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Abstract 

Objective: Different methods to calculate dynamic cerebral autoregulation (dCA) parameters are 

available. However, most of these methods demonstrate poor reproducibility that make them 

unsuitable for clinical use. Inter-centre differences in study protocols, modelling approaches and 

default parameter settings, have all led to a lack of standardisation and comparability between studies.  

We evaluated reproducibility of dCA parameters by assessing systematic errors in surrogate data 

resulting from different modelling techniques. Approach: Fourteen centres analysed 22 datasets 

consisting of two repeated physiological blood pressure measurements with surrogate cerebral blood 

flow velocity signals, generated using Tiecks curves (autoregulation index , ARI 0-9) and added noise. 

For reproducibility, dCA methods were grouped in three broad categories: 1. Transfer function 

analysis (TFA)-like output; 2. ARI-like output; 3. Correlation coefficient-like output. For all methods, 

reproducibility  was determined by one-way Intraclass Correlation Coefficient analysis (ICC). Main 

results: For TFA-like methods the mean (SD; [range]) ICC gain was 0.71 (0.10; [0.49-0.86]) and 0.80 

(0.17; [0.36-0.94]) for VLF and LF (p=0.003) respectively. For phase, ICC values were 0.53 (0.21; 

[0.09-0.80]) for VLF, and 0.92 (0.13; [0.44-1.00]) for LF (p <0.001). Finally, ICC for ARI-like 

methods was equal to 0.84 (0.19; [0.41-0.94]), and for correlation-like methods , ICC was 0.21 (0.21; 

[0.056-0.35]).  

Significance: When applied to realistic surrogate data, free from the additional exogenous influences 

of physiological variability on cerebral blood flow, most methods of dCA modelling showed ICC 

values considerably higher than what has been reported for physiological data. This finding suggests 

that the poor reproducibility reported by previous studies may be mainly due to the inherent 

physiological variability of cerebral blood flow regulatory mechanisms rather than related to 

(stationary) random noise and the signal analysis methods. 

Keywords: Cerebral Autoregulation; method comparison; reproducibility; surrogate data 
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Introduction 

Cerebral autoregulation (CA) is an important mechanism for maintaining adequate cerebral perfusion 

despite changes in blood pressure (BP) (Panerai, 1998). Dynamic CA (dCA) is measured as the CBF 

response to a transient, short-lasting change in BP (Aaslid et al., 1989, Panerai, 1998). Usually,  CBF 

velocity (CBFV) measured with transcranial Doppler ultrasound, as an estimate of CBF, is analysed 

simultaneously with BP recordings (Panerai et al., 1998b).  

Different indices of dCA have been shown to reflect pathological conditions such as stroke, severe 

head injury, subarachnoid haemorrhage, carotid artery disease and others (Czosnyka et al., 2009, 

Reinhard et al., 2003b, Reinhard et al., 2004, Reinhard et al., 2012, Immink et al., 2005, Panerai, 2008, 

van Beek et al., 2008). However, despite the potential to bring considerable benefits to early diagnosis, 

management and prognosis of patients with cerebrovascular disease, the reliability of these indices of 

dCA has not been fully validated. Not surprisingly therefore, dCA measurements have not yet been 

incorporated into routine clinical practice. There are a number of reasons for this.  

First, currently no gold standard test for the assessment of dCA exists. Many different methods to 

calculate dCA parameters are now available and with the growing number of possibilities to measure 

and analyse dCA, more information is needed about the diagnostic performance and reliability of 

different methods (Meel-van den Abeelen et al., 2014b, van Beek et al., 2008, Panerai, 2008).  

Second, the reproducibility of dCA indices is a major concern; a relatively small number of studies 

show that most techniques do not demonstrate reproducibility that would be acceptable for clinical use 

(Gommer et al., 2010, Elting et al., 2014a, van Beek et al., 2010).  

Third, a lack of metric convergence between different methods (Tzeng et al., 2012), inter-centre 

differences in study protocols, modelling approaches and default parameter settings, for techniques 

such as transfer function analysis (TFA) have led to a lack of standardisation and comparability of 

studies, thus limiting the possibility of using the literature to overcome the problems above (Meel-van 

den Abeelen et al., 2014b).  
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To address these issues, The Cerebral Autoregulation Research Network (CARNet, www.car-

net.org.uk) has embarked on several multi-centre studies aiming to improve standardisation and 

reliability of techniques for assessment of dCA. The first initiative was limited to one method - TFA - 

following the observation of considerable disparity in parameter settings and reporting of TFA 

coherence, gain and phase. In that study, a common dataset was analysed by multiple centres (Meel-

van den Abeelen et al., 2014a) which all applied TFA to this dataset. The outcome of that study led to 

recommendations to improve the standardisation of TFA to assess dCA (Claassen et al., 2016).  

The present study is part of a more ambitious CARNet project, wherein we aim to address the question 

of reproducibility for a wider range of dCA methods, not only TFA, but also time-domain models and 

correlation-coefficient- based methods (Table 1).  

We considered that the reproducibility of dCA has two main components, namely 1) ‘methodological 

noise’: systematic errors that are inherent to the methods and modelling techniques, and 2) 

‘physiological noise’: random errors due to physiological variability between repeated measurements 

or due to noise or artefacts in the recorded signals. In order to advance the field, it is important to 

study each component separately.  

The main purpose of the present study was to address the first possible cause of poor dCA 

reproducibility: the systematic errors resulting from different modelling techniques proposed for dCA 

assessment. To achieve this, we have used surrogate CBF data to reduce and control physiologic 

variability in repeated dCA measurements. We report herein how reproducibility varies when a single 

dataset is analysed by different centres using various methods to assess dCA.  

Specifically, this study assessed the repeatability of dCA measurements for spontaneous oscillations in 

BP and CBFV, under the ideal conditions where the expected dCA is known and invariant between 

repeated records, covering the full range of autoregulation from absent to very efficient. This was 

achieved through simulations of CBF, using physiological (truly recorded) repeated BP signals as 

input. dCA analysis methods were grouped in three broad categories: 1. TFA-like output; 2. ARI-like 

output and 3. correlation coefficient-like outputs.  

  

http://www.car-net.org.uk/
http://www.car-net.org.uk/
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Table 1. Methods with corresponding output variables per centre 

Centre 
number 

Method Output Variables Method 
cate- 
gory 

Method 
group 

References 

1 1.1 Transfer Function Analysis 
 
1.2 Autoregulation index 

Coherence, Gain (cm/s/mmHg) and Phase (rad) 
in VLF, LF 
ARI (arbitrary units) 

1 
 
2 

1 
 
6 

(Zhang et al., 1998) 
 
(Panerai et al., 1998b) 

2 2.1 Laguerre expansion of 1st-order 
Volterra kernels, single input (BP) 
2.2 Laguerre expansion of 1st-order 
Volterra kernels, dual input (BP, 
CO2) 

Gain (cm/s/mmHg) and Phase (rad) in VLF, LF 
 
Gain (cm/s/mmHg)  and Phase (rad) in VLF, LF 
 

1 
 
1 

2 
 
2 

(Marmarelis, 2004, 
Marmarelis et al., 
2014a, Marmarelis et 
al., 2013, Marmarelis 
et al., 2014b) 

3 3.1 Transfer Function Analysis  
 
3.2 Transfer Function Analysis  

Coherence, Gain (cm/s/mmHg), Phase (rad) in 
VLF, LF 
Coherence, Gain (%/%) in VLF, LF 

1 
 
1 

1 
 
1 

(Zhang et al., 1998) 

4 4.1 Autoregulation index (FFT) 
4.2 Autoregulation index (Moving 
Average 1) 
4.3 Autoregulation index (Moving 
Average 2) 

ARI (arbitrary units) 
ARI (arbitrary units) 
 
ARI (arbitrary units) 

2 
2 
 
2 

6 
7 
 
7 

(Panerai et al., 1998b, 
Panerai et al., 2003) 
 

5 5.1 Transfer Function Analysis  
 
5.2 Oblique and Orthogonal 
Subspace Projections 

Coherence, Gain (cm/s/mmHg), Phase (rad) in 
VLF, LF 
Subspace Ratio’s (arbitrary units) 

1 
 
3 

1 
 
10 

(Zhang et al., 1998) 
 
(Caicedo et al., 2016) 

6 6.1 Transfer Function Analysis Coherence, Gain (cm/s/mmHg), Phase (rad) in 
VLF, LF 

1 1 (Muller et al., 2003, 
Muller and Osterreich, 
2014) 

7 7.1 Transfer Function Analysis Coherence, Gain (cm/s/mmHg), Phase (rad) in 
VLF, LF 

1 1 (Gommer et al., 2010) 

8 8.1 ARX 
8.2 Wavelet Analysis 

ARX Coefficient (3rd) (arbitrary units) 
Synchronisation index, Phase (rad) in VLF,LF 
 

2 
1 

7 
3 

(Liu and Allen, 2002, 
Liu et al., 2003, 
Panerai et al., 2003) 
(Peng et al., 2010) 

9 9.1  Transfer Function Analysis 
 
9.2 Convergent cross mapping 

Coherence, Gain (cm/s/mmHg), Phase (rad) in 
VLF, LF 
CCM correlation coefficient (arbitrary units) 

1 
 
3 

1 
 
10 

(van Beek et al., 2012, 
van Beek et al., 2010) 
(Heskamp et al., 2013) 

11 11.1  Transfer Function Analysis,  
 
11.2  Transfer Function Analysis 
 
11.3  Transfer Function Analysis 
11.4 Univariate Transfer Function 
Analysis (parametric method) 
11.5  Univariate Impulse Response 
 (parametric method) 
11.6  Multivariate Transfer Function 
Analysis (parametric method) 

Coherence, Gain (cm/s/mmHg), Phase (rad) in 
VLF, LF 
Coherence, Gain (%/mmHg), Phase (rad) in 
VLF, LF 
Coherence, Gain (%/%) in VLF, LF 
Coherence, Gain (%/%), Phase (rad) in LF 
 
The second filter coefficient (h1) of the 
estimated FIR 
Gain (%/%) and Phase (rad) for LF band 

1 
 
1 
 
1 
1 
 
2 
 
1 

1 
 
1 
 
1 
4 
 
9 
 
4 
 

(Panerai et al., 2000, 
Simpson et al., 2001) 

12 12.1 Transfer Function Analysis 
 
12.2 Autoregulation index 
12.3 Wavelet Coherence Analysis 

Coherence, Gain (cm/s/mmHg), Phase (rad) in 
VLF, LF 
ARI 
Gain (cm/s/mmHg) and Phase (rad) in VLF, LF 

1 
 
2 
1 

1 
 
6 
3 

(Zhang et al., 1998) 
(Panerai et al., 1998b) 
(Grinsted et al., 2004, 
Torrence and Webster, 
1999) 

13 13.1 Transfer Function Analysis Coherence, Gain (cm/s/mmHg), Phase (rad) in 
VLF, LF 

1 1 (Panerai et al., 1998a) 

14 14.1 ARX models: 1 input 
14.2 ARX models: 2 inputs 

Gain (cm/s/mmHg), Phase (rad) in VLF, LF  
Gain (cm/s/mmHg), Phase (rad) in VLF, LF 

1 
1 

5 
5 

(Mitsis et al., 2002, 
Mitsis et al., 2009) 
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Method category: 1= TFA-like methods, 2= ARI-like  methods, 3= correlation-like methods; Method 

group: 1=TFA, 2=Laguerre expansions, 3=Wavelets, 4=IR-filter, 5=ARX, 6=ARI, 7=ARMA-

ARI/ARX, 9=IR-filter, 10=correlation coefficient; VLF: very low frequency; LF: low frequency; BP: 

blood pressure; FFT: fast Fourier transform; ARI: autoregulation index; ARX: autoregressive model 

with exogenous input; Centre names are listed in Table 2. 

 

Methods 

Subjects 

A database was created from available datasets of cerebral hemodynamic measurements from three of 

the 14 participating centres listed in Table 2. For the purpose of this study, only the BP signal was 

selected and the corresponding CBF signal was ignored and replaced by a generated signal (see 

below). 22 healthy adults age 66.3±7.0 years were selected. Exclusion criteria were uncontrolled 

hypertension, smoking, cardiovascular disease, diabetes, irregular heart rhythm, transient ischemic 

attack /stroke or significant pulmonary disease. The study has been carried out in accordance with The 

Code of Ethics of the World Medical Association (Declaration of Helsinki). Informed consent was 

obtained of all subjects. 

  

14.3 Laguerre expansion FIR 
models, single input (BP) 
14.4 Laguerre expansion FIR 
models, dual input  (BP, CO2) 
14.5 Transfer function analysis 

Gain (cm/s/mmHg), Phase (rad) in VLF, LF 
 
Gain (cm/s/mmHg), Phase (rad) in VLF, LF  
 
Coherence, Gain (cm/s/mmHg), Phase (rad) in 
VLF, LF 

1 
 
1 
 
1 

2 
 
2 
 
1 

(Mitsis et al., 2004, 
Kostoglou et al., 2014) 
 
 
(Meel-van den Abeelen 
et al., 2014a) 
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Table 2: Participating centres and their roles 

Centre 10 withdrew their results from analysis because their method was superseded by recent 

developments that would disadvantage their original approach. 

 

Name Institution Country Role Centre 
Number 

E  Borg-Seng-Shu 
RC Nogueira 

Department of Neurology, Hospital das 
Clinicas 
University of Sao Paulo  

Brazil Analysis 1 

VZ Marmarelis 
DC Shin 

Department of  Biomedical Engineering 
University of Southern California, Los Angeles 

USA Analysis 2 

R Zhang 
T Tarumi 

IEEM, Presbyterian Hospital Dallas 
University of Texas Southwestern Medical 
Center 

USA Analysis 
Data Provider 

3 

RB Panerai Department of Cardiovascular Sciences 
University of Leicester 

UK Analysis 
Data Provider 
Trial Coordination 

4 

S van Huffel 
A Caicedo 

Department of Electronic Engineering (ESAT), 
STADIUS Center for Dynamical Systems, 
Signal Processing and Data Analytics, KU 
Leuven, Belgium; imec 

Belgium Analysis 5 

M Müller Department of Neurology 
Luzerner Kantonsspital 

Switzerland Analysis 6 

ED Gommer Department of Clinical Neurophysiology 
University Hospital Maastricht 

Netherlands Analysis 
Data Provider 

7 

SJ Payne 
A Mahdi 

Department of Engineering Science  
University of Oxford 

UK Analysis 8 

JAHR Claassen 
ML Sanders 

Department of Geriatric Medicine 
Radboud University Nijmegen 

Netherlands Analysis 
Data Provider 
Trial Coordination 

9 

DM Simpson 
D Nikolic 

Institute of Sound and Vibration Research 
University of Southampton 

UK Analysis 
Data Provider 

11 

JWJ Elting 
M Aries 
 

Department of Neurology 
University Medical Center Groningen 

Netherlands Analysis 
Data Provider 
Trial Coordination 

12 

C Puppo 
B Yelicich 

Departamento de Emergencia, Hospital de 
ClínicasUniversidad de la República, 
Montevideo 

Uruguay Analysis 13 

GD Mitsis 
K Kostoglou 

Department of Bioengineering 
Department of Electrical, Computer and 
Software Engineering 
McGill University,  Montreal 

Canada Analysis 14 
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Description of datasets 

The three centres that provided the data had similar protocols expecting participants to refrain from 

nicotine, alcohol and caffeine from midnight prior to the study. Time between the two measurements 

varied between centres from minutes to a maximum of three months. These interval differences were 

not considered in the analysis. Datasets consisted of five minutes of beat-to-beat mean BP (digital 

artery volume clamping) and end-tidal CO2 (etCO2, capnography) measurements at rest.  

The BP time-series were used to generate surrogate CBF data, which were expressed as CBFV to 

allow comparison with physiological data and with the literature in this field. For each BP signal in 

this set, the original Tiecks curves (ARI 0-9) (Panerai et al., 1998b) were used to generate one 

surrogate CBFV signal from autoregulation index (ARI) values ranging from ARI=0 (absence of 

autoregulation) to ARI=9 (best CA that can be observed). The ARI value used to generate the CBFV 

signal will be referred to as ARIINPUT. ARI 0-9 were all represented: ARI0 n=3; ARI1 n=2; ARI2 n=3; 

ARI3 =2; ARI4 n=2; ARI5 n=3; ARI6 n=1; ARI7 n=2; ARI8 n=1; ARI9 n=3 (total: n=22). For the 

repeated measurements, identical ARI values were used to generate the repeated CBFV signals.  

Random Gaussian band-pass noise (0.02-0.1Hz) was added to the generated CBFV signals, to produce 

outputs with a signal-to-noise ratio (SNR) of 6 dB in this frequency range, thus mimicking CBFV 

signals as they would be measured in ‘real life’. (Katsogridakis et al., 2011).  

 

dCA Analysis 

Data analyses were performed by 14 participating centres on 44 datasets from 22 volunteers with two 

measurements each. The following dCA analysis methods were used: TFA (Reinhard et al., 2003a, Liu 

et al., 2005, van Beek et al., 2010, Gommer et al., 2010, Panerai, 2014, Mitsis et al., 2002, Zhang et 

al., 1998, Meel-van den Abeelen et al., 2014a, Muller et al., 2003, Muller and Osterreich, 2014, 

Panerai et al., 1998a), Laguerre expansion of 1st-order Volterra kernels or finite impulse response 

models  (Marmarelis, 2004, Marmarelis et al., 2013, Marmarelis et al., 2014b, Marmarelis et al., 

2014a, Mitsis et al., 2004, Mitsis et al., 2009), wavelet analysis (Peng et al., 2010, Torrence and 

Webster, 1999, Grinsted et al., 2004), parametric finite-impulse response filter based methods (Panerai 
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et al., 2000, Simpson et al., 2001), ARI anaysis (Panerai et al., 1998b), autoregressive moving average 

(ARMA) based ARI methods and variant ARI methods (Panerai et al., 2003), autoregressive with 

exogenous input (ARX) methods (Liu and Allen, 2002, Liu et al., 2003, Panerai et al., 2003) and 

correlation coefficient-like indices (Heskamp et al., 2013, Caicedo et al., 2016). A summary of the 

methods and corresponding references are given in Table 1.  

Analysis dCA outcome parameters 

For the reproducibility and variability analysis of the dCA parameters, analysis methods were grouped 

in three broad categories: 1. TFA-like output; 2. ARI-like output and 3. correlation coefficient-like 

outputs. For the TFA-like output methods, we provided suggested settings that were similar to the 

recent CARNet White Paper (Claassen et al., 2016). However, it should be noted that that paper had 

not yet been published when we performed this study. Because of this, and given the specific purpose 

of this study, adherence to these White Paper settings was not strictly enforced. In summary, the 

suggested settings involved spectral estimates using the Welch method with multiple segments of data 

of at least 100 s, 50% superposition and cosine windowing to reduce spectral leakage. Estimates of 

gain and phase were averaged for different frequency bands. All centres were free to use their own 

settings to cover the frequency range between 0-0.5 Hz. The ARI-like output methods consisted of 

time domain estimates of the impulse or step response, using the inverse Fourier transform of gain and 

phase, or ARMA models. Finally, the correlation coefficient-like outputs consist of a single parameter, 

obtained by linear regression or similar methods (Table 1). These categories were created from the 

perspective of similar output parameters, not because of similarity on mathematical grounds. 

Statistical analysis 

Reproducibility of the repeated measurements for all dCA analysis methods was determined by one-

way Intraclass correlation coefficient analysis (ICC). Because the ICC does not reflect the accuracy of 

the measurement, just the consistency, and because outliers could yield high ICC values, an additional 

evaluation of accuracy was performed. For this, the results of dCA analysis methods were compared to 

the reference ARI (ARIINPUT) that was used to generate the surrogate CBFV signals (used here as the 
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‘gold-standard’ for the simulated signals), and to the reference gain and phase values that 

corresponded to the ARIINPUT.  

Differences between  VLF and LF gain and phase values were tested with the paired Wilcoxon signed 

rank test, considering that most parameters, such as TFA estimates, are not normally distributed. A 

value of p<0.05 was adopted to indicate statistical significance. 

 

Results 

An example showing two BP signals from two different subjects with the corresponding surrogate 

CBFV signals is presented in Figure 1.  This figure shows that the two BP signals differed due to 

expected physiological variation between repeated measurements, and also demonstrates the 

difference in the generated CBFV signals between ARI = 0 (poor autoregulation, high variability in 

CBFV) and ARI = 9 (very efficient autoregulation, limited variability in CBFV). 
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Figure 1. BP and CBFV signal examples. Representative mean blood pressure  (BP, black) recordings 

and their corresponding surrogate cerebral blood flow velocity (CBFV, grey) signals, which were 

generated using Tiecks’ model (Tiecks et al., 1995). In panel (a), ARI 0 was used to generate the 

CBFV signal, in panel (b) ARI 9 was used. An ARI value of 9 corresponds to very efficient 

autoregulation which makes the relationship between BP and CBFV less pronounced, also considering 

there is noise added.  

 

ICC 

S2-S6 Tables present an overview of the outcome parameters as reported by all centres and all the 

different dCA methods that were used for the repeated measurements (T1 and T2). 

Figures 2 and 3 depict the results of the ICC analysis. For TFA-like methods (Figure 2), ICC values 

for gain and phase in the low frequency band (LF: 0.07-0.2Hz, light grey) are higher than in the very 

low frequency band (VLF: 0.02-0.07 Hz, dark grey) for almost all methods. Mean (SD; [range]) ICC 

for gain was 0.71 (0.10; [0.49-0.86]) and 0.80 (0.17; [0.36-0.94]), respectively for VLF and LF 

(p=0.003). For phase, the corresponding ICC values were 0.53 (0.21; [0.09-0.80]), and 0.92 (0.13; 

[0.44-1.00]) respectively (p <0.001). Figure 3 provides ICC values for ARI-based and correlation-

based methods, which provide a single output parameter. Mean (SD; [range]) ICC for ARI-like 

methods was 0.84 (0.19; [0.41-0.94]). For correlation-like methods, the ICC was 0.21 (0.21; [0.056-

0.35]).  
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Figure 2. ICC values for methods using TFA or similar approaches (‘TFA-like’) with multiple 

outcome parameters. (a): Gain VLF and Gain LF; (b): Phase VLF and Phase LF. Results are shown 

per method . See Tables 1 and 2 for a list of centres and methods.  

 

Figure 3. ICC values for methods with single outcome parameters: ARI (dark grey) and correlation 

based methods (light grey). Results are shown per method. See Tables 1 and 2 for a list of centres and 

methods.  
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Relationship between reference gain, phase, ARI (input) and 

measured parameters (output) 

In Figure 4, box plots were used to plot the individual outcomes of TFA gain and phase, ARI and 

correlation coefficient values. The outcomes were pooled and compared against the ARIINPUT that was 

used to generate the surrogate CBFV signals. Overall, a higher ARIINPUT  was associated with lower 

gain and higher phase outcomes (Figures 4(a-d)). Variation between the gain parameters was larger, 

compared to phase, especially LF phase, which showed minimal variation between different methods.  

Figure 4(e) depicts a strong relationship between input ARIINPUT and measured ARI, with a stronger 

relationship for higher ARI values. On the other hand, there was a lack of association between input 

ARIINPUT and measured correlation coefficient (Figure 4(f)). 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
 

Figure 4. Combined dCA results per method category (Table 1) compared to reference ARI values. 

TFA gain and phase values, ARI and correlation coefficient values as estimated and reported by 
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centres pooled and plotted against the reference ARI value that was used to generate the surrogate 

CBFV signal. (a): VLF gain; (b): LF gain; (c): VLF phase; (d): LF phase; (e): ARI; (f): Correlation 

coefficient.  

 

In Figure 5(a-f) averages for each parameter (black lines) are presented in combination with the 

individual estimated outcomes from each method (grey lines) and are compared to corresponding 

reference gain, phase, and ARIINPUT values. Different methods show similar patterns. In Figures 5(a-b) 

one method reported systematically shifted gain VLF results, while the other methods yielded more 

comparable results. The phase VLF results (Figure 5(c)) show more pronounced between-method 

variability for the lowest and highest phase results. Variability between phase LF measurements 

(Figure 5(d)) increases with increasing phase. In Figure 5(e) the estimated and reference ARI show a 

clear association, however in Figure 5(f) any association between estimated Correlation coefficient 

and the reference ARI  is lacking. 
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Figure 5. dCA results of individual methods. (a-d):  Gain  (normalised) and phase, values as estimated 

and reported by centres plotted against the reference gain and phase values, as depicted in Figure S1, 

that were determined with standardised CARNet settings (Claassen et al., 2016) (grey lines) and the 

average of all methods (black line). Figures (e-f): estimated ARI and Correlation coefficient values 

from individual methods against the reference ARIINPUT value that was used to generate the surrogate 

CBFV signal. (a): VLF gain; (b): LF gain; (c): VLF phase; (d): LF phase; (e): ARI; (f): Correlation 

coefficient.  

 

Discussion 

The main aim of this study was to investigate to what extent shortcomings in methods could be 

responsible for the high variability (Meel-van den Abeelen et al., 2014a) and therefore poor 

reproducibility that have been reported in the literature on dCA measurements using spontaneous 

oscillations (van Beek et al., 2010, Hu et al., 2008, Reinhard et al., 2003a, Gommer et al., 2010, 

Brodie et al., 2009, Birch et al., 2002). Since poor reproducibility may be explained by physiological 

variability, combined with methodological shortcomings, we removed the contribution of 

physiological variability by generating CBFV signals (surrogate output signals) based on true BP 

recordings as input signals.  

 

Main findings 

Overall, our main finding was that reproducibility, quantified by the ICC, was high for most TFA-like 

and ARI-like dCA methods for these realistic surrogate data, when compared to previous studies on 

reproducibility of dCA using physiological data (van Beek et al., 2010, Hu et al., 2008, Reinhard et al., 

2003a, Gommer et al., 2010, Brodie et al., 2009, Birch et al., 2002). No single dCA analysis method 

performed clearly better than others. As a result of these findings, we can conclude that the largest 
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contributor to the longitudinal variability of dCA parameters are more likely to be physiological 

factors, rather than inherent limitations of analytical methods 

Assessment of dCA reproducibility 

The choice of ICC as a method to assess reproducibility was based on the difficulty of comparing 

different methods with multiple outcome parameters. The benefit of using ICC is that it assesses the 

correlation between repeated measurements in a manner independent of the number or nature of the 

outcome parameter. On the other hand, one limitation of ICC is that it does not reflect whether these 

assessments are accurate, i.e. two measurements may both be highly inaccurate but still agree with 

each other. To account for this, we investigated the agreement of each method by comparing the 

outcome parameters with the reference ARI (ARIINPUT) that had been used to generate the surrogate 

CBFV signals and the reference gain and phase derived from ARIINPUT (Figs. 4 and 5). If a higher ARI 

(more efficient autoregulation) is used to generate CBFV signals, the estimated gain based on that 

signal is expected to be lower (Tiecks et al., 1995). Trends in Figs. 4A, 4B, 5A and 5B show this 

correlation, however the variation is large for both VLF and LF gain. Similarly, phase is expected to 

be higher for signals generated with higher ARI (Tiecks et al., 1995).  Figures 4(c), 4(d), 5(c) and 5(d) 

show this correlation, with a clearly smaller variation for LF phase. The results of phase and gain 

estimated by the different methods (Fig. 5) were compared to the reference gain and phase values 

corresponding to the reference ARIINPUT. Supplemental Figure S1 shows the distribution of phase and 

gain for each ARIINPUT. Averaging phase and gain over frequency bands using these plots leads to 

large overlap in phase and gain values for different ARIINPUT values, which limits comparison with the 

observed values, for example in 5(b). Therefore, we chose to compare the observed gain and phase 

values with the input ARI as well, and not only with reference gain and phase values derived from 

ARIINPUT. 

Differences between analytical methods 
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The results of the measured ARI values compared to the input ARI show the expected linear 

correlation (Figure 4(e)) with hardly any deviation from the line of perfect agreement. For the lower 

ARI values, corresponding to a less efficient or absent autoregulation, the variation is larger. This is in 

agreement with previous studies describing the increased contribution of the VLF on the ARI 

estimation for lower ARI values (Elting et al., 2014b). The added noise in the VLF range leads to an 

increase in variation. The stronger linear relationship between ARI estimates and ARIINPUT should not 

in itself be taken as an endorsement of the use of ARI in the assessment of autoregulation in signals 

recorded from human volunteers. Such a linear relationship might have been expected as ARI was 

used to generate the surrogate signals. More recent methods, including multivariate analysis, exhibited 

similar or poorer reproducibility compared to standard TFA and ARI methods. These methods have 

been partly proposed to overcome problems from time-varying behaviour or the confounding 

influence of additional inputs, such as CO2 (Marmarelis et al., 2014a, Marmarelis et al., 2013, 

Marmarelis et al., 2014b, Mitsis et al., 2009, Mitsis et al., 2004, Kostoglou et al., 2014). The 

simulations did not attempt to emulate these problems and therefore do not show the potential benefit 

of these methods. The correlation-like methods were underrepresented because only methods that 

could be applied to short data segments (5 min) were evaluated, but these clearly showed reduced 

reproducibility compared to the other categories (Figs. 2 and 3) under these conditions. The results 

obtained with the correlation index were not related to ARIINPUT, suggesting that the poor 

reproducibility of that method for the present dataset was related to a mismatch in the underlying 

Tiecks model adopted to generate the surrogate data as explained above. LF phase reproducibility was 

higher than VLF reproducibility (Figure 2(b)). This also applies, to a lesser extent, to the gain results 

(Figure 2(a)). The VLF band is more susceptible to the occurrence of large negative values of phase, 

due to the phenomenon of ‘wrap-around’ (Claassen et al. 2016). Unless these negative values are 

removed from the mean, estimates of mean phase for the VLF band will be considerably distorted.   

VLF gain (Figure 5(a)) showed a difference between the reference value and the measured values for 

lower gain values, corresponding to higher ARIINPUT values. This could be the result of inter-centre 

differences in pre-processing settings. For example, a lack of mean subtraction, a normalisation over 

the whole data segment or the use of a VLF band including frequencies below 0.02Hz could have 

increased the VLF gain compared to the reference values. Comparing VLF gain and phase line plots 
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(Figure 5(a), 5(c)) with corresponding values for LF (Figure 5(b), 5(d)), a smaller variability is 

observed in the LF band, especially for the lower ARIs and the agreement between measured output 

and reference gain and phase is improved in the LF band. These differences between the frequency 

bands are the result of the added noise that was stronger (in relative terms) in the VLF compared to the 

LF band. This is also reflected in the low coherence results for VLF in S5 Table. A further contributor 

may also be a lower number of VLF oscillations in both BP and CBFV signals or the different 

distribution of the theoretical ARI curves for VLF compared to LF.  

In summary, different analytical methods for assessment of dCA have different characteristics and 

peculiarities, but none of the methods included in this study showed distinctive superiority regarding 

the reproducibility of estimates based on surrogate data. As the next step of this ongoing study, we 

will investigate the performance of these methods when applied to real physiological measurements. 

Limitations of the study 

We used physiological BP data as input. An alternative could have been to first test purely surrogate 

data with also surrogate BP signals, say with a wide-band spectral power. That should produce the 

exact systems parameters regardless of the methods used if the surrogate data is generated by a linear 

system. However, in a future study we aim to compare reproducibility of physiological data with these 

surrogate data, and therefore the use of physiological BP data in this set was felt to allow better 

comparison than if we had used purely synthetic data for both BP and CBFV.  

To generate realistic CBFV surrogate data, low-pass filtered random noise was added to the output of 

Tiecks model. The noise power adopted corresponded to a signal-to-noise ratio (SNR) level of 6dB as 

suggested by previous studies (Katsogridakis et al 2011). Most results presented above are likely to 

change with different levels of SNR. On one hand, much noisier measurements will undoubtedly 

worsen the ICC and the scatter diagrams (Fig. 5), and on the other, high quality measurements could 

have much better SNR. Both situations deserve more detailed investigation, but, essentially, would not 

be expected change the main conclusions of the study, suggesting that the main sources of poor 

reproducibility lie with the influences of multiple physiological mechanisms, and not with the 

assessment methods adopted for quantification of dynamic CA. Similar considerations apply to the 
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choice of 0.1 Hz as cut-off frequency for low-pass filtering the noise added to the CBFV time-series 

generated with Tiecks model. This choice was based on the power spectral distribution of measured 

BP and CBFV beat-to-beat values (Mitsis et al 2004; Zhang et al 1998). Different cut-off frequencies 

are likely to change the results above, but would lead to less realistic CBFV surrogate signals, unless 

non-random sources of noise are considered, for example Doppler probes being disturbed in 

synchronism with respiratory frequency. 

The time interval between repeated measurements that were available varied from same day to several 

weeks. For the purpose of this study it was not essential to have matching intervals -which would 

reduce interindividual variability- and therefore this limitation was accepted.   

It is difficult to find suitable analysis methods for comparing reproducibility between multiple 

methods with different outcome values and outcome ranges. Not all criteria for using ICC were met 

(bivariate normal distributions, and equal variances) which may have influenced the results. However, 

this influence was reduced by using surrogate CBFV data which do not include external physiological 

influences except for BP and are free from sporadic artefacts that are common in data recorded from 

human subjects. For example, ICC is sensitive to outliers, but this would be more of an issue when 

using purely physiological data. The use of the Tiecks model for the generation of CBFV signals 

directly influences the results of the non-linear methods, since this model is a linear time-invariant 

model. Results may thus be biased towards higher reproducibility for linear analysis methods, since 

non-linear (or time-varying or multivariate) models have additional degrees of freedom that allow 

more variability, in accordance with the general principle of parsimony in fitting models to data. Such 

methods might outperform linear ones when the assumptions inherent in the use of linear models are 

not justified in physiologically ‘noisy’ data.  

The correlation-like methods should be extended with other types of correlation methods to make 

more extensive analysis feasible for this dCA analysis category.  Well known correlation-like methods 

such as PRx (Czosnyka et al., 1996) were not applicable for this study since longer data recording are 

required.  
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This study was initiated before the recommendations of the White Paper (Claassen et al., 2016) were 

formulated. Therefore, the different centres could not be instructed to use standardized settings for 

TFA. For the purpose of this study, this was not a major limitation because it allowed us better to 

study the influence of methodological differences on reproducibility. Nonetheless, it also complicated 

comparisons. For example, there were differences between the frequency band used for the TFA-like 

analysis. Some centres used different settings than the current White Paper recommendations of VLF: 

0.02-0.07Hz; LF: 0.07-0.2 Hz; HF: 0.2-0.5 Hz. This again emphasises the need to apply these White 

Paper standardised settings in future publications on TFA, and to establish consensus on other 

commonly used methods. 

Conclusion 

When applied to realistic surrogate data, free from the influences of physiological variability on the 

BP-CBF relationship, most methods of dCA modelling yield parameters showing ICC values 

considerably higher than what has been reported for physiological data. This finding suggests that the 

poor reproducibility reported by previous studies may be mainly due to the inherent physiological 

variability of CBF regulatory mechanisms, rather than related to (stationary) random noise and the 

signal analysis methods. Further work is warranted to test this hypothesis, by comparing the 

performance of different methods using a common set of repeated recordings, aiming to identify 

methods that could optimise the reproducibility of dynamic CA parameters while at the same time 

clearly distinguishing between normal and impaired blood flow regulation.  
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