
How Do Automatically Generated Unit Tests
Influence Software Maintenance?

Sina Shamshiri*, José Miguel Rojas†, Juan Pablo Galeotti‡, Neil Walkinshaw† and Gordon FraserS
*Department of Computer Science, University of Sheffield, UK

†Department of Informatics, University of Leicester, UK
‡Department of Computer Science, University of Buenos Aires, Argentina

SChair of Software Engineering II, University of Passau, Germany
*sina.shamshiri@sheffield.ac.uk, †{j.rojas, nw91}@leicester.ac.uk, ‡jgaleotti@dc.uba.ar, SGordon.Fraser@uni-passau.de

Abstract—Generating unit tests automatically saves time over
writing tests manually and can lead to higher code coverage.
However, automatically generated tests are usually not based
on realistic scenarios, and are therefore generally considered
to be less readable. This places a question mark over their
practical value: Every time a test fails, a developer has to decide
whether this failure has revealed a regression fault in the program
under test, or whether the test itself needs to be updated. Does
the fact that automatically generated tests are harder to read
outweigh the time-savings gained by their automated generation,
and render them more of a hindrance than a help for software
maintenance? In order to answer this question, we performed
an empirical study in which participants were presented with an
automatically generated or manually written failing test, and
were asked to identify and fix the cause of the failure. Our
experiment and two replications resulted in a total of 150 data
points based on 75 participants. Whilst maintenance activities
take longer when working with automatically generated tests, we
found developers to be equally effective with manually written
and automatically generated tests. This has implications on how
automated test generation is best used in practice, and it indicates
a need for research into the generation of more realistic tests.

I. INTRODUCTION

Developers can save time and effort by generating unit
tests automatically. Automatically generated tests can be
integrated into the code base of the program under test just like
manually written tests, where they support developers during
software maintenance [1]. Good tests should not merely detect
undesired modifications of the code by failing, but should also
provide guidance to the developer in correcting the undesired
modification to make the test pass again. Furthermore, desired
code changes may require the test code to be modified in order
to avoid spurious test failures. Accordingly, a good test case
should not only be sensitive to deviations from the intended
behavior, but should also be maintainable in its own right; it
should be easy to understand so that it can be readily adapted
to changes in the rest of the code base as it evolves.

It is far from clear that automatically generated tests satisfy
these latter requirements. Instead of capturing realistic scenar-
ios (as manually written tests commonly do), automatically
generated tests tend to simply concatenate expressions that have
the narrower aim of leading to code coverage. This is cause for
concern, as software maintenance is commonly accepted to not
only be difficult [1], but also to account for around 60% of the

total software costs [2]. What if the time saved by generating
tests automatically comes at a net cost? What if automatically
generated tests end up requiring more time to understand, and
offer less reliable indicators to the whereabouts of bugs in the
source code? What if manual tests, though more expensive to
construct, are ultimately better able to support the developer
during routine software maintenance tasks?

Common approaches to evaluate automated test generation
tools cannot answer these questions, as they focus on test
adequacy measures such as code coverage or estimates of
their fault detection ability (e.g., mutation scores). These
measures neither evaluate whether the tests help developers to
distinguish between desired or undesired modifications, nor do
they evaluate whether the tests themselves are maintainable
and support developers when maintaining code. To investigate
this unexplored aspect of automatically generated tests, we
conducted an empirical study to specifically evaluate their in-
fluence on developers’ effort and effectiveness when performing
software maintenance tasks.

The scenario of our controlled experiment represents a
developer facing a test failure. The developer has to identify
and fix the cause of this failure. If the test fails because the
code does not satisfy the specification, the code needs to
be fixed to make the test pass again. Otherwise, if the test
fails in error, the developer must fix the test to match the
specification. We instantiated this maintenance scenario using
real test failures produced by developers whilst performing
implementation tasks, and compared manually written tests to
tests generated automatically with the EvoSuite [3] tool.

In detail, the contributions of this paper are as follows:
∙ Experiment Design: We present a comprehensive con-

trolled experiment design, refined using two pilot studies
with 20 participants, to evaluate automated test generation
in terms of maintenance effort and effectiveness (Sec. III).

∙ Experiment Results: We present the results of our
experiment and two replications, resulting in a total of
150 data-points based on 75 participants (Sec. IV).

Our experiments yield the following key results:
∙ Developers are as effective at maintenance tasks with

generated tests as they are with manually written tests.
This observation is an important reinforcement of existing
and ongoing work in automated test generation.



∙ Developers are less efficient at performing mainte-
nance tasks with generated tests. This suggests that
future research is necessary to identify the best ways
to integrate automated test generation into the developer
workflow. For example, integrating generated tests into
the code base might make more sense when software is
close to completion, whereas before that they could be
re-generated on demand, rather than maintained.

∙ Developers are more skeptical of generated tests than
manual tests, and would tend to blame test failures on
the tests as opposed to the program code. This provides
evidence for common presumptions about generated
tests, and reinforces ongoing research on improving or
explaining generated tests (e.g., [4]–[6]).

∙ Developers find automatically generated tests harder
to understand, despite these tests being less complex,
because they execute unrealistic scenarios. Thus, beyond
ongoing efforts to improve readability or to explain tests,
there is a need to investigate ways in which generated
tests can be made to resemble realistic scenarios.

Since our findings raise new questions on how to best
use automated test generation tools, we provide a thorough
description of our experimental setup and methodology and
a replication artifact. We hope to thereby lay the ground for
further replications and related studies to investigate these
questions, and to learn more about the effects of automated
test generation at different stages during software development.

II. BACKGROUND

A. Automated Test Generation

Unit tests for object oriented software consist of sequences
of calls to classes under test. Randomly generating such
sequences can be effective at finding undeclared exceptions [7]
or violations of code contracts [8], [9]. By adding assertions
that capture the state of the current program [10], [11] these
tests can also be used for regression testing [8], [12], [13].
A multitude of search-based (e.g., [14]–[18]) and symbolic
execution-based (e.g., [19]–[21]) test generators exist, which
intend to overcome some of the intrinsic limitations of random
testing by aiming to cover as much code as possible with the
smallest possible test suites. EvoSuite is a competitive example
of such advanced test generation tools (e.g., [22]).

B. Test Evolution

Test code has to evolve alongside the rest of the source
code. Changes to the application code can render tests obsolete
or require the addition of new tests. As such, test code is
subject to the same problems that arise in conventional software
maintenance; the code can evolve, can deteriorate in quality,
and become harder to understand and fix as time passes [23].

The need for maintenance action is often triggered by a
failing test. Dealing with a failing test can potentially be a
time consuming task. Although some automated solutions have
been proposed, these tend to focus on relatively specific tasks,
such as changing assertions to make failing tests pass [24],
[25], fixing test compilation errors after the code under test has

been changed [26], [27], or deciding whether a test failure is
due to a problem with the test code or the code of the program
under test [28]. Although promising, these approaches have not
passed into widespread use. By and large, in practice the bulk
of the process—diagnosing a failing test case, determining a
cause (either in the test code or program code) and applying a
fix—is a manual one.

C. Evaluating Generated Tests

The most common approach to evaluating automatically
generated test sets is in terms of their capacity to expose faults.
Accordingly, their evaluation tends to focus on conventional
test adequacy metrics such as code coverage or mutation scores.
Whilst many of the test generators that have been evaluated in
these terms have been shown to be effective, it appears that
their uptake in practice has been low. This indicates barriers
to adoption that have not been highlighted in previous studies.

In order to discover what these barriers might be, test
generators need to be evaluated in a more realistic context,
where developers need to interact with them continuously
and to maintain and evolve test code and application code
in tandem. There are some noteworthy studies that measured
the influence of automatically generated tests on developers
(e.g., [4], [5], [29], [30], discussed in more detail in Section VI).
However, studies that attempt to go beyond test adequacy to
assess generated tests are rare, and none of them have provided
insight into our specific problem, which is assessing the value
of automatically generated test cases in a maintenance context.

III. EXPERIMENTAL SETUP

This paper investigates the performance of developers on
maintenance tasks that are triggered by the failure of manually
written or automatically generated unit tests. To this end
we conducted a controlled experiment intended to recreate
a typical software maintenance scenario: a test has failed, and
the developer has to identify and solve the problem, either by
fixing the application code, or by updating the test code.

By collecting data on the correctness and duration of
maintenance activities as well as qualitative survey responses,
we aim to answer the following research questions:

How do automatically generated tests influence. . .
RQ1 The effectiveness of developers when identifying main-

tenance tasks? Does the accuracy of developers at
determining the source of a problem upon a test failure
change when using generated tests?

RQ2 The effectiveness of developers when performing main-
tenance tasks? Do developers produce correct fixes more
or less often when using generated tests?

RQ3 The efficiency of developers when identifying and
performing maintenance tasks? Does it take longer to
execute maintenance tasks when using generated tests?

RQ4 The developers’ perception of maintenance tasks? Do
developers find it easier to maintain when using generated
tests, and are they more confident in their solutions?



The remainder of this section describes the experimental
setup and the procedure for the controlled experiment in detail.

A. Participant Selection

We recruited participants by emailing invitations to Software
Engineering and Computer Science undergraduate and graduate
students at the University of Sheffield (UK) and the University
of Leicester (UK). The main requirements to participate were
basic programming skills and a basic command of the Java
language and the JUnit framework. Moreover, participants were
required to take and pass (answer correctly at least 3 out of
5 questions) an online quiz specifically designed to test their
Java and JUnit expertise. As a result, 75 participants (55%
undergraduate (BSc), 45% postgraduate (MSc, PhD, PostDoc))
took part in the study and were remunerated GBP20 in cash
for their work. Participants had diverse backgrounds: 92% had
two or more years of programming experience, 68% had two
or more years of experience with Java, 83% had used JUnit
before, and 67% had performed some software maintenance
task before. Eleven students failed the qualification quiz and
hence were not invited to take part in the study.

B. Object Selection

To conduct the experiment we required realistic, faulty im-
plementations and faulty tests (both manually and automatically
generated). Although mutants can serve as proxy for real faults
when evaluating test effectiveness [31], their suitability for
software maintenance experiments is less clear. Therefore, we
aimed to find real faults. Although some repositories exist that
provide seeded and real code faults [32], [33], we are not aware
of any similar dataset for test faults. This lack of dedicated
artifacts led us to the study by Rojas et al. [34] which, to the
best of our knowledge, is the only study where both code and
unit tests were produced by human participants. Their 46 par-
ticipants were asked to manually develop implementations and
write unit tests for four reasonably-sized Java classes according
to their provided JavaDoc specifications. Besides these 46 sets
of implementations and test suites, the dataset also contains the
original open-source implementations and test suites for these
four classes, referred to as golden implementations and test
suites. Their artifacts have already been used independently by
other researchers, e.g., for automated oracle generation [35].

We selected our experimental objects by searching for faulty
implementations and test suites in this dataset. In particular,
we were interested in minimally-faulty implementations and
test suites produced by developers who performed well in their
implementation and testing tasks but made subtle mistakes.
That is, we looked for: (1) faulty implementations written
by participants, differing from the golden implementation
by exactly one failing golden test; and (2) faulty test suites
that contain exactly one test which fails on the golden
implementation but passes on the participant’s implementation.

As a result of our search in this dataset, we se-
lected the failing tests and corresponding implementations
for classes FixedOrderComparator (referred to as
comparator in the rest of the paper) and ListPopulation

1 public int compare(Object obj1, Object obj2) {
2 isLocked = true;
3 + if(map.get(obj1) == null && map.get(obj2) == null){
4 + return 0;
5 + }
6 if (map.get(obj1) == null) { // returns 1 or -1

Fig. 1: Example of a codefix for the comparator class. When
two unknown objects are passed to the compare function,
the result should be 0.

1 public Chromosome getFittestChromosome() {
2 - Chromosome fitter = null;
3 + Chromosome fitter = this.chromosomes.get(0);
4 for (Chromosome c : this.chromosomes)
5 if (c.compareTo(fitter) > 0)
6 fitter = c;
7 return fitter;
8 }

Fig. 2: Example of a codefix for the listpopulation class. A
NullPointerException is thrown by compareTo due
to the fitter Chromosome being null.

(listpopulation), which complied with our selection criteria
(see Table I for more details). For each golden and resp.
minimally-faulty version, we then used EvoSuite to generate
exactly one unit test that failed on the minimally-faulty and
resp. the golden version. To conceal the origin of the source
code and tests, we then unified Java package names, and used
uniform class and test names.

We manually investigated the faults and ensured that their
fix is challenging but achievable in a short controlled session.
To illustrate the type of artifacts selected, Figure 1 and
Figure 2 show the faulty implementations of the selected classes,
including examples of correct fixes. As examples for test-fixing
artifacts, Figure 3 and Figure 4 respectively show the failing
manually written and automatically generated tests used for
comparator, along with the required fix. When selecting
faults, we tried to balance the difficulty of the required fixes,
aiming for bugs that could be fixed with a few lines of code.

C. Tasks

The failure of a test can generally be traced back to a
regression in the source code or a defect in the test, e.g., as a
result of a feature change. We build these two scenarios into
our experiment setup by considering two types of maintenance
tasks: code-fixing and test-fixing. Since we are interested in the
effects of generated tests on these types of tasks, we consider
two treatments: manual and generated. For each of the two
selected classes (comparator and listpopulation), we
have the following experiment tasks:

∙ ⟨codefix, manual⟩: Faulty implementation, manually writ-
ten golden test.

∙ ⟨codefix, generated⟩: Faulty implementation, test automat-
ically generated for golden implementation.

∙ ⟨testfix, manual⟩: Golden implementation, faulty manually
written test.

∙ ⟨testfix, generated⟩: Golden implementation, faulty test
automatically generated for faulty implementation.

By construction, the tests in all tasks are in failure, indicating
a fault in either the code (codefix tasks) or in the test itself



1 public void test() {
2 try {
3 - Object[] emptyArray = {};
4 + Object[] emptyArray = null;
5 FixedOrderComparator comparator = new

FixedOrderComparator(emptyArray);
6 fail("Exception was supposed to be thrown!");
7 } catch (IllegalArgumentException e) {
8 assertTrue(true);
9 }

10 }

Fig. 3: A manually written test for class comparator requiring
fixing. The argument should be null instead of the empty array
to trigger the exceptional behavior.

1 public void test() throws Throwable {
2 FixedOrderComparator fixedOrderComparator0 = new

FixedOrderComparator();
3 fixedOrderComparator0.setUnknownObjectBehavior(1);
4 int int0 = fixedOrderComparator0.compare((Object) null,

(Object) null);
5 assertEquals(1, fixedOrderComparator0.

getUnknownObjectBehavior());
6 assertTrue(fixedOrderComparator0.isLocked());
7 - assertEquals(1, int0);
8 + assertEquals(0, int0);
9 }

Fig. 4: An automatically generated test for class comparator
requiring fixing. The comparison of two null references should
return 0 (equal) instead of 1 (greater than).

(testfix tasks). Given the source code of the class under test,
the specification of the expected code behavior in JavaDoc
form, and a JUnit class consisting of only the failing test,
the participants had to identify the required type of fix and
record their decisions. The correctness of their decision was
then revealed, and they had to accordingly produce and submit
either a codefix or a testfix.

D. Experiment Procedure

The experiments started with a 20-minute refresher tutorial
on the use of JUnit and a walk-through of the tasks involved
in the study. Then, two main sessions followed, each with
a maximum length of 60 minutes and a 5-minute break in
between. Each participant was assigned two maintenance tasks,
one per session. To prevent any learning effects, no participant
was assigned the same fix type or class across sessions (e.g., if
the participant’s first assignment was codefix on comparator,
then the second assignment was testfix on listpopulation).

Participants started each session by launching a fully-featured
Eclipse Kepler IDE instance, with a pre-configured workspace
according to their assigned tasks (a Java project with the class
implementation, its dependencies and the failing test). The rest
of the environment consisted of the Ubuntu Linux OS and Java
SE 7u55. Participants were encouraged to use any technique
they considered appropriate to approach their maintenance
tasks, e.g., running the failing test, checking coverage, using
the IDE’s debugging feature, making temporary changes, etc.

A typical maintenance scenario upon a test failure involves
(a) identifying whether the code or the test needs fixing
(decision), and (b) actually performing the fix (fixing). Although
these activities generally intertwine [36], a natural dependency
exists between them: a correct fix is only possible if the cause

of the failure is correctly identified first. This gives rise to
the potential problem that if a participant makes the wrong
decision (contradicting their task), his/her fix would be invalid.
To minimize this risk, we required participants to record their
decision as soon as they made it. If their decision was correct,
they simply continued with their assigned task, but if they made
the wrong decision (and were on course to perform the wrong
maintenance task), we revealed their assigned task (codefix
or testfix) in an effort to steer them towards completion. We
encouraged the participants to reach a decision 30 minutes into
their task, reminding them that declaring “I don’t know” was
a valid choice in case they were not sure of their answers; 30
minutes was determined adequate after the pilot studies (see
Section III-F). Although somewhat extrinsic to the maintenance
process, this “decision checkpoint” was necessary to prevent
the loss of valuable data-points in the study. (See discussion
of threats to validity in Section III-I.)

E. Data Collection

For each performed task, participants produced three out-
comes: their decisions, their fixes, and their answers to an
exit survey. Decisions and fixes were collected via a dedicated
website. Decisions were submitted by simply clicking one of
three choices (codefix, testfix, or don’t know). Fixes were
submitted by uploading either the class under test or the
JUnit test suite containing a single test. Survey answers
were collected using Google Forms. The survey questionnaire
consisted of the Likert-scale questions shown in Figure 7, free-
form questions asking participants to describe their approach
to the maintenance task, and questions on the challenges faced.

F. Pilots and Replications

Two pilot studies were conducted to finalize the experimental
setup described in this section. The first pilot was conducted at
the National University of Quilmes (AR) with 13 participants
on June 2, 2016. The second one, with an improved setup,
was conducted at the University of Buenos Aires (AR) with 7
students on June 26, 2016.

The main study comprises a baseline experiment and two
exact replications where only the subject pool changed [37].
The baseline experiment took place at the University of
Sheffield (UK) on December 2, 2016 (24 participants). Two
exact replications were conducted so that the results could be
combined, to achieve a sufficiently large number of participants
and improve confidence in our findings. The first replication
took place on December 6, 2016 at University of Leicester
(UK) (27 participants), and the second replication took place
at the University of Sheffield (UK) on December 9, 2016 (24
participants).

G. Data Analysis

We first evaluate the time it took participants to decide the
type of fix needed and the correctness of these decisions. We
then evaluate the time taken by the participants to perform the
actual fixes. Finally, we measure the quality of their submitted
solutions. The measurement of the quality of the solution differs



TABLE I: Selected Java classes. NCSS and Methods respectively refer to the # of Non Commenting Source Statements, and methods in
the classes. The Instruction and Branch coverage values refer to the coverage levels obtained by executing the golden tests on the classes.

Class Name Reference NCSS Methods Instruction Cov. Branch Cov. Golden Test CLOC Description

FixedOrderComparator comparator 68 10 81.5% 77.5% 137 Comparator which imposes a specific order on a specific set of objects
ListPopulation listpopulation 54 13 80.0% 77.3% 149 Genetic population of chromosomes, represented as a List

according to the maintenance task. For code-fixing tasks, a
codefix solution is classified as correct if it does not break any
additional tests from the golden test suite and satisfies a manual
inspection. For test-fixing tasks, we created a reference solution
(fix) for each faulty test-case, based on our understanding of
the original test purpose. Then, three authors of the paper
independently inspected each submitted test and classified
them as either “correct”, “incorrect”, or “no-clear-decision”
with respect to the reference solution.

Any test-fixes with disagreement on the categorization that
could not be resolved by discussion were then evaluated using
mutation-analysis. We used the Major mutation framework [38]
to determine whether all mutants killed by the golden tests
were also killed by the fixed tests submitted by the participants.
If the fixed test killed all mutants killed by the golden test,
then we marked the solution as correct, as it satisfies the same
test purpose. If some of the mutants killed by the golden test
survived the fixed test, then this indicates that the original test
purpose is no longer satisfied, and such a testfix was marked as
incorrect. For example, this happens when assertions or method
calls are removed from the test to make it pass. Overall, out
of 75 testfix submissions, a clear decision could not be made
only for 11, out of which seven were classified as “correct”
and four as “incorrect” using this methodology.

H. Statistical Analysis

To measure statistical significance when comparing treat-
ments, the following tests were used: (1) for comparisons of
duration values, we used the non-parametric Mann-Whitney
U test [39], (2) for comparisons of correctness, we used the
non-parametric Fisher’s exact test [40]. Non-parametric tests
were used as the Shapiro–Wilk test did not confirm a normal
distribution. Besides significance at 𝛼 < 0.05, we also report
all p-values to allow readers to better interpret the results.

I. Threats to Validity

Empirical studies are essential to validate and understand
the merits of new software engineering technologies. However,
a number of challenges arise when involving human partici-
pants [41], ranging from difficulties in recruiting participants,
to task design, and risk of inconclusive results due to limited
statistical power. Although we followed a rigorous methodology
based on existing guidelines and best practices [42], like any
other empirical study [43], ours has threats to validity.

a) Participants: All participants in our study have a
software engineering or computer science background. A
study of this magnitude (75 participants) would be hard to
carry out without the help of a student population. Whereas
there are some contrasting views on whether students can be
representatives of real world professionals [44]–[46], more
recent work suggests that when empirical studies are carefully

scoped, similar performance is observed between students and
professionals [47]. To reduce this threat, we selected only
participants that passed our competency test (see Section III-A).

b) Objects: The artifacts used in our experiment were
created by human developers in a previous unit testing empirical
study [34]. The authors of that study selected them from
a collection of open-source projects using a well-defined
systematic protocol. We borrowed these artifacts due to their
manageable size, availability, and amenability for our purposes.
A possible threat to validity is that the defects produced in
that study may not be representative of defects introduced
in larger industrial projects. However, while the changes are
mostly small, in practice a large number of maintenance tasks
may involve small fixes. For instance, nearly half (47%) of
the bug-fixes of the Defects4J (v1.1) collection of bugs [33]
require two or less lines of code to be added and/or removed.

c) Generated tests: EvoSuite was the only tool used
to generate the automated tests used in this study. EvoSuite
was selected for two reasons: (a) it is representative of the
state of the art in unit test generation; and (b) adding a tool
producing different types of tests, e.g., Randoop [8], would
have either required 50% more participants to achieve the same
high number of data-points per treatment, or dropping one of
the classes. Faced with these less desirable alternatives, the
most reasonable choice is to rely on future replications, as
common with empirical studies [43].

d) Procedure: All participants performed a codefix and a
testfix task, in random order and with random manual/generated
treatment. To avoid participants inferring the second task
based on their first one, we told participants that they may
have to perform the same type of task twice due to the
random assignment. To avoid an intrinsic human bias against
automatically generated tests, participants were not made
aware of the origin of the test they worked with, neither
explicitly (they were not told which task they were assigned)
nor implicitly (we used uniform class and test names).

Identifying and performing fixes are highly complementary
activities. As mentioned in Section III-D, a decision checkpoint
was used to steer participants who were struggling to identify
their assigned tasks. This allowed us to elicit fixes matching
assigned tasks from all participants and within our time
constraints. As a trade-off, our efficiency results may not
generalize to contexts where developers have unlimited time to
complete the maintenance tasks. To increase confidence in our
findings, we can confirm that all trends observed in Table III
and Figure 6 persist when looking exclusively at participants
who made the right maintenance decisions.

Participants were unfamiliar with the tests and classes under
test used in our study. While this is a common scenario in
practice, e.g., when maintaining legacy code, our findings may
not generalize to contexts where developers are more familiar



TABLE II: Comparison of correct decisions given Manual or
Generated tests. Columns Manual and Generated indicate the
number of correct decisions made out of the total number of
decisions, along with the ratio in parentheses. The number of
“don’t know” answers is shown in brackets. Ratios shown in
bold text indicate higher ratio than the alternative treatment.

Task type Task class Manual Generated p-val.

All All 43/75 (57%) [6] 44/75 (59%) [6] 1.00
codefix All 21/38 (55%) [1] 17/37 (46%) [2] 0.49
testfix All 22/37 (59%) [5] 27/38 (71%) [4] 0.34
All comparator 18/38 (47%) [1] 22/37 (59%) [1] 0.36
codefix comparator 5/19 (26%) [0] 8/18 (44%) [0] 0.31
testfix comparator 13/19 (68%) [1] 14/19 (74%) [1] 1.00
All listpopulation 25/37 (68%) [5] 22/38 (58%) [5] 0.48
codefix listpopulation 16/19 (84%) [1] 9/19 (47%) [2] 0.04
testfix listpopulation 9/18 (50%) [4] 13/19 (68%) [3] 0.32

with the code under maintenance. As usual, further replications
are needed to investigate alternative contexts.

e) Data collection: There is a risk that our data collection
framework could contain bugs that affect our analysis. This was
mitigated by conducting preliminary pilot studies where we
tested the reliability of all the functionalities of the framework
(e.g., recording responses and submitting artifacts).

f) Data Analysis: We used test execution results as well
as mutation analysis to help assess the correctness of the
submissions (both for test and code fixes). As such, bugs
in our analysis scripts as well as the quality of the golden
test suites may result in submissions being misclassified. To
mitigate this threat, we manually evaluated all submissions as
detailed in Section III-G, and make all our experiment material
publicly available for scrutiny and replication.

g) Statistical Significance: Due to the intrinsic limita-
tions of empirical studies involving humans (e.g., recruiting
participants and assigning tasks), their results tend to offer
limited statistical power and inconclusive answers [43]. While
our study is already large, further replications [37] will be
necessary to confirm the generalizability of our conclusions.

IV. RESULTS

Our study (baseline experiment and two exact replications)
resulted in a total of 150 data-points based on 75 participants. In
this section we present the results of the analysis, as described
in the previous section, for each of the research questions.

A. RQ1 (Effectiveness): How do automatically generated
tests influence the effectiveness of developers at identifying
maintenance tasks?

Table II summarizes the effectiveness of participants at
identifying whether the fault lies in the code or in the test.
Overall, there is almost no difference between the use of
generated and manually written tests: respectively 43/75 and
44/75 decisions based on manually written and generated tests
tests were correct. However, different trends are observed
between the codefix and testfix tasks. When the fault lies in the
test, the number of correct decisions is substantially higher for
generated tests (27/38 vs. 22/37 with manually written tests).
In contrast, recognizing that the code needs to be fixed appears

TABLE III: Comparison of correct fixes when given Manual
or Generated tests. Columns Manual and Generated indicate
the number of correct fixes made out of the total number of
fixes, along with the ratio in parentheses. Ratios denoted with
bold text indicate higher ratio than the alternative treatment.

Task type Task class Manual Generated p-val.

All All 46/75 (61%) 43/75 (57%) 0.74
codefix All 25/38 (66%) 20/37 (54%) 0.35
testfix All 21/37 (57%) 23/38 (61%) 0.82
All comparator 26/38 (68%) 26/37 (70%) 1.00
codefix comparator 14/19 (74%) 9/18 (50%) 0.18
testfix comparator 12/19 (63%) 17/19 (89%) 0.12
All listpopulation 20/37 (54%) 17/38 (45%) 0.49
codefix listpopulation 11/19 (58%) 11/19 (58%) 1.00
testfix listpopulation 9/18 (50%) 6/19 (32%) 0.32

to be easier using manually written tests, as particularly shown
by the listpopulation class (16/19 vs. 9/19 with generated
tests). Our conjecture is that developers might be more likely to
blame tests that they find harder to understand—and, arguably,
in this case the generated tests are less readable.

RQ1: Overall, developers were equally accurate at
identifying maintenance tasks when using manually written

and automatically generated tests.

B. RQ2 (Effectiveness): How do automatically generated
tests influence the effectiveness of developers at performing
maintenance tasks?

When looking at the effectiveness at correctly performing
their maintenance tasks (Table III), we observe that participants
were overall similarly effective at producing correct fixes
given generated or manually written tests. A small (statistically
insignificant) increase in successful task completion of 4% can
be observed when developers were guided by manually written
tests (46/75) compared to generated tests (43/75). In particular,
participants submitted slightly more correct code fixes when
guided by manually written tests (25/38) than when guided by
generated tests (20/37). The difference is even smaller (arguably
negligible) for testfix tasks, where generated tests led to only
two more correct test fixes than manually written tests (23/38
vs 21/37). This similar effectiveness also holds when looking
only at participants who correctly identified the maintenance
task (all data can be found in the replication package).

Looking at individual classes, the general pattern is re-
flected well in the comparator class, where participants
produced correct fixes more often when using manually written
tests (14/19) than generated tests (9/18); fixing the generated
tests for this class seems to be easier (17/19) than fixing the
manually written tests (12/19). For the listpopulation class,
the participants were equally effective at codefix tasks given
either manually written or generated tests (11/19). However,
in this case the generated test was slightly more difficult to
fix (6/19) than the manually written test (9/18). Our conjecture
is, again, that readability is a contributing factor. For example,
for both testfix tasks the test with slightly less correct fixes
(comparator/manual, listpopulation/generated) contains



●

●

●●

p = 0.3

●

●

●
●

p = 0.083

p = 0.992

●
●

●

p = 0.97

●

●

p = 0.693

●

p = 0.693

●

●
●

p = 0.135

●

●

●

●

p = 0.001*

p = 0.73

All codefix testfix

A
ll

c
o

m
p

a
ra

to
r

lis
tp

o
p

u
la

tio
n

Generated Manual Generated Manual Generated Manual

0

20

40

60

0

20

40

60

0

20

40

60

Treatment

D
u
ra

ti
o
n
 (

m
in

s
)

Fig. 5: Box-plots comparing the time developers took to
identify their maintenance tasks across treatments, grouped by
task type and class.

a try/catch construct to expect exceptions, which may impact
readability (even though the try/catch construct is not involved
in the fix)—we discuss this further in Section V-C.

RQ2: Developers were similarly effective at producing
correct fixes with generated or manually written tests.

C. RQ3 (Efficiency): How do automatically generated tests
influence the efficiency of developers when identifying and
performing maintenance tasks?

Having established that developers were similarly effective
at maintaining code and tests when supported by generated or
manually written tests, we now analyze developers’ mainte-
nance efficiency. We first consider the time developers needed
to identify whether the class under test or the test code needed
maintenance (Figure 5). We then take a look at how this
identification time grows into overall efficiency (Figure 6).

Figure 5 compares the time spent for the decision tasks
between generated and manually written tests. Overall, these
efficiency results resemble the effectiveness results discussed
in RQ1 and RQ2, in that there is mostly no significant
difference between generated and manually written tests. The
only exception is the testfix task of the comparator class,
where the time for the generated test is significantly longer than
for the manually written counterpart. This might be related
to the higher number of method calls and assertions in the
generated test, and thus its overall readability.

Looking at the total time developers spent on identifying
their tasks and effectively performing the necessary fixes reveals
a clear trend in favor of manually written tests. As Figure 6
shows, it took participants significantly longer (𝑝 = 0.008) to
complete their tasks when using generated tests. This trend

p = 0.008*

p = 0.289

p = 0.005*

p = 0.01*

●

p = 0.313

p = 0.008*

p = 0.121

●

p = 0.258

p = 0.169

All codefix testfix
A

ll
c
o

m
p

a
ra

to
r

lis
tp

o
p

u
la

tio
n

Generated Manual Generated Manual Generated Manual

0

20

40

60

0

20

40

60

0

20

40

60

Treatment

D
u
ra

ti
o
n
 (

m
in

s
)

Fig. 6: Box-plots comparing the overall time developers took
to complete their maintenance tasks across treatments, grouped
by task type and class.

holds across task types and classes—although the distinction
is particularly evident with listpopulation—and suggests
that automatically generated tests are less helpful for code
fixing and harder to fix when they break than manually written
tests. These trends also hold when looking only at the overall
efficiency of participants who submitted correct fixes (data for
this can be found in our accompanied artifact package).

Comparing the duration times shown in Figure 5 and Figure 6
shows that participants invested 50% of their time in identifying
the source of a problem. We also observe that participants who
failed to correctly identify their tasks took as long to implement
fixes as those who accurately identified their tasks. This is
surprising, considering that the former group had to review
and understand the failing test and code before proceeding to
perform their fixes. Ultimately, this suggests that, irrespective
of the fix type and origin of the failing tests, participants
struggled to actually implement satisfactory fixes.

RQ3: Developers were significantly more efficient at
maintenance tasks when using manually written failing tests.

D. RQ4 (Perception): How do automatically generated tests
influence the developers’ perception of maintenance tasks?

Figure 7 summarizes answers to the survey questions, for
test-fixing and code-fixing tasks. Overall, the participants found
the task clear (Question 1), and the allocated time sufficient
(Question 2). The participants also reported little difficulty with
the task of identifying the fault (Question 3). For the remaining
questions, notice that while small differences can be observed
between manually written and generated tests, the majority of
participants had a similar opinion about the questions.



0%

3%

95%

97%

5%

0%

3%

5%

95%

92%

3%

3%

16%

19%

74%

76%

11%

5%

11%

14%

68%

78%

21%

8%

18%

14%

58%

78%

24%

8%

13%

5%

82%

70%

5%

24%

11%

5%

87%

81%

3%

14%

21%

11%

61%

81%

18%

8%

8.I am certain I produced a good fixed unit test

7.The unit test was easy to understand

6.The class was easy to understand

5.I am certain my test fix is correct

4.It was easy to fix the bug

3.It was easy to identify the bug

2.I had enough time to finish the task

1.The task was clear

100 50 0 50 100

Generated

Manual

Generated

Manual

Generated

Manual

Generated

Manual

Generated

Manual

Generated

Manual

Generated

Manual

Generated

Manual

Percentage

Response Fully disagree Partially disagree Neither Partially agree Fully agree

(a) Test-fixing tasks

0%

0%

97%

97%

3%

3%

5%

5%

81%

92%

14%

3%

14%

16%

65%

71%

22%

13%

22%

18%

70%

61%

8%

21%

19%

13%

59%

68%

22%

18%

19%

13%

59%

63%

22%

24%

22%

5%

65%

82%

14%

13%

14%

3%

70%

82%

16%

16%

8.The test was useful to fix the bug in the class

7.The unit test was easy to understand

6.The class was easy to understand

5.I am certain my code fix is correct

4.It was easy to fix the bug

3.It was easy to identify the bug

2.I had enough time to finish the task

1.The task was clear

100 50 0 50 100

Generated

Manual

Generated

Manual

Generated

Manual

Generated

Manual

Generated

Manual

Generated

Manual

Generated

Manual

Generated

Manual

Percentage

Response Fully disagree Partially disagree Neither Partially agree Fully agree

(b) Code-fixing tasks

Fig. 7: Overview of the survey responses relating to code and test maintenance tasks.

When attempting to fix the fault in the test, more participants
found fixing manually written tests easier than generated tests.
Conversely, when fixing the fault in the code, participants found
the code-fixing task easier using generated tests, than when
given manually written tests (Question 4). This, however, is
in contrast with the actual success outcome of the participants
(cf. Table III), which is likely due to confusion caused by the
randomness and structurally-simple nature of the generated tests
(i.e., while it may be hard to determine what the test intends to
do, ultimately these tests are comprised of simple sequences of
test statements). Given that it is hard to understand the intent
of an automatically generated test, it is understandable that
fixing a test is easier when it is manually written. However,
when fixing code, even if the purpose of the test is difficult to
understand, the test might still be simple enough to help the
developer at least localize the fault in the code. In line with
observations from previous studies [29], a useful application
may be to use the failing test mostly as an oracle for the bugfix
instead of investing time in trying to fully understand it.

Participants reported higher confidence in the correctness
of their fix for both code and test fixing tasks when using
manually written tests (Question 5). This is to be expected
as automatically generated tests contain relatively random
sequences of statements. As such it can be challenging for a
developer to surmise the expected behavior of the test.

For understanding the class under test, there was little
difference between participants who were trying to fix manually
written tests versus those who were trying to fix generated ones.
However, when given faulty code, participants found manually
written tests more helpful to understand the class under test
(Question 6). One plausible explanation for this is the fact that
manually written tests can often work as documentation of the
intended behavior of the program.

Participants found understanding generated tests slightly
easier than manually written tests when they needed to fix
the tests (Question 7). This suggests that when participants
know that a test is broken, they find generated tests less
confusing. However, when required to use the tests to fix
a fault in the code, participants found manually written tests
easier to understand compared to automatically generated tests.
This supports our previous conjectures that participants find
automated tests more difficult to understand. Also, supporting
our previous observations, we found that participants had higher
confidence in the quality of their fix when a manually written
test was involved (Question 8, test-fixing). Moreover, they
found manually written tests more useful for undertaking code-
fixing tasks (Question 8, code-fixing).

RQ4: Developers were less confident about their actions
when guided by generated tests and perceived them as less

helpful for understanding the maintenance tasks.



V. DETAILED DISCUSSION

Our results suggest that automatically generated tests affect
maintenance efficiency and confidence, but not effectiveness.
In this section, we discuss root-causes and implications.

A. Do generated tests hinder maintenance?

The observation that the accuracy of maintenance decisions
and tasks was hardly affected by automatically generated tests
is an important result, as a reduction in accuracy would be a
potential obstacle for the adoption of automated test generation.
However, the increase of 29% in the time taken for maintenance
given automatically generated tests indicates that there is a
trade-off: Although automated test generation can save time
during development (Rojas et al. [34] reported a reduction of
36%), this could end up being repaid during maintenance.

Determining whether this is indeed the case requires further
research and depends on a host of factors. There is the amount
of maintenance that needs to be performed; if the project
is immature and unstable (requiring frequent maintenance
activities), the cost of using automatically generated tests might
be higher than if the project is mature and stable. There is
also the question of how automated test generation is applied,
where it fits into the development process, and how it supports
existing manual tests. Automatically generated tests can be
discarded and re-generated at any point with little or no effort
(as opposed to manually written tests), which provides the
opportunity to tailor processes to minimize the maintenance
overhead of generated tests, whilst maximizing their impact.

It might also be that an increase in maintenance time is
perfectly acceptable, if this is the price of better software quality.
Our experiment implicitly assumes that manually written tests
are replaced with generated tests — maybe we need to more
fundamentally change the testing process with automated test
generators. What if developers are more likely to test, write
more testable code, or write more assertions and code contracts,
given automated test generation tools? Whether better software
quality is actually something that automated test generation
can achieve is, once again, a matter of further research.

B. What makes generated tests difficult to understand?

Given that the tests in our experiment were not accompanied
by comments or descriptive names, participants had to read the
test code and infer the original intention of the test. Intuitively,
this can be challenging for generated tests, where the statements
are based on random generation and variables have artificial
names—which would explain the increase of 29% in the time
taken for maintenance given automatically generated tests.

Responses to the free-form questions in the exit survey
seem to corroborate this intuition. For example, one participant
stated: “As the purpose of the test case was not clear from the
beginning, I just followed my intuition in order to fix it [...].
But I felt that I could have deleted the test case and I would
still have completed the task”. Another participant felt even
more frustrated about the testing purpose by stating: “I knew
what didn’t work but I didn’t understand the purpose of the
test and so could not fix it.”

Even if a test is not understandable, it was still possible to
infer the intended behavior from the JavaDoc documentation in
our experimental setup. This is corroborated by more frequent
mentioning of JavaDocs when asked what helped to perform
the codefix in the free text responses, e.g.: “[...] read the java
doc to get the general idea of what the Class’s purpose was”,
or “[...] read the javadoc at the beginning of the classes to be
tested.”. Indeed, participants spent the majority of their time
(56.8%) on source code rather than test code (measured with
the Rabbit [48] Eclipse plug-in); even more so when given
generated tests (61.0%). Considering that documentation is
perceived helpful, this provides further incentive for research
on generating test documentation (e.g., [4], [49]). The general
problem of understandability also suggests that more work on
improving the representation [5], [30] would be useful. Ideally,
however, tests should be generated that are more realistic to
begin with, instead of trying to explain unrealistic tests.

C. Types of test fixes and their influence

Our data also provides insights into how types of test fix tasks
influence efficiency. In particular, our data shows that when
the problems with a test were restricted to its assertions, then
developers were quickly able to identify and fix the error (for
both manually and automatically generated tests). An example
can be seen in Figure 4, Lines 7-8, where participants only
had to change the expected value in the assertion.

This was not the case when the behavior of the test itself
had to be changed. When this was the case, participants
struggled more with manually written tests (63% correct fixes
in comparison to 89% when given automatically generated
tests, for the comparator class, see Table III). An example of
this can be found in the comparator task, when the behavior
of the class under test had to change from checking for empty
arrays to checking for null parameters (Figure 3, Lines 3-4).

A similar trend was noticed when participants had to fix
tests with exceptional behavior. In this case the participants
seemed more confused about whether the test intended to test
a) exceptional behavior (i.e., the unit test checks whether a
method throws an exception), b) the non-exceptional behavior
(i.e., the unit test checks that a method does not throw a certain
exception), or c) some aspect of the method itself, regardless
of whether it throws an exception or not. For example, one
participant reported: “The test seemed to want to test the
exceptional behavior of the method. It had an exception that
the method did not throw. I looked at what the method did
throw and then created a test that would test that behavior.”

Indeed, this confusion was reflected in our results: when
test-fixing involved a test-case with exceptional behavior,
participants took slightly longer (3’12" longer on average) and
made more mistakes (8 fewer correct fixes), for both generated
and manually-written tests. Interestingly, this was not the case
when the code needed to be fixed. However, generated tests are
intuitively more likely to reflect exceptional behavior, as they
use nonsensical inputs and unrealistic sequences of calls. Thus,
future studies are necessary to investigate how exceptional
behavior in tests affects the overall maintenance effort.



VI. RELATED WORK

While the most common way to evaluate automated test
generation tools is in terms of coverage or fault detection (e.g.,
[50]), there are several studies that involved human participants.
Although the studies by Fraser et al. [51] and Rojas et al. [34]
are related as they are based on the same test generation tool
(EvoSuite), these studies compare the behavior of participants
when writing their own tests compared to the use of test
generators, rather than comparing how participants work with
existing tests. However, the studies by Ceccato et al. [29],
Panichella et al. [4], and Daka et al. [5] involved participants
performing tasks related to test understanding or maintenance.

Ceccato et al. [29] compared the effectiveness and efficiency
of human participants at debugging, given manually written
and automatically generated test cases. Debugging of test
failures caused by faults in the code is also one aspect of
our experiments, and our results for RQ2 corroborate the
results of one of their experiments (based on EvoSuite and
15 experienced developers), in that the accuracy at fixing a
bug in the code seems to be independent of the origin of the
failing tests. However, our study goes beyond the debugging
task considered by Ceccato et al.: We investigate the more
holistic task of diagnosing a test failure with respect to the
specification, identifying the causing fault, and performing
a fix, which can be applied not only on the code, but also
on the tests. This is not only a fundamentally different
experiment design (using real code/test faults, specifications,
etc.), but also requires participants to apply a completely
different approach to scrutinizing and understanding the test
and program code. Indeed our experiments have shown that
the necessity to understand the test cases has clear effects
on identifying and fixing application code (RQ3), whereas
Ceccato et al. note that “[e]xperienced subjects did not spend
time understanding the purpose of the test cases”, but rather
focused on understanding the buggy code. Contrasting these two
alternative perspectives on the problem of using automatically
generated tests suggests that a particularly suitable application
of automatically generated tests might be to trigger violations
of code assertions or code contracts, such that developer
interactions with the tests are restricted to plain debugging.

The studies by Panichella et al. [4] and Daka et al. [5]
focused specifically on the role of the understandability of
generated tests. The study by Panichella et al. [4] provided
participants with two types of tests (conventional tests, and tests
accompanied by textual test summaries) to debug the program
under test. While this scenario does not include the possibility
for tests requiring fixes (as is the case in our experiment), the
results did show that providing natural text summaries of tests,
and thus supporting test understanding, makes participants
more effective at deciding when a test reveals a fault. Similarly,
Daka et al. [5] investigated the effect of test readability on the
time it takes developers to predict whether a generated test
would pass or fail. Participants were given two types of tests
(conventional generated tests, and generated tests that had been
optimized for readability). They established that readability

did indeed have a significant impact on the time taken by
developers to reach a decision at a similar level of accuracy;
our experiment results corroborate these findings.

VII. CONCLUSIONS

Automated test generation is commonly evaluated in rela-
tively narrow terms—usually in terms of the code coverage the
generated test suites achieve, or their capacity to expose faults.
In this paper we have sought to evaluate automatically generated
tests in terms of a more applied software-engineering context: to
see how helpful they are with respect to software maintenance
tasks. To this end, we created an elaborate study setup, and used
it in a controlled experiment and two replications, resulting in
a total of 150 data-points based on 75 participants.

A primary finding of our experiment is that the effectiveness
of developers at performing maintenance tasks is not affected by
the use of automatically generated tests; our participants were
similarly effective at fixing generated and manually written
tests, and they were similarly effective at fixing code in order
to make generated or manually written tests pass. This is
an important reinforcement for automated test generation:
Although practitioners are often still skeptical of automatically
generated tests, we show that these tests are as supportive as
manually written tests during software maintenance.

However, our results show maintenance tasks take longer
with generated tests. Developers perceive automatically gen-
erated tests to be less helpful for understanding maintenance
tasks, and generated tests induce less confidence in developers
carrying out maintenance tasks. This calls for research on
improving or explaining generated tests (e.g., [4]–[6]). It would
be even better, though possibly even more challenging than
explaining unrealistic or confusing tests, to generate tests that
represent realistic, understandable scenarios in the first place.

Finally, our results provide insights into how automatic
test generators might best be integrated into the software
development workflow—a question which, to date, has seen
little research (e.g., [52]), and may be affecting adoption of
automated test generators in practice. Maintaining generated
tests can take more time, and using automated test generation
tools may at the same time lead to more tests. Thus, it might
be best to integrate automatically generated tests into the code
base only at later development stages (see Section V-A), when
the rate of change reduces, whereas it might be more useful
to simply re-generate tests during more active development
phases. However, it might also be that the use of automated
test generation requires a more fundamental change of the
development and testing process, for example by moving the
manual effort of writing tests to writing assertions.

To validate and generalize the results of our empirical study
and our conclusions, further replications are important [37]
(e.g., using larger code-bases, larger fixes, expert developers,
other test-generation tools, complete test suites instead of
exactly one failing test, etc.). To this extent, we make all
experimental material available as a comprehensive artifact
package at http://evosuite.org/maintenance.

http://evosuite.org/maintenance


REFERENCES

[1] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution:
a roadmap,” in Proceedings of the Conference on the Future of Software
Engineering. ACM, 2000, pp. 73–87.

[2] R. L. Glass, Facts and fallacies of software engineering. Addison-Wesley
Professional, 2002.

[3] G. Fraser and A. Arcuri, “EvoSuite: automatic test suite generation
for object-oriented software,” in Proceedings of the Symposium on the
Foundations of Software Engineering (FSE). ACM, 2011, pp. 416–419.

[4] S. Panichella, A. Panichella, M. Beller, A. Zaidman, and H. C. Gall,
“The impact of test case summaries on bug fixing performance: An
empirical investigation,” in Proceedings of the International Conference
on Software Engineering (ICSE). ACM, 2016, pp. 547–558.

[5] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling
readability to improve unit tests,” in Proceedings of the Joint Meeting
on Foundations of Software Engineering (ESEC/FSE). ACM, 2015, pp.
107–118.

[6] F. Palomba, A. Panichella, A. Zaidman, R. Oliveto, and A. De Lucia,
“Automatic test case generation: what if test code quality matters?” in
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA). ACM, 2016, pp. 130–141.

[7] C. Csallner and Y. Smaragdakis, “Jcrasher: an automatic robustness
tester for java,” Software: Practice and Experience, vol. 34, no. 11, pp.
1025–1050, 2004.

[8] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in Proceedings of the International Conference
on Software Engineering (ICSE). IEEE, 2007, pp. 75–84.

[9] B. Meyer, I. Ciupa, A. Leitner, and L. L. Liu, “Automatic testing of
object-oriented software,” in International Conference on Current Trends
in Theory and Practice of Computer Science. Springer, 2007, pp.
114–129.

[10] T. Xie, “Augmenting automatically generated unit-test suites with
regression oracle checking,” in European Conference on Object-Oriented
Programming. Springer, 2006, pp. 380–403.

[11] G. Fraser and A. Zeller, “Mutation-driven generation of unit tests and
oracles,” IEEE Transactions on Software Engineering (TSE), vol. 38,
no. 2, pp. 278–292, 2012.

[12] J. H. Andrews, F. C. Li, and T. Menzies, “Nighthawk: A two-level genetic-
random unit test data generator,” in Proceedings of the International
Conference on Automated Software Engineering (ASE). ACM, 2007,
pp. 144–153.

[13] A. Sakti, G. Pesant, and Y.-G. Guéhéneuc, “Instance generator and
problem representation to improve object oriented code coverage,” IEEE
Transactions on Software Engineering (TSE), vol. 41, no. 3, pp. 294–313,
2015.

[14] P. Tonella, “Evolutionary testing of classes,” ACM SIGSOFT Software
Engineering Notes, vol. 29, no. 4, pp. 119–128, 2004.

[15] A. Arcuri and X. Yao, “Search based software testing of object-oriented
containers,” Information Sciences, vol. 178, no. 15, pp. 3075–3095, 2008.

[16] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Transactions
on Software Engineering (TSE), vol. 39, no. 2, pp. 276–291, 2013.

[17] J. H. Andrews, T. Menzies, and F. C. Li, “Genetic algorithms for
randomized unit testing,” IEEE Transactions on Software Engineering
(TSE), vol. 37, no. 1, pp. 80–94, 2011.

[18] L. Baresi, P. L. Lanzi, and M. Miraz, “Testful: An evolutionary test
approach for java,” in Proceedings of the International Conference on
Software Testing, Verification and Validation (ICST). IEEE, 2010, pp.
185–194.

[19] S. Thummalapenta, T. Xie, N. Tillmann, J. De Halleux, and Z. Su, “Syn-
thesizing method sequences for high-coverage testing,” ACM SIGPLAN
Notices, vol. 46, no. 10, pp. 189–206, 2011.

[20] T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra: A framework
for generating object-oriented unit tests using symbolic execution.” in
Proceedings of the International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), vol. 3440. Springer,
2005, pp. 365–381.

[21] C. Cadar and K. Sen, “Symbolic execution for software testing: three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,
2013.

[22] G. Fraser, J. M. Rojas, J. Campos, and A. Arcuri, “EvoSuite at the SBST
2017 Tool Competition,” in International Workshop on Search-Based
Software Testing (SBST). ACM, 2017, pp. 39–42.

[23] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software
engineers understand code changes?: an exploratory study in industry,”
in Proceedings of the Symposium on the Foundations of Software
Engineering (FSE). ACM, 2012, p. 51.

[24] B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “Reassert: Suggesting
repairs for broken unit tests,” in Proceedings of the International
Conference on Automated Software Engineering (ASE). IEEE Computer
Society, 2009, pp. 433–444.

[25] B. Daniel, T. Gvero, and D. Marinov, “On test repair using symbolic
execution,” in Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA). ACM, 2010, pp. 207–218.

[26] M. Mirzaaghaei, F. Pastore, and M. Pezze, “Automatically repairing
test cases for evolving method declarations,” in Proceedings of the
International Conference on Software Maintenance (ICSM). IEEE,
2010, pp. 1–5.

[27] ——, “Supporting test suite evolution through test case adaptation,”
in Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2012, pp. 231–240.

[28] D. Hao, T. Lan, H. Zhang, C. Guo, and L. Zhang, “Is this a bug or an
obsolete test?” in European Conference on Object-Oriented Programming.
Springer, 2013, pp. 602–628.

[29] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and P. Tonella,
“Do automatically generated test cases make debugging easier? an
experimental assessment of debugging effectiveness and efficiency,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 25, no. 1, pp. 5:1–5:38, Dec. 2015.

[30] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string
test inputs using a natural language model to reduce human oracle cost,”
in Proceedings of the International Conference on Software Testing,
Verification and Validation (ICST). IEEE, 2013, pp. 352–361.

[31] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser,
“Are mutants a valid substitute for real faults in software testing?”
in Proceedings of the Symposium on the Foundations of Software
Engineering (FSE). ACM, 2014, pp. 654–665.

[32] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled experimen-
tation with testing techniques: An infrastructure and its potential impact,”
Empirical Software Engineering, vol. 10, no. 4, pp. 405–435, Oct. 2005.

[33] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A database of existing
faults to enable controlled testing studies for java programs,” in
Proceedings of the International Symposium on Software Testing and
Analysis (ISSTA). ACM, 2014, pp. 437–440.

[34] J. M. Rojas, G. Fraser, and A. Arcuri, “Automated unit test generation
during software development: A controlled experiment and think-aloud
observations,” in Proceedings of the International Symposium on Software
Testing and Analysis (ISSTA). ACM, 2015, pp. 338–349.

[35] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezzè, “Automatic generation
of oracles for exceptional behaviors,” in Proceedings of the International
Symposium on Software Testing and Analysis (ISSTA), 2016, pp. 213–224.

[36] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Transactions on Software
Engineering (TSE), vol. 32, no. 12, 2006.

[37] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The role of replications
in empirical software engineering,” Empirical Software Engineering,
vol. 13, no. 2, pp. 211–218, 2008.

[38] R. Just, F. Schweiggert, and G. M. Kapfhammer, “Major: An efficient and
extensible tool for mutation analysis in a java compiler,” in Proceedings
of the International Conference on Automated Software Engineering
(ASE). IEEE Computer Society, 2011, pp. 612–615.

[39] A. Arcuri and L. Briand, “A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering,” Software
Testing, Verification and Reliability (STVR), vol. 24, no. 3, pp. 219–250,
2014.

[40] R. A. Fisher, “On the Interpretation of 𝜒2 from Contingency Tables, and
the Calculation of P,” Journal of the Royal Statistical Society, vol. 85,
no. 1, pp. pp. 87–94, 1922.

[41] R. P. Buse, C. Sadowski, and W. Weimer, “Benefits and barriers of user
evaluation in software engineering research,” ACM SIGPLAN Notices,
vol. 46, no. 10, pp. 643–656, 2011.

[42] A. J. Ko, T. D. Latoza, and M. M. Burnett, “A practical guide to controlled
experiments of software engineering tools with human participants,”
Empirical Software Engineering, vol. 20, no. 1, pp. 110–141, 2015.

[43] W. F. Tichy, “Hints for reviewing empirical work in software engineering,”
Empirical Software Engineering, vol. 5, no. 4, pp. 309–312, 2000.



[44] J. Carver, L. Jaccheri, S. Morasca, and F. Shull, “Issues in using
students in empirical studies in software engineering education,” in
IEEE International Software Metrics Symposium, 2003, pp. 239–249.

[45] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects—A
comparative study of students and professionals in lead-time impact
assessment,” Empirical Software Engineering, vol. 5, no. 3, pp. 201–214,
2000.

[46] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. E. Emam, and J. Rosenberg, “Preliminary guidelines for
empirical research in software engineering,” IEEE Transactions on
Software Engineering (TSE), vol. 28, no. 8, pp. 721–734, Aug. 2002.

[47] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives of
professionals in software engineering experiments?” in Proceedings of
the International Conference on Software Engineering (ICSE). IEEE
Press, 2015, pp. 666–676.

[48] “Rabbit - Eclipse Statistics Tracking plugin URL: https://code.google.
com/p/rabbit-eclipse/,” 2014, version 1.2.1.

[49] B. Li, C. Vendome, M. Linares-Vásquez, D. Poshyvanyk, and N. A.
Kraft, “Automatically documenting unit test cases,” in Proceedings of the
International Conference on Software Testing, Verification and Validation
(ICST), 2016, pp. 341–352.

[50] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do automatically generated unit tests find real faults? an empirical study
of effectiveness and challenges (t),” in Proceedings of the International
Conference on Automated Software Engineering (ASE). IEEE, 2015,
pp. 201–211.

[51] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated unit test generation really help software testers? a controlled
empirical study,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 24, no. 4, p. 23, 2015.

[52] N. Tillmann, J. De Halleux, and T. Xie, “Transferring an automated
test generation tool to practice: From pex to fakes and code digger,”
in Proceedings of the International Conference on Automated Software
Engineering (ASE). ACM, 2014, pp. 385–396.

https://code.google.com/p/rabbit-eclipse/
https://code.google.com/p/rabbit-eclipse/

