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—— Abstract

We study an on-line scheduling problem that is motivated by applications such as car-sharing for
trips between an airport and a group of hotels. Users submit ride requests, and the scheduler aims
to accept requests of maximum total profit using k servers (cars). Each ride request specifies the
pick-up time, the pick-up location, and the drop-off location, where one of the two locations must
be the airport. A request must be submitted a fixed amount of time before the pick-up time. The
scheduler has to decide whether or not to accept a request immediately at the time when the request
is submitted (booking time). In the unit travel time variant, the travel time between the airport and
any hotel is a fixed value t. We give a 2-competitive algorithm for the case in which the booking
interval (pick-up time minus booking time) is at least ¢ and the number of servers is even. In the
arbitrary travel time variant, the travel time between the airport and a hotel may have arbitrary
length between ¢ and Lt for some L > 1. We give an algorithm with competitive ratio O(log L) if
the number of servers is at least [log L]. For both variants, we prove matching lower bounds on the
competitive ratio of any deterministic on-line algorithm.
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1 Introduction

In a car-sharing system, customers can hire a car from a company for a period of time.
They can pick up a car in one location, drive it to another location, and return it there.
Customer requests for car bookings arrive over time, and the decision about each request
must be made immediately, without knowledge of future requests. The goal is to maximize
the profit obtained from satisfied requests. We refer to this problem as the car-sharing
problem. Similar problems arise in car rental or taxi dispatching. In this paper, we consider
the setting where all car booking requests are for travel between a central location (e.g., an
airport, shopping mall or central business district) and one of a group of nearby locations
(e.g., hotels, or residential areas), but can be in either direction. The connections between
the central location and the nearby locations can therefore be viewed as a star network.
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The car-sharing problem bears some resemblance to interval scheduling, but in addition
the pick-up and drop-off locations play an important role: The server (car) that serves a
request must be at the pick-up location at the start time of the request and will be at the
drop-off location at the end time of the request.

A server can serve two consecutive requests, where the pick-up time of the second is no
earlier than the drop-off time of the first, only if the drop-off location of the first request is
the same as the pick-up location of the second request, or if there is enough time to travel
between the two locations otherwise. We allow empty movements, i.e., a server can be moved
from one location to another while not serving a request. Such empty movements could be
implemented by having company staff drive a car from one location to another, or in the
future by self-driving cars.

1.1 Related work

On-line car-sharing problem. The car-sharing problem has been studied in several previous
papers. In [9], we considered the special case with two locations and a single server, considering
both fixed booking times and variable booking times, and presented tight results for the
competitive ratio. The optimal competitive ratio was shown to be 2 for fixed booking times
and 3 for variable booking times. In [10], we dealt with the car-sharing problem with two
locations and two servers, considering only the case of fixed booking times, and showed
that the optimal competitive ratio is 2. In [11], we studied the car-sharing problem with
two locations and k servers, where k can be arbitrarily large. We considered both fixed
booking times and variable booking times. The results showed that, surprisingly, 3 servers
(in one case) and 5 servers (in another case) already allow us to get the best competitive
ratio, and no improvement is possible with more servers. In contrast to the previous work on
car-sharing that has only considered two locations, in this paper we study the car-sharing
problem for fixed booking time in the setting with k servers and m + 1 locations that are
arranged in a star network.

Off-line car-sharing problem. Bohmové et al. [4] showed that if all customer requests for
car bookings are known in advance, the problem of maximizing the number of accepted
requests is solvable in polynomial time. Furthermore, they considered the problem variant
with two locations where each customer requests two rides (in opposite directions) and the
scheduler must accept either both or neither of the two. They proved that this variant is
NP-hard and APX-hard. In contrast to their work, we consider the on-line version of the
problem with m -+ 1 locations.

On-line dial-a-ride problem. A closely related problem is the on-line dial-a-ride problem
(OLDARP). Versions of OLDARP with the objective of serving all requests while minimizing
the makespan [1, 3] or the maximum flow time [7] have been widely studied in the literature.
Versions of OLDARP where not all requests need to be served include the setting where
each request must be served before its deadline or rejected [12], and the setting with a given
common time limit where the goal is to maximize the revenue from requests served before
the time limit [6]. In OLDARP, transportation requests between locations in a metric space
arrive over time, but typically it is assumed that requests want to be served “as soon as
possible” rather than at a specific time as in our problem.

On-line interval scheduling problem. The on-line car-sharing problem can be interpreted
as a variation of the on-line interval scheduling problem. If all the pick-up and drop-off
locations are the same, the car-sharing problem becomes an on-line interval scheduling
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problem. Lipton and Tomkins [8] defined the basic on-line interval scheduling problem:
intervals with a given length are presented in the order of their start time and the scheduler
aims to accept intervals of maximum total length. The scheduler has to decide whether to
accept each interval before the next interval is presented and ensure that no pair of accepted
intervals overlap. They showed that no (randomized) algorithm can achieve competitive ratio
O(log A) (where A denotes the ratio between the longest and the shortest interval, and A is
unknown to the algorithm), and gave an O((log A)!*¢)-competitive randomized algorithm.

1.2 Problem description and preliminaries

We consider a setting with m + 1 locations in a star network and denote the central location
by 0 and the other locations by i for ¢ € {1,2,...,m}. There are k servers, denoted by
S = {s1, 82,...,8k}, that are initially located at 0. We assume that m > 2 since, if m = 1,
the problem turns into the car-sharing problem between two locations that has been studied
before [9, 10, 11]. The length of the edge between 0 and 4, for 1 < i < m, is denoted by
d(0,7) = d(i,0). The travel time from 0 to 4, i € {1,2,...,m}, is d(0,4) - t, where t is a fixed
positive constant, and is the same as the travel time from i to 0, d(7,0) - t. In the variant
with unit travel times, all edges have length 1 and the travel time between 0 and i is ¢ for all
i€{1,2,...,m} (see Fig. 1 for an example). In the variant with arbitrary travel times, we
only assume that the edge lengths satisfy 1 < d(0,4) < L for all 1 < i < m (Fig. 2 shows an
example).

i
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Figure 1 Unit travel times. Figure 2 Arbitrary travel times.

Let R denote a sequence of requests that are released over time. The requests with the
same release time are released one by one in arbitrary order. The i-th request is denoted
by 7; = (tr,str., pri, Pr,) and specifies the booking time or release time t,,, the start time
or pick-up time t.,, the pick-up location p,., € {0,1,...,m}, and the drop-off location
pr; € {0,1,...,m}. We also say that request r; drops off at p,,. We require p,, # p,, and
min{p,,,pr, } = 0, i.e., for all requests r; € R, either the pick-up location p,, or the drop-off
location p,, is 0. We assume that the booking interval t,, — ., is equal to a fixed value a for
all requests ; € R. For the variant with unit travel times (resp. the variant with arbitrary
travel times), if r; is accepted, a server must pick up the customer at p,, at time t,, and
drop off the customer at p,., at time ¢,, = t,, +t (vesp. at time t,, = t,, + d(p,,, r,) - ), the
end time (or drop-off time) of the request.

Each server can only serve one request at a time. If two requests are such that they cannot
both be served by one server, we say that the requests are in conflict. For the variant with
unit travel times (resp. arbitrary travel times), serving a request r; yields profit P, = r (resp.
P., =d(pr,,Dr;) - 7). An empty movement has no cost. We denote the requests accepted by
an algorithm by R’. The i-th request in R’, in order of request start times, is denoted by
ri. We denote the profit of serving the requests in R’ by Pp = lefl‘ P,,. The goal of the
car-sharing problem is to accept a set of requests R’ that maximizes the profit Pg.
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We use kSmL-U to refer to the problem with k servers and m + 1 locations with unit
travel times. The problem variant with arbitrary travel times is called the kSmL-A problem.
For the kSmL-A problem, we assume that a > 2Lt, where Lt is the travel time of the longest
edge of the star. This ensures that any free server always has enough time to travel from its
current location to the pick-up location of a newly accepted request. We do not require that
the algorithm assigns an accepted request to a server immediately, provided that it ensures
that one of the k servers will serve the request.

We forbid “unprompted” moves, i.e., the algorithm is allowed to make an empty move to
another location only if it does so in order to serve a request that was accepted before the
current time and whose pick-up location is the other location. If the length of the booking
interval (recall that the booking interval is the interval between booking time and start
time) is greater than the maximum travel time of any two locations in the two problems
defined above, we observe that there is never a need for a server to make an unprompted
movement. Therefore, if a > 2¢ for kSmL-U or a > 2Lt for kSmL-A, whether or not we
forbid unprompted movements affects neither lower bounds nor the algorithm performance.

The performance of an algorithm for kSmL-U or kSmL-A is measured using competitive
analysis [5]. For any request sequence R, let Pra denote the objective value produced by
an on-line algorithm A, and Pg~ that obtained by an optimal scheduler OPT that has full
information about the request sequence in advance. Like for the algorithm, we also require
that OPT does not make unprompted moves, i.e., OPT is allowed to make an empty move
starting at time tg with some server s; from location p to location g only if there is an
accepted request r; assigned to s; with t., < to, pr, = q and t,, > to + d(p,q) - t. The
competitive ratio of A is defined as p4 = supp 5’?* . We say that A is p-competitive if
Pr+« < p- Pgra for all request sequences R. Let ON'be the set of all on-line algorithms for
a problem. We only consider deterministic algorithms in this paper. A value § is a lower
bound on the best possible competitive ratio if p4 > S for all A in ON.

The asymptotic competitive ratio (asymptotic performance ratio) of A is defined to
be p/y = lim, oo supR{ ~|Pr- = n}. A value ' is a lower bound on the best possible

asymptotic competitive ratlo if p’y > B’ for all A in ON. We write N ={0,1,2,...}.

1.3 Paper outline

Table 1 Lower and upper bounds on the competitive ratio for the kSmL problem.

Problem Booking constraint Lower bound Upper bound
k 3

kSmL-U a<t /T o]

kSmL-U t<a<2t 2 2 (for even k)

kSmL-U a>2t 2— 5= 2 (for even k)

kSmL-A a> 2Lt Q(log L) O(log L) (for k > log L)

In Section 2, we present lower bounds on the competitive ratio for the kSmL-U problem.
In Section 3, we propose two greedy algorithms, the m-partition greedy algorithm and the
bi-partition greedy algorithm, that achieve the best possible competitive ratio for kSmL-U for
different ranges of a. In Section 4, we study kSmL-A and give an algorithm with competitive
ratio O(log L) and show that no deterministic on-line algorithm can achieve competitive
ratio smaller than Q(log L). Section 5 concludes the paper. An overview of our results is
shown in Table 1. All our lower bounds hold even in the seemingly simpler case where the
start time of every request is a multiple of ¢.
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2 Lower bounds for kSmL-U

In this section, we present lower bounds for the kSmL-U problem. We use ALG to denote
any on-line algorithm and OPT to denote an optimal scheduler. The set of requests accepted
by ALG is denoted by R’, and the set of requests accepted by OPT by R*.

» Theorem 1. For a < t, no deterministic on-line algorithm for kSmL-U can achieve
asymptotic competitive ratio smaller than kaj

Proof. Consider a sequence of requests that consists of v phases where phase 4, for 1 < i <,
consists of [; groups of requests, with each group consisting of k identical requests. Let
o(u,v) be the number of request groups that the adversary has released by the time when
the requests in phase u, group v have just been released, i.e., o(u,v) = Z?;ll li +v.

The adversary releases requests based on the release rule for kSmL-U shown in Algorithm 1.

Algorithm 1 Release Rule for kSmL-U with a < t.

Initialization: The adversary presents the requests in phase 1 group 1: k copies of the
request (v -t —a,v-t,0,1) for some v such that v € Nand v-t —a > 0.
1 =1, 57 =1. Let | be a large, positive, odd integer.
While ¢ < m do
if j <1 then
if |[R; ;| > |k/m] then
l;=7,i=1i+1, j =1 and the adversary releases the requests in R; ;;
else if R} ;| < |k/m| then
j = j + 2 and the adversary releases the requests in R; j_; and R; j;
if 7 > [ then
break.
Output: v =1 and [; = j.
(1) Let R; 5 denote the set of requests in phase ¢ group j. If ¢ > 1 and j = 1, R;,; consists of k copies of
the request (tr,;_1,, e T ttrog1y, e T1:0,9);14>0, 5> 1and j = 2e where e € N, R;; consists
of k copies of the request (fr, ., 1y, + b tro 1 +53,0); i i >0, j > 1 and j = 2e 4+ 1 where e € N,
Ri,j consists of k copies of the request (fr,(,, 1. + & troq 1y + 5 0,17).
(2) Let R%j denote the set of requests accepted by ALG in phase ¢ group j.

We make four observations:

(a) For each i <+, I; < l. This holds because, as soon as j reaches value [, the While-loop is
exited and 7 is set to i.

(b) For each i <+, ALG accepts no more than |k/m|(l; — 1) requests in total among the
requests in phase 7 excluding the requests in phase ¢ group ;. This can be seen as follows:

The algorithm accepts at most | k/m | requests from phase ¢ group j for any odd j, j < I;.

Moreover, the total number of requests from phase i group j for all even j together
cannot be larger than the total number of requests from phase ¢ group j for all odd 7,

7 <l.
(c) ALG accepts no more than k requests in total among the requests in phase 1 group
l1, phase 2 group Io, ..., phase v group [,. This holds because any server accepting a

request in phase ¢ group [; will remain at ¢ and not be able to serve any further requests.

(d) ALG accepts more than (|k/m] + 1)(y — 1) requests in total among the requests in
phase 1 group [;, phase 2 group Ia, ..., phase v — 1 group I,—;. This holds because the
algorithm accepts strictly more than |k/m| requests in each of these v — 1 groups.

51:5
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According to (d), more than (|k/m] + 1) - (y — 1) servers are not in location 0 or  when
the requests in phase v are released. These servers cannot accept requests in phase v because
the release time of a request is too late for such a server to be able to serve it with empty
movement. If vy =m, k— (|k/m] +1)(y — 1) < |k/m], and hence the adversary stops to
release requests in phase m only after group {. Therefore, [, = no matter whether v < m
or y =m.

By (b) and (c), we have that ALG accepts no more than ([k/m] > (l; — 1)) + k
requests.

OPT accepts all the requests except the requests in phase 1 group [y, phase 2 group
la, ..., phase v — 1 group l,_;. We have Pg. = (kr ;Cf(li — 1)) + krl. Since Pr <

Rk S T 1 —1
H:/m?iil(lﬁ)l) = Lk/kmj , where the infimum
is taken over all possible values of ; for 1 < i < y—1, we get limp,,, o0 Pg+/Prr > W <

kr+k/m] >, (I; —1)r and lim;_,« inf;, < -

» Theorem 2. Fort < a < 2t, no deterministic on-line algorithm for kSmL-U can achieve
asymptotic competitive ratio smaller than 2.

Proof. Let | be a large, positive integer. Consider a sequence of requests that consists
of 2 phases where phase i, for ¢ = 1,2, consists of [; groups of requests, with each group
consisting of k identical requests. Let R;; denote the set of requests in phase ¢ group j.
Initially, the adversary releases R; ; with ¢ = 1 and j = 1, consisting of k£ copies of the request
ri = (v-t—a,v-t,0,1) for some v such that v € Nand v -t —a > 0. Let R} ; denote the set
of requests accepted by ALG in phase i group j. The adversary releases further requests
based on the following rules: If [R} ;| < g and j <1, let j = j+1 and release R ; consisting
of k copies of the request (f., +2(j — 1)t,t,, +2(j — 1)¢,0,1); otherwise, set I; = j and
stop to release requests in phase 1. Note that either [y =1, or Iy <l and [R}; | > g We
distinguish two cases.

Case 1: I; = [. Observe that |R} ;| < & for all 1 < j < ly. In this case, OPT accepts all
requests in Ry ; for all 1 < j < I. We have Pg- = [ - kr and Prp = 25‘1:1 |R’17j|r <
k. (1 = 1)r + kr, and hence limp,,. o Pr-/Pp > 2.

Case 2: I; <land |R, | > g Observe that |R] ;| < £ for all 1 < j < ly. The adversary
then releases Ry ; for all 1 < j < 12, where each Ry ; consists of k copies of the
request (£, + 2(l1 — 1 + j)t,t, + 2(I1 — 1 + j)t,2,0). Observe that |RY | servers
of the algorithm are in location 1 when the requests in Ry ; for all 1 < j < 1?2 are
released. The release time of a request with pick-up location 2 is too late for a server in
location 1 to be able to serve it with empty movement because the travel time between
location 1 and the pick-up location 2 is 2¢, which is greater than the booking interval
a. From this it follows that the |R/1,ll| servers of ALG cannot accept any requests
in phase 2. OPT accepts all requests in phase 2. We have Pg- > [? - kr. Since
P < SO0 R+ R I+ (k= Ry, D2 < & (12 + 1 — 1)r + R, |7, we have
limpR*Hoo PR*/PR/ > 2. A |

» Theorem 3. For a > 2t, no deterministic on-line algorithm for kSmL-U can achieve

competitive ratio smaller than 2 — 2m?—1' Furthermore, if k < 2(m — 1), no deterministic

on-line algorithm for kSmL-U can achieve competitive ratio smaller than 2.

Proof. The adversary releases a number of request sequences. We use k; (0 < k; < k) to
denote the number of requests that ALG accepts from the i*" request sequence.

Initially, the adversary releases the 1%¢ request sequence, consisting of k copies of the
request (v -t —a,v-t,0,1) for some v such that v € Nand v -t —a > 0. There are two
options that the adversary can adopt:
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Option 1. The adversary does not release any more requests. In this case, OPT accepts all
requests in the 1% request sequence. We have Pr« = k -7 and Pr/ = k; - r, and hence
Pp-[Pri > .

Option 2. The adversary releases the 2" request sequence, consisting of k copies of the
request (f,,,t,,1,0), and then releases m — 1 further request sequences (from the 37¢
request sequence to the (m + 1) request sequence), where the ith (3<i<m+1)
request sequence consists of k copies of the request (£,, +t,t,, +t,0,i —1). Then, the
adversary releases the (m + 2)*" request sequence, consisting of k copies of the request
(tr, +2t,t,, +2t,0—1,0) where o = argmin{k;,3 <4 < m+1}. Since the requests in the
1% request sequence are in conflict with the requests in the i** (2 <i < m + 2) request
sequence, kp servers of ALG accept at most one request each. OPT accepts all requests

in the 2"¢ request sequence, the o* request sequence and the (m + 2)" request sequence,

i.e., Ppx = 3kr.
Observe that k, < ’“ kl . Furthermore, the requests in the (m + 2)** request sequence

are in conflict w1th the requests in the i*" (3 <i < m + 1 and i # 0) request sequence.

Therefore, at most k, servers accept requests both in the (m + 2)*" request sequence and
the it" (3 <i < m + 1) request sequence. From this it follows that k, servers accept at
most three requests each (in the 2"¢, the o*, and the (m + 2)*" request sequence) and
the remaining servers of ALG, i.e., k — k1 — k, servers, each accept at most two requests
(in the 274 and the i*" request sequence where 3 < i < m + 1 and i # 0). Thus, we
have Prs < kyr +2(k — k1)r + k, - r and hence Pr < kyr + 2(k — k1)r + % - 7. Since

_ k
Pre = 3kr, Pr-[Pr 2 ey /oy

If we choose the option (from Option 1 and Option 2) that maximizes 1;:‘:, we have

Ppe
jm >max{k - k1+(k k1)/(m 1)} As ky increases, k decreases and 5;— k1+(,€ kl)/(m )
3k

increases. Since 2k gy ey S k—kl = ?ﬂ L.k, we have
Pg+/Pr > 2 — . The claimed lower bound of 2 ﬁ follows.
Furthermore, 1f k <2(m-1), we can argue as follows If kq < , we choose Option 1

and get Pg+/Pr = k—kl >2 Ifk > & , then k, < k pon kll < 1 and hence ko = 0. We choose

Option 2 and have Pr < kir + 2(k: — k1)r and thus Pg-/Pr > m > 2. The claimed
lower bound of 2 follows. <

3 Upper bounds for kSmL-U

In this section, we prove the upper bounds for the kSmL-U problem. Denote the requests
accepted by OPT by R* = {r},r5,... 7r‘*ﬂ,ﬁk'} and the requests accepted by an algorithm by
R ={r{,ry,...,7g}, indexed in the order in which they are released (and hence also in
order of non-decreasing pick-up times).

Let R*(e, p,d) denote the set of requests in R* which start at time e at location p and
drop off at location d. Observe that Ve,p,d, |R*(e,p,d)| < k. Let R*(p,d) denote the

set of requests in R* which start at location p and drop off at location d. Furthermore,
let R*(e,0,X) denote the set of requests in R* which start at time e at location 0, i.e.,

R*(e,0,X) = UJ., R*(e,0,d), and let R*(e, X,0) denote the set of requests in R* which
start at time e and drop off at location 0, i.e., R*(e, X,0) = [J/_, R*(e,d,0). Similarly, define

R*(0,X) = U7, R*(0,d) and R*(X,0) = U7, R*(d,0). The subsets R'(e,p,d), R'(p,d),

R'(e,0,X), R'(e, X,0) R'(0,X) and R'(X,0) of R’ are defined analogously.
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3.1 Upper bound for 0 < a <t

We propose an m-Partition Greedy Algorithm (m-PGA) for the kSmL-U problem when
0 < a < t, shown in Algorithm 2. The k servers are divided into m groups 51,52, ..., Sm-
From group S; to group S,,—1, each group has |k/m| servers; group S, has k — |k/m](m —
1) > [k/m] servers. The servers in group .S;, 1 < i < m, only serve requests whose pick-up
or drop-off location is i.

Algorithm 2 m-Partition Greedy Algorithm (m-PGA).

Input: k servers, requests arrive over time.
Step: When request r; arrives, if it is acceptable to a server in group Sg(,), where
g(r;) = max{p,,,pr, }, assign it to that server; otherwise, reject it.
(1) r'; denotes the newest request which is assigned to s; before r; is released. Set prr, =0and ir;zd =0
if server s; has not accepted any request before r; is released. ]
(2) r; is acceptable to a server s; (s; € S) if and only if p,, = pro, and tr, 2 ten

We refer to the servers of m-PGA as s7, s5, .. ., s}, and the servers of OPT as s}, 3, ..., 5.
For an arbitrary request sequence R = (r1,r2,..., ry), note that we have t,, <t for
1 <i < n because t,, — t,, = a is fixed.

Ti4+1

» Observation 4. m-PGA only accepts requests without empty movement because the
release time of a request is too late for a server to be able to serve it with empty movement
in kSmL-U with a < t. Therefore, each m-PGA server accepts requests with alternating
pick-up location, starting with a request with pick-up location 0.

» Observation 5. OPT only accepts requests without empty movement because the release
time of a request is too late for a server to be able to serve it with empty movement in
kSmL-U with a < t. Therefore, each OPT server accepts requests starting with a request
with pick-up location 0, and any two consecutive requests accepted by a server of OPT have
the following property: the drop-off location of the first request is the pick-up location of the
second request.

For simplification of the analysis, we suppose that for each d, 1 < d < m, OPT has k
separate servers for serving requests for travel between location 0 and location d, and those
k servers only serve such requests. This simplification does not decrease the profit gained by
OPT. In this way we can analyse the requests for travel between location 0 and location
d for different d independently. In the following, we focus on an arbitrary value of d and
assume that Sy contains |k/m| servers.

The analysis of the algorithm is divided into two parts. First, we reassign the requests in
R'(0,d), R'(d,0), R*(0,d) and R*(d,0) by repeated application of two reassignment rules,
and then we show that the profit accrued by the algorithm is within a certain factor of the
profit accrued by OPT.

Suppose OPT accepts kg requests that start at location 0 and drop off at location d, i.e.,
R*(0,d) = {r;%,r3°, .. rk*} and OPT accepts kT requests that start at location d and drop
off at location 0, i.e., R*(d,0) = {r;¢,r34,.. 7’1@*} The subsets R'(0,d) = {r}®, %, .. rk/}

and R'(d,0) = {rid,rid, .. rk,} of R’ are defined analogously.

Reassignment Rule 1. Consider the case that requests r*? and r*¢ are both assigned to the

same server for o < i and 7 and 7% are assigned to different servers. Suppose r;°

is assigned to s} and ¥ is assigned to s} where | # j. We reassign 7% to server s7,
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reassign all requests in R* \ ({r;0,r30, ... 70 U{rid, r3d, ..., r}) that are assigned
to tH (denote the set of these requests by 8? ) to server s;, and reassign all requests in

\ ({r9, 30, O ULryd, r3d, ... rr?}) that are assigned to s} (denote them by %;)
to server s}

I

As each server accepts requests with alternating pick-up location, starting with a request

with pick-up location 0, we have f,0 <t (for all i < k}) and {,.0 <t,.a (for all i < kf).

Thus, for i < kf, 7% and r;? are not in conflict, and hence reassigning ;¢ to server s} is

valid. Furthermore, any two consecutive requests in $; are not in conflict, so reassigning

all requests of J; to server s7 is valid. Observe that server s is at location d at time £,..a.

Because the first request in §R], say, request z, has pick-up location d and starts after ¢ *d,
reassigning request x to server s; is valid. As any two consecutive requests in #t; are not in
conflict, reassigning all requests of R; to server s; is valid. From this it follows that R*(0, d)
and R*(d,0) are still a valid solution with the same profit after the reassignment.

Reassignment Rule 2. Consider the case that requests r*0 and 7¢ are both assigned to
the server s, mod x for o < ¢ and ri and ri are not assigned to the server s; mod
(the case where r;¢ does not exist can be handled similarly). Suppose r° and 7% are
assigned to s}, j #* irnod k. We reassign 7‘*0 and r*l to server s; mod k, reassign all

requests in R*\ ({r;%, 730, ... 729y U{r?, r3%,...,7%}) that are assigned to s7 (denote
the set of these requests by §RJ) to server s} i, and reassign all requests in R*\
({ry0, 30, om0 U ryd, 3, ..., r79}) that are assigned to s} 4, (denote them by

i mod k) to server s7.

Since the requests r*o and r*d are both assigned to the server s, moq x for o < i, the last
request r; accepted by s, 4 Whose pick-up time is earlier than ¢,. +0 ends not later than the
last request accepted by s7 whose pick-up time is earlier than ¢, =0 if j # i mod k. Reassigning
all requests of :; to server s¥, 4, is valid. Because the first request in R; mod x accepted by
S;k mod
in %; mod & are not in conflict, reassigning all requests of R; 0q & to server s7 is valid. From
this it follows that R*(0,d) and R*(d,0) are still a valid solution with the same profit after
the reassignment.

Similarly, we reassign the requests in R’ (O, d) and R’(d,0) based on the above process until
both requests 70 and r/? are assigned to s/ for i < k. Note that this reassignment

i starts later than ¢, and starts at location p,..0, and any two consecutive requests

i mod |k/m]

does not affect the validity of R'(0,d) and R'(d,0), and Prs(g,qy and Pg/(q,0y do not change.

» Theorem 6. m-PGA is -competitive for kSmL-U if 0 < a < t.

Lk/ ]
Proof. We bound the competitive ratio of m-PGA by analyzing the requests between 0
and d for each d independently. As |J-, R'(0,d) UJ-, R'(d,0) = R and |J;-, R*(0,d) U
Ui, R*(d,0) = R*, it is clear that, for any a > 1, Pg+/Pg/ < « follows if we can show that
Pp+(0,d)/Pr(0,0) < @ and Pg-(q,0/Pr/(a,0) < o for all d, 1 < d < m. Consider an arbitrary
value of d from now on.

The proof uses similar ideas to the one used for the case a < t of car-sharing between two
locations (Theorem 2 in [9] and Theorem 2 in [10]), but there one can easily show that R*
can be transformed into R’ without reducing its profit, whereas we encounter the additional
difficulty that m-PGA has only |k/m] servers while OPT has k servers.

Let R*(0,d) (resp. R*(d,0)) be the subset of R*(0,d) (resp. R*(d,0)) that contains

the requests from the (ik + 1)* to the (ik + |k/m])?", for all 0 < i < w (resp.

0<i< W). In other words, R*(0,d) and R*(d,0) contain the requests that are accepted
by the first | k/m | servers of OPT. Suppose the first | k/m] servers of OPT accept k§ requests
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that start at location 0 and drop off at location d, i.e., R*(0,d) = {ri% 3%, ... ,rzg}, and the
first \_k /m] servers of OP T accept kj requests that start at location d and drop off at location 0,
ie., R*(d,0) = {rid rzd .. Tk*} Suppose m-PGA accepts ko requests that start at location
0 and drop off at location d, i.e., R'(0,d) = {r{,ry,..., 72}, and m-PGA accepts ki requests
that start at location d and drop off at location 0 ie, R(d,0) = {ri®,r5 ... .,rd}. We
claim that R*(0,d) (resp. R*(d,0)) can be transformed mto R'(0,d) (resp. R'(d,0)) without
reducing its profit, thus showing that Pg. (o4 < Prr(0,0) (resp. Ppre(a0) < Pri(a,0)), and

hence Pr«(0,4) < Lk/kmj Prio,a) (resp. Pr=(a,0) < Lk/kmj Pri(a,0))-

By Observation 5, when R*(d,0) consists of w requests, R*(0,d) consists of at least w
requests and of at most w + |k/m| requests, i.e., ki < ki < Ekf + [k/m].

As m-PGA accepts the request r which is the first acceptable request that starts at
location 0 and the request rs which is the first acceptable request that starts at location
d (rs is the first request in R that starts at location d and starts after t}w), it is clear that
tpo < tpro and tpra < tpea. If 0 # r3% we can replace ;9 by 7/* in R*(0,d), and if r? # r},
we can replace rld by i@ in R*(d,0). Similarly, if i < |k/m], request 7/ (resp. ri ) starts
earlier than request r; (resp. rjd). Otherwise, server s accepts request 779 and r* instead
of /0 and . If 70 ;é 719, we can replace 7% by 70 in R*(0,d), and if 7 # ri¢, we can
replace 77 by r/¢ in R* (d, 0).

Now assume, that the first i (i > |k/m]) requests in R*(0,d) are identical to the first i
requests in R’(0,d), and the first i requests in R*(d,0) are identical to the first i requests
in R'(d,0) where 1 <4 < k. Note that server ;.|\ .04 (k/m 41 mod [k/m

. . ; *0
location 0 at time tréi{»l)—tk/m]‘ If there are two requests r;}; and 7"1+1 accepted by server

S(i4+1) mod Uc/my there must also be two requests {5, and ri‘il accepted by Sl(2+1) mod [k/mj

| and s¥ | are at

and request 79 | (resp 7’1+1) starts earlier than request ri0) (resp. ridy). If P9 # rpdy,
we can replace Tz+1 by T1+1 in R*(0, d) and if r{? # rH_l, we can replace rz_‘il by rl‘il in
R*(d,0). If there are no such requests 9, and 7"1,+1 accepted by server S(z+1) mod [k/m ] then
i+1 >k}, and hence it follows that R*(d,0) is identical to R'(d,0) (or R'(d,0) even contains
additional requests).

If k§ = kT, the claim thus follows. If kf # k} (k§ — k¥ = 7 where 1 < 7 < |k/m]),
then R*(d,0) is already identical to R'(d,0), and the first k} requests of R*(0,d) are already
identical to the first kf requests of R'(0,d) by the argument above. Observe that server s

and s%, 1 < j < |k/m], are at location 0 at time £, e Ly If there is a request 7"1:?4-0

(1 < o0 < 7) accepted by server s%, there must also be a request 7’1@* accepted by server s,

+o J
and it starts no later than request Tk*+0 If ’I“;CO*_,'_O # Tk*+0, we can replace rk*+o by rk*+0

in R*(0,d) making R*(0,d) identical to R'(0,d). If there is no request r’ﬁ+0 accepted by

server s7, then k7 + o > kg, and hence it follows that R*(0,d) is identical to R'(0,d) (or
R'(0,d) even contains additional requests). As R*(d,0) is already identical to R’'(d,0), we
have that R*(0,d) U R*(d,0) is identical to R'(0,d) U R'(d,0) (or R'(0,d) U R'(d,0) even
contains additional requests). |

3.2 Upper bound for a >t

We propose a Bi-Partition Greedy Algorithm (Bi-PGA) for the kSmL-U problem when a > ¢,
shown in Algorithm 3. We assume that k£ > 2. The k servers are divided into two groups: a
group S¢ of |k/2] servers and a group S™ of [k/2] servers. The |k/2] servers in S° serve
requests that start at location 0, and the [k/2] servers in S™ serve requests that drop off at
location 0.
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Algorithm 3 Bi-Partition Greedy Algorithm (Bi-PGA).

Input: k servers, requests arrive over time.
Step: When request r; arrives, if p,, = 0 and r; is acceptable to a server in 5S¢, assign it to
that server; otherwise, if p,, = 0 and r; is acceptable to a server in S™, assign it to that
server; otherwise, reject it.

(1) R} (1 < j < k) is the list of requests accepted by server s; before r; is released.

(2) r; is acceptable to a server s; if and only if 7; is not in conflict with the requests in R;, ie., Vry € R;,
tr, — to | > 2t.
q

» Theorem 7. Bi-PGA is ﬁ—competitz’ve for kSmL-U if a > t. In particular, Bi-PGA is
2-competitive for kSmL-U if a > t and k is even.

Proof. For simplification of the analysis, we suppose that OPT can use k servers to serve
requests that start at location 0 and another k servers to serve requests that drop off at
location 0. This simplification does not decrease the profit gained by OPT. With this we
can analyse the requests in R'(0, X) and R'(X,0) independently. In the following analysis,
we focus on the requests that start at location 0. Let R'(0,X) = {r{,... ,r"R,(O)X)‘} and
R*(0,X) ={r},..., TI*R*(07X)|}’ indexed in the order in which the requests are released.

Similar to the proof of Theorem 6, the analysis of the algorithm is divided into two
parts. First, we reassign the requests in R'(0,X) and R*(0,X) by repeated application
of the following reassignment rule so that servers are assigned to the accepted requests in
round-robin fashion. Then we show that the profit gained by the algorithm is within a certain
factor of the profit accrued by OPT.

*
o mod k
*

T mod k- Suppose 7 is assigned to s}, j # i mod k. We reassign
77 to server s; mod k, reassign all requests in R* \ {r{,r3,... 7/} that are assigned to s}
(denote the set of these requests by #;) to server s} 4, and reassign all requests in
R*\ {ry,r5,...,rf} that are assigned to s

Reassignment Rule Assume that request r} is assigned to server s for o < i and 7} is

not assigned to the server s

N
i mod k

Since request 7 is assigned to server s’ .. for o < 1, the latest request r; with pick-up
time earlier than ¢, that is accepted by s7, 4, ends no later than the latest request with
pick-up time earlier than ¢,» that is accepted by s7 if j # i mod k. Reassigning all requests
of R; to server s}, 4 is valid. Because the first request in R; moa 1 accepted by sf 4 &
starts no earlier than tn* and any two consecutive requests in R; mod x are not in conflict,
reassigning all requests of R; 0q x to server s;‘“
R*(0,X) is still a valid solution with the same profit after the reassignment. Similarly, we
reassign the requests in R’(0, X) based on the above process until request 7} is assigned to
st ood k2 for i < |R'(0,X)|. Note that this reassignment does not affect the validity of
R'(0,X), and P/ (o, x) does not change.

The remainder of the proof proceeds similarly as the proof of Theorem 6, but here we
have that Bi-PGA has | k/2| servers while OPT has k servers and all requests accepted by
OPT and Bi-PGA start at location 0.

Let R*(0,X) be the subset of R*(0,X) that contains the requests from the (ik + 1)
to the (ik + [k/2])t", for all i. In other words, R*(0,X) contains the requests that are
accepted by the first |k/2] servers of OPT. Suppose the first |k/2] servers of OPT accept
k§ requests that start at location 0, i.e., R*(0,X) = {rf,r5,... ,r}zg}. Suppose Bi-PGA
accepts ko requests that start at location 0, i.e., R'(0, X) = {r{,75,..., 7 }. We claim that
R*(0, X) can be transformed into R’(0, X) without reducing its profit, thus showing that

PR*(O,X) S PR’(O,X)v and hence PR*(O,X) S ﬁPR’(O,X)'

is valid as well. From this it follows that

(denote them by R; mod ) to server s
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As Bi-PGA accepts the request r, which is the first acceptable request that starts at
location 0, it is clear that ¢, <t,... If 7 # r{, we can replace ri by 7} in (0, X). Similarly,
if i < |k/2], request r} starts earlier than request r}. Otherwise, server s} accepts request r;
instead of r}. If v} # rf, we can replace r by r; in R*(0,X).

Now assume, that the first i (i > |k/2]) requests in R*(0, X) are identical to the first i
requests in R'(0, X), where 1 < i < kj. Note that server s'(
are at location pr( e (pr(“rl) ) # 0) at time £, Pt nya)
ri,, accepted by server 5(z+1) mod k2]’ there must also be a request r;,; accepted by
S(i+1) mod |k/2) and request 7, starts no later than request rj, . If i, # i, we

i+1) mod |k/2] and 57 04 Lk/2]
If there is a request

can replace 77,, by rj,, in R*(0,X). If there is no such request r* 1 accepted by server
S(i+1) mod k2] then i +1 > kg, and hence it follows that R*(0, X) is identical to &'(0, X)
(or R'(0, X) even contains additional requests). <

4 kSmL-A: Arbitrary travel times

» Theorem 8. For a > 2Lt and an arbitrary number k of servers, no deterministic on-line
algorithm for kSmL-A can achieve competitive ratio smaller than %ln L.

Proof. Consider a star with m + 1 nodes and d(0,v) = v for 1 < v < m. Note that L =m
and hence In L = Inm. The adversary presents requests in vy phases, where phase i, for
1 < i <, consists of k identical requests. The requests are released based on the release
rule for kSmL-A shown in Algorithm 4. All requests appear at the same time.

Algorithm 4 Release Rule for kSmL-A.

Initialization: The adversary presents the requests in phase 1: k copies of the request
(v-t—a,v-t,1,0) for some v such that v e Nand v -t —a > 0.
1 =1;
While ¢ < m do
Let k; be the number of servers used in phase 1.
if Zj (G- kj) < ZEL | then break;
else 1 =7+ 1 and the adversary releases the requests in phase ;

v =1 ~
(1) Phase ¢ (1 <4 < m) consists of k copies of the request (tr,,tr,,%,0).

We make four observations.

(a) The requests in any two different phases are in conflict.

(b) Foralli <, >0 (j-k;) > 2k,

(c) y>1,k > 1nm;

(d) For all ¢ < 7, Z]= kj > 2k S, 1. (This follows from (b) and (c).)

Inm j=173

If v < m, the adversary has stopped releasing requests because Z 1K) < 2Zky

— Inm~
In this case, OPT accepts all requests in phase v, and we have Pr+ = 'ykr. Since Pr =

r 010 ky) < 3L Pre /PR > 5 - lum.

— Inm>’

Nowassumevzm Using (d) for i = m — 1, we have > 7" k > lnm‘z"'jnll; >

lnm -lnm = 2k, a contradiction because the algorithm has only k servers and by (a) no
server can serve requests from different phases. Therefore, the case ¥ = m cannot occur. <«
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The Classified Greedy Algorithm

We use a deterministic version of the “Classify and Randomly Select” paradigm, which has
been widely used in on-line interval scheduling and many other problems [2, 8], to design
a classified greedy algorithm (CGA). We partition the requests into classes based on their
travel time, and we assign a number of servers to each class of the requests. Given k servers
and a star of m + 1 locations whose edge lengths satisfy 1 < d(0,7) < L for all 1 <14 < m, we
use A = [log L] groups of servers. We require that & > A, and for ease of presentation we
assume that & is an integer multiple of X\. Group j, 1 < j < [log L], contains k/X servers that
only serve requests whose travel time is between 291t and 27t (we say that those requests
are in class j).

The classified greedy algorithm (CGA) can now be stated in a simple way: When a
request r; arrives, let j = [logd(p,,,pr,)] be the class of r; (if d(pr,,pr;) =1, set j =1). If
r; is acceptable to any server from group j, accept r; with that server. Otherwise reject it.

To simplify the analysis, we suppose that for each j, 1 < j < [log L], OPT can use k
separate servers to serve the requests whose travel times are between 2/~!¢ and 2/¢. This
simplification does not decrease the profit gained by OPT. In this way we can analyse the
requests in different classes independently. In the following analysis, we focus on an arbitrary
class j. For class j, let OPT} be the requests of class j that are accepted by OPT, and
let CGA; be the requests of class j accepted by CGA. It is clear that Pr~/Pr = O(logL)

follows if we can show that % = O(log L) for each j.

» Lemma 9. For each j, ‘lggiﬁl‘ =O(logL).

Proof. For the purpose of the analysis, partition the set of k servers of OPT; into k/\ sets
of size A arbitrarily, where A = [log L] as above. Each of these sets is assigned to a distinct
server s; among the k/\ servers of CGA;. For 1 <i<k/\ let A; be the set of A servers of
OPT; that is assigned to s}, and let R'(7) denote the set of requests accepted by s;.

For each OPT; server s* € A;, let R*(e) be the set of requests accepted by s* and R*(e) be
the set of requests accepted by s* that are not accepted by CGA;. Let R*(4;) = Us;eAi R*(e).
We claim that |R*(e)| < a|R'(j)| for some constant a. If this claim holds, we get that
OPT;| < [CGA |+, [R*(A)] < |CGA 1+, Ml R ()] = (1420)|CGA,| = O(N)-[CGA,],
proving the lemma.

It remains to prove the claim. Consider any request rj, in R*(e). As s, did not accept 7y,
s must have accepted another request r. with start time in (¢,, — 3 - 27t,t,, ]; otherwise, the
3+ 27t time units would have been sufficient for s, to serve the previous request and make an
empty move to the pick-up location of r,. We charge r;, to r.. In this way, every request in
R*(e) is charged to a request in R'(3).

We bound the number of requests that can be charged to a single request r. in R'(i). By
the above charging scheme, every request that was accepted by s and charges r. has a start
time in [t,_,t., + 3-27t). As all requests in class j have travel time at least 2/~ 1¢, the start
times of consecutive requests accepted by s} differ by at least 27=1¢. A half-open interval of

length 3 - 27t can therefore contain at most 23]?%]1'; = 6 request start times, and hence r. is
charged by at most 6 requests from R*(e). This establishes the claim, with o = 6. |

» Theorem 10. CGA is O(log L)-competitive for kSmL-A if a > 2Lt and the number of
servers is at least [log L].

5 Conclusion

We have studied an on-line problem with k servers and m + 1 locations in a star network that
is motivated by applications such as car sharing between an airport and hotels. In particular,
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we have analyzed the effects that different constraints on the booking time of requests have
on the competitive ratio that can be achieved. We have given matching lower and upper
bounds on the competitive ratio. It would be interesting to extend our results to the case of
other networks.
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