
RUIN PROBABILITY VIA SEVERAL NUMERICAL

METHODS

Thesis submitted for the degree of

Doctor of Philosophy

at the

University of Leicester

by

Muhsin Tamturk

Department of Mathematics

University of Leicester

2018



Dedicated to

All good people, regardless of their race, nation or religion.



RUIN PROBABILITY VIA SEVERAL

NUMERICAL METHODS

Abstract

In this thesis, ruin probabilities of insurance companies are studied. Ruin proba-

bility in finite time is considered because it is more realistic compared with infinite

time ruin probabilities. However, infinite time methods are also mentioned in order

to compare them with the finite time methods.

The thesis will initially provide some information about ruin probability of a risk

process in finite and infinite time, and then the Markov chain and quantum mechan-

ics approaches will be shown in order to compute the ruin probability.

Using a reinsurance agreement, which is a risk sharing tool in actuarial science,

the ruin probability of a modified surplus process in finite time via the quantum

mechanics approach is studied. Furthermore, some optimization problems about

capital injections, withdrawals and reinsurance premiums are taken into considera-

tion in order to minimise the ruin probability.

Finally, the thesis compares the finite time method under the reinsurance agreement

in terms of the ruin probability and total injections amount with an infinite time

counterpart method.
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Chapter 1

INTRODUCTION

1.1 Introduction and Literature Review

All over the world, people are attempting to reduce the probability of any risk in

order to improve their life and safety [75]. Simply, insurance is a form of protection

for people against something going wrong, but actuarially speaking it is a contract

between an insurance company and a policyholder. According to the insurance

agreement, insurance companies are responsible for covering policyholders’ losses.

In other words, the policyholder transfers the risk of financial loss to the insurance

company by paying a premium. In actuarial sciences, an insurance company’s prob-

ability of ruin is an important risk measure.

The following three research areas in the analysis of ruin are important [52]:

(i) ruin time and ruin probability,

(ii) the deficit at ruin,

(iii) the reserve immediately before ruin.

In this thesis, the main focus is on ruin probability.

Definition 1 (Risk Process)

The classical ruin probability is dealing with the classical surplus (or risk) process of

2
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an insurance company R(t) (or Rt), which is defined by [3, 18, 24, 38, 55]

R(t) = u+ ct−
N(t)∑
j=1

Xj

where u is the initial capital of an insurance company, c is a premium rate, t is

time, N(t) is the number of claims up to time t, Xj is the j-th claim amount, and

X and N(t) are mutually independent processes. The process is also refereed to as a

compound Poisson process when N(t) has a Poisson process and X is i.i.d.

Definition 2 (Ruin Probability)

The ruin probability is defined via the ruin time by

T =

 min{t ≥ 0|R(t) < 0} for discrete time,

inf{t ≥ 0|R(t) < 0} for continuous time.

Ruin will occur as soon as the capital of the insurance company becomes negative.

In particular, the infinite time ruin probability (also called ultimate ruin) is defined

by

P (T <∞|R(0) = u).

The ruin probability in finite time horizon is defined by

P (T ≤ t|R(0) = u).

Definition 3 (Non Ruin Probability) The finite time non ruin probability, known

as survival probability, is defined by

P (T > t|R(0) = u).

The survival probability means that a ruin does not occur until a certain time. It

plays a crucial role in this thesis.

Numerical analysis plays an important role in actuarial sciences. There are a number

of numerical methods developed to estimate the ruin probability [4, 27, 37], which

deal with the infinite time ruin probability even though finite time methods are more
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realistic.

In actuarial applications, it is important to tackle modified surplus processes that

incorporate financial interferences, such as Capital Allocations, Capital Injections,

Withdrawals and Reinsurance. Those financial instruments are widely studied

in [28], [57], [80] and [58]. In particular, the finite time ruin probability techniques

appear to us to be more powerful in dealing with these characteristics in terms of

reality.

The traditional techniques of finite and infinite time ruin probabilities are based on

classical probability analysis such as the Markov Chain argument. The quantum

mechanics approach provides an alternative powerful tool. Although the method

became more popular in financial mathematics [5,6], there are only scattered appli-

cations in actuarial sciences [44,45].

This thesis suggests two numerical approaches in order to compute the finite time

ruin probability. The first method is based on a modification of the traditional

Markov Chain approach [10, 11, 72]. The second method is based on the Dirac Ma-

trix and Feynman Path calculations method [5, 6, 60]. These two approaches are

successfully applied to compute the finite time ruin probability with and without

capital injections and withdrawals.

For the classical surplus process, Picard and Lefevre [61] suggested a powerful ap-

proach to computing finite time ruin probability for integer claim sizes. This ap-

proach is based on Appell polynomial expansions and so is referred to as the Appell

polynomial approach. The method was modified by Ignatov et al. [37].

The numerical results derived from the quantum mechanics approach for finite

time ruin and non ruin probabilities are compared with the Appell polynomials

approach [37, 61, 63, 69], and a modification of the traditional Markov chain ap-

proach [10,11,72] in this thesis.

Many optimization problems have been studied in actuarial science [8, 25, 30, 33].

Similarly, it is dealt with in this thesis by applying the quantum mechanics ap-

proach in order to solve numerical capital allocation type problems in actuarial

science, such as

� How to maximize the proportion of the total claim amount paid with the
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prescribed ruin level,

� How to minimize the ruin probability via the optimization of the time and

amounts of capital allocation of investments and withdrawals,

� How to minimize the ruin probability via optimization of allocation of initial

capitals.

In this thesis, reinsurance agreements are also taken into consideration. Therefore,

the computation of ruin probability of the modified surplus process with reinsur-

ance, and the optimal reinsurance via the Dirac-Feynman approach will also be

examined. Reinsurance is a risk-sharing arrangement between a primary insurer

and a reinsurer. There are different types of reinsurance agreements and various

optimality approaches to reinsurance, including those of Castaner, Claramunt and

Lefevre [12], Denuit and Vermandele [20], Dickson and Waters [22], Ignatov, Kai-

shev and Krachunov [39], Kaishev and Dimitrova [40], Schmidli [28], and Zhou and

Yuen [80].

The ruin probability of the modified surplus process with reinsurance by capital in-

jections attracted the interest of several academics, such as Nie et al. [57,58]. In this

thesis, the following reinsurance agreement motivated by Nie et al. is considered:

the insured companies pay reinsurance premiums in advance in order to get capital

injections at times when the capital goes below a given retention level. Capital

injection is an important topic in risk management, especially during unpredictable

economic crises or some natural disasters.

Several optimal strategies are discussed and numerically illustrated for the reinsur-

ance agreement. All the methods have the main objective to decrease the finite

time ruin probability on the one hand, and on the other hand, to guarantee that

reinsurance premium covers an average of overall capital injections. In addition, the

first type of optimality is to find the optimal reinsurance premium and retention

level to obtain the smallest ruin probability. In the second type, the upper level for

compensation of claims and the reinsurance premium are investigated. The third

type is to find the largest paid proportion of claims against the retention level, and

the final type is to find the smallest premium rate against the retention level.
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In all our calculations, we apply the Dirac matrix approach (motivated by Baaquie

[5] [6]). More exactly, all computations are based on the Dirac-Feynman path calcu-

lation approach applied to the Dirac-Feynman operator (convolution type operator,

defined in Theorem 6.1.3) and perturbed by the Injection operator (shift type oper-

ator, introduced in equation (6.3.7)).

We analyse the difference between finite time reinsurance contracts and their infi-

nite time counterparts as suggested in Nie et al. [57, 58]. In particular, the finite

and infinite time ruin probabilities and the expected injection amounts in modified

surplus processes by reinsurance are compared. In addition, a peculiar connection

between the capital injection operator and the convolution operator is established

and the effect of the injection operator is analysed.

There are also curious applications such as a Fuzzy sets technique [36, 50, 73] and

Game theory [51] to ruin probability. However, they are beyond the scope of this

thesis.

1.2 Structure and Results

We present the structure of the thesis and highlight the main results.

� Chapter 2 begins with an introduction to the risk process. Then it states the

stochastic process and distribution of the sum of random variables. Secondly,

known finite and infinite time methods that compute ruin probability of an in-

surance company are considered. These methods are compared with modified

Markov chain and quantum mechanics approaches mentioned in the following

chapters.

� In Chapter 3, we modify a Markov chain approach to compute the finite time

ruin probability. Firstly, for a small grid size ε > 0, a particular d×d transition

matrix A = Aε with 0 absorption level is introduced. The generator matrix Q

for the corresponding continuous time Markov chain version of A is defined.

The finite time ruin probabilities are then computed via matrix A in chosen
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grid level ε by

Pu(T > t) = (1 + o(ε))
d−1∑
j=1

A(t)u,jε .

Furthermore, the surplus process with capital injections and reduction is in-

troduced by adding a shift type operator matrix K (see definition of K in

Section 3.3). With the operator K, the finite time non ruin probability of the

modified surplus process with capital injections and reductions is computed

by

Pu(T > t) = (1 + o(ε))
d−1∑
j=1

(
A[t1/ε]K(a1)A[(t2−t1)/ε]K(a2) . . .

. . . A[(tk−tk−1)/ε]K(ak)P
[(t−tk)/ε]

)
u,jε

.

Lastly, some results in case the claim size has a discretized exponential distri-

bution are shown.

� The fourth chapter is about the quantum mechanics approach, and Dirac

matrix approach and relevant terminology are defined. Then, computation of

transition probability via various Hamiltonian operators in terms of claim size

distributions are derived via the so-called discrete time formalism

P (x
t→ x′) =< x|e−tH |x′ >

=

2π∫
0

dp

2π
< x|e−tH |p >< p|x′ >

where

– |x〉 is the column vector and 〈x| is its row vector (transposed vector),

– 〈x|x′〉 is the inner product,

– |p〉 〈p| is the projection operator,

– H is the Hamiltonian operator.
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After this, the Feynman’s Path integral method and the Dirac matrix are

applied to compute ruin probabilities, such as

Pu(T > t) = (1 + o(1))
∑
x1=1

< u|e−t1H |x1 >
∑
x2=1

< x1|e−(t2−t1)H |x2 >

· · ·
∑
xn=1

< xn−1|e−(t−tn−1)H |xn > .

The chapter continues by representing the numerical results for discretized

exponential distribution and Gaussian distributions. As in Chapter 3, the

modified surplus process with capital injections and withdrawals is treated.

Finally, we compare the quantum mechanics approach with the Appell poly-

nomial approach and Markov chain approach.

� Chapter 5 is devoted to optimization problems. Three different actuarial exam-

ples are considered. Firstly, optimization of the initial capitals of two different

surplus processes is shown by giving the results and graphs. In the second

example, the optimum proportion of total claim compensation is computed

with respect to a given specific ruin level. Lastly, optimization of the capital

allocation of investment and withdrawals is considered.

� Then, in Chapter 6, we analyse the modified surplus process with reinsurance

and capital injections. The modified surplus process is defined by

R∗(t) = u+ ct− z −H(S(t)) + Y (t)

= w + ct−H(S(t)) + Y (t)

where

H(S(t)) =

N(t)∑
i=1

XiI(Xi ≤ h) + hI(Xi > h).

and then, ruin probability under reinsurance contract is computed via the

quantum mechanics approach. Furthermore, the effect of the injection opera-

tor K and expected total capital injections amount E[Y (t)] are also shown. In

this chapter, numerical results are given in order to find optimum reinsurance
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cost z and proportional claim payment h.

� In Chapter 7, the finite time method suggested in previous parts of the thesis

is compared with the infinite time method stated by Nie at al. [57]. The

comparison is made with respect to the ruin probability and expectations of

injection amounts in terms of retention levels and reinsurance premiums.

� In the last chapter, future works are outlined.

Some parts of this thesis have been submitted as papers. Part of the content

of Chapters 3-5 is included in a published paper entitled “Ruin Probability via

Quantum Mechanics Approach” [76]. Furthermore, several parts of Chapter

5-7 are used in a submitted paper entitled “Optimum reinsurance via Dirac-

Feynman Approach” [77].



Chapter 2

RISK PROCESS AND KNOWN

METHODS

In this chapter, classical risk process is defined, and then stochastic processes and

the distribution of the sum of random variables are mentioned. Additionally, known

finite and infinite time methods are given in order to compute ruin probability of

an insurance company.

We start by defining the risk process that is also called the surplus process.

2.1 Risk Process

The classical risk process at time t consists of four components: premium rate (c),

initial capital (u), claim amounts (Xi), number of claims N(t) up to time t. Let

R(u, t) or R(t) be the capital of insurance company at time t with initial reserve u. In

this case, the process with respect to time can be basically formalized [3,18,24,38,55]

by

R(t) = u+ ct− S(t)

where S(t) is the total claim amount up to time t. It may be modelled by approaches

as the individual and collective risk models [78]. In the individual risk model, the

claim number is fixed.

Let Xi be iid (independent and identically distributed) random sequence of positive

10
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claim sizes. In this circumstance,

Sn = X1 +X2 + · · ·+Xn.

In the collective risk model, the aggregate loss amount has compound distribution,

so

S(t) = X1 +X2 + · · ·+XN(t) =

N(t)∑
i=1

Xi.

In the classical model, Xi and N(t) are independent processes from each other.

However, models with various dependence structures, such as dependent claims or

dependence between claim size and claim intervals become more popular [1, 2].

X may have different distributions, such as exponential, normal, gamma, weibull,

pareto and so on [9].

N(t) is an integer value representing the claim number up to time t. It may have a

different distribution such as Geometric, Negative binomial, Poisson distributions.

Throughout this thesis, claim number N(t) is assumed to be a Poisson process with

intensity λ > 0. Therefore, S(t) is a compound Poisson process.

The claim number process has the following property

N(t+4t)−N(t) ∼ Poisson(λ4 t) for all t and 4 > 0.

The probability that number of claims is equal to k in the interval (t, t +4t), can

be found by

P (N(t+4t)−N(t) = k) =
e−λ4t(λ4 t)k

k!
k = 0, 1, 2, . . . .

Convolution

Let X1 and X2 be random variables representing claim amounts with probability

density (or mass in discrete time) functions fX1(x1) and fX2(x2).

The probability mass function of Y = X1 +X2 is found by following the convolution
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formula for discrete claim size

fY (y) =
∑
x1

P (X1 = x1)P (X2 = y − x1)

=
∑
x1

fX1(x1)fX2(y − x1).

Similarly, the probability density function in the continuous claim case is written as

fY (y) =

y∫
0

fX1(x1)fX2(y − x1)dx1.

Here, fY is a two-fold convolution. A convolution can be recursively evaluated.

For example, with fixed claim number N(t) = 3, three-fold convolution can be shown

as

fX1+X2+X3(y) = (fX1+X2 ∗ fX3)(y) = (fX1 ∗ fX2 ∗ fX3)(y).

Similarly,

fX1+X2+...+XN(t)
(y) =

∞∑
n=0

f ∗nX1+X2+...+Xn(y)P (N(t) = n),

where f ∗nX1+X2+...+Xn
(y) is n-fold convolution for the continuous value, which can be

written as

f ∗nX1+X2+...+Xn(y) =

y∫
0

f ∗n−1
X1+X2+...+Xn−1

(y − x)fXn(x)dx.

If Xi has exponential distributions with mean 1/λ, then Sn = X1 + X2 + · · · + Xn

has a gamma distribution and its pdf is

f ∗nSn = λe−λt
(λt)n−1

(n− 1)!

with parameter n and λ.

Similarly,

if Xi has a normal (Gaussian) distribution with mean µ and variance σ2, then Sn

has a normal distribution with mean nµ and nσ2.
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An example of an insurer cash flow can be seen in figure 2.1.

Figure 2.1: The cash flow of an insurer.

In this thesis, other expenses for insurance companies are not taken into considera-

tion, such as operation cost. However, in the real sector, operational cost should be

taken into account and the surplus process should be exposed to shifting. In the sub-

sequent chapters, a reinsurance agreement with capital injections and withdrawals

will be added into the surplus process.

The ruin time T is the minimum non negative time when the capital of an insurance

company is below zero. However, it is convenient in our research to add zero to

ruin as an absorption level, so ruin will occur as soon as the capital of the insurance

company becomes negative or null.

T =

 min{t ≥ 0|R(t) ≤ 0} for discrete time,

inf{t ≥ 0|R(t) ≤ 0} for continuous time.

Finite time ruin probability at time t with initial capital u is denoted by

Pu(T ≤ t).

Ultimate ruin probability for infinite time with initial capital u is denoted by

Pu(T <∞).
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It is obvious that longer time gives rise to an increase in ruin probability, which

means

Pu(T ≤ t1) ≤ Pu(T ≤ t2) ≤ Pu(T <∞)

for every t1 < t2.

On the other hand, more initial capital leads to a decrease in ruin probability.

Pu1(T ≤ t) ≤ Pu2(T ≤ t)

for all u1 > u2.

In this step, it is convenient to define the non-ruin probability, which is known as

survival probability in the present context [67].

ϕ(u, t) = Pu(T > t) = 1− Pu(T ≤ t).

Definition 4 (Net Profit Condition and Loading factor)

In the real insurance system, the premium rate in the unit time should be bigger than

the expected aggregate claim, which is called the net profit condition:

c > mλ.

where c is premium rate, m is claim mean, and λ is claim frequency.

Recall that

P (T <∞) = 1 when c < mλ.

Notice that infinite time methods are not applied without this condition in general

because the ruin will happen eventually. However, finite time methods work without

this condition.

Now, let θ be the loading factor. θ > 0 satisfies the net profit condition.

c = (1 + θ)mλ gives θ =
c−mλ
mλ

.

The loading factor is used to determine the premium rate by insurance companies.
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Definition 5 (Lundberg’s inequality and adjustment coefficient)

Ultimate ruin probability satisfies the following inequality

Pu(T <∞) ≤ e−Ru.

This inequality is called Lundberg’s inequality [24], and it gives an upper barrier for

ultimate ruin probability.

Since an ultimate ruin probability is bigger than ruin probability in finite time,

Lundberg’s inequality can also be applied as an upper barrier in finite time methods.

Pu(T ≤ t) ≤ Pu(T <∞) ≤ e−Ru.

In the inequality, R is known as the adjustment coefficient, which is a parameter

related to the surplus process. R depends on premium income and distribution of

aggregate claims.

R can be found as solution of

λMX(R) = λ+ cR (2.1.1)

where MX(R) = E[eRX ] is the moment generating function of claim size.

Assume that claim sizes have exponential distribution with claim mean m and the

net profit condition holds (c > λm), then the moment generating function is

MX(R) =
1
m

1
m
−R

for R <
1

m
.

When putting MX(R) into equation (2.1.1), we have

cmR2 +R(mλ− c) = 0.

When the equation is solved, we get

R =
−λ
c

+
1

m
.
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2.2 Stochastic Processes and Distributions

In this section, several basic definitions from probability theory are given [56,67,74].

Definition 6 (Measurable space)

Let F be a nonempty family of subsets of Ω such that:

� A ∈ F implies Ac ∈ F ,

� {An : n ∈ N} a sequence of sets in F implies
⋃
n∈N

An ∈ F .

(Ω,F) is called a measurable space, where F is a σ-algebra of subsets of Ω.

Definition 7 (Probability Measure)

A probability measure or probability distribution is a real valued function

P : F → [0, 1]

where F is σ field on Ω, which satisfies the following conditions:

� P (Ω) = 1,

� For any subset of A ∈ Ω, 0 ≤ P (A) ≤ 1,

� If Ai, i ∈ I are disjoint collection of events, then

P (
⋃
i∈I

Ai) =
∑
i∈I

P (Ai).

Definition 8 (Measurable)

Let (Ω,F) be a measurable space. A function X : Ω→ R is F measurable if

X−1(A) ∈ F for any Borel subset A ⊂ R.

Definition 9 (Random variables)

Let X : Ω→ R be F measurable in a probability space (Ω,F , P ), then X is a random

variable on the probability space.
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Definition 10 (Independence)

Let A and B be subsets of Ω, then A and B events are independent if

P (A ∩B) = P (A)P (B).

Two independent events are written as A ⊥ B.

Definition 11 (Stochastic Process)

A Stochastic process (or random process) is a collection of random variables on the

probability space [56, 67]. Let {Xt, t ∈ τ} be a stochastic process. If τ is countable,

the process is a discrete time process. If τ is not countable, the process is a continuous

process.

Definition 12 (Levy Process)

A stochastic process {Xt; t ≥ 0} is a Levy process if

(i)Disjoint increments are independent,

(ii)Xt+4t −X4t ∼ Xt.

A Brownian motion and a Poisson process are also Levy processes.

Definition 13 (Brownian Motion)

A stochastic process St, t ≥ 0 is called a Brownian motion with drift µ and diffusion

coefficient σ2 if

� St+y − Sy v N(µt, σ2t) for all t, y ≥ 0,

� Disjoint increments Stn − Stn−1 , ..., St2 − St1 are independent for all 0 ≤ t1 <

... < tn.

The Brownian motion is applied for approximation of random walks.

St = µt+ σBt t ≥ 0 for σ > 0 and µ ∈ R

where Bt is the Standard Brownian Motion that has µ = 0 and σ2 = 1.

A Brownian motion is a Gaussian process. Let Z be

Z =
St − E[St]√
var(St)

=
St − µt
σ
√
t
.
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Notice that Z ∼ N(0, 1), so

P (Z < x) = Φ(x) =

x∫
−∞

1√
2π
e−

1
2
t2dt.

Also

P (Z ∈ [x, x+ ε]) = ε
1√
2π
e−

1
2
x2

is useful in tackling Gaussian claims.

2.2.1 Distribution of the sum of random variables

The sum of independent and identically distributed positive random variables is

an important topic in insurance applications. The main question is to find the

distribution of

S(t) = X1 +X2 + · · ·+XN(t).

Let’s observe the distribution of Sn for fix N(t) = n with respect to the moment

generating function and convolution of distributions with a distribution of X.

1)Say X1 has an exponential distribution with mean m, then observe the S(t) for

both approaches.

MS(t) = E[etSn ] = E[et(X1+X2+···+Xn)]

= E[etX1 ]E[etX2 ] · · ·E[etXn ].

Therefore,

MS(t) = MX(t)n (2.2.2)

because Xi’s are independent and identically distributed.

The moment generating function can be written in the following form when it has

exponential distribution.

MX(t) =
1
m

1
m
− t

provided t <
1

m
.
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From 2.2.2,

MS(t) =
( 1

m
1
m
− t

)n
=
(

1− t
1
m

)−n
.

This means Sn has a gamma distribution with γ(n, 1
m

).

2)Now let’s do it by using a convolution of distributions.

For n=2;

f ∗2 =

y∫
0

f(y − x)f(x)dx

=

y∫
0

1

m
e−

1
m

(y−x) 1

m
e−

1
m
xdx

= (
1

m
)2ye−

1
m
y.

This means S2 has a γ(2, 1
m

) distribution for n=2.

For n=3;

f ∗3 =

y∫
0

f ∗2(y − x)f(x)dx

=

y∫
0

f ∗2(x)f(y − x)dx

=

y∫
0

( 1

m

)2

xe−
1
m
x 1

m
e−

1
m

(y−x)dx

=
1

2

( 1

m

)3

y2e−
1
m
y.

This means S3 has a γ(3, 1
m

) distribution. Similarly, Sn has a gamma distribution

with γ(n, 1
m

).

Let’s look at the moment generating function of the compound Poisson distribution
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S(t) when N(t) has a Poisson distribution.

MS(t) = E[MX(t)N ]

= E[elog(MX(t)N )]

= E[eNlogMX(t)]

= MN [logMX(t)]. (2.2.3)

The moment generating function of S(t) is shown in terms of the moment generating

functions of N and X.

Equation (2.2.3) can be written in the following form because N(t) has a Poisson

distribution with λ claim frequency.

MS(t) = eλ(elogMX (t)−1)

= eλ(MX(t)−1).

2.2.2 Gambler’s ruin problem

Let’s consider a game between two players with fair coin flipping. Let £z1 and £z2

be the initial fortune of the players. In the game, £1 will be transferred from loser

to winner in each event. The game will continue until one of the players has all

money or the other loses his or her own money. The main objective of the game is

to reach the total possible fortune of £z1 + z2 without ruining. Let Rt denote the

fortune after the t-th flip. For the first player, R0 = z1 and Rt = z1 + δ1 + ... + δt

where δi are IID and

δi =

1 if win

−1 if lose

.

The random walk will stop when it hits 0 or z1 + z2.

Let T be the stopping time, defined by

T = min{t ≥ 0 : Rt ∈ {0, z1 + z2}|R0 = z1}.
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When the capital of the first player is equal to 0 or z1 + z2, the game will stop.

In the game, the first player wins 1 with probability p or loses 1 with probability

q = 1− p.

z1

z1 − 1

z1 − 2
q

z1pq

z1 + 1

z1
q

z1 + 2p

p

Let P1(z1) denote the chance of winning the game for the first player with initial

fortune z1. We assume that

P1(0) = 0 and P1(z1 + z2) = 1.

Here, the key idea is that we derive an equation by conditioning on the first step

P1(z1) = P1(z1 + 1)p+ P1(z1 − 1)q.

In this circumstance,

P1(z1) =


1−( q

p
)z1

1−( q
p

)z1+z2
if p 6= q

z1
z1+z2

if p = q

. (2.2.4)

Proof. we start with

P1(z1) = P1(z1 + 1)p+ P1(z1 − 1)q.
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The equation can be written by little algebra as

P1(z1)(p+ q) = P1(z1 + 1)p+ P1(z1 − 1)q because p+ q = 1,

so P1(z1 + 1)− P1(z1) =
q

p
(P1(z1)− P1(z1 − 1)

P1(z1 + 1)− P1(z1) =
q

p
(
q

p
(P1(z1 − 1)− P1(z1 − 2)) by iterating.

We have P1(z1 + 1)− P1(z1) =
(q
p

)z1(P1(1)).

P1(z1) can be written as
z1∑
k=1

P1(k)− P1(k − 1), then

P1(z1) =

z1−1∑
k=0

(q
p

)k
P1(1)

=


1−
(
q
p

)z1
1− q

p
P1(1) if p 6= q

z1P1(1) if p = q.

(2.2.5)

When P1(z1 + z2) = 1 is taken into account,

P1(1) =


1− q

p

1−
(
q
p

)z1+z2 if p 6= q

1
z1+z2

if p = q.

(2.2.6)

From equations (2.2.5) and (2.2.6), we obtain equation (2.2.4).

At time t, expectation of the capital of the first player E[Rt] is defined by

E[Rt|Rt−1 = x] = E[Rt−1 + δt−1|Rt−1 = x] = x+ E[δ]

and a Markov chain can be defined in terms of the capital of the player with tran-

sition matrix P as

P (Rn+1 = xn+1|Rn = xn, · · · , R0 = z1) = P (Rn+1 = xn+1|Rn = xn).



2.3. Infinite time (ultimate) ruin probability 23

For the total fortune z1 + z2 = £5, the transition matrix over one step probability

is defined by

P =



0 1 2 3 4 5

0 p00 p01 p02 p03 p04 p05

1 p10 p11 p12 p13 p14 p15

2 p20 p21 p22 p23 p24 p25

3 p30 p31 p32 p33 p34 p35

4 p40 p41 p42 p43 p44 p45

5 p50 p51 p52 p53 p54 p55


=



0 1 2 3 4 5

0 1 0 0 0 0 0

1 q 0 p 0 0 0

2 0 q 0 p 0 0

3 0 0 q 0 p 0

4 0 0 0 q 0 p

5 0 0 0 0 0 1


At time t, expected capital of the player is found via P t. Note that

P t = P t−1P,

which is dealt with in the next chapter.

2.3 Infinite time (ultimate) ruin probability

The probability of ruin in infinite time is known as the ultimate ruin probability,

and different approaches can be taken to computing this.

Ultimate ruin probability for the surplus process, where claim size has an exponential

distribution, is computed by [24,68]

Pu(T <∞) =
λm

c
e−( 1

m
−λ
c

)u. (2.3.7)

This formula is obtained by using survival probability as below.

Let ϕ(u) = 1− Pu(T <∞) be the survival probability that ruin never occurs.

The survival probability can be shown by considering the first claim time and

amount.

ϕ(u) =

∞∫
0

λe−λt
u+ct∫
0

f(x1)ϕ(u+ ct− x1)dx1dt. (2.3.8)
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Note that u + ct − x1 is the capital of an insurance company after the first claim

occurs.

When substituting y = u + ct in the previous equation and taking derivative with

respect to u, we have.

d

du
ϕ(u) =

λ2

c2
e
λu
c

∞∫
u

e−λ
y
c

y∫
0

f(x1)ϕ(y − x1)dx1dy −
λ

c

u∫
0

f(x1)ϕ(u− x1)dx1

=
λ

c
ϕ(u)− λ

c

u∫
0

f(x1)ϕ(u− x1)dx1. (2.3.9)

We need to eliminate the integral part in the equation in order to get a differential

equation to solve easily.

Let’s consider 2.3.9 in case that claim sizes have exponential distribution with pa-

rameter α.

In this circumstance, F (x) = 1− e−αx for x ≥ 0. Then,

d

du
ϕ(u) =

λ

c
ϕ(u)− λ

c

u∫
0

αe−αxϕ(u− x1)dx1

=
λ

c
ϕ(u)− αλ

c
e−αu

u∫
0

eαx1ϕ(x1)dx1. (2.3.10)

Differentiating of equation (2.3.10) gives the following equation.

d2

du2
ϕ(u) =

λ

c

d

du
ϕ(u)− α2λ

c
e−αu

u∫
0

eαX1ϕ(x1)dx1 −
αλ

c
ϕ(u). (2.3.11)

If the equation (2.3.10) is added to equation (2.3.11) by multiplying by α, then the

following equation is obtained.

d2

du2
ϕ(u) + α

d

du
ϕ(u) =

λ

c

d

du
ϕ(u), (2.3.12)

The general solution to a second order differential equation above is in the form below

ϕ(u) = σ0 + σ1e
−(α−λ

c
)u (2.3.13)
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where σ0 and σ1 are constant.

σ0 = 1 because lim
u→∞

ϕ(u) = 1. For u=0 and σ0 = 1, equation (2.3.13) is

ϕ(0) = 1 + σ1.

Therefore, σ1 = ϕ(0)− 1 = −P0(T <∞).

When putting σ0 and σ1 into equation (2.3.13),

ϕ(u) = 1− P0(T <∞)e−(α−λ
c

)u.

Now, P0(T <∞) needs to be solved.

If we get 1 − Pu(T < ∞) instead of ϕ(u) in equation (2.3.9), and integrate the

equation over (0,∞), the following equation is obtained,

−P0(T <∞) =
λ

c

∞∫
0

Pu(T <∞)du− λ

c

∞∫
0

u∫
0

f(x1)Pu−x1(T <∞)dx1du

− λ

c

∞∫
0

(1− F (u))du. (2.3.14)

When the double integral term in equation (2.3.14) is taken into consideration, this

term can be written in a different way by changing the order of integration.

∞∫
0

u∫
0

f(x1)Pu−x1(T <∞)dx1du =

∞∫
0

∞∫
x

Pu−X1(T <∞)du f(x1) dx1

=

∞∫
0

Py(T <∞)dy.

In this circumstance, in the right hand side of equation (2.3.14), the sum of the first

two terms is zero. Therefore, the equation can be written as follows:

P0(T <∞) =
λ

c

∞∫
0

(1− F (u))du =
λm1

c
(2.3.15)



2.3. Infinite time (ultimate) ruin probability 26

where m1 = 1
α
.

Now, ϕ(u) can be written in terms of P0(T < ∞) in the following equation when

F (x1) = 1− e−αx1 , x1 ≥ 0 :

ϕ(u) = 1− λm1

c
e−(α−λ

c
)u. (2.3.16)

As mentioned in the previous sections, the adjustment coefficient for exponential

claim distribution was R = −λ
c

+ 1
m
.

Let’s give Pu(T <∞) in terms of the adjustment coefficient.

Pu(T <∞) = P0(T <∞)e−Ru.

This equation shows that Lundberg’s inequality gives an upper bound for ruin prob-

ability because P0(T <∞) < 1 under the net profit condition (c > λm).

In case of c = 5, λ = 1, and µ = 4, the way in which the ultimate ruin probability

and upper level with Lundberg’s inequality change by initial capital can be seen in

the following graph.
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Figure 2.2: Ultimate ruin probability and upper bound with respect to initial capital
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2.4 Finite time ruin probability

We deal with finite time (non) ruin probability via the Picard-Lefevre approach,

which was introduced in 1997 by Philippe Picard and Claude Lefevre. This approach

is compared with our results in next chapters. The approach is referred to Picard-

Lefevre or Appell polynomial approach in the forward parts of this thesis.

2.4.1 Expansion of functions

Let f(x) be a real or complex valued differentiable function at ζ, then the function’s

power series is defined by

f(x) =
∞∑
k=0

ck(x− ζ)k. (2.4.17)

Taylor series expansion can be defined as a sum of terms of a function’s infinite

derivatives at point ζ by

f(x) = f(ζ) +
f ′(ζ)

1!
(x− ζ) +

f ′′(ζ)

2!
(x− ζ)2 +

f ′′′(ζ)

3!
(x− ζ)3 + ...

=
∞∑
k=0

fk(ζ)

k!
(x− ζ)k

which shows equation (2.4.17) with

ck =
f (k)(ζ)

k!
.

For ζ = 0, the Taylor series is referred to as the Maclaurin series.

For example, the Maclaurin series of ex and sin(x) at ζ = 0 are defined by

ex =
∞∑
k=0

xk

k!
, sin(x) =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

For z = eiθ, the Fourier series of the function f(eiθ) as a function of the polar angle

θ is defined by

g(θ) =
∞∑
k=0

cke
kiθ
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where

ck =
1

2π

2π∫
0

g(θ)e−kiθdθ.

As seen, a Fourier series is a particular example of a complex Taylor series because

f(eiθ) := g(θ) .

Therefore, ck in the analytic expansion and Fourier should be equal to each other.

f (k)(0)

k!
=

1

2π

2π∫
0

g(θ)e−kiθdθ

f (k)(0) =
k!

2π

2π∫
0

g(θ)e−kiθdθ

=
k!

2π

2π∫
0

f(eiθ)e−kiθdθ

=
k!

2πi

2π∮
0

f(z)

zk+1
dz.

We consider z on a unit circle where {z ∈ C : |z| = 1} with z = eiθ and dz = ieiθdθ.

The equation is referred to as Cauchy’s differentiation formula.

2.4.2 Appell polynomial approach

In this method [46, 47, 61, 62], it is assumed that the claim amounts are positive

integer values. Let R(t) be a surplus process for an insurance company with initial

capital u.

R(t) = u+ ct− S(t)

where c is the premium income per unit time, and S(t) =

N(t)∑
i=1

Xi is the aggregate

claim amount.

S(t) has a discrete compound process. Let pn(t) be the probability mass function

of S(t).

pn(t) = P (S(t) = n) n = 0, 1, ...
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p0(t) = e−λt for n=0 and pn(t) = e−λt
n∑
j=1

(λt)j

j!
p∗jn n = 1, 2...

where p∗jn is the j-th convolution of X.

According to Panjer’s [59] recursion formula,

p0(t) = e−λt and pn(t) = λt
n∑
j=1

j

n
qjpn−j(t), n = 1, 2, ...

where qj = P (X = j).

In the surplus process, let’s define the income function by

h(t) = u+ ct.

If h(t) is not continuous, then h−1(x) = inf{y; h(y) ≥ x}

vn = h−1(n) = max{0, n− u
c
}, n = 0, 1, 2, ...

Therefore,

v0 = v1 = ... = vu, vn =
n− u
c

for n ≥ u+ 1.

Let T be the ruin time, then

Pn(x) = P (S(x) = n and T > x).

Sx is the outcome function representing total claim amount at time x.

Non ruin probability is defined by

P (T > x) =

[u+cx]∑
n=0

Pn(x).

It is obvious that

P0(x) = P (S(x) = 0 and T > x) = e−λx
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because the claim number is zero, so e−λx(λx)k

k!
= e−λx for k = 0.

When x < vn,

Pn(x) = 0.

Notice that x < vn means that outcome is bigger than the income at time x.

In the other cases, Pn(x) can be written with respect to last claim J before the ruin

Pn(x) =

x∫
vn

n∑
j=1

qjPn−j(t)λe
−λ(x−t)dt (2.4.18)

where qj = P (J = j) is probability of last claim amount J before ruin.

Figure 2.3: Income and outcome in the surplus process

The approach is based on the following fundamental assumption:

Pn(x) = E[Pn−J(t)].

Picard and Lefevre pointed out that Pn(x) has a polynomial structure, so it can be

written as

Pn(x) = e−λxBn(x) (2.4.19)

where Bn, n = 0, 1, 2... is a sequence of generalized Appell polynomials of degree n

in x with
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Bn(x) =


1 if n = 0
x∫
vn

n∑
j=1

λqjBn−j(t)dt if n > 0
.

We derive

Pn(x) = P (S(x) = n and T > x) = e−λxBn(x).

COROLLARY:

P (T > x) = e−λx
∞∑
n=0

Bn(x).

When vj < x ≤ vj+1,

P (T > x) = e−λx
j∑

n=0

Bn(x). (2.4.20)

In the family of generalized Appell polynomials, each polynomial Bn(x) can be

written in the expansion form [47] as

Bn(x) =
n∑
k=0

Bk(0)en−k(x), n = 0, 1, ...

Definition 14 (Generalized Appell polynomials) [61]

en(x) is a family of generalized Appell polynomials if its generating function is writ-

ten in following form.
∞∑
n=0

en(x)zn = exG(z)

where

G(z) =
∞∑
j=1

λqjz
j

The equations below are equivalent to each other for generalized Appell polynomial

families.

� B′n =
n∑
j=1

λqjBn−j, n > 0.

� ∆Bn = Bn−1, n > 0 where ∆ is operator that ∆k+1 = ∆(∆k) with ∆0 the

identity operator .

� Bn =
n∑
i=0

bien−i, n ≥ 0
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where bi = Bi(0) is a family of numbers.

As mentioned before,

pn(x) =
n∑
k=0

e−λx
(λx)k

k!
q∗kn , n ≥ 0,

where

q∗kj = P (X1 +X2 + ...+Xk = j), k > 0.

We write pn(x) in terms of a polynomial of degree n in time t as

pn(x) = e−λxen(x), n ≥ 0,

where e0(x) = 1 and en(0) = 0.

en(x) is written as

en(x) =
n∑
k=0

(λx)k

k!
q∗kn .

Picard and Lefevre suggested that Bn is expressed in the theorem below.

Theorem 15 For the linear case of h = u+ ct,

Bn(x) =


en(x) when 0 ≤ n ≤ u
u∑
j=0

ej(
j−u
c

)fn−j(x+ u−n
c

) when n > u

=
u∑
j=0

ej(
j−u
c

) cx−n+u
cx−j+u en−j(x+ u−j

c
)

where fn(x) = cx
cx+n

en(x+ n
c
), which has an Appell structure.

From equation (2.4.20) and Theorem 15, the next theorem is deduced.

Theorem 16 (Picard-Lefevre polynomial approach)
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For the linear case,

P (T > x)|R0 = u) = e−λx
u∑
j=0

{
ej(x) +

[cx+u]∑
n=u+1

ej(
j − u
c

)
cx− n+ u

cx− j + u
en−j(x+

u− j
c

)
}

(2.4.21)

where

en(x) =
n∑
k=0

(λt)k

k!
q∗kn

and

q∗kj = P (X1 +X2 + ...+Xk = j).

According to the formula in Theorem 16, non ruin probability with respect to time

is displayed for u = 20, c = 1, λ = 0.1, and the claims have an exponential

distribution with claim mean m = 9.
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Figure 2.4: Non ruin probability via the Picard-Lefevre approach

The Picard-Lefevre approach also provides a formula for computation of non ruin

probability in infinite time for the linear case.

P (T <∞|R0 = u) = 1− (1− λm

c
)

u∑
j=0

eλ(u−j)/cej(
j − u
c

). (2.4.22)

In order to analyse the results obtained from the Appell polynomial approach in
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infinite time and the formula defined in equation (2.3.7), let’s consider the next

graph for c = 1, λ = 0.1, m = 90 and u = [1, 100].
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Figure 2.5: Ultimate ruin probability via the Picard-Lefevre approach and classical
approach

In the graph, the red line gives the results of the Picard- Lefevre method while the

blue one is for the formula defined in equation (2.3.7).

As seen from the graph, both methods give close results in small initial capitals.

However, an increase in the initial capital causes a slight difference.



Chapter 3

MARKOV CHAIN APPROACH

In this chapter, the Markov chain model is observed in the classic and modified

surplus processes by capital injections. The application of this model in the compu-

tation of ruin probability is the subject of various papers [16,21,49,53].

Predicting what will happen at time n+ 1 in a stochastic process is complicated. In

general, it depends on all the previous history up to time n. However, this prediction

can basically be done by adjusting the information at time n in some approaches

without further information before time n [64]. Under this condition, let’s look at

the probability of Xi+1 at time n+ 1.

P (Xn+1 = xn+1|Xn = xn, · · · , X0 = x0) = P (Xn+1 = xn+1|Xn = xn).

This equation is known as the Markov property. If a discrete time stochastic process

with discrete variables satisfies this property, then this process is called a discrete

time Markov chain [64]. This process was named by Andrey Markov.

Let X0,X1,· · · be a sequence of random variables on the V state space with tran-

sition probabilities pi,j = P (Xn+1 = j|Xn = i), i, j ∈ V . This process is called

a homogeneous Markov chain if there is a time independent transition matrix of

X [68].

In other words, if P (Xn+m = j|Xm = i) = P (Xn = j|X0 = i) for all n,m ∈ N and

all i, j ∈ V , then Xn are homogeneous Markov chain.

In the transition matrix P ,

35
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∑
j∈V

pi,j = 1 and pi,j ≥ 0.

Let P (m) be the matrix with m step transition probability, then

p
(m)
i,j = P (Xt+m = j|Xt = i).

For homogeneous and discrete Markov chain, the Chapman-Kolmogorov equation

gives [54]

pi,j(t1 + t2) =
∑
k

pi,k(t1)pk,j(t2)

and

P t1+t2 = P t1P t2 .

For example,

p
(2)
i,j =

∑
k

pi,kpk,j

=
∑
k

P (Xt+1 = k|Xt = i)P (Xt+2 = j|Xt+1 = k)

= P (Xt+2 = j|Xt = i).

{Xt},t ≥ 0 is a continuous time Markov chain if

P (Xt+τ = j|Xτ = i,Xη = xη, 0 ≤ η < τ) = P (Xt+τ = j|Xτ = i).

The Chapman-Kolmogorov equation for continuous time is defined by

pi,j(t1 + t2) =

∫
k

pi,k(t1)pk,j(t2)dk.
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3.1 Ruin Probability via the Markov chain ap-

proach

Modification of the traditional Markov chain approach [10,11,72] is taken into con-

sideration in order to compute the ruin probability.

As mentioned in the first chapter, the risk process R(t) of an insurance company is

formalized by

R(t) = u+ ct− S(t) with S(t) =

N(t)∑
i=1

Xi

where u is the initial capital, c is the premium amount at a unit time, S(t) is the

compound Poisson process representing the total claim amount up to time t, Xi is

the i-th claim size, and N(t) is Poisson process representing the number of claims

up to time t.

An example of the movement of the surplus process is shown in Figure 3.1.

Figure 3.1: Surplus process

After a small time interval ε is taken into consideration, the movement of the capital

can be shown as in Figure 3.2.
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Figure 3.2: Movement of the capital in small time interval ε

Let Pu(T > t) be the probability of non ruin at time t with initial capital u.

If S(ε) = w takes integer values between 0 and n, then the non ruin probability can

be written in the following form when u+ c
M
− w > 0

Pu(T > t) =
n∑

w=0

P (u→ u+
c

M
− w)Pu+ c

M
−w(T > t− ε) for ε =

1

M
(3.1.1)

where

P (u→ u+
c

M
− w) = P (R(ε) = u+

c

M
− w|R(0) = u)

=
e−λελε

1!
P (X1 = w) +

e−λε(λε)2

2!
P (X1 +X2 = w)

+
e−λε(λε)3

3!
P (X1 +X2 +X3 = w) + ... for w ≥ 1

P (u→ u+
c

M
) = e−λε for w = 0.

The equation above (3.1.1) can be defined in matrix form for M = 1 with respect
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to different initial capitals.

a0,0 a0,1 a0,2 a0,3 · · ·

a1,0 a1,1 a1,2 a1,3 · · ·

a2,0 a2,1 a2,2 a2,3 · · ·

a3,0 a3,1 a3,2 a3,3 · · ·
...

...
...

... · · ·

au,0 au,1 au,2 au,3 · · ·
...

...
...

... · · ·


A



P0(T > t− ε)

P1(T > t− ε)

P2(T > t− ε)

P3(T > t− ε)
...

Pu(T > t− ε)
...


f(t− ε)

=



P0(T > t)

P1(T > t)

P2(T > t)

P3(T > t)
...

Pu(T > t)
...


f(t)

(3.1.2)

where the first matrix A is a our transition matrix consisting of ai,j = P (i→ j).

In the transition matrix A, we consider that 0 is the absorption state.

Elements of transition matrix A in d dimensional is defined by

Ai,j = ai,j =



1, for i = j = 0;

0, for i = 0, j 6= 0;

1−
d−1∑
j=1

ai,j, for j = 0, i 6= 0;

P (Rk+1 = j|Rk = i), for the other cases

.

Note that

P0(T > t) = P0(T > t− ε) = 0

because 0 is the absorption state.

In this circumstance, it can be written as

A(x)f(t− x) = f(t)

where f is the column vector function representing non ruin probabilities.

Similarly,

A(x+ y)f(t) = A(x)A(y)f(t) = f(t+ x+ y).

The capital of an insurance company at time t can be found with the help of A(x) =



3.1. Ruin Probability via the Markov chain approach 40

Ax in the case where the grid size is equal to 1.

If the grid size is equal to ε = 1
M

, M ∈ N+, then

A(x) = A
x
ε = AxM .

In continuous time, the transition matrix can be found via the generator matrix.

A(0) = lim
t→0

A(t) = I

A′(0) = lim
ε→0

A(ε)− I
ε

= Q

where Q is called the generator of Markov process

Q =



q0,0 q0,1 q0,2 q0,3 q0,4 q0,5 · · ·

q1,0 q1,1 q1,2 q1,3 q1,4 q1,5 · · ·

q2,0 q2,1 q2,2 q2,3 q2,4 q2,5 · · ·

q3,0 q3,1 q3,2 q3,3 q3,4 q3,5 · · ·

q4,0 q4,1 q4,2 q4,3 q4,4 q4,5 · · ·
...

...
...

...
...

...
. . .


. (3.1.3)

The sum of the elements in each row of Q is zero because

D−1∑
j=0,j 6=i

qi,j = −qi,i (D is dimention of the matrix)

qi,j = lim
ε→0

Ai,j(ε)

ε
≥ 0 and qi,i ≤ 0.

For the small ε,

Ai,j = qi,jε+O(ε) for i 6= j

Ai,i = 1 + qi,iε+O(ε).

Let N(t) be a Poisson process with frequency λ. Therefore,

P (N(t) = k) =
e−λt(λt)k

k!
k = 0, 1, 2, . . . .
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For very small grid size ε and small claim frequency λ in numerical computation,

the following computation can be taken into consideration.

P (N(ε) = 1) = e−λελε ≈ λε because λεeλε = λε(1 + λε+
(λε)2

2!
+ ...) ≈ λε.

If we just consider a case in which the number of claims is equal to zero or one by

ignoring more than one because the grid size is very small, then

P (N(ε) = 0) = e−λε ≈ 1− λε.

For S(ε) = X1, claim and non claim cases are shown by

For example, if X1 takes integer values between 1 and k with P (X1 = w) = 1
k

for

all 1 ≤ w ≤ k, then

P (u→ u+ c
M
− 1) = λε

k
,

P (u→ u+ c
M
− 2) = λε

k
,

...

P (u→ u+ c
M
− k) = λε

k
.

Therefore,

Aij(ε) = P (R(ε) = u+ c
M
|R(0) = u) = (M − λ)ε and qi,j = (M − λ) for j > i

Aij(ε) = P (R(ε) = u + c
M
− w|R(0) = u) = P (X1 = w)λε and qi,j = P (X1 =

w)λ for i < j.
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3.2 Discretization of the semigroup

The matrix A(t) is differentiable for all t ≥ 0 with

A′(t) = A(t)Q = QA(t).

The solution of the equation with A(0)=I [7, 65] is

A(t) = eQt

where Q is generator operator of Markovian process.

Rather than analytic formula, the discretization method will be applied to find A(t)

by

lim
Mt→0

A(t+ M t)− A(t)

M t
= A′(t),

so A(t+ M t) = A(t) + A′(t) M t+O((M t)2)

A(t+ M t) = A(t) + A′(t) M t+
A′′(t)(M t)2

2!
+O((M t)3)

(3.2.4)

where A′′(t) = Q2A(t) because

A′′(t) = (eQt)′′ =
∞∑
k=0

(
Qktk

k!
)
′′

=
∞∑
k=0

Qk(
(tk)′′

k!
) =

∞∑
k=0

Qktk−2k(k − 1)

k!
= Q2

∞∑
k=2

Qk−2 tk−2

(k − 2)!

= Q2

∞∑
j=0

Qj t
j

j!
= Q2eQt = Q2A(t).

When A′ and A′′ are put into equation (4.3.6), the equation can be written in the

following form.

A(t+ M t) = A(t) + A(t)Q M t+
A(t)Q2(M t)2

2!
+O((M t)3). (3.2.5)

With equation (3.2.5), better approximation in order to find A(t) is obtained.

Example 3.2.1 Let’s consider a case where the premium rate c = 1, the grid size
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ε = 0.01, (M = 100) and Xi = {1, 2, 3} with probability p1, p2 and p3 defined for

very small claim frequency λ by

p1 = P (u→ u+ cε− 1) =
e−λελε

3
≈ λε

3
,

p2 = P (u→ u+ cε− 2) =
e−λελε

3
≈ λε

3
,

p3 = P (u→ u+ cε− 3) =
e−λελε

3
≈ λε

3

and no claim probability is

p = 1− p1 − p2 − p3 = P (u→ u+ cε) = 1− e−λελε ≈ (M − λ)ε.

Let A be the transition matrix over time unit ε, and its elements be consist of

0, p, p1, p2, and p3.

Notice that

p+ p1 + p2 + p3 = 1.

In this circumstance, the matrix form can be shown as below:

Af(t− 0.01) = At1Mf(t− t1) = At2Mf(t− t2) = f(t) for t > t1, t2.
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

u 0 0.01 0.02 0.03 · · · · · · · · · 1 1.01 1.02 · · · · · · 2 2.01 2.02 · · · · · · 3 3.01 3.02

0 1 · · · · · · · · · · · · · · · · · · · · · · · ·

0.01 1− p p · · · · · · · · · · · · · · · · · · · · · · · ·

0.02 1− p p · · · · · · · · · · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... · · ·

0.99 1− p · · · · · · · · · p · · · · · · · · · · · · · · ·

1 p2 + p3 p1 · · · · · · · · · p · · · · · · · · · · · · · · ·

1.01 p2 + p3 p1 · · · · · · · · · p · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... · · ·

1.99 p2 + p3 · · · · · · · · · p1 · · · · · · p · · · · · · · · ·

2 p3 p2 · · · · · · · · · p1 · · · · · · p · · · · · · · · ·

2.01 p3 p2 · · · · · · · · · p1 · · · · · · p · · · · · · · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... · · ·

2.99 p3 · · · · · · · · · p2 · · · · · · p1 · · · · · · p · · ·

3 p3 · · · · · · · · · p2 · · · · · · p1 · · · · · · p · · ·

3.01 p3 · · · · · · · · · p2 · · · · · · p1 · · · · · · p · · ·
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

. . .





P0(T > t− 0.01)

P0.01(T > t− 0.01)

P0.02(T > t− 0.01)

...

P0.99(T > t− 0.01)

P1(T > t− 0.01)

P1.01(T > t− 0.01)

...

P1.99(T > t− 0.01)

P2(T > t− 0.01)

P2.01(T > t− 0.01)

..

.

P2.99(T > t− 0.01)

P3(T > t− 0.01)

P3.01(T > t− 0.01)

...


f(t− 0.01)

=



P0(T > t)

P0.01(T > t)

P0.02(T > t)

...

P0.99(T > t)

P1(T > t)

P1.01(T > t)

...

P1.99(T > t)

P2(T > t)

P2.01(T > t)

.

..

P2.99(T > t)

P3(T > t)

P3.01(T > t)

...


f(t)
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Now, let’s look at the generator matrix of A

Q=



u 0 0.01 0.02 0.03 · · · · · · 0.99 1 1.01 1.02 · · · 1.99 2 2.01 2.02 · · · 2.99 3 3.01 3.02 · · ·

0 0 0 0 0 · · · · · · 0 0 0 0 · · · 0 0 0 0 · · · 0 0 0 0 · · ·

0.01 λ −M (M − λ) · · · · · · · · · · · · · · ·

0.02 λ −M (M − λ) · · · · · · · · · · · · · · ·
...

...
...

...
. . .

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0.99 λ · · · · · · −M (M − λ) · · · · · · · · ·

1 2λ
3

λ
3

· · · · · · −M (M − λ) · · · · · · · · ·

1.01 2λ
3

λ
3

· · · · · · −M (M − λ) · · · · · · · · ·
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...
...

... · · ·

1.99 2λ
3

· · · · · · λ
3

· · · −M (M − λ) · · · · · ·

2 λ
3

λ
3

· · · · · · λ
3

· · · −M (M − λ) · · · · · ·

2.01 λ
3

λ
3

· · · · · · λ
3

· · · −M (M − λ) · · · · · ·
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

... · · ·

2.99 λ
3

· · · · · · λ
3

· · · λ
3

· · · −M (M − λ) · · ·

3 λ
3

· · · · · · λ
3

· · · λ
3

−M (M − λ) · · ·

3.01 λ
3

· · · · · · λ
3

· · · λ
3

· · · −M (M − λ) · · ·
...

...
...

. . .
...

...
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

. . . . . .


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The transition matrix can be found via the discretization method by using Q matrix.

A(t+ ε) = A(t) + A(t)Qε+
A(t)Q2ε2

2!
+O(ε3). (3.2.6)

Let us define the transition matrix A as transition probabilities over a single time

period for grid size ε = 1.

Ai,j = P (Rk+1 = j|Rk = i).

Let An denote the matrix with A(n)i,j = P (Rn = j|R0 = i) where A(n)i,j is an

element of An.

Proposition 17 Assuming that 0 is an absorption state in the d × d transition

matrix, the ruin and non ruin probability are defined by

Pu(T ≤ t) = (1 + o(1))A(t)u,0,

Pu(T > t) = 1− P (T ≤ t|R(0) = u)

= (1 + o(1))
d−1∑
j=1

A(t)u,j (3.2.7)

where the error terms depend on the grid size.

When the grid size is equal to ε, ruin and non ruin probability are defined by

Pu(T ≤ t) = (1 + o(ε))A(t)u,0 (3.2.8)

= (1 + o(ε))A
[ t
ε
]

u,0,

Pu(T > t) = (1 + o(ε))
d−1∑
j=1

A(t)u,jε

= (1 + o(ε))
d−1∑
j=1

A
[ t
ε
]

u,jε (3.2.9)

where [ t
ε
] is an integer part of t

ε
.

Gambler’s Ruin problem via the Markov chain approach

Let’s consider the game mentioned in Section 2.2.2. In the game, £z1 and £z2 are
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the initial fortunes of the two players, and p and q = 1−p are the winning and losing

probabilities of the first player. In each gamble of the game, £1 will be transferred

from loser to winner in each event. The game will end when one player has all the

money or the other has lost all of his or her own money. The main objective of the

game is to reach the total fortune of £z1 + z2 without ruining.

Xn is denoted as the fortune of the first player after the nth gamble. In this circum-

stance, Xn is a Markov process with a00 = az1+z2 z1+z2 = 1 because 0 and z1 + z2 are

up and down barriers. The corresponding transition matrix is defined by

A =



0 1 2 3 · · · z1 + z2

0 a00 a01 a02 a03 · · · a0 z1+z2

1 a10 a11 a12 a13 · · · a1 z1+z2

2 a20 a21 a22 a23 · · · a2 z1+z2

3 a30 a31 a32 a33 · · · a3 z1+z2

...
...

...
...

... · · · ...

z1 + z2 az1+z2 0 az1+z2 1 az1+z2 2 az1+z2 3 · · · az1+z2 z1+z2



=



0 1 2 3 4 · · · z1 + z2

0 1 0 0 0 0 · · · 0

1 q 0 p 0 0 · · · 0

2 0 q 0 p 0 · · · 0

3 0 0 q 0 p · · · 0

...
...

...
...

...
... · · · ...

z1 + z2 0 0 0 0 0 · · · 1


.

The non ruin probability of the first player until the nth gamble is found by

Pz1(T > n) = (1 + o(1))

z1+z2∑
j=1

Anz1,j.
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3.3 Capital injection and reduction

Insurance companies may be exposed to capital injections or withdrawal because of

unpredictable economic and natural processes such as:

(i) risk, investment, unpredictable financial crisis, payment to shareholders, tax, and

charges in the tax system

(ii) volcanic eruptions, earthquakes, landslides, mudflows etc.

Capital injection allows insurance companies to keep their surplus process above

a certain fixed level in order to decrease the ruin probability. Therefore, capital

injection plays an important role in the insurance sector.

The modified surplus process with the injections at time ti with amounts ai for

i = 1, 2, ...k can be formalized as

R(t) = u+ ct− S(t) +
k∑
j=1

aiI(t≥tj)

where

R(t1) = R(t1) + a1,

R(t2) = R(t2) + a1 + a2,
...

R(tk) = R(tk) + a1 + a2 + · · ·+ ak.

An example of one capital injection at time t1 with amount a can be seen in Figure

3.3.

Figure 3.3: Surplus process with a capital injection
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An example of movement of the surplus process exposed to two capital injections

with the amount of a1 and a2 at time t1 and t2, respectively is as

Figure 3.4: Surplus process with capital injections

Now, let’s introduce a shift operator under the assumption that zero is the absorption

state. The shift operator is necessary to change the capital in injection or withdraw

times.

K(a)Rt =

 Rt + a, if Rt + a > 0

0, if Rt + a ≤ 0
.

K(a) means it will give rise to a change in the reserve at amount a. From equation

(3.2.9) and the shift operator, we derive the following result.

Proposition 18 With the small and fixed positive grid size ε > 0, consider the

surplus process exposed to k times capital injections or reductions at time ti with

amount ai ,i = 1, . . . , k, respectively. Then, ruin and non ruin probability can be

found by

Pu(T ≤ t) = (1 + o(ε))
(
A[t1/ε]K(a1)A[(t2−t1)/ε]K(a2) . . . A[(tk−tk−1)/ε]K(ak)A

[(t−tk)/ε]
)
u,0
,

Pu(T > t) = (1 + o(ε))
d−1∑
j=1

(
A[t1/ε]K(a1)A[(t2−t1)/ε]K(a2) . . . A[(tk−tk−1)/ε]K(ak)A

[(t−tk)/ε]
)
u,jε

(3.3.10)
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where the error term depends on the grid size ε.

Let the grid size be equal to ε = 1
M

, then the matrix form of the K shift matrix for

a > 0 is generated by

K(a) =



0 1 2 · · · aM aM + 1 aM + 2 aM + 3 · · ·

1 0 0 · · · 0 0 0 0 · · ·

0 0 0 · · · 0 1 0 0 · · ·

0 0 0 · · · 0 0 1 0 · · ·

0 0 0 · · · 0 0 0 1 · · ·

0 0 0 · · · 0 0 0 0 · · ·
...

...
... · · · ...

...
...

... · · ·


.

In the reduction case (a < 0), the matrix form of K is defined as below.

K(a) =



0 1 0 0 · · · 0 0 0 0 · · ·

ε 1 0 0 · · · 0 0 0 0 · · ·

2ε 1 0 0 · · · 0 0 0 0 · · ·

3ε 1 0 0 · · · 0 0 0 0 · · ·
...

...
...

...
...

...
...

...
...

−a− ε 1 0 0 · · · 0 0 0 0 · · ·

−a 1 0 0 · · · 0 0 0 0 · · ·

−a+ ε 0 1 0 · · · 0 0 0 0 · · ·

0 0 1 · · · 0 0 0 0 · · ·

0 0 0 · · · 0 0 0 0 · · ·
...

...
... · · · ...

...
...

...
...



.

3.4 Discretization strategy on claim distributions

Discretization strategy [13] in applied mathematics is a method to transform vari-

ables from continuous values into discrete counterparts.

In our numerical computations, we generally study discrete claim sizes by using ex-
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ponential distribution and Gaussian distribution even though they are continuous

functions.

The probability density function of an exponential distribution with mean m is

defined by

f(x) =


1
m
e−

1
m
x x ≥ 0

0 x < 0

.

The probability density function of a Gaussian distribution with mean m and vari-

ance σ2 is defined by

f(x) =
1√

2σ2π
e
−

(x−m)2

2σ2 .

∞∫
−∞

f(x)dx = 1 for both distributions.

According to the discretization strategy in this thesis, a probability mass function is

the discrete version of density probability function that is defined for an exponential

distribution by

P (X = x) =


1
m
e−

1
m
xεb x ≥ 0

0 x < 0

where ε is the grid size, and b is the normalizing constant that is defined by

b =
1

∞∑
k=1

1
m
e−

1
m
kεε

.

Similarly, the probability mass function for discretized of Gaussian distribution is

defined by

P (X = x) =
1√

2σ2π
e
−

(x−m)2

2σ2 εb (3.4.11)

with the normalizing constant

b =
1

∞∑
k=1

1√
2σ2π

e
−

(kε−m)2

2σ2 ε

.

Notice that we consider a sum over positive values, since claims are positive values.
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With the normalizing constant,

∑
x

P (X = x) = 1.

Probability mass function of discretized exponential distribution
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Probability mass function of discretized  Gaussian distribution 
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Figure 3.5: Discretization of the distributions

3.5 Results

1) We observe ruin probability via the Markov chain approach with respect to dif-

ferent initial capitals and times assuming that claim sizes are integer values with

discretized exponential distribution with mean m

P (X = x) =
1
m
e−

1
m
x

∞∑
k=1

1
m
e−

1
m
k

. (3.5.12)

Ruin probabilities created by using a transition matrix or generator matrix are listed

in Table 3.1 for claim premium=1, claim frequency =0.02, claim mean=45, and grid

size =1.
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Table 3.1: Ruin probability via Markov chain approach

Initial capital Time Ruin probability
Ruin probability

via generator matrix
5 50 0.4356 0.4334
5 100 0.5652 0.5641
5 150 0.6296 0.6289
5 200 0.6696 0.6691
10 50 0.4048 0.4028
10 100 0.5346 0.5334
10 150 0.601 0.6003
10 200 0.6429 0.6424
20 50 0.3493 0.3476
20 100 0.4775 0.4764
20 150 0.5469 0.5462
20 200 0.5919 0.5914
30 50 0.301 0.2996
30 100 0.4257 0.4247
30 150 0.4969 0.4962
30 200 0.5441 0.5436

It is obvious from Table 3.1, an increase in the initial capital gives rise to a decrease in

the ruin probability, while time increase causes bigger ruin probability as expected.

According to the table, it seems that the ruin probabilities via the transition matrix

and generator matrix give very close results.

2) Now, let’s assume the claim sizes are integers and their distribution look like a

discretized normal distribution as below.

P (X = x) =

1√
2σ2π

e
−

(x−m)2

2σ2

∞∑
k=1

1√
2σ2π

e
−

(k −m)2

2σ2

. (3.5.13)

For the same values, and the standard derivation is 10, the results are produced in

the following table.
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Table 3.2: Ruin probability via Markov chain approach

Initial capital Time Ruin probability
Ruin probability

via generator matrix
5 50 0.554 0.5503
5 100 0.6574 0.6562
5 150 0.7067 0.7061
5 200 0.7367 0.7364
10 50 0.5214 0.5198
10 100 0.6282 0.6274
10 150 0.6801 0.6796
10 200 0.712 0.7116
20 50 0.4481 0.4483
20 100 0.5618 0.5615
20 150 0.6191 0.6187
20 200 0.6551 0.6547
30 50 0.3688 0.3676
30 100 0.4852 0.4843
30 150 0.5475 0.5468
30 200 0.5877 0.5873

3)Now let us state the ruin probability of surplus process exposed to one capital

injection with respect to different injection times and injection amounts for both

claim size distributions mentioned above.

The ruin probabilities at time 200 with the initial capital is 5, the premium rate is

1, the claim frequency is 0.03, the claim size mean is 30 and the standard deviation

is 10, is displayed in the following table.

Table 3.3: Ruin probability via Markov chain approach

Capital injection
time

Capital injection
amount

Ruin probability
(Discretized

exponential distribution)

Ruin probability
(Discretized

Gaussian distribution)

10 5 0.6832 0.7251
10 10 0.6578 0.6899
10 15 0.6335 0.6548
50 5 0.6967 0.7434
50 10 0.6845 0.7291
50 15 0.6728 0.7158
100 5 0.7027 0.7504
100 10 0.6962 0.7431
100 15 0.6902 0.7364
150 5 0.7062 0.7544
150 10 0.7031 0.7508
150 15 0.7003 0.7477
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According to Table 3.3, early injection time and increased injection amount result

in less ruin probability. It can also be seen from the table exponential and Gaussian

claim size distributions give close but different results.

To minimise the computational error amount in the examples,

� a small claim frequency in the small time grid size is chosen

� or the probability of a large claim number N(ε) in the grid size is taken into

account.

3.6 Appell Polynomial Approach in modified sur-

plus processes

As mentioned in Section 2.4,

Pn(x) = P (Sx = n and T > x) = e−λxBn(x)

where

Bn(x) =


en(x) when 0 ≤ n ≤ u
u∑

m=0

em(m−u
c

) cx−n+u
cx−m+u

en−m(x+ u−m
c

) when n > u

with

en(x) =
n∑
k=0

(λx)k

k!
q∗kn and q∗kn = X1 +X2 + ...+Xk = n.

Now, elements of transition matrix A can be computed by applying the Appell

polynomial approach

A(ε)i,j = ai,j = P (i→ j) = P (Sε = n|R0 = i)

= P (Sε = n and T > ε|R0 = i) because j > 0

= e−λεBn(ε)
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where

n = Sε = R0 + cε−Rε

= i+ c− j for ε = 1.

Therefore,

A(ε)i,j =


e−λei+c−j(1) when 0 ≤ i+ c− j ≤ i

e−λ
i∑

m=0

em(m−i
c

) c−(i+c−j)+i
c−m+i

e(i+c−j)−m(1 + i−m
c

) when i+ c− j > i
.

After obtaining the transition matrix by using the Appell polynomial approach, the

ruin and non ruin probability of the modified surplus process is found by

Pu(T ≤ t) = (1 + o(ε))
(
A[t1/ε]K(a1)A[(t2−t1)/ε]K(a2) . . . A[(tk−tk−1)/ε]K(ak)A

[(t−tk)/ε]
)
u,0
,

Pu(T > t) = (1 + o(ε))
d−1∑
j=1

(
A[t1/ε]K(a1)A[(t2−t1)/ε]K(a2) . . . A[(tk−tk−1)/ε]K(ak)A

[(t−tk)/ε]
)
u,jε

(3.6.14)

where the error term depends on the grid size ε.



Chapter 4

QUANTUM MECHANICS

APPROACH

In this chapter, the ruin probability of an insurance company in classical and mod-

ified surplus processes is computed via the quantum mechanics approach. Some

parts of this chapter can also be found in a paper entitled “Ruin Probability via

Quantum Mechanics Approach” [76].

4.1 Introduction to Quantum Mechanics

Quantum mechanics consists of laws that provide us a mode of description for mi-

croscopic systems. Since the beginning of the twentieth century, scientists have used

quantum mechanics to explain the structure of atoms and molecules, and some of

the properties of electromagnetic radiation [19] [66]. The quantum theory is a gen-

eral framework, and it is about what is possible or impossible rather than what is

in reality [34].

The universe is governed by amplitudes. Dirac showed a special way for amplitudes.

According to Dirac notation 〈α| and |β〉 are called bra and ket, respectively. They

represent a state vector or wavefunction.

The sum of two bras or kets gives another bra or ket.

|α〉+ |β〉 = |γ〉

57
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or

〈α|+ 〈β| = 〈γ| .

For scalar v , then

v |α〉 = |α〉 v.

〈α|β〉 represent an amplitude for an event [15]. For example, if |x〉 is a state on state

space V and function of f, then 〈f |x〉 is also event amplitude.

Bra and ket form a scalar product together:

〈α|β〉 =

∞∫
−∞

dxα∗(x)β(x) = 〈β|α〉∗ .

Each wave function can be written as the sum of basis state vectors:

|β〉 = λ1 |β1〉+ λ2 |β2〉+ ....

Now we consider the discrete basis. Let |0〉 , |1〉 , |2〉 , ..., |k − 1〉 be the basis states.

The superposition is denoted as a linear combination of basis states

α0 |0〉+ α1 |1〉+ α2 |2〉+ ...+ αk−1 |k − 1〉

where αi ∈ { and
∑
i

|αi| = 1.

If the system level is two, they are called qubits.

Let’s consider the two-system level as Hydrogen atom, and define |0〉 and |1〉 as

the ground energy state of the electron and the first energy state of the electron,

respectively. The electron can be found in some linear superposition of any of the

two energy levels.
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In quantum mechanics, qubits 0 and 1 are represented as |0〉 and |1〉 that form a

two-dimensional basis

|0〉 =

1

0

 and |1〉 =

0

1

 .

An arbitrary qubit α is a linear superposition of the basis states.

α = α1 |0〉+ α2 |1〉 where α2
1 + α2

2 = 1.

The combination of two qubits can be done with the help of a tensor product.

Definition 19 (Tensor Product) Let V1 and V2 be two vector spaces. Then the

tensor product operator is defined by

⊗ : V1 × V2 → V1 ⊗ V2.

For

A =

a1,1 a1,2

a2,1 a2,2

 and B =

b1,1 b1,2

b2,1 b2,2

 ,

the tensor product of the two matrices is

A⊗B =


a1,1

b1,1 b1,2

b2,1 b2,2

 a1,2

b1,1 b1,2

b2,1 b2,2


a2,1

b1,1 b1,2

b2,1 b2,2

 a2,2

b1,1 b1,2

b2,1 b2,2





=


a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2

a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2

a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2

a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2

 .
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Similarly, a tensor product of two kets is found by

|1〉 ⊗ |0〉 = |10〉 =


0

0

1

0

 .

Before giving the Fourier transform in quantum mechanics, it will be shown in

classical probability in order to demonstrate the differences between the two.

4.2 Fourier Transform

The Fourier transform is the decomposition of a time function. The classical Fourier

transform of a function f on R is defined by

F (p) =

∞∫
−∞

f(t)e−iptdt,

where F is function of real variable p while F (p) is a complex number.

The inverse of the Fourier transform is then defined by

f(t) =
1

2π

∞∫
−∞

F (p)eiptdp.

If F (p) is put into the equation above, f(t) is obtained.

1

2π

∞∫
−∞

F (p)eiptdp =
1

2π

∞∫
−∞

( ∞∫
−∞

f(t2)e−ipt2dt2

)
eiptdp

=
1

2π

∞∫
−∞

f(t2)
( ∞∫
−∞

e−ip(t2−t)dp
)
dt2

=

∞∫
−∞

f(t2)δ(t2 − t)dt2

= f(t).
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Example 4.2.1 Let’s look at the Fourier transform of f(t) = e−2|t|.

F (p) =

∞∫
−∞

e−2|t|e−iptdt =

0∫
−∞

e2te−iptdt+

∞∫
0

e−2te−iptdt

=
1

2− ip
+

1

2 + ip

=
4

4 + p2
.

Definition 20 (Parseval’s theorem)

Let f(x) and g(x) be integrable functions of the Fourier transform F (ξ) and G(ξ),

respectively, then

∞∫
−∞

f(x)g(x)dx =

∞∫
−∞

F (ξ)G(ξ)dξ

=

∞∫
−∞

∞∫
−∞

f(t)e−iξtdt

∞∫
−∞

g(t2)e−iξt2dt2dξ. (4.2.1)

where g(x) and G(ξ) are complex conjugates of g(x) and G(ξ), respectively.

Definition 21 (Plancherel theorem)

For f ∈ L1(R)∩L2(R), the norm of a function’s squared is equal to the norm of its

Fourier transform’s squared

∞∫
−∞

||f(x)||2dx =

∫ ∞
−∞
||F (ξ)||2dξ (4.2.2)

where

F (ξ) =

∞∫
−∞

f(x)e−2πξxdx.

The Plancherel theorem is related to the Parseval theorem. When we get f = g in

the Parsevel theorem, equation (4.2.2) is obtained.

As seen from equation (4.2.1), there are three integrals on the right side of the

equation. The Parseval’s theorem will be shown in the next section by getting rid
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of the integrals with the help of the Dirac notation.

4.3 Quantum Mechanics

In quantum mechanics [5,14,26,32,42,70], < x|A|x′ > is called a propagator, where

〈x| and |x′〉, respectively called bra and ket, are used to define quantum states. The

propagator gives the probability (amplitude) for the particle to travel in a given

space time from point (x, t1) to point (x′, t2).

Let’s start with

|x〉 =



0
...

1

0
...


x-th position and 〈x| =

(
0 · · · 1 0 · · ·

)

then

〈x|y〉 = δx−y =

1 if x = y

0 if x 6= y

.

Let A and |x〉 be the n+ 1×n+ 1 dimension transition matrix and the n× 1 vector

as follows:

A =


a00 a01 a02 . . . a0n

a10 a11 a12 . . . a1n

...
...

...
...

...

an0 an1 an2 . . . ann

 |x〉 =



0

0

1

0
...


(4.3.3)

In this circumstance, the propagator can be showed by
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〈x|A |x′〉 =
(

0 0 1 0 · · ·
)

a00 a01 a02 . . . a0n

a10 a11 a12 . . . a1n

...
...

...
...

...

an0 an1 an2 . . . ann





0

0

1

0
...


= a22.

〈x|A |x′〉 is a bilinear form on x and x’.

Example 4.3.1 Let’s compute 〈1|A |2〉 for A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 by applying

the completeness equation I =
∑
p

〈p|p〉.

Without the resolution of the identity, the result is

〈1|A |2〉 =
(

1 0 0
)

a11 a12 a13

a21 a22 a23

a31 a32 a33




0

1

0

 = a12.

Now, it is done via the resolution of the identity

〈x|A |x′〉 = 〈x|AI |x′〉

=
∑
p

〈x|A |p〉 〈p|x′〉 .

Therefore,

〈1|A |2〉 =
∑
p

〈1|A |p〉 〈p|2〉

= 〈1|A |1〉 〈1|2〉+ 〈1|A |2〉 〈2|2〉+ 〈1|A |3〉 〈3|2〉

= a12
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because of 〈1|2〉 =
(

1 0 0
)

0

1

0

 = 0 and 〈3|2〉 =
(

0 0 1
)

0

1

0

 = 0.

The Fourier transform of |x〉 to the momentum space is

〈x|x′〉 = δ(x− x′) =

∞∫
−∞

dp

2π
〈x|p〉 〈p|x′〉

=

∞∫
−∞

dp

2π
eip(x−x

′). (4.3.4)

Therefore,
∞∫
−∞

dp
2π
|p >< p| is the resolution of the identity with respect to the mo-

mentum basis |p〉 with the scalar product 〈x|p〉 = eixp.

Let’s write Parseval’s theorem in 4.2.1 with the Dirac notation,

∞∫
−∞

f(x)g(x)dx = 〈f |g〉 = 〈f | I |g〉 =

∫ ∞
−∞

dp

2π
〈f |p〉 〈p|g〉

where I =
∞∫
−∞

dp
2π
|p >< p| is the completeness equation for the momentum basis |p〉

with the scalar product 〈f |p〉 = f(p) = eixp.

The advantage of this equation is that we have just one integral in 4.3, in contrast

with 4.2.1.

The starting point for A = e−tH is the following formalism for the homogeneous

continuous time and continuous space random walk from point (x, T ) to (x′, T + t)

[5, 6].

P (x
t→ x′) =< x|e−tH |x′ >=

∞∫
−∞

dp

2π
< x|e−tH |p >< p|x′ > (4.3.5)

with the identity resolution
∞∫
−∞

dp
2π
|p >< p′| = I.

Similar formalism for the homogeneous continuous time discrete space random walk

is defined with the completeness equation now being
2π∫
0

dp
2π
|p >< p′| = I by
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P (x
t→ x′) =< x|e−tH |x′ >=

2π∫
0

dp

2π
< x|e−tH |p >< p|x′ > (4.3.6)

where < x|p >= eixp and < p|x >= e−ixp.

In this quantum mechanics formalism, A = e−tH is a transition operator, and H is

the Hamiltonian operator. In most of our cases, H = −Q where Q is the generator

matrix.

The Hamiltonian operator represents the total energy of a system, so it is equal to

the sum of kinetic energy and potential energy.

For example, the Schrodinger Hamiltonian is defined by

H = T̄ + V

where T̄ and V are kinetic and potential energy operators, respectively.

The kinetic energy operator is defined by

T̄ =
p2

2m
=
−h
2m
52

where m is the mass of the particle, and the momentum operator is

p = −ih5 .

In this circumstance, the Hamiltonian is defined by

H = T̄ + V

=
−h
2m
52 +V.

The link between the quantum formalism and the classical notions from the Markov

process theory is established via the Hamiltonian operator.

The Markovian stochastic process Xt is characterized by a generator Q and the

continuous semigroup At = etQ. As such, when H = −Q, we have the explicit

equivalence.
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In general, the Hamiltonian operator H does not need to be a generator.

In Dirac formalism, the Hamiltonian operator is defined in Hilbert space.

Definition 22 (Hilbert Space)

A Hilbert space is a real (or complex) complete inner product space. Let V be an

inner product space where 〈x, y〉 : V × V → C.

For x, y, z ∈ V and α is a scalar,

� 〈x, x〉 = 0 if and only if x = 0,

� 〈x, x〉 ≥ 0,

� 〈x+ z, y〉 = 〈x, y〉+ 〈z, y〉,

� 〈αx, y〉 = α〈x, y〉,

� 〈x, y〉 = 〈y, x〉.

In Hilbert space, every inner product produces a norm.

|x| =
√
〈x, x〉.

4.4 Deriving of the Hamiltonian operators and

computation of transition probability for dif-

ferent Hamiltonian operators

4.4.1 Case 1: Fixed claim sizes and shifted Poisson Hamil-

tonian

Let A be the transition probability matrix. The Hamiltonian is found by the tradi-

tional probability analysis.
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Case 1 : Let Xj be the fixed claim size Xj = m for j = 1, 2, ... with claim frequency

λ. Firstly, we find the Hamiltonian by

Hf(x) = limt→0
I − A(t)

t
f(x)

= limt→0
f(x)− E[f(x+ ct− S(t)]

t

= limt→0
1

t
[f(x)−

∞∑
j=0

f(x+ ct− jm)
e−λt(λt)j

j!
]

E[f(x+ ct− S(t)] depends on m,λ and j because of S(t).

we consider for j=0 and j=1 because j > 1,
(λt)j

t
goes to zero.

= limt→0
1

t
[f(x)− f(x+ ct)e−λt − f(x+ ct−m)e−λtλt]

= limt→0
f(x)− f(x+ ct)e−λt

t
− f(x+ ct−m)e−λtλ

= −cf ′(x) + λ(f(x)− f(x−m)). (4.4.7)

Secondly, we analyse the spectral decomposition for H. Notice that H is not self

adjoint. However, the technique works.

In Dirac formalism, the Hamiltonian operator is defined in Hilbert space, and Eigen-

vectors |p > provide an orthonormal basis for Hilbert space.

H|p >= Kp|p >

where the eigenvector of the Hamiltonian operator is |p >, and f(p) = eixp, x is an

integer value, i is a complex imaginary unit.

In order to obtain the eigenvalue of Hamiltonian Kp, we put them into the following

equation as

H|p > = −cipeixp + λ(eixp − eip(x−m))

= (−cip+ λ− λe−imp)eixp

= Kp|p > .
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So, the eigenvalue of the Hamiltonian operator is

Kp = −cip+ λ− λe−imp.

Furthermore,

H|p > = Kp|p >

H2|p > = K2
p |p >

...

Hn|p > = Kn
p |p > .

Therefore,

e−tH |p >=
∞∑
j=0

(−tH)j

j!
|p >= e−tKp |p > .

Finally, we compute the transition probabilities by the formula 4.3.6.

Note that

|xi > = R(t) and |xi+1 >= R(t+ M t)

< xi|p > = eixip and < p|xi+1 >= e−ixi+1p.

From equation (4.3.6) in the above calculations,

P (xi → xi+1) =< xi|e−MtH |xi+1 > =

2π∫
0

dp

2π
< xi|e−MtH |p >< p|xi+1 >

=

2π∫
0

dp

2π
< xi|p >< p|xi+1 > e−tKp

=
1

2π

2π∫
0

(eixipe−ixi+1p)e−MtKpdp

=
e−λMt

2π

2π∫
0

eip(xi−xi+1)+Mticp+Mtλe−impdp.
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The main result is then stated in the following lemma.

Lemma 23 Assume xi+1 − xi is an integer. Then,

P (xi → xi+1) =< xi|e−MtH |xi+1 >

=
e−λMt

2π

2π∫
0

eip(xi−xi+1)+Mticp+Mtλe−impdp. (4.4.8)

When the integral in equation (4.4.8) is solved by the trapezoidal rule for h = 2π
N

numerically, the results in case u = 30, t = 50, c = 1, λ = 0.5, and m = 3, for

N=5000 and N=200, are displayed in Figures 4.1 and 4.2.
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Figure 4.1: P (30→ value at time 50) for N=5000 (the iteration number)
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Figure 4.2: P (30→ value at time 50) for N=200

4.4.2 Case 2: Random integer valued claim sizes and shifted

Compound Poisson Hamiltonian

We start by computing the Hamiltonian for this case. A splitting strategy is applied

for the Poisson process as a sum of the independent Poisson processes.

According to the splitting strategy, let N(t) be a Poisson process with rate λ. When

N(t) is divided into Z independent processes, then [29]

� Nj(t) is a Poisson process with rate λj = λP (X = j) for integer valued claim

size j = 1, 2, ....

� N(t) ∼ N1(t) +N2(t) + ...+NZ(t).

� λ ∼ λ1 + λ2 + ... + λZ because
Z∑
j=1

P (X = j) ∼ 1 for large Z in numerical

calculations.
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Hf(x) = limt→0
I − A(t)

t
f(x)

= limt→0
f(x)− E[f(x+ ct− S(t)]

t

= limt→0
1

t

[
f(x)−

∞∑
j1,j2,j3,···=0

[f(x+ ct− j1 − 2j2 − 3j3 − · · · )
e−λ1t(λ1t)

j1

j1!

e−λ2t(λ2t)
j2

j2!

e−λ3t(λ3t)
j3

j3!
· · · ]

]
In expectation of the compound Poisson process, we consider for i1 + i2 + i3 + . . . = 0

and i1 + i2 + i3 + . . . = 1 because
ti1+i2+i3+...

t
goes to zero for i1 + i2 + i3 + . . . > 1

= limt→0
1

t

[
f(x)− f(x+ ct)e−(λ1+λ2+λ3+··· )t − f(x+ ct− 1)e−λ1tλ1t

− f(x+ ct− 2)e−λ2tλ2t− f(x+ ct− 3)e−λ3tλ3t− · · ·
]

= limt→0

[f(x)− f(x+ ct)e−(λ1+λ2+λ3+··· )t

t
− f(x+ ct− 1)e−λ1tλ1

− f(x+ ct− 2)e−λ2tλ2 − f(x+ ct− 3)e−λ3tλ3 − · · ·
]

= −cf ′(x) + λf(x)−
∞∑
j=1

f(x− j)λj. (4.4.9)

Now, we compute the eigenvalue by

H|p > = −cipeixp + (λ1 + λ2 + λ3 + · · · )eixp − eip(x−1)λ1 − eip(x−2)λ2 − eip(x−3)λ3 − · · ·

= (−cip+ λ−
∞∑
j=1

λje
−jip)eixp

= Kp|p > .

Therefore, the eigenvalue of the Hamiltonian is

Kp = −cip+ λ−
∞∑
j=1

λje
−jip.
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Finally, equation (4.3.6) with the above calculations is written as

P (xi → xi+1) =< xi|e−MtH |xi+1 >

=

2π∫
0

dp

2π
< xi|e−MtH |p >< p|xi+1 >

=

2π∫
0

dp

2π
< xi|p >< p|xi+1 > e−MtKp

=
1

2π

2π∫
0

(eixipe−ixi+1p)e−MtKpdp

=
1

2π

2π∫
0

eip(xi−xi−1)e−Mt(−cip+λ1+λ2+..+λk+...−e−ipλ1−e−2ipλ2−...−e−kipλk−...)dp

=
1

2π

2π∫
0

e
ip(xi−xi+1)+Mticp−Mt

∞∑
j=1

λj(1−e−jip)

dp.

Now, the main result is stated in the lemma.

Lemma 24 Assume xi+1 − xi is an integer. Then,

P (xi → xi+1) =< xi|e−MtH |xi+1 >

=
1

2π

2π∫
0

e
ip(xi−xi+1)+Mticp−Mt

∞∑
j=1

λj(1−e−jip)

dp. (4.4.10)

Note that λj is found by splitting the Poisson process with respect to the probability

mass function as

λj = λP (X = j).

� If the claim sizes are the integer values and have discretized exponential dis-

tribution with claim mean m, then

λj = λP (X = j) = λ
1
m
e−

1
m
j

∞∑
k=1

1
m
e−

1
m
k

.

� If the claim sizes are the integer values and have discretized Gaussian distri-
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bution with claim mean m and variance σ2, then

λj = λP (X = j) = λ

1√
2σ2π

e
−

(j −m)2

2σ2

∞∑
k=1

1√
2σ2π

e
−

(k −m)2

2σ2

.

� If the claim sizes are the integer values and have discrete uniform distribution

with claim mean m, and m = 1w1 +2w2 +3w3 + ...+LwL where wk are weights

for k = 1, 2, ..., L then

λj = λP (X = j) = λ
wj

w1 + w2 + ...+ wL
= λwj because of w1+w2+...+wL = 1.

Example 4.4.1 Let the claim amounts consist of {1, 2, 3} with claim frequency λ1,

λ2, and λ3, respectively. In this circumstance, the transition probability is computed

as below.

P (x→ x′) =< x|e−tH |x′ > =

2π∫
0

dp

2π
< x|e−tH |p >< p|x′ >

=

2π∫
0

dp

2π
< x|p >< p|x′ > e−tKp

=
1

2π

2π∫
0

(eixp − e−ix′p)e−tKpdp

=
1

2π

2π∫
0

eip(x−x
′)e−t(−cip+λ1+λ2+λ3−e−ipλ1−e−2ipλ2−e−3ipλ3)dp

=
e−(λ1+λ2+λ3)t

2π

2π∫
0

eip(x−x
′)+t(cip+e−ipλ1+e−2ipλ2+e−3ipλ3)dp.

(4.4.11)

When the integral in 4.4.11 is solved by the trapezoidal rule for h = 2π
N

numerically,

the results for u = 20, t = 40, c = 2, λ = 0.9, Xi = {1, 2, 3} with λi = λ
3
, are
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displayed in Figures 4.3 and 4.4 for N = 5000 and N = 200.
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Figure 4.3: P (20→ value at time 40) for N=5000

-400 -300 -200 -100 0 100 200 300 400

Value at time t

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

T
ra

ns
iti

on
 p

ro
ba

bi
lit

y 
w

ith
 in

iti
al

 v
al

ue
=

20

N=200

Figure 4.4: P (20→ value at time 40) for N=200



4.4. Deriving of the Hamiltonian operators and computation of
transition probability for different Hamiltonian operators 75

4.4.3 Case 3: Gaussian claim sizes and Gaussian Hamilto-

nian

Now, we replace the surplus process Rt by the Brownian motion {Bt ; t ≥ 0} with

mean parameter µ and variance parameter b2. The Traditional Hamiltonian is found

via

Hf(x) = lim
t→0

I − P (t)

t
f(x)

= lim
t→0

f(x)− E[f(x+Bt)]

t

= −b
2

2
f ′′(x)− µf ′(x). (4.4.12)

Proof of this equation is achieved via Ito’s Lemma.

Definition 25 (Ito’s Lemma)

{St : t ≥ 0} is an Ito process if it satisfies the following stochastic differential

equation.

dSt = µtdt+ σtdBt

where Bt is a Brownian process (also called a Wiener process), µt is a drift, and σt

is volatility.

f(t, St) is also an Ito process with

df(t, St) = f ′StdSt + f ′tdt+
1

2
f ′′St,St(dSt)

2

= f ′St [µtdt+ σtdBt] + f ′tdt+
1

2
f ′′St,Stσ

2
t dt

because (dSt)
2 = σ2

t dt in Ito’s lemma.

Proof of 4.4.12.

HQ(x) = lim
t→0

I − P (t)

t
Q(x)

= lim
t→0

Q(x)− E[Q(x+Bt)]

t
.
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Let’s get f(Bt) = Q(x+Bt).

f(Bt) = f(0) +

t∫
0

f ′B(Bu)dBu+

t∫
0

1

2
f ′′BB(Bu)du

E[f(Bt)] = E[f(0)] + E[ito] + E[

t∫
0

1

2
f ′′BB(Bu)du]

where E[ito] = 0 and E[f(0)] = Q(x+B0) = Q(x).

Therefore,

HQ(x) = lim
t→0

Q(x)− E[Q(x+Bt)]

t

= lim
t→0

Q(x)− (Q(x)− 1
2

t∫
0

E[Q′′(x+Bu)]du)

t

= −1

2
f ′′(x).

Here we get a standard Brownian motion where σ2 = 1 and µ = 0. Similarly, when

we consider f(Bt) = Q(x+σBt+µt) for different values of σ and µ, equation (4.4.12)

is obtained.

However, instead of using this Hamiltonian in equation (4.4.12) directly, it is more

convenient to apply the slightly modified Dirac-Feynman formula [5] stated in the

lemma below.

Lemma 26

P (xi → xi+1) = < xi|e−MtH−V |xi+1 >

=
1√

2πσ2
Mt

e
−(xi+1−(xi+cMt−mλMt))

2

2σ2Mt e−V (xi+1) (4.4.13)

where

V (xi+1) =

0, if xi+1 > 0,

∞, if xi+1 < 0.

.

Notice that in this formula, the mean and variance parameters are found by matching
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the corresponding parameters of the surplus process Rt, which is the Levy process.

Moreover, in this case we assume that the claim sizes have a Gaussian distribution

with mean m and variance σ2. Then,

E[Rt] = R0 + t(c−mλ) ,

σ2
Mt = Var(R∆t) = var(S(M t))

= E[N(M t)]var(X) + var(N(M t))E[X]2

= λ M tσ2 + λ M tm2 .

In Figure 4.5, the way that equation (4.4.13) is changing with respect to for differ-

ent variances (var = 10, 50, 100, 200) can be seen for u = 20, t = 30, c = 6, λ =

0.5, m = 10.
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Figure 4.5: P (20→ value at time 30) for different variance
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4.5 Ruin Probability via Quantum Mechanics

4.5.1 Path integral, Path calculations

〈x0| e−tH |xn〉 gives the probability for the particle to travel in a given space time

t from point (x0, 0) to point (xn, 0). When all the possible paths are taken into

consideration,
∞∫

−∞

dxn 〈x0| e−tH |xn〉 = 1.

For t1 < t, when the particle goes to (xn, t) from (x0, 0) providing it is x1 at time t1,

〈x0| e−tH |xn〉 =

∞∫
−∞

dx1 〈x0| e−t1H |x1〉 〈x1| e−(t−t1)H |xn〉 .

Similarly, let xi be the position of the particle at times ti < t , i = 0, 1, ..., n.

Figure 4.6: Path of the capital

In this circumstance, 〈x0| e−tH |xn〉 can be formalized [5, 6, 31] by

〈x0| e−tH |xn〉 =

∞∫
−∞

∞∫
−∞

· · ·
∞∫

−∞

dx1dx2...dxn−1 〈x0| e−t1H |x1〉 〈x1| e−(t2−t1)H |x2〉

... 〈xn−1| e−(t−tn−1)H |xn〉 .

Non ruin probability via the quantum mechanics approach can be computed by the

path integral method. Clearly, we can compute the non ruin probability for the con-

tinuous process by restricting the integral over region 0 < x1 < ∞, . . . , 0 < xn−1 <

∞.
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Here, the initial capital is x0 = u and capital at time tn (or t) is xn.

Note that t1 + (t2 − t1) + t3 − t2)...+ (t− tn−1) = t.

In case of integer claim size and grid size ε = 1, the non ruin probability at time t

is computed by all possible determinate paths

Pu(T > t) = (1 + o(1))
∑
x1=1

〈u| e−t1H |x1〉
∑
x2=1

〈x1| e−(t2−t1)H |x2〉
∑
x3=1

〈x2| e−(t3−t2)H |x3〉

· · ·
∑
xn=1

〈xn−1| e−(t−tn−1)H |xn〉 . (4.5.14)

For case 3, the error o(1) depends on the grid size. For other cases, it depends on

the grid and the numerical approximation of the integral in 4.4.8 and 4.4.10.

To overpass the computational complexity in 4.6.21 due to the large number of

paths, we apply the Markov chain approach (see e.g. [11], [64]) mentioned in the

previous chapter. More exactly, let us define d× d transition matrix A as transition

probabilities over a single time period for grid size 1.

Ai,j = P (Rk+1 = j|Rk = i).

Let An denote the matrix with A
(n)
i,j = P (Rn = j|R0 = i) where A

(n)
i,j is an element

of An.

From the Chapman-Kolmogorov equation for the discrete and homogeneous Markov

chain,

A(t1 + t2) = A(t1)A(t2).

Notice that it is convenient in our approach to define 0 as the absorption state for

the ruin probability. Then,

Pu(T ≤ t) = (1 + o(1))A
(t)
u,0 ,

Pu(T > t) = 1− P (T < t|R(0) = u) = (1 + o(1))
d−1∑
j=1

A
(t)
u,j

where the error terms depend on the grid.
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Quantum path approach. Now, similarly let A denote the transition matrix via

quantum mechanics characteristics. The modified matrix is stated in the following

lemma.

Lemma 27

A =



1 0 0 0 · · · 0 · · ·

1−
∑
i=1

< 1|e−H |i > < 1|e−H |1 > < 1|e−H |2 > < 1|e−H |3 > · · · < 1|e−H |u > · · ·

1−
∑
i=1

< 2|e−H |i > < 2|e−H |1 > < 2|e−H |2 > < 2|e−H |3 > · · · < 2|e−H |u > · · ·

1−
∑
i=1

< 3|e−H |i > < 3|e−H |1 > < 3|e−H |2 > < 3|e−H |3 > · · · < 3|e−tH |u > · · ·

1−
∑
i=1

< 4|e−H |i > < 4|e−H |1 > < 4|e−H |2 > < 4|e−H |3 > · · · < 4|e−H |u > · · ·
...

...
...

... · · · ... · · ·

1−
∑
i=1

< u|e−H |i > < u|e−H |1 > < u|e−H |2 > < u|e−H |3 > · · · < u|e−H |u > · · ·
...

...
...

... · · · ... · · ·


(4.5.15)

where transition probabilities 〈i| e−H |j〉 are computed via (4.4.8), (4.4.10), or (4.4.13)

according to the case considered.

The next theorem states our main numerical approach, which will be applied in all

relevant numerical results further on.

Theorem 28 Assuming the above, for function f : Z+ → R with f(0) = 0

E[f(Rt)I(T > t)|R0 = u] = (1 + o(1))Atf(u). (4.5.16)

where At is a semi group and At = At.

Proof. Let us consider a family of operators

Atf(u) = E[I(T > t)f(Rt)|R0 = u].

Firstly, we show that At is a semigroup. Let Ft be the σ-algebra generated by Rs, s ≤
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t. We apply the Chapman-Kolmogorov argument and write for t > s > 0,

Atf(R0)) = E{E[I(T > t)f(Rt)|Fs}|R0]

= EI(T > s){E[I(T > t)f(Rt)|Fs}|R0 = u]

using the Markov property and the time shift

= E[I(T > s)At−sf(Rs)|R0]

= As(At−sf)(R0).

Finally, by discretization and approximation of A1, we prove the theorem.

In particular, the non-ruin and ruin probabilities are found by

Pu(T > t) = (1 + o(1))
∞∑
j=1

Atu,j , (4.5.17)

Pu(T ≤ t) = (1 + o(1))Atu,0.

4.6 Comparison with the other methods

In this section, the quantum mechanics approach will be compared with the Markov

Chain and the Picard-Lefevre methods.

According to the Picard-Lefevre approach mentioned in Section 2.4, the finite

time non ruin probability is found by

Lemma 29

P (T > t|R0 = u) = e−λt
u∑
j=0

{ej(t) +

[ct+u]∑
n=u+1

ej(
j − u
c

)
ct− n+ u

ct− j + u
en−j(t+

u− j
c

)}

(4.6.18)

where

en(t) =
n∑
k=0

(λt)k

k!
q∗kn and q∗kn = P (X1 +X2 + ...+Xk = n).

In order to compare the quantum mechanics approach with a second method, the

Markov Chain approach mentioned in Chapter 2 will be used. According to that
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approach, ruin and non ruin probability are found by

Pu(T ≤ t) = (1 + o(ε))A(t)u,0

Pu(T > t) = 1− P (T ≤ t|R(0) = u)

= (1 + o(ε))
∑
j=1

A(t)u,jε

where A(t) is found by

A(t) = A[ t
ε
]

or

A(t+ ε) = A(t) + A(t)Qε+
A(t)Q2(ε)2

2!
+O((ε)3). (4.6.19)

4.6.1 Numerical results for the comparison

In this part, numerical results on non-ruin probability are compared via the following

approaches:

(i) Quantum Mechanics Approach with Poisson Hamiltonian operator;

(ii) Quantum Mechanics Approach with Compound Poisson Hamiltonian operator;

(iii) Quantum Mechanics Approach with the Gaussian Hamiltonian operator;

(iv) Appell Polynomials approach as introduced by Picard and Lefevre;

(v) Classical Markov approach

4.6.2 Fixed claim sizes

In the case we assume that an insurance company covers all claims with the same

amount, the claim premium c = 1, the claim frequency λ = 0.4, and the claim mean

m = 2.

In Table 4.1, the numerical results for grid size ε = 1 via the quantum approach

with the Poisson Hamiltonian, the Appell Polynomials approach, traditional Markov

chains approach are summarized.
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Table 4.1: Comparison of the methods
Initial
capital

(u)

Time
(t)

Quantum
Approach

Appell
Polynomial
Approach

Markov
Approach

2 5 0.7042 0.7041 0.7041
5 5 0.9331 0.9331 0.9331
10 5 0.9982 0.9981 0.9981
20 5 1.0001 1 1
2 20 0.5308 0.5306 0.5306
5 20 0.8126 0.8124 0.8124
10 20 0.9683 0.9681 0.9681
20 20 0.9998 0.9996 0.9996
2 40 0.4835 0.4833 0.4833
5 40 0.7568 0.7564 0.7564
10 40 0.9397 0.9393 0.9393
20 40 0.9981 0.9977 0.9977

Similarly, for c = 1, λ = 0.3, m = 3, the results are listed in Table 4.2.

Table 4.2: Comparison of the methods
Initial
capital

(u)

Time
(t)

Quantum
Approach

Appell
Polynomial
Approach

Markov
Approach

2 5 0.5612 0.5612 0.5612
5 5 0.8571 0.857 0.857
10 5 0.9802 0.9802 0.9802
20 5 1 0.9999 0.9999
2 20 0.3614 0.3614 0.3614
5 20 0.6338 0.6338 0.6338
10 20 0.8708 0.8708 0.8708
20 20 0.992 0.9919 0.9919
2 40 0.2916 0.2916 0.2916
5 40 0.5281 0.528 0.528
10 40 0.7802 0.7801 0.7801
20 40 0.965 0.9649 0.9649

As seen from the tables above,

� the non ruin probabilities via the three methods are very close.

� the computation process in quantum approach takes more time compared to

the others. Note that the computation time in Markov Approach depends on

dimension of transition matrix.
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4.6.3 Random integer valued claim sizes with discretized

exponential distribution

In this case, we assume that all claims are integer valued and in addition the prob-

ability mass functions are discretized exponential distribution. The results for the

quantum approach with the compound Poisson Hamiltonian, the Appell Polyno-

mial, the Markov approaches and Monte Carlo Approach are summarized in Tables

4.3 and 4.4, where claim premium c = 1, claim frequency λ = 0.04, claim mean

m = 20 and the iteration number is 200 for Monte Carlo Approach.

Difference Monte Carlo and Markov chain Approaches is random claim samplings.

Monte Carlo Approach, Given the grid size ε = 1 and assuming the claim size has

integer values with discrete exponential distribution and the claim mean m,

P (X) =
1
m
e−

1
m
x

∞∑
k=1

1
m
e−

1
m
k

. (4.6.20)

Table 4.3: Comparison of the methods
Initial
capital

(u)

Time
(t)

Quantum
Approach

Appell
Polynomial
Approach

Markov
Appraoch

Markov
Monte Carlo

Approach
2 5 0.8484 0.8478 0.8484 0.8554
5 5 0.8676 0.8667 0.8677 0.8716
10 5 0.8944 0.893 0.8945 0.8965
20 5 0.9329 0.9307 0.933 0.9338
2 20 0.6174 0.616 0.6176 0.6318
5 20 0.6558 0.6543 0.656 0.6626
10 20 0.7116 0.71 0.712 0.7212
20 20 0.7985 0.7965 0.7988 0.7998
2 40 0.4919 0.4933 0.4923 0.5093
5 40 0.5328 0.5347 0.5332 0.5449
10 40 0.5943 0.5972 0.5948 0.6108
20 40 0.6958 0.7006 0.6964 0.7144
2 60 0.4287 0.4338 0.4293 0.4415
5 60 0.4682 0.4743 0.4688 0.4835
10 60 0.5287 0.5366 0.5294 0.5523
20 60 0.6319 0.6439 0.6328 0.6518

The results of the four methods with claims distributed exponentially (claim fre-



4.6. Comparison with the other methods 85

quency λ = 0.03 and mean of claims m = 30) are listed in Table 4.4.

Table 4.4: Comparison of the methods
Initial
capital

(u)

Time
(t)

Quantum
Approach

Appell
Polynomial
Approach

Markov
Appraoch

Markov
Monte Carlo

Approach
2 5 0.8766 0.8766 0.8768 0.8768
5 5 0.8875 0.8873 0.8877 0.8901
10 5 0.9037 0.9032 0.9038 0.9026
20 5 0.9293 0.9284 0.9294 0.9319
2 20 0.6557 0.6554 0.6563 0.6619
5 20 0.6808 0.6804 0.6814 0.6868
10 20 0.7187 0.7181 0.7193 0.7297
20 20 0.7819 0.7808 0.7824 0.7948
2 40 0.515 0.5157 0.516 0.5314
5 40 0.5437 0.5446 0.5447 0.5531
10 40 0.5881 0.5892 0.5891 0.5947
20 40 0.6651 0.6666 0.6662 0.6726
2 60 0.4391 0.4418 0.4405 0.4508
5 60 0.4674 0.4705 0.4688 0.4764
10 60 0.5118 0.5156 0.5133 0.5272
20 60 0.591 0.596 0.5925 0.6074

As we see from Tables 4.3 and 4.4,

� the non ruin probabilities in the quantum, the polynomial, and the Markov

approaches are very close again. Therefore, it is not possible to determine

which methods give better results.

� Computation takes more time in quantum approach than the others. However,

it can take more time in Monte Carlo because it depends on the iteration

number.

4.6.4 Discretized Gaussian Distributions

The quantum mechanics approach with the Gaussian Hamiltonian is compared with

the Picard-Lefevre and Markov approaches when claim amounts have a discretized

Gaussian distribution.

The non ruin probabilities are summarized in Table 4.5, where claim premium c = 1,

claim frequency λ = 0.04, claim mean m = 20, and claim variance σ2 = 100.
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Table 4.5: Comparison of the methods
Initial
capital

(u)

Time
(t)

Quantum
Approach

Appell
Polynomial
Approach

Markov
Approach

10 5 0.6903 0.9051 0.9051
20 5 0.9242 0.9086 0.9086
40 5 0.999 0.9589 0.9589
60 5 1 0.9947 0.9947
10 10 0.5474 0.82 0.82
20 10 0.8085 0.831 0.831
40 10 0.9833 0.931 0.931
60 10 0.9995 0.984 0.984
10 20 0.4248 0.6814 0.6814
20 20 0.6675 0.7227 0.7227
40 20 0.9214 0.8881 0.8881
60 20 0.9887 0.9549 0.9549
10 30 0.3659 0.5926 0.5925
20 30 0.588 0.6672 0.6672
40 30 0.861 0.8444 0.8444
60 30 0.966 0.9273 0.9273

For λ = 0.03 and m = 30, the non ruin probabilities are shown in Table 4.6.

Table 4.6: Comparison of the methods
Initial
capital

(u)

Time
(t)

Quantum
Approach

Appell
Polynomial
Approach

Markov
Approach

10 5 0.701 0.8659 0.8659
20 5 0.9343 0.8901 0.8901
40 5 0.9994 0.9769 0.977
60 5 1 0.9953 0.9955
10 10 0.5508 0.7571 0.7571
20 10 0.8189 0.8109 0.811
40 10 0.987 0.952 0.9522
60 10 0.9997 0.9857 0.9859
10 20 0.4194 0.6131 0.6131
20 20 0.6696 0.7164 0.7164
40 20 0.928 0.8969 0.897
60 20 0.9911 0.9623 0.9623
10 30 0.3555 0.5406 0.5405
20 30 0.5828 0.6563 0.6562
40 30 0.8648 0.8477 0.8476
60 30 0.9698 0.9372 0.9369

As seen from the tables, while the Appell polynomial and Markov methods produce
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close results, the quantum approach with the Gaussian Hamiltonian gives slightly

different results at relatively small initial capital u, when the Gaussian approxima-

tion is not good enough, as expected.

4.6.5 Advantages and Disadvantages

The disadvantage of the method is that the computation process can take more time

for the Levy process in comparison with the Appell and Markov Approaches.

The advantage of quantum mechanics appraoch is that we do not need to choose

particular Hamiltonian operator or eigenvalue Kp of the Hamiltonian operator cor-

responding to the Levy process. Therefore, it makes the method more flexible.

P (xi → xi+1) =< xi|e−MtH |xi+1 > =

2π∫
0

dp

2π
< xi|e−MtH |p >< p|xi+1 >

=

2π∫
0

dp

2π
< xi|p >< p|xi+1 > e−MtKp .

In computing the propagator above, let’s consider Gambler’s ruin problem.

Example 4.6.1 (Gambler’s Ruin Problem) Here, we consider a random walk

that cannot be embedded in a Levy process.

As mentioned in Section 2.2.2, according to the game, the xi goes to xi + 1 with

probability α or goes to xi − 1 with probability β = 1− α.

A |p〉 (xi) = E[eipxi+1 ]

= (eipα + e−ipβ)eipxi

e−H |p〉 = e−Kp |p〉

where Kp and |p〉 are eigenvalue and eigenvector of Hamiltonian operator H.

In this circumstance,

Kp = −ln(eipα + e−ipβ).
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According to Kp, the propagator for t = 1 is defined by

P (xi → xi+1) =

2π∫
0

dp

2π
< xi|p >< p|xi+1 > e−tKp

=

2π∫
0

dp

2π
eip(xi−xi+1)(eipα + e−ipβ).

= α

2π∫
0

dp

2π
eip(xi−xi+1+1) + β

2π∫
0

dp

2π
eip(xi−xi+1−1)

=

α for xi − xi+1 + 1 = 0

β for xi − xi+1 − 1 = 0

Similarly, it can be shown for t = 2 by

P (xi → xi+1) =

2π∫
0

dp

2π
< xi|p >< p|xi+1 > e−2Kp

=

2π∫
0

dp

2π
eip(xi−xi+1)(e2ipα2 + 2αβ + e−2ipβ2).

=


α2 for xi − xi+1 + 2 = 0

2αβ for xi − xi+1 = 0

β2 for xi − xi+1 − 2 = 0

As seen above, it is just quantum version of binomial model.

Numerical calculations give

P20(T > 100) = 0.3972, for u=20, t=100, p=0.4,

P40(T > 200) = 0.9994, for u=40, t=200, p=0.6.

Example 4.6.2 (Non Levy process) Let’s consider a non Levy process. Let us

choose the operator as P (i→ j) = P (X = j) with P (X = 0) = p and P (X = j) =
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q/M , j = 1, . . . ,M .

A =



0 1 2 . . . M

0 p q
M

q
M

. . . q
M

1 p q
M

q
M

. . . q
M

...
...

...
...

...
...

M p q
M

q
M

. . . q
M


where p = 0.3, q = 0.7, and M = 100.

In this circumstance, non ruin probability via the following formula gives the same

answer regardless of the initial capital.

Pu(T > t) = (1 + o(1))
∑
x1=1

< u|A|x1 >
∑
x2=1

< x1|A|x2 >
∑
x3=1

< x2|A|x3 >

· · ·
∑
xn=1

< xn−1|A|xn > . (4.6.21)

The numerical results agree with the simple theoretical answer

Pu(T > t) = (1− p)t.

Example 4.6.3 (Non iid chain) Now, each odd row is replaced by P (2j + 1 →

0) = 1, so the matrix operator is defined when M is an even number by

A =



0 1 2 . . . M

0 p q
M

q
M

. . . q
M

1 1 0 0 . . . 0

2 p q
M

q
M

. . . q
M

3 1 0 0 . . . 0
...

...
...

...
...

...

M p q
M

q
M

. . . q
M



for u=40, t=5, p=0.3, P40(T > 5) = 0.0105,

for u=20, t=5, p=0.3, P42(T > 5) = 0.0105.
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Again, the results agree with the theoretical answer

Pu(T > t) = 2(q/2)t when u is even.



Chapter 5

OPTIMIZATION

This Chapter is based on a paper entitled “Ruin Probability via Quantum Mechan-

ics Approach” [76].

There are many insurance companies in the world. The sector is competitive because

customers compare various companies and make a selection based on the premium

rate, the money the insurer has to cover.

In general, low premium rates and a high percentage of covered claims attract the

interest of customers. However, this potentially increases the ruin probability and

thus affects the amount of profit. Therefore, there should be a balance between the

interest of customers and the profit.

Insurance companies arrange claim payment, premium rate, and initial capital to

keep the number of policies and expected profit amount at a high level and the risk

probability at a low level. Optimization plays an important role in the competitive

market for these reasons.

Optimization is the selection of the best available parameters in all possible alter-

natives. Many optimization problems like optimal investment policies [8], optimal

dividends problems [23, 79], optimal reinsurance [20], and optimal insurance [30]

have been studied in actuarial science.

In this chapter, optimization is taken into consideration with regard to non ruin

probability. In solving the subsequent optimization problems in this chapter, equa-

tions (4.4.8), (4.4.10), and path integral formula from (4.6.21) in Chapter 4 will be

used.
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In the following optimization problems, the quantum mechanics techniques as a

numerical approach has been applied. This is one of the novelties in this thesis.

5.1 Optimization of allocation of initial capitals

Let us consider two surplus processes with different claim frequencies and different

claim means. This case can be seen that an insurance company invests in two

different insurance sectors or two insurance companies have a partnership. They

are common business practices in insurance sector. However, here novelty is that all

computations have been done via quantum mechanics approach.

Let T1 and T2 be the ruin times for first and second processes, respectively.

τ = min(T1, T2) and

P (τ > t|u1, u2) = P (T1 > t|R0 = u1 )P (T2 > t|R0 = u2 )

where u = u1 + u2 will be referred to as the allocation of initial capitals.

Optimization of allocation of initial capitals is to find the allocation (u1, u2) that

results in the largest non ruin probability.

Non ruin probability that depends on u1, u2 and time t in case of the claim frequen-

cies λ1 = 0.4, λ2 = 0.3, the claim means m = 2, m = 3, the premium rate c = 1,

and the total initial capital u1 + u2 = 20 is displayed in Figure 5.1.
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Figure 5.1: Optimization of allocation of initial capitals
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From Figure 5.1, for the largest non ruin probability, the optimum initial capitals u1, u2 are summarized in the following table.

u1 u2 P(T>1) P(T>2) P(T>3) P(T>4) P(T>5) P(T>6) P(T>7) P(T>8) P(T>9) P(T>10)
1 19 0.670233 0.628882 0.541918 0.524605 0.481359 0.471456 0.444809 0.438071 0.419787 0.414925
2 18 0.938306 0.808554 0.782717 0.718272 0.70344 0.663557 0.653764 0.626283 0.618708 0.598601
3 17 0.938306 0.916337 0.854954 0.8397 0.797787 0.786954 0.7563 0.748351 0.725232 0.71801
4 16 0.991901 0.952229 0.940021 0.903154 0.8927 0.863654 0.855259 0.831076 0.824605 0.805282
5 15 0.991901 0.985788 0.962249 0.954835 0.931342 0.923335 0.903174 0.89632 0.876976 0.871751
6 14 0.9991 0.990613 0.986368 0.970863 0.965909 0.949707 0.942344 0.928022 0.921827 0.905448
7 13 0.9991 0.997461 0.990934 0.987268 0.975196 0.971471 0.959107 0.951067 0.940569 0.934347
8 12 0.9998 0.99793 0.994942 0.989917 0.98564 0.974041 0.970804 0.960135 0.950481 0.942441
9 11 0.9995 0.998922 0.99559 0.989452 0.985105 0.979249 0.966158 0.962953 0.952636 0.940805
10 10 0.9996 0.996192 0.994727 0.988737 0.977778 0.973495 0.965468 0.949793 0.946367 0.935656
11 9 0.9996 0.996371 0.985937 0.983162 0.973594 0.956962 0.95239 0.942027 0.92344 0.919696
12 8 0.9963 0.993927 0.984337 0.964205 0.959955 0.946603 0.924466 0.91949 0.907028 0.885839
13 7 0.9963 0.976704 0.971577 0.954947 0.925648 0.920137 0.903688 0.877312 0.872023 0.858089
14 6 0.9963 0.976704 0.936903 0.929259 0.906776 0.870561 0.864181 0.845715 0.816778 0.811358
15 5 0.963 0.952038 0.91863 0.865671 0.856661 0.831326 0.792324 0.785693 0.766834 0.737692
16 4 0.963 0.877996 0.863784 0.825041 0.768421 0.75927 0.734073 0.696164 0.689841 0.672035
17 3 0.963 0.877996 0.772359 0.757319 0.718252 0.663426 0.654814 0.631386 0.596624 0.590896
18 2 0.7408 0.71339 0.65042 0.572163 0.561022 0.532081 0.491466 0.485089 0.467736 0.441991
19 1 0.7408 0.548785 0.52848 0.481831 0.423858 0.415605 0.394166 0.364079 0.359356 0.346502
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According to Figures 5.1,5.2 and Table 5.1, the non ruin probability is higher when

the difference between u1 and u2 is smaller. However, an increase in time causes less

non ruin probability.

5.2 Optimization of proportion of the total claim

amount paid with the prescribed ruin level

In insurance contracts, the companies can either refuse to cover all claims or they

can just give a proportion of claim. The second situation can affect satisfaction of

the insured and number of customers.

Optimization of proportional factor is studied in proportional reinsurance models

[35].

With the proportion of the total claim amount, the surplus process is defined by

Rt = u+ ct− kS(t)

= u+ ct−
N(t)∑
i=1

kXi,

where k is the proportionality factor determining the total claim amount the insurer

covers. The proportionality factor is used in proportional reinsurance agreements

as well.

The optimization problem is to maximize the covered level k with respect to the

prescribed ruin level `,

max{k : such that Pu(T > t) ≥ `}.

Table 5.2 shows non ruin probabilities at time 8, 9 and 10 for u = 5, c = 1, λ =

0.1, m = 10 with respect to different proportionality factors k = [0.6, 0.7, 0.8, 0.9, 1].
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P (T > 8) P (T > 9) P (T > 10)
k=0.6 0.7931 0.7887 0.7817
k=0.7 0.7189 0.6912 0.6898
k=0.8 0.6740 0.6505 0.6254
k=0.9 0.6291 0.6099 0.5886
k=1 0.5841 0.5692 0.5518

For ` = 0.6,

max{k : such that Pu(T > t) ≥ `} =


0.9, for t = 8,

0.9, for t = 9

0.8, for t = 10

.

5.3 Optimization of allocation of investments and

withdrawals

In this section, we consider the market consisting of two cooperative insurance com-

panies with the overall capital investment 0.

This case like section 5.1 can be seen that an insurance company invests in two dif-

ferent insurance sectors or two insurance companies have a partnership. However,

additionally, there is capital swap transaction in this case.

Let R
(1)
t and R

(2)
t be surplus processes of two insurance companies.

R
(1)
t = u1 + c1t− S1(t) + C1(t)

R
(2)
t = u2 + c2t− S2(t) + C2(t)

where C1(t) =
k∑
j=1

ajε1(tj)I(t>tj) and C2(t) =
k∑
j=1

ajε2(tj)I(t>tj) are swapped capitals

between two companies by injection (money coming in) or reduction (money coming

out).

Swap strategy: Let us consider two different actuarial companies that can swap

the money between them.

Assumption 1 We assume that claim processes are independent.

Assumption 2 Total capital allocation is C1(t)+C2(t) = 0 and only a finite number
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of the capital allocation (C-Allocation) occurs.

This means that when one of the insurance companies is exposed to the capital

injection, the other gets the capital withdrawal.

More exactly, at specific times ti, i = 1, . . . , k, the companies swap the capital by

amount ai > 0, so that one of them gets a positive amount a (i.e. an injection occurs

Rti → Rti+0 = Rti + ai) and the other gets the withdrawal of the capital by ai (i.e.

reduction occurs Rti → Rti+0 = Rti − ai).

Observing of the process can be done by daily, monthly or annually. It just depends

on the grid time size.

Let

εi(t1) =

 1, when injection

−1, when withdrawal.

We say that the ruin occurs if one of the companies is ruined. Let Ti be the ruin

time of the i− th company and let τ be the ruin time of the market. Then,

τ = min(T1, T2) and

P (τ > t|u1, u2) = P (T > t|R0 = u1 C-Allocation)P (T > t|R0 = u2 and reverse C-Allocation).

The goal of optimizing the allocation of injections and withdrawals is to find an

optimal injection (or reduction) amount ai and time allocations ti to get the largest

non-ruin probability.

To compute the non ruin probability, the numerical approach of the quantum me-

chanics techniques mentioned in Chapter 4 has been applied.

Figure 5.3 shows the non ruin probability as a function of one time allocation and

the capital allocation for u1 = 5, u2 = 5, t = 10, c1 = 1, c2 = 1, λ1 = 0.4, λ2 =

0.3, m1 = 2, and m2 = 3.
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Figure 5.3: Optimization of injections and withdrawals

Figure 5.3 and Table 5.3 shows that the capital swap time and amount affect the

non ruin probability on a large scale. According to the figure and table, the largest

non-ruin probability is 0.656699, which is attained on the capital transfer of amount

1 from Company 2 to Company 1 at time 3.

C1(t) C2(t)
P(T>10)
t1 = 1

P(T>10)
t1 = 2

P(T>10)
t1 = 3

P(T>10)
t1 = 4

P(T>10)
t1 = 5

P(T>10)
t1 = 6

P(T>10)
t1 = 7

P(T>10)
t1 = 8

P(T>10)
t1 = 9

-5 5 0.259183 0.257431 0.346468 0.330291 0.398342 0.389073 0.432634 0.429795 0.480147
-4 4 0.374788 0.443478 0.434007 0.473003 0.470459 0.512538 0.492741 0.539394 0.528556
-3 3 0.52213 0.519978 0.547878 0.528229 0.561836 0.553138 0.568125 0.565763 0.590597
-2 2 0.609322 0.62263 0.614133 0.617418 0.617418 0.63098 0.613585 0.635218 0.625311
-1 1 0.64868 0.64868 0.656699 0.641004 0.650293 0.650293 0.644434 0.644435 0.653876
0 0 0.649378 0.649378 0.649378 0.649378 0.649378 0.649378 0.649378 0.649378 0.649378
1 -1 0.615974 0.615974 0.629726 0.629726 0.623291 0.641943 0.635493 0.635493 0.649378
2 -2 0.560112 0.558744 0.551159 0.591263 0.582644 0.580757 0.610694 0.608645 0.599689
3 -3 0.425655 0.481704 0.473545 0.471437 0.521797 0.519499 0.5106 0.562701 0.553459
4 -4 0.338234 0.336766 0.421842 0.419473 0.410869 0.487955 0.47854 0.476013 0.553778
5 -5 0.261353 0.260074 0.254665 0.360136 0.352305 0.350177 0.435406 0.432973 0.425124

Note that here the surplus process is just observed for one capital swap. Similarly,

it can be observed for several capital swaps.



Chapter 6

REINSURANCE

This chapter is based on a published paper entitled “Ruin Probability via Quantum

Mechanics Approach” [76] and submitted paper entitled “Optimal reinsurance via

Dirac-Feynman Approach” [77].

This chapter examines the numerical computation of the (non) ruin probability of

a modified surplus process with reinsurance and the optimal reinsurance via the

Dirac-Feymnan approach.

Reinsurance is a risk sharing arrangement between a primary insurer and a reinsurer,

and can also be used to refer to risk managing and transferring in the insurance

industry [17].

There are a number of different types of reinsurance agreements, including

� Proportional reinsurance,

� Non-proportional reinsurance,

� Excess-of-loss reinsurance,

� Facultative coverage.

With the different types of reinsurance, there are various optimality approaches such

as in Castaner, Claramunt and Lefevre [12], Denuit and Vermandele [20], Dickson

and Waters [22], Ignatov, Kaishev and Krachunov [39], Kaishev and Dimitrova [40],

Schmidli [28], Zhou and Yuen [80], Schmidli [71].

We consider following non-proportional reinsurance agreement in this chapter.

99
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Reinsurance Agreement: Our insurance agreement is motivated by Nie et al [58]

[57]. According to the non proportional reinsurance agreement, the insured company

pays a reinsurance premium in advance in order to get capital injections at times

when the capital goes below a fixed given retention level. At the end of each time

interval, we observe the capital and if it is found to be below the retention level,

then the reinsurance company is supposed to raise the capital to the retention level.

6.1 Preliminary

Recall that the ruin process is defined by the following equation (see Chapter 1)

R(t) = u+ ct− S(t)

where u is the initial capital, c is the premium rate per unit time, t is time, S(t) =
N(t)∑
i=1

Xi is the total claim amount. N(t) is the claim number up to time t, and Xi is

the i-th claim amount.

Given the surplus process R(t), t ≥ 0, let the ruin time be

T =

 min{t ≥ 0|R(t) ≤ 0} for discrete time,

inf{t ≥ 0|R(t) ≤ 0} for continuous time.

We apply the following non ruin probability formula via the path integral approach

stated in equation (4.6.21) for ε = 1. It has been derived as

Pu(T > t) = (1 + o(1))
∑
x1=1

< u|A(t1)|x1 >
∑
x2=1

< x1|A(t2 − t1)|x2 >
∑
x3=1

< x2|A(t3 − t2)|x3 >

· · ·
∑
xn=1

< xn−1|A(t− tn−1)|xn > . (6.1.1)

where A is an operator.

For A is transition operator over a single time period ε ,

A(t) = A[ t
ε
].
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Then, the powers of the transition matrix are in such a form that

[t1
ε

]
,
[t2 − t1

ε

]
, · · · ,

[t− tn
ε

]
which are integer parts of the values.

For example, for the grid size ε = 1 , transition matrix in d dimensional is defined

by

A =



a0,0 a0,1 a0,2 a0,3 · · · a0,u · · ·

1−
d−1∑
i=1

a1,i a1,1 a1,2 a1,3 · · · a1,u · · ·

1−
d−1∑
i=1

a2,i a2,1 a2,2 a2,3 · · · a2,u · · ·

1−
d−1∑
i=1

a3,i a3,1 a3,2 a3,3 · · · a3,u · · ·

1−
d−1∑
i=1

a4,i a4,1 a4,2 a4,3 · · · a4,u · · ·
...

...
...

... · · · ... · · ·

1−
d−1∑
i=1

au,i au,1 au,2 au,3 · · · au,u · · ·
...

...
...

... · · · ... · · ·



(6.1.2)

where

Ai,j = ai,j =



1, if i = j = 0;

0, if i = 0, j 6= 0;

1−
d−1∑
j=1

ai,j, if j = 0, i 6= 0;

P (Rk+1 = j|Rk = i), for the other cases

.

< u|A(t1)|x1 >=< u|A[
t1
ε

]|x1 > is equal to the element in u+ 1 th row and x1 + 1 th

column of the matrix A[t1] for ε = 1 under assumption that zero is the absorption

state in our transition matrix. The assumption means that when the capital becomes

negative or null, ruin occurs.

Theorem 30 Under the assumption that 0 is an absorption state representing ruin

probability, and the observing unit time ε for bounded continuous function with
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f(0) = 0

E[f(Rt)I(T > t)|R0 = u] = (1 + o(ε))A[ t
ε
]f(u). (6.1.3)

with equation (4.6.21), ruin and non-ruin probability can be computed by

Pu(T > t) = (1 + o(ε))
∞∑
j=1

A
[ t
ε
]

u,jε , (6.1.4)

Pu(T ≤ t) = (1 + o(ε))A
[ t
ε
]

u,0, (6.1.5)

where the error terms depend on the grid time size.

Note that in our method, the interval [0,t] is observed by [ t
ε
− 1] times.

For example, when the time is 20 with grid size =0.01, the capital [ t
ε
− 1] = 1999

times will be analysed in order to check that it is below the retention level or not.

6.2 Modified ruin model

In this section, we introduce the modified surplus process that incorporates the

reinsurance by capital injections.

6.3 Ruin probabilities for the modified ruin model

As mentioned above, there are various types of reinsurance arrangements provided

by reinsurers. For example, the modified risk process under a reinsurance agreement

where a primary insurance company pays the reinsurance premium regularly to keep

its capital above the retention level by getting capital injections, is defined by

R∗(t) = u+ (c− z)t− S(t) + Y (t)

where z is the reinsurance premium that the insured insurance company has to pay

at every time unit, and Y (t) is the expected total injection amount.

However, in this thesis we consider the reinsurance contract as discussed in Nie et al.
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(2011). For this contract, the first insurance company has to pay the initial premium

amount z in advance to the second insurance company (referred to as the reinsurer),

which restores the surplus of the first insurance company to a fixed retention level

(k) when the surplus process is below this retention level.

Example 6.3.1 In Figure 6.1, we consider a discrete version of a risk process with

three moves. After each time interval, the capital moves up with probability p1,

remains constant with probability p2, or goes down with probability p3.

In addition, at the end of each interval, the movement is observed. The position is

moved up to the retention level if it was below the retention level.
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Figure 6.1: Random walk of the capital

As seen from Figure 6.1, there is no need for the capital injection at time ε and 2ε

because it is above the retention level, but the injection is necessary at time 3ε with

probability p3
3.

To make it more realistic, we additionally assume that the primary insurance com-

pany set an upper level for the compensation of claims. Then, the aggregating claim

amount with h upper bound is defined by

H(S(t)) =

N(t)∑
i=1

[
XiI(Xi ≤ h) + hI(Xi > h)

]
. (6.3.6)

The modified surplus process is then defined by

R∗(t) = u+ ct− z −H(S(t)) + Y (t)

= w + ct−H(S(t)) + Y (t)
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where w = u− z is the new initial capital after buying reinsurance and

Y (t) = Y (w, k, t) =

[ t
ε
−1]∑
i=1

yi

is the total injection amount up to time t, defined by the retention level k, grid time

size ε, and exact initial capital w. Notice that under this reinsurance agreement the

capital injections may happen at each time jε, j = 1, 2, . . ..

Now, let us introduce an Injection operator (shift type operator) with 0 absorption

level and k retention level

(Kf)(x) =


f(x), if x ≥ k

f(k), if 0 < x < k

f(0), if x ≤ 0.

(6.3.7)

The matrix form of K with respect to barrier k is defined by

K =



0 1 2 · · · k k + 1 k + 2 · · ·

1 0 0 · · · 0 0 0 0 · · ·

0 0 0 · · · 0 1 0 0 · · ·

0 0 0 · · · 0 1 0 0 · · ·

0 0 0 · · · 0 1 0 0 · · ·

0 0 0 · · · 0 1 0 0 · · ·
...

...
...

...
...

...
...

...
...

0 0 0 · · · 0 1 0 0 · · ·

0 0 0 · · · 0 0 1 0 · · ·

0 0 0 · · · 0 0 0 1 · · ·



. (6.3.8)

Let P
k

w(T > t) and P
k

w(T ≤ t) be non ruin and ruin probabilities of the modified

surplus process, respectively. From equation (6.1.3) of Theorem 30 and equation
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(4.6.21), we derive

P
k

w(T > t) = (1 + o(1))
d−1∑
x1=1

< u|AK|x1 >
d−1∑
x2=1

< x1|AK|x2 >
d−1∑
x3=1

< x2|AK|x3 >

· · ·
d−1∑
xn=1

< xn−1|A|xn >

= (1 + o(1))
d−1∑
j=1

(
AKAK . . .K︸ ︷︷ ︸
t−1 times

A
)
w,j

= (1 + o(1))
d−1∑
j=1

(
(AK)t−1A

)
w,j
.

P
k

w(T ≤ t) = (1 + o(1))
(
AKAK . . .K︸ ︷︷ ︸
t−1 times

A
)
w,0

= (1 + o(1))
(

(AK)t−1A
)
w,0
.

In particular, we derive the following proposition for grid size ε.

Proposition 31 Under notation in above,

P
k

w(T > t) = (1 + o(ε))
d−1∑
j=1

(
(AK)[ t

ε
−1]A

)
w,jε

,

P
k

w(T ≤ t) = (1 + o(ε))
(

(AK)[ t
ε
−1]A

)
w,0

where the error term depends on the grid time size ε.

6.4 Effect of the injection operator

Notice that Kn = K because K2 = K. This can be seen in the matrix form of the

injection operator in 6.3.8.

Therefore, it is easier to work with

AnKnA = AnKA.

Operators (AK)nA and AnKA are types of transition matrices. Note that in

(AK)nA we apply the injection operator n times whereas in AnKA it is applied
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only once.

The operators K and A are non-commutative in general, which clearly poses nu-

merical complications.

Example 6.4.1 Let’s define matrix A and K by

A =



1 0 0 0 0

0.2 0.4 0.1 0.2 0.1

0.1 0.5 0 0.2 0.2

0.5 0.1 0.2 0.1 0.1

0.3 0.3 0.1 0.1 0.2


, K =



1 0 0 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 1


According to the matrix forms of operators A and K above, AK 6= KA.

Although AK 6= KA and more generally (AK)nA 6= AnKA, the ruin probability

computations via AnKA give close results for some values of claim frequency, claim

mean, and premium rate, as seen in Table 6.1.

6.4.1 Stochastic comparison of (AK)nA and AnKA

We first model the movement of the capital with initial capital w via the operators

(AK)nA and AnKA by a coupling construction. By abuse of notation, here by K

we also denote a function

K(x) =


x if x ≥ k

k, if 0 < x < k

0, if x ≤ 0.

Notice that

K(x) ≥ x. (6.4.9)

Clearly, if x > k, then K(x) = x, and if not, then K(x) = k.

Let

ai,j = P (R∗0 + ξ = j|R0 = i) = P (ξ = j − i|R∗0 = i) where ξ = c−X1.
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For n = 1, the initial capital w goes via (AK)nA to

w
A︷︸︸︷−→ w + ξ1

K︷︸︸︷−→ K(w + ξ1)

A︷︸︸︷−→ K(w + ξ1) + ξ2.

For n = 2, w goes to

w
A︷︸︸︷−→ w + ξ1

K︷︸︸︷−→ K(u− z + ξ1)

A︷︸︸︷−→ K(w + ξ1) + ξ2

K︷︸︸︷−→ K(K(w + ξ1) + ξ2)

A︷︸︸︷−→ K(K(w + ξ1) + ξ2) + ξ3.

In general, for n steps and w > 0,

[(AK)nA]w,R∗(n+1) = w

(AK)nA︷︸︸︷−→ R∗(n+ 1) = K(K(· · ·K(w + ξ1) + ξ2) + · · · ) + ξn+1.

(6.4.10)

A similar pattern for AnKA is given by

w
An︷︸︸︷−→ w + ξ1 + ξ2 + · · ·+ ξn

K︷︸︸︷−→ K(w + ξ1 + ξ2 + · · ·+ ξn)

A︷︸︸︷−→ K(w + ξ1 + ξ2 + · · ·+ ξn) + ξn+1

which gives the capital at time n+ 1 when the initial capital is w and the grid size

is 1. Therefore,

[AnKA]wR∗∗(n+1) = w
AnKA︷︸︸︷−→ R∗∗(n+ 1) = K(w+ ξ1 + ξ2 + · · ·+ ξn) + ξn+1. (6.4.11)

From equations (6.4.10), (6.4.11) and (6.4.9), we derive the following coupling in-
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equality

R∗(n+ 1) = K(K(· · ·K(w + ξ1) + ξ2) + · · · ) + ξm+1

≥ K(w + ξ1 + ξ2 + · · ·+ ξm) + ξm+1

≥ R∗∗(n+ 1)

which implies the following result.

Proposition 32 Under the notation above, for any integers x ≥ 1 and n ≥ 0,

∑
j=x

((AK)nA)w,j ≥
∑
j=x

(AnKA)w,j

implying that the ruin probabilities computed via (AK)nA are approximately smaller

than the corresponding ruin probabilities computed via AnKA.

Due to the stochastic comparison, the Wasserstein distance [41,48] can be computed

via the Monte Carlo approach simultaneously

dw(R∗(t), R∗∗(t)) = E[R(t)−R∗(t)] ≈ 1

N

N∑
j=1

[Rj∗(t)−Rj∗∗(t)].

In Table 6.1, we compare ruin probabilities computed via (AK)nA and AnKA for

various times t and various retention levels. Notice that

t = (n+ 1)ε.

The results are listed for the initial capital is 50, the premium rate is 20, the claim

sizes have a discretized exponential distribution with claim mean 18, claim frequency

1, and for no upper barrier h =∞.
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Table 6.1: Ruin probability via (AK)nA and AnKA

Time k via (AK)nA via AnKA dw(R(t), R(t))
30 5 0.4513 0.4527 0.1588
30 10 0.4463 0.4526 0.7519
30 15 0.4084 0.4524 5.6104
45 5 0.4837 0.4851 0.1745
45 15 0.4700 0.4850 2.0119
45 30 0.4206 0.4849 9.1205
60 5 0.5005 0.5018 0.1777
60 30 0.4376 0.5017 9.2851
60 45 0.3602 0.5015 21.6717

As seen from the table above, the ruin probabilities via (AK)nA are always smaller

than AnKA, as supported by the further discussion. The Wassertstein difference

is relatively small when the retention level k is small, but it increases significantly

with the retention level k and time t.

6.5 Expectation of the total capital injections amount

For a reasonable reinsurance contract in terms of reinsurance company, reinsurance

cost z is required to cover the average of the total injection amount, that is

E[Y (u− z, k, t)] < z.

We begin by stating a numerical formula for the expected total injection amount

E[Y (w, k, t)].

Proposition 33 Let 0 be the absorption level and ε be the grid time size. We

emphasize that Y (w, k, t) is treated for the discretized version as below.

E[Y (w, k, t)] =

[ t
ε
−1]∑
j=1

[ k
ε
−1]∑
i=1

(k − iε)
(

(AK)j−1A
)
w,iε

.

Proof. For simplicity, let’s consider the case of ε = 1.

Let yi and vi be the i-th injection amount and injection time,respectively, then
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yi =

k −R
∗(vi), if 0 < R∗(vi) < k

0, if R∗(vi) ≥ k.

Clearly, the expectation of capital injections paid by reinsurer at time t is defined

by

E[yt] =
k−1∑
i=1

(k − i)
(
AKAK...KA

)
w,i

=
k−1∑
i=1

(k − i)
(

(AK)t−1A
)
w,i
.

Therefore, the total injection amount is computed as follows.

E[Y (w, k, t)] =
t−1∑
j=1

E[yj]

=
k−1∑
i=1

(k − i)Aw,i +
k−1∑
i=1

(k − i)
(
AKA

)
w,i

+ ... +
k−1∑
i=1

(k − i)
(
AKAK...KA

)
w,i

=
t−1∑
j=1

k−1∑
i=1

(k − i)
(

(AK)j−1A
)
w,i
.

6.6 Numerical Results

In this section, three optimization examples are discussed and numerically illustrated

by applying the Dirac-Feynman approach.

1. Gaussian Claim size

In the Dirac-Feynman notation stated in Chapter 4 , we get A = e−MtH−V and,

for Gaussian claim distribution, we derive

P (xi → xi+1) = < xi|e−MtH−V |xi+1 >

=
1√

2πσ2
Mt

e
−(xi+1−(xi+cMt−mλMt))

2

2σ2Mt e−V (xi+1) (6.6.12)
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where the potential function V (xi+1) is defined by

V (xi+1) =

0, if xi+1 > 0,

∞, if xi+1 ≤ 0.

(6.6.13)

In the first type of optimality, the goal is to find the optimal reinsurance

premium and retention level to obtain the smallest ruin probability. In the

second type, the upper level for compensation of claims and the reinsurance

premium are investigated. The aim of the third type is to find the largest paid

proportion of claims against the retention level.

6.6.1 Optimization of reinsurance cost z

In this part, the finite time ruin probability of the modified surplus process and

expected total injection amount are numerically computed using the methods

outlined above. The results are stated in Tables 6.2 and 6.3, respectively.

More exactly, we fix the time t = 20, initial capital u = 20, premium rate

c = 14, claim frequency λ = 1, claim mean m = 12, var(X) = 144, and

h =∞.

From Theorem 30, we find that the finite time ruin without reinsurance is

equal to

P15(T ≤ 20) = 0.6110.

In addition, for simplicity we choose reinsurance costs z = {1, 2, ..., 10} and

retention levels k = {5, 6, ..., 10}.
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Table 6.2: Ruin probability of the modified surplus process with respect to z and k

P
k

w(T ≤ 20)
k=5 k=6 k=7 k=8 k=9 k=10

z=1 0.616 0.612 0.6071 0.6011 0.594 0.5859
z=2 0.6285 0.6244 0.6195 0.6135 0.6064 0.5983
z=3 0.6409 0.6369 0.6319 0.6259 0.6189 0.6107
z=4 0.6535 0.6495 0.6445 0.6385 0.6315 0.6233
z=5 0.666 0.662 0.6571 0.6511 0.6441 0.636
z=6 0.6786 0.6746 0.6696 0.6637 0.6568 0.6487
z=7 0.6911 0.6871 0.6822 0.6764 0.6695 0.6615
z=8 0.7036 0.6997 0.6948 0.689 0.6822 0.6743
z=9 0.716 0.7122 0.7074 0.7016 0.6949 0.6871
z=10 0.7284 0.7246 0.7198 0.7141 0.7075 0.6999

Table 6.3: Expected total injection amount E(Y ) with respect to z and k
E[Y ]

aaaaaa
z

k 5 6 7 8 9 10

1 0.5675 0.8684 1.2401 1.6861 2.2096 2.8134
2 0.5709 0.8732 1.2463 1.6936 2.2183 2.8231
3 0.5734 0.8765 1.2504 1.6983 2.2232 2.8278
4 0.5749 0.8783 1.2523 1.6999 2.2241 2.8274
5 0.5754 0.8786 1.2519 1.6984 2.2209 2.8217
6 0.5748 0.8771 1.2491 1.6937 2.2134 2.8105
7 0.5731 0.874 1.244 1.6856 2.2015 2.7937
8 0.5703 0.8692 1.2363 1.6742 2.1852 2.7712
9 0.5663 0.8626 1.2261 1.6593 2.1643 2.7431
10 0.5612 0.8542 1.2133 1.6409 2.139 2.7092

Our aim is to minimise the finite time ruin probability and corresponding

reinsurance premium z with

min{P k

u−z(T ≤ t) : z > E[Y (u− z, k, t)] and P
k

u−z(T ≤ t) < Pu(T ≤ t)}.

From Tables 6.2 and 6.3, it is clear that the reinsurance is appropriate for

several values of k and z. However, we choose the value of reinsurance cost z =

3 and the retention level k = 10 because this gives the smallest ruin probability

(0.6107) under the conditions that z > E[Y (u − z, k, t)] and P
k

u−z(T ≤ t) <

Pu(T ≤ t)}.
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6.6.2 Optimization of proportional payment h

In this part, instead of the compensation of claim in 6.3.6 a slightly different

claim process H(S(t) = hS(t) is considered, which is that the insurance com-

pany covers only proportion h of the claim. We analyse a numerical example

to find the maximum proportional payment h under the reinsurance strategy.

In this example,

u = 15, t = 30, c = 14, λ = 1, m = 12 and V ar(X) = σ2
X = 144.

In addition, for the reinsurance contract, we take

z = 2, k = {5, 6, . . . , 10}, and h = {0.5, 0.6, . . . , 1}.

Notice that the ruin probabilities now depend on the level h written as Pu(T ≤

t|h) and P
k

w(T ≤ t|h).

Our aim is to find maximum h so that there exists k = kh, satisfying

L ≤ P
k

13(T ≤ 30|h) ≤ P15(T ≤ 30|h) and z > E(Y ).

Table 6.4: Ruin probability of the normal and modified process with respect to h
and k

P15(T ≤ 30|h)
(No reinsurance)

P
k

13(T ≤ 30|h)

k=5 k=6 k=7 k=8 k=9 k=10
h=0.5 0.2537 0.2753 0.2724 0.2689 0.2649 0.2603 0.2552
h=0.6 0.3109 0.3329 0.3296 0.3256 0.3209 0.3155 0.3095
h=0.7 0.3794 0.4011 0.3974 0.3929 0.3876 0.3815 0.3746
h=0.8 0.4592 0.4799 0.4759 0.471 0.4653 0.4585 0.4509
h=0.9 0.5485 0.5672 0.5632 0.5582 0.5522 0.5452 0.5372
h=1 0.6428 0.6588 0.655 0.6502 0.6444 0.6376 0.6297
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Table 6.5: Expected total injection amount E(Y ) with respect to h and k
E[Y ]

k=5 k=6 k=7 k=8 k=9 k=10
h=0.5 0.3082 0.4719 0.6736 0.9146 1.1956 1.5174
h=0.6 0.3585 0.5488 0.7831 1.0631 1.3897 1.7638
h=0.7 0.4152 0.6354 0.9068 1.2312 1.6101 2.0445
h=0.8 0.4769 0.7299 1.0418 1.4153 1.8523 2.3543
h=0.9 0.5405 0.8273 1.1815 1.6063 2.1044 2.6783
h=1 0.6009 0.9199 1.3144 1.7885 2.346 2.9905

According to Tables 6.4 and 6.5, which are derived from Theorem 30, the

clear increase in h makes the ruin probability and the expected total injection

amount bigger while an increase in the retention level causes less ruin proba-

bility and more injection amount. Optimals k and h depend on L.

For example, for L = 0.3 and h = 0.6, the optimum reinsurance agreement is

obtained by the retention level k = 10. For k = 9 and L = 0.4, the highest

proportional payment h is 0.8.

6.6.3 Optimization of the premium rate c

Given the aggregate claim process in Section 4.3, a numerical example to find

the lowest premium c is considered. As before, we find it via optimization of

the retention level k. In this case,

u = 20, λ = 1, m = 12, t = 40, V ar(X) = σ2
X = 144

z = 5, k = {5, 6, . . . , 10}, h =∞ and c = {10, 11, 12, 13, 14, 15}.

The ruin probabilities now depend on the premium rate c written as Pu(T ≤

t|c) and P
k

w(T ≤ t|c). The goal is to find minimal c so that there exists k,

satisfying

L ≤ P
k

15(T ≤ 40|c) ≤ P20(T ≤ 40|c) and z > E(Y ).
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Table 6.6: Ruin probability with respect to k and c
P20(T ≤ 40)

(No reinsurance)
P
k

15(T ≤ 40)

k=5 k=6 k=7 k=8 k=9 k=10
c=10 0.9298 0.9274 0.9261 0.9243 0.9221 0.9194 0.916
c=11 0.8824 0.8789 0.8769 0.8743 0.8711 0.8672 0.8625
c=12 0.8195 0.8147 0.812 0.8086 0.8045 0.7994 0.7934
c=13 0.7439 0.738 0.7347 0.7306 0.7256 0.7195 0.7124
c=14 0.6608 0.654 0.6503 0.6457 0.6401 0.6335 0.6257
c=15 0.5762 0.569 0.5651 0.5602 0.5544 0.5476 0.5396

Table 6.7: Expected total injection amount E(Y ) with respect to k and c
E[Y ]

k=5 k=6 k=7 k=8 k=9 k=10
c=10 0.7401 1.1342 1.6243 2.218 2.9239 3.7514
c=11 0.7318 1.122 1.6073 2.1948 2.8925 3.709
c=12 0.7068 1.0839 1.5526 2.1193 2.7911 3.5752
c=13 0.6661 1.0214 1.4624 1.995 2.6247 3.3575
c=14 0.6131 0.9401 1.3454 1.8337 2.4097 3.0776
c=15 0.5534 0.8482 1.2132 1.6521 2.1684 2.7652

Again, the optimal c depends on the level L and k. For L = 0.8 and k = 8,

the lowest premium rate is attained for c = 12.

2. Exponential Claim size

In Chapter 4, the transition probability for the compound Poisson process

with discretized exponential claim size was defined by

P (xi → xi+1) =< xi|e−MtH |xi+1 >

=
1

2π

2π∫
0

e
ip(xi−xi+1)+Mticp−Mt

∞∑
j=1

λj(1−e−jip)

dp (6.6.14)

where

λj = λP (X = j) = λ
1
m
e−

1
m
j

∞∑
k=1

1
m
e−

1
m
k

.
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6.6.4 Optimization of reinsurance cost z for discretized

exponential claim size

Similar to Section 6.6.1, the ruin probability and total injection amount are

displayed in Tables 6.8 and 6.9 for discretized exponential claim distribution

and initial capital u = 20, premium rate c = 14, claim frequency λ = 1, claim

mean m = 12, time t = 20, and h =∞.

Table 6.8: Ruin probability of the modified surplus process with respect to z and k

P
k

w(T ≤ 20)
k=5 k=6 k=7 k=8 k=9 k=10

z=1 0.5491 0.5471 0.5447 0.5418 0.5385 0.5348
z=2 0.5585 0.5564 0.5539 0.551 0.5477 0.5439
z=3 0.5679 0.5658 0.5633 0.5604 0.557 0.5532
z=4 0.5775 0.5754 0.5728 0.5698 0.5664 0.5625
z=5 0.5872 0.585 0.5824 0.5794 0.5759 0.572
z=6 0.5969 0.5948 0.5922 0.5891 0.5856 0.5816
z=7 0.6068 0.6047 0.602 0.5989 0.5953 0.5913
z=8 0.6169 0.6146 0.6119 0.6088 0.6052 0.6011
z=9 0.627 0.6247 0.622 0.6188 0.6151 0.611
z=10 0.6372 0.6349 0.6322 0.6289 0.6252 0.621

Table 6.9: Expected total injection amount E(Y ) with respect to z and k
E[Y ]

k=5 k=6 k=7 k=8 k=9 k=10
z=1 0.3304 0.5032 0.7149 0.9668 1.26 1.5955
z=2 0.3356 0.5111 0.726 0.9818 1.2795 1.6202
z=3 0.3408 0.5189 0.7372 0.9969 1.2991 1.6449
z=4 0.346 0.5268 0.7484 1.012 1.3187 1.6698
z=5 0.3512 0.5348 0.7597 1.0271 1.3384 1.6946
z=6 0.3564 0.5427 0.7709 1.0423 1.3582 1.7195
z=7 0.3617 0.5507 0.7822 1.0575 1.3779 1.7444
z=8 0.3669 0.5586 0.7934 1.0727 1.3976 1.7693
z=9 0.3721 0.5666 0.8047 1.0878 1.4173 1.7941
z=10 0.3774 0.5745 0.8159 1.103 1.4369 1.8188

In case of no reinsurance, the ruin probability is

P20(T ≤ 20) = 0.5438.
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According to Tables 6.8 and 6.9, the optimum reinsurance is attained by k = 8

and z = 1 because

min{P k

u−z(T ≤ t)} = P
8

19(T ≤ 20)

providing to

z > E[Y (u− z, k, t)] and P
k

u−z(T ≤ t) < Pu(T ≤ t).

6.6.5 Optimization of the premium rate c for exponen-

tial distribution

As in Section 6.6.3, the ruin probability and the expected total injection

amount for exponential claim distribution are listed in Tables 6.10 and 6.11

when u = 20, z = 5, t = 40, λ = 1, and m = 12.

Table 6.10: Ruin probability with respect to k and c
P20(T ≤ 40)

(No reinsurance)
P
k

15(T ≤ 40)

k=5 k=6 k=7 k=8 k=9 k=10
c=10 0.9129 0.9256 0.9245 0.9231 0.9214 0.9194 0.9171
c=11 0.8537 0.8733 0.8718 0.87 0.8678 0.8652 0.8622
c=12 0.781 0.8068 0.8051 0.8029 0.8003 0.7973 0.7938
c=13 0.6988 0.7313 0.7294 0.727 0.7242 0.7209 0.7171
c=14 0.6148 0.6525 0.6505 0.648 0.6451 0.6418 0.638
c=15 0.5344 0.5767 0.5748 0.5724 0.5696 0.5664 0.5628

Table 6.11: Expected total injection amount E(Y ) with respect to k and c
E[Y ]

k=5 k=6 k=7 k=8 k=9 k=10
c=10 0.5429 0.8285 1.1801 1.6008 2.0938 2.6622
c=11 0.5155 0.7864 1.1195 1.5177 1.9836 2.52
c=12 0.4791 0.7306 1.0395 1.4084 1.8394 2.3347
c=13 0.4365 0.6654 0.9463 1.2813 1.6723 2.121
c=14 0.3913 0.5962 0.8476 1.147 1.4961 1.8963
c=15 0.3466 0.528 0.7504 1.0151 1.3234 1.6765

As seen in the listed results, ruin probabilities under the reinsurance agree-
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ment are higher than the case without reinsurance. Therefore, the reinsurance

agreement is not reasonable for the values. Different retention level and rein-

surance premium should be determined.

According to the optimization examples, it is obvious that bigger retention

level causes smaller ruin probability because of more capital injections.



Chapter 7

COMPARISON OF FINITE AND

INFINITE TIME METHODS

UNDER REINSURANCE

AGREEMENT

In this chapter, we numerically compare our finite time method suggested in previ-

ous chapters with the infinite time method stated by Nie et al. [57]. The relationship

between the finite and infinite time methods are analysed with respect to ruin prob-

abilities and the expected injection amounts. Moreover, some optimum values of

retention level and reinsurance premium are determined in order to obtain optimum

reinsurance contract.

Some parts of this chapter have been submitted under the title “Optimal reinsur-

ance via Dirac-Feynman Approach” [77].

Novelty and originality in the comparison include

� the application of the Dirac matrix with Feynman path calculation,

� differences in behaviour of the finite and the infinite time methods,

� computation of total capital injection amount, besides the ruin probability.

120
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7.1 Finite and infinite time models for compari-

son

The modified surplus process is defined as in Chapter 6,

R∗(t) = u+ ct− z −H(S(t)) + Y (t)

= w + ct−H(S(t)) + Y (t)

where

Y (t) = Y (w, k, t) =

[ t
ε
−1]∑
i=1

yi

is the total injection amount up to time t, defined by the retention level k, grid time

size ε, and exact initial capital after reinsurance premium payment w = u− z.

In the modified surplus process, the aggregating claim amount with upper limit h

is defined as in Chapter 6 by

H(S(t)) =

N(t)∑
i=1

XiI(Xi ≤ h) + hI(Xi > h). (7.1.1)

Remember that Pu(T <∞) and P
k

u(T <∞) denote the ultimate ruin probabilities

for the classical and modified surplus processes with retention level k, respectively.

To compare the finite time method with the infinite time counterpart, the following

approach is considered.

P (T ≤M)

P (T ≤ L)
→ 1 (as L,M →∞), which implies

P (T <∞)

P (T ≤ L)
→ 1, (as L→∞).

For L ≤M ,

P (T ≤ L) ≤ P (T ≤M)
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because of

P (T > M |R(0) = u) = P (T > L+ (M − L)|R(0) = u)

= P (T > L|R(0) = u)

∫ ∞
0

P (T > M − L|R(L) = x)dx.

(7.1.2)

Notice that the integral part in equation (7.1.2) is less than or equal to 1, so this

implies P (T ≤ L) ≤ P (T ≤M).

With these expressions above, we analyse that

P (T <∞) ≥ P (T < t) and E[Y (w, k, t)] ≤ E[Y (w, k,∞)].

We apply the following exact expressions for the infinite time ruin probabilities of

the modified surplus processes derived in [57]:

P
k

w(T <∞) = Pw−k(T <∞)−G(w − k, k)
1− P0(T <∞)

1−G(0, k)
(7.1.3)

where u − z > k, G(x, k) = Px(T < ∞)(1 − e−αk) and the claim size has an

exponential distribution with parameter α.

Moreover, the expectation of the total injection amount is defined in [57] by

E[Y (w, k)] =

∫ k

0

yg(w − k, y)dy + E[Y (k, k)]G(w − k, k) (7.1.4)

where g(w − k, y) = Pw−k(T <∞)αe−αy.

In comparison with the infinite time formula above, our finite time method intro-

duced in Proposition 31 yields

P
k

w(T > t) = (1 + o(ε))
d−1∑
j=1

(
(AK)[ t

ε
−1]A

)
w,jε
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where we consider the discretized exponential claim sizes defined by

P (X) =
1
m
e−

1
m
x

∞∑
k=1

1
m
e−

1
m
k

. (7.1.5)

In addition, recall that the ultimate ruin probability of the classical surplus process

is defined by (e.g. [57])

Pu(T <∞) =
λm

c
e−( 1

m
−λ
c

)u.

7.2 Numerical Results

In all our computations, Matlab software was used. In Matlab, the dimension of the

matrix introduced in 4.5.15 for ε = 0.01 is usually taken at 20000× 20000 because

the dimension must be taken at least (w + ct+ E[Y ])1
ε
.

In the following computations, we consider grid size ε = 1, and the transition matrix

dimension is 1500×1500. The time of each computation of ruin probability and total

injection amount is roughly 5 minutes on the HPC (High-performance computing)

computer of the University of Leicester. In normal computers, it takes more time.

HPC should be preferred in computations to avoid “out of memory” errors. The

Matlab codes can be found in Appendix A.4.

7.2.1 Comparison of the ruin probability and the expected

total injection amount

In Tables 7.1 and 7.2, the ruin probabilities of modified surplus processes under cap-

ital injections are compared for our finite approach with the infinite time approach

as defined in [57].

In both tables, we let R0 = u− z = w in case of reinsurance and R0 = u in case of

no reinsurance.

� Ruin probability and expected total injection amount in the finite and infinite

time methods for the initial capital u = 20, the insurance premium c = 1, the

claim frequency λ = 0.03, the claim mean m = 30, and the retention level
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k = 5 are listed with respect to various reinsurance premiums z = 1, 2, ..., 10

in Table 7.1.

Table 7.1: Ruin probabilities and total injection amounts
Infinite time method Finite time method

Reinsurance
premium

w=u-z P
k

w(T <∞) E[Y (w, k)] P
k

w(T ≤ 1400) E[Y (w, k, 1400)]

z=1 19 0.8437 0.3719 0.8374 0.2746
z=2 18 0.8465 0.3731 0.8404 0.2758
z=3 17 0.8493 0.3744 0.8435 0.2771
z=4 16 0.8521 0.3756 0.8466 0.2784
z=5 15 0.855 0.3769 0.8496 0.2797
z=6 14 0.8578 0.3781 0.8527 0.281
z=7 13 0.8607 0.3794 0.8558 0.2823
z=8 12 0.8636 0.3807 0.8589 0.2836
z=9 11 0.8665 0.3819 0.862 0.2849
z=10 10 0.8694 0.3832 0.8652 0.2862

� For the same values but different retention level (k=10), the results are listed

in Table 7.2.

Table 7.2: Ruin probabilities and total injection amounts
Infinite time method Finite time method

Reinsurance
premium

w=u-z P
k

w(T <∞) E[Y (w, k)] P
k

w(T ≤ 1400) E[Y (w, k, 1400)]

z=1 19 0.8402 1.5697 0.8339 1.301
z=2 18 0.843 1.575 0.8369 1.307
z=3 17 0.8458 1.5802 0.84 1.3131
z=4 16 0.8486 1.5855 0.843 1.3192
z=5 15 0.8514 1.5908 0.8461 1.3253
z=6 14 0.8543 1.5961 0.8492 1.3315
z=7 13 0.8571 1.6014 0.8522 1.3377
z=8 12 0.86 1.6068 0.8553 1.3439
z=9 11 0.8629 1.6122 0.8584 1.3501
z=10 10 0.8657 1.6175 0.8616 1.3563

As seen from Tables 7.1 and 7.2, the infinite time method gives larger ruin prob-

ability and expected injection amount compared with the finite time method.

As expected, an increase in the retention level k causes a decrease in ruin

probability with larger expected injection amount.
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� For the initial capital u = 100, reinsurance premiums z = 5, 10, 15...70, insur-

ance premium c = 1, the claim frequency λ = 0.02, the claim mean m = 45,

and the retention level k = 30, the ruin probabilities and expected total capital

injection amount in finite and infinite time are shown in Table 7.3.

Table 7.3: Ruin probabilities and total injection amounts
Infinite time method Finite time method

Reinsurance
premium

w=u-z P
k

w(T <∞) E[Y (w, k)] P
k

w(T ≤ 1400) E[Y (w, k, 1400)]

z=70 30 0.8221 10.3978 0.7736 8.8315
z=65 35 0.813 10.2829 0.7617 8.669
z=60 40 0.804 10.1693 0.75 8.5087
z=55 45 0.7951 10.0569 0.7384 8.3504
z=50 50 0.7864 9.9458 0.727 8.1942
z=45 55 0.7777 9.8359 0.7223 8.0308
z=40 60 0.7691 9.7272 0.7112 7.8785
z=35 65 0.7606 9.6197 0.7003 7.7284
z=30 70 0.7522 9.5134 0.6895 7.5804
z=25 75 0.7439 9.4083 0.6788 7.4345
z=20 80 0.7356 9.3044 0.6682 7.2906
z=15 85 0.7275 9.2015 0.6578 7.1487
z=10 90 0.7195 9.0999 0.6474 7.0088
z=5 95 0.7115 8.9993 0.6372 6.871

The ruin probabilities without reinsurance for both methods are

P100(T <∞) = 0.7207 and P100(T < 1400) = 0.6389.

For the logical reinsurance agreement, the following conditions are necessary

– P
k

u−z(T <∞) < Pu(T <∞),

– E[Y (w, k)] < z.

In this circumstance, optimum values for the reinsurance agreement can be

seen in Figure 7.1.



7.2. Numerical Results 126

10 20 30 40 50 60 70

Reinsurance premium z

0.6

0.65

0.7

0.75

0.8

0.85

R
ui

n 
P

ro
ba

bi
lit

y

infinite time ruin probability of modified surplus process
Infinite time ruin probability of normal  surplus process
Finite time ruin probability of modified surplus process
Finite time ruin probability of normal surplus process

Figure 7.1: Ruin probabilities with respect to various z

� Now, let’s observe the ruin probabilities of the surplus process with and with-

out reinsurance for both methods by keeping the initial capital w = u − z

being fixed.

The ruin probabilities of the modified surplus process and the expected total

injection amount for w = 10, c = 1, λ = 0.01, and m = 90 are listed in Table

7.4.

Table 7.4: Ruin probabilities and total injection amounts
Infinite time method Finite time method

Retention level P
k

w(T <∞) E[Y (w, k)] P
k

w(T ≤ 1400) E[Y (w, k, 1400)]
k=1 0.8901 0.005 0.8073 0
k=2 0.89 0.0199 0.8073 0.009
k=3 0.89 0.045 0.8073 0.027
k=4 0.89 0.0803 0.8073 0.0542
k=5 0.8899 0.1259 0.8072 0.0906
k=6 0.8899 0.182 0.8071 0.1364
k=7 0.8898 0.2486 0.807 0.1916
k=8 0.8897 0.3259 0.8069 0.2564
k=9 0.8896 0.414 0.8067 0.3309
k=10 0.8895 0.513 0.8066 0.4151

Similarly, for w = 40, c = 1, λ = 0.01, and m = 90, the results correspond to

various retention levels, as shown in Table 7.5.
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Table 7.5: Ruin probabilities and total injection amounts
Infinite time method Finite time method

Retention level P
k

w(T <∞) E[Y (w, k)] P
k

w(T ≤ 1400) E[Y (w, k, 1400)]
k=5 0.8512 0.1218 0.7519 0.0843
k=10 0.8509 0.4962 0.7513 0.3861
k=15 0.8503 1.137 0.7503 0.917
k=20 0.8494 2.0581 0.7488 1.6881
k=25 0.8482 3.274 0.7468 2.7104
k=30 0.8467 4.799 0.7444 3.9944
k=35 0.845 6.6478 0.7415 5.5502
k=40 0.8523 8.8351 0.738 7.3873

The tables above show that the reinsurance is not always appropriate (as also

discussed in [57]).

Notice that we chose small claim frequencies in the examples above in order

to avoid high error rate.

The ultimate ruin probability does not work without the net profit condition

(c 6> λm) while the finite time methods work.



Chapter 8

FUTURE WORK

In this thesis, several approaches to computing the finite time ruin probabilities for

the classical and modified surplus processes are analysed and compared with infinite

time methods.

Although the quantum method gives good numerical results of the ruin probabili-

ties via finite time characteristics, the infinite time counterparts of the finite time

methods are interesting and present a challenging open question.

There are many realistic modifications to the surplus process and we only consider

some of them. For example, the following modification appears to be popular in car

insurance practice. It is referred to as the voluntary excess that affects premium rate

in unit time and the capital of an insurance company. Some insurance companies

put compulsory excess as well. More exactly, the total claim amount with voluntary

excess (let V E denote as the amount of voluntary excess) is defined by

S(t) =

N(t)∑
i=0

(X(i)− V E).

As seen, VE is a deductible amount from claim amount. The company gives the

customer the option to choose the VE. Choosing a higher level voluntary excess

decreases the insurance premium [43]. Therefore, it is a kind of bet. Optimization

problems on the choice of the VE, and the relationship between the VE and premium

rate together with an analysis of the finite time ruin probabilities, prompt interesting

questions.

128
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Similar questions (e.g., legal costs or late payment penalties) may also lead to in-

teresting optimization questions.

Of course, adding interest rates is another important problem, as they play vital

role in the computation of the current value of future claims. Therefore, interest

rates should also be taken into account.

Adjusting the quantum approach and developing new methods to compute the finite

and infinite ruin probabilities for dependent claims and claim occurrences should also

be a future focus.

Lastly, in this thesis, heavy tailed distributions are not considered. The methods

can be taken into consideration with heavy tailed distributions.



Appendix A

CODES

A.1 Codes for comparison of ultimate ruin prob-

abilities

1 f unc t i on a=c r e a t e p l o t f o r u l t i m a t e r u i n ( c , lambda , claimmean )

2 f o r u=1:100

3 x (u)=Appe l l u l t imat e ru in (u , c , lambda , claimmean ) ;

4 y (u)=u l t imate ru in (u , c , lambda , claimmean ) ;

5 end

6 p lo t ( 1 : 1 00 , x )

7 hold on

8 p lo t ( 1 : 1 00 , y )

9 end

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

11 f unc t i on r u i n p r o b a b i l i t y=Appe l l u l t imat e ru in (u , c , lambda ,

claimmean )

12 %computation o f ru in p r o b a b i l i t y v ia Appel l polynomial

Approach

13 sum=0;

14 f o r j =0:u

15 sum=sum+exp ( lambda *(u−j ) /c ) * ee ( j , ( j−u) /c , lambda , claimmean ) ;
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16 end

17 r u i n p r o b a b i l i t y =1−((c−lambda*claimmean ) /c ) *sum ;

18 end

19 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

20 f unc t i on r e s u l t=ee (n , time , lambda , claimmean )

21 sum2=0;

22 f o r k=0:n

23 sum2=sum2+(( lambda* time ) ˆk ) * convo lut ion (n , k , claimmean ) /

f a c t o r i a l ( k ) ;

24 end

25 r e s u l t=sum2 ;

26 end

27 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

28 f unc t i on p robab i l i t ymas s func t i on=convo lut ion (n , k , claimmean )

29 i f n==0;

30 probab i l i t ymas s func t i on =1;

31 e l s e i f k==0;

32 probab i l i t ymas s func t i on =0;

33 e l s e

34 probab i l i t ymas s func t i on=gamma3(n , k , claimmean ) ;

35 end

36 end

37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

38 f unc t i on ad=gamma3(sum , numberofconvolution , claimmean )

39 x=gampdf (sum , numberofconvolution , claimmean ) ;

40 ad=x ;

41 end

42 %%%%%%%%%%%%%%%%%%%%%%%%

43 f unc t i on d=u l t imate ru in (u , c , lambda , mean)

44 a=1/mean ;

45 d=(lambda*exp(−u*( a−(lambda/c ) ) ) ) /( a*c ) ;
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46 end

A.2 Codes to compute the non ruin probability

via Markov approach

1 f unc t i on nonruin=MARKOV 1 CLAIM EXPONENTIAL(u , t , c , lambda ,m)

2 %Grid s i z e =1

3 %Claims have exponent i a l d i s t r i b u t i o n s

4 % Here , we con s id e r N(1) =1 ,2 ,3 ,4 ,5 ,6

5 n=1200; %dimension o f matrix , i t may change with r e s p e c t to

premium rate , c la im frequency and cla im mean

6 A=s i n g l e ( z e r o s (n+c ) ) ; % A i s the t r a n s i t i o n matrix

7 X=exppdf (1 : 1200 ,m) ;%p r o b a b i l i t y mass func t i on f o r d i s c r e t e d

exponent i a l d i s t r i b u t i o n

8 X=X*exp(−lambda ) *( lambda ) /sum(X) ;

9 X2=gampdf (1 : 1200 , 2 ,m) ;

10 X2=X2* [ ( exp(−lambda ) *( lambda ) ˆ2) /2 ]/ sum(X2) ;

11 X3=gampdf (1 : 1200 , 3 ,m) ;

12 X3=X3* [ ( exp(−lambda ) *( lambda ) ˆ3) /6 ]/ sum(X3) ;

13 X4=gampdf (1 : 1200 , 4 ,m) ;

14 X4=X4* [ ( exp(−lambda ) *( lambda ) ˆ4) /24 ]/sum(X4) ;

15 X5=gampdf (1 : 1200 , 5 ,m) ;

16 X5=X5* [ ( exp(−lambda ) *( lambda ) ˆ5) /120 ]/sum(X5) ;

17 X6=gampdf (1 : 1200 , 5 ,m) ;

18 X6=X6* [ ( exp(−lambda ) *( lambda ) ˆ6) /720 ]/sum(X6) ;

19 n o c l a i m p r o b a b i l i t y=1−exp(−lambda ) *( lambda ) −[( exp(−lambda )

*( lambda ) ˆ2) /2]− [ ( exp(−lambda ) *( lambda ) ˆ3) /6]− [ ( exp(−

lambda ) *( lambda ) ˆ4) /24]− [ ( exp(−lambda ) *( lambda ) ˆ5)

/120]− [ ( exp(−lambda ) *( lambda ) ˆ6) / 7 2 0 ] ;

20 A(1 ,1 ) =1;
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21 f o r i =2:n−c ;

22 A( i , i+c )=n o c l a i m p r o b a b i l i t y ;

23 end

24 f o r s s=n−c+1:n

25 A( ss , s s )=A( ss , s s )+n o c l a i m p r o b a b i l i t y ;

26 end

27 f o r j =2:n ;

28 f o r kk =1:1200;

29 i f j−1+c−kk>0;

30 A( j , j+c−kk )=A( j , j+c−kk )+X( kk )+X2( kk )+X3( kk )+X4( kk )+

X5( kk )+X6( kk ) ;

31 e l s e

32 A( j , 1 )=A( j , 1 )+X( kk )+X2( kk )+X3( kk )+X4( kk )+X5( kk )+X6( kk ) ;

33 end

34 end

35 end

36 D=Aˆ t ; %D=A( t )

37 nonruin=sum(D(u+1 ,2:n+c ) ) ;

38 end

A.3 Codes to compute the ruin probability and

the total injection amount for Poisson pro-

cess

1 f unc t i on [ ruin , in ject ionamount ]=MODIFIEDCASE11(w, t , c ,

c la imfrequency , c l a ims i z e , r e t e n t i o n l e v e l )

2 %We compute ru in p r o b a b i l i t y o f modi f i ed su rp lu s p roce s s and

t o t a l i n j e c t i o n amount

3 %Gr id s i z e=1
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4 t i c

5 n=1500; %dimension o f matrix , i t may change with r e s p e c t to

premium rate , c la im frequency and cla im mean

6 N=3000; %s p l i t t i n g number to s o l v e the i n t e g r a l numer i ca l ly .

7 h=mtimes (2* pi , 1/N) ;

8 p=s i n g l e ( 0 : h : 2* pi ) ;

9 A=s i n g l e ( z e r o s (n , n) ) ;

10 B=(2:n) ’−(2:n ) ;

11 C=s i n g l e ( z e r o s (n) ) ;

12 %The t r a n s i t i o n matrix

13 C( 2 : n , 2 : n ) =0.5*( exp ( i *B*p (1)+i *c*p (1)+c la imfrequency *exp(− i *

c l a i m s i z e *p (1) ) )+exp ( i *B*p( l ength (p) )+i *c*p( l ength (p) )+

c la imfrequency *exp(− i * c l a i m s i z e *p( l ength (p) ) ) ) ) ;

14 f o r j j j =2:( l ength (p)−1)

15 A( 2 : n , 2 : n )=exp ( i *(B*p( j j j ) )+i *( c*p( j j j ) )+c la imfrequency *exp

(− i *( c l a i m s i z e *p( j j j ) ) ) ) ;

16 C=C+A;

17 end

18 C=h*C;

19 C=mtimes ( exp(−c la imfrequency ) /(2* pi ) ,C) ;

20 C( : , 1 )=1−sum(C( : , 2 : n ) ,2 ) ;

21 C(1 ,1 ) =1;

22 AA=Cˆ t ;

23 Sh i f tmat r i xope ra to r=s i n g l e ( z e r o s (n) ) ;% We c r e a t e the s h i f t

matrix here

24 Sh i f tmat r i xope ra to r (1 , 1 ) =1;

25 pppp=r e t e n t i o n l e v e l +1;

26 f o r i i =2:pppp ;

27 Sh i f tmat r i xope ra to r ( i i , pppp ) =1;

28 end

29 f o r j =(pppp+1) : n ;
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30 Sh i f tmat r i xope ra to r ( j , j ) =1;

31 end

32 pp=mpower(C* Sh i f tmat r ixopera to r , t−1)*C;

33

34 Tota l in ject ionamount =0;

35 f o r i i =1: r e t e n t i o n l e v e l ;

36 Tota l in ject ionamount=Tota l in ject ionamount+(

r e t e n t i o n l e v e l− i i ) *C(u+1, i i +1) ;

37 end

38 G=C;

39 x =1:1 : r e t e n t i o n l e v e l ;

40 y=r e t e n t i o n l e v e l−x ;

41 up=r e t e n t i o n l e v e l +1;

42 uu=u+1;

43 f o r j =2: t ;

44 G=mtimes ( mtimes (G, Sh i f tmat r i xope ra to r ) ,C) ;

45 Tota l in ject ionamount=Tota l in ject ionamount+sum( y .*G(uu , 2 :

up ) ) ;

46 end

47 ru in=pp(u+1 ,1) ; % Ruin p r o b a b i l i t y

48 in ject ionamount=Tota l in ject ionamount ; % Total i n j e c t i o n

maount

49 toc

50 end

A.4 Codes to compute the ruin probability and

total injection amount for Compound Pois-

son process
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1 f unc t i on [ ruin , in ject ionamount ]=

Ru inprobab i l i r y and in j e c t i onamount (w, t , c ,

c la imfrequency , claimmean , r e t e n t i o n l e v e l )

2 %we compute ru in p r o b a b i l i t y o f modi f i ed su rp lu s p roce s s and

t o t a l i n j e c t i o n amount

3 %Gr id s i z e=1

4 %Claim s i z e have exponent i a l d i s t r i b u t i o n

5 t i c

6 n=1500;

7 X=exppdf ( 1 : 40 0 , claimmean ) ;%p r o b a b i l i t y mass func t i on

8 i t h c l a i m f r e q u e n c y=c la imfrequency . * (X. / sum(X) ) ;

9 N=3000; %s p l i t t i n g number to s o l v e the i n t e g r a l numer i ca l ly

10 h=mtimes (2* pi , 1/N) ;

11 p=s i n g l e ( 0 : h : 2* pi ) ;

12 A=s i n g l e ( z e r o s (n) ) ;

13 B=(2:n) ’−(2:n ) ;

14 C=s i n g l e ( z e r o s (n) ) ;

15 % C i s t r a n s i t i o n matrix

16 C( 2 : n , 2 : n ) =0.5*( exp ( i *B*p (1)+i *c*p (1)−sum(

i t h c l a i m f r e q u e n c y .*(1− exp(− i * ( 1 : 200 ) *p (1) ) ) ) )+exp ( i *B*p

( l ength (p) )+i *c*p( l ength (p) )−sum( i t h c l a i m f r e q u e n c y .*(1−

exp(− i * ( 1 : 200 ) *p( l ength (p) ) ) ) ) ) ) ;

17 f o r j j j =2:( l ength (p)−1)

18 A( 2 : n , 2 : n )=exp ( i *B*p( j j j )+i *c*p( j j j )−sum( i t h c l a i m f r e q u e n c y

.*(1− exp(− i * ( 1 : 200 ) .*p( j j j ) ) ) ) ) ;

19 C=C+A;

20 end

21 C=h*C;

22 C=mtimes (1/(2* pi ) ,C) ;

23 C( : , 1 )=1−sum(C( : , 2 : n ) ,2 ) ;

24 C(1 ,1 ) =1;
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25 AA=Cˆ t ;

26 Sh i f tmat r i xope ra to r=s i n g l e ( z e r o s (n) ) ;

27 Sh i f tmat r i xope ra to r (1 , 1 ) =1;

28 pppp=r e t e n t i o n l e v e l +1;

29 f o r i i =2:pppp ;

30 Sh i f tmat r i xope ra to r ( i i , pppp ) =1;

31 end

32 f o r j =(pppp+1) : n ;

33 Sh i f tmat r i xope ra to r ( j , j ) =1;

34 end

35 pp=mpower(C* Sh i f tmat r ixopera to r , t−1)*C;

36 Tota l in ject ionamount =0;

37 f o r i i =1: r e t e n t i o n l e v e l ;

38 Tota l in ject ionamount=Tota l in ject ionamount+(

r e t e n t i o n l e v e l− i i ) *C(u+1, i i +1) ;

39 end

40 G=C;

41 x =1:1 : r e t e n t i o n l e v e l ;

42 y=r e t e n t i o n l e v e l−x ;

43 up=r e t e n t i o n l e v e l +1;

44 uu=u+1;

45 count =1;

46 f o r j =2: t ;

47 G=mtimes ( mtimes (G, Sh i f tmat r i xope ra to r ) ,C) ;

48 Tota l in ject ionamount=Tota l in ject ionamount+sum( y .*G(uu , 2 :

up ) ) ;

49 end

50 ru in=pp(u+1 ,1) ; % Ruin p r o b a b i l i t y

51 in ject ionamount=Tota l in ject ionamount ; % Total i n j e c t i o n

amount

52 toc
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53 end

A.5 Codes to compute the ruin probability for

Appell Polynomial Approach

1 f unc t i on NONRUIN=APPELL EXPONENTIAL(u , time , c , c la imfrequency

, claimmean )

2 t i c

3 %Here X i have exponent i a l d i s t r i b u t i o n s .

4 % Computation o f nonruin v ia Appel l Approach .

5 %u i s i n i t i a l c a p i t a l .

6 %c i s premium .

7 i f u<0

8 NONRUIN=0;

9 e l s e

10 zz =0;

11 f o r n=0:u ;

12 zz=zz+ee (n , time , c la imfrequency , claimmean ) ;

13 end

14 zp=0;

15 f o r n=(u+1) : round ( c* time+u) ;

16 f o r j =0:u ;

17 qq=(j−u) /c ;

18 qqq=(time*c+u−j ) /c ;

19 zp=zp+(ee ( j , qq , c la imfrequency , claimmean ) *( c* time−n+u) * ee

(n−j , qqq , c la imfrequency , claimmean ) ) /( c* time−j+u) ;

20 end

21 end

22 NONRUIN=exp(−c la imfrequency * time ) *( zz+zp ) ;

23 end
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24 toc

25 end

26 %%%%%%%%%%

27 f unc t i on ennnxxx=ee (n , time , c laimrequency , claimmean )

28 summ=0;

29 i f time==0

30 ennnxxx=0;

31 e l s e

32 f o r k=0:n ;

33 t t t t t =(app222 (n , k , claimmean ) *( c la imrequency * time ) ˆ(k ) ) /

f a c t o r i a l ( k ) ;

34 summ=summ+t t t t t ;

35 end

36 ennnxxx=summ;

37 end

38 end

39 f unc t i on a p p e l l p r o b a b i l i t y=app222 (n , k , claimmean )

40 %here X1+X2+.. .+Xk=n

41 i f n==0;

42 a p p e l l p r o b a b i l i t y =1;

43 e l s e i f k==0;

44 a p p e l l p r o b a b i l i t y =0;

45 e l s e

46 a p p e l l p r o b a b i l i t y=gamma3(n , k , claimmean ) ;

47 end

48 end

49 f unc t i on ad=gamma3( valueofsum , numberofconvolution ,mu)

50 % mu = E[ X 1 ]

51 x=gampdf ( valueofsum , numberofconvolution ,mu) ;

52 ad=x ;

53 end
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A.6 Codes to compute the (non)ruin probability

for Monte Carlo Approach

1 f unc t i on nonruin=MONTECARLO(u , t , c , lambda ,m,M)

2 %M i s i t e r a t i o n number

3 %u i s i n i t i a l c a p i t a l

4 %t i s time

5 %c i s premium ra t e

6 %lambda i s c la im frequancy

7 %m i s c la im mean

8 %gr id time s i z e =1

9 %Claims are random sampl ings d i s t r i b u t e d e x p o n e n t i a l l y

10 %we use monte c a r l o approach as we l l .

11 % here , we con s id e r N(1) =1 ,2 ,3 ,4 ,5 ,6

12 n=200;

13 f o r kk=1:M

14 B=round ( exprnd (m, n , 6 ) ) ; %random sampling d i s t r i b u t e d

e x p o n e n t i a l l y

15 A=s i n g l e ( z e r o s (n+c ) ) ; % A w i l l be the t r a n s i t i o n matrix

16 N(1)=exp(−lambda ) *( lambda ) ;

17 N(2) =[( exp(−lambda ) *( lambda ) ˆ2) / 2 ] ;

18 N(3) =[( exp(−lambda ) *( lambda ) ˆ3) / 6 ] ;

19 N(4) =[( exp(−lambda ) *( lambda ) ˆ4) / 2 4 ] ;

20 N(5) =[( exp(−lambda ) *( lambda ) ˆ5) / 1 2 0 ] ;

21 N(6) =[( exp(−lambda ) *( lambda ) ˆ6) / 7 2 0 ] ;

22 n o c l a i m p r o b a b i l i t y=1−sum(N) ;

23

24 A(1 ,1 ) =1;

25 f o r i =2:n−c ;

26 A( i , i+c )=n o c l a i m p r o b a b i l i t y ;

27 end
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28 %%%%%%%%%%%%%%%%

29 f o r s s=n−c+1:n

30 A( ss , s s )=A( ss , s s )+n o c l a i m p r o b a b i l i t y ;

31 end

32 %%%%%%%%%%%%%%%%

33 f o r j =2:n ;

34 f o r k=1:6

35 i f j−1+c−sum(B( j , 1 : k ) )>0

36 A( j , j+c−sum(B( j , 1 : k ) ) )=A( j , j+c−sum(B( j , 1 : k ) ) )+N( k ) ;

37 e l s e

38 A( j , 1 )=A( j , 1 )+N( k ) ;

39 end

40 end

41 end

42 D=Aˆ t ;

43 r e s u l t ( kk )=sum(D(u+1 ,2:n+c ) ) ; %non ru in

44 end

45 nonruin=sum( r e s u l t ) /M;

46 end

A.7 Codes of optimization problems in Chapter

5

1 f unc t i on d=o p t i m i z a t i o n o f i n i t i a l c a p i t a l s (u , c , t , lambda ,

lambda2 , mean , mean2)

2 %opt imiza t i on o f i n i t i a l c a p i t a l s with r e s p e c t to time

3 f o r k=1:u−1; % i n i t i a l c a p i t a l

4 f o r kk=1: t ; %time

5 nonruin (k , kk )=quantumandmarkov (k , kk , c , lambda , mean) *

quantumandmarkov (u−k , kk , c , lambda2 , mean2) ;
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6 end

7 end

8 s u r f ( nonruin ) %p lo t

9 d=nonruin

10 end

11 %%%%%%%%%%%%%%%

12 f unc t i on as=quantumandmarkov (u , t , c , lambda , mean)

13 %Non ru in p r o b a b i l i t y

14 %here the g r id time i s 1

15 n=100;

16 A=s i n g l e ( z e r o s (n) ) ;% A i s t r a n s i t i o n amtrix

17 A(1 ,1 ) =1;

18 f o r i i =2:n ;

19 f o r j j =2:n ;

20 A( i i , j j )=quanintg7modify ( i i −1, j j −1 ,1 , c , lambda , mean) ;

21 end

22 A( i i , 1 )=1−sum(A( i i , 2 : n ) ) ;

23 end

24 t t=t /1 ;

25 D=Aˆ t t ;

26 as=sum(D(u+1 ,2:n) ) ;

27 end

28 %%%%%%%%%%%%%%%%

29 f unc t i on aa=quanintg7modify (u , newu , t , c , lambda , mean)

30 % Computation o f e lements o f the t r a n s i t i o n matrix

31 f o r k =0:100;

32 j ( k+1)=(2* pi *k ) /100 ;

33 end

34 sum=0;

35 f o r i i =1:100;

36 p=( j ( i i +1)+j ( i i ) ) /2 ;
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37 t t t =( j ( i i +1)−j ( i i ) ) * I n t e g r a l s o l v i n g (p , u , newu , t , c , lambda ,

mean) ;

38 sum=sum+t t t ;

39 end

40 aa=r e a l (sum/(2* pi ) ) ;

41 end

42 %%%%%%%%%%%%%%%

43 f unc t i on dd=I n t e g r a l s o l v i n g (p , u , newu , t , c , lambda , mean)

44 dd=exp ( i *p*(u−newu)−t*(−c* i *p+lambda− lambda*exp(− i *mean*p) )

) ;

45 end

46 %%%%%%%%%%%%%%%%%%%

47 f unc t i on asd=o p t i m i z a t i o n o f p r o p o r t i o n o f c l a i m s (u , c , t , lambda ,

mean)

48 a=1;

49 f o r k=1:5

50 f o r j =1: t

51 Y(a , j )= quantumandmarkov (u , j , c , lambda , k*mean) ;

52 end

53 end

54 s u r f (Y)

55 asd=Y;

56 end

57 %%%%%%%%%%%%%%%%%%%555

58 f unc t i on as=o p t i m i z a t i o n i n j e c t i o n 3 ( u1 , u2 , time , c1 , c2 , lambda1 ,

lambda2 , mean1 , mean2)

59 % we need to f i n d optimum i n j e c t i o n ( or r educt i on ) time and

amount

60 %here we used quantum method

61 kk=1;

62 f o r a=−5:5; %a i s amount o f i n j e c t i o n or reduct i on
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63 f o r i n j e c t i a n t i m e =1: time−1;

64 i f a<0

65 C( kk , i n j e c t i a n t i m e )=quantumandmarkovreduction ( u1

, i n j e c t i a n t i m e , time , c1 , lambda1 , mean1,−a ) *

quantumandmarkovinjection ( u2 , i n j e c t i a n t i m e ,

time , c2 , lambda2 , mean2,−a ) ;

66 e l s e i f a>0

67 C( kk , i n j e c t i a n t i m e )=quantumandmarkovinjection ( u1 ,

i n j e c t i a n t i m e , time , c1 , lambda1 , mean1 , a ) *

quantumandmarkovreduction ( u2 , i n j e c t i a n t i m e , time

, c2 , lambda2 , mean2 , a ) ;

68 e l s e

69 C( kk , i n j e c t i a n t i m e )=quantumandmarkov ( u1 , time , c1 ,

lambda1 , mean1) *quantumandmarkov ( u2 , time , c2 ,

lambda2 , mean2) ;

70 end

71 end

72 kk=kk+1;

73 end

74 as=C;

75 end

76 %%%%%%%%%%%%%%%%%

77 f unc t i on as=quantumandmarkovinjection (u , t1 , t , c , lambda , mean , a

)

78 %Non ru in p r o b a b i l i t y

79 %here the g r id time s i z e i s 1

80 n=1000; % dimension o f t r a n s i t i o n matrix . i f you change

here , you need to change quanintg7modify

81 A=s i n g l e ( z e r o s (n) ) ;% t r a n s i t i o n matrix

82 KKK=s i n g l e ( z e r o s (n) ) ; %s h i f t matrix

83 A(1 ,1 ) =1;
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84 f o r i i =2:n ;

85 f o r j j =2:n ;

86 A( i i , j j )=quanintg7modify ( i i −1, j j −1 ,1 , c , lambda , mean) ;

87 end

88 A( i i , 1 )=1−sum(A( i i , 2 : n ) ) ;

89 end

90 %t t=t / 0 . 0 1 ;

91 t t=t /1 ;

92 f o r i =2:n ;

93 i f a+i <n+1

94 KKK( i , a+i ) =1; % c a p i t a l s h i f t e r

95 end

96 end

97 KKK(1 ,1 ) =1;

98 D=(Aˆ( t1 ) ) *KKK*Aˆ( t−t1 ) ;

99 as=sum(D(u+1 ,2:n) ) ; %nonruin

100 end

101 %%%%%%%%%%%%%%%%%%%%

102 f unc t i on as=quantumandmarkovreduction (u , t1 , t , c , lambda , mean , a

)

103 %Non ru in p r o b a b i l i t y

104 %here the g r id time s i z e i s 1

105 n=100; %dimension o f t r a n s i t i o n matrix

106 A=s i n g l e ( z e r o s (n) ) ;%t r a n s i t i o n matrix

107 BBB=s i n g l e ( z e r o s (n) ) ;

108 A(1 ,1 ) =1;

109 f o r i i =2:n ;

110 f o r j j =2:n ;

111 A( i i , j j )=quanintg7modify ( i i −1, j j −1 ,1 , c , lambda , mean) ;

112 end

113 A( i i , 1 )=1−sum(A( i i , 2 : n ) ) ;
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114 end

115 %t t=t / 0 . 0 1 ;

116 t t=t /1 ;

117 f o r i =1:a+1;

118 BBB( i , 1 ) =1; % t h i s i s c a p i t a l s h i f t e r

119 end

120 ww=2;

121 f o r j=a+2:n

122 BBB( j ,ww) =1;

123 ww=ww+1;

124 end

125 D=(Aˆ( t1 ) ) *BBB*Aˆ( t−t1 ) ;

126 as=sum(D(u+1 ,2:n) ) ;%non ru in p r o b a b i l i t y

127 end

A.8 Codes of optimization problems in Chapter

6

1 f unc t i on aa=OPTIMIZATIONOFGAUSSIAN2(u , t , c , lambda , mean , varx )

2 %opt imiza t i on o f r e i n su rance premium z and r e t e n t i o n l e v e l k

3 %computation o f expec ta t i on o f i n j e c t i o n

4 %g r i d s i z e =1

5 %d i s t r i b u t i o n i s Gaussian

6 n=1000; %dimension o f t r a n s i t i o n matrix

7 A=s i n g l e ( z e r o s (n , n) ) ;%t r a n s i t i o n matrix

8 B=(2:n) −(2:n ) ’ ;

9 var=lambda*varx+lambda *(mean) ˆ2 ;

10 A( 2 : n , 2 : n )= exp ( ( (B−c+mean* lambda ) . ˆ 2 ) /(−2*var ) ) / s q r t (2* pi *

var ) ;

11 A( : , 1 )=1−sum(A( : , 2 : n ) ,2 ) ;
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12 A(1 ,1 ) =1;

13 s tep =1;

14 f o r r e t e n t i o n l e v e l =5:10;

15 s h i f t m a t r i x=s i n g l e ( z e r o s (n) ) ;

16 s h i f t m a t r i x (1 , 1 ) =1;

17 pppp=r e t e n t i o n l e v e l +1;

18 f o r i i =2:pppp ;

19 s h i f t m a t r i x ( i i , pppp ) =1;

20 end

21 f o r j =(pppp+1) : n ;

22 s h i f t m a t r i x ( j , j ) =1;

23 end

24 pp=mpower(A* sh i f tmat r i x , t−1)*A;

25 topp =0;

26 f o r i i =1: r e t e n t i o n l e v e l ;

27 topp=topp+( r e t e n t i o n l e v e l− i i ) *A(u− [1 :10]+1 , i i +1) ;

28 end

29 G=A;

30 x =1:1 : r e t e n t i o n l e v e l ;

31 y=r e t e n t i o n l e v e l−x ;

32 up=r e t e n t i o n l e v e l +1;

33 uu=u− [ 1 :10 ]+1;

34 count =1;

35 f o r j =2: t ;

36 G=mtimes ( mtimes (G, s h i f t m a t r i x ) ,A) ;

37 topp=topp+sum( y .*G(uu , 2 : up ) ,2 ) ;

38 end

39 aa ( [ 1 : 1 0 ] , s t ep )=topp ;

40 s tep=step+1

41 end

42 end
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43 %%%%%%%%%%%%%%%%%%

44 f unc t i on aa=OPTIMIZATIONOFGAUSSIAN3(u , t , c , lambda , mean , varx , z

)

45 %opt imiza t i on o f r e i n su rance premium h and r e t e n t i o n l e v e l k

46 %with r e s p e c t to ru in p r o b a b i l i t y

47 %gr id time s i z e =1

48 %d i s t r i b u t e i s Gaussian

49 n=1000; %dimension o f t r a n s i t i o n matrix

50 A=s i n g l e ( z e r o s (n , n) ) ; % t r a n s i t i o n matrix

51 B=(2:n) −(2:n ) ’ ;

52 var=lambda*varx+lambda *(mean) ˆ2 ; % computation o f var i ance

in g r id time .

53 meannn=mean ;

54 stepp2=1

55 f o r h = 0 . 5 : 0 . 1 : 1

56 mean=meannn*h ;

57 A( 2 : n , 2 : n )= exp ( ( (B−c+mean* lambda ) . ˆ 2 ) /(−2*var ) ) / s q r t (2* pi *

var ) ;

58 A( : , 1 )=1−sum(A( : , 2 : n ) ,2 ) ;

59 A(1 ,1 ) =1;

60 s tep =1;

61 f o r r e t e n t i o n l e v e l =5:10;

62 s h i f t m a t r i x=s i n g l e ( z e r o s (n) ) ;

63 s h i f t m a t r i x (1 , 1 ) =1;

64 pppp=r e t e n t i o n l e v e l +1;

65 f o r i i =2:pppp ;

66 s h i f t m a t r i x ( i i , pppp ) =1;

67 end

68 f o r j =(pppp+1) : n ;

69 s h i f t m a t r i x ( j , j ) =1;

70 end
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71 pp=mpower(A* sh i f tmat r i x , t−1)*A;

72 aa ( stepp2 , s tep )=pp(u−z +1 ,1) ;

73

74 s tep=step +1;

75 end

76 stepp2=stepp2+1

77 end

78 end

79 %%%%%%%%%%%%%%%%

80 f unc t i on aa=OPTIMIZATIONOFGAUSSIAN5(u , t , lambda , mean , varx , z )

81 %opt imiza t i on o f r e i n su rance premium c and r e t e n t i o n l e v e l k

82 %with r e s p e c t to ru in p r o b a b i l i t y

83 %gr id time s i z e =1

84 %d i s t r i b u t e i s Gaussian

85

86 n=1000; % dimension o f t r a n s i t i o n matrix

87 A=s i n g l e ( z e r o s (n , n) ) ; % t r a n s i t i o n matrix

88 B=(2:n) −(2:n ) ’ ;

89 var=lambda*varx+lambda *(mean) ˆ2 ;% computation o f var i ance in

the g r id time .

90 steppp =1;

91 f o r c =10:1:15

92 A( 2 : n , 2 : n )= exp ( ( (B−c+mean* lambdalambda ) . ˆ 2 ) /(−2*var ) ) / s q r t

(2* pi *var ) ;

93 A( : , 1 )=1−sum(A( : , 2 : n ) ,2 ) ;

94 A(1 ,1 ) =1;

95 s tep =1;

96 f o r r e t e n t i o n l e v e l =5:10;

97 s h i f t m a t r i x=s i n g l e ( z e r o s (n) ) ;

98 s h i f t m a t r i x (1 , 1 ) =1;

99 pppp=r e t e n t i o n l e v e l +1;
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100 f o r i i =2:pppp ;

101 s h i f t m a t r i x ( i i , pppp ) =1;

102 end

103 f o r j =(pppp+1) : n ;

104 s h i f t m a t r i x ( j , j ) =1;

105 end

106 pp=mpower(A* sh i f tmat r i x , t−1)*A;

107 %to f i n d expected c a p i t a l i n j e c t i o n amount , f o l l o w i n g codes

can be used i f nece s sa ry .

108 % topp =0;

109 % f o r i i =1: r e t e n t i o n l e v e l ;

110 % topp=topp+( r e t e n t i o n l e v e l− i i ) *A(u+1, i i +1) ;

111 % end

112 % G=A;

113 % x =1:1: r e t e n t i o n l e v e l ;

114 % y=r e t e n t i o n l e v e l−x ;

115 % up=r e t e n t i o n l e v e l +1;

116 % uu=u+1;

117 % count =1;

118 % f o r j =2: t ;

119 % G=mtimes ( mtimes (G, s h i f t m a t r i x ) ,A) ;

120 %

121 %

122 % topp=topp+sum( y .*G(uu , 2 : up ) ) ;

123

124 %end

125 aa ( steppp , s tep )=pp(u−z +1 ,1) ;

126

127 s tep=step +1;

128 %aa (1 , 2 )=topp ;

129 end
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130 steppp=steppp+1

131 end

132 end

A.9 Codes of computation of ultimate ruin under

reinsurance in (7.1.3)

1 f unc t i on f f=u l t imat e ru inw i th r e i n su rance (w, k , c , f requency ,

mean)

2 %This func t i on g i v e s u l t imate ru in o f modi f i ed su rp lu s

p roce s s .

3 %Equation in ( 7 . 1 . 3 )

4 i f w==k

5 r e s u l t =( u l t imate ru in (0 , c , f requency , mean)−GGG(0 , k , c ,

f requency , mean) ) /(1−GGG(0 , k , c , f requency , mean) ) ;

6 e l s e

7 r e s u l t=u l t imate ru in (w−k , c , f requency , mean)−GGG(w−k , k , c ,

f requency , mean) *((1− u l t imate ru in (0 , c , f requency , mean) )

/(1−GGG(0 , k , c , f requency , mean) ) ) ;

8 end

9 f f=r e s u l t ;

10 end

11 %%%%%%%%%%%%%%%%%%%%%%

12 f unc t i on

13 %ult imate ru in without r e i n su rance d=u l t imate ru in (w, c ,

f requency , mean)

14 a=1/mean ; % a=1/mean

15 d=( frequency *exp(−w*( a−( f requency /c ) ) ) ) /( a*c ) ;

16 end

17 %%%%%%%%%%%%%%%%
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18 f unc t i on dddd=GGG(w, y , c , f requency , mean)

19 a=1/mean ;

20 dddd=u l t imate ru in (w, c , f requency , mean)*(1−exp(−a*y ) ) ;

21 end

22 %%%%%%%%%%%%%%%

23 f unc t i on dddd=gggg (w, y , c , f requency , mean)

24 a=1/mean ;

25 dddd=u l t imate ru in (w, c , f requency , mean) *a*exp(−a*y )

26 end

27 %%%%%%%%%%%%%%%

A.10 Codes of computation of total injection amount

in (7.1.4)

1 f unc t i on sad=inject ionamount1 (w, c , f requency , mean , k )

2 %This i s f o r w>k

3 a=1/mean ;

4 sum=0;

5 h=k /1000 ;

6 f o r n=1:999; % the number should be big enough , so i t

depends on v a r i a b l e s

7 sum=sum+n*h*gggg (w−k , n*h , c , f requency , mean) ;

8 end

9 t t t=h*(sum+(k*gggg (w−k , k , c , f requency , mean) /2) ) ;

10 sad=t t t+inject ionamount2 (k , c , f requency , mean , k ) *GGG(w−k , k , c ,

f requency , mean) ;

11 end

12 %%%%%%%%%%%%%%%

13 f unc t i on saddas=inject ionamount2 (w, c , f requency , mean , k )

14 %This i s f o r w=k
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15 a=1/mean ;

16 sum=0;

17 h=k /1000 ;

18 f o r n=1:999;

19 sum=sum+n*h*gggg (0 , n*h , c , f requency , mean) ;

20 end

21 t t t=h*(sum+(k*gggg (0 , k , c , f requency , mean) /2) ) ;

22 saddas=t t t /(1−GGG(0 , k , c , f requency , mean) ) ;

23 end
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for finite-time ruin probabilities. Insurance: Mathematics and Economics,

35(2), 187-203.

[70] Sakurai, J.J. and Commins, E.D., 1995. Modern quantum mechanics, revised

edition.

[71] Schmidli, H., 2002. On minimizing the ruin probability by investment and

reinsurance. Annals of Applied Probability, 890-907.

[72] Sericola, B., 2013. Markov Chains: Theory and Applications. John Wiley &

Sons.

[73] Shang, H., 2006. Actuarial science: theory and methodology. World Scientific.

[74] Spataru, A., 2013. Analysis and probability. Newnes.

[75] Sunstein, C.R., 2002. Risk and reason: Safety, law, and the environment.

Cambridge University Press.

[76] Tamturk, M. and Utev, S., 2017. Ruin probability via Quantum Mechanics

Approach. Insurance: Mathematics and Economics.

[77] Tamturk, M. and Utev, S. (2017). Optimal reinsurance via Dirac-Feynman

approach, (submitted).

[78] Tse, Y.K., 2009. Nonlife actuarial models: theory, methods and evaluation.

Cambridge University Press.

[79] Yao, D., Yang, H. and Wang, R., 2011. Optimal dividend and capital injec-

tion problem in the dual model with proportional and fixed transaction costs.

European Journal of Operational Research, 211(3), 568-576.

[80] Zhou, M. and Yuen, K.C., 2012. Optimal reinsurance and dividend for a dif-

fusion model with capital injection: Variance premium principle. Economic

Modelling, 29(2), 198-207.


