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Abstract 
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AUTHOR: 

Xinpu Chen 

 

Bioresorbable polymer is widely used inside the human body as resorbable medical 

devices such as fixation screws, plates, sutures, and tissue engineering scaffolds. The 

most important feature for such devices is that they ‘disappear’ after serving the 

temporary function that is surgically required. The current design for these devices is 

still based on trial and error. The degrading process is complex and many factors were 

involved. This makes the design optimisation very hard. The degradation rate for such 

devices varies from months to years, making the experimental work expensive and 

time-consuming. Mathematical modelling could be used in the early stages of 

designing, and would give an indication of certain degradation behaviours without 

doing experiments first. The existing mathematical models developed by the Leicester 

group were used to successfully capture the trend of average molecular weight, degree 

of crystallisation, and Young’s modulus. However, the previous models still have 

many gaps to fully capture the underlying chemistry and physics of polymer 

degradation. Some of the models are also over-complicated to be used in practical 

designs. This thesis presents several new developments and simplifications to the 

previous models. These include the separation of long and short polymer chains in the 

rate equation for polymer chain scission, adding the effect of water diffusion and 

providing a list of analytical solutions for simple but commonly used situations. A 

complete set of governing equations are provided by integrating the new rate equation 

with previously developed equations for crystallization, oligomer diffusion and short 

chain diffusion. A major issue in the development of biodegradable devices is that it 

is extremely time consuming and expensive to obtain experimental data for 

degradation rate because the degradation can take up to several years. The thesis 

presents a demonstration on how the mathematical model, together with the finite 

element method, can be used to project degradation rate from one device, for which 

experimental data are available, to another which is under design. Finally the effective 

cavity theory for change in Young's modulus and degradation detection using mode 

analysis, previously developed by the Leicester group, are simplified to make them 

much more straightforward to use by end users.  
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Chapter 1: Introduction 

This PhD thesis provides studies of mathematical modelling of biodegradable polymer 

degradation behaviours. This chapter will provide a brief background of such 

biodegradable polymers and their real-world applications. 

 

1.1 Biodegradable polymers 

Biodegradable polymers have been used widely inside the human body for the last few 

decades. It is predicted that the usage of these devices in the future will increase 

tremendously. The characteristic of not needing a second surgery is attractive enough, 

not to mention its good mechanical properties, fantastic biocompatibility, and thermo-

elasticity. Currently, biodegradable polymer such as polyglycolide (PGA), polylactide 

(PLA), and their copolymers (PLGA) are the most popular ones. Each of these 

polymers has unique performance attributes and they have been used in different fields 

depending on these distinctive characteristics. PGA is the simplest linear, aliphatic 

polyester. It has the fastest average degradation rate among the above commonly used 

polymers. The average degradation time is between four and six months (Miller, et al., 

1977). It is a semi-crystalline polymer containing 45% to 55% of initial volume degree 

of crystallinity. The melting point is between 224ºC and 226ºC and glass transition 

temperature is between 36ºC and 40ºC (Miller, et al., 1977). Initially, PGA was 

introduced to medical use in the 1960s as sutures. Shortly after that, PLA, a synthetic 

degradable material with more hydrophobic and a slower degradation rate, was 

brought into the market. Two particular forms of PLA, poly(L-lactic acid) or PLLA 

and poly(D-lactic acid) or PDLA, were suggested to be useful in medical applications. 

Both are semi-crystalline polymers with a volume degree of crystallinity up to 40%, a 

melting point of 170ºC to 195ºC, and a glass-transition temperature from 50ºC to 60ºC 

(Karst and Yang, 2006). PLLA is a stereoregular polymer, found to be of increasing 

mechanical strength and toughness.  Therefore, it would be solved better as sutures 

and in other applications which need high physical strength such as orthopaedic 

implants. Poly-DL-lactide (PDLLA) is the optically inactive racemic form, which is 

usually amorphous. Based on its nature of having lower tensile strength and faster 

degradation, drug delivery devices are its most suitable use. A mix of PLLA and PDLA 
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blends has characteristics different to any of its copolymers such as crystal structure, 

melting point, and glass-transition, and these characteristics are influenced by the 

percentage of the blends. A 50/50 PLLA/PDLA blend can form into a stereocomplex. 

Due to the stereocomplex crystallites structure, this PLLA and PDLA complex 

polymer have higher tensile strength and Young’s modulus compare to both pure 

polymers before blend. Furthermore, the glass-transition temperature and the melting 

point are also both higher than those of pure PLLA and PDLA. In which we have the 

glass-transition temperature for the 50/50 PLLA/PDLA blend is between 65ºC to 72ºC 

and melting point is between 220ºC to 230ºC (Karst and Yang, 2006). Polydioxanone 

is another commonly used degradable polymer which where commercially introduced 

in 1981. Polydioxanone can be used as an alternative to PGA and PLA for unloaded 

orthopaedic applications. Because it’s a semi-crystalline polymer and it has a low 

melting temperature and slower degradation rate, polydioxanone made orthopaedic 

devices will slowly delivery drugs over one year period. This is necessary when the 

tissue needs a long time to heal, slowly releasing of drug will lead to a continually 

support of healing in tissue (Buchanan, 2008). 

 

1.2 Medical implants made of biodegradable polymers 

In October 2010, Professor Anthony Gershlick implanted a PLA stent into a heart 

patient at the University Hospitals of Leicester NHS Trust. This was the first case of 

using a fully biodegradable stent in the UK. Every year, tens of thousands of people 

suffer from heart disease caused by narrowed artery or thrombus. Implanting a stent is 

a much safer and minimally invasive surgical procedure to solve such an issue. The 

stent would be injected into the patient’s artery from other parts of the body, for 

example, the leg. It will follow the artery to the lesion part. A balloon is then implanted 

to expand the stent into position. The stent will expand and support the narrowed artery, 

which will obtain normal blood flow. However, most of the commonly used stents 

have a base of unabsorbable material, which will be permanently left inside the body. 

An elevated risk of bio-incompatibility remains. Therefore, a biodegradable stent is 

strongly necessary. The biodegradable stent used in the University Hospitals of 

Leicester had been designed to extend the narrowed artery, restoring the blood flow 

and providing support while the opened area heals. Once no longer required, the stent 
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slowly dissolves into carbon dioxide and water, over a period of two years. During the 

degradation, the drug layer contained in the stent releases the drug and attenuates the 

response of injured tissue that has been caused by the high-pressure deployment of the 

stent. The benefit of it will be that there is no permanent implant left behind, allowing 

the artery to be more functionally normal. 

After being used as sutures in the 1970s, many other medical implants made of 

biodegradable polymer were quickly developed. Biodegradable polymers made screws 

and plates, which were used for bone fixation. About 10% of the bone fractures in UK 

need internal fixation devices such as screws, pins, and plates. They are needed to 

supply physical strength when the bone is weak; therefore, the materials used as 

implants need to be physically strong to support human daily activities such as walking 

or lifting. For that reason, metal used to be chosen as the material for these kinds of 

implants. However, the disadvantage of metal-made implants is obvious. Broken 

bones need support at the beginning, but they heal over time. At a certain point, the 

bone will be fully healed and the implants no longer required. For some implants, a 

second surgery can be performed to remove them, but for others, a second surgery is 

difficult and risky. Therefore, patients have been forced to carry these “no longer 

needed” implants for the rest of their lives, bearing the risk of bio-incompatibility and 

the pain that may be caused by it. Even if a second surgery has been performed, there 

is still risk of infection and other complications, and a second invasion will be a huge 

damage to the body. The introduction of biodegradable polymer solved the issue of 

needed secondary surgery and the permanent residence of implants. Biodegradable 

polymer-made implants first provide broken bones with the support they require 

through surgery. As time goes by, the bone heals and slowly takes control as the 

implant slowly degrades into carbon dioxide and water. Finally, the implant disappears 

and the healed bone takes back full control. In the full process, no second surgery is 

needed and no implant remains. Furthermore, drug-loaded implants can slowly release 

the drug into the needed area to help heal the bone and surrounding tissue. 

Biodegradable polymers are also used as scaffolds for tissue engineering. In this 

intensive application, porous foam scaffolds have been made to let the tissue grow 

around it inside and outside the human body. As tissue grows, the scaffold degrades 

slowly; finally, there is nothing remaining of the original scaffold. Currently, tissue 

engineering has been used for growing tissues such as bone, skin, and cartilage. More 
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complex tissues, such as organ tissues, are the focus of upcoming research. As growing 

organ tissues become more realistic, patients could benefit from exchanging the failing 

organ for their own tissue-grown organ. This would make organ donation and 

transplantation unnecessary, and makes the organ obtaining easier. In the next decades, 

tissue regeneration may be one of the most important scientific developments. 

 

1.3 The need for computer modelling in implant design 

In all the above applications, the biodegradable devices firstly provide some temporary 

functions, then degrade and let the body take over control slowly. Finally, the implant 

devices fully degrade into carbon dioxide and water, thus disappearing. Two crucial 

factors that need to be considered during the process are degradation rate and 

mechanical property. For an implant device, it is important to predict how long it will 

take to fully degrade and disappear, and it is important to monitor the mechanical 

property during degradation to make sure the device can always supply the function 

that is needed before the body can heal and take over control. However, the 

development of such devices is still dominated by trial-and-error. Degradation takes 

from weeks to years, depending on applications. Testing fresh design ideas for the 

devices requires long-term in vitro and in vivo experiments and, finally, human clinical 

trials. Therefore, the development of designs is both expensive and time-consuming. 

Consequently, virtual testing using computer modelling is particularly helpful. 

Although experimental tests will still be necessary and play a dominant role in the 

future design, using computer modelling in the early design stage can significantly 

accelerate development and avoid unnecessary experiments. The following chapter 

gives a brief introduction of degradation mechanisms. 
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Chapter 2: Mechanisms of degradation of 

biodegradable implants 

This chapter gives a brief introduction of degradation mechanisms. 

 

2.1 Factors that control the degradation rate  

After serving their function, biodegradable medical devices disappear and hand back 

full control to the body. Degradation rate is the most important feature. Therefore, 

most of this PhD thesis is focused on degradation rate. Furthermore, modelling 

polymer degradation also leads to the study of drug release. Many biodegradable 

devices would contain drugs that would slowly be released into the human body for 

certain treatment, such as drug-eluting coronary stents and tissue-engineering 

scaffolds. Broadly speaking, the degradation rate of a polymeric device is affected by: 

• Type and properties of the raw polymer; 

• Manufacturing and sterilisation conditions; 

• In vivo environment of the device; and  

• Shape and size of the device. 

Each of these factors contains many other variables; therefore, the degradation rate 

depends on an extensive list of variables. It is too complicated to relate the degradation 

rate of the device back to all these factors, and there are currently no computer models 

possible to incorporate all these factors. In particular, the in vivo nature of device 

degradation is not yet fully understood. Therefore, the work presented will only focus 

on the shape and size effect on the degradation rate, and aims to help designs of 

degradable devices to have an easier understanding of the mathematical model.  

The mechanisms of biodegradation are complicated which include hydrolysis reaction, 

crystallisation, and diffusion. The complicated behaviour makes the optimal device 

design very difficult and the capture of the degradation trend not straightforward. A 

breakdown review of these mechanisms is listed below. 
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2.2 Hydrolysis reaction 

Hundreds or thousands of polymers repeat units, also called monomers, are formed 

into polymer long chains. The degradable devices are considered to be constituted by 

these long chains after the manufacturing process. PLA (polylactide) is an aliphatic 

polyester, which consists of three carbon atoms, four hydrogen atoms, and two oxygen 

atoms. An oxygen atom for one polymer repeat unit bonds to a carbon atom for the 

next polymer repeat unit through an ester (Karst and Yang., 2006). Water modulus 

attacks these ester bonds after diffusing into the amorphous polymer region. Diffusion 

rate of water modulus is much higher than the degradation rate or the diffusion rate of 

short polymer chains into the surrounding environment (Li et al., 2000), which will be 

discussed below. Therefore, water can be assumed to be abundant everywhere in the 

amorphous region, even at the very beginning of the degradation. Water modulus 

attack ester bonds cause one long polymer chain to break into two new shorter polymer 

chains. Each of the two newly formed polymer chain contains a new end, which are 

alcohol end and carboxylic acid end respectively (Galeska et al., 2005). The carboxylic 

acid end group has a high degree of dissociation. When the number of scissions 

increases the carboxylic acid end group increases; therefore, local acidity increases 

(Cameron and Kamvari-Moghaddam., 2008). This behaviour catalysts the hydrolysis 

reaction and will play a leading rule in some of the degradation.  

In experimental analysis, molecular weight was often used as a measurement factor to 

study the average number of polymer repeat units in every individual polymer chains. 

The measurements were often taking place by gel permeation chromatography (GPC). 

The aim for GPC is to find the distribution of the molecular weight. This has been 

done by measuring time needed for polymer chains to pass through a column of porous 

beads, which was controlled by the molecular weight. The distribution of molecular 

weight could be found by form the given molecular weight range into factions of 

polymer chains, which would be getting from the GPC result. However, chains that 

contain small numbers of the repeating unit can be difficult to measure and are beyond 

the scope of GPC. Therefore, excluding chains below a certain length for modulus 

weight calculations would be necessary for theoretical degradation analysis such as 

computer modelling. Furthermore, short chains could diffuse out of the polymer, hence 

will not be counted in the GPC analysis (Joshi and Himmelstein, 1991). Number 



7 
 

average molecular weight and weight average molecular weight are mostly likely the 

two factors that would be measured and be included in the literature review. Therefore, 

it makes science to use these two factors in computation modelling to validate the 

model by compare the model results to the literature measurements. The number 

average molecular weight indicated the average mass of each individual polymer chain, 

which could be achieved by dividing the total mass of all polymer chains to the total 

number of chains. Number average molecular weight decreases very quickly at the 

beginning of the degradation, as the number of chains increases and no short chains, 

which need to be eliminated from the measure or calculation, are produced yet. The 

ratio of weight average molecular weight over number average weight gives the 

polydispersity of the polymer, which indicates how broad the polymer chain 

distribution is. Number average molecular weight over the mass of one repeat unit 

gives the degree of polymerisation. 

 

2.3 Crystallinity 

Polymer chains are considered under random configuration in amorphous polymers. 

They overlap with each other and form into an inattentive region. On the other hand, 

there could be some region where polymer chains align next to each other, which gives 

the most stable atomic positions. Such regaining of packed polymer chains is referred 

to as crystallisation (Grizzi et al., 1995). A single collection of aligned polymer chains 

is referred as a crystallite. One polymer chains can overlaping to a few other polymer 

chains, which would be impossible for them to all straighten out and form into a single 

crystal. Therefore, a 100% crystallised polymer will not exist (Li et al., 1990). 

Compared to amorphous polymers, crystallites have a higher value of stiffness and 

better mechanical properties, because the chains packing together increase the overall 

interatomic attraction. However, it is hard for water molecules to diffuse into a 

crystalline region. Therefore, crystalline regions are generally considered to resist 

hydrolysis and degradation of crystalline polymers is much slower than amorphous 

polymers. Crystalline region of a biodegradation polymer device can affect its over 

and local mechanical property and over all degradation rate, therefore it is necessary 

to understand and predict how it change during degradation. Small polymer chains or 

monomers can move around inside of polymer devices, and one often finds that they 
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are easily combined with other chain ends and grow into a new crystallite or combine 

with the existing crystallite chain ends and increase the volume fraction of crystallinity. 

For that reason, the volume fraction of crystallinity can increase as well as decrease 

during degradation, whereas the number average molecular weight trend could only 

decrease. That could also explain the phenomenon seen from some experimental data, 

which is that the Young’s modulus of the polymer increases at the beginning of the 

degradation. The crystallite can also increase by scissions. Every scission has a chance 

to cause the newly produced chain ends to fold back and forward to form into a new 

crystallite. This is known as chain cleavage-induced crystallisation. 

 

2.4 Oligomer production 

Chain scission causes long polymer chains to break into smaller ones. When the chains 

are small enough, particularly less than eight repeat units, they will be referred to as 

oligomers. Oligomers have been assumed to have the ability to move around inside 

the polymer; it could form into crystallite, it could increase the local acidity, and could 

therefore lead to autocatalysis hydrolysis reaction, and it could be diffused out of the 

polymer. Although it has been mentioned that disassociation of carboxylic acid chain 

ends causes autocatalysis hydrolysis, Pan and his collaborators (2016) suggest that the 

contribution of short polymer carboxylic acid chain ends may dominate this process 

because of the high movability of the short chains. An advanced mathematical model 

has been developed to separate the long and short chains, which will be discussed later. 

Scissions can happen in two forms. If all the scissions occur at the ester bonds next to 

the polymer chain ends, then each chain scission creates a monomer. This is known as 

end scission. If the chain scission occurs randomly along the polymer chains, then one 

scission could create an oligomer or, most likely, would break one long polymer chain 

into two smaller polymer chains. Therefore, random scission is much more efficient in 

reducing molecular weight than end scission, and end scission is more efficient in the 

generation of short chains than random scission. It can be observed from literature that 

for most of the cases average molecule weight reduces fast at the beginning of the 

degradation, which could not be explained by pure end scission. Also, literature 

demonstrate a usual weight loss at the end of degradation, which would not be able to 

explain by pure random scission because too few short chains have been created and 
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even fewer of them could be diffused out. Gleadall, et al. (2014) studied the existing 

data in the literature and concluded that the degradation of common biodegradable 

polymers is typically a combination of random and end scissions. Whereas, most of 

the scissions happens at chain ends, because it is easier for them to have water 

molecule around them. And the scission happens by chain ends produce most of the 

monomers responsible for weight loss. However, it is the few random scissions that 

cause the molecular weight reduction, especially at the beginning of degradation. In 

general, the production of short chains in random scission can be empirically related 

to number of chain scissions (Han, et al., 2010), whereas, in end scission, the number 

of ester units of the short chains should be equal to the number of scissions. 

 

2.5 Non-uniform degradation 

This thesis assumes that the degradation mechanism is caused by two main hydrolysis 

reactions – non-catalytic reaction and autocatalytic reaction. In the first stage of 

degradation, water molecules attack ester bonds causing scission; this reaction happens 

naturally and no catalytic is required. Long polymer chains have been chopped into 

shorter chains, some of them small enough to diffuse out (less than eight units of 

polymerisation). Scission breaks the polymer chains into two end groups – hydroxyl 

alcohol group and carboxylic acid end group. The carboxylic acid end group has a high 

rate of dissociation, which produces H+. H+ works as a catalytic, which can cause more 

scissions and increase the degradation. This process is called autocatalytic reaction. 

Autocatalytic reaction is the main cause of the non-uniform degradation. Production 

of H+ increases the local acidity, causing some part of the polymer to degrade faster 

than other parts. The short polymer chains which contains acid end groups could be 

diffused out when its near to the surface of a device. Which will lower the local acidity 

and decrease the hydrolysis reaction. Whereas, in the middle part of the device, short 

chains cannot diffuse out as fast as the surface, local acidity is still high compared to 

the surface, and autocatalytic reaction is taking a big part. Therefore, the centre of the 

device degrades faster than the surface, which may cause a holey structure toward the 

end of the degradation. Two main factors have significant control of the non-uniform 

degradation. One is the size of the device. A thicker device causes short chains in the 

centre of the device to be harder or take longer to diffuse out. Consequently, local 
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acidity is higher and causes more scission and faster degradation. From the literature, 

we know that a thicker device degrades faster than a thinner one. Therefore, local high 

acidity can also lead to faster degradation for the whole device. This is called the size 

effect. The second factor is the diffusion coefficient. A higher diffusion coefficient 

causes short chains to diffuse out of the device more easily and lower the local acidity. 

In contrast, a smaller diffusion coefficient makes it less easy for the short chains to 

diffuse out and local acidity is high. However, short chains in or near enough to the 

surface can still diffuse out, which causes the device to generate a thin layer on the 

surface. In this thin layer degradation is slow, due to short chains diffusing out and low 

local acidity. This thin wall phenomenon has been found in many degradation 

modelling cases. In this chapter, the effect of diffusion coefficient on the degradation 

detection will again be studied. 

 

2.6 Non-uniform Young’s modulus distribution 

Non-uniform degradation leads to non-uniform distribution of average molecule 

weight and number of scissions. From the previous computation models developed by 

Leicester group, a direct link between the number of scissions and local Young’s 

modulus has been found. Therefore, a distribution of Young’s modulus can be 

calculated that relates to locations at various degradation times, as long as we have the 

data of average molecule weight distribution or number of scissions distribution from 

the literature or by achieving them from a degradation model. In the literature, most of 

the experimental data of average molecule weight and important material properties, 

like Young’s modulus, have been achieved by taking an average over the whole device 

or sample. That is because some of the medical implants, like the coronary stents, are 

normally a quite small size. Measurement of the different degradation behaviour across 

the polymer is difficult by applying normal experimental method. However, local 

distribution of important material behaviours, for example Young’s modulus, is vital 

for designing such medical devices. For example, in the thin wall phenomenon, the 

thin wall layer in the surface may have a very high Young’s modulus value but the 

centre of the device may already be nearly holey. The average Young’s modulus may 

still be in an acceptable range, but the device is way past its mechanical capacity. Non-

uniform Young’s modulus distribution can be implanted into vibration analysis. 
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Vibration analysis will be used as an alternative method which could provide a 

detection of the different distribution behaviour of the material properties, therefore 

detecting the degradation.  
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Chapter 3: A review of mathematical models for 

polymer degradation 

This chapter provides a brief list of existing models for biodegradable polymer 

degradation. A literature review of the mathematical models developed by the 

Leicester group will also be presented. The remaining issues in the mathematical 

modelling of degradation and the purpose and the structure of this thesis are given at 

the end of this chapter. 

 

3.1 Existing models for the degradation of biodegradation 

polymers 

Chain scission mathematical models were the first models to be developed for 

degradation modelling, by Pitt and his collaborators in 1981 and 1987. The 1981 and 

1987 models were developed for autocatalytic and non-catalytic hydrolysis reaction 

individually. Liner relationship was considered between the concentration of 

carboxylic acid chain end group in the autocatalytic model. Later on, Siparsky, et al. 

(1998) and Lyu, et al. (2007) proved that the autocatalytic model is linearly related to 

the concentration of H+, which is produced after disassociation of acid chain end 

groups. H+ works as catalyst rather than chain ends. Then, the autocatalytic hydrolysis 

model was modified based on the equilibrium condition for acid chain end 

disassociation. The first simulation of full molecular weight distribution model was 

developed by Batycky, et al. (1997) and Antheunis, et al. (2009). Again, autocatalytic 

and non-catalytic hydrolysis reactions were considered separately in the models. The 

group at the University of Leicester then combined both non-catalytic and 

autocatalytic hydrolysis models into a single model. The model that combines both 

hydrolysis mechanisms has been successfully used to fit many sets of experimental 

data, whereas the model for each individual mechanism can only be used to fit 

particular cases. 

A diffusion model was first introduced by Joshi and Himmelstein (1991), which gives 

the basic physicochemical properties for degradable polymer systems that predicts 

controlled release of bioactive agents. The concentration of different species controls 
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the diffusion coefficient. From the NMR measurements, Gao and Fagerness (1995) 

could present another expression of diffusion coefficient model which is concentration 

dependent. In their expressions, concentration of water, drug, and polymer are all been 

linked to the change of diffusion coefficients. Including Gao and Fagerness’ 

expression into the previous hydrolysis reaction model, a good fit can be found 

between the model predictions for polymer degradation and the corresponding 

experimental data. However, the diffusion coefficients that used in the model are 

empirical and not available for another polymer system. Another model developed by 

Peral, et al. (2009) presents degradation of solid devices. In which the degradation of 

this polymer matrix adds in count diffusion of water, monomers and oligomers. The 

anticatalytic hydrolysis reaction and increasing of crystallisation during degradation 

was not considered in this model. However, the model did demonstrate the molecular 

weight distribution function through the device and over time. 

 

3.2 Previous work on modelling by the Leicester group 

Wang, et al. (2008) combined both models by Pitt and his collaborators (1981, 1987) 

on autocatalytic and non-catalytic hydrolysis reaction; therefore, a single model had 

been formed to follow both of these hydrolysis mechanisms. Wang also allowed the 

water-soluble small polymer chains to diffusion out of the device, which led to reduce 

of local acidity and concentration of catalyst and caused fewer scissions and a lower 

autocatalytic hydrolysis reaction. Non-dimension was applied to the model parameters 

to simplified the mathematical model. To understand the degradation is in non-

catalytic hydrolysis, autocatalytic hydrolysis, or a combination of hydrolysis and 

oligomer diffusion condition, a degradation map was introduced. Finite element 

analysis was used to study the degradation model and solve the diffusion reaction 

equations. Strip and square meshes were used. The model was used to show how it can 

assist the design of sophisticated fixation devices. Wang also used the entropy spring 

theory to study the Young’s modulus change in biodegradable polymers cause by 

hydrolysis reaction in amorphous polymers. Based on the assumption of isolated 

polymer chain scission, a computation simulation for hydrolysis reaction was created 

to study the effect of average molecular change on Young’s modulus, in which during 

polymer deformation short polymer chains were considered not affect the entropy 
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change of a linear biodegradable polymer. Poly(L-lactic acid) and poly(D-lactic acid) 

experimental data from Tsuji’s (2001) were used to prove the validation of this model. 

A good fit was shown. However, this model introduced by Wang only considered end 

scission. 

Following the work of Wang, et al. (2008), Han and Pan (2009, 2010) extended his 

model and included increases in polymer crystallinity during degradation. Han and 

Pan (2009, 2010) also combined both mechanisms for end scission and random 

scission. In addition to the model considered both non-catalytic and autocatalytic 

hydrolysis, Han and Pan also add in the effect of temperature. Water-soluble short 

polymer chains diffuse out of the device is also considered. Han also developed a 

model to address the effect of temperature on degradation rate, following the studies 

on TCP/polyester composite materials degradation. Finally, from a swelling polymer 

matrix she presented an early stage study on drug release. 

Ding (2011) also studied the effect of chain scissions on Young’s modulus. In his 

method mathematical model was not used, but an atomistic study was introduced. A 

molecular model of two polymer crystals and an amorphous region in between was 

created, which used both molecular dynamics method and Monte Carlo steps. Random 

scission was considered to happen in the amorphous region of the model. The system 

was set to equilibrium and then applied different numbers of scission to it. From 

several virtual tensile tests, deformation in molecular dynamics simulation can be 

achieved. Semi-crystalline biodegradable polymer was assumed in his model. It was 

found that when the temperature is below glass transition temperature, Young’s 

modulus reduces quickly for semi-crystalline polymer. The reason for that is the 

internal energy controls the Young’s modulus of semi-crystalline polymer at such 

temperature. If the temperature was above the glass transition temperature, the 

Young’s modulus is controlled by the entropy of the amorphous phase, therefore 

reduction slows down. This proved that the widely observed semi-crystalline 

biodegradable polymer degradation behaviours could be obtained by using this 

numerical study. 

Gleadall (2015) simplified Han’s (2009) model on simulation of crystallisation during 

degradation by assuming fast crystal growth. The model is much easier to use and is 

possible to follow by end users with little engineering or modelling background. The 

simplified crystallisation theory was combined with the previous degradation model 
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and used to provide further studies on the following factors that affect degradation: 

autocatalysis; random and end scission; initial molecular weight; and residual weight. 

This further understanding on the factors could help the biomedical device designer or 

degradation users who are not from an engineering-related background. Since the 

degradation mathematical model is still at an early stage, many factors are still unclear 

and the model is constantly developing; the research work should still be continuing 

finding out the effects of these factors on the degradation. Gleadall also developed a 

numerical Effective Cavity Theory, which provides a simulation of Young’s modulus 

change during degradation. The improvement of his theory hugely reduced the 

computational demands and allowed the simulation for complex biodegradable 

polymers; also, it could capture the Young’s modulus change for polymers below their 

glass transition temperatures. Furthermore, he combined the degradation model with 

this Effective Cavity Theory to allow mathematical degradation models to simulate 

one more crucial factor: Young’s modulus for glassy polymers. 

Different to Gleadall (2015), Samami, et al. (2016) provided an analytical solution to 

the Young’s modulus calculation. The constitutive law for the degrading bioresorbable 

polymers introduced could also predict the change of mechanical properties other than 

Young’s modulus, such as Poisson’s ratio and ultimate tensile strength. In his theory, 

a semi-crystalline polymer was assumed to be formed continually by three inclusions 

that have different behaviours: cavity caused by each scission; new crystal as a solid 

inclusion; and amorphous polymers surrounding these two inclusions. The existing 

theories of such continuum solid were used to calculate the degrading polymer 

effective elastic properties. The porous materials scaling relations were used to 

predicted the degrading polymer tensile strength. They were packed together to form 

into a constitutive law for the degrading polymers, and the validation of such 

constitutive law was provided by fitting experimental data. Samami, et al. (2016) also 

presented a numerical study to detect the degradation in degrading polymers using 

vibration analysis. It has been shown that the absolute mode shape curvature difference 

between the degrading polymer and the intact polymer could provide a relatively good 

indication for the location of the degradation. However, the measurement accuracy 

requirement is very high. Nevertheless, it is still a good indication of finding the local 

degradation. 
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3.3 Remaining issues in modelling biomedical device 

degradation 

The degradation mathematical model is constantly developing by adding in more 

factors that have been proved to have a big effect and removing factors that could be 

simplified. The developed mathematical model eventually needs to be used for further 

understanding the degradation behaviour, therefore, helping to design the 

biodegradable medical devices. A designer of such devices will normally not have a 

strong background in engineering; therefore, a complicated method, especially the 

long list of parameters, will be hard for them to fully follow and ever harder for them 

to choose for each of these parameters. 

The current degradation mathematical model does not consider the different 

contributions between the long and short carboxylic end groups, even though it is well-

known that the carboxylic end group provides the extra hydrolytic ability that leads to 

auto-catalysis hydrolysis. One thing we know for sure is that the short carboxylic end 

groups could diffuse out of a device, which would reduce the auto-catalysis hydrolysis 

rate. Additionally, long carboxylic chains are considered to have low movability, so 

separation of them is necessary. 

Indication of degradation behaviour is not clear. For designers who will use the 

degradation mathematical model, it is hard for them to tell what causes the degradation 

behaviour they have just achieved from the model – whether the degradation is more 

controlled by non-catalyst hydrolysis reaction or auto-catalyst hydrolysis reaction. 

Faster water diffusion is always assumed in the current degradation mathematical 

model, but two parameters that would change that were never considered to be an 

effect, namely, the water diffusion coefficient and the thickness of the device. The 

water diffusion coefficient has little changing room but the thickness of the device 

could be an issue for water diffusion, as it can be 1/10 of a millimetre up to half a 

hundredth of a millimetre. Whether the biodegradable medical device is always water 

abounded is very important for degradation, as degradation is assumed to be kicked 

off by a water molecule attacking the ester bond. 
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The mathematical model was created to be use for designing purposes, but there is still 

not an easy method that could use the mathematical model. By using engineering 

technology, a simple design method could be suggested. 

The storage conditions of biodegradable medical devices have never been considered 

in degradation mathematical model building. It is an important issue that needs to be 

added in because the atmosphere contains water vapour and this could cause the 

medical device to lose its function, which needs to be avoided. Mathematical 

simulation could provide an indication of whether a certain atmosphere condition 

would cause such problem. 

Young’s modulus change is a very import factor in understanding degradation. 

However, the analytical model presented by Samami, et al. (2016) is over-complicated 

and hard to follow for the degradation model end user who does not have an 

engineering-related background. Additionally, Gleadall, et al.’s (2015) model contains 

too many parameters, which will affect the, Effective Cavity Theory, which is not easy 

to follow. The same problem exists for the degradation detection model introduced by 

Samami, et al. (2016): it is also hard to follow and over-complicated. 

Many experiments were carried out for biodegradation polymers, but in varying the 

degradation model by using such experimental data there was always information 

missing. For example, many experiments did not pre-measure the oligomer residents 

before degradation, which would (as has been confirmed) change the degradation 

behaviour. Other suggestions have been made in this thesis to the experimental work 

in order to improve the degradation model. 

 

3.4 Purpose and structure of this thesis 

The purpose of this thesis is to create a clearly displaced degradation mathematical 

model that contains the new development and to provide a step-by-step explanation 

and guidelines for using such a mathematical model in further designs. It contains 

many simplifications to the currently existing model. The subsequent structure of this 

thesis can be described as follows: 

Chapter 4: Mathematical model for amorphous polymers with a development of 

separating long and short carboxylic chain ends. 
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Chapter 5: Mathematical model for semi-crystalline polymers with degradation map. 

Chapter 6: Validation of the newly developed model by fitting experimental data and 

suggestion of designing method and storage condition. 

Chapter 7: Simplified Young’s modulus degradation model. 

Chapter 8: Simplified degradation detection model. 

Chapter 9: Major conclusions and recommendations for future work. 
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Chapter 4: Master equations for amorphous 

polymers, analytical solutions and a parametric 

study of the mathematical model 

This chapter presents a new development to the mathematical model for polymer 

degradation based on previous work by the Leicester group. In the newly developed 

model, the carboxylic end groups on the short and long polymer chains are separated. 

Furthermore, seven analytical solutions are presented to show that the newly 

developed model can be reduced to previous models in the literature. A parametric 

study was carried out to understand the effect of different parameters on the 

degradation model. A large part of this chapter has been included in the book edited 

by Pan (Pan and Chen, Chapters 2 and 3, 2013). In which equations, figs and data 

fittings are contributed by writer. 

 

4.1 Degradation equations for amorphous polymers 

All the assumptions, results, and conclusions in the current section are being 

considered under the amorphous phase. It is convenient to discuss degradation theory 

starting with amorphous polymers, as amorphous polymers include a major part of 

biodegradable polymers. Furthermore, all semi-crystalline polymers contain an 

amorphous phase. It is therefore logical to focus attention on amorphous polymers first. 

 

4.1.1 Previous mathematical models developed by the Leicester 

group 

Following by the mechanism of polymer degradation, hydrolysis reaction happens by 

water molecules attacking the ester bonds of the polymers, which causes the long 

polymer to cleave. Two end groups – hydroxyl alcohol (R–OH) and carboxylic acid 

(R-COOH) – are produced. The carboxylic acid end group has a high degree of 

dissociation, which will generate 𝐻+. 𝐻+ works as a catalyst to the hydrolysis reaction, 

and will increase the rate of the reaction. For simplicity, the chemical structure of the 
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polymers and the actual reaction steps are ignored here. The hydrolysis reaction is 

phenomenologically described as 

OH-R+COOH-ROH +PLA/PGA

H

2



                          (4-1) 

Using 𝑅𝑠  to represent the total number of chain scissions per unit volume of the 

material, the changing rate of 𝑅𝑠 can be written as (Wang, et al., 2008; Han and Pan, 

2009): 




Hee

s
CCkCk

dt

dR

21                                     (4-2) 

in which 𝐶𝑒  is the ester bonds concentration of the polymers, 𝐶𝐻+  represent the 

concentration of 𝐻+. The concentration of water molecules does not appear in the 

equation because it is assumed that they are abundant (Li, et al., 2000). The right-hand 

side first term of the equation 𝑘1𝐶𝑒 is a hydrolysis reaction that is not catalysed by 𝐻+. 

The second term 𝑘2
′ 𝐶𝑒𝐶𝐻+ represents an auto-catalysed hydrolysis reaction. The first 

term is included to account for a range of factors such as potential lack of mobility of 

the –COOH end groups or copolymer/polymer blend containing weak auto-catalysed 

species. The corresponding reaction constants 𝑘1 and 𝑘2
′  can be tailored to reflect these 

complexities phenomenologically. 

The carboxylic end groups can be disassociated into the following: 


 H

-
COO-RCOOH-R .                               (4-3) 

This reaction is fast and reversible. It can therefore be treated as being always at 

equilibrium with an equilibrium expression of 

COOH

COOH

a

C

CC
K



                                            (4-4) 

in which 𝐾𝑎  is the equilibrium constant. 𝐾𝑎  is known at specific temperatures. For 

example, PDLLA and PGA have 𝐾𝑎 = 1.349 ∗ 10−4 (𝑝𝐾𝑎= 3.87) at 37°C, because 

𝐶𝐻+ = 𝐶𝐶𝑂𝑂−, equation (4-4) gives 

 2

1

COOHaH
CKC                                       (4-5) 

Input equation (4-5) into equation (4-2) gives the following expression for scission 

rate: 
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 2

1

COOH21
CCkCk

dt

dR
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s
                                  (4-6) 

in which a new reaction constant has been introduced:  2

1

22 a
Kkk  . 

The total number of short chain ester units which are produced from chain scission is 

referred to as 𝑅𝑜𝑙. 𝑅𝑜𝑙 is related to the overall chain scission numbers 𝑅𝑠 through the 

empirical relation listed below (Han, et al., 2010). 
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in which α and β are two parameters that controls the production of oligomers, which 

can switch between end scission and random scission, 𝐶𝑒0  represent to initial long 

chain concentration of ester bonds. 

Using 𝐶𝑐ℎ𝑎𝑖𝑛0 to indicate the total number of polymer chains existing at the beginning 

of degradation, each scission produces a –COOH end group and we have 

schain
RCC 

0COOH                                       (4-8) 

Again, using 𝐶𝑒0 to represent the initial long chain concentration of ester bonds, the 

short chains are produced at the expense of 𝐶𝑒0. Using equation (4-7) gives 
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Submitting equation (4-8) and (4-9) into equation (4-6) gives 
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It is sometime convenient to use a normalised form of the above equation. 

Defining 
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equation (4-10) can then be rewritten as 
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in which 𝑁𝑑𝑝0 is the degree of polymerisation given by 
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e
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C
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N                                                 (4-14) 

The number averaged molecular weight 𝑀𝑛 is the total weight of the polymer chains 

divided by the total number of chains, i.e. we have 
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in which 𝑀𝑢𝑛𝑖𝑡 represents the molecular weight of a polymer repeating unit. Using 

𝑀𝑛0  to present the initial molecular weight of a polymer, equation (4-15) can be 

rewritten as a normalised form 
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When measuring the molecular weight, using gel permeation chromatography (GPC), 

for example, the short chains are too small to be detected. Furthermore, the short chains 

do not contribute to the mechanical properties of a polymer and including them in the 

number-averaged calculation distorts the true state of the polymer. It is, therefore, 

often necessary to exclude short chains from the calculation. Recalling that 𝑅𝑜𝑙 

represents the total number of ester units of all the short chains and 𝑚 represents the 

polymerisation average degree of the short chains, the number of short chains is given 

by 𝑅𝑜𝑙/𝑚. Averaged molecular weight excluding the short chains is then calculated as 
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which can be normalised by 𝑀𝑛0 as 
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Equation (4-13) is the common rate of chain scission equation in the literature. It is not 

valid when diffusion of short polymer chains (less than eight units) needs to be added 

into the count. A further developed model was included in the next section, which 

separates the long and short polymer chains. 

 

4.1.2 Further development to the equation of degradation rate 

It is more appropriate to separate the carboxylic acid end groups into two types: 1) 

those of the long polymer chains that are not water soluble and cannot diffuse out of 

the device; 2) those of the short oligomers and monomers that are water soluble and 

can diffuse. The reason for that is that the two types of carboxylic acid end groups may 

behave differently in their capacity as catalyst for the hydrolysis reaction. Those of the 

long polymer chains may have limited mobility and do not fully contribute to the 

hydrolysis reaction. Furthermore, the two types of carboxylic acid end groups have 

different diffusion ability. The diffusion of the water-soluble chains out of a device 

reduces the acidity inside the polymer and reduces the degradation rate. For a device 

of a large size, such as a thick plate, the small chains near the surface can diffuse out 

quicker than those at the core of the device. The core therefore degrades faster than the 

surface shell and a thicker device degrades faster than a thin one (Li, et al., 1990). 

Therefore, oligomer diffusion and size effect are responsible for the heterogeneous 

degradation. This development was discovered by Pan and Chen (2013) and was 

included in Chapter 3 of their book. 

To separate different contributions from chain ends on long and short chains, their 

contribution to 𝐶𝐻+ is split such that 

  2

1

21

short

COOH

long

COOHaH
CCKC                              (4-19) 

in which 𝜒1 and 𝜒2 are two partitioning parameters that take values between zero to 

one. For example, equation (4-19) is reduced to equation (4-5) by setting 𝜒1 = 𝜒2 =

1, and the contribution from the long chains can be switched off by setting 𝜒1 = 0 and 

𝜒2 = 1. 

and equation (4-2) becomes 
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in which a new reaction constant is introduced such that  2

1

22 a
Kkk  . 

Using 𝐶𝑜𝑙 to represent the total amount of ester units of oligomers and monomers (the 

short chains) per unit volume, the concentration of carboxylic end groups on the short 

chains can be estimated from 𝐶𝑜𝑙 as 

m

C
C

olshort

COOH
                                               (4-21) 

whereas m is the average degree of polymerisation of the short chains, which should 

be four, as we assume that oligomer chains are the chains of less than eight units. 

It is important to recognise the difference between 𝐶𝑜𝑙  and 𝑅𝑜𝑙 . Firstly, 𝐶𝑜𝑙  is the 

number of oligomer ester unit per unit volume that still remains in the device, which 

includes the initial number of short chain (oligomer) ester units, which are referred to 

as 𝐶𝑜𝑙0 . Therefore, the 𝐶𝑜𝑙  value can change when short chains (oligomers) are 

diffused out of the device (not remaining in it anymore). Whereas 𝑅𝑜𝑙 is a historical 

accumulation of all the short chains ever produced. 

The concentration of carboxylic end groups of the long chains increases with chain 

scission and decreases with the production of short chains; hence, we have 
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in which 𝐶𝑐ℎ𝑎𝑖𝑛0 is the concentration of polymer chain ends at the beginning of the 

degradation. 𝑅𝑜𝑙 is related to 𝑅𝑠 through equation (4-7); therefore, equation (4-22) can 

be rewritten as 
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Combining equation (4-2), (4-19), (4-21), and (4-23) gives 
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in which n is the acid disassociation exponent, which should be 0.5 but can take other 

empirical values, and  
n

a
Kkk

22
 . 

If the diffusion of the short chains is prohibited, we have 
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Combining equations (4-24, 25, 26) gives 
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Equation (4-27) is the advanced non-dimensional master equation for chain scission. 

Whereas, 𝑅̅𝑠 = 𝑅𝑠/𝐶𝑒0 represent the normalised total number of chain scissions by the 

number of ester unit at the beginning of the degradation.; 𝐶̅0 represent the condition of 

the polymer at the beginning of the degradation, 
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in which 𝐶𝑜𝑙0 is the initial total number of ester units of the short chains (monomers 

and oligomers) per unit volume, and 𝐶𝑒0 is the initial number of ester units per unit 

volume; 𝑘1 is the hydrolysis rate constant for non-catalytic reaction, and 𝑘̅2 = 𝐶𝑒0
𝑛 𝑘2 

is the hydrolysis rate constant for autocatalytic reaction. 

If assuming only the carboxylic end groups on the oligomers and monomers act as the 

catalyst (i.e. by setting 𝜒1 = 0 and 𝜒2 = 1), the equation (4-24) can be reduced to Pan 

and his collaborators’ model (Han, 2011), which can fit many sets of experimental data 

in the literature. A parametric study of 𝜒1 and 𝜒2 was carried out to give a further 

understanding of long chain and short chain contributions to the degradation, which is 

presented later in this chapter. 
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4.2 Analytical solutions and cross-checking with numerical 

solutions 

By applying special conditions into the master equation shown above, the long 

complex equation can be simplified into short equations that could have analytical 

solutions. Comparing the analytical solutions and the numerical solutions provides a 

cross-checking for the solutions. A C++ program was used to perform the necessary 

numerical calculation. 

 

4.2.1 Analytical solutions 

Case (a): In many studies, we are only interested in the early stage of the polymer 

degradation. At this stage, we assume that not many oligomers have yet been produced 

in the system. So, the total amount of oligomers produced 𝑅𝑜𝑙 is much smaller than 

the ester bond concentration 𝐶𝑒0, which means 𝛼𝑅̅𝑠
𝛽

≪ 1. Furthermore, if we assume 

the hydrolysis is non-catalytic only, i.e. 𝑘1 = 1, 𝑘̅2 = 0, then equation (4-27) can be 

reduced to 

1
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which gives 
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Using equation (4-15) we have 
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which can be rewritten as 
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Case (b): Pure non-catalytic hydrolysis (𝑘̅2 = 0) without the assumption of early 

stage degradation and 𝛽 = 1, which is liner relationship. 

The master eqn. (4-27) is reduced to 

 
s

s
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dt

Rd
 1

1                                     (4-33) 

and its solution is 
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Pure non-catalytic hydrolysis (𝑘̅2 = 0) without the assumption of early stage 

degradation and 𝛽 = 2, which is not a simple liner relationship. 

The master eqn. (4-27) is reduced to 
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and the solution is 
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Case (c): On the other hand, if we assume that the hydrolysis is entirely autocatalytic 

(𝑘1 = 0) and for the early stage (𝛼𝑅̅𝑠
𝛽

≪ 1), 𝛽 = 1, 𝜒1 = 𝜒2 = 1, and 𝑛 = 0.5, then 

equation (4-27) can be reduced to 

 2

1

1

02 sdp

s
RNk

dt

Rd




                                     (4-37) 

which can be integrated to give 
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Using equation (4-38) in equation (4-16) gives 
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which can be rewritten as 
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Case (d): Pure autocatalytic hydrolysis (𝑘1 = 0) without the assumption of early stage 

degradation, 𝛽 = 1 and 𝑛 = 0.5. 

The master equation (4-27) is reduced to 
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and its solution is 
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in which 
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In the literature, equations (4-34) and (4-40) are often used to determine whether a 

polymer degrades by autocatalytic hydrolysis reaction (Lyu, et al., 2007). In a 

degradation experiment, 𝑀𝑛 is measured as a function of time using a set of samples. 

Using the measured data, 1/𝑀𝑛  and (1/𝑀𝑛)1/2 are plotted against time t. If 1/𝑀𝑛 

versus time forms a straight line, then it is concluded that the hydrolysis is non-

catalytic and 𝑘1 can be calculated from the gradient of the line. On the other hand, if 

(1/𝑀𝑛)1/2 versus time forms a straight line, it is then concluded that the hydrolysis is 

autocatalytic and 𝑘2 can be calculated from the gradient of the line. It is, however, 

often found that the two equations can only fit the very early stage of the measured 

experimental data. 
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Case (e): Early stage degradation (𝛼𝑅̅𝑠
𝛽

≪ 1), pure autocatalytic hydrolysis (𝑘1 = 0), 

either 𝛽 = 1 or 𝜒1 = 𝜒2 = 1, and 𝑛 = 1. 

In this case, equation (4-27) can be simplified as 
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Equation (4-27) can be integrated to give 
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In the case that no separation is made between carboxylic end groups on the long and 

short chains (𝜒1 = 𝜒2 = 1), solution (4-46) leads to 
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which is used in some of the literature. 

 

Case (f): Early stage degradation (𝛼𝑅̅𝑠
𝛽

≪ 1), pure autocatalytic hydrolysis (𝑘1 = 0), 

either 𝛽 = 1 or 𝜒1 = 𝜒2 = 1, and 𝑛 ≠ 1. 

In this case, equation (4-27) can be simplified as 
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where 
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Equation (4-27) can be integrated to give 
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If 𝜒1 = 𝜒2 = 1, and 𝑛 = 0.5, then the above solution is reduced to equation (4-38). 

Case (g): Early stage degradation (𝛼𝑅̅𝑠
𝛽

≪ 1), pure autocatalytic hydrolysis (𝑘1 = 0), 

only the short chains act as catalyst (𝜒1 = 0 and 𝜒2 = 1), no residual oligomers at the 

beginning of the degradation (𝐶̅0 = 0) and 𝑛𝛽 ≠ 1. 

In this case, the master equation (4-27) is reduced to 
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which can be integrated to give 
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It can be concluded that 𝑛𝛽 < 1 otherwise the function is not defined. 

 

4.2.2 Numerical solution of the master equation 

4.2.2.1 Numerical algorithm for solving the master equation 

By integrate the master equation (4-27), numerical solution could be found. By setting 

a pair of model parameters (i.e. 𝛼, 𝛽, 𝐶̅0, 𝑛, 𝑘̅2, 𝑘1 and 𝜒1, 𝜒2) the right-hand side of 

equation (4-27) is actually a function of 𝑅̅𝑠. Whereas 
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Therefore 
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We also know that 𝑡 = 0, 𝑅̅𝑠 = 0 is the initial condition for the master equation. 

Applying the definition of differentiation, we have 
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Whereas t  is a small length of time. Rearrange equation (4-51) a little bit and we 

have 

     
sss

RfttRttR                             (4-52) 

This can then be used to calculate the new 𝑅̅𝑠 after a small step of t  and achieve a 

relationship between 𝑅̅𝑠 and t (Pan and Chen, Chapter 2, 2013). 

 

4.2.2.2 A C++ program to perform this calculation 

Set the libraries need to be used in the programme (#include <stdio.h>, #include 

<math.h> and #include <stdlib.h>). Give function prototype of two subroutines 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑜𝑓_𝑅̅𝑠 and 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑀̅𝑛, which will be used afterwards to calculate 𝑓(𝑅̅𝑠) 

and 𝑀̅𝑛, respectively. Set the main function. Give initial conditions (𝑡 = 0) as, 𝐶𝑒0 =

17300 𝑚𝑜𝑙/𝑚3 , 𝐶𝑐ℎ𝑎𝑖𝑛0 = 17.3 𝑚𝑜𝑙/𝑚3  ,
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e

dp
, 𝑅̅𝑠 = 0, 𝑅̅𝑜𝑙 = 0, 𝑀̅𝑛 = 1. Set inputs m, n, 

𝛼, 𝛽, 𝑘1, 𝑘̅2, 𝑅̅𝑠_𝑀𝐴𝑋 and N, and input values for them. In the program, a parameter 

𝑅̅𝑠_𝑀𝐴𝑋 has been introduced, which is shown as the maximum value of 𝑅̅𝑠. 

t  is achieved by splitting 𝑅̅𝑠_𝑀𝐴𝑋 into N numbers of equal parts (N is a parameter 

that usually takes a large number) and divide that by 𝑓(𝑅̅𝑠) , whereas 

)(/
_

s

s
Rf

N

MAXR
t  , ttt  . By doing this, t  is related to 𝑅̅𝑠_𝑀𝐴𝑋, which is 

more appropriate and more general to get, and also easier to check convergence. The 

small 𝑅̅𝑠_𝑀𝐴𝑋 has been split; the bigger that N is, the smaller t  will be achieved. 

Therefore, to reduce t  to check convergence, we only need to increase the number 

of N. However, normally to achieve a converged t , ultimately, millions of 

calculations (N=1000000) are needed. Therefore, we will get millions of sets of data. 

However, in reality, we only need a few sets of data (100 or 200 sets) to show the trend 

of outputs. Therefore, selecting data from all calculations is necessary. Here, inducts 

parameter 𝑐𝑜𝑢𝑛𝑡 and 𝑟𝑒𝑎𝑑_𝑑𝑎𝑡𝑎. 𝑐𝑜𝑢𝑛𝑡 were set to 0 initially, and 𝑟𝑒𝑎𝑑_𝑑𝑎𝑡𝑎 was 

given a number that is the number of calculations we do before recording data. When 

𝑐𝑜𝑢𝑛𝑡 = 𝑟𝑒𝑎𝑑_𝑑𝑎𝑡𝑎, we record the data out as one of our selected data, otherwise 

𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 + 1. By doing this, data that has been recorded can be reduced to an 
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appropriate number of sets for analysing. Set up a while loop, and give the argument 

as 𝑅̅𝑠 ≤ 𝑅̅𝑠_𝑀𝐴𝑋. If the argument is false, end the program; if the argument is true, 

calculate  
s

Rf , )(/
_

s

s
Rf

N

MAXR
t  , ttt  ,  

sss
RftRR  . 

Calculate 𝑅̅𝑜𝑙  using equation (4-7), whereas 𝑅̅𝑜𝑙 = 𝑅𝑜𝑙/𝐶𝑒0 . Calculate 𝑀̅𝑛  using 

equation (4-18), which is the equation for not excluding the short chains. Set up a 

𝑟𝑒𝑎𝑑_𝑑𝑎𝑡𝑎 value to record data. Normally, the 𝑟𝑒𝑎𝑑_𝑑𝑎𝑡𝑎 value will be relevant to 

the number of N, 
𝑁

𝑟𝑒𝑎𝑑_𝑑𝑎𝑡𝑎
= 100 𝑜𝑟 200 or sometimes bigger if necessary. 𝑐𝑜𝑢𝑛𝑡 

has been set to 0 initially before the while loop. If 𝑐𝑜𝑢𝑛𝑡 ≠ 𝑟𝑒𝑎𝑑_𝑑𝑎𝑡𝑎, 𝑐𝑜𝑢𝑛𝑡 + 1. 

If 𝑐𝑜𝑢𝑛𝑡 = 𝑟𝑒𝑎𝑑_𝑑𝑎𝑡𝑎 then record outputs t, 𝑅̅𝑠, 𝑅̅𝑜𝑙, and 𝑀̅𝑛 into the “output” file 

and set 𝑐𝑜𝑢𝑛𝑡 to 0. Please note that it is important to set 𝑐𝑜𝑢𝑛𝑡 as 0 initially before the 

while loop. Otherwise, if it has been set in the loop, the loop will force 𝑐𝑜𝑢𝑛𝑡 to be 0 

every time when the loop runs. However, we only need 𝑐𝑜𝑢𝑛𝑡  reset to 0 when 

𝑐𝑜𝑢𝑛𝑡 = 𝑟𝑒𝑎𝑑_𝑑𝑎𝑡𝑎. If 𝑀̅𝑛 is close to zero then stop, close file “output”, and end the 

program. Otherwise, go back to the while loop and repeat the above procedure using 

the current value of 𝑅̅𝑠. 
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4.2.2.3 Flow chart of the program 

 

Figure 1: Flow chart of C++ program for calculating numerical solution 

The actual program is shown in appendix. 

 

4.2.2.4 A list of all the variable and array names of the computer program 

Input parameters: 

1) m - average degree of polymerisation of the short chains; 

2) n - acid disassociation exponent of –COOH groups; 

3) alpha, beta – empirical parameters for short chain production, dimensionless; 
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4) k1, k2_bar - hydrolysis rate constant for non-catalytic and autocatalytic reaction 

respectively; 

5) Rs_bar_MAX - maximum 𝑅̅𝑠 value that can be achieved; 

6) N - number of equal parts into which 𝑅̅𝑠_𝑀𝐴𝑋 will be spilt. 

Output parameters: 

1) t -  time of degradation; 

2) Rs_bar -  normalised total number of chain scissions per unit volume; 

3) Rol_bar -  normalised total number of oligomer units that have been produced per 

unit volume; 

4) Mn_bar -  normalised average molecule weight per unit volume. 

Working variables and arrays: 

1) function_of_Rs_bar - function to calculate 𝑓(𝑅̅𝑠); 

2) calculate_Mn_bar - function to calculate 𝑀̅𝑛; 

3) delta_t - small time step; 

4) Ce0 -  initial value for the ester bond concentration; 

5) Cchain0 -  initial value for the number of polymer chains; 

6) Ndp0 -  initial degree of polymerisation; 

7) count -  used to count the number of calculations; 

8) read_data -  used to select and record data. 

 

4.2.3 Cross-checking analytical solutions with the corresponding 

numerical solutions 

Fig. 2 provides an example of the numerical solution for 𝑀𝑛/𝑀𝑛0 versus time using 

𝛼 = 0.4, 𝛽 = 1, 𝑚 = 4, 𝑁𝑑𝑝0 = 1000, 𝑘1 = 5×10−5/𝑤𝑒𝑒𝑘 , 𝑘̅2 = 5×10−3/𝑤𝑒𝑒𝑘 , 

these parameters has been taken from (Han et al., 2010) which has been used to 

successfully fitted experimental data. The time step used in the calculation is 
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)(/
10000000

1.0
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_

ss

s
RfRf

N

MAXR
t  . The molecular weight was calculated 

using equation (4-18) (Fig. 2, case C). The analytical solutions given by equations (4-

32) and (4-40) are also shown in the figure using the values of 𝑘1 = 5×10−4/𝑤𝑒𝑒𝑘 

(Fig. 2, case A), and 𝑘̅2 = 5×10−3/𝑤𝑒𝑒𝑘 (Fig. 2, case B), respectively. 

 

 

Figure 2: Normalised average molecular weight reduction trend during 

degradation for: (A) equation (4-26); (B) equation (4-34); and (C) numerical 

integration of equation (4-22). 

 

Fig. 3 shows the first four cases of analytical solutions listed in section 4.2.1 cross-

checking with their corresponding numerical solution. It has been shown that all 

numerical solutions agree with their corresponding analytical solutions. This confirms 

the validation of the master equation for these particular cases, and increases the 

persuasion of the master equation. 
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Case (a): Pure non-catalysed hydrolysis reaction for early stage
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Case (b): Pure non-catalysed hydrolysis reaction

Numerical solution
(beat=1)

Numerical solution
(beat=2)

Analytical solution (beta=1)

Analytical solution (beta=2)

Equation (4-34)

Equation (4-36)

Equation (4-30) 
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Figure 3: Cross-checking analytical solution with numerical solution for 

particular cases: (a) pure non-catalysed hydrolysis reaction for early stage; (b) 

pure non-catalysed hydrolysis reaction; (c) pure auto-catalysed hydrolysis 

reaction for early stage; (d) pure auto-catalysed hydrolysis reaction. 
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Case (c): Pure autocatalysed hydrolysis reaction for early stage

Numerical Solution

Analytical Solution

Equation (4-38)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5

N
o

rm
a

lis
e

d
 c

o
n

c
e

n
tr

a
ti
o

n
 o

f 
c
h

a
in

 s
c
is

s
io

n

Normalised t

Case (d): Pure autocatalysed hydrolysis reaction

Numerical Solution

Analytical Solution

Equation (4-42)
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4.3 A parameterisation study of the master equation 

Although the master equation is considered as a general model for amorphous polymer 

degradation, it is not a simple equation to solve yet, as it contains many value-uncertain 

parameters. To actually use the master equation in degradation modelling it is 

necessary to understand the effect of all parameters on the master equation itself and 

to the degradation model. Some of the parameters do not affect the degradation rate as 

much as others and the actual value of a few parameters can be fixed empirically to 

use in the fitting of the experimental data, which can then simplify the master equation 

and make the mathematical model easier to use for simulating degradation. As shown 

in the previous section, the advanced master equation of the rate of polymer chain 

scission is 
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121021
1             (4-27) 

It contains five sets of parameters, which are: 

• n - acid disassociation exponent of the –COOH groups, which is usually taken 

as 0.5; 

• 𝛼, 𝛽  - oligomer production control parameters that can switch from end or 

random scissions; 

• 𝜒1, 𝜒2 - partitioning parameters for the long and short chains to act as catalyst; 

• 𝐶̅0 - initial condition of the polymer 


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e

0

201

0

0

1
                            (4-28) 

• 𝑘1, 𝑘̅2  - hydrolysis rate constant for non-catalytic reaction and autocatalytic 

reaction, respectively. 

 

4.3.1 Effect of 𝒌̅𝟐/𝒌𝟏 

The ratio of 𝑘̅2/𝑘1 stand for relative rate of autocatalytic hydrolysis with respect to 

non-catalytic hydrolysis. Fig. 4 gives the molecular weight calculation as functions of 

time using a range of different parameters. Curve A in the figure represents, in fact, 
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six different curves, all overlapping each other. This group of curves shares a common 

ratio of 𝑘̅2/𝑘1 = 1. The numerical calculation therefore shows that, for this ratio of 

𝑘̅2/𝑘1, changing the values of 𝜒1,  𝜒2, 𝛼, 𝛽, and n has no effect on the calculated 

molecular weight as a function of time. This is because these parameters are all related 

to autocatalytic hydrolysis, i.e. the second term in equation (4.2). The numerical 

analysis suggests that when 𝑘̅2/𝑘1  approaches unity the autocatalytic term can be 

ignored. Curves B and C in Fig. 4 were obtained using a common ratio of 𝑘̅2/𝑘1 =

100 and two different sets of values of 𝜒1,  𝜒2, 𝛼, 𝛽, and n. It can be observed that, at 

this ratio of 𝑘̅2/𝑘1, changing the values of these parameters has a major effect on the 

results. This suggests that, at this ratio of 𝑘̅2/𝑘1, the autocatalytic term in equation (4.2) 

dominates the hydrolysis reaction. In all the cases, it has been taken that 𝑚 = 4, 𝐶̅0 =

0, and 𝑁𝑑𝑝0 = 2307. 

 

Figure 4: Average molecular weight reduction trend during degradation 

calculated using different parameters. 

 

Curve A represents a set of six curves that overlap each other using 𝑘̅2/𝑘1 = 1 , 

]1,4.0[],[  , ]2,28[ , ]5.0,1.0[n  and ]1,1[],1,0[],[
21

 . Curves B and C are for 

𝑘̅2/𝑘1 = 100. 
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4.3.2 Effect of 0
C  

Basically, 𝐶̅0 shows how many chains that contain the –COOH end group have been 

used as catalyst initially. When only short chains work as a catalyst (𝜒1 = 0, 𝜒2 = 1), 

then 











m

C

C
C

ol

e

0

0

0

1
, which means that only the initial number of oligomer chains 

in the device work as catalyst at the beginning of the degradation. Similarly, when long 

chain and short chain combine together to work as catalyst (𝜒1 = 1, 𝜒2 = 1), then 
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0
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1
, which means that the sum of the initial number of polymer 

chains and initial number of oligomer chains combine together to work as catalyst at 

the beginning of the degradation. Normally, when a medical device has been made, 

we consider that it is been made by only long polymer chains, whereas 𝐶𝑜𝑙0 = 0. 

However, in reality there are also cases where the device contains oligomer chains 

before degradation happens. The value of 𝐶̅0  can be measured before degradation. 

Normally, we assume it to be 0 (when 𝜒1 = 0, 𝜒2 = 1 and 𝐶𝑜𝑙0 = 0). However, if that 

is not the case, the effect that different 𝐶̅0  has on the degradation behaviour is 

presented below. 

 

Figure 5: Effect of 𝑪̅𝟎 on the degradation behaviour for pure autocatalytic 

hydrolysis in cases (A)𝑪̅𝟎 = 𝟏𝟎−𝟏𝟎𝑪𝒄𝒉𝒂𝒊𝒏𝟎/𝑪𝒆𝟎, (B)𝑪̅𝟎 = 𝟎. 𝟏𝑪𝒄𝒉𝒂𝒊𝒏𝟎/𝑪𝒆𝟎, (C)𝑪̅𝟎 =

𝟎. 𝟓𝑪𝒄𝒉𝒂𝒊𝒏𝟎/𝑪𝒆𝟎, (D)𝑪̅𝟎 = 𝑪𝒄𝒉𝒂𝒊𝒏𝟎/𝑪𝒆𝟎and (E) 𝑪̅𝟎 = 𝟎. 𝟎𝟏. 𝒌𝟏 = 𝟎 and 𝒌̅𝟐 = 𝟏. 
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Because the –COOH end groups are relevant only if the hydrolysis is autocatalytic, let 

us focus on the case of pure autocatalytic hydrolysis by setting 𝑘1 = 0 and 𝑘̅2 = 1. 

Fig. 5 shows that the calculation used a common set of parameters: 𝑚 = 4, 𝑁𝑑𝑝0 =

2307, 𝛼 = 0.4, 𝛽 = 1 and 𝑛 = 0.5. If all the chain ends can act as catalysts, then 𝐶̅0 =

𝐶𝑐ℎ𝑎𝑖𝑛0/𝐶𝑒0, which is case D, shown in Fig. 5. Case A assumes an extremely small 

value of 𝐶̅0 = 10−10𝐶𝑐ℎ𝑎𝑖𝑛0/𝐶𝑒0. Cases B and C represent some moderate values of 

𝐶̅0 = 0.1𝐶𝑐ℎ𝑎𝑖𝑛0/𝐶𝑒0  and 𝐶̅0 = 0.5𝐶𝑐ℎ𝑎𝑖𝑛0/𝐶𝑒0 , respectively. Case E represents a 

very large value of 𝐶̅0 = 0.01, which means 1% of ester units act as catalysts for the 

hydrolysis reaction. It is very clear that an increasing value of 𝐶̅0 changes both the 

shape of the curve and the rate of the degradation. This is due to the initial catalyst 

helping the hydrolysis reaction produce more oligomers, which can also work as 

catalysts. Therefore, average molecule weight will drop hugely at the beginning of the 

degradation, even with just a small number of 𝐶̅0. 

 

4.3.3 Effect of α and β 

To demonstrate this, Fig. 6 gives calculated average molecular weight reduction trend 

during degradation for two sets of parameters: case A uses 𝛼 = 28 , 𝛽 = 2 , 𝑘1 =

1×10−4/𝑤𝑒𝑒𝑘  and 𝑘̅2 = 0.01/𝑤𝑒𝑒𝑘  while case B uses 𝛼 = 0.4 , 𝛽 = 1 , 𝑘1 = 1×

10−6/𝑤𝑒𝑒𝑘 and 𝑘̅2 = 0.01/𝑤𝑒𝑒𝑘. A common set of parameters - 𝑚 = 4, 𝐶̅0 = 0, 

𝑁𝑑𝑝0 = 2307, 𝜒1 = 0, 𝜒2 = 1 and 𝑛 = 0.5 - were used. The ratios of 𝑘̅2/𝑘1  in the 

two cases are big enough for the hydrolysis reaction to be autocatalytic. Consequently, 

𝛼 and 𝛽 are having a significant effect on the results, which is, however, missing from 

Fig. 6. The role played by 𝛼 and 𝛽 becomes clear in Fig. 7, which shows the calculated 

amount of short chains produced as functions of time for the two cases. It is apparent 

that the short chain production is very different for the two cases. It is therefore useful 

to remember that one cannot uniquely determine the values of 𝛼, 𝛽, 𝑘1 and 𝑘̅2 from 

average molecular weight reduction trend during degradation alone. The information 

about short chain production has to be available in order to determine the vales for 𝛼 

and 𝛽. 
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Figure 6: Calculated average molecular weight reduction trend during 

degradation for two individual sets of parameters 

 

 

Figure 7: Calculated short chains production by chain scissions during 

degradation for two individual sets of parameters 
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4.3.4 Effect of 𝝌𝟏 and 𝝌𝟐 

𝜒1 and 𝜒2 are introduced in the model to partition the long and short chains. Their 

effect can be demonstrated by considering the short chain diffusion in the model. 

Therefore, apply different thickness of a same sample could be used to study the effect 

of long chain and short chain on degradation. Fig. 8 gives calculated average molecular 

weight reduction trend during degradation using two different sets of parameters: for 

case A  𝜒1 = 0, 𝜒2 = 1, 𝑘1 = 5×10−4/𝑤𝑒𝑒𝑘 and 𝑘̅2 = 5×10−5/𝑤𝑒𝑒𝑘 and for case 

B 𝜒1 = 1, 𝜒2 = 1, 𝑘1 = 2×10−5/𝑤𝑒𝑒𝑘 and 𝑘̅2 = 1.2×10−4/𝑤𝑒𝑒𝑘. A common set 

of parameters, 𝑚 = 4 , 𝐶̅0 = 0 , 𝑁𝑑𝑝0 = 2307 , 𝛼 = 0.4 , 𝛽 = 1  and 𝑛 = 0.5 , were 

used for both cases. The coefficient for short chain diffusion in non-degraded polymer 

is set as 
14

103.3



polymer

D m2 /week for both cases. 𝐷𝑝𝑜𝑙𝑦𝑚𝑒𝑟  is the diffusion 

coefficient for amorphous polymer, which will be fully explained in the following 

chapters, in this section the parameter is necessary to set just as a constant value. It can 

be observed from Fig. 8 that the two sets of parameters give almost identical molecular 

weight as functions of time. These were, however, calculated using a sample thickness 

of 0.3mm. Fig. 9 shows the calculated results using the same sets of parameters but for 

a sample thickness of 2mm. Different molecular weight as functions of time can be 

observed. This demonstrates that in order to uniquely determine the values for 

𝜒1 and 𝜒2, one has to obtain experimental data using samples of different thicknesses. 
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Figure 8: Calculated average molecular weight reduction trend during 

degradation for two individual sets of parameters showing they give the same 

prediction for samples with a thickness of 0.3mm. 

 

Figure 9: Calculated average molecular weight reduction trend during 

degradation for two individual sets of parameters identical to those used in Fig. 

8 showing they give different predictions for samples with a thickness of 2mm. 
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From the parametric study, it can be observed that a unique set of parameters cannot 

be obtained using the average molecular weight test data alone. When one of two of 

the parameters was changed, the 𝑘1 and 𝑘̅2 values could be changed accordingly to 

obtain the same trend of average molecular weight reduction as before (see Figs. 6 and 

8). Thus, when fitting experimental data, more than one set of parameters can be used 

to match the same set of experimental data if the mathematical model is used to only 

simulate the average molecular weight reduction for the experiment. To obtain the 

uniqueness of a specific parameter, different experimental data need to be applied. For 

example, to obtain the values for α and β oligomer production data need to be fitted. 

To study whether short chain alone works as catalysis or long chain and short chain 

combine together work as catalysis, samples of different thickness need to be 

examined under exactly the same conditions. Unfortunately, for the current 

measurement method, oligomers are still very hard to detect, especially for monomers. 

To obtain oligomer production data experimentally we probably need to wait for a new 

measurement method to be developed. However, examining the different thicknesses 

of the sample could be a suggestion to the experimenters. If such experimental data 

could be found in future literature, the degradation mathematical model could be 

further developed based on it. Unfortunately, because of the complexities and time-

consuming issue of the biodegradable polymers, not a huge amount of experiments has 

been carried out. Among them, many focused on the average molecular weight 

reduction; some also looked at other features such as crystallisation, water diffusion, 

and Young’s modulus. It has been demonstrated that, even if the average molecular 

weight and crystallisation in the experimental data are used simultaneously, more than 

one set of parameters can still be found to fit this same set of experimental data. More 

details on this are given in Chapter 6. 

Based on the above discussion, some parameters could be given a suggested value 

based on empirical recommendations. This can reduce the complexity of the formula, 

so the medical implant designers who wish to use this model as a pre-design tool could 

use it more easily. The suggested values are given as: 1) 𝛼 = 28 and 𝛽 = 2, as random 

scission is more likely to happen during degradation; 2) 𝜒1 = 0, 𝜒2 = 1, as short 

chains have more move ability, so the contribution they make to the autocatalysis 

hydrolysis reaction would be considerably higher than that of long chains; 3) 𝑛 = 0.5, 

as we consider the acid dissociation is in equilibrium; 4) 𝑚 = 4, as the average DP of 
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oligomers. 𝐶̅0  could be obtained before degradation. That only leaves 𝑘1 , 𝑘̅2  and 

diffusion coefficient 𝐷𝑝𝑜𝑙𝑦𝑚𝑒𝑟, which will be considered in the next chapter, could be 

played around with to fit the experimental data or obtain the required design conditions. 

 

4.4 Conclusions 

A development of separating long and short polymer chains has been made to the 

mathematical model that currently exists. This newly developed master equation adds 

in the different contributions that long and short –COOH chains make as catalyst. 

Different conditions could be applied to the master equation to reduce it to the previous 

mathematical equations that were presented in the literature. For example, by setting 

the two new parameters as 𝜒1 = 0, 𝜒2 = 1, the newly developed equation can be 

reduced to Pan and Han’s model (Han, 2011), which has been successfully used to fit 

many experimental data. Seven cases of analytical solutions were achieved by 

applying different special conditions. The analytical solutions could be found in the 

literature under, it has been assumed, the same conditions. It proves that the master 

equation is the most advanced degradation mathematical equation that covers the 

majority of factors that affect the degradation. The master equation is more persuasive 

after successfully cross-checking the numerical solution to its corresponding analytical 

solution for four particular cases. 

To be able to create a user-friendly environment for the medical implant designer who 

will use the mathematical model, a parametric study has been carried out in this chapter 

under the assumption of the amorphous phase. A suggested value has been given to 

some of the parameters in the master equation: 𝜒1 = 0, 𝜒2 = 1, (only short chains 

work as catalyst in degradation); 𝛼, 𝛽 = 28, 2 (random chain scission); 𝑛 = 0.5 (treat 

acid disassociation of the carboxylic end groups as equilibrium); 𝑚 = 4  (as the 

average DP of oligomers). 𝐶̅0 can be measured before degradation. That leaves only 

𝑘̅2, 𝑘1 to play around with in the master equation. Diffusion coefficient 𝐷𝑝𝑜𝑙𝑦𝑚𝑒𝑟 was 

added into the count in the next chapter. Instead of struggling to choose values to a 

long list of parameters, the designers now only need to adjust three parameters to fit 

experimental data or achieve the required condition. Moreover, in the case of a known 
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diffusion rate, the only thing need to do is to give different values of the two parameters 

to obtain the required data. 

The designer who is using the mathematical model is recommended to first try the 

parameter values listed above. By inputting different 𝑘̅2, 𝑘1 value, the model should 

be able to fit corresponding experimental data. Although all parameters can take 

different values under different conditions, it has been proved that by inputting 

different 𝑘̅2, 𝑘1  the shift caused by changing other parameters can be covered. 

Furthermore, a suggestion of experimental procedure has been made. Degradation 

experimental data for the same implant under two different thicknesses would be 

crucial to find the unique set of parameters for the implant material. This is under the 

assumption that each biodegradable polymer has a unique set of parameters from 

which emerges their unique material properties. 
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Chapter 5: Degradation model including 

crystallisation, oligomer diffusion and water 

diffusion 

This chapter presents the complete set of governing equations for polymer degradation 

including crystallisation, oligomer diffusion, and water diffusion for semi-crystalline 

polymers. These equations are solved to reproduce the degradation maps that were 

initially proposed by Wang, et al. (2008).  

 

5.1 Introduction 

The amorphous phase is very important in the study of biodegradable polymer 

degradation. However, many biodegradable medical devices currently in use have 

been produced from semi-crystalline polymers such as poly(L-lactide) (PLLA) and 

poly(glycolide) (PGA). In such semi-crystalline polymers, amorphous is only one part 

of the whole construction. We assume that a degrading semi-crystalline polymer has 

four constituent parts: amorphous long chains, which are not diffusible but can 

crystallise following cleavage; short chains, which can diffuse out of a device; 

crystallites, which can exist before degradation or be formed during degradation; water 

molecules, which cause the polymer chains to cleave. The amorphous phase has been 

studied in the previous chapter, but crystallites behave very differently to the 

amorphous polymers. It has been assumed that crystallites are much harder to degrade 

than in the amorphous phase (Zong, et al., 1999) due to the fact of water molecules 

being very hard to diffuse into crystallites. Additionally, picked crystallites also have 

much more mechanical properties than the amorphous polymers. A wide range of 

research has found that the as semi-crystalline degrades, total degree of crystallinity 

could increase and the total mechanical property of the polymer often increase at the 

beginning of the degradation as well. This raise has been assumed to be caused by the 

increase of the degree of crystallinity (Zong, et al., 1999; Tsuji and Ikada, 2000; Tsuji 

and Muramatsu, 2001). Therefore, studying the growth of degree of crystallinity is 

very important. In the first part of this chapter, equations of degree of crystallinity and 

its related rate of chain scission equation have been presented. Additionally, an 
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oligomer diffusion equation has been included in order to understand the 

heterogeneous degradation of polymeric devices.  

 

5.2 Degradation equations for semi-crystalline polymers 

This section mainly provides a literature review of degradation mathematical 

equations for semi-crystalline polymers. 

 

5.2.1 Equations for degree of crystallinity 

The most widely used classical crystallisation theory was inducted by Avrami (1939, 

1940, 1941), and it has been shown to be generally valid for semi-crystalline polymers. 

In his theory, a concept of extended degree of crystallinity was introduced and a 

relationship was established between the actual and extended degree of crystallinity. 

The so-called extended degree of crystallinity is an imaginary volume per unit volume 

of material that assumes that the crystals can grow freely and could overlap with each 

other. Therefore, the volume can be bigger than the unity, whereas the actual degree 

of crystallinity per unit of material volume should never be larger than one. With the 

assumption that ‘the most probable overlapping fraction is equal to the volume of the 

existing crystals’, the relationship between the actual and extended degree of 

crystallinity was presented by Avrami as follows: 

c

ext

c
X

dX

dX
 1                                                   (5-1) 

in which ext
X  is the extended volume degree of crystallinity, which is fairly easy to 

calculate due to crystals growing freely in this imaginary region and every broken 

chain acting as a potential site of crystallisation. Gleadall (2012) presented a model to 

calculate the extended degree of crystallinity based on the assumption that a ‘crystallite 

grows to its full size much faster than chain scission’, also referred to as fast crystal 

growth. An extended degree of crystallinity could be simply related to number of 

scission times the average volume of crystallites. Not all chain scissions can lead to 

crystallites. Using p as a probability that a scission can cause growth of crystallinity 



50 
 

and c
v  as average volume of the crystallites, the extended degree of crystallinity can 

be calculated as follows: 

 
scscext

RkpRvX                                          (5-2) 

c
k  is new constant which gives 

0ecc
Cpvk                                                       (5-3) 

This relationship between actual and extended degree of crystallinity was established 

purely on a probability argument; no crystal growth mechanism was considered. 

Therefore, it is necessary to modify it empirically to be able to fit experimental data. 

For example, the degree of crystallinity in polymers would never reach or near unity, 

as the amorphous phase still often takes a big count, even in semi-crystalline polymers. 

So a maximum limit of c
X  can be introduced as maxc

X . An empirical impingement 

exponent   is also frequently used in the literature. So the relationship between the 

actual and extended degree of crystallinity can be shown as (Pan, Chapter 4, 2013): 

 


cc

ext

c
XX

dX

dX


max
                                          (5-4) 

If 1  and adding equation (5-2), the integration of equation (5-4) gives 

  sc
Rk

cccc
eXXXX



0maxmax

                           (5-5) 

in which 
0c

X  is the degree of crystallinity at the beginning of degradation. If 1  

then the integration of equation (5-4) gives 

     


 


 1

1

1

0maxmax
1

ccsccc
XXRkXX                   (5-6) 

 

5.2.2 Equations for rate of chain scission 

Based on the non-hydrophilicity character, the growth of degree of crystallinity can 

affect the rate of chain scission thus affecting the degradation rate. Therefore, it is 

necessary to link the growth of degree of crystallinity back to the rate of chain scission. 

However, the master equation (4-24) presented in Chapter 4 is a rate of chain scission 
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equation for amorphous polymers. By using superscript amp to represent the 

amorphous phase, the rate equation can be rewritten as follows: 

n
amp

ol
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in which all symbols in equation (5-7) defined previously are now with an assumption 

of all the concentrations defined over the volume of the amorphous phase of a semi-

crystalline polymer. The volume of the amorphous phase decreases with time as the 

crystalline phase increases in such semi-crystalline polymers. It is more convenient to 

replace the variables to the ones that define over the whole semi-crystalline polymer 

volume. For example, using 
s

R  to represent number of scissions over the whole semi-

crystalline polymer per unit volume, we have 

c

sam

s

X

R
R




1
                                                         (5-8) 

Whereas c
X  is the volume of crystalline phase per unit volume of the semi-crystalline 

polymer. Differentiating the equation can give 

 
dt

dX
R

dt

dR
X

dt

dR
cam

s

am

s

c

s
 1                                           (5-9) 

The right-hand side second term can be dropped as dtdX
c

/  has no control for the 

chain scission rate. Therefore, equation (5-9) now becomes: 

 
dt

dR
X

dt

dR
am

s

c

s
 1                                                        (5-10) 

If applying the similar transformation as equation (5-8) to all the other symbols in 

equation (5-7) and applying them into equation (5-10), the rate of scission equation 

over the whole volume of the semi-crystalline polymer can now be rewritten as (Han 

and Pan, 2009): 
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in which 

   
0

00

1
cc

ee

s

s
XX

CC

R
R 





















                           (5-12) 

 





















000

0chain

e

s

e

s

e

s

C

R

mC

R

C

C
R                              (5-13) 

0e
C  represents the number of ester units of amorphous long chains per unit volume of 

the semi-crystalline polymer at the beginning of degradation,   is the number of ester 

units per unit volume of the crystalline phase, and 
0c

X  is the initial degree of 

crystallinity. 

All variables in equation (5-11, 12, 13) are now defined over the whole volume of the 

semi-crystalline polymer. 

 

5.2.3 Equations for number-average molecular weight 

The semi-crystalline polymers number-average molecular weight can be calculated as 

all chains total weight of in amorphous and crystalline phases over the total number of 

polymer chains. If we assume all long chains and short chains are counted and there is 

no diffusion, then average molecular weight will be 

 

s

unitce

n

RN

MωXC
M






0chain

00                                              (5-14) 

The initial molecular weight is given by 

 

0chain

00
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N

MωXC
M

unitce

n


                                          (5-15) 

Equation (5-14) can be written into a normalised format as 

s

en

n

n

R
N

CM

M
M

0chian

00 1

1



                                        (5-16) 

Equation (5-16) and equation (4-15) are similar, except that here 
0e

C  is the initial 

number of ester units of long chains of the amorphous phase per unit of volume and 
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0chian
N  is the total number of the entire polymer chains, including the crystalline phase. 

00
/

chaine
NC  is therefore no longer the degree of polymerisation of the polymer (Pan, 

Chapter 4, 2013). 

If not counting the short chains in an average molecular calculation then the equation 

is given as follows: 
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Whereas the total number of long chain ester units and number of long chains both 

decrease with the production of short chains. 

If assuming that there are no short chains initially, the initial molecular weight is given 

by equation (5-15). The molecular weight equation can be normalised as 
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Whereas 
0

/
e

C  , the number of ester units per unit volume of crystalline phase is 

normalised by 
0e

C ; 
0

/
ess

CRR  , the number of chain scissions per unit volume is 

normalised by 
0e

C . All other parameters were previously defined in this section. 

 

5.3 Diffusion equations and a collection of governing 

equations for semi-crystalline polymers 

In this section, diffusion equations of short polymer chains have been presented. 

Governing equations were then collected to form a completed mathematical model that 

can be used to simulate degradation for semi-crystalline polymers and fit experimental 

data. This section has been included in the book edited by Pan (Pan and Chen, Chapter 

6, 2016). 
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In the previous chapters, it has been assumed that the diffusion of short chains is 

prohibited, and consequently 

 
ololol

RCC 
0

                                                  (4-25) 

whereas 
0ol

C  represents the concentration of residual short chains at the beginning of 

degradation. Equation (4-25) is no longer valid when the short chains can diffuse, 

therefore, 
ol

C  in equation (5-11) will be subject to change by diffusion. 

 

5.3.1 Diffusion equation for short chains 

Wang, et al. (2008) and Han and Pan (2009) introduced a diffusion equation into the 

degradation model. Fig. 10 illustrates diffusion of the short chains using an infinitively 

large plate placed in an aqueous media as an example. In Fig. 10(a), a rectangular unit 

of the plate is isolated. The left and right surfaces are exposed to the aqueous media 

and all the other surfaces can be considered as symmetry plans. Because of symmetry, 

diffusion only been assumed to happen in x direction, which is the thickness direction. 

Fig. 10(b) shows the section highlighted in Fig. 10(a) and distributions of the short 

chains in the plate. At the beginning, the short chains are generated everywhere in the 

plate and dissolve into the media off the left and right surfaces. As chain scission 

proceeds, more and more short chains are generated while some of them diffuse into 

the aqueous media. The concentration of short chains at the core of the plate reaches a 

peak value at some inter-medium time of the degradation. Toward the end of the 

degradation, a large number of long chains have been turned into short ones and 

diffused out. 
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Figure 10: Short chain diffusion in a plate showing distributions of short chain 

concentration over thickness of the plate at different stages of degradation. 

 

A diffusion flux, J , is defined as the number of ester units of short chains passing 

through unit area per unit time, as illustrated in Fig. 10(b). The driving force for the 

chain diffusion is the gradient of concentration, dxdC
ol

/ . Fick’s diffusion law 

assumes that 

dx

dC
DJ

ol
                                                    (5-19) 

in which D  is the diffusion coefficient. The minus sign is because chains diffuse from 

where their concentration is high to where it is low. Fick’s law has been widely used 

because of its simplicity and its ability to capture the general trend observed in 

experiments. More sophisticated diffusion laws are sometime necessary, which no 

longer poses any problem because modern numerical methods, such as the finite 

element method, can deal with any diffusion law conveniently. Assuming D is 

isotropic and diffusion due to entropy and small deformation. Diffusion only happens 

in the direction of the thickness in this case. 

x 

J 

x 

 

 x 

x 

Beginning 

Inter-

medium  

Ending 

(a)  (b)  
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At any location, x , the change in the concentration of short chains comes from two 

contributions: (a) production of short chains due to chain scissions at that location; and 

(b) deposit or removal of chains from this location by diffusion. (a) can be calculated 

by differentiating equation (4-7) as 

dt
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                                        (5-20) 

To calculate (b) let us consider a small section, x , along the diffusion route, as 

illustrated in Fig. 11. In the figure, )( xJ  and )( xxJ   represent diffusion flux 

entering and leaving the section, respectively. If )( xJ  > )( xxJ  , then short chains 

are deposited on the small section and if )( xJ  < )( xxJ  , then short chains are 

removed from the section, both of which lead to a change in the concentration of short 

chains in the section. 

 

 

 

 

Figure 11: Removing or depositing short chains due to difference in the 

diffusion flux J on either sides of a small section. 

 

The changing rate of the concentration can be calculated from the following statement 

of matter conservation: 

diffusion
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dt
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xxxJxJ 





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 )()(                               (5-21) 

For a very small x , equation (5-21) can be written as 
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The total change in concentration is given by the summation of the short chain 

production due to chain scission and the change due to diffusion, i.e. we have 

x 
x 

J(x) J(x+x) 
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dx
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Put equation (5-19) and (5-20) in equation (5-23) gives 




























dx

dC
D

dx

d

dt

dR

C

R

dt

dC
ols

e

sol

1

0



                              (5-24) 

For a general three-dimensional device, such as a screw or scaffold, using 
1

x , 
2

x , and 

3
x  to represent the three coordinates in the space, equation (5-18) can be expanded as 
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in which 
1

J , 
2

J  and 
3

J  represent diffusion fluxes in the three directions, respectively. 

Equation (5-23) can be expanded as 
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Substituting equations (5-20) and (5-25, 26, 27) into equation (5-28) gives 
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This type of equation is referred to as a reaction-diffusion equation in the literature. 

 

5.3.2 Collection of the governing equations for semi-crystalline 

polymers 

All mathematical equations that would need to be implanted into finite element 

software in order to provide the degradation simulation are listed below. The equations 

could be used to fit experimental data and provide further understanding of degradation 

behaviour. Only governing equations for semi-crystalline polymers have been listed 

below as they are commonly existing polymers, and amorphous polymers governing 

equations could be achieved from these equations by setting 0
c

X  and 0
max


c

X . 

The governing equation for rate of chain scission for semi-crystalline polymers is 
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in which 
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Short chain diffusion equation is 
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Degree of crystallinity equations are 
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Equations (5-11) and (5-29) are subject to the following initial conditions: 0
s

R , 

0olol
CC   at 0t , and boundary condition 0

ol
C  at device surface. 

A semi-crystalline polymer which is under degradation can be considered for two-

phase material made of a polymer phase and a porosity phase. According to Jiang, et 

al., the diffusion coefficient D  can be related to porosity pore
V  through 
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and matrix
D  is diffusion coefficient of the semi-crystalline matrix. The semi-crystalline 

matrix can also be considered as a two-phase material made of an amorphous phase as 

well as a crystalline part. The crystalline part of the polymer has diffusion coefficient 

which is very small and could take as zero. Again, according to Jiang, et al., matrix
D  

can be calculated as 

 
polymeramammatrix

DVVD
32

3.03.1                                    (5-32) 

whereas 𝐷𝑝𝑜𝑙𝑦𝑚𝑒𝑟 is diffusion coefficient of short chains in non-degraded amorphous 

polymer and 

pore
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                                          (5-33) 

The average molecular weight at any location can be calculated using equation 
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in which 
0

/
ess

CRR   and 
0

/
e

C  . 

For thin samples used in most degradation experiments, the diffusion of short chains 

only happens in one direction which is the thickness of the sample. In such cases, the 

governing equation can be solved either analytically, using a weighted residual method 

(Wang, et al., 2008), or numerically, using a finite difference method (Han and Pan, 

2011). For general three-dimensional devices, however, the equations have to be 

solved by finite element method. 

All the symbols used in the governing equations are grouped and listed below. 

(I) Variables that depend on time t  and location (
1

x ,
2

x ,
3

x ) and need to be found by 

solving the governing equations: 

• s
R  – number of chain scissions per unit volume; 

• ol
C  - number of ester units of short chains per unit volume; 
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• c
X  – volume percentage of crystalline phase; 

• n
M  – number averaged molecular weight; 

Only s
R  and ol

C  are independent variables. 

(II) Parameters that describe polymer properties: 

• 
0e

C  – initial number of ester units of long chains in amorphous phase per unit 

volume; 

• 
0chain

C  – initial number of amorphous chains per unit volume; 

• 
0chain

N  – initial number of polymer chains, including the crystalline phase, per 

unit volume; 

• 
0dp

N  – initial average degree of polymerisation of amorphous polymers; 

• 0ol
C  – initial number of ester units of residual short chains per unit volume; 

• 0n
M  – initial number averaged molecular weight; 

• 
0c

X  – initial volume degree of crystallinity; 

• 
maxc

X  – maximum volume degree of crystallinity; 

•   – number of ester units of crystalline phase per unit volume. 

(III) Empirical parameters: 

•  ,   – empirical parameters for short chain production; 

• 
1

 , 2
  – partitioning parameters for –COOH groups on long and short chains; 

• m  – average degree of polymerisation of short chains, usually set as four. 

(VI) Kinetic parameters: 

For amorphous polymers: 

• n  – exponent for acid dissociation of –COOH end groups, usually taken as 0.5 

• 1
k  – rate constant of non-catalytic reaction; 
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• 
2

k  – rate constant of autocatalytic reaction; 

• polymer
D  – diffusion coefficient of short chains in non-degraded amorphous 

polymer; 

• pore
D  – diffusion coefficient of short chains in liquid-filled pores. 

For semi-crystalline polymers, add: 

•   – impingement exponent for crystal growth; 

• 0ecc
Cpvk   – in which p  is the probability for a cleaved chain to form a 

crystallite and c
v  is the average size of the crystallites. 

 

5.4 Non-dimensionalisation and degradation map 

The governing equations were normalised. The non-dimensional equations were used 

to study the different behaviours of degradations through a ‘degradation map’, which 

was first developed by Wang, et al. (2008). However, Wang, et al. (2008) used an over-

simplified model for degradation, which only assumed degradation through end 

scission. The purpose here is to use the newly developed equation to reconfirm the 

degradation map published previously. The concept of the degradation map is 

presented here as a recalculation of Wang’s work. Furthermore, the effect of other 

factors on the degradation map is also developed. This section has been included in 

the book edited by Pan (Pan and Chen, Chapter 6, 2016). In which equations, figs and 

data fittings are contributed by writer. 

For a simple device, such as a plate or a pin, it is possible to graphically illustrate the 

conditions that lead to different behaviours of degradation using the degradation map. 

These conditions also indicate when the diffusion of the short chains can be ignored in 

the mathematical model. If the short chain diffusion can be ignored, then the analytical 

or numerical solutions provided in Chapter 4 can be used. The governing equations in 

Section 5.3 contain quite a few parameters. By performing a non-dimensionalisation 

exercise, it is possible to identify two non-dimensional groups of these parameters that 

control the degradation behaviour. The thickness of the plate, or the diameter of the 
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pin, is one of the key parameters in the analysis. However, it is often possible to 

identify a characteristic diffusion distance (the outer diameter of a screw, for example) 

to replace the plate thickness or pin diameter in the following analysis. This, then, 

allows the degradation map to be used for general devices as a rough guide on whether 

short chain diffusion can be ignored. 

 

5.4.1 Non-dimensionalisation of governing equations 

Considering a very large plate, as illustrated in Fig. 10, that has a thickness l  and is 

made of an amorphous polymer, the governing equations (4-24) and (5-29) can be 

rearranged as following without changing them: 
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Whereas 
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Such rearrangement is not unique and can be chosen as different parameters to 

normalise the equations. Here, all the concentrations are normalised by 
0e

C  and all the 

lengths are normalised by the thickness of the plate. These are rather obvious choices 

of normalisation. Furthermore, both sides of the equations are divided by 
n

e
Ck

02
. This 
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is because we chose to use the rate of autocatalytic hydrolysis as a reference for the 

rates of diffusion and non-catalytic hydrolysis. This is a sensible choice because 

autocatalytic hydrolysis is assumed to always occur in the polymers that are considered 

in this thesis, while diffusion and non-catalytic hydrolysis may or may not be important, 

depending on the device and polymers. 

Defining the following non-dimensional variables (Wang, et al., 2008) 
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and kinetic parameters 
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the governing equations can be non-dimensionalsed as 
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There are four kinetic parameters in the non-dimensionalised equations: n, 
1

k , 
polymer

D , 

and 
pore

D . The acid dissociation exponent n usually takes the value of 0.5. 
pore

D  

reflects the diffusion rate of short chains in liquid and can be set as a value much larger 

than 
polymer

D . The remaining two parameters, 
polymer

D  and 
1

k , control the degradation 

behaviour of the plate. 
1

k  reflects the non-catalytic hydrolysis rate relative to the 

autocatalytic hydrolysis rate. The larger 
1

k  is, the faster the non-catalytic hydrolysis is 
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in comparison with the autocatalytic hydrolysis. 
polymer

D  reflects the diffusion rate of 

short chains in non-degraded polymer relative to the autocatalytic hydrolysis rate. It 

also includes the effect of the thickness of the plate. The effect of a faster diffusion, 

thinner plate, or slower autocatalytic hydrolysis is equivalent as long as 
polymer

D  

remains the same. 

 

5.4.2 Degradation map 

Considering a very large plate, as shown in Fig. 10, the effect of changing 
polymer

D  on 

the degradation behaviour of the plate is computed by solving equations (5-44) and (5-

45) numerically. Fig. 12 shows the effect of changing 
polymer

D  on molecular weight 

n
M  at 27t  for a fixed value of 𝑘̅1 = 0.001. 

 

 

Figure 12:  Molecular weight (vertical axis) averaged across the plate at 27t  

as a function of 
polymer

D  (horizontal axis). 001.0
1
k . 

 

The choice of 27t  is arbitrary and will be discussed later. The average molecular 

weight in the plate is a function of x as marked in Fig. 10. The value of 
n

M  shown in 

Fig. 12 is calculated by averaging the molecular weight across the thickness of the 
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plate. Observing the very left section of the curve in Fig. 12, it can be seen that if 

polymer
D  is very small, then 

n
M  has already reached zero at 27t . This means that if 

either the diffusion is very slow or the plate is very thick, degradation is fast because 

the short chains accumulate inside the plate and generate an acidic environment. 

Moving from the left to the right, as 
polymer

D  gradually increases, so 
n

M  at 27t  also 

increases. This indicates that degradation is slowed down by the diffusion process. At 

the very right section, where either diffusion is very fast or the plate is very thin, the 

plate degrades very slowly because the short chains can leave the plate quickly. It is 

interesting to observe that 
n

M  does not change with 
polymer

D  on either the very left 

section or the very right section. Two thresholds, referred to as left

polymer
D  and right

polymer
D , 

as shown in the figure, can be identified such that 
n

M  only changes with 
polymer

D  if 

left

polymer
D <

polymer
D < right

polymer
D . 

Choosing a different value for t  does not affect the values of left

polymer
D  and right

polymer
D . 

However, if t  is set at a too large a value, 
n

M  would be almost zero at this time for 

all values of 
polymer

D . If t  is set at a too small a value, 
n

M  would not have changed 

very much at this time for all values of 
polymer

D . Consequently, such choices of t  

would make the identification of left

polymer
D  and right

polymer
D  difficult. 

It is expected that the values of left

polymer
D  and right

polymer
D  depend on 

1
k . To account for the 

effect of 
1

k , the above calculation was repeated for a wide range of values of 
1

k  and 

the numerical results are graphically presented using a degradation map, as shown in 

Fig. 14. The vertical axis of the map represents 
polymer

D  and the horizontal axis 

represents 
1

k . The bottom part of the map represents the curve on the left side in Fig. 

14 and the top part of the map represents the curve on the right side. For any fixed 

value of 
1

k , regions C, A, and B on the map correspond to the left flat section, the 

middle ascending section, and the right flat section of the curve, respectively. The 

boundary between regions C and A corresponds to left

polymer
D  and the boundary between 

regions A and B corresponds to right

polymer
D . 
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The top zone B represents where 
polymer

D  is large, which means either diffusion is fast 

or the plate is very thin. Under these conditions, the short chains cannot remain inside 

the plate long enough to act as catalyst for the hydrolysis reaction. The polymer 

degrades at the non-catalytic rate and the degradation of the plate is uniform. Above 

the boundary between zones A and B, further increasing of 
polymer

D  (by reducing the 

thickness, for example) cannot change the degradation rate. An interesting numerical 

result is that this boundary, i.e. right

polymer
D , is very weakly affected by 

1
k  and located at 

approximately 1000
right

polymer
D . The absolute location of the boundary is, however, 

fuzzy because the curve in Fig. 14 shows a gradual transition between the two zones. 

Rearranging equation (5-42) gives 

n

e

polymer

n

e

right

polymer

polymer

th

Ck

D

CkD

D
l

0202
1000

                                   (5-46) 

where 
th

l  is a threshold for the thickness of the plate under which the degradation rate 

is no longer affected by the thickness. Equation (5-46) indicates that the faster the short 

chain diffusion or the slower the autocatalytic hydrolysis, the larger 
th

l  becomes. 
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Figure 14: Degradation map showing different behaviours of degradation of an 

infinitively large plate controlled by 
polymer

D  and 
1

k . Other parameters used in 

the calculation are 1 , 1 , 0
1
 , 1

2
 , 4m , 5.0n , 

polymerpore
DD 1000 , 2307

0


dp
N  and 0

0


ol
C . 

Source: Original version obtained from Wang, et al. (2008). Recalculation has 

been done to provide the result. 

 

In zone C, 
polymer

D  is small, although the definition of “small” depends on 
1

k . In this 

zone, despite the fact that short chains near the surface of the plate diffuse into the 

aqueous media, the effect remains local to the surface layer throughout the lifetime of 

the plate and does not affect its overall degradation rate. Degradation of the plate is 

heterogeneous and a hard skin can be expected to form while the inside degrades faster 

due to the acidic environment. It is interesting to note that 
1

k  has a significant effect 

on the upper boundary of this region. The larger the 
1

k , the easier it is for a plate to 

enter this zone from zone A. 

The right zone D is where 
1

k  is very large and the hydrolysis is dominantly non-

catalytic. In this zone, diffusion of the short chains plays no role in the degradation 

rate; the plate degrades uniformly and the concept of a threshold thickness does not 
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exist. The numerical results show that the boundary between zone D and other zones 

is located at 50
1
k . Again, this absolute location is fuzzy because the numerical 

results show a gradual transition. Rearranging the equation (5-40) gives that 

n

e
Ckk

021
50  in zone D. 

n

e
Ck

02  represents a rate of autocatalytic hydrolysis with a 

catalyst concentration of 0e
C . Noticing that 0e

C  is the initial number of ester units of 

all the long chains, we have ole
CC 

0 , i.e. the usual amount of short chains available 

as catalyst is much smaller than 0e
C . Therefore, 

n

e
Ck

02  represents an unrealistically 

fast rate of autocatalytic hydrolysis. It is unlikely that a typical biodegradable polymer 

such as PLA or PGA falls into this zone. 

In zones B, C, and D, there is no need to involve the diffusion equation in order to 

calculate the degradation rate. In the governing equations, one should set 0
ol

C  for 

zone B, 
olol

RC   for zone C, and 0
2
k  for zone D. These conditions are covered in 

Chapter 4, above. 

Zone A is where the diffusion of short chains and the hydrolysis reaction strongly 

interact with each other and the size effect on degradation rate is expected. Although 

the degradation map was calculated for a plate, the same principle applies for all 

sophisticated devices, such as screws or stents. Unfortunately, this is probably the zone 

into which most devices fall and the device design has to be carefully analysed, 

because changing the size has a major effect on its degradation rate. 

The degradation map presented in Fig. 14 was firstly obtained by Wang, et al. (2008). 

It was recalculated using the updated version of the mathematical too, and the 

calculation confirmed that the map was not affected by the updating of the 

mathematical model. 

 

5.4.3 Effect of other factors on the degradation map 

The degradation map shown in Fig. 14 was calculated using 1 , 1 , 0
1
 , 

1
2
 , 4m , 5.0n , 2307

0


dp
N , 0

0


ol
C , and 

polymerpore
DD 1000 . It was also 

assumed that the polymer is amorphous. The choice of some of these parameters will 
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lead to a big different for the degradation map, although the concept of the four zones 

is generally valid. 

 

5.4.3.1 Effect of crystallisation induced by chain scission 

Han and Pan (2009) compared degradation maps for amorphous (dash lines) and semi-

crystalline polymers (solid lines), as reproduced in Fig. 15. 

 

 

 

 

 

 

 

 

 

 

Figure 15: Effect of crystallisation on degradation map. The solid lines show the 

four zones for semi-crystalline polymers while the dash lines are for amorphous 

polymers. 

Source: Han and Pan (2009). 

 

Full details of the calculation can be found in the paper by Han and Pan (2009). It can 

be observed that zone A shrinks in all directions for semi-crystalline polymers. This 

indicates that it is more likely for semi-crystalline polymers to degrade uniformly than 

it is for amorphous polymers, i.e. semi-crystalline polymers are expected to show less 

size effect than amorphous ones. The underlying reason for this phenomenon is simple: 
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the crystalline phase resists degradation, which reduces the difference in degradation 

rate at different locations of a device. 

 

5.4.3.2 Effect of   and   

As discussed in section 4.1, the values of   and   determine the amount of short 

chains produced by chain scissions through equation (4-7). For end scission, 1  and 

1 . At this extreme, each scission produces a monomer and the chain scission is 

very efficient in producing short chains. For random scission, 28  and 2 , 

which reflects that the chain scission is rather ineffective in producing short chains. 

The real situation is between the two extremes. The degradation map is recalculated 

using 28  and 2  and presented in Fig. 16. All the other parameters remain 

unchanged. 

 

 

 

 

 

 

 

 

Figure 16: Degradation map obtained using 28  and 2  with all other 

parameters identical to that for Fig. 14. 

It can be observed that the degradation map for 28  and 2  is identical in shape 

to that for 1  and 1  except that the vertical boundary between zone D and other 

regions shifts to the left by three orders of magnitude. This means that if fewer short 

chains are produced, it is far more likely for a plate to degrade through non-catalytic 

hydrolysis. 
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5.4.3.3 Effect of device geometry 

The degradation map can be calculated for devices of any sophisticated shape if the 

dimensions of the device scale by a single parameter. This parameter can be called the 

characteristic size of the device. In the case of the very large plate, its thickness is the 

characteristic size. For a sphere or a very long solid cylinder, the radius is the 

characteristic size. Replacing l  in the definition of 
polymer

D  in equation (5-42) with the 

characteristic size, a similar map can be calculated. Fig. 17 shows a degradation map 

for solid cylinders. All the parameters are the same as those for the map in Fig. 14. It 

can be observed from Fig. 17 that, the vertical boundary of zone D shifts to the left by 

half comparing with the map for the plate. This is because, for a solid cylinder, more 

material per unit volume is located at the surface, making it easier for the short chains 

to leave. Consequently, the cylinder behaves in a more non-catalytic manner in 

comparison with the plate. 

 

 

 

 

 

 

 

 

Figure 17: Degradation map for solid cylinder using the same parameters as 

those used for the large plate in Fig. 14. 
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5.5 Conclusion 

A complete set of governing equations has been presented in this chapter, which 

includes crystallisation, oligomer diffusion, and their corresponding rate of scission 

equations. A previously presented degradation map (Wang, et al., 2008) was 

recalculated and proved to be valid even through the degradation model used was over-

simplified. Furthermore, the studies on the effect of other factors on the degradation 

map had provided several other degradation maps, which could help to understand the 

behaviours of degradations under different conditions. 
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Chapter 6: Cross-reading of the degradation rates of 

different devices made of the same polymer and the 

effect of water diffusion 

Degradation data, in particular that obtained from in vivo experiments, are very 

expensive and time-consuming to obtain. The mathematical model presented in 

Chapter 5 can be used to project degradation rate from one device to another, if they 

are made of the same polymer. This chapter demonstrates how the finite element 

method is applied to estimate the degradation rate of a newly designed device based 

on existing data of a different device. Also, the water diffusion effect was added in the 

second half of this chapter. A prediction of an interference screw for storage was made 

under different conditions of atmosphere. 

 

6.1 The need for a cross-reading method 

For biodegradable medical device designers, optimising the design of such devices is 

mostly achieved through trial-and-error. Experiments are unavoidable to fully 

understand the degradation behaviour, which is time-consuming and expensive. 

Because of the heterogeneous nature of degradation, design is never straightforward 

for these devices. For example, if more mechanical stiffness is required for the device, 

the designer cannot just increase the thickness of the device or use more materials, 

because a thicker device may lead to faster degradation due to autocatalytic hydrolysis 

reaction (Grizzi, et al., 1995), thus losing mechanical stiffness even quicker, which is 

against the design purpose. The available experimental cost of involving new materials 

into existing applications would be limited. As a result, materials which are well 

established in certain application were often used by companies to design new 

equipment for new applications or to optimise the prior designs of existing equipment 

(Buchanan, 2008). The polymers that are used in biodegradable medical devices are 

limited; therefore, most of the device designers would use the same or similar material 

to an existing device that has been experimentally tested. Furthermore, in some cases, 

the size or the shape of the existing device might need to be adjusted in order to meet 

other requirements. However, no matter how small the change is, the degradation 
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progress will not be fully understood unless an experiment was conducted. A tool that 

could predict the degradation rate would be very useful in the early stage of designing, 

even if it could just provide a range of prediction. A mathematical model could be 

introduced to achieve such goal. 

The mathematical model presented in the previous chapters was successfully used to 

fit many experimental data. Specifically, a set of interference screw experimental data 

was fitted using the model that was presented in this chapter. However, there are still 

many factors that could affect the result of degradation – some we understand, some 

we may not fully understand. Therefore, the direct purpose of this chapter is very 

modest: the content will only consider and relate to the shape and size of the equipment 

design. The mathematical model is first used in fitting of the experimental data 

accumulated by the existing polymers and devices. Successfully fitted model 

parameters will then be kept the same for degradation analysis study for other devices 

which are made from the same material but with different designs (change of shape or 

size) under similar manufacturing conditions. A designer could intuitively obtain the 

estimated range of degradation rate and mechanical properties for the newly designed 

device. This type of computer modelling method is currently in use for many other 

engineering applications. For example, the approach is routinely used to calculate 

fatigue and the creep damage of engineering components for design modifications. For 

biodegradable medical devices, this modest level of computer modelling was already 

a leap forward from the trial-and-error approach that is currently practiced. 

Experimenting would still be necessary. A mathematical model would only be used as 

a tool at the first stage of designing by providing a predicted range of degradation 

behaviour. This would eliminate many unnecessary experiments and focus the 

resources on the ones that would be most likely to achieve the requirement. 

In this chapter, the above method was used for cross-reading between an interference 

screw model and a biomedical stent model. Experimental data for the interference 

screw was presented by Schwash (1998). Assuming that a designer would like to use 

the same material and apply similar manufacturing conditions to design a biomedical 

stent, a range of molecular weight distribution and crystallisation could be calculated 

by applying the computer modelling. The designer can then decide whether the range 

covers what is required. If so, further experiments can then be carried out; if not, other 

changes may need to be made. 
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6.2 A finite element model for interference screw 

Schwash (1998) presented the experimental data for interference screws. 25mm long 

and 9mm in diameter, that were used in a cruciate ligament. Hydrolytic degradation of 

the screw was performed in vitro in an iso-osmolar phosphate buffer solution (0.13 M, 

pH 7.4) at 37ºC. Experimental data for the interference screw made of PLA100-Sn was 

used here. 

The mathematical model introduced in the previous chapters was used to fit the 

experimental data. Specifically, equations (5-5), (5-11), (5-18), and (5-28) were 

applied into commercial software COMSOL Multiphysics (license number 7074366) 

for the degradation calculation. Fig. 18 shows a cross-section mesh of the interference 

screw model used in COMSOL. The whole geometry contains 1,146 elements and 

5,070 degrees of freedom were used, linear shape function was applied. The whole 

screw was assumed under an iso-osmolar phosphate buffer solution, so all surfaces 

were set as ‘no oligomer residue’, i.e. 𝐶𝑜𝑙 = 0. Parameters and variables used in this 

calculation are listed in Table 1, Case (A). 

The pack of equations used in COMSOL is listed below. 

Rate of chain scission of semi-crystalline polymer: 
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Short chain diffusion equation: 
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Average molecular weight calculation equation: 
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Figure 18: A cross-sectional view of the interference screw with mesh (length 

unit mm). 

Normalised average molecular weight distribution and degree of crystallinity for two 

different degradation times – (a) week 7 and (b) week 28 – are shown in Fig. 19 and 

Fig. 20, respectively. The results appear to be fairly self-similar, in that the colour 

remains unchanged although the scale is varied. It can be observed that average 

molecular weight distribution difference between the surface and the core increases 

during degradation. That is because, as degradation progresses, the oligomers 

produced and stored inside of the screw cause the core area to degrade faster than the 

surface. A refining mesh was also used to check the convergence of the result. A 

refining mesh of 1,938 elements and 8,390 degrees of freedom gives the same 

degradation result; therefore, the result calculated can be proved as convergent. 
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(a) week 7    

   

(b) week 28 

Figure 19: Interference screw – average molecular weight distribution at two 

different degradation times: (a) week 7, (b) week 28. 
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(a) week 7 

  

(b) week 28 

Figure 20: Interference screw – degree of crystallinity distribution at two 

different degradation times: (a) week 7, (b) week 28. 
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The distribution of normalised average molecular weight distribution and degree of 

crystallinity was integrated through the entire geometry and divided by the whole 

volume for various degradation times. It is shown in Fig. 21 that the mathematical 

model can provide a good fitting to the experimental data for both (a) average 

molecular weight and (b) degree of crystallinity simultaneously. This also proves the 

validation of the mathematical model used. 

 

(a) 

 

(b) 

Figure 21: Using a mathematical model to fit interference screw experimental 

data of (a) molecular weight and (b) degree of crystallinity. 
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The parametric study of Chapter 4 presents that multiple sets of mathematical model 

parameters could be used to achieve the same set of degradation data. Based on this 

finding, four different sets of parameters were found, which could all fit the same 

interference screw experimental data shown in Fig. 22. Fig. 22 also shows that (a) 

average molecular weight and (b) degree of crystallinity experimental data can be 

fitted simultaneously to all four sets of parameters, which are listed in Table 1. 

 

Case A Case B Case C Case D 

k1 (1/day) k1 (1/day) k1 (1/day) k1 (1/day) 

0.006 0.006 0.007 0.0005 

𝑘2
̅̅ ̅ = k2/Ce0

n 

(1/day) 

𝑘2
̅̅ ̅ = k2/Ce0

n (1/day) 𝑘2
̅̅ ̅ = k2/Ce0

n (1/day) 𝑘2
̅̅ ̅ = k2/Ce0

n 

(1/day) 

2.3 2.3 10 0.007 

ᵡ1 ᵡ1 ᵡ1 ᵡ1 

0 0 0 1 

Dpolymer (m2/s) Dpolymer (m2/s) Dpolymer (m2/s) Dpolymer (m2/s) 

10-14 10-22 10-10 10-14 

Dpore (m2/s) Dpore (m2/s) Dpore (m2/s) Dpore (m2/s) 

10-11 10-19 10-7 10-11 

Table 1: Four sets of parameters that could fit the same interference screw 

experimental data. 

 

The common parameters used for all cases in Table 1 are listed below: Ce0=17300 

(mol/m3); n=0.5; 𝜒2 = 1; m=4; α=28; β=2; 𝑋𝑐0 = 0; 𝑋𝑐 𝑚𝑎𝑥 = 0.2; Col0 =0 (mol/m3); 

Mn0 =201176 (g/mol). 

 

 

 

 



81 
 

 

(a) 

 

(b) 

Figure 22: Using mathematical model to fit (a) average molecular weight and 

(b) degree of crystallinity screw experimental data for all parameters listed in 

Table 1 Cases A, B, C, and D, respectively. 
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Table 1 Cases A, B, and C all used 0
1
  and 1

2
  (only short chains contribute 

as catalyst) but take different diffusion coefficients. The diffusion coefficient for Cases 

A and B takes 10-14 (m2/s) and 10-22 (m2/s), respectively, which are the upper and lower 

cases for the amorphous polymer diffusion coefficient (Lyu, 2007). A large diffusion 

coefficient was given to Case C as 10-10 (m2/s), which is even bigger than the water 

diffusion coefficient: 10-13 (m2/s). Theoretically, the diffusion coefficient of an 

amorphous polymer could not be bigger than the water diffusion coefficient. However, 

degradation sometimes causes the sample to fall to pieces and generates a great number 

of tiny crystalline residues (Li, 1995). This phenomenon could cause degradation rate 

change and massive mass loss, which has not yet been captured by the current 

mathematical model. Using a large diffusion coefficient could get a better 

understanding of this phenomenon, but further studies still need to be carried out. In 

fact, that is the next topic for the Leicester group. Cases A and D share the same 

diffusion coefficient, 10-14 (m2/s), but for Case D long chains have been added to count 

as catalyst by setting 1
1
  and 1

2
 . The same set of experimental data could be 

fitted by all four sets of parameters by setting different 𝑘1, 𝑘̅2 values, as shown in the 

parametric study of Chapter 4. 

 

6.3 Cross-reading with a coronary stent 

For many countries, biomedical stents have been available wildly in heart patients to 

expend the narrowed blood vessel and remain the flowing of blood. It also hold  and 

slowly releases drugs to heal the opened tissue. Because many stents are needed to 

deal with very complex situations and special arteries, and one heart patient could need 

municipal stents, optimising the design to suit different surgical situations and 

understanding the degradation behaviour of such devices is very import. This makes 

the biomedical stent a perfect example for the cross-reading method. Such a method 

would help with design optimisation and understanding of degradation behaviour. 

A biomedical stent model with a length of 8mm was implanted as a case study, as 

shown in Fig. 23. The model was achieved from the database of commercial software 

COMSOL Multiphysics (license number 7074366). The stent has an original diameter 

of 0.74mm, shown in Fig. 23(a). Once the stent reached the narrowed artery a balloon 
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was then used to expand it into position, as shown in Fig. 23(b). The balloon was 

removed after use, with the stent remaining expanded to act as a scaffold, keeping the 

blood vessel open. Biodegradable stents degrade over time, eventually disappearing 

fully when the narrowed artery heals and gains back its full function. Therefore, the 

expanded stent would be more appropriate to use in the degradation model. Fig. 23(c) 

shows the average molecular distribution of the whole stent at week 16 using 

parameter Case D in Table 1. Because of symmetry, only the part shown in Fig. 24 

was used in the analysis, which is the highlighted part in Fig 23 (c). The mesh used for 

calculation is also shown in Fig. 24, which contains 2,210 elements and the degree of 

freedom is 25,220. 
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(a) 

 

(b) 
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(c) 

Figure 23: Biomedical stent (a) before deformation, (b) after deformation, (c) 

Molecular weight distribution of the whole stent, at week 16 using parameter 

listed in Table 1 Case D (all length units in m) (COMSOL database was applied 

to obtain the geometry). 

 

The same mathematical model that was used for the interference screw model was 

applied here. The stent model was also assumed to be surrounded by a watery 

environment, i.e. 𝐶𝑜𝑙 = 0 for all surfaces. The four sets of mathematical parameters 

listed in Table 1, which were successfully used to fit the interference screw 

experimental data, were applied to the expanded biomedical stent model. Convergence 

was checked by refining the mesh, which increased the elements to 4,420 and the 

degree of freedom to 45,396. The same results were achieved. 
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Figure 24: Partial mesh of the stent highlighted part in Fig. 23 (c) (all length 

units in m). 
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Fig. 25 and Fig. 26 show the longitudinal view of a 1/12 stent’s, which is the mirror 

image of the mesh part shown in Fig. 24. Fig. 25 and Fig. 26 (a) average molecular 

weight and (b) degree of crystallinity distribution for different degradation times using 

parameters listed in Table 1 Case C and D, respectively.  

 

week 5 

 

week 15 

(a) Average molecular weight distribution for weeks 5 and 15. 
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week 5 

 

week 15 

(b) Degree of crystallinity distribution for weeks 5 and 15. 

Figure 25: Distributions of 1/12 of the stent viewed along longitudinal axis for 

(a) average molecular weight and (b) degree of crystallinity under different 

degradation times: weeks 5 and 15, which used the parameters listed in Table 1 

Case D. 
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week 8 

  

week 24 

(a) Average molecular weight distribution for weeks 8 and 32. 
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week 8 

  

week 24 

(b) Degree of crystallinity distribution for weeks 8 and 32. 

Figure 26: Distributions of 1/12 of the stent viewed along longitudinal axis for 

(a) average molecular weight and (b) degree of crystallinity under different 

degradation times: weeks 8 and 32, which used the parameters listed in Table 1 

Case C. 
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The calculated average molecular weight and degree of crystallinity data for all four 

sets of parameters in Table 1 is shown in Fig. 27. It could be observed that four sets of 

parameters now give different trends in both average molecular weight and degree of 

crystallinity. All four trends formed into a region, which have Case D and Case C for 

their upper and lower limits. For average molecular weight reduction shown in Fig 

25(a), Case D has long chain and short chain both working as catalyst, which would 

lead to faster degradation; Case C has the largest diffusion coefficient, which would 

lead to a slower degradation. Similarly, for degree of crystallinity, Case D has the 

fastest crystalline growth and Case C has the slowest crystalline growth. The region 

can be seen as a prediction of the degradation behaviour for the biomedical stent. The 

exact average molecular weight and degree of crystallinity trend was assumed to be 

located in this region. A designer who would like to design this kind of biomedical 

stent could use this region as a guide, which would help them to have a preview of the 

stent degradation behaviour for the newly designed stent. As shown in Fig. 27, four 

different parameters could be assumed to have identical degradation behaviour in the 

first two months. A huge difference then starts to show up and divides the sets of 

parameters into an upper and a lower limit. Similar behaviour can also be obtained 

from Fig. 25 and Fig. 26, which shows the degradation distribution for the upper and 

lower limit. 
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(a) 

 

(b) 

Figure 27: Predicted biomedical stent degradation behaviour (a) average 

molecular weight (b) degree of crystallinity, for different sets of parameters 

listed in Table 1. 
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6.4 Effect of water diffusion 

The mathematical model for degradation introduced previously in this thesis assumed 

that water molecules are abundant inside of the polymer for all times during 

degradation. That is based on Li’s (2000) finding of water uptake in as short a time as 

several days. However, Li’s finding was based on PLA films with an average thickness 

of 0.4mm, while many biodegradable medical devices have thicknesses or diameters 

of several millimetres. Water diffusion for medical devices with a thickness of several 

millimetres could be a delay factor for the degradation, as the thicker the device, the 

harder it is for water molecules to diffuse into the core of the device. In this section, 

the effect of water diffusion under different sample thicknesses will be studied. 

Secondly, the water diffusion effect will be added to the interference screw model, 

which was presented in the first half of this chapter, to be able to analysis the effect 

that water diffusion on the previous model fitting. Finally, storage condition was 

predicted under different atmospheric environments. 

 

6.4.1 Degradation equations for semi-crystalline polymers adding in 

water diffusion 

All previous models by the Leicester group have assumed that water diffusion is much 

faster than the degradation rate. This is, however, not always justifiable, in particular 

when modelling device degradation during storage. This section presents the 

mathematical equations for polymer degradation that include time-dependant water 

diffusion into the devices. 

From the early model presented by Pitt (1981 and 1987), the concentration of the ester 

bond and concentration of water are two important factors which will affect the rate of 

hydrolysis reaction, which can be repented as 𝐶𝑒  and 𝐶𝑤 , respectively. The rate of 

chain scission equation can be presented as: 




Hwewe

s
CCCkCCk

dt

dR

21                                     (6-1) 

in which 𝑅𝑠 is the total number of chain scissions per unit volume, 𝑘1 and 𝑘2
′  are the 

reaction rate constant of non-catalytic hydrolysis and autocatalytic hydrolysis, 

respectively, and 𝐶𝐻+ is the concentration of catalyst 𝐻+. 
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In Chapter 4, the effect of concentration of water 𝐶𝑤 was ignored, as we assume that 

water molecules are abundant everywhere in polymer. That is based on Li’s (2000) 

finding on water uptake being as short as several days, whereas polymer degradation 

takes month or years (Grizzi, et al., 1995). Furthermore, the water diffusion coefficient 

is 10−13 𝑚2/𝑠 (Liu, et al., 2011), the polymer diffusion coefficient can be as small as 

10−22 𝑚2/𝑠 (Lyu, et al., 2007), and theoretically water diffusion inside of polymer 

happens much faster than oligomers diffuse out into the surrounding environment. 

However, Li (2000) obtained the water uptake data by using PLA films, which have 

average thickness of 0.4mm. For such films, water uptake may happen very fast, but 

for many medical devices, such as interference screws, the diameter could be up to 

10mm, which could change the ability of water absorption. In addition, the oligomer 

diffusion coefficient could be assumed to be bigger than water diffusion to cover the 

erosion, which happens at the surface of many polymer devices. Further study on 

counting erosion into the mathematical model will be the future task for the Leicester 

group. For now, it is necessary to consider the effect of water diffusion for some 

devices with thicker diameter or thickness. 

Based on equations (6-1) and (5-11), the master equation for the rate of chain scission 

for semi-crystalline polymers could be modified to include water diffusion, shown as 

follows: 
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Oligomer diffusion equation: 












































3

1

1

0 i i

ol

i

s

e

sol

x

C
D

xdt

dR

C

R

dt

dC


                         (5-28) 



95 
 

Water diffusion equation: 
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in which 
w

D  is the diffusion coefficient for water, which takes as 10−13 𝑚2/𝑠 

according to Liu (2011). All other symbols were defined previously. 

A new term 𝐶𝑤/𝐶𝑒0 was involved in the rate of chain scission equation to monitor the 

abundance of water inside semi-crystalline polymers. If 
𝐶𝑤

𝐶𝑒0
= 1  we assume water 

molecules are abundant. If 
𝐶𝑤

𝐶𝑒0
< 1 rate of scission will be slowed down as there are 

not abundant water molecules inside the polymer to cause full degradation. Although 

𝐶𝑤 can take a value of 55600 mol/𝑚3, 𝐶𝑤/𝐶𝑒0 cannot be larger than 1, as we assume 

that water molecules will be already abundant when 𝐶𝑤 = 𝐶𝑒0 = 17300 𝑚𝑜𝑙/𝑚3 . 

The uptake of water molecules can be obtained by equation (6-3). 

 

6.4.2 Effect of water diffusion for 2D square plate 

Fig. 28 shows a 2D square plate models with mesh, which have side length 1mm. A 

1mm plate was chosen to represent the film model as the PLA films used in Li’s paper 

(2000) were all less than 1mm thickness. Also, a plate with a side length of 5mm is 

also considered in this section. A 5mm plate was chosen to represent the medical 

device with a relatively big average thickness or diameter, such as an interference 

screw or biomedical stent. 

    

Figure 28: 2D square plate model with side lengths of 1mm. 
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Mathematical equations (5-11), (5-28), and (5-18), which do not count the effect of 

water diffusion, were used to calculate the normalised average molecular weight 

distribution for 2D plate models shown in Fig. 28. Mathematical equations (6-2), (5-

28), (6-3), and (5-18), which count the water diffusion effect, were also used to 

calculate the normalised average molecular weight distribution for the 2D plate models. 

Both mathematical models, with and without counting the water diffusion, used the 

same model parameters listed in Table 1 Case A. Boundary conditions were set as no 

resistance of oligomer, 𝐶𝑜𝑙 = 0, at all boundaries for the 2D plate model, and 5,799 

degrees of freedom were used in the calculation. Fig. 29 and Fig. 30 show the average 

molecular weight distribution and water uptaking distribution for 2D plate models 

under different degradation times. The threshold of water untaking for Fig. 29(c) and 

Fig. 30(c) is taken as 𝐶𝑤 = 𝐶𝑒0 = 17300 𝑚𝑜𝑙/𝑚3, whereas the water is considered to 

be abundant, in which shows dark red in figs, scale is 1. Otherwise when water is not 

abundant the area shows dark blue in figs, scale is 0. Fig shows pure green when water 

is fully abundant across all 2D plant. From Fig. 29(c) it can be observed that for water 

molecules to fully diffuse into a 1mm thick plate only four to five days are needed. As 

a result, Fig. 30 (a) and (b), which represent the mathematical models not counting 

water diffusion and counting water diffusion, show no significant difference. From Fig. 

30 (c), data shows water molecules take 17 weeks to fully diffuse into the 5mm thick 

plate model. As a result, Fig. 30 (a) not counting water diffusion and (b) counting water 

diffusion show significant differences. In Fig. 30(b), the core area has greater average 

molecular distribution, which is caused by water molecules not reaching the core area 

yet. 
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week 14 

 

week 28 

(a) Average molecular weight distribution not counting water diffusion at week 14 

and week 28, respectively 
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week 14 

 

week 28 

(b) Average molecular weight distribution counting water diffusion at week 14 and 

week 28, respectively 
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day 4 

 

day 5 

(c) Water uptake distribution counting water diffusion at week 14 and week 17, 

respectively 

Figure 29: Average molecular weight and water uptake distribution for 2D plate 

with side length 1mm. 
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week 14 

   

week 28 

(a) Average molecular weight distribution not counting water diffusion at weeks 14 

and week 28 respectively 
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week 14 

   

week 28 

(b) Average molecular weight distribution counting water diffusion at weeks 14 and 

week 28 respectively 
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week 14 

   

week 17 

(c) Water uptake distribution counting water diffusion at weeks 14 and 17 

Figure 30: Average molecular weight and water uptake distribution for 2D plate 

with side length 5mm. 
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(a) 1mm 2D plate 

 

(b) 5mm 2D plate 

Figure 31: Normalised average molecular weight reduction with time for the 2D 

plate with and without counting the effect of water diffusion with side length of 

(a) 1mm and (b) 5mm. 
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Fig. 31 compared the normalised average molecular weight reduction trend between 

the mathematical model without water diffusion term and with water diffusion term 

for the 2D square plate with side lengths (a) 1mm and (b) 5mm, respectively. Where 

shows that, for the 2D square plate model with a side length of 1mm, a mathematical 

model with or without counting water diffusion will not affect the average molecular 

weight reduction; that is due to the thickness of the plate being thin enough that time 

for the water molecules to diffuse inside the core of the plate is relatively short. 

Therefore, the whole degradation process was counted as water abundant. Fig 31(a) 

clearly shows that for water molecules to rise from 0 to 1 takes a short time, therefore 

it happens fast. Concentration of water over initial concentration of ester unit, 𝐶𝑤/𝐶𝑒0, 

was used to demonstrate whether water molecules were abundant inside the polymer. 

Initially, 𝑡 = 0, for the mathematical model counting water diffusion, the entailed 

geometry, it was assumed that no water molecules existed inside; 𝐶𝑤 = 55600 𝑚𝑜𝑙/

𝑚3  was set as the boundary conditions for all boundaries. Normalised average 

molecular weight and water uptake was integrated through the entailed geometry and 

divided by the volume of the geometry. We assume that when 𝐶𝑤/𝐶𝑒0 reaches 1 water 

molecules are abundant. Growth of 𝐶𝑤/𝐶𝑒0 stops at 1; once it reaches 1 it will take 

constantly as 1, as shown in Fig. 32. 

  



105 
 

 

(a) 1mm 2D plate 

 

(b) 5mm 2D plate 

Figure 32: Water diffusion against time for 2D plate with side length of (a) 1mm 

and (b) 5mm. 
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Fig. 32 shows a different average molecular weight reduction between the 

mathematical models with and without counting water diffusion. The reason for that 

can be found in Fig. 32(b), which shows that water takes about one month for the plate 

to be abundant in water molecules, thus causing the initial delay of the average 

molecular weight reduction shown in Fig. 31(b). Therefore, different thicknesses have 

different water absorbability. For thinner medical devices, such as biodegradable films, 

which have a thickness less than 1mm, the water diffusion should not have any effect 

on the degradation rate. However, for the thicker devices, such as interference screws 

which have a thickness or diameter of several millimetres, water diffusion would delay 

the degradation at the beginning, thus slowing down the total degradation rate. 

Refining mesh with 1,856 elements and 11,463 degrees of freedom were used to check 

convergence. The same results were obtained, so the model can be assumed as 

convergent. 

 

6.4.3 A finite element model for interference screw with water 

diffusion counted 

The interference model that been used in the first half of this chapter was used as a 

case study for the effect of water diffusion. The mathematical model counting the 

water diffusion, equations (6-2, 6-3, 5-28 and 5-18), was applied to the screw model. 

Parameters listed in Table 1 Case A were used. Boundary conditions were set the same 

as before, i.e. no oligomer residue in all surfaces of the screw. Mesh with 1,146 

elements and 7,605 degrees of freedom was used for the calculation. Fig. 33 below 

shows the (a) average molecular weight distribution, (b) degree of crystallinity 

distribution, and (c) water uptake distribution for the interference screw model that 

counts the effect of water diffusion. Convergence was checked with a refined mesh of 

1,938 elements and 12,585 degrees of freedom, and the same result was able to be 

achieved. 
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 week 7  

 

week 28 

(a) Average molecular weight distribution counting water diffusion at weeks 7 and 

28 
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week 7 

 

week 28 

(b) Degree of crystalline distribution counting water diffusion at weeks 7 and 28 
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week 7 

 

week 28 

(c) Water uptake distribution counting water diffusion at weeks 7 and 28 

Figure 33: (a) average molecular weight (b) degree of crystalline and (c) water 

uptake distribution for the interference screw model counting the effect of water 

diffusion at weeks 7 and 28. 
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Comparing the average molecular weight distribution for the mathematical model 

without counting the effect of water diffusion, Fig. 19, and the ones with the effect of 

water diffusion being counted, Fig. 33(a), it can be observed that the degradation 

behaviours are different. With the average molecular weight distribution shown in Fig. 

31 we assumed that water is abundant all the time and everywhere in the screw, so the 

core area degrades faster than the surface area, which was led by an autocatalysis 

hydrolytic reaction happening straight after degradation. Whereas, in Fig. 33(a) and (c) 

it can be observed that water needs time to diffuse into the core of the screw, leading 

to the surface degrading faster than the core initially, because the core area still does 

not have enough water molecules to kick off the degradation at the early stage. As 

degradation passes the half way mark and the screw is almost abundant with water 

molecules, autocatalytic hydrolytic reaction starts to show its influence, as shown in 

the dark blue area in Fig. 33(a) week 28. The core area still degrades slower than the 

surrounding areas; however, the core area can be observed in the later degradation. 

This actually shows a better agreement with the in vivo experimental finding presented 

by Schwach (1998). 
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(a) 

 

(b) 

Figure 34: Counting water diffusion in the interference screw model and 

comparing the result for (a) average molecular weight and (b) degree of 

crystallinity. 
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Fig. 34 shows the (a) average molecular weight and (b) degree of crystallinity trend 

against degradation time for the mathematical model with and without counting the 

effect of water diffusion. Data was obtained by integrating average molecular weight 

and degree of crystallinity through the entire geometry and divided by the whole 

volume. The experimental data and best-fitting line for without counting water 

diffusion was presented before. The same set of parameters was used (listed in Table 

1 Case A) for the mathematical model with water diffusion counted; however, a 

different trend can be observed. Therefore, water diffusion does have an effect on this 

interference model. 
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(a) 

 

(b) 

Figure 35: Best fitting of the mathematical model counting water diffusion for 

(a) average molecule weight and (b) degree of crystallinity. 
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For the mathematical model with water diffusion counted, best fitting can be achieved 

by set 𝑘1 = 0.008 (1/𝑑), with other parameters remaining the same as listed in Table 

1 Case A. It can be observed form Fig. 35(a) that the initial delay of degradation can 

be better fitted by incorporating the water diffusion effect into the mathematical model. 

Biodegradable medical devices are widely in use, but little is known about their storage 

condition. Atmosphere contains water molecules, and biodegradable devices’ contact 

with the atmosphere could cause loss of average molecular weight and mechanical 

stiffness. The mathematical model adding the effect of water diffusion could be used 

as a tool to predict the storage condition. 

Water is present in variable amounts in the atmosphere, from 0% to 4%. If we use the 

interference screw as an example and consider that the screw was stored in such an 

atmosphere, then its degradation behaviour is given in Fig. 36. It can be observed that 

models can be used to predict the storage behaviour. For the same screw to reduce to 

80% of its original average molecular weight, this could happen in less in a year if the 

screw had been placed in the atmosphere with 4% of water and in five years if the 

screw was placed in the atmosphere contain only 0.5% of water. 

 

 

Figure 36: Average molecule weight reduction for storage assuming the 

atmosphere contains 0.5% to 4% of water. 
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6.5 Conclusion 

It was proved in this chapter that mathematical models can not only provide a fitting 

to the existing experimental data, but also many sets of mathematical parameters could 

be found to successfully fit the same set of experimental data. By applying these sets 

of parameters into a newly designed model or optimising the size of the current model, 

a range of degradation rates, degrees of crystallinity, and other material properties 

could be calculated. The new model was expected to have degradation behaviours and 

material properties inside the predicted range. Instead of using the trial-and-error 

method for designing, this computer modelling method could be used to save a huge 

amount of time and resources. The only condition for this method is that the designer 

has to use a material that has been experimentally tested and has degradation data 

available to use. This should not be an issue considering that biomedical device design 

would most likely be using clinically familiar material and most of these materials 

would be experimentally tested before used in human trials. 

Water diffusion was proved to be effective to the degradation rate for thicker 

biodegradable medical devices. Water molecules take longer to fully diffuse inside of 

such devices, causing initial delays for the degradation. Further heterogeneous 

degradation behaviour can be observed, which is more likely to be the real case by 

counting the in vivo experimental results. Furthermore, the mathematical model with 

the water diffusion term can be used to predict the storage condition for biodegradable 

devices. Using the interference screw, which has been presented in this chapter, as an 

example, the average molecular weight reduced to 80% of the original value in one to 

five years, dependent on the water vapour level of the atmosphere. Still, it provides an 

indication of storage time if one wanted to store such a screw in atmospheric conditions. 
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Chapter 7: A simplified Effective Cavity Theory  

An effective cavity theory was developed previously by the Leicester group. However, 

the previous theory is over-complicated for practical applications. This chapter 

presents a simplified version of the Effective Cavity Theory and its validation using 

existing experimental data. 

 

7.1 Introduction 

The Effective Cavity Theory was first introduced by Gleadall (2015) and Samami 

(2016) to analysis the effect of polymer chain scission on Young’s modulus change. 

Young’s modulus is such an important factor for biodegradable medical implants as 

they are all required to provide a temporary mechanical function and then gradually 

hand over the control to the human biological system. Therefore, it is very important 

to understand and fully capture the regulation of it for design purposes. There is many 

experimental data measuring Young’s moduli change with degradation, but few 

mathematical models that provide the simulation. Before Gleadall, et al. (2015) there 

was only one other computational model that links the Young’s modulus change to the 

average molecular weight variation during degradation in biodegradable polymers. 

Which is the entropy spring model developed by Wang, et al. (2010). This model 

focuses on amorphous polymers which are above their glass transition temperature. 

Successful experimental data fitting was presented by the model for Young’s modulus 

degradation. However, in reality, biodegradable polymers are more like to be used 

below their glass transition temperature. Ding, et al. (2011) presented a numerical 

analysis using molecular dynamics (MD) simulations, which could capture the 

Young’s modulus change due to chain scission for biodegradable polymers which are 

used above and below their glass transition temperature. The interaction force between 

polymer chains was found reduced after a chain breaks when the polymer was below 

the glass transition temperature. Simple polyethylene chains were considered in the 

MD simulation. Due to computational limitations, analysing complex biodegradable 

polymers such as poly(lactide) is not available. After Andrew’s study on Effective 

Cavity Theory, Samami, et al. (2016) presented a constitutive law for degrading 

biodegradable polymers on their mechanical property change due to degradation. 
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However, the model was over-complicated and a huge amount of background 

knowledge was required, which was considered not designer-friendly. Therefore, 

Gleadall’s method was still the best ‘designer-friendly’ mathematical analysis to study 

the effect of chain sessions on Young’s modulus during degradation. However, 

Gleadall’s model added in many parameters that would affect the volume of each 

effective cavity, which is one of the most crucial factors in the Effective Cavity Theory. 

Therefore, this chapter aims to simplify the Effective Cavity Theory and reduce the 

input factor to one while achieving the same result as previous model. The simplified 

Effective Cavity Theory was used to fit several sets of experimental data and was also 

compared the result with the previous work. Also, this chapter combines the simplified 

theory with the degradation mathematical model presented previously and forms them 

into a simple model that could simulate degradation of molecular weight and 

crystallinity as well as Young’s modulus. 

 

7.2 Previous Effective Cavity Theory 

In the Effective Cavity Theory, polymer chain scission was assumed to be able to 

produce a volume of area which contains reduced stiffness of polymer. Crystals that 

have higher mechanical properties and lower water absorbable than amorphous 

polymers can be treated as inclusions. Therefore, modelling degradation of semi-

crystalline polymer can be treat as modelling a continuum solid which have reduced 

stiffness void cause by chain scission and crystal as solid inclusions. It has been 

assumed in the Effective Cavity Theory that the size of each cavity and the inclusion 

remain the same, as scission increases the total effective volume increases as well. 

 

7.2.1 Numerical model by Gleadall, et al. (2015) 

Gleadall used the AFEM method to simulate chain scission, whereas one polymer 

repeat unit was removed from the structure to represent one scission. The shapes of 

the effective cavities were achieved by analysing the atomic force transfer reduction. 

With one scission, a volume could be created in which average atom force transferred 

been reduced at least 10%. After 10 individual scissions, the shape of a flat-tipped cone 
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was suggested to be treat as volume of the reduced stiffness polymer. Therefore, 

Gleadall, et al. (2015) suggested that a shape of flat-tipped cones oriented tip-to-tip 

may exist around chain scissions as effective cavities, which is shown in Fig. 37. 

 

Figure 37: Apply individual scissions to the amorphous polymer. Shape of the 

effective cavity suggested by Gleadall, et al. (2015) in the previous Effective 

Cavity Theory. 

 

Like the chain scission to the volume change of the effective cavities, Gleadall, et al. 

(2015) take a cubic matrix and applied one quarter of a flat-tipped void to it. Whereas 

the cubic matrix represents the amorphous polymer and the void represents scissions. 

A finite element model has been set in COMSOL (license number 7074366) as shown 

in Fig. 38. The volume shown in Fig. 38 was used to represented 1/8 of a unit 

amorphous polymer cell, therefore, left, front, and bottom faces were set as symmetry. 
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Figure 38: Use FEA model to analysis the effect of the effective cavity to 

Young’s modulus in cubic matrix by Gleadall, et al. (2015) (length unit in nm). 

 

A range of cone height, cone large radius, and cone small radius was required to study 

the change that the shape of the cone caused to the Young’s modulus reduction, which 

contains too many parameters. Changing the shape of the effective cavity and reducing 

the parameter that controls the shape to only one is necessary in order to simplify the 

whole Effective Cavity Theory, which will be presented later in this chapter. 

The exact shapes of the crystals are not yet well understood. However, crystallisation 

was assumed to be formed by polymer chains lined up or folded back and forth to 

plates. Based on this Gleadall, et al. (2015) assumed that these plates can be simplified 

into cube shapes, as shown in Fig. 39. The highlighted part is referenced as crystalline, 

which has been given a bigger Young’s modulus (nearly twice) as the amorphous 

polymers, which is area without highlighting in Fig. 39. A similar method is in use of 

developing the analysis as was used in the effective cavity model: the set-up was kept 

unchanged other than the shape of the void has been replaced by cube solid inclusion, 

which was used to indicate crystallites. The left, front, and bottom faces are again set 
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symmetrically, and Fig. 39 shows that 1/8 of a whole cube contains amorphous and 

crystalline. 

 

Figure 39: Use FEA model to analysis the effect of changing in crystallinity to 

Young’s modulus (Gleadall, et al., 2015) (length unit in nm). 

 

To form into the Effective Cavity Theory model, Gleadall combined the chain scission 

model and the crystallinity model, as shown in Fig. 40. Whereas the effective cavities 

are incorporating with crystal particles and the matrix of amorphous polymers. 

However, Gleadall’s work did not include crystallite and effective cavities interactions. 

Which would hugely complicate the model and the model had already shown a good 

agreement with experimental data. 
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Figure 40: Semi-crystalline polymer matrix which contains effective cavity and 

crystal particle (Gleadall, et al., 2015). 

 

7.2.2 Analytical model by Samami (2016) 

Different to Gleadall’s work, Samami assumed that both effective cavities are caused 

by scission and that the crystals are formed into simple spherical shapes. As with 

Gleadall’s work, each chain scission has been treated as a void and each crystal as a 

solid inclusion, whereas the cavity region has no stiffness at all and the crystal region 

has high mechanical properties than amorphous area of the polymer. 

By assuming both cavity and inclusion as inhomogeneity, Fig. 42 can be used to 

represent the semi-crystalline polymer. 
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Figure 42: Semi-crystalline polymer which contains two inhomogeneities 

particles: effective cavity and crystal (Samami, et al., 2016). 

In this, σ 0  is the uniformly remote stress of the solid polymer. The solid polymer 

contains an inhomogeneity Ω ( 1 )  with elastic stiffness 𝐶𝐼
(1)

 (which is zero) and an 

inhomogeneity Ω ( 2 )whose elastic stiffness is  𝐶𝐼
(2)

, and 𝐶𝑀
(2)

 is the elastic stiffness of 

the amorphous polymer surround. Again, the interaction between the boundaries is not 

considered here. 

Samami, et al. (2016) presented the constitutive law of effective stiffness of degrading 

biodegradable polymer as 

𝐶 = 𝐶𝑀 − 𝐶𝑀𝑓𝐼
(1)

(𝜀𝐼̅
(1)

/ 𝜀0) + (𝐶𝐼
(2)

− 𝐶𝑀)𝑓𝐼
(2)

(𝜀𝐼̅
(2)

/𝜀0)                (7-1) 

Put into the form of tensor notation, equation (7-1) can be changed into 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑀𝑖𝑗𝑘𝑙
− 𝐶𝑀𝑖𝑗𝑘𝑙

𝑓𝐼
(1)

(𝜀𝐼̅𝑘𝑙

(1)
/ 𝜀𝑘𝑙

0 ) + (𝐶𝐼𝑖𝑗𝑘𝑙

(2)
− 𝐶𝑀𝑖𝑗𝑘𝑙

)𝑓𝐼
(2)

(𝜀𝐼̅𝑘𝑙

(2)
/𝜀𝑘𝑙

0 )       (7-2) 

For the bulk and shear moduli when Effect Cavity Theory is subjected to remote 

hydrostatic pressure 𝜀𝑘𝑘
0  and share strain 𝜀12

0 , this is given by 

Inhomogeneities 
𝐶𝑀 

𝐶𝑙
(1)

 𝐶𝑙
(2)

 

𝜎0 

𝜎0 
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𝐾 = 𝐾𝑀 − 𝐾𝑀𝑓𝐼
(1)

(𝜀𝐼̅𝑘𝑘

(1)
/𝜀𝑘𝑘

0 ) + (𝐾𝐼
(2)

− 𝐾𝑀)𝑓𝐼
(2)

(𝜀𝐼̅𝑘𝑘

(2)
/𝜀𝑘𝑘

0 )             (7-3) 

𝜇 = 𝜇𝑀 − 𝜇𝑀𝑓𝐼
(1)

(𝜀𝐼̅12

(1)
/𝜀12

0 ) + (𝜇𝐼
(2)

− 𝜇𝑀)𝑓𝐼
(2)

(𝜀𝐼̅12

(2)
/𝜀12

0 )             (7-4) 

Whereas Young’s modulus and poisson’s ratio can be shown as 

𝐸 = 9𝐾𝜇/(3𝐾 + 𝜇)                                      (7-5) 

𝜐 = 3𝐾 − 2𝜇/2(3𝐾 + 𝜇)                                (7-6) 

To link the Young’s modulus change to the rate of chain scission we have 

𝑓𝐼
(1)

= ∑
4

3
𝜋𝑟3𝑅𝑠                                      (7-7) 

The symbols that are used in the equation are listed in Samami’s paper (Samami, et 

al., 2016). 

It has been proved that the model presented by Samami, et al. (2016) could be used to 

fit experimental data. However, as seen above, the model is over-complicated, even 

when just used a simple spherical shape to represent the cavity and crystal. A huge 

amount of background knowledge is required, which is hard to follow for any non-

engineering end users or biodegradable medical device designers. Therefore, a 

simplified model is required to achieve the same purpose. 

 

7.3 Simplified Effective Cavity Theory 

The simplified Effective Cavity Theory is basically a combination of the numerical 

model (Gleadall, et al., 2015) and the analytical model (Samami, et al., 2016). The 

numerical model has been used as a fundamental structure but the shape of the 

effective cavity has been changed to spherical in order to reduce the parameter that 

controls the effective cavity volume fraction to only one, the radius of the spherical 

cavity. As the number of chain scissions increase along with degradation, total volume 

of the effective cavities will increase as well. The FE model of effective cavities links 

the volume fraction of effective cavities to the change of Young’s modulus. The shape 

of the crystal remains cubic, and has been assumed as an inclusion in the cubic polymer 

of amorphous phase. The effective volume of crystallinity increases with degradation 

and the Young’s modulus goes up with it, due to crystallite has higher mechanical 

properties compare to amorphous phase. The simplified Effective Cavity Theory can 
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be achieved by combining the FE analysis of Young’s modulus change for effective 

cavity and crystallinity. Simplified method is very easy to achieve and is proved to be 

valid by fitting the same experimental data used in Gleadall’s pater (Gleadall, et al., 

2015) and Samami, et al., (2016). 

 

7.3.1 Analysis the Young’s modulus change due to chain scission 

using the simplified model 

As a change, the spherical shape of the effective cavity was used, as shown in Fig. 43, 

and the commercial FE software COMSOL Multiphysics (license number 7074366) 

was used. The cube shown in Fig. 43 reflects one eighth of a unit, which resent a small 

part of the sample polymer. The spherical void shape in the centre of the cube relates 

to one eighth of the unit’s effective cavity, which assumed no stress. Therefore, the 

boundary conditions for the cube shown in Fig. 43 would be set as follows: the left, 

front, and bottom faces are symmetrical; free condition has been set to the back and 

right faces which kept plan and allows the effect of Poisson’s ratio; the bottom face is 

fixed in z direction. On the top face of the cube, a displacement of 2% was given. As 

the simulation shown in the figure, the radius of the spherical effective cavity takes 

1nm and keeps the same. The overall side length of the cube takes 3nm, which can be 

adjustable to achieve the different effective cavity volume fraction; for example, the 

side length of the overall cube could be reduced to represent an increased number of 

chain scissions (or a later stage degradation), which would be related to a larger 

effective cavity volume fraction. 
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Figure 43: The FEA model with mesh for a spherical effective cavity in a cubic 

matrix which stand for amorphous polymer (length unit in nm). 

 

An initial Young’s modulus value applied in cubic polymer has been set as 37.1 GPa 

and Poisson’s ratio is 0.255 (Gleadall, et al., 2015). Twenty cubic side lengths have 

been used, which various from the same size of the radius of the unit spherical effective 

cavity to 20 times its radius (which keeps constant as 1nm). Refining meshes not 

giving a significant impact to the result. Average stress existed in the top surface of 

the FE model in the direction of applied stain, which is 2%, was found. Average stress 

divided by 2% strain gives the Young’s modulus, which has then been normalised by 

the original value that was applied to the cube (37.1 GPa). The effective cavity volume 

fraction is achieved by the volume of the overall cube divided by the unit volume for 

spherical effective cavity. The plot for normalised Young’s modulus against the 

effective cavity volume fraction of all 20 sets of data has been shown in Fig. 44. 

Whereas, a best fitted exponential line was given. 
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Figure 44: Effect of the volume fraction of spherical effective cavity on 

normalised Young’s modulus during degradation with a best fit of exponential 

line. 

 

Expression of the best fitting line is  

𝐸̅ = 𝑒−2.15𝑋𝑒𝑐                                               (7-8) 

Whereas 𝐸̅  is the normalised Young’s modulus and 𝑋𝑒𝑐  represent effective cavity 

volume fraction in the polymer matrix. We assume that in reality the spherical effective 

cavity caused by scission is constant for each type of polymer. Therefore, the volume 

fraction 𝑋𝑒𝑐 should only be affected by number of chain scissions, as 𝑋𝑒𝑐 is achieved 

by unit spherical effective cavity multiplied by the number of scissions. 

 

7.3.2 Effect of crystallinity on Young’s modulus using the simplified 

model 

The effect shape of the crystal is assumed to be the same as in Gleadall’s work (2015). 

Because crystals are assumed to be picked and folded together this is more likely to be 

a cubic shape. Therefore, Gleadall’s work for effect of crystallinity on Young’s 
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modulus can be applied here, as represented in Fig. 45. A similar approach is applied. 

Boundary conditions are still set as follows: free condition has been set to the back and 

right faces which kept plan and allows the effect of Poisson’s ratio; the bottom face is 

fixed in z direction. On the top face of the cube, a displacement of 2% was given, 

which also demonstrates that Fig. 45 shows one eighth of a unit part of the polymer 

which expends infinitely in every direction. Only difference here will be initial 

Young’s modulus for amorphous polymer (cube in Fig. 45 other then the highlighted 

area) and the crystalline phase (highlighted cube in Fig. 45). The actual value of the 

initial Young’s modulus was set as 37.1 (GPa) for the amorphous phase and 77.4 (GPa) 

for the crystalline phase. However, these actual numbers are not important for the 

result; what important is the rate between the crystalline and amorphous Young’s 

modulus. In this case, the ratio is 2:1, which is reasonable. The Poisson’s ratio for the 

amorphous matrix is taken as 0.255 and for the crystal particle as 0.239. 

 

 

Figure 45: Use FEA model to analysis changing in crystallinity to Young’s 

modulus in cubic matrix by Gleadall, et al. (2015) (length unit in nm). 

FE method again been used to analysis the effect of crystallinity to Young’s modulus. 

Same as the effect cavity method, the size of the crystallite inclusion kept the same 

whereas the total volume of the cube increases to simulate the volume fraction change 

of crystallite. When the length of the amorphous cell reduces, the volume fraction of 
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the crystal particle increases. Ten different simulations were carried out to achieve the 

normalised Young’s modulus against the crystal partial volume fraction graph, gives 

in Fig. 46. Whereas, a best fitted exponential line was given. 

 

 

Figure 46: Effect of the volume fraction of crystal particle on normalised 

Young’s modulus during degradation with a best fit of exponential line 

(Gleadall, et al., 2015). 

 

The expression of the best-fitted exponential line is referred to as: 

𝐸̅ = 𝑒0.75𝑋𝑐                                                   (7-9) 

In which 𝐸̅ is the normalised Young’s modulus and 𝑋𝑐 is the volume fraction of 

crystal. 

 

7.3.3 Analysing Young’s modulus change for semi-crystalline 

polymer during degradation using the simplified model 

By combining the model of chain scission and model of crystallinity, the simplified 

model of the Effective Cavity Theory can be achieved. 

From the relationship of equation (7-9), the Young’s modulus of the overall semi-

crystalline polymer without count effective cavity, 𝐸𝑐, can be achieved by 
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𝐸𝑐 = 𝐸∞𝑒0.75𝑋𝑐                                              (7-10) 

whereas the pure amorphous polymer Young’s modulus without count the effect of 

crystallinity and effective cavity, 𝐸∞ (GPa), could be work out from initial polymer 

conditions which has been given in the experimental result. 𝐸𝑐 represent the Young’s 

modulus of polymer in which effective cavity take in place. Whereas, in simplified 

Effective Cavity Theory, equation (7-8) is applied to calculated the average Yong’s 

modulus of the semi-crystalline polymer, 𝐸𝑝 (GPa), according to 

𝐸𝑝 = 𝐸𝑐𝑒−2.15𝑋𝑒𝑐                                          (7-11) 

Taking the initial condition of t=0, Rs=0, Xec0=0, 𝐸∞ can be calculated as 

𝐸∞ = 𝐸𝑝0/𝑒−2.15𝑋𝑒𝑐0 ∗ 𝑒0.754𝑋𝑐0                            (7-12) 

in which 𝐸𝑝0 stand for initial Young’s modulus of the overall polymer and  𝑋𝑐0 is the 

initial degree of crystallinity; these two values can normally be found in the 

experimental data. With the assumption of 𝑋𝑒𝑐0 is the effective cavity volume fraction 

at the beginning of the degradation, which should be 0. Pure amorphous polymer 

Young’s modulus without counting the effect of crystallinity and effective cavities, 

𝐸∞, can be work out as a constant initially. Combining equation (7-12) and (7-11) into 

equation (7-11), an overall polymer Young’s modulus change with degradation can be 

achieved by 

𝐸𝑝 = 𝐸∞𝑒0.745𝑋𝑐𝑒−2.15𝑋𝑒𝑐                                 (7-13) 

Whereas 

𝑋𝑒𝑐 = 𝑉𝑒𝑐 ∗ 𝑅𝑠                                           (7-14) 

in which 𝑉𝑒𝑐 is the unit volume of the spherical effective cavity, which is 

𝑉𝑒𝑐 =
4

3
𝜋𝑟3                                              (7-15) 

in which 𝑟 is the radius of the unit spherical effective cavity, which is also the only 

input needed for equation (7-13) to achieve the overall average Young’s modulus trend 

during degradation for the whole semi-crystalline polymer. This assumes that Rs and 

Xc are achievable for the degradation model or from experimental data. 
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7.4 Using experimental data to check the reliability of the 

Simplified model 

The same five sets of experimental data that were used by Gleadall, et al. (2015) are 

represented in Table 2. The reason for choosing these sets of experimental studies is 

because they use poly(lactide), which not possible to study by using Ding’s (2011) 

MD model. Additionally, the experimental studies contain crystallinity change trend 

during degradation, molecular weight reduction trend and Young’s modulus 

measurements were also given. With the full set of measurements, the mathematical 

model can be better validated. The density,𝜌𝑝, of all five cases is taken as 1250 kg/m3. 

 

Data Set 

(reference) 

A (Weir, 

et al., 

2004) 

B (Tsuji, 

et al., 

2000) 

C (Duek, 

et al., 

1999) 

D (Duek, 

et al., 

1999) 

E (Lam, 

et al., 

1994) 

Initial Mn (g/mol) 159,000 584,000 153,000 152,000 42,000 

Initial Xc 0.448 0.540 0.480 0 0.570 

Initial Young’s 

modulus (GPa) 
0.668 0.100 6.86 5.58 1.43 

Sample type 
0.8 mm 

plate 

0.050 mm 

film 

2 mm 

Rod 
3mm Rod 

0.033 mm 

film 

Polymer type PLLA PLLA PLLA PLLA PLLA 

Degradation 

medium 

37ºC PBS 

pH7.4 

37ºC PBS 

pH7.4 

38ºC PBS 

pH7.4 

38ºC PBS 

pH7.4 

37ºC PBS 

pH7.4 

𝐸∞ (GPa) 0.4765 0.06655 4.7769 5.58 0.930 

𝑁𝑐ℎ𝑎𝑖𝑛0 (mol/m3) 7.86 2.14 8.17 8.22 29.76 

Table 2: Experimental set-ups, initial measurements, and calculations for the 

five individual sets of experimental data that were used in the simplified 

Effective Cavity Theory. 
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The initial conditions of the five sets of experimental data are listed in Table 2,  

in which pure amorphous polymer Young’s modulus without counting the effect of 

crystallinity and effective cavities, 𝐸∞, can be worked out initially for each set of 

experimental data using equation (7-12). 

𝐸∞ = 𝐸𝑝0/𝑒−2.15𝑋𝑒𝑐0 ∗ 𝑒0.754𝑋𝑐0                            (7-12) 

The initial number of chains per unit volume, 𝑁𝑐ℎ𝑎𝑖𝑛0 (mol/m3), can also be calculated 

initially as 

𝑁𝑐ℎ𝑎𝑖𝑛0 = 𝜌𝑝/𝑀𝑛0                                    (7-16) 

The initial number of chains, 𝑁𝑐ℎ𝑎𝑖𝑛0, will be used in the normalised average molecular 

weight calculation, 𝑀̅𝑛, equation (5-18) in Chapter 5, to achieve the number of chain 

scissions per unit volume, 𝑅𝑠. 
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The average molecular weight 𝑀𝑛  is measured experimentally, as well as initial 

average molecular weight 𝑀𝑛0 and 𝑋𝑐0. The initial concentration of ester unit of long 

chains in the amorphous phase 𝐶𝑒0 = 17300 (𝑚𝑜𝑙/𝑚3). The normalised crystalline 

phase ester unit number per unit volume 𝜔̅ =
𝜔

𝐶𝑒0
= 1 as we assume that the crystalline 

phase ester unit number per unit volume is the same as the number of ester units of 

amorphous phase long chains per unit volume 𝜔 = 𝐶𝑒0 = 17300 (𝑚𝑜𝑙/𝑚3). 𝛼 = 28, 

𝛽 = 2 , 𝑚 = 4  is given to the equation. Additionally, normalised chain scissions 

numbers per unit volume 𝑅̅𝑠 = 𝑅𝑠/𝐶𝑒0; therefore, the chain scissions numbers 𝑅𝑠 can 

be calculated from equation (5-18). 

Combining equation (7-14) and (7-15) into equation (7-13) gives 

𝐸𝑝 = 𝐸∞𝑒0.745𝑋𝑐𝑒−2.15∗
4

3
𝜋𝑟3∗𝑅𝑠                               (7-17) 

This leaves only one variable to be adjustable to fit the experimental data, the unit 

radius of the spherical effective cavity. Equation (7-17) can then be considered as the 

simplified Effective Cavity Theory equation. The simplified Effective Cavity Theory 

has been used to fit both the experimental data and the previous Effective Cavity 

Theory model data. 
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The experimental data for polymer degradating of average molecular weight and 

crystallinity for five sets of experimental data listed in Table 2 are all presented in 

literature, therefore could be straight applied in the model. Crystallinity has not been 

measured in week 12 for Table 2 C and D, so an averaged value between the 

crystallinity at weeks 8 and 16 was used for the crystallinity at week 12.  

 

Fig. 49 shows the simplified Effective Cavity Theory used to fit both experimental 

data and the previous Effective Cavity Theory result. The only variable needed in the 

simplified model, unit radius of the spherical effective cavity, is been set as 2.0nm. 

This single radius value is able to achieve all five fittings in Fig. 49. The unit radius of 

the spherical effective cavity can be set as individual values for different experimental 

data as each sample could give a different behaviour of degradation for individual 

experimental set-up; a better fitting can be achieved by doing so. However, a single 

value of the radius has been used here in order to limit the number of parameters 

needed in the model. 
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Figure 49: Five degradation experimental data listed in Table 2 were used to 

check the reliability of the simplified Effective Cavity Theory, previous model 

fitting was also included: (a) Weir, et al. (2004), (b) Tsuji, et al. (2000), (c) and 

(d) Duek, et al. (1999), and (d) Lam, et al. (1994). 

 

It can be observed from Fig. 49 that a good agreement can be achieve between the 

simplified Effective Cavity Theory and the experimental data, especially fitting 

between the simplified Effective Cavity Theory and the previous model, can be 
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achieved. This proves that a spherical shape of effective cavity can be used to simplify 

the Effective Cavity Theory by replacing the flat-tipped cone shape, which contains 

many parameters that would affect the effective cavity volume fraction. The theory 

has shown in Fig. 49(c) and (d) that it can successfully capture the increase of Young’s 

modulus because of crystallinity at early stage of degradation. Additionally, it shows 

that the theory could respond to the slight instability in reduce of Young’s modulus, 

which is shown as the previous five points of Fig. 49(a). As discussed before, the 

theory does take account of the overlapping between each effective cavity. Therefore, 

Young’s modulus reduction below around 50% of its original value should be treated 

with caution. Nevertheless, we can observe from Fig. 49 that the trend for Young’s 

modulus below 50% of its original value can still be well captured. 

 

7.5 A full equation list of the mathematical model for 

polymer degradation adding in a simulation of mechanical 

properties 

The simplified Effective Cavity Theory can be combined together to degradation 

caputation model introduced in Chapter 5 to form a full mathematical model that could 

capture the simulation of  average molecular weight reduction trend, increase of degree 

of crystallinity during degradation, and effect of chain on Young’s modulus of the 

same degradation. Equations for the full mathematical model are presented below. 

The governing equation for rate of chain scission for semi-crystalline polymers is 
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The short chain diffusion equation is 
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Degree of crystallinity equations are 
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The average molecular weight at any location can be calculated using equation 

  






























ss

e

c

sc

n

n

n

R
m

R
N

C
X

RX

M

M
M

0chain

0

0

0

0
11

1
                   (5-18) 

In addition, the simplified Effect Cavity equation is 

𝐸𝑝 = 𝐸∞𝑒0.745𝑋𝑐𝑒−2.15∗
4

3
𝜋𝑟3∗𝑅𝑠                               (7-17) 

All samples are predefined. 
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This full mathematical model has been used in the next chapter to simulate the change 

of average molecular weight, degree of crystallinity, and Young’s modulus for a single 

degradation. 

 

7.6 Conclusion 

A simplified Effective Cavity Theory has been introduced and proved to be valid by 

fitting with five sets of experimental data as well as the previous Effective Cavity 

Theory. Furthermore, a full mathematical model for degradation has been formed, 

which could be used to capture the trend of average molecular, degree of crystallinity, 

and Young’s modulus for a single degradation. 
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Chapter 8: Detection of degradation using vibration 

analysis 

In a previous work, Samami and Pan (2016) proposed to use mode shape analysis in 

order to detect degradation in polymeric devices. They used a solid element in their 

finite element model. In this chapter, it is demonstrated that the much simpler beam 

elements can be used to detect degradation, which makes the mode analysis very 

simple for any end user. 

 

8.1 Introduction 

A numerical study is used in the chapter to detect degradation in a degrading medical 

plate. The plate is considered to follow the normal behaviours of amorphous co-

polymers of PLA and PGA. Because of the auto-catalytic reaction (size effect), non-

uniform degradation occurs in almost all the degradations of biodegradable medical 

devices. The Effective Cavity Theory introduced in the previous chapter is used to 

relate the non-uniform degradation to the Young’s modulus change for plate across 

thickness in different degradation stages. The method used for damage detection 

introduced by Pandey (1991) is used in this chapter to detect degradation. Difference 

of the centre and edge Young’s modulus difference as well as absolute curvature 

difference, which has been used in the degradation detection, has been presented. In 

the second part of this chapter, a cube is introduced with the assumption that it has the 

material property of PLLA, which is found in Weir’s paper (Weir, et al., 2004). A 

small central part of the cube has been taken out as a cantilever beam. Degradation 

detection has been applied to the beam to study the local mechanical property change 

due to the degradation. Finally, a different polymer diffusion coefficient was used to 

analysis effect it has to degradation detection. 
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8.2 Vibration analysis and damage detection 

Vibration analysis has been widely in use in structural and mechanical systems to 

detecte, locate, and characterise damage. The basic idea behind the analysis is that the 

physical properties change due to the damage will lead to a detectable change in model 

behaviour. This is due to the model behaviour is a function of the mechanical 

properties for material. Many experimental analyses have been taken in place to 

investigate effect for a crack or local damage on the dynamic behaviours. The 

sensitivity of the damage detection model and finding the location of the damage are 

the two main issues in deciding whether the model is effective. Many methods have 

been introduced to detect local damage by using vibration analysis. For example, 

Salawu (1997) and Doebling (1996) have proved that damage detection can be achieve 

by analysing resonant frequencies change. However, the frequency change produced 

from the damage is normally too small to relate back, and would be impossible to use 

to locate the damage. Therefore, Yuen (1985) presents that mode shape, especially the 

derivatives of mode shape could be used as better sensor to detected the location of 

damage. Pandey (1991) proved that second order mode shape derivative, mode 

curvature, is highly sensitive to local damage and could also be used to localise it. 

Local damage causes reduction of local flexibility, and curvatures of the mode shape 

for a beam are linked with local mechanical properties. Big local damage causes an 

increased change in model curvature, and the amount of change in curvature could 

give an indication of the size of the damage. Fan and Qiao (2011) developed an 

algorithm that could effectively detect local damage and also locate the damage. For a 

damaged and intact structure, curvatures absolute difference could be work out and be 

used for the damage detection and location detection. It has been shown that highest 

absolute curvature difference along a beam indicates the damage location. 

An absolute curvature difference feature was used in this chapter to detect degradation. 

Assuming that a finite element discretisation has been used, an eigenvalue equation 

can be solved to find the displacement mode shape of a structure (Samami, 2016).  

[K][𝑈(𝑛)] = 𝜔𝑛
2[𝑀][𝑈(𝑛)]                                         (8.1) 

Whereas, [K], [𝑀] and [𝑈(𝑛)] stand for the mechanical properties stiffness matrix, 

mass matrix, and eigenvector (the displacement model shapes). 𝜔𝑛
2 is the structure 

natural frequency of the nth circle. In this chapter, the mode shape displacement will 
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be obtained from the beam element of finite element analysis. Curvature mode shapes 

could be calculated from the central difference approximation, given below (Pandey, 

et al., 1991): 

𝑢𝑖
" = (𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1)/ℎ2                                     (8.2) 

In which h represent elements length. 

The absolute curvature difference between the degrading structure and the intact 

structure can be calculated as follows: 

∆𝑈" = |𝑈𝑖𝑛𝑡 𝑎𝑐𝑡
"(𝑛)

− 𝑈𝑑𝑒𝑔𝑟𝑎𝑑𝑖𝑛𝑔
"(𝑛)

|                                 (8.3) 

 

8.3 Detection of degradation for a plate model using beam 

element study 

8.3.1 The plate model has been used 

A simple rectangular plate shown in Fig. 50(a) was presented by Samami (2016). He 

used this plate to study the degradation detection using the finite element method. The 

left side of the model was fixed during vibration analysis, which was used to detect 

degradation. The beam was treated as a cantilever beam and all the surface of the plate 

can be assumed to have diffuse of short oligomer chains, which means no short chains 

remain at the surface of the plate. Before degradation start, the polymer assumes to 

have no monomers existing. Samami first applied degradation model, which is shown 

in Chapter 4 of this thesis, into the commercial FE software COMSOL Multiphysics 

which will calculated the distribution of molecular weight. Then, he used an analytical 

constitutive law, which was created by himself and Pan (Samami and Pan, 2015), 

Young’s modulus distribution can then be achieved from the obtained molecular 

weight distribution. The initial constants used are Young’s modulus 𝐸0 = 10𝐺𝑃𝑎 and 

Poisson’s ratio υ=0.35. Fig. 50(b) gives Young’s modulus distribution for the 2D plate 

during degradation along centre x direction. Both two dimensional and three-

dimensional analyses were presented. It was shown that degradation can be detected 

and located by applying the absolute curvature difference analysis. However, a very 

high-level accuracy measurement is required to measure the mode shape displacement 
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in order to support his method. Furthermore, in both his two dimensional and three 

dimensional finite analyses, layers had been created to input the distribution of 

Young’s modulus for different behaviours of degrading location. Specifically, nine 

layers were made and each layer was given by an averaged Young’s modulus rather 

that accurate Young’s modulus distribution. Other parts for plate were given a constant 

Young’s modulus value, and the thickness of the nine layers kept the same at different 

stages of degradation. As we can observe from Fig. 50(b), Young’s modulus drops 

start forming on the end and remain constant at the core, with the drop rate increasing 

with degradation time. Therefore, using layers and applying average Young’s modulus 

will not be following the distribution accurately. Additionally, applying different 

layers of Young’s modulus to the 2D and 3D models is time consuming. A simpler 

and more designer-friendly model would be better. In the next section, a 1D beam 

element was presented to solve the above problems. 

(a) 

 

(b) 

 

 

Figure 50: (a) 2D plate used in Samami’s paper for degradation detection model 

(b) Young’s modulus distribution for the 2D plate during degradation along 

centre x direction (Samami and Pan, 2015) 
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8.3.2 1D beam element model for degradation detection 

Treat the plate as a 1D beam, as shown in Fig. 50. Other conditions remain the same 

as in Samami’s model. The Young’s modulus distribution shown in Fig. 50(b) can be 

inputted into the 1D beam element model following their exact axial coordinates. The 

reason for using the Young’s modulus distribution directly rather than calculating a 

new set of degradation data is because this model was used to show a comparison to 

Samami’s model. In this, degradation condition should be kept the same; thus, 

Young’s modulus distribution will be the same as well. Degradations and molecule 

weight will be calculated in the following model. The left beam end is fixed also the 

other end is free to move. 

 

Figure 51: 1D beam modal of the degrading plate. 

 

For the 1D beam element model, COMSOL allows the Young’s modulus distribution 

to be related exactly to its axial coordinates. After that, vibration analysis can be 

recalculated. The first displacement mode shape, mode curvature, and absolute 

curvature difference between the degrading and intact plates are shown in Fig. 52(a), 

(b) and (c). 
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(a) 

 

(b) 
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(c) 

 

Figure 52: First mode shape achieved from beam element study using 

commercial software COMSOL (a) normalised mode shape displacement, (b) 

normalised curvature, (c) normalised absolute difference between the intact 

beam mode shape curvature (week 0) and degraded beam mode shape 

curvature, along beam shown in Fig. 51 at various degradation times. 
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It was shown in Fig. 52(a) that displacement mode shape has not changed much during 

degradation, whereas in Fig. 52(c), a clear difference can be observed at the surface of 

the plate. Furthermore, the difference increases during degradation. From the 

degradation mechanisms, a conclusion can be made as the surface degrades slower. 

Therefore, the surface has more stiffness and absolute curvature difference should be 

bigger, which was shown in Fig. 52(c). Conclusively, the vibration analysis could be 

used to detect and localise the degradation of the medical device. The big difference 

of the absolute curvature difference between intact plate and degrading plates indicated 

the location of less degradation. The amplitude of the difference gives an indication of 

the degradation stage. A bigger amplitude difference indicates longer degradation. 
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(a) 

 

 

(b) 

 

Figure 53: Check convergence of the model using (a) normalised curvature at 

week 0 and week 12 (b) normalised absolute difference of curvature at week 12, 

with 100 and 600 elements respectively. 
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Fig. 53 shows a convergence check for the above model. The result of mode curvature 

and absolute curvature difference at week 12 was compared for beams that contain 100 

elements and 600 elements. Exact fitting can be observed, indicating the convergence 

of the model. 

As we noticed from Fig. 53(b), there is a drop between end Young’s modulus from 

centre Young’s modulus. Amplitude of the drop includes with degradation. If we 

normalise the drop by dividing the initial Young’s modulus, 𝐸0 = 10𝐺𝑃𝑎, percentage 

for drop compared to the initial Young’s modulus could be achieved. Fig. 54 shows 

the maximum absolute curvature difference against the Young’s modulus percentage 

drop for weeks 3, 6, 9, and 12, respectively. It can be shown that the relationship 

between the maximum absolute curvature difference and the surface/centre Young’s 

modulus difference almost follows a straight line. At week 12, the Young’s modulus 

difference between surface and centre for plate can be as high as 75% of the intact 

plate Young’s modulus. 

 

 

Figure 54: Maximum distinction of normalised absolute curvature difference 

against maximum percentage drop of Young’s modulus from the surface to the 

centre of the plate on different degradation stages at weeks 3, 6, 9, and 12. 
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To sum up, by applying vibration analysis: degradation is detectable and the location 

of degradation can be found; the stage of degradation could be indicated from the 

maximum absolute curvature difference; and, finally, surface and centre Young’s 

modulus difference is proportional to maximum absolute curvature difference. 

 

8.4 Local degradation detection – using a 3D cube as a unit 

of biodegradable implant device 

For most of the medical implants, finding the local degradation is crucial for predicting 

the mechanical behaviours during degradation. Fig. 55(a) shows a cube with 𝑙 = 0.1m. 

The cube was used as a unit of any medical implants. A centre part was taken apart 

from the cube, shown in Fig. 55(b). The degradation detection method was applied to 

this part. As before, the centre part has been assumed to be a 1D beam, as shown in 

Fig. 55(c). The material’s property takes the same as the above plate model, intact cube 

Young’s module 𝐸0 = 10𝐺𝑃𝑎, and Poisson’s ratio υ=0.35. 

 

Figure 55: (a) a 3D cube model (b) a centre part of the cube model (c) convert 

the centre part of the cube into a 1D beam model. 

 

Firstly, degradation has been taken into account. Assume that short polymer chains 

(oligomers) can diffuse out from every surface of the cube. The master equation 

presented in Chapter 4 was used to run the degradation model. Fig. 56 shows a 

normalised average molecule weight reduction trend over time for the whole cube. Fig. 
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57 shows the degradation distribution at week 20. A list of parameters that were used 

in the degradation model is shown in Table 3. 

 

Ce0 (mol/m3) Mn0 (g/mol) m Xc0 α Dpolymer (m
2/s) 

17300 159000 4 0.448 28 10-14 

k1 (1/day) 𝑘2
̅̅ ̅ = k2/Ce0

n (1/day) n Xc max β Dpore (m
2/s) 

0.01 0.001 0.5 0.59 2 10-11 

Col0 (mol/m3) Cchain0 (mol/m3) ᵡ1 ᵡ2 λ Munit (g/mol) 

0 7.834 0 1 1 72 

Table 3: Parameters for the molecular weight distribution calculation for the 

cube model. 

 

 

Figure 56: Normalised average molecule weight reduction over time for the 

whole cube model. 
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Figure 57: Distribution of normalised average molecular weight over the cross-

section of the cube at week 20. 

 

The degradation data along the beam shown in Fig. 55(c) was listed in Fig. 56 for 

degradation after 5, 10, 15, and 20 weeks, respectively. The figures in Fig. 58(a) 

average molecule weight along the beam, (b) number of scissions along the beam, and 

(c) degree of crystallinity along the beam were pulled out from the degradation model. 

Fig. 58(d) Young’s modulus distribution across beam was calculated using the above 

data and the Effective Cavity Theory, which was shown previously. Molar volume for 

each effective cavity was taken as 𝑉𝑒𝑐 = 0.021(
𝑚3

𝑚𝑜𝑙
), therefore the radius of each 

spherical cavity is 𝑟 = 2.0267𝑛𝑚 . Young’s modulus is calculated as 𝐸 =

𝐸0(10𝐺𝑃𝑎) ∗ 𝑒0.745∗𝑋𝑐 ∗ 𝑒−2.15∗(0.021∗𝑅𝑠) , whereas, 𝑋𝑐  is the volume degree of 

crystallinity and 𝑅𝑠 is the number of scissions. By applying different sets of Young’s 

modulus data into the beam, vibration analysis data can be achieved, as shown in Fig. 

59 
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                (a)                                                    (b) 

 

          (c)                                                         (d) 

 

Figure 58: Distributions of (a) normalised average molecule weight, (b) number 

of scissions, (c) volume degree of crystallinity, (d) Young’s modulus, along the 

beam shown in Fig. 55 at different degradation times. 
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(a) 

 

 

(b) 
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(c) 

Figure 59: First mode shape of (a) normalised mode shape displacement, (b) 

normalised curvature, (c) normalised absolute difference between the intact 

beam mode shape curvature (week 0) and degraded beam mode shape 

curvature, along beam showed in Fig. 55 at various degradation times. 

 

Fig. 59 shows the first bending mode of (a) displacement mode shape, (b) mode 

curvature, and (c) absolute curvature difference. A similar degradation detection 

conclusion can be made from the above data. 

The amorphous polymer short chain diffuse rate is a very important factor to study the 

non-uniform degradation and non-uniform Young’s modulus distribution, and is 

therefore critical in degradation detection. Lyu and Untereker (2007) present that the 
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range of the short chain diffuse rate in pure amorphous polymer before degradation 

will be between 10−14 𝑚2/𝑠 and 10−22 𝑚2/𝑠. Data presented in Fig. 59 achieved this 

by taking account of the upper limit of this range, 𝐷𝑝𝑜𝑙𝑦𝑚𝑒𝑟 = 10−14 𝑚2/𝑠 . By 

replacing this value as 10−22 𝑚2/𝑠 and doing a recalculation, the normalised absolute 

curvature difference at various degradation times can be shown in Fig. 60. 

 

 

Figure 60: First mode shape of normalized absolute difference between the 

intact beam mode shape curvature (week 0) and degraded beam mode shape 

curvature at varies degradation times and when diffusion coefficient is 10^(-22). 
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Again, a maximum absolute curvature difference can be observed at the surface of the 

cube for every degradation time. The amplitude of the maximum difference increases 

with degradation. Furthermore, as the diffusion coefficient decreased to 10−22 𝑚2/𝑠 

the absolute curvature difference at the centre of the cube is limited. A thin layer with 

a thickness of about 0.002m starting from the surface of the cube can be clearly 

observed. Even though in Fig. 59(c) a surface layer could also been seen with a 

thickness of about 0.009m, the variation of absolute curvature difference toward the 

centre is still considerable. That is caused by the Young’s modulus distribution along 

the beam following a slow redaction trend (see Fig. 58(d)). Back to Fig. 60, the 

limitation of the absolute curvature difference change indicated Young’s modulus 

from cube centre is about constant. To sum up, when the diffusion coefficient 

decreases, the thickness of the surface thin layer decreases, and the variation of the 

absolute curvature difference at the centre of the cube decreases. However, the 

amplitude of the maximum absolute curvature difference, which is at the surface of the 

cube, increases. This phenomenon can be related to the autocatalytic hydrolysis 

mechanism. 
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Figure 61: Max distinction of normalized absolute curvature difference against 

max percentage drop of Young’s modulus from the surface to centre of the plate 

at different degradation times for diffusion coefficient taking as 10^(-14)  m^2/s 

and 10^(-22)  m^2/s respectively, dish line and solid line are the best fitting 

straight lines for each set of data. 

 

Fig. 61 shows the maximum distinction of normalised absolute curvature difference 

against maximum percentage drop of Young’s modulus from the surface to the centre 

of the plate at different degradation times for diffusion coefficients taken as 

10−14 𝑚2/𝑠 and 10−22 𝑚2/𝑠, respectively; dashed line and solid line are the best 

fitting straight lines for each set of data. It shows that, with a big diffusion coefficient, 

maximum surface and centre Young’s modulus difference is relatively low. For 

example, when the diffusion coefficient is taken as 10−14 𝑚2/𝑠 , the maximum 

Young’s modulus difference between the surface and the centre is just 15% of the 

initial Young’s modulus when degradation ends. Whereas, when diffusion coefficient 
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is taken as 10−22 𝑚2/𝑠 , at the end of degradation the maximum Young’s modulus 

difference between the surface and the centre is up to 35% of the initial Young’s 

modulus. Following this trend, it can be assumed that an upper limit of diffusion 

coefficient is existing in which the surface and centre Young’s modulus are the same. 

Therefore, if the thickness is kept the same, any increase of diffusion coefficient will 

decrease the level of non-uniform Young’s modulus and decrease the level of non-

uniform degradation, which is related to the level of autocatalytic hydrolysis reaction. 

Furthermore, it can be observed that the best straight fitting line for both sets of data 

in Fig. 61 has the same slope. Therefore, absolute curvature difference can also provide 

an indication of the level of autocatalytic hydrolysis reaction. For example, if by the 

end of the degradation the maximum normalised absolute curvature difference is small, 

less than 1, as seen in Fig. 61. The Young’s modulus difference between the surface 

and the centre is low and indicates less autocatalytic hydrolysis reaction being carried 

out during the degradation, which then may be related to a big diffusion coefficient or 

a thin wall sample. 

 

8.5 Conclusions 

In this chapter, vibration analysis was used to detect degradation. It was proved that, 

from the absolute curvature difference, data detection and location degradation is 

possible. A large absolute curvature difference indicates less degradation. The beam 

element finite element method was suggested as a simplified method of solving the 

vibration analysis basis on its nature of easy use and could link the full Young’s 

modulus distribution to its axial coordinate. In addition, the beam element method 

would save a lot of calculation time and computer memory. As a result, the beam 

element method can not only detect and locate degradation but can also indicate the 

stage of degradation by using the max amplitude of the absolute curvature difference. 

Using a cube as a unit of any biodegradable medical implants, local degradation 

detection was studied. A centre part of the cube was taken out and treated as a 

cantilever beam. Local degradation could be detected and located. The effect of 

different amorphous polymer diffusion coefficients was studied. A small diffusion 

coefficient will cause the device surface to form a thin wall. This thin wall contains 

high mechanical stiffness, whereas beyond this thin wall mechanical stiffness drops 
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hugely and keeps a constant low value until the centre of the device. When the 

diffusion coefficient decreases, the Young’s modulus drop between the surface and the 

centre increases and the maximum amplitude of the absolute curvature difference 

increases. On the other hand, when the diffusion coefficient is big enough, there will 

be no Young’s modulus drop between the surface of the device and the centre of the 

device. That is because very little autocatalytic hydrolysis reaction happens in the 

device, as oligomers diffuse out so quickly. Therefore, the absolute curvature 

difference through the device should be nearly constant. 
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Chapter 9: Major conclusion and future work 

9.1 Conclusion 

This thesis shows a newly development to the degradation mathematical model. Based 

on this new development, a full mathematical model that could capture the simulation 

of average molecular weight, degree of crystallinity, and Young’s modulus for the 

same degradation was presented. Studies have been carried out to simplify the Young’s 

modulus simulation during degradation and the method of degradation detection. 

Parametric study was used to help the user to better understand the mathematical 

model. Experimental suggestions have been made, which were proposed to help 

improve the degradation modelling. A break-down conclusion is listed below. 

 

Chapter 4 compared the governing equations before and after adding the new 

development for the degradation of amorphous polymers. In the newly developed 

model, the carboxylic end groups on the short and long polymer chains are separated. 

Furthermore, seven analytical solutions were presented to show that the newly 

developed model can be reduced to the previous model in the literature. A parametric 

study was presented to understand the effect of the different parameters to degradation 

model. Suggested values were given to some of the parameters with the aim at letting 

end users with no modelling background knowledge have an easy start in using this 

degradation mathematical model. Suggested values are all given empirically and under 

the finding that the same set of degradation data can be achieved by many sets of 

parameters, i.e. non-uniqueness of the parameters. It has also been presented in this 

chapter that if oligomer production data can be experimentally measured, then there is 

a big change wherein 𝛼 and 𝛽 value can be found for a specific biodegradable polymer. 

An experimental suggestion has been made, which is if degradation for several 

thicknesses of the samples made of the same polymer under the same condition can be 

simultaneously experimentally measured then there is a big change in that a unique set 

of parameters can be found for that specific polymer. 
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Chapter 5 presented a list of governing equations for semi-crystalline polymers, 

including the crystallisation equation, oligomer diffusion equation, and their 

corresponding rate of chain scission equation. This chapter also presented a new 

development to the previous degradation model by abandoning the assumption of fast 

water diffusion. These equations are non-dimensionalisated and used to solve and 

reproduce the degradation maps that were initially proposed by Wang, et al. (2008). 

The recalculation proved the validation of Wang’s work, even though an over-

simplified degradation model was used for the previous degradation map. Further 

studies of the degradation map also include the effect of other parameters, which widen 

the degradation map range to contain different shape samples. 

 

Chapter 6 presented a possible designing method for biodegradable medical devices, 

which used the mathematical model presented in Chapter 5 to project degradation rate 

from one device to another, made of the same polymer and under the same 

manufacturing process. First of all, a set of experimental data for a medical device 

needed to be achieved. Bu using the mathematical model, the experimental data could 

be fitted probably by multiple sets of parameters. All these sets of parameters would 

then be inputted into the newly designed device, which has a different shape and 

different size but is assumed to have the same material and to be made under same 

manufacturing process. A range of degradation predictions can be calculated by the 

sets of parameters. It can be assumed that the actual degradation behaviour is located 

in the range that has been calculated. This will provide an indication for the designers 

before the actual experiment needs to be carried out. Additionally, in this chapter, it 

has been found that the effect of water diffusion should be added in for the medical 

devices that are thicker than a few millimetres, such as interference screw and some 

coronary stents. Water diffusing into the core area of such a device is not ‘instant’, and 

does delay the degradation rate. In fact, degradation with water diffusion could capture 

some of the experimental data of these devices better, as it could well capture the delay 

at the beginning of degradation. A storage condition has been assumed by using the 

water diffusion equations. This could provide an indication of how the storage 

condition could affect the use of biodegradable medical devices. 
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Chapter 7 simplified the previous Effective Cavity Theory and reduced the input 

needed to capture the Young’s modulus change to only one, the radius of a unit’s 

spherical effective cavity. The Effective Cavity Theory assumes that each scission 

produces a cavity that carries no mechanical strains and that each newly formed crystal 

acts as an inclusion surrounded by amorphous polymers. A numerical study has been 

used to provide a relationship between the rate of chain scission and the reduce of 

Young’s modulus. For simplified method, the cavity is assumed to have the shape of 

a sphere and the newly formed crystal inclusion is in the shape of a cube. Combining 

the simplified Effective Cavity Theory with the degradation mechanical model that 

has been presented in Chapter 5, we can achieve a full model of the degradation of 

molecular weight, degree of crystallinity, and Young’s modulus. 

 

Chapter 8 simplified the degradation detection, presenting it by using a sample 1D 

beam element calculation, whereas the previous work developed by Samami and Pan 

(2016) used a solid element in their finite element model. Detection of degradation 

was proved possible by using mode shape analysis, which is a well-known method for 

damage detection in the engineering filed. The maximum absolute difference between 

the degrading beam and the intact beam indicates degradation and its lactation. The 

amplitude of the absolute value could indicate the stage of the degradation. Change of 

the polymer diffusion coefficient could also influence the amplitude of the maximum 

absolute difference. However, the slope of the maximum absolute difference against 

the surface and centre Young’s modulus change remains the same. 

 

9.2 Further work 

The degradation mathematical model has made of a lot of progress in recent years; it 

could now simulate the degradation to obtain molecular weight, mass loss, crystallinity, 

mechanical properties, and water diffusion. However, it is still in the early stages of 

design, because many important factors that influence the degradation have not yet 

been added, such as the degradation environment. Such a factor is too complicated and, 

therefore, continuous development and understanding of the degradation behaviour is 

required. The final goal, obviously, is to accurately capture the degradation behaviour 
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of any biodegradable medical device, and use the information to design such a device 

for different requirements. If we close our eyes and look to the future, mathematical 

modelling should be like this: the main users of such mathematical modelling tool 

would be surgeons, who will design the biodegradation medical device for each 

different individual to best suit the difference between the human discrepancies. 

Designing the tool would involve contact with a 3D printer, which would immediately 

print off the device that is needed. By using the 3D printer, the design could be in any 

shape to suit the requirement. This is, however, a preview for decades to come. The 

reality for current research work should be a step-by-step growth. Start from creating 

a more user-friendly mathematical model by not including so many parameters. In 

order to reduce and give fixed value to some parameters, an experimental method has 

been suggested in this chapter. So, in the future, when there are enough supporting 

experimental data, hopefully some parameters can be reduced. 

 

One factor that is not easy for the current mathematical model to capture is weight loss. 

It is often found that high weight loss in the experimental data could not be simulated 

by the current model. There are two possibilities. 1) There are a lot of initial oligomers 

existing; with a high rate of polymer diffusion coefficient these pre-stored oligomers 

diffuse out of the device very quickly, causing a high weight loss at the very beginning 

of degradation, which has been observed from many experimental data. 2) Erosion of 

the surface, which causes the surface of the device to break into parts and fall piece by 

piece into the surrounding environment, especially the nano-crystals, which are packed 

and hard for water to diffuse into – they are assumed very likely to fall into the 

surrounding environment as a piece. This explains the certain weight loss increase in 

the middle or toward the end of some degradation, which has also been observed from 

experimental data. 

 

The first point can be resolved by measuring the oligomer residents before any 

degradation experiments. The second point could not be captured by the current 

degradation mathematical model; new developments need to be carried out to study 

such a phenomenon. This is actually the next task of the Leicester group. Fortunately, 

there are many experimental data that could be used to verify the new development. 
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In this thesis, the non-uniqueness of parameters has been presented. This is caused by 

the lack of certain experimental data and also not fully understanding the effect of each 

parameter. The suggested value has been given to some of these parameters in order 

to help the end user have a quick start in using the mathematical model. However, the 

actual value could not be fixed. Therefore, further parameter study is necessary. 

 

One aspect that was not available in computation modelling but draws a huge attention 

from the future research is how biodegradation polymer effect and interact with the 

living human tissue. The research on this is limited; one theory is that because a big 

number of oligomers diffusing out of the device into the surrounding environment will 

create an acidic environment, the surrounding tissue could have inflammation, which. 

There is a need to avoid any kind of surgery in this situation. Understanding this would 

have a big effect on the usage of such biodegradable polymers. 
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Appendix 

The C++ programme  

#include <stdio.h> #include <math.h> #include <stdlib.h>       //(call C++ libraries) 

double function_of_Rs_bar(double, double, double, double, double, double, double); 

double calculate_Mn_bar(double, double); 

//(give function prototype of two subroutines function_of _Rs_bar and calculate_Mn_bar, which will 

be used afterwards to calculate )(
s

Rf  and 
n

M  respectively.) 

int main ()             //(set main function) 

{   double t=0.0, delta_t=0.0;   //(arguments) 

   double k1, k2_bar, n, alpha, beta, m, Rs_bar_Max, Ce0, Cchain0;   

   int N; 

    printf("Input initial m value: "); scanf("%lf", &m); 

    printf("Input Rs_bar_Max: "); scanf("%lf", &Rs_bar_Max); 

    printf("Input number N: "); scanf("%d", &N); 

    printf("Input parameters, n: "); scanf("%lf", &n); 

    printf("Input parameters, alpha: "); scanf("%lf", &alpha); 

    printf("Input parameters, bata: "); scanf("%lf", &beta); 

    printf("Input parameters, k1: "); scanf("%lf", &k1); 

    printf("Input parameters, k2_bar: "); scanf("%lf", &k2_bar); 

 printf("Input parameters, Ce0: "); scanf("%lf", &Ce0); 

 printf("Input parameters, Cchain0: "); scanf("%lf", &Cchain0); 

double Ndp0; 

int read_data; 

Ndp0=Ce0/Cchain0;              //(calculate Ndp0.) 

read_data=N/5000;             //(select maximum 5000 sets of data) 

    FILE *output; output = fopen("output.txt", "w");    //(open file "output") 

  double  Rs_bar=0.0, Rol_bar=0.0, Mn_bar=1.0;   //(set initial value for outputs) 

    int count=0;                          //(set initial value of count.) 

double f _Rs_bar =0.0;            //(use to call function_of_Rs_bar later) 

fprintf(output, "  t     \tRs_bar     \tMn_bar    \tRol_bar\n");     //(print out the title of outputs in file)    

    while (Rs_bar<=Rs_bar_Max)   //(set up a while loop to do the reporting calculation) 

    {      if (t==0) fprintf(output, "%.8lf    \t%.8lf    \t%.8lf    \t%.8lf\n", t, Rs_bar, Mn_bar, Rol_bar);                                       

//(print out initial output values in file) 

           if (count == read_data)      //(write data to file) 

           {   fprintf(output, "%.8lf    \t%.8lf    \t%.8lf    \t%.8lf\n", t, Rs_bar, Mn_bar, Rol_bar); 

           count = 0;  } 

           else  {  count = count+1;  }  
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           f _Rs_bar= function_of_Rs_bar(alpha, beta, k1, k2_bar, Ndp0, Rs_bar, n);                                     

//(call subroutine function_of_Rs_bar) 

           delta_t = (Rs_bar_Max/N)/f_Rs_bar;               //(calculat delta_t) 

           t = t+delta_t;                     //(update time t) 

           Rs_bar=Rs_bar+f_of_Rs_bar*delta_t;            //(calculate Rs_bar using equation (2.34)) 

           Rol_bar=alpha*pow(Rs_bar, beta);      //(calculate Rol_bar using equation (2.9)) 

           Mn_bar=calculate_Mn_bar(Ndp0, Rs_bar);   //(call subroutine ) calculate_Mn_bar to calculate 

Mn_bar 

           if (Mn_bar<0.1) break;     } 

    fclose(output);                       //(close file "output") 

    system ("pause");                   } 

 

double function_of_Rs_bar(double alpha, double beta, double k1, double k2_bar, double Ndp0, 

double Rs_bar, double n) 

{ 

       return (1-alpha*pow(Rs_bar, beta))*(k1+k2_bar*pow((1/Ndp0+Rs_bar),n)); 

}            //(a subroutine to calculate )(
s

Rf  use equation (2.15)) 

double calculate_Mn_bar(double Ndp0, double Rs_bar) 

{ 

       return 1/(1+Ndp0*Rs_bar); 

}             //(a subroutine to calculate 
n

M  use equation (2.18)) 


