The Domain Name System Advisor,
A Model-Based Quality Assurance

Framework

Thesis submitted for the degree of
Doctor of Philosophy

at the University of Leicester

by

MARWAN MOHAMMED MAHMOUD RADWAN
DEPARTMENT OF INFORMATICS
UNIVERSITY OF LEICESTER

MAy 2017

Declaration of Authorship

I hereby certify that the thesis I am submitting is entirely my own original work
except where otherwise indicated. I am aware of the University of Leicester’s reg-
ulations concerning plagiarism, including those regulations concerning disciplinary
actions that may result from plagiarism. Any use of the works of any other author,

in any form, is properly acknowledged at their point of use.

m Student’s signature:

e Name (in capitals): MARWAN MOHAMMED MAHMOUD RADWAN

e Date of submission: 7" of December 2016

Abstract

The Domain Name System (DNS) has a direct and strong impact on the performance
of nearly all aspects of the Internet. DNS relies on a delegation-based architecture,
where resolution of names to their IP addresses require resolving the names of the
servers responsible for those names.

The recursive graphs of the inter-dependencies that exist between servers associated
with each zone are called Dependency Graphs. We constructed a DNS Dependency
Model as a unified representation of these Dependency Graphs. We utilized a set of
Structural Metrics defined over this model as indicators of external quality attributes
of the DNS. We applied machine learning in order to construct Prediction Models
of the perceived quality attributes of the DNS out of the structural metrics of the
model and evaluate the accuracy of these models.

Operational Bad Smells are configuration and deployment decisions, made by zone
administrators, that are not totally errant or technically incorrect and do not cur-
rently prevent the system from doing its designated functionality. Instead, they
indicate weaknesses that may impose additional overhead on DNS queries, or in-
crease system vulnerability to threats, or increase the risk of failures in the future.

We proposed the ISDR (Identification, Specification, Detection and Refactoring)
Method that enables DNS administrators to identify bad smells on a high-level ab-
straction using a consistent taxonomy and reusable vocabulary. We developed tech-
niques for systematic detection and recommendations of reaction mechanisms in the
form of graph-based refactoring rules.

The ISDR Method along with the DNS Quality Prediction Models are used to build
the DNS Quality Assurance Framework and the DNS Advisor Tool. Assessing the
perceived quality attributes of the DNS at an early stage enables us to avoid the
implications of defective and low-quality designs. We identify configuration changes
that improve the availability, security, stability and resiliency postures of the DNS.

In the name of Allah, the Most Beneficent, the Most Merciful.

Acknowledgements

First and above all, I praise God, the Almighty, for providing me this opportunity

and granting me the capability to proceed successfully.

This thesis appears in its current form due to the assistance and guidance of several
people. T would like to offer my sincere thanks to all of them. In particular, I am
profoundly indebted to my PhD advisor, Professor Dr. Reiko Heckel, who was very
generous with his time and knowledge and assisted me in each step to complete this
project. I have been extremely lucky to have a supervisor who cared so much about
myself and my work, and who responded to my questions and queries so promptly.
Reiko has also provided insightful discussions about each part of this research. I
also thank my second supervisor Dr. Emilio Tuosto and PhD tutor, Dr. Fer-Jan de

Vries, for their support and constructive discussions during the annual viva sessions.

My late father and mother; I just simply wish you were alive today to share this
moment with me and the rest of the family. I wish to thank my family, especially
my wife, Mai, for her sincere love, care and support throughout this entire period
and for providing the much needed motivation by encouragement, and taking care
of the kids. I thank her for believing in me even when I did not. Her quiet patience,
unwavering love and tolerance of my occasional temper moods is a testament in itself

of her unyielding devotion and love.

I also owe my affectionate gratitude to my sister Sadia, who has been continuous
support to me. My father-in-law, mother-in-law, brothers, sisters, and their families
always encouraged me to stand where I am today. I would like to thank my friends
back in Palestine, and specially PNINA staff, for their support and restless efforts

in keeping the organisation running smoothly while I am abroad.

Last but not the least, I may have slipped some names to mention here but I say
thanks to everyone in Gaza, Palestine and Leicester, United Kingdom for being

supportive and well-wisher to me in this period of life. God bless and guide you all.

il

Contents

Declaration of Authorship

Abstract
Acknowledgements
List of Figures
List of Tables

List of Algorithms

1 Introduction
1.1 Motivationso
1.2 Problem Statement
1.3 Solution Outline oL
1.4 Contributions
1.5 Publicationso

1.6 Thesis Outline

2 Background

2.1 The Domain Name System

iv

ii

iii

xil

xiv

Contents

2.1.1
2.1.2
2.1.3

General Operation of the DNS
DNS Query Process
DNS Inter-dependencies
2.1.3.1 DNS Operational Planes . . .

2.1.3.2 Dependency Graphs

2.2 DNS Quality Attributes and DNS Health . . .

2.3 Graph Transformation

2.3.1
2.3.2
2.3.3

Basic Concepts
GT-Based Model Transformation . . .
Graph Transformations Tools
2331 EMF..............
2.3.3.2 Henshin Language and Tools
2.3.3.3 EMF Refactor

2.4 Model Transformation

DNS Dependency Model

3.1 Basic Concepts

3.2 Modelling the DNS

3.3 The DNS Dependency Model

3.4 DNS Model Quality

DNS Structural Metrics

4.1 Definitions and Basic Concepts

4.2 DNS structural metrics

4.2.1
4.2.2
4.2.3

4.24

Measures of Size
Measures of Structural Complexity . .
Measures of Dependency/Influence . .

Measures of Delegation and Inheritance

38
39
40
43
46

49
20
51
51
52
o4
o4

Contents

4.3 Interpretation Modelo
4.4 Theoretical Background L.
4.4.1 Key Mechanisms L.
4.4.2 Measurements Frameworks00

4.5 Predictive Models

4.6 Experimental Assessment

4.6.1 Hypotheses

4.6.2 Variables.o
4.6.3 Collection of Data
4.6.4 Participants
4.6.5 Metric-Quality Correlation Analysis
4.6.6 Prediction Models. 0oL
4.6.7 Threats to Validity L.

4.6.8 Discussion

4.6.9 Conclusions

5 The ISDR Method
5.1 Bad Smells . . .
5.2 The ISDR Method

5.2.1 Bad Smells

Identification

5.2.2 Formal Specifications

5.2.3 Detection

5.2.4 Refactoring

5.2.5 Bad Smells’

5.2.6 Bad Smells
5.3 Method Validation

Quality Impacts

Catalogue

6 ISDR Method Implementation

77
78
79
80
84
85
87
88
89
90

94

vi

Contents

6.1 Tool Support

6.1.1 Eclipse and EMF Modelling

6.1.2 Henshin
6.1.3 EMF Refactor

6.1.4 Dependency Graph Builder (DGBuilder)

6.2 ISDR Techniques

6.2.1 Techniques’ Specification

6.2.1.1 Metrics . . .

6.2.1.2 Bad Smells Specification

6.2.1.3 Refactorings .

6.2.2 Techniques’ Application

6.2.2.1 Metrics Calculation

6.2.2.2 Bad Smells Detection

6.2.2.3 Refactorings .

7 DNS Model Transformation
7.1 Model Refactoring

7.1.1 Behaviour Preservation

7.1.2 Analysis of Model Refactoring Rules

7.1.2.1 Conflicts and Dependencies

7.1.2.2 Execution Scope and Priorities

7.1.3 Quality Impacts of Model Refactorings

7.2 DNS Model Transformation .

7.3 Implementation of the DNS Advisor Prototype

7.3.1 Prototype Architecture

7.3.2 Prototype Case Study

8 Related Work

117
118
119
121
121
123
125
126
128
129
130

136

vil

Contents

81 DNSin Operation. 136
8.1.1 DNS Interdependencies 137

8.1.2 DNS Measurements 137

8.1.3 DNS Troubleshooting 138

82 Bad Smells 140
8.2.1 Bad Smells Idetification 141

8.2.2 Bad Smells Detection L. 141

8.3 Refactoring 142
8.3.1 Refactoring Techniques 143

8.3.2 Refactorings Analysis L. 143

8.4 Graph-Based Model Transformation 144

9 Conclusions and Future Work 146
9.1 Conclusions 147
9.2 Research Limitations 149
9.3 Future Work 150
9.3.1 Extending the DNS Operational Model 150

9.3.2 DNS Structural Metrics and Prediction Models 150

9.3.3 DNS Quality Indicators 151

A The DNS Dependency Model 154
A.1 Modelling the Data Layer 155
A.2 Modelling the Control Layer, 161
A.3 Modelling the Management Layer 163

B DNS Metrics Suite 165
B.1 Size Metrics 165

viil

Contents

B.2 Measures of Structural Complexity
B.3 Measures of Dependency/Influence

B.4 Measures of Delegation and Inheritance

C Bad Smells Catalogue

D Refactoring Catalogue

E DNS Operational Model Survey
E.1 Background
E.2 General Questions.
E.3 Models and Metrics oo
E.4 Assessing TLD Quality Attributes

Bibliography

183

198

216
216
217
218
229

230

X

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1

4.1

4.2
4.3
4.4
4.5
4.6

5.1
5.2
2.3

An illustration of the DNS resolution process.
Interdependencies within the DNS Operational Planes.
Name Dependency Graph of (le.ac.uk).
Typed Graph Example
A Graph Morphism From G1to G2
Attributed Typed Graph Model (a) and Its Instance (b).

createARecord Transformation Rule

The DNS Dependency Model Specified in Ecore (The Meta-Meta
Model of EMF).

Example of a DNS Model Instance (i.e. Dependency Graph) for
Zone(NIC.AA).
Methodology of Building DNS Quality Prediction Models
Availability Prediction Models and their Performance Indicators. . . .
Security Prediction Models and their Performance Indicators.
Stability Prediction Models and their Performance Indicators.

Resiliency Prediction Models and their Performance Indicators.

The ISDR Method.
Bad Smells Taxonomy.

Part of the Dependency Graph of the Case Study.

X

16

86

List of Figures

0.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10
6.11
6.12

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9

9.1

Refactoring Rule: CreateARecord. 92
The EMF Refactor Specification Module. Adapted from [1]. 98
ISDR Method Specification and Application Environments. 101
Henshin Rule for Calculating the HRPD Metric of a Zone. 104
Specification of the Bad Smell Cycling Dependency Using Henshin. . 107
Specification of Initial Checks for CreateARecord Refactoring. 109
Specification of Final Checks for CreateARecord Refactoring. 109
Execution Unit for CreateARecord Refactoring. 111
Metric Configuration Page and the Calculation of these Metrics for

the DnsModel of Zone (.PS) 112
Smells Configuration Page for the DnsModel. 113
Detection of Cycling Dependency Using Henshin Rule. 113
Refactoring Execution Workflow. 115
Quick Fix Matrix Configuration Page. 116
Instance Graph of Binding-Preserving Property. 120
Critical Pairs Analysis. L 122
Refactoring Rules Execution Scope and Priorities. 124
Bad-Smells-Driven DNS Model Transformation Methodology. 127
Prototype Architecture. 129
Example DNS Model Instance (Dependency Graph). 131
Example DNS Model Instance (Model and Textual Views). 132
DNS Model Instances Transformation Using Model Compare. 133
Predicted Values of Quality Attribute (Stability) for the Various It-

erations of the Transformed DNS Model Instances. 135

Implementation-Level DNS Quality Dashboard. 152

x1

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10
4.11
4.12
4.13

5.1
5.2
5.3
0.4
3.5

DNS Model Structural Size Metrics.
DNS Model Structural Complexity Metrics.
DNS Model Structural Dependency/Influence Metrics.
DNS Model Structural Delegation/Inheritance Metrics.
Interpretation of the Administrative Complexity Metric.
Values of Structural Metrics Calculated over the Model Instance Shown
in Figure 4.1.
List of Structural Metrics Used in the Empirical Assessment.
Linguistic Values used for the subjective evaluation of DNS qualities.
Participants of the Empirical Assessment.
Intra-Class Correlation (ICC).
Measurements of Metrics on the 9 DNS Model Instances.
Metric-Quality correlations (Spearman’s Rho).
Performance of the Predictive Models in terms of the correctly clas-

sified instances out of the test dataset.

Identification of Bad Smells in the DNS Planes
DNS Operational Bad Smells
Catalogue Entry for the Cyclic Dependency Bad Smell.
Content of Zone File for Case Study.

New Zone File Generated After Executing the Refactoring Rule(s).

xii

95

o8

List of Tables

6.1 Metric Hierarchical Reduction Potential (HRP) Interpretation Model. 103

7.1 Bad Smells Detected on the Model Instance and the Proposed Refac-
torings. 133
7.2 Measurements of Metrics on the Generated DNS Model Instances. . . 134

7.3 Effects of Applying Refactoring on the Perceived Quality Attributes
of the DNS Model Instances. 134

xiil

List of Algorithms

1 Dependency Graph (Model Instance) Generation Algorithm. 100

X1v

I dedicate this thesis to

my late parents,

who showed me the way,

and my wife,
who has always supported me in my journey.

XV

Chapter 1

Introduction

The Domain Name System (DNS) is one of the most fundamental infrastructures
of today’s Internet. The critical importance of the DNS raises high demands for
its stability, security and resilience. The DNS is a distributed database for storing
information on domain names, the primary namespace for hosts on the Internet.
The name space is organised in a hierarchical structure to ensure domain name
uniqueness. Each node in the DNS tree corresponds to a zone. Each zone belonging
to a single administrative authority is served by multiple name servers. In addition
to IP addresses, the DNS is used to look up mail servers, cryptographic keys, latitude
and longitude values, and other diverse types of data. The use of the Internet is

critically dependent on the reliable, trustworthy, and responsive operation of the

DNS.

1.1 Motivations

The correct and error-free operation of the DNS is crucial for the reliability of most

applications on the Internet. Delegation is crucial in achieving DNS name space’s

1

Chapter 1. Introduction

scalability however there are many misconfigurations and bad deployment choices
made by system administrators that may lead to data inconsistencies, vulnerable
configurations or even failure of resolution. A mistake in configuring a specific DNS

zone may potentially have adverse impacts on the global Internet |2, 3].

While DNS plays a critical role for the operation of Internet, DNS zone adminis-
tration relies heavily on error-prone manual configurations. Operational guidelines
[4-6] require that a zone have multiple authoritative name servers, and that they
be distributed through diverse network topological and geographical locations to in-
crease the reliability of that zone as well as improve overall network performance and
access. These are meant to make DNS services robust against unexpected failures.
Recent work [7-12]| outlines the need for zone operators to understand how many
inter-dependencies they may inadvertently be incurring through the deployment and

sharing of DNS secondary servers.

This research is motivated by the lack of formal analysis of the DNS interdepen-
dencies stemming from the delegation-based architecture as well as operational de-
ployment choices made by system administrators. Therefore, the need for early
indicators of perceived quality attributes is recognized in order to avoid the implica-
tions of defective and low-quality configurations and deployment choices during the

late stages of operation.

We use perceived quality as a mechanism at the model level to approximate the
indicators of real system quality attributes. Efforts to improve risk management re-
lated to DNS security, stability and resilience must be guided by an ability to predict
these characteristics and apply correction mechanisms to rectify for any degrading in

these quality attributes as a result of a misconfiguration or bad deployment choice.

Chapter 1. Introduction

1.2 Problem Statement

The large body of literature on DNS operation [4, 7-9, 13-19] suggests that the
area is mature, and problems are well understood. However, reality is contrary to
this suggestion. The DNS ecosystem has evolved to include many players, such as
DNS entities, which include trusted, untrusted, and semi-trusted ones, making it
very difficult to reason about its resolution and operation. DNS is well known to
have configuration issues. Jung et al. [20] found that a significantly high amount
of Internet traffic is caused by miss-configured DNS servers and resolvers. These
configuration issues may lead to performance degradation, crashes, and endless loops
in resolvers. They may also confuse users by returning inappropriate error messages

propagated by applications.

The original DNS design focused mainly on system robustness against physical fail-
ures, and neglected the impact of operational errors such as misconfiguration and
bad deployment choices. Several previous measurements |13, 15, 17] showed that
zones with configuration errors suffer from reduced availability and increased query
delays up to an order of magnitude. DNS administrators have to decide on opera-
tional parameters and be aware of their implications for the DNS’s overall system

qualities.

On the deployment level, configuring the number of redundant authoritative DNS
servers for a certain zone must take into consideration the operational overhead
associated with querying multiple servers in parallel. Choosing servers with names
under other zones provides zone redundancy but may incur security and resiliency
threats to the zone. Deciding on where to physically locate the servers should ensure
a certain degree of resistance against different types of failures. Peering with external
organizations for secondary server hosting should take into consideration the impact

of transitional trust and administrative complexity [9, 16].

Chapter 1. Introduction

The original DNS design documents [5, 6, 21-23] call for diverse placement of author-
itative name servers for a zone. Bad configurations may lead to cyclic dependencies
while bad deployment choices may lead to diminished and false server redundancy.
It is also assumed that redundant DNS servers fail independently; previous mea-
surements |7, 13| showed that operational deployment choices made at individual
zones can introduce excessive zone influence. All those bad smells severely affect the

availability, security, stability and resiliency of the overall domain name system.

1.3 Solution Outline

System administrators’ operational decisions have far reaching effects on the DNS’s
quality attributes. They need to be soundly made to create a balance between the
availability, security, stability and resilience of the system. We need to be able to
direct the zone administrator to places in the zone file that contain potential design
and deployment problems that may compromise availability, resiliency or security of

a domain name before the changes become into production.

In order to achieve this goal, we approached the problem from a design point of view
that takes into consideration the DNS zone configuration and server deployment
choices rather than from the dynamic behavioural view which includes statistical

and post-deployment measurements.

Since many of the misconfiguration can not be detected from the zone file or deploy-
ments directly, there is a need for a DNS model that encompasses all information
related to the zone file and the server deployments in one conceptual graph. The
conceptual graph representation facilitates modelling at multiple levels of detail si-

multaneously.

Chapter 1. Introduction

We constructed a DNS Dependency Model (The DNS Model) as a unified represen-
tation of these Dependency Graphs. We utilized a set of Structural Metrics defined
over this model as indicators of external quality attributes of the domain name sys-
tem. We applied some machine learning algorithms in order to construct Prediction
Models of the perceived quality attributes of the operational system out of the struc-
tural metrics of the model. Assessing these quality attributes at an early stage of the
design/deployment enables us to avoid the implications of defective and low-quality

designs.

We proposed the ISDR (Identification, Specification, Detection and Refactoring)
Method to identify, specify and detect misconfiguration and bad deployment choices
in the form of operational bad smells. The method deals with smells on a high-level of
abstraction using a consistent taxonomy and reusable vocabulary. The method also
utilizes the set of structural metrics defined over the DNS Model to detect the smells
in early stages of the DNS deployment. It also suggests graph-based refactoring rules
as correction mechanisms for the bad smells. We apply and validate the method
using several representative case studies. The method techniques are used as early
indicators of external quality attributes in order to avoid the implications of defective

and low-quality designs and deployment choices.

The method is integrated within a DNS advisory tool to flag configuration changes
that might decrease the robustness or security posture of a domain name, before

even the changes become into production.

We built the tool based on graph-based model transformation tools and techniques

and validated our approach through empirical assessments and several case studies.

Chapter 1. Introduction

1.4 Contributions

The contributions of this research are:

1. Building a DNS Dependency Model to describe the Domain Name System
operational world to detect violations of the design and deployment principles

at the authoritative level.

2. Identification of a set of structural metrics DNS Metrics Suite, defined over
the DNS model, and building prediction models for the various DNS quality

attributes out of these metrics.

3. Proposing the ISDR method which is a model-based approach that subsumes
all the steps necessary to identify, specify, formalise, detect and catalogue the
DNS operational bad smells. The method deals with smells on a high-level of
abstraction using a consistent taxonomy and reusable vocabulary, defined over
the DNS Model. Graph-based refactorings are proposed as correction mech-
anisms for those bad smells and their priorities, conflicts and dependabilities

are analysed and their quality impacts are verified.

4. Building a pre-emptive DNS Advisor Tool that implements the ISDR method
and related model transformation techniques in order to detect and flag con-
figuration changes that might decrease the robustness or security posture of a

domain name, before even the changes become into production.

1.5 Publications

In this section some of the relevant co-authored documents are listed. Material from
these publications has been used in this dissertation since it was developed in the

context of this PhD research.

Chapter 1. Introduction

1. Radwan, Marwan and Reiko Heckel, "Refactoring Operational Smells within
the Domain Name System", Software Technologies: Applications and Founda-

tions (STAF-14) Conference, University of York, UK, 21-25 July 2014.

2. Radwan, Marwan, and Reiko Heckel. "Detecting and Refactoring Opera-
tional Smells within the Domain Name System." 1st Graph as Models (Gam)
Workshop, ETAPS-2015, 11-12 April 2015, London, United Kingdom, arXiv
preprint arXiv:1504.02615 (2015).

3. Radwan, Marwan and Reiko Heckel, "Prediction of the Domain Name System
(DNS) Quality Attributes," Paper accepted for publication, The 32nd ACM
Symposium on Applied Computing (SAC 32), April 3-6, 2017, Marrakesh,
Morocco, http://dx.doi.org/10.1145/3019612.3019728.

1.6 Thesis Outline

The main body of this thesis consists of eight chapters followed by a final chapter
drawing conclusions and giving suggestions for future work. Following this intro-
duction, Chapter 2 discusses relevant background about the design, operation and
structure of the DNS. It describes the DNS on a high level to build up the necessary

background for the succeeding chapters.

Chapter 3 presents the DNS Model with its main components, features, relationships
and integrity constraints. It also includes a background section on related formalisms
of graph transformation concepts and definitions related to this thesis. In Chapter
4 a set of structural metrics is defined over the DNS Dependency Model. Prediction
models of the perceived quality attributes of the DNS model are constructed out of

the structural metrics.

Chapter 1. Introduction

Chapter 5 discusses the ISDR method which includes bad smells’ identification,
specification, and detection. Examples of correction mechanisms in the form of
graph-based refactoring rules are also presented. Chapter 6 discusses the specifica-
tions, tools and implementation of the ISDR method techniques and presents several

case studies for its validation.

Chapter 7 continues with the implementation of the advisory tool by discussing
the behaviour preservation properties of the refactorings and analysing their execu-
tion priorities, conflicts and dependabilities. As prototype of the DNS Advisor is

presented as a realization of the all artefacts and techniques presented in this thesis.

Chapter 8 gives a survey of related work in the subjects discussed within the different
chapters of this research and relates them to our research contributions. Chapter 9
concludes the thesis with lessons learned, research limitations and directions of future

work.

Chapter 2

Background

The outline of the chapter is as follows. Section 2.1 gives an overview and a
background of the Domain Name System (DNS) operation including the details
of the DNS query process, DNS interdependencies, DNS operational planes and
introduces the concept of dependency graphs. Then, the DNS quality attributes and
DNS health indicators are discussed in Section 2.2. Relevant graph transformation
theoretical background and supporting tools are presented in Section 2.3. Finally
models as graphs and model transformation approaches and tools are discussed in

Section 2.4.

2.1 The Domain Name System

The Domain Name System (DNS) is a hierarchical distributed database [22] that
can map names to some data. In most cases it is used to map a name to an Internet
Protocol (IP) address. The system is mature and very successful. It was designed in
the 80’s to replace host-local configuration files for naming of Internet hosts. DNS

queries consist of a single User Datagram Protocol (UDP) request from the client

9

Chapter 2. Background

followed by a single UDP reply from the server. The Transmission Control Protocol
(TCP) is used when the response data size exceeds 512 bytes, or for tasks such as
zone transfers [23]. DNS is part of the application layer of the TCP/IP reference
model [24].

2.1.1 General Operation of the DNS

The DNS is a conceptually simple system that allows a string of labels (such as
"www', "le", "ac", and "uk") joined by dots into a "domain name" to be looked up in
a database distributed across multiple DNS servers. The dots in a domain name are
important because they represent potential administrative boundaries. For example,
the dot between "ac" and "uk" in the domain name "www.le.ac.uk" represents

the administrative boundary between the "uk" top-level domain and Janet, the

organization responsible for the "ac.uk".

The Internet’s domain name space is a single large tree, read right-to-left, with
progressively more specific administrative units to the left. The term zone is used
to indicate administrative units within the DNS tree. For example, the "le.ac.uk"
zone is the piece of the DNS tree including all names ending in ".le.ac.uk". Further
subdivisions are common, even within a single organization, and "le.ac.uk" might

have multiple zones, such as "cs.le.ac.uk", "art.le.ac.uk" and "eng.le.ac.uk".

A zone is a point of delegation in the DNS tree. It contains all names from a certain
point downward except those which are delegated to other zones. A delegation
point has one or more NS records in the parent zone, which should be matched by

equivalent NS records at the root of the "delegated zone". [14].

Each name server maintains the domain name information regarding a zone in the

DNS name space. Several predefined properties, or resource records (RR), can be

10

Chapter 2. Background

associated with a domain name. All of the RRs pertaining to the domain names in
a zone are stored in a master file, maintained by the primary name server of that
zone. Each zone also has one or more secondary name server, which periodically

synchronizes its local DNS file with the master file.

Secondary name servers respond to DNS queries but are not involved in maintaining
the master file. Operators of each zone determine the number of authoritative name
servers and their placement and manage all changes to the zone’s data content. In
spite of the fact that zone administration is autonomous, coordination is required and
essential to maintain the consistency, stability and resilience of the DNS hierarchy.
The DNS architecture was later enhanced with DNS Security Extensions [25], [26]

to provide data origin authentication.

Types of Domain Name Servers [27]:

e Root Servers. The name servers that serve the DNS root zone, commonly
known as the root DNS servers, are a network of hundreds of servers in many
countries around the world. They are configured in the DNS root zone as
13 named authorities (labeled A through M). Operators who manage DNS
resolvers typically need to configure a "root hints file". This file contains the
names and IP addresses of the root servers, so the software can bootstrap the

DNS resolution process.

e Top-Level Domain (TLD) Servers. These servers are responsible for top-
level domains such as com, org, net, edu, and gov, and all of the country top-
level domains such as uk, ca, and ps. The company Verisign Global Registry
Services maintains the TLD servers for the com top-level domain, the company
Educause maintains the TLD servers for the edu top-level domain and the

organisation Nominet maintains the uk country code TLD.

11

Chapter 2. Background

e Authoritative Servers. Every organization with publicly accessible hosts
(such as Web servers and mail servers) on the Internet must provide publicly
accessible DNS records that map the names of those hosts to IP addresses. An
organization’s authoritative server houses these DNS records for that particular

organisation.

e Recursive Resolvers or Local DNS Servers. There is another important
type of DNS server called Recursive Resolvers or local DNS servers. Resolvers
make queries (recursively) on behalf of applications and (usually) cache the
responses to improve DNS performance and scalability. In the case of smaller
enterprises and end users, Internet service providers typically operate resolvers.
In the case of larger enterprises, the resolvers are usually operated by the

enterprises themselves or by large-scale DNS hosting providers.

A root, top-level domain or authoritative server responds to DNS lookup requests

with one of the following responses:
e A positive response in which an answer to the question is provided;
e A negative response indicating the answer does not exist; or
e A referral providing an indication of where further information may be ob-

tained.

Authoritative servers are typically operated by or on behalf of zone administrators.
DNS registrars, and hosting providers often operate authoritative servers on behalf of
their customers. The authoritative DNS infrastructure, particularly for "high value"
zones such as top-level domains, is being increasingly outsourced to DNS-focused

service providers.

12

Chapter 2. Background

A local DNS server does not strictly belong to the hierarchy of servers but is nev-
ertheless central to the DNS architecture. When a host makes a DNS query, the
query is sent to the local DNS server, which acts as a proxy, forwarding the query

into the DNS server hierarchy.

2.1.2 DNS Query Process

The most common type of DNS lookup is for IP addresses. This is the type of
lookup that occurs each time a user types a URL into a web browser. Normally, the
individual application (such as the web browser) does not perform the full lookup,
which involves several steps. Figure 2.1 shows the process by which an application
looks up the domain name www.le.ac.uk and how it is mapped to the DNS data,

control and management operational planes.

DNS Zone
o / (Data Plane)
RoOTSemvers ~ — — — — — I roor

NOMIN, IPR ERISIGN
To;ev;)oﬁn Serversg uk org e

Recursive — __ ‘

(Local) B

DNS Server Authoritative Servers [acuk oo

University of Leicestqy
mail.google.com www.google.com

le.ac.uk

—
T:se“‘e‘s

Zone Administrator
T cs.le.ac.uk www.le.ac.uk (Management Plane)

Client/User Application
Request: www.le.ac.uk?

DNS Authoritative Servers
(Control Plane)

FIGURE 2.1: An illustration of the DNS resolution process.

To find the IP address of www.le.ac.uk, the client (e.g a web browser) submits a DNS

query to a local (recursive) DNS server (step 1). Assuming that the corresponding

13

Chapter 2. Background

IP is not in the resolver cache, it will ask one of the root name servers for the
translation (step 2). The names and IP addresses of root name servers are locally
stored within each server. The root name servers will respond with a "referral",
telling the resolver to query the DNS servers of the .uk top-level-domain for an
answer (step 3). The resolver then repeats this process for the .uk name servers and
get a referral to ask the .ac.uk authoritative name servers which in turn answers
with a referral to as the le.ac.uk name servers (step 4 -7). The resolver next asks
one of the le.ac.uk name servers for the translation (step 8), and gets the answer in
step (9), and finally forwards the answer to the requesting client (step 10) who will
use this information to connect to the web server hosting the web site www.le.ac.uk.
Throughout the process, resolvers may encounter name servers hosted under other
zones whose names need to be resolved before contacting them about the original

request.

Any DNS lookup process may involve the operators of numerous Internet-connected
networks, physical and virtual servers, support and back-office systems, and related
infrastructure. The many parties and components involved in every single DNS
lookup multiply the potential risks to the availability, security, stability, and re-
silience of the DNS. Due to the importance of the DNS for the operation of the
Internet, any event that negatively impacts DNS Security, Stability, or Resiliency

would have significant impact on the Internet.

2.1.3 DNS Inter-dependencies

Inter-dependencies are common in the DNS and stem from the hierarchal structure
of the DNS, the DNS protocol as well as from different motivations and goals. A

zone is said to depend on a name server if the name server could be involved in

14

Chapter 2. Background

the resolution of names in that zone. The dependencies among name servers that

directly or indirectly affect a zone are represented as a dependency graph.

2.1.3.1 DNS Operational Planes

Zone Containment:
Parent-Child
SOA Records

___ NS Records
Zone —— A Records

and Other RRs

Server Relationships
4 Name Serve!
5 Has Name |
Server g alplal -NIC. -yIC. Hosted ®
Managed By————»

Org. Trust Level:
High
Management Layer Moderate - — - — P

Dependencies N/ 7 |lw s »

Diversity Level:
Network AS#
Geo-Location
BGP Prefix

Geolocation (Control Layer) US
Dependencies

FIGURE 2.2: Interdependencies within the DNS Operational Planes.

The zone’s data plane is the interconnected graph of all infrastructure resource
records defined within the zone’s configuration file. The interconnected graph of
all authoritative name servers involved in the resolution process of a domain within
a certain zone is called the zone’s control plane and the interconnected graph of

all administrative units (organisations) involved is called the management plane.

15

Chapter 2. Background

One reason that the DNS is so powerful is that its data plane allows administrators
a great deal of flexibility: they can manage their name space however they like.
However, the control and management planes’ flexibility can lead to operational
problems if not managed conscientiously. Figure 2.2 shows a schematic of the various
interdependencies that occur within and between the three operational planes of the

domain name system.

2.1.3.2 Dependency Graphs

S LE
[a 7\
- D)
‘o“" Nominet, UK
==

.
(RS
‘\\\‘
o

N
A A&

NET
Verisign

=

«r \

' 5L\ e i, nororg
;)

1~
NET ZANNN N ‘: ‘ \\
A = T

i
~
St IR

FIGURE 2.3: Name Dependency Graph of (le.ac.uk).

The recursive structures of inter-dependencies within and between the DNS opera-
tional planes are represented by dependency graph. A dependency graph deccio2010
is a directed connected graph with a distinguished node (r) which is the root zone.
Each node in the graph represents a zone name, and each edge signifies that its
source is directly dependent on its target for proper resolution of itself and any

descendant domain names.

16

Chapter 2. Background

Figure 2.2 shows deferent dependencies that occur at the different DNS operational
planes. Zone or Data-Layer dependencies include child-parent dependency between
a zone and its parents as well as dependencies within the different resource records
within a zone or delegated zones. Control-layer dependencies includes the various
dependencies stemming from hosting zone files within secondary name server who
has names under other zones. It also include network distribution dependencies
as well as geographical location dependencies of those servers. Management layer
dependencies includes trust relationship between the different organisations that

manage the name servers of a particular zone and their interactions.

2.2 DNS Quality Attributes and DNS Health

Due to the fact that we aim at modelling the DNS system from the perspective
of authoritative system administrators and zone managers, we are concerned with
the DNS perceived quality as anticipated by the system administrator during the
process of designing, configuring and deployment of the DNS system. Quality at-
tributes have different definitions based on the point of view of the DNS user. For
example, resilience is viewed by users as availability and viewed by providers as a
combination of detection, response, resistance and recovery processes that increase

overall confidence in relying on and investing in the Internet over the long-term [11].
In this research, we focus on four quality attributes of the DNS as perceived by

authoritative zone managers and system administrators [10]| and they are:

o Availability is defined as the ability of the group of authoritative name servers
of a particular zone (e.g., a TLD), to answer DNS queries. For the service to

be considered available at a particular moment, at least two of the delegated

17

Chapter 2. Background

name servers registered in the DNS must have successful results to each of

their public-DNS registered "IP addresses" to which the name server resolves.

e Security is the ability of the components of the system to protect the integrity

of DNS information and critical system resources.

e Stability is the consistency of authoritative name servers’ names within the sys-
tem and the consistency of system components’ performance over time. That
is, if authoritative servers’ names within a system change with high frequency,
the system is unstable and if a query takes 10 milliseconds to respond in one
instance and 1000 milliseconds to respond in a second instance, resolution time

is unstable which means the system is also unstable.

e Resilience is the ability of the system to provide and maintain an acceptable
level of name resolution service in the face of faults and changes in normal

operating conditions.

Given the fact that the DNS protocol offers administrators and zone operators a
high level of flexibility in configuring their zone and the deployment structure for
their systems, it can be anticipated that low-quality configurations and deployment
choices can ripple through to many operational domain name systems. Therefore,
the need for early indicators of external quality attributes is recognized in order to
avoid the implications of defective and low-quality design and deployment during

the late stages of system operation.

The security, stability and resilience of DNS have received significant attention over
the past few years. Following the 2009, 2010 and 2012 DNS symposia [28], [29],
[30], the Internet Corporation for Assigned Names and Numbers (ICANN) specified

the following indicators for DNS health:

18

Chapter 2. Background

e Availability: The ability of DNS to be operational and accessible when re-

quired.

e Coherency: The ability of DNS to accurately resolve name queries; this is
one of the core principles of DNS. For example, if the IP address 192.0.2.1 is
resolved to www.foo.example.com, then the coherency principle implies that

the name www.foo.example.com should resolve to the IP address 192.0.2.1.

e Integrity: The ability of DNS to guard against improper data modification or
destruction; this includes ensuring information non-repudiation and authen-

ticity.

e Resiliency: The ability of DNS to effectively respond and recover to a known,

desired and safe state in the event of a disturbance.

e Security: The ability of DNS to limit or protect itself from malicious activities
(e.g., unauthorized system access, fraudulent representation of identity and

interception of communications).

e Speed: The performance of DNS with respect to response time and through-
put. Note that, in addition to queries, speed applies to maintenance, admin-

istration and management operations.

e Stability: The ability of DNS to function in a reliable and predictable manner
(e.g., protocols and standards). Stability is important because it facilitates

universal acceptance and usage.

e Vulnerability: The likelihood that a DNS weakness can be exploited by one

or more threats.

19

Chapter 2. Background

2.3 Graph Transformation

Graphs and diagrams have been used to represent a variety of problems in computer
science and software engineering. They provide a simple mathematical model for
representing pairs of objects connected by links [31]. More formally, a graph con-
sists of a set of vertices V' and a set of edges E, each edge having a source and a
target vertex in V. Graphs can be typed, allowing for the definition of meta-models
that describe how instances should be built. Additionally, in order to carry further
information, it is possible to use attributes in graphs, storing values of pre-defined

data types.

Graph Transformation Systems (GTS) have been used to model the dynamic be-
haviour of systems where graphs model the systems’ states and their evolution is
specified by graph transformation rules [32]. The conceptual (type) level of the
system is represented by a type graph (model) and its instance level is represented
by an instance graph. A type graph is usually visualised using a class diagram in
Unified Modelling Language (UML). An instance graph is visualised by an object

diagram. Graph transformation rules describe pre and post conditions of operations.

In our research, we use a type graph to describe the DNS Dependency Model. The
graph transformation rules are used to suggest correction mechanisms in the form of
refactorings to remedy for operational bad smells identified and detected in the in-
stances of the model (i.e. Dependency Graphs). In the following sections, we provide

fundamental definitions and basic concepts of graphs and graph transformations.

2.3.1 Basic Concepts

Definition 2.1. (Graph [33|) A graph G = (V, E, s,t) consists of a set V' of nodes

(also called vertices), a set F of edges, and two functions s,t : E — V | the source

20

Chapter 2. Background

and target functions:

S

T TN
E %
\t/

A graph homomorphism is a mapping between two graphs that respects their struc-

ture. More concretely it maps adjacent vertices to adjacent vertices.

Definition 2.2. (Graph Morphism [33]) Given graphs G , Gy with G; = (V;, E;, s, t;)
for i = 1,2, a graph morphism f : G; — G, f = (fy, fg) consists of two functions
fv Vi = Vo and fg: By — E5 that preserve the source and target functions, i.e.
Jvosy =sy0 fpand fy oty =ty 0 fg

_— S1 —~

E1l V1
S~y

fE = fV

A graph morphism f is injective (or surjective) if both functions fy , fg are injective
(or surjective, respectively); f is called isomorphic if it is bijective, which means both

injective and surjective.

In this algebraic representation, a graph is considered as a two sorted algebra where
the sets of vertices V' and edges E are the carriers, while the source s : £ — V and
target ¢t : £ — V are two unary operators [34]. The composition property of graph
morphisms is one of the necessary ingredients to show that graphs form a category

(see Corollary 2.6).

21

Chapter 2. Background

Fact 2.3. (Composition of Graph Morphisms [33]) Given two graph morphisms
f=(fv,fe): Gi = Gy and g = (9v,gE) : G2 — G3, the composition g o f = (gy o

fv,ge o fr): G1 — G3 is again a graph morphism.

The model can be conveniently expressed as a type graph. A typed graph consists
of a graph and a corresponding type graph. The type graph defines a set of types

that are assigned to the nodes and edges of the graph by a typing morphism.

Definition 2.4. (Typed Graph [33]|) A type graph is a distinguished graph TG =
(Vra, Erc, Sta, tre) where Vg and Epg are called the vertex and the edge type
alphabets, respectively.

A tuple (G, type) of a graph G together with a graph morphism type: G — TG is
then called a typed graph over T'G.

Definition 2.5. (Typed Graph Morphism [33]) Given typed graphs GT =
(G1,type;) and GE = (Ga, types), a typed graph morphism f : GT — G¥ is a

graph morphism f : G; — G5 such that types o f = types:

Gy J—Gs
N — %
typer types
Y X,
TG
primaryServer
SOARecord
— Organisation yy
Ee]
7'y 8
&
) g
o 4 %
oo
@ nameServer
g Server ——— Zone
hasNameln ?
owns

FI1GURE 2.4: Typed Graph Example

22

Chapter 2. Background

Figure 2.4 shows an example of a graph with node and edge labels. A graph mor-
phism from G to G5 is illustrated in Figure 2.5. The dashed vertical arrows represent
the morphism’s node and edge mapping components. This morphism is injective but

not surjective.

hasNameln

managedBy

’, Organisation |« Server

nameServer

A
)
>
©
4

owns

—_——t e g — — — e — — — —_—— e e — ——— -

primaryServer

G 2 1 SOARecord

hasNameln
y \ 4 ' y

\ \ soaRecord |
- - Zone

— Organisation Server
’— managedBy
nameServer
y

owns

FIGURE 2.5: A Graph Morphism From G1 to G2

In order to use categorical constructs on graphs, it is necessary to show that graphs

form a category.

Corollary 2.6. (Category of Graphs [35])

o The class of all graphs (as defined in Definition 2.1) as objects and of all
graph morphisms (see Definition 2.2) forms the category Graphs, with the
composition given in Fact 2.3, and the identities are the pairwise identities on

nodes and edges.

e Given a type graph TG, typed graphs over TG and typed graph morphisms (see
Definition 2.5) form the category Graphsrg.
Definition 2.7. (E-graph and E-graph Morphism [33|) An E-graph G with

G = (Va, Vb, Eq, Exa, Ega, (source;, target;)jcia,na,pay) consists of the sets:

e Vi and Vp, called the graph and data nodes (or vertices), respectively;

23

Chapter 2. Background

e g, Ena, and Egy called the graph, node attribute, and edge attribute edges,

respectively; and the source and target functions:
e sourceq : Eqg — Vg, targetg : Eq — Vg for graph edges;
e sourceny : Ena — Vg, targetya : Exna — Vp for node attribute edges; and

e sourcega : Fpa — Eg, targetga : EFpa — Vp for edge attribute edges

Consider the E-graphs G' and G? with G* = (V4, Vi, Eg, Eg, Eg, (source®, targets
)jeta,Na,pay) for k=1,2. An E-graph morphism f : G1 — G2 is a tuple (fv,, fv,,
TEes [Exas [Eg) With fy 0 VI — V2 and IE; Ej1 — E’J2 forie G,D,j e G,NA FA
such that f commutes with all source and target functions, for example fy, o

sourcel, = source?, o fg. .

Graph transformation has been used as a meta-language to specify and implement
visual modelling techniques, like the UML [33]. In most visual modelling tech-
niques, (typed) attributed graphs are used as a representation mechanism [36]. An
attributed graph can be seen as a graph where attributes are assigned for the nodes
and edges [37]. Several different concepts for typed and attributed graph transfor-
mation have been proposed (e.g. [33, 37]). These approaches followed the algebraic
approach to provide formal definitions of attributed graph transformation. In [33],
the authors introduced a new concept, which is called, E-graphs, which allows both

node and edge attributions.

Definition 2.8. (Attributed Graph and Attributed Graph Morphism [33|)
Let DSIG = (Sp,OPp) be a data signature with attribute value sorts S5, C Sp.
An attributed graph AG = (G, D) consists of an E-graph G together with a DSIG-
algebra D such that L.JSG s, Ds = Vp.

For two attributed graphs AG' = (G', D') and AG? = (G? D?), an attributed

24

Chapter 2. Background

graph morphism f : AG' — AG? is a pair f = (fg, fp) with an E-graph morphism

fa : G* = G? and an algebra homomorphism fp : D' — D?

Definition 2.9. (Typed Attributed Graph and Typed Attributed Graph
Morphism [33]|) Given a data signature DSIG, an attributed type graph is an
attributed graph ATG = (TG, Z), where Z is the final DSIG-algebra. A typed
attributed graph (AG,t) over AT'G consists of an attributed graph AG together
with an attributed graph morphism ¢ : AG — ATG.

A typed attributed graph morphism f : (AG!,t') — (AG?,?) is an attributed graph
morphism f : AG' — AG? such that t? o f = t'.

2.3.2 GT-Based Model Transformation

After having defined the objects of transformation as instances of type graphs sat-
isfying constraints, model transformations can be specified in terms of graph trans-
formation. Formally, meta models are type graphs whose instance graphs represent
models. That means, the type-instance mapping of typed graphs, which has so far
been used to model the relation of objects to their classes and component instances
to their components, shall now be reserved for the mapping between a model and
its meta model. Therefore, the object-class and component instance component

mappings are defined in the meta model itself [32].

Definition 2.10. (Graph Transformation System [33]) A typed graph trans-
formation system GT'S = (T'G, P) consists of a type graph TG and a set of typed

graph productions P.

A typed graph grammar GG = (GT'S, S) consists of a typed graph transformation
system GT'S and a typed start graph S. We may use the abbreviation GT' system

for typed graph transformation system.

25

Chapter 2. Background

The Algebraic/Double Pushout Approach

Various graph transformation approaches have been developed. A general approach
is called the algebraic approach, where an entire sub-graph can be replaced by a
new sub-graph. The algebraic approach is based on pushout constructions in the
category Graphs of graphs. Pushouts are used to model the gluing of graphs, which

is required to apply graph transformation rules to graphs.

Definition 2.11. (Pushout [33]) Given morphisms f: A - Band g: A — C in

a category C', a pushout (D, f', ¢') over f and g is defined by:
e a pushout object D and
e morphisms f/:C — Dand ¢ : B— D with ffog=4¢ o f
such that the following universal property is fulfilled: for all objects X and mor-

phisms h: B — X and k: C' — X with k 0 g = h o f, there is a unique morphism
x:D— Xsuchthat rog =handzo f =k:

We write D = B + 4 C for the pushout object D, where D is called the gluing of B
and C via A.

The core of a graph transformation is a graph production p : L — R consisting of a
pair of graphs L and R. L is called the left-hand side graph (LHS) and R is called
26

Chapter 2. Background

the right-hand side graph (RHS). Applying rule p to a source graph means finding
a match of L in the source graph and replacing it with R, thus creating the target
graph. In the DPO approach, a graph K is used. K is the common interface of L

and R, i.e. their intersection. Hence, a rule is given by a span p: L + K — R.

Definition 2.12. (Graph Production [33]) A (typed) graph production p = (L &
K 5 R) consists of (typed) graphs L, K, and R, called the left-hand side, gluing
graph, and the right-hand side respectively, and two injective (typed) graph mor-

phisms [and r. Given a (typed) graph production p, the inverse production is

defined by p~' = (R & K AN L).

A graph transformation starts by finding a match m of L in the source graph G.
Then, m(L\I(K)) are removed from G to create an intermediate graph D. The
match m has to satisfy the gluing condition (see Definition 2.14). The graph D =
(G\m(L)) Um(l(K)) is obtained by removing the vertices and edges of L from G
that are not in the image [. In the second step, a target graph H is produced by
gluing R\I(K) and D; that is, a pushout D <& K 55 R.

Definition 2.13. (Graph Transformation [33]) Given a (typed) graph production
p=(L LKL R) and a (typed) graph G with a (typed) graph morphism m : L —
G, called the match, a direct (typed) graph transformation G 2L H from G to a
(typed) graph H is given by the following double-pushout (DPO) diagram, where

(1) and (2) are pushouts in the category Graphs (or Graphsrg, respectively):

L~ l K r R
| | |
m (1) k (2) n
! } |
G ~ f D g H
A sequence Gy — G; = ... = G, of direct (typed) graph transformations

is called a (typed) graph transformation and is denoted by G = G,. Forn =0,
27

Chapter 2. Background

we have the identity (typed) graph transformation Gy s Go. Moreover, for n = 0
we allow also graph isomorphisms Gy = Gj,, because pushouts and hence also direct

graph transformations are only unique up to isomorphism.

The gluing condition is a constructive approach to formulate a syntactic criterion

for the applicability of a (typed) graph production.

Definition 2.14. (Gluing Condition [33]) Given a (typed) graph production
p = (L R G R), a (typed) graph G, and a match m : L — G with X =
(Vx,Ex,sx,tx) forall X € L, K, R, G, we can state the following definitions:

e The gluing points GP are those nodes and edges in L that are not deleted by
P, ie. GP = lv(VK) U lE(EK) = Z(K)

e The identification points I P are those nodes and edges in L that are identified
by m,ie. IP={veVi|qw eV, w#v:my(v)=my(w) }U{eec EL|3f €
Ep, f#e:mg(e) =mp(f) }.

e The dangling points DP are those nodes in L. whose images under m are the
source or target of an edge in G that does not belong to m(L), i.e. DP =

{veVy|3e € Eg\mg(EL) : sg(e) = my(v) or tg(e) = my(v)}.

Production p with match m satisfy the gluing condition if all identification points
and all dangling points are also gluing points, ie. /P U DP C GP.

A graph transformation is a sequence of productions applied to a graph. A set of
production rules that may applied to a graph is defined as a graph transformation
system. A graph grammar is basically a graph transformation system with a fixed

start graph.

Two direct graph transformations G 222 H, and G 222 H?2 are in conflict if they

are not parallel independent. This type of conflict is called delete-use conflict.

28

Chapter 2. Background

A critical pair characterises the conflict situation in a minimal context.

Definition 2.15. (Critical Pair [33|) A critical pair for the pair of rules (py, p2) is
a pair of direct graph transformations P; &2 K £ P, in conflict, such that o,
and oy are jointly surjective morphisms. The context is minimal, because o; and o
are required to be jointly surjective morphism. This means that each item in K has
a pre-image in L; or Lo, thus K can be considered as a suitable gluing of L; and

Lo. If GTS does not contain critical pairs, it is locally confluent.

Negative Application Conditions (NACs) allow control over the applicability of rules
in a Graph Transformation System. A NAC is connected to either the LHS or RHS
of a production rule forming a pre or postcondition on the rule. If this pattern is

found in the corresponding host graph, the production cannot be applied.

Definition 2.16. (Negative Application Condition [33]) A Negative Applica-
tion Condition or NAC(n) on L is an arbitrary morphism n : L — N. A morphism
g L — G satisfies NAC(n) on L i.e. g | NAC(n) if and only if does not exists

and injective ¢ : N — G such that gon = g.

A set of NACs on L is denoted by NACL = NAC(n;) | i € I. A morphism g :
L — G satisfies NAC], if and only if g satisfies all single NACs on L ie. g |
NAC(ny)Vi e 1.

Definition 2.17. (Production Rule with NACs [33]|) A set of NACs NACL
(resp.NACR) on L(resp.R) for arule p: L LKL R (with injective [and r) is
called a left (resp. right) NAC on p. NAC, = (NACL, NACR) consisting of a set

29

Chapter 2. Background

of left and a set of right NAC's on p is called a set of NAC's on p. A rule (p, NAC,)
with NAC's is a rule with a set of NAC's on p.

2.3.3 Graph Transformations Tools

In this section, we introduce the transformation language and tool environment that
we use in our implementation of the DNS Dependency Model and its corresponding

model transformation techniques.

2.3.3.1 EMF

The Eclipse Modeling Framework (EMF) [38] provides a modeling and code gener-
ation framework for Eclipse applications for building tools and other applications
based on structured data models. The Essential Meta-Object Facility (EMOF) is
an Object Management Group (OMG) standard for model-driven engineering [39].
The type information of sets of instance models is defined in a so-called core model
corresponding to metamodel in EMOF. The core or metamodel for core models is

the Ecore model.

The EMF model can be seen as a type graph with attribution, inheritance and mul-
tiplicities and its instance model can be seen as a typed attributed graph [40].A
Trans formation consists of a RuleSet containing the set of Rules for the transfor-
mation. Furthermore, it has a link to the core model its instances are typed over. If
needed, a start structure can be defined as well to have a fixed starting point for the
transformation available. A transformation together with a start structure forms an
EMF grammar. An in-place EMF transformation is a rule-based modification of an
EMF source model resulting in an EMF target model. Both, the EMF source and

target models are typed over the same EMF core model which itself is again typed

30

Chapter 2. Background

over Ecore. The transformation rules are typed over the Transformation Model
which itself is an instance of Ecore again. In our approach, we use the Henshin
transformation tool [41], which has its roots in attributed graph transformations.

Henshin offers a formal foundation for validation of EMF model transformations.

An EMF model is a class diagram and can be represented by an attributed type
graph with inheritance and containment [42]. Graph transformation rules specify
local changes on graphs, so-called graph transformations. A rule consists of a left
hand side graph (LHS), a right hand side graph (RHS), as well as a mapping from
LHS to RHS. Although the LHS defines the precondition for the transformation,
i.e. the pattern to be found in the model, its relation to RHS formulates the ac-
tions to be performed. All object nodes and edges which occur in LHS, but not in
RHS are deleted, while all elements occurring in the RHS and not in the LHS are
newly created. Elements occurring in both LHS and RHS have to be there for the
transformation to take place, but are not changed. Moreover, negative application

conditions (NACs) can be formulated.

A NAC consists of an extension of the LHS where the structure not being part of the
LHS is prohibited to occur in the model. Another (implicit) application condition
for graph transformation rules is the so-called dangling condition which allows the
application of a rule only if adjacent edges of nodes to be deleted occur in the LHS,
thus are also scheduled for deletion. Moreover in rule graphs, abstract nodes (typed
over abstract node types) may occur. When a rule is applied, its abstract nodes in
the LHS are mapped to concrete nodes in the instance graph such that each concrete

instance node is in the clan of the corresponding mapped abstract node.

31

Chapter 2. Background

2.3.3.2 Henshin Language and Tools

Henshin [41] provides a state-of-the-art model transformation language for the Eclipse
Modeling Framework. Henshin supports both direct transformations of EMF sin-
gle model instances (endogenous transformations), and translation of source model
instances into a target language (exogenous transformations). The Henshin trans-
formation language uses pattern-based rules on the lowest level, which can be struc-
tured into nested transformation units with well-defined operational semantics. Its
transformation rules are supported by powerful application conditions and flexible
attribute computations. They can be structured by means of transformation units
that can control the order of rule applications. Henshin offers a visual syntax, so-
phisticated editing functionalities, execution and analysis tools. The Henshin trans-
formation language has its roots in attributed graph transformations, which offer
a formal foundation for validation of EMF model transformations. Before defin-
ing rules in Henshin, a model /metamodel should be created using the EMF Eclipse
plug-in. The rules can be applied to an instance model of the model /metamodel,
which can also be created using EMF tools. There are two editors to define model
transformations in Henshin: i) a tree-based editor, generated by EMF itself, and
ii) a graphical editor, implemented using GMF. The graphical editor shows rules in
an integrated manner with the pattern to find (left-hand side, LHS), the resulting
pattern (right-hand side, RHS) and application conditions. In the top of every rule,
its name and parameters are specified. Inside a rule, we create Nodes, Edges and
Attributes. The nodes represent the classes of the metamodel and the edges are used
to specify the link between nodes. Nodes and edges are annotated with stereotypes

(actions). There are a number of actions:

e preserve: the node/edge is preserved during the rule application.

e delete: delete an existing node/edge after the rule application.

32

Chapter 2. Background

nsrecords
(a) ‘ |

NSRecord
hasNameln one _ name: EString
name: EString |
"""""""" arecords
Server |
name: EString namServer
_ Jpaddress: EString ARecord
. name: EString
T pointsto R -
refersTo
nsrecords
‘ NSRecord
hasNameln Zone name:
[-‘-I .Nsl.pnina.ps_
name:
Server _pnina.ps arecords
name: nsl.pnina.ps namServer
ipaddress:
_ 19462255 ARecord
name:
nsl.pnina.ps
pontsto I refersTo

FIGURE 2.6: Attributed Typed Graph Model (a) and Its Instance (b).

e create: create a new node/edge after the rule application.

e forbid: forbid the existence of a node/edge during the rule application.

Figure 2.7 illustrates how the rule createARecord would be represented in Henshin.
In this example, we show how a new component of type ARecord can be added to
the model instance with the zone as the context where the rule will be applied and
servername as input parameters for the rule to indicate the data elements within
this record.

33

Chapter 2. Background

=> Rule createARecord(selectedEObject:Zone, servername:EString)

«Create»

«preserve» «Create»
selectedEObject:Zone [‘Arecord
' arecords =1 name=servername
«forbld» km
arecords «preserve» «preserve» «create»
:Nsrecord «preserve» pointsto
refersto
«forbid» «preserve»
:Arecord :Server
= name=servername pointsto = name=servername

«forbid»

FIGURE 2.7: createARecord Transformation Rule

2.3.3.3 EMF Refactor

EMF Refactor [1] is an existing Eclipse project which can calculate metrics and per-
form refactorings on Ecore and UML models. In particular, EMF Refactor supports
metrics reporting, smell detection, and refactoring for models being based on the
Eclipse Modeling Framework. The following techniques can be used in a concrete

specification of a new EMF model metric, smell, or refactoring:

e Model metrics can be concretely specified in Java, as OCL expressions, by
Henshin pattern rules, or as a combination of existing metrics using a binary

operator.

e Model smells can be concretely specified in Java, by Henshin pattern rules, or

as a combination of an existing metric and a comparator like greater than (>).

e The three parts of a model refactoring can be concretely specified in Java, in
Henshin (pattern rules for precondition checks; transformations for the proper
model change), or as a combination of existing refactorings using the CoMReL

language.

34

Chapter 2. Background

2.4 Model Transformation

Model-driven engineering (MDE) is a discipline in software engineering that relies on
models as first class entities and that aims to develop, maintain and evolve software
by performing model transformations. Models are system abstractions that allow
developers and other stakeholders to effectively address concerns, such as answering

a question about the system or effecting a change [43].

A model is useful if it helps to gain a better understanding of the system. In an
engineering context, a model is useful if it helps in deciding upon the appropriate
actions that need to be taken to reach and maintain the system’s goal. The goal of
software is to automate some tasks in the real world. Models of software require-
ments, structure and behaviour at different levels of abstraction help all stakeholders

deciding how this goal should be accomplished and maintained [44].

Model manipulation is a central activity in many model-based software engineering
activities [45] like, model translations (e.g., translating a UML class model into an
ER model), model augmentations (e.g., weaving aspects into a UML class model),
and model alignments (e.g., mapping a content model to its GUI view), to mention
just a few. An important question concerns the source and target artifacts of the
model transformation. If these artifacts are programs (i.e., source code, bytecode, or
machine code), one uses the term program transformation. If the software artifacts

are models, we use the term model transformation [44].

Model manipulations are usually implemented by means of model-to-model (M2M)
transformations. A M2M transformation transforms a model M, conforming to a
metamodel M M, into a model M, conforming to a metamodel M M, (where M M,

and M M, can be the same or different metamodels). In particular, inspecting and

35

Chapter 2. Background

modifying models to reduce their complexity and improve their readability, main-
tainability and extensibility (i.e. by performing model refactoring [46]) are important

issues of model development.

In order to transform models, these models need to be expressed in some modelling
language (e.g., UML for design models, and programming languages for source code
models). The syntax and semantics of the modelling language itself is expressed by

a metamodel.

Models are usually defined using Domain-Specific Modelling Languages (DSMLs)which
are themselves specified through a meta-model. A domain-specific language (DSL)
is a programming language or executable specification language that offers, through
appropriate notations and abstractions, expressive power focused on, and usually re-
stricted to, a particular problem domain [47|. The key characteristic of DSLs is their
focussed expressive power. A DSML should contain useful, appropriate primitives
and abstractions for a particular application domain. Domain-specific modelling
languages (DSMLs) successfully separate the conceptual and technical design of a
software system by modelling requirements in the DSML and adding technical ele-

ments by appropriate generator technology.

The Eclipse Modeling Framework (EMF) [38] has evolved to a de facto standard
technology to define models and modelling languages. EMF provides a modeling
and code generation framework for Eclipse applications based on the structured
data models. The modelling approach is similar to that of MOF (Meta-Object
Facility) which is the Object Management Group (OMG) standard for model-driven
engineering. EMF supports essential MOF (EMOF) as part of the OMG MOF
2.0 specification [48]|. Containment relations, i.e. compositions in UML, define an
ownership relation between objects. In MOF and EMF, the hierarchical containment
structure is used to implement a mapping to XML, known as XMI (XML Meta data

interchange) [49].
36

Chapter 2. Background

EMF instance model is called rooted if there is one container which contains all other
elements transitively. Although EMF instance models do not need to be rooted in
general, this property is important for storing them, or more general, to define the
model’s extent. EMF instance models can be represented as graphs and EMF model

transformations as graph transformations.

37

Chapter 3

DNS Dependency Model

Model-driven engineering (MDE) [50] is a software engineering discipline that uses
models as the primary artifacts throughout software development processes and
adopt model transformation both for their optimization as well as for model and code
generation. A model is a simplified abstract view of the complex reality. Models
provide abstractions, which allow developers to focus on the relevant properties of
the system, and ignore unnecessary complications [51]. A model has an abstract
and a concrete syntax. The abstract syntax is often defined in terms of a metamodel,
which is an explicit model of the constructs and well-formedness rules needed to build
specific models within a domain of interest. The concrete syntax is the (graphical

or textual) representation of the model.

Although it would be ideal to represent the system with one concise model, a sys-
tem description requires multiple views: each view represents a projection of the
complete system that shows a particular aspect. A view requires a number of di-
agrams that visualise the information of that particular aspect of the system. For
example, the concepts used in the object oriented software system diagrams are

model elements that represent common object oriented concepts such as classes,

38

Chapter 3. DNS Dependency Model

objects and messages, and their relationships, including associations, dependencies

and generalisation [52].

The outline of the chapter is as follows. Section 3.1 gives an overview of the basic
MDE concepts and definitions used throughout this chapter and beyond. Then, the
approach used in modelling the domain name system (DNS) is illustrated in Section
3.2. A diagrammatic representation for the DNS Model and detailed presentation
of the model components, attributes, associations and constraints are presented in
Section 3.1. Model validation in terms of the 6C goal quality model [53] is presented

in Section 3.4.

3.1 Basic Concepts

We start by looking at the concepts that are at the core of MDE that will be used

throughout this chapter.

e System: A system may include anything: a program, a single computer sys-
tem, some combination of parts of different systems, a federation of systems,
each under separate control, people, an enterprise, a federation of enterprises

..etc.

e Model: A model of a system is a description or specification of that system
and its environment for some certain purpose. In [54], Warmer and his col-
leagues state: "A model is a description of a (part of) systems written in a
well-defined language. A well-defined language is a language with well-defined
form (syntax), and meaning (semantics), which is suitable for automated in-
terpretation by a computer". A model is often presented as a combination of

drawings and text.

39

Chapter 3. DNS Dependency Model

e Model-Driven-Engineering: Model-Driven-Engineering (MDE) is an ap-
proach to system development which increases the power of models that work.
It is model-driven because it provides a means for using models to direct the
course of understanding, design, construction, deployment, operation, mainte-

nance and modification.

e Viewpoint A viewpoint of a system is a technique of abstraction using a
selected set of concepts and structuring rules in order to focus on particular
concerns within that system. Here "abstraction" is used to mean the process

of suppressing selected details to establish a simplified model.

e Model-Transformation Model transformation is the process of converting

one model to another model of the same system.

e Implementation An implementation is a specification, which provides all the

information needed to construct a system to put it into operation.

3.2 Modelling the DNS

Efforts to improve risk management related to DNS availability, security, stability
and resilience must be guided by an ability to evaluate these characteristics. We
need to avoid the implications of misconfigurations and bad deployment choices
made by system administrators that may lead to data inconsistencies, vulnerable

configurations or even failure of resolution at an early stage of the design/deployment

of the DNS.

The DNS Dependency Model is an attempt to describe the Domain Name System
(system) operational world for a particular operational goal (purpose) of detecting
violations of the design and deployment principles at the authoritative level (view).

For detecting problems in the configuration and deployment of the DNS, we have to
40

Chapter 3. DNS Dependency Model

search for certain patterns representing those problems in the instances of the model
of the system (i.e., the dependency graphs). This means we have to be able to specify
a problem and to query the model instance about the existence and occurrences of

the specified problem.

From an operational perspective, there are three views of the domain name system:

e The user’s point of view: from this view, the domain system is accessed
through a simple procedure or OS call to a local resolver. The domain space
consists of a single tree and the user can request information from any section

of the tree.

e From the resolver’s point of view, the domain system is composed of an un-
known number of name servers. Each name server has one or more pieces of
the whole domain tree’s data, but the resolver views each of these databases

as essentially static.

e From a zone administrator’s point of view, the domain system consists of sep-
arate sets of local information called zones. The name server has local copies
of data related to some of the zones. The name server must periodically re-
fresh its zones’ data from master copies in local files or foreign name servers
managed by external organisations. The name server must concurrently pro-
cess queries that arrive from users through external DNS resolvers. This is
the authoritative level view that we are concerned in modelling the DNS from

throughout this study.

From the perspective of the authoritative zone administrator, the DNS [22] has

three major components:

e The DOMAIN NAME SPACE and RESOURCE RECORDS, which are speci-

fications for a tree structured name space and data associated with the names.

41

Chapter 3. DNS Dependency Model

Conceptually, each node and leaf of the domain name space tree names a set
of information, and query operations are attempts to extract specific types of
information from a particular set. A query names the domain name of interest
from a particular part of the tree and describes the type of resource information
that is desired. For example, the Internet uses some of its domain names to
identify hosts; queries for address resources, return Internet host addresses (IP

addresses). These components are modelled as part of the DataLayer within

the DNS model.

e NAME SERVERS are physical or logical hosts with server programs which
hold information about the domain tree’s structure of a particular zone infor-
mation. A name server may cache structure of a zone information or about
any part of the domain tree, but in general a particular name server has com-
plete information about a subset of the domain space, and pointers to other
name servers that can be used to lead to information from any part of the
domain tree. Name servers know the parts of the domain tree for which they
have complete information; a name server is said to be an AUTHORITY for
these parts of the name space. Authoritative information is organized into
units called ZONFEs, and these zones can be automatically distributed to the
name servers which provide redundant service for the data in a zone. This
component with its attributes and associations is modelled as part of the Con-

trolLayer within the DNS model.

e HOSTING ORGANISATIONS are entities that are responsible for provid-
ing DNS hosting services. The Domain Name System requires that multiple
servers exist for every delegated (zome). These servers are hosted and man-
aged by providers who have multiple servers in various geographic locations
that provide resilience and minimize latency for clients around the world. By

operating DNS nodes closer to end users, DNS queries travel a much shorter

42

Chapter 3. DNS Dependency Model

distance, resulting in faster Web address resolution speed. The zone manager
coordinates with other peer organisations or commercial DNS hosting compa-
nies to provide secondary DNS hosting for their zone’s data through different
types of mutual agreements. This component with its attributes and associa-

tions is modelled as part of the ManagementLayer within the DNS model.

3.3 The DNS Dependency Model

Throughout this section, we explain how we constructed the DNS Dependency Model
as a unified representation of DNS Dependency Graphs. We are modelling the DNS
system from the prospective (view) of authoritative system administrators and zone
managers. To develop the model, we use Eclipse Modelling Framework (EMF) [38]
as the modelling language for our application domain. EMF (core) is a common
standard for data models, many technologies and frameworks are based on. This
includes server solutions, persistence frameworks, Ul frameworks and support for
graph-based transformation tools. The DNS Dependency Model is composed of the

following elements:

e Operational Entities (e.g. resource records, zones, servers and organiza-

tions).

e Properties of operational entities such as (in-bailiwick which are name servers
with names registered within the same zone and out-of-bailiwick name servers

which are servers with names registered within third party zones).

e Relations between the entities (e.g. access attributes such as dependability,

containment, delegation and management).

The operational DNS entities that appear in our model as shown in Figure 3.1 fall

into two categories: primitive and composed entities. Composed entities have an

43

Jansashuewnud

Chapter 3. DNS Dependency Model

Agpaumo
035439424 sasel|e
: 0o153u10d
guuis3:aweu || Suuisi:aweu || Suuisi:aweu || Suuis3i:aweu || Suuisi:oweu
PJ0I3YSN | [P1023HINVYND P10d3yY p1023YO4NIH || P1023YSA
%0 %0 | spiodsssowews x0 | spiosase =0 spiodasoyuy |+ 0
: s1snJy
SpJodalisu suozpa1eTa[ap SpJ023Jsp
ulewop T H..Hj 1 vV V
ujsweNsey | gulis3:ssad di
| Suuis3:aweu Ts ’ Hmmm_ ._ov<) dulis3:aweu
o1 ulIs3:aweu -
" m._n..N Y
8 .0 auoz EE———. JEYVEIN ={ uonesiuesiQ
S — SJIaAJSDWEU — Agpageuew =
3 sauozqns *0 x 0 + 0 e}
@11 N 10 & 1epa1soy Hmvmumuo_&ﬁ..o @
=)
W3 v m SulIS3-owel SI9AISS BulIS3.oweu z
ju13 :andx3) % 0 _ x 0 5
10M1D uonel’o]od o
13 Aoy HOMION sjou] 098 %9 a
13 1ysauyay ¢ ‘
JuIg :|elas
mc_._umm_”C_EUm .—@>N.—NHNQ L0>N.__O.hu.COU _._0>m._u.:0§wwmcm_>_
p1029YVOS - - z
70 |0J41U0D T°0 10
elep adeuew

duuis3iiaweu

I2POIAISNG

44

d10p11yo

F1GURE 3.1: The DNS Dependency Model Specified in Ecore (The Meta-Meta
Model of EMF).

Chapter 3. DNS Dependency Model

identity and a set of properties. In addition to these, composed entities have a list
of contained entities, which are primitive or composed entities. A composed entity
type is one that contains other entities. The model supports the following composed
entities: Organization, Server and Zone. In order to describe a composed entity
we have to specify its properties, containment structure (i.e. the entities that it
contains), relations and container entity. Three specific dependencies are present

within the DNS operational planes and they are the following;:

e Parent Dependency: resolving the name of a domain name is always de-
pendent on resolving its parent name since the resolver must learn the author-

itative servers for a zone from referrals from the zone’s hierarchical parent.

e Authoritative Name Server (NS) Dependency: A zone is said to depend
on a name server if the name server could be involved in the resolution of names

in that zone.

¢ CNAME Aliasing Dependency: the resolution of an alias is always depen-
dent on the resolution of its target CNAME. If a resolver receives a response
indicating that the name in question is an alias to another name, it must sub-

sequently resolve the target of the alias, and so on until an address is returned.

Although EMF models show a graph-like structure and can be transformed similarly
to graphs [33], there is a an important difference. In contrast to conventional graphs,
EMF models have a distinguished tree structure which is defined by the containment
relation between their classes. An EMF model should be defined such that all its
classes are transitively contained in the root class. Complete details of the DNS

Model is included in Appendix A.

45

Chapter 3. DNS Dependency Model

3.4 DNS Model Quality

In their article, Mohagheghi et al. [53] present the results of a systematic review
of literature discussing model quality in model-based software development. From
40 studies covered in the review, the authors identified six classes of quality goals,
called 6C goals, in model-based software development. They state that other quality
goals discussed in literature can be satisfied if the 6C goals are in place. Here we

shortly introduce the identified 6C goals.

e Correctness: A model is correct if it includes the right elements and correct
relations between them and if it includes correct statements about the domain.
Furthermore, a model must not violate rules and conventions. This definition
includes syntactic correctness relative to the modelling language as well as

semantic correctness related to the understanding of the domain.

e Completeness: A model is complete if it has all necessary information that is
relevant, and if it is detailed enough according to the purpose of modelling.
For example, requirement models are said to be complete when they specify all
the black-box behaviour of the modelled entity, and when they do not include

anything that is not in the real world.

e Consistency: A model is consistent if there are no contradictions within. This
definition covers horizontal consistency concerning models/diagrams on the
same level of abstraction, vertical consistency concerning modelled aspects on
different levels of abstraction as well as semantic consistency concerning the

meaning of the same element in different models or diagrams.

o Comprehensibility: A model is comprehensible if it is understandable by the
intended users, either human users or tools. In most of the literature, the
focus is on comprehensibility by humans including aspects like aesthetics of

46

Chapter 3. DNS Dependency Model

a diagram, model simplicity or complexity, and the use of the correct type
of diagram for the intended audience. Several authors also call this goals

pragmatic quality.

e Confinement: A model is confined if it agrees with the modelling purpose and
the type of system. This definition also includes relevant diagrams on the right
abstraction level. Furthermore, a confined model does not have unnecessary

information and is not more complex or detailed than necessary.

e Changeability: A model is changeable if it can be evolved rapidly and continu-
ously. This is important since both the domain and its understanding as well
as requirements of the system evolve with time. Furthermore, changeability

should be supported by modelling languages and modelling tools as well.

The selection of main quality aspects may vary dependent on the intended modelling
purpose and demonstrates the complexities and challenges of this basic task. In this

context, the following aspects which are most relevant to our model:

e The most important property of a domain analysis model is that it models the
problem domain in the right way, i.e. choosing the right elements and claiming
the right statements. So, 6C goal Correctness is an essential quality aspect
that has to be considered when applying a model quality assurance process.
In our model, we included the relevant operational entities within the DNS
system from the perspective of authoritative domain managers. Those model
elements include the different operational layers and their components (i.e
Resource Records, Zones, Servers, networks, GeoLocations and Organisations).
We presume that each and every component in the model complies completely

with the specifications and operational guidelines of the DNS protocol.

e Since analysis models will be used for communicating with problem domain

experts who are typically experts in the operation and management of the

47

Chapter 3. DNS Dependency Model

DNS but inexperienced in modelling, it is also important that the model is
easily understandable. This implies that the model must not allow different
interpretation results. Our model does not have unnecessary information that
make it more complex. So, 6C goals Comprehensibility, Consistency, and

Confinement can be seen as essential quality aspects.

e Since the purpose of our model is to detect misconfiguration and bad deploy-
ment choices in the model instances from the perspective of domain admin-
istrators and zone managers, we include just the elements that represent the
main operational components within the DNS system from this perspective
and the relationships that reflect the various inter-dependencies within and
between these components. In this sense our model satisfies the 6C goal Com-

pleteness.

e Furthermore, since our model is simple and manageable, the model quality goal
Changeability is present and new models can be easily generated by applying
model transformation techniques on the initial model to improve/optimize
the quality attributes of the operational domain names system as defined in

Chapter 2.

48

Chapter 4

DNS Structural Metrics

Measurement plays a critical role in effective and efficient system development and
operation. Therefore, we need to be able to provide accurate information, recom-
mendations and guidelines to system designers and managers to help them make
informed decisions, plan and allocate resources for the different system configura-
tions and deployment layouts. To compute a metric on a given system, we need
to extract a model of the system. This model is extracted and stored based on
a meta-model that specifies the relevant entities and their relevant properties and

relations.

Throughout this chapter, we utilize a set of Structural Metrics defined over the
DNS Dependency Model as indicators of external quality attributes of the domain
name system. We apply some machine learning algorithms in order to construct
Prediction Models of the perceived quality attributes of the operational system out
of the structural metrics of the model and evaluate the accuracy of these models.
Assessing the quality attributes of the DNS at an early stage of the design/deploy-

ment should enable system administrators to avoid the implications of defective and

49

Chapter 4. DNS Structural Metrics

low-quality designs and deployment choices and identify configuration changes that

might improve the availability, security, stability and resiliency postures of the DNS.

4.1 Definitions and Basic Concepts

A model structural metric or generally any measure is a homomorphism from an
empirical relational system to a numerical relational system; therefore, it is impera-
tive that measures be theoretically analysed within the framework of measurement
theory. We open this section with a set of general definitions on measurement, and

measurement related concepts. The definitions are based on [55]:

Definition 4.1. (Measurement) Measurement is defined as the process by which
numbers or symbols are assigned to attributes of entities in the real world in such

way as to describe them according to clearly defined rules.

This definition of measurement requires some explanations and several further def-
initions. The concepts used in this definition such as entity or attribute will be

defined next.

Definition 4.2. (Entity) We define an entity as the subject of the measurement
process. An entity might be an object within a model instance, or a system specifi-

cation or a phase of a project.

Definition 4.3. (Attribute) An attribute is a feature or property of the entity.
For example, an attribute of a server is its name or IP address, and an attribute
of a zone’s SOA Record may be its primary server name or the value of its expiry

parameter.

Informally, the assignment of numbers and symbols must preserve any intuitive and

empirical observations about the attributes and entities.

20

Chapter 4. DNS Structural Metrics

4.2 DNS structural metrics

To the extent of our knowledge, only very few preliminary studies for defining suit-
able metrics to measure the quality attributes of the DNS system have been con-
ducted [56], [57], [58]. Even within these existing works, not much theoretical or
empirical evaluation of the proposed metrics has been done. An important step to-
wards improved quality assurance of the DNS is a precise quantification of its quality

attributes.

In this chapter, we pursues this line of argument by assessing the characteristics of
of the DNS based on a limited set of structural metrics of the DNS Dependency
Model. The significance of these metrics relies on a thorough empirical validation of
their connection with quality attributes. The main idea behind the design of these

metrics has been comprehensiveness and simplicity.

We tried to cover as many structural characteristics of the DNS model as possible.
To achieve this, metrics proposed in the areas of DNS management [7], [13], [59],
object-oriented software design [60], [61], [62], [63] software model design [64], [65]

and even business process models [66], [67], [68] have been considered.

In order to offer a systematic approach, we focused our research on four internal
characteristics that are essential to DNS interdependencies (i.e. size, structural
complexity, dependency and delegation /inheritance) and classified the metrics based

on these criteria.

4.2.1 Measures of Size

Applying size metrics at the system level we can get a good overview of the dimen-

sions of the system. Applying this category of metrics at the model component level

51

Chapter 4. DNS Structural Metrics

we expect, on the one hand, to detect the servers, zones and organisations that play
an important role in the system design, and on the other hand, to find the name
servers and zones that introduce extremely large or complex dependency chains and
third party influence.

TABLE 4.1: DNS Model Structural Size Metrics.

No. Metric Symbol Explanation

1 Attack Surface AS(z) The set of all elements in the zone,s depen-
dency graph.

2 Redundancy R(z) Minimum number of name servers that if
failed altogether will render the domains un-
der the zone(z) unresolvable.

3 Authoritative NS(z) Total number of authoritative name servers
Name Servers of the zone(z)

4 Number of Zones(z) Total Number of Zones influencing the reso-
Zones lution of domain names under zone(z).

5 Number of Orgs Org(z) Total number of organisations within the de-
pendency graph of zone(z).

6 In-Bailiwick Is(z) Number of authoritative name servers with
Servers names within the zone(z).

7 Out-Of- Os(z) Number of authoritative name servers with
Bailiwick names outside the zone(z).
Servers

The DNS Dependency Model has various levels of abstraction (e.g. system level,
zone /server level, resource record level) and size measures can be defined over the
system model for each level. At the system level a commonly used metric is the
Attack Surface (AS) or total number of elements within the system model. At a
lowest abstraction level, the number of zones can be indicative of the influence of

zones (direct and third party) on the resolution of domain under a particular zone.

4.2.2 Measures of Structural Complexity

Complexity metrics enable us to make a first assessment of the structural complexity

of the given system. One important necessity for DNS proper operation is careful

52

Chapter 4. DNS Structural Metrics

coordination between zone administrators and system managers hosting the author-
itative name servers of the zone. Lack of such coordination can result in increased
risk of failure. The coordination spans both hierarchically (i.e., between parent and
child zones) and laterally, between organizations hosting each other’s zone data (i.e,

between name servers operators).

Structural complexity of the model is a reflection of the amount of coordination
needed to properly manage a certain zone. There are two metrics used to quantify
the structural complexity of a DNS zone. The first metric which measures the lat-
eral complexity of the zone is Administrative Complezity (AC) 7] which describes
the diversity of a zone, with respect to organizations administering its authoritative
servers. The second metric that measures the hierarchical complexity of the zone is
the Hierarchical Reduction Potential (HRP) |7]|, which quantifies how much the an-

cestry of a zone might be reasonably consolidated to reduce hierarchical complexity.

TABLE 4.2: DNS Model Structural Complexity Metrics.

No. Metric Symbol Explanation

8 Administrative ~ AC(z) How many organizations can be involved in
Complexity managing the authoritative name servers of

the zone.

9 Hierarchy Re- HRP(z) How much reduction in hierarchy complex-
duction Poten- ity that can be attained by consolidating the
tial zone records within the parent zone of z.

10 Network Diver- NetD(z) Number of distinguished networks’ Au-
sity tonomous System (AS) numbers which host

the authoritative name servers of the zone.
11 Geographical GeoD(z) Number of distinguished geographical loca-
Diversity tions (countries) which host the authoritative
name servers of the zone.

12 Controllability Co(z) Co(z) = I(Z)Ii(é)s(z)

93

Chapter 4. DNS Structural Metrics

4.2.3 Measures of Dependency /Influence

An analysis of the dependency paths in in the model instance (i.e. the Dependency
Graph) is necessary to determine the level of influence of other zones on the resolu-
tion of domain names under the zone in concern. Interesting metrics in this category
are the number of direct and third party zones and organisations that influence the
resolving of domain names. A cyclic zone dependency occurs when two or more
zones depend on each other in a circular way and the metric Dependency Cyles is a

measure of such configuration.

TABLE 4.3: DNS Model Structural Dependency/Influence Metrics.

No. Metric Symbol Explanation

13 Influencing I(z) The set of all zones in the zone(z) depen-
Zones dency graph.

14 Directly Config- DCZ(z) The number of directly configured zones.
ured Zones

15 ThirdPartyZones TPZ(z) Number of zones influencing the resolution of
zone (z) not explicitly configured by zone(z)

administrator.

16 Directly Config- DCO(z) Number of organisations managing zones
ured Organisa- that are explicitly configured by the current
tions(z) zone(z) administrator.

17 Third Party Or- TPO(z) Number of organisations that manage zones
ganisations(z) that are not explicitly configured by the cur-

rent zone(z) administrator.
18 Dependency Cy- Cycles(z) Number of dependency cycles along the name
cles servers query chains and forming cyclic query
paths.

4.2.4 Measures of Delegation and Inheritance

In the software engineering realm, the need to measure delegation and inheritance

structures is emphasized by many researchers [69], [70]. They suggest that the

54

Chapter 4. DNS Structural Metrics

measurement, should refer to the depth and the node density within the system
model. Within the DNS realm, resolution of domain names under a certain zone
z using the list of name servers configured for that zone, will follow any of the
query resolution paths defined by the names of those servers equally since they will
be selected, each with equal probability. However, its resolution remains entirely
dependent on its parent zone, Parent(z), regardless of which server in the name
server list is selected for query and how far such name server is located within the

system’s model instance.

TABLE 4.4: DNS Model Structural Delegation/Inheritance Metrics.

No. Metric Symbol Explanation
19 Depth D(z) How far the current zone from the ROOT or
how deep the zone in the DNS tree (Data
Plane).
20 Minimum Query MinQP(z) Number of name servers involved in the res-
Path olution of domain names of zone(z) through
the shortest query path.
21 Maximum MaxQP(z) Number of name servers involved in the res-
Query Path olution of domain names of zone(z) through
the longest query path.
22 Average Query AQP(z) Average number of name servers involved in
Path Length the resolution of domain names of zone(z)

through all query paths.

4.3 Interpretation Model

For the proper interpretation of each structural metric defined over the DNS model,
we give the metric definition, context, usability, how to measure , metric range and
a formula for computing that metric. The definition of a complex metric might rely

on one or more basic metrics. Detailed descriptions of complex metrics as well as a

95

Chapter 4. DNS Structural Metrics

comprehensive list of basic metrics can be found in the corresponding interpretation

models in Appendix B.

Table 4.5 shows the interpretation model for the metric Administrative Complex-

ity [7]. In this section, we present the structural metrics defined over the DNS

TABLE 4.5: Interpretation of the Administrative Complexity Metric.

Metric Administrative Complexity.

Definition Describes the diversity of a zone with respect to the organisations
administering its authoritative name servers.

Context Zone

Usability The advantage of mutual hosting of zones between organizations is
an increased availability but at the same time increased potential
of failure and instability of the zone resolution process.

How to Mea- | Count the number of servers managed by each distinguished orga-

sure nization within the set of authoritative name server of zone(z).

Metric Nota- | O,: set of organizations administering authoritative name servers

tion hosting zone (z); n: total number of authoritative name servers of
zone (z); NS?: the subset of name servers administered by organi-
zation o in O,.

Range 0>AC>1

Formula Ac(z) =1-3070 (2™

Dependency Model and computed on a model instance (Dependency Graph). Fig-

ure 4.1 shows part of simple Dependency Graph for the zone(NIC.AA). Based on

the interpretation model presented in Table 4.5, the Administrative Complexity met-

ric is calculated by counting the number of directly configured authoritative name

servers of the zone (z) that are managed by the same organisation and apply the

corresponding formula.

Ac("NIC.AA™) =1-3"0_ | (1)1=0.984375.

The value of this metric is high since each authoritative name server of the zone is

managed by a totally different organisation so the amount of coordination (or lateral

complexity) needed for such a configuration is expected to be very high. Table 4.6

26

Chapter 4. DNS Structural Metrics

(Y

ParentZone

NamServer NameServer

NamServer anic.aa J_K‘NIC'AA)_L b.nic.aa NameServer
> HasNameln N HasNameln

1111 2121242

Network I Geolocation Network I Geolocation
O

Org

% e : UK

HasNameln HasNameln

d.nic.aa

&

NameServer NamServer NamServer

c.nic.aa

< >
3.3.33 4.4.4.4

Network I Geolocation Network I Geolocation
Org Org
¢ PS UsA

Trusts
ORG.D

Trusts

&

Trusts

FIGURE 4.1: Example of a DNS Model Instance (i.e. Dependency Graph) for
Zone(NIC.AA).

shows the values of structural metrics calculated over the model instance shown in

Figure 4.1.

4.4 Theoretical Background

Next we are going to identify the key mechanisms that are involved in the theoretical

definition and implementation of structural metrics of the DNS Dependency Model.

4.4.1 Key Mechanisms

In general, metrics fall into two big categories: group building and property com-

puting. The former category is mainly used for understanding a system while the

o7

Chapter 4. DNS Structural Metrics

TABLE 4.6: Values of Structural Metrics Calculated over the Model Instance

Shown in Figure 4.1.

Metric Value ‘ Metric Value
Size Metrics ‘ Dependency Metrics
AS(z) 9 I(z) 2
R(z) 3 DCZ(z) 2
NS(z) 4 TPZ(z) 0
Zones(z) 2 DCO(z) 4
Org(z) 4 TPO(z) 0
Is(z) 4 Cycles(z) 3
Os(z) 0

Complexity Metrics ‘ Inheritance Metrics

Ac(z) 0.98 | D(z) 3
HRP(z) 0.5 | MaxQP(z) 3
NetD(z) 4 MinQP(z) 3
GeoD(z) 3 AQP(z) 3
Co(z) 1

latter is used for the assessment of the system. The implementation of each of these

requires a particular set of key mechanisms [71].

Group Building Analyses construct collections of model entities that are associated
by a particular rule with the analysed entity. Building a group for a model entity

requires a set of four elementary mechanisms:

e Navigation. All, except trivial metrics, are based on multiple entities so it is
necessary to be able to browse through the model, going from the analysed
entity to a related entity (e.g., from a zone to its parent zone) or to a group
of related entities from the model (e.g., from a zone to the group of its name

servers).

e Selection. Every model entity is described by various attributes but only some
of these are of interest in the context of a particular analysis. Therefore,
selection mechanism should enable the definition of a "view of interest" by

o8

Chapter 4. DNS Structural Metrics

choosing only a subset of an entity’s attributes (e.g., the IP address of an

(anycast) name server from the perspective of the system administrator).

o Set Arithmetic. Groups of entities are after all built by means of set arithmetic.
The most used set operations in analyses are: the addition of an entity to a
group and the union of two or more groups. The Administrative Complexity
formula shown in Table 4.5 is an example of a structural metric calculated

using some set arithmetic operations.

e Filtering. An essential mechanism for building a group with a particular prop-
erty is applying some filtering conditions to an initial larger group. For exam-
ple, getting the group of name servers that has their names in a certain zone
(In-bailiwick servers, Is(z)) requires first a navigation to the group of name
servers associated with a certain zone and then it requires also a filtering op-
eration that builds a new group that keeps only the name server who has its

name in that particular zone.

Property Computing Analyses associate a new, non-elementary, property to an en-
tity. Usually, computing a property is preceded by the construction of an appropriate
product between two sets is also needed. For example getting all the zones that in-
fluence the resolution of domains under another zone is needed in the context of
resolution dependency (influence) metrics group. Thus, we may say that in most of
the cases property computing analyses imply a group building analysis. Therefore,
all key mechanisms identified before are, in principle, needed for a property com-
puting analysis. Additionally, in order to compute a property, usually a numeric or
boolean value computed from a group associated with the entity, we need a fifth

mechanism:

e Property Aggregation. This mechanism allows us to compute and associate a

single value for a group, a value which is aggregated from the values of each

29

Chapter 4. DNS Structural Metrics

part of the group. Probably the most simple property aggregation is to get
the cardinality of a group (used in the computation of most metrics). De-
pending on the type of properties of the entities belonging to the group more
such aggregations can be imagined (e.g., sum or average for numerical prop-
erties, logical AND for booleans). An example of such property aggregation is

computing the Average Query Path, AQP(z) for a zone.

4.4.2 Measurements Frameworks

The DISTANCE measurement framework |72] proposes a set of mandatory proper-
ties, i.e., non-negativity, identity, symmetry, and triangular inequality that need to
be satisfied by any metric in order for it to be considered an acceptable measurement-
theoretic metric. On the other hand, the Property-Based Measurement framework
[73] provides a set of desirable properties for different metric types: size (non-
negativity, null value, additivity), length (non-negativity, null value, identity, mono-
tonicity), and complexity (non-negativity, identity, symmetry, additivity, monotonic-

ity) and recommends that these properties are satisfied as much as possible.

We investigate to what extent our proposed metrics are able to respect these proper-
ties in light of the DISTANCE framework. All of the introduced metrics respect the
four mandatory properties required by the DISTANCE framework to form a valid
metric space. Therefore, the important consequence of satisfying these four proper-
ties is that all of our proposed metrics are theoretically valid DNS model structural
metrics. The set of metrics also satisfy most of the recommended and desirable

features based on the property-based framework.

60

Chapter 4. DNS Structural Metrics

4.5 Predictive Models

Predictive models [74] are created to best predict the probability of an outcome
based on some prior observations. In the following sections, we apply some ma-
chine learning algorithms in order to construct Prediction Models of the perceived
quality attributes of the operational system out of the structural metrics of the DNS
model. Assessing these quality attributes at an early stage of the design/deployment
enables us to avoid the implications of defective and low-quality designs and deploy-
ment choices and identify configuration changes that might improve the availability,

security, stability and resiliency postures of the DNS.

The predictive models are built based on the methodology outlined in Figure 4.2.
These models take the structural metrics of a DNS model instance as input and try

to find the most relevant value of the quality attribute for the given model.

The DNS quality prediction models are developed based on the following machine

learning techniques [75]:

e Random Forest (RF): Random forests or random decision forests are an ensem-
ble learning method for classification, regression and other tasks, that operate
by constructing a multitude of decision trees at training time and outputting
the class that is the mode of the classes (classification) or mean prediction

(regression) of the individual trees.

e Simple Logistic Regression (SLR): SLR is a binary logistic model which is used
to estimate the probability of a binary response based on one or more predictor

(or independent) variables (features).

e Locally Weighted Learning (LWL): Locally Weighted Learning is a class of
function approximation techniques, where a prediction is done by using an

approximated local model around the current point of interest.

61

Chapter 4. DNS Structural Metrics

e Pruning rule based classification tree (PART) A Rule-based classifier that
makes use of a set of IF-THEN rules for classification. The pruning mech-

anism’s efficiency determines the size and accuracy of the final model.

These machine learning techniques are commonly used in the domain of software
engineering for tasks such as software quality analysis and effort prediction. The
models take the structural metrics of a DNS model instance as input and try to find

the most relevant value of the quality attribute for the given model.

We employ the Waikato Environment for Knowledge Analysis (WEKA) [76], which is
a widely used suite of machine learning techniques, to train and test our predictive
models. We use two totally independent datasets. One set is used to train the
models and build the prediction models and the other is used to test the developed
model. For each of the four quality attributes, one instance of each of the mentioned
predictive models is developed (4 model types and 4 characteristics = 16 predictive

models).

In order to evaluate the accuracy of the developed predictive models, we employ two
strategies, namely the percentage of correctly classified instances within the test
dataset and the area under the receiver operating characteristic (ROC), or ROC
curve. ROC Curve is a graphical plot that illustrates the performance of a binary
classifier system as its discrimination threshold is varied. The curve is created by
plotting the true positive rate (TPR) against the false positive rate (FPR) at various

threshold settings.

4.6 Experimental Assessment

The purpose of this study is to identify any significant relationship between a set of

structural metrics defined over a DNS model and the subjective perception of domain

62

Chapter 4. DNS Structural Metrics

T |
| Data Collection and Preparation .
. SerteT Building | Participants’
| Domains »{ Dependency Graphs ' Views
(DGBuilder Tool) | ‘
| Representative Model l | TLDs
Instances (DGs) Structural Metrics’ | Metric-Quality
| 3 Measurements | | Measurements
! (Test Data Set)
| Structural Metrics’
' Measurements |' - = - - = —
\ 4 | I
" MOdS'S'I | Machine |
etric-Quality N | .
P earning
Measurements
(Training Data Set) : Algorithm(s) :
Participants’ I I
Views | WEKA Framework and Tool |

FI1GURE 4.2: Methodology of Building DNS Quality Prediction Models

experts of the DNS quality attributes. Another purpose of the study is to evaluate
how well different prediction models based on the proposed structural metrics can
perform in assessing the perceived quality attributes of the system. These objectives
will be achieved by conducting a controlled experimentation and employing a set of

statistical analysis techniques.

4.6.1 Hypotheses

e H1: Correlations exists between a set of DNS dependency model structural

measures and a set of perceived quality attributes of the DNS.

e H2: Prediction models built based on the proposed structural metrics of the
DNS Model are accurate and effective in predicting the quality attributes of
the DNS system.

63

Chapter 4. DNS Structural Metrics

4.6.2 Variables

In order to proceed with the experiment, the defined hypotheses need to be mapped
onto a set of measurable independent and dependent variables. An independent
variable is the variable that is changed or controlled in a scientific experiment to
test the effects on the dependent variable. These variables are evaluated in the

experiment and will be used in the analysis phase.

Independent Variables: Representative set of eleven structural metrics defined over
the DNS model as shown in Table 4.7. We selected the eleven metrics out of the

DNS Metrics Suite with representative metrics from each category.

TABLE 4.7: List of Structural Metrics Used in the Empirical Assessment.

Number | Measure Symbol
1 Attack Surface AS

2 Number of Name servers ANS

3 Network Diversity NETD
4 Geographical Diversity GEOD
) Redundancy RED
6 Administrative Complexity AC

7 Average Query Path AQP

8 Direct Zones DCZ

9 Third Party Zones TPZ
10 Directly Configured Organizations | DCO
11 Third Party Organizations TPO

To get metrics measurements, we used 10 different model instance of the DNS model
and measured those metrics on each of them. We don’t have a pre-defined store of
such models and have to build them using our DG-Builder tool. We also built
the dependency graphs for 15 Top-Level-Domains (TLDs) that are managed by
the participants of our experiment. This group of TLDs has a diverse range of

dependency graphs from small and compacted ones to large and widely spread ones.

64

Chapter 4. DNS Structural Metrics

Dependent Variables: Four external quality attributes of the DNS system (i.e. avail-
ability, security, stability and resiliency) are considered to be the dependent vari-

ables.

4.6.3 Collection of Data

The subjective opinions of the participants about the quality attributes of the DNS
system were collected using an online questionnaire. During the period of the survey,
the participants had the opportunity to ask questions to the experimenter. The

questionnaire consisted of 45 questions divided in 3 sections as follows:

1. Each participant was asked to answer about 10 general questions related to
their experience with the DNS system as well as the TLD they are responsible

for.

2. Then, the participant was asked to evaluate the perceived quality attributes

of a set of 9 dependency graphs presented as instances of the DNS model.

3. Finally, the participants were asked to assess the quality attributes of the TLDs

under their own management.

The questions assess the quality attributes of the DNS model by asking the par-
ticipants to select one of the five linguistic values shown in Table 4.8. The survey

included instructions, background information, tips and hints for each question.

TABLE 4.8: Linguistic Values used for the subjective evaluation of DNS qualities.

Very Low | Low | Medium | High | Very High
(1) 2 | 6 (4) (5)

65

Chapter 4. DNS Structural Metrics

4.6.4 Participants

The participants were all TLD administrators responsible for managing one or more
top-level domains. They were from different geographical locations with 5 from the
Middle East, 3 from Europe, 1 from the Americas, 4 from the Asia Pacific region and
2 from Africa. Those administrators have a good range of DNS experience ranging

from 3 to 10 years of experience.

The TLDs managed by those administrators have various number of registered do-
main names ranges from a couple of thousand up to millions of domain names.
Figures in Table 4.9 show the geographical distribution of the participants, their
experience with the DNS system and the number of domain names registered under

their TLDs.

It is clear that the set of participants are representative of a good spectrum of DNS

operators around the world and their views can be effectively used in our experiment.

In order to establish the extent of consensus among the subjective opinions pro-
vided by the participants, we perform an inter-rater reliability analysis. We employ
an intra-class correlation (ICC) [77] which is used to assess the consistency, or con-
formity, of measurements made by multiple observers measuring the same quantity.
Table 4.10 reports the results of this statistical test based on a two way random

effects model with a confidence interval of 95%.

As seen in this table, the single measure reliability of the four quality attributes is
higher than 0.67, which shows that a reasonable agreement between the participants
exists in terms of the perceived values for these attributes for each of the objects of

the study.

66

Chapter 4. DNS Structural Metrics

Participants Experience

9
o 8
2
a’
I 6
a5
Z
g 4
G 3
2
o 2
G)
0
3 5 7 10
Number of Participants
Participants Distribution
6
@ 5
[
3
g4
£
O
a3
o
o
9]
Q2
€
z
1 .
0
Middle East Europe Americas Asia Pasific Africa

Total Domains Registered with Participant TLDs
2500000

2000000

1500000

1000000
500000 I I I
. R W
9 10 11 12 13 14 15

Domain Count

T 2 3 4 5 6 7 8
Particiant Top-Level-Domains

TABLE 4.9: Participants of the Empirical Assessment.

67

Chapter 4. DNS Structural Metrics

TABLE 4.10: Intra-Class Correlation (ICC).

Quality Attribute ICC Single Measure
Availability 0.705

Security 0.712

Stability 0.709

Resiliency 0.68

4.6.5 Metric-Quality Correlation Analysis

In this section we will evaluate the first hypothesis which states that a meaningful
correlation can be found between a set of DNS model structural measures and a set

of quality attributes of the DNS system (H1).

In order to test this hypothesis we asked the participants to key in their views
regarding the perceived quality attributes of a set of 9 DNS Dependency Model
instances (i.e. Dependency Graphs). The models varied in terms of their metric
values as shown in Table 4.11. The empirical data that were collected are also
quantitatively reasonable from the perspective of the amount of data. We obtained
540 data points from the subjective opinions of the participants regarding the models
(9 dependency models, 15 participants, 4 quality attributes).

TABLE 4.11: Measurements of Metrics on the 9 DNS Model Instances.

Model| AS | ANS | NETD| GEOD Red | AC | AQP| DCZ | TPZ | DCO| TPO
M-1 |34 |3 3 1 3 089 | 4 3 5 3 6
M-2 |21 |4 4 1 4 098 | 3 4 4 4 3
M3 |13 |4 4 1 4 0.84 | 2 2 0 4 1
M4 |10 |4 1 4 4 0.43 | 2 2 0 1 1
M5 (19 |3 2 1 3 044 |4 4 1 2 3
M-6 |10 |4 4 4 4 05 |2 1 1 4 0
M-7 |15 |6 2 2 2 0.89 | 2 2 0 2 1
M-8 |16 |2 1 1 2 0.5 |2 4 1 1 2
M-9 |21 8 8 8 8 0.84 | 2 2 0 8 1

The metric-quality correlation analysis shows that some of the metrics are in fact

correlated to certain quality attributes with various coefficients. The technique that

68

Chapter 4. DNS Structural Metrics

we explore is the use of Spearman’s Rho correlation, namely to identify relation-
ship between the measured metrics of the models and the four quality attributes.
Spearman’s Rho correlation coefficient is a statistical measure of the strength of a

monotonic relationship between paired data and its value ranges from -1 to 1.

TABLE 4.12: Metric-Quality correlations (Spearman’s Rho).

Metrics Availability | Security Stability Resiliency
AS -.819* -.685%* - 757 0.33
ANS 0.258 -0.079 -0.01 0.02
NETD 0.037 -0.273 -0.027 .666*
GEOD -0.056 -0.302 -0.086 7T
TPZ -.828%* -.703* -.743* 0.248
AQP 0.109 -0.011 -0.004 -0.129
RED 0.02 -0.252 0.127 0.185
AC 0.05 -0.177 0.094 -.536*
DCZ -0.276 -0.479 -0.355 .685*
DCO 0.105 -0.225 0.045 .698*
TPO -.768%* -.609* -.739* 0.156
*. Correlation is significant at the 0.05 level (2-tailed).

According to Spearman’s correlation, a correlation with a significance value greater
than 0.50 can be considered to be significant, and therefore, in our work, such
correlations are considered to be meaningful and are marked as shown in Table 4.12.
As it can be seen, significant correlations can be found between some of the metrics
and the four DNS quality attributes. This shows that the structural metrics defined
for a DNS model can be used as early indicators for external quality attributes of

the DNS. In addition, the correlations can be explained by the following two points:

e Metrics that reflect third party influence (as a result of peering with exter-
nal organizations for secondary server hosting and placing servers under third
party zones) such as AS, TPO and TPZ has clear negative impact on the avail-
ability, security and stability of the DNS. Choosing servers with names under

other zones (increasing third party zones) provides zone redundancy but may

69

Chapter 4. DNS Structural Metrics

incur security and stability threats to the zone due to increasing the Attack
Surface (AS) metric of the model.

DNS administrators should try to avoid such practice by reducing the size of
their dependency graph (AS metric) by placing authoritative name servers for

a certain zone under the same zone.

e Physically distributing the servers (geographical and network wise diversity
metrics) ensures a certain degree of resistance against different types of failures
and subsequently have positive impact on the resiliency of the whole system.
Resiliency of the DNS is positively correlated with those metrics that are
directly configured by the system administrator such as (GeoD, NetD, AC,
DCZ and DCO).

DNS administrators have to pay more attention regarding the deployment of
their servers geographically and from a network distribution prospective. Also
coordination with peer hosting organisations is vital in case of failures and
the necessity to reduce this metric and consequently reduce zone complexity

is clear to guarantee a higher level of resiliency of the system.

4.6.6 Prediction Models

In this section, we will apply some machine learning algorithms in order to construct
prediction models of the quality attributes of the DNS system out of the structural

metrics of the dependency model and evaluate the accuracy of these models (H2).

We used the measured structural metrics of the 9 models with the perceived quality
attributes as keyed in by the participants as the training dataset for the prediction
models. As far as the test dataset is concerned, we constructed the Dependency
Graphs of the 15 participants’ TLDs using our DGBuilder tool and then measured

the various structural metrics on these models. We combined this data with the

70

Chapter 4. DNS Structural Metrics

perceived quality attributes from the participants concerning their own TLDs to
construct the test dataset. The two data sets used in this experiment are totally
independent and they can be effectively used to train the models and test their

performance.

TABLE 4.13: Performance of the Predictive Models in terms of the correctly
classified instances out of the test dataset.

Classifier Name | Availability | Security Stability Resiliency
RF 73% 47% 53% 40%
LWL 53% 53% 67% 33%
SL ™% 53% 20% 27%
PART 20% 73% 20% 73%

Figures from Figure 4.3 to Figure 4.6 show the different parameters used to evalu-
ate the performance of the different prediction models on the test dataset. Model
accuracy is measured by the area under the ROC curve. An area of 1 represents a
perfect test; an area of 0.5 represents a worthless test. Table 6 shows the percentage
of correctly classified instances using each of the predictive models and Figure 5
shows the performance of the predictive models in terms of the area under the ROC

curve and other useful model performance indicators.

The results of applying the evaluation strategies on the produced models indicate
that the RF classifier outperformed other classifiers in producing the best predic-
tion model for the DNS availability, while LWL is the best for stability. PART
outperformed other classifiers in predicting the quality attributes of security and

resiliency.

4.6.7 Threats to Validity

Empirical evaluation is always subject to different threats that can influence the

validity of the results. We will specifically refer to the aspects of our experiment

71

Chapter 4. DNS Structural Metrics

(a) Availability

0.9
0.8
0.7

0.6

0.5

0.4

0.3

0 I I
> II 0 T II M |

TP Rate FP Rate Precision recall F-Measure ROC Area PRC Area

o

B RandomForest ™ LWL B SimpleLogistic B PART

FIGURE 4.3: Availability Prediction Models and their Performance Indicators.

(b) Security

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

TP Rate FPRate Precision F-Measure ROC Area

B RandomForest ™ LWL M SimpleLogistic B PART

FIGURE 4.4: Security Prediction Models and their Performance Indicators.

that may have been affected by these threats.
Conclusion Validity: In our experiment, a limited number of data points were

72

Chapter 4. DNS Structural Metrics

(c) Stability
0.8
0.7
0.6
0.5
0.4
0.3
0.2
< i ol |
0 - C
TP Rate FPRate Precision F-Measure ROC Area

B RandomForest ™ LWL B SimpleLogistic B PART

FIGURE 4.5: Stability Prediction Models and their Performance Indicators.

(c) Resiliency

1
0.9
0.8
0.7
0.6

0.5
0.4
0.3
0.2 I I I
0.1
II [| (1] II all

TP Rate FPRate Precision recall F-Measure Square ROC Area PRCArea
Root Error

o

B RandomForest ™ LWL B SimpleLogistic ™ PART

FIGURE 4.6: Resiliency Prediction Models and their Performance Indicators.

collected due to the limited number of participants amongst the DNS operators.

In addition, there were almost no models at our disposal and we have to build

73

Chapter 4. DNS Structural Metrics

customized models using our DGBuilder tool. These limitations may pose threats

to the drawn conclusions.

Construct Validity: The dependent variables which are the four quality attributes
of the DNS model were measured using the subjective opinion of the participants.
The threat posed by using subjective measurement mechanisms is that different
participants may have different attitudes toward the evaluation of these attributes.
In general, the participants of this experiment have a considerable number of years
of experience within the DNS administration and their subjective views does capture
what we claim to measure. It should also be noted that the used set of metrics may
not be comprehensive and other consecutive research could further complete this

proposed set by defining new metrics from other perspectives.

Internal Validity: Each of the dependency models represented different DNS sys-
tem configuration and deployment structure. However, the models were simple
enough to be understandable by the participants and they were given enough time
(2 weeks) to become familiar with the concepts, structure and components of each
model. The use of the 5-point Likert scale could have impacted the internal validity
of the experiment due to the discrete nature of this ordinal scale in capturing the

participants’ views.
External Validity: The following two issues were considered for external validity:
e the models used in the experiment are representative of wide range of real-
world operational configurations and deployment choices.

e We needed participants with high level of industrial experience to be able to
complete the experiment and the target group of TLD operators did the job

perfectly.

74

Chapter 4. DNS Structural Metrics

Another threat to validity may be related to the tools that were used; however, since
the tools were used to build the models and extract the metrics; we believe that it

possibly affected all of the model measurements in the same way.

4.6.8 Discussion

In our assessment experiment, we used a Likert scale to key in the perceived quality
attributes of the models. We can consider them to be measurements on a quanti-
tative scale, since they represent different levels of perceived qualities. Likert scales
contain multiple items and can be taken to be ordinal scales so descriptive statistics
can be applied, as well as correlation analyses, factor analyses, analysis of variance
procedures, etc. (if all other design conditions and assumptions are met). Any
means and standard deviations obtained from rating data (such as the Likert Scale)
are perfectly valid as descriptions of participants’ behaviour, i.e. how participants

responded when faced with a question and asked to pick a response [78§].

In supervised classification problems with ordered classes, it is common to assess the
performance of the classifier using measures more appropriate for nominal classes,
regression problems or preference learning [79, 80]. Baccianella [79] addresses the
adaptation of existing measures (Mean Absolute Error) to unbalanced data, while
Gaudette [80] compares existing measures concluding that Mean Absolute Error and
Mean Square Error are the best performance metrics. Other strategies encompass

the use of rank order measures |81, 82| or the adaptation of the ROC curve [83].

As it can be seen from Figure 4.3 to Figure 4.6, the Mean Absolute Error (MAE)
is in the worst case less than 0.4 out of 5. We can find an upper and lower bound
on the accuracy of the predictive models. Since the values of the quality attributes
to be predicted are natural numbers from 1 to 5, the error of around 0.4 can either

be rounded up to 1 for the worst case, or considered as is for the best case. If we

75

Chapter 4. DNS Structural Metrics

consider the worst case, the accuracy of the predictive models will be % = 80%;

(5—0.4)
5

however, for the best case, this is equivalent to = 92.5% accuracy for the

predictive model.

Even for the worst case, the accuracy rate of the predictive models is quite high
and supports our hypothesis that acceptable predictive models can be built from
structural metrics of the DNS model in order to predict the DNS quality attributes

of availability, security, stability and resiliency.

However, the application of these measures (MAE) faces some difficulties in the
context of ordinal classification [84]. This will be investigated more in future work

in order to apply a better evaluation parameter for the prediction models.

The Ordinal Classification Index (OCI) proposed in [84] will be used since it captures
how much the result diverges from the ideal prediction and how "inconsistent" the
classifier is in regard to the relative order of the classes. This metric is defined
directly on the Confusion Matrix (CM) specifically to evaluate the performance in

ordinal data classification.

4.6.9 Conclusions

Our findings demonstrate the potential of the proposed DNS Model structural met-
rics to serve as validated predictors of the operational system quality. This work
has implications both for research and practice. The strength of the correlation of
structural metrics with different quality aspects clearly shows the potential of these
metrics to accurately capture aspects that are closely connected with actual usage.
From a practical perspective, these structural metrics can provide valuable guidance
for the DNS system managers and zone administrators, in adjusting their configu-

rations and deployment layout to improve the quality attributes of their systems.

76

Chapter 5

The ISDR Method

During the past thirty years the Domain Name System (DNS) has sustained phe-
nomenal growth while maintaining satisfactory user-level performance. However,
the original design focused mainly on system robustness against physical failures,
and neglected the impact of operational errors such as misconfigurations and bad
deployment choices. Although DNS troubleshooting techniques and problem iden-
tification methods have been proposed and several tools have been built, most of
these methods and tools apply their detection techniques directly on the zone files
through a predefined zone schema and integrity constraints. They don’t take into
account the inter-dependencies stemming from the hierarchical nature of the DNS

or the zone administrators practices.

Instead, we propose a model-based approach that subsumes all the steps necessary
to identify, specify and detect the DNS operational bad smells. We utilize depen-
dency graphs (as instance of the DNS Dependency Model) to identify, detect and
catalogue operational bad smells. Our method deals with smells on a high-level of
abstraction using a consistent taxonomy and reusable vocabulary, defined by the

DNS Model. The method is used to build a diagnostic DNS quality advisory tool

7

Chapter 5. The ISDR method

that detects configuration changes that might decrease the robustness or security

posture of domain names before they become into production.

5.1 Bad Smells

In software engineering, bad smells in code [85] identify risks to quality attributes
of a software system. Code "bad" smells, a term originally coined by Kent Beck
in [86] to refer to "a code smell is a surface indication that usually corresponds to
a deeper problem in the system". The concept of code smells has been proposed
to characterize different types of design shortcomings in code. Additionally, metric-
based detection algorithms claim to identify the "smelly" components automatically.
They are widely used for detecting refactoring opportunities in software [46]. Some
studies [87], [88] have also used the historical data to identify the spots, where

programmers have made changes or refactorings to the software.

Joshua Garcia et. al [89], introduced the concept of architectural "bad smells",
which are frequently recurring software designs that can have non-obvious and sig-
nificant detrimental effects on system life cycle properties, such as understandability,
testability, extensibility, and re-usability. They define architectural smells and dif-
ferentiate them from related concepts, such as architectural anti-patterns and code

smells.

We transfer these ideas to the realm of the DNS, where operational bad smells are
defined as configuration and deployment choices by zone administrators that are not
errant or technically incorrect, and do not currently prevent the system from doing
its designated functionality. Instead, they indicate weaknesses that may impose

additional overhead on DNS queries, or increase the system vulnerability to threats,

78

Chapter 5. The ISDR method

or increase the risk of failures in the future. Despite its tremendous success, DNS is

not without weakness.

The critical importance of the DNS places a high standard on its resilience and
its design warrants further examination, as evidenced by the following example.
During January 2001 all the authoritative servers for the Microsoft DNS domain
became inaccessible [2]|. This failure was due to a simple configuration mistake
where Microsoft placed all its DNS servers behind the same network router, despite
the well documented guidelines on geographically dispersing DNS servers [9], and
the switch failed. During this event, the number of DNS queries for the Microsoft
domain seen at the F root server surged from the normal 0.003% of all the queries
to over 25%. Other root servers had similar increase of queries for the Microsoft

(microsoft.com) domain.

Typical DNS smells have to do with redundancies, ambiguities, inconsistencies, in-
completeness, non-adherence to DNS design conventions, best practices or standards,
and so on. The challenge is to come up with a comprehensive and commonly ac-
cepted list of DNS operational smells, as well as tool support to detect such smells.
What is also needed is a good understanding of the relation between those smells
and correction mechanisms (in the form of graph-based refactorings), in order to be
able to suggest, for any given smell, appropriate refactorings that can remove this

smell.

5.2 The ISDR Method

The ISDR (Identification, Specification, Detection and Refactoring) method pro-

posed throughout this chapter is composed of four stages as shown in Figure 5.1 and

79

Chapter 5. The ISDR method

produces the DNS operational bad smells and refactoring catalogues. The following

items summarise these four stages:

e [dentification, through domain analysis using DNS standards in the form of
Request for Comments (RFCs), best practices and policy documents, literature

review and DNS expert views.

e Specification of a set of operational bad smells using a reusable vocabulary
and classification of the bad smells in a taxonomy that shows the scope of
the inspection element or plane and system’s external qualities affected by the

smell.

e Detection of bad smells in the form of general detection queries, procedures

and formulas.

e Refactoring as a correction mechanism to the operational bad smells in the
form of graph-based model transformations. Other correction mechanisms

may be formulated in the form of reports or reconfiguration recommendations.

In the following subsections, we elaborate on each step of the ISDR method more

with clarifying examples and validate the method using case studies.

5.2.1 Bad Smells Identification

The first stage in our method consists of performing deep analysis of the DNS stan-
dards, Request for Comments (RFCs), best practices and policy documents to iden-
tify weaknesses in configuration and deployment choices made by administrators
that may impose additional overhead on DNS queries, or increase the system vul-
nerability to threats, or increase the risk of cascaded failures. In the following, we

show, through several examples, how this step has been used to extract smells along

80

Chapter 5. The ISDR method

Bad Smells
and
Refactoring
Catalogue

Conforms to

DNS Reference
Model

Detection
Technique

Defined Over

Metrics Suite

Taxonomy

List of Bad Smells
and Quality Impacts

Best Practices
Violations,
Quality
Degrading

FIGURE 5.1: The ISDR Method.

with quality attributes that may be affected by the presence of such misconfigura-
tion or bad deployment and how to detect the occurrence of such smell in the zone’s

dependency graph.

81

Chapter 5. The ISDR method

1. When a parent zone P delegates part of its name space to a child zone C,
P stores a list of NS resource records for the authoritative servers of zone
C. This list of NS resource records are kept both at the parent and the
child zone. Whenever the operator of zone C' makes changes to one or more
of C's authoritative servers, he must coordinate with the operator for zone
P to update P accordingly. In reality, there are cases where changes made
at the child zone are not reflected at the parent zone, usually due to "bad”
coordination between them. As a consequence, the NS RR set of the child
zone can be completely different from the NS RR set of the parent zone.
Even though the parent and the child zone are not required to list the same
NS RR set (due to DNS specifications’ ambiguity in this regard), delegation

inconsistency can affect the availability and stability of the zone.

2. When name servers are selected as secondary name servers for a zone, they
should be placed in a topologically resilient manner. If more than one name
server is on the same physical subnet, then any outages on that subnet would
affect all of the name servers on it; as such, the recommendation is that name
servers be allocated on distinct physical subnets and distinct geographical loca-
tions. It’s important when picking geographical locations for secondary name

servers to minimize latency as well as increase reliability.

3. The DNS system relies heavily on replication (based on zone file transfers)
to achieve its reliability goals, but this form of replication typically requires
cooperation and coordination with other DNS administrators and hosting or-
ganisations including parent zone managers. Such coordination is essential
to the stable and resilient operation of the DNS and the ability for a quick

recovery from system failures.

4. Distributed management is crucial in achieving DNS’s scalability, however it

also leads to inconsistencies due to mistakes in coordinating zone configurations

82

Chapter 5. The ISDR method

and changes. While human induced configuration errors are a well-known

fact, DNS delegation configurations require consistency across administrative

boundaries, a condition that is even more prone to errors.

Unfortunately

the current system does not provide any automated means to communicate

for coordination. Today configurations are communicated manually, and this

process is highly subject to errors.

Table 5.1 shows examples of design rules, best practices and operational recom-

mendations within the different DNS operational planes that are being used in the

identification stage of the ISDR method.

TABLE 5.1: Identification of Bad Smells in the DNS Planes

No. Design Rule/Best Practice

Reference Effects On Qual-
ity

Bad Smell(s)

Data Plane

1 SOA records with various timers
have been set (far) too low or
(far) too high. Especially for top
level domain name servers. This
causes unnecessary traffic over in-
ternational and intercontinental
links.

RFC1537 Availability, se-
curity and sta-
bility

Zone Thrush
and Zone
Drift

Control Plane

2 It is required to have at least two
nameservers for every domain,

RFC1912, Availability, se-
2182 curity, stability

LowANS, False

or Diminished

though more is preferred with sec- and resilience redundancy
ondary servers topologically and
geographically dispersed.

Management Plane

3 The trust relationships involved RFC3833 Security and Betrayal
in zone transfer are still very availability By Trusted
much a hop-by-hop matter of Server

name server operators trust-
ing other name server operators
rather than an end-to-end.

83

Chapter 5. The ISDR method

5.2.2 Formal Specifications

The weaknesses identified in the previous step, termed as operational bad smells, are
then defined using certain key terms, unified vocabulary and reusable concepts in this
domain. Providing the bad smells in a flat structure without defining any categories
or relationships among the smells hinders their formal specification, comparison, and,
consequently, detection. Key concepts are identified in the text-based descriptions
of smells in the literature. They form a unified vocabulary of reusable concepts
to describe smells. The concepts, which constitute a vocabulary, are combined to
specify smells systematically and consistently. In addition to a unified vocabulary
of reusable concepts, a taxonomy and classification of smells are defined using the

key concepts.

According to Cambridge dictionary, a taxonomy is "A system for naming and orga-
nizing things . . . | into groups which share similar qualities". Some taxonomies,
such as the taxonomic organisation of species in a biological context, are hierarchical,
but this is not a prerequisite. The taxonomy highlights and charts the similarities
and differences among smells and their key concepts. We developed a taxonomy
that describes the structural relationships between the various bad smells. The tax-
onomy has an important role in defining the scope of inspection and highlighting
the metrics or structural properties related to the bad smell. It classifies the bad

smells based on the following categories:

1. Operational plane: Data, control and management planes.
2. Affected entity types: Single type, inter-type, intra-type, or inter-zone.

3. Property of the smell: Lexical, structural or measurable.

84

Chapter 5. The ISDR method

We distinguish bad smells occurring in and among resource records within zones
(single type, inter-type, intra-type and intra-zone). We further divide those sub-
categories into structural, lexical, and measurable smells. This division helps in
identifying appropriate detection techniques. For example, the detection of a struc-
tural smell may essentially be based on static analyses of the model instance; the
detection of a lexical smell may rely on best practices or guidelines recommendations
analysis; the detection of a measurable smell may use metrics. Our classification is

generic and may classify smells in more than one category (e.g., Corrupted Parent).

Figure 5.2 shows a graphical representation of the DNS operational bad smells tax-
onomy. The taxonomy is generic and defines a bad smell in more than one category.
It can easily be extended by defining new categories of bad smells based on subse-
quent iterations of the DNS operational domain analysis. So far we have already
identified 19 bad smells that can be used as a representative set that spans the dif-
ferent operational planes with various detection properties. Since several smells are
closely related and the number of the smells is quite high, we feel that this taxonomy,
which categorizes similar bad smells, is beneficial. We believe that the taxonomy
makes the smells more understandable and recognizes the relationships between the

smells.

5.2.3 Detection

One can develop a set of simple mechanisms to detect some of the lurking errors
identified in the zone configuration and deployment choices of the DNS. Delegation
inconsistency and lame delegation errors can be detected by a simple process between
parent and child zones to periodically check the consistency of the NS records stored
at each place. Cyclic zone dependency can be detected via automatic checking by

trying to resolve a name through each of the authoritative servers in the zone.

85

Chapter 5. The ISDR method

Bad Smell
Information Leakage |
Zone Drift |
Single Type
Zone Thrash |
Ill Formed RR |
Missing RR |
Incorrect Parameter Value |

Ambiguous Data |

Small Number of ANSs |

' Invalid Trust Anchor |

- Untrusted Organizationl
; Large Attack Surface |

Excessive Zone Influence |

Structural

Bad Smell

False Redundancy |

Diminished Redundancy |

High Zone Complexity |

Intra-Zone

Cyclic Dependency |

‘
™ e
m‘ Non-Optimal Query Path |

FI1GURE 5.2: Bad Smells Taxonomy.

Delegation Inconsistency |

Although there may not be a single check to detect the diminished server redundancy
problem, automatic periodic measurement between servers of the same zone on their
IP address distance, geographical distance and hop count distance can effectively
reflect the diversity degree in their placement. These simple checks are absent from

the original DNS design, not because they are difficult to do but a lack of appreciation

86

Chapter 5. The ISDR method

of the severity of human-introduced errors.

In order to be able to detect bad smells occurring in model instances of our DNS
Model, we need to capture deviations of the particular instance model from the good
and recommended operational best practices. Lexical and structural properties are
used to detect some of the bad smells using direct queries on the instance model

such as (Are there any cycles in the dependency graph?).

The metric-based approach combines a set of metrics and set operators to compare
them against absolute or relative threshold values. Setting the absolute or rela-
tive operational metrics threshold values can be done using local policy constraints
or best practices from the wider DNS domain literature and expert views. In the
context of metrics-based analysis techniques, the DNS Structural Metrics Suite de-
fined over the DNS Model and presented in Chapter 4 is a valuable tool that is
being utilised in detecting the presence of measurable bad smells in the DNS model

mstance.

5.2.4 Refactoring

In the area of object-oriented programming, refactoring [90] is the technique of choice
for improving the structure of existing code without changing its external behaviour.
Graph-based, general refactoring rules [91]| are being suggested to remove the bad
smells identified and detected in the previous stages. The general approach of refac-
toring [46] is to include the following steps: (1) identify the location for refactoring,
(2) determine which refactoring rules should be applied and on what sequence, (3)
guarantee that refactoring rules are preserving the external behaviour of the system,
(4) application of selected refactoring rules, (5) assess the effect of refactoring on the
system’s external qualities and (6) maintain the consistency between the refactored

elements and other system artefacts.

87

Chapter 5. The ISDR method

5.2.5 Bad Smells’ Quality Impacts

In the DNS realm, operational bad smells are configuration and deployment choices,
made by zone administrators that are not totally errant or technically incorrect, and
do not currently prevent the system from doing its designated functionality. Instead,
they indicate weaknesses that may impose additional overhead on DNS queries, or
increase the system vulnerability to threats, or increase the risk of failures in the

future. For example, best practices for ensuring availability and security of the DNS

TABLE 5.2: DNS Operational Bad Smells

No | Bad Smell Quality Impacts
Availability | Security | Stability | Resiliency

1 | Unnecessary RRs (Informa- X

tion Leakage)
2 Large Parameter Value X X X

(Zone Thrush)
3 | Small Parameter Value X X X

(Zone Drift)
4 | Ill-Formed RRs X
5 Missing RRs X X
6 | Incorrect Parameter Data X X
7 | Ambiguous Data X X
8 | Small Number of ANSs X X X
9 | Invalid Trust Anchor X
10 | Untrusted-Peer Organisa- X X X

tion
11 | Large Attack Surface X X X X
12 | Excessive Zone Influence X X
13 | False Redundancy X X
14 | Diminished Redundancy X X
15 | High Zone Complexity X X
16 | Cyclic Dependency X X
17 | Non-Optimal Query Path X X
18 | Delegation Inconcsistency X X

infrastructure recommend (1) defining a number of name servers for each domain,

(2) configuring these name servers under at least two different parent domains and

88

Chapter 5. The ISDR method

(3) placing the physical name servers, hosting the zone files for the domain, in
separate networks. The redundancy provides for stability of the domain and prevents
single point of failure. In particular, if one of the parent domains is not accessible,
the domain will remain functional via the other parent domain; in case one of the
networks, hosting the name servers, is under attack, the other name server, located

in available networks, can be reached.

On the flip side, while ensuring availability, this redundancy introduces new depen-
dencies which can be utilised to attack the domain. Specifically, if vulnerability
exists in a network or a name server hosting the domain, it can be exploited to
attack the domain, e.g., inject spoofed DNS record for domain hijacking. Through
an extensive literature review, we found that the presence of operational bad smells
have direct impact on the external qualities of the domain name system and Ta-

ble 5.2 shows the quality impacts resulted from the presence of the various already

identified bad smells.

5.2.6 Bad Smells Catalogue

The set of identified bad smells is being formally specified in concise and reusable
terms based on a template that includes the bad smell name, type, inspection
plane(s), description, occurrences, quality impacts and detection strategies. The
bad smells catalogue is being expanded further by including refactoring rules for
each smell and how these rules have to be applied on the model instance to elim-
inate the concerned bad smell. Example of catalogue entry is shown in Table 5.3

while the complete catalogue is listed in Appendix C.

89

Chapter 5. The ISDR method

TABLE 5.3: Catalogue Entry for the Cyclic Dependency Bad Smell.

Name Cyclic Dependency.

Type Intra-Zone, Structural.

Inspection Data and Control Planes.

Planes

Occurrences Cyclic zone dependency occurs when two or more

zones depend on each other in a circular way.
Quality Impacts | Reduced availability and reduced resiliency.
Detection Strat- | Is there any cycle in the Dependency Graph?

egy (Query on the DNS Operational Model Instance).
Correction Add a glue record for the (out-of-bailiwick) au-
Mechanism thoritative name servers involved in the cycle in

(Refactoring) the zone file.

5.3 Method Validation

We validate our method by applying it and its associated execution technique to a
bad smell that has been already identified as one of the most important misconfig-

urations in the literature. |7, 9, 15, 17, 19|.

Case Study: Cyclic Dependency

To achieve acceptable geographical and network diversity, zone administrators often
establish mutual arrangement with peer organizations to host each other’s zone files.
Authoritative name servers located in other zones are normally identified by their
names instead of their addresses and called out-of-bailiwick name servers. A cyclic
zone dependency [15] occurs when two or more zones depend on each other in a

circular way.

Table 5.4 shows that the zone (example.com) has 4 authoritative name servers re-
sponsible for resolving domain names under this zone as defined in its parent zone
(.com). Two servers (nsl and ns2.example.com) are in-bailiwick servers and it
is mandatory to include their IP addresses in the parent zone in order to prop-
erly resolve domain names under that zone. The other two servers (dnsl and

dns2.example.net) are located in another zone and there is no need to include their

90

Chapter 5. The ISDR method

IP addresses in the (.com), example.com parent zone file. On the other hand, the
(.net) zone which is the parent of the (example.net) zone, is served by two out-of-
bailiwick name servers located in the (example.com) zone.

TABLE 5.4: Content of Zone File for Case Study.

$ORIGIN .com. $ORIGIN .net.

example.com. NS | nsl.example.com. example.net. | NS| nsl.example.com.
example.com. NS | ns2.example.com. example.net. | NS| ns2.example.com.
example.com. NS | dnsl.example.net.

example.com. NS | dns2.example.net.

nsl.example.com.| A | 1.1.1.1

ns2.example.com.| A | 1.1.1.2

In this example, the two zones work nicely under normal circumstances but if (for
any reason), both in-bailiwick name servers become unavailable, both example.com
and example.net zones will not be reachable because the IP addresses of the other
two authoritative name servers can’t be resolved. This example illustrates the failure
dependency between zones, where the failure of some servers in one zone will render
the other zone unreachable. The quality impacts of such a bad smell are significant

reduction on availability and resiliency of the zone against multiple points of failure.

Checking each zone individually for configuration errors will not lead to the detection
of this Cyclic Dependency bad smell since they are both configured correctly. On
the other hand, constructing the dependency graph will easily show the occurrence
of two distinct circular paths that identify the presence of this particular smell.

Figure 5.4 shows the concerned part of the dependency graph of our example.

Cyclic Dependencies can be eliminated by the creation of specific resource records
(RRType: A) for both out-of-bailiwick servers (dnsl and dns2.example.net) in the
(.com) zone. This enables resolving the domain names under the (example.com)
and (example.net) zones even when the two in-bailiwick servers are unreachable.
We execute this correction mechanism in the form of a graph transformation based

refactoring rule (CreateARecord) as shown in Figure 5.4. Since we have two distinct

91

Chapter 5. The ISDR method

namservers
NSRecord
Name:
nsteamplecom ["cro o g NSRecord
refersto _ ARecord refersto Name:
pointsto - dnsl.example.net
| ns1.example.com nsrecords
arecords
hasNameln
Server — Server —
NAME: NS1.EXAMPLE.CoM | nasNameln NAME: DNS1.EXAMPLE.NET
1P:1.1.1.1 l | RE%1543)
T namservers namservers
Zone Zone [—
namservers namservers
name: Name:
¢ EXAMPLE.COM ¢ EXAMPLE.NET
Server Server
NAME: NS2.EXAMPLE.COM hasNameln NAME: DNS2.EXAMPLE.NET
IP:1.1.1.2 IP:11.14 hasNameln
arecord nsrecords
{ ARecord
pointsto [NSRecord
ame:
relfersto ns2.example.com refersto [yome:
dns2.example.net
NSRecord
nsrecords
Name:
ns2.example.com
namservers

FI1GURE 5.3: Part of the Dependency Graph of the Case Study.

Z1:Zone |€— S1: Server
|
nameservers
' nameservers
S1: Server
[=4
2
hasNameln S 71: Zone
w
©
=
Z22: Zone
|
nameservers
Y
S2: Server
LHS RHS

F1GURE 5.4: Refactoring Rule: CreateARecord.

matches for the LHS of the rule on the actual instantiation of the model (the de-
pendency graph in Figure 5.3), then the rule needs to be applied twice in order to
remedy all occurrences of the bad smell. A new zone file can then be automatically

generated from the newly transformed model instance (i.e. dependency graph) as

92

Chapter 5. The ISDR method

shown in Table 5.5 and /or a set of recommendations can be presented to the system

administrator to eliminate the bad smell.

TABLE 5.5: New Zone File Generated After Executing the Refactoring Rule(s).

$ORIGIN .com.

$ORIGIN .net.

example.com.
example.com.
example.com.
example.com.

NS
NS
NS
NS

nsl.example.com.
ns2.example.com.
dnsl.example.net.
dns2.example.net.

example.net.
example.net.

NS
NS

nsl.example.com.
ns2.example.com.

nsl.example.com.
ns2.example.com.
dnsl.example.net.
dns2.example.net.

=

1.1.1.1
1.1.1.2
1.1.1.3

1.1.14

93

Chapter 6

ISDR Method Implementation

The ISDR method lays the basis for developing a visual advisory tool (the DNS
Advisor) for system administrators to analyse, discover, and remedy operational
bad smells. This chapter presents the application of the various techniques within
the ISDR method utilizing the tools within the EMF Refactor Framework [38] and
our dependency graph builder the DG Builder tool. The ISDR method is executed on
a particular instance of the DNS model (i.e. Dependency Graph) using the following

steps:

e Step 1: Extract the dependency graph from the zone configuration file and

the authoritative name servers’ deployment using the DGBuilder tool.

e Step 2: Query the dependency graph for any bad smell using the methods
and metrics defined in the Bad Smells Catalogue using the specifications of

the techniques through the EMF Refactor Framework.

e Step 3: Apply relevant refactoring rule(s) on all matching occurrences of the
LHS of the rule on the instance model. A new dependency graph is generated

as an output of this step.

94

Chapter 6. ISDR Method Implementation

e Step 4: New zone file(s) and authoritative name servers’ deployment layout
can be automatically generated from the new Dependency Graph or a set of
recommendations can be presented to the system administrator with relevant

quality impacts.

In this chapter, we discusses the specifications, tools and implementation of the
ISDR method techniques and presents several case studies for its validation. Section
6.1 explains the various tools used in our implementation including our in-house

developed DGBuilder component.

The DGBuilder is used to build the DNS model instance (Dependency Graph) for
a "live" zone out from the zone configuration and authoritative name servers’ de-
ployment layouts. Section 6.2 describes how the various ISDR techniques (including
metrics, smells and refactorings) are specified using the EMF Refactor framework
and then applied on the generated model instances as case studies to validate the
method and verify its usefulness in detecting and refactoring DNS operational bad
smells. Section 77 gives a short background on related work in the software engi-

neering fields of bad smells detection and refactoring.

6.1 Tool Support

The application of the ISDR method, in a systematic process, can automatically
direct the zone administrator to places in the zone file that contain potential design
and deployment problems that may compromise availability, security, stability or
resiliency of the domain name system before the changes become into production.
Zone administrator are able to run several scenarios and apply several refactoring
rules through the tool to determine the solution that best meets their local policies.
The following frameworks and modelling languages have been identified and used in

order to implement the ISDR method as part of the DNS advisory tool.
95

Chapter 6. ISDR Method Implementation

6.1.1 Eclipse and EMF Modelling

The last decade witnessed a dramatic growth of software intricacy and different tech-
niques and methodologies have been proposed to ease complex system development.
Model Driven Engineering (MDE) [50] shifts the focus of software development from
coding to modelling and lets software architects harness the opportunity of dealing

with higher-level abstractions.

The EMF project [38] is a modeling framework and code generation facility for
building tools and other applications based on a structured data model. From a
model specification described in XMI, EMF provides tools and runtime support to
produce a set of Java classes for the model, along with a set of adapter classes that
enable viewing and command-based editing of the model, and a basic editor. EMF
(core) is a common standard for data models, many technologies and frameworks

are based on.

6.1.2 Henshin

The Henshin [41] project provides a state-of-the-art model transformation language
for the Eclipse Modelling Framework. Henshin supports both direct transformations
of EMF single model instances (endogenous transformations), and translation of
source model instances into a target language (exogenous transformations). The

Henshin language and toolset supports, the following features:
e Expressive transformation language with a graphical syntax, pattern matching
and control-flow constructs with parameter passing,

e Support for endogenous and exogenous transformations, with natural treat-

ment and efficient in-place execution of endogenous transformations,

96

Chapter 6. ISDR Method Implementation

e Formal graph transformation semantics, with arbitrary mixing of different

graph transformation styles (DPO/SPO),

e Efficient interpreter engine based on constraint solving, and verification using

state space tools and many other features.

6.1.3 EMF Refactor

EMF Refactor [1] is an existing Eclipse project which can calculate metrics and per-
form refactorings on Ecore and UML models. In particular, EMF Refactor supports
metrics reporting, smell detection, and refactoring for models being based on the
Eclipse Modeling Framework. The following techniques can be used in a concrete

specification of a new EMF model metric, smell, or refactoring:

e Model metrics can be concretely specified in Java, as OCL expressions, by
Henshin pattern rules, or as a combination of existing metrics using a binary

operator.

e Model smells can be concretely specified in Java, by Henshin pattern rules, or

as a combination of an existing metric and a comparator like greater than (>).

e The three parts of a model refactoring can be concretely specified in Java, in
Henshin (pattern rules for precondition checks; transformations for the proper
model change), or as a combination of existing refactoring using the CoMReL

language.

Figure 6.1 shows the architecture of the EMF Refactor specification module us-
ing a UML component model. The specification module provides the generation

of custom EMF Quality Assurance (QA) plugins containing the metric-, smell-, or

97

Chapter 6. ISDR Method Implementation

a ” nonant a

Spedification Module Custom QA Plugin

1 4 j
companent «Component]_
Specification Wizard :-—| Code Generator
Extension Poinl

1)
components

| Metric/Smell/Refactoring

|

component

Java Emitter Templates

]

Concrete Specification

I 1

: ! 5 '

component
Eclipse Modeling Framework

FIGURE 6.1: The EMF Refactor Specification Module. Adapted from [1].

refactoring-specific Java code. The specification module provides wizard-based spec-
ification processes (Specification Wizard component within the Specification Module
in Figure 6.1). After inserting specific information (like the name of the metric,
smell, or refactoring, defined over the corresponding model/meta-model), the code
generator uses the Java Emitter Templates Framework [92] to generate the specific

Java code required by the corresponding extension point.

6.1.4 Dependency Graph Builder (DGBuilder)

Example instances of the model can also be created using the EMF Examples Cre-
ation Wizards. Using this method, the different model elements can be created as
children of the main (root) model element (DNSModel). On the other hand and
in order to generate the model instance for various zones’ configurations and sever
deployments, the DGBuilder tool through the algorithm listed in Listing 1 is used.

The dependency graph building tool (DGBuilder) is integrated directly into the

98

Chapter 6. ISDR Method Implementation

eclipse development environment by creating a dynamic instance of the DNS model
in the Runtime IDE. The DG building algorithm is composed of the following three

main steps:

1. Step One [Lines 1-6]: Necessary (Infrastructure) resource records are ex-
tracted from the zone file (Z) using the DNS dig utility. We limited our focus
in this research on the infrastructure DNS resource records, which affect the
delegation consistency, security and the stable operation of the DNS system.
In order to ensure the correctness of the information retrieved, all authori-
tative name servers (queried from the parent zone) are queried and just the
agreed upon results are returned. Analysing the zone file and extracting the
dependencies between the different resource records and their corresponding

data layer elements in the model, is done in this step.

2. Step2 [Lines 7-17|: Physical elements (servers, geographical locations, net-
works, and organisations) with their attributes are constructed based on the
information extracted from the chain of authoritative name servers and organi-
zations involved in the resolving process of domains under that particular zone
(Z). All types of dependencies and recursive queries are followed to get the full
dependency graph of the zone in the three operational planes. Certain utilities
are being used such as MaxMind [45] GeolP database system for extracting
geographical locations associated with server IP address, Team Cymru’s [46]
WHOIS querying system and BGP Toolkit [47] for IP addresses, BGP Prefixes
and ASN Numbers.

3. Step3 [Lines 18-23]: DG instance model is built based on a predefined
template that ensures that it is conforming to the DNS model. When the
model instance file is imported to the Eclipse runtime IDE, model validation

is done to ensure the correctness of the model instance generated.

99

Chapter 6. ISDR Method Implementation

Algorithm 1 Dependency Graph (Model Instance) Generation Algorithm.

Require: Z: Zone name

1: XMI «) /* Initialize the array representing the output file

2: RNS = Pick One of the ROOT DNS Servers (a,b,c ... m.root-servers.net)

3: Get SOA Record for Zone Z /Dig Command [dig +nocmd @QRNS $domain SOA
+noall +-answer]|

4: PNS <« Primary Name Server /* Extract the Primary Name Server from the
SOA Record Data Elements

5. Query PNS for Authoritative Name Servers List of Zone (Z) [Dig Command |[dig
+nocmd @PNZ Z NS +noall +authority +answer]|

6: S = List of Host Names of all Authoritative Name Servers (ANS) for the Zone(Z)

7. for NS < each member of S do

8: Query PNS for ANS Records of Zone(Z)

9: if S; then /* Only Live and Authoritative Servers are Queried

10: S < SUS;

11: S < Unique Ordered List(S)

12: end if

13: Initialize Arrays(Zones, Servers, Geos, Nets and Orgs)

14: for NS < each member of S do

15: Get All(Z) /Get lists of (Zones, Servers, Orgs, Geos and Nets)

16: end for

17: end for

18: Build Arrays of (Zones, Servers, Orgs, Geos and Nets) with Unique Keys Refer-
ence

19: Build Tree(Z) /* Delegation Tree of Zone(Z)

20: Build CL=ControlLayer(Z)

21: Build DL=Datal.ayer(Z)

22: Build ML=ManagementLayer(Z)

23: XMI=concatenate (Header,CL,DL,ML,Footer)

24: return Xmi file containing the complete DG for Zone(Z)

6.2 ISDR Techniques

The ISDR method is implemented in two steps:

1. Techniques’ Specifications: which include the specification of metrics, smells

and refactorings defined over the DNS Model which is being modelled as an

100

Chapter 6. ISDR Method Implementation

EMF E-core Model. The techniques are specified using the Specification Wiz-
ard available through the Specification Module within EMF Refactor Frame-

work as shown in Figure 6.1.

2. Techniques’ Application: which includes all the steps needed for the ap-
plication of the specified techniques on instances of the DNS model (i.e. De-
pendency Graphs) generated by the DGBuilder tool. This is done through the
various extension points available through the Custom QA Plugin component

as shown in Figure 6.1.

Throughout our implementation, we have two running instances of Eclipse as shown
in Figure 6.2. In the first instance, called the “Modelling IDE”, we defined the model
and generated code from it. The second instance, called the “Runtime IDE”, is
started from the Modelling IDE and contains instances of the generated model and
the plugin projects where metrics, smells and refactorings are specified and then

applied on a particular model instance.

F1GURE 6.2: ISDR Method Specification and Application Environments.

In order to specify the various techniques (metrics, smells and refactorings) to im-
plement our ISDR method, we define several plug-in projects within the Eclipse
Runtime IDE instance and then import them back within the Modelling IDE envi-

ronment. Deploying the model as a plugin registers the generated model and enable

101

Chapter 6. ISDR Method Implementation

us to use it in defining the new techniques. Three different plug-in projects were

created to hold the definitions and source code of the various techniques as follows:

e DNSMetrics to include all metrics definition including Java, OCL and Henshin-

based metrics.

e DNSSmells to hold all smells definitions including measurable and structural

ones.

e DNSRefactor to hold all refactoring specifications including any initial, final

and execution rules.

In order to provide more details about the specification process of each technique,
we will use the DNSSEC zone complexity and associated techniques as an example

of our implementation of the ISDR method.

6.2.1 Techniques’ Specification

6.2.1.1 Metrics

The disregard for DNS as well as DNSSEC |25, 26] maintenance can result in in-
creased failure potential. One important necessity is careful coordination between
zone administrators and system managers both hierarchically (i.e., between parent
and child zones) and laterally, between organizations hosting each other’s zone data
(i.e, between name servers operators). The hierarchical relationship is the most
crucial part of the DNSSEC data plane, since the chain of trust extends vertically,
and a break in the chain results in general failure to the whole name space below.
However, this coordination is less demanding because it generally involves only two
entities. Problems caused by lateral coordination may be less severe since the zone

will usually have multiple name servers.

102

Chapter 6. ISDR Method Implementation

TABLE 6.1: Metric Hierarchical Reduction Potential (HRP) Interpretation Model.

Metric

Hierarchical Reduction Potential (HRP)

Definition

Quantifies how much the ancestry of a zone might be reasonably
consolidated to reduce hierarchical complexity.

Usability

A greater HRP value indicates that minimizing hierarchical com-
plexity might reduce failure potential.

How to Mea-
sure

We express the HRP of zone z, having m + 1 ancestral zones, as
the fraction of layers that could be reduced if the number of zones
is consolidated to m’ + 1

Example

While delegation is necessary in many cases, there are some cases
in which collapsing a delegated zone is both reasonable and pos-
sible. For example, if example.com and sub.example.com are two
zones administered by the same organization, the zone data for
sub.example.com might trivially be migrated to the example.com
zone and the delegation to sub.example.com removed. This consol-
idation reduces the number of zones ancestral to sub.example.com

by 0.25 from 4 to 3.

Range 1< HRP<ZO0

7

Formula HRP(z) = "=

There are two metrics used to quantify the complexity of a DNS zone. The metrics
themselves are calculated independent of DNSSEC deployment, but higher metric
values may increase the failure potential for signed zones because they indicate more

areas where problems may occur.

The first metric is the Hierarchical Reduction Potential (HRP) [93], which quanti-
fies how much the ancestry of a zone might be consolidated to reduce hierarchical
complexity. The second metric is Administrative Complexity |7] which describes
the diversity of a zone, with respect to organizations administering its authoritative
name servers. The interpretation model of the HRP metric is shown in Table 6.1
while the interpretation model of the Administrative Complexity metric is shown in
Table 4.2. In order to measure the HRP, several other metrics have to be calculated

first and they are:

1. Zone Depth: The depth of a zone is measured by its distance from the root

103

Chapter 6. ISDR Method Implementation

zone. For example, zone z has ancestry z(0), z(1), ...

, z(m) comprised of m + 1

zones and has a depth of m. Each ancestral zone z(i) contributes to the failure

potential for zone z, as it is an additional requirement of DNSSEC correctness

that must be consistent. Listing 6.1 shows how the zone depth metric is being

specified in the DNSMetrics plugin project using Java.

%’ Rule mainRule(context:DnsModel)

«preserve»
context:Zone

«preserve

subzones

«preserve»
:Zone

OWNS «preserve»
\ «preserve»

:Organisation

«preserve:

owns

FIGURE 6.3: Henshin Rule for Calculating the HRPD Metric of a Zone.

2. Hierarchical Reduction Potential Domains (HRPD): In order to measure the

number of consolidated zones that can be achieved by merging two zones with

parent-child relationship if they both are being managed (owned) by the same

organisation, we use the Hierarchical Reduction Potential Domains (HRPD)

metric, which shows the number of subzones that can be consolidated in the

parent zone. The metric is defined in the DnsMetrics plugin project using

Henshin rule as shown in Figure 6.3.

* Java Specification of the Zone Depth Metric.

*/

package org.eclipse.emf.refactor.metrics;

import java.util.List;

import org.eclipse.emf.ecore.EObject;

import org.eclipse.emf.refactor.metrics.interfaces.IMetricCalculator;

public final class DEPTH implements IMetricCalculator {

104

Chapter 6. ISDR Method Implementation

private List<EObject> context;

@Override

public void setContext (List<EObject> context) {
this.context=context;

}

@Override

public double calculate () {

dnsmodel.Zone in = (dnsmodel.Zone) context.get (0);
double ret = 1.0;
while (in.getParentzone() !=null) {

ret++;

in=in.getParentzone () ;

}

return ret;

LISTING 6.1: Zone Depth Specification in Java

Finally, the Hierarchical Reduction Potential (HRP) of the zone can be calculated
using the corresponding formula in its interpretation model, shown in Table 6.1,
as a compositional metric. The generated Java source code for the metric is shown

below.

/*
* Calculating the HPR Metric as a Compositional Metric Using Java.
package org.eclipse.emf.refactor.metrics;

import java.util.List;

import org.eclipse.emf.ecore.EObject;

import org.eclipse.emf.refactor.metrics.interfaces.IMetricCalculator;
import org.eclipse.emf.refactor.metrics.interfaces.IOperation;

import org.eclipse.emf.refactor.metrics.core.Metric;

import org.eclipse.emf.refactor.metrics.operations.Operations;

public final class HRP implements IMetricCalculator {

private List<EObject> context;

private String metricID1 = "dnsmetrics.hrpmd";

private String metricID2 = "dnsmetrics.depth";

IOperation operation = Operations.getOperation("Division");
@Override

public void setContext(List<EObject> context) {
this.context = context;

}

@Override

public double calculate () {

Metric metricl Metric.getMetricIlnstanceFromId (metricID1);

Metric metric2 Metric.getMetricInstanceFromld (metricID2);
IMetricCalculator calcl = metricl.getCalculateClass () ;
IMetricCalculator calc2 = metric2.getCalculateClass () ;
calcl.setContext(this.context);

calc2.setContext (this.context);

return operation.calculate (calcl.calculate(),calc2.calculate());

105

Chapter 6. ISDR Method Implementation

LISTING 6.2: Generated Code for Calculating HPR (Metric Composition)

6.2.1.2 Bad Smells Specification

Based on the taxonomy developed in Chapter 5, bad smells can be classified accord-
ing to their type (Lexical, Measurable or Structural). In this section, we present
examples of the three categories of bad smells and how they are being specified

within the EMF Refactor Framework.

e Measurable Bad Smells: Measurable bad smells such as the Fxcessive Zone
Complexity smell can be specified through the definition of a smell in the
DNSSmells plugin project. The smell is specified based on the measured value
of the HRP metric of a certain model instance of a particular zone. A threshold
value for the metric (i.e HRP > 1) can be set by the system administrator
as the basis for the detection of such a bad smell. A value of HRP greater
than the threshold value indicates that there is a high probability of failure
potential (presence of the bad smell). Setting a certain threshold value for the
metric HRP is done through a project specific configuration page based on

the zone administrator’s needs and specific constraints.

e Lexical Bad Smells: A lexical property relates to the vocabulary used to
name a zone, server, or a resource record. Giving the same server differ-
ent names, ill-formed resource records, the presence of unnecessary resource
records within a zone and duplicate resource records for certain hosts are ex-
amples of such smells. Lexical smells identification and detection is straight-
forward and rely mainly on text-based best practices or guidelines recommen-

dations analysis.

106

Chapter 6. ISDR Method Implementation

e Structural Bad Smells: A Cyclic Dependency Smell [32| occurs when two
or more zones depend on each other in a circular way. As shown in ISDR
method validation case study in Section 5.3, checking each zone individually
for configuration errors may not lead to the detection of this bad smell since
they may both be configured correctly. On the other hand, constructing the
dependency graph will easily show the occurrence of circular paths that identify

the smell. Structural bad smells can be specified directly using a Henshin rule.

= Rule mainRule
pointsto : arecords
«forbid» «forbid» «forbid» «preserve
:Arecord .
:Zone
subzones [
hasnamein «presery;
«preserve»
«preserve» «preserve»
:Server :Zone
«preserve» .
nameservers «forbid>
arecords
«preserve»
nameservers «preserve»
nameservers

«preserve» «forbid»

«preserve» hasnamein . «forbid»

g «preserve» pointsto

:Zone :Arecord

:Server

FIGURE 6.4: Specification of the Bad Smell Cycling Dependency Using Henshin.

Figure 6.4 shows the Henshin rule to check for any cycle patterns within
the model instance that will reflect the presence of the Cycling Dependency
bad smell. The pattern specifies two zones with parent/child relationship that

must be found in the model (tagged by «preservey») and a cyclic dependency

nameservers hasnamein nameservers hasnaemin

of (Zone; Server;, ——— Zones Servery
Zoney) sequence path (tagged by «preservey tags). The Negative Application
Condition (NAC) checks for the absence of any ARecord for the out-bailiwick
name servers of a Zone in the parent Zone (tagged by «forbid» tags). It
also excludes any ARecords for in-bailiwick servers from the particular zone

to prevent counting of these occurrences as occurrences of cyclic dependency

107

Chapter 6. ISDR Method Implementation

smells.
The smell detection tool in EMF Refactor uses Henshin’s pattern matching
algorithm to detect rule matches. The pattern rule must be named mainRule

in order to be executed by the Henshin adapter.

6.2.1.3 Refactorings

EMF Refactor supports three concrete mechanisms for EMF model refactoring spec-
ification. As for metrics and smells, refactorings can be specified using Java and the
language API generated by EMF. A direct way to specify a model refactoring straight
forwardly is to use Henshin. A concrete refactoring specification in Henshin requires
up to three parts (i.e., specifications for initial checks, final checks, and the proper

refactoring execution rules).

1. Initial Check: The initial checks ensure that all preconditions are met before
executing the actual refactoring. The checks are applied on the rule’s con-
textual model element selected EObject and related components present in the
refactoring rule(s). Here, each conflicting situation is defined by a rule pattern
using the abstract syntax of the underlying DNS model. Furthermore, param-
eters in the main checking unit must be equally named to the corresponding
ones in the main execution unit. All these checks are implemented separately
and executed through a so called Independent Unit. Independent Units have
an arbitrary number of sub-units that are checked in non-deterministic order

for execution.

For example, in order for the bad smell Cyclic Dependency to be rectified,
resource records of RRType-A (ARecord) model element should be created in
the parent zone for out-of-bailiwick name servers to make sure that their names

are resolvable in all cases. A refactoring rule named CreatA Record is used to

108

Chapter 6. ISDR Method Implementation

|$ Rule checkParent(selectedEObject:Zone)

| |°§o IndependentUnit mainUnit(selectedEObject:Zone) |

«forbid»| subzones «forbid» .
Zone |® selectedEObject:Zone checkParent(selectedEObject)

«forbid»

FIGURE 6.5: Specification of Initial Checks for CreateARecord Refactoring.

remedy for this bad smell and Figure 6.5 shows Henshin rule specifying the
initial checks of this refactoring. Rule checkParent checks whether the selected
zone has a parent zone included in the model. The absence of a parent zone is
modelled using tags «forbid». Such precondition check rules are contained in
a Henshin Independent Unit (called mainUnit) to be executed. If any of the
rules can’t be applied, Henshin uses the rule’s description value to provide a

detailed error message to the system administrator.

= Rule checkServerExists(servername:EString) % IndependentUnit mainUnit(selectedEObject:Zone, servernam...

<Forbid [229 @
:Server
= name=servername
_'[checkServerExists(servername)]
Rule checkZoneExists(domainname:EStrin,
= (9) _’[checkZoneExists(domainname)
«forbid» .l .
— checkARecordExists(?, servername)

= name=domainname

|:> Rule checkARecordExists(selectedEObject:Zone, servername:EString)

«preserve» arecords «preserve»
selectedEObject:Zone [:Arecord
«preserve» = name=servername

FIGURE 6.6: Specification of Final Checks for CreateARecord Refactoring.

2. Final Check: Final checks are applied on the selected model contextual el-
ement and check the applicability of the rule parameters and references. In
our CreateARecord example, there are three final conditions that have to be

checked:

109

Chapter 6. ISDR Method Implementation

e First, there must be a server with the user specified name (servername)
that is already exists as a physical server element in the ControlLayer of
the DNS instance model. The rule pattern for the absence of such a class

is shown in rule CheckServerExists in Figure 6.6 using the «forbid» tag.

e The second precondition that has to be checked is specified by rule check-
ZoneFuxists. Besides the already known parameters selected EObject and
servername, this rule has another parameter, domainname. The rule
checks whether there exists a zone with a name equals to the domain-

name parameter for the ARecord to be created.

e The third and final precondition to be checked is whether there already
exists an ARecord model element with the same specified name in the

zone and this is accomplished through the rule CheckA RecordFExists.

If all of these checks are passed successfully, Henshin executes the main refac-

toring execution unit and another model is automatically created.

3. Refactoring Rule Execution: The specified execution rule performs the
actual model change, i.e., it creates one or more A Records in the parent zone
of the specified contextual element of the model. As it is the case with all
Henshin refactorings, the actual execution is again packaged into a so called
Sequential Unit. A sequential unit has an arbitrary number of sub-units that
are executed in the given order. In this case, the unit is configured to fail if
not all specified rules can be executed and in case of a failure all changes will

be automatically undone.

6.2.2 Techniques’ Application

To calculate relevant metrics, detect bad smells and apply refactorings, the tool

environment supports a project-specific configuration for all these techniques.

110

Chapter 6. ISDR Method Implementation

@ SequentialUnit mainUnit(selectedEObject:Zone, servername:EString)

Q"[mainRule(?, servername)] =@

$ Rule mainRule(selectedEObject:Zone, servername:EString)

«preserve» «create» «create»
. - .
selectedEObject:Zone [:Arecord
arecords = name=servername

[}

«create» | pointsto
«preserve» | npsrecords

«preserve» «preserve» «preserve»
:Nsrecord :Server
refersto = name=servername

FIGURE 6.7: Execution Unit for CreateARecord Refactoring.

6.2.2.1 Metrics Calculation

The metrics configuration is managed by means of a dedicated project properties
page. On this page, all existing model metrics for the DNS Model are listed. They are
structured with respect to the corresponding element type the metrics are calculated
on (the context). Through this configuration page, we can activate all model metrics
or a partial list of them. Some of the metrics activated in this example are: for the
DNSModel: (Zones, Servers, Orgs and AS), for the Zone contextual element: (ANS,
Depth, HRP and GeoD), and for the SOA record timers: (Ezpiry, Retry, minTTL
and Refresh).

The calculation of metrics on a specific model element is started from its context
menu. The metrics can be calculated on a specific model element or transitively for
all elements of the model. Relevant metrics are calculated based on the context of

metric defined earlier in the metric specification module.

111

Chapter 6. ISDR Method Implementation

pleity -Java

© Pug-in Development - Ecipse Platorm [ESEET=)

FONEDNS MODEL! & A

ZONE DNS MODEL
ZONE DNS MODEL

FIGURE 6.8: Metric Configuration Page and the Calculation of these Metrics for
the DnsModel of Zone (.PS)

Figure 6.8 shows the project-specific configuration page as well as the calculated
results on all elements of the DnsModel instance (the Dependency Graph) of the
PS (Palestine) Country-Code Top-Level-Domain (ccTLD). The results view shows
that the model has an Attack Surface metric (AS) of 148 which shows all elements
(Servers, Zones and Organizations) involved in the domain resolution process of the
specified zone. For each zone, further metrics are shown such as the number of
authoritative name servers, direct and third-party zones influencing the resolution

of domain names under the (.PS) zone and so on.

6.2.2.2 Bad Smells Detection

The discussion of metrics results shows that a manual interpretation of metric val-
ues seems to be unsatisfactory and error-prone. So, another static model analysis
technique is required, more precisely an automatic detection of model smells. As for
model metrics, the tool provides a configuration page of specific model smells that

112

Chapter 6. ISDR Method Implementation

2 Properties for samples . o - — LT il

feype filter text] Smells configuration = 2
| > Resource -
Builders i . I
4 EMF Qualty Assurance Please select EMF smells from the list below to be supported by the project.
‘ Metrics i
| Quick Fix Relations p: I 12/4.0.0/UML | http: tp. =\
f
I Refactorings config _ Selected Name Description Limit l
Smells configuratior| - N
| JavaBuild Path] Cycle Cyclic Dependency -
| & Java Code Style @ Delegationinc... Delegation Inclinsistency betwee...
| 5 Java Compiler @ HC Hierarchical Complesity (Possible...
Java Editor @ LOWNSZ Low Number of Authoritative na... 10
| Javadoc Location @ LargeAttackSu... Large Attack Surface of the DNS .. 10
ocL @ Missinglnbaili.. Missing InBailiwick A record in th...
f Z::;"‘:I‘Dwempmem 7 SOARETRYHL.. High RETRY Timerin the SOARe... 1.0
Project References 7 UnecessanyRR Unnecessary Resoure Record (L.
. - , @ ZEXPHIGH High SOA Expiry Value (Recomm... 10 it

FIGURE 6.9: Smells Configuration Page for the DnsModel.

are relevant for the current project. Figure 6.9 shows the configuration dialogue list-
ing the system-known model smells with respect to some DNS Model instances. For

a metric-based model smell, a corresponding threshold (Limit) can be configured.

- Eclipse Platform ol B [
IEditor Semple Bun Window Help
AOF Sit-0-QAU-C HGT-EBOO I~ v v O Quick Access

) CyclicDependencyErample.dnsmodel 52

ficD ol =
yclic Dependency Example.

> Rule
[E Node

wforbids
pointsto [Forbid arecords

4 4 Zone | o Edge
PR Znn: (OMd " . preseves © Attribute
4 Arecord nsl.example.com. “Subzones -
oz Conditon
& Aecordne2 camplecom

4 4 Zone EXAMPLECOM, forbids

4 Soa Record

 —
arecords

4 Soa Record
4 4 ZoneNET. ©
4 4 Zone EXAMPLENET.
4 Soa Record =
4 Sos Record L
4 ZonePs. A e [ControlLayer
oy —] pointst £ Datalayer
Selection| Parent List| Tree| Table | Tree with Columns 4 I 5 £ DrsModel
5 Smell Results View £ s o Ex& <

4 > 04-Nov-2016 11:08:53 (19 oceurences of smells)

> (& ZEXPLOW (6 areas identified)

» B HC (5 areas identified)

4 2 Cycle (4 areas identified)

4 (5 (EXAMPLE.COM., ns2.c@mple.com., COM, EXAMPLENET, dns2.example net.}

[EXAMPLE.COM.
[Z] ns2.eample.com
[com
[EXAMPLENET.

ns2.e@mple.com, COM, EXAMPLENET, dnsl.eamplenct)

5] EXAMPLECOM
[n2 erample.com
[com

[EXAMPLENET.

[dnsleample.net
» (> (EXAMPLE.COM, nsLexample.com, COM, EXAMPLE.NET, dns2.cxample.net.)
> & (EXAMP enet}

» & MissinglnbailiwickARecord (3 arg

» & LargeAttackSurface (L area identi

FIGURE 6.10: Detection of Cycling Dependency Using Henshin Rule.

The matches found represent the existence of model smells in the instance model.
The smell detection tool provides a highlighting mechanism for all involved model

elements in a bad smell occurrence within the standard tree-based instance editor.

113

Chapter 6. ISDR Method Implementation

Those model elements are highlighted in order for the system administrator to easily
spot them. A screen shot of the detection of the Cyclic Dependency bad smell is

shown in Figure 6.10.

6.2.2.3 Refactorings

Besides manual changes, model refactoring is the technique of choice to eliminate
occurring smells. The next step during the ISDR application is to interpret the
results of the smell detection analysis and decide on potential correction mechanisms
in the form of graph-based refactoring rules that can be used to remedy or eliminate

those smells.

The tool provides mechanisms to provide DNS system administrators with a quick
and easy way (1) to erase DNS model smells by automatically suggesting appropriate
model refactorings, and (2) to get warnings in cases where new model smells occur
due to applying a model refactoring. After invoking a refactoring, refactoring-specific
basic conditions are checked (initial precondition check). Then, the user has to set all
needed parameters to execute the refactoring where final checks are applied (final
precondition check) before executing the final step of the refactoring application
process. Figure 6.11 shows the work flow of the various steps used to apply the

refactoring on a certain model.

In order to propose suitable refactorings respectively to inform about potential new
smells, the tool must be provided with information on the relations between model
smells and model refactorings. Given a concrete model smell occurrence, several
refactorings can be suitable to erase it. The tool environment provides the ability

to configure this relationship between model smells and model refactorings.

114

Chapter 6. ISDR Method Implementation
Invocation Checks
' Parameters Input 'd—N

y

Final Preconditions
Checks

y

Model Changes
Preview

FIGURE 6.11: Refactoring Execution Workflow.

Figure 6.12 shows the property page called the Quick Fix Relations page for (de-
)activating appropriate relations. A pragmatic way is to manually define these re-
lations. Here, the advantage is that DNS Zone managers and system operators can
adjust the implementation of model smells and model refactorings to the fact that
they are going to be related. A manually defined relation is done by the system
administrator with the definitive goal to erase a model smell using a given model

refactoring.

The application of a certain model refactoring can be triggered by using two alter-

native ways:

e First, it can be invoked from within the context menu of at least one model
element in the standard tree-based EMF instance editor. Dependent on the
selected element(s), only those refactorings are provided in the menu being

defined for the corresponding model element type(s).

115

Chapter 6. ISDR Method Implementation

M I: | http://uk/ac/le//

Smells possibly caused by Refactoring | Usable Refactorings to erase Smell

Smell: | HSOAEXP
| Smells possibly caused by Retactoring | Usable Refactorings to erase Smel
Selected Name Refactoring | AdjustSOAEpay .
v Ad)ustSOAExpiry Selected Neme Descrption
Create New Geo Locat| Cycle Cyche Dependency
CreateARecord Delegatronincomutency Dedegaticn Inclnintenc, betwee
HC Heerarchucal Complextty (Possible.
CreateNSRecord v HSOAEXP High Value of the Expiry Timer of
LOWNSZ Low Number of Authortatrve na
7 LSOAEP Low Value of the Expiry Timer of t
LargeattackSurface Large Attack Surface of the DNS
Mrsingint. *ARecord Massing InBailwck A record in th
Unecessan R Unnecessary Resourc Record (HL
v ZEXPLow Low Value of the Exiry Timer of th

FIGURE 6.12: Quick Fix Matrix Configuration Page.

e The second way to trigger a model refactoring is to use the quick fix mecha-
nism of the smell results view. Starting from this view, our tool environment
provides a suggestion for potential refactorings according to pre-defined smell-

refactoring relations and a dynamic analysis of applicable model refactorings.

116

Chapter 7

DNS Model Transformation

The chapter starts with an overview of the refactoring implementation tool used to
implement the DNS model transformation followed by investigating the behaviour
preservation properties of the proposed refactorings. Refactoring rules’ analysis,
priority analysis and checks for execution dependability and conflict analysis through

the critical-pairs analysis technique are also conducted.

The chapter details the process of integrating the DNS Metrics Suite, Quality Pre-
diction Models and the ISDR Method into a DNS model transformation advisory
tool and then proceeds further by giving a concrete example of DNS model trans-

formation using the developed tool.

The tool presents the DNS system administrators with refactoring opportunities to
remedy for bad smells detected in their zone configurations and name servers’ deploy-
ments. The tool also provide the administrators with recommendations where the
administrator have full control on the decision to implement any of these refactorings
or recommendations based on his/her special DNS configurations and deployment

considerations.

117

Chapter 7. DNS Model Transformation

7.1 Model Refactoring

Model-driven engineering (MDE) is a discipline in software engineering that relies on
models as first class entities and that aims to develop, maintain and evolve software
by performing model transformations. Based on the language in which the source
and target models of a transformation are expressed, a distinction can be made
between endogenous and exogenous transformations. Endogenous transformations
are transformations between models expressed in the same language. Exogenous
transformations [44| are transformations between models expressed using different

languages. Typical examples of endogenous transformation are:

e Model Refactoring, a change to the internal structure of a model to improve
quality characteristics of the system without changing its observable behaviour.
The graph-based rules defined over the DNS model and proposed as part of

the ISDR method are examples of such refactorings.

e Model Optimization, a transformation aimed to improve certain operational

qualities (e.g., performance) of the system.

Refactoring implementation tools can be classified based on their degree of automa-
tion: Manual, Semi-Automated and Fully-Automated. A fully-automated tool pro-
vides automatic detection and correction of design defects without user intervention.
Semi-automated tools require interaction with the user throughout the refactoring
process. Semi-automated tools assist the user by proposing refactoring opportunities
and their suggested solutions; however, the decision to perform the actual transfor-
mation is left to the user. Manual refactoring tools leave the process of model smell

detection and application decision to the user completely.

In our approach, we follow the semi-automated approach. Our tool propose to

the DNS system administrators several refactoring opportunities to remedy for bad

118

Chapter 7. DNS Model Transformation

smells detected in their zone configurations and provide justified recommendations
where the administrators have full control on the decision to implement any of them
based on their local policies, special DNS configurations and deployment considera-

tions.

7.1.1 Behaviour Preservation

A transformation is behaviour-preserving if the explicit or implicit constraints of
the behaviour in the source model remain fulfilled in the target model after the
transformation has been executed. Defining the notion of behaviour preservation
can be done in many ways. Most researchers [94] agree that a full guarantee on
preservation of behaviour is impossible. Therefore they use a relaxed notion of
behaviour preservation, demanding that the program /system will perform the same
actions before and after executing the refactoring. For each refactoring, one may
list behaviour-related properties that need to be preserved, and that can be verified

statically [95].

At its core DNS is a simple protocol with requests and responses each generally
contained in a single UDP packet. Further, resolving a hostname requires only a
small number of transactions. The simple protocol and process, however, belies
much complexity in the modern DNS ecosystem. A DNS request triggered by a
user clicking a link in a web browser may now travel through multiple layers of DNS
resolvers or public DNS service providers. Therefore, while the DNS protocol is itself
simple, much of the resolution process and the actors involved are largely hidden

from view [96].

Since our DNS model is built based on the authoritative zone managers’ and sys-
tem administrators’ point of view, we are concerned about refactoring rules that

preserves DNS behaviour as observed from those vantage points. We only look at

119

Chapter 7. DNS Model Transformation

notions of behaviour preservation that can be detected statically and do not rely on
sophisticated data- and control-flow analysis or type inferencing techniques. This re-
striction to the static structure of the model is important because DNS configuration

and deployment structure are all that our refactoring tool may operate on.

In order to achieve this, we need a precise definition of DNS "behaviour" in general,
and for DNS dependency model in particular. We consider three types of DNS
behaviour preservation, based on the fact that they are important and non-trivial
for the selected refactorings. From a graph-based point of view, all refactorings
are defined over the DNS Dependency Model so each and every component in the
model instance conforms with its type as defined within the reference model and
the transformed dependency graph is still a valid instance of the DNS model. A

refactoring is behaviour preserving if the following implications are true:

¢

nsrecords

NSRecord:NSR1

hasNameln Zone: Z1
‘ name:
name: LE.AC.UK. nsl.le.ac.uk.
Server: S1 arecords
name: nsl.le.ac.uk. namservers
ipaddress: 1.2.3.4
T ARecord:AR1
. name:
pointsto nsl.le.ac.uk.
refersTo

F1GURE 7.1: Instance Graph of Binding-Preserving Property.

120

Chapter 7. DNS Model Transformation

e Query Resolution Preserving: If for all sets of names resolution is correct in
the source, it should be so in the target. This means that for any set of input
domain names submitted to a name server through a graph-based query on
the model, the produced set of Authoritative Resource Records (SOA record,
NSRecord and related ARecords) returned from the concerned Zone are correct
and valid records (based on the DNS protocol specifications) before and after
applying the refactoring. These resource records do not need to be the same

since some of the refactorings may modify their attributes and/or associations.

e Binding Preserving: The DNS specifications calls for any zone to hold the
authoritative binding between IP addresses and hostnames for its own name
servers (in-bailiwick name servers). A refactoring is binding-preserving if for
each physical or logical name server:SI in the refactoring, there is a corre-
sponding (ARecord:AR1)and NSRecord within (arecords containment relation
to) the Zone:Z1 that holds the name of (with hasNameln relation to) and

pointsto and refersto that particular server:S1 respectively.

7.1.2 Analysis of Model Refactoring Rules

Deciding what to refactor and which refactoring to apply still remains a difficult
manual process, due to the many dependencies and interrelationships between rele-
vant refactorings. In order to solve this problem, two analysis techniques are applied
to help the DNS system administrator make an informed decision of which refactor-

ing is most suitable in a given context and why.

7.1.2.1 Conflicts and Dependencies

Graph transformation theory allows us to compute conflicts and dependencies of

transformations by relying on the idea of critical pair analysis [97]. Critical pair

121

Chapter 7. DNS Model Transformation

analysis is known from term rewriting and can be used to check if a rewriting system

contains conflicting computations.

del, server exists h

T o]

- G META-INF63
4 G > transformation 67

» 3 2016110414151
- C3 20161110-144809

&) add_new_server_execute henshin 124
&} add_new_server_execute henshin_diagra
#] add_new_server_finalcheckshenshin12¢
) add_new_server_finalchecks henshin_dic
) add_new_server_initialchecks henshin 15
&) add_new_server_initialchecks henshin_d
#) » addzone_execute henshin 195

#) - addzone_executehenshin_diagram 19
i) addzone finalcheck henshin 195

&) addzone finalcheck.henshin_diagram 1¢
&) addzone initialcheck.henshin 195

#} addzone_initialcheck.henshin_diagram |
#. create_arecord finalchecks henshin_diag
i) > createArecord. henshin 86

&) > createfrecord.henshin_diagram 51

#; cresteARecordFinalCheck.henshin_diagi
createARecordinitial Check henshin

. || 25 Resource Set

#: cresteARecordFinalCheckhenshin =

4 &) platform:/resource/dnsrefactor/transf ~

T3 %)ET 48

4 @ associate_with_newzone, check_inbai

 diag]
&) creategeo.henshin 199

#) creategeo.henshin_diagram 71

&) createnethenshin 93

) createncthenshin_diagram 124

#) creatensrecord.henshin 124

&) creatensrecord.henshin_diagram 121
3 finalchecks. henshin 124

&) - finalchecks henshin_diagram 12¢

i) merge_zones finalcheck henshin 125
&) merge_zones finalcheck henshin_diagra
&) merge_zones initialcheck henshin 195

#] > merge-zones-execute henshin 130

&) > merge-zones-execute henshin_diagrai
&) remove server_initialcheck henshin 195
&} remove_server_initialcheck.henshin_diac

) rename_server henshin 195

&) > merge_zones_initialcheck.henshin_dia|_|

=

el T8 % 0T

4 &, platform:/resource/dnsrefactor/transforn

4 = Rule associate_with_newzone(serv 4 B Server 4 > Rule check inbailinick(zonename:EStr
(..) Parameter servername:EString 4 = mame = d_servername: EStrin (.-} Parameter zonename:£String
(..} Parameter zonename:£String () Eswing 4 L Graphlhs
o L craphine 4 #hasnameins: 2:Zone 5 Nodeserver
4 5 Node :Server () 2Zone E Node 2:Zone
= Attribute name = servel 4 B 2Zone ./ Edge (hasnamein)1 -> 2
4 5 Node Zone 4 = name = _zonename : EString A Edge (nameservers) 2-> 1
© Attribute name = zoner| _ () Estring 4 R Graph Rhs
4 R Graph Rhs b 4 > nameservers : 1:Server B no
) 1Server g
e).
4 = Lhs-Rhs Mappings
> Mapping L:Server -> :Server
-5 Mapping 2Zone -> Zone
-3 Mapping :Server -> 1:Serve | -3 Mutti Mappings
-5 Mapping :Zone -» 2:Zone
=3 Muilti Manninae s
P i | 3
7 Madd s ore/(2)check._server_exists henshin 32
[Resource Set B eOET 8 nsfom [T % 0fE~
“ & pl 4 # add_server, check server exists 4 &, platforms/resource/dnsrefactor/transfor
= Rule add_server(servemame:£String) 4 B 2#Server 4 > Rule check server. exists(servername:t|
(..) Parameter servername:EString 4 |iknameisevemame) 2iseny (..) Parameter servemame:£String
() Estring

a L Graphlhs
5 Node 1:ControlLayer

4 R GraphRhs
= S

4 5 Lhs-Rhs Mappings

> Mutti Mappings

> Mapping LiControlLayer -> :C

4 B LControllayer
4 o servers: 2i8Servers
() 28Server®

a L GraphLhs
4 4 Not
> 4 Nested Condition
R Graph Rh
-3 Lhs-Rhs Mappings
- Mutti Mappings

[Z (01) produce-use-dependency
(= add server, check server
[Z (01) produce-use-dependency
2 add_server, check_server_exists
[(01) produce-forbid- conflict
add_server, checkServerBxists
[Z (02) produce-forbid-conflict
> addzoneonly, associate_with_newzone
[Z] (01) produce-use-dependency
(= addzoneonly, check_parent
[Z (02) produce-use-dependency
(= addzonconly, check Parent
[Z] (01) produce-use-dependency
- addzoneonly, check zone
[(01) produce-forbid- conflict
= addzoneonly, check zone_eists
[Z (02) produce-forbid- conflict
= addzoneonly, checkZoneksists
[(01) produce-forbid- conflict
= addzoneonly, create_soa
[Z (02) produce-use-dependency
- associate_with_newzone, check inbailiwick
[Z] (01) produce-use-dependency
(= create_ns_inzone, check_nsrecord_inparent
[Z (01) produce-use-dependency
[Z (02) produce-use-dependency
(= create_ns_inzone, check_nsrecord_inzone
(@1) produce-use-dependency
(= create_ns_inzone, check_parent_records
[(01) produce-use-dependency
[Z (02) produce-use-dependency

u

e

S Plug-in - Wadd_serverhenshin/m /2)eheck server hin - Ecipse Platform ° - e e
Fle Edt Novigate Search Project Sample Run Window Help
=~ IR LTI AR A0 5 H-0- A Q- G- BdB®™E v s Ee D Quick Access :| 55 | [Resource (S= Plug-n Development
[Package Explorer 17 =0 " o cpaResut 2 =0
[associate_with_newzone henshin/minimal-model.ecore/(2)check_inbailiwick henshin 32
2% 4 (> add server, associate_with_newzone

F1GURE 7.2: Critical Pairs Analysis.

Critical pairs formalize the idea of showing a conflicting situation in a minimal

context. From the set of all critical pairs we can extract the objects and links which

cause conflicts or dependencies. The reasons why graph rules can be in conflict are

threefold:

1. One rule application deletes a graph object (i.e., a node or edge) which is in

the match of another rule application (delete-use conflict).

2. One rule application produces graph objects that give rise to a graph struc-

ture that is forbidden by a NAC of another rule application (produce-forbid

conflict).

3. One rule application changes attributes being in the match of another rule.

122

Chapter 7. DNS Model Transformation

The graph transformation tool, Henshin, recently provided an algorithm implement-
ing this analysis. Henshin also provides several refactoring execution control-flow
mechanisms (called units) to resolve any produce-use-dependancy issue between the
rules. Figure 7.2 shows the results of running the critical pairs analysis on the set

of refactoring rules defined over the DNS model.

To illustrate the usefulness of these analysis in the context of the DNS refactorings,
let’s take the bad smell Fxcessive Zone Influence as an example. Figure 7.3 shows
that several refactorings can be applied to eliminate this bad smell. Within the

priority of execution (2), we have the two refactorings MergeZone and Delete Zone.

Refactoring MergeZone can not be executed if the relevant zones to be merged hap-
pen to include a zone that already has been deleted by the DeletZone refactoring
so these two refactorings are in conflict. To resolve such situation we include a
sequential unit within the MergeZone refactoring specifications to check for the ex-
istence of the zones to be merged before executing the refactorings on the model
instance. Another issue is the dependency of the DeleteZone refactoring on the

DeleteA/NS/DS/Records refactorings.

A zone can’t be deleted unless all its resource records are deleted or moved to the
new parent zone. Sequential units controls the execution of the different refactorings

and contributes to resolving these issues too.

7.1.2.2 Execution Scope and Priorities

It should be noted that a refactoring rule is just one of the options to eliminate a bad
smell. It can also take more than one rule application to resolve the situation, so a
single rule specifies an incremental improvement, which may have to be repeated or
combined with others. For example, to eliminate the cyclic dependency bad smell

there could be another rule for creating a new server under another external zone

123

Chapter 7. DNS Model Transformation

rather than adding a "glue" (ARecord) for out-of-bailiwick servers. When deciding
on the scope and priorities of executing the applicable and non-conflicting refactoring

rules the following general guidelines are applied :

Refactorings Number -> 1| 2| 3| 4{56(7,8| 9|10,11] 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| 22
7]
o|T| o
T = = = —
c = o| © o) S
c| o o o
218|888 228l gl .| Isl8ls|B]z
|| 8| ®R|E|wn| > S| 8|5| o & ¢|S|2|9|¢|=
2| w N = L1 5|0l o
2 1) o Ol |2 ba [T} (7] - c ° a O Fell I
- . 2|2 9 o x| c|®| 3| © v | o <
3| Bad Smell / Refactoring 5 S|elal8leld| elg|<|=| B3N] J|2z2]|0]5|8
= -
£ Rule z|s|o|g|2lz|g| 2(2(2(&| 5| % £lEl2|elz2]|2
3 S92 al@|le]| Blelela| 2| &5 sle|[Z|2| 2|35
= Tlo|lo|e|(|B] e o8 o © 8 clo|@|¥ .g
= < z| 83|85 SI5|28|&| 2| = g(s|a|w
] S(o|lw|2 Sl s 213 & x| g >| 2
€ S|o|lo|w|d AR o
4 < S| elel £ < 2
° o
k: ‘|8
1|Information Leakage X
2,3 |Zone Drift/Thrush X
4]1ll-Formed RRs X| X X|X|X
5|Missing RR X|X X
6|Incorrect Parameter Data X X
7|Ambiguous Data X X[X|X X[X X| X [X X
8|Absence of Multiple RRS X X|X|X X
9|Invalid Trust Anchor X
10{Untrusted-Peer Organisation X|X|[X
11|Large Attack Surface X X|X|X X| X[X | X[X]|X
12|Excessive Zone Influence X X|X|X X | X X[X [X X
13|False Redundancy X X X| X X[X
14|Diminished Redundancy X| X[X]| X]|X X[X
15|Administrative Complexity X
16| Cyclic Dependency X
17|Non-Optimal Query Path X X|X|X X | X X | X X
18|Delegation Inconsistency X| X
Primitive Coordination [Cost and Access
Scope (Supporting) | Zone Admin's Own Decisions | with Other Permissions
Rules Zones' Admins| Considerations
Priority 0 1 2 3

FI1GURE 7.3: Refactoring Rules Execution Scope and Priorities.

1. Rules related to modifications within the zone administrator’s own adminis-
trative domain (i.e resource records modifications within the same zone) are
first to execute since they are the easier and the most cost effective way to

remedy or eliminate a bad smell.

2. Rules that need coordination with other zones’ administrators without any ad-

ditional cost or resource utilisation are executed next. Examples of such rules

124

Chapter 7. DNS Model Transformation

are those who modify attributes of external servers hosted at organisations

where their exists previous mutual free or service-level agreements.

3. Finally, rules that have overhead regarding resource utilisation, cost, new ser-

vice agreements and access permissions considerations are executed next.

There are four refactoring rules that have been classified as primitive or supporting
rules since they are just needed to support the execution of other rules such as
creating or deleting a network AS number or server geographical location. Figure 7.3
shows how the proposed refactorings are prioritised based on the above mentioned

guidelines.

7.1.3 Quality Impacts of Model Refactorings

An established way of evaluating the impact of refactorings on the quality attributes
of a software artefact is to compute metrics on its initial version and on the refactored
version [98|. Nevertheless, metrics alone do not provide a clear answer to the question
of whether the refactorings improve the quality attributes of the system. For that,
it is necessary to find an alignment of metrics to quality attributes, i.e., whether
a lower /higher value of a metric improves/worsens a given quality attribute of the
operational system. We conducted an empirical study reported in Chapter 4, that
helped us to justify the quality improvements of our refactorings (apart from relying

on our own experience in the field).

Model Structural Metrics are the key factor here since refactorings change the metrics
of the model and hence have a direct effect on the model quality and consequently
the perceived system quality attribute. We used the assessment experiment to prove
that the DNS model structural metrics can effectively be used as early indicators of

the quality of the model and the perceived quality of the system.

125

Chapter 7. DNS Model Transformation

7.2 DNS Model Transformation

A model transformation mechanism takes as input a model to transform, the source
model, and produces as output another model, the target model. Model transfor-
mation can be used as a correction mechanism based on the detection of bad smells
that affect certain aspects of the DNS quality attributes. It can also be carried out
to improve certain aspects of quality attributes of the original system in addition to

eliminating bad smells related to a particular qulaity attribute.

The approach illustrated in Figure 7.4 is a bad-smells-driven DNS model transforma-
tion method. The main goal of this method is to remedy or eliminate the existence
of bad smells within the model instance (i.e dependency graph). The method takes
a certain zone configuration and servers’ deployment structure and apply the ISDR
method bad smells detection techniques and then applies the correction mechanisms
to detected bad smells in the form of graph-based refactorings and finally generate a
new zone configuration and name servers layout with associated recommendations.

The process is executed in eight steps which are detailed next:

1. Generation of Initial Dependency Graph. In this step, the dependency
graph is generated using the DGBuilder or using the Erample EMF Model
Creation Wizard. The DNS Model instance is generated using the interde-
pendencies extracted from the zone configuration and the authoritative name

servers’ deployment structure.

2. Metric Calculation and Prediction Models. In this step, metrics are
calculated on the model instance (using the metrics specification techniques
defined as part of the ISDR Implementation) and the prediction models devel-
oped as part of the empirical assessment (detailed in Chapter 4 are utilized to

get an initial values for the quality attributes (Q avaitabititys @ Securitys @ Stabititys

QResiliency) .
126

Chapter 7. DNS Model Transformation

Prediction
Models*

Calculate
Metrics

Initial DG Model

)

Calculate
Quality

Bad Smells
Detection

List of Bad
Smells which
impact Quality

Bad Smells
Catalogue

Structural
Metrics

Analysed

Defined Over

Defined

\

Over

DNS
Operational

Model

Conforms To

i | | Metrics-Quality
New DG Generate New : i —
L] Model ConTiEttation 5 i Co;;e;la:lon Refactoring
Generated | [| &sServers i : *From Emplrical Catalogue
A LayoutOr it Study
Recommendat HH
(\ ion Report H:
Refactorings A
Application A Results 4:_5 Extracted From
Interpretation | : ! Bad-Smells-Refactoring
List of Hal Quick Fix Matrix
Applicable : E
Refactorings < : H 4
Manual odifications? § i
Changes g 5> H:

FIGURE 7.4: Bad-Smells-Driven DNS Model Transformation Methodology.

. Bad Smells Detection. In this step, the model instance is checked using the

techniques developed as part of the ISDR method implementation to detect

any occurrence of a bad smell.

. Results Interpretation. In this step, system administrators manually check

the results and interpret them based on their local policies and constrains and

decides if a model transformation refactoring is needed.

. Model Transformations Refactorings. In this step, applicable refactorings

(defined as part of the ISDR Method techniques) are executed on the initial

model instance and the bad smell is rectified.

127

Chapter 7. DNS Model Transformation

6. Generation of The New Dependency Graph. A new model instance is
generated and the two model instances are visually and textually compared.
Proposed changes on the initial model instance are displayed to the system

administrator.

7. Predicting Quality Attributes of Newly Generated Model Instance.
In this step, new values for the quality attributes is computed (based on the
metrics calculated on the newly generated model instance and fed to the pre-
diction models) and their values are compared with the previously calculated
values to see the effect of the refactorings on the overall quality attributes of
the system.

Steps 3-7 are repeated to eliminate other bad smells within the newly gener-

ated model instance.

8. Generation of New Zone Configuration and Servers’ Layout. As a
final step in the process and after eliminating all bad smells of the model
instance, a new zone configuration and server layout report is generated with

recommendations listing what changes need to be done.

7.3 Implementation of the DNS Advisor Prototype

This section describes the implementation of a prototype, that can be both seen
as a reference implementation of the methodology, but also a means to evaluate
the approach described in this chapter. All the tools used for the prototype were
implemented in Eclipse and are used as plugins to this IDE. The tools involved,
as well as the artefacts of each step of the ISDR method artefacts are shown in

Figure 7.4.

128

Chapter 7. DNS Model Transformation

7.3.1 Prototype Architecture

This prototype architecture supports the several steps of the methodology described
above and utilises the ISDR method artefacts and techniques as outline in Chapter
6. The final implementation of the DNS advisor dashboard and recommendation
plugins is straightforward and was not included in the prototype, and can be part

of future work.

Source Zone EMF-Refactor WEKA Java API (Plugin)
Configuration Framework (Quality Prediction Models)
File
\{\ DNSMetrics
Plugin Y
source DNS Target DNS Model)
h Model Instance DNS Advisor
DGBuilder > D d o o Instance Dashboard -
(Plugin) ependency DNSSmells (Dependency Graph) -
Graph) Plugin (Plugin)
A
: 1
DNSRefactor Zone File/
Source DNS Plugin Recommendation
Servers’ Report Generator
Deployment (Plugin)
Layout L
DNS Servers’ Zone
Deployment | » | Configuration
Layout - o File

FIGURE 7.5: Prototype Architecture.

Summarising the defined process, the starting point is the source zone file configura-
tion of the concerned zone and its authoritative name servers deployment structure.
The DGBuilder takes this information and generate an XMI file representing the
DNS model instance (i.e. the source dependency graph). A new target model in-
stance generated after detecting and then eliminating the bad smells of the source
model instance and applying the corresponding refactoring rules to generate the

target model instance (i.e. the target dependency graph).

The final step is reversing the first one by generating a new zone file configuration out

of the target model instance and new name servers layout with a recommendation

129

Chapter 7. DNS Model Transformation

report of the required changes. The impacts of the changes on the perceived quality
attributes of the model are displayed on the dashboard as a visual guidance to
the zone administrators to support their decisions in an informative and meaningful
way. Figure 7.5 shows the prototype architecture which is built on top of the Eclipse

Modelling Framework.

7.3.2 Prototype Case Study

To validate the implementation of the prototype, the example zone (EXAMPLE.COM.)

is used.

The implementation process based on the methodology shown in Fiure 7.4 followed

the following steps:

1. The initial dependency graph was built using the DGBuilder tool utilising
the zone configuration of the zone (EXAMPLE.COM) and its name servers’
deployment layout and fed directly as an XMI file to the Eclipse Modelling
Platform. The dependency graph of the zone is shown in Figure 7.6 and the
model tree and textual views of the generated XMI file within the Eclipse IDE

are shown in Figure 7.7.

2. The structural metrics of the initial model instance are calculated, and using

the prediction models developed in Chapter 4, the initial value of (Q avaitapitity—2,

QSecurity=37 QStability:Za QResiliencyZQ)-

3. Running the bad smells detection will reveal if there is any improvement to
the model in the form of erasing the smell or new smells have been caused
by the application of the concerned refactoring. Table 7.1 shows the detected

bad smells in the model instance as well as the suggested refactoring to be

130

Chapter 7. DNS Model Transformation

(—| | Example.com NS ns1.example.net | l(—NS Record NS Record—)| | Example.com NS ns2.example.net | I_\
(—I |Example.com NS ns1.example.com| l(NS Record COM NS Record)| |Example.com NS nsz.example.com| |-\
ns1 example.com A 1.1.1.1 | A Record A Record | | ns2.example.com A 1.1.1.2 |
ParentZone
POImST?—W TNamSer\rv NamServer PointsTo'
NamServer HasNameIn—~.
EXAMPLE.COM
—Poir ns1.example.com HasNameln) NamServer
Wﬁ@
“Hoin|sT ‘==NamServer==== EXAMPLE.NET {HasNameln ns2.example.net P ntsTo—
HasNameln 4 l NamServer
ParentZone
Trusts
Trusts
PointsTo
PointsTo
k-I | Example.net NS ns1.example.com | I‘NS Record NS F(ecord—)| | Example.net NS ns2.example.com | |‘
FIGURE 7.6: Example DNS Model Instance (Dependency Graph).
applied to eliminate those bad smells in each iteration of the DNS model
transformation process.
4. The system administrator decides to eliminate all four bad smells by applying
the corresponding refactorings.
5. The refactorings are applied on the model instance or manual changes are
applied to eliminate the currently identified bad smell.
6. After applying the refactoring on the original model instance, the tool gen-

erates a new model instance with _ transformed suffix. The two models can

131

Chapter 7. DNS Model Transformation

S Plug-in

- Eclipse Platform

[[o]

File Edit Navigate Search Project Sample Run Window Help

Iﬁv (S22 28N P TIRIENZOF I H-0-AR-ICIHT-EBEO @O~ §l oS-

Quick Access

2 | s Resorce

|% Package Explorer 7

. G dnsinstances 83 (nttps://ntranet.c

> & dnsmetrics

> (& dnssmells
> & instances
4 [F] > samples 108 [https://intranet.c:
> i JRE System Library [Java
. B Plug-in Dependencies
@ srclo
> Gy META-INF 102
> Gy Models
> Gy > testing 178
. Gy tids 104
[} ALdnsmodel 194
#, alxmi

5 bixmi

» G > dnsrefactor 67 [https/intranct.cs.e.ac.uk

(& ModelExample.dnsmodel 5

[Resource Set

PR
4 4 Dns Model Cyclic Dependency Example
4 4 Control Layer
4 Server nsl.example.com.

le.ac.uk/s 4 Server ns2.example.com.

18] 4 Server dnsl.eamplenst

4 Server dns2.camplenet.
4 Server nl.com.
4 Servernlnet.
4 Server NSLPS.
4 Geo Location UK
4+ Network AS001
L 4 4 Datalayer
4 4 ZoneROOT
4 4 Zone COM.

[5) ModelExample.dnsmodel 52
<xml version="1.8" encoding="UTF-8"?>
<uk.ac.le.dnsmodel:Dnstiode]l xmizversion="2.8" xmlns:xmi="http://wmev.ong.org/XUI" xmlns:uk.ac.le.dnsmode

<control>
<servers s1.example.com.” "/ /@data/@zones . . .e" L Wil
<servers 52 " - . . \0" manag iy
<servers ins1 le.net in="//@data/@zones. 1 Lo" /4
cservers ins2 le-net in="//@dat B o managedny="/
<servers 1.com." //@data/@ ganisatior
<servers d ganisatior

‘./
="a.4.4.4" locatedat="//@cc

cservers
<geo name
<nets asnumber="
</control>
<data>
<zones name="ROOT" nameservers="//@control/@servers.4” ownedby="//@manage/@organisations.1">
<subzones name="COM." nameservers="//@control/@servers.4” ownedby="//@ranage/organisations.2">
<arecords pointste="//@control/@servers.” name="ns1.example.com."/>
<arecords pointsto="//@control/@servers.1" name="ns2.ecxample.com." />
<subzones name="EXAMPLE.COM." nameservers="//@control/@servers.2 //@control/@servers.3 //@contr
<searecord refresh="100000" retry="100000" expiry="100800" primaryserver="//@control/@server

ions.” ip:

&5 build.properties 102

#; chami 104

&) camitos

43 Cyclic_transformed.dnsmodel

i3 CyclicDependencyExample_transformed.(
&3 CyclicDependencybample.dnsmodel

T de_transformed.mi 172

#, demi 194

4} DNSAvailability-Deccio.dnsmodel 102
5 egumi 194

4} Foo.dnsmodel 102

#; irmi 194

#, jawwal psoami 194

#, joxmi

5 leacukami 191

43 ModelExample_transformed_transformed
3 ModelExample_transformed_transformed
43 ModelExample_transformed_transformed
3 ModelExample_transformed.dnsmodel
3 ModelExample.dnsmodel

3 myami 104

[5) Myl.dnsmodel 136

5 nzomi 194
#, original_ns_transformedami 102
#, original_nsrecord_added.ami 102

B m B

4 Arecord nsl.example.com.
4 Arecord ns2.example.com.
4 4 Zone EXAMPLECOM.
4 SoaRecord
4 Nsrecord nsl.example.com.
4 Nsrecord ns2.cxample.com.
4 SoaRecord
4 4 Zone NET.
4 4 Zone EXAMPLENET.

4 SoaRecord
4 Narecord nsl.eample.com.
4 Nsrecord ns2.eample.com.
4 SoaRecord
4 SoaRecord
4 4 Management Layer
4 Organisation Eample Company
4 Organisation ICANN Organisation
< Organisation Verisign Corporation

4 Nsrecord nsl.example.com.
4 Nsrecord ns2.cxample.com.

Selection | Parent | List| Tree| Table Tree with Columns

</subzonesy.

<nsrecords refersto="//@control/@servers.9" domai

<nsrecords refersto="//@control/@servers.1" dom:

<soarecord primaryserver="//@control/@servers.4"/
</subzones>

<subzones name="NET." nameservers="//@control/@servers.s” ownedby="//@manage/@organisations.2">
AP

<subzones name:
<nsrecords refers
<nsrecords refers

T." nameservers="//@con
J@control/@servers.

</subzones>
<nsrecords refersto="//@control/@servers.@” dom:
<nsrecords refersto="//@control/@servers.1" dom
<soarecord primaryserver="//@control/@servers.s
</subzones>
<soarecord primaryserver="//@control/@servers.a"/>
</zones)|
</data>
<manage>

<organisations name="Example Company” owns="//@data/@zones.0/@subzones.0/@subzones. 0 //@data/@zones

<corganisations name="ICANN Organisation” owns="//@dat

<organisations name="Verisign Corporation” owns="//@data/@:

domain="//@d
/@eontrol/@servers.1” demain="//@dat: 1 o
<soarecord primaryserver="//@control/@servers.2"/>

//@data/@zones.0/@subzones. 0/@subzones. 0"
//@data/@zones . 0/@subzones. 0/@subzones. 0"

>

trol/@servers.0 //@control/@servers.1” ownedby
1 o

//@data/@zones . 0/@subzones . 1/@subzones. 0"
//@data/@zones . 0/@isubzones . 1/@subzones. 8" r|

a/@z0nes.0"/>

</manage>
</uk.ac.le.dnsmodel:DnsModel>

« i

e/ .0/@suk

&Y SmellResults View 52 [% & <

4 [10-Nov-2016 13:12:28 (10 occurences of smells)
4 & Oy i

Wiitable

Insert 37:13

FIGURE

7.7: Example DNS Model Instance (Model and Textual Views).

be visually and textually compared using EMF Compare and changes are dis-
played and highlighted. DNS system administrators will able to evaluate how
much improvement that has been achieved and if the same refactoring or other
ones are need to get rid of all occurrences of bad smells in the model and im-

prove the quality of the system.

Each time a refactoring is applied, structural metrics are calculated on the
newly generated model and the values are fed to the corresponding prediction
model to get a value for the quality attribute @,.,. This value is compared
with the Q.4 value for each of the four quality attributes to see if there has
been any improvement in those quality attributes. Table 7.2 shows the values
of those metrics for each iteration. Figure 7.8 shows a screen shot of the model

instances after applying the set of refactorings to erase the corresponding bad

132

Chapter 7. DNS Model Transformation

smells. It shows how a particular occurrence of the smell has been erased with

no additional smells generated.

mendations listing what changes that need to be carried out.

TABLE 7.1: Bad Smells Detected on the Model Instance and the Proposed Refac-

A new zone configuration and server layout report is generated with recom-

torings.

Iteration#{ Bad Smell Refactorings

1 Cyclic Dependency CreateARecord

2 Diminished Network Redun- | CreateNewNet + MoveServer-
dancy Net

3 Diminished Geographical Re- | CreateNewGeoLocation +
dundancy MoveServerLocation

4 Small Number of ANSs. AddNewServer + CreateN-

SRecord + CreateArecord

Run Window Help

% O w F-0-LRU-CHCG-EBEC VT

5% Smell Results View 52 Bxe

% Plug-in Development

4 5 10-Nov-2016 131228 (10 occurences of smells)
4 & Cycle (4 areas identified)

=4 JRE System Library [J2
=i Plug-in Depender

5 META-INF 102

Model Instance(s) Tree View with |
all model instance components
with ability to export the model

4 Sea

_— Evl (81 ModelExample_transformed transformed transf... 52| &) ModelExample.dnsmodel 52
e | 2 Resourceset [Resource Set
iR s | 4@
4 4 Dns Mode Cyclic Dependency Example 4 4 DnsModel (y:h: Dependency Example
4 Control Layer

(= {EXAMPLE.COM, ns2.example.com,, COM, EXAMPLE NET,, dns2.ecample.net.}
(= {EXAMPLE.COM, ns2.example.com,, COM, EXAMPLENET,, dnsL.ecample.net}
(= {EXAMPLE.COM, nsl.eample.com,, COM, EXAMPLENET,, dns2.ecample.net.}
(= (EXAMPLE.COM, nsl.e@mple.com, COM, EXAMPLE.

. dnsl ecample.net)

(5 ZEXPLOW (4 aress identified)
=3 2

4 (2 10-Nov-2016 13:17:56 (8

& ZEXPLOW (4 ar

transformation step.

Smell Detection Reporting
including involved model
elements and number of

4 occurrences in each model

Zone NET,
|+ Zonee]

instance in text or xml format.

[Selection Parent List| Tree Ta

AII generated models are saved with
_transformed suffix for each model

The two model instances (initial and final DG)
are visually and textually compared using EMF
Compare and changes are clearly displayed.

jed)
<)

odel) 33

med transformed_transformed_transformed.dnsmodel
control/@servers.1” name="ns2.example. con.”

transformation step.
E [

delEample transformed dnsmodel
delExample.dnsmodel

@
i myami 194
L3 MyLdnsmodel 136
3 nzmi 194

narecords referater: ") /Geentrol/Gservers 0" donain="/./ m/@ ones. 0/@subz
<nsrecords refersto="//gcontrol/@servers.1" domain="//gdata/@zones. &/@subz
ord prinaryserver="//gcontrol /@servers. 2"/

#; original_ns_transformed.mi 102
#; original_nsrecord_added.xmi 102

applying the
refactoring rules

samples/ModelExample.dnsmodel
nameservers="//@contr
- A

All bad smells have
} been eliminated by

/@data/@zones.0/@su
n:'//@aata/@mnes .0/@su

B
T
@
*
P

Selected Object:

i}

F1GURE 7.8: DNS Model Instances Transformation Using Model Compare.

Figure 7.9 shows a screen shot of the WEKA environment which shows the predicted

Stability quality attribute for each model transformation iteration. The predicted

133

Chapter 7. DNS Model Transformation

TABLE 7.2: Measurements of Metrics on the Generated DNS Model Instances.

Inst.#| AS | ANS | NETD| GEOD Red | AC | AQP| DCZ | TPZ | DCO| TPO
Initial | 10 | 4 1 1 4 05 |3 2 2 2 1
1 12 | 4 1 1 4 05 |3 2 2 2 1
2 18 | 4 4 4 4 05 |3 2 2 2 1
3 21)) 5 4 05 |3 3 2 3 1
4 24 |6 6 6 6 05 |3 4 2 4 1

values were calculated based on the

LWL prediction model developed as part of

the empirical assessment reported in Chapter 4. For each iteration of applying the

refactorings, predicted quality attributes are calculated as shown in Table 7.3. The

system administrator will be able to terminate the process at any stage based on the

reported qualities of the system and the local policies, intents and constrains. After

eliminating the bad smells, the final value of (Qrarget) of the target model instance

should be improved over the source quality attribute (Qsource) SO the changes are

then committed and the process is terminated.

TABLE 7.3: Effects of Applying Refactoring on the Perceived Quality Attributes
of the DNS Model Instances.

[teration#

Refactoring

Availability | Security

Stability

Resiliency

0

Source Model | 2

Instance

2

2

2

CreateARecord

MoveServerNet

MoveServerLoc

=W No| =

AddNewServer

[SSIEN N NI

W s

=W NN

W W NN

134

Chapter 7. DNS Model Transformation

[Preprocess L%sﬂy[Cluster T Associate T Select attributes T Visualize]

Classifier
'S .
[Choose J|LWL -U 0 -K -1 -A"weka.core.neighboursearch.LinearNNSearch -A \"weka.core.EuclideanDistance -R first-lasty™ -W*
Test options Classifier output
& | N
O Use training set _ 13 4:4 4:4 0.682 2
@ Supplied test set Set... 14 3:3 3:3 0.861
O Cross-validation Folds 10 16 2:2 2:2 0.842
- 17 2:2 222 0.842
() Percentage split % 66 18 252 2:2 0.853
2 19 3:3 3:3 0.502
| More options... J 20 4:4 4:4 09.519
=== Evaluation on test set ===
{ {Nomj stability k] Time taken to test model on supplied test set: 0.01 seconds N
Start | Stop == Summary ===
Result list (right-click for options) Correctly Classified Instances 15 75 %
Incorrectly Classified Instances 5 25 %
20:14:21 - lazy.LWL Kappa statistic 0.6241
20:14:58 - lazy.LWL Mean absolute error 0.1835
Root mean squared error 0.3233
Relative absolute error 63.6018 %
Root relative squared error 84.6958 %
Total Number of Instances 20 v
<« A T

Status —

o }&j o O

FIGURE 7.9: Predicted Values of Quality Attribute (Stability) for the Various
Iterations of the Transformed DNS Model Instances.

135

Chapter 8

Related Work

In this chapter, we provide a survey of related work in the subjects discussed within
the various chapters of this research and relate it tom our research contributions.
The research deals with many subjects from different disciplines and project them

to the DNS realm.

8.1 DNS in Operation

Since the inception of the domain name system (DNS) in 1983, there has been a
large body of work [6, 10, 14, 21-24] on understanding its operation, availability,
security and stability. Issues as understanding the DNS ecosystem [99-102], DNS
components’ behavior [96, 103, 104], security issues of resolution [9], applications
for malicious actors detection and profiling [105-107|, DNS stability and resiliency

[108, 109], etc. have been widely researched.

136

Chapter 8. Related Work

8.1.1 DNS Interdependencies

The DNS is a complex distributed system, a system of systems composed of a highly
interconnected infrastructure, protocols and operations procedures. DNS name de-
pendencies are analysed in [8, 16, 17] and [7], in which the potential for a large

number and variety of servers affecting name resolution is demonstrated.

Ramasubramanian, et al. [16] demonstrate the far-reaching effects of DNS depen-
dencies. Their results show that a domain name relies on 44 name servers on average.
Several surveys of production DNS deployments have been conducted [13, 15, 17|

with various misconfigurations are analysed.

So far the main efforts in addressing the problem have focused on informing the
operators about the existence of DNS configuration errors, either by Internet RFCs

[5, 6] or with directives set by specific organizations [4].

8.1.2 DNS Measurements

Individual operators and independent researchers have measured various aspects of
the DNS and from various prospective such as from the user, resolver or network

points of view.

Deccio et al. |7] perform further examination of name resolution behaviours to create
a formal model of name dependencies in the DNS and quantify the significance of
such dependencies. Shulman et al. [11] studied the operational characteristics of the
DNS infrastructure and how some factors impact resilience, stability and security of

the DNS services.

137

Chapter 8. Related Work

DNS availability and robustness have been analysed in other studies [57, 110]. In
these empirical studies. DNS availability was measured from a perspective of respon-
siveness of resolvers and authoritative servers, and diversity of DNS performance
from different client perspectives. Deccio et. al [7]| derived a theoretical availabil-
ity model and methodology to systematically identify such misconfigurations and
quantify their impact on availability. In their analysis, they applied their theoreti-
cal model to a deployment of a domain name and its dependencies to measure its

availability.

Casalicchio et al. [18] proposed a framework for the evaluation of the health and
security levels of operational DNS. To the extent of our knowledge, only very few
preliminary studies for defining suitable metrics to measure the quality attributes
of the DNS system have been conducted [7]. Even within these existing works, not

much theoretical or empirical evaluation of the proposed metrics has been done.

8.1.3 DNS Troubleshooting

The state of the DNS is presented in several surveys of production DNS deploy-
ments [15, 17]. Various misconfigurations are analysed, including lame delegation,
diminished server redundancy, cyclic dependencies, and inconsistency of NS RRsets

between parent and child zones.

Despite all the existing efforts, DNS configuration errors are still widespread today
[19], and one of the main reasons is the lack of adequate tools to help DNS operator
identify and correct configuration errors in their own domains. Previous studies
are largely based on empirical analysis, whereas in this paper we derive a formal
operational model and methodology to systematically identify misconfigurations and

bad deployment choices in the form of operational bad smells [15].

138

Chapter 8. Related Work

Although several DNS troubleshooting techniques and problem identification meth-
ods [111, 112] have been proposed and several tools [113-115] have been built, most
of these methods and tools apply their detection techniques directly on the zone files

through a predefined zone schema and a specified set of integrity constraints.

Chandramouli and Rose [116] considered integrity constraints for Resource Records
(RRs) from single and multiple zones. They found that many integrity constraints

have to be satisfied across zones.

Danzig et al. [117]| provided an extensive analysis of the DNS traffic observed on a
root name server. They identified a number of DNS implementation bugs and found

that such bugs incurred unnecessary wide-area DNS traffic by a factor of twenty.

Jung et al. [20] measured the DNS performance in term of query response time
perceived by DNS resolvers, and studied the effectiveness of caching. They found
that the query response time is highly related to the number of referrals, and that the
majority of queries complete in less than 100 milliseconds. They further concluded
that DNS caching works effectively even when the TTL value of host names is as

low as a few hundred seconds, as long as the domain servers’ A RRs are cached.

Liston et al. [57] studied the diversity in DNS performance perceived by a number
of geographically distributed clients. They showed that the mean response time for
name lookups at different sites varies greatly, and the performance of root servers
and TLD servers have the least impact for non-cached entries. In this paper we

examine the diversity in server placement and its impact on zones availability.

Pang et al. [110] measured the availability of the individual DNS authoritative and
caching servers and studied the different server deployment strategies. Both these
works measure the reliability of individual components of the system, whereas in our
study we measure the reliability of the DNS infrastructure, and more specifically we

show how it is affected by human errors.

139

Chapter 8. Related Work

Casalicchio et al. [18| proposed a set of metrics to be used to evaluate the health
of the DNS by measuring the DNS along three dimensions, namely vulnerability,
security and resilience. Most of these studies can detect only a subset of the DNS
infrastructure-related configuration errors. On the other hand, they implement diag-
nostic tests that can identify errors related with application-specific resource records.
They do not take into account the inter-dependencies stemming from the hierarchical

nature of the DNS, zone administrators’ practices and deployment choices.

There are a number of companies and individuals that look into the problem of
lame delegation. Men & Mice [118| periodically measures the lame delegation as it
appears under the com domain; Team Cymru [119] collects the BIND log files from a
number of DNS servers and extracts from them a list of lame servers; and Credentia

[120] provides lame delegation statistics on the TLD zones.

So far, the main efforts in addressing the problem have focused on informing the
operators about the existence of DNS configuration errors, either by Internet RFCs
or with directives set by specific organizations. Despite all the existing efforts, DNS
configuration errors are still widespread today and one of the main reasons is the
lack of adequate tools to help DNS operator identify and correct configuration errors

in their own domains.

8.2 Bad Smells

In this section, we present related work in the field of code smells identification,
specification and detection in object oriented programming and how it expanded

into the fields of model bad smells detection and model refactoring.

140

Chapter 8. Related Work

8.2.1 Bad Smells Idetification

There is a large body of work on the identification of problems in software testing
[121], databases [122]|, and networks. Several books have been written on smells

[86, 123, 124] in the context of object-oriented programming.

In their paper, Min Zhang et. al. [85] conducted a systematic literature review to in-
vestigate the current status of knowledge about Code Bad Smells. The link between
the structure of the software and some of its quality attributes (i.e. maintainability)
is established in [125]. In [126], the study shows that software structure, which was
measured using source code metrics, could predict maintainability of the software.
Another study also shows that source code metrics and perceived maintainability

have a correlation [127].

Marinescu [128] presented a metric-based approach to detect code smells. Alikacem
and Sahrouri [129] proposed a language to detect violations of quality principles and
smells in object-oriented systems. Mens and Tourwe [46] have conducted a com-
prehensive survey of software refactoring. While software refactoring has started
focusing on restructuring of programs, the research has extended to model refactor-

ing [38].

8.2.2 Bad Smells Detection

All the techniques for detecting code smells in source code have their roots in the
definition of code design defects and heuristics for identifying those that are outlined
in well-known books: [86], [130—-132]. The first by Webster [131]| describes pitfalls in
Object-Oriented (OO) development going from the management of a project through
the implementation choices, up to the quality assurance policies. The second by Riel

[132] defines more than 60 guidelines to rate the integrity of a software design.

141

Chapter 8. Related Work

Fowler [86] defines 22 code smells together with refactoring operations to remove
them from the system. Brown et al. [130] describe 40 anti-patterns together with

heuristics for detecting them in code [133].

Detecting model smells using object-oriented metrics is known as Metric-based
Refactoring, a term coined by (Simon et al. 2001) who used metrics to identify
smells in object-oriented code. An important issue with using model metrics as a
smell detection strategy is the specification of a threshold value for the metrics as it

has decisive influence on detection accuracy.

Marinescu [128] identified three ways of parameterizing threshold values for metrics
used for smell detection (1) Empirical results from metrics’ authors and similar past
experiences, (2) using a Tuning Machine to automatically find proper threshold
values for regulating the detection strategy [134]| and (3) analyzing multiple versions

for change stability information or persistency of a design flaw over time [135].

8.3 Refactoring

The term refactoring was originally used in the software industry for source code
restructuring by William Opdyke [90]. The main aim of refactoring is to reduce
software complexity by "changing a software system in such a way that it does not

alter the external behavior of the code, yet improves its internal structure" [86].

With the popularity of MDA and UML, recent approaches for refactoring have ele-
vated it to a more abstract level of design models. While a refactoring is a solution

to a single problem, the refactoring pattern is generic and well documented.

142

Chapter 8. Related Work

8.3.1 Refactoring Techniques

Mens et al. provide a survey of existing research in the field of software refactoring
[46], where they identify six distinct activities the refactoring process consists of.
Wake, in the Refactoring Workbook [136], aims to provide practice in the identifica-
tion of the most important smells and practice with the most important refactoring

techniques, with particular emphasis on discovering new refactorings.

On the level of formalisation: a refactoring rule is such a pattern that is implemented
in a tool or formalised with mathematical means [91]. Graph transformation systems
(GTS) are well-suited to model refactoring and, more generally, model transforma-

tion [44]. Model refactorings based on GTS can be found in [46], [137-140].

Our objectives are similar to those of previous DNS operation studies but our ap-
proach differs. We use terminologies and concepts well established in the software
engineering subject and project them in the Domain Name System realm. Our
method utilizes a set of measurable, structural and lexical properties defined over
a DNS model to detect the smells in early stages of the DNS deployment. It also

suggests graph-based refactoring rules as correction mechanisms for those bad smells.

8.3.2 Refactorings Analysis

With respect to the contributions of this thesis, we discuss two main threads of
related work. First, behaviour preservation properties, priorities and orchestration,
dependability and conflicts analysis techniques. Second, work done in the field of

graph- based model transformation.

Behaviour Preservation. The most common approaches to behaviour preserva-
tion rely basically on checking given models and their refactored versions. Mens

[95] and Bottoni et al. [141] use graph transformations to describe refactorings for

143

Chapter 8. Related Work

models. The application of this formalism comes with the additional benefit of for-
mal analysis possibilities of dependencies between different refactorings. Rangel et
al. [140] introduced a more general technique for checking behaviour preservation
of refactorings defined by graph transformation rules. They used double pushout
(DPO) rewriting with borrowed contexts, and, exploiting the fact that observational
equivalence is a congruence, They show how to check refactoring rules for behaviour
preservation. They concluded that when rules are behavior-preserving, their appli-
cation will never change behaviour, i.e., every model and its refactored version will

have the same behaviour.

Critical Pairs. Critical pair analysis was first introduced for term rewriting, and
later generalised to graph rewriting [142]. The idea of critical pair analysis is quite
simple. In [97], the formalism of critical pairs was explained and related to the formal
property of confluence of typed attributed graph transformations. In [143], critical
pair analysis is used to detect conflicting requirements in independently developed
use case models. In [144], critical pair analysis has been used to increase the efficiency
of parsing visual languages by delaying conflicting rules as far as possible. In [145],
graph transformation dependency analysis has been used for the purpose of detecting

and resolving inconsistencies in design models.

Refactorings Orchestration. Because of the huge search space when searching
for possible model transformations for a given set of input/output model pairs,

search-based techniques have been applied to automate this complex task [146-149].

8.4 Graph-Based Model Transformation

The motivation behind model-driven software development is to move the focus of

work from programming to solution modelling. The model-driven approach has a

144

Chapter 8. Related Work

potential to increase development productivity and quality by describing impor-
tant aspects of a solution with more human-friendly abstractions and by generating

common application fragments with templates.

The applicability of graph transformations for model transformations rests upon the
fact that most models exhibit a graph-based structure. The initial graph representing
a model evolves through the application of graph transformation rules until the
execution stops and we obtain the output graph, i.e., the output model. Beirmann
et. al. [42] presented an approach to define EMF model refactoring methods as
transformation rules being applied in place on EMF models. Performing an EMF
model refactoring, EMF transformation rules are applied and can be translated to

corresponding graph transformation rules.

In [150], object-oriented programs are represented as graphs before applying graph
transformations for refactoring this abstract representation. Furthermore, Bottoni et
al. [151] use graph transformations to describe refactorings for models. Introduction
to the concept of model refactoring using UML models as candidates for refactoring

was first proposed by Sunyé et al [152].

Mens et al. [153] and Mohamed et al. [154] provided introduction, overview and
taxonomy of model refactoring literature. These two reviews describe the state-
of-the-art and taxonomical classification of various model refactoring approaches
respectively. Mens et al., in the book titled "Model-Driven Software Refactoring"
[155], were the first ones to publish a review on model-driven refactoring. Mohamed
et al.’s (Mohamed et al. 2009) review emphasized classifying the existing model
refactoring approaches based on a feature-model driven taxonomy. They extended
the model transformation feature diagram presented by Czarnecki and Helson [156]

by adding concepts specific to model refactoring domain.

145

Chapter 9

Conclusions and Future Work

In this thesis we have analyzed the various interdependencies stemming from the
delegation-based structure of the DNS. We developed a conceptual model that ab-

stracts all these dependencies with the three operational planes.

We introduced structural metrics as indicators of the quality of the operational sys-
tem and used them to build predictive models for the availability, security, stability

and resilience quality attributes of the system.

We also introduced the concept of bad smells to the DNS arena and build a bad
smells catalogue with graph-based refactoring suggested as correction mechanism
for the bad smells and built an advisory tool as an implementation of the methods,

techniques and quality assurance framework proposed in this research.

The tool, in a systematic process, can automatically direct the zone administrator to
places in the zone file that contain potential design and deployment problems that
may compromise availability, resiliency, stability or security of the domain name
system. We summarize our conclusions and elaborate on future research in this final

chapter.

146

Chapter 9. Conclusions and Future Work

9.1 Conclusions

DNS relies on a delegation-based architecture, where resolution of a name to its IP
address requires resolving the names of the servers responsible for that name. The
graphs of the inter-dependencies that exist between name servers associated with

each zone are called Dependency Graphs.

In Chapter 3 we analysed the various interdependencies within the three opera-
tional planes of the DNS and constructed a DNS Dependency Model as a unified

representation of these Dependency Graphs.

In Chapter 4, we utilized a set of Structural Metrics defined over this model as
indicators of external quality attributes of the domain name system. We explored
the inter-metric and inter-quality relations further in order to quantify the indicative
power of each metric. We applied machine learning algorithms in order to construct
Prediction Models of the perceived quality attributes of the operational system out
of the structural metrics of the model. Assessing these quality attributes at an early
stage of the design/deployment enables us to avoid the implications of defective and
low-quality designs and deployment choices and identify configuration changes that

might improve the availability, security, stability and resiliency postures of the DNS.

In Chapter 5, the model-based ISDR method was presented. The method subsumes
all the steps necessary to identify, specify, formalize and detect operational bad
smells. The method deals with smells on a high-level of abstraction using a consistent
taxonomy and reusable vocabulary defined by the DNS model. The set of identified

bad smells has been formally specified in a bad smells catalogue.

The method laid the basis for developing a visual advisory tool for system admin-

istrators to identify, analyse, discover, and remedy operational bad smells. Case

147

Chapter 9. Conclusions and Future Work

studies were used to validate the method and its usefulness in identifying and de-

tecting bad smells has been verified.

In Chapter 6, the various techniques of the ISDR method (including the metrics, bad
smells and refactorings) were specified using the EMF Refactor Quality Assurance
Frame work and other modelling tools. The various steps included in the process
of implementing the ISDR method techniques were presented and case studies were

used as an implementation examples of the method.

In Chapter 7, behaviour preservation properties, conflicts, dependabilities and pri-
orities of the proposed refactoring rules were analysed. Graph-based model trans-
formation tools along with the ISDR method techniques and DNS quality prediction
models were utilised to build a prototype of the DNS advisory tool. Case studies
and concrete examples were developed to validate the correctness and evaluate the

applicability of the tool.

In Chapter 8, a summary of related work in the fields of DNS management and trou-
bleshooting, bad smells identification and detection, software modelling, refactoring

and model transformations was presented.

The DNS will continue to play an integral role in the Internet usability and more
applications rely on the effective operation of its infrastructure. The models, metrics
and other techniques presented in this dissertation can assist DNS administrators in
better understanding their DNS deployments and avoiding name resolution failure

by properly engineering and maintaining their DNS infrastructures.

The diagnostic and advisory tool consider several properties and metrics from the
DNS dependency model and use them to detect bad smells and suggest graph-based
refactorings to eliminate such smells. It also enables the system administrator to use
the structural metrics of the DNS model instance to predict the perceived quality

attributes of the system. Zone administrator will be able to run several scenarios

148

Chapter 9. Conclusions and Future Work

and apply several refactoring rules through the tool to determine the solution that

best meets their local policies.

9.2 Research Limitations

A limitation of a study design or instrument is the systematic bias that the researcher
did not or could not control and which could inappropriately affect the results. In

our research we were faced with the followin main limitations:

e Models. Lack of DNS models to use in our assessment forced us to build such
models from operational DNS configurations and deployment layouts using

in-house developed tools.

e Metrics. It should be noted that the used set of metrics may not be compre-
hensive and other consecutive research could further complete this proposed

set by defining new metrics from other perspectives.

e Tools. In implementing the different ISDR techniques, we used the EMF
Refactor framework and its associated tools, specifications and techniques.
The tool has not gone through extensive testing or industry-scale implemen-

tation since its use is limited to the research and academic utilisation only.

e Assessment Experiment. Another limitation which we faced in our assess-
ment experiment, is the limited number of data points that were collected due
to the limited number of participants amongst the DNS operators. Another
limitation is posed by using subjective measurement mechanisms is that dif-
ferent participants may have different attitudes toward the evaluation of these
attributes. The detailed limitations faced in the assessment experiment were

clearly explained in the Threats to Validity section in Chapter 4.

149

Chapter 9. Conclusions and Future Work

9.3 Future Work

Due to the growing interconnectivity of critical infrastructure assets, a DNS fault
under certain conditions could have serious national and international implications.
There are number of ways in which this work can be extended and we plan to grow

our research in the following key directions:

9.3.1 Extending the DNS Operational Model

The DNS Operational model developed as part of this research was limited to the
static structure (design and deployment) of the Domain Name System. Extending
the model to include additional components of the system such DNS resolvers and
end-users as well as modelling the system from different vantage points will widen
the understanding of the DNS and enable the system administrators to try different
configuration and deployment scenarios and simulate their effects on the overall
system performance. We also plan to introduce some additional elements to the DN'S
Model to represent the dynamic behaviour of the system and its various components.
We expect that modelling these factors would reduce the error and lead to a better

performance of a DNS reference model on the prediction of DNS behaviour.

9.3.2 DNS Structural Metrics and Prediction Models

We will conduct a broad empirical validation of assessment techniques, by imple-
menting the comprehensive metrics suite. We aim to perform this validation on
most of the current general top-level-domains (gTLDs) and country code top-level-
domains (ccTLDs). The analysis results will be used to calibrate the metric calcu-

lation, bad smells detection as well as the quality assessment techniques.

150

Chapter 9. Conclusions and Future Work

One problem that we will be tackling during this task is the reluctance of many TLD
operators to share their data and internal measurements due to confidentiality and
privacy concerns. Sharing is always a big challenge, technical issues are marginal
with respect to business, privacy, confidentiality and legal issues. Another issue
was the need for objective mechanisms for measuring the value of the real quality

attributes of the DNS.

Our experience shows that although subjective opinions of the participants are good
measures of the perceived quality attributes of the models, still the use of objective
measures to second the obtained results is valuable. We believe that both theo-
retical and empirical development of appropriate objective measures of the various
DNS actual quality attributes is required. However, further experimentation with
industrial scale DNS models and more participants are required to fully verify the

conclusions of our work.

We plan to present the method to major TLD operators and DNS industry partners
to investigate the scope for commercial exploitation of this method and associated
techniques. We will be looking into joint research and knowledge transfer with
TLD operators, ICANN technical work groups (specially the DNS Security, Stability
and Resiliency workgroup), DNS Operations, Analysis, and Research Center (DNS-
OARC) and other industry partners to utilise the results of this research to improve

the current status of DNS metrics and DNS quality prediction models.

9.3.3 DNS Quality Indicators

Currently, there is little consensus on the right measures and acceptable performance
levels for the DNS as a whole related to availability, security, stability and resiliency.
Individual operators and independent researchers have measured various aspects of

the DNS, but to date little progress has been made in defining and implementing

151

Chapter 9. Conclusions and Future Work

standard, system-wide metrics or acceptable service levels. As mentioned before,
quality assessment is not a goal in itself. The real goal is to improve the quality of
the system. This is achieved by eliminating all bad smells that negatively affect the

quality attributes of the system.

There are many examples of failed attempts to over-summarize a complex system’s
status into a single indicator. The problem is that, in a complex system, a single
numeric value can’t express the system’s condition in a usable way. One implemen-
tation would be to use a dashboard to convey the status of operational qualities of

the system.

We plan to improve the ability of the DNS system administrators to comprehend
about the system operational qualities by presenting them with a dashboard of
indicators that measure roughly the four quality attributes of availability, security,
stability, and resiliency of the system based on the developed prediction models.
This dashboard will be tightely connected with a list of bad smells that may be

present in the model instance along with applicable and recommended refactorings.

Detected Bad Smells Applicable Refactorings
Cyclic Dependency (4) q CreateARecord Apply
Delegation Inconsistency (3) | CreateNSRecord Apply
Zone Drift (5) "’ DeleteNSRecord Apply
| AdjustSOAParameters =~ Apply

#a R 6% 6

Availability Security Stability Resiliency

FIGURE 9.1: Implementation-Level DNS Quality Dashboard.

152

Chapter 9. Conclusions and Future Work

The important point is not that the factors are displayed on the board in a concise
numerical way, but that each of the measured elements has designated green, light
green, yellow, orange and red zones, (that resembles the 5-points Likert-Scale used
in our empirical assessment and shown in Table 4.8) indicating whether a particular
measurement is within tolerance for the system. Figure 9.1 shows how the DNS
quality dashboard indicators can be implemented. There is no single indicator of
quality on the display, yet the system administrator could tell immediately from the
presented quality indicators and bad smells whether the system is performing well

or not.

153

Appendix A

The DNS Dependency Model

DNSModel

A root node is necessary in the EMF model to contain all model elements. The
DNSModel is the root element of our DNS Model.

Attributes:

e Name: EString: One instance of the model represents one type graph. The

name attribute is the name of this instance of the model.
Associations:
e DataLayer [0..1]: A collection of elements (such as Zones and Resource Records)

that represent the data operational plane of the DNS.

e ControlLayer [0..1]: A collection of elements (Servers, Networks and Geoloca-

tions) that represents the control plane elements of the operational DNS.

e ManagementLayer [0..1]: A collection of (Organisations) that represent the

entities responsible for managing and hosting the DNS Servers and Zones.

154

Appendix A. DNS Dependency Model

Constraints:

1. There can be only one DNSModel component in a model instance.
2. There can be just only one component of DataLayer in the model instance.
3. There can be just only one component of ControlLayer in the model instance.

4. There can be just only one component of ManagementLayer in the model

instance.

Layers in the DNS Dependency Model represent the different operational planes of
the DNS system. The Datal.ayer model component contains the Zone element and
its subzones and all logical elements within the DNS zone file called the Resource
Records while the control layer and management layer contain representation of the
physical elements in the model such as servers, networks, geographical locations and

management organisations.

A.1 Modelling the Data Layer

The overall trust in DNS depends upon the integrity of the zone file data [Ref:DNS
and BIND, Fourth Edition|. The zone file hosted on an authoritative name server
consists of various types of records called Resource Records (RRs). Associated with
each DNS resource record is a type (RRtype). An RR of a given RRtype in a zone
file provides a specific type of information. A zone file generally consists of multiple
RRs of a given RRtype with some integrity constraints (e.g., there can be only One
SOA RR in a zone file). It can also have multiple RRs for the same domain name
and same (or different) RRtype (e.g., multiple authoritative name servers or mail

servers for a domain say services.example.com).

155

Appendix A. DNS Dependency Model

Zone

The Zone model element is an abstraction of a single administrative unit within the
domain name system data space.

Attributes:

e name: EString: An attribute identifies the name of this element.

Associations:

e nameservers [2..13]: Associates the Zone with a set of authoritative name
Servers that are responsible for giving answers in response to questions asked

about names in this particular zone.

e ownedby [1..1]: Associates the zone to the Organisation that is designated as

the management entity for this Zone.

e subzones [1..1]: Associates the zone to other zones that are sub-zones (child /-

parent relationship) of this Zone.

Constraints:

1. There can be a minimum of two and maximum of 13 name Servers components

associated with this particular zone.
2. The zone can be owned by one organisation only.

3. The Zone can contain unlimited number of sub-zones (also of type zone) with

one parent zone only.

We limit our focus in the DNS model to the set of resource records within the

zone file called infrastructure resource records. These are the set of resource records

156

Appendix A. DNS Dependency Model

that are essential to the DNS dependencies and ensure the consistency and stable

operation of the system. The set of RRs includes the following:

SOARecord

The SOARecord (Start of Authority Record) which identifies the authoritative main
configuration parameters of a zone.

Attributes:
e admin: EString. An attribute specifies the mailbox of the person responsible
for this zone.
e serial: EInt. The version number of the original copy of the zone file.
e refresh: Elnt. Represents the time interval before the zone should be refreshed.

e retry: Elnt. Represents the time interval that should elapse before a failed

refresh should be retried.

e czpire: Elnt. Represents the The time interval (in seconds) that specifies the
upper limit on the time that can elapse before the zone is no longer authori-

tative.

o munTTL: EInt. Represents the time that should be exported with any RR

from this zone.

Associations:

e PrimaryServer [0..1]: Associates the SOARecord to the Server that is the

original or primary source of data for this zone.

Constraints:

157

Appendix A. DNS Dependency Model

1. There can be only one SOARecord component in a model instance associated

with a particular Zone.

NSRecord

The NSRecord (Name Server Record) which identifies the authoritative name server(s)
for the zone.

Attributes:

e name: EString: An attribute identifies the name of this element.

Associations:

e nsrecords [0..*: Associates the NSRecord to the Zone that contains this record

to identify the set of authoritative name servers to this particular Zone.

e refersto [1..1]: Associates the NSRecord to the Server that is designated as

an authoritative name server for this Zone.

Constraints:

1. There can be only one Server component associated with this particular NSRecord.

ARecord

The ARecord (Address Record) which identifies the IP address of a particular Server.
An A record maps a domain name to the IP address (IPv4 such as 192.168.23.12)
of the computer hosting the domain. Simply put, an A record is used to find the IP
address of a computer connected to the internet from a name. For IPv6 (the length
of an IPv6 address is 128 bits, compared with 32 bits in IPv4), the record name is

158

Appendix A. DNS Dependency Model

the AAAA Record which is an identical form of the ARecord but with the IP given
in IPv6 format.

Attributes:

e name: EString: An attribute identifies the name of this element.

Associations:

e arecords [0..*]: Associates the ARecord to the Zone that contains this record
to identify the IP address of one of the authoritative name servers to this

particular Zone.

e pointsto [1..1]: Associates the ARecord to the Server that is designated as an

authoritative name server for this Zone.

Constraints:

1. There can be only one Server component associated with this particular A Record.

CNAMERecord

The CNAMERecord (Canonical Name Record) which specifies that the name is an
alias for another Server name. When a DNS resolver encounters a CNAME record
while looking for a regular resource record, it will restart the query using the canon-
ical name instead of the original name. The canonical name that a CNAMERecord
points to can be anywhere in the DNS, whether local or on a remote Server in a
different DNS Zone.

Attributes:

e name: EString: An attribute identifies the name of this element.

159

Appendix A. DNS Dependency Model

Associations:

e cnamerecords [0..*]: Associates the CNAMERecord to the Zone that contains
this record to identify the alias of an authoritative name servers to this par-

ticular Zone.

e aliasto [1..1]: Associates the CNAMERecord to the authoritative name Server

that is aliased by this record.

Constraints:

1. There can be only one Server component associated with this particular CNAMERe-

cord.

HINFORecord

The HINFORecord (Host Information Record) A HINFO-record specifies the host
server’s hardware type, CPU and operating system.

Attributes:

e name: EString: An attribute identifies the name of this element.

Associations:

e hinforecords [0..*]: Associates the HINFORecord to the Zone that contains

this record.

Constraints:

1. There can be only one HINFORecord component contained in this particular

Zone.

160

Appendix A. DNS Dependency Model

A.2 Modelling the Control Layer

The DNS control layer subsumes the abstraction of the interconnected graph of
authoritative name servers of a certain zone and their network and geographical
distribution along with inter-dependencies and other relations that represents the
control structure of the domain name system. It contains the following model ele-

ments:

Netwok

The Network which identifies the network Autonomous System (AS) Number where
a name Server is hosted at.

Attributes:
e name: EString: An attribute identifies the AS number of the network.
Associations:

e nets [0..%]: Associates the Network to the ControlLayer that this network is

part of.
Constraints:

1. There can be only one Network component with a particular name/AS Number

in the associated ControlLayer.

GeoLocation

The GeoLocation which identifies the geographical location where a name Server is
physically located at.

Attributes:
161

Appendix A. DNS Dependency Model

e name: EString: An attribute identifies the name of the geographical location

(country).

Associations:

e geo [0..%]: Associates the GeoLocation to the ControlLayer where this location

belongs to.

Constraints:

1. There can be only one GeoLocation component with a particular name in the

associated ControlLayer.

Server
The Server (Name Server) which identifies the physical or logical nameServer.
Attributes:
e name: EString: An attribute identifies the name of this element.
e ipaddress: EString: An attribute identifies the internet protocol (IP) address
for this Server.
Associations:
e hasNameln [0..%]: Associates the Server to the zone that the host name of
the server is registered under that particular zone.

e hostedAt [1..1]: Associates the Server to the network that the server is con-

nected to.

162

Appendix A. DNS Dependency Model

e locatedAt [1..1]: Associates the Server to the GeoLocation that the server is

located at.

e managedBy [1..1]: Associates the Server to the organisation that is responsible

for managing it.
e servers [0..%]: Associates the Server to the ControlLayer that contains this
server in the textitDNSModel.

Constraints:

1. The Server can be managedBy just one Organisation component.
2. The Server can be hostedAt only one Network component.
3. The Server can be locatedAt only one GeoLocation component.

4. The Server can hasNameln just one Zone component in the model.

A.3 Modelling the Management Layer

Organisation

The Organisation which identifies the entity that owns a certain Zone or manages
the Server hosting a copy of a particular Zone within the Dependency Graph of a
particular Zone.

Attributes:
e name: EString: An attribute identifies the name of this element.

Associations:

163

Appendix A. DNS Dependency Model

e owns [0..%]: Associates the Organisation to the Zone that is managed by this

particular Organisation.

e childorg [0..%]: Associates the Organisation to other organisations which are

part (Parent/Child relation) of this particular Organisation.

Constraints:

1. There can be only one Organisation component that owns a particular Zone.

164

Appendix B

DNS Metrics Suite

B.1 Size Metrics

Metric:
Symbol:

Definition:

Usability:

How to Measure:

Example:

Attack Surface

AS(z)

We define the attack surface of a system in terms of the sys-
tem’s attackability along three abstract dimensions: zone,
server, and organisation.

Intuitively, the larger the attack surface, the more likely the
system will be attacked, and hence the more insecure it is.
Count the total number of zones, servers and organisation
within the DNS model instance

The Attack Surface of the model instance pre-
sented in Figure 7.6 is 10 where we have 4 zones
(COM, EXAMPLE.COM, NET and EXAMPLE.NET),
4 name servers (NS1,NS2.EXAMPLE.COM and
DNS1,DNS2.EXAMPLE.NET) and 2 organisations (ORG-A

and ORG-B).
165

Appendix A. DNS Dependency Model

Metric Notations:

Let |Zones| be the total number of zones, |Servers| be the
total number of name servers and |Orgs| be the total number

of organisations within the model instance.

Formula: AS(z) = |Zones| + |Servers| + |Orgs|

Metric: Redundancy

Symbol: R(z)

Definition: The redundancy is the size of the smallest set of redundant
name servers at any point in the zone’s required resolution
path and if failed, will render the zone’s domain names unre-
solvable.

Usability: Redundancy is considered the "availability bottleneck" of a

How to Measure:

Example:

domain name. If all servers comprising the redundancy of a
domain name were to fail, then the name would be rendered
unavailable.

The methodology for determining the redundancy of a zone
name is to compute the logical expression representing the
resolution path(s) of the zone and then this set is reduced to
conjunctive normal form (CNF), returning a set of disjunc-
tions.

The sets of servers comprising the redundancy of example.com
in Figure 7.6 are: 1.1.1.1,1.1.1.2 and 1.1.1.3, 1.1.1.4. That is
say that if all NST.EXAMPLE.COM, NS2. EXAMPLE.COM,
DNS1.EXAMPLE.NET and DNS2. EXAMPLE.NET are un-
available, then EXAMPLE.COM zone is rendered unavailable.
The Redundancy of EXAMPLE.COM is 4

166

Appendix A. DNS Dependency Model

Formula: The actual redundancy algorithm was implemented as part of
the ISDR techniques in Java and is not listed in this work.

Metric: Number of Authoritative Name Servers

Symbol: ANS(z)

Definition: The set of Authoritative name servers for zone (z) as configured
in z and Parent(z).

Usability: Authoritative name servers are the ones holding a copy of the

How to Measure

Example:

Formula:

zone file and responsible for answering authoritatively for any
request regarding any domain name under the zone z.

Count the number of servers associated with the zone through
the association nameservers.

The number of authoritative name servers for zone EXAM-
PLE.COM in the model instance presented in Figure 7.6 is 4
while the ANS(EXAMPLE.NET) is 2.

Counting the number of authoritative name servers of a zone.
It depends on the implementation of the model and the query
language. for OCL it can be calculated on a zone based on this

query: self.nameservers->size().

Metric:
Symbol:
Definition:

Usability:

How to Measure

Number of Zones

Zones(z)

Total number of zones within the model instance.

The metric can be used as an indication of how many zones
influencing the resolution of domain names under the zone z.

Count all elements in the model of instance type zone.

167

Appendix A. DNS Dependency Model

Example:

Formula:

The number of =zone influencing the resolution of
domain names under the zone (EXAMPLE.COM)
in the model instance presented in Figure 7.6 is 4
(COM,EXAMPLE.COM ,NET,EXAMPLE.NET). The root
zone was excluded since it is required for the resolution of
every zone in the domain name space.

Counting the number of zones in the model. It depends on
the implementation of the model and the query language. Us-
ing OCL it can be calculated on a zone based on this iterated
query over all zone elements in the model: self.data.zones-
>collect(z : Zone | z.subzones->asOrderedSet())-

>size().

Metric:
Symbol:
Definition:

Usability:

How to Measure

Example:

Number of Organisations

Org(2)

Total number of Organisations within the model instance.
The metric can be used as an indication of how much coor-
dination is needed between various institutions hosting name
servers included in the resolution path(s) of domain under zone
z.

Count all elements in the model of instance type Organisation.
The number of organisations involved in the resolution of do-
main names under the zone (EXAMPLE.COM) in the model
instance presented in Figure 7.6 is 2 (ORG-A and ORG-
B). The root zone organisation (ICANN/TANA) was excluded
since it is required for the resolution of every zone in the do-

main name space.

168

Appendix A. DNS Dependency Model

Formula:

Counting the number of organisations in the model. It de-
pends on the implementation of the model and the query
language. for OCL it can be calculated on a zone based
on this iterated query over all zone elements in the model:
self.manage.organisations->collect(o : Organisation |

o.childorg- >asOrderedSet())->size().

Metric:
Symbol:

Definition:

Usability:

How to Measure

Example:

Formula:

Number of In-Bailiwick Servers

Is(z)

The number of authoritative name servers of zone z and who
has their names in the same zone z.

This measure is an indication of how the name servers are
within the administrative authority of the zone administrator
out of the total number of authoritative name servers of the
zone.

Count the number of authoritative name servers of a zone
where the name of the server is under the same zone.

The number of In-Bailiwick name server for the zone (EXAM-
PLE.COM) in the model instance presented in Figure 7.6 is
2 (NS1.EXAMPLE.COM and NS2.EXAMPLE.COM) while it
equals to 0 for the zone (EXAMPLE.NET) since both name
servers are within the zone (EXAMPLE.COM).

Counting the number of authoritative name servers for a zone
in the control plane of the model where they have (hasNameln)
the same zone z. It can be implemented in OCL as follows:
self.nameservers.hasnamein.name.equalsIgnoreCase(

self.name)- >count(true).

169

Appendix A. DNS Dependency Model

Metric:

Symbol:

Definition:

Usability:

How to Measure

Example:

Formula:

Number of Out-of-Bailiwick Servers

Os(z)

The number of authoritative name servers of zone z and who
has their names under a zone name other than the zone z.
This measure is an indication of how the name servers are
outside the administrative authority of the zone administrator.
Count the number of authoritative name servers of a zone
where the name of the server is under the same zone.

The number of Out-Of-Bailiwick name server for the zone (EX-
AMPLE.COM) in the model instance presented in Figure 7.6 is
2 (DNS1.EXAMPLE.NET and DNS2. EXAMPLE.NET) while
it equals to 2 for the zone (EXAMPLE.NET) since both name
servers are within the zone (EXAMPLE.COM).

Os(z) = ANS(z) — Is(2). It can
also be implemented in OCL as follows:
self.nameservers.hasnamein.name.equalsIgnoreCase(

self.name)->count(false)

B.2 Measures of Structural Complexity

Metric:
Symbol:

Definition:

Administrative Complexity
AC(z)
Describes the diversity of a zone with respect to the organi-

sations administering its authoritative name servers.

170

Appendix A. DNS Dependency Model

Usability:

How to Measure:

Metric Notations:

The advantage mutual hosting of zones between organizations
is an increased availability but at the same time increased po-
tential of failure and instability of the zone resolution process.
Count the number of authoritative name servers managed by
each organization involved in the dependency graph of zone
(z).

O.: denotes the set of organizations administering author-
itative name servers hosting zone (z); n: total number of
authoritative name servers of zone (z); |ANS|? C |[ANS)|, :
the subset of name servers administered by organization o in

0,.

Example: For example, assuming the servers ns.example.com and
ns.example.net are the authoritative name servers for the
zone(EXAMPLE.COM) and are operated by two separate
organizations. the administrative complexity of EXAM-
PLE.COM with n = 2 is:

AC(EXAMPLE.COM) =1—((3)*+()») =05

Formula: AC(z)=1-— Zoeoz(ﬁng)”.

Metric: Hierarchical Reduction Potential (HRP)

Symbol: HRP(z)

Definition: Quantifies how much the ancestry of a zone might be reason-
ably consolidated to reduce hierarchical complexity.

Usability: A greater HRP value indicates that minimizing hierarchical

complexity might reduce failure potential.

171

Appendix A. DNS Dependency Model

How to Measure:

Example:

Formula:

We express the HRP of zone z, having m + 1 ancestral zones,
as the fraction of layers that could be reduced if the number
of zones is consolidated to m’ + 1.

While delegation is necessary in many cases, there are some
cases in which collapsing a delegated zone is both rea-
sonable and possible. For example, if example.com and
sub.example.com are two zones administered by the same or-
ganization, the zone data for sub.example.com might trivially
be migrated to the example.com zone and the delegation to
sub.example.com removed. This consolidation reduces the
number of zones ancestral to sub.example.com by 0.25 from 4
to 3.

HRP(z) = =1

m—+1

’

Metric:
Symbol:

Definition:

Usability:

How to Measure

Network Diversity

NETD(z)

This is a metric of the diversity of placement of servers in
terms of the number of distinctive networks identified by their
Autonomous Numbers (AS) hosting the various authoritative
name servers of a zone z.

Authoritative name servers have to be placed in diverse net-
works to avoid any single point of failure and to improve the
resiliency of the overall system.

Count the ordered set of networks in terms of their AS numbers

hosting the authoritative name servers of zone z.

172

Appendix A. DNS Dependency Model

Example:

Formula:

The model instance provided in Question 7 in the DNS sur-
vey in Appendix E shows that all name servers for the zone
(NIC.AA) are placed within the same network AS number since
all of them are within the same subnet.

Count the ordered set of network AS numbers identifying
where the authoritative name servers are hosted. In OCL
this can be implements by executing the following query:
NETD(z) = self.nameservers.hostedat.asnumber-

>asOrderedSet()->size()

Metric:
Symbol:

Definition:

Usability:

How to Measure

Example:

Geographical Diversity

GEOD(z)

This is a metric of the diversity of placement of servers in terms
of the number of distinctive geographical locations (identified
by the alpha-2 country code) where the various authoritative
name servers of a zone z are located at.

Authoritative name servers have to be placed in diverse geo-
graphical locations to avoid any single point of failure such as
power outages and natural and man-made disasters.

Count the ordered set of Geographical Locations in terms of
their country codes hosting the authoritative name servers of
zone z.

The model instance provided in Question 9 in the DNS sur-

vey in Appendix E shows that all name servers for the zone

(NIC.AA) are placed in the UK so GEOD(NIC.AA) = 1.

173

Appendix A. DNS Dependency Model

Formula:

Count the ordered set of geographical locations identify-
ing where the authoritative name servers are located. In
OCL this can be implements by executing the following
query: GEOD(z) = self.nameservers.locatedat.name-

>asOrderedSet()->size()

Metric:
Symbol:

Definition:

Usability:

How to Measure

Example:

Formula:

Controlability

Co(z)

This is a measure of how much control the system adminis-
trator can exert on his zone as a result of hosting his zone
within name servers outside of his administrative jurisdiction
or authority.

The metric can be used to assess the amount of coordination
needed for the maintenance of a consistent and stable copy of
the zone between the various hosting name servers.

Calculate the number of in-bailiwick and out-of-bailiwick name
servers of the zone.

For the example model instance in Figure 7.6
Is(Example. COM)=2 and Os(EXAMPLE.COM)=2
then Co(EXAMPLE.COM)=3z%5 = 0.5, While
Co(EXAMPLE.NET):g = 0.

_ s
CO(Z) T Is(2)+0s(z)

B.3 Measures of Dependency /Influence

174

Appendix A. DNS Dependency Model

Metric:

Symbol:

Definition:

Usability:

How to Measure

Example:

Formula:

Influencing Zones

I(2)

The set of zones included in the model instance and influencing
the resolution of domain names under a certain zone z.

This metric it is generally representative of the diversity of
zones that influence resolution of domain names under zone z
and as indication of the trusted computing base of the zone.
Count all zones present within the model instance of the zone
For the example model instance in Figure 7.6, the total
Iz(EXAMPLE.COM)=5.

Using OCL it can be calculated on a zone based on this iterated
query over all zone elements in the model: self.data.zones-
>collect(z : Zone | z.subzones->asOrderedSet())-

>size().

Metric:
Symbol:

Definition:

Usability:

How to Measure

Directly Configured Zones

DCZ(z)

The set of zones included in the model instance and influencing
the resolution of domain names under a certain zone z and
explicitly configured by the zone’s administrator.

This metric it is generally representative of the explicitly con-
figured zones that influence resolution of domain names under
zone z.

Count all the zones directly associated with the authoritative
name servers of the zone. Included in this set are the parent

zones of any ANS or alias targets in the model.

175

Appendix A. DNS Dependency Model

Example:

Formula:

For the example model instance in Figure 7.6,
DCS(EXAMPLE.COM)= (example.com and example.net)=2.
Using OCL it can be calculated on a zone based on this
query: self.nameservers.hasnamein->asOrderedSet()-

>size().

Metric:
Symbol:

Definition:

Usability:

How to Measure

Third Party Zones

TPZ(z)

The set of zones included in the model instance and influenc-
ing the resolution of domain names under a certain zone and
stemming from the inter-zone dependencies.

This metric it is generally representative of the influence of
zones that are not explicitly configured by the zone adminis-
trator. They are the result of the inter-zone name dependencies
within the model instance.

Count all zones present within the model instance of the zone

and subtract from it the number of the directly configured

zones.

Example: For the example model instance in Figure 7.6, the total
Iz(EXAMPLE.COM)=5.

Formula: TPZ(z) = Zones(Z) — DCZ(z).

Metric: Directly Configured Organisations

Symbol: DCO(z)

176

Appendix A. DNS Dependency Model

Definition:

Usability:

How to Measure

Example:

Formula:

The set of organisations managing the zones included in the
model instance and influencing the resolution of domain names
under a certain zone z and explicitly configured by the zone’s
administrator.

This metric it is generally representative of the explicitly con-
figured organisations that influence resolution of domain names
under zone z. These organisations may have close mutual co-
operation agreements to ensure certain service levels of the
system.

Count all the organisations managing the directly configured
authoritative name servers of the zone.

For the example model instance in Figure 7.6,
DCO(EXAMPLE.COM) = (ORG — AandORG — B) = 2
while DCO(EXAMPLE.NET) = (ORG — B) = 1.

Using OCL it can be calculated on a zone based on this
query: self.nameservers.managedby->asOrderedSet()-

>size().

Metric:
Symbol:

Definition:

Third Party Organisations

TPZ(z)

The set of organisations managing the zones included in the
model instance and influencing the resolution of domain names
under a certain zone z and explicitly configured by the zone’s

administrator.

177

Appendix A. DNS Dependency Model

Usability:

How to Measure

This metric it is generally representative of the explicitly con-
figured organisations that influence resolution of domain names
under zone z. These organisations may have close mutual co-
operation agreements to ensure certain service levels of the
system.

Count all the organisations managing name servers in the
model and subtract the number of organisations managing the

directly configured authoritative name servers of the zone.

Example: For the example model instance in Figure 7.6,
TPO(EXAMPLE.COM) = (ORG — B) = 1.

Formula: TPO(z) = ORG(Z) — DCO(z).

Metric: Dependency Cycles

Symbol: Cycles(z)

Definition: A cyclic zone dependency occurs when two or more zones de-
pend on each other in a circular way.

Usability: A name which is a dependency of itself is effectively "unavail-

How to Measure

Example:

able". Cyclic dependencies potentially decrease the redun-
dancy of a domain name for an ignorant resolver. It also affects
other quality attributes of the operational system.

Query the model about the presence of a pattern speci-

nameservers

fies two zones with cyclic dependency of (Zone;

hasnamein nameservers hasnaemin,

Server; Zones Servers
Zoney) sequence path.

The model instance in Figure 7.6 has 4 cycles included in
the resolution paths of the domains under the zone EXAM-
PLE.COM.

178

Appendix A. DNS Dependency Model

Formula:

Henshin-Based cyclic dependency pattern matching rule as

shown in Figure 6.4.

B.4 Measures of Delegation and Inheritance

Metric:
Symbol:

Definition:

Usability:

How to Measure

Metric Notations

Depth

D(z)

The depth of a zone is defined as its distance from the root
zone.

Each ancestral zone z(i) contributes to the failure potential
for zone z, as it is an additional requirement of DNS and
DNSSEC correctness that must be consistent.

Calculate the number of ancestry zones of zone z which are
zones with Parent(z) relationship in the model instance.
Zone z has ancestry z(0),z2(1),...,z(m) comprised of m + 1

zones and has a depth of m.

Example: For example, zone(SUB.EXAMPLE.COM) has
m = 3. The Depth(z) = 4 since it spans the zones
(ROOT,COM,EXAMPLE.COMandSUB.EXAMPLE.COM).
Formula: Depth(z) =m + 1
Metric: Minimum Query Path
Symbol: MinQP(z)

179

Appendix A. DNS Dependency Model

Definition:

Usability:

How to Measure

Example:

Formula:

The MinQP(z) for a domain name refers to the minimum
number of authoritative name servers which a DNS resolver
must query to resolve the name under a particular zone z.
Domain names with larger MinQPs may result in additional
resolution overhead for an ignorant DNS resolver. However,
caching minimizes overhead of subsequent lookups.

An Algorithm that recursively performs a conversion of the
Boolean expression for resolving domains under zone z hrough
all possible paths through every authoritative name server, into
disjunctive normal form (DNF). Each resulting conjunction
corresponds to a complete set of servers that may be queried
to resolve domains under z. The set of conjunctions having
minimum size is returned.

The MinQP(NIC.AA) shown in the model instance presented
in Question 9 in Appendix E is 3. (Resolution path through
nsl.nic.aa, Zone(NIC.AA) name server then one name server
of zone(AA) and finally one of zone(ROOT) name servers.
The DNF algorithm was implemented in Java as part of the
ISDR method techniques.

Metric:
Symbol:

Definition:

Usability:

Maximum Query Path

MaxQP(z)

The Max@QP(z) for a domain name refers to the maximum
number of authoritative name servers which a DNS resolver
must query to resolve the name under a particular zone z.
Domain names with large MaxQPs result in additional resolu-

tion overhead.

180

Appendix A. DNS Dependency Model

How to Measure An Algorithm that recursively performs a conversion of the

Example:

Formula:

Boolean expression for resolving domains under zone z through
all possible paths through every authoritative name server, into
disjunctive normal form (DNF). Each resulting conjunction
corresponds to a complete set of servers that may be queried
to resolve domains under z. The set of conjunctions having
maximum size is returned.

The MaxQP(NIC.AA) shown in the model instance presented
in Question 9 in Appendix E through the ANS nsl.info repre-
sents the longest query path and equals to 6. (Resolution path
through one name server of the following zones (NIC.AA, AA,
ROOT, INFO, ORG, EDU).

The DNF algorithm was implemented in Java as part of the

ISDR method techniques.

Metric:

Symbol:

Definition:

Usability:

Average Query Path

AQP(z2)

The AQP(z) for a domain name refers to the average num-
ber of all query paths through all authoritative name servers
which a DNS resolver must query to resolve the name under a
particular zone z.

Domain names with larger AQPs results in additional resolu-
tion overhead for an ignorant DNS resolver. It may also implies
impacts on other quality attributes of the domain name sys-

tem.

181

Appendix A. DNS Dependency Model

How to Measure An Algorithm that recursively performs a conversion of the

Example:

Formula:

Boolean expression for resolving domains under zone z, into
disjunctive normal form (DNF). Each resulting conjunction
corresponds to a complete set of servers that may be queried to
resolve domains under z. The average of all sets of calculated
conjunctions is returned.

The DNF(NIC.AA) shown in the model instance presented
in Question 9 in Appendix E is Average(DNF(nsl.nic.aa),
DNF(ns2.nic.aa)+DNF(nsl.info) which equals to Aver-
age(3+3+6) =4. .

The DNF algorithm was implemented in Java as part of the
ISDR method techniques.

182

Appendix C

Bad Smells Catalogue

Name:
Type:
Insp. Planes:

Occurrences:

Quality Impacts:

Detection:

Refactorings:

Unnecessary RR (Information Leakage)..

Inter-Zone and Measurable.

Data Layer and the Zone’s Resource Records.

The presence of certain RRs (such as HINFO Records) reveals
sensitive information needed for launching targeted attacks.
The HINFO RR is generally used to carry information about
a host such as the O/S name, version, its latest installed patch
and other sensitive information. This information could be
potentially used to launch targeted attacks on such hosts. De-
pending upon whether the attacked host is a DNS name server,
mail server or web server, the adverse consequences of such at-
tacks could be different.

Serious impacts on system security.

Quering the model for the occurrence of such records within
the DataLayer. A graph-based Henshin rule can be used to
detect such structural bad smell.

RemoveHinfoRecord.

183

Appendix C. Bad Smells Catalogue

Name:
Type:
Insp. Planes:

Occurrences:

Quality Impacts:

Large Parameter Value (Zone Drift).

Inter-Zone and Measurable

Data Layer and Zone’s SOA Record.

Large parameter values in the RDATA portion of the zone’s
SOA Record could result in either no answers or obsolete (un-
usable) answers resulting in denial of service. For example the
"refresh" data item in the RDATA field of a SOA RR specifies
the frequency with which secondary authoritative name servers
should initiate zone transfers in order to keep their zone file
contents in synch with the primary authoritative name servers.
Similarly the "retry" data item in the same field of the same
RR tells the frequency with which the secondary name server
should make retry attempts in case a refresh attempt is unsuc-
cessful. The "Expiry" data item in the same RDATA field de-
notes the time duration after which the secondary name server
should make no more attempts at refresh but instead lets its
zone file contents expire.

Large value for the data items (i.e., "refresh", "retry" and
"expiry") could result in mismatch of data between secondary
name servers (that provide fault tolerance) and primary name
server resulting in serving either a empty response or obsolete
response. Frequent occurrences of zone drift could potentially
result in denial of service to DNS resolvers using those sec-
ondary name servers. This type of bad smells has direct im-
pact on degrading the availability, security and stability of the

system.

184

Appendix C. Bad Smells Catalogue

Detection: Check the value of the various parameters within the SOA
resource record model component and compare them with the
corresponding recommended values.

Refactorings: AdjustSOAParameters.

Name: Small Parameter Value (Zone Thrash).

Type: Inter-Zone and Measurable.

Insp. Planes:

Occurrences:

Quality Impacts:

Detection:

Refactorings:

Data Layer and Zone’s SOA Record.

For example if the "refresh" value in SOA RR is very small,
the secondary authoritative name server will be performing
frequent zone transfers from the primary authoritative name
server. As another example, if the "MinTTL" data item in
a SOA RR is small, those RRs that have used this default
value will expire much more quickly in the cache of the caching
name server. Hence the DNS resolver will have to make more
frequent queries to the authoritative name servers instead of
relying on its cache. This will result in more frequent queries
to primary and/or secondary authoritative name servers and
has the potential to degrade performance (by increasing query
response time). This situation is called "Zone Thrash".

A different set of security impacts occur if the parameter values
in RDATA field of the SOA Record are too small. This type of
bad smells has also direct impact on degrading the availability,
and stability of the system.

Check the value of the various parameters within the SOA
resource record model component and compare them with the

corresponding recommended values.

AdjustSOAParameters.
185

Appendix C. Bad Smells Catalogue

Name:
Type:
Insp. Planes:

Occurrences:

Quality Impacts:

Detection:

Refactorings:

Ill Formed Associative RR.
Inter-Zone and Structural.
Data Layer and Zone’s Resource Records.
Access to certain domains and/or services require two RRs (or
RRsets) in the zone file to be retrieved. The first RR (RRset)
will only provide the fully qualified domain name (FQDN) of
the domain/service (e.g., NS and MX RRs that provide the
FQDN (e.g., nsl.example.com) of the name server and mail
server respectively for a domain). The second RR (RRset)
then provides the IP address for the retrieved FQDN through
an A/AAAA RR (host to IP Address mapping RR). The sec-
ond RR (i.e., A/AAAA RR) is called the associative RR since
it provides the actual network address (IP address) to reach
the host providing a specific service that is referenced in the
first RR (NS or MX RR). If the associative RR either contains
an invalid IPv4 /IPv6 address or the RR itself is missing, then
the host providing the internet-based service becomes inacces-
sible and hence is susceptible to denial of service attacks.
Missing or ill-formed associative RRs results in inaccessibil-
ity and severely degrading the availability of Internet domain
names and associated services.
Check the referential integrity (associations and references)
between the related resource records such as NSRecords and
ARecords. A graph-based Henshin rule can be used to detect
the presence of the associative resource records and check if
the reference to the same logical or physical servers.
Create/DeleteARecord, Create/DeleteNSRecord and Cre-
ate/DeleteDSRecord.

186

Appendix C. Bad Smells Catalogue

Name:
Type:
Insp. Planes:

Occurrences:

Quality Impacts:

Missing RR.

Single-Type and Structural.

Data Layes and Zone’s Resource Records.

Certain critical services such as name resolution and email
transfer /access need to be hosted on multiple servers to pro-
vide fault tolerance. Hence there should be multiple RRs for
RRtypes representing those services. Specifically multiple RRs
should be present for all authoritative name servers associated
with a domain.

Missing certain resource records will have a serious implica-

tions on the availability and stability of the system.

Detection: Check the presence of redundant instances of resource records.
A graph-based Henshin rule can be directly used to detect
the presence/absence of such resource records in the model
instance.

Refactorings: Create/DeleteARecord, Create/DeleteNSRecord and Cre-
ate/DeleteDSRecord.

Name: Incorrect Parameter Value..

Type: Inter-Type and Lexical.

Insp. Planes:

Occurrences:

Data Layer and Zone’s DNSSEC related Resource Records.

Incorrect parameter values in the zone file’s digital signature
records (RRSIG RRs) will render the DNSSEC security ser-
vice non-usable. For example, if the signature is not currently
valid (current date is not between signature inception and ex-
piry dates), then a DNSSEC-aware resolver will not use it to

validate the integrity of the RRset covered by the signature.
187

Appendix C. Bad Smells Catalogue

Quality Impacts:

Detection:

Refactorings:

This type of bad smells has sever impacts on the security and
stability of the domain name system.

Check the DNSSEC related RRSIG records for the signature
expiration parameter and make sure the TTL value matches
the TTL value of the RRset it covers. DNSSEC resource
records are not shown within the DNS Model for space con-
siderations but they are dealt with the same as pther critical
infrastructure DNS resource records in the model.

AdjustRRSIGParameters.

Name:

Type:
Insp. Planes:

Occurrences:

Quality Impacts:

Ambiguous Data..

Inter-Type and Lexical.

Data Layer and all Zones and associated Resource Records.
Certain data content scenarios are high risk from the point
of security but nonetheless needs policies for proper usage of
their underlying RRs. Examples of such scenarios are multiple
IP addresses for a given host (i.e., multiple A RRs for a given
host identified by a fully qualified domain name (FQDN)).
The availability and security of the system is highly affected

by this type of bad smells.

Detection: Check for the presence of duplicate records or components
within the model instance.

Refactorings: Create/DeleteARecord and Create/DeleteNSRecord.

Name: Small Number of ANS/Absence of Multiple RRs.

Type: Inter-Type and Measurable.

188

Appendix C. Bad Smells Catalogue

Insp. Planes:

Occurrences:

Quality Impacts:

Control Layer and Server Components.

A major reason for having multiple servers for each zone is
to allow information from the zone to be available widely and
reliably to clients throughout the Internet, that is, throughout
the world, even when one server is unavailable or unreachable.
Multiple servers also spread the name resolution load, and im-
prove the overall efficiency of the system by placing servers
nearer to the resolvers.

This smell has direct impacts on the availability, stability and

resiliency of the overall system.

Detection: Count the number of name servers associated with the zone
and check if they are above a pre-defined threshold value. The
threshold value is set based on the local administrator needs
and governing policies.

Refactorings: Create/DeleteARecords, Create/DeleteNSecords,
AddNewNet, AddNewGeoLocation and AddNewServer.

Name: Invalid Trust Anchor.

Type: Inter-Type and Structural.

Insp. Planes:

Data Layer and the Zone’s DNSSEC-related Resource Records.

189

Appendix C. Bad Smells Catalogue

Occurrences:

Quality Impacts:

Detection:

Refactorings:

DNSSEC adds complexity to the requirements for name resolu-
tion, and increases the potential for failure. Any server or zone
misconfiguration in the line of trust between anchor and query
name widens the target of error. To validate the DNSSEC
verification keys, DNS resolvers obtain a corresponding a DS
RR from the parent zone, which contains a hash of the public
key of the child; the resolver accepts the DNSKEY of the child
as authentic if the hashed value in DNSKEY is the same as
the value in the DS record at the parent, and that DS record
is properly signed (in a corresponding RRSIG record). Since
the DS record at the parent is signed with the DNSKEY of
the parent, authenticity is guaranteed and the trust chain is
secure.

This bad smell affects mainly the security quality attribute of
the system..

Detection is done by checking the continuity of the trust chain
through the verification of keys between the current zone and
its ancestors as well as the ancestors of all authoritative name
servers of that particular zone all the way to the root zone.
If DS RRs are present in a parent zone, but none of them
correspond to any self-signing DNSKEYs in the child zone,
then the chain of trust is broken.

Create/DeleteDSRecord.

Name:
Type:

Insp. Planes:

Untrusted Peer Organisation/Corrupted Parent.
Intra-Type and Lexical.

DNSModel Instance.
190

Appendix C. Bad Smells Catalogue

Occurrences:

Quality Impacts:

Detection:

Refactorings:

A zone trusts its parent to perform the delegation on its be-
half. This trust model is appropriate for zones within the
same organisation, however, there is risk involved in trusting
the parent not to abuse inter-organisational trust relationship.
Since the organisation controlling the parent zone is holding
the secret signing keys, it can forge the delegation records of
the child and then provide this forged (yet correctly signed) DS
RR, thus misleading the clients of the child zone into accepting
a forged DNSKEY and trusting resource records signed with
it.

Availability, security and stability of the system is affected by
the presence of this bad smell.

Check the consistency and correctness of all types of key dis-
tribution between zones with inter-organisational relationship
by following the the child/parent delegation chain up to the
root zone. For peer organisations, this should be done for all
authoritative name servers and their ancestors up to the root

zone.

Add/DeleteZone and Create/DeleteDSRecord.

Name:
Type:
Insp. Planes:

Occurrences:

Large Attack Surface.

Intra-Zone and Measurable.

DNSModel Instance.

The attack surface metric, AS(z), is an indicator of the sys-
tem’s security. The larger the attack surface, the more insecure
the system. In our model, AS(z) is the total number of (Zones,

Servers and organisations) in the model.

191

Appendix C. Bad Smells Catalogue

Quality Impacts:

Large Attack Surface affects all the quality attributes of the

system.

Detection: Calculating the Attack Surface, AS(z), metric and comparing
them to certain thresholds set based on local policies.

Refactorings: Add/DeleteZone, Add/DeleteOrganisation, and Add/Re-
name/DeleteServer.

Name: Excessive Zone Influence.

Type: Intra-Zone and Measurable.

Insp. Planes:

Occurrences:

Quality Impacts:

Data Layer of the DNS Model.

The set of influential zones is a measure of the Trusted Com-
puting Base (TCB) of the zone. It is generally representative
of the diversity of directly and third party zones that influence
resolution of domain names under z.

Security and stability of the system are affected by the presence
of this bad smell.

Detection: Calculating the Directly Configured Zones, DCZ(z), metric
and Third Party Zones, TPZ(z), metric and comparing them
to certain thresholds set based on local policies.

Refactorings: DeleteZone, DeleteSOARecord, RenameServer and Ad-
d/DeleteServer..

Name: False-Redundancy.

Type: Intra-Zone and Measurable.

Insp. Planes:

DNS Model Instance.

192

Appendix C. Bad Smells Catalogue

Occurrences:

Quality Impacts:

Detection:

Refactorings:

DNS uses redundancy as one of the two mechanisms for high
availability - the other one is caching.

If all servers comprising the redundancy of a domain name
were to fail, then the name would be rendered unavailable so
this smell has direct impact on the availability and resiliency
of the system.

If the value of the redundancy, R(z), metric for a zone is less
than the number of authoritative name servers of that par-
ticular zone, ANS(z), then the true redundancy is less than
the redundancy configured by the zone administrator. False
redundancy could also result from a narrower bottleneck in
downstream resolution query paths of domains under z.
Create/DeleteARecords, Create/DeleteNSecords,
AddNewNet, AddNewGeoLocation and AddNewServer.

Name:
Type:
Insp. Planes:

Occurrences:

Quality Impacts:

Excessive Zone Complexity.

Intra-Zone and Measurable.

DNSModel.

One important necessity is careful coordination both hierar-
chically (i.e., between parent and child zones) or laterally, be-
tween organizations hosting each others’ data.

High zone complexity value increases the failure potential for
signed and unsigned zones because they indicate more areas
where problems may occur. Direct impacts for such smell are

evident on the stability and resiliency of the system.

193

Appendix C. Bad Smells Catalogue

Detection:

Refactorings:

The hierarchical relationship complexity is measured using the
hierarchical reduction potential metric, H RP, and the lateral
coordination complexity is measured by the administrative
complexity metric, AC(Z). Comparing these metrics with a
predefined threshold values will reveal the existence of such a
bad smell in the model instance.

DeleteZone, DeleteSOARecord, RenameServer, Add/Delete-

Server.

Name:
Type:
Insp. Planes:

Occurrences:

Quality Impacts:

Diminished Redundancy.

Measurable and Inter-zone.

Control Layer.

A number of problems in DNS operations today are at-
tributable to poor choices of secondary servers for DNS zones.
The geographic placement as well as the diversity of network
connectivity exhibited by the set of DNS servers for a zone can
increase the reliability of that zone as well as improve overall
network performance and access characteristics. When all re-
dundant servers are located within the same physical location,
connected to the same network, placed within the same ad-
dress prefix.

Reduced availability, decreased resilience, and the system be-

come susceptible to single point of failure at certain granular-

ity.

194

Appendix C. Bad Smells Catalogue

Detection:

Refactorings:

Queries on the dependency graph regarding the following met-
rics: a) number of authoritative name servers, b) geographical
locations servers are placed in, c¢) networks connected to, and
d) BGP prefixes.

Applying the MoveServerLocation refactoring rule will ensure
the availability of the zone and its resilience to a single point

of failure.

Name:
Type:
Insp. Planes:

Occurrences:

Quality Impacts:

Cyclic Dependency.

Intra-Zone and Structural.

Data and Control Layers.

Cyclic zone dependency occurs when two or more zones depend
on each other in a circular way. This type of interdependency
creates a "chicken and egg" problem; one cannot resolve a
name in zone Z; without first resolving a name in 75 and vice
versa.

Reduced availability and reduced resiliency.

Detection: Is there any cycle in the Dependency Graph?. A query on the
DNS Model Instance that can be implemented using Henshin
as shown in Figure 6.4.

Refactorings: Add a glue record (ARecord) for the (out-of-bailiwick) author-
itative name servers involved in the cycle in the zone file.

Name: Non-Optimal Query Path.

Type: Intra-Zone and Measurable.

Insp. Planes:

The DNSModel Instance.
195

Appendix C. Bad Smells Catalogue

Occurrences:

Quality Impacts:

When the number of servers which a resolver must query to
resolve the name is larger that the MinQP.

Name servers with larger query paths result in additional reso-
lution overhead for an ignorant resolver so the quality attribute

directly affected by this smell is the availability attribute.

Detection: Calculating the MinQP metric for a zone and compare each
query resolution path through each name server with the min-
imum value. The name server with query path > MinQP con-
tributes to the occurrence of this bad smell.

Refactorings: Create/DeleteNSRecord and Create/DeleteARecord, Cre-
ate/DeleteZone, and Add/DeleteServer.

Name: Delegation Inconsistency.

Type: Intra-Zone and Structural.

Insp. Planes:

Occurrences:

Quality Impacts:

Data Layer and Zone/Parent Zone NS Records .

When a parent zone P delegates part of its name space to
a child zone C, P stores a list of NS resource records for the
authoritative servers of zone C. This list of NS resource records
are kept both at the parent and the child zone. In order to
maintain a consistent answer sets of authoritative name servers
for a certain zone and its contents, it is essential to maintain
the same NS resource record set in both the parent and child
zones.

Lacking this consistency reflects the failure of coordination
among NS servers’ operators. Such inconsistency will affect
the availability and stability of the DNS query process for this

particular zone.

196

Appendix C. Bad Smells Catalogue

Detection: Pattern-based smells (i.e., smells that are detectable by the
existence of specific anti-pattern subgraphs) can be specified
by Henshin rules. This smell can be detected by checking for
any mismatches between the set of NS records within a zone
with its parents’ set of NS records defined as name servers for
that particular zone.

Refactorings: Create/DeleteNSRecord and Create/DeleteARecord.

197

Appendix D

Refactoring Catalogue

Name:
Context:
Priority:
Pre-

conditions:

Parameters:

Final Checks:

Quality Im-

pacts:

CreateARecord.

Zone Model Component.

(1), Zone’s administrator own decisions.

The current zone should be a child zone since the A Record has
to be created in both the current zone and its Parent zone in
order to resolve the names of in-bailiwick and out-of-bailiwick
name servers properly.

servername: FEString. The name of the Server that the
ARecord pointsto.

If the input name Server already exists in the model instance’s
ControlLayer.

Creating "glue" ARecord improves the availability of the do-
main name since it affects the ability of external DNS(s) to
correctly resolve the name of the assigned name server and

hence make the domains under the zone resolvable.

198

Appendix D. Refactoring Catalogue

1. From the model instance’s ControlLayer, locate the name
Server which the ARecord will pointto to get the parameter

servername.
Refactoring

Steps: 2. Execute the refactoring on the context zone (SelectedEOb-

ject), then input the parameter servername of the Server to

be associated with the new ARecord.
Implementation:Implementation example using Henshin graph-based rules and

units is shown in Figure 6.5, Figure 6.6 and Figure 6.7.

Name: DeleteARecord.

Context: Zone Model Component.

Priority: (1) Zone’s Administrator Own Decisions.

Pre- The current zone should be a child zone since the A Record has
conditions: to be deleted from both the current zone and its Parent zone in

order to prevent any occurrence of the Delegation Inconsistency
bad smell as a result of deleting the record.

Final Checks: The referenced point(ed)to server has to be present in the
model instance’s ControlLayer.

Parameters: servername: FEString. The name of the Server that the
ARecord pointsto.

Final Checks: None.

Quality Im- Deleting "glue" ARecord contribute to the elimination of the

pacts: Delegation Inconsistency bad smell so the availability of the

zone is improved.

199

Appendix D. Refactoring Catalogue

1. From the model instance’s ControlLayer, locate the name

Server which the ARecord point(s)to to get the parameter

servername.
Refactoring
Steps: 2. Execute the refactoring on the context zone (SelectedEOb-
ject), then input the parameter servername of the Server that
is associated with the A Record to be deleted.
Name: CreateNSRecord.
Context: Zone Model Component.
Priority: (1), Zone’s administrator own decisions.
Pre- The current zone should be a child zone since the NSRecord has
conditions: to be created in both the current zone and its Parent zone in
order to resolve the names of in-bailiwick and out-of-bailiwick
name servers properly.
Parameters: servername: FEString. The name of the Server that the

Final Checks:

Quality Im-
pacts:
Refactoring
Steps:

NSRecord refersto.

If the input name Server already exists in the model instance’s
ControlLayer.

Creating NSRecord improves the availability of the domain
name since it affects the ability of external DNS(s) to correctly
resolve the name of the assigned name server and hence make

the domains under the zone resolvable.

1. Locate the name Server which the NSRecord will refersto to

get the parameter servername.

2. Execute the refactoring on the context zone (SelectedEOb-

ject), then input the parameter servername of the Server to

be associated with the new NSRecord.

200

Appendix D. Refactoring Catalogue

Implementation:Implementation example using Henshin graph-based rules and

units is similar to the refactorings shown in Figure 6.5, Fig-

ure 6.6 and Figure 6.7.

Name:
Context:
Priority:
Pre-

conditions:

Final Checks:

Parameters:

Final Checks:

Quality Im-
pacts:
Refactoring
Steps:

DeleteNSRecord.

Zone Model Component.

(1) Zone’s Administrator Own Decisions.

The current zone should be a child zone since the NSRecord has
to be deleted from both the current zone and its Parent zone in
order to prevent any occurrence of the Delegation Inconsistency
bad smell as a result of deleting the record.

The referenced refersto server has to be present in the model
instance’s ControlLayer.

servername: FEString. The name of the Server that the
NSRecord refersto.

None.

Deleting a NSRecord contribute to the elimination of the Del-

egation Inconsistency bad smell so the availability of the zone

is improved.

1. From the model instance’s ControlLayer, locate the name

Server which the NSRecord refersto, to get the parameter

Servername.

2. Execute the refactoring on the context zone (SelectedEOb-

ject), then input the parameter servername of the Server that

is associated with the NSRecord to be deleted.

201

Appendix D. Refactoring Catalogue

Name:
Context:
Priority:

Pre-conditions:

Quality Impacts:

Parameters:

Refactoring Steps:

DeleteHinfoRecord.

Zone Model Component.

(1) Zone’s Administrator Own Decisions.

Presence of unnecessary HinfoRecord within the concerned
zone.

Deleting the HinfoRecord will improve the security of the
system since it prevents any information leakage that can be
exploited by attackers.

None.

1. Locate the HinfoRecord within the concerned zone.

2. Execute the refactoring on the context zone (SelectedEOb-

ject), where the HinfoRecord is to be deleted.

Name:
Context:
Priority:

Pre-conditions:

Quality Impacts:

CreateSOARecord.

Zone Model Component.

(1) Zone’s Administrator Own Decisions.

There should not be any SOARecord associated with the
concerned zone.

Improved availability of the zone since the zone will not be

resolvable without a correctly configured start of authority

record (SOARecord).

202

Appendix D. Refactoring Catalogue

Parameters:

Refactoring Steps:

e admin: EString. An attribute specifies the mailbox of the per-

son responsible for this zone, primary: EString. The FQDN
of the name server that was the original or primary source of

data for this zone,

serial: ElInt. The version number of the original copy of the
zone file, refresh: FElInt. Represents the time interval before

the zone should be refreshed.

retry: ElInt. Represents the time interval that should elapse
before a failed refresh should be retried, expire: Flnt. Rep-
resents the value that specifies the upper limit on the time
interval that can elapse before the zone is no longer author-
itative, munTTL: Elnt. Represents the time that should be

exported with any RR from this zone.

. Locate the zone element where the SOARecord will be cre-

ated.

. From the model instance’s ControlLayer, locate the name

Server which will be the primary source of data for the zone

and will be used as the primary parameter.

. Decide on best recommended values for the timers serial, re-

fresh, retry, expire and minTTL used as parameters for the
refactoring. These parameters have to be soundly used to

avoid any bad smells regarding the timers of the SOA Record.

. Execute the refactoring using the specified parameters.

Name:

DeleteSOARecord.

203

Appendix D. Refactoring Catalogue

Context:
Priority:

Pre-conditions:

Quality Impacts:

Parameters:

Refactoring Steps:

Zone Model Component.

(1) Zone’s Administrator Own Decisions.

A SOARecord has to be present in the model instance and
associated with the selected zone.

Deleting a zone SOA Record by itself will render the zone and
its domains unresolvable. This refactoring is executed as part
of a multi-refactorings units to reduce the HRP complexity
of a zone as part of merging two zones or to remove a zone
from the DataLayer of the model instance. This rfactoring
affects both the availability and the stability of the system.

None.

1. Locate the SOArecord within the concerned zone.

2. Execute the refactoring on the context zone (Selected EOb-

ject), where the SOARecord is to be deleted.

Name:
Context:
Priority:

Pre-conditions:

Quality Impacts:

AdjustSOAParameters.

Zone, SOARecord Model Component.

(1) Zone’s Administrator Own Decisions.

(1) A SOARecord has to be present in the model instance
and associated with the selected zone.

Adjusting the SOA timers to best recommended values will
affect the availability, security, stability and resiliency of the
DNS. These timers are vital to the basic functionality and

performance of the system.

204

Appendix D. Refactoring Catalogue

Parameters:

Final Checks:

Refactoring Steps:

SOARecord parameters as listed in the CreateSOARecord
refactoring above. These parameters have to be soundly
used to avoid any bad smells regarding the timers of the
SOARecord.

(1) A name server that will be used as the primary name
server (with nameserver=primary parameters) has to be

present in the ControlLayer of the model instance.

1. Locate the zone element where the SOARecord parameters

will be modified.

. From the model instance’s ControlLayer, locate the name

Server which will be the primary source of data for the zone

and will be used as the primary parameter.

. Decide on best recommended values for the timers serial, re-

fresh, retry, expire and minTTL used as parameters for the

refactoring.

4. Execute the refactoring using the specified parameters.

Name:
Context:
Priority:

Pre-conditions:

CreateNewZone.

DataLayer Model Component.

(2) Coordination with other Zones’” Administrators.

(1) Coordination with the new zone administrator to host
a secondary zone in a name server with a name registered
under their zone name. (2) Existence of a Parent Zone for
the new zone in the DataLayer of the current model instance.

This condition does not apply to the ROOT zone.

205

Appendix D. Refactoring Catalogue

Quality Impacts:

Parameters:

Final Checks:

Refactoring Steps:

Creating a new zone contributes to improving stability of the
system but increases the query overhead and consequently
degrading the availability of the system. It affects the se-
curity of the system by increasing the attack surface and
vulnerable points in the operational system. It increases the
points of failure that affects the resiliency of the system.
newzonename: FEString. The name of the new zone to be
created.

(1) No zone with the name zonename exists under the cur-

rent Parent Zone.

1. Locate the zone element (Parent Zone) where the new zone

will be created.

. Execute the refactoring using the specified newzonename pa-

rameters. In order to ensure the model correctness and con-
sistency, this refactoring should be followed by a Create-

SOArecord to define the Start Of Authority for the new zone

and its associated parameters.

Name:
Context:
Priority:

Pre-conditions:

DeleteZone.

Zone Model Element.

(2) Coordination with other Zones’ Administrators.

(1) Coordination with the zone administrator for the zone
to be deleted to remove any copy of the zone data from the
secondary name server with a name registered under that
zone name. (2) The current zone should not be a parent of
any sub-zone or associated with any resource records in the
model instance.

206

Appendix D. Refactoring Catalogue

Quality Impacts:

Parameters:

Final Checks:

Refactoring Steps:

Deleting a zone contributes to improving the security, stabil-
ity and resiliency of the system by reducing the third party
zones, servers and organisations involved in the resolution
process as well as reducing the attack surface of the system.
None.

None.

1. Locate the zone element that will be deleted.

2. Execute the refactoring on the specified zone. In order to en-

sure the model correctness and consistency, this refactoring
should be followed by checking if there is any dangling com-
ponents (servers, zones ,organisations and resource records) of

the model which has to be removed from the model instance.

Name:
Context:
Priority:

Pre-conditions:

Quality Impacts:

Parameters:

MergeZones.

Zone Model Component.

(2) Coordination with other Zones’ Administrators.

(1) The zone to be merged should have a parent zone within
the DataLayer of the model instance. (2) The zone to be
merged should not have any sub-zones defined within it and
no resource record is associated with it (empty zone).
Merging two zones has direct impact on the stability and re-
siliency of the system by reducing the hierarchical complexity
of the zone. It also improved the security of the system by
reducing the attack surface. Its impact on the availability is
positive since it reduces the query path for resolving domain
names under the zone.

None.

207

Appendix D. Refactoring Catalogue

Refactoring Steps:

1. Locate the zone to be merged with its parent within the Data-

Layer of the model instance.

. Execute the refactoring on the specified zone. In order to

ensure the model correctness and consistency, this refactor-
ing should be followed by proceeded by modifying the re-
source records (except the zone’s SOARecord which has to be

deleted) to reflect the merging of the zones and moving these

records to the Parent Zone.

Name:
Context:

Priority:

Pre-conditions:

Quality Impacts:

AddNewServer.

ControlLayer Model Component.

(3) Coordination with other Administrators, Cost and Access
Permissions.

Since this refactoring is tightly associated with costs, access
control, permissions and coordination with other entities, it
has to be done in full compliance with local policies and
management constraints.

Adding new servers will affect the availability quality at-
tribute negatively by adding additional query paths. It will
increase the attack surface of the system so it affects the
security of the system. On the other hand it improves the
stability of the system by increasing the authoritative name

servers for a zone and improves the resiliency of the system.

208

Appendix D. Refactoring Catalogue

Parameters:

Final Checks:

servername: EString. Defines the name of the server to be

created.

zonename: EString. Defines the name of the zone that this

server will act as a name server.

hasnamein: EString. Defines the name of the zone that hosts

the name of the server to be added.

network: EString Defines the AS number of the network that

the server is connected to.

geoloc: EString Defines the GeoLocation that the server is

located at.

wpaddress: EString Defines the IP Address assigned to the

new Server.

orgname: EString Defines the name of the organisation that

manages this particular server.

(1) There should not be a server with a name identical to
the parameter servername in the ControlLayer of the model
instance. (2) There should be zones with the defined zo-
nename and hasnamein, network with the defined network
parameter, GeoLocation with the defined geoloc parameter,
and organisation with the defined orgname parameter in the

ControlLayer of the model instance.

209

Appendix D. Refactoring Catalogue

Refactoring Steps:

1. Locate the ControlLayer) where the new server will be cre-

ated.

. Execute the refactoring using the specified parameters for the

new server. In order to ensure the model correctness and
consistency and prevent the introduction of any Delegation-
Inconsistency bad smell, this refactoring should be followed

by a CreateNSrecord and CreateArecord in the associated zone

and its parent zone.

Name:
Context:

Priority:

Pre-conditions:

Quality Impacts:

Parameters:

RenameServer.

Server Model Component.

(3) Coordination with other Administrators, Cost and Access
Permissions.

Since this refactoring is tightly associated with costs, access
control, permissions and coordination with other entities, it
has to be done in full compliance with local policies and
management constraints.

Renaming servers will modify the whole model instance by
removing the components related to the oldname and in-
troducing new model components associated with the new
server name. Usually this refactoring is used to reduce the
overall model size and reduce the attack surface so all quality
attributes are positively affected.

(1) oldservername: EString. The current server name,
newservername: EString. The new name to be as-
signed to the server. (2) All parameters listed within the
AddNewServer refactoring above.

210

Appendix D. Refactoring Catalogue

Final Checks:

Refactoring Steps:

(1) There should not be a server with a name identical to
the newservername parameter. (2) All components associ-
ated with the newservername (such as the zonename, has-
namein, geolocation, network ..etc) should be present within

the model instance.

1. Locate the server) that need to be renamed.

2. Execute the refactoring using the specified parameters for
the new server. In order to ensure the model correctness
and consistency and prevent the introduction of any Delega-
tionInconsistency bad smell, this refactoring should be fol-
lowed by modifying any reference to the old server by using
Delete/CreateNSrecord and Delete/CreateArecord in the as-

sociated zone(s) and their parent zone(s).

Name:
Context:

Priority:

DeleteServer.
Server Model Element.
(2) Coordination with other servers’ managers and associ-

ated zone administrators.

211

Appendix D. Refactoring Catalogue

Pre-conditions:

Quality Impacts:

Parameters:

Final Checks:

Refactoring Steps:

(1) Coordination with the organisations managing/hosting
the concerned server (and any associated zone administra-
tor) to be deleted to remove any copy of the zone data
from that particular name server. (2) The concerned server
should not be assigned as name server or associated with
any zone within the current model instance. (3) Since this
refactoring is tightly associated with costs, access control,
permissions and coordination with other entities, it has to
be done in full compliance with local policies and manage-
ment constraints.

Deleting a server contributes to improving the security, sta-
bility and resiliency of the system by reducing the third party
servers, zones, and organisations involved in the resolution
process as well as reducing the attack surface of the system.
None.

None.

1. Locate the server element that will be deleted within the Con-

trolLayer of the model instance.

2. Make sure that the server is not associated with any other

component within the model instance.

. Execute the refactoring on the specified server. In order to

ensure the model correctness and consistency, this refactoring
should be followed by checking if there is any dangling com-
ponents (servers, zones ,organisations and resource records)

which has to be removed from the model instance.

Name:

MoveServerLocation.

212

Appendix D. Refactoring Catalogue

Context:

Priority:

Pre-conditions:

Quality Impacts:

Parameters:

Final Checks:

Refactoring Steps:

Server Model Component.

(3) Coordination with other Administrators, Cost and Access
Permissions.

Since this refactoring is tightly associated with costs, access
control, permissions and coordination with other entities, it
has to be done in full compliance with local policies and
management constraints.

Moving a server to a new geographical location will improve
its resiliency due to improving its failure likelihood. This
also improves the geographical diversity of the name servers.
It may affect the security and availability negatively due to
the increased query overhead and extra need for coordination
with external and far away entities.

newlocation:EString. The new geographical location that the
server will be moved to.

The new geoLocation identified by the newlocation parame-
ter should be present within the ControlLayer of the model

instance.

1. Locate the new geographical location identified by the newlo-

cation parameter within the ControlLayer.;

. Locate the server that need to be moved within the Control-

Layer

. Execute the refactoring on the specified server. In order to

ensure the model correctness and consistency, this refactoring
should be followed by checking if the old geoLocation is not
associated with any other server and then removed from the

model instance accordingly.

213

Appendix D. Refactoring Catalogue

Name:
Context:

Priority:

Pre-conditions:

Quality Impacts:

Parameters:

Final Checks:

ModifyServerIP /MoveServerNet.

Server Model Component.

(3) Coordination with other network Administrators, Cost
and Access Permissions.

Since this refactoring is tightly associated with costs, access
control, permissions and coordination with other entities, it
has to be done in full compliance with local policies and
management constraints.

Moving a server to a new network improves its resiliency
due to improving its failure likelihood. This also improves
the network diversity of the name servers and avoids single
points of failure. It may affect the security and availabil-
ity negatively due to the extra need for coordination with
external and far away entities.

newnetwork: EString. The new network AS number that the
server will be connected to.

The new network identified by the newnetwork parameter
should be present within the ControlLayer of the model in-

stance.

214

Appendix D. Refactoring Catalogue

1. Locate the new network identified by the newnetwork AS pa-

rameter within the ControlLayer.;

2. Locate the server that need to be moved within the Control-

Layer

Refactoring Steps: 3. Execute the refactoring on the specified server. In order to
ensure the model correctness and consistency, this refactoring
should be followed by checking if the old network AS number
is not associated with any other server and then removed

from the model instance accordingly.

215

Appendix E

DNS Operational Model Survey

E.1 Background

The goal of this study is to investigate the influence of the Domain Names System
(DNS) configurations and deployment choices made by system administrators and
zone operators (modelled as Dependency Graphs) and their impact on a subset of
DNS operational quality attributes. The DNS Operational Model is an attempt to
describe the Domain Name System operational world for a particular operational
goal (detecting violations of the design and deployment principles) at the authorita-
tive level. For detecting problems in the configuration and deployment of the DNS,
we have to search for certain patterns representing those problems in the instances

of the operational model of the system.

We appreciate if you can provide us with your valuable input by answering all the 30
questions listed below. Filling out this survey will take approximately 30-45 minutes

of your valuable time.

216

Appendix E. DNS Operational Model Survey

E.2 General Questions

1. How many years have you been involved in DNS Management?

Lessthan 1 2 3 4 5 6 7 8 9 10 or more
OO OIOIONOIOIOIOING

2. What Top-Level-Domain (TLD) are you responsible for?

3. How many domains are registered under your TLD?

4. How familiar are you with current deployment structure of your TLD?

Never Heard About It O
Heard about it but never used it ()
Looked at It O
Looked at it in details O
Designed it O

5. How many times do you update your TLD zone every day?

Real-Time 0 1 2 3 4 5 6 7 8 9 10 Times
(click 0)

OO0 00000000 O0

6. How frequently have you changed the DNS structure for your TLD?

During the 1 2 3 4 5 Times
last 5 years

O O O O O

7. How many security incidents have you faced?

Duringthe 1 2 3 4 5 6 7 8 9 10 Incidents
last 5 years

OO OO0 00000 O0

8. How many DNS configuration/deployment faults have you faced?

During the 1 2 3 4 5 6 7 8 9 10 Incidents
last 5 years

OO0 000000 O0O0

217

Appendix E. DNS Operational Model Survey

E.3 Models and Metrics

Here is an example of the DNS Dependency Graph and how it reflects the physi-
cal and logical operational world of the DNS system from the Authoritative Zone
Operator point of view. In the following sections, we present several dependency
graphs of DNS configurations and deployment choices and would like to know their

perceived operational quality attributes from your point of view.

DNS Qualities Definitions:

Availability: "The ability of a domain name to be reliably resolved using the DNS"
Security: "The ability of the components of the DNS to protect the integrity of
DNS information and critical DNS system resources."

Stability: "The ability of the entire name resolution system and its component
parts to be able to respond to DNS queries."

Resilience: "The ability of the DNS to provide and maintain an acceptable level of
name resolution service in the face of faults and challenges to normal operations."
Please note that due to space limitations, and clarity of the images, we present parts
of the DNS operational Models in the following questions. Please, based on your

own experience, rate the perceived qualities of these model instances:

218

Appendix E. DNS Operational Model Survey

1. How do you rate the Quality Attributes of This DNS Model?

(NameServerNameSewem

ParentZone NameServer E NameServer NameServer e NameServer
NameServer

ParentZone

HasNameIn—) NIC.AA

NameServer

Y

a.abc.bb

a nic.aa)«{—NamServer—

ﬁ&i EAES

ParentZon
NameServer: ‘@ EF

@ HasNameln:
z
, Nameberver BBB2] HasNgmein | <
Y Gxved
3333 @ CRCC] i
NameServer

HasNameln

Network Org Geoloc g
S - O—&

9.9.9.9 %A

NameServer HasNameln

HasNameln

Quality Very Low Low Medium High Very High

Attribute

1 2 3 4 5)
Availability O O O O O
Security O O O O O
Stability O O O O O
Resiliency O O O O O

2. Can you justify or comment on your choices?

219

Appendix E. DNS Operational Model Survey

3. How do you rate the Quality Attributes of This DNS Model?

4

ParentZone

HasNameIn_)

K
rNamServer

@n

—NameServerW

a.nic.aa

],

HasNameIn=—18-XYZ. € oo}

ParentZone

ManagedBy

Quality Very Low

Attribute

Availability
Security
Stability
Resiliency

000+

{—NamSeNerL—NamSewerj

v

S.xyz.dd———HasNameln

ManagedBy

eoe o S

ParentZone

ManagedBy

Low Medium High Very High

O0OOO0Ow
OO0O00O «
OO0O0O =~
OO0O00O «

4. Can you justify or comment on your choices?

220

Appendix E. DNS Operational Model Survey

5. How do you rate the Quality Attributes of This DNS Model?

ParentZone

HasNameln q | F HasNameln ~

VNamSeNer— N | C_AA —NamServerw

ns1.nic.aa ns2.nic.aa ————
Al r A)
Network Org 1P Network Org
1 1141 ‘,' PR "
HasName|n——— \———HasNameln

NamServer————“———NamServer:

ns3.nic.aa ns4.nic.aa
Geolocation g

P Network Org |

m- |

Seolocatiorr) U K (Seolocatior

1

Network Org

Geolocation

Quality Very Low Low Medium High Very High

Attribute

1 2 3 4 5)
Availability O O O O O
Security O O O O O
Stability O O O O O
Resiliency O O O O O

6. Can you justify or comment on your choices?

221

Appendix E. DNS Operational Model Survey

7. How do you rate the Quality Attributes of This DNS Model?

N

ParentZone

- HasNameln { \ﬁHasNameln—\

NIC.AA
r—HasNamelnAK jLHasNamelnj
—ns1.nic. aa(—NamServer NamServer)ns2 nic.aar ~
llP 1.1.11 1.1.1.2 IP—J
T (’
| ———is3.nic.aa——NamServer NamServer Pris4.nic.az ~

IP

IP
GeolLo UK GeoLo
v ()€ \ 4
1.1.1.3 1.1.1.4
\ ManagedBy) RG A " J

ManagedBy—p» |~ = <—itamen gedBy
;Network—)‘(_Network—J

Quality Very Low Low Medium High Very High

Attribute

1 2 3 4 5)
Availability O O O O O
Security O O O O O
Stability O O O O O
Resiliency O O O O O

8. Can you justify or comment on your choices?

222

Appendix E. DNS Operational Model Survey

9. How do you rate the Quality Attributes of This DNS Model?

ParentZone

& @ AA NamServerl
Hasl t

ns1.nic.aa—— d '—ns2.nic.aa
Ve
P

* Network ManadedBy

-

[}
8
—
5
8

P

\ 4

nsi.info HasNameln

3 Network ;
* g G$Loc
ez)i _\ x g

HasName|nmm==(ns1.0rg

P Network Org GeolLoc

nsZ edu EEr @ i
i Network 0’9 GeoLoc
HasName|nmmm==(ns1.edu
4444
NamSen/er P Network Geoloc
HasNameIn + ¢
GeoLoc
5555 @
ManagedBy
Network ns3. edu

IP
4.4.4.2

Quality Very Low Low Medium High Very High

Attribute

1 2 3 4 5
Availability O O O O O
Security O O O O O
Stability O O O O O
Resiliency O O O O O

10. Can you justify or comment on your choices?

223

Appendix E. DNS Operational Model Survey

11. How do you rate the Quality Attributes of This DNS Model?

- AA |

ParentZone

HasNameIn— NameServer—

I} v v v

HasName | Ne————"/ \——_HasNameln
Trusts

~—— —NameServer‘—)NamServer—/ ;NamServer—) NameServer——————————r’

N tl k \
etworl
Org Geoloc

B2 v 'y

Trusts
Trusts

Quality Very Low Low Medium High Very High

Attribute

1 2 3 4)
Availability O O O O O
Security O O O O O
Stability O O O O O
Resiliency O O O O O

12. Can you justify or comment on your choices?

224

Appendix E. DNS Operational Model Survey

13. How do you rate the Quality Attributes of This DNS Model?

L HasNameln.
> [NIC.AA _
—nsi.nic.aa &L Y HasNameln—NS2.NIC. 28 sy
N
-1.

A
;Namserver NamServer-

‘_/

UK | «€—}—ns3.nic.aa—HasNamein—’ \-HasNamelh——(ns4.nic.aa—Pp—»{ US
v v

— ns5.nic.aa —t J ~— ns6.nic.aa — ORG-B

1.1.1.3 2223

v v

HasNameln, HasNameln

i

—ns5.nic.aa ns6.nic.aa —~

1.1.1.4 2224

Quality Very Low Low Medium High Very High

Attribute

1 2 3 4 5
Availability O O O O O
Security O O O O O
Stability O O O O O
Resiliency O O O O O

14. Can you justify or comment on your choices?

225

Appendix E. DNS Operational Model Survey

15. How do you rate the Quality Attributes of This DNS Model?

(—| | Example.com NS ns1.example.net | l(—NS Record

f—l |Example.com NS ns1 .example.com| |(NS Record

NS Record—)| | Example.com NS ns2.example.net |

COM

NS F{ecord)| |Example.com NS ns2.example.com| |—1

ns1 example.com A 1.1.1.1 |

A Record

Pareanone

NamServer:
POImSTW | ‘

NamServer

EXAMPLE.COM

ns1.example.com

\=NamServer==== EXAMPLE.NET

Al

“Roin'sTo—p>(Ns1.example.net

HasNamelnﬁ_NamSeNer—‘

A Record | ns2.example.com A 1.1.1.2 | D
NamServel

PointsTo’

HasNameIn—~.

{HasNameIn P ntsTo—t

ns2.example.net

HasNameln

ParentZone

Trusts

PointsTo

k-I | Example.net NS ns1.example.com | I{NS Record

Quality
Attribute

Availability
Security
Stability

NamServer

Trusts

PointsTo

NS Record—)| | Example.net NS ns2.example.com | |‘

Very Low Low Medium High Very High

Resiliency

00O+

OO0 w

OO0O0O0 «

16. Can you justify or comment on your choices?

OO0 =~

OO0O0O =

226

Appendix E. DNS Operational Model Survey

17. How do you rate the Quality Attributes of This DNS Model?

NS1.8Q |e—riasNameln 0 HasNamelnmem{ NS2.22

P P

1111 ParentZone 1112

: A NIC.AA :
ns1.nic.aa —HasNameln HasNameln——{NS2.Nic.aa
A A
A
e, 58 o s, 59 (os
rNamSeNer NamServerj
ns3.nic.aa HasNameln————' \———HasNameln ns4.nic.aa
o, 258 s, B2 (m
ns5.nic.aa < - ns6.nic.aa
ows, oon oe o) (98 (e
{ ‘NamServer ;
ns5.nic.aa HasNameln, A HasNameln ns6.nic.aa

Quality Very Low Low Medium High Very High

Attribute

1 2 3 4 5
Availability O O O O O
Security O O O O O
Stability O O O O O
Resiliency O O O O O

18. Can you justify or comment on your choices?

227

Appendix E. DNS Operational Model Survey

19. How do you rate the Quality Attributes of This DNS Model?

NS Record—)' | com NS ns1.com | |

3.3.3.3 «€—Ip

www.example.com

PointsTo

ParentZone

A Record—)l I www.example.com A 3.3.3.3 I I

ARecord—)I Ins1.example.comA2.2.2.2| I
NamServer

.example.com(Actua

Quality Very Low Low Medium High Very High

| IExampIe.com NS ns1.example.com| I(_NS Recor d—@LEQ

PointsTo "

P—y 2222

Attribute

1 2 3 4 5
Availability O O O O O
Security O O O O O
Stability O O O O O
Resiliency O O O O O

20. Can you justify or comment on your choices?

228

Appendix E. DNS Operational Model Survey

E.4 Assessing TLD Quality Attributes

On a scale of 1 to 5, How do you rate the quality attributes of your "own TLD"
(as listed in the first section of this questionnaire) current configuration and DNS

servers’ deployment structure?

Quality Very Low Low Medium High Very High

Attribute

1 2 3 4 5
Availability O O O O O
Security O O O O O
Stability O O O O O
Resiliency O O O O O

Submission Message

DNS Operational Model Survey
Thank you for your valuable input.

Wish you a pleasant day.

229

Bibliography

[

13l

[5]

T Arendt, F Mantz, and G Taentzer. Emf refactor: specification and appli-
cation of model refactorings within the eclipse modeling framework. In of the

BENEVOL workshop, 2010.

Microsoft Corporation. Microsoft responds to dns issues. Technical report,
Microsoft Corporation, 2001. URL http://www.microsoft.com/en-us/news/

press/2001/3jan@1/01-24dnspr.aspx.

Inc. Dyn. Ddos attack against dyn managed dns, incident report, 2016. URL

https://www.dynstatus.com/incidents/nlr4yrri162t8.

Working Group 4. Final report: Dns best practices. Technical report,
The Communications Security, Reliability and Interoperability Council III,
2012. URL http://transition.fcc.gov/bureaus/pshs/advisory/csric3/

CSRICIII_9-12-12_WG4-FINAL-Report-DNS-Best-Practices.pdf.

D. Barr. Rfc 1912: Common dns operational and configuration errors. In-
ternational Engineering Task Force, Status: Standard, 1996. URL http:

//www.ietf.org/rfc/rfc1912. txt.

Elz Robert, Bush Randy, Bradner Scott, and Patton Michael. Rfc 2182: Selec-
tion and operation of secondary dns servers. International Engineering Task

Force, Status: Standard, 1997. URL http://www.ietf.org/rfc/rfc2182.txt.

230

http://www.microsoft.com/en-us/news/press/2001/jan01/01-24dnspr.aspx
http://www.microsoft.com/en-us/news/press/2001/jan01/01-24dnspr.aspx
https://www.dynstatus.com/incidents/nlr4yrr162t8
http://transition.fcc.gov/bureaus/pshs/advisory/csric3/CSRICIII_9-12-12_WG4-FINAL-Report-DNS-Best-Practices.pdf
http://transition.fcc.gov/bureaus/pshs/advisory/csric3/CSRICIII_9-12-12_WG4-FINAL-Report-DNS-Best-Practices.pdf
http://www.ietf.org/rfc/rfc1912.txt
http://www.ietf.org/rfc/rfc1912.txt
http://www.ietf.org/rfc/rfc2182.txt

Bibliography

7]

18]

[10]

[11]

[12]

[13]

[14]

[15]

C. Deccio, J. Sedayao, K. Kant, and P. Mohapatra. Measuring availability in
the domain name system. In INFOCOM, 2010 Proceedings IEEE, pages 1-5,
March 2010. doi: 10.1109/INFCOM.2010.5462270.

Eric Osterweil, Danny McPherson, and Lixia Zhang. Operational im-
plications of the dns control plane. I[FEFE Reliability Society Newsletter,
2011. URL http://rs.ieee.org/images/files/newsletters/2011/2_2011/

OperationalImplicationsoftheDNSControlPlane.pdf.

A. Herzberg and H. Shulman. Dnssec: Security and availability challenges.
In Communications and Network Security (CNS), 2013 IEEE Conference on,
pages 365-366, Oct 2013. doi: 10.1109/CNS.2013.6682730.

D Conrad. Towards improving dns security, stability, and resiliency, 2012.

Haya Shulman and Shiran Ezra. Poster: On the resilience of dns infrastruc-
ture. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 1499-1501. ACM, 2014.

Keyu Lu, Kaikun Dong, Cuihua Wang, and Haiyan Xu. Dns configuration
detection model. In Systems and Informatics (ICSAI), 2014 2nd International
Conference on, pages 613—618. IEEE, 2014.

Duane Wessels, Marina Fomenkov, Nevil Brownlee, and kc claffy. Measure-
ments and laboratory simulations of the upper dns hierarchy. In Chadi Barakat
and lan Pratt, editors, Passive and Active Network Measurement, volume 3015
of Lecture Notes in Computer Science, pages 147-157. Springer Berlin Heidel-
berg, 2004. ISBN 978-3-540-21492-2. doi: 10.1007,/978-3-540-24668-8\ 15.

Cricket Liu and Paul Albitz. DNS and Bind. " O’Reilly Media, Inc.", 2006.

Vasileios Pappas, D. Wessels, D. Massey, Songwu Lu, A. Terzis, and Lixia

Zhang. Impact of configuration errors on dns robustness. Selected Areas in

231

http://rs.ieee.org/images/files/newsletters/2011/2_2011/Operational Implications of the DNS Control Plane.pdf
http://rs.ieee.org/images/files/newsletters/2011/2_2011/Operational Implications of the DNS Control Plane.pdf

Bibliography

[16]

[17]

18]

[19]

[20]

21]

Communications, IEEE Journal on, 27(3):275-290, April 2009. ISSN 0733-
8716. doi: 10.1109/JSAC.2009.090404.

Venugopalan Ramasubramanian and Emin Giin Sirer. Perils of transitive trust
in the domain name system. In Proceedings of the 5th Conference on Internet
Measurement 2005, Berkeley, California, USA, October 19-21, 2005, pages
379-384. USENIX Association, 2005. URL http://www.usenix.org/events/

imc@5/tech/ramasubramanian.html.

Andrew J. Kalafut, Craig A. Shue, and Minaxi Gupta. Understanding impli-
cations of dns zone provisioning. In Proceedings of the 8th ACM SIGCOMM
Conference on Internet Measurement, IMC ’08, pages 211-216, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-334-1. doi: 10.1145/1452520.1452546.

Emiliano Casalicchio, Marco Caselli, Alessio Coletta, Salvatore Di Blasi,
and IgorNai Fovino. Measuring name system health. In Jonathan Butts
and Sujeet Shenoi, editors, Critical Infrastructure Protection VI, volume
390 of IFIP Advances in Information and Communication Technology, pages
155-169. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-35763-3. doi:
10.1007/978-3-642-35764-0\ 12.

Keyu Lu, Kaikun Dong, Cuihua Wang, and Haiyan Xu. Dns configuration
detection model. In Systems and Informatics (ICSAI), 2014 2nd International
Conference on, pages 613-618. IEEE, 2014. doi: 10.1109/ICSAI.2014.7009359.

Jaeyeon Jung, Emil Sit, Hari Balakrishnan, and Robert Morris. Dns perfor-
mance and the effectiveness of caching. IEEE/ACM Transactions on network-

ing, 10(5):589-603, 2002.

M. Lotter. Rfc 1033: Domain administrators operations guide. Work in

Progress, 1987. URL http://www.ietf.org/rfc/rfc1033.txt.

232

http://www.usenix.org/events/imc05/tech/ramasubramanian.html
http://www.usenix.org/events/imc05/tech/ramasubramanian.html
http://www.ietf.org/rfc/rfc1033.txt

Bibliography

22]

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

Paul Mockapetris. Rfc 1034: Domain names: concepts and facilities. Work in

Progress, 1987. URL http://www.ietf.org/rfc/rfc1034.txt.

Paul Mockapetris. Rfc 1035: Domain namesﬁATimplementation and specifica-

tion. Work in Progress, 1987. URL http://www.ietf.org/rfc/rfc1035. txt.

Kevin R Fall and W Richard Stevens. TCP/IP illustrated, volume 1: The

protocols. addison-Wesley, 2011.

Network Working Group et al. Request for comments (rfc) 4033,aA1J. Protocol
Modifications for the DNS Security Extensions,aAI Mar, 2005.

R Arends, R Austein, M Larson, D Massey, and S Rose. Protocol modifications
for the dns security extensions (2005). RFC4035, 2005.

James F Kurose and Keith W Ross. Computer networking: a top-down ap-

proach, volume 4. Addison Wesley Boston, USA, 2009.

ICANN Security and Stability Advisory Committee. Response to recent secu-
rity threats,. Technical report, ICANN, 2008. URL https://www.icann.org/

news/announcement-2008-07-03-en. Los Angeles, California.

ICANN. Measuring the health of the domain name system, report of
the second annual symposium on dns security, stability and resiliency
(1-3 february 2010, kyoto university kyoto, japan). Technical report,
ICANN, 2010. URL https://www.icann.org/en/system/files/files/

dns-ssr-symposium-report-1-03feb10-en.pdf. Los Angeles, California.

ICANN. Measuring the health of the domain name system, report of the
3rd global symposium (rome, italy, october 19-20, 2011). Technical report,
ICANN, 2011. URL https://www.gcsec.org/keyportal/uploads/dns_ssr3_

report_20120210_001.pdf. Los Angeles, California.

233

http://www.ietf.org/rfc/rfc1034.txt
http://www.ietf.org/rfc/rfc1035.txt
https://www.icann.org/news/announcement-2008-07-03-en
https://www.icann.org/news/announcement-2008-07-03-en
https://www.icann.org/en/system/files/files/dns-ssr-symposium-report-1-03feb10-en.pdf
https://www.icann.org/en/system/files/files/dns-ssr-symposium-report-1-03feb10-en.pdf
https://www.gcsec.org/keyportal/uploads/dns_ssr3_report_20120210_001.pdf
https://www.gcsec.org/keyportal/uploads/dns_ssr3_report_20120210_001.pdf

Bibliography

[31]

[32]

33

[34]

[35]

[36]

137]

38

[39]

Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer.

Graph Transformations. Springer, 2008.

Reiko Heckel. Graph transformation in a nutshell. FElectronic notes in theo-

retical computer science, 148(1):187-198, 2006.

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Alge-
braic Graph Transformation (Monographs in Theoretical Computer Science.
An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2006. ISBN 3540311874.

Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko
Heckel, and Michael Lowe. Algebraic approaches to graph transformation-
part i: Basic concepts and double pushout approach. In Handbook of Graph
Grammars, pages 163-246, 1997.

Alfio Martini, H Ehrig, and D Nunes. Elements of basic category theory. Techn.
Univ., Fachbereich 13, Informatik, 1996.

Reiko Heckel, Jochen Malte Kiister, and Gabriele Taentzer. Confluence of
typed attributed graph transformation systems. In International Conference

on Graph Transformation, pages 161-176. Springer, 2002.

Michael R. Berthold, Ingrid Fischer, and Manuel Koch. Attributed graph

transformation with partial attribution, 2000.

Enrico Biermann, Karsten Ehrig, Christian Koéhler, Giinter Kuhns, Gabriele
Taentzer, and Eduard Weiss. EMF model refactoring based on graph transfor-
mation concepts. FCEASST, 3, 2006. URL http://eceasst.cs.tu-berlin.

de/index.php/eceasst/article/view/34.

Brent Hailpern and Peri Tarr. Model-driven development: The good, the bad,
and the ugly. IBM systems journal, 45(3):451, 2006.
234

http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/34
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/34

Bibliography

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

48]

[49]

Claudia Ermel, Enrico Biermann, Johann Schmidt, and Angeline Warning.
Visual modeling of controlled emf model transformation using henshin. FElec-

tronic Communications of the EASST, 32, 2011.

Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and
Gabriele Taentzer. Henshin: advanced concepts and tools for in-place emf
model transformations. In Model Driven Engineering Languages and Systems,

pages 121-135. Springer, 2010. doi: 10.1007/978-3-642-16145-2\ 9.

Enrico Biermann, Claudia Ermel, and Gabriele Taentzer. Formal foundation
of consistent emf model transformations by algebraic graph transformation.

Software & Systems Modeling, 11(2):227-250, 2012.

Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model trans-

formation approaches. IBM Systems Journal, 45(3):621-645, 2006.

Tom Mens and Pieter Van Gorp. A taxonomy of model transformation. Elec-

tronic Notes in Theoretical Computer Science, 152:125-142, 2006.

Shane Sendall and Wojtek Kozaczynski. Model transformation the heart and
soul of model-driven software development. Technical report, Swiss Federal

Institute of Technology in Lausanne (EPFL), 2003.

T. Mens and T. Tourwe. A survey of software refactoring. Software Engineer-
ing, IEEE Transactions on, 30(2):126-139, Feb 2004. ISSN 0098-5589. doi:
10.1109/TSE.2004.1265817.

Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific languages:

An annotated bibliography. Sigplan Notices, 35(6):26-36, 2000.
OMG OMG. Meta object facility (mof) core specification, 2014.

OMG OMG. Mof 2.0 / xmi mapping specification, 2008.

235

Bibliography

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY-, 39(2):25, 2006.

J Mukerji and J Miller. Mda guide version 1.0. 1, 2003, 2015.

Hans-Erik Eriksson, Magnus Penker, Brian Lyons, and David Fado. UML 2
Toolkit. Wiley Publishing, 2003. ISBN 0471463612, 9780471463610.

Parastoo Mohagheghi, Vegard Dehlen, and Tor Neple. Definitions and ap-
proaches to model quality in model-based software development—a review of

literature. Information and Software Technology, 51(12):1646-1669, 2009.

Jos Warmer, Anneke Kleppe, and Wim Bast. Mda explained: The model

driven architecture: practice and promise. Boston et al, 2003.

Ludwik Finkelstein. Widely, strongly and weakly defined measurement. Mea-
surement, 34(1):39-48, 2003.

Sebastian Castro, Duane Wessels, Marina Fomenkov, and Kimberly Claffy. A
day at the root of the internet. ACM SIGCOMM Computer Communication
Review, 38(5):41-46, 2008.

Richard Liston, Sridhar Srinivasan, and Ellen Zegura. Diversity in dns per-
formance measures. In Proceedings of the 2nd ACM SIGCOMM Workshop on

Internet measurment, pages 19-31. ACM, 2002.

Yuji Sekiya, Kenjiro Cho, Akira Kato, and Jun Murai. Research of method
for dns performance measurement and evaluation based on benchmark dns

servers. Electronics and Communications in Japan (Part I: Communications),

89(10):66-75, 2006.

E Casalicchio, M Caselli, D Conrad, J Damas, and I Nai Fovino. Reference
architecture, models and metrics. GCSEC technical document, Version, 1,

2011.
236

Bibliography

[60]

[61]

[62]

[63]

[64]

[65]

[66]

67]

[68]

Wei Li and Sallie Henry. Object-oriented metrics that predict maintainability.
Journal of systems and software, 23(2):111-122, 1993.

Shyam R Chidamber and Chris F Kemerer. A metrics suite for object oriented

design. IEEE Transactions on software engineering, 20(6):476-493, 1994.

Mark Lorenz and Jeff Kidd. Object-oriented software metrics: a practical

guide. Prentice-Hall, Inc., 1994.

Hongmin Lu, Yuming Zhou, Baowen Xu, Hareton Leung, and Lin Chen. The
ability of object-oriented metrics to predict change-proneness: a meta-analysis.

Empirical software engineering, 17(3):200-242, 2012.

Jeffrey Gennari and David Garlan. Measuring attack surface in software ar-
chitecture. Technical report, Technical Report CMU-ISR-~11-121, Carnegie
Mellon University, 2012.

Danijel Radjenovi¢, Marjan Hericko, Richard Torkar, and Ales Zivkovi¢. Soft-
ware fault prediction metrics: A systematic literature review. Information and

Software Technology, 55(8):1397-1418, 2013.

Boudewijn Van Dongen, Remco Dijkman, and Jan Mendling. Measuring sim-
ilarity between business process models. In Seminal Contributions to Infor-

mation Systems Engineering, pages 405-419. Springer, 2013.

Henrik Leopold, Sergey Smirnov, and Jan Mendling. On the refactoring of
activity labels in business process models. Information Systems, 37(5):443—

459, 2012.

Gregory S Hornby. Measuring complexity by measuring structure and orga-
nization. In 2007 IEEE Congress on Fvolutionary Computation, pages 2017—
2024. TEEE, 2007.

237

Bibliography

[69]

[70]

71]

[72]

73]

[74]

[75]

[76]

7]

78]

Samar Mouchawrab, Lionel C Briand, and Yvan Labiche. A measurement
framework for object-oriented software testability. Information and software

technology, 47(15):979-997, 2005.

Erik Arisholm and Dag IK Sjoberg. Evaluating the effect of a delegated versus
centralized control style on the maintainability of object-oriented software.

IEEFE Transactions on software engineering, 30(8):521-534, 2004.

Radu Marinescu and Michelle Lanza. Object-oriented metrics in practice,

2006.

Geert Poels and Guido Dedene. Distance-based software measurement: neces-

sary and sufficient properties for software measures. Information and Software

Technology, 42(1):35-46, 2000.

Lionel C Briand, Sandro Morasca, and Victor R Basili. Property-based soft-
ware engineering measurement. I[EEE Transactions on Software Engineering,

22(1):68-86, 1996.

Daniel T Larose. Discovering knowledge in data: an introduction to data

mining. John Wiley & Sons, 2014.

Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and

techniques. Elsevier, 2011.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and lan H Witten. The weka data mining software: an update. ACM

SIGKDD explorations newsletter, 11(1):10-18, 2009.

John J Bartko. On various intraclass correlation reliability coefficients. Psy-

chological bulletin, 83(5):762, 1976.

James Dean Brown. Likert items and scales of measurement. Shiken: JALT
Testing & Evaluation SIG Newsletter, 15(1):10-14, 2011.
238

Bibliography

[79]

[30]

[81]

[82]

[83]

[84]

[85]

[36]

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Evaluation mea-
sures for ordinal regression. In Intelligent Systems Design and Applications,
2009. ISDA’09. Ninth International Conference on, pages 283-287. IEEE,
2009.

Lisa Gaudette and Nathalie Japkowicz. Evaluation methods for ordinal clas-
sification. In Canadian Conference on Artificial Intelligence, pages 207-210.

Springer, 2009.

JWT Lee and Da-Zhong Liu. Induction of ordinal decision trees. In Machine
Learning and Cybernetics, 2002. Proceedings. 2002 International Conference
on, volume 4, pages 2220-2224. IEEE, 2002.

Sophie Vanbelle and Adelin Albert. A note on the linearly weighted kappa
coefficient for ordinal scales. Statistical Methodology, 6(2):157-163, 2009.

Willem Waegeman, Bernard De Baets, and Luc Boullart. A comparison of
different roc measures for ordinal regression. In Proceedings of the 3rd Inter-
national Workshop on ROC Analysis in Machine Learning., N. Lachiche, C.
Ferri, and S. Macskassy, Fds, pages 63—69. Citeseer, 2006.

Jaime S Cardoso and Ricardo Sousa. Measuring the performance of ordinal
classification. International Journal of Pattern Recognition and Artificial In-

telligence, 25(08):1173-1195, 2011.

Min Zhang, Tracy Hall, and Nathan Baddoo. Code bad smells: a review of
current knowledge. Journal of Software Maintenance and FEvolution: research

and practice, 23(3):179-202, 2011.

Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley, Boston, MA, USA, 1999. ISBN 0-201-48567-2.

239

Bibliography

187]

33

[89]

[90]

[91]

192]

193]

Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Finding refactorings
via change metrics. In ACM SIGPLAN Notices, volume 35, pages 166—177.
ACM, 2000.

Katsuhisa Maruyama and Ken-ichi Shima. Automatic method refactoring
using weighted dependence graphs. In Proceedings of the 21st international

conference on Software engineering, pages 236-245. ACM, 1999.

Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic.
Identifying architectural bad smells. In Software Maintenance and Reengi-
neering, 2009. CSMR’09. 13th European Conference on, pages 255-258. IEEE,
20009.

William F. Opdyke. Refactoring Object-oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, Champaign, IL, USA, 1992. UMI
Order No. GAX93-05645.

Dénes Bisztray, Reiko Heckel, and Hartmut Ehrig. Verification of architectural

refactorings by rule extraction. In Fundamental Approaches to Software Engi-

neering, Lecture Notes in Computer Science, pages 347-361. Springer Berlin

Heidelberg, 2008. ISBN 978-3-540-78743-3. doi: 10.1007/978-3-540-78743-3\
26.

Java Emitter Templates. Part of the eclipse modeling framework, see
jet tutorial by remko pompa at http://eclipse. org/articles. Article-
JET2/jet tutorial2. html, 69, 2016.

Casey Deccio. Maintenance, mishaps and mending in deployments of the
domain name system security extensions (dnssec). International Journal of

Critical Infrastructure Protection, 5(2):98-103, 2012.

240

Bibliography

[94]

[95]

[96]

197]

98]

[99]

[100]

[101]

[102]

Matthias Biehl. Literature study on model transformations. Royal Institute

of Technology, Tech. Rep. ISRN/KTH/MMK, 2010.

Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour preserv-
ing program transformations. In International Conference on Graph Trans-

formation, pages 286-301. Springer, 2002.

Kyle Schomp, Michael Rabinovich, and Mark Allman. Towards a model of dns
client behavior. In International Conference on Passive and Active Network

Measurement, pages 263-275. Springer, 2016.

Tom Mens, Gabriele Taentzer, and Olga Runge. Detecting structural refac-
toring conflicts using critical pair analysis. Flectronic Notes in Theoretical

Computer Science, 127(3):113-128, 2005.

Manuel Wimmer, Salvador Martinez Perez, Frédéric Jouault, and Jordi Cabot.

A catalogue of refactorings for model-to-model transformations. Journal of

Object Technology, 11(2):2-1, 2012.

C Grothoff, M Wachs, H Wolf, and J Appelbaum. Special-use domain names

of peer-to-peer name systems. Technical report, IETF Internet Draft, 2013.

ICANN Security and Stability Advisory Committee. Invalid top level domain
queries at the root level of the domain name system, 2010. URL http://bit.

1ly/1mDxRJO.

P Faltstrom, R Austein, P Koch, et al. Design choices when expanding the

dns. Technical report, International Engineering Task Force, 2009.

Paul Mockapetris and Kevin J Dunlap. Development of the domain name

system, volume 18. ACM, 1988.

241

http://bit.ly/1mDxRJO
http://bit.ly/1mDxRJO

Bibliography

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Hongyu Gao, Vinod Yegneswaran, Yan Chen, Phillip Porras, Shalini Ghosh,
Jian Jiang, and Haixin Duan. An empirical reexamination of global dns be-
havior. ACM SIGCOMM Computer Communication Review, 43(4):267-278,
2013.

Thomas Callahan, Mark Allman, and Michael Rabinovich. On modern dns
behavior and properties. ACM SIGCOMM Computer Communication Review,
43(3):7-15, 2013.

Vern Paxson, Mihai Christodorescu, Mobin Javed, Josyula Rao, Reiner Sailer,
Douglas Lee Schales, Mark Stoecklin, Kurt Thomas, Wietse Venema, and
Nicholas Weaver. Practical comprehensive bounds on surreptitious communi-
cation over dns. In Presented as part of the 22nd USENIX Security Symposium
(USENIX Security 13), pages 17-32, 2013.

Manos Antonakakis, Roberto Perdisci, Wenke Lee, Nikolaos Vasiloglou II, and
David Dagon. Detecting malware domains at the upper dns hierarchy. In

USENIX security symposium, volume 11, pages 1-16, 2011.

Manos Antonakakis, Roberto Perdisci, David Dagon, Wenke Lee, and Nick
Feamster. Building a dynamic reputation system for dns. In USENIX security

symposium, pages 273-290, 2010.

Liang Zhu, Zi Hu, John Heidemann, Duane Wessels, Allison Mankin, and
Nikita Somaiya. Connection-oriented dns to improve privacy and security. In

2015 IEEE Symposium on Security and Privacy, pages 171-186. IEEE, 2015.

Kyle Schomp, Tom Callahan, Michael Rabinovich, and Mark Allman. On mea-
suring the client-side dns infrastructure. In Proceedings of the 2013 conference

on Internet measurement conference, pages 77-90. ACM, 2013.

242

Bibliography

[110]

[111]

112]

[113]

[114]

[115]

[116]

[117]

[118]

Jeffrey Pang, James Hendricks, Aditya Akella, Roberto De Prisco, Bruce
Maggs, and Srinivasan Seshan. Availability, usage, and deployment character-
istics of the domain name system. In Proceedings of the jth ACM SIGCOMM

conference on Internet measurement, pages 1-14. ACM, 2004.

Vasileios Pappas, Patrik Faltstrom, Daniel Massey, and Lixia Zhang. Dis-
tributed dns troubleshooting. In Proceedings of the ACM SIGCOMM workshop
on Network troubleshooting: research, theory and operations practice meet mal-

functioning reality, pages 265-270. ACM, 2004. doi: 10.1145/1016687.1016694.

Casey Deccio. Visual dnssec troubleshooting with dnsviz. Technical report,

Sandia National Laboratories, 2010. URL http://dnsviz.net/.

Softrix Technologies. Dns checker tool, 2012. URL http://www.dnschecker.

org/.

Elvsoft. Intodns, dns troubleshooting tool, 2012. URL http://www.intodns.

com/.
SE and AFNIC. Zonemaster tool, 2012. URL http://www.zonemaster.net/.

R. Chandramouli and S. Rose. An integrity verification scheme for dns zone
file based on security impact analysis. In Computer Security Applications
Conference, 21st Annual, pages 10 pp.—321, Dec 2005. doi: 10.1109/CSAC.
2005.9.

Peter B Danzig, Katia Obraczka, and Anant Kumar. An analysis of wide-

area name server traffic: a study of the internet domain name system. ACM

SIGCOMM Computer Communication Review, 22(4):281-292, 1992.

Steven Cheung and Karl N Levitt. A formal-specification based approach for

protecting the domain name system. In Dependable Systems and Networks,

243

http://dnsviz.net/
http://www.dnschecker.org/
http://www.dnschecker.org/
http://www.intodns.com/
http://www.intodns.com/
http://www.zonemaster.net/

Bibliography

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

2000. DSN 2000. Proceedings International Conference on, pages 641-651.
IEEE, 2000.

Team Cymru. Ip to asn mapping. http://www. team-cymru. org/Services/ip-
to-asn.html, 2008.

Credentia. lame delegation statistics on the tld zones, 2004. URL http:

//www.credentia.cc/research/cctlds/.

Dag IK Sjgberg, Jo Erskine Hannay, Ove Hansen, Vigdis By Kampenes, Amela
Karahasanovic, N-K Liborg, and Anette C Rekdal. A survey of controlled ex-
periments in software engineering. IEFEE transactions on software engineering,

31(9):733-753, 2005.

James W Moore and Alain Abran. Guide to the software engineering body of
knowledge. IEEE Computer Society, 2004.

Robert C Martin. Clean code: a handbook of agile software craftsmanship.

Pearson Education, 2009.

Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. Refactoring

for software design smells: Managing technical debt. Morgan Kaufmann, 2014.

Mika Mantyla, Jari Vanhanen, and Casper Lassenius. A taxonomy and an
initial empirical study of bad smells in code. In Software Maintenance, 2003.
ICSM 2003. Proceedings. International Conference on, pages 381-384. IEEE,
2003.

H. Dieter Rombach. A controlled expeniment on the impact of software struc-
ture on maintainability. IEFEE Transactions on Software Engineering, SE-13

(3):344-354, 1987.

244

http://www.credentia.cc/research/cctlds/
http://www.credentia.cc/research/cctlds/

Bibliography

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Dennis Kafura and Geereddy R. Reddy. The use of software complexity metrics
in software maintenance. IEEE Transactions on Software Engineering, 13(3):

335, 1987.

R. Marinescu. Detection strategies: metrics-based rules for detecting design
flaws. In Software Maintenance, 2004. Proceedings. 20th IEEE International
Conference on, pages 350-359, Sept 2004. doi: 10.1109/ICSM.2004.1357820.

E.-H. Alikacem and H.A. Sahraoui. A metric extraction framework based on
a high-level description language. In Source Code Analysis and Manipulation,
2009. SCAM ’09. Ninth IEEE International Working Conference on, pages
159-167, Sept 2009. doi: 10.1109/SCAM.2009.27.

William H Brown, Raphael C Malveau, Hays W McCormick, and Thomas J
Mowbray. AntiPatterns: refactoring software, architectures, and projects in

crists. John Wiley & Sons, Inc., 1998.

Vivek Shah, Marcos Sivitanides, and Roy Martin. Pitfalls of object-oriented

development, 2004.

Arthur J Riel. Object-oriented design heuristics. Addison-Wesley Longman
Publishing Co., Inc., 1996.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, An-
drea De Lucia, and Denys Poshyvanyk. Detecting bad smells in source code
using change history information. In Automated software engineering (ASE),
2013 IEEE/ACM 28th international conference on, pages 268-278. IEEE,
2013.

Cristina Marinescu, Radu Marinescu, Petru Florin Mihancea, and R Wettel.

iplasma: An integrated platform for quality assessment of object-oriented de-

sign. In In ICSM (Industrial and Tool Volume. Citeseer, 2005.

245

Bibliography

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

Nikolaos Tsantalis and Alexander Chatzigeorgiou. Identification of extract
method refactoring opportunities for the decomposition of methods. Journal

of Systems and Software, 84(10):1757-1782, 2011.
William C Wake. Refactoring workbook. Addison-Wesley Professional, 2004.

Guilherme Rangel, Barbara Konig, and Hartmut Ehrig. Bisimulation verifica-

tion for the dpo approach with borrowed contexts. Electronic Communications

of the EASST, 6, 2007.

Enrico Biermann, Karsten Ehrig, Christian Kohler, Giinter Kuhns, Gabriele
Taentzer, and Eduard Weiss. Emf model refactoring based on graph transfor-

mation concepts. Electronic Communications of the EASST, 3, 2007.

Berthold Hoffmann, Dirk Janssens, and Niels Van Eetvelde. Cloning and ex-
panding graph transformation rules for refactoring. FElectronic Notes in The-

oretical Computer Science, 152:53-67, 2006.

Guilherme Rangel, Leen Lambers, Barbara Konig, Hartmut Ehrig, and Paolo
Baldan. Behavior preservation in model refactoring using dpo transformations
with borrowed contexts. In International Conference on Graph Transforma-

tion, pages 242-256. Springer, 2008.

Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicce, and Gabriele Taentzer.
Termination of high-level replacement units with application to model trans-
formation. FElectronic Notes in Theoretical Computer Science, 127(4):71-86,
2005.

Paolo Bottoni and Gabriele Taentzery. Efficient parsing of visual languages
based on critical pair analysis and contextual layered graph transformation.

a+ a, 2:2, 2000.

246

Bibliography

[143]

[144]

[145]

[146]

[147]

[148]

[149]

Praveen Jayaraman, Jon Whittle, Ahmed M Elkhodary, and Hassan Gomaa.
Model composition in product lines and feature interaction detection using
critical pair analysis. In International Conference on Model Driven Engineer-

ing Languages and Systems, pages 151-165. Springer, 2007.

Frank Hermann, Hartmut Ehrig, Ulrike Golas, and Fernando Orejas. Efficient
analysis and execution of correct and complete model transformations based
on triple graph grammars. In Proceedings of the First International Workshop

on Model-Driven Interoperability, pages 22—-31. ACM, 2010.

Tom Mens, Ragnhild Van Der Straeten, and Maja DaAZHondt. Detecting
and resolving model inconsistencies using transformation dependency analy-
sis. In International Conference on Model Driven Engineering Languages and

Systems, pages 200-214. Springer, 2006.

Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. Model trans-
formation as an optimization problem. In International Conference on Model

Driwven Engineering Languages and Systems, pages 159-173. Springer, 2008.

Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Omar Ben

Omar. Search-based model transformation by example. Software & Systems

Modeling, 11(2):209-226, 2012.

Dionysios Efstathiou, James R Williams, and Steffen Zschaler. Crepe com-
plete: Multi-objective optimization for your models. In CMSEBA@ MoDELS,
pages 25-34, 2014.

Martin Fleck, Javier Troya, and Manuel Wimmer. Marrying search-based

optimization and model transformation technology. Proc. of NasBASE, 2015.

247

Bibliography

[150]

[151]

[152]

[153]

[154]

[155]

[156]

Tom Mens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens. Formaliz-
ing refactorings with graph transformations. Journal of Software Maintenance

and Evolution: Research and Practice, 17(4):247-276, 2005.

Paolo Bottoni, Francesco Parisi Presicce, and Gabriele Taentzer. Specifying
integrated refactoring with distributed graph transformations. In Interna-
tional Workshop on Applications of Graph Transformations with Industrial

Relevance, pages 220-235. Springer, 2003.

Gerson Sunyé, Damien Pollet, Yves Le Traon, and Jean-Marc Jézéquel. Refac-
toring uml models. In International Conference on the Unified Modeling Lan-

guage, pages 134-148. Springer, 2001.

Tom Mens. Introduction and roadmap: History and challenges of software

evolution. In Software evolution, pages 1-11. Springer, 2008.

Maddeh Mohamed, Mohamed Romdhani, and Khaled Ghedira. Classification
of model refactoring approaches. J. Object Technol.(JOT), 8(6):143-158, 2009.

Tom Mens, Gabriele Taentzer, and Dirk Miiller. Model-driven software refac-
toring. Model-Driven Software Development: Integrating Quality Assurance,

pages 170-203, 2008.

Krzysztof Czarnecki and Simon Helsen. Classification of model transformation
approaches. In Proceedings of the 2nd OOPSLA Workshop on Generative
Techniques in the Context of the Model Driven Architecture, volume 45, pages
1-17. USA, 2003.

248

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Motivations
	1.2 Problem Statement
	1.3 Solution Outline
	1.4 Contributions
	1.5 Publications
	1.6 Thesis Outline

	2 Background
	2.1 The Domain Name System
	2.1.1 General Operation of the DNS
	2.1.2 DNS Query Process
	2.1.3 DNS Inter-dependencies
	2.1.3.1 DNS Operational Planes
	2.1.3.2 Dependency Graphs

	2.2 DNS Quality Attributes and DNS Health
	2.3 Graph Transformation
	2.3.1 Basic Concepts
	2.3.2 GT-Based Model Transformation
	2.3.3 Graph Transformations Tools
	2.3.3.1 EMF
	2.3.3.2 Henshin Language and Tools
	2.3.3.3 EMF Refactor

	2.4 Model Transformation

	3 DNS Dependency Model
	3.1 Basic Concepts
	3.2 Modelling the DNS
	3.3 The DNS Dependency Model
	3.4 DNS Model Quality

	4 DNS Structural Metrics
	4.1 Definitions and Basic Concepts
	4.2 DNS structural metrics
	4.2.1 Measures of Size
	4.2.2 Measures of Structural Complexity
	4.2.3 Measures of Dependency/Influence
	4.2.4 Measures of Delegation and Inheritance

	4.3 Interpretation Model
	4.4 Theoretical Background
	4.4.1 Key Mechanisms
	4.4.2 Measurements Frameworks

	4.5 Predictive Models
	4.6 Experimental Assessment
	4.6.1 Hypotheses
	4.6.2 Variables
	4.6.3 Collection of Data
	4.6.4 Participants
	4.6.5 Metric-Quality Correlation Analysis
	4.6.6 Prediction Models
	4.6.7 Threats to Validity
	4.6.8 Discussion
	4.6.9 Conclusions

	5 The ISDR Method
	5.1 Bad Smells
	5.2 The ISDR Method
	5.2.1 Bad Smells Identification
	5.2.2 Formal Specifications
	5.2.3 Detection
	5.2.4 Refactoring
	5.2.5 Bad Smells' Quality Impacts
	5.2.6 Bad Smells Catalogue

	5.3 Method Validation

	6 ISDR Method Implementation
	6.1 Tool Support
	6.1.1 Eclipse and EMF Modelling
	6.1.2 Henshin
	6.1.3 EMF Refactor
	6.1.4 Dependency Graph Builder (DGBuilder)

	6.2 ISDR Techniques
	6.2.1 Techniques' Specification
	6.2.1.1 Metrics
	6.2.1.2 Bad Smells Specification
	6.2.1.3 Refactorings

	6.2.2 Techniques' Application
	6.2.2.1 Metrics Calculation
	6.2.2.2 Bad Smells Detection
	6.2.2.3 Refactorings

	7 DNS Model Transformation
	7.1 Model Refactoring
	7.1.1 Behaviour Preservation
	7.1.2 Analysis of Model Refactoring Rules
	7.1.2.1 Conflicts and Dependencies
	7.1.2.2 Execution Scope and Priorities

	7.1.3 Quality Impacts of Model Refactorings

	7.2 DNS Model Transformation
	7.3 Implementation of the DNS Advisor Prototype
	7.3.1 Prototype Architecture
	7.3.2 Prototype Case Study

	8 Related Work
	8.1 DNS in Operation
	8.1.1 DNS Interdependencies
	8.1.2 DNS Measurements
	8.1.3 DNS Troubleshooting

	8.2 Bad Smells
	8.2.1 Bad Smells Idetification
	8.2.2 Bad Smells Detection

	8.3 Refactoring
	8.3.1 Refactoring Techniques
	8.3.2 Refactorings Analysis

	8.4 Graph-Based Model Transformation

	9 Conclusions and Future Work
	9.1 Conclusions
	9.2 Research Limitations
	9.3 Future Work
	9.3.1 Extending the DNS Operational Model
	9.3.2 DNS Structural Metrics and Prediction Models
	9.3.3 DNS Quality Indicators

	A The DNS Dependency Model
	A.1 Modelling the Data Layer
	A.2 Modelling the Control Layer
	A.3 Modelling the Management Layer

	B DNS Metrics Suite
	B.1 Size Metrics
	B.2 Measures of Structural Complexity
	B.3 Measures of Dependency/Influence
	B.4 Measures of Delegation and Inheritance

	C Bad Smells Catalogue
	D Refactoring Catalogue
	E DNS Operational Model Survey
	E.1 Background
	E.2 General Questions
	E.3 Models and Metrics
	E.4 Assessing TLD Quality Attributes

	Bibliography

