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Abstract—Multi-population is an effective optimization 
component often embedded into evolutionary algorithms to solve 
optimization problems. In this paper, a new multi-population 
based multi-objective genetic algorithm is proposed, which uses a 
unique cross-subpopulation migration process inspired by 
biological processes to share information between subpopulations. 
Then, a Markov model of the proposed multi-population 
multi-objective genetic algorithm is derived, the first of its kind, 
which provides an exact mathematical model for each possible 
population occurring simultaneously with multiple objectives. 
Simulation results of two multi-objective test problems with 
multiple subpopulations justify the derived Markov model, and 
show that the proposed multi-population method can improve the 
optimization ability of the multi-objective genetic algorithm. Also, 
the proposed multi-population method is applied to other 
multi-objective evolutionary algorithms for evaluating its 
performance against the IEEE Congress on Evolutionary 
Computation multi-objective benchmarks. The experimental 
results show that a single-population multi-objective evolutionary 
algorithm can be extended to a multi-population version, while 
obtaining better optimization performance. 

Index Terms—Evolutionary algorithm, Multi-population, 
Multi-objective optimization, Genetic algorithms, Markov chain 

I. INTRODUCTION

any real-world optimization problems require us to deal 
with multiple objectives simultaneously, where it is not 

easy to reach agreement. These problems are referred to as 
multi-objective optimization problems (MOPs) in the scientific 
domain [1-3], and their non-dominated solutions are regarded 
as Pareto-optimal solutions. Without loss of generality, an 
MOP is a minimization problem for each objective, which is 
formulated as follows [4, 5]: 
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That is, an MOP is to simultaneously minimize all m  
functions  F x . In Equation (1),  Ω = nx R  is the search
space and x  is the decision variable vector.  : mF R  
maps the n-dimensional decision space Ω  to the 
m-dimensional objective space mR . Because of the complexity
of MOPs in real-world applications and limited computational
resources, true Pareto-optimal solutions are difficult to obtain
analytically or exactly. Instead, multi-objective evolutionary
algorithms (MOEAs) have been developed and have proved
promising for solving these problems [6, 7]. In [8], Deb
proposed a fast and elite non-dominated sorting genetic
algorithm II (NSGA-II), which is one of the representative
state-of-the-art multi-objective evolutionary algorithms. In [9],
Zhang presented a well accepted multi-objective evolutionary
algorithm based on decomposition (MOEA/D), which was
different from NSGA-II, being based on conventional
aggregation approaches where an MOP was decomposed into a
number of scalar objective optimization problems.

Meantime, many multi-population methods inspired by 
biological or natural evolution processes have been embedded 
into evolutionary algorithms to solve various simple-objective 
problems (SOPs), and to obtain satisfactory optimization 
performance [10, 11]. Moreover, recently, multi-population 
methods have demonstrated promising results for solving 
MOPs [12, 13], while achieving satisfactory trade-offs between 
meeting the different objectives. In solving optimization 
problems, multi-population methods firstly decompose the 
initial population into several small subpopulations. Then some 
evolving operators, for example, recombination and mutation 
for genetic algorithms (GAs), are executed to implement the 
evolution. Finally, different subpopulations work together in 
order to search in different local areas to render Pareto-optimal 
solutions. 

In some publications, researchers have developed MOEAs 
with multiple subpopulations, and the experimental results 
show that the performance of MOEAs can be considerably 
improved. In [14], the authors proposed a multi-population 
genetic algorithm (MPGA) to solve multi-objective scheduling 
problems for parallel computers, where each subpopulation 
evolved separately while an elite strategy was used to select the 
best solutions for each objective and the best solution of the 
combined objective. Simulation results showed MPGA had 
better performance over a wide range of problems, compared 
with the regular multi-objective genetic algorithms (MOGAs). 
Another adaptive MPGA was proposed in [15] to solve the 
multi-objective group scheduling problem in hybrid and 
flexible flowshops with sequence-dependent setups, where 
subpopulations were generated by the re-arrangement of initial 
solutions, and computational results showed that the proposed 
algorithm performed better than the other algorithms. In [16], 
the authors used multi-population multi-objective EAs for 
optimizing NC-tool paths for simultaneous five-axis milling, 
where the topology with subpopulations was considered within 
the problem-specific restriction area. Experiments on different 

A Multi-population Based Multi-objective 
Evolutionary Algorithm 

Haiping Ma, Minrui Fei, Zheheng Jiang, Ling Li, Huiyu Zhou, Danny Crookes, Senior 
Member, IEEE

M 



2 

NC-paths structures showed that the proposed method obtained 
promising results. In [17], a multi-population cooperative 
co-evolutionary algorithm (MPCCA) was proposed for the 
multi-objective capacitated arc routing problem. In MPCCA, 
the population was divided into multiple subpopulations using 
the divide-and-conquer method based on their different 
direction vectors. Each subpopulation evolved separately in 
each generation and the adjacent subpopulations could share 
their individuals in the form of cooperative subpopulations. 
Experimental results show that the proposed method obtained 
better performance than the other algorithms. A multi-objective 
multi-population biased random-key genetic algorithm was 
presented in [18] for the 3D container loading problem, where 
several subpopulations were evolved independently in parallel, 
and all the solutions in each subpopulation were ranked by 
fitness. Then the overall top solutions were added into each 
subpopulation. Numerical experiments showed the viability of 
the proposed method. An adaptive multi-population differential 
evolution (AMPDE) algorithm was proposed in [19] for 
continuous multi-objective optimization, where the size of each 
subpopulation was adaptively adjusted based on the 
information derived from the search data. Computational 
results showed that the proposed AMPDE was superior to the 
previous MOEAs.  

Although MOEAs combined with multi-population methods 
have demonstrated promising outcomes, most of them have the 
following unsolved issues. First, most multi-population 
MOEAs do not have enough autonomous and efficient 
communication between subpopulations. That is, the 
communication is only to exchange individuals based on some 
simple connection topologies (defined as the connection 
between the subpopulations) with a certain communication 
interval (which is a parameter that controls how often the 
communication occurs) and communication rate (which is a 
parameter that controls how many individuals communicate). 
We believe that the communication between subpopulations 
can be used to increase population diversity for MOPs [20, 21], 
and hence, this will accelerate the optimality search to find 
better solutions. However, it is very difficult to make a 
judicious choice for the communication parameters, before 
MOPs can be solved.  

Second, previous studies mainly focus on developing a 
specific multi-population MOEA rather than looking at the 
bigger picture of how multi-population methods would affect 
the MOEA performance and how they can be addressed in a 
generic way. Although some methods, e.g. [22-24], provide 
guidelines to empirically choose multi-population parameters 
for SOPs, little empirical analysis has been done to investigate 
the impact of multi-population for MOPs. Further, for either 
multi-population SOPs or multi-population MOPs, there has 
been no theoretical model to analyze the effect of 
multi-population, and to understand intrinsic differences and 
similarities between multi-population and traditional MOEAs. 

In order to address these challenging issues, this paper, the 
first of its kind, provides comprehensive discussion of these 
problems and corresponding solutions, supported by both 
mathematical models and empirical results. This paper also 
presents constructive comments and suggestions on future 
MOEA designs that may contribute to the final solution of the 
challenges. 

Our work is different from previous studies in MOEAs in the 
following aspects. First, we introduce a new multi-population 
MOGA, in which a new operator called cross-subpopulation 

migration is used to communicate between subpopulations to 
exchange information. Here migration uses the rank of solution 
fitness, objective similarity and Euclidian distances between 
subpopulations to adaptively determine the system parameters, 
including connection topology, communication frequency and 
communication rate. The advantage of this operation is that the 
system can be more autonomous and more efficient. 

Second, a mathematical model for the proposed 
multi-population MOGA is derived to reveal the algorithmic 
characteristics and justify the algorithm performance. It is 
important to design an algorithm to find better tuning 
parameters. More generally, the model of multi-population 
MOGA is useful in producing insights into how the algorithm 
behaves and when it is likely to make an impact. 

The novel contributions of this paper include the following 
aspects: (a) it presents a new multi-population method used in 
MOGA, in which cross-subpopulation migration is used to 
maintain population diversity; (b) it derives the Markov model 
for the proposed multi-population MOGA, which for the first 
time constructs a mathematical model of the multi-population 
method; (c) it uses simulations to verify the derived model, and 
theoretically explores the effect of the multi-population method 
on algorithmic performance; (d) it investigates the 
optimization ability of the proposed multi-population MOGA 
for solving a set of multi-objective benchmarks; and (e) 
although in this paper the proposed multi-population method is 
only used in MOGA at this stage, our idea can be extended to 
any MOEA without changing the original structure of other 
algorithms. 

The remainder of the paper is organized as follows. Section 
II gives detailed descriptions of the proposed multi-population 
MOGA method. Section III presents the Markov model of the 
proposed multi-population MOGA approach. Section IV 
presents simulations to verify the proposed model, and show 
the optimization performance of the proposed algorithm on 
multi-objective benchmarks. Section V gives conclusions and 
suggestions for future research. 

II. MULTI-POPULATION MOGA

This section firstly presents the foundation of the proposed 
multi-population MOGA (Section A), in which cross-
subpopulation migration, used to naturally communicate among 
subpopulations, is introduced. Then it presents the 
implementation of the proposed multi-population MOGA in 
detail (Section B). 

A. Foundation of Multi-population MOGA

Like most heuristic algorithms, multi-population MOGA is 
inspired by nature. The environment of multi-population 
MOGA is analogous to island models used in other 
evolutionary computations, which are effective tools for 
parallel computing. Each island is considered as a possible 
solution to the problem, and a group of islands represent a 
subpopulation.  

In a multi-population MOGA method, it firstly performs 
selection and crossover for each subpopulation, equivalent to 
regular GAs, which is called ‘within-subpopulation genetic 
operator’. Then candidate solutions for subpopulations are 
exchanged by migration, which is an operator inspired by 
species migration between islands [25, 26], called 
cross-subpopulation migration because of the migration 
occurring between subpopulations. The purpose of the 
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migration is to facilitate information sharing, and consequently 
it preserves diversity throughout the entire population. So the 
cross-subpopulation migration is an important operator in the 
proposed multi-population MOGA. Finally, it performs 
mutation, which is the same as those used in regular GAs. The 
main difference between multi-population and 
single-population MOGAs is that the former uses adaptive 
interactions between subpopulations to enhance the exploration 
process. A framework for multi-population MOGA is 
illustrated in Figure 1. 

Fig.1. A framework of a multi-population MOGA including the 
within-subpopulation genetic operator (selection, crossover and mutation), and 

cross-subpopulation migration. 

B. Implementation of multi-population MOGA

Within-subpopulation genetic operator mainly includes 
selection and crossover. Within-subpopulation selection is 
implemented by roulette-wheel selection [27], and it uses a 
probability distribution, which is linearly related to the solution 
ranks. In MOGA, solution ranking often uses classical 
non-dominated sorting [8], which reflects the relative 
performance of each solution in a population, an effective 
method in the multi-objective optimization domain. After the 
parent solutions are selected for recombination, we perform 
within-subpopulation crossover. Here we use global uniform 
crossover, which means that many parents can contribute 
solution variables to a single offspring, and each solution 
variable in an offspring is generated independently from every 
other solution variable. 

Cross-subpopulation migration is implemented by 
probabilistically choosing the replaced solution based on the 
solution ranks. Then we find pairs of subpopulations that are 
suitable for migration based on the objective similarity levels of 
subpopulations. That is, we use the objective similarity levels 
to decide which subpopulations to migrate to or from. The 
reason is that subpopulations with a high objective similarity 
are more likely to benefit each other through migration than the 
subpopulations with a low similarity. The similarity levels are 
calculated using Algorithm 1, where G and H are the sets of 
objective costs of two solutions in different subpopulations. 
The pair probability subP  between the subpopulations is 
proportional to the maximum objective similarity level in the 
population, which is calculated as follows: 

max

sub

SL
P

SL
 (2) 

where SL is the objective similarity level between two solutions 
cross subpopulations, and SLmax is the maximum objective 
similarity level in the population.   

Algorithm 1 – Similarity level calculation cross subpopulations 

Set the objective similarity level SL = 0; 

For each g  G, where G is the objective set of one solution 

For each h  H, where H is the objective set of another solution 

If g and h are the same then 

SL = SL + 1; 

End if 

End for 

End for 

  Once we obtain the pair of subpopulations to migrate to and 
from, we calculate the Euclidian distance between the replaced 
solution and each solution in the selected subpopulation. The 
introduction of Euclidian distance is based on the concept of 
diversity: a larger diversity in a population provides more 
opportunities to find an optimal solution [20]. We then use 
roulette-wheel selection based on Euclidian distance to select 
the emigrating solutions in the selected subpopulation. Figure 2 
shows an example of a selected emigrating solution replacing a 
solution in the immigrating subpopulation, where we firstly 
calculate the Euclidian distance between the replaced solution 
in the immigrating subpopulation and each solution in the 
emigrating subpopulation. Then we create the roulette-wheel 
probability D based on the Euclidian distance, and select the 
emigrating solution from the emigrating subpopulation based 
on roulette-wheel selection. 

Fig.2. An example of emigrating solution selection across an immigrating 
subpopulation and an emigrating subpopulation.  

Finally, we perform migration between the replaced solution 

ky and the emigrating solution jy  cross the subpopulations. 
Migration is denoted as 

   k jy s y s (3) 

where s is a solution feature index. Equation (3) states that a 
solution variable in the emigrating solution replaces one in the 
replaced solution. In cross-subpopulation migration, each 
solution variable in each replaced solution in a subpopulation 
has a chance to be replaced by a solution variable of an 
emigrating solution from another subpopulation.  

Mutation in multi-population MOGA is identical to that of 
regular GAs, which randomly modifies a solution variable 
based on the mutation probability. The purpose of mutation is 
also to increase population diversity [27].  

The description of one generation of multi-population 
MOGA is shown in Algorithm 2, where y is the entire 
population of all the subpopulations, z is the temporary 
population corresponding to y, yik is the kth candidate solution 
in subpopulation i, yik(s) is the sth solution variable of yik, μik
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and λik are selection and replacing probabilities of solution yik 
respectively, ilmj is the Euclidian distance between solution l
in subpopulation i  and solution j  in subpopulation m , and 

iN
 

is the population size for subpopulation i . 

Algorithm 2 – One generation of the proposed multi-population 

MOGA  

Calculate the objective similarity between each pair of 

subpopulations using Algorithm 1 

Calculate the rank of each solution yik in subpopulation i using 

non-dominated sorting method 

Calculate selection probability μik and replacing probability λik 

based on the rank of solution yik   

z ← y 

For each subpopulation i 

  /* within-subpopulation genetic operator */ 

For each solution zik  (k = 1 to Ni) 

 For each solution variable s 

Based on roulette-wheel selection, use {μi} to 

probabilistically select yij in the same subpopulation i 

 Perform global uniform crossover: zik(s) ←yij(s) 

    Next variable  

 Next solution 

 /* cross-subpopulation migration */ 

Find a suitable subpopulation m to pair with subpopulation i 

based on objective similarity levels 

For each solution zik  (k = 1 to Ni) 

Calculate Euclidian distances { ikml } between zik  and each 

solution yml in subpopulation m 

 Use λik to probabilistically decide whether to replace zik 

 If replacing then     

 For each solution variable s 

Based on roulette-wheel selection, use Euclidian 

distances { ikml } to probabilistically select the

emigrating solution ymj 

    Perform migration:  zik(s) ←ymj(s) 

 Next variable 

End if 

 /* mutation */ 

 Probabilistically decide whether to mutate zik 

    Next solution 

Next subpopulation 

y ← z 

Based on the structure of the proposed multi-population 
MOGA, we see that the main difference between the proposed 
algorithm and the traditional multi-population MOGAs is the 
introduction of cross-subpopulation migration. An important 
aspect of multi-population methods is the communication 
between multiple subpopulations, which is configured by 
various parameters, including communication connection 
topologies, communication interval and communication rate. In 
many previous studies, these parameters need to be adjusted 
based on a priori knowledge of the optimization problem. 
However, it is hard to discover the best communication strategy 
in most real-world problems.  

In the proposed algorithm, we use the migration method 
inspired by the ideas from biology to implement the 
communication between multiple subpopulations. That is, we 

firstly use MOGA to generate offspring solutions in each 
subpopulation, and then employ the cross-subpopulation 
migration to exchange their information. Therefore, it will often 
perform better due to the adaptive exchange of information 
between subpopulations. In this approach, the important 
characteristics of the problems including solution fitness, 
objective similarity and Euclidian distance are used in the 
cross-subpopulation migration to determine the communication 
parameter settings between subpopulations. It provides an 
information sharing mechanism to adaptively improve the 
entire population. This multi-population MOGA, which 
combines MOGA with the cross-population migration, can be 
treated as a template for designing other multi-population 
MOEAs. It has the common features of MOEAs, but also has 
the distinctive migration characteristics.  

III. A MARKOV CHAIN MODEL OF THE MULTI-POPULATION 

MOGA 

In the previous section, we introduced a multi-population 
MOGA. In this section, we establish a Markov model of the 
proposed multi-population MOGA, which can be studied as the 
functions of the proposed multi-population MOGA’s tuning 
parameters to predict their impact on algorithmic performance, 
and find optimal values of the tuning parameters to realize 
real-time adaptation. Markov models have become a useful 
mathematical tool for EAs, including regular GAs [28, 29], 
BBO [30], and others [31]. In this paper, we will use a Markov 
model to produce insights to account for how well the proposed 
algorithm behaves. 

Each Markov state in the multi-population MOGA is a 
specific population distribution. Each generation of the 
multi-population MOGA updates its population with a 
within-subpopulation genetic operator, and cross-subpopulation 
migration described in the previous section. A transition 
between states corresponds to the evolution of the population in 
one generation of the multi-population MOGA. So, in order to 
build a transition matrix, we need to model these operators in 
the multi-population MOGA. 

Before developing the Markov model of the multi-population 
MOGA, we make three assumptions. First, a solution will not 
be replaced until the end of a generation. That is, the multi-
population MOGA is generational rather than steady-state. This 
assumption guarantees that the selection and replacing 
probabilities remain the same throughout a given generation. 

Second, a solution can replace itself. In other words, a 
solution crosses over itself in the within-subpopulation genetic 
operator. For cross-subpopulation migration, there is a chance 
that the replaced and emigrating solutions are the same. 

Third, we use the preset selection and replacing probabilities 
for each solution rank rather than calculating them in each 
generation. All the ranks are calculated based on the classical 
non-dominated sorting method.  

Assume that the multi-population MOGA consists of M  
subpopulations. We have a multi-objective optimization 
problem whose solution variables are binary. The bit number of 
a candidate solution in each subpopulation is the same, which is 
denoted as q . Use n  to denote the cardinality of the search, 
that is, the total number of possible solutions in each 
subpopulation. Use n  to denote the total number of possible 
solutions for all subpopulations. n  and n  are calculated by: 
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xj
 
denotes the jth possible candidate solution in the search 

space of each subpopulation, and vij denotes the total number of 
possible solutions xj in subpopulation i . Note that 
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n
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The entire population in a multi-population MOGA can be 
generally represented as follows: 
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where the yij solutions are ordered to group identical solutions. 
For each element of Equation (6), it is denoted in a compact 
format as follows: 
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Equation (7) can be rewritten as follows: 
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A. Within-subpopulation genetic operator 

In Algorithm 2, we use roulette-wheel selection and global 
uniform crossover as a specific within-subpopulation genetic 
operator to produce an offspring. In [32], we have obtained the 
Markov model of this operator for a single population. Here we 
directly extend it for multiple subpopulations, and obtain the 
probability    1

iklP v
 
that the kth solution in the ith 

subpopulation is equal to a given solution lx  at generation t+1, 
which is calculated as follows: 
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Pr il

q
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where    1

iklP v  is a function of the current population vector 
v  at the tth generation (we will define the population vector 
precisely later, but for now we simply need to know that it 
represents the current population of the multi-population 
MOGA). The notation  ilJ s  in Equation (9) denotes the set 
of solution indices in subpopulation i  that contains the same 
bit in position s  as solution lx . That is, 

 
      : in subpopulationil j lJ s j x s x s i 

  
  (10) 

Furthermore, the value in brackets on the right hand side of 
Equation (9) denotes the probability of obtaining a certain bit at 
a certain position in a given solution, which is proportional to 
two factors: the total number of occurrences of that bit in the 
entire subpopulation, and the selection probabilities of the 
solutions that contain this bit. 

B. Cross-subpopulation migration 

The second part of the multi-population MOGA is 
cross-subpopulation migration, which is the migration between 
subpopulations. Considering the possibility of replacing a given 
solution in the cross-subpopulation migration, we have two 
possible scenarios: the first scenario is that the solution 
variables in the replaced solution won’t be changed from 
generation t to t+1. We use  iky s  to represent the sth bit in 
the kth solution in the ith subpopulation, which is represented 
as follows:  

           
1ik ik k zt t

y s y s x s

                   (11) 

  The second scenario is that migration is applied to the 
replaced solution. An important aspect that we need to consider 
here is how to compute the probability of the occurrence of 
each solution. For cross-subpopulation migration, we introduce 
Euclidian distances and use roulette-wheel selection based on 
Euclidian distance to select the emigrating solutions. The 
probability of obtaining a certain variable at a certain position 
in a given solution is proportional to the total number of the 
occurrences of that variable in the entire subpopulation and the 
replacing probabilities of the solutions that contain this variable. 
This probability is calculated for the sth component in the kth 
solution of the ith subpopulation as follows: 
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v
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


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Considering both possibilities described above, given that the 
population vector at generation t is equal to v , the probability 

   2

iklP v  that , 1ik t ly x   at generation t+1 after 
cross-subpopulation migration can be calculated as 
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v


 














 

  



 
    
 
 






          

(13) 
where 01i  denotes the indicator function on  0  in the 
subpopulation i . The first term of the right side of Equation 
(13) denotes the probability when replacement does not occur, 
and the second term on the right side of Equation (13) denotes 
the probability when replacement occurs by migration. 

C. Combined within-subpopulation genetic operator and 
cross-subpopulation migration  

Recall that Section II provides details of the multi-population 
MOGA. There are three steps in revising the population: 
within-subpopulation genetic operator, cross-subpopulation 
migration, and mutation. To find the total probability of 
obtaining a given solution, we combine the probabilities of 
these three operators. We combine the probabilities of the 
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within-subpopulation genetic operator and the cross-
subpopulation migration to obtain    3

iklP v : 

           3 1 2

1

n

ikl ikj ijl
j

P v P v P v


                    (14) 

This is the probability that iky  is equal to lx  in 
subpopulation i  after both the within-subpopulation genetic 
operator and the cross-subpopulation migration have been 
considered. 

D. Mutation 

Mutation is another way to improve solutions in the 
multi-population MOGA. If we can obtain the probability of 
transforming a given solution to another given solution due to 
mutation, we combine this probability with Equation (14) to 
obtain the transition matrix for the Markov model of the 
multi-population MOGA. 

Assuming that the mutation probability is predefined and 
constant, we can create a mutation matrix for each 
subpopulation. We use iU  to denote the mutation matrix for 
subpopulation i . We use irlU , which is the lth element in the 
rth row in mutation matrix iU , to denote the probability that 
solution rx

 
mutates to solution lx  in subpopulation i . Next, 

we combine iU  with Equation (14) to obtain the probability 
that , 1ik t ly x   in subpopulation i  after the 
within-subpopulation genetic operator, cross-subpopulation 
migration, and mutation, and it is calculated by 

           4 1 2

1 1

n n

ikl ikj ijr irl
r j

P v P v P v U
 

           (15) 

Now we extend the probability from the solution level to the 
population level. We introduce the term population vector, and 
use an example to illustrate it. 
Example: Assume we have two subpopulations with four 
possible candidate solutions in subpopulation 1, and four 
possible candidate solutions in subpopulation 2. Then the 
population vector contains eight elements, which is shown in 
Figure 3. For example, a population vector [1 0 0 3 2 0 2 0] 
indicates that subpopulation 1 contains one S-11 and three S-14; 
and subpopulation 2 has two S-21 and two S-23. 

Population vector 
S-11 S-12 S-13 S-14 S-21 S-22 S-23 S-24 

Fig.3. Population vector in multi-population MOGA consisting of two 
subpopulations, where the number of possible candidate solutions in each 

subpopulation is four. The population vector has eight elements. S-ik represents 
the number of kx  solutions in subpopulation i . 

Next the generalized multinomial theorem [33-34] is used to 
find the probability that population vector v  transits to 
population vector u  in subpopulation i  after one generation. 
We use  Pri u v to denote this probability in subpopulation i : 

     

 

4

1 1

1 1

Pr ,

: 0,1 ,
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1 for all , for all
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  



 

    

  
  

  
  

  



 

(16)

 

In Equation (16),  Pri u v  is the element of the transition 
matrix iP

 
for subpopulation i , which represents the 

probability of transiting from one possible population vector to 
another. iP  is a i iT T  matrix, where iT  is the total number 
of possible population vectors in subpopulation i , which is 
calculated as follows [33]: 

          1,i i iT n N N             (17) 

That is, there are i iT T  combinations for  u  and v  vectors 
in Equation (16). These i iT T  probabilities consist of the 
entries of the transition matrix iP . Once having obtained the 
transition matrices iP  for each subpopulation, we can 
combine these matrices to form the transition matrix P  for 
the multi-population MOGA. The matrix P  can be calculated 
using the pseudo-code version of Algorithm 3. Note that the 
size of the matrix P  is T T , where T  is the total number 
of possible population vectors for the multi-population MOGA: 

           
1

M

i
i

T T


                    (18) 

 

Algorithm 3 – pseudo-code for the calculation of matrix P 

For (t = 1; t≤ T; t++) 

Set Count = 1; 

For (k1 = 1; k1≤ T1; k1++) 

  For (k2 = 1; k2≤ T2; k2++) 

      
   For (kM = 1; kM≤ TM; kM++) 

     P(Count, t) = P1(k1, t) P2(k2, t)…PM(kM, t); 

     Count++; 

   End for 

       End for 

   End for 

End for 

 

IV. SIMULATION RESULTS 

In this section, section (A) verifies the Markov model theory of 
the proposed multi-population MOGA with simulation results, 
and investigates the effects of cross-subpopulation migration on 
the proposed method. Sections (B) and (C) explore the effect of 
the subpopulation number and size on multi-population 
performance respectively, Section (D) compares the proposed 
multi-population MOEAs with the corresponding standard 
MOEAs on a set of multi-objective benchmark functions, and 
Section (E) discusses the benefits of the proposed 
multi-population method and the Markov model. 

A. Theoretical Verification 

In this section, we use two simple multi-objective problems to 
verify the Markov model derived in the previous section, which 
can exactly predict the steady state probability of each possible 
population vector in the multi-population MOGA. Meanwhile, 
we also use the Markov model to seek proper multi-population 
parameters to improve the optimization performance.  

Suppose that the first multi-objective problem includes two 
cost functions. Each cost function contains two bits; that is, the 
possible solutions are {00, 01, 10, 11}. The cost functions are 
given as follows: 

 
1 1 2

2 1 1 2

2 1

1 1

f x x

f f x x

  


   
               (19) 

where 1f  is the first cost function, 2f  is the second cost 
function, 1x  is the first bit of a solution, and 2x  is the second 
bit of a solution. For this multi-objective problem, a smaller 
cost means better performance. 
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To justify the Markov model, we set two subpopulations for 
the multi-population MOGA, and perform Monte Carlo 
simulations to obtain the average performance. The simulation 
parameters include: 100 Monte Carlo simulations, 5000 
generations for each Monte Carlo simulation, 4 individuals in 
each subpopulation, and the mutation probability of 0.01.  

Furthermore, to explore the effect of multi-population on the 
MOGA performance, we investigate the cross-subpopulation 
migration. Based on Algorithm 2, there are two key tuning 
parameters for the cross-subpopulation migration: replacing 
probability   and Euclidian distance   respectively. In this 
experiment, the replacing probability is set to be linear and 
quadratic with respect to the solution rank respectively. 
Euclidian distance is set to be maximum, moderate, and 
minimum values respectively. Table I shows the Markov model 
and the simulated probabilities. 

The cost functions shown in Equation (19) show that the 
population vector composed of Pareto solutions, called Pareto 
population vector, is [4 0 0 0 4 0 0 0], based on the population 
vector description presented in Figure 3. According to the 
results shown in Table I, first, we find that the theoretical 
results calculated by the Markov model match the simulation 
results for all the cases, which justifies the model derived in the 
previous section. For example, in the case of linear ranks and 
the maximum Euclidian distance, the probability of obtaining 
the Pareto population vector calculated by the Markov model is 
0.6876, and the probability calculated by simulation is 0.6785. 

Second, we witness that in the case of the same replacing 
probability, when the value of the Euclidian distance is the 
maximum, the probability of obtaining the Pareto population 
vector is the largest. When the value of the Euclidian distance 

is the minimum, the probability of obtaining the Pareto 
population vector is the smallest. For example, for the linear 
rank, the probability of obtaining the Pareto population vector 
calculated by the Markov model is 0.6876, 0.5785, 0.4868 for 
maximum, moderate, and minimum Euclidian distances 
respectively, which confirms that greater population diversity 
provides more opportunities to obtain a Pareto solution. 

Third, we also find that in the case of the same Euclidian 
distance, the probability of obtaining the Pareto population 
vector for quadratic ranking is better than that for linear ranking. 
For example, for the maximum Euclidian distance, the 
probability of obtaining the Pareto population vector for 
quadratic ranks is 0.7806, and that for linear ranks is 0.6876, 
which confirms that replacing probability can affect the 
performance of the multi-population MOGA. 

Finally, note that the CPU time for the calculation of the 
Markov model is 52 seconds, but the average CPU time for 
each simulation is 126 seconds. The proposed multi-population 
MOGA runs in MATLAB® on a 2.40 GHz Intel Pentium® 4 
CPU with 4 GB of memory. The Markov model obtains more 
accurate probabilities than the simulation, and also does so with 
less CPU time. This is because Markov models are limited to 
problems with small population sizes and binary solution 
structures, which do not capture the characteristics of 
real-world problems. 

Figure 4 shows typical simulation results for 5000 
generations of the multi-population MOGA for the 
multi-objective problem in various combination cases. It is seen 
that all the Pareto population vectors agree with the results 
shown in Table I. 

TABLE I THE FOUR MOST LIKELY POPULATIONS FOR DIFFERENT TUNING PARAMETERS FOR THE FIRST MULTI-OBJECTIVE PROBLEM. CPU TIMES FOR 

THE MARKOV MODEL AND THE SIMULATIONS ARE SHOWN IN THE LAST ROW OF THE TABLE. 
Probability Tuning parameters Population Vector 

Markov Simulation 
4 0 0 0 4 0 0 0 0.6876 0.6785 
3 1 0 0 4 0 0 0 0.0969 0.0982 
4 0 0 0 3 1 0 0 0.0969 0.0981 

Maximum Euclidian 
distance 

3 0 1 0 4 0 0 0 0.0321 0.0322 
4 0 0 0 4 0 0 0 0.5785 0.5714 
3 1 0 0 4 0 0 0 0.1617 0.1537 
4 0 0 0 3 1 0 0 0.0818 0.0913 

Moderate Euclidian 
distance 

3 0 1 0 4 0 0 0 0.0393 0.0325 
4 0 0 0 4 0 0 0 0.4868 0.4783 
3 1 0 0 4 0 0 0 0.1370 0.1314 
4 0 0 0 3 1 0 0 0.1370 0.1365 

Replacing 
probability: 
Linear rank 

Minimum Euclidian 
distance 

3 0 1 0 4 0 0 0 0.0385 0.0411 
4 0 0 0 4 0 0 0 0.7806 0.7764 
3 1 0 0 4 0 0 0 0.0649 0.0628 
4 0 0 0 3 1 0 0 0.0649 0.0628 

Maximum Euclidian 
distance 

3 0 1 0 4 0 0 0 0.0321 0.0316 
4 0 0 0 4 0 0 0 0.7195 0.7074 
3 1 0 0 4 0 0 0 0.1118 0.1103 
4 0 0 0 3 1 0 0 0.0598 0.0657 

Moderate Euclidian 
distance 

3 0 1 0 4 0 0 0 0.0339 0.0326 
4 0 0 0 4 0 0 0 0.6631 0.6617 
3 1 0 0 4 0 0 0 0.1033 0.1012 
4 0 0 0 3 1 0 0 0.1033 0.1016 

Replacing 
probability: 

Quadratic rank 

Minimum Euclidian 
distance 

3 0 1 0 4 0 0 0 0.0313 0.0214 
CPU time (s) 52 126 
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  Linear rank and maximum distance                 Linear rank and moderate distance                  Linear rank and minimum distance  

 

 
               Quadratic rank and maximum distance              Quadratic rank and moderate distance              Quadratic rank and minimum distance 
 

Fig.4. Typical multi-population MOGA simulation results for the first multi-objective problem in various combination cases, where the simulation probabilities 
of the four most probable population vectors are shown. 

 

  The second multi-objective problem includes three cost 
functions. Each cost function includes two bits, and the 
possible solutions are {00, 01, 10, 11}. The cost functions are:  

   

   

1 1 2

2 1 1 2

3 1 2 1

2 1

1 1 1

1 1

f x x

f f x x

f x x f

   


    


   

               (20) 

where 1f  is the first cost function, 2f  is the second cost 
function, 3f  is the third cost function, 1x  is the first bit of a 
solution, and 2x  is the second bit of a solution.  

For the second multi-objective problem, we set three 
subpopulations; the other parameter settings are the same as 
for the first multi-objective problem. As in the first problem, a 
smaller cost means better performance, but it is more complex 
due to the exponential increase of matrix sizes with the 
problem size and subpopulation number. Table II shows 
comparisons between theoretical (Markov) and simulated 
results.  

The cost functions in Equation (20) show that the 
population vector composed of Pareto solutions is [4 0 0 0 4 0 
0 0 4 0 0 0] based on the description of the population vector 
in Figure 3. According to the results in Table II, we observe 
that the theoretical results calculated by the Markov model 
match well the simulation results for all the cases, which again 
confirms validity of the derived Markov model. Meanwhile, 
we also find that the conclusions about replacing probability 
and Euclidian distance are in accord with those obtained from 
the first multi-objective problem, which again confirms the 
important effect of cross-subpopulation migration on the 
optimization performance of the multi-population MOGA. 

In addition, for this multi-objective problem, the CPU time 
for the Markov model is 947 seconds, but the average CPU 
time of each simulation is 224 seconds. In this case, the 
computational effort of the Markov model is higher than that 
of the simulation. This is because the total number of possible 
population vectors increases exponentially with the number of 
subpopulations as seen in Equations (17) and (18), leading to a 
large transition matrix that is difficult to handle. 

B. Effect of subpopulation number 

Subpopulation number is one of the important tuning 
parameters in the multi-population method. To explore its 
effect on the proposed algorithm, we consider four cases with 
one, two, three and four subpopulations. For migration 
operators, we set the replacing probability to be linear with 
respect to the solution rank, and Euclidian distance to be 
maximum value. Other parameters are the same as those used 
in the previous experiment. Table III shows the Markov model 
and simulated probabilities for the different subpopulation 
numbers for two multi-objective problems. 
  According to Table III, on the one hand, we find that the 
probability of obtaining the Pareto population vector for many 
subpopulation numbers is better than that for a few 
subpopulation numbers. For example, for one subpopulation, 
the probability is 0.6307 for the first problem, and is 0.7291 
for four subpopulations, which confirms that the 
subpopulation number can affect the performance of the 
multi-population MOGA. On the other hand, for the problems 
we study, when the subpopulation number increases, the effect 
becomes less clear. For example, for the second problem, the 
probability is 0.6342 for three subpopulations, and 0.6419 for 
four subpopulations. This shows that for the multi-population 
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method, the appropriate subpopulation number is important,   which depends on the problems we study.

TABLE II THE FOUR MOST LIKELY POPULATIONS FOR DIFFERENT TUNING PARAMETERS FOR THE SECOND MULTI-OBJECTIVE PROBLEM. CPU TIMES FOR 

THE MARKOV MODEL AND THE SIMULATIONS ARE SHOWN IN THE LAST ROW OF THE TABLE. 
Probability 

Tuning parameters Population Vector 
Markov Simulation 

4 0 0 0 4 0 0 0 4 0 0 0 0.6342 0.6311 
3 1 0 0 4 0 0 0 4 0 0 0 0.0813 0.0809 
4 0 0 0 4 0 0 0 3 1 0 0 0.0813 0.0810 

Maximum Euclidian 
distance 

4 0 0 0 3 0 1 0 4 0 0 0 0.0395 0.0475 
4 0 0 0 4 0 0 0 4 0 0 0 0.5315 0.5284 
3 1 0 0 4 0 0 0 4 0 0 0 0.1562 0.1497 
4 0 0 0 4 0 0 0 3 1 0 0 0.1562 0.1497 

Moderate Euclidian 
distance 

4 0 0 0 3 0 1 0 4 0 0 0 0.0321 0.0419 
4 0 0 0 4 0 0 0 4 0 0 0 0.4452 0.4387 
3 1 0 0 4 0 0 0 4 0 0 0 0.1341 0.1315 
4 0 0 0 4 0 0 0 3 1 0 0 0.1341 0.1285 

Replacing 
probability: 
Linear rank 

Minimum Euclidian 
distance 

4 0 0 0 3 0 1 0 4 0 0 0 0.0396 0.0412 
4 0 0 0 4 0 0 0 4 0 0 0 0.7245 0.7213 
3 1 0 0 4 0 0 0 4 0 0 0 0.0421 0.0413 
4 0 0 0 4 0 0 0 3 1 0 0 0.0421 0.0501 

Maximum Euclidian 
distance 

4 0 0 0 3 0 1 0 4 0 0 0 0.0295 0.0310 
4 0 0 0 4 0 0 0 4 0 0 0 0.6684 0.6605 
3 1 0 0 4 0 0 0 4 0 0 0 0.1013 0.0944 
4 0 0 0 4 0 0 0 3 1 0 0 0.0496 0.0516 

Moderate Euclidian 
distance 

4 0 0 0 3 0 1 0 4 0 0 0 0.0301 0.0322 
4 0 0 0 4 0 0 0 4 0 0 0 0.6035 0.6003 
3 1 0 0 4 0 0 0 4 0 0 0 0.0923 0.0815 
4 0 0 0 4 0 0 0 3 1 0 0 0.0923 0.0876 

Replacing 
probability: 

Quadratic rank 

Minimum Euclidian 
distance 

4 0 0 0 3 0 1 0 4 0 0 0 0.0287 0.0312 
CPU time (s) 947 224 

C. Effect of subpopulation size 

Subpopulation size is another tuning parameter in the 
multi-population method. To explore the effect of the 
subpopulation size, we consider three cases of two, four and 
eight individuals in each subpopulation. In this experiment, we 
set two subpopulations for the first multi-objective problem, 
and three subpopulations for the second problem. Other 
parameters are the same as those used in the previous 
experiments. Table IV shows the Markov model and simulated 
probabilities for the different subpopulation sizes for two 
multi-objective problems.  

According to Table IV, we observe that the probability of 
obtaining the Pareto population vector is the largest for the 
four individuals. For example, for the first problem, the 
probability is 0.5724, 0.6876 and 0.6037 for two, four and 
eight individuals respectively. This experiment shows that for 
the multi-population method, the appropriate subpopulation 
size is important, which depends on the problems we study.  

D. Optimization for Benchmarks 

This subsection presents multi-objective unconstrained 
functions from the 2009 IEEE Congress on Evolutionary 
Computation (CEC) to show the results of the proposed 
multi-population method on MOEAs. These functions are 
briefly summarized in Table V, and the complete definition of 
each function is available in the literature [35]. 

In this experiment, we integrate the cross-subpopulation 
migration into the established multi-objective 
biogeography-based optimization (MBBO) [36], multi-
objective evolutionary algorithm based on decomposition 
(MOEA/D) [37], and multiple trajectory search (MTS) 

algorithm [38] under the condition of the original algorithm. 
Here, we choose MBBO because it is one of the most recent 
MOEAs. We choose MOEA/D because it is one of the most 
popular and outstanding MOEAs, and we choose MTS 
because it is one of the most successful MOEAs reported in 
the CEC competition. For the multi-population versions of 
these algorithms, we use the quadratic rank as the replacing 
probability. Meanwhile, for solving real-world problems, to 
improve Euclidian distance based schemes, we also employ a 
simple multi-population strategy: For similar subpopulations 
during the optimization, we firstly preserve one subpopulation 
and delete the other similar subpopulations. We then create the 
same number of new subpopulations, which consist of the 
following candidate solutions: 1/3 of them are random copies 
from the preserved subpopulation, 1/3 are from the best 
solutions in the entire population, and 1/3 are randomly 
selected from the other subpopulations. 

In this experiment, for the four presented algorithms, 
subpopulation number is set to 4 based on the results in the 
previous experiments. The population size of each 
subpopulation is 50, so the entire population size is 200. To 
obtain fair comparisons, a population size for the standard 
versions of these algorithms is set to 200. For the 
multi-population MOEA/D, we use the same weights for these 
subpopulations, and other parameter settings of these 
algorithms are referred to the original references [36-38]. The 
benchmark functions are compared by implementing 
discretized coding of all the standard and multi-population 
algorithms. The granularity or precision of each solution 
variable is set to 0.01 to provide for reasonable computational 
effort. Note that benchmark tests might result in a different 
conclusion if we use a different setup or if we change 
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precision. Since the precision of each solution variable is set to 
a small value, we expect real coding to improve performance 
by 2%-3% in theory. We evaluate each algorithm with 10 
Monte Carlo simulations and 10,000 generations for each 
Monte Carlo simulation. Figures S1, S2 and S3 in this paper’s 
supplemental material show the approximate Pareto front 
graphs obtained by the different algorithms. Note that due to 
space limitations, we show only the representative 
two-objective benchmark functions U02, U04 and 
three-objective benchmark function U08. It is observed that 
Pareto fronts of the multi-population MOGA, MBBO, 
MOEA/D, and MTS are closer to ideal Pareto fronts than 
those of the corresponding standard algorithms. 

Furthermore, we use hypervolume as the performance 
metric, which denotes the volume of the objective space 
between the obtained solution set and the reference point. It 
also gives the solution set a comprehensive assessment with 
respect to convergence and diversity. Similar to [39], the 
reference point is set to 1.1 times the upper bound of the 
Pareto front. For a minimization problem, a smaller 
hypervolume indicates a better Pareto front approximation. 
The computational details of hypervolume can be found in the 
literature [13]. Table VI shows the average performance of 
multi-population MOGA, MBBO, MOEA/D, and MTS, and 
their standard versions with respect to the hypervolume 
metric.  

The results shown in Table VI are divided into standard 
MOGA versus multi-population MOGA, standard MBBO 

versus multi-population MBBO, standard MOEA/D versus 
multi-population MOEA/D, and standard MTS versus 
multi-population MTS. From Table VI, we observe that 
multi-population MOGA performs better than the standard 
MOGA, multi-population MBBO better than standard MBBO, 
multi-population MOEA/D better than standard MOEA/D, and 
multi-population MTS better than standard MTS, on all the 
benchmark functions. That is, the multi-population versions of 
these algorithms are significantly better than their standard 
versions. It also shows that the proposed multi-population 
method is an effective method to improve the optimization 
performance of the MOEAs. The reason for its improved 
performance is that multi-population MOEAs effectively use 
cross-subpopulation migration that can significantly increase 
the communication between the subpopulations to improve the 
population diversity, compared to traditional MOEAs. 

The average running time of these algorithms is shown in 
the last row of Table VI. From the table, we see that the 
average running time of the multi-population versions of 
MOGA, MBBO, MOEA/D, and MTS is much less than their 
standard versions. The reason is that the multi-population 
algorithms use the multiple parallel subpopulations of a 
relatively small size, while the standard algorithms use a 
single population that is four times as large as their 
multi-populations. Based on this justification, we believe that 
multiple subpopulations can be seen as parallel processing, 
which can reduce the computational effort.  

TABLE III THE FOUR MOST LIKELY POPULATIONS FOR THE CASES OF ONE, TWO, THREE AND FOUR SUBPOPULATIONS. 
Probability Tuning parameters Population Vector 

Markov Simulation 
4 0 0 0 0.6307 0.6259 
3 1 0 0 0.1235 0.1211 
3 0 1 0 0.1235 0.1206 

One subpopulation 

3 0 0 1 0.0393 0.0378 
4 0 0 0 4 0 0 0 0.6876 0.6785 
3 1 0 0 4 0 0 0 0.0969 0.0982 
4 0 0 0 3 1 0 0 0.0969 0.0981 

Two subpopulations 

3 0 1 0 4 0 0 0 0.0321 0.0322 
4 0 0 0 4 0 0 0 4 0 0 0 0.7239 0.7168 
3 1 0 0 4 0 0 0 4 0 0 0 0.0861 0.0822 
4 0 0 0 4 0 0 0 3 1 0 0 0.0861 0.0813 

Three subpopulations 

4 0 0 0 3 0 1 0 4 0 0 0 0.0245 0.0242 
4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 0.7291 0.7236 
3 1 0 0 4 0 0 0 4 0 0 0 4 0 0 0 0.0823 0.0815 
4 0 0 0 4 0 0 0 3 1 0 0 4 0 0 0 0.0823 0.0803 

First problem 

Four subpopulations 

4 0 0 0 4 0 0 0 4 0 0 0 3 0 1 0 0.0271 0.0232 
4 0 0 0 0.5216 0.5101 
3 1 0 0 0.1517 0.1512 
3 0 1 0 0.1517 0.1520 

One subpopulation 

3 0 0 1 0.0395 0.0347 
4 0 0 0 4 0 0 0 0.5842 0.5792 
3 1 0 0 4 0 0 0 0.1225 0.1149 
4 0 0 0 3 1 0 0 0.1225 0.1187 

Two subpopulations 

3 0 1 0 4 0 0 0 0.0332 0.0322 
4 0 0 0 4 0 0 0 4 0 0 0 0.6342 0.6311 
3 1 0 0 4 0 0 0 4 0 0 0 0.0813 0.0809 
4 0 0 0 4 0 0 0 3 1 0 0 0.0813 0.0810 

Three subpopulations 

4 0 0 0 3 0 1 0 4 0 0 0 0.0395 0.0475 
4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 0.6419 0.6447 
3 1 0 0 4 0 0 0 4 0 0 0 4 0 0 0 0.0784 0.0723 
4 0 0 0 4 0 0 0 3 1 0 0 4 0 0 0 0.0784 0.0708 

Second problem 

Four subpopulations 

4 0 0 0 4 0 0 0 4 0 0 0 3 0 1 0 0.0371 0.0324 
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TABLE IV THE FOUR MOST LIKELY POPULATIONS FOR THE CASES OF TWO, FOUR AND EIGHT INDIVIDUALS IN EACH SUBPOPULATION 
Probability 

Tuning parameters Population Vector 
Markov Simulation 

4 0 0 0 4 0 0 0 0.5724 0.5672 
3 1 0 0 4 0 0 0 0.1423 0.1394 
4 0 0 0 3 1 0 0 0.1423 0.1394 

Two individuals 

3 0 1 0 4 0 0 0 0.0396 0.0371 
4 0 0 0 4 0 0 0 0.6876 0.6785 
3 1 0 0 4 0 0 0 0.0969 0.0982 
4 0 0 0 3 1 0 0 0.0969 0.0981 

Four individuals 

3 0 1 0 4 0 0 0 0.0321 0.0322 
4 0 0 0 4 0 0 0 0.6037 0.5934 
3 1 0 0 4 0 0 0 0.1250 0.1174 
4 0 0 0 3 1 0 0 0.1250 0.1203 

First problem 

Eight individuals 

3 0 1 0 4 0 0 0 0.0411 0.0402 
4 0 0 0 4 0 0 0 0.4934 0.4816 
3 1 0 0 4 0 0 0 0.1672 0.1605 
4 0 0 0 3 1 0 0 0.1672 0.1589 

Two individuals 

3 0 1 0 4 0 0 0 0.0510 0.0486 
4 0 0 0 4 0 0 0 0.5842 0.5792 
3 1 0 0 4 0 0 0 0.1225 0.1149 
4 0 0 0 3 1 0 0 0.1225 0.1187 

Four individuals 

3 0 1 0 4 0 0 0 0.0332 0.0322 
4 0 0 0 4 0 0 0 0.5136 0.5046 
3 1 0 0 4 0 0 0 0.1527 0.1473 
4 0 0 0 3 1 0 0 0.1527 0.1405 

Second problem 

Eight individuals 

3 0 1 0 4 0 0 0 0.0401 0.0355 

E. Discussion

Multi-population methods have been shown to be a simple and 
effective means for enhancing optimization performance. In 
this work, we embed multi-population methods into 
evolutionary algorithms to solve various MOPs. From the 
experimental results, we can summarize that  
(1) The proposed multi-population approach is effective and

efficient. It takes full advantage of cross-subpopulation as
the communication mechanism between subpopulations to
increase population diversity.

(2) The overall performance of the proposed multi-population
MOEAs on a set of multi-objective benchmarks is superior 
to or comparable with the corresponding single-population 
versions. 

(3) Simulation studies show that the Markov model is still an
excellent theoretical tool to reveal the algorithmic
characteristics and justify the algorithm performance.

(4) The Markov model of the proposed multi-population
MOGA confirms the important effect of
cross-subpopulation migration on the optimization
performance. When the replacing probability is set to be
quadratic, and the Euclidian distance is the maximum, the
probability of obtaining the Pareto population vector is the
largest.

(5) The Markov model of the proposed multi-population
MOGA also confirms that the appropriate subpopulation 
number and subpopulation size are important, and these 
depend on the problems we study. 

TABLE V CEC 2009 UNCONSTRAINED MULTI-OBJECTIVE BENCHMARK FUNCTIONS, WHERE 0n  DENOTES THE NUMBER OF DIMENSIONS IN EACH 

OBJECTIVE. 

Function Num. of objectives Search space 

U01: unconstrained problem 1 2     0 1

00,1 1,1 , 30
n

n


    

U02: unconstrained problem 2 2     0 1

00,1 1,1 , 30
n

n


    

U03: unconstrained problem 3 2   0

00,1 , 30
n

n 

U04: unconstrained problem 4 2     0 1

00,1 2, 2 , 30
n

n


    

U05: unconstrained problem 5 2     0 1

00,1 1,1 , 30
n

n


    

U06: unconstrained problem 6 2     0 1

00,1 1,1 , 30
n

n


    

U07: unconstrained problem 7 2     0 1

00,1 1,1 , 30
n

n


    

U08: unconstrained problem 8 3     02 2

00,1 2, 2 , 30
n

n


  

U09: unconstrained problem 9 3     02 2

00,1 2, 2 , 30
n

n


  

U10: unconstrained problem 10 3     02 2

00,1 2, 2 , 30
n

n


  



12 

TABLE VI OPTIMIZATION RESULTS OF MULTI-POPULATION MOGA, MBBO, MOEA/D, AND MTS, AND THEIR STANDARD VERSIONS FOR 10
UNCONSTRAINED MULTI-OBJECTIVE BENCHMARK FUNCTIONS. AVERAGE CPU TIMES (MINUTE) ARE SHOWN IN THE LAST ROW OF THE TABLE. 

Algorithms 
Function 

S-MOGA M-MOGA S-MBBO M-MBBO S-MOEA/D M-MOEA/D S-MTS M-MTS

U01 62.32 41.36 70.19 44.57 57.21 40.55 53.73 39.15 

U02 44.75 21.35 41.35 19.23 37.78 17.23 38.12 19.52 

U03 315.4 213.7 328.4 226.5 284.5 207.9 256.3 201.2 

U04 11.25 8.311 9.925 8.247 9.252 7.923 9.361 7.640 

U05 293.6 127.5 274.3 115.2 157.3 118.4 192.5 108.3 

U06 703.6 434.2 657.1 463.2 496.2 402.1 452.3 399.5 

U07 67.42 42.63 68.71 42.39 45.66 39.87 50.12 41.24 

U08 726.1 533.4 682.7 503.5 587.8 455.6 600.4 474.0 

U09 2135.6 1525.4 2347.5 1432.0 1656.1 1386.2 1688.9 1389.6 

U10 3133.2 2155.5 3242.1 1943.2 2301.2 1768.4 2621.5 1805.0 

Time (Min.) 578.2 344.6 567.5 332.7 254.7 212.2 368.6 301.5 

V. CONCLUSIONS

Multi-population is an effective optimization component often 
used in evolutionary algorithms in order to improve 
performance. In this paper, we first proposed a new 
multi-population method used in MOGA, which includes the 
within-subpopulation genetic operator, and 
cross-subpopulation migration. Then we derived a Markov 
model of the proposed multi-population MOGA. The model 
outlines the theoretical probability of each possible population 
occurring simultaneously with multiple objectives as the 
generation number goes to infinity. It has been confirmed 
through simulation that the proposed multi-population method 
can enhance the exploration ability of MOGA. Finally, the 
proposed multi-population method is applied to other popular 
MOEAs, and they are investigated on a set of the CEC 
multi-objective benchmarks. The empirical results show that 
multi-population MOEAs can obtain better optimization 
performance than their corresponding single-population 
version for the multi-objective benchmarks we study.  

In future research, at least three directions may be 
considered. First, the proposed multi-population method is 
combined with MOEAs, and improves the multi-objective 
optimization performance. The multi-population framework 
presented here can be extended for other types of optimization 
algorithms, for example, dynamic optimization, large-scale 
optimization and complex system optimization. Second, we 
intend to design a method to further reduce computational 
effort during the Markov model development. As seen in 
Equations (17) and (18), the model is computationally 
expensive because of the size of the Markov transition matrix. 
This limitation could be partially addressed by grouping 
similar Markov model states together into a single state [27]. 
Finally, solving real-world multi-objective application 
problems is the ultimate goal of the population-based 
algorithms, and it would be useful to apply the proposed 
multi-population MOEAs to various real-world problems.  
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Fig.S1. Pareto front graphs for function U02 obtained by the multi-population MOGA, MBBO, MOEA/D, and MTS, and their standard versions, where 
“M-” and “S-” denote the multi-population versions and standard versions of algorithms respectively. The black solid lines are ideal Pareto fronts, and the 

red dots refer to approximate Pareto fronts. 
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Fig.S2. Pareto front graphs for function U04 obtained by the multi-population MOGA, MBBO, MOEA/D, and MTS, and their standard versions, where 

“M-” and “S-” denote the multi-population versions and standard versions of algorithms respectively. The black solid lines are ideal Pareto fronts, and the 
red dots refer to approximate Pareto fronts. 
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Fig.S3. Pareto front graphs for function U08 obtained by the multi-population MOGA, MBBO, MOEA/D, and MTS, and their standard versions, where 
“M-” and “S-” denote the Multi-population and standard versions of the algorithms respectively. The shadow part is ideal Pareto fronts, and the red dots refer 

to approximate Pareto fronts. 
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