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Abstract

Patterns and rates of invasive species spread have been a focus of attention for several

decades. Majority of studies focused on the species proliferation in a relatively uniform

“open space” thus leaving aside the effects of the landscape geometry as given by size

and shape of inaccessible areas. In this paper, we address this issue by considering the

spatiotemporal dynamics of an alien species in a domain where two large uniform habitats

are connected by a narrow corridor. We consider the case where the species is originally

introduced into one of the habitats but not to the other. The alien species is assumed

to be affected by a predator, so that mathematically our system consists of two coupled

diffusion-reaction equations. We show that the corridor tends to slow down the spread:

it takes the alien population an extra time to penetrate through the corridor, and this

delay time can be significant in the case of patchy spread. We also show that a sufficiently

narrow corridor blocks the spread; simple analytical estimates for the critical width of the

corridor are obtained. Finally, we show that the corridor can become a refuge for the alien

population. If considered on a longer timescale that includes species adaptation and/or

climate change, the corridor may then become a source of a secondary invasion.

Keywords: corridor, invasion blocking, pattern formation, complex landscape, patchy

invasion
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1 Introduction

Biological invasion is a phenomenon that has a variety of important implications for

ecology (in particular, through species extinctions and biodiversity loss), environment,

human wellbeing, agriculture/aquaculture, and sometimes industries beyond agriculture

[15, 39, 44]. For these reasons, it has been a focus of intense empirical and theoretical

research for several decades [8, 41, 57]. Mathematical modelling is widely accepted as

an efficient tool to study biological invasion [12, 21, 49]. Indeed, in the situation when

replicated studies are hardly possible2, mathematical models along with computer simu-

lations provide a virtual laboratory where the effect of various factors can be refined and

analyzed and different hypotheses can be tested safely and at a relatively low cost.

In studies on biological invasion, a central question is how the alien species proliferates

into space away from the place of its introduction. In its turn, it evokes the question as to

what is the pattern of spread. For several decades, a paradigm of invasive species spread

was a travelling population front. A large amount of theoretical work has been done in

order to evaluate the speed of the front propagation [2, 10, 18, 51] and to reveal how the

propagation can be affected by various factors [4, 20, 30], in particular, by environmental

heterogeneity [3, 14, 32, 48]. The travelling front paradigm was eventually complemented

by an alternative pattern of spread known as patchy invasion [11, 36, 38, 27] which is often

observed in nature [7, 22, 23] and predicted by various dispersal-growth models [19, 26,

43, 50]. In the patchy invasion scenario, there is no population front and species spread

into space occurs through the dynamics of separate disconnected population patches.

Whether it is a population travelling front or a patchy spread, previous studies on

biological invasions have overwhelmingly focused on an idealized case of species spread in

an unbounded space. (In case of a simulation study, the domain is bounded but can be

chosen ‘sufficiently large’ in order to imitate an unbounded space.) Even that the effect of

environmental heterogeneity was considered in a number of studies, e.g. see the references

above, the role of inaccessible areas and hence the effect of landscape geometry on the rate

of spread have remained poorly understood. Meanwhile, such a role is likely to be very

important. One real world example is the invasion of grey squirrels in the UK. Whilst

they successfully colonized most of England and Wales, the rate of their spread being in

a good agreement with predictions of relevant mathematical models [4, 29], they have

largely failed to spill over to central and northern Scotland, and the landscape geometry

– as given by large areas that are not accessible to squirrels such as swamps or high

mountain ranges – is thought to be a reason for that [56]. As another example, it was

found in a study on the invasion of nutria in Iran that about one third of the country

could potentially be colonized [9]. In reality, however, having been introduced about one

hundred years ago to the sub-Caspian region, this species remains confined to largely the

same area. A closer look reveals that different parts of the potential range are poorly

connected (e.g. due to the effect of mountain ranges inaccessible to nutria), which is likely

2Not to mention the transient nature of the weather that makes it virtually impossible to reproduce
the initial conditions, a repeated release of an alien species - potentially, a dangerous pest – would be
highly controversial and possibly illegal.
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to limit species dispersal.

In this paper, we consider the effect of the landscape geometry on the invasive species

spread by means of mathematical modelling and computer simulations. The “complexity”

of the landscape geometry (as is relevant in the context of this study) is represented by a

dumbbell-like, “H-shaped” spatial domain consisting of two large habitats connected by

a narrow passage or corridor. The initial conditions correspond to the situation where

the alien species is present in one of the habitats but not in the other. We are especially

interested in the following questions:

• How much a narrow passage can slow down the spread? Can a sufficiently narrow

passage block the spread completely so that the invading population would never

spill over to the other side?

• Depending on species traits, invasive spread into open space is known to follow a

few different scenarios (see Fig. 1 below). Can the effect of the passage change the

invasion scenario, e.g. turning a propagating population front into patchy spread

(or visa versa)?

• Can the effect of the passage depend on the invasion scenario (e.g. slowing down

the spread in one case but not having much effect in another)?

It has been shown in our earlier work [1] that the success of the species invasion into the

second habitat depends on the width and length of the corridor as well as demographic pa-

rameters such as the maximum growth rate and the strength of the Allee effect. However,

the effect of the dynamical complexity on the invasive species spread, in particular due

to interspecific interactions and pattern formation, has remained obscure. Here we show

that the dynamical complexity can affect the invasion success significantly. In particular,

we show that the effect of the corridor on the invasion success is significantly different de-

pending on whether the invasive species spreads following the travelling population front

scenario or the patchy invasion scenario. We also show that a corridor that blocks the

species spread can become a refuge for the alien species and can subsequently become a

source of a secondary invasion.

2 Model

The choice of the mathematical model is a somewhat subtle issue [25, 31, 34]. From a

biological standpoint, it might be tempting to account in detail for a variety of biological

interactions that the invasive species is experiencing during its spread, e.g. interactions

with all species of the native community. A corresponding model is likely to be very

complicated. Such a model would be difficult to parameterize as the information about

the feedbacks and functional responses as well as parameter values is usually meagre and

incomplete. Moreover, the higher the complexity of the model is, the more difficult it

may be to reveal the general properties of the phenomenon as they may become obscure

by specific details. Since in this paper our goal is to look into general properties of the
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dynamics rather than to study a particular case, the model should not be too complicated.

However, it should not be too simple either as some important features of the invasion

dynamics – such as, for instance, pattern formation [11, 24, 36, 46, 47, 50] – can be missing

altogether due to the insufficient complexity of the model.

We therefore look for a model of an intermediate complexity. Arguably, an appropriate

model is a prey-predator system. On the one hand, it obviously takes into account only

some common, basic interactions, i.e. how the population dynamics of the alien species

(regarded in this context as a prey) is affected by its predator where the predator can

be a native species or can be introduced as a biological control agent, cf. [16, 33, 38].

On the other hand, a spatially explicit prey-predator model allowing for the population

dispersal is known to have a complicated spatiotemporal dynamics [21, 24], its “realistic”

properties being consistent with at least some field observations [11, 30].

A general prey-predator system is described by the following coupled diffusion-reaction

equations [28, 30, 46]:

∂U (r, T )

∂T
= D1∇2U (r, T ) + F (U)− f(U, V ), (1)

∂V (r, T )

∂T
= D2∇2V (r, T ) + κf(U, V )−MV, (2)

where U(r, T ) and V (r, T ) are, respectively, the prey and predator population densities at

time T and position r = (X, Y ), D1 and D2 are the corresponding diffusion coefficients, κ

is the food utilization coefficient. Function F (U) is the growth rate of the prey, f (U, V )

describes predation, and M is the predator mortality rate. A particular choice of functions

F (U) and f (U, V ) may vary depending on the species traits. We assume that the predator

trophic response is of the Holling type II and choose the parametrization accordingly [28]:

f (U, V ) =
AUV

U + H
, (3)

where A quantifies the predation rate and H is the half-saturation prey density.

With regard to the prey growth, there is considerable evidence that the Allee effect is

common in the population dynamics [5, 6]. Correspondingly, we assume that the alien

species is affected by the strong Allee effect and consider the following parametrization

for its growth rate [20]:

F (U) = GU (U − UA) (K − U) , (4)

where G is a coefficient related to the maximum per capita growth rate g as G = 4g/(K−
UA))2 [20], K is the carrying capacity, and the Allee threshold density UA (0 < UA < K)

is a parameter quantifying the strength of the Allee effect [30, 55].

Equations (1–2) with (3–4) contain a large number of parameters, which makes their

numerical investigation cumbersome. However, if we choose new, dimensionless variables

as u = U/K, v = V/(κK), t = aT where a = AκK/H, x = X(a/D1)
1/2 and y =

Y (a/D1)
1/2, Eqs. (1–2) turn to the following:

∂u (x, y, t)

∂t
=

(
∂2u

∂x2
+

∂2u

∂y2

)
+ γu (u− β) (1− u)− uv

1 + αu
, (5)
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∂v (x, y, t)

∂t
= ε

(
∂2u

∂x2
+

∂2u

∂y2

)
+

uv

1 + αu
− δv, (6)

where α = K/H, β = UA, γ = GHK/(Aκ), δ = M/a and ε = D2/D1 are new (di-

mensionless) parameres. Properties of dimensionless solutions u and v therefore depend

on five dimensionless combinations rather than on each of the nine original parameters

separately.

Biological invasion usually starts with an introduction of a (small) number of individ-

uals of an alien species into a certain location inside a new ecosystem [49]. Immediately

after the introduction, the population density of the alien species is only non-zero inside a

certain (small) area. Therefore, in order to account for the biological invasion, Eqs. (5–6)

must be supplemented with initial conditions described by functions of a finite support.

Here we consider the initial conditions as follows:

u (x, y, 0) = u0 if x11 < x < x12 and y11 < y < y12

otherwise u(x, y, 0) = 0, (7)

v (x, y, 0) = v0 if x21 < x < x22 and y21 < y < y22

otherwise v(x, y, 0) = 0, (8)

where u0, v0 the initial prey and predator densities, and parameters xij and yij (i, j = 1, 2)

determine the initially occupied area.

3 Simulations and results

Equations (5–6) with the initial conditions (7–8) were solved numerically by finite-differences.

In most cases we used the simple explicit scheme. The mesh steps were chosen as

∆x = ∆y = 0.4 and ∆t = 0.03; it is readily seen that they satisfy the CourantFriedrich-

sLewy stability condition [42]. Having performed simulations for a few other values of

the mesh steps, we checked that the above values are sufficiently small to avoid numerical

artifacts.

Although our main goal in this paper is to study the effects of a complex geometry,

we begin with a simple case when Eqs. (5–6) are considered in a square domain. The

domain has size L so that 0 < x < L and 0 < y < L. At the boundary of the domain

the Neumann-type no-flux conditions are imposed. For any given parameter set, the

simulation is stopped either just before or immediately after the spreading population

reaches the domain boundary. In this way, the effect of the boundary conditions on the

population dynamics inside the domain is minimized; correspondingly, the population

spread imitates the spread in an open (unbounded) space.

Depending on the parameter values such as the predator mortality rate δ and/or the

Allee threshold β, the prey-predator system (5–6) is known to exhibit different patterns

of the population spread [24, 27, 54]. Having chosen δ as the controlling parameter, a

brief visual overview of the patterns is shown in Fig. 1 where the results were obtained

in a square domain 200× 200 for parameters ε = 1, γ = 3.9, α = 0.1, β = 0.2, the initial

5



conditions (7–8) with u0 = 1, v0 = 0.2, x11 = 85, x12 = 105, x21 = 85, x22 = 95, y11 = 100,

y12 = 105, y21 = 95 and y22 = 115, and different values of δ. Here and below, only

the distribution of prey is shown as the distribution of predator exhibits similar features.

Unless the initially inhabited domain is very small so that the alien population goes extinct

(a) (b)

(c) (d)

Figure 1: Snapshots of the spatial distribution of prey (i.e. the alien species) illustrating

different scenarios of invasive spread as predicted by Eqs. (5–6) obtained in a square

domain 300×300 for parameters (a) δ = 0.63, (b) δ = 0.51, (c) δ = 0.43 and (d) δ = 0.37.

Other parameters are given in the text. Yellow color for high population density, green

and light blue for intermediate values, dark blue for zero density.
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Figure 2: A sketch of the H-shaped domain consisting of Habitat 1 at the left and Habitat

2 at the right connected by a narrow passage (corridor). The alien species is introduced

in Habitat 1, the initially inhabited area is shown by a small yellow rectangle.

due to the strong Allee effect [20], a somewhat trivial case that we do not consider here,

the alien population spreads into the empty space away from the place of its introduction.

This spread can follow the population front propagation scenario (Fig. 1a,b,c) with or

without pattern formation in the wake or the patchy invasion scenario [36, 38] (Fig. 1d)

where the population spread is not preceded by a travelling front propagation.

A practically important question is how high is the rate of invasive spread. It can

be rephrased as follows: for a given location of the alien species introduction, how fast

the invading species will arrive at a given location elsewhere? In a spatially uniform

system, this question is linked to the question about the speed of the propagation of the

travelling population front3: indeed, once the speed is known, a common sense estimate

is time = distance/speed. However, it is intuitively clear that this simple argument is

unlikely to remain valid in a case where the invasive spread takes place in a landscape of a

complicated geometry where the spread can possibly be slowed down or block altogether

by, for instance, the existence of narrow valleys or ‘corridors’.

In order to make an insight into possible effects of the corridors, we now consider a

domain of a more complex shape, namely, H-shaped where two habitats (subdomains)

of a rectangular shape are connected by a narrow passage or corridor. For the initial

conditions, we consider the situation where the alien species is introduced to a certain

location close to the center of the left-hand side habitat (which we for convenience also

call Habitat 1); see Fig. 2. For the boundary conditions, we consider the Neumann-type

zero-flux condition along the whole boundary. One can expect that during the first stage

3The situation is somewhat more complicated in the case of patchy invasion or in the case where the
invasive species employs a long-distance dispersal. In the former case there is no front and hence the
definition of the speed is somewhat ambiguous [27], in the latter case the front can have variable speed
[17].
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of invasion, i.e. before the invading population reaches the boundary of Habitat 1, the

dynamics should be essentially the same as in a domain of a simple shape or in an infinite

space. Once the invading population reaches the entrance to the corridor, however, it

becomes a new, different problem and the question arises as to whether the population

spills over to the right-hand side habitat (which we call Habitat 2) for given length and

width of the corridor and for a given pattern of spread, cf. Fig. 1.

The case of the population spread with a uniform spatial population distribution behind

the invasive front (Fig. 1a) is similar to the invasive spread in a single species model

considered in [1]; we do not reconsider it here. We therefore begin with a more interesting

case where invasion into a homogeneous space takes place via the propagation of the

population front with spatiotemporal pattern formation in the wake (cf. Fig. 1b). The

results shown in Fig. 3 are obtained for the parameters of the corridor as (λ,w) = (10, 2.8)

where λ is the length and w is the width. In the first stage of invasion, the population

front propagates fast, apparently with the same speed as in an infinite space [21]. Once

it reaches the entrance to the corridor, the spread slows down considerably: it takes the

population about 100 extra time units to penetrate through the corridor, cf. the top-right

and middle-left panels in Fig. 3. Eventually, the population spills over to Habitat 2 and

invade over the rest of the domain, see the bottom row in Fig. 3.

Interestingly, the corridor affects the pattern of spread. The spread of the invading

population in Habitat 2 is accompanied by the formation of irregular asymmetric patterns

in the wake of the propagating front, which apparently is a result of the asymmetry in

the initial conditions. However, the population distribution behind the front in Habitat

2 exhibits a perfect circular symmetry, e.g. see the bottom-left panel in Fig. 3.

However, spilling over after a delay caused by the corridor is not the only possibility.

The system can also exhibit a qualitatively different dynamics resulting in an invasion

failure. Simulation results (not shown here for the sake of brevity) obtained for different

parameters of the corridor reveal that the dynamics depend strongly on the size of the

corridor, in particular on its width. An increase of the corridor width will not change

the dynamics much resulting only in a decrease of the time required for the population

to penetrate through. However, a decrease of the corridor width will eventually result

in invasion blocking: as soon as the width is smaller than a certain critical value, the

invading population is blocked in the passage and never spills over to Habitat 2.

In order to check whether the above situation is general or pattern-specific, we then

performed simulations for a value of δ where the species spread in an open space takes

place via the propagation of a solitary ring (see Fig. 1c). The results are shown in Fig. 4.

It is readily seen that the population dynamics follows a similar scenario. In the first

stage, the population spreads away from the place of its original introduction in the same

manner as in an open space. Once the front reaches the entrance to the passage, the

spread slows down; it takes it about 40 time units to penetrate through to enter Habitat

2. (Interestingly, this time appears to about twice shorter than in the previous case.)

Once it spills over, the population spreads over Habitat 2 in a similar way as before. One

difference from the corresponding pattern of spread in an open space is that a fraction

of the population settles down inside the passage (this is well seen in the middle row

8



of Fig. 4) and works as a source to generate a sequence of population fronts (spreading

rings) into both habitats. As well as above, a successful spill-over through the corridor

only happens if its width is not too narrow. Once the width becomes less than a certain

critical value, the population is blocked in the passage and never penetrates to the other

Figure 3: Snapshots of the spatial distribution of prey at different moments calculated

for parameters ε = 1, γ = 3.9, α = 0.1, β = 0.2 and δ = 0.5 and initial condition (7–8)

with u0 = 1, v0 = 0.2, x11 = 85.2, x12 = 105.2, x21 = 85.2, x22 = 95.2, y11 = 55.2,

y12 = 60, y21 = 50, y22 = 70 (note that x is the vertical axis and y is the horizontal one).

Parameters of the corridor are (λ,w) = (10, 2.8). Yellow for high population density, dark

blue for the zero density, green for intermediate density.
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side.

Finally, we performed simulations for the value of δ where the alien population spreads

into space following the patchy invasion scenario (see Fig. 1d). The results are shown in

Fig. 5. The dynamics exhibit features similar to those observed in Figs. 3 and 4. The

population first spreads from the place of its original location in exactly the same manner

as it would happen in a domain of a simpler shape or in an open space. Once it approaches

the entrance to the passage, it is delayed for a considerable time before it spills over to

Figure 4: Snapshots of the spatial distribution of prey at different moments calculated

for parameters δ = 0.42 and (lenght, w) = (10, 6.4), other parameters and color coding

are the same as in Fig. 3.
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Habitat 2. Note that the this delay is two orders of magnitude longer than it was in the

previous cases. An explanation of this lies in the absence of the population front: because

of the chaotic movement of the patches in space [27], it takes an extra time for a patch

to hit the entrance to the passage compared to the directional propagation of the front.

Eventually, if the corridor’s width is greater than a certain critical value, the population

spreads through the passage and invades over Habitat 2 (as in the bottom row of Fig. 5).

Figure 5: Snapshots of the spatial distribution of prey at different moments calculated

for parameters δ = 0.37 and (lenght, w) = (10, 9.2), other parameters and color coding

are the same as in Fig. 3. Note the very long time that it takes the invading population

to spill over to the right-hand side habitat.
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However, in case the corridor is not wide enough the population is blocked and never

penetrates to the other side (not shown here).

3.1 Propagation blocking

In order to make a more detailed insight into the existence of the corridor’s critical width

and how its value depends on the predator mortality δ (considered as a controlling pa-

rameter) and hence on the type of species spread, we performed extensive computer

simulations with different values of w and δ keeping other parameters the same as above.

For each parameter set, the code was run up to t = 4000. The results are shown in Fig. 6.

We therefore observe that the critical width exhibits a non-monotone dependence on the

predator mortality but tends to increase with a decrease in δ.

An analytical estimation of the critical width appears to be possible. Using the com-

parison principle for nonlinear partial differential equations [40, 53], it is readily seen that

the fllowing single-species model:

∂u (x, y, t)

∂t
=

(
∂2u

∂x2
+

∂2u

∂y2

)
+ γu (u− β) (1− u) , (9)

i.e. Eq. (5) without the last term in the right-hand side, is the upper bound for the prey-

predator system (5–6). However, for the single-species model a simple analytical estimate

of the critical width can be easily obtained. Indeed, once the front arrives to the end

of the passage and starts spilling into Habitat 2, it is of approximately circular shape

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56

Predator Mortality

0

2

4

6

8

10

12

 W
id

th
 

 stop growth

population growth

Invasion Blocked 
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Figure 6: Parameter plane (w, δ), other parameters are the same as above. For the

parameters from above the green curve (obtained in simulations) the population spills

over and invade Habitat 2, for the parameters from below the curve the population is

blocked in the passage. Red line shows the analytical estimate (14).
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(consistent with the numerical simulations above, e.g. see the middle-left panel in Fig. 3

and the middle-right panel in Fig. 5). For a circular propagating front of the radius R in

a 2D system, its speed c(R) is known to be related to the speed c of the corresponding

1D front as

c(R) = c− D

R
, (10)

e.g. see [54]. For the front confined at the exit of the passage, R = w/2. Since the front

is blocked, c(R) = 0. Equation (10) then turns into the following:

c− 2D

w
= 0. (11)

For a scalar diffusion-reaction equation with the population growth parameterized by

a cubic polynomial, the analytical expression for the speed of the front propagation is

well-known:

c =

√
DG

2
(K − 2UA) , (12)

e.g. see [21]. From (11) and (12), we therefore obtain:

wcr =

√
8D

G

1

(K − 2UA)
, (13)

or, in dimensional variables,

wcr =
2
√

2

(1− 2β)
√

γ
. (14)

For the parameters of Fig. 6, the estimate (14) gives wcr ≈ 2.3 which agrees well with the

simulation results.

Now, a question can arise here as to how sensitive the above results are to the boundary

conditions along the corridor. Indeed, it is well known that the critical behaviour of

Figure 7: Sketch of an H-shaped habitat with Dirichlet boundary conditions at the sides

of the corridor.

13



diffusion-reaction systems is generally sensitive to the boundary conditions; for instance,

the solution of the critical size problem is essentially different in case of the Neumann (zero-

flux) and Dirichlet (zero-density) conditions. In order to make an insight into this issue,

we now consider the same H-shaped domain as above but with the Dirichlet zero-density

conditions along the passage boundary; see Fig. 7. We mention here that, compared to

the zero-flux condition, the zero-density boundary condition corresponds to a somewhat

different situation. Instead of a narrow canyon (connecting two large valleys) where the

population density can build up in the vicinity of the canyon wall, one can think, for

instance, of a narrow ridge (e.g. connecting two mountain plateaus) where a casual step

over the cliff would result in death - hence, the zero population density.

Having performed extensive computer simulations in the domain with the zero-density

condition in the passage (Fig. 7), we obtain that the dynamics of the system is qualitatively

the same as in the previous case of the zero-flux conditions. In particular, we obtained that

for all invasion regimes (as in Fig. 1) the invading population spills over to Habitat 2 if the

corridor width is large enough and is blocked if the corridor is too narrow. Dependence

of the critical width on the predator mortality is shown in Fig. 8. Therefore, as well as in

the previous case we observe non-monotone dependence of wcr on δ with a tendency for

the critical width to increase with a decrease in δ.

As well as above, it appears possible to obtain a simple analytical estimate of the critical

corridor width, although the argument and calculations are different. We recall that the

single-species model is an upper bound for the prey-predator model, so a condition of

0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54
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Figure 8: Parameter plane (w, δ) in case of the Dirichlet zero-density conditions at the

boundary of the corridor. Other parameters and boundary conditions are the same as

above. For the parameters from above the green curve (obtained in simulations) the

population spills over and invade Habitat 2, for the parameters from below the curve the

population is blocked in the passage. Red line shows the analytical estimate (17).
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population propagation blocking in the model (9) will be a sufficient condition of the

propagation blocking in model (5–6). Consider the case of a long corridor. Consider the

situation where the invasive species has penetrated through the corridor and successfully

spilled over to Habitat 2. In this case, in the large time limit the population density

profile across the corridor does not depend on its position along the corridor as far as the

position is sufficiently far away from the corridor ends. The problem then becomes one-

dimensional as the population density depend only on the coordinate across the corridor

but not along the corridor. However, if considered in the 1D settings, this turns into the

classical critical size problem (e.g. see Section 3.1 in [21]), that is, how large the domain

must be to ensure the survival of the population inside. For the growth rate described by

a cubic polynomial, its analytical solution is unknown. However, if we consider an upper

bound of the growth rate as

γu (u− β) (1− u) ≤ gu for any u ≥ 0, (15)

where g is the maximum per capita growth rate, see the lines below Eq. (4), the expression

for the critical size in the corresponding linear problem is well known:

wcr = π

√
D

g
, (16)

and in the dimensionless variables:

wcr =
2π

(1− β)
√

γ
. (17)

For the parameters used in simulations, the estimate (17) gives the value wcr ≈ 4, which

appears to be in good agreement with numerical results; see Fig. 8.

Note that the mechanism of spread blocking is somewhat different in the two cases. For

the zero-density conditions at the boundary of the passage, the population is blocked inside

the passage (in a manner similar to how a subcritical size of the inhabited domain results in

the population extinction). For the zero-flux conditions, however, the population cannot

be blocked inside (except for the trivial case where β > 0.5); instead, its propagation is

blocked at the exit of the passage.

Finally, we want to emphasize here that both (14) and (17) are sufficient conditions

of propagation blocking but not criteria. Once w ≤ wcr, the propagation will necessarily

be blocked by the passage; however, w > wcr does not guarantee that the population will

spread into Habitat 2. In terms of the diagrams shown in Figs. 6 and 8, it means that the

whole of the red line lies in the parameter range where the population spread is blocked

in the prey-predator system (i.e. in the area marked by crosses).

3.2 Sensitivity of the patchy spread to the initial conditions

From the four invasion scenarios shown in Fig. 1, perhaps the patchy invasion poses the

biggest challenge. The absence of a continuous propagating population front leads to a

certain ambiguity in the definition of the extent of the invaded area [27]. Similarly, it
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(a) (b) (c)

Figure 9: Snapshots of different initial predator population distributions used in simu-

lations: (a) (IC-1) y11 = 55, y12 = 60, y21 = 50 and y22 = 70; (b) (IC-2) y11 = 32.8,

y12 = 35.2, y21 = 30 and y22 = 40; (c) (IC-3) y11 = 27.6, y12 = 30, y21 = 25.2 and

y22 = 35.2. The initial conditions for the prey and other parameters are given in the text.

introduces an uncertainty as to when exactly, for a given set of the initial conditions,

the population reaches the entrance to the passage. It is not enough for the expanding

‘envelope’ (e.g. the location of the foremost patch, cf. [27]) to reach the entrance to the

corridor; in order for the population to start penetrating through the corridor, there must

be one of the patches that actually hits the entrance. However, since the spatiotemporal

population dynamics during the patchy invasion is known to be chaotic, the movement of

the patches is effectively random. In its turn, the exact location of the patches depends

on the initial population distribution. Therefore, one can expect that, altogether, the

time that takes the population to arrive at the passage entrance and to penetrate to the

other side can vary significantly.

In order to make a more quantitative insight into this issue, we therefore performed

simulations for a few different initial conditions choosing the demographic parameters in

the range where the patchy invasion occurs [11, 27, 38]. Specifically, we use γ = 3.9, α =

0.1, β = 0.2 and δ = 0.37. The parameters of the corridor are chosen as (λ,w) = (10, 9.2).

For the initial conditions, we fix the initial population densities as u0 = 1.2 and v0 = 0.2,

and the initial distribution of prey as x11 = 85.2, x12 = 105.2, x21 = 85.2, x22 = 95.2, and

consider a few different initial distribution of the predator; see Fig. 9.

For the above parameters and for each of the three initial distributions, the population

spread from the place of its introduction generally follows the scenario shown in Fig. 5

(we do not show the results for the sake of brevity). We first consider the case with the

zero-flux conditions on the passage boundary. In each simulation run, we pick the time

required for the population to reach Habitat 2, e.g. the ‘moment’ when the population

has penetrated through the passage and starts spilling over into the open space on the

other side, e.g. as shown in the middle-right panel in Fig. 5. The results are presented

in Table 1. It is readily seen that the time varies quite significantly; in fact, by an order

of magnitude. We then repeat simulations for the same parameters and the same sets of

initial conditions but imposing the zero-density conditions at the passage boundary. As
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well as in the previous case, the spill-over time shows a considerable variation between

different initial conditions.

3.3 Corridor as a refuge

Finally, we report on a curious invasion scenario that occurs in a certain range of the

parameters of the corridor. Figure 10 shows snapshots of the prey distribution obtained

for the demographic parameters chosen as γ = 6.25, α = 0.1, β = 0.2 and δ = 0.5. The

parameters of the corridor are (λ,w) = (10, 2.8) and the initial conditions are given by

(7–8) with u0 = 1.0, v0 = 0.2, x11 = 85.2, x12 = 105.2, x21 = 85.2, x22 = 95.2, y11 = 55.2,

y12 = 60, y21 = 50 and y22 = 70. The boundary condition are zero-flux along the whole

boundary of the domain (including the passage). Apparently, for these parameters the

population spreads into an open space via ring-shaped travelling fronts; see the top-left

panel in Fig. 10. After the population has propagated through the passage, a number of

travelling concentric fronts is produced on both sides of the passage; see the middle row

in Fig. 10. Eventually, the fronts go away (cf. the bottom row in Fig. 10) and the alien

population eventually goes extinct in the most of the domain – except for the passage. A

close inspection reveals that there is a residual population that settled down inside the

corridor; this is readily seen from Fig. 11 that also gives a magnified view of the passage.

Since this residual population is still persistent in the passage after a considerable time

(t = 9000 in Fig. 11), we assume that it corresponds to a stationary solution of Eqs. (5–6).

A question arises here as to what can be a response of this residual population to a

change in the demographic parameters. Such a change can be a result of the alien species

adaptation to their new environment, or it can be a result of some exogenous process such

as the global climate change. In either case, the question is whether the population will

remain confined inside the passage or it goes extinct, or it may start spreading.

Looking for an answer to the above question, we performed simulations using the

residual population as the initial condition for another simulation run with a different

value β1 for the Allee threshold density. We obtain that for β1 just slightly larger than

Boundary conditions in the passage IC-1 IC-2 IC-3

zero-flux (Neumann) 2340 460 5090

zero-density (Dirichlet) 4450 3970 1240

Table 1: approximate spill-over time required for the population to reach the corridor exit

to Habitat 2 for different initial conditions (IC) and different conditions at the passage

boundary (cf. Fig. 7).
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β, e.g. 0.2 < β1 ≤ 0.23, the population remains confined inside the passage and at

any moment of time the spatial population distribution of the prey is similar to the

one shown in Fig. 11. In case β1 is sufficiently larger than β, e.g. 0.24 ≤ β1 ≤ 0.3,

the residual population goes extinct. However, in case β1 is sufficiently smaller than β,

e..g. 0.1 ≤ β1 ≤ 0.16 the prey can start spreading away from the passage into both

habitats 1 and 2. As just one example, Fig. 12 show the results obtained in the case

where β1 = 0.1. Note that the spread takes place following a different scenario compared

to the original one; instead of the propagating ring (cf. top-left panel in Fig. 10), it now

Figure 10: Dynamics of the system resulting in the formation of a stable steady state

distribution of the prey species inside the passage that survives after the invading popu-

lation goes extinct in the rest of the domain. Parameters and the initial conditions are

given in the text.
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Time = 9000

Figure 11: A magnified view of the steady state population distribution inside the passage.

Figure 12: Snapshots of the prey population density at time t = 9030 (left) and t = 9060

(right) after the value of the Allee threshold density was changed from the original value

β = 0.2 to the new value β = 0.1 at the moment t = 9000 (see Fig. 11). The residual

population that was confined in the passage for a long time not starts spreading into the

space.

spreads through a propagating circular front with pattern formation in the wake. This is

not surprising as β is, along with the predator mortality, a parameter that controls the

pattern of invasive spread [27, 35].
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4 Discussion and conclusions

Factors affecting the patterns and rates of alien species spread have been a major focus of

research for several decades. A vast majority of studies were concerned with the species

proliferation into an “open space” – a relatively uniform environment where all areas,

although not necessarily being equally favorable, are accessible to the invading popula-

tion. However, a realistic landscape can often be strongly heterogeneous combining areas

accessible for the invader with inaccessible ones. The effect of the landscape geometry

(as given by the size and shape of the inaccessible areas) remains poorly understood. In

this paper, we addressed this problem by considering a mathematical model where the

population dynamics of an alien species takes place in an H-shaped domain consisting

of two large uniform habitats connected by a narrow passage or corridor. For the initial

conditions, we considered that the alien species is introduced in a (small) area inside one

of the habitats. Our goal was to reveal the effect of the corridor on the species spread, in

particular whether the spread from the one habitat to the other could be slowed down or

blocked. In terms of the real-world landscape, such a system could account for an alien

species spread through a narrow valley or an isthmus. To account for interspecific inter-

actions, we considered a generic prey-predator model which is known to exhibit a rather

complex, ‘realistic’ spatiotemporal dynamics and predicts a variety of different invasion

scenarios [21, 24].

In reply to the questions bullet-pointed in the introduction, we obtained the following

answers:

• The corridor does slow down the spread. It takes the spreading population an ex-

tra time to penetrate through the passage. A sufficiently narrow corridor, i.e. its

width being less than a certain critical value, blocks the spread so that the invasive

population never spills over to the other habitat. Analytical estimates for the crit-

ical width are obtained, see Eqs. (14) and (17), that are in good agreement with

numerical results;

• The corridor can modify the pattern of spread. An example of this is shown in Fig. 3

where the irregular spatiotemporal pattern emerging behind the propagating front

in Habitat 1 changes to a regular (symmetric) spatial population distribution behind

the front in Habitat 2. Interestingly, this is exactly opposite to the results of some

earlier work [52] where the existence of inaccessible areas – but with a different

geometry – changed a regular spatiotemporal pattern to chaos. The regularizing

effect of the corridor in our study can be readily explained: having propagated

through the narrow passage, the population distribution at the exit to Habitat 2

become symmetric and effectively works as a symmetric initial condition for the

population spread in Habitat 2;

• The delay of the spread caused by the corridor is significantly different depending

on the pattern of spread. In particular, we obtained that it can be about two orders
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of magnitude longer in case of the patchy spread compared to the spread by the

propagating continuous front.

Our results seem to send a potentially important message to the invasion management

specialists. Since the corridor tends to impede the invasive species spread, it might be

regarded as a possible control strategy. Although it apparently implies a significant alter-

ation of the environment (e.g. to make a natural corridor more narrow), which is likely to

be very expensive, we mention here that this strategy is not unrealistic and some examples

of large scale environment intervention with the goal to slow down the spread are well

known [45]. Importantly, however, based on our results (especially see the last item from

the above list) this cannot be a universal approach as its efficiency depends on the pattern

of spread: whilst it slows down the invasion considerably in the case of patchy spread, the

delay might be rather insignificant in the case of spread via a continuous front. In its turn,

this observation highlights the need for a better understanding of the invasion patterns

and their more efficient identification including advance adaptive monitoring [37].

Interestingly, although the corridor tends to impede the invasive species spread, it also

can promote the invasion if considered on a longer time scale. Once the time is long

enough to include an environmental change or species adaptation (e.g. through pheno-

typic evolution), the corridor can become a source of a secondary invasion (see Section

3.3) hence bringing the alien species back even it may have already disappeared from the

rest of the domain. If considered in the context of invasion management, this observation

restricts the potential use of the corridor as a factor controlling invasion to a small-to-

intermediate timescale. From the point of alien species monitoring, it also means that a

special attention should be paid to landscape features that can act as corridors, because

they may become a refuge for the alien pest.
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