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Abstract

The main aim of mathematical ecology is to explore interactions among organisms

and the environment where they live, and predator-prey interaction is one of the

major type of interactions observed in nature. Models of predator-prey systems

- mathematically described by ODEs, PDEs or integro-differential equations -

have a long and illustrious history starting from the seminal works by Lotka and

Volterra. However, despite a large number of existing publications in the literature,

some fundamental questions related to this type of systems still remain open. For

example, the spatial heterogeneity of the environment and its role in stabilisation

of predator-prey dynamics and persistence of species is still not well understood.

Another major challenge is the effect of external forcing (e.g. daily, seasonal,

or other variation of model parameters) on long-term dynamics of the predator-

prey or host parasite models. Finally, the parameterisation of model functions

describing species interactions, for instance, formulation of the functional response

of predator, can play a crucial role in the model outcomes.

In the present dissertation, we explore the three above challenging issues (i.e.

space heterogeneity, external forcing and model parametrisation) on the patterns

of spatio-temporal dynamics of predator-prey or/and host-parasite systems and

their stability. In particular, we revisit the famous paradox of enrichment which

is classical in mathematical biology and explain how the spatial heterogeneity and

animal movement on various time scales can stabilise the system characterised

by an infinitely large carrying capacity (Chapter 2). Mathematically, we use a
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system of integro-differential equations and consider a tri-trophic planktonic sys-

tem as a case study. In the two next chapters, we consider the role of daily and

seasonal variation of temperature on the control of pathogenic bacteria by their

predators: bacteriophages (i.e. bacterial viruses). As an important ecological case

study, we explore seasonable dynamics of the infectious bacteria causing the lethal

disease Melioidosis in Thailand. In the beginning we model interaction in the top

water of a rice field (Chapter 3). Here we build two different models of host-

parasite interactions based on ODEs and DDEs (delay differential equations). In

Chapter 4, by using reaction-diffusion framework, we extend the previous model

of bacteria-phage interactions to consider bacteria-phage dynamics in soil. Using

our modelling approach we can make predictions about disease management of

Melioidosis in tropic environments.
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Chapter 1

Introduction

1.1 Single species population models

Mathematical modelling in ecology is a powerful and an efficient tool to ex-

plain the observed population dynamics and to predict future fate of ecosystems.

Simple population models consider dynamics of a single species. For example, the

simplest single population model (known as the Malthusian model) is given by the

following equation

dP

dt
= bP − dP = rP, (1.1)

where b and d birth and death rate, respectively [71, 52]. Its solution is given by

P = P0e
rt, (1.2)

where P0 is initial value and t is time. If the parameter r = b− d is negative, then

the population dies out; If it is positive, then the population grows exponentially

with no upper limit which means infinite resources and ecosystem (see Fig 1.1(a)).

In reality, however, populations of all species are limited by available resources

which results in a decrease of their growth ability at high species densities. The

1
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Figure 1.1: Generic behaviour of simple population dynamics given by (1.1) and (1.3).
(a) Populations grow exponentially for unlimited resources and display a J-shaped curve
while (b) populations had limited resources exhibit logistic growth and the density of
population approaches to carrying capacity as S-shaped curve.

logistic equation

dP (t)
dt

= r
(
1− P (t)

K

)
P (t), (1.3)

provides a more realistic description of the population growth for large popula-

tion sizes which takes into account intraspecific competition (e.g. for space or

resources).

The maximal population size which the environment can sustain is called the

carrying capacity and is denoted by K. Fig 1.1(b) shows that after long time the

population equilibrium is given by the carrying capacity [117, 92].

More complicated single species models include time delays to take into con-

sideration population structuring and describe incubation/maturation time to ac-

count for competition between adults and juveniles [13]. The resultant equation

becomes a delay differential equation (DDE), where the derivative at the current

time is given in terms of the solution of function at the previous times, i.e. the

population history. DDEs under different model settings have been studied for a

long time to describe single species dynamics [123, 48] including integro-differential

modelling frameworks [69]. For simple example, in the classical logistic equation
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the effect of maturation delay can be described as

dP

dt
= rP (t)

[
1− P (t− T )

K

]
, (1.4)

where T is maturation time; P (t− T ) is population density at time t− T , and it

is mostly referred Hutchinson-Wright equation [48, 122]. In the ordinary logistic

equation (1.3), it is assumed that the population size at time t instantly changes

the growth rate of population size at that moment, whereas in Eq (1.4) changing

in population density influences the growth rate of the species after maturation.

Adding delay into equation can change the stability of the system equilibria and

it can result in not only periodical oscillations but also in chaotic dynamics [29].

Interestingly, in delay model long term transients dynamics can arise where the

population size can go to equilibrium or extinct after it oscillates for hundreds of

generations [87].

Earlier ecological models have generally assumed that the densities of species

are spatially homogeneous or the environment is well mixed (for example, consid-

ering that the species mobility is high enough). In this case, system of ODEs or

DDEs would be an adequate modelling tool. However, such a simplistic assump-

tion is generally wrong and the species distributions in spaces are highly hetero-

geneous. To cope with spatial heterogeneity one can use the reaction-diffusion

modelling framework, where diffusion terms are added to local population dynam-

ics (described by the reaction terms). In the simplest case of a single species and

a constant spatial diffusion, the model equation is given by

∂P (t, x)
∂t

= D
∂2P (t, x)
∂x2 + F (P ), (1.5)

where D ∂2P (t,x)
∂x2 is diffusion term with constant diffusion coefficient D and F (P ) is

the local population growth rate (which might be, for simplicity, logistic). P (t, x)

is the population density at time t and position x. The above equation was firstly

studied by Fisher and Kolmogorov et al in 1930s [31, 51]. On the other hand,
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spatially extended models are much harder to investigate analytically (as compared

to non-spatial models), especially in the case where model coefficients are space

dependent: very often only numerical methods are the only possible investigation

tool.

1.2 Predator-prey modelling framework

Any species lives in a community and interacts with some other species along

with the environment. Thus for better predictions it is important to include other

species in the model as dynamic variables. For this reason, researchers have been

greatly interested in the population dynamics of interacting species in recent years.

Overall, there are three main types of pairwise interaction between species: (i)

competition (where the population growth rate of interacting species mutually

decrease in the presence of each other); (ii) symbiosis (where two species stimulate

the population growth of each other); and (iii) predator-prey and host-parasite

interaction (where an decrease in the growth rate of the pre/host is due to its

consumption/use by the predator/parasite species which actually increases its own

density) [92, chapter 3]. In this thesis, we will focus on predator-prey and/or host-

parasite interactions.

Predator prey models were firstly introduced by Lotka in 1925 and Volterra

in 1926 in their seminal works [65, 66, 68, 118]. In the classical Lotka-Volterra

model the consumption of prey follows the mass action law, i.e. it is proportional

to the product of the population density of prey and predator [67]. The model

equations are given by

dP

dt
= rP − gPM, (1.6)

dM

dt
= γgPM − µM (1.7)

where P (t) is prey and M(t) is predator densities at time t. The parameters r

(proportional increase of the population P ), γ (conversion efficiency), µ (mortality
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rate of predator) and searching efficiency/attack rate g are positive. The model

has two equilibrium states; the trivial equilibrium (0,0) is a saddle and the non-

trivial equilibrium (P ∗,M∗) = (µ/γg, r/g) is neutrally stable because of purely

imaginary eigenvalues [2]. Thus the model is structurally unstable: its slight modi-

fication would result in alteration of the dynamics. This makes the application

of the initial Lotka-Volterra model to describe realistic ecological systems rather

questionable.

To make model (1.6)-(1.7) more realistic, it has been improved by many au-

thors, for instance by introducing the logistic growth and a non-linear functional

response of predator. This results in the following modification

dP

dt
= rP (1− P

K
)− fPM, (1.8)

dM

dt
= γfPM − µM, (1.9)

where K is carrying capacity and fP is functional response of the predator.

In the initial Lotka-Volterra model the functional response fP was linear which

is the simplest parameterisation based on the mass-action assumption (The rate of

food consumption is proportional to the product of the concentrations of the prey

and the predator and this is similar to chemical reactions [119]). It is referred to

as Holling type I. In 1959, C.S. Holling amended this expression by suggesting two

new types of a single resource functional response [44, 42] with further explaining

mechanisms of emerging of such responses (see [43] and 1965 [45]).

• fP = gP
k+P (Holling Type II) [44, 79]

• fP = gP 2

k2+P 2 (Holling Type III)[42]

where k is half saturation rate. The above functional responses are known as

Holling Type II (concave upward) and Holling Type III (sigmoid) and have been

used by many researches under original or slightly modified forms such as [107] for
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Holling Type II and [47, 85] for type III. Examples of functional responses of types

I-III are shown in Fig 1.2: Early predator-prey models such as (1.8)-(1.9) with the

functional response of Holling type II predicted the occurrence of large amplitude

population cycles in nutrient rich environment (large carrying capacity K of the

prey) resulting in a further extinction of species [100]. On the other hand, empirical

literature indicates the predators can keep prey density constant at low level even

in highly eutrophic environment [17, 9]. This apparent mismatch between the

theoretical predictions and empirical observations is known as the ”paradox of

enrichment” and it remains one of important open questions of mathematical

biology. There have been proposed a number of solutions to resolve the paradox

of enrichment [3, 35]. For example, this can be done by including evolution of

traits of prey and predator [88]. A possible solution can be the existence of more

vulnerable and less vulnerable prey subpopulations [101]. Spatial heterogeneity

of predator-prey interactions can be a possible solution of the paradox since the

initial models considered well-mixed systems [26, 96, 85]. However, the question of

finding appropriate solutions the paradox of enrichment is still an open problem.

An appropriate choice of the functional response of predator may explain an

efficient top-down control and resolve the paradox of enrichment in plankton eco-

systems [85]. The use of sigmoid functional response provides a possible solution

density of prey

d
en
si
ty

o
f
co
n
su
m
ed

p
re
y

Type I

Type II

Type III

Figure 1.2: Functional responses of predators are generally classified into three types
known as Holling type I, II, and III. For details see the text.
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such that it enhances the stability of predator-prey model in the case where clear-

ance rate is an increasing function of the food density for grazing zooplankton

[94]. In the current thesis we shall also address the question of the influence of

the shape and the type of the functional response on the stability of predator-prey

systems.

We should say that in a two-species predator-prey model is often a simplific-

ation of reality and species are embedded into a food chain or a food web which

includes interactions between different trophic levels as well as interaction within

the same trophic level (for instance, two predators can compete for the same prey).

Thus, some models may involve both competition and predation simultaneously.

A predator can consume different resources from the same or several trophic levels:

in this case the functional response will be a multi-prey functional response. Un-

like a single prey functional response, the multi-prey functional response is not

well studied in the literature and choosing a suitable parameterisation for such a

response (especially, the one including switching) is an open problem in mathem-

atical biology [83, 102].

Host-parasite interactions are usually similar to predator-prey interactions,

however, their modelling may present some particularities, especially this concerns

modelling interaction between bacteriophage (viruses of bacteria) and bacteria. In

particular, phages can live inside bacteria for long time and result in burst only

under some environmental conditions as temperature or pH [104]. Also, phages

do not immediately kill their bacterial hosts but do it after some latency time.

Finally, there is a growing understanding that predator-prey and host-parasite

interactions can be strongly affected by seasonality: in earlier predator-prey mod-

els seasonality was generally neglected. Including seasonality can entirely change

model dynamics [103]. Among important seasonal factors which affect the pop-

ulation dynamics are temperature, sunlight level, wind, precipitation, etc. [89].

Considering periodically varying some parameters in interacting population mod-

els could make our predictions more realistic even though they would often make
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the model more complicated.

In this thesis, we examine some key features affecting predator-prey inter-

actions. These include the role of spatial heterogeneity (particularly shown in

chapter 2), the importance of time and space scales, daily and seasonal variations

(Chapter 3) and the overall system complexity (Chapter 4). As the relevant eco-

logical case studies, we considered a eutrophic plankton ecosystems, (Chapter 2),

bacteria-phage interactions in surface water of a field (Chapter 3) and in the top

soil (Chapter 4). In the next two sections of this chapter, to better understand

our modelling results, we provide a short introduction into plankton modelling

and bacteria-phage interactions.

1.3 Modelling plankton dynamics

1.3.1 Biological background

Plankton means drifting in Greek since planktonic organisms typically flow

with surrounding currents and turbulence. They are generally microscopic organ-

isms, but also they cover a wide range of sizes and live in oceans or other bodies of

water [60, Chapter 7]. Some of plankton species are capable of actively moving in

the vertical direction, but generally they are unable to actively swim in horizontal

directions to resist currents and the turbulent diffusion. Plankton can be classi-

fied by their size or development stage. In addition, they are divided into trophic

levels: two of them are phytoplankton (plants) and zooplankton (animals).

Phytoplankton are the large majority of the plants in the aquatic environ-

ment. There are some macroscopic phytoplankton although they are generally

microscopic plants. Their sizes are generally between 63 µm and 153 µm. Phyto-

plankton have chlorophyll to capture sunlight and they photosynthesise like land

plants, therefore they need sunlight, nutrients and carbon dioxide (CO2) to re-

produce. Phytoplankton consume carbon dioxide and release oxygen on a scale

equivalent to all land plants and this makes them and their life critically import-



Chapter 1. Introduction 9

ant. On the other hand they also depend on minerals. In this way they populate

well-lit surface layer of water and they go down to nutrient-rich water via biolo-

gical pump and up-welling [75]. They are called the primary producers in aquatic

food web since many zooplankton and some animals graze on them and thus the

form the basis of the food chain in the ocean and lakes. They also play key role in

estimating the potential consequences of global warming according to their range

of the sea surface [56, Chapter 3] [21].

Zooplankton are typically tiny animals in the water and they are generally

found near the surface since their resource (phytoplankton) dwell there. They

are usually microscopic, but some of them are larger and are capable of active

swimming in the vertical direction [56, Chapter 4]. Microzooplankton are organ-

isms with the body size between 20 and 200 µm. Mesozooplankton are larger

zooplankton with the size between 0.2 and 20 mm among which copepods are one

of the most abundant group which serves an important source of food for upper

trophic levels including fish and whales. Copepods are classified by the develop-

ment stage which name comes from greek as cope (kope) means in Greek for ”oar”

and ”podes” (podos) in Greek for ”foot” so Copepod = oar-footed. Fig 1.3 gives

an illustration of phytoplankton, microzooplankton and mesozooplankton.

(a) (b) (c)

Figure 1.3: Sample figures of copepods in (a); microzooplankton in (b) and phyto-
plankton in (c) (source from microthalassia.ca).
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1.3.2 Modelling plankton interaction

Mathematical modelling of plankton dynamics is critical for understanding of

the structure of aquatic food chains, growth of plankton and long term predictions.

This research area has quickly developed due to a recent development of computer

power allowing for efficient numerical simulations [77].

Among other interestingly open problems, the question of the possibility of

top-down control of phytoplankton by their gazers remains among the most im-

portant ones: in other words the main question is whether or not zooplankton

grazers can keep phytoplankton density low in the case of high nutrient concentra-

tion in the water. This question is obviously related to the previously mentioned

paradox of enrichment. Note that understanding the mechanisms of stabilisation

in the nutrient-rich waters can be important for modelling some other ecosystems

with eutrophication as, for instance, some terrestrial ecosystems. Lewis et al.

(2012) [62] examined a model between three trophic levels which are phytoplank-

ton, microzooplankton and mesozooplankton. They showed that some chemicals

released owing to microzooplankton grazing on phytoplankton and those chemicals

influenced the system stabilities and copepods predation rate. The article assumed

the plankton food web in well-mixed space and ignore spatial distribution.

Previously, it was found that spatial heterogeneity of plankton distribution is

one of the most important promoters of top-down control in eutrophic ecosystems

and can potentially resolve the paradox of enrichment [96, 81, 84]. Vertical het-

erogeneity of plankton distribution is mainly caused by pronounced gradients of

distributions of environmental factors such as sunlight and nutrients (see Fig 1.4),

which strongly affect the growth of phytoplankton. Surprisingly, such hetero-

geneity has rarely been taken into account when exploring top-down control in

nutrient-rich waters. On the other hand, zooplankton grazers (e.g. microzooplank-

ton) can be classified according to their dispersal ability. In the case where they

move very slow and feed at the depth where they were born, we refer to this type
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0 50 100

0

100

Figure 1.4: Typical vertical distribution of light (blue) and nutrients (red) across the
vertical water column: the curves are expressed, respectively, in terms of the percentage
of the maximal light intensity at the surface and the maximal nutrient concentration at
deep waters.

of predator as a local predator. Modelling results show that local predators may

be efficient for system stabilization in the case of slow vertical mixing. Omnivrous

zooplankton such as copepods, in contrast, are able to quickly move across the

entire euphotic zone of the water column within few hours; the dispersal time is

small as compared to their own generation time (several months). We refer to this

type of zooplankton as a global predator; the important particularity of this type

is that grazers cannot be assigned to a particular location for long period of time.

Therefore, the global predator can be described in models using a global variable

[81, 84, 27]: the population size of the global predator should be described by an

integral quantity (e.g. spatially averaged value). As a result we have a hierarchy of

time and space scales to describe slow moving but fast growing microzooplankton

and fast moving but slow growing mesozooplankton [86].

In a realistic plankton food web model we need to include both global pred-

ators and local grazers simultaneously [98]. The food web model consisting of tra-

ditionally two predators (local such as microzooplankton and global as copepods)
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and the primary producer phytoplankton) is called tri-trophic [38, 37]. The key

issue which is unknown so far is the potential effect of the combined predators in

the stabilization and persistence of planktonic ecosystem. Mathematically some

models consider a continuous vertical distribution of species across the column

[61, 74] whereas some others split the whole euphotic zone into discrete layers

[80].

Integro-differential equations are differential equations involving integrals of

unknown functions. An example of a first order linear integro-differential equation

is provided below:

dP (h, t)
dt

=
∫ h

a
F (h, t, P (h, t))dt+G(h, t, P (h, t)).

Using a spatially-continuous approach based on integro-differential equations

Lewis et al. (2013) presented a spatial tri-trophic plankton model with local and

global predators and analyse the stability [61]. Vertical distributions of phyto-

plankton, local grazer microzooplankton and grazing-induced production of chem-

icals were simulated by extending the article [62]. According to Lewis et al. (2013),

primary producers can be controlled by grazers, although the phytoplankton dens-

ity can ’bloom’ and have their high values near the surface. However, some

simplistic assumptions have been made suggesting a ’linear’ food chain, where

mesozooplankton could only consume microzooplankton and could not consume

phytoplankton. This is often not true for ecosystems where phytoplankton con-

stitute important food source for the copepods [8, 32, 40, 37, 82] even though

they try to select nutritiously superior microzooplankton [41]. Therefore it would

be more realistic to consider omnivorous copepods, even if their consumption of

phytoplankton may be relatively small. In theoretical ecology such predation is

known as ’intragild’ predation, and it is a widespread phenomenon in food webs

[97]. Another important assumption in [61] was that the spatial distribution of

copepods followed info-chemicals released as a result of grazing of phytoplankton

by microzooplankton, which may not always be correct [10].
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In the dissertation (Chapter 2), we reconsider the results obtained by Lewis

et al. (2013) [61] by introducing more realistic assumptions about omnivorous

copepods. For this purpose we consider several multi-prey functional responses

and also revisit the choice of a correct parameterisation of the multi-prey functional

response with switching, which is currently a challenge in mathematical biology

[36, 116, 115, 81, 61]. The obtained results here would contribute in resolving the

paradox of enrichment.

1.4 Bacteria-phage interactions and applications to dis-

ease modelling

Another type of predator-prey interaction which we examine in the thesis is

bacteria-phage interaction. Below we present a short introduction into the topic

from the biological and modelling points of view.

1.4.1 Biological background

Living organisms are classified as either prokaryotes or eukaryotes accord-

ing to the complexity of composed cells. Bacteria consists of a single cell. They

are prokaryotes and they have simple internal structure. Eukaryotes have a nuc-

leus while bacterial DNA floats free which is called nucleoid [6]. Other essential

structural compartments are ribosomes, cell membrane, cell wall.

Bacteriophage is a virus which attacks and kills bacteria. The term bacterio-

phage comes from bacteria and Greek ”phagein”, which translates as ’to devour’.

We will call bacteriophage as phage for short. Phage has a very simple structure

that they are composed of a nucleic acid which is either DNA or RNA genome

and synthesis of protein coat and tail [73] (Fig 1.5). They have no organelles to

copy itself. They do not have ribosomes to produce protein and also they cannot

generate or store energy as a form of adenosine triphosphate (ATP). Thus they

cannot reproduce or carry out their life-sustaining functions without host cells
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Figure 1.5: A typical bacteriophage is composed of a capsid which is protein shell and
DNA. [73]

[73]. Therefore, they need host cells and attack them.

An important ecological study case considered in this thesis includes inter-

actions between a highly pathogenic bacteria Burkholderia pseudomallei and its

phage. Note that B. pseudomallei is highly abundant in north Australia and south

east Asia (i.e. Thailand, Laos) causes an infectious disease Melioidosis which exist

acute and chronic forms. Melioidosis is a serious environmental-acquired bacterial

infection. It is hazardous for the people with chronic health problems, like dia-

betes, lung disease and heavy alcohol use. This disease leads to death of around

40% of the infected people. Especially, it affects low paid agricultural workers in

South-east Asian countries [53]. The bacteria are native and live in water and soil.

Those bacteria are highly versatile and they can manage to colonise areas easily.

Phages can be a natural agent which would reduce bacterial numbers. Mathemat-

ical modelling of B. pseudomallei-phage interaction can improve our understanding

of the most dangerous seasons and locations to be avoided by workers. Modelling

can provide predictions about the probability of disease acquisition.

The interaction between bacteriophage and bacteria is strongly temperat-

ure dependent and it occurs either via lytic or lysogenetic infection cycles [104]

(Fig 1.6). To reproduce, phages need to infect the host cell by firstly attaching the
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Figure 1.6: Lytic and lysogenic cycle: Phages kill the bacteria after infecting them in
lytic cycle and release tens of new phages but in lysgogenic cycle the phages maintain
their life inside the bacteria depending on some condition such as temperature, PH etc.

cell wall of bacteria by their tail (adsorption phase). In the next step, they inject

their nucleic acid into the cell (penetration phase). After this step, bacteriophage

may have one of two different ways which are lytic and lysogenic cycle depending

on temperature and ultraviolet (UV) light.

Lytic cycle

At high temperatures (e.g. 37 ◦C, for details see chapter 3), the infection cycle

is lytic. In this case, when DNA of bacteriophages inside the bacterial cell has

taken control to synthesize the DNA and protein, they start to multiply in the cell

(biosynthesis) and also destroy the host DNA. The next, viral DNA produces large

amount of viral components by using metabolic machinery of host cell. The cell

walls are broken and the bacteria are lysed when sufficient amount of bacteriophage

is formed. Around 100 bacteriophage are released on lysis of bacteria. These free

phage can find new host to destroy [34].
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Lysogenic cycle

At low temperatures (e.g. at 25 ◦C), the infection cycle is lysogenic. In this

case, the adsorbed phages do not immediately lyse the bacteria. Instead, DNA of

bacteriophage replicates with the replication of the chromosome of bacterium by

becoming incorporated into the bacterium chromosome. Host cells usually do not

recognise this and replicate together for many cell generations. Thus viral DNA

passes on to daughter cell of host. It is called lysogenic. Under some condition, the

phage DNA leaves the host chromosomes and go into lytic cycle. Notice that some

properties of bacteria in lysogenic cycle might change and lysogenized bacteria can

resist to superinfection by the same or related phages [70].

In ecosystems such as agricultural fields in South-East Asia, variation of tem-

perature on the daily and seasonal basis should result in a constant switch between

the two types of infection.

1.4.2 Bacteria-phage models

Overall, currently there exist no bacteria-phage models with temperature-

dependent lysogeny and one of the goal of the thesis was to build such a model.

However, there exists a large number of previous publications on modelling

bacteria-phage interaction at a constant temperature resulting in a lytic cycle

infection [78, 54]. Historically, the first and the simplest computational model-

ling of bacteria-phage interaction dynamics was studied by Campbell in 1961 [15].

The system consists of one ordinary differential equation (ODE) and one delay

differential equation (DDE) for constant latency period. The density of infected

bacteria is not included as a dynamical variable. The model equations are given

by

dS(t)
dt

= αS(t)
(
1− S(t)

C

)
− µS(t)−KP (t)S(t), (1.10)

dP (t)
dt

=−KP (t)S(t) +KbS(t− τ)P (t− τ)− µP (t)−KIP (t), (1.11)
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where S(t) and P (t) are densities of bacteria and phages at time t. τ shows

constant delay time of infection, α is growth rate of bacteria, µ is the flow rate

constant, K is adsorption rate, b is burst size, C is carrying capacity. We can

easily see that the functional response is Holling type I as fS = KS. Also, the

burst size b can be understood as conversion efficiency of predation but unlike in

predator-prey models this value is greater than one. On the other hand, predators

(phages) die after predation (infection) to prey (bacteria) which is described by

the term −KPS.

Campbell also examined host competing with two different species of bacteria.

The Levin et al. [59] considered multiple resources and multiple species of bacteria

and phages by extended the resource limited population model [110]. Therefore,

phages compete between each other in addition to bacterial competition. Bremer-

mann presented the model which was similar formulation with Campbell’s [15]

and Levin et al [59] but he considered the concentration of infected bacteria and

didn’t use DDE in order to discuss stability of equilibria [11]. The model equations

become

dS(t)
dt

= αS(t)(1− S(t)
C

)−KS(t)P (t), (1.12)

dI(t)
dt

= KS(t)P (t)− λI(t), (1.13)

dP (t)
dt

= λ2I(t)− µP (t), (1.14)

where I(t) is the density of infected bacteria, λ is death rate of infected bacteria,

λ2 is release rate of phages.

There have been several modifications of the above two models. For example,

the model by Lenski and Levin is similar to the above previous delay models [58],

however, the authors consider that infected bacteria do not consume resources

and they are unable to grow. Beretta and Kuang made the previous models

mode complicated [11] and describe dynamics marine bacteriophage infection by

taking into account this decrease in the density of phages [4]. The authors modify
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their previous model and included a constant latency period corresponding to the

replication time of phage [5]. Gourley and Kuang studied the influence of phage

mortality and space in the dynamics [39]. Payne and Jansen proposed the model

with that both susceptible and infected bacteria grow exponentially (Malthusian)

instead of logistic growth [95]. Multiple adsorption and multiple host binding sites

has been studied in the recent published papers [108, 109]. In the article [121], host-

phage model was considered only two equations (for susceptible (healthy bacteria

and phages) controlled by adsorption and the carrying capacity. Cairn et al [14]

focused on both infected and resistant bacteria in addition to susceptible bacteria

and phages with delay equation for latency time. Krysiak-Batyn et al. reviewed

and classified all existing articles of mathematical models of bacteriophage-host

interactions [54].

However, we should emphasize again that none of the previous model was

suitable to describe bacteria-paghe interactions with temperature-dependent ly-

gogeny.

1.5 Major objectives of the thesis

In this thesis, we examine several key features affecting predator-prey dy-

namics in complex environment. Our original results are presented in three main

chapters.

In Chapter 2, we analyse the role of heterogeneity in plankton model with ver-

tical resolution. The predator prey model is constructed to describe a tri-trophic

plankton population in eutrophic environment. We obtain this model by extending

the vertically heterogeneous spatial model in [61] with omnivorous top predator

and explore different parameterisations of the predator functional response. This

chapter demonstrates the importance of spatial distributions, choosing of an ap-

propriate functional response (with a correctly parametrized switching) and its

parameterisation in the system stability.
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In Chapter 3, we explored the role of daily and seasonal variation of the pos-

sibility of control of bacterial numbers by its phage. We considered interactions in

a homogeneous environment mimicking surface water of a typical rice field. Tech-

nically, we build two mathematical models (using ordinary and delay differential

models; we call them Model I and Model II, respectively). We assume that only the

temperature, ultraviolet (UV) ray and sunrise/sunset time change with seasonal

variations. Particularly, we examined the model in some Asian regions because

of high risk Melioidosis (infectious disease) caused by Burkholderia Pseudomallei.

This chapter shows the influences of the temperature and UV radiation with sea-

sonal variation in the density of phage-free bacteria and the differences of the result

between Model I and Model II. We used realistic model parameters obtained by

our colleagues from the Department of the Immunity, Infection and Inflammation

as well as from the literature.

In Chapter 4, we extended the same system as in Chapter 3 (Burkholderia

Pseudomallei-phage interaction) to the case of spatially heterogeneous environ-

ment. We construct new vertically heterogeneous bacteria-phage model in upper

layer of soil within 1 meter. Vertical distribution of temperature is modelled via

diffusion equation. On the other hand, we consider that the carrying capacity C of

the system decreases with depth according to the experimental data while UV can-

not affect phages after around 5 cm in soil. Vertical displacement of bacteria and

phages is described via reaction-diffusion model with diffusion coeeficients being

very small. The chapter predicts the density of bacteria in the depth of soil in two

main endemic provinces of Thailand. Our goal is to make predictions regarding

possible disease acquisition across seasons under different level of eutrophication

of the soil.

The final chapter (Chapter 5) provides conclusions and a general discussion

of future perspectives of modelling predator-prey interactions in planktonic and

bacteria-phage systems.

A version of Chapter 2 has been published in [26] and Chapter 3 has been
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submitted in Journal ”Scientific Report”. We are now preparing chapter 4 as an

article to submit.



Chapter 2

Spatio-temporal dynamics of

tri-trophic plankton food chain

with eutrophication

2.1 Introduction

Plankton communities are usually complex systems and their dynamics can

be very rich which is reflected in our models. They have served as a paradigm in re-

spect to modelling of complex ecosystems in ecology. An important open question

in modelling of planktonic dynamics is to understand the possibility of efficient

top-down control of the primary producer (phytoplankton) in nutrient rich water

body (eutrophic) by their zooplankton grazers. It is known that phytoplankton

densities may remain low despite high nutrient concertation in the water [9, 49]

whereas theoretical models predict large-amplitude oscillations in such systems.

As mentioned in Chapter 1, this mismatch is called the paradox of enrichment

and it isn’t limited to the plankton dynamics only [99, 76].

In this chapter, we reconsider the previous results on top-down control in

tri-trophic eutrophic systems in heterogeneous environment under eutrophication
21
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for the realistic situation, where a fast moving top predator is omnivorous and

its spatial distribution follows the distribution of organisms of both lower trophic

levels. We also explore the role of parametrization of the functional response of

predators on the persistence and stability of the system. We demonstrate that

the interplay between heterogeneity of environment and trophic interaction res-

ults in a strong top-down control which would be otherwise impossible in the same

system without space. On the other hand, investigation of the model within the

realistic parameter range shows that consumption of phytoplankton by copepods

generally results in a collapse of the ecosystem: microzooplankton and copepods

(mesozooplankton) cannot coexist together. The coexistence of the three trophic

levels becomes possible only after introducing a particular assumption regarding

the shape the functional response of copepods (the functional response should

exhibit an active switching). We also find a bistability of the system with omni-

vorous copepods: successful establishment of copepods in the system requires a

supercritical initial number of copepods.

The material of this chapter has been published in ”Mathematical Modelling

of Natural Phenomena” (see [26]).



Notations related to chapter 3

t Time
h Length (m)
P (h, t) Phytoplankton density at depth h and at time t
M(h, t) Microzooplankton density at depth h and at time t
Z(t) Copepods density at time t
K Phytoplankton carrying capacity
r Maximum growth rate of phytoplankton
φ Light attenuation coefficient
ω The self-shading coefficient
m Mortality rate of phytoplankton
µ Mortality rate of microzooplankton
δ Mortality rate of copepods
fP1 Functional response of microzooplankton
fP2 copepods grazing on phytoplankton
fM feeding on microzooplankton
g Microzooplankton grazing rate
β1 Copepods grazing rate
β2 Copepods predation rate
k1 Half saturation constant
k2 Half saturation constant
γ Microzooplankton grazing efficiency
εP Conversion efficiency- phytoplankton to copepods
εM Conversion efficiency- microzooplankton to copepods

Units

d Day
m Metre
µg Microgram
C Carbon
L litre

Abbreviation

Fig Figure
Eq Equation

23
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2.2 Plankton model

We consider a tri-trophic planktonic food web which consists of phytoplank-

ton P as primary producers, microzooplankton M as intermediate grazers and

copepods Z as top predators. The variable h describes depth level of the water

column. The trophic interactions take place in the euphotic zone between the sur-

face (h = 0) and the base of the euphotic zone h = H since the zone is adequately

illuminated to permit photosynthesis by phytoplankton. The model equations

follow as below

∂P

∂t
= D

∂2P

∂h2 + rexp(−φh− ω
∫ h

0
Pdh)P (1− P

K
)−mP

− fP1M − fP2Zz,

∂M

∂t
= D

∂2M

∂h2 + γMfP1 − µM − fMZz,

dZ

dt
= Z

H

∫ H

0
(εPfP2 + εMfM)zdh− δZ,

(2.1)

where P = P (h, t) and M = M(h, t) are densities of phytoplankton and micro-

zooplankton at depth h and at time t respectively. Phytoplankton and microzo-

oplankton are exposed to turbulent diffusion since they have limited swimming

abilities. D is the diffusion coefficient (suggested to be constant); Z = Z(t) is the

density of copepods averaged over the entire euphotic zone at time t; Copepods

have good swimming abilities to resist vertical turbulence. z = z(h, t) is the in-

stantaneous relative local density of copepods depending on the density of prey:

the density of copepods at depth h is given by the product of Z and z. The vertical

distribution of z = z(h, t) generally depends on the vertical distribution of both

prey species and is mathematically determined by in Section 2.2.3.

The model parameters have the following meanings: r is maximum growth

rate and K is carrying capacity of phytoplankton. Phytoplankton need light to

photosynthesise so their growth rate is proportional to light intensity. When the

depth of water increases, the amount of suitable light for phytoplankton expo-
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Table 2.1: Parameters definitions, units, fixed values and possible ranges. The corres-
ponding references are provided

Parameters and Definition Units Fixed
values

Ranges

r Phytoplankton intrinsic growth rate d−1 1.5 0.1− 2 [22]

K Phytoplankton carrying capacity µg C L−1 2000 50− inf [81]

φ Light attenuation coefficient m−1 0.05 0.005− 0.15 [3]

ω Self-shading coefficient 1/(m µg C L−1) 0.002 0.0005− 0.005 [3]

g Microzooplankton grazing rate d−1 7.5 2− 12 [23]

β1 Copepods grazing rate d−1 1.4 0.6− 1.4 [40, 22]

β2 Copepods predation rate d−1 1.4 0.6− 1.4 [40, 81]

k1 Half saturation constant µg C L−1 20 20− 100 [40, 81]

k2 Half saturation constant µg C L−1 60 20− 100 [40, 81]

γ Microzooplankton grazing efficiency − 0.3 0.15− 0.64 [23]

εP
Conversion efficiency- phytoplank-
ton to copepods − 0.35 0.2− 0.8 [23, 38]

εM
Conversion efficiency- microzo-
oplankton to copepods − 0.7 0.2− 0.8 [23, 38]

m Phytoplankton mortality d−1 0.02 0− 0.3 [33]

µ Microzooplankton mortality d−1 0.05 0.01− 0.1 [16]

δ Copepods mortality d−1 0.01 0.01−0.15 [24, 16]

D Diffusion coefficient m2 d−1 1 1− 10 [3]

nentially decreases owing to absorption by the water and self-shading of light

by phytoplankton located above the given depth. These can be formalised by

exp(−φh) with φ being the light attenuation coefficient and by an integral term

exp (−ω
∫ h

0 P (h)dh) with the self-shading coefficient ω, respectively. We assume

that the light irradiance is not very high and there is no growth inhibition, see

[25]. Microzooplankton densities are also high in the surface since they graze on

phytoplankton. The parameters m, µ and δ are mortality coefficients of phyto-

plankton, microzooplankton and copepods respectively. The function fP1 is the

functional response of microzooplankton; fP2 and fM describe copepods grazing

on phytoplankton and feeding on microzooplankton respectively. The conversion

of grazed phytoplankton into new biomass of microzooplankton is described by γ,

whereas phytoplankton and microzooplankton conversion efficiency of copepods
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are described by εP and εM , respectively.

The plankton model has zero-flux boundary conditions for phytoplankton and

microzooplankton to prevent the plankton leaving the considered part of the water

column such that
∂P (0, t)
∂h

= ∂P (H, 0)
∂h

= 0,

∂M(0, t)
∂h

= ∂M(H, 0)
∂h

= 0,

(2.2)

The functional response of microzooplankton fP1 depends only on phytoplankton

density. Using conventional aproach (Holling type II disk equation), we shall

assume the following parametrisation [36]

fP1 = gP

k1 + P
, (2.3)

where g is maximum grazing rate on phytoplankton by microzooplankton and k1

is half saturation constant. To proceed further, we need to parameterise the func-

tional responses of the zooplankton. We have three cases of functional responses

for feeding copepods to analyse the model: Holling Type II functional response for

copepods feeding on single resource (only microzooplankton in Fig 2.1(a)), Holling

type II and type III functional responses for ceopepods feeding on two resources

(phytoplankton and microzooplankton) in Fig 2.1(b).

2.2.1 Single resource food chain

We shall first consider the simplest scenario, in which copepods only graze

on microzooplankton as in Fig 2.1(a) to compare with the model with an omni-

vorous top predator. In this case, single resource Holling Type II (disk equation)

functional response (fM) is used for feeding on microzooplankton by copepods as

fallow

fM = β2
M

k2 +M
, (2.4)
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(a)

(b)

Figure 2.1: (a):Copepods prey on microzooplankton and microzooplankton graze on
phytoplankton, (b): Copepods are fed by both microzooplankton and phytoplankton
and microzooplankton graze on phytoplankton

where β2 is maximal feeding rate and k2 is half saturation constant. Besides,

Copepods are carnivorous and don’t graze on phytoplankton, thus the functional

response fP2 becomes zero. We call this model as single resource food chain or

linear feeding model. There is no competition between the species in this model.

Microzooplankton grazing plays important role in this plankton dynamics. It reg-

ulates the population rate of phytoplankton and it is a link between phytoplankton

and copepods.

2.2.2 Multiple resource food chain

In the previous section, copepods were suggested to be carnivorous and they

only feed one type of resources. Here we suppose herbivorous copepods which

feed on both microzooplankton and phytoplankton as in Fig 2.1(b). Paramet-

erization of the functional response of copepods depending on two food sources
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(phytoplankton and microzooplankton) is more complicated issue. Overall, there

exist a large number of possible parameterisations, each of which has its biological

rationale (see [36, 83, 102]). Thus we firstly seek for a proper multi-prey functional

response of copepods to obtain coexistence for all species. Also, these functional

responses should be comparable with the single resource functional response. In

this section, we consider two different types of multi-resources functional responses

describing either that the top predator doesn’t switch prey or that the predator

preferentially consumes the most common species.

Proportion based functional response

Prey switching means that predator are able to select the most common type

of resources to consume. The relative preference is constant in no prey switching

model [36]. We construct the model with well known no-prey switching functional

response for copepods feeding on two resources (phytoplankton in addition to

microzooplankton). This response is derived by extending single resource Holling

Type II (disk equation) functional response [32, 90] in the section 2.2.1 and show

as follow
fP2 = β1

η1P

k2 + η1P + η2M
,

fM = β2
η2M

k2 + η1P + η2M
,

(2.5)

where β1 and β2 are copepods predation rates, k2 is half saturation coefficient. η1

and η2 are non-negative control parameters and their values are assumed 0 or 1.

Notice that the single resource parametrisation of functional response is obtained

as Eq (2.4) if we say that η1 is zero and η2 is one. Let suppose that both η1 and

η2 are one. Then, we obtain simplified no-switching functional responses as below

fP2 = β1
P

k2 + P +M
,

fM = β2
M

k2 + P +M
,

(2.6)
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Functional response with switching: kill the winner (KTW)

In the functional response with active prey switching, the food preference is

not constant and the predator selects foods depending on their abundance or few-

ness of resources. Prey switching might be defined that the predator’s preference

for prey increases if that prey increases. On the other hand, if prey is rare then

the preference of predator is weak [42, 91, 94]. Therefore, the selecting active

prey switching functional response is more rational and realistic. We use the re-

cently suggested parametrisation called as ”Kill-The-Winner” (KTW) functional

response [116] given by

fP2 = β1
η1P

2

η1P 2 + η2M2
η1P + η2M

k2 + η1P + η2M
,

fM = β2
η2M

2

η1P 2 + η2M2
η1P + η2M

k2 + η1P + η2M
,

(2.7)

where parameters are the same meaning as in Eq (2.5). The model (2.7) can switch

to the single resource functional response in Section (2.2.1) for η1 = 0 and η2 = 1.

On the other hand, we assume that both η1 and η2 are 1 and then we attain the

simplest KTW functional responses as below

fP2 = β1
P 2

P 2 +M2
P +M

k2 + P +M
,

fM = β2
M2

P 2 +M2
P +M

k2 + P +M
,

(2.8)

It can be found more detail and the formal derivation of parametrization (2.8) in

[116]. The main differences between the functional responses (2.6) and (2.8) is

that active switching causes a substantial drop in resource consumption when the

relative abundance of this resource is low.
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2.2.3 Finalising the model equations

We define three different models called as Model I, Model II and Model III

in regard to the functional responses of copepods as follows. Model I: copepods

are not grazer and they feed only on microzooplankton. Thus the model has the

functional response in (2.4). Model II: the copepods are omnivorous but they do

not have the ability for selecting abundant resources. Thus, the model has the

functional response in (2.6). Model III: copepods are also omnivorous and they

are able to actively prefer abundant foods to less foods. The model is constituted

with the KTW functional response in (2.8).

Copepods follow the ideal free distribution function z(h, t). This function is

defined with the densities of immobile species which are phytoplankton and micro-

zooplankton. Since active movement of copepods occurs on a fast scale compared

to their demographic scale, we cannot assign the density of copepods to a fixed

horizontal layer in the water column. In the following, we describe the spatial

distribution of copepods based on the relative distribution z(h, t), which is the

local density of copepods divided by their average density Z. Based on previous

empirical demonstrations [27, 57, 86, 81], we can assume that the relative distri-

bution of copepods follows the ideal free distribution of the densities of immobile

species which are phytoplankton and microzooplankton across the space, i.e.

z(h, t) = η1P (h, t) + η2M(h, t)
η1P (t) + η2M(t)

, (2.9)

where P and M are the space average densities of P and M , respectively. They

are computed by

P = 1
H

∫ H

0
P (h, t)dh,

M = 1
H

∫ H

0
M(h, t)dh,

Note that for simplicity, the weights in Eq (2.9) are chosen to be the same as in
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the above functional responses to reduce the number of independent parameters.

This assumption is not critical and one can replace ηi with some independent

parameters. For model I; the values of η1 is 0 and η2 is 1 as in the single resources

functional response (2.4) and the function is given below

z(h, t) = M(h, t)
M(t)

, (2.10)

As seen the function above, there is no P expression since according to assumption

of this model, copepods don’t graze on the phytoplankton. For Model II and Model

III, both η1 and η2 are assumed 1 since both lower levels are resources for copepods.

z(h, t) = P (h, t) +M(h, t)
P (t) +M(t)

, (2.11)

Note that there is some indication in the literature that the conversion efficiency

of copepods feeding on microzooplankton is often higher than when feeding on

phytoplankton [38, 112]. However, the precise ratio between εP and εM is generally

unknown. In this paper, we assume that εP = 0.5εM in most of simulations. We

also consider the scenario when εP = εM . Note that variation of the ratio εP/εM
does not greatly affect the main qualitative results of the paper.

The dynamical system includes partial integro-differential equations. The

parameter values and ranges considered here are taken from the literature; they are

summarized in Table 2.1. The unit of plankton density is chosen as µgCL−1. The

models were analysed numerically using the explicit integration method (forward

difference for the time derivative and the second order central difference for the

space derivative):

P j+1
i − P j

i

∆t =DP
j
i+1 − P

j
i + P j

i−1
∆h2 + f1(P,M,Z, t, h)

M j+1
i −M j

i

∆t =DM
j
i+1 −M

j
i +M j

i−1
∆h2 + f2(P,M,Z, t, h)

Zj+1 − Zj

∆t =f3(P,M,Z, t, h)
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where P j
i ⇒ P (hi, tj), M j

i ⇒ M(hi, tj) and Zj ⇒ Z(tj). We consider the

size of euphotic zone to be H = 80 m and it is discretised in 300 levels which

gives the space step ∆h ≈ 0.2676. We find that the optimal time resolution in

terms of numerical stability ∆t should be smaller than (∆h)2/2D ≈ 0.0358 and

we generally select ∆t as 0.001 or smaller. We compute linear system of 300

equations with 300 unknowns at each time step for the first and second equation

in the system. The integrals in the system are evaluated using the trapezoidal rule

[50]. Zero flux boundary condition can be expressed by

∂P (0, t)
∂h

= 0⇒ P j
2 − P

j
1

∆h = 0⇒ P j
2 = P j

1

similarly, P j
299 = P j

300, M j
2 = M j

1 and M j
299 = M j

300. The initial conditions are as-

sumed to be spatially uniform distributions of phytoplankton and microzooplank-

ton. The accuracy of our numerical computation was checked by decreasing the

step size in space by half (with the corresponding by decreasing the time step) to

check whether or not the numerical results were close to each other. Some res-

ults were checked as well by an implicit numerical scheme (including the Crank-

Nicolson scheme). On the other hand, we computed the non-spatial (the system of

ODEs) model via the classical 4th order Runge Kutta (RK4) method [77]. The ac-

curacy of the numerical simulation was again checked by decreasing the time step

and comparing the results of simulations consecutive smaller steps. Technically,

all coding and simulations were done using MATLAB software.

2.3 Results

2.3.1 Non-spatial model

In this section, we briefly consider Models I, II and III in the case of a well-

mixed system, i.e. assuming the ecosystem to be homogeneous. This will allow

us to better understand the role of spatial heterogeneity in persistence and sta-

bility. The model equations of the corresponding well-mixed systems are formally
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obtained by removing the diffusion terms and setting φ = 0, ω = 0 and z(h) = 1

from Model (2.1). We assume that εM = εP = ε for the simplicity. The resultant

model without vertical distribution then becomes a system of ODEs as below

dP

dt
= rP (1− P

K
)−mP − gP

k1 + P
M − fP2Z,

dM

dt
= γM

gP

k1 + P
− µM − fMZ,

dZ

dt
= εZ(fP2 + fM)− δZ.

(2.12)

The system in (2.12) depends only on time and it is spatially homogeneous. The

equilibrium states of the model can be analytically found by the solution of the

system below:

F1(P ,M,Z) = rP (1− P

K
)−mP − gP

k1 + P
M − fP2Z,

F2(P ,M,Z) = γM
gP

k1 + P
− µM − fMZ,

F3(P ,M,Z) = εZ(fP2 + fM)− δZ.

(2.13)

The non-negative roots of equation system (2.13) with variable P , M, Z give the

steady states (P ∗,M∗
, Z
∗) such as:

F1(P ∗,M∗
, Z
∗) = 0,

F2(P ∗,M∗
, Z
∗) = 0,

F3(P ∗,M∗
, Z
∗) = 0.

(2.14)
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After finding the steady states of the systems, we can analyse their stabilities by

calculating Jacobian matrices as below

J =



∂F1
∂P

∂F1
∂M

∂F1
∂Z

∂F2
∂P

∂F2
∂M

∂F2
∂Z

∂F3
∂P

∂F3
∂M

∂F3
∂Z


.

The Jacobian matrix is J∗ = J(P ∗,M∗
, Z
∗) evaluated at the steady states. Then,

the eigenvalues are calculated from det (J∗ − λI) = 0. According to sign of λ,

the stability of the states are determined. If all eigenvalues (or their real parts if

complex) are negative, then the equilibrium state is stable. If not, it is unstable.

In this study, We have three models related to functional responses of copepods.

We call them ”non-spatial model I, II, III” respectively.

Non-spatial model I: single resource food source

Let’s start with non-spatial Model I. For this, we substitute the functional

response (2.4) to system (2.14) and we get the following ODE system:

rP
∗(1− P

∗

K
)−mP ∗ − gP

∗

k1 + P
∗M

∗ = 0, (2.15)

γM
∗ gP

∗

k1 + P
∗ − µM

∗ − β2
M
∗

k2 +M
∗Z
∗ = 0, (2.16)

εZ
∗
β2

M
∗

k2 +M
∗ − δZ

∗ = 0. (2.17)

One of the steady states is (0, 0, 0), trivial. Secondly, we look for semi-trivial

steady states. If P ∗ = 0, then M
∗ can be only zero (the parameters and Z

∗

cannot be negative) from Eq (2.16), so Z∗ is also zero from Eq (2.17). If we say

M
∗ = 0, then Z

∗ = 0 from Eq (2.17) and P
∗ = Kr−mK

r
from Eq (2.15). Lastly,

suppose Z∗ = 0, then we substitute it to Eq (2.16), cancel some positive common

factor M∗, and find P
∗ = µk1

γg−µ . Thereafter, we find M
∗ = (r(1 − P

∗

K
) −m)k1+P ∗

gP
∗
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from Eq (2.15). To find the non-trivial equilibrium, we can firstly cancel some

common factors in the system above and obtain the system below:

0 = r(1− P
∗

K
)−m− g

k1 + P
∗M

∗
, (2.18)

0 = γ
gP
∗

k1 + P
∗ − µ− β2

1
k2 +M

∗Z
∗
, (2.19)

0 = εβ2
M
∗

k2 +M
∗ − δ. (2.20)

M
∗ can be easily found from Eq (2.20) as follow.

M
∗ = k2δ

εβ2 − δ
, (2.21)

Then M
∗ is substituted to Eq (2.18) and it is arranged

AP
∗ +BP

∗ + C = 0, (2.22)

where A = r, B = k1r−Kr+mK and C = −k1rK +mk1K + gKM
∗. P ∗ can be

calculated from the quadratic Eq (2.22)

P
∗ = −B ∓

√
B2 − 4AC
2A , (2.23)

and then Z∗ is found by substitution (2.21) and (2.23) to Eq (2.19) as the following:

Z
∗ = ( γgP

∗

k1 + P
∗ − µ)k2 +M

∗

β2
, (2.24)

Thus, the Jacobian matrix J∗ is as the following

J∗ =



r − 2P ∗

K
−m− gM

∗
k1

(k1+P ∗)2 − gP
∗

k1+P ∗ 0

γM
∗
gk1

(k1+P ∗)2
γgP

∗

k1+P ∗ − µ− β2Z
∗
k2

(k2+M∗)2 −
β2M

∗

k2+M∗

0 εM
∗
β2k2

(k2+M∗)2 0


, (2.25)
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and the eigenvalues are calculated by its determinant with det (J∗ − λI) = 0.

We numerically computed the non-zero steady state since the analytical solution

will be too cumbersome and we found only one non-trivial steady state in this

system (P ∗,M∗
, Z
∗) = (1967.8, 1.1, 95) using the default parameter values from

Table (2.1). We also calculated the eigenvalues using MATLAB built in functions

to obtain λ1 = −1.471, λ2,3 = 0.019± 0.145i. Since the real part of the eigenvalue

is positive, the steady state is unstable. The steady states and their stabilities

for different growth rates of phytoplankton are presented in Table (2.2). The non-

trivial equilibria are unstable for any values of r as seen in the table. The model

has stable equilibrium states only for small values of K and r (e.g. K = 50 and

r = 0.4) but this is not much realistic.

According to large carrying capacity K, Eq (2.15) would be such that

0 = r −m− g

k1 + P
∗M

∗
, (2.26)

r −m = g

k1 + P
∗M

∗
. (2.27)

On the other hand, the first element of the Jacobian matrix (2.25) would be

r −m− gM
∗
k1

(k1 + P
∗)2
, (2.28)

⇒ r −m− gM
∗

k1 + P
∗

k1

k1 + P
∗ . (2.29)

Then we substitute Eq (2.27) to the term above and rearrange it:

⇒ r −m− (r −m) k1

k1 + P
∗ , (2.30)

⇒ (r −m)
(
1− k1

k1 + P
∗

)
, (2.31)

⇒ (r −m)
( P

∗

k1 + P
∗

)
. (2.32)

Since r −m > 0 and P
∗

k1+P ∗ > 0, the first element of the matrix (2.25) is positive.
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Table 2.2: (P ∗, M∗, Z∗) and λ of steady states for variable values of parameter r and
fixed values of all other parameters in non-spatial Model I.

r (P ∗, M∗
, Z

∗) λ stability
(88.243, 1.1, 77.86) (0.023, 0.033± 0.206i) unstable

0.1 (1491.8, 1.1, 94.70) (−0.07, 0.02± 0.145i) unstable
(26.12, 1.1, 53.43) (0.011, 0.055± 0.33i) unstable

0.2 (1753.9, 1.1, 94.9) (−0.171, 0.019± 0.145i) unstable
(9.368, 1.1, 29.137) (0.04, 0.048± 0.36i) unstable

0.3 (1837.3, 1.1, 94.9) (−0.271, 0.019± 0.145i) unstable
(1.549, 1.1, 4.874) (0.0005, 0.014± 0.24i) unstable

0.4 (1878.5, 1.1, 95.0) (−0.371, 0.019± 0.15i) unstable
(−2.981, 1.1, −19.379) − −

0.5 (1903.0, 1.1, 95.0) (−0.471, 0.019± 0.15i) unstable
(−11.701, 1.1, −140.6) − −

1 (1951.7, 1.1, 95) (−0.972, 0.019± 0.15i) unstable
(−14.512, 1.1, −261.81) − −1.5 (1967.8, 1.1, 95) (−1.472, 0.02± 0.15i) unstable

The determinant of the matrix is

det(J∗) =− (r −m)
( P

∗

k1 + P
∗

)(
− β2M

∗

k2 +M
∗

) εM
∗
β2k2

(k2 +M
∗)2
, (2.33)

=(r −m)
( P

∗

k1 + P
∗

) β2M
∗

k2 +M
∗
εM

∗
β2k2

(k2 +M
∗)2
, (2.34)

obviously positive and det (J∗) = λ1λ2λ3 > 0. That’s why at least one of eigen-

values is positive and the equilibrium state is unstable.

Non-spatial model II: omnivorous copepods having functional re-

sponse without switching

Model II is constructed by the rational based functional response (2.6). Then

system (2.14) becomes as below to find equilibrium points and examine their
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stabilities:

0 = rP
∗(1− P

∗

K
)−mP ∗ − gP

∗

k1 + P
∗M

∗ − β1
P
∗

k2 + P
∗ +M

∗Z
∗
, (2.35)

0 = γM
∗ gP

∗

k1 + P
∗ − µM

∗ − β2
M
∗

k2 + P
∗ +M

∗Z
∗
, (2.36)

0 = εZ
∗(β1

P
∗

k2 + P
∗ +M

∗ + β2
M
∗

k2 + P
∗ +M

∗ )− δZ
∗
. (2.37)

We firstly start with semi-trivial steady states. Let suppose P ∗ = 0, then M
∗ is

zero from Eq (2.36) and Z
∗ is zero from Eq (2.37). If we assume M∗ = 0 and

substitute it to Eq (2.37), then we find P ∗ = δk2
εβ1−δ by cancelling positive common

factors Z
∗. Later, we substitute known M

∗ and P
∗ to Eq (2.36) and obtain

Z
∗ = (r(1 − P

∗

K
) − m)k2+P ∗

β1
. Lastly, if we say Z

∗ = 0, then we get P ∗ = k1µ
γg−µ

from (2.36) and then M∗ = (r(1− P
∗

K
)−m)k1+P ∗

g
from (2.35). To find non-trivial

steady states, the common factors P ∗ in Eq (2.35), M∗ in Eq (2.36) and Z
∗ in

Eq (2.37) are cancelled and the new system becomes such that

0 = r(1− P ∗

K
)−m− g

k1 + P ∗
M∗ − β1

k2 + P
∗ +M

∗Z
∗
, (2.38)

0 = γ
gP
∗

k1 + P
∗ − µ−

β2

k2 + P
∗ +M

∗Z
∗
, (2.39)

0 = ε(β1
P
∗

k2 + P
∗ +M

∗ + β2
M
∗

k2 + P
∗ +M

∗ )− δ. (2.40)

First, Let’s rearrange Eq (2.40) to make it look simpler.

0 = εβ1P
∗ + εβ2P

∗ − δk2 − δP
∗ − δM∗

= (εβ1 − δ)P
∗ + (εβ2 − δ)P

∗ − δk2, (2.41)
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Secondly, multiplying Eq (2.38) by β2 and Eq (2.39) by −β1, summing up them

0 = β2r(1−
P
∗

K
)− β2m−

β2gM
∗

k1 + P
∗ − β1γ

gP
∗

k1 + P
∗ − β1µ

⇒ M
∗ = aP

∗2 + bP
∗ + c, (2.42)

where a = − r
gK

, b = 1
β2gK

(−β2rk1 − β1γgK + β2rK − β2mK + β1µK) and c =
1

β2gK
(β2rKk1 − β2mKk1 + β1µKk1) then we substitute (2.42) to (2.41)

0 =(εβ1 − δ)P
∗ + (εβ2 − δ)(aP

∗2 + bP
∗ + c)− δk2

0 =(εβ2 − δ)aP
∗2 + (εβ1 − δ + (εβ2 − δ)b)P

∗ + (εβ2 − δ)c− δk2

we can call the equation such as

AP
∗2 +BP

∗ + C = 0 ⇒ P
∗ = −B ∓

√
B2 − 4AC
2A , (2.43)

where A = (εβ2− δ)a, B = (εβ1− δ+ (εβ2− δ)b) and C = (εβ2− δ)c− δk2. Later,

M
∗ and Z

∗ can be found easily from (2.41) and (2.39) respectively as below

M
∗ = δk2

εβ2 − δ
− (εβ1 − δ)P

∗

εβ2 − δ
, (2.44)

Z
∗ = (γ gP

∗

k1 + P
∗ − µ)k2 + P

∗ +M
∗

β2
, (2.45)

Therefore, we have non-trivial steady state (P ∗,M∗
, Z
∗) as in (2.43), (2.44), and

(2.45) if they are positive. Existence of steady states and their stabilities depend

on parameters. According to the values of parameters in Table 2.1, (P ∗,M∗
, Z
∗)

have two values: one of them is (−3.313, 4.404,−21.672) and the other one is

(9023.3,−9022.2, 95.8). Thus, there doesn’t exist equilibrium state for the fixed

parameter values. There are some non-trivial steady states for small values of

parameter r as seen in Table 2.3 and they are unstable.
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Table 2.3: (P ∗, M∗, Z∗) and λ of the steady states for variable values of parameter r
and fixed values of all other parameters in non-spatial Model II.

r (P ∗,M∗
, Z
∗) λ stability

(1.038, 0.053, 2.661) (0.003, 0.0005± 0.051i) unstable
0.1 (107580, −107580, 0.001) − −

(0.654, 0.437, 0.926) (0.001, 0.002± 0.106i) unstable
0.2 (54779, −54778, 96) − −

(−0.074, 1.165, −2.545) − −
0.4 (28380, −28379, 96) − −

(−0.752, 1.843, −6.018) − −
0.6 (19581, −19580, 96) − −

(−1.386, 2.477, −9.494) − −
0.8 (15181, −15180, 96) − −

(−1.980, 3.071, −12.971) −
1 (12542, −12541, 96) − −

(−2.538, 3.629, −16.451) − −
1.2 (10783, −10781, 96) − −

(−3.313, 4.404, −21.672) − −
1.5 (9023.3, −9022.2, 95.8) − −

J∗ =



r − 2rP ∗

K
−m− gM

∗
k1

(k1+P ∗)2 −
β1Z

∗(k2+M∗)
(K2)2 − gP

∗

k1+P ∗ + β1P
∗
Z

∗

(K1)2 −β1P
∗

K2

γM
∗
gk1

(k1+P ∗)2 + β2M
∗
Z

∗

(K2)2
γgP

∗

k1+P ∗ − µ− β2Z
∗
k2+P ∗

(K2)2 −β2M
∗

K2

εZ
∗ β1k2+(β1−β2)M∗

(K2)2 εZ
∗ β2k2+(β2−β1)P ∗

(K2)2 0



where K1 = k1 + P
∗ +M

∗ and K2 = k2 + P
∗ +M

∗

Non-spatial model III: omnivorus copepods having functional re-

sponse with switching

Substituting the KTW functional response to (2.12), we obtain non-spatial

Model III. Semi-trivial steady states are the same as that of non-spatial Model II.

Therefore, we just look non-trivial steady states. For this we cancel some common
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factors (as each equilibrium is assumed positive) as below:

0 = r(1− P
∗

K
)−m− g

k1 + P
∗M

∗ − β1
P
∗

P
∗2 +M

∗2
P
∗ +M

∗

k2 + P
∗ +M

∗Z
∗
,

0 = γ
gP
∗

k1 + P
∗ − µ− β2

M
∗

P
∗2 +M

∗2
P
∗ +M

∗

k2 + P
∗ +M

∗Z
∗
,

0 = ε(β1
P
∗2

P
∗2 +M

∗2
P
∗ +M

∗

k2 + P
∗ +M

∗ + β2
M
∗2

P
∗2 +M

∗2
P
∗ +M

∗

k2 + P
∗ +M

∗ )− δ.

(2.46)

The zeros of the system of Eq (2.46) cannot be found analytically and we numer-
ically solved the corresponding system using Newton’s method via Matlab. We
compute three different roots of the system according to the values of parameters in
Table 2.1, but only one of them is positive: (P ∗,M∗

, Z
∗) = (1.047, 0.044, 61.377)

which is steady state of the system. The elements of the Jacobian matrix are
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below

∂F1

∂P
=r − 2P ∗r

K
−m− gM

∗
k1

(k1 + P
∗)2
− β1Z

∗(2P ∗M∗2

(K3)2
P
∗ +M

∗

K2
+ P

∗2

K3

k2
K2

2
),

∂F1

∂M
=− gP

∗

k1 + P
∗ − β1Z

∗(−2M∗P ∗2

(K3)2
P
∗ +M

∗

K2
+ P

∗2

K3

k2
K2

2
),

∂F1

∂Z
=− β1

P
∗2

K3

P
∗ +M

∗

K2
,

∂F2
∂P

= γM
∗
gk1

(k1 + P
∗)2
− β2Z

∗(−2P ∗M∗2

(K3)2
P
∗ +M

∗

K2
+ M

∗2

K3

k2
K2

2
),

∂F2

∂M
= γgP

∗

k1 + P
∗ − µ− β2Z

∗(2M∗P ∗2

(K3)2
P
∗ +M

∗

K2
+ M

∗2

K3

k2
K2

2
,

∂F2

∂Z
=− β2

M
∗2

K3

P
∗ +M

∗

K2
,

∂F3

∂P
=εZ∗(2β1P

∗
M
∗2 − 2β2P

∗
M
∗2

(K3)2
P
∗ +M

∗

K2
+ β1P

∗2 + β2M
∗2

K3

k2
K2

2
,

∂F3

∂M
=εZ∗(2β2M

∗
P
∗2 − 2β1M

∗
P
∗2

(K3)2
P
∗ +M

∗

K2
+ β1P

∗2 + β2M
∗2

K3

k2
K2

2
,

∂F3

∂Z
=0,

(2.47)

where K2 = k2 + P
∗ + M

∗, K3 = P
∗2 + M

∗2. The eigenvalues of the Jacobian

matrices with regard to the system in (2.47) can be found by being substituted

the non-trivial steady state (P ∗,M∗
, Z
∗):


λ1

λ2

λ3

 =


0.042− 0.178i

0.042 + 0.178i

−0.069

 .

The real part of λ1 and λ2 are positive (R(λ1,2) > 0) which means the steady state

is unstable. We vary the values of r, K, and ε, but there is no stable steady states

in non-spatial model.
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Table 2.4: (P ∗, M∗, Z∗) and λ of steady states for variable values of parameter r and
fixed values of all other parameters in non-spatial Model III.

r (P ∗, M∗
, Z

∗) λ Stability
0.2 - − −
0.3 (0.893, 0.196, 7.832) (−0.042, 0.008± 0.190i) unstable
0.4 (0.943, 0.148, 12.630) (−0.054, 0.017± 0.187i) unstable
0.5 (0.971, 0.120, 17.216) (−0.060, 0.023± 0.185i) unstable
0.8 (1.012, 0.079, 30.613) (−0.066, 0.031± 0.182i) unstable
1 (1.027, 0.064, 39.437) (−0.067, 0.035± 0.181i) unstable
1.5 (1.047, 0.044, 61.378) (−0.069, 0.042± 0.178i) unstable

2.3.2 Model I: single resource food chain in space

In model I, stable coexistence of the three species is possible for the default

parameter values from Table 2.1. The conversion efficiency of copepods εM is a

key parameter determining the system stability and small changing in εM affects

the dynamics of the system. Variation of the average densities of plankton species

are shown in the bifurcation diagrams in Fig 2.2 for variable εM and other all

parameters are fixed (εP = 0.5× εM , actually, there is no influence of εP in Model

I since fP2 = 0 ). The shown diagrams are constructed numerically, by plotting

averaged population densities over the euphotic zone for large time t > 2000 after

the initial transients died out. We set species densities with magnitude smaller

than 10−5 to zero. The lower bound of εM and other critical values of parameters

are found numerically taking into account the cutting threshold of 10−5.

The bifurcation diagrams say that copepods cannot establish in the system

and the phytoplankton density is kept low by microzooplankton grazing at very

small εM (εM < 0.058). The semi logarithmic plot in Fig 2.2(b) shows clearly

that phytoplankton species can survive at low density. The stable semi-trivial

steady state is obtained as (P ∗,M∗
, Z
∗) = (0.4207, 0.9365, 0) where P ∗ and M

∗

are spatially average steady states of phytoplankton and microzooplankton as

in Fig 2.3(a). Lower values of εM than the critical values 0.058 is impotence
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Figure 2.2: (Spatially average densities of phytoplankton (a), microzooplankton (c)
and copepods (d) in Model I plotted against microzooplankton conversion efficiency
to copepods εM . The other parameters are given in table 2.1 (fixed values). In the
case of periodic oscillations, the maximal and the minimal densities are shown in the
figure. The dashed segment on the horizontal axis denotes the range of bistability, where
copepods establishment depends on initial density. Small values of εM leads to death of
all copepods.
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Figure 2.3: As εM is 0.05, the initial densities of species are 1 and the other all
parameter values are as in Table 2.1. (a): Time series of spatially averaged densities
of species in Model I. The average density of Copepods goes zero for small values of
εM . (b): Vertical distribution of phytoplankton and microzooplankton in absence of
copepods. Copepods may go extinct in all three models for small values of εM .

for the densities of phytoplankton and microzooplankton since copepods cannot

survive. The vertical distributions of phytoplankton and microzooplankton are

as in Fig 2.3(b). Phytoplankton density is very low even in the near surface

of water and it doesn’t change much with depth. However, microzooplankton

density is higher than phytoplankton density near surface until around 40 metres.

It decreases with depth and becomes almost zero at base of euphotic zone.
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For higher values of εM than 0.058, the system dynamic depends on initial

value of copepods densities until 0.21. Copepods may also go extinct with low

initial value of copepods density in this ranges of εM. The system dynamic behaves

as in Fig 2.3(a) which is obtained for εM = 0.16 and the initial values of the

copepods density as 1.

Another condition is for large enough initial values of copepods, all plankton

species can coexist for larger εM values than 0.058 which reveals bistability in

the system. The densities of species exhibit temporal oscillations for the values

of εM between 0.058 and 0.25. The oscillations and the limit cycle shown in

Fig 2.4 for εM = 0.16 when initial value of copepods density is 14. The steady

states of average densities of species in these figures are around 50, 0.62 and 13

µgCL−1, respectively. For larger values of εM than 0.25, stable coexistence of all

species become possible. This is shown with the simulation of average densities

of all three trophic levels in Fig 2.5 for εM = 0.4. In this dynamic, the average

densities P , M and Z go to around 87, 0.26 and 18, respectively. The spatial

distributions of phytoplankton and microzooplankton in euphotic zone across the

water column are shown in Fig 2.6 for εM = 0.4 and the values of other parameters

from Table 2.1. One can see from the figure that the local density of the primary

producers may achieve very high values near the surface because of abundant

sunlight and carbon dioxide in surface although the overall system is stabilized.

This signifies an intensive plankton bloom. In this case, microzooplankton can

also find plenty of resources (phytoplankton) for grazing.

In the diagram of Fig 2.2(d), larger values of εM naturally make copepods

density higher. Microzooplankton are consumed much more by copepods with in-

creasing their density, so microzooplankton density decreases. This makes phyto-

plankton density higher as expected. Realistically, conversion efficiency cannot be

1, which means 100% efficiency, but we run theoretically from 0 to 1 to see how it

influences the dynamics of species.
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Figure 2.4: Time series of species (a) shows the temporal oscillations of the average
densities of the species for εM = 0.16 and the initial values are P (h, 1) = 60, M(h, 1) = 1
and Z(1) = 14 in Model I. All the other parameters are as in Table 2.1. The limit cycle
is also presented by phase-space trajectory (b).



Chapter 2. Modelling of spatio-temporal plankton dynamics 48

0 500 1000 1500 2000
days

0

20

40

60

80

100

d
en
si
ti
es

P

Z

(a)

0 500 1000 1500 2000
days

0

5

10

15

20

M

(b)

Figure 2.5: Temporal dynamics of spatially average phytoplankton, microzooplankton
and copepod densities respectively in Model I in terms of εM = 0.4 and the other
parameters are fixed in Table 2.1 .
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Figure 2.6: Vertical distribution of phytoplankton (a) and microzooplankton (b) for
fixed values of parameters and εM = 0.4 in Model I.
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2.3.3 Multiple resource food chain in space

In this section, we examine two models with different feeding habits of the

top predator. They are assumed to be omnivorous, with grazing phytoplankton

in addition to feeding on microzooplankton. There will be competition between

microzooplankton and copepods to graze on phytoplankton associated with this

feeding. This competition may cause extinction of some species or decreasing

of their densities. Copepods grazing on phytoplankton decreases the density of

phytoplankton, thereby, this indirectly affects density of microzooplankton.

Model II: omnivorous copepods with a non-switching functional

response

For Model 2.1 with the functional responses 2.6, the time series of average

densities of species in Fig 2.7(a),(b) shows that phytoplankton and copepods can

survive, but microzooplankton go extinct for the fixed parameter values as in

Table 2.1 and 2εP = εM = 0.7. We see here that the densities of species are much

lower than in the previous model. Especially, the steady state of average density of

phytoplankton decreases to 0.6 µgCL−1 from 70 µgCL−1 and the microzooplankton

density goes zero. Vertical distribution of phytoplankton is also presented by

Fig 2.7(c). It shows each level steady states of phytoplankton. The surface density

of phytoplankton is around 2 µgCL−1 and it decreases to zero with depth. On the

other hand, we ignore vertical distribution of microzooplankton since the density

is too low. The distribution of copepods follows that of only P since there is no

microzooplankton.

Actually, we found that the coexistence of the three trophic levels to be very

restricted. Variation of the copepods conversion efficiency shows that the coexist-

ence of all species is possible only for some very small values of εM . This small

range is shown by the bifurcation diagram in Fig 2.8. Notice that we usually

consider that εP is half of εM . At low εM , copepods cannot get established in the
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Figure 2.7: (a),(b): The average densities of phytoplankton (green line) and micro-
zooplankton (blue line) in (a) and copepods in (b) across 2000 days show that the
intermediate grazer (M) cannot survive in Model II. (c): The vertical distribution of
phytoplankton is with depth of water. The parameters are fixed as in the table 2.1 and
εM = 0.7. The copepods have the functional response with no switching
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system and the primary production is controlled by microzooplankton as Model I

and Fig 2.3(a). The corresponding vertical distributions of the species are shown

in Fig 2.3(b) which is same as Model I.

The model also exhibits a bi-stability (i.e. the coexistence of two stable equi-
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Figure 2.8: Spatially average densities of phytoplankton (a), microzooplankton (b) and
copepods (c) in Model II are plotted against conversion efficiency of microzooplankton
to copepods εM . Diagram (d) is a zoom of diagram (b). εP = 0.5εM and the other all
parameters are given in Table 2.1. The dashed segment on the horizontal axis denotes
the range of bistability, where copepods establishment depends on initial density.
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librium states) in the values of εM between 0.096 and 0.22 depending on the initial

values of species. The range of εM is shown by the thick black dot line in the same

figure. The system exhibits two different dynamical regimes for this interval of

the parameter. One of them is as shown in the bifurcation diagrams for initial

densities of copepods higher than 12. The second dynamical regime is possible

for low initial densities of copepods, e.g. Z0 = 1 µgCL−1. In this case, copepods

cannot survive for the mentioned range of εM. The dynamics of system become

mono-stable for the smaller εM than 0.096.

The coexistence of all three plankton species is possible within only small

range of parameters centred at εM = 0.11 on the interval between 0.094 and

0.12 (see Figs 2.8(b),(d)). Small increase or decrease in the parameter values

will result in the extinction of either microzooplankton or copepods. Notice here

that the initial values of species are also important to obtain coexistence of all

species. To obtain coexistence for all species, we select very small initial values of

microzooplankton as 0.2 and large initial values of copepods as 12. The spatial

average densities of the species over time are shown in Figs 2.9(a),(b) for fixed

parameters and critical values of εM and εP (εM = 0.1 = 2εP ). The figure shows

that the average density of microzooplankton is very low where the coexistence

is possible for all species. The vertical spatial distribution of phytoplankton and

microzooplankton are presented in Figs 2.9(c),(d). The corresponding ideal free

distribution of copepods is presented in Fig 2.9(e).

Larger values of εM than 0.12 results in the extinction of the intermediate

trophic level while the primary producer and the top predator can survive in

the long term (Microzooplankton lose the competition against copepods). Indeed,

there is no influence of εM after dying microzooplankton completely. However, εP is

also variable in the bifurcation diagram since εM = 0.5εP as we mentioned above.

The type of dynamics is the same as in Fig 2.7 for large conversion efficiency

to copepods. The bifurcation diagram demonstrates that increase in εM − εP

supports copepods density and it causes the density of phytoplankton to decrease
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Figure 2.9: Model II analyse for small values of εM such that εM = 0.1 = 2εP . The
other parameter values are fixed in Table 2.1. The average densities of species over time
are shown in (a) and (b). Vertical distribution of phytoplankton and microzooplankton
are shown in (c), (d). (e) shows the relative distribution of copepods.

for εM > 0.12.

On the other hand, a particular interesting feature here is in the vertical profile

of microzooplankton, with a maximum density at h = 18m in Fig 2.9(d), whereas

the density of phytoplankton decreases monotonously with depth in Fig 2.9(c).

This is because copepods density (predator and competitor for microzooplankton)

is very high in near the surface due to high concentration of phytoplankton. The
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vertical distribution followed by copepods is in Fig 2.9(e). The grazing pressure by

copepods decreases with depth by decreasing in their own density due to decrease

in phytoplankton density. Thus, microzooplankton can survive a little bit deep of

water. Secondly, phytoplankton (resource of microzooplankton) don’t exist much

in deep of water. Therefore, microzooplankton find more appropriate condition at

some intermediate sea level instead of surface or deep of water.

To verify that omnivorous top predator largely hinders the coexistence of all

species in the given tri-trophic food web, we have constructed a set of bifurcation

diagrams in respect to variable copepods grazing (β1) and predation (β2) coefficient

in the range between 0.6 and 1.4 for both parametes. The diagrams have been

constructed for εM = 0.1, 0.12, 0.14, 0.2 and εP = εM/2 in Fig 2.10.

One can see that the coexistence of all species in the given tri-trophic levels

(denoted by green circle in Fig 2.10) is only possible within a rather narrow do-

main in the (β1, β2) plane. Otherwise, a small fluctuation in parameters would

eventually result in extinction of a trophic level, either the intermediate or the top

predator. According to those diagrams, copepods predation efficiency is inversely

proportional to copepods predation rate to obtain coexistence. If both paramet-

ers increase, then the density of copepods increases faster. Conversely, copepods

cannot survive for both parameters is low. For larger values of εM than 0.24,

microozoplankton die out for any condition.
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Figure 2.10: Bifurcation diagrams in the β1 - β2 plane show the outcome of inter-
action between the trophic levels for values εM = 0.1, 0.12, 0.14 and 0.2 respectively.
εP = 0.5εM and the other all parameters are fixed in Table 2.1. Different coexistences are
shown by different symbols. Green circles shows the coexistence of all species. Crosses
correspond to the coexistence of phytoplankton and copepods, with microzooplankton
being extinct. Red squares denote the coexistence of phytoplankton and microzooplank-
ton, with copepods being extinct.
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Model III: omnivorous copepods with a functional response with

switching

In Model III, the coexistence of all three trophic levels is restored where the

copepods are omnivorous with active prey switching. According to the fixed val-

ues of parameters in Table 2.1 and εM = 0.7 (εP = 0.5εM), the spatially average

densities of species and phase-space trajectory are shown in Fig 2.11. The traject-
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Figure 2.11: (a),(b) and (c) show the average densities of phytoplankton, microzo-
oplankton and copepods across 2000 days in Model III, respectively. (d) shows phase-
space trajectory of average densities. Coexistence of the all species is possible with the
fixed parameters in Table 2.1 and εM = 0.7.
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ory goes the spatially average steady state (0.476, 0.033, 13.336) in Fig 2.11(d).

High initial values of copepods makes the densities of the other two species almost

zero for around 500 days. Then, they rise and keep the same stationary states as

above. The vertical distribution of primary producer shows us in Fig 2.12 that

phytoplankton densities are interestingly much lower near the surface as compared

to Model I since copepods graze on them in addition to microzooplankton.
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Figure 2.12: Vertical distribution of phytoplankton and microzooplankton densities in
Model III are shown for εM = 0.7 = 2εP and the other parameters as given by the fixed
parameters in Table 2.1.

A Typical bifurcation diagram is shown in Fig 2.13 for variable εM where

εP = 0.5εM . Copepods go extinct for the smaller values of εM than 0.17 while

phytoplankton and microzooplankton are able to stably coexist. In that case, we

obtain the same vertical distribution with no copepods dynamics in Fig 2.3(b) of

the previous model.

In the case where εM is large enough (εM > 0.17), it allows the copepods

to survive and the coexistence for all species becomes possible in a stable mode.

There is no oscillation for any values of εM . Copepods show logarithmic growth

whereas phytoplankton and microzooplankton decrease exponentially in increase
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Figure 2.13: Spatially average densities of phytoplankton, microzooplankton and cope-
pods for Model III are respectively plotted against the copepods conversion efficiency
εM (εP = 0.5εM ) for the fixed parameters in Table 2.1. The dashed segment on the
horizontal axis denotes the range of bistability, where copepods establishment depends
on initial density.
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εM values starting with 0.17 to 1 in the diagram. In addition to this, the system

has the bi-stabilities which is shown by the black thick line on the horizontal axis

of the bifurcation diagram. This says that two distinct dynamics are obtained

with the same parameter values by different initial values of species.

Our extensive numerical simulations show that stable coexistence of all species

is observed within a wide range of parameters. In particular, variation of (β1, β2)

within the same ranges as in Fig 2.10 will not result in extinction of any of the

trophic level which is showed with bifurcation diagrams in Fig 2.14. It can be seen

that increasing copepods grazing rate (β1) causes to decrease the average densities

of the species. On the other hand, increasing copepods predation rate leads to

increase of the average densities of phytoplankton and copepods while decrease of

the microzooplankton average density.

Similarly, we also explored the effect of the key parameters in Model III on

the equilibrium species densities. The average densities of species P , M , and Z

on the parameters δ, φ and ω, which are the mortality rate of copepods, the water

absorption coefficient and the self-shading coefficient, respectively in Fig 2.15. A

gradual increase of δ (due to predation by fish, for instance) would weaken the

copepods and decreased their density. Thus, the densities of the two lower level

species will increase. For the critical values of δ (δ = 0.03), copepods cannot

survive and the model becomes two speices system consisting of the primary pro-

ducer and intermediate grazer as in Fig 2.3(b). On the other hand, an increase of

water absorption rate (e.g. due to turbidity of water) or the self shading coeffi-

cient depending on plankton position would result in decreases of the densities of

the primary producers. Correspondingly, the densities of microzooplankton and

copepods drop. A gradual increase of φ and ω decrease the average densities of

all species. This behaviour can be explained by the fact that an increase in wa-

ter absorption or the densities of total species results in a drop of the density

of the primary producer, which in turn results in a drop of the density of top

predator. Due to a decrease of the trophic pressure exserted by the copepods and
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Figure 2.14: The diagrams show the space averaged densities of species for β1 between
0.6 and 1.4 constructed for different β2 =0.6, 1, 1.4. All the other parameters are fixed
as in Table 2.1.
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Figure 2.15: Bifurcation diagrams showing the average densities of species in Model
III as functions of key parametes: (a): δ between between 0.01 and 0.05, (b): φ between
0.005 and 0.15, (c): ω between 0 and 0.01. The other parameters are fixed as indicated
in Table 2.1.
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microzooplankton.

2.3.4 Comparison between the functional responses in the

spatial model I, II and III

The question of why a particular copepods genera follows a particular type

of functional response is fundamental to zooplankton ecology, with several differ-

ent approaches proposed. For instance, based on the generic principles of evolu-

tion theory, one can suggest that the current functional responses are the result

of long term natural selection. For instance, a functional response with active

switching could be more beneficial for the entire population of copepods than a

simple Monod-like (Holling type II) response, and the individuals using the more

efficient response should over-compete the other copepod individuals. In this sec-

tion, we try to gain some preliminary insight into this complicated problem by

modelling the outcome of the competition between two copepods species having

different types of functional response. That is, we considered the main tri-trophic

model (2.1), where copepods population Z consists of two subpopulations Zi, Zj

with different functional responses. We considered the three following combina-

tions:(i) Z1 is non-omnivorous and Z2 is omnivorous with a non-switching func-

tional response; (ii) Z1 is non-omnivorous and Z3 is omnivorous having a functional

response with switching; (iii) Z2 is omnivorous with a non-switching functional re-

sponse and Z3 is omnivorous having a functional response with switching. In each

case, we assumed the same half saturation constants and the maximum consump-

tion rates for the functional responses of both subpopulations of copepods.

Numerical simulations in Fig 2.16 show the following competition outcomes.

Populations of omnivorous copepods (with or without active switching) always

over-compete the population with a single source functional response. Thus, to

have a supplementary food source seems to be beneficial for copepods. On the

other hand, competition between omnivorous copepods with and without active

switching results in the coexistence of both populations. This occurs mainly be-
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Figure 2.16: The same tri-trophic model 2.1, where the top predator population Z
consists of two subpopulations with different functional responses such that Z1 is carni-
vorous, Z2 is omnivorous with a non-switching functional response and Z3 is omnivorous
with having a functional response with switching. Competition between the top pred-
ators shows between Z1 and Z2 in (a,b); Z1 and Z3 in (c,d); Z2 and Z3 in (e,f) across
the time.
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cause intensive grazing by the subpopulation with the non switching functional

response eradicates the intermediate trophic level (microzooplankton) and the

resultant system becomes a two-level one. In the case where the maximal con-

sumption rates are different, the winner will be the subpopulation of the copepods

having the largest β1 and β2. Thus, our preliminary results indicate that a func-

tional response either with or without switching may be selected. Note that in our

simple competition analysis we neglected any potential cost of active switching,

and morphological aspects which may not allow certain species to use different

strategies. A more thorough analysis should be done elsewhere.
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2.4 Summary for chapter 2

Plankton communities possess a very rich and complicated population dy-

namics which is reflected in the corresponding mathematical models. There exists

a large number of publications to solve the paradox of enrichment [99]. The main

idea is that the original predator prey model presented by Rosenzweig was too

simple and it should be improved by more realistic and adequate features as spa-

tial dimension or/and complicated trophic structure. Here we contribute to the

solution of the enrichment paradox.

In this chapter, we revisited the dynamics of a generic tri-trophic plankton

model in eutrophic environment. The aim of this chapter was to show the import-

ance of the functional response parameterisation in heteregeneous environment for

the plankton dynamics which includes omnivorous copepods. We pay attention

to the light gradient for the primary producers with self-shading. Also we con-

sider highly mobile copepods in the vertical direction. Another key point of this

chapter is the copepods feeding habits which might be carnivorous (only feeding

on microzooplankton) or omnivorous (consuming both intermediate grazers and

primary producers).

Our results show that stable coexistence of all species is impossible in a well-

mixed system for all three types of functional response parameterisations. This

demonstrates that heterogeneity of space is imperative for a successful top-down

control and stabilization of the system. However, the spatial model is still not

enough for the coexistence for all species including omnivorous top predator. This

is proven with Model II which result in one of the grazers (copepods or microzo-

oplankton) dying out. We obtained a stable coexistence for only small range of

some parameter values, which are unrealistic (see Fig 2.8 and Fig 2.10). In the

case, where copepods are not omnivorous but only feed on microzooplankton, the

average steady states of species in the system may exhibit oscillations for some

values of parameters Fig 2.5. Also, vertical distributions of lower population levels
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show that phytoplankton bloom occurs near the surface (see Fig 2.6).

One of the main findings of this chapter is that the functional response with

active switching can provide coexistence of all species in the model in Figs 2.12,

2.11 whereas a Holling type II functional result cannot guarantee such a coex-

istence. Our results are broadly consistent with empirical observations and this

contributes to solving the paradox of enrichment in the plankton system. The

coexistence is observed for large parameters ranges but phytoplankton density re-

main low in Fig 2.13, Fig 2.14 and Fig 2.15. We also found bi-stability for some

values of copepods efficiency εM,P , which has not be found earlier. According

to this, copepods can survive (for a sufficiently large initial density of copepods)

or die out depending on initial values of the densities (see Fig 2.2, Fig 2.8 and

Fig 2.13).



Chapter 3

Modelling seasonal dynamics of

bacteria-phage interactions with a

temperature-dependent lysogeny

3.1 Introduction

Here, we build and explore two non-spatial conceptual mathematical mod-

els (ODEs and DDEs based) to describe and predict daily and seasonal dynam-

ics of the size and composition of B. pseudomallei population controlled by its

temperature-dependent phages. The models are suggested to mimic host-parasite

interactions in the surface water at the top of a typical rice field in South-eastern

countries. The practical importance of our modelling follows from the fact that

the pathogenic bacteria B. pseudomallei causes a severe disease Melioidosis result-

ing in a high human mortality: it is thus important to be able to understand the

factors controlling the disease and to make some predictions regarding its seasonal

dynamics. The parameters for the models are taken from either the experimental

researches or from relevant scientific publications which are cited in the text. As

a particular ecological case study, we consider seasonal bacteria dynamics in two

67
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endemic regions of Thailand (Sa Kaeo and Nakhon) by using the historic data on

temperature variation and intensity of solar ultraviolet radiation. Our simulation

results using both models are in agreement with higher risk of melioidosis acquisi-

tion during the “warm and wet” season reported in Southeast Asia [7]. We explore

the dependence of bacteria-phage dynamics on the key model parameters such as

the carrying capacity of the environment (quantifying the degree of eutrophica-

tion), the phage burst size and the binding rate of phages to be able to explain

the observed difference in the disease acquisition rate for different environmental

conditions. Our study emphasizes the role of the interplay between the variation

of temperature and UV radiation on the seasonal patterns of bacterial numbers.

A version of this chapter has been submitted in ”Scientific Reports” with the

title ”Temperature-dependent virus lifecycle choices may reveal and predict facets

of the biology of opportunistic pathogenic bacteria”.



Notations related to chapter 3

t Time
T Temperature (◦C)
u Ultraviolet index
S(t) Density of susceptible bacteria at time t
I1(t) Density of infected bacteria in lysogenic cyle at time t
I2(t) Density of infected bacteria in lytic cyle at time t
N(t) Total density of bacteria at time t
P (t) Density of bacteriophage at time t
C Carrying capacity
α(T ) Growth rate of susceptible bacteria at temperature T
α(T ) Growth rate of lysogenic bacteria at temperature T
αmax Maximum intrinsic birth rate of bacteria
λ1(T ) Lysogenic process rate to lytic cycle at temperature T
λ1max Maximum lysogenic process rate (transition rate from lysogenic cycle to

lytic cycle)
λ2 Lysis (bacteria death) constant
K Phage adsorption rate
KS Effective per bacteria contact rate
ε Adsorption efficiency
K1(T ) Transition rate from susceptible to lysogenic cycle at temperature T
K2(T ) Transition rate from susceptible to lytic cyle at temperature T
T0 Optimum temperature for growth and lysis (◦C)
T1 Optimum transition temperature (◦C)
µ(u) Mortality rate at UV index u
b Burst size of phages
τ Constant delay time

Units
◦C The degree celsius
ml Millilitre

Abbreviation
Fig Figure
Eq Equation
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3.2 The model

In previous mathematical models of the bacteria-phage interaction the main

focus was mostly on the lytic type of infection, where penetration of a phage into

the bacterial cell would signify an eventual lysis (breaking down of the membrane

of a bacterium) and cell death. Moreover, the model parameters were assumed

to be constant. In our model we consider the possibility in existence of lytic or

lysogenic (the adsorbed phages do not immediately lyse the infected bacteria since

they need time for replication) outcome of infection which is determined by the

ambient temperature. In other words, there can be either lysogenic or lytic cycles

in our model and the temperature is crucial to determine the transitions from

susceptible to lysogenic or lytic cycles (Fig 3.1).

We model bacteria-phage interactions in the stagnant water of an agricultural

Figure 3.1: Schematic diagram explaining the bacteria-bacteriophage interactions
given by Models I and II. The system consists of four compartments: Susceptible
bacteria (S), infected bacteria in lysogenic (I1) and lytic (I2) state and the free bac-
teriophages (P ). Arrows show loses in some compartments or transitions between com-
partments. The function denoted by dτ in the figure is given by dτ = K2(T (t− τ))S(t−
τ)P (t− τ)− λ1(T (t− τ))I1(t− τ)
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land. We consider the spatially homogeneous environment (for simplicity ignoring

bacteria in the soil). The phage-bacteria interaction with two possible infection

cycles consists of four main compartments: phage-free bacteria (S) which are

healthy but susceptible to phage, infected bacteria through the lysogenic (I1) or

the lytic (I2) cycles as well as free phage (P ). The total density of the host bacterial

population is denoted by N = S + I1 + I2.

The flowchart to illustrate the model is shown in Fig 3.1 for both approaches

in terms of reproduction of phages by lysing bacteria. The first one is based on the

ordinary differential equations framework where the bacterial cell disintegration

is expressed by the multiplication of the lysing coefficient λ2 and the number of

infected bacteria in lytic cycle with the term λ2I2 in the equation of I2 [4, 105, 54].

The number of newly released free phages can be calculated by multiplying the

lysis term λ2I2 and the average burst size b which gives bλ2I2. The overall model

equations are

dS(t)
dt

= α(T (t))S(t)
[
1− N(t)

C

]
−KSS(t)P (t),

dI1(t)
dt

= α(T (t))I1(t)
[
1− N(t)

C

]
+K1(T (t))S(t)P (t)− λ1(T (t))I1(t),

dI2(t)
dt

= K2(T (t))S(t)P (t) + λ1(T (t))I1(t)− λ2I2(t),

dP (t)
dt

= −KN(t)P (t)− µ(u(t))P (t) + bλ2I2(t).

(3.1)

where α and α are growth rates of susceptible and lysogenic bacteria; C is carrying

capacity of total bacteria; K is phage adsorption rate; KS is effective per bacteria

contact rate; K1 and K2 are transition rate from susceptible to lysogenic and lytic

cycle, respectively; λ1 is transition rate from lysogenic to lytic cycle; and µ is

mortality rate of phages.

The growth of susceptible phage-free bacteria is described by a standard lo-

gistic function parameterisation [55], where α(T ) is the maximal per capita growth

rate and C is the carrying capacity of the environment. This gives the maximal
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possible number of bacteria which the environment can sustain. This number gives

the maximal possible number of bacteria which the environment can sustain. We

assume that the carrying capacity for a given area is constant and accounts for

all other (non-phage) factors affecting B. pseudomallei existence (i.e. the growth

rate and phage non-related mortality) in the environment.

Infection of susceptible bacteria results in lysogeny at low temperatures. This

means the transition from S to I2. At low temperatures, the growth rates of

both lysogenic (α(T )) and susceptible bacteria are considered to be logistic with

the same carrying capacity. However, it is different for high temperatures due to

transition from the lysogenic to the lytic cycle (for details see the next section).

The infection of susceptible bacteria lyses (the bacterial cell are killed by

bursting) at high temperatures. Thus, the cells firstly become infected in the lytic

cycle and then eventually results in cell lysis and death. This is shown by the

transition from S to I2 in Fig 3.1. Moreover, an increase in temperature would

interrupt the normal lysogenic cycle of I1 and the infection becomes lytic: this

is described by transition from I1 to I2 and it is mathematically modelled by the

term λ1(T )I1. The term KNP describes phage binding to not only susceptible

but also infected bacteria. This causes the density of phages to decrease since

each adsorbed phages will die. Note that adsorption of phages to already infected

bacteria results in a loss of phage. Also, the phages experience natural mortality

due to various reasons which is expressed with the term µP . The density P

increases due to release of new b phages at the lysis; where b is known as the

burst size. The mortality rate of bacteriophages (µ) strongly depends on solar

ultraviolet radiation (UVR) exposure; this quantity is denoted by u.

The probability of adsorption of a single phage to a single bacterium is propor-

tional to K but not all of the adsorbed phages are successful in infecting bacteria.

This might be because of two reasons. The first is that, for a multiple infection

of a bacterium by several phages, only one of them (the first one) will be suc-

cessful. The other is that bacteria can become resistant to phages by modifying
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themselves. Therefore, the efficient adsorption rate (or viral infection rate) can be

expressed with by KS = εKP and the infection of susceptible bacteria is calculated

by the term ”−KSSP” in the first equation of (3.1). We call the above system of

ODEs Model I.

The other method of modelling bacterial lysis and viral replications is based

on delay differential equations (DDEs) which we refer to as Model II in this

chapter. The delayed-based approach is somewhat more frequent in the literature

as compared to the ODEs based modelling approach [5, 39, 108, 14, 54] [3, 31, 94,

10, 44]. The equations of Model II read as follows

dS(t)
dt

=α(T (t))S(t)
[
1− N(t)

C

]
−KSS(t)P (t),

dI1(t)
dt

=α(T (t))I1(t)
[
1− N(t)

C

]
+K1(T (t))S(t)P (t)− λ1(T (t))I1(t),

dI2(t)
dt

=K2(T (t))S(t)P (t) + λ1(T (t))I1(t)− dτ ,

dP (t)
dt

=−KN(t)P (t)− µ(u(t))P (t) + bdτ ,

(3.2)

where dτ = K2(T (t−τ))S(t−τ)P (t−τ)+λ1(T (t−τ))I1(t−τ) is the delay terms in

the third and the last equations and τ is delay time (between infection and lysis).

In the equation for I2 , the delay term K2(T (t − τ))S(t − τ)P (t − τ) says that

those bacterial cells which were infected τ minutes ago are experiencing lysis at

the current moment of time. In the same concerns, the term λ1(T (t− τ))I1(t− τ)

describes the lysis of those former lysogenic cells I1 which were converted to the

lytic cycle τ minutes ago due to an increase of the ambient temperature. In the

equation for P , the mentioned above terms are multiplied by the burst size b to

give the number of released free phages.

Using each of Models I and II has its advantages and disadvantages for mod-

elling bacteria-phage interaction (for example, the replication time τ may be vari-

able). Thus, in this study we will explore both models. Note also one can make the

above models of bacteria-phage interaction more complicated to make them more
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biologically realistic. For instance, the phages attached to the susceptible bacteria

are often released after non-fixed lysis time depending on some factors such as

temperature. However, here we intentionally prefer to keep our models of tem-

perature dependent lysogeny as simple as possible (e.g. assuming constant lysis

time) to be able to understand the generic behaviour of such systems including

the dependence of the dynamics on key parameters.

3.2.1 Model parameterisation

Most parameters used in our models were obtained either from the original

experimental data [19] or the relevant experimental literature sources. The para-

meters describing bacteria-phage interactions are generally temperature dependent

but we assume that some of the parameters are constant or independent on tem-

perature. We suppose that only two processes would be temperature dependent

which are bacterial (susceptible and lysogenic bacteria) growth rates and the type

of infection (lysogenic or lytic), including the transition from the lysogenic to the

lytic cycle. The temperature dependence of the bacterial growth rate of suscept-

ible B. pseudomallei has been evaluated using experimental results of Chen et al

(2003) [18]. They presented the growth constant of 12 different strains of the bac-

teria at temperature 4, 22, 25, 30, 37, 42, 45 ◦C. We fitted the average values of

growth rate using 7 different strains from the mentioned paper to exclude negative

values by using the non-linear regression techniques from GraphPad Prism1 based

on minimisation of the sum of the squares. We find that the resulting temper-

ature dependence of α(T ) can be well approximated by a Gaussian function (see

Fig 3.2(a) and the average experimental growth rates at each temperature are

shown by dots):

α(T ) = exp
(
− (T − T0)2

2σ2

)
αmax. (3.3)

1Scientific 2D graphing and statistics software [1]



Chapter 3. Bacteria-phage interaction in a non-spatial model 75

0 10 20 30 40 50

Temperature (° C)

0

5

10

15

20

25

gr
ow

th
 r

at
e 

pe
r 

da
y

(a)

20 25 30 35 40 45

Temperature (° C)

0

1

2

3

4

Ph
ag

e 
de

ns
ity

×1010

(b)

0 5 10 15 20 25 30
time (min)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

lo
g(

P
0/P

)

(c)

Figure 3.2: Experimental estimation of the key model parameters. (a) Dependence
of the growth rate of B. pseudomallei on temperature. (b) Bacteria-phage interactions
depending on temperature. Appearance of a large number of phages at approximately
34 ◦C signifies a switch between lysogenic and lytic infection types; (c) Binding of phages
to bacterial cells. The graph shows the natural log of the ratio of the initial number of
free phages and the density of phages at time t. For each experiment, fitting of curves
was done using the GraphPad Prism software. For details, see the main text.
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Our non-linear regression fitting using the GraphPad Prism software gives the

following estimates of the parameters: σ = 9.1 ± 2.3 ◦C; T0 = 38.22 ± 2.4 ◦C;

αmax = 23±2.5 day−1. Thus the maximal bacterial growth occurs at about 38 ◦C.

The per capita growth rate of lysogenic bacteria is considered to be given by

the following function

α(T ) = α(T )
[
1− T n

T n1 + T n

]
= αmax exp

(
− (T − T0)2

2σ2

)[
1− T n

T n1 + T n

]
. (3.4)

According to this expression, the growth rate of lysogenic bacteria at low temper-

atures is the same as that of susceptible bacteria, whereas the normal cell division

of I1 stops and bacteria become lytic at higher temperatures as in Fig 3.3(b). The
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Figure 3.3: (a) shows transition rates from suceptible bacteria to lysogenic and to
lytic cycles depending on temperatures as in Eq 3.5, Eq 3.6. (b) presents growth rates
of susceptible and lysogenic bacteria and transition rate from lysonec cycle to lytic cycle.

switch between lysogenic and lytic infection scenarios occurs at the critical tem-

perature T1. We consider that the switching process can be described via a sharp

S-shape curve T n1 /(T n1 + T n) which - for a large parameter n - is close to zero for

T < T1 and close to one for T > T1.

The use of the S-shaped curve to describe the lysogenic-lytic switch is con-

firmed by experimental results [19] presented in Fig 3.2(b). The graph shows
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Table 3.1: Definitions, units, ranges and the fixed values of constant Parameters

Symbol Meaning Unit Range
Default

Value

αmax maximum growth rate of bacteria day−1 19− 27 23 [18]

C bacteria carrying capacity ml−1 − 2× 106

K phage adsorption rate ml−1day−1 − 1× 10−7

ε adsorption efficiency − − 0.3

λ1max maximum lysogenic process rate day−1 19.1− 27.2 23 [18]

λ2 constant lysis rate day−1 − 20 [18]

b burst size of phages − 158± 54 100 [34]

T0
Optimum temperature for growth

and lysis
◦C 35.6− 50.6 38.2 [18]

T1 optimum transition temperature ◦C 34.81− 34.84 34.8

σ standard deviation of growth rate ◦C 6.7− 17.4 9.1

u ultraviolet index − 8− 12 −

µc constant mortality rate with UV day−1 − 0.1

n transition width − 53.7− 56.3 55

the density of free phages after infecting bacterial culture of B. pseudomallei de-

pending on the ambient temperature. One can see that the number of phages

is extremely low for 25 ◦C < T < 32 ◦C which signifies the infection resulting

in lysogeny. For higher temperatures T > 34 ◦C, the viral infection becomes

lytic and it results in a substantial increase of phage reproduction. Our model

fitting of the S-shaped curve gives the following estimates for the parameters

T1 = 34.8± 0.02 ◦C and n = 54± 1. Thus the switch between lysogenic and lytic

infections occurs at approximately 35 ◦C, which is an important biological result

for temperature-dependent lysogeny of B. pseudomallei. Also, the figure shows

that the temperature-dependent lysogeny is a gradual process, i.e. at T = T1

approximately 50% bacteria are lysogenic and 50% still follow the lytic cycle. Us-

ing this experimental result, we can parameterise the dependence of the phage
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adsorption constant on the temperature as

K1(T ) = (1− T n

T n1 + T n
)KS, (3.5)

K2(T ) = T n

T n1 + T n
KS, (3.6)

where KS is the phage adsorption constant, which we assume to be temperature

independent. Note that the sum of K1 and K2 equals KS. Using the same tem-

perature dependence for the switch rate λ1 between lysogenic and lytic state we

obtain

λ1(T ) = T n

T n1 + T n
λ1max, (3.7)

where the maximal transition rate λ1max is assumed to be equal to the maximal

growth rate of the susceptible bacteria. All temperature dependent parameter

functions are shown in Fig 3.3.

The overall adsorption rate K of phages was estimated from another unpub-

lished experiment [19] which is represented in Fig 3.2(c). This figure shows the

natural logarithmic ratio between the initial number of phages at the start of

the experiment and the number of phages at time t. Then we can calculate the

adsorption rate of phages to bacteria by the rate of its change as

dP

dt
= −KNP ⇒ ln ( P

P0
) = −KNt,

where N = N0 = 1.5 × 108 and ln (P0/P (t1)) = 1.05; P0 is initial values of

the density of phages and t1 is 30 minutes or 30/(60 × 24) day according to the
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experimental diagram in Fig 3.2(c). Thus, K can be calculated as follow:

K =− 1
N0t1

ln (P (t1)
P0

) ml
minute

=− 60× 24
N0t1

ln (P (t1)
P0

) ml
day

= 3.36× 10−7 ml day−1.

The fitting of the points with a straight line gives K = (33.6±5.7)×10−8 ml day−1.

This value is within the reported values from the literature; however, since other

sources report a wide range of K, we will vary its value to reveal dependence of

model outcome on this parameter. The efficient adsorption rate or viral infection

rate is calculated by KS = εK where the phage infection efficiency coefficient ε is

not well known, here we assume it to vary within 0.2− 0.6.

The other model parameters are taken from the literature. In particular,

the burst size of phage b is estimated to vary in range of 100 and 212 [34]. We

consider it to be temperature-independent. The value of carrying capacity C of

B. pseudomallei in rice fields is not well known since different sources provide

different estimates [113, 120, 93]. It is also likely that C highly varies from field to

field since it largely depend on pH, iron concentration, fertilisers, carbon/nitrogen

ratio, etc [120]. In this chapter, we explore a wide range of C to be able to model

nutrient poor and nutrient rich environment and the effect of fertilises even though

we consider the default value of C = 2×106 cell/ml, which is located in the middle

of the reported values. The lysis rate of bacteria λ2 in Model I is assumed to be

constant. Since the average latent period of infection is approximately τ = 50 min

[34], we may assume that averagely 50% of lytic bacteria die in 50 minutes after

infection. Therefore, λ2 can be estimated by the rate of change of I2 as

dI2

dt
= −λ2I2 ⇒ ln ( I2(t)

I2(0)) = −λ2t (3.8)
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where for t1 = 50 minutes I2(t1)
I2(0) = 1/2 and so λ2 becomes

λ2 =− ln(1/2)
50 = 0.0139 min−1

= 0.0139× 60× 24 = 20.0160 day−1. (3.9)

The mortality of free phages µ is a key parameter of the model. Such mortality

can be caused by exposure to ultraviolet (UV) solar radiation [106], adsorption to

particles other than bacterial cells, consumption by flagellates or amoebas [111]. In

particular, we examined the interaction on the surface of water so they are directly

exposed to sun radiation. It is reported that phages suffer 90−95% mortality over

a day due to exposure to sun radiation in summer and 50% mortality in winter

[106]. The mortality rate in day can be found through the following equation:

dP

dt
= −µP,

⇒ P (t) = P0 exp (−µt)

where P0 = P (0). We assume that duration of the UV radiation exposure is

t1 = 12 hours = 1/2 day,

⇒ µ = − ln
(P (t1)
P0

) 1
t1

P (t1)/P0 = 5/100 = 1/20 for 95% of death in phages; and P/P (0) = 50/100 = 1/2

for 50% of death in phages. Therefore, mortality rate of phages µ is between 1.39

day−1 and 5.99 day−1 in day time due to the influence of UV. We assume that in

Thailand the summer time corresponds to the UV index equal u = 12 whereas the

winter time would correspond to u = 8. This is actually in good agreement with

the historical data (see Fig 3.4). In this chapter, we consider the phage mortality

to be given by

µ(u) =


µc + Y0 exp (ku) in day

µc at night
(3.10)
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(a)

(b)

Figure 3.4: (a) Nakhon Phanom and (b) Sa Kaeo UV index history in 2015 is from
the website ”www.weatheronline.co.uk”

where µc is the background (light-independent) mortality; u is the ultraviolet

(UV) index value which varies from 0 (minimum and especially at night) to 12

(maximum exposure) [30]. As we see that the mortality rate of phages is exponen-

tially proportional to the variable u (Fig 3.5). Thus, we can estimate the values

of Y0 = 0.073 day−1 and k = 0.367 by neglecting the background mortality in

experiments of [106].

The background mortality parameter µc is extremely hard to estimate (e.g.

it may depend on the abundance of flagellates), so we consider the default value

of µc = 0.1 day−1. We also vary this parameter to check the sensitivity of model
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Figure 3.5: Black star signs show the values of mortality related to variable u such
that µ(u = 0) = 0, µ(u = 8) = 1.39 and µ(u = 12) = 5.99 while the exponential function
is the estimation of this values.

predictions to µc. In this chapter, we apply modelling to describe bacteria-phages

interactions in two important provinces of Thailand: Nakhon Phanom and Sa

Kaeo, and we use the average historical data on UV radiation from the weather

website 2. Variation of UV index across the year in the considered areas is shown

in Fig 3.4. We take monthly average of UV index and use interpolation to describe

UV variation each day of the year. We also take into account the variation of the

length of day time and night across the year to calculate the exposure of phages

to UV. For this purpose we use sunset-sunrise time reports from the website3.

Finally, we consider daily and seasonal variation of temperatures in the men-

tioned provinces of Nakhon Phanom and Sa Kaeo in Thailand to parameterise

Models I and II. Using the information on historical temperatures from the web-

site4, we computed the 4 years average (2013 − 2016) of the mean monthly air

temperatures. To obtain the highest surface temperature, we multiply the max-

imal temperatures by an empirical coefficient η = 1.15 (it is assumed between 1

and 1.3 [46]) which allows to provide realistic surface temperatures. The temper-
2www.weatheronline.co.uk: enter city name, history, UV index respectively
3www.sunrise-and-sunset.com
4www.worldweatheronline.com
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ature variation across the year is found by piecewise cubic spline interpolation of

monthly average values for two provinces (see Fig 3.6(a)). The daily temperat-
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Figure 3.6: (a) Seasonal variation of the maximal and minimal surface temperatures
in two endemic provinces in Thailand: Nakhon Phanom and Sa Kaeo. (b): Hourly
temperature values within day of April 1st (2016). for the same provinces in Thailand.
The temperatures are averaged over 4 years: 2013-2016. The data is obtained from the
website www.worldweatheronline.com.

ure variation for each day was approximated using the minimal and the maximal

temperatures in Fig 3.6(a) and shape temperature variation at the start of each

month (for the other days of the month the shape of the temperature variation

was considered to be the same). An example of daily temperature variation on 1st

April is shown in Fig 3.6(b) for both Sa Kaeo and Nakhon; one can see the shapes

of the curves are close to each other.

We used 4th order explicit Runge-Kutta (RK4) method to simulate the system

of ODEs in Model I. We used the second order finite difference method with a

smaller step size to simulate the delay differential equations (DDEs) in Model

II [77]. Some results have been checked using a more advanced Runge-Kutta

method of order 4 in the delay terms. Applying RK4 to a system of DDE is more

complicated. We need to find for this method the midpoints of each two grids.

Let us consider a simple example:

y′ = f(t, y, z), y(t0) = y0, z(t) = y(t− τ)
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where τ is the delay. Then the RK4 method with delay becomes

K1 = f(tn, yn, zn);

K2 = f(tn + ∆t/2, yn + 0.5 ∗∆t ∗K1, zn+1/2);

K3 = f(tn + ∆t/2, yn +K2 ∗∆t/2, zn+1/2);

K4 = f(tn + ∆t, yn +K3 ∗∆t, zn+1);

yn+1 = yn + ∆t/6 ∗ (K1 + 2 ∗K2 + 2 ∗K3 +K4);

zn+a+1 = yn+1;

tn+1 = tn + ∆t

where a is the step size in delay as τ/∆t and zn+1/2 is a midpoint between zn and

zn+1. We compute this midpoints with higher degree polynomial interpolation.

The summary of model parameters as well using Lagrangian polynomial interpol-

ation. To check the numerical accuracy of the results, we ran our simulations for

smaller time steps ( 1/5th of the basic time step) and compared the simulation

results for the different time steps (which remained close to each other). The sum-

mary of model parameters as well their values are provided in Table 3.1. The unit

of the densities of bacteria and phages are taken as cell/ml.

3.3 Modelling results

A typical pattern of population dynamics of bacteria-phage interactions across

the year is shown in Fig 3.7. First year simulations are removed to get rid of tran-

sient dynamics and come closely to model attractors. The curves in the figure are

based on Model I and are constructed for the temperature and UV variation cor-

responding to Nakhon Phanom province. The seasonal variations of the densities

of free phages and susceptible bacteria are shown in addition to those of infected

bacteria. The phage density decreases during the period of warm days between

March and September and it is higher in winter days. On the contrary, the number

of susceptible bacteria is dangerously high level in spring and summer.
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Figure 3.7: Seasonal and daily dynamics of the bacteria-phage system predicted by
Model I for the temperature and solar radiation records corresponding to the Nakhon
Phanom province. (a) Seasonal variation of free phage density (CFU/ml). (b) Seasonal
variation of phage-free bacteria (blue curve), lysogenic bacteria (red curve) and bacteria
in the lytic state (green curve). The model parameters are taken from Table 3.1 as
default values.

Interestingly, the density of infected bacteria in lytic cycle I2 does not much

change with seasonal variations throughout the whole year. This is possible be-

cause of the ranges of daily temperature variations. Each day in Thailand, the

difference in temperature variation is very high. Also its low temperature is below

the critical values for the transition (T1) and the high temperature is above it (see

Fig 3.6(a)). Thus, lytic and lysogenic infection appear each day of the year. The

observed permanent presence of I2 explains the fact that free phages P can persist
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across the whole year since their number always replenishes through lysis of I2.

The density of susceptible bacteria is close to zero and I1 is very high around Janu-

ary since the temperature couldn’t reach above the optimum temperature (T1) of

transition. After January, susceptible density suddenly increases and lysogenic

decreases. Also, the free phage density decreases at first since they are adsorbed

by susceptible bacteria, then it again increases with released new phages.

One can also see that all four densities exhibit high amplitude daily oscil-

lations. The dynamics on April 1st, which is the warmest month of the year,

are shown for the densities of susceptible bacteria, infected bacteria and phages

(Fig 3.8(a)). This figure shows that the dominance of lysogenic and lytic bac-

teria is highly variable across the day: at night the infected bacteria are mostly

lysogenic whereas day time infection is mostly lytic. The density of susceptible

bacteria is maximal in the evening (around 8pm) and it is minimal in the morning

(around 9am). This pattern changes in winter because temperatures main remain

lower than the critical transition temperature T1 (see Figs 3.8(b),(c)).

To reduce the complexity caused by high frequency daily oscillations, we

plot the seasonal variation of daily averaged densities5 of the bacteria S, I1, I2

in Fig 3.9(b) and all species in Fig 3.9(a) (mostly shown phage density). The

population size of susceptible bacteria S is higher during warm season whereas the

phages numbers are higher during cooler seasons according to these results. Now

it can be clearly seen that the highest numbers of S occur in March−September.

This is a period of a higher infection risk. However, there might be high risk time

within each day in winter as well. This detail can be seen with daily variations as

we mentioned above.

We also investigated the bacteria-phages dynamics for temperature and solar

variation corresponding to Sa Kaeo province. All parameters are the same as that

of the table 3.1. The temperature variation and ultraviolet index across the year

for Sa Kaeo is given by the historical data in Figs 3.6, 3.4(b), respectively. The
5We compute daily averaged values by the left Riemann sum.
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Figure 3.8: Daily dynamics of the bacteria-phage system predicted by Model I for
the temperature and solar radiation records corresponding to the Nakhon Phanom
province. Daily variation of viral (black curve) and bacterial components (phage-free
bacteria ”blue curve”, lysogenic bacteria ”red curve” and bacteria in the lytic state
”green curve”) of the system corresponding on (a) April 1st, (b) January 1st and (c)
October 1st. The model parameters are taken from Table 3.1 as default values.
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Figure 3.9: Seasonal dynamics with daily average densities of the bacteria-phage sys-
tem predicted by Model I for the temperature and solar radiation records corresponding
to Nakhon Phanom province. The model parameters are taken from Table 3.1 as de-
fault values.

temperatures in Sa Kaeo are higher than in Nakhon Phanom. In addition, the UV

index in winter in Sa Kaeo is slightly higher than in Nakhon Phanom in winter.

This is the main reason of why even in the coldest days, susceptible bacteria can

survive in Sa Kaeo (see Fig 3.10(a),(c)). Also, the densities variation within day in

Fig 3.10(b),(d) and daily average densities of species in Fig 3.10(e),(e) are shown.

Weather of Sa Kaeo is warmer than Nakhon Phanom. In addition, its UV index is

a little bit higher than Nakhon Phanom in winter. That’s why even in the coldest

days, susceptible bacteria can survive in Sa Kaeo (see Figs 3.10(c),(f)).

In Model I, λ2 is constant and equals to 20 day−1: this corresponds to 50
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Figure 3.10: Seasonal and daily dynamics of the bacteria-phage system predicted by
Model I for the temperature and solar radiation records corresponding to the Sa Kaeo
province. (a) Seasonal variation of free phage density (CFU/ml). (c) Seasonal variation
of phage-free bacteria (blue curve), lysogenic bacteria (red curve) and bacteria in the
lytic state (green curve). (b),(d) Daily variation of viral and bacterial components of
the system corresponding on April 1st. (e),(f) Seasonal dynamics with daily average
densities of the bacteria-phage system. The model parameters are taken from Table 3.1
as default values.
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minutes lysing (delay) time in Model II. Implementation of Model II (i.e. DDEs

framework) provides similar predictions about seasonal and daily variation of bac-

teria and phage densities in Nakhon Phanom for the same model parameters. The

corresponding graphs are shown in Fig 3.11. More simulations related to Model

II for Sa Kaeo Province can be found in Fig 3.12. Therefore, Model I (based

on ODEs) and Model II (based on DDEs) give similar results both in terms of

quantitative and qualitative behaviour.
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Figure 3.11: Seasonal and daily dynamics of the bacteria-phage system predicted by
Model II for the temperature and solar radiation records corresponding to the Nakhon
Phanom province. (a) Seasonal variation of free phage density (CFU/ml). (b) Seasonal
variation of phage-free bacteria (blue curve), lysogenic bacteria (red curve) and bacteria
in the lytic state (green curve). (c,d) Daily average densities of viral and bacterial
components of the system through the year. The model parameters are taken from
Table 3.1 as default values.
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Figure 3.12: Seasonal and daily dynamics of the bacteria-phage system predicted by
Model II for the temperature and solar radiation records corresponding to the Sa
Kaeo province in Chapter 3. (a) Seasonal variation of free phage density (CFU/ml).
(b) Seasonal variation of phage-free bacteria (blue curve), lysogenic bacteria (red curve)
and bacteria in the lytic state (green curve). (c,d) Daily average densities of viral and
bacterial components of the system through the year. The model parameters are taken
from Table 3.1 as default values.

It is of practical interest to investigate the dependence of bacteria-phage dy-

namics on the nutrient status of the environment. For instance, bacteria popula-

tions can be largely affected by nutrient enrichment via the use of fertilises. This

is described by the parameter C. We observe a phenomenon which is close to

the paradox of enrichment, i.e. large-amplitude oscillations occur by increasing C.

The outcomes of two different values of the carrying capacity on bacteria-phage

interaction are shown in Fig 3.13. A 4−fold increase of C compared to the de-

fault value would result in the appearance of a large outbreak of S in March (see
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Figure 3.13: Variation of daily average densities of bacteria across the year for different
values of the carrying capacity C (Nakhon Phanom province): C = 8 × 106 cell/ml
in (a),(b) and C = 1 × 108 cell/ml in (c),(d). (e),(f) show daily variation of phages
and bacterial components of the system corresponding on April 1st − 9th in the case of
C = 8× 106. Simulations are based on Model I, the other parameters are taken from
Table 3.1 as default values.
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Fig 3.13(b)). The bacterial density in this outbreak is close to C. This half month-

long outbreak is followed by almost periodical oscillations of species densities until

early July. Note that unlike in Fig 3.7(b), pronounced oscillations in bacterial

densities in Fig 3.13(b) are not daily periodic oscillations but have a period of

around two days. To show detail in variation independently from daily oscillation

is given by Fig 3.13(e),(f). Another pattern in the oscillations of species densities

is observed in late autumn; however it is characterized by a smaller amplitude of

S.

A further increase in C leads to a more irregular dynamics shown in

Fig 3.13(c),(d). The outbreaks of S occur within March-July and a single peak

in November. The small period of high species densities are separated by periods

where the density is very low (> 103cells/ml). Interestingly, similar dependence on

the carrying capacity is observed in Model II and for the temperature variations

corresponding to the Sa Kaeo province which are shown in Figs 3.14 and 3.15,

respectively. However, Model I in Sa Kaeo province predicts the existence of ir-

regular oscillations throughout the whole year with only slight degree of seasonality

for high values of C (Fig 3.15(c),(d)).

We saw above that different carrying capacity produce different dynamics in

the bacteria-phages models. We thoroughly explored the dependence of dynamical

regimes on the combination of key parameters b (burst size) and K (adsorption

rate) in addition to C (carrying capacity). The results are presented in the form

of bifurcation diagrams shown in Fig 3.16. With the variable parameters in the

diagrams, we obtain four different dynamical regimes which are: Regime (I) signi-

fies extinction of phages in the system and only phage-free bacteria S can survive

(no viral infection); Regime (II) expresses the type of dynamics in terms of fixed

parameters given by Fig 3.9(b) and Regime (III) and Regime (IV) correspond to

the patterns of dynamics shown in Fig 3.13(a),(b) and Fig 3.13(c),(d), respect-

ively. In Regimes (II)-(IV), all four compartments coexist though the year. Note

that it is hard to trace the exact boundary between them. Our classification of



Chapter 3. Bacteria-phage interaction in a non-spatial model 94

Jan Mar May Jul Sep Nov
0

2

4

6

8
d
en
si
ti
es

ce
ll
/m

l

×108

S

I1

I2

P

(a)

Jan Mar May Jul Sep Nov
0

2

4

6

8

d
en
si
ti
es

ce
ll
/m

l

×106

S

I1

I2

(b)

Jan Mar May Jul Sep Nov
0

1

2

3

4

d
en
si
ti
es

ce
ll
/m

l

×109

S I1 I2 P

(c)

Jan Mar May Jul Sep Nov
0

2

4

6

8

10
d
en
si
ti
es

ce
ll
/m

l

×107

S I1 I2

(d)

Figure 3.14: Variation of daily average densities of bacteria across the year for different
values of the carrying capacity C (Nakhon Phanom province): C = 8 × 106 cell/ml
in (a),(b) and C = 1 × 108 cell/ml in (c),(d). Simulations are based on Model II, the
other parameters are taken from Table 3.1 as default values.

Regime (III) is based on the requirement that there should be species oscillations

in summer with a period > 1 day with species densities staying below a certain

threshold (here we use S0 = 103 cells/ml as a threshold), whereas for regime IV

the minimal density of S through oscillations in summer should be smaller than a

certain threshold. One can see from the diagrams that an increase in the carrying

capacity of bacteria or the adsorption rate of phages would result in phage ex-

tinction, whereas high values of these parameters will cause irregular oscillations

of species densities. Increasing of burst size would result in persistence of phages;

however it has less effect on the system dynamics as compared to the other para-
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Figure 3.15: Variation of daily average densities of bacteria across the year for different
values of the carrying capacity C (Sa Kaeo province): C = 8×106 cell/ml in (a)(b) and
C = 1×108 cell/ml in (c),(d). Simulations are based on Model I, the other parameters
are taken from Table 3.1 as default values.

meters. Finally, we find that variation of µc the background mortality of phages

within the region of 0.1 − 0.5 day−1 shows the dynamics is not sensitive to this

parameter.

3.3.1 Separate effects of temperature variation and UV in-

dex

It is of importance to understand the mechanisms controlling the dynamical

patterns observed in the models. We check the separate variation impact of the
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Figure 3.16: Bifurcation diagrams showing possible dynamical regimes in Model I
(Nakhon Phanom province) depending on the parameters K (overall phage adsorption
rate); C (carrying capacity of bacteria) and b (burst size of phages). The classification
of regimes I-IV is explained in the text. Other parameters are taken from Table 3.1 as
default values.

UV intensity level (given by u) across the year and that of the ambient temperat-

ure T . We firstly artificially keep the maximal and the minimal temperatures to

be constant and only vary u following the historic data. We find that the seasonal

dynamics of bacterial numbers remains similar as in the complete model with vari-

able temperature for the default value of the carrying capacity C = 2×106 cell/ml

(Fig 3.17(a),(b)). This signifies that the phages are mainly controlled by the solar

radiation and their high mortality during the period of March-September is caused

by a high UV index (u), thus S would increase during that period due to reduction

of free phage numbers. This suggestion is confirmed by the fact that in simulations

with a seasonal variation of temperature but a constant u, pronounced seasonal

patterns are not observed (for high constant UV index as u = 11 in Fig 3.17(c),(d)

and low constant UV index as u = 8 in Fig 3.17(e),(f). On the other hand, in a

highly eutrophic environment (e.g. C = 1×108 cell/ml), keeping the UV intensity

constant does not strongly affect model dynamics, whereas variation of temperat-

ure is important for observing seasonal patterns (see Fig 3.18). This signifies that

in nutrient rich environment the driving force is host-pathogen (internal) interac-

tion which is promoted by seasonal variation of daily temperature ranges: during
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Figure 3.17: Variation of daily average densities of bacteria across the year for C =
2 × 106 cell/ml (Nakhon Phanom province): Simulations are based on Model I,
the other parameters are taken from Table 3.1. (a),(b) simulate the scenario that each
day high and low weather temperature are kept constant (41 and 15 ◦C) and they
don’t change with season. (c),(d) and (e),(f) simulate the model for seasonal variable
temperature but constant UV index for u = 11 and u = 8 respectively.
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Figure 3.18: Variation of daily average densities of bacteria across the year for C =
1× 108 cell/ml (Nakhon Phanom province): Simulations are based on Model I, the
other parameters are taken from Table 3.1. (a),(b) simulate the scenario that each day
high and low weather temperature are kept constant (41 and 15 ◦C) and they don’t
change with season. (c),(d) simulate the model for seasonal variable temperature but
constant UV index for u = 11 and u = 8 respectively.

warm seasons a large part of the day would correspond to lytic infection cycle with

a release of a large number of free phages. The above results hold for both models

I and II.
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3.3.2 Mathematical analysis of the system for particular

temperature values

Here we briefly explore the particular case where the model parameters are

constant. In particular, we will consider the cases of constant temperature and in-

dependent mortality rate of phage from UV ray. This can be helpful to understand

the laboratory experiments which normally conducted under the same conditions.

Also, such studies can help to understand what happens in the case where some

amount of bacteria and phages are introduced into a living organism of a human

or a mammal.

For the sake of simplicity we consider Model I (i.e. non-delayed model). The

model equations become:

dS

dt
= αS

(
1− N

C

)
−KSSP, (3.11)

dI1

dt
= αI1

(
1− N

C

)
+K1SP − λ1I1, (3.12)

dI2

dt
= K2SP + λ1I1 − λ2I2, (3.13)

dP

dt
= −KNP − µP + bλ2I2. (3.14)

The system equilibria are given by

αS∗
(

1− N∗

C

)
−KSS

∗P ∗ = 0, (3.15)

αI∗1

(
1− N

C

)
+K1S

∗P ∗ − λ1I
∗
1 = 0, (3.16)

K2S
∗P ∗ + λ1I

∗
1 − λ2I

∗
2 = 0, (3.17)

−KN∗P ∗ − µP ∗ + bλ2I
∗
2 = 0. (3.18)

As seen in Fig 3.3, a non-trivial steady state is possible for only small range of

temperature in around optimum transition temperature (T1). It is difficult to solve
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the entire system (3.15)-(3.18) analytically across the entire range of temperature

variation. Instead, we analyse the model with two different ranges of temperature.

The first one assumes that constant temperature is lower than critical temperature

T1. The second scenarios assumes that the temperature is constant but is higher

than T1. Let’s start with the first scenario such that constant temperature T is

smaller than T1 − 5 ◦C, then we obtain

α ' α,

K1 ' KS = εK,

K2 ' λ1 = 0.

It can be clearly seen from given diagrams with related parameters in Fig 3.3.

Thus the system becomes as below:

αS∗
[
1− N∗

C

]
− εKS∗P ∗ = 0, (3.19)

αI∗1

[
1− N∗

C

]
+ εKS∗P ∗ − 0I∗1 = 0, (3.20)

0S∗P ∗ + 0I∗1 − λ2I
∗
2 = 0, (3.21)

−KN∗P ∗ − µP ∗ + bλ2I
∗
2 = 0, (3.22)

I∗2 is zero from Eq (3.21). If we substitute this to Eq (3.22), P ∗ becomes zero since

the parameters and densities cannot be negative. Thus, we have two equations

(3.19), (3.20) in this system and there are no lytic bacteria and phages: I∗2 = P ∗ =

0;

αS∗
[
1− N∗

C

]
= 0, (3.23)

αI∗1

[
1− N∗

C

]
= 0. (3.24)

In this temperature condition, lytic bacteria and phages cannot survive while

susceptible bacteria and infected bacteria in lysogenic cycle might stay alive. The

sum of the susceptible and lysogenic bacteria densities in the steady state equals
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to carrying capacity. Therefore, the non-trivial steady state is

(S∗, I∗1 , I∗2 , P ∗) = (a, C − a, 0, 0)

where 0 ≤ a ≤ C and a depends on the initial values of S and I1. To make

stability analysis, Jacobian matrix can expressed where F1 = αS
(

1 − N
C

)
and

F2 = αI1

(
1− N

C

)
as below:

J1 =


∂F1
∂S

∂F1
∂I1

∂F2
∂S

∂F2
∂I1


(S∗,I∗

1 )

= α

C


C − 2S∗ − I∗1 −S∗

−I∗1 C − S∗ − 2I∗1

 = α

C


−a −a

a− C a− C

 .

Then, the eigenvalues of Jacobian matrix by solving the equation det (EI − J) = 0

are obtained such that E1 = 0 and E2 = −α. Initial values of S is assumed non-

zero as it is primary. Fig 3.19 is an example of the model that the constant

temperature is 20 ◦C, the constant mortality rate is 1 day−1 and the initial values

of all species equal to each other as 105 ml−1. The other parameters are as seen in

Table 3.1. We see two straight lines which show the densities of susceptible and

lysogenic bacteria while the densities of lytic bacteria and phages go to zero.

0 50 100 150days
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4

6

8

10
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Figure 3.19: The dynamics of the bacteria-phage system predicted by Model I with
constant temperature as 20 ◦C and without UV exposure. The fixed parameters are as
in Table 3.1, the constant mortality rate is 1 day−1 and the initial values of each species
are the same as 105 ml−1.
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According to the second scenario, we assume that the constant temperature

value is larger than the optimum transition temperature such as T > T1 +5. Then

some parameters can be found from the diagrams in Fig 3.3:

α = 0

K1 = 0

K2 = KS = εK

Thus the system becomes:

αS∗
[
1− N

C

]
− εKS∗P ∗ = 0, (3.25)

0I∗1
[
1− N

C

]
+ 0S∗P ∗ − λ1I

∗
1 = 0, (3.26)

εKS∗P ∗ + λ1I
∗
1 − λ2I

∗
2 = 0, (3.27)

−KNP ∗ − µP ∗ + bλ2I
∗
2 = 0. (3.28)

It is obvious that I∗1 = 0 from Eq (3.26) which means there is no lysogenic infec-

tion. The new system will be only lytic infection:

αS∗
[
1− N

C

]
− εKS∗P ∗ = 0, (3.29)

εKS∗P ∗ − λ2I
∗
2 = 0, (3.30)

−KNP ∗ − µP ∗ + bλ2I
∗
2 = 0, (3.31)

Eq (3.30) says λ2I
∗
2 = εKS∗P ∗. It is substituted to Eq (3.31), then common P ∗

factors (for nonzero P ∗) are cancelled and S∗ can be expressed by I∗2 such that

−KS∗ −KI∗2 − µ+ bεKS∗ = 0

⇒ S∗ = I∗2K − µ
K(bε− 1) (3.32)
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From the last finding and Eq (3.30), P ∗ can expressed in terms of I∗2 such that

εKS∗P ∗ = λ2I
∗
2 ⇒ P ∗ = λ2I

∗
2

εKS∗
= λ2I

∗
2

εK
I∗

2K−µ
K(bε−1)

⇒ P ∗ = (bε− 1)λ2I
∗
2

ε(I∗2K − µ) (3.33)

Common factors (S∗) is cancelled in Eq (3.29) and it is rearranged as

αC − αS∗ − αI∗2 − εCKP ∗ = 0. (3.34)

Overall, Eqs (3.32) and (3.33) are substituted to Eq (3.34) and rearranged as

αC − α I∗2K − µ
K(bε− 1) − αI

∗
2 − �εCK

(bε− 1)λ2I
∗
2

�ε(I∗2K − µ) = 0,

⇒ αCI∗2K − αCµ−
αK

bε− 1I
∗
2

2 + αµ

bε− 1I
∗
2 + αµ

bε− 1I
∗
2 −

αµ2

K(bε− 1)

− αKI∗2
2 + αµI∗2 − CKbελI∗2 + CKλ2I

∗
2 = 0,

⇒ I∗2
2
( αK

bε− 1 + αK
)
− I∗2

(
αCK + 2 αµ

bε− 1 + αµ− CKbελ2 + CKλ2
)

+
(
αCµ+ αµ2

K(bε− 1)
)

= 0. (3.35)

Then, I∗2 can be found by discriminant

I∗2 =
−x2 ±

√
x2

2 − 4x1x3

2x1

where Eq (3.35) is expressed by x1I
∗
2

2 + x2I
∗
2 + x3 = 0. Thus, S∗ and P ∗ can be

calculated by being substituted I∗2 to Eq (3.32) and Eq (3.33), respectively. One

can see that in a warm environment, lysogenic cycle in viral infection would not

be possible. The stability of the equilibrium is given by the corresponding Jacobin
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matrix

J1 =


∂F1
∂S

∂F1
∂I2

∂F1
∂P

∂F2
∂S

∂F2
∂I2

∂F2
∂P

∂F3
∂S

∂F3
∂I2

∂F3
∂P


(S∗,I∗

2 ,P
∗)

=


α
C

(C − 2S∗ − I∗1 )− εKP ∗ −αS∗

C
−εKS∗

εKP ∗ εKS∗ −λ2

−KP ∗ −KS∗ + bλ2 −KN∗ − µ


where

F1 = αS
(

1− N

C

)
−KSSP,

F2 = K2SP − λ2I2,

F3 = −KNP − µP + bλ2I2.

For example, the densities of species are shown for the period of 150 days, where

the temperature is assumed constant 45 ◦C and the initial density of each species

is 105 as in Fig 3.20. To make stability analysis, we assumed that the constant

mortality rate is 1 day−1 and other parameters are as in Table 3.1. Then,

S∗ = 1.43× 106,

I∗2 = 5.15× 107,

P ∗ = 2.40× 1010,

J1 =


−1177 −12.5 0

719.7 0 20

−2399 2000 −6.3

⇒ det(EI − J1) =


E + 1177 12.5 0

−719.7 E −20

2399 −2000 E + 6.3

 .
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Figure 3.20: The dynamics of the bacteria-phage system predicted by Model I with
constant temperature as 45 ◦C and without UV exposure. The fixed parameters are as
in Table 3.1, the constant mortality rate is 1 day−1 and the initial values of each species
are the same as 105 ml−1. The densities of all species are shown in (a) whereas only
bacteria densities are shown in (b).

The eigenvalues are as below: E1 = −1170 and E2,3 = −6.5815± 202i. Therefore,

the steady state is stable and it is shown with the diagrams. The density of

lysogenic bacteria goes zero.
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3.3.3 Analysis the model with different lysogenic growth

rate

Finally, we find that some structural modifications of the above models can

result in different outcomes and completely different dynamical regimes. In par-

ticular, the assumption that the growth rates for the lysogenic and phage-free

bacteria are the same for all temperatures (i.e. α(T ) = α(T )) would result in dif-

ferent dynamics in nutrient rich environment (Fig 3.21). Namely, for large values

of C the susceptible bacteria S completely disappear from the system: the result-

ing dynamics consist of oscillating densities of I1 and I2, i.e. all bacteria becomes

Jan Mar May Jul Sep Nov
0

0.5

1

1.5

2

2.5

3

3.5

d
e
n
s
it
ie
s

×108

S

I1

I2

P

(a)

Jan Mar May Jul Sep Nov
0

2

4

6

8

10

12

14

d
e
n
s
it
ie
s

×105

S

I1

I2

(b)

Jan Mar May Jul Sep Nov
0

2

4

6

8

10

d
en
si
ti
es

×108

S
I1
I2
P

(c)

Jan Mar May Jul Sep Nov
0

1

2

3

4

5

6

d
en
si
ti
es

×106

S
I1
I2

(d)

Figure 3.21: Seasonal dynamics of the bacteria-phage system predicted by Model
I for the temperature and solar radiation records corresponding to Nakhon Phanom
province in terms of the same growth rates of susceptible and lysogenic bacteria (α(T ) =
α(T ) at any temperature values for C = 2× 106 in (a),(b) and for C = 8× 106 (c),(d).



Chapter 3. Bacteria-phage interaction in a non-spatial model 107

infected (see Fig 3.21(d)). The number of phages is highly oscillating through

the day but their daily averaged density stays fairly constant through the year as

shown in Fig 3.21(c). Susceptible bacteria don’t appear around 5 months in cold

seasons with these growth rates (Fig 3.21(b)). Another assumption is that there

is no growth of lysogenic bacteria (α(T ) = 0) at any time. All other parameters

are fixed as in Table 3.1. In that case, susceptible bacteria can survive at any

time even though their density decreases in winter for Nakhon Phanom Province

(Fig 3.22(b)). Increase carrying capacity makes change the dynamics as shown in

Figs 3.22(c),(d).
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Figure 3.22: Seasonal dynamics of the bacteria-phage system predicted by Model I
for the temperature and solar radiation records corresponding to Nakhon Phanom
province in terms of α(T ) = 0 at any temperature values for C = 2× 106 in (a),(b) and
for C = 8× 106 in (c),(d).
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3.4 Summary for chapter 3

Melioidosis is the infectious disease caused by B. pseudomallei in Southeast

Asia and around the world. In this chapter, we studied interaction these bacteria

and their phages in a well-mixed environment as the stagnant water in the rice field

in temporarily fluctuating environment (daily and seasonal variations). This inter-

action occurs via two types of viral infection: lytic and lysogenic. Our computa-

tions were based on realistic estimates of biological parameters (see Table 3.1) and

on the historical data on temperature as well as solar radiation (see Figs 3.6, 3.4).

The switching between lytic and lysogenic infections would be observed every day

across the whole year.

In our study we consider two different modelling frameworks: ODE-based and

DDE-based. Both models predict similar results in terms of seasonal and daily

dynamics of bacteria-phage interaction. Our simulation predicts high variations

of B. pseudomallei and phages numbers both daily and seasonally. We find that

elevated numbers of susceptible phage-free bacteria S are observed in warm sea-

sons with a high solar radiation. We find that the observed seasonal patterns of

dynamics in models are the result of interplay between variations temperature,

UV radiation and the nutrient supply level. Model dynamics strongly depends on

carrying capacity C. For large C, the regular daily rhythm of variation of species

densities becomes perturbed (Fig 3.13(d)). This observation is similar to the clas-

sical paradox of enrichment in predator-prey models in well-mixed environment.

On the other hand, some modification of models would change some of our

results, for instance considering α(T ) = α(T ). Also, keeping constant temperature

or UV index showed their influences on seasonal variation of species densities.

Lastly, Mathematical analysis of the equilibrium of Model I with two scenarios:

the first says the highest temperature within year is below T1 and the second the

lowest temperature within year is above T1.

A more accurate description would include considering bacteria in soil. In
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this case the distribution of environmental factors such as temperature, nutrients,

mortality of phages, etc, will be highly heterogeneous and this might potentially

dampen high amplitude oscillations of host-pathogen observed in homogeneous

environment as it happens in some predator-prey models [81]. This would be

addressed in the next chapter.



Chapter 4

Modelling of seasonal

spatio-temporal dynamics of

bacteria-phage interaction in soil

4.1 Introduction

A highly pathogenic bacteria Burkholderia pseudomallei cause the disease

Melioidosis which is currently number three out of the most fatal infections after

AIDS and tuberculosis [63]. Bacteria grow in water and soil in the endemic areas

of South-East Asia and Northern Australia. Soil is a very complicated ecosys-

tem which includes an extraordinary diversity of B. pseudomallei population in

melioidosis-endemic areas [64]. Via various means, including human transport,

these bacteria can disperse to areas which were initially non-endemic.

In the previous chapter, we examined the dynamics of B pseudomallei in the

top surface water, where we suggested homogeneity of the environment. However,

water in rice field are generally muddy which means non-homogeneous. Also,

bacteria are found in the soil below the surface water and can survive until 1

meter depth [72].
110
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This signifies that a more accurate description of bacteria-phage interaction

and prediction of their population densities would require considering their hetero-

geneous spatial distribution in soil. A number of factors determine the distribution

of B. pseudomallei such as the temperature, pH level, precipitation, water con-

tent and the nutrients concentration. In addition, it is well-known that the solar

radiation cannot penetrate the soil. This enhances the living condition of their

predators (phages) because UV rays may destroy as much as half phages per day

in the top water [106]. However, the spatial and temporal dynamics B. pseudomal-

lei in their endemic area is not much understood so far and modelling helps in

estimating population numbers of bacteria across seasons [72].

In this chapter, we consider a conceptual model of bacteria-phage interaction

in vertically spatial space (soil) externally forced by daily and seasonal temperature

variations. We suggest that some key parameters as the carrying capacity C of

bacteria, mortality of phages µ introduced the previous chapter change with depth.

Moreover, temperature dependent parameters (growth rate of susceptible α and

lysogenic bacteria α, transition rates by infection K1, K2 and λ1). We explore

the model dynamics within different ranges of the carrying capacity (describing

eutrophication of the environment) and compare the results with the previous

chapter.



Notations related to chapter 4

t Time
h Depth (cm)
T Temperature (◦C)
u Ultraviolet index
S(t, h) Density of susceptible bacteria at time t and depth h
I1(t, h) Density of infected bacteria in lysogenic cyle at time t and depth h
I2(t, h) Density of infected bacteria in lytic cyle at time t and depth h
N(t, h) Density of overall bacteria at time t and depth h
P (t, h) Density of bacteriophage at time t and depth h
Db Diffusion coefficient of bacteria in soil
DP Diffusion coefficient of phages in soil
Dh Heat diffusion coefficient in soil
ρs Bulk density
Cps Specify heat
ks Thermal conductivity in soil
C(h) Carrying capacity of bacteria at depth h
Csurf Carrying capacity of bacteria on the soil surface
α(T ) Growth rate of susceptible bacteria at temperature T
α(T ) Growth rate of lysogenic bacteria at temperature T
αmax Maximum intrinsic birth rate of bacteria
λ1(T ) Lysogenic process rate to lytic cycle at temperature T
λ1max Maximum lysogenic process rate (transition rate from lysogenic cycle to

lytic cycle)
λ2 Lysis constant
K Phage adsorption rate
KS Effective per bacteria contact rate
ε Adsorption efficiency
K1(T ) Transition rate from susceptible to lysogenic cycle at temperature T
K2(T ) Transition rate from susceptible to lytic cyle at temperature T
T0 Optimum temperature for growth and lysis (◦C)
T1 Optimum transition temperature (◦C)
µ(u) Mortality rate of variable u
µm Background mortality rate of phages
µs Mortality rate of phages on the soil surface
b Phage replication factor
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Units
◦C The degree celsius
ml millilitre
s second
cm centimetre
m metre
kg kilogram
J Joule
K Kelvin
W Watt

Abbreviation
Fig Figure
Eq Equation
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4.2 The model

We model host-parasite interaction between bacteria and bacteriophage in

vertically non-homogeneous space (the upper part of soil). The model consists

of phage-free bacteria (S) which are susceptible to phage, infected bacteria in

lysogenic (I1) and lytic (I2) states and free phages (P ). Phages and susceptible

bacteria take the role of predator (parasite) and prey (host), respectively. The

variable h describes the depth level of soil and t is time.

The meaning of the model parameters and the flowchart are the same as in the

Model I of the previous chapter and in Fig 3.1 without delay model. α and α are

growth rates of susceptible and lysgoenic bacteria; K1, K2 and λ1 are transition

rates from susceptible to lysogenic and to lytic cycle and from lysogenic cycle to

lytic cycle; C is carrying capacity of bacteria; λ2 is lysis rate; µ is mortality rate

of phages; b is burst size; K and KS are adsorption and infection probabilities

of phages; T is temperature variation and u is ultraviolet index, respectively. In

addition, Db and DP are diffusion coefficients of bacteria and phages.

The model is defined by the system of one-dimensional partial differential

equations as below

∂S(t, h)
∂t

= Db
∂2S(t, h)
∂h2 + α(T )S

[
1− N

C(h)

]
−KSSP

∂I1(t, h)
∂t

= Db
∂2I1(t, h)
∂h2 + α(T )I1

[
1− N

C(h)

]
+K1(T )SP − λ1(T )I1

∂I2(t, h)
∂t

= Db
∂2I2(t, h)
∂h2 +K2(T )SP + λ1(T )I1 − λ2I2

∂P (t, h)
∂t

= DP
∂2P (t, h)
∂h2 −KNP − µ(u, h)P + bλ2I2

(4.1)

where S(t, h), I1(t, h), I2(t, h), and P (t, h) are densities of susceptible bacteria,

infected bacteria in lysogenic cycle and in lytic cycle and phages at time t and

depth h, respectively. The total density of bacteria population is denoted by

N(t, h). Db and DP are constant diffusion coefficients of bacteria and phages,
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respectively. Delay model with space will be considered in the future work.

4.2.1 Parameter estimation

Constant parameters λ2, K, KS and b in Model system (3.1) are also constant

in this section model and take the same values in Table 3.1. The mortality rate of

phages varies with changing UV level on the surface until around 5 cm depth but

the sunlight doesn’t reach so phages aren’t exposed to UV in deeper soil. Thus, we

assume constant mortality rate of phages at any depth and time which is called

background mortality. We also assume a space-dependent mortality rate which

decreases exponentially and becomes almost zero at 5 cm depth of soil because of

exposure to UV rays. The overall mortality rate of phages will be as the following

µ(u, h) = µm + exp(−1.2h)µs(u) (4.2)

where µm = 3 is constant mortality rate in depth and µs(u) is the mortality rate

function around the surface as below:

µs(u) =


µc + Y0 exp (ku) in day

µc at night
(4.3)

where u is ultraviolet (UV) index, Y0 = 0.0746 and k = 0.366. Thus, we can

rearrange it as below

µ(u, h) =


µm + exp(−1.2h)(Y0 exp (ku) in day

µm at night
(4.4)

or we can clearly say

µ(u, h) =


µm + Y0 exp (ku− 1.2h) in day

µm at night
(4.5)
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UV index might be from 0 to 12 and maximum UV index within day is between 8

and 12 for Nakhon Phanom and Sa Kaeo Provinces in Thailand as historical data

in Fig 3.4.

We postulate that the carrying capacity is constant with time and seasonal

variations as in the previous chapter. We assume that it varies with depth of

soil since the number of bacteria with depth decreases according to empirical

observations [12]. This might happen because humus and nitrogen contents, pH

condition or water content in the soil decrease with depth [72]. There is a little

decreasing in moisture condition of the soil from 20-25 cm down to 90 cm of soil

even it increases until 20-25 cm from the surface [12]. Brown et al presented the

experiment results related to bacteria population densities in several plots and

depth levels in [12, p. 290]. We chose the four different plots with 8 depth levels

and show them with stars in Fig 4.1. We also calculate regressions of these data
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Figure 4.1: The figure shows the densities of bacteria of four different plots in [12].
The density measurement are made for 8 different depth levels of soil starting with 10
cm until 92 cm from the surface. Each colour of Stars and lines shows experimental
values and regressions respectively for different plot. The black thick curve shows the
average densities of all measurement. It seems that carrying capacity decreases with
depth and goes zero.

and showed them with line in the same figures. Using these data, we fit the vertical

distribution of the carrying capacity by taking average of the measured bacteria
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numbers in four different plots (Fig 4.1). We use the following expression for the

carrying capacity as a function of depth:

C(h) = Csurf
C1 exp (−C2h

2) + C3

C1 + C3

where C1 = 3.2 × 106, C2 = 1.6 × 10−3 and C3 = 5.9 × 104 from the above

regression funtion (black curve in Fig 4.1). We used GraphPad Prism software to
1 fulfil a non-linear regression. According to the consider function, the carrying

capacity has a maximum at the surface and deceases with depth as in Fig 4.2. We

suggest that the carrying capacity of the environment is not influenced by seasonal

variations.
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Figure 4.2: The figure shows carrying capacity of bacteria for our model. Its maximum
value is 2× 106 per gram of soil. It decreases greatly until 40 cm from the surface. The
function is obtained from average values of the experimental measurement in [12, p. 290].

1Scientific 2D graphing and statistics software [1]
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Table 4.1: Definitions, units, ranges and the fixed values of constant Parameters

Symbol Meaning Unit Range
Default

Value

Db bacteria diffusion coefficient in soil cm2 day−1 − 0.1

DP phages diffusion coefficient in soil cm2 day−1 − 0.01

Dh heat diffusion coefficient in soil cm2 day−1 − 66.58 [114]

ρs Bulk density kg/m3 − 1110.52

Cps Specify heat J/kg K − 1130

ks Thermal conductivity in soil W/m K − 0.0967

αmax maximum growth rate of bacteria 19− 27 day−1 23 [18]

Csurf bacteria carrying capacity ml−1 − 2× 106

K phage adsorption rate ml−1day−1 − 1× 10−7

KS effective per bacteria contact rate ml−1day−1 − 1× 10−7

ε adsorption efficiency − − 0.3

λ1max maximum lysogenic process rate day−1 19.1− 27.2 23 [18]

λ2 constant lysis rate day−1 − 20 [18]

b virus replication factor − 158± 54 100 [34]

T0
Optimum temperature for growth

and lysis
◦C 35.6− 50.6 38.2 [18]

T1 optimum transition temperature ◦C 34.81− 34.84 34.8

σ standard deviation of growth rate ◦C 6.7− 17.4 9.1

u ultraviolet index − 8− 12 −

µm background mortality rate day−1 − 3

n transition width − 53.7− 56.3 55
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4.2.2 Vertical and seasonal temperature distribution

Growth rate of susceptible and lysogenic bacteria (α and α respectively) and

transition rates (K1, K2 and λ1) depend on temperature as defined in Eq (3.3)-

(3.7), respectively and so they are temperature dependent variables. Seasonal

and daily variations of the surface temperature are assumed the same data as the

previous chapter in Fig 3.6. In addition to this variations, the temperature varies

with depth of soil in terms of heat equation since the space is non-homogeneous.

We model the temperature distribution in soil using heat (diffusion) equation is

given by the following:

ρsCps
∂T (t, h)
∂t

= ks
∂2T (t, h)
∂h2 (4.6)

⇒ ∂T (t, h)
∂t

= Dh
∂2T (t, h)
∂h2 (4.7)

where ρs, Cps and ks are bulk density, specific heat and thermal conductivity in soil,

respectively. The values of these parameters are from the article Tuntiwaranuruk

et al such that ρs = 1110.52 kg/m3, Cps = 1130 J/kg K and ks = 0.0967 W/m K

[114]. Constant diffusion coefficient can be obtained here by

Dh = ks
ρsCps

= 0.0967
1110.52× 1130 = 7.7059× 10−8 m2/s

= 66.58 cm2/day.

We use the Dirichlet boundary conditions and assume the boundary values such

that

T (t, 0) = Ts(t)

T (t, 100) = 22◦C

where Ts is the surface temperature function which is the same as in the previous

well-mixed model given by Fig 3.6. We used the same historical weather report



Chapter 4. Modelling of bacteria-phage interaction in soil 120

for the surface and calculated heat equation for each time step. The initial value

of the temperature distribution Ts(0) is assumed to be linear.

According to heat equation, temperature increases if it is lower and decreases

if it is higher with depth until around 20 cm. There are some fluctuation until

around 40−45 cm. After this depth level, they approach to the bottom boundary

temperature 22 ◦C and daily temperature variation doesn’t appear (see vertical

diagram in Fig 4.3).
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Figure 4.3: This is the result of our computation according to the heat equation.
Vertical temperature variation of Nakhon Phanom Province for first day of 4 months
(a): January; (b): April; (c): July and (d):October for each 3 hours
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Figure 4.4: Vertical temperature variation of Nakhon Phanom Province for first day
of 4 months (a): January; (b): April; (c): July and (d):October for each 3 hours

4.2.3 Diffusion coefficients of bacteria and phages in watery

soil

Paddy fields are flooded land which are used for growing rice. Therefore, soil

here is either mud or muddy water. There are many effects for distribution of

bacteria and phages vertically. For instance, rain water carries bacteria and phage
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deeper of soil together with gradient but we ignore them for simplicity. We assume

the phage and bacteria vertical diffusion coefficient to be constant.The distribution

of B. pseudomallei and phages in soil is poorly understood. There is not much

information about the diffusion coefficient of the bacteria cells and phages in soil.

We estimated the diffusion coefficients of species based on the reasoning below

(Modelling).

Diffusion coefficient of bacteria and phage in water are predicted to be

3.5993×10−10 m2s−1 = 0.311 cm2day−1 and 2.8×10−12 m2s−1 = 0.00242 cm2day−1,

respectively [124]. However, they should be smaller than that of water in our

model. We can explain this with regard to viscosity which is a measurement of

the fluid resistance to gradual deformation or thickness of fluid. In this respect,

mud has larger viscosity than muddy water whereas it has larger viscosity than

water. From Einstein-Stokes equation (D = kbTK

6πηr where kb is Boltzmann constant

[28], TK is absolute temperature (◦K), η is the dynamic viscosity and r is the ra-

dius of the spherical particle), the viscosity of liquid is an inverse proportion of the

diffusion coefficient [20]. Thus, we can predict the diffusion coefficients of bacteria

and phages with known viscosity. For example, honey and peanut viscosity are

around 5 and 250 m−1s−1.

We also assume that the model has zero-flux boundary condition for all spe-

cies. We used the same numerical methods as in Chapter 2. We take 0.1 cm spatial

step size to get proper results. On the other hand, we need to select optimal time

resolution in terms of ∆t ≤ (∆h)2

2Dh
where Dh is 66.6 cm/day. That’s why it requires

too small time step for numerical stability due to large diffusion coefficient

∆t ≤ 0.12

2× 66.6 = 7.5× 10−5 day.

This causes ”out of memory” issue or long time computation in computer. On the

other hand, bacteria and phages diffusion coefficients are very low and we don’t

need to compute this step size for whole model. Instead, we separately compute
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heat equation and apply this obtained temperature in depth of soil to our model

with larger time resolution (for example ∆t = 10−3 or 5× 10−4 day).

We compute the average densities of the species (both in terms of spatial and

temporal averaging) by using a numerical right Riemann sum. As in Chapter 2,

we numerically express the densities of species as vectors (the vectors have 1001

elements for ∆h = 0.1cm in this model) whose elements correspond to the densities

for each depth level at time t. Thus, we can find easily the vertically average

densities of species at each time step. Daily average densities can be computed

using ”if” command for each day (via Matlab in this thesis). Thus, each calculation

uses 1000 elements. Finally, the values of steps were reduced to compare if the

results of simulations remained the same.

4.3 Modelling results

In this study, we observe vertical distribution of B.pseudomallei and their

predators (phages) according to the seasonal and daily temperature variations.

We consider two different types of parameterisations for the mortality rate since

the exact shape of such function is not clear from the experimental literature. First,

we assume that variable mortality rate depending on sunlight ray on the surface

until 5 cm depth in addition to constant mortality rate in any season and at any

depth level. The seasonal variation of the population densities according to this

mortality rate and other all parameters as mentioned before are shown in Fig 4.5:

the densities of bacteria and phages on the surface (a-b); vertical average densities

of bacteria until 20 cm (c) and vertical average densities of bacteria until 50 cm

(d). However, very high mortality rate of phages in summer (see Section 4.2.1)

leads to death of almost all phages on the surface and the density of susceptible

bacteria reaches highest values (carrying capacity).

The second parameterisation of the mortality rate consider a spatially homo-

geneous mortality rate even on the surface by considering rice shading and husk
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Figure 4.5: (a),(b) show the bacteria and phage population dynamics on the surface
of soil for UV dependent mortality rate. (c) and (d) respectively show spatial average
densities variation of bacteria until 20 cm and 50 cm

and water which blocks sunlight on the surface. In this case, the densities display

smoother seasonal variation due to no UV effect on the surface while they have

very large range daily oscillations (see Fig 4.6). Moreover, phages can survive

across seasons and susceptible bacteria density is not much high as the previous

model. Interestingly, vertical average densities are very similar in the two model

(Figs 4.5(c,d); 4.7 and 4.8). The density of susceptible bacteria distributes mostly

near the surface and it decreases to zero at around 10 cm. Then, it increase again

at around 18 cm and decreases slowly to carrying capacity with depth in Fig 4.9.

On the other side, phage density oscillates with depth until around 15 cm, then it



Chapter 4. Modelling of bacteria-phage interaction in soil 126

Jan Apr Jul Oct
0

0.5

1

1.5

2
d
e
n
s
it
ie
s

×108

P

(a)

Jan Apr Jul Oct
0

0.5

1

1.5

2

d
e
n
s
it
ie
s

×10
6

S

I1

I2

(b)

Jan Apr Jul Oct
0

2

4

6

8

10

12

d
e
n
s
it
ie
s

×107

P

(c)

Jan Apr Jul Oct
0

2

4

6

8

10

12
d
e
n
s
it
ie
s

×105

S

I1

I2

(d)

Figure 4.6: (a-b) show the bacteria and phage population dynamics on the surface of
soil for constant mortality rate in anywhere. (c) and (d) respectively show daily average
densities variation of phages and bacteria on the surface

decreases and becomes almost zero at around 20 cm in Fig 4.12. There is almost

no phages at deeper level than 20 cm.

Increasing carrying capacity of bacteria causes oscillation in the densities with

time variation. For instance, we showed two different values of carrying capacity

as C = 8×106 and C = 1×108 in Fig 4.13. The oscillations are not related to daily

variations. As seen in the figure, increasing carrying capacity increases irregular

oscillations. The range between the oscillations decrease with depth for vertical
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Figure 4.7: (a-b) show the spatial average densities of bacteria and phage population
until 20 cm depth of soil for constant mortality rate. (c-d) show both daily and spatially
average densities variation of phages and bacteria until 20 cm

average densities until 20 cm and 50 cm as seen in Figs 4.14, 4.15, respectively.
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Figure 4.8: (a-b) show the spatial average densities of bacteria and phage population
until 50 cm depth of soil for constant mortality rate. (c-d) show both daily and spatially
average densities variation of phages and bacteria until 50 cm
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Figure 4.9: Vertical distribution of susceptible bacteria population dynamics in soil on
1st January, 1st April, 1st July and 1st October, respectively.
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Figure 4.10: Vertical distribution of lysogenic bacteria population dynamics in soil on
1st January, 1st April, 1st July and 1st October, respectively.
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Figure 4.11: Vertical distribution of lytic bacteria population dynamics in soil on 1st

January, 1st April, 1st July and 1st October, respectively.
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Figure 4.12: Vertical distribution of phages population dynamics in soil on 1st January,
1st April, 1st July and 1st October, respectively.



Chapter 4. Modelling of bacteria-phage interaction in soil 133

Jan Apr Jul Oct
0

0.5

1

1.5

2

2.5

3

3.5

d
en
si
ti
es

×108

P

(a)

Jan Apr Jul Oct
0

2

4

6

8

d
en
si
ti
es

×106

S
I1
I2

(b)

Jan Apr Jul Oct
0

0.5

1

1.5

2

2.5

d
en
si
ti
es

×109

P

(c)

Jan Apr Jul Oct
0

2

4

6

8

10

d
en
si
ti
es

×107

S
I1
I2

(d)

Figure 4.13: Daily average densities of bacteria and phage population dynamics on
the surface of soil for different carrying capacity such that (a, b) for C = 8 × 106 and
(c, d) for C = 1× 108.
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Figure 4.14: Daily and spatially average densities of bacteria and phage population
until 20 cm of soil for different carrying capacity such that (a, b) for C = 8 × 106 and
(c, d) for C = 1× 108.
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Figure 4.15: Daily and spatially average densities of bacteria and phage population
until 50 cm of soil for different carrying capacity such that (a, b) for C = 8 × 106 and
(c, d) for C = 1× 108.) for C = 1× 108.
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4.3.1 Bifurcation Diagram

The mortality rate of phages and carrying capacity of bacteria are important

parameters in this model, however, they are not clearly known in experimental

literature. We investigate the effect of variation of these parameters on the model

dynamics (see Fig 4.16). In that way, we keep the parameters constant except for

these two parameters. The result is shown in the bifurcation diagram in Fig 4.16

which is constructed using numerical simulations. We categorise the pattern of

dynamics into two regimes (regime I and regime II). Regime I expresses the type

of dynamics exhibiting oscillations in species densities due to daily and seasonal

variations as shown in Fig 4.6; Regime II corresponds to the pattern of dynamics

shown in Fig 4.13. In this regime, there exist some fluctuations in densities which

do not match daily and seasonal variations. These two regime can be discerned

using dynamics of daily average densities.
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Figure 4.16: Bifurcation diagrams showing possible dynamical regimes in Nakhon
Phanom province depending on mortality rate of phages (µ) and carrying capacity of
bacteria on the surface (Csurf). The classification of regimes I-II is explained in the text.
Other parameters are taken from Table 4.1 as default values.
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4.4 Summary for chapter 4

The third most fatal infectious disease known as textitMelioidosis caused by

the pathogenic bacteria Burkholderia pseudomallei is mostly reported in Southeast

Asian countries as well as the North Australia. In this study, we postulate that

the bacteria are controlled by their natural enemies: bacteriophages and we model

bacteria–phage interaction in the soil. The main difference between the previous

chapter is that here we consider non-homogeneous environment for bacteria and

phages caused by the heterogeneity of temperature distribution as well as that of

the carrying capacity. This model should be considered as the first step of model-

ling bacteria-phage interactions in soil since we assume here the simplest possible

model based on reaction-diffusion equations: more advanced models should be

considered the soil system in more detail (e.g. by including hydrological regimes).

We consider two different parameterisations of the mortality of phages. Our

modelling results show that in the case of a homogeneous mortality of phages

the spatial distribution of susceptible bacteria is generally very smooth across all

seasons unlike in the case of a spatially variable mortality rate with the maximum

on the surface. We also find that generally the densities of species in soil shows a

seasonal trend both in terms of their distribution and the absolute numbers. For

example, in April-July the vertical average densities of susceptible-lytic bacteria

and phages increase while the density of lysogenic bacteria decreases (for instance

Fig 4.7). This would signify a higher risk of decision acquisition.

We found that for sub-populations of phages and bacteria distributed very

close to the surface (from the surface to around 20 cm depth) their density is

almost zero except susceptible bacteria. Moreover, their density follows the levels

of the carrying capacity after around 18 cm depth as in Fig 4.2. An increase

in the carrying capacity causes oscillation in addition to daily and seasonal as

in the previous chapter. Moreover, if the mortality rate of phages is increased

then irregular oscillation doesn’t happen even for a large carrying capacity (see
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Fig 4.16). Spatial averaging can also dampen the overall dependence of population

numbers on the carrying capacity. The obtained results can resolve the paradox

of enrichment of bacteria-phage interaction in soil.



Chapter 5

Conclusion

Mathematical modelling in ecology has started with a single species model; in-

teractions with other species where described by constant parameters [71, 92,

Chapter 1]. The initial single species population models have been improved by

adding time delay to describe incubation or maturation time, age structure or

seasonal variations [13]. Including dynamical predation was a great step in model

development. Mathematical models in ecology often assume the space to be ho-

mogeneous or assume that the whole system is well-mixed. This makes it easy to

mathematically analyse the model properties, in particular to find system equilib-

ria and further perform stability analysis. If the inhabited area is small enough or

the species are most homogeneously distributed on the region, then, indeed there

is no need the diffusion calculation. The model will only be the reaction form with

ODEs. However, in many cases such assumption is too simplistic and including

heterogeneity in either vertical or/and horizontal directions might be very efficient

to get more realistic results for ecological predictions. By adding the diffusion to

the local interaction model described by ordinary differential model we obtain a

system of reaction-diffusion equation which can be very rich in terms of dynamical

patterns. Such system was firstly studied by Fisher and Kolmogorov et al in 1930s

[31, 51].
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Species in communities live together and interact with each other. Mathemat-

ically, this can be described as dynamical feedbacks affecting the target population.

Therefore, population dynamics of each species is affected with the interactions

which might be competition within or between species for resources or space; sym-

biosis; or predator-prey. In this study, we focused on predator-prey (host-parasite)

model [92, chapter 3], which is fundamental in nature. Our study covers three main

aspects of mathematical modelling of predator-prey interactions which are in the

focus of the literature:

• influence of spatially heterogeneity on ecosystem stability and persistence

(Chapters 2,4)

• role of external forcing on predator-prey (host-parasite) interactions

(Chapter 3,4)

• influence of parametrisation of model terms on modelling outcomes

(Chapters 2,3,4).

As important ecological case studies, we considered a tri-trophic plankton inter-

action across a vertical water column in Chapter 2 and bacteria-phage interaction

under temperature variation in Chapters 3,4.

Below we briefly discuss the main results and outline the main findings of

Chapters 2,3,4.

5.1 Tri-trophic plankton model (Chapter 2)

In Chapter 2, we considered a top-down control in a tri-trophic system under

eutrophication (high nutrient resource for prey) with a fast moving top pred-

ator (copepods) and two lower levels which are herbivorous microzooplankton and

primary producer, phytoplankton. We assumed that the spatial distribution of

copepods is determined that of the two lower trophic levels as contrary to [61],
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where it was assumed that the top predators only consumed microzooplankton.

The main goal of this chapter is to contribute to solving the paradox of enrichment

for omnivorous copepods (which both consume microzooplankton and phytoplank-

ton). Mathematically we used a system of integro-differential equations including

diffusion terms to take into account fast movement of top predators as slow move-

ment of intermediate predators.

We took into account different possible scenarios of predation in the same sys-

tem: considering omnivorous and non-omnivorous top predator; different types of

functional responses (food selection without switching and active switching which

is only for omnivorous copepods). Also we examined the system without spatial

heterogeneity and saw that stabilization of system was impossible in well-mixed

space even though the model with carnivorous top predator. However, the stability

is possible in spatial model. This confirms some previous findings on the crucial

role of space in the top-down control and stabilization of eutrophic ecosystems

[24, 96, 81]. Model 1 which has carnivorous copepods result in coexistence for all

levels in large range of parameter values Fig 2.2. Primary producer density is very

high in this hypothesis Fig 2.6.

However, phytoplankton would also be usually an important resource for cope-

pods (top predator) in addition to intermediate grazers [8, 32, 82]. In that way,

we considered more realistic interactions with omnivorous top predator. In this

condition, we analysed the model with two different functional responses of cope-

pods. The first one is none-switching functional response (called Disk equation

or Holling Type II) as in Eq 2.7. However, this resulted in extinction one of the

grazers (copepods or microzooplankton) in almost any realistic values of para-

meters (see Fig 2.8). Coexistence of all species is only possible very narrow and

unrealistic parameter values (see Fig 2.8(d)). Thus, Model 2 has more realistic

copepods feeding but the response is unrealistic.

On the other hand, introducing the strong assumption of active switching

behaviour of copepods (covered by Model 3) can result in the coexistence of the
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entire food web with the density of primary producers remaining low (see Fig 2.12).

This conclusion is comparable with the main results of [38], who found that active

switching promotes coexistence of microzooplankton and copepods. Interestingly,

some experimental works have also confirmed that active switching of copepods

can stabilize a tri-trophic planktonic system [37], although these experiments were

conducted on such a short time scale that the population dynamics of copepods

were neglected.

5.2 Bacteria-phages interaction (Chapters 3−4)

Gram negative bacterium B. Pseudomallei causes a very dangerous infectious

disease known as Meliodosis. The disease is hazardous for people in some areas

in Southeast Asian countries and North Australia. It kills around 40% of infected

people which are generally agricultural workers in rice fields. Recently it was

suggested (based on empirical observation) that bacteriophage (phage for short)

would potentially control the dynamics of this dangerous bacteria. However, this

important controlling mechanism by phages has been disregarded by the large

part of the literature related. Therefore the interaction between the bacteria and

phages and its modelling are very crucial. The main particularity of the considered

bacteria-phage interaction is that it is temperature-dependent. This means that

only they lyse (kill) bacteria at high temperatures whereas at lower temperatures

they display a lysogenic life cycle Fig 1.6. The switch between infection type (from

lytic or lysogenic) would be determined by the ambient temperature [104].

Due to temperature dependent viral infection, mathematical modelling of this

type of interaction is very complex. There have been constructed a number of mod-

els of bacteria-phage interaction but they all ignored lysogeny and the influence

of temperature variation; also they assume phage to be lytic. Thus considering

temperature-dependent bacteria-phage interaction it would be insightful for un-

derstanding the main features of seasonal dynamics of phage free bacteria which

actually cause infection. This work is the first one to build a mathematical model
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related to lysogeny. Our mathematical model includes both infected cycles de-

pending on temperature condition (daily and seasonal oscillations) reported for

endemic regions in Thailand (e.g. see Fig 3.6).

Almost all parameters in this chapter are from either literature or unpublished

experimental results. The experimental results on the temperature dependent

lysogeny demonstrated that the switch between lysogenic and lytic way of infection

occurs at around T1 = 35◦C (see Fig 3.2(a)) which was previously underestimated

in the literature. Switching between lytic and lysogenic infection happen each

day depending on daily temperature variation (Typical ranges in two provinces

(Nakhon Phanom and Sa Kaeo) of Thailand showed in Fig 3.6. We also find that

the newly estimated value of the adsorption constant of the phages (which was

earlier an unknown parameter) allows the persistence of phages in the models.

In addition to temperature values, the models are based on historical data on

ultraviolet (UV) index since phage mortality strongly depend on UV sun radiation

at the surface.

Our model simulation predicts high variations of density of B. pseudomal-

lei and phages numbers for both daily and seasonally. We found that elevated

numbers of susceptible phage-free bacteria S (meaning a higher disease acquis-

ition risk for agricultural workers) were observed in warm seasons with a high

solar radiation. This is consistent with the reported cases of disease acquisition

in some regions in Thailand such as Nakhon Phanom [7]. On the other hand, the

same publication does not reveal a pronounced annual variation of infection cases

in Sa Kaeo as it is observed in the model. Such a discrepancy can be probably

explained by different environmental conditions in terms of soil properties (result-

ing in different carrying capacity C) which would damp the seasonal variation in

the system. We found that the observed seasonal patterns of dynamics in models

were the result of interplay between variations temperature, UV radiation and the

nutrient supply level. Our models also predict highly variable daily oscillations

of densities of phage-free, lytic, lysogenic bacteria whereas the overall number of
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bacteria remained nearly constant (Fig 3.8). There is also a strong dependence of

resultant dynamics on the nutrients content of the environment which is described

by the carrying capacity C. We observed that enrichment of the environment (e.g.

by heavily using agricultural fertilises or using rice fields as temporally fish farms)

would result in outbreaks of high bacterial numbers during warm seasons. In this

case, the regular daily rhythm of variation of species densities becomes perturbed:

few days characterised by very low densities of bacteria would follow by the periods

of high bacterial densities (Fig 3.13(d)).

In our study we considered two different modelling frameworks: ODE-based

and DDE-based. Interestingly, both models predicted similar results in terms

of seasonal dynamics of bacteria-phage interactions as well as regarding the de-

pendence of patterns on the key model parameters such as C, b and K. This

demonstrates the robustness of our modelling approach and strengthen theoret-

ical predictions. On the other hand, some modification of models, for example,

considering α(T ) = α(T ) would modify some of our results obtained with systems

(1)-(2). In particular, we found the possibility of a complete eradication of phage-

free bacteria. A more thorough investigation of the model robustness towards

structural changes would be needed. This demonstrates the sensitivity of model

outcomes to parameterisation of model terms.

Our modelling approach may suggest few possible directions towards direct

testing of our main hypothesis that phages are the main control agent of bacteria.

It follows from our model that excluding phages from the system will result in

ceasing large amplitude oscillations of densities of bacteria and phages due to

host-pathogen cycles and this can be easily checked empirically. In this case, the

presence of pronounced variation of density of phage-free bacteria on the scale of

the day or several days might indicate a strong control of B. pseudomallei by its

phages. Another important indicator of the page control would be measuring the

ratio between the bacterial and phage numbers in the field.

Finally, simulations using our models indicate possible directions for disease
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management and monitoring of B. pseudomallei. In particular, one can estim-

ate the risk of disease acquisition (determined by S) across seasons. In the case

the environment does not allow a large number of bacteria (which signifies low

values of carrying capacity C), the risky period coincides with high level of UV

radiation, which causes mortality of phages (Fig 3.7(a)). Under this scenario, the

practical recommendation would be to avoid agricultural activities in the field in

the evening (e.g. 9pm) when the number of phage-free bacteria is amplified after

the day (see Fig 3.8). In the case of nutrient rich environment - which can be a

result of extensive use of fertilises or fish farming – the recommendations would be

different. Under a large degree of eutrophication, one should expect high density

outbreaks of phage-free bacteria during warm seasons (see Fig 3.13). The dura-

tion of such outbreaks can be form several days to a month characterised by high

densities of S regardless the time of the day. Thus, a better monitoring of disease

under intensive use of fertilises is strongly recommended to report the start of the

outbreak. Finally, our numerical experiments with a high background mortality

rate µc of phages shows that this would cause an increase of susceptible bacteria

density S thus enhancing the corresponding risk of disease acquisition. This has

a direct application to disease management and control. Some herbicides can also

kill the phages thus this using would amplify the risk of disease acquisition and

should be implemented with a great care.

In Chapter 3, we built bacteria-phage interactions model in a well-mixed en-

vironment as the stagnant water in the rice field. A more accurate description

would include considering bacteria in the soil, where the distribution of environ-

mental factors such as temperature, nutrients, mortality of phages, etc will be

highly heterogeneous. Thus the well-mixed model from Chapter 3 was extended

of a spatial model in Chapter 4. Here we used a reaction-diffusion modelling

framework.

In Chapter 4, the mortality rate of phage would be changed since UV cannot

penetrate deep inside soil (or watery soil). Therefore, we assumed the mortality
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rate is constant with depth and time. Another key parameter is carrying capacity

bacteria which is decreases with depth. We saw very smooth density of susceptible

bacteria across the year on the surface of soil but highly wide range of daily

oscillation. This is because mortality rate of phages were assumed to be constant.

However, with depth seasonal effect became clear as seen vertical average densities

until 20 cm and 50 cm from the surface in Figs 4.7, 4.8, respectively. The variable

µ was also assumed near the surface but the results were not much realistic Fig 4.5.

The susceptible bacteria reached the carrying capacity in around 8 month of year

since phage goes zero.

From the simulated vertical distributions we can see that switching in in-

fection type (i.e. lytic or lysogenic) appeared in the first 20 cm. After 20 cm

only susceptible bacteria can survive (which means disease risk still exist) and the

susceptible density keeps carrying capacity as in Fig 4.2.

In this thesis, we constructed two bacteria-phage models which consider in ho-

mogeneous and heterogeneous space. For the well-mixed environment (Chapter 3)

we compared ordinary differential equation model with a delay model and found

only very small differences between the two. This indicates that the model is struc-

turally not sensitive with respect to the modelling approach used. This makes our

results promising for future forecasting of bacteria-phage interaction.

5.3 Future perspectives

In this thesis, we construct bacteria-phage model on the surface of water based

on ODE and DDE. As a future work, the interaction model in soil (heterogeneous

environment) can be strengthened by DDE. Resistant bacteria to phages could

be thought as a future work. This causes to death of attacking phages, thus,

it prevents new phage replication and release. We examined this with adsorption

efficiency but we do not have density of resistant bacteria. Finally, a more accurate

model of bacteria dispersal in soil should be used in updated models (e.g. including
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vertical transport of bacteria by water). Also, some more advanced numerical

methods can be used to take into account smallness of the transition layer, where

the mortality of phages sharply drops to low values.
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