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Abstract

This thesis contains three essays on dependence modelling with high dimension vine cop-
ulas and its applications in credit portfolio risk, asset allocation and international financial
contagion.

In the first essay, we demonstrate the superiority of vine copulas over multivariate
Gaussian copula when modelling the dependence structure of a credit portfolio risk fac-
tors. We introduce the vine copulas to modelling the dependence structure of multi risk
factors log returns in the combined framework of both threshold model and mixture model
credit risk modelling.

The second essay studies asset allocation decisions in the presence of regime switch-
ing on asset allocation with alternative investments. We find evidence that two regimes,
characterized as bear and bull states, are required to capture the joint distribution of stock,
bond and alternative investments returns. Optimal asset allocation varies considerably
across these states and changes over time. Therefore, in order to capture observed asym-
metric dependence and tail dependence in financial asset returns, we introduce high di-
mensional vine copula and construct a multivariate vine copula regime-switching model,
which account for asymmetric dependence and tail dependence in high dimensional data.

The third essay explores the cross-market dependence between six popular equity
indices (S&P 500, NASDAQ 100, FTSE 100, DAX 30, Euro Stoxx 50 and Nikkei 225),
and their corresponding volatility indices (VIX, VXN, VFTSE, VDAX, VSTOXX and
VXJ). In particular, we propose a novel dynamic method that combine the Generalised
Autoregressive Score (GAS) Method with high dimension R-vine copula approach which

is able to capture the time-varying tail dependence coefficient (TDC) of index returns.
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Chapter 1

Introduction

1.1 The Challenges of Gaussian Copula Modelling

The multivariate Gaussian distribution is the most extensively used model for statistical
dependence model in the literature. However, the asymmetric dependence and fat tail
characteristics of financial returns trigger the growing demand for non-Gaussian models
(Cherubini et al. (2004)). Though the Student t copula allows for symmetric tail depen-
dence as measured by the tail dependence coeflicient or tail dependence function (Joe
et al. (2010)), it just has a single parameter to control tail dependence for all pairs of
variables. The two class of elliptical copula (Fang et al. (2002); Frahm et al. (2003)) and
Archimedean copula (Nelsen (2005)) received lots of attention. Elliptical copula normally
consists symmetric Gaussian and Student t copula (Demarta and McNeil (2005)), while
the class of Archimedean copula contains the tail asymmetric copula, such as Clayton
and Gumbel copula. Standard Archimedean multivariate copula allows for tail asymme-
try, however, it is still governed by a single parameter. Traditional bivariate Gaussian
and Archimedean copulas particularly exhibit two drawbacks. Only simple, symmet-
ric and therefore unrealistic dependence structures can be modelled by Gaussian copula.
When dimension higher than two, the applicable bivariate copula families is restricted
to either the elliptical family or the Archimedean family, secondly, though Archimedean
copula family, such as Clayton and Gumbel copula can capture asymmetric dependence,
in high dimension case, where if there are different dependence between different pairs of
variables, it is unable to be all captured by single Archimedean copula structure. Some

researchers try to extend the class of Archimedean copula (Joe (1997), Savu and Trede
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(2010), and Hofert (2011)), however, these extended models generate additional param-
eter restrictions. Puzanova (2011) introduce the novel hierarchical Archimedean copula
(HAC) to modelling tail dependent asset returns, while the building blocks of hierarchi-
cal Archimedean copula can only be chosen from the Archimedean copula family, which
still exhibit limitations. Modelling the dependence structure of financial returns mainly
based on the Gaussian copula, which has even received much criticism in a non-academic

context, see Salmon (2012).

1.2 The Superiority of Vine Copula Modelling

Against the above background of these criticism, it is necessary to introduce a flexible
and effective model to capture the asymmetric tail dependence of the different types of
financial returns. The Sklar (1959) theorem allows to construct general multivariate dis-
tributions separately from copula and marginal distributions. The specification of copula
can be done independently from the margins. Very recently, the vine copula become in-
creasingly popular in modelling large sets of financial returns dependence structure, the
vine structure split the dependence of large sets of returns into pair of returns, and easily
employ abundant of bivariate copulas as the building blocks to capture the dependence
structure between these pairs of variables. Aas et al. (2009) start to construct a class of
multivariate copula employing only bivariate copula specifications as dependency models
for the distribution of certain pairs of variables conditional on a specified set of variables.
These independent building blocks are called pair-copula. This approach can trace back
to Joe (1997) and was investigated and organized systematically by Bedford and Cooke
(2001) and Bedford and Cooke (2002). Aas et al. (2009) also proposed two subclass
of regular vines, canonical vines (C-vines) and drawable vines (D-vines). C-vines pos-
sess star structure in their tree sequence, while D-vine have path structures. Kurowicka
and Cooke (2006) focused on vine distributions with Gaussian pair-copula, but Aas et al.
(2009) allowed for several different pair-copula families, such as the bivariate Student t
copula, bivariate Gumbel and bivariate Clayton copula. D-vine has been employed in
many applications (Fischer et al. (2009); Min and Czado (2010); Chollete et al. (2009);
Hofmann and Czado (2010); Mendes and De Melo (2010); Salinas-Gutiérrez et al. (2010);
Erdorf et al. (2011); Mercier and Frison (2009); Smith et al. (2012)), C-vines are less com-
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monly used (Heinen and Valdesogo (2008); Czado (2010); Nikoloulopoulos et al. (2012))
consider both classes. The much general class of R-vine distributions has very few appli-
cations. One reason for this is the enormous number of possible R-vine tree sequences to
choose from. The importance of a good selection choice has also been noted by Garcia
and Tsafack (2011). The vine structure makes the Student t copula and Gaussian copula
as a special case. By decomposing a multivariate density into a cascade of conditional bi-
variate copulas, vine copulas, or say pair-copula construction, circumvent these problems.
There are numerous bivariate copula families with different properties can be served as
building blocks for vine copulas, see Joe (1997) and Nelsen (2007). This variety of bi-
variate copulas are exploited to form a rich and powerful multivariate distribution in large

dimension data case, which can model asymmetric and complex dependence structures.

1.3 Motivation and Objectives

In principle, modelling the dependence structure of financial variables is a non-trivial
task due to the complex dynamics of individual variables on the one hand, and the time-
varying dependence structure between the variables on the other hand. In order to solve
these problems, this PhD thesis attempt to develop multivariate modelling procedures
that address the complex dependence modelling challenges found in financial data and
improve methods for credit portfolio risk management, asset allocation and financial con-
tagion. The thesis is divided into three main chapters focusing on the aforementioned
risk management and asset allocation topics. In the chapter of Credit Portfolio Risk Mod-
elling with Vine Copulas, we introduce the vine copulas to modelling the dependence
structure of multi-risk factors log returns in the combined framework of both threshold
model and mixture model credit risk modelling. Since the dependence structure among
the multi-factor is complex and various, traditional multivariate Gaussian Copula is not
applicable to modelling the dependence between each pair of factors, and also is unable
to capture the different dependence between different pair variables with only one single
parameter, in this sense, it is necessary to introduce vine copula into modelling their com-
plex dependence. Empirical results demonstrate that two regimes, characterized as bear
and bull states, are required to capture the joint distribution of stock, bond and alternative

investments returns. In order to take into consider both regime switching and multi assets
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asymmetric dependence, we apply vine copula into asset allocation topic in the chapter
of Asset Allocation Benefits of Alternative Investments: Markov Regime Switching Reg-
ular Vine Copula Method. In Chapter of Modelling International Financial Contagion:
Generalised Autoregressive Score Regular Vine Copula Method, as we know, the depen-
dence structure of financial returns is not always static, since then we set time-varying
dependence structure in each pair bivariate copula in this chapter, in this sense, our vine
copula modelling not only capture the complex and asymmetric dependence among stock
indices returns and volatility indices returns, and also take into consider the time-varying
dependence structure. Our empirical results and backtesting results strongly support that

vine copulas are superior to conventional Gaussian copula in dependence modelling.
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Chapter 2

Credit Portfolio Risk Modelling with
Vine Copulas
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Abstract

In this paper, we demonstrate the superiority of vine copulas over multivariate Gaussian
copula when modelling the dependence structure of a credit portfolio risk factors. We
introduce the vine copulas to modelling the dependence structure of multi risk factors log
returns in the combined framework of both threshold model and mixture model credit
risk modelling. In previous literature, Gaussian copula is always adopted to modelling
the dependence structure of multi risk factors, while Gaussian copula can only capture
the symmetric dependence and cannot capture the fat tails. In such case, we introduce the
high dimension vine copulas in order to capture the asymmetric and fat tails characteris-
tics of multi risk factors log returns. In our study, we compare the R-vine mixed copula,
R-vine ¢ copula, C-vine mixed copula, C-vine ¢ copula with the traditional multivariate
Gaussian copula. We find that the vine copulas largely improve the ability of thresh-
old model and mixture model credit risk model, the conventional multivariate Gaussian
copula is deficient in modelling the dependence structure of a credit portfolio. In depth,
we also calculate the out-of-sample risk measure VaR, CVaR and their industry sector
risk contribution for credit portfolio separately based on various vine copulas and mul-
tivariate Gaussian copula setting, we find VaR and CVaR are seriously underestimated
based on multivariate Gaussian copula. In backtesting test, we introduce the Loss func-
tion based backtesting method-Model Confidence Set method to select and rank the best
copula modelling settings for multi risk factors, the R-vine mixed copula setting outper-
form other settings.

Keywords: Portfolio Credit Risk, Vine Copulas, C-vine copula, R-vine copula, Tail De-

pendence, Credit Portfolio, Dependence Structure
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2.1 Introduction

Interdependent default events, when defaults of different counterparties tend to occur si-
multaneously, pose major challenges for an adequate assessment of credit risk in banks’
lending and corporate bond portfolios. A prerequisite for accurate estimation of the asso-
ciated extreme losses requires, therefore, a credit portfolio model is capable of capturing
dependence between rare events. Under the structural approach for credit risk modelling,
a firms failure results from the asset value of the counterparty falling below the value of
its outstanding debt. Due to this direct link between the default and asset value of an insti-
tution, interdependent default events is able to be modelled based on the joint distribution
of asset values or, equivalently, asset returns. As a consequence, the tail dependence
properties of the joint distribution of asset returns play a vital role and would determine
frequency of low probability events, such as the simultaneous defaults of several obligors,
can actually occur. This would eventually affect the amount of portfolio unexpected loss
and the capital buffer required as protection against losses.

The above chain of reasoning demonstrates that correctly using portfolio credit risk
models with incorporated tail dependence determine a single bank’s ability to remain
solvent as well as the sustainability of the entire banking sector. From the perspective
of methodology, the Gaussian copula does not allow for heavy tails, the employment of
Gaussian copula of Li (2000) in credit portfolio risk is commonly blamed as the contrib-
utor of financial crisis of 2007-2009 (Salmon (2009)). In particular, valuation of credit
debt obligations (CDOs) is, to a large extent, depend on measuring the underlying pool
of loan portfolio credit risk. An overview of CDO-related write-downs at major financial
institutions can be found in Barnett-Hart (2009). An analysis of the financial crisis in a
wider scope can be found in Crouhy et al. (2008) or Hull (2008).

In spite of this, Gaussian dependence structures have been extensively employed by
practitioners and regulators. The symmetric assumption of Gaussian copula or Student t
copula and their lack of lower tail dependence coefficient are considered over simplistic
to capture the asymmetric tail dependence and fat tail characteristics of the risk factor
log returns, leading to a systematic underestimation of portfolio credit risk and capital
requirements and, in turn, endangering banks solvency. Therefore, it is crucial for the
portfolio credit risk models to incorporate tail dependence for bank’s solvency and sus-

tainability consideration. Modelling the dependence structure of a credit portfolio mainly
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based on the Gaussian copula, which even has received much criticism in a non-academic
context, see Salmon (2012). Against the above background of these criticism, we intro-
duce vine copulas (also referred to as pair-copula constructions) to the credit portfolio
risk modelling and try to prove that vine copulas are superior to conventional Gaussian
copula in credit portfolio risk modelling.

The multivariate Gaussian distribution is the most extensively used model for statisti-
cal dependence model in the literature. However, the asymmetric dependence and fat tail
characteristics of financial returns trigger the growing demand for non-Gaussian models
(Cherubini et al. (2004)). In this case, there emerges a growing need for more flexible
copula. Though the Student t copula allows for symmetric tail dependence as measured
by the tail dependence coeflicient or tail dependence function (Joe et al. (2010)), it just has
a single parameter to control tail dependence for all pairs of variables. The two class of el-
liptical copula (Fang et al. (2002); Frahm et al. (2003)) and Archimedean copula (Nelsen
(2005)) received lots of attention. Elliptical copula normally consists symmetric Gaus-
sian and Student t copula (Demarta and McNeil (2005)), while the class of Archimedean
copula contains the tail asymmetric copula, such as Clayton and Gumbel copula. Stan-
dard Archimedean multivariate copula allows for tail asymmetry, however, it is still gov-
erned by a single parameter. Traditional bivariate Gaussian and Archimedean copulas
particularly exhibit two drawbacks. Only simple, symmetric and therefore unrealistic de-
pendence structures can be modelled by Gaussian copula. When dimension higher than
two, the applicable bivariate copula families is restricted to either the elliptical family or
the Archimedean family, secondly, though Archimedean copula family, such as Clayton
and Gumbel copula can capture asymmetric dependence, in high dimension case, where
if there are different dependence between different pairs of variables, it is unable to be
all captured by single Archimedean copula structure. Some researchers try to extend the
class of Archimedean copula (Joe (1997), Savu and Trede (2010), and Hofert (2011)),
however, these extended models generate additional parameter restrictions. Puzanova
(2011) introduce the novel hierarchical Archimedean copula (HAC) to modelling tail de-
pendent asset returns which can be helpful for measuring portfolio credit risk within the
structural framework. While the building blocks of hierarchical Archimedean copula can
only be chosen from the Archimedean copula family, which still exhibit limitations.

In this context, it is necessary to introduce a flexible and effective model to capture
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the asymmetric tail dependence of the different types of risk factor log returns. The Sklar
(1959) theorem allows to construct general multivariate distributions separately from cop-
ula and marginal distributions. The specification of copula can be done independently
from the margins. Very recently, the vine copula become increasingly popular in mod-
elling large sets of financial returns dependence structure, the vine structure split the de-
pendence of large sets of returns into pair of returns, and easily employ abundant of bi-
variate copulas as the building blocks to capture the dependence structure between these
pairs of variables. Aas et al. (2009) start to construct a class of multivariate copula em-
ploying only bivariate copula specifications as dependency models for the distribution of
certain pairs of variables conditional on a specified set of variables. These independent
building blocks are called pair-copula. This approach can trace back to Joe (1997) and
was investigated and organized systematically by Bedford and Cooke (2001) and Bedford
and Cooke (2002). Aas et al. (2009) also proposed two subclass of regular vines, canon-
ical vines (C-vines) and drawable vines (D-vines). C-vines possess star structure in their
tree sequence, while D-vine have path structures. Kurowicka and Cooke (2006) focused
on vine distributions with Gaussian pair-copula, but Aas et al. (2009) allowed for several
different pair-copula families, such as the bivariate Student t copula, bivariate Gumbel
and bivariate Clayton copula. D-vine has been employed in many applications (Fischer
et al. (2009); Min and Czado (2010); Chollete et al. (2009); Hofmann and Czado (2010);
Mendes and De Melo (2010); Salinas-Gutiérrez et al. (2010); Erdorf et al. (2011); Mercier
and Frison (2009); Smith et al. (2012)), C-vines are less commonly used (Heinen and
Valdesogo (2008); Czado (2010); Nikoloulopoulos et al. (2012)) consider both classes.
The much general class of R-vine distributions has very few applications. One reason
for this is the enormous number of possible R-vine tree sequences to choose from. The
importance of a good selection choice has also been noted by Garcia and Tsafack (2011).
The vine structure makes the Student t copula and Gaussian copula as a special case. By
decomposing a multivariate density into a cascade of conditional bivariate copulas, vine
copulas, or say pair-copula construction, circumvent these problems. There are numerous
bivariate copula families with different properties can be served as building blocks for
vine copulas, see Joe (1997) and Nelsen (2007). This variety of bivariate copulas are ex-
ploited to form a rich and powerful multivariate distribution in large dimension data case,

which can model asymmetric and complex dependence structures.
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However, the employment of this flexible vine copulas comes with the first question
that there are several different vine tree structures to choose from and it is a priori not clear
which structure to choose. Standard procedures to tackle this problem have been studied
and evolved over the past years (see Dissmann et al. (2013), for instance). In our analysis,
we will show how these approaches can be applied in the credit portfolio risk context.
Comparing to the work of Changqing et al. (2015), we are not restricted to D-vines and
allow for higher dimensions. For a comprehensive collection of research on vine copulas,
we refer to Kurowicka and Joe (2011) or Aas et al. (2009).

Credit portfolio risk is mainly determined and driven by two components, namely
obligor-specific default risk and cross-obligor dependencies. To model the former, we
apply latent variable model, or say, threshold model, structural model, which originates
in Merton (1974) and in which default happens when the asset value of a company falls
below its liabilities (Alternative obligor-specific default risk models are reduced form (or
intensity) models, see Jarrow and Turnbull (1995) and Duffie and Singleton (1999)). For
a comparison of both model classes, see Jarrow and Protter (2004) or Arora et al. (2005).

Most of the criticism of structural models concerns the accuracy of credit spread pre-
dictions, whereas the focus of this paper is on the dependence structure among obligors.
Therefore, we set aside these criticism. In our analysis, the dependence structure of the
credit portfolio is modelled by vine copula functions. An alternative approach to model
the dependence structure are factor models, see Gordy (2003) or Dorfleitner et al. (2012).
Mixture model, which possess several superior characteristics to latent variable model,
is another type of credit risk model extensively used in financial industry. The mixture
model seems employ different default rules comparing to latent variable model, neverthe-
less, Gordy (2003) proves that latent variable model and mixture model can be mapped
to each other. In this sense, in our study, we construct a common framework following
Gordy (2003) to test and prove the superiority of vine copula dependence modelling based
on both of latent variable and mixture credit risk models.

Inferring credit or default correlations from the equity market may seem problematic
at a first glance. The classical threshold model-Merton model propose the use of asset
values to calibrate credit correlations, while this approach has some limitations pointed
out by Frye (2008). Furthermore, owing to various difficulties concerning the accessibil-

ity of asset values, equity prices are widely adopted as a substitute. Many banks rely on
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equity data for the calibration of the dependence structure of their internal credit portfolio
models. For instance, the dependence structure of CreditMetrics model is estimated via
equity data (see Morgan (1997)) and Hull and White (2004) propose that default correla-
tion between two companies is usually assumed to be the same as the correlation between
their equity returns. In addition, equity returns are the most important variable in pre-
dicting defaults, since they provide an empirical link between equity data and credit risk,
see Fabozzi et al. (2010). Thus, from a practical point of view, though the use of equity
returns is justified, we still adopt equity returns as the substitute of asset returns.

Based on the analysis above, in this paper, we fit both C-vine and R-vine and tradi-
tional multivariate Gaussian copula separately to monthly equity returns of 92 multiple
industry sector equity indices log returns. As bivariate building blocks, we employ the
Gaussian (no tail dependence), the Student t (with symmetric tail dependence) and the
Clayton copula (lower, but not upper tail dependence). For the Clayton family, we also
include the rotated versions (90, 180 and 270 degrees) as well as survival version.

The remainder of the paper is structured as follows: Section 2 lists related literature
of vine copula application and portfolio credit risk study. Section 3 outlines the credit
portfolio model setting used in the paper. Section 4 describes and analyses the data we
adopt in this paper. Section 5 talks about the selection of vine copula. In section 6, we
apply monte carlo simulation method to obtain portfolio loss distribution and measure
the credit risk of our test portfolio. Then we investigate the risk factor VaR and CVaR
contribution of various industry sectors in Section 7. Finally, we summarise the main

results and draw conclusions in section 8.

2.2 Multi-factor Credit Portfolio Model Setup

2.2.1 Threshold Model Setup

In the analysis of mechanisms for dependent credit events, existing credit risk models
are normally divided into two classes: latent variable models, or say threshold model,
structural model, such as KMV (Kealhofer and Bohn (2001), Crosbie and Bohn (2003))
or CreditMetrics (Morgan (1997)) which essentially descend from the firm-value model
of Merton (1974); in latent variable models default occurs if a random variable X (termed

a latent variable even if in some models X may be observable) falls below some threshold.
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Dependence between defaults is caused by dependence between the corresponding latent
variables.

Another class, Bernoulli mixture models such as CreditRisk" developed by Credit
Suisse Financial Products (Suisse (1997)) and more generally the reduced form models
from the credit derivatives literature such as Lando (1998) or Duffie and Singleton (1999),
where default events have a conditional independence structure conditional on common
economic factors. In the mixture models the default probability of a company is assumed
to depend on a set of economic factors, given these factors, defaults of the individual
obligors are conditionally independent. This division reflects the way these models are
conventionally presented rather than any fundamental structural difference and the recog-
nition that CreditMetrics (usually presented as a latent variable model) and CreditRisk™
(a mixture model) can be mapped into each other dates back to Gordy (2000) and also
Lagrado and Osher (1997).

Nevertheless, latent variable model still takes several drawbacks, therefore, in our
study, in order to avoid the bad effects of shortcomings of threshold model and investigate
whether our vine copula model applicable to in both of the two classes credit risk model.
As mentioned above, due to the two model classes can be mapped into each other, thus we
work one step further and reduced to a common framework. The useful mapping direction
is to rewrite latent variable models as Bernoulli mixture models, which we will discuss in
details in subsequent section.

The Vasicek single factor threshold model (Vasicek (1987); Vasicek (1991); Vasicek
(2002)), KMV and CreditMetrics can be considered to descend from the firm-value
model of Merton (1974), where default is modelled as occurring when the asset value
of a company falls below its liabilities. In statistical literatures, such as Joe (1997), such
models are under the general heading of latent variable models. Based on above credit
models, we first construct our multi-factor latent variable model, then rewrite it as mixture
model.

Following the CAPM framework, risk is divided into systematic risk and idiosyncratic
risk. According to modern portfolio theory, the idiosyncratic risk, which is the firm-
specific risk, can be diversified, while the systematic risk is impossible to be diversified.
It is assumed that the systematic risk of counterparty is adequately described by a set

of risk factors. In both KMV and CreditMetrics, they consider a random vector X =
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X1, ....X,,) , in which dependence is described by a multivariate Gaussian copula, where
X; is an underlying latent variable for counterparty i at time 7'. In order to improve this
threshold model, we employ the high dimensional vine copula instead of multivariate
Gaussian copula to describe the dependence structure of multiple systematic risk factors,
and then we evaluate the risk measure of VaR and CVaR for portfolio loss distribution and
compare to the case that the risk factors following the multivariate Gaussian distribution
and various different vine copula settings.

In our case, we just take into account the default events without consideration of the
credit immigration. Let H; = 1;y,.4, be the indicator function for counterparty k at time
horizon T'. Therefore, the H; is assumed to take the value of O or 1, when the counterparty
default, which means the counterparty falls below the threshold, the H; takes the value
1, and when there’s non-default, it takes the value 0. Let Y; be a random variable with
continuous distribution function F;(x) = P[Y; < x], and let d; € R such that H;=1 if and
only if Y; < d;. The parameter d; is called the default threshold and (Y;,d;) is the latent
variable model for H;, as described in Frey et al. (2001). As in KMV model (Crosbie
and Bohn (2002)), Y; represents the asset value monthly log return of counterparty k. The

model can be formulated mathematically in the following way,

Yi = riXi + 1- l",'ZEl', Xi, € ~ N(O’ 1) (21)

where r; denotes the systematic risk factor loading and X; denotes the composite risk

factor which is defined as

K
Xi= > @uZ Z~N©,1) (2.2)
k=1

It must hold that Y% | a; = 1 in order for X; to satisfy unit variance and the asset
return correlation in-between obligors i and j is thereby fully determined through the set

of systematic risk factors

K
p =corr(Y,Y;) = rir; Z @i jk (2.3)
k=1

When K = 1, the model turns to be a single-factor model, while K > 1 corresponds
to a multi-factor model. Where the X; represents the composite systematic risk factors,

which contain a set of industry sector factors representing the systematic risk of indus-
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try sector. The parameter r; is the coeflicient of determination for systematic risk (how
much of the variance can be explained by the risk factors). Let 7 be the (unconditional)
probability of default for counterparty i, i.e. 7=F(d). r is assumed to be given from some
internal or external rating system or other procedures. The dependence structure of these
risk factors are captured by vine copulas in our paper. The a;; are the composite risk fac-
tor loading for the ith instrument (Y5 , a; < 1), represent the sensitivity of the ith obligor
to the kth systematic risk factor. The default probabilities are prescribed exogenously, for
example, from a bank’s internal credit rating model, with the probability of default over
the time horizon for the ith name denoted by d; and the ¢ ~ N(0,1) are standard normal
variables representing the idiosyncratic risk factor independent of Z, E[Z]=0.

Conditional on the systematic risk factors Z = (Zi, ..., Z)T, obligor defaults are inde-
pendent and conditional default probabilities for each name are given by

F,'_l(di) - riX;

Q(Z) = PlY; < dj|Z) = D (2.4)

1- rl.2

where @ denotes the standard normal distribution function. As we know, in classical
industrial models such as KMV and CreditMetrics, the Y; is assumed to follow standard
normal distribution, whereas in our case, the distribution of Y; is unknown. Therefore,
we work with the estimated conditional probability of default Q(Z) obtained by replacing
F l.‘l (d;) by the empirical quantile estimate F i“ (d;).

Now we consider a credit portfolio consists / obligors, i = 1,2, 3, ..., I, can be charac-
terized by three parameters: the exposure at default denoted by EAD;, loss given default
denoted by LGD; and the probability of default PD;. Therefore, the credit portfolio loss

incurred due to default of obligor i is given by
Ll' = EAD, . LGD, . Hl' =W;- Hl' (25)

where w; = EAD; - LGD; is the effective exposure of obligor i. Then the portfolio loss is
defined as

L= le L. (2.6)

Regarding the distribution of the portfolio loss variable PL, the Value at Risk at a pre-
specified confidence level g (VaR,) and for the Conditional Value at Risk (CVaR,). VaR
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is commonly used in risk management and controlling as a measure of portfolio credit
risk, although it is incoherent (not sub-additive in general). It quantifies the minimum
portfolio loss in the worst (1 — g) X 100 percent of cases. VaR,(PL) equals the value of

the quantile function of the random variable PL
VaR,(PL) := Fp;(q) 2.7)

CVaR is a coherent risk measure which quantifies the expected portfolio loss in the
worst (1 — g) x 100 percent of cases. CVaR,(PL) equals the conditional tail expectation

beyond the g-quantile of the portfolio loss distribution

CVaR,(PL) := E[PLIPL > VaR,(PL)] (2.8)

2.2.2 Threshold Model represented as Mixture Model

Another class of main credit risk model, the mixture model, such as Bernoulli mixture
format, which has a number of advantages over the threshold format. Bernoulli mix-
ture models exhibit more applicable to Monte Carlo simulation risk studies. Mixture
models are considered to be more convenient for statistical fitting purposes. Especially
for large size portfolio, whose behaviour modeled by Bernoulli mixtures model can be
understood and analysed in terms of the behaviour of the distribution of the common eco-
nomic factors. Due to these advantages, a question raised, can we adopt mixture model
as a substitute of threshold model? Despite the format of mixture models seem to have
different structure from the threshold models at first glance, it is important to realize that
the majority of useful threshold models can be represented as Bernoulli mixture models
mathematically.

To motivate the subsequent analysis we begin by computing the mixture model rep-
resentation of the multi-factor threshold model as we set up in previous section. It is
convenient to substitute the factor Z; in the threshold representation with the variable
negative ¥ in the mixture representation; this yields conditional default probabilities that
are increasing in ¥ and obtains the formula that are in line with the Basel IRB formula.

With Z,=-Y¥, the multi-factor model takes the form
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K
Y,-:—r[Za,-k‘I’+ \/l—r,-zel- (29)
k=1

Under threshold model default definition, company i defaults if and only if ¥; < d; and
hence if and only if /1 — r2€ < d; + r; Z,{; a; V. Since the variables €, ..., €, and ¥ are

independent, default events are independent conditional on ¥ and we can compute

K
pi) = P(Yi = 11¥ = y) = P(V1 1?6 < di+ 17 ) aw¥¥ = )
k=1

_ (I)(di + 1 Y aiklﬁ) (2.10)

\/1 - r,-2
where we have used the fact that ¢ is standard normally distributed. The threshold is

typically set so that the default probability matches an exogenously chosen value p;, so

that d; = F~'(p;). In this case we obtain

F U p) + 1Y, anp
\/1 — I",'z

In the following part, we want to extend this representation to more general threshold

pi(y) =@ (2.11)

models with a factor structure, which can be matched to our multi-factor model setting,
and different copula setting for the comparison study of different competing vine copula
models. Therefore, we first give a condition that ensures that a threshold model can be
written as a Bernoulli mixture model.

Definition. (McNeil et al. (2015)) A random vector X has a p-dimensional conditional
independence structure with conditioning variable ¥ if there is some p < m and a p-
dimensional random vector ¥ = (¥, ...,'¥,)" such that, conditional on ¥, the random
variables X, ..., X, are independent.

In our case, the conditioning variable is taken to be ¥ = —Z;. The next lemma gener-
alizes the computations to any threshold model with a conditional independence structure.

Lemma. (McNeil et al. (2015)) Let (X, d) be a threshold model for an m-dimensional
random vector X. If X has a p-dimensional conditional independence structure with con-
ditioning variable ‘¥, then the default indicators Y; = Ijx.<4, follow a Bernoulli mixture
model with factor W, where the conditional default probabilities are given by p;(¥) =
PX; < dj|¥Y = ¥).

Proof. Fory € {0,1}" definetheset B:=1<i<m:y;=1andlet B =1,....,m\ B. We
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have

P(Y =yl¥ =v) (2.12)

:P(ﬂx,- sdiﬂXi > di|¥ =y)

ieB ieB¢
=[ [P <arw =) | [ - PXi < ¥ = )
i€B i€B°

Hence, conditional on W=y, the Y; are independent Bernoulli variables with success

probability p;(¥) := P(X; < d;|'¥ = ¢).

Poisson Mixture Models and CreditRisk*

Since defaults is typically a rare event, it is possible to approximate Bernoulli indicator
random variables for default with Poisson random variables and to approximate Bernoulli
mixture models with Poisson mixture models. By choosing independent gamma distri-
butions for risk factors ¥ and using the Poisson approximation, we obtain a particularly
tractable model for portfolio losses, known as CreditRisk™.

Poisson approximation and Poisson mixture models. (McNeil et al. (2015)) To be
more precise, assume that, given the factors ¥, the default indicator variables Y1, ..., ¥},
for a particular time horizon are conditionally independent Bernoulli variables satisfying
PY; = 1|¥Y = ¢) = p:(¥). Moreover, assume that the distribution of W is such that the
conditional default probabilities p;(¥) tend to be very small. In this case, the Y; variables

can be approximated by conditionally independent Poisson variables ¥; satisfying ¥;|¥ =

W ~ Poi(p;(¥)), since

PY;=0¥=y)=e"Y x1-p(y), (2.13)

P(Y; = 11¥ = ¢) = pi)e ™™ = pi(). (2.14)

Moreover, the portfolio loss L = )", ¢;6;Y; can be approximated by L= py 0,Y;.
Of course, it is possible for a company to “default more than once” in the approximating
Poisson model with a very low probability.

We now give a formal definition of a Poisson mixture model for counting variables
that parallels the definition of a Bernoulli mixture model.

Definition (Poisson mixture model). (McNeil et al. (2015)) Give some p < m and a
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p-dimensional random vector ¥ = (4, ..., ¢,)’, the random vector Y=(¥,,...,Y,) follows
a Poisson mixture model with factors W if there are functions 4; : R” — (0,0), 1 <i < m,
such that, conditional on W=y, the random vector Y is a vector of independent Poisson
distributed random variables with rate parameter 4;(y).

If Y follows a Poisson mixture model and if we define the indicators ¥; = I, (7:>1)» then'Y
follows a Bernoulli mixture model and the mixing variables are related by p;(-) = 1—e~40,

CreditRisk™ model. The CreditRisk™ model for credit risk was proposed by Credit
Suisse Financial Products in 1997 (see Credit Suisse Financial Products 1997). It has the
structure of the Poisson mixture model, where the factor vector ¥ consists of p indepen-
dent gamma-distributed random variables. The distributional assumptions and functional
forms imposed in CreditRisk™ make it possible to compute the distribution of the number
of defaults and the aggregate portfolio loss fairly explicitly using techniques for com-
pound distributions and mixture distributions.

The stochastic parameter A;(‘'¥) of the conditional Poisson distribution for firm i is

assumed to take the form

4(P) = kw,¥ (2.15)

for a constant k; > 0, for non-negative factor weights w; = (w;,...,w;,)" satisfying
2.jwij = 1, and for p independent Gamma(a;, 3;) distributed factors ¥;, i = 1, ...p, with
parameters set to be a; = ; = 0']‘.2 foro; > 0 and j = 1,...p. This parametrization of the

2

gamma variables ensures that we have E(¥;) = 1 and var(¥;) = o ;-

It is easy to verify that
E(Y)) = E(E(VIY) = E(L(P)) = KEWY) = k;, (2.16)

so that k; is the expected number of defaults for obligor i over the time period. Setting

Y; = Iy, we also observe that
P(Y; = 1) = E(P(Y; > O[¥)) = E(1 — exp(k;w;'P)) ~ k,E(W,¥) = k; (2.17)

for k; small, so that k; is approximately equal to the default probability.
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2.3 Review of Vine Copula

In order to accurately describe the dependence structure of multiple systematic risk fac-
tors, in our study, we employ the high dimensional vine copula to capture the asymmetric
dependence of systematic risk factors. Vine copula is a type of high dimensional copula
which can individually choose their building blocks from a wide range of bivariate cop-
ula families, so that it can easily to capture the asymmetric dependence characteristics
between pairs of variables. In this section, following Nikoloulopoulos et al. (2012), we

briefly review the vine copula construction and inference.

2.3.1 Construction of Vine Copula

A d-variate copula C(uy, ..., uy) is a cumulative distribution function (cdf) with uniform
marginals on the unit interval, see examples in Joe (1997) and Nelsen (2007). Regard-
ing the theorem of Sklar (1959) for multivariate case, if F;(y;) is the cdf of a univariate
continuous random variable Y;, then C(F'(y;), ..., Fa(y4)) is a d-variate distribution for
Y = (Y4, ..., Yy) with marginal distributions F';, j = 1,...,d. Conversely, if H is a con-
tinuous d-variate cdf with univariate marginal cdfs Fy, ..., F,, then there exists a unique

d-variate copula C satisfy that

F(y) = C(F1(y), -, FaQa)), VY = (15 -5 Ya)- (2.18)

The corresponding density is

f(Y)=ﬂ=C(F(Y) Fu( ))ﬁf'( ) (2.19)

Oy;...0y, 1O, o BV =1 i .
where c(uy, ..., ug) 1s the d-variate copula density and f;, j = 1, ..., d, are the corresponding
marginal densities. As we know, a copula C has reflection symmetry if (Ui, ..., U;) ~

C implies that (1 — Uy,...,1 — U,) has the same distribution C. When we require the
copula models have the characteristics of reflection asymmetry and flexible lower or upper
tail dependence, then vine copulas (see Bedford and Cooke (2001); Bedford and Cooke
(2002); Kurowicka and Cooke (2006) and Joe (1997)) become the best choice.

A d-dimensional vine copulas are constructed through sequential mixing of d(d—1)/2

linked bivariate copulas by trees and their cdfs involve lower dimensional integrals. Since
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the densities of multivariate vine copulas can be factorized in terms of linked bivari-
ate copulas and lower dimension marginals, they show the advantage of computationally
tractable.

According to the different types of tree structures, various vine copulas can be con-
structed. Two special cases are D-vines and C-vines while R-vines is their more general
format.

With respect to the d-dimensional C-vine copula, the pairs at tree 1 are 1, 1, for i =
2,...,d, and for tree /(2 < [ < d), the (conditional) pairs are ,i|l,...,[—1fori =1+1,...,d,
the conditional copulas are specified for variables / and i given those indexed as 1 to /— 1.

For C-vines density is given by (Aas et al. (2009)),

d d-1 d-j
f) = 1_[ FeOn) n Cij jli it jmo ! (F i1 i ot QilYiw i j=1)s Fijlict,. i jo1 Qi jYis1:i4 1)),
kel =1 =l

(2.20)
where yi,.., = (Vx5 ---»Vk,), index j denotes the tree, while i runs over the edges in each
tree.

Regarding the d-dimensional D-vine copula, the pairs at tree 1 are i,i + 1, for i =
1,...,d — 1, and for tree /(2 < | < d), the (conditional) pairs are i,i + lli + 1,...,i + [ — 1
fori =1,...,d — [, the conditional copulas are specified for variables i and i + [ given the

variables indexed in between.

d d-1 d—j
fo) = l—[fk(yk) 1_[ Cjjrill o judl (F i jm1 Y15 s Yjm1)s Fimitt o jm1 O jailY 15 -0 Y j=1)),
k=1 =1 =l

(2.21)
where yi,«, = (V&5 ---» Vi), Index j denotes the tree, while i runs over the edges in each
tree.

For more general d-dimension regular vines, there are d — 1 pairs at tree 1, d — 2 pairs
in tree 2 where each pair has one element in common, and for / = 2,...,d — 1, there are
d — [ pairs in level [ where each pair has [ — 1 elements in common. Other conditions for

regular vines can be found in Bedford and Cooke (2001) and Bedford and Cooke (2002).

2.3.2 Inference of Vine Copula

In this part we discuss the parameter estimate of the C-vine (canonical vine copula) den-

sity given by (20). We omit the discussion of estimate of D-vine (drawable vine copula)
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density because we don’t employ D-vine in modelling the dependence structure of risk
factors in our analysis. Inference for the general regular vine is also feasible though not
straightforward, details of R-vine inference can be found in Dissmann et al. (2013).

Here we follow the inference method of Aas et al. (2009). Assume that we observe
n variables at time T time. Let x; = (x;1,...,X;7);i = 1,...,n, denote the data set. For
simplicity, we assume that the 7 observations of each variable are independent over time.
Independence assumption is not a limiting condition, in our empirical analysis, we will
adopt univariate time series model fit to the margins and analyze the obtained residuals.

Since the margins are unknown, the parameter estimation must rely on the normalised
ranks of the data. The approximate uniform and independence means what is being
maximised is a pseudo-likelihood maximization. We extend the method of maximum
pseudo-likelihood originally proposed for copula by Oakes (1994), and proved to be
asymptotically normal and consistent both by Genest et al. (1995) and Shih and Louis
(1995). Moreover, by adopting simulation method, Kim et al. (2007) indicate that the
maximum pseudo-likelihood method outperform the maximum likelihood method when
the marginal distributions are unknown.

For the canonical vine, the log-likelihood is given by

n—

n-j T
Z loglcj jvin,..i-IAF (X ey coos Xjm1 )y F(Xjaif X165 ooes Xj1 )} (2.22)
1

1
=1 =1 =1
For each bivariate copula there is at least one parameter to be estimated which depends
on which kind of bivariate copula is chosen. The log-likelihood must be numerically
maximised over all parameters.
The marginal conditional distribution in vine copula construction is given by Joe

(1997), for each j,
acx,vjlv_j{F(xW—j), F(vjlv_j)}
6F(Vj|V_j)

F(x|v) = (2.23)

where C; j 1s a bivariate copula distribution function. For the special case where v is

univariate, we have
OC, \F(x), F(v)}

Fav) = OF(v)

(2.24)

Then we introduce 4 function (Aas et al. (2009)), h(x, v, ®) denotes this conditional dis-

tribution function when x and v are uniform, i.e., f(x) = f(v) = 1, F(x) = xand F(v) = v.
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That is,
0C,,(x,v,0)

h(x,v,0) = F(x|v) = ™

(2.25)

where the parameter v denotes the conditioning variable and ® represents the set of pa-
rameters for the copula of the joint distribution function of x and v. Let A~ !(x, v, ®) be the
inverse of the A-function with respect to the first variable u, or say the inverse of the condi-
tional distribution function. ®;; is the set of parameters of the corresponding copula den-
Further, L(x, v, ®) is the log-likelihood of the chosen bivariate copula with parameters ®
given the data vectors x and v. Which is,

L(x,v,0) = loge(xy, v;, ©). (2.26)

T
t=1
where c(u, v, ©) is the density of the bivariate copula with parameters ®. According to
the setting above, we can first estimate the parameters of the copula of tree 1 with the
original data, then compute conditional distribution functions for tree 2 using the copula
parameters from tree 1 and the A-function, repeat the process, estimate the parameters of
the copula of tree 2 using the observations in last step, and then continue to repeat last

step process until obtain all parameters. Finally, we can obtain the starting value of the

parameters for numerical maximisation.

2.4 Modelling Marginal Model

Since Sklar (1959) theorem demonstrates that we can model the marginals and depen-
dence structure separately, we therefore discuss the marginal modelling in this section.
Let the random process r; denote the financial asset returns which can be characterized

by an autoregressive moving-average (ARMA) model as follows
P q
rr=ap+ Z a;r,_; + Z bie_j+¢& (2.27)
i=1 =1

where q is a constant; p and g are the order of autoregressive and moving average pro-
cesses respectively for the conditional mean. The error term ¢, can be split into a stochastic

part x; and a time-dependent standard deviation o, so that €, = o,x,. The conditional vari-
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ance o is characterized by an asymmetric GARCH model, namely GJR-GARCH(1,1)
(see Glosten et al. (1993)).

2 _ 2 2 2
o; = wi+ i€, +Bioi, +yi€, L (2.28)

where [;,.; = 1if ¢,y <0,and [;,-; =0if g,y > 0.

The filtered returns x, = €/0,, t = 1,...,T; follow a strong white noise process with
a zero mean and unit variance. In our empirical work, we adopt Hansen (1994)’s skewed
Student ¢ distribution x;, ~ skT'(0, 1;v, ), with v > 2 and { denoting the degrees of free-

dom (dof) and asymmetry parameters, respectively. Its PDF is give by, !

vl

2
1 (b :
bc(1+—(““)) Cif z<-2

y—2\1=¢ b
fv,0) = -
1 (bz+a : a
bcl1 + if 7> ——
C( v—2(1+{)) ez b
where a = 4022, b* = 1 +32 - d*, ¢ = %ﬁ(i) The skewed Student 7 distribution

is quite general as it nests the Student 7 distribution and the Gaussian density. Previous
studies advocate this parametrization for the margins as able to capture the autocorrela-
tion, volatility clustering, skewness and heavy tails exhibited typically by financial asset
returns; see e.g. Jondeau and Rockinger (2006) and Kuester et al. (2006). In our em-
pirical work, we adopt GJR-GARCH(1,1) and select the best ARMA p and ¢ among
1, 2,..., 10 by minimizing the Akaike Information Criterion (AIC). The model parame-
ters are estimated by quasi-maximum likelithood (QML). Uniform (0, 1) margins denoted
u, = F,(x,), n =1, 2, can be obtained from each filtered return series via the probability
integral transform. Once the vector u = (u1,u2) is formed, the copula parameter vector

can be estimated by maximum pseudo-likelihood method discussed above.

2.5 Simulation Study

In order to investigate whether the vine copula calibration is feasible, we conduct a simu-

lation study in which we sample from a known vine copula, apply the estimation approach

IThere are other Student 7 distribution that the skewness is introduced in different ways, see Ferndndez
and Steel (1998) and Aas and Haff (2006).
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to the sampled values and compare the known with the fitted vine copula. As in practise,
we neither know which type of vine tree structure is the best fitting one to our data nor
which kind of bivariate copula families we should choose as building blocks nor bivariate
copula parameters (bivariate copula families are a little exception in our case since we
restrict ourselves to the Gauss, Student ¢ and Clayton family and their rotated and survival
version). Given abundant possible vine structures can be sampled from, we attempt to
carry out our simulation study to be more realistic. Therefore, we randomly choose five
UK equity indices, fit an R-vine to their equity time series and use the resulting R-vine as
the known copula in the simulation study (R-vines are the general form of C-vines and D-
vines, which is why we employ R-vines in our simulation study). Consequently, our vine
tree structure, bivariate copula and their parameters can be considered as realistic. It turns
out that all three bivariate copula families, Gaussian, Student t and Clayton copula, are all
included in the known vine copula setting. Then we generate 200 random samples from
the known vine copula, as this has the same time series length with the data in subsequent
empirical analysis.

The left side of Figure 1 shows the given vine structure from which we draw 200
samples, while the right side shows the vine structure which results from fitting a known
R-vine to the 200 observations. The results display that estimated tree structure is identi-
cal to the given one, which is actually quite remarkable given that there are 480 different
R-vines on five variables. In addition, the selected building blocks of bivariate copula
families are also pretty close to the known ones, as eight out of ten bivariate copula fam-
ilies are correctly estimated. Next, we compare the parameters of the bivariate copulas
from the given copulas with the estimated ones (see Figure 2). The Table 1 and Table 2
indicate that, especially in the ground level trees, the parameter match is especially good,
while the match deviates a little when check the higher level trees. The largest parameter
deviation occurs in the Tree 2 and Tree 3, in which the real Clayton parameter is sepa-
rately underestimated (0.59 vs. 0.47) and overestimated quite a bit (0.31 vs. 0.37). We
highlighted parameter deviation of less than 15% in green.

What we concerned is whether the observed deviation in bivariate copula parameters
will impact on model overall level, therefore, we adopt QQ plot to test it. As we focus
on credit portfolio risk modelling, the aggregate portfolio behavior make more sense to

us rather than the behavior of a single creditor given the portfolio been well diversified.
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Table 2.1: Given Vine Copula

tree edge No. family par par2 T UTD LID

1 3,5 1 N 0.71 0.00 0.50 - -
3,2 2 t 0.62 478 042 029 0.29
4,1 1 N 0.66 0.00 046 - -
4,3 2 t 0.61 30.00 042 0.01 0.01

2 2,5;3 1 N 028 0.00 0.18 - -
4,2;3 3 C 0.59 0.00 023 - 0.31
3,1;:4 3 C 048 0.00 0.19 - 0.24

3 4,5;2,3 13 SC 0.10 0.00 0.05 0.00 -
1,2;4,3 13 SC 0.31 0.00 0.14 0.11 -

4 1,5;4,2,3 3 C 0.15 0.00 0.07 - 0.01

type: R-vine logLik: 257.05 AIC: -490.1 BIC: -450.52

Note: This table lists estimated first four trees parameters of given R-vine mixed copula model fitted
to five UK equity indices as risk factors. Selected copula families are explained in Appendix Table
56.

Table 2.2: Estimated Vine Copula

tree edge No. family par par2 T UTD LTD

1 3,5 1 N 0.69 0.00 048 - -
3,2 2 t 0.64 349 044 037 0.37
4,1 1 N 0.62 0.00 042 - -
4,3 1 N 0.60 0.00 041 - -

2 2,5;3 1 N 0.30 0.00 0.19 - -
4,2;3 3 C 0.47 0.00 0.19 - 0.23
3,1;4 3 C 0.51 0.00 0.20 - 0.26

3 4,5;2,3 1 N 0.06 0.00 0.04 - -
1,2;4,3 13 SC 0.37 0.00 0.16 0.16 -

4 1,5:4,2,3 3 C 0.13 0.00 0.06 - 0.00

type: R-vine loglik: 255.73 AIC: -489.45 BIC: -453.17

Note: This table lists estimated first four trees parameters of estimated R-vine mixed copula model
fitted to five UK equity indices as risk factors. Selected copula families are explained in Appendix
Table 56.
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Figure 2.1: Comparison of given vine structure with the estimated one
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Figure 2.2: Comparison of given bivariate copula parameters with the estimated one

36



For all the 200 given vine samples, we sum up the entries of each five-dimensional vine
sample to a single value describing the aggregate portfolio. Accordingly, we generate
200 vine samples from the fitted vine copula and also calculate the aggregate value of
the samples. Then we plot the quantiles of the aggregate given vine sample against the
quantiles of the aggregate sample from the fitted vine copula in Figure 3. On the aggregate
portfolio level, we can see the overall fit perform rather good, which demonstrates that
we can bear some deviations in bivariate copula parameters if the vine tree structure and

bivariate copula families are well selected.

Q-Q plotof aggregate vine samples

sample from fitted vine

gien ine sample

Figure 2.3: Comparison of given vine copula with the estimated one on an aggregate
level

Conclusion cannot be simply drawn by a single simulation experiment, so that we
repeat the simulation above many times. And the comparison of known vine to fitted vine
copula on tree structure, bivariate copula families and copula parameters doesn’t work on
more than two or three simulation experiments, therefore, we need to set a single metric
to check if the fitted copula close to the known copula. Hence we adopt the AIC ratio

which defined as:

AIC ratio = AIC(fitted vi.ne, 200 observati.()ns) (2.29)
AIC(known vine, 200 observations)
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The simulation experiment that we analyzed in detail has an AIC ratio of 99.87%,
which serves as a reference point of interpreting AIC ratios. For investigating the impact
of the number of observations N, we keep the copula dimension fixed at five, and repeat
our simulation experiment 50 times for N = 100, N = 200 and N = 500 each. Table 3, in
which AIC ratios averaged over the 50 iterations are displayed, indicating the estimation
results become better when the number of observations increase. AIC ratio drops from
128.17% to 98.82% when N is increased from 100 to 500 (see left panel of Table 3). As
a consequence, we can draw the conclusion that the rather good fit from the simulation
experiment can be generalized, because the average AIC ratio of 50 iterations is very
close to the AIC ratio of the single experiment (99.86% vs. 99.87%) for N = 200. We can
generalize our conclusion from the single simulation experiment that in dimension five,

200 observations are sufficient to get a fairly good estimation result.

Table 2.3: Impact of copula dimension and number of observation on estimation perfor-
mance

Dimension = 5 N =200
N =100 N=200 N=500 dim=5 dim=10 dim=16
Average AIC ratio 128.17% 99.86% 98.82% 99.86% 104.66% 108.35%

Note: This table shows AIC ratios averaged over 50 iterations for a different copula dimensions
and numbers of observations.

Since dimension of five we analyzed above is clearly very low dimension from credit
portfolio management perspective(Normally, it is impossible that there just five underly-
ing assets in the credit portfolio in real world), we have to analyze how the estimation
results behave when facing the high dimension case by vine copula. So that we fix the
number of observations at N = 200, and increase the dimension to dim = 10 and dim = 16
(because we select 16 UK equity indices in subsequent empirical study). Note that N =
200 must not be mistaken for the absolute number of observations, but for the number of
dim-dimensional observation vectors (e.g., in dim = 10, we have a 10 x 200 observations
matrix and 2000 observations in absolute terms).

The results display the copula dimension hardly has large effect on estimation perfor-
mance which is quite comforting for using vine copulas in high dimension of 92. When
the copula dimension is increased from five to 16, the average AIC ratio changes a little

(from 99.86% to 104.66%). We can easily explain the estimation’s robustness towards the
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dimension by looking at the ground level trees of the vine. No matter what the dimension
is, at each bivariate estimation step, there is a 200 X 2 observation matrix available to
estimate the bivariate copula from. Obviously, the estimation results of the ground level
trees do not deteriorate if we repeat the bivariate copula estimation with increasing di-
mension. The same argument holds for the higher level trees. Therefore, we can conclude
that estimation performance increases with number of observations and that the copula

dimensions have hardly any effect.

2.6 Data

Inferring credit or default correlations from the equity market data may seem problematic
at a first glance. The classical Merton model advocates the use of asset values to calibrate
credit correlations, nevertheless, even this method has its limitations. Moreover, owing
to various problems concerning the accessibility of asset values, equity prices are widely
adopted as a substitute. Many banks rely on equity data for the calibration of the de-
pendence structure of their internal credit portfolio models. For instance, the correlation
structure of CreditMetrics model is estimated via equity data and Hull and White indicate
that default correlation between two companies is often assumed to be the same as the
correlation between their equity returns. In addition, equity indices returns are also the
important variable in predicting defaults, which provides an empirical link between equity
data and credit risk. Therefore, from a practical point of view, despite the employment of
equity returns as the substitute of asset returns is justified, it still a reasonable and feasible
substitute.

Hence we consider an internationally diversified credit portfolio with K counterpar-
ties. It is assumed that the systematic risk of each counterparty is adequately described by
a set of risk factors. We mimic Daul et al. (2003) who followed the risk factors selection
of CreditMetrics handbook by Morgan (1997) in which they choose 92 country/industry
equity indices from UK, France and Germany in Europe Area, US, Canada in North
America, Japan in Asia and Australia. All these countries cover main areas around the
world and they have comparatively complete industrial sectors. Since copula based mod-
els have been widely applied in the area of multivariate modelling of financial returns.

Here we introduce high dimension vine copula to modelling dependence of these risk
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factors log returns.

In order to compare our vine copula model with other multivariate Gaussian copula
based industry model, we also select 92 country/industry equity indices monthly returns
as the risk factors similar with Daul et al. (2003) from January 2002 to December 2016.
We then fit vine copulas and conventional Gaussian copulas separately to these monthly
equity indices returns. The dependency among these log returns is then modeled using
vine copula after a transformation to marginally uniform data using either an empirical or
probability integral transformation. Since there has been empirical evidence that differ-
ent asymmetric and tail dependencies are presented in different pairs of variables, which
cannot be captured either by a multivariate Gaussian nor Student t copula with a common
degree of freedom (Longin and Solnik (1995); Longin and Solnik (2001) and Ang and
Bekaert (2002a)). In this context, D-vines have been employed modelling of financial
returns successfully (Aas et al. (2009); Min and Czado (2010) and Mendes and De Melo
(2010)), and also the C-vines have been applied (Czado (2010)). While in our question of
portfolio credit risk modelling, it is hard to pre-determine the order of equity index risk
factors, which is important for checking the dependence structure between each factors.
Regarding the path structure of D-vine copula, one factor can only has no more than two
connection with other two factors. Therefore, D-vine copula is not suitable for multi fac-
tor credit risk modelling because these risk factors are interconnected between each other.
The C-vine copula is especially appropriate to be selected when there is a pivotal element
among all the variables, otherwise, the C-vine tree structure will be somewhat restrictive.
However, in our multi-factor analysis, one of our purpose is to check if there is a pivotal
factor among the 92 risk factors, and compare the C-vine structure to other vine structure,
so that we employ C-vine copula as a candidate tree structure. The R-vine tree structure,
as the general form of C-vine and D-vine, have much more flexibility which is not restrict
to pivotal element selection and no number of connection restriction, therefore, R-vine is
naturally included in our candidate tree structure. These 92 equity indices are listed in
Appendix Table 55.

We fit the different vine copulas to end-of-month equity log-returns of the time pe-
riod from January 2002 to December 2016, which has 200 observations in total spanning
the period of the global financial crisis of 2007-2009 and European sovereign debt cri-

sis of 2010-2011. Equity returns are all obtained from Datastream. Descriptive statistics
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of returns are presented in Appendix Table 46-54. The skewness of the returns are non-
zero while most of the kurtosis of the returns are significantly higher than 3 indicating
that the empirical distributions of returns display heavy tails characteristics comparing
to Gaussian distribution. The basic statistics and the p-values of JarqueBera test show
solid evidence against the assumption of normality. Using the Ljung-Box Q-test, the null
hypothesis of no autocorrelation is rejected at lag 10 for all the series. The ARCH test of
Engle (1982) indicates the significance of ARCH effects in all the series. Overall, the de-
scriptive statistics show the non-normality, asymmetry, autocorrelation and heteroscedas-
ticity of equity returns.

According to Sklar theorem, before modelling the joint distribution of returns, the first
step is to select a suitable model for the marginal return distribution, because misspecifi-
cation of the univariate model probably result in biased copula parameter estimates. To
allow for autocorrelation, heteroscedasticity and asymmetry, firstly, we adopt the Akaike
Information Criterion (AIC) to select the optimal order of the AR model for the con-
ditional mean up to order 10. Second, to allow for the heteroskedasticity of each se-
ries, we consider a group of GARCH models as candidates and find that the asymmetric
GJR-GARCH model is preferred to the others based on their likelihood values. We then
consider the GJR-GARCH class of up to order (2, 2, 2) and select the optimal order by
using BIC. The model parameters are estimated by using maximum likelihood estimation
(MLE) and the results of AR and GJR-GARCH estimations are presented in Table 4-16.
We find that, for each series, the variance persistence implied by the model is close to
1. For all the series, the leverage effect parameters y are significantly positive implying
that a negative return on the series increases volatility more than a positive return with the
same magnitude. The obvious skewness and high kurtosis of returns leads us to consider
the skewed Student ¢ distribution of Hansen (1994) for residual modelling. We report the
estimation results also in Table 4-16. To evaluate the goodness-of-fit for the skewed Stu-
dent ¢ distribution, the Kolmogorov-Smirnov (KS) test are implemented and the p-values
are reported in Table 4-16. Our results suggest that the skewed Student ¢ distribution is
suitable for residual modelling. Thus, in general, the diagnostics provide evidences that
our marginal distribution models are well-specified and therefore, we can reliably use
the combination of AR, GJR-GARCH and skewed Student ¢ distribution, allied to vine

copulas to model the dependence structure.
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2.7 Application of Vine Copula to Credit Portfolio

2.7.1 Selection and Estimation of Vine Copula Models

To investigate the practical consequences of using vine copulas compared to conventional
multivariate Gaussian copula, we consider a credit portfolio of 92 risk factors represented
by industry sector equity indices downloaded from Datastream database. We fit the dif-
ferent vine copulas to end-of-month equity log-returns of the time period from January
2002 to December 2016, which has 200 observations in total.

For model selection we want to demonstrate the superior fit of vine copulas with in-
dividually chosen pair-copula families and assess the gain over vine copula with only
bivariate Student ¢, with only Gaussian pair-copula as well as over C-vine mixed cop-
ula and R-vine mixed copula model. We need to select a bivariate copula for every pair
of variables. In this study, we take into consideration of the following copula: Gaus-
sian/Normal (tail symmetric, no tail dependence), Student ¢ (tail symmetric, symmetric
tail dependence), and Clayton copula (tail asymmetric, low tail dependence) and their cor-
responding Survival and Rotated version. (See Appendix Table 56.) Given these bivariate
copula options we still have to decide which copula fits "best”. In this case, we adopt the
AIC (Akaike (1974)) criteria which corrects the log likelihood of a copula for the number
of parameters. Bivariate copula selection using the AIC has previously investigated by
Manner (2007) and Brechmann (2010) who find that it is quite reliable criterion, particu-
larly in comparison to alternative criteria such as copula goodness-of-fit tests. Selection
proceeds by computing the AICs for each possible family and then choosing the copula
with smallest AIC.

In order to investigate which type of vine copula model is preferred to describe the de-
pendence of risk factors, we employ two likelihood ratio based goodness-of-fit test-Vuong
test and Clarke test, to compare multivariate Gaussian copula with other vine copula mod-
els. Therefore, we set
Null hypothesis: M1 = Multivariate Gaussian copula
Alternatives: M2 = R-vine ¢ copula, R-vine mixed copula, C-vine ¢ copula, C-vine mixed
copula.
multivariate Gaussian copula (R — vine Gaussian copula): R-vine with each pair-copula

terms chosen as bivariate Gaussian copula, i.e., this corresponds to a multivariate Gaus-
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sian copula, where unconditional correlations can be obtained from conditional ones by
inverting a generalized version.

R —vine t copula: R-vine with each pair-copula terms chosen as bivariate Student 7 cop-
ula. If the degrees of freedom parameter of a pair is estimated to be larger than 30, we set
the copula to be the Gaussian.

R — vine mixed copula: R-vine with pair-copula terms chosen individually from six bi-
variate copula types (Gauss, Student #, Clayton, survival Clayton, rotated Clayton (90°
and 270°)).

C —vine t copula: C-vine with each pair-copula terms chosen as bivariate Student ¢ cop-
ula. If the degrees of freedom parameter of a pair is estimated to be larger than 30, we set
the copula to be the Gaussian.

C —vine mixed copula: C-vine with pair-copula terms chosen individually from six bi-
variate copula types (see above).

The likelihood-ratio based test proposed by Vuong (1989) can be used for comparing
non-nested models. For this let ¢; and ¢, be two competing vine copulas in terms of their
densities and with estimated parameter sets 6; and 6,. We then compute the standard-
ized sum, v, of the log differences of their pointwise likelihoods m; := log[M] for

c2(uilfa)

observations u; € [0,1],i=1,...,N, i.e.,

1 vN
;Zizl m;

SiL (m; —m)?

statistic == v = (2.30)

Vuong (1989) shows that v is asymptotically standard normal. According to the null-
hypothesis
Hy:E[m]=0Vi=1,..,N, (2.31)

we hence prefer vine model 1 to vine model 2 at level « if
v> 071 -3), (2.32)

where ®~! denotes the inverse of the standard normal distribution function. If v <
—-o7I(1 - 5), we choose model 2. If, however, |v| < o1 - 5), no decision among
the models is possible.

Like AIC and BIC, the Vuong test statistic may be corrected for the number of param-
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eters used in the models. There are two possible corrections, the Akaike and the Schwarz

corrections, which correspond to the penalty terms in the AIC and the BIC, respectively.

Table 2.17: Vuong test results

Multivariate Gaussian R-vine t R-vine mixed C-vine t C-vine mixed

Log likelihood 10808.04 10215.88 12254.29 11503.89 12306.09

Vuong tests

1o correction 4.051351 -9.135201 -6.430959 -9.168386
(5.092265e-05) (6.528561e-20) (1.268011e-10) (4.801543¢-20)

Akaike corr. 32.69053 -7.347637 32.25543 -7.460845
(0.00) (2.017413e-13) (0.00) (8.596902¢-14)

Schwarz corr. 79.92107 -4.399661 96.05543 -4.64484
(0.00) (1.0842e-05) (0.00) (3.403395e-006)

Note: Log likelihoods for all models as well as results of the Vuong tests (test statistics and
p-values in parentheses) comparing the multivariate Gaussian copula model to all other vine
copula models. The negative values of Vuong test statistics indicate that the test favors the R-vine
and C-vine mixed copula model over other alternative models.

Table 2.18: Clarke test results

Multivariate Gaussian R-vine t R-vine mixed C-vine t C-vine mixed

Log likelihood 10808.04 10215.88 12254.29 11503.89 12306.09
Clarke tests
no correction 110 15 >2 12

(0.178964) (1.979423e-38) (7.261224¢-12) (8.113776e-42)
Akaike corr. 200 21 199 17

(0.00) (1.946966¢-32) (0.00) (2.508977¢-36)
Schwarz corr. 200 40 200 40

(0.00) (3.384016e-18) (0.00) (3.384016e-18)

Note: Log likelihoods for all models as well as results of the Clarke tests (test statistics and
p-values in parentheses) comparing the multivariate Gaussian copula model to all other vine
copula models. The smaller values of Clarke test statistics indicate that the test favors the R-vine
and C-vine mixed copula model over other alternative models.

The test proposed by Clarke (2007) also allows to compare non-nested models. For
this model, let ¢; and ¢, be two competing vine copulas in terms of their densities and with
estimated parameter sets §; and 6,. The null hypothesis of statistical indistinguishability
of the two models is

Hy:Pm; >0)=05 Vi=1,..,N, (2.33)

1 (ml?l )
c2(uil62)

Since under statistical equivalence of the two models, the log likelihood ratios of the

where m; := log| ] for observations u;;i =1, ..., V.

single observations are uniformly distributed around zero and in expectation 50% of the

log likelihood ratios greater than zero, the test statistic

N
statistic := B= ) Lge(m), (2.34)

i=1
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where 1 is the indicator function, which follows Binomial distribution with parameters N
and p=0.5, and critical values can easily be obtained. Model 1 is interpreted as statistically
equivalent to model 2 if B is not significantly different from the expected value N, = N/2.

Like AIC and BIC, the Clarke test statistic also may be corrected for the number of
parameters used in the models. There are two possible corrections, the Akaike and the
Schwarz corrections, which correspond to the penalty terms in the AIC and the BIC,
respectively.

Vuong test copula selection results for all models are summarized in Table 17. The
first row gives the log likelihood after joint optimization of the chosen regular vine tree
specification and copula types. From the results of log likelihood, the value of C-vine
mixed copula log likelihood is larger than other copula models, which means the C-vine
mixed copula is superior to other model. And the second row gives the test statistics
together with the p-values in parentheses of a Vuong test with and without Akaike and
Schwarz corrections, respectively, testing the multivariate Gaussian model against the
alternative vine copula setting indicated by the respective column. From the Vuong tests
results we see that only the C-vine mixed copula and the R-vine mixed copula have all
negative values of Vuong test statistics, according to Vuong test criterion, hence the C-
vine mixed copula and the R-vine mixed copula are to be preferred over other vine copula
setting and multivariate Gaussian copula. Overall Vuong test demonstrates the usefulness
of vine copula with individually chosen copula types for each pair copula term.

Clarke test copula selection results for all models are summarized in Table 18. We also
list in the first row the log likelihood value after joint optimization of the chosen regular
vine tree specification and copula types. And the second row gives the test statistics
together with the p-values in parentheses of a Clarke test with and without Akaike and
Schwarz corrections, respectively, also testing the multivariate Gaussian model against
the alternative vine copula setting indicated by the respective column. From the Clarke
tests we see that the C-vine mixed copula and the R-vine mixed copula have the smallest
values of Clarke test statistics, according to Clarke test criterion, hence the C-vine mixed
copula and the R-vine mixed copula are to be preferred over other vine copula setting and
multivariate Gaussian copula. Overall Clarke test again demonstrates the usefulness of
vine copula with individually chosen copula types for each pair copula term.

As mentioned above, five different vine copula models including R-vine Gaussian,
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R-vine ¢, R-vine mixed, C-vine ¢ and C-vine mixed are estimated for our credit portfolio.
The selection of copula families for each pair-copula in the vine structure specification
is mainly based on the Akaike Information Criterion (AIC). There are two main reasons
behind this choice. Firstly, it is practically impossible, in high dimension case, for one
to investigate every single unconditional and conditional pair-copula in the vine structure
and define accordingly an appropriate copula family for each of these pairs. As a result,
we adopt the AIC, which is the most frequently used criterion in copula selection liter-
ature. The range of all possible copula families chosen from by the criterion is defined
in Appendix Table 56. The second main reason that drives our copula selection strategy
is related to the theoretical and empirical results of the studies by Joe et al. (2010) and
Nikoloulopoulos et al. (2012).

Based on our Vuong test and Clarke test results, we present the maximum likelihood
estimation results of C-vine mixed copula model and R-vine mixed copula model, their
Kendall’s 7, and upper and lower tail dependence parameters of first three level trees in
Table 19-24.

Joe et al. (2010) indicate that vine copulas can have a different upper and lower tail de-
pendence for each bivariate margin when asymmetric bivariate copulas with upper/lower
tail dependence are used in tree 1 of the vine. In other words, in order for a vine copula
to have tail dependence for all bivariate margins, it is necessary for the bivariate copulas
in tree 1 to have tail dependence but it is not necessary for the conditional bivariate cop-
ulas in trees 2,...,d — 1 to have tail dependence. At trees 2 or higher, Gaussian copulas
might be adequate to model the dependency structure. Moreover, Nikoloulopoulos et al.
(2012) show that vine copulas with bivariate Student ¢ linking copulas tend to be preferred
in likelihood-based selection methods because they provide a better fit in the middle for
the first level of the vine. They suggest that for inference involving the tails, the “best-
fitting” copula should not be entirely likelihood-based but also depend on matching the
non-parametric tail dependence measures and extreme quantiles. Taking these results
into account, based on above Vuong test and Clarke test results, we both consider C-
vine mixed copula and R-vine mixed copula model selected by goodness-of-fit test and
AIC, and try to compare and verify if our results are in line with Joe et al. (2010) and
Nikoloulopoulos et al. (2012). We expect to get more accurate risk measure estimates

from these vine copula models that allow asymmetries.
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After filtering the original return series with the appropriate ARMA-GJR-GARCH
models, the resulting standardised residual series are transformed to uniform pseudo ob-
servations. From the results of Table 19-24, we find the majority of the selected copula
families correspond to the Student 7 copula in Tree 1 of R-vine mixed copula setting. In
particular, 5 out of 8 selected copula families in Tree 1 belong to the Student ¢ copula.
The empirical results of our R-vine mixed likelihood-based copula selection procedure
seem to agree with the empirical findings of Nikoloulopoulos et al. (2012). While not in
line with Nikoloulopoulos et al. (2012), Clayton copula takes up largest percentage of the
selected copula families in Tree 1 of C-vine mixed copula setting. The reason probably
is that, with respect to C-vine copula structure definition, when fitting C-vine copula, a
pivotal factor should be selected in first step. If this pivotal factor has an asymmetric
dependence with remaining factors, the asymmetric dependence bivariate copula, such as
Clayton copula, would naturally be selected as bivariate margin. Due to the characteristics
of low tail dependence, most frequent bivariate margin Clayton copula in C-vine mixed
copula Tree 1, is able to more precisely capture the dependence between number 27 risk
factor, which is the pivotal factor, and other factors, therefore, C-vine mixed copula set-
ting outperform the R-vine mixed setting, the better performance of C-vine mixed copula
can also find support from their likelihood values results. In R-vine structure, a pivotal
factor is not required and a more general vine structure can be fitted to data, therefore,
the dependence structure of factors in Tree 1 is described by various and more diversified
bivariate copulas, just as our empirical results demonstrated in Tree 1 R-vine copula pa-
rameters estimation. For levels 2, ...,d — 1, the selection of the appropriate copula family
is based on the AIC. Regarding Tree 2 and 3 we list, more asymmetric bivariate copulas
are selected as bivariate margin both in C-vine mixed copula and R-vine mixed copula
model setting. Though previous research demonstrate that in Tree 2 till Tree d — 1, the
asymmetric bivariate copulas are not necessary, but the supply of asymmetric bivariate
copulas in our model make our Tree 2, ...,d — 1 dependence structure be more precisely
described.

In sum, from our goodness-of-fit results, which is actually surprising that given the
more flexibility in the tree structures, the R-vine tree structure underperform the C-vine
tree structure. From the statistical fit point of view, we believe C-vine mixed copula model

can better fit to our data. Because a pivotal factor is required to be selected among our data
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sets which would affects each remaining factor. Nevertheless, when we investigate this
problem in depth, we find the pivotal element selected is the number 27 factor, which is
France Construction and Materials sector. Economically speaking, it is hard to believe this
factor can determinate and make extensive effects on all other industry sectors. Therefore,
whether the C-vine mixed copula is superior to R-vine mixed copula in fitting to our data
sets is still justified and need further exploitation, such as comparison of the accuracy
of the estimate of risk measure in subsequent section. The Student 7 copula is the most
frequent chosen copula among all bivariate copula families of Tree 1 in both C-vine mixed
copula and R-vine mixed copula setting. Therefore, the advantage of vine copulas does
not come solely from the flexible tree structure, but the flexibility of mixing different
bivariate copula families as their building blocks is used to beat the classical Gaussian

and Student 7 copula.

2.7.2 Homogeneous Credit Portfolio

Though the goodness-of-fit test in previous section indicate that C-vine mixed copula and
R-vine mixed copula model are the best fitting” model for our risk factors log returns
data, in further step, with respect to credit risk management, what we would like to know
is whether these two vine copula setting can help us to improve the computation of risk
measure, such as VaR and CVaR, in comparison to traditional multivariate Gaussian cop-
ula setting. In addition, whether the performance of the C-vine mixed copula and R-vine
mixed copula in estimating VaR and CVaR are in line with the goodness-of-fit test re-
sults and which of the two model performs better. In order to answer these questions, in
this section, we employ C-vine mixed copula and R-vine mixed copula including other
vine structure model and multivariate Gaussian copula model to separately estimate risk
measure of VaR and CVaR for our credit portfolios. We both consider homogeneous
credit portfolio and heterogeneous credit portfolio, and small portfolio and large portfolio
separately.

As described in above sections, we consider the underlying portfolio of 92 equity
indices, using data from January 2002 to December 2016. One year default probabilities
are implied from credit default swap spreads. And assume a multi factor model with a set
of sector factors Zg representing the systematic risk of industry sectors.

In homogeneous credit portfolio setting, now we mimic the numerical examples of
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Table 2.19: Tree 1 Parameters Estimation of R-vine mixed Cop-
ula Model

tree edge No. family par par2 tau UTD LID

1 51,47 2 t 0.51 5.14 034 021 0.21
51,45 1 N 0.75 0.00 0.54 - -
91,89 1 N 0.56 0.00 0.38 - -
72,83 1 N 0.62 000 043 - -
91,72 2 t 0.77 21.63 0.56 0.10 0.10
91,88 2 t 0.70 524 049 033 0.33
22,13 2 t 0.80 294 0.60 0.55 0.55
10,15 2 t 0.74 7.64 053 028 0.28
291 1 N 0.66 0.00 046 - -
4,7 2 t 0.63 30.00 043 0.01 0.01
41,51 1 N 0.66 0.00 046 - -
4941 1 N 0.62 0.00 043 - -
49,46 2 t 0.55 488 037 024 0.24
3942 1 N 0.78 0.00 057 - -
40,39 2 t 0.68 724 048 024 0.24
52,40 1 N 0.68 0.00 048 - -
49,52 2 t 0.82 337 0.61 054 054
43,49 1 N 0.87 0.00 0.68 - -
50,53 1 N 0.72 0.00 0.51 - -
48,44 1 N 0.73 0.00 052 - -
43,48 1 N 0.61 0.00 042 - -
5043 1 N 0.83 0.00 0.63 - -
37,50 3 C 1.16 0.00 0.37 - 0.55
27,28 3 C 1.23 0.00 038 - 0.57
4,1 2 t 0.73 486 052 038 0.38
5.4 2 t 0.70 487 049 035 0.35
23,17 3 C 1.08 0.00 035 - 0.53
84,65 2 t 0.82 730 0.62 040 040
23,82 1 N 0.51 0.00 034 - -
84,87 1 N 0.65 0.00 045 - -
20,84 1 N 0.85 0.00 0.65 - -
20,23 2 t 0.63 8.00 043 0.19 0.19
20,18 2 t 0.66 9.71 046 0.17 0.17
320 1 N 0.76 0.00 0.55 - -
6,3 2 t 0.81 893 0.60 0.33 0.33
8,5 2 t 0.74 558 053 035 0.35
2,8 2 t 0.69 533 049 032 032
9,6 1 N 099 0.00 093 - -
63,2 1 N 0.67 0.00 046 - -
63,61 1 N 0.53 0.00 036 - -
22,10 3 C 149 0.00 043 - 0.63
63,22 3 C 1.38 0.00 041 - 0.60
29,55 1 N 0.68 0.00 047 - -
2429 1 N 0.80 0.00 0.59 - -
63,60 2 t 0.66 1242 046 0.12 0.12
58,16 2 t

041 471 027 0.18 0.18
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6338 1 N 0.66 0.00 046 - -
2731 2 t 077 6.66 056 035 0.35
2437 2 t 070 494 050 035 0.35
3536 1 N 045 000 030 - -
6335 1 N 072 0.00 051 - -
2724 2 t 075 10.09 0.54 0.23 0.23
86,78 3 C 093 0.00 032 - 0.48
74,71 1 N 068 0.00 048 - -
7486 1 N 0.63 0.00 043 - -
2733 2 t 075 452 054 042 042
63,56 1 N 0.72 0.00 0.51 - -
63,58 1 N 0.72 0.00 0.52 - -
68,62 2 t 070 525 050 034 0.34
63,67 1 N 073 0.00 052 - -
32,74 1 N 0.64 000 044 - -
68,59 3 C 121 0.00 038 - 0.56
27,57 1 N 071 0.00 0.50 - -
63,27 1 N 077 0.00 0.56 - -
63,68 1 N 082 000 0.61 - -
69,63 2 t 080 694 0.59 038 0.38
5425 1 N 0.74 000 053 - -
69,54 3 C 205 000 051 - 0.71
3269 2 t 078 884 057 030 0.30
3032 2 t 0.76 10.80 0.55 0.23 0.23
649 1 N 091 000 0.73 - -
3066 2 t 046 514 031 0.18 0.18
3034 3 C 125 0.00 038 - 0.57
3026 2 t 077 501 056 041 041
75,80 1 N 085 0.00 0.64 - -
7690 2 t 066 7.87 046 021 0.21
76,11 2 t 0.73 5.13 052 036 0.36
85,19 3 C 124 000 038 - 0.57
12,770 3 C 134 0.00 040 - 0.60
79,64 1 N 084 0.00 0.64 - -
73,14 1 N 0.62 0.00 043 - -
73,30 2 t 0.71 30.00 0.50 0.03 0.03
75,12 1 N 0.66 0.00 046 - -
8581 2 t 0.70 30.00 0.49 0.02 0.02
76,85 3 C 144 0.00 042 - 0.62
75776 2 t 073 638 052 031 0.3l
7921 2 t 0.78 3.60 057 0.49 0.49
75,79 1 N 0.71 0.00 050 - -
75,73 1 N 079 0.00 0.58 - -
75,77 1 N 056 0.00 0.38 - -
92,75 2 t 067 5.19 046 031 031

Note: This table lists estimated Tree 1 parameters of R-
vine mixed copula model fitted to 92 risk factors. Se-
lected copula families are explained in Appendix Table

56.
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Table 2.20: Tree 2 Parameters Estimation of R-vine mixed Copula
Model

tree edge No. family par par2  tau UTD LID

2 454751 3 C 0.11  0.00 0.05 - 0.00
41,45;51 1 N 021 0.00 0.13 - -
88,89;91 3 C 036 0.00 0.15 - 0.15
91,83;72 1 N 023 0.00 0.15 - -
2,7291 3 C 0.39 0.00 0.16 - 0.17
2,88;91 1 N 0.33 0.00 021 - -
63,13;22 33 C270 -0.08 0.00 -0.04 - -
22,15;10 3 C 0.38 0.00 0.16 - 0.16
639152 3 C 0.64 0.00 024 - 0.34
1,7:4 2 t 0.15 7.69 0.10 0.03 0.03
49,5141 1 N 036 0.00 023 - -
46,41;49 1 N 028 0.00 0.18 - -
52,46;49 13 SC 027 0.00 0.12 0.08 -
40,42;39 1 N 032 000 021 - -
52,39;40 2 t 031 7.50 020 0.07 0.07
49,40;52 13 SC 043 0.00 0.18 020 -
43,52;49 3 C 038 0.00 0.16 - 0.16
50,49;43 1 N 037 0.00 024 - -
43,53;50 2 t 026 6.09 0.17 0.08 0.08
43,44;48 13 SC 036 0.00 0.15 0.15 -
50,4843 23 C90 -0.19 0.00 -0.09 - -
37,43;50 3 C 0.10 0.00 0.05 - 0.00
24,50;37 3 C 0.14 0.00 0.07 - 0.01
24,28;27 1 N 0.16 0.00 0.10 - -
5,14 1 N 039 0.00 025 - -
8,4;5 3 C 048 0.00 0.19 - 0.23
20,17;23 3 C 026 0.00 0.12 - 0.07
20,6584 1 N 0.27 0.00 0.17 - -
20,82;23 3 C 023 0.00 0.10 - 0.05
20,87;84 2 t 002 424 001 0.07 0.07
23,84;20 1 N -0.15 0.00 -0.10 - -
18,23;20 2 t 035 850 023 0.06 0.06
3,1820 2 t 0.16 4.66 0.10 0.09 0.09
6,20;3 1 N 021 0.00 0.13 - -
9,3;6 2 t -0.17 7.31 -0.11 0.01 0.01
2,5;8 3 C 0.50 0.00 020 - 0.25
63,8;2 3 C 0.38 0.00 0.16 - 0.16
64,6:9 1 N -0.13 0.00 -0.08 - -
22,263 1 N 032 000 021 - -
35,61;63 1 N 022 0.00 0.14 - -
63,10;22 2 t 0.15 855 0.10 0.02 0.02
35,22;63 2 t 030 7.10 0.19 0.07 0.07
24,5529 1 N 024 0.00 0.15 - -
27,2924 1 N 026 0.00 0.17 - -
56,60;63 2 t 020 11.16 0.13 0.01 0.01
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63,1658 1 N 0.11 0.00 0.07 - -
35,3863 3 C 0.37 0.00 0.16 - 0.16
33,31527 3 C 041 0.00 0.17 - 0.18
273724 3 C 0.50 0.00 0.20 - 0.25
63,3635 1 N 0.14 0.00 0.09 - -
273563 1 N 042 0.00 027 - -
33,24;27 2t 034 691 022 0.08 0.08
74,7886 2t 021 357 0.13 0.15 0.15
86,71;74 13 SC 0.12  0.00 0.06 0.00 -
32,86;74 13 SC 0.15 0.00 0.07 0.01 -
63,33;27 2t 038 599 025 0.12 0.12
58,56;63 1 N 038 0.00 025 - -
67,58:63 1 N 0.37 0.00 024 - -
63,62;68 3 C 021 0.00 0.10 - 0.04
68,67;63 1 N 031 0.00 020 - -
69,74;32 2t 027 6.66 0.17 0.07 0.07
63,5968 3 C 0.14 0.00 0.07 - 0.01
63,5727 1 N 028 0.00 0.18 - -
69,2763 2 t 031 975 020 0.04 0.04
69,6863 1 N 034 0.00 022 - -
54,63;69 1 N 0.17 0.00 0.11 - -
69,2554 1 N 0.30 0.00 0.19 - -
3254,69 1 N 0.15 0.00 0.09 - -
30,69;32 3 C 027 0.00 0.12 - 0.08
26,32;30 3 C 044 0.00 0.18 - 0.21
79964 1 N 029 0.00 0.19 - -
34,66;30 3 C 0.20 0.00 0.09 - 0.03
26,34;30 13 SC 0.31 0.00 0.13 O0.11 -
73,2630 1 N 021 0.00 0.13 - -
76,80;75 3 C 043 0.00 0.18 - 0.20
11,90;76 23 C90 -0.29 0.00 -0.13 - -
75,11;76 13 SC 0.31 0.00 0.13 O0.11 -
76,19:85 3 C 0.32 0.00 0.14 - 0.11
75,70;12 1 N 0.32 0.00 021 - -
21,6479 1 N 0.12  0.00 0.08 - -
30,14;73 1 N 0.19 0.00 0.12 - -
75,30;73 3 C 049 0.00 020 - 0.24
76,1275 1 N 0.19 0.00 0.12 - -
76,8185 3 C 026 0.00 0.12 - 0.07
75,8576 3 C 039 0.00 0.16 - 0.17
73776575 2t 029 5.69 0.19 0.10 0.10
75,21;79 33 C270 -040 0.00 -0.17 - -
73,7975 1 N 026 0.00 0.17 - -
92,73;775 13 SC 0.38 0.00 0.16 0.16 -
92777715 3 C 042 0.00 0.17 - 0.19

Note: This table lists estimated Tree 2 parameters of R-vine
mixed copula model fitted to 92 risk factors. Selected copula
families are explained in Appendix Table 56.

65



Table 2.21: Tree 3 Parameters Estimation of R-vine mixed Copula
Model

tree edge No. family par par2 tau UTD LID

3 41,47;45,51 13  SC 0.11  0.00 0.05 0.00 -
49,45:41,51 13  SC 0.13 0.00 0.06 0.00 -
2,89:8891 3 C 023 0.00 0.10 - 0.05

2,83:91,72 2 t 023 734 015 0.05 0.05
63,72;291 13 SC 0.12 0.00 0.06 0.00 -
63,88;291 3 C 024 0.00 0.11 - 0.05
35,13;63,22 1 N 0.05 0.00 003 - -
63,15;22,10 1 N 024 000 0.15 - -
2291;63,2 3 C 029 0.00 0.13 -0.09
5,7;1,4 1 N 0.11  0.00 0.07 - -
46,51;4941 1 N 0.17 0.00 0.11 - -
52,41;46,49 13 SC 0.07 0.00 003 0.00 -
40,46;52,49 1 N 0.18 0.00 0.12 - -
52,42;40,39 2 t 0.11 6.03 007 0.05 0.05
49,39;52,40 13  SC 020 0.00 0.09 0.03 -
43,40;49,52 3 C 0.12 0.00 0.06 - 0.00
50,52;:43,49 33 C270 -0.17 0.00 -0.08 - -
48,49;50,43 1 N 0.12  0.00 0.08 - -
48,53;43,50 23  C90 -0.14 0.00 -0.07 - -
50,44:43,48 33 C270 -0.12 0.00 -0.06 - -
37,48;50,43 1 N -0.07 0.00 -0.04 - -
24,43;37,50 1 N 0.08 0.00 005 - -
27,50;24,37 1 N 0.12 0.00 0.07 - -
29,28;24,27 2 t 0.11 540 007 0.06 0.06
8,1;54 2 t 0.18 21.68 0.11 0.00 0.00
2,4:8,5 13 SC 033 0.00 0.14 0.12 -
84,17;20,23 3 C 0.09 0.00 0.04 - 0.00
23,65;20,84 3 C 0.15 0.00 0.07 - 0.01
84,82;20,23 3 C 040 0.00 0.17 - 0.18
23,87;20,84 23 C90 -0.17 0.00 -0.08 - -
18,84;23,20 3 C 024 0.00 0.11 - 0.05
3,23;18,20 33 C270 -0.04 0.00 -0.02 - -
6,18;3,20 2 t 022 557 0.14 0.08 0.08
9,20;6,3 3 C 0.17 0.00 0.08 - 0.02
64,3:9,6 23 C90 -0.12 0.00 -0.06 - -
63,5;2,8 1 N 0.24 0.00 0.15 -

22,8;63,2 13 SC 0.20 0.00 0.09 0.03 -
79,6;64,9 13 SC 0.10 0.00 0.05 0.00 -
10,2;22,63 3 C 0.18 0.00 0.08 - 0.02
22,61;35,63 23  C90 -0.10 0.00 -0.05 -

3 SC 0.17 0.00 0.08 0.02

35,10;63,22 1 -

36,22;35,63 3 C 0.09 0.00 0.04 - 0.00
27,55;24,29 3 C 036 000 0.15 - 0.14
37,29;27,24 3 C 020 0.00 0.09 - 0.03
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58,60;56,63 Cc270 -0.10 0.00 -0.05 - -

56,16;63,58 33 C270 -0.11 0.00 -0.05 - -
27,38;3563 3 C 0.16 0.00 0.07 - 0.01
24,31;33,27 3 C 0.32 0.00 0.14 - 0.11
33,37,2724 1 N 0.19 0.00 0.12 - -
27,36;6335 1 N 0.02 0.00 0.01 - -
33,35;27,63 1 N 022 0.00 0.14 - -
63,24;3327 1 N 0.09 0.00 0.06 - -
32,78;7486 3 C 025 0.00 0.11 - 0.06
32,71;86,74 1 N -0.04 0.00 -0.03 - -
69,86;32,74 1 N 0.15 0.00 0.10 - -
69,33;63,27 3 C 044 0.00 0.18 - 0.21
67,56;58,63 3 C 0.15 0.00 0.07 - 0.01
68,58;67,63 3 C 0.05 0.00 0.02 - 0.00
67,62;63,68 1 N 0.15 0.00 0.10 - -
69,67;68,63 1 N 0.12 0.00 0.07 - -
54,74;69,32 3 C 035 0.00 0.15 - 0.14
69,59;63,68 13 SC 028 0.00 0.12 0.08 -
69,57;63,27 1 N 023 0.00 0.15 - -
68,27;69,63 13 SC 021 0.00 0.09 0.04 -
54,68;69,63 3 C 023 0.00 0.10 - 0.05
25,63;54,69 3 C 0.10 0.00 0.05 - 0.00
32,25;69,54 2t 030 499 020 0.12 0.12
30,54;32,69 3 C 0.13 0.00 0.06 - 0.01
26,69;30,32 2 ¢t 0.11 397 0.07 0.10 0.10
73,32;26,30 13 SC 025 0.00 0.11 0.06 -
21,979,644 3 C 0.20 0.00 0.09 - 0.03
26,66;3430 3 C 0.20 0.00 0.09 - 0.03
73,34;26,30 33 C270 -0.05 0.00 -0.02 - -
75,26;73,30 1 N -0.08 0.00 -0.05 - -
11,80;76,75 2 t 0.16 594 0.10 0.06 0.06
75,90;11,76 33 C270 -0.10 0.00 -0.05 - -
73,11;75,76 3 C 0.17 0.00 0.08 - 0.02
75,19;76,85 3 C 026 0.00 0.12 - 0.07
76,70;75,12 1 N 0.10 0.00 0.06 - -
75,64;21,79 1 N 0.12  0.00 0.08 - -
75,14;30,73 2t 0.10 430 0.07 0.09 0.09
79,30;75,73 1 N 0.16 0.00 0.10 - -
85,12;76,75 3 C 0.17 0.00 0.08 - 0.02
75,81;76,85 1 N 0.03 0.00 0.02 - -
73,85;75,76 13 SC 0.19 0.00 0.09 0.03 -
92,76;73,75 1 N 0.18 0.00 0.11 - -
73,21;75,79 1 N -0.13 0.00 -0.08 - -
92,79;73,75 3 C 0.16 0.00 0.07 - 0.01
77,73;92,775 3 C 028 0.00 0.12 - 0.08

Note: This table lists estimated Tree 3 parameters of R-vine mixed
copula model fitted to 92 risk factors. Selected copula families are
explained in Appendix Table 56.
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Table 2.22: Tree 1 Parameters Estimation of C-vine mixed Cop-
ula Model

tree edge No. family par par2 tau UTD LID

1 27,83 1 N 052 0.00 035 - -
27,30 2 t 0.74 30.00 0.53 0.04 0.04
2713 1 N 0.55 0.00 037 - -
27,35 1 N 0.74 0.00 0.53 - -
27,62 3 C 1.15 0.00 037 - 0.55
27,11 1 N 0.51 0.00 034 - -
27,17 3 C 0.69 0.00 026 - 0.37
2787 3 C 0.77 0.00 028 - 0.41
27,25 1 N 0.72 0.00 0.51 - -
27,53 1 N 044 0.00 029 - -
27,18 1 N 046 0.00 030 - -
2737 3 C 1.34 0.00 040 - 0.60
27,61 1 N 047 0.00 031 - -
27,14 2 t 046 6.72 030 0.13 0.13
27,779 2 t 0.61 10.56 042 0.12 0.12
27,68 1 N 0.73 0.00 052 - -
27,42 3 C 0.60 0.00 023 - 0.31
27,770 1 N 0.53 0.00 035 - -
27,16 2 t 029 419 0.19 0.15 0.15
27,88 2 t 0.58 30.00 0.39 0.01 0.01
2745 3 C 0.18 0.00 0.08 - 0.02
27,81 1 N 045 0.00 030 - -
2741 1 N 0.30 0.00 0.19 - -
2790 3 C 033 0.00 0.14 - 0.12
27,65 3 C 097 0.00 033 - 0.49
27,49 3 C 0.76 0.00 0.28 - 0.40
27,59 3 C 097 0.00 033 - 0.49
27,82 3 C 0.51 0.00 020 - 0.25
27,28 3 C 1.23 0.00 038 - 0.57
27,58 1 N 0.62 000 042 - -
27,777 3 C 097 0.00 033 - 0.49
27,36 2 t 0.39 466 025 0.17 0.17
275 1 N 0.60 0.00 041 - -
27,31 2 t 0.77 6.66 056 0.35 0.35
27177 3 C 0.69 0.00 026 - 0.37
27,10 1 N 0.52 0.00 035 - -
27,80 3 C 1.24 0.00 038 - 0.57
27,46 3 C 044 0.00 0.18 - 0.21
2791 1 N 0.59 0.00 040 - -
27,24 2 t 0.75 10.09 0.54 0.23 0.23
2743 3 C 0.80 0.00 0.28 - 0.42
27,34 2 t 0.61 856 042 0.16 0.16
27,55 1 N 0.65 0.00 045 - -
27,89 1 N 043 0.00 029 - -
2748 3 C 047 000 0.19 - 0.23
27,20 2 t 0.'45524 30.00 0.36 0.00 0.00




279 1 N 058 0.00 039 - -
2754 1 N 066 0.00 046 - -
2733 2t 0.75 452 054 042 042
2719 1 N 048 0.00 032 - -
2747 13 SC 0.13 0.00 0.06 0.00 -
2786 3 C 067 000 025 - 0.36
274 2t 0.61 30.00 042 0.01 0.01
27,12 1 N 050 0.00 033 - -
2738 1 N 061 000 042 - -
2757 1 N 071 000 050 - -
277718 3 C 079 000 028 - 0.42
27,13 ' 1 N 042 0.00 028 - -
278 3 C 1.10 0.00 035 - 0.53
2732 3 C 143 0.00 042 - 0.62
2756 2t 0.69 30.00 048 0.02 0.02
271715 3 C 143 000 042 - 0.62
2764 1 N 058 000 040 - -
2760 1 N 056 0.00 038 - -
27771 1 N 039 0.00 026 - -
2744 3 C 043 000 0.18 - 0.20
2766 1 N 040 000 0.26 - -
2752 3 C 058 000 022 - 0.30
27772 1 N 053 0.00 035 - -
27,67 2 t 0.63 30.00 0.43 0.01 0.01
2785 3 C 1.00 0.00 033 - 0.50
2721 1 N 039 000 026 - -
2726 1 N 070 0.00 049 - -
27,15 3 C 097 0.00 033 - 0.49
2739 1 N 027 0.00 0.17 - -
2729 1 N 070 0.00 049 - -
271 3 C 087 000 030 - 0.45
2723 2t 042 820 0.27 0.08 0.08
27774 2t 0.55 520 037 0.23 0.23
2763 1 N 077 0.00 056 - -
27,40 2t 0.30 856 0.19 0.05 0.05
2712 2t 0.61 2651 041 0.01 0.01
2784 3 C 093 000 032 - 0.47
27716 3 C 091 000 031 - 0.47
27,69 2t 0.73 1252 052 0.17 0.17
27,50 3 C 088 0.00 030 - 0.45
2751 3 C 040 000 0.17 - 0.17
276 1 N 060 000 041 - -
27773 2t 0.66 17.07 0.46 0.07 0.07
2722 1 N 060 0.00 041 - -
9227 3 C 1.19 000 037 - 0.56

Note: This table lists estimated Tree 1 parameters of C-
vine mixed copula model fitted to 92 risk factors. Se-
lected copula families are explained in Appendix Table

56.
69



Table 2.23: Tree 2 Parameters Estimation of C-vine mixed Copula
Model

tree edge No. family par par2  tau UTD LID

2 22,83;27 1 N 036 0.00 024 - -
22,30;27 1 N 026 0.00 0.17 - -
22,327 1 N 033 0.00 022 - -
22,3527 2 t 035 950 023 0.05 0.05
22,62;27 1 N 028 0.00 0.18 - -
22,11;27 2 t 045 593 029 0.15 0.15
22,17;27 1 N 043 000 029 - -
22,8727 1 N 0.18 0.00 0.11 - -
22,2527 13 SC 021 0.00 0.10 0.04 -
22,53;27 1 N 022 0.00 0.14 - -
22,18;27 2 t 0.55 6.80 037 0.17 0.17
22,3727 1 N 0.30 0.00 0.19 - -
22,61;27 13 SC 021 0.00 0.10 0.04 -
22,1427 2 t 0.28 30.00 0.18 0.00 0.00
22,79;27 1 N 032 0.00 021 - -
22,68;27 1 N 0.34 000 022 - -
22,42;27 3 C 0.09 0.00 005 - 0.00
22,70;27 3 C 042 000 0.18 - 0.20
22,16;27 1 N 0.15 0.00 0.10 - -
22,88;27 1 N 043 000 029 - -
22,4527 3 C 0.18 0.00 0.08 - 0.02
22,81;27 3 C 025 0.00 O0.11 - 0.06
22,41;27 3 C 0.13 0.00 0.06 - 0.01
22,90;27 1 N 020 0.00 0.13 - -
22,6527 1 N 028 0.00 0.18 - -
22,4927 3 C 023 0.00 0.10 - 0.05
22,59;27 3 C 025 0.00 0.11 - 0.07
22,82;27 3 C 032 0.00 0.14 - 0.11
22,28;27 3 C 0.12  0.00 0.05 - 0.00
22,58;27 3 C 0.34 0.00 0.14 - 0.13
22,777,272 t 0.12 473 0.08 0.08 0.08
22,36;27 1 N 022 0.00 0.14 - -
22,527 3 C 048 0.00 0.19 - 0.23
22,31;27 1 N 0.16 0.00 0.10 - -
227,27 2 t 0.30 8.17 020 0.05 0.05
22,10;27 3 C 096 0.00 032 - 0.48
22,80;27 2 t 038 924 025 0.06 0.06
22,46;27 23 C90 -0.04 0.00 -0.02 - -
2291;27 3 C 0.74 0.00 027 - 0.39
22,24;27 1 N 0.18 0.00 0.12 - -
22,43;27 3 C 025 0.00 O0.11 - 0.06
22,34;27 3 C 0.17 0.00 0.08 - 0.02
22,5527 3 C 029 0.00 0.13 - 0.09
22,89;27 1 N 035 0.00 023 - -
22,48;27 3 C 0.15 0.00 0.07 - 0.01
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22,2027 3 C 0.51 0.00 020 - 0.26
22927 1 N 0.31 0.00 020 - -
225427 3 C 043 0.00 0.18 - 0.20
22,33;27 2t 030 7.44 0.19 0.06 0.06
22,1927 1 N 036 0.00 0.23 - -
22,47;27 33 C270 -0.06 0.00 -0.03 - -
22,86;27 3 C 040 0.00 0.17 - 0.18
22427 1 N 0.39 0.00 0.26 - -
22,1227 3 C 0.51 0.00 020 - 0.25
22,3827 1 N 021 0.00 0.14 - -
22,5727 3 C 0.16 0.00 0.07 - 0.01
22,7827 3 C 0.17 0.00 0.08 - 0.02
22,13;27 2t 0.75 494 054 040 040
22827 1 N 0.37 0.00 024 - -
223227 1 N 025 0.00 0.16 - -
22,56;27 3 C 0.35 0.00 0.15 - 0.14
227527 2t 0.37 6.00 024 0.12 0.12
22,6427 1 N 0.24 0.00 0.16 - -
22,6027 3 C 0.32 0.00 0.14 - 0.11
22771;27 2t 030 877 020 0.05 0.05
224427 1 N 0.14 0.00 0.09 - -
22,66;27 1 N 024 0.00 0.15 - -
22,5227 3 C 0.12 0.00 0.06 - 0.00
2277227 3 C 0.64 0.00 024 - 0.34
22,6727 3 C 0.56 0.00 0.22 - 0.29
22,8527 1 N 0.33 0.00 0.21 - -
2221;27 1 N 0.21 0.00 0.14 - -
22,2627 2t 0.15 473 0.09 0.09 0.09
22,1527 1 N 049 0.00 032 - -
223927 3 C 0.10 0.00 0.05 - 0.00
222927 1 N 026 0.00 0.16 - -
22,1527 1 N 0.36 0.00 024 - -
22,2327 1 N 042 0.00 028 - -
227427 3 C 0.52 0.00 0.21 - 0.27
22,63;27 3 C 0.57 0.00 0.22 - 0.30
22,4027 1 N 0.06 0.00 0.04 - -
222,27 1 N 045 0.00 029 - -
228427 1 N 0.30 0.00 0.20 - -
2277627 1 N 0.27 0.00 0.18 - -
22,69;27 3 C 045 0.00 0.18 - 0.21
225027 1 N 022 0.00 0.14 - -
2251;27 3 C 0.11 0.00 0.05 - 0.00
22,627 1 N 033 0.00 021 - -
22,7327 1 N 0.21 0.00 0.13 - -
92,2227 3 C 0.21 0.00 0.10 - 0.04

Note: This table lists estimated Tree 2 parameters of C-vine mixed
copula model fitted to 92 risk factors. Selected copula families are
explained in Appendix Table 56.
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Table 2.24: Tree 3 Parameters Estimation of C-vine mixed Copula
Model

tree edge No. family par par2 tau UTD LID

3 73,83;22,27 1 N 029 0.00 0.19 - -
73,30;22,27 1 N 041 000 027 - -
73,3;22,27 1 N 0.17 0.00 0.11 - -
73,35;22,27 13 SC 0.15 0.00 0.07 0.01 -
73,62;22,27 3 C 0.18 0.00 0.08 - 0.02
73,11;22,27 2 t 045 11.30 030 0.05 0.05
73,17;22,27 3 C 023 0.00 0.10 - 0.05
73,87;22,27 2 t 0.17 671 0.11 0.05 0.05
73,25;22,27 3 C 0.18 0.00 0.08 - 0.02
73,53;22,27 3 C 022 000 0.10 - 0.04
73,18;22,27 1 N 0.10 0.00 0.06 - -
73,37;22,27 1 N 028 0.00 0.18 - -
73,61;22,27 1 N 0.19 0.00 0.12 - -
73,14;22,27 1 N 047 000 031 - -
73,79;22,27 2 t 041 30.00 0.27 0.00 0.00
73,68;22,27 2 t 0.20 1093 0.13 0.02 0.02
73,42;22,27 1 N 0.16 0.00 0.10 - -
73,70;22,27 1 N 0.30 0.00 0.19 - -
73,16;22,27 1 N 0.06 0.00 0.04 - -
73,88;22,27 2 t 035 470 023 0.15 0.15
73,45;22,27 1 N -0.03 0.00 -0.02 - -
73,81;22,27 1 N 0.30 0.00 0.19 - -
73,41;22,27 23 C90 -0.08 0.00 -0.04 - -
73,90;22,27 1 N 020 0.00 0.13 - -
73,65;22,27 1 N 021 0.00 0.14 - -
73,49;22,27 3 C 0.15 0.00 0.07 - 0.01
73,59;22,27 3 C 0.17 0.00 0.08 - 0.02
73,82;22,27 1 N -0.05 0.00 -0.03 - -
73,28;22,27 3 C 0.03 0.00 002 - 0.00
73,58;22,27 3 C 027 0.00 0.12 - 0.08
73,77;22,27 3 C 0.37 0.00 0.16 - 0.15
73,36;22,27 1 N 0.03 0.00 0.02 - -
73,5;22,27 13  SC 0.11 0.00 0.05 0.00 -
73,31;22,27 1 N 0.17 0.00 0.11 - -
73,722,273 C 023 0.00 0.10 - 0.05
73,10;22,27 1 N 023 000 0.15 - -
73,80;22,27 1 N 044 0.00 029 - -
73,46;22,27 13  SC 0.05 0.00 003 0.00 -
73,91;22,27 2 t 034 818 022 0.06 0.06
73,24;22,27 1 N 0.30 0.00 020 - -
73,43;22,27 3 C 021 0.00 0.09 - 0.04
73,34;22,27 1 N 0.10 0.00 0.06 - -
73,55;22,27 3 C 038 0.00 0.16 - 0.16
73,89;22,27 1 N 0.10 0.00 0.07 - -
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73,48;22,27 2t 0.05 893 0.03 0.01 0.01
73,20;2227 1 N 0.22 0.00 0.14 - -
73,9;2227 1 N 0.32  0.00 0.20 - -
73,54;22,27 2t 0.16 6.51 0.10 0.05 0.05
73,33;2227 1 N 0.20 0.00 0.13 - -
73,19;2227 3 C 041 0.00 0.17 - 0.19
73,47;,22,27 33 C270 -0.08 0.00 -0.04 - -
73,86;2227 1 N 0.27 0.00 0.17 - -
73,4;2227 3 C 0.30 0.00 0.13 - 0.10
73,12;2227 1 N 0.33 0.00 0.21 - -
73,38;22,27 2t 0.13 6.29 0.08 0.05 0.05
73,57;2227 1 N 0.22 0.00 0.14 - -
73,78;2227 3 C 0.23 0.00 0.10 - 0.05
73,13;2227 3 C 0.17 0.00 0.08 - 0.02
73,8;2227 1 N 0.11  0.00 0.07 - -
73,32;2227 1 N 0.29 0.00 0.19 - -
73,56;22,27 1 N 0.35 0.00 0.23 - -
73,75;2227 1 N 0.58 0.00 0.39 - -
73,64;2227 1 N 041 0.00 0.27 - -
73,60;22,27 2t 021 571 0.14 0.08 0.08
73,71;2227 1 N 0.30 0.00 0.19 - -
73,44;2227 3 C 0.09 0.00 0.05 - 0.00
73,66;22,27 3 C 0.18 0.00 0.08 - 0.02
73,52;2227 3 C 0.06 0.00 0.03 - 0.00
73,72;2227 1 N 029 0.00 0.18 - -
73,67;2227 3 C 0.18 0.00 0.08 - 0.02
73,85;22,27 2t 036 735 0.240.08 0.08
73,21;2227 1 N 0.20 0.00 0.13 - -
73,26;2227 1 N 0.31 0.00 0.20 - -
73,15;22,27 2t 0.26 5.18 0.17 0.10 0.10
73,39;22,27 2t 0.11 8.69 0.07 0.02 0.02
73292227 3 C 042 0.00 0.17 - 0.19
73,152227 1 N 0.09 0.00 0.06 - -
73,23;22,27 2t 0.12 4.83 0.08 0.08 0.08
73,74;2227 1 N 0.38 0.00 0.24 - -
73,63;2227 1 N 024 0.00 0.15 - -
73,40;22,27 13 SC 0.03 0.00 0.01 0.00 -
73,2;22,27 13 SC 0.13 0.00 0.06 0.00 -
73,84;2227 1 N 0.34 0.00 0.22 - -
73,76;22,27 2t 0.50 7.78 0.33 0.12 0.12
73,69;22,27 2t 028 775 0.18 0.05 0.05
73,50;22,27 3 C 0.25 0.00 0.11 - 0.06
73,51;22,27 33 C270 -0.18 0.00 -0.08 - -
73,6;22,27 1 N 0.31 0.00 0.20 - -
92,73;2227 2 t 041 6.84 0.27 0.11 0.11

Note: This table lists estimated Tree 3 parameters of C-vine mixed
copula model fitted to 92 risk factors. Selected copula families are
explained in Table 56.
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Glasserman (2004) and Pykhtin (2004), assume our 92 risk factors have identical default
probabilities, p; = 0.03,7i = 1,....k, k = 92, (loss given default adjusted) exposures set
as 1000000, loss given default equals 0.45, composite risk factor loadings is equally set,
and systematic risk factor loadings are set as 8 = 8, = ... = B¢ = 0.2;0.3;0.4;0.5;0.6
separately, which are common in credit modelling, see Pykhtin (2004), Daul et al. (2003).
We list all credit VaR and CVaR money value results estimated under five different copula
model setting at @ = 0.9,0.95,0.99, 0.995, 0.999 confidence level and various systematic
risk ratios level separately in Table 25-26.

Homogeneous small portfolio, M = 100. In the case of small homogeneous credit
portfolio incorporating 100 obligors, we set the ratio of systematic risk to total risk from
20% to 60%. Plenty of empirical results demonstrate that in various different industries,
the ratio of systematic risk in total risk ranges from 20% to 60%, since our industry factors
cover various industries in several countries, we set the ratio from 20% to 60% in order
to approach the real world case. From the Table 25, firstly, we find that with the increase
of the proportion of systematic risk, the values of VaR and CVaR under various copula
setting and various confidence levels are all increasing, indicating that the greater the
proportion of the systematic risk, the greater the risk of the entire credit portfolio. These
results matches the asset pricing theory. As we know, the financial risk can be divided as
systematic risk and nonsystematic risk, nonsystematic risk can be diversified by portfolio
management. So as the increase of the proportion of systematic risk, the value of VaR and
CVaR also increase. One exception is that when systematic risk ratio being 30%, under
95%, 99%, and 99.5% confidence level, the values of the VaR and CVaR are both less
than 20% case, while the other cases are all consistent with the above description.

Then we investigate VaR and CVaR results under different copula settings in detail.
As expected, VaR and CVaR values under the setting of R-vine mixed and C-vine mixed
copula are always large than R-vine Gaussian, R-vine t, C-vine t copula setting at each
systematic risk ratios under various confidence levels. For example, at 95% confidence
level, 20% systematic risk ratios setting, the VaR and CVaR value under the C-vine mixed
copula setting are largest among all models, which are 569000 and 743166.3 separately.
The second largest money value of VaR and CVaR are the results under R-vine mixed
copula setting, its VaR equals 575000 and CVaR equals 746396.1. And VaR of C-vine
t equals 567000, CVaR is 735432.9, R-vine t VaR equals 566000, CVaR is 736783.0.
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The lowest VaR and CVaR money value are obtained under multivariate Gaussian cop-
ula setting, in which VaR equals 563000, CVaR equals 728608.8. At 99.9% confidence
level, 60% systematic risk ratios setting, the VaR of C-vine mixed copula is 148500, the
CVaR equals 1656745.1, the VaR set by R-vine mixed copula equals 148200, the CVaR
is 1631843.1, and the VaR of the C-vine t is 145800, CVaR equals 1602176.5, R-vine t
is 146600, CVaR equals 1619269.2, R-vine Gaussian is the lowest, in which VaR equals
1446000, CVaR is 1605764.7.

Homogeneous large portfolio, M = 1000. Now we take a look at large homogeneous
credit portfolio case which includes 1000 obligors, we set the ratio of systematic risk to
total risk also from 20% to 60%, which is the same as M=100 case. From the Table 26,
we find similar results with small portfolio case, firstly, with the increase of the proportion
of systematic risk, the values of VaR and CVaR under various copula setting and various
confidence levels are all increasing, indicating that the greater the proportion of the sys-
tematic risk, the greater the risk of the entire credit portfolio. One exception is that when
systematic risk ratio being 30%, under 95%, 99%, and 99.5% confidence level, the values
of the VaR and CVaR are both less than 20% case, while the other cases are all consistent
with the above description.

Then we investigate VaR and CVaR results under different copula settings in detail.
As expected, VaR and CVaR values under the setting of R-vine mixed and C-vine mixed
copula are always large than R-vine Gaussian, R-vine t, C-vine t copula setting at each
systematic risk ratios under various confidence levels. For example, at 95% confidence
level, 20% systematic risk ratios setting, the VaR and CVaR value under the C-vine mixed
copula setting are largest among all models, which are 758000 and 959044.7 separately.
The second largest money value of VaR and CVaR are the results under R-vine mixed
copula setting, its VaR equals 754000 and CVaR equals 948288.2. And VaR of C-vine t
equals 75700, CVaR equals 949092.6, R-vine t VaR equals 761000, CVaR is 955590.6.
The lowest VaR and CVaR money value are obtained under multivariate Gaussian copula
setting, in which VaR equals 756000, CVaR equals 958503. The VaR of C-vine mixed
copula is 2723000, the CVaR equals 2961392, the VaR obtained by R-vine mixed copula
setting is 2657000, the CVaR equals 2905745, and the VaR of the C-vine t is 2657000,
CVaR equals 2905745, R-vine t is 2651000, CVaR equals 2945333, R-vine Gaussian
exhibits the lowest value, in which VaR is 2643000, CVaR equals 2882275.
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First of all, the above homogeneous portfolio results show that the rich bivariate cop-
ula families allow us to be more flexible and more appropriate to choose copula to describe
the dependency of different pairs of stock indices, secondly, as we discussed above, the
superiority of vine structure not only come from plenty of bivariate copula families as
building blocks of vines, but also because they provide a more refined and rational struc-
ture to connect each equity indices. An example is that R-vine mixed copula outperform
C-vine t copula setting in estimating VaR and CVaR in our results. Therefore, we can
draw a conclusion that vine copula structures help us to more precisely estimate credit
portfolio VaR and CVaR, so as to more accurately measure the portfolio credit risk, while
the traditional multivariate Gaussian copula setting, and the inappropriate R-vine t, C-vine

t copula underestimate the risk of our credit portfolio.

2.7.3 Heterogeneous Credit Portfolio

In practical point of view, homogeneous portfolio is a simplified version of real credit
portfolio, while heterogenous portfolio setting can considered to be more realistic one.
Hence, in this section, we would like to in further investigate whether R-vine mixed cop-
ula and C-vine mixed copula setting outperform other copula model setting in estimating
VaR and CVaR in a more realistic heterogenous credit portfolio. In heterogeneous credit
portfolio setting, we also mimic the setting of numerical examples in Glasserman (2004)
and Pykhtin (2004).

Heterogeneous small portfolio, M = 100. In the case of small heterogeneous credit
portfolio including 100 obligors, following Glasserman (2004) and Pykhtin (2004), we set
the each industry sector’s proportion of systematic risk in total risk to randomly selected
from 20% to 60%. As mentioned in the homogeneous case, plenty of empirical results
demonstrate that, in various different industries, the ratio of systematic risk in total risk
ranges from 20% to 60%, since our industry factors cover various industries in several
countries, we set the ratio randomly selected from 20% to 60% in heterogeneous case in
order to approach the real world case. Composite risk factor loading is randomly chosen
from O to 1, but the sum of each composite risk factor loadings should be equal to 1. In
credit risk management, normally, probabilities of default of investment bond and specu-
lative bond ranges from O to 0.1. Default probabilities randomly set from O to 0.1, which

represents we distinguish different credit rating of obligors. (loss given default adjusted)
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Table 2.25: Homogeneous Small Portfolio Comparison of VaR and CVaR for differ-
ent copula settings

VaR CVaR
95% 99% 99.5% 99.9% 95% 99% 99.5% 99.9%
r=02
R vine Gaussian 563000 823000 927000 1160000 728608.8 974140.6 1083726.2 1341019.6
R vine t 566000 836000 947000 1204000 736783.0 997960.2 1111789.7 1347980.4
R vine mixed 575000 844000 970000 1210000 746396.1 1006700.6 1117976.1 1356862.7
C vine t 567000 833000 934000 1175000 7354329 980251.5 1084075.1 1320846.2

C vine mixed 569000 840000 954000 1224000 743166.3 1007974.2 1127000.0 1400882.4
r=03
R vine Gaussian 444000 749000 832000 1040000 626789.2 871944.1 957158.7 1168607.8

R vine t 444000 750000 839000 1079000 626354.8 883950.4 9784422  1186588.2
R vine mixed 448000 750000 848000 1086000 637882.0 895424.9 997091.6  1227647.1
Cvinet 444000 737000 827000 1080000 621675.2 8803459 9837052  1218098.0

C vine mixed 447000 751000 844000 1108000 641193.4 894530.9 9931914  1207803.9
r=04
R vine Gaussian 566000 848000 957000 1200000 746497 1002873 1115988 1363608

R vine t 568000 845000 973000 1207000 750388.8 1013473.1 1130354.6 1372862.7
R vine mixed 572000 854000 976000 1215000 752640.4 1017874.8 1133111.6 1386235.3
Cvinet 569000 848000 958000 1205000 747801.3 1002834.7 1111374.5 1345666.7

C vine mixed 573000 857000 992000 1244000 759010.4 1036528.9 11575259 1406288.5
r=0.5
R vine Gaussian 706000 995000 1129000 1385000 879943 1171214 1284243 1517745

R vine t 706000 1020000 1139000 1414000 885201.7 1191662.7 1304747.0 1590352.9
R vine mixed 708000 1022000 1143000 1430000 887340.4 1196736.1 1313047.6 1568942.3
Cvine t 704000 1012000 1140000 1405000 880306.7 1183820.4 1295608.7 1557882.4

C vine mixed 713000 1025000 1158000 1460000 898014.8 1212441.4 1335948.4 1605372.5
r=0.6
R vine Gaussian 719000 1047000 1166000 1446000 916430.1 1218428.3 1336888.9 1605764.7

R vine t 728000 1050000 1175000 1466000 923479.4 1227215.1 1345329.4 1619269.2
R vine mixed 729000 1063000 1195000 1482000 931669.2 1246748.0 1369523.6 1631843.1
Cvinet 725000 1052000 1182000 1458000 922221.1 1229960.2 1348718.3 1602176.5

C vine mixed 728000 1053000 1196000 1485000 926897.1 1245304.2 1376478.1 1656745.1
Note: This table reports homogeneous small credit portfolio VaR and CVaR money value at
different confidence level ¢ estimated by different copula models: R-vine Gaussian, R-vine t,

R-vine mixed, C-vine t, C-vine mixed. Results are given for test portfolio containing 100 credit

exposures.
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Table 2.26: Homogeneous Large Portfolio Comparison of VaR and CVaR for differ-
ent copula settings

VaR CVaR
95% 99% 99.5% 99.9% 95% 99% 99.5% 99.9%
r=02
R vine Gaussian 756000 1098000 1221000 1493000 958503 1274515 1395223 1673863
R vine t 761000 1088000 1211000 1491000 955590.6 1269862.5 1393654.8 1677921.6
R vine mixed 754000 1075000 1189000 1496000 948288.2 1251757.5 1379063.7 1666490.2
C vine t 757000 1077000 1198000 1498000 949092.6 1256371.0 1380832.7 1665711.5

C vine mixed 758000 1101000 1229000 1499000 959044.7 1283884.2 1405434.3 1683000.0

r=03

R vine Gaussian 840000 1176000 1315000 1640000 1051563 1372622 1508661 1784308

R vine t 838000 1194000 1347000 1611000 1053763 1388653 1517319 1780529
R vine mixed 834000 1202000 1347000 1669000 1056593 1401821 1537837 1824176
C vine t 837000 1185000 1326000 1622000 1050399 1379078 1512202 1789392
C vine mixed 838000 1191000 1336000 1619000 1053334 1384250 1514937 1788824
r=04

R vine Gaussian 1161000 1605000 1793000 2125000 1433341 1845771 2004450 2342137
R vine t 1162000 1586000 1756000 2163000 1427975 1826790 1993671 2358216
R vine mixed 1161000 1609000 1795000 2130000 1438217 1856226 2019056 2337078
Cvine t 1171000 1607000 1778000 2124000 1435619 1838727 1996287 2321275
C vine mixed 1170000 1622000 1793000 2165000 1441855 1851061 2007861 2325608
r=0.5

R vine Gaussian 1276000 1717000 1875000 2228000 1544893 1943203 2099538 2420039
R vine t 1272000 1707000 1872000 2225000 1543354 1942505 2100189 2447059
R vine mixed 1274000 1737000 1914000 2249000 1553257 1967171 2118239 2454902
C vine t 1271000 1717000 1899000 2224000 1543884 1959116 2116162 2448647

C vine mixed 1275000 1722000 1908000 2297000 1553129 1982082 2152190 2553942

r=0.6

R vine Gaussian 1547000 2056000 2236000 2643000 1856063 2316808 2493311 2882275

R vine t 1543000 2050000 2232000 2651000 1852713 2323267 2510992 2945333
R vine mixed 1559000 2075000 2267000 2679000 1868878 2341281 2521924 2896471
Cvine t 1556000 2061000 2266000 2657000 1862892 2337217 2526363 2905745

C vine mixed 1547000 2057000 2265000 2723000 1860287 2338747 2533179 2961392
Note: This table reports homogeneous large credit portfolio VaR and CVaR money value at
different confidence level g estimated by different copula models: R-vine Gaussian, R-vine t,
R-vine mixed, C-vine t, C-vine mixed. Results are given for test portfolio containing 1000 credit
exposures.
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exposures randomly set from 1000 to 1000000. These settings are common in financial
risk which is easily applicable to monte carlo simulation (random selection) and to check
if our model perform well in different level of default probabilities (different credit rating)
and different composite risk factor loadings. In addition, all these setting is close to real
world case. The estimated money value of VaR and CVaR based on various copula model
setting list in Table 27-28. In general, we find that, under different copula settings, differ-
ent confidence levels, the maximum value of both VaR and CVaR always come from the
setting by R-vine mixed and C-vine mixed copula, which exceed the corresponding value
of multivariate Gaussian copula, R-vine t, C-vine t copula setting. These results primarily
demonstrate that multivariate Gaussian copula, R-vine t, C-vine t copula setting underes-
timate the VaR and CVaR of credit portfolio. For example, in the case of 95% confidence
level, the VaR of the C-vine mixed copula equals 946000, the CVaR equals 1237909, the
VaR value under the R-vine mixed copula setting is 942000, the CVaR equals 1235755,
VaR of the C-vine t is 945000, the CVaR is 1236162, VaR under R-vine t setting equals
934000, CVaR is 1229494. In line with homogeneous case, values under multivariate
Gaussian copula setting are the lowest, VaR is 935000, CVaR is 1222331.
Heterogeneous large portfolio, M = 1000. Then we further check the case of large
heterogeneous credit portfolio which consists 1000 obligors. Similarly with M=100 case
setting, we also set the each sector’s proportion of systematic risk in total risk to randomly
select from 0.2 to 0.6, which is the same with small heterogeneous portfolio case. We
find that the highest values of VaR and CVaR still always originate from the setting of R-
vine mixed and C-vine mixed copula at various confidence levels, which are higher than
those of R-vine Gaussian, R-vine t, C-vine t copula, for example, in the case of 95% low
confidence level, the VaR of the C-vine mixed copula is 1827000, the CVaR is 2248750,
R-vine mixed copula setting’s VaR equals 1818000, the CVaR is 2245065, the C-vine t
i1s 1806000, the CVaR is 2228142, the R-vine t is 1817000, the CVaR is 2225689, the
multivariate Gaussian copula setting values are also the lowest, the VaR is 1811000, the
CVaR is 2228888. In the case of 99.9% high confidence level, the VaR of C-vine mixed
copulais 3311000, the CVaR is 3632353, the VaR set by R-vine mixed copula is 3368000,
the CVaR is 3717902, and VaR of the C-vine t is 3262000, CVaR equals 3583647, VaR
set by R-vine t is 3290000, CVaR is 3563431, R-vine Gaussian setting exhibits the lowest
VaR which is 3293000, and CVaR equals 3613865. All these results are consist with
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heterogeneous small portfolio case.

According to the similar results of heterogeneous portfolio with homogeneous port-
folio, also the small and large portfolio cases, we can draw a conclusion that, first, the
VaR and CVaR results under the traditional multivariate Gaussian copula setting are all
lower than other four vine copula setting, which demonstrate that flexible vine structure
is able to more precisely capture the dependence of equity indices, so as to estimate port-
folio credit risk VaR and CVaR more precisely. Without the vine structure, the traditional
multivariate Gaussian copula is inferior to vine copula setting which leads to the under-
estimation of VaR and CVaR. Secondly, why we say R-vine t copula and C-vine t copula
setting which have the vine structure still underestimate the VaR and CVaR compared
with the R-vine mixed copula and C-vine mixed copula. R-vine mixed copula and C-vine
mixed copula allow the user to choose building blocks from various bivariate copulas,
including both symmetric and asymmetric copulas, to capture tail dependence and asym-
metric dependence, however, despite R-vine t copula and C-vine t copula possess flexible
vine structure, they restrict to Student t copula as their building blocks. It becomes the re-
striction of R-vine t and C-vine t that the Student t copula can only capture tail dependence
but can not capture asymmetric dependence, which results in lower ability and actuality of
capturing dependency. Therefore, R-vine mixed copula and C-vine mixed copula which
taking both above advantages are able to be more precisely estimate VaR and CVaR, while
the traditional multivariate Gaussian copula, and R-vine t, C-vine t copula underestimate

the risk of the credit portfolio.

Table 2.27: Heterogeneous Small Portfolio Comparison of VaR and CVaR for differ-
ent copula settings

VaR CVaR
95% 99% 99.5% 99.9% 95% 99% 99.5% 99.9%
R vine Gaussian 935000 1403000 1562000 1942000 1222331 1637701 1796243 2146549

R vine t 934000 1396000 1586000 2013000 1229494 1663330 1851207 2246843
R vine mixed 942000 1422000 1607000 2079000 1235755 1684307 1867230 2267588
C vine t 945000 1412000 1599000 2057000 1236162 1686226 1878746 2313784

C vine mixed 946000 1427000 1608000 2026000 1237909 1681067 1856161 2228549
Note: This table reports heterogeneous small credit portfolio VaR and CVaR money value at
different confidence level g estimated by different copula models: R-vine Gaussian, R-vine t,

R-vine mixed, C-vine t, C-vine mixed. Results are given for test portfolio containing 100 credit
exposures.
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Table 2.28: Heterogeneous Large Portfolio Comparison of VaR and CVaR for differ-
ent copula settings

VaR CVaR
95% 99% 99.5% 99.9% 95% 99% 99.5% 99.9%
R vine Gaussian 1811000 2483000 2756000 3293000 2228888 2858986 3109869 3613865

R vine t 1817000 2474000 2722000 3290000 2225689 2823528 3062230 3563431
R vine mixed 1818000 2515000 2772000 3368000 2245065 2886840 3150805 3717902
Cvinet 1806000 2497000 2744000 3262000 2228142 2847221 3085375 3583647

C vine mixed 1827000 2520000 2792000 3311000 2248750 2879094 3110687 3632353
Note: This table reports heterogeneous large credit portfolio VaR and CVaR money value at
different confidence level g estimated by different copula models: R-vine Gaussian, R-vine t,

R-vine mixed, C-vine t, C-vine mixed. Results are given for test portfolio containing 1000 credit
exposures.

2.8 Systematic Risk Factor Contributions

Decomposing portfolio risk into its different sources is a fundamental problem in financial
risk management. Once risk measure has been selected, VaR and CVaR in our case, and
the risk of a portfolio has been calculated, a question naturally be raised is: where does
these risk come from? Hence, we develop an extension of the Euler allocation that applies
to nonlinear functions of a set of risk factors in our vine copula setting framework. The
technique is based on the Hoeffding decomposition, originally developed for statistical
applications (see, for example, Van der Vaart (2000); Sobol (1993)). The thoughts of this
method simply is that though we cannot write the portfolio loss as a sum of functions
of individual risk factors, the application of the Hoeffding decomposition allows us to
express it as a sum of functions of all subsets of risk factors. The standard Euler allocation
machinery can then be applied to the new loss decomposition. The price paid for this
methodology is that we have to consider contributions not only from single risk factors,
but also from the interaction of every possible collection of risk factors.

We firstly briefly review the theory of risk contributions, with particular emphasis on
marginal contributions (also known as the Euler allocation rule). For a more complete
discussion of the theory of capital allocation, focusing in particular on credit risk man-
agement, see Mausser and Rosen (2007). For a survey of results on the Euler allocation
rule, see Tasche (2007), or McNeil et al. (2015).

We consider the total portfolio loss as a sum of the losses of individual positions

(instruments or sub-portfolios):



where L, is the random variable giving the loss per dollar of exposure in instrument 7,
and w, is the amount of money invested in position n. The total risk of the portfolio is
p(L), where p is a risk measure mapping random variables to real numbers.

We are interested in defining a measure C, of the contribution of the nth position
to the total portfolio risk. Different methods of calculating risk contributions have been
studied for different purposes. We present a brief list of the alternatives that are popular

in practice.

2.8.1 Risk Contribution Method

Stand-alone contributions
Cn =p (Wn Ln)

The stand-alone contribution of a position is simply its risk if it were held as a portfolio
in isolation. It ignores the distributions of all other positions, and therefore does not
take into account any diversifying or hedging effects resulting from its inclusion in the
institution’s portfolio. It is considered to be useful in measuring the reduction of risk due
to diversification, and in measuring diversification factors for portfolios (see Cespedes
et al. (2006); Tasche (2006)).

It can also be considered as an upper bound on the contribution to the risk for any
reasonable allocation rule. That is, for any allocation rule, we would expect to have
C, < p(w,L,). This condition features in axiomatizations of capital contributions, e.g.
Kalkbrener (2005), as well as the interpretation of the Euler allocation rule in terms of
the theory of cooperative games, e.g. Denault (2001) or Koyluoglu and Stoker (2002). If
the risk measure is subadditive, then the sum of the stand-alone contributions provides an

upper bound for the total portfolio risk:

N
p= Zp(wnLn)
n=1
Coherent risk measures such as expected shortfall, or say CVaR, are subadditive. It is

well known that Value-at-Risk and Economic Capital are not subadditive risk measures,

and for them the above inequality can be violated.
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Incremental contributions

The incremental risk contribution of a position is the change in total risk arising from

including the position in the portfolio.

Co = p(L) = p() WiLm)

m#n

This is a useful measure for one considering adding the position L, to their portfolio.
When w, is small, it may also be regarded as a finite difference approximation to the
marginal risk contribution discussed below. It is typically not the case that incremental
contributions of positions add up to the total portfolio risk, and it should also be noted
that this definition of risk contribution is motivated by applications where additivity is not

necessarily desirable.

Marginal contributions (Euler allocation)

We consider a risk measure that is positive homogeneous (i.e. p(d - L) = Ap(L) for
A > 0) which normally includes measures such as standard deviation (6;), Value-at-
Risk (VaR(L)), Economic Capital (EC(L)) and Conditional Value-at-Risk (CVaR(L)),
also known as expected shortfall, Haezendonck risk measures (see, e.g. Bellini and Gi-
anin (2008)), spectral risk measures (see, e.g. Adam et al. (2008)), and any risk measure
satisfying the coherence axioms of Artzner et al. (1999). Under technical differentiability
assumptions on p, Euler’s theorem for positive homogeneous functions can immediately

implies,
N
pL) =) G,
n=1

where
dp(L)
ow,

d
Co = Wa (L + €Lyl = wo 2 (w).
de

The nth term in the sum, C, is then interpreted as the contribution of the nth position’s
loss (L,) to the overall portfolio risk p(L).
Explicit formulas for marginal risk contributions are available for some of the most

important risk measures. For standard deviation,

cov(L,, L)
gy, ’

o _
C, =w,
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where o, is the standard deviation of L. For Value-at-Risk at the confidence level «a,

subject to technical conditions, Gourieroux et al. (2000) and Tasche (1999) showed that,
CV® = w,E[L,|L = VaR,(L)].
Finally, for CVaR, and again subject to technical conditions, Tasche (1999) showed that,

CCVR = w,E[L,|L = VaR,(L)].

2.8.2 Homogeneous Credit Portfolio Risk Contribution

From above section, we find that R-vine mixed copula and C-vine mixed copula settings
are able to more accurately estimate VaR and CVaR, while other copula settings under-
estimate VaR and CVaR. In this section, we therefore calculate different industry sector’s
VaR and CVaR risk contribution based on R-vine mixed copula and C-vine mixed copula
settings. Risk contributions for both VaR and CVaR as a function of 8 for all confi-
dence levels. Risk contributions are calculated based on a Monte-Carlo simulation using
ten million scenarios. VaR contributions are calculated using a kernel estimator for the
conditional expectation with equal weights. Observe that even with a large number of sce-
narios, VaR contributions are subject to significant estimation error, which could likely be
reduced using importance sampling (e.g. Glasserman and Li (2005); Merino and Nyfeler
(2004)). We consider risk contributions to both VaR and CVaR, at the confidence levels
a =0.9,0.95,0.99,0.995,0.999 separately.

For the C-vine copula setting case, we focus on the small homogeneous credit portfo-
lio. In the same way with VaR and CVaR estimation, we also set the ratio of systematic
risk in the total risk from 20% to 60%, in order to examine the change of each sector’s
risk contribution of VaR and CVaR with the increase of percentage of systematic risk to
total risk. We list the top ten sector risk contribution rankings from high to low in Table
29-33, where systematic risk ratio is set 20%, 30%, 40%, 50% and 60% separately. In the
case of systematic risk ratio equals 20%, we find that both of the VaR and CVaR risk con-
tributions of the banking and financial services sector rank high at all 95%, 99%, 99.5%
and 99.9% levels among the top ten risk contributors, followed by the mining industry

and information industry which also provides a great risk contribution. Regarding coun-
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tries of risk sources, in the case of systematic risk ratio equals 20%, the Japan occupies
the most positions in the top ten of the risk contributors, such as, under the high 99.9%
levels, the Japan occupies the first three, seventh and ninth places of top ten VaR risk
contributors, the second, fourth and seventh places of CVaR risk contributors. At 99.5%
levels, Japan accounts for third, fourth, seventh, eighth and tenth, five places in total of
VaR risk contribution among the top ten. Among CVaR risk contribution of the top ten,
Japan occupies also five positions, second, fourth, fifth, sixth and seventh.

Next question is whether there will be some changes and what kind of changes of the
largest risky contributors of sector and country when we change the proportion of system-
atic risk to total risk. Therefore, we increase the proportion of systematic risk in the total
risk from 20% to 30%, 40%, 50% and 60%. Then we find that the industry departments
that provide the largest risk contribution move from mainly financial industry, such as
banking and financial services industry to the manufacturing sectors, such as, automotive
industry, auto parts industry, transportation industry and petrochemical industry, which
demonstrates the risk come from financial sector would be diversified. When the system-
atic risk increase to the high proportion of 60%, at each confidence level, VaR and CVaR
risk contribution of the top ten moves to Chemicals, Materials, primarily the pharmaceu-
tical industry. As we know, these industries are least affected by macro economy. From
the point of view of the country of the risk sources, the country provide most risk changes
from Japan to UK and US when the proportion of systematic risk move from 20% to 30%,
40%, 50% and 60%, however, what interesting is, the countries which make the largest
risk contribution in 30%, 40%, 50% and 60% cases are much more decentralized com-
paring to the 20% case. Particularly in 20% case, Japan always take up around half of the
places of the top ten risk contribution countries, however, at 30%, 40%, 50% and 60%
cases, the US plus UK take up around half of top ten places.

Then we move to R-vine mixed copula setting case, in our case, we just consider
the sector risk factors without considering macro economic variable as the pivotal ele-
ment of vine copula modelling, therefore, as expected, the R-vine mixed copula without
pivotal variable requirement would be much effective for capturing and modelling the
dependence of various sector risk factors here. In depth, the R-vine structure, which is
the general form of the C-vine with star structure and D-vine with path structure, pos-

sess more flexible structure to capture the asymmetric tail dependence of risk factors and
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the fat tails characteristics. However, from the section of goodness-of-fit, the test results
demonstrate that C-vine mixed copula setting outperforms R-vine mixed copula setting.
The reason probably would be though there is no general macro economic variable which
can affect all risk factors, due to the C-vine structure, when we fit the C-vine copula to
data, a factor should be selected as the pivotal factor from statistical perspective, and this
selected sector factor has a great effect on and strong correlation with all other factors.
While R-vine loses some accuracy of modelling dependence in our case results from the
ignorance of above consideration.

In R-vine mixed copula setting, we also take a look at the case of small homogeneous
credit portfolios. We first similarly set the percentage of systematic risk in the total risk
from 20% to 30%, 40%, 50% and 60% to examine the changes in the risk contribution
of VaR and CVaR with the increase of systematic risk proportion. We list the top ten risk
contributors of sector and their country of origin from high to low. In the case of ratio of
20%, we find that at 95%, 99%, 99.5%, 99.9% levels, similar to the C-vine mixed copula
setting, the VaR and CVaR risk contributions of the banking, insurance and financial
services sectors are at the forefront and are the most important sources of risk. While the
slight difference is that under the R-vine mixed copula setting, not the mining industry and
the information industry provide the second greatest risk contribution following financial
industry, but the power and utility industry provide the second largest risk contribution
following the banking and finance industry. When systematic risk proportion increase
to 60%, the main risk contributor industry change to power, energy, and pharmaceutical
industry.

From the point of view of the risk country of origin, in the case of 20%, Japan occu-
pies the largest number of places among the top ten risk contributors, such as at 99% level,
Japan occupies the second, sixth, seventh and eighth positions of VaR risk contributors of
the top ten. Among CVaR risk contribution to the top ten risk contributor, Japan accounts
for the third, fifth, sixth and tenth places. At 99.5% confidence level, regarding VaR risk
contribution to the top ten, Japan accounts for the third, eighth, ninth and tenth positions,
and accounts for the second, fourth, fifth, sixth, seventh and eighth positions of CVaR risk
contribution to the top ten. When we adjust systematic risk percentage to 30%, both of
the most risky sector and their country of origin are basically the same with the situation

of 20%, however, as we increase the systematic risk proportion of total risk to 40%, 50%,
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we find that the sector which provide greatest risk change from the banking and financial
services and information industry into the mining, transportation, chemical industry, and
this is basically the same with C-vine mixed copula setting case, because C-vine copula is
a special form of R-vine copula, and the risk of the banking and financial industry would
be diversified. From the point of view of the origin country of risk, in the case of 20%,
30%, Japan accounts for most places among the top ten risk contributors, while in 40%
case, Canada’s risk contribution increases, and in 50% case, three countries, including
UK, US and Japan, are the most risky countries, while when the proportion of the sys-
tematic risk increased to 60%, similarly with C-vine mixed copula setting, the countries

of risk sources are more decentralized.

2.8.3 Heterogeneous Credit Portfolio Risk Contribution

Next, we examine the heterogeneous credit portfolio risk contribution, where we ran-
domly set the systematic risk weights for each industry department among the range of
20% to 60%. First of all, let us take a look at the C-vine mixed copula setting case, which
we find that vine copula setting is effective at all 95%, 99 %, 99.5 % and 99.9 % confi-
dence level. The financial industry, such as banks, insurance industry account for half of
the risk contribution of the top ten most risky industrial sectors. For example, at the low
95% confidence level, VaR contribution of the bank insurance industry take the first, sec-
ond, fourth, seventh and eighth, five places in total, while the first, fifth, sixth and tenth of
VaR contribution are taken place by insurance industry, regarding measure of CVaR, the
bank insurance industry is the first, sixth and tenth risk contributor, which indicating that
the banking insurance industry undertakes more risk compared with other manufacturing
industry, like construction and mining.

Investigating the risk sources from the perspective of country, at all the 95 %, 99
%, 99.5 % and 99.9 % levels, the UK and Germany provide the most risk among the
top ten risk source countries. For example, at the 95% confidence level of the VaR,
the first, fourth, fifth, sixth and ninth places of risk all source from UK and Germany.
Under the high confidence level 99.9%, the second, fourth, fifth and seventh place of VaR
contribution, the first, sixth and tenth places of CVaR are occupied by UK and Germany.

We now transfer to investigate the risk contribution of R-vine mixed copula setting.

Very similarly, at all the 95 %, 99 %, 99.5 % and 99.9 % levels, the financial industry,
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such as banks, insurance industry occupies around half of places of risk contribution of
top ten industries. For instance, at 95% confidence level, the financial industry, such as
banks, insurance industry account for half of the risk contribution of the top ten most risky
industrial sectors. At the 95% confidence level, VaR contribution of the bank insurance
industry takes the first, second, fourth, seventh and eighth places, while the first, fifth,
sixth and tenth of VaR contribution are taken up by insurance industry, regarding measure
of CVaR, the bank insurance industry is the first, sixth and tenth risk contributor, which
indicating that the banking insurance industry undertake higher degree of risk than other
manufacturing industry, like construction and mining sector.

From the perspective of risk country of origin, at all the 95%, 99%, 99.5% and 99.9%
levels, the UK and Germany provide the most risk among the top ten risk source countries.
For example, at the 95% confidence level of the VaR, the first, fourth, fifth, sixth and ninth
place of risk source come from UK and Germany. Under the high confidence level 99.9%,
the second, fourth, fifth and seventh place of VaR contribution, the first, sixth and tenth

places of CVaR are occupied by UK and Germany.

2.9 Loss Function-based Backtesting

Classic market risk backtesting, see Kupiec (1995) unconditional coverage test, the con-
ditional coverage test proposed by Christoffersen (1998) and the duration-based Weibull
test of independence by Christoffersen and Pelletier (2004), have a common spirit that
compare a given risk metric, which is derived from a risk model and a forecast about the
future trend, with ex-post observations. For this mechanism, the time frames of data is
split into two non-overlapping parts. The first time frame, normally called estimation pe-
riod, is used to calibrate the model. At the end of the estimation period, the risk metric as
a prediction of the up-coming future is derived from the calibrated model. Then, what we
want to know is the accuracy of the model’s prediction about the future. Therefore, a test
period is defined, usually begin from the end of the estimation period, and the model user
checks the performance of risk metric in test period, and whether it is consistent with the
model’s prediction. If the risk metric in the test period largely deviates from the prediction
of the model, it suggests there exists model misspecification.

While in this paper, due to the adoption of hypothesized credit portfolio, we can-
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not obtain the credit portfolio average return as the benchmark for traditional market
risk backtesting framework, in this sense, we introduce loss function based backtesting
method for our credit VaR forecasting. The idea of employing loss functions to assess risk
measure performance was firstly introduced by Lopez (1998) and Lopez (1999). The loss
function evaluation method is not based on a hypothesis-testing framework, but rather on
assigning to risk measure estimates a numerical score that reflects the evaluator’s specific
concerns. As such, it provides a measure of relative performance that can be utilised to
assess the performance of risk measure estimates. Under this approach, a model which
minimises the loss is preferred to other models (Lopez (1998)). We forecast the one-
day-ahead VaR of equally weighted credit portfolios. The five competing copula models
are specified the same as above sections. The in-sample forecasting period for the credit
portfolio corresponds to the period from January 2002 to December 2010. We evaluate
all risk metrics separately at 95%, 99%, 99.5% and 99.9% confidence levels, since they
constitute the levels most commonly used for model evaluation both in literature and in

financial markets.

2.9.1 The Model Confidence Set Procedure

The comparison and selection of a number of competing models raises the question of
requiring a statistical method or procedure that delivers the best model with respect to
a given criterion. Moreover, model selection issue is regard to be necessary to reduce
the uncertainty when the usual comparison procedures do not provide a unique result.
For example, when a series of models are compared in terms of their predictive ability,
models that exhibit better forecast accuracy are preferred. However, in practice, when
evaluating the performances of different forecasting models, it is not always possible to
establish which model clearly outperforms the remaining available competing ones. This
issue occurs especially when the set of competing alternatives similarly to each other,
such as our copula models case. As discussed by Hansen and Lunde (2005) and Hansen
et al. (2011), from the practical perspective view, it probably unrealistic to obtain a single
model which dominates all the other competitors, which may either owing to the different
model specifications exhibit statistically equivalence or because there lack of sufficient
information obtained from the data to discriminate the candidate models. Nevertheless,

though it is hard to deliver the unique discriminant model, the ranking of the competing
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models still make great sense for model users to select the best performance model.

Recently, a number of alternative procedures have been developed to deliver the “’best
fitting” model, such as the Reality Check (RC) of White (2000), the Stepwise Multiple
Testing procedure of Romano and Wolf (2005), the Superior Predictive Ability (SPA) test
of Hansen (2005) and the Conditional Predictive Ability (CPA) test of Giacomini and
White (2006). Among these multiple testing procedures, the Model Confidence Set pro-
cedure (MCS) proposed by Hansen et al. (2003) and Hansen et al. (2011) consists of a
sequence of statistic tests which allows to construct the so called Superior Set of Mod-
els (SSM), where the null hypothesis of equal predictive ability (EPA) is not rejected at
certain confidence level . The EPA statistic test can be evaluated for an arbitrary loss
function, which essentially means that it is possible to test models on preferred aspects
depending on the chosen loss function. The possibility to specify model user supplied
loss functions enhances the flexibility of the procedure that can be used to test different
aspects. In this paper, we compare the different vine copula and traditional multivariate
Gaussian copula models setting for our credit portfolio by investigating their VaR fore-
casts ability and actuality similar to Caporin and McAleer (2014) and Chen and Gerlach
(2013). Since the object of interest is the conditional quantile of the portfolio loss distri-
bution, we choose the asymmetric linear loss function proposed in Gonzalez-Rivera et al.
(2004) and Giacomini and White (2006). The asymmetric loss function compares the
performances of two or more forecasting models, by evaluating the forecasts with a pre-
specified loss function. The best performance forecast model is the model that produces
the smallest expected loss.

As the procedure mentioned above, the MCS procedure starts from an initial set of
m competing models, denoted by M, and results in a smaller set of superior models,
the SSM, denoted by Ml*_a. Of course, the best scenario is when the final set consists
of a single discriminating model. At each iteration, the MCS procedure tests the null
hypothesis of EPA among the competing models and ends with the creation of the SSM
only if the null hypothesis is accepted, otherwise the MCS is iterated again and the EPA
is tested on a smaller set of models obtained by eliminating the worst one at the previous
step. The availability of several alternative model specifications being able to adequately
describe the unobserved data generating process (DGP) raises the question of selecting

the “’best fitting model” according to a given optimality criterion.
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Formally, let y, denotes the observation at time ¢ and let lA,-,, be the output of model i at

time ¢, the loss function /;, associated to the ith model is defined as

li,t = l(yt’ )A’i,t) (2-35)

and measures the difference between the output 9;, and the “posteriori” realisation y;.
In this paper, we develop a method named “Rotation-Substitution” that we adopt VaR
value generated by one vine copula setting as the benchmark realisation y,, comparing
the realisation with output generated by other four vine copula settings. For example,
when we assume the VaR generated by multivariate Gaussian copula setting as benchmark
realisation, then we compare the other four vine copula setting VaR to this benchmark.
We then repeat this process five times then we get five series of results. As a consequence,
this process can provide a cross verification of the best model.

Gonzélez-Rivera et al. (2004) use a loss function to compare the forecasting ability
of different GARCH specifications. By employing their method, Bernardi and Catania
(2015) specify the asymmetric VaR loss function in order to predict extreme loss within
the framework of high-frequency financial data setting. Here, we similarly adopt their
asymmetric VaR loss function to investigate the VaR forecasting ability of our vine copula

models. The VaR loss function of Gonzalez-Rivera et al. (2004) is defined as
Iy, VaRy) = (7 = di)(y, — VaRy) (2.36)

where VaR] denotes the 7-level predicted VaR at time ¢, given information up to time 7—1,
F,1, and df = 1(y; < VaR]) is the 7-level quantile loss function. The asymmetric VaR
loss function represents the natural candidate to backtest quantile based risk measures
since it penalises more heavily observations below the rth quantile level, 1.e. y, < VaR!.
Details about the loss function specifications can be find in Hansen and Lunde (2005).

We can also consider the following alternative loss function,
l(r, VaR}) = (t — ms(ry, VaR)))(r; — VaRy) (2.37)

where ms(a,b) = [1 + exp{é(a — b)}]"'. Note that the § parameter controls the function

smoothness.
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We now briefly describe how the MCS procedure is implemented. The procedure
starts from an initial set of models M° of dimension m, encompassing all the alternative
copula model specifications, and delivers, for a given confidence level a, a smaller set,
the superior set of models (SSM), M |_,» Of dimension m* < m. The SSM, M |_,» contains
all the models having superior predictive ability according to the selected loss function.

Of course, the best scenario is when the final set consists of a single model, i.e., m* = 1.

Formally, let d;;, denote the loss differential between models i and j at time :
dij,t = li,t — lj,,, l,] = 1, ,m, = 1, ey N, (238)

and let
dig=(m=17" > dyy, i=1,..m, (2.39)

JEM\i)
be the average loss of model i relative to any other model j at time z. The EPA hypothesis

for a given set of models M can be formulated in two alternative ways,

Hopy:cij=0, forall i,j=1,2,...,m (2.40)
Hypy:cij#0, for some i,j=1,..,m, (2.41)
or
Hoy:c.=0, for all i=1,2,...,m (2.42)
Hopy:co #0, for some i=1,2,...,m, (2.43)

where ¢;; = E(d;;) and ¢;. = E(d;.) are assumed to be finite and time independent. Ac-
cording to Hansen et al. (2011), the two hypothesis defined in equations (39)-(42) can be

tested by constructing the following two statistics

t,'j = (244)

par(d;;

, (2.45)

i 3

WaH(d;.)

for i, j € M, where d;. = (m — 1)™' ¥ jui) dij is the average loss of the ith model relative
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to the average losses across the models belonging to the set M, and d ;= n! it dij
measures the relative average loss between models i and j. The variances v/a\r(c?,;.) and
var(d;;) are bootstrapped estimates of var(d;.) and var(d;;) respectively. The bootstrapped
variances \Ta\r(cz,-,.) and var(d; ;) are calculated by performing a block-bootstrap procedure
where the block length p is set as the maximum number of significants parameters ob-
tained by fitting an AR(p) process on the d;; terms. The statistic ; is used in the well
know test for comparing two forecasts; see e.g., Diebold and Mariano (2002) and West
(1996), while the second one is used in Hansen et al. (2003) and Hansen et al. (2011).
As discussed in Hansen et al. (2011), the two EPA null hypothesis presented in equations

(39)-(42) map naturally into the two test statistics
Trm = maxltij| and Tyaeym = maxt;., (2.46)
i.jeM ieM

where #;; and #;. are defined in equations (43)(44). Since the asymptotic distributions of
the two test statistics is nonstandard, the relevant distributions under the null hypothesis is
estimated using a bootstrap procedure similar to that used to estimate var(cz,-,.) and var(d, )
For further details about the bootstrap procedure, see e.g., White (2000), Hansen et al.
(2003), Hansen (2005), Kilian (1999) and Clark and McCracken (2001).

The MCS procedure consists of a sequential testing procedure, which eliminates at
each step the worst model, until the hypothesis of equal predictive ability (EPA) is ac-
cepted for all the models belonging to the SSM. At each step, the choice of the worst
model to be eliminated has been made using an elimination rule that is coherent with the

statistic test defined in equations (46)-(47) which are

a;
erM = argmax{ sup —‘/}, (2.47)
i JEM V/Cﬁ'(d_l])

d;.
Cmax,y = ArgMax : , (2.48)
ieM \;‘\r(d_l’)

respectively. Therefore, the MCS procedure to obtain the SSM can summarise that, firstly,
we set M = M°, then test for EPA-hypothesis. If EPA is accepted, then terminate the
algorithm and set ]\;I’f_Lx = M, otherwise use the elimination rules defined to determine

and remove the worst model, and repeat the previous step.
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2.9.2 Loss function-based backtesting results

We obtain the loss functions VaR forecast performance based on various different copula
setting as benchmark. Tables 41-45 report the numerical scores of average out-of-sample
VaR estimates of random systematic risk factor loading heterogenous credit portfolio.

In general, our empirical results suggest that, during periods of financial instability,
such as the recent Global Financial Crisis (GFC) of 2007-2008 and the recent European
Sovereign debt crisis, R-vine mixed copula and C-vine mixed copula specification VaR
deliver better forecasts. The numerical scores of the VaR-based loss functions are highly
supportive of the R-vine mixed copula model at 95%, 99%, 99.5% and 99.9% confidence
level. In particular, almost all numerical scores for every possible credit portfolio combi-
nation tend to favour the R-vine mixed copula model over the rest of the models at various
confidence levels. Let us investigate these results in details. When we adopt the multi-
variate Gaussian copula as the benchmark realisation, at each confidence level, R-vine
mixed copula setting dominates other four competing copula settings. C-vine mixed cop-
ula setting also performs well, it ranks second three times. In the case of R-vine t copula
as benchmark, R-vine mixed copula setting ranks first at 99%, 99.5% confidence level,
and it ranks second when C-vine mixed copula ranks first at 95%, 99.9% level. Simi-
larly, when C-vine t copula setting being the benchmark, R-vine mixed copula and C-vine
mixed copula setting separately ranks first and second twice. As expected, when R-vine
mixed copula becomes the realisation benchmark, the C-vine mixed copula setting domi-
nates all other competing copula setting at each confidence level, similarly, when C-vine
mixed copula setting becomes the realisation benchmark, the R-vine mixed copula setting
also dominates all other competing copula setting at each confidence level. These numer-
ical scores ranking results strongly support the vine structure is superior to capture the
dependency of various risk factors. Moreover, the availability and flexibility of the abun-
dant bivariate copula families becomes the key step of precisely modelling dependence
when vine structure has been selected.

In sum, the portfolio loss of R-vine mixed copula model setting are minimal 12 out
of 20 cases at 95%, 99%, 99.5% and 99.9% confidence level in all these five "Rotation-
Substitution” test when VaR-based loss functions are employed. The C-vine mixed copula
model setting also produces satisfactory results under each confidence level, 8 out of 20

cases portfolio loss are minimal by C-vine mixed copula model.
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Therefore, the findings of loss function based backtesting in this section strongly sup-
port our vine copula approach for credit portfolio risk factors dependence modelling. It
suggests that R-vine mixed and C-vine mixed copula model can most successfully and
precisely describe the dependence structure of systematic risk factors and provide better
fit in the tails. Moreover, these findings support the theoretical and empirical findings of
Joe et al. (2010) and Nikoloulopoulos et al. (2012). Based on the loss function results
at 95%, 99%, 99.5% and 99.9% confidence level, it demonstrates that the VaR forecasts
produced by the R-vine mixed and C-vine mixed copula model outperform other vine
copula and multivariate Gaussian copula model setting.

There is not the case preference towards a multivariate Gaussian copula model, among
the 20 test cases, multivariate Gaussian copula model is eliminated in 9 out of 20 cases,
additionally, in rest 11 cases, its VaR-based loss function numerical scores ranks last
twice. Therefore, multivariate Gaussian copula model is regarded as the least preferred
models according to the VaR-based loss function numerical scores at each 95%, 99%,
99.5% and 99.9% confidence level. These results support that the multivariate Gaussian
copula which lack of tail dependence and asymmetric dependence characteristics is hard
to capture the dependency structure of various systematic risk factors and provide good

fit in the tails.

2.10 Conclusion

Especially in the context of high dimension, Archimedean and elliptical copulas suffer
from their inability to model asymmetric and complex dependence structures. The fi-
nancial crisis of 2007-2008 established the need for an improved approach to model the
dependence structure of credit portfolio. Vine copulas, therefore, are an intuitive and
convenient alternative to conventional copulas, which circumvent their shortcomings. In
this paper, we present how vine copulas can be used to derive a more accurate and more
reliable estimate of the VaR and CVaR of a multi factor credit portfolio in credit risk
management. We employ a common framework of latent variable and mixture credit risk
model to construct a multi factors credit portfolio risk model, then we fit conventional
multivariate Gaussian copula and various vine copulas separately to monthly equity re-

turns of 92 sectors systematic risk factors. After having fitted C-vine, R-vine and tradi-
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Table 2.41: Value at Risk Backtesting under R-vine Gaussian Copula Benchmark

Assumption

95%
Superior Set of Models
C-vine t copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine t copula 3 09146 1 3 1.317 0.051
R-vine mixed copula 1 -1.3689 1 1 -1.059  1.000
C-vine mixed copula 2 04597 1 2 1.059 0.872
Number of eliminated models: 1
Statistic:Tmax
99%
Superior Set of Models
No Model eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine t copula 4 07053 1 4 1.468 0.0000
R-vine mixed copula 1 -1.6926 1 1 -1.298  1.0000
C-vine t copula 2 04172 1 3 1.297 0.6726
C-vine mixed copula 3 05957 1 2 1.405 0.0002
Number of eliminated models:0
Statistic:Tmax
99.5%
Superior Set of Models
No Model eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine t copula 4 0.7426 1 4 1482  0.0252
R-vine mixed copula 1 -1.6968 1 1 -1.319  1.0000
C-vine t copula 3 0.5168 1 3 1.360 0.3350
C-vine mixed copula 2 0.4488 1 2 1.319 0.5430
Number of eliminated models:0
Statistic:Tmax
99.9%
Superior Set of Models
No Model eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine t copula 3 0.3496 1 3 1.0939 1
R-vine mixed copula 1 -1.4335 1 1 -0.7527 1
C-vine t copula 4 1.3027 0.319 4 1.6674 0
C-vine mixed copula 2 -0.2164 1 2 0.7528 1

Number of eliminated models:0
Statistic: Tmax
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Table 2.42: Value at Risk Backtesting under R-vine t Copula Benchmark Assumption
95%

Superior Set of Models

C-vine t copula eliminated
R-vine Gaussian copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine mixed copula 2 0.4019 0.7106 2 0.4019 0.7074
C-vine mixed copula 1 -0.4098 1.0000 1 -0.4098 1.0000
Number of eliminated models:2
Statistic:Tmax
99%
Superior Set of Models
C-vine t copula eliminated
C-vine mixed copula eliminated
R-vine Gaussian copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine mixed copula 1 -0.995 1 1 -0.995 1
Number of eliminated models:3
Statistic:Tmax
99.5%
Superior Set of Models
No Model eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine t copula 3 0.23406598 1 3 1.087085 1
R-vine mixed copula 1 -1.53285871 1 1 -1.001936 1
C-vine t copula 4 1.21983325 1 4 1.677009 0
C-vine mixed copula 2 0.09019975 1 2 1.002329 1
Number of eliminated models:0
Statistic:Tmax
99.9%
Superior Set of Models
R-vine Gaussian copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine mixed copula 2 0.4143 1.0000 2 1.030 0.9830
C-vine t copula 3 0.9576 0.9998 3 1.343 0.3848
C-vine mixed copula 1 -1.3709 1.0000 1 -1.031 1.0000

Number of eliminated models:1
Statistic: Tmax
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Table 2.43: Value at Risk Backtesting under R-vine mixed Copula Benchmark As-

sumption
95%
Superior Set of Models
No Model eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)

R-vine Gaussian copula 2 -0.2466 1 2 0.7578  1.0000
R-vine t copula 4 1.1781 1 4 1.6148  0.0012
C-vine t copula 3 0.5449 1 3 1.2359  1.0000
C-vine mixed copula 1 -1.4739 1 1 -0.7588 1.0000
99%
Superior Set of Models

C-vine t copula eliminated
R-vine Gaussian copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine t copula 2 0.8511  0.4498 2 0.8511 0.4456
C-vine mixed copula 1 -0.8582 1.0000 1 -0.8582  1.0000

Number of eliminated models:2
Statistic:Tmax

99.5%

Superior Set of Models

R-vine Gaussian copula eliminated
C-vine t copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine t copula 2 0.8888  0.2972 2 0.8888  0.29
C-vine mixed copula 1 -0.8977 1.0000 1 -0.8977 1.00

Number of eliminated models:2
Statistic:Tmax

99.9%

Superior Set of Models

R-vine t copula eliminated
R-vine Gaussian copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
C-vine t copula 2 0.9857 0.291 2 0.9857 0.2784
C-vine mixed copula 1 -0.9910 1.000 1 -0.9910 1.0000

Number of eliminated models:2
Statistic:Tmax
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Table 2.44: Value at Risk Backtesting under C-vine t Copula Benchmark Assumption
95%

Superior Set of Models
No Model eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine Gaussian copula 1 -1.5769267 1 1 -0.9446589 1.0000
R-vine t copula 4 0.9460699 1 4 1.5399211  0.0780
C-vine t copula 3 0.6982672 1 3 1.3907887  0.4782
C-vine mixed copula 2 -0.0524004 1 2 0.9438430  1.0000
99%
Superior Set of Models
C-vine mixed copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine Gaussian copula 3 1.1164134  0.9696 3 1.3905417 O
R-vine mixed copula 1 -1.2947261 1.0000 1 -0.8553522 1
R-vine t copula 2 0.1825572  1.0000 2 0.8555191 1
Number of eliminated models:1
Statistic:Tmax
99.5%
Superior Set of Models
R-vine Gaussian copula eliminated
R-vine t copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine mixed copula 2 0.5297738  0.3214 2 0.5297738  0.3188
C-vine mixed copula 1 -0.5327003  1.0000 1 -0.5327003  1.0000
Number of eliminated models:2
Statistic:Tmax
99.9%
Superior Set of Models
R-vine t copula eliminated
R-vine Gaussian copula eliminated

RankM) v(M) MCS(M) Rank(R) v(R) MCS(R)
C-vine t copula 2 0.7633700  0.7194 2 0.7633700  0.7194
C-vine mixed copula 1 -0.7630053  1.0000 1 -0.7630053  1.0000

Number of eliminated models:2
Statistic:Tmax
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Table 2.45: Value at Risk Backtesting under C-vine mixed Copula Benchmark As-

sumption

95%
Superior Set of Models
C-vine t copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine Gaussian copula 3 0.7104 1 3 1.218 0
R-vine t copula 2 0.6987 1 2 1.211 0
R-vine mixed copula 1 -1.3983 1 1 -1.211 1
Number of eliminated models:1
Statistic:Tmax
99%
Superior Set of Models
C-vine t copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine Gaussian copula 2 -0.07671984  1.0000 2 0.6263107  1.0000
R-vine mixed copula 1 -1.14027652 1.0000 1 -0.6256664 1.0000
R-vine t copula 3 1.22770328  0.0242 3 1.3579953  0.0526
Number of eliminated models:1
Statistic:Tmax
99.5%
Superior Set of Models
R-vine Gaussian copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine mixed copula 1 -1.20555308 1.0000 1 -0.6870983  1.0000
R-vine t copula 3 1.22756358  0.0118 3 1.4008996  0.0096
C-vine t copula 2 -0.02112572  1.0000 2 0.6864368  1.0000
Number of eliminated models:1
Statistic:Tmax
99.9%
Superior Set of Models
R-vine Gaussian copula eliminated
R-vine t copula eliminated

Rank(M) v(M) MCS(M) Rank(R) v(R) MCS(R)
R-vine mixed copula 1 -0.9928 1.000 1 -0.9928 1.0000
C-vine t copula 2 0.9908 0.069 2 0.9908 0.0648

Number of eliminated models:2
Statistic:Tmax
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tional mutilative Gaussian copula to our data, we find that the vine copulas for modelling
the dependence structure of risk factors returns largely improve the risk estimate ability
of both threshold and mixture credit risk models, the conventional multivariate Gaussian
copula is deficient in modelling the dependence structure of the risk factors for credit
portfolio. In depth, we also calculate the out-of-sample risk measure VaR, CVaR and also
adopt Euler allocation to calculate and discuss the VaR and CVaR risk contribution of
various industry sectors at different systematic risk ratios for the corresponding homoge-
neous and heterogeneous credit portfolio separately based on various vine copulas and
multivariate Gaussian copula settings. We find VaR and CVaR are seriously underesti-
mated by multivariate Gaussian copula model. In backtesting test, we introduce the Loss
function based backtesting method - Model Confidence Set method - to select and rank
the best copula modelling settings for multi risk factors, the R-vine mixed copula setting
outperform other copula settings. Classical multivariate Gaussian copula offers the worst
statistical fit (as measured by goodness-of-fit test, such as Voung test, Clarke test and
Akaike’s information criterion, briefly AIC) to the data, the Gaussian copula underesti-
mates risk measure VaR and ES, while the vine structure provide a better statistical fit to
the data than the classic Gaussian copula.

In our study, we compare various copula setting approaches both from a statistical
and economic perspective. Vine copulas enable us to model a more flexible and less
restricted dependence structure compared to classical Gaussian copula, as replacing the
latter by the former leads to an increased AIC. The better statistical fit to the data suggests
that the modeled dependence structure is a more realistic model of the actual dependence
structure and, consequently, vine copula should be preferred to conventional Gaussian
copula. When classic Gaussian copula is replaced by vine copula structures, the VaR and
CVaR are all increased. C-vine mixed copula and R-vine mixed copula in turn lead to a
higher risk measure than multivariate Gaussian copula. Flexible building blocks chosen
from bivariate copula families in a vine structure results in more accurate and reliable
estimate for VaR and CVaR. Therefore, we obtain statistically well-founded arguments
that support the criticism of the role of the Gaussian copula in the financial crisis. We
present the convenient and applicable alternative model-vine copula mixed model-which
are supposed to be adopted by risk managers in order to improve the methodology of

credit portfolio risk modelling.
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Table 55: Risk Factors Equity Index

Asset Category

Index

Australia BANKS 1S&P/ASX 300 BANKS
MEDIA 2S&P/ASX 300 MEDIA
ENERGY 3S&P/ASX 300 ENERGY
INSURANCE 4S&P/ASX 300 INSURANCE
TRANSPORTATION 5S&P/ASX 300 TRANSPORTATION
MATERIALS 6S&P/ASX 300 MATERIALS
PHARM.&BIOTECHNOLOGY 7S&P/ASX 300 PHARM.& BIOTECHNOLOGY
RETALING 8S&P/ASX 300 RETALING
METALS&MINING 9S&P/ASX 300 METALS& MINING

Canada BANKS 10S&P/TSX COMP BANKS
TRANSPT 11S&P/TSX COMP TRANSPT
AUTO&COMPO 12S&P/TSX COMP AUTO&COMPO
BCAST 13S&P/TSX COMP BCAST
CHEMICALS 14S&P/TSX COMP CHEMICALS
INSURANCE 15S&P/TSX COMP INSURANCE
PHARMACEUTICALS 16S&P/TSX COMP PHARMACEUTICALS
FD/BEV/TOB 17S&P/TSX COMP FD/BEV/TOB
ELEC. COMP.& EQU 18S&P/TSX COMP ELEC. COMP.& EQU
HT/REST/LEIS 19S&P/TSX COMP HT/REST/LEIS
ENERGY 20S&P/TSX COMP ENERGY
MET & MIN 21S&P/TSX COMP MET & MIN
MEDIA 22S&P/TSX COMP MEDIA
UTILITIES 23S&P/TSX COMP UTILITIES

France AUTO & PARTS 24FTSE FRANCE AUTO & PARTS
BANKS 25FTSE FRANCE BANKS
CHEMICALS 26FTSE FRANCE CHEMICALS
CON & MAT 27FTSE FRANCE CON & MAT
FD & DRUG RTL 28FTSE FRANCE FD & DRUG RTL

Germany AUTOMOBILE 29DAX AUTOMOBILE (XETRA)
CHEMICALS 30DAX CHEMICALS (XETRA)
CONSTRUCTION 31DAX CONSTRUCTION (XETRA)
INSURANCE 32DAX INSURANCE (XETRA)
TRANSPORT & LOGIS. 33DAX TRANSPORT & LOGIS. (XETRA)
UTILITIES 34DAX UTILITIES (XETRA)
FINANCIAL SERVICES 35DAX FINANCIAL SERVICES (XETRA)
FOOD & BEVERAGES 36DAX FOOD & BEVERAGES XETRA
TECHNOLOGY 37DAX TECHNOLOGY (XETRA)
MEDIA 38DAX MEDIA (XETRA)

Japan BANKS 39TOPIX BANKS
CONSTRUCTION 40TOPIX CONSTRUCTION
INFO & COMMUNICATION 41TOPIX INFO & COMMUNICATION
INSURANCE 42TOPIX INSURANCE
MACHINERY 43TOPIX MACHINERY
MINING 44TOPIX MINING
PHARMACEUTICAL 45TOPIX PHARMACEUTICAL
PULP & PAPER 46TOPIX PULP & PAPER
ELEC.POWER & GAS 47TOPIX ELEC.POWER & GAS
OIL & COAL PRDS. 48TOPIX OIL & COAL PRDS.
CHEMICAL 49TOPIX CHEMICAL
ELECTRIC APPLIANCES 50TOPIX ELECTRIC APPLIANCES
FOODS 51TOPIX FOODS
TEXTILES AND APPARELS 52TOPIX TEXTILES AND APPARELS
TRANSPORT EQU. 53TOPIX TRANSPORT EQU.

UK BANKS 54FTSE 350 BANKS
AUTO & PARTS 55FTSE 350 AUTO & PARTS
CHEMICALS S6FTSE 350 CHEMICALS
CON & MAT 57FTSE 350 CON & MAT
ELTRO/ELEC EQ 58FTSE 350 ELTRO/ELEC EQ
FD PRODUCERS 59FTSE 350 FD PRODUCERS
FORESTRY & PAP 60FTSE 350 FORESTRY & PAP
H/CEQ & SVS 61FTSE 350 H/C EQ & SVS
INDS TRANSPT 62FTSE 350 INDS TRANSPT
MEDIA 63FTSE 350 MEDIA
MINING 64FTSE 350 MINING
OIL & GAS PROD 65FTSE 350 OIL & GAS PROD
PHARM & BIO 66FTSE 350 PHARM & BIO
S/W & COMP SVS 67FTSE 350 S/W & COMP SVS
TRAVEL & LEIS 68FTSE 350 TRAVEL & LEIS
LIFE INSURANCE 69FTSE 350 LIFE INSURANCE

us AUTOMOBILES 70S&P500 AUTOMOBILES
BANKS 71S&P500 BANKS
BCAST 72S&P500 BCAST
CHEMICALS 73S&P500 CHEMICALS
INSURANCE 74S&P500 INSURANCE
MACHINERY 75S&P500 MACHINERY

TRANSPORTATION

CONSTRUCTION MATERIALS

FOOD PRODUCTS

METALS & MINING
ELECTRICAL COMP & EQUIP
TEXTILES & APPAREL

76S&P500 TRANSPORTATION

77S&P500 CONSTRUCTION MATERIALS
78S&P500 FOOD PRODUCTS

79S&P500 METALS & MINING
80S&P500 ELECTRICAL COMP & EQUIP
81S&P500 TEXTILES & APPAREL

UTILITIES 82S&P500 UTILITIES IG

PUBLISHING & PRINTING 83S&P500 PUBLISHING & PRINTING
ENERGY 84S&P500 ENERGY 1G

HOTELS REST & LEISURE 85S&P500 HOTELS REST & LEISURE IN

HEALTH CARE EQUIP & SERV

OIL & GAS REFING & MARK

86S&P500 HEALTH CARE EQUIP & SERV
87S&P500 OIL & GAS REFING & MARK

SOFTWARE & SERVICES 88S&P500 SOFTWARE & SERVICES
TELECOM SERV 89S&P500 TELECOM SERV

AIRLINES 90S&P500 AIRLINES

MOVIES & ENTERTAINMENT 91S&P500 MOVIES & ENTERTAINMENT
PAPER PACKAGING 92S&P500 PAPER PACKAGING

Note: This table lists 92 equity indices we employ as sector risk
factors, which contain 9 indices from Australia, 14 from Canada,
5 from France, 10 from Germany, 15 from Japan, 16 from UK, 23
from US.
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Table 56: Bivariate Copula Family Employed as Building
Blocks

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

13 = rotated Clayton copula (180 degrees; survival Clayton)
23 = rotated Clayton copula (90 degrees)

33 = rotated Clayton copula (270 degrees)

Note: This table lists all bivariate copula families we employ as vine copula
building blocks.
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Chapter 3

Asset Allocation Benefits of Alternative
Investments: Markov Regime Switching

Regular Vine Copula Method
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Abstract

This paper studies asset allocation decisions in the presence of regime switching on asset
allocation with alternative investments. We find evidence that two regimes, characterized
as bear and bull states, are required to capture the joint distribution of stock, bond and
alternative investments returns. Optimal asset allocation varies considerably across these
states and changes over time. Therefore, in order to capture observed asymmetric depen-
dence and tail dependence in financial asset returns, we introduce high dimensional vine
copula and construct a multivariate vine copula regime-switching model, which account
for asymmetric dependence and tail dependence in high dimensional data. We model
dependence with one Gaussian copula and various kinds of vine copulas separately for
regime switching modelling. We discover that R-vine model with individually chosen
various bivariate copulas as building blocks, which provides a very flexible way of charac-
terizing dependence in multivariate settings, generally dominates alternative dependence
structures. Second, the choice of vine copula model setting is vital for asset allocation,
since it modifies the Value-at-Risk (VaR) of strategic asset allocation and produces a better
out-of-sample VaR performance. And we also show that ignoring asymmetric dependence
and regime-switching in asset allocation strategy leads to significant costs for investor.

Keywords: Copula, R-vine, C-vine, financial returns, pair-copula construction, Markov

regime switching, asset allocation
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3.1 Introduction

Traditional financial asset returns have been extensively investigated that they exhibit
asymmetric dependence. This asymmetry means that in times of crisis, asset returns tend
to exhibit increasing dependence than in quiet times. This phenomenon has an important
implication to portfolio construction and asset allocation strategy selection. In particu-
lar, it implies that, due to increased dependence in crisis period, investors might lose the
portfolio diversification benefits because of the underestimation of risk. The presence of
such asymmetric dependence adds a cost to portfolio diversification, which requires to
consider the portfolio strategy in different market regime. In another aspect, alternative
investments asset class, such as hedge funds, commodities, REIT (Real Estate Investment
Trust), PE (Private Equity) and VC (Venture Capital), given the increasing importance
to investors, also exhibit similar time-varying asymmetric dependence with traditional fi-
nancial assets. In this sense, another question naturally be proposed is whether alternative
investments asset class will improve the risk-return characteristics of an existing portfolio,
and whether it will benefit from including alternative investments into portfolio.
Therefore, in this paper, we provide further evidence on asymmetric dependence by
introducing and estimating an innovative Markov regime switching regular vine copula
model for the dependence of multi-asset portfolio including both traditional and alterna-
tive investments asset class. Our contribution comes from several aspects. The previous
Gaussian distribution model proposed by Pelletier (2006), is just able to capture symmet-
ric dependence and assume dependence between all returns follow the same Gaussian dis-
tribution. In order to overcome the shortcomings of Gaussian model, we employ a regime
switching regular vine copula model. The tree structure of regime switching regular vine
copula provides a flexible and realistic way to model the dependence of different types
of asset returns. Plenty of bivariate copula families can be chosen as the building blocks
of our vine structure provides more accurate tail dependence modelling between different
assets. The use of copulas makes it possible to separate the dependence model from the
marginal distributions, which makes us be able to modelling the time-varying dependence
conveniently. As a high dimension multivariate model, our regime switching regular vine
copula method exactly applies to our multi-asset portfolio including traditional asset and
alternative investments assets. The new type of the high dimension regular vine copula

was introduced by Aas et al. (2009) in finance, which allows for very extensive types of
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dependence. In the bivariate case, it is easy to model dependence with bivariate copula,
however, it becomes much more difficult in high dimension case, given that the choice
of copulas always restrict to the symmetric Gaussian or the Student t copula. Both of
these copulas are only able to capture linear dependence and symmetric dependence. In
particular, Gaussian copula suffers from the shortcoming that it lacks of tail dependence,
and the multivariate Student t copula is too restrictive in the sense that, though the tail
dependence is a function of the correlation and the degrees of freedom, it restricts the
symmetric dependence that the upper tail dependence should be equal to lower tail de-
pendence. While the assumption of tail independence is acceptable for positive returns,
it is clearly not for negative returns. Regular vine copulas provide the way to overcome
these limitations.

Our paper is related to extant research in three aspects, mainly including asset alloca-
tion considering asymmetric dependence, asset allocation with regime switching consid-
eration and portfolio diversification benefits of alternative investments.

Regarding asymmetric dependence, adopting the constant conditional correlation (CCC)
model proposed by Bollerslev (1990), Longin and Solnik (1995) analyze the correlation
between stock market during a period of 30 years. They find that correlation between
stock markets are not constant while increase over the sample period. Additionally, cor-
relations are much higher when market are more volatile and depend on some economic
variables, such as dividend yields and interest rates. Longin and Solnik (2001) contin-
ues their study and employ extreme value theory combined with the method proposed by
Ledford and Tawn (1996) to put up the concept of exceedance correlation, which defined
as the correlation above a certain threshold which exists between returns. Based on com-
paring empirical and model-based conditional correlations, a test for asymmetric correla-
tions, Ang and Bekaert (2002a) specify a Gaussian Markov regime switching model for
international returns, and they identify two market regime, a bear regime exhibits negative
returns, high volatilities and high correlations, a bull regime displays positive mean, low
volatilities and low correlations. Patton (2004) find significant asymmetry exist in both
marginal distribution and dependence structure of financial returns, considering asymmet-
ric dependence will lead to significant gains for investor with no short sales constraints.
Patton (2006a) and Patton (2006b) model foreign exchange series by using conditional

copulas and time varying models of bivariate dependence coefficients.
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Regime switching model was firstly introduced in econometrics by Hamilton (1989)
and since then it has been widely applied in finance. Ang and Bekaert (2002b), Guidolin
and Timmermann (2006a) and Guidolin and Timmermann (2006b) apply regime switch-
ing models to interest rates modelling. Ang and Bekaert (2002a) and Guidolin and Tim-
mermann (2008) employ a regime switching model for international financial returns.
Pelletier (2006) use regime switching model in correlation when the marginals are mod-
eled by GARCH model. Despite his model lies between the CCC model proposed by
Bollerslev (1995) and the dynamic conditional correlation (DCC) model of Engle (2002),
it still stays in the Gaussian framework. Our model extends the Pelletier (2006) model
to the non-Gaussian case. As it is well known that financial returns exhibit non Gaus-
sian distribution, therefore, we discard the Gaussian assumption, while still remain the
appealing properties of regime switching structure for dependence. Thus we introduce
and employ the flexible high dimensional vine copula to substitute the Gaussian copula
in regime switching model. In another aspect, by using vine copula, we can separate
asymmetry in marginals from asymmetry in dependence that Gaussian regime switching
is unable to work. We therefore can model the marginal distribution by adopting skewed
Student t GARCH model of Hansen (1994) instead of Gaussian setting.

With regard to asset allocation benefits of alternative investments, previous literatures
normally focus on exploring the effects of adding one alternative investment class into a
traditional mixed-asset portfolio. Adding hedge funds makes a positive effects on port-
folio performance (see e.g., Amin and Kat (2002); Lhabitant and Learned (2002); Amin
et al. (2003); Gueyie and Amvella (2006); Kooli (2007). In addition, incorporation of pri-
vate equity also improves the portfolio performance (see, e.g., Chen et al. (2002); Schmidt
(2003); Ennis and Sebastian (2005)), and also real estate investment trusts (REITSs) can
increase portfolio diversification benefits (see, e.g., Chandrashekaran (1999); Hudson-
Wilson et al. (2003); Stephen and Simon (2005); Chiang and National (2007)). For the
case of commodities, there is no consensus on whether or not incorporating them will
add portfolio value. Gorton and Rouwenhorst (2006) and Conover et al. (2010) find pos-
itive effects from their addition. In contrast, Erb and Harvey (2006) and Daskalaki and
Skiadopoulos (2011) find no such effects. Huang and Zhong (2013) takes into account
several alternative investments asset classes, including commodities, REITSs, and treasury

inflation-protected securities (TIPS), and they find adding these alternative investments
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provides positive diversification benefits to investment portfolio.

In literatures, researchers have started to combine copulas and regime switching mod-
els in bivariate data case. Rodriguez (2007) and Okimoto (2008) estimate regime switch-
ing copulas for pairs of international stock indices. Okimoto (2008) work on the US-U.K.
pairs of stock indices, while Rodriguez (2007) focus on pairs of Latin American and
Asian countries. They specify a structure following Ramchand and Susmel (1998) that
variances, means, and correlations all switch together. For multivariate regime switch-
ing modelling, Garcia and Tsafack (2011) estimate a regime switching model for four
variables of domestic and foreign stocks and bonds by developing a mixture of bivariate
copula to model the dependence between all possible pairs of these four variables. Nev-
ertheless, the mixture copula model can only capture limited dependence and it lacks of
generalization applies to higher dimensions modelling.

To best of our knowledge, we are the first that adopt multivariate high dimension
vine copula to modelling a variety of alternative investments (e.g., private equity, buy-
out, hedge funds, and real estate investment trusts) combined with traditional investments
(stocks, government bonds and risk free asset) with regime switching consideration. Pre-
viously, Rodriguez (2007) spilt the multi-asset returns series into sub-samples according
to four different bivariate copula and multivariate student t copula density from regime
switching model. While we are the first to spilt the multi-asset returns series into sub-
samples according to six different vine copula density from regime switching model, and
calculate the portfolio Sharpe ratio, Sortino ratio, Omega ratio of each regime switch-
ing model, and compared with the benchmark conventional asset allocation strategy. To
summarize our approach, we estimate regime switching models with one symmetric R-
vine Gaussian (multivariate Gaussian) copula representing normal market regime and a
R-vine t, a C-vine t, a C-vine (canonical vine) mixed independence copula, a R-vine (reg-
ular vine) mixed independence copula, a C-vine (canonical vine) mixed copula, a R-vine
(regular vine) mixed copula representing market crisis regime separately. We find that
regime switching C-vine mixed model performs best in terms of the likelihood. We then
show with an out-of-sample portfolio performance exercise that our regime switching C-
vine mixed model dominates alternative models. We investigate economic performance
of each competing model and conduct the backtesting by the Value-at-Risk (VaR) and

compare them to the conventional model. All results support that our regime switching
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vine copula applies to multi-asset case and bring portfolio diversification benefits.

The remainder of the paper is organized in the following manner. In Section 2 we
present the model. We discuss the regular vine copula, then we present the Markov regime
switching regular vine model for dependence, as well as the marginal models. Section 3
describes the inference method of the model, the EM algorithm. In Section 4 we evaluate
the out-of-sample portfolio performance of the various models and Section 5 conduct the

backtesting with VaR. Section 6 concludes.

3.2 The Markov Regime Switching Regular Vine Copula
Model

Abundant empirical evidence has been reported in the finance literature supporting regime-
switching behaviour for international stock markets. Specifically, a bearish stock market
tends to be associated with higher correlations with other stock markets. This results in re-
duced portfolio diversification benefits of investors. If alternative investments exhibit the
same type of regime-switching behaviour with stocks, the diversification benefits reported
earlier might be increased by adding alternative investments into portfolio. To explore the
diversification benefits of multi-asset portfolio with regime switching consideration, we
set up a Markov regime switching regular vine copula model.

The Markov switching model has been established in statistics and econometrics by
Hamilton (1989), which focusing on the multivariate dependence modelling. Markov
regime switching model constitutes a special class of regime switching models, in which
the regime switching process has a Markov structure. In the financial application case,
a hidden underlying process is assumed to be the “state” of the world or the economy,
which has an impact on the development of return time series.

In order to model the multivariate dependence of our multivariate data, we employ
a Markov regime switching regular vine copula method. In financial literature, two to
six regimes all had been considered before, in our case, we follow Pelletier (2006) and
Garcia and Tsafack (2011) that allow for two regimes, characterized by different shapes
or levels of dependence. Our Markov regime switching regular vine copula model can
be considered as a multivariate extension of Rodriguez (2007) model or as an extension

to more realistic dependence of the Pelletier (2006) model. For the reason that we take
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into account the nonlinearity and employ copula model, our model are more closer to
Pelletier (2006) in the spirit of modelling the marginal distributions separately from the
dependence structure and not allow the marginal distributions depend on regime.

This specification is also in line with modelling approach underlying the DCC model
of Engle (2002) and Engle and Sheppard (2001). To best of our knowledge, Chollete et al.
(2009) and Garcia and Tsafack (2011) are the only study that apply regime switching cop-
ula for modelling multivariate time series. In the remainder of this section, we present the
Markov regime switching vine copula model that allows different dependence structures

over different subsamples.

3.2.1 Regular Vine Distribution

Employing notation and methods from graph theory, R-vines has been firstly introduced
by Bedford and Cooke (2002) for the construction of multivariate distributions. An R-vine
v on d variables, which consists of a sequence of connected trees 71, ..., T,;,_;, with nodes
N; and edges E;, 1 < i < d—1. In order to satisfy the needs for statistical application,
the nodes and edges are required to satisfy the following properties (Bedford and Cooke
(2001)):

T, is a tree with nodes Ny =1, . . . , d and corresponding set of edges E;

Fori> 2, T; is a tree with nodes N; = E;_; and edges E;;

If two nodes in T, are joined by an edge, the corresponding edges in 7; must share a
common node. (proximity condition)

To build up a statistical model based on this graph theoretic structure, we associate
each edge e = j(e), k(e)|D(e) in the vine with a bivariate copula. This bivariate copula will
be the copula corresponding to the bivariate conditional marginal distribution of X, and
Xie) given Xp). R-vines normally has two subclasses. If in each tree T3, there is one node
which has edges with all d — i other nodes, this kind of R-vine is called Canonical vine
(C-vine). We call R-vine Drawable vine (D-vine) if each node has at most two edges.
Examples of regular vine tree structures can be found in Czado (2010). The notation we
employ in our paper follows Czado (2010).

Let X = (Xi, ..., X;) be a random vector with marginal densities fi, ..., fy, respectively.
To build up a statistical model using the R-vine, we associate to each edge j(e), k(e)|D(e)

in E;, for 1 <i < d— 1, abivariate copula density cj)eipe)- We call j(e) and k(e) the
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conditioned set while D(e) is the conditioning set. Let Xp, denote the subvector of X
determined by the set of indices D(e). For the definition of the R-vine distribution, we as-
sociate the bivariate copula densities ¢ ) k) With the conditional densities of X ., and
Xie given Xp() represented as ¢ je) ko)) (F jiepe) (X jie) Xpe)s Fienie) Xee) X pe) fiepe fueine)-
In general, ¢ ke)ne) can depend on the values of variables which are conditioned on. In
order to keep the number of parameters tractable, we always assume the conditional cop-
ula is constant, 1.€. Cj)e)nee) (s - X)) = Cje)keinie)(-» ) (see discussion in Stober and
Czado (2012), Hofmann and Czado (2010) and Acar et al. (2012)). The joint density of

X is then uniquely determined by

d d-1
Sia(xt, e xq) = n Silxi) - 1_[ n Cje)ie)ne) F je)ne)(Xji) Xpie))s Fie\pie)Xie) Xbpe)))
i=1 i=1 ccE;

3.1
as given by Czado (2010). If the marginal densities are uniform on [0,1], we call the
distribution in (1) an R-vine copula. Given an R-vine v, a set of corresponding parametric
bivariate copulas B and their parameter vector 6, we denote the R-vine copula density by
c(.|v,B,0).

Due to other iterative decompositions of a multivariate density into bivariate copulas
and marginal densities are also possible, R-vine distributions have the particularly ap-
pealing feature that the values for F(x )| Xp()) and F(x.)|Xp()) appearing in (1) can be
derived recursively without high dimensional integrations (see details in Dissmann et al.

(2013)).

3.2.2 Markov Regime Switching Vine Copula Model

In our study, we aim to develop a model for a multivariate financial time series {X, =
(Xiss -os Xar)st = 1,...,T} by using R-vine copulas combined with the general Markov
switching approach introduced by Hamilton (1989). Many financial time series, like stock
returns or exchange rates are influenced by external factors like the state of the economy
or monetary policies which are not directly observable and which are therefore included in
the hidden state variable. In this context, the dependency among X, depends on a hidden
latent state variable §,, which takes on only finitely many values k = 1, ..., p. These are
called regimes and represent the different “states” of the world or economy mentioned

above. As it is usual in the Markov switching approach, we assume that §,, 7 = 1,...,T
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i1s a homogeneous Markov chain (MC) in discrete time. For simplicity, we restrict the
model to a first order Markov chain, which is characterized by its transition matrix P with
elements P, := P(S, = kK|S,., = k), and k,k’ € 1,2. Where the Dij represents the
probability of moving from state i at time ¢ to state j at time ¢ + 1. If we are currently in
State 1, the probability of remaining in the same state is given by P;; and the probability
of transitioning to State 2 is therefore given by 1 — P;;. On the other hand, if we are
currently in State 2, P, denotes the probability of staying in State 2. Note that high
estimated values of Py; and P, imply regime persistency. The Markov switching model
allows data to be drawn from two possible distributions (regimes). At a given point in
time, there is a non-zero probability that the process given will stay in the same state or
switch to the other state in the next period.

We adopt a copula based approach to model the dependency of X, in regime (S, =
k). Thus we assume that we know or can estimate the marginal distributions of X;, for
i = 1,...,d. In particular we can have (pseudo) copula data w, = (uy,,...,ug) € [0,1]¢
for t = 1,...,T through parametric or semi-parametric transform method. Therefore, the
Markov switching R-vine (MS-RV) copula for u, is now fully characterized by specifying

conditional densities as follows

p
(.01 S = > Tigmig - Wil B, 0)p). (3.2)
k=1

In our model the regime only affects the dependence structure. Therefore, we switch
between two density functions to describe the data. The complete MS-RV copula model
is thus specified in terms of p R-vine copula specifications and the transition matrix P
which contains the parameters of the underlying Markov chain. For inference, we will
always assume the R-vine structures v and corresponding sets of copulas By, k = 1, ..., p,
to be given and thus suppress them in the following notation. Thus MS-RV copula is then

able to completely described by its parameters

77, = (9(,;0[)’ e;l/[c) = ((Q’la seey 0/ )9 0;\46‘)’ (33)

where the subscript “cop” represents copula parameters and "MC” stands for parameters
needed for the transition matrix P. In particular, 6, are the copula parameters correspond-

ing to regime k. While this model does not include switching margins, the switching
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copula regimes induce serial dependence. The individual marginal time series (#;,);=12..,
however, are 1.i.d. uniform fori =1, ..., d.

Our Markov regime switching vine copula model is able to capture cyclical behaviors.
Moreover, the regimes can be efficiently and endogenously determined by the asset returns
data alone without reference to other economic information. Finally, the MS-RV model
can be exploited ex ante to enhance the return of the portfolio in different regimes as

demonstrated by Ang and Bekaert (2002a).

3.3 Marginal Model

In our Markov regime switching R-vine copula model, we separate the marginal distribu-
tion from the dependence structure, and just allow for regime switching of the dependence
structure. Thus, we firstly model the marginal distribution of our data.

Let the random process r; denote the financial asset returns which can be characterized

by an autoregressive moving-average (ARMA) model as follows

p q
rr=ap+ Z a;r,_; + Z bie_j+¢& 3.4)
i=1 j=1

where q is a constant; p and g are the order of autoregressive and moving average pro-
cesses respectively for the conditional mean. The error term € can be split into a stochastic
part x; and a time-dependent standard deviation o, so that €, = o,x,. The conditional vari-
ance o is characterized by an asymmetric GARCH model, namely GJR-GARCH(1,1)
(see Glosten et al. (1993)). A negative A corresponds to left skewed density, which means
that there is more probability of observing large negative than large positive returns. This
is what we expect, since it captures the large negative returns associated to market crashes

that are the cause of the skewness.

2 2 2 2
Oy =W+ i€, | + B0+ Vi€, L (3.5)
where Ii,t—l =1if €11 < 0, and Ii,t—l =0if €1 2 0.

The filtered returns x; = /o0y, t = 1,...,T; follow a strong white noise process with
a zero mean and unit variance. In our empirical work, we adopt Hansen (1994)’s skewed

Student t distribution x, ~ sk7T'(0, 1;v, ), with v > 2 and { denoting the degrees of free-
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dom (dof) and asymmetry parameters, respectively. Its PDF is give by, !

_vrl

2 2
bc(1+ ! (b““)) if < -2

v=2\1-¢ b

f(x;V’g): 1 b Z—M
Z+a o a
bc(1+v_2(1+§)) ,lfzz—g

regt)
Vr(v-2)r(3)"
quite general as it nests the Student t distribution and the Gaussian density. Previous stud-

where a = 4/ c%, bP*=1+3%-ad*c= The skewed Student t distribution is
ies motivate this parametrization for the margins as able to capture the autocorrelation,
volatility clustering, skewness and heavy tails exhibited typically by financial asset returns
(see Jondeau and Rockinger (2006) and Kuester et al. (2006)). In our empirical work, we
adopt GJR-GARCH(1,1) and select the best ARMA p and g among 1, 2,..., 10 by mini-
mizing the Akaike Information Criterion (AIC). The model parameters are estimated by
quasi-maximum likelihood (QML). Uniform (0, 1) margins denoted u, = F,(x,), n =1,
2, can be obtained from each filtered return series via the probability integral transform.
Once the vector u = (ul,u2) is formed, the copula parameter vector can be estimated

mentioned in above section.

3.4 Parameter Estimate of Markov Regime Switching Vine

Copula Model

For the parameter estimation problems, we assume the specification of v, and B, for all
1 < k < n, to be given such that only the sets of parameters 6 are subject to estimation.
The first difficulty to overcome in developing inference methods for Markov regime
switching copula model is that we face unobserved latent variables. In order to derive an
expression for the full likelihood of @iy = (uy, ..., ur), we first decompose the joint density

f(tiy|n) into conditional densities:

T
Farhy = fauln) - | | fla,m
t=2

IThere are other Student 7 distribution that the skewness is introduced in different ways, see Ferndndez
and Steel (1998) and Aas and Haff (2006).
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= [if(uﬂSl =k,0)P(S| = k|9MC)] :

k=1 t

| > rewls, = k.60 P, = ki1, 6)|
- (3.6)

r p
=2

where @, := (uy,...,u,) and f(u,|S; = k, 6;) is known from (2) for = 1, ..., T. The uncon-
ditional probabilities P(S; = k) in this expression are known from the stationary distri-
bution of the Markov chain, which we assume to be given. To obtain the state prediction

probabilities Q,,_; € A? C R”*! on the p-simplex with elements
(Qua ) = P(S, = Mii1,m) for k=1,...p 3.7)
we can apply the filter of Hamilton (1989). Assuming €,_;,_, to be given,

Qi) =P - Q1) and

Q) = Dkcliewr,
T S QD © FWIS, = k. iy 6y)

and we obtain all probabilities which are required to evaluate the density (6) recursively.
The operator ©® denotes componentwise multiplication of two vectors. Similarly, the prob-
ability (7 (17))s, := P(S; = s/|liy, ), to which we will refer as the ”smoothed” probability
of being in state s, at time t, can be determined by applying the following backward iter-

ations.
Qt+1|T(77)

. Qz+1|t(77)

where also the division is to be understood componentwise.

@i, = ((P Jo2u0m) . (3.8)

A

3.4.1 EM Algorithm for Markov Regime Switching Copula Model

Hamilton (1989) proposed to solve the problem of maximum likelihood estimation for
an Markov switching model having unobserved state variable by adopting an EM type
(Dempster et al. (1977)) algorithm, constitutes an iterative procedure consisting of two
steps, form the conditional expectation of unobserved variables and maximize the like-
lihood, replacing the latent state variables with their conditional expectation. This algo-
rithm iteratively determines parameter estimates ', [ = 1,2, ..., which converge to the
ML estimate for [ — oo. Let us consider the expected pseudo log likelihood function

Q"' iy, n') for n'*!, given observations ii; and the current parameter estimate 7',
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Q(UHl;ﬁT, 771) = L log(f(ar, ST|77l+1))P(ST|ﬁTa 771)

T
o< > fs log(f (S, 04s1))P(Syliiz, )
t=1 T

T
* fs | > 10g(P(S 1S -1, 656)) + log(P(S1)'*h)] - Pyl ) (3.9)

=2
where we write S, := (S4,...,S,) and fST g(Sy) = Dt 251881 = 515,87 = 57)
for an arbitrary function g of S7. The algorithm iterates the following steps:

Expectation step: Obtain the smoothed probabilities Q;7(17) of the latent states S, :=
(S1,...,S,) given the current parameter vector 7.

Maximization step: Maximize Q(17"*!; o, ') with respect to n'*!.

Using the Markov property of S7, Kim et al. (1999) show that the maximum of the

pseudo likelihood is attained at

SLVPS, =, 8,y = ilig, ')
SLLP(S oy = dlig, )

+1 _
P =

similarly P(S| = k)™*' = P(S| = kliip, ),k = 1,..., p.

Compared with the model originally considered by Hamilton where all maximization
steps could be performed analytically, it is not possible for the maximization with respect
to the copula parameters Gif)ll, in our case. This means though the transition probabilities
can be obtained directly, the second part of the maximization step has to be performed
using numerical optimization methods. Since a d-dimensional R-vine copula specifica-
tion, in which each pair copula has k parameters, contains d(d — 1)/2 - k parameters, this
is computationally still very challenging. To circumvent this issue, we can exchange the
joint maximization with respect to Hff;}, with the stepwise maximization procedure of Aas
et al. (2009) which is modified to weight each observation by P(S, = s|iiz, 7).

This is called the stepwise EM algorithm. Since tree-wise estimation of copula pa-
rameters is asymptotically consistent (Haff et al. (2013)), this constitutes a close approx-
imation (Haff (2012)) to the proper” EM algorithm. While there are theoretical results
on the convergence of the EM algorithm (Wu (1983)), we loosen these properties with

our approximation. All limit theorems however do rely on proper maximization at each

step of the algorithm. It is almost impossible to guarantee in our case where we are faced
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with high dimensional optimization problems and have to rely on numerical techniques.
While all existing models for time-varying dependence structures in high dimensions suf-
fer from the computational burden for numerical estimation, we do only need to maximize
the likelihoods of bivariate copulas in this tree-wise procedure. This reduces computation

time and avoids the curse of dimensionality. The obtained estimate is given by

@MY = (B = (@Y @,"Y), Oae). (3.10)

3.5 Optimization of the Investor’s Utility Function

We consider US investor as the representative investor holding US equities, Emerging
markets equities, US government bonds and risk free treasury bills. We would like to
examine the effects on the risk-return tradeoff of adding alternative investments to their
existing portfolios. Specifically, we estimate the Sharpe ratio, Sortino ratio and Omega
ratio of the portfolio with the four existing assets. We then re-estimate the Sharpe ratio,
Sortino ratio and Omega ratio when alternative investments are added to each represen-
tative investor’s portfolio. Any statistically significant improvement in the Sharpe ratio,
Sortino ratio and Omega ratio will prove that alternative investments indeed add diversi-
fication benefits to the investor’s portfolio.

One of the most important elements of Markowitz (1952)’s Modern Portfolio Theory
is the notion of efficient frontier in the mean-variance space. A classical mean-variance
(MV) portfolio strategy consists of minimizing the portfolio risk, proxied by the variance
of the joint distribution, subject to a target portfolio return.

The classical mean variance (MV) portfolio strategy consists minimizing the portfolio
risk, where the risk is proxied by the variance of the joint distribution, subject to the target

portfolio return.

min Variance = mvénw Z w 3.11)
subject to
wu=g
wl=1
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where ) represents the estimated covariance matrix of asset returns, u denotes the
estimated vector of expected asset returns, 1 represents a vector of ones, g denotes the
a priori chosen portfolio target return, and w represents the resulting optimal vector of
weights. The efficient frontier is then constructed by solving the problem for different
values of g.

Employing variance as the portfolio risk measure implicitly assume the symmetry or
say equal probabilities of losses and profits, which probably underestimates the occur-
rence of rare adverse events. Due to these reasons, though the computation of variance is
simple, it probably leads to the underestimation of risk. Since the variance measure has
been widely adopted by banks, the Basel Committee for banking supervision began to
draw up some of the risk management requirements in terms of percentiles, in particular,
the Value-at-Risk (VaR) of loss distributions.

Current regulations impose capital requirements on banks and financial institutions
proportional to the VaR of a portfolio. VaR has established itself as the most popular risk
metric for determining the largest size of losses in trading books at a given confidence
level. Thus, for instance, 95% VaR is an estimate of the maximum portfolio loss which
is exceeded with 5% probability. Empiricals find financial returns always display non-
normal distributions, however, VaR is not coherent and it fails to satisfy the subadditivity
property in mathematics under non-normal distribution. Due to these shortcomings, VaR
is still inappropriate for portfolio optimization. Fortunately, an alternative coherent risk
metric proposed by Rockafellar and Uryasev (2000) which called Conditional Value at
Risk (CVaR) or Expected Shortfall. CVaR 1is defined as the expected loss exceeding VaR
and thus it represents an upper bound for VaR. Given the focus on lower tail dependence,
it makes sense for us to select an portfolio optimization strategy that has a meaningful
downside risk emphasis. It is suitable for an investor who focus on minimizing downside
risk and is indifferent (or might even prefer) upside variance. Furthermore, it generates
an efficient frontier that incorporates non-normality. Thus, if asset returns exhibit lower
tail dependence, more emphasis will be placed on reducing this risk in comparison to
mean-variance portfolios that assume quadratic utility and ignore all higher moments of

the returns distribution. Formally,

CVaR® = E(-r > VaR®), (3.12)
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where VaR® denotes the maximum loss at confidence level @ € (0, 1) typically chosen
at 0.99 or 0.95 and r denotes the portfolio loss. It follows from CVaR® > VaR? that, if
the risk manager can control CVaR then he can control VaR but not the other way round.
Accordingly, we choose to minimize CVaR in preference to Value-at-Risk (VaR).

A shortcoming of CVaR is the difficulty of computation. Let r(w, ) be a portfolio
return function where w and u are vectors of weights and expected asset returns, respec-

tively. We can rewrite (15) as follows

1
CVaR*(w) = — f f(w,r)p(r)dr (3.13)
—f(w,r)>VaR®*(w,r)

a

where f(r) denotes the multivariate pd f of asset returns. Rockafellar and Uryasev (2000)

proposed an alternative simpler function

FYw,d)=d+ é f (=f(w,r) = d)f(r)dr (3.14)

—f(w,r)>d

and demonstrate that F*(w,d) is a convex function with respect to d, and that VaR is
a minimum point of this function with respect to d. So in the mean-CVaR framework,
where variance is replaced by CVaR as the relevant risk metric, the optimization problem
becomes miny 4 F*(W,d) = miny, CVaR®*(w). Rockafellar and Uryasev (2000) and Ander-

sson et al. (2001) suggest to approximate (17) by Monte Carlo simulation as follows
1 q
Fiw,d)=d+— > (~f(w,r;=d)"), (3.15)
¥q =

where g denotes the number of samples generated by Monte Carlo simulation, and z* =
max(0, 7). d represents VaR, 1 is a vector of ones, and « represents the threshold value.
As we consider the investor who is averse to extreme downside losses, we set 1-a to
0.99 analogous to an investor who wishes to minimize losses at the 1% level of CVaR,
similar to di Basilea per la vigilanza bancaria (2004) requirements. ry, is the kth vector of
simulated returns. The vector of portfolio weights, w, is extracted from the optimization
procedure to generate the portfolio that minimizes CVaR for a given R. This optimization

can be approached as a linear programming problem

1 q
mind + —Zzi (3.16)



subject to z; > —f(w,r;) — d;

z; = 0;
wl=1;
’

wr; =g

where w is the Mean-CVaR optimal vector of weights.

3.6 Data

In our study, we choose not only traditional financial assets, such as stocks, bonds and
risk free asset, but also consider adding alternative investments into our portfolio. Since
publication of seminal paper on portfolio theory by Markowitz (1952), the literature ac-
knowledges us that diversification can increase expected portfolio returns while reducing
volatility. However, investors should not blindly add another asset class into their port-
folios without carefully investigating its properties in the context of their portfolios. A
naively chosen allocation to the newly added asset class may not improve the risk return
profile, while might even worsen it. This raises the questions of whether alternative in-
vestments really improve the risk-adjusted performance of a mixed multi-asset portfolio
and whether they should be included in the strategic asset allocation.

In order to investigate whether the alternative investments are able to improve the
portfolio performance, we take into account following indices as proxies for both tra-
ditional and alternative investments asset class. Regarding the traditional asset classes,
we choose S&P 500 Total Return Index and MSCI Emerging Markets Total Return Index
representing stock asset, and JP Morgan US Government Bonds Total Return Index repre-
senting government bonds, also the US Treasury bills is considered. And four alternative
investment assets include private equity, which subdivided into buyout and venture cap-
ital, separately employing US Buyout index and US Venture Capital index, Hedge Fund
Research, Inc. is selected as the proxy of hedge funds, and FTSE EPRA/NAREIT Total
Return Index chosen as the REITSs asset. To obtain excess returns we subtract the 90-day
T-bill rate from these returns. All time series in our investigation are based on a weekly

data with a July 1998 inception date, and the end date of the time series is June 2017.

142



Data from April 2004 to June 2017 are not used for model selection or parameter estima-
tion in order to maintain a genuine out-of-sample period data. All data are obtained from
Datastream.

Table 2 provides the descriptive statistics of each asset class returns considered. These
descriptive statistics presented in Table 2 show that venture capital and buyout have the
highest mean return (0.28, 0.27) and also high standard deviation (3.91,3.59), followed
by emerging markets and hedge fund, with a mean return of both 0.11, in which emerging
markets has a high standard deviation of 3.14. Though the REIT has the low mean return
of 0.08, it has high standard deviation of 3.32.

The higher moments (skewness and kurtosis) are additional potential sources of risk.
All series show very clear signs of non-normality with negative skewness except for Japan
and Argentina, which have small positive skewness. Further evidence of non-normality
is given by the fact that all series have a kurtosis that is well above 3. In particular,
emerging markets exhibit the lowest skewness, -0.99 (kurtosis 6.53), whereas hedge fund
shows the highest kurtosis, 29.98 (skewness -0.61), among all asset classes. Therefore,
emerging market and hedge funds show the most unfavorable higher-moment properties,
because negative skewness and positive excess kurtosis indicate that the outliers are on the
left side of the return distribution and occur more often than expected under the normal
distribution (known as tail risk). The kurtosis for all asset classes exceed 3 which means
all asset return exhibit high kurtosis.

Analysing the higher moments of the return distribution for the asset classes shows
that some return distributions do not follow a normal distribution. The Jarque and Bera
(1980) test rejects the null hypothesis of a normally distributed return distribution for all
asset class returns at the 5% level. Both the Ljung-Box Q test and Engle’s ARCH LM
test reject the null of no autocorrelation for lags in returns and squared returns confirm-
ing, respectively, serial dependence and heteroskedasticity. Thus, relying on a simple
mean-variance framework and ignoring the higher moments does not adequately capture
the risk-return profile. Failure to consider higher moments increases the probability of
maintaining biased and suboptimal weight estimations, as well as underestimating tail
losses. These results support the employment of mean-CVaR framework as our portfolio
optimization strategy.

Table 3 provides insight into the diversification potential of each asset class. Hedge
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funds have a high diversification potential because the correlation to all other asset classes
is statistically significant not different from zero. Similar diversification potential applies
to government bonds, which also have a correlation to all other asset classes statistically
significant not different from zero. It is worth noting that there is no significantly negative
correlation between asset classes. After reviewing the descriptive statistics of the return
distributions, we cannot determine a priori that one asset class is a substitute for another.
Therefore, we consider all the asset classes for the portfolio construction. To create opti-
mal investor portfolios, our model considers the characteristics of the asset classes.

The results indicate that we have a high and a low dependence regime. The copula
correlation coefficient in the more dependent regime is higher for all pairs of indices,
which means that the whole assets together is more dependent when the economy is in that
regime. This regime is characterized by some very large correlations. For instance, S &P
500 and Buyout have a Pearson correlation coefficient of 0.71 in Table 3, that translates
into a Kendall’s 7 of 0.68 in Table 4, which is very high dependence. More generally, the
highest correlations are between the S &P 500 and Buyout index and S &P 500 and VC

index.

3.7 Empirical Results

We first estimate Markov regime switching vine copula models parameters using the two-
step estimation and EM algorithm mentioned above, then investigate the applicability of
the different Markov regime switching vine copula models in the context of investors who
wish to minimize the event of extreme losses within their portfolio. First, we perform an
in-sample study to observe the efficient frontiers produced from historical data of indices
excess returns for portfolios with and without alternative investments. We perform this
analysis to observe if the alternative investments have diversification benefits for asset
allocation. Second, we perform a multi-period, long-term, out-of-sample study which
uses the Markov regime switching vine copula models and optimize our portfolios to
minimize CVaR. We employ a wide range of statistical and economic metrics, including
Sharpe ratio, Sortino ratio, Omega ratio and VaR backtesting, to assess the superiority of
each asset allocation strategies in an out-of-sample portfolio management context, and we

also discuss the economic performance of out-of-sample portfolio.
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3.7.1 Marginal Model Estimate

In this section we first fit the skewed t AR-GJR-GARCH model to our asset returns, and
present the results of the marginal model estimation. Table 3 presents the estimate results
of each of the univariate skewed Student t AR-GJR-GARCH model. Seen from the table,
the degrees-of-freedom parameters of most series is around 8, which corresponds to tails
of the conditional distribution that are somewhat fatter than those of the normal distribu-
tion. A well-specified model for the marginals is crucial, because misspecification can
result in biased copula parameter estimates(Fermanian and Scaillet (2005)). Therefore,
we apply the KolmogorovSmirnov test. We also present the p-values of the LjungBox
test of autocorrelation in the squared residuals of the skewed Student t innovations of the
GARCH models. Using the Ljung-Box Q-test, the null hypothesis of no autocorrelation
is rejected at lag 1,2,5 for all the returns. The ARCH test indicates the significance of
ARCH effects in all the series. The table shows that each one of the marginal models is

well specified.

3.7.2 Efficient Frontiers with and without Alternative Investments

In this section, we adopt a simple way to primarily investigate diversification benefits of
alternative investments. We estimate and compare the Sharpe ratios of the tangency port-
folios with and without alternative investments using full sample of excess return data
from January 1998 to June 2017. This ex post approach is the most common practice and
is also used here. The short sales constrained and short sales unconstrained case results
for the US investor are reported separately in Panel A and Panel B of Table 5. Column 1
lists the portfolio weights of each asset class the case with alternative investments and the
case without alternative investments respectively when mean-CVaR portfolio optimiza-
tion strategy applied. Column 2 to 4 of each panel lists the mean, CVaR of each portfolio.
The Sharpe ratios corresponding to the cases with and without alternative investments are
reported in Column 5. In all cases, the addition of alternative investments leads to an
improvement in the Sharpe ratio. This confirms the well-known fact stated earlier that the
portfolio performance of the optimized portfolios with extra asset class can be considered
improved. Nevertheless, any conclusion based on this observed improvement in perfor-

mance is meaningless without statistical testing. The results of the statistical tests based
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on the simulation method will be discussed in the section of Backtesting.

3.7.3 Vine Copula based Regime Switching Model Estimate

To examine if the diversification benefits behave differently across the two regimes of
the assets market, the first task is to spilt the return data into two regimes. The esti-
mated smooth probabilities will be a useful tool. As a byproduct of the maximum likeli-
hood estimation, the endogenously determined probability of realizing a particular state
or regime can also be extracted at any point in time. For example, the filter probability,
p(S =1|r-1, F1—2, 11—3, ..., 1), represents the conditional probability that assets market is in
State 1 at ¢ given the observed time-series of returns up to the beginning of that period. Al-
ternatively, we can compute the smooth probability, p(S =i|rr, rr-1, rr—2, ..., 19), In which
the inference about the state is now based on all return data up to the end of the sample
period (i.e. at time 7). The evolution of the smooth probability over time is governed
by both the magnitudes of the transition probabilities (i.e. P;; and P,,) defined and the
prevailing asset returns. For example, the higher the values of P;; and P,,, the more
persistent is the smooth probability given the lower chance of switching between the two
states. A large jump in the index asset returns will however disrupt the persistency of
the smooth probability. The realization of a high (low) return at time ¢ will lead us to
assign a lower (higher) probability of State 1 being realized at time ¢ (i.e. the value of the
smooth probability at time 7). The smooth probability therefore captures our assessment
of the relative chances of the two states being realized in a particular time period given all
the observations of the index asset returns. The higher probability of regime 1 (the low
return state) can be thought of as a bearish assets market, whereas the lower probability
of regime 2 can be considered as a bullish assets market. A smooth probability of 0.5 in-
dicates equal probabilities of realizing regimes 1 and 2. The return series of various asset
classes can then be split into two sub-samples corresponding to the low and high return
regimes based on whether the smooth probability of asset returns is higher or lower than

0.5. 2 3 So that we divide return data into two sub-samples according to our six kinds of

2As described earlier, the smooth probability is estimated using the entire sample period. Using the
entire sample enables us to more accurately capture the switching between the two regimes.

3 A smooth probability of 0.5 corresponds to the condition of equal chance of realizing the two regimes
at a particular time. Based on our regime-switching model, it results in a smaller subsample for the high-
return state (State 2) than the low-return state (State 1). As a robustness test, we repeat the analysis by
partitioning the data series based on the median value of the estimated smooth probabilities, thus resulting

151



"£107 dunf 03 8661 Anf woty porxad ojdures [[ny ay) U0 paseq pue PAUILNSUOD SI[ES 1I0YS OS[B PUB PAUTBISUOIUN SIS JI0YS Y)IM Paureiqo a1e sorjojiiod
rewndQ ‘periodar aIe SJUSUIISIAUT SATIBUIS)E INOY)IM pue Y)im sorjopptod Aouague) Jo soryer adreys pue sjyStom orjojiod :SJUSU)SOAUL dATIBUIO)E JO S)JOUaq UOTBOYISIQAL(]

15¥70°0 TTe T6T0'0  0v6eY0 LY6¥°0 08L¥°0 0CLY 0~ LSLOO 8LE'E 9¥90°0  OLFO THI'0O  ¥61'0 9TI'0-  8IE0- 961°0 0re0- 080
SIIIQ-L  puoq 'A0D  HAVHIDSIN SN d»®S SIIQ-L OA oAng 23poH sy [e9Y Ppuoq A0  HAVHIDSIN SN d®S

oneradreys  YeAD  ueow s)ySrom ofojpiog  onerodreys JYeaD  ueow sIyS1oM O1[0J1I0g
SIUQUIISIAUT QATIEUIAN[E JNOYIIM SOT[OJIIO] SJUQUIISOAUT QATIEUIAE [ITM SOT[0J1IO]

PaUTENSUOdUN SA[ES LIOYS g [oued

¥9€0°0  LTTY'O LTIOO  8ELO 910 500 090°0 L0900  60T'T 6¥90°0 LOSTO 0OTIO0 08€0'0 0TEECO  09£0°0 Se61°0 80%0°0 0090°0
SIIQ-L  puoq 'A0D  HAVHIODSIN SN d®S SIQ-L DA mokng  9SpoH ISH Y Puoq A0D  HIVAIDSI SN d®S

oneradieys  YeAD  ueow sjySom orjopiiod oneradrieys ¥YeAD  uedw sjyS1om orjojIod
SJUQUIISAAUT JATIBUII[E JNOYIIM SOT[OJLI0] S)USWIISIAUT QANBUIA)[E ()IM SOI[OJIIO]

PAUTEISUOD SIS JI0YS 1Y [oued

SJUSWI)SIAUT JAT)BUI)[E JNOYIIM PUE JIM SIONUOIJ JUIIIPH 0'¢ J[qBL,

152



different Markov regime switching vine copula model, Model 1 to Model 6.

To test which kind of Markov regime switching vine copula model is the best fitting
model for our data, and investigate whether eight assets regime switching outperform the
four assets case, we estimate six competing Markov regime switching vine copula models
for both the four traditional assets case and eight assets indices data including stock, bond
and alternative investments indices. The four assets regime switching results are presented
in Table 6 to Table 8, and eight assets results list in Table 9 to Table 11. We specify in
Model 1 that market state switch from an R-vine Gaussian copula state, the normal market
state, to an R-vine ¢ regime (first column to fourth column), Model 2 that market state
switch from an R-vine Gaussian copula state to a C-vine ¢ copula regime (fifth column
to eighth column), Model 3 that market state switch from an R-vine Gaussian copula
state to an R-vine independence mixed copula regime (first column to fourth column),
and Model 4 that market state switch from an R-vine Gaussian copula state to an C-vine
independence mixed copula regime (fifth column to eighth column), Model 5 that market
state switch from an R-vine Gaussian copula state to an R-vine mixed copula regime (first
column to fourth column), and Model 6 that market state switch from an R-vine Gaussian
copula state to an C-vine mixed copula regime (fifth column to eighth column). The
details of employed vine copula model are presented as follows.

For model selection we want to demonstrate the superior fit of vine copula with in-
dividually chosen pair-copula families and assess the gain over R-vines or C-vines with
only bivariate t or with only Gaussian pair-copula. In particular, we apply the selection
algorithm to select among seven different R-vine classes given by,

R — vine mixed copula: R-vine with pair-copula terms chosen individually from bivariate
copula families.

R —vine independence mixed copula: R-vine with pair-copula terms chosen individually
from bivariate copula families with independence copula.

C — vine mixed copula: C-vine with pair-copula terms chosen individually from bivariate
copula families (see above).

C —vine independence mixed copula: C-vine with pair-copula terms chosen individually
from bivariate copula families with independence copula (see above).

R —vine t copula: R-vine with each pair-copula term chosen as bivariate Student t copula.

in equal length of subsamples in States 1 and 2. Our conclusions remain essentially the same.
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If the degrees of freedom parameter of a pair is estimated to be larger than 30, we set the
copula to the Gaussian.

C —vine t copula: C-vine with each pair-copula term chosen as bivariate Student t copula.
If the degrees of freedom parameter of a pair is estimated to be larger than 30, we set the
copula to the Gaussian.

multivariate Gaussian copula (R — vine Gaussian copula): R-vine with each pair-copula
term chosen as bivariate Gaussian copula, i.e., this corresponds to a R-vine Gaussian cop-
ula, where unconditional correlations can be obtained from conditional ones by inverting
a generalized version.

Our filtering technique is similar to that of Gray (1996) and Hamilton (1989) conduct-
ing the maximum likelihood estimation of the parameters. This approach is also employed
by Ramchand and Susmel (1998) and Ang and Chen (2002). We first estimate parameters
of the best fitting bivariate copula, which as the building blocks of vine copula, in each
regime and the regime switching transition probabilities, the results are reported in Table
6 to Table 11. From Table 6 to Table 11, State 1 can be characterized by both its low
expected return and low return volatility. Whereas State 2 is the state when both expected
return and volatility are high. The persistency of regime as indicated by the high values
of Py, and Py, is statistically significant in both states.

In our regime switching vine copula specification, the R-vine ¢ copula corresponds
to the lower dependence regime. The difference between the models is that, unlike the
R-vine Gaussian copula, the R-vine ¢ copula with all Student ¢ copula as building blocks
which is capable to capturing tail dependence, but it implies equal upper and lower tail
dependence. We also show the results of a switching model with an R-vine Gaussian and
a C-Vine mixed copula regime which employ the C-vine structure and choose bivariate
copula building blocks from an abundant of bivariate copula families (sixth column to
tenth column). The class of possible canonical vines is evidently extremely large. We
follow Aas et al. (2009) for the specification of the copula. First, we order the variables
by decreasing correlations, choosing the variable with the largest correlation as the first
one to condition on. This leads us to place S &P 500 index as the pivotal element of the
C-vine tree structure, followed by MSCI Emerging Markets index, JPM US Government
Bonds index, US T-bill, FTSE EPRA/NAREIT index, HFRI Fund of Funds index, US

Private equity index, and US Buyout index. By so doing, we intend that most of the
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dependence structure in the copula will be captured in the lower stages of the canonical
vine, leaving only very little dependence to be modelled as we move to copulas that
are conditional on more indices. The difference in Model 3, 5 is that we employ more
flexible R-vine copula structure comparing to Model 4, 6, regarding the R-vine structure,
we therefore do not need to choose a pivotal index comparing to C-Vine structure, and it
is more flexible for us to construct the correlation among different asset indices. In the
Model 3, we adopt R-Vine independence mixed copula as the low dependence state, while
in the Model 4, the R-Vine mixed copula structure is employed to describe the structure
of the low dependence regime. In Model 3, 6, the independence copula as the bivariate
copula building blocks candidate is considered.

By using the likelihood as a criterion for selecting models, in general, the eight asset
cases are all taking larger likelihood value than four asset case. In eight asset context, we
note that the likelihood of C-vine and R-vine model increases comparing to the R-vine
t model in general. Adopting R-vine structure in Model 3 to 6, abundant of bivariate
copulas are selected as the building blocks for C-vine and R-vine model. As displayed in
the Tables, among all mixed vine copula models, we can see that the likelihood value of
C-vine mixed copula model is highest compared with the all other competing models due
to the flexible structure of C-vine copula which capturing dependence of different types
of assets indices.

Regarding the regime persistence, when we investigate the results of transition prob-
ability, all models for the eight assets case are characterized by very high persistence in
both regimes comparing to four asset case results. The six different vine copula based
regime switching models’ filter probabilities are plotted in Figure 1, 2 for four asset and
eight asset case separately. When we examine the plot of the smooth probabilities of
the six model being in the high-dependence regime of Figure 1, 2, the high-dependence
regime is the dominant one from 1998 onward, except some crisis period, such as 2000 In-
ternet Bubble, 2001 7911” event, 2007-2009 Global Financial Crisis and 2011 Euro Debt
Crisis. A probability close to unity (zero) suggests it is very likely the market state is in
State 1 (State 2). Figures nicely confirm what is generally accepted as the several major
bearish market environments in the crisis period mentioned above. One factor explaining
this might be the increased integration of global financial markets. More generally, the

returns from the all eight assets indices have all become much more highly dependent.
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We found the filtered probabilities differ a little from one model to another and the depen-
dence within each regime, as measured by the unconditional Kendall’s 7, seems to change
a little from one model to another, which demonstrate the dependence increase in period
of crisis is a general fact no matter which model is employed.

The results also indicate that we truly have a high and a low dependence regime. We
can notice that the bivariate copula correlation coefficient in the more dependent regime
is higher than all pairs of asset returns in low dependence regime, which means that the
market state together is more dependent when the economy is in that regime. This regime
is characterized by larger correlations. For instance, in R-vine mixed copula model, asset
1 and 6 have a correlation coefficient of 0.93, that translates into a Kendall’s 7 of 0.75,
which is very high dependence. More specifically, the highest correlations are between
the S & P500 index and Buyout index.

When we check the high dependence regime in our most preferred eight asset Model 6
- ”R-vine Gaussian regime transfer to R-vine mixed copula regime”, the bivariate copula
chosen to capture the pair asset return indices contains Gaussian copula, Student t cop-
ula, Survival Gumbel copula, Survival BB1 copula, Survival Joe copula. Some of these
copulas can capture both asymmetric dependence and tail dependence with upper tail de-
pendence and lower tail dependence, such as Survival BB1 copula, some with only one
tail dependence, such as Survival Gumbel copula and Survival Joe copula, and Student t
only have symmetric tail dependence. These results imply that tail dependence between
all pairs of variables indeed exist and support the flexibility and superiority of vine copula
for capturing tail dependence between different asset types.

Strictly speaking, we can not use the likelihood as a criterion for selecting models
that are not nested, we nonetheless note that the C-vine model increases the likelihood
compared with the other competing models, with the same number of parameters. Of
course we can by no means claim that we have chosen the best possible copula, since

more theoretical work is needed about model selection of vine copulas in general.

3.7.4 Out-of-sample Risk-adjusted Portfolio Performance of Differ-

ent Asset Allocation Strategies

In this section, we investigate whether there exist diversification benefits provided by al-

ternative investments in an out-of-sample setting. To this end, we calculate optimal port-
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Figure 3.1: Four assets regime switching smooth probability
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Figure 3.2: Eight assets regime switching smooth probability
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folios separately for an asset universe that only includes traditional asset classes (stock,
bond, risk-free asset) and an augmented one that also includes alternative investments.
Among them, we calculate optimal portfolios for both cases of considering regime switch-
ing and ignorance of regime respectively. Then we evaluate the relative performance of
all these asset allocation strategies in an out-of-sample setting which is the ultimate test
given that at any given point in time, the investor decides on the portfolio weights and the
portfolio returns to be realized.

We study the use of Markov regime switching vine copula model incorporating asym-
metries within the dependence structure in portfolio asset returns, therefore we adopt the
portfolio optimization strategy of minimizing CVaR. Our out-of-sample analysis is per-
formed in a long-run, multi-period investment horizon from January 2010 to June 2017.
As mention above section, we consider the six Markov regime switching vine copula
model which describe Regime 1 using R-vine Gaussian copula, and describe Regime 2
separately using R-vine ¢ copula, C-vine independence mixed copula, R-vine indepen-
dence mixed copula, R-vine mixed copula and C-vine mixed copula. We explore out-of-
sample portfolio performance based on these copula strategy in relation to each other and
against the benchmark of the conventional 1/N asset allocation strategy. We conduct out-
of-sample analysis aiming to examine whether the vine copula regime switching asset
allocation strategy outperforms the conventional asset allocation strategy. All portfolio
strategies comparison are discussed both short-sales constrained and unconstrained.

To examine if the diversification benefits behave differently across the two regimes of
the asset market, we first need to partition the asset return data into two regimes. As men-
tioned in previous section, the estimated smooth probabilities, as a useful tool, reported
in Figure 1, 2, in which Figure 1 reports the case of four assets and Figure 2 for eight
assets case. The higher probability of regime 1 (the low return state) can be thought of
as a bearish asset market, whereas the low probability of regime 2 can be considered as
a bullish asset market. A smooth probability of 0.5 indicates equal probabilities of real-
izing regimes 1 and 2. Then the return series of various asset classes can be partitioned
into two sub-samples corresponding to the low and high return regimes based on whether
the smooth probability of the regime model is higher or lower than 0.5. With these two
sub-samples of return data corresponding to the two regimes, the analyses on the diver-

sification benefits of adding alternative investments can be conducted for each of the two
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regimes.

Under this methodology, the regime switching copula models and conventional asset
allocation models are estimated using information available only up to time ¢. The process
is repeated every month until June 2017, the end of the sample period. Assume that the
investor rebalances their portfolio once a month, our first analysis uses historical data from
January 1998 to January 2010 to construct various asset allocation models as of January
2010. Together, we evaluate the portfolio performance by adopting Sharpe ratio, Sortino
ratio and Omega ratio realized by the various portfolio strategies-six kinds of vine copula
with and without regime switching consideration for both four assets and eights assets
cases and conventional mean-variance and equal weights 1/N asset allocation strategy.

The results for the US investor are reported in Table 13 to Table 20. In the portfolio
strategy with regime switching consideration, the State 1 (low asset returns) and State 2

(high asset returns) results are listed separately in the tables.

The Effect of Vine Structure and Dimension

In the comparison of our various competing portfolio strategy performance, we separately
fit R-vine Gauss copula, R-vine 7 copula, R-vine independence mixed copula, C-vine in-
dependence mixed copula, R-vine mixed copula, C-vine mixed copula, where ignoring
the regime switching, to our multi asset returns, and also fit R-vine Gauss copula repre-
senting market state 1, transfer to market state 2 characterized by R-vine independence
mixed copula, C-vine independence mixed copula, R-vine mixed copula, C-vine mixed
copula respectively to our returns when considering the regime switching. For both cases,
according to the investment ratios results which we will discuss in details in subsequent
section, R-vine t copula model performs poorly across all vine copula models for portfo-
lios. This finding suggests that the R-vine ¢ copula models’ building blocks of bivariate
t copula lack of the characteristics to capture the asymmetric dependence, therefore, it is
unable to meaningfully capture asymmetric dependence of different kinds of multi-assets.
Furthermore, it demonstrates that though the R-vine t copula has the vine structure, their
bivariate building blocks lack of capabilities of capturing asymmetric dependence still
make it not perform well.

However, when we turn to investigate the effect of dimensions, we find in the four

assets case that the C-vine copula model underperforms the R-vine ¢ copula model. We
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therefore are able to conclude, in low dimension case, it is not suitable to choose a pivotal
asset to construct C-vine structure. This contrast is potentially due to the fact that there
is little or no benefit to be gained by using a complex model of the dependence structure
for simpler, smaller, low dimension portfolios. In such cases, using advanced models
induces estimation error which swamps any benefits from the modelling, resulting in poor

portfolio decisions.

Investment Ratios and Portfolio Performance

We now turn to analyse the investment ratios and relative performance measures of the op-
timal portfolio returns resulting from the different Markov regime switching vine copula
portfolio strategies, vine copula strategy without regime switching consideration, conven-
tional mean-variance strategy and equal weights strategy. Results are reported in Table 13
to Table 20 for various specifications of the preferences. We compute the Sharpe, Sortino

and Omega investment ratios, given, respectively, by

Up—r
S harpe ratio = P f,
5p
Up —r
Sortino ratio = P—f,
)
. qi(ryp)
Omega ratio = 1] ! ,
ql(rf)

where up is the average realized portfolio return, 6, is the realized portfolio volatility, 7/ is
the risk-free rate, and ¢/,(ry) and ¢" (ry) are the lower and upper partial moments of order
m with target value equal to the risk-free rate. The Sortino ratio modifies the Sharpe ratio
by dividing the excess return of the portfolio by the downside standard deviation or square
root of semi-variance. The Omega ratio can be interpreted as the probability weighted
ratio of gains to losses, relative to the risk-free rate and it measures the combined effect
of all returns moments, rather than the individual effects of any of them. The Sharpe
ratio penalizes the entire standard deviation of portfolio returns, whereas the Sortino ratio
penalizes only downside standard deviation. The Omega ratio is a practical measure that
makes no assumptions regarding investor risk preferences or utility functions except that

investors prefer more to less. The higher the values of these ratios, the better the portfolio
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performance.

Seen from our results of various competing asset allocation strategies from Table 13
to Table 20, we firstly can draw a general conclusion that the C-vine mixed copula regime
switching model outperforms all other vine copula regime switching model, vine copula
model ignoring the regime switching and also conventional asset allocation model on the
risk-adjusted return basis.

In particular, we first take a look at short sales constrained results. Table 13, 15, 17,
19 provide the outcomes of the portfolio optimization with and without alternative in-
vestments for our representative US investor in the short sales constrained condition. In
regime switching case in Table 15, 19, the low asset return state and the high asset re-
turn state results are listed separately. Across the Sharpe, Sortino and Omega Ratios, it
is observed that as the portfolio increases from the case without alternative investments
to alternative investments included case, so does produce the higher ranked outcome.
As the numbers indicate, for example, in Table 19, the eight asset case considering the
regime switching, the Sharpe ratio of R-vine ¢ strategy equals 0.0596, C-vine ¢ strategy
equals 0.0643, R-vine independence mixed strategy equals 0.0732, C-vine independence
mixed strategy equals 0.0688, R-vine mixed strategy equals 0.0762, C-vine mixed strat-
egy equals 0.0827, which are all much better than the conventional non-regime dependent
strategy where Sharpe ratio equals 0.0376 in Table 13. Similarly, the Sortino ratio and
Omega ratio for the regime switching model are also higher than the conventional non-
regime dependent strategy. When we compare the eight assets and four assets case, no
matter the case considering regime switching or not, the eight assets risk adjust measure
results are better than the four assets case. For instance, in Table 15, the Sharpe ratio of
R-vine ¢ strategy equals 0.0336, C-vine ¢ strategy equals 0.0288, R-vine independence
mixed strategy equals 0.0382, C-vine independence mixed strategy equals 0.0398, R-vine
mixed strategy equals 0.0458, C-vine mixed strategy equals 0.0477, which are all lower
than the eight assets’ mentioned in Table 19. Among the six Markov regime switching
vine copula asset allocation strategies, the C-vine mixed copula regime switching model
outperforms other vine copula regime switching model, vine copula model without regime
consideration and also conventional asset allocation according to the risk-adjusted return
indicators, which confirm that the flexible structure of the vine model makes it capture

the asymmetric dependence and lower tail dependence accurately and this result is also in
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line with the log likelihood value result in previous section.

Then we turn to the short sales unconstrained case. Table 14, 16, 18, 20 reports
the results of the portfolio optimization with and without alternative investments for our
representative US investor in the short sales unconstrained condition. Similar to the short
sales constrained results reported previously, in regime switching case in Table 16, 20, the
low asset return state and the high asset return state results are listed separately. Across
the Sharpe, Sortino and Omega Ratios, it is observed that as the portfolio increases from
the case without alternative investments to alternative investments included case, so does
produce the higher ranked outcome. As the numbers indicate, for example, in Table 20,
the eight asset case considering the regime switching, the Sharpe ratio of R-vine 7 strat-
egy equals 0.0691, C-vine  strategy equals 0.0749, R-vine independence mixed strategy
equals 0.0772, C-vine independence mixed strategy equals 0.0780, R-vine mixed strategy
equals 0.0849, C-vine mixed strategy equals 0.0877, which are all much better than the
conventional non-regime dependent strategy where Sharpe ratio equals 0.0370 in Table
14. Similarly, the Sortino ratio and Omega ratio for the regime switching model are also
higher than the conventional non-regime dependent strategy. When we compare the eight
assets and four assets case, no matter the case considering regime switching or not, the
eight assets risk adjust measure results are better than the four assets case. For instance, in
Table 16, the Sharpe ratio of R-vine ¢ strategy equals 0091, C-vine ¢ strategy equals 0205,
R-vine independence mixed strategy equals 0.0372, C-vine independence mixed strat-
egy equals 0.0376, R-vine mixed strategy equals 0.0529, C-vine mixed strategy equals
0.0538, which are all lower than the eight assets’ mentioned in Table 20. Among the
six Markov regime switching vine copula asset allocation strategies, the C-vine mixed
copula regime switching model outperforms other vine copula regime switching model,
vine copula model without regime consideration and also conventional asset allocation
according to the risk-adjusted return indicators, which confirm that the flexible structure
of the vine model makes it capture the asymmetric dependence and lower tail dependence
accurately and this result is also in line with the log likelihood value result in previous
section.

Across the Sharpe, Sortino and Omega Ratios, it is observed that as the portfolio
increases from four assets to eight assets case, so does the level of model complexity

required in the model to produce good performance of portfolio. For both the Markov
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regime switching vine copula strategy and non-dependent vine copula strategy, eight as-
sets case outperforms its counterpart model in four assets case across the Sharpe, Sortino
and Omega ratios. This finding suggests that the Markov regime switching vine copula
model perform well in multi-asset case, the small portfolio is not suitable to be mod-
elling with this complex model. This contrast is potentially due to the fact that there is
little or no benefit to be gained by using a complex model of the dependence structure
and marginal for simpler, smaller portfolios. In such cases, using advanced models in-
duces estimation error which swamps any benefits from the modelling, resulting in poor
portfolio decisions. In another aspect, these results confirm that including alternative in-
vestments substantially add value into the portfolio. Generally speaking, these results
provide the evidence that increases in model complexity and parameterization for small
portfolios have little or even negative benefits due to noise-prone estimation. At eight
assets case, C-vine mixed regime switching copula asset allocation strategy consistently
achieves the highest rank across all portfolio metrics. As the number of assets within
the portfolio increases, the greater degree of parameterization in the modelling process of
C-vine mixed regime switching copula strategy produces various out-of-sample benefits
including improved risk-adjusted returns and performance benefits.

When we investigate the Mean/CVaR metrics, Markov regime switching vine copula
strategy consistently produces the highest ranked outcomes for eight asset case, which
indicate that regime switching vine copula strategy method is able to produce a higher
portfolio return without a substantial increase in downside exposure.

In summary, the out-of-sample tests reasonably demonstrate consistent outperfor-
mance of our Markov regime switching vine copula asset allocation strategy comparing to
the non-regime dependent vine copula strategy and conventional asset allocation strategy.
The regime switching vine copula allocation strategy helps investor establish a defensive
portfolio in the bear market regime (i.e. regime 1) that hedges against higher correlations
and low returns in international assets markets. Additionally, since the vine copula regime
switching allocation strategy relies less on the historical moments, it is likely that the re-
sulting optimal portfolio could even be more internationally diversified (Ang and Bekaert
(2002a)). As a consequence, it is equally possible to add value to the portfolios as the
presence of a bear market (and characterized by high correlation) regime whereas not

necessarily erode the benefits of full portfolio diversification. The out-of-sample results
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also indicate constructing portfolio by both traditional assets and alternative investments
by our Markov regime switching vine copula allocation strategy outperform the case just
taking into account traditional assets, which document the necessity of adding alternative
investments asset class into asset allocation such that obtain more benefits of portfolio

diversification in vine copula regime switching allocation strategy framework.

3.7.5 Economic Performance

Table 21 to Table 24 reports three alternative economic metrics across the all considered
asset allocation strategies with and without regime switching consideration in short sales
constrained and unconstrained case. Specifically, we model portfolio terminal wealth
by hypothetically investing $100 at the start of the out-of-sample periods for each asset
allocation strategy. To gauge the amount of trading required to implement each portfolio
strategy we also calculate the average turnover requirement and the effect of transaction
costs on each portfolio strategy. The average turnover is defined as the average sum of
the absolute value of the trades across the N available assets following DeMiguel et al.

(2009):

T-M N
1
Average turnover = ——— Z Z(Iwk,j,m — Wi+l
T-M & £

t=1

where N is the total number of assets in the portfolio, here we set N=4 and 8 separately. T
is total length of the time series, M is the sample period used to parameterize the forecast
models, wy ;41 1s the desired target portfolio weight for asset j at time 7 + 1 using strategy
k, which we have obtained by various asset strategies in previous section, and wy ;. 1s
the counterpart portfolio weight before re-balancing. Similar to DeMiguel et al. (2009),
we apply proportional transaction costs of 1 basis point per transaction (as assumed in
Balduzzi and Lynch (1999) based on studies of transaction costs by Fleming et al. (1995)
for trades on futures contracts on the S &P 500 index). The turnover quantity defined
above can be interpreted as the average percentage of wealth traded in each period. For the
benchmark of the equal weights portfolio strategy, we report its absolute turnover, and for
all the other strategies, we report their turnover relative to that of the benchmark strategy.
This shows that the higher degree of parameterization of vine copula regime switching
model leads to performance benefits above the traditional model for larger portfolios.

In particular, we first take a look at the results of short sales constrained case listed in

181



Table 21 and Table 22. Table 21 reports the four assets and eight assets results when ignor-
ing regime switching, Table 22 lists the results when considering regime switching. For
eight assets including alternative investments, C-vine mixed copula strategy produces the
largest terminal wealth regardless of whether transaction costs are included or not. R-vine
mixed copula strategy is the second best performing strategy irrespective of transaction
costs but exhibits much higher turnover requirements compared to C-vine mixed copula
strategy. All eight assets terminal wealth of each strategy higher than its corresponding
strategy in four asset case.

Then we turn to the case considering regime switching, for eight assets including alter-
native investments, C-vine mixed copula strategy still displays the largest terminal wealth
among all eight asset strategies regardless of whether transaction costs are included or
not. R-vine mixed copula is the second best performing strategy irrespective of trans-
action costs and exhibits much lower turnover requirements comparing to C-vine mixed
copula strategy. And it is observed that all eight asset strategy terminal wealth higher
than the four assets’ when considering the regime switching. In another aspect, when
compared with non-regime case, the eight asset vine copula regime switching strategy
terminal wealth all suppress its corresponding strategy in non-regime case, which con-
firm the benefits of taking into account of regime switching. For the four asset case, each
strategy produces larger terminal wealth when ignoring regime switching over consider-
ing regime switching, which support that employing complex model for simpler portfolio
will not bring more portfolio diversification benefits. Regarding average turnover, for
both four asset and eight asset case, the high return regime 2 exhibits higher average
turnover than the low return regime 1. Though eight asset strategy when considering
regime switching displays larger average turnover, as mentioned above, they still produce
higher terminal wealth.

Now we turn to investigate the short sales unconstrained case in Table 23 and Table
24. Table 23 reports the four assets and eight assets results when ignoring regime switch-
ing, Table 24 lists the results when considering regime switching. Similar to short sale
constrained case, for eight assets including alternative investments, C-vine mixed cop-
ula strategy produces the largest terminal wealth regardless of whether transaction costs
are included or not with and without regime switching consideration. R-vine mixed cop-

ula strategy is the second best performing strategy irrespective of transaction costs but

182



exhibits much higher turnover requirements comparing to C-vine mixed copula strategy.
All eight assets terminal wealth of each strategy are higher than its corresponding strategy
in four asset case.

Now we turn to the case considering regime switching, for eight assets including alter-
native investments, C-vine mixed copula strategy still displays the largest terminal wealth
among all eight asset strategies regardless of whether transaction costs are included or
not. R-vine mixed copula is the second best performing strategy irrespective of trans-
action costs and exhibits much lower turnover requirements compared to C-vine mixed
copula strategy. And it is observed that all eight asset strategy terminal wealth higher than
the four assets” when considering the regime switching. In another aspect, when com-
pared with non-regime case, the eight asset vine copula regime switching strategy termi-
nal wealth all suppress its corresponding strategy in non-regime case, which confirm the
benefits of taking into account of regime switching. For the four asset case, each strategy
produces larger terminal wealth when ignoring regime switching over considering regime
switching, which support that employing complex model for simpler portfolio will not
bring more portfolio diversification benefits. With respect to average turnover, a little
different from short sales constrained case, for both four asset and eight asset case, the
high return regime 2 not consistently exhibits higher average turnover than the low return
regime 1. What attracts our most notification is that, vine copula regime switching strat-
egy exhibits lower average turnover compared to non-regime dependent strategy, whereas
produce higher terminal wealth, which substantially demonstrate that, among all cases,
our Markov regime switching C-vine mixed copula asset allocation strategy perform best
in all aspects in short sale unconstrained case when considering regime switching.

Figure 3 and Figure 4 separately shows end of the sample period (June 2017) cumula-
tive returns obtained from various regime switching vine copula asset allocation strategy
in short sales constrained and unconstrained case. Observed from the figures, whether in
short sales constrained and unconstrained case, C-vine mixed copula and R-vine mixed
copula regime switching strategy perform similarly with other portfolio strategy from
January 2010 till October 2008, these two regime switching vine copula strategies do not
substantially exceed other strategies. However, beyond October 2008, around global fi-
nancial crisis period, regime switching C-vine mixed copula strategy start to outperform

other competing strategies. For the end of the sample period (June 2017) cumulative
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returns, it is observed that regime switching C-vine mixed copula strategy substantially

exceed other vine copula strategy, conventional strategy and equal weights strategy.

Cumulative Returns

Value

*'wa'ﬁ
A/

/v 1
A

I I I I I I I I I I I I I I I I I I I I I I I I I I I
2004-04-07 2005-04-06 2006-04-05 2007-04-04 2008-04-02 2009-04-01 2010-04-07 2011-04-06 2012-04-04 2013-04-03 2014-04-02 2015-04-01 2016-04-06 2017-03-29

Figure 3.3: Regime Switching Copula Model Cumulative Returns (short sales con-
strained)

Cumulative Returns

Value

2004-04-07 2005-04-06 2006-04-05 2007-04-04 2008-04-02 2009-04-01 2010-04-07 2011-04-06 2012-04-04 2013-04-03 2014-04-02 2015-04-01 2016-04-06 2017-03-29

Figure 3.4: Regime Switching Copula Model Cumulative Returns (short sales uncon-
strained)

3portfolio.returns is obtained by C-Vine mixed Copula Strategy, portfolio.returns.1 is obtained by R-
Vine mixed Copula Strategy, portfolio.returns.2 is obtained by C-Vine ind. mixed Copula Strategy, portfo-
lio.returns.3 is obtained by R-Vine ind. mixed Copula Strategy, portfolio.returns.4 is obtained by R-Vine t
Copula Strategy, portfolio.returns.5 is obtained by C-Vine t Copula Strategy, portfolio.returns.6 is obtained
by R-Vine Gaussian Copula Strategy, portfolio.returns.7 is obtained by Conventional Strategy.
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3.8 Value-at-Risk (VaR) Backtesting

Our backtesting aims to examine whether the VaR estimates coming from competing port-
folio strategy model satisfy the appropriate theoretical statistical properties. We forecast
the one-day-ahead VaR of portfolios constructed by different portfolio strategy models.
The forecasting period for the portfolio corresponds to the period from January 2010 to
June 2017. The 1-day-ahead VaR is an a-quantile prediction of the future portfolio profit
and loss (P/L) distribution. It provides a measure of the maximum future losses over a
time span [t, t+1], which can be formalized as

P[Rt+l S VaRa |It] =

t+1

where R,,; denotes the portfolio return on day ¢ + 1; and /, is the information set available
on day 7. The nominal coverage 0 < a < 1 is typically set at 0.01 or 0.05 for long trading
positions (i.e., left tail) meaning that the risk manager seeks a high degree of statistical
confidence, 99% and 95%, respectively, that the portfolio loss on trading day 7 + 1 will
not exceed the VaR extracted from information up to day r.

A well-specified VaR model should produce statistically meaningful VaR forecasts.
In this sense, the exceedance proportion should approximately equal the VaR confidence
level (unconditional coverage) whereas the exceedances should be independent instead
of occurring in clusters. Specifically, a well-specified model should produce low VaR
forecasts in period of low volatility and high VaR forecasts when volatility is high, which
means exceedances are spread over the entire sample period instead of in clusters. A
model failing to capture the volatility dynamics of the underlying return distribution will
lead to a clustering of failures, though it can provide correct unconditional coverage.
Therefore, conditional coverage, which takes both of above properties, is necessary to be
included in backtesing. Therefore, we employ the Kupiec (1995) unconditional coverage
test, the conditional coverage test by Christoffersen (1998), which are very popular in the

literature for testing the above two properties.

Kupiec (1995) test for unconditional coverage (LR,.)
The popular failure rates test, unconditional coverage test, proposed by Kupiec (1995)

is a kind of likelihood-ratio test, which measures whether the number of exceedances is
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in line with the confidence level. Since the null hypothesis is set as the model is well-
specified, the number of exceedances should follow binomial distribution. Thus the spirit
of the unconditional coverage test aim to examine whether the observed failure rate 7
is significantly different from «, the failure rate implied by the confidence level. The

likelihood-ratio test statistic is given by

a" (1 —a)" )

LR, = —Zlog[m] ~ Xy

where n; is the number of exceedances, n, is the number of non-exceedances, « is the
confidence level at which VaR measures are estimated and & = n;/(ny + n;) is the MLE
estimate of . Under the null hypothesis, LR, is asymptotically y* distributed with one
degree of freedom.

Unconditional coverage test exhibits several drawbacks. This test only take into ac-
count the frequency of exceedances whereas ignore the time exceedances occur, which
will lead to the failure of rejecting a model which suffers from exceedances cluster. Addi-
tionally, unconditional coverage test is statistically real with sample sizes in line with the
current regulatory framework (one year). Therefore, backtesting entirely rely on uncondi-
tional coverage will lead to inaccurate conclusion, clustered exceedances should also be

considered.

Christoffersen (1998) test for conditional coverage (LR..)

Christoffersen (1998) proposed conditional coverage test to overcome the drawbacks of
unconditional coverage test, which jointly examines whether the total number of ex-
ceedances is consistent with the expected one, and whether the VaR failures are inde-
pendently distributed. The test is carried out, given the realisation of return series r, and
the ex-ante VaR for a a% coverage rate by first defining an indicator function /; + 1 that
gets the value of 1 if a VaR violation occurs and 0 otherwise.

Under the null hypothesis that model is well specified, an exception today should not
depend on whether or not an exception occurred on previous day and the total number
of exceedances should be consistent with the confidence level. Combine this test statistic
of independence (LR;,;) with Kupiec’s unconditional coverage test statistic (LR,.), we
obtain a conditional coverage test LR.. = LR,. + LR;,; that jointly test the correct VaR

failures and the independence of the exceedances. The LR, test statistic for the correct
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conditional coverage is given by

(1 —-a)y*a™
(1= Ron)™ gy (1= 710 Al

LR, = —2log[ 1~ X0

where n;; is the number of i values followed by a j value in the /., series (i, j = 0, 1),
m; = Prilyy = ill, = j}, (G, j = 0,1), ‘o1 = not/(noo + no1), A1 = nu/(neo + not).
LR.. follows y? distributed with two degrees of freedom. The above tests are employed
for detecting misspecified risk models when the temporal dependence in the sequence of
VaR violations is a simple first-order Markov structure.

Table 25 and Table 26 separately show the performance of our various asset allocation
strategies with and without regime switching consideration using a range of VaR back-
testing at the 1% level, similar to Basel (2004) requirements. During each out-of-sample
period, a VaR violation is recorded when the portfolio strategy return is less than the 1%
VaR value of the total forecast return series for all constituent assets within the portfolio
(Christoffersen (2012)). Lower unconditional coverage test and conditional coverage test
p-values are indicative that the proposed portfolio management strategy systematically
understates or overstates the portfolio’s underlying level of risk. Therefore, a superior
strategy results in a higher p-value of test statistic. Following Christoffersen (2012), we
report the p-values for these test statistics where the null hypothesis is that the portfolio
management model is correct on average.

We first take a look at the case ignoring regime switching, non-regime dependent C-
vine mixed copula and R-vine mixed copula strategy are the best performing models in
eight assets case. At eight asset case, C-vine mixed copula strategy exhibits a substan-
tial performance improvement for unconditional coverage test compared to conventional
strategy and equal weights strategy. For four assets case, p-value of unconditional cov-
erage test statistic indicates similar performance among vine copula strategy and conven-
tional and equal weights strategy. However, when we take into account independence
property of VaR backtesting using conditional coverage test, C-vine mixed copula and
R-vine mixed copula exhibits superior performance compared to conventional strategy
and equal weights strategy. Therefore, incorporation of return asymmetry in forecasting
improves the independence property as the likelihood of having a sequence of VaR vio-
lations is reduced. We also observe that when accounting for independence property, the

performance of conventional strategy and equal weights strategy deteriorates from four
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assets to eight assets case, which again support that, in low dimension portfolio, it is not
necessary to adopt complex dependence model.

Then we turn to the case taking into account regime switching, regime switching
R-vine mixed copula and regime switching C-vine mixed copula strategy are the best per-
forming models in eight assets case. At eight asset case, regime switching C-vine mixed
copula strategy exhibits a substantial performance improvement for unconditional cov-
erage test compared to conventional strategy and equal weights strategy. For four assets
case, p-value of unconditional coverage test statistic still lower than their corresponding
strategy of eight assets, which indicates underperformance of four assets regime switch-
ing vine copula strategy comparing to eight assets strategy in unconditional coverage test.
When we account for independence property of VaR backtesting using conditional cover-
age test, regime switching C-vine mixed copula and regime switching R-vine mixed cop-
ula exhibits superior performance compared to C-vine mixed copula and R-vine mixed
copula in non-regime dependent case, conventional strategy and equal weights strategy.

Therefore, incorporation of both return asymmetry and regime switching in forecast-
ing improves the independence property as the likelihood of having a sequence of VaR
violations is reduced. Similar to non-regime dependent case, we again observe that when
taking into account independence property, the performance of conventional strategy and
equal weights strategy deteriorates from four assets to eight assets case, which support
that in low dimension portfolio, it is not necessary to adopt complex dependence and
regime switching model.

In general, the VaR backtesting results are consistent with our regime switching vine
copula out-of-sample portfolio performance results, and support our findings and conclu-
sions in previous section that regime switching C-vine mixed copula portfolio strategy im-
prove portfolio performance as there is reduced frequency of exceedances and increased
independence of VaR violations in eight assets case which including alternative invest-

ment asset classes.

3.9 Conclusion

Given the importance of alternative investments as an investment vehicle for investors to

gain portfolio diversification benefits, and as traditional mean-variance portfolio strategy
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does not account for asymmetry in returns distributions, it is quite plausible that there
is a need for more advanced portfolio management strategies that incorporate asymme-
tries especially when market regime changes over time. Therefore, our paper introduces
a Markov regime switching regular vine copula asset allocation model in international as-
sets markets and focuses on investigating, as the presence of regimes, whether the regime
switching vine copula model is able to produce superior investment performance in the
multi-asset case which including alternative investments compared to traditional models.

We find evidence of regimes detected in international asset markets through the se-
lection the best-fitting regime switching vine copula model. The asymmetric dependence
between the various classes of asset returns are higher in the bear market regime than
in the bull market regime. The risk-return characteristics for the optimal portfolio in the
bear market regime is different from those of the portfolio in the bull market regime,
which requires different portfolio construction strategy dependent on market regime.

We first explore the efficient frontiers produced by four traditional asset and eight as-
sets including alternative investment, the higher Sharpe ratio of eight assets exhibits bet-
ter portfolio diversification when incorporate alternative investment. Then we primarily
compare several competing Markov regime switching regular vine copula model. Flexible
vine tree structure and asymmetric dependence bivariate copula as building blocks make
regime switching C-vine mixed and R-vine mixed copula to be the best fitting model. Sub-
sequent out-of-sample portfolio performance from each model in a long-run multi-period
investment support the superiority of regime switching vine copula model in improv-
ing portfolio diversification benefits across a broad range of metrics. Despite the regime
switching C-vine mixed copula strategy having high turnover requirements, even when
transaction costs are incorporated, it still exhibits greater economic benefits relative to the
other competing strategies. Regime switching C-vine mixed copula strategy also exhibits
the best performance when a series of Value-at-Risk (VaR) backtests are applied to four
asset and eight asset portfolios. The p-value of VaR of C-vine mixed copula are substan-
tially higher than for the R-vine t, R-vine Gauss copula and conventional models, which
implies that using the latter models can lead to underestimating the risk of a portfolio and
affect the portfolio performance.

Accordingly, we can draw the conclusion that regime switching C-vine mixed copula

strategy bring more portfolio diversification benefits when managing multi-asset high di-
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mension portfolio due to their ability to better capture asymmetries within the dependence

structure as the presence of regime than other traditional multivariate Gaussian models.

Table 27: An integer defining the bivariate copula family

0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 = BB1 copula

8 = BB6 copula

9 = BB7 copula

10 = BBS8 copula

13 = rotated Clayton copula (180 degrees; survival Clayton)
14 = rotated Gumbel copula (180 degrees; survival Gumbel)
16 = rotated Joe copula (180 degrees; survival Joe)
17 = rotated BB1 copula (180 degrees; survival BB1)
18 = rotated BB6 copula (180 degrees; survival BB6)
19 = rotated BB7 copula (180 degrees; survival BB7)
20 = rotated BB8 copula (180 degrees; survival BB8)
23 = rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 = rotated BB1 copula (90 degrees)

28 = rotated BB6 copula (90 degrees)

29 = rotated BB7 copula (90 degrees)

30 = rotated BB8 copula (90 degrees)

33 = rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 = rotated BB1 copula (270 degrees)

38 = rotated BB6 copula (270 degrees)

39 = rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)

104 = Tawn type 1 copula

114 = rotated Tawn type 1 copula (180 degrees)

124 = rotated Tawn type 1 copula (90 degrees)

134 = rotated Tawn type 1 copula (270 degrees)

204 = Tawn type 2 copula

214 = rotated Tawn type 2 copula (180 degrees)

224 = rotated Tawn type 2 copula (90 degrees)

234 = rotated Tawn type 2 copula (270 degrees)

Note: This table lists all bivariate copula families we employ as Vine copula
building blocks.
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Chapter 4

Modelling International Financial
Contagion: Generalised Autoregressive

Score Regular Vine Copula Method
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Abstract

This paper explores the cross-market dependence between six popular equity indices
(S&P 500, NASDAQ 100, FTSE 100, DAX 30, Euro Stoxx 50 and Nikkei 225), and
their corresponding volatility indices (VIX, VXN, VFTSE, VDAX, VSTOXX and VXI).
In particular, we propose a novel dynamic method that combine the Generalised Autore-
gressive Score (GAS) Method with high dimension R-vine copula approach which is able
to capture the time-varying tail dependence coefficient (TDC) of index returns. Our em-
pirical findings demonstrate the existence of international financial contagion and signif-
icant asymmetric tail dependence in some major international equity markets. Although
in some cases contagion cannot be clearly detected by stock index movements, it can be
captured by dependence of volatility indices. The results imply that contagion is not only
reflected in the first moment of index returns, but also the second moment, the volatility
indices. Results also indicate that dependence of volatility indices tend to be influenced
by financial shocks and reflects the instantaneous information faster than the stock market
indices. At last, our backtesting test prove that the forecast ability of our dynamic GAS
R-vine method outperform Gaussian-DCC, t-DCC and static R-vine copula method.

Keywords: Financial contagion, Asymmetric dependence, Financial crisis, Vine copula,

Volatility index, Generalised Autoregressive Score
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4.1 Introduction

In the last 20 years, global financial market have experienced a series of financial crises,
such as the Tequila effect in Mexico in 1994, the Asian Flu in 1997, the Russian default in
1998, the Brazilian Sneeze in 1999, the Nasdaq fall in 2000, the Argentine crisis in 2001,
the subprime crisis, which began in 2007 and developed into the global financial crisis
after the collapse of Lehman Brothers bank in September of 2008, and the Euro crisis in
2011. Normally, the phenomenon that a financial crisis occurs in one country will then
spreads to other countries is known as financial contagion, which has been one of the most
studied issues in international finance.

In the literatures, there are several different definitions and measure methods of con-
tagion (see Forbes and Rigobon (2002) and Pelletier (2006)). A well-known definition
proposed by Ciccarelli and Rebucci (2007) considers that, following a shock (crises) in
one or more markets, contagion occurs when there is a change or shift in the cross-market
linkages. According to this definition, we should pay attention to several aspects, which
including the presence of a crisis, the movements or changes of the dependence linkages
and the measure method of linkages. A simple method to measure a linkage is through
correlation. Forbes and Rigobon (2002) defined contagion as a scenario that occurs be-
tween two or more markets when the correlation between them increases after a crisis
event. In this sense, increase in the correlation can only be regarded as contagion if a cri-
sis occurs; otherwise, this increase only demonstrate the deepen of financial integration
between underlying markets. They also found that the increase in the dependence during
turmoil periods could results from the increase in the volatility of the markets instead of a
shock. Therefore, the evidence for contagion is unreliable when the model ignoring het-
eroscedasticity. They did not find any evidence of contagion in the major countries that
were analysed. However, stock markets and volatility indices markets tend to show com-
prehensive linkages and interdependence which might be better described by nonlinear
dependence measure rather than linear ones. In this context, Rodriguez (2007), Chen and
Poon (2007), Arakelian and Dellaportas (2012) addressed the time varying dependence
between stock markets by adopting the copula method. Contrary to Forbes and Rigobon
(2002), their study demonstrate evidence of contagion.

Copulas has been considered and used for modelling multivariate financial time se-

ries since twenty years ago. Copulas have been extensively applied to financial contagion
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and also financial risk management (see Giacomini et al. (2009)), portfolio management
and option pricing (see Cherubini et al. (2004)). In the copula framework, according to
Sklar (1959) theorem, the density of a multivariate time series of financial returns is ex-
pressed as the product of its marginal (univariate) densities and a copula function, which
is able to capture all the dependence between the financial returns. One superiority of
copula method is that several dependence measures can be derived from copula func-
tion. Two most widely employed dependence measures in finance are tail dependence
coeflicients, normally including lower tail dependence and upper tail dependence, which
describe the comovements of extreme losses and extreme gains respectively; and correla-
tion of Kendall’s 7.

High dimension vine copula is able to capture the extreme comovements (tail de-
pendence) that a simple linear correlation and traditional bivariate copula fails to model.
Recently, Patton (2006b) Patton (2006a) propose a dynamic copula approach combined
with other evaluation models to measure market dependence. Xu and Li (2009) adopt
three kinds of Archimedean copulas to estimate tail dependence across three Asian future
markets; other researchers employed other copula approaches to explore relationships
between financial markets, while they mainly concentrates on equity indices (e.g., Hu
(2006) Hu (2010); Nikoloulopoulos et al. (2012); Rodriguez (2007)). Ammann and Siiss
(2009) proposed to study the dependence between equity indices and their corresponding
volatility indices. However, to the best of our knowledge, there is so far no literature on
measuring cross-market volatility indices with vine copula models. Individually chosen
bivariate copula as building blocks from a plenty of candidates, our vine copula is able
to provide more flexibility in modelling asymmetric tail dependence compared with the
bivariate copula method suggested by Patton (2006b) and Ammann and Siiss (2009).

In this paper, we model the stock market and corresponding volatility indices market
dependence and assess financial contagion. Rather than only focusing on stock market,
we also investigate the volatility indices market. The development of volatility indices
motivates the research on investigating the relationships between volatility indices across
different index markets, such as volatility spillover and market integration (Nikkinen and
Sahlstrom (2004); Aijo (2008)). However, the dependence between different volatility
indices has not been previously discussed in the literature. Our study aim to investigate

the dependence of volatility indices in the US, European and Japanese index markets. It
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is well known that the rate of change of market volatility far exceeds the rate of change
of market return. As a consequence, cross-market volatilities are probably to reflect the
dynamics of market interdependence much effective than stock market returns. In addi-
tion, considering the volatility index as a proxy for the second moment of returns owing
to implied volatility better reflects the investors’ expectation on future market volatility,
and it reflects more market information comparing to realised volatility and model based
volatility (e.g., Fleming et al. (1995); Blair et al. (2010); Giot (2005)). Comparing to
the stock indices return, volatility index return exhibits the characteristics, such as non-
Gaussian, much higher volatility and significant asymmetry (Low (2004)). Taking into
account above characteristics, we employ a novel vine copula method which can flexibly
capture asymmetric dependence and tail dependence between variables. In another as-
pect, a well-known stylized fact of multivariate financial time series is the time varying
distributions, which means the dependence structure between the time series also natu-
rally evolves with time. Therefore, we combine the dynamic generalised autoregressive
score model and regular vine copula method (Aas et al. (2009)) to estimate the bivariate
time-varying dependence among the stock markets and corresponding volatility indices
market. The pair copula decomposition has received much attention because of its flexi-
bility in defining higher-dimension copula models; see, for example, Joe and Kurowicka
(2011) for developments on this subject. Financial contagion, in our study, is defined
as an increase in dependence following a crisis, and two measures of dependence are
used, which are time varying correlations and time varying tail dependence coefficients
introduced by Patton (2006b) together with conditional copula.

The remainder of the paper is structured as follows, section 2 provides a literature
review on financial contagion and cross-market dependence. Section 3 introduces the vine
copula methodology, section 4 discusses the data and the empirical results, and section 5

concludes.

4.2 Literature Review

Research on measuring the cross-market dependence, and the dependence between stock
market and financial contagion began since 30 years ago. A number of different conclu-

sions are drawn based on various methodologies and data. The markets investigated cover
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not only international stock market, also across exchange market (Bollerslev (1990)),
bond market (Loretan and English (2000)), spot-future market(Fung et al. (2005)) as well
as output growth rates.

Financial contagion is a widely defined as the shock or spillover effect between coun-
tries, especially in financial crisis period. It means the dependence probably will change
significantly in financial turmoil, which leads to dependence crash. Claessens and Forbes
(2001) conducted an estimation of the correlation of international markets when finan-
cial contagion occurs. Whether the financial contagion exists or not is controversial since
the beginning of this research. Despite there formed some common outlook (Koch and
Koch (1991)), the existence of financial contagion was again overturned by the end of
1990s (Forbes and Rigobon (2002)). Nevertheless, some evidence supporting the finan-
cial contagion were found subsequently in certain markets during some periods since the
beginning of 2000s until now (Rigobon (2003)). Despite all this, consensus are still not
agreed in academy that whether indeed the correlation crash in the period of financial
crisis.

There have been some study focusing on the non-linearity of cross-market correla-
tion during the financial turmoil (see Boyer et al. (1997)). The application of different
statistical models in this area, such as multi-variable generalized autoregressive condi-
tional heteroskedasticity (MGARCH) model or Markov switching method are discussed
(Bollerslev (1990); Tse (2002); Pelletier (2006)).

Moreover, international financial markets also exhibit asymmetric dependence struc-
tures. Their correlation is higher in a bear market and lower in a bull market. Ignoring the
stylised fact of asymmetry in financial markets will results in an underestimation of the
lower tail risk, and then leads to suboptimal international diversification benefits. There-
fore, the specification of an appropriate model to capture asymmetric cross-market de-
pendence is crucial to risk management of international portfolio. So far, the asymmetric
dependence in many different financial areas has been investigated for both developed and
emerging markets. These financial market areas cover stock and stock indices (Longin and
Solnik (2001); Hu (2010); Hu (2006); Nikoloulopoulos et al. (2012); Rodriguez (2007),
ADRs and their underlying stocks (Alaganar and Bhar (2002)), large and small compa-
nies portfolio (Kroner and Ng (1998)), future markets (Xu and Li (2009)), exchange rates
(Patton (2006b)) and interest rates (Chowdhury and Sarno (2004)).
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In addition, recent empirical research on market dependence not only focuses on mar-
ket returns, but also focuses on volatility returns (see Ammann and Siiss (2009)). Their
results demonstrate that market volatility move together with correlation, the higher mar-
ket volatility corresponds to the higher cross market correlation. Soriano and Climent
(2005) provided a review of the relationship between financial markets based on volatility
transmission models. Moreover, Longin and Solnik (2001) employed an extreme theory
model for multivariate distributions to test whether the correlation increase in interna-
tional stock market during high volatility periods (see Bekiros and Georgoutsos (2008)).
Their null hypothesis of normality is only rejected on the lower tail but cannot be rejected
on the upper tail, which means that the correlation increase only appears in the bear mar-
ket but not in the bull market. While Poon et al. (2003) criticize some extreme theory
models simply assume asymptotic dependence between the estimated variables is incor-
rect in most cases and may lead to overestimation of financial market risk. Their estimates
suggest that the asymptotic dependence between European countries (UK, Germany, and
France) is true and truly increase over time, but asymptotic independence is observed
between Europe, United States and Japan.

Moreover, the relationship between different market volatility indices has also been
studied. Skiadopoulos (2004) adopt the regression model to investigate the relationship
between the constructed Greek volatility index (GVIX) and the volatility indices (VIX
and VXN) of the US market. The result displays the contemporaneous spillover effect
between their changes, but the US volatility index has no lead effect on GVIX. Wagner and
Szimayer (2004) provide an analysis of cross-market relationships, including volatility
indices, and study the shock spillover effects between the VXO and the old VDAX with a
stochastic volatility jump model. However, they did not explicitly analyze their variation
of correlation. In addition, VXO and the old VDAX have different maturity, which may
affect the accuracy of the results. Nikkinen and Sahlstrom (2004) analyse the implied
volatilities for the US, the UK, Germany and Finland for market integration of uncertainty.
The results show that the US, UK and German markets are closely related. Uncertainty
changes in the US market are transferred to other markets under survey ; and changes
in uncertainty in German market are delivered to other European markets investigated.
Aijo (2008) estimates the implied volatility term structure of the new VDAX, VSMI and
VSTOXX volatility sub-indices (see Krylova et al. (2009)). The results show that the
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implied volatility term structure of DAX, SMI and STOXX 1is highly correlated and the
random behavior of VSMI and VSTOXX can be explained by the DAX model.

However, these studies of cross-market dependence between different volatility in-
dices do not propose an effective approach to capture tail dependence, because the corre-
lation coeflicients employed in previous studies restrict to measuring linearity and symme-
try. With respect to asymmetric cross-market dependence and financial contagion anal-
ysis, it is necessary to extend the analysis to the extreme nonlinear co-movements of
volatility indices with copula models for investigating financial contagion and asymmet-
ric dependence at higher moments.

Multivariate distributions modeling is crucial to risk management and asset allocation.
Due to the difficulty of modelling the conditional mean of financial assets, many stud-
ies only focus on modeling the conditional volatility and dependency. The multivariate
GARCH (Bauwens et al. (2006)) and stochastic volatility models (Harvey et al. (1994);
Yu and Meyer (2006)) provide some ways to extend the univariate volatility model to
multivariate case. Nevertheless, in general, the resulting multivariate model still assumes
(conditional) multivariate normality. The copula based multivariate model provides an
effective alternative method because non-elliptical multivariate distributions can be con-
structed in an tractable and flexible way. The advantage of using copulas to construct a
multivariate volatility model is that the marginal model, the univariate volatility model,
can be selected from a variety of bivariate copula family and is possible to capture the
asymmetric dependence and tail dependence. In particular, the measure of financial risk
takes into account the lower tail dependence.

However, most studies only focus on bivariate copula which is considered as a restric-
tion of copula method for practical problem. Another limitation is that previous copula
based model always assume the dependence parameters are time-constant, which is con-
tradict with the empirically observed time-varying correlations. The emergence of vine
copula method is able to solve above issues. High dimension vine copulas other than
Gaussian or Student t copulas have become available through the introduction of hierar-
chical Archimedean copulas by Savu and Trede (2010) and Okhrin et al. (2013), factor
copula models by Oh and Patton (2017a), and the class of pair copula construction pro-
posed by Aas et al. (2009). Pair copulas construction, or call vine copula construction,

are widely used recently due to its flexibility and the possibility of estimating a large
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number of parameters sequentially. Examples of financial applications of vine copula
models can be found in Chollete et al. (2009) and Dissmann et al. (2013). Brechmann
and Czado (2015) proposed a vine copula-based model for both cross-sectional and serial
dependence.

Patton (2006b) introduced copulas with time varying parameters to model changing
exchange rate dependencies. Since then, many studies have presented various ways to
model time-varying copula. For example, Da Costa Dias and Embrechts (2004) test for
structural breaks in copula parameters, Giacomini et al. (2009) adopt a sequence of break-
point tests to determine intervals of constant dependence, Hafner and Reznikova (2010)
considered the copula parameter as a smooth function of time and estimate it by the local
maximum likelihood, while Hafner and Manner (2012) and Almeida and Czado (2012)
proposed a model in which the copula parameter is the transformation of the first order
latent Gaussian autoregressive process. Creal et al. (2013) proposed an observer-driven
autoregressive model in which scaled score drive dependence parameters. Manner and
Reznikova (2012) provided an overview and comparison of (bivariate) time varying cop-
ula models. To best of our knowledge, only few papers allow for time varying parameters
in high dimensions. Heinen and Valdesogo (2008) allowed the parameters of a vine cop-
ula to be driven by a variation dynamic conditional correlation (DCC) model of Engle
(2002), So and Yeung (2014) introduced a vine copula model with dynamic dependence
similar with a DCC model, and Creal and Tsay (2015) extend the factor copula model
proposed by Oh and Patton (2017b) by allowing for stochastic factor loadings. On the
other hand, Oh and Patton (2017a) introduced the time variation into the factor copula

model by specifying it as a generalized autoregressive score (GAS) model.

4.3 Review of Vine Copula

Although the symmetrised Joe-Clayton copula proposed by Patton (2006b) and the skewed-
t copula proposed by Ammann and Siiss (2009) can capture both the symmetric and asym-
metric tail dependence, they are less suitable for modelling the special cases where there
is only upper tail dependence or only lower tail dependence, leading to biased results due
to possible misspecification of the model. In order to circumvent these drawbacks and

more precisely describe the dependence structure of stock indices and volatility indices,
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in our study, we employ the high dimensional vine copula to capture the asymmetric de-
pendence between pairs of variables. Vine copula is a type of high dimensional copula
which can choose their building blocks from a wide range of bivariate copula family so
as to capture the asymmetric dependence characteristics easily. In this section, follow-
ing Nikoloulopoulos et al. (2012), we briefly review the vine copula construction and

inference.

4.3.1 Construction of Vine Copula

A d-variate copula C(uy, ..., uy) is a cumulative distribution function (cdf) with uniform
marginals on the unit interval, see examples in Joe (1997) and Nelsen (2007). Regard-
ing the theorem of Sklar (1959) for multivariate case, if F;(y;) is the cdf of a univariate
continuous random variable Y;, then C(F'(y1), ..., Fa(yq)) is a d-variate distribution for
Y = (Yi,...,Yy) with marginal distributions F';, j = 1,...,d. Conversely, if H is a con-
tinuous d-variate cdf with univariate marginal cdfs Fy, ..., F;, then there exists a unique

d-variate copula C satisfy that

F(y) = C(F1(), ..., Faya)), Yy = (0150 Ya)- 4.1

The corresponding density is

1= 2T pi o Fao [ ] o0 (42)

Oy ...0y4 P Tad i1 S '
where c(uy, ..., ug) 1s the d-variate copula density and f;, j = 1, ..., d, are the corresponding
marginal densities. As we know, a copula C has reflection symmetry if (Ui, ..., U;) ~

C implies that (1 — Uy, ...,1 — U,) has the same distribution C. When we require the
copula models have the characteristics of reflection asymmetry and flexible lower or upper
tail dependence, then vine copulas (see Bedford and Cooke (2001); Bedford and Cooke
(2002); Kurowicka and Cooke (2006) and Joe (1997)) become the best choice.

A d-dimensional vine copulas are constructed through sequential mixing of d(d—1)/2
linked bivariate copulas by trees and their cdfs involve lower dimensional integrals. Since
the densities of multivariate vine copulas can be factorized in terms of linked bivariate

copulas and lower dimension marginals, they shows the advantage of computationally
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tractable.

According to the different types of tree structures, various vine copulas can be con-
structed. Two special cases are D-vines and C-vines while R-vines is their more general
format.

With respect to the d-dimensional C-vine copula, the pairs at tree 1 are 1, 1, for i =
2,...,d, and for tree /(2 < [ < d), the (conditional) pairs are /,i|l,...,[—1fori =1+1,...,d,
the conditional copulas are specified for variables / and i given those indexed as 1 to /— 1.

For C-vines density is given by (Aas et al. (2009)),

for =] ]aoo] ]

d d-1 d—j
k=1 j=1 i=1

(4.3)
where yi,«, = (Vx5 ---» Yk, )» Index j denotes the tree, while i runs over the edges in each
tree.

Regarding the d-dimensional D-vine copula, the pairs at tree 1 are i,i + 1, for i =
1,...,d — 1, and for tree /(2 < [ < d), the (conditional) pairs are i,i + Illi + 1,...,.i + [ -1
fori = 1,...,d — I, the conditional copulas are specified for variables i and i + / given the

variables indexed in between,

d d-1 d—j
f) = nfk()’k) n Cjjrillyn jrt (F i jm1 iV 15 wos Yjm1)s Fimitt o jm1 O jailY 15 -0 Y j=1)),
k=1 =1 =1

4.4)
where yi,.., = (Vx5 ---»Vk,), index j denotes the tree, while i runs over the edges in each
tree.

For more general d-dimension regular vines, there are d — 1 pairs at tree 1, d — 2 pairs
in tree 2 where each pair has one element in common, and for / = 2,...,d — 1, there are
d — [ pairs in level [ where each pair has [ — 1 elements in common. Other conditions for

regular vines can be found in Bedford and Cooke (2001) and Bedford and Cooke (2002).

4.3.2 Inference of Vine Copula

In this part we discuss the parameter estimate of the C-vine (canonical vine copula) den-
sity given by (20). We omit the discussion of estimate of D-vine (drawable vine copula)

density because we don’t employ D-vine in modeling the dependence structure of risk
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factors in our analysis. Inference for the general regular vine is also feasible though not
straightforward, details of R-vine inference can be found in Dissmann et al. (2013).

Here we follow the inference method of Aas et al. (2009). Assume that we observe
n variables at time 7T time. Let X; = (x;1,...,X;7);i = 1,...,n, denote the data set. For
simplicity, we assume that the 7" observations of each variable are independent over time.
Independence assumption is not a limiting condition, in our empirical analysis, we will
adopt univariate time series model fit to the margins and analyze the obtained residuals.

Since the margins are unknown, the parameter estimation must rely on the normalised
ranks of the data. The approximate uniform and independence means what is being
maximised is a pseudo-likelihood maximization. We extend the method of maximum
pseudo-likelihood originally proposed for copula by Oakes (1994), and proved to be
asymptotically normal and consistent both by Genest et al. (1995) and Shih and Louis
(1995). Moreover, by adopting simulation method, Kim et al. (2007) indicate that the
maximum pseudo-likelihood method outperform the maximum likelihood method when
the marginal distributions are unknown.

For the canonical vine, the log-likelihood is given by

T
Z loglcj jvin,...ji-1AF (X ey eoes Xjo1,0)s F(Xjaifh X165 eoes Xjo1,0) - 4.5)

For each bivariate copula there is at least one parameter to be estimated which depends
on which kind of bivariate copula is chosen. The log-likelihood must be numerically
maximised over all parameters.

The marginal conditional distribution in vine copula construction is given by Joe

(1997), for each j,
OC v AF(x|v_)), F(vjlv_;)}

4.6
(9F(vjlv_.,-) ( )

F(x|v) =

where C;j is a bivariate copula distribution function. For the special case where v is

univariate, we have
OC, \F(x), F(v)}

Fadv) = OF (v)

4.7)

Then we introduce & function (Aas et al. (2009)), h(x, v, ®) denotes this conditional dis-

tribution function when x and v are uniform, i.e., f(x) = f(v) = 1, F(x) = xand F(v) = v.
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That is,
0C,,(x,v,0)

h(x,v,0) = F(x|v) = ™

(4.8)

where the parameter v denotes the conditioning variable and ® represents the set of pa-
rameters for the copula of the joint distribution function of x and v. Let A~ !(x, v, ®) be the
inverse of the A-function with respect to the first variable u, or say the inverse of the condi-
tional distribution function. ®;; is the set of parameters of the corresponding copula den-
Further, L(x, v, ®) is the log-likelihood of the chosen bivariate copula with parameters ®

given the data vectors x and v. Which is,

T
L(x,V,0) = Z loge(x,, v,, ®). (4.9)

t=1

where c(u, v, ©) is the density of the bivariate copula with parameters ®. According to
the setting above, we can first estimate the parameters of the copula of tree 1 with the
original data, then compute conditional distribution functions for tree 2 using the copula
parameters from tree 1 and the A-function, repeat the process, estimate the parameters of
the copula of tree 2 using the observations in last step, and then continue to repeat last
step process until obtain all parameters. Finally, we can obtain the starting value of the

parameters for numerical maximisation.

4.4 Generalized Autoregressive Score Regular Vine Dy-
namic Copula Model Setting

In our paper, we aim to construct a model that allow for high dimension vine copula
parameters to be time varying. In this sense, following the generalized autoregressive
score model (GAS) proposed by Creal et al. (2013), we construct a model combine the

regular vine copula with GAS model. We assume that,
u; ~ (U, F i), (4.10)

where ¢ is the copula density, w is the vector of time-independent parameters of our

model, and ¥,_; is the information set available at time ¢ — 1. Then we specify our
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dynamic Generalised Autoregressive Score regular vine copula model, we consider the
bivariate time series process (u;;, u;,) for t = 1,...,T. We assume that its distribution
follows,

(igruj;) ~ C(-, 5 607) 4.11)

where the ij € O represents the time-varying parameter of the copula C. In order to
be able to compare our copula parameters that have different domains, the copula can
equivalently be parameterized in terms of Kendall’s 7 € (1, 1). This specification is based
on a fact that, for all bivariate copulas, copula parameter and Kendall’s 7 exist a one-to-
one relationship, which can be expressed as 9;7 = r(‘r;j ). And assume Tﬁj is driven by the
process /lij € (=00, +00). Due to the fact that /lﬁj takes values on the real line, we map it
into (1, 1) by employing the inverse Fisher transform, the domain of Tﬁj can be expressed

as: 3
_exp2y)) -1

exp2A7) + 1

7/ =: (). (4.12)
The time-varying parameter is able to be specified in several different ways; see Almeida
and Czado (2012) for a survey on different specifications. We employ the specification of
the GAS model proposed by Creal et al. (2013) for the latent process. As the observation-

ij

., and also drive the latent

driven model, it assumes an autoregressive structure for A
process by employing the weighted score of the underlying model. The model of order
one is given as

A = wij+ ¢dl |+ 6ysy (4.13)

t ijor-1°

where s/ | is the scaled score vector

s70=8Vii (4.14)

with
Olnc(uiys, ujs; wij, F1-1)

bl

(4.15)

ijt =

is the score and w;; = (w;j, ¢ij, 0;), and the scaling matrix §;;, is the square root matrix of

the inverse of the information matrix which is defined as

Sijt = Tn-1 (4.16)
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with
j[,“_]jﬂ[—l = I[_|[1_]’ (4.17)

where 1 ,_ = E,_1[V; j,,V;. j’t] is the information matrix. For above specification we follow
Creal et al. (2013), details and properties can be found there. Stationarity conditions are
studied by Blasques et al. (2012). Blasques et al. (2015) show optimality properties of
GAS models, whereas Koopman et al. (2016) compare the forecasting performance of a
wide range of parameter-driven and observation-driven models and draw conclusion that
both kinds of models perform equally well.

Next step, we combine bivariate dynamic copula models with the R-vine tree structure
in order to construct the multivariate time-varying GAS R-vine copula model. In particu-
lar, above bivariate dynamic copula model is adopted as the building blocks of our R-vine
copula. Till here, we set up our Generalized Autoregressive Score Regular Vine Dynamic
Copula Model. Therefore, we obtain the dynamic R-vine copula density, here we present
the density by using the format of C-vine copula density as follows, the complex gen-

eral R-vine copula density representation can be found in Theorem 2.5. Dissmann et al.

(2013),

~.

i i
Cl(i,j)(F(uilui+1:i+j—l > Gt(l J)), F(ui+j|lli+1:i+j—1; Qt(l J))), (4.18)

d-1 d-
c(uy,...,ug;0,) :=

Jj=1 i

where (i, j) == i,i+jli+1:i+j—land 6, = {6/ j=1,..d=1,i=1,...d— j}
is the time-varying copula parameter vector. Here, ¢y (-, ; Qﬁ(i’j))) is the bivariate copula

density corresponding to the bivariate dynamic copula given in (4), where Gf(i’j ) satisfies
6" = rxi™) = rp(*)) (4.19)

for the latent process /lf(i’j) defined by equations (7). The bivariate copula family corre-

sponding to I(i, j) can be chosen arbitrarily and independently of any other index I(7, s).
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4.5 Modelling Marginal Model

The first step of modelling dependence is to fit the marginal distribution to our returns, and
estimate parameters of univariate models for the conditional mean and variance. It is well
known that financial returns exhibit stylized facts, such as mean reversion, time-varying
volatility and conditional heteroscedasticity. Taking into account these stylised facts, we
suggest estimating an asymmetric AR-GJR-GARCH model to fit marginal distribution
due to its simplicity and its successful application commonly reported in the literature.
We employ ARMA models with the lag length chosen in order to minimize the BIC
for the conditional mean. Regarding conditional variance, the standardized residuals are
modeled by a GARCH(1,1) model with skewed Student t errors. As we are also focusing
on volatility index returns, we have to pay special attention to fat tails and skewness
due to possible leverage effects (see Ammann and Siiss (2009)). There is an overview
of volatility models by Poon and Granger (2003), alternative approaches could be the
EGARCH or the TGARCH.

Let the random process r, denote the index return which can be characterized by an

autoregressive moving-average (ARMA) model as follows
P q
r=ag+ Y ar i+ Y bie i+ & (4.20)
i=1 =1

where q is a constant; p and g are the order of autoregressive and moving average pro-
cesses respectively for the conditional mean. The error term ¢ can be splitted into a
stochastic part x, and a time-dependent standard deviation o so that ¢ = o,x,. The
conditional variance o is characterized by an asymmetric GARCH model, namely GJR-

GARCH(1,1)(see Glosten et al. (1993)).
0'12 = w; + a’[fiz’t_l +ﬁi0-i2,t_1 + 7i€,~2,;_1[i,t—1 (421)

where [;,; = 1 if ¢,y < 0, and [;,-; = 0 if €,.; > 0, y indicates the presence of the
leverage effect, e.g. bad news generates larger effect on the volatility compared to good
news.

The filtered returns x, = /0y, t = 1,...,T; follow a strong white noise process with

a zero mean and unit variance. In our empirical work, we adopt Hansen (1994)’s skewed
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Student’s ¢ distribution x;, ~ skT(0, 1;v,{), with v > 2 and { denoting the degrees of

freedom (dof) and asymmetry parameters, respectively. It has the PDF !

_vkl

2
1 (b 2
bc(” —2( ZM)) i<

v 1-¢ b
Jaev ) = _—
1 (bz+a : a
bcl1 + , 1 > ——
‘ v—2( I +g)) iz
= =2 12 _ 2 2 . _ T , N
where a = 4{c*=,b" = 1+3{"—a",c = NC=ITER The skewed Student’s ¢ distribution

is quite general as it nests the Student’s ¢ distribution and the Gaussian density. Previous
studies advocate this parametrization for the margins as able to capture the autocorrela-
tion, volatility clustering, skewness and heavy tails exhibited typically by financial asset
returns; see e.g. Jondeau and Rockinger (2006) and Kuester et al. (2006). In our em-
pirical work, we adopt GJIR-GARCH(1,1,1) and select the best ARMA p and g among
1, 2,..., 10 by minimizing the Akaike Information Criterion (AIC). The model parame-
ters are estimated by quasi-maximum likelihood (QML). Uniform (0, 1) margins denoted
u, = F,(x,), n =1, 2, can be obtained from each filtered return series via the probability
integral transform. Once the vector u = (ul1, u2)' is formed, the copula parameter vector
can be estimated by maximizing the corresponding copula log-likelihood function.

Many dependence measures can be expressed in terms of copula function, see Em-
brechts et al. (2002) for details. Here, we focus on the tail dependence indices, which
describe the asymptotic dependence. Tail dependence indices measure the dependence
in extreme values of the variables, capturing the dependence in the joint tails of the bi-
variate distributions. Specifically, the upper (lower) tail dependence is the probability of
one variable having a higher (lower) value and being close to 1(0), given that the other
variable has a higher (lower) value. The definition of tail dependence coeflicients is given
by,

Definition (Tail dependence coeflicients). For a copula C of a random vector (U, V)T
with marginal distribution function F; and F,, we define its upper and lower tail depen-

dence (TDC) via

1 —2u+ C(u,u)
1-u

Ay(C) = lim P(V > Fy'w|U > Fi'(w) = lim : (4.22)

IThere are other Student 7 distribution that the skewness is introduced in different ways, see Fernandez
and Steel (1998) and Aas and Haff (2006).
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C(u,
A(C) = lim P(V < F>'w)\U < F{'(w) = lim (L; ”), (4.23)

-0t

The student t copula is symmetric, with the upper and lower tail dependence coefficients as
2 (— Vv + 1 {—;z), 0 is the copula parameter for the student and v denotes the degrees
of freedom of the the student-t copula. BB1 copula SBB1 copula

The copula models above are static because their parameters are time invariant. How-
ever, empirical evidence suggests that financial returns exhibit time varying conditional
distributions and, therefore, time varying dependence. In this sense, we combine dynamic
Generalised Autoregressive Score model with Vine copula method to modeling time vary-

ing multivariate dependence.

4.6 Estimation of GAS Vine Copula Parameters

In previous section, we discussed the vine copula parameter estimate in general, here we
present the detailed copula parameters estimate of vine copula GAS model. Since the
joint density of copula model is the product of the marginal and the copula densities,
we need to estimate the parameters the marginal model and the stochastic copula models

separately,

8(€rps s €40) = C(Fil€1), ..., Fal€qr)) - fil€1) - ... - fal€ay), (4.24)

where g represents the joint distribution densities, ¢ denotes the copula density, and f
represents the marginal densities. Taking logarithms of both sides, we obtain the joint
loglikelihood as the sum of the marginal and the copula loglikelihood function. Then
we adopt two-step IMF (inference functions for margins) method to estimate parameters,
which is usually used in copula parameter estimate. In IFM method, the parameters of the
marginal distributions are separated from each other and from those of the copula. In this
sense, the first step, we estimate the marginal density. The returns is able to transformed
to standardized residuals by either parametric (Joe (2005)) or nonparametric probability
integral transformation (Genest et al. (1995)). If the marginal model is specified well,
the parametric probability transformation can provide good approximation to the orig-
inal copula data, but if the marginal models are misspecified (Kim et al. (2007)) there
may some problems. Here, we rely on the concept of empirical marginal transformation

which approximates an unknown parametric margin with the (uniform) empirical distri-

214



bution function &y, = Fy(zy,) = ﬁ >L 1,,<,,> and likewise for i, = F»(22),..., where
(zis, 2015 -..), t = 1, ..., T, are the filtered standardized residuals.

In the second step, we estimate the copula parameters, as presented above, R vine
copula density is the product of bivariate (conditional) copulas. Due to the infeasible
computation of large number of parameters in one step, we employ the sequential estima-
tion method to estimate the copula parameters in spite of adopting the sequential method
for parameters estimate will result in a small loss in statistical efficiency and intractable
forms for the standard errors of the parameter estimates.

For the bivariate model, the log-likelihood for observation ¢ is given by
LL(w;j; uig, wjp) = Inc(uig, w)g; i, Fro1) = ne(ugg, g 97)- (4.25)

For the GAS model, 9;7 can be computed for a given value of w;; using the recursion (19),

and therefore, the estimation is straightforward.

4.7 Data

We consider twelve indices from three major financial markets: US, Europe and Asia.
In total, we have six equity indices as well as their corresponding implied volatility in-
dices (cf. Table 1). We choose Standard and Poor’s 500 Index and NASDAQ 100 Index
representing US markets, FTSE 100 Index, DAX 30 Index and Euro Stoxx 50 Index repre-
senting European market, Nikkei 225 Stock Average Index representing Japanese market.
The considered time period covers roughly 15 years, starting in particular on 1 January
2002 and ending on 30 Jun 2017. Excluding non-trading days, this results in 4044 obser-
vations of daily closing prices in US dollar. We notice that when the US stock market is
closed, the considered Asian stock markets are open, while the UK and US stock markets
have few trading hours in common. This lack of synchronicity and time zone differences
constitutes a problem when studying the linkages between daily returns, it would sig-
nificantly affect the estimated results, especially between the Japanese markets and the
US/European markets. Therefore, we consider the Japanese market returns led one day.
The daily return is calculated as y, = n(P,) — In(P,_;), where P, is the closing price of the
index at day 7. All data are downloaded from Datastream.

Figure 1 and Figure 2 show the time series returns of the all stock indices returns
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Table 4.1: Considered Indices separated by Regions

Shortcut Index Description Currency Sources
USA

SPX Standard and Poors 500 Index USD Datastream
VIX Implied Volatility Index of the SPX USD Datastream
NDX NASDAQ 100 Index USD Datastream
VNX Implied Volatility Index of the NDX USD Datastream
Europe

FTSE FTSE Index USD Datastream
VFTSE Implied Volatility Index of the FTSE Index USD Datastream
DAX Deutscher Aktien Index (German Stock Index) USD Datastream
VDAX  Implied Volatility Index of the DAX USD Datastream
SXSE Euro Stoxx 50 Index USD Datastream
VSXSE Implied Volatility Index of the SXSE USD Datastream
Asia

NKY Nikkei-225 Stock Average Index USD Datastream
VNKY  Implied Volatility Index of the NKY USD Datastream

Note: This table lists considered six equity indices as well as corresponding volatility
indices.

and their volatility indices returns. From the figure, it is possible to identify periods of
high volatility, which correspond to the main crises, such as the Internet bubble bursting
around 2002, the global financial crisis of September 2008 and the euro debt crisis in
2011. During these crisis periods, the stock index series reach local peak positions, and
the volatility index returns continually show extreme values.

Table 1 provides the summary statistics for the daily stock index returns and their cor-
responding volatility index returns. From the skewness results, the stock index returns all
have positive skewness from during the considered period, except the Nikkei 225 which
has a negative skewness. In addition, all of the volatility index returns demonstrate a more
positive skewness than their corresponding stock index returns, with the VXJ demonstrat-
ing the highest one. Moreover, both the kurtosis results of stock indices and volatility
indices are much larger than 3 except the kurtosis of VDAX which is very close to 3, so
that both stock index returns and volatility index returns exhibit fat tails characteristics;
in particular, compared to other markets in the US and Europe, the volatility index of the
Nikkei 225, the VXJ has the highest kurtosis. The Jarque-Bera test indicates that all these

returns are rejected for normal distribution. The augmented Dickey-Fuller (ADF) unit
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sep 500

v ' ' ' ' ' ' ' ' ' ' ' ' '
2002-01-02  2003-01-01  2004-01-01  2005-01-03  2006-01-02  2007-01-01  2008-01-01  2009-01-01  2010-01-01  2011-01-03  2012-01-02  2013-01-01  2014-01-01  2015-01-01  2016-01-01

NASDAQ 100

v ' ' ' ' ' ' ' ' ' ' ' ' ' '
2002-01-02  2003-01-01  2004-01-01  2005-01-03  2006-01-02  2007-01-01  2008-01-01  2009-01-01  2010-01-01  2011-01-03  2012-01-02  2013-01-01  2014-01-01  2015-01-01  2016-01-01
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Figure 4.1: Time series of Stock index returns and their volatility index returns

217

'
2017-01-02

'
2017-01-02

'
2017-01-02



Value

Value

Value

DAX 30
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Figure 4.2: Time series of Stock index returns and their volatility index returns
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root tests are all rejected as well.

4.7.1 Descriptive statistics

As mentioned above we first fit a univariate time series model for each return series in
order to obtain the standardised returns for the subsequent estimation of the dynamic cop-
ulas. The estimated results for marginal distributions with skewed-t AR-GJR-GARCH
models are presented in Table 4. The similar structures of the model coefficients con-
firm that the AR-GJR-GARCH model is generally suitable for all return series. All our
GARCH coeflicients g, are significant with values around 0.9, implying the persistence
of volatility. Hence, not only the market volatility but also the volatility of volatility it-
self exhibits time-varying clustering effects. For the stock index returns, the variance is
almost only positively related with negative return innovations, indicating the asymmetric
return volatility phenomenon. For the volatility index returns, the variance of volatility is
positively related with positive innovations and negatively related with negative innova-
tions, and this relationship is almost symmetric, indicating that the volatility risk will be
high when the market crashes and low when the market recovers. In Table 4 the Ljung-
Box Q-test of lags equal to 1,2,5 shows that the residuals of the AR-GJR-GARCH model
are unautocorrelated, which implies that the dependence in the following copula estima-
tions (if existing) can only arise from the cross-market dependence instead of originating
from the autocorrelations of each single return series. The skewed-t distribution estima-
tion shows that the residuals of stock index returns are slightly negatively skewed, while
the residuals of volatility index returns are a little more positively skewed, indicating the
existence of the leverage effects in these markets. The Komogorov-Smirnov (KS) tests

confirm that these residuals follow the skewed-t distributions.

4.8 Selection of Vine Copula Structure

We then select the best-fitting bivariate copula from ample candidate bivariate copula
families as building blocks for vine copula model (See Table 27 candidate bivariate cop-
ulas). Given the size and complexity of our model, as well as the difficulty to estimate
parameters precisely on higher trees, we decided to rely on the BIC to find more parsimo-

nious model specifications and to minimize the estimation errors. For model selection we
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aim to demonstrate the superior fit of vine copulas with individually chosen pair-copula
families and assess the gain over vine copula with only bivariate Student ¢ or with only
Gaussian pair-copula. We need to select a copula family for every pair of variables. We
take a large number of copula into consideration, nevertheless, it is necessary to indicate
we only choose the bivariate copula which take asymmetric tail dependence for the reason
that we focus on investigating the existence and direction of international financial conta-
gion. (See Appendix). Given these bivariate options we still have to decide which copula
fits ”best”. In this case, we adopt the AIC (Akaike (1974)) criteria which corrects the log
likelihood of a copula for the number of parameters. Bivariate copula selection using the
AIC has previously investigated by Manner (2007) and Brechmann (2010) who find that it
is quite reliable criterion, in particular in comparison to alternative criteria such as copula
goodness-of-fit tests. Selection proceeds by computing the AIC’s for each possible family
and then choosing the copula with smallest AIC.

In order to investigate which copula structure is preferred to describe the depen-
dence of the stock indices and volatility indices, we also employ a likelihood ratio based
goodness-of-fit test-Vuong test, to compare multivariate Gaussian copula with other vine
copula model. Therefore, we set
Null hypothesis: M1 = Multivariate Gaussian copula
Alternatives: M2 = R-vine 7 copula, R-vine mixed copula, C-vine # copula, C-vine Mixed
copula, R-vine independence mixed Copula, C-vine independence mixed Copula
multivariate Gaussian (R — vine Gaussian): R-vine with each pair-copula term chosen
as bivariate Gaussian copula, i.e., this corresponds to a multivariate Gaussian copula,
where unconditional correlations can be obtained from conditional ones by inverting a
generalized version.

R —vine t: R-vine with each pair-copula term chosen as bivariate Student-t copula. If the
degrees of freedom parameter of a pair is estimated to be larger than 30, we set the copula
to the Gaussian.

R — vine mixed: R-vine with pair-copula terms chosen individually from ample bivariate
copula types (see Appendix).

C —vine t: C-vine with each pair-copula term chosen as bivariate Student-t copula. If the
degrees of freedom parameter of a pair is estimated to be larger than 30, we set the copula

to the Gaussian.
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C —vine mixed: C-vine with pair-copula terms chosen individually from ample bivariate
copula types (see Appendix).

R —vine independence mixed: R-vine with pair-copula terms chosen individually from
bivariate copula families with independence copula.

C —vine independence mixed: C-vine with pair-copula terms chosen individually from

bivariate copula families with independence copula (see above).

The likelihood-ratio based test proposed by Vuong (1989) can be used for comparing
non-nested models. For this let ¢; and ¢, be two competing vine copulas in terms of their
densities and with estimated parameter sets 6, and 6,. We then compute the standard-
ized sum, v, of the log differences of their pointwise likelithoods m; := log[%j:g;;] for

observations u; € [0,1],i=1,...,N, i.e.,

1 vN
n Zi:] m;

SN (m; — m)?

(4.26)

statistic == v =

Vuong (1989) shows that v is asymptotically standard normal. According to the null-
hypothesis
Hy:E[m]=0Vi=1,..,N, (4.27)

we hence prefer vine model 1 to vine model 2 at level « if
y> o1 - %), (4.28)

where ®~! denotes the inverse of the standard normal distribution function. If v <
—-®7'(1 — %) we choose model 2. If, however, |[v| < ®7'(I — %), no decision among
the models is possible.

Like AIC and BIC, the Vuong test statistic may be corrected for the number of param-
eters used in the models. There are two possible corrections; the Akaike and the Schwarz
corrections, which correspond to the penalty terms in the AIC and the BIC, respectively.

Goodness-of-fit test results of vine copula are presented in Table 5. We list the log-
likelihood value and AIC, BIC value of each candidate Vine copula model fitting to our
stocking indices and volatility indices. From the results of log likelihood, in both of stock

indices and volatility indices cases, the value of R-vine mixed copula log likelihood is
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larger than other candidate copula models, which means the R-vine mixed copula is su-
perior to other model for modelling our data. The R-vine mixed copula also take the
smallest AIC and BIC value in both stock indices and volatility indices cases.

Vuong test copula selection results for all models are summarized in Table 6 which
lists the test statistics together with the p-values in parentheses of a Vuong test with and
without Akaike and Schwarz corrections respectively, testing the multivariate Gaussian
model against the alternative vine copula setting indicated by the respective column. From
the Vuong tests results we see that the R-vine mixed copula have the largest values of
Vuong test statistics except in statistic (Schwarz corrections). According to Vuong test
criterion, the R-vine mixed copula can be preferred over other vine copula setting and
multivariate Gaussian copula. Overall Vuong test demonstrates the usefulness of vine
copula with individually chosen copula types for each pair copula term.

Joe et al. (2010) show that vine copulas can have a different upper and lower tail de-
pendence for each bivariate margin when asymmetric bivariate copulas with upper/lower
tail dependence are chosen in tree 1 of the vine. In other words, in order for a vine copula
to have tail dependence for all bivariate margins, it is necessary for the bivariate copulas
in tree 1 to have tail dependence but it is not necessary for the conditional bivariate copu-
las in trees 2, ...,d — 1 to have tail dependence, too. At trees 2 or higher, Gaussian copulas
might be adequate to model the dependency structure. Therefore, in our subsequent anal-
ysis, we focus on the tree 1 of our vine copula. Taking these into account, based on above
Vuong test results, we select R-vine mixed copula to model the dependence of stock in-
dices and volatility indices. The results of R-vine mixed copula tree 1 demonstrate that
BB1 and Survival BB1 copula are selected to model the pair of indices. The advantage
of vine copulas does not come solely from the flexible tree structure, but the flexibility of
mixing different bivariate families is used to replace the classical Gaussian and Student t

copula.

4.9 GAS Regular Vine Copula Parameters Estimate of
Stock Indices and Volatility Indices

In Table 7, we present the results for the static tree structure of the selected R-vine cop-

ula fitting to the stock indices and volatility indices returns separately. As observed in
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the table, all of the estimated tail indices are highly significant. Focusing on Tree 1,
as expected, all 5 pairs of equity indices and volatility indices dependence captured by
asymmetric BB1 copula and Survival BB1 copula. BB1 copula and Survival BB1 copula
as well, known as Gumbel-Clayton copula, take the asymmetric tail dependence which
applies to our financial contagion question very well. In addition, we can observe that in
the all pairs of indices the strongest asymptotic dependence measured by the tail indices
A, and 4; occurs for the Euro Stoxx 50 index and DAX 30 index pair. That means ex-
treme gains and losses of the entire European market are more likely to move together
with the corresponding gains and losses of the Germany market comparing to any other
stock markets. Their corresponding volatility indices also present highest tail dependence
and asymmetric dependence among all pairs of volatility indices, whose upper tail depen-
dence is 0.77, and lower tail dependence is 0.60. In this sense, Germany, as an important
economy in Europe, probably have a stronger financial linkage with the entire European
markets. As observed, S&P 500 and Nikkei 225 stock indices pair presents the lowest
asymptotic dependence in the gains and losses, and in volatility index, also the US VIX
and Japanese VXIJ index pair exhibits weakest asymptotic dependence. However, both the
stock indices pair and volatility indices pair of US and Japan exhibits high asymmetric
dependence and tail dependence, which means probably there exist financial contagion
transmit from US to Japan. Similarly, the stock indices pair of US and Germany take
upper tail dependence of 0.35 and lower tail dependence of 0.21 also demonstrate there
probably financial contagion transmit from US to Germany.

Though the static vine copula fitting results provide us some evidence of financial
contagion, it is important to be aware that the asymptotic dependence behaviour is not
necessarily related to a financial crisis. Which means markets can crash together as a
result of bad news in which the impact only last for a short period (even a few days).
In this sense, constant tail dependence parameters do not bring any definite confirmation
about the behaviour of the dependence during turmoil periods, therefore, it is necessary
to assessed by models with time-varying tail dependence parameters. Thus, once a period
of crisis is identified, if the tail parameter increases after the crisis, we probably can say
the dependence becomes stronger and possibly we can draw the conclusion that contagion
exists.

Therefore, in this step, we fit our dynamic GAS R-vine copula to both equity indices
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and volatility indices, the corresponding parameter estimate results reports in Table 8.
The evolution of the time-varying dependence measures of GAS R-vine copula, 4, and
A;, and Kendall’s 7 are presented in Figures 3 to 8. The evolution of dependence is clearer
when observing the behaviour of both the upper and lower tail dependence coefficients.
Thus, there is evidence of an increase in the dependence in most of the bivariate results
for several periods. For the indices pairs, we found an increase in the dependence, at the
beginning of 2002 (when the Internet bubble burst) and in the middle of 2011 (Euro crisis).
An additional interesting finding is that indices pairs, the tail dependence increases after
the first half of 2006, i.e. approximately one year before the beginning of the subprime
crisis.

In particular, as discussed in static R vine copula model fitting, the joint dependence
for volatility index returns of the S&P 500 and NASDAQ 100 varies more heavily than
stock index returns. In terms of the evolution of tail dependence of stock indices pair,
the tail dependence observed from the first four pairs of indices, which are S&P 500-
Nasdaq 100, DAX30-S&P500, Europe Stoxx 50-DAX30, and FTSE-EURO Stoxx 50,
significant increase after global market crises are found, such as, 9.11 in 2001, the global
markets tumble at the end of February 2007, the most recent financial crisis at the end of
2008 (the Lehman Brother bankruptcy), and the 2011 Europe crisis. For example, during
the Internet bubble burst in the late of 2001, the stock index pair DAX30-S&P 500 and
volatility index pair of VSTOXX-VIX pair show more significant increase in dependence,
which can be considered as an evidence of financial contagion transmit between US and
Europe. Regarding the more serious Global Financial Crisis and Europe Debt Crisis, it is
obviously to observe from the figures that all main markets dependence all increase sig-
nificantly, which provide powerful evidence of financial contagion. The Nikkei225-FTSE
100 pair show strong tail dependence continuously comparing to the first four pairs, es-
pecially the period of after crisis. This results indicate that the strong linkage of Europe
market and Asian market, and again provide the evidence of contagion transmit from UK
or European market to Asian market. From volatility indices tail dependence evolution
results, the increase of tail dependence not only has the similar trends with stock indices
also more observable even if the dependence of market returns does not increase signifi-
cantly comparing to stock indices, which indicate the volatility indices markets are more

sensitive to crisis compared with stock markets, and reveals that contagion can also ex-
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ist in cross-market volatilities. All these increasing tail dependence for these events are
highly observable for the joint international markets, such as, the US and Germany, the
US and the UK, and Germany and the Japan, which indicates that financial contagion
exists. Most of the previous literature which only focuses on analysing contagion by

investigating stock market returns is insufficient and may lead to wrong conclusions.

4.10 Assessing Contagion

The financial contagion normally refers to a significant increase of cross market linkage
after a shock to one country or a group of countries. As discussed in above section, we
employ dynamic GAS R-vine copula to investigate the existence of financial contagion. In
this section, we devote to assess the presence of financial contagion based on the estimated
GAS R vine copula models from the previous sections and relating our results with other
proposals in the literature. As described in above section, there are several definitions of
financial contagion in the academy. In this paper, we consider contagion to be defined as
the significant increase of dependence between markets after a crisis, and two measures
of dependence discussed above are employed: time-varying correlation Kendall’s 7 and
time varying tail dependence indices-upper tail dependence 1, and lower tail dependence
A;. In our study, we investigate the presence of financial contagion by focusing on the
analysis of the unconditional results of our GAS R vine Tree 1.

In this section, we adopt a hypothesis test framework in order to test the increasing tail
dependence for crisis and post crisis periods. We set the bankruptcy of Lehman Brother
as the event of shock, and define the pre-crisis period from 1st June 2008 to 14th Septem-
ber 2008, the crisis period is from 15th September 2008 to 15th October 2008, and the
post-crisis period is from 16th October 2008 to 31st January 2009. A; denotes the tail
dependence coeflicients for the pre-crisis period, A, for the crisis period and A3 for the
post-crisis period. Following Chen and Poon (2007), the null hypothesis used for the test
of contagion is Hy : 4, = A; against H; : A, > A,. If the null hypothesis is rejected at the
90% confidence level, which means the dependence of crisis period larger than pre-crisis
periods, the existence of financial contagion be proved. The null hypothesis for the test
of increasing tail dependence is set as Hy : A3 = A, against H; : A3 > A;. If the null

hypothesis is rejected at the 90% confidence level, we can draw the conclusion that there
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Figure 4.3: Evolution of upper tail dependence of stock indices
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Figure 4.4: Evolution of upper tail dependence of volatility indices
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Figure 4.5: Evolution of lower tail dependence of stock indices
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Figure 4.6: Evolution of lower tail dependence of volatility indices
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Figure 4.7: Evolution of Kendall’s 7 of stock indices
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Figure 4.8: Evolution of Kendall’s 7 of volatility indices
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is a significant increase in tail dependence during the post-crisis period.

Table 9 and Table 10 summarise the hypothesis tests results of our dynamic GAS
R vine copula model. Contagion represents financial contagion is found during the crisis
period, and Increase represents the tail dependence increases during the post-crisis period.
We find there are several return pairs exhibiting contagion during the crisis periods and
increasing tail dependence coefficients during the post-crisis periods. Regarding the stock
index return pairs, more evidence of contagion and increasing tail dependence come from
the lower tail dependence coefficients which also consistent with the static copula results.
While for volatility index return pairs, more contagion evidence is found in the upper tail
dependence coefficients, which also in line with the static results. These results confirm
the fact that the dynamic tail dependence coeflicients are asymmetric for both stock index
and volatility index return pairs. The contagion evidence from lower tail dependence
coeflicients of stock index return pairs and upper tail dependence coefficients of volatility
index return pairs require portfolio manager pay more attention to hedge the risk come
from market dependence since the cross-market dependence significantly increases when

market crash.

4.11 Backtesting

Since the dynamic DCC model, t-DCC model are widely used for time-varying modelling,
it is necessary to investigate whether our GAS R-vine model is superior to other dynamic
model. Therefore, we consider five competing models. For comparison, we first consider
the traditional multivariate Gaussian copula with time-varying correlation matrix using
the DCC dynamic of Engle (2002) previously adopted by Heinen and Valdesogo (2008).
Moreover, due to the characteristics of tail dependence, multivariate Student 7 copula with
DCC dynamic, denoted as -DCC, is also included in our dynamic high-dimension model
comparison. The third competing model is the constant dependence parameters static
R-vine Copula model studied by Brechmann et al. (2012) and Dissmann et al. (2013).
The purpose of choosing static R-vine model is to investigate whether it is necessary to
employ a complex dynamic copula model. The structure of the R-vine is selected by the
algorithms mentioned in Brechmann et al. (2012). The last competing model is our GAS

R-vine model. For our GAS R-vine copula, either we can first rank our variables based on
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maximizing the overall pairwise dependence measured by Kendall’s 7, which means the
pair of variables with highest empirical Kendall’s 7 will be selected firstly. In a similar
process, connect the next variable that has highest pairwise Kendall’s 7 with one of the
previously chosen variables. In particular, we expect to capture the overall time variation
of the dependence, as we discussed above, it turns out that time variation is most relevant
on the first tree. The GAS R-vine model fit and forecasting performance are compared
with Gaussian DCC copula model, Student t DCC copula model, and with a time-constant
parameters Regular vine model. For the Gaussian and Student # copulas, we specify that
the linear dependence parameter p, evolves over time as in the DCC(1,1) model of Engle
(2002):

O=(1-a-p)-0+a €. -€¢,+B 01, (4.29)

pr= 077007, (4.30)

where @, is the covariance matrix of the vector of first-step standardized residuals(e )and
Q is the unconditional covariance. Q! is a square matrix with zeros as off-diagonal ele-
ments and the square root of those Q, as diagonal elements.

We consider twelve indices from three major financial markets: US, Europe and Asia.
In total, we have six equity indices as well as their corresponding implied volatility in-
dices (cf. Table 1). We choose Standard and Poor’s 500 Index and NASDAQ 100 Index
representing US markets, FTSE 100 Index, DAX 30 Index and Euro Stoxx 50 Index repre-
senting European market, Nikkei 225 Stock Average Index representing Japanese market.
The considered time period covers roughly 15 years, starting in particular on 1 January
2002 and ending on 30 Jun 2017. Excluding non-trading days, this results in 4044 ob-
servations of daily closing prices in US dollar. We split the sample into an in-sample
period consisting of the first 3000 returns, covering the period until 1 July 2013, and an
out-of-sample period covering the remaining 1044 observations.

We perform one-step ahead forecasts, and we do not re-estimate the models. For the
out-of-sample fit of our model, we construct an equally weighted portfolio from the six
stock market indices and volatility indices separately and estimate its value-at-risk at the
10%, 5%, and 1% level based on our four competing model specifications respectively.
In Table 10, we report the exceedance rate of Kupiec (1995) unconditional coverage test,

as well as the p-values of the dynamic quantile test by Engle and Manganelli (2004),
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which tests the correct coverage of the VaR and the independent identically distributed
of the exceedances. Kupiec (1995) unconditional coverage test has been discussed in
our Chapter 2, and the DQ test is essentially a Wald test for the overall significance of a
linear probability model H — a1 = X8 + € where H — a1 with H = (H},,) the demeaned

hit variable, 1 is a vector of ones, X = (H,, ..., H;, VaR,

,)’ the regressor vector, and

B = (B, ..., Brs2) the corresponding slope coefficients. The null hypothesis is Hy : 8 = 0

and it can be tested using the Wald type test statistic,
a’(] _ a,) k+2

DQ 4.31)

We apply the test with 0 lags in order to test the unconditional coverage of the VaR and al-
low for four lags to additionally test the i.i.d.’ness. The results show that all models except
the time-constant R-vine model perform well in terms of the unconditional coverage, in
which our GAS R-vine copula model perform comparatively best. However, the i.i.d.ness
of the VaR is rejected for all four models for the 1% VaR. Thus, it seems that choice of
the dependence model not has a significant influence on the quality of the VaR forecasts
as long as we allow for time variation in the dependence parameters, nevertheless, GAS

R-vine copula model still demonstrate the superiority to some extent.

4.12 Conclusion

The common observation from the cross-market analysis reveals that all markets are inter-
related, implying that events occur in one market have an impact on other markets. Cross-
market dependence shows dynamic and asymmetric characteristics. Therefore, in this
paper, we analysed the cross-market dependence for both stock index returns and volatility
index returns by employing an innovative dynamic GAS R-vine copula approach and
then investigate the existence of international financial contagion. To our best knowledge,
there has been few tail dependence analysis both on dependence between different stock
indices and volatility indices in the literature, and our analysis provides a new perspective
to investigate the international financial contagion and asymmetric market dependence.
In this study, we first fit a skewed-t AR-GJR-GARCH model for the marginal distri-
butions. We then fit a static constant parameters R-vine copula to the stock index and

volatility index data, and then apply the dynamic GAS R-vine copula to measure the tail
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dependence for both stock index returns and volatility index returns from financial mar-
kets indices in the US, Europe and Asia. From the static vine copula results, we primarily
found some evidence of international financial contagion, the evolution of tail dependence
coeflicients and correlation Kendall’s 7 estimated from our GAS R-vine copula model
provide us more dependable evidence of financial contagion, and reveal the direction of
the contagion.

Comparing the volatility index returns and stock index returns, we find that the tail
dependence change in the volatility indices are more easily observable, which means
the dependence between the volatility indices is more sensitive and easily affected by
market shocks, and reflects the instantaneous information (and the investors’ predictions
for future market movements) more rapidly than the stock indices. This is also consistent
with the common observation in the literature that the volatility of market volatility is
much greater than the market volatility itself. Different from the effect of news which can
last a long time in stock indices, the shock to volatility indices can disappear completely
within several hours, which is also important for hedging risk. The existence of contagion
and tail dependence coefficients increasing in value during the period after crisis are found
for both stock index and volatility index return pairs.

Our backtesting results demonstrate our GAS R-vine copula model outperform the
Gaussian DCC, Student t DCC and static R-vine copula model from out-of-sample VaR
forecasting.

In general, the results of our GAS R-vine copula model fitting to stock indices returns
and volatility indices returns demonstrate the existence of international financial conta-
gion between US, Europe and Asia financial markets, and our GAS R-vine copula model
show the superiority to other competing dynamic models.

In sum, through our GAS R-vine copula model, we find the evidence supporting fi-
nancial contagion, which possibly decrease the benefits of international portfolio diversi-
fication of both equity and volatility financial products. Both of the dependence structure
of equity indices and volatility indices returns are asymmetric or has tail dependence
characteristics. Volatility indices returns demonstrate that tail dependence lead to higher
risk of turbulent markets. Comparing to the investors behaviour in calm period, the in-
vestors anticipation of trend of future markets movements tend to be similar in financial

turmoil. The results of stock markets also support that portfolio managers are supposed
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to pay attention market downside risk. Moreover, the dependence of volatility indices re-
turns 1s more sensitive than stock indices returns, and it can reflect instantaneous market

turbulence quicker.
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Table 12: Bivariate copula family employed in Vine copula
construction

0 = independence copula

1 = Gaussian copula

2 = Student t copula (t-copula)

3 = Clayton copula

4 = Gumbel copula

5 = Frank copula

6 = Joe copula

7 = BB1 copula

8 = BB6 copula

9 = BB7 copula

10 = BB8 copula

13 = rotated Clayton copula (180 degrees; survival Clayton)
14 = rotated Gumbel copula (180 degrees; survival Gumbel)
16 = rotated Joe copula (180 degrees; survival Joe)
17 = rotated BB1 copula (180 degrees; survival BB1)
18 = rotated BB6 copula (180 degrees; survival BB6)
19 = rotated BB7 copula (180 degrees; survival BB7)
20 = rotated BB8 copula (180 degrees; survival BB8)
23 = rotated Clayton copula (90 degrees)

24 = rotated Gumbel copula (90 degrees)

26 = rotated Joe copula (90 degrees)

27 = rotated BB1 copula (90 degrees)

28 = rotated BB6 copula (90 degrees)

29 = rotated BB7 copula (90 degrees)

30 = rotated BB8 copula (90 degrees)

33 = rotated Clayton copula (270 degrees)

34 = rotated Gumbel copula (270 degrees)

36 = rotated Joe copula (270 degrees)

37 = rotated BB1 copula (270 degrees)

38 = rotated BB6 copula (270 degrees)

39 = rotated BB7 copula (270 degrees)

40 = rotated BB8 copula (270 degrees)

104 = Tawn type 1 copula

114 = rotated Tawn type 1 copula (180 degrees)

124 = rotated Tawn type 1 copula (90 degrees)

134 = rotated Tawn type 1 copula (270 degrees)

204 = Tawn type 2 copula

214 = rotated Tawn type 2 copula (180 degrees)

224 = rotated Tawn type 2 copula (90 degrees)

234 = rotated Tawn type 2 copula (270 degrees)

Note: This table lists all bivariate copula families we employ as Vine copula
building blocks.
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Chapter 5

Conclusion

This PhD thesis primarily deals with the dependence modelling of multivariate distribu-
tions of financial data and introduces novel vine copulas method to address significant fi-
nancial modelling challenges in the credit portfolio risk management, asset allocation and
financial contagion topic. In this respect, each chapter of the PhD thesis explores differ-
ent research questions, focuses on multiple aspects of the finance hot topic and employs
different modelling techniques that take into account the stylised features and complex
dependence dynamics of financial data.

In particular, in our credit portfolio study, we compare various copula setting ap-
proaches both from a statistical and economic perspective. Vine copulas enable us to
model a more flexible and less restricted dependence structure compared to classical
Gaussian copula, as replacing the latter by the former leads to an increased AIC. The
better statistical fit to the data suggests that the modeled dependence structure is a more
realistic model of the actual dependence structure and, consequently, vine copula should
be preferred to conventional Gaussian copula. When classic Gaussian copula is replaced
by vine copula structures, the VaR and CVaR are all increased. C-vine mixed copula
and R-vine mixed copula in turn lead to a higher risk measure than multivariate Gaussian
copula. Flexible building blocks chosen from bivariate copula families in a vine structure
results in more accurate and reliable estimate for VaR and CVaR. Therefore, we obtain
statistically well-founded arguments that support the criticism of the role of the Gaussian
copula in the financial crisis. We present the convenient and applicable alternative model-
vine copula mixed model-which are supposed to be adopted by risk managers in order to

improve the methodology of credit portfolio risk modelling.
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Given the importance of alternative investments as an investment vehicle for investors
to gain portfolio diversification benefits, and as traditional mean-variance portfolio strat-
egy does not account for asymmetry in returns distributions, it is quite plausible that there
is a need for more advanced portfolio management strategies that incorporate asymme-
tries especially when market regime changes over time. Therefore, our paper introduces
a Markov regime switching regular vine copula asset allocation model in international as-
sets markets and focuses on investigating, as the presence of regimes, whether the regime
switching vine copula model is able to produce superior investment performance in the
multi-asset case which including alternative investments compared to traditional models.

Through our GAS R-vine copula model, we find the evidence supporting financial
contagion, which possibly decrease the benefits of international portfolio diversification
of both equity and volatility financial products. Both of the dependence structure of equity
indices and volatility indices returns are asymmetric or has tail dependence characteris-
tics. Volatility indices returns demonstrate that tail dependence lead to higher risk of
turbulent markets. Comparing to the investors behaviour in calm period, the investors
anticipation of trend of future markets movements tend to be similar in financial turmoil.
The results of stock markets also support that portfolio managers are supposed to pay
attention to market downside risk. Moreover, the dependence of volatility indices returns
is more sensitive than stock indices returns, and it can reflect instantaneous market turbu-
lence quicker.

In general, our research results demonstrate that the extensively employed Gaussian
dependence structures by practitioners and regulators is found definitely underestimate
financial risk and lack the ability of capturing tail dependence and fat tail characteris-
tics of the financial returns. The symmetric assumption of Gaussian copula or Student t
copula and their lack of lower tail dependence coeflicient are over simplistic leading to
a systematic underestimation of financial risk and, in turn, endangering financial system.
Therefore, it is crucial to incorporate tail dependence consideration. Against the above
background of these criticism, it is very important to introduce vine copulas (also referred

to as pair-copula constructions) to the financial returns dependence modelling.
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