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Abstract

Mendelian Randomisation with Many
Dependent Instruments

CY. Shapland

Mendelian randomisation is well known for its weak instrument bias, which is caused
by the weak genetic association with the exposure. Usually, the most significant SNP
within a gene region is selected to represent the association with the exposure of
interest. However, if the causal variant was not genotyped then this proxy with
weaker association will be a worse instrument. Moreover, a GWAS significant proxy
may not show significance in another population. In the human genome, there are
many SNPs in linkage equilibrium (LD) within a gene. The correlation between the
SNPs and causal variant may increase power to detect the underlying association
with the exposure. My thesis will investigate whether many SNPs in LD within a
gene region can provide a stronger instrument than a single proxy for the causal
variant(s). The thesis will first establish the gains from having multiple SNPs in
LD as instruments. Simulation of realistic LD patterns will be used to assess both
classical and Bayesian approaches to the estimation of the causal effect with many
dependent SNPs. A Bayesian approach to Mendelian randomisation is preferable to
the classical estimation with many dependent SNPs.
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Chapter 1

Introduction

This chapter gives a brief overview of Mendelian randomisation, discusses possible

advantages of extracting full information from a gene, lists the objectives of the

thesis and finally presents an overview of the thesis. See Chapter 2 for a fuller

description of Mendelian randomisation and an explanation of genetic terms.

1.1 Mendelian Randomisation

Conventional epidemiology has made important contributions to knowledge about

disease aetiology. However, due to factors such as selection bias, reverse causa-

tion and unmeasured confounding, most of the correlation between exposure and

disease outcome cannot be interpreted as causal, but only as association. There-

fore some findings from observational epidemiological studies cannot be replicated

in randomised control trials (RCT). Unmeasured confounding is one of the most

likely explanations for false associations in observational studies; confounding has

been defined, as an important influence on the outcome that differs systematically

between the comparison groups [68]. For example, Vitamin C has been found to

have a protective effect on cardiovascular disease in observational studies but the

protective effect was not found in an RCT, most likely because the relationship is

confounded by lifestyle [181]. People who take Vitamin C are more likely to be

health conscious than the general population, less likely to smoke and more likely

to exercise regularly, and consequently this group has lower risk of cardiovascular

disease.

Instrumental variable analysis has been developed in the field of econometrics as

a method to infer causality between an endogenous variable (X) and an outcome (Y),
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free from the effect of confounding (U). The word “endogenous” is an econometric

term for an explanatory variable that is correlated with the confounding variable.

A variable is a valid instrument (Z) only if it is (1) associated with the endogenous

variable, (2) independent of the confounding variable and (3) independent of the

outcome of interest given the endogenous and confounding variables. Figure 1.1

shows the diagram of instrumental variable analysis [117]. Provided these core

assumptions are satisfied and the relationship is linear and without interactions,

the X-Y association is the ratio of the Z-Y and Z-X associations. If the three core

assumptions do not hold then the estimation of the X-Y association is subject to

bias [135].

U

X YZ

Figure 1.1: Instrumental variable analysis; Z is the instrument associated with the
endogenous variable (X), Y is outcome of interest and U is the confounding effect
between X and Y.

Mendelian randomisation is instrumental variable analysis with genetic variants

as instruments [286]. The concept of Mendelian randomisation was first introduced

by Katan [162] and popularised by Davey Smith and Ebrahim [79]. Mendelian ran-

domisation has been described as the “natural” RCT [81]; the exposure can some-

times be a phenotype or a behaviour influenced by a genetic variant. By Mendel’s

law of independent assortment [130], the inheritance of a genetic variant is ran-

dom, similar to patients being randomised to different treatments in an RCT. In

cases where exposures are considered as unethical or impractical to randomise, for

example smoking and alcohol consumption, Mendelian randomisation can be the

alternative [80]. The genetic instruments are usually in the form of single nucleotide

polymorphisms (SNPs) [84]. SNPs are positions where a single nucleotide in the

deoxyribonucleic acid (DNA) is altered. DNA is a molecule that carries genetic in-

formation. A SNP could change the protein product, or affect gene expression, which

alters the exposure and in turn the disease risk. Genome-wide association studies

(GWAS) measure thousands of SNPs in a large number of individuals to identify

their association with complex traits [216]. Due to the development of GWAS, there

is a substantial number of SNP associations with phenotypes and disease outcomes

that are currently available, which means there are plenty of SNPs to use as genetic
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instruments.

As well as Mendel’s law of independent assortment and the large number of

SNPs available, there are other reasons that make SNPs desirable candidates as

instruments; common SNPs have been well-characterised in their biological function

and a SNP can measure lifelong exposure, since exposures are generally affected by

genetic variants from birth to adulthood [80]. Another key point is that a SNP is

unlikely to be related to confounders, such as socioeconomic status and behaviour,

typical of observational epidemiological studies [79]. Even though the three core

assumptions can be considered biologically plausible, there is no procedure that fully

tests these assumptions. There are three major genetic conditions that can invalidate

the core assumptions; direct pleiotropy, pleiotropy via linkage disequilibrium and

population stratification. Pleiotropy is defined as an association with more than

one phenotype. If a SNP is associated with another exposure that also affects

the outcome of interest, then this SNP is not a valid instrument, as it violates

assumption 3 (or 2 if the additional exposure affects the confounder). Pleiotropy via

linkage disequilibrium can also violate assumptions 3 and 2, which will be discussed

later. Population stratification occurs when different populations show differences in

disease rates and allele frequencies, which confounds the association between genetic

instrument and outcome of interest.

For the estimation of the causal effect, the most popular estimators, thanks to

their simplicity, are the Wald (ratio) estimator for a single instrument and two-stage

least squares (2SLS) for multiple instruments [26]. The Wald estimator is the ratio of

the coefficients from the Z-Y and Z-X associations. The 2SLS algorithm predicts X

from its genetic association in the first-stage, then derives the causal effect from the

regression of Y on the predicted X in the second stage. For multiple instruments,

there are also other estimators available, such as Limited Information Maximum

Likelihood (LIML), Generalised Method of Moments (GMM), semi-parametric and

Bayesian methods.

There is limited methodological research in Bayesian approaches to Mendelian

randomisation. Consequently, the usage of Bayesian methods is sparse in comparison

to classical instrumental variable methods (see Chapter 8). The fundamental idea

of the Bayesian approach is that it derives statistical inferences through combining

prior information with the information from one’s data. If informative priors are

available then the precision of the causal effect estimate can be greater than that

obtained from classical approaches [153]. Due to the ever-increasing number of
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GWAS, the use of informative priors is now possible. For example, when there

are multiple instruments and one of them has been previously published as being

genome-wide significant for the exposure of interest, then more weight can be put

on this specific SNP within the Bayesian analysis.

Even if a genetic variant does satisfy the core assumptions, bias can come from

weak instruments. A genetic variant typically explains a small proportion of the

variation in an exposure and with finite samples, the combination will introduce

bias to the causal effect estimate, commonly known as weak instruments bias [253].

An instrument is considered weak if its F-statistic from the association with exposure

is less than 10;

F =
R2(n− 1− k)

(1−R2)k
(1.1)

where R2 is the proportion of the variability in exposure that is explained by the

instrument(s), n is the size of the sample and k is the number of instruments. Weak

instrument bias can be reduced by including information from multiple genotype-

exposure and genotype-outcome association studies and combining them to esti-

mate the causal effect via meta-analysis [266]. The lack of power to detect an effect

between X and Y is also caused by the weak association between genotype and

exposure. Statistical power can be increased by having a larger sample size [79],

however this can be expensive. The use of multiple instruments can increase power

and precision in the estimation of causal effect [219]. For the increase of precision

with multiple instruments, each additional instrument must explain additional vari-

ation in the exposure of interest [219]; Equation 1.1 shows that as k increases, the

F-statistic will decline if R2 remains the same. However, having multiple SNPs

with an F-statistic > 10 is not always possible and the threshold does not always

guarantee less than 10% bias in the estimation of causal effect. Alternatively, the

LIML estimator and allele score can be implemented; LIML is median unbiased with

many weak instruments [61, 85]. Allele scores can increase the F-statistic of a single

instrument by combining multiple SNPs [227]. The scoring for each SNP is based

on the presence of the risk allele and weighted by the risk allele’s association with

the exposure of interest [49].
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1.2 Extracting full information from a gene

The instruments used in the multiple SNPs Mendelian randomisation are usually

independent, i.e. each instrument has its own independent effect on exposure and

is not in linkage disequilibrium (LD) with another SNP. LD is described as the

correlation between alleles at different loci [230]. It is not surprising that most

Mendelian randomisation studies exclude dependent SNPs as potential instruments,

as LD can lead to a violation of the three core assumptions of a instrumental variable.

A genetic instrument (GA) does not satisfy assumption 2 or 3 when it is in LD with

another variant (GB) that is directly associated with Y (Figure 1.2a) or associated

with U (Figure 1.2b) respectively. The assumptions are satisfied if GA is in LD with

GB the functional variant of X, Figure 1.2c. There are many cases where Mendelian

randomisation studies only use the most significant SNP as an instrument even

though they have genotyped thousands of SNPs [76, 87, 243, 306]; for example

Cuellar-Partida et al. [76] have used only 10% of the 17,749 SNPs as instruments to

infer causality between short-sightedness and educational attainment.

YXGA

UGB

(a) Violation 1

YXGA

UGB

(b) Violation 2

YXGA

UGB

(c) No violation

Figure 1.2: Linkage Disequilibrium

The use of multiple instruments, where each instrument explains the variation of

the exposure independently and satisfies the core assumptions will increase precision

and power for the estimation of causal effect. The question that I would like to
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address in this thesis is can more information can be extracted from a gene

region than is provided by a single proxy SNP for the unknown causal

variant?

Figure 1.3: Regional plot taken from Schizophrenia Psychiatric Genome-Wide As-
sociation Study Consortium et al. [247]. On the x axis is the genomic position,
and on the y axis is log10 P (p-value) for the SNP association with schizophrenia.
The triangle is the most significant SNP and the LD of each SNP is based on the
correlation with this most significant SNP. Colour coding (from red to blue) denotes
LD information; see also the legend within the plot. The bottom of each plot gives
the gene name and its region on the chromosome.

If the causal variant is unknown or unmeasured, due to its rarity in the popu-

lation, then the joint information from all available variants in LD with the causal

variant can predict the causal association [284]. Genetic association studies are

usually split between direct and indirect associations [216]. A direct association is

where the identified genetic variant has a causal role, whereas indirect associations
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are where the associated variant has no causal role but is associated with the causal

variant via LD. Johnson et al. [152] and Clayton et al. [69] have suggested having

multiple “tag” SNPs to capture all the information in one gene for indirect asso-

ciation studies. In addition, the complexity of identifying the causal variant for a

specific disease means not many direct association studies are available in the lit-

erature [197]. For example, Figure 1.3 shows the regional plots from Schizophrenia

Psychiatric Genome-Wide Association Study Consortium et al. [247], where they

have identified five SNPs associated with schizophrenia; in plot (e) there are SNPs

with almost identical p-values and hence it is difficult to differentiate between the

functional variant and the SNPs in LD with the functional variant. Moreover, a

disease outcome may have multiple causal variants [144, 193, 203]. A single variant

is unlikely to account for all of the LD between the unknown causal and genotyped

SNPs in the region [301] and may underestimate the variance. Therefore, many

SNPs in LD have the potential to be strong instruments that explain the total

variance within the region.

Mendelian randomisation studies have been utilising genome-wide significant

SNPs as instruments. However these SNPs may not be significant in another pop-

ulation; a population can have a different effect size for the genetic association to

another population [239, 260]. For example, Imamura et al. [149] have found two

loci with type II diabetes risk allele specific to the Japanese population. The same

loci could not be replicated in East Asian (non-Japanese), South Asian, European

and Mexican/latino population, when replication was performed with a SNP from

the same region that is in high LD with the lead (i.e. most significant) SNP from the

Japanese population. They have argued that it could be that the SNPs in LD with

the causal variant only exist in Japanese population or LD between SNPs and causal

variant is the same for all five populations but the causal variant only has an effect

in the Japanese population. A study that collected data in the United States of

America has found APOE−ε4 allele to have significant association with Alzheimer’s

disease in people of European but not African or Hispanic ancestry [261].

Realistically, genetic markers will be in LD; due to population genetic factors,

such as natural selection, genetic drift and mutation [251], LD will continue to exist

under many conditions. These factors affect the local recombination rate and in

turn the level of LD [15]. Recombination is the process that generates new gene

or chromosome combinations. Strong LD usually exists in a block-like structure

between two recombination hotspots, known as haplotype blocks [108]. The blue
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vertical lines in Figure 1.3 are the recombination rates, the taller the line the higher

the recombination rate. Plot (a) shows the continuous decline of LD from the lead

SNP with the increase in physical proximity within a haplotype block, between

two relatively high recombination points (at 97,600 and 98,400 kilobases). Plot (e)

has SNPs that are almost in complete LD with the lead SNP in the absence of

recombination. The average length of a haplotype block is 16 kilobases (kb) and

consists of 70 SNPs on average for European populations and the size of haplotype

blocks is population dependent [150]. An average length gene is 53.6kb [258], thus

there are approximately 3 haplotype blocks within a gene.

Using the same motivation as genetic association studies with SNPs from a sin-

gle gene region, Burgess et al. [52] have investigated whether multiple variants in

a single gene region from multiple studies can provide stronger instruments than a

single variant from multiple studies. They compared allele scores with meta-analysis

and other summarised data methods, where they modified these algorithms to in-

corporate the correlation between SNPs. They have simulated 15 correlated SNPs

and each SNP has its own genetic effect on the exposure. Another simulation study

by Wang et al. [283], showed that if the functional variant of the exposure was un-

measured or unknown, the surrogate marker could be a weak instrument as it does

not explain the true amount of variation, therefore the LD information between

typed and the causal variant could potentially explain the full variation within a

gene region and have higher statistical power for the gene-exposure association in

the first-stage of 2SLS. A haplotype is a set of alleles at linked loci in a single

chromosome and an individual has two haplotypes, one inherited maternally and

the other paternally. Two approaches were compared by Wang et al. [283], both

based on 2SLS. SNP-IV selects SNPs as instruments via stepwise regression and

haplotype-IV sorts haplotypes with similar effect sizes into the same group. They

compared the two approaches by simulating 11 SNPs, only two of the SNPs were

the functional variants of the exposure. Burgess et al. [52] and Wang et al. [283]

have both concluded that the precision and power for the estimation of causal effect

have increased with multiple correlated variants from a single gene as instruments

rather than a single variant. Their findings raise the question of whether it would be

possible to obtain the same benefit with multiple dependent SNPs in individual-level

data.

There are several Mendelian randomisation studies that have utilised SNPs from

the same gene region as instruments, for example, a study of plasma level on car-
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diovascular disease using SNPs from the AHSG gene [103], adiponectin level and

type 2 diabetes with SNPs from ADIPOQ [299], adiposity level and cardiovascular

disease where instruments are SNPs from TRIB1 [78]. However, these studies have

given individual causal effect estimates from each SNP which are affected by weak

instrument bias. Recent Mendelain randomisation studies have combined their de-

pendent SNPs into a single instrument, using allele scores [49]. However, due to lack

of external data with the same genetic-exposure association and population, they

either derived the weights for the allele score from the dataset under analysis or did

not weight the risk allele. The former approach is subject to bias [53] and the latter

to sampling error [95]. Therefore, there are few guidelines on using SNPs from the

same region as instruments in Mendelian randomisation.

1.3 Objectives

To summarise, the reasons for using multiple dependent SNPs are the complexity

of knowing the causal variant(s) and the potential for SNPs in LD with the causal

variant(s) to be stronger instruments than a single proxy. Therefore in this thesis

I propose to investigate the advantage of having multiple dependent SNPs from

the same gene region and whether a single most significant SNP is sufficient as

an instrument for the estimation of causal effect in Mendelian randomisation. I

will consider scenarios where the causal variant for the exposure is unknown or

unmeasured and the dependent SNPs are associated with the exposure through

their correlation with the causal variant. The exposure and outcome of interest will

be assumed to be continuous in an individual-level dataset with information on SNP

genotypes, exposure and outcome of interest. The 3 main questions of this thesis

are;

1. Are there any gains from using many dependent SNPs from the same gene?

2. What is the most efficient estimator for many dependent SNPs?

3. In comparison to the classical approaches, are Bayesian approaches more effi-

cient with many dependent SNPs?
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For question 1, I will investigate the effect of LD on the amount of variation

explained by a non-causal SNP through algebra and simulations.

For question 2, I will first review the Mendelian randomisation and instrumental

variable analysis literature to find the recommended estimator for many instruments.

Random LD patterns and MAFs will be simulated to find the most efficient estimator

with many dependent SNPs, and the estimators compared to find any gains in

excluding weak instruments within the gene region, by implementing instrument

selection criteria.

Finally, the Bayesian approach to Mendelian randomisation and instrumental

variable analysis will be reviewed for Question 3. Simulation of realistic genetic

data will aim to find whether there are any gains for the Bayesian in comparison to

classical approaches with many dependent SNPs as instruments.

1.4 Overview of Thesis

The background to Mendelian randomisation is in Chapter 2. This includes, the

genetic and statistical limitations of Mendelian randomisation, a summary of its

methodological development, and review of the applied literature on studies that

used dependent instruments and their approach to causal estimation.

Chapter 3 is the statistical background that consists of a review of algorithms

that have aimed to specifically reduce weak instruments bias, from the literature

on Mendelian randomisation and instrumental variable analysis. Then follows the

mathematics of 2SLS and recommended efficient estimators for many instruments.

Chapter 4 describes the general simulation method for the following chapters,

which includes procedures to generate the genotype, exposure and outcome of in-

terest for individuals, evaluation criteria to monitor performance and number of

simulations to obtain the optimal accuracy level for the evaluation criteria.

Chapter 5 aims to find when using 2SLS, how much of the variation in exposure

can be explained by SNPs in LD with the causal SNP. This will be derived mathe-

matically but also demonstrated by simulation. Each scenario will have a different

minor allele frequency (MAF), variation explained by the causal SNP, sample size

or, where appropriate, correlation of SNPs with the causal SNP.

The performance of 2SLS with multiple dependent instruments will be examined

in Chapter 6, where the potential instruments are non-causal SNPs but in LD with

the causal variant. The first simulation experiment aims to investigate the effect of
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LD in 2SLS, where the SNPs are included as instruments according to the ranking of

p-value from their association with the exposure. The second experiment compares

the performance of 2SLS with a single significant SNP or multiple non-causal SNPs

and whether the instrument selection policy changes with different sample sizes and

number of potential instruments available in the dataset.

As previous research has demonstrated that many weak instruments bias the

causal effect estimate in 2SLS, Chapter 7 will compare the performance of 2SLS

with the efficient estimators described in Chapter 3. Hence, this chapter aims to

find the most efficient estimator with many dependent instruments.

To offer a Bayesian alternative to the classical approaches, Chapter 8 will review

the methodological literature on Mendelian randomisation and instrumental variable

analysis, and describe a Bayesian approach for the estimation of the causal effect.

The objective here is to find a Bayesian algorithm that shows potential in improving

the performance from the classical approaches, to Mendelian randomisation with

many dependent instruments.

Chapter 9 will describe and demonstrate the Bayesian algorithm found in Chap-

ter 8. The comparison of the classical and Bayesian approaches to Mendelian ran-

domisation is described in Chapter 10. This chapter consists of 3 experiments; 2

experiments where the simulated datasets have SNPs that vary in MAF and LD

patterns. The third experiment will use the genome simulator package to generate

realistic patterns for the genetic instruments.

Finally, this thesis finishes with Chapter 11, which comprises a discussion of the

findings from each chapter, their limitations and future work.
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Chapter 2

Overview of Mendelian

Randomisation

2.1 Introduction

This chapter reviews the problem of confounding in epidemiology and describes how

instrumental variables can be used to adjust for confounding. After a brief review

of some genetic terminology, the use of genetic variants as instruments is described.

2.2 Confounding in observational studies

2.2.1 Definition of confounding

Confounding is one of the major systematic errors in an epidemiological studies.

Clayton and Hills [68] stated that;

there is always a possibility that an important influence on the out-

come, ..., differs systematically between the comparison groups. It is

then possible that part of an apparent effect of exposure is due to these

differences, and the comparison of the exposure group is said to be con-

founded.

Confounding can also be found in a clinical trials setting due to the systematic

differences between the comparison groups [122].

The aim of a medical study is usually to measure the effect of an exposure on

an outcome, but in practice the size of this effect is impossible to observe directly
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as one individual cannot be both exposed and unexposed at the same time. For

example, in a population of smokers, the mortality rate is I1 and had those people

not smoked the rate would have been I0. A measure of the effect would be I1 − I0.
However, I0 is not observable, thus, I0 is substituted by the mortality rate observed

from another population of non-smokers. If the counterfactual rate (I0) does not

equal the mortality rate of non-smokers in the other population, then it is said that

the measure of association is confounded [242].

A confounder must be associated with both the disease and exposure, as shown

on Figure 2.1. However, association alone is not sufficient as Figure 2.2 shows.

Intermediate factors, have often been mistaken for confounders. An intermediate

factor lies between the exposure and the disease on the causal pathway, hence a

confounder has to be an extraneous risk factor [121].

YX

U

Figure 2.1: Confounder

YX

U

Figure 2.2: Correlation with exposure

To summarise, the following three conditions must hold for a variable to be a

confounder are [242];

1. A confounder must be an extraneous risk factor for the disease

2. A confounder must be associated with the exposure under study in the popu-

lation that are at risk

3. A confounder must not be affected by the exposure or the disease. In particu-

lar, it cannot be an intermediate step in the causal path between the exposure

and the disease

These three conditions are necessary but not sufficient characteristics of a con-

founder. Further details are discussed by Rothman et al. [242].
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2.2.2 Methods for Controlling Confounding

Measured Confounding

Measured confounding can be controlled by design or analysis. In the design based

method, the systemic error created by confounding can be reduced by matching the

exposed and unexposed cohort. There are two types of matching, individual and

group matching. Individual matching is where individuals are paired up by their

similarity in factors. Group matching assembles individuals with similar factors into

groups. However, this can be difficult to achieve, since it is not always possible to

match every person with more than a few factors. In addition matching introduces

selection bias as it is selecting individuals based on their similarity in the factors.

Stratification is an analysis based method for controlling confounders. This

divides the data according to a particular confounder, statistical analyses are then

performed within strata. Thus, the chosen confounder is no longer affecting the

exposure. In consequence, stratification can cause a sparse data problem; each

stratum may contain little data and the more confounders that are controlled for,

the worse the problem of sparse data.

A solution to the sparse data problem is to stratify in a way that balances the

probability of allocation as estimated by the propensity score. The propensity score

is a conditional probability of treatment given the observed covariates [238]. The

propensity score allows data to be stratified on a single variable, instead of multi-

variable adjustment, which reduces the sparse data problem.

Regression models are often used to avoid sparse data problems [120]. Regres-

sion models allow the outcome to be dependent on both the exposure and the con-

founders; the true effect of exposure is estimated by adjusting for the confounders.

However, regression models do not always solve the sparse data problem, as the

number of degrees of freedom available for covariate adjustments being dependent

on the sample size. Hierarchical regression model could potentially resolve this issue

by giving flexibility to the degrees of freedom [117].

Unmeasured Confounding

In observational studies, unmeasured confounders are often ignored [155]. In con-

sequence, the result produced is subject to systematic error and may be unreliable.

Randomisation is the most popular design based method for reducing bias from un-

measured confounding. Randomisation assigns individuals into groups at random
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and hence tends to balance the unmeasured confounders [241].

Sensitivity analysis can be used to investigate unmeasured confounding, by form-

ing an ’educated guess’ for the unmeasured confounder in the exposed group with

the disease, and the effect of the unmeasured confounder in the unexposed group

[242]. Then the ’educated guess’ is included into the statistical analysis and the

changes in result are examined.

The multiple regression analysis (extension to regression modelling) can be used

to adjust for unmeasured confounding, this method is known as ’bias modelling’,

where its theory contains a combination of sensitivity analysis, Bayesian and Monte

Carlo sensitivity analysis approaches. See Greenland [118] for more details on bias

modelling.

In Econometrics, instrumental variable (IV) analysis is the method most com-

monly used to avoid unmeasured confounding.

2.3 The assumptions of IV analysis

There are three assumptions which must be satisfied for a variable to be used as an

instrument [90]. Let Z be an instrumental variable, X a risk factor or an exposure,

Y the disease-outcome and U all of the unmeasured confounders as illustrated in

Figure 2.3. The assumptions are;

1. Z is associated with X,

2. Z is independent of U,

3. Z is independent of Y given X and U .

In the estimation of causal effect we make the further assumption that,

4. All associations in are linear and without interactions [264].

2.4 Genetic Background

The human genome is made up of long strands of deoxyribonuleic acid (DNA),

which contains nucleotides bases of four possible types, adenine (A), cytosine (C),

guanine (G) and thymine (T). The nucleotide bases pair up with one another, A with
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YXZ

U

Figure 2.3: Directed acyclic graph (DAG) for the instrumental variable model. Z is
the instrumental variable, X is the exposure of interest, Y is the outcome of interest
and U is the confounding effect.

T and G with C to form base pairs (bp) of a double-stranded DNA. The human

genome consists of 3.2 × 109 bp arranged into 23 pairs of chromosomes. There

are 22 homologous pairs of autosomes and two sex chromosomes, XX and XY in

females and males respectively. For each chromosomal pair, one copy is inherited

from individual’s mother and the other from the father. In each chromosome certain

regions of DNA are known as genes, which encode the instructions for assembling

amino acids into proteins. Chromosome 1 is the largest human chromosome with

3,168 genes and the Y chromosome is the smallest with 344 genes. The average

length of protein-coding genes is 53.6×103 bp. However the length of a gene ranges

from a few hundred to 2.4× 106 bp long [258].

CTCGATCAGAGCTGACT

CTCGATCAAAGCTGACT

Figure 2.4: The bases of one strand of DNA are shown from a particular locus on
two copies of a chromosome, the underlined pair of nucleotides is a SNP.

99.9% of the human genome is identical between two unrelated individuals and

the variations in DNA sequence can be categorised into single nucleotide polymor-

phisms (SNPs), there are approximately 10 million SNPs [112]. A SNP is where a

single nucleotide found at a chromosomal position (locus) is replaced by a different

nucleotide, Figure 2.4. In each locus, the different possible nucleotides are known as

alleles; the underlined nucleotides bases in Figure 2.4, G and A, are the two alleles

for the SNP at this particular locus. The less common allele at a particular locus in

a given population is labelled as the minor allele. The proportion of minor alleles in

a SNP, within a given population, is known as the minor allele frequency (MAF).

The distribution of MAF has an exponential decline from 0.01 to 0.5 [175]. 5 million
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SNPs have MAF of greater than 10% and approximately 10 million with frequency

greater than 1% [234].

The genotype of an individual consists of two alleles, one from each chromosome

pair. Using the SNP in Figure 2.4 as an example, where the alleles are A and

G, the genotypes that an individual can have are AA, AG or GG. A genotype is

termed homozygous if an individual has the same allele on both chromosomes, or

heterozygous if they are different. The allelic code on a single strand is called a

haplotype.

Table 2.1: A glossary of genetic terms.

Alleles variant at a given locus that varies between chromo-

somes in the population

Chromosome a structure that carries a collection of genes located

on a long string of DNA

Gene a section of DNA sequence which codes for a protein

or functional RNA molecule

Genotype is the combination of alleles at a particular locus

Haplotype is the set of alleles at linked loci on a single chromo-

some, an individual has two haplotypes at any loci,

one inherited from mother and the other from father

Linkage Disequilibrium

(LD)

the correlation between alleles at different loci

Locus a unique chromosomal location

Phenotype is a measurable characteristic of the subject

Pleiotropy a genetic effect on more than one phenotype

Population Stratification confounding by ethnicity

Recombination is the process that occurs during meiosis, where sec-

tions of DNA are broken and recombined to produced

new chromosomes

Minor Allele Frequency

(MAF)

is the frequency of the less common allele within the

population

Single Nucleotide Poly-

morphisms (SNPs)

are positions where a single nucleotide in the DNA is

altered
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Table 2.1 defines the genetic terms that will be used in this thesis.

Figure 2.5: Illustration of recombination using a pair of chromosome (Chr 6) of
an individual with 3 SNPs (SNPA, SNPB and SNPC) taken from Jackson [151];
Chr6Mat and Chr6Pat is inherited maternally and paternally respectively. Two new
chromosomes are formed, Chr6A and Chr6B.

2.4.1 Linkage disequilibrium

Linkage disequilibrium (LD) is the correlation between a pair of SNPs and is com-

monly measured by the square of Pearson’s correlation coefficient, r2. LD extends

over 1-100 kb, and is often discontinuous rather than declining smoothly with dis-

tance. LD is influenced by factors such as natural selection, genetic drift, population

subdivisions and mutation [251]. Local recombination rates is the major determinant

on how these factors affect LD between a pair of loci or in a region [15]. Recombina-

tion involves the exchange of genetic material either between multiple chromosomes

or between different regions of the same chromosome, see Figure 2.5. The average

recombination rate over 500 kb across the human genome is about 0.5cM, with the
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range of 0.19cM to 1.25cM. A centimorgan (cM) is the unit of linkage that refers to

the distance between two genetic loci determined by the frequency in which recom-

bination occurs between them. There are also recombination hotspots, which are

regions of chromosome where recombinations occur most frequently. These hotspots

on average appear every 50 kb [18] and create a block-like structure of LD, known

as haplotype blocks [108]. The average block size for European ancestry is 16 kb

with 70 SNPs but only 5 of them have MAF greater than 5% [150]. Very common

SNPs with MAF greater than 0.25 have mean maximum r2 of 0.97 and for rarer

SNPs (MAF < 0.05) of 0.76.

2.5 Genetic Instruments

Mendelian randomisation is IV analysis with genetic instruments [286]. In 1985,

Katan [162] came up with the earliest concept of Mendelian randomisation. Ob-

servational studies had reported that low cholesterol increased the risk of cancer,

which he believed to be reverse causation rather than causal. To distinguish the

relationship, he thought of using Apolipoprotein E (apoE) polymorphism as an in-

strument, since the apoE-2/3/4 alleles control the phenotype of cholesterol. As the

cholesterol level increases, apoE increases from 2 to 4. Therefore, to check for a

causal relationship between low cholesterol and cancer, one could use a study of

apoE on cancer.

This section will give a summary for the estimation of the causal effect (further

details of these estimators can be found in the review by Burgess et al. [53]).

2.5.1 Estimation of causal effect

Suppose that an instrument satisfies all of the assumptions in Section 2.3. Then,

for the simple case of a single instrument and a continuous outcome, the causal

regression coefficient of disease outcome (Y) on risk factor (X), βXY , is;

βXY =
βZY
βZX

(2.1)

where βZY is the regression coefficient of disease outcome (Y) on genetic instrument

(Z) and βZX is the regression coefficient of risk factor (X) on genetic instrument (Z).

This is also known as the Wald (ratio) estimator. The interpretation of Equation 2.1,
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is that βZY accounts for the variation in Y explained by Z and by assumption 2 avoids

the variation explained by the confounder, that affects both Y and X.

Genotypic data are becoming more readily available due to the decrease in

genotyping costs and the increase in number of genome-wide association studies

(GWAS). However, due to data protection and confidentiality laws, individual-level

data are not always accessible. With this issue in mind, Thompson et al. [266]

and Burgess and Thompson [44] have published statistical approaches to Mendelian

randomisation with a single instrument and multiple instruments using summarized

data. The former combines studies with information on genotype-phenotype and

genotype-outcome associations to give an estimate of the causal effect via Bayesian

meta-analysis, which will be outlined in Chapter 8. The latter has focused on two

methods; inverse-variance weighted (IVW) estimator, a technique inspired from a

GWAS [72], and the other is a likelihood-based method. The IVW calculates the

Wald estimator from each instrument and its standard error is derived using the

delta method. Then, the estimates from all of the instruments, are combined into a

fixed-effect meta-analysis model, to obtain a single causal estimate. The likelihood-

based method assumes a linear relationship between X and Y, and the genetic as-

sociation estimates have a bivariate normal distribution. The causal effect can be

estimated by maximum likelihood or the Bayesian method, both algorithm assume

all the instruments give the same causal effect. If βZX and βZY are from a meta-

analysis of different studies, then the covariance matrix of the bivariate distribution

can account for their correlations, i.e. heterogeneity between the studies.

The assumption that an outcome is continuous can limit Mendelian randomisa-

tion, as epidemiological studies often express causal effects as an risk ratio or odds

ratio. The main problem for a binary outcome is that the regression of Y on Z and

X on Z with the compatible parameter is no longer a consistent estimator of the

causal effect and will result in a biased estimate [90]. There are several IV analysis

methods available for binary outcomes described in detail by Greene [116]. How-

ever, some of the econometric methods makes assumptions that are not reasonable

for Mendelian randomisation. Palmer et al. [218] have provided an overview of IV

methods that are suitable for Mendelian randomisation with binary outcomes. For

multiple instruments, Bowden and Vansteelandt [30] suggested applying these in-

struments to a structural mean model (SMM) for a case-control study and Clarke

et al. [67] proposed estimating the causal relationship using a generalised method

of moments estimator. Bayesian meta-analysis can be implemented to combine in-
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formation from multiple studies with binary outcomes [55]. In summary, there are

a few approximation methods available for incorporating multiple instruments in

Mendelian randomisation with binary outcomes. However, it is still unclear which

algorithm should be used to estimate efficiently the causal effect with multiple in-

struments.

In addition, there are further developments with estimation of causal effect in

survival data [262], data with non-linear relationship between X and Y [50], estima-

tion with multiple pleiotropic instruments with multiple outcomes [46] and missing

data [48]. Even unbiased estimators with invalid instruments were developed; Egger

regression estimates a causal effect with instruments that violate IV assumptions

2 and 3 [31], but instead the instruments have to satisfy the InSIDE (Instrument

Strength Independent of Direct Effect) assumption. The InSIDE assumption is vio-

lated if several instruments are associated with the same confounder. The weighted

median estimator is unbiased, if less than 50% of the instruments violate assumption

2 and 3 [32]. Bidirectional Mendelian randomisation investigates the direction of the

causal effect [273, 287]. Mendelian randomisation analysis with mediator, where the

mediator gives another pathway from exposure to the outcome of interest [51]. A

2 × 2 factorial Mendelian randomisation was purposed to understand the effect of

multiple treatments on the risk of coronary heart disease [102]. To determine the en-

vironmental effect on the gene expression and in turn the disease outcome, two-step

epigenetic Mendelian randomization have been advocated [235].

2.5.2 The violations of the IV assumptions

Davey Smith and Ebrahim [79] described several practical limitations to Mendelian

randomisation that derive from dependence on the three assumptions and linearity

without interactions.

Pleiotropy

Pleiotropy is a genetic variant’s potential for having more than one specific pheno-

typic effect. Let X1 and X2 be the two different phenotypes affected by the genetic

variant (G). In example 1 shown in Figure 2.6a, G would not be a valid instru-

ment unless X2 was identified and adjusted for, since the presence of X2 violates

assumption 3. Example 2, Figure 2.6b, shows a violation of assumption 2 due to

pleiotropy, since G is not independent of the confounder. The bias from pleiotropy
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can be avoided if only variants with a well understood genetic function are used as

instruments [82]. Also, having multiple independent genetic variants can help to

identify the possible bias. If each genetic variant that affects the risk factor (X)

produces a similar estimate of βXY , then the chance of pleiotropy being present is

low although they could, in theory, all be biased in the same way.

YX1G

U

X2

(a) Example 1

YX1G

UX2

(b) Example 2

Figure 2.6: Illustration of the violations of the IV assumptions via Pleiotropy

Linkage disequilibrium

Linkage disequilibrium (LD) is the statistical association between a pair of alleles

at different loci within the population. Such associations exist, because alleles are

physically close together and consequently tend to be co-inherited. As described

in Section 1.2, pleiotropy via LD can invalidate the three assumptions, but if the

instrument is acting as a proxy for the functional variant of the exposure then

no assumptions are violated. Dealing with LD is the same as for pleiotropy; the

increased knowledge of the genetic function and the use of multiple independent

instruments can help identify potential problems.

Population stratification

Population stratification is a type of confounding, whereby allele frequencies and

disease outcome or allele frequencies and risk factor, vary between different sub-

groups of the population, and thus giving an illusion of association in the overall

population. Cardon and Palmer [58] suggested a ”classic” example of the violation of

assumption 3 via population stratification; Knowler et al. [171] found an association

between haplotype Gm3;5,13,14 with type II diabetes, in a study of people with

White European and Pima Indian origin, however, the association disappeared when
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the analysis was performed separately for different ethnicities. This violation of

assumption 3 is illustrated in Figure 2.7, where P is the population stratification.

Population stratification can be solved by adjusting for population structure in the

analysis or by performing family-based studies [182].

YXG

U

P

Figure 2.7: Illustration of the violation of IV assumption due to population strati-
fication

Canalization

Canalization, also known as developmental compensation, is the adaptation of an

individual to a genetic change where the effect of the genetic change is reduced or

removed. For example, if a person has the genetic variant that is associated with

high blood pressure and does not experience adverse events induced by high pres-

sure because the person’s arteries have become resistant to high blood pressure [281].

Hence, canalization can cause bias in Mendelian randomisation estimation as it is

affecting the genotype-outcome association but not the genotype-exposure associ-

ation. There is currently no strategy known to identify violation via canalization,

except through biological knowledge [98].

Statistical assessment of IV assumptions

It is difficult to validate the instrumental variable assumptions, as there are no

statistical tests of the assumptions. However, there are procedures that will give

confidence that an instrument does satisfy the core assumptions.

The simplest procedure is to test the association between the genetic variant

and measured confounders, but there may still be violations through unmeasured

confounders. Glymour et al. [113] have suggested four approaches to verify the

core assumptions; leverage prior causal assumptions, identify factors that modify

the genotype-phenotype association, apply instrumental inequality tests and the
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use of multiple instruments to conduct overidentification tests (overidentification is

when there are more instruments than endogenous variables). Using heterogeneity

in a meta-analysis is a summarised data version of the overidentification test [115].

However, Burgess and Thompson [42] and Palmer et al. [219] have found counter

examples to the Glymour et al. [113] approaches, and concluded that the validity

of these assumptions must be supported by biological knowledge and not just by

empirical tests. Others have proposed biological guidelines based on Bradford Hill

criteria [136] to test the plausibility of IV assumptions [54].

2.5.3 Weak genotype-phenotype associations

The genotype-phenotype associations are usually weak in the sense that only a

small proportion of the phenotype is explained by the genetic variant and does not

provide enough statistical evidence for the association with the phenotype [182].

For example, in the GWAS of Horikoshi et al. [143], the genetic variants that are

significantly associated with birth weight, each explained below 2% of the variance

in birth weight. This weak association causes two main statistical problems in the

estimation of causal effects; weak instrument and finite sample bias, and a lack of

power to reject the null hypothesis of no causal effect between X and Y.

Weak instrument and finite sample bias

The magnitude of bias depends on both sample size and variability in phenotype

that is explained by the instrument [257]. IV estimators are asymptotically unbiased

but biased in finite samples. The strength of a instrument, or set of instruments, is

defined by the F-statistics from the association between instrument(s) and exposure

of interest ;

F =
R2(n− 1− k)

(1−R2)k
(2.2)

where R2 is the proportion of the variability in phenotype that is explained by the

genotype(s), n is the size of the sample and k is the number of genetic instrument(s).

Staiger and Stock [253] suggest that F-statistics of less than 10 will cause weak in-

strument bias. However, this definition is misleading, as the term ”weak instrument

bias” seems to suggest that there is a lack of statistical evidence from the instrument

but an instrument can be made stronger by increasing the sample size, as shown

by Equation 2.2. The bias of 2SLS to the ordinary least squares (OLS) estimator,
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referred to as relative bias, is

bias in 2SLS

bias in OLS
=
σx̂,ε/σx,ε
R2
x,z

(2.3)

where σi,j is the covariance of i and j, x̂ is predicted X by instrument Z and ε is

error including the confounding effect. Therefore, as variation explained by Z (R2
x,z)

decreases, the relative bias will increase. Finite sample bias comes from the OLS

in the first-stage regression to estimate the coefficient of X on Z. In finite samples,

the non-zero correlation between error and instrument is less certain, which creates

uncertainty into predicting X and in turn biases the causal effect estimate [29].

True
βxy

(a) Small R2 and sample size

True
βxy

(b) Larger R2 and small sample size

True
βxy

(c) Larger sample size and small R2

True
βxy

(d) Larger sample size and R2

Figure 2.8: Illustration of weak instrument and finite sample bias

The effect of weak instrument and sample size are illustrated in Figure 2.8. Con-

sider datasets that have weak instruments (i.e. small R2) and small sample size,

then the distribution for the causal effect estimates take the shape of Figure 2.8a,

most of the datasets inaccurately estimate the causal effect, and variation is large

(i.e. uncertainty carried from first-stage regression). If the total variation explained

by the genetic instruments is increased but the sample size remains small, then esti-

mates will centre at the true causal effect but the variation is still large, Figure 2.8b.

Figure 2.8c shows more datasets will estimate the true causal effect with smaller

variation if sample size of each dataset is increased even where R2 is small. Increas-

ing both sample size and R2 in each dataset induces all datasets to estimate the

true causal effect, centred at true causal effect and smaller variation, Figure 2.8d.
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Statistical power

The weak association between genetic variant and exposure causes a test for a causal

effect to lack power. Pierce et al. [227] have performed simulation studies in order to

estimate the power for single and multiple instruments and Freeman et al. [105] have

given a formula to calculate power for a single genetic instrument and Brion et al.

[36] have given power calculations for multiple instruments. For a binary outcome,

power calculation is only available for a single instrument [41]. All of these power

calculations demonstrate that power is heavily dependent on sample size, variation

explained by the genetic instrument and the effect size between X and Y. Figures 8.1

and 8.2 in Burgess and Thompson [45] are the power curves of these relationships.

2.5.4 Improving instrument strength

Weak instrument bias and low power in a single instrument can be resolved by having

a large sample size. Davey Smith and Ebrahim [79] have advised performing sample

size calculations before embarking on a Mendelian randomisation study. However,

obtaining a large sample size is not always realistic, due to the expense. Instead,

information can be borrowed from other studies, Thompson et al. [266] have pro-

posed combining multiple genotype-phenotype and genotype-outcome associations

to estimate the causal effect from a single genetic instrument via meta-analysis and

other methods of borrowing information from other studies have been proposed.

(See Section 2.5.1)

A commonly used approach is to include multiple instruments to increase power

and precision [220]. However, this would not necessarily remove weak instrument

bias [227] as seen in Equation 2.2; as k increases, the F-statistic decreases. Thus,

this is known as many weak instruments bias. Achieving both unbiased and well-

powered estimates of causal effects with multiple instruments, will depend on the

additional variance in risk factor explained by each instrument i.e. each instrument

included in the first stage regression must contribute to the overall R2. For the

estimation of causal effect with many weak instruments, LIML is recommended as

it is median unbiased [85]. Instead of implementing LIML to reduce weak instrument

bias, multiple SNPs can be combined into a single instrument [44], a procedure more

commonly known in Mendelian randomisation as allele scoring. This method has

also been found to increase power [227].
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2.6 Review of multiple dependent instruments

Th objective of this section is to describe Mendelian randomisation studies that

have used many dependent instruments within a genetic region. Recently, a review

of Mendelian randomisation studies between May 2005 and December 2013 was

published by Boef et al. [26]. Therefore, the same search and exclusion criteria

described in Boef et al. [26] will be adopted to update this review. After completing

the update, the next section will include studies that have more than one SNP from

a single genetic region as instruments, the information of the statistical method

implemented to estimate the causal effect and the type of instrument used in the

estimation will be extracted.

Figure 2.9: Summary of the literature search 2014-2016

596 Search hits

266 conference abstract and reviews

330 unique hits

Records excluded (n=159)

43 did not use MR

32 Review/educational/theoretical papers

26 Primary methodogical studies

24 Duplicates

19 Repeats from Boef et al. 2015

14 Studies investigating a potential instrument

1 conference abstract

171 eligible studies

2.6.1 Review of Mendelian randomisation studies

Employing the same search terms as Boef et al. [26] in EMBASE and restricting

publication between January 2014 to June 2016, returned 596 hits. Figure 2.9 gives

the summary of the updated literature search, 266 conference abstracts and review
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articles were removed by reading titles and abstracts. 159 records were removed

by following Boef et al. [26]’s exclusion criteria. In total, there were 171 and 179

eligible studies from the update and Boef et al. [26] respectively.

Table 2.2 gives the number of studies that had independent, dependent and single

instruments for the estimation of the causal effect in both Boef et al. [26] and the

update. Notice there are only 176 studies from Boef et al. [26] even though their

paper reported 179 eligible studies, as there was 1 study that had a non-genetic

instrument [17] and 2 studies that were review articles of Mendelian randomisation

[63, 91]. From both the published review and update there were 80 studies that

had multiple dependent instruments in the form of SNPs in a single genetic region,

approximately 23% of the total number of Mendelian randomisation studies. Even

though 40% of the studies had independent instruments, there are cases where the

genotypes of thousands of SNPs were available but only the most significant SNP

in the region was used [76, 86, 243, 306]. 4 of the studies with a single instrument

followed the same procedure [189, 221, 222, 265].

Table 2.2: Form of genetic instrument in Mendelian randomisation studies from
Boef et al. [26] and my update. The total number of studies is 346

Form of Genetic

Instrument(s)

Boef et al. [26] Update Total

Independent 47 91 138

Dependent 52 28 80

Single 77 52 129

2.6.2 Mendelian randomisation studies with dependent in-

struments

Tables 2.3 and 2.4 show the types of genetic instrument and statistical method

implemented in 80 studies. Some studies appear in both Tables as these studies

have used two types or methods within their analysis.

The types of genetic instrument included in Table 2.3 are as follows: multiple

SNPs analysed separately so each SNP has estimated their own causal effect; mul-

tiple SNPs included additively into the estimation model; multiple SNPs combined
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into a single instrument via genotype combination (or haplotype); weighted allele

scores; and unweighted allele scores. Most studies included the dependent instru-

ments additively into the estimator, without accounting for the correlation between

SNPs, Table 2.3. The next most popular procedure, used in 17 studies, was combin-

ing dependent SNPs into a single instrument via a weighted allele score, however 10

of the studies derived weights for the allele score from the same dataset under anal-

ysis [88, 110, 154, 166, 208, 209, 246, 277, 300, 302]. As mentioned in the Chapter 1

this form of weighting is subject to selection bias.

Table 2.4 shows that two-stage least squares (2SLS) is the most popular estimator

among studies with multiple dependent instruments. Genotype-outcome association

refers to methods that did not derive an effect size for the causal relationship, but

monitored the association between genotype that had been established to have an

effect on the exposure and outcome of interest. Cox proportional hazards model

are usually used in the context of survival analysis. There are a series of methods

called two-stage, which have the same procedure as 2SLS but instead of using linear

regression in both stage, logistic, cox model or mixed regression were implemented

in the second stage.

In comparison to Boef et al. [26], the findings in Mendelian randomisation studies

with dependent instruments are not similar. In terms of types of instruments, Boef

et al. [26] found that most studies with a single population used multiple SNPs in a

single analysis (11 out of 31 studies) and then allele score, not specified as weighted

or unweighted, was the next most popular type of instrument. For dependent instru-

ments, there are approximately the same number of studies that used allele score

and multiple SNPs in a single analyses. Genotype-outcome association, without

further estimation is the most popular statistical method in studies from Boef et al.

[26] and 2SLS is the next. Contrary to studies with dependent instruments, the

order is reversed, 2SLS is most popular.

2.7 Conclusion

Mendelian randomisation infers causality between exposure and outcome of interest

adjusting for unmeasured confounding, which observational epidemiology cannot.

Even though there is limited methodological development and lack of guidelines for

using SNPs from the same genetic region as instruments, 23% of the 346 Mendelian

randomisation studies have used instruments in this form. There are also studies
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that only used the most significant SNP among the many SNPs in a single gene

and exclude SNPs that are in LD with the lead SNP. The use of multiple dependent

SNPs from the same genetic region has the potential to increase power and precision

of the causal effect estimate [52, 283]. The next chapter will examine the estima-

tors for multiple dependent instruments but with individual-level datasets, where

information on genotypes, exposure and outcome of interest are available from each

participant.

Table 2.3: Type of instruments in Mendelian randomisation with dependent instru-
ments for single and multiple population (Pop.).

Type 1

Study

Pop.

Refs > 1

Study

Pop.

Refs

Multiple SNPs in separate

analyses

14 [1, 4, 27, 34, 75, 78,

103, 173, 180, 180,

188, 191, 275, 296]

3 [59, 101, 231]

Multiple SNPs in a single

analysis

26 [28, 35, 37, 38, 65, 73,

93, 109, 123, 134, 156,

157, 165, 170, 187,

199, 212, 255, 259,

271, 276, 278, 280,

291, 299, 308]

2 [72, 148]

Combination of SNPs 8 [156, 157, 173, 180,

236, 291–293]

0

Weighted allele score 17 [75, 88, 110, 154, 166,

179, 208, 211, 223,

246, 250, 277, 297,

298, 300, 302, 307]

2 [209, 269]

Unweighted allele score 10 [2, 37, 71, 176, 208,

208, 214, 268, 282,

303]

0
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Chapter 3

Statistical Approaches to

Mendelian Randomisation with

Multiple Dependent Instruments

3.1 Introduction

The review of Mendelian randomisation studies in the previous chapter has shown

that dependent instruments are widely used, although some studies only use the

most significant SNP in the region. However, there is a lack of methodological

development and few guidelines to using many dependent SNPs as instruments. As

discussed in Chapter 1, there is evidence that having multiple SNPs in a single region

can explain more of the variation in the exposure, than a single most significant SNP.

Therefore, the aim of this chapter is to review the potential estimators for multiple

dependent instruments in Mendelian randomisation. I will only focus on the most

widely used estimators examined by Davies et al. [85], in their study of estimators

for many weak independent instruments. The main focus of this chapter is the

statistical method for many instruments with individual-level data, for other and

the general discussion of approaches in Mendelian randomisation see Section 2.5.1

and Burgess et al. [53] for details.
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RANDOMISATION WITH MULTIPLE DEPENDENT INSTRUMENTS

3.2 Instrumental variable analysis

Much of the development of the theory of Mendelian randomisation estimators is

reported in the econometrics literature, so, before introducing these instrumental

variable estimators, the next section will give the definitions of econometric terms

and equivalent terms in epidemiology, and present an example to explain some of

the terms in detail.

3.2.1 Econometric Terminology

The definitions in Table 3.1 come from Wooldridge [295].

Table 3.1: A Glossary for econometrics with equivalent epidemiological terms

Econometrics

term

Epidemiological

term

Definition

Endogenous

explanatory

variables

Confounded

explanatory

variables

a variable in a multiple regression that is corre-

lated with the error term, caused by unmeasured

confounding or measurement error.

Exogenous

explanatory

variables

Unconfounded

explanatory

variables

a variable that is uncorrelated with the error term.

Error term / dis-

turbance

random error The variable in regression equation that contains

unobserved factors that affect the dependent vari-

ables, which may also include measurement error.

Error in vari-

ables

measurement er-

ror

situation where a dependent or an independent

variable is measured with error.

Instrument rele-

vance

Assumption 1 an instrument must be relevant for explaining the

variation in X.

Concentration

parameter

- is a measure of the magnitude of the instrument

relevance.

Exclusion re-

strictions

Assumption 2

and 3

an instrumental variable does not have a direct

effect on the outcome and is not associated with

the error.

Structural Equa-

tion

- the equation that measures a causal relationship.

See example below.
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Reduced form

equation

- a linear equation where an endogenous variable is

a function of exogenous variables and error terms.

See example below.

An example

Consider this equation;

X = α0 + α1Z1 + α2U + εx

Y = β0 + β1X + β2U + εy

where X is the exposure, Y the outcome, Z1 the instrument, U the unmeasured

confounding effect, and εx and εy are the random error for X and Y respectively. As

confounding is unmeasured, this equation can be re-parametrised into the struc-

tural form,

X = α0 + α1Z1 + ex

Y = β0 + β1X + ey

The structural form in econometrics is usually referred to as the equation that mea-

sures a causal relationship. ex and ey are now the error term for both confounding

and random effect, and are correlated. In econometrics, X is known as the endoge-

nous variable, as it is correlated to the error term from the two equations’ joint

dependence on U. Whereas, Z1 is an exogenous variable, independent of the error

term, as it is generated externally from the two equations.

We can substitute X into the second equation to give the reduced form,

X = α0 + α1Z1 + ex

Y = β0 + β1(α0 + α1Z1 + ex) + ey

As coefficients of Z1 has been structured into α1 and α1β1, this parametrisation is

known as restricted reduced form. The equations could be written as,

X = α0 + α1Z1 + ex

Y = β0 + β1α0 + φZ1 + β1ex + ey
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where φ is not restricted to equal to α1β1, this equation is therefore known as the

unrestricted reduced form.

3.2.2 Generalised Method of Moments

Suppose that we have a model with one outcome (Y), L continuous exposures (X),

J instrumental variables (Z) and i denotes the individual and n is the sample size;

Yi = X ′iβ + eyi, (3.1)

where Yi is a scalar, Xi is L × 1 vector of exposures, β is also L × 1 vector of the

regression coefficient and eyi is the error term as a scalar. For an unbiased estimator

of the causal effect, the generalised method of moments (GMM) estimator must

satisfy the population moment conditions

E[gi(β)] = E[Zi(Yi −X ′iβ)] = 0. (3.2)

where the Zi is J × 1 vector of instruments and J ≥ L. i.e. each instrument must

satisfy this condition. This is a necessary condition, if J < L, the single structural

equation cannot be identified, the equation is known as unidentified in econometrics

[294]. As part of the IV assumptions, each instrument Zi must be independent of

error term (Yi−X ′iβ), hence the expected association between instrument and error

term must equal to 0, Equation 3.2. First consider the case where J = L, then we

can solve

β̂ = D−1s (3.3)

where D = n−1
∑n

i=1 ZiX
′
i and s = n−1

∑n
i=1 ZiYi. In full matrix notation, β̂ =

(Z ′X)−1Z ′Y , which is the Wald estimator seen in Section 2.5.1. However, for J > L,

there might not be a solution that satisfies Equation 3.2. Instead, the estimator aims

to derive a β that gives the minimum criterion function Q(β). The general form of

GMM criterion function is

β̂ = argmin
β
Q(β) (3.4)

Q(β) = ḡ(β)′Wḡ(β), (3.5)
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where ḡ(β) = n−1
∑n

i=1 gi(β) = n−1
∑n

i=1 Zi(Yi−X ′iβ) and W is a weight matrix,

this is customised for different GMM estimators. The solution to minimum criteria

function is not always unique.

Two-stage least squares

Two-stage least squares (2SLS) is a special case of GMM. 2SLS has weighting matrix,

Wz = (n−1
∑n

i=1 ZiZ
′
i)
−1. Provided the inverse exists, then the GMM criterion

function for 2SLS becomes

β̂2SLS = argmin
β
Q2SLS(β) (3.6)

Q2SLS(β) = ḡ(β)′Wzḡ(β), (3.7)

Setting ḡ(β)′Wzḡ(β) to zero and rearrange terms gives

β̂2SLS = (D′WzD)−1DWzs, (3.8)

where D = n−1
∑n

i=1 ZiX
′
i and s = n−1

∑n
i=1 ZiYi. The 2SLS estimator is ef-

ficient if the population moment conditions are satisfied and when the variance of

eyi from each instrument is the same, i.e. E[e2yi|Zi] = σ2, condition known as ho-

moskedasticity.

Two-step GMM

The difference between two-step GMM and 2SLS is the weighting that is put on

g(β), two-step GMM derives its weighting from the residual of 2SLS, i.e. weighted

by how well the 2SLS estimate predicts Y. As shown by the minimising function

QGMM and weighting matrix WGMM ;

QGMM(β) = ḡ(β)′WGMM ḡ(β), (3.9)

WGMM = (n−1
n∑
i=1

gi(β2SLS)gi(β2SLS)′)−1 (3.10)

where gi(β2SLS) =
∑n

i=1 Zi(Yi −X ′iβ2SLS). Wz = WGMM when E[e2yi|Zi] = σ2 [207],

hence two-step GMM and 2SLS will give the same causal estimate if condition of

homoskedasticity is satisfied.
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Continuously updating estimator

The continuously updating estimator (CUE) has a similar algorithm to two-step

GMM but it is more of an iterative approach. The process begins with a random β

with identity matrix as weights. Then, with a new β, CUE re-calculate the weights

from the previous β for the current and continues until the estimates converge.

QCUE(β) = ḡ(β)′WCUE ḡ(β), (3.11)

WCUE = (n−1
n∑
i=1

gi(β)gi(β)′)−1 (3.12)

where gi(β) =
∑n

i=1 Zi(Yi−X ′iβ). As CUE is an iterative process and as mentioned

above the GMM criterion function does not always have an unique solution, which

causes CUE not able to converge in some cases.

3.2.3 Limited Information maximum likelihood

LIML is also known as least variance ratio estimator. LIML is constructed for each

equation individually which is similar to least squares; generating one equation at a

time. Least squares estimation does not assume any distribution for the error terms,

whereas LIML assumes the error to have a normal distribution. LIML has the same

asymptotic distribution as 2SLS, this means that with large enough sample size the

two estimators will give the same answers. The LIML estimate is equivalent to

minimising this function;

QLIML(β) =
ḡ(β)′WLIMLḡ(β)

(σ(β))2
, (3.13)

WLIML = (n−1
n∑
i=1

ZiZ
′
i)
−1 (3.14)

where (σ(β))2 = n−1
∑n

i=1(Yi − X ′iβ)2. Under homoskedasticity, E[e2yi|Zi] = σ2,

QCUE = QLIML. Notice, the numerator of QLIML is the same as the minimising

function in 2SLS but the denominator is the variance of the OLS estimate.
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3.2.4 An illustration of the estimators

Design

Consider an example where there are two instruments Z1 and Z2, exposure (X),

outcome (Y), the confounding effect between X and Y (U) and random error for X

and Y, εx and εy respectively. The true causal effect between X and Y is 0.5, and

Z1 and Z2, each explain 2% of the variation in X.

To demonstrate the minimising functions and weighting algorithm of 2SLS, two-

step GMM, CUE and LIML, I have restricted the estimator to only find a solution

from β ranged between -5 and 5 in steps of 0.01. For each estimator, estimates for

g(β) from each SNP and their interaction will be calculated;

g1(β) = n−1
n∑
i=1

SNP1i(Yi −X ′iβ)

g2(β) = n−1
n∑
i=1

SNP2i(Yi −X ′iβ)

g12(β) = n−1
n∑
i=1

SNP1i(Yi −X ′iβ) ∗ n−1
n∑
i=1

SNP2i(Yi −X ′iβ)

For LIML, g(β) will be divided by residual of Y, n−1
∑n

i=1(Yi − X ′iβ)2. These

estimates are then combined and weighted according to each algorithm to give their

value of Q. As there are 2 instruments in this example the weighting matrix is a

square 2× 2 matrix (W ). Therefore Q is

Q(β) =
g1W [1, 1] + g2W [2, 2] + g12W [1, 2]

W [1, 1]W [2, 2]W [2, 1]

Note that the calculation of weighting for each estimator is as described in the

previous section.

Results

Figure 3.1 shows all of the algorithms go through different values of β to estimate

g(β) from Z1, Z2, interaction of Z1 and Z2 and final Q(β), which are the red, blue,

dotted and black lines respectively. The weighting matrix in 2SLS is the variance

and covariance for each instrument and their interactions. Two-step GMM weighs
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each variable based on residual of 2SLS estimate, i.e. weighted by how well 2SLS

predicts Y. CUE is an iterative process, it goes through different values of β and

re-calculates the weighting matrix base on the residual at every iteration, which

is repeated until the estimates converge. The weightings for LIML is exactly the

same as 2SLS but the estimate is divided by variance from the β in OLS regression.

Figure 3.1 demonstrates the similarity between 2SLS, two-step GMM and CUE as

they are based on moments equations. Whereas, Figure 3.1b is slightly different, as

Econometricians referred to as a Cauchy-type distribution.
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(c) Two-step GMM
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(d) CUE

Figure 3.1: Comparing minimising functions for 2SLS, two-step GMM, CUE and
LIML, where Z1 and Z2 each explained 2% of variation in X. The y-axis is the
distance from the minimum g(β) and x-axis range of β. Red, blue, dotted and black
lines is g1(β), g2(β), g12(β) and final Q(β) respectively. The horizontal lines are the
minimum g(β) for all the steps.
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In theory, the LIML algorithm has an advantage in the estimation of the causal

effect. As 2SLS with weak instruments is biased towards OLS then the ratio will

tend to 1, therefore LIML will minimise its function by ensuring the ratio does not

tend to 1. However, there are cases where LIML fails; in the presence of one weak

instrument, Figure 3.2b, the 2SLS moves closer to the OLS estimate, the curve of

g1(β) for Z1 (red line) becomes more cubic, this suggests there is a value of β that

will give large enough variation in OLS for QLIML ratio not to be 1. When there

is still one strong instrument, the bias in 2SLS is not large enough for LIML to

find a β to give large variation in OLS. Figure 3.2d show LIML does fail with weak

instruments, notice the Cauchy curve has turned upright for the final QLIML, the

bias is large from both instruments, showing disagreement in causal effect estimate

the minimum for g1(β) (red line) is the maximum for g2(β) (blue line). To ensure

QLIML ratio does not reach 1, LIML finds a β that gives large enough variation from

the OLS for the bias in 2SLS seem relatively small in comparison.
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(a) 2SLS with one weak instrument
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(b) LIML with one weak instrument
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(c) 2SLS with weak instruments
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(d) LIML with weak instruments

Figure 3.2: Comparing minimising functions for 2SLS and LIML, where for ”one
weak instrument” Z1 explains 2% of the variation in X and Z2 explains 0.1% and
”weak instruments” is Z1 and Z2 each explains 0.1% of variation in X. The y-axis is
the distance from the minimum g(β) and x-axis range of β. Red, blue, dotted and
black lines is g1(β), g2(β), g12(β) and final Q(β) respectively. The horizontal lines
are the minimum Q for all the steps

3.3 Literature review of IV estimators for many

weak instruments

The econometrics literature contains extensive research on weak instruments [29,

253] and on many instruments in instrumental variable analysis [24, 60]. The many

instruments literature considers instruments that are relatively strong in compari-

son to the weak instruments literature. In order to narrow down the vast number
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of approaches available from both areas, the literature review here will only focus

on approaches to ”many weak instruments” and find the instrumental variable es-

timator that is still consistent with many weak instruments. The literature search

was performed in Scopus database on May 2015, with keywords as ”instrumental

variables” and ”many weak instruments”. There were 24 articles from the search

hit, 3 conference papers and 1 paper that did not study the many weak instruments

problem were excluded, and 4 papers [44, 85, 227, 248] were based on Mendelian

randomisation which will be discussed in the next section.

Chao and Swanson [61] examined the consistency of 2SLS, LIML and the k-

class version of 2SLS (B2SLS, commonly known as the biased-corrected 2SLS [206]).

Their conclusions were; a robust estimator can improve the precision of point esti-

mation with a large number of weak instruments, and that LIML and B2SLS are still

consistent estimators even when the rate of growth in the strength of instruments

is slower than that of the number of instruments. Han and Phillips [126] published

the limiting distribution for GMM under many weak instruments and conducted a

simulation to compare unweighted, two-step GMM and CUE. They concluded that

the consistency of GMM estimation is dependent on the sample size, number and

strength of the moment conditions (i.e. strength of the instruments) and their sim-

ulation demonstrated that CUE gave the less biased and less variable IV estimates

compared to unweighted and two-step GMM. In the case of finite samples, Anderson

et al. [8] have found LIML to be more attractive than 2SLS, GMM and empirical

likelihood (EL) for many weak instruments.

In hypothesis testing, the t-test is the standard test for 2SLS, to check if there

is a significant difference between null and the estimated causal effect. However,

the t-test lacks power with weak instruments, this reason motivated Anderson and

Rubin [7], Kleibergen [168] and Moreira [202] to develop Anderson and Rubin (AR),

Lagrange multiplier (LM) and conditional likelihood ratio (CLR) tests respectively.

These are alternative testing procedures that are robust to the strength of the in-

struments. Andrews and Stock [11] found CLR test to be more powerful under many

weak instruments than AR or LM tests. Andrews et al. [12] wanted to investigate

whether the power from 2SLS, LIML, Fuller (modified version of LIML for weak

instruments) and B2SLS would improve on the Wald test, however they found that

the power of the CLR test is still superior. The conditioning on Wald and likelihood

ratio test was introduced by Moreira [202] as robust test statistics even with weak

instruments, where the critical value is dependent on the concentration parameter.
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It is well known among econometricians that 2SLS is biased with many instru-

ments, so LIML is commonly used to correct the bias. However LIML’s estimated

standard error is too small. Hansen et al. [128] derived a corrected standard error

(CSE), it is an extension to the method of moments which allows for non-Gaussian

distributions. Their results suggest that CSE would still make accurate approxima-

tions under many weak instruments.

Instead of assuming the asymptotic distribution of 2SLS is normal, Poskitt and

Skeels [229] have derived a multivariate-t approximation. They have provided dif-

ferent scenarios for different concentration coefficients and number of instruments.

One particular scenario was very similar to Staiger and Stock [253], where the con-

centration parameter remains fixed while the number of instruments increases with

sample size, they show that the multivariate-t approximation provides a less biased

estimate from 2SLS than the normal approximation. However, the authors have cau-

tioned that the investigators need to distinguish a large and a small concentration

parameter as the multivariate-t approximation is not appropriate for all cases.

Kapetanios and Marcellino [158, 159] have derived several modified versions of in-

strumental variables estimators, naming them cross-sectional averaging (CSA) 2SLS,

factor 2SLS and factor GMM. CSA is when the first-stage estimates are weighted

by 1/number of instruments. Factor estimators reduce a large number of instru-

mental variables to a smaller number using factor analysis. The authors claim that

with many weak instruments, CSA 2SLS performances better than standard 2SLS,

but factor 2SLS is worse, and the factor GMM is more effective than the standard

GMM. They have also suggested that pre-selection of instruments based on their

correlation with the endogenous variable, would further improve the efficiency of

their estimators.

LIML, B2SLS and 2SLS are inconsistent estimators under the condition of het-

eroscedasticity and many weak instruments. Hence the JIV (jackknife instrumental

variable) estimator has been suggested as an alternative Chao et al. [62]. Het-

eroscedasticity arises when the variance of the error term, given the explanatory

variable, is not constant. The JIV procedure uses the fitted value from ”delete one”

observation in the first-stage instead of the fitted value from OLS. Hausman et al.

[132] have developed LIML (HLIML) and Fuller versions of JIV (HFUL), where

their simulations suggested these estimators’ finite properties gave lower bias with

narrower confidence interval than LIML, Fuller, JIVE and CUE. Later, Kunitomo

[177] have theoretically and numerically proved that their estimation in finite sam-
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ple distribution is more accurate HLIML, their method is called asymptotic optimal

modification (AOM) LIML estimator. As the name suggests it modifies the asymp-

totic properties of LIML estimation for many weak instruments and heteroscedastic-

ity. In order to reduce the correlation between instrument and error term, Hansen

and Kozbur [127] applied ridge regression in the first-stage to shrink the coefficient

of the instruments and the jackknife algorithm. In a many instruments setting, this

method is able to effectively capture enough instruments to give an unbiased esti-

mate with a smaller variance, in comparison to 2SLS and JIVE. For cases where

heteroskedasticity is unknown, a symmetrical jackknife estimator can be used, it is

a jackknife version of GMM developed by Bekker and Crudu [25].

3.3.1 Conclusion from the review

From the many approaches in econometrics, LIML has been identified as the most

efficient estimator [61] with many weak instruments, even though there are multiple

extensions. Greene [116] summarised two reasons that the maximum likelihood ap-

proach is more efficient than the least squares approach with many weak instruments;

the finite sample distribution of LIML means that the estimation is less sensitive to

weak instruments and LIML is invariant to normalisation of the equation.

The tail behaviour of finite sample distribution of β̂LIML does not depend on the

degree of over-identification (d=k-m+1, where k is number of instruments and m is

number of endogenous variables), β̂LIML has Cauchy-type tails (see Figure 3.1b) and

has no finite moments. Therefore, the finite sample density of β̂LIML is much less

sensitive to the addition of superfluous instruments. Note, that if strong instruments

do not give the true causal effect estimate then weaker instruments would not be

able to correct the estimation.

The invariance property, is a mathematical result, which enables LIML to substi-

tute and exclude parameters out of the equation to then only maximise the likelihood

of β. For example, a parameter can appear in the likelihood function as 1/θj, to

simplify, the model can be re-parametrised in terms of γj = 1/θj. See Greene [116]

for more detailed explanation.

However, LIML assumes the errors to have a normal distribution. Therefore

when the condition of homoskedasticity is not satisfied, LIML is a biased estimator

of the causal effect [207]. In contrast, the least squares method does not assume any

distribution on the error term. In addition, LIML has been proved to be a biased

estimator of the causal effect with weak instruments [124].
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3.4 Literature review of Mendelian randomisation

with multiple instruments in individual-level

data

Multiple instruments have been proposed as a solution to weak instrument bias and

low power caused by the weak association between genotype and exposure [220, 227].

Lawlor et al. [182] and Pierce et al. [227] stated that for multiple instruments and

continuous outcomes, two-stage least squares (2SLS) is one of the simplest and

popular algorithms used to estimate the causal effects. This is evident from most

of the existing simulation studies designed for multiple instruments [43, 47, 48,

220, 227] and a recent review of Mendelian randomisation studies [26]. As the

name suggests, there are two stages to this method; first stage, regress X on the

instrument(s). Second stage, regress Y on the predicted X from the first stage. If

the three assumptions (Section 2.3), then predicting X from the genetic instruments

is free from the effects of the confounder and consequently the variation in the second

stage, Y is only explained by the unconfounded X.

One of the major limitations to using multiple instruments in 2SLS is many weak

instruments bias. The first example of this problem was found in a study of effects

of length of schooling on wages. Angrist and Krueger [13] used with season of birth

as an instrument to begin with. However this instrument only explained 0.012% of

the variation in length of school. Therefore they included the interaction of length

of schooling and year of birth, and the 180 instruments explained 0.043% of the

variation and standard error was decreased by a half. Bound et al. [29] and Hansen

et al. [128] have found including multiple instruments decreases the standard error,

but at the price of bias, as the 2SLS estimator is biased towards the ordinary least

squares (OLS) estimate.

To decrease the weak instrument bias in 2SLS, Pierce et al. [227] have pro-

posed combining the allele scores of the multiple genetic instruments into a single

instrument, where the weights are determined by the magnitude of association be-

tween the genetic variants and X. However, the weights of the allele score must be

pre-determined before analysing the current dataset and the estimate can still be

severely biased if the variants included in the allele scores are not valid instruments

[49]. The allele score could be unweighted, but then an unweighted allele score will

have lower power than estimating with multiple instruments [220].
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The limited information maximum likelihood (LIML) [22], the generalised method

of moments (GMM) [83] and the continuously updating estimator (CUE) [128] have

been suggested by Davies et al. [85] as alternative algorithms to avoid many weak

instruments bias. Burgess et al. [53] have also published a review of these estimators.

Burgess et al. [48] suggested a modified version of LIML for multiple instruments

[124]. Burgess et al. [47] designed a Bayesian approach to Mendelian randomisa-

tion with multiple instruments, which claims to be similar to 2SLS, but offers more

flexibility in model assumption, e.g. not limited to assumptions of linearity and nor-

mality. For the situation when the instrument is weak or the sample size is small,

Jones et al. [153] have devised a Bayesian approach to Mendelian randomisation with

the use of an informative prior, where the method incorporates current knowledge,

see Chapter 8.

3.5 Conclusion

This chapter has given a description and reviews of the instrumental variable esti-

mators for many weak instruments. Even though 2SLS is the most popular method

used in Mendelian randomisation studies [26], 2SLS is severely biased with many

weak instruments. The econometrics and Mendelian randomisation literatures both

agree that LIML is the most efficient estimator with many weak instruments. The

open question is whether the same conclusion can be reached with many dependent

instruments. The answer to this question will be delayed to Chapter 7. The next

chapter will first describe the simulation method for this thesis.
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Chapter 4

The Simulation of Mendelian

Randomisation with Dependent

Instruments

4.1 Introduction

Before beginning with the simulation studies for Mendelian randomisation with

many dependent instruments, this chapter will describe the simulation methods

and issues to consider when designing simulation studies. A dataset for Mendelian

randomisation usually consists of the genotypes of single-nucleotide polymorphism

(SNPs) as potential instruments, a risk factor (X) and an outcome of interest (Y).

In this thesis, I am interested in assessing the instruments that are correlated with

each other. In genetic terms, the SNPs are in linkage disequilibrium (LD) with each

other. Furthermore, I will concentrate on the case where only one or two of the

SNP(s) is the functional variant(s) for X, thus the other SNPs are associated with

X through their correlation with the functional variant(s).

In order to monitor the effect of different LD patterns and minor allele frequency

(MAF) on the performance of the estimators, the first section will give the simu-

lation method I have designed to control the SNPs’ correlation with the functional

variant(s) and MAF. For more random LD patterns and MAF to reflect realistic

genome, the implementation of a human genome simulator will be introduced. The

next section will give the procedure of simulating the relationship between the func-

tional variant(s), X and Y. These simulation methods may have some minor changes

depending on the scenarios in the following chapters, which will be reported in the

70



CHAPTER 4. THE SIMULATION OF MENDELIAN RANDOMISATION
WITH DEPENDENT INSTRUMENTS

relevant design section.

A list of evaluation criteria will also be given, that are to be utilised as tools

to assess the performance of the estimators. Finally, to ensure the efficiency of the

simulation study, the number of simulations required to provide sufficient accuracy

level from each of the evaluation criteria will be calculated. The consideration of

these issues for designing simulation studies were based on the guidelines by Burton

et al. [56].

4.2 The Genotypes

This section will first describe my method of simulating SNPs in order to control

their minor allele frequency (MAF) and the linkage disequilibrium (LD) between

them. The LD of the two SNPs is measured by the square of Pearson correlation

coefficient (r2) [137]. The second part will describe a human genome simulator which

simulates more realistic LD patterns in comparison to my algorithm.

4.2.1 Genotype of two SNPs

For the haplotypes of each SNP, the presence of the minor allele will be coded

as 0 and 1. 10,000 haplotypes will be simulated to generate the genotype. The

genotype of each individual is the combination of a pair of haplotypes, i.e. the

parent haplotypes. Hence, an individual’s SNP genotype will be coded 0,1 or 2 for

the presence of the minor allele. The following steps will be taken to simulate the

genotypes of 2 SNPs for n individuals;

1. For SNPc and SNP1 to be in LD for the desired r2, MAF of SNPc and

SNP1, fc and f1 respectively. F , the proportion of haplotypes which SNPci

and SNP1i both equal 1, where i = 1 . . . 10, 000, can be derived from below;

r2 =
(F − fcf1)2

fc(1− fc)f1(1− f1)
(4.1)

Note, when r2 = 0 means there is no correlation between the two SNPs and

r2 = 1 is perfect correlation (i.e. the two SNPs are completely identical).

2. With f1, fc and F , the coding of 0 and 1 in SNPc and SNP1 will follow the

proportions in the table below;
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SNP1

0 1

SNPc
0 1− f1 − fc + F f1 − F 1− fc
1 fc − F F fc

1− f1 f1

There is 1−f1−fc+F proportion of haplotypes where SNPci = 0 and SNP1i =

0 at the ith sample and F proportion of haplotypes in which SNPci = 1 and

SNP1i = 1. There is a constraint on F ; F < min(fc, f1), since different

combinations of MAFs and r2 are not always possible. For example if fc = 0.5,

f1 = 0.1 and the desired r2 between the SNPs is 0.9, then, from Equation 4.1

F is equal to 0.19, which is not possible for SNP1, as it only has 0.1 proportion

of 1s and F requires both SNP1 and SNPc to equal to 1 at the same haplotype

positions.

3. One randomly selected set of haplotypes of 2 SNPs is added to another set,

to make the genotypes of 2 SNPs for an individual. In other words for 1 SNP,

if the pair of haplotypes both coded 1 than the genotype of an individual will

be coded 2 and if pair of haplotypes are both 0 than an individual’s genotype

will be 0.

4. Step 5 is repeated until there are genotypes of 2 SNPs for n individuals.

4.2.2 Genotype of multiple SNPs

The simulation above is only capable of generating two SNPs at a time, thus a

more efficient method to simulate multiple SNPs in LD is required. As we can not

be certain of the identity of the functional variant, the following simulations will

examine the situation where the functional variant was not measured and for a SNP

to be unmeasured it is usually because it is rare within the population.

A Scopus search at January 2015 for papers describing studies that had used

simulation was based on the keywords ”genome-wide association”, ”linkage disequi-

librium”, ”simulation” and ”rare variants” and it identifies 78 studies. 67 papers

were excluded as they did not have a description of their simulation method for

genotypes. 8 out of 11 studies cited either (or both) Basu and Pan [21] and Wang

and Elston [284]. There were 3 studies with original simulation methods for multiple
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SNPs in LD [21, 183, 285]. They have all used a multivariate normal distribution

to generate correlated latent variables and transform them into haplotypes of SNPs

in LD by applying the specified MAF of each SNP. This procedure will be adopted

in my simulation of multiple SNPs in LD.

Now I will demonstrate how to simulate different genetic patterns for multiple

SNPs by specifying LD with the functional variant(s), SNPc. The functional variant

is defined as having a direct effect on exposure (X), which is described in Section 4.3.

The suggestion of multivariate normal distribution for all the SNPs from Wang and

Elston [284] requires values in the correlation matrix to be positive definite, this can

be difficult for specific LD pattern. In other words, it would be difficult to have the

correlations between the SNPs and causal SNP set at specific values that also give

positive definite values for the correlation between non-causal SNPs. Apart from

the use of the multivariate distribution, the rest of the simulation method will follow

Wang and Elston [284].

Patterns I, II and III will assume there is only one functional variant and its

genetic position is in the middle of all the SNPs. Pattern IV will have two causal

SNPs, but these are also positioned in the middle of their region of SNPs. In order

to control the MAF and correlation structure between SNPs, the LD patterns are

simplified here and may not be representative of the real data. However, realistic

LD patterns will be produce by utilising GENOME simulator [185], the detailed

description will be postponed to the next section. Finally, these SNPs are coded

into 0, 1 and 2 for the presence of the minor allele according to their MAF.

Before the description of the simulation of multiple genotypes, first several pa-

rameters must be defined, apart from which genetic pattern to produce;

k is the number of instruments,

n is the number of individuals,

ρmax is the maximum correlation (or LD) with SNPc a SNP can have,

f is the MAF of the SNPs.

It is important to note, Zi and Zc in ”Specifying linkage disequilibrium” are latent

variables and will be changed into the genotypes of SNPi and SNPc respectively in

the following section ”Specifying minor allele frequency”, where i = 1 . . . k.
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Specifying linkage disequilibrium

1. Randomly generate n values of Zc from a Normal distribution ∼ (0, 1).

2. The following equation derives the correlation (ρ) between a SNP and the

causal SNP, ρ of a SNP will be determined by its proximity to the causal SNP,

i.e. the further away they are the weaker their correlation with the causal SNP

will be;

ρi = ρmax(1− 2
|i− c|
k

) (4.2)

where position i = 1 . . . k and c is the position of the causal SNP among k

SNPs.

Four different correlation patterns will be simulated for most of the chapters;

Pattern I, III and IV will have ρmax of 0.9 and Pattern II have 0.5. Pattern III

is designed to produce a haplotype block within the region, hence Equation 4.2

is conditioned if ρi > 0.5 then ρi will be modified to ρmax. Pattern IV splits

the SNPs into two group (k/2) for two causal SNPs. The SNPs in each group

obtain their correlations through Equation 4.2 according to the position of

their causal SNP, c1 and c2.

3. Simulate Zi using ρi and Zc

Zi =
ρiZc + (1− ρi)ε√

(ρ2i + (1− ρi)2)
(4.3)

where ε is the residue of SNPi after the correlation with SNPc, in which

there are n number of ε with N(0, 1). See Appendix A.1 for the derivation of

Equation 4.3.

Specifying minor allele frequency

1. Sort the values of Zc. Find Zcj at position (1−fc)2 and f 2
c , where j = 1, . . . , n.

Labelling these values as a and b accordingly.

2. Then the genotype of SNPcj is coded as 0 when Zcj < a, 1 when a < Zcj < b

and 2 when Zcj > b.

3. Repeat step 1 and 2 to obtain the genotype of k number of SNPi from Zi.
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4.2.3 GENOME

The previous simulation methods for SNP genotypes, the amount of LD was depen-

dent on their physical proximity from the causal SNP. However, the pattern of LD

is also affected by other factors, such as natural selection, genetic drift, mutation

and population subdivision [251]. Thus, a simulator for more realistic LD pattern

between the SNPs will be required.

In January 2015 Genetic Epidemiology published a special issue on the simulation

of genetic data, which included an overview of genetic data simulation by Peng et al.

[226]. This review summarised 93 simulators and described a website, called the

genetic simulation resource (GSR). The website tailors individual requirements by

including different options and compares the resulting simulators.

The aim was to simulate haplotypes of the SNPs to monitor their MAF and LD,

therefore I have selected the following options in the GSR website;

• Target: Type of simulated data: Haploid DNA sequence

• Output: Data type: Linkage disequilibrium

• Evolutionary Features: Recombination: Varying recombination rates

• Interface: Command-line and script based

• Development: Tested Platforms: Window

• Development: Language: R

As a result of these options, 3 simulators were suggested; GENOME, SimuPop

and QMsim. GENOME [185] was chosen as the most suitable simulator, its LD

was scaled by the genetic distance which is similar to my simulation method and

user friendly. SimuPop [225] requires implementation in Python. QMsim [245]

was designed to imitate genetic data from livestock, whereas the objective of my

simulation study is to focus on the human genome.

GENOME [185] applies the coalescent-based approach to simulate genome data,

where the approach follows the Wright-Fisher neutral model. The Wright-Fisher

model is a stochastic evolutionary model where it takes account of mutation, selec-

tion, geographical factors, changes in population size, and so on [99]. The standard

coalescent-based approach simulates genealogical events backward in time [164],

thus GENOME is a backward-time simulator. The simulator starts off with a sam-

ple of sequences and simulated generations backwards until one common ancestor is
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reached. The backward algorithm is conditional on population size, recombination

rates and migration between subpopulations. Since GENOME simulates every gen-

eration, it is able to incorporate features such as multiple populations, population

stratification and geographic relationships between subpopulations. The inclusion

of these parameters is an advantage, as these parameters are only usually seen in

forward-time simulators, which are computationally less efficient than backward-

time simulators.

Implementation of GENOME simulator

This subsection begins with the options in GENOME that is relevant to my simu-

lation aim, then the steps of generating the genotype data from GENOME;

-pop gives the number of sub-populations and size of sub-samples, -pop 1 10000

extracts 10,000 haplotypes from one population.

-pieces specifies the number of fragments per independent region (chromosome).

This controls the number of recombinations that occur within a region.

-len specifies the length in base pair(bp) per fragment. The product of -len and

-pieces gives the total length in bp of a whole independent region.

-s fixes the number of SNPs per independent region.

The default of GENOME is to simulate one independent region, which represents one

chromosome and therefore is simulated independently from one region to another.

It is important to note GENOME does allow for options to control MAF and the

proportion of SNPs with specified MAF but this only controls the data output and

does not have an effect on the mechanism of the simulator. For detailed instructions

and other options in GENOME, see Liang et al. [185].

The following steps are to create haplotype of SNPs from an averaged length

protein-coding gene (53.6 × 103bp) with 200 SNPs and 5 recombination points;

an average length gene should have approximately 200 SNPs [258]. Recombination

usually occurs between haplotype blocks and the average length of a haplotype block

is 1000bp for European population [108]. Then the GENOME simulated haplotypes

will be transformed into genotypes;

1. The GENOME command-line for simulating 10,000 haplotypes of 200 SNPs

from an average length gene;
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genome -pop 1 10000 -pieces 5 -s 200 -len 10000

The combination of -pieces 5 and -len 10000 induces GENOME to simulate

gene length of 5× 104bp.

2. GENOME codes presence of an allele as 0 and 1, the MAF of each SNP is

therefore the mean of the 10,000 haplotypes.

3. The pearson correlation coefficients (r2) [137] between the SNPs are obtained;

r2 =
(F − fifj)2

fi(1− fi)fj(1− fj)
(4.4)

where fi and fj are the MAF of ith and jth SNP. F is the proportion of

haplotypes of the ith and jth SNP both having 1.

4. 2 out of the 10,000 haplotypes are randomly selected and combined to make

the genotype of 200 SNPs for one subject.

5. Step 4 is repeated until there are genotypes of 200 SNPs for n subjects, where

n is number of individuals.

4.3 The Exposure and Outcome of Interest

The aim will be to simulate realistic parameter values for exposure (X) and outcome

of interest (Y). I have taken as my example the relationship between birth weight

and fasting glucose as a simulation model. In 1991, Hales et al. [125] have found

type II diabetes in adulthood is associated with low birth weight, and have hypoth-

esized that impaired development of β cell function is a consequence of intrauterine

malnutrition which causes type II diabetes in the individual when their diet becomes

nutritionally rich in later life. However, recent meta-analysis of GWAS have proven

‘the fetal insulin hypothesis’ [145], where the hypothesis states that the association

between low birth weight and the increased risk of type II diabetes are mediated by

genetic factors [131]. The inspiration came from the most recently published GWAS

2013 [143], where most of the significant SNPs explained up to 2% of the variation in

birth weight. The population distribution of birth weight and fasting glucose were

obtained from the summary statistics of the Office for National Statistics and the

Whitehall II cohort study [97] respectively.
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4.3.1 One causal variant

Each simulated dataset consists of the genotype of a causal SNP (SNPc), risk factor

(X), disease outcome (Y), and unmeasured confounding (U). The causal SNP will

explain 2% of the variation in X. X will explain 6% of the variation in Y. The X

and Y will have distribution of N(3.3, 0.592) and N(5.47, 1.322) respectively. U was

drawn randomly from distribution N(0, 1), this will be the unmeasured confounding

affecting both X and Y. The following equation describes the relationship between

SNPc, X, Y and U;

Xi = α0 + α1SNPci + α2Ui + εxi (4.5)

Yi = β0 + β1Xi + β2Ui + εyi (4.6)

where εx and εy are independent random errors with distributions of N(0, 1), i =

1, . . . , n and n is number of individuals.

The βs and αs were derived empirically through the definition of variance, since

we know the variance explained (R2) and the variance of SNPc, X and Y. The

variance of SNPc is simply 2fc(1−fc), where fc is the MAF of SNPc. For example;

α2
1 = R2

c

V ar(X)

V ar(SNPc)
(4.7)

R2
c is 2%, as SNPc explains 2% of the variation in X. The remaining 98% from X

will be split equally between U and ε and their coefficient is calculated in a similar

fashion as for SNPc. The coefficient for the linear regression of Y will have the

same derivation as X, where the derivation will start with X explaining 6% of the

variation in Y;

β2
1 = R2

x

V ar(Y )

V ar(X)
(4.8)

The true coefficient of β1 will differ between chapters, however this will not affect

the estimation of causal effect, as the variation in Y explained by X will remain the

same [227].

4.3.2 Two causal variants

For the simulation of two causal SNPs, SNPc1 and SNPc2, known as Pattern IV in

Section 4.2, is similar to the method above but with slight changes to the equation
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of X;

Xi = α0 + α1SNPc1i + α2SNPc2i + α3Ui + εxi (4.9)

where each causal SNP will explain 1% of the variation in X. The derivation of α

coefficients will be the same as above.

4.4 Evaluation Criteria

The purpose of these simulations is to evaluate the performance and the precision

of estimators in different scenarios. The causal effect estimate (β̂1), its standard

error and p-value will be stored after each replication of the simulated data. The

summary statistics and evaluation criteria will be calculated from B simulations.

The summary statistics will include mean and median of β̂1 (
¯̂
β1 and

ˇ̂
β1), standard

deviation of β̂1 (σ) and standard error of β̂1 (σ/
√
B). As recommended by Burton

et al. [56], the following evaluation criteria will be monitored;

Bias

Bias will be derived from the difference between the mean estimates and the true

value β1,
¯̂
β1 − β1. The median bias will also calculated.

Root Mean Squared Error

Root Mean Squared Error (RMSE) measures the overall accuracy by merging bias

and variability together;

√
1

B

∑B
i=1(β̂1i − β1)2.

Coverage

Coverage is the percentage of simulations that had the true β1 within the confidence

interval of β̂1. The coverage should reach approximately 95% (the nominal coverage

level).

Power and Type I error

Type I error is the proportion of simulations that rejected the null hypothesis of no

effect (p-value < 0.05), when the null hypothesis is true. Power is the probability

of not committing type II error (failure to reject the false null hypothesis) and the

target power is often taken to be 0.8. Power will be calculated by the proportion
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of β̂1 that had a p-value< 0.05. To ensure the validity of 0.05 critical threshold,

5% significance level, the empirical type I error will be obtained from a separate

simulation.

Outliers

The causal effect estimates from limited information maximum likelihood (LIML)

and continuously updating estimator (CUE) are well known to have occasional ex-

treme outliers in the presence of many weak instruments [61, 207]. However, moni-

toring outliers was not within the guidelines of Burton et al. [56]. Thus to compare

the performance of LIML and CUE without the effect of outliers, bias and RMSE

will be winsorised and the percentage of outliers will also be reported.

Winsorisation is a transformation that reduces the effect of possibly spurious

outliers by limiting extreme values in the data [289]. Winsorisation

1. orders the β̂1 from B number of simulations,

2. finds the 20th and 80th value within the ordered list, and

3. Any β̂1 that is smaller than the 20th will be set equal to the 20th value and

β̂1 greater than the 80th value will changed to the 80th value.

The 60% threshold has been advised by Wilcox [289] in their review of the

different thresholds.

The percentage of outliers, the definition of an outlier will be the same as for box

plots, i.e. β̂1 will be labelled as an outlier when it is smaller or greater than median

∓1.5× IQR, where the interquartile range (IQR) is the 75th minus the 25th value.

4.5 Number of Simulations

The number of simulations will be selected to ensure the stability of the estimate

of interest, while reducing unnecessary computational time. These accuracy level of

bias, RMSE, coverage and power will be calculated from the following formula given

by Burton et al. [56];

δ =
Z1−(α/2)σ√

B
(4.10)

where δ is the specified difference from the true value. B is the number of simulations,

σ2 is the variance for the estimate of interest and Z1−(α/2) is the 1− (α/2) quantile

of the normal distribution.

Page 80



CHAPTER 4. THE SIMULATION OF MENDELIAN RANDOMISATION
WITH DEPENDENT INSTRUMENTS

Bias

As the true bias and variance were unknown, a small simulation study was per-

formed; the causal effects of 20 datasets were estimated from two-stage least squares

(2SLS) with SNPc as the instrument. Each dataset had the genotype of SNPc, X

and Y for 2,000 individuals, simulation method is as described in Section 4.2 and 4.3.

The mean bias and standard deviation from this small simulation study was -0.0227

and 0.0007 respectively. Then, using Equation 4.10, 10,000 simulations will produce

a δ of 0.0001, which is within 0.6% accuracy of the bias of -0.0227.

RMSE

The same simulation study as above returned standard deviation of the RMSE of

0.0064 and a mean of 0.2280. 10,000 simulations gave δ of 0.0001, which is within

0.06% accuracy of the RMSE of 0.0064.

Coverage

The nominal coverage is 0.95 and its empirical standard deviation would be 0.0022

(by the definition of standard deviation for proportions). For nominal coverage, its

δ equals to 0.0043 from 10,000 simulations. i.e. 0.45% accuracy for 95% coverage.

Power

For the desirable power of 0.8, also a proportion, gave empirical standard deviation

of 0.0040. Then through Equation 4.10, the δ from 10,000 simulations is 0.0078.

10,000 simulations will give bias, RMSE, coverage and power, the accuracy level

of approximately 0.6%, 0.1%, 0.5% and 1% respectively. The accuracy level for

10,000 simulations seems high, however as mentioned before LIML and CUE are

prone to outliers with many weak instruments, which will reduce the accuracy levels

of bias and RMSE. Hence, each simulation in the following chapters will be repeated

10,000 to obtain the desirable accuracy from each of the evaluation criteria.
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Chapter 5

One and Two SNPs Dependent on

the Causal SNP in Two-Stage

Least Squares

5.1 Introduction

So far, in the Mendelian randomisation literature, there has been no information

on how much variation a non-functional variant can explain in the exposure and on

its impact on the estimation of the causal effect. Therefore, this chapter aims to

answer this question using two-stage least squares (2SLS), to act as a foundation

for the use of many dependent instruments in Mendelian randomisation. 2SLS will

be implemented in this primary investigation, as it is the most popular and the

simplest method used among all of the algorithms for instrumental variable analysis

for continuous outcome [84].

The chapter begins with the scenario where the causal SNP, SNPc is known

and measured and examines the effect of sample size and variation explained by

SNPc on the performance of 2SLS. The second scenario considers the case where

the causal SNP is unknown or unmeasured, and a single non-causal SNP, SNP1

whose association with X is driven by the correlation with SNPc is measured. This

scenario evaluates 2SLS with changes in the correlation between SNP1 and SNPc.

The next scenario investigates whether there are any gains by including a non-causal

SNP as an instrument if SNPc is measured. The chapter ends with investigating

the effect of having two non-causal SNPs as instruments in 2SLS.
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5.2 Single causal SNP: Variation explained and

sample size

5.2.1 Aims

Section 2.5.3 explained that the weak association between gene and exposure of

interest causes weak instrument bias and low power in detecting a causal effect.

This section will demonstrate the impact of genetic variation explained and sample

size on these statistical properties. Figure 5.1 gives the graphical representation of

the relationship between causal SNP (SNPc), risk factor (X), disease outcome (Y)

and unknown confounder (U).

U

X YSNPc

α2 β2

β1α1

Figure 5.1: Illustration of Mendelian randomisation with one causal SNP

5.2.2 Design

Adopting the method of simulating SNPc from section 4.2.1, the minor allele fre-

quency (MAF) for SNPc will be 0.25 (note that the simulation method was designed

so that MAF will not effect the variation explained by SNPc). The variance in X ex-

plained by SNPc, ranged from 0.5% to 3%. X will explain 6% of the variation in Y,

simulated as in Section 4.3. Sample sizes of 10,000 and 15,000 will be incorporated

into the simulations. SNPc with different variations explained will be introduced

into the 2SLS as a single instrument.

As reasoned in Section 4.5, simulations will be repeated 10,000 times. Bias,

RMSE, coverage and power will be monitored to evaluate the performance of 2SLS.

Type I error will also be part of the evaluation criteria but derived from a separate

simulation where X does not directly influence Y. Winsorisation will not be used

throughout this chapter as 2SLS does not give extreme outliers, unlike limited infor-

mation maximum likelihood (LIML) and continuously updating estimator (CUE).

For more detailed explanation see Section 4.4.

Page 83



CHAPTER 5. ONE AND TWO SNPS DEPENDENT ON THE CAUSAL SNP
IN TWO-STAGE LEAST SQUARES

5.2.3 Results

Figure 5.2a to 5.2d shows each evaluation criterion plotted against the variation

explained by SNPc. The general pattern for all of the evaluation criteria indicate

an improvement on the performance of 2SLS as variation explained and sample size

increases; the bias decreases as variation explained increases. The bias for all the

variance explained declines towards zero as sample size increases. RMSE reduces

as variation explained rises. A sample size of 5,000 had the greatest RMSE for

all of the variation explained, compared to other sample sizes. As the sample size

and variation explained increases, the standard error of the simulations decreases

(Appendix Table B.1). Furthermore, Figure 5.2a and Figure 5.2b illustrated, that

the variance explained does not affect the variation between the estimates. The bias

(Figure 5.2a) from the three sample sizes will eventually be the same, as variance

explained increases. Whereas, the RMSE (Figure 5.2b) remains separate between

the three sample sizes, even with increasing variance explained.

From looking at Figure 5.2c, it is difficult to determine which sample size or vari-

ation explained has the optimum coverage, in the presence of overlap between the

different sample sizes. However, the coverage for variation explained are all approxi-

mately around the nominal level. When considering the sample sizes, 15,000 had the

highest power for all variation explained. Power also increases as variance explained

increases. The critical threshold of 0.05 was valid for power, shown by Appendix

Figure B.1, as the type I error for all the sample size and variance explained were

approximately 5% (represented by the dotted line).

To illustrate the point made by Staiger and Stock [253] about the F-statistics,

Appendix Figure B.2a to B.2e show bias, RMSE, coverage, power and type I error

respectively. The performance of 2SLS benefited from the increase of the F-statistics;

all of the evaluation criteria reaches its optimum level.
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Figure 5.2: Evaluation criteria of 2SLS against variance explained by SNPc with
different sample size. The different coloured lines represents varies sample sizes;
blue, red, violet represents 5,000, 10,000 and 15,000 individuals within a simulation.
The dotted and solid lines in Figure 5.2a is the 10% and zero bias respectively. The
nominal 95% coverage level is the dotted line in Figure 5.2c. The dotted line in
Figure 5.2d is the 0.8 nominal power.

5.2.4 Conclusion

2SLS benefited from increasing variation explained, as the α1 is further away from

zero. When variation explained is small, 2SLS becomes more precise with increasing

sample size, as the variation for the estimates of β1 becomes smaller. However the

variation only decreases with greater sample size, and not with variation explained.

2SLS have been known to suffer from weak instrument bias [29, 39], i.e. F-

statistics can influence the amount of bias, as reflected in the results; as the F-
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statistic increases, the bias decreases (Figure B.2a). The overlaying of sample sizes

in Figure B.2a showed that bias is balanced by both sample size and variation

explained; the bias from small variation explained and large sample size is equivalent

to bias from large variation explained and small sample size. F-statistics of greater

than 10, gave estimates of less than 10% bias (Figure B.2a), which supported Staiger

and Stock [253]’s guideline of having F-statistics greater than 10, to avoid weak

instrument bias. However, Palmer et al. [220] have found cases where this guideline

does not always apply.

After understanding the mechanics of 2SLS with SNPc, now in view of the rarity

of cases where the causal SNP is known, the next scenario will consider SNPs that are

not causal but are associated with the causal SNP through linkage disequilibrium.

5.3 Single non-causal SNP in linkage disequilib-

rium

The aim of this section is to understand the effect on 2SLS using a single SNP

(SNP1) with different levels of linkage disequilibrium (LD) from the causal SNP

(SNPc). LD is commonly measured by the square of Pearson’s correlation coefficient

(r2). The correlation allows SNP1 to be associated with X without being causal

itself. The effect of variation explained by SNPc will also be examined.

U

X YSNPcSNP1

α2 β2

β1α1ρc1

Figure 5.3: Illustration of Mendelian randomisation with causal (SNPc) and non-
causal SNP (SNP1). Solid line without and with arrow represent correlation and
causal relationship respectively.

5.3.1 Mathematics of the variance explained by non-causal

SNP

Figure 5.3 show the relationship between SNPc, SNP1, X, Y and unknown con-

founder (U). Notice the solid line without arrow between SNPc and SNP1, this is
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to emphasis their relationship is correlation not causal.

Regress X on SNPc

X = α0 + α1SNPc + ε (5.1)

where α0 is the intercept, ε is the random error and by the definition of the

simple linear regression coefficient, the expectation of α1 is,

E(α1) = ρxc
σx
σc

(5.2)

where ρxc is the correlation between X and SNPc, σx is the standard deviation of

X and σc is the standard deviation of SNPc.

By the definition of variance, the variance in X explained by SNPc is,

V ar.Explained = α1V ar(SNPc)

= α2
1σ

2
c

Substitute 5.2 into variance explained, to yield the expected variance explained;

E(V ar.Explained) = ρ2xc
σ2
x

σ2
c

σ2
c

= ρ2xcσ
2
x (5.3)

Then, the expected percentage of variance explained by SNPc is;

E(%Explained) = 100ρ2xc
σ2
x

σ2
x

= 100ρ2xc (5.4)

Regress SNPc on SNP1

SNPc = α′0 + α′1SNP1 + ε′ (5.5)

By the definition of simple linear regression coefficient,

E(α′1) = ρc1
σc
σ1

(5.6)

where ρc1 is the correlation between SNP1 and SNPc, σc is the standard deviation
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of SNPc and σ1 is the standard deviation of SNP1.

Replace SNPc in 5.1 by 5.5,

X = α0 + α1(α
′
0 + α′1SNP1 + ε′) + ε

= α′′0 + α1α
′
1SNP1 + ε′′

Then, the expectation of αα′ is,

E(α1α
′
1) = ρcx

σx
σc
ρc1

σc
σ1

= ρcxρc1
σx
σ1

(5.7)

By the definition of variance, the expected variance explained in X by SNP1 is,

E(V ar.Explained) = (α1α
′
1)

2V ar(SNP1)

= ρ2cxρ
2
c1

σ2
x

σ2
1

σ2
1

= ρ2cxρ
2
c1σ

2
x

The percentage of variance explained by SNP1 is then,

E(%Explained) = 100ρ2cxρ
2
c1

σ2
x

σ2
x

= 100ρ2cxρ
2
c1 (5.8)

which is the percentage of variance explained by SNPc from equation 5.4 ×ρ2c1,
where ρ2c1 is r2 of SNPc and SNP1.

5.3.2 Simulations

The simulations were applied to be in agreement with the mathematics to compre-

hend the mechanics of 2SLS. There are two aspects covered in the simulation; the

r2 between SNP1 and SNPc, and the variance in X explained by SNP1.

Design

The MAF for SNPc and SNP1 will be 0.5 and the r2 between them will vary

between 0.1 to 1. The genotype of the SNPs will be simulated in section 4.2. The
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simulation method in Section 4.3 sets the variation of X explained by SNPc to 2%,

this simulation will also include 1% and 3%. The generation of X and Y for 5,000

individuals is the same as the previous section.

The simulation were repeated 10,000 times for each variance explained by SNPc.

SNPc will be discarded, the performance of 2SLS will be based on the non-causal

SNP as instrument. The same evaluation criteria will be derived as in the previous

section.
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Figure 5.4: Evaluation criteria of 2SLS with SNP1 as instrument against correlation
(r2) between SNPc and SNP1 for when SNPc explains 1%, 2% and 3% variation in
X, shown by the blue, red and violet coloured lines accordingly. In bias, the dotted
line is the 10% bias and the solid line is the zero bias. The 95% nominal level is
defined by the dotted line in coverage. The 0.8 nominal power is labelled with the
dotted line.
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Results

Figure 5.4a to 5.4d are the bias, RMSE, coverage and power from 2SLS respectively,

for different correlations (r2) between SNPc and SNP1, and levels of variation ex-

plained by SNPc. The allele frequency for both SNPc and SNP1 was 0.5.

For all three levels of variation explained, 2SLS have estimated more than 10%

bias when r2 is less than 0.2. RMSE decreases as correlation between SNPc and

SNP1 increases. Coverage is approximately at 95% nominal level, with different

levels of r2 and variation explained. Power increases with the correlation between

SNPc and SNP1. The type I error (Appendix Figure B.3) is approximately 5%, for

all values of r2.

The three evaluation criteria demonstrated that the performance of 2SLS deteri-

orates much faster when SNPc only explained 1% of variation in X. At r2 of 0.4, 1%

variation explained has more than 10% bias, whereas the other variation explained

have less than 10% bias. RMSE for 1% variation explained is over 40 at r2 of 0.1,

while 2% and 3% variation explained have RMSE of less than 10. The highest power

for all levels of r2 is when SNPc explained 3% of the variation in X. However, 1%

and 2% variation explained does not reach 0.8 nominal power, even with perfect

correlation with SNPc.

See Appendix Table B.2 for the tabular representation of these figures.

5.3.3 Conclusion

As r2 decreases, the performance of 2SLS worsens, as expected since the association

between X and SNP1 is through its correlation with SNPc. In other words, the

weaker the correlation, the weaker the association between X and SNP1. This

relationship can be reflected algebraically; the variance explained in X by SNP1

equals r2 times by variance explained in X by SNPc, proven by Section 5.3.1. This

was also confirmed by simulation. Taking the bias as an example, SNP1 with r2

of 0.5, where SNPc explained 2% of the variance, produced an approximate bias of

-0.03 for sample size of 5,000 (Appendix B.2), which is the same as the bias from

SNPc with 1% variation explained and a sample size of 5,000 (Appendix B.1).

The correlation between SNPc and SNP1 did not affect the coverage or the

type I error, this is consistent with results for a single causal SNP (Section 5.2);

the change in variation explained by SNPc did not alter the coverage or the type I

error, and the variation explained by SNP1 is dependent on the variation explained
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by SNPc and r2. This resulted in the lack of movement in coverage and type I error

with the changing r2.

The next section will investigate whether there are any gains in including a

non-causal SNP when a causal SNP is already an instrument in 2SLS.

5.4 Causal SNP plus another

As evident from the previous scenario, 2SLS was under powered when the varia-

tion explained by SNPc is small. This section investigates whether an increasing

number of instruments, would improve the power of the estimate in 2SLS. If adding

instruments does improve 2SLS, what level of LD for the additional SNP would be

best.

5.4.1 Design

From the discussion of two genotypes in Section 4.2, the desired allele frequency for

both SNPc and SNP1 will be defined as 0.5, since having the same allele frequency

generates more values of r2 for comparison; r2 will range from 0.1 to 0.9. SNPc and

SNP1 will be included as instruments in 2SLS. To measure the benefit of including

one non-causal SNP as instrument, 2SLS with SNPc and SNP1 was compared

to 2SLS with only SNPc as the instrument. The rest of the simulation follows

Section 4.3.

The simulation will be repeated 10,000 times for a dataset of 5,000 individuals.

The evaluation criteria are the same as the previous sections.

5.4.2 Results

As one instrument (the blue dot-dashed line) increased to two (the violet line)

instruments in the first stage of 2SLS, the bias, RMSE and power have improved,

as shown in Figures 5.5a to 5.5d. However, there is a minor decrease in coverage

from the increase of instruments. The bias for two instruments is closer to zero,

than one instrument. RMSE is smaller with two instruments in the first stage of

2SLS. Coverage is further away from 95% nominal level (the dotted line) with two

instruments than one, this meant that less than 95% of the simulations had the true

value within its confidence interval, Figure 5.5c. The dotted line in Figure 5.5d is the

0.8 nominal power. Power increased from 0.68 to 0.70 with one to two instruments
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respectively. The type I error is the same for one and two instruments, they are

both close to 5% significance level (the dotted line), Appendix Figure B.4.

The evaluation criteria were not affected by the difference in r2 between SNPc

and SNP1; this can be seen by Figures 5.5a to 5.5d, all the lines are moderately

straight for two instruments, with standard errors of 0.0043 (Appendix Table B.3).

See Appendix table B.3 for the table representation of these figures.

5.4.3 Conclusions

There was evidence of a benefit in including more then one instrument in the 2SLS.

However, the correlation between SNPc and SNP1 did not affect the 2SLS which

suggests that adding another instrument improves the measurement error; since

the change in r2 will affect the variance explained by SNP1, seen in section 5.3.1.

Therefore, the is no benefit in adding another SNP as instrument if the causal

SNP is known, in the estimation of causal effect using 2SLS. Otherwise adding a

non-causal SNP will subject to unpredictable correction in the measurement error

that is dependent on random noise. This section showed results for 2SLS with two

instruments, when one is causal. Now consider when causal SNP was not measured,

the ability of 2SLS to accurately estimate β1 with two non-causal SNPs.
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Figure 5.5: Evaluation criteria of 2SLS with instruments of SNPc and SNP1, and
2SLS with only SNPc, against the correlation (r2) between SNPc and SNP1. 2SLS
with only SNPc is represented by the blue dashed and 2SLS with SNPc and SNP1

is the violet line. In bias, The black dotted and solid lines represents the 10% and
zero bias respectively. The black dotted line is 95% nominal coverage. The 0.8
nominal power is the black dotted line.
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5.5 Two non-causal SNPs

Now consider the situation, when SNPc is not measured. Would having two non-

causal SNPs prove to be beneficial to the performance of 2SLS? In theory, adding

an extra SNP to 2SLS should be dependent on which SNP was already chosen as an

instrument. If the chosen SNP has a strong correlation with SNPc then any extra

SNP added would only improve the measurement error, the correlation of the extra

SNP would not make a considerable difference as is evident from Section 5.4. If the

correlation of the chosen SNP is weak, then adding another weak instrument would

cause an inaccurate estimate of β1 from 2SLS.

Another question is, now there are two non-causal SNPs, would the correlation

between SNP1 and SNP2 effect the performance of 2SLS? Let the correlation be-

tween the SNPs be examined in terms of distance, as one of the reasons for the high

correlation between the two SNPs is due to their close proximity in genome. For

example, SNP1 is close to SNPc (i.e. highly correlated), and there are two scenar-

ios; scenario one, when SNP2 is far away from both SNPc and SNP1, shown by

Figure 5.6a. And scenario 2, when SNP2 is far away from SNPc but closer SNP1,

Figure 5.6b. The question is would the differences in these two scenarios affect the

performance of 2SLS.

SNPcSNP1 SNP2
0.8 0.2

0.16

(a) Scenario 1

SNPcSNP1SNP2
0.80.2

0.16

(b) Scenario 2

Figure 5.6: Distance between the causal (SNPc) and two non-causal SNPs (SNP1

and SNP2)
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5.5.1 Mathematics of the variance explained by two non-

causal SNPs

Figure 5.7 displays the relationship between the causal SNP, risk factor, disease

outcome, unknown confounder and the correlation between the SNPs.

U

X YSNPc

SNP1

SNP2

α2 β2

β1α1

ρc1

ρc2

ρ12

Figure 5.7: Illustration of Mendelian randomisation with a causal SNP and two
non-causal SNPs. Solid line without and with arrow represent correlation and causal
relationship respectively.

Let the covariance matrix of SNPc, SNP1 and SNP2 be;

Σ =


σ2
c ρc1σcσ1 ρc2σcσ2

ρc1σcσ1 σ2
1 ρ12σ1σ2

ρc2σcσ2 ρ12σ1σ2 σ2
2


where σ2

c , σ
2
1 and σ2

2 are the variances of SNPc, SNP1 and SNP2 respectively.

ρc1, ρc2 and ρ12 are the correlations between SNPc and SNP1, SNPc and SNP2,

and the correlation between SNP1 and SNP2 accordingly.

Regress SNPc on SNP1 and SNP2,

SNPc = α′0 + α′1SNP1 + α′2SNP2 + ε (5.9)

where α0 is the intercept, ε is the random error and the covariance matrix are
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split into four blocks to obtain the regression coefficient;

Σ =


σ2
c ρc1σcσ1 ρc2σcσ2

ρc1σcσ1 σ2
1 ρ12σ1σ2

ρc2σcσ2 ρ12σ1σ2 σ2
2


Then the regression coefficient is [9];

α = Σ−1·· Σ·c (5.10)

where α =

α′1
α′2

, Σ·· =

 σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

 and Σ·c =

ρc1σcσ1
ρc2σcσ2

. Σ·· is the

covariance matrix of SNP1 and SNP2 and Σ·c is covariance matrix between SNPc

with SNP1 and SNP2.

The variance explained is α′Σ··α [9];

V ar.Explained = α′Σ··α

= Σ′·cΣ
−1
·· Σ··Σ

−1
·· Σ·c

= Σc·Σ
−1
·· Σ·c

Then variance explained by SNP1 and SNP2 in matrix form;

Σc·Σ
−1
·· Σ·c =

[
ρc1σcσ1 ρc2σcσ2

] σ2
1 ρ12σ1σ2

ρ12σ1σ2 σ2
2

−1 ρc1σcσ1
ρc2σcσ2


=

1

σ2
1σ

2
2(1− ρ212)

[
ρc1σcσ1 ρc2σcσ2

] σ2
2 −ρ12σ1σ2

−ρ12σ1σ2 σ2
1

ρc1σcσ1
ρc2σcσ2


=

1

σ2
1σ

2
2(1− ρ212)

[
ρc1σcσ1σ

2
2 − ρc1ρ12σcσ1σ2

2 −ρc1ρ12σcσ2
1σ2 − ρc2σcσ2

1σ2

]ρc1σcσ1
ρc2σcσ2


=

1

σ2
1σ

2
2(1− ρ212)

(ρ2c1σ
2
cσ

2
1σ

2
2 − 2ρc1ρc2ρ12σ

2
cσ

2
1σ

2
2 + ρ2c2σ

2
cσ

2
1σ

2
2)

=
σ2
c

1− ρ212
(ρ2c1 − 2ρc1ρc2ρ12 + ρ2c2) (5.11)

Regress X on SNPc,

X = α0 + α1SNPc + ε′ (5.12)
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Replace SNPc in 5.12 with 5.9,

X = α′′0 + α1(α
′
1SNP1 + α′2SNP2) + ε′′ (5.13)

The variance in X explained by SNPc is,

V ar.Explained = α2
1σ

2
c

In terms of the variance in SNPc explained by SNP1 and SNP2, then the vari-

ance in X explained by SNP1 and SNP2 is,

V ar.Explained = α2
1α
′Σ··α (5.14)

Writing 5.14 in another form

= α2
1σ

2
c

[
α′Σ··α

σ2
c

]
(5.15)

Using the expected α1, ρxc
σx
σc

. Then, the expected variance explained is

E(V ar.Explained) = ρ2xc
σ2
x

σ2
c

σ2
c

[
α′Σ··α

σ2
c

]
= ρ2xcσ

2
x

[
α′Σ··α

σ2
c

]
(5.16)

Substituting 5.11 into 5.16, the expected percentage explained is,

E(%Explained) = 100ρ2xc
σ2
x

σ2
x

[
ρ2c1 − 2ρc1ρc2ρ12 + ρ2c2

1− ρ212

]
= 100ρ2xc

[
ρ2c1 − 2ρc1ρc2ρ12 + ρ2c2

1− ρ212

]
(5.17)

which is the percentage of variance in X explained by SNPc × the proportion of

the variance in SNPc explained by SNP1 and SNP2. When there is no correlation

between SNP1 and SNP2, i.e. ρ212 = 0, then the percentage of variance explained is

the percentage of variance explained by SNPc × the sum of the correlation of the

two SNPs with SNPc.
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5.5.2 Simulations

This simulation will demonstrate the mathematical proof above.

Design

Suppose there are three SNPs, and one of the SNPs is causal for X, called SNPc.

SNP1 and SNP2 are not causal for X but are correlated with SNPc and also with

each other. The genotype simulation method of Section 4.2 does not include the op-

tion to change the correlation between two non-causal SNPs, therefore the following

steps will be used to generate the three SNP genotypes for 5,000 individuals;

1. The MAF for SNPc, SNP1 and SNP2 were 0.5, 0.45 and 0.45 respectively.

The similarity in MAF was to provide some flexibility in setting the values of

correlation.

2. Using the command mvrnorm() from R package, ”MASS” [279] to draw from

the distribution of a random multivariate normal of SNPc, SNP1 and SNP2

with 5,000 samples(i);


Zic

Zi1

Zi2

 ∼ N(0,Σ)

where

Σ =


σ2
c ρc1σcσ1 ρc2σcσ2

ρc1σcσ1 σ2
1 ρ12σ1σ2

ρc2σcσ2 ρ12σ1σ2 σ2
2

 ,
σ2
c , σ

2
1 and σ2

2 is the variance of SNPc, SNP1 and SNP2 respectively. ρc1,

ρc2 and ρ12 are the desired correlation between SNPc and SNP1, SNPc and

SNP2, and the correlation between SNP1 and SNP2 respectively.

3. Sort the values of Zc. Find Zic at (1− fc)2 and at f 2
c , naming these values as

a and b accordingly.

4. To form the genotype of SNPc for 5,000 samples, each individual has 0 when

Zic < a, 1 when Zic > a and 2 when Zic > b.
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5. Repeat step 3 and 4 for Zi1 and Zi2 to get genotypes of SNP1 and SNP2.

Each scenario will be defined by different combinations of correlation, demon-

strated by Figure 5.8. ρc1 values were 0.2, 0.5 and 0.8. ρc2, included 0.2, 0.5, 0.8

and the multiples of these values with values in ρc1. ρ12 has exactly the same range

of correlation as ρc2. For example, ρ12 of 0.16 is the multiple of 0.2 and 0.8, i.e.

ρc2 × ρc1. Then 0.16 swaps with ρc2 to 0.2, and ρc1 remains unchanged.

The simulation of the relationships between SNPc, X and Y follows Section 4.3.

2SLS with one instrument, SNPc and two instruments, SNP1 and SNP2 will be

monitored. Each scenario, will be repeated 10,000 times. The correlation with SNPc

shown an impact on the evaluation criteria; previous simulations have found mean

bias to be affected by extreme estimates of β1, due to the unstable Wald ratio caused

by near zero α1. Therefore, median bias will also be calculated.

0.80

0.80 0.64
0.64 0.80
0.50 0.40
0.40 0.50
0.20 0.16
0.16 0.20

0.50

0.80 0.40
0.40 0.80
0.50 0.25
0.25 0.50
0.20 0.10
0.10 0.20

0.20

0.80 0.16
0.16 0.80
0.50 0.10
0.10 0.50
0.20 0.04
0.04 0.20

ρc1 ρc2 ρ12

Figure 5.8: Design of the correlation combinations between the three SNPs. ρc1 is
the correlation between SNPc and SNP1, ρc2 is SNPc and SNP2, and ρ12 is between
SNP1 and SNP2.

Page 99



CHAPTER 5. ONE AND TWO SNPS DEPENDENT ON THE CAUSAL SNP
IN TWO-STAGE LEAST SQUARES

Results

Table 5.1 shows the difference in bias is greater with two weak instruments, i.e.

both ρc1 and ρc2 are less than 0.2. The stronger the correlation in one of the two

instruments, the closer the difference in bias is to zero. The difference in RMSE is

further away from zero when one instrument does not have a high correlation with

SNPc (i.e. ρ < 0.8). There is no distinct difference in coverage (a percentage of

simulation that have the true causal effect within the estimation of 95% confidence

interval), when comparing the strength in correlations between the instruments.

There is a decrease in power with two instruments; the decrease is at its peak when

both instruments have ρ < 0.8. Same as coverage, there are no recognisable trends

from the difference in type I error.

The evaluation criteria seem to be fairly constant as correlation between SNP1

and SNP2 increases, ρ12. For clarity, consider when ρc1 is 0.5 and 0.8, the difference

seems similar as ρ12 increases. There is more of a spread with ρc1 of 0.2, this is

because of the different values of ρc2. There are no distinct patterns in the difference

of RMSE, as ρ12 increases, the values are only affect by either high ρc2 or high ρc1.

Again for power, the differences were dispersed are not affected by ρ12, but by ρc2 or

ρc1. The differences in coverage and type I error are closer to zero, i.e. the estimates

from SNP1 and SNP2 are the same as the estimates from SNPc.
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Table 5.1: The difference in evaluation criteria between 2SLS with instruments of
SNP1 and SNP2, and with only SNPc. The difference in evaluation criteria is
calculated, for example Bias with SNP1 and SNP2 - Bias with SNPc. ρc1, ρc2 and
ρ12 is the correlation between, SNPc and SNP1, SNPc and SNP2, SNP1 and SNP2

respectively.

ρc2, ρ12 Mean Bias Median Bias RMSE Coverage Power Type I Error

ρc1 = 0.8

0.80,0.64 0.0114 0.0170 0.0365 0.0000 -0.0849 0.0001

0.64,0.80 0.0097 0.0183 0.0676 -0.3900 -0.1580 0.0040

0.50,0.40 0.0105 0.0202 0.0632 0.0200 -0.1387 -0.0003

0.40,0.50 0.0101 0.0141 0.0653 -0.2300 -0.1521 0.0023

0.20,0.16 0.0111 0.0162 0.0647 -0.3200 -0.1473 0.0033

0.16,0.20 0.0108 0.0176 0.0661 -0.4100 -0.1589 0.0041

ρc1 = 0.5

0.80,0.40 0.0108 0.0195 0.0571 -0.3900 -0.1332 0.0040

0.40,0.80 0.0052 0.0497 0.2561 -0.6600 -0.3506 0.0067

0.50,0.25 0.0117 0.0310 0.1397 -0.0600 -0.2596 0.0006

0.25,0.50 0.0092 0.0437 0.2487 -0.1700 -0.3431 0.0015

0.20,0.10 0.0155 0.0366 0.2268 -0.4500 -0.3338 0.0044

0.10,0.20 0.0096 0.0390 0.2380 -0.1800 -0.3462 0.0017

ρc1 = 0.2

0.80,0.16 0.0083 0.0166 0.0661 -0.4100 -0.1496 0.0040

0.16,0.80 0.1404 0.2610 1.4455 -0.8500 -0.4844 0.0086

0.50,0.10 0.0103 0.0380 0.2213 -0.4800 -0.3249 0.0048

0.10,0.50 0.1090 0.2255 1.7517 -1.4900 -0.4816 0.0150

0.20,0.04 0.0231 0.1441 0.8511 -1.6300 -0.4466 0.0162

0.04,0.20 0.1578 0.2869 2.0236 -1.2000 -0.4749 0.0121

5.5.3 Conclusion

To illustrate the mathematics, Figure 5.9 was produced from equation 5.17, for the

correlation between the SNPs against the variance explained. Figure 5.9 shows when
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the correlation between SNPc and the non-causal SNPs becomes stronger, then the

variance explained gets closer to the variance explained by SNPc, therefore the

difference in evaluation criteria reduces (Table 5.1), i.e. the estimates from two

non-causal SNPs were approximately the estimates from 2SLS with SNPc. The

mathematics were reflected on the simulations; taking median bias as an example,

when ρc1 = ρc2 in Table 5.1, where they both have correlations of 0.2, 0.5 and 0.8, the

difference in bias declines towards zero as 0.2 increased to 0.8. This is because the

variance explained by the two instruments was increasing. Suppose we match the

correlations described here to the correlations in Figure 5.9 then, Figure 5.9 shows

when ρc1 is 0.2 and ρ12 is approximately 0.2 (the black curve)would produce variance

explained of under 0.5%. With ρc1 as 0.5 and ρ12 as 0.2 (the black curve) yielded

variance explained of approximately 1%. When ρc1 is 0.8 and ρ12 is approximately

0.5 (the red curve), gives just above 1.5% of variance explained.

The simulations (Table 5.1) showed that 2SLS with one strong instrument within

the two, performs approximately just as well as with SNPc as a single instrument.

This is because having a strong SNP, explains a similar amount of variance as SNPc,

shown by section 5.3. It therefore acts as a causal SNP, and adding any other SNP

would only correct for measurement error, as shown in Section 5.4. Table 5.1 also

suggested two weak instruments would have an adverse effect on the performance

of 2SLS. The reason is shown by equation 5.17; the weaker the correlation with

SNPc, the lower the variance explained by both instruments, and therefore greater

the difference in estimates, when comparing to SNPc as an instrument.
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Figure 5.9: Variance explained by SNP1 and SNP2 with correlations. The x-axis
is the correlation between the non-causal SNP and SNPc, where ρc1 ≈ ρc2, and the
y-axis is the variance explained by the two non-causal SNPs. The three different
colours represents the correlation between the two non-causal SNPs, ρ12. Black,
red and blue represents 0.2, 0.5, 0.8 respectively. The dotted horizontal line is the
variance explained by SNPc but also a cut-off, since it is not possible for the two
non-causal SNPs to have complete independence of each other, when they are both
highly correlated with the causal SNP.

5.6 Discussion

2SLS was proficient in estimating the causal effect of a risk factor on a disease

outcome, using dependent SNPs as instruments. But, this is conditional on the

proportion of variance in the risk factor explained by the causal SNP and the sample

size of the individual-level data. When the sample size is small and the variance

explained is close to zero, there is a higher chance of estimating α1 as zero, and

therefore creating an unstable estimate of β1.

2SLS with a non-causal instrument is still efficient in estimating the relation-

ship between risk factor and disease outcome. As the variance in the risk factor

explained by these dependent SNPs, relies on the correlation with and the variance

explained by the causal SNP; the variance explained by the dependent SNP equals

r2 times the variance explained by the causal SNP. Only the measurement error was

corrected, when another SNP was included with the causal SNP as instruments in
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2SLS. When one of the dependent SNPs is strongly correlated with the causal SNP,

then having two dependent SNPs as instruments can still produce accurate estimate

of β1. However, there was no benefit in adding another strongly correlated SNP,

unless the two SNPs are independent to a degree (as complete independence is not

possible).

As seen from the simulations in this chapter using a single proxy SNP as instru-

ment gave an unbiased estimate of the causal effect if this proxy is highly correlated

with the causal SNP. However, if this is not the case then using this proxy SNP will

still give a biased estimate, as it does not account for all of the true variation. Sim-

ilar conclusion have also been drawn in GWAS; due to the incomplete coverage of

common genetic variant in the contemporary marker panels available for genotyping

[19]. In order to capture the true association of the causal variant(s) that have not

been directly genotyped, multiple variants in LD have been utilised. This approach

have also found to result in modest power increase [89, 138, 217, 224].

The simulation makes a simplifying assumption that the variance explained by

the causal SNP remains the same despite its MAF. However, in reality this may not

always be the case; a review by Manolio et al. [194] have suggested that the reason

that GWAS have only found modest genetic association with disease risk is because

the large effects lies within rare variants. Currently there are not many examples to

prove this theory, due to insufficiently large sample size and difficulty in genotyping

the rare variants. In the context of Mendelian Randomisation, consider if we have

a causal SNP with low MAF as the instrument, which has a large effect size on the

exposure of interest, this could still cause weak instrument bias and low precision,

as the genotype of a rare MAF SNP consists of mostly zero and will require larger

sample size than an instrument with a common MAF.

Conclusions have been drawn from using one and two dependent instruments

for 2SLS. The next investigation will be to examine when there are multiple depen-

dent instruments, whether having more than two instruments would improve the

performance of 2SLS, from having just the causal SNP.
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Chapter 6

Multiple Dependent SNPs in

Two-stage Least Squares

6.1 Introduction

The previous chapter has examined the performance of two-stage least squares

(2SLS) with two non-causal SNPs in linkage disequilibrium (LD) as instruments.

The conclusion was that the variation in X explained by a non-causal SNP is depen-

dent on its correlation with the causal SNP and the variation in X that is explained

by the causal SNP. This chapter aims to find an instrument selection criterion that is

able to identify SNPs that are highly correlated with the causal SNP and to reduce

possible bias from weak instruments in 2SLS.

The SNPs from Experiment 1 will be assumed to have patterned LD as the aim

is to quantify the effects of LD on 2SLS. So far, the simulations have generated

artificial LD, to control the amount of LD and identify different levels of impact

from LD. To find whether the same impact can be achieved with realistic LD, the

rest of the experiments in this chapter will use GENOME [185], to form realistic

LD patterns. The aim of Experiment 2 will be to find any potential differences

between artificial and realistic patterns of LD. Experiment 3 will answer the ques-

tion whether reasonable performance from 2SLS can still be observed with various

selection policies for multiple dependent SNPs.

Every experiment will be presented with the aims, design, results and conclu-

sions. The aims section gives the scenario which the experiment will simulate and

the question which the experiment will answer. The design section will follow the

simulation methods in Chapter 4, but with some minor changes to tailor for each
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experiment. The results section will have graphical illustrations and descriptions

of the results. The conclusion section will summarise the results and answer the

question in the aims section. This chapter will end with a discussion, where I will

describe the findings from each experiment, their limitations and outline the plans

for next chapter with the results from this chapter in mind.

6.2 Experiment 1: p-value ranking under pat-

terned linkage disequilibrium

6.2.1 Aims

This experiment will investigate the situation in which data are available on 6 pos-

sible correlated instruments in the form of SNPs taken from the same gene. It will

consider the case in which none of the potential instruments is the causal SNP. The

SNPs will be assumed to have pattern linkage disequilibrium (LD) as defined in

Section 4.2. SNPs will be selected for inclusion in the Mendelian randomisation

analysis (MR) based on their ranking according to the p-values of their unadjusted

associations with the risk factor, X. The aims of the experiment will be to determine

the optimal number of instruments for use in a two-stage least squares (2SLS) MR

and to understand the factors that influence this number.

6.2.2 Design

The experiment will take the form of a simulation in which 7 SNPs are generated

with patterned LD in Section 5.5.2. The maximum ρ will be set to 0.1 till 0.9

in steps of 0.1 to simulate 9 different LD patterns, referred to as simply as ρ. In

patterned LD the SNP closest to the causal SNP has a correlation of ρ, while the

next SNP has a correlation ρ2 with the causal SNP and the furthest away has a

correlation ρ3 with the causal SNP. The middle SNP will be assumed to be causal

and to explain 2% of the variance in the risk factor, X. X will explain 6% of the

variance in the outcome Y. X and Y will be normally distributed and the sample

size will be 5,000. The causal SNP will be discarded and the 2SLS will be based on

the selected non-causal SNPs. The simulation will be repeated 10,000 times.

In each simulation X will be regressed on each SNP in turn and the SNPs will

be ranked according to their p-value. 2SLS analyses will be conducted on the same
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data using the best 1, 2,...6 SNPs and the bias, median bias, root mean square error

(RMSE), coverage and power will be calculated. A separate simulation in which X

is not directly related to Y will be used to estimate the type I error.

A further simulation will identify the first SNP to be chosen in terms of its LD

with the causal SNP. In this simulation we will only consider ρ = 0.5 and ρ = 0.9.

6.2.3 Results

Selection based on p-value ranking

The bias (Figure 6.1a) and median bias (Figure 6.1b) of the MR estimates are greater

when the LD is weak and suggests that the best performance is obtained from taking

the two most highly ranked SNPs. All number of selected SNPs gave bias below

10% provided ρ was greater than 0.7. The difference in mean (Figure 6.1a) and

median (Figure 6.1b) bias demonstrates the existence of a relatively large negative

bias in the simulation which pulled the mean towards zero. Taking ρ of 0.4 with

two instruments as an example, the bias is below the 10% (the dotted line) but

the median bias is above 10%. The RMSE (Figure 6.1c) reflects both the bias and

the variance of the MR estimate. It too is highest when the LD is weak but tends

to decrease with increasing numbers of selected SNPs implying that extra SNPs

improve the variance of the estimate more than they increase the bias.

The coverage of a 95% confidence interval is shown in Figure 6.1d. Low levels

of LD can reduce the coverage to around 80% and for all strengths of LD the

coverage falls as the number of selected SNPs increases. Using two SNPs improves

coverage very slightly when the correlation is high but makes coverage worse when

the correlation is low. The reverse pattern is seen in the plot of Type I error

(Figure 6.1e) which is poorly controlled when the LD is weak. Figure 6.1f shows the

power and appears to show that SNPs in weak LD have the greatest power but this

is a misleading impression caused by the failure to control Type I error.

See appendix table C.1 for the table representation of the figures.
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Figure 6.1: Evaluation criteria to measure the performance of 2SLS for different
strengths of LD, maximum ρ, based on selecting the best 1,2,...6 SNPs and using
them jointly in a 2SLS MR. The colours represents range of maximum ρ, the corre-
lations between the SNPs within a gene, see legend. For bias, the dotted and solid
lines represent 10% and 0 bias respectively. The dotted line in coverage, type I error
and power is nominal level of 95%, 5% and 0.8 respectively. Page 109
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Figure 6.2: The β̂ZX and β̂ZY from SNPs with the lowest p-value of regression of X
on SNP. Green and red coloured dots are the two SNPs closest to the causal SNP,
and the black dots are the other SNPs

Identity of the first SNP to be chosen

Table 6.1 shows for ρ = 0.5 and ρ = 0.9 which of the 6 SNPs was chosen first.

Figure 6.2a and 6.2b are the estimates from the regressions of X on SNP and Y

on SNP where the SNP had the minimum p-value. When LD is strong (Figure 6.2a),

the estimates between the two closest and the others SNPs are similar. While for

weaker LD, the estimates in more distant SNPs are shifted away from those for the

two closest SNPs.

When the correlation is low the SNPs furthest from the causal SNP are only

weakly associated with X (ρ = 0.5, ρ2 = 0.25, ρ3 = 0.125) and so are very rarely

selected while when the correlation is higher (ρ = 0.9, ρ2 = 0.81, ρ3 = 0.729) all

six SNPs remain associated with X and may sometimes be selected. In that case

the high correlation ensures that the chosen instruments are never very weak and so

there is little bias in the MR estimate. When the correlation is low the MR can be

heavily biased especially when by chance a SNP is chosen that has a very low true

association with X.

6.2.4 Conclusions

When ρ is low the LD between SNPs is weak and the six available SNPs will be

poor substitutes for the causal SNP, the strength of their association with X will be
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Table 6.1: The SNP with the lowest p-value from regression of X on the SNP in each
simulation. The estimate of the coefficients for regression of X on SNP (β̂ZX), Y on
SNP (β̂ZY ) and the MR estimate of Y on X (β̂XY ) of 10,000 simulations, where k
represents the different SNP number, where k=1,...,6. The top row gives the true
value of these coefficients.

No. of simulation
with lowest p-value

Mean β̂ZX Mean β̂ZY Mean β̂XY

True 0.1180 0.0647 0.5480

ρ = 0.5

SNP1 7 0.0476 0.0509 1.0443

SNP2 86 0.0549 0.0528 0.9596

SNP3 5021 0.0632 0.0405 0.6126

SNP4 4832 0.0630 0.0408 0.6198

SNP5 50 0.0524 0.0498 0.9321

SNP6 4 0.0495 0.0532 1.0511

ρ = 0.9

SNP1 493 0.1079 0.0665 0.6044

SNP2 1512 0.1094 0.0656 0.5890

SNP3 3307 0.1103 0.0642 0.5698

SNP4 2739 0.1102 0.0655 0.5830

SNP5 1183 0.1092 0.0658 0.5917

SNP6 766 0.1082 0.0650 0.5900

weak and we observe the characteristic of the weak instrument bias [253], namely

increased bias and RMSE, poorer coverage and type I error control, and misleading

powers.

When the observed SNPs are poor surrogates for causal SNPs there is some gain

in using the two best SNPs as this reduces bias and RMSE, but adding further SNPs

always leads to poorer performance.

It appears that the optimal performance depends on the pattern of LD which

means that it is very difficult to suggest a SNP selection policy that will be optimal

in all situations. The best policy is likely to depend on the pattern of LD within the

gene and strength of the association between the unmeasured causal SNP and X.

Physical proximity is not the only factor that affects LD [251], therefore a genome

simulator will be utilised to simulate a more realistic LD between the SNPs in the

next experiment.
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6.3 Experiment 2: p-value ranking under real link-

age disequilibrium

6.3.1 Aims

This experiment is similar to Experiment 1, the only difference between Experiment

1 and 2 is the construction of the linkage disequilibrium (LD) between the SNPs;

Experiment 2 simulates a more realistic LD, using GENOME [185], whereas Exper-

iment 1 assumed the SNPs had patterned LD. The aim of this experiment is to see

whether the conclusions about optimal numbers of instruments for 2SLS MR differs

from Experiment 1, under a more realistic genetic structure.

6.3.2 Design

The design of the simulation will follow Experiment 1, except for generating the

genotypes of SNPs. GENOME will simulate the genotypes for 5,000 individuals,

as described in Section 4.2.3. 7 SNPs will be randomly selected from a section of

GENOME simulated strand, i.e. a section of DNA. The middle SNP will be assumed

to be causal, SNPc, and it explains 2% of the variation in risk factor, X.

To extract different patterns of linkage disequilibrium, GENOME will be run 5

times to obtain 5 sections of DNA. Then for each section of DNA, simulation of an

MR dataset of 5,000 individuals will be repeated 10,000 times.

6.3.3 Results

Table 6.2 gives information on the 7 SNPs from each section of DNA. Within a sec-

tion of DNA, usually the SNPs having strongest correlation with SNPc are selected

within the simulations. DNA 1, 2 and 5 contained SNPs of the weakest correlations

with SNPc, DNA 3 and 4 have SNPs that were identical to SNPc. There were also

SNPs identical to each other. i.e. same allele frequency and correlation with SNPc.

The R command for 2SLS, ivreg(), deals with identical instruments by automati-

cally removing one of them from the first-stage regression. Therefore, the estimates

from 2SLS will remain unchanged with supposedly an additional instrument.

From Figure 6.3a, all numbers of selected SNPs have less than 10% bias (the

dotted line), except for DNA 5 as it contained SNPs that are weakly correlated

with SNPc. The bias for DNA 1 to 4 switches from negative to positive, but the
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same trend is not seen in median bias (Figure 6.3b), therefore this trend is caused by

the extremely negative estimates within the simulations. The RMSE (Figure 6.3c)

is the combination of bias and variance of the MR estimate. RMSE is high when

the correlation with SNPc is weak, i.e. DNA 1 and 5. The similarity in RMSE for

DNA 2 to 4 suggests that by adding extra SNPs improves the variance but it is

balanced by the increase in bias.

The coverage (Figure 6.3d) for all the sections of DNA are approximately 95%

nominal level (the dotted line). DNA 5 contains SNPs in low LD with SNPc and

has the lowest coverage. With additional instruments, there is a decrease in coverage

for all the sections of DNA. The type I error increases from the 5% significance level

(the dotted line) when including more SNPs and when LD is weak. Figure 6.3f

shows a modest improvement in power for all sections of DNA, as the number of

selected SNPs increases, however power will need to be adjusted for the rise in type

I error.

As expected, the performance of 2SLS from DNA 1 and 5 are less efficient, in

comparison to other sections of DNA; this is due to the weak correlation of these

SNPs with SNPc. For each section of DNA, the standard error for the simulations

are fairly similar for the different number of instruments. In Appendix Table C.2

from 1 to 6 instruments, DNA 3 has the smallest contrast (0.0043 to 0.0042) and

DNA 5 has the greatest (0.0114 to 0.0088).

6.3.4 Conclusions

For the SNPs that were strongly correlated with SNPc, the bias increased with addi-

tional instruments, since all of variation is explained by the SNPs that were already

selected as instruments. For small r2 between the SNPs, the bias decreased from one

to two instruments for DNA 5. This supports the evidence from Section 5.5.1; when

r2 is small (i.e. close to independent), adding another SNP will increase the varia-

tion explained. However, with even greater numbers of instruments, this advantage

disappears. The RMSE shows that even though adding more instruments decreases

the variation, this does not outweigh the increase in bias. Coverage decreases with

additional instruments and the increase in power was balanced by the increase in

type I error.

For sections without identical SNPs, including 2 SNPs with the smallest p-value

does improve bias, RMSE and type I error. Adding further instruments always

leads to the deterioration in performance from 2SLS. This conclusion is similar
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to Experiment 1. However patterned LD did not generate sections with identical

SNPs, therefore GENOME simulated DNA sections have an additional conclusion

for optimal numbers of instruments for 2SLS; when identical SNPs are present, there

are no benefits in including more than one instrument.

As there were identical SNPs and such variety of LD between the SNPs within

the 5 sections of DNA, it is difficult to judge the optimal number of instrument

for any one section. Hence, the next section will increase the number of DNA

sections examined and investigate whether restricting the instruments according to

their properties or applying popular guidelines could prevent extreme estimates, and

hopefully give clues about how instruments should be chosen in any one sample to

obtain the least bias and variation.
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Table 6.2: The GENOME genetic structure for 5 sections of DNA. The correlations
with SNPc, r and r2, the allele frequency and the number of simulations when the
SNP had the lowest p-value (10,000 simulations in total).

SNP1 SNP2 SNP3 SNPc SNP4 SNP5 SNP6

DNA 1

r 0.3363 0.3363 0.3363 1.0000 0.3465 0.4914 0.4914

r2 0.1131 0.1131 0.1131 1.0000 0.1201 0.2414 0.2414

Allele frequency 0.5590 0.5590 0.5590 0.1254 0.5442 0.3726 0.3726

Lowest p-value 148 0 0 - 204 9648 0

DNA 2

r 0.4917 0.4917 0.8618 1.0000 0.8979 0.8979 0.1380

r2 0.2418 0.2418 0.7428 1.0000 0.8062 0.8062 0.0191

Allele frequency 0.0982 0.0982 0.2398 0.2040 0.2412 0.2412 0.9308

Lowest p-value 0 0 910 - 9090 0 0

DNA 3

r 1.0000 0.4384 0.4384 1.0000 1.0000 1.0000 0.1479

r2 1.0000 0.1922 0.1922 1.0000 1.0000 1.0000 0.0219

Allele frequency 0.8950 0.6210 0.6210 0.8950 0.8950 0.8950 0.1572

Lowest p-value 5612 0 0 - 4388 0 0

DNA 4

r 0.2870 0.3326 0.3665 1.0000 1.0000 1.0000 1.0000

r2 0.0824 0.1106 0.1343 1.0000 1.0000 1.0000 1.0000

Allele frequency 0.0802 0.9054 0.8874 0.5142 0.5142 0.5142 0.5142

Lowest p-value 0 0 0 - 4986 0 5014

DNA 5

r 0.3769 0.3769 0.3769 1.0000 0.1209 0.3248 0.3811

r2 0.1420 0.1420 0.1420 1.0000 0.0146 0.1055 0.1452

Allele frequency 0.5010 0.5010 0.5010 0.1248 0.9070 0.5748 0.4954

Lowest p-value 4275 0 0 - 370 964 4391
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Figure 6.3: Evaluation criteria of 2SLS with GENOME simulated SNPs, based on
the selection of 1,2,...6 lowest p-valued SNPs and applying them jointly. Colours
represents 5 different DNAs, see legend. For bias, the dotted and solid lines represent
10% and 0 bias respectively. The dotted line in coverage, type I error and power is
nominal level of 95%, 5% and 0.8 respectively.
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6.4 Experiment 3: Best Policy

6.4.1 Aims

So far, there is not enough evidence of a required number of instruments for an

ideal estimate from 2SLS. Thus, this experiment will focus on the ”best” policy

in selecting instruments to estimate efficiently from 2SLS the causal relationship

between outcome and risk factor of interest, within one sample. The reason for best

being in inverted commas is that best is dependent on the investigators’ view on

which evaluation criterion is the most important, i.e. bias or RMSE.

The following policies for selecting instruments will be considered in this exper-

iment;

• The SNP with the lowest p-value from the regression of X on each SNP.

• All of the SNPs available in the data.

• Any SNPs with p-values < 0.05 from the regression of X on each SNP.

• Any SNPs with F-statistics > 10 from the regression of X on each SNP.

As this experiment aims to identify the best selecting policy for the derivation

of an MR estimate under the circumstance where only one dataset is available, the

regression of X on each SNP and 2SLS will be performed on the same dataset. The

first two policies act as the extreme ends of the spectrum in instrument selection. In

MR studies, the instruments come from Genome-wide association studies (GWAS)

where they consider the significance threshold at 5× 10−8 [20]. However this is for

hundreds of thousands to millions of tested SNPs and hence, with 6 SNPs, the third

policy will use a p-value < 0.05, the commonly used statistical significance. The

last policy is the guideline of avoiding the weak instrument problem for Mendelian

randomisation studies suggest by Lawlor et al. [182].

The aim of this section is to examine the change in the ”best” policy with different

sample sizes and/or number of instruments.

6.4.2 Design

In the first scenario, 7 SNPs from the same gene are generated using GENOME as

defined in Section 4.2. The middle SNP will be assumed to be causal which will

explain 2% of the variation in X. X will explain 6% of the variation in Y. X and Y
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will be normally distributed and with sample sizes of 5,000. The causal SNP will be

discarded and the 2SLS will be based on selected non-causal SNPs. The simulation

will be repeated 10,000 times.

In each simulation, X will be regressed on each SNP in turn and the SNPs will be

included into 2SLS based on the criterion of each policy described above. The bias,

median bias, root mean square error (RMSE), coverage and power will be derived.

Type I error will be estimated by a separate simulation where X is not directly

affecting Y. The method described will be repeated again for sample sizes of 10,000

to 50,000, in the steps of 10,000.

The design for the second scenario will be exactly the same apart from the first

step; GENOME will simulate 21 SNPs from the same gene.

6.4.3 Results: Sample Size

Figure 6.4a to 6.4f give the six evaluation criteria for all four polices with different

sample sizes. As expected the performance of 2SLS benefits with increasing sample

size, for the four policies.

For all the policies, the mean and median bias declines towards zero (the solid

line) as sample size increases, Figure 6.4a and 6.4b. Notice the median bias for policy

of F-statistics > 10 and p-values < 0.05 is the same as the policy of all SNPs as

instruments after a sample size of 20,000, but not for mean bias. This gives evidence

that with increasing sample size, eventually all the SNPs have sufficient F-statistics

and p-values. As sample size increases, the RMSE (Figure 6.4c), combination of

bias and variation of the MR estimate, decreases for all 4 polices.

Figure 6.4d shows all the policies had approximately 95% nominal coverage (the

dotted line) for sample sizes greater than 20,000. Figure 6.4e indicates that all the

policies had approximately 5% significance level (the dotted line) for sample sizes

over 10,000. All the policies had more than 0.8 power after sample size of 15,000,

the dotted line on Figure 6.4f.

See Table appendix C.3 for the table representations of these figures.

6.4.4 Results: 20 SNPs

Figure 6.5a and 6.5f are exactly the same as the above scenario, but with 20 potential

instruments. For all four policies, the 6 evaluation criteria show an improvement,

with increasing sample size. For the table representation of these figures, see Table
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appendix C.4.

Both the median and the mean bias have deceased as the sample size increased.

However unlike the bias from 6 SNPs, to achieve 10% bias (the dotted line) for all

four polices, the sample size needs to be greater than 10,000. Moreover, 6 SNPs

required 20,000 individuals for the polices of all the SNPs as instruments, p-values

< 0.05 and F-statistics > 10 to concur, while 20 SNPs required approximately

35,000 individuals, Figure 6.5a and 6.5b. As the sample size increases, the RMSE

has decreased for all policies, Figure 6.5c. For sample sizes of below 20,000, coverage

is less for 20 SNPs than for 6 SNPs, Figure 6.5d. The instrument with the least p-

value had approximately 95% nominal coverage for all the sample sizes. Figure 6.5e

shows that not all the policies had 5% significance level. For sample size about

10,000, all the polices had power greater than 0.8 (the dotted line in Figure 6.5f),

but this is misleading as type I error hasn’t been controlled.

Selecting instruments by the lowest p-value indicated a decrease in weak instru-

ment bias, as sample size increases. Eventually, all the bias is caused by selection.

The difference in bias and RMSE between 6 and 20 SNPs, is due to the number

of SNPs available; when there are more SNPs to choose from, the more likely to

find a SNP that is highly correlated with the causal SNP and in turn more accurate

estimation of the causal effect. The weak instrument bias from all the SNPs as

instruments, will eventually disappear with adequate sample size. One of the causes

for weak instrument bias is that not enough of the variation is explained to justify

the number of instruments. This is supported by Figures 6.5a and 6.5b, where 20

SNPs have greater bias than 6 SNPs for all the sample sizes in Figures 6.4a and 6.4b.

For the policies of selecting instruments by p-values < 0.05 and F-statistics > 10,

the source of bias is a little more complicated. When sample size is small, these

policies are affected by both selection and weak instrument bias. The selection bias

disappears with adequate sample size, as all the SNPs fulfilled the various criteria,

shown by the average number of instruments in 2SLS in Table 6.3 and the fact

that their evaluation criteria becomes the same as the policy with all SNPs as in-

struments. The increase in sample size, meant all the SNPs would eventually have

sufficient F-statistics, but if the number of available SNPs increases, the sample size

will need to be even greater for the three policies to become equivalent.
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Figure 6.4: Evaluation criteria of best policy for 6 non-causal SNPs simulated from
GENOME with different sample sizes. The instrument selection policies are repre-
sented by the colours of the lines, see legend. The black solid line in bias is zero
bias. The dotted lines in bias, coverage and TIE represent 10% bias, 95% coverage
and 5% significance level respectively.
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Figure 6.5: Evaluation criteria of best policy for 20 non-causal SNPs simulated
from GENOME with different sample sizes. The instrument selection policies are
represented by the colours of the lines, see legend. The black solid line in bias is
zero bias. The dotted line in bias, coverage and TIE is 10% bias, 95% coverage and
5% significance level respectively.
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Table 6.3: Number of genes fulfilled the policies and average number of instruments
included

6 SNPs 20 SNPs

Number of

genes

analysed

Average

number of

instruments

Number of

genes

analysed

Average

number of

instruments

n=5,000

Lowest p-value 10000 1 10000 1

All 10000 6 10000 20

p-value < 0.05 9980 5 9980 14

F-statistic > 10 9796 3 9796 10

n=10,000

Lowest p-value 10000 1 10000 1

All 10000 6 10000 20

p-value < 0.05 9998 5 9998 17

F-statistic > 10 9957 4 9957 13

n=20,000

Lowest p-value 10000 1 10000 1

All 10000 6 10000 20

p-value < 0.05 10000 6 10000 19

F-statistic > 10 9994 5 9994 16

n=30,000

Lowest p-value 10000 1 10000 1

All 10000 6 10000 20

p-value < 0.05 10000 6 10000 19

F-statistic > 10 9997 6 9997 17

n=40,000

Lowest p-value 10000 1 10000 1

All 10000 6 10000 20

p-value < 0.05 10000 6 10000 20

F-statistic > 10 9999 6 9999 18
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n=50,000

Lowest p-value 10000 1 10000 1

All 10000 6 10000 20

p-value < 0.05 10000 6 10000 20

F-statistic > 10 10000 6 10000 19

Conclusion

From examining the results from the 6 evaluation criteria, the ”best” policy for

the increasing sample size and increasing number of SNPs is the policy of lowest

p-valued SNP, from the unadjusted association with X. As this policy produced MR

estimates with the least bias and median bias, approximately 95% coverage and

5% significance level giving the correct power. However, there is a greater variation

between the MR estimates for this particular policy, hence there is a risk of procuring

a very inaccurate estimate from a sample.

The decision on ”best” policy is dependent on the investigators’ definition for

the ”best” and what is best for their sample. For example, if I had 6 SNPs from

5,000 individuals, I would apply the policy where my instruments are SNPs with

F-statistics > 10, as it will give a slightly biased MR estimate. However if I had 20

SNPs, I would give a second thought on using the same policy, as it gave on average

more than 10% bias.

6.5 Discussion

The performance of 2SLS with non-causal SNPs as instruments is dependent on the

sample size and the instruments’ correlation with the causal SNP. The inclusion of

multiple instruments would decrease the variation in the MR estimate. However,

in the presence of weak instrument 2SLS is biased towards the OLS [29] and many

weak instrument bias will occur if the included instruments does not explain more

of the variation in risk factor than the existing set of instruments [220, 227]. See

Section 2.5.3 for more detailed discussion of statistical limitation caused by weak

instruments. Therefore, proposing a restriction on the selection of instruments could

potentially solve this problem but it comes at the cost of selection bias.
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Adopting policies will result in a combination of weak instrument and selection

bias. The instrument with the lowest p-value would most likely give the least bias,

especially when the sample size is large or there are plenty of SNPs to choose from.

However this is not always the case for any one sample. All the SNPs as instruments

is only sufficient when the number of instruments corresponds to the sample size,

i.e. more instruments included requires greater sample size. So far, the evaluation

criteria from F-statistics > 10 (or slightly smaller F-statistics; p-values < 0.05)

seems to have the best of both bias and variation of the estimate. Despite this

balancing act, restricting SNPs with F-statistics > 10 can run the risk of not having

any SNPs that fulfil the criterion. In addition, this particular guideline doesn’t

always guarantee an MR estimate with less than 10% bias in any one sample.

If time wasn’t a limitation, there are several other parameter settings that could

be incorporated into the experiment. For most of the experiments, the causal SNP

only explains 2% of the variation in risk factor of interest. However this is fairly

uncommon. GWAS have a history of discovering genetic variants that explain less

than 1% of the variation in the risk factor of interest. Throughout the experiments

in this chapter, I have restricted the simulations to only generate SNPs with allele

frequencies to be greater than 0.05; the uncertainty in the MR estimate from 2SLS

may be very large when including SNPs with allele frequency less than 0.05. The

instruments used in MR studies were generally established from Genome-wide asso-

ciation studies (GWAS) to avoid overfitting [48]. Therefore to follow the common

practice, I could have included another experiment to examine whether the bias from

the MR estimate would reduce when the best instruments are found in a separate

dataset, i.e. a discovery study.

To conclude, the definition of the ”best” procedure is dependent on the investi-

gator, as every policy has its advantages and disadvantages. Another equally, if not

more important aspect is the characteristic of the investigator’s data, i.e. the sample

size and the number of SNPs available. Davies et al. [85] have recently compared

different estimators with many weak instruments; in the analysis, all the SNPs were

selected as instruments without a selection policy. As it is difficult to distinguish

”best” procedure for any one data, the next chapter will investigate the efficiency

of other estimators with many dependent SNPs.
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Chapter 7

A Comparison of Estimators

7.1 Introduction

The previous chapter concluded that for many dependent instruments, the causal

effect estimate from two-stage least squares (2SLS) was severely biased if all of the

genetic variants were included individually without instrument selection. Chapter 3

found many econometricians have recommended alternatives to 2SLS, some of which

aim to reduce the many weak instruments bias. These include limited information

maximum likelihood (LIML) [61], continuously updating estimator (CUE) [207] and

two-step generalised method of moments (GMM) [126]. Davies et al. [85] have

recently published a comparison of these estimators in the framework of Mendelian

randomisation (MR) with many independent weak instruments and found that LIML

is the most efficient estimator in the case of homoskedasticity. This chapter aims

to find a better estimator of the causal effect for many dependent instruments by

comparing 2SLS, GMM, CUE and LIML.

The genetic information in Section 2.4 suggests an average gene should approx-

imately have 200 SNPs and 90 of them have MAF greater than 0.1 [258]. Hence,

this chapter will consider scenarios where genotypes of 10 to 90 SNPs typical of an

average length gene are available, with MAF greater than 0.1. SNPs from the same

gene are more likely to be inherited together and therefore are correlated within the

population. None of these SNPs has a direct effect on but is associated with the

risk factor of interest through their correlation with the functional SNP, which will

be referred to as the causal SNP. 2SLS, GMM, CUE and LIML will be assessed

by including the non-causal SNPs as instruments, without selection. The previ-

ous chapter found using a selection criteria introduces bias in 2SLS and selecting
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instruments with F-statistic > 10 does not always guarantee an accurate estimate

of the causal effect, perhaps one of these alternatives will be able to give unbiased

estimates of the causal effect without instrument selection.

The summary of each experiment is as follows; the first experiment will investi-

gate the effect of MAF on the four estimators. The SNPs will have patterned LD, i.e.

their correlations will depend on their distances from the causal SNP. In view of the

variety in the structure of SNPs (see for example the regional plots in Schizophrenia

Psychiatric Genome-Wide Association Study Consortium et al. [247]), the second

experiment will examine whether there is a difference in performance with four

distinct genetic patterns. Each pattern will differ in correlation structure with the

causal SNP. The simulations so far have assumed that the correlation between SNPs

depends on their physical proximity. However it is also dependent on other factors

such as recombination rate and genealogy tree [258]. Hence, the third experiment

will use the GENOME simulator [185], where it integrates these correlation factors

into the simulation of SNP haplotypes. Since GENOME simulates realistic genetic

patterns, it does not allow users to control the genetic properties (i.e. MAF and

LD). In order to distinguish the effect of each genetic factor on the estimators, I will

use my own code for SNP simulation for the first and second experiment.

Each experiment will have its own design, results and conclusion section. The

simulation method will follow Chapter 4, with minor changes reported in the design

sections. The results will be presented graphically with corresponding tables in

the Appendix. The chapter ends with a discussion of the conclusions from each

experiment, limitations and implications for the next chapter.

7.2 Experiment 1: Minor Allele Frequency

7.2.1 Aims

The aim of this simulation experiment is to determine the most efficient estimator

for handling many dependent instruments. MAF could potentially affect their per-

formance. Hence, the secondary aim is to investigate the effect of MAF on the four

estimators.
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7.2.2 Design

The genotypes of 10 to 90 SNPs from 2,000 individuals will be available as instru-

ments. 2,000 was chosen, as GRAPHIC Study [274] has approximately 2,000 indi-

viduals and the dataset will be used in Section 10.5. The SNPs will have patterned

LD, where their correlation with each other will be between 0 and 1, depending on

their physical proximity, i.e. as the distance between one SNP to the other tends

to 0, the correlation between them tends to 1, as described in Section 4.2. MAF

for all the non-causal SNPs is 0.45 and for the causal SNP is 0.5. The middle SNP

will be assumed as causal and explains 2% of the variation in the risk factor (X).

X will explain 6% of the variation in the outcome (Y). X and Y will be normally

distributed with sample size of 2,000. The causal SNP will be discarded and the

comparison of estimators will be based on all of the non-causal SNPs as instruments.

The simulation is repeated 10,000 times.

The Winsorised bias and root mean squared error (RMSE), percentage of out-

liers, coverage and power will be calculated from the simulations. A separate sim-

ulation on which X is not directly related to Y will be used to estimate the type I

error (TIE). See Chapter 4 for the definition of these evaluation criteria.

Two further simulations will identify whether the MAF of the instruments will

influence the performance of the four estimators; the next scenario will change the

MAF for non-causal and causal SNPs to 0.1 and 0.05 respectively. The third scenario

will investigate SNPs with MAF that varies between 0.1 to 0.5 as instruments, and

the causal SNP will have MAF of 0.5.

7.2.3 Results

Common allele

Figure 7.1 gives the regional plot where SNP ID minics the SNP positions in a gene

region and −log10P is the −log10 of the p-value from the association for X on each

SNP. The colours demonstrate their correlation with the causal SNP (positioned in

the middle); the further the SNP is from the middle, the weaker the correlation.

Figures 7.1a and 7.1c present the averages of p-values and correlations from 10,000

datasets for 10 and 90 SNPs respectively. Figures 7.1b and 7.1d demonstrate the

variety of patterns within the simulation, showing p-values and correlations for 10

and 90 SNPs, from a random sample.
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(a) Average for 10 instruments
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(b) 1 dataset with 10 instruments
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(c) Average for 90 instruments
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(d) 1 dataset with 90 instruments

Figure 7.1: The regional association plots for 10 and 90 SNPs with MAF of 0.45,
from the average of 10,000 datasets and also a random dataset. The p-value (P) is
the mean p-value from the regression of each SNP on X. On the x-axis is SNP ID
mimicking chromosome position, and on the y-axis for 10,000 datasets is average
-log10 P and a single dataset is -log10 P . Colour coding (from red to navy) denotes
strong to weak correlation with the causal SNP, see the legend; 1.0 are correlations
less than 1 and greater 0.8, and 0.8 are correlations less than 0.8 and greater than
0.6, so on and so forth.

Figures 7.2a to 7.2e give the evaluation criteria for the four estimators with 10

to 90 instruments. As expected, under the condition of homoskedasticity from sim-

ulated data, the performance from 2SLS and GMM are equivalent [116]. The results

seen here are in agreement with the previous chapters; 2SLS becomes biased when

not enough of the variation is explained by the number of instruments. Winsorised

bias from LIML and CUE overlap (Figures 7.2a), where they both have within 10%
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bias, as LIML and CUE ignore nuisance instruments when there are enough strong

instruments. Winsorisation is discussed in Section 4.4. The Winsorised standard er-

ror of the bias (Appendix D.1), demonstrates the increased bias in 2SLS and GMM

over LIML and CUE is not due to sampling error, as their 95% confidence intervals

do not overlap. Unsurprisingly, 2SLS and GMM become more biased as the number

of instruments increases, and biases are similar for CUE and LIML, except for 10

instruments. The increase in bias from 10 to 30, 60 and 90 instruments suggests

CUE and LIML suffer from many weak instruments bias to a certain extent.

The Winsorised RMSE becomes worse as number of instruments increases. Note

the accuracy of RMSE was approximately∓0.1% for 10,000 datasets, see Section 4.5.

CUE and LIML have the lowest RMSE, Figure 7.2b, but have higher percentage of

outliers (Figure 7.2c); this show with many weak instruments CUE and LIML can

give extreme estimates. The outliers are caused by the approximately zero SNP

association with X (βZX), consider causal effect estimation from one instrument

would be very large (≈ βZY
βZX

), if the numerator is almost zero. Figure 7.2c shows

the percentage of outliers for 2SLS and GMM is decreasing with increasing instru-

ments. This is due to the reduction in the variation of causal effect estimate between

datasets. Note that while the percentage of outliers have decreased with increasing

instruments, the causal effect estimates are more biased.

All of the estimators drop from 95% coverage (the dotted line) as the number

of instruments increases, LIML stays close to the nominal coverage for all numbers

of instruments. Coverage has ∓0.4% accuracy from 10,000 datasets, hence the

differences between estimators are not from sampling error. Figure 7.2e gives the

type I error (TIE); all of the estimators increase from 5% significance level as the

number of instruments increases. Therefore the power in Figure 7.2f is misleading;

power of over 0.8 from 2SLS and GMM will need be adjusted for TIE of over 0.4.
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Figure 7.2: Evaluation criteria for including SNPs with the same common MAF in
2SLS, two-step GMM, CUE and LIML. The estimators are coloured as green, red,
purple and maroon respectively. The black solid line in Winsorised bias is zero bias.
The dotted line in Winsorised bias, coverage and TIE is 10% bias, 95% coverage
and 5% significance level respectively. Note 2SLS and two-step GMM are identical
under homoscedasticity. Page 131
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Low minor allele frequency

Figure 7.3 show the regional plot of the average -log10 p-value from the association

with X and correlation with the causal SNP for 90 instruments. As shown by the

regional plot, the further the SNP is from the causal SNP (coloured black) the

weaker the correlation and lower the -log10 p-value. The variation explained by the

non-causal SNPs is the same as the previous section, but instead of having MAF of

0.5, they have MAFs of 0.1 and the causal SNP has MAF of 0.05.
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Figure 7.3: The regional association plots for 90 SNPs with MAF of 0.05, on simu-
lated X in 10,000 datasets. The p-value (P) is the mean p-value from the regression
of each SNP on X. On the x-axis is SNP ID mimicking chromosome position, and
on the y-axis is -log10 P . Colour coding (from red to navy) denotes strong to weak
correlation with the causal SNP, see the legend; 1.0 are correlations less than 1 and
greater 0.8, and 0.8 are correlations less than 0.8 and greater than 0.6, so on and so
forth.

Table 7.1 is the comparison of performance when including SNPs with common

and low MAF in the four estimators. As for the previous case with common MAF,

CUE and LIML are more efficient in terms of Winsorised bias and RMSE when com-

pared to 2SLS and GMM. Note that the change from negative to positive Winsorised

bias in CUE does not mean there is an optimum number of instruments for zero bias,

this only demonstrates that there are too many extremely positive estimates in CUE

for Winsorisation to exclude. This is evident from the greater Winsorised RMSE

(0.06% accuracy from 10,000 datasets), percentage of outliers, and the increase in

CUE’s non-convergence with increasing instruments (Appendix D.3).

All of the evaluation criteria of each estimator deteriorated from common to low
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MAF, except for Winsorised bias which remains similar, Table 7.1. Power has been

left in Appendix D.3 as it is misleading without the adjustment for the increasing

TIE. CUE struggled more to minimize its function in the low MAF case. For 90

instruments 259 datasets could not converge compared with 56 for the common

MAF case, see Appendix D.1 and D.3 .

Table 7.1: The evaluation criteria when including SNPs with the same common
(Com.) and low MAF, in 2SLS, CUE and LIML. Inst., and S.E. are Instruments
and Standard Error of winsorised average respectively.

Inst. 2SLS GMM CUE LIML

Winsorised

Bias(S.E.)

Com.

10 0.1074 (0.0009) 0.1069 (0.0009) -0.0064 (0.0012) -0.0071 (0.0012)

30 0.2193 (0.0007) 0.2191 (0.0007) -0.0120 (0.0014) -0.0113 (0.0014)

60 0.3039 (0.0006) 0.3037 (0.0006) -0.0105 (0.0017) -0.0124 (0.0016)

90 0.3477 (0.0005) 0.3474 (0.0005) -0.0146 (0.0020) -0.0159 (0.0018)

Low

10 0.1355 (0.0010) 0.1362 (0.0010) -0.0101 (0.0015) -0.0125 (0.0015)

30 0.2616 (0.0008) 0.2622 (0.0008) -0.0036 (0.0018) -0.0088 (0.0017)

60 0.3367 (0.0006) 0.3378 (0.0006) 0.0028 (0.0023) -0.0157 (0.0021)

90 0.3733 (0.0005) 0.3740 (0.0005) 0.0324 (0.0027) -0.0099 (0.0024)

Winsorised

RMSE

Com.

10 0.1405 0.1404 0.1249 0.1250

30 0.2302 0.2304 0.1422 0.1396

60 0.3095 0.3097 0.1711 0.1649

90 0.3512 0.3512 0.1959 0.1855

Low

10 0.1698 0.1712 0.1544 0.1538

30 0.2722 0.2735 0.1812 0.1747

60 0.3421 0.3435 0.2309 0.2140

90 0.3769 0.3780 0.2635 0.2375

Percentage

of

Outlier

Com.

10 1.34 1.38 2.52 2.43

30 1.18 1.14 3.22 2.97

60 0.86 0.89 4.75 4.44

Continued on next page
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Table 7.1 – Continued from previous page

Inst. 2SLS GMM CUE LIML

90 0.90 0.79 5.82 6.00

Low

10 1.50 1.47 3.58 3.42

30 1.30 1.29 5.86 5.25

60 1.02 1.07 7.29 6.34

90 1.01 1.03 8.87 8.65

Coverage

Com.

10 85.72 85.33 89.01 93.76

30 48.91 47.94 73.01 90.24

60 10.08 9.85 54.02 84.37

90 1.05 1.05 42.09 80.33

Low

10 83.55 82.78 86.03 93.53

30 41.07 39.65 63.58 88.66

60 6.78 6.43 42.93 82.73

90 0.70 0.76 32.72 77.47

Type

I

Error

Com.

10 0.1427 0.1467 0.1102 0.0622

30 0.5104 0.5206 0.2701 0.0974

60 0.8966 0.8968 0.4499 0.1545

90 0.9890 0.9891 0.5669 0.1911

Low

10 0.1645 0.1722 0.1420 0.0645

30 0.5891 0.6035 0.3686 0.1130

60 0.9321 0.9357 0.5727 0.1726

90 0.9930 0.9924 0.6778 0.2250

Varying minor allele frequency

Figure 7.4 is the regional plot for 90 SNPs, which includes their association with X

(p-value) and their correlation with the causal SNP. The variation explained by the
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non-casual SNPs are the same as the common allele section, i.e. variation explained

is dependent on their correlation with the causal SNP. The difference is that the

MAF of the non-causal SNPs, instead of all having MAF of 0.5, this section allows

each SNP to vary between 0.1 and 0.5.
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Figure 7.4: The regional association plots for 90 SNPs with the variable MAF
between 0.1 and 0.5, on simulated X in 10,000 datasets. The p-value (P) is the
mean p-value from the regression of each SNP on X. On the x-axis is SNP ID
mimicking chromosome position, and on the y-axis is -log10 P . Colour coding (from
red to navy) denotes strong to weak correlation with the causal SNP, see the legend;
1.0 are correlations less than 1 and greater 0.8, and 0.8 are correlations less than 0.8
and greater than 0.6, so on and so forth.

Table 7.2 show similar conclusions for SNPs with common and low MAF; 2SLS

and GMM have higher Winsorised bias and RMSE in comparison to CUE and LIML

for 10 to 90 instruments. However, the percentage of outliers from 2SLS and GMM

is less than LIML and CUE. LIML was closest to 95% nominal coverage and 5%

significance level for all the different numbers of instruments.

Unsurprisingly the difference in evaluation criteria between including SNPs with

common and variable MAF are minimal. Since there is a mixture of SNPs with

common and low MAF, LIML and CUE are more certain to obtain estimates from

the strong instruments and ignore the nuisance instruments that suffers from finite

sample bias. 10,000 datasets give approximately ∓0.1%, ∓0.5% and ∓1% accuracy

to RMSE, Coverage and type I error respectively.
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Table 7.2: The evaluation criteria when including SNPs with the same common
(Com.) and variable (Var.) MAF, in 2SLS, CUE and LIML. Inst., and S.E. are
Instruments and Standard Error of winsorised average respectively.

Inst. 2SLS GMM CUE LIML

Win.

Bias

(S.E.)

Com.

10 0.1074 (0.0009) 0.1069 (0.0009) -0.0064 (0.0012) -0.0071 (0.0012)

30 0.2193 (0.0007) 0.2191 (0.0007) -0.0120 (0.0014) -0.0113 (0.0014)

60 0.3039 (0.0006) 0.3037 (0.0006) -0.0105 (0.0017) -0.0124 (0.0016)

90 0.3477 (0.0005) 0.3474 (0.0005) -0.0146 (0.0020) -0.0159 (0.0018)

Var.

10 0.1130 (0.0010) 0.1133 (0.0010) -0.0127 (0.0014) -0.0128 (0.0014)

30 0.2287 (0.0007) 0.2291 (0.0007) -0.0083 (0.0015) -0.0081 (0.0015)

60 0.3069 (0.0006) 0.3062 (0.0006) -0.0172 (0.0018) -0.0183 (0.0017)

90 0.3488 (0.0005) 0.3489 (0.0005) -0.0071 (0.0020) -0.0097 (0.0019)

Win.

RMSE

Com.

10 0.1405 0.1404 0.1249 0.1250

30 0.2302 0.2304 0.1422 0.1396

60 0.3095 0.3097 0.1711 0.1649

90 0.3512 0.3512 0.1959 0.1855

Variable

10 0.1491 0.1495 0.1364 0.1359

30 0.2400 0.2407 0.1490 0.1463

60 0.3125 0.3122 0.1795 0.1724

90 0.3524 0.3527 0.1988 0.1859

Percentage

of

Outlier

Com.

10 1.34 1.38 2.52 2.43

30 1.18 1.14 3.22 2.97

60 0.86 0.89 4.75 4.44

90 0.90 0.79 5.82 6.00

Variable

10 1.35 1.37 2.62 2.72

30 0.91 0.89 3.68 3.69

60 0.84 0.85 4.78 4.57

Continued on next page
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Table 7.2 – Continued from previous page

Inst. 2SLS GMM CUE LIML

90 0.74 0.77 5.95 6.15

Coverage

Com.

10 85.72 85.33 89.01 93.76

30 48.91 47.94 73.01 90.24

60 10.08 9.85 54.02 84.37

90 1.05 1.05 42.09 80.33

Variable

10 85.10 84.88 88.09 93.52

30 46.69 45.48 70.95 89.50

60 9.59 9.36 52.43 83.95

90 1.00 1.04 41.97 80.03

Type

I

Error

Com.

10 0.1427 0.1467 0.1102 0.0622

30 0.5104 0.5206 0.2701 0.0974

60 0.8966 0.8968 0.4499 0.1545

90 0.9890 0.9891 0.5669 0.1911

Variable

10 0.1486 0.1512 0.1192 0.0648

30 0.5330 0.5452 0.2906 0.1049

60 0.9041 0.9064 0.4760 0.1601

90 0.9900 0.9896 0.5808 0.1994

7.2.4 Conclusions

In the comparison of estimators, LIML had within 10% bias, lowest RMSE, nominal

coverage, and closest to the 5% significance level. Even though LIML gives the least

bias for many instruments, it does suffer from finite sample bias in SNP association

with X, evident from the increase in standard error of the bias from common to low

MAF. Hence, LIML is more likely to estimate an extreme value with rare SNPs.

CUE also demonstrated the same property.
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7.3 Experiment 2: Patterns

7.3.1 Aims

The regional plots in Section 7.2 are not the only genetic patterns seen in GWAS.

The correlation between SNPs do not always distribute themselves evenly according

to their genetic position. This section will examine the performance of 2SLS, GMM,

CUE and LIML for other genetic patterns. The performance of each estimator will

be based on instruments that are non-causal SNPs. The aim of this experiment

will be to identify the difference in performance between the four estimators in four

distinct genetic patterns, as illustrated in Figure 7.5d.

7.3.2 Design

In all four patterns, the minor allele frequency (MAF) for the non-causal SNPs will

be variable between 0.1 and 0.5, and will be 0.5 for the causal SNP. For Patterns

I to III, the middle SNP will be assumed to be causal and will explain 2% of the

variation in the risk factor (X). Pattern IV has two causal SNPs, each explaining

1% of the variation in X and thus the p-values are lower in comparison to the other

patterns. X will explain 6% of the variation in the outcome (Y). X and Y will be

normally distributed with sample size of 2,000. The causal SNP will be discarded

and the instruments included in 2SLS, GMM, CUE and LIML will be the non-causal

SNPs. The simulation will be repeated 10,000 times.

7.3.3 Results

Figure 7.5 shows the regional plot of each pattern; the SNP correlations with the

causal SNP (coloured black) decline as the distance increases in Pattern I, and

hence the p-value from the association of X decreases. In Pattern II, the SNP

correlations with the causal SNP are considerably weaker than Pattern I. Pattern

III has a plateau effect where SNPs closest to causal SNP have similar correlations

with a sharp drop at recombination points. Pattern IV has two causal SNPs, each

explained 1% of the variation in X and thus the p-values are lower in comparison to

the other patterns.
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(a) Pattern I
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(b) Pattern II
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(c) Pattern III
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(d) Pattern IV

Figure 7.5: The regional association plots for the four patterns with 90 SNPs of
10,000 simulations. The p-value is the mean p-value from the regression of each
SNP on X. On the x-axis is SNP ID mimicking chromosome position, and on the
y-axis is -log10 P . The black dot is the causal SNP. Colour coding (from red to
navy) denotes strong to weak correlation with the causal SNP, see the legend; 1.0
are correlations less than 1 and greater 0.8, and 0.8 are correlations less than 0.8
and greater than 0.6, so on and so forth.

Winsorised Bias

Figure 7.6 shows the Winsorised bias for Patterns I to IV. 2SLS and GMM estimates

are more biased than CUE and LIML, and bias increases with number of instruments

included in the algorithm. Estimates from CUE for Patterns I, III and IV have

stayed within 10% bias for all instruments, however for Pattern II its bias is no
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longer within 10%, caused by the greater number of weak instruments. LIML is

a slightly more efficient estimator as its bias remains the same as the number of

instruments increases, even for Pattern II, shown by the Winsorised S.E. for bias in

Appendix D.4 to D.7. The change from negative to positive bias in CUE for all the

patterns is due to the increase in number and magnitude of extreme estimates with

number of instruments (as shown by the increasing Winsorised S.E., RMSE and

percentage of outliers). As there are too many extreme estimates Winsorisation can

not trim enough of them to not influence the mean causal effect estimate. The same

explanation applies to the change of negative to positive bias in LIML for Pattern

II.

Winsorised RMSE

The Winsorised RMSE from 2SLS, GMM, CUE and LIML for all four patterns

are shown in Figure 7.7. Patterns I and III have slightly better RMSE from the 4

estimators. This is because of the simulation method; these patterns are more likely

to generate strong instruments. This is contrast with the higher RMSE for Pattern

II in Figure 7.7b where there are weaker instruments. The RMSE increases with

number of instruments for all four algorithm, this is because the proportion of weak

instruments has increased where the estimators becomes less certain.

These plots show that for each pattern the CUE and LIML have lower RMSE

in comparison to 2SLS and GMM, except for Pattern II with 10 instruments; CUE

and LIML are efficient when there are enough strong instruments for the estimators

to ignore the random noise caused by the weak instruments [253] which follows

the decrease in RMSE with 30 instruments, the variation of causal effect estimates

between datasets reduces, as the chance of having a strong instrument out of 30 is

higher than 10 for every datasets. However, RMSE increases again after 30, as there

are more weak instruments.

When comparing RMSE from LIML and CUE, LIML seem to be in a slightly

better position; this is caused by finite sample bias in the first stage regression.

Even though LIML has a similar weighting algorithm to CUE, the LIML minimising

function is equivalent to 2SLS divided by variance of the OLS estimates. Since 2SLS

is biased towards OLS with weak instruments, LIML avoids the ratio of 1 which

reduces the bias to a certain extent. On the other hand CUE cannot distinguish

SNPs with genuine correlation with the causal SNP, resulting from the finite sample

bias in the first-stage regression. Then uncorrelated SNPs that have zero association

Page 140



CHAPTER 7. A COMPARISON OF ESTIMATORS

with X will be given the same weighting as correlated SNPs, and approximating

extreme estimate as a result.
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Figure 7.6: Winsorised bias from 2SLS, two-step GMM, CUE and LIML for all four
Patterns. The estimators are coloured as green, red, purple and maroon respectively.
The estimation from 2SLS and two-step GMM are similar, therefore the green and
the red are superimposed. The black solid line in each plot is zero bias and the
dotted line is 10% bias.
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Figure 7.7: Winsorised RMSE from 2SLS, two-step GMM, CUE and LIML for
all four Patterns. The estimators are coloured as green, red, purple and maroon
respectively. The estimation from 2SLS and two-step GMM are similar, therefore
the green and the red are superimposed.

Percentage of Outliers

Here we start to see the disadvantages to CUE and LIML, in their percentage of

outliers (Figure 7.8). When the proportion of weak instruments is too great, CUE

and LIML become unstable, their range of estimates becomes significantly wider, as

demonstrated by their higher percentage of outliers compared to 2SLS and GMM,

shown in Appendix D.4 to D.7. Unlike CUE and LIML, the percentage of outliers for

2SLS and GMM are declining as number of instruments increases. This is because
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the variation between causal effect estimate of each dataset is decreasing with more

instruments included in the algorithm, as seen in Chapter 6, which reduces the

interquartile range. Nonetheless, the 2SLS and GMM estimates are severely biased

shown by Figure 7.6.

The percentage of outliers for CUE and LIML increases with number of instru-

ments for all four patterns. Pattern I shows minor difference between them, where

CUE has a higher percentage. By contrast Pattern II suggests that LIML has more

outliers with 90 instruments, but since about 3% of the data could not converge

for CUE (Appendix D.5), the difference in performance between LIML and CUE

becomes less convincing. Similar to Winsorised RMSE, outliers have dropped by

increasing from 10 to 30 instruments, where the same explanation applies. At 30

instruments, LIML and CUE have demonstrated a contrast in Pattern III; this is

due to CUE placing too much weight on SNPs that gives near zero association with

X which overestimate the causal effect. Again, Pattern IV displays a higher per-

centage of outliers for LIML than CUE, but again this is misleading as there were

approximately 1.5% and 2% of data with non-converging CUE estimates for 60 and

90 instruments respectively, shown in (Appendix D.7).

Coverage

Figure 7.9 demonstrate the coverage from all the estimators for Pattern I to IV.

Pattern I to IV are in agreement with each other; coverage declines as number of

instruments increases and LIML estimates are closer to the 95% nominal coverage.

As expected Pattern II has slightly lower coverage in comparison to the other pat-

terns and a crossing between 2SLS and CUE at 10 instruments which demonstrates

the issue with the CUE weighting algorithm when there are not enough strong in-

struments, as mentioned previously in the discussion on Winsorised RMSE. The

difference in coverage between the 4 estimators, except between 2SLS and GMM is

not due to sampling error, as 10,000 datasets gives approximately 0.45% accuracy

to the 95% coverage.
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Figure 7.8: Percentage of Outliers from 2SLS, two-step GMM, CUE and LIML for
all four Patterns. The estimators are coloured as green, red, purple and maroon
respectively. The estimation from 2SLS and two-step GMM are similar, therefore
the green and the red are superimposed.
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Figure 7.9: Coverage from simulation of the comparison of 2SLS, two-step GMM,
CUE and LIML for all four Patterns. The estimators are coloured as green, red,
purple and maroon respectively. The estimation from 2SLS and two-step GMM are
similar, therefore the green and the red are superimposed. The dotted line in each
plot is the 95% coverage.

Type I Error and Power

Type I error (TIE) and power from 2SLS, GMM, CUE and LIML are shown in

Figures 7.10 and 7.11 respectively. TIE increases from 5% significance level (the

dotted line) as the number of instruments increases and therefore the power curve

in Figure 7.11 becomes deceiving for all 4 estimators. LIML estimates are closer to

5% significance level for 10 to 90 instruments. 10,000 datasets give approximately
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∓1% accuracy to 5% significant level, hence the cross-over between 2SLS and CUE

with 10 instruments is not due to sampling error, but more likely due to the lack of

strong instruments from Pattern II causing CUE fails to detect no effect.
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Figure 7.10: TIE from 2SLS, two-step GMM, CUE and LIML for all four Patterns.
The estimators are coloured as green, red, purple and maroon respectively. The
dotted line in each plot is the 5% significance level.
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Figure 7.11: Power from 2SLS, two-step GMM, CUE and LIML for all four Patterns.
The estimators are coloured as green, red, purple and maroon respectively. The
dotted line in each plot is the 0.8 power.

7.3.4 Conclusions

The differences in genetic pattern did not affect LIML’s efficiency in comparison to

2SLS, GMM and CUE; this was similar to the previous section where LIML provided

the best evaluation criteria, except for percentage of outliers which increases with

number of instruments within the algorithm. 60% of the time LIML and CUE

provide unbiased estimates. However the assurance of accurate estimate of the

causal effect heavily relies on the accuracy of the SNP associations with X; the

finite sample bias in the first-stage regression could be detrimental.
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So far I have been able to control the MAF and the correlation of each SNP,

to identify the potential factors affecting the four estimators. In order to create an

ever more realistic genetic structure, a GENOME simulator will be used in the next

experiment.

7.4 Experiment 3: GENOME

7.4.1 Aims

This experiment will apply SNPs from an average length gene as instruments, where

they will be simulated by GENOME [185]. GENOME generates realistic genetic cor-

relations; the correlation between SNPs does not always depend on their physical

proximity and high correlation usually occurs in relatively small random blocks,

known as haplotype blocks [258]. GENOME does not allow the user to control the

number of SNPs with specified MAF and the correlation between SNPs. Conse-

quently it is more difficult to identify the factors affecting the performance of the

four estimators, and hence for the previous experiments I have designed my own

SNPs simulation method.

The experiments in this Chapter are considering the case where the causal SNP is

unmeasured and therefore the likely explanation would be that the functional allele

is rare as the rare alleles are harder to detect. Then the aim of this experiment

will be to monitor the performance of 2SLS, GMM, CUE and LIML with common

(MAF > 0.1) and non-causal SNPs as instruments, to see whether the evaluation

criteria of each estimator with realistic genetic patterns differs from the previous

experiments with artificial genetic patterns.

7.4.2 Design

There are approximately 200 SNPs in an average sized gene [112], hence GENOME

will be set to generate genotypes of 200 SNPs for 2,000 individuals as described in

Section 4.2. The potential instruments are SNPs with common MAF (> 0.1) and

the causal SNP will be randomly chosen among SNPs with low MAF (< 0.1). The

causal SNP will explain 2% of the variation in X and 6% of the variation in Y will

be explained by X. X and Y will be normally distributed with sample size of 2,000.

All of the rare SNPs will be discarded, therefore the performance of the estimators

Page 148



CHAPTER 7. A COMPARISON OF ESTIMATORS

will only be based on common non-causal SNPs as instruments. The simulation will

be repeated 10,000 times and evaluated as in Section 4.4.

7.4.3 Results

Table 7.3 gives the summary of the number of SNPs with common MAF from 10,000

datasets. Most of the datasets have approximately 30 instruments, but the number

of SNPs is variable between 12 to 50. There is one dataset that had only SNPs with

rare MAF (< 0.05), under ”NA” in Table 7.3.

As expected, due to the nature of the simulation, GENOME does not have the

options to control the MAF of the SNPs and their correlation with another, and

consequently produced some datasets with many weak instruments. Hence, the

range of causal effect estimates from CUE and LIML is very wide. Even though

2SLS and GMM causal effect estimates are less varied (standard error) they are

biased, whereas CUE and LIML have more accurate estimates on average, shown by

Winsorised bias in Table 7.4. LIML and CUE are minimizing the same function in

the case of homoskedasticity [84] and hence the similarity in their bias and RMSE.

CUE has the lower Winsorised RMSE and proportion of outliers; nonetheless the

difference with LIML’s estimates seems minimal as there were 89 datasets for which

CUE did not converge.

The coverage for LIML is nearest to the 95% nominal coverage in comparison

to the other estimators (Table 7.4). LIML’s type I error is closer to the 5% signifi-

cance level and hence its power is more believable whereas the other estimators has

seemingly greater power, but it is exaggerated as adjust for the greater type I error

is required.

The extreme estimate values from CUE with standard deviation of the mean

is 98488, is due to CUE’s weights relying on the causal effect estimate of each

instrument. Therefore the SNPs that have high correlations with the causal SNP

will not be given more weight, as their estimates are affected by finite sample bias.

Figure 7.12 is an example that demonstrates this mechanism, where CUE estimated

the causal effect to be −1.6316 × 106 and LIML gave 0.6986 (the true effect is

0.2449). Even though they both gave extreme estimates, CUE was worse. The first

thing to note is that there were 40 instruments and most of them have estimates

of zero association with X, βZX , were all below 0.1 (Figure 7.12b). The next thing

is that the SNPs are highly correlated with the causal SNP and have MAF < 0.2,

which will cause finite sample bias in estimates of their association with X from the
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Table 7.3: Summary of GENOME simulated genetic instruments

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

Number of Instruments 12 28 31 31 34 50 1

first regression. Consequently CUE will give similar weight to estimated βZX on

each SNP, which as a single instrument overestimates the causal effect (equivalently
βZY
βZX

), where the algorithm divides βZY by approximately zero.

Chao and Swanson [61] found LIML has Cauchy-type tails in its finite sample

distribution, which means it is a median unbiased estimator but badly behaved at

the ends, hence the reason for Winsorisation. In the presence of weak instruments,

weak could be due to finite sample bias and/or low variation explained. Then the

minimising function for LIML, QLIML, minimizes by increasing its denominator

(equivalent to the OLS estimate) to avoid a ratio of 1, as explained in Experiment 2

of this Chapter. Figure 7.13 is an example of LIML estimating -1603 for the causal

effect and CUE gave -5.599; there are 33 instruments and only two instruments have

correlation > 0.3 with the causal SNP (Figure 7.13c) and both have MAF < 0.3 i.e.

low variation explained and lack of data respectively. The inaccuracy in CUE is not

as large, as there is smaller number of SNPs with near zero βZX .

Figure 7.14 is an example where CUE and LIML had the most accurate causal

effect estimate; there are 24 instruments and most of them have a strong correlation

with causal SNP, high −log10(p-value) and βZX above 0.1. Even though there are

quite a few SNPs with near zero βZX , but there are enough strong instruments to

outweigh them.

7.4.4 Conclusions

The GENOME simulated SNPs showed that for most of the datasets CUE and LIML

gave less biased causal effect estimates than 2SLS and GMM. LIML estimates gave

approximately 95% nominal coverage and 5% significance level, whereas the other

estimators did not. Hence, we have arrived at the same conclusion as in the previous

experiment.

The outliers in CUE and LIML were caused by many weak instruments. Perhaps

excluding weak instruments will be a solution to reduce the extreme causal effect

estimates from CUE and LIML, or not analyse a particular dataset if it contains too

many weak instruments. This theory will be investigated in the next experiment.
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Figure 7.12: An example of a dataset yielding an inaccurate causal effect estimate for
CUE. The four plots give each SNPs’ p-value, βZX , correlation with SNPc and MAF.
P-value and βZX is−log10(p-value) and coefficient estimate from the association with
X. The SNP coloured in red has correlation > 0.5 with the causal SNP.
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Figure 7.13: An example of a dataset yielding an inaccurate causal effect estimate
for LIML. The four plots give each SNPs’ p-value, βZX , correlation with SNPc
and MAF. P-value and βZX is −log10(p-value) and coefficient estimate from the
association with X. The SNP coloured in red has correlation > 0.3 with the causal
SNP.
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Figure 7.14: The dataset that gives the most accurate causal estimate for both
LIML and CUE. The four plots give each SNP’s p-value, βZX , correlation with
SNPc and MAF. P-value and βZX is −log10(p-value) and coefficient estimate from
the association with X. The SNP coloured in red has correlation > 0.5 with the
causal SNP.
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7.5 Experiment 4: Selection of Data and Instru-

ments in GENOME

7.5.1 Aims

As seen from the previous experiment, GENOME simulated datasets had too many

weak instruments which caused the 2SLS, two-step GMM, CUE and LIML to give

extreme causal effect estimates. The next experiment will examine the most popu-

lar criterion for the selection of instruments, an F-statistic greater than 10, to see

whether this is able to reduce the number of outliers. In order to demonstrate se-

lection bias, the choice of instruments will be from the same dataset as used in the

MR analysis.

7.5.2 Design

The design of this experiment will be identical to the previous experiment, ex-

cept this experiment includes two procedures to exclude weak instruments from the

10,000 datasets, involving the F-statistic of the individual SNP association with X;

1. All the SNPs will be used as individual instruments, if datasets in the analysis

possess SNPs with any F-statistics > 10.

2. With datasets from the previous criterion, only include SNPs with F-statistic

of > 10 as individual instruments in the analysis.

Henceforth the first and second criteria will be referred to as filtering and selec-

tion criteria respectively.

The F-statistic of 10 is equivalent to a p-value of 0.001 for sample size of 2,000.

The performance of 2SLS, two-step GMM, CUE and LIML will be monitored by

mean and median bias, root mean squared error (RMSE), coverage and power from

datasets that satisfies the criteria. Winsorisation will not be used in this experi-

ment as the criteria should not give the extreme estimates seen previously. Type I

error (TIE) will be calculated from a separate simulation where X does not directly

influence Y.
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7.5.3 Results

Table 7.5 show that less than half of the 10,000 datasets satisfy both of the conditions

and the mean causal effect estimate for both CUE and LIML show that they no

longer give extreme estimates, except for one dataset (Figure 7.15) which caused

the former to produce an outlier; even though this dataset had instruments with

F-statistics > 10 but their correlations with the causal SNP were below 0.2. In

addition, this dataset had too many instruments with approximately zero association

with X, 43 SNPs in total. Note that LIML also estimated an inaccurate causal effect

estimate from this dataset; -0.1553. This show that an F-statistic > 10 does not

always manage to exclude the weak instruments, in line with Palmer et al. [220]’s

findings. The standard error for CUE and LIML have reduced after both criteria.

As expected the 2SLS and GMM have the least bias under selection criteria, as

the amount of variation explained is sufficient for the number of instruments. LIML

prefers filtering as there are enough strong instruments within the dataset and it

is therefore able to ignore the nuisance instruments. CUE should have performed

better under filtering criterion too, but the one dataset mentioned above is pulling

the mean bias away from zero, as demonstrated by the relatively smaller median

bias. The difference between mean and median bias from the four estimator is minor

when compared to no selection.

Even though the median bias from CUE and LIML for datasets without selection

is less than filtering and selection, due to datasets with many weak instruments, the

RMSE is much worse without selection. Interestingly, the least bias for 2SLS and

GMM gave the highest RMSE, this is because by chance the instruments chosen

within some datasets are not actually correlated with the causal SNP and therefore

inaccurately estimating the causal effect; the difference in mean and median bias is

because of the small number of datasets with extreme estimates.

LIML still had near to nominal coverage in comparison to the other estimators,

even with selection and filtering. Out of all four estimators, LIML is closest to the

5% significance level. Thus, the 0.8 power from 2SLS and GMM is misleading, since

they do not have 5% TIE nominal level for any criteria.

CUE struggles to converge in some datasets even in the absence of weak instru-

ments (F-statistic < 10).
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Figure 7.15: The dataset that give the most inaccurate causal estimate for CUE.
The four plots give each SNPs’ p-value, βZX , correlation with SNPc and MAF. P-
value and βZX is −log10(p-value) and coefficient estimate from the association with
X. The SNP coloured in red has correlation > 0.2 with the causal SNP.

7.5.4 Conclusions

In conclusion, even after applying the selection and filtering criteria, LIML is still

the most efficient estimator when examining all of the evaluation criteria.

In terms of preventing outliers in CUE and LIML, the selection criterion have

reduced the standard error and RMSE in comparison to no selection, however this

introduces selection bias, since the filtering criterion has a lower bias. In comparison

the filtering criterion prevented outliers from LIML but not from CUE, as seen from
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the relatively large difference between mean and median bias.

7.6 Discussion

The experiments in this chapter have concluded limited information maximum like-

lihood (LIML) to be the preferred estimator for many dependent instruments, in

comparison to the two-stage least squares (2SLS), two-step generalised method of

moments (GMM) and continuously updating estimator (CUE). The errors in the

simulated datasets were under the condition of homoskedasticity, see Section 3.2.2.

LIML gave the least Winsorised bias and RMSE, approximately 95% coverage and

5% significance level for different numbers of instruments. However, LIML does also

suffers from weak instrument bias as was evident from the selection and filtering

experiment, where the number of outliers have been diminished.

2SLS and GMM estimators have the same algorithm under the condition of

homoskedasticity [116], hence the similarity in their performance throughout the

experiments. The results from this chapter and Chao and Swanson [61] demonstrate

the superiority of LIML for many weak instruments; LIML’s minimising function is

essentially 2SLS divided by OLS estimates, and 2SLS is biased towards the OLS in

the presence of weak instruments [253], hence the minimising function would avoid

a ratio of 1. However, if the association between X and the instrument is weak,

either caused by finite sample bias and/or the correlation with the causal SNP is

weak, leading to an inaccurate first-stage regression then LIML would avoid a ratio

of 1 by finding a value that calculates a very large OLS estimate to compensate for

the large 2SLS [61]. CUE uses the same weighting algorithm as GMM, but instead

of incorporating 2SLS estimates to approximate weights for each instrument, it goes

through different possible values for the causal effect and updates the overall causal

effect estimate, to minimise its function. However, if the sample size is small the

instrument association with X will approximate to zero which overestimates the

causal effect as a result.

The conclusion from this chapter is consistent with the results in Davies et al.

[85], where they have also compared 2SLS, CUE and LIML and found LIML to be

the least biased estimator for many weak independent instruments in the case of

homoskedasticity. They used the median and IQR of the causal effect estimates

and so did not present the extreme estimates, stating that “LIML estimator and

CUE have occasionally very large outliers”. The outliers were also shown in the

Page 158



CHAPTER 7. A COMPARISON OF ESTIMATORS

M
ea

n
β̂
X
Y

(S
.D

.)
S
ta

n
d
ar

d
E

rr
or

M
ea

n
B

ia
s

M
ed

ia
n

B
ia

s
R

M
S
E

C
ov

er
ag

e
T

IE
P

ow
er

N
on

-
C

on
ve

rg
en

ce

N
o

S
e
le

ct
io

n
(N

=
1
0
,0

0
0
)

2S
L

S
0.

43
07

(0
.1

39
8)

0.
00

14
0.

18
57

0.
18

43
0.

23
24

66
.1

46
6

0.
33

81
0.

86
92

0

G
M

M
0.

43
07

(0
.1

41
3)

0.
00

14
0.

18
57

0.
18

50
0.

23
34

65
.2

36
5

0.
34

76
0.

87
23

0

C
U

E
81

1.
07

94
(9

84
88

)
98

9.
35

81
0.

83
0.

00
09

98
48

7
77

.9
21

3
0.

22
51

0.
49

91
89

L
IM

L
0.

07
80

(1
6.

47
)

0.
16

47
-0

.1
67

0
-0

.0
01

9
16

.4
70

3
91

.0
59

1
0.

08
93

0.
37

12
0

In
cl

u
d
in

g
in

st
ru

m
e
n
ts

w
it

h
F

-s
ta

ti
st

ic
s
>

10
(N

=
4
,3

4
7
)

2S
L

S
0.

37
94

(0
.2

38
2)

0.
00

36
0.

13
44

0.
12

88
0.

27
35

85
.1

39
2

0.
14

84
0.

48
10

0

G
M

M
0.

37
94

(0
.2

38
3)

0.
00

36
0.

13
45

0.
12

85
0.

27
36

84
.9

78
1

0.
15

02
0.

48
42

0

C
U

E
0.

35
66

(0
.2

53
2)

0.
00

38
0.

11
17

0.
10

15
0.

27
67

86
.2

90
3

0.
13

76
0.

44
12

7

L
IM

L
0.

35
61

(0
.2

51
4)

0.
00

38
0.

11
11

0.
09

98
0.

27
49

87
.6

00
6

0.
12

38
0.

41
45

0

D
a
ta

se
ts

w
it

h
in

st
ru

m
e
n
ts

w
it

h
F

-s
ta

ti
st

ic
s
>

10
(N

=
4
,3

4
7
)

2S
L

S
0.

46
05

(0
.1

47
4)

0.
00

22
0.

21
56

0.
21

27
0.

26
12

58
.3

62
1

0.
41

59
0.

90
68

0

G
M

M
0.

46
04

(0
.1

49
7)

0.
00

23
0.

21
55

0.
21

17
0.

26
24

57
.3

26
9

0.
42

67
0.

90
80

0

C
U

E
-6

37
.1

3
(4

18
60

)
63

7.
41

11
-6

37
.3

8
0.

03
96

41
86

0
74

.7
97

1
0.

25
68

0.
56

62
34

L
IM

L
0.

26
15

(0
.9

49
7)

0.
01

44
0.

01
65

0.
03

70
0.

94
97

87
.1

17
6

0.
12

86
0.

43
39

0

T
ab

le
7.

5:
E

va
lu

at
io

n
C

ri
te

ri
a

fr
om

2S
L

S
,

T
w

o-
st

ep
G

M
M

,
C

U
E

an
d

L
IM

L
w

it
h

G
E

N
O

M
E

si
m

u
la

te
d

ge
n
et

ic
in

st
ru

m
en

ts
.

T
h
e

tr
u
e
β
X
Y

is
0.

24
49

.

Page 159



CHAPTER 7. A COMPARISON OF ESTIMATORS

experiments of this Chapter. However, there were no further discussions of these

outliers in their paper.

Staiger and Stock [253] have proposed selecting instruments with F-statistics

> 10 from their association with X to reduce the weak instrument bias from 2SLS,

which have been widely implemented ever since. The last experiment also applied the

same selection criterion for including instruments in LIML and CUE to prevent the

extreme outliers. Note that an F-statistics > 10 does not always manage to exclude

weak instruments, shown by Experiment 4 and Palmer et al. [220]. Nevertheless,

Econometricians have designed other selection criteria specifically for LIML and

CUE, such as minimising mean squared error to choose an instrument set for LIML

[92], and Andrews [10] demonstrated that a Bayesian information criterion (BIC)

with upward and downward testing yields consistent estimates from GMM (CUE is

a form of GMM).

The mean causal effect estimate of 10,000 datasets with many instruments from

CUE and LIML was not accurate, as their standard error without Winsorisation

were relatively large, therefore more simulations should have been performed. How-

ever, the algorithm of CUE and LIML with many instruments is computationally

intensive; to run 10,000 datasets with 90 instruments took approximately 100 hours.

Pattern IV is imitating two haplotype blocks within a region, where the two causal

SNPs in separate blocks have independent effect on exposure and are not in LD,

shown in Figure 7.5d. Further simulation is required for patterns where these two

causal SNPs have varying correlation between them, but still have independent ef-

fect on the exposure of interest. This could give similar conclusion to the scenario

in Section 5.5.1, where the two non-causal SNPs both explain the same amount of

variation due to their high correlation with the causal SNP, nevertheless when they

are in high LD with each other, including both as instruments did not explain any

more variation.

This chapter has concluded that from the four estimators, LIML was the pre-

ferred estimator for many weak instruments but it can still be affected by sample

size and variation explained. In addition, the conclusion was made from 60% of the

datasets, hence LIML is only a median unbiased estimator and can still behaved

badly in some samples. Intuitively, the next step would be to compare the classical

to the Bayesian approach, to see whether Bayesian methods could provide consistent

estimates of the causal effect for many weak instruments or be able to select relevant

instruments internally without introducing selection bias.
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Chapter 8

Bayesian Approaches to

Mendelian Randomisation

8.1 Introduction

From the previous chapter we have seen that limited information maximum likeli-

hood (LIML) is only median unbiased, there are still cases where it can be severely

biased when there are many weak instruments. Using the F-statistic and p-value

have reduced the weak instrument bias, however it comes with the cost of selection

bias if instrument selection was performed on the data under analysis, and some

datasets may not have SNPs that have fulfilled the selection criteria. The selection

of instruments using the p-value or F-statistic cannot distinguish between situa-

tions in which (1) there is not sufficient data to detect an effect and (2) the data

provides evidence for the null hypothesis [139]. By computing the posterior effect

probability, the Bayesian approach is able to differentiate these two scenarios. To

demonstrate, consider an example from Hoeting et al. [139], where for treatment A

P (β 6= 0|Data) = 22% and treatment B P (β 6= 0|Data) = 2%, which indicates there

is uncertainty in a conclusion that treatment A had no effect whereas for treatment

B there is evidence of no effect from the data. For more detailed debate of the

limitations of p-value and the advantage to the Bayesian posterior probability, see

Marden [195].

Bayesian approaches offer a systematic and structured way of incorporating ex-

ternal biological knowledge into the statistical analysis [23]. Many publications

have discussed the plausibility of the genetic effect from their analysis using exter-

nal biological information [114]. Therefore why not incorporate this information
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into statistical analysis? The inclusion of prior knowledge is developing in genetic

association studies; Rannala and Reeve [233] was the first to use the human genome

sequence as an informative prior for Bayesian gene mapping. Cantor et al. [57] have

reviewed different prior knowledge for SNP selection for genetic association studies

from meta-analysis, gene interaction and pathway analysis. The application of bioin-

formatics techniques have been advocated to prioritise the most biologically relevant

genes for further investigation [201]. Minelli et al. [200] have incorporated experts’

opinion with the findings in meta-analysis for gene prioritisation and its companion

paper, Thompson et al. [267] used these findings as weightings in Bayesian analysis.

In the context of Mendelian randomisation, instead of selecting instruments in an

arbitrary fashion, instruments that demonstrate biological relevance to the exposure

of interest can be given more weight or instruments that have shown association with

the exposure of interest in a meta-analysis.

Biological mechanisms are often complex, but as the Bayesian paradigm is based

on probability, it provides a straightforward and consistent way of modelling biolog-

ical complexity [290]. Consider an example where there are three possible models;

in the classical setting, comparisons of these three models are dealt with indirectly

by hypothesis testing with the null model, whereas the Bayesian method estimates

the posterior probability for each model to give evidence of their plausibility [249].

Thanks to the advancement of Markov chain Monte Carlo (MCMC), a sampling al-

gorithm in Bayesian computation [192], it is computationally efficient to fit realistic

models to complex datasets. Datasets with measurement errors, missing observa-

tions, multilevel correlation structures and latent variables can be incorporated into

the Bayesian model [96]. Conversely, due to the high dimensional integration, the

optimisation approaches for fitting such models can be difficult when the assump-

tions of normality and non-linearity are violated.

The advantages of the Bayesian approach as an alternative to the classical have

been well recognised and advocated in genetic association [23, 256] and observa-

tional epidemiological studies [96, 119]. Therefore, contemplating the benefits of

the Bayesian approach and its recognition in genetic association and observational

epidemiological studies, I will compare the Bayesian to the classical methods in

Mendelian randomisation.

The purpose of this chapter is to describe a Bayesian algorithm that gives good

estimates for many weak instruments. Bayesian methods are not widely used in

Mendelian randomisation studies but two literature searches will be performed;
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(1) a review of the current methodological literature for Bayesian approaches to

Mendelian randomisation and (2) econometric literature of the Bayesian approaches

to instrumental variable analysis.

8.2 A review of Bayesian approaches to Mendelian

randomisation

The earliest mention of Bayesian approach to Mendelian Randomisation (MR) was

by Thompson et al. [266], where their main aim was to obtain the causal ef-

fect through applying summary data from multiple genotype-phenotype (ZX) and

genotype-outcome (ZY) studies without the need to include the within-study correla-

tion between ZX and ZY. For binary outcomes, McKeigue et al. [198] have designed

a Bayesian approach to Mendelian randomisation, which also allows for missing

data. Burgess et al. [47] introduced a solution to the problem of weak instruments

by utilising data from meta-analysis via the Bayesian method, which takes account

of different SNPs measured in different studies and heterogeneity between studies.

Their next paper proposed 4 Bayesian methods for imputing the missing data in

MR studies; multiple imputations, SNP imputation, latent variables and haplotype

imputation [43].

Jones et al. [153] published a detailed paper on the impact of the choice of priors

in estimating the causal parameter, where they advised against vague priors for

datasets with weak instruments or small sample sizes. However, an informative

prior has to be chosen carefully as there is large variation in parameter estimates

with different priors. They have also examined the performance of three models

with different parametrisations, naming them as the ”full”, correlated errors and

independent errors model. Consider the equation for Mendelian Randomisation;

X = α0 + α1Z + α2U + εx (8.1)

Y = β0 + β1X + β2U + εy (8.2)

where Z is the genetic instrument, X is the risk factor, Y is the outcome, U is the

confounder, εx ∼ N(0, τx) and εy ∼ N(0, τy). The ”full” model makes assumptions

on conditional distribution of U, X and Y;
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U ∼ N(0, 1) (8.3)

X|(Z,U) ∼ N(µx, τ
2
x) (8.4)

Y |(X,U) ∼ N(µy, τ
2
y ) (8.5)

where µx = α0 +α1Z+α2U and µy = β0 +β1X+β2U and therefore have eight inde-

pendent priors on eight parameters; α0, α1, α2, β0, β1, β2, τx, τy. Instead of modelling

the confounder independently, it can be described as a correlated error between X

and Y, and the equation for Y is rewritten as the reduced form where the X in

Equation 8.2 has been substituted in terms of Z. Hence the correlated errors model

has the structure;

[X, Y |Z] ∼MVN

 α0 + α1Z

β0 + β1α0 + β1α1Z

 ,
σ2

x λ

λ σ2
y

 (8.6)

where σ2
x = V ar[X|Z], σ2

y = V ar[Y |Z], λ = Cov(X, Y |Z) = ρσxσy and ρ is the

correlation between X and Y. Finally, the independent errors model is defined by

the following form;

X|Z ∼ N(µx, σ
2
x) (8.7)

Y |Z ∼ N(µy, σ
2
y) (8.8)

where µx = α0 +α1Z and µy = β0 +β1α0 +β1α1Z. This model is equivalent to 2SLS

where you predict X from Z and substitute the predicted X into Y. The independent

errors model structure is taken from Burgess et al. [47]. Jones et al. [153] found that

the ”full” model gives the least biased causal effect estimate when the sample size

is small and the strength of the instrument is relatively weak. With informative

priors the correlated errors model becomes more efficient. The independent model

only performs well when the confounding between X and Y is weak, as the model

assumes that the error terms in 8.6 are independent, which does not follow the 3 core

assumptions for instrumental variable (Chapter 1). Thompson et al. [266] have also

applied the correlated error model to their problem, but they were meta-analysing

multiple MR studies, and modelling the correlation between X and Y within a study.

Another model has been suggested by Burgess [40], where they compared the
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classical and the Bayesian approach to Mendelian randomisation. The classical

approaches were 2SLS, the Wald estimator and LIML. The Bayesian approaches

were the Bayesian method and adjusted Bayesian, the former is equivalent to the

independent errors model described in Jones et al. [153] and the latter was previously

adopted by Burgess and Thompson [43] shown below;

Xi ∼ N(µx, σ
2
x) (8.9)

Yi|Xi = xi ∼ (µy +
σy
σx
ρ(xi − µx), (1− ρ2)σ2

y) (8.10)

They claimed that their simulation of Mendelian randomisation with continuous

outcome demonstrated that the causal effect estimate from the adjusted Bayesian

model had closest to 95% nominal coverage and had less bias in comparison to

the classical approaches. However the superiority of the Bayesian approach is less

apparent for the cases where weak instruments are present. Unsurprisingly, for the

case of weak instruments, they found that the unadjusted Bayesian method was as

biased as 2SLS. In their simulation, including the weak instrument case, LIML had

the least bias but coverage was lower than the adjusted Bayesian model.

8.3 A review of Bayesian approaches to instru-

mental variable analysis

In comparison to the Mendelian randomisation literature there is much more re-

search on Bayesian approaches in econometrics. Due to its vast methodological

development, I will give a brief summary of the Bayesian approaches to instrumen-

tal variable problem, where different approaches cover a wide range of scenarios

and assumptions by designing topic specific priors and parameterisation. Lopes and

Polson [190] have also reviewed these approaches.

Kleibergen and Zivot [169] is perhaps the most cited paper, as they derived the

Bayesian equivalents to the classical approaches of 2SLS and LIML. They examined

the structural, restricted reduced (RRF) and unrestricted reduced (URF) forms of

the IV model with vague and Jeffreys priors. The URF model is the same as the

adjusted Bayesian model in Burgess [40], seen in Section 8.2. The URF with Jeffreys

priors on the parameters are equivalent to LIML, thus Hoogerheide et al. [142] have

proposed the ”natural conjugate priors” that is more informative than the Jeffreys
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prior.

The shape of the posterior distribution for the causal effect is bimodal when the

instruments are weak and the effect of confounding is strong [141, 305]. Hoogerheide

et al. [141] have developed a two-step procedure to capture this multi-modal shape

of the posterior distribution, which the Gibbs sampler could not handle. The stages

were (1) approximate the target posterior density via the construction of a neural

network, (2) embed the posterior in a Metropolis-Hastings algorithm. An alternative

sampling method for weak instruments was introduced by Zellner et al. [305], using

an extension to Direct Monte Carlo (DMC), named Acceptance-Rejection within

Direct Monte Carlo (ARDMC). They have shown through simulation that ARDMC

is not only able to obtain the bimodal shape but is also more computationally

efficient and gives more accurate numerical standard errors than the conventional

Gibbs sampler.

Chib and Greenberg [64] described a semi-parametric Bayesian approach to IV

models, where they do not assume the exogenous covariates (both instruments and

measured confounders) to be in a parametric form for either the first or second

regression. Their algorithm compares the different functional forms using Bayes

factors. Their simulation studies suggest that their method is able to capture the

non-linear form of the covariates for continuous outcome. However for the case of

binary outcome, a large sample size is required.

There have been debates on the distribution of errors from X and Y; most econo-

metricians use a bivariate normal distribution to model the correlated errors between

X and Y. However some argue that the assumption of normality is not realistic.

Conley et al. [74] have developed a semi-parametric Bayesian approach to this spe-

cific problem, assigning a Dirichlet process prior to allow for flexibility in the prior

distribution of the errors between X and Y. Rossi [240] found this Bayesian semi-

parametric procedure with Dirichlet process prior to have lower median bias and

coverage in comparison to the classical approaches in the presence of many weak in-

struments. A nonparametric approach to Bayesian instrumental variables has been

examined by Liao and Jiang [186] and references therein. Kato [163] has also imple-

mented quasi-Bayesian analysis to the nonparametric instrumental variables model.

Wiesenfarth et al. [288] have modified the algorithm from Conley et al. [74] to al-

low for even more flexible choice on prior distribution for the error terms. Their

method does not assume linearity for the covariates effects and its credible interval

is not affected by the distributional assumptions. Salois and Balcombe [244] have
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addressed heteroskedasticity in either or both of the first and second regressions of

the IV model by assuming Student t-distribution for the error terms and placing

Gamma priors on the variance of the errors.

The exclusion restriction, assumption that an instrument does not have a direct

effect on the outcome and is not associated with the error, is an untestable assump-

tion for instrumental variable analysis. In order to allow for the uncertainty of this

assumption, Kraay [174] designed priors for the correlation between the instruments

and the errors from Y.

Bayesian model averaging (BMA) approaches are becoming more popular among

econometricians for large number of exogenous variables, as a way to avoid over-

fitting the regression model. Koop et al. [172] introduced BMA into the framework

of instrumental variable analysis. They argued that investigators may have uncer-

tainty about whether their variables belong to the group of endogenous, exogenous

or instruments, and BMA would be a way of incorporating this uncertainty. How-

ever, it is computationally intensive, if there is a large number of variables (m), as

BMA will be comparing 2m models. Hence they used Reversible Jump Markov Chain

Monte Carlo (RJMCMC) to jump through model space and improved the speed of

the algorithm by incorporating different priors, depending on which variable is un-

der consideration. Alternatively, for smaller model spaces, Lenkoski et al. [184] have

designed Two-stage Bayesian Model Averaging (2BMA) which is similar to 2SLS,

and unlike Koop et al. [172], the algorithm approximates the marginal likelihoods.

Through the simulations they showed that 2BMA does not suffer from many in-

strument bias unlike its classical counterparts. They used a Unit Information Prior

(UIP) on the regression coefficients, which is a multivariate normal distribution with

the mean taken from the coefficients estimated by the maximum likelihood estimator

(MLE) and the variance is the inverse of the average information contained in one

observation. UIP was motived by Raftery [232], where they argue the coefficients

of the full model (i.e. without BMA) from a Bayesian approach are the same as

obtained from MLE and this prior distribution has the same amount of information

as a single observation.

8.4 Conclusion

The comparison of classical and Bayesian approaches has demonstrated the advan-

tages of the use of Bayesian methods, except in the case of weak instruments [40].
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The advice for reducing weak instrument bias is only to include instruments with

a significant p-value from their association with risk factor. However selecting in-

struments by p-value cannot distinguish between situations in which (1) there are

not enough data to detect an effect and (2) the data provide evidence for the null

hypothesis [139].

Many econometric literature have addressed the weak instrument problem, more

specifically Lenkoski et al. [184] have provided a solution to many weak instruments

problem, through the use of Bayesian Model Averaging (BMA). BMA reduces the

weak instrument bias by averaging the estimated causal effect from models with

different sets of instruments. The selection of instruments is conditional on the like-

lihood of the data and the given prior. BMA also gives the posterior probability for

each instrument and evidence to support the null hypothesis of ”no causal effect”.

As we rarely know the location of the causal variant, BMA offers a way of com-

paring multiple models with different instruments without selection by p-value. As

described above, BMA have been shown to be less affected by many weak instru-

ments than the classical algorithms in Econometrics. Therefore the next chapter

will examine the properties of BMA approach to Mendelian randomisation.
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Chapter 9

Bayesian Model Averaging

9.1 Introduction

Suppose that there are m dependent SNPs, then by selecting which to use, there

will be 2m possible Mendelian randomisation models. The literature and our sim-

ulations both suggest that Mendelian randomisation will be more accurate if weak

or redundant SNPs are excluded, but there is a risk that the process of selection

would itself introduce bias. SNP selection may introduce bias, as the SNP may only

be significant in one sample under analysis or the estimator may overestimate the

true genetic effect, a phenomenon more commonly known as the ’winners curse‘.

Bayesian Model Averaging (BMA) considers the 2m possible models and averages

over them based on their posterior probabilities.

This chapter begins with a tutorial of BMA and its implementation in OpenBUGS

and R, with examples. Next, the chapter compares OpenBUGS and R for BMA. Sec-

tion 4 discusses the convergence of Instrumental Variable Bayesian Model Averaging

(IVBMA), reaching convergence means having a stationary posterior distribution

that is independent of the initial values [192]. For example in the BMA case, the

MCMC sampler would have examined all the possible models at the beginning and

eventually settles to a handful of models with the highest likelihoods. This section

will aim to deduce the number of iterations required to reach convergence in different

scenarios. The chapter will end with an investigation of the mechanism by which a

SNP is chosen as an instrument in IVBMA.
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9.2 Bayesian Model Averaging

Considering the fact that we are not entirely sure about which instruments will be

best, BMA selects instruments and includes model uncertainty. Neglecting all the

possible models has been described as a ”quiet scandal” [33]. As we have seen in

the previous chapters the number of outliers from LIML declined with instrument

selection, however when selection is applied to the same data as is used in the

analysis this will cause selection bias. BMA acts in the way of a sensitivity analysis

that considers all the possible estimates when based on different instruments. This

section will give the theory of BMA and a practical example to aid the understanding

of BMA. Hoeting et al. [139] have written a comprehensive tutorial on BMA.

If there are K possible models, then the posterior distribution of the quantity of

interest Λ given data D is;

pr(Λ|D) =
K∑
k=1

pr(Λ|Mk, D)pr(Mk|D). (9.1)

This is an average of the posterior distributions under each of the models (Mk),

weighted by their posterior model probability. In (9.1), M1, . . . ,MK are the models

considered. The posterior probability for model Mk is given by

pr(Mk|D) =
pr(D|Mk)pr(Mk)∑K
l=1 pr(D|Ml)pr(Ml)

. (9.2)

where

pr(D|Mk) =

∫
pr(D|θk,Mk)pr(θk|Mk)dθk (9.3)

is the integrated likelihood of model Mk, θk is the vector of parameters of model Mk,

pr(θk|Mk) is the prior density of θk under model Mk, pr(D|θk,Mk) is the likelihood

and pr(Mk) is the prior probability that Mk is the true model.

The posterior mean and variance of Λ are;

E[Λ|D] =
K∑
k=0

Λ̂kpr(Mk|D),

V ar[Λ|D] =
K∑
k=0

(V ar[Λ|D,Mk] + Λ̂2
k)pr(Mk|D)− E[Λ|D]2,

where Λ̂k = E[Λ|D,Mk].
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The main advantage of applying BMA to Mendelian randomisation is to reduce

the many weak instrument bias by allowing flexibility in instrument inclusion with-

out introducing selection bias.

9.2.1 OpenBUGS

To actually evaluate Equation 9.1 to give the posterior distribution is extremely

difficult, therefore simulations are used to approximate the distribution, the method

more commonly known as Markov Chain Monte Carlo (MCMC). MCMC is a sam-

pling method that constructs a markov chain so that the target distribution is the

stationary distribution of the chain, and the chain converges to a distribution that is

the stationary distribution [178]. Generally, a markov chain can be constructed by

Metropolis-Hastings algorithm, where it samples values from a proposal distribution

and accepts or rejects proposed value using an acceptance probability. If the pro-

posed value is accepted then markov chain moves to the proposed value, otherwise

the chain stays at the current value. See Robert and Casella [237] for more detail

on Metropolis-Hastings algorithm.

Bayesian models are commonly fitted in OpenBUGS [263], where the name stands

for “Bayesian inference Using Gibbs Sampling”. Gibbs sampler is a special case

of Metropolis-Hastings algorithm and approximates distributions for more than one

parameter [192] by generating a multi-dimensional markov chain. This section will

give the model code for Mendelian randomisation (MR) with and without BMA,

henceforth ”full” and ”BMA” model respectively, in OpenBUGS. An example will

show how to obtain results and will explain their implications.

Consider the following MR model with three potential genetic instruments,

SNP1, SNP2 and SNP3;

[X, Y ] ∼MVN

α0 + α1SNP1 + α2SNP2 + α3SNP3

β0 + β1X

 ,
σ2

x λ

λ σ2
y

 (9.4)

The error of X and Y is monitored by bivariate normal distribution. σ2
x and σ2

y

is the variance of X and Y respectively and λ = Cov(X, Y ) = ρσxσy and ρ is the

correlation between X and Y, i.e. the amount of confounding between them. Then

the code for the ”full” model is as follows;

model {
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for( i in 1 : N ) {

mu[i,1]<-alpha[1] + alpha[2] * SNP1[i]

+ alpha[3] * SNP2[i] + alpha[4]* SNP3[i]

mu[i,2] <- beta[1] + beta[2]*XY[i,1]

XY[i,1:2] ~ dmnorm(mu[i,1:2],Sigma.inv[1:2,1:2])

}

#priors for first-stage regression

for (j in 1 : 4) {

alpha[j] ~ dnorm(0,1);}

#priors for second-stage regression

for (j in 1 : 2) {

beta[j] ~ dnorm(0,1); }

#priors for correlated errors

Sigma.inv[1:2,1:2] ~ dwish(R[1:2,1:2],3)

Sigma[1:2,1:2]<-inverse(Sigma.inv[1:2,1:2])

}

I have given the coefficients for first and second stage regression a normal prior,

∼ N(0, 1), which is fairly informative [153]. A vague prior is given to the covariance

matrix of X and Y in the form of an Inverse-Wishart, W−1(

1 0

0 1

 , 3) [192]. These

priors were not applied for a specific reason, merely as a demonstration. These

priors can be changed to different distributions to accommodate different problems,

see Lunn et al. [192] for a detailed tutorial on priors in Bayesian analysis.

To integrate BMA into an MR model, add variable indicators to each of the first

stage regression coefficients. For my case, these are g[1] to g[4] where g[] is coded

0 and 1 to indicate the absence and the presence of a variable in the current model

respectively. The model code has thus been altered to the following;

model {

for( i in 1 : N ) {

mu[i,1]<-g[1]*alpha[1] + g[2]*alpha[2] * SNP1[i]

+ g[3]*alpha[3] * SNP2[i] + g[4]*alpha[4]* SNP3[i]

mu[i,2] <- beta[1] + beta[2]*XY[i,1]

XY[i,1:2] ~ dmnorm(mu[i,1:2],Sigma.inv[1:2,1:2])
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}

#priors for first-stage regression

for (j in 1 : 4) {

alpha[j] ~ dnorm(0,1);

}

#priors for second-stage regression

for (j in 1 : 2) {

beta[j] ~ dnorm(0,1);

}

#priors for variable indicators

for (j in 1 : 4) {

g[j] ~ dbern(0.5); }

#priors for correlated errors

Sigma.inv[1:2,1:2] ~ dwish(R[1:2,1:2],3)

Sigma[1:2,1:2]<-inverse(Sigma.inv[1:2,1:2])

#Defining Model Code

mdl <- g[1]*1+g[2]*2+g[3]*4+g[4]*8

#Defining vector with model indicators

for (j in 1 : models) {

pmdl[j]<-equals(mdl , j); }

}

The prior for variable indicators is a Bernoulli distribution with parameter 0.5;

this prior implies each variable is equally likely to be chosen for inclusion in the

model. As there are more than two variables in the first-regression, I have defined

model indicators in the code, so that OpenBUGS will give the output of the probability

of each model being chosen in the MCMC iterations;

#Defining Model Code

mdl <- g[1]*1+g[2]*2+g[3]*4+g[4]*8

#Defining vector with model indicators
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for (j in 1 : models) {

pmdl[j]<-equals(mdl , j); }

pmdl is the model indicator and mdl shows which variables are within the par-

ticular model. Shown by mdl, presence of intercept (g[1]) is given the value of 1,

presence of SNP1 (g[2]) is given the value of 2, etc. Hence pmdl[1] is the model

that consists of the intercept (g[1]×1), pmdl[2] has SNP1 (g[2]×2), pmdl[3] has

intercept and SNP1 (g[1]×1+g[2]×2), and so on and so forth.

9.2.2 Example

This example aims to demonstrate the difference between the full and BMA mod-

els. Consider a dataset with information on a risk factor (X), disease outcome of

interest (Y) and genotypes of 3 SNPs for 2,000 individuals. Out of the 3 potential

instruments, only one SNP is causal and explains 2% of the variation in X, the

other SNPs are only associated with X through their correlation with the causal

SNP (correlation is approximately 0.9). X explains 6% of the variation in Y. X and

Y are normally distributed.

The model code is the same as above, the full and the BMA model will be run

with 50,000 iterations on the same dataset, and the first 10,000 iterations will be

dismissed as a burn-in. Burn-in is the initial, non-stationary portion of the chain

which are usually dismissed, as they will influence the overall mean of the posterior

distribution. All initial values for each parameter are randomly generated. The R

package rbugs provides a ”click-free” way of operating OpenBUGS; rbugs sends the

code to OpenBUGS, which returns the results in coda format. The R package coda

then reads the coda to give the mean, standard deviation, naive standard error,

time-series standard error and quantiles for each variable. The time-series standard

error is adjusted for autocorrelation (i.e. the correlation between each iteration).

The output for the full model, including all the available variables from the data

is;

Iterations = 1:40000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 40000
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1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

Sigma[1,1] 9.572e-01 0.03011 0.0001506 0.0001524

Sigma[1,2] 3.538e-01 0.13072 0.0006536 0.0064359

Sigma[2,1] 3.538e-01 0.13072 0.0006536 0.0064359

Sigma[2,2] 8.729e-01 0.10783 0.0005391 0.0053724

alpha[1] -1.413e-02 0.03943 0.0001972 0.0005278

alpha[2] -2.772e-02 0.04387 0.0002193 0.0002896

alpha[3] 2.264e-01 0.03370 0.0001685 0.0006931

alpha[4] -3.220e-02 0.03046 0.0001523 0.0002930

beta[1] -3.843e-02 0.03185 0.0001593 0.0012257

beta[2] 3.869e-01 0.13461 0.0006731 0.0067916

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

Sigma[1,1] 9.001e-01 9.367e-01 9.565e-01 9.770e-01 1.018e+00

Sigma[1,2] 1.110e-01 2.652e-01 3.481e-01 4.350e-01 6.264e-01

Sigma[2,1] 1.110e-01 2.652e-01 3.481e-01 4.350e-01 6.264e-01

Sigma[2,2] 7.283e-01 7.973e-01 8.523e-01 9.240e-01 1.135e+00

alpha[1] -9.200e-02 -4.077e-02 -1.395e-02 1.273e-02 6.278e-02

alpha[2] -1.145e-01 -5.720e-02 -2.726e-02 1.797e-03 5.763e-02

alpha[3] 1.609e-01 2.038e-01 2.264e-01 2.489e-01 2.926e-01

alpha[4] -9.277e-02 -5.267e-02 -3.178e-02 -1.146e-02 2.699e-02

beta[1] -9.775e-02 -6.025e-02 -3.957e-02 -1.824e-02 2.809e-02

beta[2] 1.065e-01 3.035e-01 3.920e-01 4.783e-01 6.374e-01

The true causal effect is 0.2449. The full model estimated 0.3869 (beta[1]) with

95% credible interval of 0.1065 to 0.6374, and the true effect is still within the credible

interval. The full model estimated a positive confounding effect (Sigma[1,2] and

Sigma[2,1]), where the correlation between X and Y is estimated at 0.3538 (the

true is 0.5).

The output for the BMA model for the same dataset is;

Iterations = 1:40000

Thinning interval = 1
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Number of chains = 1

Sample size per chain = 40000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

Sigma[1,1] 9.570e-01 0.03016 0.0001508 1.508e-04

Sigma[1,2] 4.070e-01 0.14183 0.0007092 7.890e-03

Sigma[2,1] 4.070e-01 0.14183 0.0007092 7.890e-03

Sigma[2,2] 9.182e-01 0.12778 0.0006389 6.899e-03

alpha[1] -3.542e-03 0.97131 0.0048566 4.815e-03

alpha[2] -5.053e-03 0.97442 0.0048721 4.872e-03

alpha[3] 1.923e-01 0.02053 0.0001027 3.321e-04

alpha[4] 1.481e-03 0.97354 0.0048677 4.868e-03

beta[1] -2.511e-02 0.03247 0.0001624 1.401e-03

beta[2] 3.315e-01 0.14577 0.0007289 7.889e-03

g[1] 5.245e-02 0.22294 0.0011147 3.043e-03

g[2] 5.275e-02 0.22354 0.0011177 2.242e-03

g[3] 1.000e+00 0.00000 0.0000000 0.000e+00

g[4] 5.727e-02 0.23237 0.0011619 3.689e-03

pmdl[1] 0.000e+00 0.00000 0.0000000 0.000e+00

pmdl[2] 0.000e+00 0.00000 0.0000000 0.000e+00

pmdl[3] 0.000e+00 0.00000 0.0000000 0.000e+00

pmdl[4] 8.459e-01 0.36105 0.0018052 4.671e-03

pmdl[5] 4.735e-02 0.21239 0.0010619 2.852e-03

pmdl[6] 4.675e-02 0.21111 0.0010555 2.083e-03

pmdl[7] 2.725e-03 0.05213 0.0002607 4.064e-04

pmdl[8] 0.000e+00 0.00000 0.0000000 0.000e+00

pmdl[9] 0.000e+00 0.00000 0.0000000 0.000e+00

pmdl[10] 0.000e+00 0.00000 0.0000000 0.000e+00

pmdl[11] 0.000e+00 0.00000 0.0000000 0.000e+00

pmdl[12] 5.170e-02 0.22142 0.0011071 3.338e-03

pmdl[13] 2.300e-03 0.04790 0.0002395 4.654e-04

pmdl[14] 3.200e-03 0.05648 0.0002824 5.993e-04

pmdl[15] 7.500e-05 0.00866 0.0000433 5.561e-05

Page 176



CHAPTER 9. BAYESIAN MODEL AVERAGING

pmdl[16] 0.000e+00 0.00000 0.0000000 0.000e+00

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

Sigma[1,1] 8.994e-01 9.363e-01 9.564e-01 9.773e-01 1.018e+00

Sigma[1,2] 1.360e-01 3.100e-01 4.083e-01 5.015e-01 6.856e-01

Sigma[2,1] 1.360e-01 3.100e-01 4.083e-01 5.015e-01 6.856e-01

Sigma[2,2] 7.364e-01 8.240e-01 8.995e-01 9.895e-01 1.216e+00

alpha[1] -1.934e+00 -6.346e-01 -1.733e-02 6.248e-01 1.937e+00

alpha[2] -1.940e+00 -6.333e-01 -1.779e-02 6.246e-01 1.940e+00

alpha[3] 1.546e-01 1.787e-01 1.915e-01 2.048e-01 2.362e-01

alpha[4] -1.933e+00 -6.251e-01 -2.198e-02 6.261e-01 1.948e+00

beta[1] -8.942e-02 -4.675e-02 -2.470e-02 -3.138e-03 3.775e-02

beta[2] 4.719e-02 2.341e-01 3.293e-01 4.315e-01 6.117e-01

g[1] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.000e+00

g[2] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.000e+00

g[3] 1.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00

g[4] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.000e+00

pmdl[1] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

pmdl[2] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

pmdl[3] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

pmdl[4] 0.000e+00 1.000e+00 1.000e+00 1.000e+00 1.000e+00

pmdl[5] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.000e+00

pmdl[6] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.000e+00

pmdl[7] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

pmdl[8] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

pmdl[9] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

pmdl[10] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

pmdl[11] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

pmdl[12] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 1.000e+00

pmdl[13] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

pmdl[14] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

pmdl[15] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

pmdl[16] 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
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The BMA model provides the probability that each variable is chosen in the

first regression (g[1] to g[4]) and the probability that each model is the current

model (pmdl), where there are 16 possible combination of models from 4 variables

(24 = 16). The BMA model estimated the causal effect as 0.3315 and 95% credible

interval of 0.0472 to 0.6117. Unlike the full model, BMA shows which instrument

and model was preferred; the causal SNP had the highest probability, as shown by

mean of g[3] in comparison to other variable. pmdl[4], model 4 was chosen the

most which included only the causal SNP as a variable (pmdl= g[4]×4). Note that

some models were never chosen.
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Figure 9.1: The overall posterior distribution of all the models. The vertical line is
the true causal effect.

BMA approximates its posterior distribution by averaging the posterior distribu-

tion from each model which is weighted by the model probability; Figure 9.1 is the

overall posterior distribution for all the models. The overall posterior model is the

average of the posterior distributions for all the models in Figure 9.2, each weighted

by their model probability. The posterior from pmdl[4] have the highest weighting,

as its probability is 0.8459 and pmdl[15] has the lowest weight with probability of

0.000075. Hence, that is why Figure 9.1 looks identical to Figure 9.2a.

9.2.3 Conclusion

OpenBUGS is a very general MCMC program and it can be inefficient for specific cases

[192]; Example 9.2.2 took 30 minutes for 50,000 iterations with 4 potential covariates

(24 =16 potential models as a result). ivbma is an R package that incorporates
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algorithms to optimise the instrumental variable Bayesian model averaging approach

and reduce the computation time.

The number of iterations was chosen for illustration, this will be examined in

detail at Section 9.4.
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Figure 9.2: The posterior distribution for each model and N is the number of times
the specific model was chosen. The captions are variables that is within the model.
The vertical line is the true causal effect.
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9.3 R Package: IVBMA

Karl and Lenkoski [160] have designed algorithms specifically for instrumental vari-

able Bayesian model averaging (IVBMA) and later written an R package, ivbma, to

implement this approach. IVBMA is more efficient when compared to 2BMA [184]

and Koop et al. [172]’s algorithm, see Section 8.3. The former is less computation-

ally efficient. For the same dataset 2BMA took 15 hours whereas IVBMA took 10

minutes. In addition, 2BMA had mixing difficulties and required further tuning to

improve the mixing between models, mixing in BMA mostly means how easy it is

for a sampler to go from one model to another, see the next section for more detail.

IVBMA relies on Markov Chain Monte Carlo Model Composition (MC3) within

a Gibbs sampler, which is just a special case of a Metropolis-within-Gibbs algorithm.

MC3 can be considered as a Metropolis-Hastings step in the space of the models;

MC3 moves through model space, accepting or rejecting a model via Conditional

Bayes Factor. MC3-within-Gibbs sampler is more efficient in regards to mixing than

OpenBUGS when there are many models in the model space [210]. The IVBMA model

is;

Y = XβXY +Wγ + ε (9.5)

X = Zδ +Wτ + η (9.6)

where
(
εi
ηi

)
∼ N2(0,Σ) and Σ =

σ11 σ12

σ21 σ22

. Y , the response variable and the

endogenous explanatory factor X are both n × 1. W denotes an n × p matrix of

further explanatory variables and Z contains the instrumental variables with an

n× q matrix.

The MC3-within-Gibbs sampler creates a sequence θ(1) . . . θ(S) where;

θ(s) =
{
ρ(s),M(s)

sec,λ
(s),M(s)

fst,Σ
(s)
}
,

ρ(s) = [βXY ,γ], λ(s) = [δ, τ ], Msec and Mfst is the model space for Equation 9.5

and 9.6 respectively. Given the current state ρ(s) and data D, the simplified ivbma

algorithm starts;

1. Sample M′
sec from the neighbourhood of M(s)

sec, i.e. models that differ from
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M(s)
sec by one variable. Then calculate

α =
pr(D|M′

sec,λ
(s),Σ(s))

pr(D|M(s)
sec,λ

(s),Σ(s))
1
{
M′

sec,M
(s)
fst ∈ A

}
with probability min {α, 1} set M(s+1)

sec =M′
sec, otherwise M(s+1)

sec =M(s)
sec

2. Sample ρ(s+1) from the conditional posterior distribution of ρM(s+1)
sec

, i.e. poste-

rior distribution for coefficients of the new model in the second stage regression.

3. Sample M′
fst from the neighbourhood of M(s)

fst. Then calculate

α =
pr(D|M′

fst,ρ
(s+1),Σ(s))

pr(D|M(s)
fst,ρ

(s+1),Σ(s))
1
{
M(s+1)

sec ,M′
fst ∈ A

}
with probability min {α, 1} set M(s+1)

fst =M′
fst, otherwise M(s+1)

fst =M(s)
fst

4. Sample λ(s+1) from the conditional posterior distribution of λM(s+1)
fst

, i.e. pos-

terior distribution for coefficients of the new model in the first stage regression.

5. Use λ(s+1) and ρ(s+1) to calculate εs+1 and η(s+1) and sample Σ(s+1) from the

conditional posterior distribution of Σ.

See Karl and Lenkoski [160] for the derivation of Bayes Factor in Step (1) and (3),

and the full equation of the conditional posterior distributions for each parameter.

ivbma imposes the following prior for each parameter:

[βXY ,γ] ∼ N(0, 1),

[δ, τ ] ∼ N(0, 1),

[Mfst,Msec] ∼ Bern(0.5),

Σ ∼ W−1(

1 0

0 1

 , 3).

where N , Bern and W−1 stands for the Normal, Bernoulli and Inverse-Wishart

distribution respectively. ivbma does not provide an option to alter these priors.

Lenkoski et al. [184] provide the full instructions and options available for the R

package.
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9.3.1 Comparison of OpenBUGS and R

The aim of this subsection is to demonstrate that the parameters of interest esti-

mated by OpenBUGS and R for the same dataset are similar.

The single dataset will consist of risk factor (X), outcome of interest (Y) and

genotype of 3 SNPs for 2,000 individuals; only one SNP, SNPc, explains 10% of the

variation in X. The two non-causal SNPs will have correlation of 0.9 to SNPc, thus

they will be associated with X. X will explain 6% of the variation in Y. X and Y

will have a normal distribution. To reduce computation time stronger instruments

have been simulated here, as the algorithm in OpenBUGS is inefficient and needs a

large number of iterations to converge for weak instruments.

In order to give evidence of convergence to the posterior distribution of the causal

effect estimate and the model space, as per advised by Karl and Lenkoski [160], the

experiment will run 50,000 iterations with a 10,000 burnin. Five chains will be

run, each with different initial values (randomly chosen) to ensure all five chains

reach the same posterior [192]. The choice of priors in OpenBUGS will be specified to

be equivalent to those in ivbma. As ivbma allows for variable uncertainty in both

the first and second regressions, the model code for OpenBUGS in Example 9.2.2

will include variable indicators for the second regression, see Appendix E.1 for the

addition to the model code.

Table 9.1 shows that the probability of X included in the second regression,

mean and 95% credible interval of the causal effect estimate (βXY ) are the same

to at least 2 significant places between ivbma and OpenBUGS. Note that the βXY

estimate from OpenBUGS was corrected to 0 when X is not in the model, the reason

for this alteration will be explained below.

Table 9.1: The summary causal effect estimates from ivbma and OpenBUGS for 5
chains. Prob. X is the probability of X being included in the second regression.

IVBMA BUGS

Chain Prob. X Mean (95% Credible Interval) Prob.X Mean (95% Credible Interval)

1 0.9980 0.2037 (0.11 - 0.29) 1.0000 0.2046 (0.11 - 0.29)

2 0.9991 0.2059 (0.12 - 0.29) 0.9873 0.2031 (0.10 - 0.29)

3 0.9991 0.2039 (0.11 - 0.29) 0.9941 0.2049 (0.11 - 0.29)

4 0.9991 0.2048 (0.12 - 0.29) 0.9952 0.2052 (0.11 - 0.29)

5 0.9994 0.2053 (0.12 - 0.29) 0.9994 0.2059 (0.11 - 0.29)
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50,000 iterations and a 10,000 burn-in have given evidence of the convergence

of the posterior distribution of βXY for ivbma, as shown by the “caterpillar-shape”

appearance from all 5 chains [192], in Figure 9.3, and the similar results from all

5 chains (Table 9.1). The difference between ivbma and OpenBUGS other than the

computation time, is their output; when X is not in the model ivbma automatically

sets the output of βXY to 0, whereas OpenBUGS does not; hence the difference between

Figure 9.3 and Figure 9.4. When X is included in the model the posterior distribution

is the combination of likelihood of the data and prior distribution, when X is not

in the model, the posterior estimate is from the prior only. Our aim is to find the

unconfounded effect of X and Y using instrumental variable analysis, thus we are

only interested in βXY when X is in the model. Manually setting the OpenBUGS

output of βXY to 0 when indicator variable for X is 0 (Figure 9.5), Figure 9.3 and

Figure 9.5 are similar.

For the BMA problem, it is essential to check the convergence in model space,

as different models will give different coefficient estimates. The model choice in the

first regression will influence the causal effect estimate through its association with

X. Model choice for the first regression is given by Figure 9.6 and 9.7. These two

trace plots show that ivbma has approximately the same mixture of models as in

OpenBUGS. The similarity in model choice from each chain indicates convergence in

model space from ivbma and OpenBUGS.

9.3.2 Conclusion

This section have given a description of IVBMA and illustrated the similarity be-

tween ivbma and OpenBUGS. Differences are mainly their computation time; for the

same dataset, number of iterations and chains ivbma took 15 minutes, whereas

OpenBUGS took 2 hours and 30 minutes to run.

The convergence of the posterior distribution is an importance aspect to Bayesian

analysis and Karl and Lenkoski [160] suggested 50,000 iterations to reach conver-

gence for their R package. However the scenarios considered in their paper were

applicable to econometrics. Therefore the next section will examine the conver-

gence of ivbma for different problems that are realistic in a genetic setting.
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5

Figure 9.3: Trace plot of β̂XY from ivbma for 5 chains. The horizontal line is the
true causal effect.
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5

Figure 9.4: Trace plot of β̂XY from OpenBUGS for 5 chains. The horizontal line is
the true causal effect (0.2449).
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5

Figure 9.5: Trace plot of β̂XY from OpenBUGS for 5 chains, note that β̂XY have been
set to 0 when X is not included in the second regression. The horizontal line is the
true causal effect (0.2449).
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5

Figure 9.6: Trace plot of model choice from ivbma for 5 chains.
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5

Figure 9.7: Trace plot of model choice from OpenBUGS for 5 chains.
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9.4 Convergence and mixing in IVBMA

Convergence of the posterior distribution of each parameter in BMA is slower than

for full model without variable selection. This long computation time is partly due

to the prior imposed on each variable; when a variable is not in the model under

consideration then it obtains its coefficient from the prior. The variable could have

an extreme coefficient if the prior was too vague (large standard deviation). Then the

likelihood of the model with this particular variable would be lower than the model

without this variable and it would be rejected. Mixing is another important aspect

to BMA to ensure all the possible models were considered and the flexibility of the

sampler to jump from one model to another for the same reasoning as convergence,

mixing is also affected by vague priors. Hence, BMA will require more iterations in

order for a variable to have a chance of obtaining a reasonable coefficient from its

prior and so be included in the model. The discussion of different priors for increasing

the speed of convergence and mixing in model space is discussed by O’Hara et al.

[213]. This section will focus on the role of the prior imposed by the R package,

ivbma.

Karl and Lenkoski [160] have suggested 50,000 iterations and 10,000 burn-ins to

be sufficient to reach convergence for their method. However, they have only looked

at scenarios realistic in the econometric literature. This section will investigate

whether 50,000 iterations is enough to reach convergence in a Mendelian randomi-

sation problem. The performance of multiple chains with different initial values is a

form of convergence diagnostic [192] and inspecting the trace plot will also check for

sufficient mixing. Trace plots is a continuous line that shows the values a parameter

have against the iteration number. 5 chains will be run with randomly generated

initial values. To further confirm the convergence of these 5 short chains, a longer

chain will be run, which will have 500,000 iterations and due to the limited computer

memory, the burn-in will be 250,000.

The key factors in Mendelian randomisation are the number of instruments, the

minor allele frequency (MAF) of the SNPs and amount of confounding between the

risk factor (X) and the outcome of interest (Y). All the experiments will monitor the

causal effect estimate by its mean and 95% credible interval, the probability that

X is included in the second regression model and the total visited probability. The

total visited probability [111] is defined as the probability of the 10 models for the

first regression being visited, where the 10 models are defined as the top 10 most

visited models from the long chain.
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9.4.1 Experiment 1: Number of instruments

Aim

The greater the number of instruments the larger the model space, so in order

for IVBMA to consider every model, more iterations will be required. Thus, this

experiment aims to check convergence with increasing number of instruments.

Datasets

The dataset will consist of the genotypes of 10 SNPs, a risk factor (X) and an

outcome of interest (Y) from 2,000 individuals. There is only one causal SNP which

will explains 2% of the variation in X. The rest of the SNPs will be associated with

X through their correlation to the causal SNP; they will have patterned LD, where

their correlation will vary between 0.1 and 0.9 depending on their distance from the

causal SNP, as described in Section 4.2. The MAF for the non-causal SNPs will be

generated randomly between 0.1 and 0.5 and the causal MAF will be 0.05. X will

explain 6% of the variation in Y. X and Y will be normally distributed.

As we are comparing the convergence for different numbers of instruments,

datasets with 30, 60 and 90 potential instruments will also be simulated.

Results

Table 9.2 shows the results extracted from ivbma for 4 datasets where they differ

in numbers of potential instruments. The more instruments there are the more

possible models for the first regression to choose from. For example, 60 instruments

will have 260 possible models. This creates uncertainty in causal effect estimates and

there are more models to consider as demonstrated by the contrast in 95% credible

intervals between long and short chains when there are more than 30 instruments.

Also the reduction in total visited probability, declined from 0.6 to 0.01 for 10 to 90

instruments respectively. The time-series standard error in the long chain have also

increased with number of instruments which suggests the accuracy of the posterior

mean of βXY are decreasing, as there are more models to consider with greater

number of instruments.

As there are more instruments, there are more parameters and more models for

the algorithm to explore. The time taken for 90 instruments with 500,000 iterations

and 250,000 burn-in was under an hour, Table 9.3.
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Figure 9.8 shows the trace plot of the posterior distribution of the estimated

causal effect, from the first 15,000 iterations for each number of instruments. Fig-

ure 9.8 only gives the trace plot of one short chain, as all 5 chains were very similar,

the rest of the short chains are in the Appendix E.2 to E.5. The mixing between

long and short chains are similar, jumping from one coefficient to another is the re-

flection of the jumping between models in the first regression (i.e. different and/or

more instruments included). Hence, the advise of the ”a fat caterpillar” shaped in

trace plot (see Figure 9.3) by Lunn et al. [192] is not really applicable for BMA.

Table 9.2: Convergence Diagnostic by comparing 5 short chains with 1 long chain.
The short chain had 50,000 iterations with 10,000 burn in. The long chain had
500,000 iterations and 250,000 burn in. The true βXY is 0.2449. SE is standard
error. Prob. X is the probability of X included in the second regression. Total Visit.
Prob. is the visited probability of the set of models chosen in the first regression;
the set consist of the top 10 models from the longer chain.

Ins. Chain Mean

β̂XY

SE Time-

Series

SE

95% Credible Int. Prob. X Total

Visit.

Prob.

10

1 0.0856 0.0008 0.0154 -0.1613 0.5020 0.4448 0.6930

2 0.0923 0.0008 0.0155 -0.0900 0.4972 0.4351 0.6684

3 0.1048 0.0009 0.0188 -0.1454 0.5496 0.4651 0.6943

4 0.1008 0.0008 0.0152 -0.0679 0.5143 0.4494 0.6829

5 0.1366 0.0009 0.0180 -0.0779 0.5544 0.5313 0.6600

Long 0.0995 0.0004 0.0068 -0.1330 0.5259 0.4584 0.6786

30

1 0.2839 0.0011 0.0220 0.0000 0.6645 0.7621 0.1061

2 0.2766 0.0011 0.0237 0.0000 0.6801 0.7274 0.1051

3 0.2954 0.0010 0.0183 0.0000 0.6603 0.8106 0.1015

4 0.2536 0.0011 0.0218 0.0000 0.6540 0.7174 0.1068

5 0.2819 0.0010 0.0181 0.0000 0.6529 0.7877 0.1056

Long 0.2906 0.0004 0.0079 0.0000 0.6597 0.7881 0.1034

60

1 0.2017 0.0011 0.0222 -0.0142 0.6165 0.6219 0.0285

Continued on next page
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Table 9.2 – Continued from previous page

Ins. Chain Mean

β̂XY

SE Time-

Series

SE

95% Credible Int. Prob. X Total

Visit.

Prob.

2 0.2025 0.0011 0.0243 -0.0614 0.6215 0.6291 0.0346

3 0.2275 0.0011 0.0198 -0.0162 0.6333 0.6947 0.0287

4 0.2103 0.0012 0.0277 -0.1478 0.6661 0.6597 0.0358

5 0.1744 0.0011 0.0245 -0.0912 0.6489 0.5621 0.0263

Long 0.1801 0.0004 0.0093 -0.0724 0.6077 0.5939 0.0315

90

1 0.2068 0.0011 0.0226 -0.0157 0.6452 0.6356 0.0106

2 0.2043 0.0010 0.0202 -0.0107 0.5802 0.6602 0.0101

3 0.2228 0.0010 0.0207 0.0000 0.6164 0.6775 0.0121

4 0.1659 0.0010 0.0206 -0.0512 0.5933 0.5789 0.0137

5 0.2154 0.0011 0.0252 -0.0306 0.6510 0.6496 0.0128

Long 0.1962 0.0004 0.0096 -0.0377 0.6236 0.6210 0.0137

Table 9.3: Time taken (seconds) for ivbma to run these scenarios.

Number of Instruments 5 Chains Long Chain

10 668.87 1320.02

30 1002.68 2008.77

60 1177.39 2273.98

90 1632.43 3163.83
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(a) 10 Instruments & Short Chain (b) 10 Instruments & Long Chain

(c) 30 Instruments & Short Chain (d) 30 Instruments & Long Chain

(e) 60 Instruments & Short Chain (f) 60 Instruments & Long Chain

(g) 90 Instruments & Short Chain (h) 90 Instruments & Long Chain

Figure 9.8: Trace plot of the causal effect estimate (β̂XY ) from 10,30,60 and 90
instruments with short and long chain. Short and long chain consist of 50,000 and
500,000 iterations with 10,000 and 250,000 burn-in respectively. The horizontal line
is the true βXY (0.2449). Page 194
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9.4.2 Experiment 2: Minor allele frequency

Aim

This experiment investigates whether more iterations are required when the SNPs

are less common.

Datasets

This section only considers dataset with 10 SNPs, the same as in Section 9.4.1.

Another similar dataset will be simulated but non-causal SNPs have MAF of 0.1.

Results

Table 9.4 give the mean estimated βXY and 95% credible interval, probability of

including X and total model visited probability for datasets with 10 instruments,

the results for datasets with 30, 60 and 90 instruments are in Appendix Table E.1.

In the low frequency MAF case, the short and long chains have estimated similar

βXY and 95% credible interval, more similarly than the chains with variable MAF.

This is because for the dataset with variable MAF, SNPs differ in their correlation

with the causal SNP because of their MAF. Whereas with a low frequency MAF,

each SNP will have the same correlation. The probability of including X and total

model visited probability are also similar between long and short chains for both

low and variable MAF case. The time-series standard error is similar between low

and variable MAF.

Figure 9.9 shows that mixing is the same between low and variable (Var.) MAF;

the sampler is moving from one model to another very quickly. The trace plots for

more potential instruments included, see Appendix Figure E.6 to E.9 for 30 to 90

instruments respectively.
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Table 9.4: Convergence diagnostic of 10 instruments with low and variable (Var.)
MAF by comparing 5 short chains with 1 long chain. The short chain had 50,000
iterations with 10,000 burn in. The long chain had 500,000 iterations and 250,000
burn in. The true βXY is 0.2449. SE is standard error. Prob. X is the probability of
X included in the second regression. Total Visit. Prob. is the visited probability of
the set of models chosen in the first regression; the set consist of the top 10 models
from the longer chain.

MAF Chain Mean

β̂XY

SE Time-

Series

SE

95% Credible Int. Prob. X Total

Visit.

Prob.

Low

1 0.4145 0.0010 0.0161 0.0000 0.7490 0.9104 0.5053

2 0.4226 0.0010 0.0157 0.0000 0.7543 0.9148 0.4861

3 0.3855 0.0010 0.0178 0.0000 0.7225 0.8771 0.4956

4 0.4338 0.0009 0.0140 0.0000 0.7367 0.9240 0.5132

5 0.4167 0.0010 0.0148 0.0000 0.7340 0.9192 0.5056

Long 0.4272 0.0004 0.0065 0.0000 0.7473 0.9252 0.5069

Var.

1 0.0856 0.0008 0.0154 -0.1613 0.5020 0.4448 0.6930

2 0.0923 0.0008 0.0155 -0.0900 0.4972 0.4351 0.6684

3 0.1048 0.0009 0.0188 -0.1454 0.5496 0.4651 0.6943

4 0.1008 0.0008 0.0152 -0.0679 0.5143 0.4494 0.6829

5 0.1366 0.0009 0.0180 -0.0779 0.5544 0.5313 0.6600

Long 0.0995 0.0004 0.0068 -0.1330 0.5259 0.4584 0.6786
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(a) Low MAF & Short Chain (b) Low MAF & Long Chain

(c) Var. MAF & Short Chain (d) Var. MAF & Long Chain

Figure 9.9: Trace plot of the causal effect estimate (β̂XY ) from 10 instruments with
low MAF. Short and long chain consist of 50,000 and 500,000 iterations with 10,000
and 250,000 burn-in respectively. The horizontal line is the true βXY (0.2449).

9.4.3 Experiment 3: Confounding Effect

Aims

The aim of this section is to see whether the confounding effect between X and Y

affects the number of iterations needed to have evidence of convergence.

Datasets

One dataset has the same simulation method as Section 9.4.1, the other two datasets

will differ by (1) the direction and (2) the amount of confounding. Section 4.3

shows that U, the confounder, has a positive effect on both X and Y, and the

causal SNP explains 2% of the variation in X. Then 98% of the variation is shared

equally between confounding(49%) and random error(49%). In the next dataset,

U will have a negative effect on Y, a change in direction of confounding from the
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original simulation. Finally, the amount of confounding will be increased, so that the

confounding effect explains 73.5% and random error explains 24.5% of the variation

in X. The datasets will be referred to as positive, negative and strong confounding.

Results

Table 9.5 show that the causal effect estimates are similar between short and long

chains for all effects of confounding. For strong confounding, the upper and lower

limits of the 95% credible interval in the short chain are not as accurate as the long

chain. There is very little difference between long and short chains for the proba-

bility of X and the total visited probability, in all of the datasets. The contrast in

probability of X between negative confounding and the rest of the confounding effect

is because they each have their own datasets which differ by instrument strength.

The trace plots for long and short chain have similar mixing properties, Fig-

ure 9.10. The short chains for strong confounding have a more ”snake-like” ap-

pearance in its trace plot than the other confounding effects. This indicates worse

mixing for strong confounding, due to the prior for the covariance matrix assuming

no confounding between X and Y; as a consequence ivbma struggled to obtain the

covariance matrix. The trace plots of negative and strong confounding for all 5 short

chains are in Appendix Figure E.10 and E.11 respectively.
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Table 9.5: Convergence Diagnostic of 10 instruments with different confounding
effect by comparing 5 short chains with 1 long chain. The short chain had 50,000
iterations with 10,000 burn in. The long chain had 500,000 iterations and 250,000
burn in. The true βXY is 0.2449. SE is standard error. Prob. X is the probability of
X included in the second regression. Total Visit. Prob. is the visited probability of
the set of models chosen in the first regression; the set consist of the top 10 models
from the longer chain.

Conf. Chain Mean

β̂XY

SE Time-

Series

SE

95% Credible Int. Prob. X Total

Visit.

Prob.

Positive

1 0.0856 0.0008 0.0154 -0.1613 0.5020 0.4448 0.6930

2 0.0923 0.0008 0.0155 -0.0900 0.4972 0.4351 0.6684

3 0.1048 0.0009 0.0188 -0.1454 0.5496 0.4651 0.6943

4 0.1008 0.0008 0.0152 -0.0679 0.5143 0.4494 0.6829

5 0.1366 0.0009 0.0180 -0.0779 0.5544 0.5313 0.6600

Long 0.0995 0.0004 0.0068 -0.1330 0.5259 0.4584 0.6786

Negative

1 0.4312 0.0014 0.0297 0.0000 1.0558 0.8951 0.7213

2 0.4064 0.0013 0.0270 0.0000 0.9535 0.8576 0.7181

3 0.4292 0.0013 0.0240 0.0000 0.9532 0.8977 0.7400

4 0.3777 0.0015 0.0349 0.0000 0.9754 0.7804 0.7271

5 0.4680 0.0014 0.0304 0.0000 1.0914 0.9116 0.7287

Long 0.4379 0.0005 0.0115 0.0000 1.0038 0.8842 0.7249

Strong

1 0.0849 0.0009 0.0235 -0.2470 0.4869 0.4556 0.7671

2 0.0530 0.0009 0.0264 -0.3916 0.4592 0.4309 0.7782

3 0.0727 0.0008 0.0171 -0.1352 0.4800 0.4050 0.7859

4 0.0923 0.0010 0.0277 -0.3282 0.5217 0.4802 0.7617

5 0.0908 0.0009 0.0242 -0.3049 0.4971 0.4953 0.7667

Long 0.0797 0.0003 0.0079 -0.1404 0.4704 0.4312 0.7774
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(a) Positive Confounding & Short Chain (b) Positive Confounding & Long Chain

(c) Negative Confounding & Short Chain (d) Negative Confounding & Long Chain

(e) Strong Confounding & Short Chain (f) Strong Confounding & Long Chain

Figure 9.10: Trace plot of the causal effect estimate (β̂XY ) from 10 instruments with
low MAF. Short and long chain consist of 50,000 and 500,000 iterations with 10,000
and 250,000 burn-in respectively. The horizontal line is the true βXY (0.2449).

9.4.4 Conclusion

If there are many instruments then the choice of models will be large, therefore

ivbma will require more iterations to go though the different models. However there

was evidence of convergence for mean β̂XY in the short chain and its 95% credible

interval.
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The inclusion of SNPs with lower MAF does not necessarily require more itera-

tions. However, if the investigator is interested in the credible interval for variable

MAF case, then more iterations will be needed to acquire convergence in the credible

interval. Variation in MAF and correlation with the causal SNP creates uncertainty

in causal effect estimates.

The short chain does show sufficient mixing and evidence of convergence for

causal effect estimate, probability of X and total visited probability in each form

of confounding. Nevertheless when the confounding effect is strong, more iterations

are required to demonstrate evidence of convergence in the 95% credible interval.

From these results, we can tell that the number of iterations to have evidence of

convergence is dependent on the aims of the analysis. If an accurate 95% credible

interval is the aim then running more iterations will be needed. However, if the

investigators are only interested in the the point estimates, then simulating a short

chain will suffice.

9.5 Selection of instruments in IVBMA

9.5.1 Aim

The aim of this section is to understand whether IVBMA is able to select instruments

that are highly correlated with the causal SNP, and the effect of MAF on SNP

selection.

9.5.2 Design

The genotype of 10 SNPs from 2,000 individuals will be available as instruments.

The SNPs will have patterned LD, where their correlation with each other will be

between 0 and 1, depending on their physical proximity, as described in Section 4.2.

MAF for all the non-causal SNPs is 0.45 and for the causal SNP is 0.5. The middle

SNP will be assumed as causal and explains 2% of the variation in the risk factor

(X). X will explain 6% of the variation in the outcome (Y). X and Y will be normally

distributed with sample size of 2,000. The causal SNP will be discarded and the

potential instruments will be in the form of non-causal SNPs. The simulation is

repeated 200 times.

To understand the effect of MAF, two further scenarios will be simulated; in

the low frequency MAF case the non-causal and the causal SNP have MAF of 0.1
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and 0.05 respectively. For the variable MAF case, the non-causal MAF will vary

between 0.1 to 0.5 and the causal SNP will have 0.05.

The average of several parameters from the 200 datasets will be monitored;

causal effect estimate with its standard error (S.E.), probability of X being included

in the second regression with its interquartile range (IQR), correlation of each SNP

with the causal SNP (SNPc), their estimated association with X (β̂ZX) and their

probability of being included as an instrument.

9.5.3 Results

For all MAF, on average over the 200 datasets, IVBMA (the method) usually selects

one of the SNPs that is highly correlated with the causal SNP; SNP5 and SNP6

have the highest correlation with SNPc for all cases of MAF, they have very similar

probability of being included in the model as an instrument and their probability

adds up close to 1, which indicates that one or the other is under model consid-

eration in each MCMC iteration. For random MAF case, the probability of being

an instrument for SNP5 or SNP6 is not quite 1. This is because in some datasets

SNP5 and SNP6 have low MAF, and IVBMA selects the next highly correlated

SNP with common MAF in order to obtain more information.

Table 9.6: Comparing the average parameters from 200 datasets between different
MAF cases; β̂XY is the causal effect estimate (the true is 0.2449) and the standard
error of its mean (S.E.). Prob. X is the probability of X being included in the
second regression and its interquartile range (IQR). Corr. with SNPc is each SNP’s
correlation with the causal SNP. β̂ZX is their estimated association with X. Prob.
SNP is their probability of being included as an instrument.

MAF Mean

β̂XY

(S.E.)

Prob. X (IQR) SNP Corr.SNPc Mean

β̂ZX

Prob. SNP

Random
0.1705

(0.0221)

0.5567

(0.2990)

1 0.0894 -0.0012 0.0630

2 0.3095 0.0004 0.0640

3 0.5680 0.0032 0.0866

4 0.8013 0.0164 0.1871

5 0.9413 0.0469 0.3806

6 0.9413 0.0459 0.3776

Continued on next page
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Table 9.6 – Continued from previous page

MAF Mean

β̂XY

(S.E.)

Prob. X (IQR) SNP Corr.SNPc Mean

β̂ZX

Prob. SNP

7 0.8007 0.0168 0.1829

8 0.5689 0.0022 0.0770

9 0.3081 -0.0009 0.0727

10 0.0895 -0.0025 0.0722

Common
0.1902

(0.0180)

0.6931

(0.5169)

1 0.0887 0.0002 0.0444

2 0.3084 0.0007 0.0450

3 0.5683 0.0030 0.0736

4 0.8005 0.0115 0.1480

5 0.9413 0.0763 0.5411

6 0.9414 0.0670 0.4898

7 0.8013 0.0111 0.1458

8 0.5689 0.0028 0.0819

9 0.3102 0.0018 0.0593

10 0.0878 0.0001 0.0381

Lower
0.1672

(0.0223)

0.5612

(0.3191)

1 0.0889 -0.0002 0.0717

2 0.3067 0.0004 0.0801

3 0.5698 0.0062 0.1015

4 0.8014 0.0265 0.2164

5 0.9416 0.0780 0.4463

6 0.9416 0.1032 0.5555

7 0.8013 0.0214 0.1952

8 0.5701 0.0079 0.1213

9 0.3082 0.0004 0.0696

10 0.0892 -0.0013 0.0885

Continued on next page
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Table 9.6 – Continued from previous page

MAF Mean

β̂XY

(S.E.)

Prob. X (IQR) SNP Corr.SNPc Mean

β̂ZX

Prob. SNP

0.0 0.5 1.0

0.0
0.5

1.0
1.5

2.0
2.5

Posterior Distribution of beta_XY
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Figure 9.11: Posterior distribution of causal effect estimates (β̂XY ) for dataset A, a
dataset that had the highest probability of X being included in the second regression
(0.9942). The red and black vertical line is the true causal effect (0.2449) and mean
of β̂XY (0.5394).

−0.5 0.0 0.5 1.0

0
1

2
3

4
5

Posterior Distribution of beta_XY

De
ns

ity

Figure 9.12: Posterior distribution of causal effect estimates (β̂XY ) for dataset B,
a dataset that had mean estimate approximately to the true causal effect and the
probability of X is 0.6387. The red and black vertical line is the true causal effect
(0.2449) and mean of β̂XY (0.2476).
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The common SNP analysis had the least bias, low frequency had the most and

random MAF had bias in between them (True βXY =0.2449). There is not enough

information from low frequency SNPs to support X in the second regression, as

is evident from the large S.E. of βXY in both variable and low frequency MAF in

comparison to common MAF.

ivbma sets the coefficient to zero if its variable is not included in the current

model, thus mean estimates are pulled towards zero. Consider the results for

datasets A and B, selected from the 200 datasets in the simulation. They both

consist of SNPs with variable MAF. Dataset A gave the highest probability of X

being included in the second regression and causal effect estimate for dataset B was

closest to the true. Figure 9.12 show even though dataset B estimated approximately

the true causal effect, IVBMA was uncertain of X, so there were large number of

models that did not include X, the mean causal effect estimate is pulled towards

zero as a result, which just happens to be towards the true value. Whereas dataset

A is more certain of X and has hence less models with zero estimates.

9.5.4 Conclusion

Most of the time IVBMA chooses SNPs that are highly correlated with the causal

SNP. However the low MAF of the SNPs does creates uncertainty for the causal

relationship between X and Y. Thus, the researcher should examine the posterior

distribution of the causal effect from IVBMA for their dataset to assess the reliability

of its mean estimate.

9.6 Discussion

This chapter have given a description of Bayesian Model Averaging (BMA), BMA

in instrumental variable analysis (IVBMA) and their implementation in OpenBUGS.

However, OpenBUGS is inefficient for IVBMA as OpenBUGS was designed for a wide

range of Bayesian applications. For exactly the same dataset, R package ivbma

took a tenth of the time of OpenBUGS and its causal effect estimates were similar

including the 95% credible interval. After deciding on the most efficient software,

the convergence and mixing were the next issues to be considered. The accuracy

of the posterior credible interval decreased as the number of instruments increased,

because the number of possible models increases. Instruments with low MAF do not
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change the rate of convergence. If the confounding between exposure and outcome

of interest is strong then the rate of convergence is slow, because the prior from

ivbma implies there is no confounding effect. Overall, the results of these scenarios

suggest that if an accurate 95% credible interval is necessary then more iterations

will be required. IVBMA selects SNPs that are highly correlated with the causal

SNP most of the time, except when these SNPs have low MAF and then the next

highly correlated SNPs with greater MAF will be chosen.

The designers of ivbma, Karl and Lenkoski [160] demonstrated their algorithm

to be more computationally efficient than 2BMA [184] by performing analyses on

the same dataset. Furthermore, they have shown IVBMA’s quick convergence and

lack of mixing difficulties in comparison to Koop et al. [172]’s method. Karl and

Lenkoski [160] have also found the convergence of the 95% credible interval from

ivbma deteriorates as number of potential covariates in the regression increases.

The point estimate of the causal effect is the mean of its posterior distribution

which includes the case when X is not in the model and if IVBMA is uncertain of

X then the mean will be pulled toward 0, since ivbma assigns a 0 coefficient for the

causal effect in the absence of X. Thus, it is important for the researcher to plot the

posterior distribution of the causal effect estimates. Along the same line of thought,

if OpenBUGS is used, despite its inefficiency, then the user must ensure that, when X

is not included, the output of causal effect estimates should be changed to 0, as those

estimates are taken from the prior distribution. As a rule, in the context of BMA,

the posterior inclusion probability of an explanatory variable, Kass and Raftery [161]

have suggested for <50% as evidence for no effect of the explanatory variable on the

outcome, 50-75% as weak evidence for an effect, 75-95% as evidence and >95% as

strong evidence of explanatory variable having an effect on the outcome.

The rate of convergence in IVBMA also depends on the priors for parameters

of interest. The priors specified by ivbma are perhaps a little informative but with

reason. A vague prior can cause slow convergence and mixing. When a variable is

not in the model, its coefficients is extracted from its vague prior. If by chance an

extreme value is obtained then it is much harder for the model with this variable to

be under consideration, as the extremity will give a low likelihood and thus rejected.

A review of appropriate priors for BMA have been discussed by O’Hara et al. [213].
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Chapter 10

A Comparison of Bayesian and

Classical Approaches

10.1 Introduction

The most commonly implemented estimator for the average causal effect in Mendelian

randomisation is two-stage least squares (2SLS) [84]. However as seen in Chapter 7 it

is severely biased with weak instruments. Limited information maximum likelihood

(LIML) is known to reduce the weak instrument bias seen in 2SLS [61]. Chapter 7

concluded that LIML is the most efficient estimator for the causal effect with many

weak instruments. Nonetheless LIML occasionally gives extreme estimates. The

number of these outliers were lower when weak instruments were excluded, but se-

lection bias was introduced when the same dataset was used for instrument selection

and the analysis. Instrumental variable Bayesian model averaging (IVBMA) offers

an alternative to the classical approach, where the instrument selection is within the

analysis of causal effect. IVBMA removes instruments that do not explain any addi-

tional variation and incorporates model uncertainty into the causal effect estimate.

The objective of this chapter is investigate whether the mechanism of IVBMA have

an advantage over the classical approaches, 2SLS and LIML.

This chapter describes 3 experiments. Experiment 1 compares the performance

of the 3 estimators when potential instruments have common, low and variable MAF.

Experiment 2 examines whether the change in LD pattern alters the performance

of the 3 estimators. The simulation method in experiment 1 and 2 is designed

to control the SNPs’ MAF and LD. However it does not integrate evolutionary

factors such as population structure, natural selection and recombination into the

207



CHAPTER 10. A COMPARISON OF BAYESIAN AND CLASSICAL
APPROACHES

algorithm. Experiment 3 uses GENOME to simulate realistic genetic patterns for the

genotypes of the SNPs and aims to discover the possible differences in performance

with realistic genetic patterns.

10.2 Experiment 1: Minor Allele Frequency

10.2.1 Aim

As we have seen from Section 9.4.3, IVBMA’s performance can be affected by mi-

nor allele frequency (MAF); if the allele frequency is low then there is not enough

information for IVBMA to be certain of the association between X and Y. This

experiment aims to compare the efficiency of IVBMA to the classical approaches

with different MAF.

10.2.2 Design

There will be 200 datasets, each dataset will contain from 10 to 90 SNPs, the risk

factor (X) and the outcome of interest (Y) for 2,000 individuals. The SNPs will

have patterned LD, their correlation will be dependent on their physical distance to

the causal SNP, as described in Section 4.2. The position of the causal SNP will be

in the middle and will explain 2% of the variability in X. 6% of the variation in Y

will be explained by X. X and Y will be normally distributed. The causal SNP will

be discarded before the comparison of methods. Hence the potential instruments

are the non-causal SNPs.

This experiment will consider three cases of MAF; variable, common and low.

For the variable MAF, the causal SNP will have MAF of 0.5 and non-causal MAFs

will be randomly generated between 0.1 and 0.5. In the common case, the causal

and non-causal SNPs will have MAF of 0.45 and 0.5 respectively. The causal SNP

will have MAF of 0.05 and non-causal with 0.1 in the low MAF case.

For IVBMA, each dataset will be run with 50,000 MCMC iterations and burn-in

of 10,000. Section 9.4 showed that even with many potential instruments, and thus

more models to consider, the point estimates remains similar between long and short

chains. Therefore I will keep the number of iterations the same for all numbers of

instruments and different cases of MAF.

The evaluation criteria of the 3 estimators will be monitored from 200 datasets;

Winsorised bias and root mean square error (RMSE), percentage of outliers and
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coverage.

10.2.3 Results

Instrumental variable Bayesian model averaging

For common and variable MAF, the Winsorised bias from IVBMA for all instruments

are similar (Figure 10.1), shown by the overlapping confidence interval, calculated

from Winsorised S.E. (Appendix Table F.1). Except for the decrease in bias from

60 to 90 instruments, this is because there are more SNPs to choose from, and

hence the analyses are more likely to select the SNPs with strong correlations with

the causal SNP. For low MAF, the cause of the bias is slightly more complicated,

with small number of instruments and with low MAF, IVBMA is less certain of the

causality of X, hence the causal effect estimates are pulled towards zero, due to the

normal prior of N(0, 1). When there are more instruments, the IVBMA has more

potential instruments to choose from, but low MAF causes finite sample bias in the

first regression. As shown by the change of negative to positive bias from 60 to 90

instruments; the combination of estimates is pulled towards zero and the estimates

are affected by finite sample bias giving an illusion of zero bias. Then the positive

bias in 90 instruments demonstrates that there are more instruments with strong

correlation with the causal SNP but they are affected by finite sample bias.

10 instruments with common MAF had the least bias, as there is more informa-

tion to confirm the presence of X in the second regression (Figure 10.2). Then all of

the MAF gave the same bias for 30 instruments, since variable and low MAF have

gained more information with an increased number of SNPs. For 60 instruments,

Figure 10.1a shows a difference in bias between variable and common MAF, but the

large standard error (see Appendix Table F.1) means that their bias is the similar.

The low MAF gave approximately zero bias at 60 instruments. This is because some

of the datasets in the simulation are affected by finite sample bias giving positive

estimates which balances the negative estimates from datasets that are still unsure

about X being included in the second regression. Thus, with 90 instruments the

low MAF case becomes more certain of X but is affected by finite sample bias, con-

sequently increasing the bias. The variable MAF also shows positive bias, this is

because of the range of estimates from each datasets is wide, shown by Winsorised

RMSE (Figure 10.1b). Some datasets will have SNPs strongly correlated with the

causal SNP but have low MAF, and other datasets will have SNPs with common
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MAF and strong correlation.
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Figure 10.1: Comparing evaluation criteria of IVBMA from instruments with dif-
ferent MAF. The purple coloured straight, dashed and dotted lines are common,
low and variable MAF respectively. The black solid line in Winsorised bias is zero
bias. The dotted black line in (a) and (d) is 10% bias and 95% nominal coverage
respectively.

Both Winsorised RMSE from common and low MAF decreases with additional

instruments, Figure 10.1b. In the variable MAF case, IVBMA estimates show dif-

ferences in RMSE between 30 to 90 instruments; The reduction of RMSE from 30 to

60 instruments, is caused by the certainty of X. There is an increase in RMSE from

60 to 90 instruments, since the overall bias is reduced, the variation in estimates

between datasets is greater, as explained before. In the variable MAF case the in-
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struments in each datasets will vary by their MAFs and their correlations with the

causal SNP. Due to the certainty of X included in the second regression and the first

regression is not affected by finite sample bias, the common MAF have the lowest

RMSE.

There are some outliers in IVBMA estimates when the number of instruments is

small, and in the case where MAF is low and variable, Figure 10.1c. This is not sur-

prising considering low MAF will have finite sample bias and the variation in MAF

will cause each dataset to have a different selection of potential instruments. This

is evident from the decreasing number of outliers when there are more instruments

to choose from. However the percentage of outliers in IVBMA is never too large, as

the prior restricts the range of the causal effect estimate can have.

For all three cases of MAF, the coverage remains the same with increasing in-

struments, Figure 10.1d. The coverage from low and variable MAF is closer to the

nominal level than that from common MAF. This is because of the uncertainty of

X in low and variable MAF, which resulted in wider credible intervals for the causal

effect estimates.

Comparison of classic and Bayesian approaches

There are no differences in Winsorised bias between LIML and IVBMA for 10 and

90 instruments, due to their large Winsorized standard error (Appendix Table F.1).

IVBMA has more inaccurate causal effect estimates than LIML, due to its uncer-

tainty for X, shown by the low median probability of X in Figure 10.2a. Thus its

causal effect estimates are pulled towards zero (the prior of the causal effect esti-

mate has a mean of zero). When the number of instruments reaches 90, then there

is more evidence for IVBMA to include X and LIML is the more biased. Note that

Figure 10.3a does not imply zero bias from LIML with 60 instruments. The esti-

mator had too many extreme values even for Winsorisation as is evident from the

large percentage of outliers in Figure 10.1c. For the low MAF case, the Winsorised

bias is similar between LIML and IVBMA, as their Winsorised standard error is

large (Appendix Table F.1). An exception is for 90 instruments where LIML is

affected by the many weak instruments problem and IVBMA has more confidence

in X (Figure 10.2b). For the case of variable MAF, IVBMA reaches similar bias as

LIML with increase in number of instruments, since IVBMA’s certainty of X grows

with additional instruments.

Page 211



CHAPTER 10. A COMPARISON OF BAYESIAN AND CLASSICAL
APPROACHES

10 30 60 90

0
.2

0
.4

0
.6

0
.8

1
.0

number of instruments

P
ro

b
. 
X

(a) Common MAF

10 30 60 90

0
.4

0
.6

0
.8

1
.0

number of instruments

P
ro

b
. 
X

(b) Low MAF

10 30 60 90

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

number of instruments

P
ro

b
. 
X

(c) Variable MAF

Figure 10.2: Probability of X for common, variable and low MAF. Probability of X,
is the probability of X included in the second regression of IVBMA.

IVBMA has the lowest Winsorisation RMSE for common MAF (Figure 10.4a),

which is due to the effect of the informative prior. The difference between estimators

is not due to sampling error. In the low MAF case, the Winsorised RMSE for the two

classical approaches increases with number of instruments, while IVBMA decreases,

Figure 10.4b). As mentioned before, the decrease is due to IVBMA’s increasing

confidence in X. Note for 10 instruments, Figure 10.4b shows that the RMSE from

IVBMA is greater than LIML, the difference is caused by sampling error. RMSE has

0.4% accuracy from 200 datasets. Similar conclusions can be drawn with variable

MAF, except for 90 instruments, as there is more variation between SNP correlations
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to the causal SNP and their MAF.
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Figure 10.3: Winsorised bias from 2SLS, LIML and IVBMA for common, variable
and low MAF. The estimators are coloured as green, red and purple respectively.
The black solid line in each plot is zero bias and the black dotted lines are 10% bias.

IVBMA has the advantage of a prior to restrict the range that a causal effect

estimate can have. Hence the percentage of outliers is approximately zero for all

cases of MAF, Figure 10.5. However there are a few exceptions; for 10 instruments

with low MAF, and 10 and 30 instruments with variable MAF, IVBMA has more

outliers than 2SLS, which because of its uncertainty about X being included in the

second regression.

The coverage for IVBMA remains close to the 95% nominal level for all cases of
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MAF, whereas the classical approaches decrease away from the nominal level with

increasing number of instruments. At 10 instruments LIML seems to have better

coverage than IVBMA this is due to sampling error. 95% coverage has 3% accuracy

from 200 dataset, using the formula in Section 4.5.
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Figure 10.4: Winsorised RMSE from 2SLS, LIML and IVBMA for common, variable
and low MAF. The estimators are coloured as green, red and purple respectively.
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Figure 10.5: Outlier from 2SLS, LIML and IVBMA for common, variable and low
MAF. The estimators are coloured as green, red and purple respectively.
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Figure 10.6: Coverage from 2SLS, LIML and IVBMA for common, variable and low
MAF. The estimators are coloured as green, red and purple respectively. The black
dotted line in each plot is 95% nominal coverage.

10.2.4 Conclusion

For many instruments IVBMA is generally the better option, as its certainty of X

being included in the second regression increases. These results also demonstrate

the sensitivity of priors on causal effect estimates, as there are hardly any outliers,

unlike LIML. The performance of IVBMA depends on which potential instruments

are included in the datasets. If the highly correlated SNPs have rare MAF, then it

will have finite sample bias even if it has lots of instruments to choose from.
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10.3 Experiment 2: Patterns

10.3.1 Aim

In the previous experiment, the simulation distributed the genetic correlation evenly

according to their physical distance to the causal SNP. This experiment examines

the effect of changing the simulation method on the performance of 2SLS, LIML

and IVBMA.

10.3.2 Design

The simulation of the genotype of 10 to 90 SNPs, risk factor (X) and outcome of

interest (Y) from 2,000 individuals are the same as experiment 1. The MAF of

causal SNP will be 0.5 and non-causal will vary between 0.1 and 0.5. The only

difference from experiment 1 is the genetic correlation pattern; Pattern I will have

patterned LD, same as experiment 1, Pattern II will have the same shape as Pattern

I but the SNPs have weaker correlation to the causal SNP. Pattern III will resemble

the haplotype blocks; strong correlation with the causal SNP within a block and at

recombination (outside the block) the correlation drops drastically. Pattern IV will

have two functional variants, where each explains 1% of the variation in X and each

will have the same correlation pattern as Pattern I. The detail description of the

simulation method is in Section 4.2.

For IVBMA, each dataset will be run with 50,000 MCMC iterations and burn-in

of 10,000, in all the different genetic patterns and numbers of instruments.

The simulation will be repeated 200 times and for each simulation Winsorised

bias and RMSE, percentage of outliers and coverage will be monitored.

10.3.3 Results

Figure 10.7 show the regional plots for Patterns I,II,III and IV. As described in the

design section; the correlations decreases evenly with the increase in distance to the

causal SNP (black dot) for Pattern I. Pattern II have the correlation distribution

but with weaker start point of the correlation. The correlations in Pattern III have

a plateau effect of a haplotype block, then drop sharply at the recombination points.

Pattern IV has two causal SNPs, each with the same correlation pattern as Pattern

I and each explains 1% of the variation on X. Thus the p-value for the association

with X is smaller when compared to Pattern I.
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Figure 10.7: The regional association plots for the four patterns with 90 SNPs of
200 simulations. The p-value is the mean p-value from the regression of each SNP
on X. On the x-axis is SNP ID mimicking chromosome position, and on the y-axis is
-log10 P . Colour coding (from red to navy) denotes strong to weak correlation with
the causal SNP; see also the legend within the plot. The black dot is the causal SNP

Instrumental variable Bayesian model averaging

Figure 10.8 give the evaluation criteria of IVBMA for all patterns. Winsorised bias

is decreasing with increasing number of instruments for all patterns, Figure 10.8a,

since IVBMA is more certain of X (as shown by Figure 10.9) and has less estimates

of zero for the causal effect. There is no difference in Winsorised bias between the

patterns for all numbers of instruments, except for 10 instruments; Pattern II have
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more weakly correlated SNPs in comparison to the other patterns, hence its mean

MCMC causal effect estimate is pulled towards zero, as zero estimates are from the

uncertainty of X being included in the model. The difference in Winsorised RMSE

is caused by the variation in causal effect estimates of 200 datasets, as Winsorised

bias showed no differences between the patterns. This is because each pattern have

varying qualities of instrument; their correlation with the causal SNP and MAF.

IVBMA becomes more confident of X with the number of instruments and hence

the number of outliers decreases for all patterns. The coverage from all the patterns

is similar, Figure 10.8d, and the coverage does not change with more instruments.

Comparison of classic and Bayesian approaches

When the number of instruments is small, IVBMA is more biased than LIML for

all the patterns, as IVBMA is uncertain of X and estimates zero for causal effect

as a result, Figure 10.10. At 90 instruments for pattern III and IV, IVBMA has

become positively biased rather than negatively, as it is more certain of X and is

not estimating a zero causal effect. LIML has too many outliers for Winsorisation

to remove. For Pattern II there are hardly any differences in bias for 30, 60 and 90

instruments. IVBMA does not have any advantage with the choice of instruments

as all the instruments are weakly correlated with the causal SNP. However the

Winsorised standard errors from LIML are large in comparison to IVBMA, Appendix

Table F.2.

IVBMA having the lowest Winsorised RMSE for all patterns in comparison to

the classical approaches is not due to sampling error (Figure 10.11), as RMSE was

calculated to have 0.4% accuracy from 200 datasets. IVBMA has priors to restrict

the range a causal effect estimate can have, and its RMSE and percentage of outliers

is smaller than LIML. For all patterns, as IVBMA is uncertain of X being included

in the second regression with small numbers of instruments, 2SLS has less outliers by

comparison, Figure 10.12. At 10 instruments LIML has similar coverage to IVBMA

(accuracy of 3% for 95% coverage), but decreases from the 95% nominal level with an

increase in the number of instruments, whereas IVBMA remains at approximately

95% for all patterns.
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Figure 10.8: Comparing evaluation criteria of IVBMA from four different patterns.
The purple coloured straight, dashed and dotted lines are common, low and variable
MAF respectively. The black solid line in Winsorised bias is zero bias. The dotted
line in Winsorised bias and coverage is 10% bias and 95% coverage respectively.
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Figure 10.9: Probability of X for all four patterns. Probability of X, is the probability
of X included in the second regression of IVBMA.
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Figure 10.10: Winsorised bias from 2SLS, LIML and IVBMA for all four Patterns.
The estimators are coloured as green, red and purple respectively. The black solid
line in each plot is zero bias and the dotted line is 10% bias.
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Figure 10.11: Winsorised RMSE from 2SLS, LIML and IVBMA for all four Patterns.
The estimators are coloured as green, red and purple respectively.
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Figure 10.12: Winsorised RMSE from 2SLS, LIML and IVBMA for all four Patterns.
The estimators are coloured as green, red and purple respectively.
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Figure 10.13: Coverage from 2SLS, LIML and IVBMA for all four Patterns. The
estimators are coloured as green, red and purple respectively. The black dotted line
in each plot is 95% nominal coverage.

10.3.4 Conclusion

The different genetic patterns do not change the conclusion that IVBMA is more

efficient with many instruments. Even though IVBMA has similar bias to LIML,

it have the least RMSE and percentage of outliers, and has closer to the nominal

coverage. IVBMA’s performance does depend on how much information it has

gained from the instruments. Lack of information will create uncertainty for the

inclusion of X and thus zero causal effect estimates could arise.
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10.4 GENOME

10.4.1 Aim

To understand the effect of MAF and correlation patterns on the performance of

2SLS, LIML and IVBMA, I have designed my own simulation methods for the gen-

eration of SNPs. However, the procedure are not realistic, thus GENOME simulator

[185] will be used in this experiment. In the previous experiment, GENOME was

not implemented as it does not allow for any control over the distribution of MAF or

correlation between SNPs. This experiment aims to see whether there is a difference

in conclusion from the previous experiment with realistic genetic patterns.

10.4.2 Design

The options in GENOME will be specified to simulate genotype of 200 SNPs for 2,000

individuals, as there are approximately 200 SNPs in an averaged sized gene[112].

The causal SNP will be randomly chosen among SNPs with rare MAF (< 0.1) and

potential instruments will be SNPs with MAF> 0.1. The chosen causal SNP will

explain 2% of the variation in X. 6% of the variation in Y will be explained by

X. X and Y will be normally distributed with sample size of 2,000. All of the rare

SNPs will be discarded and the comparison of estimators will be based on non-causal

SNPs with MAF> 0.1 as potential instruments. The simulation will be repeated

200 times.

For IVBMA, 50,000 MCMC iterations will be run with a 10,000 burn-in for all

GENOME simulated datasets. The performance of 2SLS, LIML and IVBMA will

be measured by Winsorised bias and root mean squared error (RMSE), percentage

of outliers and coverage.

Table 10.1: Summary of GENOME simulated genetic instruments.

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

Number of Instruments 3 25 41 41 58 87 1

10.4.3 Results

Table 10.1 give the number of potential instruments. Most of the datasets have

approximately 40 SNPs available and only one dataset had all SNPs with rare MAF
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which were excluded from the analysis.

Table 10.2: Summary of IVBMA’s Probability of X being included in the second
regression for 200 GENOME simulated datasets.

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

Prob. X 0.21 0.40 0.59 0.61 0.83 1.00 1.00

IVBMA has lower Winsorised bias in comparison to the classic methods and it

is not due to the sampling error, Table 10.3. IVBMA also have the lower RMSE,

proportion of outliers and has closest to the 95% nominal coverage. These results

are plausible as IVBMA is allowed to make its own choice of instrument, whereas

LIML and 2SLS do not and thus suffer from many weak instrument bias. Table 10.2

shows that for most of the 200 datasets, IVBMA included X in the second regression

60% of the time.

Table 10.3: Evaluation Criteria from 2SLS, LIML and IVBMA with GENOME
simulated genetic instruments. β̂XY is the causal effect estimates. True βXY is
0.2449

Mean β̂XY (S.D.) Winsor.

S.E.

Winsor.

Bias

Winsor.

RMSE

Prop. of

Outliers

Coverage

2SLS 0.4172 (0.1572) 0.0071 0.1635 0.1915 0.0101 73.87

LIML 0.7550 (9.0494) 0.0609 -0.2815 0.9017 0.0804 10.55

IVBMA 0.1957 (0.1664) 0.0080 -0.0691 0.1317 0.0000 94.47

10.4.4 Conclusions

The comparison of Bayesian and Classic approaches with GENOME simulated ge-

netic data also demonstrates IVBMA’s efficiency in estimating the causal effect by

having the least Winsorised bias and RMSE, proportion of outliers and nominal

coverage.
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10.5 GRAPHIC Study: FTO gene, body mass

index and blood pressure

There are many epidemiological studies demonstrating the association of obesity

and blood pressure. However the exact mechanism of this relationship is unknown.

Hence it is difficult to identify all of the potential confounding [94, 215, 254]. We

hope to estimate the causal effect of body mass index (BMI) and mean 24 hour

systolic blood pressure (SBP) using instruments from the FTO gene.

10.5.1 Data

The real data are from the Genetic Regulation of Arterial Pressure of Humans in the

Community (GRAPHIC) study [274]. This population-based cohort has recruited

2037 white European participants within 520 nuclear families from Leicestershire,

UK. To not further complicate the MR estimate with family effects, only parents’

data were considered. Individuals were included if they had complete data for body

mass index (BMI) and mean 24-hour systolic blood pressure (SBP).

10.5.2 Instruments

The FTO gene has been previously identified as BMI-related in GWAS [104]. The

genotypes of 207 SNPs in the FTO gene were available. A SNP was included in the

analyses if it (1) had less than 1% of missing data, (2) MAF was greater than 0.1

and (3) was in Hardy Weinberg Disequilibrium. After quality control there were 173

BMI-related SNPs. The genotypes of the SNPs were coded 0, 1, or 2 representing

the BMI-increasing alleles within an individual.

10.5.3 Results

There were 2037 participants in the GRAPHIC study. After quality control, there

were 1026 unrelated-individuals with complete record of BMI and mean 24-hr SBP.

Table 10.4 gives the summary statistics of characteristics from the selected individ-

uals.
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Table 10.4: GRAPHIC study unrelated-individuals characteristics, N=1028

N Mean Standard deviation

Gender (male) 1028(514) - -

Age (years) 1028 52.71 4.63

BMI (kg/m2) 1028 27.44 4.28

Mean 24-hr SBP (mm Hg) 1026 120.61 12.02
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Figure 10.14: Regional association plots for BMI-related FTO variants. Regional P
value plots where the p-value is from the regression of each SNP on BMI. On the
x axis is SNP ID in the ascending order of chromosome position, and on the y axis
is -log10 P . Colour coding (from red to blue) denotes LD information; see also the
legend within the plot.

All the SNPs from GRAPHIC would be considered as weak instruments, as their

individual F-statistics from the association with BMI were less than 10 [253]. Even

for the lead SNP, the F-statistic is 8 and explained approximately 1% of the variation

in BMI (Appendix Table F.3). Figure 10.14 and Appendix Table F.3 show that out

of 173 SNPs there are only 6 in strong correlation with the lead SNP. There is

another SNP that was significant and had a similar effect size for BMI as the lead

SNP and they were independent of each other. This resembles Pattern IV in the

simulation study but with weaker instruments.

Table 10.5 gives the estimated coefficient, 95% confidence interval, standard
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error and p-value for the effect of BMI on blood pressure with 1026 individuals.

OLS regression estimated 0.90 (95% CI: 0.74,1.07) increase in blood pressure (mm

Hg) with 1-unit increase in BMI. The estimates from 2SLS with all the SNPs as

instruments approximates the OLS results. LIML estimated the effect of BMI in the

other direction; LIML derived 5.72 (95% CI: -14.94,3.50) drop in blood pressure from

1-unit increase in BMI. However the standard error is relatively high in comparison

to other methods and includes the null effect within its confidence interval. IVBMA

with 250,000 iterations and 50,000 burnin, estimated a positive causal effect of BMI

on systolic blood pressure, 4.3901 (95% CI: 4.35, 4.43) unit increase for 1-unit of

increase of BMI.

Table 10.5: The effect of BMI on systolic blood pressure (mm Hg), where N=1026
and 173 instruments. SE is standard error. Poster. Prob. is inclusion posterior
probability of BMI.

Method Coefficient (95% Confidence Interval) SE p-value

OLS 0.9013 (0.7369, 1.0658) 0.0838 <0.001

2SLS 0.8613 (0.4682, 1.2544) 0.2006 <0.001

LIML -5.7190 (-14.9426, 3.5046) 4.7060 0.2246

Coefficient (95% Credible Interval) Time-series SE Poster. Prob.

IVBMA 4.3901 (4.3485, 4.4321) 0.0001 1.0000

10.5.4 Conclusion

2SLS are biased towards the OLS estimate with weak instruments [253]. Chapter 7

have shown LIML to give a median unbiased estimate but it can have extreme

outliers if the dataset only has weak instruments. This is the case for GRAPHIC

study; the highest F-statistic for all the SNPs was 8. Therefore the results from

LIML are less believable. IVBMA estimated a positive relationship between SBP

and BMI and was certain of their causal relationship, evident the inclusion posterior

probability of 1. Based from the favourable simulations results for IVBMA, I am

more inclined to believe there is a positive causal relationship between SBP and

BMI from the GRAPHIC study.

However, recent Mendelian Randomisation studies have not found such a large

magnitude of effect between BMI and SBP. In 2009, Timpson et al. [272] showed in
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the Copenhagen General Population study of 36,851 participants that SBP of 3.85

(95% CI:1.88, 5.83) unit change per 10% increase in BMI, using FTO and MC4R as

the two instruments. A meta-analysis of 30 studies on the effect of FTO genotype

against SBP, resulted in 0.89 (95% CI: 0.48, 1.31) unit increase in SBP for 1-unit of

increase in BMI [100]. Holmes et al. [140] have demonstrated from individual-level

data of 6 studies (N=30,136) that per unit increase of BMI, SBP increased by 0.70

(95% CI: 0.24, 1.16), where the genetic instrument is in the form of genetic score

from 14 SNPs, weighted by the coefficients from a discovery study [16].

It is surprising their estimated causal effects are similar to the 2SLS with 173

instruments from my analysis, even though the simulations from previous chapters

have given evidence that 2SLS is severely biased with many instruments. However,

Timpson et al. [272] have shown the estimate from the observational analysis are

within the confidence interval from the instrumental variable analysis, and no signif-

icant difference between the two estimates. Perhaps the confounding effect on BMI

and SBP are bidirectional and have canceled out, whereas IVBMA have suffered

here, as all instruments have equal prior probability, consequently SNP selection is

driven by data; some of the SNPs with strong association to BMI that also have

a positive effect on confounding are selected more frequently in IVBMA than the

SNPs that are weakly associated with BMI and have a negative effect on confound-

ing. Further investigation of IVBMA will be required in scenarios where the genetic

instruments are associated with confounding.

10.6 Discussion

From all the experiments, IVBMA has shown advantages over the classical ap-

proaches, as its causal effect estimates have given the least Winsorised bias and

RMSE, percentage of outliers and are closest to 95% coverage in comparison to

2SLS and LIML. The genotypes of the SNPs are coded 0, 1 and 2. Thus, a SNP

with low MAF will lack information, as it has more 0s. Then, the finite sample bias

is introduced to the first regression when the instruments have low MAF, which

then biases the causal effect estimate from IVBMA. The variation in MAF between

the SNPs gave greater RMSE from IVBMA in comparison to SNPs all having either

common or low MAF. This is because some datasets consist of SNPs with common

MAF and strong correlation with the causal SNP, and some dataset have SNPs with

the same strong correlation but have low MAF. Therefore IVBMA is more likely to
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select the next strongest correlated SNP that possess higher MAF, as shown in Sec-

tion 9.5. Datasets with SNPs that are weakly correlated with the causal SNP will

increase IVBMA’s uncertainty about the presence of X in the second regression.

This uncertainty creates less confidence in the mean causal effect estimates from

IVBMA. If IVBMA is uncertain of X in a dataset then the posterior distribution

will have a bimodal shape with one peak at 0 for models without X and the other

peak at mean estimates from models with X. As a result the mean of the causal

effect estimate is pulled between the two peaks and by chance the mean is at the

true causal effect, as seen in the previous chapter.

As explained above when IVBMA is uncertain of the presence of X in the second

regression, it is possible by chance that the mean causal effect estimate is centred

at the true value. Therefore to check whether this situation occurred, the posterior

distribution of the causal effect estimate should have been plotted, but storing the

results of 200 datasets, each with 40,000 iterations will require a large computer

memory. The long computation time of the Bayesian approach has induced a couple

of limitations to this simulation study; (1) simulations were only repeated 200 times,

which did not give a high accuracy level for the classical approaches in comparison

to 10,000 datasets which have 3%, 4% and 0.4% for 95% coverage, 0.0227 bias

and 0.228 RMSE respectively, derived from Section 4.5. However the low accuracy

level was taken into account when comparing to the Bayesian approach. (2) The

number of iterations for IVBMA was low, 50,000, Chapter 9 found that 250,000

iterations is required to show evidence of convergence in 95% credible interval with

90 instruments.

In the IVBMA literature, Karl and Lenkoski [160] did not compare ivbma to a

classical approach, but they have shown through an empirical example that IVBMA

have similar estimates as 2BMA (see Section 8.3), except IVBMA favours more

parsimonious models. Lenkoski et al. [184] did compare 2BMA to 2SLS. Therefore

I will compare my simulation results to Lenkoski et al. [184]. They have found

from 500 datasets, each with 10 instruments and 100 individuals that 2BMA gave

45% less bias and 46% less mean squared error in comparison to 2SLS, which is

similar to my results where there are 10 SNPs as potential instruments; IVBMA

have lower Winsorised bias and RMSE than 2SLS. Note that Koop et al. [172]

did not provide a simulation study to compare the classical approach to BMA in

instrumental regression model.

The main reason for IVBMA having a smaller RMSE and percentage of outliers
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in comparison to the classical approaches was due to its prior, as it restricts the range

that the causal effect estimate can have. In the Bayesian literature, most of the priors

were designed to improve the convergence and the mixing in BMA [213]. There is

very little information on how to design priors based on biological knowledge, which

is an important area for further research, and therefore the next and final chapter,

which concludes the thesis, will include a discussion of the biological priors for a

Mendelian randomisation analysis.
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Discussion

The motivation for investigating many dependent instruments in Mendelian ran-

domisation is in the scenario where the causal variant(s) was unknown or not geno-

typed. If the independent instrument is not the causal or highly correlated with the

causal variant(s) and therefore it does not fully explain the true variation, conse-

quently causing weak instrument bias. Genome-wide association studies have also

utilised the linkage disequilibrium between SNPs to ensure the coverage of ungeno-

typed causal variant [19, 69, 89]. In addition, a variant showing significant associa-

tion with the exposure in one population may not be the case in another [239, 260],

as a consequence this genetic variant as an instrument may overestimate the true

causal effect. The same motivation have been expressed in the context of Mendelian

randomisation by Burgess et al. [52] and Wang et al. [283], however they have not

focused on many dependent SNPs in individual-level data.

The primary aim of this thesis was to investigate the use of many dependent

SNPs from a single region for Mendelian randomisation. The three main questions

were;

1. Are there any gains from using many dependent SNPs from the same gene?

2. What is the most efficient estimator for many dependent SNPs?

3. In comparison to the classical approaches, are the Bayesian approaches more

efficient with many dependent SNPs?
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11.1 Summary of Findings

11.1.1 Q1: Potential gains

If the causal SNP is unknown or unmeasured, then the answer to question 1 is

yes. Chapter 5 showed that the variation explained by a single non-causal SNP is

dependent on the linkage disequilibrium (LD) that it has with the causal SNP and

the true variation explained by the causal SNP. RMSE is the potential gain, but at

the cost of bias, coverage and type I error (the gain in power is therefore misleading);

Figure 6.1c and Figure 6.1a showed there is a 22% decrease in RMSE but a 6%

increase in bias between a single weak dependent SNP and multiple dependent

SNPs. However, the increase in bias from many instruments for two-stage least

squares (2SLS) is also seen in independent SNPs [219, 227]. 2SLS is biased if the

increasing number of instruments does not increase the variation explained [227]. An

instrument selection policy can ensure that a SNP is not included in the instrument

set if it does not increase the variation explained by the existing set. Section 6.4

demonstrated that bias can be introduced if instrument selection is performed in the

dataset under analysis and it is difficult to determine the best instrument selection

policy for any one sample.

Unless the sample size is large or there is external information for instrument

selection, many dependent SNPs should not be used in 2SLS. This conclusion is not

unique to dependent instruments but also applies to independent instruments. Both

Burgess et al. [52] and Wang et al. [283] have found the use of multiple SNPs from

the same gene can increase power and precision of the estimation of a causal effect

compared to the use of a proxy SNP. However, they did not assess many dependent

SNPs as individual instruments in 2SLS. The implication is that another estimator

should be implemented, an unbiased estimator for many dependent instruments that

does not require an instrument selection policy to reduce weak instrument bias.

11.1.2 Q2: Classical estimators

The answer to Question 2 is that Limited Information Maximum Likelihood (LIML)

is the most efficient estimator, as it has the least bias and variation, it has the clos-

est to nominal coverage and significance level for many weak instruments, as shown

in Chapter 7. For example, Table 7.4, for GENOME simulated SNPs, LIML had

94% less bias and 29% lower RMSE than 2SLS. A similar conclusion was reached
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by Davies et al. [85] with many independent instruments when the condition of ho-

moskedasticity is satisfied. However, Davies et al. [85] also found that LIML has

extreme outliers, as shown in Table 7.4 2SLS has 62% fewer outliers than LIML.

Table 7.5 demonstrates that the proportion of extreme estimates was reduced if

datasets with weak instruments are excluded, or if only SNPs with F-statistics > 10

were included. As LIML is only median unbiased, the interpretation of the causal

effect must be done with caution when the analysed dataset that only contains weak

instruments. The estimation of a causal effect by classical approaches to Mendelian

randomisation is still subject to many weak instruments bias and implementing in-

strument selection policies on a dataset under analysis does introduce selection bias,

which motivates the investigation of Bayesian approaches as a better alternative.

11.1.3 Q3: Classical and Bayesian estimators

I found that Bayesian analysis is more efficient than the classical approach for many

dependent instruments. The simulations in Chapter 10 has shown that Instru-

mental variable Bayesian model averaging (IVBMA) gave the least bias, variation,

outliers, and the best nominal coverage in comparison to the classical approaches.

For GENOME simulated SNPs, Table 10.3, IVBMA gave 75% and 85% less bias

and RMSE than LIML, respectively, and IVBMA did not estimate any extreme

estimates, whereas LIML had 8%. IVBMA provides a solution to many weak in-

struments bias. IVBMA usually selects the SNP that has the highest LD with the

causal SNP unless it has a low minor allele frequency (MAF), in which case it selects

the next highest LD where the SNP has a greater MAF, as shown in Section 9.5.

The reason why IVBMA does not have any extreme estimates like LIML is because

the priors restrict the range of the estimates, which is another important advantage

of BMA. The inclusion of biological priors into the estimation of the causal effect

will be discussed later in this chapter.

I have focussed on the literature on the comparison of results with two-stage

Bayesian Model Averaging (2BMA)[160], as Lenkoski et al. [184] did not compare

their IVBMA with the classical approaches and Karl and Lenkoski [160] have shown

through an empirical example that IVBMA gives similar estimates as 2BMA, except

IVBMA favours more parsimonious models. They have found from 500 datasets,

each with 10 instruments and 100 individuals, that 2BMA gave lower bias and mean

squared error than the results from 2SLS, which is similar to my results where there

are 10 SNPs as seen in Chapter 10.
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My simulations suggest that IVBMA is the most suitable for many dependent

SNPs, as it has the ability to select SNPs that have high correlations with the causal

SNP, and do not have large outliers like LIML, due to the priors that strengthen

the causal effect estimation.

11.2 Challenges and Limitations

Apart from the other violations to the IV assumption discussed in Chapter 2,

pleiotropy is the most likely violation for many dependent instruments, as high-

lighted by the difference in causal effect estimates from previous findings and applied

example in Section 10.5. If a instrument is in linkage disequilibrium with another

genetic variant that provides a different pathway to the disease outcome, then the

IV assumptions are violated. However, the violation from pleiotropy is not unique

to many dependent instruments [220]. Through well-established genetic functions

the bias from pleiotropy can minimised. In addition, Egger regression [31] can be

implemented as a sensitivity analysis to detect the bias from the pleiotropic effect,

method described in Section 2.5.1.

Some of the aspects of the simulation settings may not be representative of real

world genetic data. Throughout this thesis, most of the simulations generated a

causal SNP to explain 2% variation in X, but this is uncommon as most of GWAS

significant SNPs explained less than 1% of the variation. The potential instruments

were simulated to have MAF ranging from 0.1 to 0.5, and Gibbs et al. [112] esti-

mated 10 million SNPs in the human genome and only 5 million have MAF> 0.1.

However, in GWAS, rare SNPs are usually excluded from the analysis, as they lack

power [6]. These two genetic properties will create weaker instruments than the

instruments from my simulation method for Mendelian randomisation and therefore

the magnitude of bias will be greater with finite samples and have lower power.

The simulations in this thesis have assumed several simplifying assumptions in-

cluding using an additive genetic model, no gene-gene interactions and a linear effect

for X on Y. If the genetic modelling assumptions are not valid then it is possible

to incorporate this knowledge, discussed in detail elsewhere [182, 227]. X and Y

were simulated as continuous variables, however epidemiological studies often ex-

press causal effects as a risk ratio or odds ratio, in which case alternative algorithms

must be considered as binary outcomes raise different and somewhat more compli-

cated statistical challenges [90]. The tried and tested approximation methods for
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binary outcomes with multiple instruments in MR studies includes two-stage logis-

tic models [218], structural mean models (SMM) [30] and SMM using GMM (which

allow instruments to be modelled independently, unlike SMM itself which requires

instruments to be combined as one) [66]. It is also unclear which algorithm would

be most appropriate with multiple instruments for a binary outcome.

An additional assumption of the simulations was that the condition of homoskedas-

ticity was satisfied. The results in Chapter 7 showed that 2SLS and CUE are identi-

cal under homoskedasticity, consistent with the findings in the literature [116, 129].

If this assumption is violated then CUE should outperform LIML [85, 207], as LIML

is known to be inconsistent under the case of heteroskedasticity and many weak in-

struments [62]. In the econometrics literature, apart from CUE there are other alter-

natives and modifications of LIML, namely, a jackknife version [132] and asymptotic

optimal modification [177] of LIML, and even a jackknife version of GMM (which

claims to be consistent with unknown heteroskedasticity) [25]. However, these al-

ternatives do come with further assumptions and have not yet been tested in a

Mendelian randomisation setting.

My simulations only considered individual-level data of SNP genotypes, exposure

and outcome of interest. Due to data protection, individual level data are not always

accessible. Hence Burgess et al. [52] have developed meta-analysis based algorithms

to include many correlated SNPs from summarised data as instruments in Mendelian

randomisation. Although their simulation also examined correlated SNPs, there

are differences in comparison to my simulation method. Their strongest pairwise

correlation was 0.5 and they did not assume a single functional variant SNP in the

genetic region but all the SNPs in the region have their own direct effect on the

exposure and the correlation did not have a direct effect on the variation explained.

In theory, the contrast in simulation methods should not affect the estimation of the

causal effect as both SNP simulation algorithms gave each SNP an association with

the exposure, but the simulated SNPs in this thesis are arguably weaker instruments

and more realistic as their variation explained is dependent on the functional variant.

LIML, CUE and IVBMA are computationally intensive algorithms; CUE and

LIML took approximately 100 hours for 10,000 datasets, each with 90 instruments.

As time was limited, Winsorisation had to be applied to the bias and RMSE as

LIML and CUE had extreme outliers. Even with 10,000 replicates, their mean causal

effect estimates were not accurate, and the standard errors were still relatively large.

Davies et al. [85] also simulated 10,000 datasets, where they used the median and
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inter-quartile range (IQR) of causal effect estimates. The time taken is even longer

for the Bayesian approach as it is simulation within simulation. For example, 200

datasets, each with 90 instruments, took approximately 18 hours. Karl and Lenkoski

[160] also ran 200 datasets for their comparison of BMA with 2SLS.

Allele score is one of the popular methods in Mendelian randomisation and was

also compared in Davies et al. [85], which this thesis did not evaluate. The main

reason was that deriving a weighted allele score requires external data. However

this is not always easy for multiple SNPs in a single gene region as there is a limited

number of reference populations [52]. As discussed in Chapter 1, the same SNPs do

not always appear in all of the populations and the effect sizes for the genetic effect

may vary between populations. For example, Imamura et al. [149] have found two

loci with the type II diabetes risk allele specific to the Japanese population. Allele

scores can be unweighted, but Palmer et al. [220] warned combining multiple SNPs

into a single instrument by unweighted allele score has lower power compared to

including them as individual instruments.

11.3 Ongoing and Further Work

There are two main papers I aim to write following the work of this thesis. The first

has a working title of “A Comparison of Estimators with Many Dependent Instru-

ments in Mendelian Randomisation”, based on the work from Chapter 7. Davies

et al. [85] have compared the classical approaches with many weak instruments,

however they did not discuss the possible outliers that exists in LIML and CUE.

Therefore I believe this paper could bring to the attention of investigators, that

LIML and CUE are not necessarily always unbiased for any one sample. In addition

this paper demonstrates that multiple dependent SNPs from a single genetic region

can be used as instruments with estimators that are commonly applied with inde-

pendent instruments. The second paper I aim to publish has the working title of

“Instrumental Variable Bayesian Model Averaging to Mendelian Randomisation”,

based on the work of Chapters 9 and 10. The concept of the IVBMA approach

is a novel approach in Mendelian randomisation, and with evidence that IVBMA

outperforms the classical approaches, I believe this will have substantial impact in

the field of instrument selection for Mendelian randomisation.

Prior sensitivity is an important aspect of Bayesian analysis. The R package

for IVBMA, ivbma does not provide options to change the priors imposed by the
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package hence, for the flexibility of prior specification, OpenBUGS will need to be

used instead which is less computationally efficient than the R package, as shown in

Section 9.3.1. ivbma uses fairly informative priors, perhaps necessary as vague pri-

ors will slow down the Bayesian algorithm and create mixing difficulties. Therefore,

given more time, the ivbma R package could be extended to allow for prior specifi-

cation, and to investigate the magnitude of the effect of the change in priors on the

causal effect estimation. Alternatively, the computation time in OpenBUGS could be

shortened by designing efficient priors. Designing priors for Bayesian variable selec-

tion with correlated variables is slightly more complex than uncorrelated variables

[70]. Simulations of priors mentioned by O’Hara et al. [213] should be performed to

find the most appropriate statistical prior for Mendelian randomisation with many

correlated SNPs.

Wang et al. [283]’s paper was published in December 2015, where they compared

instruments from a SNP selection method via stepwise regression to haplotypes

as instruments and found haplotype-IV has greater power gain than the SNP-IV

method (see Section 1.2). However, previous work by Clayton et al. [69] found that

with more “tag” SNPs, the prediction for a genetic association study from SNPs and

haplotypes are similar. Since Wang et al. [283]’s work was published in the later

stage of this thesis, an extension to this thesis would be to compare their haplotype-

IV method to the IVBMA approach for the estimation of the causal effect with

many dependent SNPs.

A further possible extension to this thesis would be to consider a family effect

in Mendelian randomisation. Section 10.5 introduced the GRAPHIC study [274],

where the study had information from each family but only parent’s data were used

in the analysis, as the family data would affect the variation of the causal effect esti-

mate. There are two possible methods to include the family effect into causal effect

estimation; Morris et al. [204] have derived an algorithm similar to G-estimation,

which tests whether the residual in Y from the second regression of 2SLS is inde-

pendent of the genetic instrument with a range of causal effect estimates that allows

for within family correlations. However the efficiency of this test could not be deter-

mined as they have only reported the results from real data. In 2010, Morris et al.

[205] proposed the use of structural equation modelling (SEM) as a technique to

incorporate measurement error into causal inference for general pedigree data. SEM

consists of measurement and structural models, where the measurement model eval-

uates the latent variables from observed variables and the structural model estimates
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the relationships between latent variables and observed variables. Due to the mech-

anism of the two models, SEM is able to allow for genetic variance components,

such as environmental and polygenic effects. They have also developed an R pack-

age strum [252], in which Mendelian randomisation is considered as a special case

of SEM. However, they have not provided any form of evidence for the consistency

of their algorithm in estimating the causal effect.

11.4 Biological Priors

The assumptions of Mendelian randomisation should be validated by biological

knowledge [42, 219] and Bayesian approaches are a way of incorporating this prior

knowledge. However, most of the Bayesian statistical literature focuses on priors

that improves the mixing and speed of convergence; O’Hara et al. [213] provides an

insightful review of priors and samplers for Bayesian variable selection. Therefore,

this section aims to discuss the possible biological knowledge that can be quantified

into Bayesian priors.

The implementation of Bayesian variable selection in genetic association has been

purposed by Fridley [106], where he reviewed some of the algorithms in O’Hara et al.

[213] with SNPs as potential predictors, but there was very little discussion on how

to quantify priors into the model space. Due to the small genetic effect, GWAS

uses SNP prioritisation to increase statistical power [107, 200, 267]. This approach

can be applied as weights in the model space of the gene and exposure regression.

One can put weight on a single GWAS significant SNP, which can be found in

GWAS Central at www.gwascentral.org. Alternatively, we can check whether any

of the SNPs are proxies for the GWAS significant SNP in SNAP (SNP Annotation

and Proxy Search) at www.broadinstitute.org. Similar weighting can be given to

models that include SNPs that are from the same haplotype blocks, as these SNPs

are more likely to have a similar exposure association from their correlation with

the functional variant(s). SNPs with protein coding function should be given more

weight, as a SNP in a functional protein domain may increase the probability of

true association [200]. Information on the function of SNPs can be found using

Ensembl at www.ensembl.org [3]. The prior for regression coefficients in the first

regression can be extracted from GWAS Central at www.gwascentral.org, where

information on effect sizes and standard errors are available for GWAS significant

SNPs. Preferably, information from meta-analysis of multiple populations should

Page 241



CHAPTER 11. DISCUSSION

be used, as the genetic effect can be different between populations.

A cautionary note for correlated SNPs; including two identical SNPs would cause

the “dilution” problem (Discussion by George in Clyde [70]), as this is essentially

giving these SNPs twice the weight than the rest of the SNPs. Incorporating prior

information for correlated variables can be complicated [146]. For example, consider

an OLS regression model with two variables that are correlated with each other.

If one variable is removed from the model then the coefficient for the variable in

the model will change. Hence for BMA with correlated variables, assigning priors

to each variable should be conditional on which variable is already in the model.

However to implement this theory for many variables will be complicated and com-

putationally intensive, as one has to set priors for every possible model for each

individual variable.

Decisions on model space for the second regression is a debatable issue; both

Koop et al. [172] and Karl and Lenkoski [160] allows X to come in and out of the

second regression model and hence the causal effect can be zero. This theory is in

keeping to the true Bayesian philosophy, as it is not assuming a structure for the

model, that X is affecting Y. If the investigator is sure of the causal relationship

between X and Y then the model space for the second regression is not necessary.

However, if the investigator is not confident then priors for model space should be

imposed. An advantage of including priors for the model space is that BMA will

give the posterior probability of X being included in the model and that enables

us to quantify the uncertainty of the presence of a causal effect. The prior for the

causal effect, β, could be obtained from the literature in the form of meta-analysis

of the relationship between outcome and risk factor of interest, and use the overall

mean and standard deviation as the prior.

Jones et al. [153] have found that the structure of an instrumental variable model

is robust to the prior misspecification of covariance matrix, as the model does not

directly estimate the causal effect from the covariance matrix. Nevertheless, the

covariance matrix does effect the precision of the causal effect estimate. In addition,

BMA accounts for the model uncertainty in the causal effect estimate. Thus, without

a more informative prior on the covariance matrix, the precision of the causal effect

could potentially be very wide. The amount of confounding between Y and X

can be indicated by clinical trials and epidemiological studies; if available, examine

the change in coefficient of X on Y regression before and after being adjusted for

measured confounders. If the coefficient decreases this implies presence of positive
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confounding and if it increases this suggests negative confounding [48].

Minelli et al. [200] have published an extensive research on prioritising SNPs in

GWAS findings based on prior knowledge from both experts’ opinion and empiri-

cal evidence. With the same motivation as GWAS, biological priors can increase

the statistical power in the estimation of a causal effect and support the validity of

Mendelian randomisation assumptions. As more biological information is becoming

available with time, it is possible to design biological priors for Bayesian analy-

sis. Therefore, further research in quantification of biological priors in Bayesian

approaches to Mendelian randomisation should be conducted jointly between statis-

tician and biologist.

11.5 Practical Implications

This thesis fills the gap in methodological work on the use of many dependent SNPs

from a gene as instruments in Mendelian randomisation, in situations where the

causal SNP is unknown or unmeasured. My simulations suggest that Bayesian model

averaging is preferable to the classical approaches, with or without SNP selection.

Furthermore, as time passes and more biological knowledge is accumulated, and we

will be able to incorporate this knowledge into the Bayesian approach of Mendelian

randomisation.
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Simulating Mendelian

Randomisation

A.1 Genotype of multiple SNPs

The simulation aims to create a variable, henceforth X, that is correlated with

variable Z, and have a normal distribution ∼ (0, 1), hence the linear regression

equation is;

X = β1Z + β2ε (A.1)

where Z and ε have normal distribution of ∼ (0, 1). From a fundamental statistics

textbook and the desired correlation of ρXZ between X and Z, equation above can

be rewritten to,

X = ρXZ

√
V ar(X)

V ar(Z)
Z + (1− ρXZ)

√
V ar(X)

V ar(ε)
ε (A.2)

where V ar() is the variance of its variables. To simulate X to have normal distri-

bution ∼ (0, 1), hence V ar(X) must satisfy,

(
ρXZ

√
V ar(X)

V ar(Z)

)2

V ar(Z) +

(
(1− ρXZ)

√
V ar(X)

V ar(ε)

)2

V ar(ε) = 1 (A.3)

since fundamental of statistics states in a linear regression V ar(X) = β2
1V ar(Z) +

β2
2V ar(ε)

244



APPENDIX A. SIMULATING MENDELIAN RANDOMISATION

As variance of X and ε is 1, then

(ρXZ
√
V ar(X))2 + ((1− ρXZ)

√
V ar(X))2 = 1 (A.4)

After some rearrangements,

V ar(X) =
1

ρ2XZ + (1− ρXZ)2
(A.5)

Now replace V ar(X), Equation A.2 becomes,

X =
ρXZZ + (1− ρXZ)ε√
ρ2XZ + (1− ρXZ)2

(A.6)
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One and Two Instruments in 2SLS
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Figure B.1: Type I error of 2SLS against variance explained by SNPc with different
sample size. The blue, red and violet coloured lines are sample sizes of 5,000, 10,000
and 15,000 respectively. The black dotted line is the 5% significance level.
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APPENDIX B. ONE AND TWO INSTRUMENTS IN 2SLS

Table B.2: Evaluation criteria of 2SLS with a non-causal SNP, SNP1, as instrument.
r2 is the correlation between SNP1 and SNPc. Var is the percentage of variance in
X that is explained by SNPc. β̂XY is the estimated βXY . The true βXY is 0.5480.
S.D. is the standard deviation of mean of β̂XY . S.E. is the standard error from the
standard deviation.

r2 Mean

β̂XY

S.D. S.E. Bias RMSE Coverage Power Type

I

Error

Var=1%

0.1 -0.1694 44.3582 0.4436 -0.7174 44.3617 95.7 0.15 0.04

0.2 0.3078 6.7134 0.0671 -0.2402 6.7174 95.5 0.20 0.04

0.3 0.4477 0.8507 0.0085 -0.1003 0.8566 95.7 0.23 0.04

0.4 0.4855 0.5624 0.0056 -0.0625 0.5658 95.8 0.27 0.04

0.5 0.5004 0.4862 0.0049 -0.0476 0.4885 95.7 0.30 0.04

0.6 0.5107 0.4296 0.0043 -0.0373 0.4312 95.8 0.33 0.04

0.7 0.5171 0.3913 0.0039 -0.0310 0.3925 95.7 0.36 0.04

0.8 0.5213 0.3616 0.0036 -0.0267 0.3626 95.5 0.38 0.05

0.9 0.5241 0.3398 0.0034 -0.0240 0.3406 95.5 0.42 0.04

1.0 0.5281 0.3196 0.0032 -0.0199 0.3202 95.3 0.44 0.05

Var=2%

0.1 0.3471 9.0533 0.0905 -0.2009 9.0551 95.7 0.19 0.04

0.2 0.4641 0.6512 0.0065 -0.0839 0.6565 96.1 0.26 0.04

0.3 0.4941 0.4445 0.0044 -0.0539 0.4477 95.8 0.32 0.04

0.4 0.5111 0.3693 0.0037 -0.0370 0.3712 95.8 0.38 0.04

0.5 0.5228 0.3230 0.0032 -0.0253 0.3240 95.7 0.44 0.04

0.6 0.5289 0.2935 0.0029 -0.0192 0.2941 95.6 0.50 0.04

0.7 0.5317 0.2692 0.0027 -0.0163 0.2696 95.3 0.54 0.05

0.8 0.5348 0.2485 0.0025 -0.0132 0.2488 95.3 0.59 0.05

0.9 0.5364 0.2341 0.0023 -0.0116 0.2344 95.3 0.64 0.05

1.0 0.5369 0.2215 0.0022 -0.0111 0.2218 95.2 0.67 0.05

Var=3%

0.1 0.4478 1.1706 0.0117 -0.1002 1.1748 96.0 0.23 0.04
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0.2 0.5007 0.4405 0.0044 -0.0473 0.4430 96.0 0.33 0.04

0.3 0.5200 0.3428 0.0034 -0.0281 0.3439 95.7 0.41 0.04

0.4 0.5273 0.2908 0.0029 -0.0207 0.2915 95.7 0.49 0.04

0.5 0.5316 0.2598 0.0026 -0.0165 0.2603 95.3 0.57 0.05

0.6 0.5339 0.2382 0.0024 -0.0141 0.2386 95.4 0.63 0.05

0.7 0.5368 0.2188 0.0022 -0.0112 0.2191 95.2 0.69 0.05

0.8 0.5374 0.2034 0.0020 -0.0106 0.2037 95.3 0.74 0.05

0.9 0.5404 0.1907 0.0019 -0.0076 0.1909 95.1 0.78 0.05

1.0 0.5417 0.1806 0.0018 -0.0063 0.1807 95.1 0.82 0.05

0.2 0.4 0.6 0.8 1.0

0.
00
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Var. explained by SNPc
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Figure B.3: Type I error of 2SLS with SNP1 as instrument against correlation (r2)
between SNPc and SNP1 for when SNPc explains 1%, 2% and 3% variation in X,
shown by the blue, red and violet coloured lines accordingly. The dotted line is the
5% significance level.
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Figure B.2: Evaluation criteria of 2SLS with SNPc as instrument against the ex-
pected F-statistics with different sample size. The blue, red and violet coloured
lines are sample sizes of 5,000, 10,000 and 15,000 respectively. The black solid line
in Bias is labelling zero bias. The black dotted lines in Bias, Coverage, Power and
TIE is the 10% bias, 95% nominal coverage, 0.8 power and 5% significance level
respectively. Page 250
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Table B.3: Evaluation criteria of 2SLS with SNPc and SNP1 as instruments. r2 is
the correlation between SNP1 and SNPc. β̂XY is the estimated βXY . The true βXY
is 0.5480. S.D. is the standard deviation of mean of β̂XY . S.E. is the standard error
from the standard deviation.

r2 Mean

β̂XY

S.D. S.E. Bias RMSE Coverage Power Type

I

Error

SNPc only 0.5390 0.2206 0.0022 -0.0091 0.2208 95.0 0.68 0.05

0.9 0.5500 0.2187 0.0022 0.0020 0.2187 94.8 0.70 0.05

0.8 0.5498 0.2189 0.0022 0.0018 0.2189 94.7 0.70 0.05

0.7 0.5498 0.2189 0.0022 0.0018 0.2189 94.8 0.70 0.05

0.6 0.5500 0.2189 0.0022 0.0019 0.2189 94.8 0.70 0.05

0.5 0.5500 0.2189 0.0022 0.0020 0.2189 94.8 0.70 0.05

0.4 0.5502 0.2189 0.0022 0.0022 0.2189 94.7 0.70 0.05

0.3 0.5502 0.2189 0.0022 0.0022 0.2189 94.8 0.70 0.05

0.2 0.5504 0.2190 0.0022 0.0024 0.2190 94.9 0.70 0.05

0.1 0.5509 0.2184 0.0022 0.0029 0.2184 94.7 0.70 0.05
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Figure B.4: Evaluation criteria of 2SLS with instruments of SNPc and SNP1, and
2SLS with only SNPc, against the correlation (r2) between SNPc and SNP1. 2SLS
with only SNPc is represented by the blue dashed and 2SLS with SNPc and SNP1

is the violet line. The dotted line is the 5% significance level.
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Appendix C

Multiple Dependent Instruments

in 2SLS

Table C.1: Evaluation criteria to measure the performance of 2SLS for different
strengths of LD, maximum ρ, based on selecting the best 1,2,...6 SNPs and using
them jointly in a 2SLS MR. β̂XY is the estimated βXY . The true βXY is 0.5480.
S.D. is the standard deviation of mean of β̂XY . S.E. is the standard error from the
standard deviation.

Mean

β̂XY

S.D. S.E. Median

Bias

Bias RMSE Coverage Power Type

I

error

ρ = 0.1

1 1.1304 1.1355 0.0114 0.5824 0.5787 1.2761 91.45 0.25 0.09

2 1.1430 0.9070 0.0091 0.5950 0.6101 1.0846 86.23 0.36 0.14

3 1.1547 0.8241 0.0082 0.6067 0.6289 1.0233 83.83 0.41 0.17

4 1.1675 0.7831 0.0078 0.6195 0.6355 0.9985 82.50 0.44 0.18

5 1.1731 0.7665 0.0077 0.6251 0.6425 0.9890 81.73 0.45 0.19

6 1.1787 0.7582 0.0076 0.6307 0.6460 0.9862 81.53 0.46 0.19

ρ = 0.2

1 0.8379 0.8585 0.0086 0.2899 0.3192 0.9061 91.34 0.27 0.08

2 0.8247 0.6977 0.0070 0.2767 0.3114 0.7505 89.67 0.34 0.10

3 0.8563 0.6401 0.0064 0.3083 0.3408 0.7104 88.49 0.38 0.12

4 0.8812 0.6123 0.0061 0.3332 0.3658 0.6971 87.34 0.41 0.13
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5 0.9037 0.5975 0.0060 0.3557 0.3859 0.6953 86.45 0.43 0.14

6 0.9199 0.5884 0.0059 0.3719 0.4004 0.6961 85.68 0.44 0.15

ρ = 0.3

1 0.7026 0.6458 0.0065 0.1546 0.1921 0.6640 92.37 0.30 0.07

2 0.6619 0.5447 0.0054 0.1139 0.1503 0.5565 92.56 0.34 0.08

3 0.6915 0.5062 0.0051 0.1434 0.1796 0.5261 91.85 0.38 0.09

4 0.7239 0.4850 0.0049 0.1759 0.2063 0.5159 90.90 0.41 0.10

5 0.7521 0.4738 0.0047 0.2041 0.2327 0.5159 89.94 0.44 0.11

6 0.7772 0.4669 0.0047 0.2292 0.2580 0.5201 88.88 0.46 0.11

ρ = 0.4

1 0.6399 0.4852 0.0049 0.0919 0.1229 0.4938 93.36 0.35 0.07

2 0.5912 0.4278 0.0043 0.0432 0.0735 0.4300 94.06 0.38 0.06

3 0.6156 0.4090 0.0041 0.0675 0.0969 0.4145 93.32 0.41 0.06

4 0.6389 0.4004 0.0040 0.0909 0.1215 0.4106 92.68 0.44 0.07

5 0.6654 0.3910 0.0039 0.1174 0.1433 0.4082 91.67 0.46 0.08

6 0.6952 0.3823 0.0038 0.1472 0.1709 0.4096 90.48 0.50 0.09

ρ = 0.5

1 0.6368 0.4136 0.0041 0.0888 0.1165 0.4230 93.02 0.41 0.06

2 0.5925 0.3721 0.0037 0.0445 0.0687 0.3747 93.85 0.44 0.06

3 0.6012 0.3579 0.0036 0.0532 0.0795 0.3618 93.57 0.47 0.06

4 0.6168 0.3518 0.0035 0.0688 0.0937 0.3584 92.92 0.49 0.06

5 0.6356 0.3465 0.0035 0.0875 0.1109 0.3574 92.29 0.51 0.07

6 0.6639 0.3394 0.0034 0.1159 0.1398 0.3586 91.07 0.55 0.09

ρ = 0.6

1 0.6118 0.3539 0.0035 0.0638 0.0825 0.3596 93.85 0.45 0.06

2 0.5781 0.3213 0.0032 0.0301 0.0492 0.3227 94.69 0.49 0.06

3 0.5860 0.3117 0.0031 0.0379 0.0595 0.3139 94.46 0.51 0.06

4 0.5994 0.3064 0.0031 0.0514 0.0720 0.3107 94.14 0.53 0.06

5 0.6147 0.3029 0.0030 0.0667 0.0859 0.3102 93.51 0.56 0.07

6 0.6348 0.2984 0.0030 0.0868 0.1055 0.3107 92.86 0.59 0.08

ρ = 0.7
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1 0.5983 0.3107 0.0031 0.0502 0.0710 0.3147 94.13 0.52 0.05

2 0.5730 0.2888 0.0029 0.0249 0.0459 0.2899 94.74 0.55 0.05

3 0.5789 0.2825 0.0028 0.0309 0.0516 0.2842 94.45 0.57 0.05

4 0.5889 0.2795 0.0028 0.0409 0.0598 0.2824 94.25 0.58 0.06

5 0.6010 0.2766 0.0028 0.0529 0.0702 0.2816 93.80 0.60 0.06

6 0.6185 0.2722 0.0027 0.0705 0.0894 0.2812 93.15 0.63 0.07

ρ = 0.8

1 0.5916 0.2766 0.0028 0.0435 0.0566 0.2800 94.01 0.58 0.06

2 0.5774 0.2623 0.0026 0.0294 0.0413 0.2640 94.40 0.60 0.06

3 0.5766 0.2577 0.0026 0.0286 0.0398 0.2593 94.38 0.62 0.05

4 0.5825 0.2558 0.0026 0.0345 0.0457 0.2581 94.07 0.63 0.06

5 0.5921 0.2542 0.0025 0.0441 0.0563 0.2580 93.74 0.65 0.06

6 0.6062 0.2513 0.0025 0.0582 0.0695 0.2579 93.10 0.67 0.07

ρ = 0.9

1 0.5801 0.2325 0.0023 0.0321 0.0434 0.2347 94.55 0.68 0.06

2 0.5739 0.2298 0.0023 0.0259 0.0370 0.2312 94.68 0.69 0.06

3 0.5722 0.2291 0.0023 0.0242 0.0355 0.2304 94.58 0.69 0.06

4 0.5741 0.2286 0.0023 0.0261 0.0372 0.2300 94.53 0.69 0.06

5 0.5816 0.2273 0.0023 0.0335 0.0443 0.2297 94.19 0.70 0.06

6 0.5958 0.2257 0.0023 0.0478 0.0573 0.2307 93.59 0.72 0.06

Table C.2: Evaluation criteria of 2SLS with GENOME simulated SNPs, based on
the selection of 1,2,...6 lowest p-valued SNPs and applying them jointly. β̂XY is the
estimated βXY . The true βXY is 0.5480. S.D. is the standard deviation of mean of
β̂XY . S.E. is the standard error from the standard deviation.

Mean

β̂XY

S.D. S.E. Bias Median

Bias

RMSE Coverage Power Type

I

Error

Gene 1

1 0.5182 0.4886 0.0049 -0.0298 0.0156 0.4895 95.35 0.31 0.05

2 0.5167 0.4881 0.0049 -0.0313 0.0150 0.4891 95.40 0.30 0.05
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3 0.5590 0.4671 0.0047 0.0109 0.0563 0.4672 94.59 0.34 0.05

4 0.5811 0.4563 0.0046 0.0331 0.0773 0.4574 94.12 0.36 0.06

5 0.5780 0.4558 0.0046 0.0300 0.0758 0.4568 94.23 0.35 0.06

6 0.6003 0.4482 0.0045 0.0523 0.0957 0.4512 93.80 0.37 0.06

Gene 2

1 0.5406 0.2492 0.0025 -0.0074 0.0076 0.2493 95.23 0.61 0.05

2 0.5392 0.2491 0.0025 -0.0088 0.0058 0.2493 95.23 0.61 0.05

3 0.5493 0.2470 0.0025 0.0013 0.0149 0.2470 94.90 0.62 0.05

4 0.5624 0.2440 0.0024 0.0143 0.0281 0.2444 94.42 0.64 0.05

5 0.5627 0.2438 0.0024 0.0147 0.0282 0.2443 94.43 0.64 0.05

6 0.5759 0.2406 0.0024 0.0279 0.0391 0.2422 94.15 0.67 0.06

Gene 3

1 0.5366 0.2186 0.0022 -0.0114 -0.0021 0.2189 95.63 0.67 0.05

2 0.5366 0.2186 0.0022 -0.0114 -0.0021 0.2189 95.63 0.67 0.05

3 0.5366 0.2186 0.0022 -0.0114 -0.0021 0.2189 95.63 0.67 0.05

4 0.5478 0.2164 0.0022 -0.0002 0.0087 0.2164 95.49 0.69 0.05

5 0.5486 0.2162 0.0022 0.0006 0.0095 0.2162 95.48 0.69 0.05

6 0.5586 0.2142 0.0021 0.0105 0.0198 0.2145 95.27 0.71 0.05

Gene 4

1 0.5386 0.2240 0.0022 -0.0094 0.0013 0.2242 95.00 0.68 0.05

2 0.5386 0.2240 0.0022 -0.0094 0.0013 0.2242 95.00 0.68 0.05

3 0.5386 0.2240 0.0022 -0.0094 0.0013 0.2242 95.00 0.68 0.05

4 0.5521 0.2212 0.0022 0.0041 0.0139 0.2213 94.70 0.70 0.05

5 0.5584 0.2198 0.0022 0.0103 0.0197 0.2200 94.57 0.71 0.05

6 0.5712 0.2173 0.0022 0.0232 0.0320 0.2185 94.23 0.73 0.06

Gene 5

1 0.6056 0.5818 0.0058 0.0576 0.1026 0.5846 93.63 0.29 0.06

2 0.5881 0.5572 0.0056 0.0401 0.0894 0.5586 93.83 0.29 0.06

3 0.5956 0.5527 0.0055 0.0476 0.0989 0.5547 93.72 0.30 0.06

4 0.6047 0.5451 0.0055 0.0566 0.1054 0.5480 93.45 0.31 0.06

5 0.6508 0.5185 0.0052 0.1027 0.1509 0.5286 92.66 0.35 0.07
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6 0.6477 0.4503 0.0045 0.0997 0.1373 0.4611 92.22 0.41 0.07

Table C.3: Evaluation criteria of best policy for 6 non-causal SNPs simulated from
GENOME with different sample sizes. β̂XY is the estimated βXY . The true βXY is
0.5480. S.D. is the standard deviation of mean of β̂XY . S.E. is the standard error
from the standard deviation.

Policy Mean

β̂XY

(S.D.)

S.E. Bias Median

bias

RMSE Coverage Power Type

I

error

n=5,000

Lowest p-value 0.5813

(0.44)

0.0044 0.0332 0.0197 0.4375 94.48 0.54 0.06

All 0.6076

(0.33)

0.0033 0.0595 0.0504 0.3349 93.15 0.65 0.07

p-value<0.05 0.6061

(0.34)

0.0035 0.0580 0.0441 0.3495 93.35 0.63 0.07

F-statistic>10 0.5797

(0.30)

0.0031 0.0317 0.0308 0.2968 93.82 0.63 0.06

n=10,000

Lowest p-value 0.5681

(0.32)

0.0032 0.0201 0.0137 0.3221 95.07 0.74 0.05

All 0.5825

(0.24)

0.0024 0.0345 0.0314 0.2432 94.16 0.82 0.06

p-value<0.05 0.5849

(0.25)

0.0025 0.0369 0.0291 0.2492 94.28 0.81 0.06

F-statistic>10 0.5757

(0.24)

0.0024 0.0277 0.0241 0.2366 94.46 0.82 0.06

n=20,000

Lowest p-value 0.5615

(0.24)

0.0024 0.0135 0.0069 0.2357 94.62 0.85 0.05

All 0.5639

(0.17)

0.0017 0.0159 0.0152 0.1739 94.49 0.92 0.06
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p-value<0.05 0.5679

(0.18)

0.0018 0.0199 0.0161 0.1849 94.34 0.91 0.06

F-statistic>10 0.5665

(0.19)

0.0019 0.0185 0.0151 0.1915 94.36 0.91 0.06

n=30,000

Lowest p-value 0.5553

(0.20)

0.0020 0.0073 0.0032 0.1968 94.35 0.89 0.06

All 0.5568

(0.14)

0.0017 0.0014 0.0089 0.1439 94.49 0.95 0.06

p-value<0.05 0.5597

(0.15)

0.0015 0.0117 0.0094 0.1506 94.38 0.95 0.06

F-statistic>10 0.5612

(0.16)

0.0016 0.0131 0.0090 0.1576 94.24 0.94 0.06

n=40,000

Lowest p-value 0.5526

(0.17)

0.0017 0.0046 0.0024 0.1657 94.96 0.91 0.05

All 0.5546

(0.13)

0.0013 0.0066 0.0061 0.1259 94.90 0.96 0.05

p-value<0.05 0.5563

(0.13)

0.0013 0.0083 0.0061 0.1284 94.89 0.96 0.05

F-statistic>10 0.5584

(0.13)

0.0013 0.0104 0.0063 0.1338 94.90 0.95 0.05

n=50,000

Lowest p-value 0.5527

(0.15)

0.0015 0.0047 0.0027 0.1525 94.62 0.93 0.05

All 0.5546

(0.11)

0.0011 0.0066 0.0062 0.1111 94.72 0.97 0.05

p-value<0.05 0.5560

(0.11)

0.0011 0.0079 0.0066 0.1116 94.72 0.97 0.05

F-statistic> 10 0.5578

(0.12)

0.0012 0.0098 0.0066 0.1183 94.60 0.97 0.05
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Table C.4: Evaluation criteria of best policy for 20 non-causal SNPs simulated from
GENOME with different sample sizes. β̂XY is the estimated βXY . The true βXY is
0.5480. S.D. is the standard deviation of mean of β̂XY . S.E. is the standard error
from the standard deviation.

Policy Mean

β̂XY

(S.D.)

S.E. Bias Median

bias

RMSE Coverage Power Type

I

error

n=5,000

Lowest p-value 0.5641

(0.30)

0.0030 0.0161 0.0215 0.3042 94.36 0.61 0.06

All 0.6713

(0.22)

0.0022 0.1233 0.1251 0.2559 87.99 0.84 0.12

p-value<0.05 0.6378

(0.25)

0.0025 0.0897 0.0903 0.2695 90.57 0.77 0.09

F-statistic>10 0.6088

(0.26)

0.0026 0.0608 0.0659 0.2629 92.23 0.72 0.08

n=10,000

Lowest p-value 0.5558

(0.22)

0.0022 0.0078 0.0074 0.2158 95.36 0.82 0.05

All 0.6157

(0.16)

0.0016 0.0677 0.0687 0.1775 91.62 0.95 0.08

p-value<0.05 0.6044

(0.18)

0.0018 0.0564 0.0554 0.1888 92.62 0.92 0.07

F-statistic>10 0.5919

(0.19)

0.0019 0.0439 0.0448 0.1930 93.34 0.90 0.07

n=20,000

Lowest p-value 0.5488

(0.15)

0.0015 0.0008 0.0031 0.1524 94.81 0.93 0.05

All 0.5796

(0.12)

0.0012 0.0316 0.0330 0.1230 93.26 0.99 0.07

p-value<0.05 0.5775

(0.13)

0.0013 0.0295 0.0302 0.1286 93.51 0.98 0.06
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F-statistic>10 0.5738

(0.13)

0.0013 0.0258 0.0272 0.1337 93.72 0.98 0.06

n=30,000

Lowest p-value 0.5495

(0.13)

0.0013 0.0014 0.0034 0.1264 94.96 0.96 0.05

All 0.5710

(0.10)

0.0010 0.0229 0.0240 0.1013 93.58 1.00 0.06

p-value<0.05 0.5699

(0.10)

0.0010 0.0219 0.0227 0.1048 93.65 0.99 0.06

F-statistic>10 0.5683

(0.11)

0.0011 0.0203 0.0211 0.1078 93.86 0.99 0.06

n=40,000

Lowest p-value 0.5483

(0.11)

0.0011 0.0003 0.0010 0.1082 95.06 0.97 0.05

All 0.5645

(0.08)

0.0008 0.0165 0.0174 0.0849 94.32 1.00 0.06

p-value<0.05 0.5639

(0.09)

0.0009 0.0158 0.0163 0.0867 94.36 1.00 0.06

F-statistic>10 0.5631

(0.09)

0.0009 0.0151 0.0158 0.0889 94.45 0.99 0.06

n=50,000

Lowest p-value 0.5481

(0.10)

0.0010 0.0001 0.0019 0.0952 95.28 0.98 0.05

All 0.5616

(0.07)

0.0007 0.0136 0.0144 0.0761 94.20 1.00 0.06

p-value<0.05 0.5615

(0.08)

0.0008 0.0135 0.0140 0.0771 94.18 1.00 0.06

F-statistic>10 0.5610

(0.08)

0.0008 0.0130 0.0132 0.0792 94.47 1.00 0.06
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Appendix E

Bayesian Model Averaging

Figure E.1: Model code for OpenBUGS to thus compare with ivbma

model {

for( i in 1 : N ) {

mu[i,1]<-g[1]*alpha[1] + g[2]*alpha[2] * SNP1[i]

+ g[3]*alpha[3] * SNP2[i] + g[4]*alpha[4]* SNP3[i]

mu[i,2] <- k[1]*beta[1] + k[2]*beta[2]*XY[i,1]

XY[i,1:2] ~ dmnorm(mu[i,1:2],Sigma.inv[1:2,1:2])

}

#priors for first-stage regression

for (j in 1 : 4) {

alpha[j] ~ dnorm(0,1);

}

#priors for second-stage regression

for (j in 1 : 2) {

beta[j] ~ dnorm(0,1);

}

#priors for variable indicators

for (j in 1 : 4) {
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g[j] ~ dbern(0.5); }

for (j in 1 : 2) {

k[j] ~ dbern(0.5); }

#priors for correlated errors

Sigma.inv[1:2,1:2] ~ dwish(R[1:2,1:2],3)

Sigma[1:2,1:2]<-inverse(Sigma.inv[1:2,1:2])

#Defining Model Code

mdl <- g[1]*1+g[2]*2+g[3]*4+g[4]*8

#Defining vector with model indicators

for (j in 1 : models) {

pmdl[j]<-equals(mdl , j); }

}
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5 (f) Long

Figure E.2: Trace plot of the causal effect estimate (β̂XY ) from 10 instruments with
five short and one long chain. Short and long chain consist of 50,000 and 500,000
iterations with 10,000 and 250,000 burn-in respectively. The horizontal line is the
true βXY (0.2449).
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5 (f) Long

Figure E.3: Trace plot of the causal effect estimate (β̂XY ) from 30 instruments with
five short and one long chain. Short and long chain consist of 50,000 and 500,000
iterations with 10,000 and 250,000 burn-in respectively. The horizontal line is the
true βXY (0.2449).
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5 (f) Long

Figure E.4: Trace plot of the causal effect estimate (β̂XY ) from 60 instruments with
five short and one long chain. Short and long chain consist of 50,000 and 500,000
iterations with 10,000 and 250,000 burn-in respectively. The horizontal line is the
true βXY (0.2449).
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5 (f) Long

Figure E.5: Trace plot of the causal effect estimate (β̂XY ) from 90 instruments with
five short and one long chain. Short and long chain consist of 50,000 and 500,000
iterations with 10,000 and 250,000 burn-in respectively. The horizontal line is the
true βXY (0.2449).
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Table E.1: Convergence Diagnostic for instruments with low MAF: Comparing 5
short chains with 1 long chain. The short chain had 50,000 iterations with 10,000
burn in. The long chain had 500,000 iterations and 250,000 burn in. β̂XY is the
estimated βXY . The true βXY is 0.2449. Prob. X is the probability of X included
in the second regression. Total Visit. Prob. is the visited probability of the set of
models chosen in the first regression; the set consist of the top 10 models from the
longer chain.

Instruments Chain Mean β̂XY 95% Credible Interval Prob. X Total Visit. Prob.

10

1 0.4145 0.0000 0.7490 0.9104 0.5053

2 0.4226 0.0000 0.7543 0.9148 0.4861

3 0.3855 0.0000 0.7225 0.8771 0.4956

4 0.4338 0.0000 0.7367 0.9240 0.5132

5 0.4167 0.0000 0.7340 0.9192 0.5056

Long 0.4272 0.0000 0.7473 0.9252 0.5069

30

1 -0.0391 -0.4131 0.1232 0.2878 0.1037

2 -0.0517 -0.4774 0.1170 0.3194 0.0982

3 -0.0380 -0.4250 0.1209 0.2962 0.0871

4 -0.0338 -0.3794 0.1596 0.3217 0.0974

5 -0.0381 -0.4418 0.1472 0.3000 0.0928

Long -0.0405 -0.4057 0.1321 0.3139 0.0928

60

1 0.1495 -0.1593 0.5784 0.5694 0.0104

2 0.2039 -0.0515 0.6030 0.6570 0.0141

3 0.1198 -0.0704 0.5265 0.5038 0.0169

4 0.1153 -0.0527 0.5302 0.4701 0.0148

5 0.1617 -0.0800 0.5835 0.5659 0.0134

Long 0.1480 -0.0901 0.5788 0.5450 0.0148

90

1 0.4345 0.0000 0.8143 0.8982 0.0022

2 0.4464 0.0000 0.8433 0.9073 0.0015

3 0.4293 0.0000 0.8017 0.9188 0.0000

4 0.4128 0.0000 0.8325 0.8659 0.0004

5 0.4583 0.0000 0.8247 0.9245 0.0024

Long 0.4339 0.0000 0.8424 0.8821 0.0048
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5 (f) Long

Figure E.6: Trace plot of the causal effect estimate (β̂XY ) from 10 instruments with
low MAF. Short and long chain consist of 50,000 and 500,000 iterations with 10,000
and 250,000 burn-in respectively. The horizontal line is the true βXY (0.2449).
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5 (f) Long

Figure E.7: Trace plot of the causal effect estimate (β̂XY ) from 30 instruments with
low MAF. Short and long chain consist of 50,000 and 500,000 iterations with 10,000
and 250,000 burn-in respectively. The horizontal line is the true βXY (0.2449).
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5 (f) Long

Figure E.8: Trace plot of the causal effect estimate (β̂XY ) from 60 instruments with
low MAF. Short and long chain consist of 50,000 and 500,000 iterations with 10,000
and 250,000 burn-in respectively. The horizontal line is the true βXY (0.2449).
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5 (f) Long

Figure E.9: Trace plot of the causal effect estimate (β̂XY ) from 90 instruments with
low MAF. Short and long chain consist of 50,000 and 500,000 iterations with 10,000
and 250,000 burn-in respectively. Trace plots for chain 3 and 4 are not available, as
the model was not selected in their iterations. The horizontal line is the true βXY
(0.2449).
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5 (f) Long

Figure E.10: Trace plot of the causal effect estimate (β̂XY ) from 10 instruments
with negative confounding effect. Short and long chain consist of 50,000 and 500,000
iterations with 10,000 and 250,000 burn-in respectively. The horizontal line is the
true βXY (0.2449).
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(a) Chain 1 (b) Chain 2

(c) Chain 3 (d) Chain 4

(e) Chain 5 (f) Long

Figure E.11: Trace plot of the causal effect estimate (β̂XY ) from 10 instruments
with strong confounding effect. Short and long chain consist of 50,000 and 500,000
iterations with 10,000 and 250,000 burn-in respectively. The horizontal line is the
true βXY (0.2449).
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Appendix F

Bayesian vs Classic approaches to

Mendelian randomisation

Table F.1: The evaluation criteria when including SNPs with different MAF, in
2SLS, LIML and IVBMA. Inst. is Instruments. Winsorised S.E. is the standard
error from the standard deviation of Winsorised β̂XY .

MAF Inst. 2SLS LIML IVBMA

Winsorised

Bias

(S.E.)

Common

10 0.0892 (0.0066) -0.0414 (0.0100) -0.0581 (0.0071)

30 0.2170 (0.0050) -0.0154 (0.0097) -0.0589 (0.0068)

60 0.3089 (0.0042) 0.0016 (0.0115) -0.0602 (0.0066)

90 0.3379 (0.0042) -0.0234 (0.0132) -0.0242 (0.0076)

Low

10 0.1457 (0.0069) 0.0049 (0.0092) -0.0976 (0.0072)

30 0.2481 (0.0057) -0.0488 (0.0126) -0.0675 (0.0080)

60 0.3400 (0.0039) -0.0071 (0.0147) -0.0055 (0.0084)

90 0.3689 (0.0035) -0.0718 (0.0208) 0.0207 (0.0083)

Variable

10 0.1639 (0.0087) -0.0113 (0.0129) -0.0978 (0.0067)

30 0.2852 (0.0066) -0.0219 (0.0161) -0.0748 (0.0081)

60 0.3419 (0.0051) -0.0426 (0.0182) -0.0436 (0.0089)

90 0.3895 (0.0039) 0.0535 (0.0194) 0.0415 (0.0103)

Continued on next page
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Table F.1 – Continued from previous page

MAF Inst. 2SLS LIML IVBMA

Winsorised

RMSE

Common

10 0.1291 0.1470 0.1154

30 0.2284 0.1370 0.1130

60 0.3145 0.1623 0.1104

90 0.3430 0.1873 0.1094

Low

10 0.1756 0.1300 0.1410

30 0.2606 0.1840 0.1318

60 0.3444 0.2078 0.1186

90 0.3721 0.3023 0.1187

Variable

10 0.2043 0.1820 0.1362

30 0.3000 0.2278 0.1370

60 0.3495 0.2609 0.1328

90 0.3934 0.2794 0.1505

Percentage

of

Outlier

Common

10 5.00 3.00 0.00

30 1.00 1.50 0.00

60 0.50 4.50 0.00

90 0.00 7.00 0.00

Low

10 1.00 5.50 3.50

30 1.00 5.00 0.00

60 1.00 4.00 0.00

90 2.00 7.50 0.00

Variable

10 0.50 5.00 1.50

30 0.50 8.00 1.00

60 0.50 7.00 0.50

90 1.50 10.00 0.00

Continued on next page
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Table F.1 – Continued from previous page

MAF Inst. 2SLS LIML IVBMA

Coverage

Common

10 86.50 92.00 87.50

30 47.50 88.00 88.00

60 10.00 83.00 90.00

90 2.00 79.50 90.50

Low

10 86.00 96.00 96.50

30 45.00 91.50 93.00

60 7.00 84.50 94.50

90 0.50 76.00 92.00

Variable

10 82.00 94.50 96.50

30 41.50 89.50 95.00

60 10.00 79.50 92.50

90 0.50 72.50 91.00

Table F.2: The evaluation criteria when including SNPs with different MAF, in
2SLS, LIML and IVBMA. Inst. is Instruments. Winsorised S.E. is the standard
error from the standard deviation of Winsorised β̂XY .

MAF Inst. 2SLS LIML IVBMA

Winsorised

Bias

(S.E.)

Pattern I

10 0.1639 (0.0087) -0.0113 (0.0129) -0.0978 (0.0067)

30 0.2852 (0.0066) -0.0219 (0.0161) -0.0748 (0.0081)

60 0.3419 (0.0051) -0.0426 (0.0182) -0.0436 (0.0089)

90 0.3895 (0.0039) 0.0535 (0.0194) 0.0415 (0.0103)

Pattern II

10 0.2322 (0.0103) -0.0215 (0.0217) -0.0586 (0.0083)

30 0.3348 (0.0060) 0.0057 (0.0200) -0.0505 (0.0094)

60 0.3743 (0.0048) -0.0007 (0.0226) -0.0303 (0.0082)

Continued on next page
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Table F.2 – Continued from previous page

MAF Inst. 2SLS LIML IVBMA

90 0.3990 (0.0037) -0.0388 (0.0263) 0.0028 (0.0102)

Pattern III

10 0.1579 (0.0076) -0.0377 (0.0139) -0.1023 (0.0070)

30 0.2663 (0.0062) -0.0099 (0.0137) -0.0611 (0.0087)

60 0.3393 (0.0046) 0.0078 (0.0148) -0.0272 (0.0091)

90 0.3688 (0.0035) -0.0581 (0.0173) 0.0261 (0.0099)

Pattern IV

10 0.1889 (0.0089) -0.0531 (0.0169) -0.1063 (0.0068)

30 0.3060 (0.0054) 0.0021 (0.0171) -0.0636 (0.0086)

60 0.3719 (0.0046) 0.0254 (0.0181) -0.0074 (0.0093)

90 0.3908 (0.0031) -0.0351 (0.0218) 0.0261 (0.0091)

Winsorised

RMSE

Pattern I

10 0.2043 0.1820 0.1362

30 0.3000 0.2278 0.1370

60 0.3495 0.2609 0.1328

90 0.3934 0.2794 0.1505

Pattern II

10 0.2737 0.3067 0.1305

30 0.3453 0.2825 0.1424

60 0.3805 0.3193 0.1199

90 0.4024 0.3724 0.1446

Pattern III

10 0.1909 0.2001 0.1420

30 0.2805 0.1941 0.1365

60 0.3454 0.2090 0.1307

90 0.3722 0.2515 0.1416

Pattern IV

10 0.2267 0.2447 0.1436

30 0.3153 0.2406 0.1364

Continued on next page
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Table F.2 – Continued from previous page

MAF Inst. 2SLS LIML IVBMA

60 0.3775 0.2572 0.1308

90 0.3933 0.3094 0.1308

Percentage

of

Outlier

Pattern I

10 0.50 5.00 1.50

30 0.50 8.00 1.00

60 0.50 7.00 0.50

90 1.50 10.00 0.00

Pattern II

10 1.50 11.00 1.00

30 1.00 9.50 0.00

60 1.50 14.00 0.50

90 0.50 6.50 0.00

Pattern III

10 0.50 5.00 3.00

30 0.00 4.50 1.00

60 0.00 6.50 0.00

90 1.50 10.50 0.00

Pattern IV

10 2.00 4.50 4.00

30 2.50 8.00 0.50

60 0.50 10.00 0.00

90 2.50 9.50 0.00

Coverage

Pattern I

10 82.00 94.50 96.50

30 41.50 89.50 95.00

60 10.00 79.50 92.50

90 0.50 72.50 91.00

Pattern II

10 77.00 92.00 97.00

30 30.00 83.50 97.50

Continued on next page
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Table F.2 – Continued from previous page

MAF Inst. 2SLS LIML IVBMA

60 4.50 80.00 96.50

90 0.00 70.00 91.50

Pattern III

10 82.50 93.50 92.50

30 43.00 87.50 94.50

60 5.00 82.50 93.00

90 1.00 75.50 89.00

Pattern IV

10 79.50 91.50 95.50

30 33.00 84.50 93.50

60 5.50 79.00 94.50

90 0.50 76.50 89.50

Table F.3: Individual SNP association with BMI for GRAPHIC study. The SNPs
are all from chromosome 16. Coef. and F-stat. is coefficient and F-statistics from
the genetic association with BMI respectively.

SNP Position Effect

allele

Other

allele

Coef. F-stat. R2 p-value Correlation

with

lead

SNP

rs4783818 52295784 T A 0.1481 0.3647 0.0004 0.5460 -0.0408

rs4389136 52305359 G A -0.1131 0.3127 0.0003 0.5761 -0.0123

rs7203521 52326794 G A -0.0890 0.1961 0.0002 0.6580 0.1105

rs16952482 52329084 C T 0.1302 0.1766 0.0002 0.6744 -0.0769

rs6499641 52330127 T A -0.0390 0.0416 0.0000 0.8385 0.0581

rs5013514 52330605 G C 0.1522 0.2498 0.0002 0.6173 0.0044

rs11861870 52343947 C T -0.1409 0.2553 0.0002 0.6135 0.0655

rs1861869 52347682 C G -0.3361 3.3023 0.0032 0.0695 0.0313
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rs1075440 52348407 G A -0.5113 6.5449 0.0063 0.0107 0.0526

rs1077128 52349154 A C 0.1621 0.5086 0.0005 0.4759 -0.0145

rs7184874 52349940 T C 0.3225 3.0183 0.0029 0.0826 -0.0389

rs7186521 52350423 G A 0.2945 2.4460 0.0024 0.1181 -0.0203

rs13333228 52351299 T C -0.5401 7.2163 0.0070 0.0073 0.0488

rs13334933 52353137 G A 0.2253 0.9407 0.0009 0.3323 -0.0333

rs16952517 52354558 A G 0.1118 0.1607 0.0002 0.6886 -0.0392

rs6499643 52355019 C T 0.0259 0.0103 0.0000 0.9191 -0.0559

rs4784323 52355066 A G 0.0179 0.0076 0.0000 0.9307 0.0483

rs7206790 52355409 G C 0.1626 0.6941 0.0007 0.4050 0.0366

rs8047395 52356024 G A -0.1732 0.8065 0.0008 0.3694 -0.0504

rs1421085 52358455 C T 0.2750 1.9674 0.0019 0.1610 0.0403

rs9923147 52359050 T C 0.1276 0.4286 0.0004 0.5128 0.0520

rs2058908 52363646 T C -0.2208 1.0642 0.0010 0.3025 0.1185

rs17817288 52365265 G A 0.2940 2.3079 0.0022 0.1290 0.0418

rs1477196 52365759 A G -0.1884 0.9161 0.0009 0.3387 0.0348

rs1121980 52366748 A G 0.1205 0.3819 0.0004 0.5367 0.0505

rs7193144 52368187 C T 0.2445 1.5242 0.0015 0.2173 0.0282

rs17817449 52370868 G T 0.2531 1.6322 0.0016 0.2017 0.0267

rs11075987 52372662 G T 0.0953 0.2403 0.0002 0.6241 0.0404

rs3751812 52375961 T G 0.2569 1.6766 0.0016 0.1957 0.0312

rs11075989 52377378 T C 0.2330 1.3824 0.0013 0.2400 0.0289

rs9939609 52378028 A T 0.2330 1.3824 0.0013 0.2400 0.0289

rs7185735 52380152 G A 0.2333 1.3851 0.0013 0.2395 0.0288

rs9941349 52382989 T C 0.0968 0.2404 0.0002 0.6240 0.0425

rs7190492 52386253 A G -0.2007 1.0466 0.0010 0.3065 0.0388

rs9922708 52388647 T C 0.1279 0.4365 0.0004 0.5090 0.0271

rs12149832 52400409 A G 0.2723 1.9709 0.0019 0.1607 0.0165

rs17218700 52402080 A G 0.2274 0.6003 0.0006 0.4386 -0.1243

rs11642841 52402988 A C 0.2380 1.5702 0.0015 0.2105 0.0051

rs11075994 52407580 A G -0.4069 4.1245 0.0040 0.0425 0.1794
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rs1421090 52407671 G A 0.0610 0.0853 0.0001 0.7703 -0.0278

rs9939811 52408369 C T 0.0709 0.0996 0.0001 0.7524 -0.2503

rs11075995 52412792 A T 0.1164 0.2725 0.0003 0.6018 0.0617

rs17219084 52413101 G A 0.0534 0.0699 0.0001 0.7915 -0.1794

rs8061518 52418525 G A -0.0957 0.2417 0.0002 0.6231 0.1623

rs7184573 52419093 A G 0.0455 0.0507 0.0000 0.8219 -0.1728

rs10521307 52423202 G A -0.1961 1.0052 0.0010 0.3163 0.1540

rs2388405 52424960 T C 0.0871 0.2119 0.0002 0.6454 -0.2144

rs16952577 52425817 T G 0.0065 0.0008 0.0000 0.9770 -0.2426

rs17818866 52428675 G A 0.0777 0.1188 0.0001 0.7304 -0.2509

rs17818997 52430484 C G 0.0797 0.1247 0.0001 0.7241 -0.2510

rs17819063 52430929 A G -0.0851 0.0877 0.0001 0.7671 0.1164

rs2111115 52432517 G A 0.0393 0.0429 0.0000 0.8360 -0.2075

rs7205213 52434067 T C 0.0868 0.2094 0.0002 0.6474 -0.2121

rs6499653 52435093 T C 0.1044 0.2256 0.0002 0.6349 0.0330

rs12447581 52439374 C G -0.1222 0.2406 0.0002 0.6239 0.0175

rs8061228 52439872 C T -0.1596 0.4153 0.0004 0.5195 0.0196

rs11075999 52440360 C A -0.1282 0.2653 0.0003 0.6066 0.0180

rs1344500 52440534 C G -0.1172 0.2198 0.0002 0.6393 0.0185

rs12596457 52442515 C G -0.0784 0.0998 0.0001 0.7522 0.0131

rs13337591 52444943 T G -0.2007 0.8479 0.0008 0.3574 0.1066

rs10521303 52466686 T G -0.4202 4.8941 0.0048 0.0272 0.1787

rs4784329 52467762 C A -0.4696 5.7435 0.0056 0.0167 0.1842

rs9934504 52474380 A G 0.2728 1.0543 0.0010 0.3048 -0.1885

rs1558755 52478167 C T 0.3718 3.6009 0.0035 0.0580 -0.0385

rs17820875 52484291 G A -0.0983 0.1687 0.0002 0.6814 -0.0004

rs11076008 52484824 A G -0.0762 0.0985 0.0001 0.7537 -0.0330

rs9926180 52486108 T A -0.0217 0.0092 0.0000 0.9237 -0.0830

rs7500562 52488391 C G -0.0337 0.0221 0.0000 0.8817 -0.0843

rs12933928 52488494 G A -0.0068 0.0008 0.0000 0.9775 0.1416

rs1362570 52491048 C T -0.1308 0.1680 0.0002 0.6820 0.0604
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rs16952634 52492057 A G 0.1870 0.3742 0.0004 0.5408 -0.1527

rs17222465 52493954 A C 0.2093 1.1284 0.0011 0.2884 -0.0366

rs2111112 52495133 T C 0.0517 0.0521 0.0001 0.8194 -0.0951

rs10852525 52496582 A G -0.1888 0.4205 0.0004 0.5168 0.0453

rs9929152 52496904 G A -0.0377 0.0288 0.0000 0.8654 -0.1029

rs8056040 52499645 G A -0.3336 1.1869 0.0012 0.2762 0.1723

rs12935710 52500306 T C -0.0166 0.0054 0.0000 0.9417 -0.0879

rs12708942 52503705 A T -0.2104 0.4335 0.0004 0.5104 0.0630

rs9806929 52507417 A G -0.2104 0.4335 0.0004 0.5104 0.0630

rs7197167 52508854 G T -0.0423 0.0337 0.0000 0.8545 -0.1027

rs1344503 52510447 A G -0.0857 0.0823 0.0001 0.7743 -0.1751

rs12232391 52510620 G T -0.1985 0.9767 0.0010 0.3233 0.2579

rs7193851 52510646 C T -0.0513 0.0350 0.0000 0.8516 -0.0624

rs8053966 52511499 C T -0.0861 0.1114 0.0001 0.7387 -0.0690

rs4784331 52519268 T A -0.2307 1.4658 0.0014 0.2263 0.1874

rs8061397 52522327 T C -0.1723 0.3185 0.0003 0.5726 -0.1614

rs4784333 52526589 G C 0.2031 1.0373 0.0010 0.3087 -0.3327

rs7205426 52531308 A C 0.3490 3.4514 0.0034 0.0635 -0.6736

rs12933996 52534163 G A -0.3856 3.9742 0.0039 0.0465 0.9346

rs12919344 52538175 C A -0.5233 7.2181 0.0070 0.0073 0.9712

rs9924877 52538922 A G -0.5631 8.2205 0.0079 0.0042 1.0000

rs7202360 52540292 T G -0.5614 8.1670 0.0079 0.0044 0.9958

rs7203181 52540981 A C -0.5495 7.9056 0.0076 0.0050 0.9719

rs12925189 52542774 G A -0.4804 6.2623 0.0061 0.0125 0.9029

rs6499656 52546456 C G -0.1313 0.2771 0.0003 0.5987 0.2099

rs7185301 52547167 G A 0.0313 0.0162 0.0000 0.8988 -0.0009

rs7191513 52548024 A G -0.1704 0.8251 0.0008 0.3639 0.1296

rs11644943 52553085 A T -0.0444 0.0411 0.0000 0.8393 -0.0204

rs12446047 52554803 C T -0.1935 1.1141 0.0011 0.2914 0.0921

rs17823199 52556431 C T -0.1232 0.4349 0.0004 0.5097 0.0853

rs17823223 52557139 T C -0.1251 0.2128 0.0002 0.6447 -0.0438
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rs1344502 52558293 G A -0.2715 2.2526 0.0022 0.1337 0.0325

rs8053888 52561306 T C 0.2618 2.0202 0.0020 0.1555 -0.0597

rs9940629 52562312 A G -0.1165 0.3916 0.0004 0.5316 0.1682

rs9932411 52562664 C T -0.0790 0.1758 0.0002 0.6751 0.1512

rs7206456 52562990 A G 0.0621 0.0888 0.0001 0.7657 0.0496

rs7185783 52565323 T G -0.2782 1.0584 0.0010 0.3038 0.1142

rs8057547 52567014 A C -0.1941 1.0660 0.0010 0.3021 -0.0664

rs9302654 52567046 T C -0.1545 0.3879 0.0004 0.5336 0.0186

rs4784335 52567189 T G -0.1915 1.0257 0.0010 0.3114 -0.0450

rs13337356 52574811 G C -0.1661 0.4711 0.0005 0.4926 0.0088

rs16952730 52576422 A G -0.1367 0.4281 0.0004 0.5131 -0.0821

rs12325409 52577134 G T -0.1909 0.3690 0.0004 0.5437 -0.0836

rs12324955 52577187 A G -0.1740 0.5713 0.0006 0.4499 0.0337

rs8049235 52578510 A G -0.2412 1.5887 0.0015 0.2078 0.0279

rs4784336 52580038 C A -0.5534 3.0345 0.0029 0.0818 0.0724

rs9933107 52581017 T G -0.1257 0.4030 0.0004 0.5257 -0.0072

rs9933805 52581085 C T -0.2685 1.8717 0.0018 0.1716 -0.0346

rs8056199 52582673 A G -0.4051 4.7214 0.0046 0.0300 0.0397

rs8056502 52582815 C G -0.2916 2.2271 0.0022 0.1359 -0.0236

rs6499660 52583705 A T 0.4368 5.3494 0.0052 0.0209 -0.0658

rs1420571 52584994 G A -0.3775 1.5181 0.0015 0.2182 0.0796

rs11864881 52586805 A C -0.2799 2.1337 0.0021 0.1444 0.0077

rs11076013 52587029 A G 0.4570 5.8883 0.0057 0.0154 -0.0270

rs1966435 52588027 T C -0.2204 1.3451 0.0013 0.2464 -0.0140

rs12385988 52589423 T C -0.1762 0.6177 0.0006 0.4321 -0.0532

rs7193917 52590586 T C -0.2887 2.2482 0.0022 0.1341 0.1285

rs7199716 52590749 T C -0.2454 1.6671 0.0016 0.1969 0.0107

rs13334214 52592442 T C -0.2554 1.1010 0.0011 0.2943 0.0675

rs4784338 52595472 T G 0.4298 4.8454 0.0047 0.0279 -0.0896

rs7199363 52596515 C T -0.3976 3.6336 0.0035 0.0569 0.0769

rs4784339 52597179 G A 0.4299 4.8513 0.0047 0.0278 -0.0943
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rs8054364 52600117 G C 0.0007 0.0000 0.0000 0.9979 0.0582

rs12600130 52600824 G C -0.5886 4.4352 0.0043 0.0354 0.0467

rs1990685 52608126 A C -0.1352 0.4992 0.0005 0.4800 0.1001

rs7186220 52611296 A G -0.3988 2.7571 0.0027 0.0971 0.0874

rs17825567 52615272 A C -0.0887 0.1234 0.0001 0.7254 -0.0103

rs1477094 52621119 A T 0.4049 2.0539 0.0020 0.1521 0.0498

rs860713 52626966 G A -0.1111 0.3384 0.0003 0.5609 0.1099

rs2192872 52632128 C T -0.0917 0.2219 0.0002 0.6377 0.0941

rs4784351 52633199 G A -0.2814 1.9782 0.0019 0.1599 0.1134

rs1078013 52643195 A T 0.4238 2.2351 0.0022 0.1352 0.0509

rs1076467 52643426 A G 0.4249 2.1885 0.0021 0.1394 0.0474

rs940214 52648579 C A 0.4012 1.9440 0.0019 0.1635 0.0491

rs856974 52652133 C T -0.1330 0.4858 0.0005 0.4859 0.1103

rs2003583 52657507 T C -0.4624 4.7252 0.0046 0.0300 0.0864

rs1108086 52657870 C T 0.5118 3.2130 0.0031 0.0734 0.0578

rs12600060 52658962 T G 0.0200 0.0085 0.0000 0.9263 -0.0126

rs1420318 52660267 A G 0.5035 3.0267 0.0029 0.0822 0.0575

rs12149010 52665424 T C -0.0870 0.1710 0.0002 0.6793 -0.0189

rs2665275 52665624 T C 0.1107 0.1381 0.0001 0.7103 0.0783

rs7206012 52671065 C T 0.5784 3.6964 0.0036 0.0548 -0.0275

rs7206224 52671149 T C 0.1987 0.9796 0.0010 0.3225 -0.0774

rs11646290 52671763 C T 0.3686 3.4361 0.0033 0.0641 -0.0913

rs708262 52672030 T G -0.3325 2.4664 0.0024 0.1166 0.0420

rs16953002 52672325 A G 0.0208 0.0064 0.0000 0.9364 0.0592

rs3928987 52675012 A G 0.4220 4.9659 0.0048 0.0261 0.0011

rs1008400 52677393 T C -0.3574 3.4016 0.0033 0.0654 0.0269

rs9937121 52678345 T A -0.3964 4.1951 0.0041 0.0408 0.0228

rs697769 52679248 A G -0.3952 4.2150 0.0041 0.0403 0.0205

rs708255 52680014 A G 0.4326 5.2334 0.0051 0.0224 -0.0319

rs8057572 52683399 C A 0.5165 6.5266 0.0063 0.0108 -0.0856

rs2665272 52684118 C T 0.4518 5.6769 0.0055 0.0174 -0.0335
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rs2689248 52685410 T G 0.2936 2.2925 0.0022 0.1303 -0.0366

rs16953047 52687671 T G -0.2574 0.9676 0.0009 0.3255 0.0429

rs741300 52691151 G A -0.3855 3.4921 0.0034 0.0619 -0.0051

rs12927155 52691301 T C -0.2323 0.7762 0.0008 0.3785 0.0373

rs12931414 52692494 A G -0.2140 0.6772 0.0007 0.4107 0.0347

rs2540776 52695363 A G -0.2233 0.7165 0.0007 0.3975 0.0365

rs2689264 52695481 T C -0.2445 0.8611 0.0008 0.3536 0.0325

rs2689269 52696065 G A 0.3622 3.4926 0.0034 0.0619 -0.0452

rs17236863 52699591 T G 0.4989 5.9543 0.0058 0.0149 -0.0703

rs708278 52702426 A G -0.1655 0.5708 0.0006 0.4501 -0.0099
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[297] P. Würtz, Q. Wang, A. J. Kangas, R. C. Richmond, J. Skarp, M. Tiainen,

and et al. Metabolic signatures of adiposity in young adults: Mendelian ran-

domization analysis and effects of weight change. PLoS Med, 11(12):e1001765,

Dec 2014.

[298] A. Xiong, Q. Yao, J. He, W. Fu, J. Yu, and Z. Zhang. No causal effect of serum

urate on bone-related outcomes among a population of postmenopausal women

and elderly men of Chinese Han ethnicity–a Mendelian randomization study.

Osteoporos Int, 27(3):1031–1039, Mar 2016.

Page 322



REFERENCES

[299] H. Yaghootkar, C. Lamina, R. A. Scott, Z. Dastani, M.-F. Hivert, L. L. War-

ren, et al. Mendelian randomisation studies do not support a causal role for

reduced circulating adiponectin levels in insulin resistance and type 2 diabetes.

Diabetes, page DB 130128, 2013.

[300] D. Yan, J. Wang, F. Jiang, R. Zhang, T. Wang, S. Wang, et al. A causal

relationship between uric acid and diabetic macrovascular disease in Chinese

type 2 diabetes patients: A Mendelian randomization analysis. Int J Cardiol,

214:194–199, Jul 2016.

[301] J. Yang, T. Ferreira, A. P. Morris, S. E. Medland, P. A. Madden, A. C.

Heath, et al. Conditional and joint multiple-SNP analysis of GWAS summary

statistics identifies additional variants influencing complex traits. Nat Genet,

44(4):369–375, 2012.

[302] S. L. A. Yeung, K. K. Cheng, J. Zhao, W. Zhang, C. Jiang, T. H. Lam,

G. M. Leung, and C. M. Schooling. Genetically predicted 17beta-estradiol

and cardiovascular risk factors in women: a Mendelian randomization analysis

using young women in Hong Kong and older women in the Guangzhou Biobank

Cohort Study. Annals of Epidemiology, 26(3):171–175, 2016.

[303] N.-C. Y. You, B. H. Chen, Y. Song, X. Lu, Y. Chen, J. E. Manson, et al. A

prospective study of leukocyte telomere length and risk of type 2 diabetes in

postmenopausal women. Diabetes, 61(11):2998–3004, Nov 2012.

[304] J. Zacho, A. Tybjaerg-Hansen, and B. G. Nordestgaard. C-reactive protein

and risk of venous thromboembolism in the general population. Arterioscler

Thromb Vasc Biol, 30(8):1672–1678, Aug 2010.
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