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Abstract

In recent years, residual learning based convolutional neural networks have been

applied to image restoration and achieved some success. To avoid network degra-

dation, deep layers in these methods are identity mappings, which are not easy

to be learned as observed in recent image recognition work. In this paper, we

propose a novel residual learning based CNN framework for image denoising,

which does not need to learn identify mappings while avoiding network degrada-

tion. The proposed CNN network contains three kinds of sub-networks: feature

extraction sub-network, inference sub-network and fusion sub-network. The

feature extraction sub-network is first used to densely extract patches and rep-

resent them as high dimensional feature maps. Multiple inference sub-networks

are then cascaded to learn noise maps by exploiting multi-scale information in

a hierarchical fashion, which makes our method have a strong ability of tol-

eraing errors in noise estimation. Finally, the fusion sub-network fuses the noise

maps to obtain the final noise estimation. The proposed hierarchical residual

learning network can tackle with multiple general image denoising tasks such

as Gaussian denoising and single image super-resolution. Experimental results

on several datasets show that our hierarchical residual learning based image

denoising method outperforms many state-of-the-art ones.
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hierarchical residual learning, multi-scale information

Preprint submitted to Journal of LATEX Templates April 1, 2019



Figure 1: Illustration for hierarchical residual learning. Each inference net estimates a noise

map. Then multiple noise maps will be fused to get the final estimated noise map by a fusion

net, which makes our method have a strong ability of toleraing errors in noise estimation.

It is a hierarchical learning process that the later inference net will learn less noise than the

previous one.

1. Introduction

Image denoising aims to remove noises from a noisy image, which makes the

recovered image not only approximate to the undegraded one but also comply

with human visual system, so that it can benefit the subsequent analysis and

processing. A lot of popular denoising methods [1, 2, 3] are based on sparse rep-5

resentation model. They generally consider the property of both self-similarity

and sparsity of the image. BM3D [1] stacks some similar image patches to

constitute a three dimensional array and sparsely represents them with a three

dimensional wavelet basis or DCT basis. On the basis of each image patch hav-

ing the property of sparsity, LSSC [2] proposes similar image patches should10
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have similar sparse decomposition. CSR [3] proposes a centralized sparse rep-

resentation model based on image patch self-similarity to get more accurate

sparse decomposition. However, the same as the traditional sparse represen-

tation model applied to other tasks [4, 5, 6, 7, 8], sparse representation based

image denoising usually contain process of solving a very complex optimization15

problem that causes conflicts between good performance and running time.

Recently, deep learning method has got much attention and it is successfully

applied in many computer vision problems [9, 10, 11, 12, 13]. Specifically, some

deep learning based methods have also been explored for the low level tasks.

Dong et al. [14, 15] demonstrate that a convolutional neural network (CNN)20

can learn a mapping from low resolution image to high resolution one in an

end-to-end manner. It does not require any engineered features that are typi-

cally necessary in traditional methods. Soon after, they expand this work for

JPEG compressive image restoration [16]. An effective method [17] to reduce

the amount of weights and speed it up has been proposed. For image denoising,25

Burger et al. [18] attempt to learn the mapping from a noisy image to a noise-

free image directly with a plain multi-layer perceptron (MLP). In [19], Chen

et al. describe a flexible learning framework based on the concept of nonlinear

reaction diffusion models. By embodying recent improvements in nonlinear dif-

fusion models, they propose a dynamic nonlinear reaction diffusion model with30

time-dependent parameters. Different from [14, 15, 16, 17, 18, 19] that use the

undegraded image as ground true for training, some works try to learn image

residual. Kim et al. [20] propose a very deep network to learn residual to fast

the convergence speed. In [21], residual learning and batch normalization are

utilized to speed up the training process as well as boost the denoising perfor-35

mance. However, they simply stack multiple convolution layers to construct a

plain network which needs the deep layers to be an identity mapping to get good

performance. But an identity mapping is hard to train in deep layers, which has

been mention in recent image recognition work [22]. Therefore, it is necessary

to explore a better residual learning method.40

Investigating an effective ways to use the multiple scale information is also
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important. The degraded image can be successful recovered is mainly based on

the assumption that patches in a natural image tend to redundantly recur many

times inside the image. However, it is not only exist in the same scale but also

across different scales. Make full use multiple scales information can improve45

the restoration result has been proved in traditional method [23]. However, the

multiple scale information has been little investigated in deep learning methods.

In [20], Kim et al. try to train a multi-scale model for different magnification

super resolution. It is a very rough tactics to explore the scale information since

they just put different scale image as input for training. Its successful can be50

attribute to the powerful learning ability of CNN instead of the multiple scale

information being considered in the network structure itself.

In this paper, we propose an CNN based image denoising method. Firstly,

we propose a novel hierarchical residual learning method. Different from exist-

ing residual learning method, which uses a plain network to predict residual,55

that our hierarchical residual learning method iteratively increase different level

residual to get the final residual estimation. Making full use of the relationship

between identity mapping and zero mapping, our hierarchical residual learning

method can make the network deeper is better. Secondly, based on the idea

of hierarchical residual learning, we design a convolutional neural network for60

image noise estimation. It contains three kinds of sub-network, i.e. feature

extraction, inference and fusion sub-network. We cascade multiple inference

sub-network to estimate different level noise. Each inference sub-network has

different scale receptive field. They constitute a receptive field pyramid that

makes our network has the natural attributes of learning multiple scale infor-65

mation. A fusion sub-network is also design to fuse these different level noise

maps to increase our networks fault tolerance. Figure 1 gives a glimpse of the hi-

erarchical residual learning process of our proposed network and how it corrects

these error components. More details will be given in the later suction.

In short, the contributions of this work are mainly in three aspects:70

• We present a hierarchical residual learning method, which gradually in-
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crease the residual and remove these error components. It makes full

use of the relationship between identity mapping and zero mapping that

guarantees our network deeper is better.

• We design a hierarchical residual learning based image noise estimation75

network. The receptive fields of multiple sub-networks form a pyramid,

which makes our network can learn multiple scale information.

• The proposed hierarchical residual learning based image noise estimation

network can handle multiple image denoising tasks. Experiments on Gaus-

sian denosing and single image super-resolution show that our method80

outperforms many state-of-the-art methods.

2. Related Work

Residual learning. Residual learning actually has been widely used in tra-

ditional image restoration methods. A lot of sparse representation based image

super-resolution methods try to learn the image high frequency components.85

Specifically, in [24], Zhang et al. propose dual-dictionary to learn residual it-

eratively. Part of our work inspired by this multiple residual learning method.

After the success of ResNet [22] in image recognition, some works try to learn the

residual instead of the undegraded image. Very recently, DnCNN [21] proposed

to learn a CNN network with residual learning for image denoising. Compared90

with DnCNN, our proposed method has three very significant advantages. On

the one hand, there is no need of any operation of batch normalization that

makes our network having fewer parameters that speed up the running time.

On the other hand, hierarchical residual learning makes our method more ro-

bust.95

Multiple scale information. In order to avoid the tedious matter of

training different model for different magnification image super resolution, Kim

et al. [20] train a multi-scale model. With this approach, parameters are shared

across all predefined scale factors. However, their network structure does not
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Figure 2: Comparison between the existing residual learning method and our proposed hier-

archical residual learning. (a) is the network proposed by Kim et al. [20]. (b) is the identify

mapping based residual learning that learns residual progressively. (c) is the proposed hier-

archical residual learning.

contain any scale information. Their success maybe should attribute to the100

powerful learning ability of the convolutional neural network. In [25], Hui et

al. propose a Multi-Scale Guided convolutional network for depth map super

resolution. But it can be classed as cascade operation because it does not learn

the scale information from the input low resolution image.

3. The Proposed CNN based Image Denoising Method105

In this section, we first propose our hierarchical residual learning framework,

then give detail introduction to the proposed image denoising method. An

insight into how our method does work well is also given.

3.1. Hierarchical Residual Learning

In [20], Kim et al. propose a very deep network to learn residual to fast the110

convergence speed. It is a plain convolutional neural network as shows in Figure

2 (a), which stacks multiple convolution layers with the same size filters. These

network can be expressed as:

Fi (x) = max (0,Wi ∗ x+Bi) , i ∈ {1, 2, · · · , n− 1} (1)
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F (x) = Wn ∗ Fn−1 (x) +Bn (2)

where Wi and Bi represent the filters and biases of the ith layer respectively, and

∗ is a convolution operation. While it successfully introduced residual learning115

into the image restoration problem, we find its limitations in two aspects: first,

it needs the high layers to be an identity mapping to guarantee the network not

degrade since it is a very deep network. Second, the output of the network just

relates to single receptive field. In this paper, we propose hierarchical residual

learning to solve these two problems.120

Intuitively, if the shallow network has got the best performance, the increased

layers being an identity mapping will not destroy the good performance that

result in the shallow network. However, in reality, when the network reaches

a certain depth, the deeper the network is not necessarily the better. In [22],

He et al. give an example that a 56 layers network get worse performance that125

the 26 layers one. This is in conflict with the identity mapping theory. We

think this can be explained as the identity mapping is hard to train with a

convolution neural network. To solve this problem, He et al. explicitly add

an identity mapping into the network. Then the output of the network with

input x becomes f (x) + x. They explain x is the identity mapping and f (x) is130

the residual. Obviously, the identity mapping based network can also be used

to learn image residual. As show in Figure 2 (b), the identify mapping based

residual learning network can be formulated as:

Fi (Y ) = max (0, (Wi ∗ Y +Bi) + Y ) , i ∈ {1, 2, · · · , n− 1} (3)

F (Y ) = (Wn ∗ Fn−1 (Y ) +Bn) + Fn−1 (Y ) (4)

The identify mapping based residual learning network lands back on the135

basic idea of original residual learning proposed in [22] for image recognition.

The difference has two aspects: first, the input x is residual and f (x) is the

residual’s residual. Second, we focus on low level task instead of the high level

one. The identify mapping based residual learning network can progressively

refine the residual map. However, the output of this kind of network is related140
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to single receptive field. In this paper, we propose hierarchical residual learning

framework that optimizes the residual map progressively as the identify map-

ping based residual learning network does. But different with identify mapping

based residual learning network, our hierarchical residual learning makes full

use of different receptive field information. The graphical representation of our145

hierarchical residual learning framework is Figure 2 (c) and it can be formulated

as:

fi (Y ) = max (0,Wi ∗ Y +Bi) , i ∈ {1, 2, · · · , n} (5)

F (Y ) = fusion (f1 (Y ) , f2 (Y ) , · · · , fn (Y )) (6)

Where fusion(·) is a fusion method. Obviously, different fusion method can

be used to fuse these residual maps. fusion(·) is a Concat layer follows by150

a convolution layer in our proposed hierarchical residual learning based image

denoising method. Different from the identify mapping based network structure,

the hierarchical one no need to explicitly use the identity mapping. If the fusion

output of the front i residual maps is the desired result, we just need to train

the remains to be zero. This idea is consistent with the finding in [22]. This155

design results in some very interesting characters that we will analysis it in the

later subsection.

3.2. Hierarchical Residual Learning based Image denoising

Based on our hierarchical residual learning framework introduced in the

above subsection, we design an end-to-end network to estimate the image noise.160

The network framework outlined in Figure 3, consists of three kinds of sub-

networks: feature extraction, inference and fusion networks. We use FE , FI

and FR to denote these three kinds of sub-network respectively. The feature

extraction network learns the effective feature maps ready for inference. Then

multiple inference sub-networks cascade to learn noise. Finally, all these learned165

noise maps are fused to get the final estimated noise by a fusion net.

The feature extraction sub-network takes the noise image as input and learns

a set of feature maps. It is a single layer network with d1 filters of size fe×fe×c
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  Conv(f1,d1,c1)   Conv(f2,d2,c2)   Conv(fn,dn,cn)

m m 

Conv(3,1,d2) Conv(3,1,dn-1) Conv(3,1,dn)

Concat

Conv(1,1,s)

Noise

Noise Image

Feature Extraction Net Inference Net Inference Net

Fusion Net

Figure 3: Our Network Structure. Given a noise image, the feature extraction sub-network

extracts a set of feature maps. Then multiple inference sub-network cascade to predict different

scale noise. These noise maps are grouped together into a high dimensional noise feature map.

The fusion sub-network fuses these noise maps to produce the final noise estimation.

as in SRCNN [14, 15]. fe is the spatial size of a filter and c depends on the

channel number of the noise image, i.e. c = 1 for gray image and c = 3 for170

the color one. By doing convolution with these filters, each patch of the input

noise image, which has the same size with the receptive field of a neuron, is

represented as a high-dimensional feature vector. Then, given the noise image

x, the formula for feature extraction sub-network is as follows:

FE (x) = max (0, we ∗ x+ be) (7)

where we, be are the filter and bias respectively and ∗ denotes a convolution.175

max(0, ·) corresponds to the Rectified Linear Unit (ReLU). In Figure 3, it is

marked as Conv (f1, d1, c1).

The inference sub-network contains m convolution cascade operation that re-

sults in a large receptive field to takes more image context into account for detail

recovery. In the existing residual learning method proposed by Jim et al. [20], it180

mainly relies on the identity mapping to guarantee deeper being better. In addi-

tion to the identity mapping, based on hierarchical residual learning, we cascade
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multiple inference sub-networks that introduces zero mapping to provide double

protection for the goal of deeper being better. One inference sub-network can

be expressed as:185

F j
I (Y ) = max

(
0, wj

I ∗ Y + bjI

)
, j ∈ {1, 2, · · · ,m} (8)

Fm+1
I (Y ) = wm+1

I ∗ Y + bm+1
I (9)

where wj
I and bjI represent the filters and biases of the jth layers respectively.

Each layer has dI filters and biases for layers from 1 to m, while the last layer has

only one filter and bias for estimating a noise map. One inference sub-network

can only takes one scale information into account that make it not flexible190

enough to the complex image detail. The cascade structure is a good way to

learn multiple scale information. Very interesting, this design conforms to the

traditional multiple residuals learning idea. More importantly, it introduces a

zero mapping relationship to guarantee our network deeper being better. The

input Y is different for different inference sub-network. The input Y of the195

first inference sub-network is the high dimensional feature maps outputted by

the feature extraction sub-network, i.e. Y1 = FE (x). To the other inference

sub-network, the input Y is the mth layer output of the previous sub-network,

i.e. Yi = Fm
Ii−1

(Yi−1). In Figure 3, the ith inference sub-network is marked as

m× Conv (fi, di, ci).200

The fusion sub-network fuses all noise maps, which learns from multiple

inference sub-networks, to get final image noise estimation. It contains a concat

and convolution operation. The concat layer group these noise maps together

into a high dimensional noise feature map, then the convolution layer fuses

them. It can be expressed as205

F 1
R

(
Fm+1
I1

, Fm+1
I2

, · · · , Fm+1
IN

)
= Concat

(
Fm+1
I1

, Fm+1
I2

, · · · , Fm+1
IN

)
(10)

F 2
R

(
Fm+1
I1

, Fm+1
I2

, · · · , Fm+1
IN

)
= wR ∗ F 1

R

(
Fm+1
I1

, Fm+1
I2

, · · · , Fm+1
IN

)
+ bR

(11)

where Concat operation concatenates the inputs along the feature channel di-

mension, wR is a filter of size of 1x1 and bR is the biases, F 2
R (·) is the final
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estimated noise.

3.3. Training210

We now describe the objective to minimize in order to find optimal param-

eters of our model. Following most of CNN based image restoration methods,

the mean square error is adopt as the cost function of our network. Since we

have N inference sub-networks and a fusion one to estimate noise maps, we have

N+1 objectives to minimize. Given a training dataset {xi, yi}ni=1, where xi and215

yi is a noise image its corresponding noise map respectively. The optimization

objective of the jth inference sub-network is represented as:

Lj
I (θj) =

1

2n

∑n

i=1

∥∥∥F j
I (xi; θj)− yi

∥∥∥2

F
(12)

where θj and F j
I (xi; θj) denotes the parameter set and the estimated noise map

of the jth inference sub-network. For the fusion sub-network, we have

LR (θ) =
1

2n

∑n

i=1
‖FR (xi; θ)− yi‖2F (13)

where θ is the network parameters needed to be trained and FR (xi; θ) is the220

final estimated noise map with respect to noise image xi. Note that parameter

set θj is part of θ. The final loss function can be represented as:

L (θ) = αRLR (θ) +
∑N

j=1
αjLI (θj) (14)

where αR and αj denote the importance of corresponding loss functions. Rec-

tified Linear Unit (ReLU) is used as activation function after each convolution

layer. We use the adaptive moment estimation (Adam) [26] to optimize all225

network parameters.

3.4. Insights

Deeper is better. As discuss in the previous section, if the shallow network

has got the best performance, the increase layers being an identity mapping will

not degrade the network. In our hierarchical residual, we dont give the identity230

mapping explicitly. However, if the fusion result of the front i inference sub-

networks get the desired output, they will become an identity mapping and
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the later inference sub-networks all become a zero mapping. Our experimental

results prove our reason. Figure 1 is an illustration for hierarchical residual

learning and fusion process. Noise map 1 is the noise estimation of the first235

inference sub-network. It is the similar interpretation to other noise maps. The

figure shows that the noise information become less and less from noise map

1 to noise map 4. There is hardly any information in the last noise map. In

the other words, it become a really zero mapping. In summary, the ideas of

identity mapping and zero mapping provide double protection for the goal of240

deeper being better for our proposed hierarchical residual based image denoising

network.

Furthermore, the fusion sub-network is not a simple add operation. It makes

these hierarchical learned noise maps form a complementary relationship to a-

mend the error estimations. That is, they are not only provide different level245

noise estimation but also point out the errors existing in each other. For ex-

ample, in Figure 1, the noise map 1 mistakenly regard the image texture as

noise, then the noise map 2 tell our network that there are something wrong

in noise map 1. We mark these obvious errors in each noise map in arrows.

Through our fusion sub-network, all these errors are amended. This is a signifi-250

cant advantages of hierarchical learning than adder tree structure and the plain

one.

Multiple Scale information learning. Another important advantage of

our hierarchical residual learning method is that it can take multiple scale in-

formation into account. The multiple scale information has been widely used in255

traditional image restoration methods and has demonstrated to be conducive to

improve restoration result. They often sample or interpolate the image to differ-

ent scales that constitutes an image pyramid that providing much more useful

information for detail recovery. In our method, each inference sub-network has

different size of receptive field. It results in a receptive field pyramid that each260

scale provides different detail information like the traditional image pyramid

does. In other words, our hierarchical residual learning has a natural attributes

of multiple scale information learning. It is another reason that our method has
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Original / PSNR / SSIM

Noise / 20.95 / 0.2500

BM3D / 30.62 / 0.7287 EPLL / 30.48 / 0.7154 WNNM / 30.59 / 0.7306

TNRD / 30.73 / 0.7324 DnCNN / 30.74 / 0.7352 HRLNet /31.61 / 0.7627

Figure 4: Visual quality comparison of Gaussian noise removal on image ”head” from Set5 [27]

in the case of sigma = 25.

very strong fault tolerance.

4. Experimental Results265

In this section, we evaluate the performance of our method on both Gaussian

denoising and single image super-resolution. Firstly, the training and testing

datasets are introduced. Next, some training details are given. Finally, we

show the quantitative and qualitative comparisons with four state-of-the-art

methods. We name the proposed method as HRLNet.270

4.1. Datasets for Training and Testing

It is well known that training dataset is very important for the performance

of learning based image restoration methods. A lot of training dataset can be

found in the literature. For example, SRCNN [14] uses a 91 images dataset and

VDSR [20] uses 291 images dataset. For a fare comparison with TNRD [19]275

and DnCNN [21], which are two very new image restoration methods in the

literature, we use the same 400 images of size 180×180 for training. We set the
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Table 1: The PSNR/SSIM results of Gaussian noise removal by various algorithms on Set5 [27]

Image Level
BM3D [1] EPLL [28] WNNM [29] TNRD [19] DnCNN [21] HRLNet

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

baby 5 39.42 0.9634 39.29 0.9632 39.51 0.9637 39.44 0.9631 - - 40.01 0.9650

25 31.75 0.8613 31.51 0.8561 31.83 0.8626 31.76 0.8625 31.85 0.8647 32.59 0.8751

50 28.98 0.7897 28.51 0.7660 28.89 0.7909 28.81 0.7861 28.99 0.7891 29.72 0.8062

bird 5 40.65 0.9800 40.20 0.9778 41.10 0.9816 40.74 0.9791 - - 41.58 0.9812

25 31.80 0.8946 31.37 0.8770 32.21 0.9034 31.88 0.8907 32.17 0.8995 32.85 0.9055

50 28.30 0.8112 27.77 0.7824 27.83 0.7930 28.10 0.7953 28.37 0.8077 28.96 0.8182

butterfly 5 37.36 0.9759 37.54 0.9764 38.38 0.9786 38.00 0.9772 - - 39.01 0.9802

25 28.35 0.9133 28.41 0.9106 29.40 0.9265 29.30 0.9192 29.72 0.9268 30.33 0.9283

50 24.75 0.8412 25.10 0.8465 25.08 0.8622 25.90 0.8393 26.28 0.8695 26.78 0.8701

head 5 36.63 0.9203 36.66 0.9264 36.64 0.9221 36.50 0.9174 - - 37.25 0.9225

25 30.62 0.7287 30.48 0.7277 30.59 0.7306 30.73 0.7324 30.74 0.7352 31.61 0.7627

50 28.46 0.6576 28.37 0.6395 28.32 0.6454 28.68 0.6517 28.53 0.6475 29.42 0.6977

woman 5 39.19 0.9764 38.91 0.9749 39.29 0.9764 39.29 0.9760 - - 39.68 0.9765

25 30.74 0.9008 30.31 0.8896 30.96 0.9072 30.76 0.9004 30.98 0.9077 31.65 0.9115

50 27.17 0.8301 26.99 0.8096 27.43 0.8312 26.97 0.8280 27.67 0.8434 28.25 0.8497

Avg. 32.28 0.8696 32.09 0.8616 32.50 0.8717 32.46 0.8679 - - 33.31 0.8834

Table 2: Average PSNR/SSIM of Gaussian noise removal by various algorithms on three

datasets

Image Level
BM3D [1] EPLL [28] WNNM [29] TNRD [19] DnCNN [21] HRLNet

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5 5 38.65 0.9632 38.52 0.9637 38.98 0.9645 38.79 0.9625 - - 39.51 0.9651

25 30.65 0.8597 30.42 0.8522 31.00 0.8661 30.89 0.8610 31.09 0.8668 31.80 0.8766

50 27.53 0.7860 27.33 0.7688 27.42 0.7793 27.78 0.7853 27.97 0.7914 28.63 0.8084

Set12 5 37.98 0.9568 37.55 0.9572 38.03 0.9583 37.80 0.9566 - - 38.45 0.9590

25 29.56 0.8227 29.24 0.8209 29.85 0.8282 29.62 0.8256 29.75 0.8305 30.46 0.8368

50 26.39 0.7195 26.03 0.7053 26.43 0.7276 26.45 0.7210 26.62 0.7253 27.29 0.7369

BSD68 5 37.56 0.9635 37.54 0.9647 37.78 0.9650 37.70 0.9645 - - 37.95 0.9667

25 28.56 0.8011 28.67 0.8121 28.83 0.8156 28.91 0.8151 29.02 0.8190 29.14 0.8238

50 25.61 0.6860 25.67 0.6877 25.78 0.7036 25.96 0.7019 26.10 0.7076 26.16 0.7143

Avg. 31.39 0.8398 31.22 0.8370 31.57 0.8454 31.54 0.8437 - - 32.15 0.8542
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patch size as 40 × 40, and use data augmentation (rotation or flip) to prepare

training data. For Gaussian denoising, we test on three datasets, i.e. Set5 [27] (5

images), Set14 [30] (14 images) and BSD68 [31] (68 images), which are widely280

used for benchmark in other works [14, 15, 19, 20]. For single image super-

resolution, we test on Set5 [27] (5 images) and Urban100 [32]. It is needed to be

noted that we only consider the luminance channel (in YCrCb color space) in

our experiments following most image restoration works like [14, 15]. However,

our method can be extend to directly training/testing on color images by setting285

the appropriate channel number.

4.2. Training Details

For feature extraction sub-network, we set fe = 3, de = 80, and ce = 1 for

gray image. For each inference sub-network, we uniformly set fi = 64, di = 64,

and m = 5. We cascade 4 inference sub-networks for estimating multiple levels290

noise maps. To fusion sub-network, s = 4 that is consistent with the amount

of inference sub-network to be cascaded. Because the input and the output of

the proposed network should have the same resolution, so we will up-sample the

low resolution image to the desired resolution by bicubic interpolation for single

image super-resolution. For weight initialization, we use the method described295

in He et al. [33]. This is a theoretically sound procedure for networks utilizing

rectified linear units (ReLU). For the other hyper-parameters of Adam, we set

the exponential decay rates for the first and second moment estimate to 0.9 and

0.999, respectively. We train all our experiments only over 50 epochs and each

epoch iterate 1600 with patch size 128. The learning rate of the first 30 epochs300

is 0.001 while that of the other 20 epochs is 0.0001. We implement our model

using the MatConvNet package [34].

4.3. Experiments on Gaussian Denoising

We compare our proposed HRLNet with four state-of-the-art methods, name-

ly BM3D [1], EPLL [28], WNNM [29], TNRD [19], and DnCNN [21]. All the305

test experiments are implemented in Matlab 2015a on Windows 7 system, and
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Original / PSNR / SSIM

Noise / 14.53 / 0.1026

BM3D / 28.71 / 0.7733 EPLL / 28.20 / 0.7525 WNNM /28.64 / 0.7720

TNRD /28.71 / 0.7704 DnCNN / 28.94 / 0.7746 HRLNet / 29.68 / 0.7965

Figure 5: Visual quality comparison of Gaussian noise removal on image Lenna from Set14 [30]

in the case of sigma = 50.

runs on desktop computer with 4 cores CPU at 3.4 GHz and 12 GB RAM. To

TNRD, we use its 7x7 filter model for comparison. The implementation codes

are downloaded from the authors’ websites and the default parameter settings

are used in our experiments. We compare these methods in three noise levels310

(sigma value), i.e. 5, 25 and 50. To DnCNN, the authors do not release the

model in noise level of 5, so we just compare with DnCNN in noise level of 25

and 50. Both quantitative and qualitative comparisons are given. Table 1 shows

the PSNR and SSIM results of Gaussian noise removal by various algorithms on

each image of Set5. To this five images, our proposed HRLNet outperforms all315

the other five methods on all noise level with respect to both PSNR and SSIM

assessment criteria. On this dataset, our HRLNet can improve roughly 0.85

dB, 0.81 dB, 1.03 dB, 1.22 dB on average, in comparison with TNRD, WNNM,

BM3D and EPLL, respectively. When we use the SSIM as the assessment cri-

teria, the average gains achieved by our HRLNet are 0.0117, 0.0138, 0.0155 and320

0.0218 in comparison with WNNM, BM3D, TNRD and EPLL, respectively. We

note that Set5 may not be a conclusive test set due to the limited number of test
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Original / PSNR / SSIM BM3D 25.73 / 0.8483 EPLL / 25.86 / 0.8559 WNNM / 26.15 / 0.8645

Noise / 20.74 / 0.5914 TNRD / 26.09 / 0.8592 DnCNN / 26.34 / 0.8662 HRLNet / 26.45 / 0.8712

Figure 6: Visual quality comparison of Gaussian noise removal on image Test021 from BS-

D68 [31] in the case of sigma = 25.

samples, but the results show that the proposed HRLNet can handle different

noise level well. To further validate the performance of our proposed model, we

test it on the other two larger dataset. In Table 2, we provide a summary of av-325

erage PSNR and SSIM results of Gaussian noise removal by various algorithms

on Set5, Set14 and BSD68. We highlight the best results with bold fonts. Both

Table 1 and Table 2 show that our method outperforms all the five compared

state-of-the-art methods by a large margin with respect to PSNR and SSIM.

Specially, compare to the recent proposed TNRD, our method get average 0.41330

dB gain over these three dataset on three noise levels.

Since all the compared methods get almost no difference in visual effect on

noise level 5, we just show the high level noise (i.e. sigma is 25 and 50) removal
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Table 3: Average CPU running time (in seconds) of different methods on images of size

256 × 256, 512 × 512, and 1024 × 1024 with noise level 25.

Method BM3D EPLL WNNM TNRD DnCNN HRLNet

256× 256 0.65 25.40 203.10 0.45 0.74 0.55

512× 512 2.85 45.50 773.20 1.33 3.41 2.17

1024× 1024 11.89 422.10 2536.40 4.61 12.10 9.21

results. Figure 4 gives an example of qualitative comparison on noise level 25.

It shows the visual quality comparison of Gaussian noise removal on image head335

from Set5. Our method can recover much more image detail information such

as the eyelid part, while the results of the other methods either over smooth

or can’t get clean output. Figure 5 shows the very high level noise removal

performance, where the sigma value is 50 and the PSNR and SSIM of the noise

image are only 14.53 dB and 0.1026, respectively. Obviously, Figure 5 shows340

the result of our proposed HRLNet produces much sharper edges than other

approaches without any obvious artifacts across the image. Figure 6 shows

another example of visual quality comparison. The enlarged portion shows the

the result of HRLNet is the clearest and the most visually pleasant.

4.4. Running Time345

The running time comparison of various methods are shown in Table 3. The

running time of the compared method are taken from [21]. The running time

of HRLNet is the implementation time on the platform of Matlab 2015a on

Windows 7 system with an Intel Core i7-3770 CPU. The average CPU running

time comparisons on three different size images shows that HRLNet obtains350

comparable running speed with the state-of-the-art methods.

4.5. Experiments on Single Image Super-resolution

The compared single image super-resolution methods include: SRCNN [15],

TNRD [19], VDSR [20], and DnCNN [21]. Bicubic interpolation results are also

listed for comparison. All the codes are downloaded from the authors’ websites.355
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Table 4: Average PSNR and SSIM comparisons of different methods for single image super-

resolution with upsampling factors of 3 and 4 on Set5 and Urban100 datasets. The best results

are highlighted in bold.

Dataset Scale
Bicubic SRCNN [15] TNRD [19] VDSR [20] DnCNN [21] HRLNet

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Set5
x3 30.39 0.8682 32.39 0.9033 33.18 0.9152 33.67 0.9220 33.75 0.9222 33.75 0.9219

x4 28.42 0.8104 30.09 0.8503 30.85 0.8732 31.35 0.8845 31.40 0.8845 31.49 0.8849

Urban
x3 24.46 0.7349 26.03 0.7973 26.42 0.8076 27.13 0.8283 27.15 0.8276 27.19 0.8292

x4 23.14 0.6577 24.32 0.7183 24.61 0.7291 25.17 0.7528 25.20 0.7521 25.23 0.7522

Average 26.60 0.7678 28.21 0.8173 28.77 0.8313 29.33 0.8469 29.38 0.8466 29.42 0.8471

All the tests use the models released by the corresponding author. Table 4 shows

the average PSNR and SSIM comparisons of different methods for single image

super-resolution with upsampling factors of 3 and 4 on Set5 and Urban100

datasets. As shown, HRLNet gets the highest average PSNR and SSIM in

comparison with the four state-of-the-art single image super-resolution methods.360

Figure 7 shows an example of visual quality comparison of different single image

super-resolution methods on image Woman from Set5 [27] with scale factor

×4. The enlarged portion shows that the texture of the reconstructed image of

HRLNet is clearer than that of the compared methods.

5. Conclusion365

In this paper, we propose a hierarchical residual learning convolutional neu-

ral network (HRLNet) for image noise estimation. It contains three kinds of

sub-networks, i.e. feature extraction, inference and fusion sub-network. Such a

hierarchical learning strategy makes the residual map be refined progressively.

Furthermore, our network receptive fields constitute a receptive field pyramid370

that make it has a natural attributes to make full use of multiple scale infor-

mation. Experimental results show that the proposed HRLNet outperforms

many state-of-the-art methods on Gaussian denoising and single image super-

resolution.
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Original / PSNR / SSIM Bicubic / 26.46 / 0.8318 SRCNN / 28.89 / 0.8837

TNRD / 29.17 / 0.8903 VDSR / 29.83 / 0.9048 HRLNet / 30.08 / 0.9069

Figure 7: Visual quality comparison of single image super-resolution on image Woman from

Set5 [27] with scale factor ×4.
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