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Abstract

This thesis presents stability and performance analyses for switched systems subject

to arbitrary and constrained switching signals. Analysis techniques based on common

quadratic Lyapunov functions are first introduced as these can be very effective in coping

with arbitrary, unconstrained switching signals. However, for systems subject to switch-

ing signals which are time constrained, less conservative tools, based on dwell-time anal-

ysis, are introduced and extended for the computation of L2-gain estimates. Robust L2-

gain and H2 state-feedback controllers syntheses follow from this analysis. An L2 per-

formance analysis tool, for piecewise linear systems, is also given and used to the design

of piecewise linear state-feedback controllers. The performance analysis and controller

synthesis techniques mentioned above have been applied to the control of the longitudinal

axis of the ADMIRE aircraft fighter benchmark model. Simulations show that a switched

state-feedback controller provides better tracking than a simple LQR feedback gain.
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ẋ derivative of x with respect to time, dx
dt

∂f
∂x

a partial derivative of a function with respect to x

, equal to by definition

xi



xii Nomenclature and Abbreviations

f : A→ B A function f mapping a set A into a set B

‖.‖ Euclidean norm (vectors) or included spectral norm (matrices)

H∞ Set of asymptotically stable transfer functions G, with ‖G‖∞
γ L2 performance gain

υ H2 optimal gain

DC Direct current

SISO Single-Input-Single-Output

MIMO Multi-Input-Multi-Outputs

LMIs Linear Matrix Inequalities

LQR Linear Quadratic Regulator

LQG Linear Quadratic Gaussian

PDLF Parameter Dependent Lyapunov Function

PILF Parameter Independent Lyapunov Function

PWL Piecewise Linear

BRL Bounded Real Lemma

ADMIRE Aero-Data Model in a Research Environment

FCS Flight Control System

M Mach number (-)

h altitude (m)

α angle of attack (deg)

q pitch rate (deg/s)

θ pitch angle (deg)

VT total velocity (m/s)

nz load factor (g)

udist turbulence in x axis (m/s)

vdist turbulence in y axis (m/s)

wdist turbulence in z axis (m/s)

pdist turbulence around roll axis (rad/s)



xiii Nomenclature and Abbreviations

tss throttle setting (-)

δloe left outer elevon deflection (deg)

δlie left inner elevon deflection (deg)

δroe right outer elevon deflection (deg)

δrie right inner elevon deflection (deg)

δe symmetric elevon deflection (deg)

δlc left canard deflection (deg)

δrc right canard deflection (deg)



CHAPTER 1

Introduction

1.1 Background and Motivation

Control theories are generally categorized into two different analytical methods. The

first is called “traditional or classical control theory”, and was started in the late 1930’s.

Classical control theory is based on frequency response methods, the root locus technique,

Laplace transforms and transfer functions. The main advantages of these methods are

their simplicity and their ease of use in control system design in real applications. These

features were especially important before the inception of high-speed digital computers.

Hence, the analysis techniques, mainly Bode, Nyquist and root-locus, can be used without

the need for a computer. Therefore, their major advantage - being simple - disappears

when the system becomes more complex (Nelson, 1998).

Traditional control methods are directly applied for only single-input, single-output

(SISO) systems, which are linear time invariant. Using these methods, desired time re-

sponses and robustness qualities can be achieved by selecting the place of the closed-loop

poles with a single feedback gain. Using consecutive closure of single loops, the tradi-

1
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tional control methods treat the system as if it has multi-input, multi-output (MIMO) or

multi-control loops. In this case, these methods involve a considerable amount of trial and

error. Hence, placing the closed-loop poles in the MIMO systems becomes more complex

and difficult than in SISO systems. Thus, using the traditional control methods for MIMO

systems becomes more difficult because of the consecutive SISO design method (Stevens

and Lewis, 1992).

The other systematic theory is mainly called “modern control”, which was developed

after the 1960’s. This technique attracted more attention after the inception of high-speed

digital computers which had the computational resources required to solve complex con-

trol problems. This theory is based on the state space form of the system that consists of n

first-order differential equations. Then, these equations can be incorporated into a matrix

vector equation. In modern control theory, if the systems have been formulated as a dif-

ferential equation, the computer programs/ toolboxes can be used to solve more complex

control problems. To design optimal control systems, the optimisation techniques can be

applied with modern control theory. Contrary to classical control theory, modern control

theory can be directly applied to MIMO systems, which might be linear or non-linear,

time-invariant or time-variant. Therefore, time domain and frequency domain responses

can be used, in some cases, in modern control theory, for instance the LQG and H∞
control (Ogata, 2010).

Considering the advantages and disadvantages of traditional and modern control ap-

proaches mentioned, they have been widely used in control applications according to

system requirements. In this thesis, we have preferred to use one of the modern control

approaches called the Linear Quadratic Regulator (LQR) method. It is one of the most

effective methods currently available and it plays a crucial role in many control design ap-

proaches. Most recent modern control methodologies, such as LQG and H∞, use nearly

the same methodology as the LQRmethod (Levine, 2011). The LQR approach computes

a static state-feedback controller gain with a desired performance. Moreover, a switched

feedback controller methodology is offered to improve the control performance of the



3 1.1 Background and Motivation

systems in this thesis.

The influences of feedback control in aircraft design has been recognized since World

War II. As a consequence, feedback control has been playing a more crucial role in deter-

mining aircrafts’ stability and control. Moreover, it is a key issue to meet the performance

objectives for present and future aircraft. Hence, control engineers have developed vari-

ous control techniques for aircraft applications with many stringent safety requirements

and control objectives (Gangsaas et al., 1986).

Due to the improvements in aircraft engines, aircraft speed and altitude envelopes have

been dramatically extended. Hence, achieving a desired performance using traditional

control methods is becoming more difficult for new generations of aircraft. However,

modern control theories may provide better performance and lower development costs.

For example, linear parameter varying (LPV), gain scheduling, H∞, LQR and sliding

mode control (SMC) are the existing methods in the literature. This thesis is motivated by

the idea that using a switched feedback controller methodology can improve the control

performance over the wide flight envelopes of modern aircraft.

Tracking performance of the closed-loop system is a crucial control objective which

can be achieved locally, for example, with integral state-feedback controllers. These con-

trollers focus on the local parameters of the system dynamics and designed according to

these parameters. However, the system dynamics can change dramatically inside the wide

flight envelope. Thus, a single state-feedback controller will not, in most cases, deliver

adequate performance across the entire flight envelope. Better tracking performance can

be achieved with a switched controller, which consists of locally designed robust state-

feedback controllers.

Switched systems and switched controllers appear in many applications such as auto

pilot design, heating systems, automatic transmissions, communication networks, DC-

DC converters, automotive engine control, and so on. Such switched control systems

may consist of locally designed controllers switched according to a logic rule designed

to meet the desired control objectives (Liberzon and Morse, 1999). A possible switching
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controller architecture is shown in Figure 1.1 where the controller consists of N state-

feedback gains which are switched according to a state-dependent rule.

Controller 2
Aircraft

Model

yu

b

Controller n

Controller 1

.

.

.

Switching

Signal

Disturbance

u1

u2

un

Figure 1.1: Switched controller architecture

Stability analysis techniques have been investigated in the literature. Lyapunov (1892)

devised a novel idea relating the energy of dynamic systems to their stability. The stability

of any given system can be guaranteed with this idea, so most stability analysis methods

use, and try to extend, Lyapunov’s idea. This idea claims that if the system initially has a

given energy, and the total energy of the system is decreasing with time, then the states of

the system will always converge to its equilibrium point.

In switched systems, stability cannot be achieved even when each of the subsystems

of the total system are stable, or vice versa. Hence, the stability analysis techniques of

switched systems are becoming more and more important, and these have been recently

addressed in the literature. The switched system stability analysis methods are mostly

investigated in two main areas, which are arbitrary switching and constraint switching.

The most common methods in the literature are a common quadratic Lyapunov function

for arbitrary switching, and time-dependent and state-dependent switching approaches for

the constraint switching. In this thesis, these stability analysis methods are investigated

and used to prove the stability of the switched system.

Some of the main issues addressed in this thesis are to provide a detailed analysis of

the switched system stability and to examine how these analysis techniques can be used

to design a switched controller for fighter aircraft.



5 1.2 Literature Review on the Switched System Stability Analysis

1.2 Literature Review on the Switched System Stability

Analysis

Recently, a considerable amount of literature has been published on the stability of

switched systems. Therefore, this section is limited to a review of publications from

recent decades.

Branicky (1994) provides some case studies about the stability analysis of switched

and hybrid systems. These case studies are focused on the continuous dynamics and the

finite dynamics model, which finitely switches among continuous systems. The stabil-

ity analysis methods, multiple Lyapunov functions (MLF) and iterative function systems

(IFS), are introduced to decide the stability of the switched systems. These methods

are presented as a tool for analysing Lyapunov stability and proving Lagrange stabil-

ity, respectively in (Branicky, 1994). Sufficient conditions for continuous dynamics and

switching are discussed for both the MLF and IFS cases.

Pettersson and Lennartson (1996b) deal with stability and robustness issues for switch-

ed and hybrid systems. The authors examine some drawbacks of the existing theories,

which are extensions of classical Lyapunov theory. They have also motivated studies into

stability applications that require stronger conditions than the recent theories for hybrid

system stability analysis. The candidate Lyapunov functions are formulated as linear ma-

trix inequality (LMI) problems, which can be solved by numerical approaches. They also

deal with the problem of how to achieve stability properties. The theory is clarified via an

example of a hybrid system. The extended version of their paper is given in (Pettersson

and Lennartson, 1996c). The theory suggested in (Pettersson and Lennartson, 1996c) has

been extended and applied in the authors’ subsequent conference and journal papers. The

hybrid systems are specifically examined in (Pettersson and Lennartson, 1996a, 1997b).

Pettersson and Lennartson (1999, 2002) have also provided exponential stability and ro-

bustness of hybrid systems. Exponential and ordinary stability analysis of non-linear and

fuzzy systems are investigated in (Pettersson and Lennartson, 1997a,c).
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Johansson and Rantzer (1996) have developed a novel approach for stability analysis

of piecewise affine systems. In this technique, a convex optimisation method has been

used to find a piecewise quadratic Lyapunov function. This technique has been extended,

and improved, the flexibility in the parametrization of Lyapunov functions in (Johansson

and Rantzer, 1997a). In addition, these stability analysis methods are extended to perfor-

mance analysis and optimal controller synthesis for non-linear systems in (Rantzer and

Johansson, 1997, 2000). The authors developed this method for a uniform and computa-

tionally tractable approach in (Johansson and Rantzer, 1998). Finally, these approaches

are collected with a Piecewise Quadratic Lyapunov Function toolbox in Johansson (1999)

PhD thesis.

Skafidas et al. (1999) provide the necessary and sufficient conditions to analyse a

quadratic, and robust stabilizability of synchronously and asynchronously switched con-

troller systems. The switching occurs at pre-defined switching instants in synchronously

switched controller systems. In asynchronously switched controller systems, the switch-

ing depends only on the state and can occur at any time. Their paper enhances the results

to robust stabilizability via a quadratic storage function. The sufficient conditions for ro-

bust output feedback stabilization via synchronously switched controller systems, and the

necessary and sufficient conditions for robust stability via synchronously switched con-

troller systems are also given in the authors’ previous papers, respectively, (Skafidas et al.,

1997; Savkin et al., 1999).

Hespanha (2003) has proposed a new approach to calculate the root mean square

(RMS) gain of a switched linear system when there is a large time interval between con-

secutive switchings. The switching controllers that minimize the closed-loop RMS gain

can be designed using these algorithms. Margaliot and Hespanha (2008) have also de-

veloped a new method to compute the RMS gain of switched system problems, which

tries to characterize the “worst-case” switching law (WCSL). LaSalle’s Invariance Prin-

ciple has been adapted to the specific form of switched linear systems in (Hespanha,

2004a). Asymptotic stability has been proven by using multiple Lyapunov functions. Lie
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derivatives of these functions need to be only negative semi-definite. In their paper, the

conditions to achieve uniform and exponential stability is also analysed.

Geromel and Colaneri (2005, 2006) have mentioned two different stability strate-

gies for continuous-time switched linear systems used for control synthesis of open-

loop (state-independent) and closed-loop (state-dependent) switching rules. The state-

independent strategy is based on the determination of a minimum dwell time, whilst the

state-dependent strategy is based on the solution of Lyapunov-Metzler inequalities. They

have also addressed the determination of a guaranteed cost related to a given control strat-

egy.

Hirata and Hespanha (2009) have introduced non-conservative conditions to compute

L2-induced gain of switched systems. These conditions are given in terms of the common

solution of the Hamilton-Jacobi inequalities. Their paper also shows that any switching

signal class will give the same induced gain that is attained for the set of all switching

signals.

(Shaker et al., 2009) gives a method based on the generalized gramian framework for

model reduction to reduce order of switched controllers. In this paper, the stability of

closed-loop switched systems for both continuous and discrete time cases is preserved

under arbitrary switching signals. The authors have also mentioned one of the drawbacks

of their method, which is not assuring the feasibility of a switched system because a

common Lyapunov function may not be found consistently.

Wu and Zheng (2009) have reviewed the weightedH∞ model for continuous-time lin-

ear switched systems via time-variant delay. Sufficient conditions for proving the expo-

nential stability and the weightedH∞ performance for the error system has been provided

by using the average dwell time method and the piecewise Lyapunov function technique.

Illustrative examples have been provided to verify the effectiveness of the given theory.

Zhao, Zhang, and Shi (2013) have addressed the stability problem for a class of

switched linear systems with time delays. They have proposed a stability criterion un-

der average dwell time with the extended Lyapunov-Krasovskii functional. In addition,
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the stability issue for a class of non-linear switched systems with time delays has been

discussed in (Sun and Wang, 2013; Kermani and Sakly, 2014).

Allerhand and Shaked (2010) have pointed out the problem of H∞ analysis and con-

troller synthesis for switched linear systems via dwell time. Linear matrix inequalities

from robust and optimal control theory have been used in their paper. A piecewise linear

quadratic Lyapunov function in time has been used to find and minimize the L2-gain of

uncertain switched systems via dwell time. The proposed Lyapunov function was used to

determine the stability of the switched system. The problem ofH∞ state-feedback control

has solved by using this method. This function has also been used to reduce the robust

H∞ design conservatism in (Boyarski and Shaked, 2009), and solve the problem of stabil-

ity and stabilization of switched linear systems via dwell time in (Allerhand and Shaked,

2011). Allerhand and Shaked (2013) have applied this proposed function to reduce the

design conservatism in linear non-switched systems whose parameters are polytopic un-

certainties. The polytope has initially been divided into overlapping subpolytopes, and

then the whole system has been treated as a switched system. Illustrative examples have

also been given in these papers.

Useful survey papers and books have been published discussing the most important

results in the stability of switched systems; for instance, see the survey papers (Michel,

1999; DeCarlo et al., 2000; Hespanha, 2004b; Sun and Ge, 2005; Lin and Antsaklis, 2009)

and the books (Brockett, 1993; Morse, 1995; Johansson, 2003; Liberzon, 2003).

1.3 Thesis Organization

The outline of this thesis is graphically illustrated in Figure 1.2. The thesis is divided

into six chapters.

• Chapter 2 introduces some basic concepts of Lyapunov analysis and stability anal-

ysis of switched systems. Lyapunov’s Indirect and Direct Stability Methods are

presented and a basic definition of switched systems and some stability analysis



9 1.3 Thesis Organization

methods for the switched systems are given. H2, LQR controller design method-

ologies and state-feedback integral controller strategy are also given in this chapter.

• Chapter 3 deals with stability analysis of switched systems which have polytopic

parameter uncertainties. A minimum dwell time approach is used to prove the sta-

bility of this switched system problem and to find and minimize the L2-gain of

the switched system. State-feedback controller design methodologies have been

proposed based on the L2 performance criteria and the H2-optimal control tech-

nique. Parameter independent Lyapunov functions and parameter dependent Lya-

punov functions are also used to derive the methods discussed. Instructive examples

are given at the end of each section.

• Chapter 4, based on the existing literature, provides a theoretical background for

Chapter 5, and deals with an extended version of state-dependent switching anal-

ysis for piecewise linear systems , which are a class of non-linear systems. The

piecewise linear systems have different types, such as piecewise linear in input

variable u, piecewise linear in time t and piecewise linear in the system state x. In

this chapter, the most common case, which is piecewise linear in the system state,

is examined. To analyse the stability of the piecewise linear systems, common and

piecewise quadratic stability analysis methods have been introduced. These meth-

ods are extended to the L2-gain approach. The lower and upper bounds on cost

functions are used to design state-feedback controllers for the piecewise linear sys-

tems, and illustrative examples have been given in this chapter.

• Chapter 5 describes the longitudinal control dynamics of the ADMIRE benchmark

aircraft model. Constant and switched gain state-feedback controllers have been

designed for the ADMIRE model in order to compare the tracking performance

between them. The stability and L2-gain of the ADMIRE aircraft model with the

switched state-feedback integral controller is assessed using the methods given in

Chapters 3 and 4. Using the control design algorithms of Chapters 3 and 4, the
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state-feedback integral controllers are designed for the ADMIRE aircraft model.

To see the benefits or drawbacks of the switched controller, constant and switched

gain state-feedback controlled ADMIRE models have been simulated. The results

of the simulation are discussed at the end of chapter.

• Chapter 6 finally gives concluding remarks on the methods and analysis, and presents

a possible future work scheme.

1.4 List of Publications

1. Kemer, Emre, and Emmanuel Prempain. “Switched control for a fighter aircraft.”

In Control, 2014 UKACC International Conference on, pp. 110-114. IEEE, 2014.

2. Kemer, Emre, and Emmanuel Prempain. “Switched H2 state-feedback control for

polytopic systems based on dwell time” was submitted to the International Journal

of Control, Automation and Systems, Springer on 6 June 2016.
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CHAPTER 2

Background Concepts

2.1 Introduction

This chapter introduces some basic concepts of Lyapunov stability analysis and sta-

bility analysis of switched systems. More precisely, the stability of control systems is

defined, and Lyapunov approaches are presented to deal with stability. In addition, stabil-

ity analysis for switched systems is given. The chapter is also concluded with H2, LQR

controller design methodologies and state-feedback integral controller strategy.

2.2 Stability Analysis

Stability analysis plays an important role in control systems. In the literature, dif-

ferent definitions are used for the control system stability. For instance, Khalil (2002)

discussed that if a trajectory of the system starts in an initial, constant state called an

equilibrium state, xe, and remains in this state without external disturbances, or returns to

its equilibrium state after the effect of an external disturbance, then the system is stable.

12
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The stability of systems can be also defined by the time responses of the system in the

presence of external step inputs (see Figure 2.1).

x

t

x

t

x

t

x

t

x

t

x

t

Input Signal Stable Unstable

Marginally Stable Stable Unstable

Figure 2.1: System responses in the presence of a step input

In 1892, the Russian mathematician, mechanician and physicist, Aleksandr Mikhailov-

ich Lyapunov, introduced the concept of system stability in his doctoral thesis (Lyapunov,

1892). In this section, we will review some definitions of Lyapunov’s stability analysis

methods. Stability of equilibrium points is mostly characterized in the sense of Lyapunov

which is given in the following definitions.

Definition 2.2.1: Consider the non-linear system

ẋ = f(x) f : C → Rn, (2.1)

and xe is the equilibrium point of (2.1) whenever f(xe) = 0. If there exists δ > 0 for each

ε > 0 such that

‖ x(0)− xe ‖≤ δ =⇒ ‖ x(t)− xe ‖≤ ε, for all t ≥ 0

then the equilibrium point of (2.1) is stable; otherwise, it is unstable (Ogata, 1990). These

conditions assure that system trajectories always remain bounded.

The definition means that an equilibrium point of a system is called stable if all trajec-

tories of the system initially starting at points near the equilibrium point remain nearby;

otherwise, it is unstable.
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Figure 2.2: System trajectories

Definition 2.2.2: If the equilibrium point of (2.1) is stable according to Definition 2.2.1

and satisfies the condition

‖ x(0)− xe ‖< δ =⇒ lim
t→∞

x(t) = xe,

then the system (2.1) is asymptotically stable for the equilibrium point xe.

The definition indicates that an equilibrium point of the system is called asymptot-

ically stable if all trajectories starting at nearby points of an equilibrium point not only

remain nearby but also tend to reach the equilibrium point as time tends to infinity (Khalil,

2002). Both Definitions 2.2.1 and 2.2.2 are illustrated in Figure (2.2).

Note that, if any initial state of the system approaches the equilibrium point, the equi-

librium point is called globally asymptotically stable (or asymptotically stable “in the

large”). Only one equilibrium point in the whole state space can be globally asymptoti-

cally stable (Ogata, 1990).

Remark: It is assumed that the equilibrium point of the system is always located at the

origin, xe = 0. Given any other equilibrium point, xe 6= 0, a change of variables can be

applied and a new system having an equilibrium point at ye = 0 can be defined such that



15 2.2 Stability Analysis

y = x− xe
⇒ ẏ = ẋ = f(x)

⇒ f(x) = f(y + xe) , g(y),

where the new system is ẏ = g(y) and the equilibrium point is ye = 0, as

g(0) = f(0 + xe) = f(xe) = 0.

If ye = 0 is stable for the system ẏ = g(y) then xe is stable for the system (2.1).

2.2.1 Lyapunov’s Indirect Method

To determine the local stability of non-linear systems (2.1), Lyapunov’s Indirect Method

uses the eigenvalues of the linearised system (Slotine and Li, 1991). Consider the non-

linear system (2.1) with an equilibrium point xe = 0. The linearised Jacobian state matrix

is

A =
∂f

∂x

∣∣∣∣
xe=0

,

and the eigenvalues of A are denoted λi. The equilibrium point xe = 0 of the system (2.1)

can be:

- asymptotically stable if all the real parts of the eigenvalues are negative (Re λi <

0, ∀i),

- unstable if one or more of the real parts of the eigenvalues are positive (Re λi > 0),

- either asymptotically stable, stable or unstable if the real part of eigenvalues are

negative and at least one of them is zero (Re λi ≤ 0, ∀i).

Example 2.1: Consider the system

ẋ1 = −x2 + ax22 − x1x2

ẋ2 = ax1 − bx2 + x1x2 + x21
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To investigate stability of the given system at the origin, xe = 0, the Jacobian matrix is

defined by

∂f

∂x
=




∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2


 =


 −x2 −x1 + 2ax2 − 1

2x1 + x2 + a x1 − b




Evaluating the Jacobian at the origin, xe = 0 :

A =
∂f

∂x

∣∣∣∣
xe=0

=


 0 −1

a −b




The eigenvalues of A are found as

λ1,2 = −1

2
(b±

√
b2 − 4a)

The equilibrium point, xe = 0, is asymptotically stable when the eigenvalues satisfy the

conditionRe λi < 0, ∀ a, b > 0, and it is unstable for all values of awhen b < 0. If a > 0

and b is assumed to be zero, both eigenvalues stay on the imaginary axis, and therefore the

stability of the equilibrium point xe = 0 cannot be determined using Lyapunov’s indirect

method; however, in this case, it can be determined by using Lyapunov’s direct (second)

method.

2.2.2 Lyapunov’s Direct (Second) Method

The stability of the equilibrium point can be determined using the indirect Lyapunov

method if the trajectory starts at nearby points. If the trajectory, on the other hand, starts

far from the equilibrium point, then the direct Lyapunov method allows us to determine

whether the trajectory converges to the equilibrium point, or otherwise, when t approaches

∞.

According to the direct (second) Lyapunov method, concepts of energy and stability

are closely related to each other. The important point is that if the total energy of the

system continuously decreases with time then the system will eventually reach an equi-

librium point regardless of its initial state. To verify the stability of the system, an energy
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function is generated and its rate of change is analysed via the direct Lyapunov method

(Slotine and Li, 1991).

Definition 2.2.3: Consider the system (2.1) with an equilibrium point xe = 0 and let

V : C → R be a continuous and differentiable function such that

V (0) = 0 and V (x) > 0→ x ∈ C − {0},

V̇ (x) ≤ 0→ x ∈ C,

then the system (2.1) is stable. In addition, if

V̇ (x) < 0→ x ∈ C − {0},

then the system (2.1) is asymptotically stable (Liberzon, 2003). Here, V can be called the

Lyapunov function of the system (2.1). A simple geometrical illustration of the Lyapunov

function, V (x1, x2) is shown in Figure 2.3.

drafts/V.epsdrafts/V.eps

x1

x2
x(t)

V

Figure 2.3: Illustration of the Lyapunov function

Theorem 2.2.1: Consider the system (2.1) with an equilibrium point xe = 0 and let

V : Rn → R be a continuous and differentiable function such that

V (0) = 0 and V (x) > 0, for all x 6= 0,

‖x‖ → ∞⇒ V (x)→∞,
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V̇ (x) ≤ 0, ∀x,

then the system (2.1) is globally stable (Liberzon, 2003). In addition, the system (2.1) is

globally asymptotically stable when

V̇ (x) < 0, ∀x 6= 0.

Lyapunov stability analysis has drawn considerable amount of attention in literature.

There are several articles and books regarding it. Some authors use this method to prove

the stability of their application; others try to introduce new approaches based on this

method. Switched system stability methods based on the Lyapunov function will be pre-

sented in the following section.

2.3 Stability Analysis of Switched Systems

Switched systems appear in many field applications such as heating systems, auto-

matic transmissions, DC-DC converters, and so on. As a consequence, stability analysis

and switching stabilization for switched systems has, in recent years, started to take a

greater role in research; see (Lin and Antsaklis, 2009, and references therein).

Switched systems are dynamic systems, and are also a simple model of hybrid sys-

tems; they are of “variable structure” or are “multi-modal” (Branicky, 1994). Switched

systems consist of a finite number of subsystems and logic rules that manage the switch-

ing between these subsystems (Pettersson, 2003). Generally, a set of differentials or dif-

ference equations describe these subsystems. The switched systems can be categorized

according to the dynamics of their subsystems; for instance, continuous-time or discrete-

time, linear or non-linear, and so on (Lin and Antsaklis, 2009).

A basic switching controller architecture is shown in Figure 2.4. As can be seen in

this figure, the system consists of a number of controllers, and the switching signals or-

chestrate switching between the controllers in order to obtain stability of the system. The

switching signals can be state-dependent, time dependent, or both (Liberzon, 2003).
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Figure 2.4: Switching Architecture

In this section, we want to define sufficient conditions that can guarantee the stability

of a switched system. Stability issues related to switched systems include several inter-

esting results. For instance, the switched systems may be unstable for certain switching

signals even when all the subsystems are exponentially stable (Figure 2.5).

x1 x1 x1

x2 x2 x2

Subsystem 1 (stable) Subsystem 2 (stable) Switched system (unstable)

Figure 2.5: Switching between stable systems

x1 x1 x1

x2 x2 x2

Subsystem 1 (unstable) Subsystem 2 (unstable) Switched system (stable)

Figure 2.6: Switching between unstable systems
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On the other hand, carefully chosen switching signals between unstable subsystems

can make the switched system exponentially stable (Figure 2.6). As these examples in-

dicate, the properties of switching signals are just as important as the dynamics of each

subsystem for the overall stability of switched systems. So, we roughly analyse the stabil-

ity of switched systems under two main scenarios. One is the stability analysis of switched

systems under arbitrary switching signals; the other is the construction of switching sig-

nals for a given collection of subsystems.

2.3.1 Stability of Systems depending on Arbitrary Switching Signals

For the stability analysis problem, we firstly check the stability of the switched system

when there is no constraint on the switching signals. All the subsystems have to be asymp-

totically stable; however, it is still possible to create a divergent trajectory from any initial

state even though all the subsystems are exponentially stable. So, generally, the stability

assumption of the subsystems is not enough to guarantee stability of switched systems

under arbitrary switching conditions. On the other hand, the stability of a switched sys-

tem is assured under arbitrary switching if a common Lyapunov function exists for all

subsystems. Thus, we have focused on the common Lyapunov functions.

Quadratic Stability

Lyapunov (1892) demonstrated that a quadratic Lyapunov function gives a necessary

and sufficient condition for the asymptotic stability of linear systems. If a quadratic Lya-

punov function exists for all subsystems of the switched system, then the stability of a

switched system is guaranteed for any switching rule (Liberzon, 2005). A quadratic Lya-

punov function allows us to understand the stability of a switched system under arbitrary

switching, so generally the first step is to analyse the linear or non-linear systems. The

aim of a quadratic Lyapunov function is to find a common positive definite matrix, P .

This matrix satisfies the quadratic Lyapunov function for all individual subsystems.

A linear switched system, mathematically, can be modelled as a differential equation
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of the form

ẋ(t) = Aσ(t) x(t), ∀t ≥ 0, x(0) = x0 and σ(t) ∈ {1, . . . , N} (2.2)

where x(t) ∈ Rn is the state, x0 is the initial condition, σ(t) ∈ {1, . . . , N} represents

the switching rule between matrices Ai ∈ Rn×n, i = 1, . . . , N . It is known that the

requirements for the existence of a common Lyapunov function can be written in terms

of LMIs. The following conditions are used by most of the computations:

Lemma 2.3.1: To analyse the stability of the switched systems, one possibility is to use a

common quadratic Lyapunov function, V (t) = x(t)′Px(t), such that

P = P ′ > 0,

A′iP + PAi < 0, ∀i = 1, . . . , N.
(2.3)

If a positive definite matrix, P , exists and satisfies the above Lemma, the switched

system (2.2) is globally stable; otherwise, other stability analysis techniques need to be

applied to check the stability.

Occasionally, the stability of a switched system can be verified by using the follow-

ing dual problem: if there exists a set of positive definite matrices, Ri, i ∈ I (I =

{1, . . . , N}), which satisfy

Ri = R′i > 0,
∑

i∈I

A′iRi +RiAi > 0, (2.4)

then (2.3) does not give a feasible solution. The solution of these inequalities shows the

inapplicability of the common quadratic function (Johansson and Rantzer, 1998).

Example 2.2: Consider a switched linear system, ẋ(t) = Aix(t), with the state matrices

A1 =




−2 6 1

−1 −8 0

0 −1 −0.1


 , A2 =




−7 −1 9

−1 −4 −1

0 1 −0.2


 , A3 =




−8 −5 9

−1 −4 −1

0 1 −4


 .
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Using (2.3) in Lemma 2.3.1, the stability of the switched system is proven with arbi-

trary switching signals, and a common quadratic Lyapunov matrix is found such that

P =




0.0390 0.0107 −0.0163

0.0107 0.1964 −0.0072

−0.0163 −0.0072 0.3633


 .

The common quadratic Lyapunov function approach gives a general solution to the

stability problem of a switched system. If the switched system is found to be stable using

a common quadratic Lyapunov method, there is no need to apply other stability analysis

methods. Hence, the quadratic stability analysis for switched systems is more attractive

than other methods since a cell partition and any switching law will not affect the stability

of the switched system.

Although the quadratic stability analysis gives a very effective and global solution,

it is very conservative for piecewise linear system stability analysis. In some cases, the

stability is not guaranteed by the quadratic Lyapunov method even when the switched

system is stable. Hence, the switched system stability analysis methods which depend on

some constraints can be used to prove stability of a switched system; these methods will

be introduced in the following subsection.

2.3.2 Stability of Systems depending on Constrained Switching Sig-

nals

Constrained switching may occur naturally due to physical restrictions on the system.

Besides this, there are some cases when we have knowledge regarding the reasons under

which switching may potentially occur in a switched system, such as state space partitions

and their switching rules. By knowing possible switching conditions of the switching sig-

nals, we can obtain better stability results for a given system than for arbitrary switching.

In this section, we will introduce stability analysis methods for switched systems with

constrained switching signals.
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Multiple Lyapunov Functions

The multiple Lyapunov functions (MLF’s) method is a useful tool for verifying the

stability of switched systems (Lin and Antsaklis, 2009). We consider a switched system

that can be linear or non-linear, ẋ = fσ(x) with the switching signal, σ = {1, 2}, and

suppose that both systems ẋ = f1(x) and ẋ = f2(x) are (globally) asymptotically stable.

V1 and V2 are, respectively, their Lyapunov functions.

When a common Lyapunov function does not exist or is not known, the switched

system stability properties depend on σ. We can decide the stability of the system with

two different types of MLF’s, referred to as continuous and discontinuous.

For the continuous MLF’s, each individual subsystem is assumed to be asymptotically

stable and the switching times can be defined as tn, n = { 1, 2, . . .}. If the values of

V1(t) and V2(t) are equal at each switching time, i.e., Vσ(tn−1)(tn) = Vσ(tn)(tn) for all n,

then the system is asymptotically stable. Vσ(t) is also a continuous Lyapunov function for

the switched system. This condition is shown in Figure 2.7 (left).

On the other hand, the function Vσ(t) will more usually be discontinuous. The MLF’s,

Vσ(t), is the combination of the Lyapunov functions of the active subsystem. In this case,

each Vq(t), q = {1, 2} reduces when the q -th subsystem is active and may increase when

the q th subsystem is inactive, as illustrated in Figure 2.7 (right). To prove asymptotic

stability of the switched system, the values of Vq(t) are checked at the beginning of each

interval when σ = q. We can then assure of asymptotic stability if the value of the Vq at

the beginning of each interval is greater than the value at the beginning of the next interval

on which the q-th subsystem is activated.

Additionally, Vq(t) may increase when the q th subsystem is active as long as this

increment is bounded by definite continuous functions, as illustrated in Figure 2.8. See

(Liberzon, 2003; Lin and Antsaklis, 2009) and the references therein for details.
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V2(t)): continuous Vσ(t) (left), discontinuous Vσ(t) (right)
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Figure 2.8: Switched systems can be stable even when Vσ(t) increases during a definite

period.

Stability of Systems depending on Slow Switching Signals

The stability of switched systems can be proven if each subsystem is individually

stable and if the switching signals occur sufficiently slowly. This idea was proposed by

Liberzon and Morse as a concept of dwell time and average dwell time; see (Liberzon and

Morse, 1999).

The conservatism of quadratic stability can be reduced by using a minimum dwell

time analysis which consists of introducing a minimum time between switching instants

(minimum dwell time, T > 0)

tk+1 − tk ≥ T, ∀k ∈ N. (2.5)
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Definition 2.3.1: Dwell time is a time-interval between two switching instants (t1, t2, . . .).

It is assumed to be equal or greater than a minimum dwell time T .

tk+1 − tk = Td ≥ T, ∀k ∈ N. (2.6)

Figure 2.9 shows a geometrical illustration of this notation.

tk tk + T tk+1

Minimum Dwell time = T ≥ 0

Dwell time= Td

Figure 2.9: Geometrical explanation of the minimum dwell time

The minimum dwell time analysis method is based on MLF’s, V (t) = x(t)′Pix(t), i =

{1, . . . , N} which can decrease, either continuously or discontinuously, along the state

trajectories. Due to this, the minimum dwell time analysis allows discontinuities of the

trajectory at the switching instant. The stability of the system can be proved with the

following theorem:

Theorem 2.3.2 (Geromel and Colaneri (2006)): Consider a minimum dwell time as de-

fined in (2.5), T > 0. If positive definite matrices, Pi, exist and satisfy the condition

Pi − eA′
iTPje

AiT > 0, i 6= j = 1, . . . , N

A′iPi + PiAi < 0, i = 1, . . . , N
(2.7)

then the system (2.2) is globally asymptotically stable with the switching rule σ(t). This

theorem gives only a sufficient condition on σ(t). Hence, the system (2.2) can be stable

even if Pi do not exist. This is because the inequalities in (2.7) are defined as a piece-

wise quadratic Lyapunov function. Less conservative results can be obtained with more

complex Lyapunov functions, as shown in (Chesi et al., 2010; Wirth, 2005).
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Proof: Consider the time switching control as σ(t) = i ∈ {1, . . . , N} for all t ∈
[tk, tk+1), where tk and tk+1 are switching instants satisfying the condition tk+1 = tk +Tk

with Tk ≥ T > 0. The switching control jumps to σ(t) = j ∈ {1, . . . , N} when t = tk+1.

Using the first inequality (2.7), we have

V (x(tk+1)) = x(tk+1)
′Pjx(tk+1)

= x(tk)
′eA

′
iTkPje

AiTkx(tk)

< x(tk)
′eA

′
i(Tk−T )Pie

Ai(Tk−T )x(tk)

< x(tk)
′Pix(tk) = V (x(tk)),

where we have used the fact, in the second inequality, that eA′
iζPie

Aiζ ≤ Pi for all ζ =

Tk − T ≥ 0. It can be concluded that there exists µ ∈ (0, 1), such that

V (x(tk)) ≤ µk V (x0), ∀k ∈ N. (2.8)

From the second inequality in (2.7), it can be seen that the time derivative of the

Lyapunov function along an arbitrary trajectory of (2.2) satisfies the condition

V̇ (x(t)) = x(t)′(A′iPi + PiAi)x(t) < 0, ∀t ∈ [tk, tk+1). (2.9)

As a result, we conclude that there exist scalars α > 0 and β > 0 such that

‖x(t)‖2 ≤ β e−α(t−tk) V (x(tk)), ∀t ∈ [tk, tk+1), (2.10)

which together with (2.8) imply that the equilibrium point, xe = 0, of (2.2) is globally

asymptotically stable.

Remark: If all the matrices {A1, . . . , AN} are assumed to be stable, the second inequality

in (2.7) is consequently always feasible. Then, the first inequality in (2.7) is also satisfied

when the dwell time (T > 0) is sufficiently large. Note that if T → 0, then (Pi−Pj)→ 0,

then it follows that Pi = Pj and the quadratic stability conditions (2.3) are thus obtained.

Example 2.3: Consider a switched linear system, ẋ(t) = Aix(t), with the state matrices
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A1 =




−2 0 3

−2 −1 0

1 1 −1


 , A2 =




−1 0.1 0

0 −2 0

1 2 −1


 ,

A3 =




1 1 6

−1 −1 −5

0 2 −1


 , A4 =




−1 0.2 5

−1 −1 −4

0 0 −1


 .

The quadratic stability method does not give a solution for this switched system. How-

ever, the eigenvalues of each of the subsystems lie in the negative half plane, which thus

implies stability in each of the individual subsystems. Hence, the stability of the sys-

tem can be proven if the switching signals occur sufficiently slowly. The inequalities in

Theorem 2.3.2 are solved using the LMI control toolbox in MATLAB (Gahinet et al.,

1995). Then, the Lyapunov function matrices, Pi, are found to have a minimum dwell

time, T = 2.142 s, such that

P1 =




0.6769 −0.1042 0.5322

−0.1042 0.9159 0.7425

0.5322 0.7425 2.2315


 , P2 =




0.7945 0.3123 0.2140

0.3123 0.9407 0.2963

0.2140 0.2963 0.7923


 ,

P3 =




0.7290 0.7834 0.3404

0.7834 1.4886 0.2472

0.3404 0.2472 1.5401


 , P4 =




0.3110 0.1744 0.2435

0.1744 0.4149 −0.1075

0.2435 −0.1075 5.0188


 .

Stability of Systems depending on State-Dependent Switching Signals

We have discussed the stability analysis of switched systems depending on slow switch-

ing signals. Another example of a method by which to relax the common quadratic func-

tion is state-dependent switching. In this case, the state space is divided into a finite or

infinite number of regions whose boundaries are called switching surfaces. Whenever the
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trajectory of the system hits one of these surfaces, the switching events occur. The stabil-

ity of the switched system is affected by the properties of the active subsystem when the

system is inside the related region. The behaviour of the subsystem does not affect the

switched system when the system is outside the related region.

Example 2.4: Consider a switched system, ẋ(t) = Aix(t), which contains two state

matrices such that

A1 =


 −0.4 2

−7 −0.3


 , A2 =


 −0.1 6

−2 −0.5


 .

A common quadratic Lyapunov function cannot be calculated for this switched sys-

tem thus we analyse the stability of the system with slow and state-dependent switching

methods.

The trajectories of each of the subsystems, which are given in Figure 2.10, are stable

individually. Also, if it is assumed that the positive Lyapunov matrix, P = I , the Lya-

punov function of each subsystem, Vi(t) = x(t)′Px(t), can be found as in Figure 2.11.

It implies that the energy of the each subsystems tends to zero as time tends to infinity.

Hence, the slow switching method in Section 2.3.2 gives a sufficient result when the dwell

time, T , is equal to 1.587 s.
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Figure 2.10: Trajectories of each subsystems, left A1 and right A2
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Figure 2.11: Lyapunov functions of each subsystem (left A1 and right A2)

According to state-dependent switching, the stability of a switched system can be

proven when the following switching law is applied to the system; see Figure 2.12 (left).

ẋ(t) =





A1x, x2 > 0

A2x, x2 ≤ 0
(2.13)

In addition, if it is assumed that the Lyapunov matrix, P = I , takes positive values,

then the Lyapunov function of the state-dependent switched system, V (t) = x(t)′Px(t),

can be found as shown in Figure 2.12 (right), which proves the stability of the system

under the given switching rule (2.13). The vertical dashed lines in the figure show the

switching instants.
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Figure 2.12: Trajectory and Lyapunov function of the state-dependent switched system

On the other hand, the switched system can be unstable for some state-dependent
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switching laws such as the following switching rule; see Figure 2.13 (left).

ẋ(t) =





A1x, x1x2 ≤ 0

A2x, x1x2 > 0

Under the above switching rule, the instability of the state-dependent switched system

can be seen from the Lyapunov function result in Figure 2.13 (right), where the positive

Lyapunov matrix, P , is assumed to be the identity matrix. The vertical dashed lines in the

figure show the switching instants.
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Figure 2.13: Trajectory and Lyapunov function of the state-dependent switched system

In addition to this, the asymptotic stability of each of the subsystems is a strong as-

sumption in the slow switching approach. However, state-dependent switching may prove

the stability of switched systems while their subsystems are not individually stable; see

Figure 2.6 as an example.

2.4 Controller Design

2.4.1 H2-optimal control

In this section, the solution of the H2-optimal control problem is presented. The

H2−optimal control problem finds, for a given plant P , a controller K that stabilizes

the system and minimises H2 norm of the closed-loop transfer function of the system G

(Zhou et al., 1996).
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The general control configuration is shown in Figure 2.14.

P

K

w

u

z

y

Figure 2.14: General control configuration without uncertainty

Here, the partition of the P can be defined by:


 z

y


 = P (s)


 w

u


 =


 P11(s) P12(s)

P21(s) P22(s)




 w

u


 , (2.14)

and the closed-loop system

z = F (P,K)w

where the generalized controller is K. u is the control inputs of the plant. w are the

exogenous inputs which are stochastic and include the measurement of the disturbance

signals, noise signals and references inputs (respectively d, n, r).

In addition, the plant contains the sensed, y, and regulated, z, outputs. The generalized

plant, P , includes the plant model, G, and weights, W . According to control objectives,

the relative signals are penalized by weighting. The transfer function of the system is

given by

F (P,K) = P11 + P12(I −KP22)
−1KP21.

The aim of H2-optimal control problem is to find a controller K which stabilizes the

plant P and minimises the following cost function

J(K) =‖F (P,K)‖22

where ‖F (P,K)‖2 is theH2-norm of the system (2.14).

Time domain solution is the most convenient way for the control problems. To design

a controller, the plant dynamics are assumed to be linear and known, such that
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ẋ = Ax+Buu+Bww,

y = C1x+D1,uu+D1,ww,

z = C2x+D2,uu+D2,ww,

(2.15)

A system with the plant model representation can be shown such that




ẋ

y

z


 =




A

B︷ ︸︸ ︷
Bu Bw

C1 D1,u D1,w

︸︷︷︸
C

C2

︸ ︷︷ ︸
D

D2,u D2,w







x

u

w


 , G(s)




x

u

w


 , (2.16)

where the transfer function of the system isG(s) = C(sI−A)−1B+D. In order to obtain

a finite H2-norm for the closed-loop system, D2,w is assumed to be zero. In addition, at

the infinite frequency, physical systems always have zero gain so D1,u is assumed to be

zero.

H2−norm of the transfer function is the effect of the inputw onto the output z. In other

words, theH2−norm of a system stands for the RMS−value of the system response to a

white noise input. To obtainH2 optimisation, we can formulate the following theorem.

Theorem 2.4.1 (H2-norm (Scherer and Weiland, 2000)): Let G = C(sI − A)−1B + D,

the following statements are equivalent

• H2−norm of the system, ‖G‖22 < υ2,

• there exist symmetric matrix P > 0 such that

Tr(B′PB) < υ2, A′P + PA+ C ′C < 0, (2.17)

• there exist symmetric matrices, P > 0 and R such that

Tr(R) < υ2,


 R B′P

∗ P


 > 0,


 A′P + PA C ′

∗ −I


 < 0, (2.18)
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• there exist symmetric matrices, X > 0 and T such that

Tr(T ) < υ2,


 T B′

∗ X


 > 0,


 XA′ + AX XC ′

∗ −I


 < 0, (2.19)

• there exist symmetric matrix, Q > 0 such that

Tr(CQC ′) < υ2, AQ+QA′ +BB′ < 0, (2.20)

• there exist symmetric matrices, Q > 0 and Z such that

Tr(Z) < υ2,


 Z CQ

∗ Q


 > 0,


 AQ+QA′ B

∗ −I


 < 0, (2.21)

• there exist symmetric matrices, Y > 0 and N such that

Tr(N) < υ2,


 N C

∗ Y


 > 0,


 Y A+ A′Y Y B

∗ −I


 < 0. (2.22)

Theorem 2.4.2 (H2−optimal state-feedback control (Gahinet et al., 1995)): If there exist

symmetric matrices, Q > 0 and Z, thenH2-gain of the system (2.15) with state-feedback,

u = Kx is less than υ, if the following conditions hold:

Tr(Z) < υ2,
 Z B′w

∗ Q


 > 0,


 AQ+QA′ +BuY + Y ′B′u QC ′2 + Y ′D′2,u

∗ −I


 < 0,

(2.23)

then the closed-loop system is quadratically stable and the H2-gain from w to z is less

than or equal to υ =
√
Tr(Z).

Remark: Minimising Tr(Z) gives the best upper bound. Then, the state-feedback con-

troller is K = LQ−1 .
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2.4.2 Linear Quadratic Regulator Method

The Linear Quadratic Regulator (LQR) method plays an important role in many

control design approaches. The LQR method is an effective control design method

and, also, many recent control design methods for the linear multi-input, multi-output

(MIMO) systems are based on it. For instance, the controller design methodology of

the Linear-Quadratic-Gaussian (LQG) and H∞ have nearly the same philosophy as the

LQR method. Understanding the philosophy of the LQR method properly is the most

convenient route to understand more complicated design methods (Levine, 2011).

Assuming a continuous time linear system (2.15) without disturbance input, if we

apply a closed-loop state-feedback rule as u = −Kx+ r, then the system becomes

ẋ = (A−BuK)x+Bur = Aclx+Bur, (2.24)

where r is a reference input, and it is assumed that r is equal to zero in the following

calculations. Moreover, the linear quadratic regulator can be defined as

J =

∫ ∞

0

(x′Qcx+ u′Rcu) dt, (2.25)

where Qc - which penalizes the states of the system, x - is a positive semi-definite matrix

that means Qc > 0 and Rc - which penalizes the input signals cost of the system - is a

positive definite matrix, such that Rc > 0 (Murray, 2009).

The main objective of the LQR method is to minimise the index term J in (2.25). If it

is small, then the total energy of the closed-loop system is kept low, so that J can also be

called as an energy function. Furthermore, whilst a small J is favourable, neither u(t) or

x(t) can be allowed to become too large because both the control input u(t) and the state

x(t) are closely related to J . Hence, it is assured that they will definitely be finite. As the

time, t, tends to∞, the state, x(t), tends to zero because the index term, J , is an infinite

integral of x(t). Hence, it provides the stability of the closed-loop system (Lewis, 1992).

If a state-feedback u = −Kx is applied to the system in (2.15) and replaced in (2.25),

then the equation becomes
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J =

∫ ∞

0

x′(Qc +K ′RcK)x dt. (2.26)

The aim in optimum design is to select K to minimise the LQR index J . To compute

the optimal feedback controller gain K, a constant symmetric positive definite matrix, P ,

is assumed such that

d

dt
(x′Px) = −x′(Qc +K ′RcK)x. (2.27)

Then, replacing with (2.26) yields

J = −
∫ ∞

0

d

dt
(x′Px) dt = x′(0)Px(0)− lim

t→∞
x′(t)Px(t), (2.28)

where x(0) is the initial condition. The closed-loop system is assumed to be stable so that

as time t tends to infinity, x(t) tends to zero. It can now be said that J is a constant, it is

free of K and it only depends on the initial conditions and the matrix P .

Now, K can be computed using (2.27). To find K, (2.27) is differentiated, and is then

replaced with the state-feedback equation in (2.24). Then (2.27) becomes

0 = ẋ′Px+ x′Pẋ+ x′Qcx+ x′K ′RcKx,

0 = x′(A′clP + PAcl +Qc +K ′RcK)x.

It can easily be seen that the term in parentheses has to be similarly equivalent to

zero. Moreover, for every x(t), the last equation has to be the same. In addition, if the

closed-loop matrices Acl are exchanged with A−BK, then it becomes a matrix quadratic

equation as

0 = (A−BK)′P + P (A−BK) +Qc +K ′RcK,

0 = A′P + PA−K ′B′P − PBK +Qc +K ′RcK. (2.29)

K can be chosen such
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K = R−1c B′P. (2.30)

Then the equation now becomes

0 = A′P + PA+Qc + (R−1c B′P )′Rc(R
−1
c B′P )(R−1c B′P )′B′P

−PB(R−1c B′P ),

0 = A′P + PA+Qc − PBR−1c B′P. (2.31)

This equation is called the Algebraic Riccati Equation (ARE), which is extremely

important in modern control theory (Lewis, 1992). The positive definite matrix, P , can

be computed by solving this equation. Then, the state-feedback controller gain, K, can

be calculated using (2.30). The LQR controller gain, K, can be calculated using the lqr

function in MATLAB.

Choosing Qc and Rc matrices for the LQR Method

The control system designers choose the two matrices Qc and Rc in advance. The

closed-loop system will give a different response depending on how these matrices are

chosen. More precisely, if Rc is chosen to be a larger value, the control input u(t) will

have to be lower to keep the index term, J , small. Moreover, a larger value of Rc implies

that the system needs a small control effort, so the closed-loop system poles get slower

when the values of state x(t) are increased. Conversely, if Qc is chosen to be a larger

value, it indicates that the state x(t) has to be smaller to keep the index term, J , small.

In other words, if Qc is chosen to be a larger value, then the closed-loop system in the

s-plane poles are placed more to the left, so the state x(t) approaches zero more rapidly

(Stevens and Lewis, 1992). The LQR is generally defined by

J =

∫ ∞

0

S︷ ︸︸ ︷
(x′Qcx+ u′Rcu+ x′Ncu) dt. (2.32)
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But the term Nc in (2.32) is almost always disregarded (Murray, 2009). Qc and Rc

can be determined in the following, different, ways:

1. Basic selection: if we consider Qc = I, Rc = ρI , then S changes as S = ‖(x)‖2 +

ρ‖(u)‖2. We can find a good response to change ρ.

2. Selected diagonal: (Hespanha, 2009) Q and R are selected as a diagonal such as

Qc = diag(q11, . . . , qnn) and Rc = ρ diag(r11, . . . , rmm).

We can decide qii and rjj with Brysons rule (Franklin et al., 2010) as

qii = 1
( maximum acceptable value of x2i ) , i ∈ {1, . . . , n},

rjj = 1
(maximum acceptable value of u2j ) , j ∈ {1, . . . ,m},

Input/state balance is adjusted using ρ.

3. Output state: if we assume that the controlled output signal is z = Ex, and also that

we want to keep this small, then (A,E) has to be observable and we choose

Qc = E ′E, Rc = ρI,

where Qc ∈ Rn×n, E ∈ Rm×n. It can easily be seen that

x′Qcx = x′E ′Ex = z′z.

We can find that S is S = ‖z‖2 + ρ‖u‖2.

Relationship between the LQR method and theH2−optimal control

LQR method is a special case of the H2−optimal control. The LQR index of a

system, J equals to theH2 index of a related system andH2−optimal control can be used

to solve LQR problem (Duan and Yu, 2013).

Consider the following assumptions for the system given by (2.15) :
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• Assigned C2 =


 Q

1
2
c

0


, D2,u =


 0

R
1
2
c


 and Bu = B

• Full state-feedback, C1 = I and D1,u = 0

• No disturbance input w = 0

Then, the objective of the LQR method in (2.25) can be formulated such

J =

∫ ∞

0

(x′C ′2C2x+ u′D′2,uD2,uu) dt. (2.33)

Consider the state-feedback law, u = −Kx and unforced response, x = eAtx0, then

J =

∫ ∞

0

x′0(e
A′tC ′2C2e

At + eA
′tK ′D′2,uD2,uKe

At)x0 dt,

= x′0

(∫ ∞

0

eA
′tC ′2C2e

At + eA
′tK ′D′2,uD2,uKe

At dt

)
x0,

= x′0Px0, (2.34)

where P is the observability Gramian of the system, with Ccl = C2−D2,uK that satisfies

the following Lyapunov equation

0 = A′clP + PAcl + C ′clCcl

= A′P + PA−K ′B′P − PBK + C ′2C2 +K ′D′2,uD2,uK

= A′P + PA−K ′B′P − PBK +Qc +K ′RcK. (2.35)

Here, it can be seen that (2.29) and (2.35) are equal which shows that conditions of

the LQR method can be found using theH2−optimal control.

2.4.3 State Feedback Integral Control

The values of these variables with the input signals also provide the future state and

output of the system (Dorf and Bishop, 2011). The aim of the state-feedback controller is

to adjust the output of the system based on the state variables. The output of the system

tracks the reference input with reference to the existence of disturbances. Adding an
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integral control guarantees obtaining a system that provides zero steady-state tracking

error for reference inputs.

To apply the LQR approach discussed above for the state-feedback integral control,

some calculations need to be done. The LTI system can be given such that

ẋp = Axp +Buu+Bww,

y = Cxp +Duu+Dww, (2.36)

where xp gives the states of the plant, u is the control inputs and w is the exogenous

(disturbance) inputs. The general state-feedback integral control scheme for the system

(2.36) is given in Figure 2.15, where the feedback of the system is defined by the integral

of the error, e = r − y.

b

b

b

b

b+ +++
+
++1/s 1/sK

A

BuBuBu

Bw

Dw

Du

C
r

y

ẋ1 x1 x

xp

u

w

ẋp xp y

P lant

Figure 2.15: State-feedback integral control scheme

We can obtain a specific solution to integral control by enhancing the state vector with

the desired dynamics. We add the extra state x1 which satisfies the following differential

relation

ẋ1 := r − y = r − (Cxp +Duu+Dww) (= e), (2.37)

where

x1 =

∫ T

0

e dt.

The augmented plant in Figure 2.16 can be obtained by combining (2.36) with (2.37)
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such that

ẋ =


 0 −C

0 A




 x1

xp


+


 −Du

Bu


u+


 −Dw

Bw


w +


 1

0


 r

= Aaug x+Bu,aug u+Bw,aug w +W r,

y =
[

0 C
]
x+Du u+Dw w

= Caug x+Du,aug u+Dw,aug w. (2.38)

b

b

b

b

+++
+
++

K

W

Bu,aug

Bw,aug

Dw,aug

Du,aug

Caug
r

w

x y
(s I −Aaug)

−1

u

x
AugmentedP lant

Figure 2.16: Augmented representation of the state-feedback integral control

In (2.32), S was defined in the LQR index term and can be written as S = z′z, where

z is a regulated (weighted) output such that

z =


 Q1/2 0

0 R1/2




 x

u


 . (2.39)

Here, the termN in (2.32) is disregarded. Combining the output of the system, y, with

the regulated output in (2.39) gives the new augmented plant outputs as
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zaug =


 z

y


 =




Q1/2 0 0

0 R1/2 0

Caug Du,aug Dw,aug







x

u

w


 . (2.40)

Finally, the weighted version of the state-feedback integral control in Figure 2.17 is

obtained. The plant outputs in (2.40) will use the following sections to find a switched

controller via stability analysis approaches.

b

b

b
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Bu,aug

Bw,aug

Dw,aug

Du,aug
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w

x y
(s I −Aaug)

−1

u

x

AugmentedP lant

Q1/2

R1/2

b

b

zaug

Figure 2.17: State-feedback integral control scheme with LQR weight

2.5 Summary

In this chapter, the basic concepts and methods for stability analysis have been pre-

sented. The indirect and direct Lyapunov stability analysis methods are given. These

methods are illustrated using various examples. Additionally, stability analysis for switch-
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ed systems have been introduced depending on arbitrary and constrained switching sig-

nals. Basic approaches to find switched system stability have been given. The minimum

dwell time theory and state-dependent switching theory in Section 2.3.2 will be extended

in the following two chapters for switched systems that have polytopic parameter uncer-

tainty. In addition, H2−optimal control and LQR methods have been presented. These

methods will be used and extended in the following chapters. At the end of the chapter,

state-feedback integral control strategy is given.



CHAPTER 3

Minimum Dwell Time Stability Analysis for Polytopic

Systems

3.1 Introduction

Theorem 2.3.2 (Section 2.3.2) provides the least conservative minimum dwell time es-

timation given in terms of quadratic Lyapunov functions. However, because the first LMI

(2.7) depends on eAiT , which is not convex in Ai, Theorem 2.3.2 cannot be generalized

to handle uncertain polytopic systems in a simple manner. To tackle this issue, another

dwell time technique will be used. The technique assumes linearly time-varying Lya-

punov functions. This assumption produces less conservative results when compared to

time-invariant Lyapunov functions. Also, parameter dependent, time-varying Lyapunov

functions will be introduced later for further relaxed conditions. The dwell time analyses

will be then extended to L2 andH2 performance.

The rest of this chapter is structured as follows: Section 3.2 introduces the description

of linear polytopic systems with uncertain parameters. In particular, minimum dwell time

43
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theory is given in this section. Based on the minimum dwell time approach, the general

description and the requirements of the stability analysis and L2-gain methodologies are

introduced in Section 3.3 and the subsequent sections are built on this section. The sta-

bility analysis method and L2 performance gain are derived using parameter independent

Lyapunov functions and parameter dependent Lyapunov functions in Sections 3.4 and 3.5,

respectively. In Section 3.6, the state-feedback controller design approaches are examined

with the methods described in Sections 3.4 and 3.5. An example is given at the end of

each section.

3.2 System description

Consider the switched linear system:

ẋ(t) = Aσ(t)x(t) +Bu,σ(t)u(t) +Bw,σ(t)w(t), x(0) = 0,

z(t) = Cσ(t)x(t) +Du,σ(t)u(t) +Dw,σ(t)w(t),
(3.1)

where the state is x(t) ∈ Rn, the control signal is u(t) ∈ Rk, an exogenous disturbance

is w(t) ∈ Rl and the objective vector is z(t) ∈ Rm. For each t ≥ 0, the switching

rule σ(t) is such that Aσ(t) ∈ {A1, . . . , AM}, Bu,σ(t) ∈ {Bu,1 , . . . , Bu,M}, Bw,σ(t) ∈
{Bw,1 , . . . , Bw,M}, Cσ(t) ∈ {C1, . . . , CM}, Du,σ(t) ∈ {Du,1 , . . . , Du,M} and Dw,σ(t) ∈
{Dw,1 , . . . , Dw,M}. It is considered that all system matrices are uncertain and reside

within the following polytope:

Ω =
⋃

i=1,...,M

Ωi, Ωi =
N∑

j=1

ηjΩ
(j)
i ,

N∑

j=1

ηj = 1, ηj ≥ 0, (3.2)

where Ωi =



Ai Bu,i Bw,i

Ci Du,i Dw,i


, Ω (j)

i =



A

(j)
i B

(j)
u,i B

(j)
w,i

C
(j)
i D

(j)
u,i D

(j)
w,i


, i is the index of the

subpolytopes, M denotes number of subpolytopes, j is the index of the subpolytope ver-

tices and N denotes the number of subpolytope vertices. For instance, a polytopic system

with overlapping subpolytopes is given in Figure 3.1, where each coloured rectangular
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represents a different subpolytope and each vertex is marked with dots. This polytopic

system has 6 subpolytopes, M = 6, and each subpolytope has 4 vertices, N = 4. Here,

the number of subpolytopes vertices are selected to be the same for the simplicity but

could be different for each subpolytope.

b

bb

bb

b b

b

b

b b b

bb b

b

b

b

b

bb
b

b

b

Ω2Ω1

Ω4 Ω5

Ω3

Ω6

Figure 3.1: A polytopic system with overlapping subpolytopes

Note that, each subpolytope needs to be overlapping in the dwell time approach and it

is assumed that the switched system matrices are convex combination of the related sub-

polytope vertices (Pogromsky et al., 1998). A constraint of a minimum dwell time during

the switching between subsystems arises due to the overlap between the subpolytopes.

During the minimum dwell time, it is assumed that the rates of change of the parameters

are bounded.

Definition 3.2.1: From Definition 2.3.1, the minimum dwell time between two switching

instants is divided into H equal sampling time intervals. It is then defined as tk,h =

tk + h T
H

for h = 0, . . . , H if the initial subsystem and switching instant are given by

i(0) = σ(0) and t1, t2, . . ., respectively. This definition with the dwell time constraint

stands for tk,H ≤ tk+1,0 = tk+1, which is explained geometrically in Figure 3.2. We will

use this definition to define the time-varying matrices, Pi, in the following sections.

3.3 Stability Analysis and L2-gain

In this section, the general stability analysis and L2 performance gain methods are

introduced in the perspective of the time-varying Lyapunov matrices. It also includes a
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tk,0 tk,1 tk,2 tk,3 tk,H−1 tk,H tk+1,0

Minimum Dwell time = T ≥ 0

Dwell time= Td

Figure 3.2: Dividing the minimum dwell time into H equal parts

brief description and the requirements of the stability analysis andL2-gain methodologies.

The results of this section cannot used directly to find stability andL2-gain of the switched

systems therefore the following sections are also built on this section.

3.3.1 Stability Analysis

The positive definite matrices Pi used in stability analysis are assumed to vary linearly

with time during the minimum dwell time. Hence, the Lyapunov function V (t) with time-

varying matrices, Pi(t), is given such that

V (t) = x′(t)Pi(t)x(t), i = 1, . . . ,M (3.3)

needs to satisfy the following conditions:

Condition 3.1 (Positive-Definiteness): V (x) > 0 for all x ∈ Rn and x 6= 0. Positive

values of the Lyapunov function in (3.3) can be achieved by the existence of symmetric

positive definite matrices Pi(t) > 0, i = 1, . . . ,M .

Condition 3.2 (Decreasing in time): V̇ (x) < 0 for all x ∈ Rn and x 6= 0. Negative values

of the derivative of the Lyapunov function in (3.3) along the subsystem’s trajectories is

V̇ (x) = x′(Ṗi(t) + A
(j)
i

′
Pi(t) + Pi(t)A

(j)
i )x < 0, ∀i, ∀j. (3.4)

Here, Ṗi(t) are taken into account due to the time-varying matrices, Pi(t). From (Boyarski

and Shaked, 2009), linearly time-varying , Pi(t), for all t ∈ [tk,h tk,h+1], h = 0, . . . , H−
1 is a convex combination of the unknown constant matrices, Pi,h and Pi,h+1, such that
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Pi(t) = r1(t)Pi,h + r2(t)Pi,h+1, 0 ≤ r1(t) ≤ 1,

0 ≤ r2(t) ≤ 1, r1(t) + r2(t) = 1, r2(t) ,
t− tk,h

tk,h+1 − tk,h
,

(3.5)

where the convex coordinates of Pi(t) are defined as r1(t) and r2(t). Indeed, r1 is varied

from 1 at tk,h to 0 at tk,h+1 and r2 is changed from 0 at tk,h to 1 at tk,h+1. Note that, from

the convex definition of (3.5), a positive definite Pi(t) for tk,h ≤ t ≤ tk,h+1 exists if, and

only if, the positive definite matrices Pi,h and Pi,h+1 exist. The derivative of Pi(t) is a

constant matrix from the description of (3.5) such that

Ṗi(t) =
Pi,h+1 − Pi,h
tk,h+1 − tk,h

. (3.6)

Thus, satisfaction of (3.4) is equivalent to

Pi,h+1 − Pi,h
tk,h+1 − tk,h

+A
(j)
i

′
Pi,h + Pi,hA

(j)
i < 0,

Pi,h+1 − Pi,h
tk,h+1 − tk,h

+A
(j)
i

′
Pi,h+1 + Pi,h+1A

(j)
i < 0,

Pi,h+1 > 0, Pi,h > 0,

(3.7)

If (3.7) has a solution, the stability of the system (3.1) with an uncertainty (3.2) is proven.

3.3.2 L2 performance gain

Besides a sufficient condition for the asymptotic stability, the following performance

criteria for a scalar γ is sought for the system (3.1) (Allerhand and Shaked, 2010).

J =

∫ ∞

0

(z′z − γ2w′w)dt ≤ 0, ∀w ∈ L2 (3.8)

Here, γ is the L2-gain between disturbance inputs, w and desired outputs, z, of the

system (3.1). We can define a new criteria with V (t):

J̃ = lim
t→∞
{V (t) +

∫ t

0

(z′z − γ2w′w)ds}. (3.9)



Minimum Dwell Time Stability Analysis for Polytopic Systems 48

It can be seen that J ≤ J̃ when V (t) ≥ 0 ∀ t. Assuming that V (t) can be differentiated

over all t, apart from the switching instants, and x(0) = 0, then

lim
t→∞

V (t) =
∞∑

k=0

∫ tk+1

tk

V̇ (t)dt+
∞∑

k=1

(V (tk)− V (t−k )) (3.10)

where t0 = 0. The Lyapunov function, V (t) needs to be non-increasing at the switching

instants; thereby making this condition is stronger than the normal dwell time conditions.

If V (t) satisfies this necessary condition, the following result can be obtained

V (tk)− V (t−k ) ≤ 0 ∀s > 0 (3.11)

which then means

lim
t→∞

V (t) ≤
∞∑

k=0

∫ tk+1

tk

V̇ (t)dt. (3.12)

Substituting (3.12) into (3.9) yields:

J̄ =
∞∑

k=0

∫ tk+1

tk

V̇ (t)dt+

∫ ∞

0

(z′z − γ2w′w)ds,

=
∞∑

k=0

∫ tk+1

tk

(V̇ (t) + z′z − γ2w′w)ds.

(3.13)

Consequently, from (3.8) to (3.13), J ≤ J̃ ≤ J̄ is obtained. If the above Lyapunov

function provides J̄ ≤ 0 and the non-increasing condition in (3.11) is held during the

switching instants, then the performance criteria in (3.8) are proven. More precisely, the

L2-gain of the system (3.1) will be equal to or less than a prescribed scalar γ > 0. From

(3.13), the following condition needs to be satisfied

V̇ (t) + z′z − γ2w′w < 0. (3.14)

Substituting (3.4) into (3.14) and applying standard derivation of the Bounded Real

Lemma (BRL) for linear systems (Boyd et al., 1994), the following inequality is obtained
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


Ṗi(t) + Pi(t)A
(j)
i + A

(j)
i

′
Pi(t) Pi(t)B

(j)
w,i C

(j)
i

′

∗ −γ2I D
(j)
w,i

′

∗ ∗ −I


 < 0. (3.15)

Note that the first diagonal block of the above inequality comes from (3.4). The second

row and column come from w′w and the third row and column come from z′z. This

inequality is defined for L2 performance gain between disturbance inputs, w, and desired

outputs, z. If the L2-gain between control inputs, u, and desired outputs, z, is sought, the

disturbance inputs in (3.8) will be replaced with the control inputs, and the disturbance

matrices Bw and Dw in (3.15) become the input matrices Bu and Du.

Substituting (3.6) into (3.15), the inequality becomes



Pi,h+1 − Pi,h
tk,h+1 − tk,h

+A
(j)
i

′
Pi,h + Pi,hA

(j)
i Pi,hB

(j)
w,i C

(j)
i

′

∗ −γ2I D
(j)
w,i

′

∗ ∗ −I



< 0,




Pi,h+1 − Pi,h
tk,h+1 − tk,h

+A
(j)
i

′
Pi,h+1 + Pi,h+1A

(j)
i Pi,h+1B

(j)
w,i C

(j)
i

′

∗ −γ2I D
(j)
w,i

′

∗ ∗ −I



< 0,

Pi,h+1 > 0, Pi,h > 0,

(3.16)

In this section, general theories are presented for the time-varying Lyapunov matrices

Pi but these cannot be directly used for the stability and L2 performance gain analysis of

the system (3.1) with parameter uncertainty (3.2). In Section 3.4, the Lyapunov matrices

in these theories are assumed to vary only with time, but this assumption may cause

conservative results for the dwell time. Hence, in Section 3.5, the Lyapunov matrices

varying both with time and cell partition parameters are also used in these theories.
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3.4 Parameter Independent Lyapunov Function

In this thesis, the term parameter independent Lyapunov function is used to refer to

a Lyapunov function that only depends on time and not the uncertain parameters of the

system matrices. More precisely, the same Lyapunov function is applied to all the points

in the uncertain polytopes, Ωi in (3.2). In this section, the stability analysis method and

L2 performance gain given in Section 3.3 are introduced using a parameter independent

Lyapunov function.

A time-varying and parameter independent Lyapunov function, V (t), is defined as

V (t) = x′(t)Pσ(t)(t)x(t), (3.17)

where Pσ(t)(t) ∈ {P1(t), . . . , PM(t)} according to σ(t), defined as:

Pi(t) =





Pi0,H t ∈ [0, t1),

Pi,h + (Pi,h+1 − Pi,h)
(t− tk,h)

T
H

t ∈ [tk,h, tk,h+1),

Pi,H t ∈ [tk,H , tk+1,0).

(3.18)

where h = 0, . . . , H − 1, the number of the switching is defined as k = 1, 2, . . . and H is

a given positive integer. The change of the Lyapunov matrix Pi(t) is presented in Figure

3.3. Here, the matrix Pi(t) is constant and equal to Pi0,H before the first switching instant.

During the minimum dwell time, the matrix Pi(t) changes linearly from Pi,h to Pi,h+1 and

time intervals are assumed as t ∈ [tk,h, tk,h+1). After the minimum dwell time, and before

the following switching instant, the matrix Pi(t) is constant and equal to Pi,H . Note that

a large H provides a less conservative result at the expense of computational complexity

(Allerhand and Shaked, 2011).

III Stability Analysis using Parameter Independent Lyapunov Function

The parameter independent Lyapunov function (3.17) is here used to analyse the sta-

bility of the system (3.1) with the parameter uncertainty (3.2). According to the conditions

of Section 3.3.1, the following theorem is given for the stability analysis:
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t0 t1 tk,0 tk,1 tk,h tk,h+1 tk,H−1 tk,H tk+1,0

Pi0,H Pi,h + (Pi,h+1 − Pi,h)
(t− tk,h)

T
H

Pi,H

T

Figure 3.3: A graph presenting the Lyapunov matrix, Pi(t)

Theorem 3.4.1 (Allerhand and Shaked (2011)): For a given T > 0, if there exist a set of

positive definite matrices Pi,h > 0, i = 1, . . . ,M, h = 0, . . . , H that satisfy the following

LMIs for all i = 1, . . . ,M and j = 1, . . . , N :

Pi,h+1 − Pi,h
T/H

+Pi,hA
(j)
i + A

(j)
i

′
Pi,h < 0,

Pi,h+1 − Pi,h
T/H

+Pi,h+1A
(j)
i + A

(j)
i

′
Pi,h+1 < 0,

(3.19a)

where h = 0, . . . , H − 1

Pi,HA
(j)
i + A

(j)
i

′
Pi,H < 0, (3.19b)

Pi,H − Ps,0 ≥ 0, ∀s ∈ {1, . . . ,M} and s 6= i (3.19c)

then the system (3.1) with the uncertainty (3.2) is globally asymptotically stable for any

switching rule with a dwell time that is greater than the minimum dwell time, T .

Note that, before the first switching, the decreasing of the Lyapunov function is en-

sured by the condition (3.19b). During the minimum dwell time, the conditions in (3.19a)

which come from the LMIs in (3.7), ensure that the Lyapunov function is decreasing.

Then, the condition in (3.19b) guarantees that V (t) is decreasing, after the minimum

dwell time and before the next switching. During the switching instants, the Lyapunov

function is ensured to be non-increasing by the condition in (3.19c). Figure 3.4 illustrates

the change of the Lyapunov function as guaranteed by Theorem 3.4.1.
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V (t)

tt0 t1 tk,0 tk,H tk+1,0

(3.19b) (3.19a) (3.19b)

(3.19c)

V (t−k+1,0) ≥ V (t+k+1,0)

︸ ︷︷ ︸
T

Figure 3.4: Illustration of the change of Lyapunov function

Remark: It is assumed that the parameters of the system (3.1) reside within the polytope,

and the system matrices are convex combinations of the polytope vertices. Hence, the

theorem proves the stability of the system, despite being defined on the vertices of the

cells. The system matrices, Ai, are to be convex combinations of the vertices as

Ai =
N∑

j=1

ηjA
(j)
i ,

N∑

j=1

ηj = 1, ηj ≥ 0

then Condition 3.2 can be written as the above system matrices such that

N∑

j=1

ηjx
′
(
Ṗi + A

(j)
i

′
Pi + PiA

(j)
i

)
x < 0 (3.20)

When we compare the inequalities in (3.4) and (3.20), it can be seen that if the solution

can be found by using Theorem 3.4.1, it will also verify the inequalities in (3.20). In other

words, if Theorem 3.4.1 gives a sufficient result for the vertices of the cells, it will also

prove the stability of all the system dynamics within the cells.

Example 3.1: Consider the switched linear system ẋ = Aix and the system matrices

reside within the following polytope:

Ai =
N∑

j=1

ηjA
(j)
i ,

N∑

j=1

ηj = 1, ηj ≥ 0



53 3.4 Parameter Independent Lyapunov Function

Here, the system matrices are a convex combination of the following matrices

A
(1)
1 =


 −2 6

1 −7


 , A

(2)
1 =


 −3.2 3.6

−2.6 −2.2


 ,

A
(1)
2 =


 −4 2

−5 1


 , A

(2)
2 =


 −2.8 4.4

−1.4 −3.8


 .

The given system is then solved by using Theorem 3.4.1 withH = 1 and the minimum

dwell time is found as T = 0.643 s. Using the definition in (3.18), the time-varying Pi(t)

can be found based on the following set of matrices, which come from solutions of the

inequalities

P1,0 =


 4.5404 0.3008

0.3008 4.8754


 P1,1 =


 8.6059 −3.9557

−3.9557 16.7169


 ,

P2,0 =


 8.6050 −3.9002

−3.9002 7.2385


 P2,1 =


 11.5653 −3.4353

−3.4353 6.8631


 .

In this example, the solver finds 12 variables by solving 18 different LMIs in 0.5614 s.

These variables come from the component of the matrices Pi,h, i = 1, . . . ,M, h =

0, . . . , H . The minimum dwell time results are given in Table 3.1 for different values

of H . Table 3.1 shows that the number of variables and inequalities increases with an

increasing H , whereas the minimum dwell time decreases. The solver time increases

rapidly with the number of LMIs and the number of variables.

Remark: In Theorem 3.4.1, Pi,h, i = 1, . . . ,M, h = 0, . . . , H are the variable matrices.

The number of LMI variables the solver needs to find are M(H + 1)Υ. Therefore, the

solver deals withM(M+2NH+H+N) different inequalities to find these variables. M

is the number of subpolytopes,N is the number of subpolytope vertices,H is a prescribed

integer and Υ is the number of components in the symmetric positive definite matrices

Pi,h. Υ can be calculated as n(n+ 1)/2, where n is the size of the A(j)
i matrices.
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H 1 2 5 10 100

T(s) 0.643 0.470 0.156 0.133 0.119

Solving Time (s) 0.5614 0.7482 1.1294 1.8504 15.9403

Num. of LMIs 18 28 58 108 1008

Num. of Variable 12 18 36 66 606

Table 3.1: The results of the Example 3.1 for various H

III L2-gain using Parameter Independent Lyapunov Function

The parameter independent Lyapunov function (3.17) is here used to satisfy both sta-

bility and performance criteria of the system (3.1) with the parameter uncertainty (3.2).

According to the L2-gain definition in Section 3.3.2, the following theorem is given for

the L2 performance gain:

Theorem 3.4.2 (Allerhand and Shaked (2013)): For a given T > 0, if there exist a set of

positive definite matrices Pi,h > 0, i = 1, . . . ,M, h = 0, . . . , H that satisfy the following

LMIs for all i = 1, . . . ,M and j = 1, . . . , N :




(Pi,h+1 − Pi,h)
T/H

+Pi,hA
(j)
i + A

(j)
i

′
Pi,h Pi,hB

(j)
w,i C

(j)
i

′

∗ −γ2I D
(j)
w,i

′

∗ ∗ −I



< 0,




(Pi,h+1 − Pi,h)
T/H

+Pi,h+1A
(j)
i + A

(j)
i

′
Pi,h+1 Pi,h+1B

(j)
w,i C

(j)
i

′

∗ −γ2I D
(j)
w,i

′

∗ ∗ −I



< 0,

(3.21a)
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where h = 0, . . . , H − 1




Pi,HA
(j)
i + A

(j)
i

′
Pi,H Pi,HB

(j)
w,i C

(j)
i

′

∗ −γ2I D
(j)
w,i

′

∗ ∗ −I



< 0 (3.21b)

Pi,H − Ps,0 ≥ 0, ∀s ∈ {1, . . . ,M} and s 6= i (3.21c)

then the L2-gain of the system (3.1) with the uncertainty (3.2) is smaller than a positive

scalar γ for any switching rule with a dwell time that is greater than the minimum dwell

time, T . Here, H is a given integer, i = 1, . . . ,M and j = 1, . . . , N .

The LMIs in Theorem 3.4.2 can be investigated in four categories which are: before

first switching; during the minimum dwell time; before the switching instants and during

the switching instants. Firstly, before the first switching, Pi(t) is constant and the Lya-

punov function, V (t), is proven to be decreasing by the LMI (3.21b) whilst the system

stays within the same subsystem. The LMIs (3.21a) then guarantee that V (t) is strictly

decreasing during the minimum dwell time, which comes from the LMI (3.16). For any

t ∈ [tk,H , tk+1,0), the LMI (3.21b) proves that the Lyapunov function is strictly decreas-

ing. During the switching instants, the Lyapunov function is proved to be non-increasing

by the LMI (3.21c). According to Lasalle’s invariance principle (Hespanha, 2004a), the

asymptotic stability is proven for the system due to having different switching points.

Example 3.2: Consider the switched linear system (3.1) with the polytopic system pa-

rameters (3.2), which are given such that

A
(1)
1 =


 −2 6

1 −7


 , B

(1)
w,1 =


 −2

5


 , C

(1)
1 =

[
3 1

]
, D

(1)
w,1 = −0.8,
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A
(2)
1 =


 −3.2 3.6

−2.6 −2.2


 , B

(2)
w,1 =


 −0.2

2.27


 , C

(2)
1 =

[
4.2 1.6

]
, D

(2)
w,1 = −0.08,

A
(1)
2 =


 −4 2

−5 1


 , B

(1)
w,2 =


 1

0.45


 , C

(1)
2 =

[
5 2

]
, D

(1)
w,2 = 0.4,

A
(2)
2 =


 −2.8 4.4

−1.4 −3.8


 , B

(2)
w,2 =


 −0.8

3.18


 , C

(2)
2 =

[
3.8 1.4

]
, D

(2)
w,2 = −0.32.

The given system is solved by using Theorem 3.4.2 with H = 1 and the minimum

dwell time is found as T = 0.643 s. In this example, 13 variables are found by solving

19 different LMIs in 1.2163 s. These variables come from the component of the matrices

Pi,h, i = 1, . . ., M , h = 0, . . . , H and L2-gain, γ. The minimum dwell time results for

different values of H are given in Table 3.2, and the L2-gain results are shown in Table

3.3 for various dwell times Td and scalar H . Table 3.2 shows that when H is increased,

the minimum dwell time is decreased; however, solving time, the number of LMIs and

the number of variables are increased. In addition, Table 3.3 indicates that L2-gain is

decreased when the dwell time, Td and/or H increase.

H 1 2 5 10 100

T(s) 0.643 0.470 0.156 0.133 0.119

Solving Time (s) 1.2163 1.2822 1.8668 2.9336 23.8612

Num. of LMIs 19 29 59 109 1009

Num. of Variable 13 19 37 67 607

Table 3.2: The minimum dwell time, the number of LMIs and the number of variables for

various H

Remark: In Theorem 3.4.2, Pi,h, i = 1, . . . ,M, h = 0, . . . , H and γ are the variables.

The number of variables that the LMI solver needs to find areM(H+1)Υ+1. Therefore,

the solver deals with M(M +2NH+H+N)+1 different inequalities to find these vari-
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H \ Td 1 s 2 s 3 s 4 s 5 s

1 19.3743 11.3665 10.8417 10.6842 10.5972

2 15.3455 11.2082 10.6327 10.4629 10.4040

5 13.1286 10.7246 10.4287 10.3401 10.3086

10 11.7962 10.4859 10.3200 10.2838 10.2745

100 9.9269 9.6834 9.6042 9.5198 9.4908

Table 3.3: L2-gain, γ results of the Example 3.2 for various H and Td

ables. The differences between Theorem 3.4.1 and 3.4.2 are that Theorem 3.4.2 has one

more variable than Theorem 3.4.1 and, also, that the size of the inequalities in Theorem

3.4.2 are larger than those of Theorem 3.4.1.

3.5 Parameter Dependent Lyapunov function

The parameter independent Lyapunov function (3.17) uses the same Lyapunov matrix

(3.18) for all vertices of the subsystems. Hence, it is more conservative with regards to

the stability conditions. We can deal with this conservatism issue by using the parameter

(vertex) dependent Lyapunov function. The Lyapunov matrix of this function depends on

both time and vertices of the subsystem in the cell. Before proceeding, it is helpful to give

following Lemmas for the stability and L2 performance gain.

Lemma 3.5.1 (Finsler (1937)): Let x ∈ Rn, A ∈ Sn and B ∈ Rm×n such that rank(B) <

n. The following statements are equivalent:

(i) x′Qx < 0, ∀Bx = 0, x 6= 0,

(ii) B̄′QB̄ < 0 where BB̄ = 0,

(iii) Q− ρB′B < 0 for some scalar ρ,

(iv) Q+XB +B′X ′ < 0 for some matrix X .
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Lemma 3.5.2: Consider the linear time invariant system, ẋ = Ax(t) is asymptotically

stable and then the following descriptions are equivalent:

(i) P > 0, PA+ A′P < 0,

(ii) P > 0,


 SA+ A′S ′ P − S + A′G′

∗ −G′ −G


 < 0

where the matrices S and G, with suitable dimensions, are Lagrange multipliers. Note

that these multipliers represent extra degrees of freedom and the constraint containing the

multipliers is less conservative than the constraint with the Lyapunov matrix (de Oliveira

and Skelton, 2001; Geromel et al., 1999).

Proof: If the second inequality in (ii) is multiplied from the left hand side by Y = [I A′]

and Y ′ from right hand side, then the inequalities (i) are obtained. Moreover, if S and G

in (ii) are chosen to be P and ζP , respectively, then the inequalities (i) are obtained when

ζ → 0.

In other way, we can choose the matrices in Lemma 3.5.1 as

 x(t)

ẋ(t)


→ x,


 0 P

P 0


→ Q,


 A′

−I


→ B′,


 S

G


→ X,


 I

A


→ B̄, (3.22)

then Lemma 3.5.2 is obtained from (ii) and (iv) in Lemma 3.5.1.

Lemma 3.5.3: Consider the linear time invariant system,

ẋ = Ax(t) +Bww(t),

z = Cx(t) +Dww(t),

is asymptotically stable and then the following descriptions are equivalent to find the L2-

gain:

(i) P > 0,




PA+ A′P PBw C ′

∗ −γ2I D′w

∗ ∗ −I


 < 0.,
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(ii) P > 0,




SA+ A′S ′ SBw C ′ P − S + A′G′

∗ −γ2I D′w B′wG
′

∗ ∗ −I 0

∗ ∗ ∗ −G−G′



< 0.

where the matrices S and G, with suitable dimensions, are Lagrange multipliers.

Proof: If the inequality in (ii) is multiplied from the left hand side by Y ′ and Y from right

hand side, then the inequality of (i) is obtained, where

Y =




I 0 0

0 I 0

0 0 I

A Bw 0



.

Moreover, if S and G in (ii) are chosen to be P and ζP , respectively, then the inequal-

ity in (i) is obtained when ζ → 0.

A time-varying and parameter dependent Lyapunov function, V (t), are chosen such

that

V (t) = x′(t)Pσ(t)x(t), Pσ(t) =
N∑

j=1

ηjP
(j)
σ(t),

N∑

j=1

ηj = 1, ηj ≥ 0, (3.23)

where P (j)
σ(t)(t) ∈ {P

(j)
1 (t), . . . , P

(j)
M (t)} according to σ(t), defined as:

P
(j)
i (t) =





P
(j)
i0,H

t ∈ [0, t1),

P
(j)
i,h + (P

(j)
i,h+1 − P

(j)
i,h )

(t− tk,h)
T
H

t ∈ [tk,h, tk,h+1),

P
(j)
i,H t ∈ [tk,H , tk+1,0).

(3.24)

where h = 0, . . . , H − 1, j = 1, . . . , N , the number of the switching is defined by

k = 1, 2, . . . and H is a given positive integer.

Note that the change of the Lyapunov matrix P (j)
i (t) with respect to time is similar

to the change of the Lyapunov matrix Pi(t) in Figure 3.3. The only difference between

them is that Lyapunov matrix in (3.23) depend on the subpolytope vertices (Allerhand and

Shaked, 2011).
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III Stability Analysis using Parameter Dependent Lyapunov function

The parameter dependent Lyapunov function (3.23) is here used to analyse the stabil-

ity of the system (3.1) with the parameter uncertainty (3.2). If Lemma 3.5.2 is applied to

the conditions in Section 3.3.1, then the following Theorem is obtained for the stability

analysis:

Theorem 3.5.4 (Allerhand and Shaked (2011)): For a given T > 0, if there exist the

set of matrices Si,h, Gi,h and positive definite matrices P (j)
i,h > 0, i = 1, . . . ,M, h =

0, . . . , H, j = 1, . . . , N that satisfy the following LMIs for all i = 1, . . . ,M and j =

1, . . . , N :



P
(j)
i,h+1 − P

(j)
i,h

T/H
+Si,hA

(j)
i + A

(j)
i

′
S ′i,h P

(j)
i,h − Si,h + A

(j)
i

′
G′i,h

∗ −G′i,h −Gi,h


 < 0,




P
(j)
i,h+1 − P

(j)
i,h

T/H
+Si,h+1A

(j)
i + A

(j)
i

′
S ′i,h+1 P

(j)
i,h+1 − Si,h+1 + A

(j)
i

′
G′i,h+1

∗ −G′i,h+1 −Gi,h+1


 < 0,

where h = 0, . . . , H − 1


 Si,HA

(j)
i + A

(j)
i

′
S ′i,H P

(j)
i,H − Si,H + A

(j)
i

′
G′i,H

∗ −G′i,H −Gi,H


 < 0,

P
(j)
i,H − P

(j)
s,0 ≥ 0, ∀s ∈ {1, . . . ,M} and s 6= i,

then the system (3.1) with an uncertainty (3.2) is globally asymptotically stable for any

switching rule with a dwell time that is greater than the minimum dwell time, T .

Example 3.3: Consider the same system given in Example 3.1. The stability of the system

is provided using Theorem 3.5.4 with H = 1, and the minimum dwell time is found as

T = 0.482 s. The solver finds 56 variables by solving 24 different LMIs in 0.7525 s.

These variables come from the components of the matrices Si,h, Gi,h and P
(j)
i,h , i =

1, . . . ,M, h = 0, . . . , H, j = 1, . . . , N .
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The minimum dwell time results are given in Table 3.4 for different values ofH . Table

3.4 shows that the number of inequalities and variables increases, and the minimum dwell

time decreases, with an increasing H . The solver time increases with the number of LMIs

and the number of variables.

H 1 2 5 10 100

T(s) 0.482 0.293 0.105 0.089 0.083

Solving Time (s) 0.7525 0.9634 1.8052 3.3563 29.9927

Num. of LMIs 24 36 72 132 1212

Num. of Variable 56 84 168 308 2828

Table 3.4: The minimum dwell time, the number of LMIs and the number of variables for

various H

Remark: In Theorem 3.5.4, Si,h, Gi,h and P (j)
i,h , i = 1, . . . ,M, h = 0, . . . , H, j =

1, . . . , N are the variables. The number of variables [the LMI solver needs to find] can be

calculated using M(H + 1)(ΥS + ΥG + NΥP ), which is given in Table 3.5. Therefore,

the solver deals with MN(M + 3H + 1) different inequalities to find these variables.

Variable Name Number of Variable

P
(j)
i,h M(H + 1)NΥP

Si,h M(H + 1)ΥS

Gi,h M(H + 1)ΥG

Total M(H + 1)(ΥS + ΥG +NΥP )

Table 3.5: Number of variables (Theorem 3.5.4)

III L2-gain using Parameter Dependent Lyapunov function

The parameter independent Lyapunov function (3.23) is here used to satisfy both sta-

bility and performance criteria of the system (3.1) with the parameter uncertainty (3.2).
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If Lemma 3.5.3 is applied to the L2-gain definition in Section 3.3.2, then the following

Theorem is obtained for the L2 performance gain:

Theorem 3.5.5 (Allerhand and Shaked (2013)): For a given T > 0, if there exist the

set of matrices Si,h, Gi,h and positive definite matrices P (j)
i,h > 0, i = 1, . . . ,M, h =

0, . . . , H, j = 1, . . . , N that satisfy the following LMIs for all i = 1, . . . ,M and j =

1, . . . , N :






(P
(j)
i,h+1 − P

(j)
i,h )

T/H
+

Si,hA
(j)
i + A

(j)
i

′
S ′i,h


 Si,hB

(j)
w,i C

(j)
i

′
P

(j)
i,h − Si,h + A

(j)
i

′
G′i,h

∗ −γ2I D
(j)
w,i

′
B

(j)
w,i

′
G′i,h

∗ ∗ −I 0

∗ ∗ ∗ −G′i,h −Gi,h




< 0,







(P
(j)
i,h+1 − P

(j)
i,h )

T/H
+

Si,h+1A
(j)
i + A

(j)
i

′
S ′i,h+1


 Si,h+1B

(j)
w,i C

(j)
i

′


 P

(j)
i,h+1 − Si,h+1

+A
(j)
i

′
G′i,h+1




∗ −γ2I D
(j)
w,i

′
B

(j)
w,i

′
G′i,h+1

∗ ∗ −I 0

∗ ∗ ∗ −G′i,h+1 −Gi,h+1




< 0,

where h = 0, . . . , H − 1,




Si,HA
(j)
i + A

(j)
i

′
S ′i,H Si,HB

(j)
w,i C

(j)
i

′
P

(j)
i,H − Si,H + A

(j)
i

′
G′i,H

∗ −γ2I D
(j)
w,i

′
B

(j)
w,i

′
G′i,H

∗ ∗ −I 0

∗ ∗ ∗ −G′i,H −Gi,H




< 0,

P
(j)
i,H − P

(j)
s,0 ≥ 0, ∀s ∈ {1, . . . ,M} and s 6= i,

then the L2-gain of the system (3.1) with the uncertainty (3.2) is smaller than a positive

scalar γ for any switching rule with a dwell time that is greater than the minimum dwell

time, T .
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Example 3.4: Consider the same system as in Example 3.2. The stability of the system is

provided using Theorem 3.5.5 with H = 1 and the minimum dwell time is found as T =

0.482 s. The solver finds 57 variables by solving 25 different LMIs in 1.0438 s. These

variables come from the components of the matrices Si,h, Gi,h, P
(j)
i,h , i = 1, . . . ,M, h =

0, . . . , H, j = 1, . . . , N and L2-gain, γ.

The minimum dwell time results are given in Table 3.6 for various values of H . This

table shows that the minimum dwell time decreases with increasing H . At the same time,

solving time, the number of LMIs and the number of variables increase.

H 1 2 5 10 100

T(s) 0.482 0.293 0.105 0.089 0.083

Solving Time (s) 1.0438 1.3222 2.4739 5.1647 47.2486

Num. of LMIs 25 37 73 133 1213

Num. of Variable 57 85 169 309 2829

Table 3.6: The minimum dwell time, the number of LMIs and the number of variables for

various H

The L2-gain results are shown in Table 3.7 according to different dwell times, Td and

scalar H . The table shows that L2 performance gain is decreasing whilst H and/or Td are

increasing. In addition to this, minimum dwell times and L2-gains are found to be lower

compared to the result of Theorem 3.4.2 given in Tables 3.2 and 3.3.

Remark: In Theorem 3.5.5, Si,h, Gi,h, P
(j)
i,h , i = 1, . . . ,M, h = 0, . . . , H, j = 1, . . . , N

and γ are the variables. The number of variables [the LMI solver needs to find] can be

calculated usingM(H+1)(ΥS+ΥG+NΥP )+1, which is given in Table 3.8. Therefore,

the solver deals with MN(M + 3H + 1) + 1 different inequalities to find these variables.
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H \ Td 1 s 2 s 3 s 4 s 5 s

1 8.3032 6.9905 6.6839 6.5482 6.4731

2 7.8320 6.6037 6.3945 6.3329 6.3065

5 7.3400 6.3678 6.2871 6.2707 6.2656

10 7.1713 6.3059 6.2688 6.2634 6.2622

100 6.9567 6.2703 6.2628 6.2618 6.2617

Table 3.7: The L2-gain, γ results of the Example 3.4 for various H and Td

Variable Name Number of Variable

P
(j)
i,h M(H + 1)NΥP

Si,h M(H + 1)ΥS

Gi,h M(H + 1)ΥG

γ 1

Total M(H + 1)(ΥS + ΥG +NΥP ) + 1

Table 3.8: Number of variables (Theorem 3.5.5)

3.6 State-feedback Controller Design

In this section, two control design approaches are presented based on the parameter in-

dependent and dependent Lyapunov functions. The first one guarantees and minimises an

L2 performance criterion (given in (3.8)) whilst the second one minimises the sensitivity

of the system output to a zero mean white noise input w.

3.6.1 First Approach

Here, a stabilising state-feedback controller is designed by using the minimum dwell

time theories which are based on parameter independent and dependent Lyapunov func-

tions given in Sections 3.4 and 3.5, respectively. The state-feedback controller, Kσ(t)(t),

is sought to satisfy the performance criterion in (3.8) and stabilizes the system (3.1) with
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u(t) = Kσ(t)(t)x(t). We have

ẋ = (Aσ(t) +Bu,σ(t)Kσ(t)(t))x(t) +Bw,σ(t)w(t), x(0) = 0,

z = (Cσ(t) +Du,σ(t)Kσ(t)(t))x(t) +Dw,σ(t)w(t),
(3.28)

with the polytopic uncertainties

Ω =
⋃

i=1,...,M

Ωi, Ωi =
N∑

j=1

ηjΩ
(j)
i ,

N∑

j=1

ηj = 1, ηj ≥ 0, (3.29)

where Ωi =



Ai +Bu,iKi Bw,i

Ci +Du,iKi Dw,i


, Ω (j)

i =



A

(j)
i +B

(j)
u,iKi B

(j)
w,i

C
(j)
i +D

(j)
u,iKi D

(j)
w,i


.

Using (3.15) with system matrices in (3.28), the state-feedback controller gains cannot

be directly found because of coupling between the variables Pi(t) and Ki. Hence, if the

inequality in (3.15) is multiplied by



Pi(t)
−1 0 0

0 I 0

0 0 I




from the left and right hand side, and Qi(t) = Pi(t)
−1 is substituted, then the following

inequality is found



−Q̇i(t) + A
(j)
i Qi(t) +Qi(t)A

(j)
i

′
B

(j)
w,i Qi(t)C

(j)
i

′

∗ −γ2I D
(j)
w,i

′

∗ ∗ −I



< 0. (3.30)

The state-feedback rule, u(t) = Ki(t)x(t), is applied to the inequality in (3.30) and

thus






−Q̇i(t) + A

(j)
i Qi(t) +Qi(t)A

(j)
i

′

+B
(j)
u,iKiQi +QiK

′
iB

(j)
u,i

′


 B

(j)
w,i




Qi(t)C
(j)
i

′
+

QiK
′
iD

(j)
u,i

′




∗ −γ2I D
(j)
w,i

′

∗ ∗ −I




< 0.
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To remove the coupling between the variables, the change of variable method is ap-

plied to Yi = KiQi such that





−Q̇i(t) + A

(j)
i Qi(t) +Qi(t)A

(j)
i

′

+B
(j)
u,iYi + Y ′iB

(j)
u,i

′


 B

(j)
w,i




Qi(t)C
(j)
i

′
+

Y ′iD
(j)
u,i

′




∗ −γ2I D
(j)
w,i

′

∗ ∗ −I




< 0. (3.31)

III Controller Design using Parameter Independent Lyapunov Function

To calculate the state-feedback controller with a parameter independent Lyapunov

matrices Qi(t) is defined as:

Qi(t) =





Qi0,H t ∈ [0, t1),

Qi,h + (Qi,h+1 −Qi,h)
(t− tk,h)

T
H

t ∈ [tk,h, tk,h+1),

Qi,H t ∈ [tk,H , tk+1,0).

(3.32)

where h = 0, 1, . . . , H − 1, the switching index is defined as k ∈ N and H is a given

positive integer. Qi(t) changes similar to the matrix Pi(t) in Figure 3.3.

Using (3.31) and (3.32), the following state-feedback controller design theorem is

formulated for the system (3.28) with an uncertainty (3.29):

Theorem 3.6.1 (Allerhand and Shaked (2010)): For a given T > 0, if the set of ma-

trices Yi,h of compatible size and the collection of positive definite matrices Qi,h >

0, i = 1, . . . ,M, h = 0, . . . , H satisfy the following LMIs for all i = 1, . . . ,M and
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j = 1, . . . , N :






H(Qi,h −Qi,h+1)

T
+A

(j)
i Qi,h+

Qi,hA
(j)
i

′
+B

(j)
u,iYi,h + Y ′i,hB

(j)
u,i

′


 B

(j)
w,i Qi,hC

(j)
i

′
+ Y ′i,hD

(j)
u,i

′

∗ −γ2I D
(j)
w,i

′

∗ ∗ −I




< 0,







H(Qi,h −Qi,h+1)

T
+A

(j)
i Qi,h+1+

Qi,h+1A
(j)
i

′
+B

(j)
u,iYi,h+1 + Y ′i,h+1B

(j)
u,i

′


 B

(j)
w,i


 Qi,h+1C

(j)
i

′

+Y ′i,h+1D
(j)
u,i

′




∗ −γ2I D
(j)
w,i

′

∗ ∗ −I




< 0,

where h = 0, . . . , H − 1






A
(j)
i Qi,H +Qi,HA

(j)
i

′

+B
(j)
u,iYi,H + Y ′i,HB

(j)
u,i

′


 B

(j)
w,i Qi,HC

(j)
i

′
+ Y ′i,HD

(j)
u,i

′

∗ −γ2I D
(j)
w,i

′

∗ ∗ −I




< 0,

Qi,H −Qs,0 ≤ 0, ∀s ∈ {1, . . . ,M} and s 6= i

then the L2-gain of the system (3.28) with an uncertainty (3.29) is smaller than a positive

scalar γ for any switching rule with a dwell time that is greater than the minimum dwell

time, T .

Then, the state-feedback gain matrix can be calculated such that

Ki(t) =





Yi0,HQ
−1
i0,H

t ∈ [0, t1),

Ȳi,hQ̄
−1
i,h t ∈ [tk,h, tk,h+1),

Yi,HQ
−1
i,H t ∈ [tk,H , tk+1,0).

(3.35)

where Ȳi,h = Yi,h + (Yi,h+1−Yi,h)
(t− tk,r)
T/H

and Q̄i,h = Qi,h + (Qi,h+1−Qi,h)
(t− tk,r)
T/H

.

Note that this theorem allows us to compute the state-feedback gain which is time-varying
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during the dwell time. A time-varying controller can help to eliminate the transient effects

of switching which arise after each switch.

Example 3.5: Consider the same system in Example 3.2 with the following system pa-

rameters:

B
(1)
u,1 =


 0

1


 , B

(2)
u,1 =


 −0.6

1


 , B

(1)
u,2 =


 −1

1


 , B

(2)
u,2 =


 −0.4

1


 ,

D
(1)
u,1 = 0, D

(2)
u,1 = 2.4, D

(1)
u,2 = 4, D

(2)
u,2 = 1.6.

It is desired to design the time-varying controllers by using Theorem 3.6.1. This theo-

rem solves 29 inequalities for H = 2 and T = 0.3 s. The performance gain is then found

as γ = 3.2748 with 31 variables. The time-varying controllers can be calculated by using

equation (3.35) with the following matrices

Y1,0 = [−0.5677, − 0.0419], Y2,0 = [−0.2573, − 0.2810],

Y1,1 = [−0.3980, − 0.2004], Y2,1 = [−0.2853, − 0.2689],

Y1,2 = [−0.1428, − 0.2746], Y2,2 = [−0.2532, − 0.2276],

Q1,0 =


 0.1646 −0.0393

−0.0393 0.3093


 , Q2,0 =


 0.1667 0.0309

0.0309 0.2371


 ,

Q1,1 =


 0.1491 −0.0195

−0.0195 0.2110


 , Q2,1 =


 0.1378 0.0206

0.0206 0.2427


 ,

Q1,2 =


 0.1367 −0.0183

−0.0183 0.1563


 , Q2,2 =


 0.1188 0.0161

0.0161 0.2422


 .

Remark: In Theorem 3.6.1, Yi,h, Qi,h, i = 1, . . . ,M, h = 0, . . . , H and γ are the

variables. The number of variables [the LMI solver needs to find] can be calculated using

M(H + 1)(ΥY + ΥQ) + 1. Therefore, the solver deals with M(M +N + 2NH +H) + 1

different inequalities to find these variables. Solving Theorem 3.6.1 is more complex than

Theorem 3.4.1 and 3.4.2 due to the number of variables and the size of the inequalities.

However, Theorem 3.6.1 provides the controller design as well as ensuring stability and

minimising L2−gain.
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Theorem 3.6.1 allows us to compute only the time-varying state-feedback gain but

since this type of controller is not preferred in most of the cases, a controller design

method with a parameter dependent Lyapunov function will be presented.

III Controller Design using Parameter Dependent Lyapunov Function

To calculate the state-feedback controller with a parameter dependent Lyapunov func-

tion, the same method in Lemma 3.5.3 is applied to the inequality in (3.30)





 −Q̇i(t) + A

(j)
i Si(t)

+S ′i(t)A
(j)
i

′


 B

(j)
w,i S ′i(t)C

(j)
i

′


 Qi(t)− S ′i(t)

+A
(j)
i Gi(t)




∗ −γ2I D
(j)
w,i

′
0

∗ ∗ −I C
(j)
i Gi(t)

∗ ∗ ∗ −G′i(t)−Gi(t)




< 0. (3.36)

To verify the above inequality, if the inequality in (3.30) is multiplied from the left

hand side by Y ′T and YT from right hand side, then the inequality (3.36) is obtained,

where:

YT =




I 0 0

0 I 0

0 0 I

A
(j)
i

′
0 C

(j)
i

′




In addition, if Si and Gi in (3.36) are chosen to be Qi and ζQi, respectively, then the

inequality in (3.30) is obtained when ζ → 0.

The state-feedback rule, u(t) = Ki(t)x(t) is applied to the inequality (3.36), G is

defined as G = βS and the change of variable method is applied to Yi = KiQi to remove

the coupling between the variables. Then, the time-varying and parameter dependent

positive definite matrix Qi is chosen such that

Qi(t) =
N∑

j=1

ηjQ
(j)
i (t),

N∑

j=1

ηj = 1, ηj ≥ 0, (3.37)
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where Q(j)
i (t) ∈ {Q(j)

1 (t), . . . , Q
(j)
M (t)} defined as:

Q
(j)
i (t) =





Q
(j)
i0,H

t ∈ [0, t1),

Q
(j)
i,h + (Q

(j)
i,h+1 −Q

(j)
i,h)

(t− tk,h)
T
H

t ∈ [tk,h, tk,h+1),

Q
(j)
i,H t ∈ [tk,H , tk+1,0).

(3.38)

where h = 0, . . . , H − 1, j = 1, . . . , N , the number of the switching is defined by

k = 1, 2, . . . and H is a given positive integer. The change of the positive definite matrix

Q
(j)
i (t) with respect to time is similar to the change of the matrix Qi(t) in (3.32) .

Then, the state-feedback control design with parameter dependent Lyapunov function

can be written as follows:

Theorem 3.6.2 (Allerhand and Shaked (2013)): For given scalars β and T > 0, if the set

of matrices Si,h and Yi,h of compatible size and the collection of positive definite matrices

Q
(j)
i,h > 0, i = 1, . . . ,M, h = 0, . . . , H, j = 1, . . . , N satisfy the following LMIs for all

i = 1, . . . ,M and j = 1, . . . , N :




Γ B
(j)
w,i S ′i,hC

(j)
i

′
+ Y ′i,hD

(j)
u,i

′
Q

(j)
i,h − S ′i,h + βA

(j)
i Si,h + βB

(j)
u,iYi,h

∗ −γ2I D
(j)
w,i

′
0

∗ ∗ −I βC
(j)
i Si,h + βD

(j)
u,iYi,h

∗ ∗ ∗ −βS ′i,h − βSi,h




< 0,




Θ B
(j)
w,i S ′i,h+1C

(j)
i

′
+ Y ′i,h+1D

(j)
u,i

′




Q
(j)
i,h+1 − S ′i,h+1+

β(A
(j)
i Si,h+1 +B

(j)
u,iYi,h+1)




∗ −γ2I D
(j)
w,i

′
0

∗ ∗ −I βC
(j)
i Si,h+1 + βD

(j)
u,iYi,h+1

∗ ∗ ∗ −βS ′i,h+1 − βSi,h+1




< 0,
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where h = 0, . . . , H − 1




ψ B
(j)
w,i S ′i,HC

(j)
i

′
+ Y ′i,HD

(j)
u,i

′
Q

(j)
i,H − S ′i,H + β(A

(j)
i Si,H +B

(j)
u,iYi,H)

∗ −γ2I D
(j)
w,i

′
0

∗ ∗ −I βC
(j)
i Si,H + βD

(j)
u,iYi,H

∗ ∗ ∗ −βS ′i,H − βSi,H




< 0,

Q
(j)
i,H −Q

(j)
s,0 ≤ 0. ∀s ∈ {1, . . . ,M} and s 6= i

Here:

Γ =
H(Q

(j)
i,h −Q

(j)
i,h+1)

T
+A

(j)
i Si,h + S ′i,hA

(j)
i

′
+B

(j)
u,iYi,h + Y ′i,hB

(j)
u,i

′
,

Θ =
H(Q

(j)
i,h −Q

(j)
i,h+1)

T
+A

(j)
i Si,h+1 + S ′i,h+1A

(j)
i

′
+B

(j)
u,iYi,h+1 + Y ′i,h+1B

(j)
u,i

′
,

ψ = A
(j)
i Si,H + S ′i,HA

(j)
i

′
+B

(j)
u,iYi,H + Y ′i,HB

(j)
u,i

′
,

then the L2-gain of the system (3.28) with an uncertainty (3.29) is smaller than a positive

scalar γ for any switching rule with a dwell time that is greater than the minimum dwell

time, T .

Then, the state-feedback gain matrix can be defined such that

Ki(t) =





Yi0,HS
−1
i0,H

t ∈ [0, t1),

Ȳi,hS̄
−1
i,h t ∈ [tk,h, tk,h+1),

Yi,HS
−1
i,H t ∈ [tk,H , tk+1,0).

(3.41)

where Ȳi,h = Yi,h + (Yi,h+1 − Yi,h)
(t− tk,r)
T/H

and S̄i,h = Si,h + (Si,h+1 − Si,h)
(t− tk,h)
T/H

.

Remark: If Yi,h and Si,h are assumed to be independent of h, then a constant controller

gain for each subpolytope can be found. The state-feedback gain then becomes Ki =

YiS
−1
i .
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Example 3.6: Consider the same system given in Example 3.5. It is desired to design the

state-feedback control with a parameter dependent Lyapunov function. The prescribed

scalars H and β are chosen as 2 and 0.04, respectively. Theorem 3.6.2 is then solved with

a dwell time of T = 0.3 s. The performance gain is found γ = 2.8037 by solving 37

LMIs with 73 variables. The solutions of the variables are such that

Y1,0 = [−0.8032,−0.3527], Y2,0 = [−0.3054,−0.4094],

Y1,1 = [−0.1947,−0.7947], Y2,1 = [−0.1712,−0.3122],

Y1,2 = [ 0.0249,−0.7195], Y2,2 = [−0.1100,−0.3012],

S1,0 =


 0.2308 −0.0582

−0.0966 0.3877


 , S2,0 =


 0.2545 0.1145

−0.0150 0.3112


 ,

S1,1 =


 0.2041 0.0011

−0.1451 0.3730


 , S2,1 =


 0.1804 0.0681

−0.0413 0.3252


 ,

S1,2 =


 0.1812 −0.0122

−0.1194 0.2946


 , S2,2 =


 0.1321 0.0620

−0.0687 0.3491


 .

The time-varying state-feedback controller is given by (3.41) with the above matrices.

If it is assumed that Yi,h and Si,h are independent of h, the constant controller gains are

found such that

K1 = [−3.2638, − 1.7833], K2 = [−0.8926, − 0.7194],

where the performance gain is calculated as γ = 3.0499 by solving 37 LMIs with 49

variables. Note that, during the constant controller design, the solver deals with the same

number of inequalities but the number of variables is decreased from 73 to 49. γ is

increased from 2.8037 to 3.0499 due to the restriction of having time invariants Yi,h and

Si,h.
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Remark: To solve Theorem 3.6.2, the variable matrices Si,h, Yi,h, Q
(j)
i,h, i = 1, . . . ,M,

h = 0, . . . , H, j = 1, . . . , N and γ need to be found. The total number of variables the

LMI solver needs to find is M(H+1)(ΥS +ΥY +NΥQ)+1, which is given in Table 3.9.

Therefore, the solver deals with MN(M +3H+1)+1 different inequalities to find these

variables. If the constant state-feedback gains are sought, the total number of variables

the LMI solver need to find is M(ΥS + ΥY + (H + 1)NΥQ) + 1.

Variable Name Number of Variable Number of Variable (constant)

Q
(j)
i,h M(H + 1)NΥQ M(H + 1)NΥQ

Si,h M(H + 1)ΥS MΥS

Yi,h M(H + 1)ΥY MΥY

γ 1 1

Total
M(H + 1)(ΥS + ΥY +

NΥQ) + 1

M(ΥS + ΥY +

(H + 1)NΥQ) + 1

Table 3.9: Number of variables (Theorem 3.6.2)

3.6.2 Second Approach

As a more convenient method, we present a state-feedback controller design approach

that deals with the effects of the white noise input on the switched system with polytopic

parameter uncertainties. This approach combines theH2−optimal control in Section 2.4.1

and the minimum dwell time methods mentioned in the previous sections. In addition, it

allows us to design the state-feedback H2−optimal controller for the switched system

with polytopic parameter uncertainties. The difference with regards to the first approach

is theH2 optimization technique minimises sensitivity of the system output to a zero mean

white noise input w.

TheH2−optimal control in Theorem 2.4.2 can be formulated for the switched system

in the following lemma.
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Lemma 3.6.3: Consider a switched system with state-feedback, u = Kix

ẋ = Aix+Bu,iu+Bw,iw,

z = Cix+Du,iu, (3.42)

theH2-optimal state-feedback control in Theorem 2.4.2 can be extended for the switched

system.

If there exist the collection of symmetric matricesQi > 0 andZ and the set of matrices

Yi, then H2-gain of the system (3.42) with state-feedback, u = Kix is less than υ, if the

following conditions hold:

Tr(Z) < υ2,
 Z B′w,i

∗ Qi(t)


 > 0,





 −Q̇i(t) + AiQi(t) +Qi(t)A

′
i

+Bu,iYi(t) + Yi(t)
′B′u,i


 Qi(t)C

′
i + Yi(t)

′D′u,i

∗ −I


 < 0,

(3.43)

then the closed-loop system is quadratically stable and the H2-gain from w to z is less

than or equal to υ =
√
Tr(Z).

Proof: Inequality (3.43) is an application of inequality (2.23) introduced earlier.

Remark: Minimising Tr(Z) gives the best upper bound. Then, the state-feedback con-

troller is Ki = YiQ
−1
i .

III Controller Design using Parameter Independent Lyapunov Function

Theorem 3.6.4: For a given T > 0, if the set of matrices Yi,h of compatible size and the

collection of symmetric matrices Z and Qi,h > 0, i = 1, . . . ,M, h = 0, . . . , H satisfy
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the following LMIs for all i = 1, . . . ,M and j = 1, . . . , N :

 Z B

(j)
w,i

′

∗ Qi,h


 > 0, ∀h ∈ {0, . . . , H},







H(Qi,h −Qi,h+1)

T
+A

(j)
i Qi,h+

Qi,hA
(j)
i

′
+B

(j)
u,iYi,h + Y ′i,hB

(j)
u,i

′


 Qi,hC

(j)
i

′
+ Y ′i,hD

(j)
u,i

′

∗ −I



< 0,







H(Qi,h −Qi,h+1)

T
+A

(j)
i Qi,h+1+

Qi,h+1A
(j)
i

′
+B

(j)
u,iYi,h+1 + Y ′i,h+1B

(j)
u,i

′


 Qi,h+1C

(j)
i

′
+ Y ′i,h+1D

(j)
u,i

′

∗ −I



< 0,

where h = 0, . . . , H − 1


A

(j)
i Qi,H +Qi,HA

(j)
i

′
+B

(j)
u,iYi,H + Y ′i,HB

(j)
u,i

′
Qi,HC

(j)
i

′
+ Y ′i,HD

(j)
u,i

′

∗ −I


 < 0,

Qi,H −Qs,0 ≤ 0, ∀s ∈ {1, . . . ,M} and s 6= i

then there exists a state-feedback regulator Kσ(t)(t) ∈ {K1(t), . . . , KM(t)} according to

σ(t), defined as:

Ki(t) =





Yi0,HQ
−1
i0,H

t ∈ [0, t1),

Ȳi,hQ̄
−1
i,h t ∈ [tk,h, tk,h+1),

Yi,HQ
−1
i,H t ∈ [tk,H , tk+1,0).

(3.45)

where Ȳi,h = Yi,h + (Yi,h+1 − Yi,h)
(t−tk,h)
T/H

and Q̄i,h = Qi,h + (Qi,h+1 − Qi,h)
(t−tk,h)
T/H

,

such that the closed-loop system (system (3.28) with (3.45) and an uncertainty (3.29))

is quadratically stable for any switching rule with a dwell time that is greater than the

minimum dwell time, T and such that the H2-gain from w to z is less than or equal to

υ =
√
Tr(Z).

Proof: If Qi in the inequality (3.43) is chosen as in (3.32), then Theorem 3.6.4 for the

state-feedback H2−optimal controller design is formulated for the system (3.28) with an

uncertainty (3.29).
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Remark: Minimising Tr(Z) gives the best upper bound. Note that this theorem provides

a state-feedback gain which is time varying during the dwell time.

Example 3.7: Consider the system in Example 3.5. It is desired to design the time-varying

controllers by using Theorem 3.6.4. This theorem solves 48 inequalities for H = 2 and

T = 0.3 s. The H2−optimal gain is then found as υ = 10.6 with 31 variables. The

time-varying controllers can be calculated by using equation (3.49) with the following

matrices

Y1,0 = [−0.9986, 0.0941], Y2,0 = [−0.3513, − 0.3330],

Y1,1 = [−0.7475, − 0.2775], Y2,1 = [−0.4054, − 0.3521],

Y1,2 = [−0.6305, − 0.4931], Y2,2 = [−0.3837, − 0.3193],

Q1,0 =


 0.3281 −0.1757

−0.1757 0.6512


 , Q2,0 =


 0.2366 0.0295

0.0295 0.3203


 ,

Q1,1 =


 0.2565 −0.0712

−0.0712 0.4288


 , Q2,1 =


 0.1945 0.0271

0.0271 0.3747


 ,

Q1,2 =


 0.2168 −0.0045

−0.0045 0.2618


 , Q2,2 =


 0.1740 0.0272

0.0272 0.3841


 .

III Controller Design using Parameter Dependent Lyapunov Function

To calculate the state-feedback H2-optimal controller with a parameter dependent

Lyapunov function, the same method in Lemma 3.5.2 is applied to the third inequality

in (3.43),



−Q̇i(t) + AclSi(t) + S ′i(t)A
′
cl S ′i(t)C

′
cl Qi(t)− S ′i(t) + AclGi(t)

∗ −I CclGi(t)

∗ ∗ −G′i(t)−Gi(t)


 < 0. (3.46)

where the closed-loop system matrices are Acl = Ai +BiKi and Ccl = Ci +DiKi.

To verify the above inequality, if the second inequality in (3.43) is multiplied from the

left hand side by Y ′T and YT from right hand side, then the inequality (3.46) is obtained,
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where:

YT =




I 0

0 I

A′cl C ′cl




In addition, if Si and Gi in (3.43) are chosen to be Qi and ζQi, respectively, then the

inequality in (3.46) is obtained when ζ → 0.

If the time-varying and parameter dependent positive definite matrix Qi is chosen

as in (3.37), then the following state-feedback H2−optimal controller design theorem is

formulated for the system (3.28) with an uncertainty (3.29):

Theorem 3.6.5: For given scalars β > 0 and T > 0, if the set of matrices Si,h and Yi,h

are of compatible size and the collection of symmetric matrices Z and Q(j)
i,h > 0, i =

1, . . . ,M, h = 0, . . . , H, j = 1, . . . , N satisfy the following LMIs for all i = 1, . . . ,M

and j = 1, . . . , N :

 Z B

(j)
w,i

′

∗ Q
(j)
i,h


 > 0, ∀h ∈ {0, . . . , H},




Γ S ′i,hC
(j)
i

′
+ Y ′i,hD

(j)
u,i

′
Q

(j)
i,h − S ′i,h + βA

(j)
i Si,h + βB

(j)
u,iYi,h

∗ −I βC
(j)
i Si,h + βD

(j)
u,iYi,h

∗ ∗ −βS ′i,h − βSi,h



< 0,




Θ S ′i,h+1C
(j)
i

′
+ Y ′i,h+1D

(j)
u,i

′
Q

(j)
i,h+1 − S ′i,h+1 + βA

(j)
i Si,h+1 + βB

(j)
u,iYi,h+1

∗ −I βC
(j)
i Si,h+1 + βD

(j)
u,iYi,h+1

∗ ∗ −βS ′i,h+1 − βSi,h+1



< 0,

where h = 0, . . . , H − 1



ψ S ′i,HC
(j)
i

′
+ Y ′i,HD

(j)
u,i

′
Q

(j)
i,H − S ′i,H + βA

(j)
i Si,H + βB

(j)
u,iYi,H

∗ −I βC
(j)
i Si,H + βD

(j)
u,iYi,H

∗ ∗ −βS ′i,H − βSi,H



< 0,

Q
(j)
i,H −Q

(j)
s,0 ≤ 0. ∀s ∈ {1, . . . ,M} and s 6= i
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Here:

Γ =
H(Q

(j)
i,h −Q

(j)
i,h+1)

T
+A

(j)
i Si,h + S ′i,hA

(j)
i

′
+B

(j)
u,iYi,h + Y ′i,hB

(j)
u,i

′
,

Θ =
H(Q

(j)
i,h −Q

(j)
i,h+1)

T
+A

(j)
i Si,h+1 + S ′i,h+1A

(j)
i

′
+B

(j)
u,iYi,h+1 + Y ′i,h+1B

(j)
u,i

′
,

ψ = A
(j)
i Si,H + S ′i,HA

(j)
i

′
+B

(j)
u,iYi,H + Y ′i,HB

(j)
u,i

′
,

then there exists a state-feedback regulator Kσ(t)(t) ∈ {K1(t), . . . , KM(t)} according to

σ(t), defined as:

Ki(t) =





Yi0,HQ
−1
i0,H

t ∈ [0, t1),

Ȳi,hQ̄
−1
i,h t ∈ [tk,h, tk,h+1),

Yi,HQ
−1
i,H t ∈ [tk,H , tk+1,0).

(3.49)

where Ȳi,h = Yi,h + (Yi,h+1 − Yi,h)
(t−tk,h)
T/H

and Q̄i,h = Qi,h + (Qi,h+1 − Qi,h)
(t−tk,h)
T/H

,

such that the closed-loop system (system (3.28) with (3.45) and an uncertainty (3.29))

is quadratically stable for any switching rule with a dwell time that is greater than the

minimum dwell time, T and such that the H2-gain from w to z is less than or equal to

υ =
√
Tr(Z).

Proof: Theorem can be derived in a straightforward manner, based on the inequalities in

(3.43) and (3.46) with Qi in (3.37). Here, Gi is defined as Gi = βSi and the change of

variable method is applied to Yi = KiQi to remove the coupling between the variables.

Remark: Minimising Tr(Z) gives the best upper bound. Note that this theorem provides

a state-feedback gain which is time varying during the dwell time. If Yi,h and Si,h are

assumed to be independent of h, then a constant controller gain for each subpolytope can

be found. The state-feedback gain then becomes Ki = YiS
−1
i .

Example 3.8: Consider the system in Example 3.5. It is desired to design the state-

feedback control with a parameter dependent Lyapunov function. The prescribed scalars

H and β are chosen as 2 and 0.04, respectively. Theorem 3.6.5 is then solved with a dwell
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time of T = 0.3 s. The performance gain is found υ = 3.5846 by solving 56 LMIs with

73 variables. The solutions of the variables are such that

Y1,0 = [−1.8543, 0.7628], Y2,0 = [−1.3169, − 0.7610],

Y1,1 = [−1.9911, 0.4591], Y2,1 = [−1.9286, − 1.4932],

Y1,2 = [−2.9443, 1.4831], Y2,2 = [−2.4215, − 1.5396],

Q1,0 =


 0.8200 −0.8211

−0.5930 1.4315


 , Q2,0 =


 0.9448 −0.0041

−0.0503 1.3353


 ,

Q1,1 =


 1.2490 −0.8314

−1.4656 2.5131


 , Q2,1 =


 1.2452 0.1314

−0.1423 2.5938


 ,

Q1,2 =


 1.3674 −0.6839

−1.9020 3.0668


 , Q2,2 =


 1.2912 0.7505

−0.4435 3.3752


 .

The time-varying state-feedback controller is given by (3.49) with the above matrices.

If it is assumed that Yi,h and Si,h are independent of h, the constant controller gains are

found such that

K1 = [−3.1224, − 1.1763], K2 = [−1.5038, − 0.6759],

where the performance gain is calculated as υ = 4.8909 by solving 56 LMIs with 49

variables. Note that, during the constant controller design, the solver deals with the same

number of inequalities but the number of variables is decreased from 73 to 49. υ is

increased from 3.5846 to 4.8909 due to the restriction of having time invariants Yi,h and

Si,h.
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3.7 Summary

Stability analyses of switched systems with polytopic parameter uncertainty have been

presented in this chapter. The minimum dwell time stability theories based on parameter

independent / dependent Lyapunov functions were adopted from (Allerhand and Shaked,

2011) and (Allerhand and Shaked, 2013). Considering these theories, L2-gain and H2-

optimal gain approaches have been used to design a state-feedback switched controller.

The LMIs in the mentioned theorems have been formulated using the modelling and op-

timization toolbox, YALMIP, in MATLAB (Lofberg, 2004). An illustrative example has

been solved at the end of each section. The results of these examples showed that whilst

the parameter dependent Lyapunov function solves more LMIs, it nevertheless provides a

smaller minimum dwell time for the switched systems.



CHAPTER 4

Piecewise Quadratic Stability Analysis

4.1 Introduction

Basic concepts of switched system stability analysis have been introduced in Chapter

2, and stability analysis dependant on slow switching signals has been further extended

to the minimum dwell time analysis with parameter independent / dependent LF in Chap-

ter 3. In addition to these methodologies, the extended version of the state-dependent

switching analysis for piecewise linear systems will be introduced in this chapter.

Piecewise linear (PWL) systems are a class of non-linear system. PWL systems have

different types, such as being PWL in the input variable, u, PWL in the time, t, and PWL

in the system state, x. In this chapter, we will focus on the most common case, which

is PWL in the system state. More specifically, we will introduce two approaches for

stability analysis of general PWL systems, which are common, and piecewise, quadratic

stabilities. In addition, these approaches are extended to the L2-gain analysis and state-

feedback controller design.

The rest of this chapter is structured as follows: the PWL system is described in Sec-

81
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tion 4.2. Section 4.3 examines the quadratic stability analysis for PWL systems. The

quadratic approach in Chapter 2 is extended with the S−procedure method. Addition-

ally, in Section 4.4, the piecewise quadratic stability analysis technique is discussed. L2

performance criteria are applied to the common and piecewise quadratic stability analysis

methods in Section 4.5. In Section 4.6, the state-feedback controller design technique is

discussed in terms of imposing upper and lower bounds on the optimal cost. Finally, the

chapter is concluded with Section 4.7.

4.2 System Description

In PWL systems, the state space is divided into a set of regions, Xi. The standard form

of PWL systems can be described as

ẋ(t) = Ai x(t) +Bi u(t) + ai

y(t) = Ci x(t) +Di u(t) + ci



 x(t) ∈ Xi and ai ∈ Rn (4.1)

where Xi ⊆ Rn for i ∈ I is a partition of the state space into a number of regions. I
denotes the index set of regions (Hedlund and Johansson, 1999). In this section, we will

use the following notations for PWL systems:

Āi =


 Ai ai

0 0


 , B̄i =


 Bi

0


 , C̄i =

[
Ci ci

]
, x̄(t) =


 x(t)

1


 ,

and the system in (4.1) then becomes an augmented representation

˙̄x(t) = Āi x̄(t) + B̄i u(t)

y(t) = C̄i x̄(t) +Di u(t)



 x(t) ∈ Xi, (4.2)

The equilibrium point of the system (4.2) is assumed to be located at xe = 0. The

index set I is divided into I0 and I1 such that if any given region contains the origin, it is

then shown as the index set I0 ⊂ I. In these regions, the vectors ai and ci are assumed to

be zero. On the other hand, if a region does not contain the origin, it will be shown as the

index set I1 = I \ I0. It is also assumed that the regions, Xi, are closed polyhedral cells
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with a pairwise disjointed interior. The intersection of a set of closed half-spaces define

these regions, Xi. The set of closed half-spaces for each region, called cell-identifiers, are

given such that

Xi = {Gi x+ gi ≥ 0} =
{[

Gi gi

]
x̄ ≥ 0

}
= {Ḡi x̄ ≥ 0}. (4.3)

4.3 Quadratic Stability for PWL Systems

In this section, the relaxed conditions for the common quadratic Lyapunov approach

in (2.3) will be defined based on state-dependent switching. To search for global stability

of the switched system in (4.2), a quadratic Lyapunov function according to two types of

index sets is defined as

V (x) =





x′Px x ∈ Xi i ∈ I0
x̄′P̄ x̄ x ∈ Xi i ∈ I1

(4.4)

where

P̄ =


 P 0n×1

01×n 01×1




then the common quadratic Lyapunov function is required to satisfy the following condi-

tions:

Condition 4.1 (Positive-Definiteness): V (x) > 0 for all x ∈ Xi and x 6= 0. The positive-

definiteness of the common quadratic Lyapunov function along the subsystem’s trajecto-

ries can be shown such that

V (x) =





x′Px > 0 x ∈ Xi i ∈ I0
x̄′P̄ x̄ > 0 x ∈ Xi i ∈ I1

(4.5)

Condition 4.2 (Decreasing in time): V̇ (x) < 0 for all x ∈ Xi and x 6= 0. The negative-

definiteness of the derivative of the common quadratic Lyapunov function along the sub-

system’s trajectories can be given such that

V̇ (x) =





x′(A′iP + PAi)x < 0 x ∈ Xi i ∈ I0
x̄′(Ā′iP̄ + P̄ Āi)x̄ < 0 x ∈ Xi i ∈ I1

(4.6)
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The inequalities in (4.6) are defined globally. The common quadratic Lyapunov func-

tion algorithm can only be solved when the switched systems are asymptotically stable

under arbitrary switching signals, as shown in Section 2.3. For this reason, these con-

ditions can be unnecessarily restricted for the piecewise affine systems’ analysis. Using

the S−procedure in these conditions can be helpful for stability analysis (Boyd et al.,

1994). So, we can consider the positive semi-definite matrices Ri and R̄i that assure the

following inequalities

x′Rix > 0, x̄′R̄ix̄ > 0, for x ∈ Xi (4.7)

and apply in (4.6) to get the following non-restrictive conditions for stability

x′(A′iP + PAi +Ri)x < 0 x ∈ Xi i ∈ I0
x̄′(Ā′iP̄ + P̄ Āi + R̄i)x̄ < 0 x ∈ Xi i ∈ I1

(4.8)

Here, if the positive definite matrix, P , satisfies these inequalities when x ∈ Xi, it

clearly provides the inequalities in (4.5) and (4.6). Moreover, it is easier to solve (4.8)

than the Lyapunov inequalities in (4.6) when x /∈ Xi. More precisely, the inequalities

in (4.7) will be negative when x /∈ Xi, so the inequalities in (4.8) are defined as relaxed

conditions for the common quadratic Lyapunov function.

The matrices which are used for in the S−procedure can be constructed from the

system definition as follows

x′Rix := x′E ′iMiEix > 0, x ∈ Xi, i ∈ I0

x̄′R̄ix̄ := x̄′Ē ′iMiĒix̄ > 0, x ∈ Xi, i ∈ I1
where the symmetric matrices, Mi, have non-negative entries. The boundaries of cell Xi

are defined with Ēi = [Ei ei], which is called the cell bounding matrix because it defines

cell boundaries and satisfies

Ēi x̄ ≥ 0.

Computation methods of the cell-bounding-matrices will be given at the end of this

section. According to the above conditions, the following theorem will be defined for

quadratic stability analysis:
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Theorem 4.3.1: If the symmetric matrices, Mi, which have non-negative entries, and the

symmetric positive definite matrix, P > 0, exist and satisfy the following LMIs

A′iP + PAi + E ′iMiEi < 0, x ∈ Xi, i ∈ I0

Ā′iP̄ + P̄ Āi + Ē ′iMiĒi < 0, x ∈ Xi, i ∈ I1
(4.9)

then the origin is globally exponentially stable for a given switched system in (4.2). Note

that the vectors, ai and ei, are assumed to be equal zero when i ∈ I0. The non-negativity

of the matrices, Mi, comes from the S−procedure properties; Mi do not need to be full

matrices, (Johansson and Rantzer, 1998).

Non-negativity of the symmetric matrices, Mi:

S−procedure deals with the non-negativity of a quadratic function (or quadratic form)

under quadratic inequalities. It is used in control theory and robust optimisation as

one of its most fundamental tools. Also, numerous mathematical fields are related to

S−procedure, such as quadratic functions, convex analysis and numerical range (De-

rinkuyu and Pınar, 2006).

We look for the constraint that the non-negativity of one quadratic form indicates non-

negativity of another. More precisely, we want to find when it is true that for all x, x′E1x

> 0 =⇒ x′E0x > 0, where E0 = E ′0, E1 = E ′1 ∈ Rn×n. We will achieve this constraint

with a simple condition: if there exists ε > 0, ε ∈ R, with E0 > εE1, then we ensure

that x′E0x > 0 if, and only if, x′E1x > 0 and we have x′E0x > x′E1x > 0. The

S−procedure condition can be generalized for multiple quadratic forms such that

x′E1x > 0, . . . , x′Emx > 0 =⇒ x′E0x > 0 (4.10)

where E0 = E ′0, . . . , Em = E ′m ∈ Rn×n and quadratic forms of the variable x ∈ Rn. If

there exists ε1 > 0, . . . , εm > 0 withE0 > ε1E1+. . .+εmEm (clearly, E0−
∑m

i=1 εiEi >

0) then the property of (4.10) surely holds. The constants εi are called multipliers. For

the S−procedure, for strict inequalities, quadratic forms and examples, see (Boyd et al.,

1994).
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From the above definitions, we will define the inequalities in (4.9) such that

A′iP + PAi + E ′iMiEi = A′iP + PAi +
∑
jk

mjke
′
ikeij < 0, x ∈ Xi, i ∈ I0

Ā′iP̄ + P̄ Āi + Ē ′iMiĒi = Ā′iP̄ + P̄ Āi +
∑
jk

mjkē
′
ikēij < 0, x ∈ Xi, i ∈ I1

where eij implies the jth row of Ei and e′ik implies the kth column of E ′i. This indicates

that the only sufficient condition of the S−procedure comes from the non-negative entries

of the symmetric matrices Mi.

Example 4.1: Consider a switched linear system ẋ(t) = Aix(t) with the state matrices

A1 = A3 =


 −0.1 1

−2 −0.5


 , A2 = A4 =


 −0.1 2

−1 −0.5


 .

Using Conditions 4.1 and 4.2, a common quadratic Lyapunov function is not found

for this switched system. On the other hand, the trajectories of each of the subsystems,

which are given in Figure 4.1, are individually stable.

x
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-15 -10 -5 0 5 10

x 2

-10

-5

0

5

10

15

x
1

-20 -15 -10 -5 0 5 10

x 2

-10

-5

0

5

10

Figure 4.1: Trajectories of each subsystems, left A1 = A3 and right A2 = A4

Although a feasible solution is not found, the stability of the switched system is ad-

dressed using Theorem 4.3.1. Here, the cell bounding matrix of the system is given, such

that

E1 = −E3 =


 −1 5

−1 −5


 , E2 = −E4 =


 1 −5

−1 −5


 .

and the Lyapunov matrix is found such that
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P =


 41.7250 11.2841

11.2841 70.0420


 . (4.11)

The given switched system is simulated with initial states x0 = [−10 − 10]′. Then,

the Lyapunov function of the system with a calculated Lyapunov matrix (4.11) changes

as in Figure 4.2 (right), which proves the stability under a given switching rule. Here, the

dashed lines show the switching instances. In addition, a trajectory of such a switched

system is given in Figure 4.2 (left), where the dashed lines indicate the boundaries of the

cells.
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Figure 4.2: Trajectory and Lyapunov function of the switched system

It can be clearly seen that using the S−procedure gives relaxed conditions for the

quadratic stability analysis. The following section will explain that the quadratic stability

analysis with S−procedure is still conservative for a piecewise system analysis. Hence, a

piecewise Lyapunov-like function will be also given to define piecewise quadratic stability

analysis in the following section.

4.3.1 Computing the cell-bounding-matrices

The cell-bounding-matrices, Ēi are closely related to the cell-identifiers, Ḡi in (4.3).

Actually, the only difference between them is the zero-interpolation property which plays

a critical role in defining strict LMIs for searching the Lyapunov function. Here, the
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cell-identifiers will initially be defined by finding the intersection of a set of closed half-

spaces. Then, the computation algorithm will be given for the cell-bounding-matrices

with the zero-interpolation property using the related cell-identifiers.

Hyperplane and Half-space

Hyperplane and half-spaces are geometrically depicted in Figure 4.3. The hyperplanes

in Rn are described as being the collection of points

Z = {x ∈ Rn | G(x− x0) = 0} (4.12)

which is also defined such that

Z = {x ∈ Rn | Gx = g} (4.13)

A hyperplane in Rn splits all of Rn into three independent sets

Z1 = {x ∈ Rn | Gx > g}
Z2 = {x ∈ Rn | Gx = g}
Z3 = {x ∈ Rn | Gx < g}

Open Half-Spaces: Open half-spaces are defined when the above sets are defined as

Z1 = {x ∈ Rn | Gx > g} or Z3 = {x ∈ Rn | Gx < g}; see Figure 4.3 (right).
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Figure 4.3: Hyperplane (left) and Half-spaces (right)

Closed Half-Spaces: Closed half-spaces are defined when the sets above are defined as

Z4 = {x ∈ Rn | Gx ≥ g} or Z5 = {x ∈ Rn | Gx ≤ g}, (Hadley, 1961) . An

intersection of the set of defined closed half-spaces defines the cell-identifiers in (4.3).
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The cell-bounding-matrices from the cell-identifiers : Consider the cell-identifiers, Ḡi

is defined as above. The relating cell-bounding-matrices can be calculated as follows:

> If the cell contains the origin, i ∈ I0 , then Ei can be found by removing all rows

of Ḡi whose gi values are not equal to zero.

> If the cell does not contain the origin, i ∈ I1 and Xi is bounded, then Ei is defined

to be equal to Ḡi (Hedlund and Johansson, 1999). Otherwise, Ei is found by adding the

row [01×n 1] to Ḡi. The following example will clarify this method.

Example 4.2: Consider the switched system with the state-dependent switching law given

in Figure 4.4. Hyperplanes of the given system can be defined as
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Figure 4.4: State-dependent switching law in Example 4.2

Z1 = [0 1]x = 3, Z2 = [0 1]x = −4,

Z3 = [1 0]x = −1, Z4 = [1 0]x = 2.

From the above defined hyperplanes, the cell-identifiers can be computed as follows

X1 =




0 −1 3

0 1 4

−1 0 −1


 x̄ ≥ 0, X2 =




0 −1 3

0 1 4

1 0 1

−1 0 2



x̄ ≥ 0,

X3 =




0 −1 3

0 1 4

1 0 −2


 x̄ ≥ 0.
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Now, a computational method to obtain the cell-bounding-matrices, Ēi, as discussed

above, will be applied to the cell-identifiers individually. Firstly, Cell 2 contains the origin,

so for this cell, rows of Ḡ2 whose g2 is not equal to zero will be removed. It can clearly

be seen that all g2 are not equal to zero, thus all rows of Ḡ2 are deleted, and hence the

cell-bounding-matrices for Cell 2 must also be equal to zero, Ē2 = 0. Moreover, Cells

1 and 3 do not contain the origin and both cells are unbounded, so the row [01×n 1] is

added to Ḡ1 and Ḡ3. Then the related cell-bounding-matrices is obtained as follows

Ē1 =




0 −1 3

0 1 4

−1 0 −1

0 0 1



, Ē2 =




01×n 0

01×n 0

01×n 0

01×n 0



, Ē3 =




0 −1 3

0 1 4

1 0 −2

0 0 1



.

4.4 Piecewise Quadratic Stability

The relaxed conditions of the quadratic stability analysis in Theorem 4.3.1 are still

restricted for piecewise affine system analysis. The conservatism of the quadratic stability

will be explained with the following example.

Example 4.3: Consider the switched linear system ẋ(t) = Aix(t) which contains four

cells, Xi = (X1, . . . ,X4), shown in Figure 4.5, and having state matrices

A1 = A3 =


 −0.5 1

−5 −0.5


 , A2 = A4 =


 −0.5 5

−1 −0.5


 .

From Figure 4.5 (dashed line), the cell-bounding-matrices can be calculated as

E1 = −E3 =


 −1 2

−1 −2


 , E2 = −E4 =


 1 −2

−1 −2


 .

The eigenvalues of the state matrices are same and lie in the negative half plane,

λi = −0.5000 ± 2.2361 i. Although real parts of the eigenvalues are negative and the
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trajectory of the switched system coverages to zero in Figure 4.5, there is no solution to

(4.9).
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Figure 4.5: Cell boundaries (dashed) and trajectory (solid) in the Example 4.3

As a result of this example, if the dynamics given by Ai are used within cell Xi and

not used outside of it, then the common quadratic Lyapunov function can be restricted

unnecessarily for piecewise affine system analysis. Piecewise quadratic Lyapunov func-

tions and piecewise quadratic stability are given to lessen the conservatism of the common

quadratic Lyapunov function (Johansson, 2003).

The piecewise quadratic stability analysis defines different Lyapunov matrices to fo-

cus on the system matrices within the defined cell Xi. The S−procedure, which was

mentioned in the previous section, is also used to generate this stability technique. To

search the stability of the switched system in (4.2), the continuous piecewise quadratic

Lyapunov function, according to two types of index sets, is defined as

V (x) =





x′Pix x ∈ Xi i ∈ I0
x̄′P̄ix̄ x ∈ Xi i ∈ I1

(4.14)

and needs to satisfy the following conditions:

Condition 4.3 (Continuity): The piecewise quadratic Lyapunov function needs to be con-

tinuous at the boundaries of the hyperplanes, Zij = {x | G′ijx+ gij = 0},

Vi(x) = Vj(x) ∀x ∈ Zij (4.15)
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The free parameters of the Lyapunov-like matrices can be collected in the symmetric

matrix, T , such that

Pi = F ′iTFi, Pj = F ′jTFj, for i, j ∈ I0
P̄i = F̄ ′iT F̄i, P̄j = F̄ ′jT F̄j, for i, j ∈ I1

(4.16)

Here the continuity matrix, F̄i = [Fi fi] for cell Xi satisfies the following equality

across the cell boundaries

F̄i x̄(t) = F̄j x̄(t), x ∈ Xi ∩ Xj, i, j ∈ I. (4.17)

Remark: The vectors, fi, are assumed to be equal to zero when i ∈ I0. A unique conti-

nuity matrix does not exist for any given cell. For example, the following matrix can be

used in all cells:

F̄i = [In×n 0n×1] i ∈ I

Condition 4.4 (Positive-Definiteness): Vi(x) > 0 for all x ∈ Xi and x 6= 0. The positive-

definiteness of the piecewise Lyapunov function along the trajectories of the subsystems

can be shown, such that

V (x) =





x′Pix > 0 x ∈ Xi i ∈ I0
x̄′P̄ix̄ > 0 x ∈ Xi i ∈ I1

(4.18)

Substituting (4.16) into (4.18) allows this inequality to be written with the continuity

matrix and symmetric matrix, T , such that

V (x) =





x′F ′iTFix > 0 x ∈ Xi i ∈ I0
x̄′F̄ ′iT F̄ix̄ > 0 x ∈ Xi i ∈ I1

(4.19)

Condition 4.5 (Decreasing in time): V̇i(x) < 0 for all x ∈ Xi and x 6= 0. The negative-

definiteness of the derivative of the piecewise Lyapunov function along the trajectories of

the subsystems can be given such that

V̇i(x) =





x′(A′iPi + PiAi)x < 0 x ∈ Xi i ∈ I0
x̄′(Ā′iP̄i + P̄iĀi)x̄ < 0 x ∈ Xi i ∈ I1

(4.20)
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Substituting (4.16) into (4.20) allows this inequality to be rewritten with the continuity

matrix and symmetric matrix, T , such that

V̇i(x) =





x′(A′iF
′
iTFi + F ′iTFiAi)x < 0 x ∈ Xi i ∈ I0

x̄′(Ā′iF̄
′
iT F̄i + F̄ ′iT F̄iĀi)x̄ < 0 x ∈ Xi i ∈ I1

(4.21)

If the S−procedure method for Condition 4.2 in Section 4.3 is also applied to the

inequalities in Conditions 4.4 and 4.5, then the following theorem can be defined for the

piecewise quadratic stability analysis.

Theorem 4.4.1 (Johansson and Rantzer (1997b)): Let T, Mi and Ni be symmetric ma-

trices and also Mi and Ni have non-negative values in order to satisfy the following LMI

problem

F ′iTFi − E ′iNiEi > 0

A′iF
′
iTFi + F ′iTFiAi + E ′iMiEi < 0



 i ∈ I0,

F̄ ′iT F̄i − Ē ′iNiĒi > 0

Ā′iF̄
′
iT F̄i + F̄ ′iT F̄iĀi + Ē ′iMiĒi < 0



 i ∈ I1.

(4.22)

Then x(t) ∈ ⋃i∈I Xi tends to zero exponentially, which means each continuous piece-

wise trajectory is satisfied in (4.2) for t > 0.

Remark: The stability conditions in (4.22) are linear matrix inequalities with variables T,

Mi and Ni. The cell bounding and continuity matrices can be found using the algorithms

or the toolbox given in (Johansson, 1999). This theorem is illustrated with the following

example.

Example 4.4: Consider the PWL switched system in Example 4.3. Although there is

no solution to achieving quadratic stability, a feasible solution can be found by solving

Conditions 4.4 and 4.5 without continuity conditions. Here, a modelling and optimisation

toolbox, YALMIP, in MATLAB (Lofberg, 2004) is used to solve the related conditions;

the Lyapunov function of such a system is shown in Figure 4.6 with regard to the found

Lyapunov matrices
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P1 = P3 =


 19.7459 −0.9171

−0.9171 4.3866


 , P2 = P4 =


 4.3866 0.9171

0.9171 19.7459


 .
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Figure 4.6: Lyapunov function of Example 4.4 (dash lines show switching instances)

The Lyapunov function result in Figure 4.6 shows that discontinuities of the function

can occur during the switching instances. The aim of the piecewise quadratic stability

is to obtain a continuous piecewise Lyapunov function so Condition 4.3 satisfies the re-

quirement of this aim. In addition to this, Theorem 4.4.1 combines all requirements with

S−procedure relaxation.

The continuity matrices, which is defined as Fi = [E ′i In]′, and the previously calcu-

lated cell-bounding-matrices are used to solve Theorem 4.4.1. All cells contain the origin

so ai, ei and fi are assumed to be equal to zero. The prescribed inequalities in the above

theorem are solved by using a Matlab toolbox (PWLTOOL) in (Hedlund and Johansson,

1999), and the piecewise quadratic Lyapunov function, V (t) = x(t)′Pix(t), is found with

P1 = P3 =


 21.3232 −0.29

−0.29 4.2538


 , P2 = P4 =


 9.8458 −0.29

−0.29 50.1631


 .
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Simulating the given system with initial states x0 = [−10 − 10]′, the Lyapunov

function of such a system, with the computed Lyapunov matrices, can be found as in

Figure 4.7, which proves the stability under a given state-dependent switching rule. Here,

the dashed lines show the switching instances.
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Figure 4.7: Continuous Lyapunov function of Example 4.4

The results of the example clearly prove that the piecewise quadratic stability analysis

is less conservative than the quadratic stability analysis. In addition, the continuity of

the Lyapunov function is guaranteed by the piecewise quadratic stability approach. The

following section will provide L2 performance gain analysis between disturbance input

and output as well as the stability analysis.

4.5 L2-gain Analysis

The PWL switched system in (4.2) with disturbance input can be described as follows

˙̄x(t) = Āi x̄(t) + B̄u,i u(t) + B̄w,iw(t)

y(t) = C̄i x̄(t) +Du,i u(t) +Dw,iw(t)



 x(t) ∈ Xi, (4.23)

where B̄w,i = [B′w,i 0]′. In this section, we want to achieve both stability and perfor-

mance gain between disturbance input and output, thus the system (4.23) needs to satisfy
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the following performance criteria:

J =

∫ ∞

0

(z′z − γ2w′w)dt ≤ 0, ∀w ∈ L2 (4.24)

where γ is a positive scalar. Then a new criterion with V (t) is

J̃ = lim
t→∞
{V (t) +

∫ t

0

(z′z − γ2w′w)ds}. (4.25)

It can be seen that J ≤ J̃ when V (t) ≥ 0 ∀ t. Assuming that V (t) is differentiable for

all t, apart from the switching instants, and x(0) = 0. Hence

lim
t→∞

V (t) =
∞∑

s=0

∫ τs+1

τs

V̇ (t) dt+
∞∑

s=1

(V (τs)− V (τ−s ))

where τ0 = 0. If V (t) satisfies the non-increasing condition at the switching instants, it

can be obtained as

V (τs)− V (τ−s ) ≤ 0 ∀s > 0

which then satisfies

lim
t→∞

V (t) ≤
∞∑

s=0

∫ τs+1

τs

V̇ (t)dt. (4.26)

Substituting (4.26) into (4.25), the following equation can be defined

J̄ =
∞∑

s=0

∫ τs+1

τs

V̇ (t)dt+

∫ ∞

0

(z′z − γ2w′w)ds,

=
∞∑

s=0

∫ τs+1

τs

(V̇ (t) + z′z − γ2w′w)ds.

(4.27)

Consequently, from (4.24) to (4.27), it can be guaranteed that J ≤ J̃ ≤ J̄ . If the above

Lyapunov function provides J̄ ≤ 0 and non-increasing conditions during the switching

instants, then the performance criterion (4.24) is proven. In other words, the L2-gain of

the system (4.23) will be equal to or less than a prescribed scalar γ > 0. From (4.27), the

following condition needs to be satisfied:

V̇ (t) + z′z − γ2w′w < 0. (4.28)
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(4.6) is substituted into (4.28) and then the S−procedure and the Bounded Real Lemma

(BRL) are used for the linear system (Boyd et al., 1994). The following theorem is given

for quadratic stability analysis with L2-gain.

Theorem 4.5.1 (L2-gain for Common Quadratic Stability): If a symmetric positive defi-

nite matrix, P > 0, and symmetric matrices, Mi, which have non-negative entries, exist

and satisfy the following LMIs




PAi + A′iP + E ′iMiEi PBw,i C ′i

∗ −γ2I D′w,i

∗ ∗ −I


 < 0, i ∈ I0 (4.29)




P̄ Āi + Ā′iP̄ + Ē ′iMiĒi P̄ B̄w,i C̄ ′i

∗ −γ2I D′w,i

∗ ∗ −I


 < 0, i ∈ I1 (4.30)

then the L2-gain of the system (4.23) is less than the positive scalar γ. Note that the first

diagonal block of the above inequality comes from V̇ in (4.28). The second row and

column come from w′w and the third row and column come from z′z. Here, γ presents

the L2-gain between disturbance inputs, w, and desired outputs, z of the system (4.23). If

the L2-gain between control inputs, u, and desired outputs, z, are sought, the disturbance

inputs in (4.24) can be replaced with the control inputs and the disturbance matrices Bw

and Dw in Theorem 4.5.1 turn to the input matrices Bu and Du.

(4.20) is substituted into (4.28) and then the S−procedure and BRL are used for the

linear system (Boyd et al., 1994). The following theorem is given for quadratic stability

analysis with L2-gain.

Theorem 4.5.2 (L2-gain for Piecewise Quadratic Stability): If there exists symmetric

matrices T, Mi and Ni such that Mi and Ni have non-negative values and satisfy the fol-
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lowing LMIs problem

Pi − E ′iNiEi > 0




PiAi + A′iPi + E ′iMiEi PiBw,i C ′i

∗ −γ2I D′w,i

∗ ∗ −I


 < 0,





i ∈ I0

P̄i − Ē ′iNiĒi > 0




P̄iĀi + Ā′iP̄i + Ē ′iMiĒi P̄iB̄w,i C̄ ′i

∗ −γ2I D′w,i

∗ ∗ −I


 < 0,





i ∈ I1

where

Pi = F ′iTFi, P̄i = F̄ ′iT F̄i

(4.31)

then the L2-gain of the system in (4.23) is less than the positive scalar, γ (Johansson,

2003). Note that the non-negativity of the matrices Mi and Ni are explained in Section

4.3.

Example 4.5: Consider the switched linear system in (4.23) with

A1 = A3 =


 −0.5 1

−5 −0.5


 , Bw,1 = Bw,3 =


 −0.5

2


 ,

A2 = A4 =


 −0.5 5

−1 −0.5


 , Bw,2 = Bw,4 =


 0.5

−1


 ,

C1 = C3 =
[

1 0
]
, C2 = C4 =

[
0 1

]
,

Dw,1 = Dw,2 = Dw,3 = Dw,4 = 0.

The state space of the system is divided into four regions, as in Example 4.3, so the

same cell-bounding-matrices and the same continuity matrices are used as in Example
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4.4. Then, the L2 performance gain of the system found as γ = 2.0136 by using Theorem

4.5.2. The piecewise Lyapunov-like matrices are also found such that

P1 = P3 =


 1.209 −0.011

−0.011 0.229


 , P2 = P4 =


 0.589 −0.011

−0.011 2.710


 . (4.32)
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Figure 4.8: Lyapunov energy function of Example 4.5

Then, the value of the Lyapunov (energy) function given in Figure 4.8 can be com-

puted according to the corresponding Lyapunov matrix in (4.32). Because of the perfor-

mance criteria (L2-gain), the energy function of the switched system is too low compared

to the responses given in Figure 4.7.

4.6 State-feedback Controller Design

We have mentioned the stability analysis and L2 performance gain approaches for

PWL systems in the previous sections. The piecewise quadratic stability methods will

be extended to a state-feedback controller design in this section. Although the change



Piecewise Quadratic Stability Analysis 100

of variables method Q = P−1 in Chapter 3 is applied to obtain a convex form of the

controller design problem, it is not possible to apply the same method in this section.

In this section, the affect of the upper and lower bounds optimisation methods on cost

will be examined, which allow us to design the state-feedback controller. When these

methods are combined, performance bounds of the PWL switched system are proven

with state-feedback.

The lower and upper bounds on cost (Rantzer and Johansson, 2000)

The general condition of the optimal control problem can be given as

minimise
∫ ∞

0

L(x, u)dt

subject to





ẋ(t) = f
(
x(t), u(t)

)

x(0) = x0

(4.33)

The solution to this control problem can be shown to be the Hamilton-Jacobi-Bellman

(H-J-B) equation

inf
u

(
∂V

∂x
f(x, u) + L(x, u)

)
= 0. (4.34)

To find a lower bound on the optimal cost, it can be shown

∂V

∂x
f(x, u) + L(x, u) ≥ 0 ∀x, u (4.35)

Integrating this inequality and assuming that as time tends infinity, the states tend to

zero, x(∞) = 0, then we find

V (x0)− V (0) = −
∫ ∞

0

∂V

∂x
f(x, u) dt ≤

∫ ∞

0

L(x, u) dt. (4.36)

A lower bound on the optimal cost can be found when every V satisfies (4.35). Corre-

spondingly, the following inequality can be defined to find an upper bound on the optimal

cost with a given control law, u = k(x)

∂V

∂x
f
(
x, k(x)

)
+ L
(
x, k(x)

)
≤ 0 ∀x (4.37)
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which proves that ∫ ∞

0

L
(
x, k(x)

)
dt ≤ V (x0)− V (0). (4.38)

If any V satisfies (4.37), then the upper bound on the optimal cost has been found.

Here, L
(
x, k(x)

)
, which is negative, is the decay rate of V , so the Lyapunov function, V ,

guarantees the stability of the system with a given control law.

If it is considered that L is a piecewise quadratic and f is a PWL, then the system (4.1)

changes from a given (or an arbitrary) initial state, x(0) = x0 to x(∞) = 0 according to

the control objectives. At the same time, the cost can be given such that

J(x0, u) =

∫ ∞

0

(x̄′Q̄ix̄+ u′Riu)dt x ∈ Xi (4.39)

where

Q̄i =


 Q 0

0 0


 for i ∈ I0

and Q and R are positive definite matrices. The lower bound on cost for the system (4.1)

can be found by using the following theorem:

Theorem 4.6.1 (Lower bound on the cost (Rantzer and Johansson, 2000)): If there exist

the symmetric matrices T and Mi, such that Mi has non-negative entries and they satisfy

the following LMIs problem


 PiAi + A′iPi − E ′iMiEi +Qi PiBu,i

∗ Ri


 > 0, i ∈ I0,


 P̄iĀi + Ā′iP̄i − Ē ′iMiĒi + Q̄i P̄iB̄u,i

∗ Ri


 > 0, i ∈ I1

where

Pi = F ′iTFi, P̄i = F̄ ′iT F̄i
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then every trajectory x(t) ∈ ∪i∈I Xi of the system (4.1) satisfies the condition

J(x0, u) ≥ sup
T,Mi

x̄′0P̄i0x̄0

with x(0) = x0 ∈ Xi0 and x(∞).

Remark: The minimum value of the cost function (4.39) can be found by using the lower

bound theorem, and this method works for any controller. On the other hand, only specific

control laws work for the upper bound; for instance, one of the control laws can be defined

by minimizing

min
u

(
∂V

∂x
f(x, u) + L(x, u).

)
(4.41)

Every minimised control law is decided by an optimal controller when V satisfies the

H-J-B equation (4.34). On the other hand, if only the inequality (4.35) is satisfied, then

one cannot be sure that the control law minimises (4.41), even if it is stabilizing. In the

analysis, we can still use this minimization method as an initial point for the control law

definition. By comparing to the linear-quadratic optimal control, the expression (4.41)

can be minimised by using the following notation

Ki = R−1i B′iPi, K̄i = R̄−1i B̄′iP̄i,

Acl,i = Ai −BiKi, Ācl,i = Āi − B̄iK̄i,

Qi = Qi + PiBiKi, Q̄i = Q̄i + P̄iB̄iK̄i.

(4.42)

The minimised state-feedback control law can be expressed as

u = −Kix− ki = −K̄i x ∈ Xi, i ∈ I, and ki = 0 i ∈ I0 (4.43)

The upper bound on cost for the system (4.1) with the stabilizing state-feedback con-

trol law can be then found by using the following theorem:

Theorem 4.6.2 (Upper bound on the cost (Rantzer and Johansson, 2000)): If the symmet-

ric matrices T and Mi exist, such that Mi has non-negative entries and they satisfy the

following LMIs problem

 PiAcl,i + A′cl,iPi + E ′iMiEi + Qi K ′i

∗ −R−1i


 < 0, i ∈ I0,
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
 P̄iĀcl,i + Ā′cl,iP̄i + Ē ′iMiĒi + Q̄i K̄ ′i

∗ −R−1i


 < 0, i ∈ I1

where

Pi = F ′iTFi, P̄i = F̄ ′iT F̄i

then every trajectory x(t) ∈ ∪i∈I Xi of the system (4.1) satisfies the condition

J(x0, u) ≤ inf
T,Mi

x̄′0P̄i0x̄0

with x(0) = x0 ∈ Xi0 and x(∞).

Remark: Since the Ki and K̄i are fixed, we can calculate the upper bound of the control

performance using semi-definite programming.

Example 4.6: Consider a switched linear system in (4.23) with

A1 = A3 =


 −0.5 1

−5 −0.5


 , Bu,1 = Bu,3 =


 −0.1

1


 ,

A2 = A4 =


 −0.5 5

−1 −0.5


 , Bu,2 = Bu,4 =


 −2

0.5


 .

The initial state is given as x0 = [−10 − 10]′, and a cost function is defined such

that

J(x0, u) =

∫ ∞

0

(x21(t) + x2(t)
2 + 0.01u2(t))dt x ∈ Xi.

Then, an optimal lower bound on the loss function can be found using Theorem 4.6.1,

65.512 ≤ J(x0, u).

The controller gains can be calculated from the results of a lower bound computation

using (4.42),
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K1 = [−4.7643 − 0.5481], K2 = [−1.5055 − 8.7085],

K3 = [−4.9768 − 0.2211], K4 = [ 6.3682 − 8.8131].

Then, an upper bound of the cost function is found using Theorem 4.6.2, with the

calculated notation (4.42),

J(x0, u) ≤ 102.7755.
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Figure 4.9: Trajectory of the each closed loop subsystems in Example 4.6

According to calculated state-feedback controller gains, Figure 4.9 illustrates the tra-

jectory of each of the closed loop systems. Additionally, the trajectory of the closed loop

switched system is given in Figure 4.10. It can be seen that the behaviour of the closed

loop switched system trajectory is different from the open loop system trajectory shown in

Figure 4.5 because of the effect of state-feedback controllers. Moreover, the trajectories

of the closed-loop switched system quickly coverage to zero.
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Figure 4.10: Trajectory of the closed loop switched system in Example 4.6

Figure 4.11 shows the Lyapunov function of the switched system according to the

Lyapunov matrices, which are calculated in the upper and lower bound theorems. This

figure implies that the real value of the Lyapunov function is located between these two

values according to the given initial value of the states. It is obvious that the Lyapunov

function of the controlled switched system is too low compared to the open loop responses

given in Figure 4.7.

4.7 Summary

In this chapter, the state-dependent switching methodology discussed in Chapter 2

is extended to piecewise quadratic stability analysis. The quadratic stability analysis

method with state-dependent constraints is introduced. Then, this technique is applied

to the piecewise quadratic Lyapunov function and the piecewise quadratic stability anal-

ysis method is thus defined. L2-gain analysis between disturbance inputs and outputs is

applied to the defined stability analysis method. In addition to this, the state-feedback

controller design approach is given using the upper and lower bound theories.
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Figure 4.11: Continuous Lyapunov function of Example 4.6

During the stability analysis, the minimum dwell time theory in Chapter 3 only gives a

stable result when each of the subsystems is individually stable. Conversely, the piecewise

quadratic stability analysis does not require the individual stability of each subsystem; in

other words, the piecewise stability analysis might give a stable result even when one or

more subsystems are themselves unstable. Hence, the piecewise quadratic stability anal-

ysis technique is more attractive than the minimum dwell time stability technique. In

the case of controller design, the controller might be designed in both techniques even

when the open loop dynamics of some subsystems are not stable. Another difference of

between the piecewise stability and minimum dwell time stability analyses is that the min-

imum dwell time theory assumes that all the subsystems overlap, whereas the piecewise

theory assumes the all the cells are disjointed.

In the following chapter, the stability analysis methods in this chapter and Chapter 3

will be used in the ADMIRE fighter aircraft model with state-feedback integral controller.

The state-feedback controller design methods will be used for this model.



CHAPTER 5

Controller Design and Stability Analysis for the Fighter

Aircraft Model

5.1 Introduction

Stabilizing feedback controller design and achieving desired performance have been

playing a more crucial role for the fighter aircraft. New generation aircrafts have wide

flight envelopes in terms of aircraft speed and altitude. Due to this reason, it is getting

more difficult to achieve a desired tracking performance. In recent years, to achieve this

control objective, a number of approaches have been proposed in the context of LPV

control design (see, for example, (Papageorgiou et al., 2000; Shin et al., 2002; Sidoryuk

et al., 2007)). This approach of LPV control design has some drawbacks as follows:

(i) obtaining an LPV model is generally non-trivial and time-consuming, (ii) controller

synthesis is computationally demanding and (iii) the LPV controller implementation is

more difficult than standard controllers (Turner et al., 2006).

This chapter is motivated by the new approach that the tracking performance over the

107
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wide flight envelopes of modern aircraft can be improved by using a switched feedback

controller methodology. However, it is worth noting that switching between controllers

can cause transient effect on the closed-loop system response. This problem is treated in

this chapter.

The ADMIRE (Aero-Data Model In Research Environment) Benchmark model is

used to apply the proposed approach. The application of the ADMIRE model with both

switched and constant gain controllers is presented in this chapter. Firstly, the longitudi-

nal dynamics are obtained using a linearised model of ADMIRE. Then, state-feedback

integral controllers with constant and switched gain are designed based on the LQR

method to compare their respective tracking performances. To guarantee the stability of

the switched controlled ADMIRE model, the previously defined stability analysis meth-

ods (given in Chapters 3 and 4) are applied. Therefore, the controller design techniques

with these stability methods are used to compare the performance of different switched

controllers.

The rest of this chapter is structured as follows: Section 5.2 presents the longitudinal

control dynamics and linear models of the ADMIRE aircraft model. Then, switched state-

feedback controller is designed based on these linear models. According to the stability

analysis methods in Chapters 3 and 4, Section 5.3 examines the stability analysis and L2

performance gain of the ADMIRE aircraft model with the switched state-feedback inte-

gral controller designed in Section 5.2.3. Additionally, in Section 5.4, the state-feedback

controllers for the ADMIRE aircraft model are also designed using the algorithms in given

in Chapters 3 and 4. Section 5.5 reports simulation results for a switched and constant

gain state-feedback controlled ADMIRE model, and the benefits and drawbacks of the

switched controller are also discussed in this section. In addition, the ADMIRE model

is simulated according to the different switched controllers designed in Section 5.4 and

calculated in Section 5.2.3. Then, simulation results are compared. Finally, Section 5.6

concludes this chapter.
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5.2 The ADMIRE Benchmark Model

5.2.1 Description of ADMIRE

The ADMIRE Model was created by the Aeronautical Research Institute of Sweden

in 1997. ADMIRE is a simulation model of a generic and single-seat fighter aircraft

with a delta-canard configuration. ADMIRE combines the GAM-data (Generic Aero-

data Model) with models of an engine, actuators, dynamics, atmosphere and sensors. The

aircraft is equipped with a delta canard configuration, inner and outer elevon deflection

and thrust vectoring (Forssell and Nilsson, 2005).

ADMIRE contains twelve states (5.1) defining the dynamics of the aircraft and extra

states owing to the existence of actuators, sensors and the Flight Control System (FCS)

(Hagström, 2007).

x = [Vt, α, β, p, q, r, φ, θ, ψ, x, y, z]
′ (5.1)

Left and right canard (δlc, δrc), leading edge flaps (δle), four elevons (δloe, δlie, δroe,

δrie), rudder (δr) and throttle setting (tss) are available control actuators (see Figure 5.1).

Air brakes (δab), thrust vectoring capability (horizontal δth, vertical δtv) and a choice to

have the landing gear (δldg) up or down are also available in the model (Forssell and Nils-

son, 2005). Additionally, ADMIRE is equipped to model atmospheric turbulence/ wind as

an external influence/ disturbance. The available disturbance inputs are udist, vdist, wdist

and pdist. Here, the first three inputs are related to body reference wind disturbance, whilst

the latter is a rotational effect around the x−axis (Hagström, 2007).

In order to provide sufficient handling qualities and stability within the operational

envelope (see Figure 5.2), ADMIRE is enlarged with a FCS. The FCS contains a longitu-

dinal and a lateral component. The longitudinal controller provides load factor control for

larger Mach numbers (greater than or equal to 0.62) and pitch rate control for low Mach

numbers (below 0.58). The corner speed of the Mach number is close to 0.60. A blending

function of these two components is performed when the Mach number is between 0.58

and 0.62. The lateral controller enables the pilot to perform initial roll control around
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Figure 5.1: ADMIRE Aircraft control surface configuration

the velocity vector of the aircraft and angle of side-slip control (Karlsson, 2007). The

flight control system uses sensor models that are integrated into the model, along with

a 20 ms delay on the actuator inputs (see Table 5.1). The limit of acceptable deflections

and proposals for the angular deflection rate of the control surfaces are given in Table 5.2

(Hagström, 2007). When the aero-data tables of ADMIRE are compared to the original

GAM-data, the aero-data tables are expanded in ADMIRE. If Mach number is less than

0.5, the ADMIRE Model can be used to simulate −30 ◦ to 30 ◦ in side-slip angle (β) and

a −30 ◦ to 90 ◦ angle of attack (α, AoA) (Forssell and Nilsson, 2005).

Modeling Types Variables Model

Air Data Sensors VT , α, β, h
1

1+0.02 s

Inertial Sensors p, q, r, nz
1+0.005346 s+0.0001903 s2

1+0.03082 s+0.0004942 s2

Attitude Sensors θ, φ 1
1+0.0323 s+0.00104 s2

Actuators δlc, δrc, δloe, δroe, δlie, δrie, δr
1

1+0.05 s

Table 5.1: The modelling sensors and actuators (Forssell and Nilsson, 2005)
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Figure 5.2: Envelope of ADMIRE aero-data model (Hagström, 2007), x axis corresponds

to Mach number

Control Surfaces Min(deg) Max(deg) Angular Rate(deg/s)

Elevons -25 25 ±50

Canard -55 25 ±50

Ruder -30 30 ±50

Leading Edge Flap -10 30 ±50

Table 5.2: Control surface deflection
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5.2.2 Linear Models

The ADMIRE model can simulate a wide flight envelope: the altitude changes from

H = 100m up to H = 6000m; the Mach number changes from M = 0.3 (low subsonic

speeds) to M = 1.4 (supersonic speeds); see Figure 5.3. Hence, having a wide flight en-
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Figure 5.3: Flight Envelope (Hagström, 2007)

velope is the main difficulty of the design problems associated with the ADMIRE model;

additionally, the transonic region (0.9 < M < 1.1) introduces extra difficulties.

The closed-loop performance fundamentally defines the accuracy of linear model.

The linear ADMIRE model is obtained from a linearisation about the trim condition.

ADMIRE comes with trimming and linearisation packages which allows for finding linear

models. After trimming and linearisation, the state space matrices are found for each

equilibrium point such that Abare = dim(28 × 28), Bbare = dim(28 × 16), Cbare =

dim(59× 28), Dbare = dim(59× 16). Then, the generic model has 16 inputs (with wind

disturbance inputs), 28 states and 59 outputs which are described by

ẋ = Abarex+Bbareu,

y = Cbarex+Dbareu.
(5.2)
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The outputs of the model are contained in two parts; a plane part, which includes first

31 outputs, and a sensor part, which includes the last 28 outputs. Attention is restricted to

the design of a longitudinal controller for the ADMIRE fighter benchmark model. Hence,

the linear longitudinal model has been given such that

ẋp = Axp +Buu+Bww,

y = Cxp +Duu+Dww,
(5.3)

where xp = [VT , α, q, θ, h]′ is the state vector, u = [δe, tss]
′ is the control signal,

y := nz is the output to be controlled and w = [udist, wdist]
′ are the wind distur-

bance inputs along the x− and z−axes. δe is a symmetric elevon deflection, δe =

(δloe + δlie + δroe + δrie)

4
and tss is the throttle stick setting. Here, total velocity, VT ,

altitude, h, and pitch angle, θ, states are taken into account to obtain a state-feedback

switching rule.

The linear longitudinal model (5.3) is obtained from (5.2) by using the reduction

method in (Queinnec et al., 2002). A further details of the longitudinal and lateral di-

rectional dynamics are found in (Sidoryuk et al., 2007).

5.2.3 Switched State Feedback Controller Design

In order to design the switched state-feedback controller, the state space matrices of

the relevant system need to be found. State space parameters of the linearised system can

be obtained from the ADMIRE model (Figure 5.4) for all Mach number values between

0.3 to 1.4 and Altitude values between 100 m to 6000 m. There is no need to find state

space parameters for every value of Mach and Altitude, so it is obtained and saved only

over a restricted range of state space parameters at Mach = {0.3, 0.31, 0.32, . . . , 1.4} and

Altitude = {100, 200, 300, . . . , 6000m}.
To obtain the state dependent switched system, the flight envelope has been divided

into eight cells. The index of the cells are given in Figure 5.5, with the dashed lines

showing the boundaries between cells.
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Figure 5.4: ADMIRE Simulink Model

The switched state-feedback integral controller is designed for each cell, and whose

data is taken at the center of the cell. The LQR method mentioned above is used to

calculate the state-feedback controller gains. The weight matrices Q and R are chosen

diagonal withQ, which is of the formQ = diag(qe, 0, qα, qq, qθ, 0), where the entries set

to zero reflect the fact that velocity and altitude are not directly controlled. The selection

of the other entries in Q and R follows Bryson’s rule (Franklin et al., 2010).

The linear model with a state-feedback integral controller is designed as in Figure 5.6.

Then, it is simulated with state space parameters which were previously obtained from

the ADMIRE model. The state-feedback controller gains are not only designed for the

stability of the center of the cell, but each of the controller gains also needs to keep all

responses of all operating points in each cell within the template shown in Figure 5.7.

The template is generated according to a maximum 20% overshoot, 10% steady-state
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Figure 5.5: The flight envelope with cell partitions

error, 1.2 s rising time and 3.5 s settling time (Karlsson, 2007). Hence, the LQR weight

matrices are adjusted to keep responses within the template; responses are given in Figure

5.7.
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Figure 5.6: Linear Simulink Model

Finally, the designed switched controller gains will be used to analyse the stability

of the closed-loop ADMIRE model, and further to simulate the non-linear closed-loop

model of ADMIRE in the following sections.
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Figure 5.7: nz responses with state-feedback gain calculated for each value of Mach and

Altitude

5.3 Stability and L2-gain analysis

In this section, we will analyse the stability and L2 performance gain of the state-

feedback integral-controlled ADMIRE aircraft model where controller gains are com-

puted by using the LQR method in Section 5.2.3. The analyses will be performed by

using the techniques given in Chapters 3 and 4. This section is divided into two folds ac-

cording to the stability analysis approaches which are minimum dwell time and piecewise

quadratic approaches.

5.3.1 Analysis with Minimum Dwell Time Approach

In this subsection, minimum dwell time approaches in Sections 3.4 and 3.5 are used

to analyse the stability and L2 performance gain of the switched controlled ADMIRE

model with LQR gains. In the dwell time approach, the each subsystem needs to be

overlapping, hence it is assumed that the flight envelope in Figure 5.8 consists of eight
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overlapping cells.
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Figure 5.8: The flight envelope with overlapping cell partitions

Before proceeding with the stability and L2 performance gain analysis of the switched

system, it is a strong assumption that each subsystem of the switched system needs to be

asymptotically stable (Geromel and Colaneri, 2006). By contrast, the ADMIRE model

with state-feedback integral controller is marginally stable for the center of each cell,

which is because of the interaction between the integral error of the load factor, nz, and

the pitch angle, θ. Hence, two approaches are presented to deal with this issue. In the first

approach, the short period states, α and q are selected to tackle this problem, whilst in the

second is to change an output signal from load factor, nz, to angle of attack, α.

First Approach

For a load factor (normal acceleration) control, we do not need information about

some states, such as total velocity, altitude and pitch angle, within the dwell time theory.

Thus, these states are removed and asymptotic stability is obtained for each subsystem.

For the dwell time analysis, the reduced system can be shown to be
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
 α̇

q̇


 =


 Zα Zq

Mα Mq




 α

q


+


 Zδe Ztss

Mδe Mtss




 δe

tss


+


 Zudist Zwdist

Mudist Mwdist




 udist

wdist


 ,

nz =
[
nzα nzq

]

 α

q


+

[
nzδe nztss

]

 δe

tss


+

[
nzudist nzwdist

]

 udist

wdist


 .

(5.4)

The augmented system for state-feedback integral controller is obtained according to

the system (5.4). The LQR weights are reduced and the LQR gains are recalculated

according to the reduced system dynamics and LQR weights. Table 5.3 gives the re-

sults of the minimum dwell time theories which are based on the parameter independent

Lyapunov function (PILF) and the parameter dependent Lyapunov function (PDLF).

Stab. PILF Stab. PDLF L2-gain PILF L2-gain PDLF

T (s) 0.090 0.036 0.090 0.036

Solving Time (s) 3.4498 9.5483 4.6161 11.0014

Num. of LMIs 144 384 145 385

Num. of Var. 96 672 97 673

L2-gain (γ) - - 20.77 13.88

Table 5.3: The minimum dwell time and L2-gain results for ADMIRE model (forH = 1).

The minimum dwell time results for different H’s are given in Table 5.4 and L2-gain

results are presented in simple brackets. The minimum dwell time decreases as H in-

creases. The L2-gain results for both the parameter dependent Lyapunov function method

and the parameter independent Lyapunov function method increase as H increases. Be-

cause, the theorems are solved for different minimum dwell times. Therefore, the L2-

gains for various H and dwell time, Td, are also shown in Table 5.5 for both parameter

dependent and independent Lyapunov functions. It is obvious that the parameter depen-

dent Lyapunov function approach gives less L2-gain for the ADMIRE aircraft model.

Moreover, Table 5.5 indicates that the L2-gain is nearly 0.52 when the minimum dwell
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H Stab. PILF Stab. PDLF L2-gain PILF L2-gain PDLF

2 0.060 0.027 0.060 (31.57) 0.027 (15.13)

5 0.048 0.023 0.048 (33.23) 0.023 (16.49)

10 0.045 0.021 0.045 (34.17) 0.021 (20.68)

Table 5.4: The minimum dwell time and L2-gain results (in simple brackets) for the

ADMIRE model (for various H).

time is greater than 1 s.

Td(s) \H 1 2 5 10

0.1 s 9.2218 (1.8559) 3.0873 (1.3877) 2.1799 (1.1939) 2.0097 (1.1387)

0.2 s 1.4809 (0.9859) 1.1522 (0.8429) 0.9849 (0.7502) 0.9220 (0.7094)

0.5 s 0.8198 (0.6434) 0.7241 (0.5817) 0.6723 (0.5521) 0.6498 (0.5430)

1 s 0.6664 (0.5380) 0.6257 (0.5213) 0.6076 (0.5213) 0.5974 (0.5213)

Table 5.5: The L2-gain results for various H and Td (Simple brackets show PDLF).

According to Tables 5.3 and 5.4, the minimum dwell time theories mathematically

give the minimum dwell time as equal to or less than 0.09 s, but it is physically not pos-

sible to move from one cell to another within 0.09 s, in the real application. In addition,

the L2-gain results of these theorems are very high, although it is desirable that L2-gain

be equal to or less than 1. This means that the wind disturbance signals are increased if

the minimum dwell time is defined as being equal to or less than 0.1 s (see Table 5.5). On

the other hand, to obtain wind disturbance attenuation, the minimum dwell time based on

PDLF needs to be greater than or equal to 0.2 s.

According to restrictions on the real fighter aircraft application, we offered a different

method for the minimum dwell time stability analysis of the above-defined closed-loop

ADMIRE model. In this case, the switching only occurs between neighbouring cells. For

instance, if the trajectory of the system is located in Cell 1 in Figure 5.8, it will only move

towards one of the cells 2, 7, and 8 and the switching will occur with one of these cells.
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Then, it will move to other neighbouring cells; otherwise, it cannot switch instantly, such

as from 1 to 4 in real application. Therefore, the minimum dwell time theory will be

applied to the set of neighbouring cells such that

S1 = {1, 2, 7, 8}, S2 = {2, 3, 6, 7}, S3 = {3, 4, 5, 6}.

The common dwell time might be defined by finding the maximum of the minimum

dwell times. This expression can be shown to be

Tc = sup
{
TS1 , TS2 , TS3

}
. (5.5)

When the above closed-loop ADMIRE model is performed using this approach then

the minimum dwell time is found as per reported in Table 5.6. It can be clearly seen that

the minimum dwell time for the neighbour cells is very small, which verifies the stability

of the ADMIRE model even during more frequent switching. Moreover, L2-gain results

show that the PDLF method gives a disturbance attenuation for all neighbouring cells.

Stab. PILF Stab. PDLF L2-gain PILF L2-gain PDLF

TS1 and (γ) 4×10−8 2×10−8 4×10−8 (3.45) 2×10−8 (0.52)

TS2 and (γ) 2×10−8 1×10−8 2×10−8 (1.21) 1×10−8 (0.54)

TS3 and (γ) 3×10−8 2×10−8 3×10−8 (0.66) 2×10−8 (0.59)

Num. of LMIs 56 128 57 129

Num. of Var. 48 336 49 337

Table 5.6: The minimum dwell time and L2-gain results for ADMIRE model (forH = 1).

Second Approach

In this approach, we change an output signal of the ADMIRE model from nz to an-

gle of attack, α, to eliminate interaction between the integral error of nz and θ. In this

case, the ADMIRE model is also assumed to be a polytopic system. A switched state-

feedback controller needs to provide asymptotic stability for each of the vertices of each
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subpolytope. However, the LQR method in Section 2.4.2 only provides the stability of

the given operating point of the system, rather than the requirement above. Hence, the

multi-model/ multi-objective state-feedback synthesis function, msfsyn, in MATLAB is

used to design the state-feedback controller for the polytopic systems which provide the

stability of each of the vertices in each subpolytope (for details see Chapter 4 in (Gahinet

et al., 1995)).

The minimum dwell time theories are finally applied to the rearranged switched closed-

loop system. The results of the minimum dwell time theories for different H’s are given

in Table 5.7. In this approach, the minimum dwell time is dramatically increased for all

stability methods. In addition to this, the results of the neighbouring cells approach previ-

ously discussed are presented in Table 5.8 forH = 1. In this case, the common dwell time

in (5.5) is computed as Tc = 6.905 s and Tc = 1.805 s for PILF and PDLF, respectively.

H Stab. PILF Stab. PDLF L2-gain PILF L2-gain PDLF

1 60.56 14 60.56 (2.9945) 14 (0.9242)

2 47.28 11.66 47.28 (1.4732) 11.66 (0.0687)

5 39.08 9.3 39.08 (0.2310) 9.3 (0.0502)

10 34.8 7.79 34.8 (0.2703) 7.79 (0.0298)

Table 5.7: The minimum dwell time and L2-gain results (in simple brackets) for the

ADMIRE model (for various H).

5.3.2 Analysis with Piecewise Quadratic Approach
In this subsection, the common and piecewise quadratic stability analysis methods

in Sections 4.3 and 4.4, respectively, are used to investigate the stability of the switched

controlled ADMIRE model with LQR gains. The theorems in Section 4.5 are also applied

to find L2 performance gain.

Before analysing the stability and L2 performance gain, we need to determine certain

parameters such as the cell bounding matrix and continuity matrix of the ADMIRE model.
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Stab. PILF Stab. PDLF L2-gain PILF L2-gain PDLF

TS1 and (γ) 0.019 0.105 0.019 (0.0177) 0.105 (0.0068)

TS2 and (γ) 4.480 0.014 4.480 (0.2274) 0.014 (0.0677)

TS3 and (γ) 6.905 1.805 6.905 (0.1710) 1.805 (0.1719)

Num. of LMIs 56 128 57 129

Num. of Var. 168 336 169 337

Table 5.8: The minimum dwell time and L2-gain results for ADMIRE model (forH = 1).

Finding cell bounding matrices and continuity matrices

The flight envelope of the ADMIRE model is divided into eight disjointed cells as in

Figure 5.9 (where the negative sign of the altitude shows the direction). To obtain these
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Figure 5.9: Hyperplane partition of the ADMIRE model

cells, we define nine hyperplanes in (5.6) as described in the hyperplane partition method

in Section 4.3.1.
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[0, 146, 0, 0, 0, 1, −14785]x = 0

[0, 0, 0, 0, 0, 1, 6000]x = 0

[0, 176.4, 0, 0, 0, −1, −84133]x = 0

[0, 55.6, 0, 0, 0, 1, −22597]x = 0

[0, 0, 0, 0, 0, 1, 100]x = 0

[0, 0, 0, 0, 0, 1, 3000]x = 0

[0, 418.8, 0, 0, 0, −1, −85506]x = 0

[0, 279.2, 0, 0, 0, −1, −85506]x = 0

[0, 228.4, 0, 0, 0, −1, −85506]x = 0

, x =




x1

VT

α

q

θ

h

1




. (5.6)

These hyperplanes have been used to construct the cell bounding matrices and con-

tinuity matrices. For each cell, the cell bounding matrices, Eix ≥ 0 are computed as

follows:

E1 =




0, 146, 01×3, 1, −14785
0, 0, 01×3, −1, −100
0, −418.8, 01×3, 1, 85506

0, 0, 01×3, 1, 3000



, E2 =




0, 418.8, 01×3, −1, −85506
0, 0, 01×3, −1, −100
0, −279.2, 01×3, 1, 85506

0, 0, 01×3, 1, 3000



,

E3 =




0, 279.2, 01×3, −1, −85506
0, 0, 01×3, −1, −100
0, −228.4, 01×3, 1, 85506

0, 0, 01×3, 1, 3000



, E4 =




0, 228.4, 01×3, −1, −85506
0, 0, 01×3, −1, −100
0, −55.6, 01×3, −1, 22597

0, 0, 01×3, 1, 3000



,

E5 =




0, 228.4, 01×3, −1, −85506
0, 0, 01×3, −1, −3000
0, −176.4, 01×3, 1, 84133

0, 0, 01×3, 1, 6000



, E6 =




0, 279.2, 01×3, −1, −85506
0, 0, 01×3, −1, −3000
0, −228.4, 01×3, 1, 85506

0, 0, 01×3, 1, 6000



,

E7 =




0, 418.8, 01×3, −1, −85506
0, 0, 01×3, −1, −3000
0, −279.2, 01×3, 1, 85506

0, 0, 01×3, 1, 6000



, E8 =




0, 146, 01×3, 1, −14785
0, 0, 01×3, −1, −3000
0, −418.8, 01×3, 1, 85506

0, 0, 01×3, 1, 6000



.
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Here, zero columns in (5.6) are not shown in the cell bounding matrices. Then the

continuity matrices are defined as Fi = [E ′i, I]′.

Remark: It is always assumed that the equilibrium point is located at the origin, so the

variable changing technique in (Khalil, 2002) must be applied to the system. Then, the

same stability analysis methods are used to analyse the stability of the switched system

with respect to an arbitrary equilibrium point xe. This technique was mentioned in Chap-

ter 2. According to this method, the hyperplanes in (5.6), cell bounding matrices and

continuity matrices must be rearranged as a requirement of the stability theorem.

Here, the stability and L2-gain analysis are applied to two different cases of the AD-

MIRE model. In the first case, the dynamics of each cell are assumed to be consistent, so

the dynamics are taken from each cell center. In the second case, it is assumed that the

dynamics of the each cell belong to a polytopic system and they are convex combination

of each of the cell vertices, thus the vertices of each cell are used.

First Case

In this case, we assumed that the system parameters of each cell are constant, so the

data is taken from the center of each cell. To apply PQLF theories with the PWLTOOL

package, at least one of the cells needs to contain the origin. Due to this, the PQLF

theories have been solved eight times, with the center of one of the cells is moved to the

origin each time.

The conditions in (4.5) and (4.6) for quadratic stability and the relaxed common

quadratic Lyapunov function in Theorem 4.3.1 did not give a feasible solution for the

stability of the switched system with the switched controller. By solving the LMIs in

the theorems in Sections 4.4 and 4.5 with a Matlab toolbox (PWLTOOL) in (Hedlund and

Johansson, 1999), the Piecewise Quadratic Lyapunov Function V (t) = x(t)′Pix(t) for

i = 1, . . . , 8 is found. The compression results are given in Table 5.9 where L2-gain is

given in simple brackets.
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CQLF CQLF (relaxed) PQLF L2-gain PQLF

Stability 7 7 3 3 (0.859)

Num. of LMIs 9 51 100 101

Num. of Var. 21 63 204 205

Solving Time (s) 0.34 0.84 1.37 3.39

Table 5.9: The stability analysis and L2-gain results for ADMIRE model

Second Case

In the first case, the assumption of consistent system parameters in the cells is not a re-

alistic approach for the non-linear models. Hence, it is assumed that the system parameter

of each cell is a convex combination of the vertices of each cell. The switched controller

is now redesigned according to the system dynamics of each of the cell vertices. The

Multi-Objective State-Feedback controller design function, msfsyn, is used to obtain an

optimized controller for each of the polytopic cells. In addition to this, the stability analy-

sis techniques are applied as in the first case, above. The results of this analysis are shown

in Table 5.10 where L2-gain is given in simple brackets.

CQLF CQLF (relaxed) PQLF L2-gain PQLF

Stability 7 7 3 3 (0.8386)

Num. of LMIs 33 225 280 281

Num. of Var. 21 213 295 296

Solving Time (s) 0.51 0.91 5.76 18.36

Table 5.10: The stability analysis and L2-gain results for ADMIRE model

Although the piecewise theorems solve more inequalities in the second case than first,

the results of the second case are the more accurate because of the assumption of a poly-

topic system. L2-gain results in both cases (given in Tables 5.9 and 5.10) are less than 1,

meaning that both cases attenuate the wind disturbances.



Controller Design and Stability Analysis for the Fighter Aircraft Model 126

5.4 Controller Design with Stability Analysis Methods

In this section, the switched state-feedback controller gains for the ADMIRE fighter

aircraft model are computed by using the controller design methodologies mentioned in

Sections 3.6 and 4.6. The advantage of using these methodologies is that they provide the

stability of the system besides controller design.

5.4.1 Controller Design with Minimum Dwell Time Approach

The objective of this subsection is to design a switched state-feedback integral con-

troller for the ADMIRE model using the methodologies in Section 3.6. According to the

illustrative examples in Section 3.6, the parameter dependent Lyapunov function method

computes a constant gain for each cell partition, and at the same time provides the small-

est minimum dwell time constraint. Hence, the minimum dwell time is defined as 3 s, the

prescribed scalar is chosen as β = 0.04 and Theorem 3.6.2 is solved with Yi,h, and Si,h

are free from h. Then, the constant controller gains for each subsystem are calculated as

in Appendix A.1.

In addition to this, the state-feedback H2−optimal controller is computed by using

Theorem 3.6.5, where the minimum dwell time is defined as 3 s, the prescribed scalar is

chosen as β = 0.04 and the regulated output matrices are chosen just like LQR weight

matrices in Section 5.2.3. The computed gains are listed in Appendix A.1.

5.4.2 Controller Design with Piecewise Quadratic Approach

In this subsection, the controller design method in Section 4.6 is used to obtain a

switched state-feedback integral controller for the ADMIRE model. It is assumed that the

dynamics of each cell do not vary significantly, so the data are taken in the center of each

cell. Here, the weighting matrices are defined as the same as the LQR weights in Section

5.2.3. The same cell bounding matrices and the continuity matrices in Section 5.3.2 are

defined for the controller design method. Then, the state-feedback controller gains are
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found as in Appendix A.1.

In this section, the switched state-feedback integral controllers are computed based on

the above approaches. According to these controllers, the closed-loop ADMIRE model

will be simulated in the following section. Then, the simulation results will be compared

with the switched LQR controller designed in Section 5.2.3.

5.5 Simulation Results and Discussions

The simulation results will be discussed in two cases. One is the advantages of the

switched gain controller over the constant gain controller. The other is the comparison be-

tween the switched gain controller design methods and the LQR design approach. Before

analysing the simulation results, it is worth to introduce some definitions.

The switched state-feedback integral controller is designed for the non-linear Simulink

model in Figure 5.10. The actuators and initial conditions are also added to the model.
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Figure 5.10: Non-linear simulink model with switched state-feedback controller

The states, Mach number and altitude are assumed to be observable. Based on these states,

the state-dependent switching strategy is used in this model. The working principle of this

strategy is that the switching occurs when the state parameters of system (Mach number

and altitude) reach the cell boundaries in Figure 5.5. To ensure continuity of the control

inputs during the switching instants, a constant is added to state-feedback law, such that

u = Kx+ υ, υ = u+ − u−.
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The state-feedback controller gains are designed using different control design ap-

proaches in the previous sections.

Reference input selection for the longitudinal motion

The longitudinal motion of the aircraft happens around the lateral/ transverse axis.

The lateral axis is an imaginary axis that extends crosswise from wing-tip to wing-tip, as

shown in Figure 5.1 (right). The motion around this axis is called a pitch motion, and

is controlled by the elevator and the canard surfaces as shown in Figure 5.1 (left). Most

fighter aircraft are not equipped with canard surfaces so the effect of the canard on the

longitudinal motion is disregarded in this chapter to generalize the simulation results.

The longitudinal motion of the aircraft occurs such that if the pilot pushes the control

stick over, then the elevator surface deflects downward and the nose of the aircraft moves

down, as illustrated in Figure 5.11 (left). On the other hand, if the pilot pulls the control

stick up, then the elevator surface deflects upwards and the nose of the aircraft moves up,

as illustrated in Figure 5.11 (right). In longitudinal control, the position of the control

stick is used to generate a reference signal for the closed-loop system. This reference

signal is converted to a required reference such as pitch angle, pitch rate or load factor.

The load factor is a demanded input in this chapter. The range of the load factor varies

from -3 g to 9 g in the ADMIRE model. Hence, load factor is defined as -3 g for full

control stick push and conversely, as 9 g for full control stick pull. This definition will be

used to move the aircraft around the flight envelope.

Horizontal

Figure 5.11: Longitudinal motion of the ADMIRE Aircraft
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5.5.1 The Constant and The Switched gain Controllers Results

The aim of this subsection is to show that a switched gain controller can achieve better

performance than a constant gain controller. Hence, to compare switched and constant

gain state-feedback controllers, a constant state-feedback controller has been designed

for a plant located at the center of the flight envelope. Two different simulation scenarios

have been proposed for the system with these controllers. One is the short-term simulation

for the different operating points. In this case, the simulation starts some operating points

which are the linearised equilibrium point of the system. Although it allows us to compare

the systems with defined controllers at these operating points, the system may deteriorate

or give a different response while it is moving around the flight envelope. Hence, the

other simulation (long-term simulation) is applied to observe the attitude of the system

trajectories around the flight envelope.

For the short-term simulations, the center of each cell is chosen as an operating point.

The load factor responses of these simulations are given in Figure 5.12. Here, 50% pull,

full push and level positions of the control stick are, respectively, defined as required

references.

Figure 5.12: Constant gain (dash lines) and Switched gain (dotted lines) responses for the

different operating points
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For the long term simulation, load factor, nz tracking performance throughout the

flight envelope are compared. The simulation is applied twice to the non-linear system.

One starts at M = 0.4 and h = 100m and the other at M = 0.38 and h = 4500m.

The output responses of these simulations are illustrated in Figures 5.13 and 5.15, where

the switching instances and indices of the switched controller are also given. In addi-

tion, the trajectories are given in Figures 5.14 and 5.16. Here, the reference signal is
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Figure 5.13: Load factor responses of the closed-loop systems, (M = 0.4 and h = 100m)

obtained using combination of the 50 % pull, full push and level position of the control
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Figure 5.14: Envelope movement of the closed-loop systems, (M = 0.4 and h = 100m)

stick. The responses of the states and the input signals for these two simulations are given

in Appendix A.2.

In the first simulation, aircraft moves around the edges of the flight envelope. Hence,

the system parameters of the model change quickly and a switched gain controller gives

better tracking performance.
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Figure 5.15: Load factor responses of the closed-loop systems, (M = 0.38 and h =

4500m)
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Figure 5.16: Envelope movement of the closed-loop systems, (M = 0.38 and h =

4500m)

In the other simulation, aircraft moves around the center of the flight envelope. In this

case, more switching happens however tracking performance of a switched gain controller

is nearly same as a constant gain controller. That is because the constant gain controller is

designed for a plant located at the center of the envelope. Hence, it gives a good tracking

performance around the center of the envelope.

From the results of the short-term simulations, the switched gain controller gives a

lower settling time and quicker response than the constant gain controller (see Figure

5.12). From the results of the long term simulations, there is a small difference between

the constant gain controller and the switched gain controller results whilst one of the cells

2, 3, 6 or 7 is active, however the differences between them is increased when one of

the other cells is active (see Figures 5.15 and 5.13). As a result, the advantages of the

switched gain controller over the constant gain controller is proven through the non-linear

simulation.
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5.5.2 Simulation Results for The Switched Controllers

In this subsection, the non-linear simulation results for the switched controllers are

compared with the LQR approach. These controllers are designed by Theorem 3.6.2,

Theorem 3.6.5 and the method reported in Section 4.6.

The switched closed-loop systems for each computed controller gain and LQR gain

are simulated for h = 2900m andM = [0.5, 0.7, 1, 1.15], and the results are then given

in Figure 5.17. The label, “Dwell H2” in this figure indicates the switched gain controller

responses which are designed by using Theorem 3.6.5. Although this controller gives

nearly the same responses as the LQR method, it gives only a slightly reduced tracking

performance at M = 0.5.

The label “Dwell L2” in Figure 5.17 shows the responses of the switched gain con-

troller designed by Theorem 3.6.2. In addition, the label “PWL” shows the responses

of the switched gain controller calculated by the PWL approach in Section 4.6. Both

switched system responses lack the tracking performance of the LQR method.
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Figure 5.17: Load factor responses of the different switched controller
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5.6 Summary

In this chapter, the ADMIRE aircraft model is introduced along with longitudinal

control dynamics. The state-feedback integral controller is designed for the longitudinal

motion of the ADMIRE model. The switched controller approach is applied to these

closed loop systems. The controller gains are calculated with the LQR approach, and

the data is taken from the center of each of the cells. Two switched system stability

analysis methods - a minimum dwell time and piecewise quadratic stability mentioned,

respectively, in Chapters 3 and 4 - are used to analyse the stability of the closed-loop

switched system. In addition to this, the controller design techniques in these chapters are

used to obtain the switched controller gains. At the end of the chapter, the closed-loop

ADMIRE models with the constant gain and switched gain controllers are simulated, the

results of which have been illustrated.

The simulation results verified that the switched controller with LQR gains performed

better than the constant gain controller. It is noteworthy that the switched controller design

techniques were expected to obtain better performance. They could not, however, give a

good tracking performance except in one case. On the other hand, the controller design

methods prove the stability of the switched system therefore we do not need to apply the

stability analyse as in the LQR controller method.



CHAPTER 6

Conclusions and Future work

This thesis has presented the design of switched feedback controllers for load fac-

tor tracking and comprehensive stability analysis for a closed loop system with switched

feedback controller. Indeed, the thesis has investigated the stability analysis of the switched

systems proposed in previous studies, and has also studied how the state-feedback switched

controller can be designed by using these studies.

The switched state-feedback controller design strategies have been applied to the AD-

MIRE model. The differences between the simulation results of these strategies are dis-

cussed, and they are also compared to the constant gain state-feedback controlled AD-

MIRE model. The benefits of the switched controller have been discussed with respect to

the constant controller. The detailed contributions are summarized below.

6.1 Conclusions

The work described in this thesis built upon the idea that the switched controller can

improve the performance of the system compared to the constant controller, particularly

135
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when there exists large uncertainty. Additionally, detailed switched system stability anal-

ysis methods have been performed to prove the stability of the system and also examine

how these techniques can be used to design a switched controller for fighter aircraft.

• To start with, the basic concepts and methods for the stability analysis have been

given in Chapter 2. In addition to this, the switched systems’ stability analysis

has been introduced depending on arbitrary and constrained switching signals. H2,

LQR controller design methodologies and state-feedback integral controller strat-

egy are also given in this chapter. Time constraint switching analysis in Chapter

2 cannot be directly applied to the polytopic system, therefore the minimum dwell

time theories for the switched systems have been mentioned from the perspective of

the time dependent Lyapunov function in Chapter 3. From the definition of dwell

time approaches, it is assumed that all subpolytopes are overlapping and asymp-

totically stable. The stability analysis theories in this chapter have been presented

based on parameter independent / dependent Lyapunov functions, as mentioned in

(Allerhand and Shaked, 2011) and (Allerhand and Shaked, 2013). Based on these

Lyapunov functions, the new method for the state-feedback switched controller de-

sign has been proposed withH2-optimal control technique. The numerical analysis

in the defined theorems was formulated, and illustrative examples have been solved

by using a modelling and optimisation toolbox, YALMIP, in MATLAB (Lofberg,

2004). From the results of the examples, the constraints on dwell time have been

discussed according to the size of the variable and LMIs in the theorems. It is found

that a less minimum-dwell time for the switched systems with polytopic uncertainty

can be achieved by using the parameter dependent Lyapunov function.

• The other constrained switching signal, state-dependent switching, has been men-

tioned with the piecewise quadratic stability techniques in Chapter 4. To relax

stability conditions, firstly, the state-dependent constraints have been applied to

the quadratic stability analysis technique. Additionally, the piecewise quadratic

Lyapunov function is defined for the switched stability analysis, and the piece-
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wise quadratic stability analysis method has thus been obtained for state-dependent

switching. These methods have also been extended to L2 performance gain be-

tween disturbance inputs and outputs. Using the upper and lower bound theories,

the state-feedback controller design has been mentioned. These theorems have been

demonstrated with illustrative examples.

The main differences between the dwell time and the piecewise quadratic stability

analysis is that stability with the minimum dwell time theory can be only achieved

even each subsystem is individually stable. Conversely, the stability result with the

piecewise quadratic stability analysis can be achieved when one or more subsystems

are unstable. Thus, the piecewise quadratic stability analysis technique is more at-

tractive than the minimum dwell time stability method. Assuming all subsystems as

overlapping or disjointed cells is another difference between the piecewise stability

and minimum dwell time stability analyses.

• The simulation model of the generic fighter aircraft model, ADMIRE, has been in-

vestigated in Chapter 5. The linearised system dynamics are reduced to the longitu-

dinal dynamics to control the longitudinal movement of the ADMIRE model. Then,

the state-feedback integral controller strategy and the switched controller approach

have been applied. The effective controller design method, LQR, has been used to

design the controller gains, where the data is taken from the center of each of the

cells. The stability of the closed-loop switched system has been proved by using the

stability analysis methods in Chapters 3 and 4. Therefore, the switched controller

gains have also been designed using the techniques in these chapters. Finally, the

closed-loop ADMIRE models with the constant gain and the switched gain con-

trollers have been simulated. The results proved that the switched controller with

LQR gains has performed better tracking performance than the constant gain con-

troller. The short-term simulation responses of the switched controllers designed by

LQR and stability analysis methods have been compared. The proposed switched

controllers stabilise the system; however, only a controller designed by using the



Conclusions and Future work 138

dwell time approach withH2-optimal control technique can perform as good as the

LQR method in terms of tracking performance.

The results of the stability analysis methods have proved the stability of the closed-

loop switched system, and these methods are used to design the state-feedback switched

controller at the same time. The results derived from the controller design techniques have

been applied to the closed-loop ADMIRE model. Simulation results have shown that

all three proposed switched controllers stabilise the system; however, only the second

proposed switched controller can perform with as good a tracking performance as the

LQR method. The simulation results have also proved that the switched controller with

LQR gains has provided better tracking performance than the constant gain controller.

6.2 Future Work

The study presented can be further extended in several directions.

• Stability Analysis:

In this thesis, the stability analysis methods are built on some assumptions. Hence,

different stability analysis methods in the literature can be applied to find more

accurate results with fewer assumptions (for example, non-linear stability analysis

techniques).

In real applications, sensors, actuators and computer delays cause a time-shift in the

input signals that can affect the stability of the switched systems. Hence, the pro-

posed methods in this thesis can be extended for the stability analysis of switched

time-delay systems.

Switched controllers are designed based on the state-feedback; one future research

direction is to use output feedback for the switched controller design.
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• Application:

In this thesis, we use the state-dependent switching law for the ADMIRE aircraft

model. Noise/ Disturbance dependent switching rules can be further applied to re-

duce effects on the performance. In addition, the performance can be increased

using both switching rules with state-dependent and noise/ disturbance dependent.

The LQR approach is used to compare the performance between switched and con-

stant gain controlled system responses. One can apply the different robust control

techniques to generalize the advantages of the switched gain controller over the

constant gain controller.

Switched state-feedback longitudinal control for the ADMIRE aircraft model is

studied in this thesis. Additionally, lateral control can be designed and a full flight

control system (FCS) can be achieved using both controllers.



APPENDIX A

Numerical & Simulation Results

A.1 Controller Gains for ADMIRE Model

∗ The switched controller gains calculated by using the standard LQR approach:

K1 =


 −1.2009 −0.0623 −12.5209 −2.7394 −0.4546 0.0009

−0.2407 1.2201 −4.0695 −0.3735 1.5555 0.0001


 ,

K2 =


 −0.9946 0.0186 −13.5308 −1.8310 −0.1350 0.0002

−0.1036 0.3126 −3.3264 −0.0551 2.7704 −0.0000


 ,

K3 =


 −0.9984 −0.0184 −13.8539 −1.5738 0.0084 0.0001

−0.0567 0.3120 −0.6174 −0.1022 −0.4319 0.0000


 ,

K4 =


 −0.9931 −0.0236 −14.2769 −1.7266 −0.1787 0.0001

−0.1177 0.3141 −2.8860 −0.1170 1.7105 −0.0000


 ,

K5 =


 −0.9943 −0.0268 −12.8339 −1.7756 −0.0896 0.0001

−0.1062 0.3141 −2.0089 −0.1512 0.7684 −0.0000


 ,
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K6 =


 −0.9982 −0.0160 −12.0685 −1.6543 −0.0144 0.0001

−0.0603 0.3119 −0.8723 −0.1124 −0.1198 0.0000


 ,

K7 =


 −0.9960 0.0075 −12.1592 −2.0000 −0.1617 0.0003

−0.0897 0.9974 −2.1784 −0.1842 0.7645 0.0000


 ,

K8 =


 −0.9867 −0.0150 −10.8524 −2.6837 −0.3347 0.0008

−0.1625 0.9970 −3.3478 −0.4030 0.8052 0.0001


 .

∗ The constant controller gains calculated by using the standard LQR approach:

K =


 −0.9983 0.0110 −14.1958 −1.7067 −0.0703 0.0002

−0.0584 0.3115 −1.9370 −0.0700 1.3930 0.0000


 .

∗ The switched controller gains calculated by using Theorem 3.6.2:

K1 =


 −7.0012 0.0497 71.4976 −8.0456 −123.9549 0.3303

−6.6028 0.0732 −22.2104 1.0087 24.1061 −0.0505


 ,

K2 =


 2.0265 −0.0318 33.2071 −2.2514 −53.9825 0.1197

−7.4051 0.0706 9.5513 −1.0167 −16.0243 0.0446


 ,

K3 =


 −0.3281 −0.0012 21.1361 −1.1896 −33.5404 0.0686

−2.3864 0.0255 −3.1770 0.1045 2.1633 0.0027


 ,

K4 =


 −1.5095 0.0116 31.7415 −1.5587 −42.4383 0.0844

−1.9361 0.0220 −1.7372 0.2445 3.9458 −0.0145


 ,

K5 =


 −0.3069 −0.0010 26.7588 −1.5800 −39.5003 0.0685

−0.8257 0.0086 1.1554 0.0031 −1.0842 −0.0016


 ,
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K6 =


 −0.8870 0.0038 24.6798 −1.4701 −38.0784 0.0816

−2.1644 0.0229 −2.3099 0.0539 0.9090 0.0031


 ,

K7 =


 0.5631 −0.0192 41.9903 −2.9676 −66.5081 0.1540

−8.4315 0.0810 4.9162 −0.8754 −12.6452 0.0353


 ,

K8 =


 −9.6410 0.0727 75.2097 −7.5065 −125.1077 0.3319

−8.4839 0.0914 −16.4999 0.5931 14.8969 −0.0349


 .

∗ The switched controller gains calculated by using Theorem 3.6.5:

K1 =


 −3.5575 0.0299 −51.1786 −8.9018 11.5594 −0.0130

−0.3148 1.3193 −6.1107 −1.1478 0.1363 −0.0023


 ,

K2 =


 −10.4926 −0.1159 −198.3273 −9.7432 124.7830 −0.1527

−0.5974 0.8712 −13.5024 −0.7063 8.0736 −0.0129


 ,

K3 =


 1.2026 −0.0533 23.6534 −0.7210 −16.4736 0.0204

−0.0388 0.9438 −3.8465 −0.2715 2.4747 −0.0063


 ,

K4 =


 1.3686 −0.0317 40.6305 −0.4977 −29.4672 0.0358

0.2914 0.5518 7.3623 0.0688 −5.2941 0.0056


 ,

K5 =


 0.5882 −0.0427 16.8989 −1.0843 −12.2811 0.0154

0.6040 0.6065 13.8730 0.2562 −9.9023 0.0107


 ,

K6 =


 0.2678 −0.0635 1.8614 −1.3783 −1.5759 0.0026

−0.0875 0.9270 −4.8344 −0.3297 2.8703 −0.0070


 ,

K7 =


 −12.4334 −0.1847 −217.0436 −14.6079 124.8535 −0.1469

−1.8470 1.1209 −34.3957 −2.2778 19.1682 −0.0263


 ,

K8 =


 −2.6311 −0.0062 −36.9486 −6.4338 10.3942 −0.0090

−0.2794 1.1471 −6.0978 −1.0966 0.4192 −0.0031


 .



143 A.1 Controller Gains for ADMIRE Model

∗ The switched controller gains found by using the method in Section 4.6.

K1 =


 −0.0392 −0.0409 −4.9994 −0.3992 −0.0804 0.0000

−0.1399 0.9962 −3.0109 −0.2537 1.0561 0.0000


 ,

K2 =


 −0.9581 0.0347 −13.3054 −1.6939 −0.0235 0.0002

−0.0256 0.9964 −1.6281 −0.1389 0.0673 −0.0000


 ,

K3 =


 −0.0781 −0.0701 −6.3235 −0.7388 0.0073 0.0000

−0.0026 0.9938 −0.3941 −0.0607 −0.3433 0.0000


 ,

K4 =


 −0.7811 −0.0631 −9.6619 −0.8096 −0.0745 0.0001

−0.0737 0.9968 −1.7194 −0.0423 0.9245 −0.0000


 ,

K5 =


 −0.0160 −0.0909 −3.6252 −0.4879 −0.0394 −0.0000

−0.0138 0.9948 −0.9703 −0.0482 0.3787 −0.0000


 ,

K6 =


 −0.3722 −0.0770 −8.3080 −1.1634 −0.0098 0.0000

−0.0313 0.9931 −0.8979 −0.1103 −0.2272 0.0000


 ,

K7 =


 −0.6744 0.0061 −9.0164 −0.8201 −0.1055 0.0002

−0.0924 0.9971 −2.4056 −0.1670 1.0519 0.0000


 ,

K8 =


 −0.4974 −0.0264 −7.5636 −1.1531 −0.1838 0.0004

−0.1413 0.9964 −3.2211 −0.3364 0.8435 0.0001


 .
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A.2 Long-term Simulation Results
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Figure A.1: Input responses of the switched systems for M = 0.38 and h = 4500m
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Figure A.2: State responses of the switched systems for M = 0.38 and h = 4500m
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Figure A.3: Input responses of the switched systems for M = 0.4 and h = 100m
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Figure A.4: State responses of the switched systems for M = 0.4 and h = 100m
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