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ABSTRACT
We study analytically and experimentally certain symplectic and time-reversible N-body inte-
grators which employ the Kepler solver for each pairwise interaction, including the method of
Hernandez & Bertschinger. Owing to the Kepler solver, these methods treat close two-body
interactions correctly, while close three-body encounters contribute to the truncation error at
second order and above. The second-order errors can be corrected to obtain a fourth-order
scheme with little computational overhead. We generalize this map to an integrator which
employs the Kepler solver only for selected interactions and yet retains fourth-order accuracy
without backward steps. In this case, however, two-body encounters not treated via the Kepler
solver contribute to the truncation error.

Key words: gravitation – methods: analytical – methods: numerical – celestial mechanics –
planets and satellites: dynamical evolution and stability – globular clusters: general.

1 IN T RO D U C T I O N

The gravitational N-body problem has been studied ever since New-
ton first wrote down his universal gravitational law of attraction. The
N-body problem appears often in dynamical astronomy, for example
planetary systems, stellar associations, star clusters, galaxies, dark
matter haloes and even the Universe as a whole can be modelled
to good approximation as N-body problems (Heggie & Hut 2003),
although other, typically less-accurate, alternative models are pos-
sible in some cases. No analytic solutions to the N-body problem
exist for N > 2, except for few cases without practical relevance,
such as the five families of solutions found by Euler (1767) and
Lagrange (1772), and numerical integration is required instead.

If the N-body method is used to model a collisionless system
(where two-body encounters are dynamically unimportant), then
encounters between the simulation particles introduce relaxation
into the model not present in the actual system. These artificial
effects can be reduced (but not eliminated) by softening the gravita-
tional inter-particle forces at small distances (Dehnen & Read 2011),
which in turn significantly simplifies the N-body dynamics and al-
lows the use of comparatively simple integration techniques, such
as the leapfrog integrator (Størmer 1907; Verlet 1967).1

Here, we are instead concerned with the collisional N-body prob-
lem, which emerges for example when modelling the planetary
systems including our own, planetesimals in a circum-stellar disc,

� E-mail: wd11@leicester.ac.uk (WD); dmhernan@mit.edu (DMH)
1 The leapfrog integrator has been independently discovered several times,
and was implicitly used by (Newton 1687, figure for theorem I in book I) as
later discovered by Verlet himself (Hairer, Lubich & Wanner 2006).

or a globular cluster. In this case, the accurate long-term time in-
tegration of the unsoftened gravitational forces poses a formidable
problem. Here, ‘long term’ means several Lyapunov times or when
a conventional integrator becomes unreliable due to accumulation
of truncation errors, whichever is shorter. A major problem arises
from the dynamical stiffness of these systems in the sense that the
relevant time-scales differ by orders of magnitude: already a simple
elliptic or hyperbolic orbit poses problems for numerical integration
owing to the large variation of angular speed, i.e. of the local orbital
time-scale.

Since the N-body problem comprises a Hamiltonian system,
symplectic or more broadly geometric, numerical time integration2

(Hairer, Lubich & Wanner 2006) provides a useful framework for
the N-body problem. Unfortunately, symplectic integration has not
been widely implemented for the study of the collisional N-body
problem. Switching methods, which change between different sym-
plectic integrators, have been proposed for the study of single-star
planetary systems (Duncan, Levison & Lee 1998; Chambers 1999;
Kvaerno & Leimkuhler 2000). Unfortunately, tests indicate
these methods may break time-reversibility and symplecticity
(Hernandez 2016). Another possibility to deal with the varying time-
scales is to transform to another time variable (Sundman transform,
see Leimkuhler & Reich 2004) and apply a symplectic method in

2 A symplectic integrator advances the system by a canonical map which
is close to that of the actual Hamiltonian. As a consequence, the geometric
structure of phase space and the Poincaré invariants are exactly preserved.
Many symplectic integrators also exactly conserve all first integrals, except
for the Hamiltonian, which tends to have bounded error.
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1202 W. Dehnen and D. M. Hernandez

the resulting extended system (Mikkola & Tanikawa 1999; Preto &
Tremaine 1999), but such methods cannot be efficient for N � 2.

An alternative to exactly symplectic integrators are time-
reversible geometric integration methods, which share many de-
sirable properties with symplectic integrators (Hairer et al. 2006).
When modelling globular clusters, a common such integra-
tion method is the implicit fourth-order Hermite integrator
(Makino 1991), which requires an iterative solution, but in prac-
tice often only one iteration is used, violating exact time symmetry.
Even when iterating to convergence, the efficient adaptation of in-
dividual discrete step sizes cannot be reconciled with exact time
symmetry (Dehnen, in preparation). Kokubo, Yoshinaga & Makino
(1998) argue that this is tolerable if only few step-size changes
occur, such as in planetary systems with only near-circular orbits.
Hut, Makino & McMillan (1995) proposed a symmetrization pro-
cedure for any integrator and Makino et al. (2006) extended this
procedure to adaptation of individual particle step sizes. However,
the resulting method involves the solution of a large implicit system
of equations requiring an excessive amount of computational effort
and has not been used in practice.

Because of these complications, contemporary methods for the
integration of planetary systems employ a fixed global time step.
A recent progress was the introduction of a symplectic and time-
reversible map which treats close two-body encounters exactly
(Hernandez & Bertschinger 2015) and is efficient for planetary-
system integration (Hernandez 2016). In this study, we show that
the integrator of Hernandez & Bertschinger (2015) is still only
second-order accurate, but can be made fourth-order accurate with
relatively little additional computational effort. We also discuss the
option to treat only selected pairwise interactions exactly (to im-
prove efficiency) and yet keep the overall integration accuracy at
fourth order.

This paper is organized as follows. Section 2 reviews background
concepts on symplectic integration and re-analyses the popular
leapfrog (Størmer-Verlet) integrator, Section 3 discusses the in-
tegrator of Hernandez & Bertschinger, introduces its fourth-order
extension and presents some numerical tests. Integrators which use
the Kepler solver selectively are considered in Section 4, including
our novel fourth-order hybrid integrator. The appendices provide
some detailed calculations and discuss implementation details.

2 SYMPLECTIC MAPS FRO M O PERATO R
SPL ITTING

The time-evolution for systems with Hamiltonian function H is a
continuous canonical transformation governed by

dw

dt
= Ĥw ≡ {w,H } (1)

with {, } the Poisson bracket and w ≡ {xi , pi} the set of all coor-
dinates and momenta. This equation defines the operator Ĥ , also
known as Lie operator of the function H (Dragt & Finn 1976), and
has formal solution

w(t + h) = ehĤ w(t) (2)

If no exact solution to equation (1) exists, the time-evolution opera-
tor ehĤ has no finite expression, and instead a numerical solution is
required. A symplectic integrator is such a numerical method that
preserves the symplecticity (canonical nature) of the map ehĤ . If
one can split H = A + B such that equation (1) with H replaced by
A or B can be solved exactly, then a symplectic integrator can be

constructed as composition of the maps ehÂ and ehB̂ . The simplest
such method is the symplectic Euler method

ehĤ → ehÂehB̂ . (3)

Thus, this method applies the time evolution due to B followed by
that due to A. The error made by the symplectic Euler method can
be expressed by the Campbell (1896, 1897)–Baker (1902, 1905)–
Hausdorff (1906) formula (Dynkin 1947)

log(eX eY ) = X + Y + 1

2
[X,Y ]

+ 1

12

(
[X,[X,Y ]] + [Y ,[Y ,X]]

)
. . . (4)

with [X,Y] ≡ XY − YX the usual commutator. Using the Jacobi
identity

{{A,B},C} + {{B,C},A} + {{C,A},B} = 0, (5)

it can be shown that the Lie operator of the Poisson bracket {A,B}
of two phase-space functions A and B is the commutator [B̂,Â] of
their Lie operators

̂{B,A} = {.,{B,A}} = [Â,B̂] (6)

which can be applied recursively: ̂{{C,B},A} = [Â,[B̂,Ĉ]] etc.
Together with the distributive property Â + B̂ = ̂A + B and the
Campbell–Baker–Haussdorff formula (4) this implies that, under
some conditions described below, the symplectic Euler method
(3) actually evolves the system under the surrogate Hamiltonian
H̃ = H + Herr(h) with

Herr = h

2
{B,A} + h2

12
{{B,A},A} + h2

12
{{A,B},B} + O(h3), (7)

i.e. makes an error O(h2) in the coordinates per time step and O(h)
in the energy. A better integrator is the leapfrog or Verlet method

ehĤ → e
h
2 Â ehB̂ e

h
2 Â. (8)

Applying equation (7) twice, we find for the leapfrog

Herr = −h2

24
{{B,A},A} + h2

12
{{A,B},B} + O(h4). (9)

In particular, no odd powers of h appear, which is true for any
self-adjoint integrator3 for symmetry reasons.

H̃ is a power series in h that can converge or diverge. In case of
convergence, H̃ is conserved and has properties of a Hamiltonian
(Dragt & Finn 1976). We have never found evidence for divergence
whenever we tested it, but addressing this issue further is beyond
the scope of this paper. Instead, we generally assume H̃ converges
as is often done in the literature.

2.1 The leapfrog N-body integrator

The traditional splitting of the N-body Hamiltonian is in kinetic and
potential energies,

T =
∑

i

p2
i

2mi

, V =
∑
i,j<i

Vij = 1

2

∑
i,j

Vij with

Vij = −Gmimj

|xij | , (10)

3 If ϕ−1
h is the inverse of a phase-space map ϕh, defined by the condition that

the composite ϕhϕ−1
h is the identity map, then ϕ

†
h ≡ ϕ−1

−h is called adjoint

to ϕh. For self-adjoint maps ϕ
†
h = ϕh, which implies ϕ−h = ϕ−1

h , i.e. these
maps are also reversible or time symmetric.
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where xij ≡ xi − xj is the distance vector. The map ehT̂ obtains a
simple drift at constant velocity and ehV̂ a kick, a change of velocity
at fixed position. There are two possible forms of the leapfrog: the
drift–kick–drift, also known as position-Verlet, and kick–drift–kick,
known as velocity-Verlet,4

ehĤ → ψ
[DK]2

h ≡ e
h
2 T̂ ehV̂ e

h
2 T̂ , (11a)

ehĤ → ψ
[KD]2

h ≡ e
h
2 V̂ ehT̂ e

h
2 V̂ (11b)

with error Hamiltonians

H [DK]2

err = −h2

24
{{V ,T },T } + h2

12
{{T ,V },V } + O(h4), (12a)

H [KD]2

err = h2

12
{{V ,T },T } − h2

24
{{T ,V },V } + O(h4). (12b)

2.2 The error terms of the leapfrog

Let us take a closer look at the O(h2) error terms of the leapfrog
integrator in equations (12). As the potential energy V is the sum of
the contributions Vij from each pairwise interaction, so is the error
term {{V,T},T} the sum over the terms

{{Vij ,T },T } = Gmimj

r5
ij

[
v2

ij r2
ij − 3(vij · xij )2

]
, (13)

where vij ≡ vi − vj is the velocity difference, while vij ≡ |vij | and
rij ≡ |xij |. The terms (13) become large only in a close encounter
between particles i and j. Assuming a parabolic encounter, we
have 1

2 v2
ij = G(mi + mj )/rij such that {{Vij,T},T} has magnitude

∼G2mimj (mi + mj )/r4
ij .

The second contribution to the errors in equations (12) are sums
over terms of the form {{T,Vij},Vlk}. These vanish if all four indices
differ, and the only non-vanishing terms are of two types:

{{T ,Vij },Vij } = G2mimj (mi + mj )

r4
ij

and (14a)

{{T ,Vij },Vik} = G2mimjmk

r3
ij r3

ik

xij · xik with j �= k. (14b)

The first of these becomes large only in close encounters between
particles i and j, when it is of the same magnitude as the term
{{Vij,T},T} above. The second type of terms (equation 14b) becomes
large only in a close three-body encounter between particles i,j and
k (close encounters of more than three particles only contribute to
yet higher order error terms, see Section B1 in Appendix B). In
order to distinguish these different terms, we define

{{T ,V },V }2 ≡
∑
i<j

{{T ,Vij },Vij } (15a)

and

{{T ,V },V }3 ≡ 2
∑

i<j<k

{{T ,Vij },Vik}

+ {{T ,Vjk},Vji} + {{T ,Vki},Vkj }, (15b)

such that {{T,V},V} = {{T,V},V}2 + {{T,V},V}3 (see equations C2
and C4 for computationally more useful alternative expressions).

4 Our nomenclature, [DK]2 for the drift–kick–drift leapfrog describes its
composition as symplectic Euler drift–kick (=DK) for h/2 followed by its
adjoint for another h/2. We use this scheme to name all maps in this study.

2.3 Higher order symplectic integrators

It is well known that in order to construct higher than second-order
integrators by operator splitting, i.e. by alternating kicks and drifts
with step sizes chosen such that theO(h2) terms are eliminated from
Herr, one must perform at least on backward kick and one backward
drift (Sheng 1989; Suzuki 1991). Such methods have been proposed
(e.g. Yoshida 1990) but are rarely used in astrophysics, because
backward steps are problematic with frictional forces (such as tidal
dissipation), but also because the coefficients of the errors terms
tend to be quite large.

However, in order to obtain a fourth-order method not both of the
error terms in equations (12) need to be eliminated: the second of
these

G ≡ {{T ,V },V } =
∑

k

1

mk

∂V

∂xk

· ∂V

∂xk

(16)

depends only on the positions and can be integrated (see also Sec-
tion C1 in Appendix C). In other words, the map ehĜ is exactly
soluble. This allows the construction of fourth-order symplectic in-
tegrators with only forward steps (Suzuki 1995; Chin 1997). The
simplest such integrator is based on the relation

log
(

e
1
6 X e

1
2 Y e

2
3 X e

1
2 Y e

1
6 X

)
= X + Y + 1

72
[X,[X,Y ]] + . . . ,

(17)

which implies that the map

ψ
[KDK]2

h ≡ e
h
6 V̂ e

h
2 T̂ e

2h
3 V̂ e

h
2 T̂ e

h
6 V̂ (18)

has error Hamiltonian

Herr = h2

72
{{T ,V },V } + O(h4). (19)

Combining (18) with the map e− h3
72 Ĝ obtains the fourth-order for-

ward integrator (dubbed ‘4A’ by Chin 1997, see also Chin &
Chen 2005)

ehĤ → ψ
[KDK]2

4
h ≡ e

h
6 V̂ e

h
2 T̂ e

2h
3 (V̂ − h2

48 Ĝ) e
h
2 T̂ e

h
6 V̂ . (20)

Here, the map e− h3
72 Ĝ, corresponding to a force-gradient kick, is

applied in the middle, such that the integrator remains self-adjoint,
but for the order of the method this does not matter as long as it is
applied at any time during the step.

More general symplectic maps can be constructed by alternating
application of drifts, kicks and force-gradient kicks. By carefully
arranging the sub-steps of these component maps, the coefficients of
the O(h4) contributions to Herr can be substantially reduced com-
pared to the map (20) (Omelyan, Mryglod & Folk 2002, 2003).
However, in order to obtain a sixth-order integrator, i.e. to have
vanishing coefficients for all the O(h4) contributions to Herr, back-
ward steps are required, unless the error term {{{{V,T},T},T},V} can
be integrated (Chin 2005), which is generally impossible.

3 SYMPLECTI C MAPS U SI NG THE K EPLER
SOLV ER

Recently Gonçalves Ferrari, Boekholt & Portegies Zwart (2014)
proposed to replace the pairwise kick map ehV̂ij for each particle
pair with a backwards drift followed by their mutual binary orbit,
hereafter a binary kick:

ehV̂ij → ehĤij e−h(T̂i+T̂j ) (21)

MNRAS 465, 1201–1217 (2017)
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1204 W. Dehnen and D. M. Hernandez

(Hernandez & Bertschinger 2015) with the binary Hamiltonian

Hij ≡ Ti + Tj + Vij = p2
i

2mi

+ p2
j

2mj

− Gmimj

rij

. (22)

Since the forward drift of the centre of mass due to ehĤij cancels
with its backward drift due to e−h(T̂i+T̂j ), the map (21) can also be
implemented via the equivalent form (Gonçalves Ferrari et al. 2014)

ehK̂ij e−h{., 1
2 μij v2

ij }
, (23)

where μij ≡ mimj/(mi + mj) is the reduced mass, and

Kij ≡ μij

[
v2

ij

2
− G(mi + mj )

rij

]
(24)

the Kepler Hamiltonian of the particle pair. We found no detectable
difference between maps (23) and (21) in terms of computational
efficiency or finite precision errors.

3.1 The method of Hernandez and Bertschinger revisited

The map defined in equation (21) or (23) is not self-adjoint, such
that substituting it for every pairwise kick, i.e. replacing

ehV̂ → ψW
h ≡

∏
(i,j ) in some order

ehĤij e−h(T̂i+T̂j ), (25)

in the standard N-body integrators (11) obtains a method that is
not self-adjoint either and hence also not reversible (Hernandez &
Bertschinger 2015). A self-adjoint integrator can be composed from
any map ϕh as ψh = ϕ

†
h/2ϕh/2. Hernandez & Bertschinger (2015)

applied this recipe to the irreversible map

φh ≡ ψW
h ehT̂ , (26)

which is similar to the symplectic Euler but second-order accurate
(Hernandez & Bertschinger 2015). This yields the integrator

ehĤ → ψ
[DB]2

h ≡ φ
†
h/2φh/2 = e

h
2 T̂ ψ

†W
h/2 ψW

h/2 e
h
2 T̂ , (27a)

hereafter ‘HB15’ or [DB]2 with ‘B’ for binary kick. Alternatively,
the reversed recipe puts the drift operation in the middle:

ehĤ → ψ
[BD]2

h ≡ φh/2φ
†
h/2 = ψW

h/2 ehT̂ ψ
†W
h/2 . (27b)

These integrators look different and would definitely be imple-
mented differently. However, as shown in equation (A14), the maps
φh and φ

†
h are identical except for a reversal of the order of binary

kicks. Hence, the maps (27a) and (27b) differ only by a reversal of
the binary-kick order in each half. Hernandez & Bertschinger (2015)
reported that this order has no significant effect on the accuracy of
the method, and indeed it does not affect the error Hamiltonian at
order O(h2). In Section A1 of Appendix A, we derive the error
Hamiltonian for the maps (27a) and (27b) to be

H [DB]2

err = h2

48
{{T ,V },V }3 + O(h4) (28)

and H [BD]2

err = H [DB]2

err + O(h4). Comparing this to the errors of the
leapfrog, as discussed in Section 2.2, we see that all O(h2) error
terms arising from close two-body encounters have been removed.
The only remaining terms are of the form (14b), which account for
close three-body encounters. In fact, this is true at all orders: error
terms which are (nested) Poisson brackets containing only T and
Vij are eliminated at all orders. This can be seen by letting mk →
0 for all but one pair of particles, when the method becomes exact

for this pair while the Hamiltonian collapses to equation (22). Thus,
the only remaining error terms involve two or more particle pairs.

A more general self-adjoint arrangement of the maps (25) and
ehT̂ is

ehĤ → ψα
h ≡ eαhT̂ ψW

h/2 e(1−2α)hT̂ ψ
†W
h/2 eαhT̂ (29)

with parameter α. For α = 0, we obtain the map [BD]2, while
α = 1

4 corresponds to the integrator ζ 2
h of Hernandez & Bertschinger

(2015). For N = 2, map (29) reduces to a simple Kepler solver only
for α = 0 and, consequently, only this choice eliminates both the
error terms {{V,T},T} and {{T,V},V}2 (we give Herr up to order h2

in equation A15). This explains why Hernandez & Bertschinger
(2015) found their ζ 2

h integrator to be inferior to [DB]2.

3.2 Extending the method of Hernandez and Bertschinger
to fourth order

The error Hamiltonian (28) to second order is in fact integrable
and fourth-order schemes can be constructed by simply integrating
it, analogously to the forward fourth-order integrators discussed in
Section 2.3. The costs for doing so are small compared to those for
the solutions to the N(N − 1)/2 Kepler problems, though both scale
as O(N2). The fourth-order correction can be applied either in the
middle, beginning and end or both. Describing this freedom with
parameter α, gives the fourth-order map

ψ
[DB]2

4
h ≡ e−α h3

96 Ĝs φ
†
h/2 e(α−1) h3

48 Ĝs φh/2 e−α h3
96 Ĝs , (30)

where Gs ≡ {{T,V},V}3. Again, swapping the sub-steps φ
†
h/2 and φh/2

obtains a map, [BD]2
4, which is identical except for a reversal of the

binary-kick order in each half. The map (30) and its generalization
in equation (40) below are the main results of this study and we will
also call them ‘DH16’.

To confirm experimentally that the map (30) is indeed fourth-
order accurate, we integrate the Sun and outer gas giant planets (with
initial conditions taken from Hairer et al. 2006) for t = 1000 yr.
For given step size h, we iterate the map (30) n = �t/h	 times,
and calculate the arithmetic mean 〈|�E/E|〉 of the energy error
magnitudes after each step. We also measure the total computational
time tcpu, which we expect to scale as tcpu ∼ 1/h (but see Wisdom
& Hernandez 2015, for a discussion on variations in the cost of
the Kepler solver depending on h) and repeat these calculations for
various values of h and α. For any given α, we find in Fig. 1 that
〈|�E/E|〉 ∝ t−4

cpu as expected for a fourth-order method.
Fig. 1 also shows that α = 1/4 performs better than α = 0,

despite the extra force-gradient map (the Kepler solver dominates
the computational costs). In Section B3 of Appendix B, we derive
Herr for the integrator (30) to fourth order in h. While at this order
Herr is a linear function of α, the various error terms depend non-
trivially on the state of the N-body system as well as the ordering
of particle pairs within the binary-kick operator ψW

h . This makes
it very difficult, if not impossible, to deduce the optimal α and
ordering of pairs by analysis alone. Instead, we explore the optimal
α numerically.

To this end, we repeat the previous calculations at fixed h =
0.5 yr, when we find tcpu to hardly depend on α. Fig. 2 plots the
mean energy error magnitude versus α. For our test problem of the
outer Solar system, we find that αopt = 1/4 obtains the smallest
error. For the α ranges in this plot, 〈|�E/E|〉 varies by about a
factor of 10. However, this does depend slightly on the ordering of
the particle pairs within ψW

h . Varying the order of the Sun–planet
pairs or that of the planet–planet pairs leaves αopt approximately

MNRAS 465, 1201–1217 (2017)
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Symplectic fourth-order N-body maps 1205

Figure 1. Mean absolute energy error plotted versus computational costs
for an integration of the outer Solar system (Sun and gas giants) over 1000 yr
using the map (30) for various choices of time step h and parameter α. The
line indicates t−4

cpu, the scaling expected for a fourth-order method.

Figure 2. Mean absolute energy error plotted versus parameter α for in-
tegrations as shown in Fig. 1 but at fixed time step h = 0.5 yr. For this
experiment, the particle pair ordering in the binary-kick operator ψW

h was
fixed at the Sun–planet pairs followed by the planet–planet pairs The optimal
α depends slightly on the pair ordering and the N-body problem itself.

unchanged. However, when we reversed fully the pair ordering,
αopt ≈ 0.16.

We also measured αopt for different N-body problems. For the
hierarchical triple problem considered by Duncan et al. (1998) and
Hernandez (2016) we find still αopt ≈ 1/4 for h = 0.001 yr and
t=1 yr. For the figure-of-eight three-body solution discussed in
Chenciner & Montgomery (2000), we find αopt ≈ 0.15 for t equal to
the period P and h = P/50. In summary, the optimal value of α for the
integrator (30) appears to vary depending on the N-body problem
and the solution strategy but we always find it to be constrained
between 0.1 and 0.3.

3.3 A test of a chaotic exchange orbit

We now test our fourth-order map (30) on a challenging problem:
a chaotic exchange orbit of the planar restricted circular three-
body problem. If we denote the coordinates and velocities in the

Figure 3. Trajectory over 500 yr of the test particle in the circular restricted
three-body problem considered in the text. Most of the time the test particle
orbits the primary, but occasionally switches to the secondary.

co-rotating frame with a prime, then the Jacobi integral (the only
isolating integral for this problem) is

CJ = 1

2
v2 + 	(x′) − ω · (x × v) = 1

2
v′2 + U (x′) (31)

with binary angular velocity ω =
√

G(m1 + m2)/a3 ẑ,

	(x′) = − Gm1

|x′ − r1| − Gm2

|x′ − r2| , (32)

and U (x ′) ≡ 	(x′) − 1
2 (ω × x′)2. The conventional Jacobi constant

definition is C = −2CJ, but CJ is equal in value to the Hamiltonian
in the co-rotating frame. Here, a is the binary semimajor axis, m1, 2

the masses of its components and r1,2 their co-rotating positions. If
L1,2 are the corotating positions of the first and second Lagrange
points, then orbits satisfying U (L1) < CJ < U (L2) can visit both
masses but cannot escape to infinity.

We use units of au, days and Solar mass, when we set m1 = 1,
μ = m2/(m1 + m2) = 0.01 and a = 5.2. We integrate the orbits of all
three particles in the barycentric inertial frame, starting the binary
components on the x-axis and the test particle at (4.42,0,0) and with
velocity (0,0.0072,0), both w.r.t. the Solar mass object. With respect
to the centre of mass the position coordinates are ≈(4.369, 0, 0) and
the velocity coordinates are ≈(0, 0.0071, 0). For these settings
CJ = −9.0770 × 10−5, U (L1) = −9.1038 × 10−5 and U (L2) =
−9.0654 × 10−5, satisfying the conditions for a chaotic exchange
orbit. Fig. 3 plots the trajectory of the test particle over 500 yr in the
co-rotating frame. The test particle has multiple close encounters
with m2 within its Hill radius.

The period of the massive bodies is P ≈ 11.9 yr. We compute
the Lyapunov time for this problem using map (30) since it is the
map we are interested in studying. But note that the Lyapunov time
can be a function of the map and h. For h = 0.1 yr and nearby
initial conditions we calculate the Lyapunov time tL ≈ 0.3 P. Fig. 4
plots the error of the Jacobi integral as a function of time for an
integration over 5000 yr = 421 P = 1405 tL using h = 4 d.

We see that the accumulated errors of [DB]2 and [DB]2
4 are sim-

ilar, though the local error of the fourth-order method is substan-
tially smaller, often reaching the round-off limit of ∼10−15. We have
found in other experiments that in the presence of close encounters
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Figure 4. Relative error in the Jacobi constant effected by [DB]2 (HB15)
and [DB]2

4 with α = 1 (DH16). The top panel gives the accumulated error,
while in the bottom panel the error δ = |CJ(t) − CJ(t − h)|/|CJ(t − h)| over
one time step is plotted. The initial conditions are the chaotic exchange orbit
described in the text. While the local error for the fourth-order method is
considerably better, the accumulated error magnitudes of the two maps are
generally similar. Due to the chaotic nature of the orbit, the actual trajectories
of the two integrations differ after t ≈ 5 P.

the performance of symplectic integrators can deteriorate, and it is
not surprising [DB]2

4 and [DB]2 behave similarly.
If we let h = 8 d, a specialized integrator for Solar system

problems, MERCURY (Chambers 1999), yields an error of the or-
der 10−5. MERCURY has been found to not always be symplec-
tic and tends to yield wrong behaviour for three-body problems
(Hernandez 2016). For a contrasting example, consider the forward
stepping fourth-order map (20), corresponding to map (40) with S
empty, i.e. without employing the Kepler solver. If we set h = 4 and
a short t = 20 yr, this map yields a large error |�CJ/CJ| = 0.047.

If we let [DB]2
4 run longer than 5000 yr (but still at h = 4 d),

the Jacobi energy error may jump by orders magnitude, whereas
MERCURY does not yield such jumps. The jumps are associated
with close encounters to m2. However, while some close approaches
caused jumps, other closer approaches did not. This indicates that
a constant time step of h = 4 d is inappropriate for this problem in
the long term.

3.4 An N-body test

We also test the maps (27a) and (30) with α = 0 for an N-body sys-
tem. To this end, we use an implementation dubbed TRITON which
employs computational parallelism (see Section C2 in Appendix C
for details). We simulate a cluster of N = 1024 equal-mass parti-
cles, initially following a Plummer (1911) model with an ergodic
distribution function, equivalent to the simulations reported in fig.
5 of Gonçalves Ferrari et al. (2014). Like those authors, we use
N-body units (G = 1, M = 1 and E = −1/4, which imply a virial
radius of 1 and a crossing and relaxation time at half-mass of ∼ 2.4
and ∼ 45, respectively) and integrate the system from t = 0 to t
= 400 with steps of h = 10−4. Our initial conditions are different
from those used by Gonçalves Ferrari et al. (2014), but equivalent
in the sense that we use the same model to draw them from (we
set the centre of mass and total momentum to zero). The top panel
of Fig. 5 plots the core radius as a function of time for our runs as
well as two simulations reported by Gonçalves Ferrari et al. (2014):

Figure 5. Core radius (calculated as proposed by McMillan, Hut &
Makino 1990) and energy errors for simulations of a 1024-body Plum-
mer sphere. The core-radii data for the time-adaptive Hermite integrator and
SAKURA (Gonçalves Ferrari et al. 2014) are taken from fig. 5 of Gonçalves
Ferrari et al. (the Hermite integrator ground to a hold at core collapse be-
cause of close encounters). The middle and bottom panels plot, respectively,
the relative accumulated and short-term energy error for [DB]2 (HB15) and
[DB]2

4 with α = 0 (DH16) only, which we implemented in parallel in a code
TRITON as described in Section C2 of Appendix C.

one with their code SAKURA also using h = 10−4 and another with
a Hermite integrator using adaptive time stepping. SAKURA, which
also uses a binary kicks, violates both symplecticity and time re-
versibility (Hernandez & Bertschinger 2015), but becomes exact in
the two-particle limit, like the maps [DB]2 and [DB]2

4. Because of
this, its truncation errors (which cannot be represented by an er-
ror Hamiltonian) are unlikely to contain contributions arising from
two-body encounters. This property (which our maps share) enables
a reasonably accurate integration through core collapse. There is no
appreciable difference between the core-radius evolution of SAKURA

and our maps.
The accumulated energy errors for our fixed-time step integration

are considerable, reaching >10 per cent at the final time, though
staying at the same level of |δE/E| � 0.01 until core collapse (t ∼
300) as reported for SAKURA. There is no advantage of the fourth-
order method. This is because the constant time step is simply too
long to resolve close three-body encounters, which destroy any
advantage of the fourth-order method and cause sudden increases
of the accumulated error. The energy over a period of one time
unit (bottom panel of Fig. 5) is much better behaved, though not
surprisingly has increased by ∼ 102–3 by t ∼ 300, the time of core
collapse.

We thus conclude from this test that TRITON is as good as SAKURA

in its ability to integrate collision-dominated N-body dynamics, but
unlike SAKURA is symplectic and reversible. Despite the necessity
to make two calls to the kepler solver per particle pair and time
step as opposed to SAKURA’s one, TRITON is about twice as fast (see
Section C2 in Appendix C for the likely reason).
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4 U SING THE K EPLER SOLV ER
F O R SE L E C T E D I N T E R AC T I O N S O N LY

The main problem with the method of the previous section is the
computational expense of the Kepler solver needed in the binary
kicks (but see Section C2 in Appendix C). The benefit from using
such an approach is really only justified in close encounters. As
already discussed by Hernandez & Bertschinger (2015), a faster
method can be constructed by restricting the Kepler solver to se-
lected pairwise interactions. Let S be a set of K ≤ N(N − 1)/2
particle pairs for which binary kicks shall be applied. Then, we can
split the potential energy into contributions integrated with binary
kick and without:

V = Vs + Vc with Vs =
∑

(i,j )∈S
Vij and Vc =

∑
(i,j ) �∈S

Vij . (33)

In analogy to equations (25) and (26), we define the maps

ψ
Ws
h ≡

∏
(i,j )∈S in some order

ehĤij e−h(T̂i+T̂j ) and φs
h ≡ ψ

Ws
h ehT̂ . (34)

4.1 Extending the leapfrog

There are four distinct self-adjoint ways in which one can combine
the maps ehV̂c , ehT̂ and ψWs into a second-order integrator5

ψ
[DBK]2

h = φ
†s
h/2 ehV̂c φ

s
h/2 = ψ

Ws
h/2 e

h
2 T̂ ehV̂c e

h
2 T̂ ψ

†Ws

h/2 , (35a)

ψ
[BKD]2

h = ψ
Ws
h/2 e

h
2 V̂c ehT̂ e

h
2 V̂c ψ

†Ws

h/2 , (35b)

ψ
[DKB]2

h = e
h
2 T̂ e

h
2 V̂c ψ

†Ws

h/2 ψ
Ws
h/2 e

h
2 V̂c e

h
2 T̂ , (35c)

ψ
[KDB]2

h = e
h
2 V̂c φ

†s
h/2 φ

s
h/2 e

h
2 V̂c = e

h
2 V̂c e

h
2 T̂ ψ

†Ws

h/2 ψ
Ws
h/2 e

h
2 T̂ e

h
2 V̂c ,

(35d)

with error Hamiltonians (derived in Section A2 of Appendix A)

H [DBK]2

err = −h2

24
{{Vc,T },T } + h2

12
{{T ,Vc},Vc} + h2

24
{{T ,Vs},Vc}

+ h2

48
{{T ,Vs},Vs}3 + O(h4), (36a)

H [BKD]2

err = h2

12
{{Vc,T },T } − h2

24
{{T ,Vc},Vc} + h2

24
{{T ,Vs},Vc}

+ h2

48
{{T ,Vs},Vs}3 + O(h4), (36b)

H [DKB]2

err = −h2

24
{{Vc,T },T } + h2

12
{{T ,Vc},Vc} + h2

6
{{T ,Vs},Vc}

+ h2

48
{{T ,Vs},Vs}3 + O(h4), (36c)

H [KDB]2

err = h2

12
{{Vc,T },T } − h2

24
{{T ,Vc},Vc} − h2

12
{{T ,Vs},Vc}

+ h2

48
{{T ,Vs},Vs}3 + O(h4). (36d)

These error Hamiltonians are combinations of the error Hamilto-
nian (12) for the corresponding leapfrog integrator restricted to
V = Vc, the error Hamiltonian (28) of the map [DB]2 restricted to

5 Again, alternatives obtained by swapping φ
†s
h/2 and φs

h/2 in equations (35a)
and (35d) are identical except for a reversal of the order of binary kicks.

Figure 6. Verification of equation (36d). E and H̃2 (the surrogate Hamilto-
nian up to order h2) are calculated as a function of time for an integration of
the outer Solar system using the integrator (35d) for three choices of the set
S (empty: s = 0, only Sun–planet pair: s = 4, all pairs: s = 10). As expected
|�H̃2/H̃2| is smaller than |�E/E| in all cases.

V = Vs and the mixed term {{T,Vs},Vc}. Interestingly, the amplitude
of the mixed term is not the same between these four methods:
that for map [DKB]2 (35c) is four times larger than for the maps
[DBK]2 and [BKD]2 (35a,b). Moreover, the maps (35a,d) require
only one ordinary kick operation ehV̂c per step (either in the middle
or at beginning and end, when the accelerations computed in the
previous step can be recycled), while the maps (35b,c) require two
kicks per step. Hence, of the maps (35) the best computational ef-
ficiency to accuracy relation is achieved by the map [DBK]2 (35a)
and the worst by the map [DKB]2 (35c).

We now verify equation (36d) by explicitly monitoring H̃2, the
surrogate Hamiltonian H̃ up to second order (i.e. H plus the expres-
sions given in equation 36d computed via formulae 13 and 14b), for
an integration of the outer Solar system (the same as in Section 3.2).
We consider three cases: either S is empty (when the integrator is
the ordinary kick–drift–kick leapfrog), S contains the four Sun–
planet pairs or S contains all 10 pairs (when the map is identical to
[DB]2 = HB15).

Fig. 6 shows |�E/E| and |�H̃2/H̃2| as a function of time. For all
three cases, |�H̃2/H̃2| is smaller than |�E/E| and |�H̃2/H̃2| ∝ h4

(not shown), confirming equation (36d).

4.2 A fourth-order hybrid integrator

In order to preserve the fourth-order nature of the integrator, we
apply the method of equation (20) and construct the map

ψ
[KDBK]2

h = e
h
6 V̂c φ

†s
h/2 e

2h
3 V̂c φ

s
h/2 e

h
6 V̂c , (37)

which combines the maps (18) and (27a). In Section A3 of Ap-
pendix A, we derive the error Hamiltonian of this map to be

H [KDBK]2

err = h2

48
{{T ,Vs},Vs}3 + h2

72
{{T ,Vc},Vc} + O(h4), (38)

which in the limits of empty set S or its complement Sc obtains
the respective previous cases (19) and (28), as expected. Inter-
estingly, the mixed term {{T,Vs},Vc}, accounting for three-body
interactions (i,j,k) with (i,j ) ∈ S and (i,k) �∈S, does not appear.
The terms

Gs ≡ {{T ,Vs},Vs}3 and Gc ≡ {{T ,Vc},Vc} (39)

MNRAS 465, 1201–1217 (2017)

 at U
niversity of L

eicester on January 4, 2017
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


1208 W. Dehnen and D. M. Hernandez

Figure 7. Verification of the order of map (40) with α = 1. We integrate
the outer Solar system with the four Sun–planet pairs in S for 1000 yr.
The errors are well fit by h4, except below h ∼ 1 d, where round-off errors
dominate).

can be integrated (see Section C1 in Appendix C) to obtain the
fourth-order map (with a parameter α as in equation 30)

ψ
[KDBK]2

4
h = e

h
6 V̂c e−α h3

96 Ĝs φ
†s
h/2 e

2h
3 (V̂c− h2

48 Ĝc) e(α−1) h3
48 Ĝs

· φs
h/2 e−α h3

96 Ĝs e
h
6 V̂c . (40)

This is a generalization of the fourth-order map (30) insofar as it
obtains that map when all particle pairs are in set S, and we use
‘DH16’ for both forms. Conversely, when set S is empty the map
(40) reduces to the integrator (20).

We first numerically verify the order of the integrator (40) with
α = 1, using the outer Solar system with the four Sun–planet pairs
placed in set S and the six planet–planet pairs in Sc. This grouping
is more efficient than the others we tested as we will see below. We
integrate for t = 1000 yr and plot in Fig. 7 the absolute energy error
at the end of the integration against the step size h. The errors are
well fit by a |�E/E| ∼ h4 curve, as expected, as long as the errors
are dominated by truncation (rather than round-off) error.

4.2.1 Testing conservation of first integrals

Next, we consider the conservation of isolating integrals. Since the
integrator (40) is a composition of maps that each conserve linear
and angular momentum, so does the integrator as a whole. Addi-
tionally, the existence of the function H̃ guarantees that the energy
error is bounded over exponentially long times (Hairer et al. 2006).
We test these predictions by integrating the outer Solar system over
100 000 yr in steps of h = 1 yr. The error in isolating integrals as a
function of time is shown in Fig. 8. There is no secular drift of the
energy error as a function of time as expected. The errors in linear
and angular momentum are not exactly zero, but grow like ∝t0.8 and
∝t, respectively. This is steeper than t1/2 expected for accumulation
of (unbiased) round-off errors and indicative of bias in the rounding
behaviour (Henrici 1962), though our computations use the com-
mon IEEE 754 standard for floating-point arithmetic. In this test, we
used the Kepler solver described by Wisdom & Hernandez (2015),
which shows some bias in tests of a two-body orbit. While such
bias can be controlled by careful numerical implementation (Rein
& Tamayo 2015), the value of keeping integration errors near the

Figure 8. Conservation of isolating integrals for the integrator (40) with
α = 1 applied to an integration of the outer Solar system. The energy error is
bounded, as expected, while the momentum and angular momentum errors
are at the machine precision initially and grow in time due to accumulation
of roundoff error.

Table 1. Efficiency of the map (40) when integrating the outer
Solar system for 1000 yr for different choices of S. For the
first and last choice, the method reduces to maps (20) and (30),
respectively.

S Sc 〈|�E/E|〉 tcpu

Empty All 2.7 × 10−8 0.90 s
Sun–planet Planet–planet 3.0 × 10−8 0.40 s
All Empty 3.1 × 10−8 0.73 s

machine precision, especially for chaotic problems, is questionable
(Portegies Zwart & Boekholt 2014; Hernandez 2016).

4.2.2 The effect of set S on efficiency

As mentioned previously, we are interested in the efficiency of
map (40) when the grouping of particle pairs into S is varied. For
three settings of S (those used in Section 4.1 and Fig. 6 above),
we find (by trial and error) the computation time tcpu required to
reach 〈|�E/E|〉 � 3 × 10−8. The results are shown in Table 1. The
grouping with only the Sun–planet interactions integrated by the
Kepler solver is the most efficient, followed by the maps (30) (all
10 interactions performed via the Kepler solver) and (20) (no Kepler
solver used). One may try to explain this behaviour by studying the
error Hamiltonian of the map (40) up to order h4, but the difficulties
in doing so are likely to exceed those we encountered above for the
simpler map (30).

4.2.3 Efficiency comparison with other methods

Another point of interest is how map (40) compares with other inte-
grators in terms of efficiency. We use an integration of the outer Solar
system to compare three methods that use the Kepler solvers: our
new fourth-order map [KDBK]2

4 = DH16 (equation 40), the second-
order method [DKB]2 (35c), which has the worst efficiency to accu-
racy relation of the extended leapfrog maps (35), and a fourth-order
map obtained by composing three [DKB]2 maps with the recipe
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Figure 9. Comparison of efficiency of various integrators (see text) when
integrating the outer Solar system for 10 000 yr. At high accuracy, our
new fourth-order map (40) (labelled DH16) is the most efficient, but at low
accuracy the second-order method [DKB]2 becomes competitive.

of Yoshida (1990), labelled ‘Yoshida 4th’. [DKB]2 was compared
against other integrators before (Hernandez & Bertschinger 2015;
Hernandez 2016), and shown to often be the most efficient out of a
set of seven published methods. DH16, [DKB]2, and ‘Yoshida 4th’
require a choice for S, and we use the same grouping as in Fig. 8,
i.e. that for which map (40) is most efficient. The result is shown in
Fig. 9. Map (40) is most efficient for most of the parameter region
shown. In particular, it is always better than the other fourth-order
map tested (Yoshida 4th). This is not very surprising, since that latter
method requires three times as many calls to the Kepler solver.

5 D I S C U S S I O N A N D C O N C L U S I O N

We have analysed novel symplectic and time-reversible integra-
tors for collisional N-body problems, where close encounters play
an important role in driving the dynamics. These encounters ren-
der collisional N-body problems much harder than collision-less
dynamics and are the main stumbling block for efficient time
integration.

Most symplectic integrators which have been applied to colli-
sional dynamics in the past are only second-order accurate and
generally handle close encounters inaccurately. A promising ap-
proach to overcome this hurdle is the usage of the Kepler solver
to deal with close encounters (Gonçalves Ferrari et al. 2014).
Hernandez & Bertschinger (2015) have demonstrated how to use
this approach to build a symplectic and time-reversible integrator
(HB15 or [DB]2 in our nomenclature). We provide theoretical justi-
fication for the success of HB15 and some related methods: terms of
the error Hamiltonian that originate from close two-body encoun-
ters are eliminated at all orders. This leaves only close encounters
of three or more particles to contribute to the truncation error.

The lowest-order error Hamiltonian of the resulting integration
methods can be expressed as the nested Poisson bracket {{T,V},V}
of kinetic and potential energies excluding terms of the form
{{T,Vij},Vij}, which account for two-body encounters and are elim-
inated owing to the Kepler solver (Vij denotes the potential energy
arising form the gravitational interaction of particles i and j, see
equation 10). Since T is quadratic in the momenta and V a func-
tion of the positions only, the term {{T,V},V} itself depends only
on the particle positions. As a consequence, this terms acts like a
potential energy and is integrable. Thus, the associated truncation

error can be corrected in a symplectic way and with little extra
cost (compared to the solutions of the Kepler problems), resulting
in the fourth-order symplectic and time-reversible integrator [DB]2

4
presented in Section 3.2.

The usage of the Kepler solver may be restricted to a subset S of
all pairwise particle interactions (Hernandez 2016), when the terms
{{T,Vij},Vij} and {{Vij,T},T} from interactions (i,j ) � ∈S contribute
to the error Hamiltonian. This may be tolerable if such interactions
are never close (for example, those between the gas giant planets
in the Solar system). However, these terms can also be eliminated
in a different way, namely using the method of Chin (1997) which
cancels {{Vij,T},T} and integrates {{T,Vij},Vij} without the need for
backward steps (as opposed to the fourth-order symplectic method
of Yoshida 1990), resulting in the new symplectic integrator ‘DH16’
of equation (40). This map is a hybrid between the fourth-order
forward method of Chin (1997) and our fourth-order extension
[DB]2

4 of HB15, which is its limiting case when all particle pairs
are in set S.

Various tests and efficiency comparisons of the maps we discuss
are presented. As our tests revealed, the novel fourth-order integra-
tors are generally more efficient than previous methods when high
accuracy is demanded. However, they still suffer inaccuracies, in
particular in some chaotic systems. For a chaotic restricted three-
body exchange orbit test and an N = 1024 cluster simulation, our
fourth-order integrator DH16 with all particle pairs treated with
the Kepler solver performed similarly to the second-order meth-
ods HB15 or (for the cluster simulation only) SAKURA of Gonçalves
Ferrari et al. (2014), which also used the Kepler solver for each
particle pair although in a way that destroys symplecticity and re-
versibility. The dynamics of these systems is likely dominated by
three-body encounters, and the only way to increase the accuracy
in such situations appears some form of adaption either of the time
stepping or of the set S of particle pairs for which the Kepler solver
is used. These methods change from one surrogate Hamiltonian to
another and may lose symplecticity but retain time reversibility. We
plan to explore these ideas in the future.
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A P P E N D I X A : SE C O N D - O R D E R E R RO R H A M I LTO N I A N S

Applying the Campbell–Baker–Haussdorff formula (4) twice and thrice, we find

log
(

e
1
2 XeY e

1
2 X

)
= X + Y − 1

24
[X,[X,Y ]] + 1

12
[Y ,[Y ,X]] + · · · , (A1)

log
(

e
1
2 Xe

1
2 Y eZe

1
2 Y e

1
2 X

)
= X + Y + Z − 1

24
[X + Y ,[X + Y ,Z]] − 1

24
[X,[X,Y ]] + 1

12
[Z,[Z,X + Y ]] + 1

12
[Y ,[Y ,X]] + · · · . (A2)

Because of equation (6), these relations translate directly to corresponding relations for the surrogate Hamiltonian of a composite map:

e
h
2 ÂehB̂e

h
2 Â has H̃ = A + B − h2

24
{{B,A},A} + h2

12
{{A,B},B} + O(h4) (A3)

e
h
2 Âe

h
2 B̂ehĈe

h
2 B̂e

h
2 Â has

H̃ = A + B + C − h2

24
{{C,B},B} − h2

24
{{B + C,A},A} + h2

12
{{B,C},C} + h2

24
{{A,B + C},B + C} + O(h4). (A4)

A1 The method of Hernandez and Bertschinger

In order to derive the surrogate Hamiltonians of the schemes (27), we specify the order in which the maps (21) are applied in equation (25).
To this end, we index the K ≡ N(N − 1)/2 particle pairs

(in,jn), n = 1 . . . K, (A5)

with the implication that pair (i1,j1) comes first in the map ψW
h (and last in its adjoint ψ

†W
h ). If we further define Vn ≡ Vinjn , the map (27b)

can be expressed recursively as

ψ
[BD]2

h = ψ̄K
h , ψ̄n

h = e
h
2 (V̂n+T̂ ) e− h

2 T̂ ψ̄n−1
h e− h

2 T̂ e
h
2 (V̂n+T̂ ), ψ̄0

h = ehT̂ , (A6)

where we made use of

eh(V̂ij +T̂i+T̂j ) e−h(T̂i+T̂j ) = eh(V̂ij +T̂ ) e−hT̂ , (A7)

which follows from equation (6) and {T − Ti − Tj,Vij} = 0. Applying equation (A4) to the recursion (A6), we find the following recursion
for the surrogate Hamiltonian of ψ̄n

h

H̃n = H̃n−1 + Vn − h2

12
{{T ,H̃n−1},H̃n−1} + h2

12
{{Vn + T ,H̃n−1 − T },H̃n−1 − T } − h2

24
{{H̃n−1,T },T }

− h2

24
{{H̃n−1 − T ,Vn + T },Vn + T } + O(h4) (A8)

and H̃0 = T . For future reference, it proves useful to consider the particular form H̃n = T + Wn where ∂Wn/∂ pi = O(h2). In this case,
equation (A8) reduces to

H̃n = T + Wn−1 + Vn + h2

24
{{T ,Vn},Wn−1} + O(h4). (A9)
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Symplectic fourth-order N-body maps 1211

Figure A1. Energy error as a function of α for map (29) when integrating an elliptic Kepler orbit with eccentricity e = 0.9 over one in 100 steps. Only α = 0
(not shown) gives an error at the level of machine precision.

For the Hernandez & Bertschinger integrator, we make the ansatz H̃n = T + V̄n + h2En with En to be determined and

V̄n ≡
∑
k<n

Vk. (A10)

Equation (A9) then gives for Wn = V̄n + h2En

En − En−1 = 1

24
{{T ,Vn},V̄n−1} + O(h2). (A11)

Note that ∂Wn/∂ pi = O(h2) (as required for equation A9) follows by induction from W0 = 0 and the recursion (A11).
The error Hamiltonian of the complete map then follows as

H [BD]2

err = h2EK + O(h4) = h2

24

K∑
n=1

{{T ,Vn},V̄n−1} + O(h4) = h2

24

K∑
n=1

n−1∑
k=1

{{T ,Vinjn},Vikjk
} + O(h4). (A12)

The double sum in this last form includes each pair of pairs {{T,Vij},Vlk} exactly once, except for those with (i,j) = (l,k) which are not contained
at all. The term {{T,V},V}, which occurs in the error Hamiltonian of the leapfrog, contains each pair of pairs {{T,Vij},Vlk} twice, except for
(i,j) = (l,k) which are contained once. Thus, the form (A12) is identical to

H [BD]2

err = h2

48

(
{{T ,V },V } − {{T ,V },V }2

)
+ O(h4) = h2

48
{{T ,V },V }3 + O(h4). (A13)

Writing (with Hn = Vn + T)

φ
†
h = ehT̂ ψ

†W1
h · · · ψ

†WK
h = ehT̂ e−hT̂ ehĤ1 · · · e−hT̂ ehĤK = ehĤ1 · · · e−hT̂ ehĤK e−hT̂ ehT̂ = ψ

W1
h · · · ψ

WK
h ehT̂ , (A14)

we see that φ
†
h and φh = ψ

WK
h · · · ψW1

h ehT̂ are identical except for a reversal of the order of binary kicks.
The error Hamiltonian of the map (29) can be obtained analogously to that of map (27b) as

Hα
err = α(α − 1)h2

6
{{V ,T },T } + αh2

4
{{T ,V },V }2 + (1 + 12α)h2

48
{{T ,V },V }3 + O(h4). (A15)

We demonstrate the error properties of the map (29) by integrating the equal-mass two-body problem with elliptic orbit of eccentricity e =
0.9 over one period in 100 equal time steps. For α = 0, the magnitude of the energy error approaches the computational round-off error,
while for all other values the energy error becomes substantial as shown in Fig. A1. Some α are better than others, but the smallest error is
approximately 10−5. Thus it is essential to let α = 0.

A2 Error Hamiltonian for the extended leapfrog

The map [BDK]2, i.e. φ
s
h/2ehV̂cφ

†s
h/2, differs from (35a) only in the order of binary kicks, which as we will see has no effect on the second-

order error terms. The maps [BDK]2 and (35b) have the same recursive form as the map (27b), but start from ψ̄0
h = e

h
2 T̂ ehV̂c e

h
2 T̂ and

ψ̄0
h = e

h
2 V̂c ehT̂ e

h
2 V̂c , respectively. Consequently, the recursion for the respective surrogate Hamiltonian is identical to equation (A8), except

that

H̃0 = T + Vc − h2

24
{{Vc, T },T } + h2

12
{{T ,Vc},Vc} + O(h4) for ψ [BDK]2

and (A16)

H̃0 = T + Vc + h2

12
{{Vc,T },T } − h2

24
{{T ,Vc},Vc} + O(h4) for ψ [BKD]2

. (A17)

MNRAS 465, 1201–1217 (2017)

 at U
niversity of L

eicester on January 4, 2017
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


1212 W. Dehnen and D. M. Hernandez

With the ansatz H̃n = T + Vc + V̄n + h2En + O(h4), we obtain from equation (A9)

En − En−1 = 1

24
{{T ,Vn},V̄n−1} + 1

24
{{T ,Vn},Vc} + O(h2) (A18)

and therefore

H̃ [BDK]2 = H̃K = T + V − h2

24
{{Vc,T },T } + h2

24
{{T ,Vs},Vc} + h2

12
{{T ,Vc},Vc} + h2

48
{{T ,Vs},Vs}3 + O(h4), (A19)

H̃ [BKD]2 = H̃K = T + V + h2

12
{{Vc,T },T } + h2

24
{{T ,Vs},Vc} − h2

24
{{T ,Vc},Vc} + h2

48
{{T ,Vs},Vs}3 + O(h4). (A20)

The error Hamiltonian (36d) for the integrator (35d) follows directly from that of the integrator (27b) derived in equation (A13) above and
equation (A3) to account for the maps e

h
2 V̂c at the beginning and end.

The map (35c) can be written

ψ
[DKB]2

h = e
h
2 T̂ e

h
2 V̂c e− h

2 T̂ ψ
[DB]2

h e− h
2 T̂ e

h
2 V̂c e

h
2 T̂ , (A21)

when threefold application of equation (A3) starting from H̃ [DB]2
gives the error Hamiltonian reported in equation (36c).

A3 Error Hamiltonian for the integrator of Section 4.2

The map (37) differs from

ψ
[KBDK]2

h = e
h
6 V̂c φ

s
h/2 e

2h
3 V̂c φ

†s
h/2 e

h
6 V̂c = e

h
6 V̂c ψ

Ws
h/2 e

h
2 T̂ e

2h
3 V̂c e

h
2 T̂ ψ

†Ws

h/2 e
h
6 V̂c , (A22)

only in the order of binary kicks, because of equation (A14). We rewrite the map (A22) recursively as

e
h
6 V̂c ψ̄K

h e
h
6 V̂c , ψ̄n

h = e
h
2 (V̂n+T̂ ) e− h

2 T̂ ψ̄n−1
h e− h

2 T̂ e
h
2 (V̂n+T̂ ), ψ̄0

h = e
h
2 T̂ e

2h
3 V̂c e

h
2 T̂ (A23)

where again Vn ≡ Vinjn for (in,jn) ∈ S. The recursion relation for ψ̄n
h defined in (A23) only differs from that of equation (A6) by the starting

point. Consequently, the recursion for its surrogate Hamiltonian is identical to equation (A8), but with

H̃0 = T + 2

3
Vc − h2

36
{{Vc,T },T } + h2

27
{{T ,Vc},Vc} + O(h4). (A24)

With the ansatz H̃n = T + 2
3 Vc + V̄n + h2En + O(h4), we obtain from equation (A9)

En − En−1 = 1

36
{{T ,Vn},Vc} + 1

24
{{T ,Vn},V̄n−1} + O(h2) (A25)

and therefore

H̃K = T + Vs + 2

3
Vc − h2

36
{{Vc,T },T } + h2

27
{{T ,Vc},Vc} + h2

36
{{T ,Vs},Vc} + h2

24

K∑
n=1

{{T ,Vn},V̄n−1} + O(h4) (A26)

Finally, the surrogate and error Hamiltonian of the complete map (A22) follows from one last application of equation (A3) to account for the
maps e

h
6 V̂c at begin and end

H [KBDK]2

err = h2

48
{{T ,Vs},Vs}3 + h2

72
{{T ,Vc},Vc} + O(h4), (A27)

in particular the mixed term {{T,Vs},Vc} does not appear. Since at second order, H [KBDK]2

err does not depend on the order of binary kicks,
H [KDBK]2

err = H [KBDK]2

err + O(h4).

A P P E N D I X B: FO U RTH - O R D E R ER RO R H A M I LTO N I A N S

The Campbell–Baker–Haussdorff formula (4) up to order five reads

log
(

eXeY
)

= X + Y + 1

2
[XY ] + 1

12

(
[X2Y ] + [Y 2X]

)
− 1

24
[YX2Y ]

− 1

720

(
[X4Y ] + [Y 4X]

)
+ 1

360

(
[XY 3X] + [YX3Y ]

)
+ 1

120

(
[XYXYX] + [YXYXY ]

)
. . . , (B1)

where we have used a compact bracket notation, e.g. [XY3X] = [X,Y,Y,Y,X] = [X,[Y,[Y,[Y,X]]]]. With this, we can extend equations (A1) and
(A3) to fourth order:

log
(

e
1
2 XeY e

1
2 X

)
= X + Y − 1

24
[X2Y ] + 1

12
[Y 2X] + 7

5760
[X4Y ] − 1

720
[Y 4X] + 1

360
[YX3Y ] + 1

360
[XY3X]

+ 1

120
[YXYXY] − 1

480
[XYXYX] . . . , (B2)
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Symplectic fourth-order N-body maps 1213

H̃ = A + B + h2

12
{AB2} − h2

24
{BA2} + 7

5760
h4{BA4} − h4

720
{AB4} + h4

360
{AB3A} + h4

360
{BA3B}

− h4

480
{ABABA} + h4

120
{BABAB} + O(h6) (B3)

(e.g. Yoshida 1990, equation 3.2; Hairer et al. 2006, equation 4.15), using the compact notation also for Poisson brackets. With this relation
we can compute the error Hamiltonian of any self-adjoint composite symplectic map to fourth order.

B1 The fourth-order error terms

Note that the nested Poisson brackets {TV 4} and {TV 3T} vanish (regardless of their coefficients). The remaining fourth-order error terms can
be split into contributions from two-, three- and four-body encounters: {VT 3V} = {VT 3V}2 + {VT 3V}3, {TVTVT} = {TVTVT}2 + {TVTVT}3

and {VTVTV} = {VTVTV}2 + {VTVTV}3 + {VTVTV}4. Using the notation Vn ≡ Vinjn from Section A1 in Appendix A, we have

{VT3V}2 =
∑

n

{VnT
3Vn}, (B4a)

{VT3V}3 =
∑

n

∑
k �=n

{VnT
3Vk}, (B4b)

{TVTVT}2 =
∑

n

{TVnTVnT}, (B4c)

{TVTVT}3 =
∑

n

∑
k �=n

{TVnTVkT}, (B4d)

{VTVTV}2 =
∑

n

{VnTVnTVn}, (B4e)

{VTVTV}3 =
∑

n

∑
k �=n

{VnTVnTVk} + 2{VnTVkTVk}, (B4f)

{VTVTV}4 =
∑

n

∑
k �=n

∑
l �=n,k

{VnTVkTV l}, (B4g)

where we have used {VnTVk} = {VkTVn}. These error terms can be constructed from the following elementary terms, ordered by the number
of particles contributing (all indices are distinct).

{VijT
4} = −3

Gmimj

r9
ij

[
35(vij · xij )4 − 30r2

ij v
2
ij (vij · xij )2 + 3r4

ij v
4
ij

]
, (B5a)

{VijT
3Vij } = −9

G2mimj (mi + mj )

r8
ij

[
3(vij · xij )2 − r2

ij v
2
ij

]
, (B5b)

{TV ij TV ij T } = 4
G2mimj (mi + mj )

r8
ij

[
6(vij · xij )2 − r2

ij v
2
ij

]
, (B5c)

{Vij TV ij TV ij } = −4
G3mimj (mi + mj )2

r7
ij

; (B5d)

{VijT
3Vik} = −9

G2mimjmk

r7
ij r

3
ik

[
(xij · xik)

[
5(vij · xij )2 − r2

ij v
2
ij

]
− 2r2

ij (xij · vij )(xik · vij )
]
, (B6a)

{TV ij TV ikT } = 6
G2mimjmk

r7
ij r

3
ik

[
5(xij · vij )2(xij · xik) − 2r2

ij (xij · vij )(xik · vij ) − r2
ij v

2
ij (xij · xik})

]

+ 2
G2mimjmk

r5
ij r

5
ik

[
9(xij · vij )(xik · vik)(xij · xik) − 3r2

ij (xik · vij )(xik · vik) − 3r2
ik(xij · vij )(xij · vik) + r2

ij r
2
ik(vij · vik)

]
, (B6b)

{Vij TV ij TV ik} = −4
G3mimjmk(mi + mj )

r6
ij r

3
ik

(xij · xik), (B6c)

{Vij TV ikTV ij } = −2
G3mimjmk(mi + mj )

r6
ij r

3
ik

(xij · xik) − G3mim
2
jmk

r6
ij r

5
ik

[
3(xij · xik)2 − r2

ij r
2
ik

]
, (B6d)

{Vij TV ikTV ik} = −2
G3mimjmk(mi + mk)

r3
ij r

6
ik

(xij · xik) − G3mimjm
2
k

r5
ij r

6
ik

[
3(xij · xik)2 − r2

ij r
2
ik

]
; (B6e)

{Vij TV ikTVjk} = G3mimjm
2
k

r5
ij r

3
ikr

3
jk

[
3(xij · xik)(xij · xjk) − r2

ij (xik · xjk)
] − G3mim

2
jmk

r3
ij r

5
ikr

3
jk

[
3(xij · xik)(xik · xjk) − r2

ik(xij · xjk)
]
, (B7a)
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1214 W. Dehnen and D. M. Hernandez

{Vij TV ikTV il} = −G3mimjmkml

r5
ij r

5
ikr

3
il

[
3([r2

ik xij + r2
ij xik] · xil)(xij · xik) − r2

ij r
2
ik([xik + xij ] · xil)

]
, (B7b)

{Vij TV ikTVj l} = G3mimjmkml

r5
ij r

3
ikr

3
j l

[
3(xij · xik)(xij · xj l) − r2

ij (xik · xj l)
]
. (B7c)

The three-body-encounter terms originating from Poisson brackets with just two V components, equations (B6a) and (B6b), depend on the
particle masses just through the product, while the distance of the first particle pair in each Poisson bracket tends to be more important. In the
case of the Poisson brackets with three V components, for the three-body-encounter terms (B6c), (B6d) and (B6e) the masses and distance of
the particle pair that appears twice are more important.

B2 The leapfrog integrator

For the kick–drift–kick and drift–kick–drift leapfrog integrators, we obtain immediately from equation (B3)

H [KD]2

err = −h2

24
{TV2} + h2

12
{VT2} − h4

720
{VT4} + h4

120
{TVTVT} + h4

360
{VT3V } − h4

480
{VTVTV} + O(h6), (B8)

H [DK]2

err = h2

12
{TV2} − h2

24
{VT2} + 7h4

5760
{VT4} − h4

480
{TVTVT} + h4

360
{VT3V } + h4

120
{VTVTV} + O(h6). (B9)

B3 The fourth-order extensions of the method of Hernandez and Bertschinger

The error Hamiltonian of the method (30) presented in Section 3.2 differs from that of the original method of Hernandez & Bertschinger
(2015) only by the additional terms arising from the correction maps. As in Section A1 of Appendix A before, we consider the first pair
to be the innermost in the recursive formulation of the integrator. Thus, we actually analyse the map [KBDK]2

4 rather than [KDBK]2
4. The

fourth-order version of equation (A9) can be calculated from equation (B3) as

H̃n = T + Wn−1 + Vn + h2

24
{TVnWn−1} − h4

17280
{VnT

3Wn−1} − h4

2160
{Wn−1T

3Vn} − h4

1440
{TVnT Wn−1T }

+ h4

1920
{VnTVnT Wn−1} + h4

5760
{VnT Wn−1TVn} + h4

360
{VnT Wn−1T Wn−1} − h4

480
{Wn−1T Wn−1TVn} + O(h6). (B10)

Analogously to the analysis in Section A1 of Appendix A, we write the surrogate Hamiltonian of the intermediate maps ψ̄n as

H̃n = T + V̄n + h2E2,n + h4E4,n + O(h6). (B11)

The second-order term E2, n has contributions from the second-order error (A11) and the correction map e(α−1) h3
48 Ĝ, i.e.

E2,n = 1

24

∑
k<n

∑
l<k

{TVkVl} + α − 1

24

∑
k

∑
l<k

{TVkVl}, (B12)

which satisfies ∂E2,n/∂ pi = 0, and hence commutes with any potential. This contributes a second-order error

h2E2,K = αh2

24

∑
n

∑
k<n

{TVnVk} = αh2

48
{TVV}3. (B13)

The increment of the fourth-order error terms resulting from Wn = E2, n in equation (B10) is

(E4,n − E4,n−1)[3] = 1

24
{TVnE2,n−1} = 1

576

∑
k<n

∑
l<k

{VkTV lTVn} + α − 1

576

∑
k

∑
l<k

{VkTV lTVn}. (B14)

The resulting contribution to the fourth-order error Hamiltonian follows as

h4E4,K[3] = h4

576

∑
n

∑
k<n

∑
l<k

{VkTV lTVn} + (α − 1)h4

576

∑
n

∑
k

∑
l<k

{VkTV lTVn}

= h4

576

∑
n

∑
k<n

∑
l<k

{VkTV lTVn} + (α − 1)h4

576

∑
n

∑
k �=n

{VnTVkTVk} + (α − 1)h4

1152
{VTVTV}4, (B15)

where we have re-arranged the sums (as well as re-labelled the indices and exploited {VkTVn} = {VnTVk}) in order to separate contributions
from three- and four-body encounters (we address the overlap between the first two terms later). The correction terms at the beginning and
end contribute second- and fourth-order errors (using equation (B3) with A = αh 3

∑
n
∑

k < n{TVnVk}/48 and B = T + V)

−αh2

24

∑
k

∑
l<k

{TVkVl} + αh4

288

∑
k

∑
l<k

{TVkVl(T + V )(T + V )}

= −αh2

48
{T V V }3 + αh4

288

∑
n

∑
k<n

{TVnTVkT } − αh4

288

∑
n

∑
k �=n

{VnTVkTVk} − αh4

576
{VTVTV}4 (B16)
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Figure B1. Error distribution for HB15 (=[DB]2) and its fourth-order accurate extension DH16 (=[DB]2
4 (30) with α = 0), for all 720 pair orderings of the

hierarchical quadruple problem described in the text. The distribution of rms energy errors is much narrower than that of absolute errors, indicating that the
tail of low energy errors is mostly due to chance agreements of the final with the initial total energy. A Kolmogornov–Smirnov analysis suggests a significant
difference between the CDFs from the two integrators.

and the combined contributions to the error Hamiltonian from the terms (B13), (B15) and (B16) is

h4

576

∑
n

∑
k<n

∑
l<k

{VkTV lTVn} − (α + 1)h4

576

∑
n

∑
k �=n

{VnTVkTVk} − (α + 1)h4

1152
{VTVTV}4 + αh4

288

∑
n

∑
k<n

{TVnTVkT }, (B17)

in particular, the second-order error vanishes (by construction).
The contributions to E4, n − E4, n − 1 from the fifth-order terms in equation (B10) is

(E4,n − E4,n−1)[5] = − 1

17280
{VnT

3V̄n−1} − 1

2160
{V̄n−1T

3Vn} − 1

1440
{TVnT V̄n−1T }

+ 1

1920
{VnTVnT V̄n−1} + 1

5760
{VnT V̄n−1TVn} + 1

360
{VnT V̄n−1T V̄n−1} − 1

480
{V̄n−1T V̄n−1TVn}, (B18)

which contributes

h4E4,K = − h4

17280

∑
n

∑
k<n

{VnT
3Vk} − h4

2160

∑
n

∑
k<n

{VkT
3Vn}− h4

1440

∑
n

∑
k<n

{TVnTVkT } + h4

1920

∑
n

∑
k<n

{VnTVnTVk}

+ h4

5760

∑
n

∑
k<n

{VnTVkTVn} + h4

360

∑
n

∑
k<n

∑
l<n

{VnTVkTV l} − h4

480

∑
n

∑
k<n

∑
l<n

{VlTVkTVn} (B19)

to the error Hamiltonian. The total error Hamiltonian is the sum of equations (B17) and (B19).
In principle, equations (B17) and (B19) in conjunction with equations (B6) and (B7) express the dependence of the error Hamiltonian

on the order in which the binary kicks are applied. However, it appears beyond human reasoning to obtain much useful insight from these
equations. Therefore, we now explore the effect of the order of binary kicks by numerical experiments.

To this end, a simple problem with widely separated Vij seems useful. We choose an equal-mass, coplanar, co-rotating, aligned, symmetric,
hierarchical quadruple system. The outer equal-mass binary has e = 0.5 and is initially at apocentre. Each of its components is in turn an
equal mass tighter binary with 100 times smaller semimajor axis and e = 0.9, one starting from pericentre, the other from apo-centre (to
break degeneracies in the pair potentials). All three binaries are coplanar, co-aligned (the eccentricity vectors point in the same direction),
and rotate anticlockwise; the period ratio between inner and outer binary is

√
1003/2 ≈ 707. We integrate this system using map (30) with

α = 0 for half the period of the outer binary using steps equal to 0.14 times the inner binary period. The energy error is bounded in time if h
is small enough.

We perform a separate integration for each of the 6! = 720 possible orders of the particle pairs and measure the accumulated energy error
at the end of each integration and the rms energy error over the course of the integration. Fig. B1 shows the resulting cumulative distribution
functions (CDFs) together with the equivalent results for the integrator HB15 (=[DB]2). The horizontal dashed blue lines separate the 10th
and 20th percentiles of the CDFs. The rms errors show less variation and thus have smaller tails in their CDFs. According to our analysis,
the ordering does not affect the second-order error terms of HB15, but only its fourth-order errors. For a range of h, the magnitude of the
errors of the two methods is similar because for this particular problem HB15 behaves similar to a fourth-order method, most likely because
three-body encounters (which are solely responsible for the second-order error of HB15) contribute negligibly to the overall error which
instead is dominated by four-body encounters (which contribute only at fourth and higher orders).

We expect the underlying error distributions of the solid lines to be different. A two-sample KS test supports this expectation and rejects
the null hypothesis that the underlying distributions are the same at the 0.1 per cent level. The same statements hold for the dashed lines.
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The dashed lines show the spread in errors is larger for DH16, but this relative spread disappears in the solid lines. We ask whether there is a
pattern to the orderings corresponding to the low error tail of the dashed red curve: we did not find such a pattern. We investigated whether the
two tight pairs are in a preferential location in the orderings in the best 10 per cent of the CDF: are the tight pairs usually adjacent, separated
or at the beginning. The answer to all these questions is no.

APPENDIX C : IMPLEMENTATION DETA ILS

C1 The force gradient terms

The map e−h3Ĝ requires a second loop over all particles pairs. After the ordinary accelerations due to V,

ai = − 1

mi

∂V

∂xi
= −

∑
j �=i

Gmj

r3
ij

xij , (C1)

are computed in a first loop, the accelerations due to

G = {T, V, V} =
∑

i

1

mi

∂V

∂xi
· ∂V

∂xi
=

∑
i

mi a2
i = −

∑
i<j

Gmimj

r3
ij

xij · aij with aij ≡ ai − aj (C2)

can be computed in a second loop as

gi = − 1

mi

∂G

∂xi
= 2

∑
j �=i

Gmj

r5
ij

[
aij r2

ij − 3xij (aij · xij )
]
. (C3)

The accelerations required for the map e−h3Ĝs and generated by the term

Gs = {T, V, V}3 = −
∑
i<j

Gmimj

r3
ij

xij · ãij with ãij ≡ aij + G(mi + mj )

r3
ij

xij (C4)

are calculated in a similar way as

g̃i = − 1

mi

∂Gs

∂xi

= 2
∑
j �=i

Gmj

r5
ij

[
ãij r2

ij − 3xij (ãij · xij )
]
. (C5)

Note that ãij is the difference between the accelerations of particles i and j and due to all other particles, while aij includes their mutual
attraction. The accelerations generated by Gs and Gc defined in equation (39) are computed analogously, except that only pairwise interactions
contained in, respectively, sets S and Sc are considered.

C2 Efficient calculation and parallelization of binary kicks

The fact that the composite map ψW requires exactly the reverse order of binary kicks as its adjoint ψ†W renders their efficient implementation
non-trivial. Fortunately, these maps are unaffected by a re-ordering which preserves for each particle the order of its binary-kick interactions.
In particular, two individual maps ψWij and ψWkl are mutually independent and can be swapped or even computed simultaneously if all
four indices differ. For sufficiently large N, this freedom allows synchronous execution of binary kicks, which can be implemented by
computational parallelism on all levels, including vectorization.

For vectorization, we use the Kepler solver without branches (except one to ensure 0 ≤ h < P for elliptic orbits).6 Most contemporary
CPUs support vectors of size nvec = 4 for double-precision arithmetic, implying that nvec Kepler problems can be solved synchronously. An
efficient way to vectorize the map ψW for N particles with K = N(N − 1)/2 interactions (for the algorithms 27 and 30) is similar to a round
robin sports tournament, where each team plays each other team exactly once. This requires K/�N/2	 rounds with �N/2	 interactions. As
long as nvec ≤ �N/2	, all K interactions can be computed with �K/nvec� calls to the vectorized Kepler solver, see also Fig. C1.

Multithreaded hardware can be exploited by task-based recursive parallelism using the divide-and-conquer paradigm as explained in
Fig. C2. To ensure that the order of binary kicks is unaffected by whether or not an interaction task is executed serially or in parallel, the
recursive task-based algorithm must also be used with the serial execution down to tasks too small to be split. For the adjoint map, the orders
of parallelization stages and vectorized loops (see Figs C1 and C2) are simply reversed. Remarkably, the requirement of a deterministic order
of interactions for each particle renders our parallel implementation deterministic like serial computer programs.

The required ordering of binary-kick interactions implies a rather complex memory access pattern, which in turn hampers computational
efficiency as the run-time environment must maintain cache coherence. Despite this, our implementation, TRITON, achieves good performance
and reasonable scalability (strong scaling of 0.72 for 16 cores and N = 1024). For the [DB]2 simulation reported in Fig. 5, TRITON required
13.2 h on 16 cores or 41 h on 4 cores, about half of the 3 d reported by Gonçalves Ferrari et al. (2014) for their code SAKURA (also running on
four cores with very similar CPU), which also uses the Kepler solver for each particle pair, but only once per time step. Thus, per call to the
Kepler solver, TRITON is almost four times faster than SAKURA, reflecting the fact that TRITON is vectorized while SAKURA is not.

6 The Kepler solver is a modification of one published online as part of another project, whose author obtained it elsewhere on the internet but lost track of its
origin. It is based on solving Kepler’s equation in universal variables in way that is independent of the nature of the orbit (elliptic, parabolic or hyperbolic).
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Figure C1. Vectorization of binary kicks must avoid mutually dependent interactions within the same vector. Left: the N(N − 1)/2 interactions (blue discs)
between N (=10 in this example) particles are vectorized in the order indicated in red (obtained by the round-robin method, see text) or its reverse for the
adjoint map, and requires vector size nvec ≤ �N/2	. Right: the N × M interactions between two distinct particle sets are most easily vectorized using a diagonal
periodic pattern with vector size nvec ≤ min (N,M).

Figure C2. Computation of binary kicks via task-based recursive parallelism. Left: the task of all interactions between two distinct particle sets is divided,
by halving each set, and executed in two stages (as indicated) of two mutually independent sub-tasks, which can be done in parallel. Right: the task of all
interactions between a set of particles is divided by halving the set. The sub-tasks of interactions within each half are done in parallel first, before the interactions
between the two halves are done in a second stage.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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