Not the final published version

\qquad Accelerometer_Metrics_that.96997.aspx DOI: 10.1249/MSS. 0000000000001561 .

Beyond cut-points: Accelerometer metrics that capture the physical activity profile

Short title: Capturing the activity intensity distribution

Alex V. Rowlands ${ }^{1,2,3}$, Charlotte L. Edwardson ${ }^{1,2}$, Melanie J. Davies ${ }^{1,2}$, Kamlesh Khunti ${ }^{1,2,4}$, Deirdre M. Harrington ${ }^{1,2}$, Tom Yates ${ }^{1,2}$

1. Diabetes Research Centre, University of Leicester, Leicester General Hospital, Leicester, UK
2. NIHR Leicester Biomedical Research Centre, UK
3. Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for

Health Research, Division of Health Sciences, University of South Australia, Adelaide, Australia
4. NIHR Collaboration for Leadership in Applied Health Research and Care East Midlands, Leicester General Hospital, UK

Corresponding author: Alex Rowlands, Diabetes Research Centre, University of Leicester, Leicester

General Hospital, Leicester, LE5 4PW, UK. alex.rowlands@le.ac.uk. Tel: +44 1162588595

Abstract

Purpose: Commonly used physical activity metrics tell us little about the intensity distribution across the activity profile. The purpose of this paper is to introduce a metric, the intensity gradient, which can be used in combination with average acceleration (overall activity level) to fully describe the activity profile. Methods: 1669 adolescent girls (sample 1) and 295 adults with type 2 diabetes (sample 2) wore a GENEActiv accelerometer on their non-dominant wrist for up to 7-days. Body mass index and percent body fat were assessed in both samples and physical function (grip strength, Short Physical Performance Battery, sit-to-stand repetitions) in sample 2. Physical activity metrics were: average acceleration (Accel ${ }_{\mathrm{Av}}$); the intensity gradient (Intensity ${ }_{\text {GRAD }}$ from the log-log regression line: 25 mg intensity bins (x)/ time accumulated in each bin (y)); total moderate-to-vigorous physical activity (MVPA); and bouted MVPA (sample 2 only). Results: Correlations between Accel $_{\text {AV }}$ and the Intensitygrad $(r=0.39-0.51$) were similar to correlations between Accel $_{A V}$ and bouted MVPA ($r=0.48$), and substantially lower than between Accel $_{A V}$ and total MVPA ($r \geq 0.93$). The Intensity grad was negatively associated with body fatness in sample 1 ($\mathrm{p}<0.05$) and positively associated with physical function in sample 2 ($\mathrm{p}<0.05$); associations were independent of Accel $_{\mathrm{AV}}$ and potential co-variates. In contrast, MVPA was not independently associated with body fatness or physical function. Conclusion: Accel I_{AV} and the Intensitygrad provide a complementary description of a person's activity profile, each explaining unique variance, and independently associated with body fatness and/or physical function. Both metrics are appropriate for reporting as standardised measures and suitable for comparison across studies using raw acceleration accelerometers. Concurrent use will facilitate investigation of the relative importance of intensity and volume of activity for a given outcome.

Keywords: intensity gradient; average acceleration; GENEActiv; body fatness; physical function

Introduction

The measurement of physical behaviours with accelerometers that can be worn continually and give access to the raw acceleration data is now widespread. Research-grade accelerometers available, and in use in large global surveys, include the GENEActiv, Axivity and ActiGraph (GT3X+, GT9X/Link) (1-7). Despite the potential to describe the 24 -hour (h) physical behaviour profile, output variables derived from accelerometer data are commonly limited to overall activity level and time spent in specific intensity categories such as moderate-to-vigorous physical activity (MVPA) and/or sedentary time.

Overall activity level, defined as average acceleration over a 24 h period, is directly measured and does not rely on population-specific calibration protocols to derive outcome measures; thus average acceleration is comparable across studies and populations. However, it tells us little about the intensity distribution; e.g. it is possible to have a high average acceleration due to a large volume of light intensity activity and relatively little or no MVPA, or due to a substantial amount of MVPA with a large volume of sedentary time. It is important to capture both overall activity and the intensity distribution as, for some health markers and outcomes, it appears the volume of activity is more important than the pattern of intensity (e.g. 8-10), but for others the converse appears to be true (e.g. 11, 12, 13).

Physical activity intensity information is usually expressed as time spent within cut-points that have typically been derived using validation studies. These cut-points are heavily dependent on the calibration sample and the protocol used to derive the cut-points (14, 15), leading to problems comparing outcomes across studies and/or populations (15, 16). Consequently the validity of these outcomes depends not only on the validity of the measure of acceleration, but also on the
validity of the algorithm. A further consideration is average acceleration, time below cut-points (e.g. inactive time), and time above cut-points (e.g. MVPA) are typically highly inter-correlated, suggesting relatively little unique information is obtained from the measures (e.g. as seen in data from 11, 17, 18).

A metric is needed that: captures the intensity distribution; does not rely on calibration protocols (that are, by nature, population and protocol specific); and is more independent of overall activity level, thus can be used alongside average acceleration. The two metrics together would utilise the rich nature of the data available to more fully describe the 24 h physical behaviour profile and, critically, would depend only on the validity of accelerometers at measuring acceleration, rather than also being population or protocol specific.

The purpose of this paper is to introduce a novel metric that describes the intensity distribution of the accelerations experienced over a 24 h period, and can be used in combination with average acceleration to fully describe the activity profile. To demonstrate the potential of the new metric we applied both metrics to two very different data sets: adolescent girls, and adults with type 2 diabetes. Specifically we investigated: 1) whether the intensity gradient was more independent of (i.e. less highly correlated with) average acceleration than MVPA and inactive time; 2) whether independent relationships of overall activity level and the intensity distribution existed with body fatness (adolescent girls and adults with type 2 diabetes), and physical function (adults with type 2 diabetes); and 3) demonstrate how results based on analyses of the directly measured acceleration metrics can be translated to easily interpretable physical activity intensity outcomes post-hoc.

Methods

Sample 1 (Adolescent girls)

Data were obtained from the baseline time-point of the evaluation of the Youth Sports Trust's Girls Active school-based physical activity programme (19). This has been previously described (19), but in brief twenty schools in and on the boundary of Leicestershire and Rutland (UK) took part with approximately 90 girls, aged 11-14 y, invited to participate at random from each school. Parents returned an opt-out consent form if they did not want their child to participate and the girls themselves provided verbal assent. Ethical approval for the evaluation was obtained from the University of Leicester's College of Medicine and Biological Sciences Research Ethics representative, UK.

In brief, the data were collected in measurement sessions run during the school day. Participating girls were requested to wear a GENEActiv accelerometer on their non-dominant wrist (defined as the hand they do not normally write with) $24 \mathrm{~h} /$ day for 7 -days after the measurement session. Height, sitting height and body mass were measured using standardised procedures. Body mass index (BMI) was calculated and expressed in z-scores of BMI for age according to reference curves for the UK (20). Age was calculated from date of birth to date of measurement, ethnicity was selfreported and later collapsed into categories of White European, South Asian or other, and socioeconomic status (SES) was estimated using the index of multiple deprivation (IMD) from selfreported postcode. Age at peak height velocity (APHV) was calculated as an indicator of biological maturity, and categorised into 'average maturing', 'early maturers' or 'late maturers' (21). Percent body fat was estimated using paediatric bioelectrical impedance scales (Tanita SC-330ST, Tanita Europe BV, Middlesex, UK).

Sample 2 (Adults with type 2 diabetes)

Data were obtained from adult participants ($18-75 \mathrm{y}$) enrolled in the ongoing CODEC study (Chronotype of Patients with Type 2 Diabetes and Effect on Glycaemic Control (Clinical Trial

Registry Number: NCT02973412)). Adults were recruited from both primary and secondary care using direct and opportunistic marketing. Eligible adults were sent an invitation pack containing a patient information leaflet, letter of invitation and reply slip with pre-paid envelope. All participants provided written informed consent. Ethical approval was obtained from the local NHS research ethics committee.

Study data were collected in a single session during the patient's next outpatient appointment unless the patient requested otherwise. The measures relevant to this study were age (from date of birth to date of measurement), ethnicity (self-reported and later collapsed into categories of White (W), South Asian (SA) or other), sex, body mass, height, BMI, percent body fat from bioelectrical impedance scales (Tanita SC-330ST, Tanita Europe BV, Middlesex, UK) and measures of physical function. With the exception of percent body fat and physical function, the above measures were all part of the usual care routine. Physical function measures included:

Handgrip strength (kg): Measured three times in the left and right hand using a digital hand held dynamometer, with the elbow flexed and the forearm in a neutral position. The average of the maximum readings for the left and right hand was taken.

Sit-to-stand 60 test: The number of times a participant could stand from a chair in 60 seconds was recorded.

Short Physical Performance Battery (SPPB): This consisted of chair stands, standing balance and gait speed (detailed below). The SPPB score was the sum of the three tests and could range from 0 to 12 points, with a high score indicating better performance. For details of scoring see Puthoff (22).

Chair stands: The participant started from a seated position on a hard, upright chair, with the feet flat on the floor and the knees bent at 90°. The time taken for the participant to
stand up fully and then return to sitting, without using the hands five times was measured (0-4 points).

Standing balance: This was tested in three progressive positions. If the participant was able to complete 10 seconds in the specified position then the starting position was progressed to the next stage ($0-4$ points).

- Feet together
- Semi-tandem
- Tandem

Gait speed: The time taken for the participant to walk 2.44 m (8 feet) on a level course was measured (0-4 points).

At the end of the session, participants were given a GENEActiv accelerometer and asked to wear it on their non-dominant wrist (defined as the hand they do not normally write with) $24 \mathrm{~h} /$ day for 7days. They were provided with a pre-paid padded envelope to return the device at the end of the assessment period.

Accelerometer data processing

The GENEActivs were initialised to collect data at 100 Hz and uploaded using GENEActiv PC software version 3.1. The GENEActiv .bin files were analysed with R-package GGIR version 1.2-2 (http://cran.r-project.org) (23, 24). Signal processing in GGIR includes autocalibration using local gravity as a reference (24); detection of sustained abnormally high values; detection of non-wear; and calculation of the average magnitude of dynamic acceleration corrected for gravity (Euclidean Norm minus 1 g , ENMO) averaged over 5 s epochs and expressed in milli-gravitational units (mg).

Participants were excluded if their accelerometer files showed: post-calibration error greater than
$0.01 \mathrm{~g}(10 \mathrm{mg})$, fewer than three days of valid wear (defined as $\geq 16 \mathrm{~h}$ per day, Rowlands et al. (17, 18)), or wear data wasn't present for each 15 min period of the 24 h cycle. Detection of non-wear has been described in detail previously (See 'Procedure for non-wear detection' in supplementary document to van Hees et al. (23)). Briefly, non-wear is estimated based on the standard deviation and value range of each axis, calculated for 60 min windows with a $15-\mathrm{min}$ sliding window. The window is classified as non-wear if, for at least 2 out of the 3 axes the SD (standard deviation) is less than 13 mg or the value range is less than 50 mg . The default non-wear setting was used, i.e. invalid data were imputed by the average at similar time-points on different days of the week; therefore the outcome variables were based on the complete 24 h cycle (1440 minutes) for all participants. The distribution of time spent in intensity bins (categories) of 25 mg resolution (0-25, 25-50, 50-75.... 4000, >4000) was calculated.

Physical activity was expressed as average acceleration across the day (ENMO, mg), time accumulated in moderate-to-vigorous physical activity per day (MVPA) and time spent inactive (see below). For each sample, all MVPA outcomes were defined to be consistent with previous research within that population for comparative purposes. For the adolescent girls, MVPA TOTAL was defined as time accumulated above an acceleration of 200 mg (25). For the adults, MVPA $_{\text {total }}$ was defined as time accumulated above an acceleration of 125 mg as presented in a recent paper using data from UK Biobank (26); MVPA Bouts was defined as time accumulated in 10-min bouts above an acceleration of $100 \mathrm{mg}(25)$, where at least 80% of the bout is above the 100 mg threshold as used in previous research $(5,27)$. Inactive time was defined as time accumulated below 50 mg for both samples (17, 28, 29).

Metric to describe intensity distribution across the physical activity profile

There is a negative curvilinear relationship between intensity and the time accumulated at that intensity, i.e. the total time for all participants is 1440 minutes (24 h), but the vast majority of time is accumulated in the $0-25 \mathrm{mg}$ intensity bin, with time accumulated rapidly dropping off as intensity increases and minimal time accumulated at very high intensities, e.g. $>1000 \mathrm{mg}$. The nature of the curvilinear relationship for a given participant provides a good descriptor of their physical activity intensity distribution. To describe this curvilinear relationship, for each participant we transformed the curvilinear relationship into a straight-line relationship by taking the natural log of the two wide ranging quantities of intensity and time, i.e. the mid-range of each of the intensity bins (e.g. 0-25 mg bin $=12.5 \mathrm{mg}$) and the time accumulated in each intensity bin. We recorded the R^{2} (indicative of the goodness of fit of the linear model), gradient and constant of the linear regression equation for each participant. The gradient was always negative reflecting the drop in time accumulated as intensity increases; a higher constant and more negative (lower) gradient reflects a steeper drop with little time accumulated at mid-range and higher intensities (Figure 1a), while a lower constant and less negative (higher) gradient reflects a shallower drop with more time spread across the intensity range (Figure 1b).

Analyses

Descriptive statistics were calculated for each variable using mean (standard deviation) for continuous variables and percentage for categorical variables. Average acceleration was used as the metric for overall activity and the gradient of the participant's log-log linear regression line (intensity gradient) was used as the metric for physical activity distribution.

The two activity metrics were examined and exemplar data plotted to demonstrate how the average acceleration and intensity gradient differed between and within samples. Independent ttests were used to compare the two activity metrics across samples.

Inter-correlations of activity variables

Pearson's correlation coefficients were used to investigate the inter-correlations between the various activity output variables within each sample to determine whether the intensity gradient was more independent of average acceleration than standard intensity metrics.

Associations between the two activity metrics, body fatness and physical function

Sample 1 (Adolescent girls)

To control for clustering at the school level, Generalised Estimating Equations (GEE) were used to determine whether each of the two activity metrics were associated with percent body fat and BMI z-score (dependent variables), (Model 1). Model 2 further controlled for potential co-variates (age, biological maturity, SES and ethnicity), finally Model 3 additionally controlled for the alternate activity metric to test whether associations were independent.

Sample 2 (Adults with type 2 diabetes)

There was no clustering in this dataset so multiple linear regression analyses were used to assess whether each of the activity metrics were associated with the following dependent variables: percent body fat, BMI, grip strength, sit-to-stand test score and SPPB score (Model 1). Model 2 was adjusted for potential co-variates (age, sex, SES, ethnicity and percent body fat (physical function variables only)), and Model 3 additionally for the alternate activity metric to test whether associations were independent.

Analyses were repeated replacing the intensity gradient with MVPA Total $^{\text {(both samples) and }}$ MVPA $_{\text {BOUTS }}$ (sample 2 only). This allowed comparison of results from our new metric, the intensity gradient, to those seen with MVPA metrics.

Continuous variables were centred prior to entry into GEE and regression analyses. The variance inflation factor (VIF) was calculated to check for multicollinearity, a value >5 was taken to indicate the effects of the predictors could not be reliably estimated (30).

Translation of results

Increases in a participant's average acceleration can be made by adding varying durations of physical activity at any intensity greater than the average acceleration. The intensity of the physical activity added will have an impact on the intensity gradient, as it will change the distribution of time across the intensity bins. Whether overall activity, the pattern of activity of both are important for a given health outcome will determine whether an intervention should target the average acceleration (for overall activity), the intensity gradient (for the pattern of activity) or both.

To demonstrate how adding physical activity may impact on average acceleration and the intensity gradient, we determined the time spent in specific activities that would need to be accumulated to increase the overall activity level of participants from samples 1 and 2 by 1 SD. Next we explored the impact on the intensity gradient of each option. We assumed that the introduced activity would replace time spent at the average acceleration. Therefore, for a given activity, the time required is calculated by: 1440 X (increase in average acceleration required by activity at that intensity) / (acceleration associated with that activity - average acceleration). We also show how the recommended activities for a given increase in activity level can be tailored towards a particular balance of intensities. This may be desirable due to the intensity distribution being important for a given health outcome, or to take into account the preferences of a given demographic/individual participant when prescribing or recommending activity.

The representative activities we used to translate the findings from the accelerometer metrics were: pottering/slow walking (approximately $3 \mathrm{~km} / \mathrm{h}$), brisk walking (approximately $5 \mathrm{~km} / \mathrm{h}$), fast walking (approximately $6.5 \mathrm{~km} / \mathrm{h}$, adults only), slow running (approximately $8 \mathrm{~km} / \mathrm{h}$) and medium running (approximately $10 \mathrm{~km} / \mathrm{h}$). The acceleration values indicative of these activities and used to calculate the time estimates were taken from Hildebrand et al. (25), Phillips et al. (31) and Esliger et al. (32). For the adolescents 100 mg was used for pottering/light walking, 200 mg for brisk walking, 800 mg for slow running and 1000 mg for medium running. For the adults 80 mg was used for pottering/light walking, 175 mg for brisk walking, 400 mg for fast walking, 750 mg for slow running and 1000 mg for medium running.

Results

The descriptive characteristics are presented in Table 1. GENEActiv files were available for 1730 participants in sample 1 and 296 participants in sample 2. Excluded participants totalled 61 for sample 1 (6 failed calibration, 24 incomplete 24 h cycle, 31 fewer than 3 -valid days) and 1 for sample 2 (incomplete 24 h cycle), resulting in a final accelerometer sample size of 1669 for sample 1 and 295 for sample 2 . All comparable activity measures differed significantly between the two groups, with the adolescent girls (sample 1) having higher average acceleration and intensity gradient, and lower inactive time and regression line constant (intercept). The log-log regression line showed strong linear relationships in both samples ($R^{2}>0.92, p<0.001$), but was significantly higher in the adolescent girls (sample 1).

Figure 2 shows the log-log intensity regression line for a representative participant from each sample. The representative participant from sample 1 (solid circles) has an average acceleration level and intensity gradient that equate to the mean value for each for the sample. Correspondingly, the representative participant from sample 2 (open triangles) has an average
acceleration level and intensity gradient that equate to the mean for each for sample 2 . The less active profile of the adult with type 2 diabetes (sample 2 , open triangles) can clearly be seen: steeper gradient, lower accumulated accelerations across all but the lowest intensity bin, and the lack of accelerations at the higher intensities. These characteristics are captured by the combination of the two physical activity metrics: acceleration average and intensity gradient.

To demonstrate how the intensity gradient can differ, when the average acceleration does not, a log-log plot for two participants with equally high average acceleration (approximately two SDs above their sample means) is shown in Figure 3a for sample 1 (top left) and Figure 3b for sample 2 (top right). One of the participants in each plot has a steep intensity gradient (approximately 2 SD below their sample mean) and one has a shallow intensity gradient (approximately 2 SD above their sample mean). The same plots for two participants with equally low average acceleration (approximately 2 SD below their sample mean) are shown in Figures 3c for sample 1 (bottom left) and Figure 3d for sample 2 (bottom right). The participants with steeper gradients accumulate more time in low-to-mid range intensities, whereas the participants with the shallower gradients accumulate more time at relatively high intensities. This results in equivalent average acceleration values, within sample.

Inter-correlations of activity variables

Average acceleration was strongly positively associated with MVPA TOTAL in both samples ($r \geq 0.93$, $p<0.001$), moderately associated with MVPA Bouts in adults with type 2 diabetes ($r=0.48, p<$ 0.001), and strongly negatively associated with inactive time in both samples ($r \leq-0.88, p<0.001$). Correlations between average acceleration and the intensity gradient were still significant, but considerably weaker (sample 1: $r=0.39$; sample 2 : $r=0.51$; both $p<0.001$) than for average acceleration with MVPA TOTAL or inactive time, demonstrating the metrics were more independent.

Similarly, correlations between the intensity gradient and MVPA Total $^{\text {(sample } 1: r}=0.34$; sample 2 : $r=0.51$; both $p<0.001)$, MVPA BOUTS $(r=0.29, p<0.001)$ and inactive time were all considerably weaker ($r \leq-0.39 p<0.001$) than the corresponding correlations with average acceleration. All inter-correlations between activity metrics are shown in Supplementary Digital Content (SDC) 1.

Associations between the two activity metrics, body fatness and physical function

Table 2 presents the results of the regression models considering associations of the two physical activity metrics with body fatness (percent body fat and BMI z-score / BMI) in both samples (upper part of Table) and with physical function in sample 2 (lower part of Table). Corresponding results for MVPA are shown in Supplementary Digital Content 2.

Average acceleration and the intensity gradient (Table 2)

Sample 1 (Adolescent girls)

Average acceleration was negatively associated with percent body fat, but not BMI z-score, in the unadjusted model (Model 1, Table 2). The association did not persist after adjusting for co-variates (Models 2 and 3). The intensity gradient was negatively associated with both percent body fat and BMI z-score, with both associations remaining significant after adjusting for co-variates and independent of average acceleration (Models 2 and 3). The VIF was ≤ 1.3 in all cases. An increase of one unit in the intensity gradient was associated with a percent body fat 6.03 percentage points lower and BMI z-score 0.81 units lower. As the size of the $95 \% \mathrm{Cl}$ for the intensity gradient was approximately 0.35 , the difference in percent body fat and BMI z -score associated with an intensity gradient at the lower and upper limits of the $95 \% \mathrm{Cl}$ was approximately two percentage points and 0.28 units, respectively.

Sample 2 (Adults with type 2 diabetes)

Average acceleration was negatively associated with both percent body fat and BMI (Model 1, Table 2). These associations persisted after adjusting for co-variates and were independent of intensity gradient (Models 2 and 3). The intensity gradient was significantly negatively associated with percent body fat and BMI in the unadjusted model (Model 1) but only with BMI after adjusting for co-variates (Model 2), and not independent of average acceleration for either percent body fat or BMI (Model 3). The VIF was ≤ 1.4 in all cases. The difference in percent body fat and BMI associated with average acceleration at the lower and upper limits of the $95 \% \mathrm{Cl}$ was approximately two percentage points and $2 \mathrm{~kg} \cdot \mathrm{~m}^{-2}$, respectively.

Average acceleration was not associated with grip strength, but was positively associated with sit-to-stand 60 and SPPB (Model 1, Table 2). These associations remained after adjusting for covariates (Model 2), but were not independent of intensity gradient (Model 3). The intensity gradient was positively associated with grip strength, sit-to-stand 60, and SPPB Score (Model 1), with all associations remaining significant after adjusting for co-variates (Model 2) and independent of average acceleration (Model 3). The VIF was ≤ 2.1 in all cases. The size of the effect associated with activity levels at the upper and lower ends of the $95 \% \mathrm{Cl}$ for each of the scores was approximately 2.6 kg for grip strength, three extra Sit-to-Stand 60 reps and an SPPB score 0.8 higher (just under half a SD).

Average acceleration and MVPA (SDC2)

Sample 1 (Adolescent girls)

MVPA $_{\text {Total }}$ was negatively associated with percent body fat when adjusted for clustering at the school level only, but not after adjusting for co-variates. It was not possible to test for independent effects of MVPA and average acceleration due to multicollinearity (VIFs 10.4-10.5).

Sample 2 (Adults with type 2 diabetes)

MVPA $_{\text {Total }}$ was negatively associated with percent body fat and BMI, and positively associated with sit-to-stand 60 and SPPB; these associations persisted after adjusting for co-variates. It was not possible to test for independent effects of MVPA Total $_{\text {al }}$ and average acceleration due to multicollinearity (VIFs 7.7-8.1).

MVPA $_{\text {bouts }}$ was negatively associated with percent body fat and BMI, and positively associated with sit-to-stand 60 and SPPB, but only the association with BMI remained after adjusting for covariates. No independent effects of MVPA $_{\text {bouts }}$ were evident. The VIF was ≤ 2.1 in all cases.

Translation of results

An increase in the average acceleration level of 1 SD (an increase of 8.7 mg and 7.5 mg for samples 1 and 2, respectively) could be achieved by replacing time per day spent at the average acceleration level with:

Sample 1:

1) approximately 3 h of pottering around/slow walking OR
2) approximately 75 minutes brisk walking $O R$
3) approximately $16-17$ min of slow running OR
4) approximately 13 min medium running

Sample 2:

1) approximately 3 h of pottering around/slow walking OR
2) approximately 65-70 minutes brisk walking $O R$
3) approximately 30 min of fast walking OR
4) approximately 15 min slow running $O R$
5) approximately 11 min medium running

The increase in average acceleration to be obtained from each intensity/activity can be manipulated as long as the sum of the increases is equal to the overall average acceleration increase needed (8.7 mg and 7.5 mg for samples 1 and 2 , respectively in the examples). So a combination of activities in a given day can be used to gain the same increase in average acceleration. For example, in sample 2:
6) 1 h of slow walking (2.7 mg) AND 30 min of brisk walking (3.2 mg) AND 6 min of fast walking $(1.6 \mathrm{mg})$, total $=2.7+3.2+1.6=7.5 \mathrm{mg}$.

Or if higher intensity activity was to be emphasised, the same increase in average acceleration could be obtained from:
7) 25 min of slow walking (1.1 mg) AND 25 min brisk walking (2.8 mg) AND $7-8 \mathrm{~min}$ slow running $(3.6 \mathrm{mg})$, total $=1.1+2.8+3.6=7.5 \mathrm{mg}$.

All options would increase the average acceleration by the SD of the sample, but the options would have differing impacts on the intensity gradient (note, the impact on the intensity gradient will also depend on the participant's initial activity profile). The effect of each of these on the intensity gradient for a participant from sample 2 (adults with type 2 diabetes) with a low average acceleration and a low intensity gradient (1 SD below the sample mean for each) is depicted in Figure 4. The order of the options reflects the impact on the intensity gradient, with more negative/null effects at the bottom and the most positive effect at the top (exact values for the change in the intensity gradient for our representative participant are in a column in the middle of the plot). The length of the bars represents the total activity time and the patterning of the bars represents the combination of activity types included in the option, the more dense the patterning the more intense the activity. The two lowest intensity options may have a detrimental impact on
the intensity gradient (make it steeper) and the more intense the activities selected, the more positive the impact on the intensity gradient (makes it shallower). The same pattern is true for sample 1 (adolescent girls, not shown), but when adding higher intensity activities (slow running or medium running), the effects on the intensity gradient were more pronounced in adults with type 2 diabetes.

Discussion

We have proposed a novel new metric, the intensity gradient, which describes the intensity distribution of the physical activity profile. It is relatively independent of overall activity, in comparison to the intensity variables currently deployed, e.g. MVPA and inactive time. In conjunction with average acceleration (a measure of overall activity level), the two metrics provide a detailed picture of an individual's physical activity profile. Both metrics are calculated from the directly measured acceleration, minimising the error associated with using physical behaviour outcomes that are further removed from the measured variable (33). Neither relies on calibration protocols and therefore both are protocol and population independent, facilitating comparisons between studies and populations (33).

We have demonstrated the added value of using the intensity gradient to describe the physical activity profile by investigating relations with body fatness and physical function. The intensity gradient was negatively associated with body fatness in adolescent girls and positively associated with physical function in adults with type 2 diabetes; these associations were independent of overall activity level, as assessed by average acceleration. In contrast, MVPA TOTAL was highly correlated with average acceleration, and MVPA BOUTS was not independently associated with body fatness or physical function. The similarity of the associations between average acceleration and body fatness/physical function with those between MVPA and body fatness/physical function in

Model 2 is not surprising, given the high correlation between average acceleration and MVPA. Given the independent positive associations between the intensity gradient and physical function it is possible that the intensity distribution of the physical activity profile may be of particular relevance to frailty, elderly and/or in rehabilitation. It is likely that for different health and physical function outcomes the relative importance of the average acceleration and the intensity gradient will differ. Use of these two metrics will enable further investigation of independent, additive and interactive effects of activity volume and the intensity distribution on health and physical function. Potentially, this could facilitate the incorporation of choice in physical activity promotion messages, allowing individualisation of interventions.

The average acceleration and intensity gradient metrics are not immediately interpretable in the way that minutes of physical activity are, but translational outcomes can be produced post-hoc using data from calibration studies (e.g. 25, 29, 31, 32, 34). Importantly, this shifts assumptions relating to the conversion of acceleration metrics to physical activity intensity outcomes from the analysis stage to the translation of the research. Further, this means that interpretation and translation can be updated and/or changed with ease by other researchers; access to the primary data would not be required. We have presented an example translation of the outcomes, highlighting how the recommended time accumulated across a range of physical activity intensities per day can be manipulated, e.g. as appropriate for a given health outcome, or as selected as achievable by a participant, or most suited to a given demographic. Translations, such as these could be used to develop meaningful physical activity targets, as appropriate, for individuals or groups. As Wolff-Hughes and colleagues $(36,37)$ have done for total accelerometer counts per day for US adults and children using NHANES 2003-2006 data, it would also be possible to generate age and sex-specific population-referenced percentiles for both metrics. This would
facilitate comparison to norms, comparison of population subgroups (e.g. ethnic groups) and the tracking of physical activity over time $(36,37)$.

Kim et al. (26) recently showed that fatness and grip strength at baseline predicted both average acceleration and total time spent in MVPA at follow-up (median 5.7 y , inter-quartile range 4.9-6.5 y) in $>93,000$ participants in UK Biobank. This is consistent with the cross-sectional associations observed for body fatness in the current study. However, in our smaller dataset, while neither average acceleration nor MVPA were associated with grip strength the intensity gradient was. The size of the UK Biobank sample (2) offers considerable scope for exploring potential health and/or performance differences between participants with similar average acceleration levels but very different intensity distributions. This could feed into whether physical activity interventions and/or public health messages need to focus on volume of activity alone or also on shifting the intensity gradient by focus on specific intensities. We have provided examples of how this could occur in the results section.

It should be noted that the validity of the average acceleration and intensity distribution metrics would still be dependent on the procedures used to clean the acceleration signal, e.g. removal of gravity, and detection and treatment of non-wear (23,24). Furthermore, the magnitude of the intensity gradient will depend on the size of the intensity bins used to summarise the acceleration data. Re-running the analyses with intensity bins of 40 mg and 50 mg did not change the pattern of the results, but did affect the magnitude the intensity gradient and constant (y-intercept). For consistency, we would recommend standardising the intensity bin size at 25 mg . This provides a fairly high, but manageable, resolution.

The current study demonstrates the utility of the proposed metric, the intensity gradient, in two large heterogeneous samples. We only examined data from the GENEActiv accelerometer, but our previous research indicates the same metrics calculated from the Axivity (as used in UK Biobank, Doherty et al. (2)) would likely be equivalent (17). Average acceleration from the ActiGraph (as used in the US National Health and Nutrition Examination Survey $(3,15)$) is around 10\% lower (17, 18), but this appears to be consistent across the intensity range $(17,35)$ suggesting that the intensity gradient may be comparable.

Further, we only used data collected at the non-dominant wrist. Participants in UK Biobank wore accelerometers on their dominant wrist (2), unlike most other studies that use the non-dominant wrist (1, 3-7). Average acceleration tends to be higher when measured at the dominant relative to the non-dominant wrist (unpublished data from our laboratory). Whether the intensity gradient differs will depend on whether or not differences between the dominant and non-dominant wrist are spread equally across the intensity distribution. We plan further research to investigate the degree to which average acceleration and the intensity gradient differ between wrists.

In summary, the average acceleration and the intensity gradient together provide a complementary description of a person's entire activity profile and will facilitate investigation of the relative importance of intensity and volume of activity for a given outcome. Crucially, the metrics are not subject to the error and population-specificity associated with converting acceleration into physical activity outcomes. They would be appropriate for reporting as standardised measures, suitable for comparison across the wealth of studies using wrist-worn raw acceleration accelerometers.

References

1. da Silva ICM, van Hees VT, Ramires VV et al. Physical activity levels in three Brazilian birth cohorts as assessed with raw triaxial wrist accelerometry. Int J Epidemiol. 2014; 43(6): 1959-1968.
2. Doherty A, Jackson D, Hammerla N et al. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study. PLoS ONE. 2017. doi.org/10.1371/journal.pone.0169649.

Abstract

3. Freedson PS, John D. Comment on "Estimating activity and sedentary behaviour from an accelerometer on the hip and wrist." Med Sci Sports Exerc. 2013; 45(5): 962-3.

4. Li X, Kearney PM, Keane E et al. Levels and sociodemographic correlates of accelerometer-based physical activity in Irish children: a cross-sectional study. J Epidemiol Community Health. 2017; 71(6):521-527. doi: 10.1136/jech-2016-207691.
5. Menai M, van Hees VT, Elbaz A, Kivimaki M, Singh-Manoux A, Sabia S. Accelerometer assessed moderate-to-vigorous physical activity and successful ageing: results from the Whitehall II study. Sci Rep 2017; 8:45772. doi:10.1038/srep45772.
6. Swerdlow AJ, Jones ME, Schoemaker MJ et al. The Breakthrough Generations Study: design of a long-term UK cohort study to investigate breast cancer aetiology. Br J Cancer 2011; 105: 911-917.
7. Wake M, Clifford S, York E et al. Introducing Growing Up in Australia's Child Health CheckPoint: A physical and biomarkers module for the Longitudinal Study of Australian Children. Family Matters 2014; 94: 15-23.
8. Boyer WR, Wolff-Hughes DL, Bassett DR, Churilla JR, Fitzhugh EC. Accelerometer-derived total activity counts, bouted minutes of moderate to vigorous activity, and insulin resistance: NHANES 2003-2006. Prev Chronic Dis. 2016; 13: 160159. DOI: http://dx.doi.org/10.5888/ pcd13.160159.
9. Hatfield DP, Chomitz VR, Chui K, Sacheck JM, Economo CD. Exploring new relationships between physical activity volume and intensity and cardiometabolic risk in U.S. adolescents. J Phys Act Health. 2015: 12: 1312-1319.
10. Wolff-Hughes DL, Fitzhugh EC, Bassett DR, Churilla JR. Total activity counts and bouted minutes of moderate-to-vigorous physical activity: relationships with cardiometabolic biomarkers using 2003-2006 NHANES. J Phys Act Health. 2015; 12(5):694-700.
11. Rowlands AV, Ingledew DK, Powell SM, Eston RG. Interactive effects of habitual physical activity and calcium intake on bone density in boys and girls. J Appl Physiol. 2004; 97: 1203-1208.
12. Shadyab AH, LaMonte MJ, Kooperberg C et al. Association of accelerometer-measured physical activity with leukocyte telomere length among older women. J Gerontol A Biol Med Sci. 2017; 12: 1532-1537.
13. Wu F, Willis K, Laslett LL, Oldenburg B, Jones G, Winzenberg T. Moderate-to-vigorous physical activity but not sedentary time is associated with musculoskeletal health outcomes in a cohort of Australian middle-aged women. J Bone Miner Res. 2017; 32: 708-715.
14. Crouter SE, Clowers KG, Bassett Jr DR. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol. 2006; 100: 1324-1331.
15. Troiano RP, McClain JJ, Brychta RJ, Chen KY. Evolution of accelerometer methods for physical activity research. Brit J Sports Med. 2014; 48: 1019-1023.
16. Brazendale K, Beets MW, Bornstein DB et al. Equating accelerometer estimates among youth: The Rosetta Stone 2. J Sci Med Sport. 2016; 19: 242-249.
17. Rowlands AV, Mirkes E, Yates T et al. Accelerometer assessed physical activity in epidemiology: Are monitors equivalent? Med Sci Sport Exerc. 2017; doi: 10.1249/MSS.00000000000001435.
18. Rowlands AV, Yates T, Davies M, Khunti K, Edwardson CL. Raw accelerometer data analysis with GGIR R-package: Does accelerometer brand matter? Med Sci Sports Exerc. 2016; 48: 19381941.
19. Edwardson CL, Harrington DM, Yates T et al. A cluster randomised controlled trial to investigate the effectiveness and cost effectiveness of the 'Girls Active' intervention: a study protocol. BMC Public Health. 2015; 15(1): 526.
20. Cole TJ, Freeman JV, Preece MA. Body mass index reference curves for the UK, 1990. Arch Dis Child. 1995; 73: 25-29.
21. Malina RM, Bouchard C, Bar-Or O. Growth, Maturation and Physical Activity. Champaign, IL: Human Kinetics; 2004. pp. 277-302.
22. Puthoff ML. Outcome Measures in Cardiopulmonary Physical Therapy: Short Physical Performance Battery. Cardiopulm Phys Ther J. 2008; 19: 16-22.
23. van Hees VT, Gorzelniak L, Dean León EC et al. Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity. PLoS ONE. 2013; 8(4): e61691. doi: 10.1371/journal.pone. 0061691.
24. van Hees VT, Fang Z, Langford J et al. Auto-calibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol. 2014; 117(7): 738-744.
25. Hildebrand M, van Hees VT, Hansen BH, Ekelund U. Age-Group Comparability of Raw Accelerometer Output from Wrist- and Hip-Worn Monitors. Med Sci Sport Exerc. 2014; 46: 18161824.
26. Kim Y, White T, Wijendale K, Sharp SJ, Wareham NJ, Brage S. Adiposity and grip strength as long-term predictors of objectively measured physical activity in 93015 adults: the UK Biobank study. Int J Obes. 2017; 41: 1361-1368. doi: 10.1038/ijo.2017.122.
27. Bell JA, Hamer M, van Hees V, Singh-Manoux A, Kivimäki, Sabia S. Healthy obesity and objective physical activity. Am J Clin Nutr. 2015; 102: 268-275, doi: 10.3945/ajcn.115.110924.
28. Bakrania K, Yates T, Rowlands AV et al. Developing and validating intensity-based thresholds on raw accelerometer data for discriminating between sedentary behaviours and light-intensity physical activities: a MAD approach. PLoS One. 2016; 11(10): e0164045. doi:10.1371/journal.pone. 0164045 .
29. Hildebrand M, Hansen BH, van Hees VT, Ekelund U. Evaluation of raw acceleration sedentary thresholds in children and adults. Scand J Med Sci Sports. 2016; doi: 10.1111/sms.12795.
30. Montgomery DC, Peck EA, Vining GG. Introduction to Linear Regression Analysis. New York: John Wiley and Sons, Inc. 2001, pp 117-120.
31. Phillips LRS, Parfitt CG, Rowlands AV. Calibration of the GENEA accelerometer for assessment of physical activity intensity in children. J Sci Med Sport. 2013; 16: 124-128.
32. Esliger DW, Rowlands AV, Hurst TL, Catt M, Murray P, Eston RG. Validation of the GENEA accelerometer. Med Sci Sports Exerc. 2011; 43: 1085-1093.
33. Bassett BR, Troiano RP, McClain JJ, Wolff DL. Accelerometer-based physical activity: Total volume per day and standardised measures. Med Sci Sports Exerc. 2015; 47: 833-838. doi: 10.1249/MSS. 0000000000000468.
34. Scahefer CA, Nigg CR, Hill JO, Brink LA, Browning RC. Establishing and Evaluating Wrist Cutpoints for the GENEActiv Accelerometer in Youth. Med Sci Sports Exerc. 2014: 46: 826-833.
35. Rowlands AV, Fraysse F, Catt M et al. Comparison of measured acceleration output from accelerometry-based activity monitors. Med Sci Sports Exerc. 2015; 47: 201-210.
36. Wolff-Hughes DL, Bassett DR, Fitzhugh EC. Population-referenced percentiles for waist-worn accelerometer-derived total activity counts in U.S. youth: 2003 - 2006 NHANES. PLoS ONE. 2014; 9(12): e115915. doi:10.1371/ journal.pone. 0115915.
37. Wolff-Hughes DL, Fitzhugh EC, Bassett DR, Churilla JR (2015b) Waist-worn actigraphy: population-referenced percentiles for total activity counts in U.S. adults. J Phys Act Health. 2015b; 12(4): 447-453.

Acknowledgements

We thank all the researchers and project staff involved with the Girls Active evaluation and CODEC for access to the data used herein. We also thank all the pupils and teachers who took part in the Girls Active evaluation study, the Youth Sport Trust (YST) and participants in the CODEC study.

Conflicts of interest and sources of funding

The Girls Active evaluation was funded by the NIHR Public Health Research Programme (13/90/30). Professors Davies and Khunti are NIHR Senior Investigators. University of Leicester authors are supported by the NIHR Leicester-Loughborough Biomedical Research Unit (20122017), the NIHR Leicester Biomedical Research Centre (2017-2022) and the Collaboration for leadership in Applied Health Research and Care (CLAHRC) East Midlands. The Girls Active evaluation was undertaken in collaboration with the Leicester Clinical Trials Unit, a UKCRCregistered clinical trials unit in receipt of NIHR CTU support funding. The Youth Sport trust or the aforementioned funders had no involvement in the data analysis, data interpretation, data collection, or writing of this manuscript. There are no other conflicts of interest. The results of the present study do not constitute endorsement by the ACSM. The results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation.

List of figures

Figure 1: (a) A steeper, more negative (lower) gradient with a higher constant (y-intercept) showing a steep drop in time accumulated with increasing intensity (left) - a poorer intensity profile; (b) a shallower, less negative (higher) gradient with a lower constant (y-intercept) showing more time spread across the intensity range (right) - a better intensity profile.

Figure 2. Log-log Intensity regression line for representative participants from sample 1 (solid circles) and sample 2 (open triangles). Both participants have the mean average acceleration and mean intensity gradient for their sample.

Figure 3. Intensity regression line for representative participants with: high average acceleration and steep (open triangle) or shallow (solid circle) intensity gradients from sample 1 (Figure 3a) and sample 2 (Figure 3b); low average acceleration and steep (open triangle) or shallow (solid circle) intensity gradients from sample 1 (Figure 3c) and sample 2 (Figure 3d). Note average acceleration is similar within each plot. Steep and shallow gradients are similar within each sample (vertically aligned plots).

Figure 4. Duration per day of activity type(s), all of which increase the average acceleration by 1 SD (sample 2), and the impact of each on the intensity gradient for an example participant (average acceleration and intensity gradient both 1 SD below sample mean).

List of Supplemental Digital Content

SUPPLEMENTARY DIGITAL CONTENT 1. Inter-correlations between activity metrics for samples 1 and 2.

SUPPLEMENTARY DIGITAL CONTENT 2: Associations of average acceleration and MVPA with body fatness (Sample 1 and 2) and physical function (Sample 2).

Table 1. Descriptive characteristics of Sample 1 and Sample 2. Values are mean (standard deviation) for continuous variables and $\%$ for categorical variables

		Sample 1 $(\mathrm{N}=1669)$ Adolescent girls	Sample 2 (N=295) Adults with type 2 diabetes
Sex	Males	0	60.3
	Females	100	39.7
Age (y)		$12.8(0.8)$	$63.2(9.7)$
Socio-		$5.5(2.9)$	$6.3(3.0)$
economic			
status (SES)			

${ }^{\text {a }}$ SES is measured by the index of multiple deprivation (IMD) 2015 decile score, which ranges
from 1-10, where 1 is the least deprived and 10 is the most deprived.
${ }^{\text {b }}$ White European for sample 1 and White for sample 2
${ }^{\text {c }} \mathrm{MVPA}_{\text {тотаL }}$: Total accumulated moderate-to-vigorous physical activity (MVPA) for adolescent girls ($>200 \mathrm{mg}$) and adults with type 2 diabetes ($>125 \mathrm{mg}$)
${ }^{\mathrm{d}} \mathrm{MVPA}_{\text {Bouts }}$ accumulated in $10-\mathrm{min}$ bouts for adults with type 2 diabetes ($>100 \mathrm{mg}$).
*All physical activity/ intensity regression line metrics different between groups (p<0.001)

Table 2. Associations of the two physical activity metrics with percent body fat (sample 1 and 2) and physical function (Sample 2)

	Model 1		Model 2		Model 3		Independent
	Coefficient	95\% CI	Coefficient	95\% CI	Coefficient	95\% CI	(Model 3)
SAMPLE 1 (Adolescent girls)	Pairwise N= 1527 to 1638		Listwise $\mathrm{N}=1521$		Listwise $\mathrm{N}=1521$		
Generalised estimating equations							
Percent body fat							
Average acceleration (mg)	-0.09	-0.13, -0.05	-0.01	-0.05, 0.02	0.03	-0.01, 0.07	X
${ }^{\text {a }}$ Intensity gradient	-9.15	-11.46, -6.83	-5.58	-7.36, -3.81	-6.03	-7.96, -4.09	\checkmark
BMI z-score							
Average acceleration (mg)	-0.01	-0.01, 0.00	0.01	-0.00, 0.01	0.01	0.00, 0.02	\checkmark
${ }^{\text {a }}$ Intensity gradient	-1.17	-1.53, -0.81	-0.66	-0.88, -0.44	-0.81	-1.04, -0.58	\checkmark
SAMPLE 2 (Adults with type 2 diabetes)	Pairwise	$\mathrm{N}=260$ to 291	Listwis	$\mathrm{N}=253-279$	Listwis	$\mathrm{N}=253-279$	
Multiple regression							
Percent body fat							
Average acceleration (mg)	-0.13	-0.26, -0.00	-0.15	-0.26, -0.05	-0.14	-0.24, -0.03	\checkmark
${ }^{\text {a }}$ Intensity gradient	-7.25	-10.82, -3.68	-3.09	-6.34, 0.15	-1.27	-4.55, 2.22	X
BMI (kg.m ${ }^{-2}$)							
Average acceleration (mg)	-0.13	-0.21, -0.05	-0.15	-0.23, -0.08	-0.14	-0.22, -0.05	\checkmark
${ }^{\text {a }}$ Intensity gradient	-2.88	-5.03, -0.73	-2.70	-5.09, -0.31	-0.61	-3.37, 1.78	X
Average grip strength (kg)							
Average acceleration (mg)	0.12	-0.03, 0.28	0.09	-0.04, 0.23	0.03	-0.11, 0.17	X
${ }^{\text {a }}$ Intensity gradient	11.09	6.63, 15.56	4.44	0.60, 8.27	4.05	0.04, 8.06	\checkmark
Sit-to-stand 60 (repetitions)							
Average acceleration (mg)	0.25	0.11, 0.40	0.22	0.06, 0.38	0.13	-0.05, 0.30	X
${ }^{\text {a }}$ Intensity gradient	8.83	$5.83,11.83$	7.74	4.36, 11.13	6.03	2.04, 10.02	\checkmark
Short Physical Performance Battery (SPPB)							
Average acceleration (mg)	0.06	0.03, 0.09	0.04	0.01, 0.07	0.02	-0.02, 0.05	X
a Intensity gradient	2.19	1.44, 2.94	1.76	1.05, 2.47	1.55	0.67, 2.44	\checkmark

[^0]Model 1 adjusted for clustering at school level only (sample 1) or unadjusted (sample 2). Model 2 adjusted for potential co-variates. Model 3 further adjusted for alternate activity metric.
$95 \% \mathrm{Cl}=95 \%$ confidence interval
*The final column indicates whether the associations with each activity metric were independent of the other metric (from Model 3).
Significant associations are denoted in bold.

Supplementary Digital Content 1. Inter-correlations between activity metrics for samples 1 and 2.

Sample	Activity metric	Average acceleration (mg)	${ }^{\text {a }} \mathrm{MVPA}_{\text {TOTAL }}$ (min)	${ }^{\text {b }} \mathrm{MVPA}_{\text {BOUTS }}$ (min)	Inactive time (min)
1. Adolescent	Average acceleration (mg)	-	0.95	-	-0.88
girls	Intensity gradient	0.39	0.34	-	-0.14
$\mathrm{N}=1669$					
2. Adults with	Average acceleration (mg)	-	0.93	0.48	-0.94
type 2 diabetes	Intensity gradient	0.51	0.51	0.29	-0.39
N = 295					

${ }^{a}$ MVPA $_{\text {TOTAL }}$: Total accumulated moderate-to-vigorous physical activity (MVPA) for adolescent girls ($>200 \mathrm{mg}$) and adults with type 2 diabetes (>125 mg) ${ }^{\mathrm{b}}$ MVPA $_{\text {BOUTs }}$ accumulated in 10-min bouts for adults with type 2 diabetes ($>100 \mathrm{mg}$).
All significant p < 0.001

Supplementary Digital Content 2：Associations of average acceleration and MVPA with body fatness（Sample 1 and 2）and physical function（Sample 2）．

	Model 1		Model 2		Model 3＊		Independent effect＊ （Model 3）
	Coefficient	95\％CI	Coefficient	95\％CI	Coefficient	95\％CI	
SAMPLE 1 （Adolescent girls）	Pairwise N＝ 1527 to 1638		Listwise N＝ 1521		Listwise N＝ 1521		
$\mathrm{a}_{\text {MVPA }}^{\text {total }}$							
Generalised estimating equations							
Percent body fat							
Average acceleration（mg）	－0．09	－0．13，－0．05	0.02	－0．01， 0.06	－	－	－
${ }^{\text {a MVPA }}$ тота⿱ $(\mathrm{min}$ ）	－0．03	－0．05，－0．02	0.00	－0．01， 0.02	－	－	－
Body mass index z－score							
Average acceleration（mg）	－0．01	－0．01， 0.00	0.01	－0．00， 0.01	－	－	－
$\mathrm{a}^{\text {MVPA }}$ Tота⿱ $(\mathrm{min}$ ）	－0．00	－0．01， 0.00	0.01	0．00， 0.01	－	－	－
SAMPLE 2 （Adults with type 2 diabetes）	Pairwise	$=260$ to 291	Listwis	$\mathrm{N}=253-279$	Listw	253－279	
$\mathrm{a}_{\text {MVPA }}^{\text {total }}$							
Multiple regression							
Percent body fat							
Average acceleration（mg）	－0．13	－0．26，－0．00	－0．15	－0．26，－0．05	－	－	－
${ }^{\text {a MVPA }}$ TOTAL $(\mathrm{min}$ ）	－0．04	－0．06，－0．01	－0．04	－0．06，－0．15	－	－	－
Body mass index（kg．m ${ }^{-2}$ ）							
Average acceleration（mg）	－0．13	－0．21，－0．05	－0．15	－0．23，－0．08	－	－	－
${ }^{\text {a MVPA }}$ тота⿱ $(\mathrm{min}$ ）	－0．03	－0．05，－0．01	－0．04	－0．05，－0．02	－	－	－
Average grip strength（kg）							
Average acceleration（mg）	0.12	－0．03， 0.28	0.09	－0．04， 0.23	－	－	－
${ }^{\text {a MVPA }}$ тота⿱ $(\mathrm{min}$ ）	0.04	－0．00， 0.08	0.02	－0．02， 0.06	－	－	－
Sit－to－stand 60 （repetitions）							
Average acceleration（mg）	0.25	0．11， 0.40	0.22	0．06， 0.38	－	－	－
${ }^{\text {a MVPA }}$ Tота⿱ $(\mathrm{min}$ ）	0.06	0．03， 0.10	0.06	0．02， 0.09	－	－	－
Short Physical Performance Battery（SPP							

| | | Model 1 | Model 2 |
| :--- | :--- | :--- | :--- | :--- |

${ }^{\text {a }}$ MVPA TOTAL : Total accumulated moderate-to-vigorous physical activity (MVPA) for adolescent girls ($>200 \mathrm{mg}$) and adults with type 2 diabetes (>125 mg)
${ }^{\mathrm{b}} \mathrm{MVPA}_{\text {bouts: }}$ MVPA accumulated in $10-\mathrm{min}$ bouts (>100 mg).
Model 1 adjusted for clustering at school level only (sample 1) or unadjusted (sample 2). Model 2 adjusted for potential co-variates. Model 3 further adjusted for alternate activity metric.
$95 \% \mathrm{Cl}=95 \%$ confidence interval
*The final column indicates whether the associations with each activity metric were independent of the other metric (from Model 3). A dash (-) indicates multicollinearity was evident (VIF > 5) preventing the estimation of independent effects.
Significant associations are denoted in bold.

Figure 1: (a) A steeper, more negative (lower) gradient with a higher constant (y-intercept) showing a steep drop in time accumulated with increasing intensity (left) - a poorer intensity profile; (b) a shallower, less negative (higher) gradient with a lower constant (y-intercept) showing more time spread across the intensity range (right) - a better intensity profile.

Figure 2. Log-log Intensity regression line for representative participants from sample 1 (solid circles) and sample 2 (open triangles). Both participants have the mean average acceleration and mean intensity gradient for their sample.

Figure 3. Intensity regression line for representative participants with: high average acceleration and steep (open triangle) or shallow (solid circle) intensity gradients from sample 1 (Figure 3a) and sample 2 (Figure 3b); low average acceleration and steep (open triangle) or shallow (solid circle) intensity gradients from sample 1 (Figure 3c) and sample 2 (Figure 3d). Note average acceleration is similar within each plot. Steep and shallow gradients are similar within each sample (vertically aligned plots).

Figure 4. Duration per day of activity type(s), all of which increase the average acceleration by 1 SD (sample 2), and the impact of each on the intensity gradient for an example participant (average acceleration and intensity gradient both 1 SD below sample mean).

[^0]: ${ }^{\text {a }}$ Intensity gradient: Gradient of the regression line from log-log plot of intensity (x) and minutes accumulated (y).

