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Stratified medicine utilizes individual-level covariates that are associated with a differential treatment effect, also
known as treatment-covariate interactions. When multiple trials are available, meta-analysis is used to help de-
tect true treatment-covariate interactions by combining their data. Meta-regression of trial-level information is
prone to low power and ecological bias, and therefore, individual participant data (IPD) meta-analyses are pref-
erable to examine interactions utilizing individual-level information. However, one-stage IPD models are often
wrongly specified, such that interactions are based on amalgamating within- and across-trial information. We
compare, through simulations and an applied example, fixed-effect and random-effects models for a one-stage
IPD meta-analysis of time-to-event data where the goal is to estimate a treatment-covariate interaction. We show
that it is crucial to centre patient-level covariates by their mean value in each trial, in order to separate out
within-trial and across-trial information. Otherwise, bias and coverage of interaction estimates may be adversely
affected, leading to potentially erroneous conclusions driven by ecological bias. We revisit an IPD meta-analysis
of five epilepsy trials and examine age as a treatment effect modifier. The interaction is �0.011 (95% CI: �0.019
to �0.003; p= 0.004), and thus highly significant, when amalgamating within-trial and across-trial information.
However, when separating within-trial from across-trial information, the interaction is �0.007 (95% CI: �0.019
to 0.005; p= 0.22), and thus its magnitude and statistical significance are greatly reduced. We recommend that
meta-analysts should only use within-trial information to examine individual predictors of treatment effect
and that one-stage IPD models should separate within-trial from across-trial information to avoid ecological
bias. © 2016 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

Keywords: ecological bias; effect modifier; meta-analysis; stratified/precision medicine; treatment-covariate
interaction

1. Introduction

There is an increasing interest in personalized or stratified medicine, where the aim is to tailor treatments
to individuals or to groups of similar individuals based on their particular characteristics [1]. This allows
clinicians to optimize treatment decisions and reduce unnecessary costs, in order to select treatments for
individual patients that are most likely to benefit (or least likely to harm) them. For example,
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trastuzumab is only given to the subgroup (stratum) of breast cancer patients who are human epidermal
growth factor receptor 2 (HER-2) positive, as it is known to lock on to the HER-2 protein, block the
receptor and stop the cells from dividing and growing [2]. It is therefore considered unnecessary for
those who are HER-2 negative.

A key component of stratified medicine research is to identify individual-level characteristics (covar-
iates) that are associated with a differential treatment effect [1]. These are referred to as treatment-covar-
iate interactions in this article, but other names include effect-modifiers, moderators, subgroup effects
and predictive markers. Although some treatment-covariate interactions, such as HER-2, are suspected
in advance because of strong biological rationale, others are only identified following secondary
investigations of existing data. A single randomized trial tends to have low power to detect treatment-
covariate interactions because, usually, they are powered on the overall treatment effect in the popula-
tion of interest [3]. However, when multiple trials are available, meta-analysis provides the opportunity
to increase power to detect true treatment-covariate interactions by combining their data [4].

In aggregate data meta-analysis, where aggregated study results are obtained and then synthesized,
treatment-covariate interactions are usually investigated using meta-regression [5], which quantifies the
across-studies association between the overall treatment effect and aggregated trial-level covariates (such
as themean age of participants, or the proportion of participants that aremale).However, this approach usu-
ally has low power to identify genuine treatment effect modifiers at the individual-level because of the usu-
ally small number of studies in meta-analysis [6]; there needs to be large variation in the aggregated
covariate values across trials for the power to be feasible [7]. Further, it is also prone to study-level con-
founding and ‘ecological bias’ [8], which means the observed across-study relationships do not properly
reflect the individual-level relationshipswithin trials. For example, meta-regressionmay identify that stud-
ies containing a larger proportion of male participants have a larger overall treatment effect; however, this
may be due to such studies also having a higher dose of the treatment, and therefore, improved effect is due
to the dose and not being male rather than female [9].

Individual participant data (IPD) meta-analysis can overcome the issues of low power and potential
ecological bias by examining within-study interactions at the individual-level (rather than across-study in-
teractions at the trial-level). Here, the participant-level data are analysed in either a two-stage or a one-
stage approach in order to summarize the interaction between treatment effect and individual covariates
[10–13]. The two-stage approach is the most straightforward, where firstly the treatment-covariate inter-
actions are estimated in each trial separately, and then secondly, these are pooled using a traditional (e.g.
inverse-variance weighted) meta-analysis model. By only pooling within-study information, this ap-
proach automatically avoids ecological bias [12,14]; however, the second stage requires one to assume
study estimates are approximately normally distributed and that their estimated variances are known,
which is contentious when included studies only have small number of patients and/or events [15,16].

The alternative one-stage approach analyses all patient-level data from every trial in one step whilst
accounting for the clustering of patients within studies using a hierarchical model [17–19]. In contrast
to the two-stage approach, one-stage meta-analysis models allow a more exact likelihood to be specified
and automatically account for the correlations amongst parameters [17]. However, when investigating
treatment-covariate interactions, it has been shown that the one-stage approach does not automatically
avoid ecological bias when estimating treatment-covariate interactions; that is, estimation of interaction
terms in a one-stage meta-analysis might merge (amalgamate) both within-trial and across-trial informa-
tion [9,20,21]. To avoid potential ecological bias, one needs to separate out within-trial and across-trial
interaction effects in the model specification [9,12,14,22,23], which is also recognized in areas outside
the meta-analysis field that contains clustering [24–27].

Though this topic has been previously discussed in the meta-analysis literature, our recent experience
is that the issue of ecological bias is still being ignored in many applied one-stage IPD meta-analyses,
especially in the context of time-to-event outcomes. For example, in 2015, Sahgal et al. perform a
one-stage IPD meta-analysis of randomized trials evaluating stereotactic radiosurgery with or without
whole-brain radiation therapy for patients presenting with one to four brain metastases [28]. They
conclude that ‘age was a significant effect modifier (p=0.04) favouring stereotactic radiosurgery alone
in patients ≤50years of age’. However, the publication does not state that ecological bias was considered
or that within-study and across-study interactions were separated.

Data sharing is becoming expected in medical research [29], and the number of IPD meta-analyses is
rising [11,30], many of which aim to identify treatment effect modifiers. New protocols are being
published each month for IPD meta-analyses, which pre-define their statistical analysis plan. For exam-
ple, van Middelkoop et al. [31] provide a protocol for their IPD meta-analysis of trials investigating the
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effectiveness of intra-articular glucocorticoid injections in patients with knee or hip osteoarthritis. The
authors state they will use a one-stage model, and to examine how pain or inflammation modify
treatment effect, they will include ‘an interaction term (pain× treatment or inflammation× treatment)’;
however, perhaps unknowingly, this will amalgamate within-study and across-study interactions.

A strong message is thus urgently needed: researchers should avoid potential ecological bias in their
one-stage IPD meta-analyses. The aim of this article is to show how this can be achieved and to illustrate
the consequences of ignoring it through a detailed simulation study and an illustrated example for time-
to-event outcomes. In particular, we extend the one-stage framework of Tudur Smith et al.[32] proposed
in this journal, who showed how to examine treatment-covariate interactions but did not adjust for
ecological bias. Other recent IPD meta-analysis articles of time-to-event data consider mainly two-stage
methods [14,33,34], evaluate or compare one-stage and two-stage analyses for the overall treatment
effect [35,36], or focus on estimation techniques [37–39], including parametric approaches [40], for
modelling baseline risks and overall effects. However, our main focus is on how to appropriately
estimate treatment-covariate interactions in this context. Fisher et al. provide an excellent overview of
methods for estimating interactions in meta-analysis [12], with illustration including survival examples;
however, our work extends this through the detailed simulation study across a wide range of scenarios,
with a novel example in epilepsy.

The remainder of the article is as follows. Section 2 introduces four key fixed-effect and random-effects
Cox regressionmodels that can be used to investigate treatment-covariate interactions. Section 3 details the
methods and results of the simulation study, which includes scenarios for both binary and continuous
covariates, with and without trial-level confounders. The key findings are then illustrated in the context
of a real IPD meta-analysis dataset in Section 4, and Section 5 concludes with some discussion.

2. Estimation of treatment-covariate interactions in a one-stage IPD meta-analysis
models for time-to-event data

Consider the IPD meta-analysis of time-to-event data across j=1 to J trials. Let xij be a participant-level
covariate of interest, which can be continuous such as age, or binary such as sex, and let zij denote
whether the ith patient in the jth trial is in the treatment group or in the control group (1 = treatment
group, 0 =Control group). For each patient, we also have whether they had the event or were censored
and their event or censoring time. We now introduce four key specifications of a one-stage IPD meta-
analysis model, based on Cox proportional hazards models. These all specify a separate baseline hazard
per trial (i.e. not necessarily proportional), assume a constant treatment effect over time in each trial (i.e.
hazard rates for the treatment and control groups are assumed proportional), and either merge or separate
within-study and across-study treatment-covariate interactions. Of course, other specifications are possi-
ble (e.g. proportional baseline hazards across trials); however, here, the main focus is on the specifica-
tion of the interactions. For a comprehensive introduction of the framework of (random-effects) models
for Cox regression and meta-analysis of time-to-event data, we refer the reader elsewhere [32,35–39,41].

2.1. Merging within-study and across-study interactions

A simple, but potentially naïve, model that ignores any residual between-study heterogeneity and amal-
gamates within-trial and across-trial interactions can be written as follows:

λij tð Þ ¼ λ0j tð Þ exp β1zij þ β2jxij þ βTxijzij
� �

(1)

Here, λ0j(t) denotes the unique baseline hazard function in the jth trial, and xijzij represents the interac-
tion term between the treatment and covariate of interest, which is an amalgamation of within-study and
between-study information. The constant coefficient β1 is the treatment effect (i.e. the change in the log
hazard for patients in the treatment group rather than control group) where xij=0, β2j is the study-specific
change in the log hazard for a one-unit increase in the patient-level covariate where zij=0, and βT denotes
the additional change in the log hazard for patients in the treatment group compared with the control
group for one unit increasing values of xij. We note that the separate baseline hazard per trial (λ0j(t)) is
essential to account for clustering of patients within trials [42]. A separate adjustment term (β2j) is also
ideally preferred, as the effect of the covariate may also differ across trials; however, this also increases
the number of parameters to estimate, and so, when there are non-convergence issues, it may be necessary
to make a stronger assumption that this adjustment term is the same in each trial.
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We could also allow for residual heterogeneity in the treatment effect (i.e. not explained by the
interaction term), in a random-effects model:

λij tð Þ ¼ λ0j tð Þ exp β1jzij þ β2jxij þ βTxijzij
� �

β1j ¼ β1 þ b1j

b1jeN 0; τ2ð Þ
(2)

The coefficient β1 is now the average log hazard ratio for a distribution of possible treatment effects
where xij=0 and the random variable b1j follows a N(0, τ2) distribution, where τ2 is the residual between-
trial heterogeneity. One could also include a random effect on the interaction term.

2.2. Separating within-study and across-study interactions

When we include the interaction as in (1) and (2), it amalgamates within- and across-trial interactions.
Alternatively, we can model these separately by centring the covariate xij about the mean, xj, in each trial
j and also including the mean xj as an additional adjustment term to explain between-study heterogeneity.
For example, if we assume there is no residual between-study heterogeneity in the treatment effect after
including the covariate mean, xj, then we can extend fixed-effect model (1) to

λij tð Þ ¼ λ0j tð Þ exp β1jzij þ β2jxij þ βW xij � xj
� �

zij
� �

β1j ¼ αþ βAxj
(3)

Allowing for residual between-study heterogeneity, we can extend model (2) to

λij tð Þ ¼ λ0j tð Þ exp β1jzij þ β2jxij þ βW xij � xj
� �

zij
� �

β1j ¼ αþ βAxj þ b1j

b1jeN 0; τ2ð Þ
(4)

Parameters in models (3) and (4) are as discussed before, but additionally, the within-trial coefficient,
βW, denotes the expected change in the treatment effect (log hazard rate ratio for individuals who receive
the treatment compared with control) for each one unit increase in xij, and the across-trial coefficient, βA,
denotes the expected change in the overall study treatment effect (log hazard rate ratio) for every one
unit increase in xj.

Centring the patient-level covariate in models (3) and (4) ensures that βW now only explains within-
study variability, and βA only explains between-study variability. In other words, the within- and the
across-trial interaction estimates are now uncorrelated with each other and thus disentangled [9,26]. In
contrast, models (1) and (2) provide some weighted average of βW and βA, which will increase power
but at the expense of potential ecological bias. Models (3) and (4) also allow one to estimate the
magnitude of ecological bias by βW–βA [20], although there will usually be low power to identify, or
statistically test, for ecological bias using this approach because of typically imprecise estimates of
βA. For researchers who prefer not to explain between-study heterogeneity, then model (4) can be fitted
without the βAxj term, and the interpretation of βW would remain intact.

2.3. Applicability of βW and βA

In this paper, the key focus is on providing interaction estimates that are meaningful to stratified (person-
alized) medicine, so that treatment decisions can be tailored to individuals based on their covariate
values. For this reason, the main parameter of interest from the previous models is βW because this
explains differences in treatment response at the individual-level and thus reduces within-trial
(patient-level) variability. In contrast, βA explains differences in population average treatment effects.
Although this is helpful to reduce between-study variability, and perhaps to inform population-level
comparisons (or predictions) of overall treatment effects (or overall prognosis [43]), it is potentially
misleading to use βA to make inferences about individuals. This is demonstrated in detail in the simula-
tions and examples in Sections 3 and 4, where we compare estimates for βW and βA, and also their
amalgamation (βT), in a range of settings.
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2.4. Model estimation

To fit the stratified Cox regression for models (1) and (3), many standard statistical packages are avail-
able, such as coxph in R [44] and stcox in Stata [45], which maximize the profile likelihood. To estimate
the random-effects models (2) and (4), a package such as coxme in R could be utilized, for example
where the random-effects are integrated out to maximize the integrated partial likelihood [46]. Crowther
et al. also show how to fit models (3) and (4) using Poisson regression with maximum likelihood via
Gauss–Hermite quadrature [37], which has the advantage of also providing an estimate of the baseline
hazards (one for each trial) if necessary (for example, for absolute risk predictions).

3. Simulation study to evaluate treatment-covariate interactions

We now describe two simulation studies to assess the performance of the models with merged (i.e. (1) or
(2)) or separated interaction terms (i.e. (3) or (4)), when either ignoring ((1) and (3)) or accounting for
((2) and (4)) residual between-study heterogeneity. In the first simulation study, we exclude any trial-level
confounding factor (‘No confounding’ simulation study). In the second simulation study,we include a con-
founding factor (‘Confounding’ simulation study). In each simulation study, we consider binary (sex) or
continuous (age) variables and their interaction with treatment. The survsim package in Stata is utilized
to simulate survival data [47], and the main steps of the simulation study are summarized as follows [48]:

Step 1. Each simulated IPD meta-analysis dataset consists of J trials, with J fixed per simulation
scenario. The number of patients in each trial was randomly determined by sampling from
a normal distribution with mean N and standard error, N/5, where N is fixed per simulation
scenario.

Step 2. In each individual trial, each patient has an equal chance to be assigned to the experimental
(treatment) group zij=1 or the control group zij=0 by randomly sampling from a Bernoulli
(0.5) distribution.

Step 3a. If the covariate x is the binary variable, such as sex (1=Male, 0=Female), then for the ith
patient in the jth trial, we firstly sample a mean (xj ) in the jth trial from a uniform
distribution (0.5�V1, 0.5+V1) where V1 is chosen to be between 0 and 0.5 and then
randomly sample xij for each patient in each study from a Bernoulli distribution with the
obtained mean xj.

If the covariate x is the continuous variable, age, then for the ith patient in the jth trial, a mean (xj ) in
the jth trial is firstly sampled from a uniform distribution (50�V1, 50+ V1) where V1 is chosen to be
between 0 and 35 and then xij is sampled from a normal distribution truncated at 15 and 85 with the
obtained mean xj and a standard error V2, where V2 is chosen to be a positive number. V1 and V2 are
fixed per simulations scenario.
It is important to note that V1 defines the amount of across-trial variability in the mean covariate values,
whereas V2 defines the amount of within-trial variability in the individual covariate values. If V1 is large
then there is a greater spread of trial-level mean covariate values, and thus there is more opportunity
(greater power) for any across-trials information to contribute in subsequent one-stage meta-analyses [7].

Step 3b. In addition, for simulation scenarios with study-level confounding, we define yj to indicate
whether the jth clinical trial has a higher dose of the treatment in the experimental arm
(1=yes, 0=no). All trials with the mean of the binary covariate (sex) above 0.5 or the mean
of continuous covariate (age) above 50 are given this extra effect β4 (yj=1).

Step 4. In each study separately, we use the survsim package in Stata to generate the patient-level
survival data (that is event times) for the ‘no confounding’ simulation study using (5) and
the ‘confounding’ simulation study using (6), respectively:

λij tð Þ ¼ λ0 tð Þ exp β0j þ β1zij þ β2xij þ β3xijzij
� �

(5)

λij tð Þ ¼ λ0 tð Þ exp β0j þ β1zij þ β2xij þ β3xijzij þ β4yjzij
� �

(6)

where the baseline hazards within each trial are proportional to the same common hazard function
λ0(t), which is taken to be the exponential distribution with mean of 0.1. The fixed term β0j for
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j=1,2,…,J represents the change in the baseline hazard (from the reference λ0(t)) for each trial, where
β0j is sampled from a uniform distribution U(0,0.5), and β1, β2 and β3 are chosen to be fixed (the same
for each trial) defining the treatment effect, adjustment factors and interaction, respectively. In model
(6), the additional fixed term β4 defines the confounding factor in the ‘confounding’ simulation, which
is chosen to be a positive constant. Each simulated dataset censored patients at 5 years if the event had
not previously occurred.

Step 5. Steps 1–4 are repeated 1000 times to generate 1000 IPD meta-analysis datasets for each
simulation scenario of interest.

Step 6. To each 1000 meta-analysis datasets generated, we fit either fixed-effect or random-effects
models that either amalgamate within-trial and across-trial interactions (models (1) or (2))
or separate within-trial and across-trial interactions (models (3) or (4)). All models were
fitted using maximum likelihood estimation via coxme in R, and in agreement with how
the data were generated, in all models, we assumed that the covariate adjustment term
was the same in each trial (i.e. that β2j=β2); this also reduced potential non-convergence
issues.

Then to evaluate and compare the 1000 achieved parameter estimates from the different types of
models, we look at the mean bias, mean standard error, mean squared error and coverage probability
of 95% confidence intervals for each parameter estimate, with the performance of the estimates of the
interaction terms of key interest for this article.

Our main focus is whether models (1) to (4) provide good estimates of the parameter β3 from the data
generating models (5) and (6). β3 is the difference in treatment effect between two individuals who differ
in xij by one-unit and is thus informative toward stratified (personalized) treatment decisions. Therefore,
it is important that one-stage meta-analysis models (1) to (4) provide unbiased estimates of β3, and so the
simulation results in the following focus on comparing the estimates of βT, βW and βA from models (1) to
(4) with the value of β3 used to generate the IPD.

3.1. Defining scenarios and parameter values

The simulation study focused on four key scenarios:

• ‘No confounding’ simulation study (model (5)): Binary variable (sex).
• ‘No confounding’ simulation study (model (5)): Continuous variable (age).
• ‘Confounding’ simulation study (model (6)): Binary variable (sex).
• ‘Confounding’ simulation study (model (6)): Continuous variable (age).

To generate the IPD meta-analysis datasets for each scenario, the previous step by step process was
used. To do this, we needed to define β1, β2, β3 and β4 and chose positive values for ease of use. To
consider a reasonably large treatment effect, β1 was set to be 1 (i.e. a hazard ratio of 2.72, indicating
the treatment is beneficial for a situation where the outcome is good, such as time to remission). β2
and β3 were defined to be 0.5 for the binary covariate (sex) and 0.01 for the continuous covariate
(age). β4 was set to be 0 in the ‘no confounding’ simulation studies (as this parameter is not included
in model (5)) and 0.75 in the ‘confounding’ simulations.

For each scenario, we also considered altering the number of trials and the number of observations per
trial, that is J=10 and N=500 for the ‘large’ setting, and J=5 and N=250 for the ‘small’ setting. To
explore the association between the scale of the covariate x and interaction effects, we also varied V1

and V2: for the binary case, V1 was chosen to be 0.4 or 0.2; and for the continuous case, V1 was set to
be 20 or 10, and V2 was set to be 5 or 10. As mentioned previously, as V1 increases, the potential power
of any across-trial information will also increase. This is likely to be especially important in situations
where V1 is also large relative to V2, such that the across-trial information is potentially larger than
the within-study information [7].

In summary, our simulation study was repeated for each combination of V1, V2 and the sample size (J
and N), for each of the ‘confounding’ and ‘no confounding’ situations, and for each of either a binary or
a continuous covariate, and the results are now summarized in the following.

3.2. Results

3.2.1. Binary covariate, no trial-level confounding. Consider first the ‘no confounding’ simulations
with the binary covariate (sex). Because there is no study-level confounding, there is no unexplained
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heterogeneity across trials, and so the random-effects models (2) and (4) are not considered here for
brevity; however, their findings were almost identical to those from models (1) and (3).

A summary of the performance of the parameter estimates is shown in Table I, for the different
combinations of V1 and the sample size. In all settings, the true interaction between the log hazard ratio
(treatment effect) and sex was 0.5, and so, if they reflected this, then the mean estimates of βT, βW and βA
should be 0.5.

In all settings, β̂T from model (1) and β̂W and β̂A from model (3) were approximately unbiased
estimates of the true treatment-sex interaction effect, and coverage probabilities of their 95% confidence
intervals were also very close to 0.95. For model (3), the mean squared errors of β̂W were generally much
smaller than those of β̂A. This highlights that the within trial interaction term usually has greater power
than its across-trial counterpart, and this difference becomes bigger as the number of studies or V1 de-
creases. However, β̂T from model (1) has the smallest mean squared errors, as it is essentially a weighted
combination of β̂W and β̂A , and therefore, precision is improved, as indicated by the smaller standard
deviations for β̂T than β̂W and β̂A.

3.2.2. Continuous covariate, no trial-level confounding. Table II summarizes the results for the contin-
uous covariate (age) in the ‘no confounding’ scenarios. In all settings the true interaction between the log
hazard ratio (treatment effect) and age was 0.01, and so, if they reflected this, the mean estimates of βT,
βW and βA should be 0.01. The amalgamated effect, β̂T from model (1) and the within- and across-trial
effects, β̂W and β̂A, from model (3) were generally unbiased as they were close to 0.01 across all settings.
The coverage in each setting was also very close to 0.95. As for the binary covariate, the amalgamated
interaction β̂T generally performs best because of larger precision (smaller standard errors).

In the scenarios with large sample size when using model (3), the standard error of the within- and
across-trial estimators were very similar, for example see the cases for V1 = 10, V2 = 5 or V1 = 20,
V2 =10. However, when V1 was large relative to V2, the standard error of β̂W appeared slightly larger than
β̂A. For example, in the ‘large’ setting and V1 = 20 and V2 =5, the standard deviation of β̂W was 0.006
whilst the standard deviation of β̂A was 0.003. Conversely, when V1 was small or similar relative to
V2, the standard error of β̂W was smaller than β̂A. For example, in the ‘large’ setting given V1 =10 and
V2 =10, the standard deviation of β̂W was 0.003 whilst β̂A was 0.007.

These findings confirm previous work [7]: the power to detect the patient-level interaction effects
using β̂W increases when V2 increases, and when using β̂A it increases when V1 increases. For the sim-
ulations with small sample size, findings were similar except standard errors were of a larger magnitude
throughout.

3.2.3. Binary covariate, trial-level confounding. Consider now the situation of a binary covariate when
there is unknown trial-level confounding (because of treatment dose, relating to yj in step 3(b) of the pro-
cess used to simulate the IPD), and thus residual between-study heterogeneity. The simulation results are
summarized in Table III.

Consider the fixed and random-effects models (3) and (4), which treated the within and across-trial
interaction terms separately. The patient level interaction estimators, β̂W , were still approximately unbi-
ased for all settings as they were very close to the true value, 0.5. However, because of the unaccounted
for trial-level confounder of dose in models (3) and (4), β̂Awas now biased in every setting. For example,
given V1 =0.2 and the ‘small’ sample setting, the mean of β̂W was 0.502 from the random-effects model
(4) and so close to the truth, whereas the mean of the across-trial interaction estimator, β̂A, was 3.47 and
so had serious upward bias. The stark difference between the estimators of β̂W and β̂A demonstrates the
impact of ecological bias on β̂A, because of the unaccounted trial-level confounder of dose. Interestingly,
the bias in β̂A was not improved when using the random-effects model (4) rather than the fixed-effect
model (3). There was also very poor MSE and coverage of β̂A because of the presence of ecological bias,
whereas MSE was small and coverage acceptable for β̂W .

Models (1) and (2) also gave estimates of βT that were upwardly biased compared with 0.5. The
random-effects model (2) performed better in terms of the coverage being closer to 0.95, but β̂T was still
upwardly biased in most settings because of amalgamating the unbiased within trial interaction with the
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upwardly biased across-trial interaction. For example, given the ‘large’ setting and V1 = 0.4, the mean
estimate of βT was 0.528 (coverage =0.927) for the random-effects model and 0.721 (coverage=0.192)
for the fixed-effect model, which are both above the true value of 0.5.

In summary, the bias, MSE and standard error are vastly superior for β̂W in these settings, and there are
serious issues with β̂A.

3.2.4. Continuous covariate, trial-level confounding. The results for a continuous covariate in the
setting of trial-level confounding are now summarized in Table IV. In all settings for both models (3)
and (4), the mean and coverage of β̂W were close to 0.01 and 0.95, respectively, indicating excellent
performance of the within trial interaction. On the contrary, the β̂A estimates from the two models were
upwardly biased with coverage much lower than 0.95, highlighting again the impact of ecological bias
because of the omission of the trial-level confounder of dose used to generate the IPD in these settings
(see step 3(b) of the simulation set-up).

When using models (1) and (2), the results show that β̂T also had poor performance in terms of bias
and coverage, especially when the fixed-effect model (1) was utilized. Although the standard error of β̂T
was sometimes smaller than β̂W, this only arose by utilizing the biased β̂A. As noted elsewhere, the gain in
standard error comes at the expense of bias and poorer coverage [12,14,23].

3.3. Summary of simulation findings

In conclusion, our simulation study has demonstrated that to understand how a patient-level covariate
interacts with treatment effect, it is generally better to examine βW rather than either the trial-level
interaction effect, βA, or the amalgamated interaction effect, βT. Although β̂T performs best when
there is no trial-level confounding (because of larger precision and smaller MSE), its performance
deteriorates considerably when trial-level confounding exists as its estimate and coverage are then
severely affected by ecological bias, which may produce misleading conclusions. The magnitude
of such bias is worse when using a fixed-effect model. Although it is still non-negligible in a
random-effects model, the inclusion of residual between-trial heterogeneity reduces the power of
the across-trial information, such that it has less weight toward β̂T than in a fixed-effect model. In
contrast, the performance of β̂W remains excellent in all situations considered, as it separates the
within-trial information from the across-trial information. Finally, we note that an alternative two-
stage approach to obtain the interaction estimate in each trial separately, followed by a traditional
fixed-effect or random-effects model, gave almost identical results to those shown for β̂W from
one-stage models (3) or (4).

4. Application to an IPD meta-analysis in epilepsy

Epilepsy is one of the most common neurological disorders threatening 65 million people throughout the
world [49]. Previous researchers conducted an IPD meta-analysis of 1225 patients from five randomized
controlled trials to compare the effects of two antiepileptic drugs, Sodium Valproate (SV, drug=1) and
Carbamazepine (CBZ, drug=0), when used as monotherapy in patients with partial onset seizures or
generalized onset seizures [50–52]. Here, we focus on the treatment effect (SV versus CBZ) on the
outcome of time to 12month remission, in relation to three patient-level covariates: age at randomization
(in years), type of epilepsy (generalized or partial) and the log number of seizures in 6months before
randomization. In a previous analysis of this data, Tudur Smith et al. examine interactions between
the treatment effects and these three covariates [50] using one-stage models; however, these only had
an amalgamated interaction term. Hence, here, we examine if separation of within-trial and across-trial
interaction alters the original conclusions.

For each covariate separately, we used maximum likelihood (via the coxme module in R) to esti-
mate models (1) and (2), which amalgamate within-trial and across-trial interactions, and models (3)
and (4), which separate out within-trial and across-trial interactions. There were sometimes estima-
tion problems when a separate covariate adjustment term was used in each trial, and so the results
shown in Table V are from models (1) to (4) but with β2j= β2, as this resolved any non-convergence
during model estimation. In situations where convergence was possible with separate β2j terms, the
results and conclusions were very similar to those shown. We also refitted all our models using
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the Poisson regression approach of Crowther et al. [37], and results were again very similar. We
focus now only on the results for the interaction estimates (Table V). As noted for the simulation
study, an alternative two-stage approach gives almost identical results to those shown for β̂W from
one-stage models (3) or (4).

There was no evidence that either epilepsy type or the log number of seizures were modifiers of the
treatment effect for any models (p>0.1). However, for both covariates, the amalgamated estimator,
β̂T, was larger in absolute magnitude than the patient-level estimator, β̂W, suggesting that ecological bias
may be present. For example, in the random-effects model for epilepsy type, β̂T was �0.09 (standard
error (SE) =0.156) and much larger than the β̂W value of �0.025 (SE=0.058). This was due to β̂T being
an amalgamation of β̂W with an extremely large β̂A =�0.479 (SE=0.376). Interestingly, one of the five
trials (Mattson) only had partial epilepsy type patients and thus provides some across-trials information
but no within-trial information toward this β̂T .

The findings were even more dramatic for age, as statistical significance at the 5% level was different
for β̂T and β̂W. The within-trial effect, β̂W, was not statistically significant (̂βW =�0.007, 95% CI: �0.019
to 0.005, p=0.219) whereas the amalgamated effect estimator was larger and statistically significant (̂βT
= �0.011, 95% CI: �0.019 to �0.003) (p=0.004). Again, the difference arises due to β̂T amalgamating
β̂W with β̂A , which increases precision but at the expense of β̂A introducing potential ecological bias
(study-level confounding), because β̂W is about half the size of β̂A (Table V).

The analysis of age was extended to replicate the original analysis of Tudur Smith et al., which
included additional adjustment terms for epilepsy type and log number of seizures. The findings
remained similar: the within-trial effect, β̂W , was not statistically significant (β̂W =�0.006, 95%
CI: �0.017 to 0.005, p=0.298), whereas the amalgamated effect estimate was statistically
significant (β̂T =�0.008, 95% CI: �0.016 to �0.001) (p=0.024). Thus, based on the within-trial
interaction alone, there is not strong evidence that age is a moderator of treatment effect, and
further research is recommended, which adds new insight on previous analyses of this data [50–
52].

5. Discussion

Individual participant data meta-analyses are increasingly prominent for time-to-event data, as the
availability of IPD often allows a longer follow-up time and more sophisticated modelling than an ag-
gregate data meta-analysis. In particular, IPD meta-analyses of cancer studies are usually time-to-event,
and there is enormous interest in their use for examining whether biomarkers are treatment effect mod-
ifiers to inform precision oncology [53] and for deriving absolute risk prediction models [40]. One-stage
IPD models are often preferred, as this produces all meta-analysis results in a single analysis and is po-
tentially more flexible, for example in regard modelling the baseline hazard, non-proportional hazards
and non-linear trends, than a two-stage approach. It is therefore critical that researchers use the correct
one-stage IPD modelling approach.

In this article, we compared, through simulations and an applied example, different specifications of a
one-stage IPD meta-analysis model of time-to-event data where the goal is to estimate a treatment-
covariate interaction. Our findings agree with previous work and simulations for continuous and binary
outcomes [9,23]: it is crucial to separate within-trial and across-trial interactions, to avoid ecological bias
caused by unexplained trial-level confounding [8,54,55]. Otherwise, clinical conclusions about
interactions may be driven by ecological, trial-level information rather than solely within-trial informa-
tion at the individual-level. This is especially important when the power of any across-trial information
is comparable with that for within-trial information, which occurs when the variation across-trials in the
mean covariate values is similar to, or bigger than, the variation in individual covariate values [7]. The
consequences of amalgamating within-trial and across-trial interactions may be substantial with false
predictors of treatment effect being wrongly identified as important, or conversely genuine predictors
of treatment effect being missed or discarded prematurely [1]. Our epilepsy example demonstrates
how the magnitude of treatment effect modification for age and its statistical significance depends
heavily on whether within-trial associations are amalgamated or separated from across-trial associations;
in particular, separating within-trial and across-trial information leads to less dramatic clinical and
statistical conclusions.
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Although our simulations show that amalgamating within-trial and across-trial associations can
improve precision of treatment-covariate interactions, this is not an adequate justification for doing so
given the clear, adverse consequences on bias and coverage when trial-level confounding exists. In
our opinion, gain in precision must not be made at the expense of potential bias and poor coverage.
In situations of trial-level confounding, our simulations show that bias and inappropriate coverage of
the amalgamated interaction occur regardless of whether it is estimated in a fixed-effect or random-
effects setting, although the impact is far worse when using fixed-effect models.

Simmonds et al. reviewed a sample of IPD meta-analyses of randomized trials published from
2008 to 2014 [30] and state that: ‘In one-stage analyses, most papers reported including covariates
in the one-stage regression model (21 reviews), although exactly how this was carried out was rarely
reported’. This is concerning, as we would expect IPD publications to state that ecological bias was
avoided by separating out within-trial and across-trial interactions, if indeed it had been carried out;
hence, the absence of such reporting suggests interactions were (perhaps unknowingly) based on
amalgamating within-trial and across-trial associations. Further empirical evidence would be
welcome.

Our recommendation to focus only on βW echoes previous calls by Thompson and colleagues, who
state that ‘within-study and between-study information for interactions need to be distinguished’ [14]
and ‘in general, we would suggest that the estimated relations between the extent of treatment benefit
and patients’ characteristics are derived only from within-trial information, so that confounding because
of differences across trials is avoided’ [4]. In situations where IPD are limited and most information
comes from across trials (for example, when IPD are not available for all studies [9,20,23] or the
variation in particular covariate values within trials is small or even zero), again, this does not provide
credence for making recommendations based on the trial-level information because of the aforemen-
tioned issues. At best, meta-regression analyses using the trial-level should only be viewed as
exploratory when the aim is to identify individual-level associations and should not inform clinical
recommendations. However, we recognize that others may not agree with these recommendations; for
example, models have been proposed for combining across-study and within-study interactions when
a mixture of IPD and AD are available [56,57].

In our simulations, we did not consider the extra complexity of potential confounding within-trials
when examining whether a particular factor interacts with treatment. Furthermore, even when the anal-
ysis of a particular factor produces a βW that is statistically and clinical important, there may still be de-
bate about whether the factor is a genuine causal modifier of treatment effect. Sun et al.[58] provide
guidance for identifying whether differences in subgroups are believable, and this includes consideration
of biological plausibility.

If one is interested in the overall effect for particular subgroups (e.g. men and women), then a separate
one-stage model could be fitted for each (thus avoiding interaction terms). However, before making state-
ments about differences between subgroups, it is crucial to test/quantify their difference using β̂W , for
which our one-stage models that separate out within-trial and across-trial interactions are needed. Of
course, a traditional two-stage meta-analysis of interaction estimates would also avoid ecological bias
and, in most situations, will give a summary meta-analysis result very similar to β̂W from our one-stage
models that separate within-trial and across-trial interactions. However, especially in situations with small
numbers of events, the more exact likelihood for the one-stage approach may give better statistical prop-
erties than the two-stage approach, for which the assumption of normally distributed estimates and known
within-study variances may be inappropriate [16]. Ecological bias may also affect a two-stage approach
where the interactions are jointly synthesized with other parameter estimates (such as intercepts); for fur-
ther discussion, see Riley et al.[59].

In conclusion, where one-stage models are to be used to examine potential treatment-covariate inter-
action, researchers should pre-specify in their protocol that they will separate out within-trial and across-
trial interactions. Furthermore, recommendations about predictors of differential treatment effect should
only be based on within-trial interactions, to avoid potentially erroneous implications for clinical
practice that can arise when within-trial and across-trial information is amalgamated.
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