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Abstract. In the preface we present a short overview of articles included in the issue “Bifurca-
tions and pattern formation in biological applications” of the journal Mathematical Modelling
of Natural Phenomena.
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Analysis of pattern formations in biological and physical systems is a wide and active research area.
Many different approaches (e.g. continuous, discrete, hybrid discrete-continuum) and techniques (e.g.
linearised stability analysis and numerical continuations) are used to model and analyse the pattern
formation in biological systems. The reaction-diffusion theory for pattern formation was first proposed
by A. Turing in his work in 1952 on morphogenesis [21]. In 1970s H. Meinhardt and A. Gierer developed
a concept of activating and inhibiting chemicals to model and analyse the formation of patterns during
the developmental processes [10,16]. Since then the idea of diffusion-driven instability was applied to
analyse pattern formations in many different biological systems [14]. Mechano-chemical theory of pattern
formation developed by J.D. Murray and G. Oster [17] proposes mechanical interactions as a possible
mechanism responsible for pattern formation in biological systems.

Following first analytical and numerical results, many different aspects of pattern formation in biolog-
ical systems are currently being considered.

It was identified that the growth of the spatial domain of interactions plays an important role in the
formation of spatial patterns [7,12]. In this issue the pattern formation for reaction-diffusion systems
defined on evolving domains is presented by A. Madzvamuse and A.H. Chung [13]. A coupling between
bulk and surface dynamics induces an interesting and important aspect of the analysis. For linearised
stability analysis Lagrangian transformation of the model equations to the equations defined on a fixed
domain is performed. The impact of cell death on the pattern formation in a growing bacterial biofilms
described by a moving boundary model is considered by H.A. Wallace, L. Li, and F.A. Davidson in [24].
Analysis indicates that the pattern formation in biofilms depends on the height (thickness) of the biofilms.

Directed movement of cells or populations is also considered as one of the mechanisms of pattern
formation, e.g. pattern formation in tumour-invasion model [6] or in the chemotaxis system [18]. The
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theory of spatial evolutionary game is used in the paper by A.E.F. Burgess, P.G. Schofield, S.F. Hubbard,
M.A.J. Chaplain, and T. Lorenzi [5] to analyse the hybrid discrete-continuum model which includes
random motion and chemotaxis. Numerical simulations of the model show that diffusion through space
and chemotactic movement (i.e. up semiochemical gradients), can bring about self-generated patterns
which create favourable conditions for the coexistence of two populations in situations in which the two
strategies cannot coexist either in spatially homogeneous models or in cellular automaton models. The
modelling framework presented in this paper potentially covers a wide range of applications including
ecology (e.g. predator-prey systems), epidemiology (e.g. the invasion of new host tissues by a pathogen)
and oncology (e.g. the colonisation of a new niche by tumour cells following metastasis).

The changes from regular patterns to chaos constitute an important and interesting aspect of the
temporal and spatio-temporal dynamics of biological systems [8,18]. Complex behaviour and chaotic
dynamics in the system of five ordinary differential equations modelling a tumour-immune-virus system
are studied by R. Eftimie, C.K. Macnamara, J. Dushoff, J.L. Bramson and D.J.D. Earn in [9].

Analysis of mathematical models for ecosystems constitutes a vital part of the mathematical analysis
of pattern formation in biological systems and is important due to limited opportunities for empirical
studies of large ecosystems. In [19] applying mumerical bifurcation methods J.A. Sherratt analyses the
pattern formation in the models for self-organisation observed in mussel beds and calculates the parameter
region in which patterns exist and the sub-region in which these patterns are stable. He also shows how
this results can be used to explain numerical observations of history-dependent wavelength selection as
parameters are varied slowly. Non-local interactions can be important drivers in patterns formation and
this is currently a quickly developing area of research [1,3]. In their work, M. Banerjee and L. Zhang
explore patterns in a prey-predator model with non-local spatial interactions [2]. It is observed that the
nonlocal interaction term in the prey growth has a stabilising effect on the dynamics of solutions of the
model equations and can enhance the existence of stationary solutions for a wide range of parameter
values.

To better understand noise induced phenomena observed in biological systems it is important to anal-
yse the influence of noise on the dynamics of populations and on pattern formation. Chemical Master
Equations [4], Stochastic ODEs and Stochastic PDEs [11] are used to describe the evolution of biologi-
cal systems with external noise or intrinsic stochasticity. The influence of noise on the dynamics of an
ecosystem is considered in the work by D. Valenti, A. Giuffrida, G. Denaro, N. Pizzolato, L. Curcio,
B. Spagnolo, S. Mazzola, G. Basilone and A. Bonanno, presented in this issue in [22]. For Lotka—Volterra
equations with a multiplicative noise the authors identify noise induced phenomena such as stochastic
resonance, noise delayed extinction, and noise-induced pattern formation. The perturbation with mul-
tiplicative white noise of a deterministic model is considered by I. Siekmann and H. Malchow to model
stochastic environmental fluctuations [20]. The authors show that different properties of the stochastic
perturbations may not only lead to opposite predictions of survival and extinction but also consider-
ably affect the patterns of the spatio-temporal dynamics. In [23] D. Valenti, G. Denaro, F. Giarratana,
A. Giuffrida, S. Mazzola, G. Basilone, S. Aronica, A. Bonanno and B. Spagnolo consider a system of
stochastic ODEs to model the dynamics of two bacterial populations responsible for food spoilage. The
fluctuations are modelled by multiplicative white Gaussian noise. It is observed that the numerical solu-
tions of the stochastic model are in a better agreement with the experimental results than the numerical
solutions of the corresponding deterministic model.
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