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Abstract

The Domain Name System (DNS) has a direct and strong impact on the performance
of nearly all aspects of the Internet. DNS relies on a delegation-based architecture,
where resolution of names to their IP addresses require resolving the names of the
servers responsible for those names.

The recursive graphs of the inter-dependencies that exist between servers associated
with each zone are called Dependency Graphs. We constructed a DNS Dependency
Model as a unified representation of these Dependency Graphs. We utilized a set of
Structural Metrics defined over this model as indicators of external quality attributes
of the DNS. We applied machine learning in order to construct Prediction Models
of the perceived quality attributes of the DNS out of the structural metrics of the
model and evaluate the accuracy of these models.

Operational Bad Smells are configuration and deployment decisions, made by zone
administrators, that are not totally errant or technically incorrect and do not cur-
rently prevent the system from doing its designated functionality. Instead, they
indicate weaknesses that may impose additional overhead on DNS queries, or in-
crease system vulnerability to threats, or increase the risk of failures in the future.

We proposed the ISDR (Identification, Specification, Detection and Refactoring)
Method that enables DNS administrators to identify bad smells on a high-level ab-
straction using a consistent taxonomy and reusable vocabulary. We developed tech-
niques for systematic detection and recommendations of reaction mechanisms in the
form of graph-based refactoring rules.

The ISDR Method along with the DNS Quality Prediction Models are used to build
the DNS Quality Assurance Framework and the DNS Advisor Tool. Assessing the
perceived quality attributes of the DNS at an early stage enables us to avoid the
implications of defective and low-quality designs. We identify configuration changes
that improve the availability, security, stability and resiliency postures of the DNS.



In the name of Allah, the Most Beneficent, the Most Merciful.

Acknowledgements

First and above all, I praise God, the Almighty, for providing me this opportunity
and granting me the capability to proceed successfully.

This thesis appears in its current form due to the assistance and guidance of several
people. I would like to offer my sincere thanks to all of them. In particular, I am
profoundly indebted to my PhD advisor, Professor Dr. Reiko Heckel, who was very
generous with his time and knowledge and assisted me in each step to complete this
project. I have been extremely lucky to have a supervisor who cared so much about
myself and my work, and who responded to my questions and queries so promptly.
Reiko has also provided insightful discussions about each part of this research. I
also thank my second supervisor Dr. Emilio Tuosto and PhD tutor, Dr. Fer-Jan de
Vries, for their support and constructive discussions during the annual viva sessions.

My late father and mother; I just simply wish you were alive today to share this
moment with me and the rest of the family. I wish to thank my family, especially
my wife, Mai, for her sincere love, care and support throughout this entire period
and for providing the much needed motivation by encouragement, and taking care
of the kids. I thank her for believing in me even when I did not. Her quiet patience,
unwavering love and tolerance of my occasional temper moods is a testament in itself
of her unyielding devotion and love.

I also owe my affectionate gratitude to my sister Sadia, who has been continuous
support to me. My father-in-law, mother-in-law, brothers, sisters, and their families
always encouraged me to stand where I am today. I would like to thank my friends
back in Palestine, and specially PNINA staff, for their support and restless efforts
in keeping the organisation running smoothly while I am abroad.

Last but not the least, I may have slipped some names to mention here but I say
thanks to everyone in Gaza, Palestine and Leicester, United Kingdom for being
supportive and well-wisher to me in this period of life. God bless and guide you all.

iii



Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures x

List of Tables xii

List of Algorithms xiv

1 Introduction 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Solution Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9

2.1 The Domain Name System . . . . . . . . . . . . . . . . . . . . . . . . 9

iv



Contents

2.1.1 General Operation of the DNS . . . . . . . . . . . . . . . . . . 10

2.1.2 DNS Query Process . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 DNS Inter-dependencies . . . . . . . . . . . . . . . . . . . . . 14

2.1.3.1 DNS Operational Planes . . . . . . . . . . . . . . . . 15

2.1.3.2 Dependency Graphs . . . . . . . . . . . . . . . . . . 16

2.2 DNS Quality Attributes and DNS Health . . . . . . . . . . . . . . . . 17

2.3 Graph Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 GT-Based Model Transformation . . . . . . . . . . . . . . . . 25

2.3.3 Graph Transformations Tools . . . . . . . . . . . . . . . . . . 30

2.3.3.1 EMF . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.3.2 Henshin Language and Tools . . . . . . . . . . . . . 32

2.3.3.3 EMF Refactor . . . . . . . . . . . . . . . . . . . . . 34

2.4 Model Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 DNS Dependency Model 38

3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Modelling the DNS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 The DNS Dependency Model . . . . . . . . . . . . . . . . . . . . . . 43

3.4 DNS Model Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 DNS Structural Metrics 49

4.1 Definitions and Basic Concepts . . . . . . . . . . . . . . . . . . . . . 50

4.2 DNS structural metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Measures of Size . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Measures of Structural Complexity . . . . . . . . . . . . . . . 52

4.2.3 Measures of Dependency/Influence . . . . . . . . . . . . . . . 54

4.2.4 Measures of Delegation and Inheritance . . . . . . . . . . . . . 54

v



Contents

4.3 Interpretation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Key Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.2 Measurements Frameworks . . . . . . . . . . . . . . . . . . . . 60

4.5 Predictive Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 Experimental Assessment . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.1 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6.3 Collection of Data . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.5 Metric-Quality Correlation Analysis . . . . . . . . . . . . . . . 68

4.6.6 Prediction Models . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6.7 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 The ISDR Method 77

5.1 Bad Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 The ISDR Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2.1 Bad Smells Identification . . . . . . . . . . . . . . . . . . . . . 80

5.2.2 Formal Specifications . . . . . . . . . . . . . . . . . . . . . . . 84

5.2.3 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.4 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.5 Bad Smells’ Quality Impacts . . . . . . . . . . . . . . . . . . . 88

5.2.6 Bad Smells Catalogue . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Method Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 ISDR Method Implementation 94

vi



Contents

6.1 Tool Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Eclipse and EMF Modelling . . . . . . . . . . . . . . . . . . . 96

6.1.2 Henshin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1.3 EMF Refactor . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.1.4 Dependency Graph Builder (DGBuilder) . . . . . . . . . . . . 98

6.2 ISDR Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.1 Techniques’ Specification . . . . . . . . . . . . . . . . . . . . . 102

6.2.1.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2.1.2 Bad Smells Specification . . . . . . . . . . . . . . . . 106

6.2.1.3 Refactorings . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.2 Techniques’ Application . . . . . . . . . . . . . . . . . . . . . 110

6.2.2.1 Metrics Calculation . . . . . . . . . . . . . . . . . . . 111

6.2.2.2 Bad Smells Detection . . . . . . . . . . . . . . . . . 112

6.2.2.3 Refactorings . . . . . . . . . . . . . . . . . . . . . . . 114

7 DNS Model Transformation 117

7.1 Model Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.1.1 Behaviour Preservation . . . . . . . . . . . . . . . . . . . . . . 119

7.1.2 Analysis of Model Refactoring Rules . . . . . . . . . . . . . . 121

7.1.2.1 Conflicts and Dependencies . . . . . . . . . . . . . . 121

7.1.2.2 Execution Scope and Priorities . . . . . . . . . . . . 123

7.1.3 Quality Impacts of Model Refactorings . . . . . . . . . . . . . 125

7.2 DNS Model Transformation . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Implementation of the DNS Advisor Prototype . . . . . . . . . . . . . 128

7.3.1 Prototype Architecture . . . . . . . . . . . . . . . . . . . . . . 129

7.3.2 Prototype Case Study . . . . . . . . . . . . . . . . . . . . . . 130

8 Related Work 136

vii



Contents

8.1 DNS in Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.1.1 DNS Interdependencies . . . . . . . . . . . . . . . . . . . . . . 137

8.1.2 DNS Measurements . . . . . . . . . . . . . . . . . . . . . . . . 137

8.1.3 DNS Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . 138

8.2 Bad Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

8.2.1 Bad Smells Idetification . . . . . . . . . . . . . . . . . . . . . 141

8.2.2 Bad Smells Detection . . . . . . . . . . . . . . . . . . . . . . . 141

8.3 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.3.1 Refactoring Techniques . . . . . . . . . . . . . . . . . . . . . . 143

8.3.2 Refactorings Analysis . . . . . . . . . . . . . . . . . . . . . . . 143

8.4 Graph-Based Model Transformation . . . . . . . . . . . . . . . . . . . 144

9 Conclusions and Future Work 146

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.2 Research Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.3.1 Extending the DNS Operational Model . . . . . . . . . . . . . 150

9.3.2 DNS Structural Metrics and Prediction Models . . . . . . . . 150

9.3.3 DNS Quality Indicators . . . . . . . . . . . . . . . . . . . . . 151

A The DNS Dependency Model 154

A.1 Modelling the Data Layer . . . . . . . . . . . . . . . . . . . . . . . . 155

A.2 Modelling the Control Layer . . . . . . . . . . . . . . . . . . . . . . . 161

A.3 Modelling the Management Layer . . . . . . . . . . . . . . . . . . . . 163

B DNS Metrics Suite 165

B.1 Size Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

viii



Contents

B.2 Measures of Structural Complexity . . . . . . . . . . . . . . . . . . . 170

B.3 Measures of Dependency/Influence . . . . . . . . . . . . . . . . . . . 174

B.4 Measures of Delegation and Inheritance . . . . . . . . . . . . . . . . . 179

C Bad Smells Catalogue 183

D Refactoring Catalogue 198

E DNS Operational Model Survey 216

E.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

E.2 General Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

E.3 Models and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

E.4 Assessing TLD Quality Attributes . . . . . . . . . . . . . . . . . . . . 229

Bibliography 230

ix



List of Figures

2.1 An illustration of the DNS resolution process. . . . . . . . . . . . . . 13

2.2 Interdependencies within the DNS Operational Planes. . . . . . . . . 15

2.3 Name Dependency Graph of (le.ac.uk). . . . . . . . . . . . . . . . . . 16

2.4 Typed Graph Example . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 A Graph Morphism From G1 to G2 . . . . . . . . . . . . . . . . . . . 23

2.6 Attributed Typed Graph Model (a) and Its Instance (b). . . . . . . . 33

2.7 createARecord Transformation Rule . . . . . . . . . . . . . . . . . . . 34

3.1 The DNS Dependency Model Specified in Ecore (The Meta-Meta

Model of EMF). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Example of a DNS Model Instance (i.e. Dependency Graph) for

Zone(NIC.AA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Methodology of Building DNS Quality Prediction Models . . . . . . . 63

4.3 Availability Prediction Models and their Performance Indicators. . . . 72

4.4 Security Prediction Models and their Performance Indicators. . . . . 72

4.5 Stability Prediction Models and their Performance Indicators. . . . . 73

4.6 Resiliency Prediction Models and their Performance Indicators. . . . 73

5.1 The ISDR Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Bad Smells Taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Part of the Dependency Graph of the Case Study. . . . . . . . . . . . 92

x



List of Figures

5.4 Refactoring Rule: CreateARecord. . . . . . . . . . . . . . . . . . . . . 92

6.1 The EMF Refactor Specification Module. Adapted from [1]. . . . . . 98

6.2 ISDR Method Specification and Application Environments. . . . . . . 101

6.3 Henshin Rule for Calculating the HRPD Metric of a Zone. . . . . . . 104

6.4 Specification of the Bad Smell Cycling Dependency Using Henshin. . 107

6.5 Specification of Initial Checks for CreateARecord Refactoring. . . . . 109

6.6 Specification of Final Checks for CreateARecord Refactoring. . . . . . 109

6.7 Execution Unit for CreateARecord Refactoring. . . . . . . . . . . . . 111

6.8 Metric Configuration Page and the Calculation of these Metrics for

the DnsModel of Zone (.PS) . . . . . . . . . . . . . . . . . . . . . . . 112

6.9 Smells Configuration Page for the DnsModel. . . . . . . . . . . . . . . 113

6.10 Detection of Cycling Dependency Using Henshin Rule. . . . . . . . . 113

6.11 Refactoring Execution Workflow. . . . . . . . . . . . . . . . . . . . . 115

6.12 Quick Fix Matrix Configuration Page. . . . . . . . . . . . . . . . . . 116

7.1 Instance Graph of Binding-Preserving Property. . . . . . . . . . . . . 120

7.2 Critical Pairs Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 Refactoring Rules Execution Scope and Priorities. . . . . . . . . . . . 124

7.4 Bad-Smells-Driven DNS Model Transformation Methodology. . . . . . 127

7.5 Prototype Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.6 Example DNS Model Instance (Dependency Graph). . . . . . . . . . 131

7.7 Example DNS Model Instance (Model and Textual Views). . . . . . . 132

7.8 DNS Model Instances Transformation Using Model Compare. . . . . 133

7.9 Predicted Values of Quality Attribute (Stability) for the Various It-

erations of the Transformed DNS Model Instances. . . . . . . . . . . 135

9.1 Implementation-Level DNS Quality Dashboard. . . . . . . . . . . . . 152

xi



List of Tables

4.1 DNS Model Structural Size Metrics. . . . . . . . . . . . . . . . . . . . 52

4.2 DNS Model Structural Complexity Metrics. . . . . . . . . . . . . . . 53

4.3 DNS Model Structural Dependency/Influence Metrics. . . . . . . . . 54

4.4 DNS Model Structural Delegation/Inheritance Metrics. . . . . . . . . 55

4.5 Interpretation of the Administrative Complexity Metric. . . . . . . . 56

4.6 Values of Structural Metrics Calculated over the Model Instance Shown

in Figure 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 List of Structural Metrics Used in the Empirical Assessment. . . . . . 64

4.8 Linguistic Values used for the subjective evaluation of DNS qualities. 65

4.9 Participants of the Empirical Assessment. . . . . . . . . . . . . . . . 67

4.10 Intra-Class Correlation (ICC). . . . . . . . . . . . . . . . . . . . . . . 68

4.11 Measurements of Metrics on the 9 DNS Model Instances. . . . . . . . 68

4.12 Metric-Quality correlations (Spearman’s Rho). . . . . . . . . . . . . . 69

4.13 Performance of the Predictive Models in terms of the correctly clas-

sified instances out of the test dataset. . . . . . . . . . . . . . . . . . 71

5.1 Identification of Bad Smells in the DNS Planes . . . . . . . . . . . . . 83

5.2 DNS Operational Bad Smells . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Catalogue Entry for the Cyclic Dependency Bad Smell. . . . . . . . . 90

5.4 Content of Zone File for Case Study. . . . . . . . . . . . . . . . . . . 91

5.5 New Zone File Generated After Executing the Refactoring Rule(s). . 93

xii



List of Tables

6.1 Metric Hierarchical Reduction Potential (HRP) Interpretation Model. 103

7.1 Bad Smells Detected on the Model Instance and the Proposed Refac-

torings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.2 Measurements of Metrics on the Generated DNS Model Instances. . . 134

7.3 Effects of Applying Refactoring on the Perceived Quality Attributes

of the DNS Model Instances. . . . . . . . . . . . . . . . . . . . . . . . 134

xiii



List of Algorithms

1 Dependency Graph (Model Instance) Generation Algorithm. . . . . . 100

xiv



I dedicate this thesis to

my late parents,

who showed me the way,

and my wife,
who has always supported me in my journey.

xv



Chapter 1

Introduction

The Domain Name System (DNS) is one of the most fundamental infrastructures

of today’s Internet. The critical importance of the DNS raises high demands for

its stability, security and resilience. The DNS is a distributed database for storing

information on domain names, the primary namespace for hosts on the Internet.

The name space is organised in a hierarchical structure to ensure domain name

uniqueness. Each node in the DNS tree corresponds to a zone. Each zone belonging

to a single administrative authority is served by multiple name servers. In addition

to IP addresses, the DNS is used to look up mail servers, cryptographic keys, latitude

and longitude values, and other diverse types of data. The use of the Internet is

critically dependent on the reliable, trustworthy, and responsive operation of the

DNS.

1.1 Motivations

The correct and error-free operation of the DNS is crucial for the reliability of most

applications on the Internet. Delegation is crucial in achieving DNS name space’s

1



Chapter 1. Introduction

scalability however there are many misconfigurations and bad deployment choices

made by system administrators that may lead to data inconsistencies, vulnerable

configurations or even failure of resolution. A mistake in configuring a specific DNS

zone may potentially have adverse impacts on the global Internet [2, 3].

While DNS plays a critical role for the operation of Internet, DNS zone adminis-

tration relies heavily on error-prone manual configurations. Operational guidelines

[4–6] require that a zone have multiple authoritative name servers, and that they

be distributed through diverse network topological and geographical locations to in-

crease the reliability of that zone as well as improve overall network performance and

access. These are meant to make DNS services robust against unexpected failures.

Recent work [7–12] outlines the need for zone operators to understand how many

inter-dependencies they may inadvertently be incurring through the deployment and

sharing of DNS secondary servers.

This research is motivated by the lack of formal analysis of the DNS interdepen-

dencies stemming from the delegation-based architecture as well as operational de-

ployment choices made by system administrators. Therefore, the need for early

indicators of perceived quality attributes is recognized in order to avoid the implica-

tions of defective and low-quality configurations and deployment choices during the

late stages of operation.

We use perceived quality as a mechanism at the model level to approximate the

indicators of real system quality attributes. Efforts to improve risk management re-

lated to DNS security, stability and resilience must be guided by an ability to predict

these characteristics and apply correction mechanisms to rectify for any degrading in

these quality attributes as a result of a misconfiguration or bad deployment choice.

2



Chapter 1. Introduction

1.2 Problem Statement

The large body of literature on DNS operation [4, 7–9, 13–19] suggests that the

area is mature, and problems are well understood. However, reality is contrary to

this suggestion. The DNS ecosystem has evolved to include many players, such as

DNS entities, which include trusted, untrusted, and semi-trusted ones, making it

very difficult to reason about its resolution and operation. DNS is well known to

have configuration issues. Jung et al. [20] found that a significantly high amount

of Internet traffic is caused by miss-configured DNS servers and resolvers. These

configuration issues may lead to performance degradation, crashes, and endless loops

in resolvers. They may also confuse users by returning inappropriate error messages

propagated by applications.

The original DNS design focused mainly on system robustness against physical fail-

ures, and neglected the impact of operational errors such as misconfiguration and

bad deployment choices. Several previous measurements [13, 15, 17] showed that

zones with configuration errors suffer from reduced availability and increased query

delays up to an order of magnitude. DNS administrators have to decide on opera-

tional parameters and be aware of their implications for the DNS’s overall system

qualities.

On the deployment level, configuring the number of redundant authoritative DNS

servers for a certain zone must take into consideration the operational overhead

associated with querying multiple servers in parallel. Choosing servers with names

under other zones provides zone redundancy but may incur security and resiliency

threats to the zone. Deciding on where to physically locate the servers should ensure

a certain degree of resistance against different types of failures. Peering with external

organizations for secondary server hosting should take into consideration the impact

of transitional trust and administrative complexity [9, 16].

3



Chapter 1. Introduction

The original DNS design documents [5, 6, 21–23] call for diverse placement of author-

itative name servers for a zone. Bad configurations may lead to cyclic dependencies

while bad deployment choices may lead to diminished and false server redundancy.

It is also assumed that redundant DNS servers fail independently; previous mea-

surements [7, 13] showed that operational deployment choices made at individual

zones can introduce excessive zone influence. All those bad smells severely affect the

availability, security, stability and resiliency of the overall domain name system.

1.3 Solution Outline

System administrators’ operational decisions have far reaching effects on the DNS’s

quality attributes. They need to be soundly made to create a balance between the

availability, security, stability and resilience of the system. We need to be able to

direct the zone administrator to places in the zone file that contain potential design

and deployment problems that may compromise availability, resiliency or security of

a domain name before the changes become into production.

In order to achieve this goal, we approached the problem from a design point of view

that takes into consideration the DNS zone configuration and server deployment

choices rather than from the dynamic behavioural view which includes statistical

and post-deployment measurements.

Since many of the misconfiguration can not be detected from the zone file or deploy-

ments directly, there is a need for a DNS model that encompasses all information

related to the zone file and the server deployments in one conceptual graph. The

conceptual graph representation facilitates modelling at multiple levels of detail si-

multaneously.
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We constructed a DNS Dependency Model (The DNS Model) as a unified represen-

tation of these Dependency Graphs. We utilized a set of Structural Metrics defined

over this model as indicators of external quality attributes of the domain name sys-

tem. We applied some machine learning algorithms in order to construct Prediction

Models of the perceived quality attributes of the operational system out of the struc-

tural metrics of the model. Assessing these quality attributes at an early stage of the

design/deployment enables us to avoid the implications of defective and low-quality

designs.

We proposed the ISDR (Identification, Specification, Detection and Refactoring)

Method to identify, specify and detect misconfiguration and bad deployment choices

in the form of operational bad smells. The method deals with smells on a high-level of

abstraction using a consistent taxonomy and reusable vocabulary. The method also

utilizes the set of structural metrics defined over the DNS Model to detect the smells

in early stages of the DNS deployment. It also suggests graph-based refactoring rules

as correction mechanisms for the bad smells. We apply and validate the method

using several representative case studies. The method techniques are used as early

indicators of external quality attributes in order to avoid the implications of defective

and low-quality designs and deployment choices.

The method is integrated within a DNS advisory tool to flag configuration changes

that might decrease the robustness or security posture of a domain name, before

even the changes become into production.

We built the tool based on graph-based model transformation tools and techniques

and validated our approach through empirical assessments and several case studies.
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1.4 Contributions

The contributions of this research are:

1. Building a DNS Dependency Model to describe the Domain Name System

operational world to detect violations of the design and deployment principles

at the authoritative level.

2. Identification of a set of structural metrics DNS Metrics Suite, defined over

the DNS model, and building prediction models for the various DNS quality

attributes out of these metrics.

3. Proposing the ISDR method which is a model-based approach that subsumes

all the steps necessary to identify, specify, formalise, detect and catalogue the

DNS operational bad smells. The method deals with smells on a high-level of

abstraction using a consistent taxonomy and reusable vocabulary, defined over

the DNS Model. Graph-based refactorings are proposed as correction mech-

anisms for those bad smells and their priorities, conflicts and dependabilities

are analysed and their quality impacts are verified.

4. Building a pre-emptive DNS Advisor Tool that implements the ISDR method

and related model transformation techniques in order to detect and flag con-

figuration changes that might decrease the robustness or security posture of a

domain name, before even the changes become into production.

1.5 Publications

In this section some of the relevant co-authored documents are listed. Material from

these publications has been used in this dissertation since it was developed in the

context of this PhD research.
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1. Radwan, Marwan and Reiko Heckel, "Refactoring Operational Smells within

the Domain Name System", Software Technologies: Applications and Founda-

tions (STAF-14) Conference, University of York, UK, 21-25 July 2014.

2. Radwan, Marwan, and Reiko Heckel. "Detecting and Refactoring Opera-

tional Smells within the Domain Name System." 1st Graph as Models (Gam)

Workshop, ETAPS-2015, 11-12 April 2015, London, United Kingdom, arXiv

preprint arXiv:1504.02615 (2015).

3. Radwan, Marwan and Reiko Heckel, "Prediction of the Domain Name System

(DNS) Quality Attributes," Paper accepted for publication, The 32nd ACM

Symposium on Applied Computing (SAC 32), April 3-6, 2017, Marrakesh,

Morocco, http://dx.doi.org/10.1145/3019612.3019728.

1.6 Thesis Outline

The main body of this thesis consists of eight chapters followed by a final chapter

drawing conclusions and giving suggestions for future work. Following this intro-

duction, Chapter 2 discusses relevant background about the design, operation and

structure of the DNS. It describes the DNS on a high level to build up the necessary

background for the succeeding chapters.

Chapter 3 presents the DNS Model with its main components, features, relationships

and integrity constraints. It also includes a background section on related formalisms

of graph transformation concepts and definitions related to this thesis. In Chapter

4 a set of structural metrics is defined over the DNS Dependency Model. Prediction

models of the perceived quality attributes of the DNS model are constructed out of

the structural metrics.
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Chapter 5 discusses the ISDR method which includes bad smells’ identification,

specification, and detection. Examples of correction mechanisms in the form of

graph-based refactoring rules are also presented. Chapter 6 discusses the specifica-

tions, tools and implementation of the ISDR method techniques and presents several

case studies for its validation.

Chapter 7 continues with the implementation of the advisory tool by discussing

the behaviour preservation properties of the refactorings and analysing their execu-

tion priorities, conflicts and dependabilities. As prototype of the DNS Advisor is

presented as a realization of the all artefacts and techniques presented in this thesis.

Chapter 8 gives a survey of related work in the subjects discussed within the different

chapters of this research and relates them to our research contributions. Chapter 9

concludes the thesis with lessons learned, research limitations and directions of future

work.
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Background

The outline of the chapter is as follows. Section 2.1 gives an overview and a

background of the Domain Name System (DNS) operation including the details

of the DNS query process, DNS interdependencies, DNS operational planes and

introduces the concept of dependency graphs. Then, the DNS quality attributes and

DNS health indicators are discussed in Section 2.2. Relevant graph transformation

theoretical background and supporting tools are presented in Section 2.3. Finally

models as graphs and model transformation approaches and tools are discussed in

Section 2.4.

2.1 The Domain Name System

The Domain Name System (DNS) is a hierarchical distributed database [22] that

can map names to some data. In most cases it is used to map a name to an Internet

Protocol (IP) address. The system is mature and very successful. It was designed in

the 80’s to replace host-local configuration files for naming of Internet hosts. DNS

queries consist of a single User Datagram Protocol (UDP) request from the client
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followed by a single UDP reply from the server. The Transmission Control Protocol

(TCP) is used when the response data size exceeds 512 bytes, or for tasks such as

zone transfers [23]. DNS is part of the application layer of the TCP/IP reference

model [24].

2.1.1 General Operation of the DNS

The DNS is a conceptually simple system that allows a string of labels (such as

"www", "le", "ac", and "uk") joined by dots into a "domain name" to be looked up in

a database distributed across multiple DNS servers. The dots in a domain name are

important because they represent potential administrative boundaries. For example,

the dot between "ac" and "uk" in the domain name "www.le.ac.uk" represents

the administrative boundary between the "uk" top-level domain and Janet, the

organization responsible for the "ac.uk".

The Internet’s domain name space is a single large tree, read right-to-left, with

progressively more specific administrative units to the left. The term zone is used

to indicate administrative units within the DNS tree. For example, the "le.ac.uk"

zone is the piece of the DNS tree including all names ending in ".le.ac.uk". Further

subdivisions are common, even within a single organization, and "le.ac.uk" might

have multiple zones, such as "cs.le.ac.uk", "art.le.ac.uk" and "eng.le.ac.uk".

A zone is a point of delegation in the DNS tree. It contains all names from a certain

point downward except those which are delegated to other zones. A delegation

point has one or more NS records in the parent zone, which should be matched by

equivalent NS records at the root of the "delegated zone". [14].

Each name server maintains the domain name information regarding a zone in the

DNS name space. Several predefined properties, or resource records (RR), can be
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associated with a domain name. All of the RRs pertaining to the domain names in

a zone are stored in a master file, maintained by the primary name server of that

zone. Each zone also has one or more secondary name server, which periodically

synchronizes its local DNS file with the master file.

Secondary name servers respond to DNS queries but are not involved in maintaining

the master file. Operators of each zone determine the number of authoritative name

servers and their placement and manage all changes to the zone’s data content. In

spite of the fact that zone administration is autonomous, coordination is required and

essential to maintain the consistency, stability and resilience of the DNS hierarchy.

The DNS architecture was later enhanced with DNS Security Extensions [25], [26]

to provide data origin authentication.

Types of Domain Name Servers [27]:

• Root Servers. The name servers that serve the DNS root zone, commonly

known as the root DNS servers, are a network of hundreds of servers in many

countries around the world. They are configured in the DNS root zone as

13 named authorities (labeled A through M). Operators who manage DNS

resolvers typically need to configure a "root hints file". This file contains the

names and IP addresses of the root servers, so the software can bootstrap the

DNS resolution process.

• Top-Level Domain (TLD) Servers. These servers are responsible for top-

level domains such as com, org, net, edu, and gov, and all of the country top-

level domains such as uk, ca, and ps. The company Verisign Global Registry

Services maintains the TLD servers for the com top-level domain, the company

Educause maintains the TLD servers for the edu top-level domain and the

organisation Nominet maintains the uk country code TLD.
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• Authoritative Servers. Every organization with publicly accessible hosts

(such as Web servers and mail servers) on the Internet must provide publicly

accessible DNS records that map the names of those hosts to IP addresses. An

organization’s authoritative server houses these DNS records for that particular

organisation.

• Recursive Resolvers or Local DNS Servers. There is another important

type of DNS server called Recursive Resolvers or local DNS servers. Resolvers

make queries (recursively) on behalf of applications and (usually) cache the

responses to improve DNS performance and scalability. In the case of smaller

enterprises and end users, Internet service providers typically operate resolvers.

In the case of larger enterprises, the resolvers are usually operated by the

enterprises themselves or by large-scale DNS hosting providers.

A root, top-level domain or authoritative server responds to DNS lookup requests

with one of the following responses:

• A positive response in which an answer to the question is provided;

• A negative response indicating the answer does not exist; or

• A referral providing an indication of where further information may be ob-

tained.

Authoritative servers are typically operated by or on behalf of zone administrators.

DNS registrars, and hosting providers often operate authoritative servers on behalf of

their customers. The authoritative DNS infrastructure, particularly for "high value"

zones such as top-level domains, is being increasingly outsourced to DNS-focused

service providers.
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A local DNS server does not strictly belong to the hierarchy of servers but is nev-

ertheless central to the DNS architecture. When a host makes a DNS query, the

query is sent to the local DNS server, which acts as a proxy, forwarding the query

into the DNS server hierarchy.

2.1.2 DNS Query Process

The most common type of DNS lookup is for IP addresses. This is the type of

lookup that occurs each time a user types a URL into a web browser. Normally, the

individual application (such as the web browser) does not perform the full lookup,

which involves several steps. Figure 2.1 shows the process by which an application

looks up the domain name www.le.ac.uk and how it is mapped to the DNS data,

control and management operational planes.

ICANN

ROOT

uk

NOMINET IPR

org

VERISIGN

com

GOOGLE

google.com

mail.google.com www.google.com

University of Leicester

le.ac.uk

cs.le.ac.uk www.le.ac.uk

ac.uk

JANETRecursive 
(Local) 

DNS Server

Client/User Application
Request: www.le.ac.uk?
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2
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7

8

9

10

Zone Administrator
(Management Plane)

DNS Zone
(Data Plane)

DNS Authoritative Servers
(Control Plane)

Figure 2.1: An illustration of the DNS resolution process.

To find the IP address of www.le.ac.uk, the client (e.g a web browser) submits a DNS

query to a local (recursive) DNS server (step 1). Assuming that the corresponding
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IP is not in the resolver cache, it will ask one of the root name servers for the

translation (step 2). The names and IP addresses of root name servers are locally

stored within each server. The root name servers will respond with a "referral",

telling the resolver to query the DNS servers of the .uk top-level-domain for an

answer (step 3). The resolver then repeats this process for the .uk name servers and

get a referral to ask the .ac.uk authoritative name servers which in turn answers

with a referral to as the le.ac.uk name servers (step 4 -7). The resolver next asks

one of the le.ac.uk name servers for the translation (step 8), and gets the answer in

step (9), and finally forwards the answer to the requesting client (step 10) who will

use this information to connect to the web server hosting the web site www.le.ac.uk.

Throughout the process, resolvers may encounter name servers hosted under other

zones whose names need to be resolved before contacting them about the original

request.

Any DNS lookup process may involve the operators of numerous Internet-connected

networks, physical and virtual servers, support and back-office systems, and related

infrastructure. The many parties and components involved in every single DNS

lookup multiply the potential risks to the availability, security, stability, and re-

silience of the DNS. Due to the importance of the DNS for the operation of the

Internet, any event that negatively impacts DNS Security, Stability, or Resiliency

would have significant impact on the Internet.

2.1.3 DNS Inter-dependencies

Inter-dependencies are common in the DNS and stem from the hierarchal structure

of the DNS, the DNS protocol as well as from different motivations and goals. A

zone is said to depend on a name server if the name server could be involved in
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the resolution of names in that zone. The dependencies among name servers that

directly or indirectly affect a zone are represented as a dependency graph.

2.1.3.1 DNS Operational Planes

Management Layer 
Dependencies
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Figure 2.2: Interdependencies within the DNS Operational Planes.

The zone’s data plane is the interconnected graph of all infrastructure resource

records defined within the zone’s configuration file. The interconnected graph of

all authoritative name servers involved in the resolution process of a domain within

a certain zone is called the zone’s control plane and the interconnected graph of

all administrative units (organisations) involved is called the management plane.
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One reason that the DNS is so powerful is that its data plane allows administrators

a great deal of flexibility: they can manage their name space however they like.

However, the control and management planes’ flexibility can lead to operational

problems if not managed conscientiously. Figure 2.2 shows a schematic of the various

interdependencies that occur within and between the three operational planes of the

domain name system.

2.1.3.2 Dependency Graphs

Managing Organisation(s)

Figure 2.3: Name Dependency Graph of (le.ac.uk).

The recursive structures of inter-dependencies within and between the DNS opera-

tional planes are represented by dependency graph. A dependency graph deccio2010

is a directed connected graph with a distinguished node (r) which is the root zone.

Each node in the graph represents a zone name, and each edge signifies that its

source is directly dependent on its target for proper resolution of itself and any

descendant domain names.
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Figure 2.2 shows deferent dependencies that occur at the different DNS operational

planes. Zone or Data-Layer dependencies include child-parent dependency between

a zone and its parents as well as dependencies within the different resource records

within a zone or delegated zones. Control-layer dependencies includes the various

dependencies stemming from hosting zone files within secondary name server who

has names under other zones. It also include network distribution dependencies

as well as geographical location dependencies of those servers. Management layer

dependencies includes trust relationship between the different organisations that

manage the name servers of a particular zone and their interactions.

2.2 DNS Quality Attributes and DNS Health

Due to the fact that we aim at modelling the DNS system from the perspective

of authoritative system administrators and zone managers, we are concerned with

the DNS perceived quality as anticipated by the system administrator during the

process of designing, configuring and deployment of the DNS system. Quality at-

tributes have different definitions based on the point of view of the DNS user. For

example, resilience is viewed by users as availability and viewed by providers as a

combination of detection, response, resistance and recovery processes that increase

overall confidence in relying on and investing in the Internet over the long-term [11].

In this research, we focus on four quality attributes of the DNS as perceived by

authoritative zone managers and system administrators [10] and they are:

• Availability is defined as the ability of the group of authoritative name servers

of a particular zone (e.g., a TLD), to answer DNS queries. For the service to

be considered available at a particular moment, at least two of the delegated

17



Chapter 2. Background

name servers registered in the DNS must have successful results to each of

their public-DNS registered "IP addresses" to which the name server resolves.

• Security is the ability of the components of the system to protect the integrity

of DNS information and critical system resources.

• Stability is the consistency of authoritative name servers’ names within the sys-

tem and the consistency of system components’ performance over time. That

is, if authoritative servers’ names within a system change with high frequency,

the system is unstable and if a query takes 10 milliseconds to respond in one

instance and 1000 milliseconds to respond in a second instance, resolution time

is unstable which means the system is also unstable.

• Resilience is the ability of the system to provide and maintain an acceptable

level of name resolution service in the face of faults and changes in normal

operating conditions.

Given the fact that the DNS protocol offers administrators and zone operators a

high level of flexibility in configuring their zone and the deployment structure for

their systems, it can be anticipated that low-quality configurations and deployment

choices can ripple through to many operational domain name systems. Therefore,

the need for early indicators of external quality attributes is recognized in order to

avoid the implications of defective and low-quality design and deployment during

the late stages of system operation.

The security, stability and resilience of DNS have received significant attention over

the past few years. Following the 2009, 2010 and 2012 DNS symposia [28], [29],

[30], the Internet Corporation for Assigned Names and Numbers (ICANN) specified

the following indicators for DNS health:
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• Availability: The ability of DNS to be operational and accessible when re-

quired.

• Coherency: The ability of DNS to accurately resolve name queries; this is

one of the core principles of DNS. For example, if the IP address 192.0.2.1 is

resolved to www.foo.example.com, then the coherency principle implies that

the name www.foo.example.com should resolve to the IP address 192.0.2.1.

• Integrity: The ability of DNS to guard against improper data modification or

destruction; this includes ensuring information non-repudiation and authen-

ticity.

• Resiliency: The ability of DNS to effectively respond and recover to a known,

desired and safe state in the event of a disturbance.

• Security: The ability of DNS to limit or protect itself from malicious activities

(e.g., unauthorized system access, fraudulent representation of identity and

interception of communications).

• Speed: The performance of DNS with respect to response time and through-

put. Note that, in addition to queries, speed applies to maintenance, admin-

istration and management operations.

• Stability: The ability of DNS to function in a reliable and predictable manner

(e.g., protocols and standards). Stability is important because it facilitates

universal acceptance and usage.

• Vulnerability: The likelihood that a DNS weakness can be exploited by one

or more threats.
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2.3 Graph Transformation

Graphs and diagrams have been used to represent a variety of problems in computer

science and software engineering. They provide a simple mathematical model for

representing pairs of objects connected by links [31]. More formally, a graph con-

sists of a set of vertices V and a set of edges E, each edge having a source and a

target vertex in V . Graphs can be typed, allowing for the definition of meta-models

that describe how instances should be built. Additionally, in order to carry further

information, it is possible to use attributes in graphs, storing values of pre-defined

data types.

Graph Transformation Systems (GTS) have been used to model the dynamic be-

haviour of systems where graphs model the systems’ states and their evolution is

specified by graph transformation rules [32]. The conceptual (type) level of the

system is represented by a type graph (model) and its instance level is represented

by an instance graph. A type graph is usually visualised using a class diagram in

Unified Modelling Language (UML). An instance graph is visualised by an object

diagram. Graph transformation rules describe pre and post conditions of operations.

In our research, we use a type graph to describe the DNS Dependency Model. The

graph transformation rules are used to suggest correction mechanisms in the form of

refactorings to remedy for operational bad smells identified and detected in the in-

stances of the model (i.e. Dependency Graphs). In the following sections, we provide

fundamental definitions and basic concepts of graphs and graph transformations.

2.3.1 Basic Concepts

Definition 2.1. (Graph [33]) A graph G = (V,E, s, t) consists of a set V of nodes

(also called vertices), a set E of edges, and two functions s, t : E → V , the source
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and target functions:

E V

s

t

A graph homomorphism is a mapping between two graphs that respects their struc-

ture. More concretely it maps adjacent vertices to adjacent vertices.

Definition 2.2. (GraphMorphism [33]) Given graphsG1 , G2 withGi = (Vi, Ei, si, ti)

for i = 1,2, a graph morphism f : G1 → G2, f = (fV , fE) consists of two functions

fV : V1 → V2 and fE : E1 → E2 that preserve the source and target functions, i.e.

fV ◦ s1 = s2 ◦ fE and fV ◦ t1 = t2 ◦ fE:

E1 V 1

E2 V 2

=

s1

t1

s2

t2

fE fV

A graph morphism f is injective (or surjective) if both functions fV , fE are injective

(or surjective, respectively); f is called isomorphic if it is bijective, which means both

injective and surjective.

In this algebraic representation, a graph is considered as a two sorted algebra where

the sets of vertices V and edges E are the carriers, while the source s : E → V and

target t : E → V are two unary operators [34]. The composition property of graph

morphisms is one of the necessary ingredients to show that graphs form a category

(see Corollary 2.6).
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Fact 2.3. (Composition of Graph Morphisms [33]) Given two graph morphisms

f = (fV , fE) : G1 → G2 and g = (gV , gE) : G2 → G3, the composition g o f = (gV o

fV , gE o fE) : G1 → G3 is again a graph morphism.

The model can be conveniently expressed as a type graph. A typed graph consists

of a graph and a corresponding type graph. The type graph defines a set of types

that are assigned to the nodes and edges of the graph by a typing morphism.

Definition 2.4. (Typed Graph [33]) A type graph is a distinguished graph TG =

(VTG, ETG, sTG, tTG) where VTG and ETG are called the vertex and the edge type

alphabets, respectively.

A tuple (G, type) of a graph G together with a graph morphism type: G → TG is

then called a typed graph over TG.

Definition 2.5. (Typed Graph Morphism [33]) Given typed graphs GT
1 =

(G1, type1) and GT
2 = (G2, type2), a typed graph morphism f : GT

1 → GT
2 is a

graph morphism f : G1 → G2 such that type2 o f = type1:

G1 G2

TG

=
f

type1 type2

Organisation

Server Zone

m
an
ag
e
dB

y

nameServer

hasNameIn

SOARecord

so
aR
e
co
rd

primaryServer

owns

Figure 2.4: Typed Graph Example
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Figure 2.4 shows an example of a graph with node and edge labels. A graph mor-

phism fromG1 toG2 is illustrated in Figure 2.5. The dashed vertical arrows represent

the morphism’s node and edge mapping components. This morphism is injective but

not surjective.

Organisation Server Zone
managedBy nameServer

hasNameIn

owns

SOARecord

soaRecord

primaryServer

Organisation Server Zone
managedBy

nameServer

hasNameIn

owns

G1

G2

Figure 2.5: A Graph Morphism From G1 to G2

In order to use categorical constructs on graphs, it is necessary to show that graphs

form a category.

Corollary 2.6. (Category of Graphs [35])

• The class of all graphs (as defined in Definition 2.1) as objects and of all

graph morphisms (see Definition 2.2) forms the category Graphs, with the

composition given in Fact 2.3, and the identities are the pairwise identities on

nodes and edges.

• Given a type graph TG, typed graphs over TG and typed graph morphisms (see

Definition 2.5) form the category GraphsTG.

Definition 2.7. (E-graph and E-graph Morphism [33]) An E-graph G with

G = (VG, VD, EG, ENA, EEA, (sourcej, targetj)j∈{G,NA,EA}) consists of the sets:

• VG and VD, called the graph and data nodes (or vertices), respectively;
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• EG, ENA, and EEA called the graph, node attribute, and edge attribute edges,

respectively; and the source and target functions:

• sourceG : EG → VG, targetG : EG → VG for graph edges;

• sourceNA : ENA → VG, targetNA : ENA → VD for node attribute edges; and

• sourceEA : EEA → EG, targetEA : EEA → VD for edge attribute edges

Consider the E-graphs G1 and G2 with Gk = (V k
G , V

k
G , E

k
G, E

k
G, E

k
G, (source

k
j , target

k
j

)j∈{G,NA,EA}) for k = 1, 2. An E-graph morphism f : G1→ G2 is a tuple (fVG
, fVD

,

fEG
, fENA

, fEEA
) with fVi

: V 1
i → V 2

i and fEj
: E1

j → E2
j for i ∈ G,D, j ∈ G,NA,EA

such that f commutes with all source and target functions, for example fVG
o

source1G = source2G o fEG
.

Graph transformation has been used as a meta-language to specify and implement

visual modelling techniques, like the UML [33]. In most visual modelling tech-

niques, (typed) attributed graphs are used as a representation mechanism [36]. An

attributed graph can be seen as a graph where attributes are assigned for the nodes

and edges [37]. Several different concepts for typed and attributed graph transfor-

mation have been proposed (e.g. [33, 37]). These approaches followed the algebraic

approach to provide formal definitions of attributed graph transformation. In [33],

the authors introduced a new concept, which is called, E-graphs, which allows both

node and edge attributions.

Definition 2.8. (Attributed Graph and Attributed Graph Morphism [33])

Let DSIG = (SD, OPD) be a data signature with attribute value sorts S ′D ⊆ SD.

An attributed graph AG = (G,D) consists of an E-graph G together with a DSIG-

algebra D such that ∪s∈S′
D
Ds = VD.

For two attributed graphs AG1 = (G1, D1) and AG2 = (G2, D2), an attributed
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graph morphism f : AG1 → AG2 is a pair f = (fG, fD) with an E-graph morphism

fG : G1 → G2 and an algebra homomorphism fD : D1 → D2

Definition 2.9. (Typed Attributed Graph and Typed Attributed Graph

Morphism [33]) Given a data signature DSIG, an attributed type graph is an

attributed graph ATG = (TG,Z), where Z is the final DSIG-algebra. A typed

attributed graph (AG, t) over ATG consists of an attributed graph AG together

with an attributed graph morphism t : AG→ ATG.

A typed attributed graph morphism f : (AG1, t1)→ (AG2, t2) is an attributed graph

morphism f : AG1 → AG2 such that t2 o f = t1.

2.3.2 GT-Based Model Transformation

After having defined the objects of transformation as instances of type graphs sat-

isfying constraints, model transformations can be specified in terms of graph trans-

formation. Formally, meta models are type graphs whose instance graphs represent

models. That means, the type-instance mapping of typed graphs, which has so far

been used to model the relation of objects to their classes and component instances

to their components, shall now be reserved for the mapping between a model and

its meta model. Therefore, the object-class and component instance component

mappings are defined in the meta model itself [32].

Definition 2.10. (Graph Transformation System [33]) A typed graph trans-

formation system GTS = (TG, P ) consists of a type graph TG and a set of typed

graph productions P .

A typed graph grammar GG = (GTS, S) consists of a typed graph transformation

system GTS and a typed start graph S. We may use the abbreviation GT system

for typed graph transformation system.
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The Algebraic/Double Pushout Approach

Various graph transformation approaches have been developed. A general approach

is called the algebraic approach, where an entire sub-graph can be replaced by a

new sub-graph. The algebraic approach is based on pushout constructions in the

category Graphs of graphs. Pushouts are used to model the gluing of graphs, which

is required to apply graph transformation rules to graphs.

Definition 2.11. (Pushout [33]) Given morphisms f : A → B and g : A → C in

a category C, a pushout (D, f ′, g′) over f and g is defined by:

• a pushout object D and

• morphisms f ′ : C → D and g′ : B → D with f ′ o g = g′ o f

such that the following universal property is fulfilled: for all objects X and mor-

phisms h : B → X and k : C → X with k o g = h o f , there is a unique morphism

x : D → X such that x o g′ = h and x o f ′ = k:

A B

C D

=

=

=

X

f

g g′

f ′
h

k x

We write D = B +A C for the pushout object D, where D is called the gluing of B

and C via A.

The core of a graph transformation is a graph production p : L→ R consisting of a

pair of graphs L and R. L is called the left-hand side graph (LHS) and R is called
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the right-hand side graph (RHS). Applying rule p to a source graph means finding

a match of L in the source graph and replacing it with R, thus creating the target

graph. In the DPO approach, a graph K is used. K is the common interface of L

and R, i.e. their intersection. Hence, a rule is given by a span p : L← K → R.

Definition 2.12. (Graph Production [33]) A (typed) graph production p = (L
l←−

K
r−→ R) consists of (typed) graphs L, K, and R, called the left-hand side, gluing

graph, and the right-hand side respectively, and two injective (typed) graph mor-

phisms l and r. Given a (typed) graph production p, the inverse production is

defined by p−1 = (R
r←− K

l−→ L).

A graph transformation starts by finding a match m of L in the source graph G.

Then, m(L\l(K)) are removed from G to create an intermediate graph D. The

match m has to satisfy the gluing condition (see Definition 2.14). The graph D =

(G\m(L)) ∪ m(l(K)) is obtained by removing the vertices and edges of L from G

that are not in the image l. In the second step, a target graph H is produced by

gluing R\l(K) and D; that is, a pushout D k←− K
r−→ R.

Definition 2.13. (Graph Transformation [33]) Given a (typed) graph production

p = (L
l←− K

r−→ R) and a (typed) graph G with a (typed) graph morphism m : L→

G, called the match, a direct (typed) graph transformation G
p,m⇒ H from G to a

(typed) graph H is given by the following double-pushout (DPO) diagram, where

(1) and (2) are pushouts in the category Graphs (or GraphsTG, respectively):

L K R

G D H

(1) (2)m

l r

k n

f g

A sequence G0 =⇒ G1 =⇒ . . . =⇒ Gn of direct (typed) graph transformations

is called a (typed) graph transformation and is denoted by G0
∗

=⇒ Gn. For n = 0,
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we have the identity (typed) graph transformation G0
id
=⇒ G0. Moreover, for n = 0

we allow also graph isomorphisms G0
∼= G′0, because pushouts and hence also direct

graph transformations are only unique up to isomorphism.

The gluing condition is a constructive approach to formulate a syntactic criterion

for the applicability of a (typed) graph production.

Definition 2.14. (Gluing Condition [33]) Given a (typed) graph production

p = (L
l←− K

r−→ R), a (typed) graph G, and a match m : L → G with X =

(VX , EX , sX , tX) for all X ∈ L,K,R,G, we can state the following definitions:

• The gluing points GP are those nodes and edges in L that are not deleted by

p, i.e. GP = lV (VK) ∪ lE(EK) = l(K).

• The identification points IP are those nodes and edges in L that are identified

by m, i.e. IP = {v ∈ VL|∃w ∈ VL, w 6= v : mV (v) = mV (w) } ∪ { e ∈ EL|∃f ∈

EL, f 6= e : mE(e) = mE(f) }.

• The dangling points DP are those nodes in L whose images under m are the

source or target of an edge in G that does not belong to m(L), i.e. DP =

{v ∈ VL|∃e ∈ EG\mE(EL) : sG(e) = mV (v) or tG(e) = mV (v)}.

Production p with match m satisfy the gluing condition if all identification points

and all dangling points are also gluing points, ie. IP ∪DP ⊆ GP .

A graph transformation is a sequence of productions applied to a graph. A set of

production rules that may applied to a graph is defined as a graph transformation

system. A graph grammar is basically a graph transformation system with a fixed

start graph.

Two direct graph transformations G p1,m1
===⇒ H1 and G

p2,m2
===⇒ H2 are in conflict if they

are not parallel independent. This type of conflict is called delete-use conflict.
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A critical pair characterises the conflict situation in a minimal context.

Definition 2.15. (Critical Pair [33]) A critical pair for the pair of rules (p1, p2) is

a pair of direct graph transformations P1
p1,o1⇐== K

p2,o2
==⇒ P2 in conflict, such that o1

and o2 are jointly surjective morphisms. The context is minimal, because o1 and o2

are required to be jointly surjective morphism. This means that each item in K has

a pre-image in L1 or L2, thus K can be considered as a suitable gluing of L1 and

L2. If GTS does not contain critical pairs, it is locally confluent.

Negative Application Conditions (NACs) allow control over the applicability of rules

in a Graph Transformation System. A NAC is connected to either the LHS or RHS

of a production rule forming a pre or postcondition on the rule. If this pattern is

found in the corresponding host graph, the production cannot be applied.

Definition 2.16. (Negative Application Condition [33]) A Negative Applica-

tion Condition or NAC(n) on L is an arbitrary morphism n : L→ N . A morphism

g : L → G satisfies NAC(n) on L i.e. g |= NAC(n) if and only if does not exists

and injective q : N → G such that q ◦ n = g.

L N

G

n

m X
q

A set of NACs on L is denoted by NACL = NAC(ni) | i ∈ I. A morphism g :

L → G satisfies NACL if and only if g satisfies all single NACs on L i.e. g |=

NAC(ni)∀i ∈ I.

Definition 2.17. (Production Rule with NACs [33]) A set of NACs NACL

(resp.NACR) on L(resp.R) for a rule p : L
l←− K

r−→ R (with injective l and r) is

called a left (resp. right) NAC on p. NACp = (NACL, NACR) consisting of a set
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of left and a set of right NACs on p is called a set of NACs on p. A rule (p,NACp)

with NACs is a rule with a set of NACs on p.

2.3.3 Graph Transformations Tools

In this section, we introduce the transformation language and tool environment that

we use in our implementation of the DNS Dependency Model and its corresponding

model transformation techniques.

2.3.3.1 EMF

The Eclipse Modeling Framework (EMF) [38] provides a modeling and code gener-

ation framework for Eclipse applications for building tools and other applications

based on structured data models. The Essential Meta-Object Facility (EMOF) is

an Object Management Group (OMG) standard for model-driven engineering [39].

The type information of sets of instance models is defined in a so-called core model

corresponding to metamodel in EMOF. The core or metamodel for core models is

the Ecore model.

The EMF model can be seen as a type graph with attribution, inheritance and mul-

tiplicities and its instance model can be seen as a typed attributed graph [40].A

Transformation consists of a RuleSet containing the set of Rules for the transfor-

mation. Furthermore, it has a link to the core model its instances are typed over. If

needed, a start structure can be defined as well to have a fixed starting point for the

transformation available. A transformation together with a start structure forms an

EMF grammar. An in-place EMF transformation is a rule-based modification of an

EMF source model resulting in an EMF target model. Both, the EMF source and

target models are typed over the same EMF core model which itself is again typed

30



Chapter 2. Background

over Ecore. The transformation rules are typed over the Transformation Model

which itself is an instance of Ecore again. In our approach, we use the Henshin

transformation tool [41], which has its roots in attributed graph transformations.

Henshin offers a formal foundation for validation of EMF model transformations.

An EMF model is a class diagram and can be represented by an attributed type

graph with inheritance and containment [42]. Graph transformation rules specify

local changes on graphs, so-called graph transformations. A rule consists of a left

hand side graph (LHS), a right hand side graph (RHS), as well as a mapping from

LHS to RHS. Although the LHS defines the precondition for the transformation,

i.e. the pattern to be found in the model, its relation to RHS formulates the ac-

tions to be performed. All object nodes and edges which occur in LHS, but not in

RHS are deleted, while all elements occurring in the RHS and not in the LHS are

newly created. Elements occurring in both LHS and RHS have to be there for the

transformation to take place, but are not changed. Moreover, negative application

conditions (NACs) can be formulated.

A NAC consists of an extension of the LHS where the structure not being part of the

LHS is prohibited to occur in the model. Another (implicit) application condition

for graph transformation rules is the so-called dangling condition which allows the

application of a rule only if adjacent edges of nodes to be deleted occur in the LHS,

thus are also scheduled for deletion. Moreover in rule graphs, abstract nodes (typed

over abstract node types) may occur. When a rule is applied, its abstract nodes in

the LHS are mapped to concrete nodes in the instance graph such that each concrete

instance node is in the clan of the corresponding mapped abstract node.
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2.3.3.2 Henshin Language and Tools

Henshin [41] provides a state-of-the-art model transformation language for the Eclipse

Modeling Framework. Henshin supports both direct transformations of EMF sin-

gle model instances (endogenous transformations), and translation of source model

instances into a target language (exogenous transformations). The Henshin trans-

formation language uses pattern-based rules on the lowest level, which can be struc-

tured into nested transformation units with well-defined operational semantics. Its

transformation rules are supported by powerful application conditions and flexible

attribute computations. They can be structured by means of transformation units

that can control the order of rule applications. Henshin offers a visual syntax, so-

phisticated editing functionalities, execution and analysis tools. The Henshin trans-

formation language has its roots in attributed graph transformations, which offer

a formal foundation for validation of EMF model transformations. Before defin-

ing rules in Henshin, a model/metamodel should be created using the EMF Eclipse

plug-in. The rules can be applied to an instance model of the model/metamodel,

which can also be created using EMF tools. There are two editors to define model

transformations in Henshin: i) a tree-based editor, generated by EMF itself, and

ii) a graphical editor, implemented using GMF. The graphical editor shows rules in

an integrated manner with the pattern to find (left-hand side, LHS), the resulting

pattern (right-hand side, RHS) and application conditions. In the top of every rule,

its name and parameters are specified. Inside a rule, we create Nodes, Edges and

Attributes. The nodes represent the classes of the metamodel and the edges are used

to specify the link between nodes. Nodes and edges are annotated with stereotypes

(actions). There are a number of actions:

• preserve: the node/edge is preserved during the rule application.

• delete: delete an existing node/edge after the rule application.
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Zone

name: EString

Server

name: EString
ipaddress: EString ARecord

name: EString

arecords

pointsto

hasNameIn

NSRecord

name: EString

nsrecords

namServer

refersTo

Zone

name: 
pnina.psServer

name: ns1.pnina.ps
ipaddress: 
194.6.225.5
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name: 
ns1.pnina.ps
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pointsto

hasNameIn

NSRecord

name: 
ns1.pnina.ps

nsrecords

namServer

refersTo

(a)

(b)

Figure 2.6: Attributed Typed Graph Model (a) and Its Instance (b).

• create: create a new node/edge after the rule application.

• forbid: forbid the existence of a node/edge during the rule application.

Figure 2.7 illustrates how the rule createARecord would be represented in Henshin.

In this example, we show how a new component of type ARecord can be added to

the model instance with the zone as the context where the rule will be applied and

servername as input parameters for the rule to indicate the data elements within

this record.
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Figure 2.7: createARecord Transformation Rule

2.3.3.3 EMF Refactor

EMF Refactor [1] is an existing Eclipse project which can calculate metrics and per-

form refactorings on Ecore and UML models. In particular, EMF Refactor supports

metrics reporting, smell detection, and refactoring for models being based on the

Eclipse Modeling Framework. The following techniques can be used in a concrete

specification of a new EMF model metric, smell, or refactoring:

• Model metrics can be concretely specified in Java, as OCL expressions, by

Henshin pattern rules, or as a combination of existing metrics using a binary

operator.

• Model smells can be concretely specified in Java, by Henshin pattern rules, or

as a combination of an existing metric and a comparator like greater than (>).

• The three parts of a model refactoring can be concretely specified in Java, in

Henshin (pattern rules for precondition checks; transformations for the proper

model change), or as a combination of existing refactorings using the CoMReL

language.
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2.4 Model Transformation

Model-driven engineering (MDE) is a discipline in software engineering that relies on

models as first class entities and that aims to develop, maintain and evolve software

by performing model transformations. Models are system abstractions that allow

developers and other stakeholders to effectively address concerns, such as answering

a question about the system or effecting a change [43].

A model is useful if it helps to gain a better understanding of the system. In an

engineering context, a model is useful if it helps in deciding upon the appropriate

actions that need to be taken to reach and maintain the system’s goal. The goal of

software is to automate some tasks in the real world. Models of software require-

ments, structure and behaviour at different levels of abstraction help all stakeholders

deciding how this goal should be accomplished and maintained [44].

Model manipulation is a central activity in many model-based software engineering

activities [45] like, model translations (e.g., translating a UML class model into an

ER model), model augmentations (e.g., weaving aspects into a UML class model),

and model alignments (e.g., mapping a content model to its GUI view), to mention

just a few. An important question concerns the source and target artifacts of the

model transformation. If these artifacts are programs (i.e., source code, bytecode, or

machine code), one uses the term program transformation. If the software artifacts

are models, we use the term model transformation [44].

Model manipulations are usually implemented by means of model-to-model (M2M)

transformations. A M2M transformation transforms a model Ma conforming to a

metamodel MMa into a model Mb conforming to a metamodel MMb (where MMa

and MMb can be the same or different metamodels). In particular, inspecting and
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modifying models to reduce their complexity and improve their readability, main-

tainability and extensibility (i.e. by performing model refactoring [46]) are important

issues of model development.

In order to transform models, these models need to be expressed in some modelling

language (e.g., UML for design models, and programming languages for source code

models). The syntax and semantics of the modelling language itself is expressed by

a metamodel.

Models are usually defined using Domain-Specific Modelling Languages (DSMLs)which

are themselves specified through a meta-model. A domain-specific language (DSL)

is a programming language or executable specification language that offers, through

appropriate notations and abstractions, expressive power focused on, and usually re-

stricted to, a particular problem domain [47]. The key characteristic of DSLs is their

focussed expressive power. A DSML should contain useful, appropriate primitives

and abstractions for a particular application domain. Domain-specific modelling

languages (DSMLs) successfully separate the conceptual and technical design of a

software system by modelling requirements in the DSML and adding technical ele-

ments by appropriate generator technology.

The Eclipse Modeling Framework (EMF) [38] has evolved to a de facto standard

technology to define models and modelling languages. EMF provides a modeling

and code generation framework for Eclipse applications based on the structured

data models. The modelling approach is similar to that of MOF (Meta-Object

Facility) which is the Object Management Group (OMG) standard for model-driven

engineering. EMF supports essential MOF (EMOF) as part of the OMG MOF

2.0 specification [48]. Containment relations, i.e. compositions in UML, define an

ownership relation between objects. In MOF and EMF, the hierarchical containment

structure is used to implement a mapping to XML, known as XMI (XML Meta data

interchange) [49].
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EMF instance model is called rooted if there is one container which contains all other

elements transitively. Although EMF instance models do not need to be rooted in

general, this property is important for storing them, or more general, to define the

model’s extent. EMF instance models can be represented as graphs and EMF model

transformations as graph transformations.
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DNS Dependency Model

Model-driven engineering (MDE) [50] is a software engineering discipline that uses

models as the primary artifacts throughout software development processes and

adopt model transformation both for their optimization as well as for model and code

generation. A model is a simplified abstract view of the complex reality. Models

provide abstractions, which allow developers to focus on the relevant properties of

the system, and ignore unnecessary complications [51]. A model has an abstract

and a concrete syntax. The abstract syntax is often defined in terms of a metamodel,

which is an explicit model of the constructs and well-formedness rules needed to build

specific models within a domain of interest. The concrete syntax is the (graphical

or textual) representation of the model.

Although it would be ideal to represent the system with one concise model, a sys-

tem description requires multiple views: each view represents a projection of the

complete system that shows a particular aspect. A view requires a number of di-

agrams that visualise the information of that particular aspect of the system. For

example, the concepts used in the object oriented software system diagrams are

model elements that represent common object oriented concepts such as classes,
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objects and messages, and their relationships, including associations, dependencies

and generalisation [52].

The outline of the chapter is as follows. Section 3.1 gives an overview of the basic

MDE concepts and definitions used throughout this chapter and beyond. Then, the

approach used in modelling the domain name system (DNS) is illustrated in Section

3.2. A diagrammatic representation for the DNS Model and detailed presentation

of the model components, attributes, associations and constraints are presented in

Section 3.1. Model validation in terms of the 6C goal quality model [53] is presented

in Section 3.4.

3.1 Basic Concepts

We start by looking at the concepts that are at the core of MDE that will be used

throughout this chapter.

• System: A system may include anything: a program, a single computer sys-

tem, some combination of parts of different systems, a federation of systems,

each under separate control, people, an enterprise, a federation of enterprises

. . . etc.

• Model: A model of a system is a description or specification of that system

and its environment for some certain purpose. In [54], Warmer and his col-

leagues state: "A model is a description of a (part of) systems written in a

well-defined language. A well-defined language is a language with well-defined

form (syntax), and meaning (semantics), which is suitable for automated in-

terpretation by a computer". A model is often presented as a combination of

drawings and text.

39



Chapter 3. DNS Dependency Model

• Model-Driven-Engineering: Model-Driven-Engineering (MDE) is an ap-

proach to system development which increases the power of models that work.

It is model-driven because it provides a means for using models to direct the

course of understanding, design, construction, deployment, operation, mainte-

nance and modification.

• Viewpoint A viewpoint of a system is a technique of abstraction using a

selected set of concepts and structuring rules in order to focus on particular

concerns within that system. Here "abstraction" is used to mean the process

of suppressing selected details to establish a simplified model.

• Model-Transformation Model transformation is the process of converting

one model to another model of the same system.

• Implementation An implementation is a specification, which provides all the

information needed to construct a system to put it into operation.

3.2 Modelling the DNS

Efforts to improve risk management related to DNS availability, security, stability

and resilience must be guided by an ability to evaluate these characteristics. We

need to avoid the implications of misconfigurations and bad deployment choices

made by system administrators that may lead to data inconsistencies, vulnerable

configurations or even failure of resolution at an early stage of the design/deployment

of the DNS.

The DNS Dependency Model is an attempt to describe the Domain Name System

(system) operational world for a particular operational goal (purpose) of detecting

violations of the design and deployment principles at the authoritative level (view).

For detecting problems in the configuration and deployment of the DNS, we have to
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search for certain patterns representing those problems in the instances of the model

of the system (i.e., the dependency graphs). This means we have to be able to specify

a problem and to query the model instance about the existence and occurrences of

the specified problem.

From an operational perspective, there are three views of the domain name system:

• The user’s point of view : from this view, the domain system is accessed

through a simple procedure or OS call to a local resolver. The domain space

consists of a single tree and the user can request information from any section

of the tree.

• From the resolver’s point of view, the domain system is composed of an un-

known number of name servers. Each name server has one or more pieces of

the whole domain tree’s data, but the resolver views each of these databases

as essentially static.

• From a zone administrator’s point of view, the domain system consists of sep-

arate sets of local information called zones. The name server has local copies

of data related to some of the zones. The name server must periodically re-

fresh its zones’ data from master copies in local files or foreign name servers

managed by external organisations. The name server must concurrently pro-

cess queries that arrive from users through external DNS resolvers. This is

the authoritative level view that we are concerned in modelling the DNS from

throughout this study.

From the perspective of the authoritative zone administrator, the DNS [22] has

three major components:

• The DOMAIN NAME SPACE and RESOURCE RECORDS, which are speci-

fications for a tree structured name space and data associated with the names.
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Conceptually, each node and leaf of the domain name space tree names a set

of information, and query operations are attempts to extract specific types of

information from a particular set. A query names the domain name of interest

from a particular part of the tree and describes the type of resource information

that is desired. For example, the Internet uses some of its domain names to

identify hosts; queries for address resources, return Internet host addresses (IP

addresses). These components are modelled as part of the DataLayer within

the DNS model.

• NAME SERVERS are physical or logical hosts with server programs which

hold information about the domain tree’s structure of a particular zone infor-

mation. A name server may cache structure of a zone information or about

any part of the domain tree, but in general a particular name server has com-

plete information about a subset of the domain space, and pointers to other

name servers that can be used to lead to information from any part of the

domain tree. Name servers know the parts of the domain tree for which they

have complete information; a name server is said to be an AUTHORITY for

these parts of the name space. Authoritative information is organized into

units called ZONEs, and these zones can be automatically distributed to the

name servers which provide redundant service for the data in a zone. This

component with its attributes and associations is modelled as part of the Con-

trolLayer within the DNS model.

• HOSTING ORGANISATIONS are entities that are responsible for provid-

ing DNS hosting services. The Domain Name System requires that multiple

servers exist for every delegated (zone). These servers are hosted and man-

aged by providers who have multiple servers in various geographic locations

that provide resilience and minimize latency for clients around the world. By

operating DNS nodes closer to end users, DNS queries travel a much shorter
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distance, resulting in faster Web address resolution speed. The zone manager

coordinates with other peer organisations or commercial DNS hosting compa-

nies to provide secondary DNS hosting for their zone’s data through different

types of mutual agreements. This component with its attributes and associa-

tions is modelled as part of the ManagementLayer within the DNS model.

3.3 The DNS Dependency Model

Throughout this section, we explain how we constructed the DNS Dependency Model

as a unified representation of DNS Dependency Graphs. We are modelling the DNS

system from the prospective (view) of authoritative system administrators and zone

managers. To develop the model, we use Eclipse Modelling Framework (EMF) [38]

as the modelling language for our application domain. EMF (core) is a common

standard for data models, many technologies and frameworks are based on. This

includes server solutions, persistence frameworks, UI frameworks and support for

graph-based transformation tools. The DNS Dependency Model is composed of the

following elements:

• Operational Entities (e.g. resource records, zones, servers and organiza-

tions).

• Properties of operational entities such as (in-bailiwick which are name servers

with names registered within the same zone and out-of-bailiwick name servers

which are servers with names registered within third party zones).

• Relations between the entities (e.g. access attributes such as dependability,

containment, delegation and management).

The operational DNS entities that appear in our model as shown in Figure 3.1 fall

into two categories: primitive and composed entities. Composed entities have an
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Figure 3.1: The DNS Dependency Model Specified in Ecore (The Meta-Meta
Model of EMF).
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identity and a set of properties. In addition to these, composed entities have a list

of contained entities, which are primitive or composed entities. A composed entity

type is one that contains other entities. The model supports the following composed

entities: Organization, Server and Zone. In order to describe a composed entity

we have to specify its properties, containment structure (i.e. the entities that it

contains), relations and container entity. Three specific dependencies are present

within the DNS operational planes and they are the following:

• Parent Dependency: resolving the name of a domain name is always de-

pendent on resolving its parent name since the resolver must learn the author-

itative servers for a zone from referrals from the zone’s hierarchical parent.

• Authoritative Name Server (NS) Dependency: A zone is said to depend

on a name server if the name server could be involved in the resolution of names

in that zone.

• CNAME Aliasing Dependency: the resolution of an alias is always depen-

dent on the resolution of its target CNAME. If a resolver receives a response

indicating that the name in question is an alias to another name, it must sub-

sequently resolve the target of the alias, and so on until an address is returned.

Although EMF models show a graph-like structure and can be transformed similarly

to graphs [33], there is a an important difference. In contrast to conventional graphs,

EMF models have a distinguished tree structure which is defined by the containment

relation between their classes. An EMF model should be defined such that all its

classes are transitively contained in the root class. Complete details of the DNS

Model is included in Appendix A.
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3.4 DNS Model Quality

In their article, Mohagheghi et al. [53] present the results of a systematic review

of literature discussing model quality in model-based software development. From

40 studies covered in the review, the authors identified six classes of quality goals,

called 6C goals, in model-based software development. They state that other quality

goals discussed in literature can be satisfied if the 6C goals are in place. Here we

shortly introduce the identified 6C goals.

• Correctness: A model is correct if it includes the right elements and correct

relations between them and if it includes correct statements about the domain.

Furthermore, a model must not violate rules and conventions. This definition

includes syntactic correctness relative to the modelling language as well as

semantic correctness related to the understanding of the domain.

• Completeness: A model is complete if it has all necessary information that is

relevant, and if it is detailed enough according to the purpose of modelling.

For example, requirement models are said to be complete when they specify all

the black-box behaviour of the modelled entity, and when they do not include

anything that is not in the real world.

• Consistency: A model is consistent if there are no contradictions within. This

definition covers horizontal consistency concerning models/diagrams on the

same level of abstraction, vertical consistency concerning modelled aspects on

different levels of abstraction as well as semantic consistency concerning the

meaning of the same element in different models or diagrams.

• Comprehensibility: A model is comprehensible if it is understandable by the

intended users, either human users or tools. In most of the literature, the

focus is on comprehensibility by humans including aspects like aesthetics of
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a diagram, model simplicity or complexity, and the use of the correct type

of diagram for the intended audience. Several authors also call this goals

pragmatic quality.

• Confinement: A model is confined if it agrees with the modelling purpose and

the type of system. This definition also includes relevant diagrams on the right

abstraction level. Furthermore, a confined model does not have unnecessary

information and is not more complex or detailed than necessary.

• Changeability: A model is changeable if it can be evolved rapidly and continu-

ously. This is important since both the domain and its understanding as well

as requirements of the system evolve with time. Furthermore, changeability

should be supported by modelling languages and modelling tools as well.

The selection of main quality aspects may vary dependent on the intended modelling

purpose and demonstrates the complexities and challenges of this basic task. In this

context, the following aspects which are most relevant to our model:

• The most important property of a domain analysis model is that it models the

problem domain in the right way, i.e. choosing the right elements and claiming

the right statements. So, 6C goal Correctness is an essential quality aspect

that has to be considered when applying a model quality assurance process.

In our model, we included the relevant operational entities within the DNS

system from the perspective of authoritative domain managers. Those model

elements include the different operational layers and their components (i.e

Resource Records, Zones, Servers, networks, GeoLocations and Organisations).

We presume that each and every component in the model complies completely

with the specifications and operational guidelines of the DNS protocol.

• Since analysis models will be used for communicating with problem domain

experts who are typically experts in the operation and management of the
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DNS but inexperienced in modelling, it is also important that the model is

easily understandable. This implies that the model must not allow different

interpretation results. Our model does not have unnecessary information that

make it more complex. So, 6C goals Comprehensibility, Consistency, and

Confinement can be seen as essential quality aspects.

• Since the purpose of our model is to detect misconfiguration and bad deploy-

ment choices in the model instances from the perspective of domain admin-

istrators and zone managers, we include just the elements that represent the

main operational components within the DNS system from this perspective

and the relationships that reflect the various inter-dependencies within and

between these components. In this sense our model satisfies the 6C goal Com-

pleteness.

• Furthermore, since our model is simple and manageable, the model quality goal

Changeability is present and new models can be easily generated by applying

model transformation techniques on the initial model to improve/optimize

the quality attributes of the operational domain names system as defined in

Chapter 2.
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DNS Structural Metrics

Measurement plays a critical role in effective and efficient system development and

operation. Therefore, we need to be able to provide accurate information, recom-

mendations and guidelines to system designers and managers to help them make

informed decisions, plan and allocate resources for the different system configura-

tions and deployment layouts. To compute a metric on a given system, we need

to extract a model of the system. This model is extracted and stored based on

a meta-model that specifies the relevant entities and their relevant properties and

relations.

Throughout this chapter, we utilize a set of Structural Metrics defined over the

DNS Dependency Model as indicators of external quality attributes of the domain

name system. We apply some machine learning algorithms in order to construct

Prediction Models of the perceived quality attributes of the operational system out

of the structural metrics of the model and evaluate the accuracy of these models.

Assessing the quality attributes of the DNS at an early stage of the design/deploy-

ment should enable system administrators to avoid the implications of defective and
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low-quality designs and deployment choices and identify configuration changes that

might improve the availability, security, stability and resiliency postures of the DNS.

4.1 Definitions and Basic Concepts

A model structural metric or generally any measure is a homomorphism from an

empirical relational system to a numerical relational system; therefore, it is impera-

tive that measures be theoretically analysed within the framework of measurement

theory. We open this section with a set of general definitions on measurement, and

measurement related concepts. The definitions are based on [55]:

Definition 4.1. (Measurement) Measurement is defined as the process by which

numbers or symbols are assigned to attributes of entities in the real world in such

way as to describe them according to clearly defined rules.

This definition of measurement requires some explanations and several further def-

initions. The concepts used in this definition such as entity or attribute will be

defined next.

Definition 4.2. (Entity) We define an entity as the subject of the measurement

process. An entity might be an object within a model instance, or a system specifi-

cation or a phase of a project.

Definition 4.3. (Attribute) An attribute is a feature or property of the entity.

For example, an attribute of a server is its name or IP address, and an attribute

of a zone’s SOA Record may be its primary server name or the value of its expiry

parameter.

Informally, the assignment of numbers and symbols must preserve any intuitive and

empirical observations about the attributes and entities.
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4.2 DNS structural metrics

To the extent of our knowledge, only very few preliminary studies for defining suit-

able metrics to measure the quality attributes of the DNS system have been con-

ducted [56], [57], [58]. Even within these existing works, not much theoretical or

empirical evaluation of the proposed metrics has been done. An important step to-

wards improved quality assurance of the DNS is a precise quantification of its quality

attributes.

In this chapter, we pursues this line of argument by assessing the characteristics of

of the DNS based on a limited set of structural metrics of the DNS Dependency

Model. The significance of these metrics relies on a thorough empirical validation of

their connection with quality attributes. The main idea behind the design of these

metrics has been comprehensiveness and simplicity.

We tried to cover as many structural characteristics of the DNS model as possible.

To achieve this, metrics proposed in the areas of DNS management [7], [13], [59],

object-oriented software design [60], [61], [62], [63] software model design [64], [65]

and even business process models [66], [67], [68] have been considered.

In order to offer a systematic approach, we focused our research on four internal

characteristics that are essential to DNS interdependencies (i.e. size, structural

complexity, dependency and delegation/inheritance) and classified the metrics based

on these criteria.

4.2.1 Measures of Size

Applying size metrics at the system level we can get a good overview of the dimen-

sions of the system. Applying this category of metrics at the model component level
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we expect, on the one hand, to detect the servers, zones and organisations that play

an important role in the system design, and on the other hand, to find the name

servers and zones that introduce extremely large or complex dependency chains and

third party influence.

Table 4.1: DNS Model Structural Size Metrics.

No. Metric Symbol Explanation

1 Attack Surface AS(z) The set of all elements in the zone‚s depen-
dency graph.

2 Redundancy R(z) Minimum number of name servers that if
failed altogether will render the domains un-
der the zone(z) unresolvable.

3 Authoritative
Name Servers

NS(z) Total number of authoritative name servers
of the zone(z)

4 Number of
Zones

Zones(z) Total Number of Zones influencing the reso-
lution of domain names under zone(z).

5 Number of Orgs Org(z) Total number of organisations within the de-
pendency graph of zone(z).

6 In-Bailiwick
Servers

Is(z) Number of authoritative name servers with
names within the zone(z).

7 Out-Of-
Bailiwick
Servers

Os(z) Number of authoritative name servers with
names outside the zone(z).

The DNS Dependency Model has various levels of abstraction (e.g. system level,

zone/server level, resource record level) and size measures can be defined over the

system model for each level. At the system level a commonly used metric is the

Attack Surface (AS) or total number of elements within the system model. At a

lowest abstraction level, the number of zones can be indicative of the influence of

zones (direct and third party) on the resolution of domain under a particular zone.

4.2.2 Measures of Structural Complexity

Complexity metrics enable us to make a first assessment of the structural complexity

of the given system. One important necessity for DNS proper operation is careful
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coordination between zone administrators and system managers hosting the author-

itative name servers of the zone. Lack of such coordination can result in increased

risk of failure. The coordination spans both hierarchically (i.e., between parent and

child zones) and laterally, between organizations hosting each other’s zone data (i.e,

between name servers operators).

Structural complexity of the model is a reflection of the amount of coordination

needed to properly manage a certain zone. There are two metrics used to quantify

the structural complexity of a DNS zone. The first metric which measures the lat-

eral complexity of the zone is Administrative Complexity (AC) [7] which describes

the diversity of a zone, with respect to organizations administering its authoritative

servers. The second metric that measures the hierarchical complexity of the zone is

the Hierarchical Reduction Potential (HRP) [7], which quantifies how much the an-

cestry of a zone might be reasonably consolidated to reduce hierarchical complexity.

Table 4.2: DNS Model Structural Complexity Metrics.

No. Metric Symbol Explanation

8 Administrative
Complexity

AC(z) How many organizations can be involved in
managing the authoritative name servers of
the zone.

9 Hierarchy Re-
duction Poten-
tial

HRP(z) How much reduction in hierarchy complex-
ity that can be attained by consolidating the
zone records within the parent zone of z.

10 Network Diver-
sity

NetD(z) Number of distinguished networks’ Au-
tonomous System (AS) numbers which host
the authoritative name servers of the zone.

11 Geographical
Diversity

GeoD(z) Number of distinguished geographical loca-
tions (countries) which host the authoritative
name servers of the zone.

12 Controllability Co(z) Co(z) = Is(z)
I(z)+Os(z)
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4.2.3 Measures of Dependency/Influence

An analysis of the dependency paths in in the model instance (i.e. the Dependency

Graph) is necessary to determine the level of influence of other zones on the resolu-

tion of domain names under the zone in concern. Interesting metrics in this category

are the number of direct and third party zones and organisations that influence the

resolving of domain names. A cyclic zone dependency occurs when two or more

zones depend on each other in a circular way and the metric Dependency Cyles is a

measure of such configuration.

Table 4.3: DNS Model Structural Dependency/Influence Metrics.

No. Metric Symbol Explanation

13 Influencing
Zones

I(z) The set of all zones in the zone(z) depen-
dency graph.

14 Directly Config-
ured Zones

DCZ(z) The number of directly configured zones.

15 ThirdPartyZones TPZ(z) Number of zones influencing the resolution of
zone (z) not explicitly configured by zone(z)
administrator.

16 Directly Config-
ured Organisa-
tions(z)

DCO(z) Number of organisations managing zones
that are explicitly configured by the current
zone(z) administrator.

17 Third Party Or-
ganisations(z)

TPO(z) Number of organisations that manage zones
that are not explicitly configured by the cur-
rent zone(z) administrator.

18 Dependency Cy-
cles

Cycles(z) Number of dependency cycles along the name
servers query chains and forming cyclic query
paths.

4.2.4 Measures of Delegation and Inheritance

In the software engineering realm, the need to measure delegation and inheritance

structures is emphasized by many researchers [69], [70]. They suggest that the
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measurement should refer to the depth and the node density within the system

model. Within the DNS realm, resolution of domain names under a certain zone

z using the list of name servers configured for that zone, will follow any of the

query resolution paths defined by the names of those servers equally since they will

be selected, each with equal probability. However, its resolution remains entirely

dependent on its parent zone, Parent(z), regardless of which server in the name

server list is selected for query and how far such name server is located within the

system’s model instance.

Table 4.4: DNS Model Structural Delegation/Inheritance Metrics.

No. Metric Symbol Explanation

19 Depth D(z) How far the current zone from the ROOT or
how deep the zone in the DNS tree (Data
Plane).

20 Minimum Query
Path

MinQP(z) Number of name servers involved in the res-
olution of domain names of zone(z) through
the shortest query path.

21 Maximum
Query Path

MaxQP(z) Number of name servers involved in the res-
olution of domain names of zone(z) through
the longest query path.

22 Average Query
Path Length

AQP(z) Average number of name servers involved in
the resolution of domain names of zone(z)
through all query paths.

4.3 Interpretation Model

For the proper interpretation of each structural metric defined over the DNS model,

we give the metric definition, context, usability, how to measure , metric range and

a formula for computing that metric. The definition of a complex metric might rely

on one or more basic metrics. Detailed descriptions of complex metrics as well as a
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comprehensive list of basic metrics can be found in the corresponding interpretation

models in Appendix B.

Table 4.5 shows the interpretation model for the metric Administrative Complex-

ity [7]. In this section, we present the structural metrics defined over the DNS

Table 4.5: Interpretation of the Administrative Complexity Metric.

Metric Administrative Complexity.
Definition Describes the diversity of a zone with respect to the organisations

administering its authoritative name servers.
Context Zone
Usability The advantage of mutual hosting of zones between organizations is

an increased availability but at the same time increased potential
of failure and instability of the zone resolution process.

How to Mea-
sure

Count the number of servers managed by each distinguished orga-
nization within the set of authoritative name server of zone(z).

Metric Nota-
tion

Oz: set of organizations administering authoritative name servers
hosting zone (z); n: total number of authoritative name servers of
zone (z); NSo

z : the subset of name servers administered by organi-
zation o in Oz.

Range 0 ≥AC≥ 1

Formula Ac(z) =1-
∑o=n

o=1 (NSo
z

NSz
)n.

Dependency Model and computed on a model instance (Dependency Graph). Fig-

ure 4.1 shows part of simple Dependency Graph for the zone(NIC.AA). Based on

the interpretation model presented in Table 4.5, the Administrative Complexity met-

ric is calculated by counting the number of directly configured authoritative name

servers of the zone (z) that are managed by the same organisation and apply the

corresponding formula.

Ac(”NIC.AA”) =1-
∑4

o=1 (1
4
)4=0.984375.

The value of this metric is high since each authoritative name server of the zone is

managed by a totally different organisation so the amount of coordination (or lateral

complexity) needed for such a configuration is expected to be very high. Table 4.6
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Figure 4.1: Example of a DNS Model Instance (i.e. Dependency Graph) for
Zone(NIC.AA).

shows the values of structural metrics calculated over the model instance shown in

Figure 4.1.

4.4 Theoretical Background

Next we are going to identify the key mechanisms that are involved in the theoretical

definition and implementation of structural metrics of the DNS Dependency Model.

4.4.1 Key Mechanisms

In general, metrics fall into two big categories: group building and property com-

puting. The former category is mainly used for understanding a system while the
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Table 4.6: Values of Structural Metrics Calculated over the Model Instance
Shown in Figure 4.1.

Metric Value Metric Value

Size Metrics Dependency Metrics

AS(z) 9 I(z) 2
R(z) 3 DCZ(z) 2
NS(z) 4 TPZ(z) 0
Zones(z) 2 DCO(z) 4
Org(z) 4 TPO(z) 0
Is(z) 4 Cycles(z) 3
Os(z) 0

Complexity Metrics Inheritance Metrics

Ac(z) 0.98 D(z) 3
HRP(z) 0.5 MaxQP(z) 3
NetD(z) 4 MinQP(z) 3
GeoD(z) 3 AQP(z) 3
Co(z) 1

latter is used for the assessment of the system. The implementation of each of these

requires a particular set of key mechanisms [71].

Group Building Analyses construct collections of model entities that are associated

by a particular rule with the analysed entity. Building a group for a model entity

requires a set of four elementary mechanisms:

• Navigation. All, except trivial metrics, are based on multiple entities so it is

necessary to be able to browse through the model, going from the analysed

entity to a related entity (e.g., from a zone to its parent zone) or to a group

of related entities from the model (e.g., from a zone to the group of its name

servers).

• Selection. Every model entity is described by various attributes but only some

of these are of interest in the context of a particular analysis. Therefore,

selection mechanism should enable the definition of a "view of interest" by
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choosing only a subset of an entity’s attributes (e.g., the IP address of an

(anycast) name server from the perspective of the system administrator).

• Set Arithmetic. Groups of entities are after all built by means of set arithmetic.

The most used set operations in analyses are: the addition of an entity to a

group and the union of two or more groups. The Administrative Complexity

formula shown in Table 4.5 is an example of a structural metric calculated

using some set arithmetic operations.

• Filtering. An essential mechanism for building a group with a particular prop-

erty is applying some filtering conditions to an initial larger group. For exam-

ple, getting the group of name servers that has their names in a certain zone

(In-bailiwick servers, Is(z)) requires first a navigation to the group of name

servers associated with a certain zone and then it requires also a filtering op-

eration that builds a new group that keeps only the name server who has its

name in that particular zone.

Property Computing Analyses associate a new, non-elementary, property to an en-

tity. Usually, computing a property is preceded by the construction of an appropriate

product between two sets is also needed. For example getting all the zones that in-

fluence the resolution of domains under another zone is needed in the context of

resolution dependency (influence) metrics group. Thus, we may say that in most of

the cases property computing analyses imply a group building analysis. Therefore,

all key mechanisms identified before are, in principle, needed for a property com-

puting analysis. Additionally, in order to compute a property, usually a numeric or

boolean value computed from a group associated with the entity, we need a fifth

mechanism:

• Property Aggregation. This mechanism allows us to compute and associate a

single value for a group, a value which is aggregated from the values of each
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part of the group. Probably the most simple property aggregation is to get

the cardinality of a group (used in the computation of most metrics). De-

pending on the type of properties of the entities belonging to the group more

such aggregations can be imagined (e.g., sum or average for numerical prop-

erties, logical AND for booleans). An example of such property aggregation is

computing the Average Query Path, AQP(z) for a zone.

4.4.2 Measurements Frameworks

The DISTANCE measurement framework [72] proposes a set of mandatory proper-

ties, i.e., non-negativity, identity, symmetry, and triangular inequality that need to

be satisfied by any metric in order for it to be considered an acceptable measurement-

theoretic metric. On the other hand, the Property-Based Measurement framework

[73] provides a set of desirable properties for different metric types: size (non-

negativity, null value, additivity), length (non-negativity, null value, identity, mono-

tonicity), and complexity (non-negativity, identity, symmetry, additivity, monotonic-

ity) and recommends that these properties are satisfied as much as possible.

We investigate to what extent our proposed metrics are able to respect these proper-

ties in light of the DISTANCE framework. All of the introduced metrics respect the

four mandatory properties required by the DISTANCE framework to form a valid

metric space. Therefore, the important consequence of satisfying these four proper-

ties is that all of our proposed metrics are theoretically valid DNS model structural

metrics. The set of metrics also satisfy most of the recommended and desirable

features based on the property-based framework.
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4.5 Predictive Models

Predictive models [74] are created to best predict the probability of an outcome

based on some prior observations. In the following sections, we apply some ma-

chine learning algorithms in order to construct Prediction Models of the perceived

quality attributes of the operational system out of the structural metrics of the DNS

model. Assessing these quality attributes at an early stage of the design/deployment

enables us to avoid the implications of defective and low-quality designs and deploy-

ment choices and identify configuration changes that might improve the availability,

security, stability and resiliency postures of the DNS.

The predictive models are built based on the methodology outlined in Figure 4.2.

These models take the structural metrics of a DNS model instance as input and try

to find the most relevant value of the quality attribute for the given model.

The DNS quality prediction models are developed based on the following machine

learning techniques [75]:

• Random Forest (RF): Random forests or random decision forests are an ensem-

ble learning method for classification, regression and other tasks, that operate

by constructing a multitude of decision trees at training time and outputting

the class that is the mode of the classes (classification) or mean prediction

(regression) of the individual trees.

• Simple Logistic Regression (SLR): SLR is a binary logistic model which is used

to estimate the probability of a binary response based on one or more predictor

(or independent) variables (features).

• Locally Weighted Learning (LWL): Locally Weighted Learning is a class of

function approximation techniques, where a prediction is done by using an

approximated local model around the current point of interest.
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• Pruning rule based classification tree (PART) A Rule-based classifier that

makes use of a set of IF-THEN rules for classification. The pruning mech-

anism’s efficiency determines the size and accuracy of the final model.

These machine learning techniques are commonly used in the domain of software

engineering for tasks such as software quality analysis and effort prediction. The

models take the structural metrics of a DNS model instance as input and try to find

the most relevant value of the quality attribute for the given model.

We employ the Waikato Environment for Knowledge Analysis (WEKA) [76], which is

a widely used suite of machine learning techniques, to train and test our predictive

models. We use two totally independent datasets. One set is used to train the

models and build the prediction models and the other is used to test the developed

model. For each of the four quality attributes, one instance of each of the mentioned

predictive models is developed (4 model types and 4 characteristics = 16 predictive

models).

In order to evaluate the accuracy of the developed predictive models, we employ two

strategies, namely the percentage of correctly classified instances within the test

dataset and the area under the receiver operating characteristic (ROC), or ROC

curve. ROC Curve is a graphical plot that illustrates the performance of a binary

classifier system as its discrimination threshold is varied. The curve is created by

plotting the true positive rate (TPR) against the false positive rate (FPR) at various

threshold settings.

4.6 Experimental Assessment

The purpose of this study is to identify any significant relationship between a set of

structural metrics defined over a DNS model and the subjective perception of domain
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Figure 4.2: Methodology of Building DNS Quality Prediction Models

experts of the DNS quality attributes. Another purpose of the study is to evaluate

how well different prediction models based on the proposed structural metrics can

perform in assessing the perceived quality attributes of the system. These objectives

will be achieved by conducting a controlled experimentation and employing a set of

statistical analysis techniques.

4.6.1 Hypotheses

• H1: Correlations exists between a set of DNS dependency model structural

measures and a set of perceived quality attributes of the DNS.

• H2: Prediction models built based on the proposed structural metrics of the

DNS Model are accurate and effective in predicting the quality attributes of

the DNS system.
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4.6.2 Variables

In order to proceed with the experiment, the defined hypotheses need to be mapped

onto a set of measurable independent and dependent variables. An independent

variable is the variable that is changed or controlled in a scientific experiment to

test the effects on the dependent variable. These variables are evaluated in the

experiment and will be used in the analysis phase.

Independent Variables: Representative set of eleven structural metrics defined over

the DNS model as shown in Table 4.7. We selected the eleven metrics out of the

DNS Metrics Suite with representative metrics from each category.

Table 4.7: List of Structural Metrics Used in the Empirical Assessment.

Number Measure Symbol
1 Attack Surface AS
2 Number of Name servers ANS
3 Network Diversity NETD
4 Geographical Diversity GEOD
5 Redundancy RED
6 Administrative Complexity AC
7 Average Query Path AQP
8 Direct Zones DCZ
9 Third Party Zones TPZ
10 Directly Configured Organizations DCO
11 Third Party Organizations TPO

To get metrics measurements, we used 10 different model instance of the DNS model

and measured those metrics on each of them. We don’t have a pre-defined store of

such models and have to build them using our DG-Builder tool. We also built

the dependency graphs for 15 Top-Level-Domains (TLDs) that are managed by

the participants of our experiment. This group of TLDs has a diverse range of

dependency graphs from small and compacted ones to large and widely spread ones.
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Dependent Variables: Four external quality attributes of the DNS system (i.e. avail-

ability, security, stability and resiliency) are considered to be the dependent vari-

ables.

4.6.3 Collection of Data

The subjective opinions of the participants about the quality attributes of the DNS

system were collected using an online questionnaire. During the period of the survey,

the participants had the opportunity to ask questions to the experimenter. The

questionnaire consisted of 45 questions divided in 3 sections as follows:

1. Each participant was asked to answer about 10 general questions related to

their experience with the DNS system as well as the TLD they are responsible

for.

2. Then, the participant was asked to evaluate the perceived quality attributes

of a set of 9 dependency graphs presented as instances of the DNS model.

3. Finally, the participants were asked to assess the quality attributes of the TLDs

under their own management.

The questions assess the quality attributes of the DNS model by asking the par-

ticipants to select one of the five linguistic values shown in Table 4.8. The survey

included instructions, background information, tips and hints for each question.

Table 4.8: Linguistic Values used for the subjective evaluation of DNS qualities.

Very Low Low Medium High Very High
(1) (2) (3) (4) (5)
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4.6.4 Participants

The participants were all TLD administrators responsible for managing one or more

top-level domains. They were from different geographical locations with 5 from the

Middle East, 3 from Europe, 1 from the Americas, 4 from the Asia Pacific region and

2 from Africa. Those administrators have a good range of DNS experience ranging

from 3 to 10 years of experience.

The TLDs managed by those administrators have various number of registered do-

main names ranges from a couple of thousand up to millions of domain names.

Figures in Table 4.9 show the geographical distribution of the participants, their

experience with the DNS system and the number of domain names registered under

their TLDs.

It is clear that the set of participants are representative of a good spectrum of DNS

operators around the world and their views can be effectively used in our experiment.

In order to establish the extent of consensus among the subjective opinions pro-

vided by the participants, we perform an inter-rater reliability analysis. We employ

an intra-class correlation (ICC) [77] which is used to assess the consistency, or con-

formity, of measurements made by multiple observers measuring the same quantity.

Table 4.10 reports the results of this statistical test based on a two way random

effects model with a confidence interval of 95%.

As seen in this table, the single measure reliability of the four quality attributes is

higher than 0.67, which shows that a reasonable agreement between the participants

exists in terms of the perceived values for these attributes for each of the objects of

the study.
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Table 4.10: Intra-Class Correlation (ICC).

Quality Attribute ICC Single Measure
Availability 0.705
Security 0.712
Stability 0.709
Resiliency 0.68

4.6.5 Metric-Quality Correlation Analysis

In this section we will evaluate the first hypothesis which states that a meaningful

correlation can be found between a set of DNS model structural measures and a set

of quality attributes of the DNS system (H1).

In order to test this hypothesis we asked the participants to key in their views

regarding the perceived quality attributes of a set of 9 DNS Dependency Model

instances (i.e. Dependency Graphs). The models varied in terms of their metric

values as shown in Table 4.11. The empirical data that were collected are also

quantitatively reasonable from the perspective of the amount of data. We obtained

540 data points from the subjective opinions of the participants regarding the models

(9 dependency models, 15 participants, 4 quality attributes).

Table 4.11: Measurements of Metrics on the 9 DNS Model Instances.

Model AS ANS NETD GEOD Red AC AQP DCZ TPZ DCO TPO
M-1 34 3 3 1 3 0.89 4 3 5 3 6
M-2 21 4 4 1 4 0.98 3 4 4 4 3
M-3 13 4 4 1 4 0.84 2 2 0 4 1
M-4 10 4 1 4 4 0.43 2 2 0 1 1
M-5 19 3 2 1 3 0.44 4 4 1 2 3
M-6 10 4 4 4 4 0.5 2 1 1 4 0
M-7 15 6 2 2 2 0.89 2 2 0 2 1
M-8 16 2 1 1 2 0.5 2 4 1 1 2
M-9 21 8 8 8 8 0.84 2 2 0 8 1

The metric-quality correlation analysis shows that some of the metrics are in fact

correlated to certain quality attributes with various coefficients. The technique that
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we explore is the use of Spearman’s Rho correlation, namely to identify relation-

ship between the measured metrics of the models and the four quality attributes.

Spearman’s Rho correlation coefficient is a statistical measure of the strength of a

monotonic relationship between paired data and its value ranges from -1 to 1.

Table 4.12: Metric-Quality correlations (Spearman’s Rho).

Metrics Availability Security Stability Resiliency
AS -.819* -.685* -.757* 0.33
ANS 0.258 -0.079 -0.01 0.02
NETD 0.037 -0.273 -0.027 .666*
GEOD -0.056 -0.302 -0.086 .777*
TPZ -.828* -.703* -.743* 0.248
AQP 0.109 -0.011 -0.004 -0.129
RED 0.02 -0.252 0.127 0.185
AC 0.05 -0.177 0.094 -.536*
DCZ -0.276 -0.479 -0.355 .685*
DCO 0.105 -0.225 0.045 .698*
TPO -.768* -.609* -.739* 0.156
∗. Correlation is significant at the 0.05 level (2-tailed).

According to Spearman’s correlation, a correlation with a significance value greater

than 0.50 can be considered to be significant, and therefore, in our work, such

correlations are considered to be meaningful and are marked as shown in Table 4.12.

As it can be seen, significant correlations can be found between some of the metrics

and the four DNS quality attributes. This shows that the structural metrics defined

for a DNS model can be used as early indicators for external quality attributes of

the DNS. In addition, the correlations can be explained by the following two points:

• Metrics that reflect third party influence (as a result of peering with exter-

nal organizations for secondary server hosting and placing servers under third

party zones) such as AS, TPO and TPZ has clear negative impact on the avail-

ability, security and stability of the DNS. Choosing servers with names under

other zones (increasing third party zones) provides zone redundancy but may
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incur security and stability threats to the zone due to increasing the Attack

Surface (AS) metric of the model.

DNS administrators should try to avoid such practice by reducing the size of

their dependency graph (AS metric) by placing authoritative name servers for

a certain zone under the same zone.

• Physically distributing the servers (geographical and network wise diversity

metrics) ensures a certain degree of resistance against different types of failures

and subsequently have positive impact on the resiliency of the whole system.

Resiliency of the DNS is positively correlated with those metrics that are

directly configured by the system administrator such as (GeoD, NetD, AC,

DCZ and DCO).

DNS administrators have to pay more attention regarding the deployment of

their servers geographically and from a network distribution prospective. Also

coordination with peer hosting organisations is vital in case of failures and

the necessity to reduce this metric and consequently reduce zone complexity

is clear to guarantee a higher level of resiliency of the system.

4.6.6 Prediction Models

In this section, we will apply some machine learning algorithms in order to construct

prediction models of the quality attributes of the DNS system out of the structural

metrics of the dependency model and evaluate the accuracy of these models (H2).

We used the measured structural metrics of the 9 models with the perceived quality

attributes as keyed in by the participants as the training dataset for the prediction

models. As far as the test dataset is concerned, we constructed the Dependency

Graphs of the 15 participants’ TLDs using our DGBuilder tool and then measured

the various structural metrics on these models. We combined this data with the
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perceived quality attributes from the participants concerning their own TLDs to

construct the test dataset. The two data sets used in this experiment are totally

independent and they can be effectively used to train the models and test their

performance.

Table 4.13: Performance of the Predictive Models in terms of the correctly
classified instances out of the test dataset.

Classifier Name Availability Security Stability Resiliency
RF 73% 47% 53% 40%
LWL 53% 53% 67% 33%
SL 7% 53% 20% 27%
PART 20% 73% 20% 73%

Figures from Figure 4.3 to Figure 4.6 show the different parameters used to evalu-

ate the performance of the different prediction models on the test dataset. Model

accuracy is measured by the area under the ROC curve. An area of 1 represents a

perfect test; an area of 0.5 represents a worthless test. Table 6 shows the percentage

of correctly classified instances using each of the predictive models and Figure 5

shows the performance of the predictive models in terms of the area under the ROC

curve and other useful model performance indicators.

The results of applying the evaluation strategies on the produced models indicate

that the RF classifier outperformed other classifiers in producing the best predic-

tion model for the DNS availability, while LWL is the best for stability. PART

outperformed other classifiers in predicting the quality attributes of security and

resiliency.

4.6.7 Threats to Validity

Empirical evaluation is always subject to different threats that can influence the

validity of the results. We will specifically refer to the aspects of our experiment

71



Chapter 4. DNS Structural Metrics

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TP Rate FP Rate Precision recall F-Measure ROC Area PRC Area

(a) Availability

RandomForest LWL SimpleLogistic PART

Figure 4.3: Availability Prediction Models and their Performance Indicators.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

TP Rate FP Rate Precision F-Measure ROC Area

(b) Security

RandomForest LWL SimpleLogistic PART
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that may have been affected by these threats.

Conclusion Validity: In our experiment, a limited number of data points were
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collected due to the limited number of participants amongst the DNS operators.

In addition, there were almost no models at our disposal and we have to build
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customized models using our DGBuilder tool. These limitations may pose threats

to the drawn conclusions.

Construct Validity: The dependent variables which are the four quality attributes

of the DNS model were measured using the subjective opinion of the participants.

The threat posed by using subjective measurement mechanisms is that different

participants may have different attitudes toward the evaluation of these attributes.

In general, the participants of this experiment have a considerable number of years

of experience within the DNS administration and their subjective views does capture

what we claim to measure. It should also be noted that the used set of metrics may

not be comprehensive and other consecutive research could further complete this

proposed set by defining new metrics from other perspectives.

Internal Validity: Each of the dependency models represented different DNS sys-

tem configuration and deployment structure. However, the models were simple

enough to be understandable by the participants and they were given enough time

(2 weeks) to become familiar with the concepts, structure and components of each

model. The use of the 5-point Likert scale could have impacted the internal validity

of the experiment due to the discrete nature of this ordinal scale in capturing the

participants’ views.

External Validity: The following two issues were considered for external validity:

• the models used in the experiment are representative of wide range of real-

world operational configurations and deployment choices.

• We needed participants with high level of industrial experience to be able to

complete the experiment and the target group of TLD operators did the job

perfectly.
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Another threat to validity may be related to the tools that were used; however, since

the tools were used to build the models and extract the metrics; we believe that it

possibly affected all of the model measurements in the same way.

4.6.8 Discussion

In our assessment experiment, we used a Likert scale to key in the perceived quality

attributes of the models. We can consider them to be measurements on a quanti-

tative scale, since they represent different levels of perceived qualities. Likert scales

contain multiple items and can be taken to be ordinal scales so descriptive statistics

can be applied, as well as correlation analyses, factor analyses, analysis of variance

procedures, etc. (if all other design conditions and assumptions are met). Any

means and standard deviations obtained from rating data (such as the Likert Scale)

are perfectly valid as descriptions of participants’ behaviour, i.e. how participants

responded when faced with a question and asked to pick a response [78].

In supervised classification problems with ordered classes, it is common to assess the

performance of the classifier using measures more appropriate for nominal classes,

regression problems or preference learning [79, 80]. Baccianella [79] addresses the

adaptation of existing measures (Mean Absolute Error) to unbalanced data, while

Gaudette [80] compares existing measures concluding that Mean Absolute Error and

Mean Square Error are the best performance metrics. Other strategies encompass

the use of rank order measures [81, 82] or the adaptation of the ROC curve [83].

As it can be seen from Figure 4.3 to Figure 4.6, the Mean Absolute Error (MAE)

is in the worst case less than 0.4 out of 5. We can find an upper and lower bound

on the accuracy of the predictive models. Since the values of the quality attributes

to be predicted are natural numbers from 1 to 5, the error of around 0.4 can either

be rounded up to 1 for the worst case, or considered as is for the best case. If we
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consider the worst case, the accuracy of the predictive models will be 5−1
5

= 80%;

however, for the best case, this is equivalent to (5−0.4)
5

= 92.5% accuracy for the

predictive model.

Even for the worst case, the accuracy rate of the predictive models is quite high

and supports our hypothesis that acceptable predictive models can be built from

structural metrics of the DNS model in order to predict the DNS quality attributes

of availability, security, stability and resiliency.

However, the application of these measures (MAE) faces some difficulties in the

context of ordinal classification [84]. This will be investigated more in future work

in order to apply a better evaluation parameter for the prediction models.

The Ordinal Classification Index (OCI) proposed in [84] will be used since it captures

how much the result diverges from the ideal prediction and how "inconsistent" the

classifier is in regard to the relative order of the classes. This metric is defined

directly on the Confusion Matrix (CM) specifically to evaluate the performance in

ordinal data classification.

4.6.9 Conclusions

Our findings demonstrate the potential of the proposed DNS Model structural met-

rics to serve as validated predictors of the operational system quality. This work

has implications both for research and practice. The strength of the correlation of

structural metrics with different quality aspects clearly shows the potential of these

metrics to accurately capture aspects that are closely connected with actual usage.

From a practical perspective, these structural metrics can provide valuable guidance

for the DNS system managers and zone administrators, in adjusting their configu-

rations and deployment layout to improve the quality attributes of their systems.
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The ISDR Method

During the past thirty years the Domain Name System (DNS) has sustained phe-

nomenal growth while maintaining satisfactory user-level performance. However,

the original design focused mainly on system robustness against physical failures,

and neglected the impact of operational errors such as misconfigurations and bad

deployment choices. Although DNS troubleshooting techniques and problem iden-

tification methods have been proposed and several tools have been built, most of

these methods and tools apply their detection techniques directly on the zone files

through a predefined zone schema and integrity constraints. They don’t take into

account the inter-dependencies stemming from the hierarchical nature of the DNS

or the zone administrators practices.

Instead, we propose a model-based approach that subsumes all the steps necessary

to identify, specify and detect the DNS operational bad smells. We utilize depen-

dency graphs (as instance of the DNS Dependency Model) to identify, detect and

catalogue operational bad smells. Our method deals with smells on a high-level of

abstraction using a consistent taxonomy and reusable vocabulary, defined by the

DNS Model. The method is used to build a diagnostic DNS quality advisory tool
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that detects configuration changes that might decrease the robustness or security

posture of domain names before they become into production.

5.1 Bad Smells

In software engineering, bad smells in code [85] identify risks to quality attributes

of a software system. Code "bad" smells, a term originally coined by Kent Beck

in [86] to refer to "a code smell is a surface indication that usually corresponds to

a deeper problem in the system". The concept of code smells has been proposed

to characterize different types of design shortcomings in code. Additionally, metric-

based detection algorithms claim to identify the "smelly" components automatically.

They are widely used for detecting refactoring opportunities in software [46]. Some

studies [87], [88] have also used the historical data to identify the spots, where

programmers have made changes or refactorings to the software.

Joshua Garcia et. al [89], introduced the concept of architectural "bad smells",

which are frequently recurring software designs that can have non-obvious and sig-

nificant detrimental effects on system life cycle properties, such as understandability,

testability, extensibility, and re-usability. They define architectural smells and dif-

ferentiate them from related concepts, such as architectural anti-patterns and code

smells.

We transfer these ideas to the realm of the DNS, where operational bad smells are

defined as configuration and deployment choices by zone administrators that are not

errant or technically incorrect, and do not currently prevent the system from doing

its designated functionality. Instead, they indicate weaknesses that may impose

additional overhead on DNS queries, or increase the system vulnerability to threats,
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or increase the risk of failures in the future. Despite its tremendous success, DNS is

not without weakness.

The critical importance of the DNS places a high standard on its resilience and

its design warrants further examination, as evidenced by the following example.

During January 2001 all the authoritative servers for the Microsoft DNS domain

became inaccessible [2]. This failure was due to a simple configuration mistake

where Microsoft placed all its DNS servers behind the same network router, despite

the well documented guidelines on geographically dispersing DNS servers [9], and

the switch failed. During this event, the number of DNS queries for the Microsoft

domain seen at the F root server surged from the normal 0.003% of all the queries

to over 25%. Other root servers had similar increase of queries for the Microsoft

(microsoft.com) domain.

Typical DNS smells have to do with redundancies, ambiguities, inconsistencies, in-

completeness, non-adherence to DNS design conventions, best practices or standards,

and so on. The challenge is to come up with a comprehensive and commonly ac-

cepted list of DNS operational smells, as well as tool support to detect such smells.

What is also needed is a good understanding of the relation between those smells

and correction mechanisms (in the form of graph-based refactorings), in order to be

able to suggest, for any given smell, appropriate refactorings that can remove this

smell.

5.2 The ISDR Method

The ISDR (Identification, Specification, Detection and Refactoring) method pro-

posed throughout this chapter is composed of four stages as shown in Figure 5.1 and
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produces the DNS operational bad smells and refactoring catalogues. The following

items summarise these four stages:

• Identification, through domain analysis using DNS standards in the form of

Request for Comments (RFCs), best practices and policy documents, literature

review and DNS expert views.

• Specification of a set of operational bad smells using a reusable vocabulary

and classification of the bad smells in a taxonomy that shows the scope of

the inspection element or plane and system’s external qualities affected by the

smell.

• Detection of bad smells in the form of general detection queries, procedures

and formulas.

• Refactoring as a correction mechanism to the operational bad smells in the

form of graph-based model transformations. Other correction mechanisms

may be formulated in the form of reports or reconfiguration recommendations.

In the following subsections, we elaborate on each step of the ISDR method more

with clarifying examples and validate the method using case studies.

5.2.1 Bad Smells Identification

The first stage in our method consists of performing deep analysis of the DNS stan-

dards, Request for Comments (RFCs), best practices and policy documents to iden-

tify weaknesses in configuration and deployment choices made by administrators

that may impose additional overhead on DNS queries, or increase the system vul-

nerability to threats, or increase the risk of cascaded failures. In the following, we

show, through several examples, how this step has been used to extract smells along
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Figure 5.1: The ISDR Method.

with quality attributes that may be affected by the presence of such misconfigura-

tion or bad deployment and how to detect the occurrence of such smell in the zone’s

dependency graph.
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1. When a parent zone P delegates part of its name space to a child zone C,

P stores a list of NS resource records for the authoritative servers of zone

C. This list of NS resource records are kept both at the parent and the

child zone. Whenever the operator of zone C makes changes to one or more

of C ′s authoritative servers, he must coordinate with the operator for zone

P to update P accordingly. In reality, there are cases where changes made

at the child zone are not reflected at the parent zone, usually due to "bad"

coordination between them. As a consequence, the NS RR set of the child

zone can be completely different from the NS RR set of the parent zone.

Even though the parent and the child zone are not required to list the same

NS RR set (due to DNS specifications’ ambiguity in this regard), delegation

inconsistency can affect the availability and stability of the zone.

2. When name servers are selected as secondary name servers for a zone, they

should be placed in a topologically resilient manner. If more than one name

server is on the same physical subnet, then any outages on that subnet would

affect all of the name servers on it; as such, the recommendation is that name

servers be allocated on distinct physical subnets and distinct geographical loca-

tions. It’s important when picking geographical locations for secondary name

servers to minimize latency as well as increase reliability.

3. The DNS system relies heavily on replication (based on zone file transfers)

to achieve its reliability goals, but this form of replication typically requires

cooperation and coordination with other DNS administrators and hosting or-

ganisations including parent zone managers. Such coordination is essential

to the stable and resilient operation of the DNS and the ability for a quick

recovery from system failures.

4. Distributed management is crucial in achieving DNS’s scalability, however it

also leads to inconsistencies due to mistakes in coordinating zone configurations
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and changes. While human induced configuration errors are a well-known

fact, DNS delegation configurations require consistency across administrative

boundaries, a condition that is even more prone to errors. Unfortunately

the current system does not provide any automated means to communicate

for coordination. Today configurations are communicated manually, and this

process is highly subject to errors.

Table 5.1 shows examples of design rules, best practices and operational recom-

mendations within the different DNS operational planes that are being used in the

identification stage of the ISDR method.

Table 5.1: Identification of Bad Smells in the DNS Planes

No. Design Rule/Best Practice Reference Effects On Qual-
ity

Bad Smell(s)

Data Plane

1 SOA records with various timers
have been set (far) too low or
(far) too high. Especially for top
level domain name servers. This
causes unnecessary traffic over in-
ternational and intercontinental
links.

RFC1537 Availability, se-
curity and sta-
bility

Zone Thrush
and Zone
Drift

Control Plane

2 It is required to have at least two
nameservers for every domain,
though more is preferred with sec-
ondary servers topologically and
geographically dispersed.

RFC1912,
2182

Availability, se-
curity, stability
and resilience

LowANS,False
or Diminished
redundancy

Management Plane

3 The trust relationships involved
in zone transfer are still very
much a hop-by-hop matter of
name server operators trust-
ing other name server operators
rather than an end-to-end.

RFC3833 Security and
availability

Betrayal
By Trusted
Server
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5.2.2 Formal Specifications

The weaknesses identified in the previous step, termed as operational bad smells, are

then defined using certain key terms, unified vocabulary and reusable concepts in this

domain. Providing the bad smells in a flat structure without defining any categories

or relationships among the smells hinders their formal specification, comparison, and,

consequently, detection. Key concepts are identified in the text-based descriptions

of smells in the literature. They form a unified vocabulary of reusable concepts

to describe smells. The concepts, which constitute a vocabulary, are combined to

specify smells systematically and consistently. In addition to a unified vocabulary

of reusable concepts, a taxonomy and classification of smells are defined using the

key concepts.

According to Cambridge dictionary, a taxonomy is "A system for naming and orga-

nizing things [. . . ] into groups which share similar qualities". Some taxonomies,

such as the taxonomic organisation of species in a biological context, are hierarchical,

but this is not a prerequisite. The taxonomy highlights and charts the similarities

and differences among smells and their key concepts. We developed a taxonomy

that describes the structural relationships between the various bad smells. The tax-

onomy has an important role in defining the scope of inspection and highlighting

the metrics or structural properties related to the bad smell. It classifies the bad

smells based on the following categories:

1. Operational plane: Data, control and management planes.

2. Affected entity types: Single type, inter-type, intra-type, or inter-zone.

3. Property of the smell: Lexical, structural or measurable.
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We distinguish bad smells occurring in and among resource records within zones

(single type, inter-type, intra-type and intra-zone). We further divide those sub-

categories into structural, lexical, and measurable smells. This division helps in

identifying appropriate detection techniques. For example, the detection of a struc-

tural smell may essentially be based on static analyses of the model instance; the

detection of a lexical smell may rely on best practices or guidelines recommendations

analysis; the detection of a measurable smell may use metrics. Our classification is

generic and may classify smells in more than one category (e.g., Corrupted Parent).

Figure 5.2 shows a graphical representation of the DNS operational bad smells tax-

onomy. The taxonomy is generic and defines a bad smell in more than one category.

It can easily be extended by defining new categories of bad smells based on subse-

quent iterations of the DNS operational domain analysis. So far we have already

identified 19 bad smells that can be used as a representative set that spans the dif-

ferent operational planes with various detection properties. Since several smells are

closely related and the number of the smells is quite high, we feel that this taxonomy,

which categorizes similar bad smells, is beneficial. We believe that the taxonomy

makes the smells more understandable and recognizes the relationships between the

smells.

5.2.3 Detection

One can develop a set of simple mechanisms to detect some of the lurking errors

identified in the zone configuration and deployment choices of the DNS. Delegation

inconsistency and lame delegation errors can be detected by a simple process between

parent and child zones to periodically check the consistency of the NS records stored

at each place. Cyclic zone dependency can be detected via automatic checking by

trying to resolve a name through each of the authoritative servers in the zone.
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Figure 5.2: Bad Smells Taxonomy.

Although there may not be a single check to detect the diminished server redundancy

problem, automatic periodic measurement between servers of the same zone on their

IP address distance, geographical distance and hop count distance can effectively

reflect the diversity degree in their placement. These simple checks are absent from

the original DNS design, not because they are difficult to do but a lack of appreciation
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of the severity of human-introduced errors.

In order to be able to detect bad smells occurring in model instances of our DNS

Model, we need to capture deviations of the particular instance model from the good

and recommended operational best practices. Lexical and structural properties are

used to detect some of the bad smells using direct queries on the instance model

such as (Are there any cycles in the dependency graph?).

The metric-based approach combines a set of metrics and set operators to compare

them against absolute or relative threshold values. Setting the absolute or rela-

tive operational metrics threshold values can be done using local policy constraints

or best practices from the wider DNS domain literature and expert views. In the

context of metrics-based analysis techniques, the DNS Structural Metrics Suite de-

fined over the DNS Model and presented in Chapter 4 is a valuable tool that is

being utilised in detecting the presence of measurable bad smells in the DNS model

instance.

5.2.4 Refactoring

In the area of object-oriented programming, refactoring [90] is the technique of choice

for improving the structure of existing code without changing its external behaviour.

Graph-based, general refactoring rules [91] are being suggested to remove the bad

smells identified and detected in the previous stages. The general approach of refac-

toring [46] is to include the following steps: (1) identify the location for refactoring,

(2) determine which refactoring rules should be applied and on what sequence, (3)

guarantee that refactoring rules are preserving the external behaviour of the system,

(4) application of selected refactoring rules, (5) assess the effect of refactoring on the

system’s external qualities and (6) maintain the consistency between the refactored

elements and other system artefacts.
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5.2.5 Bad Smells’ Quality Impacts

In the DNS realm, operational bad smells are configuration and deployment choices,

made by zone administrators that are not totally errant or technically incorrect, and

do not currently prevent the system from doing its designated functionality. Instead,

they indicate weaknesses that may impose additional overhead on DNS queries, or

increase the system vulnerability to threats, or increase the risk of failures in the

future. For example, best practices for ensuring availability and security of the DNS

Table 5.2: DNS Operational Bad Smells

No Bad Smell Quality Impacts
Availability Security Stability Resiliency

1 Unnecessary RRs (Informa-
tion Leakage)

X

2 Large Parameter Value
(Zone Thrush)

X X X

3 Small Parameter Value
(Zone Drift)

X X X

4 Ill-Formed RRs X
5 Missing RRs X X
6 Incorrect Parameter Data X X
7 Ambiguous Data X X
8 Small Number of ANSs X X X
9 Invalid Trust Anchor X
10 Untrusted-Peer Organisa-

tion
X X X

11 Large Attack Surface X X X X
12 Excessive Zone Influence X X
13 False Redundancy X X
14 Diminished Redundancy X X
15 High Zone Complexity X X
16 Cyclic Dependency X X
17 Non-Optimal Query Path X X
18 Delegation Inconcsistency X X

infrastructure recommend (1) defining a number of name servers for each domain,

(2) configuring these name servers under at least two different parent domains and
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(3) placing the physical name servers, hosting the zone files for the domain, in

separate networks. The redundancy provides for stability of the domain and prevents

single point of failure. In particular, if one of the parent domains is not accessible,

the domain will remain functional via the other parent domain; in case one of the

networks, hosting the name servers, is under attack, the other name server, located

in available networks, can be reached.

On the flip side, while ensuring availability, this redundancy introduces new depen-

dencies which can be utilised to attack the domain. Specifically, if vulnerability

exists in a network or a name server hosting the domain, it can be exploited to

attack the domain, e.g., inject spoofed DNS record for domain hijacking. Through

an extensive literature review, we found that the presence of operational bad smells

have direct impact on the external qualities of the domain name system and Ta-

ble 5.2 shows the quality impacts resulted from the presence of the various already

identified bad smells.

5.2.6 Bad Smells Catalogue

The set of identified bad smells is being formally specified in concise and reusable

terms based on a template that includes the bad smell name, type, inspection

plane(s), description, occurrences, quality impacts and detection strategies. The

bad smells catalogue is being expanded further by including refactoring rules for

each smell and how these rules have to be applied on the model instance to elim-

inate the concerned bad smell. Example of catalogue entry is shown in Table 5.3

while the complete catalogue is listed in Appendix C.
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Table 5.3: Catalogue Entry for the Cyclic Dependency Bad Smell.

Name Cyclic Dependency.
Type Intra-Zone, Structural.
Inspection
Planes

Data and Control Planes.

Occurrences Cyclic zone dependency occurs when two or more
zones depend on each other in a circular way.

Quality Impacts Reduced availability and reduced resiliency.
Detection Strat-
egy

Is there any cycle in the Dependency Graph?
(Query on the DNS Operational Model Instance).

Correction
Mechanism
(Refactoring)

Add a glue record for the (out-of-bailiwick) au-
thoritative name servers involved in the cycle in
the zone file.

5.3 Method Validation

We validate our method by applying it and its associated execution technique to a

bad smell that has been already identified as one of the most important misconfig-

urations in the literature. [7, 9, 15, 17, 19].

Case Study: Cyclic Dependency

To achieve acceptable geographical and network diversity, zone administrators often

establish mutual arrangement with peer organizations to host each other’s zone files.

Authoritative name servers located in other zones are normally identified by their

names instead of their addresses and called out-of-bailiwick name servers. A cyclic

zone dependency [15] occurs when two or more zones depend on each other in a

circular way.

Table 5.4 shows that the zone (example.com) has 4 authoritative name servers re-

sponsible for resolving domain names under this zone as defined in its parent zone

(.com). Two servers (ns1 and ns2.example.com) are in-bailiwick servers and it

is mandatory to include their IP addresses in the parent zone in order to prop-

erly resolve domain names under that zone. The other two servers (dns1 and

dns2.example.net) are located in another zone and there is no need to include their
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IP addresses in the (.com), example.com parent zone file. On the other hand, the

(.net) zone which is the parent of the (example.net) zone, is served by two out-of-

bailiwick name servers located in the (example.com) zone.

Table 5.4: Content of Zone File for Case Study.

$ORIGIN .com. $ORIGIN .net.
example.com. NS ns1.example.com. example.net. NS ns1.example.com.
example.com. NS ns2.example.com. example.net. NS ns2.example.com.
example.com. NS dns1.example.net.
example.com. NS dns2.example.net.
ns1.example.com. A 1.1.1.1
ns2.example.com. A 1.1.1.2

In this example, the two zones work nicely under normal circumstances but if (for

any reason), both in-bailiwick name servers become unavailable, both example.com

and example.net zones will not be reachable because the IP addresses of the other

two authoritative name servers can’t be resolved. This example illustrates the failure

dependency between zones, where the failure of some servers in one zone will render

the other zone unreachable. The quality impacts of such a bad smell are significant

reduction on availability and resiliency of the zone against multiple points of failure.

Checking each zone individually for configuration errors will not lead to the detection

of this Cyclic Dependency bad smell since they are both configured correctly. On

the other hand, constructing the dependency graph will easily show the occurrence

of two distinct circular paths that identify the presence of this particular smell.

Figure 5.4 shows the concerned part of the dependency graph of our example.

Cyclic Dependencies can be eliminated by the creation of specific resource records

(RRType: A) for both out-of-bailiwick servers (dns1 and dns2.example.net) in the

(.com) zone. This enables resolving the domain names under the (example.com)

and (example.net) zones even when the two in-bailiwick servers are unreachable.

We execute this correction mechanism in the form of a graph transformation based

refactoring rule (CreateARecord) as shown in Figure 5.4. Since we have two distinct
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Figure 5.4: Refactoring Rule: CreateARecord.

matches for the LHS of the rule on the actual instantiation of the model (the de-

pendency graph in Figure 5.3), then the rule needs to be applied twice in order to

remedy all occurrences of the bad smell. A new zone file can then be automatically

generated from the newly transformed model instance (i.e. dependency graph) as
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shown in Table 5.5 and/or a set of recommendations can be presented to the system

administrator to eliminate the bad smell.

Table 5.5: New Zone File Generated After Executing the Refactoring Rule(s).

$ORIGIN .com. $ORIGIN .net.
example.com. NS ns1.example.com. example.net. NS ns1.example.com.
example.com. NS ns2.example.com. example.net. NS ns2.example.com.
example.com. NS dns1.example.net.
example.com. NS dns2.example.net.
ns1.example.com. A 1.1.1.1
ns2.example.com. A 1.1.1.2
dns1.example.net. A 1.1.1.3
dns2.example.net. A 1.1.1.4
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ISDR Method Implementation

The ISDR method lays the basis for developing a visual advisory tool (the DNS

Advisor) for system administrators to analyse, discover, and remedy operational

bad smells. This chapter presents the application of the various techniques within

the ISDR method utilizing the tools within the EMF Refactor Framework [38] and

our dependency graph builder the DGBuilder tool. The ISDR method is executed on

a particular instance of the DNS model (i.e. Dependency Graph) using the following

steps:

• Step 1: Extract the dependency graph from the zone configuration file and

the authoritative name servers’ deployment using the DGBuilder tool.

• Step 2: Query the dependency graph for any bad smell using the methods

and metrics defined in the Bad Smells Catalogue using the specifications of

the techniques through the EMF Refactor Framework.

• Step 3: Apply relevant refactoring rule(s) on all matching occurrences of the

LHS of the rule on the instance model. A new dependency graph is generated

as an output of this step.
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• Step 4: New zone file(s) and authoritative name servers’ deployment layout

can be automatically generated from the new Dependency Graph or a set of

recommendations can be presented to the system administrator with relevant

quality impacts.

In this chapter, we discusses the specifications, tools and implementation of the

ISDR method techniques and presents several case studies for its validation. Section

6.1 explains the various tools used in our implementation including our in-house

developed DGBuilder component.

The DGBuilder is used to build the DNS model instance (Dependency Graph) for

a "live" zone out from the zone configuration and authoritative name servers’ de-

ployment layouts. Section 6.2 describes how the various ISDR techniques (including

metrics, smells and refactorings) are specified using the EMF Refactor framework

and then applied on the generated model instances as case studies to validate the

method and verify its usefulness in detecting and refactoring DNS operational bad

smells. Section ?? gives a short background on related work in the software engi-

neering fields of bad smells detection and refactoring.

6.1 Tool Support

The application of the ISDR method, in a systematic process, can automatically

direct the zone administrator to places in the zone file that contain potential design

and deployment problems that may compromise availability, security, stability or

resiliency of the domain name system before the changes become into production.

Zone administrator are able to run several scenarios and apply several refactoring

rules through the tool to determine the solution that best meets their local policies.

The following frameworks and modelling languages have been identified and used in

order to implement the ISDR method as part of the DNS advisory tool.
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6.1.1 Eclipse and EMF Modelling

The last decade witnessed a dramatic growth of software intricacy and different tech-

niques and methodologies have been proposed to ease complex system development.

Model Driven Engineering (MDE) [50] shifts the focus of software development from

coding to modelling and lets software architects harness the opportunity of dealing

with higher-level abstractions.

The EMF project [38] is a modeling framework and code generation facility for

building tools and other applications based on a structured data model. From a

model specification described in XMI, EMF provides tools and runtime support to

produce a set of Java classes for the model, along with a set of adapter classes that

enable viewing and command-based editing of the model, and a basic editor. EMF

(core) is a common standard for data models, many technologies and frameworks

are based on.

6.1.2 Henshin

The Henshin [41] project provides a state-of-the-art model transformation language

for the Eclipse Modelling Framework. Henshin supports both direct transformations

of EMF single model instances (endogenous transformations), and translation of

source model instances into a target language (exogenous transformations). The

Henshin language and toolset supports, the following features:

• Expressive transformation language with a graphical syntax, pattern matching

and control-flow constructs with parameter passing,

• Support for endogenous and exogenous transformations, with natural treat-

ment and efficient in-place execution of endogenous transformations,
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• Formal graph transformation semantics, with arbitrary mixing of different

graph transformation styles (DPO/SPO),

• Efficient interpreter engine based on constraint solving, and verification using

state space tools and many other features.

6.1.3 EMF Refactor

EMF Refactor [1] is an existing Eclipse project which can calculate metrics and per-

form refactorings on Ecore and UML models. In particular, EMF Refactor supports

metrics reporting, smell detection, and refactoring for models being based on the

Eclipse Modeling Framework. The following techniques can be used in a concrete

specification of a new EMF model metric, smell, or refactoring:

• Model metrics can be concretely specified in Java, as OCL expressions, by

Henshin pattern rules, or as a combination of existing metrics using a binary

operator.

• Model smells can be concretely specified in Java, by Henshin pattern rules, or

as a combination of an existing metric and a comparator like greater than (>).

• The three parts of a model refactoring can be concretely specified in Java, in

Henshin (pattern rules for precondition checks; transformations for the proper

model change), or as a combination of existing refactoring using the CoMReL

language.

Figure 6.1 shows the architecture of the EMF Refactor specification module us-

ing a UML component model. The specification module provides the generation

of custom EMF Quality Assurance (QA) plugins containing the metric-, smell-, or
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Figure 6.1: The EMF Refactor Specification Module. Adapted from [1].

refactoring-specific Java code. The specification module provides wizard-based spec-

ification processes (Specification Wizard component within the Specification Module

in Figure 6.1). After inserting specific information (like the name of the metric,

smell, or refactoring, defined over the corresponding model/meta-model), the code

generator uses the Java Emitter Templates Framework [92] to generate the specific

Java code required by the corresponding extension point.

6.1.4 Dependency Graph Builder (DGBuilder)

Example instances of the model can also be created using the EMF Examples Cre-

ation Wizards. Using this method, the different model elements can be created as

children of the main (root) model element (DNSModel). On the other hand and

in order to generate the model instance for various zones’ configurations and sever

deployments, the DGBuilder tool through the algorithm listed in Listing 1 is used.

The dependency graph building tool (DGBuilder) is integrated directly into the
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eclipse development environment by creating a dynamic instance of the DNS model

in the Runtime IDE. The DG building algorithm is composed of the following three

main steps:

1. Step One [Lines 1-6]: Necessary (Infrastructure) resource records are ex-

tracted from the zone file (Z) using the DNS dig utility. We limited our focus

in this research on the infrastructure DNS resource records, which affect the

delegation consistency, security and the stable operation of the DNS system.

In order to ensure the correctness of the information retrieved, all authori-

tative name servers (queried from the parent zone) are queried and just the

agreed upon results are returned. Analysing the zone file and extracting the

dependencies between the different resource records and their corresponding

data layer elements in the model, is done in this step.

2. Step2 [Lines 7-17]: Physical elements (servers, geographical locations, net-

works, and organisations) with their attributes are constructed based on the

information extracted from the chain of authoritative name servers and organi-

zations involved in the resolving process of domains under that particular zone

(Z). All types of dependencies and recursive queries are followed to get the full

dependency graph of the zone in the three operational planes. Certain utilities

are being used such as MaxMind [45] GeoIP database system for extracting

geographical locations associated with server IP address, Team Cymru’s [46]

WHOIS querying system and BGP Toolkit [47] for IP addresses, BGP Prefixes

and ASN Numbers.

3. Step3 [Lines 18-23]: DG instance model is built based on a predefined

template that ensures that it is conforming to the DNS model. When the

model instance file is imported to the Eclipse runtime IDE, model validation

is done to ensure the correctness of the model instance generated.
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Algorithm 1 Dependency Graph (Model Instance) Generation Algorithm.
Require: Z: Zone name
1: XMI ← ∅ /* Initialize the array representing the output file
2: RNS = Pick One of the ROOT DNS Servers (a,b,c ... m.root-servers.net)
3: Get SOA Record for Zone Z /Dig Command [dig +nocmd @RNS $domain SOA

+noall +answer]
4: PNS ← Primary Name Server /* Extract the Primary Name Server from the

SOA Record Data Elements
5: Query PNS for Authoritative Name Servers List of Zone (Z) [Dig Command [dig

+nocmd @PNZ Z NS +noall +authority +answer]
6: S = List of Host Names of all Authoritative Name Servers (ANS) for the Zone(Z)
7: for NS ← each member of S do
8: Query PNS for ANS Records of Zone(Z)
9: if Si then /* Only Live and Authoritative Servers are Queried

10: S ← S∪Si

11: S ← Unique Ordered List(S)
12: end if
13: Initialize Arrays(Zones, Servers, Geos, Nets and Orgs)
14: for NS ← each member of S do
15: Get All(Z) /Get lists of (Zones, Servers, Orgs, Geos and Nets)
16: end for
17: end for
18: Build Arrays of (Zones, Servers, Orgs, Geos and Nets) with Unique Keys Refer-

ence
19: Build Tree(Z) /* Delegation Tree of Zone(Z)
20: Build CL=ControlLayer(Z)
21: Build DL=DataLayer(Z)
22: Build ML=ManagementLayer(Z)
23: XMI=concatenate (Header,CL,DL,ML,Footer)
24: return Xmi file containing the complete DG for Zone(Z)

6.2 ISDR Techniques

The ISDR method is implemented in two steps:

1. Techniques’ Specifications: which include the specification of metrics, smells

and refactorings defined over the DNS Model which is being modelled as an

100



Chapter 6. ISDR Method Implementation

EMF E-core Model. The techniques are specified using the Specification Wiz-

ard available through the Specification Module within EMF Refactor Frame-

work as shown in Figure 6.1.

2. Techniques’ Application: which includes all the steps needed for the ap-

plication of the specified techniques on instances of the DNS model (i.e. De-

pendency Graphs) generated by the DGBuilder tool. This is done through the

various extension points available through the Custom QA Plugin component

as shown in Figure 6.1.

Throughout our implementation, we have two running instances of Eclipse as shown

in Figure 6.2. In the first instance, called the “Modelling IDE”, we defined the model

and generated code from it. The second instance, called the “Runtime IDE”, is

started from the Modelling IDE and contains instances of the generated model and

the plugin projects where metrics, smells and refactorings are specified and then

applied on a particular model instance.

Start

Figure 6.2: ISDR Method Specification and Application Environments.

In order to specify the various techniques (metrics, smells and refactorings) to im-

plement our ISDR method, we define several plug-in projects within the Eclipse

Runtime IDE instance and then import them back within the Modelling IDE envi-

ronment. Deploying the model as a plugin registers the generated model and enable
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us to use it in defining the new techniques. Three different plug-in projects were

created to hold the definitions and source code of the various techniques as follows:

• DNSMetrics to include all metrics definition including Java, OCL and Henshin-

based metrics.

• DNSSmells to hold all smells definitions including measurable and structural

ones.

• DNSRefactor to hold all refactoring specifications including any initial, final

and execution rules.

In order to provide more details about the specification process of each technique,

we will use the DNSSEC zone complexity and associated techniques as an example

of our implementation of the ISDR method.

6.2.1 Techniques’ Specification

6.2.1.1 Metrics

The disregard for DNS as well as DNSSEC [25, 26] maintenance can result in in-

creased failure potential. One important necessity is careful coordination between

zone administrators and system managers both hierarchically (i.e., between parent

and child zones) and laterally, between organizations hosting each other’s zone data

(i.e, between name servers operators). The hierarchical relationship is the most

crucial part of the DNSSEC data plane, since the chain of trust extends vertically,

and a break in the chain results in general failure to the whole name space below.

However, this coordination is less demanding because it generally involves only two

entities. Problems caused by lateral coordination may be less severe since the zone

will usually have multiple name servers.

102



Chapter 6. ISDR Method Implementation

Table 6.1: Metric Hierarchical Reduction Potential (HRP) Interpretation Model.

Metric Hierarchical Reduction Potential (HRP)
Definition Quantifies how much the ancestry of a zone might be reasonably

consolidated to reduce hierarchical complexity.
Usability A greater HRP value indicates that minimizing hierarchical com-

plexity might reduce failure potential.
How to Mea-
sure

We express the HRP of zone z, having m + 1 ancestral zones, as
the fraction of layers that could be reduced if the number of zones
is consolidated to m’ + 1

Example While delegation is necessary in many cases, there are some cases
in which collapsing a delegated zone is both reasonable and pos-
sible. For example, if example.com and sub.example.com are two
zones administered by the same organization, the zone data for
sub.example.com might trivially be migrated to the example.com
zone and the delegation to sub.example.com removed. This consol-
idation reduces the number of zones ancestral to sub.example.com
by 0.25 from 4 to 3.

Range 1 < HRP ≤ 0

Formula HRP (z) = m−m′

m+1

There are two metrics used to quantify the complexity of a DNS zone. The metrics

themselves are calculated independent of DNSSEC deployment, but higher metric

values may increase the failure potential for signed zones because they indicate more

areas where problems may occur.

The first metric is the Hierarchical Reduction Potential (HRP) [93], which quanti-

fies how much the ancestry of a zone might be consolidated to reduce hierarchical

complexity. The second metric is Administrative Complexity [7] which describes

the diversity of a zone, with respect to organizations administering its authoritative

name servers. The interpretation model of the HRP metric is shown in Table 6.1

while the interpretation model of the Administrative Complexity metric is shown in

Table 4.2. In order to measure the HRP, several other metrics have to be calculated

first and they are:

1. Zone Depth: The depth of a zone is measured by its distance from the root
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zone. For example, zone z has ancestry z(0), z(1), ..., z(m) comprised of m+1

zones and has a depth of m. Each ancestral zone z(i) contributes to the failure

potential for zone z, as it is an additional requirement of DNSSEC correctness

that must be consistent. Listing 6.1 shows how the zone depth metric is being

specified in the DNSMetrics plugin project using Java.

Figure 6.3: Henshin Rule for Calculating the HRPD Metric of a Zone.

2. Hierarchical Reduction Potential Domains (HRPD): In order to measure the

number of consolidated zones that can be achieved by merging two zones with

parent-child relationship if they both are being managed (owned) by the same

organisation, we use the Hierarchical Reduction Potential Domains (HRPD)

metric, which shows the number of subzones that can be consolidated in the

parent zone. The metric is defined in the DnsMetrics plugin project using

Henshin rule as shown in Figure 6.3.

/∗

∗ Java Sp e c i f i c a t i o n o f the Zone Depth Metric .

∗/

package org . e c l i p s e . emf . r e f a c t o r . metr i c s ;

import java . u t i l . L i s t ;

import org . e c l i p s e . emf . ecore . EObject ;

import org . e c l i p s e . emf . r e f a c t o r . metr i c s . i n t e r f a c e s . IMet r i cCa l cu l a to r ;

pub l i c f i n a l c l a s s DEPTH implements IMet r i cCa l cu l a to r {
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pr i va t e List<EObject> context ;

@Override

pub l i c void setContext ( List<EObject> context ) {

t h i s . context=context ;

}

@Override

pub l i c double c a l c u l a t e ( ) {

dnsmodel . Zone in = ( dnsmodel . Zone ) context . get (0 ) ;

double r e t = 1 . 0 ;

whi le ( in . getParentzone ( ) != nu l l ) {

r e t++;

in=in . getParentzone ( ) ;

}

re turn r e t ;

}

}

Listing 6.1: Zone Depth Specification in Java

Finally, the Hierarchical Reduction Potential (HRP) of the zone can be calculated

using the corresponding formula in its interpretation model, shown in Table 6.1,

as a compositional metric. The generated Java source code for the metric is shown

below.
/∗

∗ Calcu la t ing the HPR Metric as a Composit ional Metric Using Java .

∗/

package org . e c l i p s e . emf . r e f a c t o r . metr i c s ;

import java . u t i l . L i s t ;

import org . e c l i p s e . emf . ecore . EObject ;

import org . e c l i p s e . emf . r e f a c t o r . metr i c s . i n t e r f a c e s . IMet r i cCa l cu l a to r ;

import org . e c l i p s e . emf . r e f a c t o r . metr i c s . i n t e r f a c e s . IOperat ion ;

import org . e c l i p s e . emf . r e f a c t o r . metr i c s . core . Metric ;

import org . e c l i p s e . emf . r e f a c t o r . metr i c s . ope ra t i ons . Operat ions ;

pub l i c f i n a l c l a s s HRP implements IMet r i cCa l cu l a to r {

p r i va t e List<EObject> context ;

p r i va t e St r ing metricID1 = "dnsmetr ics . hrpmd" ;

p r i va t e St r ing metricID2 = "dnsmetr ics . depth" ;

IOperat ion operat ion = Operat ions . getOperat ion ( " Div i s i on " ) ;

@Override

pub l i c void setContext ( List<EObject> context ) {

t h i s . context = context ;

}

@Override

pub l i c double c a l c u l a t e ( ) {

Metric metr ic1 = Metric . getMetr icInstanceFromId ( metricID1 ) ;

Metric metr ic2 = Metric . getMetr icInstanceFromId ( metricID2 ) ;

IMet r i cCa l cu l a to r ca l c1 = metr ic1 . g e tCa l cu l a t eC la s s ( ) ;

IMet r i cCa l cu l a to r ca l c2 = metr ic2 . g e tCa l cu l a t eC la s s ( ) ;

c a l c1 . setContext ( t h i s . context ) ;

c a l c2 . setContext ( t h i s . context ) ;

r e turn operat ion . c a l c u l a t e ( ca l c1 . c a l c u l a t e ( ) , c a l c2 . c a l c u l a t e ( ) ) ;

105



Chapter 6. ISDR Method Implementation

}

}

Listing 6.2: Generated Code for Calculating HPR (Metric Composition)

6.2.1.2 Bad Smells Specification

Based on the taxonomy developed in Chapter 5, bad smells can be classified accord-

ing to their type (Lexical, Measurable or Structural). In this section, we present

examples of the three categories of bad smells and how they are being specified

within the EMF Refactor Framework.

• Measurable Bad Smells: Measurable bad smells such as the Excessive Zone

Complexity smell can be specified through the definition of a smell in the

DNSSmells plugin project. The smell is specified based on the measured value

of the HRP metric of a certain model instance of a particular zone. A threshold

value for the metric (i.e HRP > 1) can be set by the system administrator

as the basis for the detection of such a bad smell. A value of HRP greater

than the threshold value indicates that there is a high probability of failure

potential (presence of the bad smell). Setting a certain threshold value for the

metric HRP is done through a project specific configuration page based on

the zone administrator’s needs and specific constraints.

• Lexical Bad Smells: A lexical property relates to the vocabulary used to

name a zone, server, or a resource record. Giving the same server differ-

ent names, ill-formed resource records, the presence of unnecessary resource

records within a zone and duplicate resource records for certain hosts are ex-

amples of such smells. Lexical smells identification and detection is straight-

forward and rely mainly on text-based best practices or guidelines recommen-

dations analysis.
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• Structural Bad Smells: A Cyclic Dependency Smell [32] occurs when two

or more zones depend on each other in a circular way. As shown in ISDR

method validation case study in Section 5.3, checking each zone individually

for configuration errors may not lead to the detection of this bad smell since

they may both be configured correctly. On the other hand, constructing the

dependency graph will easily show the occurrence of circular paths that identify

the smell. Structural bad smells can be specified directly using a Henshin rule.

Figure 6.4: Specification of the Bad Smell Cycling Dependency Using Henshin.

Figure 6.4 shows the Henshin rule to check for any cycle patterns within

the model instance that will reflect the presence of the Cycling Dependency

bad smell. The pattern specifies two zones with parent/child relationship that

must be found in the model (tagged by «preserve») and a cyclic dependency

of (Zone1
nameservers−−−−−−−→ Server1

hasnamein−−−−−−→ Zone2
nameservers−−−−−−−→ Server2

hasnaemin−−−−−−→

Zone1) sequence path (tagged by «preserve» tags). The Negative Application

Condition (NAC) checks for the absence of any ARecord for the out-bailiwick

name servers of a Zone in the parent Zone (tagged by «forbid» tags). It

also excludes any ARecords for in-bailiwick servers from the particular zone

to prevent counting of these occurrences as occurrences of cyclic dependency
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smells.

The smell detection tool in EMF Refactor uses Henshin’s pattern matching

algorithm to detect rule matches. The pattern rule must be named mainRule

in order to be executed by the Henshin adapter.

6.2.1.3 Refactorings

EMF Refactor supports three concrete mechanisms for EMF model refactoring spec-

ification. As for metrics and smells, refactorings can be specified using Java and the

language API generated by EMF. A direct way to specify a model refactoring straight

forwardly is to use Henshin. A concrete refactoring specification in Henshin requires

up to three parts (i.e., specifications for initial checks, final checks, and the proper

refactoring execution rules).

1. Initial Check: The initial checks ensure that all preconditions are met before

executing the actual refactoring. The checks are applied on the rule’s con-

textual model element selectedEObject and related components present in the

refactoring rule(s). Here, each conflicting situation is defined by a rule pattern

using the abstract syntax of the underlying DNS model. Furthermore, param-

eters in the main checking unit must be equally named to the corresponding

ones in the main execution unit. All these checks are implemented separately

and executed through a so called Independent Unit. Independent Units have

an arbitrary number of sub-units that are checked in non-deterministic order

for execution.

For example, in order for the bad smell Cyclic Dependency to be rectified,

resource records of RRType-A (ARecord) model element should be created in

the parent zone for out-of-bailiwick name servers to make sure that their names

are resolvable in all cases. A refactoring rule named CreatARecord is used to
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Figure 6.5: Specification of Initial Checks for CreateARecord Refactoring.

remedy for this bad smell and Figure 6.5 shows Henshin rule specifying the

initial checks of this refactoring. Rule checkParent checks whether the selected

zone has a parent zone included in the model. The absence of a parent zone is

modelled using tags «forbid». Such precondition check rules are contained in

a Henshin Independent Unit (called mainUnit) to be executed. If any of the

rules can’t be applied, Henshin uses the rule’s description value to provide a

detailed error message to the system administrator.

Figure 6.6: Specification of Final Checks for CreateARecord Refactoring.

2. Final Check: Final checks are applied on the selected model contextual el-

ement and check the applicability of the rule parameters and references. In

our CreateARecord example, there are three final conditions that have to be

checked:
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• First, there must be a server with the user specified name (servername)

that is already exists as a physical server element in the ControlLayer of

the DNS instance model. The rule pattern for the absence of such a class

is shown in rule CheckServerExists in Figure 6.6 using the «forbid» tag.

• The second precondition that has to be checked is specified by rule check-

ZoneExists. Besides the already known parameters selectedEObject and

servername, this rule has another parameter, domainname. The rule

checks whether there exists a zone with a name equals to the domain-

name parameter for the ARecord to be created.

• The third and final precondition to be checked is whether there already

exists an ARecord model element with the same specified name in the

zone and this is accomplished through the rule CheckARecordExists.

If all of these checks are passed successfully, Henshin executes the main refac-

toring execution unit and another model is automatically created.

3. Refactoring Rule Execution: The specified execution rule performs the

actual model change, i.e., it creates one or more ARecords in the parent zone

of the specified contextual element of the model. As it is the case with all

Henshin refactorings, the actual execution is again packaged into a so called

Sequential Unit. A sequential unit has an arbitrary number of sub-units that

are executed in the given order. In this case, the unit is configured to fail if

not all specified rules can be executed and in case of a failure all changes will

be automatically undone.

6.2.2 Techniques’ Application

To calculate relevant metrics, detect bad smells and apply refactorings, the tool

environment supports a project-specific configuration for all these techniques.
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Figure 6.7: Execution Unit for CreateARecord Refactoring.

6.2.2.1 Metrics Calculation

The metrics configuration is managed by means of a dedicated project properties

page. On this page, all existing model metrics for the DNSModel are listed. They are

structured with respect to the corresponding element type the metrics are calculated

on (the context). Through this configuration page, we can activate all model metrics

or a partial list of them. Some of the metrics activated in this example are: for the

DNSModel: (Zones, Servers, Orgs and AS), for the Zone contextual element: (ANS,

Depth, HRP and GeoD), and for the SOA record timers: (Expiry, Retry, minTTL

and Refresh).

The calculation of metrics on a specific model element is started from its context

menu. The metrics can be calculated on a specific model element or transitively for

all elements of the model. Relevant metrics are calculated based on the context of

metric defined earlier in the metric specification module.
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Figure 6.8: Metric Configuration Page and the Calculation of these Metrics for
the DnsModel of Zone (.PS)

Figure 6.8 shows the project-specific configuration page as well as the calculated

results on all elements of the DnsModel instance (the Dependency Graph) of the

.PS (Palestine) Country-Code Top-Level-Domain (ccTLD). The results view shows

that the model has an Attack Surface metric (AS) of 148 which shows all elements

(Servers, Zones and Organizations) involved in the domain resolution process of the

specified zone. For each zone, further metrics are shown such as the number of

authoritative name servers, direct and third-party zones influencing the resolution

of domain names under the (.PS) zone and so on.

6.2.2.2 Bad Smells Detection

The discussion of metrics results shows that a manual interpretation of metric val-

ues seems to be unsatisfactory and error-prone. So, another static model analysis

technique is required, more precisely an automatic detection of model smells. As for

model metrics, the tool provides a configuration page of specific model smells that
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Figure 6.9: Smells Configuration Page for the DnsModel.

are relevant for the current project. Figure 6.9 shows the configuration dialogue list-

ing the system-known model smells with respect to some DNS Model instances. For

a metric-based model smell, a corresponding threshold (Limit) can be configured.

Figure 6.10: Detection of Cycling Dependency Using Henshin Rule.

The matches found represent the existence of model smells in the instance model.

The smell detection tool provides a highlighting mechanism for all involved model

elements in a bad smell occurrence within the standard tree-based instance editor.
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Those model elements are highlighted in order for the system administrator to easily

spot them. A screen shot of the detection of the Cyclic Dependency bad smell is

shown in Figure 6.10.

6.2.2.3 Refactorings

Besides manual changes, model refactoring is the technique of choice to eliminate

occurring smells. The next step during the ISDR application is to interpret the

results of the smell detection analysis and decide on potential correction mechanisms

in the form of graph-based refactoring rules that can be used to remedy or eliminate

those smells.

The tool provides mechanisms to provide DNS system administrators with a quick

and easy way (1) to erase DNS model smells by automatically suggesting appropriate

model refactorings, and (2) to get warnings in cases where new model smells occur

due to applying a model refactoring. After invoking a refactoring, refactoring-specific

basic conditions are checked (initial precondition check). Then, the user has to set all

needed parameters to execute the refactoring where final checks are applied (final

precondition check) before executing the final step of the refactoring application

process. Figure 6.11 shows the work flow of the various steps used to apply the

refactoring on a certain model.

In order to propose suitable refactorings respectively to inform about potential new

smells, the tool must be provided with information on the relations between model

smells and model refactorings. Given a concrete model smell occurrence, several

refactorings can be suitable to erase it. The tool environment provides the ability

to configure this relationship between model smells and model refactorings.

114



Chapter 6. ISDR Method Implementation
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Figure 6.11: Refactoring Execution Workflow.

Figure 6.12 shows the property page called the Quick Fix Relations page for (de-

)activating appropriate relations. A pragmatic way is to manually define these re-

lations. Here, the advantage is that DNS Zone managers and system operators can

adjust the implementation of model smells and model refactorings to the fact that

they are going to be related. A manually defined relation is done by the system

administrator with the definitive goal to erase a model smell using a given model

refactoring.

The application of a certain model refactoring can be triggered by using two alter-

native ways:

• First, it can be invoked from within the context menu of at least one model

element in the standard tree-based EMF instance editor. Dependent on the

selected element(s), only those refactorings are provided in the menu being

defined for the corresponding model element type(s).
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Figure 6.12: Quick Fix Matrix Configuration Page.

• The second way to trigger a model refactoring is to use the quick fix mecha-

nism of the smell results view. Starting from this view, our tool environment

provides a suggestion for potential refactorings according to pre-defined smell-

refactoring relations and a dynamic analysis of applicable model refactorings.
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DNS Model Transformation

The chapter starts with an overview of the refactoring implementation tool used to

implement the DNS model transformation followed by investigating the behaviour

preservation properties of the proposed refactorings. Refactoring rules’ analysis,

priority analysis and checks for execution dependability and conflict analysis through

the critical-pairs analysis technique are also conducted.

The chapter details the process of integrating the DNS Metrics Suite, Quality Pre-

diction Models and the ISDR Method into a DNS model transformation advisory

tool and then proceeds further by giving a concrete example of DNS model trans-

formation using the developed tool.

The tool presents the DNS system administrators with refactoring opportunities to

remedy for bad smells detected in their zone configurations and name servers’ deploy-

ments. The tool also provide the administrators with recommendations where the

administrator have full control on the decision to implement any of these refactorings

or recommendations based on his/her special DNS configurations and deployment

considerations.
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7.1 Model Refactoring

Model-driven engineering (MDE) is a discipline in software engineering that relies on

models as first class entities and that aims to develop, maintain and evolve software

by performing model transformations. Based on the language in which the source

and target models of a transformation are expressed, a distinction can be made

between endogenous and exogenous transformations. Endogenous transformations

are transformations between models expressed in the same language. Exogenous

transformations [44] are transformations between models expressed using different

languages. Typical examples of endogenous transformation are:

• Model Refactoring, a change to the internal structure of a model to improve

quality characteristics of the system without changing its observable behaviour.

The graph-based rules defined over the DNS model and proposed as part of

the ISDR method are examples of such refactorings.

• Model Optimization, a transformation aimed to improve certain operational

qualities (e.g., performance) of the system.

Refactoring implementation tools can be classified based on their degree of automa-

tion: Manual, Semi-Automated and Fully-Automated. A fully-automated tool pro-

vides automatic detection and correction of design defects without user intervention.

Semi-automated tools require interaction with the user throughout the refactoring

process. Semi-automated tools assist the user by proposing refactoring opportunities

and their suggested solutions; however, the decision to perform the actual transfor-

mation is left to the user. Manual refactoring tools leave the process of model smell

detection and application decision to the user completely.

In our approach, we follow the semi-automated approach. Our tool propose to

the DNS system administrators several refactoring opportunities to remedy for bad
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smells detected in their zone configurations and provide justified recommendations

where the administrators have full control on the decision to implement any of them

based on their local policies, special DNS configurations and deployment considera-

tions.

7.1.1 Behaviour Preservation

A transformation is behaviour-preserving if the explicit or implicit constraints of

the behaviour in the source model remain fulfilled in the target model after the

transformation has been executed. Defining the notion of behaviour preservation

can be done in many ways. Most researchers [94] agree that a full guarantee on

preservation of behaviour is impossible. Therefore they use a relaxed notion of

behaviour preservation, demanding that the program/system will perform the same

actions before and after executing the refactoring. For each refactoring, one may

list behaviour-related properties that need to be preserved, and that can be verified

statically [95].

At its core DNS is a simple protocol with requests and responses each generally

contained in a single UDP packet. Further, resolving a hostname requires only a

small number of transactions. The simple protocol and process, however, belies

much complexity in the modern DNS ecosystem. A DNS request triggered by a

user clicking a link in a web browser may now travel through multiple layers of DNS

resolvers or public DNS service providers. Therefore, while the DNS protocol is itself

simple, much of the resolution process and the actors involved are largely hidden

from view [96].

Since our DNS model is built based on the authoritative zone managers’ and sys-

tem administrators’ point of view, we are concerned about refactoring rules that

preserves DNS behaviour as observed from those vantage points. We only look at
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notions of behaviour preservation that can be detected statically and do not rely on

sophisticated data- and control-flow analysis or type inferencing techniques. This re-

striction to the static structure of the model is important because DNS configuration

and deployment structure are all that our refactoring tool may operate on.

In order to achieve this, we need a precise definition of DNS "behaviour" in general,

and for DNS dependency model in particular. We consider three types of DNS

behaviour preservation, based on the fact that they are important and non-trivial

for the selected refactorings. From a graph-based point of view, all refactorings

are defined over the DNS Dependency Model so each and every component in the

model instance conforms with its type as defined within the reference model and

the transformed dependency graph is still a valid instance of the DNS model. A

refactoring is behaviour preserving if the following implications are true:

Zone: Z1

name: LE.AC.UK.

Server: S1

name: ns1.le.ac.uk.
ipaddress: 1.2.3.4

ARecord:AR1

name: 
ns1.le.ac.uk.

arecords

pointsto

hasNameIn
NSRecord:NSR1

name: 
ns1.le.ac.uk.

nsrecords

namservers

refersTo

Figure 7.1: Instance Graph of Binding-Preserving Property.
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• Query Resolution Preserving: If for all sets of names resolution is correct in

the source, it should be so in the target. This means that for any set of input

domain names submitted to a name server through a graph-based query on

the model, the produced set of Authoritative Resource Records (SOA record,

NSRecord and related ARecords) returned from the concerned Zone are correct

and valid records (based on the DNS protocol specifications) before and after

applying the refactoring. These resource records do not need to be the same

since some of the refactorings may modify their attributes and/or associations.

• Binding Preserving: The DNS specifications calls for any zone to hold the

authoritative binding between IP addresses and hostnames for its own name

servers (in-bailiwick name servers). A refactoring is binding-preserving if for

each physical or logical name server:S1 in the refactoring, there is a corre-

sponding (ARecord:AR1)and NSRecord within (arecords containment relation

to) the Zone:Z1 that holds the name of (with hasNameIn relation to) and

pointsto and refersto that particular server:S1 respectively.

7.1.2 Analysis of Model Refactoring Rules

Deciding what to refactor and which refactoring to apply still remains a difficult

manual process, due to the many dependencies and interrelationships between rele-

vant refactorings. In order to solve this problem, two analysis techniques are applied

to help the DNS system administrator make an informed decision of which refactor-

ing is most suitable in a given context and why.

7.1.2.1 Conflicts and Dependencies

Graph transformation theory allows us to compute conflicts and dependencies of

transformations by relying on the idea of critical pair analysis [97]. Critical pair
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analysis is known from term rewriting and can be used to check if a rewriting system

contains conflicting computations.

Figure 7.2: Critical Pairs Analysis.

Critical pairs formalize the idea of showing a conflicting situation in a minimal

context. From the set of all critical pairs we can extract the objects and links which

cause conflicts or dependencies. The reasons why graph rules can be in conflict are

threefold:

1. One rule application deletes a graph object (i.e., a node or edge) which is in

the match of another rule application (delete-use conflict).

2. One rule application produces graph objects that give rise to a graph struc-

ture that is forbidden by a NAC of another rule application (produce-forbid

conflict).

3. One rule application changes attributes being in the match of another rule.
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The graph transformation tool, Henshin, recently provided an algorithm implement-

ing this analysis. Henshin also provides several refactoring execution control-flow

mechanisms (called units) to resolve any produce-use-dependancy issue between the

rules. Figure 7.2 shows the results of running the critical pairs analysis on the set

of refactoring rules defined over the DNS model.

To illustrate the usefulness of these analysis in the context of the DNS refactorings,

let’s take the bad smell Excessive Zone Influence as an example. Figure 7.3 shows

that several refactorings can be applied to eliminate this bad smell. Within the

priority of execution (2), we have the two refactorings MergeZone and Delete Zone.

Refactoring MergeZone can not be executed if the relevant zones to be merged hap-

pen to include a zone that already has been deleted by the DeletZone refactoring

so these two refactorings are in conflict. To resolve such situation we include a

sequential unit within the MergeZone refactoring specifications to check for the ex-

istence of the zones to be merged before executing the refactorings on the model

instance. Another issue is the dependency of the DeleteZone refactoring on the

DeleteA/NS/DS/Records refactorings.

A zone can’t be deleted unless all its resource records are deleted or moved to the

new parent zone. Sequential units controls the execution of the different refactorings

and contributes to resolving these issues too.

7.1.2.2 Execution Scope and Priorities

It should be noted that a refactoring rule is just one of the options to eliminate a bad

smell. It can also take more than one rule application to resolve the situation, so a

single rule specifies an incremental improvement, which may have to be repeated or

combined with others. For example, to eliminate the cyclic dependency bad smell

there could be another rule for creating a new server under another external zone
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rather than adding a "glue" (ARecord) for out-of-bailiwick servers. When deciding

on the scope and priorities of executing the applicable and non-conflicting refactoring

rules the following general guidelines are applied :

Refactorings Number -> 1 2 3 4 5,6 7,8 9 10,11 12 13 14 15 16 17 18 19 20 21 22
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Figure 7.3: Refactoring Rules Execution Scope and Priorities.

1. Rules related to modifications within the zone administrator’s own adminis-

trative domain (i.e resource records modifications within the same zone) are

first to execute since they are the easier and the most cost effective way to

remedy or eliminate a bad smell.

2. Rules that need coordination with other zones’ administrators without any ad-

ditional cost or resource utilisation are executed next. Examples of such rules
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are those who modify attributes of external servers hosted at organisations

where their exists previous mutual free or service-level agreements.

3. Finally, rules that have overhead regarding resource utilisation, cost, new ser-

vice agreements and access permissions considerations are executed next.

There are four refactoring rules that have been classified as primitive or supporting

rules since they are just needed to support the execution of other rules such as

creating or deleting a network AS number or server geographical location. Figure 7.3

shows how the proposed refactorings are prioritised based on the above mentioned

guidelines.

7.1.3 Quality Impacts of Model Refactorings

An established way of evaluating the impact of refactorings on the quality attributes

of a software artefact is to compute metrics on its initial version and on the refactored

version [98]. Nevertheless, metrics alone do not provide a clear answer to the question

of whether the refactorings improve the quality attributes of the system. For that,

it is necessary to find an alignment of metrics to quality attributes, i.e., whether

a lower/higher value of a metric improves/worsens a given quality attribute of the

operational system. We conducted an empirical study reported in Chapter 4, that

helped us to justify the quality improvements of our refactorings (apart from relying

on our own experience in the field).

Model Structural Metrics are the key factor here since refactorings change the metrics

of the model and hence have a direct effect on the model quality and consequently

the perceived system quality attribute. We used the assessment experiment to prove

that the DNS model structural metrics can effectively be used as early indicators of

the quality of the model and the perceived quality of the system.
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7.2 DNS Model Transformation

A model transformation mechanism takes as input a model to transform, the source

model, and produces as output another model, the target model. Model transfor-

mation can be used as a correction mechanism based on the detection of bad smells

that affect certain aspects of the DNS quality attributes. It can also be carried out

to improve certain aspects of quality attributes of the original system in addition to

eliminating bad smells related to a particular qulaity attribute.

The approach illustrated in Figure 7.4 is a bad-smells-driven DNS model transforma-

tion method. The main goal of this method is to remedy or eliminate the existence

of bad smells within the model instance (i.e dependency graph). The method takes

a certain zone configuration and servers’ deployment structure and apply the ISDR

method bad smells detection techniques and then applies the correction mechanisms

to detected bad smells in the form of graph-based refactorings and finally generate a

new zone configuration and name servers layout with associated recommendations.

The process is executed in eight steps which are detailed next:

1. Generation of Initial Dependency Graph. In this step, the dependency

graph is generated using the DGBuilder or using the Example EMF Model

Creation Wizard. The DNS Model instance is generated using the interde-

pendencies extracted from the zone configuration and the authoritative name

servers’ deployment structure.

2. Metric Calculation and Prediction Models. In this step, metrics are

calculated on the model instance (using the metrics specification techniques

defined as part of the ISDR Implementation) and the prediction models devel-

oped as part of the empirical assessment (detailed in Chapter 4 are utilized to

get an initial values for the quality attributes (QAvailability, QSecurity, QStability,

QResiliency).
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Figure 7.4: Bad-Smells-Driven DNS Model Transformation Methodology.

3. Bad Smells Detection. In this step, the model instance is checked using the

techniques developed as part of the ISDR method implementation to detect

any occurrence of a bad smell.

4. Results Interpretation. In this step, system administrators manually check

the results and interpret them based on their local policies and constrains and

decides if a model transformation refactoring is needed.

5. Model Transformations Refactorings. In this step, applicable refactorings

(defined as part of the ISDR Method techniques) are executed on the initial

model instance and the bad smell is rectified.
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6. Generation of The New Dependency Graph. A new model instance is

generated and the two model instances are visually and textually compared.

Proposed changes on the initial model instance are displayed to the system

administrator.

7. Predicting Quality Attributes of Newly Generated Model Instance.

In this step, new values for the quality attributes is computed (based on the

metrics calculated on the newly generated model instance and fed to the pre-

diction models) and their values are compared with the previously calculated

values to see the effect of the refactorings on the overall quality attributes of

the system.

Steps 3-7 are repeated to eliminate other bad smells within the newly gener-

ated model instance.

8. Generation of New Zone Configuration and Servers’ Layout. As a

final step in the process and after eliminating all bad smells of the model

instance, a new zone configuration and server layout report is generated with

recommendations listing what changes need to be done.

7.3 Implementation of the DNS Advisor Prototype

This section describes the implementation of a prototype, that can be both seen

as a reference implementation of the methodology, but also a means to evaluate

the approach described in this chapter. All the tools used for the prototype were

implemented in Eclipse and are used as plugins to this IDE. The tools involved,

as well as the artefacts of each step of the ISDR method artefacts are shown in

Figure 7.4.
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7.3.1 Prototype Architecture

This prototype architecture supports the several steps of the methodology described

above and utilises the ISDR method artefacts and techniques as outline in Chapter

6. The final implementation of the DNS advisor dashboard and recommendation

plugins is straightforward and was not included in the prototype, and can be part

of future work.

Source Zone
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Source DNS 
Servers’ 

Deployment 
Layout

Zone File/
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Report Generator

(Plugin)

WEKA Java API (Plugin)
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EMF-Refactor
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DNSMetrics
Plugin

DNSSmells
Plugin

DNSRefactor
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Figure 7.5: Prototype Architecture.

Summarising the defined process, the starting point is the source zone file configura-

tion of the concerned zone and its authoritative name servers deployment structure.

The DGBuilder takes this information and generate an XMI file representing the

DNS model instance (i.e. the source dependency graph). A new target model in-

stance generated after detecting and then eliminating the bad smells of the source

model instance and applying the corresponding refactoring rules to generate the

target model instance (i.e. the target dependency graph).

The final step is reversing the first one by generating a new zone file configuration out

of the target model instance and new name servers layout with a recommendation

129



Chapter 7. DNS Model Transformation

report of the required changes. The impacts of the changes on the perceived quality

attributes of the model are displayed on the dashboard as a visual guidance to

the zone administrators to support their decisions in an informative and meaningful

way. Figure 7.5 shows the prototype architecture which is built on top of the Eclipse

Modelling Framework.

7.3.2 Prototype Case Study

To validate the implementation of the prototype, the example zone (EXAMPLE.COM.)

is used.

The implementation process based on the methodology shown in Fiure 7.4 followed

the following steps:

1. The initial dependency graph was built using the DGBuilder tool utilising

the zone configuration of the zone (EXAMPLE.COM) and its name servers’

deployment layout and fed directly as an XMI file to the Eclipse Modelling

Platform. The dependency graph of the zone is shown in Figure 7.6 and the

model tree and textual views of the generated XMI file within the Eclipse IDE

are shown in Figure 7.7.

2. The structural metrics of the initial model instance are calculated, and using

the prediction models developed in Chapter 4, the initial value of (QAvailability=2,

QSecurity=3, QStability=2, QResiliency=2).

3. Running the bad smells detection will reveal if there is any improvement to

the model in the form of erasing the smell or new smells have been caused

by the application of the concerned refactoring. Table 7.1 shows the detected

bad smells in the model instance as well as the suggested refactoring to be
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Figure 7.6: Example DNS Model Instance (Dependency Graph).

applied to eliminate those bad smells in each iteration of the DNS model

transformation process.

4. The system administrator decides to eliminate all four bad smells by applying

the corresponding refactorings.

5. The refactorings are applied on the model instance or manual changes are

applied to eliminate the currently identified bad smell.

6. After applying the refactoring on the original model instance, the tool gen-

erates a new model instance with _transformed suffix. The two models can
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Figure 7.7: Example DNS Model Instance (Model and Textual Views).

be visually and textually compared using EMF Compare and changes are dis-

played and highlighted. DNS system administrators will able to evaluate how

much improvement that has been achieved and if the same refactoring or other

ones are need to get rid of all occurrences of bad smells in the model and im-

prove the quality of the system.

7. Each time a refactoring is applied, structural metrics are calculated on the

newly generated model and the values are fed to the corresponding prediction

model to get a value for the quality attribute Qnew. This value is compared

with the Qold value for each of the four quality attributes to see if there has

been any improvement in those quality attributes. Table 7.2 shows the values

of those metrics for each iteration. Figure 7.8 shows a screen shot of the model

instances after applying the set of refactorings to erase the corresponding bad
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smells. It shows how a particular occurrence of the smell has been erased with

no additional smells generated.

8. A new zone configuration and server layout report is generated with recom-

mendations listing what changes that need to be carried out.

Table 7.1: Bad Smells Detected on the Model Instance and the Proposed Refac-
torings.

Iteration# Bad Smell Refactorings
1 Cyclic Dependency CreateARecord
2 Diminished Network Redun-

dancy
CreateNewNet + MoveServer-
Net

3 Diminished Geographical Re-
dundancy

CreateNewGeoLocation +
MoveServerLocation

4 Small Number of ANSs. AddNewServer + CreateN-
SRecord + CreateArecord

Smell Detection Reporting 
including involved model 
elements and number of 

occurrences in each model 
transformation step.

Model Instance(s) Tree View with 
all model instance components 
with ability to export the model 
instance in text or xml format. The two model instances (initial and final DG) 

are visually and textually compared using EMF 
Compare and changes are clearly displayed.All generated models are saved with 

_transformed suffix for each model 
transformation step.

All bad smells have 
been eliminated by 

applying the 
refactoring rules

Figure 7.8: DNS Model Instances Transformation Using Model Compare.

Figure 7.9 shows a screen shot of the WEKA environment which shows the predicted

Stability quality attribute for each model transformation iteration. The predicted
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Table 7.2: Measurements of Metrics on the Generated DNS Model Instances.

Inst.# AS ANS NETD GEOD Red AC AQP DCZ TPZ DCO TPO
Initial 10 4 1 1 4 0.5 3 2 2 2 1
1 12 4 1 1 4 0.5 3 2 2 2 1
2 18 4 4 4 4 0.5 3 2 2 2 1
3 21 5 5 5 4 0.5 3 3 2 3 1
4 24 6 6 6 6 0.5 3 4 2 4 1

values were calculated based on the LWL prediction model developed as part of

the empirical assessment reported in Chapter 4. For each iteration of applying the

refactorings, predicted quality attributes are calculated as shown in Table 7.3. The

system administrator will be able to terminate the process at any stage based on the

reported qualities of the system and the local policies, intents and constrains. After

eliminating the bad smells, the final value of (QTarget) of the target model instance

should be improved over the source quality attribute (QSource) so the changes are

then committed and the process is terminated.

Table 7.3: Effects of Applying Refactoring on the Perceived Quality Attributes
of the DNS Model Instances.

Iteration# Refactoring Availability Security Stability Resiliency
0 Source Model

Instance
2 2 2 2

1 CreateARecord 2 4 2 2
2 MoveServerNet 2 4 2 2
3 MoveServerLoc 4 4 3 3
4 AddNewServer 3 4 4 3
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Figure 7.9: Predicted Values of Quality Attribute (Stability) for the Various
Iterations of the Transformed DNS Model Instances.
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Related Work

In this chapter, we provide a survey of related work in the subjects discussed within

the various chapters of this research and relate it tom our research contributions.

The research deals with many subjects from different disciplines and project them

to the DNS realm.

8.1 DNS in Operation

Since the inception of the domain name system (DNS) in 1983, there has been a

large body of work [6, 10, 14, 21–24] on understanding its operation, availability,

security and stability. Issues as understanding the DNS ecosystem [99–102], DNS

components’ behavior [96, 103, 104], security issues of resolution [9], applications

for malicious actors detection and profiling [105–107], DNS stability and resiliency

[108, 109], etc. have been widely researched.
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8.1.1 DNS Interdependencies

The DNS is a complex distributed system, a system of systems composed of a highly

interconnected infrastructure, protocols and operations procedures. DNS name de-

pendencies are analysed in [8, 16, 17] and [7], in which the potential for a large

number and variety of servers affecting name resolution is demonstrated.

Ramasubramanian, et al. [16] demonstrate the far-reaching effects of DNS depen-

dencies. Their results show that a domain name relies on 44 name servers on average.

Several surveys of production DNS deployments have been conducted [13, 15, 17]

with various misconfigurations are analysed.

So far the main efforts in addressing the problem have focused on informing the

operators about the existence of DNS configuration errors, either by Internet RFCs

[5, 6] or with directives set by specific organizations [4].

8.1.2 DNS Measurements

Individual operators and independent researchers have measured various aspects of

the DNS and from various prospective such as from the user, resolver or network

points of view.

Deccio et al. [7] perform further examination of name resolution behaviours to create

a formal model of name dependencies in the DNS and quantify the significance of

such dependencies. Shulman et al. [11] studied the operational characteristics of the

DNS infrastructure and how some factors impact resilience, stability and security of

the DNS services.
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DNS availability and robustness have been analysed in other studies [57, 110]. In

these empirical studies. DNS availability was measured from a perspective of respon-

siveness of resolvers and authoritative servers, and diversity of DNS performance

from different client perspectives. Deccio et. al [7] derived a theoretical availabil-

ity model and methodology to systematically identify such misconfigurations and

quantify their impact on availability. In their analysis, they applied their theoreti-

cal model to a deployment of a domain name and its dependencies to measure its

availability.

Casalicchio et al. [18] proposed a framework for the evaluation of the health and

security levels of operational DNS. To the extent of our knowledge, only very few

preliminary studies for defining suitable metrics to measure the quality attributes

of the DNS system have been conducted [7]. Even within these existing works, not

much theoretical or empirical evaluation of the proposed metrics has been done.

8.1.3 DNS Troubleshooting

The state of the DNS is presented in several surveys of production DNS deploy-

ments [15, 17]. Various misconfigurations are analysed, including lame delegation,

diminished server redundancy, cyclic dependencies, and inconsistency of NS RRsets

between parent and child zones.

Despite all the existing efforts, DNS configuration errors are still widespread today

[19], and one of the main reasons is the lack of adequate tools to help DNS operator

identify and correct configuration errors in their own domains. Previous studies

are largely based on empirical analysis, whereas in this paper we derive a formal

operational model and methodology to systematically identify misconfigurations and

bad deployment choices in the form of operational bad smells [15].
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Although several DNS troubleshooting techniques and problem identification meth-

ods [111, 112] have been proposed and several tools [113–115] have been built, most

of these methods and tools apply their detection techniques directly on the zone files

through a predefined zone schema and a specified set of integrity constraints.

Chandramouli and Rose [116] considered integrity constraints for Resource Records

(RRs) from single and multiple zones. They found that many integrity constraints

have to be satisfied across zones.

Danzig et al. [117] provided an extensive analysis of the DNS traffic observed on a

root name server. They identified a number of DNS implementation bugs and found

that such bugs incurred unnecessary wide-area DNS traffic by a factor of twenty.

Jung et al. [20] measured the DNS performance in term of query response time

perceived by DNS resolvers, and studied the effectiveness of caching. They found

that the query response time is highly related to the number of referrals, and that the

majority of queries complete in less than 100 milliseconds. They further concluded

that DNS caching works effectively even when the TTL value of host names is as

low as a few hundred seconds, as long as the domain servers’ A RRs are cached.

Liston et al. [57] studied the diversity in DNS performance perceived by a number

of geographically distributed clients. They showed that the mean response time for

name lookups at different sites varies greatly, and the performance of root servers

and TLD servers have the least impact for non-cached entries. In this paper we

examine the diversity in server placement and its impact on zones availability.

Pang et al. [110] measured the availability of the individual DNS authoritative and

caching servers and studied the different server deployment strategies. Both these

works measure the reliability of individual components of the system, whereas in our

study we measure the reliability of the DNS infrastructure, and more specifically we

show how it is affected by human errors.
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Casalicchio et al. [18] proposed a set of metrics to be used to evaluate the health

of the DNS by measuring the DNS along three dimensions, namely vulnerability,

security and resilience. Most of these studies can detect only a subset of the DNS

infrastructure-related configuration errors. On the other hand, they implement diag-

nostic tests that can identify errors related with application-specific resource records.

They do not take into account the inter-dependencies stemming from the hierarchical

nature of the DNS, zone administrators’ practices and deployment choices.

There are a number of companies and individuals that look into the problem of

lame delegation. Men & Mice [118] periodically measures the lame delegation as it

appears under the com domain; Team Cymru [119] collects the BIND log files from a

number of DNS servers and extracts from them a list of lame servers; and Credentia

[120] provides lame delegation statistics on the TLD zones.

So far, the main efforts in addressing the problem have focused on informing the

operators about the existence of DNS configuration errors, either by Internet RFCs

or with directives set by specific organizations. Despite all the existing efforts, DNS

configuration errors are still widespread today and one of the main reasons is the

lack of adequate tools to help DNS operator identify and correct configuration errors

in their own domains.

8.2 Bad Smells

In this section, we present related work in the field of code smells identification,

specification and detection in object oriented programming and how it expanded

into the fields of model bad smells detection and model refactoring.
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8.2.1 Bad Smells Idetification

There is a large body of work on the identification of problems in software testing

[121], databases [122], and networks. Several books have been written on smells

[86, 123, 124] in the context of object-oriented programming.

In their paper, Min Zhang et. al. [85] conducted a systematic literature review to in-

vestigate the current status of knowledge about Code Bad Smells. The link between

the structure of the software and some of its quality attributes (i.e. maintainability)

is established in [125]. In [126], the study shows that software structure, which was

measured using source code metrics, could predict maintainability of the software.

Another study also shows that source code metrics and perceived maintainability

have a correlation [127].

Marinescu [128] presented a metric-based approach to detect code smells. Alikacem

and Sahrouri [129] proposed a language to detect violations of quality principles and

smells in object-oriented systems. Mens and Tourwe [46] have conducted a com-

prehensive survey of software refactoring. While software refactoring has started

focusing on restructuring of programs, the research has extended to model refactor-

ing [38].

8.2.2 Bad Smells Detection

All the techniques for detecting code smells in source code have their roots in the

definition of code design defects and heuristics for identifying those that are outlined

in well-known books: [86], [130–132]. The first by Webster [131] describes pitfalls in

Object-Oriented (OO) development going from the management of a project through

the implementation choices, up to the quality assurance policies. The second by Riel

[132] defines more than 60 guidelines to rate the integrity of a software design.
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Fowler [86] defines 22 code smells together with refactoring operations to remove

them from the system. Brown et al. [130] describe 40 anti-patterns together with

heuristics for detecting them in code [133].

Detecting model smells using object-oriented metrics is known as Metric-based

Refactoring, a term coined by (Simon et al. 2001) who used metrics to identify

smells in object-oriented code. An important issue with using model metrics as a

smell detection strategy is the specification of a threshold value for the metrics as it

has decisive influence on detection accuracy.

Marinescu [128] identified three ways of parameterizing threshold values for metrics

used for smell detection (1) Empirical results from metrics’ authors and similar past

experiences, (2) using a Tuning Machine to automatically find proper threshold

values for regulating the detection strategy [134] and (3) analyzing multiple versions

for change stability information or persistency of a design flaw over time [135].

8.3 Refactoring

The term refactoring was originally used in the software industry for source code

restructuring by William Opdyke [90]. The main aim of refactoring is to reduce

software complexity by "changing a software system in such a way that it does not

alter the external behavior of the code, yet improves its internal structure" [86].

With the popularity of MDA and UML, recent approaches for refactoring have ele-

vated it to a more abstract level of design models. While a refactoring is a solution

to a single problem, the refactoring pattern is generic and well documented.
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8.3.1 Refactoring Techniques

Mens et al. provide a survey of existing research in the field of software refactoring

[46], where they identify six distinct activities the refactoring process consists of.

Wake, in the Refactoring Workbook [136], aims to provide practice in the identifica-

tion of the most important smells and practice with the most important refactoring

techniques, with particular emphasis on discovering new refactorings.

On the level of formalisation: a refactoring rule is such a pattern that is implemented

in a tool or formalised with mathematical means [91]. Graph transformation systems

(GTS) are well-suited to model refactoring and, more generally, model transforma-

tion [44]. Model refactorings based on GTS can be found in [46], [137–140].

Our objectives are similar to those of previous DNS operation studies but our ap-

proach differs. We use terminologies and concepts well established in the software

engineering subject and project them in the Domain Name System realm. Our

method utilizes a set of measurable, structural and lexical properties defined over

a DNS model to detect the smells in early stages of the DNS deployment. It also

suggests graph-based refactoring rules as correction mechanisms for those bad smells.

8.3.2 Refactorings Analysis

With respect to the contributions of this thesis, we discuss two main threads of

related work. First, behaviour preservation properties, priorities and orchestration,

dependability and conflicts analysis techniques. Second, work done in the field of

graph- based model transformation.

Behaviour Preservation. The most common approaches to behaviour preserva-

tion rely basically on checking given models and their refactored versions. Mens

[95] and Bottoni et al. [141] use graph transformations to describe refactorings for
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models. The application of this formalism comes with the additional benefit of for-

mal analysis possibilities of dependencies between different refactorings. Rangel et

al. [140] introduced a more general technique for checking behaviour preservation

of refactorings defined by graph transformation rules. They used double pushout

(DPO) rewriting with borrowed contexts, and, exploiting the fact that observational

equivalence is a congruence, They show how to check refactoring rules for behaviour

preservation. They concluded that when rules are behavior-preserving, their appli-

cation will never change behaviour, i.e., every model and its refactored version will

have the same behaviour.

Critical Pairs. Critical pair analysis was first introduced for term rewriting, and

later generalised to graph rewriting [142]. The idea of critical pair analysis is quite

simple. In [97], the formalism of critical pairs was explained and related to the formal

property of confluence of typed attributed graph transformations. In [143], critical

pair analysis is used to detect conflicting requirements in independently developed

use case models. In [144], critical pair analysis has been used to increase the efficiency

of parsing visual languages by delaying conflicting rules as far as possible. In [145],

graph transformation dependency analysis has been used for the purpose of detecting

and resolving inconsistencies in design models.

Refactorings Orchestration. Because of the huge search space when searching

for possible model transformations for a given set of input/output model pairs,

search-based techniques have been applied to automate this complex task [146–149].

8.4 Graph-Based Model Transformation

The motivation behind model-driven software development is to move the focus of

work from programming to solution modelling. The model-driven approach has a
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potential to increase development productivity and quality by describing impor-

tant aspects of a solution with more human-friendly abstractions and by generating

common application fragments with templates.

The applicability of graph transformations for model transformations rests upon the

fact that most models exhibit a graph-based structure. The initial graph representing

a model evolves through the application of graph transformation rules until the

execution stops and we obtain the output graph, i.e., the output model. Beirmann

et. al. [42] presented an approach to define EMF model refactoring methods as

transformation rules being applied in place on EMF models. Performing an EMF

model refactoring, EMF transformation rules are applied and can be translated to

corresponding graph transformation rules.

In [150], object-oriented programs are represented as graphs before applying graph

transformations for refactoring this abstract representation. Furthermore, Bottoni et

al. [151] use graph transformations to describe refactorings for models. Introduction

to the concept of model refactoring using UML models as candidates for refactoring

was first proposed by Sunyé et al [152].

Mens et al. [153] and Mohamed et al. [154] provided introduction, overview and

taxonomy of model refactoring literature. These two reviews describe the state-

of-the-art and taxonomical classification of various model refactoring approaches

respectively. Mens et al., in the book titled "Model-Driven Software Refactoring"

[155], were the first ones to publish a review on model-driven refactoring. Mohamed

et al.’s (Mohamed et al. 2009) review emphasized classifying the existing model

refactoring approaches based on a feature-model driven taxonomy. They extended

the model transformation feature diagram presented by Czarnecki and Helson [156]

by adding concepts specific to model refactoring domain.
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Conclusions and Future Work

In this thesis we have analyzed the various interdependencies stemming from the

delegation-based structure of the DNS. We developed a conceptual model that ab-

stracts all these dependencies with the three operational planes.

We introduced structural metrics as indicators of the quality of the operational sys-

tem and used them to build predictive models for the availability, security, stability

and resilience quality attributes of the system.

We also introduced the concept of bad smells to the DNS arena and build a bad

smells catalogue with graph-based refactoring suggested as correction mechanism

for the bad smells and built an advisory tool as an implementation of the methods,

techniques and quality assurance framework proposed in this research.

The tool, in a systematic process, can automatically direct the zone administrator to

places in the zone file that contain potential design and deployment problems that

may compromise availability, resiliency, stability or security of the domain name

system. We summarize our conclusions and elaborate on future research in this final

chapter.
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9.1 Conclusions

DNS relies on a delegation-based architecture, where resolution of a name to its IP

address requires resolving the names of the servers responsible for that name. The

graphs of the inter-dependencies that exist between name servers associated with

each zone are called Dependency Graphs.

In Chapter 3 we analysed the various interdependencies within the three opera-

tional planes of the DNS and constructed a DNS Dependency Model as a unified

representation of these Dependency Graphs.

In Chapter 4, we utilized a set of Structural Metrics defined over this model as

indicators of external quality attributes of the domain name system. We explored

the inter-metric and inter-quality relations further in order to quantify the indicative

power of each metric. We applied machine learning algorithms in order to construct

Prediction Models of the perceived quality attributes of the operational system out

of the structural metrics of the model. Assessing these quality attributes at an early

stage of the design/deployment enables us to avoid the implications of defective and

low-quality designs and deployment choices and identify configuration changes that

might improve the availability, security, stability and resiliency postures of the DNS.

In Chapter 5, the model-based ISDR method was presented. The method subsumes

all the steps necessary to identify, specify, formalize and detect operational bad

smells. The method deals with smells on a high-level of abstraction using a consistent

taxonomy and reusable vocabulary defined by the DNS model. The set of identified

bad smells has been formally specified in a bad smells catalogue.

The method laid the basis for developing a visual advisory tool for system admin-

istrators to identify, analyse, discover, and remedy operational bad smells. Case
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studies were used to validate the method and its usefulness in identifying and de-

tecting bad smells has been verified.

In Chapter 6, the various techniques of the ISDR method (including the metrics, bad

smells and refactorings) were specified using the EMF Refactor Quality Assurance

Frame work and other modelling tools. The various steps included in the process

of implementing the ISDR method techniques were presented and case studies were

used as an implementation examples of the method.

In Chapter 7, behaviour preservation properties, conflicts, dependabilities and pri-

orities of the proposed refactoring rules were analysed. Graph-based model trans-

formation tools along with the ISDR method techniques and DNS quality prediction

models were utilised to build a prototype of the DNS advisory tool. Case studies

and concrete examples were developed to validate the correctness and evaluate the

applicability of the tool.

In Chapter 8, a summary of related work in the fields of DNS management and trou-

bleshooting, bad smells identification and detection, software modelling, refactoring

and model transformations was presented.

The DNS will continue to play an integral role in the Internet usability and more

applications rely on the effective operation of its infrastructure. The models, metrics

and other techniques presented in this dissertation can assist DNS administrators in

better understanding their DNS deployments and avoiding name resolution failure

by properly engineering and maintaining their DNS infrastructures.

The diagnostic and advisory tool consider several properties and metrics from the

DNS dependency model and use them to detect bad smells and suggest graph-based

refactorings to eliminate such smells. It also enables the system administrator to use

the structural metrics of the DNS model instance to predict the perceived quality

attributes of the system. Zone administrator will be able to run several scenarios
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and apply several refactoring rules through the tool to determine the solution that

best meets their local policies.

9.2 Research Limitations

A limitation of a study design or instrument is the systematic bias that the researcher

did not or could not control and which could inappropriately affect the results. In

our research we were faced with the followin main limitations:

• Models. Lack of DNS models to use in our assessment forced us to build such

models from operational DNS configurations and deployment layouts using

in-house developed tools.

• Metrics. It should be noted that the used set of metrics may not be compre-

hensive and other consecutive research could further complete this proposed

set by defining new metrics from other perspectives.

• Tools. In implementing the different ISDR techniques, we used the EMF

Refactor framework and its associated tools, specifications and techniques.

The tool has not gone through extensive testing or industry-scale implemen-

tation since its use is limited to the research and academic utilisation only.

• Assessment Experiment. Another limitation which we faced in our assess-

ment experiment, is the limited number of data points that were collected due

to the limited number of participants amongst the DNS operators. Another

limitation is posed by using subjective measurement mechanisms is that dif-

ferent participants may have different attitudes toward the evaluation of these

attributes. The detailed limitations faced in the assessment experiment were

clearly explained in the Threats to Validity section in Chapter 4.
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9.3 Future Work

Due to the growing interconnectivity of critical infrastructure assets, a DNS fault

under certain conditions could have serious national and international implications.

There are number of ways in which this work can be extended and we plan to grow

our research in the following key directions:

9.3.1 Extending the DNS Operational Model

The DNS Operational model developed as part of this research was limited to the

static structure (design and deployment) of the Domain Name System. Extending

the model to include additional components of the system such DNS resolvers and

end-users as well as modelling the system from different vantage points will widen

the understanding of the DNS and enable the system administrators to try different

configuration and deployment scenarios and simulate their effects on the overall

system performance. We also plan to introduce some additional elements to the DNS

Model to represent the dynamic behaviour of the system and its various components.

We expect that modelling these factors would reduce the error and lead to a better

performance of a DNS reference model on the prediction of DNS behaviour.

9.3.2 DNS Structural Metrics and Prediction Models

We will conduct a broad empirical validation of assessment techniques, by imple-

menting the comprehensive metrics suite. We aim to perform this validation on

most of the current general top-level-domains (gTLDs) and country code top-level-

domains (ccTLDs). The analysis results will be used to calibrate the metric calcu-

lation, bad smells detection as well as the quality assessment techniques.
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One problem that we will be tackling during this task is the reluctance of many TLD

operators to share their data and internal measurements due to confidentiality and

privacy concerns. Sharing is always a big challenge, technical issues are marginal

with respect to business, privacy, confidentiality and legal issues. Another issue

was the need for objective mechanisms for measuring the value of the real quality

attributes of the DNS.

Our experience shows that although subjective opinions of the participants are good

measures of the perceived quality attributes of the models, still the use of objective

measures to second the obtained results is valuable. We believe that both theo-

retical and empirical development of appropriate objective measures of the various

DNS actual quality attributes is required. However, further experimentation with

industrial scale DNS models and more participants are required to fully verify the

conclusions of our work.

We plan to present the method to major TLD operators and DNS industry partners

to investigate the scope for commercial exploitation of this method and associated

techniques. We will be looking into joint research and knowledge transfer with

TLD operators, ICANN technical work groups (specially the DNS Security, Stability

and Resiliency workgroup), DNS Operations, Analysis, and Research Center (DNS-

OARC) and other industry partners to utilise the results of this research to improve

the current status of DNS metrics and DNS quality prediction models.

9.3.3 DNS Quality Indicators

Currently, there is little consensus on the right measures and acceptable performance

levels for the DNS as a whole related to availability, security, stability and resiliency.

Individual operators and independent researchers have measured various aspects of

the DNS, but to date little progress has been made in defining and implementing
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standard, system-wide metrics or acceptable service levels. As mentioned before,

quality assessment is not a goal in itself. The real goal is to improve the quality of

the system. This is achieved by eliminating all bad smells that negatively affect the

quality attributes of the system.

There are many examples of failed attempts to over-summarize a complex system’s

status into a single indicator. The problem is that, in a complex system, a single

numeric value can’t express the system’s condition in a usable way. One implemen-

tation would be to use a dashboard to convey the status of operational qualities of

the system.

We plan to improve the ability of the DNS system administrators to comprehend

about the system operational qualities by presenting them with a dashboard of

indicators that measure roughly the four quality attributes of availability, security,

stability, and resiliency of the system based on the developed prediction models.

This dashboard will be tightely connected with a list of bad smells that may be

present in the model instance along with applicable and recommended refactorings.
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Figure 9.1: Implementation-Level DNS Quality Dashboard.
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The important point is not that the factors are displayed on the board in a concise

numerical way, but that each of the measured elements has designated green, light

green, yellow, orange and red zones, (that resembles the 5-points Likert-Scale used

in our empirical assessment and shown in Table 4.8) indicating whether a particular

measurement is within tolerance for the system. Figure 9.1 shows how the DNS

quality dashboard indicators can be implemented. There is no single indicator of

quality on the display, yet the system administrator could tell immediately from the

presented quality indicators and bad smells whether the system is performing well

or not.
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The DNS Dependency Model

DNSModel

A root node is necessary in the EMF model to contain all model elements. The

DNSModel is the root element of our DNS Model.

Attributes:

• Name: EString: One instance of the model represents one type graph. The

name attribute is the name of this instance of the model.

Associations:

• DataLayer [0..1]: A collection of elements (such as Zones and Resource Records)

that represent the data operational plane of the DNS.

• ControlLayer [0..1]: A collection of elements (Servers, Networks and Geoloca-

tions) that represents the control plane elements of the operational DNS.

• ManagementLayer [0..1]: A collection of (Organisations) that represent the

entities responsible for managing and hosting the DNS Servers and Zones.
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Constraints:

1. There can be only one DNSModel component in a model instance.

2. There can be just only one component of DataLayer in the model instance.

3. There can be just only one component of ControlLayer in the model instance.

4. There can be just only one component of ManagementLayer in the model

instance.

Layers in the DNS Dependency Model represent the different operational planes of

the DNS system. The DataLayer model component contains the Zone element and

its subzones and all logical elements within the DNS zone file called the Resource

Records while the control layer and management layer contain representation of the

physical elements in the model such as servers, networks, geographical locations and

management organisations.

A.1 Modelling the Data Layer

The overall trust in DNS depends upon the integrity of the zone file data [Ref:DNS

and BIND, Fourth Edition]. The zone file hosted on an authoritative name server

consists of various types of records called Resource Records (RRs). Associated with

each DNS resource record is a type (RRtype). An RR of a given RRtype in a zone

file provides a specific type of information. A zone file generally consists of multiple

RRs of a given RRtype with some integrity constraints (e.g., there can be only One

SOA RR in a zone file). It can also have multiple RRs for the same domain name

and same (or different) RRtype (e.g., multiple authoritative name servers or mail

servers for a domain say services.example.com).
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Zone

The Zone model element is an abstraction of a single administrative unit within the

domain name system data space.

Attributes:

• name: EString: An attribute identifies the name of this element.

Associations:

• nameservers [2..13]: Associates the Zone with a set of authoritative name

Servers that are responsible for giving answers in response to questions asked

about names in this particular zone.

• ownedby [1..1]: Associates the zone to the Organisation that is designated as

the management entity for this Zone.

• subzones [1..1]: Associates the zone to other zones that are sub-zones (child/-

parent relationship) of this Zone.

Constraints:

1. There can be a minimum of two and maximum of 13 name Servers components

associated with this particular zone.

2. The zone can be owned by one organisation only.

3. The Zone can contain unlimited number of sub-zones (also of type zone) with

one parent zone only.

We limit our focus in the DNS model to the set of resource records within the

zone file called infrastructure resource records. These are the set of resource records
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that are essential to the DNS dependencies and ensure the consistency and stable

operation of the system. The set of RRs includes the following:

SOARecord

The SOARecord (Start of Authority Record) which identifies the authoritative main

configuration parameters of a zone.

Attributes:

• admin: EString. An attribute specifies the mailbox of the person responsible

for this zone.

• serial: EInt. The version number of the original copy of the zone file.

• refresh: EInt. Represents the time interval before the zone should be refreshed.

• retry: EInt. Represents the time interval that should elapse before a failed

refresh should be retried.

• expire: EInt. Represents the The time interval (in seconds) that specifies the

upper limit on the time that can elapse before the zone is no longer authori-

tative.

• minTTL: EInt. Represents the time that should be exported with any RR

from this zone.

Associations:

• PrimaryServer [0..1]: Associates the SOARecord to the Server that is the

original or primary source of data for this zone.

Constraints:
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1. There can be only one SOARecord component in a model instance associated

with a particular Zone.

NSRecord

TheNSRecord (Name Server Record) which identifies the authoritative name server(s)

for the zone.

Attributes:

• name: EString: An attribute identifies the name of this element.

Associations:

• nsrecords [0..*]: Associates the NSRecord to the Zone that contains this record

to identify the set of authoritative name servers to this particular Zone.

• refersto [1..1]: Associates the NSRecord to the Server that is designated as

an authoritative name server for this Zone.

Constraints:

1. There can be only one Server component associated with this particular NSRecord.

ARecord

The ARecord (Address Record) which identifies the IP address of a particular Server.

An A record maps a domain name to the IP address (IPv4 such as 192.168.23.12)

of the computer hosting the domain. Simply put, an A record is used to find the IP

address of a computer connected to the internet from a name. For IPv6 (the length

of an IPv6 address is 128 bits, compared with 32 bits in IPv4), the record name is
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the AAAA Record which is an identical form of the ARecord but with the IP given

in IPv6 format.

Attributes:

• name: EString: An attribute identifies the name of this element.

Associations:

• arecords [0..*]: Associates the ARecord to the Zone that contains this record

to identify the IP address of one of the authoritative name servers to this

particular Zone.

• pointsto [1..1]: Associates the ARecord to the Server that is designated as an

authoritative name server for this Zone.

Constraints:

1. There can be only one Server component associated with this particular ARecord.

CNAMERecord

The CNAMERecord (Canonical Name Record) which specifies that the name is an

alias for another Server name. When a DNS resolver encounters a CNAME record

while looking for a regular resource record, it will restart the query using the canon-

ical name instead of the original name. The canonical name that a CNAMERecord

points to can be anywhere in the DNS, whether local or on a remote Server in a

different DNS Zone.

Attributes:

• name: EString: An attribute identifies the name of this element.
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Associations:

• cnamerecords [0..*]: Associates the CNAMERecord to the Zone that contains

this record to identify the alias of an authoritative name servers to this par-

ticular Zone.

• aliasto [1..1]: Associates the CNAMERecord to the authoritative name Server

that is aliased by this record.

Constraints:

1. There can be only one Server component associated with this particular CNAMERe-

cord.

HINFORecord

The HINFORecord (Host Information Record) A HINFO-record specifies the host

server’s hardware type, CPU and operating system.

Attributes:

• name: EString: An attribute identifies the name of this element.

Associations:

• hinforecords [0..*]: Associates the HINFORecord to the Zone that contains

this record.

Constraints:

1. There can be only one HINFORecord component contained in this particular

Zone.
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A.2 Modelling the Control Layer

The DNS control layer subsumes the abstraction of the interconnected graph of

authoritative name servers of a certain zone and their network and geographical

distribution along with inter-dependencies and other relations that represents the

control structure of the domain name system. It contains the following model ele-

ments:

Netwok

The Network which identifies the network Autonomous System (AS) Number where

a name Server is hosted at.

Attributes:

• name: EString: An attribute identifies the AS number of the network.

Associations:

• nets [0..*]: Associates the Network to the ControlLayer that this network is

part of.

Constraints:

1. There can be only one Network component with a particular name/AS Number

in the associated ControlLayer.

GeoLocation

The GeoLocation which identifies the geographical location where a name Server is

physically located at.

Attributes:
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• name: EString: An attribute identifies the name of the geographical location

(country).

Associations:

• geo [0..*]: Associates the GeoLocation to the ControlLayer where this location

belongs to.

Constraints:

1. There can be only one GeoLocation component with a particular name in the

associated ControlLayer.

Server

The Server (Name Server) which identifies the physical or logical nameServer.

Attributes:

• name: EString: An attribute identifies the name of this element.

• ipaddress: EString: An attribute identifies the internet protocol (IP) address

for this Server.

Associations:

• hasNameIn [0..*]: Associates the Server to the zone that the host name of

the server is registered under that particular zone.

• hostedAt [1..1]: Associates the Server to the network that the server is con-

nected to.
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• locatedAt [1..1]: Associates the Server to the GeoLocation that the server is

located at.

• managedBy [1..1]: Associates the Server to the organisation that is responsible

for managing it.

• servers [0..*]: Associates the Server to the ControlLayer that contains this

server in the textitDNSModel.

Constraints:

1. The Server can be managedBy just one Organisation component.

2. The Server can be hostedAt only one Network component.

3. The Server can be locatedAt only one GeoLocation component.

4. The Server can hasNameIn just one Zone component in the model.

A.3 Modelling the Management Layer

Organisation

The Organisation which identifies the entity that owns a certain Zone or manages

the Server hosting a copy of a particular Zone within the Dependency Graph of a

particular Zone.

Attributes:

• name: EString: An attribute identifies the name of this element.

Associations:
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• owns [0..*]: Associates the Organisation to the Zone that is managed by this

particular Organisation.

• childorg [0..*]: Associates the Organisation to other organisations which are

part (Parent/Child relation) of this particular Organisation.

Constraints:

1. There can be only one Organisation component that owns a particular Zone.
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DNS Metrics Suite

B.1 Size Metrics

Metric: Attack Surface

Symbol: AS(z)

Definition: We define the attack surface of a system in terms of the sys-

tem’s attackability along three abstract dimensions: zone,

server, and organisation.

Usability: Intuitively, the larger the attack surface, the more likely the

system will be attacked, and hence the more insecure it is.

How to Measure: Count the total number of zones, servers and organisation

within the DNS model instance

Example: The Attack Surface of the model instance pre-

sented in Figure 7.6 is 10 where we have 4 zones

(COM, EXAMPLE.COM, NET and EXAMPLE.NET),

4 name servers (NS1,NS2.EXAMPLE.COM and

DNS1,DNS2.EXAMPLE.NET) and 2 organisations (ORG-A

and ORG-B).
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Metric Notations: Let |Zones| be the total number of zones, |Servers| be the

total number of name servers and |Orgs| be the total number

of organisations within the model instance.

Formula: AS(z) = |Zones|+ |Servers|+ |Orgs|

Metric: Redundancy

Symbol: R(z)

Definition: The redundancy is the size of the smallest set of redundant

name servers at any point in the zone’s required resolution

path and if failed, will render the zone’s domain names unre-

solvable.

Usability: Redundancy is considered the "availability bottleneck" of a

domain name. If all servers comprising the redundancy of a

domain name were to fail, then the name would be rendered

unavailable.

How to Measure: The methodology for determining the redundancy of a zone

name is to compute the logical expression representing the

resolution path(s) of the zone and then this set is reduced to

conjunctive normal form (CNF), returning a set of disjunc-

tions.

Example: The sets of servers comprising the redundancy of example.com

in Figure 7.6 are: 1.1.1.1,1.1.1.2 and 1.1.1.3, 1.1.1.4. That is

say that if all NS1.EXAMPLE.COM, NS2.EXAMPLE.COM,

DNS1.EXAMPLE.NET and DNS2.EXAMPLE.NET are un-

available, then EXAMPLE.COM zone is rendered unavailable.

The Redundancy of EXAMPLE.COM is 4
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Formula: The actual redundancy algorithm was implemented as part of

the ISDR techniques in Java and is not listed in this work.

Metric: Number of Authoritative Name Servers

Symbol: ANS(z)

Definition: The set of Authoritative name servers for zone (z) as configured

in z and Parent(z).

Usability: Authoritative name servers are the ones holding a copy of the

zone file and responsible for answering authoritatively for any

request regarding any domain name under the zone z.

How to Measure Count the number of servers associated with the zone through

the association nameservers.

Example: The number of authoritative name servers for zone EXAM-

PLE.COM in the model instance presented in Figure 7.6 is 4

while the ANS(EXAMPLE.NET) is 2.

Formula: Counting the number of authoritative name servers of a zone.

It depends on the implementation of the model and the query

language. for OCL it can be calculated on a zone based on this

query: self.nameservers->size().

Metric: Number of Zones

Symbol: Zones(z)

Definition: Total number of zones within the model instance.

Usability: The metric can be used as an indication of how many zones

influencing the resolution of domain names under the zone z.

How to Measure Count all elements in the model of instance type zone.
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Example: The number of zone influencing the resolution of

domain names under the zone (EXAMPLE.COM)

in the model instance presented in Figure 7.6 is 4

(COM,EXAMPLE.COM,NET,EXAMPLE.NET). The root

zone was excluded since it is required for the resolution of

every zone in the domain name space.

Formula: Counting the number of zones in the model. It depends on

the implementation of the model and the query language. Us-

ing OCL it can be calculated on a zone based on this iterated

query over all zone elements in the model: self.data.zones-

>collect(z : Zone | z.subzones->asOrderedSet())-

>size().

Metric: Number of Organisations

Symbol: Org(z)

Definition: Total number of Organisations within the model instance.

Usability: The metric can be used as an indication of how much coor-

dination is needed between various institutions hosting name

servers included in the resolution path(s) of domain under zone

z.

How to Measure Count all elements in the model of instance type Organisation.

Example: The number of organisations involved in the resolution of do-

main names under the zone (EXAMPLE.COM) in the model

instance presented in Figure 7.6 is 2 (ORG-A and ORG-

B). The root zone organisation (ICANN/IANA) was excluded

since it is required for the resolution of every zone in the do-

main name space.
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Formula: Counting the number of organisations in the model. It de-

pends on the implementation of the model and the query

language. for OCL it can be calculated on a zone based

on this iterated query over all zone elements in the model:

self.manage.organisations->collect(o : Organisation |

o.childorg->asOrderedSet())->size().

Metric: Number of In-Bailiwick Servers

Symbol: Is(z)

Definition: The number of authoritative name servers of zone z and who

has their names in the same zone z.

Usability: This measure is an indication of how the name servers are

within the administrative authority of the zone administrator

out of the total number of authoritative name servers of the

zone.

How to Measure Count the number of authoritative name servers of a zone

where the name of the server is under the same zone.

Example: The number of In-Bailiwick name server for the zone (EXAM-

PLE.COM) in the model instance presented in Figure 7.6 is

2 (NS1.EXAMPLE.COM and NS2.EXAMPLE.COM) while it

equals to 0 for the zone (EXAMPLE.NET) since both name

servers are within the zone (EXAMPLE.COM).

Formula: Counting the number of authoritative name servers for a zone

in the control plane of the model where they have (hasNameIn)

the same zone z. It can be implemented in OCL as follows:

self.nameservers.hasnamein.name.equalsIgnoreCase(

self.name)->count(true).
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Metric: Number of Out-of-Bailiwick Servers

Symbol: Os(z)

Definition: The number of authoritative name servers of zone z and who

has their names under a zone name other than the zone z.

Usability: This measure is an indication of how the name servers are

outside the administrative authority of the zone administrator.

How to Measure Count the number of authoritative name servers of a zone

where the name of the server is under the same zone.

Example: The number of Out-Of-Bailiwick name server for the zone (EX-

AMPLE.COM) in the model instance presented in Figure 7.6 is

2 (DNS1.EXAMPLE.NET and DNS2.EXAMPLE.NET) while

it equals to 2 for the zone (EXAMPLE.NET) since both name

servers are within the zone (EXAMPLE.COM).

Formula: Os(z) = ANS(z) − Is(z). It can

also be implemented in OCL as follows:

self.nameservers.hasnamein.name.equalsIgnoreCase(

self.name)->count(false)

B.2 Measures of Structural Complexity

Metric: Administrative Complexity

Symbol: AC(z)

Definition: Describes the diversity of a zone with respect to the organi-

sations administering its authoritative name servers.
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Usability: The advantage mutual hosting of zones between organizations

is an increased availability but at the same time increased po-

tential of failure and instability of the zone resolution process.

How to Measure: Count the number of authoritative name servers managed by

each organization involved in the dependency graph of zone

(z).

Metric Notations: Oz: denotes the set of organizations administering author-

itative name servers hosting zone (z); n: total number of

authoritative name servers of zone (z); |ANS|oz ⊆ |ANS|z :

the subset of name servers administered by organization o in

Oz.

Example: For example, assuming the servers ns.example.com and

ns.example.net are the authoritative name servers for the

zone(EXAMPLE.COM) and are operated by two separate

organizations. the administrative complexity of EXAM-

PLE.COM with n = 2 is:

AC(EXAMPLE.COM) = 1− ((1
2
)2 + (1

2
)2) = 0.5

Formula: AC(z) = 1−
∑

o∈Oz
(ANSo

z

ANSz
)n.

Metric: Hierarchical Reduction Potential (HRP)

Symbol: HRP (z)

Definition: Quantifies how much the ancestry of a zone might be reason-

ably consolidated to reduce hierarchical complexity.

Usability: A greater HRP value indicates that minimizing hierarchical

complexity might reduce failure potential.
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How to Measure: We express the HRP of zone z, having m + 1 ancestral zones,

as the fraction of layers that could be reduced if the number

of zones is consolidated to m′ + 1.

Example: While delegation is necessary in many cases, there are some

cases in which collapsing a delegated zone is both rea-

sonable and possible. For example, if example.com and

sub.example.com are two zones administered by the same or-

ganization, the zone data for sub.example.com might trivially

be migrated to the example.com zone and the delegation to

sub.example.com removed. This consolidation reduces the

number of zones ancestral to sub.example.com by 0.25 from 4

to 3.

Formula: HRP (z) = m−m′

m+1

Metric: Network Diversity

Symbol: NETD(z)

Definition: This is a metric of the diversity of placement of servers in

terms of the number of distinctive networks identified by their

Autonomous Numbers (AS) hosting the various authoritative

name servers of a zone z.

Usability: Authoritative name servers have to be placed in diverse net-

works to avoid any single point of failure and to improve the

resiliency of the overall system.

How to Measure Count the ordered set of networks in terms of their AS numbers

hosting the authoritative name servers of zone z.
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Example: The model instance provided in Question 7 in the DNS sur-

vey in Appendix E shows that all name servers for the zone

(NIC.AA) are placed within the same network AS number since

all of them are within the same subnet.

Formula: Count the ordered set of network AS numbers identifying

where the authoritative name servers are hosted. In OCL

this can be implements by executing the following query:

NETD(z) = self.nameservers.hostedat.asnumber-

>asOrderedSet()->size()

Metric: Geographical Diversity

Symbol: GEOD(z)

Definition: This is a metric of the diversity of placement of servers in terms

of the number of distinctive geographical locations (identified

by the alpha-2 country code) where the various authoritative

name servers of a zone z are located at.

Usability: Authoritative name servers have to be placed in diverse geo-

graphical locations to avoid any single point of failure such as

power outages and natural and man-made disasters.

How to Measure Count the ordered set of Geographical Locations in terms of

their country codes hosting the authoritative name servers of

zone z.

Example: The model instance provided in Question 9 in the DNS sur-

vey in Appendix E shows that all name servers for the zone

(NIC.AA) are placed in the UK so GEOD(NIC.AA) = 1.
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Formula: Count the ordered set of geographical locations identify-

ing where the authoritative name servers are located. In

OCL this can be implements by executing the following

query: GEOD(z) = self.nameservers.locatedat.name-

>asOrderedSet()->size()

Metric: Controlability

Symbol: Co(z)

Definition: This is a measure of how much control the system adminis-

trator can exert on his zone as a result of hosting his zone

within name servers outside of his administrative jurisdiction

or authority.

Usability: The metric can be used to assess the amount of coordination

needed for the maintenance of a consistent and stable copy of

the zone between the various hosting name servers.

How to Measure Calculate the number of in-bailiwick and out-of-bailiwick name

servers of the zone.

Example: For the example model instance in Figure 7.6

Is(Example.COM)=2 and Os(EXAMPLE.COM)=2

then Co(EXAMPLE.COM)= 2
2+2

= 0.5. While

Co(EXAMPLE.NET)=0
2
= 0.

Formula: Co(z) = Is(z)
Is(z)+Os(z)

B.3 Measures of Dependency/Influence
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Metric: Influencing Zones

Symbol: I(z)

Definition: The set of zones included in the model instance and influencing

the resolution of domain names under a certain zone z.

Usability: This metric it is generally representative of the diversity of

zones that influence resolution of domain names under zone z

and as indication of the trusted computing base of the zone.

How to Measure Count all zones present within the model instance of the zone

Example: For the example model instance in Figure 7.6, the total

Iz(EXAMPLE.COM)=5.

Formula: Using OCL it can be calculated on a zone based on this iterated

query over all zone elements in the model: self.data.zones-

>collect(z : Zone | z.subzones->asOrderedSet())-

>size().

Metric: Directly Configured Zones

Symbol: DCZ(z)

Definition: The set of zones included in the model instance and influencing

the resolution of domain names under a certain zone z and

explicitly configured by the zone’s administrator.

Usability: This metric it is generally representative of the explicitly con-

figured zones that influence resolution of domain names under

zone z.

How to Measure Count all the zones directly associated with the authoritative

name servers of the zone. Included in this set are the parent

zones of any ANS or alias targets in the model.
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Example: For the example model instance in Figure 7.6,

DCS(EXAMPLE.COM)= (example.com and example.net)=2.

Formula: Using OCL it can be calculated on a zone based on this

query: self.nameservers.hasnamein->asOrderedSet()-

>size().

Metric: Third Party Zones

Symbol: TPZ(z)

Definition: The set of zones included in the model instance and influenc-

ing the resolution of domain names under a certain zone and

stemming from the inter-zone dependencies.

Usability: This metric it is generally representative of the influence of

zones that are not explicitly configured by the zone adminis-

trator. They are the result of the inter-zone name dependencies

within the model instance.

How to Measure Count all zones present within the model instance of the zone

and subtract from it the number of the directly configured

zones.

Example: For the example model instance in Figure 7.6, the total

Iz(EXAMPLE.COM)=5.

Formula: TPZ(z) = Zones(Z)−DCZ(z).

Metric: Directly Configured Organisations

Symbol: DCO(z)
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Definition: The set of organisations managing the zones included in the

model instance and influencing the resolution of domain names

under a certain zone z and explicitly configured by the zone’s

administrator.

Usability: This metric it is generally representative of the explicitly con-

figured organisations that influence resolution of domain names

under zone z. These organisations may have close mutual co-

operation agreements to ensure certain service levels of the

system.

How to Measure Count all the organisations managing the directly configured

authoritative name servers of the zone.

Example: For the example model instance in Figure 7.6,

DCO(EXAMPLE.COM) = (ORG − AandORG − B) = 2

while DCO(EXAMPLE.NET ) = (ORG−B) = 1.

Formula: Using OCL it can be calculated on a zone based on this

query: self.nameservers.managedby->asOrderedSet()-

>size().

Metric: Third Party Organisations

Symbol: TPZ(z)

Definition: The set of organisations managing the zones included in the

model instance and influencing the resolution of domain names

under a certain zone z and explicitly configured by the zone’s

administrator.

177



Appendix A. DNS Dependency Model

Usability: This metric it is generally representative of the explicitly con-

figured organisations that influence resolution of domain names

under zone z. These organisations may have close mutual co-

operation agreements to ensure certain service levels of the

system.

How to Measure Count all the organisations managing name servers in the

model and subtract the number of organisations managing the

directly configured authoritative name servers of the zone.

Example: For the example model instance in Figure 7.6,

TPO(EXAMPLE.COM) = (ORG−B) = 1.

Formula: TPO(z) = ORG(Z)−DCO(z).

Metric: Dependency Cycles

Symbol: Cycles(z)

Definition: A cyclic zone dependency occurs when two or more zones de-

pend on each other in a circular way.

Usability: A name which is a dependency of itself is effectively "unavail-

able". Cyclic dependencies potentially decrease the redun-

dancy of a domain name for an ignorant resolver. It also affects

other quality attributes of the operational system.

How to Measure Query the model about the presence of a pattern speci-

fies two zones with cyclic dependency of (Zone1
nameservers−−−−−−−→

Server1
hasnamein−−−−−−→ Zone2

nameservers−−−−−−−→ Server2
hasnaemin−−−−−−→

Zone1) sequence path.

Example: The model instance in Figure 7.6 has 4 cycles included in

the resolution paths of the domains under the zone EXAM-

PLE.COM.
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Formula: Henshin-Based cyclic dependency pattern matching rule as

shown in Figure 6.4.

B.4 Measures of Delegation and Inheritance

Metric: Depth

Symbol: D(z)

Definition: The depth of a zone is defined as its distance from the root

zone.

Usability: Each ancestral zone z(i) contributes to the failure potential

for zone z, as it is an additional requirement of DNS and

DNSSEC correctness that must be consistent.

How to Measure Calculate the number of ancestry zones of zone z which are

zones with Parent(z) relationship in the model instance.

Metric Notations Zone z has ancestry z(0), z(1), ..., z(m) comprised of m + 1

zones and has a depth of m.

Example: For example, zone(SUB.EXAMPLE.COM) has

m = 3. The Depth(z) = 4 since it spans the zones

(ROOT,COM,EXAMPLE.COMandSUB.EXAMPLE.COM).

Formula: Depth(z) = m+ 1

Metric: Minimum Query Path

Symbol: MinQP (z)
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Definition: The MinQP (z) for a domain name refers to the minimum

number of authoritative name servers which a DNS resolver

must query to resolve the name under a particular zone z.

Usability: Domain names with larger MinQPs may result in additional

resolution overhead for an ignorant DNS resolver. However,

caching minimizes overhead of subsequent lookups.

How to Measure An Algorithm that recursively performs a conversion of the

Boolean expression for resolving domains under zone z hrough

all possible paths through every authoritative name server, into

disjunctive normal form (DNF). Each resulting conjunction

corresponds to a complete set of servers that may be queried

to resolve domains under z. The set of conjunctions having

minimum size is returned.

Example: The MinQP(NIC.AA) shown in the model instance presented

in Question 9 in Appendix E is 3. (Resolution path through

ns1.nic.aa, Zone(NIC.AA) name server then one name server

of zone(AA) and finally one of zone(ROOT) name servers.

Formula: The DNF algorithm was implemented in Java as part of the

ISDR method techniques.

Metric: Maximum Query Path

Symbol: MaxQP (z)

Definition: The MaxQP (z) for a domain name refers to the maximum

number of authoritative name servers which a DNS resolver

must query to resolve the name under a particular zone z.

Usability: Domain names with large MaxQPs result in additional resolu-

tion overhead.
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How to Measure An Algorithm that recursively performs a conversion of the

Boolean expression for resolving domains under zone z through

all possible paths through every authoritative name server, into

disjunctive normal form (DNF). Each resulting conjunction

corresponds to a complete set of servers that may be queried

to resolve domains under z. The set of conjunctions having

maximum size is returned.

Example: The MaxQP(NIC.AA) shown in the model instance presented

in Question 9 in Appendix E through the ANS ns1.info repre-

sents the longest query path and equals to 6. (Resolution path

through one name server of the following zones (NIC.AA, AA,

ROOT, INFO, ORG, EDU).

Formula: The DNF algorithm was implemented in Java as part of the

ISDR method techniques.

Metric: Average Query Path

Symbol: AQP (z)

Definition: The AQP (z) for a domain name refers to the average num-

ber of all query paths through all authoritative name servers

which a DNS resolver must query to resolve the name under a

particular zone z.

Usability: Domain names with larger AQPs results in additional resolu-

tion overhead for an ignorant DNS resolver. It may also implies

impacts on other quality attributes of the domain name sys-

tem.
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How to Measure An Algorithm that recursively performs a conversion of the

Boolean expression for resolving domains under zone z, into

disjunctive normal form (DNF). Each resulting conjunction

corresponds to a complete set of servers that may be queried to

resolve domains under z. The average of all sets of calculated

conjunctions is returned.

Example: The DNF(NIC.AA) shown in the model instance presented

in Question 9 in Appendix E is Average(DNF(ns1.nic.aa),

DNF(ns2.nic.aa)+DNF(ns1.info) which equals to Aver-

age(3+3+6) =4. .

Formula: The DNF algorithm was implemented in Java as part of the

ISDR method techniques.
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Name: Unnecessary RR (Information Leakage)..

Type: Inter-Zone and Measurable.

Insp. Planes: Data Layer and the Zone’s Resource Records.

Occurrences: The presence of certain RRs (such as HINFO Records) reveals

sensitive information needed for launching targeted attacks.

The HINFO RR is generally used to carry information about

a host such as the O/S name, version, its latest installed patch

and other sensitive information. This information could be

potentially used to launch targeted attacks on such hosts. De-

pending upon whether the attacked host is a DNS name server,

mail server or web server, the adverse consequences of such at-

tacks could be different.

Quality Impacts: Serious impacts on system security.

Detection: Quering the model for the occurrence of such records within

the DataLayer. A graph-based Henshin rule can be used to

detect such structural bad smell.

Refactorings: RemoveHinfoRecord.
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Name: Large Parameter Value (Zone Drift).

Type: Inter-Zone and Measurable

Insp. Planes: Data Layer and Zone’s SOA Record.

Occurrences: Large parameter values in the RDATA portion of the zone’s

SOA Record could result in either no answers or obsolete (un-

usable) answers resulting in denial of service. For example the

"refresh" data item in the RDATA field of a SOA RR specifies

the frequency with which secondary authoritative name servers

should initiate zone transfers in order to keep their zone file

contents in synch with the primary authoritative name servers.

Similarly the "retry" data item in the same field of the same

RR tells the frequency with which the secondary name server

should make retry attempts in case a refresh attempt is unsuc-

cessful. The "Expiry" data item in the same RDATA field de-

notes the time duration after which the secondary name server

should make no more attempts at refresh but instead lets its

zone file contents expire.

Quality Impacts: Large value for the data items (i.e., "refresh", "retry" and

"expiry") could result in mismatch of data between secondary

name servers (that provide fault tolerance) and primary name

server resulting in serving either a empty response or obsolete

response. Frequent occurrences of zone drift could potentially

result in denial of service to DNS resolvers using those sec-

ondary name servers. This type of bad smells has direct im-

pact on degrading the availability, security and stability of the

system.
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Detection: Check the value of the various parameters within the SOA

resource record model component and compare them with the

corresponding recommended values.

Refactorings: AdjustSOAParameters.

Name: Small Parameter Value (Zone Thrash).

Type: Inter-Zone and Measurable.

Insp. Planes: Data Layer and Zone’s SOA Record.

Occurrences: For example if the "refresh" value in SOA RR is very small,

the secondary authoritative name server will be performing

frequent zone transfers from the primary authoritative name

server. As another example, if the "MinTTL" data item in

a SOA RR is small, those RRs that have used this default

value will expire much more quickly in the cache of the caching

name server. Hence the DNS resolver will have to make more

frequent queries to the authoritative name servers instead of

relying on its cache. This will result in more frequent queries

to primary and/or secondary authoritative name servers and

has the potential to degrade performance (by increasing query

response time). This situation is called "Zone Thrash".

Quality Impacts: A different set of security impacts occur if the parameter values

in RDATA field of the SOA Record are too small. This type of

bad smells has also direct impact on degrading the availability,

and stability of the system.

Detection: Check the value of the various parameters within the SOA

resource record model component and compare them with the

corresponding recommended values.

Refactorings: AdjustSOAParameters.
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Name: Ill Formed Associative RR.

Type: Inter-Zone and Structural.

Insp. Planes: Data Layer and Zone’s Resource Records.

Occurrences: Access to certain domains and/or services require two RRs (or

RRsets) in the zone file to be retrieved. The first RR (RRset)

will only provide the fully qualified domain name (FQDN) of

the domain/service (e.g., NS and MX RRs that provide the

FQDN (e.g., ns1.example.com) of the name server and mail

server respectively for a domain). The second RR (RRset)

then provides the IP address for the retrieved FQDN through

an A/AAAA RR (host to IP Address mapping RR). The sec-

ond RR (i.e., A/AAAA RR) is called the associative RR since

it provides the actual network address (IP address) to reach

the host providing a specific service that is referenced in the

first RR (NS or MX RR). If the associative RR either contains

an invalid IPv4 /IPv6 address or the RR itself is missing, then

the host providing the internet-based service becomes inacces-

sible and hence is susceptible to denial of service attacks.

Quality Impacts: Missing or ill-formed associative RRs results in inaccessibil-

ity and severely degrading the availability of Internet domain

names and associated services.

Detection: Check the referential integrity (associations and references)

between the related resource records such as NSRecords and

ARecords. A graph-based Henshin rule can be used to detect

the presence of the associative resource records and check if

the reference to the same logical or physical servers.

Refactorings: Create/DeleteARecord, Create/DeleteNSRecord and Cre-

ate/DeleteDSRecord.

186



Appendix C. Bad Smells Catalogue

Name: Missing RR.

Type: Single-Type and Structural.

Insp. Planes: Data Layes and Zone’s Resource Records.

Occurrences: Certain critical services such as name resolution and email

transfer/access need to be hosted on multiple servers to pro-

vide fault tolerance. Hence there should be multiple RRs for

RRtypes representing those services. Specifically multiple RRs

should be present for all authoritative name servers associated

with a domain.

Quality Impacts: Missing certain resource records will have a serious implica-

tions on the availability and stability of the system.

Detection: Check the presence of redundant instances of resource records.

A graph-based Henshin rule can be directly used to detect

the presence/absence of such resource records in the model

instance.

Refactorings: Create/DeleteARecord, Create/DeleteNSRecord and Cre-

ate/DeleteDSRecord.

Name: Incorrect Parameter Value..

Type: Inter-Type and Lexical.

Insp. Planes: Data Layer and Zone’s DNSSEC related Resource Records.

Occurrences: Incorrect parameter values in the zone file’s digital signature

records (RRSIG RRs) will render the DNSSEC security ser-

vice non-usable. For example, if the signature is not currently

valid (current date is not between signature inception and ex-

piry dates), then a DNSSEC-aware resolver will not use it to

validate the integrity of the RRset covered by the signature.
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Quality Impacts: This type of bad smells has sever impacts on the security and

stability of the domain name system.

Detection: Check the DNSSEC related RRSIG records for the signature

expiration parameter and make sure the TTL value matches

the TTL value of the RRset it covers. DNSSEC resource

records are not shown within the DNS Model for space con-

siderations but they are dealt with the same as pther critical

infrastructure DNS resource records in the model.

Refactorings: AdjustRRSIGParameters.

Name: Ambiguous Data..

Type: Inter-Type and Lexical.

Insp. Planes: Data Layer and all Zones and associated Resource Records.

Occurrences: Certain data content scenarios are high risk from the point

of security but nonetheless needs policies for proper usage of

their underlying RRs. Examples of such scenarios are multiple

IP addresses for a given host (i.e., multiple A RRs for a given

host identified by a fully qualified domain name (FQDN)).

Quality Impacts: The availability and security of the system is highly affected

by this type of bad smells.

Detection: Check for the presence of duplicate records or components

within the model instance.

Refactorings: Create/DeleteARecord and Create/DeleteNSRecord.

Name: Small Number of ANS/Absence of Multiple RRs.

Type: Inter-Type and Measurable.
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Insp. Planes: Control Layer and Server Components.

Occurrences: A major reason for having multiple servers for each zone is

to allow information from the zone to be available widely and

reliably to clients throughout the Internet, that is, throughout

the world, even when one server is unavailable or unreachable.

Multiple servers also spread the name resolution load, and im-

prove the overall efficiency of the system by placing servers

nearer to the resolvers.

Quality Impacts: This smell has direct impacts on the availability, stability and

resiliency of the overall system.

Detection: Count the number of name servers associated with the zone

and check if they are above a pre-defined threshold value. The

threshold value is set based on the local administrator needs

and governing policies.

Refactorings: Create/DeleteARecords, Create/DeleteNSecords,

AddNewNet, AddNewGeoLocation and AddNewServer.

Name: Invalid Trust Anchor.

Type: Inter-Type and Structural.

Insp. Planes: Data Layer and the Zone’s DNSSEC-related Resource Records.
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Occurrences: DNSSEC adds complexity to the requirements for name resolu-

tion, and increases the potential for failure. Any server or zone

misconfiguration in the line of trust between anchor and query

name widens the target of error. To validate the DNSSEC

verification keys, DNS resolvers obtain a corresponding a DS

RR from the parent zone, which contains a hash of the public

key of the child; the resolver accepts the DNSKEY of the child

as authentic if the hashed value in DNSKEY is the same as

the value in the DS record at the parent, and that DS record

is properly signed (in a corresponding RRSIG record). Since

the DS record at the parent is signed with the DNSKEY of

the parent, authenticity is guaranteed and the trust chain is

secure.

Quality Impacts: This bad smell affects mainly the security quality attribute of

the system..

Detection: Detection is done by checking the continuity of the trust chain

through the verification of keys between the current zone and

its ancestors as well as the ancestors of all authoritative name

servers of that particular zone all the way to the root zone.

If DS RRs are present in a parent zone, but none of them

correspond to any self-signing DNSKEYs in the child zone,

then the chain of trust is broken.

Refactorings: Create/DeleteDSRecord.

Name: Untrusted Peer Organisation/Corrupted Parent.

Type: Intra-Type and Lexical.

Insp. Planes: DNSModel Instance.
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Occurrences: A zone trusts its parent to perform the delegation on its be-

half. This trust model is appropriate for zones within the

same organisation, however, there is risk involved in trusting

the parent not to abuse inter-organisational trust relationship.

Since the organisation controlling the parent zone is holding

the secret signing keys, it can forge the delegation records of

the child and then provide this forged (yet correctly signed) DS

RR, thus misleading the clients of the child zone into accepting

a forged DNSKEY and trusting resource records signed with

it.

Quality Impacts: Availability, security and stability of the system is affected by

the presence of this bad smell.

Detection: Check the consistency and correctness of all types of key dis-

tribution between zones with inter-organisational relationship

by following the the child/parent delegation chain up to the

root zone. For peer organisations, this should be done for all

authoritative name servers and their ancestors up to the root

zone.

Refactorings: Add/DeleteZone and Create/DeleteDSRecord.

Name: Large Attack Surface.

Type: Intra-Zone and Measurable.

Insp. Planes: DNSModel Instance.

Occurrences: The attack surface metric, AS(z), is an indicator of the sys-

tem’s security. The larger the attack surface, the more insecure

the system. In our model, AS(z) is the total number of (Zones,

Servers and organisations) in the model.

191



Appendix C. Bad Smells Catalogue

Quality Impacts: Large Attack Surface affects all the quality attributes of the

system.

Detection: Calculating the Attack Surface, AS(z), metric and comparing

them to certain thresholds set based on local policies.

Refactorings: Add/DeleteZone, Add/DeleteOrganisation, and Add/Re-

name/DeleteServer.

Name: Excessive Zone Influence.

Type: Intra-Zone and Measurable.

Insp. Planes: Data Layer of the DNS Model.

Occurrences: The set of influential zones is a measure of the Trusted Com-

puting Base (TCB) of the zone. It is generally representative

of the diversity of directly and third party zones that influence

resolution of domain names under z.

Quality Impacts: Security and stability of the system are affected by the presence

of this bad smell.

Detection: Calculating the Directly Configured Zones, DCZ(z), metric

and Third Party Zones, TPZ(z), metric and comparing them

to certain thresholds set based on local policies.

Refactorings: DeleteZone, DeleteSOARecord, RenameServer and Ad-

d/DeleteServer..

Name: False-Redundancy.

Type: Intra-Zone and Measurable.

Insp. Planes: DNS Model Instance.

192



Appendix C. Bad Smells Catalogue

Occurrences: DNS uses redundancy as one of the two mechanisms for high

availability - the other one is caching.

Quality Impacts: If all servers comprising the redundancy of a domain name

were to fail, then the name would be rendered unavailable so

this smell has direct impact on the availability and resiliency

of the system.

Detection: If the value of the redundancy, R(z), metric for a zone is less

than the number of authoritative name servers of that par-

ticular zone, ANS(z), then the true redundancy is less than

the redundancy configured by the zone administrator. False

redundancy could also result from a narrower bottleneck in

downstream resolution query paths of domains under z.

Refactorings: Create/DeleteARecords, Create/DeleteNSecords,

AddNewNet, AddNewGeoLocation and AddNewServer.

Name: Excessive Zone Complexity.

Type: Intra-Zone and Measurable.

Insp. Planes: DNSModel.

Occurrences: One important necessity is careful coordination both hierar-

chically (i.e., between parent and child zones) or laterally, be-

tween organizations hosting each others’ data.

Quality Impacts: High zone complexity value increases the failure potential for

signed and unsigned zones because they indicate more areas

where problems may occur. Direct impacts for such smell are

evident on the stability and resiliency of the system.
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Detection: The hierarchical relationship complexity is measured using the

hierarchical reduction potential metric, HRP , and the lateral

coordination complexity is measured by the administrative

complexity metric, AC(Z). Comparing these metrics with a

predefined threshold values will reveal the existence of such a

bad smell in the model instance.

Refactorings: DeleteZone, DeleteSOARecord, RenameServer, Add/Delete-

Server.

Name: Diminished Redundancy.

Type: Measurable and Inter-zone.

Insp. Planes: Control Layer.

Occurrences: A number of problems in DNS operations today are at-

tributable to poor choices of secondary servers for DNS zones.

The geographic placement as well as the diversity of network

connectivity exhibited by the set of DNS servers for a zone can

increase the reliability of that zone as well as improve overall

network performance and access characteristics. When all re-

dundant servers are located within the same physical location,

connected to the same network, placed within the same ad-

dress prefix.

Quality Impacts: Reduced availability, decreased resilience, and the system be-

come susceptible to single point of failure at certain granular-

ity.
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Detection: Queries on the dependency graph regarding the following met-

rics: a) number of authoritative name servers, b) geographical

locations servers are placed in, c) networks connected to, and

d) BGP prefixes.

Refactorings: Applying the MoveServerLocation refactoring rule will ensure

the availability of the zone and its resilience to a single point

of failure.

Name: Cyclic Dependency.

Type: Intra-Zone and Structural.

Insp. Planes: Data and Control Layers.

Occurrences: Cyclic zone dependency occurs when two or more zones depend

on each other in a circular way. This type of interdependency

creates a "chicken and egg" problem; one cannot resolve a

name in zone Z1 without first resolving a name in Z2 and vice

versa.

Quality Impacts: Reduced availability and reduced resiliency.

Detection: Is there any cycle in the Dependency Graph?. A query on the

DNS Model Instance that can be implemented using Henshin

as shown in Figure 6.4.

Refactorings: Add a glue record (ARecord) for the (out-of-bailiwick) author-

itative name servers involved in the cycle in the zone file.

Name: Non-Optimal Query Path.

Type: Intra-Zone and Measurable.

Insp. Planes: The DNSModel Instance.
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Occurrences: When the number of servers which a resolver must query to

resolve the name is larger that the MinQP.

Quality Impacts: Name servers with larger query paths result in additional reso-

lution overhead for an ignorant resolver so the quality attribute

directly affected by this smell is the availability attribute.

Detection: Calculating the MinQP metric for a zone and compare each

query resolution path through each name server with the min-

imum value. The name server with query path > MinQP con-

tributes to the occurrence of this bad smell.

Refactorings: Create/DeleteNSRecord and Create/DeleteARecord, Cre-

ate/DeleteZone, and Add/DeleteServer.

Name: Delegation Inconsistency.

Type: Intra-Zone and Structural.

Insp. Planes: Data Layer and Zone/Parent Zone NS Records .

Occurrences: When a parent zone P delegates part of its name space to

a child zone C, P stores a list of NS resource records for the

authoritative servers of zone C. This list of NS resource records

are kept both at the parent and the child zone. In order to

maintain a consistent answer sets of authoritative name servers

for a certain zone and its contents, it is essential to maintain

the same NS resource record set in both the parent and child

zones.

Quality Impacts: Lacking this consistency reflects the failure of coordination

among NS servers’ operators. Such inconsistency will affect

the availability and stability of the DNS query process for this

particular zone.
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Detection: Pattern-based smells (i.e., smells that are detectable by the

existence of specific anti-pattern subgraphs) can be specified

by Henshin rules. This smell can be detected by checking for

any mismatches between the set of NS records within a zone

with its parents’ set of NS records defined as name servers for

that particular zone.

Refactorings: Create/DeleteNSRecord and Create/DeleteARecord.
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Name: CreateARecord.

Context: Zone Model Component.

Priority: (1), Zone’s administrator own decisions.

Pre-

conditions:

The current zone should be a child zone since the ARecord has

to be created in both the current zone and its Parent zone in

order to resolve the names of in-bailiwick and out-of-bailiwick

name servers properly.

Parameters: servername: EString. The name of the Server that the

ARecord pointsto.

Final Checks: If the input name Server already exists in the model instance’s

ControlLayer.

Quality Im-

pacts:

Creating "glue" ARecord improves the availability of the do-

main name since it affects the ability of external DNS(s) to

correctly resolve the name of the assigned name server and

hence make the domains under the zone resolvable.
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Refactoring

Steps:

1. From the model instance’s ControlLayer, locate the name

Server which the ARecord will pointto to get the parameter

servername.

2. Execute the refactoring on the context zone (SelectedEOb-

ject), then input the parameter servername of the Server to

be associated with the new ARecord.
Implementation:Implementation example using Henshin graph-based rules and

units is shown in Figure 6.5, Figure 6.6 and Figure 6.7.

Name: DeleteARecord.

Context: Zone Model Component.

Priority: (1) Zone’s Administrator Own Decisions.

Pre-

conditions:

The current zone should be a child zone since the ARecord has

to be deleted from both the current zone and its Parent zone in

order to prevent any occurrence of the Delegation Inconsistency

bad smell as a result of deleting the record.

Final Checks: The referenced point(ed)to server has to be present in the

model instance’s ControlLayer.

Parameters: servername: EString. The name of the Server that the

ARecord pointsto.

Final Checks: None.

Quality Im-

pacts:

Deleting "glue" ARecord contribute to the elimination of the

Delegation Inconsistency bad smell so the availability of the

zone is improved.

199



Appendix D. Refactoring Catalogue

Refactoring

Steps:

1. From the model instance’s ControlLayer, locate the name

Server which the ARecord point(s)to to get the parameter

servername.

2. Execute the refactoring on the context zone (SelectedEOb-

ject), then input the parameter servername of the Server that

is associated with the ARecord to be deleted.

Name: CreateNSRecord.

Context: Zone Model Component.

Priority: (1), Zone’s administrator own decisions.

Pre-

conditions:

The current zone should be a child zone since the NSRecord has

to be created in both the current zone and its Parent zone in

order to resolve the names of in-bailiwick and out-of-bailiwick

name servers properly.

Parameters: servername: EString. The name of the Server that the

NSRecord refersto.

Final Checks: If the input name Server already exists in the model instance’s

ControlLayer.

Quality Im-

pacts:

Creating NSRecord improves the availability of the domain

name since it affects the ability of external DNS(s) to correctly

resolve the name of the assigned name server and hence make

the domains under the zone resolvable.

Refactoring

Steps:

1. Locate the name Server which the NSRecord will refersto to

get the parameter servername.

2. Execute the refactoring on the context zone (SelectedEOb-

ject), then input the parameter servername of the Server to

be associated with the new NSRecord.
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Implementation:Implementation example using Henshin graph-based rules and

units is similar to the refactorings shown in Figure 6.5, Fig-

ure 6.6 and Figure 6.7.

Name: DeleteNSRecord.

Context: Zone Model Component.

Priority: (1) Zone’s Administrator Own Decisions.

Pre-

conditions:

The current zone should be a child zone since the NSRecord has

to be deleted from both the current zone and its Parent zone in

order to prevent any occurrence of the Delegation Inconsistency

bad smell as a result of deleting the record.

Final Checks: The referenced refersto server has to be present in the model

instance’s ControlLayer.

Parameters: servername: EString. The name of the Server that the

NSRecord refersto.

Final Checks: None.

Quality Im-

pacts:

Deleting a NSRecord contribute to the elimination of the Del-

egation Inconsistency bad smell so the availability of the zone

is improved.

Refactoring

Steps:

1. From the model instance’s ControlLayer, locate the name

Server which the NSRecord refersto, to get the parameter

servername.

2. Execute the refactoring on the context zone (SelectedEOb-

ject), then input the parameter servername of the Server that

is associated with the NSRecord to be deleted.
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Name: DeleteHinfoRecord.

Context: Zone Model Component.

Priority: (1) Zone’s Administrator Own Decisions.

Pre-conditions: Presence of unnecessary HinfoRecord within the concerned

zone.

Quality Impacts: Deleting the HinfoRecord will improve the security of the

system since it prevents any information leakage that can be

exploited by attackers.

Parameters: None.

Refactoring Steps:

1. Locate the HinfoRecord within the concerned zone.

2. Execute the refactoring on the context zone (SelectedEOb-

ject), where the HinfoRecord is to be deleted.

Name: CreateSOARecord.

Context: Zone Model Component.

Priority: (1) Zone’s Administrator Own Decisions.

Pre-conditions: There should not be any SOARecord associated with the

concerned zone.

Quality Impacts: Improved availability of the zone since the zone will not be

resolvable without a correctly configured start of authority

record (SOARecord).
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Parameters:

• admin: EString. An attribute specifies the mailbox of the per-

son responsible for this zone, primary: EString. The FQDN

of the name server that was the original or primary source of

data for this zone,

• serial: EInt. The version number of the original copy of the

zone file, refresh: EInt. Represents the time interval before

the zone should be refreshed.

• retry: EInt. Represents the time interval that should elapse

before a failed refresh should be retried, expire: EInt. Rep-

resents the value that specifies the upper limit on the time

interval that can elapse before the zone is no longer author-

itative, minTTL: EInt. Represents the time that should be

exported with any RR from this zone.

.

Refactoring Steps:

1. Locate the zone element where the SOARecord will be cre-

ated.

2. From the model instance’s ControlLayer, locate the name

Server which will be the primary source of data for the zone

and will be used as the primary parameter.

3. Decide on best recommended values for the timers serial, re-

fresh, retry, expire and minTTL used as parameters for the

refactoring. These parameters have to be soundly used to

avoid any bad smells regarding the timers of the SOARecord.

4. Execute the refactoring using the specified parameters.

Name: DeleteSOARecord.
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Context: Zone Model Component.

Priority: (1) Zone’s Administrator Own Decisions.

Pre-conditions: A SOARecord has to be present in the model instance and

associated with the selected zone.

Quality Impacts: Deleting a zone SOARecord by itself will render the zone and

its domains unresolvable. This refactoring is executed as part

of a multi-refactorings units to reduce the HRP complexity

of a zone as part of merging two zones or to remove a zone

from the DataLayer of the model instance. This rfactoring

affects both the availability and the stability of the system.

Parameters: None.

Refactoring Steps:

1. Locate the SOArecord within the concerned zone.

2. Execute the refactoring on the context zone (SelectedEOb-

ject), where the SOARecord is to be deleted.

Name: AdjustSOAParameters.

Context: Zone, SOARecord Model Component.

Priority: (1) Zone’s Administrator Own Decisions.

Pre-conditions: (1) A SOARecord has to be present in the model instance

and associated with the selected zone.

Quality Impacts: Adjusting the SOA timers to best recommended values will

affect the availability, security, stability and resiliency of the

DNS. These timers are vital to the basic functionality and

performance of the system.
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Parameters: SOARecord parameters as listed in the CreateSOARecord

refactoring above. These parameters have to be soundly

used to avoid any bad smells regarding the timers of the

SOARecord.

Final Checks: (1) A name server that will be used as the primary name

server (with nameserver=primary parameters) has to be

present in the ControlLayer of the model instance.

Refactoring Steps:

1. Locate the zone element where the SOARecord parameters

will be modified.

2. From the model instance’s ControlLayer, locate the name

Server which will be the primary source of data for the zone

and will be used as the primary parameter.

3. Decide on best recommended values for the timers serial, re-

fresh, retry, expire and minTTL used as parameters for the

refactoring.

4. Execute the refactoring using the specified parameters.

Name: CreateNewZone.

Context: DataLayer Model Component.

Priority: (2) Coordination with other Zones’ Administrators.

Pre-conditions: (1) Coordination with the new zone administrator to host

a secondary zone in a name server with a name registered

under their zone name. (2) Existence of a Parent Zone for

the new zone in the DataLayer of the current model instance.

This condition does not apply to the ROOT zone.
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Quality Impacts: Creating a new zone contributes to improving stability of the

system but increases the query overhead and consequently

degrading the availability of the system. It affects the se-

curity of the system by increasing the attack surface and

vulnerable points in the operational system. It increases the

points of failure that affects the resiliency of the system.

Parameters: newzonename: EString. The name of the new zone to be

created.

Final Checks: (1) No zone with the name zonename exists under the cur-

rent Parent Zone.

Refactoring Steps:

1. Locate the zone element (Parent Zone) where the new zone

will be created.

2. Execute the refactoring using the specified newzonename pa-

rameters. In order to ensure the model correctness and con-

sistency, this refactoring should be followed by a Create-

SOArecord to define the Start Of Authority for the new zone

and its associated parameters.

Name: DeleteZone.

Context: Zone Model Element.

Priority: (2) Coordination with other Zones’ Administrators.

Pre-conditions: (1) Coordination with the zone administrator for the zone

to be deleted to remove any copy of the zone data from the

secondary name server with a name registered under that

zone name. (2) The current zone should not be a parent of

any sub-zone or associated with any resource records in the

model instance.
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Quality Impacts: Deleting a zone contributes to improving the security, stabil-

ity and resiliency of the system by reducing the third party

zones, servers and organisations involved in the resolution

process as well as reducing the attack surface of the system.

Parameters: None.

Final Checks: None.

Refactoring Steps:

1. Locate the zone element that will be deleted.

2. Execute the refactoring on the specified zone. In order to en-

sure the model correctness and consistency, this refactoring

should be followed by checking if there is any dangling com-

ponents (servers, zones ,organisations and resource records) of

the model which has to be removed from the model instance.

Name: MergeZones.

Context: Zone Model Component.

Priority: (2) Coordination with other Zones’ Administrators.

Pre-conditions: (1) The zone to be merged should have a parent zone within

the DataLayer of the model instance. (2) The zone to be

merged should not have any sub-zones defined within it and

no resource record is associated with it (empty zone).

Quality Impacts: Merging two zones has direct impact on the stability and re-

siliency of the system by reducing the hierarchical complexity

of the zone. It also improved the security of the system by

reducing the attack surface. Its impact on the availability is

positive since it reduces the query path for resolving domain

names under the zone.

Parameters: None.

207



Appendix D. Refactoring Catalogue

Refactoring Steps:

1. Locate the zone to be merged with its parent within the Data-

Layer of the model instance.

2. Execute the refactoring on the specified zone. In order to

ensure the model correctness and consistency, this refactor-

ing should be followed by proceeded by modifying the re-

source records (except the zone’s SOARecord which has to be

deleted) to reflect the merging of the zones and moving these

records to the Parent Zone.

Name: AddNewServer.

Context: ControlLayer Model Component.

Priority: (3) Coordination with other Administrators, Cost and Access

Permissions.

Pre-conditions: Since this refactoring is tightly associated with costs, access

control, permissions and coordination with other entities, it

has to be done in full compliance with local policies and

management constraints.

Quality Impacts: Adding new servers will affect the availability quality at-

tribute negatively by adding additional query paths. It will

increase the attack surface of the system so it affects the

security of the system. On the other hand it improves the

stability of the system by increasing the authoritative name

servers for a zone and improves the resiliency of the system.
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Parameters:

• servername: EString. Defines the name of the server to be

created.

• zonename: EString. Defines the name of the zone that this

server will act as a name server.

• hasnamein: EString. Defines the name of the zone that hosts

the name of the server to be added.

• network: EString Defines the AS number of the network that

the server is connected to.

• geoloc: EString Defines the GeoLocation that the server is

located at.

• ipaddress: EString Defines the IP Address assigned to the

new Server.

• orgname: EString Defines the name of the organisation that

manages this particular server.
Final Checks: (1) There should not be a server with a name identical to

the parameter servername in the ControlLayer of the model

instance. (2) There should be zones with the defined zo-

nename and hasnamein, network with the defined network

parameter, GeoLocation with the defined geoloc parameter,

and organisation with the defined orgname parameter in the

ControlLayer of the model instance.
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Refactoring Steps:

1. Locate the ControlLayer) where the new server will be cre-

ated.

2. Execute the refactoring using the specified parameters for the

new server. In order to ensure the model correctness and

consistency and prevent the introduction of any Delegation-

Inconsistency bad smell, this refactoring should be followed

by a CreateNSrecord and CreateArecord in the associated zone

and its parent zone.

Name: RenameServer.

Context: Server Model Component.

Priority: (3) Coordination with other Administrators, Cost and Access

Permissions.

Pre-conditions: Since this refactoring is tightly associated with costs, access

control, permissions and coordination with other entities, it

has to be done in full compliance with local policies and

management constraints.

Quality Impacts: Renaming servers will modify the whole model instance by

removing the components related to the oldname and in-

troducing new model components associated with the new

server name. Usually this refactoring is used to reduce the

overall model size and reduce the attack surface so all quality

attributes are positively affected.

Parameters: (1) oldservername: EString. The current server name,

newservername: EString. The new name to be as-

signed to the server. (2) All parameters listed within the

AddNewServer refactoring above.
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Final Checks: (1) There should not be a server with a name identical to

the newservername parameter. (2) All components associ-

ated with the newservername (such as the zonename, has-

namein, geolocation, network ..etc) should be present within

the model instance.

Refactoring Steps:

1. Locate the server) that need to be renamed.

2. Execute the refactoring using the specified parameters for

the new server. In order to ensure the model correctness

and consistency and prevent the introduction of any Delega-

tionInconsistency bad smell, this refactoring should be fol-

lowed by modifying any reference to the old server by using

Delete/CreateNSrecord and Delete/CreateArecord in the as-

sociated zone(s) and their parent zone(s).

Name: DeleteServer.

Context: Server Model Element.

Priority: (2) Coordination with other servers’ managers and associ-

ated zone administrators.
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Pre-conditions: (1) Coordination with the organisations managing/hosting

the concerned server (and any associated zone administra-

tor) to be deleted to remove any copy of the zone data

from that particular name server. (2) The concerned server

should not be assigned as name server or associated with

any zone within the current model instance. (3) Since this

refactoring is tightly associated with costs, access control,

permissions and coordination with other entities, it has to

be done in full compliance with local policies and manage-

ment constraints.

Quality Impacts: Deleting a server contributes to improving the security, sta-

bility and resiliency of the system by reducing the third party

servers, zones, and organisations involved in the resolution

process as well as reducing the attack surface of the system.

Parameters: None.

Final Checks: None.

Refactoring Steps:

1. Locate the server element that will be deleted within the Con-

trolLayer of the model instance.

2. Make sure that the server is not associated with any other

component within the model instance.

3. Execute the refactoring on the specified server. In order to

ensure the model correctness and consistency, this refactoring

should be followed by checking if there is any dangling com-

ponents (servers, zones ,organisations and resource records)

which has to be removed from the model instance.

Name: MoveServerLocation.
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Context: Server Model Component.

Priority: (3) Coordination with other Administrators, Cost and Access

Permissions.

Pre-conditions: Since this refactoring is tightly associated with costs, access

control, permissions and coordination with other entities, it

has to be done in full compliance with local policies and

management constraints.

Quality Impacts: Moving a server to a new geographical location will improve

its resiliency due to improving its failure likelihood. This

also improves the geographical diversity of the name servers.

It may affect the security and availability negatively due to

the increased query overhead and extra need for coordination

with external and far away entities.

Parameters: newlocation:EString. The new geographical location that the

server will be moved to.

Final Checks: The new geoLocation identified by the newlocation parame-

ter should be present within the ControlLayer of the model

instance.

Refactoring Steps:

1. Locate the new geographical location identified by the newlo-

cation parameter within the ControlLayer.;

2. Locate the server that need to be moved within the Control-

Layer

3. Execute the refactoring on the specified server. In order to

ensure the model correctness and consistency, this refactoring

should be followed by checking if the old geoLocation is not

associated with any other server and then removed from the

model instance accordingly.
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Name: ModifyServerIP/MoveServerNet.

Context: Server Model Component.

Priority: (3) Coordination with other network Administrators, Cost

and Access Permissions.

Pre-conditions: Since this refactoring is tightly associated with costs, access

control, permissions and coordination with other entities, it

has to be done in full compliance with local policies and

management constraints.

Quality Impacts: Moving a server to a new network improves its resiliency

due to improving its failure likelihood. This also improves

the network diversity of the name servers and avoids single

points of failure. It may affect the security and availabil-

ity negatively due to the extra need for coordination with

external and far away entities.

Parameters: newnetwork:EString. The new network AS number that the

server will be connected to.

Final Checks: The new network identified by the newnetwork parameter

should be present within the ControlLayer of the model in-

stance.
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Refactoring Steps:

1. Locate the new network identified by the newnetwork AS pa-

rameter within the ControlLayer.;

2. Locate the server that need to be moved within the Control-

Layer

3. Execute the refactoring on the specified server. In order to

ensure the model correctness and consistency, this refactoring

should be followed by checking if the old network AS number

is not associated with any other server and then removed

from the model instance accordingly.
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DNS Operational Model Survey

E.1 Background

The goal of this study is to investigate the influence of the Domain Names System

(DNS) configurations and deployment choices made by system administrators and

zone operators (modelled as Dependency Graphs) and their impact on a subset of

DNS operational quality attributes. The DNS Operational Model is an attempt to

describe the Domain Name System operational world for a particular operational

goal (detecting violations of the design and deployment principles) at the authorita-

tive level. For detecting problems in the configuration and deployment of the DNS,

we have to search for certain patterns representing those problems in the instances

of the operational model of the system.

We appreciate if you can provide us with your valuable input by answering all the 30

questions listed below. Filling out this survey will take approximately 30-45 minutes

of your valuable time.
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E.2 General Questions

1. How many years have you been involved in DNS Management?

Less than 1 2 3 4 5 6 7 8 9 10 or more
© © © © © © © © © ©

2. What Top-Level-Domain (TLD) are you responsible for?

——————————–

3. How many domains are registered under your TLD?

——————————–

4. How familiar are you with current deployment structure of your TLD?

Never Heard About It ©
Heard about it but never used it ©
Looked at It ©
Looked at it in details ©
Designed it ©

5. How many times do you update your TLD zone every day?

Real-Time
(click 0)

0 1 2 3 4 5 6 7 8 9 10 Times

© © © © © © © © © © ©

6. How frequently have you changed the DNS structure for your TLD?

During the
last 5 years

1 2 3 4 5 Times

© © © © ©

7. How many security incidents have you faced?

During the
last 5 years

1 2 3 4 5 6 7 8 9 10 Incidents

© © © © © © © © © ©

8. How many DNS configuration/deployment faults have you faced?

During the
last 5 years

1 2 3 4 5 6 7 8 9 10 Incidents

© © © © © © © © © ©
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E.3 Models and Metrics

Here is an example of the DNS Dependency Graph and how it reflects the physi-

cal and logical operational world of the DNS system from the Authoritative Zone

Operator point of view. In the following sections, we present several dependency

graphs of DNS configurations and deployment choices and would like to know their

perceived operational quality attributes from your point of view.

DNS Qualities Definitions:

Availability: "The ability of a domain name to be reliably resolved using the DNS"

Security: "The ability of the components of the DNS to protect the integrity of

DNS information and critical DNS system resources."

Stability: "The ability of the entire name resolution system and its component

parts to be able to respond to DNS queries."

Resilience: "The ability of the DNS to provide and maintain an acceptable level of

name resolution service in the face of faults and challenges to normal operations."

Please note that due to space limitations, and clarity of the images, we present parts

of the DNS operational Models in the following questions. Please, based on your

own experience, rate the perceived qualities of these model instances:
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1. How do you rate the Quality Attributes of This DNS Model?

Quality
Attribute

Very Low Low Medium High Very High

1 2 3 4 5
Availability © © © © ©
Security © © © © ©
Stability © © © © ©
Resiliency © © © © ©

2. Can you justify or comment on your choices? ————
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3. How do you rate the Quality Attributes of This DNS Model?

Quality
Attribute

Very Low Low Medium High Very High

1 2 3 4 5
Availability © © © © ©
Security © © © © ©
Stability © © © © ©
Resiliency © © © © ©

4. Can you justify or comment on your choices? ————
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5. How do you rate the Quality Attributes of This DNS Model?

Quality
Attribute

Very Low Low Medium High Very High

1 2 3 4 5
Availability © © © © ©
Security © © © © ©
Stability © © © © ©
Resiliency © © © © ©

6. Can you justify or comment on your choices? ————
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7. How do you rate the Quality Attributes of This DNS Model?

Quality
Attribute

Very Low Low Medium High Very High

1 2 3 4 5
Availability © © © © ©
Security © © © © ©
Stability © © © © ©
Resiliency © © © © ©

8. Can you justify or comment on your choices? ————
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9. How do you rate the Quality Attributes of This DNS Model?

Quality
Attribute

Very Low Low Medium High Very High

1 2 3 4 5
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Stability © © © © ©
Resiliency © © © © ©

10. Can you justify or comment on your choices? ————
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15. How do you rate the Quality Attributes of This DNS Model?

Quality
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16. Can you justify or comment on your choices? ————

226



Appendix E. DNS Operational Model Survey

17. How do you rate the Quality Attributes of This DNS Model?

Quality
Attribute
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19. How do you rate the Quality Attributes of This DNS Model?

Quality
Attribute

Very Low Low Medium High Very High

1 2 3 4 5
Availability © © © © ©
Security © © © © ©
Stability © © © © ©
Resiliency © © © © ©

20. Can you justify or comment on your choices? ————

228



Appendix E. DNS Operational Model Survey

E.4 Assessing TLD Quality Attributes

On a scale of 1 to 5, How do you rate the quality attributes of your "own TLD"

(as listed in the first section of this questionnaire) current configuration and DNS

servers’ deployment structure?

Quality
Attribute

Very Low Low Medium High Very High

1 2 3 4 5
Availability © © © © ©
Security © © © © ©
Stability © © © © ©
Resiliency © © © © ©

Submission Message

DNS Operational Model Survey

Thank you for your valuable input.

Wish you a pleasant day.
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