
1



Abstract—Multi-population is an effective optimization
component often embedded into evolutionary algorithms to solve
optimization problems. In this paper, a new multi-population
based multi-objective genetic algorithm is proposed, which uses a
unique cross-subpopulation migration process inspired by
biological processes to share information between subpopulations.
Then, a Markov model of the proposed multi-population
multi-objective genetic algorithm is derived, the first of its kind,
which provides an exact mathematical model for each possible
population occurring simultaneously with multiple objectives.
Simulation results of two multi-objective test problems with
multiple subpopulations justify the derived Markov model, and
show that the proposed multi-population method can improve the
optimization ability of the multi-objective genetic algorithm. Also,
the proposed multi-population method is applied to other
multi-objective evolutionary algorithms for evaluating its
performance against the IEEE Congress on Evolutionary
Computation multi-objective benchmarks. The experimental
results show that a single-population multi-objective evolutionary
algorithm can be extended to a multi-population version, while
obtaining better optimization performance.

Index Terms—Evolutionary algorithm, Multi-population,
Multi-objective optimization, Genetic algorithms, Markov chain

I. INTRODUCTION

any real-world optimization problems require us to deal
with multiple objectives simultaneously, where it is not

easy to reach agreement. These problems are referred to as
multi-objective optimization problems (MOPs) in the scientific
domain [1-3], and their non-dominated solutions are regarded
as Pareto-optimal solutions. Without loss of generality, an
MOP is a minimization problem for each objective, which is
formulated as follows [4, 5]:

        1 2minimize , , ,

subject to Ω

T

mF x f x f x f x

x






(1)

Manuscript received ***. This material was supported in part by the National
Natural Science Foundation of China under Grant Nos. 61640316 and
61633016, and the Fund for China Scholarship Council under Grant No.
201608330109. H. Zhou is supported in part by UK EPSRC under Grant
EP/N011074/1 and Royal Society-Newton Advanced Fellowship under Grant
NA160342.

Haiping Ma is with the Department of Electrical Engineering, Shaoxing
University, Shaoxing, Zhejiang, 312000, China. (e-mail: Mahp@usx.edu.cn).

Minrui Fei is with Shanghai Key Laboratory of Power Station Automation
Technology, School of Mechatronic Engineering and Automation, Shanghai
University, Shanghai, 200072, China. (e-mail: mrfei@staff.shu.edu.cn).

Zheheng Jiang and Huiyu Zhou are with Department of Informatics,
University of Leicester, LE1 7RH, UK (e-mail: {zj53,
hz143}@leicester.ac.uk).

Ling Li is with the School of Computing, University of Kent, ME4 4AG, UK
(C.Li@kent.ac.uk)

Danny Crookes is with the School of Electronics, Electrical Engineering and
Computer Science, Queen's University Belfast, Belfast BT3 9DT, UK (e-mail:
d.crookes@qub.ac.uk).

Kay Chen Tan is with Department of Computer Science, City University of
Hong Kong, Hong Kong, China. (e-mail: kaytan@cityu.edu.hk).

That is, an MOP is to simultaneously minimize all m
functions  F x . In Equation (1),  Ω = nx R is the search
space and x is the decision variable vector. : mF R
maps the n-dimensional decision space Ω to the
m-dimensional objective space mR . Because of the complexity
of MOPs in real-world applications and limited computational
resources, true Pareto-optimal solutions are difficult to obtain
analytically or exactly. Instead, multi-objective evolutionary
algorithms (MOEAs) have been developed and have proved
promising for solving these problems [6, 7]. In [8], Deb
proposed a fast and elite non-dominated sorting genetic
algorithm II (NSGA-II), which is one of the representative
state-of-the-art multi-objective evolutionary algorithms. In [9],
Zhang presented a well accepted multi-objective evolutionary
algorithm based on decomposition (MOEA/D), which was
different from NSGA-II, being based on conventional
aggregation approaches where an MOP was decomposed into a
number of scalar objective optimization problems.

Meantime, many multi-population methods inspired by
biological or natural evolution processes have been embedded
into evolutionary algorithms to solve various simple-objective
problems (SOPs), and to obtain satisfactory optimization
performance [10, 11]. Moreover, recently, multi-population
methods have demonstrated promising results for solving
MOPs [12, 13], while achieving satisfactory trade-offs between
meeting the different objectives. In solving optimization
problems, multi-population methods firstly decompose the
initial population into several small subpopulations. Then some
evolving operators, for example, recombination and mutation
for genetic algorithms (GAs), are executed to implement the
evolution. Finally, different subpopulations work together in
order to search in different local areas to render Pareto-optimal
solutions.

In some publications, researchers have developed MOEAs
with multiple subpopulations, and the experimental results
show that the performance of MOEAs can be considerably
improved. In [14], the authors proposed a multi-population
genetic algorithm (MPGA) to solve multi-objective scheduling
problems for parallel computers, where each subpopulation
evolved separately while an elite strategy was used to select the
best solutions for each objective and the best solution of the
combined objective. Simulation results showed MPGA had
better performance over a wide range of problems, compared
with the regular multi-objective genetic algorithms (MOGAs).
Another adaptive MPGA was proposed in [15] to solve the
multi-objective group scheduling problem in hybrid and
flexible flowshops with sequence-dependent setups, where
subpopulations were generated by the re-arrangement of initial
solutions, and computational results showed that the proposed
algorithm performed better than the other algorithms. In [16],
the authors used multi-population multi-objective EAs for
optimizing NC-tool paths for simultaneous five-axis milling,
where the topology with subpopulations was considered within
the problem-specific restriction area. Experiments on different

A Multi-population Based Multi-objective
Evolutionary Algorithm

Haiping Ma, Minrui Fei, Zheheng Jiang, Ling Li, Huiyu Zhou, Danny Crookes, Senior
Member, IEEE

M

2

NC-paths structures showed that the proposed method obtained
promising results. In [17], a multi-population cooperative
co-evolutionary algorithm (MPCCA) was proposed for the
multi-objective capacitated arc routing problem. In MPCCA,
the population was divided into multiple subpopulations using
the divide-and-conquer method based on their different
direction vectors. Each subpopulation evolved separately in
each generation and the adjacent subpopulations could share
their individuals in the form of cooperative subpopulations.
Experimental results show that the proposed method obtained
better performance than the other algorithms. A multi-objective
multi-population biased random-key genetic algorithm was
presented in [18] for the 3D container loading problem, where
several subpopulations were evolved independently in parallel,
and all the solutions in each subpopulation were ranked by
fitness. Then the overall top solutions were added into each
subpopulation. Numerical experiments showed the viability of
the proposed method. An adaptive multi-population differential
evolution (AMPDE) algorithm was proposed in [19] for
continuous multi-objective optimization, where the size of each
subpopulation was adaptively adjusted based on the
information derived from the search data. Computational
results showed that the proposed AMPDE was superior to the
previous MOEAs.

Although MOEAs combined with multi-population methods
have demonstrated promising outcomes, most of them have the
following unsolved issues. First, most multi-population
MOEAs do not have enough autonomous and efficient
communication between subpopulations. That is, the
communication is only to exchange individuals based on some
simple connection topologies (defined as the connection
between the subpopulations) with a certain communication
interval (which is a parameter that controls how often the
communication occurs) and communication rate (which is a
parameter that controls how many individuals communicate).
We believe that the communication between subpopulations
can be used to increase population diversity for MOPs [20, 21],
and hence, this will accelerate the optimality search to find
better solutions. However, it is very difficult to make a
judicious choice for the communication parameters, before
MOPs can be solved.

Second, previous studies mainly focus on developing a
specific multi-population MOEA rather than looking at the
bigger picture of how multi-population methods would affect
the MOEA performance and how they can be addressed in a
generic way. Although some methods, e.g. [22-24], provide
guidelines to empirically choose multi-population parameters
for SOPs, little empirical analysis has been done to investigate
the impact of multi-population for MOPs. Further, for either
multi-population SOPs or multi-population MOPs, there has
been no theoretical model to analyze the effect of
multi-population, and to understand intrinsic differences and
similarities between multi-population and traditional MOEAs.

In order to address these challenging issues, this paper, the
first of its kind, provides comprehensive discussion of these
problems and corresponding solutions, supported by both
mathematical models and empirical results. This paper also
presents constructive comments and suggestions on future
MOEA designs that may contribute to the final solution of the
challenges.

Our work is different from previous studies in MOEAs in the
following aspects. First, we introduce a new multi-population
MOGA, in which a new operator called cross-subpopulation

migration is used to communicate between subpopulations to
exchange information. Here migration uses the rank of solution
fitness, objective similarity and Euclidian distances between
subpopulations to adaptively determine the system parameters,
including connection topology, communication frequency and
communication rate. The advantage of this operation is that the
system can be more autonomous and more efficient.

Second, a mathematical model for the proposed
multi-population MOGA is derived to reveal the algorithmic
characteristics and justify the algorithm performance. It is
important to design an algorithm to find better tuning
parameters. More generally, the model of multi-population
MOGA is useful in producing insights into how the algorithm
behaves and when it is likely to make an impact.

The novel contributions of this paper include the following
aspects: (a) it presents a new multi-population method used in
MOGA, in which cross-subpopulation migration is used to
maintain population diversity; (b) it derives the Markov model
for the proposed multi-population MOGA, which for the first
time constructs a mathematical model of the multi-population
method; (c) it uses simulations to verify the derived model, and
theoretically explores the effect of the multi-population method
on algorithmic performance; (d) it investigates the
optimization ability of the proposed multi-population MOGA
for solving a set of multi-objective benchmarks; and (e)
although in this paper the proposed multi-population method is
only used in MOGA at this stage, our idea can be extended to
any MOEA without changing the original structure of other
algorithms.

The remainder of the paper is organized as follows. Section
II gives detailed descriptions of the proposed multi-population
MOGA method. Section III presents the Markov model of the
proposed multi-population MOGA approach. Section IV
presents simulations to verify the proposed model, and show
the optimization performance of the proposed algorithm on
multi-objective benchmarks. Section V gives conclusions and
suggestions for future research.

II. MULTI-POPULATION MOGA

This section firstly presents the foundation of the proposed
multi-population MOGA (Section A), in which cross-
subpopulation migration, used to naturally communicate among
subpopulations, is introduced. Then it presents the
implementation of the proposed multi-population MOGA in
detail (Section B).

A. Foundation of Multi-population MOGA

Like most heuristic algorithms, multi-population MOGA is
inspired by nature. The environment of multi-population
MOGA is analogous to island models used in other
evolutionary computations, which are effective tools for
parallel computing. Each island is considered as a possible
solution to the problem, and a group of islands represent a
subpopulation.

In a multi-population MOGA method, it firstly performs
selection and crossover for each subpopulation, equivalent to
regular GAs, which is called ‘within-subpopulation genetic
operator’. Then candidate solutions for subpopulations are
exchanged by migration, which is an operator inspired by
species migration between islands [25, 26], called
cross-subpopulation migration because of the migration
occurring between subpopulations. The purpose of the

3

migration is to facilitate information sharing, and consequently
it preserves diversity throughout the entire population. So the
cross-subpopulation migration is an important operator in the
proposed multi-population MOGA. Finally, it performs
mutation, which is the same as those used in regular GAs. The
main difference between multi-population and
single-population MOGAs is that the former uses adaptive
interactions between subpopulations to enhance the exploration
process. A framework for multi-population MOGA is
illustrated in Figure 1.

Fig.1. A framework of a multi-population MOGA including the
within-subpopulation genetic operator (selection, crossover and mutation), and

cross-subpopulation migration.

B. Implementation of multi-population MOGA

Within-subpopulation genetic operator mainly includes
selection and crossover. Within-subpopulation selection is
implemented by roulette-wheel selection [27], and it uses a
probability distribution, which is linearly related to the solution
ranks. In MOGA, solution ranking often uses classical
non-dominated sorting [8], which reflects the relative
performance of each solution in a population, an effective
method in the multi-objective optimization domain. After the
parent solutions are selected for recombination, we perform
within-subpopulation crossover. Here we use global uniform
crossover, which means that many parents can contribute
solution variables to a single offspring, and each solution
variable in an offspring is generated independently from every
other solution variable.

Cross-subpopulation migration is implemented by
probabilistically choosing the replaced solution based on the
solution ranks. Then we find pairs of subpopulations that are
suitable for migration based on the objective similarity levels of
subpopulations. That is, we use the objective similarity levels
to decide which subpopulations to migrate to or from. The
reason is that subpopulations with a high objective similarity
are more likely to benefit each other through migration than the
subpopulations with a low similarity. The similarity levels are
calculated using Algorithm 1, where G and H are the sets of
objective costs of two solutions in different subpopulations.
The pair probability subP between the subpopulations is
proportional to the maximum objective similarity level in the
population, which is calculated as follows:

max

sub

SL
P

SL
 (2)

where SL is the objective similarity level between two solutions
cross subpopulations, and SLmax is the maximum objective
similarity level in the population.

Algorithm 1 – Similarity level calculation cross subpopulations

Set the objective similarity level SL = 0;

For each g  G, where G is the objective set of one solution

For each h  H, where H is the objective set of another solution

If g and h are the same then

SL = SL + 1;

End if

End for

End for

 Once we obtain the pair of subpopulations to migrate to and
from, we calculate the Euclidian distance between the replaced
solution and each solution in the selected subpopulation. The
introduction of Euclidian distance is based on the concept of
diversity: a larger diversity in a population provides more
opportunities to find an optimal solution [20]. We then use
roulette-wheel selection based on Euclidian distance to select
the emigrating solutions in the selected subpopulation. Figure 2
shows an example of a selected emigrating solution replacing a
solution in the immigrating subpopulation, where we firstly
calculate the Euclidian distance between the replaced solution
in the immigrating subpopulation and each solution in the
emigrating subpopulation. Then we create the roulette-wheel
probability D based on the Euclidian distance, and select the
emigrating solution from the emigrating subpopulation based
on roulette-wheel selection.

Fig.2. An example of emigrating solution selection across an immigrating
subpopulation and an emigrating subpopulation.

Finally, we perform migration between the replaced solution

ky and the emigrating solution jy cross the subpopulations.
Migration is denoted as

   k jy s y s (3)

where s is a solution feature index. Equation (3) states that a
solution variable in the emigrating solution replaces one in the
replaced solution. In cross-subpopulation migration, each
solution variable in each replaced solution in a subpopulation
has a chance to be replaced by a solution variable of an
emigrating solution from another subpopulation.

Mutation in multi-population MOGA is identical to that of
regular GAs, which randomly modifies a solution variable
based on the mutation probability. The purpose of mutation is
also to increase population diversity [27].

The description of one generation of multi-population
MOGA is shown in Algorithm 2, where y is the entire
population of all the subpopulations, z is the temporary
population corresponding to y, yik is the kth candidate solution
in subpopulation i, yik(s) is the sth solution variable of yik, μik

4

and λik are selection and replacing probabilities of solution yik
respectively, ilmj is the Euclidian distance between solution l
in subpopulation i and solution j in subpopulation m , and

iN

is the population size for subpopulation i .

Algorithm 2 – One generation of the proposed multi-population

MOGA

Calculate the objective similarity between each pair of

subpopulations using Algorithm 1

Calculate the rank of each solution yik in subpopulation i using

non-dominated sorting method

Calculate selection probability μik and replacing probability λik

based on the rank of solution yik

z ← y

For each subpopulation i

 /* within-subpopulation genetic operator */

For each solution zik (k = 1 to Ni)

 For each solution variable s

Based on roulette-wheel selection, use {μi} to

probabilistically select yij in the same subpopulation i

 Perform global uniform crossover: zik(s) ←yij(s)

 Next variable

 Next solution

 /* cross-subpopulation migration */

Find a suitable subpopulation m to pair with subpopulation i

based on objective similarity levels

For each solution zik (k = 1 to Ni)

Calculate Euclidian distances { ikml } between zik and each

solution yml in subpopulation m

 Use λik to probabilistically decide whether to replace zik

 If replacing then

 For each solution variable s

Based on roulette-wheel selection, use Euclidian

distances { ikml } to probabilistically select the

emigrating solution ymj

 Perform migration: zik(s) ←ymj(s)

 Next variable

End if

 /* mutation */

 Probabilistically decide whether to mutate zik

 Next solution

Next subpopulation

y ← z

Based on the structure of the proposed multi-population
MOGA, we see that the main difference between the proposed
algorithm and the traditional multi-population MOGAs is the
introduction of cross-subpopulation migration. An important
aspect of multi-population methods is the communication
between multiple subpopulations, which is configured by
various parameters, including communication connection
topologies, communication interval and communication rate. In
many previous studies, these parameters need to be adjusted
based on a priori knowledge of the optimization problem.
However, it is hard to discover the best communication strategy
in most real-world problems.

In the proposed algorithm, we use the migration method
inspired by the ideas from biology to implement the
communication between multiple subpopulations. That is, we

firstly use MOGA to generate offspring solutions in each
subpopulation, and then employ the cross-subpopulation
migration to exchange their information. Therefore, it will often
perform better due to the adaptive exchange of information
between subpopulations. In this approach, the important
characteristics of the problems including solution fitness,
objective similarity and Euclidian distance are used in the
cross-subpopulation migration to determine the communication
parameter settings between subpopulations. It provides an
information sharing mechanism to adaptively improve the
entire population. This multi-population MOGA, which
combines MOGA with the cross-population migration, can be
treated as a template for designing other multi-population
MOEAs. It has the common features of MOEAs, but also has
the distinctive migration characteristics.

III. A MARKOV CHAIN MODEL OF THE MULTI-POPULATION

MOGA

In the previous section, we introduced a multi-population
MOGA. In this section, we establish a Markov model of the
proposed multi-population MOGA, which can be studied as the
functions of the proposed multi-population MOGA’s tuning
parameters to predict their impact on algorithmic performance,
and find optimal values of the tuning parameters to realize
real-time adaptation. Markov models have become a useful
mathematical tool for EAs, including regular GAs [28, 29],
BBO [30], and others [31]. In this paper, we will use a Markov
model to produce insights to account for how well the proposed
algorithm behaves.

Each Markov state in the multi-population MOGA is a
specific population distribution. Each generation of the
multi-population MOGA updates its population with a
within-subpopulation genetic operator, and cross-subpopulation
migration described in the previous section. A transition
between states corresponds to the evolution of the population in
one generation of the multi-population MOGA. So, in order to
build a transition matrix, we need to model these operators in
the multi-population MOGA.

Before developing the Markov model of the multi-population
MOGA, we make three assumptions. First, a solution will not
be replaced until the end of a generation. That is, the multi-
population MOGA is generational rather than steady-state. This
assumption guarantees that the selection and replacing
probabilities remain the same throughout a given generation.

Second, a solution can replace itself. In other words, a
solution crosses over itself in the within-subpopulation genetic
operator. For cross-subpopulation migration, there is a chance
that the replaced and emigrating solutions are the same.

Third, we use the preset selection and replacing probabilities
for each solution rank rather than calculating them in each
generation. All the ranks are calculated based on the classical
non-dominated sorting method.

Assume that the multi-population MOGA consists of M
subpopulations. We have a multi-objective optimization
problem whose solution variables are binary. The bit number of
a candidate solution in each subpopulation is the same, which is
denoted as q . Use n to denote the cardinality of the search,
that is, the total number of possible solutions in each
subpopulation. Use n to denote the total number of possible
solutions for all subpopulations. n and n are calculated by:

 5

2q

M

n

n n

 



 (4)

xj

denotes the jth possible candidate solution in the search

space of each subpopulation, and vij denotes the total number of
possible solutions xj in subpopulation i . Note that

1

n

ij i
j

v N


 (5)

The entire population in a multi-population MOGA can be
generally represented as follows:

 
1 2

11 12 1

21 22 2

11 1 21 2 1

1 1 2 2

copies copies copies

1 1 2 2

copies copies copie

Population , , , , , , , , ,

, , , , , , , , , ,

, , , , , , , , ,

M

n

n

N N M MN

n n

v v v

n n

v v v

y y y y y y

x x x x x x

x x x x x x

           

 
  
  

   

   
  

   
 

1 2

s

1 1 2 2

copies copies copies

,

, , , , , , , , ,

M M Mn

n n

v v v

x x x x x x

 
 
 
 

 
 

  





   
  

(6)

where the yij solutions are ordered to group identical solutions.
For each element of Equation (6), it is denoted in a compact
format as follows:

1 1

2 1 1 2

1

1 1

, when 1, ,

, when 1, ,

, when 1, ,

i

i i i

ik

n n

n il il
l l

x k v

x k v v v

y

x k v v


 




  
 

  


 









 (7)

Equation (7) can be rewritten as follows:

 

 
1

min , such that

ik z k

r

il
l

y x

z k r v k






 



 (8)

A. Within-subpopulation genetic operator

In Algorithm 2, we use roulette-wheel selection and global
uniform crossover as a specific within-subpopulation genetic
operator to produce an offspring. In [32], we have obtained the
Markov model of this operator for a single population. Here we
directly extend it for multiple subpopulations, and obtain the
probability    1

iklP v

that the kth solution in the ith

subpopulation is equal to a given solution lx at generation t+1,
which is calculated as follows:

       1

, 1
1

1

Pr il

q
ij ijj J s

ikl ik t l n
s ij ijj

v
P v y x

v












 
   
 
 






(9)

where    1

iklP v is a function of the current population vector
v at the tth generation (we will define the population vector
precisely later, but for now we simply need to know that it
represents the current population of the multi-population
MOGA). The notation  ilJ s in Equation (9) denotes the set
of solution indices in subpopulation i that contains the same
bit in position s as solution lx . That is,

      : in subpopulationil j lJ s j x s x s i 

 (10)

Furthermore, the value in brackets on the right hand side of
Equation (9) denotes the probability of obtaining a certain bit at
a certain position in a given solution, which is proportional to
two factors: the total number of occurrences of that bit in the
entire subpopulation, and the selection probabilities of the
solutions that contain this bit.

B. Cross-subpopulation migration

The second part of the multi-population MOGA is
cross-subpopulation migration, which is the migration between
subpopulations. Considering the possibility of replacing a given
solution in the cross-subpopulation migration, we have two
possible scenarios: the first scenario is that the solution
variables in the replaced solution won’t be changed from
generation t to t+1. We use  iky s to represent the sth bit in
the kth solution in the ith subpopulation, which is represented
as follows:

        
1ik ik k zt t

y s y s x s

  (11)

 The second scenario is that migration is applied to the
replaced solution. An important aspect that we need to consider
here is how to compute the probability of the occurrence of
each solution. For cross-subpopulation migration, we introduce
Euclidian distances and use roulette-wheel selection based on
Euclidian distance to select the emigrating solutions. The
probability of obtaining a certain variable at a certain position
in a given solution is proportional to the total number of the
occurrences of that variable in the entire subpopulation and the
replacing probabilities of the solutions that contain this variable.
This probability is calculated for the sth component in the kth
solution of the ith subpopulation as follows:

      
1

1

Pr replacement il
mj ilmjj J s

ik l nt

mj ilmjj

v
y s x s

v











 



 (12)

Considering both possibilities described above, given that the
population vector at generation t is equal to v , the probability

   2

iklP v that , 1ik t ly x  at generation t+1 after
cross-subpopulation migration can be calculated as

     
   
   

      
 

2

, 1

, 1

, 1

0 ()
1

1

Pr

Pr no replacement Pr no replacement

Pr replacement Pr replacement from subpopulation

1 1 il

ikl ik t l

ik t l

ik t l

q
mj ilmjj J s

i z k liz k iz k n
s mj ilmjj

P v y x

y x

y x m

v
x x

v


 














 

  



 
    
 
 






(13)
where 01i denotes the indicator function on  0 in the
subpopulation i . The first term of the right side of Equation
(13) denotes the probability when replacement does not occur,
and the second term on the right side of Equation (13) denotes
the probability when replacement occurs by migration.

C. Combined within-subpopulation genetic operator and
cross-subpopulation migration

Recall that Section II provides details of the multi-population
MOGA. There are three steps in revising the population:
within-subpopulation genetic operator, cross-subpopulation
migration, and mutation. To find the total probability of
obtaining a given solution, we combine the probabilities of
these three operators. We combine the probabilities of the

 6

within-subpopulation genetic operator and the cross-
subpopulation migration to obtain    3

iklP v :

           3 1 2

1

n

ikl ikj ijl
j

P v P v P v


  (14)

This is the probability that iky is equal to lx in
subpopulation i after both the within-subpopulation genetic
operator and the cross-subpopulation migration have been
considered.

D. Mutation

Mutation is another way to improve solutions in the
multi-population MOGA. If we can obtain the probability of
transforming a given solution to another given solution due to
mutation, we combine this probability with Equation (14) to
obtain the transition matrix for the Markov model of the
multi-population MOGA.

Assuming that the mutation probability is predefined and
constant, we can create a mutation matrix for each
subpopulation. We use iU to denote the mutation matrix for
subpopulation i . We use irlU , which is the lth element in the
rth row in mutation matrix iU , to denote the probability that
solution rx

mutates to solution lx in subpopulation i . Next,

we combine iU with Equation (14) to obtain the probability
that , 1ik t ly x  in subpopulation i after the
within-subpopulation genetic operator, cross-subpopulation
migration, and mutation, and it is calculated by

           4 1 2

1 1

n n

ikl ikj ijr irl
r j

P v P v P v U
 

 (15)

Now we extend the probability from the solution level to the
population level. We introduce the term population vector, and
use an example to illustrate it.
Example: Assume we have two subpopulations with four
possible candidate solutions in subpopulation 1, and four
possible candidate solutions in subpopulation 2. Then the
population vector contains eight elements, which is shown in
Figure 3. For example, a population vector [1 0 0 3 2 0 2 0]
indicates that subpopulation 1 contains one S-11 and three S-14;
and subpopulation 2 has two S-21 and two S-23.

Population vector
S-11 S-12 S-13 S-14 S-21 S-22 S-23 S-24

Fig.3. Population vector in multi-population MOGA consisting of two
subpopulations, where the number of possible candidate solutions in each

subpopulation is four. The population vector has eight elements. S-ik represents
the number of kx solutions in subpopulation i .

Next the generalized multinomial theorem [33-34] is used to
find the probability that population vector v transits to
population vector u in subpopulation i after one generation.
We use  Pri u v to denote this probability in subpopulation i :

     

 

4

1 1

1 1

Pr ,

: 0,1 ,

where
1 for all , for all

i
ikl

i

i

i

N n J

i ikl

J Y k l

N n
i ikl

Nn
i

ikl ikl il

l k

u v P v

J R J

Y
J k J u l

  



 

    

  
  

  
  

  



 

(16)

In Equation (16),  Pri u v is the element of the transition
matrix iP

for subpopulation i , which represents the

probability of transiting from one possible population vector to
another. iP is a i iT T matrix, where iT is the total number
of possible population vectors in subpopulation i , which is
calculated as follows [33]:

  1,i i iT n N N   (17)

That is, there are i iT T combinations for u and v vectors
in Equation (16). These i iT T probabilities consist of the
entries of the transition matrix iP . Once having obtained the
transition matrices iP for each subpopulation, we can
combine these matrices to form the transition matrix P for
the multi-population MOGA. The matrix P can be calculated
using the pseudo-code version of Algorithm 3. Note that the
size of the matrix P is T T , where T is the total number
of possible population vectors for the multi-population MOGA:

1

M

i
i

T T


 (18)

Algorithm 3 – pseudo-code for the calculation of matrix P

For (t = 1; t≤ T; t++)

Set Count = 1;

For (k1 = 1; k1≤ T1; k1++)

 For (k2 = 1; k2≤ T2; k2++)

 
 For (kM = 1; kM≤ TM; kM++)

 P(Count, t) = P1(k1, t) P2(k2, t)…PM(kM, t);

 Count++;

 End for

 End for

 End for

End for

IV. SIMULATION RESULTS

In this section, section (A) verifies the Markov model theory of
the proposed multi-population MOGA with simulation results,
and investigates the effects of cross-subpopulation migration on
the proposed method. Sections (B) and (C) explore the effect of
the subpopulation number and size on multi-population
performance respectively, Section (D) compares the proposed
multi-population MOEAs with the corresponding standard
MOEAs on a set of multi-objective benchmark functions, and
Section (E) discusses the benefits of the proposed
multi-population method and the Markov model.

A. Theoretical Verification

In this section, we use two simple multi-objective problems to
verify the Markov model derived in the previous section, which
can exactly predict the steady state probability of each possible
population vector in the multi-population MOGA. Meanwhile,
we also use the Markov model to seek proper multi-population
parameters to improve the optimization performance.

Suppose that the first multi-objective problem includes two
cost functions. Each cost function contains two bits; that is, the
possible solutions are {00, 01, 10, 11}. The cost functions are
given as follows:

 
1 1 2

2 1 1 2

2 1

1 1

f x x

f f x x

  


   
 (19)

where 1f is the first cost function, 2f is the second cost
function, 1x is the first bit of a solution, and 2x is the second
bit of a solution. For this multi-objective problem, a smaller
cost means better performance.

7

To justify the Markov model, we set two subpopulations for
the multi-population MOGA, and perform Monte Carlo
simulations to obtain the average performance. The simulation
parameters include: 100 Monte Carlo simulations, 5000
generations for each Monte Carlo simulation, 4 individuals in
each subpopulation, and the mutation probability of 0.01.

Furthermore, to explore the effect of multi-population on the
MOGA performance, we investigate the cross-subpopulation
migration. Based on Algorithm 2, there are two key tuning
parameters for the cross-subpopulation migration: replacing
probability  and Euclidian distance  respectively. In this
experiment, the replacing probability is set to be linear and
quadratic with respect to the solution rank respectively.
Euclidian distance is set to be maximum, moderate, and
minimum values respectively. Table I shows the Markov model
and the simulated probabilities.

The cost functions shown in Equation (19) show that the
population vector composed of Pareto solutions, called Pareto
population vector, is [4 0 0 0 4 0 0 0], based on the population
vector description presented in Figure 3. According to the
results shown in Table I, first, we find that the theoretical
results calculated by the Markov model match the simulation
results for all the cases, which justifies the model derived in the
previous section. For example, in the case of linear ranks and
the maximum Euclidian distance, the probability of obtaining
the Pareto population vector calculated by the Markov model is
0.6876, and the probability calculated by simulation is 0.6785.

Second, we witness that in the case of the same replacing
probability, when the value of the Euclidian distance is the
maximum, the probability of obtaining the Pareto population
vector is the largest. When the value of the Euclidian distance

is the minimum, the probability of obtaining the Pareto
population vector is the smallest. For example, for the linear
rank, the probability of obtaining the Pareto population vector
calculated by the Markov model is 0.6876, 0.5785, 0.4868 for
maximum, moderate, and minimum Euclidian distances
respectively, which confirms that greater population diversity
provides more opportunities to obtain a Pareto solution.

Third, we also find that in the case of the same Euclidian
distance, the probability of obtaining the Pareto population
vector for quadratic ranking is better than that for linear ranking.
For example, for the maximum Euclidian distance, the
probability of obtaining the Pareto population vector for
quadratic ranks is 0.7806, and that for linear ranks is 0.6876,
which confirms that replacing probability can affect the
performance of the multi-population MOGA.

Finally, note that the CPU time for the calculation of the
Markov model is 52 seconds, but the average CPU time for
each simulation is 126 seconds. The proposed multi-population
MOGA runs in MATLAB® on a 2.40 GHz Intel Pentium® 4
CPU with 4 GB of memory. The Markov model obtains more
accurate probabilities than the simulation, and also does so with
less CPU time. This is because Markov models are limited to
problems with small population sizes and binary solution
structures, which do not capture the characteristics of
real-world problems.

Figure 4 shows typical simulation results for 5000
generations of the multi-population MOGA for the
multi-objective problem in various combination cases. It is seen
that all the Pareto population vectors agree with the results
shown in Table I.

TABLE I THE FOUR MOST LIKELY POPULATIONS FOR DIFFERENT TUNING PARAMETERS FOR THE FIRST MULTI-OBJECTIVE PROBLEM. CPU TIMES FOR

THE MARKOV MODEL AND THE SIMULATIONS ARE SHOWN IN THE LAST ROW OF THE TABLE.
Probability Tuning parameters Population Vector

Markov Simulation
4 0 0 0 4 0 0 0 0.6876 0.6785
3 1 0 0 4 0 0 0 0.0969 0.0982
4 0 0 0 3 1 0 0 0.0969 0.0981

Maximum Euclidian
distance

3 0 1 0 4 0 0 0 0.0321 0.0322
4 0 0 0 4 0 0 0 0.5785 0.5714
3 1 0 0 4 0 0 0 0.1617 0.1537
4 0 0 0 3 1 0 0 0.0818 0.0913

Moderate Euclidian
distance

3 0 1 0 4 0 0 0 0.0393 0.0325
4 0 0 0 4 0 0 0 0.4868 0.4783
3 1 0 0 4 0 0 0 0.1370 0.1314
4 0 0 0 3 1 0 0 0.1370 0.1365

Replacing
probability:
Linear rank

Minimum Euclidian
distance

3 0 1 0 4 0 0 0 0.0385 0.0411
4 0 0 0 4 0 0 0 0.7806 0.7764
3 1 0 0 4 0 0 0 0.0649 0.0628
4 0 0 0 3 1 0 0 0.0649 0.0628

Maximum Euclidian
distance

3 0 1 0 4 0 0 0 0.0321 0.0316
4 0 0 0 4 0 0 0 0.7195 0.7074
3 1 0 0 4 0 0 0 0.1118 0.1103
4 0 0 0 3 1 0 0 0.0598 0.0657

Moderate Euclidian
distance

3 0 1 0 4 0 0 0 0.0339 0.0326
4 0 0 0 4 0 0 0 0.6631 0.6617
3 1 0 0 4 0 0 0 0.1033 0.1012
4 0 0 0 3 1 0 0 0.1033 0.1016

Replacing
probability:

Quadratic rank

Minimum Euclidian
distance

3 0 1 0 4 0 0 0 0.0313 0.0214
CPU time (s) 52 126

 8

 Linear rank and maximum distance Linear rank and moderate distance Linear rank and minimum distance

 Quadratic rank and maximum distance Quadratic rank and moderate distance Quadratic rank and minimum distance

Fig.4. Typical multi-population MOGA simulation results for the first multi-objective problem in various combination cases, where the simulation probabilities
of the four most probable population vectors are shown.

 The second multi-objective problem includes three cost
functions. Each cost function includes two bits, and the
possible solutions are {00, 01, 10, 11}. The cost functions are:

   

   

1 1 2

2 1 1 2

3 1 2 1

2 1

1 1 1

1 1

f x x

f f x x

f x x f

   


    


   

 (20)

where 1f is the first cost function, 2f is the second cost
function, 3f is the third cost function, 1x is the first bit of a
solution, and 2x is the second bit of a solution.

For the second multi-objective problem, we set three
subpopulations; the other parameter settings are the same as
for the first multi-objective problem. As in the first problem, a
smaller cost means better performance, but it is more complex
due to the exponential increase of matrix sizes with the
problem size and subpopulation number. Table II shows
comparisons between theoretical (Markov) and simulated
results.

The cost functions in Equation (20) show that the
population vector composed of Pareto solutions is [4 0 0 0 4 0
0 0 4 0 0 0] based on the description of the population vector
in Figure 3. According to the results in Table II, we observe
that the theoretical results calculated by the Markov model
match well the simulation results for all the cases, which again
confirms validity of the derived Markov model. Meanwhile,
we also find that the conclusions about replacing probability
and Euclidian distance are in accord with those obtained from
the first multi-objective problem, which again confirms the
important effect of cross-subpopulation migration on the
optimization performance of the multi-population MOGA.

In addition, for this multi-objective problem, the CPU time
for the Markov model is 947 seconds, but the average CPU
time of each simulation is 224 seconds. In this case, the
computational effort of the Markov model is higher than that
of the simulation. This is because the total number of possible
population vectors increases exponentially with the number of
subpopulations as seen in Equations (17) and (18), leading to a
large transition matrix that is difficult to handle.

B. Effect of subpopulation number

Subpopulation number is one of the important tuning
parameters in the multi-population method. To explore its
effect on the proposed algorithm, we consider four cases with
one, two, three and four subpopulations. For migration
operators, we set the replacing probability to be linear with
respect to the solution rank, and Euclidian distance to be
maximum value. Other parameters are the same as those used
in the previous experiment. Table III shows the Markov model
and simulated probabilities for the different subpopulation
numbers for two multi-objective problems.
 According to Table III, on the one hand, we find that the
probability of obtaining the Pareto population vector for many
subpopulation numbers is better than that for a few
subpopulation numbers. For example, for one subpopulation,
the probability is 0.6307 for the first problem, and is 0.7291
for four subpopulations, which confirms that the
subpopulation number can affect the performance of the
multi-population MOGA. On the other hand, for the problems
we study, when the subpopulation number increases, the effect
becomes less clear. For example, for the second problem, the
probability is 0.6342 for three subpopulations, and 0.6419 for
four subpopulations. This shows that for the multi-population

 9

method, the appropriate subpopulation number is important, which depends on the problems we study.

TABLE II THE FOUR MOST LIKELY POPULATIONS FOR DIFFERENT TUNING PARAMETERS FOR THE SECOND MULTI-OBJECTIVE PROBLEM. CPU TIMES FOR

THE MARKOV MODEL AND THE SIMULATIONS ARE SHOWN IN THE LAST ROW OF THE TABLE.
Probability

Tuning parameters Population Vector
Markov Simulation

4 0 0 0 4 0 0 0 4 0 0 0 0.6342 0.6311
3 1 0 0 4 0 0 0 4 0 0 0 0.0813 0.0809
4 0 0 0 4 0 0 0 3 1 0 0 0.0813 0.0810

Maximum Euclidian
distance

4 0 0 0 3 0 1 0 4 0 0 0 0.0395 0.0475
4 0 0 0 4 0 0 0 4 0 0 0 0.5315 0.5284
3 1 0 0 4 0 0 0 4 0 0 0 0.1562 0.1497
4 0 0 0 4 0 0 0 3 1 0 0 0.1562 0.1497

Moderate Euclidian
distance

4 0 0 0 3 0 1 0 4 0 0 0 0.0321 0.0419
4 0 0 0 4 0 0 0 4 0 0 0 0.4452 0.4387
3 1 0 0 4 0 0 0 4 0 0 0 0.1341 0.1315
4 0 0 0 4 0 0 0 3 1 0 0 0.1341 0.1285

Replacing
probability:
Linear rank

Minimum Euclidian
distance

4 0 0 0 3 0 1 0 4 0 0 0 0.0396 0.0412
4 0 0 0 4 0 0 0 4 0 0 0 0.7245 0.7213
3 1 0 0 4 0 0 0 4 0 0 0 0.0421 0.0413
4 0 0 0 4 0 0 0 3 1 0 0 0.0421 0.0501

Maximum Euclidian
distance

4 0 0 0 3 0 1 0 4 0 0 0 0.0295 0.0310
4 0 0 0 4 0 0 0 4 0 0 0 0.6684 0.6605
3 1 0 0 4 0 0 0 4 0 0 0 0.1013 0.0944
4 0 0 0 4 0 0 0 3 1 0 0 0.0496 0.0516

Moderate Euclidian
distance

4 0 0 0 3 0 1 0 4 0 0 0 0.0301 0.0322
4 0 0 0 4 0 0 0 4 0 0 0 0.6035 0.6003
3 1 0 0 4 0 0 0 4 0 0 0 0.0923 0.0815
4 0 0 0 4 0 0 0 3 1 0 0 0.0923 0.0876

Replacing
probability:

Quadratic rank

Minimum Euclidian
distance

4 0 0 0 3 0 1 0 4 0 0 0 0.0287 0.0312
CPU time (s) 947 224

C. Effect of subpopulation size

Subpopulation size is another tuning parameter in the
multi-population method. To explore the effect of the
subpopulation size, we consider three cases of two, four and
eight individuals in each subpopulation. In this experiment, we
set two subpopulations for the first multi-objective problem,
and three subpopulations for the second problem. Other
parameters are the same as those used in the previous
experiments. Table IV shows the Markov model and simulated
probabilities for the different subpopulation sizes for two
multi-objective problems.

According to Table IV, we observe that the probability of
obtaining the Pareto population vector is the largest for the
four individuals. For example, for the first problem, the
probability is 0.5724, 0.6876 and 0.6037 for two, four and
eight individuals respectively. This experiment shows that for
the multi-population method, the appropriate subpopulation
size is important, which depends on the problems we study.

D. Optimization for Benchmarks

This subsection presents multi-objective unconstrained
functions from the 2009 IEEE Congress on Evolutionary
Computation (CEC) to show the results of the proposed
multi-population method on MOEAs. These functions are
briefly summarized in Table V, and the complete definition of
each function is available in the literature [35].

In this experiment, we integrate the cross-subpopulation
migration into the established multi-objective
biogeography-based optimization (MBBO) [36], multi-
objective evolutionary algorithm based on decomposition
(MOEA/D) [37], and multiple trajectory search (MTS)

algorithm [38] under the condition of the original algorithm.
Here, we choose MBBO because it is one of the most recent
MOEAs. We choose MOEA/D because it is one of the most
popular and outstanding MOEAs, and we choose MTS
because it is one of the most successful MOEAs reported in
the CEC competition. For the multi-population versions of
these algorithms, we use the quadratic rank as the replacing
probability. Meanwhile, for solving real-world problems, to
improve Euclidian distance based schemes, we also employ a
simple multi-population strategy: For similar subpopulations
during the optimization, we firstly preserve one subpopulation
and delete the other similar subpopulations. We then create the
same number of new subpopulations, which consist of the
following candidate solutions: 1/3 of them are random copies
from the preserved subpopulation, 1/3 are from the best
solutions in the entire population, and 1/3 are randomly
selected from the other subpopulations.

In this experiment, for the four presented algorithms,
subpopulation number is set to 4 based on the results in the
previous experiments. The population size of each
subpopulation is 50, so the entire population size is 200. To
obtain fair comparisons, a population size for the standard
versions of these algorithms is set to 200. For the
multi-population MOEA/D, we use the same weights for these
subpopulations, and other parameter settings of these
algorithms are referred to the original references [36-38]. The
benchmark functions are compared by implementing
discretized coding of all the standard and multi-population
algorithms. The granularity or precision of each solution
variable is set to 0.01 to provide for reasonable computational
effort. Note that benchmark tests might result in a different
conclusion if we use a different setup or if we change

10

precision. Since the precision of each solution variable is set to
a small value, we expect real coding to improve performance
by 2%-3% in theory. We evaluate each algorithm with 10
Monte Carlo simulations and 10,000 generations for each
Monte Carlo simulation. Figures S1, S2 and S3 in this paper’s
supplemental material show the approximate Pareto front
graphs obtained by the different algorithms. Note that due to
space limitations, we show only the representative
two-objective benchmark functions U02, U04 and
three-objective benchmark function U08. It is observed that
Pareto fronts of the multi-population MOGA, MBBO,
MOEA/D, and MTS are closer to ideal Pareto fronts than
those of the corresponding standard algorithms.

Furthermore, we use hypervolume as the performance
metric, which denotes the volume of the objective space
between the obtained solution set and the reference point. It
also gives the solution set a comprehensive assessment with
respect to convergence and diversity. Similar to [39], the
reference point is set to 1.1 times the upper bound of the
Pareto front. For a minimization problem, a smaller
hypervolume indicates a better Pareto front approximation.
The computational details of hypervolume can be found in the
literature [13]. Table VI shows the average performance of
multi-population MOGA, MBBO, MOEA/D, and MTS, and
their standard versions with respect to the hypervolume
metric.

The results shown in Table VI are divided into standard
MOGA versus multi-population MOGA, standard MBBO

versus multi-population MBBO, standard MOEA/D versus
multi-population MOEA/D, and standard MTS versus
multi-population MTS. From Table VI, we observe that
multi-population MOGA performs better than the standard
MOGA, multi-population MBBO better than standard MBBO,
multi-population MOEA/D better than standard MOEA/D, and
multi-population MTS better than standard MTS, on all the
benchmark functions. That is, the multi-population versions of
these algorithms are significantly better than their standard
versions. It also shows that the proposed multi-population
method is an effective method to improve the optimization
performance of the MOEAs. The reason for its improved
performance is that multi-population MOEAs effectively use
cross-subpopulation migration that can significantly increase
the communication between the subpopulations to improve the
population diversity, compared to traditional MOEAs.

The average running time of these algorithms is shown in
the last row of Table VI. From the table, we see that the
average running time of the multi-population versions of
MOGA, MBBO, MOEA/D, and MTS is much less than their
standard versions. The reason is that the multi-population
algorithms use the multiple parallel subpopulations of a
relatively small size, while the standard algorithms use a
single population that is four times as large as their
multi-populations. Based on this justification, we believe that
multiple subpopulations can be seen as parallel processing,
which can reduce the computational effort.

TABLE III THE FOUR MOST LIKELY POPULATIONS FOR THE CASES OF ONE, TWO, THREE AND FOUR SUBPOPULATIONS.
Probability Tuning parameters Population Vector

Markov Simulation
4 0 0 0 0.6307 0.6259
3 1 0 0 0.1235 0.1211
3 0 1 0 0.1235 0.1206

One subpopulation

3 0 0 1 0.0393 0.0378
4 0 0 0 4 0 0 0 0.6876 0.6785
3 1 0 0 4 0 0 0 0.0969 0.0982
4 0 0 0 3 1 0 0 0.0969 0.0981

Two subpopulations

3 0 1 0 4 0 0 0 0.0321 0.0322
4 0 0 0 4 0 0 0 4 0 0 0 0.7239 0.7168
3 1 0 0 4 0 0 0 4 0 0 0 0.0861 0.0822
4 0 0 0 4 0 0 0 3 1 0 0 0.0861 0.0813

Three subpopulations

4 0 0 0 3 0 1 0 4 0 0 0 0.0245 0.0242
4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 0.7291 0.7236
3 1 0 0 4 0 0 0 4 0 0 0 4 0 0 0 0.0823 0.0815
4 0 0 0 4 0 0 0 3 1 0 0 4 0 0 0 0.0823 0.0803

First problem

Four subpopulations

4 0 0 0 4 0 0 0 4 0 0 0 3 0 1 0 0.0271 0.0232
4 0 0 0 0.5216 0.5101
3 1 0 0 0.1517 0.1512
3 0 1 0 0.1517 0.1520

One subpopulation

3 0 0 1 0.0395 0.0347
4 0 0 0 4 0 0 0 0.5842 0.5792
3 1 0 0 4 0 0 0 0.1225 0.1149
4 0 0 0 3 1 0 0 0.1225 0.1187

Two subpopulations

3 0 1 0 4 0 0 0 0.0332 0.0322
4 0 0 0 4 0 0 0 4 0 0 0 0.6342 0.6311
3 1 0 0 4 0 0 0 4 0 0 0 0.0813 0.0809
4 0 0 0 4 0 0 0 3 1 0 0 0.0813 0.0810

Three subpopulations

4 0 0 0 3 0 1 0 4 0 0 0 0.0395 0.0475
4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 0.6419 0.6447
3 1 0 0 4 0 0 0 4 0 0 0 4 0 0 0 0.0784 0.0723
4 0 0 0 4 0 0 0 3 1 0 0 4 0 0 0 0.0784 0.0708

Second problem

Four subpopulations

4 0 0 0 4 0 0 0 4 0 0 0 3 0 1 0 0.0371 0.0324

11

TABLE IV THE FOUR MOST LIKELY POPULATIONS FOR THE CASES OF TWO, FOUR AND EIGHT INDIVIDUALS IN EACH SUBPOPULATION
Probability

Tuning parameters Population Vector
Markov Simulation

4 0 0 0 4 0 0 0 0.5724 0.5672
3 1 0 0 4 0 0 0 0.1423 0.1394
4 0 0 0 3 1 0 0 0.1423 0.1394

Two individuals

3 0 1 0 4 0 0 0 0.0396 0.0371
4 0 0 0 4 0 0 0 0.6876 0.6785
3 1 0 0 4 0 0 0 0.0969 0.0982
4 0 0 0 3 1 0 0 0.0969 0.0981

Four individuals

3 0 1 0 4 0 0 0 0.0321 0.0322
4 0 0 0 4 0 0 0 0.6037 0.5934
3 1 0 0 4 0 0 0 0.1250 0.1174
4 0 0 0 3 1 0 0 0.1250 0.1203

First problem

Eight individuals

3 0 1 0 4 0 0 0 0.0411 0.0402
4 0 0 0 4 0 0 0 0.4934 0.4816
3 1 0 0 4 0 0 0 0.1672 0.1605
4 0 0 0 3 1 0 0 0.1672 0.1589

Two individuals

3 0 1 0 4 0 0 0 0.0510 0.0486
4 0 0 0 4 0 0 0 0.5842 0.5792
3 1 0 0 4 0 0 0 0.1225 0.1149
4 0 0 0 3 1 0 0 0.1225 0.1187

Four individuals

3 0 1 0 4 0 0 0 0.0332 0.0322
4 0 0 0 4 0 0 0 0.5136 0.5046
3 1 0 0 4 0 0 0 0.1527 0.1473
4 0 0 0 3 1 0 0 0.1527 0.1405

Second problem

Eight individuals

3 0 1 0 4 0 0 0 0.0401 0.0355

E. Discussion

Multi-population methods have been shown to be a simple and
effective means for enhancing optimization performance. In
this work, we embed multi-population methods into
evolutionary algorithms to solve various MOPs. From the
experimental results, we can summarize that
(1) The proposed multi-population approach is effective and

efficient. It takes full advantage of cross-subpopulation as
the communication mechanism between subpopulations to
increase population diversity.

(2) The overall performance of the proposed multi-population
MOEAs on a set of multi-objective benchmarks is superior
to or comparable with the corresponding single-population
versions.

(3) Simulation studies show that the Markov model is still an
excellent theoretical tool to reveal the algorithmic
characteristics and justify the algorithm performance.

(4) The Markov model of the proposed multi-population
MOGA confirms the important effect of
cross-subpopulation migration on the optimization
performance. When the replacing probability is set to be
quadratic, and the Euclidian distance is the maximum, the
probability of obtaining the Pareto population vector is the
largest.

(5) The Markov model of the proposed multi-population
MOGA also confirms that the appropriate subpopulation
number and subpopulation size are important, and these
depend on the problems we study.

TABLE V CEC 2009 UNCONSTRAINED MULTI-OBJECTIVE BENCHMARK FUNCTIONS, WHERE 0n DENOTES THE NUMBER OF DIMENSIONS IN EACH

OBJECTIVE.

Function Num. of objectives Search space

U01: unconstrained problem 1 2     0 1

00,1 1,1 , 30
n

n


  

U02: unconstrained problem 2 2     0 1

00,1 1,1 , 30
n

n


  

U03: unconstrained problem 3 2   0

00,1 , 30
n

n 

U04: unconstrained problem 4 2     0 1

00,1 2, 2 , 30
n

n


  

U05: unconstrained problem 5 2     0 1

00,1 1,1 , 30
n

n


  

U06: unconstrained problem 6 2     0 1

00,1 1,1 , 30
n

n


  

U07: unconstrained problem 7 2     0 1

00,1 1,1 , 30
n

n


  

U08: unconstrained problem 8 3     02 2

00,1 2, 2 , 30
n

n


  

U09: unconstrained problem 9 3     02 2

00,1 2, 2 , 30
n

n


  

U10: unconstrained problem 10 3     02 2

00,1 2, 2 , 30
n

n


  

12

TABLE VI OPTIMIZATION RESULTS OF MULTI-POPULATION MOGA, MBBO, MOEA/D, AND MTS, AND THEIR STANDARD VERSIONS FOR 10
UNCONSTRAINED MULTI-OBJECTIVE BENCHMARK FUNCTIONS. AVERAGE CPU TIMES (MINUTE) ARE SHOWN IN THE LAST ROW OF THE TABLE.

Algorithms
Function

S-MOGA M-MOGA S-MBBO M-MBBO S-MOEA/D M-MOEA/D S-MTS M-MTS

U01 62.32 41.36 70.19 44.57 57.21 40.55 53.73 39.15

U02 44.75 21.35 41.35 19.23 37.78 17.23 38.12 19.52

U03 315.4 213.7 328.4 226.5 284.5 207.9 256.3 201.2

U04 11.25 8.311 9.925 8.247 9.252 7.923 9.361 7.640

U05 293.6 127.5 274.3 115.2 157.3 118.4 192.5 108.3

U06 703.6 434.2 657.1 463.2 496.2 402.1 452.3 399.5

U07 67.42 42.63 68.71 42.39 45.66 39.87 50.12 41.24

U08 726.1 533.4 682.7 503.5 587.8 455.6 600.4 474.0

U09 2135.6 1525.4 2347.5 1432.0 1656.1 1386.2 1688.9 1389.6

U10 3133.2 2155.5 3242.1 1943.2 2301.2 1768.4 2621.5 1805.0

Time (Min.) 578.2 344.6 567.5 332.7 254.7 212.2 368.6 301.5

V. CONCLUSIONS

Multi-population is an effective optimization component often
used in evolutionary algorithms in order to improve
performance. In this paper, we first proposed a new
multi-population method used in MOGA, which includes the
within-subpopulation genetic operator, and
cross-subpopulation migration. Then we derived a Markov
model of the proposed multi-population MOGA. The model
outlines the theoretical probability of each possible population
occurring simultaneously with multiple objectives as the
generation number goes to infinity. It has been confirmed
through simulation that the proposed multi-population method
can enhance the exploration ability of MOGA. Finally, the
proposed multi-population method is applied to other popular
MOEAs, and they are investigated on a set of the CEC
multi-objective benchmarks. The empirical results show that
multi-population MOEAs can obtain better optimization
performance than their corresponding single-population
version for the multi-objective benchmarks we study.

In future research, at least three directions may be
considered. First, the proposed multi-population method is
combined with MOEAs, and improves the multi-objective
optimization performance. The multi-population framework
presented here can be extended for other types of optimization
algorithms, for example, dynamic optimization, large-scale
optimization and complex system optimization. Second, we
intend to design a method to further reduce computational
effort during the Markov model development. As seen in
Equations (17) and (18), the model is computationally
expensive because of the size of the Markov transition matrix.
This limitation could be partially addressed by grouping
similar Markov model states together into a single state [27].
Finally, solving real-world multi-objective application
problems is the ultimate goal of the population-based
algorithms, and it would be useful to apply the proposed
multi-population MOEAs to various real-world problems.

REFERENCES

[1] H. Li, Q. Zhang, J. Deng, “Biased multiobjective optimization and
decomposition algorithm,” IEEE Trans. Cybern., vol. 47, no. 1, pp.
52-66, Jan. 2017.

[2] S. Gee, K. C. Tan, H. Abbass, “A benchmark test suite for dynamic
evolutionary multiobjective optimiztion,” IEEE Trans. Cybern., vol. 47,
no. 2, pp. 461-472, Feb. 2017.

[3] D. Simon, Evolutionary Optimization Algorithms, John Wiley & Sons,
Hoboken, NJ, 2013.

[4] A. Zhou, B. Qu, H. Li, S. Zhao, P. N. Suganthan, Q. Zhang,
“Multi-objective evolutionary algorithms: A survey of the state of the
art,” Swarm. Evol. Comput., vol. 1, no. 1, pp. 32-49, 2011.

[5] S. Jiang, S. Yang, “An improved multiobjective optimization
evolutionary algorithm based on decomposition for complex Pareto
fronts,” IEEE Trans. Cybern., vol. 46, no. 2, pp. 421-437, Feb. 2016.

[6] C. A. C. Coello, G. T. Pulido, M. S. Lechuga, “Handling multiple
objectives with particle swarm optimization,” IEEE Trans. Evol.
Comput., vol. 8, no. 3, pp. 256-279, June. 2004.

[7] H. Wang, Q. Zhang, L. Jiao, X. Yao, “Regularity model for noisy
multiobjective optimization,” IEEE Trans. Cybern., vol. 46, no. 9, pp.
1997-2009, Sep. 2016.

[8] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol.
Comput., vol. 6, no. 2, pp. 182-197, Dec. 2002.

[9] Q. Zhang, H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712-731, Dec. 2006.

[10] H. Kwasnicka, M. Przewozniczek, “Multi population pattern searching
algorithm: a new evolutionary method based on the idea of messy
genetic algorithm,” IEEE Trans. Evol. Comput., vol. 15, no. 5, pp.
715-734, Oct. 2011.

[11] C. Li, T. T. Nguyen, M. Yang, S. Yang, S. Zeng, “Multi-population
methods in unconstrained continuous dynamic environments: The
challenges,” Inform. Sci., vol. 296, pp. 95-118, 2015.

[12] L. Chen, F. J. Chang, “Applying a real-coded multi-population genetic
algorithm to multi-reservoir operation,” Hydrol. Process., pp. 688-698,
2007.

[13] H. Ma, D. Simon, Evolutionary Computation with Biogeography-based
Optimization, John Wiley & Sons, Hoboken, NJ, 2017.

[14] J. K. Cochran, S. Horng, J. W. Fowler, “A multi-population genetic
algorithm to solve multi-objective scheduling problems for parallel
machines”, Comput. Opera. Res., vol. 30, pp. 1087-1102, 2003.

[15] M. zandieh, N. Karimi, “An adaptive multi-population genetic
algorithm to solve the multi-objective group scheduling problem in
hybrid flexible flowshop with sequence-dependent setup times,” J.
Intell, Manufact., vol. 22, no. 6, pp. 979-989, 2011.

[16] P. Kersting, A. Zabel, “Optimizing NC-tool paths for simultaneous
five-axis milling based on multi-population multi-objective
evolutionary algorithms,” Adv. Eng. Softw., vol. 40, no. 6, pp. 452-463,
2009.

[17] R. Shang, Y. Wang, J. Wang, L. Jiao, S. Wang, L. Qi, “A
multi-population cooperative coevolutionary algorithm for
multi-objective capacitated arc routing problem,” Inform. Sci., vol. 277,
pp. 609-642, 2014.

[18] J. Zheng, C. Chien, M. Gen, “Multi-objective multi-population biased
random-key genetic algorithm for the 3-D container loading problem,”
Comput. Indust. Engin., vol. 89, pp. 80-87, 2015.

[19] X. Wang, L. Tang, “An adaptive multi-population differential
evolution algorithm for continuous multi-objective optimization,”
Inform. Sci., vol. 348, pp. 124-141, 2016.

[20] C. Li, T. Nguyen, M. Yang, M. Mavrovouniotis, S. Yang, “An
adaptive multipopulation framework for locating and tracking multiple
optima,” IEEE Trans. Evol. Comput., vol. 20, no. 4, pp. 590-605, Aug.
2016.

[21] D. Du, D. Simon, “Complex system optimization using
biogeography-based optimization,” Math. Prob. Engin., vol. 2013, pp.
1-19, 2013.

13

[22] W. Sheng, S. Chen, M. Sheng, G. Xiao, J. Mao, Y. Zheng, “Adaptive
multisubpopulation competition and multiniche crowding-based
memetic algorithm for automatic data clustering,” IEEE Trans. Evol.
Comput., vol. 20, no. 6, pp. 838-858, Dec. 2016.

[23] H. Cheng, S. Yang, X. Wang, “Immigrants-enhanced multi-population
genetic algorithms for dynamic shortest path routing problems in
mobile ad hoc networks,” Appl. Artifi. Intell., vol. 26, pp. 673-695,
2012.

[24] C. Erick, “Topologies, migration rates, and multi-population parallel
genetic algorithms,” Proceeding of 1st Conf. Gen. Evol. Comput.,
Florida, USA, pp. 13-17, 1999.

[25] R. MacArthur, E. Wilson, The Theory of Island Biogeography,
Princeton University Press, New Jersey, 1967.

[26] T. Lenton, “Gaia and natural selection,” Nature, vol. 394, no. 6692,
439-447, 1998.

[27] C. Reeves, J. Rowe, Genetic Algorithms: Principles and Perspectives.
Norwell, MA: Kluwer, 2003.

[28] J. Suzuki, “A Markov chain analysis on simple genetic algorithms,”
IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 25, no. 4, pp. 655-659,
Apr. 1995.

[29] A. Wright, Y. Zhao, “Markov chain models of genetic algorithms,” In
Proc. Gen. Evolut. Comput. Conf., vol. 1, pp. 734-741, 1999.

[30] D. Simon, M. Ergezer, D. Du, R. Rarick, “Markov models for
biogeography-based optimization,” IEEE Trans. Syst. Man Cybern. B,
Cybern., vol. 41, no. 1, pp. 299-306, Feb. 2011.

[31] J. Suzuki, “A further result on the Markov chain model of genetic
algorithms and its application to a simulated annealing-like strategy,”
IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 28, no. 1, pp. 95-102,
Feb. 1998.

[32] D Simon, R Rarick, M Ergezer, D Du, “Analytical and numerical
comparisons of biogeography-based optimization and genetic
algorithms,” Inform. Sci., vol. 181, no. 7, pp. 1224-1248, 2011.

[33] N. Beaulieu, “On the generalized multinomial distribution, optimal
multinomial detectors, and generalized weighted partial decision
detectors,” IEEE Trans. Commun., vol. 39, no. 2, pp. 193-194, Feb.
1991.

[34] C. Grinstead, J. Snell, Introduction to Probability. American
Mathematical Society, 1998.

[35] Q. Zhang, A. Zhou, S. Z. Zhao, P. N. Suganthan, W. Liu, S. Tiwari,
“Multi-objective optimization test instances for the CEC 2009 special
session and competition,” Technical Report, 2008.

[36] H. Ma, S. Su, D. Simon, M. Fei, “Ensemble multi-objective
biogeography-based optimization with application to automated
warehouse scheduling,” Engin. Appli. Artifi. Intell., vol. 44, pp. 79-90,
2015.

[37] C. Chen, Y. Chen, Q. Zhang, “Enhancing MOEA/D with guided
mutation and priority update for multi-objective optimization,” In:
Proc. IEEE Congress Evol. Comput., Trondheim, Norway, pp. 209-216,
2009.

[38] L. Tseng, C. Chen, “Multiple trajectory search for
unconstrained/constrained multi-objective optimization,” In: Proc.
IEEE Congress Evol. Comput., Trondheim, Norway, pp. 1951-1958,
2009.

[39] H. Ishibuchi, Y. Hitotsuyanagi, N. Tsukamoto, Y. Nojima,
“Many-objective test problems to visually examine the behavior of
multi-objective evolution in a decision space,” In: Proc. Intern. Conf.
Paral. Prob. Solv. Nature, Krakow, Poland, pp. 91-100, 2010.

Haiping Ma received the B. S. degree from Shaoxing
University, Shaoxing, China, the M. S. degree from the
Taiyuan University of Technology, Taiyuan, China, and
the Ph.D. degree from Shanghai University, Shanghai,
China, in 2004, 2007, and 2014, respectively, all in
control theory and control engineering. He is currently a
visiting scholar with the School of Electronics, Electrical
Engineering and Computer Science, Queen's University
Belfast, UK, and an Associate Professor with the College
of Mathematics, Physics and Information, Shaoxing
University. In 2015, he received the Outstanding Ph.D.

Dissertation Award, Chinese Association of System Simulation, China. He has
published over 30 research papers on evolutionary algorithms and applications.
His current research interests include evolutionary computation, information
fusion, and intelligent control. He is the author of the textbook Evolutionary
Computation with Biogeography-based Optimization (John Wiley & Sons, 2017).

Minrui Fei received his B. S. and M. S. from Shanghai
University of Technology, and his Ph.D. from Shanghai
University, all in control theory and control engineering.
He is presently a professor and doctoral supervisor of
Shanghai University since 1998. His teaching and research
interests include intelligent control, complex system
modeling, networked control systems and evolutionary
computation. He has published over 190 research papers
and co-edited seven conference proceedings in his field.
He is a director at the Shanghai Key Laboratory of Power
Station Automation Technology, Shanghai University,

vice-chairman of Chinese Association for System Simulation, standing director of
China Instrument and Control Society, and director of Chinese Artificial
Intelligence Association. His research has been funded by the National Science
Foundation and several industrial organizations.

Zheheng Jiang received the B. S. degree in Electrical
Engineering and Automation (Grid Monitoring) from
Nanjing Institute of Technology and the M. S. degree in
Software Development from Queen’s University Belfast,
U.K. He is currently pursuing his Ph.D. degree with
Department of Informatics, University of Leicester, U.K.
His current research interests include machine learning for
vision, object detection and recognition, video analysis
and event recognition.

Ling Li received her Ph.D. degree from Imperial College
London. She is currently the Director of
Internationalization at the School of Computing,
University of Kent. And she is also the founding
coordinator of Laboratory of Brain Cognition Computing
(BC2 Lab) of the school, responsible for coordinating
multidisciplinary research between Computing, Sports and
local NHS hospitals. Before she joined the University of
Kent, she had six-year research experience at Imperial

College London with a focus on understanding body sensor data (EEG, EMG,
ECG, eAR-sensor, and etc.). Her current research interests include adaptive
filtering, computational intelligence, and machine learning methods for pattern
classification. She now serves at the editorial board of Brain Informatics and the
secretary of IEEE Computing Society in UK and Ireland.

Huiyu Zhou received a Bachelor of Engineering degree in
Radio Technology from the Huazhong University of
Science and Technology of China, and a Master of
Science degree in Biomedical Engineering from the
University of Dundee of United Kingdom, respectively.
He was then awarded a Doctor of Philosophy degree in
Computer Vision from the Heriot-Watt University,
Edinburgh, United Kingdom. Dr. Zhou is Reader at
Department of Informatics, University of Leicester,
United Kingdom. He has published over 150
peer-reviewed papers in the field. His research work has

been or is being supported by UK EPSRC, EU, Royal Society, Leverhulme Trust,
Puffin Trust, Invest NI and industry.

Danny Crookes received a BSc and PhD in 1977 and
1980 respectively. He was appointed to the Chair of
Computer Engineering in 1993 at Queen’s University
Belfast, and was Head of Computer Science from
1993-2002. He was Director of Research for Speech,
Image and Vision Systems at the Institute for Electronics,
Communications and Information Technology (ECIT) at
Queen’s University Belfast. His research interests include
medical image processing, and speech enhancement and
separation. He has published over 230 scientific papers in
journals and international conferences.

SUPPLEMENTARY FIGURES

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1

F
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1

F
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1

F
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1

F
2

S-MOGA S-MBBO S-MOEA/D S-MTS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1

F
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1

F
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1

F
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F1

F
2

M-MOGA M-MBBO M-MOEA/D M-MTS

Fig.S1. Pareto front graphs for function U02 obtained by the multi-population MOGA, MBBO, MOEA/D, and MTS, and their standard versions, where
“M-” and “S-” denote the multi-population versions and standard versions of algorithms respectively. The black solid lines are ideal Pareto fronts, and the

red dots refer to approximate Pareto fronts.

S-MOGA S-MBBO S-MOEA/D S-MTS

M-MOGA M-MBBO M-MOEA/D M-MTS

Fig.S2. Pareto front graphs for function U04 obtained by the multi-population MOGA, MBBO, MOEA/D, and MTS, and their standard versions, where

“M-” and “S-” denote the multi-population versions and standard versions of algorithms respectively. The black solid lines are ideal Pareto fronts, and the
red dots refer to approximate Pareto fronts.

F
3

F
3

F
3

S-MOGA S-MBBO S-MOEA/D S-MTS

F
3

F
3

F
3

F
3

M-MOGA M-MBBO M-MOEA/D M-MTS

Fig.S3. Pareto front graphs for function U08 obtained by the multi-population MOGA, MBBO, MOEA/D, and MTS, and their standard versions, where
“M-” and “S-” denote the Multi-population and standard versions of the algorithms respectively. The shadow part is ideal Pareto fronts, and the red dots refer

to approximate Pareto fronts.

	FINAL VERSION.pdf
	Supplementary_Figures.pdf

