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ABSTRACT
OBJECTIVE
To investigate the relation between exposure to both 
air and noise pollution from road traffic and birth 
weight outcomes.
DESIGN
Retrospective population based cohort study.
SETTING
Greater London and surrounding counties up to the 
M25 motorway (2317 km2), UK, from 2006 to 2010.
PARTICIPANTS
540 365 singleton term live births.
MAIN OUTCOME MEASURES
Term low birth weight (LBW), small for gestational age 
(SGA) at term, and term birth weight.
RESULTS
Average air pollutant exposures across pregnancy 
were 41 μg/m3 nitrogen dioxide (NO2), 73 μg/m3 
nitrogen oxides (NOx), 14 μg/m3 particulate matter 
with aerodynamic diameter <2.5 μm (PM2.5), 23 μg/
m3 particulate matter with aerodynamic diameter <10 
μm (PM10), and 32 μg/m3 ozone (O3). Average daytime 
(LAeq,16hr) and night-time (Lnight) road traffic A-weighted 
noise levels were 58 dB and 53 dB respectively. 
Interquartile range increases in NO2, NOx, PM2.5, PM10, 
and source specific PM2.5 from traffic exhaust (PM2.5 traffic 

exhaust) and traffic non-exhaust (brake or tyre wear and 
resuspension) (PM2.5 traffic non-exhaust) were associated with 
2% to 6% increased odds of term LBW, and 1% to 3% 

increased odds of term SGA. Air pollutant associations 
were robust to adjustment for road traffic noise. 
Trends of decreasing birth weight across increasing 
road traffic noise categories were observed, but were 
strongly attenuated when adjusted for primary traffic 
related air pollutants. Only PM2.5 traffic exhaust and PM2.5 
were consistently associated with increased risk of 
term LBW after adjustment for each of the other air 
pollutants. It was estimated that 3% of term LBW 
cases in London are directly attributable to residential 
exposure to PM2.5>13.8 μg/m3during pregnancy.
CONCLUSIONS
The findings suggest that air pollution from road 
traffic in London is adversely affecting fetal growth. 
The results suggest little evidence for an independent 
exposure-response effect of traffic related noise on 
birth weight outcomes.

Introduction
Air pollution is a major public health issue. It has been 
associated with reduced fetal growth,1 through which it 
may have extensive and permanent influences on the life 
course.2 A key contributor to urban ambient pollution 
is road traffic and, critically, vehicle emissions are 
released near people. Urban particulate matter includes 
a large contribution from outside the urban area, and 
locally emitted particles. Close to roads an individual 
would be exposed to more primary exhaust and non-
exhaust (brake or tyre wear and resuspension of road 
dust induced by vehicles) particles. Further away from 
roads an individual would be exposed to more nitrate 
and secondary organic aerosol as a proportion of their 
total particulate dose.

Road traffic also produces noise, which has been 
associated with adverse health outcomes such as 
hypertension and cardiovascular disease.3 Research 
on how noise affects birth outcomes is more limited, 
but a possible effect on LBW has been suggested.4 
Noise could potentially influence fetal growth through 
stress, hypertension, and sleep disturbance.4-6

Evidence about the relative roles of air and noise 
pollution on birth weight is limited and inconsistent.7-9 
To address health impacts of traffic effectively these 
need to be better understood. In this study, we 
investigate long-term exposure to both traffic related 
air and noise pollution during pregnancy in relation to 
birth weight outcomes.

Methods
Births data
The study boundary was the M25, an orbital motorway 
encompassing all of Greater London and parts of 
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What is already known on this topic
Road traffic pollution comprises not only air pollutants such as NO2 and 
particulate matter, but also noise
There is a large body of research demonstrating associations between maternal 
exposure to ambient air pollution during pregnancy and reduced birth weight, 
low birth weight (LBW) or small for gestational age (SGA)
The relation between road traffic noise and birth weight is unclear, and research 
examining traffic related air pollutant and noise coexposures together is very 
limited, so the extent to which observed air pollution associations might be 
attributable to road traffic noise is poorly understood

What this study adds
There is an increased risk of LBW specifically in relation to the air pollution 
profile of London
Exposure to local air pollution from road traffic is associated with increased 
risk of LBW in London, but there is little evidence for an independent exposure-
response effect of traffic related noise on birth weight
Reducing exposure to traffic related air pollution could reduce the burden of 
LBW, SGA, and subsequent morbidity, and ultimately give babies in urban 
environments a healthier start in life
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other counties (2317 km2), as traffic information, and 
therefore air pollution and noise estimates, was not 
available for beyond the M25. Figure 1 shows the study 
area. We extracted 671 509 singleton births occurring 
within the M25 from 2006 to 2010 from the UK 
National Births and Stillbirth registers held at the UK 
Small Area Health Statistics Unit and supplied by the 
Office for National Statistics. These registers provide 
routinely collected data on all births in the country, 
including date of birth, birth weight, sex, and mother’s 
age. We appended gestational age and baby’s ethnicity 
from the NHS Numbers for Babies (NN4B) dataset, 
with 99.2% linkage. The method of gestational age 
assessment is not recorded on NN4B records. It is 
likely to be based on the more accurate and recent 
information from a mother’s routine second trimester 
scan but a proportion may be based on the date of the 
last menstrual period.10

Maternal residential addresses at the time of 
birth were geocoded to 0.1 m accuracy using Quick 
Address Software (Experian, 2015). We did not have 
information on whether a mother changed address 
during pregnancy. We excluded births in middle layer 
super output areas overlapping the M25 (n=7493) 
because area level covariates would reflect populations 
inside and outside the study boundary. We obtained 
2011 census output area level data as follows: Carstairs 
deprivation index from UK Census 2011 standardised 
across census output areas in study area;11 and 2014 
tobacco expenditure each week (population ≥16 years) 
from CACI, as a smoking proxy.

Air pollution exposures
Average monthly concentrations of nitrogen dioxide 
(NO2), nitrogen oxides (NOx), ozone (O3), particulate 
matter with diameter <2.5 μm (PM2.5), particulate 
matter with diameter <10 μm (PM10), PM2.5 from traffic 
exhaust (PM2.5 traffic exhaust), and PM2.5 from traffic non-
exhaust (PM2.5 traffic non-exhaust) were estimated for points on 
a 20m × 20m regular grid across the study area, using 
dispersion modelling (KCLurban).12 NO2, NOx, PM2.5 

traffic exhaust, and PM2.5 traffic non-exhaust are primary pollutants 
related to traffic (ie, locally emitted or rapidly formed 
near source oxidation products, or both). PM2.5 and 
PM10 are dominated by regional particles, long range 
particles, and secondary particles formed through 
atmospheric chemical reactions but also include 
particles from primary traffic sources. O3 is a regional, 
secondary pollutant. PM2.5, PM10, and O3 are more 
homogeneously distributed than primary pollutants 
related to traffic. 

The KCLurban model uses Atmospheric Dispersion 
Modelling System (version 4) and road source model 
(version 2.3); data on emissions from the London 
Atmospheric Emissions Inventory (LAEI);13 empirically 
derived NO-NO2-O3 and PM relations; and hourly 
meteorological information.12 The model performed 
well when evaluated against measurements, with high 
spearman correlation coefficients (ρ) between observed 
versus modelled monthly concentrations: ρ>0.91 
for NOx, PM10, and PM2.5; ρ>0.83 for NO2; and ρ>0.9 
for O3 at both roadside and background locations.14 
Normalised mean bias (NMB) and root mean square 
error (RMSE) for modelled monthly predictions were 
slightly higher for NOx (NMB 11%; RMSE 13 μg/m3, 
22%) and NO2 (11%; 5.2 μg/m3, 20%) compared with 
PM2.5 (5%; 2.2 μg/m3, 14%) and PM10 ( 6%; 3.1 μg/
m3, 12%), indicating that whilst all have a positive 
bias (NMB), PM2.5 and PM10 are more accurately 
predicted than NO2 and NOx (RMSE). Further detail 
about the modelling procedure and model evaluation 
is available elsewhere.12 14 Using a Geographic 
Information System, each maternal residential address 
was assigned monthly air pollutant concentrations 
for the nearest 20 m × 20 m grid point according to its 
geocoded XY coordinates. For each birth record, we 
calculated the time weighted average concentrations 
for NOx, NO2, PM2.5 traffic exhaust, PM2.5 traffic non-exhaust, PM2.5, 
PM10, and O3 across pregnancy and for each trimester 
(first trimester defined as days 1-93, second as days 94-
186, and third as day 187 to day preceding delivery). 
The time weighting was based on the proportion of 
the pregnancy or trimester in each calendar month.15 

16 To define trimesters, gestation period (available as 
completed weeks of pregnancy) was converted to days, 
and 4 days (rounded up from the midpoint 3.5 days) 
was added to adjust for potential underestimation 
where true gestation period was not an exact number 
of completed weeks.

Road traffic noise exposures
A-weighted road traffic noise levels (dB) were modelled 
to 0.1 dB resolution for all geocoded maternal 
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Fig 1 | Map of study area
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residential addresses using the Traffic Noise Exposure 
(TRANEX) model:17 LAeq,16hr (average sound level 0700-
2300 hours); Lnight (2300-0700); Lday (0700-1900); Leve 
(1900-2300); Lden (logarithmic composite of Lday, Leve, 
and Lnight with 5 dB added to the Leve and 10 dB added 
to Lnight). Model validation studies conducted in two UK 
cities showed high Spearman’s correlation (ρ=0.90) 
between measured and modelled noise levels, 
indicating good model performance.17 The geocoded 
address points are for the geometric centroid of the 
dwelling, so for the purposes of noise modelling, the 
address points were universally moved to one metre 
from the façade on the side of the dwelling closest 
to the nearest road section with traffic information, 
as described elsewhere.17 We modelled noise for one 
midpoint year (2007) and applied these values to other 
years for the same address locations because temporal 
variability in noise over the study period was negligible. 
Noise could not be estimated for 4.5% of births owing 
to maternal residential address point (receptor) 
placement issues,17 however, these addresses were 
randomly distributed across the study area. We flagged 
addresses exposed to A-weighted Lday>50 dB from 
railways or aircraft (Heathrow Airport and London City 
Airport). Railway and London City Airport noise data 
were from Environmental Noise Directive strategic 
noise mapping (2006 annual average), and Heathrow 
Airport noise data were from annual average contours 
(2001) from the Civil Aviation Authority.

Outcomes
Term low birth weight (LBW) was defined as birth 
weight less than 2500 g and gestational age of 37 
weeks or more.18 SGA was defined as birth weight for 
gestational age less than the 10th centile by sex and 
ethnicity (to account for constitutional differences in 
birth weight by sex and ethnic group, and thus better 
identify pathologically small infants). 

We initially excluded births with gestational age 
less than 24 or greater than 44 weeks (n=1083, 
0.2%), missing or implausible (<200 g or >9000 g) 
birth weight (n=5747, 0.9%), and missing gestational 
age (n=9725, 1.5%). Birth weight outliers were then 
identified and excluded according to Tukey’s rule (ie, 
values greater than twice the interquartile range (IQR), 
below the first quartile, and above the third quartile 
for each gestational week) both overall and separately 
according to sex and ethnicity (white, Asian, black, or 
other) for the calculation of sex-ethnicity specific birth 
weight for gestational age centiles.19 Stillbirths were 
retained at this stage, because excluding stillbirths 
overestimates centiles for gestation <28 weeks by up to 
30%.20 We identified 0.58% of the observations overall 
as outliers. We calculated smoothed sex-ethnicity 
specific birth weight for gestational age centile curves 
according to the LMS method using LMSChartMaker 
Light V.2.54 software which has been used in previous 
research.21-26 The software can hold a maximum of 
100 000 records, so a subsample of 100 000 was 
randomly selected if the number of records for a 
given sex and ethnicity subgroup exceeded this. 

Representativeness of these 100 000 samples for 
their particular subgroup with respect to exposures 
or potential confounders was checked and confirmed. 
We did not calculate centiles or SGA for the ethnic 
group ‘other’, as it does not represent a meaningful 
homogeneous ethnic group for analysis. 

We excluded birth weight outliers (n=3815, 0.6%), 
stillbirths (3910, 0.6%), preterm births (40 346, 
6.1%), births missing noise exposure (31 197, 4.7%), 
and births missing ethnicity (47 710, 7.2%), leaving 
540 365 singleton term live births eligible for birth 
weight analyses, and 471 489 for SGA analyses (the 
exclusions were not mutually exclusive). 

Statistical Methods
Air pollutant exposures were analysed as continuous 
measures, rescaled to both IQR increments and 
increments specific to pollutants (NO2, 10 μg/m3; NOx, 
20 μg/m3; PM2.5 traffic exhaust, 1 μg/m3; PM2.5 traffic non-exhaust, 
1 μg/m3; PM2.5, 5 μg/m3; PM10, 10 μg/m3; O3, 10 μg/
m3). Where multiple air pollutants are examined it is 
a common approach to rescale to the IQR, in order to 
calculate effect estimates for comparable increases 
across the different pollutants (which may have very 
different absolute concentration ranges). The IQR is the 
difference between the 75th and 25th centiles of the 
distribution. As all noise metrics were highly correlated 
(ρ≥0.997), we limited analysis to one daytime (LAeq,16hr) 
and one night-time (Lnight) metric. Noise metrics were 
right skewed, so were categorised (LAeq,16hr <55 dB 
(reference), 55 to <60 dB, 60 to <65 dB, and ≥65 dB; 
and Lnight <50 dB (reference), 50 to <55 dB, 55 to <60 
dB, 60 to <65 dB, and ≥65 dB) for primary analysis. 
We examined the functional relation between term 
birth weight and noise (supplementary figure 1 in web 
appendix 1) using generalised additive models, and 
there were no major departures from linearity so we 
additionally analysed noise as a continuous variable, 
rescaled to IQR increment.

We analysed continuous birth weight using linear 
regression, and LBW or SGA using logistic regression. 
We limited analyses to term births. We adjusted all 
models for maternal age (<25, 25-29, 30-34, or ≥35 
years); birth registration type (within marriage, 
sole registration, joint with same address, joint 
with different address); birth season; birth year; 
Carstairs deprivation quintile; tobacco expenditure 
(continuous); and a random intercept for middle 
layer super output areas. Birth weight and LBW were 
also adjusted for sex, gestational age (linear and 
quadratic terms), and baby’s ethnicity (white, Asian, 
black, other). All covariates were included in the 
model a priori based on previous knowledge, except 
for birth season, birth year, and the random intercept 
for middle layer super output areas which were 
included as they were influential in the model. In 
joint air pollutant-noise models we further adjusted 
air pollutants for noise, and vice versa. We ran two air 
pollutant models for term LBW and continuous term 
birth weight, assessing models on a case by case basis 
for collinearity by inspecting the variance inflation 
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factor and standard errors. We also evaluated the 
relation between exposures and term birth weight 

(unadjusted, adjusted, and joint exposure models) 
using generalised additive models to evaluate non-
linearity.

We ran sensitivity analyses on joint air pollutant-
noise models evaluating possible effect modification 
by ethnicity (interaction term for exposure multiplied 
by ethnicity); and excluding those exposed to aircraft 
or railway noise >50 dB – the latter to remove the 
influence of high aircraft or railway noise and allow 
the evaluation of the influence of road traffic noise in a 
cleaner subgroup.

pdi

RRi – 1( )Σ
i=0

k

RRi

Fig 2 | Equation. pdi=the proportion of cases falling 
into ith exposure level; RRi=the adjusted relative risk 
comparing ith exposure level with reference group (i=0)

Table 1 | Characteristics of the study population and distribution of pregnancy outcomes and exposures

Variable No

Mean term 
birth  
weight (g)

Term  
LBW  
(%)

Term  
SGA*  
(%)

Mean pregnancy average concentration (μg/m3) % Exposed ≥65 dB

NO2 NOx

PM2.5 

traffic  

exhaust

PM2.5 

traffic  

non-exhaust PM2.5 PM10 O3 LAeq,16hr Lnight

Total population 540 365 3392 2.6 9.5 40.6 72.5 0.61 0.73 14.4 23.1 31.9 14.2 6.3
Infant sex:
  Male 275 546 3454 2.1 9.5 40.6 72.5 0.61 0.73 14.4 23.1 31.9 14.1 6.2
  Female 264 819 3328 3.1 9.5 40.6 72.4 0.61 0.73 14.4 23.1 31.9 14.2 6.3
Maternal age (years):
  <25 100 931 3316 3.3 12.7 40.8 73.0 0.62 0.73 14.5 23.2 31.7 15.9 7.1
  25-29 140 353 3369 2.8 9.7 40.5 72.3 0.61 0.73 14.4 23.1 31.9 15.3 6.9
  30-34 169 559 3421 2.2 8.6 40.4 72.1 0.61 0.72 14.4 23.0 32.0 13.6 6.0
  ≥35 129 522 3438 2.2 8.2 40.6 72.7 0.61 0.72 14.4 23.1 31.8 12.3 5.2
Ethnicity:
  White 286 192 3470 1.7 9.6 39.8 70.5 0.59 0.70 14.3 22.9 32.3 12.9 5.5
  Asian 93 555 3196 5.1 9.6 40.9 73.1 0.62 0.74 14.4 23.1 31.7 15.0 6.4
  Black 91 740 3359 2.8 9.4 42.0 76.2 0.66 0.78 14.6 23.5 31.0 15.4 7.2
  Other 68 878 3379 2.3 41.4 74.6 0.64 0.76 14.5 23.3 31.5 16.6 7.8
Birth registration:
  Within marriage† 348 157 3397 2.5 13.0 40.6 72.6 0.61 0.73 14.4 23.1 31.8 13.7 6.0
  Sole registration 35 937 3329 3.4 10.3 41.3 74.4 0.64 0.75 14.6 23.3 31.4 15.7 7.4
 � Joint with same 

address
105 239 3425 2.2 12.9 40.0 70.9 0.60 0.71 14.4 23.0 32.3 14.8 6.7

 � Joint with different 
address

51 032 3339 3.2 9.5 40.8 73.1 0.62 0.74 14.4 23.1 31.7 14.6 6.5

Birth season:
  Winter 130 033 3382 2.7 9.7 39.6 70.1 0.61 0.71 13.9 22.6 31.0 14.4 6.4
  Spring 133 395 3390 2.6 9.4 43.3 79.6 0.68 0.78 14.8 23.8 27.4 13.9 6.0
  Summer 138 418 3399 2.5 9.3 42.0 76.2 0.63 0.75 15.0 23.8 32.8 14.1 6.3
  Autumn 138 519 3398 2.5 9.5 37.4 64.0 z 0.66 13.9 22.3 36.1 14.3 6.4
Birth year:
  2006 101 770 3382 2.8 9.7 42.3 77.6 0.72 0.71 16.1 25.1 30.4 13.7 6.0
  2007 106 528 3388 2.6 9.4 40.6 71.7 0.63 0.69 14.8 24.1 34.2 13.9 6.1
  2008 106 678 3394 2.6 9.3 42.1 77.7 0.63 0.76 14.5 23.5 30.6 14.1 6.2
  2009 110 014 3397 2.5 9.1 41.0 73.1 0.60 0.77 14.0 22.6 27.4 14.2 6.3
  2010 115 375 3398 2.4 9.5 37.3 63.2 0.51 0.69 12.9 20.5 36.5 14.8 6.6
Carstairs quintile:
  1st, least deprived 85 358 3467 1.6 8.9 37.3 64.2 0.51 0.61 14.1 22.5 33.7 9.2 2.6
  2nd 92 264 3433 2.0 9.4 39.3 69.3 0.57 0.69 14.3 22.8 32.6 13.6 5.6
  3rd 100 934 3400 2.4 10.1 40.4 72.0 0.60 0.72 14.4 23.0 32.0 15.2 6.6
  4th 119 239 3368 2.9 10.7 41.1 73.8 0.63 0.75 14.5 23.2 31.5 15.9 7.2
  5th, most deprived 142 570 3335 3.3 9.5 43.0 78.6 0.70 0.81 14.7 23.6 30.5 15.3 7.9
Tobacco expenditure quintile:
  1st 110 332 3436 1.9 8.3 37.9 65.7 0.52 0.63 14.2 22.6 33.3 10.5 3.2
  2nd 110 146 3415 2.3 9.0 40.1 71.3 0.59 0.71 14.4 23.0 32.1 13.5 5.5
  3rd 109 477 3389 2.6 9.6 41.0 73.6 0.63 0.75 14.5 23.2 31.6 16.2 7.6
  4th 109 499 3362 3.0 10.3 41.0 73.5 0.63 0.74 14.5 23.2 31.7 16.2 7.8
  5th 100 911 3354 3.1 10.7 42.9 78.6 0.70 0.80 14.7 23.6 30.6 14.5 7.4
London region:
  Inner 173 181 3395 2.5 9.4 45.1 84.3 0.78 0.88 14.8 24.0 29.4 17.1 9.4
  Outer 367 184 3391 2.6 9.5 38.4 66.9 0.54 0.65 14.2 22.7 33.1 12.8 4.8
LBW=low birth weight (<2500 g); SGA=small for gestational age  
*SGA, % out of a total 471 489 for whom sex-ethnicity specific SGA calculated  
†Includes civil partnerships
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We calculated the population attributable fraction 
for term LBW for exposure to PM2.5 greater than the 25th 
centile of the exposure distribution, using the formula 
in figure 2.27 The exposure levels were quartiles for 
this calculation. All analyses were conducted in Stata 
(version 13), except generalised additive models which 
were run in R (version 3.1.2) using the mgcv package. 
No adjustment for multiple testing was made.

Patient involvement
No patients were involved in setting the research 
question or the outcome measures, nor were 
they involved in developing plans for design or 
implementation of the study. No patients were asked 
to advise on interpretation or writing up of results. 
There are no plans to disseminate the results of the 
research to study participants or the relevant patient 
community. 

Results
Table 1 shows that 2.6% and 9.5% of term births 
were classified as LBW and SGA respectively. Over the 
study period of 2006 to 2010, there were temporal 
trends for LBW (decreasing), air pollutant exposures 
(decreasing particularly for PM2.5 traffic-exhaust, PM2.5, 
PM10), and an increasing proportion of births with 
high noise exposures, the latter reflecting change in 
spatial distribution of maternal addresses over time, as 
noise modelling was not time varying. Supplementary 
table 1 in web appendix 1 shows that air pollutant 
exposures were positively correlated (0.45 to 1.00), 
except with O3 (-0.46 to -0.77). Daytime and night-time 
road traffic noise were very highly correlated (∼1.00), 
and road traffic noise was positively correlated with air 
pollutant exposures (0.15 to 0.50) except O3 (∼-0.15). 
Maternal age, ethnicity, birth registration type, birth 
season, birth year, deprivation (Carstairs quintile), and 
tobacco expenditure were associated with outcomes 
and exposures (supplementary tables 2 and 3 in web 
appendix 1).

Air pollution
Figure 3 and supplementary tables 4 to 6 in web 
appendix 1 show that in single pollutant adjusted 
models, IQR increases in exposure to primary 
pollutants related to traffic (NO2, NOx, PM2.5 traffic exhaust, 
PM2.5 traffic non-exhaust), PM2.5, and PM10 during pregnancy 
were associated with 2% to 6% increased odds of 
term LBW (eg, odds ratios of 1.03, 95% confidence 
interval 1.00 to 1.06 for NO2; and 1.04, 1.01 to 1.07 
for PM2.5 traffic exhaust), 1% to 3% increased odds of term 
SGA, and reduced term birth weight. Figure 3 shows 
that decreased odds of term LBW were observed 
with increasing O3 exposure. Consistent with this, 
in adjusted generalised additive models, term birth 
weight decreased approximately linearly with 
increasing exposure to air pollutants (except O3) (not 
shown).

Figure 4 shows that in two air pollutant models, only 
PM2.5 traffic exhaust and PM2.5 consistently had odds ratios 
above one associated with term LBW when adjusted, 

Adjusted single air pollutant models for each IQR
  NO2

  NOX

  PM2.5 tra�c exhaust 
  PM2.5 tra�c non-exhaust
  PM2.5

  PM10

  O3

Adjusted noise exposure model
  Lnight (50 to <55 dB) (n=257 045)
  Lnight (55 to <60 dB) (n=40 256)
  Lnight (60 to <65 dB) (n=46 994)
  Lnight (≥65 dB) (n=33 810)
Adjusted joint air pollutant noise models
  NO2 adjusted for Lnight

    Lnight (dB) adjusted for N02:
      50 to 55 
      55 to <60
      60 to <65
      ≥65
  NOX adjusted for Lnight

    Lnight (dB) adjusted for N0x:
      50 to 55 
      55 to <60
      60 to <65
      ≥65
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Fig 3 | Odds of term low birth weight (LBW) associated with air pollutants (for each 
interquartile range (IQR)) and night-time noise (Lnight) in single exposure and joint 
exposure models. Odds ratios for night-time noise (Lnight) are versus the reference group 
<50 dB. All models are adjusted for sex, maternal age, ethnicity, birth registration 
type, birth season, birth year, Carstairs quintile (census output area level), tobacco 
expenditure (census output area level), gestational age as linear and quadratic terms, 
and random intercept for middle layer super output areas, in addition to including the 
air pollutant or noise metrics shown above. IQR values for air pollutants: NO2 (for each 
IQR, 8.6 μg/m3), NOx (23.7 μg/m3), PM2.5 traffic exhaust (0.35 μg/m3), PM2.5 traffic non-exhaust (0.29 
μg/m3), PM2.5 (2.2 μg/m3), PM10 (3.0 μg/m3), and O3 (8.4 μg/m3)
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in turn, for other air pollutants. Reduced term birth 
weight was consistently associated with PM2.5 traffic-exhaust 
only (supplementary figure 2 in web appendix 1). We 
checked two air pollutant models for multicollinearity 
on a case by case basis. Models with very high variance 
inflation factors were excluded (eg, PM2.5 traffic exhaust 
and PM2.5 traffic non-exhaust), and where variance inflation 
factor values were borderline around 10, we excluded 
the model if the standard error more than doubled. 
However, for all two air pollutant models presented 
there was some increase in the standard errors for the 
exposure terms, which reflects the correlation structure 
between pollutants.

Noise
Figure 3 and supplementary tables 4 and 5 in web 
appendix 1 show that in adjusted models, high 
(≥65 dB) night-time road traffic noise exposure was 
associated with an odds ratio of 1.03 (95% confidence 
interval, 0.95 to 1.11) for term LBW, and 1.03 (0.99 to 
1.08) for term SGA, compared with the reference group 
(<50 dB), with a suggestion of increasing odds ratios 
across increasing night-time noise categories for term 
LBW. There was a suggestion of an exposure-response 
relation of decreasing term birth weight across 
increasing night-time and daytime road traffic noise 
categories (supplementary table 6 in web appendix 
1). In adjusted generalised additive models, term birth 
weight decreased with increasing exposure to road 
traffic noise in a largely linear fashion (not shown).

Air pollution and noise
Figures 3 and 5 and table 2 show that air pollutant 
associations with term LBW were robust to adjustment 
for night-time or daytime road traffic noise, with virtually 
no change to odds ratios. The same holds for term SGA 
(table 2) and term birth weight (supplementary figures 
3 and 4 and supplementary table 7 in web appendix 
1). Air pollutant effect estimates adjusted for noise as 
a continuous variable (for each IQR) (supplementary 
table 8 in web appendix 1) were virtually identical to 
those from the primary analysis which adjusted for 
noise as a categorical variable. Consistent with the 
linear regression models, in adjusted joint exposure 
generalised additive models, air pollution associations 
with term birth weight were robust to adjustment for 
road traffic noise. Figure 6 shows the joint model for 
NO2 and night-time noise (Lnight), with the remaining 
models in web appendix 1.

Models are adjusted for sex (term LBW model 
only), maternal age, ethnicity (term LBW model 
only), birth registration type, birth season, birth year, 
Carstairs quintile (census output area level), tobacco 
expenditure (census output area level), gestational age 
as linear and quadratic terms, and random intercept 
for middle layer super output areas, in addition to 
including the air pollutant or noise metrics shown 
above. All air pollution estimates are adjusted for either 
night-time (Lnight) or daytime noise (LAeq,16hr) as specified 
in the table, and noise estimates are adjusted for traffic 
related air pollution exposure (NO2). IQR values for air 
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NO2 adjusted for PM2.5

NO2 adjusted for PM10

NO2 adjusted for O3

NOX unadjusted
NOX adjusted
NOX adjusted for PM2.5 tra�c exhaust

NOX adjusted for PM2.5 tra�c non-exhaust

NOX adjusted for PM2.5

NOX adjusted for PM10

NOX adjusted for O3

PM2.5 tra�c exhaust unadjusted
PM2.5 tra�c exhaust adjusted
PM2.5 tra�c exhaust adjusted for NO2

PM2.5 tra�c exhaust adjusted for NOX

PM2.5 tra�c exhaust adjusted for PM2.5

PM2.5 tra�c exhaust adjusted for PM10

PM2.5 tra�c exhaust adjusted for O3

PM2.5 tra�c non-exhaust unadjusted
PM2.5 tra�c non-exhaust adjusted
PM2.5 tra�c non-exhaust adjusted for NO2

PM2.5 tra�c non-exhaust adjusted for NOX

PM2.5 tra�c non-exhaust adjusted for PM2.5

PM2.5 tra�c non-exhaust adjusted for PM10

PM2.5 tra�c non-exhaust adjusted for O3

PM2.5 unadjusted
PM2.5 adjusted
PM2.5 adjusted for NO2

PM2.5 adjusted for NOX

PM2.5 adjusted for PM2.5 tra�c exhaust

PM2.5 adjusted for PM2.5 tra�c non-exhaust

PM2.5 adjusted for O3

PM10 unadjusted
PM10 adjusted
PM10 adjusted for NO2

PM10 adjusted for NOX

PM10 adjusted for PM2.5 tra�c exhaust

PM10 adjusted for PM2.5 tra�c non-exhaust

PM10 adjusted for O3

O3 unadjusted
O3 adjusted
O3 adjusted for NO2

O3 adjusted for NOX

O3 adjusted for PM2.5 tra�c exhaust

O3 adjusted for PM2.5 tra�c non-exhaust

O3 adjusted for PM2.5

O3 adjusted for PM10

1.10 (1.07 to 1.12)
1.03 (1.00 to 1.06)
0.97 (0.91 to 1.04)
1.04 (0.97 to 1.10)
1.01 (0.96 to 1.06)
1.05 (0.99 to 1.10)
1.01 (0.97 to 1.05)

1.09 (1.07 to 1.12)
1.03 (1.01 to 1.06)
0.99 (0.92 to 1.06)
1.04 (0.98 to 1.11)
1.01 (0.97 to 1.06)
1.05 (1.00 to 1.11)
1.01 (0.97 to 1.06)

1.10 (1.08 to 1.13)
1.04 (1.01 to 1.07)
1.07 (0.99 to 1.15)
1.05 (0.98 to 1.13)
1.03 (0.98 to 1.08)
1.06 (1.01 to 1.11)
1.03 (0.99 to 1.06)

1.07 (1.05 to 1.09)
1.02 (1.00 to 1.04)
1.00 (0.95 to 1.05)
0.99 (0.95 to 1.04)
1.00 (0.97 to 1.04)
1.02 (0.98 to 1.06)
1.01 (0.98 to 1.03)

1.10 (1.08 to 1.13)
1.06 (1.01 to 1.12)
1.05 (0.96 to 1.15)
1.04 (0.95 to 1.14)
1.02 (0.95 to 1.11)
1.06 (0.98 to 1.14)
1.04 (0.97 to 1.10)

1.09 (1.07 to 1.12)
1.03 (0.99 to 1.07)
0.98 (0.91 to 1.05)
0.97 (0.91 to 1.04)
0.97 (0.91 to 1.03)
1.00 (0.94 to 1.07)
0.99 (0.94 to 1.04)

0.92 (0.90 to 0.95)
0.96 (0.93 to 0.99)
0.97 (0.93 to 1.01)
0.97 (0.93 to 1.02)
0.98 (0.94 to 1.01)
0.97 (0.93 to 1.00)
0.97 (0.94 to 1.01)
0.96 (0.92 to 1.00)

0.85 0.90 0.95 1.00 1.05 1.10 1.15

Legend Odds ratio
(95% CI)

Odds ratio
(95% CI)

Fig 4 | Odds of term low birth weight (LBW), associated with interquartile range (IQR) 
increases in air pollutants, in single and two air pollutant models. Adjusted models are 
adjusted for sex, maternal age, ethnicity, birth registration type, birth season, birth 
year, Carstairs quintile (census output area level), tobacco expenditure (census output 
area level), gestational age as linear and quadratic terms, and random intercept for 
middle layer super output areas, in addition to including the air pollutant shown above. 
NO2 and NOx were not entered into the same model together as they were too highly 
correlated. PM2.5 and PM10 were not entered into the same model together as PM2.5 is a 
substantial subset of PM10 (>50% by mass). IQR values for air pollutants: NO2 (for each 
IQR, 8.6 μg/m3), NOx (23.7 μg/m3), PM2.5 traffic exhaust (0.35 μg/m3), PM2.5 traffic non-exhaust (0.29 
μg/m3), PM2.5 (2.2 μg/m3), PM10 (3.0 μg/m3), and O3 (8.4 μg/m3)
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pollutants: NO2 (for each IQR, 8.6 μg/m3), NOx (23.7 
μg/m3), PM2.5 trafficexhaust (0.35 μg/m3), PM2.5 traffic non-exhaust 
(0.29 μg/m3), PM2.5 (2.2 μg/m3), PM10 (3.0 μg/m3), and 
O3 (8.4 μg/m3)

After adjustment for each air pollutant, in turn, 
there was no evidence that increasing night-time 
or daytime road traffic noise exposure (analysed 
as either a categorical or continuous variable) was 
associated with increasing risk of term LBW (figs 3 
and 5) or term SGA (supplementary tables 8 and 9 
in web appendix 1). There was some suggestion of 
an association with reduced term birth weight in the 
highest night-time road traffic noise category after 
adjustment for NO2 or NOx but not after adjustment for 
PM2.5 traffic exhaust or PM2.5 traffic non-exhaust. However, this was 
not evident in adjusted joint exposure generalised 
additive models – which indicated that once adjusted 
for any of the primary traffic related air pollutants, in 
turn, there appears to be no relation between road 
traffic noise and term birth weight (fig 6 and web 
appendix 1). A weak association remained between 
road traffic noise and reduced term birth weight after 
adjustment for PM2.5, PM10, and O3 in linear regression 
(supplementary figure 3 and supplementary tables 8 
and 9 in web appendix 1) and generalised additive 
models (web appendix 1).

Trimester specific air pollution models
For term LBW, odds ratios for primary traffic related 

air pollutant exposures in the second and third 
trimesters tended to be stronger than for first trimester 
exposures (supplementary table 10 in web appendix 1). 
Conversely, for term SGA, odds ratios for exposures in 
earlier trimesters were stronger than the third trimester 
exposure for PM2.5 traffic exhaust and PM2.5 traffic non-exhaust, 
and first trimester exposure appeared to be strongest 
for PM2.5 and PM10 (supplementary table 10 in web 
appendix 1). However, confidence intervals for trimester 
specific effects overlapped. These analyses are presented 
according to prespecified pollutant specific increments 
(not IQR) to allow comparison between trimesters for 
each pollutant.

Additional analyses
Compared with unadjusted analyses (supplementary 
tables 4 to 6 in web appendix 1), effect sizes were 
generally reduced in single or joint pollutant adjusted 
models. Given the strong relation between exposures and 
census output area level deprivation, we ran birth weight 
models without adjustment for Carstairs quintile to check 
for overadjustment, however, there were only small 
changes in birth weight coefficients (<1 g) and the pattern 
of results was unchanged (not shown). The inclusion of 
a random intercept for middle layer super output areas 
(to models adjusted for all other covariates described) 
resulted in relatively small changes to associations for 
noise, term LBW, or SGA, but considerable attenuation of 
associations between air pollutants and term birth weight 
(-18% to -28% for primary traffic related air pollutants, 
and -35% to -49% for pollutants including regional or 
urban background contributions).

Adjusted single air pollutant models for each IQR
  NO2

  NOX

  PM2.5 tra�c exhaust 
  PM2.5 tra�c non-exhaust

  PM2.5

  PM10

  O3

Adjusted noise exposure model
  LAeq,16hr (55 to <60 dB) (n=40 256)
  LAeq,16hr (60 to <65 dB) (n=46 994)
  LAeq,16hr (≥65 dB) (n=33 810)
Adjusted joint air pollutant noise models
  NO2 adjusted LAeq,16hr

    LAeq,16hr (dB) adjusted for NO2 
      55 to <60
      60 to <65
      ≥65
  NOX adjusted LAeq,16hr

    LAeq,16hr (dB) adjusted for NOx 
      55 to <60
      60 to <65
      ≥65
  PM2.5 tra c exhaust adjusted LAeq,16hr

    LAeq,16hr (dB) adjusted for PM2.5 tra�c exhaust 
      55 to <60
      60 to <65
      ≥65
  PM2.5 tra c non-exhaust adjusted LAeq,16hr

    LAeq,16hr (dB) adjusted for PM2.5 tra�c exhaust 
      55 to <60
      60 to <65
      ≥65
  PM2.5 adjusted LAeq,16hr

    LAeq,16hr (dB) adjusted for PM2.5

      55 to <60
      60 to <65
      ≥65
  PM10 adjusted LAeq,16hr

    LAeq,16hr (dB) adjusted for PM10

      55 to <60
      60 to <65
      ≥65
  O3 adjusted LAeq,16hr

    LAeq,16hr (dB) adjusted for O3

      55 to <60
      60 to <65
      ≥65
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Fig 5 | Odds of term LBW associated with air pollutants (for each interquartile range 
(IQR)) and daytime noise (LAeq,16hr), in single exposure and joint exposure models. All 
noise odds ratios are versus the reference group <55 dB. All models are adjusted for 
sex, maternal age, ethnicity, birth registration type, birth season, birth year, Carstairs 
quintile (census output area level), tobacco expenditure (census output area level), 
gestational age as linear and quadratic terms, and random intercept for middle layer 
super output areas, in addition to including the air pollutant or noise metrics shown 
above. IQR values for air pollutants: NO2 (for each IQR, 8.6 μg/m3), NOx (23.7 μg/m3), 
PM2.5 traffic exhaust (0.35 μg/m3), PM2.5 traffic non-exhaust (0.29 μg/m3), PM2.5 (2.2 μg/m3), PM10 
(3.0 μg/m3), and O3 (8.4 μg/m3)
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All sensitivity analyses were conducted on joint air 
pollutant-noise models. Noise analyses were largely 
unchanged after excluding those exposed to aircraft 
or rail noise greater than 50 dB (not shown). We did 
not observe interactions between ethnicity and air 
pollution or road traffic noise exposures for term LBW 
or SGA. Ethnicity-exposure interactions were observed 
in term birth weight analyses with both primary traffic 
related air pollutants (P value<0.001) and road traffic 
noise exposures (∼0.028 for daytime noise, 0.005 for 
night-time noise), with inverse relations for primary 
traffic related air pollutants across all ethnic strata 
(supplementary table 11 in web appendix 1).

The population attributable fraction estimated for 
term LBW for exposure to PM2.5 over the 25th centile of 
the distribution (ie, 13.8 μg/m3) during pregnancy was 
3% (0% to 7%). This 3% corresponds to 93 (0-216) 
cases of term LBW out of a total of 2950 cases each 
year on average in our London study population which 
are directly attributable to residential exposure during 
pregnancy to PM2.5>13.8 μg/m3.

Discussion
To our knowledge, this is the largest UK study on air 
pollution and birth weight, and the first UK study and 
largest study worldwide of birth weight and noise 

exposure. We observed that long term exposure during 
pregnancy to NO2, NOx, PM2.5 overall and specifically 
from traffic exhaust and non-exhaust sources, and 
PM10, were all associated with increased risk of LBW at 
term, across London. There was strong confounding of 
the relation between road traffic noise and birth weight 
by primary traffic related air pollutant coexposures, 
and our results, particularly from generalised additive 
models, suggest little evidence for an independent 
exposure-response effect of traffic related noise on 
birth weight outcomes. Our findings from two air 
pollutant models suggest that associations between 
term LBW and air pollutants emitted from vehicle 
exhausts may be driven by the fine particulate matter 
(PM2.5 traffic exhaust) component rather than the gaseous 
NOx component.

Strengths and weaknesses of this study
This study benefits from highly spatially resolved air 
pollution modelling assigned at address level, and 
noise levels estimated at address point. For noise 
particularly, this represents an advance on previous 
studies which have assigned noise exposure with lower 
spatial precision (eg, at postcode level,8 or according to 
50 m or 250 m buffers around maternal address,7 or 
based on road proximity)28, and consequently reduces 

Table 2 | Joint air pollutant-noise models

Exposure
Term LBW Term SGA
No Odds ratio (95% CI) P value* No Odds ratio (95% CI) P value*

Air pollutant (for each IQR), adjusted for night-time noise:
  NO2 540  365 1.03 (1.00 to 1.06) 471 489 1.01 (0.99 to 1.03)
  NOx 540  365 1.03 (1.00 to 1.06) 471 489 1.01 (0.99 to 1.03)
  PM2.5 traffic exhaust 540  365 1.04 (1.01 to 1.08) 471 489 1.02 (1.00 to 1.04)
  PM2.5 traffic non-exhaust 540  365 1.02 (1.00 to 1.05) 471 489 1.01 (0.99 to 1.02)
  PM2.5 540  365 1.06 (1.01 to 1.12) 471 489 1.03 (1.00 to 1.06)
  PM10 540  365 1.03 (0.99 to 1.07) 471 489 1.00 (0.98 to 1.03)
  O3 540  365 0.96 (0.93 to 0.99) 471 489 0.99 (0.98 to 1.01)
Night-time noise, Lnight, adjusted for NO2:
  <50 dB 162 260 Reference 142 880 Reference
  50 to <55 dB 257 045 0.98 (0.94 to 1.03) 224 864 1.00 (0.97 to 1.02)
  55 to <60 dB 40 256 1.00 (0.93 to 1.07) 34 960 1.02 (0.98 to 1.06)
  60 to <65 dB 46 994 1.00 (0.94 to 1.08) 40 344 1.00 (0.96 to 1.04)
  ≥65 dB 33 810 0.99 (0.91 to 1.08) 28 441 1.02 (0.97 to 1.07)
P value for trend 0.962 0.432
Air pollutant (for each IQR), adjusted for daytime noise:
  NO2 540 365 1.03 (1.00 to 1.06) 471 489 1.01 (1.00 to 1.03)
  NOx 540 365 1.03 (1.01 to 1.06) 471 489 1.01 (1.00 to 1.03)
  PM2.5 traffic exhaust 540 365 1.04 (1.01 to 1.08) 471 489 1.02 (1.01 to 1.04)
  PM2.5 traffic non-exhaust 540 365 1.02 (1.00 to 1.05) 471 489 1.01 (0.99 to 1.02)
  PM2.5 540 365 1.06 (1.01 to 1.12) 471 489 1.03 (1.00 to 1.06)
  PM10 540 365 1.03 (0.99 to 1.07) 471 489 1.01 (0.98 to 1.03)
  O3 540 365 0.96 (0.93 to 0.99) 471 489 0.99 (0.98 to 1.01)
Daytime noise, LAeq,16hr, adjusted for NO2:
  <55 dB 157 491 Reference 138 696 Reference
  55 to <60 dB 265 603 0.97 (0.93 to 1.02) 232 346 0.99 (0.96 to 1.01)
  60 to <65 dB 40 755 1.01 (0.94 to 1.09) 35 334 1.01 (0.97 to 1.05)
  ≥65 dB 76 516 0.98 (0.93 to 1.05) 65 113 0.99 (0.96 to 1.03)
P value for trend 0.802 0.957
LBW=low birth weight; SGA=small for gestational age; IQR=interquartile range  
*P value for linear trend across increasing noise categories.

 on 4 M
arch 2019 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.j5299 on 5 D
ecem

ber 2017. D
ow

nloaded from
 

http://www.bmj.com/


RESEARCH

the bmj | BMJ 2017;359:j5299 | doi: 10.1136/bmj.j5299� 9

potential exposure misclassification, as noise levels 
may change dramatically over short distances (tens 
of metres). Nonetheless, the potential for exposure 
misclassification remains. For air pollution, there 
may be some exposure misclassification close to 
sources (where gradients of primary pollutants are 
steep). However, most people do not live within 10 
m to 30 m of the centre of a main road so the impact 
on this study will be low. The percentage of maternal 
residences in our dataset within 10 m of a major road 
(annual average daily traffic (AADT) >10 000 vehicles) 
was 0.07%, within 20 m was 5%, and within 30 m 
was 11%. We examined the relation between living 
within 10 m, 20 m, and 30m of a major road and key 
individual level variables (ethnicity, birth registration 
type, and maternal age). These variables were not 
associated with living within 10 m of a major road. The 
percentage of mothers living within either 20 m or 30 
m of a major road was slightly greater (by up to 3%) 
for non-white ethnicities (v white), unmarried mothers 
(v married), and younger (v older) maternal age groups. 
However, these percentage differences are very small 
(≤3%), so there is no reason to assume that this would 
introduce serious bias. Most importantly, however, 
whilst there may be some exposure misclassification 
between the exposure at the actual address versus the 

grid point estimate assigned, this should introduce no 
bias because we have assigned the nearest 20 m × 20 
m point. To introduce bias we would always have to 
choose the point on the side of the residence closest to 
the road and this is unlikely. 

The air pollutant model predicted PM2.5 and PM10 
slightly more accurately than NO2 and NOx, but the 
model bias was in the same direction (over prediction) 
for all these pollutants. Greater model prediction 
uncertainty for NO2 and NOx may result in effect 
estimates for NO2 and NOx being more conservative 
than those for PM2.5 and PM10 and therefore may limit 
our ability to directly compare the magnitude of effect 
estimates for NO2 or NOx with PM2.5 or PM10. 

The noise model is likely to have overestimated and 
underestimated noise on some minor roads (owing to 
the constant for traffic on minor roads), but there is no 
geographical pattern (ie, autocorrelation) in any bias as 
a result of this,17 however, to reduce potential exposure 
misclassification we categorised noise exposure for 
analysis. We avoided selection bias by using all birth 
registration data. Direct measures of individual level 
smoking or deprivation data were unavailable, but 
we adjusted for tobacco expenditure and deprivation 
(Carstairs quintile) at census output area level, as in 
previous epidemiological studies.29 30 We have also 
adjusted for birth registration type, an individual 
level variable which relates to both individual 
level qualifications and housing tenure (and thus 
socioeconomic status or deprivation) and individual 
level smoking.31 We cannot exclude the possibility 
of some residual confounding by maternal smoking, 
passive smoking, or deprivation, but we have adjusted 
for deprivation and smoking by proxy at individual 
level, in addition to at area level. Information on parity 
was not available as part of this study, so we could not 
adjust for any potential confounding effects directly, 
but an association between parity and exposure 
is most likely through deprivation (at area level or 
individual level), ethnicity, or maternal age, and these 
have been adjusted for. There is some evidence to 
suggest that extremes of ambient temperature may be 
associated with adverse birth outcomes (eg, preterm 
birth or early delivery and LBW).32-36 Meteorological 
conditions, including ambient temperature, are 
related to air pollution levels. By adjusting for season 
we did adjust for general seasonal variation in average 
temperatures, but we could not adjust for exposure 
to extreme ambient temperatures as we did not have 
data on temperature linked to the births data. We 
could not account for residential mobility during 
pregnancy (∼16% in UK37), nor exposures away from 
maternal residence (eg, workplace or transport), 
indoor air pollution, or exposure modification owing 
to behaviours (eg, opening windows), or building 
characteristics (eg, bedroom façade). These could 
contribute to exposure misclassification. 
We were not able to adjust for spontaneous versus 
medical intervention early delivery (which could 
influence the outcome indirectly by gestation period), 
as data on delivery type were not available as part of 
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Fig 6 | Adjusted generalised additive model for NO2 and 
Lnight. The plots show smoothing functions with 95% 
confidence intervals for the association between term 
birth weight and NO2 and night-time noise (Lnight) in 
joint exposure models. The model is adjusted for sex, 
maternal age, ethnicity, birth registration type, birth 
season, birth year, Carstairs quintile (census output area 
level), tobacco expenditure (census output area level), 
and gestational age as linear and quadratic terms
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this study from the birth registry or NHS Numbers for 
Babies (NN4B) datasets. If clinical practice in medical 
intervention for early delivery varies spatially (eg, 
between hospitals or owing to cultural factors), this 
could potentially confound the spatial component of 
exposure metrics. However, all our epidemiological 
models included a random effect for small area (middle 
layer super output areas – average population 8000) 
specifically to account for underlying spatial patterns 
in the data, so we do not think this should be a serious 
issue. Multiple hypothesis tests were performed, so the 
multiple testing problem (ie, that the probability of a 
Type 1 error will be greater than 0.05 (5%)), should be 
considered when interpreting P values.

Strengths and weaknesses in relation to other 
studies
Our single air pollutant model findings are consistent 
with recent meta-analyses which report increased risk 
of low birth weight (LBW) and reduced mean birth 
weight associated with NO2,1 PM2.5,38 and PM10.1 39 
Meta-analysis results for O3 are less clear: odds ratio for 
LBW of 1.01 (95% confidence interval, 0.82 to 1.25) 
for each 20 ppb increase in pregnancy exposure to 
O3.1 To our knowledge, only three Californian studies, 
have examined source specific PM2.5 and birth weight. 
Converted to the same interquartile range (IQR) (0.35 
μg/m3) scale as our PM2.5 traffic exhaust analyses, these 
studies each report 2% increased odds of term LBW 
for PM2.5 from diesel and 3% to 4% increased odds for 
PM2.5 from gasoline,40-42 consistent in magnitude with 
our odds ratio for term LBW of 1.04 (95% confidence 
interval, 1.01 to 1.07) for each IQR increase. To our 
knowledge, no previous study has reported two 
pollutant models including source specific PM2.5. Our 
findings, that only PM2.5 traffic exhaust (out of PM2.5 traffic exhaust, 
NO2, and NOx) showed a consistent elevated risk with 
mutual adjustment, suggesting that associations 
between LBW and air pollutants emitted from vehicle 
exhausts may be driven by the fine particulate 
matter (PM2.5 traffic exhaust) component rather than the 
gaseous NOx component is an important and new 
contribution to scientific knowledge. Our study also 
shows associations between LBW and fine particulate 
matter from road traffic which is not emitted from the 
vehicle exhaust (ie, brake or tyre wear particles and 
vehicle induced resuspension of road dust). However, 
owing to multicollinearity in models containing both  
PM2.5 traffic exhaust and PM2.5 traffic non-exhaust, we could not 
separate potential effects of traffic related exhaust 
and non-exhaust related PM2.5. The magnitude of 
association with PM2.5 traffic exhaust was consistently 
stronger than with PM2.5 traffic non-exhaust, and this could 
reflect differing chemical constituents (and thus 
toxicity) of the PM2.5 mixture from different sources.

We found that associations between road traffic 
noise and term birth weight were strongly attenuated 
when adjusted for primary air pollutants related to 
traffic: to null when adjusted for PM2.5 traffic exhaust or 
PM2.5  traffic non-exhaust, although after adjustment for NO2 
or NOx an association between night-time noise and 

reduced birth weight in the highest exposure category 
remained, which could possibly reflect a threshold 
effect. The results of our generalised additive models 
adjusted for NO2 or NOx, however, do not support an 
independent association with road traffic noise, or 
suggest any threshold effect for noise. The most recent 
systematic review of noise exposure and birth weight 
found “evidence supportive of associations between 
LBW and noise exposure” particularly for very high 
noise levels, but the evidence was inconsistent,4 
based on 10 occupational studies, four aircraft noise 
studies, and two traffic noise studies. Three previous 
studies have examined long term air pollution and 
noise exposures jointly.7-9 Our findings are consistent 
with a small cohort study (n=6438) in Barcelona, 
which suggested elevated risks of term LBW and small 
for gestational age (SGA) associated with noise and 
air pollution exposures in single exposure adjusted 
models, but in a joint exposure model term LBW risk 
was associated with third trimester PM2.5 (for each 3.6 
μg/m3, odds ratio 1.31, 95% confidence interval 1.07 
to 1.61), but not noise (for each 6.7 dB (A-weighted), 
0.89, 0.71 to 1.12).7 Term birth weight was not 
associated with NO2, NOx, or road traffic noise, in 
either fully adjusted single exposure models or joint 
exposure models in the Danish National Birth Cohort 
(n=75 166).9

Our findings contrast with a registry based study 
in Vancouver (n=68 238), which found associations 
between all transportation (road traffic, railway, and 
aircraft) noise (Lden) and reduced term birth weight or 
LBW which remained after adjustment for PM2.5, PM10, 
and primary road traffic air pollution (NO2 and NOx), 
however, associations for air pollutants were attenuated 
to null by adjustment for transportation noise.8 Road 
traffic noise showed similar associations with term 
birth weight or LBW in single exposure models, but road 
traffic noise adjusted for air pollution was not analysed.8 
We, however, found an association between the road 
traffic noise and reduced birth weight remained after 
adjustment for PM2.5 or PM10 (which include regional 
and urban background contributions)  – one possible 
explanation is that adjusting for PM2.5 or PM10 did not 
fully control for confounding of noise by air pollution 
coexposures from road traffic. This should be noted by 
other researchers investigating potential health effects 
of road traffic noise. 

Compared with London, the noise distribution in 
Vancouver was wider (Lden mean 60.2 dB(A-weighted), 
range 6.2-89.0), mean air pollution exposures were 
lower and with less contrast in Vancouver (PM2.5 
mean 4.1 μg/m3, range 0-11.3; NO2 mean 33.7 μg/m3, 
range 0-64.5) and Denmark (NO2 median 11.0 μg/m3, 
5th-95th centiles 7.1–26.3), and air pollutant-noise 
correlations were lower in Vancouver (correlations 
with road traffic noise: 0.05 for NO2, 0.09 for PM2.5; and 
all transportation noise: 0.18 for NO2, 0.16 for PM2.5), 
but higher in Denmark (0.47 between NO2 and road 
traffic noise).8 9 These differences, which could reflect 
differences in pollutant sources, may contribute to the 
contrasting findings from Denmark and Vancouver 
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compared with our study. In our study the noise model 
floor means that the minimum modelled value of night-
time noise from road traffic in London was 42.4 dB,17 
which is higher than the recommended upper limit of 
exposure of total noise of 40 dB proposed by the Night 
Noise Guidelines for Europe.43 It is possible that we did 
not have a sufficiently low noise exposure reference 
group, to detect small associations between noise and 
birth weight, above the guideline level.

In the broader context, our findings contrast with 
reviews of joint air pollution and noise studies which 
suggest independent effects of road traffic noise on 
other health outcomes (eg, cardiovascular outcomes), 
after adjustment for air pollution.44 45 This could 
reflect different biological pathways between noise 
and fetal growth versus other health outcomes at later 
stages of life. The fetus has no direct exposure to the 
environment, but exposure is mediated through the 
mother and placenta, and this may modify effects. 
Threshold effects may be relevant for exposure to noise, 
and the threshold could vary between health outcomes, 
possibly being higher for effects on birth weight versus, 
for example, cardiovascular outcomes. Alternatively, it 
might reflect differences between studies in the ability 
to control for confounding by air pollution from road 
traffic specifically. We did note that associations between 
noise and birth weight were more strongly attenuated by 
adjustment for primary road traffic-related air pollutants 
(NO2, NOx, PM2.5 traffic exhaust, PM2.5 traffic non-exhaust) compared 
with background air pollutants (PM2.5 and PM10). This 
suggests that adjusting for the background pollutants 
may not fully adjust for the confounding effects of air 
pollution coexposures directly from road traffic, in 
our study. With respect to cardiovascular outcomes, it 
has been noted that “more studies using air pollution 
indicators specific to road traffic are needed to properly 
assess if road noise and pollutant effects on CV outcomes 
are subjected to the confounding effect of one another.”45

Our results did not give a clear indication as to 
which trimester could be most influential with respect 
to air pollution and fetal growth, and previous study 
findings have been inconsistent on this point. The 
most recent meta-analyses are suggestive overall of 
stronger associations for later trimesters between 
LBW or reduced birth weight and PM2.5 and PM10,38 39 
but unclear for NO2.1 One potential explanation for 
this is that earlier trimester exposures may be more 
prone to exposure measurement bias from residential 
mobility (in studies assigning exposure according 
to maternal residential address at birth), and thus 
attenuated towards the null. However, there are 
persuasive findings from a natural experiment of air 
pollution reductions during the 2008 Bejing Olympics, 
supporting the importance of the third trimester 
exposures to air pollution in relation to term birth 
weight.46 This is biologically plausible, as during the 
third trimester the rate of fetal growth and weight gain 
increases dramatically and reaches its peak at about 
week 33.47 48

We found effect modification by ethnicity of the 
relation between air pollution and reduced birth 

weight in line with previous studies, although results 
for different ethnic groups have been inconsistent.49-54 
Effect modification by ethnicity could reflect increased 
susceptibility to the adverse impacts of air pollution, 
owing to environmental inequality or differing 
biological susceptibility.

Biological mechanisms in which air pollution or 
noise may impair fetal growth are not established. 
Hypothesised mechanisms for air pollution are 
oxidative stress; endocrine disruption; changes to 
maternal-placental blood flow and oxygen or nutrition 
transfer;55 placental mitochondrial damage;56 and 
placental growth or function,57 whilst those for noise 
are stress triggered endocrine or immune response 
disruption, plasma catecholamine increase or 
placental blood flow decrease,4 hypertension,5 and 
sleep disturbance.6 Convincing evidence that maternal 
passive smoking during pregnancy is causally related 
to reduced birth weight,58 strongly supports the 
biological plausibility of an association between 
ambient air pollution and reduced birth weight, by 
analogy.

Conclusion
This study suggests that in Greater London, which 
has 19% of all annual births in England and Wales,59 
air pollution from road traffic is having a detrimental 
impact upon babies’ health, before they are born. We 
estimate that 3% of term LBW cases in London are 
directly attributable to residential exposure during 
pregnancy to PM2.5>13.8 μg/m3. Our results suggest 
little evidence for an independent exposure-response 
effect of traffic related noise on birth weight, but we 
cannot rule out that an association might be observed 
in a study area with a wider range of noise exposures. 
Our findings should be broadly generalisable to 
other UK and European cities or urban areas with 
comparable exposure levels and profiles. At city scale, 
environmental health policies aimed at reducing 
road traffic air pollution could reduce the burden of 
LBW, SGA, and subsequent lifelong morbidity. With 
the annual number of births projected to continue 
increasing in London,60 the absolute health burden 
will increase at the population level, unless air quality 
in London improves.
We thank Margaret Douglass and Peter Hambly of the Small Area 
Health Statistics Unit (SAHSU) database team for technical support 
and the TRAFFIC study group for their constructive comments. CACI 
tobacco expenditure data are Copyright 1996-2014 CACI Limited. 
Contributors: MBT, JG, HRA, SDB, and FJK contributed to study 
conception and design. DF, JG, SDB, DD, HRA, and FJK contributed 
to exposure assessment. REG, DF, and ALH acquired health and 
confounder data. RBS contributed to study design, wrote the statistical 
analysis plan, conducted the data analyses, and drafted the initial 
report. MBT contributed to the statistical analysis plan, the data 
analyses, and initial drafting of the report. MB contributed to the 
study design and statistical analysis plan. All authors contributed to 
interpreting the analyses and critically revising the article, approved 
the final draft, and agree to be accountable for all aspects of the work. 
All authors had full access to all of the data in the study and can take 
responsibility for the integrity of the data and the accuracy of the data 
analysis. MBT is the guarantor.
Funding: This work was funded by the UK Natural Environment 
Research Council, Medical Research Council (MRC), Economic and 
Social Research Council, Department of Environment, Food and 

 on 4 M
arch 2019 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.j5299 on 5 D
ecem

ber 2017. D
ow

nloaded from
 

http://www.bmj.com/


RESEARCH

12� doi: 10.1136/bmj.j5299 | BMJ 2017;359:j5299 | the bmj

Rural Affairs, and Department of Health (DH) (NE/I00789X/1, NE/
I008039/1) through the cross research council Environmental 
Exposures & Health Initiative. The research was part funded by the 
National Institute for Health Research Health Protection Research 
Unit (NIHR HPRU) in Health Impact of Environmental Hazards at King’s 
College London in partnership with Public Health England (PHE). 
The work of the UK SAHSU is funded by PHE as part of the MRC-PHE 
Centre for Environment and Health, funded also by the UK MRC (MR/
L01341X/1). The views expressed are those of the authors and not 
necessarily those of the NHS, the NIHR, PHE, or DH. The funders had 
no role in the study design; collection, analysis, and interpretation 
of data; writing of the report; or decision to submit the article for 
publication.

Competing interests: All authors have completed the ICMJE 
uniform disclosure form at www.icmje.org/coi_disclosure.pdf and 
declare: no support from any organisation for the submitted work 
other than those detailed above; no financial relationships with any 
organisations that might have an interest in the submitted work in the 
previous three years; no other relationships or activities that could 
appear to have influenced the submitted work.

Ethical approval: The study used SAHSU data (UK National Births and 
Stillbirth register data and NHS Numbers for Babies (NN4B)), supplied 
by the Office for National Statistics. The study was covered by national 
research ethics approval from the London-South East Research Ethics 
Committee (reference 17/LO/0846). Data access was covered by 
the Health Research Authority Confidentiality Advisory Group under 
Regulation 5 of the Health Service (Control of Patient Information) 
Regulations 2002 (reference 14/CAG/1039).

Data sharing: No additional data are available.

Transparency: The lead author, MBT, affirms that the manuscript 
is an honest, accurate, and transparent account of the study being 
reported; that no important aspects of the study have been omitted; 
and that any discrepancies from the study as planned have been 
explained.

This is an Open Access article distributed in accordance with the 
terms of the Creative Commons Attribution (CC BY 4.0) license, which 
permits others to distribute, remix, adapt and build upon this work, 
for commercial use, provided the original work is properly cited. See: 
http://creativecommons.org/licenses/by/4.0/.

1	 Stieb DM, Chen L, Eshoul M, Judek S. Ambient air pollution, 
birth weight and preterm birth: a systematic review and 
meta-analysis. Environ Res 2012;117:100-11. doi:10.1016/j.
envres.2012.05.007

2	 Royal College of Physicians. Every breath we take: the lifelong impact 
of air pollution. Report of a working party. RCP, 2016.

3	 Münzel T, Gori T, Babisch W, Basner M. Cardiovascular effects of 
environmental noise exposure. Eur Heart J 2014;35:829-36. 
doi:10.1093/eurheartj/ehu030

4	 Ristovska G, Laszlo HE, Hansell AL. Reproductive outcomes 
associated with noise exposure - a systematic review of the literature. 
Int J Environ Res Public Health 2014;11:7931-52. doi:10.3390/
ijerph110807931

5	 McCowan L, Horgan RP. Risk factors for small for gestational age 
infants. Best Pract Res Clin Obstet Gynaecol 2009;23:779-93. 
doi:10.1016/j.bpobgyn.2009.06.003

6	 Palagini L, Gemignani A, Banti S, Manconi M, Mauri M, Riemann D. 
Chronic sleep loss during pregnancy as a determinant of stress: 
impact on pregnancy outcome. Sleep Med 2014;15:853-9. 
doi:10.1016/j.sleep.2014.02.013

7	 Dadvand P, Ostro B, Figueras F. Residential proximity to major roads 
and term low birth weight: the roles of air pollution, heat, noise, and 
road-adjacent trees. Epidemiology 2014;25:518-25. doi:10.1097/
EDE.0000000000000107

8	 Gehring U, Tamburic L, Sbihi H, Davies HW, Brauer M. 
Impact of noise and air pollution on pregnancy 
outcomes. Epidemiology 2014;25:351-8. doi:10.1097/
EDE.0000000000000073

9	 Hjortebjerg D, Andersen AM, Ketzel M, Pedersen M, Raaschou-
Nielsen O, Sørensen M. Associations between maternal exposure to 
air pollution and traffic noise and newborn’s size at birth: A cohort 
study. Environ Int 2016;95:1-7. doi:10.1016/j.envint.2016.07.003

10	 Moser K, Hilder L. Assessing quality of NHS Numbers for Babies  
data and providing gestational age statistics. Health Stat 
Q 2008;37:15-23.

11	 Carstairs V, Morris R. Deprivation and health in Scotland. Health Bull 
(Edinb) 1990;48:162-75.

12	 Beevers SD, Kitwiroon N, Williams ML, Kelly FJ, Ross Anderson H, 
Carslaw DC. Air pollution dispersion models for human exposure 
predictions in London. J Expo Sci Environ Epidemiol 2013;23:647-
53. doi:10.1038/jes.2013.6

13	 The London Atmospheric Emissions Inventory. 2010 [Internet]. 
2010 [cited 8/1/2015]. Available from: https://data.london.gov.uk/
dataset/london-atmospheric-emissions-inventory-2010.

14	 Beevers S, Dajnak D. Traffic Project Supplementary Files. Air pollution 
Model. KCLurban model description, evaluation and outputs 2015 
[Available from: http://www.kcl.ac.uk/lsm/research/divisions/aes/
research/ERG/research-projects/traffic/index.aspx

15	 Toledano MB, Nieuwenhuijsen MJ, Best N. Relation of trihalomethane 
concentrations in public water supplies to stillbirth and birth 
weight in three water regions in England. Environ Health 
Perspect 2005;113:225-32. doi:10.1289/ehp.7111

16	 Smith RB, Edwards SC, Best N, Wright J, Nieuwenhuijsen MJ, 
Toledano MB. Birth Weight, Ethnicity, and Exposure to 
Trihalomethanes and Haloacetic Acids in Drinking Water during 
Pregnancy in the Born in Bradford Cohort. Environ Health 
Perspect 2016;124:681-9. doi:10.1289/ehp.1409480

17	 Gulliver J, Morley D, Vienneau D. Development of an open-source 
road traffic noise model for exposure assessment. Environ Model 
Softw 2015;74:183-93doi:10.1016/j.envsoft.2014.12.022.

18	 World Health Organisation. International Classification of Diseases 
and Related Health Problems. 10th revision, Fifth edition. 2016.

19	 Arbuckle TE, Wilkins R, Sherman GJ. Birth weight percentiles by 
gestational age in Canada. Obstet Gynecol 1993;81:39-48.

20	 Tin W, Wariyar UK, Hey EN. The Northern Neonatal Network. 
Selection biases invalidate current low birthweight weight-for-
gestation standards. Br J Obstet Gynaecol 1997;104:180-5. 
doi:10.1111/j.1471-0528.1997.tb11041.x

21	 Cole TJ, Green PJ. Smoothing reference centile curves: the LMS 
method and penalized likelihood. Stat Med 1992;11:1305-19. 
doi:10.1002/sim.4780111005

22	 Pan H, Cole TJ. LMSchartmaker, a program to construct growth 
references using the LMS method. Version 2.54. http://www.
healthforallchildren.co.uk/. 2011.

23	 Bonellie S, Chalmers J, Gray R, Greer I, Jarvis S, Williams C. Centile 
charts for birthweight for gestational age for Scottish singleton 
births. BMC Pregnancy Childbirth 2008;8:5. doi:10.1186/1471-
2393-8-5

24	 Olsen IE, Groveman SA, Lawson ML, Clark RH, Zemel BS. New 
intrauterine growth curves based on United States data. 
Pediatrics 2010;125:e214-24. doi:10.1542/peds.2009-0913

25	 Lim JS, Lim SW, Ahn JH, Song BS, Shim KS, Hwang IT. New Korean 
reference for birth weight by gestational age and sex: data from 
the Korean Statistical Information Service (2008-2012). Ann 
Pediatr Endocrinol Metab 2014;19:146-53. doi:10.6065/
apem.2014.19.3.146

26	 Norris T, Johnson W, Farrar D, Tuffnell D, Wright J, Cameron N. Small-
for-gestational age and large-for-gestational age thresholds to 
predict infants at risk of adverse delivery and neonatal outcomes: 
are current charts adequate? An observational study from the Born 
in Bradford cohort. BMJ Open 2015;5:e006743. doi:10.1136/
bmjopen-2014-006743

27	 Rockhill B, Newman B, Weinberg C. Use and misuse of population 
attributable fractions. Am J Public Health 1998;88:15-9. 
doi:10.2105/AJPH.88.1.15

28	 Wu TN, Chen LJ, Lai JS, Ko GN, Shen CY, Chang PY. Prospective 
study of noise exposure during pregnancy on birth weight. Am 
J Epidemiol 1996;143:792-6. doi:10.1093/oxfordjournals.aje.
a008817

29	 Nieuwenhuijsen MJ, Toledano MB, Bennett J. Chlorination disinfection 
by-products and risk of congenital anomalies in England and 
Wales. Environ Health Perspect 2008;116:216-22. doi:10.1289/
ehp.10636

30	 Douglas P, Bakolis I, Fecht D. Respiratory hospital admission risk near 
large composting facilities. Int J Hyg Environ Health 2016;219:372-9. 
doi:10.1016/j.ijheh.2016.03.004

31	 Graham JCC, Barnard M, Mowlam A, McKay S. Sole and joint birth 
registration: exploring the circumstances, choices and motivations 
of unmarried parents. Department of Work and Pensions Research 
Report No 463. Leeds: Her Majesty’s Stationery Office by Corporate 
Document Services; 2007.

32	 Basu R, Malig B, Ostro B. High ambient temperature and the risk of 
preterm delivery. Am J Epidemiol 2010;172:1108-17. doi:10.1093/
aje/kwq170

33	 Arroyo V, Díaz J, Ortiz C, Carmona R, Sáez M, Linares C. Short term 
effect of air pollution, noise and heat waves on preterm births in 
Madrid (Spain). Environ Res 2016;145:162-8. doi:10.1016/j.
envres.2015.11.034

34	 Auger N, Naimi AI, Smargiassi A, Lo E, Kosatsky T. Extreme 
heat and risk of early delivery among preterm and term 
pregnancies. Epidemiology 2014;25:344-50. doi:10.1097/
EDE.0000000000000074

35	 Strand LB, Barnett AG, Tong S. The influence of season and ambient 
temperature on birth outcomes: a review of the epidemiological 
literature. Environ Res 2011;111:451-62. doi:10.1016/j.
envres.2011.01.023

 on 4 M
arch 2019 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.j5299 on 5 D
ecem

ber 2017. D
ow

nloaded from
 

http://www.icmje.org/coi_disclosure.pdf
http://creativecommons.org/licenses/by/4.0/
https://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory-2010
https://data.london.gov.uk/dataset/london-atmospheric-emissions-inventory-2010
http://www.kcl.ac.uk/lsm/research/divisions/aes/research/ERG/research-projects/traffic/index.aspx
http://www.kcl.ac.uk/lsm/research/divisions/aes/research/ERG/research-projects/traffic/index.aspx
http://www.healthforallchildren.co.uk/
http://www.healthforallchildren.co.uk/
http://www.bmj.com/


RESEARCH

No commercial reuse: See rights and reprints http://www.bmj.com/permissions� Subscribe: http://www.bmj.com/subscribe

36	 Ha S, Zhu Y, Liu D, Sherman S, Mendola P. Ambient temperature 
and air quality in relation to small for gestational age and term 
low birthweight. Environ Res 2017;155:394-400. doi:10.1016/j.
envres.2017.02.021

37	 Tunstall H, Pickett K, Johnsen S. Residential mobility in the UK 
during pregnancy and infancy: are pregnant women, new mothers 
and infants ‘unhealthy migrants’? Soc Sci Med 2010;71:786-98. 
doi:10.1016/j.socscimed.2010.04.013

38	 Sun X, Luo X, Zhao C. The associations between birth weight and 
exposure to fine particulate matter (PM2.5) and its chemical 
constituents during pregnancy: A meta-analysis. Environ 
Pollut 2016;211:38-47. doi:10.1016/j.envpol.2015.12.022

39	 Lamichhane DK, Leem JH, Lee JY, Kim HC. A meta-analysis of exposure 
to particulate matter and adverse birth outcomes. Environ Health 
Toxicol 2015;30:e2015011. doi:10.5620/eht.e2015011

40	 Wilhelm M, Ghosh JK, Su J, Cockburn M, Jerrett M, Ritz B. Traffic-
related air toxics and term low birth weight in Los Angeles County, 
California. Environ Health Perspect 2012;120:132-8. doi:10.1289/
ehp.1103408

41	 Laurent O, Hu J, Li L. Sources and contents of air pollution affecting 
term low birth weight in Los Angeles County, California, 2001-2008. 
Environ Res 2014;134:488-95. doi:10.1016/j.envres.2014.05.003

42	 Laurent O, Hu J, Li L. Low birth weight and air pollution in California: 
Which sources and components drive the risk? Environ Int 2016; 
92-93:471-7. doi:10.1016/j.envint.2016.04.034

43	 World Health Organisation. Night Noise Guidelines for Europe. WHO 
Regional Office for Europe, 2009.

44	 Stansfeld SA. Noise Effects on Health in the Context of Air Pollution 
Exposure. Int J Environ Res Public Health 2015;12:12735-60. 
doi:10.3390/ijerph121012735

45	 Tétreault LF, Perron S, Smargiassi A. Cardiovascular health, 
traffic-related air pollution and noise: are associations mutually 
confounded? A systematic review. Int J Public Health 2013;58: 
649-66. doi:10.1007/s00038-013-0489-7

46	 Rich DQ, Liu K, Zhang J. Differences in Birth Weight Associated with 
the 2008 Beijing Olympics Air Pollution Reduction: Results from 
a Natural Experiment. Environ Health Perspect 2015;123:880-7. 
doi:10.1289/ehp.1408795

47	 Owen P, Donnet ML, Ogston SA, Christie AD, Howie PW, Patel NB. 
Standards for ultrasound fetal growth velocity. Br J Obstet 
Gynaecol 1996;103:60-9. doi:10.1111/j.1471-0528.1996.
tb09516.x

48	 Williams RL, Creasy RK, Cunningham GC, Hawes WE, Norris FD, 
Tashiro M. Fetal growth and perinatal viability in California. Obstet 
Gynecol 1982;59:624-32.

49	 Bell ML, Belanger K, Ebisu K. Prenatal exposure to fine particulate 
matter and birth weight: variations by particulate constituents 
and sources. Epidemiology 2010;21:884-91. doi:10.1097/
EDE.0b013e3181f2f405

50	 Darrow LA, Klein M, Strickland MJ, Mulholland JA, Tolbert PE. Ambient 
air pollution and birth weight in full-term infants in Atlanta, 1994-
2004. Environ Health Perspect 2011;119:731-7. doi:10.1289/
ehp.1002785

51	 Salihu HM, Ghaji N, Mbah AK, Alio AP, August EM, Boubakari I. 
Particulate pollutants and racial/ethnic disparity in feto-infant 
morbidity outcomes. Matern Child Health J 2012;16:1679-87. 
doi:10.1007/s10995-011-0868-8

52	 Bell ML, Ebisu K, Belanger K. Ambient air pollution and low 
birth weight in Connecticut and Massachusetts. Environ Health 
Perspect 2007;115:1118-24. doi:10.1289/ehp.9759

53	 Schembari A, de Hoogh K, Pedersen M. Ambient Air Pollution 
and Newborn Size and Adiposity at Birth: Differences by Maternal 
Ethnicity (the Born in Bradford Study Cohort). Environ Health 
Perspect 2015;123:1208-15. doi:10.1289/ehp.1408675

54	 Basu R, Harris M, Sie L, Malig B, Broadwin R, Green R. Effects of 
fine particulate matter and its constituents on low birth weight 
among full-term infants in California. Environ Res 2014;128:42-51. 
doi:10.1016/j.envres.2013.10.008

55	 Slama R, Darrow L, Parker J. Meeting report: atmospheric pollution 
and human reproduction. Environ Health Perspect 2008;116:791-8. 
doi:10.1289/ehp.11074

56	 Clemente DB, Casas M, Vilahur N. Prenatal Ambient Air Pollution, 
Placental Mitochondrial DNA Content, and Birth Weight in the INMA 
(Spain) and ENVIRONAGE (Belgium) Birth Cohorts. Environ Health 
Perspect 2016;124:659-65. doi:10.1289/ehp.1408981

57	 van den Hooven EH, Pierik FH, de Kluizenaar Y. Air pollution exposure 
and markers of placental growth and function: the generation R 
study. Environ Health Perspect 2012;120:1753-9. doi:10.1289/
ehp.1204918

58	 Office on Smoking and Health (US). The Health Consequences of 
Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon 
General. Atlanta (GA): Centers for Disease Control and Prevention 
(US); 2006. Available from: https://www.ncbi.nlm.nih.gov/books/
NBK44324/

59	 Births by mothers’ usual area of residence in the UK - 2015 
release [Internet]. 2016 [cited 16/11/2016]. Available from: 
https://www.ons.gov.uk/peoplepopulationandcommunity/
birthsdeathsandmarriages/livebirths/datasets/
birthsbyareaofusualresidenceofmotheruk.

60	 Birth trends in London November 2016 [Internet]. 2016 [cited 
26/01/2017]. Available from: https://files.datapress.com/london/
dataset/birth-trends-in-london/2016-11-30T11:18:11/update- 
08-2016-birth-trends-london.pdf.

Appendix: Supplementary materials

 on 4 M
arch 2019 by guest. P

rotected by copyright.
http://w

w
w

.bm
j.com

/
B

M
J: first published as 10.1136/bm

j.j5299 on 5 D
ecem

ber 2017. D
ow

nloaded from
 

https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthsbyareaofusualresidenceofmotheruk
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthsbyareaofusualresidenceofmotheruk
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthsbyareaofusualresidenceofmotheruk
https://files.datapress.com/london/dataset/birth-trends-in-london/2016-11-30T11:18:11/update-08-2016-birth-trends-london.pdf
https://files.datapress.com/london/dataset/birth-trends-in-london/2016-11-30T11:18:11/update-08-2016-birth-trends-london.pdf
https://files.datapress.com/london/dataset/birth-trends-in-london/2016-11-30T11:18:11/update-08-2016-birth-trends-london.pdf
http://www.bmj.com/

