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Abstract 

Forest Extent Monitoring in the Congo Basin using L-Band Synthetic Aperture Radar 

(SAR) 

James E.M. Wheeler          

This thesis presents improved forest extent monitoring using L-band Synthetic 
Aperture Radar (SAR) data freely provided by the Japanese Aerospace Exploration 
Agency (JAXA) over the Congo Basin, which contains the second largest area of 
rainforest in the world. Forest loss in the region, estimated to be up to 0.63 billion 
Mg in the period 1990-2005, is predominantly driven by bush fuel collection, at a 
characteristically small scale.  Single medium resolution SAR scene (75 km x 75 km), 
wide area (550 km x 550 km) and full Central African (2000 km x 3300 km) forest 
extent classifications are generated, and inform best practice for operational annual 
forest cover production from L-band SAR data. Improvements in one or more of 
overall accuracy, consistency, scope and replicability are observed compared with 
existing wide area forest cover and forest/non-forest products in Central Africa, 
using robust statistical methods to quantify errors in reported class areas. 
Seasonally inundated forest, a regional obstacle to previous SAR forest cover 
classifications, is identified by the range of co-polarised SAR data and tested using 
a novel metric incorporating a normalised cumulative rainfall value aggregated by 
sub-basin catchment area and SAR polarimetric analysis, which is itself compared 
with coarse resolution Soil Moisture and Vegetation Water Content Metrics from 
the Advanced Microwave Scanning Radiometer for the Earth Observing System 
(AMSR-E). A quantitative analysis of multiple SAR resolutions supports the 
continued and future use of 30 m and higher resolution L-band SAR data to map 
forest cover in the region.  
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1  Chapter 1: Introduction 

 

This chapter outlines the context of this research, beginning with a review of the 

importance of tropical forests, their uses and value, and the direct and indirect threats 

posed by human activity, principally through wood extraction and development, and 

the effects of climate change. The contribution of forest loss to climate change is also 

discussed. The focus then moves to tropical forests in the Congo Basin, placing it in a 

global context and highlighting its vulnerability and the relative lack of data from the 

region. The difficulties associated with various forest carbon measurements in the 

region are covered, and a rationale for improved forest mapping to supplement forest 

carbon stock measuring is argued. The benefits and limitations of the two major remote 

sensing methods used for wide area forest mapping, optical and radar, are outlined in 

the context of nine major studies of the region completed since the 1980s. Finally, a 

justification for this thesis’s use of radar remote sensing is presented, including an 

explanation of its fundamental principles, and the knowledge gaps and methodological 

difficulties, forming the basis of the three major research questions. 

 

1.1 Tropical Forest Loss 

 

Deforestation and forest degradation are a major source of anthropogenic greenhouse 

gas emissions (Malhi & Grace, 2000). Stored carbon is released into the atmosphere 

when forests are burned to create land available for agriculture (FAO, 2010). Exposed 

and especially drained soil also releases carbon, which for certain soil types such as peat 

has been stored in greater volumes (as soil organic carbon, SOC) than in the living woody 

material (as above ground biomass, AGB) (Englhart et al., 2012). Conversion of forest to 

other land cover and land use types reduces the area available to store carbon and 

therefore reduces the ability to offset the increases of atmospheric carbon from fossil 

fuel emissions. Deforestation and forest degradation result in loss of biodiversity, and 

are specifically mentioned in the Convention for Biological Diversity’s (CBD) ‘Aichi 
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Biodiversity Targets’ as part of their 2011-2020 plan (CBD, 2010). While economic 

growth usually accompanies forest loss, caused by increased mineral extraction, logging 

and clearing for agriculture and other infrastructure developments, the economic cost 

of forest loss can be considerable. The United Nations Food and Agriculture 

Organisation (UN-FAO) produces a regular global Forest Resources Assessment (FRA), 

which describes the current state of the world’s forests based on submitted reports 

from individual countries, and more recently incorporates independent remote sensing 

based surveys. The second most recent FRA, in 2010, describes in detail the various 

economic uses of forests, or ‘ecosystem services’, divided into productive and 

protective categories (FAO, 2010). Productive uses include extraction of wood for fuel 

and industrial roundwood (wood forest products), and for food and fodder (non-wood 

forest products (NWFPs)). Wood forest product extraction is relatively easy to quantify, 

and while it can be destructive and lead to forest degradation, sustainable management 

of these resources can encourage conservation and regulation of carbon loss, especially 

in low population density rural areas (Megevand et al., 2013). The protective function 

of forests relates mostly to their role in soil and water protection (including preventing 

desertification and for conservation of water reserves), but also to coastal defences 

(FAO, 2010). 

 

The size of the contribution of forests to the global carbon cycle, both as sources and as 

sinks of carbon, is currently not known to an acceptable standard for climate modelling. 

Plants capture atmospheric CO2 during photosynthesis and store it as biomass, which 

contains ~50% carbon (Gibbs et al., 2007). The net carbon captured by plants during 

photosynthesis, after the carbon lost through plant (autotrophic) respiration is 

accounted for, is known as net primary production (NPP), and is used to assess the 

response of land based plants to climate change (Cao & Woodward, 1998; Melillo et al., 

1993). NPP increases with increasing levels of atmospheric CO2 (CO2 fertilisation), up to 

a saturation point as plants physiologically acclimatise (Cao & Woodward, 1998). As the 

rate of plant respiration may increase with increasing levels of atmospheric CO2, the 

effect of increased photosynthetic activity may be lessened. However, the amount of 

carbon captured through global forest NPP is exceeded by the carbon released from 



3 
 

forest loss. While there is uncertainty about the exact quantity of carbon stored globally 

in forests, tropical forests contain a greater mass of carbon per hectare of forest and 

harbour greater biodiversity than temperate and boreal forests. Global carbon 

emissions from land use change (which principally refers to emissions from changes in 

areas of forest) has reportedly remained constant since 1959 at 1.5 ± 0.5 billion tonnes 

of carbon per year (PgC year-1) (Canadell et al., 2007). However, due to reforestation 

and afforestation efforts in temperate and boreal biomes, the spatial distribution of land 

use change emissions is now almost entirely within the tropics (ibid.). This means that 

tropical forests play a greater role in both land use change emissions, and at the same 

time demonstrate a greater capacity for carbon sequestration than other forest biomes. 

A much longer growing season in tropical areas allows for faster forest regeneration 

during reforestation efforts, and higher volume and faster carbon sequestration. In 

addition, the capacity to mitigate climate change through afforestation in boreal regions 

may be less than previously expected, due to the decrease in surface sunlight reflectivity 

(albedo) associated with forest cover compared with snow/ice that it would replace 

(Betts, 2000). Over tropical forests, however, it is predicted that the albedo may be 

higher than unforested areas due to the increased cloud cover from evapotranspiration  

(Canadell & Raupach, 2008). This suggests that efforts to reduce climate change through 

reforestation and reduction of deforestation and forest degradation are better directed 

towards tropical regions. Monitoring the loss of carbon into the atmosphere is of 

particular importance in tropical forests, where the density of AGB, measured in metric 

tonnes of carbon per hectare, is much higher on average than in temperate or boreal 

forests. In addition, tropical forests tend to be less accessible, for logistical and often 

political reasons, causing problems for wide-scale and regular ground-based 

monitoring. 

A key intergovernmental programme that has been created in recognition of the 

important role of tropical forests in climate change, and the potential benefits of their 

conservation, is the UN REDD programme (Reducing Emissions from Deforestation and 

forest Degradation in developing countries), which aims to incentivise reducing carbon 

emissions from forest loss in developing countries through financial means (Herold & 

Johns, 2007). REDD supports REDD+, which adds “conservation of forest stocks, 
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sustainable management of forests, and enhancement of forest carbon stocks” to the 

climate change mitigating actions of REDD (UNFCCC, 2010). In order to achieve the goals 

of REDD, a system of monitoring, reporting and verification (MRV) is necessary to assess 

forest area and stocks of carbon contained in AGB in participating countries.  Table 1.1 

outlines the benefits and limitations of several techniques used for measuring tropical 

forest carbon stocks, and remains largely correct since original publication by Gibbs et 

al. (2007). All methods listed ultimately rely on forest inventory data to calculate either 

local, regional, species-specific or biome-specific relationships between their forest 

measurements and the carbon contained. 
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Table 1.1: Comparison of methods for measuring tropical forest carbon stocks. Adapted and updated from 

Gibbs et al. (2007) 

Method  Description Benefits Limitations Uncertainty 

Biome 

averages 

Estimates of average forest 

carbon stocks for broad forest 

categories based on a variety 

of input data sources  

• Immediately available at 

no cost 

• Data refinements could 

increase accuracy 

• Globally consistent 

• Fairly generalized 

• Data sources not properly 

sampled to describe large areas 

High 

Forest 

inventory 

Relates ground-based 

measurements of tree 

diameters or volume to forest 

carbon stocks using allometric 

relationships 

• Generic relationships 

readily available 

• Low-tech method widely 

understood 

• Can be relatively 

inexpensive as field-labor is 

largest cost 

• Generic relationships not 

appropriate for all regions 

• Can be expensive and slow 

• Challenging to produce globally 

consistent results 

Low 

Optical 

remote 

sensors 

• Uses visible and infrared 

wavelengths to measure 

spectral indices and correlate 

to groundbased forest carbon 

measurements 

• Ex: Landsat, MODIS 

• Satellite data routinely 

collected and freely 

available at global scale 

• Globally consistent 

• Limited ability to develop good 

models for tropical forests 

• Spectral indices saturate at 

relatively low C stocks 

• Can be technically demanding 

High 

Very high-

res. 

airborne 

optical 

remote 

sensors 

• Uses very high resolution 

(∼10–20 cm) images to  

measure tree height and 

crown area and allometry to 

estimate carbon stocks 

• Ex: Aerial photos, 3D digital 

aerial imagery 

• Reduces time and cost of 

collecting forest inventory 

data 

• Reasonable accuracy 

• Excellent ground 

verification for 

deforestation baseline 

• Only covers small areas (10 000s 

ha) 

• Can be expensive and 

technically demanding 

• Few allometric relations based 

on crown area are available1 

Low to 

medium 

Radar 

remote 

sensors 

• Uses microwave or radar 

signal to measure forest 

vertical structure 

• Ex: ALOS PALSAR, ERS-1, 

JERS-1, Envisat, Sentinel 1A, 

ALOS-2 PALSAR-2, Radarsat 

1,2, TerraSAR-X 

• Satellite data are 

generally free 

• Can be accurate for 

young or sparse forest 

• Launch of BIOMASS 

mission in 2020 will 

provide dedicated forest 

carbon sensor with 

improved signal saturation 

• Less accurate in complex 

canopies of mature forests 

because signal saturates 

• Mountainous terrain also 

increases errors 

• Can be expensive and 

technically demanding 

Medium 

Laser remote 

sensors 

• LiDAR uses laser light to 

estimate forest height/vertical 

structure 

• Ex: Carbon 3-D satellite 

system combines Vegetation 

canopy LiDAR (VCL) with 

horizontal imager 

• Accurately estimates full 

spatial variability of forest 

carbon stocks  

• Satellite based IceSAT-

GLAS system provided >3 

million point estimates of 

forest structure to assist in 

tropical forest carbon map2 

• Airplane-mounted sensors only 

currently operational option 

• Satellite system no longer 

operational 

• Requires extensive field data for 

calibration 

• Can be expensive and 

technically demanding 

Low to 

medium 

1Since 2007 there has been some work on crown allometry, e.g. (Goodman et al., 2014)   2Based on 

(Saatchi et al., 2011) 
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1.2 The Congo Basin 

There are several recent estimates for the volume of carbon stored in Central African 

tropical forests (Gaston et al., 1998; Gibbs et al., 2007; Baccini et al., 2008; Saatchi et 

al., 2011), but there is often a reliance on allometric models that are limited to forest 

inventory information with very limited samples from the more accessible periphery of 

the Congo Basin’s forests or even fail to include any Central African inventory data and 

instead use global biome averages (Kearsley et al., 2013).  

For reasons such as political instability, numerous civil wars and lack of infrastructure, 

forest loss is not as severe in Africa compared with the two other major tropical forested 

continents, South America and South East Asia (Justice et al., 2001; Mayaux & Achard, 

2010). Relatively small scale felling to provide biomass fuel is currently the largest driver 

of anthropogenic deforestation in the Congo Basin, but the potential for agricultural 

development and exploitation of logging and mining concessions pose a considerable 

threat to the region’s forests (Megevand et al., 2013). In addition to direct human 

clearing of forests, there is a reported ongoing drying trend in the Northern Congo Basin 

(Zhou et al., 2014; Chambers & Roberts, 2014), which could build up to a climate change 

induced drought that would cause a tropical forest collapse and release large volumes 

of carbon (Lewis, 2006). 

For the same reasons, as well as sheer scale, a ground based survey of forest extent for 

the entire Congo Basin would be hugely impractical, especially for the Democratic 

Republic of Congo (DRC), which recent estimates report contains over 60% of the 

Central African forest area (Mayaux et al., 2013).  

 

1.3 Forest Definition 

 

The definition of what constitutes a ‘forest’ typically refers to a threshold value of tree 

/ canopy cover in a minimum area, with a minimum threshold for tree height and 

sometimes stem diameter (diameter at breast height – DBH – is a usual measurement) 
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for those trees included in the calculation. The values for each of these measures is 

changeable depending on the mapping authority, usually by nation or international 

monitoring agency (Lund (2015) maintains an exhaustive and regularly updated list of 

national and international tree and forest area definitions), with differences across the 

globe, often between neighbouring countries (as a more extreme example, the reported 

Zimbabwe definition of forest area lists thresholds of >80% canopy cover and >15 m 

tree height, whereas Mozambique’s definition has thresholds of >25% canopy cover and 

>7 m tree height). This leads to very different forest area reporting, which has a further 

impact on reporting deforestation and forest degradation (Romijn et al., 2013). The 

differences often relate to the objectives of the mapping authority, whether they are 

for environmental purposes, commercial logging, agriculture etc. For example, the 

United Nations Food and Agriculture Organisation (FAO) consider land use in their 

definition, excluding tree plantations, whereas the definition by the United Nations 

Framework Convention on Climate Change (UNFCCC) does not (ibid.). Remote sensing 

measurements do not directly report on forest metrics and always rely to some extent 

on modelling based on the relationship between a received signal and the particular 

characteristic, with sources of error at each step. In addition, there are definitions for 

deforestation, afforestation, forest degradation and even what constitute trees that 

vary from authority to authority. This study uses the following UNFCCC definition of 

forest where applicable:  

“a minimum area of land of 0.05-1.0 hectares with tree crown cover (or equivalent 

stocking level) of more than 10-30 per cent with trees with the potential to reach a 

minimum height of 2-5 metres at maturity in situ. A forest may consist either of closed 

forest formations where trees of various storeys and undergrowth cover a high 

proportion of the ground or open forest”  (UNFCCC, 2001) 

The disparity in reported forest area in one forest cover and areal extent study at a 

global scale Since there are ranges in this definition, generally the upper thresholds (1 

ha minimum area; 30% tree crown cover; 5 m tree height) were used. When analysing 

remote sensing data in areas where there are few forest plots, it is difficult to adhere to 

this definition, especially for SAR, where the signal is more closely correlated to the tree 

density or AGB, especially when multiple wavelengths are used (Englhart et al., 2011). 
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In addition, the forest degradation definition is not set, as it was considered beyond the 

scope of the available data to measure and report more subtle changes, particularly in 

terms of field measurements and validation. Further information about forest 

definitions used in forest and wetland studies using remote sensing is detailed in section 

2.3 

 

1.4 Summary and Aims  

 

The central objective of this research is the generation of forest extent maps, as high 

quality as possible, of the Congo Basin from spaceborne wide area synthetic aperture 

radar data acquired during the period 2007-2010. Three research questions are 

identified as the major challenges posed by this task, and their solutions aim to 

contribute to scientific knowledge in this field as well as inform the generation of a 

benchmark forest extent product for local and international forest research in the Congo 

Basin. These are: 

1. What are the ideal image acquisition parameters and classification techniques 

for an annual forest map in the Congo Basin from spaceborne SAR data, given 

currently available data and regional seasonal effects on image quality?  

2. To what extent, and how, can spaceborne SAR data in the Congo Basin, 

combined with rainfall data metrics, account for seasonally inundated forest in 

SAR-derived forest maps? 

3. What are the effects of scale on Congo Basin forest maps generated from SAR 

data, and how does this impact the accuracy of maps generated from coarser 

resolution wide coverage SAR datasets? 

Identifying areas of change in the region, and examining the applicability of the 

developed techniques to surrounding Central African countries, using similar data, is a 

key aspect of this research. 
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2 Chapter 2: Background 

 

2.1 Remote Sensing of Tropical Forests 

 

Ground-based forest inventories provide the most direct and accurate method of 

assessing tree extent, as well as other forest parameters such as species distribution 

and AGB, and are necessary for interpreting remote sensing data and validating results, 

but alone they are not practical for regular wide area surveys, particularly in dense 

tropical forest. The UN FAO FRAs, mentioned in Chapter 1, use a template that allows 

individual countries to report their forest area, most of which is produced from forest 

inventory surveys of differing quality (three tiers, from ‘expert estimates’ to ‘low 

intensity or incomplete surveys, older data’ to ‘high reliability, recent sources with 

national scope’)  the most recent being in 2015 . There is a wide range of country report 

qualities, in terms of detail, how recently and frequently data has been collected, and 

completeness, with examples at either end of the scale including those from North 

Korea (FAO, 2015a) and Mexico (FAO, 2015b). The North Korean report is largely 

incomplete with extrapolated forest area using information from a remote sensing 

survey conducted in 1998, whereas the country report for Mexico includes information 

from multiple data sources, including an established network of forest inventories and 

remote sensing data, and is regularly conducted to monitor change in forest extent.  

Remote sensing from airborne and especially spaceborne sensors has the potential for 

consistent ‘wall-to-wall’, regular surveys of forest extent. Forest extent is measurable 

from the two most widely used earth observation systems: passive optical (visible, near 

infrared and short wave infrared frequencies) and active Synthetic Aperture Radar (SAR) 

(microwave frequencies). SAR also has the potential to inform on aspects of forest 

structure, depending on the modes of acquisition used. A reliable wall-to-wall 

forest/non-forest map can also be used to improve methods of AGB modelling by 

facilitating interpolation between known or modelled values of AGB where there is 

spacing between samples, an example of which is AGB derived from tree-height 
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measurements from the Ice, Cloud and land Elevation Satellite’s Geoscience Laser 

Altimeter System (IceSAT-GLAS) instrument (Saatchi et al., 2011).  

 

2.2 Remote Sensing of Central African Forests 

 

Table 2.1 details ten major forest remote sensing products with full coverage of the 

Congo Basin, and is followed by analysis of each based on their methods, spatial and 

temporal resolution, and accuracy.  
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Table 2.1: Major wide area remote sensing projects relevant to Central African forest mapping, with methods and reported accuracies 

Project name Sensor;  

sensor type 

Spatial 

resolution 

Method; reported accuracy/error Forest 

Definition 

Coverage Year(s) Organisation;  

reference 

AVHRR Pathfinder 

Percent Tree Cover 

(PTC) 

AVHRR; optical 8km Regression tree analysis, manually 

interpreted Landsat training data; 

11.03% standard error with training data 

60% canopy 

cover (DeFries 

et al., 2000) 

Pan-

tropical 

Mid-1980s –mid-

1990s 

University of Maryland 

(UMD), Woods Hole 

Research Centre; (DeFries 

et al., 2002) 

Global Remote Sensing 

Survey (RSS) 

Landsat; optical 30m OBIA, supervised classification of 20km x 

20km samples at lat-long degree 

intersections (1% of global land area); 

88% accuracy for change detection 

>10% tree 

cover 

(Lindquist & 

D’Annunzio, 

2016) 

Global 1990, 2000, 2005 UN FAO, Joint Research 

Centre (JRC); (FAO & JRC, 

2012; Lindquist & 

D’Annunzio, 2016) 

GLC2000/ TREES II; 

Central African Mosaic 

Project (CAMP)*; 

Global Rain Forest 

Mapping Project 

(GRFM)* 

SPOT-

VEGETATION; 

optical; ERS-1; C-

band SAR; JERS-1;          

L-band SAR  

1km (100m) Thresholding of temporal NDVI profiles, 

visual interpretation,  supplementary 

SAR mosaic datasets; global accuracy of 

68.6% across all classes 

>40% tree 

cover 

(Mayaux et 

al., 2004) 

Global 2000 (1994, 1996) Joint Research Centre 

(JRC), NASDA (now JAXA); 

(Mayaux et al., 2004; De 

Grandi et al., 1999; 

Rosenqvist et al., 2000)  

Vegetation Continuous 

Fields (VCF) 

Terra-MODIS; 

optical 

250m, 

500m, 1km 

Regression tree analysis, using Landsat 

training data; RMSE of tree cover 9-23% 

Canopy cover 

of trees >5 m 

in height 

(Gross et al., 

2017) 

Global 2000-2010 

(Annual) 

UMD, NASA; (Hansen et 

al., 2003; DiMiceli et al., 

2011) 
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Project name Sensor;  

sensor type 

Spatial 

resolution 

Method; reported accuracies/error Forest 

Definition 

Coverage Year(s) Organisation;  

reference 

Tree Cover Continuous 

Fields 

Landsat; optical 30m Rescaling of MODIS VCF with Landsat 

mosaics; RMSE of tree cover 9.4% 

Tree cover of 

trees >5 m in 

height 

Pan-

tropical 

2000 UMD; (Sexton et al., 

2013) 

Global Forest Change Landsat; optical 30m Decision tree model, with reference to 

high res imagery, MODIS NDVI time 

series; 81.9%-87% user’s accuracy (gain-

loss, in tropics)  

Canopy cover 

of trees >5 m 

in height 

(Gross et al., 

2017) 

Global 2000-2012 UMD, NASA, Google;  

(Hansen et al., 2013) 

GlobCover ENVISAT-MERIS; 

optical 

300m Unsupervised classification of 

spectrotemporal information (for 

vegetation classes) ; 59.9%-61.34% user’s 

accuracy across all landcover types 

>15% canopy 

cover (closed 

to open 

forest) 

Global 2005/6, 2009 ESA; (Arino et al., 2007; 

Bontemps et al., 2010) 

CAMP* ERS-1; C-band 

SAR 

200m Single C-band SAR mosaic; e.g. Amplitude 

and normalised variance texture analysis 

and thresholding; 68% overall accuracy 

for swamp and lowland rain forest  

30-70% 

canopy cover 

(tree cover 

mosaic) 

Central 

Africa 

1994 JRC; (De Grandi et al., 

1999; De Grandi et al., 

2000a) 

GRFM* JERS-1;          L-

band SAR 

100m Two season L-band mosaics; e.g. speckle 

filtering, bespoke unsupervised pattern 

recognition algorithm; 87% accuracy for 

FNF product 

>10% canopy 

cover (the 

same as that 

of FAO, 2001) 

Pan-

tropical 

1996 (x2) NASDA (now JAXA); 

(Rosenqvist et al., 2000) 

(Mayaux et al., 2004); JRC 

(Sgrenzaroli et al., 2004) 

ALOS Kyoto & Carbon 

Initiative FNF 

ALOS-PALSAR 1 

and 2; L-band SAR 

25m, 50m, 

500m 

OBIA, regional thresholds for FNF; 

84.86% - 91.25% overall accuracy 

>10% woody 

cover 

Global 2007-2010; 2015-

2017 (Annual) 

JAXA, JRC; (Shimada et 

al., 2014) 

*GRFM and CAMP projects describe SAR mosaicking projects – methods and accuracies refer to cited studies that used these datasets
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Pan tropical optical remote sensing approaches to forest mapping began with coarse 

spatial resolution (≥1km) data, combined with samples of medium (what was then 

considered high) resolution (30m) imagery to estimate rates of forest change. The 

Tropical Ecosystem Environment Monitoring by Satellites (TREES) programme (Mayaux 

et al., 1999), the UN FAO FRA 2000 (FAO, 2001), and the Advanced Very High Resolution 

Radiometer (AVHRR) Pathfinder programme (DeFries et al., 2002) all incorporated one 

or both of these approaches during the 1990s. The AVHRR Pathfinder derived product 

described in DeFries et al. (2002) used training data from a global network of 200 

manually interpreted Landsat scenes, aggregated to the resolution of AVHRR (8km) to 

derive a percent tree cover (PTC) product. The AVHRR Pathfinder Land Data Set (Smith 

et al., 1997) was used, which is an atmospherically corrected AVHRR product from the 

AVHRR sensors on the NOAA -7, -9 and -11 satellites, containing Normalised Difference 

Vegetation Index (NDVI) values from red and near infrared channels and five bands of 

calibrated reflectances (bands 1-2) and brightness temperatures (bands 3-5), and was 

released as daily and 10-day composite grids.  

The UN FAO also conducts regular global remote sensing surveys (RSS) which now 

complement the FRAs (FAO & JRC, 2012). These are based on object based image 

analysis (OBIA) of Landsat scenes (Lindquist & D’Annunzio, 2016), and cover pan tropical 

regions (1990, 2000) and the entire globe (2005). The RSSs analysed 11,000 sampled 

Landsat scenes, from the United States Geological Survey’s (USGS) Global Land Survey 

dataset (GLS), which were segmented using a region growing multi-resolution 

algorithm, using spectral values from bands 3, 4 and 5 in the Landsat 4, 5, and 7 sensors. 

The years of the Landsat products used for each RSS epoch do not describe the exact 

acquisition year of the imagery used, but rather they are the years around which the 

best available images were centred.  

Improvements in processing power, new sensors, and availability of data, have resulted 

in a steady refinement of spatial resolution in optical remote sensing studies since then, 

with the resolution of wall-to-wall forest extent maps in Central Africa dropping to 500m 

(Hansen et al., 2003), 300m (Arino et al., 2007), 250m (DiMiceli et al., 2011) and more 

recently 30m (Sexton et al., 2013; Hansen et al., 2013). Persistent cloud cover over 

tropical forests remains a barrier to frequent mapping of forest extent at finer spatial 
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resolutions, resulting in wide-area optical cloud free mosaics generated from data 

spanning several years. This can reduce the accuracy of classifications, and also hinders 

rapid detection of fine-scale forest change over large areas. 

Without standardised definitions of forest cover or land use/land cover classes, it is 

difficult to compare these products in a meaningful way, and this is compounded by 

differences in spatial and temporal resolution, minimum mapping unit (MMU), bands 

used, as well as the methods used for validation and accuracy reporting. Gross et al. 

(2017) compared the TREES, MODIS-VGT and GFC studies in Sub-Saharan Africa and 

found differences in forest change at regional and local levels, particularly in medium 

tree cover densities and in transition zones between the Congo Basin and surroundings, 

which was suggested to be due to the class boundaries used in the original products. 

The study by Hansen et al. (2013) is an achievement in terms of Landsat scenes 

processed and the release of an unprecedented and useful product, although the 

precise algorithms have not been released, and the interim annual products from which 

their loss/gain maps were derived have not been released for independent testing. 

 

2.2.1 Central African SAR Forest Mapping 

There have been three major projects to map Central African forests using spaceborne 

SAR sensors. The Central African Mosaic Project (CAMP) used data collected in 1994 

from the European Space Agency’s (ESA) ERS-1 (European Remote Sensing Satellite) (De 

Grandi et al., 1999). The Global Rainforest Mapping project (GRFM) used two 1996 

mosaics (wet and dry season acquisitions) from the Japanese Space Exploration 

Agency’s (JAXA) Japanese Earth Resources Satellite (JERS-1) (Rosenqvist et al., 2000). 

Most recently, the Kyoto and Carbon Initiative (K&C) has produced four annual 

forest/non-forest (FNF) products from 2007-2010 using data from JAXA’s Advanced 

Land Observing Satellite – Phased Array L-band SAR (ALOS-PALSAR) (Shimada et al., 

2014), and has continued to produce annual FNF products (2015-onwards) using the 

currently operating ALOS-PALSAR2 sensor. The utility of a SAR system for wide-area 

wall-to-wall forest mapping depends on several factors, the most important being the 

band wavelength used, the polarisation of the sent and received signal, and consistency 
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of atmospheric and ground conditions (particularly surface wetness) at time of data 

acquisition.  

Sgrenzaroli et al. (2004) compiled a list of eight 1994 forest/non-forest studies that used 

data from the ERS-1 sensor (the same as was used in the CAMP), with spatial resolutions 

ranging from 25-100m, all looking at South American sites, and with local rather than 

regional coverage, three using a speckle filter, two using texture analysis, with various 

classification techniques, and with validation from Landsat TM scenes and field 

campaigns. The original papers are not easily accessible, but the methods likely 

informed later tropical forest studies using C-band SAR. 

Differences in ground and atmospheric conditions at the time of acquisition (a 

mosaicked image is comprised of many smaller near-square scenes, or in some cases a 

smaller number of long datastrips, all acquired at different times by an orbiting sensor 

or constellation of sensors) cause problems for automated classification, since SAR is 

sensitive to the dielectric constant of a target, meaning the more moisture, the stronger 

a reflection will be. Wet conditions in one scene and dry conditions in an adjacent scene 

will result in an overall backscatter difference that will need to be accounted for during 

classification, which is especially difficult if the wet conditions are uneven throughout 

the scene. The closer in acquisition time (and season) the scenes or datastrips are that 

comprise a mosaic, the better the chances are that atmospheric and ground conditions 

will be more stable. 

The first two SAR forest mapping projects, CAMP and GRFM, created products at a 

down-sampled 100 m spatial resolution (due to limited processing power at the time 

(De Grandi et al., 1999; De Grandi et al., 2000b)) using a single co-polarised SAR band 

(VV and HH, respectively), while the K&C Initiative has released down-sampled 25 and 

50 m maps generated from dual co- and cross-polarised data (HH and HV) (Shimada et 

al., 2014). CAMP used shorter wavelength C-band data, whereas the GRFM project and 

the K&C Initiative used longer wavelength L-band SAR data. The acquisition strategy of 

the JERS-1 sensor was such that adjacent datastrips were acquired within one day of 

each other. This allowed the GRFM project to use one wet season (high water) and one 

dry season (low water) mosaic from the same year (De Grandi et al., 2000a). CAMP used 
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a similarly short time window to acquire all images (44 days) (De Grandi et al., 1999). 

The K&C Initiative acquired ALOS-PALSAR datastrips over a longer period (June-October) 

for each year, with missing data occasionally replaced by data from the previous or 

following years (Shimada et al., 2014).  

Despite the longer acquisition time for each mosaic, the dual-polarisation mode (section 

2.3.4 explains why dual-polarisation offers greater forest mapping capabilities), long 

wavelength, higher spatial resolution, and four-year time series of the K&C Initiative 

mosaics make them the most promising and complete dataset to work with for forest 

mapping in Central Africa to date. In addition, JAXA’s ALOS-2 satellite has continued 

production of the K&C Initiative annual mosaics after a four-year hiatus. Any techniques 

that improve forest analysis from the initial four years of K&C Initiative data have the 

added advantage of being directly applicable to future releases using ALOS-2 data. JERS-

1 and ALOS-PALSAR data are also of great importance in mapping tropical forest 

wetlands, where the sensitivity of L-band SAR to moisture allows the separation of 

inundated from dry areas for convenient classification (Bwangoy et al., 2010; Betbeder 

et al., 2014; Ferreira-Ferreira et al., 2015; Rosenqvist et al., 2015; Thomas et al., 2015).  

Table 2.2 details nine studies of forest and forested wetlands in the tropics, that use L-

band SAR from either JERS-1, ALOS-PALSAR, or both, as well as one study of the ERS-1 

CAMP product. There are a wide range of classification methods, and in some cases the 

SAR dataset is used only as an ancillary one to inform an optical data driven product. 

The key point of this table is to illustrate the variety of classifications that have been 

achieved from SAR in this area, as well as the different measures of success (accuracies 

range from 68% overall accuracy to 97.1%, and in some cases a product accuracy 

assessment was not performed). The dataset parameters and the general classification 

methods are described in more detail in sections 2.3 and 2.4, as well as in the papers 

cited in the table. The study by Bueso-Bello et al. (2017) is not discussed in further detail 

in this study. Although it is certainly a progressive study and one which is unprecedented 

in terms of scale, use of multiple parameters from a unique tandem SAR acquisition 

system, and effort, the methods are somewhat opaque and the TanDEM-X dataset, at 

time of writing, is unavailable to users and researchers.
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Table 2.2: Selected SAR tropical wetland and forest extent studies, from the 1990s to present, including methods, forest definition and reported accuracy 

Author(s) Dataset; Year Study Area; Res Classes Forest definition Method; Reported accuracy 

De Grandi et 

al., 2000a 

CAMP: ERS-1; 1994 Congo Basin; 200m Swamp,  Lowland 

Forest 

30-70% canopy 

cover (tree cover 

mosaic) 

Amplitude (single polarisation) and normalised variance texture analysis and 

thresholding; 68% overall accuracy 

Sgrenzaroli et 

al., 2004 

GRFM: JERS-1; 1996 Selected Amazon 

Basin sites; 100m 

FNF >10% canopy 

cover (the same as 

that of FAO, 2001) 

Edge preserving smoothing, bespoke unsupervised pattern recognition algorithm 

from single polarisation L-band SAR; 87% accuracy for FNF product 

Walker et al., 

2010 

ALOS-PALSAR, Landsat 

TM; 2007 

Brazilian Amazon; 

25m 

FNF (including 

cerrado) 

Unspecified, 

cerrado; >10m 

tree height 

Random forest classifier of backscatter and texture measures, with ancillary 

topographic data; 92.4% overall accuracy for FNF 

Bwangoy et al., 

2010 

GRFM: JERS-1, Landsat 

TM/ETM+, SRTM; 1996, 

1990, 2000 

Congo Basin; 100m Wetland probability Tree diameter 

>20cm 

Classification tree bagging, with 80.2% contributions from elevation, Landsat bands 4 

and 5, JERS-1 high water, and slope; 81.11% reported overall accuracy for 

Wetland/Non-wetland classification 

Betbeder et al., 

2014 

MODIS EVI, ALOS-

PALSAR, ICESat-GLAS;  

Cuvette Centrale, 

Congo Basin; 100m 

Forested Wetland – 

4 unsupervised 

classes 

Unspecified, based 

on water regime 

Speckle filtered ScanSAR at HH polarisation used to estimate inundation below 

canopy using unsupervised k-means classifier; statistically similar to thematic map 

from EVI 

Ferreira-

Ferreira et al., 

2015 

ALOS-PALSAR; 2007-

2010  

Central Amazon 

Floodplain; multiple 

resolutions 

5 classes, including 

low and high 

floodplains 

Unspecified forest 

description 

Random forest/OBIA, based on dual polarised data with average, standard deviation 

and lowest water level backscatter metrics; 83% overall accuracy across 5 classes 

Thomas et al., 

2015 

JERS-1, ALOS-PALSAR; 

1996, 2007, 2010 

Global mangroves; 

25m, 100m 

Mangrove, non-

mangrove 

Unspecified Lee-filtered for speckle, OBIA of single (JERS-1) or dual (ALOS-PALSAR) pol data. 

Analysis of maximum Haralick mean texture, temporal range of HV; 97.1% total 

accuracy of mangrove change across global sites 



18 
 

Author(s) Dataset; Year Study Area; Res Classes Forest definition Method; Reported accuracy 

Qin et al., 2016 

 

ALOS-PALSAR Mosaics, 

MODIS NDVI; 2010 

Monsoon Asia; 50m FNF >10% canopy 

cover; >90% 

forested pixels in 

500x500 m sample 

Decision tree thresholds from dual polarisation (HH, HV) backscatter coefficients 

based on signature analysis from field photography and Google Earth Imagery (GEI); 

95.9% overall accuracy 

Bueso-Bello et 

al., 2017 

TanDEM-X; 2011-2016 Global; 50m FNF Unspecified Fuzzy clustering classification of amplitude, interferometric phase and coherence, 

with biome specific cluster centres; accuracy in tropics (South Amazon) of ~78%-

~92% 
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2.2.2 Forest Definitions Used 

An important consideration for each study is also the definition of forest used (as 

described in section 1.3). In the studies listed in Table 2.1 and Table 2.2 there are a wide 

variety of forest definitions  used, including those which broadly or closely follow the 

FAO definition (>10% tree cover) (Lindquist & D’Annunzio, 2016; Sgrenzaroli et al., 2004; 

Shimada et al., 2014; Qin et al., 2015), those which have a definition that is a range of 

tree cover values (De Grandi et al., 2000a; Arino et al., 2007), some with very high 

thresholds (>40% tree cover) (DeFries et al., 2000; Mayaux et al., 2004), and some 

continuous tree/vegetation cover studies with a reference to just the minimum tree 

height requirements for inclusion in the forest class (Hansen et al., 2003; Sexton et al., 

2013; Hansen et al., 2013) or the minimum tree diameter (Bwangoy et al., 2010). In 

several cases there is no clearly stated definition of the forest class, with either a 

reference to other surveys’ definitions (Walker et al., 2010; Betbeder et al., 2014), or no 

mention at all (Ferreira-Ferreira et al., 2015, Thomas et al., 2015). In some cases, the 

omission or lack of clarity is due to the study not focusing on a binary forest/non-forest 

classification, or being itself a measure of tree cover, and therefore allowing others to 

determine a threshold at which to define when a target is forest. In the other cases, 

however, there is a lack of necessary detail in these studies for meaningful use of the 

results with respect to the situation on the ground. The lack of clear forest definitions 

also hinders replicability, in terms of building consistent training and validation datasets.  

The sensitivity of SAR to vegetation structure and wetness, described in more detail in 

section 2.3, suggests that the use of forest definitions relating to canopy cover require 

the development of empirical models relating the SAR signal to field data. It may be 

more appropriate to use forest definitions relating to forest structure, such as average 

stem diameter and biomass, as well as the employment of forest classes relating to 

hydrological conditions, such that more consistent physical models can be built instead. 

For optical data, canopy cover is more directly measurable, since the sensors are 

sensitive to the chlorophyll content of leaves, particularly in the near and shortwave 

infrared domains. 
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2.3 SAR Remote Sensing 

2.3.1 SAR Basics and Signal Processing 

SAR is a side-looking active remote sensing system which transmits microwaves and 

receives measurements from the signal backscattered from a surface, to produce an 

image after appropriate processing. The longer wavelengths of microwaves allow 

imaging of the ground through cloud cover, and as it is an active system, images can also 

be gathered at night. 

In brief, imaging radar systems operate by emitting a pulsed beam to the side of the 

platform, and measuring the intensity (size of backscatter) and time taken for the signal 

to return. Signals that take longer to return are further from the sensor in the range 

direction (to the side, perpendicular to the direction of flight), and as the platform 

moves forward each pulse gives information about surface objects in the azimuth 

direction  (along its track, or flight path) (Lillesand et al., 2008). 

The synthetic aperture of a SAR refers to the method of increasing the spatial resolution 

of the image in the azimuth (along-track) direction without increasing the physical size 

of the radar antenna. As the beam angle of a radar is inversely proportional to its 

antenna (or aperture) length, a longer antenna is required to narrow the beam and 

improve azimuth resolution (Oliver & Quegan 2004 pp 12-13). Since airborne and 

spaceborne systems have size and weight restrictions, it is impractical to construct 

antennae greater than 10-15m in length. To overcome this problem, a synthetic 

aperture is created from the movement of the platform, while a series of pulses are 

emitted as the sensor moves along its track. The area illuminated by the beam from 

each pulse overlaps with the area of preceding and consecutive pulses, with the number 

of overlaps for a particular point on the ground depending on the speed of the sensor’s 

platform, the pulse repetition frequency (PRF), and the size of the area imaged by each 

pulse. The pulse information is then processed using a SAR algorithm, most commonly 

the range-Doppler algorithm (Cumming & Bennett, 1979), which compresses the signal 

in range and combines all signal returns for each particular point target into a single 

pixel, to form an image. Range resolution is increased by using shorter pulses, which is 

limited by the precision of time measurements by the sensor. This enables much higher 
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resolution imagery than would be possible from a real aperture radar at the distance of 

a polar orbiting sensor. It is even theoretically possible to place a SAR sensor on the 

surface of the moon and use the movement of the Earth’s rotation relative to the moon 

to generate the synthetic aperture and have as high as 10m resolution imagery 

(although this would obviously be a much greater technical feat than the installation of 

a polar-orbiting satellite and therefore prohibitively expensive) (Guo et al., 2014). 

A characteristic of SAR imagery that distinguishes it from optical imagery is the presence 

of geometric distortions due to topography, whereby up-sloping surfaces facing the 

sensor appear narrower than they actually are, and down-sloping surfaces facing away 

appear wider. This is known as foreshortening and is due to the ranged signal, whereby 

objects oriented more perpendicular to the sensor are therefore closer to the sensor, 

and appear closer together in the resulting image. In extreme cases, a slope’s peak may 

be closer to the sensor than its base, causing the feature in the resulting image to appear 

to lean towards the sensor (known as layover). The returned signals of sensor-facing 

slopes can overlap and are therefore higher than normal, with the opposite occurring in 

away-facing slopes as the returned signals are more dispersed. In addition, sloped 

surfaces facing towards the sensor show higher signal return values as the signal is more 

likely to be reflected directly back towards the sensor, and those facing away from the 

sensor have low values. With a Digital Elevation Model (DEM), SAR images may be 

geocoded and geometrically corrected, although correcting for the higher and lower 

values associated with distortion effects alters the image statistics and results in loss of 

information (Woodhouse 2006 pp 299). Geometric distortion is pronounced in high 

relief, upland areas. While some mountainous regions are found in Gabon and eastern 

DRC, the Congo basin is relatively flat and unaffected by topographic distortion (De 

Grandi et al., 1999). 

Another characteristic of SAR imagery is the presence of ‘speckle’, which is graininess in 

the image caused by “interference among the coherent echoes of the individual 

scatterers within a resolution cell [a resolution cell corresponds to a pixel in the resulting 

image]” (Woodhouse 2006 pp 289). This can be reduced in a process called multilooking, 

whereby the synthetic aperture for each pixel is subdivided into a number of smaller 

sub-apertures which are then averaged. The net result is a reduction in speckle, and 
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therefore a clearer image, but a corresponding reduction in spatial resolution (de Vries, 

1998). For this reason, SAR imagery is almost always used at a lower spatial resolution 

than what is received by the sensor. It is also possible to reduce speckle with successive 

images of the same area, in a process known as multi-temporal speckle filtering (De 

Grandi & Leysen, 1997). 

The backscattered signal contains both an intensity and phase component. The intensity 

is a measure of the strength of the returned signal, and is affected by geometric and 

dielectric properties (essentially the moisture content) of the surface. The strength of 

the returned signal for a particular pixel depends on a complex addition of numerous 

signal interactions with surface scatterers contained within the target area. The phase 

describes the phase angle of the returned echo, is also a combination of hundreds of 

interactions with individual scatterers within a target area and is measurable due to SAR 

being a coherent system with control of the phase at transmission (Canada Centre for 

Remote Sensing 2007). The phase from a single acquisition is of no practical use, but 

processing phase information from multiple acquisitions can provide information 

relating to elevation, surface displacement, and signal decorrelation, which can be 

related to vegetation growth and density, depending on the SAR wavelength. To 

produce a scalar intensity image from a single look complex (SLC) SAR image, the sum 

of the squares of the real and imaginary components of the coherent signal are 

computed as below, from Small & Schubert (2008): 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐷𝑁(𝑖,𝑗)
2 = (𝑆𝐿𝐶𝑟𝑒𝑎𝑙)

2 + (𝑆𝐿𝐶𝑖𝑚𝑎𝑔)
2
 

Equation 1 

 

2.3.2 SAR Scattering Mechanisms 

There are three major mechanisms by which a SAR signal is scattered from a surface. 

These are double bounce, volumetric/canopy and surface (or ‘Bragg’) scattering 

(Freeman & Durden, 1998). Double bounce scattering occurs when the signal is 

reflected from two or three orthogonal surfaces, with different dielectric constants, 

directly back to the sensor. This is common from man-made surfaces, such as in urban 

environments. Naturally occurring surfaces that cause double bounce backscattering 
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include vertical tree trunks, particularly those in still water as found in mangrove 

swamps. Volumetric or canopy scattering is produced from a “cloud of randomly 

oriented dipoles” (ibid), typically seen in leaf and branch interactions in forest canopy. 

Scattering from a rough surface results in Bragg scattering, with the signal being 

scattered evenly in all directions. Scattering from still water results in very low signal 

intensity, as most of the signal is reflected away from the sensor.  

 

2.3.3 SAR Frequency and Wavelength 

The wavelengths of SAR range from around 2.4 cm up to 100 cm for bands X to P, as 

seen in (Rosenqvist et al., 2007). Longer wavelength SARs (i.e. L- and P- band) have a 

greater ability to penetrate the surface and canopy cover. The signal interacts with 

objects at the same scale or larger than its wavelength, with smaller objects not 

affecting the backscatter. As a result, longer wavelength SAR signals pass through leaves 

and small branches in the upper canopy and offer more information about differences 

in larger woody material such as stems and large branches, making them more suitable 

for forestry applications. However, antenna size, power, and accuracy limitations have 

favoured the use of shorter wavelength spaceborne SAR systems. 

Table 2.3: Historic, current, and future spaceborne SAR satellites/sensors, with their wavelength and 

frequency ranges, adapted from (Rosenqvist et al., 2007). 

 

Wavelength [cm] 
 

3.75 7.5 15 30 100 

Radar Band 
 

X C S L P 

Completed, 

currently active, 

planned future 

and proposed 

future* SAR 

spaceborne 

sensors 

1990-

2000 

 
ERS-1/2 Almaz JERS-1 

 

2000-

2010 

TerraSAR-

X,  Cosmo 

Skymed 

ENVISAT-

ASAR, SRTM, 

Radarsat -1/2, 

 
ALOS-

PALSAR 

 

2010-

2020 

TanDEM-X Sentinel 1 

A/B, Radarsat 

Constellation 

NovaSAR-S ALOS-2, 

SAOCOM-

1A/1B, 

TanDEM-L* 

BIOMASS 

Frequency [GHz] 
 

8 4 2 1 0.3 
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2.3.4 SAR Polarisation 

Emitted SAR signals are polarised in either horizontal (H) or vertical (V) planes, and the 

returned signal is similarly received in either horizontal or vertical planes. Co-polarised 

SAR data (VV - vertical send, vertical receive, and HH – horizontal send, horizontal 

receive) is generally less useful than cross-polarised (HV and VH) SAR data for forest 

biomass measurements; a cross-polarised sensor configuration is sensitive to the 

changes in polarisation produced by volume scattering elements within tree canopy 

(Mitchard et al., 2011). 

For technical and financial reasons, early spaceborne SAR systems offered limited 

polarisation options. Several more recent spaceborne systems offer a fully polarimetric 

mode, with all four polarisation combinations (HH; VV; HV; VH). This is achieved by 

alternating between H and V signal pulses and recording both polarisations in the return 

signal. Each polarisation combination gives a separate image, with the backscatter 

intensity showing different properties of the scattering surface. However, spatial 

resolution is reduced by selecting multiple instead of single polarisation acquisition 

modes, as the PRF available for each polarisation is reduced. As a result, current 

operational spaceborne systems acquire mostly single or dual polarised imagery, with 

fully polarimetric acquisitions reserved for experimental, limited coverages. The 

technique of analysing multiple polarisations of SAR from a single acquisition is known 

as Polarimetry. 

 

2.3.5 SAR Interferometry and Coherence 

Multiple SAR images of an area, if acquired from roughly the same position in space, 

and with the same image geometry such as look angle, polarisation, wavelength and 

spatial resolution, can be combined to take advantage of the signal phase information 

contained within each complex image, in a process called SAR interferometry (InSAR). 

Images may be acquired simultaneously by two receiving sensors in single-pass InSAR 

(e.g. Shuttle Radar Topography Mission – SRTM; TanDEM-X satellites), or at different 

times by the same or different sensors in repeat-pass InSAR (e.g. The European Space 
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Agency’s (ESA) Environmental Satellite – Advanced Synthetic Aperture Radar (ENVISAT-

ASAR) and The Earth Resources Satellite (ERS)-1 and -2). From both techniques it is 

possible to derive surface elevation from the difference in phase. While the distance 

between the sensor’s (or sensors’) positions in space should be sufficiently large to 

provide sensitivity to signal phase differences, as this distance increases there is spatial 

decorrelation of the signal, up to a point (the critical baseline) beyond which the phase 

of each image is completely decorrelated with respect to the other (Zebker & Villasenor, 

1992). The critical baseline is proportional to the SAR wavelength, so for longer 

wavelengths there is less need for orbital manoeuvring to keep within this limit. In 

repeat-pass InSAR the phase difference also contains information about surface 

displacement (e.g. from ground subsidence or tectonic processes) between the 

acquisition dates. With prior knowledge of the topography this component may be 

removed, allowing calculation of surface displacement by differential SAR 

interferometry (DInSAR). The phase correlation between two acquisitions determines 

the reliability of InSAR and DInSAR measurements and is known as interferometric SAR 

coherence (𝛾), commonly referred to as coherence. To calculate coherence, two 

coregistered (where pixels in each image correspond to the same ground target) 

complex images (S1) and (S2) are combined: 

𝜸 =
〈𝑆1𝑆2

∗〉

√〈𝑆1𝑆1
∗〉〈𝑆2𝑆2

∗〉
   

Equation 2 

In Equation 2 above, the * indicates the complex conjugate of the image, and the 

chevron brackets show that the spatial average is calculated from a moving window of 

pixel sample size ‘N’ (Woodhouse 2006 pp 326). 

As well as providing information about the ability to reliably perform InSAR or DInSAR 

processing, coherence can be used for change detection and land cover classification. 

The phase element of the SAR signal also temporally decorrelates if there are changes 

at the same or larger scales than the SAR wavelength. At short wavelengths, high 

coherence values are seen only in sparsely or non- vegetated areas. For longer 

wavelength sensors, lower coherence between images indicates the presence of denser 

vegetation, as scatterer movement between image acquisitions increases with forest 
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growing stock volume (Tansey et al., 2004). Due to the increase in temporal 

decorrelation over time, examining repeat-pass interferometric coherence over greater 

intervals is unsuitable for tropical forest applications, such as the ERS-1 and ERS-2 

tandem mission (images were acquired one day apart). Very low coherence values may 

indicate land cover change such as deforestation between image acquisition dates 

(Takeuchi et al., 2001). Currently, there are no operational spaceborne sensors offering 

a revisit time that is suitable for forest change detection from coherence. While the 

Canadian Space Agency’s Radarsat 1 and 2 are still operational, they operate at different 

frequencies preventing InSAR processing between their imagery. Also, while Radarsat 2 

can reduce the revisit time due to its sensor having left or right looking modes, the 

resulting change in image geometry also prevents InSAR processing. Their 24-day revisit 

times in the same image geometry are not suitable for coherence analysis of densely 

vegetated areas. However, the planned three-satellite Radarsat Constellation (due to 

be launched in 2018) (Canadian Space Agency, 2015; Canadian Space Agency, 2017) may 

have a short enough revisit time for effective forest monitoring using coherence. The 

Copernicus Sentinel-1 C-band SAR mission has a short enough revisit time (12 days), 

which is now halved as both satellites in the constellation are operational (European 

Space Agency, 2012). Use of L-band or longer wavelength SAR has a higher chance of 

maintaining coherence over a longer revisit time, due to the relative stability of the 

dominant scattering elements (tree trunks and branches) (Watanabe & Shimada, 2006). 

Also, shorter wavelength spaceborne SAR sensors such as TanDEM-X and Cosmo/Sky 

Med (both  X-band systems with a wavelength of around 3cm), may be suitable for 

coherence analysis of low biomass forested areas, such as in Boreal forests (Weydahl & 

Eldhuset, 2012). 

 

2.3.6 Polarimetric SAR Interferometry (PolInSAR) 

Combining the techniques of Polarimetry and InSAR, using fully-polarimetric data from 

multiple acquisitions, can provide information about forest structure, including tree 

height. This is based on separating, or decomposing, the signal into coherent scatterers 

in order to estimate the height at which these dominant scattering processes occur 

(Cloude & Papathanassiou, 1998). Since different polarisations interact more strongly 
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with different scatterers, such as canopy (HV) and trunk (HH), this allows calculation of 

upper and lower tree structure heights. This technique is not yet suitable for wide area 

analysis, as it is currently constrained by the limitations of both InSAR (temporal 

decorrelation between revisit times and lack of appropriate long wavelength 

spaceborne SAR sensors) and Polarimetry (too few fully polarimetric spaceborne SAR 

sensors and a similar lack of long wavelength SAR sensors). The problem of temporal 

decorrelation in the recent ALOS-PALSAR (Advanced Land Observing Satellite - Phased 

Array type L-band SAR) has been outlined in (Cloude et al., 2011) among other studies 

during its years of operation (2006-2011). However, there have been numerous studies 

using airborne campaigns that have demonstrated the potential of L- and P-band 

PolInSAR (Papathanassiou et al., 2008) in future SAR sensors dedicated to PolInSAR, 

such as the proposed P-band BIOMASS mission (Le Toan et al., 2011), the proposed 

TanDEM-L mission (Moreira et al., 2011) and improved revisit time from 46 days for 

ALOS to 14 days for ALOS-2 (Shimada et al., 2011).  

2.3.7 Sensitivity of SAR to Moisture 

Radar backscatter is sensitive to the dielectric properties of a surface target. In the 

context of a ground scatterer, the dielectric constant of a material is “a fundamental 

property that characterises the reflection and attenuation properties of a wave 

interacting with  that material” (Ulaby et al., 1996). This effectively describes how a 

pulse of microwave energy (i.e. a SAR signal) will interact with a particular surface, in 

terms of how much energy will be reflected, in which direction or directions, and also 

how deeply the signal will penetrate the surface. Ulaby et al. (1996) demonstrate that 

the dielectric constant is strongly correlated with soil moisture, unless the temperature 

is below freezing point, and as a result soil moisture can be modelled and estimated 

from radar backscatter. The dielectric constant can also be used as a method of field soil 

moisture measurement, using a calibrated (for soil type) capacitance probe (Dean et al., 

1987). There are several remote sensing derived soil moisture products that are based 

on spaceborne SAR or other passive or active Radar systems. These systems include the 

L-band Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity 

(SMOS), C- and X-band Advanced Microwave Scanning Radiometer for the Earth 

Observing System (AMSR-E), and C-band Advanced Scatterometer (ASCAT) spaceborne 
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sensors. It has been shown that shorter wavelengths (i.e. X- and C- band) have a lower 

sensitivity to soil moisture than longer wavelengths (L-band), particularly in vegetated 

areas (Escorihuela & Quintana-seguí, 2016; Brocca et al., 2011). This would suggest that, 

for the Congo Basin, SMAP and SMOS would be more suitable. However, the availability 

and temporal resolution of SMOS (launched in 2009, with a revisit time of 3 days at the 

equator) and SMAP (launched in 2015), render them unsuitable for this study. Lower 

suitability in vegetated areas, shorter wavelength and coarse resolution make the 

AMSR-E soil moisture data difficult to work with in tropical regions. There is a product, 

derived from the C-band horizontal and vertical polarisation brightness ratios on AMSR-

E, which is linearly related to the vegetation water content (Njoku, 1999), which was 

also used by Lucas et al. (2010). 

In the absence of reliable soil moisture information in the Congo Basin and other heavily 

vegetated regions, it should be possible to use rainfall data within basins and river 

catchment areas to model changes in surface wetness. In the African continent, it is only 

possible to consistently monitor continental rainfall using spaceborne sensors due to 

the sparseness of rain gauging stations in many parts (Cohen Liechti et al., 2012). The 

most common methods involve the use of Passive Microwave (PM) and Visible and 

Infrared (V/IR) data from sensors on geostationary orbiting platforms such as Meteosat, 

and coarse resolution sensors on polar orbiting satellites such as SSM/I. Some available 

products that report rainfall in the Congo Basin are described below: 

 The National Oceanic and Atmospheric Administration/Climate Prediction 

Centre (NOAA/CPC) Famine Early Warning System (FEWS) African Rainfall 

Estimation Algorithm Version 2 product (RFE 2.0). This is a 0.1° resolution (pixel 

spacing of roughly 11 km x 11 km at the equator) daily rainfall product based on 

four sources: ground based rain gauge measurements at between 500 and 1000 

weather stations (depending on maintenance and availability of data); up to 

four times daily radar measurements from the Special Sensor 

Microwave/Imager (SSM/I); four times daily microwave measurements from 

the Advanced Microwave Sounding Unit – B (AMSU-B) sensor on NOAA 

meteorological satellites; half-hourly GOES Precipitation Index (GPI) rainfall 

amounts derived from Meteosat IR cloud top temperatures. The algorithm 
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merges data using a maximum likelihood estimation method, with a weighting 

coefficient based on the input data’s random error (NOAA Climate Prediction 

Center, 2006). 

 NASA’s Tropical Rainfall Measuring Mission (TRMM), specifically the product 

3B42 version 6, is a monthly product at 0.25° resolution covering the globe 

between latitudes of 50° N and 50° S that merges 3-hourly estimates from IR 

and PM sensors on its satellite platform (also referred to as TRMM), and 

calibrates them to a monthly product using Global Precipitation Climatology 

Centre (GPCC) data. 

  The NOAA/CPC morphing technique (CMORPH) uses similar input data to 

TRMM 3B42 but does not merge PM and IR data, instead replacing any absent 

PM data with an alternative source of half-hourly geostationary IR data (Joyce 

et al., 2004). The product is effectively an interpolated combination of several 

PM and IR datasets to improve resolution (up to 8 km and half-hourly temporal 

resolution), but archive products (before the previous month) are only available 

at 0.25° resolution (the resolution of the individual inputs used) and in 3-hourly 

intervals (CPC, 2017). 

A comparison of 10 different African rainfall products showed a poor performance for 

the RFE2.0 product in areas of extreme topography (Dinku et al., 2007). The comparison 

used aggregated data, both spatially and temporally to account for differences between 

datasets. While the RFE 2.0 product did not perform as well as the other datasets, for 

the purposes of this study, its availability, and spatial and temporal resolution outweigh 

the lower performance in areas of higher topographical complexity. 

The effects of different land surfaces on the scattering mechanisms of SAR at different 

wavelengths and polarisations are observable, and especially so at coarser resolution 

when speckle noise is reduced by filtering the images. With knowledge of precipitation 

patterns, season of image acquisition, and having dual polarisation (both co- and cross-

polarised images), differences in vegetation moisture may have an impact on an 

automated SAR land cover classification. This is seen in forest extent products produced 

from SAR imagery, and the effects are pronounced in areas that experience seasonal 

flooding, particularly in tropical areas and over wide regional maps, as wide area 
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mosaics are often compiled from images that are acquired at different seasons and in 

some cases in different years. Flooded forests reflect strongly in L-band SAR at HH 

polarisation, a characteristic that may be useful in either improving the classification of 

new forest extent maps, or in adding depth of information to forest extent products. In 

the absence of field soil moisture measurements and local rainfall surveys, precipitation 

values derived from spaceborne meteorological observations and used to interpolate 

between other ground based measurements at the time of the image acquisition are 

important in order to model likely moisture conditions for a study of their effects on L-

band SAR backscatter (Lucas et al., 2010). 

There are several documented scattering mechanisms from flooded vegetation and 

other wetlands that should be taken into account when studying a returned SAR signal. 

Standing water in the absence of vegetation can appear dark due to specular reflection, 

but if there are stems, a double bounce effect may reflect energy directly back to the 

sensor. Waves or shallow running water can act as a rough surface. Incidence angle 

affects the penetration of the signal through upper canopy, with lower incidence angles 

facilitating the detection of flooding beneath the canopy and volume scattering in the 

canopy can mask this effect at higher incidence angles (White et al., 2015). 

 

2.3.8 SAR Spatial Resolution vs Speckle 

As mentioned in section 2.3.1, there is a trade off in SAR processing between the level 

of speckle and spatial resolution. Depending on the process used to remove speckle, as 

well as the forest structure and distribution in the study area, this can have effects on 

both the accuracy and validity of forest maps produced, as well as the overall area of 

forest reported (Santoro et al., 2009). Studying the changes in forest reporting at 

different spatial scales allows both the selection of the optimal resolution at which to 

generate forest products, and provides information about the uncertainty of forest 

products generated from sub-optimal spatial resolution data. There are three 

commonly used methods for removing speckle in SAR images. These are multilooking, 

single image filtering, and multi-image (or multi-temporal) filtering. A measure of 

efficiency of a filter is the Equivalent Number of Looks (ENL) which is determined by 
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calculating the square of the mean divided by the standard deviation of the multilooked 

image (Im): 

𝐸𝑁𝐿 = (
𝐼𝑚𝑚𝑒𝑎𝑛

𝐼𝑚𝑠𝑡𝑑
)

2

 

Equation 3 

ENL corresponds to the effective number of statistically independent looks (de Vries, 

1998), and indicates the level of speckle, although it does not contain information about 

the spatial resolution of the resulting image. 

The reduction of speckle by multilooking involves selecting a number of looks in range 

and azimuth over which the original detected data will be averaged. In azimuth, the 

number of looks effects an increase in the synthetic aperture length . Typically, the 

number of looks in both directions will be chosen to produce an approximately square 

pixel sample size in ground range. This is calculated using the range spacing, azimuth 

spacing and mid range incidence angle as below (usually the number of azimuth looks 

are selected, and the number of corresponding range looks is rounded to the nearest 

integer): 

𝑛𝐴𝑧𝑖𝑚𝑢𝑡ℎ𝐿𝑜𝑜𝑘𝑠

𝑛𝑅𝑎𝑛𝑔𝑒𝐿𝑜𝑜𝑘𝑠
=

𝑅𝑎𝑛𝑔𝑒𝑆𝑝𝑎𝑐𝑖𝑛𝑔

𝐴𝑧𝑖𝑚𝑢𝑡ℎ𝑆𝑝𝑎𝑐𝑖𝑛𝑔. 𝑠𝑖𝑛(𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒𝐴𝑛𝑔𝑙𝑒𝑚𝑖𝑑)
 

Equation 4 

Multilooking reduces variance while maintaining the same average values as the single 

look data, which has the effect of increasing radiometric resolution while reducing 

geometric resolution (de Vries, 1998).  

SAR processing software packages offer several single image filtering algorithms of 

varying complexity, and with applicability depending on the distribution of the speckle 

noise. A filter type is chosen, along with the size of the moving kernel which the filter is 

applied over. A larger kernel increases the ‘smoothness’ of the filtered image, but results 

in a greater loss of information.  The following is a list of commonly used filters: 

 Mean filter – The most basic filter, simply averages speckle over a kernel.  
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 Median filter – Also simple, removes signal spikes using the median value over a 

kernel. 

 Lee / Lee Sigma – These filters assume a Gaussian distribution of speckle noise; 

the Lee filter assumes the mean and variance of the pixel of interest is equal to 

the local mean and variance of the pixels in the associated kernel and calculates 

a local variance- and mean-weighted average over the kernel; the Lee Sigma 

filter calculates the mean of values in the kernel that fall within a two standard 

deviation range (Mansourpour et al., 2006).  The aim of these filters is to increase 

edge detection 

 Frost – This filter also produces a local variance weighted average, but the value 

is also weighted by distance from the central pixel in the kernel. It assumes 

multiplicative-convolved noise in the speckle, whereby the “desired information 

is multiplied by a stationary random process which represents the effects of 

coherent fading” (Frost et al., 1982). 

Differences between these methods are visually subtle on smaller kernels (i.e. a 3x3 

moving window), but become more apparent with larger sized kernels. Generally more 

complex algorithms aim to preserve and enhance edges, while reducing loss of 

radiometric and spatial resolution.  

A multi temporal speckle filter is an application of one of the above filters through a 

stack of coregistered SAR images. The algorithm used in this study to generate a speckle 

filtered image J is shown below, for a sequence of N images, at position (x,y) in the kth 

image (i.e. Ik(x,y)): 

𝐽𝑘(𝑥, 𝑦) =
𝐸[𝐼𝑘]

𝑁
∑

𝐼𝑖(𝑥, 𝑦)

𝐸[𝐼𝑖]

𝑁

𝑖=1

 

Equation 5 

for k = 1, …, N, where E[I] is the local mean value of pixels in a window centred at (x,y) 

in image I. This effectively calculates a mean value weighted by the sum of the means 

through the image stack, and can reduce speckle without a reduction in spatial 

resolution. 
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2.4 Classification Methods 

 

There are many different methods for generating meaningful products from remote 

sensing imagery. These methods can broadly be broken into two types, supervised and 

unsupervised classification. Supervised classification requires the user to provide a 

training sample of known features in the area covered by a remote sensing dataset, 

which are then used to derive statistics to subdivide the feature space (the data being 

evaluated in each band of an image) into the classes given by the training sample (Singh, 

1989). Unsupervised classification uses cluster analysis of the feature space to delineate 

the remote sensing data into a number of separable classes, which are then linked to a 

target class by the user (Lu & Weng, 2007). 

The generation and analysis of statistics from a training dataset in supervised 

classification of remote sensing imagery directly overlaps with the problem of data 

analysis in machine learning, which has applications from biomedical imaging to 

automatic facial recognition. Fernández-Delgado et al. (2014) compared 179 available 

classifiers over 121 varied and commonly tested (in the field of machine learning) 

datasets, including remote sensing imagery, and found implementations of Random 

Forest (RF) (Breiman, 2001) and Support Vector Machine (SVM), from Chang & Lin 

(2011) based on Cortes & Vapnik (1995), to perform most reliably across the numerous 

datasets. Lu and Weng (2007) generated a taxonomy of classification methods used in 

remote sensing studies, noting the differences between parametric and non-parametric 

approaches. Parametric approaches assume the data are Gaussian (normally 

distributed), and can result in noise in complex landscapes (Lu & Weng, 2007). Non-

parametric approaches do not require this assumption, instead separating classes 

without specifying statistical parameters. 

Three methods of supervised classification were used throughout this thesis: in Chapter 

4 a rule based thresholding classifier was used; Chapter 5 used an SVM classifier; 6 

employed both RF and SVM machine learning classifiers. A description of these 

classifiers and other studies that employed them follows.  
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2.4.1 Thresholding Classifier 

The simplest of the three classification methods used, a thresholding classifier is a basic 

method whereby a series of binary decisions separate classes using single or multilayer 

input. It requires user defined thresholds from each input layer, usually described with 

simple arithmetic and Boolean operators. As such an accurate decision tree 

classification is reliant on classes that are clearly separable with the input data, as well 

as knowledge of the thresholds to be used, through a priori information, training data 

and image statistics (Singh, 1989). Object based image analysis classifiers can use 

thresholds from additional features alongside pixel values, generated from segmented 

imagery, relating to segment shape, size and statistics. From Table 2.1 and Table 2.2, a 

thresholding approach was used in the GLS 2000 product to classify based on NDVI 

(Mayaux et al., 2004 – 68.6% accuracy across multiple landcover classes). It was an 

integral part of the JAXA Kyoto & Carbon Initiative FNF processing chain, with threshold 

values calculated in different global regions to delineate forest and non-forest classes, 

as well as to separate the urban and water body classes (Shimada et al., 2014 – 84.86% 

- 91.25% reported overall accuracies), as well as the study by Qin et al. (2015) in 

monsoon-affected Asian countries (95.9% overall accuracy reported). 

 

2.4.2 Support Vector Machine Classifier 

SVM is a supervised non-parametric classification algorithm that takes training data, 

typically from two classes, and generates a multi-dimensional decision surface referred 

to as an optimal hyperplane that best divides the input values, where the separability 

between classes is greatest (a simple two-dimension example is shown in Figure 2.1). A 

non-parametric approach like this is useful in remote sensing, where data tends not to 

be normally distributed (Mountrakis et al., 2011).  
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Figure 2.1: Graphic showing how a support vector machine would choose a separating hyperplane for two 

classes of points in 2D. H1 does not separate the classes. H2 does, but only with a small margin. H3 separates 

them with the maximum margin. Image and caption by user:ZackWeinburg licensed under Creative Commons 

CC-BY-3.0 

A more detailed description of SVM, as well as a description of its implementation in 

code as used by this study (LIBSVM) is published in Chang & Lin (2011). The LIBSVM 

classifier used offers the choice of four basic kernel functions, which in the case of 

machine learning relate to a function that maps training data to a higher dimensional 

space, allowing the SVM to find a linear separating hyperplane (Hsu et al., 2010). These 

four kernels are linear, Gaussian Radial Basis Function (RBF), polynomial and sigmoid, 

described in more detail by Hsu et al. (2010), and there are recommended situations 

where each are appropriate. For a study with a high number of features, a linear kernel 

is advised, and RBF is advised where there are fewer features. RBF is typically used as 

the default kernel. Each kernel type has tunable parameters that can be optimised by 

cross-validation using the testing data (ibid).  

 

2.4.3 Random Forests Classifier 

Random forests is a non-parametric tree-based model developed by Breiman (2001) 

that can be used for regression (in this case meaning classifying to a value on a 

continuous scale, such as percent tree cover or AGB) or discrete (classifying data into 

one of a fixed number of classes) classification, and is frequently used in remote sensing 

studies of biophysical parameters. It is considered a computationally fast classifier, 

especially for large noisy datasets and multiple classes with outliers. It is an evolution of 

https://commons.wikimedia.org/wiki/File:Svm_separating_hyperplanes_(SVG).svg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
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a method known as ‘bagging’ where bootstrapped samples (random samples, collected 

with replacement or potential reselection) of a training dataset are used to train a large 

number of classifiers (random trees), from which an aggregated classifier is chosen 

(Gislason et al., 2006). The bagging process ensures that outliers in the training dataset 

do not have a large effect on class separation. Each random tree is a series of binary 

decision nodes (the number of node levels, or tree depth, is a parameter selected by 

the user) that best separates the samples into their respective classes based on a 

random selection of features. All of the bagged random trees are tested on the 

remaining ‘out-of-bag’ (OOB) training data that have been withheld from the 

bootstrapping process, and from the ensemble of the trees a majority vote selects the 

class (or an average in the case of a regression) (ibid.).  Various parameters are 

selectable that affect the processing time, generalisation, and predictive accuracy of the 

classifier (Criminisi et al., 2011). Table 2.4 describes the main parameters and their 

significance to the classifier. Random Forests has performed well in numerous remote 

sensing land cover classification studies, particularly in terms of computational 

efficiency, accuracy and ease of use (Ghimire et al., 2012; Fernández-Delgado et al., 

2014; Gislason et al., 2006). Bwangoy et al. (2010) used a technique similar to random 

forests, classification tree bagging, with positive results (81.11% reported overall 

accuracy for Wetland/Non-wetland classification). Two other studies in Table Table 2.2 

demonstrate the popularity and effective use of random forests in SAR classification of 

forests and wetlands (Ferreira-Ferreira et al., 2015 – 83% accuracy across five classes; 

Walker et al., 2010 – 92.4% accuracy for a FNF product). 
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Table 2.4: Random Forests Parameters; descriptions and significance adapted from OpenCV, (2017) online documentation 

Parameter Description/Significance 

Tree Depth Number of node levels permissible; low values may result in underfit 

classifiers, and high values may result in an overfit 

Min. number of 

samples per node 

Recommended small percentage of total training data; determines 

whether a node will terminate as a ‘leaf’, or split 

Number of random 

features selected at 

each node 

Determines how many random features (or input layers) will be selected to 

split each node in a tree; defaults to the square root of the number of 

features to reduce tree complexity 

Maximum number of 

trees in forest 

Determines the number of random trees that will be calculated; affects the 

processing time (linearly) 

Sufficient accuracy Sets an accuracy threshold for testing on out of bag training data  

 

It is challenging to compare the accuracies and efficiencies of the studies described in 

Tables 2.1 and 2.2 with reference to the classification methods used, as they are mostly 

performed with different datasets, timeframes and locations. The accuracies are also in 

several cases not directly comparable, with different landcover classes being assessed, 

and varying types of validation data (from widely sampled ground truth data to analysis 

of optical imagery). Comparative classification studies in the SAR domain such as that of 

Tewkesbury et al. (2015), which investigated different change detection approaches 

using optical sensors, are rare.  
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3 Chapter 3: Study Sites 

 

This chapter is a description of the study sites analysed in Chapters 4, 5 and 6. 

The methodology throughout this study involves the analysis of trained supervised 

classifications (described in detail in section 2.4) of spaceborne radar and optical 

imagery. Due to the remote locations of data, and the lack of widespread field data in 

the Congo basin, high and medium resolution optical imagery was used to generate 

training data for several classes. In some areas, field data were available, but for forest 

classification the number of samples is too low and spatially clustered to provide 

adequate coverage. For optical based training data, random point samples were 

generated within the study areas, and 100 metre square boundaries were produced 

around the points, allowing for a fixed one hectare (ha) sample with each plot. This is 

also consistent with the format of the limited ground data available. In addition, an 

expert led sampling strategy was performed on smaller scenes, whereby training points 

(at individual pixel level) for the major classes were selected subjectively, and a region 

growing algorithm was automatically applied to increase the size of the training area 

from the selected points. 

The Congo rainforest often refers to all of the forested areas of Central Africa, rather 

than specifically those contained within the drainage area of the Congo river (Justice et 

al., 2001; Hansen et al., 2008) and it either wholly or partially covers the following six 

countries: Cameroon, the Central African Republic, Equatorial Guinea, Gabon, the 

Democratic Republic of the Congo (DRC) and the Republic of the Congo. Of these, the 

DRC and the Republic of Congo are countries with active UN-REDD national 

programmes, and Cameroon, the Central African Republic, and Gabon are REDD partner 

countries. The general climate of the Congo basin is warm and humid, with a low 

temperature range (2°C), an average temperature of 25°C and rainfall averaging 

1800mm/year (Bwangoy et al., 2010).  
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3.1 Description of Study Sites 

 

The JAXA ALOS PALSAR imagery obtained for the study described in Chapter 4 covers a 

rectangular area of Central Africa, bounded in the North-West by coordinates (Lat 

008°00'N, Long. 008°00'E) and in the South East by coordinates (Lat. 010°00'S, Long. 

038°00'E), seen in tiles A13-A16 and A19-A22 in Figure 4.2. The tiling constitutes the 

original format of data delivery for the K&C Initiative in Africa, and the tiles for this study 

were selected to completely cover the Congo Basin. This covers an area of around 6.7 

million km2, although a large proportion of this consists of water bodies. Apparent in 

Figure 3.1 is the fact that this study area is divided roughly equally on either side of the 

equator, leading potentially to seasonal differences throughout the dataset even at 

concurrent data acquisition. There are two rainy and two dry seasons; above the 

equator there is a milder rainy season between September and November and a major 

one from March to May, and below the equator the minor rainy season from February 

to May and a major one from September to December (Samba et al., 2008). From SRTM 

topographic data, the elevation ranges from 0 at the coast to peaks of over 4000m in 

the east of the DRC (the Virunga mountain range) with a maximum of 5034m above sea 

level. With the exception of a few mountains such as Mt. Cameroon (4070m), most 

steep terrain in the region is in the east of the study area. Since this is a very large area, 

and is covered by a variety of land cover types, and an optical product would be 

combined with a SAR dataset, it is appropriate to define the forest using the upper 

threshold of tree cover (30%) as stated in the FAO FRA. A minimum mapping unit (MMU) 

of 1 ha is appropriate given the validation dataset used. 

Analysis for chapter 5 was performed on a 5° by 5° square with an upper left coordinate 

of Lat. 005°00'N, Long. 015°00'E. The more recent release (January 2014) of K&C 

Initiative JAXA ALOS PALSAR data is organised into grids of 5° mosaicked squares 

subdivided into 25 1° by 1° tiles. The selected area covers part of four countries: 

Cameroon, the Central African Republic, the Republic of Congo, and the Democratic 

Republic of Congo, and contains a wide range of landcover types, including: rainfed 

croplands, mosaic cropland/vegetation, broadleaved deciduous forest, shrubland, 

herbaceous vegetation (savannah), permanently and regularly flooded forest, urban 
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areas and water bodies1. Topography is for the most part flat, with a relatively small 

elevation range, for such a large area, from 279m to 870m above sea level. The forest 

definition used for chapter 5 is based on the training dataset, which used 200 x 200m 

points classified using high resolution optical data and had a requirement that at least 

50% of the plots were covered by trees. Since this was an empirically trained 

classification, forest was defined as greater than 50% tree cover for this study. A MMU 

of 1ha was used to make best use of the available resolution (50m) while removing 

single isolated class pixels. 

Chapter 6 is intended to answer research questions 2 and 3 outlined in section 1.4. This 

therefore requires a L1.1 SLC SAR product to allow processing and analysis at multiple 

scales. To capture seasonally inundated forest and compare with other forest types 

requires a long enough time series with imagery from different months of the year, and 

close proximity to a water body. This was achieved by selecting a nine-image time series 

of a single scene of L1.1 data (rather than a larger area with a shorter temporal 

coverage) located in a wetland forest and rural complex spanning the Congo River in the 

Mongala district of Équateur province in the DRC. The GlobCover 2009 forest classes in 

this area are 30, 40, 160 and 210 (mosaic vegetation/cropland; closed to open 

broadleaved evergreen and semi-deciduous forest, closed to open broadleaved forest 

regularly flooded, and water bodies). The smaller study area facilitated processing and 

removed potential issues with mosaicking data in adjacent scenes. The topography of 

this study area is relatively flat, and ranges from 320m to 480m above sea level. The 

forest definitions for chapter 6 were fixed to the training and validation datasets, which 

were year specific, generated at the coarser of four resolutions (60m) and tested using 

higher resolution (15m) data, allowing a 50% canopy cover definition to be used. As well 

as this definition, the flooded forest class was constrained by distance to water bodies 

(within 4km). MMUs were dependent on scale, although the removal of isolated clusters 

                                                      

 

1 Landcover classes taken from ESA’s GlobCover 2009 product, (Bontemps et al., 2010) 
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of pixels with a majority filter meant that MMU values of 0.55ha, 1.13ha, 2.53ha and 

1.62ha were used respectively for the scales of 15, 30, 45 and 60m resolution. 
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Figure 3.1: Study sites and relative location with corresponding GlobCover 2009 dataset (complete legend in 

Figure 4.5). Top left - Chapter 5 study site; Top right - Chapter 6 study site; Bottom - Chapter 4 study site.  
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4 Chapter 4: New Map of Forest Cover in the Congo 

Basin Derived from L-band SAR Mosaics and Existing 

Optical-based Forest Tree Cover Data 

 

4.1 Introduction  

This chapter is a description of a study of at-the-time available optical- (Landsat 

treecover continuous fields from Sexton et al., 2013) and SAR- (K&C Initiative from JAXA, 

2010) based mosaic imagery. It is intended to inform the problems associated with both 

types of data in this region, as well as analyse the suitability of the K&C Initiative data 

products. 

4.1.1 Aim and Objectives  

The aim of this chapter is to partly answer the first research question from section 1.4:  

“What are the ideal image acquisition parameters and classification techniques for an 

annual forest map in the Republic of Congo from spaceborne SAR data, given currently 

available data and regional seasonal effects on image quality?” 

In particular, the aim is to explore available spaceborne L-band SAR data and through 

analysis suggest improvements in the acquisition and processing of the data. To do this 

the following three objectives are stated:  

 To obtain and characterise available L-band SAR data in relation to other 

available map products in the Congo Basin 

 To classify the data and compare with existing forest cover products 

 To analyse the results and suggest improvements in data acquisition, release and 

processing 
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4.2 Datasets 

4.2.1 ALOS PALSAR 

Until January 2014, only version 1 of the K&C Initiative ALOS-PALSAR mosaic was 

available. This included two 50 m resolution products, one from 2008 and the other 

from 2009, both derived from the backscatter intensity of the fine beam dual 

polarisation (HH and HV) acquisition mode. The 2009 mosaic was used to fulfil the aims 

of this chapter. The imagery obtained covers a rectangular area of Central Africa, 

bounded in the North-West by coordinates (Lat 008°00'N, Lon. 008°00'E) and in the 

South East by coordinates (Lat.  010°00'S, Lon.  038°00'E), seen in tiles A13-A16 and A19-

A22 in Figure 4.2. The tiling constitutes the original format of data delivery for the K&C 

Initiative, and the tiles for this study were selected to completely cover the Congo Basin. 

They were mostly acquired over a two-month period to reduce the effects of seasonal 

differences across the data strips, although in several cases data were used to gapfill 

from adjacent years. The data released by the K&C Initiative were pre-processed to 

backscatter intensity from raw data using SigmaSAR, a proprietary SAR processor.  

The full processing steps taken are described in detail in De Grandi et al. (2011). The 

remainder of this paragraph outlines the steps relevant to this study. Long acquisition 

strips (70 km in range and up to 3000 km in azimuth) were multilooked to 16 looks in 

azimuth and 4 looks in range. Individual datastrips were radiometrically calibrated to 

account for linear signal drops from near to far range, and a separate, inconsistent 

complete signal loss in parts of some strips. For mosaicking, between-datastrip temporal 

differences in vegetation water content, soil moisture, and vegetation cover were 

corrected using an inter-strip balancing algorithm. This used the along-track profiles of 

the overlapping area of both adjacent strips and first corrected strips with anomalously 

high or low digital number (DN) values (decided using discrepancy analysis and an 

interactive procedure) using a gain function derived from the discrepancy in the left and 

right adjacent profiles. Profiles and discrepancies of corrected strips were recomputed 

and a linear gain function was applied across all strips for the mosaicking procedure. 

The mosaicked products were geocoded using the NASA SRTM 3 arcsecond global DEM 

product (described in section 6.2.4), but not radiometrically terrain corrected, to aid 

visual interpretation for thematic applications. 
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While the within- and inter-strip radiometric corrections resulted in a more 

homogenous signal across the mosaics, there are several marked backscatter 

differences between adjacent data strips throughout the data, as well as visible relief 

due to uncorrected topography (both demonstrated in Figure 4.1). Metadata from these 

earlier K&C PALSAR mosaics relating to the acquisition date and time of each individual 

data strip was not easily matched to available vector files showing the footprint of each 

acquisition. Without information relating to the footprint and incidence angle of each 

individual datastrip, terrain correction with this version of the K&C Initiative data was 

not possible, and it was not possible to match acquisition time with soil moisture 

measurements or other ancillary datasets that relied on a precise date.  
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Figure 4.1: Samples (different scales) of the K&C Initiative ALOS-PALSAR 50 m 2009 HH mosaic; top showing 

a radiometric difference between data strips in Lulua Province, DRC; bottom showing uncorrected relief in an 

area of Kasai Province, DRC. The map projection is Universal Trans Mercator (UTM) 32. 
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Figure 4.2: K&C initiative ALOS-PALSAR 50m mosaic Version 1 availability over Central and West Africa. Used 

tiles (A13-A16 and A19-A22) are shaded. Background maps from ESRI ArcGIS software used under academic 

licence courtesy of Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user 

community 

 

4.2.2 Landsat Tree Cover Continuous Fields (LTC) and Moderate Resolution 

Imaging Spectroradiometer - Vegetation Continuous Fields (MODIS-

VCF) 

Freely available Landsat optical data at 30m spatial resolution is available from the 

United States Geological Survey (USGS) covering the Congo basin. A 30m spatial 

resolution Landsat and Moderate Resolution Imaging Spectroradiometer (MODIS) -

derived dataset, Landsat Tree Cover Continuous Fields (LTC), was available with 

coverage for the year 2000 (Sexton et al., 2013). It was derived from Landsat-7 Enhanced 

Thematic Mapper Plus (ETM+) surface reflectance data from the 2000 epoch Global 

Land Survey (GLS) dataset, which used input data from 1999 to 2002. A sample of 

Landsat data were rescaled to 250 m resolution, the same spatial resolution as the 

MODIS-VCF product (DiMiceli et al., 2011). This was used to generate a training dataset 

from a corresponding MODIS-VCF sample, and a regression tree model (a Cubist model 
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(Quinlan, 1993) as cited by Sexton et al., (2013)) was then fit and applied to full 

resolution Landsat data. 

MODIS VCF (DiMiceli et al., 2011) is itself derived from 16-day surface reflectance 

composites at 250 m resolution. Training data from medium and high resolution sensors 

(Landsat 5, 7, Ikonos and Quickbird among others) are generated and then resampled 

to 250 m to create a 0-100 scale of vegetation cover. This is applied to 30 randomly 

selected samples of the MODIS data using an M5 linear model regression tree algorithm, 

and an average of the 30 model results is computed for each MODIS pixel (Townshend 

et al., 2011). MODIS VCF collection 5.1, version 1 was used for this study. 

The LTC product was downloaded and mosaicked, and used MODIS VCF data from the 

year 2000 at a spatial resolution of ~250m to gap fill areas obscured by cloud cover 

(Figure 4.3). This data was at the time the highest resolution freely available, replicable 

optical mosaic of such a wide area, although it has since been superseded in coverage 

and scope by the Global Forest Change (GFC) product (Hansen et al., 2013), and more 

recent LTC products derived from the 2005, 2010 and 2015 GLS epochs have been 

produced. 

 

Figure 4.3: Mosaic of Landsat Tree Cover Continuous Fields with MODIS VCF gap fill, covering Central Africa.   
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4.2.3 JAXA K&C Forest / Non-Forest 

A forest/non-forest map was produced by JAXA for the years 2007-2010 from ALOS-

PALSAR data, also referred to in section 2.2.1. The technique used is described in detail 

in Shimada et al. (2014). The dataset was a second version of the K&C Initiative ALOS-

PALSAR mosaics at 25 m spatial resolution, produced annually for the years 2007-2010, 

and processed in 500 km x 500 km tiles for the entire globe at HH and HV polarisations. 

The algorithm to radiometrically correct and mosaic the data was similar to that used in 

section 4.2.1, with 16 multilooks to reduce speckle, but with topographic correction 

applied using local incidence angle to produce backscatter expressed as gamma-naught 

(γ0). Frequency distributions of HH and HV backscatter were generated from 5 x 5 

median filtered and segmented mosaics, with reference to forest or non-forest objects 

discerned using Google Earth Imagery. Global and regional frequency distributions were 

calculated, with temporal differences due to seasonality and a very low power loss 

observed over the 4 year period. An object-based algorithm was applied to the 

segments, with the first node masking settlement areas using high HH and HV γ0 values 

(> -1 dB and > -6.5 dB respectively). Forest/non-forest (FNF) regional thresholds were 

then applied to the HV polarisation, and a further water body node divided the Non-

Forest (NF) class into Water body and NF using a low HH and HV threshold. For the 

African region, a segment mean γ0 FNF threshold of -15.6 dB was selected, derived from 

a mean γ0 of -12.76 dB and standard deviation of 2.01 dB in forest class regions of 

interest, and mean γ0 of -19.38 dB and standard deviation of 2.70 dB in non-forest class 

regions of interest. The FNF map in Central Africa is shown below in Figure 4.4; the 

settlement class in the released product is combined with the non-forest class. 
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Figure 4.4: K&C Initiative FNF map 2009 for Central African region 

 

4.2.4 ESA-GlobCover 2009 

Derived from data from the Medium Resolution Imaging Spectrometer instrument 

(MERIS) on the ESA ENVISAT platform, GlobCover is a global thematic land cover map at 

300 m spatial resolution described in detail in Bontemps et al. (2010). The MERIS data 

used for GlobCover 2009 were six bimonthly mosaics in four optical bands for the year 

2009. 22 classes were defined using the UN Land Cover Classification System (LCCS). 

Data were geometrically corrected to within 150 m geo location accuracy using a DEM 

(Getasse 30 DEM, a coarse 30 arcsecond resolution product derived from interpolated 

altimeter points), and corrected for atmospheric interference and Bidirectional 

Reflectance Distribution Function (BRDF) effects (reflectance effects due to variations in 

the sun and view geometry for different acquisitions) to produce surface reflectance. In 

order to reduce surface reflectance variability and aid classification, the global dataset 

was split into 22 regions based on environmental and remote sensing discontinuities. 

The area covered in this study includes all or part of three of these regions. The 

classification algorithm began with a supervised per pixel classification for poorly 
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represented classes, followed by an unsupervised classification of remaining pixels to 

create spectrally similar clusters. These clusters were then analysed for phenological 

changes and then grouped based on spectral and temporal similarities. Finally clusters 

were assigned a LCCS class based on reference rules from international experts, seen in 

the legend in Figure 4.5.  

 

Figure 4.5: GlobCover 2009 with full GlobCover LCCS class legend 
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For the benefit of analysis with both this study and the JAXA K&C FNF product (both of 

which are effectively binary FNF classifications), this study aggregated the 22 GlobCover 

classes to just seven (Figure 4.6), in decreasing order of forest cover (class numbers from 

the legend in Figure 4.5): 

1) closed forest (classes 50, 70, 170: >40% forest cover) 

2) closed to open forest (classes 40, 100, 160, 180: 15-40% forest cover) 

3) open forest (classes 60, 90: >15% forest cover) 

4) mosaic forest (classes 30, 110: mosaic of forest, other vegetation, and croplands) 

5) other vegetated (classes 11, 14, 20, 120, 130, 140, 150) 

6) other non-vegetated (classes 190, 200, 220) 

7) water bodies (class 210). 

 

Figure 4.6: GlobCover 2009 Aggregated Classes 
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4.3 Methods 

4.3.1 Data Pre-Processing 

In order to coregister the PALSAR mosaics to, in particular, similar or higher resolution 

datasets such as Landsat, it needs to be precisely georeferenced, to at least one or two 

pixels. Without this precision, like is not being compared with like, especially in border 

areas of forest/non-forest. The 2008 and 2009 K&C Initiative PALSAR mosaics exhibited 

occasional projection problems that resulted in a varying offsets from tile to tile. The 

problem is somewhat apparent in the Google Earth-projected data provided on the K&C 

Initiative website (http://www.eorc.jaxa.jp/ALOS/ge2/KC50/kc50top.kml), where the 

data is sometimes shifted by four or five pixels from the Google Earth imagery in the 

base map. In order to correct for this error, the 2009 mosaic, in the HV polarisation, was 

subset and reprojected to its corresponding Universal Trans Mercator (UTM) 

projections (Figure 4.7). A manual correction to one subset’s header file tie points (+3.5 

pixels in x and +4.5 pixels in the y direction in the UTM zone 33 tile) was sufficient to 

prepare them for coregistration. 

 

  

Figure 4.7: ALOS PALSAR HV mosaic (sigma zero) from 2009. 

http://www.eorc.jaxa.jp/ALOS/ge2/KC50/kc50top.kml
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For a comparison between SAR-derived and optical-derived forest cover classification in 

the Congo basin, the 2009 HV polarised SAR data were selected. To begin with, each 

subset was converted to logarithmic sigma zero (σ0) values from the backscatter 

intensity digital number (DN) values using a calibration factor (CF) of -83 as described in 

the accompanying K&C Initiative metadata file and using the conversion equation 

below:  

𝜎0[𝑑𝐵] = 10𝑙𝑜𝑔10(〈𝐷𝑁2〉) + 𝐶𝐹 

Equation 6 

They were then resampled to the same resolution as the LTC data and automatically 

coregistered and combined in multiband layers according to UTM zone.  

4.3.2 Classification 

A decision tree classification was then run according to Figure 4.9, using thresholds of 

30 % tree cover for the LTC data and σ0 values of -13.5 dB in the L-band HV data. These 

threshold values were chosen through comparative analysis of binned pixel value areas 

in the case of the SAR data, described in full in the following paragraph, and from the 

upper limit of tree cover as described by the UN Framework Convention on Climate 

Change (Decision 16/CMP.1, UNFCCC 2006) for the LTC data. 

A histogram of σ0 values in 0.1 dB bins between -83 dB and 7.5 dB (the data minimum 

and maximum values) was generated for the entire study area. The cumulative area sum 

of these bins (calculated by multiplying the pixel count by the pixel area, 30 m x 30 m) 

from high dB values to low was calculated, to give the likely area of forest cover for a 

potential forest cover threshold. These values were compared to the aggregated 

GlobCover 2009 forest cover classes, also cumulatively summed from more forested 

(Class 1: Closed Forest) to less forested (Class 4: Mosaic Forest) to indicate the likely 

classes that may be captured by a particular σ0 threshold. In the absence of reliable 

training data for this dataset, this method allows selection of a threshold that closely 

captures a similar area of forest, although the class distributions could of course differ. 

From the areas for the aggregated GlobCover classes 1 to 4, the σ0 values with 

corresponding cumulative areas were retrieved as -10.8, -12.6, -14.5 and -17.9 dB 

respectively, illustrated in Figure 4.8. The Closed Forest class area is above the upper 
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limit of tree cover as described by the UN Framework Convention on Climate Change 

(Decision 16/CMP.1, UNFCCC 2006). The Mosaic Forest class is too broad a category and 

neither the Open Forest nor the Closed to Open Forest classes precisely describe this 

threshold, so the mean between classes 2 and 3 was selected, -13.5 dB.  

 

Figure 4.8: Comparison of cumulative area of HV σ0 values with aggregated GlobCover forest cover classes. 

Red vertical line indicates FNF threshold value for HV σ0 (-13.5 dB) 

The results of the decision tree described in Figure 4.9 allow visual analysis of the 

potential of SAR with respect to an optical classification, by looking at disputed regions 

(coloured orange and light blue) and identifying which method has correctly classified 

the area as forest or non-forest.  
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Figure 4.9: Decision tree classification schematic of SAR (2009 PALSAR HV sigma zero values) and optical (LTC) 

data; coloured boxes indicate classes and correspond to classes used in Figure 4.12 and Figure 4.13 

4.3.3 Accuracy Assessment 

For the purpose of accuracy assessment, a reference dataset was produced, manually, 

through visual analysis of high resolution Google Earth Imagery (GEI), as close as 

possible to the year of ALOS-PALSAR image acquisition (2009). GEI includes both high 

resolution optical imagery, as well as medium resolution annual true colour composites 

of Landsat data. It was also possible to check near infrared (NIR) bands using Google 

Earth Engine (GEE), an online resource that allows both visualisation and computation 

of large volume remote sensing datasets, including the Landsat archive. A stratified 

sample of 750 points was selected from a larger random sample of 5000 points from the 

study area in Figure 4.10. The stratification allowed selection of 150 points from each of 

the five classes from Figure 4.9, which resulted in 300 points each for Forest and Non-

Forest from both LTC and SAR thresholds (150 shared points in each class). Bounding 

circles of radius 50 m centred on each point were generated and a four class reference 

dataset was built by exporting the dataset to Google Earth and manually assigned either 

forest, non-forest, water or mixed values (based on a visual assessment where no single 
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class occupied more than half of the bounding circle). Examples of bounding circles in 

GEI and their assigned classes are shown in Figure 4.11, with indication of which 

classifications correctly identify the class. 

 

Figure 4.10: Distribution of validation reference points, with reference class legend. symbol sizes not to scale 
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Figure 4.11: Screen grabs from Google Earth of reference dataset generation. Top left: mixed class, classified 

as forest in JAXA FNF, LTC threshold and SAR threshold; top right: oblique view of forest on steep topography, 

classified as forest in JAXA FNF and LTC threshold, but not by SAR threshold; middle left: non forest (shrub 

mosaic) correctly classified as non-forest by JAXA FNF, LTC threshold and SAR threshold; middle right: 

cropland mosaic, classified as forest in JAXA FNF and LTC threshold, but not by SAR threshold; bottom left 

and right: zoom out (Landsat resolution) and zoom in (high resolution GEI) of a mixed class, classified as 

forest by JAXA FNF, LTC threshold and SAR threshold 
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4.3.4 Software Used 

Initial processing for used a combination of Matlab (version 2013a) and R (version 2.15) 

to process and recombine a considerable number of zipped SAR files contained on an 

ftp server. Scripts involved simple directory and file manipulation, and mosaicking using 

the R raster package (version 2.3-12) and as such did not require reproduction in this 

thesis. Decision tree thresholds were applied using EXELIS-ENVI (version 5.0). Reference 

data shapefiles were generated and manipulated within ESRI ArcGIS (version 10.2.2), 

which was also used to produce the final map figures. 

     

4.4 Results 

4.4.1 Visual Assessment 

Figure 4.12 shows the resulting 2009 PALSAR HV mosaic-derived forest/non-forest 

classification comparison with the LTC 2000 epoch. The eight windows in Figure 4.13 

illustrate some of the limitations and strengths of both datasets across the study area, 

with accompanying high resolution optical imagery. There are major discrepancies 

between the two thresholds used; in the north throughout most of the Central African 

Republic (CAR), in cropland areas, and in upland areas where there is a terrain effect on 

the SAR data. In the study area 837,196 km2 is above the -13.5 dB HV SAR threshold but 

below the LTC forest threshold (i.e. < 30% tree cover), and 259,089 km2 is classified as 

non-forest by the SAR threshold but above the LTC forest threshold. The total area of 

forest reported by JAXA’s FNF product is 3,542,858 km2; the total area above the SAR 

FNF threshold is lower at 3,009,964 km2 and the area above the LTC FNF threshold is 

much lower at 2,431,857 km2. In the aggregated GlobCover 2009 product, the areas of 

each of the four forested classes (classes 1-4 in Figure 4.6), from most densely forested 

to less densely forested, is 416,846 km2, 2,010,730 km2, 1,114,535 km2, and 1,132,889 

km2 respectively. 
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Figure 4.12: Full Forest/Non-Forest optical/SAR classification comparison with boxes showing location of 

inserts of Figure 4.13, which also contains legend 
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Figure 4.13: Forest/non-forest optical/SAR classification comparison, with eight selected areas of interest (A-

G) and accompanying high resolution imagery detail for further comparison: A) forest under-represented by 

LTC, correctly classified by SAR; B) crops misclassified as forest by LTC; C) more accurate classification of 

forest, water and urban (non-forest) by both SAR and LTC; D) terrain effects in SAR data causing 

misclassification of slopes facing away from the  sensor as non-forest; E) deforestation in the south eastern 

Congo Basin; F) misclassification of water by LTC; G) misclassification of urban (non-forest) area of Kinshasa 

as forest by SAR; H) missing line from coregistration process. High resolution imagery used under academic 

license from: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, 

Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community 
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4.4.2 Error Matrices 

Using the 750-point reference dataset, an error matrix was generated for the SAR FNF 

threshold, LTC FNF threshold, and JAXA FNF product (Table 4.1). Although the mixed 

pixel class from the reference dataset indicates classification difficulties and was a 

necessary reference class, it has no equivalent class in any of the FNF maps, so a second 

error matrix (Table 4.2) was produced with the mixed pixel reference class omitted (and 

with corresponding corrections to overall, producer’s and user’s accuracies). Each 

product differed in the distribution of classes assigned to the mixed pixel reference 

class, and it is not surprising to note that the combined LTC and SAR threshold classes 

for FNF (where both thresholds were met in each case) has both high accuracies and 

significantly fewer (4.7% vs 12.5% of the total number of points, respectively) Mixed 

reference class occurrences (Table 4.3). The JAXA FNF product has a higher overall 

accuracy (76.27%) with the SAR threshold slightly below (74.13%) and LTC threshold 

lowest (66.93%). The removal of the Mixed reference class from the error matrices 

increases the overall, producer’s and user’s accuracies. The Water class accuracies are 

extremely high, with the exception of the JAXA product, which buoys the overall 

accuracies. Removing the Mixed reference class and the Water classes results in overall 

accuracies of 80.59%, 69.90% and 85.54% for the SAR threshold, LTC threshold, and 

JAXA FNF products respectively. The errors of commission in the Forest class are higher 

in the JAXA FNF product than the SAR threshold method, and the error of omission in 

the Non-Forest class is higher in the JAXA FNF product than the SAR threshold method. 

This is an expected result as a lower threshold for tree cover (15%) is used by the JAXA 

FNF product’s forest definition, meaning a greater forest area was reported. 
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Table 4.1: Error Matrices for SAR FNF, LTC FNF, and JAXA K&C FNF products, including Mixed reference class 

 
Reference Data Overall 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy SAR threshold F NF Water Mixed Total 

Forest 228 34 0 38 300 
 

0.78 0.76 

Non-Forest 64 179 2 55 300 
 

0.84 0.60 

Water 0 0 149 1 150 
 

0.99 0.99 

Total 292 213 151 94 750 74.13 
  

LTC threshold 
        

Forest 191 51 1 57 300 
 

0.65 0.64 

Non-Forest 101 162 1 36 300 
 

0.76 0.54 

Water 0 0 149 1 150 
 

0.99 0.99 

Total 292 213 151 94 750 66.93 
  

JAXA FNF 
        

Forest 276 56 1 66 399 
 

0.95 0.69 

Non-Forest 16 150 4 28 198 
 

0.70 0.76 

Water 0 7 146 0 153 
 

0.97 0.95 

Total 292 213 151 94 750 76.27 
  

 

Table 4.2: Error Matrices for SAR FNF, LTC FNF, and JAXA K&C FNF products, excluding Mixed reference class 

 
Reference Data Overall 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy SAR threshold F NF Water 
 

Total 

Forest 228 34 0 
 

262 
 

0.78 0.87 

Non-Forest 64 179 2 
 

245 
 

0.84 0.73 

Water 0 0 149 
 

149 
 

0.99 1.00 

Total 292 213 151 
 

656 84.76 
  

LTC threshold 
        

Forest 191 51 1 
 

243 
 

0.65 0.79 

Non-Forest 101 162 1 
 

264 
 

0.76 0.61 

Water 0 0 149 
 

149 
 

0.99 1.00 

Total 292 213 151 
 

656 76.52 
  

JAXA FNF 
        

Forest 276 56 1 
 

333 
 

0.95 0.83 

Non-Forest 16 150 4 
 

170 
 

0.70 0.88 

Water 0 7 146 
 

153 
 

0.97 0.95 

Total 292 213 151 
 

656 87.20 
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Table 4.3: Error Matrix of FNF from combined LTC and SAR thresholds (where both thresholds were met in 

each class) 

 
Reference Data Overall 

Accuracy 

Producer's 

Accuracy 

User's 

Accuracy Combined F NF Water Mixed Total 

Forest 136 3 0 11 150 
 

0.94 0.91 

Non-Forest 9 131 1 9 150 
 

0.98 0.87 

Water 0 0 149 1 150 
 

0.99 0.99 

Total 145 134 150 21 450 92.44 
  

 

4.4.3 GlobCover class comparisons 

To understand the difference in classification between the three methods beyond 

broader accuracy statistics, the distributions of aggregated GlobCover classes (Figure 

4.14) across the study area in each method’s Forest and Non-Forest classes were 

calculated. Total area distributions (Figure 4.15) and the areas expressed as a 

percentage of the total class areas (Figure 4.16) were calculated. A similar area 

distribution for all GlovCover 2009 classes is in Appendix A. As the classes are arranged 

in order of decreasing forest cover, it would be expected to see the Forest class have a 

higher distribution in classes 1-3 and lower in classes 4-7, and the opposite for the Non-

Forest class distribution. This is generally the case for the JAXA FNF product, but not for 

the SAR and LTC thresholds in the Closed Forest class, and not for the LTC threshold in 

the Open Forest class.  

 

Figure 4.14: Globcover Aggregated Class Legend 
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Figure 4.15: Comparison of FNF classes in terms of area distribution of aggregated GlobCover classes (class 

legend in Figure 4.14) 
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Figure 4.16: Comparison of FNF classes in terms of percent of the total area distribution of aggregated 

GlobCover classes (class legend the same as in Figure 4.14) 
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Combining the class distribution and the reference data for each class illustrates in 

which general areas each product has strengths and weaknesses. The graphs in Figure 

4.17 show the results of this analysis in the areas where SAR and LTC thresholds result 

in opposing classes (Forest/Non-Forest in particular), as well as the sometimes low 

number of samples depending on the class combinations. The water class is omitted 

since there were too few cases of errors of commission or omission in this class, and 

also because both SAR and LTC threshold methods used the same water mask. The 

spatial distribution of these class combinations are seen in Figure 4.12. In these graphs, 

the total reference point count is given; a high total count indicates the level of class 

accuracy. It is also clear from these graphs that the GlobCover 2009 product does not 

always correspond precisely with the reference data. The GlobCover products are 

coarser resolution and for a comparable accuracy assessment would require a different 

validation method.  

The top row of Figure 4.17 shows that the SAR threshold performs better than the LTC 

threshold in classifying Forest and Non-Forest, having higher total counts where the 

class agrees with the reference data. The distribution shows that LTC incorrectly 

classifies more of the Open Forest GlobCover classes as Non-Forest. The SAR threshold 

correctly classifies more Non-Forest in the Closed Forest GlobCover classes, and there 

were a greater number of Mixed Reference points in the SAR Non-Forest / LTC Forest 

class than in the SAR Forest / LTC Non-Forest class. 
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Figure 4.17: Reference data distribution of GlobCover 2009 aggregated classes for differing LTC and SAR 

threshold results; class legend in Figure 4.14 

The graph in Figure 4.18 shows the cumulative area (from 100% to 0%) of the LTC 

product in the study area, giving an indication of the threshold changes required to 

report a similar area to the GlobCover 2009 classes, as well as the reported areas of the 

other two FNF products analysed in this chapter. This explains to some extent (as the 

distribution of the area after a threshold change would not exactly match the GlobCover 

2009 class distributions) why the Open Forest aggregated class is not represented as 

forest as much as the SAR threshold by the LTC 30% threshold. It also shows clearly that 

the stated lower threshold of tree cover (15%) of the JAXA FNF forest definition matches 

both the LTC product’s area at that threshold, as well as the GlobCover area of all forest  

cover aggregated classes above Open Forest. The higher threshold of this study’s SAR 

product corresponds to the cumulative LTC area above 20% rather than the proposed 

30% threshold aimed at with the forest definition in section 3.1. 
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Figure 4.18: Cumulative LTC area comparison with areas of aggregated GlobCover 2009 classes, and the 

reported areas of the FNF products 

The time difference between the SAR and optical datasets is a contributing factor 

towards class differences in certain areas, where deforestation or reforestation has 

occurred in the intervening period, and may explain the low overall accuracy from the 

validation procedure. 

 

4.5 Discussion 

The results from the accuracy assessments as well as the GlobCover aggregated class 

comparison appear favourable to the JAXA FNF product. However, the JAXA FNF product 

was generated from a superior terrain-corrected dataset released concurrently (De 

Grandi et al., 2011; Shimada et al., 2014). The relatively straightforward data analysis 

and classification of this study comes close to matching its overall accuracy, and indeed 

exposes an overfit in the JAXA FNF Forest class, evidenced by the lower user’s accuracy 

and the higher percentage of mosaic and ‘other’ vegetation (aggregated Globcover 2009 

classes) than this study’s SAR classifier. Although it performs relatively well, it is 

important to users that a global forest/non-forest product be able to deliver accurate 

and consistent results in the second largest tropical rainforest regardless of difficulties 

in obtaining reliable ground truth data for calibration and validation. This study shows 
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that improvements can be made at low computational cost, and provides a reliable and 

unbiased validation dataset that may be used to supplement future forest mapping 

assessments in this region. 

The validation dataset produced for this chapter adds to existing literature (e.g. 

Carreiras et al., 2014; Olofsson et al., 2013) demonstrating that with careful use of freely 

available high resolution data, and with reference to ancillary datasets providing 

information about elevation, and cues from now widely available medium resolution 

multispectral, well calibrated datasets, alternatives exist to costly, dangerous, and 

potentially inefficient ground truth gathering expeditions. There have been significant 

recent discoveries in the field in the Congo Basin, aided by and aiding remote sensing 

observations, in particular uncovering a potentially vast below ground biomass carbon 

sink in the form of an extensive peat dome in the Republic of Congo by Dargie et al., 

(2017), but these are rare and require concerted and persistent team efforts. 

The problems faced by the optical datasets encountered at this stage illuminate the 

necessity for timely acquisition of medium to high resolution remotely sensed imagery. 

The LTC 2000 product was generated from 4 years of acquisitions, and was the only 

freely available 30 m resolution global tree cover product at the time of its release in 

2012. The multiple years and mixed seasons of acquisition of the final product (which 

still required gap filling by coarser resolution MODIS VCF data), and the time lag 

between it and the SAR products it was compared with in this study, gave it an unfair 

disadvantage. Globcover 2009, which coincided with the SAR datasets of this study, is 

based on high temporal resolution but low spatial resolution acquisitions, and as a result 

it was again unsuitable for direct comparison.  

The continuation of annual L-band datasets being released by the K&C Initiative, as well 

as the launch of the Sentinel 1 constellation, now provides a wealth of freely available 

SAR data, mostly unhampered by weather conditions, enabling a reduction in 

uncertainty in landcover classification due to the effects of seasonal variability. Before 

the launch and easy availability of the ESA Copernicus Sentinel 1 C-band SAR and ALOS2-

PALSAR2 L-band sensors, the release of the JAXA K&C Initiative SAR mosaic in its second 

version gave an opportunity to focus on addressing the concerns encountered in this 
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chapter, namely the issues surrounding terrain correction, misclassifications in wetland 

areas, and also the chance to explore a longer time series of SAR data with improved 

metadata.  

In a similar study, also using a decision tree thresholding approach on a similar but 

updated K&C Initiative mosaic dataset, Qin et al. (2016) achieved a high reported overall 

accuracy (95.9%). 

In optical remote sensing, new opportunities were also arising. The Landsat Data 

Continuity Mission became Landsat 8 OLI (Operational Land Imager) on its launch in 

February 2013 (Rocchio & Ochs, 2007; NASA, 2017) ,and the ESA Copernicus Sentinel 

programme also produced the multispectral Sentinel-2A optical sensor in June 2015 

with a 10-day repeat visit interval reducing to 5 days with the Sentinel-2B launch in 

March 2017 (ESA, 2017). However, the results of this chapter showed that the at-the-

time the repeat visit interval of available medium and high resolution optical data was 

still too infrequent to overcome the challenges faced in the Congo Basin. 

 

4.6 Conclusions 

 

In the context of the aims and objectives outlined in Section 4.1, there are a number of 

conclusions that can be gained from this chapter. The overall aim was relatively modest, 

‘to explore available spaceborne L-band SAR data and through analysis suggest 

improvements in the acquisition and processing of the data’, and was met in terms of 

the available SAR data that the aims were framed under. As is understood in academia, 

available data effectively means financially available, and the K&C Initiative mosaic FBD 

(Fine Beam Dual Polarisation) products are just that, and remain the most up-to-date 

freely available spaceborne L-band SAR products.  

The three objectives were met: specifically by comparison of a SAR derived forest/non 

forest product with an existing land cover product (Globcover 2009); classification, 

validation and comparison with an existing forest cover product (JAXA FNF product); 

through analysis of the results and the proposal of ways to improve subsequent releases 
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of K&C Initiative Mosaic data. These are provision of ancillary datasets, in particular 

including Local Incidence Angle to allow processing and testing of terrain effects, and 

date of image acquisition – both of these metadata were unavailable, yet are crucial for 

an operational mosaicked SAR product; pre-processing of mosaics to account for terrain 

effects, for the same reason as releasing the metadata mentioned above – having a γ0 

product removes the potential for unwanted terrain effects on land cover classification, 

which is the principal requirement for K&C Initiative releases. 

A novel result from this chapter came from the in-depth analysis of the HV σ0 normalised 

radar cross section and how it related to the aggregated Globcover 2009 classes, such 

that the range of thresholds in that polarisation and their relationship to both forest 

area and landcover were presented (Figure 4.8 and Figure 4.16). This could assist future 

efforts to map forest cover and other land cover types in the Congo basin, particularly 

if more recent K&C Initiative products are used, with the caveat that the two 

relationships (HV σ0 to forest cover and HV σ0 to Globcover aggregated classes) are both 

taken into consideration, along with the issues associated with this dataset. There have 

been previous data fusions and comparisons between K&C Initiative ALOS PALSAR 

mosaics and Globcover 2009, such as Dong et al., (2014), but to the author’s knowledge 

there are none which undertake such a comparison in Central Africa with the scope of 

this study. 

The strengths and in some cases limitations of SAR with respect to optical data, as well 

as their areas of agreement, were illustrated by the eight areas of interest in Figure 4.13. 

These were calculated using relative differences in forest/non-forest classification from 

both datasets, and gave an indication of how a synergy of optical and SAR imagery might 

best be implemented. Principally, SAR and optical methods may complement each other 

in terms of correcting misclassification of urban and agricultural cropland areas as 

forest, respectively. Alternatively, a SAR-only classification could benefit from either a 

more thorough analysis of urban areas, or more simply with the use of an urban mask 

from ancillary datasets or the HH polarisation channel. The SAR terrain-related errors in 

classification were a cause for concern given the lack of sufficient metadata to resolve 

and correct for these issues, but the inclusion of local incidence angle information, as 
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well as processed terrain correction, in the January 2014 release of the K&C Initiative 

ALOS-PALSAR data resolved this issue.  

At this point the limitations of working with such a large study area were noted. Due to 

the short time series in this study, processing such a large area was possible but time-

consuming, but with the implementation of a supervised machine learning classification 

approach and an increase in the number of input data (both in terms of SAR 

polarisations and available time-series), for practicality a smaller area would need to be 

selected.  
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5 Chapter 5:  Creating Annual Forest/Non-Forest Maps 

in a region of Central Africa from 2007-10 using SAR 

Mosaic data 

Part of the work presented in this chapter has been published in a modified form in 
Wheeler et al. (2017). 

5.1 Introduction 

 

This chapter describes a study to generate annual forest cover and forest change (loss 

and gain) maps for a large section of the Congo Basin for each year from 2007 to 2010 

from a supervised classification of the K&C Initiative L-band SAR HH and HV mosaics, 

and compare the results with the JAXA K&C Initiative’s own forest/non-forest maps 

produced from the same dataset. The accuracy assessment of the classification using 

version 1 of the K&C Initiative mosaics from the work in Chapter 4 demonstrated that 

the data and classification method could be improved, and for practical reasons in terms 

of data volume and processing time, the study area needed to be reduced. This chapter 

is a progression, using an updated version of the K&C Initiative mosaics for 2008 and 

2009, with two additional annual mosaics for 2007 and 2010. Optical remote sensing 

products were not used in this study, for the reasons outlined in Section 4.5 (principally 

the trade-off between obtaining frequent cloud free imagery and spatial resolution at 

the time of commencing the study), allowing the focus to rest on L-band SAR products. 

 

5.1.1 Aims and Objectives 

The aim of this chapter is to continue to answer the first research question from section 

1.4: “What are the ideal image acquisition parameters and classification techniques for 

an annual forest map in the Congo Basin from spaceborne SAR data, given currently 

available data and regional seasonal effects on image quality?” With this in mind, the 

following objectives are outlined: 

 To obtain and characterise available L-band SAR data in relation to other 

available map products in the Congo Basin 
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 To process and classify the data and compare with an existing forest cover 

product 

 To analyse the results and suggest improvements in data acquisition, release and 

processing 

 

5.2 Datasets 

 

5.2.1 ALOS PALSAR 

 

Dual polarised (HH and HV) K&C Initiative ALOS-PALSAR data were used, at a spatial 

resolution of 50 m. The data were pre-processed and released in a mosaic format, and 

geocoded consistently and accurately, allowing for easier comparison with other forest 

cover maps. The HH and HV channels were provided as normalised radar cross-section, 

gamma naught (γ0), meaning the backscatter intensity has been adjusted for SAR 

geometric distortions (orthorectified) and topography (slope corrected) using the sigma 

naught (σ0) value (generated from backscatter intensity using Equation 1 and Equation 

6) and cosine of the local incidence angle (θ) as described in (Shimada et al., 2014) and 

in section 4.2.3.  

𝛾0 =
𝜎0

cos 𝜃
 

Equation 7 

The data were then converted back to DN for data delivery in the unsigned 16-bit data 

format (JAXA-EORC, 2016). 

Four mosaics from 2007-2010 were acquired. Metadata at a pixel level is provided in 

the form of local incidence angle (the angle from nadir at which the sensor images a 

pixel, including the contribution of topography) and number of days after launch of 

image acquisition, allowing calculation of acquisition date (Figure 5.1). It is possible to 

see an indication of the scene relief in the local incidence angle (top right box in Figure 

5.1), and how this is not visible in the HH and HV backscatter intensity images, unlike in 
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version 1 of the K&C Initiative mosaic releases analysed in Chapter 4 (Figure 4.1). A 

global forest/non-forest product based on the ALOS-PALSAR data is provided, at the 

same scale.  

  

Figure 5.1: 2007 K&C Initiative products in the case study area. Clockwise from top left: HH gamma nought 

(γ0) backscatter; HV gamma nought backscatter; local incidence angle; forest/non-forest map; date of data 

strip acquisition (days after launch) 

 

5.2.2 JAXA K&C Forest / Non-Forest 

The JAXA K&C FNF map is the same as described in section 4.2.3, but with four annual 

products analysed from the years 2007-2010 rather than just one from 2009, with the 

coverage seen in Figure 5.1 above. 

 

5.3 Methods 

The workflow in Figure 5.2 shows the processing steps taken, and a more detailed 

description follows.  
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Figure 5.2: Processing steps for 2007-10 forest change map based on support vector machine classification. 

Numbered coloured boxes show 1: selection of training/validation samples; 2: SVM classification steps; 3: 

accuracy assessment; 4: calculation of forest change. 
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5.3.1 Data and Pre-processing 

Analysis was performed on a 5° by 5° square with an upper left coordinate of Lat. 5°N, 

Long. 15°E (Figure 5.3). K&C Initiative JAXA ALOS PALSAR data is organised into grids of 

5° lat/long mosaicked squares. The selected area covers part of four countries: 

Cameroon, the Central African Republic, the Republic of Congo, and the Democratic 

Republic of Congo, and contains a wide range of land cover types, including: rain fed 

croplands, mosaic cropland/vegetation, broadleaved deciduous forest, shrub land, 

herbaceous vegetation (savannah), permanently and regularly flooded forest, urban 

areas and water bodies2. 

 

                                                      

 

2 Landcover classes taken from ESA’s GlobCover 2009 product, (Bontemps et al., 2010) 
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Figure 5.3: K&C Initiative ALOS-PALSAR mosaic (Version 2) tiles over Central and West Africa, with the 

selected tile for objective two shaded. Background maps from ESRI ArcGIS software used under academic 

licence courtesy of Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS user 

community 

K&C Initiative mosaic products are pre-processed as described in section 5.2.1. After 

download of 25 1°x 1° tiles were combined into the 5° x 5° tile seen in Figure 5.3. 

Logarithmic [dB] γ0  values were converted from provided DN values using the same 

formula and calibration factor as in Equation 6. While the mosaic data has been multi-

looked (16 looks; 2 in range and 8 in azimuth) and resampled to 50 m resolution, speckle 

filters were applied and tested to allow comparison with the JAXA K&C FNF product, 

which uses a median speckle filter in pre-processing, along with segmentation (Shimada 

et al., 2014). Three speckle filters were tested at this stage, a single image median 

speckle filter applied over a 3 x 3 pixel kernel, a boxcar (mean) multi-temporal speckle 

filter applied on the full 4-image timeseries on a 3 x 3 pixel kernel, and the same multi-

temporal speckle filter on a 5 x 5 pixel kernel. Section 2.3.8 has more detailed 
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descriptions of the filters and the formulae for the multi-temporal filter. The smaller (3 

x 3 is the minimum size) kernels were chosen as the noise of the mosaicked imagery is 

already reduced by the pre-processing steps mentioned, and it was intended to reduce 

the potential loss of spatial resolution. These three speckle filter methods were 

compared with an unfiltered version of the mosaics. 

 

5.3.2 Generating Training and Validation Data 

A training and validation dataset for the study was created from a random sample of 

1,000 square (200m x 200m) plots covering the area of interest. Medium and high 

resolution Google Earth imagery (GEI) were used to determine the class in each sample 

square, and there was a loss of 102 samples due to mixing of classes, cloud cover, some 

poorly georeferenced high resolution imagery, and lack of clarity in the available training 

data. For the manual classification of sample plots, GEI was analysed throughout the 

period of data acquisition, where possible, and classes were only assigned where no 

change had occurred; this allowed the generation of one training/reference dataset 

over the 4 years of available data. After the reference plots were manually classified, it 

was found that the data were skewed: out of 898 plots, 778 were in the forest class. To 

allow an unbiased classification and accuracy assessment, a random sample of 120 

forest plots were selected from the 778, thus creating a stratified sample with both 

classes equally represented. The resulting two sample sets (forest and non-forest) were 

each randomly divided 50:50 into training and reference vector data. The distribution 

of reference and training data in both classes is shown in Figure 5.4. While the forest 

plots are evenly distributed around the study site, non-forest plots are mostly clustered 

in the upper left quarter of the region, in CAR and DRC, although there is some 

representation in the Republic of Congo. This is due to the sampling strategy, as well as 

the predominance of forest classes throughout the study site. For the training and 

reference datasets, the Spatial Autocorrelation (Moran’s-I) tool in ArcGIS returned a 

Moran’s I value of 0.595. Moran’s I is a spatial autocorrelation coefficient, where a value 

of -1 is given to evenly dispersed data, and +1 is given to completely clustered data 

(Legendre, 1993). This value points to some clustering of the sampled plots. 
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Figure 5.4: Distribution of training and reference/validation plots in the study site 

 

5.3.3 Classification 

As multiple classifications would be performed, on speckle filtered and unfiltered data 

over four annual products, totalling 16 classifications, a fast and efficient classifier was 

necessary. The training data described the classes, so a supervised classification method 

was sensible. Using the training data from both classes of sample plots, a support vector 

machine (SVM) classification, based on LIBSVM (Chang & Lin, 2011) and implemented 

through the Orfeo toolbox machine learning library, was applied to the HH and HV data 
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for each individual data year. SVM was chosen as it is an easily implemented (available 

in several mainstream remote sensing software packages, and with open source 

packages in multiple programming languages) classifier that has been shown to perform 

well and efficiently at separating a small number of classes from a small feature space, 

which describes the task required of this study. As part of the SVM implementation in 

Orfeo toolbox, data are automatically normalised (the algorithm requires global image 

statistics for mean and standard deviation), a prerequisite for SVM classification. For the 

unfiltered data, a filtering algorithm using a majority analysis kernel was applied to the 

resulting class image to remove and reclassify lone pixels to the dominant surrounding 

class, effectively creating a minimum mapping unit of 4 pixels (~1ha). Parameter 

optimisation is performed automatically in the Orfeo toolbox LIBSVM Image Classifier 

to refine the input parameters, in particular the γ parameter in the linear and RBF kernel 

functions, using a k-fold cross validation on subsamples of the reference dataset. The 

RBF kernel function for the SVM classifier (see section 2.4.2) was selected after testing 

all four available kernel options (linear, radial basis function, polynomial and sigmoid) 

on a sample area. Figure 5.5 shows the results of this test in a sample area (analysis was 

performed over the entire study site for the 2010 K&C Initiative mosaic dataset in HH 

and HV channels, using the multi-temporal speckle filtered product). There is little to 

distinguish RBF, linear, and polynomial kernel functions, while the sigmoid function 

performs relatively poorly. Overall classification accuracies using the full reference plots 

dataset were 91.42%, 91.69%, 91.96% and 83.79% for RBF, linear, polynomial and 

sigmoid kernel functions respectively. The parameter optimisation resulted in a γ value 

of 12.1257 for the RBF classifier in the sample dataset. 
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Figure 5.5: SVM Kernel function classification comparison on sample area in the upper left part of the study 

site: (top four images) with 2010 mosaic of ALOS-PALSAR γ0 (RGB composite of HH, HV and HH-HV) for 

comparison 
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5.3.4 Change Analysis 

Change analysis from the four years available was performed post-classification, using 

class differences from year to year. As part of the change analysis, areas that changed 

class (from forest to non-forest or vice versa) more than once were noted and masked 

from the final change product, similar to the technique of Carreiras et al. (2014), which 

used a system of disallowed transitions between cover types. This is based on the 

assumption that regrowth of forest following a deforestation event is unlikely to take 

place in two years, and as a result any pixels where multiple changes occurred were 

likely to contain classification errors. Areas of class change (forest change) was 

computed between consecutive years, as well as from 2007-2010 with the removal of 

multiple change pixels. 

5.3.5 Accuracy Assessment 

Following classification, an accuracy assessment was carried out using the reference 

samples from both classes (60 200 m x 200 m plots in each of the two classes, forest and 

non-forest). The distribution of the reference plots is seen in Figure 5.4, and like the 

training data, there is some spatial bias in non-forest reference plots due to the 

extensive forest coverage throughout the areas of the Republic of Congo and Cameroon 

contained by the study site. While a greater number of samples is advised in the 

literature – 75-100 per class for accuracy assessment in areas greater than 1,000,000 

acres (Congalton & Green, 2009 p75) – the 60 sample plots per class cover at least four 

pixels each, increasing the number of samples used. In addition, the potential errors at 

the edges of the square plots used, in terms of inconsistent overlap with the 50 m x 50 

m ALOS-PALSAR pixels, was accounted for in the reference data manual classification. 

This accuracy assessment was also applied to the JAXA K&C Initiative FNF products. A 

Kappa analysis was performed on each error matrix; the resulting Kappa coefficient 

estimate (κ) is a multivariate measure of agreement between the correctly classified 

samples (diagonals in an error matrix) and the row and column totals, giving a statistical 

measure of whether the classification performs better than chance allocation of classes 

(Congalton & Green, 2009 p105). The formula for estimating κ is given below:  
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𝜅 =
𝜌𝑜−𝜌𝑒

1 − 𝜌𝑒
 

Equation 8 

where ρo is the actual agreement in classes (the accuracy) and ρe is the chance 

agreement. The κ coefficient allows more meaningful comparison between error 

matrices rather than just comparing overall accuracies. 

In addition, the error matrices were used to derive confidence statistics from Olofsson 

et al. (2013); map category (i) and reference category (j) data were used to derive error 

adjusted areas for forest and non-forest (i.e. Âj) for each classification  

𝐴𝑗̂ = 𝐴𝑡𝑜𝑡𝑎𝑙 ∑ 𝑊𝑖

𝑖

𝑛𝑖𝑗

𝑛𝑖
 

Equation 9 

where Atotal is the total study site area, Wi is the proportion of Atotal reported as map 

class i, nij is the cell position in the error matrix for map class i and reference class j, and 

ni is the total of the cells in the map row for class i. The stratified error adjusted area 

includes errors of omission rather than commission. The importance is thus to 

understand the statistical effect of classification errors on the reported area of 

individual classes in a final classification, which may otherwise be obscured by the sum 

of omission and commission errors. An estimate of standard error of the area proportion 

(S(P.j)) was computed to give upper and lower 95% confidence intervals (Olofsson et al., 

2013): 

𝑆(𝑃.𝑗̂ ) = √∑ 𝑊𝑖
2

𝑛𝑖𝑗

𝑛𝑖
(1 −

𝑛𝑖𝑗

𝑛𝑖
)

𝑛𝑖 . −1

𝑞

𝑖=1

 

Equation 10 

The standard error is converted to error of area proportion by multiplying the value of 

S(P.j) for each class by the total area, and upper and lower 95% confidence intervals are 

double that value.  
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5.3.6 Software Used 

Initial processing used a combination of Matlab (version 2013a) and R (version 2.15) to 

download and process zipped SAR files contained on the JAXA K&C Initiative FTP server. 

Scripts involved simple directory and file manipulation, and mosaicking using the R 

raster package (version 2.3-12) and as such did not require reproduction in this thesis. 

The open source Orfeo Toolbox machine learning software was used to apply the SVM 

classifications and generate error matrices. Training and reference data shapefiles were 

generated and manipulated within ESRI ArcGIS (version 10.2.2), which was also used to 

produce the final map figures. Error matrices and error adjusted values were computed 

in Microsoft Excel. 

 

5.4 Results 

5.4.1 Error Matrices 

Error matrices were produced first to compare the filtered and unfiltered classifications 

in a single year, 2010, in order to select the most appropriate filter to use. Table 5.1 shows 

the results of this analysis. There is a marginal increase in accuracy between the post-

classification majority filtered product and the unfiltered products, but neither post-

classification filtered products compare favourably with the maps that were speckle-

filtered in pre-processing. Between the speckle-filtered products, the multi-temporal 

speckle filtered products exhibit lower overall accuracies and kappa coefficients than 

the median (single image) speckle filtered product. For further analysis with the JAXA 

FNF product, the median speckle filtered product was selected. 
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Table 5.1: Error matrices for different SAR filtering options from 2010 data. Units for F (forest), NF (non-forest) and Total 

columns are number of sample points 

SAR Filter Used 
 

Reference Data 

Overall Accuracy 

[%] Producer's 

Accuracy 

User's 

Accuracy 
  

F NF Total Kappa coefficient 

Majority Filtered 

post-classification 

F 960 0 960 82.7083 0.743 1 

NF 332 628 960 0.6542 1 0.6542 

Unfiltered F 959 1 960 82.6042 0.7423 0.999 

NF 333 627 960 0.6521 0.9984 0.6531 

MultiTemporal 

Spk Filtered  3 x 3  

F 939 21 960 89.8438 0.8437 0.9781 

NF 174 786 960 0.7969 0.974 0.8188 

MultiTemporal 

Spk Filtered 5 x 5 

F 937 23 960 90.3125 0.8518 0.976 

NF 163 797 960 0.8062 0.972 0.8302 

Median Spk 

Filtered 3 x 3  

F 952 8 960 94.7396 0.911 0.9917 

NF 93 867 960 0.8948 0.9909 0.9031 

 

Error matrices were computed for all 4 years from the median speckle filtered and JAXA 

FNF products and are reproduced in Table 5.2. The median speckle filter applied 

individually to images outperformed the JAXA FNF product in overall accuracy and 

kappa coefficient. There were very few instances where the forest class was 

misclassified as non-forest in the JAXA FNF product, and far more non-forest classed as 

forest, suggesting the model is overfit for the forest class. The same is true of this study’s 

median speckle filtered SVM approach, but to a lesser extent.  
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Table 5.2: Confusion Matrices in sample numbers for each class – Forest (F) and Non-Forest (NF) – from this 

study’s median speckle filtered SVM classifier and JAXA’s FNF data against the validation reference dataset. 

Percentage overall accuracy, producer's and user's accuracies (for both classes) and the estimated Kappa 

coefficient are also presented 

 

 

5.4.2 Forest Area Change 

Forest areas, in km2 as well as percentage of total study site area, were calculated for 

this study’s supervised classification and the JAXA FNF product, for each year. These, 

along with total forest gain and loss (from 2007 to 2010), and the area of pixels with 

multiple class changes (which were masked from the total forest gain and loss figures) 

are reported in Table 5.3 below. 

  

Table 5.3: Forest area in km2 and as percentage of total study site area, with class change areas for this 

study's supervised SVM classification and the JAXA FNF product, and the area of multiple class changes (>1 

change over the 4 year period). Loss and Gain figures exclude pixels with multiple class changes 

 

F NF F NF F NF F NF

F 950 10 956 4 933 27 952 8

NF 59 901 73 887 58 902 93 867

Producer's Acc 0.9415 0.989 0.9291 0.9955 0.9415 0.9709 0.911 0.9909

User's Acc 0.9896 0.9385 0.9958 0.924 0.9719 0.9396 0.9917 0.9031

Overall Acc 96.406 95.99 95.573 94.74

Kappa 0.9281 0.9198 0.9115 0.8948

JAXA FNF F 958 2 960 0 956 4 944 16

NF 290 654 284 660 417 527 422 522

Producer's Acc 0.7676 0.997 0.7717 1 0.6963 0.9925 0.6911 0.9703

User's Acc 0.9979 0.6928 1 0.6992 0.9958 0.5583 0.9833 0.553

Overall Acc 84.664 85.084 77.889 76.996

Kappa 0.6925 0.7009 0.5561 0.5382

Reference Data Reference Data Reference Data

Median Spk 

Filtered 3 x 3 

2007 2008 2009 2010

Reference Data

2007 2008 2009 2010 Loss Gain Mult. Change

Area [km2] 249291 254398 247412 252936 6542 8512 15240

%Total Area 81.09 82.75 80.48 82.28 2.13 2.77 4.96

Area [km2] 274476 273252 279207 278438 4355 8377 11710

%Total Area 89.3 88.9 90.84 90.59 1.42 2.73 3.81

Median 

Spk Filter 

JAXA FNF

Year 2007-2010 Change
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The difference between areas reported each year for both classifications is shown in 

Figure 5.7. There is no agreement between both products in area reported, with the 

exception of the value for forest gain between 2007 and 2010. The values for loss and 

gain are relatively high, and could be a function of changing image statistics between 

acquisitions; it is unlikely to have such a high value for forest gain over as short a time 

span as 4 years.  

 

Figure 5.6: Reported forest area in km2 by both classifications over the timeseries (2007-2010) 

 The error adjusted area values for forest and non-forest classes in Figure 5.7 and Figure 

5.8 were calculated using the formula described in section 5.3.5, and the figures also 

show error bars (standard error). The values represent the area for each class, adjusted 

for errors of omission, so are completely different from the values in Figure 5.6, in that 

values are considerably lower, showing only the areas that can be reliably reported for 

each class, with the error bars showing upper and lower confidence intervals. The 

missing areas from the error adjusted values represent the area of errors of commission 

in the map.  
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Figure 5.7: Graph of error adjusted forest area by year, showing differences between this study’s supervised 

classification (Median speckle-filtered SVM) and the approach used for JAXA’s FNF map; the figure shows the 

area that is classified as forest with 95% confidence error bars, computed using the formulae from equations 

9 and 10 

 

Figure 5.8 Graph of error adjusted non-forest area by year, showing differences between this study’s 

supervised classification (Median speckle-filtered SVM) and the approach used for JAXA’s FNF map; the figure 

shows the area that is classified as non-forest with 95% confidence error bars [km2], computed using the 

formula from equations 9 and 10 

To give a better indication of the proportion of the study area reported, the adjusted 

areas for both classes are shown in Table 5.4 as the proportion of the total study site 

area. From this table it is clear that the forest changes from year to year in Figure 5.6 

cannot be described as significant. In fact, the area of forest that is accurately mapped 
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by the Median Speckle Filter year to year remains very stable, while the adjusted area 

for the JAXA FNF product reduces between 2008 and 2009. 

Table 5.4: Error adjusted areas and 95% confidence margins of error, expressed as percent of total study site 

area 

  
2007 2008 2009 2010 

Median Spk Filter 

SVM 

F 0.77 ± 0.006 0.78 ± 0.005 0.77 ± 0.009 0.77 ± 0.006 

NF 0.2 ± 0.013 0.17 ± 0.014 0.21 ± 0.013 0.18 ± 0.016 

JAXA FNF 
F 0.71 ± 0.004 0.71 ± 0.003 0.66 ± 0.005 0.65 ± 0.008 

NF 0.11 ± 0.027 0.11 ± 0.027 0.09 ± 0.029 0.1 ± 0.029 

 

5.4.3 Class Stability of Pixels 

The class stability of pixels was used as a measure to remove probable classification 

errors from the reported forest change. From Table 5.3 it is clear that a high percentage 

of pixels exhibit multiple (2-3) changes between 2007 and 2010 in both products, almost 

equalling the totals for one change (either forest gain or forest loss) in the same period. 

The spatial extent of class stability is seen in Figures 5.11-5.13. Pixels with multiple class 

changes are more prevalent at class boundaries, particularly in the JAXA FNF product, 

and are a feature of noise that was not dealt with sufficiently by the speckle filter in this 

study. 

 

5.4.4 Classification Differences 

Figure 5.7 shows the forest area by year calculated from the two classification methods 

examined. A rise in forest area is observed using both methods, though a smoother 

change is seen using the SVM classifier (Figure 5.7). Annual fluctuations described by 

the K&C Initiative FNF method appear to be more indicative of seasonal changes in 

moisture or flood conditions from different acquisition dates from year to year. This is 

illustrated by the comparison between the two approaches in Figure 5.9. Analysis of the 

2007–10 forest loss/gain product generated (Figure 5.10) gave a net increase in forest 

area of approximately 1,970 km2, the equivalent of 0.64% of the study area. While these 

figures are difficult to verify without ground data, and may therefore not be a reliable 

indicator of actual forest area change, the class changes (both gain and loss) from year 
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to year seen in Figure 5.9, and in closer detail for the entire period in Figure 5.10 - Figure 

5.12, often occur in a pattern consistent with clearing along logging and other access 

trails, and also reflect the fragmented nature of the landscape, particularly in the CAR 

and DRC areas of the study site. The scale of disturbance seen in this data does not 

appear in coarser resolution datasets, and is largely absent from JAXA’s K&C Initiative 

FNF maps, due to the segmentation approach used. In addition there are several large 

features of class change (such as in Figure 5.12) that are due to the division of the 

dataset into 500 km x 500 km processing tiles during classification (Shimada et al., 2014), 

with separate image statistics driving the classification threshold, but in particular 

segmentation boundaries intersecting features at the edge of a processing tile.  
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Figure 5.9: Comparison of forest gain/loss derived from SVM classification and JAXA FNF on the study site, 

with 2007 and 2010 ALOS-PALSAR γ0 RGB composites (HH, HV, HH-HV); relatively small scale changes 

detected in SVM classification, while large clusters of change dominate the JAXA FNF object based 

classification 
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Figure 5.10: Comparison of forest gain/loss derived from SVM classification and JAXA FNF on a subset of the 

study site, with 2007 and 2010 ALOS-PALSAR γ0 RGB composites (HH, HV, HH-HV) and extent indicated on a 

GlobCover 2009 thematic map of the study site (legend in Figure 4.5); logging and agriculture detected in this 

study’s SVM classification, but missed by JAXA FNF segmentation approach; 2010 image brightness due to 

changing wetness conditions along river in top left of subset does not affect SVM classification but is listed 

as deforestation by JAXA FNF product 
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Figure 5.11: Comparison of forest gain/loss derived from SVM classification and JAXA FNF on another subset 

of the study site, with 2007 and 2010 ALOS-PALSAR γ0 RGB composites (HH, HV, HH-HV) and extent indicated 

on a GlobCover 2009 thematic map of the study site (legend in Figure 4.5); fragmented landscape is better 

represented and an area of deforestation is detected by this study’s SVM classification but not in the JAXA 

FNF product, although both classifications appear noisy  
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Figure 5.12: Comparison of forest gain/loss derived from SVM classification and JAXA FNF on a further subset 

of the study site, with 2007 and 2010 ALOS-PALSAR γ0 RGB composites (HH, HV, HH-HV) and extent indicated 

on a GlobCover 2009 thematic map of the study site (legend in Figure 4.5); area shows marked linear features 

due to a classification error in the JAXA FNF product 
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5.5 Discussion 

There is an improvement in accuracy of the classification method used in this study over 

JAXA’s K&C Initiative FNF product in the same area. This may be attributed to their 

application of a global algorithm, compared with the supervised regional approach 

described in this study, particularly in forested areas that are prone to flooding. While 

their forest class uses a regionally changing threshold from the HV channel, their 

decision tree methodology uses a global HH backscatter threshold for a non-forest 

‘settlement’ class that is within the seasonal range of backscatter from Congolese 

swamp forest (from preliminary results in Einzmann et al., (2012)). As a result, large 

areas of forest are classified as non-forest in wet conditions and forest in dry conditions 

(see Figure 5.9).  In addition, the use of segmentation in their approach limits the 

detection of finer scale forest change that the 50m pixel resolution could otherwise be 

sensitive to. While the exact figures generated by the study for forest area, and by 

extension annual forest change, are unreliable without verification from ground data, 

the method described could be a useful indicator of finer scale change. The results from 

this study provide justification for applying this study’s methodology across the whole 

Congo Basin, with refinement of the supervised classification parameters, and 

incorporating available field data from forestplots.net (Lopez-Gonzalez et al., 2011) in 

training and validation where possible. This will allow a broader analysis of forest change 

across the entire region, and it will provide further insight into the results of this study, 

depending on the change seen across the entire Congo Basin. 

For a global forest/non-forest classification the JAXA FNF product performs well 

globally, and it is meeting spatial and temporal resolution requirements for user 

communities (Bontemps et al., 2012; Ban et al., 2015).  

Comparing results to other SAR studies in Table 2.2, the MMU of this study (50m x 50m) 

is able to detect finer scale changes than that of studies using the CAMP dataset (De 

Grandi et al., 2000a) at 200m, partly because of the interim advances in processing 

power and data availability, which allows a higher resolution dataset to be easily 

distributed to researchers, and allows faster processing of those datasets. The GRFM 

dataset is also limited by using a single year of data, although the low and high water 

acquisitions offer an advantage due to the ability to map based on changing seasonal 
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conditions north and south of the equator. Accuracies from studies using GRFM 

(Sgrenzaroli et al., 2004; Bwangoy et al., 2010) are not directly comparable to this study 

due to these differences; there are improvements between this study and those in 

terms of overall accuracy (95.68% vs 87% and 81.11% respectively), but in each case one 

or more of the scope, location and/or range of the studies are different.  

Similarly, for the other listed studies which used ALOS-PALSAR (Betbeder et al., 2014; 

Ferreira-Ferreira et al., 2015; Thomas et al., 2015; Qin et al., 2016; Walker et al., 2010), 

there are some issues which prevent direct comparison. In the case of Betbeder et al. 

(2014), the methodology was completely different, focusing more on MODIS EVI to 

identify forest areas, and used the ScanSAR acquisition mode of ALOS-PALSAR, which is 

a coarser resolution than the strip map mode that was used to create the K&C Initiative 

mosaics. Only one polarisation was used (HH), and it was specifically used to map below 

canopy flood extent. In the same way, Thomas et al. (2015) mapped a very selective 

region of Central Africa, within a fixed distance from the sea (in order to quantify 

mangrove extent), with no overlap with the study area for this chapter. Both of these 

studies could help to explain the misclassifications in the JAXA FNF product in areas of 

changing moisture and wetness conditions, as described on the previous page, by their 

acknowledgement and use of ALOS-PALSAR to map areas of flooded forest. Ferreira-

Ferreira et al. (2015) and Walker et al. (2010) both produced maps closer to the one in 

this study, in terms of using a similar dataset and techniques (machine learning 

classifier, ALOS-PALSAR FBD mode, backscatter), although they were both studies in the 

Amazon basis. Walker et al.’s reported overall accuracy is in line with that reported in 

this study (92.4% compared with this study’s average of 95.68%), and Ferreira-Ferreira 

et al.’s reported accuracy is lower (83%), but was across 5 classes. Qin et al. (2016) 

achieved a similarly high reported overall accuracy (95.9%), at a similar spatial 

resolution and much larger extent; their study extended from tropical humid forests in 

South East Asia to boreal deciduous forests in North East China. 
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5.6 Conclusions 

In the context of the aims and objectives of this chapter, this study fulfilled the three 

objectives. The first two objectives, of obtaining and characterising available L-band SAR 

data, classifying and comparing to other available map products in the Congo Basin, was 

achieved through the selection of the study site and ensuing speckle filter analysis, SVM 

classification, and comparison with the JAXA K&C Initiative FNF product. In terms of the 

third objective, of analysing results and suggesting improvements to data acquisition, 

release and processing, as well as answering the first research question, a number of 

points may be highlighted.  

First of all, when compared visually with the JAXA FNF product, a smaller MMU for a 

forest extent map is desirable. The 50m x 50m MMU in this study picked up finer scale 

changes in forest extent in this region, which were not seen by the JAXA FNF maps. An 

obvious question leading from this result is whether a finer resolution provided by later 

releases of the K&C Initiative mosaic would offer further improvements in forest extent 

and forest change.  

Identifying the likely effects of seasonally flooded forest on the JAXA FNF product urban 

HH channel mask was a positive outcome of this research, and will allow improvements 

in global FNF products using these or similar datasets. 

Following on from the conclusions of Chapter 4, this study illustrated the utility of 

appropriate metadata and high quality accessible L-band mosaics. Having information 

about exact date of acquisition and local incidence angle could also assist in identifying 

and classifying flooded forest areas and other wetlands, as well as allowing the use of 

ancillary climatic datasets such as rainfall, moisture conditions, and temperature. 

The novelty of this chapter can be described by the identification of the faults of the 

wider area FNF product, and the achievement of a higher overall accuracy of the FNF 

classification. Although the methodologies themselves are not novel, it has been an 

achievement in this area of the Congo Basin to perform a rigorous testing of the 

available speckle filters, apply more robust area error and confidence statistics for forest 

and non-forest classes, and generate a training and validation dataset which may be 

made available for future comparative studies. 
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6 Chapter 6:  Multi-scale Analysis of Forest and 

Inundated Forest from Small Area SAR Time Series 

Data  

 

6.1 Introduction / Aim and Objectives 

 

Following on from the work of Santoro et al. (2009) in Swedish boreal forests, this 

chapter aims to answer how different spatial and temporal resolution of ALOS-PALSAR 

data can affect the forest area reporting in a region of the DRC. The Kyoto and Carbon 

Initiative mosaics have been released at differing resolutions (initially 50m for 2008-

2009 and an improved 50m version from 2007-10 released in January 2014; a 25m 

version from 2007-10 in September 2014) and these releases are themselves resampled 

from a 10m resolution product. The potential differences in forest area reporting using 

this dataset, as well as in the Forest/Non-Forest product that accompanies the mosaics, 

originally prompted this research to establish whether this may be significant. It also 

aims to quantify potential improvements in classification accuracy at different 

resolutions, and thus inform on error reporting in ALOS-PALSAR based forest map 

products.  

The accompanying Forest/Non-Forest product from the Kyoto and Carbon Initiative 

mosaic showed several unlikely annual change events in multiple wetland areas in the 

Congo basin (see Figure 5.9). The decision tree classification algorithm used by JAXA 

contains a node which used the HH channel to separate urban areas of non-forest 

(Shimada et al., 2014), without considering the sensitivity of the HH channel to changes 

in moisture below canopy. Using proximity to water bodies, daily rainfall estimates, 

regional water basin products from NASA, and HH channel changes between SAR 

acquisitions, a secondary aim of this chapter was to establish whether flooding was 

indeed causing these supposed change events and investigate the addition of a class for 

‘flooded forest’. 
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The study area for this chapter is described in section 3.1, with a rationale for its 

selection. To summarise briefly, it was selected for the mixture of regularly flooding 

forest and mosaic vegetation and croplands, allowing a chance to investigate the 

flooding effects seen in Chapters 4 and 5, as well as having a reasonable opportunity for 

investigating forest cover change at different scales through the 4 years that data were 

acquired. As it is a smaller study site than the previous chapters, there is also greater 

scope to investigate optimal classification techniques, without complications arising 

from mosaicking data, such as strip balancing. 

 

6.2 Datasets 

 

6.2.1 ALOS PALSAR L1.1 

The ALOS-PALSAR scenes used for this chapter are listed in Table 6.1. A L1.1 (single look 

complex) time series of ALOS-PALSAR data was used, which was obtained through a 

research data application by a supervising author (Prof. H. Balzter)3. ALOS-PALSAR data 

is now available free of charge for research purposes through the Alaska satellite data 

facility portal (https://www.asf.alaska.edu/sar-data/palsar/). They cover an area of 

wetland forest and rural complex spanning the Congo River in the Mongala district of 

Équateur province in the DRC, west of the district capital Lisala. The area experiences 

regular flooding and has a climate characterised by a single short dry season (one month 

in January/February) and otherwise high rainfall (~150mm per month (Consortium 

Congo 2010, 2014)). The scene extent is presented in Figure 6.5. 

                                                      

 

3 ALOS-PALSAR data is now available free of charge for research purposes through the Alaska satellite facility 

data portal  at https://www.asf.alaska.edu/sar-data/palsar/ 

https://www.asf.alaska.edu/sar-data/palsar/
https://www.asf.alaska.edu/sar-data/palsar/
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Table 6.1 Description of ALOS-PALSAR scenes acquired; scenes corresponding to the K&C mosaics are in 

bold and one scene discarded after a processing error is in strikethrough and italics. 

Date Polarisations Range Spacing Scene ID Orbit 

2007-06-19 Dual (HH;HV) 9 m ALPSRP074660020 Ascending 

2007-09-19 Dual (HH;HV) 9 m ALPSRP088080020 Ascending 

2008-05-06 Dual (HH;HV) 9 m ALPSRP121630020 Ascending 

2008-06-21 Dual (HH;HV) 9 m ALPSRP128340020 Ascending 

2009-06-24 Dual (HH;HV) 9 m ALPSRP182020020 Ascending 

2009-09-24 Dual (HH;HV) 9 m ALPSRP195440020 Ascending 

2010-05-12 Dual (HH;HV) 9 m ALPSRP228990020 Ascending 

2010-06-27 Dual (HH;HV) 9 m ALPSRP235700020 Ascending 

2010-09-27 Dual (HH;HV) 9 m ALPSRP249120020 Ascending 

 

6.2.2 RFE 2.0 

RFE 2.0 data is acquired at a coarse spatial resolution (~11km pixel spacing at the 

equator) for the whole of Africa and is derived from four sources, described in section 

2.3.7. RFE 2.0 daily rainfall estimate data were downloaded for the entirety of the ALOS-

PALSAR mission, from January 26th 2006 until June 6th 2011. 

 

6.2.3 HYDRO-1K 

HYDRO1K data is a 1km cell resolution global hydrology aide that contains raster and 

vector derivatives of the GTOPO30 digital elevation model (USGS, 2015b).  For this study 

the basin vector data were extracted for the Congo Basin. The HYDRO1K dataset 

contains several layers, but the one which was of interest was basin catchment area. 

These are vector polygons showing basin catchment or sub-catchment areas, with an 

accompanying Pfafstetter code. The Pfafstetter code is a six level unique identifier, 

where each level has a corresponding number of digits which describes the flow from 

sub-catchment to catchment area (Verdin & Verdin, 1999). The dataset was produced 

using flow analysis of the GTOPO30 30 arcsecond (roughly 1km resolution) DEM, 

assigning flow direction from a cell using the steepest slope towards a neighbouring cell 

(USGS, 2015b). 
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6.2.4 AMSR-E 

The daily soil moisture (SM) and vegetation water content (VW) products from the 

AMSR-E sensor on the joint JAXA/NASA Aqua platform were downloaded, like the RFE 

2.0 dataset, for the entire ALOS-PALSAR mission duration. The soil moisture product, 

measured in g/cm3, is derived from the ratio of horizontal and vertical polarisations of 

X- and C-band passive microwave brightness data received by AMSR-E (Njoku et al., 

2003). The VW product (measured in kg/m3), is based on the polarisation ratio at C-

band, but is not considered decoupled from the effects of surface roughness, so is more 

accurately described as an effective vegetation water content (Lucas et al., 2010). 

6.2.5 SRTM 

NASA’s Shuttle Radar Topography Mission (SRTM) DEM was used for automatic 

orthorectification of geometric distortions, and for topographic slope correction. The 

SRTM dataset is a near global (56° S to 60° N) DEM generated from analysis of data 

gathered by dual wavelength (C- and X- band) SAR sensors onboard the Space Shuttle 

Endeavour over an 11-day mission in 2000, allowing repeat imaging of most landmasses 

(most of Africa was acquired twice, with a small area imaged just once) (Hennig et al., 

2001). Single pass InSAR analysis (made possible by a second signal receiver on the end 

of a 60 m long boom) was performed on the data to produce a 3 arcsecond (~90 m) DEM 

(SRTM-3). The design requirements for the SRTM-3 DEM included a 16 m absolute 

vertical error limit, and it has generally exceeded that requirement (Rexer & Hirt, 2014).  

 

6.3 Methods 

 

The approach used in this chapter involves a detailed comparison of classifications of an 

eight-date time series of ALOS-PALSAR data, to determine how the use of different 

spatial resolutions affects the reporting of forest area. They were also compared with 

existing forest/non-forest classifications at different spatial resolutions from the JAXA 

K&C Initiative. 



104 
 

6.3.1 ALOS PALSAR Pre-processing 

The nine available scenes represent all that were acquired by ALOS in the study area in 

this mode (fine beam dual polarisation, ascending orbit). Four scenes (one per year from 

2007 to 2010) corresponded to the K&C Initiative mosaics, in that the mosaics were 

created from the same raw data over the study area.  

The processing chain is presented in Figure 6.1, and a detailed description follows. 
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Figure 6.1: Flow chart of ALOS-PALSAR processing chain, including pre-processing of input data and training, 

classification and outputs. Several different multilook values were processed for all scenes. 
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To begin with, L1.1 ALOS-PALSAR fine beam dual polarisation (FBD) data were 

downloaded and processed according to standard protocol. Using the Sentinel 1 

Toolbox (S1TBX) the L1.1, complex (containing phase and intensity information) data 

were read and then multilooked using four different multilook values resulting in pixel 

resolutions of approximately 15m, 30m, 45m and 60m, designated ML1, ML2, ML3 and 

ML4 respectively (indicating the number of looks in azimuth, not the equivalent number 

of looks).  All images were calibrated using an absolute calibration constant correction 

from Lavalle & Wright (2009), which is specific to ALOS-PALSAR. They were then roughly 

orthorectified using the 3 arcsecond SRTM DEM and then finely geocoded by 

coregistering the data to an accurately geocoded Kyoto and Carbon Initiative mosaic 

subset of the study area (which had itself been resampled to the appropriate resolution 

depending on the multilook value used previously). During this stage, resampling was 

completed using bilinear interpolation. 

One scene was discarded at this point (acquired on 2010-05-12) due to errors in the 

downloaded data, leaving eight images, two per year. There was one similar acquisition 

date each year, in June, and three years (2007, 2009 and 2010) had both images from 

the same months. 

All remaining images were then processed to remove speckle (noise created from the 

random scattering within a resolution cell) using a multi-temporal speckle filter from 

the S1TBX, based on the algorithm of (Quegan et al., 2000), described in section 2.3.8. 

All images were then reprojected into a Lambert Azimuthal Equal Area projection, using 

metres rather than degrees as units, and allowing for more consistent reporting of 

forest area. At this stage the images were cropped to their maximum intersection. 

 

6.3.2 Generation and Selection of Derived Texture and Difference Layers 

Eight Grey Level Co-occurrence Measures (GLCM) of texture from Haralick et al., (1973) 

were computed using the open source ‘glcm’ package in R, which allowed the mean of 

all texture directions to be used. These texture measures are commonly used to discern 

information from noisy data, and can improve classification accuracy (Hall-Beyer, 2017). 
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4-bit quantization levels were selected for the GLCM calculation (16 grey levels). Figure 

6.2 shows a selection of class specific data value histograms produced from each of the 

8 Haralick texture measures (histograms for all dates and polarisations are in Appendix 

B1). The mean and variance measures both exhibit different histograms for each class, 

and are sufficiently different to provide additional information. The homogeneity 

measure is very close to the variance measure, and the other 5 measures display too 

much similarity in 2 or more of the 4 classes and as such just mean and variance 

measures were used. 
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Figure 6.2: Histograms of the eight Haralick GLCM texture measures from Training and Validation sample 

areas; labels indicate the date, polarisation channel and class; frequency scales are different in each 

histogram to better illustrate range of values in more homogeneous texture measures. Texture generated 

from 45 m ALOS-PALSAR data; continued in Appendix B1 
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Both texture measures were computed for each of the two polarisations (HH and HV), 

and a difference layer (HH-HV) was also added. 

For all eight images, the total range for HH backscatter was computed on a pixel level, 

to produce a single image of HH range from 2007-2010. The areas covered by water 

were masked out of this image, in order to only highlight areas of land with a high 

variability in HH backscatter. 

  

Figure 6.3: ALOS-PALSAR HH σ0 eight-scene range image used to classify flooded forest areas; water bodies 

are masked and the data is stretched to illustrate the difference between flooded areas (top right) and non-

forest areas (bottom right) 

 

6.3.3 Generation of Reference Data 

Training and validation samples were prepared ex situ for each year using a combination 

of high resolution optical imagery from google earth, ALOS-PALSAR RGB composites 

(HH;HV;HH-HV) and the HH-range image for all 8 images (Figure 6.3). An open source 

tool, from the “Semi-Automatic Classification Plugin” installed within Quantum GIS, 

provided a customisable region growing algorithm for generation of classified polygons. 

The region growing algorithm operated on individually selected pixels from the input 
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image, with several adjustable parameters including the maximum radius and tolerance 

thresholds (labelled as ‘radius in the multispectral space’). After the selection of a clearly 

classifiable single pixel, a polygon forms around this ‘seed’ based on radiometric 

similarity. An area with a homogenous backscatter signal produced a larger polygon, up 

to the point that the maximum radius from the seed pixel was reached. More 

heterogeneous land cover types (as characterised by the radar backscatter) resulted in 

smaller, web-like polygons. Input layers to base the region growing algorithm on for 

each class were selected depending on the separability of the class by that layer. As 

such, the forest and non-forest classes used the HV channel and the flooded forest and 

water classes used the HH channel. The input parameters used were the following: 

maximum spectral distance from seed pixel to surrounding pixels – 0.2 dB; minimum 

area of region of interest (ROI) – 50 pixels; maximum width of ROI – 25 pixels. It should 

be noted that without the coordinates of the seed pixel, this sampling strategy, while a 

fast method of generating large reference datasets, is difficult to replicate. 

In the absence of reliable ground truth data, the tool and method was chosen for its 

ability to combine the benefits of expert visual and contextual interpretation of multiple 

data sources with quick automatic generation of large numbers of neighbouring 

classified pixels. For each training polygon, the seed pixel was carefully chosen from a 

central area of the land cover type it represented, thus reducing the chance of a 

misclassification in edge areas. The resulting polygon was then visually assessed using 

high resolution imagery from google earth, the original speckle filtered ALOS-PALSAR 

imagery at its highest resolution (~15m), and in the case of the flooded-forest class, the 

HH range image. In the event that the polygon contained incorrect pixels, another seed 

pixel was selected. For the validation dataset, a similar procedure was followed. Figure 

6.4 illustrates the spatial distribution of training and validation polygons generated, and 

the characteristic shapes of the polygons. 
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Figure 6.4: Spatial distribution of reference polygons (left), with zoom windows (right) indicated by black 

boxes; underlying image is an RGB composite of HH, HV and the polarisation difference from 2007-06-19 

Training and validation polygons were grouped and assessed for spatial autocorrelation 

using the Moran’s I tool (as in section 5.3.2) tool in ArcGIS. This returned Moran’s I 

values of 0.5046, 0.3653, 0.6549 and 0.5308 for 2007, 2008, 2009 and 2010 datasets 

respectively. Z values were all above 2.58 (6.75, 6.54, 7.60, and 9.62 respectively), 

indicating that the likelihood of non-random clustering is statistically significant at the 

99% confidence level. This may not reflect the actual variability in samples, but is less 

than ideal. During the model building step of the classifier, pixels in the input image 

stack which fell within any of the training/validation polygons for that year were split 

50:50 into independent and separate training or validation samples.  

 

6.3.4 Class Separability 

Scatter plots were produced in HH and HV channels for each date, at each resolution, 

from the training data, in order to visually assess class separability. Matrices of 

transformed divergence in each of the 4 classes for HH and HV from the training dataset 
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were also produced to give an indication of class separability. Transformed divergence 

was calculated using the separability function in the spatialEco package in R according 

to the formula of Swain & King (1973). Values for transformed divergence between two 

classes range between 0 (perfectly inseparable) and 2 (perfectly separable), where 

values above 1.9 are considered to be well separated, and values below 1.7 are 

considered to be poorly separated (Regos et al., 2015; Jensen, 1996). 

 

6.3.5 Classification Procedures 

Two machine learning supervised classifications were compared, Random Forests (RF), 

and Support Vector Machine (SVM) (both described in section 2.4), to produce thematic 

maps with forest, non-forest, flooded forest, and water classes. To implement these 

algorithms, the open source Orfeo Toolbox (OTB) machine learning library was chosen 

and accessed through a batch script in the OSGeo4W (Open Source Geospatial 

[foundation] for Windows) environment. From section 2.4, RF was expected to perform 

better than SVM in terms of processing speed, as it is better suited to multiple classes 

and a large feature space. Following model training, the OTB image classifier routine 

was applied and an initial classification was produced for each scene, at each resolution 

and using both classification methods, to produce 64 classified images. As in Chapter 5, 

the SVM classifier was run using an RBF kernel, with automated optimisation for the γ 

parameter, using a k-fold cross validation on subsamples of the reference dataset, all 

after data were automatically normalised. The RF model parameters were tested on one 

date (2010-09-27) at all scales, to find the optimal classifier. Four of the five parameters 

from Table 2.4 were tested individually with other parameters at their defaults (tree depth 

– 5; minimum number of samples per node – 10; maximum number of trees in forest – 

100; sufficient accuracy/OOB error – 0.01). Two values above and below the default 

thresholds were tested. The final RF classifier was tested on the dataset with just HH 

and HV polarisation (without mean and variance GLCM texture layers). 
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6.3.6 Post-Classification 

A two-step post classification procedure was used to improve each classification, using 

contextual information (proximity to river features) and majority filtering to remove 

outliers, particularly at higher resolution. A water buffer was created to allow flooded 

forest pixels classified at more than 4km from the river to be reclassified as forest pixels. 

The second step was a majority filter (centre pixel takes the value of the mode in a 

moving window, remaining the same in the case of a tied value) using a moving window 

at a dimension appropriate to the resolution (windows of 7x7, 5x5, 5x5, and 3x3 for 

15m, 30m, 45m, and 60m resolution respectively). 

6.3.7 Scaling Thematic Classification 

To check whether the effects of scale on the classification were different from a 

resampling of the classification from the highest resolution, a resampling of the 

classification at its highest resolution (15 m) to the coarser resolutions was undertaken. 

Resampling to a coarser resolution was undertaken using the gdal translate function, 

using the mode of the higher resolution pixels. 

 

6.3.8 Validation 

Confusion matrices were generated using the validation dataset for all classified images, 

both before and after the post-classification step, and from this an accuracy assessment 

was produced. To ensure fairness between scale levels, the number of pixels to validate 

at each class was restricted to 1000. However, since at the coarsest scale (60 m) there 

was a class (non-forest) with only 460 validation samples, the maximum number of 

validation samples for all classes in this scale was restricted to 460.  

The area covered by each class was extracted and analysed for each scale, from the 

maximum intersecting area of the 8 scenes covered. 

6.3.9 Basin Excess Rainfall Maps / Normalised Cumulative Rainfall 

For the study area, the HYDRO1K subbasin catchment and daily RFE 2.0 data were used 

to generate local basin catchment measures of dekadal cumulative rainfall for each day 

during the ALOS-PALSAR lifecycle. While Basin Excess Rainfall Maps (BERM) for Africa 
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are available online (USGS, 2015a) through the Famine Early Warning Systems Network 

portal (FEWSNET), the data are difficult to analyse (they are published as scaled down 

.png map documents) and are based on dekadal cumulative rainfall sums that do not 

correspond to the ALOS-PALSAR acquisition dates. The FEWSNET BERMs are also 

produced using HYDRO1K sub-basin catchment and daily RFE 2.0 data, and have an 

additional river reach product. Their product scored sub-basin catchment rainfall based 

on long-term average conditions and also used upstream catchment rainfall in the 

calculation of the river reach product.  

Given the scope of this project, and the intended use of the products, normalised 

cumulative rainfall (NCR) values were generated instead of BERMs, using a simpler 

method. Within each sub-basin catchment, the dekadal cumulative rainfall sum R was 

calculated for each day of the year, and the NCR values on each date d were generated 

as the dekadal sum feature (𝑅𝑑) scaled to a range of 0-100 based on the minimum 

(𝑅𝑚𝑖𝑛) and maximum rainfall (𝑅𝑚𝑎𝑥) sums for the time period of the ALOS-PALSAR 

lifecycle (2006-02-02 to 2011-06-30) as shown in Equation 11 below.  

𝑁𝐶𝑅𝑑 = 100 ∗
𝑅𝑑 − 𝑅𝑚𝑖𝑛

𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛
 

Equation 11 

The normalising step was undertaken since the sub-basin catchment areas are of varying 

shapes and sizes. Using values from the sub-basin catchments that contribute to the 

study area, the NCR values corresponding to the dates of ALOS-PALSAR scene 

acquisition for this study were then generated. The study location and an example of 

the NCR values from 2008-05-06 are presented in Figure 6.5.  
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Figure 6.5: Study area scene extent, HYDRO1K basin catchment areas (right images), and example NCR values 

(from 2008-05-06) 

Figure 6.6 shows how the mean (of the five contributing sub-basins) NCR values 

compare with those from the entire period against which they are normalised. Ideally, 

a greater range of NCR values would be desirable, but there was sufficient variability in 

the available eight points to compare relatively wetter and drier scenes. 
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Figure 6.6: Graph of mean NCR values from the ALOS-1 lifetime (from launch to mission failure); vertical 

dotted lines correspond to image acquisition dates from this study (labelled) 

 

6.3.10 Use of AMSR-E SM and VW 

AMSR-E Soil Moisture (SM) and Vegetation Water content (VW) data were downloaded 

and processed using R. There are ascending and descending passes, with a repeat pass 

for each orbital direction at the equator of 2 days. Therefore to obtain daily coverage in 

what is already an extremely coarse resolution dataset (in comparison with ALOS-

PALSAR data), with values masked where vegetation is dense or water bodies are 

extensive, the mean of ascending and descending values were combined. The values 

were cropped to the study area, comprising a small number of pixels, and compared 

with the backscatter values in HH and HV, as well as with the RFE 2.0 data and the 

derived NCR values. 3-day averages of SM and VW were also generated and tested with 

RFE 2.0 and RFE 2.0 derived data, and the relationships between AMSR-E metrics and 

RFE 2.0 products were examined for all data available (including days not within the 

ALOS PALSAR acquisition coverage) to increase the sample size due to the coarse 

resolution.  

6.3.11 Software Used 

This chapter used the ESA Sentinel 1 Toolbox (version 1.1.1) for pre-processing; for 

application of the SVM and RF classifiers, Quantum GIS (version 2.8.2) and the Orfeo 

Toolbox (OTB) were used within the Open Source Geospatial [foundation] for Windows 

(OSGeo4W) environment. R (version 2.15) with packages rgdal and raster were used to 
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process RFE 2.0 and AMSR-E data and create NCR figures with the HYDRO1K catchment 

area shapefiles. 

 

6.4 Results 

 

Results from this chapter are divided into nine sections: first, class separability and 

secondly statistics for the processed input ALOS-PALSAR imagery are reviewed and 

analysed; third, a brief comparison between two classification methods; fourth, the 

texture measures are tested to make sure they are a necessary addition to the classifier; 

fifth, those dealing with the differences in forest measurement and classification at 

multiple resolutions; finally a comparison of flooded forest area with NCR values. 

6.4.1 Class Separability 

To examine class separability, and to highlight the importance of the multi-temporal 

speckle filter used during processing, scatter plots of HH and HV ALOS-PALSAR channels 

were produced using the classified training dataset. Figure 6.7 shows the diminishing 

number of representative pixels contained within the training datasets at decreasing 

spatial resolution. While this is an expected result, given the use of the same training 

data polygons at all resolutions, class separability is shown to improve with decreasing 

resolution.  
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Figure 6.7: Filtered ALOS-PALSAR HV/HH classified scatterplot comparison at different spatial resolutions (15, 

30, 45 and 60 m) 

Figure 6.8 shows a comparison between unfiltered and speckle filtered ALOS-PALSAR 

classified scatter plots. In this case, with the same training polygons and at the same 

spatial resolution, the number of pixels is identical, but the class separability appears 

improved in the speckle filtered dataset. All scatterplots, both filtered and unfiltered, 

from all dates and at all four spatial resolutions, are available in Appendix AI.1. Similar 

trends of improved class separability for filtered, coarse resolution data are observed 

across the entire dataset. 
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Figure 6.8: Filtered/Unfiltered ALOS-PALSAR HV/HH classified scatterplot comparison at 15m spatial 

resolution 

Measures of class separability in the form of transformed divergence (TD) in HH and HV 

polarisation channels are seen in Figure 6.9 (and at all scales in Appendix B3). It is clear 

that in individual polarisation channels, class separability is low (except for water, which 

is highly separable from the other classes). The Non-Forest/Flooded Forest TD is greater 

than other non-water classes in HH, and the Forest/Non-Forest TD is greater in HV. 

Forest/Flooded-Forest has consistently well below optimal (<1.7) TD in HV. Both 2007 

datasets showed low TD in all classes at this scale, although there is improvement at 

coarser resolutions, particularly in the Forest/Non-Forest TD in the HV channel.  
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Figure 6.9: Inter class transformed divergence at 15 m in HH (top) and HV (bottom) channels; horizontal 

dashed line indicates 1.7 threshold of transformed divergence; other scales in Appendix B3 

 

6.4.2 RF and SVM Classification Comparison 

The RF parameter search did not yield much information to optimise the classifier above 

the default parameters. Figure 6.10 shows that the parameter with the greatest 
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influence was maximum tree depth. Lower than default values had a severe effect on 

overall accuracy, and higher values had a small effect in the scene analysed. Other 

parameters either had negligible or unpredictable effects (whether the parameter was 

increased or decreased) on the scene tested. 

 

Figure 6.10: Random Forests parameter search results; parameter and value is shown on the x-axis, and the 

y-axis shows the difference between the overall accuracy and that of the default parameters; all four scales 

were tested on one scene acquisition (2010-09-27). Values for Tree Depth:1 and Tree Depth:3 were ~-50% 

and -4% respectively at all scales, and therefore do not appear on this chart 

The two supervised computer learning classification methods were compared in terms 

of visual output, overall accuracy, and processing speed. The major difference between 

the two methods is processing speed, seen in Figure 6.11. RF processing speed is 

unaffected by the number of pixels per class, at around 6 seconds (rising to 9 seconds if 

all pixels are used at 15m spatial resolution). SVM Processing speed is directly linked to 

the number of training pixels used by each class, which causes limitations on the number 
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of training pixels that may be used by the SVM classifier. It should be noted that while 

parameters for both methods were optimised to a degree, there are parameters in RF 

that could cause an increase in processing time, in particular the maximum number of 

trees, which were not examined by this study as changes in this parameter offered no 

improvement in the parameter search. At coarser resolutions, where fewer pixels are 

covered by the training polygons, the number of training pixels may not need to be 

limited. Visually, there are no major differences between the two methods if a limit of 

1000 training pixels is used (Figure 6.12), and Figure 6.13 shows that there are no 

significant differences between their total classification accuracies (based on an 

accuracy assessment from the validation dataset). 

 

Figure 6.11: Processing speed comparison between SVM and RF for a single image classification at 15m 
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Figure 6.12: RF vs SVM classification, using similar input data and a limit of 1000 training pixels per class 

 

Figure 6.13: Overall accuracy assessment comparison between SVM and RF classifiers 
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6.4.3 Texture Information 

A comparison of accuracy with and without GLCM mean and variance HH and HV texture 

layers was performed at all scales and dates and demonstrated the utility of the texture 

measure (Figure 6.14). Texture was found to improve the overall classification accuracy 

in all scenes and at all scales, but particularly so at the higher resolution. 

 

 

Figure 6.14: Loss of accuracy from removing mean and variance texture layers at HH and HV polarisations 

with scene date on the x axis and four scales represented by different symbols 

 

6.4.4 Classification at Different Scales 

The following results are based on multi-temporal speckle filtered data, classified using 

the RF algorithm. A comparison of four resolutions, across eight dates, is described 

below. In most of the eight scenes there are clear differences visible looking at the entire 

scene; an example is given below from the 2007-09-19 scene (Figure 6.15), and 

highlighted in zoomed in areas of flooded forest and non-forest (Figure 6.16 and Figure 
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6.17, respectively). Appendix B4.2 contains figures for all eight scenes, including details 

of flooded forest and non-forest. Comparing the classification with the RGB composites 

below in the detail zoom figures illustrates the smoothing effect of the multilooking 

process. At coarser resolutions the classification becomes regularised, potentially 

leading to the removal of erroneous labelling due to signal noise, but also overlooking 

smaller forest clearances within forested areas, and smaller isolated clusters of woody 

vegetation in largely unforested areas. 
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Figure 6.15: Comparison of classifications (top) at 15, 30, 45 and 60m resolutions with RGB composite of 

[HH:HV:HH-HV] stretched identically regardless of scale (below); full scene extent 
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Figure 6.16: Comparison of classifications (top); flooded forest detail with RGB composite (below) 
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Figure 6.17: Comparison of classifications (top); non-forest detail with RGB composite (below) 

Accuracy assessments show there is generally higher total accuracy (a score of all 

correctly classified pixels) at higher spatial resolution, seen below in Figure 6.18. 
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However, the performance of the classifier at each resolution is not consistently higher 

at finer spatial resolutions when individual classes are assessed (assessing errors of 

commission and omission for that class)4. Figure 6.18 shows fluctuating responses for 

the forest and flooded forest classes, with no clear dominance by any of the tested 

resolutions. Only the non-forest class shows a consistent advantage of higher 

resolution. This may be due to a combination of higher backscatter variability in the non-

forest class (which covers several land cover types: settlements, crops, bare earth), a 

dominance of forest cover in the study area, and non-forest ground features occurring 

at a scale lower than that observable at coarser resolution. 

The accuracies of flooded forest are low compared with the forest class, and this is due 

to a single validation dataset being produced for each year, as SAR backscatter signals 

for seasonally flooded forest are more likely to change between scenes than for any 

other class in the study area. Errors for flooded forest are characterised by flooded 

forest/forest class confusion, particularly at higher spatial resolution, although the 

number of scenes with greater flooded forest/non-forest class confusion increases with 

lower resolution images. Misclassification of flooded forest as forest rather than non-

forest is anticipated since flooded forest is a subset of forest, and a positive outcome 

given the aims to correct misclassification of flooded forest as non-forest in the K&C 

Initiative forest/non-forest products. 

It is clear, visibly from Figure 6.15, and in the graphs of Figure 6.18 that the classification 

of forest and non-forest in the first scene (from 2007-06-19) at 45 m resolution has 

made considerable errors. This is possibly attributable to a data calibration issue, as well 

as the selection of training polygons for those classes. The scatterplots (in Appendix 

AI.1) and low transformed divergence between classes for both 2007 scenes show poor 

                                                      

 

4 All pixels correctly classified as ‘x’ divided by all pixels that were classified as ‘x’ plus all pixels that should 

have been classified as ‘x’ (but were not). 
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class separability for forest and non-forest compared with the other years. Full 

confusion matrices are in Appendix AI.3. 

  

 

Figure 6.18: Comparison of accuracy assessments for RF classifications at multiple scales - total accuracy as 

well as accuracies of three classes – forest, non-forest and flooded forest 
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Figure 6.19: Flooded forest class confusion: forest and non-forest comparison; misclassified pixels expressed 

as a percentage of total number of pixels classified (correctly or incorrectly) as flooded forest 

Table 6.2: Class Accuracy Statistics 

15 m Forest Non-Forest Flooded Forest Water Total 

Range 0.1701 0.0638 0.3356 0.0715 0.0990 

Standard Deviation 0.0521 0.1690 0.1102 0.0246 0.0306 

Mean 0.8782 0.8594 0.8034 0.9610 0.9340 

Coefficient of Variation 5.94 7.42 13.71 2.56 3.28 

30 m Forest Non-Forest Flooded Forest Water Total 

Range 0.1632 0.1891 0.3075 0.1950 0.1068 

Standard Deviation 0.0530 0.0707 0.1165 0.0680 0.0342 

Mean 0.8970 0.8239 0.8187 0.9148 0.9296 

Coefficient of Variation 5.91 8.58 14.22 7.44 3.68 

45 m Forest Non-Forest Flooded Forest Water Total 

Range 0.5755 0.6207 0.2710 0.2352 0.3202 

Standard Deviation 0.1830 0.1947 0.0976 0.0823 0.0996 

Mean 0.8285 0.7180 0.8382 0.9015 0.8868 

Coefficient of Variation 22.09 27.12 11.65 9.12 11.23 

60 m Forest Non-Forest Flooded Forest Water Total 

Range 0.2166 0.4059 0.2799 0.2314 0.1346 

Standard Deviation 0.0817 0.1388 0.1122 0.0989 0.0525 

Mean 0.8606 0.7031 0.8189 0.8737 0.8971 

Coefficient of Variation 9.50 19.74 13.70 11.32 5.85 
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6.4.5 Comparison to Thematic Maps Resampling 

Thematic maps were resampled from the highest resolution to the coarsest, post 

classification, and the results compared both visually and statistically in terms of the 

differences in reported class areas. The following three figures show the visual results 

(see Figures 6.17-6.19 for comparison with ALOS-PALSAR RGB composites). The 15 m 

products are identical as it is the source of the post-classification resampling in each 

case. There is a marked difference between both methods visible in the study area at 

the full scene level but more noticeably in the close-up figures. Post classification 

resampling to a coarser resolution appears to have minimal effect in this study area, and 

indeed this is borne out by the reported class areas, where there is almost no difference 

in the reported area in any of the scales, while there is much more variation in the 

multilooked (pre-classification) reported areas (Figure 6.18). 
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Figure 6.20: Class comparison between pre- (multilooking) and post-classification (thematic resampling) 

scale adjustments; full scene extent  
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Figure 6.21: Class comparison between pre- (multilooking) and post-classification (thematic resampling) 

scale adjustments; flooded forest detail 
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Figure 6.22: Class comparison between pre- (multilooking) and post-classification (thematic resampling) 

scale adjustments; non-forest detail (flooded forest appears in this data as the water body buffer has not 

been applied) 
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Figure 6.23: Comparison between class areas in km2 reported by thematic map resampling and pre-

classification multilooking 

 

6.4.6 Class Area Differences 

Forest, flooded forest and non-forest area were computed at each resolution, as well as 

a ‘combined forest’ area of forest and flooded forest classes, and are displayed in Figure 

6.24 below. Stable values for non-forest are assumed to be more reliable, as neither 

considerable deforestation nor afforestation has occurred in the period covered by the 

imagery. Due to seasonality and the influence of rainfall on backscatter in the flooded 

forest class, more variability is expected, although the aim of the study is to map areas 

of forest that regularly flood, not just areas that are flooded at the exact time of the 

image acquisition. When the forest and flooded forest classes are combined, the 

coefficient of variation (standard deviation as a percent of the mean) in reported area 

decreases compared with either individual class, which appears to confirm the 

misclassification results in Figure 6.19.  
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Figure 6.24: Comparison of reported class areas at different scales (clockwise from top left: Forest, Non-

Forest, Flooded Forest, Water) 

 

Across forest, non-forest and flooded forest, there is greater stability at higher 

resolutions (15 and 30 m), and more erratic reporting of area at lower resolutions (45 

and 60 m). The range and standard deviation of reported area (Figure 6.25) show this 

more clearly, particularly for the forest and non-forest classes. Flooded forest area has 

lower range and standard deviation, because it covers a smaller area than forest and 

non-forest, although its coefficient of variation at all resolutions is more comparable to 

non-forest. The water class is included for comparison; it is separable from the other 

classes (Figure 6.7) and not likely to change considerably. 
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Figure 6.25: Area range and standard deviation at all spatial resolutions across the eight classified images 

 

Table 6.3: Class area statistics from RF classification for the 8 classified images at each resolution 

15 m Forest Non-Forest Flooded Forest Water Combined Forest 

Range 635.92 621.45 312.20 28.87 639.85 

Standard Deviation 224.14 187.49 106.83 11.31 192.82 

Mean 2668.11 575.73 271.25 253.26 2939.36 

Coefficient of Variation 8.40 32.57 39.38 4.47 6.56 

30 m Forest Non-Forest Flooded Forest Water Combined Forest 

Range 740.58 659.17 274.12 52.99 682.18 

Standard Deviation 232.19 204.37 102.66 18.61 210.44 

Mean 2679.40 556.64 281.79 250.50 2961.19 

Coefficient of Variation 8.67 36.72 36.43 7.43 7.11 

45 m Forest Non-Forest Flooded Forest Water Combined Forest 

Range 1370.15 1186.49 302.21 41.39 1215.94 

Standard Deviation 438.41 411.06 101.74 15.54 425.20 

Mean 2528.94 709.08 285.33 244.88 2814.26 

Coefficient of Variation 17.34 57.97 35.66 6.34 15.11 

60 m Forest Non-Forest Flooded Forest Water Combined Forest 

Range 1057.36 908.56 413.40 58.94 964.21 

Standard Deviation 315.67 345.86 150.17 21.65 366.13 

Mean 2529.82 672.73 307.59 256.97 2837.41 

Coefficient of Variation 12.48 51.41 48.82 8.42 12.90 
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The K&C Initiative product and this study’s RF classifications (the four scenes which 

correspond to the dates used in the four annual mosaic products at this location) are 

shown in Figure 6.29, and are directly comparable as they are both derived from the 

same original data. All four resolutions of the RF classifications were used, and the K&C 

Initiative forest/non-forest product is presented at both resolutions (25 and 50 m). 

Immediately noticeable are the misclassifications between forest/non-forest in the K&C 

Initiative product in the southern half of the scenes compared with this study’s RF 

classifications. These are consistent misclassifications though, and are likely to be due 

to the application of a wider regional threshold for forest in the algorithm employed by 

JAXA.  

There are no clear differences in resolution between the 25 and 50 m versions of the 

K&C Initiative product in the study area. This is likely the result of a dominance of the 

forest class in this area (based on the K&C Initiative classification). 

 

6.4.7 NCR Results 

Figure 6.26 shows a side by side comparison of the ALOS-PALSAR HH polarisation 

backscatter with the ten-day NCR scale described in section 6.3.9 (a value for each basin 

catchment normalised as a percentage using the maximum and minimum values for ten-

day cumulative rainfall in that basin catchment between 2006-02-02 and 2011-06-30). 

Processing was carried out over five basin catchment areas that contribute closely to 

the area covered by the eight ALOS-PALSAR scenes acquired. Due to the higher 

sensitivity of HH polarisation to below-canopy moisture, it was compared rather than 

HV.  

Two dates stand out as having comparatively high rainfall, 2008-05-06 and particularly 

2009-06-24. Looking at the detailed area of interest close to the river on the right hand 

side of the figure, which have been stretched to show areas of strong HH backscatter 

over -9 dB in blue, there is a reduction in HH backscatter during rainy periods compared 

with the other drier scenes. The 8-scene range of HH values was used during training of 

the flooded forest class, in expectation of this HH disparity between drier and wetter 

scenes. Since a higher HH backscatter appears to characterise areas of forest that are 
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seasonally inundated, yet is indicative of relative dryness, the apparent reductions of 

flooded forest areas on the two dates in question seen in Figure 6.27 were predictable. 

Indeed, the peaks of NCR correspond to drops in the scene mean HH backscatter, 

evidenced by Figure 6.28. The misclassification of flooded forest as non-forest is a less 

expected result, particularly in the 2008-05-06 scene. This was more apparent in the 

K&C Initiative forest/non-forest map products in Figure 6.29, and was a reason for this 

study.  

From the data available, and from the perspective of a binary forest/non-forest map, it 

is likely that the ‘flooded forest’ landcover type is ‘forest’ falsely exhibiting (from the 

SAR backscatter signature) as ‘non-forest’ during periods of increased rainfall, rather 

than ‘non-forest’ falsely exhibiting as ‘forest’ during periods of decreased rainfall.  
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Figure 6.26: Comparison of NCR values with ALOS PALSAR HH σ0 backscatter (at 15 m spatial resolution)  
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Figure 6.27: Comparison of NCR values with RF classification (at 15 m spatial resolution) 
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Figure 6.28: Comparison of mean NCR values with mean ALOS-PALSAR HH backscatter at multiple resolutions 
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Figure 6.29: Comparison of RF classified scenes with the corresponding K&C Initiative Forest/Non-Forest 

product at multiple resolutions 
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6.4.8 AMSR-E Results 

Due to the coarse resolution, there were few overlapping pixels of AMSR-E SM and VW 

in the study area, as seen in Figure 6.30 below. Ultimately, the comparison between 

AMSR-E and RFE 2.0 data, including the NCR, did not yield favourable results. This is in 

part due to the low number of data points available, but also due to the study area, as 

discussed in section 2.2.7. A comparison of NCR and dekadal sums over the whole study 

area, for the duration of the ALOS-PALSAR mission, was undertaken and the graph in 

Figure 6.32 demonstrates that the relationship was poor even over a large timeline. 
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Figure 6.30: AMSR-E Soil Moisture [gcm-3] and Vegetation Water Content [kgm-3] compared with the NCR [%] 

in the study area  
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Figure 6.31: Comparison of AMSR-E VW (left) and SM (right) with NCR (top) and RFE 2.0 10 dekadal sum 

(bottom) in the study area, data points taken from the ALOS-PALSAR lifespan (January 26th 2006 until June 

6th 2011) 

 

 

6.5 Discussion 

 

In general, the results obtained are in line with other similar studies using L-band SAR 

data to measure forest parameters in tropical rainforests. The use of texture 

information to improve the classification accuracy (by up to 4%) is seen in this study as 

it was in Thomas et al. (2015), Walker et al. (2010), and de Grandi et al. (2000a). Like the 

other studies which also used random forests or similar classification tree bagging 

algorithms (Ferreira-Ferreira et al., 2015; Bwangoy et al., 2010; Walker et al., 2010), this 

study performed tests to determine the optimal parameters to be used. Bwangoy et al. 

(2010) also showed the relative contribution of each layer. This was not a necessary step 

in this study as there were relatively few input features compared with the optical layers 
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used by Bwangoy et al., and as stated above the importance of the additional texture 

layers had already been established. 

6.5.1 Reference Dataset 

The high Moran’s I values indicating clustering of the reference and training datasets is 

unfortunate, but unavoidable in a relatively small study site with few and obvious 

examples of certain classes (such as the river). It is possible that this may have caused 

bias in the classification, according to Legendre (1993), regardless of any rigorous visual 

and contextual quality control. 

An approach that may at least decrease the clustering, while maintaining the speed of 

reference dataset creation, could be to produce a random or stratified random sample 

of points that act as seeds for the region growing ROI algorithm, which could then be 

limited to low spectral distance thresholds and minimum pixels per ROI. They could then 

be manually classified or discarded if they do not pass visual and contextual criteria.  

 

6.5.2 Image Statistics and Multi-temporal Speckle Filtering 

The first two results of this study, namely the increased class separability from multi-

temporal speckle filtering of the SAR data and the increased speed of the RF classifier 

compared with the SVM classifier, were more expected than the other Chapter 6 results. 

The steps taken to obtain them and the outputs produced were necessary for the latter 

results: the scatter plots, class separability and histograms informed the training and 

validation process, as well as interpretation of classification results; the selection of RF 

over SVM enabled the use of a larger training dataset. The use of multi-temporal speckle 

filtering was required for obtaining meaningful results from the higher resolution SAR 

scenes. Speckle filtering is a standard procedure and was performed in several of the 

other SAR studies discussed in section 2.3 (de Grandi et al., 2000; Sgrenzaroli et al., 

2004; Betbeder et al., 2014; Thomas et al., 2015), although without multitemporal 

speckle filtering due to the use of short time series data. Several studies used the K&C 

Initiative mosaic SAR data that is already somewhat filtered by resampling to 50m 

(Walker et al., 2010; Qin et al., 2015). SVM processing speed was not a considerable 

obstacle for processing a single ALOS-PALSAR scene, even at the higher 15 m spatial 
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resolution; multiple scenes with increased feature layers (such as additional texture 

metrics) could be processed in parallel using a high performance computing cluster. 

However, to expand this to a wider area with the increase in training pixels necessitated 

by that, use of the SVM classifier in its current form becomes untenable. For that reason, 

the remainder of the results used the RF classifier. 

6.5.3 Scale Effects 

Accuracy assessments produced using sampled validation data by definition are not a 

perfectly precise measure of accuracy. For this study, three factors contributed to a 

more robust accuracy assessment. Firstly, a single ALOS-PALSAR scene was used with 

validation points created using a semi-automated region growing algorithm, so the 

number of validation points is relatively high. The greater density of validation points 

makes it more representative of the image as a whole. This may not be feasible if the 

method is applied to a wider area, but the semi-automated process does facilitate an 

overall larger number of points, both for training and validation. Secondly, the validation 

points were specifically selected to be near class borders, a punitive (in terms of 

accuracy) measure designed specifically to identify likely errors (misclassifications have 

increased probability at class borders, particularly at coarser spatial resolutions). While 

this probably resulted in reduced accuracies, especially at coarser resolutions, it allowed 

a truer insight into class accuracy in the locations that are important for forest change 

detection. Thirdly, a whole scene statistical analysis of reported area for each class was 

undertaken. Unless an accuracy assessment produces a falsely low score, reduced 

accuracy should correspond to a greater variability with whole scene class areas. The 

below comparison of the coefficient of variability of class area with mean class accuracy 

at each resolution shows an inverse relationship between the two metrics across forest 

and non-forest classes.  
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Figure 6.32: Comparison of 8-scene coefficient of variation of class area with 8 scene mean class accuracy at 

multiple resolutions 

The combined forest area coefficient of variation in Figure 6.32 is included to show the 

reduction in variability when the two classes are combined. 

The improvements in accuracy of the classification at higher spatial resolution, as well 

as the more stable class area measurements particularly of non-forest, answer the 

question of the influence of scale on forest measurements in the Congo basin. This result 

could inform efforts to both establish a reliable map of baseline forest cover in the 

Congo. In addition, there is no significant difference between the accuracy and class 

area reporting between the 15 m and 30 m resolutions, with the drops in accuracy and 

variability of area reporting occurring at 45 m and 60 m. This is a positive result given 

the global availability of ALOS-PALSAR mosaics at 25 m resolution from JAXA’s K&C 

Initiative, as well as hoped for ALOS-2 data in the coming years. One potential drawback 

is the reduced number of dates (four compared with eight used in this study) which may 

reduce the effectiveness of the multi-temporal speckle filtering process. The forest/non-

forest products produced by JAXA do not appear, at least in this scene, to show any 

improvements in classification with the change in resolution, and the reasons for this 

requires further investigation, given the results of this study. One possible reason may 

be the OBIA approach used, which classified based on mean pixel statistics from 
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segments (Shimada et al., 2014) – if the same segment polygons were used from the 50 

m classification rather than a completely new (and computationally expensive) 

segmentation performed at 25 m, then no major changes could be expected. Another 

explanation could be the multi-temporal speckle filtering which was not used in the 

JAXA product. For other studies described in section 2.3 using L-band SAR data in the 

same region of the Congo Basin (Betbeder et al., 2014; Bwangoy et al., 2010; de Grandi 

et al., 2000a), the scale used has been relatively coarse (≥100m resolution). The results 

of the scale analysis in this study suggest that applying the same methods to higher 

resolution data could yield improved results.  

6.5.4 NCR Effects 

Establishing a link between NCR values and HH backscatter in the study area, and in the 

flooded forest class, had several potential challenges. The first was the possibility that 

none, or all, of the eight available scenes experienced relatively high rainfall in the ten 

days leading to image acquisition. Figure 6.28 shows some variability in mean NCR from 

the five contributing sub-basin catchments over the eight dates, although not as much 

when compared with the full range of values (Figure 6.6). The next possibility was that 

the local rainfall had less of an influence than regional rainfall in the wider area, 

particularly upstream, and the NCR of the five selected sub-basins would not correlate 

with either of the targeted values. Conversely, one of the local sub-basin catchments 

could have had a disproportionately influential effect on the scene. The minimum and 

maximum NCR values from Figure 6.28 show that even if this were the case, there is not 

enough variability to measure the effect of any individual sub-basin catchment. 

There is a weak inverse correlation between NCR mean values and mean HH 

backscatter, with a coefficient of determination (R2) value of 0.2757 (Figure 6.33), rising 

to 0.4283 if a single outlier (the second scene) is removed. This is not high enough to 

establish a definite link, and may be caused by there being too few scenes with too little 

variability of NCR values. The result of the weak correlation is that it is difficult to 

ascertain from the available data whether NCR is a robust metric to use for determining 

extremity of flood events in ALOS-PALSAR scenes. Further data would be needed to 

either establish or disprove a link, perhaps from scenes acquired during known flood 

events in the region. It would be possible to apply the NCR method to the whole Congo 
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Basin and test it against the K&C Initiative mosaics. This would be computationally slow, 

but more likely to yield a definitive result. 

 

Figure 6.33: Relationship between mean ALOS-PALSAR HH σ0 backscatter and mean NCR values 

 

While it is difficult to link NCR with the areas classified as flooded forest, the HH 

backscatter values and range and the proximity to the Congo River suggest that they are 

likely to be affected by local hydrology. In addition, from the high resolution optical 

imagery used in generating training and validation datasets, and the HV backscatter 

values, the flooded forest areas are demonstrably tree covered. The value of analysing 

HH range in proximity to major waterways and in flood plains remains, and the creation 

of a separate flooded forest class is strongly recommended by this study. This is in line 

with previous research, including that by Betbeder et al. (2014), and Bwangoy et al. 

(2010), which used HH channel L-band SAR data to define wetland classes.  

6.6 Conclusions 

Chapter 6 aimed to provide answers to the final two research questions. First of all: 

To what extent, and how, can spaceborne SAR data in the Congo Basin, 

combined with rainfall data metrics, account for seasonally inundated forest 

in SAR-derived forest maps? 
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An existing rainfall data metric (BERM) was adapted and modified to generate a simple 

and novel metric (NCR) with potential for wider applicability to SAR interpretation in the 

Congo Basin, the rest of continental Africa, and other locations worldwide with available 

consistent daily rainfall information. In the scene selected, the range of HH values across 

a timeseries was shown to be a reliable indicator of flooded forest, supporting the work 

of Betbeder et al. (2014), once water bodies were masked out. It was shown that areas 

of flooded forest exhibit HH backscatter signatures in drier periods that are higher than 

normal forest HH backscatter signatures, and lower backscatter signatures in wetter 

periods, which is unexpected given established relationships between vegetation water 

content and radar backscatter. The two peak mean NCR values appear to correlate 

inversely with mean HH values (Figure 6.28), but displayed a poor R2 value, perhaps due 

to variable backscatter values in the six drier scenes (out of a total of eight). Despite 

certain areas occasionally being classified as non-forest, the flooded forest class was 

demonstrably shown to be a subset of the forest class. 

Secondly: 

What are the effects of scale on Central African forest maps generated from 

SAR data, and how does this impact the accuracy of maps generated from 

coarser resolution wide coverage SAR datasets? 

Using a robust validation method, this study showed an inverse correlation between 

variability of class area reporting and mean class accuracy across four resolutions tested. 

The results of this showed that a decrease in accuracy of the dominant classes, and 

especially non-forest, accompanied a decrease in spatial resolution, and was also 

related to greater variability in class area reporting. The coefficient of variability was 

used to attempt to balance the dominance of the forest class throughout the scene. The 

differences between the two higher resolutions were not significant, whereas there was 

a divide between the two higher and the two lower resolutions. The impact this could 

have on coarser resolution wide coverage SAR datasets is that greater confidence can 

be placed in the 25 m resolution K&C Initiative mosaic data than the previously released 

50 m data, with a caveat that changes are implemented in the classification approach 

used, and a multi-temporal speckle filter is applied, as it was shown to greatly improve 
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class separability. This feeds into the recommendations for research question 1, and the 

conclusions of chapter 5, demonstrating that a higher resolution mosaic product, if 

processed properly and in conjunction with appropriate ancillary datasets, can improve 

mapping accuracy and stability across forest and non-forest classes. 
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7 Chapter 7: Discussion and Conclusions 

7.1 Discussion in the Context of Literature 

As stated in Chapter 3, the top-down approach followed across Chapters 4-6 aimed to 

refine the study area selection while improving the classification. This was achieved, and 

the results obtained at all stages inform the research questions and contribute to 

existing knowledge in this domain. 

Chapter 4 showed that across a broad area of the Congo Basin, existing optical based 

forest cover products contradict SAR classification, and vice versa. Misclassification of 

large areas of cropland as forest by the LTC was identified through a relatively simple 

decision tree classifier. Weaknesses of the available L-band SAR product, such as high 

HV backscatter in urban areas causing misclassification, added weight to the use of the 

HH channel to characterise non-forest, confirmed by the methods of JAXA in their 

forest/non-forest product generation (Shimada et al., 2014). The area analysed in 

Chapter 4 completely covered the Congo Basin and much further beyond. The effort 

expended in interpreting and preparing the initial release of the K&C Initiative dataset 

for comparison with the optical dataset was useful in understanding the difficulties of 

SAR image calibration and geocoding when creating such a mosaic, even though the 

more manageable 50 m release, with two additional years of data, was made available 

by JAXA in January 2014. 

Chapter 5 covered a smaller, but still considerable area of the Congo rainforest. The 

potential danger of an urban non-forest class derived from automated HH thresholds 

was identified, particularly in a semi-transparent mode that does not distinguish it from 

other non-forest types. The use of a global object-oriented approach was shown to have 

lost the ability to identify finer scale forest changes that would otherwise be picked up 

by the resolution of the imagery available. While the validation showed a clear 

advantage of the trained SVM classifier over JAXA’s K&C Initiative forest/non-forest 

approach, and obvious misclassifications of moisture-affected forest were avoided, the 

accuracy assessment was nevertheless not reliable enough to give confidence in the 

reported class areas.  
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Results from all chapters, in particular chapters 4 and 5, demonstrate clear 

improvements in the current state of forest monitoring abilities in the regions studied, 

in terms of spatial resolution (DeFries et al., 2002; Mayaux et al., 2004; Rosenqvist et 

al., 2000; Hansen et al., 2003; Arino et al., 2007; De Grandi et al., 2000a; Bwangoy et al., 

2010; Betbeder et al., 2014), recency of acquired data (Rosenqvist et al., 2000; De 

Grandi et al., 1999; DeFries et al., 2000; Lindquist & D’Annunzio, 2016; Mayaux et al., 

2002; Hansen et al., 2003), completeness of coverage (Lindquist & D’Annunzio, 2016; 

Sexton et al., 2013; Thomas et al., 2015; Betbeder et al., 2014), relevant and 

comparable measures of accuracy (Shimada et al., 2014; Sgrenzaroli et al., 2004; 

Bwangoy et al., 2010; Ferreira-Ferreira et al., 2015; Mayaux et al., 2004; De Grandi et 

al., 2000a), and user replicability, either from transparency of algorithms, data 

availability (respectively, Hansen et al., 2013; Bueso-Bello et al., 2017), or in terms of 

clear forest definitions used (Walker et al., 2010; Betbeder et al., 2014; Ferreira-Ferreira 

et al., 2015; Thomas et al., 2015; Bueso-Bello et al., 2017).  

The development of the NCR index in this study provides a useful way to continue 

research into managing the effects of moisture on SAR-based land cover classifications 

in the tropics, and with the advent of higher temporal resolution datasets, in particular 

Sentinel-1 C-band SAR, as well as further K&C Initiative L-band SAR mosaics, it could 

provide a simple and quantifiable method to establish the relationship of rainfall on SAR 

signals over wide areas in the tropics. 

 

7.2 Conclusions in the Context of Research Questions 

7.2.1 Question 1: Ideal SAR Imagery and Methods for Tropical Forest 

Mapping 

Chapters 4 and 5 mainly addressed the first research question ‘What are the ideal image 

acquisition parameters and classification techniques for an annual forest map in the 

Republic of Congo from spaceborne SAR data, given currently available data and 

regional seasonal effects on image quality?’ through a combination of demonstrable 

improvements over existing products and a process of elimination. In summary, it was 

found that the first criterion of ideal image acquisition should be accurately geocoded 
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SAR imagery, or a technique to accurately geocode it, which is not a trivial task to 

produce on a continental scale; the JAXA release was then fortunately made available. 

Segmentation, while a global solution, either needs to be discarded in favour of high 

resolution exploiting pixel-based classification methods, or improved with additional 

region specific decision nodes and a segmentation algorithm that is tuned to the 

regional backscatter signature class separations, particularly in areas vulnerable to 

deforestation and forest degradation. Both chapters acknowledged the need for the 

acquisition of adjacent images in as short a time frame as possible when producing a 

wide area mosaic in the Congo basin. This reduces the likelihood of seasonal backscatter 

differences, which can be difficult to correct for especially without metadata relating to 

the scenes comprising the mosaic. Metadata was largely unavailable for the data used 

in Chapter 4, but was present in Chapter 5 (Figure 5.1). This included contributing scene 

acquisition date, crucial in order to work with concurrent ancillary datasets, and local 

incidence angle, allowing terrain corrections to be made (although the dataset by this 

stage arrived pre-calibrated for terrain differences). 

 While the SVM classifier in Chapter 5 was shown to be an improvement over the 

compared method, it was slow to process with available computing equipment and, in 

the form used, difficult to batch process. These two factors negated any considerable 

tuning of the available parameters to improve on the original classification. The ability 

to script and therefore automate the classification process was identified, as well as the 

use of a classifier that could use a greater number of training points without suffering 

from a considerable reduction in processing speed. Chapter 5 also showed that more 

work was necessary to improve the training dataset quality, particularly for non-forest 

areas. The application of water and urban masks, as well as the inclusion of a separate 

class for flooded forest could have removed a source of error, as carried out in Chapter 

6. It was proposed that daily rainfall estimate data could be useful for validating areas 

of flooded forest in the mosaics, as well as selecting scenes from the mosaics with more 

uniform acquisition conditions, using a method similar to that of (Lucas et al., 2010).  

(Watanabe & Shimada, 2006) 

Chapter 6 continued Chapter 4 and 5’s findings for research question 1 in several ways. 

First of all, the random forest classifier was proved to be a much more efficient, if not 
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more accurate predictor of the classes. The flooded forest class was introduced, and 

trained using a combination of HH Range and optical imagery. The stratified sampling 

method for selection of training data used in Chapter 5 was eschewed in favour of a 

more efficient, semi-automated method that allowed selection of relatively even 

numbers of class training samples in a scene dominated by the forest class, which was 

also used for a similar and more robust validation dataset.  

 

7.2.2 Question 2: HH Range and NCR 

As previously described in section 6.6, Chapter 6 aimed to answer the final two research 

questions. First of all: 

To what extent, and how, can spaceborne SAR data in the Congo Basin, 

combined with rainfall data metrics, account for seasonally inundated forest 

in SAR-derived forest maps? 

Question 2 was answered, and in the process an existing rainfall data metric (BERM) was 

adapted and modified to generate a simple and novel metric (NCR) with potential for 

wider applicability to SAR interpretation in the Congo Basin, the rest of continental 

Africa, and most locations worldwide with available consistent daily rainfall information. 

In the scene selected, the range of HH values across a timeseries was shown to be a 

reliable indicator of flooded forest, once water bodies were masked out. It was shown 

that areas of flooded forest exhibit HH backscatter signatures in drier periods that are 

higher than normal forest HH backscatter signatures, and lower backscatter signatures 

in wetter periods. Despite certain areas occasionally being classified as non-forest, the 

flooded forest class was demonstrably shown to be a subset of the forest class. 

 

7.2.3 Question 3: Scale effects 

What are the effects of scale on Central African forest maps generated from 

SAR data, and how does this impact the accuracy of maps generated from 

coarser resolution wide coverage SAR datasets? 
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Question 3 was also addressed by Chapter 6, as concluded in section 6.6, and answered 

first using a more robust validation method, which also showed an inverse correlation 

between variability of class area reporting and mean class accuracy across four 

resolutions tested. The results of this showed that a decrease in accuracy of the 

dominant classes, and especially non-forest, accompanied a decrease in spatial 

resolution, and was also related to greater variability in class area reporting. The 

coefficient of variability was used to attempt to balance the dominance of the forest 

class throughout the scene. The differences between the two higher resolutions were 

not significant, whereas there was a divide between the two higher and the two lower 

resolutions. The impact this could have on coarser resolution wide coverage SAR 

datasets is that greater confidence can be placed in the 25 m resolution K&C Initiative 

mosaic data than the previous 50 m data, with a caveat that changes are implemented 

in the classification approach used, and a multi-temporal speckle filter is applied, as it 

was shown to greatly improve class separability. 

 

7.3 Future Direction of SAR Remote Sensing in the Congo Basin 

 

The number of spaceborne SAR sensors is set to increase, particularly in the domain of 

longer wavelength L- and P-band sensors. Forest remote sensing has not been the 

primary objective of any spaceborne SAR sensors to date, so the modes of acquisition 

and acquisition strategy have not always been optimal for this application. However, 

this will change with the BIOMASS mission, which will carry the first spaceborne P-band 

sensor and is dedicated to the monitoring of forest AGB (Le Toan et al., 2011). The 

Copernicus Sentinel 1 constellation, of which one satellite was launched in 2014 and a 

second launched in 2016, provides a potential six-day repeat acquisition cycle. While 

the C-band SAR sensor is not as suited to monitoring of small changes in AGB or precise 

measuring of carbon stocks, it will be a useful tool for rapid monitoring of forest 

disturbance (ESA, 2014) and the short repeat pass will lend itself to analysis of 

interferometric coherence measures, as mentioned in section 2.2.5. More recent 

studies are being encouraged (Reiche et al., 2016) to use Sentinel-1 to overcome the 
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limitations of C-band SAR for tropical forest monitoring, through the analysis of very 

high temporal resolution data ‘cubes’; this is only very recently becoming possible in the 

pan-tropical zone due to limited persistent coverage outside Europe. Optimal temporal 

coverage from Sentinel 1 (6-day or higher repeat visit frequency, from overlapping tiles 

and use of ascending and descending modes) has centred on Europe, with sporadic and 

incomplete coverage of the tropics, due to the physical power limitations of the sensor. 

The launch of ALOS-2 with its continued contribution towards the K&C Initiative 

(Rosenqvist et al., 2014), and the planned launch of SAOCOM-1A and 1B in 2018 

(CONAE, 2014) will continue the role of spaceborne L-band SAR for forest remote 

sensing.  

It is generally the case that newer SAR sensors (since 2000) have the capability for 

acquisition in any of the four polarisation configurations, although acquisition of 

simultaneous fully polarimetric scenes remains limited to experimental applications. 

More advanced techniques of SAR that exploit the interferometric analysis of two or 

more similarly acquired images of the same scene can offer further potential for SAR, 

and this has been demonstrated in large-scale studies of boreal forest (Wagner et al., 

2003; Tansey et al., 2004; Thiel et al., 2009). This will be enhanced by shorter repeat 

pass acquisitions and longer wavelengths of SAR to overcome the difficulties this 

technique faces in wetter, higher AGB-containing tropical forests (Le Toan et al., 2011).  
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Appendix A – Chapter 4 additional figures 

A1 GlobCover 2009 distribution comparisons 
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Appendix B – Chapter 6 additional figures 

B1 Haralick GLCM Texture Class Histograms 

 

Figure B1: Histograms of the eight Haralick GLCM texture measures from Training and Validation sample 

areas; labels indicate the date, polarisation channel and class; frequency scales are different in each 

histogram to better illustrate range of values in more homogeneous texture measures. Texture generated 

from 45 m ALOS-PALSAR data; continued in following 15 pages 
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B2 Filtered and Unfiltered Scatterplot comparisons 

 

Figure B2.0.1: Classified scatterplots from filtered ALOS-PALSAR HV/HH time series from 2007-10 at 

decreasing spatial resolutions from left to right 
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Figure B2.0.2: Classified scatterplots from unfiltered ALOS-PALSAR HV/HH time series from 2007-10 at 

decreasing spatial resolutions from left to right 
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B3 Inter Class Transform Divergence in HH and HV channels 
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B4 Scale differences in forest classification 

 

Figure B4.1: Comparison of classifications at 15, 30, 45 and 60m resolutions 
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Figure B4.2: Comparison of classifications - flooded forest detail 
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Figure B4.3: Comparison of classifications – non-forest detail 
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B5 Confusion Matrices from RF classifications 

 

Table B1: Tables of Confusion Matrices from RF classifications at all Resolutions, including Class Mapping 

Accuracy 

  Confusion Matrices - 15m Resolution   
Date 2007-06-19      

Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 37437 1338 25 0 38800 0.9071238 
Non_Forest 412 10177 0 0 10589 0.8330878 
Flooded_Forest 2058 55 9916 0 12029 0.8226315 
Water 0 234 0 12570 12804 0.9817245 

TOTAL 39907 11804 9941 12570 74222 0.9444639 

Date 2007-09-19      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 36277 2358 165 0 38800 0.8867297 
Non_Forest 241 10348 0 0 10589 0.7808633 
Flooded_Forest 1870 134 10025 0 12029 0.8221256 
Water 0 171 0 12633 12804 0.9866448 

TOTAL 38388 13011 10190 12633 74222 0.9334564 

Date 2008-05-06      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 17158 41 0 0 17199 0.8911858 
Non_Forest 75 8570 0 18 8663 0.9278909 
Flooded_Forest 1979 53 7750 0 9782 0.7922715 
Water 0 479 0 9280 9759 0.9491664 

TOTAL 19212 9143 7750 9298 45403 0.9417439 

Date 2008-06-21      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 17033 166 0 0 17199 0.831527 
Non_Forest 137 8474 0 52 8663 0.9287593 
Flooded_Forest 3148 0 6634 0 9782 0.6781844 
Water 0 295 0 9464 9759 0.9646315 

TOTAL 20318 8935 6634 9516 45403 0.9163491 

Date 2009-06-24      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 13261 4 0 0 13265 0.8873202 
Non_Forest 104 8714 0 0 8818 0.8659445 
Flooded_Forest 1576 254 10877 0 12707 0.8559849 
Water 0 987 0 10645 11632 0.9151479 

TOTAL 14941 9959 10877 10645 46422 0.9369911 

Date 2009-09-24      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 13226 39 0 0 13265 0.7749912 
Non_Forest 406 8412 0 0 8818 0.7597543 
Flooded_Forest 3395 1524 7788 0 12707 0.6128905 
Water 0 691 0 10941 11632 0.9405949 

TOTAL 17027 10666 7788 10941 46422 0.8695662 

Date 2010-06-27      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 17431 138 0 0 17569 0.9451282 
Non_Forest 533 9977 0 0 10510 0.8767135 
Flooded_Forest 341 189 9753 0 10283 0.9484586 
Water 0 543 0 16656 17199 0.9684284 

TOTAL 18305 10847 9753 16656 55561 0.9686111 

Date 2010-09-27      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 16861 672 36 0 17569 0.9015613 
Non_Forest 110 10400 0 0 10510 0.9023861 
Flooded_Forest 1023 28 9232 0 10283 0.8946603 
Water 0 315 0 16884 17199 0.981685 

TOTAL 17994 11415 9268 16884 55561 0.9606919 
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  Confusion Matrices - 30m Resolution  
Date 2007-06-19      

Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 10918 66 0 0 10984 0.9075644 
Non_Forest 146 2873 0 0 3019 0.8861814 
Flooded_Forest 900 12 2485 0 3397 0.7315278 
Water 0 145 0 3477 3622 0.9599669 

TOTAL 11964 3096 2485 3477 21022 0.9396347 

Date 2007-09-19      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 10184 759 41 0 10984 0.8908328 
Non_Forest 91 2928 0 0 3019 0.7351243 
Flooded_Forest 357 81 2959 0 3397 0.8606748 
Water 0 124 0 3498 3622 0.9657648 

TOTAL 10632 3892 3000 3498 21022 0.9308819 

Date 2008-05-06      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 4920 0 0 0 4920 0.8860076 
Non_Forest 15 2443 0 0 2458 0.7873026 
Flooded_Forest 618 14 2139 0 2771 0.7719235 
Water 0 631 0 2122 2753 0.7707955 

TOTAL 5553 3088 2139 2122 12902 0.9009456 

Date 2008-06-21      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 4904 16 0 0 4920 0.8555478 
Non_Forest 65 2290 0 103 2458 0.8817867 
Flooded_Forest 747 73 1951 0 2771 0.704078 
Water 0 50 0 2703 2753 0.9464286 

TOTAL 5716 2429 1951 2806 12902 0.9183072 

Date 2009-06-24      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 3740 0 0 0 3740 0.9007707 
Non_Forest 49 2449 0 0 2498 0.8318614 
Flooded_Forest 363 36 3264 0 3663 0.8910729 
Water 0 410 0 2909 3319 0.8764688 

TOTAL 4152 2895 3264 2909 13220 0.9350983 

Date 2009-09-24      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 3735 5 0 0 3740 0.805304 
Non_Forest 109 2389 0 0 2498 0.7187124 
Flooded_Forest 789 437 2437 0 3663 0.6653017 
Water 0 384 0 2935 3319 0.8843025 

TOTAL 4633 3215 2437 2935 13220 0.8695915 

Date 2010-06-27      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 4905 37 0 0 4942 0.9613877 
Non_Forest 150 2827 0 0 2977 0.842623 
Flooded_Forest 10 130 2766 0 2906 0.9518238 
Water 0 211 0 4702 4913 0.9570527 

TOTAL 5065 3205 2766 4702 15738 0.9658152 

Date 2010-09-27      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 4889 53 0 0 4942 0.9685024 
Non_Forest 33 2944 0 0 2977 0.9078014 
Flooded_Forest 73 6 2827 0 2906 0.9728149 
Water 0 207 0 4706 4913 0.9578669 

TOTAL 4995 3210 2827 4706 15738 0.9763629 
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  Confusion Matrices - 45m Resolution   
Date 2007-06-19      

Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 1967 2937 0 0 4904 0.3936362 
Non_Forest 37 1306 0 0 1343 0.2916481 
Flooded_Forest 56 162 1301 0 1519 0.8564845 
Water 0 36 0 1577 1613 0.9776813 

TOTAL 2060 4441 1301 1577 9379 0.6558268 

Date 2007-09-19      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 4229 673 2 0 4904 0.829541 
Non_Forest 25 1311 0 7 1343 0.6239886 
Flooded_Forest 169 67 1283 0 1519 0.843524 
Water 0 18 0 1595 1613 0.9845679 

TOTAL 4423 2069 1285 1602 9379 0.8975371 

Date 2008-05-06      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 2179 0 0 0 2179 0.8912065 
Non_Forest 7 1090 0 0 1097 0.7725018 
Flooded_Forest 259 5 973 0 1237 0.7865804 
Water 0 309 0 924 1233 0.7493917 

TOTAL 2445 1404 973 924 5746 0.8990602 

Date 2008-06-21      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 2177 2 0 0 2179 0.876762 
Non_Forest 18 1079 0 0 1097 0.8070307 
Flooded_Forest 286 43 908 0 1237 0.734034 
Water 0 195 0 1038 1233 0.8418491 

TOTAL 2481 1319 908 1038 5746 0.9053254 

Date 2009-06-24      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 1672 0 0 0 1672 0.8393574 
Non_Forest 73 1039 0 0 1112 0.7889142 
Flooded_Forest 247 11 1358 0 1616 0.8403465 
Water 0 194 0 1273 1467 0.8677573 

TOTAL 1992 1244 1358 1273 5867 0.9105164 

Date 2009-09-24      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 1672 0 0 0 1672 0.8667703 
Non_Forest 42 1070 0 0 1112 0.6876607 
Flooded_Forest 215 263 1138 0 1616 0.7042079 
Water 0 181 0 1286 1467 0.876619 

TOTAL 1929 1514 1138 1286 5867 0.8805182 

Date 2010-06-27      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 2166 55 0 0 2221 0.9613848 
Non_Forest 32 1297 0 0 1329 0.8600796 
Flooded_Forest 0 32 1261 0 1293 0.9752514 
Water 0 92 0 2081 2173 0.9576622 

TOTAL 2198 1476 1261 2081 7016 0.9699259 

Date 2010-09-27      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 2199 22 0 0 2221 0.9691494 
Non_Forest 7 1322 0 0 1329 0.9123533 
Flooded_Forest 41 4 1248 0 1293 0.9651972 
Water 0 94 0 2079 2173 0.9567418 

TOTAL 2247 1442 1248 2079 7016 0.9760547 
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  Confusion Matrices - 60m Resolution   
Date 2007-06-19      

Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 2197 583 0 0 2780 0.7555021 
Non_Forest 23 721 0 0 744 0.4914792 
Flooded_Forest 105 97 651 0 853 0.7631887 
Water 0 43 0 861 904 0.9524336 

TOTAL 2325 1444 651 861 5281 0.8388563 

Date 2007-09-19      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 2310 470 0 0 2780 0.7736102 
Non_Forest 12 710 0 22 744 0.5508146 
Flooded_Forest 194 57 602 0 853 0.7057444 
Water 0 18 0 886 904 0.9568035 

TOTAL 2516 1255 602 908 5281 0.8536262 

Date 2008-05-06      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 1246 0 0 0 1246 0.9055233 
Non_Forest 9 603 0 0 612 0.7398773 
Flooded_Forest 121 16 556 0 693 0.8023088 
Water 0 187 0 494 681 0.7254038 

TOTAL 1376 806 556 494 3232 0.8969678 

Date 2008-06-21      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 1151 95 0 0 1246 0.8180526 
Non_Forest 25 582 0 5 612 0.6360656 
Flooded_Forest 136 29 528 0 693 0.7619048 
Water 0 179 0 502 681 0.7317784 

TOTAL 1312 885 528 507 3232 0.8548886 

Date 2009-06-24      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 942 0 0 0 942 0.8971429 
Non_Forest 38 580 0 4 622 0.7837838 
Flooded_Forest 70 5 848 0 923 0.9187432 
Water 0 113 0 692 805 0.855377 

TOTAL 1050 698 848 696 3292 0.9301337 

Date 2009-09-24      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 942 0 0 0 942 0.812069 
Non_Forest 34 582 0 6 622 0.6928571 
Flooded_Forest 184 111 628 0 923 0.68039 
Water 0 107 0 698 805 0.8606658 

TOTAL 1160 800 628 704 3292 0.8657351 

Date 2010-06-27      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 1207 29 0 0 1236 0.9511426 
Non_Forest 33 719 0 0 752 0.8321759 
Flooded_Forest 0 29 701 0 730 0.960274 
Water 0 54 0 1142 1196 0.9548495 

TOTAL 1240 831 701 1142 3914 0.9629535 

Date 2010-09-27      
Class Forest Non_Forest Flooded_Forest Water TOTAL MAPPINGACC 

Forest 1219 17 0 0 1236 0.9720893 
Non_Forest 0 752 0 0 752 0.8973747 
Flooded_Forest 18 12 700 0 730 0.9589041 
Water 0 57 0 1139 1196 0.9523411 

TOTAL 1237 838 700 1139 3914 0.9734287 
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