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Abstract

Background

Small size at birth and rapid growth in early life are associated with increased risk of cardio-

vascular disease in later life. Short children born small for gestational age (SGA) are treated

with growth hormone (GH), inducing catch-up in length. Leukocyte telomere length (LTL) is

a marker of biological age and shorter LTL is associated with increased risk of cardiovascu-

lar disease.

Objectives

To investigate whether LTL is influenced by birth size, childhood growth and long-term GH

treatment.

Methods

We analyzed LTL in 545 young adults with differences in birth size and childhood growth

patterns. Previously GH-treated young adults born SGA (SGA-GH) were compared to

untreated short SGA (SGA-S), SGA with spontaneous catch-up to a normal body size

(SGA-CU), and appropriate for gestational age with a normal body size (AGA-NS). LTL was

measured using a quantitative PCR assay.

Results

We found a positive association between birth length and LTL (p = 0.04), and a trend

towards a positive association between birth weight and LTL (p = 0.08), after adjustments

for gender, age, gestational age and adult body size. Weight gain during infancy and child-

hood and fat mass percentage were not associated with LTL. Female gender and gesta-

tional age were positively associated with LTL, and smoking negatively. After adjustments

for gender, age and gestational age, SGA-GH had a similar LTL as SGA-S (p = 0.11), SGA-

CU (p = 0.80), and AGA-NS (p = 0.30).
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Conclusions

Larger size at birth is positively associated with LTL in young adulthood. Growth patterns

during infancy and childhood are not associated with LTL. Previously GH-treated young

adults born SGA have similar LTL as untreated short SGA, SGA with spontaneous catch-up

and AGA born controls, indicating no adverse effects of GH-induced catch-up in height on

LTL.

Introduction

Small size at birth and catch-up in weight for length in early life are associated with an

increased risk for cardiovascular disease (CVD) in later life [1–3]. The mechanisms underlying

these associations are not fully understood, but it appears that early life growth trajectories

have programming effects on later health outcomes [4,5]. Ten percent of all children born

small for gestational age (SGA) show insufficient catch-up growth and remain short [6]. These

children can nowadays be treated with growth hormone (GH) from the age of four years,

resulting in a significant catch-up in length [7]. GH treatment has several positive effects on

metabolic health, but the long-term effects on later life health are less known [8]. Previous

studies have suggested that shorter, smaller bodies have advantages in terms of health and lon-

gevity [9,10].

Telomeres are noncoding repeating DNA sequences at the end of each chromosome. Their

primary function is to maintain genomic stability [11,12]. Telomeres shorten with each cell

division due to the inability of DNA polymerase to fully replicate the end of the chromosome.

When telomeres are reduced to a critical length, the cell enters a state of arrest [13]. Since leu-

kocyte telomere length (LTL) declines with increasing age, it can serve as an index for biologi-

cal aging. LTL is influenced by oxidative and replicative stress, and shorter LTL is associated

with increased risk for CVD [14,15].

In this study, we investigated whether size at birth, growth patterns during infancy and

childhood, and GH treatment influence LTL of young adults. We hypothesized that small size

at birth and accelerated weight gain during infancy lead to shorter LTL. We also hypothesized

that the gradual catch-up in length caused by GH treatment does not lead to increased attrition

of telomeres and thus does not influence LTL. To address the fact that those born SGA have an

already increased risk for CVD, we compared the data of previously GH-treated young adults

born SGA with untreated short young adults born SGA. To study whether GH-induced catch-

up growth has a similar effect on LTL as spontaneous catch-up after SGA birth, we also com-

pared the GH-treated group to a group of young adults born SGA with spontaneous catch-up

(SGA-CU).

Methods

Subjects

The total population consisted of 545 participants: 470 healthy participants from the PRO-

GRAM and PREMS study cohorts [2,16], and 75 age-matched participants who had partici-

pated in a GH trial [8,17]. The 470 healthy participants fulfilled the same inclusion criteria: 1)

age 17–24 yr; 2) born singleton; 3) Caucasian; 4) uncomplicated neonatal period without

severe asphyxia (defined as an Apgar score below three after five minutes), sepsis, or long-term

complications of respiratory ventilation and/or oxygen supply. Participants were randomly
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selected from hospitals in the Netherlands, where they had been registered because of their

small size at birth (birth length<-2 standard deviation score (SDS)), short stature (adult height

<-2 SDS) or being born preterm (gestational age<36 weeks). Young adults born appropriate

for gestational age (AGA) were asked to participate via advertisements at schools with different

educational levels. For the last analysis, we additionally included the 75 GH-treated subjects.

All subjects were born SGA (birth weight and/or birth length<-2 SDS) and received GH treat-

ment during childhood because of their short stature, for�7 years. All participants received

biosynthetic GH at a dose of 1 mg/m2/day (0.035 mg/kg/d), sc at bedtime. Every three months,

GH dose was adjusted to the calculated body surface area. The data of the GH group were

compared to those of three subgroups based on their size at birth and their adult stature:

untreated young adults born SGA (birth length<-2 SDS) with persistent short stature (adult

height<-2 SDS) (SGA-S, n = 48); young adults born SGA (birth length<-2 SDS) with sponta-

neous catch-up growth resulting in a normal adult height (>-1 SDS) (SGA-CU, n = 89); and

young adults born appropriate for gestational age with a normal adult height (>-1 SDS)

(AGA-NS, n = 135). In order to increase the statistical power for subgroup comparison, the

cut-off values for small birth size and short adult height were set at<-2 SDS, and the cut-off-

values for normal birth size and normal adult height were set at>-1 SDS.

This study was conducted according to the Helsinki Declaration. The Medical Ethics Com-

mittee of Erasmus Medical Centre approved the study. Written informed consent was

obtained from all participants and/or their parents.

Measurements

Birth data were obtained from hospital records, primary health care records and general prac-

titioner records. Height was measured to the nearest 0.1 cm by a Harpenden stadiometer,

weight to the nearest 0.1 kg by a scale (Servo Balance KA-20-150S). All anthropometric mea-

surements were performed by a trained investigator, according to standardized methods. The

measurements were performed twice, the mean value was used for analyses. Fat mass, fat mass

percentage and lean body mass were measured on one Dual-energy X-ray Absorptiometry

(DXA) machine (Lunar Prodigy, GE Healthcare, Chalfont St Giles, England) [18]. Quality con-

trol was performed daily. Information regarding socioeconomic status (SES) based on educa-

tion level, and smoking of the participants was obtained using questionnaires [19].

LTL assessment

Genomic DNA was isolated from peripheral leukocytes using standard procedures. All LTL

measurements were performed in the laboratory of the University of Leicester, using the quan-

titative PCR-based technique as previously described [20]. Telomere sequence copy number

(T) was compared with a single copy gene number in the genome 36B4 (S) and telomere length

expressed as a T/S ratio. All T and S values were calculated relative to a calibrator DNA (geno-

mic DNA from the K562 cell line) that was included on every plate, minimizing the potential

for inter-run variation. All samples were checked for concordance between duplicate values.

Samples showing a difference of greater than 0.2 cycles in the take-off value or amplifying out-

side of the linear range of the assay were excluded and re-run. Reproducibility of the assay was

tested by re-running samples on separate days. The mean inter-run coefficient of variation for

the T/S ratio was 3.33%.

Calculations and statistical analysis

Standard deviation scores (SDS) for birth length and birth weight were calculated in order to

correct for gender and gestational age, and SDS for adult height and weight were calculated to

Birth size, adult body size, GH and telomere length
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correct for gender and age [21], all using the growth analyser software (http://www.

growthanalyser.org). Fat mass percentage SDS was calculated according to age- and sex-

matched Dutch reference values [22]. Because lean body mass is strongly related to height,

lean body mass was expressed as SDS for height and sex [22].

Means and SD were used to describe the distribution of continuous variables. Multiple lin-

ear regression analyses were performed to determine whether size at birth (i.e. birth length

and birth weight) and childhood growth patterns (i.e. the degree of catch-up in length and

weight from birth to adulthood) were significant predictors of LTL. Because of collinearity

between birth weight and birth length, these variables were analyzed in separate models.

Adjustments were made for age and gender, and additionally for gestational age, body compo-

sition, smoking and SES. Because the study group had been selected on birth length and adult

height, the interaction term birth length SDS�adult height SDS was added to the analysis, in

order to ensure that the effect of these variables was modeled correctly.

Quartiles of weight gain during the first 12 months of life were determined in the total

group, except for the GH-treated subjects and for men and women separately. ANCOVA was

used to determine differences in LTL between the lowest and highest quartiles, corrected for

age and gestational age. Lastly, we analyzed whether there were differences in LTL between the

SGA-GH subgroup and the SGA-S, SGA-CU and AGA subgroups. In this analysis, we addi-

tionally adjusted for age, gender and gestational age. Results were considered statistically sig-

nificant if the p-value was<0.05. Statistical package SPSS version 21.0 (SPSS, Inc., Chicago,

IL) was used for all analyses.

Results

Clinical characteristics of the total study population (n = 470), and for men and women sepa-

rately are shown in Table 1. Mean (SD) age of the total population was 20.9 (1.7) years. Mean

(SD) lean body mass SDS was higher in men than in women (-0.12 (1.1) versus -0.62 (1.3),

Table 1. Clinical characteristics.

Total group (n = 470) Men (n = 204) Women (n = 266) p-value

Age (yrs) 20.9 (1.7) 21.0 (1.7) 20.8 (1.7) 0.29

Gestational age (wks) 36.7 (3.9) 36.3 (4.0) 37.0 (3.7) 0.06

Birth weight SDS -0.97 (1.6) -0.83 (1.7) -1.07 (1.5) 0.10

Birth length SDS -1.43 (1.6) -1.33 (1.6) -1.52 (1.6) 0.22

Adult height SDS -0.85 (1.3) -0.86 (1.2) -0.85 (1.3) 0.94

Adult weight SDS -0.52 (1.4) -0.57 (1.3) -0.49 (1.4) 0.55

BMI 22.5 (3.7) 22.3 (3.2) 22.6 (4.0) 0.36

Fat mass % SDS 0.62 (0.9) 0.63 (0.9) 0.62 (0.9) 0.89

Lean body mass SDS -0.41 (1.2) -0.12 (1.1) -0.62 (1.3) <0.001

Smoking (%) 27.5 29.5 25.9 0.39

SES (%)

1 12.4 13.5 11.7

2 26.6 27.5 26.0 0.78

3 60.9 59.1 62.3

LTL 3.20 (0.5) 3.14 (0.4) 3.24 (0.5) 0.02

Values are given as means (SD). P-values <0.05 are shown in bold. BMI = body mass index; LTL = Leukocyte Telomere Length (in T/S ratio);

SES = socioeconomic status

doi:10.1371/journal.pone.0171825.t001
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resp.; p<0.001). The other clinical characteristics were similar in men and women. Mean (SD)

LTL was shorter in men than in women (p = 0.02).

Factors associated with LTL in the total group

We analyzed the effects of size at birth and postnatal growth on LTL in a multiple regression

analysis. First, birth length was analyzed (Table 2). As expected, female gender was positively

associated with LTL (p = 0.004). Age was not a significant confounder of LTL in our analyses,

probably because of the fact that most subjects in our study population had approximately the

same age. In Model A, birth length SDS did not predict LTL (p = 0.36). In Model B, we added

gestational age to the model, which proved to be a significant predictor of LTL (β = 0.02,

p = 0.002). In Model C, we added adult height and the interaction term birth length SDS�adult

height SDS to the model. In this model, there was a trend towards a positive relation between

birth length and LTL (β = 0.03, p = 0.06). Adult height was not associated with LTL, and since

birth length was included in the model, this shows us that gain in height from birth to adult-

hood does not predict LTL. Then, parameters of body composition were added to the model

(Model D), showing a trend towards a positive relation between LBM SDS and LTL (β = 0.04,

p = 0.06). The relation between birth length and LTL was still close to significant in this model

(p = 0.08). Finally, we included the possible confounders smoking and SES in the model

(Model E), showing an inverse association between smoking and LTL (ß -0.12, p = 0.03). In

this last model, gender, gestational age and birth length SDS were all positive predictors of

LTL.

The same models were used to analyze the relation between birth weight and LTL (Table 3).

Instead of height SDS, we included weight SDS to the model, to analyze the influence of weight

gain from birth to adulthood. Regarding the variables gender, age, gestational age, LBM and

smoking, this analysis showed similar results, except that LBM was a significant predictor of

LTL. There was a (trend towards a) significant positive relation between birth weight and LTL

in all models. Weight SDS was not a significant predictor of LTL. Since birth weight was

included in this model, this shows us that weight gain from birth to adulthood does not predict

Table 2. Multiple regression analysis for variables associated with leukocyte telomere length at 21 years of age—Analysis including birth length.

Model A Model B Model C Model D Model E

Variables ß p ß p ß p ß p ß p

Female gender 0.13 0.004 0.12 0.009 0.12 0.006 0.16 0.001 0.15 0.002

Age 0.00 0.85 0.00 0.77 0.00 0.80 0.00 0.79 -0.00 0.97

Birth length SDS 0.01 0.53 0.01 0.36 0.03 0.06 0.03 0.08 0.04 0.04

Gestational age 0.02 0.002 0.02 0.02 0.01 0.048 0.02 0.02

Adult height SDS -0.02 0.30 -0.02 0.49 -0.03 0.26

Fat mass % SDS -0.02 0.49 -0.01 0.68

Lean body mass SDS 0.04 0.06 0.03 0.22

SES 0.00 0.99

Smoking -0.12 0.03

Overall p-value 0.03 0.001 <0.001 <0.001 <0.001

R2 adjusted 0.01 0.03 0.04 0.05 0.07

ß = regression coefficient. A positive value indicates that the dependent variable LTL will increase with that amount for every unit increase of the

independent variable. All analyses where adult height was included were additionally adjusted for the interaction term birth length*adult height SDS. P-

values <0.05 are shown in bold.

SDS = standard deviation score; SES = Socioeconomic status (Lowest socioeconomic status is used as the reference for SES analyses).

doi:10.1371/journal.pone.0171825.t002
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LTL. Due to the high collinearity between weight and FM%, weight was excluded in Model D.

In the final model, there was still a trend towards a positive relation between birth weight SDS

and LTL (ß = 0.02, p = 0.08).

Effects of weight gain and fat mass accumulation during infancy on LTL

We analyzed the effect of weight gain and fat mass accumulation during the first 12 months of

life on LTL. We found no significant correlation between weight gain in the first 12 months of

life and LTL (r = -0.08, p = 0.15). Subsequently, we stratified the population into quartiles

based on weight gain in kg and Δweight (kg)/Δlength (cm) during the first 12 months of life.

Fig 1 shows LTL of the total group and men and women separately, adjusted for age and gesta-

tional age.

The weight gain analyses showed no difference in LTL between the lowest and highest quar-

tile of weight gain during the first 12 months of life in the total population (p = 0.51), in men

(p = 0.91) and women (p = 0.97). The analyses for Δweight/Δlength during the first 12 months

of life neither showed significant differences in LTL between the lowest and highest quartile in

the total population (p = 0.31) and in men (p = 0.99), and there was a trend towards longer

LTL in women with the highest Δweight/Δlength (p = 0.06), indicating no negative effect of fat

mass accumulation during the first 12 months of life on LTL in early adulthood.

Effects of growth hormone treatment on LTL

The effect of long-term GH treatment on LTL was analyzed by comparing LTL between sub-

jects born SGA and treated with GH (SGA-GH) versus age-matched untreated short subjects

born SGA (SGA-S), subjects born SGA with spontaneous catch-up during childhood

(SGA-CU), and AGA born controls with a normal adult stature (AGA-NS). Clinical character-

istics of the subgroups are shown in Table 4. There were significant differences in gender, age,

gestational age, birth length SDS, birth weight SDS, adult height SDS, weight SDS, BMI, body

composition and distribution of SES between the groups.

Table 3. Multiple regression analysis for variables associated with leukocyte telomere length at 21 years of age—Analysis including birth weight.

Model A Model B Model C Model D Model E

Variables ß p ß p ß p ß p ß p

Female gender 0.11 0.01 0.12 0.03 0.10 0.03 0.15 0.001 0.14 0.004

Age 0.00 0.96 0.00 0.92 0.00 0.96 0.00 0.85 -0.01 0.89

Birth weight SDS 0.02 0.11 0.01 0.03 0.03 0.07 0.03 0.06 0.02 0.08

Gestational age 0.02 0.004 0.02 0.002 0.01 0.02 0.02 0.003

Weight SDS -0.02 0.70

Fat mass % SDS -0.01 0.71 0.06 0.86

Lean body mass SDS 0.04 0.02 0.07 0.048

SES -0.02 0.76

Smoking -0.12 0.03

Overall p-value 0.04 0.002 <0.001 <0.001 <0.001

R2 adjusted 0.01 0.03 0.04 0.04 0.05

ß = regression coefficient. A positive value indicates that the dependent variable LTL will increase with that amount for every unit increase of the

independent variable. P-values <0.05 are shown in bold.

SDS = standard deviation score; SES = Socioeconomic status (Lowest socioeconomic status is used as the reference for SES analyses).

doi:10.1371/journal.pone.0171825.t003
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Fig 2 shows estimated mean (SE) LTL of the subgroups, adjusted for gender, age and gesta-

tional age. The SGA-GH subgroup had a similar LTL as the SGA-S group (p = 0.11), the

SGA-CU group (p = 0.80) and the AGA-NS group (p = 0.30).

Discussion

We found a positive association between birth length and LTL, and a trend towards a positive

association between birth weight and LTL. No associations were found between gain in weight

for length during infancy and childhood and adult body size, and no influence of GH-induced

catch-up growth on LTL.

We performed a multiple regression analysis in the total group to analyze the effects of size

at birth, adult body size and weight gain during childhood on LTL. Birth length was positively

associated with LTL, and there was a trend towards a positive association between birth weight

and LTL. These associations were adjusted for possible confounders, such as gender and gesta-

tional age, indicating an independent effect of size at birth on LTL. Since previous reports have

shown that small size at birth is associated with risk for CVD in later life, it could be that LTL

is one of the links between birth size and later life CVD-risk. Our results are in concordance

with a recent study of de Zegher et al., showing that telomere lengths are shorter in SGA new-

borns than in AGA newborns [23]. On the other hand, a study of Kajantie et al. found no cor-

relation between size at birth and LTL [24]. Future studies should aim at exploring the possible

Fig 1. Weight gain and fat mass accumulation during infancy and LTL. Values are given as estimated means ± SEM, adjusted for age and

gestational age.

doi:10.1371/journal.pone.0171825.g001

Birth size, adult body size, GH and telomere length
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Table 4. Clinical characteristics of the subgroups.

SGA-GH (n = 75) SGA-S (n = 48) SGA-CU (n = 89) AGA-NS (n = 135)

Male/female 42/331,2 16/32 35/54 64/71

Age (yrs) 20.2 (2.4)2 20.8 (1.8) 20.9 (1.6) 20.8 (1.7)

Gestational age (wks) 36.2 (4.0)1 38.2 (3.1) 36.3 (3.2) 36.3 (4.0)

Birth weight SDS -2.44 (1.2)3 -2.07 (0.9) -2.31 (0.8) 0.29 (1.3)

Birth length SDS -3.42 (1.5)2,3 -3.05 (0.9) -2.93 (0.8) 0.22 (0.8)

Adult height SDS -1.42 (0.8)1,2,3 -2.55 (0.5) -0.17 (0.6) 0.18 (0.8)

Adult weight SDS -1.01 (1.3)2,3 -1.44 (1.5) 0.08 (1.2) 0.09 (1.0)

BMI 20.5 (2.7)1,2,3 23.3 (4.4) 22.8 (4.3) 22.3 (3.1)

Fat mass % SDS 0.88 (0.9)1 1.60 (0.8) 1.19 (0.8) 0.97 (0.8)

Lean body mass SDS -0.68 (1.3)1 0.09 (1.6) -0.72 (1.1) -0.63 (1.0)

Smoking (%) 28.6 25.0 29.4 24.1

SES (%)

1 9.1 20.9 16.4 3.4

2 63.63 30.2 31.5 17.8

3 27.3 48.8 52.1 78.8

LTL 3.12 (0.5) 3.30 (0.4) 3.07 (0.4) 3.20 (0.5)

Values are given as means (SD).
1 p<0.05 compared to SGA-S.
2 p<0.05 compared to SGA-CU.
3 = p<0.05 compared to AGA-NS.

BMI = body mass index; LTL = Leukocyte Telomere Length (in T/S ratio); SES = socioeconomic status; SGA-GH = birth length <-2 SDS, treated with growth

hormone; SGA-S = birth length <-2 SDS, adult height <-2 SDS; SGA-CU = birth length <-2 SDS, with spontaneous catch-up to adult height >-1 SDS;

AGA-NS = birth length >-1 SDS, adult height >-1 SDS

doi:10.1371/journal.pone.0171825.t004

Fig 2. Comparison of LTL in the subgroups. Values are given as estimated means ± SEM, adjusted for

gender, age and gestational age. SGA-GH = birth length <-2 SDS, treated with growth hormone;

SGA-S = birth length <-2 SDS, adult height <-2 SDS; SGA-CU = birth length <-2 SDS, with spontaneous

catch-up to adult height >-1 SDS; AGA-NS = birth length >-1 SDS, adult height >-1 SDS

doi:10.1371/journal.pone.0171825.g002

Birth size, adult body size, GH and telomere length
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underlying mechanisms of the association between size at birth and LTL, such as increased

oxidative stress in those born after intra-uterine growth restriction.

We found a positive association between gestational age and LTL. In a previous report we

have shown that those born preterm have shorter LTL than those born at term [25], which

could be due to increased oxidative stress in those born preterm. Our findings that female gen-

der is positively associated with LTL, and smoking negatively, also correspond to previous

studies [26,27], although it is striking that smoking already influences LTL at such a young

age.

In our study, extensive data on adult body composition were available: next to weight SDS

and BMI, we also measured fat mass and lean body mass using DXA. We found no relation

between fat mass percentage and LTL. This result is in contrast with previous studies, showing

that obesity is associated with shorter LTL in both children and adults, probably due to the fact

that obesity causes increased oxidative stress, which exacerbates telomere attrition [28,29]. The

main difference with our study is that these studies compared groups with a high BMI to

groups with a normal BMI, while we modelled the effect of the continuous variables weight

SDS, fat mass and lean body mass in a multiple regression analysis. It could be that the relation

between obesity and shorter LTL is subtle, and therefore not present in our group of healthy

young adults, with a low percentage of obese participants.

Gain in weight, gain in height and fat mass accumulation from birth to adulthood were not

associated with LTL in our study. We previously showed that growth patterns during infancy

have programming effects on health in later life [2,30]. We, therefore, additionally analyzed

whether catch-up in weight and fat mass accumulation during the first year of life were associ-

ated with LTL. This analysis showed no difference in LTL between those in the lowest and

highest quartile of weight gain and fat mass accumulation during the first year of life. Our

results are in contrast with a recent study, that also measured LTL by quantitative PCR, and

found an inverse association between weight gain in the first 12 months and LTL at the age of

70 [31]. This association was only found in women. Based on these results, the investigators

suggested that rapid growth during the perinatal period accelerates cellular aging in late adult-

hood. The main differences with our study are that the effects of Δweight/Δlength as a proxy of

fat mass accumulation were not tested in that study and the fact that the participants were

much older. It would, therefore, be interesting to analyze whether the association between

weight gain during infancy and LTL becomes significant at a later age, when age-associated

diseases also become more apparent.

To our knowledge, we are the first to evaluate whether GH treatment has an effect on LTL.

Young adults born SGA who were treated with GH during childhood had similar LTL as age-

matched untreated short subjects born SGA, subjects born SGA with spontaneous catch-up

and controls born AGA with a normal stature. Thus, GH-induced catch-up in length does not

lead to shorter LTL in young adults born SGA. It seems that a gradual catch-up in length, after

the age of four years (when GH therapy is usually started), does not lead to increased replica-

tive stress. Since data on age-associated diseases, such as CVD, long after cessation of GH treat-

ment are scarce, this result is reassuring [32]. Our results support previous data, showing that

there are no adverse effects of long-term GH treatment on CVD-risk and that adults who were

treated with GH during childhood do not have increased mortality rates [33–35].

Although the multiple regression analyses resulted in significant associations between mul-

tiple variables and LTL, it should be noted that the R2 was small in all analyses, indicating that

there are other determinants of LTL, that were not included in our analyses.

As telomere length measured in different tissues of the same patient, are highly correlated

[36,37], LTL not only mirrors the aging process in circulating immune cells, but in other tis-

sues as well. This way, LTL might reflect the vulnerability of our cells to exogenous stress
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factors in general. The mechanisms underlying telomere shortening are complex. It is known

that, next to genetic factors, oxidative and replicative stress are main determinants of LTL.

However, the generalizability of shorter telomere length due to replicative stress to other cells

is not well studied. For future studies, it would be interesting to measure telomere length in

other tissues as well, to see whether low birth weight and subsequent catch-up growth influ-

ence telomere length in other tissues that might be more prone to replicative stress (for exam-

ple bone and muscle tissue).

One of the main strengths of the present study is the large group of young adults that was

included, with a great variation in size at birth and childhood growth patterns. Because we

oversampled subjects with extreme variants of normal growth, such as subjects born SGA with

and without catch-up growth, we created greater contrast in the study population, which con-

tributed to more statistical power.

In conclusion, we found that size at birth, gestational age and female gender are positively

associated with LTL and smoking negatively, while adult fat mass and gain in weight and

height from birth to adulthood and during infancy were not associated with LTL. Young

SGA adults who received GH treatment during childhood have similar LTL as age-matched

untreated short SGA, SGA with spontaneous catch-up and controls born AGA, indicating no

adverse effects of GH treatment on LTL, which is reassuring.
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