum phase if the origin of the zero dynamics is asymptot-

ically stable [12].

Assessing the internal stability is not in general trivial. Stability of the origin of

the zero dynamics does not imply global stability of the internal dynamics [12]. It

is only a test for local stability. The internal dynamics are generally nonlinear and

therefore advanced stability analysis methods are required.

2.1.2 Normal Form

Putting a system in normal form is an attempt to find a state transformation such

that the input only appears in one place in the new state equations. Following the

procedure for input-otuput linearisation, it can be seen [12] that if we define a new

state vector ξ ∈ R
ρ:

ξ =

















y

ẏ
...

yρ−1

















⇒ ξ̇ =











Lfh(x)
...

Lρ
fh(x) + LgL

ρ−1
f h(x)u











(2.12)

then we can design u as described in the previous section to linearise the input-

output map. This state vector describes only the external behaviour of the system.

The remaining (internal) dynamics are described by state vector η ∈ R
n−ρ :

η =











φ1(x)
...

φn−ρ(x)











(2.13)

where φi(x) are designed so that the input does not appear. Therefore, each com-

ponent of η must be a solution of:

∂φi

∂x
g(x) = 0 (2.14)
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So that when we calculate η̇, the coefficient of u is always zero. This results in n−ρ

PDEs:
n

∑

j=1

∂φi

∂xj
gj(x) = 0 (2.15)

The solution of these PDEs presents a difficulty when putting the system in normal

form. In simple cases, each PDE may be separable, but generally their solution is

not systematic.

Having put the system in normal form, the zero dynamics (setting y ≡ 0) are

then given by setting ξ ≡ 0. This results in the zero dynamics:

η̇ = f(η, 0) (2.16)

If the zero dynamics are stable, the system is minimum phase. Generally, we will

not be able prove global stability of the internal dynamics. Therefore we will have

to explicitly state the equivalent control v(η, ξ) for a particular objective (e.g. sta-

bilisation or tracking [12]) and consider quadratic stability of the full system.

Summary of normal form

• Advantages

– Normal form separates the dynamics into internal and external parts,

each of lower order than the original system.

– The procedure transforms the coordinates such that the control input

appears in only one place.

– The stability of the internal dynamics may be analysed to some extent

without having to explicitly state the equivalent control v. Only broad

assumptions about the behaviour of ξ are required, i.e. that ξ is bounded

and asymtotically approaches zero.

• Disadvantages

– The solution of the PDEs (2.15) is not in general systematic.

– Solution of the PDEs may introduce nonrational terms.
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– If the control u does not exactly linearise the external dynamics, then

terms involving η might be introduced into the equation for ξ̇.

2.1.3 Missile example

We present here a model of the longitudinal dynamics of a missile. The missile

model presented here is from the instruction manual for [13], which is based on the

Reichert missile model [14].

This example is used to show how to put a system in normal form and find the

internal dynamics.

Missile in original coordinates

The following longitudinal missile model is based on :

ẋ1 = K1MCz(x1,M, u) cos(x1) + x2 (2.17a)

ẋ2 = K2M
2Cm(x1,M, u) (2.17b)

where:

Cz(x1,M, u) = z3x
3
1 + z2x

2
1 + z1(2− 1/3M)x1 + z0u (2.18a)

Cm(x1,M, u) = m3x
3
1 +m2x

2
1 +m1(−7 + 8/3M)x1 +m0u (2.18b)

where x1 = angle of attack, x2 = pitch rate and M = Mach number (which is

generally time-varying). The other coefficients are constants, defined in [13].

The first assumption will be that the angle of attack x1 is small enough such that

the term cos(x1) ≃ 1 and may therefore be neglected (this could be included later

by either series expansion as a rational approximation or by representing it as an

unknown, time-varying scalar. It is not included for now.).

Suppose the output to be controlled is the angle of attack: y = x1.

22



Differentiating the output once, we get the equation for ẏ = ẋ1, hence an IOL

control law is given by

u =
1

K1Mz0
(−K1M(z3x

3
1 + . . . )− x2 + v) (2.19)

This control law results in the closed-loop

ẋ1 = v (2.20)

ẋ2 = K2M
2(m3x

3
1 + . . . ) +

K2M
2m0

K1Mz0
(−K1M(z3x

3
1 + . . . )− x2 + v) (2.21)

where we could choose v = kx1, k < 0 for example, to stabilise the origin of the

output dynamics.

The zero-dynamics of this system are defined by setting ẋ1 = 0, x1 ≡ 0, v ≡ 0:

ẋ1 = 0 (2.22)

ẋ2 = −
K2M

2m0

K1Mz0
x2 (2.23)

Clearly the origin of the zero-dynamics is globally stable if and only if−K2M2m0

K1Mz0
<

0, in which case the system is minimum phase with this choice of output. However,

this would not guarantee that the full closed loop dynamics are globally stable, as the

closed-loop system is nonlinear and has nonlinear internal dynamics. Furthermore,

this assumes that the Mach number M is constant, which it is not (although we can

reasonably expect it to evolve much more slowly than the angle of attack and pitch

rate). The next section shows the nonlinear internal dynamics clearly, by putting

the system in normal form.

Missile in normal form

To put the missile model into normal form, first define ξ:

ξ = y = x1 (2.24a)

ξ̇ = ẏ = ẋ1 ⇒ (2.24b)

ρ = 1, ξ ∈ R
1, η ∈ R

n−ρ = R
1 (2.24c)
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The system has relative degree ρ = 1 < n, system order, so the system has

nontrivial internal dynamics.

Next, we want to complete the state transformation z = T (x1, x2) =





ξ

η



 that

puts the system in normal form.

Now find η = φ(x) such that1 :

∂φ

∂x
g =

[

∂φ
∂x1

∂φ
∂x2

]





K1Mz0

K2M
2m0



 = 0 ⇒ (2.25a)

K1Mz0
∂φ

∂x1
+K2M

2m0
∂φ

∂x2
= 0 (2.25b)

which is separable, of the form:

φ(x1, x2) = X1(x1) +X2(x2) =
1

K1Mz0
x1 −

1

K2M2m0
x2 (2.26)

which satisfies φ(0, 0) = 0. Hence, substituting (2.24a) :

η =
1

K1Mz0
ξ −

1

K2M2m0

x2 ⇒ (2.27a)

z = T (x1, x2) =





ξ

η



 =





x1

1
K1Mz0

x1 −
1

K2M2m0
x2



 ⇒ (2.27b)

x = T−1(ξ, η) =





ξ

K2M
2m0

(

1
K1Mz0

ξ − η
)



 (2.27c)

We can therefore express the dynamics of the system in normal form as:

ξ̇ =K1M(z3ξ
3 + z2ξ

2 + z1(2−M/3)ξ) +K2M
2m0

(

1

K1Mz0
ξ − η

)

+K1Mz0u

η̇ =
1

z0
(z3ξ

3 + z2ξ
2 + z1(2−M/3)ξ) +

K2M
2m0

K1Mz0

(

1

K1Mz0
ξ − η

)

. . .

· · · −
1

m0
(m3ξ

3 +m2ξ
2 +m1(−7 + 8M/3)ξ)

Note, the equation for η̇ is independent of u and represents the internal dynamics

of the system. These dynamics are nonlinear and are not affected by our choice of

1If the cosx1 term is left in the original equation, this leads to φ(x) = K2Mm0 ln | secx1 +

tanx1| −K1z0x2
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u. The internal dynamics are nonlinear in ξ, but affine in η, hence we can see why

we have linear zero-dynamics, which we can get by setting ξ ≡ 0:

η̇ = −
K2M

2m0

K1Mz0
η (2.28)

Another point to note here is that we can define the IOL control law in the

same way as before, in which case ξ̇ = v is independent of η. This means that

the internal dynamics are unobservable from the output. However, although the

zero-dynamics are by definition independent of ξ, the internal dynamics are not and

we cannot therefore infer global stability of the closed loop just from looking at the

zero-dynamics.

Normal form and output redefinition

There is no guarantee that a system which is rational in the original states, will be

rational when put in normal form (see for example [12], p.518-9).

The solution of the PDEs to put a system in normal form is not generally sys-

tematic. Their solution was simple in the missile example dealt with here, because

they were separable. In general, there are n−ρ PDEs to solve, one for each element

of η. Each PDE is first-order, quasi-linear (linear in the partial derivatives) and

homogeneous (right hand side is zero), in n variables.

Hence there are two problems associated with putting the system in normal form,

both of which are to do with solving the PDEs for the internal dynamics. The relative

degree of the system is dependent on the choice of output, so it is natural to ask

whether the output can be redefined so that ρ = n, hence no internal dynamics. This

would not only eliminate the problems mentioned above, but would also eliminate

the test for input-to-state stability of the internal dynamics. Conditions for the

existence of an output that results in ρ = n can be found in [12]. However, this

assumes that we are free to choose the output. Also, in order to be useful, the new

output would have to imply the desired behaviour of the original output.
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The technique described here for feedback linearisation of SISO nonlinear systems

is a specific case of more general FL for MIMO systems. The reader is referred to [15]

and to a greater extent [16] for a treatment of FL for MIMO systems.

2.2 Robust Feedback Linearisation in the Litera-

ture

All of the previous introduction to FL theory has assumed that the plant model is

known exactly and that sensors or actuators are either not present or are included

in the plant model. In reality, a plant model is never an exact representation of

the system. It has also been assumed that the states are available for feedback,

which in practice may not be the case. There is no limit on the size of the control

signal in a FL controller, however it is more realistic to assume that an actuator

will have position and rate limits. When an actuator is at the point of saturation,

the actual control effect is no longer performing feedback linearisation of the plant,

and therefore stability of the closed loop cannot be assumed (it is also well-known

that saturation can lead to wind-up of integrators which is by itself an active area

of research).

Feedback linearisation has emerged as a popular control technique in aerospace

applications [?,17–80], where the plant is often highly nonlinear. FL, often referred

to in aerospace applications as nonlinear dynamic inversion (NDI), is an attractive

method because of its relatively simple synthesis when compared to other techniques

for control of nonlinear systems.

The literature on feedback linearisation/ dynamic inversion is vast. Here we will

give an overview of selected papers on FL in aerospace applications in particular,

with some overall comments to follow.

Aircraft applications of NDI Notation: α, β, p, q and r denote repsectively

angle of attack, angle of sidelsip, and roll, pitch and yaw rates.

[47] NDI is used to control a nonlinear aircraft model. The effect of the control
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surface deflections is included only on the moment coefficients for the NDI synthesis,

but is applied to the actual aircraft model. Success of the proposed controller is

demonstrated by simulation.

[48] The (slightly) non-minimum phase characteristic of aircraft is discussed,

with particular reference to the vertical/ short take-off and landing (V/STOL) Har-

rier. The control approach used is to neglect the contribution of the elevators to the

lift coefficient when performing NDI synthesis, which is the effect that makes the

system non-minimum phase. Hence the NDI synthesis is based on a minimum phase

approximation to the actual system. They then apply this controller to the actual

aircraft model, with that effect included. They show that this leads to good control.

There is some analysis showing that the tracking error should still be bounded. The

description of the problem includes discussion of the fact that directly applying NDI

means trying to control the aircraft in a way is was not designed to be controlled; in

effect trying to directly control a variable that only depends weakly on the control

surfaces.

[49] NDI is used for control ofpitch rate. µ-synthesis [81] is used for robust design

of the external controller (the required behaviour of pitch rate), subject to noise on

sensor measurements and model uncertainty. Short-period and phugoid modes are

considered. P and PI designs are compared. The stability and performance of the

proposed controller is verified by simulation.

[50] An NDI control law, based on time scale separation, is used to decouple

the control inputs of a three-axes aircraft model into independent control channels.

Robust stability of the closed-loop system is verified using µ-analysis and deGaston-

Safonov real multiloop stability margin. The engine throttle setting is assumed to

be pilot-controlled.

[51] A short-period model of an F-16 is considered. The aircraft speed and throt-

tle setting are treated as constant. The pilot command chosen for the longitudinal

controller is the pitch rate. Control inputs are elevator deflection and thrust vector,

which are combined into a single control input. The control inputs are combined

such that thrust vectoring is only implemented when elevator deflection is insuffi-
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cient to meet the required change in pitching moment. The control surface deflection

is assumed to contribute to the pitching moment only and not to the forces. The

control structure is NDI, with PI and feedforward compensation. The pitch rate dy-

namical equation is perturbed with uncertain parameters representing uncertainty in

the dynamic equation and unmodelled dynamics. Robust stability and performance

is verified using µ-analysis on the linear aircraft model and simulations.

[52] Missile pitch and yaw accelerations and roll rate are controlled by NDI,

with time-scale separation, for a three-axes model. There are two main methods of

robustness analysis: gain & phase margins [81] and nonlinear simulations. Firstly,

linearisation of the missile and controller and using classical and vector gain and

phase margins. Secondly, nonlinear simulations, introducing gain variations and

delays at the plant input until limit cycle behaviour was observed. Thirdly, Monte

Carlo simulations, perturbing some aerodynamic parameters randomly by up to 25%

and observing steady-state error in acceleration and body axis roll rate.

[53] NDI is applied to an aircraft model. Uncertain parameters are included.

The controller is tuned by performing Monte Carlo simulations, and evaluating a

performance cost function. In the end, stochastic robustness guarantees are given.

For the choice of outputs in this paper, there are no zero-dynamics. (see also [54])

[55] Robustness of an NDI controller, for the X-38 hypersonic recovery aircraft, is

improved by an LQG [82] synthesis for the external controller. Robustness refers to

parametric uncertainties, process noise and measurement noise. Two robust stability

analyses are employed. Linear robustness analysis is performed, based on a quadratic

performance index, of [83]. Nonlinear analysis is based on [84], which searches for the

largest domain of stability around an operating point, in the presence of position

and rate limits. The controller is designed for a transonic flight condition, then

analysed at two additional flight conditions. The roll and yaw rates are controlled

using ailerons and rudder. The plant state vector is
[

β p r φ
]

. Only β and φ

are assumed to be measured. An observer is designed (a Kalman filter) to estimate

p and r. A regulator is designed (assuming full state feedback) and combined with

the observer, to form an LQG controller. This is all based on a linear plant model.

28



”Nonlinear” analysis refers to saturations, rather than a nonlinear plant model.

[56] An adaptive DI based control law is designed to control body axis angular

rates. An outer loop generates p, q and r commands, which are passed to the inner

loop DI. The control derivatives are based on polynomial fits to data tables. The

model is affine in the controls, by this approximation. The system is non-square.

There are more control effectors than controlled variables, so a control allocation

algorithm is used. As noted by the authors, the online control allocation routine

can fail to converge in a small number of cases. The main focus is on the control

allocation scheme in the presence of various types of failure. Performance of the

controller is shown by simulation.

[57] A disturbance observer is used in combination with NDI to mitigate the

effect of external disturbances on the performance. The model used is the Reichert

longitudinal short-period missile model [85]. The controlled output is a linear com-

bination of α and q. The disturbance is a single scalar (slowly) time-varying input

to the pitch acceleration equation. Tuning of the output tracking error dynamics

is not discussed. Stability is discussed in terms of classical GM and PM of the lin-

earised closed-loop. Poor performance of the initial design (without observer) in the

presence of constant disturbance is shown by simulation. To improve performance,

a nonlinear observer is designed to estimate the disturbance, which is assumed to

be slowly time-varying. This design procedure is shown to give good performance

not only in the case of external disturbance, but also when the disturbances are

actually uncertainty in the plant model and unmodelled dynamics, even though the

stv assumption is not valid. No general robust stability proof is given. Stability and

performance are shown by simulation and by GM and PM.

[58] Attitude control of the X-38 is effected using elevons. Application of DI

directly to control bank angle leads to unsatisfactory, nearly nonminimum phase

behaviour of zero-dynamics. Output is redefined. Robust stability of the zero dy-

namics to parametric modelling errors is improved by optimal pole placement. A

neural network based adaptive control scheme is used to ensure approx linear i-o

behaviour. The closed loop system has internal dynamics and is 3-axes. The plant
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state vector is
[

α β µ p q r
]

(where µ is bank angle). Short-period dynamics

are considered, so other variables are assumed constant. A linear approximation of

the dynamics is used. Effect of controls on forces is neglected in the design process;

only effect on moments is considered. Force effects are included in the simulations.

Initial FL design to control α and µ leads to vector relative degree 4 and therefore

internal dynamics of degree 2. The internal dynamics are shown to be bounded

but very lightly damped, leading to unsatisfactory behaviour. This is shown by

standard pole analysis and simulation. The output is redefined to deal with this

problem. This results in nonlinear internal dynamics, of degree 3. In tuning the

tracking of the controller, poles are placed such that the sensitivity of pole locations

to parametric modelling errors is minimised, using zero dynamics based on a lineari-

sation of the internal dynamics. An adaptive neural network scheme is then used to

achieve as close as possible the desired i-o behaviour in the presence of parametric

modelling errors. The stability proof that follows is for local stability of the internal

dynamics, using a converse Lyapunov theorem.

[59] A general procedure is outlined for robust stability analysis (finite L2 gain)

of a quasi-LPV system that depends not only on the endogenous parameters (states)

but also on some exogenous time-varying parameters. The resulting stability theo-

rem is very similar to the LMIs in Boyd et.al [86]. The exception is that the system

matrices in the LMI condition in [59] are parameter-dependent, so making the prob-

lem numerically tractable requires gridding. The endogenous nature of the QLPV

parameters is dealt with rigorously by looking for a stable ellipsoidal region defined

by a quadratic Lyapunov function, within which the endogenous parameters obey

the a-priori assumption on their bounds. This is very reminiscent of [87]. This is

all illustrated with analysis of two NDI control laws (one P, one PI) for the F/A-18

short-period longitudinal dynamics. The state vector is
[

α q
]

. Control input is

elevator deflection. The QLPV model used is derived from least squares polynomial

fits to look-up tables, for a fixed V and h. Controlled output is q. The main work is

a-posteriori robustness analysis of controllers that are designed for the nominal sys-

tem. Tuning of the external control is not discussed beyond specifying some desired
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dynamics for the ideal case. It is shown that the PI design allows a larger ellipsoidal

stability region and is better at maintaining a level of performance (specified by L2

gain from reference input to performance output) as uncertainty increases.

[60] DI is applied to a nonlinear F-18 aircraft model. The 7 controls are 3-

axes thrust vectoring, elevator, aileron, differential horizontal stabilizer and rudder.

Controlled outputs are p, q and r. The plant state vector is
[

α β µ p q r
]

,

where µ is rotation angle over velocity vector, γ is flight path angle and χ is ground

following angle. The desired dynamics v is specified based on a linearisation of

the model. The 7 controls are amalgamated into just 3 generalised inputs, using

a control allocation scheme that is not specified. The resulting system is therefore

square. Flight conditions are fixed at h = 1500m, M = 0.6. µ-synthesis is used to

balance performance and robustness requirements in designing the controller. The

desired dynamics are specified as first-order responses, with each axis decoupled

from the others. The body angular rates are not directly measured, but have noise

and pass through second-order filters. Performance and robustness of the closed

loop are shown by a doublet command separately on each output, with the others

commanded to zero. These are also shown to obey actuator position and rate limits.

[61] Linear Model Predictive Control, rather than PID control, is used after

feedback linearisation. LMPC can take account of saturation constraints and there-

fore avoid them, as well as constraints on state and output. It also performs an

input optimization based on a performance index. The model is a nonlinear X-38.

The state vector is
[

α β σ p q r
]

, where σ is bank angle. The controls are

elevator, ailerons, rudder and 3-axes thrusts. The envelope is divided into 5 phases.

Not all of the controls are available, depending on dynamics pressure. Aerodynamic

moment coefficients are modelled as linear functions of the states and control sur-

faces. This model is obtained from look-up tables. Aerodynamic control surface

effects on lift and drag are neglected. Force coefficients are neglected. Actuator as-

signment is defined (differently for each flight phase) such that the system is in fact

square, which is important because a state transformation is used to put the system

in normal form. The controlled outputs are
[

α β σ
]

, except in one flight phase
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where only 2 control surfaces are available, in which case the controlled outputs

are changed to β is dropped because the system needs to be square. The system

has no internal dynamics, except for one flight phase, where the system has linear

zero dynamics of order 2. The performance of the design is shown by simulation

on the full model, not a simplified version. Stability during the flight phase where

internal dynamics are present is verified purely by showing the eigenvalue history of

the linear zero dynamics. The performance of the FL-MPC controller is compared

with two FL-PID controllers.

[88] McFarlane-Glover loop shaping is used to give a robustness guarantee for

a DI controller for linear plants. The design process is for SISO linear plants. The

application is for a group of linear models for the short-period longitudinal dynamics

of a civil aircraft. Plant states are α and q. q is the controlled output. There is

no control surface effect on aerodynamic force. The loop shaping procedure is also

shown working in the case where it also has to estimate α. Two different actuator

cases are also shown. The design process treats C as a tuning parameter. The

simulation results use linearised plant models.

[63] Incremental dynamic inversion is used to command velocity vector angles

α, β and µ of a nonlinear aircraft model at high angle of attack. The control law

uses inner and outer loops, controlling pqr. Using INDI means the control law

is more robust to model errors, however the state derivatives are also required.

The performance is shown by simulation, with noise, model error and measurement

errors.

[64] Input-output linearisation is made more robust by incorporating an uncer-

tainty and disturbance estimator. The system is assumed to be square. A stability

proof for the output error dynamics only is given and is therefore a proof based on

linear system theory. Stability of internal dynamics is not addressed. The distur-

bances are assumed to be well-behaved in the sense that the ith temporal derivative

should be negligible. This is illustrated on stabilistaion and tracking of body roll an-

gle φ, using a model of wing-rock motion. The open loop model exhibits limit cycle

behaviour. The model is of order 2 and is nonlinear in one equation (ṗ). With y = φ
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the system is relative degree 2, therefore there are no internal dynamics. There is

one input (differential aileron), therefore the example is SISO. Time-varying uncer-

tainty is introduced into the aerodynamic parameters. Simulations show the closed

loop system to be unstable under IOL alone, whereas with the IOL+UDE it is stable

and with good performance.

[65] INDI is used, which is more robust to model mismatch than NDI. INDI

requires angular accelerations to be fed back. This is shown to be sensitive to sensor

measurement time delays. However, the authors reduce this sensitivity by using a

linear filter that predicts angular accelerations. The model is 3-axes, with states

(12): body fixed velocity components, body fixed rotational rates, attitude, and

position. Sensor and actuator dynamics are included. Sensor measurements have

noise and delay. Actuators have position and rate limits. Controlled outputs are the

angular rates p, q and r. The control law has inner and outer loops based on the TSS

principle - control of β. Thrust is assumed to be controlled to maintain constant

airspeed and is not treated. For the simulations, constant speed and altitude are

assumed. Tuning the controller is not discussed. The P and I gains of the inner and

outer loops are simply stated and are different for the NDI, INDI and PINDI (INDI

with prediction). Comparisons of the different control schemes and their robust

performances are shown by simulation plots and by Monte-Carlo simulation.

[66]This uses the disturbance estimation technique of [64] on a MIMO system

to deal with input disturbance. The authors give a proof that all internal signals of

the closed-loop system are bounded, with the input disturbance being the only non-

nominal part of the system. Internal dynamics are nonlinear and unstable. Robust

tracking performance is shown by simulations.

[67] Hierarchy-Structured Dynamic Inversion (HSDI) (this is basically TSS) is

used, together with extensive Monte-Carlo simulation, to tune the nested P gains.

Root Sum Square Analysis is used to find out which model uncertainties are influen-

tial and the controller tuned accordingly. The model is a 6-dof Automatic Landing

Flight Experiment.
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2.3 Summary

Much of literature on FL concerns methods to make the closed loop system more

robust, by adding to the outer loop to make the system less sensitive to disturbances

or uncertainties. Robust stability analysis is generally by linear techniques or by

simulations:

FL with linear synthesis techniques Papers that combine FL with linear ro-

bust synthesis techniques include those that use

H∞ [26, 89]

Pole-Placement [43, 47, 52, 58, 90, 91]

µ-synthesis [20, 35, 40, 49, 50, 92, 93]

McFarlane-Glover loop shaping [?, 44, 51]

LQ [22, 37, 42, 55, 94, 95]

FL with other synthesis methods FL with sliding mode control is considered

in [90, 96, 97].

Adaptive methods in combination with FL [18,19,23,24,31,33,56,58,98–100], in

some cases in combination with neural networks [19, 33, 58].

TSS and INDI Early applications of TSS are in [35,47] other papers that adopt

this technique are [27, 31–35, 38, 39, 43, 47, 52, 54, 63, 65, 67, 101].

INDI is designed to increase robustness to model uncertainty. Papers include

[63, 65, 66].

Analysis of FL Many papers primarily use simulations for analysis [19, 22–28,

30–38, 42, 44, 46, 47, 49, 51, 56–58, 60, 61, 63, 64, 66, 89–95, 97–100, 102–107]

More extensive Monte Carlo Simulations are used in [18,52,53,65,67], including

[54, 108], which provide a stochastic proof of robust stability.

General proofs Some papers attempt general stability proof for FL control.

Ideal TSS is assumed in [32].
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A linear system with nonlinear actuator is considered in [106].

a-priori assumption that nonlinear functions are bounded is employed in [34]

and [101].

Other papers require much more restricive assumptions to prove stability. These

papers require assumptions such as assuming the zero-dynamics are stable, linear

or bounded, or that there is no uncertainty on the model [17,32,34,46,48,48,90,95,

101, 106, 109–117], whereas [58] gives a general proof of stability only for the JL of

the internal dynamics.

Linear analysis Many papers employ only linear techniques of stability analysis,

which are not rigorous for nonlinear models.

Classical gain and phase margins are used in [?,42–44,52,57], whereas µ-analysis

is used in [20, 40, 43, 50, 51]. The assumption that the system can be modelled a

linear time-varying is used in [118].

Other analysis techniques A sum-of-squares technique is used in [21] for robust

stability anaysis of the closed loop.

[29, 59] use a technique that models the system as QLPV, and uses gridding

over the associated parameter space of the LMIs to assess stability.

IQCs are used in [39] to assess robust stability of a QLPV missile model subject

to TV parametric uncertainty under FL-TSS control, on the assumption that the

endogenous part of the ∆-block is bounded.

The rather brief overview above is intended to motivate the research presented in

this thesis by pointing out the restrictive assumptions that are used to give general

stability proofs. Linear analysis techniques do not provide rigorous robust stability

proofs for nonlinear systems. As uncertainty is inevitably present on a system model,

a nonlinear system under FL will not generally be transformed into an ideal linear

system. This is the case whether or not the plant is in principle full-state linearisable,

as modelling and state measurement errors will inevitably mean that the system is

not exactly linearised.

We set out to give robust stability proofs for uncertain SISO and MIMO systems
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in this thesis, in some cases using output rather than full state feedback, via state

estimation or sensors. The class of systems considered are those that are rational

in the states and uncertain parameters and can admit a linear fractional tranforma-

tion (LFT). Under this assumption, we aim to give robust stability analysis of the

closed loop systems, by using block-diagonal scalings that represent knowledge of

the structure of the ∆-block for these kind of systems. For the reasons given in the

previous section, i.e. solution of PDEs and introduction of non-rational terms, we

will generally give the plant dynamics in terms of the original system states, rather

than transforming it into normal form.
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Chapter 3

State Estimation and FL for a

Missile

Work in this chapter has been published in the conference proceedings of ECC 2013

[119].

3.1 Introduction

In the synthesis of a feedback linearising controller, it is common to assume that

all the necessary states and controlled outputs are available to the controller. In

practice, the available measurements will only be a subset of these. In aerospace

systems, models are often highly nonlinear and contain several uncertainties. There-

fore, robustness of the state observer and robust stability analysis of the closed-loop

system is important. Even if inversion was performed exactly, the system may still

be unstable due to the nonminimum phase nature of its (generally nonlinear) inter-

nal dynamics [12]. For a robust stability guarantee in the presence of uncertainties

in the plant model, we cannot assume that inversion is performed exactly.

Literature on dynamic inversion for missile control [36] uses FL control

on a MIMO missile model with time-varying uncertainty. State feedback is used.

Robust stability of the closed loop is verified using simulations.
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[34] provides a stability analysis of a nominal (no uncertainty) MIMO missile

model under NDI-TSS, assuming full state feedback. Importantly, this also assumes

a-priori that functions in the missile model state equations are bounded.

Output feedback is used with NDI-TSS missile control in [38] and [52], where

observers are used to estimate unknown states. Stability of the closed loop is verified

in [38] by simulation, whereas [52] uses more extensive Monte-Carlo Simulation

(MCS), plus linear analysis techniques (GM/PM).

[45] uses a parameter-varying quadratic Lyapunov function to analyse robust

stability of a SISO missile model under NDI control, to time-invariant uncertain

parameters. Using an uncertain-parameter-dependent Lyapunov function leads to

the assumption that uncertainties are time-invariant, in order to be able to write

an expression for the time derivative of the Lyapunov function. This leads to a

parameter-dependent LMI.

[57] NDI control is used on a SISO nonlinear missile model, with time-varying

uncertainty. State feedback is used and the system has nonlinear internal dynamics,

however linear stability analysis techniques (GM/PM) are used, along with simu-

lations. This uses a disturbance observer to improve the closed loop robustness to

external disturbance signals. A disturbance observer is used in combination with

NDI to mitigate the effect of external disturbances on the performance. The model

used is the Reichert longitudinal short-period missile model [85]. The controlled out-

put is a linear combination of α and q. The disturbance is a single scalar (slowly)

time-varying input to the pitch acceleration equation. Tuning of the output track-

ing error dynamics is not discussed. Stability is discussed in terms of classical GM

and PM of the linearised closed-loop. Poor performance of the initial design (with-

out observer) in the presence of constant disturbance is shown by simulation. To

improve performance, a nonlinear observer is designed to estimate the disturbance,

which is assumed to be slowly time-varying. This design procedure is shown to give

good performance not only in the case of external disturbance, but also when the

disturbances are actually uncertainty in the plant model and unmodelled dynamics,

even though the stv assumption is not valid. No robust stability proof is given.
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Stability and performance are shown by simulation and by GM and PM.

Other missile control techniques in the literature [120] compares the use

of H∞ and µ synthesis for robust control of a pitch-axis missile model. The model

used is a JL of the nonlinear missile model around a single flight condition. The

controller designed using µ synthesis is shown to give better performance than the

H∞ controller. Robust performance of the controllers on the nonlinear model is

demonstrated by simulation only. In [14] similar synthesis techniques are used,

but this time scheduled by Mach to cover more of the flight envelope and using

observer-based feedback. Again, as the plant is nonlinear, robust performance on

the nonlinear model is verified by simulation. [121] demonstrates an improved gain-

scheduled H∞ controller design for the same missile model, again using simulation

to show robust preformance on the nonlinear model. [122] again uses this missile

model to demonstrate observer-based output feedback H2 controller synthesis, for

parameter-dependent systems. This generates an LPV controller with robust per-

formance demonstrated by simulation on the nonlinear missile model.

[123] uses LPV control for a SISO nonlinear missile model, which includes

actuators with saturation. Output feedback is used and the controller is tuned

according to H2/H∞ performance specifications. Stability of the closed loop is

verified by simulation.

Robust stability analysis of systems controlled using feedback linearisation is

generally based on simulations e.g. [105], [23]. This also applies to linear parameter

varying (LPV) systems e.g. [124]. A systematic, stochastic approach to the nonlinear

dynamic inversion synthesis is the focus of [54]. It is possible with these approaches

that there is some ”worst-case” scenario that is missed, which is why we aim for

an analysis technique that will give a robust stability guarantee for all allowed

combinations of uncertain parameters. Another interesting approach is observer-

based feedback linearisation designed to alleviate the estimated disturbance [105],

[90]. These place some restrictive assumptions on the form of the system e.g. full-

state linearisable, or uncertainty only on the input channel.

We aim for a simple NDI-TSS controller design. In [39], integral quadratic

39



constraints (IQCs) are used to perform a robust stability analysis for this system,

controlled using feedback linearisation and time scale separation. However, there is

no observer i.e. full state feedback is assumed. In [34] the stability analysis assumes

the fast subsystem inversion is performed exactly. The assumption that control

deflections affect only the moments is carried through from controller synthesis to

stability analysis. Also, there is no robustness guarantee, which is the main aim of

this chapter.

We derive a method for the synthesis of a robust linear time invariant (LTI)

filter to estimate unknown states, by solving a system of linear matrix inequalities

(LMIs), which is based on [125]. The filter is designed to minimise the L2 gain from

an external input to the estimation error. Solution of the associated LMIs requires

that the plant is stable. Therefore, we assume that we are designing a filter for the

controlled plant, because the model in question is only marginally stable. As we do

not assume a priori knowledge of the reference signal, we cannot use the H2 method

given in [125]. We therefore derive the H∞ condition for a system with structured

uncertainty. We also verify robust stability of the closed-loop system, including the

filter, which is again a sufficient LMI condition using a linear differential inclusion

(LDI) and scalings, based on a quasi-LPV/LFT form for the system.

This chapter is organised as follows: In Section 3.2 we present a nonlinear missile

model. In Section 3.3 we give a simple input-ouput linearising controller using time-

scale separation. In Section 3.4, we move from a nonlinear to a quasi-LPV/LFT

model, and derive an LMI condition for synthesis of a robust filter. In Section 3.4.2

we show an LMI condition for giving a robust upper-bound on the L2 gain of the

closed-loop system. Nonlinear simulation with uncertainties and filter are given in

Section 3.5. Here we also give robust stability analysis using the LMI of Section

3.4.2. Conclusions are given in Section 3.6. Notation: ‖X‖ means the maximum

singular value of X . Fl(X,∆) means the lower linear fractional transformation of

X with ∆ [126].
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Table 3.1: Notation - chapter 3

Symbol Meaning

α angle of attack

q pitch rate

η, ηc normal acceleration, commanded value

u control input (tail fin deflection)

M Mach

Cz, Cm normal force and moment coeffs.

C̃z, C̃m zero-input forms of the above

ym measured output (pitch rate)

x states of the closed loop plant-controller-actuator

A,B, C,D closed loop system matrices

θ a vector of time-varying parameters

z the output to estimate with the filter

x̂ state vector of the filter

Af , Bf , Lf filter matrices

3.2 The Plant

The nonlinear missile model from [121], has states angle of attack and pitch rate α

(rad) and q (rad/s), output normal acceleration η (m/s2) and input tail fin deflection

u (rad):

α̇(t) = K1M(t)Cz(α(t),M(t), u(t)) cos (α) + q(t) (3.1a)

q̇(t) = K2M
2(t)Cm(α(t),M(t), u(t)) (3.1b)

η(t) = K3M
2(t)Cz(α(t),M(t), u(t)) (3.1c)

The Mach number M(t) is treated as an exogenous variable. The term cos (α) ≈ 1

for the operating range and is therefore neglected from hereon. The aerodynamic
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coefficients are given by:

Cz(α,M, u) =z3|α|
2α + z2|α|α

+ z1(2−M/3)α + z0u

Cm(α,M, u) =m3|α|
2α +m2|α|α

+m1(−7 + 8M/3)α +m0u

(3.2)

Measurements available to the controller are q and η. Physical data is given in Table

3.3.

The plant is augmented with a second-order actuator with input commanded

tail fin deflection uc(t)(rad) and output u(t):




u̇(t)

ü(t)



 =





0 1

−ωa
2 −2ξaωa









u(t)

u̇(t)



+





0

ωa
2



uc(t) (3.3)

The operating range is given by |α(t)| ≤ 20◦ and 1.5 ≤ M(t) ≤ 3. The controller

should achieve robust stability over the operating range, to uncertainty in the α

and u dependent parts of Cm that can vary independently by ±25%. Performance

specifications are that the controller should track step commands ηc with maximum

time constant 350ms, overshoot 10% and steady-state error 1%. The maximum tail

fin deflection rate should meet |u̇(t)| ≤ 25◦/s for step command ηc = 1g.

3.3 Controller Synthesis

We follow the method in [39] for controller synthesis. The model is nonminimum

phase, hence a time-scale separation technique is used. Neglecting the actuator, the

plant is split into slow and fast subsystems. The u-dependent term in Cz is neglected

in the slow subsystem.

Slow subsystem The slow subsystem has one state α, input qc (commanded value

for pitch rate) and output η. Defining C̃z := Cz(α,M, 0), eη := η − ηc and follow-

ing standard input-output linearising controller synthesis [12], the slow subsystem

controller is

qc = −K1MC̃z +

(

K3M
2∂Cz

∂α

)−1

(−k1eη + η̇c) (3.4)
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which will, for the approximate slow subsystem, achieve asymptotic tracking of ηc

with first-order dynamics. The term ∂Cz(|α|,M)/∂α has one positive root |α| =

73 − 69◦ for M = 1.5 − 3, which is far outside the operating range, hence the

controller is well-defined.

Fast subsystem The fast subsystem has one state q, input uc and output q.

Defining C̃m := Cm(α,M, 0), eq := q− qc an input-output linearising controller with

second-order dynamics is given by

uc =
−C̃m

m0

+
(

K2M
2m0

)−1
(

−k2q − k3

∫

eqdt

)

(3.5)

to achieve asymptotic tracking of qc.

The controller gains k1, k2 and k3 were tuned in [39] using a genetic algorithm,

for particular values of Mach. Here, we use the gains calculated in [39] for the

nominal Mach value M = 2.25: k1 = 4.69, k2 = 18.3, k3 = 211.

3.4 Filter Synthesis and Stability Analysis

3.4.1 Robust Filter Synthesis

This section derives an LMI for robust filter synthesis for a system which is rep-

resented as an LFT. This is the same kind of system representation as is used for

robust stability analysis of the closed loop system. Although the filter is initially

designed in open loop, the filter will be used to provide an estimate of the angle of

attack to the controller when we perform robust stability analysis and simulations

in the final section. Hence the filter is being used in place of a more traditional

observer.

It is more common for observers to be used for state estimation, however tuning of

observers is not automatic. An observer in the form introduced by Luenberger [127]

for linear systems is a system whose state matrices are the same as that of the plant,

but with an additional input vector. This extra input is the difference between the

plant measured output and the observer estimate of the measured output. This
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error is called the residual. The design variable in a Luenberger-type observer is

the distribution matrix of the residual, which is commonly called the observer gain

matrix; all other observer matrices being the same as that of the plant [128].

It is well known that for linear systems, with appropriate choice of observer gain

matrix, the observer state will asymptotically approach the plant state [128], or

equivalently the error dynamics will approach zero. Therefore, choice of observer

gain matrix is the crucial design variable and some standard tools have been devel-

oped for designing it in software packages such as MATLAB.

Another nice feature of the Luenberger-type observer is that a separation prin-

ciple applies [128], i.e. the observer and controller for a given plant can be designed

independently. It is important to note that for this to apply rigorously, the plant is

assumed to be linear and its matrices well-known.

The analogue of the Luenberger observer for a nonlinear system was developed

by Thau [129]. In this case, we have the same basic idea as a Luenberger observer

i.e. the observer has the same structure as the plant, disturbed by the residual as an

extra input. Note we still have the observer gain matrix as a design variable. Other

types of function have been explored to introduce the residual to the observer, for

example the use of a nonlinear function of the residual in [130]. Note that even in

the relatively simple case of a Thau-type observer, we have a matrix design variable

and the choice of it is more complicated than in the case of a linear plant.

Appendix C gives a derivation of how the design of a traditional (Thau-type)

nonlinear observer for an LFT system leads to a bilinear matrix inequality (BMI).

BMIs have been proved to be more difficult to solve than LMIs [131]. Although

control problems such as controller synthesis can be formulated as BMIs, there

is significant numerical difficulty in solving them. There has been considerable

research effort in the past twenty years into algorithms for efficient solution of BMI

problems [132–135] and there is even software available for doing so such as that

presented in [134].

This has led to several examples of successful application of some of these algo-

rithms to solve controller synthesis problems for various systems [135–139], including
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output feedback [140] and robust controller synthesis [141].

However despite the successful applications listed above, none of the available

methods for the solution of BMI problems guarantee a globally optimal solution and

the existing methods require a high computational burden [142]. On the other hand

efficient methods for solution of LMIs have been available for some time [86] and

relatively user-friendly and well-developed software packages are available, including

for MATLAB [143].

The filter synthesis presented here is appealing because the filter matrices are

produced by solving an LMI and because the LFT system representation is the same

kind of representation that we use for robust stability analysis. The filter lacks

the observer’s residual term, and hence may be more susceptible to performance

problems when the initial measurement error is large. However we show a successful

application of it to the missile presented here, in estimating an unknown state. Note

the results on filter synthesis may be of interest by themselves for an open-loop filter,

not necessarily just for state estimation for feedback to a controller.

In [125], LMI conditions are derived for synthesis of an LTI filter for a system

with uncertainty that can be represented as an LFT. For a system with structured

uncertainty, only the H2 result is given in [125]. However, it is stated in [125] that

the H∞ result can be derived using the methods given in that paper, which is what

we do here.

The controlled plant with actuator can be written in quasi-LPV form, treating

a reference demand r as the external input to the system and measured output ym:





ẋ(t)

ym(t)



 =





A(θ(t)) B(θ(t)

C(θ(t)) D









x(t)

r(t)



 =:M(∆(t))





x(t)

r(t)



 (3.6)

x ∈ R
n, ym ∈ R

ny , r ∈ R
nr , θ ∈ R

nθ , where x contains controller, plant and actuator

states and θ(t) contains time-varying parameters and states in which the plant is

nonlinear. We assume that the bound on the endogenous part of the quasi-LPV

form is valid. It is generally necessary [59] to find a bound on the energy of the

input r for which we can find a bound on the states that form the endogenous part

of θ(t). This can be made computationally tractable by finding an ellipsoidal region
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that lies within a polytope defined by the bound on ∆ (a condition for which is

given in [144], [87]). This is something we will address in chapter 7.

Note D is assumed to be constant for the available measured output. In the

sequel, the measured output is actually just one of the states, in which case D is

zero and C is constant.

With the system in quasi-LPV form, the uncertainties and nonlinear terms can

be pulled out, and the system written in LFT form. The process of doing this

is to normalise each of the parameters in θ(t) such that each each time-varying

parameter is given by θi(t) = θ̄i + siδi(t), where θ̄i is the nominal value of θi(t) and

|δi(t)| ≤ σ−1 is the (bounded) variation of each parameter. Note the scaling factor

si can be chosen such that the variation of all the parameters is normalised with the

same bound. The ∆-block is therefore bounded by ‖∆‖ ≤ σ−1. This is a standard

process of ’pulling out’ time-varying parameters to produce an LFT model and can

be achieved efficiently using the MATLAB toolbox [13].

M(∆(t)) = Fl(H,∆)

=





A Br

Cy Dyr



+





Bp

Dyp



∆(t)(I −Dqp∆(t))−1
[

Cq Dqr

] (3.7)

where

H =











A Br Bp

Cy Dyr Dyp

Cq Dqr Dqp











(3.8)

and ∆(t) is a block-diagonal matrix with nθ blocks. Here, each diagonal block

consists of a repeated scalar δi(t); the normalised variation in one of the elements of

θ(t). The size of each block, ki, depends on the degree of nonlinearity with which

that scalar appears in the system equations. ∆(t) therefore represents structured

uncertainty and is norm-bounded, with allowed values in the set (here l = nθ):

∆ := {diag(δ1Ik1 , . . . , δlIkl) : ‖∆‖ ≤ σ−1,

δi ∈ R, σ > 0} ⊂ R
np×np

(3.9)
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



ẋ(t)

ym(t)















A Br Bp

Cy Dyr Dyp

Cq Dqr Dqp















x(t)

r(t)





∆(t)
q(t) p(t)

Figure 3.1: Linear fractional representation of the controlled plant (3.6).

In order for the following filter synthesis matrix inequality to be affine in the

variables, we have to make a simplification of the LFT model of the system. Specif-

ically, we set Dqr = 0, which means we neglect the variation of B(θ(t)) from its

nominal value. Hence we effectively assume that B is constant. Although we do this

at the stage of filter synthesis, this assumption is not carried through to the final

robust stability analysis when the filter is used in the closed loop.

ẋ(t) = Ax(t) +Brr(t) +Bpp(t) (3.10a)

ym(t) = Cyx(t) +Dyrr(t) +Dypp(t) (3.10b)

q(t) = Cqx(t) +Dqpp(t) (3.10c)

p(t) = ∆(t)q(t) (3.10d)

with p, q ∈ R
np. We want to estimate

z(t) := Lx(t), L ∈ R
nz×n

with a full-order LTI filter of the form

˙̂x(t) = Af x̂(t) +Bfym(t) (3.11a)

ẑ(t) = Lf x̂(t) (3.11b)

where Af ∈ R
n×n, Bf ∈ R

n×ny and Lf ∈ R
nz×n are the state-space matrices of the

filter, to be found. Substitute (3.10b), in (3.11a):

˙̂x = Af x̂(t) +Bf [Cyx(t) +Dyrr(t) +Dypp(t)] (3.12)
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Define the augmented state vector µ :=
[

xT x̂T
]T

∈ R
2n, then:

µ̇ =





ẋ

˙̂x



 =





A 0

BfCy Af









x

x̂



+





Br

BfDyr



 r +





Bp

BfDyp



 p

=: Āµ+ B̄r + L̄p

(3.13)

Define the output of the augmented system as the estimation error:

ez := z − ẑ = Lx− Lf x̂ =
[

L −Lf

]





x

x̂



 =: C̄µ (3.14)

Then, defined in terms of µ, (3.10c) becomes:

q =
[

Cq 0
]





x

x̂



+Dqpp =: Ēµ+Dqpp (3.15)

and (3.10d), as before (augmenting with the filter does not change the p, q relation).

We can represent the augmented system as an LFT, analogously to the controlled

plant, however as B and D are known constant matrices, we can represent the system

in the following LFT:

Ā∆ := Fl









Ā L̄

Ē Dqp



 ,∆(t)





= Ā+ L̄∆(t)(I −Dqp∆(t))−1Ē

(3.16)

This means that (3.13), (3.14), (3.15), (3.10d) are assumed to be equivalent to:

µ̇(t) = Ā∆µ(t) + B̄r(t) (3.17a)

ez(t) = C̄η(t) (3.17b)

Note that the representation of the system in (3.17) is not unique and for now

we have not proved that such a representation exists. Note in particular that if the

term (I −Dqp∆(t)) in (3.16) is not invertible for some allowed value of ∆(t), then

the representation is not valid.

If we can prove that (I −Dqp∆(t)) is invertible for all ∆(t) ∈ ∆ then the system

representation in (3.17) is valid and is therefore said to be well-posed.
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We would like to find the state-space filter matrices Af , Bf and Lf that minimise,

in a H∞ sense, the L2 gain from r to ez. This and the well-posedness of (3.17) is

addressed in the following theorem.

Theorem 1. Consider the LDI (3.17) and let σ > 0 be given. Assume that the

energy of the input is such that the bound on the endogenous part of θ(t) is valid.

Then there exists a robust LTI filter such that the L2 gain from r to ez is less than

β if the following matrix inequalities are satisfied: P0 > 0, P1 − P0 > 0 and (3.18)

(below)

X :=





X1 X3

⋆ X2



 < 0 (3.18)

where

X1 :=











Ψ11 Ψ12 Ψ13

⋆ Ψ22 Ψ23

⋆ ⋆ Ψ33











Ψ11 = P1A+MBCy + ATP1 + CT
y M

T
B + CT

q SCq

Ψ12 =MA + ATP0 + CT
y M

T
B

Ψ13 = P1Bp +MBDyp + CT
q SDqp + CT

q G

Ψ22 =MA +MT
A , Ψ23 = P0Bp +MBDyp

Ψ33 = DT
qpSDqp +DT

qpG−GDqp − σ2S

X2 :=





−β2Inr
0

0 −Inz





X3 :=











P1Br +MBDyr LT

P0Br +MBDyr −MT
L

0 0











Furthermore
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• The filter state-space matrices are given by

Af = P−1
3 MAP

−1
3 (3.19)

Bf = P−1
3 MB (3.20)

Lf =MLP
−1
3 (3.21)

where P3 = P
1/2
0 .

• The filter is stable.

• The LDI (3.17) is well-posed.

Remark 1 : A Lyapunov function proving the stability and L2 gain of the filter

is given by V (µ) = µTPµ, where P =





P1 P3

⋆ In



 ∈ R
2n×2n.

Remark 2 : The variables in (3.18) are P1, P0, MA ∈ R
n×n, MB ∈ R

n×ny , ML ∈

R
nz×n and β ∈ R. Notice that the matrix inequalities are linear in the decision

variables. Therefore, standard MATLAB tools [143] can be used to obtain filter

matrices minimising an upper bound on the L2 gain.

Proof. By standard control system theory [86], if ∃ 0 < P ∈ R
2n×2n and β > 0 such

that




ĀT
∆P + PĀ∆ + C̄T C̄ P B̄

⋆ −β2I



 < 0, ∀∆(t) ∈ ∆ (3.22)

then the induced L2 gain from reference r to estimation error ez for the augmented

system (3.17) is less than β for all permitted values of ∆.

By Schur complement [86], (3.22) is equivalent to −β2I < 0 (which is obvious),

together with

T1 + T2∆(I − T4∆)−1T3 + T T
3 (I − T4∆)−T∆TT T

2 < 0 (3.23)

where

T1 := ĀT
∆P + PĀ∆ + C̄T C̄ +

1

β2
PB̄B̄TP

T2 := PL̄, T3 := Ē, T4 := Dqp

(3.24)
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We now associate with ∆ the subspaces of block-diagonal scaling matrices (repre-

senting relationships for real, structured uncertainty):

S :=
{

diag(S1, . . . , Sl) : 0 < Si ∈ R
ki×ki

}

⊂ R
np×np

G := {diag(G1, . . . , Gl) : Gi = −GT
i ∈ R

ki×ki} ⊂ R
np×np

Then [145], [87] (3.23) holds and is well-posed ∀∆(t) ∈ ∆, i.e. det(I − T4∆) 6= 0, if

∃ S ∈ S and G ∈ G such that

Z :=





T1 + T T
3 ST3 T2 + T T

3 ST4 + T T
3 G

⋆ T T
4 ST4 + T T

4 G−GT4 − σ2S



 < 0 (3.25)

This is a sufficient condition and therefore introduces conservatism.

The augmented system matrices, as defined in (3.13), (3.14) and (3.15), are

substituted into (3.24) and in turn to (3.25), with P partitioned as





P1 P3

⋆ P2



. The

filter matrices are not fixed and therefore, without loss of generality [146], we can

assume that P2 = In. This results in a nonaffine matrix inequality Z < 0, with

variables P1, P3, S, G, Af , Bf , Lf and β. The goal is to find the filter matrices that

minimise β, subject to Z < 0, P > 0, β > 0, S ∈ S and G ∈ G.

Making Z affine requires a nonlinear change of variables and the use of Schur

complement. First, define P0 := P3P
T
3 , so P3 = P

1/2
0 . By Schur complement

on P , we require P0 > 0 and P1 − P0 > 0. Next, we define the new variables

MA := P3AfP
T
3 , MB := P3Bf and ML := LfP

T
3 . Then, we pre and post multiply

Z by JT and J respectively, where J := diag
(

In, P
T
3 , Inp

)

. This results in the new

matrix inequality

Z̄ := JTZJ =











Z11 Z12 Z13

⋆ Z22 Z23

⋆ ⋆ Z33











< 0 (3.26)

where

Z11 = P1A+MBCy + ATP1 + CT
y M

T
B + LTL+ . . .

+CT
q SCq + β−2(P1Br +MBDyr)(B

T
r P1 +DT

yrM
T
B )
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Z12 =MA + ATP0 + CT
y M

T
B − LTML + . . .

· · ·+ β−2(P1Br +MBDyr)(B
T
r P0 +DT

yrM
T
B )

Z13 =P1Bp +MBDyp + CT
q SDqp + CT

q G

Z22 =MA +MT
A +MT

LML . . .

· · ·+ β−2(P0Br +MBDyr)(B
T
r P0 +DT

yrM
T
B )

Z23 =P0Bp +MBDyp and Z33 = Ψ33

It can be seen that Z̄ is still not affine in the variables, so we use Schur complement.

We have Z̄ = X1 − X3X
−1
2 XT

3 < 0, with X1, X2 and X3 defined as in (3.18) and

X2 < 0, hence by Schur complement Z̄ < 0 is equivalent to





X1 X3

⋆ X2



 < 0.

Note if the LMI is feasible then Ψ22 =MA+M
T
A < 0. This implies that the filter

is stable, because the filter state matrix is Af = P−1
3 MAP

−1
3 and P3 (and hence its

inverse) are positive definite.

3.4.2 Robust L2 Gain

In this section, we present a method for robust stability analysis, by solving a system

of LMIs. The proof is straightforward to derive from the literature [86], [87], [144].

We give a more detailed proof in chapter 5. In Section 3.5, we will apply this analysis

to the closed-loop system formed by the plant, controller, actuator and filter.

The system under consideration is again an LDI, similarly to the case for filter

synthesis, with ∆, S and G defined analogously. The external input is r ∈ R
nr ,

output for performance analysis is e ∈ R
ne and states x ∈ R

n:

ẋ(t) = Ax(t) +Brr(t) +Bpp(t) (3.28a)

e(t) = Cex(t) +Derr(t) +Depp(t) (3.28b)

q(t) = Cqx(t) +Dqrr(t) +Dqpp(t) (3.28c)

p(t) = ∆(t)q(t) (3.28d)

where q, p ∈ R
np.

52



Theorem 2. For a given σ > 0 and assuming the energy of the input is such that

the bound on the endogenous part of θ(t) is valid, if ∃ P > 0, S ∈ S, G ∈ G and

γ > 0, such that LMI (3.29) holds, then the LFT system (3.28) has a finite L2 gain

from input r to output e, with upper bound γ, ∀ ∆ ∈ ∆. Moreover, the LDI is

well-posed, i.e. det (I −Dqp∆(t)) 6= 0.

Π :=











Π11 Π12 Π13

⋆ Π22 Π23

⋆ ⋆ Π33











< 0 (3.29)

where

Π11 = PA+ ATP + CT
e Ce + CT

q SCq

Π12 = PBr + CT
e Der + CT

q SDqr

Π13 = PBp + CT
e Dep + CT

q SDqp + CT
q G

Π22 = DT
erDer − γ2Inr

+DT
qrSDqr

Π23 = DT
erDep +DT

qrSDqp +DT
qrG

Π33 = DT
epDep +DT

qpSDqp − σ2S +DT
qpG−GDqp

Given that we only have a sufficient condition for stability, we may find that the

LMIs are not feasible with σ = 1. This means that we cannot find, by this method, a

single quadratic Lyapunov function that guarantees stability over all allowed values

of ∆(t). By increasing σ iteratively, we may be able to satisfy the LMIs, at the cost

of reducing the bound on ∆.

3.5 Simulation & Results

Filter We aim for a filter that will give an estimate of α, using pitch rate q as

the measured output from the plant. The controlled plant with actuator can be
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written in quasi-LPV form, treating the reference demand as the external input to

the system, r :=
[

ηc η̇c

]T

and measured output ym := q. In order to do this, we

define |α(t)| ∈ [0, 0.349rad], Cm = d1(t)C̃m(α(t),M(t)) + d2(t)m0u(t), with d1 and

d2 ∈ [0.75, 1.25]. Then x :=
[

α q u u̇ eq

]T

and θ(t) =
[

|α| M d1 d2

]T

. We

create the LFT using the free MATLAB toolbox [13] and the LFT is normalised

such that σ = 1 ⇔ ‖∆‖ = 1. We obtain an LFT with ∆(t) ∈ R
17×17: 4 in δα(t), 11

in δM (t), 1 in δd1(t) and 1 in δd2(t), where these are the normalised variations in the

elements of θ(t) about their nominal values.

Theorem 1 is used to obtain the filter state-space matrices. We find that the LMIs

are not feasible with σ2 = 1, which means we cannot find a filter that guarantees

a robust L2 gain from r to ez for all allowed values of θ(t). We therefore increase

σ2 iteratively, until we find the smallest value for which the LMIs are feasible. The

smallest value is σ2 = 1.36, which implies ‖∆‖ = 0.86, with a corresponding decrease

in the range of θ(t) over which robust stability is guaranteed. The filter matrices

obtained are:

Af =























−8245 3127 1492 −155.5 43700

4003 −1692 −797.0 58.93 −21200

1190 −429.6 −313.9 85.77 −6308

182.3 −126.5 −51.79 −18.87 −960.1

43590 −16500 −7873 821.6 −231100























Bf =
[

−35150 17050 5074 773.4 185900
]T

Lf =
[

0.9901 −0.2175 0.2883 0.1374 0.1906
]

A Bode plot of the filter response is given in figure 3.2. It can be seen that the

filter is essentially low-pass, with a cut-off frequency (at -3 dB) of approximately 4

rad/s.
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Figure 3.2: Bode plot of the filter.

Robust Stability & Performance Results for the L2 performance analysis using

Theorem 2 are given in Table 3.2. The output for performance analysis is e := η−ηc.

We minimise γ, for a given value of σ2. As with the filter synthesis, this is a linear

objective with LMI constraints and is solved using the MATLAB toolbox [143].

Our goal is to minimise σ2 whilst still being able to find a finite L2 gain (much

like the approach in [147] for robust stability analysis). We find that the LMIs are

not feasible with σ2 = 1. The smallest value for which we can obtain a result is

σ2 = 1.42, which implies a robust L2 gain, not over all allowed values of θ(t), but

for M ∈ [1.62, 2.88], |α| ∈ [1.61, 18.4◦] and d1, d2 represent ±21% on the α and u

dependent parts of Cm, respectively. We obtain γ = 198, which of course does not

guarantee good robust performance in tracking ηc. By increasing σ2 we can obtain

better values of γ, at the cost of further reducing the region over which we can give a

robustness guarantee. We note that increasing σ2 beyond about 10 does not reduce

γ significantly.

Note that although we have found finite L2 gains for restricted regions of the

model envelope in tabel 3.2, these only imply robust stability of the closed-loop
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Table 3.2: Robust Stability

σ2 ‖∆‖ γ

1 1 infeasible

1.42 0.84 198

2 0.71 4.57

10 0.32 1.77

100 0.1 1.47

1000 0.032 1.42

system with the filter. These L2 gains do not imply satisfactory performance of the

closed loop system. Checking robust performance really requires extensive nonlinear

simulations, which is outside the scope of this chapter. However, some nonlinear

simulations with time-varying uncertainty are given in the next section.

Nonlinear simulation The simulation results are given in figs. 3.3 to 3.6 for a

series of constant step demands in ηc. This is the same series of steps carried out

in [121] and [39].

There are four simulations shown: case 1 is the nominal model without filter;

cases 2 to 4 include the filter. All simulations were done at M = 3 (constant) and

included the actuator.

Case 2 is the nominal model with the filter (no uncertainty on Cm, i.e. d1 =

d2 = 1).

Cases 3 and 4 include independent time-varying uncertainties d1(t) and d2(t).

For case 3, d1 = 1 + 0.25 sin(2πt/4.5 + 0.1), d2 = 1 + 0.25 sin(2πt/4.5 + 0.2).

For case 4, d1 = 1 + 0.25 sin(2πt/4.5 + 0.3), d2 = 1 + 0.25 sin(2πt/9− 0.8).

These were chosen such that for case 3 the initial values of the uncertainties are

small, whereas for case 4 the initial values are larger. It can be seen that for case 4,

the performance for the initial 30g step is significantly poorer.

The approximation made in the slow subsystem control synthesis produces a
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steady-state error, which is quite noticeable for the larger step commands. This

error essentially comes from the fact that the slow subsystem command for qc is

not the correct value in order to achieve ėη = −keη. This means that there is an

equilibrium ėη = 0 when eη 6= 0. This error is present even for the nominal case and

is given by (for constant Mach):

eη,ss = −
K1K3M

3z0
k1m0

∂Cz

∂α
(|αss|,M)C̃m(αss,M)
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Figure 3.3: Normal acceleration η for case 1 (solid line), case 2 (’- -’), case 3 (’-.’)

and case 4 (’..’), for the series of step commands (thick dashed line).
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Figure 3.4: Angle of attack for case 1 α (solid line), case 4 α, α̂ (’..’, ’.o.’).
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Figure 3.5: Pitch rate q and qc for case 1 (solid line, ’-o-’) and for case 2 (’..’,’.o.’).
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Figure 3.6: Tail fin deflection for case 1 (solid line), case 2 (’- -’), case 3 (’-.’) and

case 4 (’..’).

3.6 Concluding Remarks

This chapter has developed an existing filter synthesis method in the literature to

the case of H∞ synthesis, where the external input signal is not assumed to be white

noise. As the synthesis is based on a conservative LMI, we have also introduced an

extra variable to decrease the size of the norm bound on the ∆-block, which allows

us to get a result at the cost of reducing the size of the uncertainty for which the

filter is designed.

The benefit of the methods presented here is that they require similar LFT sys-

tem representations for the robust filter synthesis and for the robust performance

analysis. We have shown that these methods can be applied successfully to a non-

linear, uncertain system with a simple feedback linearisation controller. Also, we

have found that the filter performs well in all simulations, even in the presence of

time-varying uncertainty.

We have used a conservative LMI technique for robust stability analysis of the
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resulting closed-loop rational system, in order to show that the closed loop is robustly

stable in the presence of time-varying uncertain parameters.

By using the filter to estimate the unknown states that are not available for

feedback, together with robust stability analysis of the closed loop, we have been

able to build on previous work in the literature for robust stability analysis for FL

control, without relying purely on simulation to prove stability.

The stability analysis is conservative in that it searches for a quadratic Lyapunov

function for the nonlinear system, and we have found that we cannot cover the entire

flight envelope with a single Lyapunov function.

Although we have a rigorous method for robust stability analysis with output

feedback and time-varying uncertainty, we are not able to guarantee good robust

performance of the closed loop just by finding an L2 gain from external input to

tracking error. This method also does not guarantee that the actuator position and

rate limits are obeyed. Hence, nonlinear simulations are still useful for assessing

performance.

Also, the stability analysis presented here has required the assumption that the

states in which the plant is nonlinear are bounded. This is an issue which we will

address in chapter 7 by finding a robust domain of attraction for the system within

which we can guarantee that the bound on the states holds.
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Table 3.3: Physical Data

P0 46602 Pa (static pressure at 20,000 ft)

v 315.9 m/s (speed of sound at 20,000 ft)

S 0.04 m2 (surface area)

m 204.02 kg (mass)

d 0.23 m (diameter)

Iy 247.44 kg/m2 (pitch moment of inertia)

K1 0.7P0S/mv

K2 0.7P0Sd/Iy

K3 0.7P0S/m

z3 19.3470 rad−3

z2 −31.0084 rad−2

z1 −9.7174 rad−1

z0 −1.9481 rad−1

m3 40.4847 rad−3

m2 −64.1657 rad−2

m1 2.9221 rad−1

m0 −11.8029 rad−1

ξa 0.7 (actuator damping ratio)

ωa 150 rad/s (actuator undamped natural frequency)
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Chapter 4

Introduction to ADMIRE

The Aero-Data Model In a Research Environment (ADMIRE) [2] is a Simulink

model of a small single-engined fighter aircraft, developed in collaboration between

researchers in industry and academia. The model is based on the Generic Aerodata

Model (GAM) developed by Saab [1]. The goal of the development of ADMIRE was

to have a model of a military aircraft that would be available to researchers and for

use in simulators.

ADMIRE builds on aerodynamic model GAM by including an engine model,

sensors, and actuators (as LTI blocks) together with a basic flight control system

(FCS) and delay between the FCS and actuators. The model also includes rate and

position limits on the actuators. Another aspect of ADMIRE is to include errors on

the aerodynamic force and moment derivatives and sensor measurements available

to the control system, in order to investigate robustness of controllers proposed as

part of the GARTEUR Flight Clearance project FM (AG-11).

The bundled FCS is based on linearisation of the model around discrete trim

points in the flight envelope and pole-placement, and is scheduled by Mach and

altitude. This provides basic longitudinal and lateral stability and speed control.

Longitudinal control is pitch rate, for Mach below 0.5, and normal load factor for

higher Mach. Lateral control is roll command around the velocity vector and angle

of sidelsip (for more details, see [2]).

ADMIRE is implemented in Simulink with embedded C-files to evaluate state
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derivatives for numerical integration. The numerical simulation uses discrete time

steps, so slightly different simulation results will be obtained by using steps of a

different size. The C-files also direct the algorithm to look-up tables to calculate the

aerodynamic force and moment coefficients, dynamic pressure, and thrust from the

engine.

ADMIRE was used as a benchmark in [148], to investigate the use of more com-

plex nonlinear control techniques and analysis, and a more detailed model descrip-

tion and design challenge can be found there. Techniques used were LPV control

in [124], block-backstepping control in [149], evolutionary algorithms for clearance

of flight control laws in [150], and qualitative (simulation-based) analysis of an NDI

control law in [151].

In this chapter we give a description of the short-period dynamics of ADMIRE.

This will be used in chapter 5 to develop a longitudinal LPV model and dynamic

inversion controller and in chapter 7 for a more complex FL-TSS control of all

three axes. The latter will be based on a nonlinear polynomial approximation to

ADMIRE’s dynamics which we build in chapter 6.

Physical data for the aircraft are given in table 4.1. Notation used for state and

control variables is given in table 4.2. Notation used for other outputs and auxiliary

variables used in calculations are given in table 4.3.
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4.1 Definitions of symbols used in ADMIRE

Table 4.1: List of aircraft data and physical constants

Name Notation Value Units

Accn. due to gravity g 9.81 m s−2

Aircraft data:

Wing area Sref 45 m2

Wing span bref 10 m

Wing chord (mean) cref 5.2 m2

Mass m 9100 kg

Centre of gravity position xcg, ycg, zcg 0, 0, -0.15 m

Aircraft body axis moments

and products of inertia:

Ix 21000 kg m2

Iy 81000 kg m2

Iz 101000 kg m2

Ixz 2500 kg m2

Auxiliary constants:

Γ IxIz − I2xz kg2 m4

C1 ((Iy − Iz)Iz − I2xz)/Γ -

C2 (Ix − Iy + Iz)Ixz/Γ -

C3 Iz/Γ kg−1m−2

C4 Ixz/Γ kg−1m−2

C5 (Iz − Ix)/Iy -

C6 Ixz/Iy -

C7 1/Iy kg−1m−2

C8 ((Ix − Iy)Ix − I2xz)/Γ -

C9 Ix/Γ kg−1m−2
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Table 4.2: List of state and control variables. All angles (rates) are in rad (rad/s)

unless otherwise stated.

Symbol Description

Short-period states see figs.7.2,4.2:

α Angle of attack

β Angle of sideslip

pb Body-fixed roll rate

qb Body-fixed pitch rate

rb Body-fixed yaw rate

Long-period states:

VT Total velocity (m/s)

ψ Heading angle

θ Pitch angle

φ Bank angle

xv, yv, zv Positions in vehicle-carried ref. frame (m)

Controls see fig.4.3 :

δrc Right canard deflection

δlc Left canard deflection

δroe Right outer elevon deflection

δrie Right inner elevon deflection

δlie Left inner elevon deflection

δloe Left outer elevon deflection

δr Rudder deflection
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Table 4.3: List of auxiliary and aerodynamic variables.

Symbol Description

Auxiliary variables or outputs:

ub, vb, wb Body-fixed velocities (m/s)

nx, ny, nz Load factors (g)

Fx, Fy, Fz Forces (N)

Mx, My, Mz Moments (Nm)

Aerodynamic variables:

M Mach number

h Altitude (m)

a Speed of sound (m/s)

q̄ Dynamic pressure (N/m2)

ρ Density of air (kg/m3)

CT , CN , CC Tangential, normal, side force

coefficients see fig.4.1

Cl, Cm, Cn Rolling, pitching, yawing moment

coefficients see fig.4.1
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Figure 4.1: Frame SU to define aerodata [1]

Figure 4.2: Body fixed frame SB, including reference point for aerodata [1]
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Figures 4.1 and 4.2 show the SU and SB frames respectively. SU is the aerodynamic

reference frame of the aircraft, which is fixed. The aerodynamic force and moment

coefficients are calculated with respect to this reference frame. SB is the ’body-fixed’

reference frame, with respect to which the total forces and moments on the aircraft

are calculated. In the nominal case (xcg = ycg = zcg = 0), these two reference frames

have the same origin, however in general the aircraft’s centre of gravity can change

so that these do not coincide, which produces extra turning effects in the moment

equations (4.3).

The controls available in ADMIRE are left and right canard and inner and outer

elevon deflections, and rudder see fig.4.3. In addition, ADMIRE can include throttle

setting, leading edge flap, thrust vectoring and landing gear effects. The throttle

setting is used as part of the bundled FCS for speed control, however the leading

edge, thrust vectoring and landing gear are not used.

Figure 4.3: Definition of the control surface deflections. [2]
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4.2 Short-period model description

In the sequel, we consider only the short-period dynamics of ADMIRE, a desription

for which we give here. A more complete description including the phugoid mode

can be found in [2] and [148].

Short-period 3-axes state equations:

α̇ = (ub ẇb − wb u̇b)/(u
2
b + w2

b ) (4.1a)

β̇ = (v̇b VT − vb V̇T )/(V
2
T cos β) (4.1b)

ṗb = (C1 rb + C2 pb)qb + C3Mx + C4Mz (4.1c)

q̇b = C5 pb rb − C6(p
2
b − r2b ) + C7My (4.1d)

ṙb = (C8 pb − C2 rb)qb + C4Mx + C9Mz (4.1e)

The auxiliary velocity and acceleration equations are given by:

ub = VT cosα cos β (4.2a)

vb = VT sin β (4.2b)

wb = VT sinα cos β (4.2c)

u̇b = rb vb − qb wb − g sin θ + Fx/m (4.2d)

v̇b = −rb ub + pbwb + g sin φ cos θ + Fy/m (4.2e)

ẇb = qb ub − pb vb + g cosφ cos θ + Fz/m (4.2f)

V̇T = (ub u̇b + vb v̇b + wb ẇb)/VT (4.2g)

The aerodynamic forces and moments in (4.1) and (4.2) are defined as:

Fx = q̄ Sref CT (4.3a)

Fy = q̄ Sref CC (4.3b)

Fz = −q̄ Sref CN (4.3c)

Mx = q̄ Sref bref Cl − zcg Fy + ycg Fz (4.3d)

My = q̄ Sref cref Cm − xcg Fz + zcg Fx (4.3e)

Mz = q̄ Sref bref Cn − ycg Fx + xcg Fy (4.3f)
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The control vector for the short-period model consists of a truncated set of the

controls available in ADMIRE; canards, inner and outer elevons and rudder:

uadm =
[

δrc δlc δroe δrie δlie δloe δr

]T

(4.4)

Note that the controls do not appear explicitly in the state equations (4.1), but

enter via the aerodynamic force CT , CN , CC and moment Cl, Cm, Cn coefficients

in (4.3), which are calculated using look-up tables of aerodynamic data from [1].

The forces Fx etc affect the angular rates α̇ and β̇, whereas the moments affect the

body-axis angular accelerations ṗb etc (with additional force effects in (4.3) due to

the difference between the aerodynamic centre and centre of gravity).

In chapter 5 we restrict attention to a simplified, short-period longitudinal LPV

model of ADMIRE which is SISO. Correspondingly, the controls used are only the

elevons δroe, δrie, δlie, δloe, which are all slaved together to give a single control input

which is identical symmetrical deflection of all elevons.

In chapters 6 and 7 we consider a short period model of all three axes which is

MIMO. As such we use all of the control surfaces in (4.4). However the canards

δrc and δlc are slaved together symmetrically, so the length of the control vector is

effectively reduced to 6.

In general, there are additional thrust effects in (4.3), but we will neglect these

in the description of the short-period model.

Descriptions of the sensors and actuators and the model envelope can be found

in [2] and [148].
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Chapter 5

LPV modelling and robust DI

Work in this chapter has been published in the conference proceedings of SICE 2013

[152].

5.1 Introduction

Dynamic inversion (DI) is a popular method of control synthesis in aerospace sys-

tems. This method of synthesis can have an advantage over linear parameter varying

(LPV) (for example [153], [154], [124]) or gain scheduling [155] techniques, as the

latter can be computationally demanding.

As discussed in chapter 2, it is generally assumed that all of the states are avail-

able to the controller, see for example [148], [34]. Robust stability of the closed-loop

system to parametric uncertainties is generally verified by simulation or stochastic

analysis, such as [54] and design [108], a drawback of which is the possibility of

missing some worst case scenario.

Advanced techniques for robust stability analysis of nominally stable nonlinear

and uncertain systems have been available for some time, for example linear differ-

ential inclusions (LDIs) with scalings [86], [87] and integral quadratic constraints

(IQCs) [156]. In [39], robust stability analysis of a missile controlled by feedback

linearisation and time scale separation is carried out by IQCs. The recent sum-

of-squares technique has been used in [157] for robust stability analysis of aircraft

71



pitch axis with a dynamic inversion-based control law, with the assumption that the

uncertain parameter is constant. The LDI analysis considered in this chapter does

not set a bound on the rate of variation of the uncertain parameters.

In practice, it is generally the case that only a subset of the states are available

for feedback or that only sensed values are available. The approach presented here

is to design a DI controller for the nominal LPV plant. We derive a linear fractional

transformation [126] (LFT) representation of the zero-dynamics, based on an LFT of

the plant. We then perform a linear matrix inequality (LMI) stability analysis, based

on existing scaled LDI theory [87]. The model considered is an LPV representation

of the short-period ADMIRE [2] longitudinal dynamics.

When sensors are included in the loop, the controller does not have access to

the actual plant states. An actuator is also included in the loop. Hence, the order

of the system is in fact higher than the DI-LPV controller has been designed for.

Time-varying uncertainties on the polynomial surface fits for the LPV model is also

included in the analysis. The final step is to check the robust stability of the full

closed-loop system by checking that there is a finite L2 gain from a reference input to

a performance output. The closed-loop system with controller, sensors, actuator and

uncertainties is represented as an LFT, which leads naturally to the LDI analysis.

This chapter is organised as follows: In Section 5.2 we present an LPV model

for the longitudinal short-period dynamics of ADMIRE and synthesis of a DI-LPV

controller. We also move from an LPV to an LFT model, which is more suitable

for stability analysis. In Section 5.3, we derive an LFT form for the zero-dynamics,

based on the plant LFT and give an LMI condition for stability of the zero-dynamics.

In Section 5.4 nonlinear and LPV simulation results are presented. We also perform

LMI-based robust stability analysis for the closed-loop system, by finding an upper-

bound on the L2 gain. Robust stability guarantees are found for the closed-loop

system with the controller, even when sensors, actuators and time-varying para-

metric uncertainties are included in the analysis. Conclusions are given in Section

5.5.
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Table 5.1: Notation - chapter 5

Symbol Meaning

α angle of attack

q pitch rate

u control input (symmetrical elevon deflection)

M,h Mach, altitude

y output to control (pitch rate)

A,B,C,D plant matrices (parameter-varying)

θ vector of time-varying parameters (M and h)

x̃ truncated plant state vector

u0 control signal at zero output

A,B, C,D LFT matrices of the system with zero-dynamics

θext an extended parameter vector including TV uncertainty

r reference signal

xm measured (sensed) state vector

xs sensor states

em, ǫm measured value of tracking error, integral error

ucom control command (input to actuator)

5.2 ADMIRE LPV Model and Controller

The Aero-Data Model in Research Environment (ADMIRE) [2] is a highly nonlinear

model of a high-performance aircraft. As well as the aerodynamic data, in the form

of look-up tables, the model includes sensors, actuators, rate-limiters and delays.

Here we consider the short-period longitudinal dynamics, in the form of an LPV

model. The ADMIRE is trimmed and linearised at Ndata = 441 points, gridded to

cover the flight envelope in terms of Mach, M , and altitiude, h:

0.3 ≤ M ≤ 1.2, in 21 steps of 0.045 and 100m ≤ h ≤ 6000m, in 21 steps of
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295m.

This results in an LTI state space model for each grid point. It is then proposed

that an LPV model can be constructed for the short-period dynamics, covering the

flight envelope, such that the state space matrices depend on the parametersM and

h.

We write each element of the state space matrices as a polynomial in these two

variables, by finding a best fit 2-variable polynomial to the 441 grid points. We note

that in the transonic region, there is an abrupt change in several of the aerodynamic

coefficients, which in some cases is not well-represented by the surface fit. The

maximum order polynomial fit we use is of order 3 in M and order 1 in h. We

therefore expect some difference between the ADMIRE simulation and the LPV

simulation. An example of such a surface fit is given in fig.5.1, which corresponds

with the fits found in [154]. We write this in the form:

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t) (5.1a)

y(t) = Cx(t) (5.1b)

where x ∈ R
n , u ∈ R is the control signal and y ∈ R is the output to control. In the

case of the short-period longitudinal dynamics of ADMIRE, we take x =
[

α q
]T

,

where α and q are Angle of Attack and pitch rate and u is the average of all four

elevons. The parameter-varying system matrices are given by:

A(θ(t)) =





Zα(θ(t)) Zq(θ(t))

Mα(θ(t)) Mq(θ(t))



 (5.2a)

B(θ(t)) =





Zu(θ(t))

Mu(θ(t))



 , θ(t) =
[

M(t) h(t)
]T

(5.2b)

Similarly, the normal load factor nz can be given in LPV form (as this is not used

in the controller, we do not give it here - it is only used for checking the size of the

load factor in simulations). We will take the control output to be the pitch rate q,

hence C =
[

0 1
]

. The envelope for ADMIRE is given by the bounds on M and

h given previously and: −3g ≤ nz ≤ 9g, −5◦ ≤ α ≤ 15◦, −25◦ ≤ u ≤ 25◦ and

−50◦/s ≤ u̇ ≤ 50◦/s.
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Figure 5.1: Best fit surface for Mα(M,h)

DI-LPV Controller Here we give the controller synthesis for a system in the

general form (5.1), with the assumption that the system is relative degree one with

respect to the control output (5.1b), i.e. CB(θ(t)) is invertible, for all θ(t). From

hereon, explicit dependence on t is dropped, for clarity of presentation. Differenti-

ating (5.1b):

ẏ = CA(θ)x+CB(θ)u (5.3)

Following a standard approach to design the external controller (see for example

[12], [15]) so that the tracking error e(t) := y(t)− r asymptotically approaches zero,

we want: v(y, r) = ė = −KP e−KI

∫

e dt, with positive gains KP and KI and r ∈ R

is a constant reference demand. If we use a control input of the form:

u = [CB(θ)]−1[v(y, r)−CA(θ)x] (5.4)

(where, for a SISO model, CB(θ) will be a time-varying scalar) substituting (5.4)

in (5.3):

ẏ = CA(θ)x+CB(θ)[CB(θ)]−1[v(y, r)−CA(θ)x]

= v(y, r)
(5.5)

which shows that (5.4) is an input-output linearising controller.

LFT Representation We assume the plant (5.1a) admits the LFT representation:

ẋ =
[

A+Bw∆(t) (I −Dzw∆(t))−1Cz

]

x (5.6)
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or:

ẋ(t) = Ax(t) +Buu(t) +Bww(t) (5.7a)

z(t) = Czx(t) +Dzuu(t) +Dzww(t) (5.7b)

w(t) = ∆(t)z(t) (5.7c)

where z, w ∈ R
nw and ∆(t) is a block-diagonal matrix consisting of l diagonal

blocks, one for each of the time-varying parameters. Each diagonal block consists of

a repeated scalar δi(t), i = 1, . . . , l; the normalised variation in one of the elements

of θ(t). The size of each block, ki, depends on the polynomial degree with which

that scalar appears in the system equations. ∆(t) therefore represents structured

uncertainty and is norm-bounded, with allowed values in the set:

∆ := {diag(δ1Ik1 , . . ., δlIkl) :

‖∆‖ ≤ σ−1, δi ∈ R} ⊂ R
nw×nw

where σ > 0. We also associate with ∆ the sets of block-diagonal scaling matrices

[87]:

S :=
{

diag(S1, . . . , Sl) : 0 < Si ∈ R
ki×ki

}

⊂ R
nw×nw

G := {diag(G1, . . ., Gl) :

Gi = −GT
i ∈ R

ki×ki} ⊂ R
nw×nw

which represent the conditions wTSw ≤ σ−2zTSz for the bound on ∆(t) and wTGz−

zTGw = 0 for the realness of ∆(t). Note that S and G consist of blocks that

correspond in size to each block of ∆.

5.3 Zero-dynamics Stability Analysis

As the zero-dynamics will be time-varying, we will search for a quadratic Lyapunov

function, using a scaled LDI technique. We first derive an LFT representation of

the zero-dynamics, from the LFT of the plant (5.7).

The zero-dynamics of the plant are the dynamics when the output is held at

zero, i.e. y, ẏ and r are all identically 0; ⇒ v(y, r) ≡ 0 [12]. The zero-dynamics will

be of order n− 1.
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Assuming C is row j of In, one of the states is held at 0 (this is the case for

our choice of output for the LPV model of ADMIRE; for a more general choice of

output, the system could be transformed into normal form, then this assumption

would hold [12]). We therefore truncate the state vector, removing the state which

is the output. We define Π ∈ R
(n−1)×n is In with row j removed. Then the truncated

form of (5.7a) and (5.7b) is given by:

˙̃x(t) = Ãx̃(t) + B̃uu0(t) + B̃ww(t) (5.8a)

z(t) = C̃zx̃(t) +Dzuu0(t) +Dzww(t) (5.8b)

where x̃ = Πx, Ã = ΠAΠT , B̃u = ΠBu, B̃w = ΠBw and C̃z = CzΠ
T . u0(t) is the

control signal that holds the output at 0.

In terms of the LFT of the plant (5.7), the control required to keep the output

at zero is:

u0 = −[CBu]
−1[CAx+CBww] (5.9)

which is just the control (5.4), with v(y, r) = 0, in terms of the plant LFT matrices.

We can also give the control (5.9) corresponding to the zero-dynamics in terms

of the reduced-order state vector x̃:

u0 = −[CBu]
−1[CAΠT x̃+CBww] (5.10)

An LFT form for the zero-dynamics are then given by substituting (5.10) into (5.8):

˙̃x(t) = Ax̃(t) + Bw(t) (5.11a)

z(t) = Cx̃(t) +Dw(t) (5.11b)

where:

A = Ã− B̃u[CBu]
−1CAΠT

B = B̃w − B̃u[CBu]
−1CBw

C = C̃z −Dzu[CBu]
−1CAΠT

D = Dzw −Dzu[CBu]
−1CBw
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Note (5.11) is in fact an LDI representation of the truncated form of:

ẋ =
[

In −B(θ)[CB(θ)]−1C
]

A(θ)x (5.12)

We are now ready to state a condition for quadratic stability of the zero-dynamics

(5.11):

Lemma 1. [87] For a fixed R ∋ σ > 0, if ∃ 0 < S ∈ S, G ∈ G and R
(n−1)×(n−1) ∋

P > 0 such that the following LMI (5.13) holds, then the LDI (5.11) is well-posed

and is quadratically stable, for all ∆(t) ∈ ∆. V (x̃) = x̃TP x̃ is a Lyapunov function

that proves it.





ATP + PA+ CTSC PB + CTSD + CTG

⋆ DTSD − σ2S +DTG−GD





< 0

(5.13)

For ADMIRE, we aim to show that the zero-dynamics are quadratically stable,

for all allowed Mach and altitude. Note that for the case of the short-period longi-

tudinal dynamics of ADMIRE, the zero-dynamics are actually of order 1, because

the pitch rate is kept at zero.

We normalise the LFT, such that σ = 1 corresponds to M(t) = 0.75(1 +

(3/5)δM(t)), |δM(t)| ≤ 1 and h(t) = 3050(1 + (59/61)δh(t)), |δh(t)| ≤ 1, in or-

der to cover the flight envelope. The ∆-block is then 8 × 8: 5 in δM and 3 in δh.

We find that the conditions of Lemma 1 hold with σ = 1, which proves that the

zero-dynamics are quadratically stable.

5.4 Robust Tracking Simulation and Analysis

Simulation We now deal with the case where there is uncertainty in the plant ma-

trices, the controller has access only to sensed values of the states and the control

signal now goes via an actuator.

By observing that the polynomial surface fits have uncertainty on them, depend-

ing on the order of the polynomials used for the fit, we estimate that there is 20%
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parametric uncertainty δMα(t) and δMq(t) on each of Mα and Mq and 10% uncer-

tainty δZu(t) and δMu(t) on each of Zu and Mu. As the fits for Zα and Zq are much

better, we neglect any uncertainty on these. These uncertainties are estimated by

evaluating the surface fit for a given aerodynamic coefficient (i.e. Zα(M,h), etc ) at

each of the Ndata data points. At each data point, the difference between the actual

value of that aerodynamic coefficient, from the linearisation of ADMIRE, and the

estimated value from the surface fit, is considered as an error in the fit. The relative

value of the largest error (generally in the transonic region) over the data points

is taken as a reasonable estimate for a parametric uncertainty in that aerodynamic

coefficient. In this case, the plant is given by:

ẋ(t) = A(θext(t))x(t) +B(θext(t))u(t) (5.14)

where

θext = [M(t), h(t), δMα(t), δMq(t), δZu(t), δMu(t)]
T (5.15)

We assume that the controller has the structure of (5.4), as in the nominal case,

with

v(ym, r) = −KP em −KIǫm (5.16)

where em = Cxm − r is the measured value of the tracking error, using the sensed

values of the states, xm = [αm qm]
T and ǫm =

∫

em dt.

The two LTI sensors specified in the ADMIRE [2], are treated as a single LTI

block with states xs ∈ R
3, input x = [α q]T and output xm = [αm qm]

T .

The actuator (treating all four elevons as having a single actuator) is of order 1

(input ucom, which is the output of the controller and output u, the actual elevon

deflection). The closed-loop dynamics are given in part by (5.14), with u(t) being

the output of the actuator.

The control command signal is given by:

ucom = −[CB(θext)]
−1[CA(θext)xm . . .

· · ·+KPCxm −KP r +KIǫm]
(5.17)

The closed-loop system is therefore of order seven: 2 plant states (α and q), 3 sensor

states xs, the actuator state u and the error state ǫm.
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We denote the closed-loop state vector as x̄ = [xT xTs u ǫm]
T ∈ R

7.

The interconnection and the normalisation of the time-varying parameters is per-

formed using the Simulink interface of the LFR Toolbox [13]. Our goal is to analyse

the robust stability and performance of this closed-loop, where the sensors, actua-

tor and time-varying uncertainties have not been included in the control structure

synthesis. We effectively have a control structure that is designed for the nominal

plant (5.1a), but is applied to an uncertain plant (5.14), that is augmented with

extra dynamics from the sensors and the actuator. This is an interesting problem,

because clearly the controller will not result in exact input-output linearisation.

The next step is to find appropriate gains KP and KI . We perform LPV simu-

lations of the perturbed plant (5.14) with control (5.17), including time-varying un-

certainties and the extra dynamics, gridding over KP and KI . The integral square

tracking error is evaluated over each simulation. We take the ”best” gains to be

those which give the smallest integral square error over most of the simulations. We

arrive at KP = 16 and KI = 40.

Simulation results are given in fig.5.2 for the nonlinear Simulink model of AD-

MIRE [2] and for the LPV model, for a doublet command on q; from +10◦/s to

−10◦/s. The nonlinear simulations are performed first, then the observed change

in M(t) and h(t) are approximately matched in the LPV simulation, as these are

treated as independent variables in the LPV model. The nonlinear model is trimmed

at the stated values of Mach and altitude. All of the bundled ADMIRE control sys-

tem commands to the control surfaces are disconnected, with one exception: the

command to the engine. This is necessary to keep the aircraft at a steady speed,

or else it will become unstable. The controller elevon command is then sent equally

to all four (left, right, inner & outer) elevons, via the existing delays, ratelimiters

and actuators. The controller inputs are the sensed values of the states, Mach and

altitude (using the standard sensors) and the reference r. For the LPV simulation,

as well as including the sensors and actuator, we also perturb the plant with slowly

time-varying parameters, of magnitude stated earlier. We note that, as the Mach

number increases, so the normal acceleration can exceed the specified bound, for the
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size of pitch rate command simulated. As noted in [2], the pitch rate is generally

used as the output to control for small values of Mach. A pitch rate controller is

however used as an inner loop at higher values of Mach, where the output controlled

is the normal acceleration. Clearly, there is some discrepancy between the simu-

lation of the LPV model and the ADMIRE, as we would expect not only because

of the errors in the surface fits for the LPV model, but because the ADMIRE also

includes rate-limiters and time delay representing computation time.

Robust Performance We aim to give a robust stability guarantee for the closed-

loop LPV model, with the sensors, actuator and time-varying uncertainties, by

finding a finite L2 gain from reference input r to sensed tracking error em, by an

LMI technique. We assume the closed-loop model admits an LFT as illustrated in

fig.5.3, which is performed using [13].

We normalise the LFT and denote by σ−1 the bound on ∆(t) (similar to the

procedure for the zero-dynamics). The closed-loop dynamics is therefore contained

in the LDI:

˙̄x(t) = Ax̄(t) +Brr +Bww(t) (5.18a)

em(t) = Cex̄(t) +Derr +Deww(t) (5.18b)

z(t) = Czx̄(t) +Dzrr +Dzww(t) (5.18c)

w(t) = ∆(t)z(t) (5.18d)

where the LFT matrices are extracted from the LFR Toolbox [13].

We have x̄ ∈ R
7, r ∈ R, em ∈ R and z, w ∈ R

nw . The subspaces ∆, S and G are

defined analogously to Section 5.2.

Lemma 2. [87], [144] For a given σ > 0, if ∃ P > 0, S ∈ S, G ∈ G and γ2 > 0,

such that (5.19) (below) holds, then the LFT system (5.18) has a finite L2 gain

from input r to output em, with upper bound γ, ∀ ∆(t) ∈ ∆. Moreover, the LDI is

well-posed, i.e. det (I −Dzw∆(t)) 6= 0.

Z :=











Z11 Z12 Z13

⋆ Z22 Z23

⋆ ⋆ Z33











< 0 (5.19)
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where

Z11 = PA+ ATP + CT
e Ce + CT

z SCz

Z12 = PBr + CT
e Der + CT

z SDzr

Z13 = PBw + CT
e Dew + CT

z SDzw + CT
z G

Z22 = DT
erDer − γ2I +DT

zrSDzr

Z23 = DT
erDew +DT

zrSDzw +DT
zrG

Z33 = DT
ewDew +DT

zwSDzw − σ2S +DT
zwG−GDzw





˙̄x(t)

em(t)















A Br Bw

Ce Der Dew

Cz Dzr Dzw















x̄(t)

r





∆(t)
z(t) w(t)

Figure 5.3: Linear fractional representation of the closed-loop

Minimising γ2, for a given value of σ, is a linear objective with LMI constraints

and is solved using the MATLAB toolbox [143].

The ∆-block is 26×26: 16 in δM , 6 in δh, 1 in each of δMα(t), δMq(t) (representing

20% uncertainty) and 1 in each of δZu(t) and δMu(t) (representing 10% uncertainty).

We find that we cannot find a single L2 gain bound γ covering the entire envelope

in one go. This is not a surprise, as the LDI condition allows the parameters δi(t)

to be arbitrarily fast time-varying. Instead, we grid over small regions of Mach, in

steps of 0.045 and altitude, in steps of 590m. The uncertainties on the aerodynamic

coefficients are not reduced, however. For each region, the LFT is normalised with
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σ = 1 and the best γ is found by Lemma 2. This gives a grid of L2 gains over

the flight envelope, in terms of Mach and altitude, which are plotted against the

mid-point of each region in fig.5.4. The L2 gain for each region is therefore an upper

bound which is robust to the full ±20% and ±10% time-varying uncertainty on

the relevant aerodynamic coefficients. This means we will have a robust stability
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Figure 5.4: Robust upper bound on L2 gain over the flight envelope

guarantee for the controlled plant with time-varying parametric uncertainties, with

the controller having access to sensed rather than actual values of the states and

the control signal entering the plant via the actuator.

We also wish to make clear that the stability analysis is performed using the

full-order LPV model of the closed-loop with all 7 states, rather than a reduced

order normal form. Hence we avoid the issue of having to explicitly separate the

system into external and internal dynamics [12].

It is important to note that the L2 gains found only apply to the LPV model.

There is no robust stability guarantee for the actual nonlinear model of ADMIRE.

That would require a quasi-LPV model, representing the actual nonlinear dynamics,

perhaps using multivariable polynomial fits to the aero-data tables (we anticipate
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this would lead to a very large ∆-block for the LFR).

Gridding over the flight envelope, each time normalising the LFT using [13] and

then minimising γ subject to Lemma 2 took 200 regions to cover the flight envelope,

which took 29 min on a 2.5 GHz i5 PC with 4 GB RAM. It is not desirable to

grid over Mach and altitude, because we obtain a different Lyapunov function for

each region and do not have a rigorous robust stability guarantee over the entire

flight envelope. However, the steps in Mach and altitude are actually larger than

the variation in those parameters over the simulations in fig.5.2. If we assume that

for a given set of initial conditions, the Mach and altitude do not leave one of these

regions, we have a robust stability guarantee. Of course, this depends on the stability

of the phugoid mode and the manoeuvre being performed by the aircraft.

5.5 Concluding Remarks

In this chapter we have used DI-LPV control on an LPV model of ADMIRE’s short-

period longitudinal dynamics.

We have successfully verified that the zero-dynamics of the system are stable,

subject to the time-varying parameters Mach and altitude. The derivation of the

LFT of the zero-dynamics is given in a general form for the SISO case.

Despite the lack of an in-built robustness guarantee in the controller synthesis, we

have shown that the controller gives good responses even with an actuator, sensors

and time-varying uncertainties, which are not considered in the synthesis. This

applies to both the LPV model and the nonlinear simulation. These are comparable

with those in, for example, [148] or [154], where more computationally demanding

synthesis techniques are employed.

We have shown that with the controlled system in LPV/LFT form, we can

provide robust stability guarantees over regions of the envelope and this can be

applied more generally to LPV models. However, we have only provided a robust

stability analysis for the LPV model. We cannot rigorously guarantee that the

actual ADMIRE will be robustly stable using this method. This analysis method
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could be extended to a quasi-LPV model of a nonlinear system.

We will develop a nonlinear polynomial of ADMIRE in the following chapter,

with the aim to more accurately capture the short period dynamics of all three axes.

This will be used as an example in chapter 7 to give a more rigorous robust stability

analysis of FL-TSS control, where we find a robust domain of attraction.

It may be possible to reduce conservatism in the closed loop analysis by using

IQCs (a reduction in conservatism has been demonstrated in [39], comparing IQCs

for arbitrarily fast vs. slowly time-varying parameters) or using a sum-of-squares

technique.
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Chapter 6

Polynomial Modelling of ADMIRE

In chapter 5, we presented an LPV model for the short-period longitudinal dynamics

of ADMIRE, covering the whole flight envelope in terms of Mach and altitude. The

model was based on Jacobian linearisation around the SL flight condition, at points

gridded over the allowed envelope of Mach and altitude. The variation in each of the

elements of the associated state-space matrices were then described approximately as

polynomial functions of Mach and altitude, giving us an LPV model approximating

the dynamics of ADMIRE.

As the LPV model is based on Jacobian linearisation around SL flight, it does not

capture the coupling between lateral-directional and longitudinal axes, or nonlinear

dynamics when the aircraft is not close to SL. We can see from equations (4.1)-

(4.3) that ADMIRE is actually nonlinear and includes coupling between axes. Also,

although it is not explicit in equations (4.1)-(4.3), we might reasonably expect the

effectiveness of control surfaces to vary with AoA, and for coupling between axes to

manifest as a change in control surface effectiveness when the aircraft is sideslipping

(e.g. we would not expect symmetric elevon deflection to produce zero roll if AoS is

non-zero, because control surface effectiveness would not be identical on each side -

this is significant because the aircraft’s moment of inertia is relatively small around

the roll axis). Therefore, we should not expect the control distribution matrix to

be constant, even for constant Mach and altitude. This is important because in

FL design, we invert the control distribution matrix. Several other nonlinear and
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coupling effects are well-studied in the literature, such as yaw instability at high

angle of attack. In order to apply FL, we require a control-affine model of the plant

with an explicit control distribution matrix, which we do not have in (4.1)-(4.3).

Another reason to improve on our approximate model of ADMIRE is not just

for the controller design process, but in order to have a more convincing robust

stability analysis of the closed loop. The LFT/LDI method used earlier requires

that the system under consideration is rational, so it is not immediately applicable

to ADMIRE which includes trigonometric functions and look-up tables. However if

we can find a polynomial/ rational approximation to ADMIRE that captures the

nonlinear dynamics and coupling between axes, it makes robust stability analysis of

the closed loop more meaningful.

We focus on Mach = 0.5 and altitude = 4000 m.

6.0.1 Trimming and Linearisation

The trimming routine in ADMIRE finds values of α, δn and δe such that the equi-

librium point (for ’straight and level’) is as close as possible to (x, u) = (0, 0). This

equilibrium point ’trim’ will be denoted (xtrim, utrim). The linearisation routine

then linearises around this point. The ss matrices that are output Abare, Bbare, . . .

are therefore for the system:

˙̃x = Abarex̃+Bbareũ (6.1)

ẋ− ẋtrim = Abare(x− xtrim) +Bbare(u− utrim) (6.2)

ẋ = Abare(x− xtrim) +Bbare(u− utrim) (6.3)

ẋ = Abarex+Bbareu− (Abarextrim +Bbareutrim) (6.4)

The state of the trimmed model is actually x̃ = x−xtrim, so if we want to know the

actual value of the plant state x then we need to add the trim value to the output:

yactual = ỹ + ytrim (6.5)

= Cx̃+ Cxtrim (6.6)

= Cx (6.7)
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with C = In to get the actual plant state vector.

The bundled trimming and linearisation algorithms allow us to find the Jacobian

linearisation of ADMIRE around the trim point for straight and level flight:

ẋ = Alinx̃+Blinũ (6.8)

where x̃ = x− xtrim, ũ = u− utrim, x =
[

α β p q r
]T

and

u =
[

δrc δlc δroe δrie δlie δloe δr

]T

.

xtrim is zero for all the short-period states apart from αtrim, which is approxi-

mately 3.4862◦. The trim values of u are small and will be neglected from hereon.

We will use only symmetric deflection for the canards and use the control trans-

formation in appendix E: u =
[

δn δei δey δai δay δr

]T

.

The polynomial model here is developed by proposing a set of nonlinear mono-

mials which are selected by looking at a second-order Taylor expansion of the short-

period state equations in symbolic form, and considering the coupling between axes

described in the C-files that calculate the aerodynamic coefficients in [2]. Some trial-

and-error is used to remove monomials that do not give a significant contribution

to each state equation.

The coefficients of each monomial are considered as variables, which are fit to

open-loop simulation results of ADMIRE, using a standard Vandermonde technique

and a least-squares fit. Approximately 10000 simulation data points were used.

Simulations were conducted by gridding over fixed control surface deflections, in

order to perturb the dynamics of ADMIRE. The C-file was edited to give the value

of ẋ for each of the short-period states at each time step, and the polynomial with

variable coefficients was fit to a matrix that concatenated all of the simulation

results, removing data points at which ADMIRE left the envelope. Each simulation

was carried out from the trimmed flight condition for SL flight at Mach 0.5 and

altitude 4000 m, hence the polynomial model given below and used in the following

chapter is only valid for deviations from SL flight in this part of the flight envelope.

In principle, the method could be extended to include monomials in Mach and/or

altitude, however this would result in a very high-order polynomial model and be

very computationally demanding.
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6.0.2 Final Polynomial Model

˙̃α =

− 1.0768α̃+ 0.9728qb

− 0.95208βpb

− 0.2264δei − 0.1361δey − 0.0126δn

+ 0.055501α̃δei + 0.11199α̃δey + 0.0089154α̃δn

+ 0.34806βδai + 0.022782βδay + 0.03423βδr

(6.9a)

β̇ =

− 0.2438β + 0.0609pb − 0.9893rb

+ 0.058055α̃β + 0.95075α̃pb + 0.021665βqb − 0.26768α̃rb

+ 0.0383δai + 0.0077δay + 0.0666δr

− 0.45514α̃δai − 0.19667α̃δay − 0.45611α̃δr

− 0.020724βδei + 0.0043252βδey − 0.023841βδn

(6.9b)

ṗb =

− 23.613β − 2.0784pb + 0.5423rb

− 130.28α̃β − 3.8229α̃pb − 13.793βqb − 5.0752α̃rb + 0.10389pbqb

− 2.2525qbrb

+ 5.236δr − 20.693δai − 23.706δay

− 17.275α̃δai − 25.901α̃δay − 7.9192α̃δr

− 20.065βδei − 15.582βδey − 10.674βδn

(6.9c)
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q̇b =

9.1771α̃− 1.079qb

+ 0.28991βpb − 0.2791α̃qb + 0.15552βrb + 1.052pbrb + 5.9292α̃2 − 30.32α̃3

− 0.033186pb
2 − 0.074713rb

2

− 8.7692δei − 5.3918δey + 5.6652δn

+ 0.064492α̃δei + 2.9578α̃δey + 2.2686α̃δn

+ 0.17627βδai + 0.17224βδay + 0.25352βδr

(6.9d)

ṙb =

1.7719β − 0.1217pb − 0.416rb

− 6.4015α̃β − 0.78091α̃pb − 1.5148βqb + 0.37012α̃rb − 0.62512pbqb

− 0.36707qbrb

− 2.7575δai − 1.1538δay − 4.2585δr

+ 0.48663α̃δai − 1.039α̃δay + 0.38327α̃δr

− 1.4258βδei − 1.1976βδey + 1.5842βδn

(6.9e)
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Chapter 7

Robust FL-TSS Synthesis and

Analysis

This chapter presents robust FL controller synthesis for the short-period dynamics

of ADMIRE. Robust stability of the closed-loop system subject to parametric uncer-

tainty on the polynomial model is analysed using the LFT matrices of the open-loop

plant.

The proposed controller is based on the TSS methodology, which achieves ap-

proximate feedback linearisation. The robust stability analysis of the closed-loop

does not assume that the fast subsystem states are identical to their commanded

values.
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Table 7.1: Notation - chapter 7. Other symbols used are standard aircraft notation

as described in chapter 4.

Symbol Meaning

x short-period model state vector

η,Ω slow, fast states of the short period model, xT = [ηT ΩT ]

u control input to the plant

uc,Ωc control commands, based on the idealised TSS model and FL

r reference command for η

eη, eΩ tracking error in r,Ωc

ǫ, ε integrated values of the above

K1−4 diagonal gain matrices (design variables)

Ψ a vector of TV uncertain parameters

Ã, G̃ uncertain QLPV plant matrices

Ψ̄ nominal value of Ψ

Ā, Ḡ nominal QLPV plant matrices (no uncertainty)

ξ, Aξ, Bξ, Cξ state & matrices of LTI actuator block

Cη, CΩ defined such that η = Cηx, Ω = CΩx

Ā11, Ā12 upper nη × nη and nη × nΩ submatrices of Ā

x̄,A,B, C,D state & LFT matrices of the closed loop when r = 0

T transformation matrix

S,G block-diagonal scaling matrices (LMI variables)

P Lyapunov matrix (LMI variable)

σ−1
p bound on the normalised variation of each plant state

σ−1
w bound on the normalised variation of each uncertain parameter

93



7.1 Controller Synthesis via FL-TSS and GA

The previous chapter proposed that the short-period dynamics of ADMIRE around

altitude 4000 m and Mach 0.5 can be represented approximately by the polynomial

model given by equations (6.9). In this section we put this system into the standard

control-affine form for FL controller synthesis. This system is then subdivided into

’fast’ and ’slow’ subsystems, which are approximations of the polynomial model. A

nonlinear FL-TSS control structure is designed based on this model.

The controller is tuned to give acceptable performance in a number of fairly

aggressive manoeuvres similar to those in [148] that excite the dynamics of all three

axes. The tuning is performed using a GA that minimses a cost function (or ’fitness’

rating) associated with each candidate set of controller gains. Having proposed a

suitable controller, the closed-loop responses of ADMIRE, the polynomial model

(6.9) and a standard JL model are compared. We also give an approximate domain

of attraction for the closed-loop system, including an indication of initial conditions

that cause saturation of control surfaces to occur.

7.1.1 TSS Controller Structure

For controller synthesis, we will use the FL-TSS technique

ẋ(t) = f(x(t)) +G(x(t))u(t) (7.1)

where x ∈ R
n and u ∈ R

nu .

A TSS representation of the plant splits the state vector into ’fast’ and ’slow’

parts: x =





η

Ω



 =





Cη

CΩ



 x where η is the slow state vector (wind axis angles) and

Ω is the fast state vector (body axis angular rates). For simplicity of exposition, we

assume that η consists of the first nη elements of x and that Ω consists of the last

nΩ = n− nη states:

η̇ = Cη(f(x) +G(x)u) = f1(x) +G1(x)u (7.2a)

Ω̇ = CΩ(f(x) +G(x)u) = f2(x) +G2(x)u (7.2b)
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The primary outputs to control are the slow states η. Assuming that states Ω

evolve significantly faster than η, the standard approach is to neglect the effect of

the control surfaces u in (7.2a) and instead treat Ω as control inputs. This defines

the commanded value of Ω, which is Ωc. Neglecting the actuator so that u ≡ uc, the

commanded control surface deflection uc is defined by the fast subsystem (7.2b), in

order to achieve the commanded value of Ω.

The control command for each subsystem will be designed by feedback lineari-

sation (FL). An important assumption is that in order for the control command to

each subsystem to be well-defined, we assume that not only is the plant affine in

u, but that the slow subsystem (7.2a) is also affine in Ω. We also assume that the

control distribution matrix is a function only of the slow states.

The idealised representation of the plant is given by:

η̇ideal = A11(η)η +A12(η)Ωc (7.3a)

Ω̇ideal = f2(x) +G2(η)uc (7.3b)

Using feedback linearisation [12], the controller design for each subsystem is:

Ωc = −A12(η)
†(A11(η)η − vη(η, r)) (7.4a)

uc = −G2(η)
†(f2(x)− vΩ(Ω,Ωc)) (7.4b)

where the external signal r ∈ R
nη is the reference value for η. The ’equivalent

control’ v for each subsystem is defined below.

Before we define the equivalent control, we should consider under what conditions

the controller in (7.4) is well-defined. Both the fast and slow subsystems require a

right psuedo-inverse. Assuming the states η are restricted to some domain η ∈

X ⊂ R
nη , the slow subsystem inversion requires that A12(η)

† should be well-defined

∀ η ∈ X . A necessary condition for the right inverse to exist is that nΩ ≥ nη (which

is the same as A12(η)
−1 if nΩ = nη). Likewise, the fast subsystem inversion requires

that G2(η)
† should be well-defined ∀ η ∈ X , a necessary condition for which is that

nu ≥ nΩ. Physically in an aircraft application, this implies that we cannot control

more wind-axis angles (η) than we have body-angle rates (Ω). These are both of
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order 3 in practice. Similarly, we cannot control more body-angle rates than we have

available control surfaces (u). In practice, we would expect nu > nΩ, particularly if

inner and outer elevons are deflected independently. We will not deal with cases of

control surface failure here.

In order to complete the control structure, we need to define the equivalent

controls in (7.4). First we define the tracking errors eη = η − r and eΩ = Ω − Ωc

and their respective integrals ǫ =
∫

eη dt and ε =
∫

eΩ dt. In order to stabilise the

error dynamics of each subsystem, the functions vη(η, r) and vΩ(Ω,Ωc) are designed

as follows:

vη(η, r)) = −K3eη −K4ǫ (7.5a)

vΩ(Ω,Ωc) = −K1eΩ −K2ε (7.5b)

where K3/4 ∈ R
nη×nη and K1/2 ∈ R

nΩ×nΩ are diagonal matrices with positive el-

ements on the diagonal. These are tuning variables which will affect the perfor-

mance and robustness of the closed loop. Hence for this type of controller there are

2(nη + nΩ) scalar variables to tune.

The controller desribed above defines approximately proportional-integral, stable

error dynamics for each subsystem, when the reference commands are slowly time-

varying. Not only that, but defining Ki to be diagonal decouples the error responses

from one another, although this is only approximately achieved in practice due to

modelling errors.

The design process is outlined in figure 7.1
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Figure 7.1: Feedback Linearisation-Time Scale Separation controller design process

The preceding feedback linearisation-time scale separation (FL-TSS) controller

description seems to imply that the last design step, tuning the design variables,
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involves only setting the speed of the error dynamics through appropriate choice of

Ki. However in reality the closed loop system may not behave as expected. The

control structure is based on applying FL separately to the fast and slow dynamics,

assuming that the time scales are sufficiently different that the fast states can be

considered as control inputs to the slow dynamics. This is of course only an approx-

imation in reality. Also, the TSS technique neglects the actual control effect on the

slow dynamics during the design process. Not only that, but the control input to

the fast dynamics is assumed to be the actual output of the controller, but we know

in reality there will be actuator dynamics so that the control input to the plant is

not identical to the output command of the controller. We also have to consider

control surface position and rate limits and robustness to modelling errors, state

measurement errors and noise, which has no simple analytic solution.

We want a closed loop system that behaves as required over some quite aggres-

sive flying manoeuvres. A simple performance objective alone such as obtaining

a small L2 gain from some external input to tracking error would not guarantee

that the aircraft actually behaves well in simulations. Not only that but a näıve

approach, simply setting the control gains to give an arbitrarily fast response, on

the assumption that FL is performed exactly, would not take account of actuator

position or rate limits (we could expect these to saturate if the gains are set too

high).

There are many simplifying assumptions made and neglected dynamics during

the controller design process. Failure of any one of these assumptions or the effect of

neglected dynamics could lead to very poor performance when the FL-TSS controller

is applied to the plant. This motivates the use of a technique that can improve the

tuning of the design variables Ki.

Tuning the controller is a highly complex and nonconvex problem. A brute-force

approach such as gridding over the space of design variables, clearly would require a

very large computational burden. The limits of the parameter space would have to

be set in advance. Without any intuition into what the limits should be the optimal

solution could lie outside these pre-defined limits and it could even be the case that
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no satisfactory solution lies within those limits. This kind of approach is clearly

very inefficient and time-consuming, spending a large amount of computation time

evaluating performance of the controller in parts of the parameter space that are

not useful. There is no memory in such an approach, i.e. no regions of the design

variable space are rejected as the performance evaluations run. The computational

burden involved means that even for just a few design variables, a gridding approach

is not practical.

Perhaps the most well-known method for dealing with complex problems like this

is the Monte-Carlo (MC) technique [158–161]. This is essentially a random walk over

the space of design variables, evaluating performance at each point. This is clearly

more efficient than a gridding approach because it requires fewer simulations to be

run, scattering randomly over the variable space. This will not in general lead to

an optimal solution, however it has been used extensively with success to give sub-

optimal solutions that are satisfactory. Note that the MC method shares some of the

drawbacks of gridding. The limits of the design parameter space are set in advance

and there is no memory built in to such an algorithm, so again many simulations

may be run exploring parts of the parameter space that could have been ruled out

early on.

Genetic algorithms (GAs) [162] mimick the process of evolution by natural se-

lection. The advantage of this approach is that simulations are run over a relatively

small selection of design variables, generation-by-generation. The characteristics of

the population of each generation depend on the performance of the parameters in

the previous generation. A particular set design variables is more likely to become

a parent to the next generation if it performs well in simulations. Conversely, poor

performing sets of design variables get naturally eliminated in this process, so the

algorithm does not waste as much time exploring parts of the parameter space that

are not useful.

Although the next generation is derived from the previous one, randommutations

can also be included for evaluation, which mean that the space of design variables

is not limited by the characteristics of the initial population. There is no need to
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set limits on the space of design variables in advance, hence this method can find

a sub-optimal solution anywhere, if left to run for a large number of generations.

Interest in GA methods has increased as it has been found to be a relatively efficient

method for finding a satisfactory solution to a highly complex problem [163–165].

GAs have been used in control applications, to tune controllers according to

complex performance criteria, and have been shown to be very effective. Examples

of this in the literature include [166–177]. The interested reader is referred to the

survey [178] for applications of GAs in the control community. With reference to

ADMIRE in particular, GAs were used in [150] for the flight control law clearance

problem, using GAs to search for worst-case pilot inputs.

In [179], random search and genetic algorithm techniques were directly compared

for robust controller synthesis. The GA method was found to require significantly

fewer evaluations in order to arrive at a robust controller with similar performance

(evaluated by a stochastic cost function).

The following section describes how the FL-TSS methodology is applied to the

short-period dynamics of ADMIRE. We then move to tuning the controller using

a genetic algorithm, which is applied to closed loop simulations of demanding ma-

noeuvres, in order to help overcome the issues discussed above. Later in this chapter

we address the final step in figure 7.1, checking robust stability of the closed loop

by searching for a robust domain of attraction.

7.1.2 Application to ADMIRE

In this section we address the problem of finding an appropriate controller for the

short-period dynamics of ADMIRE. The primary control objective is to have ac-

ceptable control of angle of attack, angle of sideslip and wind axis roll. The FL-TSS

control structure defined in the previous section is constructed based on the poly-

nomial model proposed in chapter 6 for deviation from straight and level (SL) trim,

at Mach 0.5 and altitude 4000 m.

First we will define wind axis roll, as this is not explicitly given in the model of

ADMIRE. Figure 7.2 shows the body axes Xb, Yb, Zb and stability axes Xs, Ys, Zs
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of the aircraft, where plane OXbZb and OXsZs both define the ’plane of stability’.

The angle of attack α is defined by the angle between Xb and the projection of

the velocity vector v onto the plane of stability. The stability axes are obtained by

rotating the body axes through angle α around Yb. Ys is therefore aligned with Yb.

The body axes rotation rates Ω =
[

pb qb rb

]T

are aligned with the body axes as

shown.

Figure 7.2: Definition of stability axis roll

For a given value of α, the magnitude (with sign) of the component of Ω along

the Xs-axis defines the stability axis roll rate:

ps = pb cosα + rb sinα (7.6)

The sideslip angle β is defined by the angle between the velocity vector and

Xs, on the OXsYs plane. The wind axes Xw, Yw, Zw are obtained by rotating the
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stability axes through angle β around the Zs-axis, such that the Xw-axis is aligned

with the velocity vector v.

For given α and β, wind axis roll rate pw = µ̇ is the magnitude (with sign) of

the component of Ω along the Xw-axis:

µ̇ = pb cosα cos β + qb sin β + rb sinα cos β (7.7)

As Xw is aligned with v, this is sometimes referred to as the velocity vector roll rate.

Note that in the case of zero sideslip angle, wind axes and stability axes roll

rate are the same. As it is often the case that roll manoeuvres around the velocity

vector are performed at approximately zero sideslip, (7.6) is referred to in some of

the literature as wind axis roll.

For controller synthesis, the polynomial approximation to ADMIRE given by

(6.9) and wind axis roll defined by (7.7) is written in the control-affine form

ẋ(t) = f(x(t)) +G(α̃(t), β(t))u(t) (7.8)

where x =
[

α̃ β µ pb qb rb

]T

and u =
[

δn δei δey δai δay δr

]T

.

The primary control outputs are η =
[

α̃ β µ
]T

= Cηx, which define the states

of the slow subsystem. The fast subsystem has states Ω =
[

pb qb rb

]T

= CΩx.

Note we have nη = nΩ = 3, nu = 6 > nΩ and n = 6.

The envelope is the same as that of the polynomial model which is α̃ = (α −

αtrim) ∈ [−13.5, 16.5◦], where we assume that αtrim = 3.5◦ is constant and β ∈

[−15, 15◦]. Note that (x, u) = 0 is an equilibrium of (7.8).

In order to show that the controller (7.4) is well defined over this envelope, the

determinants of G2(α̃, β)G2(α̃, β)
T and A12(α̃, β)A12(α̃, β)

T are shown in figures

7.3 and 7.4 respectively.
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Figure 7.3: Determinant of X = G2(α̃, β)G2(α̃, β)
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Figure 7.4: Determinant of X = A12(α̃, β)A12(α̃, β)
T

Reference model In the context of military aircraft, in order to meet Level 1

handling requirements [180] [181], the desired response of α to a command is usually
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shaped as the output of a reference model:

α

αc

=
ω2

s2 + 2ζωs+ ω2
(7.9)

where ω = frequency and ζ = damping ratio.

A similar model is usually used for β. This is a very common method of specifying

the desired dynamics [124] [149] [151], and similar transfer functions have been used

as prefilters to shape the stick/pedal commands into appropriate smooth reference

values to the control system [20] [23] [24].

In the sequel we will use a reference model of the form (7.9) to shape part of

the reference value for r. We use (7.9) with ω = 2.5 rad/s and ζ = 0.8 for α and β.

For µ, we will assume that the lateral stick command is converted to a ramp (with

maximum gradient 300 deg/s).

7.1.3 Tuning Using GA

Here we give a description of how the FL-TSS controller is tuned, using a genetic

algorithm.

Genetic algorithms (GAs) were proposed in [162], as a method of mimicking the

process of evolution by natural selection, and popularised in [182]. The basic process

is to evaluate the performance of a population of variables according to some fitness

criteria in simulations. The choice of fitness criteria is therefore key to the process.

The next generation is formed by using the previous generation as parents, which

are recombined by crossover (a combination of two or more parents), mutation (a

random change in one parent), or directly taking a high-performing candidate into

the next generation (an elite). This process is repeated for successive generations,

until some convergence critera has been met, a maximum number of generations

have been reached, or a maximum computation time limit is reached.

Genetic algorithms (GAs) have been applied for tuning controllers in aerospace

applications. In [39], a GA is used to tune a NDI-TSS controller for a nonlinear

missile model, using time response, damping, actuator deflection rate and GM/PM

of the linearised model to define the fitness of each candidate. [53] and [54] use

104



GAs to tune an NDI controller for hypersonic aircraft. In this case, the fitness of

each candidate is a weighted sum of binary indicators according to whether certain

fixed design requirements (stability, settling time, overshoot) have or have not been

met. Monte-Carlo simulations are used to evaluate each candidate with uncertain

parameters.

The fitness function used in this section is somewhat more similar to that used

in [171], where the fitness of each candidate is a weighted sum of total control effort,

integral and absolute output tracking error.

Algorithm Description

For the controller defined in (7.4) and (7.5), there are 12 scalar parameters to tune

when applied to ADMIRE. Each candidate set of controller gains k1−4 will be referred

to as a gene.

Each gene has the form k =
[

k1 k2 k3 k4

]

, where k1−4 are each of length 3.

These define the controller gains in (7.5) as K1 = diag(k1), K2 = diag(k2), etc.

The GA requires an initial population, which will consist of N genes. The

population size N will be fixed in each generation. The initial population is made

from an initial guess for k, which we will call the seed k0. The seed is then used to

produce N − 1 other genes, by randomly changing each parameter of k0 by up to

100%, which make up the remainder of the initial population.

For the initial population, and every subsequent generation, the fitness of each

gene is evaluated using simulations. The controller is applied to ADMIRE (not the

polynomial model of ADMIRE). The output of the controller uc enters the actuators,

which have rate and position limits specified in [2]. The output values of the states

of ADMIRE are perturbed with multiplicative noise and enter the controller via the

standard LTI sensors in [2].

Applying the controller to the original model of ADMIRE, rather than the poly-

nomial model, should help to reduce sensitivity of the controller to modelling errors,

as the polynomial and ADMIRE are not identical. Noise is introduced and the sen-

sors are used rather than direct state feedback, in order to reduce sensitivity of the

105



controller to noise and state measurement errors.

This is illustrated in figure 7.5.

Figure 7.5: Control loop for tuning

The manoeuvres used for evaluation of each gene are given below. These are

carried out from SL:

1. PULL - full longitudinal stick command αc = 20◦ in 0.1 sec. β and µ com-

manded to zero.

2. PUSH - full longitudinal stick command αc = −10◦ in 0.1 sec. β and µ

commanded to zero.

3. ROLL - full lateral stick command, which is a ramp input to µc with a slope

of 300 deg/s. This is held at αc = 5◦. β is commanded to zero.

4. TURN - full lateral stick command to roll around the velocity vector by ap-

proximately 90◦, with full longitudinal stick pull. This is held for 5 sec, fol-

lowed by longitudinal and lateral stick commands in the opposite direction.

This manoeuvre changes the heading of the aircraft by approximately 90◦. β

is commanded to zero.
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All of the simulations above are run for 10 sec (where possible). For these

simulations, the envelope check bundled with ADMIRE is disabled. The values

|α| = 50◦ and |β| = 50◦ are used to terminate the simulation early, as an indication

of instability. The only control input from the bundled ADMIRE FCS is the engine

throttle setting, although fixing the value at zero makes little difference in these

simulations.

Each gene therefore has its fitness assessed over four simulations. For each gene,

four fitness values f1−4 (scalars) are derived from the simulated manoeuvres. The

total fitness f of a gene is the sum of the fitness in all four simulations f = f1 +

f2 + f3 + f4.

The length of the simulation is tm, which should be 10 sec unless the simulation

terminates early due to instability.

The fitness in each simulation fi is calculated as follows:

• IF the simulation terminates early (tm < 10s), then fi = 50+100(10−tm) (this

penalises genes that cause instability, according to how early the simulation

terminates).

• ELSE fi = w
[

|e|max

∫ 10

0
ε2i dt

∫ 10

0
ǫ2i dt |uadm,c|max

∫ 10

0
uTadmuadm dt |nz|max

]T

.

where w is a vector of weightings of length 15, and:

• |e|max is the maximum absolute tracking error in each state (vector of length

6)

•
∫ 10

0
ε2i dt and

∫ 10

0
ǫ2i dt are the integral square tracking errors in the fast and

slow states (total length 6)

• |uadm,c|max is the maximum absolute value of all the commanded control surface

deflections (scalar)

•
∫ 10

0
uTadmuadm dt is the integral control effort (scalar)

• |nz|max is the maximum absolute value of the normal acceleration in the sim-

ulation (scalar)
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Each of the N genes therefore has a fitness f associated with it, which we aim to

minimise. Note that the GA does not require the seed or any member of the initial

population to be stable.

Making the next generation The genes in the current generation are selected

as parents according to their fitness f . The likelihood of a particular gene being

selected as a parent is inversely proportional to its fitness. The genes that make up

the next generation are the children. The children have 3 types: elites, mutants and

crossovers.

Elites are the Nelite members of the current generation with the best (lowest)

fitness. The elites are carried through to the next generation with no change. Keep-

ing a small number of elites in the selection means that the best fitness cannot get

worse from one generation to the next.

Mutants are Nmutant members of the next generation that have just one parent.

A mutant is made by selecting a parent and randomly changing one parameter by up

to 100%. Having mutants in the selection helps to add diversity to the population

and reduces the tendency for the algorithm to get stuck in a local minimum.

Crossovers are the remainingN−Nelite−Nmutant members of the next generation.

Crossovers have 2 parents. A crossover child is made by a randomly-weighted average

of its parents.

Initial trials The population size was fixed at N = 14, with Nelite = 2 and

Nmutant = 6. After some initial trial runs, an integral gain k2 =[0 0 0] was fixed (the

integral tracking error on the fast states). Good results were obtained without these

3 variables, hence this was fixed in order to reduce the total number of variables.

This makes sense as an integral gain is generally used to eliminate steady-state error,

which is important for the slow states (the primary control outputs) but less so for

the fast states.

The weighting vector used was

w =[5 5 1 1 1 1 100 100 1 0 0 0 1 1 0.1]

The seed used was
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k0 =
[

k1 k2 k3 k4

]

=[10 10 10 0 0 0 5 5 5 2 2 2 ]

Simulations of the 4 manoeuvres with the initial seed follow.

Simulations with Initial Seed

Figures 7.6-7.9 show the 4 manoeuvres that are used for fitness evaluation, with the

initial seed set of controller gains. These figures show the states of ADMIRE α, β,

µ, pb, qb, rb, together with wind axis roll rate µ̇ and normal acceleration nz.

Note, the seed produces instability in all the manoeuvres apart from manoeuvre

3: wind axis roll.
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Figure 7.6: Pull manoeuvre initial seed

110



0 5 10

−10

0

10

20

α
(d

eg
)

0 5 10
−20

0

20

β
(d

eg
)

 

 

0 5 10
−100

0

100

200

µ
(d

eg
)

0 5 10
−10

0

10

n
z

(-
)

0 5 10

−200

0

200

µ̇
(d

eg
/s

)

0 5 10

−200

0

200
p

b
(d

eg
/s

)

0 5 10

−40

−20

0

20

40

t (s)

q b
(d

eg
/s

)

0 5 10

−40

−20

0

20

40

t (s)

r b
(d

eg
/s

)

actual value
command
reference model

Figure 7.7: Push manoeuvre initial seed
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Figure 7.8: Roll manoeuvre initial seed
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Figure 7.9: Turn manoeuvre initial seed

GA Progress

The GA was run for 150 generations. Figure 7.10 shows the progress of the GA.

The fitness value of the best gene (the gene with the lowest fitness) in each gener-

ation is plotted vs. the generation number. Note, the high value of the best fitness

in the first few generations shows that the best gene was not producing stability
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in all 4 manoeuvres. However, within 10 generations the best fitness has dropped

dramatically, showing the the GA has found a gene that is stable for all 4 manoeu-

vres (though not with good performance). After the 10th generation, progress is

somewhat slower, with plateaus followed by sudden drops in fitness (perhaps due to

an effective mutant).
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Figure 7.10: GA best (lowest) fitness in each generation

Value of best gene after 150 generations:

kbest =
[

k1 k2 k3 k4

]

, where

k1 =
[

10.8628 12.5506 5.2597
]

(7.10a)

k2 =
[

0 0 0
]

(fixed a-priori) (7.10b)

k3 =
[

5.7819 3.8931 2.4111
]

(7.10c)

k4 =
[

2.1074 0.6279 0.4137
]

(7.10d)

7.1.4 Closed Loop Simulation Results

Responses with the final controller

Figures 7.11-7.25 show the response of ADMIRE with the ’best’ controller following

the GA optimisation. The 4 manoeuvres used for evaluation are shown, plus an

extra sideslip manoeuvre that was not included in the fitness evaluation.

Figs 7.11-7.13 show the state response, other outputs and control response re-

spectively, for the pull manoeuvre. Figs 7.14-7.16 show the push manoeuvre. Figs
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7.17-7.19 show the wind axis roll. Figs 7.20-7.22 show the turn manoeuvre. Figs

7.23-7.25 show a sideslip doublet.

In each case, the responses shown are the actual outputs of ADMIRE. Where

appropriate, command and reference signals are also shown.

0 5 10

−10

0

10

20

α
(d

eg
)

0 5 10
−20

0

20

β
(d

eg
)

 

 
actual value
command
reference model

0 5 10
−1

0

1

µ
(d

eg
)

0 5 10
0

5

10

n
z

(-
)

0 5 10

−200

0

200

µ̇
(d

eg
/s

)

0 5 10

−200

0

200

p
b

(d
eg

/s
)

0 5 10

−40

−20

0

20

40

t (s)

q b
(d

eg
/s

)

0 5 10

−40

−20

0

20

40

t (s)

r b
(d

eg
/s

)

Figure 7.11: Pull manoeuvre with final controller - state response
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Figure 7.12: Pull manoeuvre with final controller - other outputs

116



0 5 10

−20

0

20

40

δ l
ie

(d
eg

)

0 5 10

−20

0

20

40

δ r
ie

(d
eg

)

0 5 10

−20

0

20

40

δ l
o
e

(d
eg

)

0 5 10

−20

0

20

40

δ r
o
e

(d
eg

)

0 5 10

−20

0

20

40

t (s)

δ n
(d

eg
)

0 5 10

−20

0

20

40

t (s)

δ r
(d

eg
)

 

 
actual value
command

Figure 7.13: Pull manoeuvre with final controller - control response
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Figure 7.14: Push manoeuvre with final controller - state response
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Figure 7.15: Push manoeuvre with final controller - other outputs
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Figure 7.16: Push manoeuvre with final controller - control response
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Figure 7.17: Roll manoeuvre with final controller - state response
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Figure 7.18: Roll manoeuvre with final controller - other outputs

122



0 5 10

−20

0

20

40

δ l
ie

(d
eg

)

0 5 10

−20

0

20

40

δ r
ie

(d
eg

)

0 5 10

−20

0

20

40

δ l
o
e

(d
eg

)

0 5 10

−20

0

20

40

δ r
o
e

(d
eg

)

0 5 10

−20

0

20

40

t (s)

δ n
(d

eg
)

0 5 10

−20

0

20

40

t (s)

δ r
(d

eg
)

 

 
actual value
command

Figure 7.19: Roll manoeuvre with final controller - control response
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Figure 7.20: Turn manoeuvre with final controller - state response
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Figure 7.21: Turn manoeuvre with final controller - other outputs
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Figure 7.22: Turn manoeuvre with final controller - control response
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Figure 7.23: Sideslip manoeuvre with final controller - state response
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Figure 7.24: Sideslip manoeuvre with final controller - other outputs
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Figure 7.25: Sideslip manoeuvre with final controller - control response

Each manoeuvre displays good tracking of α, β and µ. Noise is not unduly

amplified by the controller.

In the pull manoeuvre, good tracking is achieved despite the large change in

Mach (see fig 7.12), which suggests the controller is not very sensitive to modelling

inaccuracies in making the polynomial model (which was made for M = 0.5). Note

that the system is actually outside the envelope for M < 0.3, around t = 7s. In

the push manoeuvre again good tracking is achieved, but this manoeuvre requires

the normal acceleration to drop below -3g, which is outside the envelope. The roll

manoeuvre shows good tracking and only very small induced sideslip (see fig 7.17).
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The turn manoeuvre shows slightly less good tracking of µ, but good tracking of

α (fig 7.20). Again, the induced sideslip is very small. Note, the turn manoeuvre

described in [148] requires a pilot model to adjust the control command to maintain

approximately constant altitude, which we did not do here.

The only manoeuvres during which any control surfaces saturate are the roll fig

7.19 and the turn fig 7.22. The left inner elevon saturates for around 0.5 sec near

the beginning of the roll, however this does not unduly effect performance or cause

instability. Right inner and outer elevons saturate for less than 0.5 sec during the

latter part of the turn manoeuvre. Again, this does not cause instability although

there is a degredation of the tracking error on µ. Note this is a very aggressive

manoeuvre that requires simultaneous commands on α and µ at the maximum rates.

During the sidelsip doublet, there is negligible induced change in angle of attack and

only small induced µ (around 2 deg) when the sideslip command changes.

Comparing Models - closed loop

The controller is defined by FL-TSS with the polynomial model, and was tuned by

applying this to ADMIRE. In the sequel, we want to give a robust stability analysis of

the closed loop, which requires using the polynomial model. The following simulation

results are to find out whether the closed loop behaviour of the polynomial is very

different to that of ADMIRE. µ and µ̇ are derived from the other plant states, hence

only α, β, pb, qb and rb are shown. Closed loop simulations with the controller

applied to the (Jacobian) linear model are also given for comparison.
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Figure 7.26: Comparison of pull-up manoeuvre state responses
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Figure 7.27: Comparison of push-over manoeuvre state responses
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Figure 7.28: Comparison of roll manoeuvre state responses

133



0 5 10

−10

0

10

20

α
(d

eg
)

0 5 10
−20

−10

0

10

20

β
(d

eg
)

0 5 10

−200

0

200

p
b

(d
eg

/s
)

0 5 10

−40

−20

0

20

40

t (s)

q b
(d

eg
/s

)

0 5 10

−40

−20

0

20

40

t (s)

r b
(d

eg
/s

)

 

 

ADMIRE
polynomial
linear

Figure 7.29: Comparison of turn manoeuvre state responses
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Figure 7.30: Comparison of sideslip manoeuvre state responses

In each manoeuvre, the closed loop using the polynomial model as the plant

agrees well with the case where the actual ADMIRE is used. There is particu-

larly close agreement between the polynomial model and ADMIRE for α, β and

pb. Agreement for qb is not quite so good in the pull manoeuvre, when the angle

of attack becomes large, and in the roll manoeuvre when pb is large. There is a

noticeable difference between the polynomial and ADMIRE body angle rates dur-

ing the latter part of the turn manoeuvre, when elevons saturate. However, overall

the polynomial model with the controller describes the closed-loop characteristics of

ADMIRE well. In all these manoeuvres, the JL model (from the bundled trimming

and linearisation routines) departs significantly from ADMIRE. As predicted, this
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is especially noticeable in the last 3 manoeuvres (figs 7.28-7.30), where all 3 axes are

perturbed. Agreement between the JL model and ADMIRE is better over a small

timescale, when only the longitudinal axis is perturbed (figs 7.26-7.27).

Overall, these comparisons suggest that the polynomial model can provide mean-

ingful stability analysis of the closed loop, particularly if we can guarantee that con-

trol surfaces do not saturate, although clearly we need some robustness guarantee

to account for modelling inaccuracy.

This discussion motivates the next section, where we search for a domain of

attraction (DA) of the origin of the closed-loop of ADMIRE, in which control surfaces

do not saturate.

7.1.5 Domain of Attraction and Saturation

In this section we perform some numerical simulations with various initial conditions,

in order to get an approximation of the domain of attraction (DA) of the closed loop

system when our controller is applied to ADMIRE.

The definition of a DA is given in [12] as follows:

Given the autonomous system

ẋ = f(x) (7.11)

suppose the state starts at x when t = 0 and trajectory φ(t, x) is the correspond-

ing solution of (7.11). If the origin x = 0 is stable, then the domain of attraction

(of the origin) is defined as the set of all initial conditions x such that the trajectory

φ(t, x) is defined for all t > 0 and limt→∞ φ(t, x) = 0 (i.e. the states asymptotically

approach zero).

The corresponding definition of a robust domain of attraction is that the condi-

tions stated above must hold for all allowed values of the uncertain parameters.

The following figures 7.31-7.35 show the DA of the closed-loop, using ADMIRE

as the plant. This includes sensors, actuators and rate and position limits. The

aim is to find initial conditions for α(0), β(0) and pb(0) from which the controller

recovers stability, i.e.
[

αc βc µc

]

= 0. This is done by gridding over initial values
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of α, β and pb and recording if the resulting response was stable and if saturation

of any control surface occurred. We also record whether the response stayed within

the envelope −12 < α < 24◦, −18 < β < 18◦, −3.6 < nz < 10.8g. This envelope is

actually 20% larger than that of the polynomial model, to allow for some overshoot

at the beginning of the response.

In figs 7.31-7.35, green points indicate initial conditions from which the response

stayed within the envelope described above and no saturation occurred. Orange

points are likewise, but with saturation of at least one control surface. In figs 7.33-

7.35 we give cross-sections for given initial values of β. The red points indicate

stability, but the envelope is exceeded. Black points indicate instability.

Figure 7.31: DA for the closed-loop. Green=stable, no saturation. Orange=stable,

but at least one control surface saturates.
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Figure 7.32: DA for the closed-loop. Green=stable, no saturation. Orange=stable,

but at least one control surface saturates.
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Figure 7.33: DA for the closed-loop, for β(0) = 0
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Figure 7.34: DA for the closed-loop, for β(0) = 15◦
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Figure 7.35: DA for the closed-loop, for β(0) = −15◦

In the sequel, we will analyse robust stability of the closed-loop, assuming the

plant can be given by the polynomial model with some TV parametric uncertainty.

We analyse stability and robust stability using an LFT/LDI representation of the

closed loop (similar to the representation used in previous chapters) and conservative

LMI conditions to find a DA and RDA. We will also guarantee no saturation for

initial conditions within the DA and RDA. The resulting conservative ellipsoidal

domains of attraction can be compared with 7.32.
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7.2 Closed-Loop Robust Stability Analysis

7.2.1 LFT Representation of the Uncertain Plant

The aim of this section is to provide a method for obtaining a domain of attraction

(DA) and robust domain of attraction (RDA) for an uncertain rational system,

controlled by FL-TSS. This will be applied to finding a RDA for the TSS controller

on the polynomial model of ADMIRE, within which we can guarantee that control

surfaces do not saturate.

Whereas the previous section used numerical simulations of the controller on

ADMIRE to approximate the DA, in this section we search for an ellipsoidal estimate

of the true DA using a quadratic Lyapunov function.

As stated in [12], a level set of a Lyapunov function provides an ellipsoidal inner

estimate of the true domain of attraction, and may be very conservative.

The other difference between this and the previous section is that the technique

used here requires that the closed-loop system admits an LFT representation, hence

the controller is applied not to ADMIRE, but to the polynomial model derived from

it.

Suppose a time-varying uncertain plant has the (non-unique) quasi-LPV repre-

sentation

ẋ(t) = Ã(x(t),Ψ(t))x(t) + G̃(x(t),Ψ(t))u(t) (7.12)

where Ψ ∈ R
nΨ is a vector of time-varying parameters representing parametric

uncertainty in the model. We assume that (x, u) = (0, 0) is an equilibrium of (7.12),

for all allowed values of Ψ(t).

We assume that the nΨ uncertain parameters are known a-priori to be bounded

and can be normalised in the form

Ψi(t) = Ψ̄i + siδΨi(t) (7.13)

where Ψ̄ is the nominal (or ’best guess’) value of Ψ, which is given by Ψ̄ =
Ψi,max+Ψi,min

2
.

The scaling constant is si =
Ψi,max−Ψi,min

2
. The normalised variation in each param-
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eter is δΨi(t), and we will assume these all have the bound |δΨi(t)| ≤ σ−1
w , where

σw > 0 is a real scalar constant.

The nominal plant is therefore given by

ẋ(t) = Ā(x(t), Ψ̄)x(t) + Ḡ(x(t), Ψ̄)u(t) (7.14)

Likewise, we make the a-priori assumption that each of the nk states that appears

in the QLPV matrices of (7.12) is bounded and can be written in the form

xk(t) = skδxk(t) (7.15)

where we have assumed that each state is bounded symmetrically around 0, such

that |δxk(t)| ≤ σ−1
p . Note, bounding states is a strong assumption to make and

needs to be verified in the later analysis. An important part of the later analysis is

therefore to verify the bound −skσ
−1
p < xk < skσ

−1
p or x2k < s2kσ

−2
p .

Assume the plant (7.12) admits an LFT, given by

ẋ = Ax+Buu+ Bpp+Bww (7.16a)

q = Cqx+Dquu+Dqpp (7.16b)

z = Czx+Dzuu+Dzpp+Dzww (7.16c)

where p = ∆pq, ‖∆p‖ ≤ σ−1
p , σp > 0 and similarly w = ∆wz, ‖∆w‖ ≤ σ−1

w , σw > 0.

∆p(δx(t)) contains the normalised variation in the states and ∆w(δΨ(t)) contains

the normalised variation in the uncertain parameters.

(7.16) with w, z = 0 is therefore an LFT representation of the nominal plant

(7.14) (no uncertainty).

In addition, the control input u to the plant is not the output of the controller,

but the output of the actuators (assumed LTI), described by

ξ̇ = Aξξ +Bξuc (7.17a)

u = Cξξ (7.17b)

where uc is the output of the controller and ξ is the actuator state vector.
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7.2.2 Representing the TSS Controller in LFT Form

An idealised representation of the nominal plant neglects the actuator and splits the

state vector into ’fast’ and ’slow’ parts: x =





η

Ω



 =





Cη

CΩ



 x where η is the slow

state vector (wind axis angles) and Ω is the fast state vector (body axis angular

rates).

Fast Subsystem The fast subsystem is an idealised model of the dynamics of

states Ω. The control input is assumed to be equal to the commanded control

signal, i.e. the actuator is neglected.

Ω̇ideal = CΩ(Ā(x, Ψ̄)x+ Ḡ(x, Ψ̄)uc) (7.18)

In LFT form

Ω̇ideal = A21η + A22Ω +G2uc +BΩpΩ (7.19a)

qΩ = CΩq





η

Ω



+DΩuuc +DΩppΩ (7.19b)

pΩ = ∆Ω(δx)qΩ (7.19c)

‖∆Ω‖ ≤ σ−1
p (7.19d)

Leading to

uc = −G†
2[A21η + A22Ω+BΩpΩ +K1(Ω− Ωc) +K2ε] (7.20)

where ε̇ = Ω− Ωc.

Slow Subsystem Neglecting the control effect on the slow dynamics and instead

treating the body angle rates as control inputs leads to:

η̇ideal = CηĀ(x, Ψ̄)





η

Ωc



 = Ā11(η, Ψ̄)η + Ā12(η, Ψ̄)Ωc (7.21)

Note: This step requires the crucial assumption that the slow dynamics are affine

in Ω, as well as the assumption that the fast states can be treated as control inputs

equal to their commanded values.
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In LFT form

η̇ideal = A11η + A12Ωc +Bηpη (7.22a)

qη = Cηqη +DηΩΩc +Dηppη (7.22b)

pη = ∆η(δη)qη (7.22c)

‖∆η‖ ≤ σ−1
p (7.22d)

Leading to

Ωc = −A†
12[A11η +Bηpη +K3(η − r) +K4ǫ] (7.23)

where ǫ̇ = η − r and r is the reference value of η.

The final controller is then given by substituting (7.23) into (7.20), associated

with the LFT fictitious feedback signals defined by (7.19b), (7.19c) and (7.22b),

(7.22c).

uc = −G†
2

[

A21η + (A22 +K1)Ω +BΩpΩ +K2ε . . .

. . .+K1A
†
12[A11η +Bηpη +K3(η − r) +K4ǫ]

] (7.24)

The system interconnection is illustrated in figure 7.36.

Figure 7.36: System interconnection for stability analysis in LFT form
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7.2.3 Closing the control loop

Given that we want to find a robust domain of attraction (RDA) for the closed

loop system, we set the external reference input r = 0 and close the control loop by

substituting the controller (7.24) into (7.19b) and (7.17a) and substitute (7.23) into

(7.22b). We also substitute the actuator output (7.17b) into the LFT equations of

the plant (7.16).

We get a closed-loop LFT system of the form

˙̄x = Ax̄+ Bp̄ (7.25a)

q̄ = Cx̄+Dp̄ (7.25b)

p̄ = ∆̄q̄ (7.25c)

where x̄ =
[

xT ξT εT ǫT
]T

, q̄ =
[

qT qTη qTΩ zT
]T

and p̄ =
[

pT pTη pTΩ wT

]T

and ∆̄ = diag(∆p,∆η,∆Ω,∆w).

Note, ∆p,∆η,∆Ω all have the same norm bound: σ−1
p . The norm bound on ∆w

is σ−1
w .

The closed-loop matrices in (7.25) are given below:

A =
















A BuCξ 0 0

−BξΦ Aξ −BξG
†
2K2 −BξG

†
2K1A

†
12K4

CΩ + A†
12(A11 +K3)Cη 0 0 A†

12K4

Cη 0 0 0

















(7.26)

B =
















Bp 0 0 Bw

0 −BξG
†
2K1A

†
12Bη −BξG

†
2BΩ 0

0 A†
12Bη 0 0

0 0 0 0

















(7.27)
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C =
















Cq DquCξ 0 0

[Cηq −DηΩA
†
12(A11 +K3)]Cη 0 0 −DηΩA

†
12K4

CΩq −DΩuΦ 0 −DΩuG
†
2K2 −DΩuG

†
2K1A

†
12K4

Cz DzuCξ 0 0

















(7.28)

D =
















Dqp 0 0 0

0 Dηp −DηΩA
†
12Bη 0 0

0 −DΩuG
†
2K1A

†
12Bη DΩp −DΩuG

†
2BΩ 0

Dzp 0 0 Dzw

















(7.29)

where

Φ = G†
2[CΩA +K1CΩ +K1A

†
12(A11 +K3)Cη] (7.30)

The matrices above represent the closed loop LFT, in feedback with with block

∆̄.

The final step we want to perform in deriving the closed loop system matrices is

a simple transformation of ∆̄, which reorders the entries on the diagonal of ∆̄ such

that like terms appear in a single block. Note that ∆p,∆η and ∆Ω may contain

entries on their diagonals that represent the same scalar variable, although in blocks

of different sizes. What we want to do is reorder the diagonal so that each scalar

variable appears in a single block. The reason for doing this is more clear when we

consider the quadratic forms that we will use to describe what we know about the

∆̄-block (we have a choice either to perform this transformation of the ∆̄-block or

to include off-diagonal blocks in our scaling matrices, otherwise the analysis will be

more conservative).

If we define ∆# = T ∆̄, where T is a simple invertible transformation matrix

such that like parameters appear in single diagonal blocks of ∆#, then our final

closed-loop is described by
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˙̄x = Ax̄+ BT −1p# (7.31)

q̄ = Cx̄+DT −1p# (7.32)

p# = ∆#q (7.33)

Now, ∆# = diag(∆1,∆w), where ∆1 belongs to the set

∆ := {diag(δ1Ik1, . . . , δlIkl) : ‖∆‖ ≤ σ−1
p , δi ∈ R}

where σp > 0 and ∆w belongs to a similar set, but with norm bound σ−1
w .

Writing the closed-loop ∆-block this way separates the ∆-block of the closed-loop

system into ∆1(δx(t)), which contains the normalised variation in the states, and

∆w(δΨ(t)) which contains the normalised variation in the uncertain time-varying

parameters, giving the extra terms that appear in the closed loop system dynamics

due to poor knowledge of the aerodynamic coefficients. Hence when ∆w(δΨ(t)) = 0,

we have the nominal closed loop, i.e. the closed loop dynamics we would obtain if

the aerodynamic coefficients were known exactly.

Note that for now, we are assuming |δxi(t)| ≤ σ−1
p . We aim to find a robust

domain of attraction for the closed loop system, the boundary of which will be a

level set of a quadratic Lyapunov function. In order for this to be rigorous, we have

to show that initial conditions on the level set satisfy |δxi(t)| ≤ σ−1
p .

Explicitly separating the ∆-block into these two parts allows us to investigate

the effect of increasing the size of the uncertainty on the size of the provable RDA,

by decreasing the value of σw. We can accomplish this by fixing a value for σw which

simultaneously sets a norm bound on the size of all the uncertain parameters, with

an iterative search over σp to increase the largest initial value of the states.

Given what we know about the structure of ∆#, we know that p# and q̄ are

related by the quadratic forms

p#TXSp# ≤ q̄TS q̄ (7.34)

p#TGq − q̄TGp# = 0 (7.35)
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where S and G belong to the sets [87]:

S :=
{

diag(S1, . . . , Sl) : 0 < Si ∈ R
ki×ki

}

G := {diag(G1, . . . , Gl) : Gi = −GT
i ∈ R

ki×ki}

respectively, similar to those used in chapters 3 and 5, and X is given by X =

diag(σ2
pI, σ

2
wInw

).

We now give a condition for the set

Ea := {x̄|x̄TP x̄ ≤ a} (7.36)

to be a robust domain of attraction for the uncertain closed-loop system (7.31), which

is a slight generalisation on work in [87] to the case of finding a robust domain of

attraction:

Theorem 3. If, for a given σp > 0 and σw > 0, ∃ P = P T > 0, S ∈ S and G ∈ G

such that




ATP + PA+ CTSC PBT −1 + CTSDT −1 + CTG

⋆ (DT −1)TSDT −1 − XS + (DT −1)TG − GDT −1



 < 0

(7.37)

simultaneously with nk inequalities of the form





1
a
s2kσ

−2
p ek

⋆ P



 > 0 (7.38)

hold, then the set Ea (7.36) is a robust domain of attraction for the closed-loop system

(7.31) under approximate FL-TSS and the LFT is well-posed. Note, ek is a row of

the identity matrix of appropriate size, that each state that appears in the QLPV

state matrices of the plant is can be given by xk = ekx̄.

Proof. LMI (7.37) shows that V (x̄) = x̄TP x̄ is a Lyapunov function for the closed-

loop, under the assumption that each state xk that appears on the QLPV matrices

of (7.12) is bounded by x2k < s2kσ
−2
p , as described in (7.15). This follows from [87]

and is just a zero-input version of lemma 2 in chapter 5.
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Now, by Schur complement (see Appendix D), each LMI (7.38) is equivalent to

P > 0 and

P − eTk
a

s2kσ
−2
p

ek > 0 (7.39)

x̄TP x̄− x̄T eTk
a

s2kσ
−2
p

ekx̄ > 0 (7.40)

1

a
x̄TP x̄−

1

s2kσ
−2
p

x̄2k > 0 (7.41)

x̄2k < s2kσ
−2
p

1

a
x̄TP x̄ (7.42)

Hence x̄2k < s2kσ
−2
p if x̄TP x̄ ≤ a, which verifies the bound described in (7.15), for

values of x̄ in Ea. If the closed-loop system (7.31) has initial conditions that lie in

Ea, then Ea contains all future trajectories because (7.37) guarantees that V̇ < 0 for

all allowed values of Ψ(t). Ea is therefore a robust domain of attraction for (7.31).

Proof of well-posedness follows from [87] (see also appendix A)

If Theorem 3 is satisfied, then we can conclude that the system is robustly stable

under FL-TSS control, despite the fact that FL-TSS is only performed approxi-

mately, due to time-varying parametric uncertainty and the fact that the slow/fast

subsystems used for control design are only approximate, idealised models of the

plant dynamics.

Corollary - Output bounds and actuator position limits

Given a single output z = Czx̄ (where Cz is a row vector) of the closed-loop

system, we can also bound the magnitude of z, using LMIs similar to (7.38). If the

LMIs in Theorem 3 are feasible, together with





1
a
z2max Cz

⋆ P



 > 0 (7.43)

then, following a proof similar to the one given above, |z(t)| < zmax in Ea.

As the actuator states ξ are states of the closed-loop system, this allows us to

verify that actuator position limits are obeyed in Ea.

This was noted in [87] for the case of state feedback control of the form u = Kx.

Explicitly including the actuator dynamics in the closed loop LFT matrices allows
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us to verify that control surfaces do not saturate for the FL-TSS controller proposed

here.

7.2.4 Application to ADMIRE and Robust Domain of At-

traction

This section aims to assess the robust stability of the polynomial model of ADMIRE

found in chapter 6, under the FL-TSS control designed in the previous section.

We first write the polynomial model of ADMIRE (6.9) and (7.7) in a control-

affine form of (7.14), which has state vector

x =
[

α̃ β µ pb qb rb

]T

,

using standard rational approximations to the trigonometric functions in (7.7)

and control vector

u =
[

δn δei δey δai δay δr

]T

This is given in appendix F.

As we want to assess robust stability, we describe the plant as a system with

parametric uncertainty (7.12), where we allow independent uncertainty on each row

of the state equations. We have independent time-varying uncertainties:

Ψ(t) =
[

Ψ1(t) Ψ2(t) Ψ3(t) Ψ4(t) Ψ5(t) Ψ6(t)
]T

(7.44)

and write the uncertain plant as

ẋ(t) = Z(Ā(x(t))x(t) + Ḡ(x(t))u(t)) (7.45)

with

Z = diag(Ψ1(t),Ψ2(t),Ψ3(t),Ψ4(t),Ψ5(t),Ψ6(t)) (7.46)

Ψ is normalised such that

Ψ̄ =
[

1 1 1 1 1 1
]T

,

Ψ1−3 have min/max values 1±0.1 and Ψ4−6 have min/max values 1±0.5. Hence,

we have a greater level of uncertainty (50%) on the body axis roll accelerations than

on the wind axis angular rates (10%).
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Note that α̃, β, pb, qb and rb all appear in the QLPV state matrices (in appendix

F), hence these elements on the state matrices need to be normalised. We normalise

these such that their nominal values are zero and

α̃ ∈ [−13.5, 13.5◦] (7.47)

β ∈ [−15, 15◦] (7.48)

pb ∈ [−100, 100◦/s] (7.49)

qb ∈ [−50, 50◦/s] (7.50)

rb ∈ [−50, 50◦/s] (7.51)

Note, given that the trim value of α is approximately 3.5◦ at Mach 0.5 and

altitude 4000 m, the symmetrical normalisation around zero of α̃ actually allows for

an asymmetrical variation of α ∈ [−10, 17◦].

Following this, we find LFTs for the perturbed plant described above and for

the idealised fast and slow subsystems, as described by (7.19) and (7.22), using the

LFR Toolbox [13]. Note that for the slow subsystem, we neglect the control effect.

The resulting ∆-blocks are given below:

∆p = diag(δαI8, δβI10, δpb, δqbI2, δrb) (7.52a)

∆w = diag(δΨ1, δΨ2, δΨ3, δΨ4, δΨ5, δΨ6) (7.52b)

∆η = diag(δαI3, δβI5) (7.52c)

∆Ω = diag(δαI4, δβI3, δpb, δqbI2, δrb) (7.52d)

Note, the length of ∆p ∈ R
22×22 (the ∆-block of the nominal plant) is longer than

that of diag(∆η,∆Ω) ∈ R
19×19 (the ∆-block of the controller), because the latter is

based on an idealised model that neglects the control effect on the slow states and

hence includes fewer nonlinear terms.

The control surface variables do not appear in any of (7.52), because the system

is (modelled as) control-affine. Likewise, δpb, δqb and δrb do not appear in ∆η,

because the slow subsystem is (modelled as) affine in the fast states Ω.
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Next, we describe the LFT of the closed-loop system with zero reference input in

terms of the original plant and idealised subsystem matrices, and the control gains

found in the previous section, as described in (7.26)-(7.29).

We then transform the closed-loop ∆̄ to put like terms in single diagonal blocks,

resulting in a closed-loop LFT for robust stability anaysis as in (7.31). The closed-

loop LFT state matrix is given in appendix G, as are the Lyapunov matrix results.

The closed loop system has 15 states x̄: 6 from the original plant model x, 6

from the actuators ξ, and 3 ǫ are the integral tracking errors on the slow states (we

set K2 = 0 in the previous section, so there is no integral tracking error state ε for

the fast states):

x̄ =
[

xT ξT ǫT
]T

.

We apply Theorem 3 to the closed loop, together with 6 LMIs of the form (7.43),

to verify that each control surface is below 25◦, to avoid saturation. Note, each

row vector Cz in (7.43) is a row of the control transformation matrix T , given in

appendix E (we do not need to use the second row of T as well as the first, as we

have chosen only to use symmetric canard deflection δrc = δlc).

As the Lyapunov matrix P is a variable, we arbitrarily set a = 1 in (7.38) and

(7.43).

We minimise trace(P ), subject to the conditions of Theorem 3, in order to in-

crease the size of the ellipsoid Ea by maximising its semi-axes lengths. This is a

convex minimisation problem [86].
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7.2.5 RDA Results

Initially, we set σ2
w = 1 and iteratively find the smallest value of σ2

p such that

the LMI problem is feasible, with the maximum size of uncertainty in the plant

model described earlier. The ellipsoidal RDAs shown in figures 7.37 and 7.38 are

respectively for intial conditions α̃(0), β(0), pb(0) (other initial states zero) and for

longitudinal-only initial conditions α̃(0), qb(0) (other initial states zero).
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Next, in order to investigate the effect of decreasing the size of the parametric

uncertainty on the size of RDA we can get, we set σ2
w = 4 and again iteratively find

the smallest possible value of σ2
p. Note, this time we can get a smaller σ2

p and a

correspondingly larger RDA, which is shown in figures 7.39 and 7.40.
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Finally, in order to find a DA with no uncertainty in the model, we truncate the

LFT matrices to eliminate the block ∆w completely, which is shown in figures 7.41

and 7.42. Note we find a yet smaller value of σ2
p and a correspondingly larger DA.

However, this DA only applies to the nominal model with our FL-TSS controller.

−4
−2

0
2

4

−5

0

5
−30

−20

−10

0

10

20

30

α̃ (deg)

Level Set V (α̃, β, pb, 0) = 1

β (deg)

p
b

(d
eg

/s
)

Figure 7.41: DA for the closed-loop, for σ2
p = 9.73

158



α̃ (deg)

q b
(d

eg
/s

)

Level Set V (α̃, qb, 0) = 1

−4 −3 −2 −1 0 1 2 3 4

−15

−10

−5

0

5

10

15

Figure 7.42: Longitudinal DA for the closed-loop, for σ2
p = 9.73

7.3 Concluding Remarks

In this chapter we have designed a FL-TSS controller that achieves approximate

input-output linearisation for the short-period dynamics of ADMIRE. The controller

was tuned using a genetic algorithm that optimises the performance of the system

in a series of aggressive manoeuvres.

The most important part of this chapter is that we have developed a technique

for analysing robust stability of a nonlinear rational system under FL-TSS control,

with time-varying uncertainty. We find a robust domain of attraction for the closed

loop system. For initial conditions in the RDA, we can guarantee that actuator

position limits are not violated, and that the a-priori bounds set on part of the

state vector hold, hence the analysis is rigorous. This has been applied to the

ADMIRE benchmark model and we have investigated the effect of changing the
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size of uncertainty on the plant model due to poor knowledge of the aerodynamic

coefficients.

However, the domains of attraction found are fairly small and do not cover the

entire allowed envelope, as the analysis is very conservative. We have only been

able to search for quadratic Lyapunov functions to prove closed loop stability using

the analysis outlined here; in general, a Lyapunov function for a nonlinear system

does not have to be quadratic. More recent sum-of-squares techniques [183] [184]

may be a fruitful method of reducing conservatism, as they are able to search for

higher-order Lyapunov functions.

The analysis presented here is also conservative in that it does not set a bound on

the rate of variation of parameters on the ∆-block. The IQC methodology [156] [147]

provides a way of setting a-priori bounds on parameter rates, which may reduce

conservatism, together with a bank of quadratic forms to represent other ∆-block

descriptions.

Our analysis here also does not guarantee that actuator rates are not violated,

hence extensive simulation is still an important tool in analysis. Although we did

not include sensors in the analysis in this chapter, they can in principle be included

as LTI blocks in the closed loop LFT matrices.
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Chapter 8

Conclusions and Future Research

This thesis has investigated methods for providing robust stability guarantees for

uncertain nonlinear systems controlled using feedback linearisation/ dynamic inver-

sion. Since feedback linearisation was first proposed as a control technique, it has

undergone a surge in popularity, particularly in the field of aerospace.

Although there has been a huge amount of research on FL, dealing with systems

that are uncertain or include external disturbances, rigorous robust stability guaran-

tees have not been found. The literature on FL, whether in aerospace or otherwise,

has tended to focus on linear methods of robust stability analysis, which are not

rigorous for nonlinear systems, or on simulation to assess robustness.

In this thesis, we have successfully applied a combination of robust and nonlinear

systems analysis for rational systems in order to provide robust stability guarantees

for the closed loop. This is the first time these techniques have been applied to FL

systems, as there has been very little overlap between the field of FL research and

the field of robust and nonlinear systems analysis.

We have been able to assess robust stability of the closed loop in the case where

not all states are available for feedback, using LMI filter synthesis to estimate un-

known states and conservative LMI conditions to assess robust stability of the closed

loop.

With ADMIRE, we have first applied dynamic inversion to an LPV model of the

system, in order to assess robust stability over the whole flight envelope. As usual
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with dynamic inversion, the controller was designed on the assumption that it has

access to all the states, however in practice only sensed values are available. We have

been able to assess robust stability of the LPV model, including sensor and actuator

dynamics in the loop and time-varying parametric uncertainty that represents poor

knowledge of the aerodynamic force and moment coefficients, something which is

usually assessed in the literature by simulation alone or by using linear techniques.

The latter part of the thesis has dealt with obtaining a nonlinear polynomial

model of ADMIRE which better represents the system than the LPV model. It

has been shown that this model closely matches the actual dynamics of ADMIRE

and in particular is far better than a linear model in cases where all three axes are

perturbed. Feedback linearisation has been applied to this model in order to assess

robust closed loop stability. Of particular interest is the fact that we have been able

to find a robust domain of attraction for the closed loop. This provides a region

of safe initial conditions wthin which we can guarantee that the system is stable.

Additionally, we are able to guarantee that the actuators do not saturate within the

domain of attraction, which makes our robust stability analysis more rigorous.

Although we have been able to find LMI methods to analyse robust stability,

these are conservative methods. The techniques presented in this thesis do not set

a bound a-priori on the rate of variation of parameters that appear on the ∆-block,

though in reality uncertainties and parameters such as Mach and Altitude could be

considered as slowly time-varying, when considering short period dynamics. Also, we

have only searched for quadratic Lyapunov functions for rational nonlinear systems,

which increases the conservativeness of the analysis.

We have been able to obtain rigorous robust stability analyses for system models

under approximate feedback linearisation, in the presence of time-varying uncer-

tainty, actuator dynamics and output feedback either via sensors or via state esti-

mation using a filter. In addition, we have been able to make the stability analysis

more rigorous by finding a RDA within which we can guarantee that actuators do

not saturate. Analysis has been applied to both LPV models and quasi-LPV models

of rational nonlinear systems. These have been so far missing from the literature on
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FL.

However, the work on proving robust quadratic stability in the previous chapter

applies to a polynomial model, not to the ADMIRE itself. More importantly, none

of the analyses presented here should be considered as replacement for extensive

simulation and real-world testing. All of our analyses apply to approximate mathe-

matical models of nonlinear systems, rather than the actual system itself, hence any

rigorous robust stability guarantees obtained apply to the model, rather than to a

real-world application. Not only that, but the analyses presented here are not suf-

ficient to guarantee good performance of the closed loop to all design requirements,

and are mainly aimed at robust stability.

Hence, there are several directions that future research can take:

• Reducing conservativeness of the analysis.

• Accounting for other types of nonlinearity

• Rate as well as position limits of actuators

• Improving robust performance guarantees

• Improving state estimation (observer) design in connection with FL
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Appendix A

Linear Fractional Transformation

and well-posedness

A linear fractional transformation (LFT) may be used to represent a system as a

mapping from x to ẋ. The linear fractional transformation (LFT) matrix function

is given by [126] :

Fu(M,∆) :=M22 +M21∆(I −M11∆)−1M12 (upper LFT) (A.1)

Fl(M,∆) :=M11 +M12∆(I −M22∆)−1M21 (lower LFT) (A.2)

where M is a partitioned matrix:

M =





M11 M12

M21 M22



 (A.3)

An LFT is well-posed, provided the inverse term is well-defined, i.e.

det
(

I −M11/22∆
)

6= 0 (A.4)

From now on, we will only be concerned with lower LFTs, unless otherwise stated.

Define the system matrix:

H =





A B

C D



 (A.5)
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Where the system is in the form:

ẋ = Ax+Bp (A.6a)

q = Cx+Dp (A.6b)

p = ∆q (A.6c)

so that:

Ax contains the terms linear in the states and Bp is used to describe the nonlinear

and parameter-varying terms. ∆ is a diagonal matrix. The terms on the diagonal

are the states in which the system is nonlinear, and the time-varying parameters.

If the system can be written in the form (A.6), then it can be written as the

(lower) LFT of H , with a block ∆, where ∆ contains all the nonlinear and/or time-

varying terms:

ẋ = Fl(H,∆)x =
(

A+B∆(I −D∆)−1C
)

x (A.7)

This represents an LTI block H , with fictitious inputs and outputs p and q, where

p and q are connected by feedback with ∆.

Well-Posedness If ∃S ∈ S and G ∈ G such that

pT (DTSD − σ2S +DTG−GD)p < 0 (A.8)

then the LDI (and hence the LFT) is well-posed for all ∆(t) ∈ ∆ with ‖∆‖ ≤ σ−1,

i.e. det(I −D∆) 6= 0.

Proof

Assume the LDI is not well-posed, i.e. ∃x = 0, q 6= 0 such that (I −D∆)q = 0,

with q = Dp.
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Then (A.8) becomes

pTDTSDp− σ2pTSp+ pTDTGp− pTGDp

= qTSq − σ2pTSp+ qTGp− pTGq, (∵ Dp = q)

= qTSq − σ2(∆q)TS∆q + qTG∆q − (∆q)TGq, (∵ p = ∆q)

= qTSq − σ2qT∆TS∆q + qTG∆q − qT∆TGq

= qTSq − σ2qT∆S∆q + qTG∆q − qT∆Gq, (∵ ∆ is symmetric )

= qTSq − σ2qT∆2Sq + qT∆Gq − qT∆Gq, (∵ ∆ commutes with S and G)

= qTSq − σ2qT∆2Sq < 0

where the fact that ∆ commutes with both S and G follows from the fact that they

are all block diagonal, where each block of ∆ is a repeated scalar, of the same size

as each block of both S and G.

The inequality above implies I < σ2∆2 ⇒ λmax(∆
2) > σ−2 ⇒ ‖∆‖ > σ−1, which

is a contradiction. Hence the LDI is well-posed.
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Appendix B

S-Procedure

Here we introduce the S-procedure for quadratic forms [86]. The S-procedure is a

means of combining several inequalities on quadratic functions into one inequality.

This is used in the next section, where we have an LMI condition to show quadratic

stability, and another LMI representing the constraint on the ∆ block. Using the

S-procedure, we can combine these to form one LMI proving quadratic stability of

the system, subject to the constraint on ∆. The S-procedure for quadratic forms is

as follows [86] :

Suppose we have the quadratic forms

zTT0z > 0, z 6= 0, such that zTTiz > 0, i = 1, ...p (B.1)

where

T0, ..., Tp are symmetric matrices (B.2)

then, if ∃ τ1 > 0, ..., τp > 0 such that

T0 −

p
∑

i=1

τiTi > 0 (B.3)

then (B.1) holds. This is generally just a sufficient condition for feasibility of the

LMI system. However, when p = 1, the converse also holds [86] (this is called the

lossless S-procedure).
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Appendix C

Observer Synthesis

The purpose of this note is to present a synthesis method for a robust nonlinear

observer for a nonlinear, uncertain system which can be represented in quasi-LPV

form and show that this leads to a BMI.

The observer is the nonlinear analogue of a Luenberger observer; essentially it

is a copy of the form of the plant, plus a residual term. The gain on this residual

term, H , is the design variable.

We try to design H such that the (robust) L2 gain from a known exogenous input

to the performance output (error in the states we need to estimate) is minimised.

L2 Gain

Assume ∃ V (η) = ηTPη > 0 such that:

d

dt
V (η(t)) + e(t)T e(t)− γ2u(t)Tu(t) < 0 (C.1)

Then integrating from t = 0 to t = T gives:

V (η(t))− V (η(0)) +

∫ T

0

e(t)T e(t) dt− γ2
∫ T

0

u(t)Tu(t) dt < 0 (C.2)

If V (η(t))−V (η(0)) > 0, which is clearly the case if η(0) = 0, then this implies that:

‖e‖2
‖u‖2

< γ (C.3)

i.e. the L2 gain from exogenous input u to estimation error e has upper bound γ.

168



Form of plant and observer

Suppose the plant is nonlinear, of the form

ẋ = f(x, θ) + g(x, θ)u (C.4a)

y = Cyx (C.4b)

where x ∈ R
n are the plant states, y ∈ R

ny are measured outputs, u ∈ R
nu are

control inputs and θ is a vector of uncertain parameters that are not available to

the observer.

Assume this system admits the the quasi-LPV form




ẋ

y



 =





A(x, θ) B(x, θ)

Cy 0ny×nu









x

u



 (C.5)

and suppose this in turn can be written in the LFT form, similar to the precedure

used in earlier chapters:

ẋ = Ax+Buu+Bpp (C.6a)

q = Cqx+Dquu+Dqpp (C.6b)

y = Cyx (C.6c)

p = ∆(x, θ)q, ‖∆‖ ≤ σ−1 (C.6d)

Suppose we want to design a nonlinear observer for this plant. It is standard

practice [128] for the observer to have the same form as the plant, but perturbed

by the difference between the estimated output ŷ and the actual measured output

y (residual):

˙̂x = f̂(x̂) + ĝ(x̂)u+H [ŷ − y] (C.7a)

ŷ = Cyx̂ (C.7b)

this leads to the observer having a similar LFT form to the plant:

˙̂x = −HCyx+ [Â+HCy]x̂+ B̂uu+ B̂pp̂ (C.8a)

q̂ = Ĉqx̂+ D̂quu+ D̂qpp̂ (C.8b)

ŷ = Cyx̂ (C.8c)

p̂ = ∆̂(x̂)q̂, ‖∆̂‖ ≤ σ−1 (C.8d)
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where H ∈ R
n×ny ”observer gain” is to be determined.

Note this is more complicated than the linear case. For a linear plant and

observer we would be able to consider the error dynamics alone. This doesn’t work

if either the plant or the observer are nonlinear, because f(x̂)− f(x) 6= f(x̂− x).

The plant augmented with the observer is given by:




ẋ

˙̂x



 =





A 0

−HCy Â +HCy









x

x̂



+





Bu

B̂u



 u+





Bp 0

0 B̂p









p

p̂



 (C.9)

Or:

η̇ = Āη + B̄uu+ B̄pp̄ (C.10)

in feedback with




q

q̂



 =





Cq 0

0 Ĉq









x

x̂



+





Dqu

D̂qu



u+





Dqp 0

0 D̂qp









p

p̂



 (C.11)

Or:

q̄ = C̄qη + D̄quu+ D̄qpp̄ (C.12)

Via the block:




p

p̂



 =





∆(x, θ) 0

0 ∆̂(x̂)









q

q̂



 , or p̄ = ∆̄(x, x̂, θ)q̄ (C.13)

If we define the output of the augmented system to be the estimation error e, then

this is given by:

e = Lx̂− Lx =
[

−L L
]





x

x̂



 =: L̄η (C.14)

So if the objective is to estimate all of the plant states, then we would take L = In.

Now say we want to find the observer gain matrix H that minimises the L2 gain

from the plant input u to the performance output e.

Setting ξ :=
[

xT x̂T uT pT p̂T
]T

, (C.1) holds if ∃ P ∈ R
2n×2n > 0 and γ > 0

such that ξTXP ξ < 0 where P :=





P1 P3

⋆ P2



 > 0, Pi ∈ R
n×n and:

XP :=











ĀTP + PĀ+ L̄T L̄ P B̄u PB̄p

B̄T
u P −γ2Inu

0nu×2np

B̄T
p P 0np×nu

02np×2np











2n

nu

2np

< 0 (C.15)
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Scaling matrices

The scaling matrices for a block-diagonal ∆-block comprising blocks of real scalars

has been discussed in previous chapters.

From p̄ = ∆̄q̄ and ‖∆̄‖ ≤ σ−1 we get

p̄T S̄p̄ ≤ σ−2q̄T S̄q̄, S̄i > 0 (C.16)

(if we have the relations pTSp ≤ σ−2qTSq, Si > 0 for the plant and p̂T Ŝp̂ ≤

σ−2q̂T Ŝq̂, Ŝi > 0 for the observer, then (C.16) above applies, where S̄ = diag(S, Ŝ)

) which leads to ξTXSξ ≤ 0, where

XS := −











C̄T
q S̄C̄q C̄T

q S̄D̄qu C̄T
q S̄D̄qp

D̄T
quS̄C̄q D̄T

quS̄D̄qu D̄T
quS̄D̄qp

D̄T
qpS̄C̄q D̄T

qpS̄D̄qu D̄T
qpS̄D̄qp − σ2S̄











≤ 0 (C.17)

Using the fact that signals are real (with a similar argument for combining the

plant and observer scaling matrices as above, Ḡ = diag(G, Ĝ)):

p̄T Ḡq̄ − q̄T Ḡp̄ = 0, Gi = −GT
i (C.18)

which leads to ξTXGξ = 0, where

XG :=











0n×n 0n×nu
−C̄T

q Ḡ

0nu×n 0nu×nu
−D̄T

quḠ

ḠC̄q ḠD̄qu ḠD̄qp − D̄T
qpḠ











(C.19)

Combining all three quadratic forms using the S-procedure leads to ξTZξ < 0,

where Z < 0 is the large BMI (C.20) on the next page.

The variables are blocks of the Lyapunov matrix: P1, P2 and P3 ∈ R
n×n, where

P =





P1 P3

⋆ P2



 > 0; the observer gain matrix H ∈ R
n×ny ; the square of the L2 gain,

γ2 > 0 and the scaling matrices S ∈ S and G ∈ G.

We assume σ2 is fixed (we assume that the LFT of the plant and observer is

normalised such that σ2 = 1). The objective is to find H that minimises γ2.
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Z :=























ATP1 + P1A− P3HCy − CT
y H

TP T
3 + LTL+ CT

q SCq ATP3 + P3Â + P3HCy − CT
y H

TP2 − LTL P1Bu + P3B̂u + CT
q SDqu P1Bp + CT

q SDqp + CT
q G P3B̂p

⋆ ÂTP2 + P2Â+ P2HCy + CT
y H

TP2 + LTL+ ĈT
q ŜĈq P T

3 Bu + P2B̂u + ĈT
q ŜD̂qu P T

3 Bp P2B̂p + ĈT
q ŜD̂qp + ĈT

q Ĝ

⋆ ⋆ DT
quSDqu + D̂T

quŜD̂qu − γ2Inu
DT

quSDqp +DT
quG D̂T

quŜD̂qp + D̂T
quĜ

⋆ ⋆ ⋆ DT
qpSDqp − σ2S +DT

qpG−GDqp 0np×np

⋆ ⋆ ⋆ ⋆ D̂T
qpŜD̂qp − σ2Ŝ + D̂T

qpĜ− ĜD̂qp























(C.20)
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It can be seen that Z < 0 is a bilinear matrix inequality.

If we restrict the structure of the Lyapunov matrix to be block diagonal, i.e.

P3 = 0n×n, then this can be made an LMI by setting Y := P2H ∈ R
n×ny . We can

recover the original variable H = P−1
2 Y , assuming P2 is invertible. By the definition

of the Lyapunov matrix P > 0, we should also have P2 > 0, so it will be invertible.

Restricting the structure of the Lyapunov matrix introduces more conservatism.

If we set H first, calculating it by some other method, then clearly this is an

LMI so standard tools can be used [143]. In that case, the LMI (C.20) would be

simply to show robust stability of the augmented plant and is not for the observer

synthesis.

Derivation of the large BMI (C.20)

From the definition of L2 gain (C.15) Upper left block of (C.15):

PĀ =





P1 P3

P T
3 P2









A 0n×n

−HCy Â+HCy





=





P1A− P3HCy P3Â+ P3HCy

P T
3 A− P2HCy P2Â+ P2HCy





(C.21)

plus transpose terms:

ĀTP =





AT −CT
y H

T

0n×n ÂT + CT
y H

T









P1 P3

P T
3 P2





=





ATP1 − CT
y H

TP T
3 ATP3 − CT

y H
TP2

ÂTP T
3 + CT

y H
TP T

3 ÂTP2 + CT
y H

TP2





(C.22)

L̄T L̄ =





−LT

LT





[

−L L
]

=





LTL −LTL

−LTL LTL



 (C.23)

(1,2) block of (C.15)

PB̄u =





P1 P3

P T
3 P2









Bu

B̂u



 =





P1Bu + P3B̂u

P T
3 Bu + P2B̂u



 (C.24)
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(1,3) block of (C.15)

PB̄p =





P1 P3

P T
3 P2









Bp 0

0 B̂p



 =





P1Bp P3B̂p

P T
3 Bp P2B̂p



 (C.25)

From (C.17) (S scaling) The (1,1) block of (C.17):

C̄T
q S̄C̄q =





CT
q 0

0 ĈT
q









S 0

0 Ŝ









Cq 0

0 Ĉq



 =





CT
q SCq 0

0 ĈT
q ŜĈq



 (C.26)

The (1,2) block:

C̄T
q S̄D̄qu =





CT
q 0

0 ĈT
q









S 0

0 Ŝ









Dqu

D̂qu



 =





CT
q SDqu

ĈT
q ŜD̂qu



 (C.27)

The (1,3) block:

C̄T
q S̄D̄qp =





CT
q 0

0 ĈT
q









S 0

0 Ŝ









Dqp 0

0 D̂qp



 =





CT
q SDqp 0

0 ĈT
q ŜD̂qp



 (C.28)

The (2,2) block:

D̄T
quS̄D̄qu =

[

DT
qu D̂T

qu

]





S 0

0 Ŝ









Dqu

D̂qu



 = DT
quSDqu + D̂T

quŜD̂qu (C.29)

The (2,3) block:

D̄T
quS̄D̄qp =

[

DT
qu D̂T

qu

]





S 0

0 Ŝ









Dqp 0

0 D̂qp



 =
[

DT
quSDqp D̂T

quŜD̂qp

]

(C.30)

The (3,3) block:

D̄T
qpS̄D̄qp − σ2S̄ =





DT
qp 0

0 D̂T
qp









S 0

0 Ŝ









Dqp 0

0 D̂qp



−





σ2S 0

0 σ2Ŝ





=





DT
qpSDqp − σ2S 0

0 D̂T
qpŜD̂qp − σ2Ŝ





(C.31)
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From (C.19) (G scaling): the (1,1), (1,2) and (2,2) blocks are zeros.

The (1,3) block of (C.19):

C̄T
q Ḡ =





CT
q 0

0 ĈT
q









G 0

0 Ĝ



 =





CT
q G 0

0 ĈT
q Ĝ



 (C.32)

The (2,3) block:

D̄T
quḠ =

[

DT
qu D̂T

qu

]





G 0

0 Ĝ



 =
[

DT
quG D̂T

quĜ
]

(C.33)

The (3,3) block:

D̄T
qpḠ− ḠD̄qp =





DT
qp 0

0 D̂T
qp









G 0

0 Ĝ



−





G 0

0 Ĝ









Dqp 0

0 D̂qp





=





DT
qpG−GDqp 0

0 D̂T
qpĜ− ĜD̂qp





(C.34)
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Appendix D

Schur Complement Lemma

The Schur complement lemma is given [185], and can be used to transform some

non-affine matrix inequalities into equivalent affine ones.

Schur complement





Q S

ST R



 < 0 iff
Q < 0 and R− STQ−1S < 0

R < 0 and Q− SR−1ST < 0
(D.1)

176



Appendix E

ADMIRE control transformation

ADMIRE control surface deflections defined in table 4.2:

uADM =
[

δrc δlc δroe δrie δlie δloe δr

]T

, δrc = δlc

These are transformed into the commonly-used symmetric/ asymmetric controls:

u =
[

δn δei δey δai δay δr

]T

using uADM = Tu and u = T#uADM

where

T# =
1

2





























1 1 0 0 0 0 0

0 0 0 1 1 0 0

0 0 1 0 0 1 0

0 0 0 1 −1 0 0

0 0 1 0 0 −1 0

0 0 0 0 0 0 2





























(E.1)

T =



































1 0 0 0 0 0

1 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 0 −1 0 0

0 0 1 0 −1 0

0 0 0 0 0 1



































(E.2)
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Appendix F

Polynomial model of ADMIRE short-period

dynamics in control-affine form

x =
[

α̃ β µ pb qb rb

]T
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f(x) =




























−1.0768α̃+ 0.9728qb − 0.95208βpb

−0.2438β + 0.0609pb − 0.9893rb + 0.058055α̃β + 0.95075α̃pb + 0.021665βqb − 0.26768α̃rb

pb(1− 0.5(α̃ + αtrim)
2)(1− 0.5β2) + qbβ + rb(α̃ + αtrim)(1− 0.5β2)

−23.613β − 2.0784pb + 0.5423rb − 130.28α̃β − 3.8229α̃pb − 13.793βqb − 5.0752α̃rb + 0.10389pbqb − 2.2525qbrb

9.1771α̃− 1.079qb + 0.28991βpb − 0.2791α̃qb + 0.15552βrb + 1.052pbrb + 5.9292α̃2 − 30.32α̃3 − 0.033186pb
2 − 0.074713rb

2

1.7719β − 0.1217pb − 0.416rb − 6.4015α̃β − 0.78091α̃pb − 1.5148βqb + 0.37012α̃rb − 0.62512pbqb − 0.36707qbrb





























(F.1)

A(x) =




























−1.0768 0 0 −0.95208β 0.9728 0

0 −0.2438 + 0.058055α̃ 0 0.0609 + 0.95075α̃ 0.021665β −0.9893− 0.26768α̃

0 0 0 (1− 0.5(α̃ + αtrim)
2)(1− 0.5β2) β (α̃ + αtrim)(1− 0.5β2)

0 −23.613− 130.28α̃ 0 −2.0784− 3.8229α̃+ 0.10389qb −13.793β 0.5423− 5.0752α̃− 2.2525qb

9.1771 + 5.9292α̃− 30.32α̃2 0 0 0.28991β + 1.052rb − 0.033186pb −1.079− 0.2791α̃ 0.15552β − 0.074713rb

0 1.7719− 6.4015α̃ 0 −0.1217− 0.78091α̃− 0.62512qb −1.5148β −0.416 + 0.37012α̃− 0.36707qb





























(F.2)

u =
[

δn δei δey δai δay δr

]T
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G(α̃, β) =




























−0.0126 + 0.0089154α̃ −0.2264 + 0.055501α̃ −0.1361 + 0.11199α̃ 0.34806β 0.022782β 0.03423β

−0.023841β −0.020724β 0.0043252β 0.0383− 0.45514α̃ 0.0077− 0.19667α̃ 0.0666− 0.45611α̃

0 0 0 0 0 0

−10.674β −20.065β −15.582β −20.693− 17.275α̃ −23.706− 25.901α̃ 5.236− 7.9192α̃

5.6652 + 2.2686α̃ −8.7692 + 0.064492α̃ −5.3918 + 2.9578α̃ 0.17627β 0.17224β 0.25352β

1.5842β −1.4258β −1.1976β −2.7575 + 0.48663α̃ −1.1538− 1.039α̃ −4.2585 + 0.38327α̃





























(F.3)
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Appendix G

LFT matrices and LMI matrix

variables

LFT state matrix of the closed loop A =


















































































−1.08 0 0 0 0.973 0 −0.0126 −0.226 −0.136 0 0 0 0 0 0

0 −0.244 0 0.0609 0 −0.989 0 0 0 0.0383 0.0077 0.0666 0 0 0

0 0 0 0.998 0 0.0608 0 0 0 0 0 0 0 0 0

0 −23.6 0 −2.08 0 0.542 0 0 0 −20.7 −23.7 5.24 0 0 0

9.18 0 0 0 −1.08 0 5.67 −8.77 −5.39 0 0 0 0 0 0

0 1.77 0 −0.122 0 −0.416 0 0 0 −2.76 −1.15 −4.26 0 0 0

−57.3 0 0 0 −9.41 0 −20.0 0 0 0 0 0 −22.3 0 0

88.8 0 0 0 14.6 0 0 −20.0 0 0 0 0 34.5 0 0

54.6 0 0 0 8.96 0 0 0 −20.0 0 0 0 21.2 0 0

0 −29.5 9.58 2.73 0 6.4 0 0 0 −20.0 0 0 0 −4.13 1.64

0 −5.77 12.4 4.26 0 −0.959 0 0 0 0 −20.0 0 0 1.04 2.13

0 −61.8 −5.9 −3.49 0 18.9 0 0 0 0 0 −20.0 0 −13.2 −1.01

1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1.0 0 0 0 0 0 0 0 0 0 0 0 0


















































































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Lyapunov matrix for the case σ2
p = 73, σ2

w = 1:

P =


















































































4820.0 −63.8 93.4 35.4 559.0 −40.0 82.1 −157.0 −85.8 −67.9 −79.9 12.6 2160.0 0.378 16.2

−63.8 1510.0 −186.0 −47.3 −7.28 −199.0 −1.24 26.0 13.3 134.0 137.0 5.57 −1.98 251.0 −29.0

93.4 −186.0 1020.0 148.0 −13.6 −7.66 −13.9 −32.4 −21.0 −210.0 −231.0 40.0 −127.0 −19.4 173.0

35.4 −47.3 148.0 54.1 −5.62 −5.19 −0.638 −9.36 −5.3 −59.5 −67.2 14.0 −19.8 3.91 25.2

559.0 −7.28 −13.6 −5.62 184.0 0.364 28.3 −43.6 −26.0 14.1 16.5 −5.51 419.0 −6.7 −1.79

−40.0 −199.0 −7.66 −5.19 0.364 144.0 −0.224 3.08 1.83 −8.66 0.238 −23.2 20.2 −106.0 4.33

82.1 −1.24 −13.9 −0.638 28.3 −0.224 2480000.0 1160000.0 715000.0 0.758 0.247 −0.514 28.7 −29.6 10.6

−157.0 26.0 −32.4 −9.36 −43.6 3.08 1160000.0 1430000.0 −1110000.0 17.7 19.5 −2.17 −83.1 −14.2 0.638

−85.8 13.3 −21.0 −5.3 −26.0 1.83 715000.0 −1110000.0 2550000.0 10.2 11.3 −1.05 −93.3 −7.03 −0.83

−67.9 134.0 −210.0 −59.5 14.1 −8.66 0.758 17.7 10.2 1560000.0 −1500000.0 −606000.0 55.5 9.64 −33.0

−79.9 137.0 −231.0 −67.2 16.5 0.238 0.247 19.5 11.3 −1500000.0 1440000.0 581000.0 109.0 4.73 −38.6

12.6 5.57 40.0 14.0 −5.51 −23.2 −0.514 −2.17 −1.05 −606000.0 581000.0 235000.0 −36.7 14.8 5.17

2160.0 −1.98 −127.0 −19.8 419.0 20.2 28.7 −83.1 −93.3 55.5 109.0 −36.7 11300.0 −350.0 −18.0

0.378 251.0 −19.4 3.91 −6.7 −106.0 −29.6 −14.2 −7.03 9.64 4.73 14.8 −350.0 1090.0 −61.0

16.2 −29.0 173.0 25.2 −1.79 4.33 10.6 0.638 −0.83 −33.0 −38.6 5.17 −18.0 −61.0 85.3



















































































Lyapunov matrix for the case σ2
p = 20, σ2

w = 4:

P =


















































































953.0 −18.2 8.25 7.1 112.0 −10.9 24.0 −21.3 −8.48 −19.2 −22.5 1.57 422.0 −0.295 1.41

−18.2 339.0 −36.9 −9.39 −3.94 −31.3 0.107 8.05 3.5 26.7 28.8 −0.769 3.25 42.0 −6.02

8.25 −36.9 342.0 34.3 −3.91 −6.12 −4.89 −7.78 −4.41 −56.7 −63.8 12.6 −37.0 4.13 53.1

7.1 −9.39 34.3 12.4 −1.23 −1.67 0.701 −2.1 −1.05 −14.2 −16.0 3.23 0.845 1.88 5.63

112.0 −3.94 −3.91 −1.23 43.3 −0.231 6.56 −6.4 −3.52 3.85 4.52 −1.69 75.9 −2.87 −0.564

−10.9 −31.3 −6.12 −1.67 −0.231 32.5 −1.59 0.362 0.109 0.516 2.03 −3.69 0.425 −24.0 0.482

24.0 0.107 −4.89 0.701 6.56 −1.59 222000.0 104000.0 63900.0 −0.964 −2.74 0.964 −8.14 −2.79 2.33

−21.3 8.05 −7.78 −2.1 −6.4 0.362 104000.0 128000.0 −98900.0 4.75 4.77 0.0804 −14.5 −1.8 0.0916

−8.48 3.5 −4.41 −1.05 −3.52 0.109 63900.0 −98900.0 228000.0 2.2 1.77 0.311 −14.9 −0.129 0.0309

−19.2 26.7 −56.7 −14.2 3.85 0.516 −0.964 4.75 2.2 140000.0 −134000.0 −54200.0 5.11 −1.15 −7.36

−22.5 28.8 −63.8 −16.0 4.52 2.03 −2.74 4.77 1.77 −134000.0 128000.0 51900.0 14.5 −1.69 −9.03

1.57 −0.769 12.6 3.23 −1.69 −3.69 0.964 0.0804 0.311 −54200.0 51900.0 21000.0 −5.2 2.52 1.34

422.0 3.25 −37.0 0.845 75.9 0.425 −8.14 −14.5 −14.9 5.11 14.5 −5.2 1500.0 −91.3 −17.6

−0.295 42.0 4.13 1.88 −2.87 −24.0 −2.79 −1.8 −0.129 −1.15 −1.69 2.52 −91.3 259.0 −6.86

1.41 −6.02 53.1 5.63 −0.564 0.482 2.33 0.0916 0.0309 −7.36 −9.03 1.34 −17.6 −6.86 31.3






























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


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






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Lyapunov matrix for the case σ2
p = 9.73:

P =


















































































953.0 −18.2 8.25 7.1 112.0 −10.9 24.0 −21.3 −8.48 −19.2 −22.5 1.57 422.0 −0.295 1.41

−18.2 339.0 −36.9 −9.39 −3.94 −31.3 0.107 8.05 3.5 26.7 28.8 −0.769 3.25 42.0 −6.02

8.25 −36.9 342.0 34.3 −3.91 −6.12 −4.89 −7.78 −4.41 −56.7 −63.8 12.6 −37.0 4.13 53.1

7.1 −9.39 34.3 12.4 −1.23 −1.67 0.701 −2.1 −1.05 −14.2 −16.0 3.23 0.845 1.88 5.63

112.0 −3.94 −3.91 −1.23 43.3 −0.231 6.56 −6.4 −3.52 3.85 4.52 −1.69 75.9 −2.87 −0.564

−10.9 −31.3 −6.12 −1.67 −0.231 32.5 −1.59 0.362 0.109 0.516 2.03 −3.69 0.425 −24.0 0.482

24.0 0.107 −4.89 0.701 6.56 −1.59 222000.0 104000.0 63900.0 −0.964 −2.74 0.964 −8.14 −2.79 2.33

−21.3 8.05 −7.78 −2.1 −6.4 0.362 104000.0 128000.0 −98900.0 4.75 4.77 0.0804 −14.5 −1.8 0.0916

−8.48 3.5 −4.41 −1.05 −3.52 0.109 63900.0 −98900.0 228000.0 2.2 1.77 0.311 −14.9 −0.129 0.0309

−19.2 26.7 −56.7 −14.2 3.85 0.516 −0.964 4.75 2.2 140000.0 −134000.0 −54200.0 5.11 −1.15 −7.36

−22.5 28.8 −63.8 −16.0 4.52 2.03 −2.74 4.77 1.77 −134000.0 128000.0 51900.0 14.5 −1.69 −9.03

1.57 −0.769 12.6 3.23 −1.69 −3.69 0.964 0.0804 0.311 −54200.0 51900.0 21000.0 −5.2 2.52 1.34

422.0 3.25 −37.0 0.845 75.9 0.425 −8.14 −14.5 −14.9 5.11 14.5 −5.2 1500.0 −91.3 −17.6

−0.295 42.0 4.13 1.88 −2.87 −24.0 −2.79 −1.8 −0.129 −1.15 −1.69 2.52 −91.3 259.0 −6.86

1.41 −6.02 53.1 5.63 −0.564 0.482 2.33 0.0916 0.0309 −7.36 −9.03 1.34 −17.6 −6.86 31.3


















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


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