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Abstract. We study finite dimensional Koszul algebras and their generalisations in-

cluding d-Koszul algebras and (D,A)-stacked algebras, together with their projective

resolutions and Hochschild cohomology. Then we introduce the stretched algebra

Λ̃ and give a functorial construction of the projective resolution of Λ̃/r̃ and the

projective bimodule resolution of Λ̃. Following this, we show that if E(Λ) is finitely

generated then so is E(Λ̃). We investigate the connection between HH∗(Λ) and

HH∗(Λ̃) and the finiteness condition (Fg) using the theory of stratifying ideals. We

give sufficient conditions for a finite dimensional Koszul monomial algebra to have

(Fg) and generalize this result to finite dimensional d-Koszul monomial algebras. It

is known that if Λ is a d-Koszul algebra then Λ̃ is a (D,A)-stacked algebra, where

D = dA. We investigate the converse. We give the construction of the algebra B
from a (D,A)-stacked algebra A and show that if A is a (D,A)-stacked monomial

algebra, then B is d-Koszul with D = dA.
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1. Introduction

This thesis studies cohomology of finite dimensional algebras, particularly Koszul

algebras and their generalisations. Koszul algebras have been shown to be important

in algebra and algebraic topology [38], see also [21]. The class of Koszul algebras

was introduced by Priddy in 1970, [38]. There are several generalisations of Koszul

algebras; the d-Koszul algebras were introduced by Berger [5] and (D,A)-stacked

monomial algebras were introduced by Green and Snashall [26]. Leader [36] extended

this theory to the class of non-monomial (D,A)-stacked algebras. The Ext algebra

of a Koszul algebra, a d-Koszul algebra and a (D,A)-stacked algebra are all finitely

generated.

We are interested in the cohomology and finiteness conditions for generalizations

of Koszul algebras where Λ = KQ/I is a finite dimensional algebra for K a field

and Q a finite quiver and I an admissible ideal. Homological algebra has been used

to study the representations of finite dimensional algebras (see [2]) and the study

of cohomology theories (including the Ext algebra and the Hochschild cohomology

ring) has proved extremely useful. The Hochschild cohomology of finite dimensional

algebras was introduced by Hochschild [30]. We study projective resolutions, the

Ext algebra, Hochschild cohomology and the (Fg) condition for generalisations of

Koszul algebras.

In this thesis, we begin with some background information on finite dimensional

algebras Λ given by quiver and relations. We also remind the reader of the construc-

tion of the minimal projective resolution of Λ/r of Green, Solberg and Zacharia, given

in [28], where r is the Jacobson radical of Λ. This is followed by the construction

of the beginning of a minimal projective bimodule resolution of Λ of Green and

Snashall given in [24].

In Chapter 3 we introduce Koszul algebras and their generalisations. This is

followed by giving a brief introduction to Gröbner bases following [13], [15] and [17].

The main result in this chapter is:

Theorem 3.28 Let Λ = KQ/I be a (D,A)-stacked algebra with gldim Λ ≥ 4 and

with a reduced Gröbner basis G of elements of length D. Then A|D.

In Chapter 4 we explicitly give the construction of a new algebra Λ̃ from a finite

dimensional algebra Λ. We call Λ̃ a stretched algebra. This generalises work by
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Leader [36], where she takes a d-Koszul algebra Λ and gives a construction of a new

algebra, Λ̃. We prove in Theorem 4.8 that the algebras Λ and εΛ̃ε are isomorphic

where ε =
∑

v∈Q0
v (as an element of Λ̃). After that we describe the relationship

between the projective resolutions of Λ/r and Λ̃/r̃, and between the projective

bimodule resolutions of Λ and Λ̃. We show that if E(Λ) is finitely generated then so

is E(Λ̃):

Theorem 4.47 Let Λ = KQ/I and let Λ̃ be the stretched algebra. Suppose there

is some m ≥ 1 such that the Ext algebra E(Λ) is generated in degree at most m.

Then the Ext algebra E(Λ̃) is also finitely generated, and has generators in degree

at most m+ 2.

Chapter 5 calculates the Hochschild cohomology groups of algebras Λ and Λ̃ in

Examples 5.1 and 5.2, where we find HH3(Λ) ∼= HH3(Λ̃). Moreover, it is shown in

Chapter 6 that the results of these examples can be extended to the general case

(see Theorem 6.24).

In Chapter 6, we study the Hochschild cohomology rings of Λ and its stretched

algebra Λ̃ and the finiteness condition (Fg) using the theory of stratifying ideals.

We give some results on the stretched algebra Λ̃ showing in Theorem 6.9 that Λ̃εΛ̃

is a stratifying ideal:

Theorem 6.9 Let Λ = KQ/I and let Λ̃ be the stretched algebra. We keep the

notation of the previous chapters with ε =
∑

v∈Q0
v and B = εΛ̃ε. Then Λ̃εΛ̃ is a

stratifying ideal of Λ̃.

We then show in Corollary 6.13 that Λ̃/Λ̃εΛ̃ has finite projective dimension:

Corollary 6.13 Let Λ = KQ/I and let Λ̃ be the stretched algebra. With the above

notation, pdimΛ̃e Λ̃/Λ̃εΛ̃ = 2.

After that, we build on the work of Koenig and Nagase [34], Nagase [37] and

Psaroudakis, Skartsæterhagen and Solberg [39]. We prove that Λ̃ satisfies (Fg) if

and only if Λ satisfies (Fg):

Theorem 6.35 Let Λ = KQ/I and let Λ̃ be the stretched algebra. We keep the

previous notation. Then Λ̃ satisfies (Fg) if and only if Λ satisfies (Fg).

We also find a relationship between the injective dimension of Λ̃ and the injective

dimension of Λ:

Theorem 6.37 Let Λ = KQ/I be a finite dimensional algebra and let Λ̃ be the

stretched algebra. Then idimΛ̃ Λ̃ ≤ sup{idimΛ Λ, 2}.
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Chapter 7 presents some other Koszul algebras which have (Fg). We begin

with existing work and results by Erdmann and Solberg [12]. We then give some

properties for a finite dimensional monomial d-Koszul algebra Λ = KQ/I; let Rn

be the set of overlaps Rn and let ρ be a minimal set of monomials in the generating

set of I. In Proposition 7.13, in which we show that all subpaths of R ∈ Rn (n ≥ 2)

of length d are in ρ and in Proposition 7.14 we show that all paths of length d which

lie on the closed trail T are in ρ:

Proposition 7.14 Let Λ = KQ/I be a finite dimensional monomial d-Koszul

algebra, where d ≥ 2, and let ρ be a minimal generating set for I consisting of

monomials of length d. Suppose that T = a1a2 · · · an is a closed trail in Q so that

a1, a2, . . . , an are distinct arrows. Suppose also that d ≥ n + 1. Then all paths of

length d which lie on the closed trail T = α1 · · ·αm are in ρ.

After that we give sufficient conditions for a finite dimensional d-Koszul monomial

algebra to have (Fg), and we prove this in Theorem 7.15:

Theorem 7.15 Let Λ = KQ/I be a finite dimensional monomial d-Koszul algebra,

where d ≥ 2, and let ρ be a minimal generating set for I consisting of monomials

of length d. Suppose charK 6= 2 and gldim Λ ≥ 4. Suppose that Λ satisfies the

following conditions:

(1) If α is a loop in Q, then αd ∈ ρ but there are no elements in ρ of the form

αd−1β or βαd−1 with β 6= α.

(2) If T = α1 · · ·αm is a closed trail in Q with m > 1 such that the set

ρT = {α1 · · ·αd, α2 · · ·αd+1, . . . , αmα1 · · ·αd−1} is contained in ρ, then there

are no elements in ρ \ ρT which begin or end with the arrow αi, for all

i = 1, . . . ,m.

Then Λ has (Fg).

In Chapter 8, we give a construction of an algebra B from a (D,A)-stacked

algebra A, where D = dA, A ≥ 1 and d ≥ 2. One of the main results of this chapter

is Theorem 8.4, where we prove that the algebra B we have constructed from a

(D,A)-stacked monomial algebra A is a d-Koszul monomial algebra. Also we give

conditions in Theorem 8.5 under which A and B̃ are isomorphic:

Theorem 8.5 LetA be a (D,A)-stacked monomial connected algebra with gldimA ≥
6



4, so D = dA, for some d ≥ 2. Let B be the algebra constructed from Definition 8.2.

Assume that the following conditions hold:

(1) Each arrow occurs in precisely one A-subpath;

(2) If v is properly internal to some x ∈ SA, then

(a) v is not properly internal to y ∈ SA for y 6= x.

(b) v 6= o(z) and v 6= t(z), for all z ∈ SA.

Then B̃ ∼= A.

This key result naturally leads to the intriguing question of how the cohomology

of B̃ is related to that of A, which could prove to be an interesting topic for future

research.
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2. Finite dimensional algebras and modules

In this chapter, we review the concepts of quiver, path algebra, and admissible

ideal and we discuss the result that every finite dimensional basic K-algebra, where

K is an algebraically closed field, is isomorphic to KQ/I for a quiver Q and an

admissible ideal I. This material is covered in many books on representation theory,

for example [2], [3], [9], [10], and [28]. We follow the approach of [2].

Definition 2.1. A quiver Q = (Q0,Q1, o, t), consists of two sets, Q0 which is the set

of vertices and Q1 which is the set of arrows, together with two maps o, t : Q1 → Q0,

which associate to each arrow α ∈ Q1 its origin o(α) and its tail t(α).

Note that the quiver is finite if both of Q0 and Q1 are finite. We assume that all

quivers are finite.

Definition 2.2. The quiver Q is connected if the underlying graph Q which is

obtained from Q with no orientation on the arrows, is a connected graph.

We assume throughout this thesis that K is field.

Now we want to define the path algebra of a quiver. Before that we define what

is meant by a path. A path is a sequence α1α2 · · ·αn of arrows α1, α2, . . . , αn in

Q1 with t(αl) = o(αl+1) for l = 1, . . . , n − 1. We say that the length of the path

p = α1α2 · · ·αn is n and is denoted by `(p). For each vertex i, we let ei denote

the trivial path at i of length 0, so that e2
i = ei. We also use v, vi, w, wi to denote

vertices of a quiver. Then, to avoid too many subscripts, we use the same letters

v, vi, w, wi to denote the trivial path at that vertex. It is clear from the context as

to whether we mean the vertex or the trivial path at the vertex.

We write our arrows in a path from left to right.

Definition 2.3. Let Q be a quiver. The path algebra KQ of Q is the K-algebra

whose underlying K-vector space has basis the set of all paths α1 · · ·αn of length

n ≥ 0 and such that the product of two paths α1 · · ·αn and β1 · · · βm is equal to zero

if t(αn) 6= o(β1) and is equal to the composed path α1 · · ·αnβ1 · · · βm if t(αn) = o(β1).

There is a direct sum decomposition of KQ into vector spaces,

KQ = KQ0 ⊕KQ1 ⊕ · · · ⊕KQn ⊕ · · ·
8



where KQn is the subspace of KQ generated by the set Qn of all paths of length n,

for all n ≥ 0.

In addition, this decomposition defines a grading on KQ, since (KQn)(KQm) ⊆

KQn+m for all n,m ≥ 0. This will subsequently be called the length grading.

Let Λ be an K-algebra throughout this chapter.

An element e ∈ Λ is called an idempotent if e2 = e. The idempotents e1, e2 are

called orthogonal if e1e2 = e2e1 = 0, and the idempotent e is said to be primitive if

e cannot be written as a sum of two nonzero orthogonal idempotents of Λ.

Proposition 2.4. Let Q be a quiver. The element 1 =
∑

a∈Q0
ea is the identity

of KQ and the set {ea|a in Q0} of all trivial paths is a complete set of primitive

orthogonal idempotents for KQ.

Definition 2.5. Let Q be a finite connected quiver. The two-sided ideal of the path

algebra KQ generated (as an ideal) by the arrows of Q is called the arrow ideal of

KQ and is denoted by RQ.

Definition 2.6. Let Q be a quiver and RQ be the arrow ideal of the path algebra

KQ. A two-sided ideal I of KQ is said to be admissible if there exists m ≥ 2 such

that Rm
Q ⊆ I ⊆ R2

Q.

The following result is Gabriel’s Theorem (see [10]). This theorem is the reason

why it is useful to study algebras of the form KQ/I.

Theorem 2.7. Let K be an algebraically closed field and let Λ be a basic and

connected finite dimensional K-algebra. Then there exists a unique quiver Q and an

admissible ideal I of KQ such that Λ ∼= KQ/I.

Next we look at projective modules and projective resolutions.

Definition 2.8. A right Λ-module P is projective if for any epimorphism f : M → N

and any homomorphism g : P → N , there is an homomorphism h : P → M such

that the diagram commutes

P
h

~~
g
��

M
f

// N // 0
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Proposition 2.9. Let e be an idempotent element in Λ. Then eΛ is a projective

right Λ-module.

Definition 2.10. A chain complex is a sequence

· · · −→ Xn+1 dn+1

−→ Xn dn−→ Xn−1 −→ · · ·

of right Λ-modules with Λ-homomorphisms such that dndn+1 = 0 for all n ≥ 0.

Definition 2.11. A sequence

· · · −→ Xn+1 dn+1

−→ Xn dn−→ Xn−1 −→ · · ·

of right Λ-modules connected by Λ-homomorphisms is called exact if Ker dn =

Im dn+1 for all n. In particular

0 −→ L
f−→M

g−→ N −→ 0

is called a short exact sequence if f is a monomorphism and g is an epimorphism

and Ker g = Im f .

Definition 2.12. Let M be a right Λ-module. A projective resolution of M is an

exact sequence

· · · → P n dn−→ P n−1 −→ · · · → P 1 d1

→ P 0 d0

−→M −→ 0

where P n is a projective Λ-module for all n ≥ 0.

It is called a minimal projective resolution of M if Im dn ⊆ radP n−1 for all n ≥ 0.

Proposition 2.13. Let Λ = KQ/I be a finite dimensional algebra. Then every

finitely generated module has a minimal projective resolution.

Definition 2.14. A right Λ-module N is injective if, for any monomorphism

f : L −→ M and any homomorphism g : L −→ N , there is an homomorphism

h : M → N such that the diagram commutes

0 // L
f
//

g
��

M
h

~~
N
10



Definition 2.15. Let N be a right Λ-module. An injective resolution of N is an

exact sequence

0→ N
h0

−→ I0 −→ · · · → In
hn+1

→ In+1 −→ · · ·

where In is an injective Λ-module for all n ≥ 0.

2.1. The Ext algebra. Now we look at cohomology theory. This material can be

found in many books on representation theory, including [32], [33], [40] and [28].

Let K be a field, Λ be a K-algebra with Jacobson radical r. We denote by

Mod Λ the abelian category of all right Λ-modules, that is, the category whose

objects are right Λ-modules, the morphisms are Λ-module homomorphisms, and

the composition of morphisms is the usual composition of maps and we denote by

mod Λ the subcategory of Mod Λ, where objects are finitely generated modules.

We assume that all our modules are in mod Λ, that is, they are finitely generated.

Definition 2.16. Let M,N be right Λ-modules, and let (P n, dn) be a minimal

projective resolution of M ,

· · · −→ P 2 d2

−→ P 1 d1

−→ P 0 d0

−→M −→ 0.

We apply HomΛ(−, N) to give the complex

0 −→ HomΛ(P 0, N)
δ0

−→ HomΛ(P 1, N)
δ1

−→ HomΛ(P 2, N)
δ2

−→ · · ·

where δn is the map induced by dn+1 such that δn : HomΛ(P n, N) −→ HomΛ(P n+1, N)

with f 7−→ f ◦ dn+1. The nth cohomology group is denoted by ExtnΛ(M,N), and is

defined by ExtnΛ(M,N) = Ker δn/ Im δn−1 for all n ≥ 0.

In particular, Ker δ0 = Ext0
Λ(M,N) = HomΛ(M,N).

The following theorem says that ExtnΛ(M,N) is independent of the choice of

projective resolution.

Theorem 2.17. If {Pn} and {Qn} are two projective resolutions of M , with

ExtnΛ(M,N) and ExtnΛ (M,N) computed with these resolutions, then

ExtnΛ(M,N) ∼= ExtnΛ(M,N).
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Definition 2.18. The Ext algebra of Λ is

E(Λ) = Ext∗Λ(Λ/r,Λ/r) = ⊕n≥0 ExtnΛ(Λ/r,Λ/r).

We need to describe the product structure of Ext∗Λ(M,M) = ⊕n≥0 ExtnΛ(M,M)

(see [26]). So we start with a minimal projective resolution (P n, dn) of M as a right

Λ-module. We apply HomΛ(−,M) to get the chain complex

0→ HomΛ (P 0,M)
δ0

→ · · · → HomΛ(P n,M)
δn→ HomΛ(P n+1,M) · · ·

Let η ∈ ExtnΛ(M,M). Then η is represented by an element of Ker δn ⊆ HomΛ(P n,M)

and we also denote this element by η.

Let η ∈ ExtnΛ(M,M) and θ ∈ ExtmΛ (M,M) be represented by η ∈ HomΛ(P n,M)

and θ ∈ HomΛ(Pm,M) respectively. We have a diagram

· · · // P n+m+1d
n+m+1

//

Ln+1θ
��

P n+m dn+m

//

Lnθ
��

· · ·
dm+2

// Pm+1 dm+1

//

L1θ
��

Pm

θ

!!
L0θ
��

· · · // P n+1 dn+1

// P n // · · ·
d2

// P 1 d1

// P 0 d0

// M // 0

where Lnθ is a lifting of θ, so that the diagram commutes.

Now we can represent the element ηθ by the map η ◦ Lnθ : P n+m−→M , where

Lnθ is the nth lifting of θ. So we have the following diagram

· · · // P n+m+1d
n+m+1

//

Ln+1θ
��

P n+m dn+m

//

Lnθ
��

· · ·
dm+2

// Pm+1 dm+1

//

L1θ
��

Pm

θ

!!
L0θ
��

· · · // P n+1 dn+1

// P n //

η

##

· · ·
d2

// P 1 d1

// P 0 d0

// M // 0

M

Remark 2.19. The liftings L0θ,L1θ, . . . ,Ln+1θ, . . . are not unique; however the

element ηθ ∈ Extn+m
Λ (M,M) is independent of the choice of liftings.

Proposition 2.20. [5, Corollary 2.5.4] ExtnΛ(Λ/r,Λ/r) ∼= HomΛ(P n,Λ/r), where

(P n, dn) is a minimal projective resolution of Λ/r.

Definition 2.21. Let M be a right Λ-module. Then pdimΛM ≤ n, (writing

pdimΛM to denote the projective dimension of M) if there is a finite projective
12



resolution of M

0 −→ P n dn−→ P n−1 dn−1

−→ · · · −→ P 1 d1

−→ P 0 d0

−→M −→ 0.

If no such finite resolution exists, then pdimΛ M =∞. Note that, pdimΛ M = n if

M has no projective resolution of length n− 1.

Definition 2.22. [41, Section 8.1] Let Λ be a finite dimensional K-algebra. Then

the global dimension of Λ is defined to be

gldim Λ = sup{pdimΛM,M is a right Λ-module}.

Theorem 2.23. Let M be a right Λ-module. Then the following statements are

equivalent:

(1) pdim(M) ≤ n;

(2) There exists a projective resolution of M of length n such that

0 −→ P n dn−→ P n−1 −→ · · · −→ P 1 d1

−→ P 0 d0

−→M −→ 0

(3) Extn+1
Λ (M,N) = 0 for all right modules N .

Definition 2.24. Let N be a right Λ-module. Then idimΛN ≤ n, (writing idimΛN

to denote the injective dimension of N) if there is a finite injective resolution of N

0 −→ N
h0

−→ I0 h1

−→ · · · −→ In−2 hn−1

−→ In−1 hn−→ In −→ 0.

If no such finite resolution exists, then idimΛ N =∞. Note that, idimΛN = n if N

has no injective resolution of length n− 1.

Proposition 2.25. Let N be a right Λ-module. Then idimΛN = n if and only if

Extn+1
Λ (−, N) = 0 and ExtnΛ(−, N) 6= 0.

2.2. The construction of a minimal projective resolution. Now we study the

construction of a minimal projective resolution for the module Λ/r from [28] and

the construction of a minimal projective bimodule resolution for Λ from [24]. Let

R = KQ, where Q is a finite quiver, and let Λ = KQ/I, where I is an admissible

ideal. All modules are finitely generated modules. We start with the construction of

a minimal projective resolution from [28]. The following definition is well-known.
13



Definition 2.26. An algebra Λ is called hereditary if any submodule of a projective

module is projective.

Proposition 2.27. [9, Section 1] Let KQ be a path algebra. Then KQ is hereditary.

Definition 2.28. [28] An element x ∈ KQ is called uniform if there exist two

vertices v, w such that x = vx = xw. We define o(x) = v, t(x) = w.

Now we look at the minimal projective resolution (P n, dn) for Λ/r as described

by Green, Solberg and Zacharia in [28].

Let Λ = KQ/I and let Λ/r = ⊕iSi, where Si are right simple Λ-modules. They

define sets gn which we will use to describe the resolution as follows:

g0 = set of vertices of Q,

g1 = set of arrows of Q,

g2 = a minimal set of uniform relations which generate I.

In [28] Green, Solberg and Zacharia define ⊕igni ∗R = (⊕ign−1
i R) ∩ (⊕ign−2

i I), for

all n ≥ 3, where R = KQ. We discard all elements gn∗i which are in ⊕ign−1
i I and

we denote the remaining elements by gni . We may choose all the gni to be uniform

elements; we will assume that they are all uniform. We let gn be the set of all

elements gni . The set gn can be chosen in such a way that there exists a minimal

projective resolution of Λ/r as follows:

· · · −→ P n dn−→ P n−1 −→ · · · −→ P 1 d1

−→ P 0 d0

−→ Λ/r −→ 0

where P n = ⊕it(gni )Λ. The P n are projective right Λ-modules. For each x ∈ gn

there are unique elements rj ∈ R such that x =
∑m

j=1 g
n−1
j rj, where |gn−1| = m.

For each n ≥ 1, they define dn : P n −→ P n−1 to be the Λ-homomorphism given

by: t(x)λ 7−→
∑

j t(g
n−1
j )rjt(x)λ, and t(gn−1

j )rjt(x)λ is in the component of P n−1

corresponding to t(gn−1
j ).

We summarize this in the following theorem.

Theorem 2.29. [28, Theorem 2.4] With the above notation, we can choose the sets

gn in such way that for each n, no proper linear combination of a subset of gn lies

in (⊕gn−1I +⊕gn∗RQ). Then (P n, dn) is a minimal projective resolution of Λ/r.

14



Remark 2.30. We note that each gni is in (⊕ign−1
i R)∩(⊕ign−2

i I), and I has minimal

generating set g2. In particular, for n = 3, we can write

g3
i =

∑
i

g2
i pi =

∑
i

qig
2
i ri (1)

with pi, qi, ri ∈ KQ and qi ∈ RQ.

We will use Theorem 2.29 in the next example.

Example 2.31. Let Q be the quiver

1
α

��
3

γ
@@

2
β

oo

and let Λ = KQ/I, where I = 〈αβγ, βγα, γαβ〉. We begin by finding the resolution

of each simple module.

For S1 = e1Λ/e1r, the minimal projective resolution of S1 is given by

· · · −→ P n dn−→ P n−1 −→ · · · −→ P 1 d1

−→ P 0 d0

−→ S1 −→ 0

where we define the modules P n and the maps dn as follows:

• Let P 0 = e1Λ. We define the map d0 : e1Λ 7→ e1Λ/e1r by d0(e1λ) = e1λ+ e1r

so we have Ker d0 = {e1λ : d0(e1λ) = 0} = αe2Λ.

• Let P 1 = e2Λ and define d1 : P 1 −→ P 0 by e2λ 7→ αe2λ where λ ∈ Λ.

Then Im d1 = Ker d0. We have Ker d1 = {e2λ : d1(e2λ) = 0}. Since

e2Λ = sp{e2, β, βγ}, then we can write e2λ = c1e2 + c2β + c3βγ ∈ Ker d1

and αe2λ = c1α + c2αβ = 0. Hence c1 = c2 = 0 and e2λ = c3βγ. Thus,

Ker d1 = βγe1Λ.

• Let P 2 = e1Λ and define d2 : P 2 −→ P 1 by d2(e1λ) = βγe1λ, where λ ∈ Λ.

Then Im d2 = Ker d1. Here Ker d2 = {e1λ : d2(e1λ) = 0} = {e1λ : βγe1λ =

0}. Since e1Λ = sp{e1, α, αβ}, we have Ker d2 = αe2Λ.

• Let P 3 = e2Λ and we define d3 : P 3 −→ P 2 by d3(e2λ) = αe2λ where λ ∈ Λ.

Then Im d3 = Ker d2 and Ker d3 = βγe1Λ.

• For all n ≥ 4, n even we have P n = e1Λ and define dn : P n 7→ P n−1 by

dn(e1λ) = βγe1λ so Ker dn = αe2Λ.
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• For all n ≥ 5, n odd we have P n = e2Λ and define the map dn : P n −→ P n−1

by dn(e2λ) = αe2λ. So we have Ker dn = βγe1Λ.

We can find the projective resolutions of S2 and S3 in a similar way.

Now we give the projective resolution (P n, dn) for Λ/r. To be able to construct

this resolution we need the sets gn. They are

• g0 = {e1, e2, e3} and we label the elements of the set g0 by g0
1 = e1, g

0
2 = e2,

and g0
3 = e3.

• g1 = {α, β, γ} and we label the elements of the set g1 by g1
1 = α, g1

2 = β, and

g1
3 = γ.

• g2 = {αβγ, βγα, γαβ} and we label the elements of the set g2 by g2
1 =

αβγ, g2
2 = βγα, and g2

3 = γαβ.

• For all n ≥ 3, n odd, we have gn1 = gn−1
1 α, gn2 = gn−1

2 β, and gn3 = gn−1
3 γ.

• For all n ≥ 3, n even, we have gn1 = gn−1
1 βγ, gn2 = gn−1

2 γα, and gn3 = gn−1
3 αβ.

The minimal projective resolution of Λ/r is given by

· · · −→ P n dn−→ P n−1 −→ · · · −→ P 1 d1

−→ P 0 d0

−→ Λ/r −→ 0

where we define the modules P n and the maps dn as follows:

• Let P 0 = e1Λ ⊕ e2Λ ⊕ e3Λ and define d0 : P 0 −→ Λ/r to be the canonical

surjection given by d0(e1λ1, e2λ2, e3λ3) =
∑3

i=1 eiλi + r, where λi ∈ Λ for all

i = 1, 2, 3 and hence Ker d0 = αe2Λ + βe3Λ + γe1Λ.

• Let P 1 = e2Λ ⊕ e3Λ ⊕ e1Λ and we define d1 : P 1 −→ P 0 by the following

t(g1
1) 7−→ (α, 0, 0), t(g1

2) 7−→ (0, β, 0), and t(g1
3) 7−→ (0, 0, γ). Then Ker d1 =

βγe1Λ + γαe2Λ + αβe3Λ.

• Let P 2 = e1Λ ⊕ e2Λ ⊕ e3Λ and we define d2 : P 2 −→ P 1 via t(g2
1) 7−→

t(g1
1)βγ = (βγ, 0, 0), t(g2

2) 7−→ t(g1
2)γα = (0, γα, 0), and t(g2

3) 7−→ t(g1
3)αβ =

(0, 0, αβ). Then Ker d2 = αe2Λ + βe3Λ + γe1Λ.

• For all n ≥ 3, n odd we have P n = e2Λ ⊕ e3Λ ⊕ e1Λ and define the map

dn : P n −→ P n−1 via dn(e2λ1, e3λ2, e1λ3) = (αe2λ1, βe3λ2, γe1λ3). Then

Ker dn = βγe1Λ + γαe2Λ + αβe3Λ.

• For all n ≥ 3, n even we have P n = e1Λ⊕ e2Λ⊕ e3Λ and dn : P n −→ P n−1

is given by (e1λ, e2λ, e3λ) 7−→ (βγλ1, γαλ2, αβλ3). So we have Ker dn =

αe2Λ + βe3Λ + γe1Λ.
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We can also get the minimal projective resolution of a simple module Si from the

minimal projective resolution of Λ/r. Let Λ0 be the semisimple algebra generated by

e1, . . . , en so that Λ0 is isomorphic to Λ/r. Then we tensor the minimal projective

resolution of Λ/r by Si⊗Λ0 . This gives an exact sequence which is a minimal

projective resolution of Si. Note that the n-th projective in the minimal projective

resolution of Si is ⊕t(gnj )Λ where the sum is over all gnj with o(gnj ) = i.

We introduce now the concept of the opposite algebra.

Definition 2.32. Let Λ be a K-algebra. Then we define the opposite algebra Λop

of Λ, where Λop has the same K-module structure as Λ and the elements of Λop are

the same as those of Λ. The multiplication in Λop is denoted ∗ and is defined by

a ∗ b = ba. where ba is the product of b and a in Λ.

Definition 2.33. Let Λ be aK-algebra. Then its enveloping algebra is Λe = Λop⊗KΛ

with the multiplication given by (a1 ⊗ b1)(a2 ⊗ b2) = a1 ∗ a2 ⊗ b1b2 = a2a1 ⊗ b1b2.

We write ⊗ instead of ⊗K when there is no confusion.

The categories of Λ-Λ-bimodules and right Λe-modules are isomorphic.

Now we can say that a Λ-Λ-bimodule P is a projective bimodule if P is projective

as a right Λe-module. Also, if ei, ej are any two idempotents corresponding to

vertices i, j in Q, then (ei ⊗ ej)2 = (ei ⊗ ej)(ei ⊗ ej) = e2
i ⊗ e2

j = ei ⊗ ej. Thus

ei ⊗ ej is an idempotent in Λe. Hence (ei ⊗ ej)Λe is a projective Λe-module. Now,

(ei⊗ej)Λe corresponds to the Λ-Λ-bimodule Λei⊗ejΛ. Thus Λei⊗ejΛ is a projective

bimodule.

Let {Qn, dn} be a projective bimodule resolution of Λ

· · · −→ Qn dn−→ · · · d2

−→ Q1 d1

−→ Q0 d0

−→ Λ −→ 0

where Qi are projective bimodules and dn are Λ-Λ-homomorphisms. We apply

HomΛe(−,Λ) to this exact sequence to get the chain complex

0 −→ HomΛe(Q
0,Λ)

δ0

−→ HomΛe(Q
1,Λ)

δ1

−→ · · · δ
n+1

−→ HomΛe(Q
n,Λ)

δn−→ · · ·

Definition 2.34. The nth Hochschild cohomology group is the nth cohomology

group of this complex and it is denoted by HHn(Λ). So HHn(Λ) = ExtnΛe(Λ,Λ). The

Hochschild cohomology ring is defined to be HH∗(Λ) = ⊕n≥0 ExtnΛe(Λ,Λ).
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Definition 2.35. Let Λ be a K-algebra. Then the centre of Λ is Z(Λ) = {z ∈ Λ :

zλ = λz for all λ ∈ Λ}.

Theorem 2.36. [31] Let Λ be a finite dimensional K-algebra. Then HH0(Λ) =

Z(Λ).

Definition 2.37. [21]

(1) Let Λ be a K-algebra. Then Λ is a graded algebra if Λ = Λ0⊕Λ1⊕· · · , with

Λm · Λn ⊆ Λm+n for all m,n ≥ 0.

(2) Let Λ be a graded algebra. Then Λ is graded commutative if xy = (−1)|x||y|yx,

for all homogeneous elements x and y in Λ where |z| denotes the degree of z.

The ring HH∗(Λ) is graded commutative (see [44]).

Theorem 2.38. [44, Corollary 1.2(a)] Let Λ be an algebra over a commutative ring

K, where Λ is a flat as a module over K. Then HH∗(Λ) = Ext∗Λe(Λ,Λ) is graded

commutative.

Now we look at the construction of the projective bimodule resolution (Qn, δn)

for Λ from [24].

In [24] Green and Snashall construct the first four projective Λ-Λ-bimodules Qi for

i = 0, 1, 2, 3 and maps δi in a minimal projective bimodule resolution of Λ, namely

· · · −→ Q3 δ3

−→ Q2 δ2

−→ Q1 δ1

−→ Q0 δ0

−→ Λ −→ 0.

They define Q0 = ⊕iΛo(g0
i ) ⊗ t(g0

i )Λ = ⊕iΛei ⊗ eiΛ and they define the map

δ0 : Q0 −→ Λ by δ0(λei ⊗ eiµ) = λeiµ. They set Q1 = ⊕iΛo(g1
i ) ⊗ t(g1

i )Λ =

⊕αΛeo(α) ⊗ et(α)Λ and they define this map δ1 : Q1 −→ Q0 by the matrix A1 where

the rows of A1 are indexed by the vertices of Q, the columns by the arrows of Q

and the entry in the (g0
i , g

1
j )-place is given by

o(g1
j )⊗ g1

j if o(g1
j ) = g0

i and t(g1
j ) 6= g0

i

−g1
j ⊗ t(g1

j ) if t(g1
j ) = g0

i and o(g1
j ) 6= g0

i

o(g1
j )⊗ g1

j − g1
j ⊗ t(g1

j ) if o(g1
j ) = g0

i = t(g1
j )

0 otherwise.

18



Also, they define Q2 = ⊕iΛo(g2
i )⊗t(g2

i )Λ, where g2
i are uniform elements in the set g2

and we define δ2 : Q2 −→ Q1 by the matrix A2 where the rows of A2 are indexed by

the arrows, and the columns of A2 by the set of the minimal generators for the ideal

I and the entry in the (g1
i , g

2
l )-place is given by

∑r
j=1 cj

∑sj
k=1 εkja1ja2j . . . ak−1j ⊗

ak+1j . . . asjj, where g2
l =

∑r
j=1 cja1ja2j . . . akj . . . asjj such that cj ∈ K, the akj are

arrows in Q and

εkj =

1 akj = g1
i

0 otherwise.

They set Q3 = ⊕iΛo(g3
i ) ⊗ t(g3

i )Λ. We know that by [28, Section 1] and (1) (see

Remark 2.30), each element of g3 is in (⊕ig2
iR) ∩ (⊕ig1

i I), so

g3
j =

m2∑
j=1

g2
jpj =

m2∑
j=1

qjg
2
j rj

where pj, qj, rj ∈ KQ with qj ∈ RQ. So they define the map δ3 : Q3 −→ Q2 by

the matrix A3 where the rows are indexed by the elements of g2 and the columns

are indexed by the elements of g3. The (g2
i , g

3
j ) entry of the matrix A3 is given by

o(g2
i )⊗ pi − qi ⊗ ri.

We summarize this in the following theorem.

Theorem 2.39. [24, Theorem 2.9] With the above notation, the following sequence

is part of a minimal projective resolution of Λ as a bimodule.

Q3 −→ Q2 −→ Q1 −→ Q0 −→ Λ −→ 0

with maps Ai : Qi −→ Qi−1 for i = 1, 2, 3.

We now illustrate this construction with an example.

Example 2.40. Let Λ = KQ/I be the algebra which is given by the quiver Q

1
α2

55 2

α1
uu

α3
))
3

α4

ii

and let I = 〈α1α2α1α2, α3α4α3α4, α1α2α3α4 − α3α4α1α2〉. The sets g0, g1, g2 are

given as follows:

• g0 = {e1, e2, e3} and we label the elements of the set g0 by g0
1 = e1, g

0
2 =

e2, and g0
3 = e3.
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• g1 = {α1, α2, α3, α4} and we label the elements of the set g1 by g1
1 = α1, g

1
2 =

α2, g
1
3 = α3, and g1

4 = α4.

• g2 = {α1α2α1α2, α3α4α3α4, α1α2α3α4−α3α4α1α2} and we label the elements

of the set g2 by g2
1 = α1α2α1α2, g

2
2 = α1α2α3α4 − α3α4α1α2, and g2

3 =

α3α4α3α4.

So we can construct the minimal projective resolution as follows:

• Let P 0 = ⊕3
i=1eiΛ and let d0 be the natural epimorphism d0 : Λ −→ Λ/r

given by d0(e1λ1, e2λ2, e3λ3) =
∑3

i=1 eiλi + r.

• Let P 1 = ⊕4
i=1t(g

1
i )Λ = e1Λ⊕ e2Λ⊕ e3Λ⊕ e2Λ and d1 : P 1 −→ P 0 be given

by

t(g1
1) 7→ (0, α1, 0),

t(g1
2) 7→ (α2, 0, 0),

t(g1
3) 7→ (0, α3, 0) and

t(g1
4) 7→ (0, 0, α4).

• Let P 2 = ⊕3
i=1t(g

2
i )Λ = e2Λ⊕ e2Λ⊕ e2Λ and d2 : P 2 −→ P 1 be given by

t(g2
1) 7→ t(g1

1)α2α1α2 = (α2α1α2, 0, 0, 0),

t(g2
2) 7→ t(g1

1)α2α3α4 − t(g1
3)α4α1α2 = (α2α3α4, 0,−α4α1α2, 0), and

t(g2
3) 7→ t(g1

3)α4α3α4 = (0, 0, α4α3α4, 0).

We can see that Ker d2 = (α1α2, 0, 0)e2Λ + (α3α4,−α1α2, 0)e2Λ

+ (0, α3α4, α1α2)e2Λ + (0, 0, α3α4)e2Λ.

By induction for n ≥ 3, we have

◦ gn1 = gn−1
1 α1α2;

◦ For 2 ≤ r ≤ n, we have gnr = gn−1
r−1α3α4 + (−1)r−1gn−1

r α1α2;

◦ gnn+1 = gn−1
n α3α4.

Continuing in this way, we have the projective resolution for Λ/r as

· · · −→ P n dn−→ P n−1 −→ · · · −→ P 1 d1

−→ P 0 d0

−→ Λ/r −→ 0

where P n = ⊕n+1
i=1 t(g

n
i )Λ and we define the map dn : P n −→ P n−1 as follows:

t(gn1 ) 7→ t(gn−1
1 )α1α2

t(gnr ) 7→ t(gn−1
r−1 )α3α4 + (−1)r−1t(gn−1

r )α1α2 where 2 ≤ r ≤ n,

t(gnn+1) 7→ t(gn−1
n )α3α4.
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For this algebra and for n ≥ 3, we have

◦ gn1 = α1α2g
n−1
1 ;

◦ For 2 ≤ r ≤ n, we have gnr = α1α2g
n−1
r + (−1)n+r−1α3α4g

n−1
r−1 ;

◦ gnn+1 = α3α4g
n−1
n .

Now we construct the minimal projective bimodule resolution for Λ. In particular

we construct the first four projective bimodules in a projective resolution of Λ

from [24] and then we generalize this construction.

We have the following:

• Q0 = ⊕3
i=1Λei ⊗ eiΛ = Λe1 ⊗ e1Λ ⊕ Λe2 ⊗ e2Λ ⊕ Λe3 ⊗ e3Λ and define

δ0 : Q0 −→ Λ by δ0(λ1e1 ⊗ e1µ1, λ2e2 ⊗ e2µ2, λ3e3 ⊗ e3µ3) =
∑3

i=1 λieiµi.

• Q1 = ⊕4
i=1Λo(g1

i )⊗ t(g1
i )Λ = Λe2⊗ e1Λ⊕Λe1⊗ e2Λ⊕Λe2⊗ e3Λ⊕Λe3⊗ e2Λ,

and define δ1 : Q1 −→ Q0 as follows:

o(g1
1)⊗ t(g1

1) 7→ (−α1 ⊗ t(g1
1), o(g1

1)⊗ α1, 0)

o(g1
2)⊗ t(g1

2) 7→ (o(g1
2)⊗ α2,−α2 ⊗ t(g1

2), 0)

o(g1
3)⊗ t(g1

3) 7→ (0, o(g1
2)⊗ α3,−α3 ⊗ t(g1

3))

o(g1
4)⊗ t(g1

4) 7→ (0,−α4 ⊗ t(g1
2), o(g1

3)⊗ α4).

We can also write A1 as the matrix:
−α1 ⊗ e1 e1 ⊗ α2 0 0

e2 ⊗ α1 −α2 ⊗ e2 e2 ⊗ α3 −α4 ⊗ e2

0 0 −α3 ⊗ e3 e3 ⊗ α4

 .

• Q2 = ⊕3
i=1Λo(g2

i )⊗ t(g2
i )Λ = Λe2 ⊗ e2Λ⊕ Λe2 ⊗ e2Λ⊕ Λe2 ⊗ e2Λ and define

the map δ2 : Q2 −→ Q1 as follows:

o(g2
1)⊗ t(g2

1) 7→ (o(g1
1)⊗ α2α1α2 + α1α2 ⊗ α2, α1 ⊗ α1α2+

α1α2α1 ⊗ t(g1
2), 0, 0)

o(g2
2)⊗ t(g2

i ) 7→ (o(g1
1)⊗ α2α3α4 − α3α4 ⊗ α2, α1 ⊗ α3α4−

α3α4α1 ⊗ t(g1
2), α1α2 ⊗ α4 − o(g1

3)⊗ α4α1α2,

α1α2α3 ⊗ t(g1
4)− α3 ⊗ α1α2)

o(g2
3)⊗ t(g2

3) 7→ (0, 0, o(g1
3)⊗ α4α3α4 + α3α4 ⊗ α4, α3 ⊗ α3α4+

α3α4α3 ⊗ t(g1
4)).
21



Moreover, we can write the matrix A2 as follows:
o(α1)⊗ α2α1α2 + α1α2 ⊗ α2 o(α1)⊗ α2α3α4 − α3α4 ⊗ α2 0

α1 ⊗ α1α2 + α1α2α1 ⊗ t(α2) α1 ⊗ α3α4 − α3α4α1 ⊗ t(α2) 0

0 α1α2 ⊗ α4 − o(α3)⊗ α4α1α2 o(α3)⊗ α4α3α4 + α3α4 ⊗ α4

0 α1α2α3 ⊗ t(α4)− α3 ⊗ α1α2 α3 ⊗ α3α4 + α3α4α3 ⊗ t(α4)


• Q3 = ⊕4

i=1Λo(g3
i )⊗ t(g3

i )Λ = Λe2⊗ e2Λ⊕Λe2⊗ e2Λ⊕Λe2⊗ e2Λ⊕Λe2⊗ e2Λ

and define δ3 : Q3 −→ Q2 as follows:

o(g3
1)⊗ t(g3

1) 7→ (o(g2
1)⊗ α1α2 − α1α2 ⊗ t(g2

1), 0, 0)

o(g3
2)⊗ t(g3

2) 7→ (o(g2
1)⊗ α3α4 − α3α4 ⊗ t(g2

1), o(g2
2)⊗ (−α1α2)−

α1α2 ⊗ t(g2
2), 0)

o(g3
3)⊗ t(g3

3) 7→ (0, o(g2
2)⊗α3α4 +α3α4⊗ t(g2

2), o(g2
3)⊗α1α2−α1α2⊗ t(g2

3))

o(g3
4)⊗ t(g3

4) 7→ (0, 0, o(g2
3)⊗ α3α4 − α3α4 ⊗ t(g2

3)).

Note that we used the general formula to construct Q3 and δ3, since

g3
1 = g2

1(α1α2) = (α1α2)g2
1t(g

2
1),

g3
2 = g2

1(α3α4) + g2
2(−α1α2) = (α1α2)g2

2t(g
2
2) + (α3α4)g2

1t(g
2
1),

g3
3 = g2

2(α3α4) + g2
3(α1α2) = (α1α2)g2

3t(g
2
3) + (−α3α4)g2

2t(g
2
2),

g3
4 = g2

3(α3α4) = (α3α4)g2
1t(g

2
3).

Furthermore, we can write the matrix A3, where the first column is(
o(g2

1)⊗ α1α2 − α1α2 ⊗ t(g2
1) 0 0

)
,

the second column is(
o(g2

1)⊗ α3α4 − α3α4 ⊗ t(g2
1) (−1)[o(g2

2)⊗ α1α2 + α1α2 ⊗ t(g2
2)] 0

)
,

the third column is(
0 o(g2

2)⊗ α3α4 + α3α4 ⊗ t(g2
2) o(g2

3)⊗ α1α2 − α1α2 ⊗ t(g2
3)
)

,

and the fourth column is
(

0 0 o(g2
3)⊗ α3α4 − α3α4 ⊗ t(g2

3)
)

.

In this example we constructed the projective bimodules Qi for all i = 0, 1, 2, 3

and maps in the start of a minimal projective bimodule resolution of Λ using [24].

We can generalize the construction and find the minimal projective bimodule

resolution of Λ using the minimal projective resolution of Λ/r and the method of [18]

and [45]. However, this algebra Λ will be a stretched algebra which we introduce in

Chapter 4. So we can use Theorem 4.43 to say that the minimal projective bimodule

resolution for Λ is

· · · −→ Qn δn−→ Qn−1 −→ · · · −→ Q3 δ3

−→ Q2 δ2

−→ Q1 −→ Q0 δ0

−→ Λ −→ 0
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where Qn = ⊕iΛo(gni ) ⊗ t(gni )Λ and the map δn : Qn −→ Qn−1 is given by

o(gn1 )⊗ t(gn1 ) 7→ o((gn−1
1 )⊗ α1α2 + (−1)nα1α2 ⊗ t(gn−1

1 );

o(gnr )⊗ t(gnr ) 7→ o(gn−1
r−1 )⊗ α3α4 + (−1)r−1α3α4 ⊗ t(gn−1

r−1 ) +

(−1)r−1o(gn−1
r )⊗α1α2+(−1)nα1α2⊗t(gn−1

r ) where 2 ≤ r ≤ n;

o(gnn+1)⊗ t(gnn+1) 7→ o(gn−1
n )⊗ α3α4 + (−1)nα3α4 ⊗ t(gn−1

n ).
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3. Koszul algebras and generalisations

Koszul algebras were introduced by Priddy [38] to study algebraic topology. They

also occur in many places in representation theory of algebras. It is known that the

Ext algebra of a Koszul algebra is finitely generated in degrees 0, 1. In this chapter

we look at Koszul algebras and some generalisations. We also consider Gröbner

bases; our main result here is Theorem 3.28 which concerns (D,A)-stacked algebras.

We assume throughout this thesis that K is a field, Λ = KQ/I for some quiver

Q and admissible ideal I, so that Λ is a finite dimensional K-algebra. All modules

are finitely generated right Λ-modules.

Lemma 3.1. [21, Lemma 2.1] Let Λ = ⊕i≥0Λi be a graded algebra. Then the

following statements are equivalent:

• Λ is generated in degrees 0 and 1;

• For all i, j ≥ 0, ΛiΛj = Λi+j;

• For all k ≥ 1, Λk is the product of k copies of Λ1.

Definition 3.2. [21] Let Λ = KQ/I be a finite dimensional algebra. Then Λ

is a Koszul algebra if Λ is a graded algebra with the length grading and if Λ/r

(considered as a graded Λ-module in degree 0) has a graded projective resolution

· · · −→ P 2 d2

−→ P 1 d1

−→ P 0 d0

−→ Λ/r −→ 0

such that P i is generated in degree i. In this case, we say that Λ/r has a linear

resolution.

Green and Mart́ınez-Villa [21] prove that if Λ = KQ/I is a Koszul algebra, then

I is quadratic. The converse holds when the admissible ideal I is quadratic and

monomial [29, Proposition 2.2].

Theorem 3.3. [21, Theorem 6.1] Let Λ = KQ/I be a Koszul algebra. Then E(Λ)

is a Koszul algebra.

Moreover, Green and Mart́ınez-Villa [22] show that E(Λ) ∼= KQop/I⊥, where the

description of I⊥ is as follows. Let V2 be the vector space with basis all paths of

length 2 in KQ. Then V op
2 is the vector space with basis all paths of length 2 in

KQop. We know that I is quadratic so let W be the subset of V2 which consists
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of a minimal set of generators of I. They define a bilinear form on V2 × V op
2 by

〈αβ, aopbop〉 = δαβ(ab) where α, β, a, b are arrows in Q. Then W⊥ is the orthogonal

complement in V op
2 of W with respect to this bilinear form. The ideal I⊥ is the

ideal of KQop which is generated by W⊥.

Example 3.4. Let Q be the quiver

1
α // 2
β

oo

and let I = 〈αβ, βα〉. For the algebra Λ = KQ/I the sets gn are given as follows:

• g0 = {e1, e2};

• g1 = {α, β} with g1
1 = α and g1

2 = β;

• g2 = {αβ, βα} with g2
1 = αβ and g2

2 = βα;

• For n ≥ 3

◦ gn1 = gn−1
1 α and gn2 = gn−1

2 β, where n odd

◦ gn1 = gn−1
1 β and gn2 = gn−1

2 α, where n even.

So the minimal projective resolution for Λ/r is

· · · −→ P 2 d2

−→ P1
d1

−→ P 0 d0

−→ Λ/r −→ 0

where

• P 0 = e1Λ⊕ e2Λ and d0(e1λ, e2µ) = (e1λ+ e2µ) + r, where λ, µ ∈ Λ.

• P 1 = e2Λ⊕ e1Λ and the map d1 is given by t(g1
1) 7→ (α, 0), t(g1

2) 7→ (0, β).

• P 2 = e1Λ⊕ e2Λ and the map d2 is given by t(g2
1) 7→ (β, 0), t(g2

2) 7→ (0, α).

• For n ≥ 3 we have

◦ If n odd, then P n = e2Λ⊕ e1Λ and the map P n dn−→ P n−1 is given by

t(gn1 ) 7→ t(gn−1
1 )α,

t(gn2 ) 7→ t(gn−1
2 )β.

◦ If n even, then P n = e1Λ⊕ e2Λ and the map P n dn−→ P n−1 is given by

t(gn1 ) 7→ t(gn−1
1 )β,

t(gn2 ) 7→ t(gn−1
2 )α.

We can now see that the elements gni ∈ gn have length n,

• `(g0
i ) = 0, for all i = 1, 2.

• `(g1
i ) = 1, for all i = 1, 2.
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• `(g2
i ) = 2, for all i = 1, 2.

• For n ≥ 2, `(gni ) = n, where i = 1, 2.

Hence each projective P n is generated in degree n. So, we have shown that Λ/r has

a linear resolution. Hence Λ is a Koszul algebra, and thus the Ext algebra E(Λ) is

generated in degrees 0 and 1. In addition it can be shown that E(Λ) = KQop.

There are several generalisations of Koszul algebras. The d-Koszul algebras were

introduced by Berger [6] to study Artin-Schelter regular algebras.

Definition 3.5. [6] Let Λ = Λ0 ⊕ Λ1 ⊕ · · · be a graded K-algebra generated in

degrees 0 and 1. Assume that Λ0 = Λ/r is a finitely generated semisimple K-

algebra, Λ1 is a finitely generated K-module and that (P n, dn) is a minimal graded

Λ-projective resolution of Λ/r. Let d ≥ 2. We say that Λ is a d-Koszul algebra if,

for each n ≥ 0, P n can be generated in exactly one degree, δ(n), and

δ(n) =


n
2
d if n even,

n−1
2
d+ 1 if n odd.

We can see from the definition that every Koszul algebra is a 2-Koszul algebra.

Theorem 3.6. [20, Theorem 4.1] Let Λ = KQ/I be a finite dimensional algebra,

where I is generated by homogeneous elements of length d for some d ≥ 2. Then Λ

is d-Koszul if and only if the Ext algebra E(Λ) can be generated in degrees 0, 1 and

2.

We give an example of a d-Koszul algebra which is not a Koszul algebra.

Example 3.7. We take the algebra as in Example 2.31. Recall that the sets gn are

• g0 = {e1, e2, e3};

• g1 = {α, β, γ} ;

• g2 = {αβγ, βγα, γαβ} ;

• For all n ≥ 3, n odd, we have gn1 = gn−1
1 α, gn2 = gn−1

2 β, and gn3 = gn−1
3 γ

• For all n ≥ 3, n even, we have gn1 = gn−1
1 βγ, gn2 = gn−1

2 γα, and

gn3 = gn−1
3 αβ

We can now see that the elements gni ∈ gn have length δ(n) for d = 3, since

• `(g0
i ) = 0, for all i = 1, 2, 3.
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• `(g1
i ) = 1, for all i = 1, 2, 3.

• `(g2
i ) = 3, for all i = 1, 2, 3.

• `(g3
i ) = 4, for all i = 1, 2, 3.

• For n ≥ 2, `(g2n
i ) = nd, where i = 1, 2, 3.

• For n ≥ 2, `(g2n+1
i ) = nd+ 1, where i = 1, 2, 3.

Hence each projective P n is generated in degree δ(n), so Λ is a 3-Koszul algebra.

Definition 3.8. [25] Let I be an ideal generated by a set of paths (or monomials)

in KQ. Then we say Λ = KQ/I is a monomial algebra.

The (D,A)-stacked monomial algebras were introduced by Green and Snashall

in [26, Definition 3.1].

Definition 3.9. [26, Definition 3.1] Let Λ = KQ/I be a finite-dimensional mono-

mial algebra, where I is an admissible ideal with minimal set of generators ρ. Then

Λ is a (D,A)-stacked monomial algebra if there are natural numbers D ≥ 2 and

A ≥ 1 such that, for all n ≥ 0 and gni ∈ gn,

`(gni ) =



0 if n = 0

1 if n = 1

n
2
D if n is even, n ≥ 2

n−1
2
D + A if n is odd, n ≥ 3.

In particular all relations in ρ are of length D.

Note that the length of each path in g2 is D and the length of each path in g3 is

D + A. Then `(g3
i )− `(g2

i ) = A, for all g2
i ∈ g2 and g3

i ∈ g3.

Green and Snashall showed in [25] that they are precisely the finite dimensional

monomial algebras for which every projective module in the minimal projective

resolution of Λ/r is generated in a single degree and for which the Ext algebra of Λ

is finitely generated as a K-algebra [25]. Furthermore, E(Λ) is generated in degrees

0, 1, 2 and 3 (see [25, Theorem 3.6]).

Leader and Snashall introduced (D,A)-stacked algebras in [35].

Definition 3.10. [35, Definition 1.1] Let Λ = KQ/I be a finite dimensional algebra.

Then Λ is a (D,A)-stacked algebra if there are natural numbers D ≥ 2, A ≥ 1 such
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that, for all 0 ≤ n ≤ gldim Λ, the projective module P n in a minimal projective

resolution of Λ/r is generated in degree δ(n), where

δ(n) =



0 if n = 0

1 if n = 1

n
2
D if n even, n ≥ 2

n−1
2
D + A if n odd, n ≥ 3.

The (D,A)-stacked algebras with A = 1 are precisely the finite dimensional

D-Koszul algebras of Berger.

Theorem 3.11. [35, Theorem 2.4] Let Λ = KQ/I be a (D,A)-stacked algebra with

D ≥ 2 and A ≥ 1. Then E(Λ) is generated in degrees 0, 1, 2 and 3.

Proposition 3.12. The algebra of Example 2.40 is a (4, 2)-stacked algebra.

Proof. We take the algebra as in Example 2.40, so we have the following,

• P 0 is generated in degree 0; since `(g0
i ) = 0, where i = 1, 2, 3.

• P 1 is generated in degree 1; since `(g1
i ) = 1, where i = 1, 2, 3, 4.

• P 2 is generated in degree 4; since `(g2
i ) = 4, where i = 1, 2, 3.

• P 3 is generated in degree 6; since `(g3
i ) = 6, where i = 1, 2, 3, 4.

• For n ≥ 1, we have P 2n is generated in degree 4n; since `(g2n
i ) = 4n, where

i = 1, 2, . . . , 2n+ 1.

• For n ≥ 1, we have P 2n+1 is generated in degree 4n+2; since `(g2n+1
i ) = 4n+2,

where i = 1, 2, . . . , 2n+ 2.

Hence, from Definition 3.10 we have D = 4 and A = 2 and Λ is a (4, 2)-stacked

algebra. �

Example 3.13. Let Λ be the algebra of Example 2.40.

Since Λ is a (4, 2)-stacked algebra, then E(Λ) is generated in degrees 0, 1, 2 and 3.

For each n and each gni ∈ gn, we let fni ∈ Hom(P n,Λ/r) be the map given by

t(gnj ) 7→

t(gni ) + r if i = j;

0 otherwise.

where fn = {fni } and |fn| = |gn|. So we have the following

• The basis of Ext0(Λ/r,Λ/r) is {f 0
1 , f

0
2 , f

0
3}.
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• The basis of Ext1(Λ/r,Λ/r) is {f 1
1 , f

1
2 , f

1
3 , f

1
4}, where f 1

i : P 1 −→ Λ/r is

given by

f 1
1 : t(g1

1) = e1 7→ e1 + r, else 7→ 0;

f 1
2 : t(g1

2) = e2 7→ e2 + r, else 7→ 0;

f 1
3 : t(g1

3) = e3 7→ e3 + r, else 7→ 0;

f 1
4 : t(g1

4) = e2 7→ e2 + r, else 7→ 0.

• The basis of Ext2(Λ/r,Λ/r) is {f 2
1 , f

2
2 , f

2
3}, where f 2

i : P 2 −→ Λ/r is given

by

f 2
1 : t(g2

1) = e2 7→ e2 + r, else 7→ 0;

f 2
2 : t(g2

2) = e2 7→ e2 + r, else 7→ 0;

f 2
3 : t(g2

3) = e2 7→ e2 + r, else 7→ 0.

• The basis of Ext3(Λ/r,Λ/r) is {f 3
1 , f

3
2 , f

3
3 , f

3
4}, where f 3

i : P 3 −→ Λ/r is

given by

f 3
1 : t(g3

1) = e2 7→ e2 + r, else 7→ 0;

f 3
2 : t(g3

2) = e2 7→ e2 + r, else 7→ 0;

f 3
3 : t(g3

3) = e2 7→ e2 + r, else 7→ 0;

f 3
4 : t(g3

4) = e2 7→ e2 + r, else 7→ 0.

More generally, fn = {fni } is a basis of ExtnΛ(Λ/r,Λ/r).

Now we need to find the products in the Ext algebra. Since the algebra is a

(D,A)-stacked algebra, then by [35, Proposition 3.1] we have Ext1(Λ/r,Λ/r) ×

Ext1(Λ/r,Λ/r) = 0. Hence f 1
i f

1
j = 0 for all i, j = 1, 2, 3, 4. Moreover, we see

in [35, Proposition 3.2] Ext1(Λ/r,Λ/r) × Ext3(Λ/r,Λ/r) = 0 = Ext3(Λ/r,Λ/r) ×

Ext1(Λ/r,Λ/r). Also Ext1(Λ/r,Λ/r) × Ext2(Λ/r,Λ/r) = 0 = Ext2(Λ/r,Λ/r) ×

Ext1(Λ/r,Λ/r). We will find the products in Ext2(Λ/r,Λ/r)× Ext2(Λ/r,Λ/r),

Ext3(Λ/r,Λ/r)× Ext3(Λ/r,Λ/r), Ext2(Λ/r,Λ/r)× Ext3(Λ/r,Λ/r) and

Ext3(Λ/r,Λ/r)× Ext2(Λ/r,Λ/r).

For the elements in Ext2(Λ/r,Λ/r) × Ext2(Λ/r,Λ/r), we want to find f 2
i f

2
j =

f 2
i ◦ L2f 2

j : P 4 −→ P 2 −→ Λ/r, where i, j = 1, 2, 3 and L2f 2
j denotes a lifting of f 2

j .

This product is in Ext4(Λ/r,Λ/r). Consider f 2
1 : P 2 −→ Λ/r. Then we have the

following diagram
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· · · // P 5 d5

//

L3f2
1
��

P 4 d4

//

L2f2
1
��

P 3 d3

//

L1f2
1
��

P 2

f2
1

!!
L0f2

1
��

· · · // P 3 d3

// P 2 d2

//

f2
i   

P 1 d1

// P 0 d0

// Λ/r // 0

Λ/r

We define L0f 2
1 : P 2 −→ P 0 by t(g2

1) = e2 7→ e2, else 7→ 0. So we have d0 ◦

L0f 2
1 (e2) = d0(e2) = e2 + r and thus the diagram commutes. Now we want to define

L1f 2
1 : P 3 −→ P 1 such that the following diagram commutes.

P 3 d3

//

L1f2
1
��

P 2

L0f2
1

��

P 1 d1

// P 0

We define L1f 2
1 by

t(g3
1) 7→ t(g1

1)α2, since d3(t(g3
1)) = t(g2

1)α1α2 and L0f 2
1 (d3(t(g3

1))) = α1α2,

t(g3
2) 7→ t(g1

3)α4, since d3(t(g3
2)) = t(g2

1)α3α4 + t(g2
2)(−α1α2) and

L0f 2
1 (d3(t(g3

2))) = α3α4

t(g3
3) 7→ 0, since d3(t(g3

3)) = t(g2
2)α3α4 + t(g2

3)α1α2 and L0f 2
1 (d3(t(g3

2))) = 0

t(g3
4) 7→ 0, since d3(t(g3

4)) = t(g2
3)α3α4 and L0f 2

1 (d3(t(g3
4))) = 0.

Now we define L2f 2
1 : P 4 −→ P 2 such that the diagram commutes

P 4 d4

//

L2f2
1
��

P 3

L1f2
1

��

P 2 d2

// P 1

by

t(g4
1) 7→ t(g2

1), since d4(t(g4
1)) = t(g3

1)α1α2 and L1f 2
1 (d4(t(g4

1))) = t(g1
1)α2α1α2.

t(g4
2) 7→ t(g2

2), since d4(t(g4
2)) = t(g3

1)α3α4 + t(g3
2)(−α1α2)

and L1f 2
1 (d4(t(g4

2))) = t(g1
1)α2α3α4−t(g1

3)α4α1α2.

t(g4
3) 7→ t(g2

3), since d4(t(g4
3)) = t(g3

2)α3α4 + t(g3
3)α1α2

and L1f 2
1 (d4(t(g4

3))) = t(g1
3)α4α3α4.

t(g4
4) 7→ 0, since d4(t(g4

4)) = t(g3
3)α3α4 + t(g3

4)(−α1α2)
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and L1f 2
1 (d4(t(g4

4))) = 0.

t(g4
5) 7→ 0, since d4(t(g4

5)) = t(g3
4)α3α4 and L1f 2

1 (d4(t(g4
5))) = 0.

We also need to define L3f 2
1 : P 5 −→ P 3 such that the diagram commutes

P 5 d5

//

L3f2
1
��

P 4

L2f2
1

��

P 3 d3

// P 2

So we define L3f 2
1 by

t(g5
1) 7→ t(g3

1), since d5(t(g5
1)) = t(g4

1)α1α2 and L2f 2
1 (d5(t(g5

1))) = t(g2
1)α1α2.

t(g5
2) 7→ t(g3

2), since d5(t(g5
2)) = t(g4

1)α3α4+t(g4
2)(−α1α2) and L2f 2

1 (d5(t(g5
2))) =

t(g2
1)α3α4 + t(g2

2)(−α1α2).

t(g5
3) 7→ t(g3

3), since d5(t(g5
3)) = t(g4

2)α3α4 + t(g4
3)α1α2 and L2f 2

1 (d5(t(g5
3))) =

t(g2
2)α3α4 + t(g2

3)α1α2.

t(g5
4) 7→ t(g3

4), since d5(t(g5
4)) = t(g4

3)α3α4+t(g4
4)(−α1α2) and L2f 2

1 (d5(t(g5
4))) =

t(g2
3)α3α4.

t(g5
5) 7→ 0, since d5(t(g5

5)) = t(g4
4)α3α4 + t(g4

5)α1α2 and L2f 2
1 (d5(t(g5

5))) = 0.

t(g5
6) 7→ 0, since d5(t(g5

6)) = t(g4
5)α3α4 and L2f 2

1 (d5(t(g5
5))) = 0.

Now that we have the liftings, we can compute the product f 2
i f

2
1 in Ext4(Λ/r,Λ/r).

So the products f 2
i f

2
1 = f 2

i ◦ L2f 2
1 : P 4 −→ P 2 −→ Λ/r are

◦ f 4
1 = f 2

1 f
2
1 = f 2

1 ◦ L2f 2
1 .

◦ f 4
2 = f 2

2 f
2
1 = f 2

2 ◦ L2f 2
1 .

◦ f 4
3 = f 2

3 f
2
1 = f 2

3 ◦ L2f 2
1 .

In a similar way, we compute the liftings for f 2
2 , f

2
3 and f 2

4 . The results of the

products f 2
j f

2
i are as follows:

• For i = 2, we have

◦ f 4
2 = f 2

1 f
2
2 = f 2

1 ◦ L2f 2
2 .

◦ −f 4
3 = f 2

2 f
2
2 = f 2

2 ◦ L2f 2
2 , since t(g4

3)
L2f2

2−→ −t(g2
2)

f2
2−→ −e2 + r,

else 7→ 0.

◦ f 4
4 = f 2

3 f
2
2 = f 2

3 ◦ L2f 2
2 , since t(g4

4)
L2f2

2−→ t(g2
3)

f2
3−→ e2 + r,

else 7→ 0.

• For i = 3, we have

◦ f 4
3 = f 2

1 f
2
3 = f 2

1 ◦ L2f 2
3 .
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◦ f 4
4 = f 2

2 f
2
3 = f 2

2 ◦ L2f 2
3 .

◦ f 4
5 = f 2

3 f
2
3 = f 2

3 ◦ L2f 2
3 .

Hence, f 2
2 f

2
1 = f 2

1 f
2
2 , f 2

3 f
2
1 = −f 2

2 f
2
2 = f 2

1 f
2
3 and f 2

3 f
2
2 = f 2

2 f
2
3 . By a similar

argument we can find the elements in Ext3(Λ/r,Λ/r)× Ext3(Λ/r,Λ/r).

So we have f 3
2 f

3
1 = −f 3

1 f
3
2 , f 3

3 f
3
1 = f 3

2 f
3
2 = f 3

1 f
3
3 , f 3

4 f
3
1 = −f 3

3 f
3
2 = f 3

2 f
3
3 = −f 3

1 f
3
4 ,

f 3
4 f

3
2 = f 3

3 f
3
3 = f 3

2 f
3
4 , and f 3

4 f
3
3 = −f 3

3 f
3
4 .

For the elements in Ext2(Λ/r,Λ/r)×Ext3(Λ/r,Λ/r), we have the products f 2
2 f

3
1 =

f 2
1 f

3
2 , f 2

3 f
3
1 = −f 2

2 f
3
2 = f 2

1 f
3
3 , f 2

3 f
3
2 = f 2

2 f
3
3 = f 2

1 f
3
4 , f 2

3 f
3
3 = −f 2

2 f
3
4 .

For the elements in Ext3(Λ/r,Λ/r)×Ext2(Λ/r,Λ/r), we have the products f 3
2 f

2
1 =

−f 3
1 f

2
2 , f 3

3 f
2
1 = f 3

2 f
2
2 , f 3

2 f
2
2 = f 3

1 f
2
3 , f 3

3 f
2
2 = f 3

2 f
2
3 , f 3

3 f
2
1 = f 3

2 f
2
2 , f 3

2 f
2
2 = −f 3

1 f
2
3 , and

f 3
4 f

2
2 = f 3

3 f
2
3 .

In the same way we can find products f 3
i f

3
j = f 2

r f
2
s f

2
t in Ext6(Λ/r,Λ/r), where

i, j = 1, . . . , 4 and r, s, t = 1, . . . , 3. So we have,

f 3
1 f

3
1 = f 2

1 f
2
1 f

2
1 , f 3

2 f
3
1 = −f 3

1 f
3
2 = f 2

2 f
2
1 f

2
1 = f 2

1 f
2
2 f

2
1 ,

f 3
3 f

3
1 = f 3

2 f
3
2 = f 3

1 f
3
3 = f 2

3 f
2
1 f

2
1 = f 2

2 f
2
2 f

2
1 ,

f 3
4 f

3
1 = f 3

3 f
3
2 = f 3

2 f
3
3 = −f 3

1 f
3
4 = f 2

3 f
2
2 f

2
1 = f 2

2 f
2
3 f

2
1 = f 2

1 f
2
3 f

2
2 ,

f 3
4 f

3
2 = f 3

3 f
3
3 = f 3

2 f
3
4 = f 2

3 f
2
3 f

2
1 = −f 2

2 f
2
3 f

2
2 = f 2

1 f
2
3 f

2
3 ,

f 3
4 f

3
3 = −f 3

3 f
3
4 = f 2

3 f
2
2 f

2
3 , and

f 3
4 f

3
4 = f 2

3 f
2
3 f

2
3 .

Recall that we write paths in a quiver from left to right. So, if fni corresponds

to the path gni ∈ gn and gni = o(gni )gni t(g
n
i ), then fni = f 0

t(gni )f
n
i f

0
o(gni ) where f 0

t(gni )

(respectively, f 0
o(gni )) denotes the element of f 0 that corresponds to t(gni ) (respectively,

o(gni )).

Notation: we set f 1
i = ai, f

2
j = bj, and f 3

k = ck where i = 1, . . . , 4, j = 1, . . . , 3,

and k = 1, . . . , 4.

For the algebra of Example 2.40 we can now describe the Ext algebra by quiver

and relations.

Theorem 3.14. Let Λ be the algebra of Example 2.40, and keep the above notation.

The Ext algebra E(Λ) is K∆/I, where ∆ is the quiver with vertex set ∆0 = f 0 and

arrow set ∆1 = f 1 ∪ f 2 ∪ f 3, so that ∆ is

1
a1 //

2
a2

oo
a4

//
b1
$$ b2 

 b3qq

c1 ::
c2
MM
c3
ZZ c4
mm 3

a3oo
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.

and I is generated by

◦ aiaj, for all i, j.

◦ aibj, bjbi for all i, j.

◦ aick, ckai for all i, k.

◦ b1b2 − b2b1, b3b1 + b2b2, b1b3 + b2b2, b2b3 − b3b2.

◦ c2c1 + c1c2, c3c1 − c2c2, c3c1 − c1c3, c4c1 + c3c2, c4c1 − c2c3, c2c3 + c1c4,

c4c2 − c3c3, c3c3 − c2c4, c4c3 + c3c4.

◦ b2c1 − b1c2, b3c1 + b2c2, b2c2 − b1c3, b3c2 − b2c3, b2c3 − b1c4, b3c3 + b2c4.

◦ c2b1 + c1b2, c3b1 − c2b2, c2b2 + c1b3, c2b2 + c1b3, c3b2 − c2b3, c4b2 − c3b3.

◦ c1c1−b1b1b1, c2c1−b2b1b1, c3c1−b3b1b1, c4c1−b3b2b1, c4c2−b3b3b1, c4c3−b3b3b2,

c4c4 − b3b3b3.

Note that, since c2
1 − b3

1 is in the minimal generating set for I, so I is not length

homogeneous. Hence I is not generated by linear combinations of paths of the same

length. We can see also that

• Ext4
Λ(Λ/r,Λ/r) has basis {b2

1, b1b2, b
2
2, b2b3, b

2
3}

• Ext5
Λ(Λ/r,Λ/r) has basis {b1c1, b2c1, b3c1, b3c2, b3c3, b3c4}.

• Ext6
Λ(Λ/r,Λ/r) has basis {c2

1, c2c1, c3c1, c4c1, c4c2, c4c3, c
2
4}.

We now introduce some Gröbner basis theory; we follow the approach of [13], [15]

and [17], see also the discussion in [36]. Let Q be a finite quiver, and let B be the

basis of all paths in KQ. We note that B is a multiplicative basis of KQ, so that if

p, q ∈ B then either pq ∈ B or pq = 0. Our main result is Theorem 3.28.

Definition 3.15. Let B be the basis of all paths in KQ. Then we say > is a

well-order on B if > is a total order on B and every non empty subset of B has a

minimal element.

Definition 3.16. An admissible order on B is a well-order > on B which has the

following properties where p, q, r in B:

(1) if p > q, then pr > qr if both pr 6= 0 and qr 6= 0.

(2) if p > q, then rp > rq if both rp 6= 0 and rq 6= 0.

(3) if p = qr, then p ≥ q and p ≥ r.
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We have from [15], the left length lexicographic order is an admissible order and

is given as follows: The vertices and arrows have arbitrary order such that every

vertex is smaller than every arrow. So if p, q ∈ B are paths of length more than 1

where p = α1 · · ·αn and q = β1 · · · βm with αi, βi ∈ Q1, then p > q if n > m or, if

n = m, then there is some 1 ≤ i ≤ n such that αj = βj for j < i and αi > βi.

We now introduce the Gröbner basis of an ideal. Let KQ be a path algebra and

let B be the basis of all paths, with admissible order >.

Definition 3.17. Let x be an element of KQ, so x =
∑n

j=1 cjpj with 0 6= cj ∈ K

and pj ∈ B. The Tip(x) is the largest pi, with respect to the ordering >, occurring

in x. We denote the coefficient of Tip(x) by CTip(x). The paths p1, . . . , pn of B

which occur in x are called the support of x, denoted by Supp(x). If I is an ideal in

KQ, then Tip(I) = {Tip(y) : y ∈ I \ {0}}. The set of finite paths in KQ which are

not in Tip(I) is called Nontip(I).

Definition 3.18. [13] Let KQ be a path algebra and let B be the basis of all

paths. Then a non-empty subset G is a Gröbner basis for an ideal I if for each

0 6= x ∈ I, there exists r, s ∈ B such that Tip(x) = rTip(g)s, for some g ∈ G.

Definition 3.19. Let 0 6= a ∈ KQ. A simple (algebra) reduction for a by f is

determined by a 4-tuple (c, r, f, s) where c ∈ K \ {0}; f ∈ KQ \ {0} and r, s ∈ B,

satisfying the following properties:

(1) rTip(f)s ∈ Supp(a),

(2) rTip(f)s /∈ Supp(a− crfs).

Moreover we say that a reduces over f to a− crfs and write a⇒f a− crfs. In

general, a reduces to a′ over a set X = {f1, . . . , fn}, denoted by a⇒X a′, if there is

a finite sequence of reductions such that a reduces to a1 over f1, ai reduces to ai+1

over fi+1 for i = 1, . . . , n− 2, and an−1 reduces to a′ over fn.

Let a, b ∈ B. Then we say that a|b, if there exist r, s ∈ B such that b = ras.

Definition 3.20. Let h1, h2 ∈ KQ and suppose there are elements p, q ∈ B such

that:

(1) Tip(h1)p = qTip(h2);

(2) Tip(h1) does not divide q and Tip(h2) does not divide p.
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Then the overlap difference of h1 and h2 by p, q is defined as

o(h1, h2, p, q) = (1/CTip(h1))h1p− (1/CTip(h2))qh2.

We now define a reduced Gröbner basis. We take the definition from [17], but see

also [13]; note that a reduced Gröbner basis of I is called MINSHARP(I) in [13].

Definition 3.21. [17, Section 1] Let KQ be a path algebra and let B be the basis

of all paths, with admissible order >. Let I be a ideal in KQ. An element x ∈ I is

sharp if x = p+
∑

i αiqi where Tip(x) = p, αi ∈ K and qi ∈ Nontip(I) for all i.

A set G is a reduced Gröbner basis for I if the following conditions hold:

(1) each g ∈ G is sharp;

(2) if x ∈ I \ {0} then there is some g ∈ G such that Tip(g) is a subpath of

Tip(x);

(3) if g, g′ are distinct elements in G, then Tip(g) is not a subpath of Tip(g′).

Theorem 3.22. [13, Theorem 13] Let KQ be a path algebra and let H = {hj : j ∈

J} be a subset of non-zero uniform elements in KQ, which generates the ideal I.

Assume that the following conditions hold;

(1) CTip(hj) = 1, for all j ∈ J ,

(2) hi does not reduce over hj for all i 6= j,

(3) every overlap difference for two (not necessarily distinct) members of H

always reduces to zero over H.

Then H is a reduced Gröbner basis of I.

As a consequence we get the following result.

Theorem 3.23. Let Λ = KQ/I be a (D,A)-stacked monomial algebra, and let G

be a minimal set of homogeneous elements which generate I. Then G is a reduced

Gröbner basis of I consisting of elements of length D.

Proof. We show that G is a reduced Gröbner basis of I by satisfying the conditions

of Theorem 3.22. Since Λ is a monomial algebra, G is a set of monomials. Also,

all monomials in any minimal generating set of I will have length D since Λ is

a (D,A)-stacked monomial algebra. We can see that the condition (1) holds by

inspection.
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Now, consider two arbitrary elements hi and hj in G with hi 6= hj and we assume

hi reduces over hj . Then there are u, v ∈ B such that uTip(hj)v ∈ Supp(hi). Since

G is a minimal generating set of monomials of length D, then uhjv = hi and hence

u, v ∈ Q0. So hi = hj which is a contradiction. So hi does not reduce over hj, for

all i 6= j.

It remains to show that the overlap difference for two elements of G reduces to

zero over G. So let consider two arbitrary elements hi and hj in G and assume there

are elements p, q ∈ B such that hip = qhj, where hi does not divide q and hj does

not divide p. Then we have

o(hi, hj, p, q) = (1/CTip(hi))hip− (1/CTip(hj))qhj = 0.

Thus G is a reduced Gröbner basis consisting of elements of length D. �

We have the following result from [26] concerning (D,A)-stacked monomial alge-

bras. Our aim is to generalise this to other (D,A)-stacked algebras, and we give a

partial generalisation in Theorem 3.28.

Proposition 3.24. [26, Proposition 3.3(3)] Let Λ be a (D,A)-stacked monomial

algebra with gldim Λ ≥ 4. Then D = dA for some d ≥ 2.

Definition 3.25. [19, Section 3] Let Λ = KQ/I be a finite dimensional algebra.

We say Λ is δ-resolution determined if there is a map δ : N −→ N such that, for all

n > 0 with n ≤ gldim Λ, the projective module P n in a minimal projective resolution

of Λ/r is generated in degree δ(n).

It is clear from Definition 3.10 that every (D,A)-stacked algebra is a δ-resolution

determined algebra.

Definition 3.26. [25] Let Λ = KQ/I and let IM be the ideal generated by Tip(I)

in KQ. So IM is a monomial ideal. Set ΛM = KQ/IM .

The following result of Green and Snashall considers δ-resolution determined

algebras.

Theorem 3.27. [25, Corollary 3.4] Let Λ = KQ/I. Suppose that I is generated by

length homogeneous elements. Let G be the reduced Gröbner basis for I with respect

to the length-lexicographic order. Then Λ is δ-resolution determined and G consists
36



of length homogeneous elements of one degree D if and only if ΛM is δ-resolution

determined. Furthermore, in this case, there exist D, A and B with D > A > B ≥ 0

so that

δ(n) =



0 n = 0;

1 n = 1;

n
2
D + (n−2)

2
B if n even, 2 ≤ n ≤ gldim Λ;

n−1
2
D + A+ (n−3)

2
B if n odd, 3 ≤ n ≤ gldim Λ.

We now give a generalisation of Proposition 3.24 to some (D,A)-stacked algebras.

Theorem 3.28. Let Λ = KQ/I be a (D,A)-stacked algebra with gldim Λ ≥ 4 and

with a reduced Gröbner basis G of elements of length D. Then A|D.

Proof. Let Λ = KQ/I be a (D,A)-stacked algebra and assume G consists of length

homogeneous elements of one degree D. Then Λ is δ-resolution determined. So using

Theorem 3.27 we have ΛM is δ-resolution determined. Hence ΛM is a (D,A)-stacked

monomial algebra (with the same δ and hence the same values of D and A as in Λ).

Hence, by Proposition 3.24 we have that A divides D. �
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4. The stretched algebra and projective resolutions

In this chapter we will give the construction of a new algebra Λ̃ from a finite

dimensional algebra Λ. This generalises work by Leader [36], where she takes a

d-Koszul algebra Λ and a natural number A to create a new algebra, Λ̃, and she

shows that the new algebra is a (D,A)-stacked algebra. Leader begins by using the

quiver Q and ideal I of Λ = KQ/I to define a new quiver Q̃A and ideal ĨA of KQ̃A,

where D = dA, A ≥ 1 and d ≥ 2. She then defines Λ̃A = KQ̃A/ĨA. Furthermore,

she described the construction of the minimal projective resolution of Λ̃/r as a right

Λ̃-module and the construction of the minimal projective bimodule resolution of Λ̃

in [36].

This construction can be generalised by taking any finite dimensional algebra Λ.

We describe this construction and the generalisation here.

We assume throughout this section that Λ = KQ/I is a finite dimensional algebra

and I is an admissible ideal. We set r to be the Jacobson radical of Λ.

Definition 4.1. (see [36, Definition 8.1]) Let Λ = KQ/I be a finite dimensional

algebra where I is generated by a minimal set g2 of uniform elements in KQ. Let

A ≥ 1. We construct the new quiver Q̃A as follows:

• All vertices of Q are also vertices in Q̃A.

• For each arrow α in Q we have A arrows α1, . . . , αA in Q̃A and additional

vertices w1, w2, . . . , wA−1 in Q̃A such that

o(α) = o(α1)

t(α1) = o(α2) = w1

t(α2) = o(α3) = w2

...
...

t(αA−1) = o(αA) = wA−1

t(αA) = t(α)

and the only arrows incident with the vertex wj are αj and αj+1.

• We construct the ideal ĨA of KQ̃A as follows. Let g2 = {g2
1, g

2
2, . . . , g

2
m} be the

minimal generating set of uniform elements of I. Since each g2
i can be written

as linear combination of paths, then g2
i =

∑
j cjαj1 . . . αjd(j) , for i = 1, . . . ,m,

where ci ∈ K and αjk is an arrow in Q for each k. We know that every

arrow αjk in Q corresponds to the path αjk,1 · · ·αjk,A in Q̃A. We define g̃2
i =
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∑
j cj(αj1,1 · · ·αj1,A) · · · (αjd(j),1 · · ·αjd(j),A), and define g̃2 = {g̃2

1, . . . , g̃
2
m} to

be the minimal generating set of ĨA. We define Λ̃A = KQ̃A/ĨA.

We now illustrate this construction.

Example 4.2. Let Q be the quiver

• yggx 77

and let I = 〈x2, y2, xy − yx〉. Let Λ = KQ/I. So we have the following

• g0 = {v}

• g1 = {x, y}

• g2 = {x2, y2, xy − yx}

• For all n ≥ 3 we have

gn1 = gn−1
1 x;

gnr = gn−1
r−1 y + (−1)r−1gn−1

r x, where 2 ≤ r ≤ n;

gnn+1 = gn−1
n y.

It can be seen that the sets gn have length n. So Λ/r has a linear resolution. Hence

Λ is a Koszul algebra.

We want to construct the new quiver Q̃A and ideal ĨA of KQ̃A. Let A = 2. Each

arrow in Q corresponds to path of length 2 in Q̃A in such a way that

o(x) = o(α1)

t(α1) = o(α2) = e1

t(α2) = t(x) = e2

and

o(y) = o(α3)

t(α3) = o(α4) = e3

t(α4) = t(y) = e2

Hence, x, y correspond to α1α2 and α3α4 respectively. Thus, the following diagram

illustrates this process of defining Q̃A from Q:

1
α2

55 2

α1
uu

α3
))
3

α4

ii

Now we want to find ĨA. We have g2
1 = x2, g2

2 = xy− yx, and g2
3 = y2 so by using

the above construction, we have g̃2
1 = α1α2α1α2, g̃

2
2 = α1α2α3α4 − α3α4α1α2, and
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g̃2
3 = α3α4α3α4. We note that Λ̃A = KQ̃A/ĨA is the algebra of Example 2.40; see

also Example 3.13.

For the above algebra Λ̃A we have the following sets:

• g̃0 = {e1, e2, e3};

• g̃1 = {α1, α2, α3, α4};

• g̃2 = {α1α2α1α2, α3α4α3α4, α1α2α3α4 − α3α4α1α2}.

We have the following properties of this construction, some of which can be found

in [36, Chapter 8].

Proposition 4.3. Let m0 be the number of vertices of Q and m1 be the number of

arrows of Q. With the above notation, we have:

• Λ̃A is a finite dimensional algebra;

• The quiver Q̃A has m0 +m1(A− 1) vertices;

• The quiver Q̃A has m1A arrows;

• The set g̃2 = {g̃2
1, . . . , g̃

2
m} is a minimal generating set of uniform elements

for ĨA.

• If I is generated by length homogeneous elements, then ĨA is generated by

length homogeneous elements.

• If Λ is a monomial algebra, then Λ̃A is a monomial algebra.

Leader [36] shows that the new algebra Λ̃A is a (D,A)-stacked algebra when Λ is

a d-Koszul algebra.

Theorem 4.4. [36, Theorem 8.15] Let Λ = KQ/I be a d-Koszul algebra. Let

A ≥ 1 and set D = dA. With the above construction, the algebra Λ̃A = KQ̃A/ĨA is

a (D,A)-stacked algebra.

We now write Λ̃ instead of Λ̃A to avoid excessive subscripts. We call Λ̃ a stretched

algebra.

Example 4.5. The algebra Λ̃ of Example 4.2 is a (4, 2)-stacked algebra using

Theorem 4.4, since Λ is a Koszul algebra and hence a 2-Koszul algebra.
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Definition 4.6. We keep the above notation. Let θ∗ : KQ −→ KQ̃A be the

K-algebra homomorphism which is given byv 7→ v for each vertex v in Q,

α 7→ α1α2 · · ·αA for each arrow α in Q.

Then θ∗ is also a monomorphism.

We define θ : KQ/I −→ KQ̃/Ĩ by θ(x + I) = θ∗(x) + Ĩ for all x ∈ KQ. Then

the map θ is also a K-algebra monomorphism.

Definition 4.7. Let ε =
∑

v∈Q0
v (as an element of Λ̃). Note that ε is an idempotent

element of Λ̃.

The following result shows that the algebras Λ and εΛ̃ε are isomorphic.

Theorem 4.8. Let Λ = KQ/I be a finite dimensional algebra. Then Λ ∼= εΛ̃ε

where ε =
∑

v∈Q0
v (as an element of Λ̃).

Proof. By using the first isomorphism theorem we have Λ/Ker θ ∼= Im θ. Since

Ker θ = 0, then Λ ∼= Im θ. Now, we want to prove that Im θ = εΛ̃ε. We note that

θ(v) and θ(α) in εΛ̃ε, for all v ∈ Q0 and α ∈ Q1. Since θ is an algebra homomorphism,

it follows that Im θ ⊆ εΛ̃ε. Conversely, let z ∈ εΛ̃ε, so we have z = εỹε where ỹ ∈ Λ̃.

From the construction of KQ̃ and the map θ, if θ(α) = α1α2 · · ·αA, then the only

arrow which starts at t(αi) is αi+1 and the only arrow which ends at t(αi) is αi,

for all i = 1, . . . , A − 1. So, if an element p̃ ∈ Λ̃ has o(p̃) ∈ Q0 and t(p̃) ∈ Q0 ,

then p̃ = θ(p), for some p ∈ Λ. Hence, z = εθ(y)ε = θ(εyε), for some y ∈ Λ. Thus

εΛ̃ε ⊆ Im θ. So Im θ ∼= εΛ̃ε and Λ ∼= εΛ̃ε. �

Let r̃ denote the Jacobson radical of Λ̃.

Proposition 4.9. [1, Corollary 17.13] Let R be a ring with radical rad(R) and let

e be an idempotent in R. Then rad(eRe) = e rad(R)e.

Applying this to our construction gives the following result.

Proposition 4.10. Let Λ̃ = KQ̃/Ĩ be constructed as above. Then εr̃ε = rad εΛ̃ε.

Moreover, rad εΛ̃ε ∼= r.
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Our aim is to describe the relationship between the projective resolutions of Λ/r

and Λ̃/r̃, and between the projective bimodule resolutions of Λ and Λ̃. To do this,

we first introduce some more notation.

Definition 4.11. (See [36, Theorem 8.14]) Suppose w ∈ Q̃0 \ Q0. Let p̃w be the

unique shortest path in KQ̃ which starts at a vertex in Q0 and ends at w. Let q̃w be

the unique shortest path in KQ̃ which starts at the vertex w and ends at a vertex

in Q0. We illustrate these in the following diagram

v
p̃w

// w
q̃w

// v′

where v, v′ are vertices in Q0.

Definition 4.12. [23, Definition 3.1] Let v ∈ Q0. We say v is properly internal to

the path p if p = p1vp2, where `(p1), `(p2) ≥ 1 and o(p) 6= v 6= t(p).

Remark 4.13. Let w ∈ Q̃0 \ Q0. So w is properly internal to θ(α) for some arrow

α ∈ Q1. Let v = o(α) and let v′ = t(α). Keeping the notation of Definition 4.1, the

quiver Q̃ contains the subquiver

v
α1−→ w1

α2−→ w2
α3−→ · · · αA−1−→ wA−1

αA−→ v′

For each i = 1, . . . , A− 1, we have p̃wi = α1 · · ·αi and q̃wi = αi+1 · · ·αA; moreover

p̃wi q̃wi = α1 · · ·αA.

Proposition 4.14. Let w ∈ Q̃0 \ Q0, and let v′ = t(q̃w) and v = o(p̃w).

(1) If 0 6= v′λ̃ ∈ v′Λ̃, then q̃wλ̃ 6= 0 in Λ̃.

(2) If 0 6= λ̃v ∈ Λ̃v, then λ̃p̃w 6= 0 in Λ̃.

(3) If λ = v′λv ∈ v′Λv, so that θ(λ) ∈ v′Λ̃v, then the following are equivalent:

(i) q̃wθ(λ)p̃w = 0.

(ii) q̃wθ(λ) = 0.

(iii) θ(λ)p̃w = 0.

(iv) θ(λ) = 0.

(v) λ = 0.

Proof. We show (3)(i) ⇒ (v). Suppose q̃wθ(λ)p̃w = 0, and λ = v′λv. Then

considering q̃wθ(λ)p̃w as an element of KQ̃, we have that q̃wθ(λ)p̃w ∈ Ĩ, and Ĩ is
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generated by a set of uniform elements g̃2
i which all start and end at a vertex in Q0.

So by construction of Λ̃, recall that if an element p̃ ∈ Λ̃ has o(p̃) ∈ Q0 and t(p̃) ∈ Q0

then p̃ = θ(p) for some p ∈ KQ. However, no vertices of Q0 are properly internal to

either q̃w or p̃w. So it follows that θ(λ) = 0. Since θ is one-to-one, we have λ = 0.

The rest of the proof is similar, and we leave it to the reader. �

Proposition 4.15. Let w ∈ Q̃0 \Q0 and let v′ = t(q̃w) and v = o(p̃w). Let B = εΛ̃ε.

Then we have the following properties:

(1) v′B ∼= q̃wB as right B-modules.

(2) v′Λ̃ ∼= q̃wΛ̃ as right Λ̃-modules.

(3) Bv ∼= Bp̃w as left B-modules.

(4) Λ̃v ∼= Λ̃p̃w as left Λ̃-modules.

Proof. We prove (1) only. We define a map ϕw : v′B −→ q̃wB by ϕw(v′x) =

q̃wv
′x, where x ∈ B. It is straightforward to show that ϕw is a right B-module

homomorphism and is onto. The fact that ϕw is one-to-one follows from Proposition

4.14. �

Proposition 4.16. With the notation of Remark 4.13, wi ∈ Q̃0 \ Q0 for all i =

1, . . . , A− 1. Then we have the following properties:

(1) An element of Λ̃wi is of the form

λ̃wi =
∑

1≤j≤i

cjwjαj+1 · · ·αiwi + µ̃p̃wi

where cj ∈ K, µ̃ ∈ Λ̃.

(2) An element of wiΛ̃ is of the form

wiλ̃ =
∑

i≤j≤A−1

ciwiαi+1 · · ·αjwj + q̃wiµ̃.

where ci ∈ K, µ̃ ∈ Λ̃.

(3) dim Λ̃wi = i+ dim Λ̃v.

(4) dimwiΛ̃ = (A− i) + dim v′Λ̃.

Proof. We prove (1). It is clear that Λ̃wi has a basis which consists of all paths

wjαj+1 · · ·αiwi, where 1 ≤ j ≤ i together with paths of the form γ̃p̃wi since
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p̃wi = α1 · · ·αi. So we can write

λ̃wi =
∑

1≤j≤i

cjwjαj+1 · · ·αiwi + µ̃p̃wi

where cj ∈ K, µ̃ ∈ Λ̃. Then (3) follows from (1) and Proposition 4.15. We leave the

rest of the proof to the reader. �

We next study the properties of the idempotent embedding functor Te. This

material is covered in many books on category theory, and we follow the approach

of [2].

Let e ∈ A be an idempotent in a finite dimensional K-algebra A and consider the

algebra B = eAe ∼= End eA with the identity element e ∈ B. In [2, Chapter 1] the

authors give three additive K-linear covariant functors,

modB
Te,Le−−−⇀↽−−−

rese
modA

which are defined by rese(−) = (−)e, Te(−) = (−)⊗BeA and Le(−) = HomB(Ae,−).

More specifically, for the functor Te : modB −→ modA we have:

• For X ∈ modB, then Te(X) = X ⊗B eA.

• For each B-module homomorphism f : X −→ Y where X, Y ∈ modB,

the A-module homomorphism Te(f) : Te(X) −→ Te(Y ) is given by Te(f) :

x⊗B ea 7→ f(x)⊗B ea for all x ∈ X and all a ∈ A.

We remind the reader of some category theory concepts.

Definition 4.17. [2, A2, Definition 2.2]

(1) The functor T : C −→ C ′ is additive if T preserves direct sums and, for all

X, Y ∈ ObC, the map TXY : HomC(X, Y ) −→ HomC′(T (X), T (Y )), given

by h 7→ T (h), satisfies T (f + g) = T (f) + T (g), for all f, g ∈ HomC(X, Y ).

(2) Let C and C ′ be abelian categories. A covariant additive functor T : C −→ C ′

is right exact if, for any exact sequence X
f−→ Y

g−→ Z −→ 0 in C, then

the induced sequence T (X)
T (f)−→ T (Y )

T (g)−→ T (Z) −→ 0 is exact in C ′.

(3) A functor T : C −→ C ′ is faithful, if the map TXY : HomC(X, Y ) −→

HomC′(T (X), T (Y )) given by f 7→ T (f) is an injective map, for all X, Y ∈

ObC.
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(4) The functor T : C −→ C ′ is full, if the map TXY : HomC(X, Y ) −→

HomC′(T (X), T (Y )) given by f 7→ T (f) is surjective map, for all X, Y ∈

ObC.

Theorem 4.18. [2, Chapter 1.6, Theorem 6.8] Suppose that A is a finite dimen-

sional K-algebra and that e ∈ A is an idempotent, and let B = eAe. The functors

Te, Le associated to e ∈ A satisfy the following conditions

(1) Te and Le are full and faithful K-linear functors such that reseTe ∼= ImodB
∼=

rese Le, the functor Le is right adjoint to rese and Te is left adjoint to rese,

that is, there are functorial isomorphisms

HomA(XA, Le(YB)) ∼= HomB(rese(XA), YB)

HomA(Te(YB), XA) ∼= HomB(YB, rese(XA))

for every A-module XA and every B-module YB.

(2) The restriction functor rese is exact, Te is right exact, and Le is left exact.

(3) The functor Te and Le preserve indecomposability, Te carries projectives to

projectives, and Le carries injectives to injectives.

(4) A module XA is in the category ImTe if and only if there is an exact sequence

P 1 −→ P 0 −→ XA −→ 0, where P 1 and P 0 are direct sums of summands

of eA.

Proposition 4.19. [2, Chapter 1.6, p36] Let A be a finite dimensional algebra,

let e ∈ A be an idempotent, and let B = eAe. Suppose that e =
∑s

j=1 ej, with ej

primitive orthogonal idempotents, for all j = 1, . . . , s. Then mj : ejB⊗B eA −→ ejA,

where ejb⊗B ea 7→ ejbea, for all a ∈ A and b ∈ B, is a right A-module isomorphism

for i = 1, . . . , s.

We now relate this to our algebras Λ and Λ̃ and use the idempotent ε. We set

B = εΛ̃ε, so B ∼= Λ.

Proposition 4.20. Let Λ, Λ̃ be finite dimensional algebras as above. Then

mv : vB ⊗B εΛ̃ −→ vΛ̃, where vb⊗B ea 7→ vbea, for all a ∈ Λ̃ and b ∈ B, is a right

Λ̃-module isomorphism for all v ∈ Q0.
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Our aim in this chapter is give a new and functorial approach to the projective

resolution of Λ̃/r̃ and the projective bimodule resolution of Λ̃ and results of [36].

We keep the notation of previous chapters.

4.1. Functorial approach to the projective resolution of Λ̃/r̃. Now we take

a minimal projective resolution (P n, dn) of Λ/r as given by [28], so we have the sets

gn. We use these sets to give sets g̃n in order to describe the minimal projective

resolution of Λ̃/r̃.

Definition 4.21. (see [36, Definition 8.7]) Define the sets g̃n ∈ KQ̃, for n ≥ 0 as

follows

• g̃0 is the set of vertices of Q̃

• g̃1 is the set of arrows of Q̃

• g̃2 is a minimal generating set of Ĩ as given in Definition 4.1

• For n ≥ 3, let g̃ni = θ∗(gni ) for each gni ∈ gn, and set g̃n = {g̃ni }.

For n ≥ 2, it can be seen that each g̃ni is a uniform element which starts and ends

at the vertex corresponding to the vertex o(gni ) and t(gni ) respectively in Q0 and so

g̃ni = εg̃ni ε.

Definition 4.22. (see [36, Chapter 8]) We define P̃ n to be the projective Λ̃-module

P̃ n = ⊕it(g̃ni )Λ̃, for all n and define Λ̃-module homomorphisms by

• d̃0 : P̃ 0 −→ Λ̃/r̃, where d̃0 is the canonical surjection.

• d̃1 : P̃ 1 −→ P̃ 0 is given by t(α̃)λ̃ 7→ α̃λ̃, where α̃λ̃ is in the component of P̃ 0

which corresponds to o(α̃), for all λ̃ ∈ Λ̃.

• Write g̃2
i =

∑
j α̃j η̃j, where α̃j is an arrow in Q̃ and η̃j ∈ KQ̃. Then

d̃2 : P̃ 2 −→ P̃ 1 is given by t(g̃2
i )λ̃ has entry η̃jλ̃ in the summand of P̃ 1 which

corresponds to t(α̃j), for λ̃ ∈ Λ̃.

• For n ≥ 3 we have gni =
∑

j g
n−1
j qj for some qj ∈ KQ. Then g̃ni = θ∗(gni ) and

so we have g̃ni =
∑

j g̃
n−1
j θ∗(qj). Thus d̃n : P̃ n −→ P̃ n−1 is given by d̃n(t(g̃ni )λ̃)

has entry t(g̃n−1
j )θ(qj)λ̃ in the summand of P̃ n−1 which corresponds to t(g̃n−1

j ),

for λ̃ ∈ Λ̃.

Hence, we have a sequence of Λ̃-modules and homomorphisms

· · · −→ P̃ n d̃n−→ P̃ n−1 −→ · · · −→ P̃ 1 d̃1

−→ P̃ 0 d̃0

−→ Λ̃/r̃ −→ 0 (2)
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It remains to consider whether this sequence is exact. In the case where Λ is a

d-Koszul algebra, we have the following theorem.

Theorem 4.23. [36, Theorem 8.14] With the above notation and for a d-Koszul

algebra Λ, then (P̃ n, d̃n) is a minimal projective resolution of Λ̃/r̃ as a right Λ̃-module.

We now generalise this result. We start by considering the part of the sequence

(1) with n ≤ 2. We observe that

0 −→ Ker d̃2 i−→ P̃ 2 d̃2

−→ P̃ 1 d̃1

−→ P̃ 0 d̃0

−→ Λ̃/r̃ −→ 0

where i : Ker d̃2 −→ P̃ 2 is the inclusion map, is the start of a minimal projective

resolution of Λ̃/r̃ from [28]. Hence this sequence

0 −→ Ker d̃2 i−→ P̃ 2 d̃2

−→ P̃ 1 d̃1

−→ P̃ 0 d̃0

−→ Λ̃/r̃ −→ 0

is exact. Now consider n ≥ 2.

Proposition 4.24. Let P n and P̃ n be as above. Then TεP
n ∼= P̃ n for all n ≥ 2.

Proof. We have P n = ⊕it(gni )Λ which by Theorem 4.8 we identify with ⊕it(g̃ni )εΛ̃ε

via (t(gn1 )λ1, . . . , t(g
n
m)λm) = (t(g̃n1 )εθ(λ1)ε, . . . , t(g̃

n
m)εθ(λm)ε) = (t(g̃n1 )θ(λ1), . . . ,

t(g̃nm)θ(λm)). Now we use the functor Tε : modB −→ mod Λ̃ which is given by

Tε(−) = (−)⊗B εΛ̃. So, we have

TεP
n = Tε(⊕it(g̃ni )εΛ̃ε) = ⊕iTε(t(g̃ni ))εΛ̃ε = ⊕it(g̃ni )εΛ̃ε⊗B εΛ̃.

By Proposition 4.20 we have ⊕it(g̃ni )εΛ̃ε⊗B εΛ̃ ∼= ⊕it(g̃ni )Λ̃ = P̃ n. Thus

TεP
n ∼= P̃ n for all n ≥ 2. �

We identify the elements of TεP
n with those of P̃ n as follows. For

(0, . . . , 0, t(gni )λ, 0, . . . , 0) in P n and µ̃ in Λ̃ we have

(0, . . . , 0, t(gni )λ, 0, . . . , 0))⊗B εµ̃ = (0, . . . , 0, t(g̃ni )θ(λ)µ̃, 0, . . . , 0)

for λ ∈ Λ, µ̃ ∈ Λ̃.

Proposition 4.25. With the above notation and identifications, then Tεd
n = d̃n,

for all n ≥ 3.
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Proof. As above, we write gni =
∑m

j=1 g
n−1
j qj, where m is the number of elements

in the set gn−1 and let n ≥ 3. Then dn(0, . . . , t(gni )λ, . . . , 0) has entry t(gn−1
j )qjλ

in the summand of P n−1 which corresponds to t(gn−1
j ), for all λ ∈ Λ. Using the

identification above, for µ̃ ∈ Λ̃,

Tεd
n(0, . . . , 0, t(g̃ni )µ̃, 0, . . . , 0) = Tεd

n(0, . . . , 0, t(gni ), 0, . . . , 0)⊗B εµ̃

= dn(0, . . . , 0, t(gni ), 0, . . . , 0)⊗B εµ̃

= (t(gn−1
1 )q1, . . . , t(g

n−1
m )qm)⊗B εµ̃

= (t(g̃n−1
1 )θ(q1), . . . , t(g̃n−1

m )θ(qm))εµ̃

= d̃n(0, . . . , 0, t(g̃ni )µ̃, 0, . . . , 0)

as required. �

Using Propositions 4.24 and 4.25, we have the following identification and com-

mutative diagram for n ≥ 3, which we use without further comment.

TεP
n

Tε(dn)
//

OO
∼=
��

TεP
n−1

OO
∼=
��

P̃ n d̃n // P̃ n−1

So we can identify

· · · −→ P̃ n d̃n−→ P̃ n−1 · · · −→ P̃ 3 d̃3

−→ P̃ 2

with

· · · −→ TεP
n Tεdn−→ TεP

n−1 · · · −→ TεP
3 Tεd3

−→ TεP
2.

Proposition 4.26. Let P̃ n and d̃n be as given above, for n ≥ 3. Then

· · · −→ TεP
n Tεdn−→ TεP

n−1 · · · −→ TεP
3 Tεd3

−→ TεP
2

is a complex of right Λ̃-modules.

Proof. We want to show that Tε(d
n)◦Tε(dn+1) = 0, for all n ≥ 3. From the definition

of a functor, we have Tε(d
n) ◦ Tε(dn+1) = Tε(d

n ◦ dn+1). But (P n, dn) is a minimal

projective resolution of Λ/r, so dn ◦ dn+1 = 0 and hence Tε(d
n ◦ dn+1) = 0. Thus

Tε(d
n) ◦ Tε(dn+1) = 0, for all n ≥ 3 and the result follows. �
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Lemma 4.27. With the above notation, an element of TεP
n is of the form

x⊗B ε+
∑

w∈Q̃0\Q0

xw ⊗B εp̃w,

where x, xw ∈ P n.

Proof. Let z ∈ TεP
n. Then we can write z as z = z1Λ̃ = zε +

∑
w∈Q̃0\Q0

zw,

where ε =
∑

v∈Q0
v. We have z =

∑
i xi ⊗B εai, where ai ∈ Λ̃ and xi ∈ P n.

Now zε = (
∑

i xi ⊗B εai)ε =
∑

i xi ⊗B εaiε =
∑

i xiεaiε ⊗B ε = x ⊗B ε, where

x =
∑

i xiεaiε. Now consider zw, where w ∈ Q̃0 \ Q0. We have zw = (
∑

i xi ⊗B
εai)w =

∑
i xi ⊗B εaiw. By the construction of the quiver εaiw = εai

′p̃w, for some

ai
′ ∈ εΛ̃ε. So zw =

∑
i xiεai

′ε ⊗B εp̃w = xw ⊗B εp̃w, where xw =
∑

i xiεai
′ε. So

z = x⊗B ε+
∑

w∈Q̃0\Q0
xw ⊗B εp̃w as required. �

Proposition 4.28. For n ≥ 3, Ker(Tεd
n) ⊆ Im(Tεd

n+1).

Proof. Let z ∈ Ker(Tεd
n) and n ≥ 3. Then z ∈ TεP n so using Lemma 4.27, we write

z = x⊗B ε+
∑

w∈Q̃0\Q0

xw ⊗B εp̃w,

where x, xw ∈ P n. Since z ∈ Ker(Tεd
n), then Tεd

n(z) = 0, so

dn(x)⊗B ε+
∑

w∈Q̃0\Q0

dn(xw)⊗B p̃w = 0.

We may write dn(x) = (t(g̃n−1
1 )µ1, . . . , t(g̃

n−1
m )µm) and dn(xw) = (t(g̃n−1

1 )µ1,w, . . . ,

t(g̃n−1
m )µm,w) for some µj, µj,w ∈ Λ and where m is the number of elements in the

set g̃n−1. Hence for each 1 ≤ j ≤ m, we have

t(g̃n−1
j )µj⊗Bε+

∑
w∈Q̃0\Q0

t(g̃n−1
j )µj,w⊗B p̃w = t(g̃n−1

j )(µj⊗Bε+
∑

w∈Q̃0\Q0

µj,w⊗B p̃w) = 0.

Applying the isomorphism mt(g̃n−1
j ) in Proposition 4.20, this gives that

t(g̃n−1
j )(µjε+

∑
w∈Q̃0\Q0

µj,wp̃w) = 0.

Hence t(g̃n−1
j )µjε = 0 and t(g̃n−1

j )µj,wp̃w = 0 for all 1 ≤ j ≤ m and all w ∈ Q̃0 \ Q0.

So, from Proposition 4.14, t(g̃n−1
j )µj,w = 0 for all 1 ≤ j ≤ m. Thus dn(x) = 0 and

dn(xw) = 0, so that x, xw ∈ Ker dn for all w ∈ Q̃0 \ Q0.
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Now, (P n, dn) is a minimal projective resolution of Λ/r, so Im dn+1 = Ker dn.

Thus there are elements y, yw ∈ P n+1 such that x = dn+1(y) and xw = dn+1(yw) for

all w ∈ Q̃0 \ Q0. So we have

z = dn+1(y)⊗B ε+
∑

w∈Q̃0\Q0
dn+1(yw)⊗B εp̃w

= Tεd
n+1(y ⊗B ε+

∑
w∈Q̃0\Q0

yw ⊗B εp̃w)

and hence z ∈ ImTεd
n+1. Thus Ker(Tεd

n) ⊆ Im(Tεd
n+1) as required. �

We summarize Proposition 4.26 and Proposition 4.28 as follows:

Theorem 4.29. The sequence

· · · −→ TεP
n d̃n−→ TεP

n−1 · · · −→ TεP
3 d̃3

−→ ImTεd
3 −→ 0

is exact.

Proposition 4.30. With the above notation, then Ker d̃2 = ImTεd
3.

Proof. First we show Ker d̃2 ⊆ ImTεd
3. Let x̃ ∈ Ker d̃2, then

x̃ = (t(g̃2
1)λ̃1, . . . , t(g̃

2
m)λ̃m) is an element of P̃ 2, for some λ̃i ∈ Λ̃ and where m is

the number of elements in g̃2. We can write x̃ = x̃1Λ̃ = x̃ε +
∑

w∈Q̃0\Q x̃w where

ε =
∑

v∈Q0
v. For each i = 1, . . . ,m,

t(g̃2
i )λ̃i = t(g̃2

i )λ̃iε+
∑

w∈Q̃0\Q0

t(g̃2
i )λ̃iw.

We may write t(g̃2
i )λ̃iε = t(g̃2

i )θ(λi) for some λi ∈ Λ and t(g̃2
i )λ̃iw = t(g̃2

i )θ(λi,w)p̃w,

for some λi,w ∈ Λ where w ∈ Q̃0 \ Q0. Hence

x̃ε = (t(g̃2
1)θ(λ1)ε, . . . t(g̃2

m)θ(λm)ε)

and

x̃w = (t(g̃2
1)θ(λ1,w)p̃w, . . . , t(g̃

2
m)θ(λm,w)p̃w)

= (t(g̃2
1)θ(λ1,w)ε, . . . , t(g̃2

m)θ(λm,w)ε)p̃w.

So, x̃ε = Tε(xε) where xε = (t(g2
1)λ1ε, . . . , t(g

2
m)λmε), and x̃w = Tε(xw)p̃w where

xw = (t(g2
1)λ1,wε, . . . , t(g

2
m)λm,wε), with xε, xw ∈ P 2 and for all w ∈ Q̃0 \ Q0. Hence

x̃ = Tε(xε) +
∑

w∈Q̃0\Q0

Tε(xw)p̃w.
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Now, x̃ ∈ Ker d̃2. Then d̃2(x̃) = 0, and so

d̃2(x̃ε) +
∑

w∈Q̃0\Q0

d̃2(x̃w) = 0.

We may write g2
i =

∑r
j=1 αjβj,i, where αj is an arrow in Q and r is the number

of arrows in Q1. Then g̃2
i =

∑r
j=1 θ

∗(αj)θ
∗(βj,i) =

∑r
j=1 αj,1αj,2 · · ·αj,Aθ∗(βj,i). So,

d̃2(x̃) has entry
∑m

i=1 t(αj,1)αj,2 · · ·αj,Aθ(βj,i)λ̃i in the summand of P̃ 1 corresponding

to t(αj,1), and 0 otherwise. Thus, for all j = 1, . . . , r,

m∑
i=1

t(αj,1)αj,2 · · ·αj,Aθ(βj,i)λ̃i = 0.

So
∑m

i=1 t(αj,1)αj,2 · · ·αj,Aθ(βj,i)λ̃iε = 0 and
∑m

i=1 t(αj,1)αj,2 · · ·αj,Aθ(βj,i)λ̃iw = 0,

for all w ∈ Q̃0 \ Q0 and all j = 1, . . . , r. Firstly,

0 =
∑m

i=1 t(αj,1)αj,2 · · ·αj,Aθ(βj,i)t(g̃2
i )λ̃iε

=
∑m

i=1 t(αj,1)αj,2 · · ·αj,Aθ(βj,i)θ(λi)ε

= t(αj,1)αj,2 · · ·αj,A(
∑m

i=1 θ(βj,iλi)).

Since αj,2 · · ·αj,A = q̃t(αj,1), Proposition 4.14 gives
∑m

i=1 θ(βj,iλi) = 0. Since θ is

one-to-one, then
∑m

i=1 βj,iλi = 0 for all j = 1, . . . , r. Hence d2(xε) = 0. Also,

0 =
∑m

i=1 t(αj,1)αj,2 · · ·αj,Aθ(βj,i)t(g̃2
i )λ̃iw

= t(αj,1)αj,2 · · ·αj,A(
∑m

i=1 θ(βj,i)θ(λi,w)p̃w)

= t(αj,1)αj,2 · · ·αj,A(
∑m

i=1 θ(βj,iλi,w))p̃w.

A similar argument shows that
∑m

i=1 θ(βj,iλi,w) = 0 for all j = 1, . . . , r and hence

d2(xw) = 0. Thus xε and xw are in Ker d2, for all w ∈ Q̃0 \ Q0.

But, (P n, dn) is a minimal projective resolution of Λ/r, so Im d3 = Ker d2. Thus

there are elements yε, yw ∈ P 3 such that xε = d3(yε) and xw = d3(yw) for all

w ∈ Q̃0 \ Q0. So we have

x̃ = Tε(xε) +
∑

w∈Q̃0\Q0
Tε(xw)p̃w

= Tε (d3(yε)) +
∑

w∈Q̃0\Q0
Tε (d3(yw)) p̃w

= Tεd
3
(
yε ⊗B ε+

∑
w∈Q̃0\Q0

yw ⊗B p̃w
)
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and hence x̃ ∈ ImTεd
3. Thus Ker d̃2 ⊆ Im(Tεd

3).

Conversely, we now prove ImTεd
3 ⊆ Ker d̃2. As above we write g2

i =
∑r

j=1 αjβj,i,

so g̃2
i =

∑r
j=1 αj,1αj,2 · · ·αj,Aθ∗(βj,i). Let x̃ ∈ ImTεd

3, so x̃ = Tεd
3(ỹ), for some

ỹ ∈ TεP 3 ∼= P̃ 3. So using Lemma 4.27, we have ỹ = yε ⊗B ε+
∑

w∈Q̃0\Q0
yw ⊗B εp̃w,

for some yε, yw ∈ P 3. Then

x̃ = d3(yε)⊗B ε+
∑

w∈Q̃0\Q0

d3(yw)⊗B εp̃w.

But, (P n, dn) is a minimal projective resolution of Λ/r, so Im d3 = Ker d2. Thus

let xε = d3(yε) ∈ Ker d2 and xw = d3(yw) ∈ Ker d2 for all w ∈ Q̃0 \ Q0, and write

xε = (t(g2
1)λ1, . . . , t(g

2
m)λm), xw = (t(g2

1)λ1,w, . . . , t(g
2
m)λm,w) where λi, λi,w ∈ Λ.

Then we identify x̃ with(
t(g̃2

1)θ(λ1)ε+
∑

w∈Q̃0\Q0
t(g̃2

1)θ(λ1,w)p̃w, . . . , t(g̃
2
m)θ(λm)ε

+
∑

w∈Q̃0\Q0
t(g̃2

m)θ(λm,w)p̃w

)
.

Then d̃2(x̃) has entry
∑m

i=1 t(αj,1)αj,2 · · ·αj,Aθ(βj,i)(θ(λi)ε+
∑

w∈Q̃0\Q0
θ(λi,w)p̃w) in

the summand of P̃ 1 corresponding to t(αj,1) and 0 otherwise. But xε, xw ∈ Ker d2

so d2(xε) = 0 and d2(xw) = 0. Thus
∑m

i=1 βj,iλi = 0 and
∑m

i=1 βj,iλi,w = 0 for

all j = 1, . . . , r and w ∈ Q̃0 \ Q0. Hence d̃2(x̃) = 0 and so x̃ ∈ Ker d̃2. Thus

ImTεd
3 ⊆ Ker d̃2. Hence Ker d̃2 = ImTεd

3. �

Theorem 4.31. With the above notation, the equation (2)

· · · −→ P̃ n d̃n−→ P̃ n−1 −→ · · · −→ P̃ 1 d̃1

−→ P̃ 0 d̃0

−→ Λ̃/r̃ −→ 0

is exact. Moreover, it is a minimal projective resolution of Λ̃/r̃.

4.2. Functorial approach to the projective bimodule resolution of Λ̃. We

now construct a minimal projective resolution of Λ̃ as a right Λ̃e-module from a

given minimal projective resolution for Λ as a right Λe-module. We begin with some

background information and some more definitions from [28].

Definition 4.32. [39, Section 2] We define the functor

Tξ : mod ξΛ̃eξ −→ mod Λ̃e

by Tξ(−) = (−)⊗ξΛ̃eξ ξΛ̃e , where ξ = ε⊗ ε, an idempotent in Λ̃e.
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Proposition 4.33. With the above notation we have Λe ∼= ξΛ̃eξ.

Proof. We have Λ ∼= εΛ̃ε by Theorem 4.8, and so Λop ∼= εΛ̃opε. Using [39, Section

2], we have (εΛ̃ε)e = ξΛ̃eξ. Hence Λe ∼= ξΛ̃eξ. �

Definition 4.34. Let Λe, Λ̃e be as above. Then, we define φ : Λe −→ Λ̃e to be the

composition of the isomorphism Λe ∼= ξΛ̃eξ of Proposition 4.33 with the inclusion

map i : ξΛ̃eξ −→ Λ̃e which is given by

λ⊗ µ 7→ ξ(θ(λ)⊗ θ(µ))ξ = θ(λ)⊗ θ(µ)

Moreover φ is an algebra monomorphism.

The projective bimodules in a minimal projective bimodule resolution of an algebra

are given by Happel in [30].

Proposition 4.35. [30] Let Λ be a finite dimensional algebra and let

· · · −→ Qn δn−→ Qn−1 −→ · · · −→ Q1 δ1

−→ Q0 δ0

−→ Λ −→ 0

be a minimal projective resolution of Λ as a Λ-Λ-bimodule. Then

Qn = ⊕i,jP (i, j)dim ExtnΛ(Si,Sj)

where P (i, j) is the projective Λ-Λ-bimodule Λ(ei ⊗ ej)Λ, and Si, Sj are the simple

modules corresponding to eiΛ and ejΛ respectively.

From [28], let (P n, dn) be a minimal projective resolution of Λ/r as a right Λ-

module, so P n = ⊕kt(gnk )Λ. Then the n-th projective in a minimal projective

resolution of the simple module Si is ⊕t(gnk )Λ where the sum is now over all gnk with

o(gnk ) = i. So, using the result by Benson ([5, Corollary 2.5.4]) (see Proposition 2.20)

we can index ExtnΛ(Si, Sj) by the elements of gn which start at i and end at j. We

now sum over all i and j and use the result by Happel (Proposition 4.35) to give the

following description of the projective modules in a minimal projective bimodule

resolution of Λ.

Definition 4.36. Let n ≥ 0. Define Qn = ⊕gni ∈gnΛo(gni )⊗ t(gni )Λ so that Qn is the

nth projective in a minimal projective bimodule resolution of Λ. Let (Qn, δn) be
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a minimal projective bimodule resolution for Λ with the part up to Q3 as given

by [24].

Define Q̃n = ⊕g̃ni ∈g̃nΛ̃o(g̃ni )⊗ t(g̃ni )Λ̃ so that Q̃n is the nth projective in a minimal

projective bimodule resolution of Λ̃. Define δ̃n : Q̃n −→ Q̃n−1 by δ̃n = Tξδ
n for all

n ≥ 3, and δ̃0, δ̃1, δ̃2 to be the maps given in [24].

Proposition 4.37. Let Qn and Q̃n be as above. Then TξQ
n ∼= Q̃n, for all n ≥ 2.

Proof. We identify Qn with ⊕i(o(g̃ni )⊗ t(g̃ni ))ξΛ̃eξ by Proposition 4.33. So

TξQ
n = ⊕i(o(g̃ni )⊗ t(g̃ni ))ξΛ̃eξ ⊗ξΛ̃eξ ξΛ̃e

∼= ⊕i(o(g̃ni )⊗ t(g̃ni ))Λ̃e

= Q̃n

as required. �

Proposition 4.38. The definition of δ̃3 from Definition 4.36 coincides with that

given by the construction of [24].

Proof. From Remark 2.30 equation (1) we write g3
i =

∑
j g

2
jpj =

∑
j qjg

2
j rj. Then

g̃3
i =

∑
j

g̃2
j θ
∗(pj) =

∑
j

θ∗(qj)g̃
2
j θ
∗(rj).

Since δ3(o(g3
i )⊗ t(g3

i )) is given by the matrix A3 where the (g2
j , g

3
i )-entry is o(g2

j )⊗

pj − qj ⊗ rj, from Definition 4.36 and for all η̃ ∈ Λ̃e, we have

δ̃3(o(g̃3
i )⊗ t(g̃3

i ))η̃ = Tξδ
3(o(g3

i )⊗ t(g3
i ))⊗ξΛ̃eξ ξη̃

= δ3(o(g3
i )⊗ t(g3

i ))⊗ξΛ̃eξ ξη̃

= (o(g̃2
j )⊗ θ(pj)− θ(qj)⊗ θ(rj))ξη̃.

Hence δ̃3(o(g̃3
i )⊗ t(g̃3

i )) is given by the matrix Ã3 where the (g̃2
j , g̃

3
i )-entry is o(g̃2

j )⊗

θ(pj)− θ(qj)⊗ θ(rj). Hence the result follows. �

Hence, we have a sequence of Λ̃-Λ̃ bimodules and homomorphisms

· · · −→ Q̃n δ̃n−→ Q̃n−1 −→ · · · −→ Q̃1 δ̃1

−→ Q̃0 δ̃0

−→ Λ̃ −→ 0 (3)

We want to show the sequence is exact and we start by considering the part of the

sequence:

Q̃3 δ̃3

−→ Q̃2 δ̃2

−→ Q̃1 δ̃1

−→ Q̃0 δ̃0

−→ Λ̃ −→ 0.
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This is the start of a minimal projective bimodule resolution of Λ̃ from [24]. Hence

this sequence is exact.

Now consider the case n ≥ 2. We want to show the following sequence is exact

· · · −→ TξQ
n Tξδ

n

−→ TξQ
n−1 · · · −→TξQ3 Tξδ

3

−→ TξQ
2.

Proposition 4.39. The sequence

· · · −→ TξQ
n Tξδ

n

−→ TξQ
n−1 · · · −→ TξQ

3 Tξδ
3

−→ TξQ
2

is a complex of right Λ̃e-modules.

Proof. We want to show that Tξ(δ
n)◦Tξ(δn+1) = 0, for all n ≥ 3. From the definition

of a functor, we have Tξ(δ
n) ◦ Tξ(δn+1) = Tξ(δ

n ◦ δn+1). But (Qn, δn) is a minimal

projective resolution of Λ, so δn ◦ δn+1 = 0 and hence Tξ(δ
n ◦ δn+1) = 0. Thus

Tξ(δ
n) ◦ Tξ(δn+1) = 0, for all n ≥ 3 and the result follows. �

Lemma 4.40. With the above notation, an element of TξQ
n is of the form

xε⊗ε ⊗ξΛ̃eξ ξ +
∑

w,w′∈Q̃0\Q0

(
xε⊗w ⊗ξΛ̃eξ ξ(ε⊗ p̃w)+

xw⊗ε ⊗ξΛ̃eξ ξ(q̃w ⊗ ε) + xw⊗w′ ⊗ξΛ̃eξ ξ(q̃w ⊗ p̃w′)
)

where xε⊗ε, xε⊗w, xw⊗ε, xw⊗w′ are in Qn.

Proof. Let z ∈ TξQn. Then we can write z as

z = z1Λ̃e = zξ +
∑

w,w′∈Q̃0\Q0

(
z(ε⊗ w) + z(w ⊗ ε) + z(w ⊗ w′)

)

where ξ = ε⊗ε. We have z =
∑

i xi⊗ξΛ̃eξξ(λ̃i⊗µ̃i), where xi ∈ Qn and (λ̃i⊗µ̃i) ∈ Λ̃e.

So

zξ =
(∑

i xi ⊗ξΛ̃eξ ξ(λ̃i ⊗ µ̃i)
)
ξ

=
∑

i xi ⊗ξΛ̃eξ ξ(λ̃i ⊗ µ̃i)ξ

=
∑

i xiξ(λ̃i ⊗ µ̃i)ξ ⊗ξΛ̃eξ ξ

= xε⊗ε ⊗ξΛ̃eξ ξ

where xε⊗ε =
∑

i xiξ(λ̃i ⊗ µ̃i)ξ.
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Now,

z(ε⊗ w) =
∑

i xi ⊗ξΛ̃eξ ξ(λ̃i ⊗ µ̃i)(ε⊗ w)

=
∑

i xi ⊗ξΛ̃eξ (ε⊗ ε)(λ̃i ⊗ µ̃i)(ε⊗ w)

=
∑

i xi ⊗ξΛ̃eξ (ελ̃iε⊗ εµ̃iw).

From the construction of KQ̃, we may write ελ̃iε = εθ(λi)ε and εµ̃iw = εθ(µi)p̃w,

for some λi, µi ∈ Λ. Hence

z(ε⊗ w) =
∑

i xi ⊗ξΛ̃eξ (εθ(λi)ε⊗ εθ(µi)εp̃w)

=
∑

i xi ⊗ξΛ̃eξ (ε⊗ ε)(θ(λi)⊗ θ(µi))(ε⊗ ε)(ε⊗ p̃w)

=
∑

i xi ⊗ξΛ̃eξ ξ(θ(λi)⊗ θ(µi))ξ(ε⊗ p̃w)

=
∑

i xiξ(θ(λi)⊗ θ(µi))ξ ⊗ξΛ̃eξ ξ(ε⊗ p̃w)

= xε⊗w ⊗ξΛ̃eξ ξ(ε⊗ p̃w)

where xε⊗w =
∑

i xiξ(θ(λi)⊗ θ(µi))ξ.

Similarly

z(w ⊗ ε) =
∑

i xi ⊗ξΛ̃eξ ξ(λ̃i ⊗ µ̃i)(w ⊗ ε)

=
∑

i xi ⊗ξΛ̃eξ (ε⊗ ε)(λ̃i ⊗ µ̃i)(w ⊗ ε)

=
∑

i xi ⊗ξΛ̃eξ (wλ̃iε⊗ εµ̃iε)

=
∑

i xi ⊗ξΛ̃eξ (q̃wεθ(λi)ε⊗ εθ(µi)ε)

=
∑

i xi ⊗ξΛ̃eξ ξ(θ(λi)⊗ θ(µi))ξ(q̃w ⊗ ε)

=
∑

i xiξ(θ(λi)⊗ θ(µi))ξ ⊗ξΛ̃eξ ξ(q̃w ⊗ ε)

= xw⊗ε ⊗ξΛ̃eξ ξ(q̃w ⊗ ε)

where xw⊗ε =
∑

i xiξ(θ(λi)⊗ θ(µi))ξ.

Also,

z(w ⊗ w′) =
∑

i xi ⊗ξΛ̃eξ (ε⊗ ε)(λ̃i ⊗ µ̃i)(w ⊗ w′)

=
∑

i xi ⊗ξΛ̃eξ (wλ̃iε⊗ εµ̃iw′)

=
∑

i xi ⊗ξΛ̃eξ (q̃wεθ(λi)ε⊗ εθ(µi)p̃w′)

=
∑

i xi ⊗ξΛ̃eξ ξ(θ(λi)⊗ θ(µi))ξ(q̃w ⊗ p̃w′)
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=
∑

i xiξ(θ(λi)⊗ θ(µi))ξ ⊗ξΛ̃eξ ξ(q̃w ⊗ p̃w′)

= xw⊗w′ ⊗ξΛ̃eξ ξ(q̃w ⊗ p̃w′)

where xw⊗w′ =
∑

i xiξ(θ(λi)⊗ θ(µi))ξ, for some λi, µi ∈ Λ. �

We now show that Ker(Tξδ
n) ⊆ Im(Tξδ

n+1), for n ≥ 3.

Proposition 4.41. For n ≥ 3, Ker(Tξδ
n) ⊆ Im(Tξδ

n+1).

Proof. Let z ∈ Ker(Tξδ
n). Then z ∈ TξQn so using Lemma 4.40, we write

z = xε⊗ε ⊗ξΛ̃eξ ξ +
∑

w,w′∈Q̃0\Q0

(
xε⊗w ⊗ξΛ̃eξ ξ(ε⊗ p̃w)+

xw⊗ε ⊗ξΛ̃eξ ξ(q̃w ⊗ ε) + xw⊗w′ ⊗ξΛ̃eξ ξ(q̃w ⊗ p̃w′)
)

where xε⊗ε, xε⊗w, xw⊗ε, xw⊗w′ are in Qn. Since z ∈ Ker(Tξδ
n), we have Tξδ

n(z) = 0.

So

δn(xε⊗ε)⊗ξΛ̃eξ ξ +
∑

w,w′∈Q̃0\Q0

(
δn(xε⊗w)⊗ξΛ̃eξ ξ(ε⊗ p̃w)+

δn(xw⊗ε)⊗ξΛ̃eξ ξ(q̃w ⊗ ε) + δn(xw⊗w′)⊗ξΛ̃eξ ξ(q̃w ⊗ p̃w′)
)

= 0.

We want to show that xε⊗ε, xε⊗w, xw⊗ε, xw⊗w′ ∈ Ker δn. For each τ ∈ {ε⊗ ε, ε⊗

w,w ⊗ ε, w ⊗ w′}, xτ is in Qn so δn(xτ ) is in Qn−1 and we may write

δn(xτ ) =
(
o(gn−1

1 )⊗ t(gn−1
1 )(λ1,τ ⊗ µ1,τ ), . . . , o(gn−1

m )⊗ t(gn−1
m )(λm,τ ⊗ µm,τ )

)
with the ith component in the summand of Qn−1 corresponding to o(gn−1

i )⊗ t(gn−1
i ),

where m is the number of elements in the set gn−1 and λi,τ , µi,τ ∈ Λ. Hence, for

each 1 ≤ j ≤ m, we have

(o(gn−1
j )⊗ t(gn−1

j ))(λj,ε⊗ε ⊗ µj,ε⊗ε)⊗ξΛ̃eξ ξ+∑
w,w′∈Q̃0\Q0

(
(o(gn−1

j )⊗ t(gn−1
j ))(λj,ε⊗w ⊗ µj,ε⊗w)⊗ξΛ̃eξ ξ(ε⊗ p̃w)+

(o(gn−1
j )⊗ t(gn−1

j ))(λj,w⊗ε ⊗ µj,w⊗ε)⊗ξΛ̃eξ ξ(q̃w ⊗ ε)+

(o(gn−1
j )⊗ t(gn−1

j ))(λj,w⊗w′⊗µj,w⊗w′)⊗ξΛ̃eξ ξ(q̃w⊗ p̃w′)
)

= 0.

Then

(o(g̃n−1
j )⊗ t(g̃n−1

j ))(λj,ε⊗ε ⊗ µj,ε⊗ε)ξ+∑
w,w′∈Q̃0\Q0

(
(o(g̃n−1

j )⊗ t(g̃n−1
j ))(λj,ε⊗w ⊗ µj,ε⊗w)ξ(ε⊗ p̃w)+
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(o(g̃n−1
j )⊗ t(g̃n−1

j ))(λj,w⊗ε ⊗ µj,w⊗ε)ξ(q̃w ⊗ ε)+

(o(g̃n−1
j )⊗ t(g̃n−1

j ))(λj,w⊗w′ ⊗ µj,w⊗w′)ξ(q̃w ⊗ p̃w′)
)

= 0.

Hence

(o(g̃n−1
j )⊗ t(g̃n−1

j )(λj,ε⊗ε ⊗ µj,ε⊗ε)ξ = 0,

(o(g̃n−1
j )⊗ t(g̃n−1

j ))(λj,ε⊗w ⊗ µj,ε⊗w)ξ(ε⊗ p̃w) = 0,

(o(g̃n−1
j )⊗ t(g̃n−1

j ))(λj,w⊗ε ⊗ µj,w⊗ε)ξ(q̃w ⊗ ε) = 0,

(o(g̃n−1
j )⊗ t(g̃n−1

j ))(λj,w⊗w′ ⊗ µj,w⊗w′)ξ(q̃w ⊗ p̃w′) = 0

for all w,w′ ∈ Q̃0 \ Q0. Since the ideal Ĩ of KQ̃ is generated by uniform elements

g̃2
1, . . . , g̃

2
m which all start and end at a vertex inQ0, a similar argument to Proposition

4.14 gives

(o(g̃n−1
j )⊗ t(g̃n−1

j ))(λj,ε⊗w ⊗ µj,ε⊗w)ξ = 0,

(o(g̃n−1
j )⊗ t(g̃n−1

j ))(λj,w⊗ε ⊗ µj,w⊗ε)ξ = 0 and

(o(g̃n−1
j )⊗ t(g̃n−1

j ))(λj,w⊗w′ ⊗ µj,w⊗w′)ξ = 0.

Thus δn(xε⊗ε) = 0, δn(xε⊗w) = 0, δn(xw⊗ε) = 0 and δn(xw⊗w′) = 0, so that

xε⊗ε, xε⊗w, xw⊗ε, xw⊗w′ are in Ker δn for all w,w′ ∈ Q̃0 \ Q0.

Now (Qn, δn) is a minimal projective resolution of Λ so Ker δn = Im δn+1. Thus

there are elements yε⊗ε, yε⊗w, yw⊗ε, yw⊗w′ in Qn+1 such that xε⊗ε = δn+1(yε⊗ε),

xε⊗w = δn+1(yε⊗w), xw⊗ε = δn+1(yw⊗ε) and xw⊗w′ = δn+1(yw⊗w′) for all

w,w′ ∈ Q̃0 \ Q0. So we have

z = δn+1(yε⊗ε)⊗ξΛ̃eξ ξ +
∑

w,w′∈Q̃0\Q0

(
δn+1(yε⊗w)⊗ξΛ̃eξ ξ(ε⊗ p̃w)

+δn+1(yw⊗ε)⊗ξΛ̃eξ ξ(q̃w ⊗ ε) + δn+1(yw⊗w′)⊗ξΛ̃eξ ξ(q̃w ⊗ p̃w′)
)

= Tξδ
n+1

(
yε⊗ε ⊗ξΛ̃eξ ξ +

∑
w,w′∈Q̃0\Q0

yε⊗w ⊗ξΛ̃eξ ξ(ε⊗ p̃w)

+yw⊗ε ⊗ξΛ̃eξ ξ(q̃w ⊗ ε) + yw⊗w′ ⊗ξΛ̃eξ ξ(q̃w ⊗ p̃w′)
)

and hence z ∈ ImTξδ
n+1. Thus Ker(Tξδ

n) ⊆ ImTξδ
n+1 as required. �

We summarize Proposition 4.39 and Proposition 4.41 as follows:

Theorem 4.42. The sequence

· · · −→ TξQ
n Tξδ

n

−→ TξQ
n−1 · · · −→ TξQ

3 Tξδ
3

−→ TξQ
2

is exact.
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Theorem 4.43. With the above notation, the sequence (3)

· · · −→ Q̃n δ̃n−→ Q̃n−1 −→ · · · −→ Q̃1 δ̃1

−→ Q̃0 δ̃0

−→ Λ̃ −→ 0

is exact. Moreover, it is a minimal projective bimodule resolution of Λ̃.

4.3. The relation between the Ext algebras of Λ and Λ̃. We look now at the

relationship between E(Λ) and E(Λ̃).

Definition 4.44. [36, Definition 9.1] Let fni : P n → Λ/r be the Λ-module homo-

morphism given by

t(gnj ) 7→

 t(gni ) + r if j = i;

0 otherwise.

We set fn = {fni } so that |fn| = |gn|.

Let f̃ni : P̃ n → Λ̃/r̃ be the Λ̃-module homomorphism given by

t(g̃nj ) 7→

 t(g̃ni ) + r̃ if j = i;

0 otherwise.

We set f̃n = {f̃ni } so that |f̃n| = |g̃n|.

The set fn forms a basis for ExtnΛ(Λ/r,Λ/r) and the set f̃n forms a basis for

Extn
Λ̃
(Λ̃/r̃, Λ̃/r̃) by Proposition 2.20. Moreover, for n ≥ 2 we have |gn| = |g̃n|, so

|fn| = |gn| = |g̃n| = |f̃n|

Definition 4.45. [36, Definition 9.2] Let Λ = KQ/I be a finite dimensional algebra

and let Λ̃ be the stretched algebra. Let Ext≥2
Λ (Λ/r,Λ/r) =

⊕
n≥2 ExtnΛ(Λ/r,Λ/r) and

let Ext≥2

Λ̃
(Λ̃/r̃, Λ̃/r̃) =

⊕
n≥2 Extn

Λ̃
(Λ̃/r̃, Λ̃/r̃). We define a K-module homomorphism

Ψ : Ext≥2
Λ (Λ/r,Λ/r)→ Ext≥2

Λ̃
(Λ̃/r̃, Λ̃/r̃) by

Ψ(fni ) = f̃ni for n ≥ 2.

We note that Ψ is clearly 1-1 and onto so that it is a K-module isomorphism.

In [36, Theorem 9.15], Leader showed that Ψ is an algebra homomorphism when Λ

is a d-Koszul algebra. However, her arguments do not require that Λ is d-Koszul,

and hold more generally. Hence we have the following result.

Theorem 4.46. Let Ψ : Ext≥2
Λ (Λ/r,Λ/r) → Ext≥2

Λ̃
(Λ̃/r̃, Λ̃/r̃) be the map given in

Definition 4.45. Then Ψ is a K-algebra isomorphism.
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We end this chapter with the following result.

Theorem 4.47. Let Λ = KQ/I and let Λ̃ be the stretched algebra. Suppose there is

some m ≥ 1 such that the Ext algebra E(Λ) is generated in degree at most m. Then

the Ext algebra E(Λ̃) is also finitely generated, and has generators in degree at most

m+ 2.

Proof. Assume m ≥ 1. Suppose that E(Λ) is generated in degrees 0, 1, . . . ,m. We

use induction to show that E(Λ̃) is generated in degrees 0, 1, . . . ,m+ 2.

We start by considering the case n = m + 3. Let x ∈ E(Λ̃) and suppose that

x ∈ Extm+3

Λ̃
(Λ̃/r̃, Λ̃/r̃). From Theorem 4.46 there is some y in E(Λ) with Ψ(y) = x,

and |y| = m + 3. By hypothesis, y is a sum of products of elements of degree at

most m. Without loss of generality, suppose that y = y1y2 · · · yr where 1 ≤ |yi| ≤ m

for each i.

If |y1| ≥ 2 so that necessarily we have m ≥ 2, then 3 ≤ |y2 · · · yr| ≤ m + 1. Let

z = y2 · · · yr; then y = y1z with y1, z ∈ Ext≥2
Λ (Λ/r,Λ/r). So x = Ψ(y) = Ψ(y1)Ψ(z)

and Ψ(y1),Ψ(z) both have degree at most m+ 1. So x can be written as a product

of elements of degree at most m+ 1.

Otherwise |y1| = 1. In this case, y2 · · · yr has degree m + 2. Then y =

(y1y2)(y3 · · · yr). Let z1 = y1y2 and z2 = y3 · · · yr. Since y2 has degree at most

m, it follows that |z2| ≥ 2. Then y = z1z2 with z1, z2 ∈ Ext≥2
Λ (Λ/r,Λ/r). So

x = Ψ(y) = Ψ(z1)Ψ(z2) and Ψ(z1),Ψ(z2) both have degree at most m+ 1. So x can

be written as a product of elements of degree at most m+ 1.

Now we assume that elements of Extn
Λ̃
(Λ̃/r̃, Λ̃/r̃) can be written as sums of products

of elements of degree at most m+ 2, where m+ 3 ≤ n ≤ m+ k. We let x ∈ E(Λ̃)

and now suppose that x ∈ Extn
Λ̃
(Λ̃/r̃, Λ̃/r̃) with n = m + (k + 1). From Theorem

4.46 there is some y in E(Λ) with Ψ(y) = x, and |y| = m+ (k + 1). By hypothesis,

y is a sum of products of elements of degree at most m. Without loss of generality,

suppose that y = y1y2 · · · yr where 1 ≤ |yi| ≤ m for each i.

If |y1| ≥ 2 so that necessarily we have m ≥ 2, then k + 1 ≤ |y2 · · · yr| ≤

m + (k + 1) − 2. Let z = y2 · · · yr; then y = y1z with y1, z ∈ Ext≥2
Λ (Λ/r,Λ/r). So

x = Ψ(y) = Ψ(y1)Ψ(z) where Ψ(y1) has degree at most m and Ψ(z) has degree at

most m+k−1. By hypothesis Ψ(z) can be written as a sum of products of elements
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of degree at most m+ 2. Hence x can be written as a sum of products of elements

of degree at most m+ 2.

Otherwise |y1| = 1. In this case, y2 · · · yr has degree m + k. Then y =

(y1y2)(y3 · · · yr). Let z1 = y1y2 and z2 = y3 · · · yr. Since y2 has degree at most

m, it follows that k ≤ |z2| ≤ m + k − 1, where k ≥ 3. Then y = z1z2 with

z1, z2 ∈ Ext≥2
Λ (Λ/r,Λ/r). So x = Ψ(y) = Ψ(z1)Ψ(z2) where Ψ(z1) has degree at

most m+ 1 and Ψ(z2) has degree at most m+ k − 1. By hypothesis Ψ(z2) can be

written as a sum of products of elements of degree at most m+ 2. Hence x can be

written as a sum of products of elements of degree at most m+ 2.

Hence for each element x in Ext≥2

Λ̃
(Λ̃/r̃, Λ̃/r̃), x can be written as a sum of products

of elements of degree at most m+ 2 and thus E(Λ̃) is generated in degree at most

m+ 2. �
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5. The Hochschild cohomology of two examples

In this Chapter we study the Hochschild cohomology groups of algebras Λ and

Λ̃ in Examples 5.1 and 5.2. Throughout this chapter we will write ei ⊗r ej for the

generator of the summand of Qn corresponding to the relation gnr where o(gnr ) = ei

and t(gnr ) = ej.

Example 5.1. Let Λ = KQ/I be the algebra which is given by the quiver

•x 77 ygg

and I = 〈x2, y2, xy − yx〉. We denote the vertex of the quiver Q by v. We have

• g0 = {v};

• g1 = {x, y};

• g2 = {x2, y2, xy − yx} with g2
1 = x2, g2

2 = xy − yx, g2
3 = y2;

• For all n ≥ 3, we have

gn1 = gn−1
1 x = xgn−1

1 ;

gnr = gn−1
r−1 y + (−1)r−1gn−1

r x = (−1)n+r−1ygn−1
r−1 + xgn−1

r ,

where 2 ≤ r ≤ n;

gnn+1 = gn−1
n y = ygn−1

n .

Now, for n ≥ 1, keeping the above notation, we define the map dn : Qn −→ Qn−1

for the algebra Λ, where Qn = Λo(gni )⊗ t(gni )Λ are Λ-Λ-bimodules, by

o(gn1 )⊗ t(gn1 ) 7→ o(gn−1
1 )⊗1 x+ (−1)nx⊗1 t(g

n−1
1 )

o(gnr )⊗ t(gnr ) 7→ o(gn−1
r−1 )⊗r−1 y + (−1)r−1o(gn−1

r )⊗r x

+(−1)n
(
(−1)n+r−1y ⊗r−1 t(g

n−1
r−1 ) + x⊗r t(gn−1

r )
)

o(gnn+1)⊗ t(gnn+1) 7→ o(gn−1
n )⊗n y + (−1)ny ⊗n t(gn−1

n ).

Note that o(x) = t(gn−1
1 ) so o(gn−1

1 )⊗1 t(g
n−1
1 )x = o(gn−1

1 )⊗1 x.

This algebra has been well-studied and (Qn, dn) is a minimal projective bimodule

resolution of Λ; see [18].

So we have, for each f ∈ Hom(Qn,Λ), f is determined by the elements f(v ⊗r v)

and they can be written as a linear combination of the basis elements in vΛv, for

n ≥ 0. Hence f(v ⊗r v) = c1v + c2x+ c3y + c4xy, with ci ∈ K.
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The following example is the stretched algebra of Example 5.1 with A = 2. This

is also the algebra of Examples 2.40, 3.13 and 4.2.

Example 5.2. Let Λ̃ = KQ̃/Ĩ be the algebra which is given by the quiver

1
α2

55 2

α1
uu

α3
))
3

α4

ii

and Ĩ = 〈α1α2α1α2, α3α4α3α4, α1α2α3α4 − α3α4α1α2〉. We have

• g̃0 = {e1, e2, e3}

• g̃1 = {α1, α2, α3, α4}

• g̃2 = {α1α2α1α2, α3α4α3α4, α1α2α3α4 − α3α4α1α2}

with g̃2
1 = α1α2α1α2, g̃2

2 = α1α2α3α4 − α3α4α1α2, g̃2
3 = α3α4α3α4.

• For n ≥ 3, we have

◦ g̃n1 = g̃n−1
1 α1α2 = α1α2g̃

n−1
1 ;

◦ For 2 ≤ r ≤ n, we have g̃nr = g̃n−1
r−1α3α4 + (−1)r−1g̃n−1

r α1α2

= α1α2g̃
n−1
r + (−1)n+r−1α3α4g̃

n−1
r−1 ;

◦ g̃nn+1 = g̃n−1
n α3α4 = α3α4g̃

n−1
n .

Keeping the above notation and for n ≥ 3, we define the map d̃n : Q̃n −→ Q̃n−1 for

the algebra Λ̃, where Q̃n = ⊕g̃ni ∈g̃nΛ̃o(g̃ni )⊗ t(g̃ni )Λ̃ are Λ̃-Λ̃-bimodules, as follows:

o(g̃n1 )⊗ t(g̃n1 ) 7→ o(g̃n−1
1 )⊗1 α1α2 + (−1)nα1α2 ⊗1 t(g̃

n−1
1 )

o(g̃nr )⊗ t(g̃nr ) 7→ o(g̃n−1
r−1 )⊗r−1 α3α4 + (−1)r−1o(g̃n−1

r )⊗r α1α2

+(−1)n
(
(−1)n+r−1α3α4 ⊗r−1 t(g̃

n−1
r−1 ) + α1α2 ⊗r t(g̃n−1

r )
)

o(g̃nn+1)⊗ t(g̃nn+1) 7→ o(g̃n−1
n )⊗n α3α4 + (−1)nα3α4 ⊗n t(g̃n−1

n ).

Using Example 5.1 and Theorem 4.43, it can be shown that (Q̃n, d̃n) is a minimal

projective resolution of Λ̃ as a Λ̃-Λ̃-bimodule. See also the comment at the end of

Example 2.40. Alternatively, we can use the argument in [24, Proposition 2.8]; see

also [45, Theorem 1.6]. In this case we need to note that (Λ̃/r̃⊗Λ̃ Q̃
n, id⊗Λ̃d̃

n) is

precisely the minimal projective resolution of Λ̃/r̃; this was studied in Example 2.40.

5.1. The centre of the algebras. We now look at HH0(Λ) and HH0(Λ̃) in Exam-

ples 5.1 and 5.2.
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Example 5.3. Let Λ be the algebra in Example 5.1. It can be seen that each

element in Λ is in Z(Λ). This is because Λ is a commutative algebra. In particular

Λ = K[x, y]/(x2, y2). So Z(Λ) = Λ.

Example 5.4. Let Λ̃ be the algebra from Example 5.2. Let z ∈ Z(Λ̃). Firstly,

we will show that z can be written as z = e1ze1 + e2ze2 + e3ze3. Since z ∈ Z(Λ̃),

then zλ̃ = λ̃z, for all λ̃ ∈ Λ̃. In particular, zei = eiz, for all i = 1, 2, 3, so we have

ei(zei) = ei(eiz) = (e2
i )z = eiz. Now, z = 1.z = (e1 + e2 + e3)z = e1z + e2z + e3z =

e1ze1 + e2ze2 + e3ze3.

Now, z can be written as follows z = d1e1 + d2α2α1 + d3α2α3α4α1 + d4α2α1α2α1 +

d5α2α3α4α1α2α1+d6e2+d7α1α2+d8α3α4+d9α1α2α3α4+d10e3+d11α4α3+d12α4α3α4α3+

d13α4α1α2α3 + d14α4α1α2α3α4α3, where di ∈ K.

• We have α1z = zα1, then α1z = d1α1 + d2α1α2α1 + d3α1α2α3α4α1, since

α1α2α1α2 = 0 and α1α2α3α4 = α3α4α1α2. Also, zα1 = d6α1 + d7α1α2α1 +

d8α3α4α1 + d9α1α2α3α4α1. Hence, d1 = d6, d2 = d7, d3 = d9, d8 = 0.

• Similarly, we find d1 = d6, d2 = d7, d3 = d9, d8 = 0 when we consider

α2z = zα2.

• We have α3z = zα3, then α3z = d10α3 + d11α3α4α3 + d13α3α4α1α2α3. Also,

zα3 = d6α3 + d7α1α2α3 + d8α3α4α3 + d9α1α2α3α4α3. Hence d10 = d6, d11 =

d8, d13 = d9, d7 = 0.

• Similarly, we find d10 = d6, d11 = d8, d13 = d9, d7 = 0 when we consider

α4z = zα4.

Thus z = d1(e1 + e2 + e3) + d3(α2α3α4α1 + α1α2α3α4 + α4α1α2α3) + d4α2α1α2α1 +

d5α2α3α4α1α2α1 + d12α4α3α4α3 + d14α4α1α2α3α4α3, where di ∈ K.

Now, we want to show if z = d11 + d3(α2α3α4α1 + α1α2α3α4 + α4α1α2α3) +

d4α2α1α2α1 + d5α2α3α4α1α2α1 + d12α4α3α4α3 + d14α4α1α2α3α4α3, where di ∈ K,

then z ∈ Z(Λ̃). We have ze1 = d1e1 + d3α2α3α4α1 + d4α2α1α2α1 + d5α2α3α4α1α2α1

and e1z = d1e1 + d3α2α3α4α1 + d4α2α1α2α1 + d5α2α3α4α1α2α1. Thus, e1z = ze1.

Similarly, eiz = zei, where i = 2, 3.

Next we show that zαi = αiz, where i = 1, . . . , 4.

• For i = 1, we have α1z = d1α1+d3α1α2α3α4α1 and zα1 = d1α1+d3α1α2α3α4α1

and hence zα1 = α1z.
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• For i = 2, we have α2z = d1α2+d3α2α1α2α3α4 and zα2 = d1α1+d3α2α3α4α1α2

and hence zα2 = α2z.

• For i = 3, we have α3z = d1α3+d3α3α4α1α2α3 and zα3 = d1α3+d3α1α2α3α4α3

and hence zα3 = α3z, since α1α2α3α4 = α3α4α1α2.

• For i = 4, we have α4z = d1α4+d3α4α1α2α3α4 and zα4 = d1α4+d3α4α1α2α3α4

and hence zα4 = α4z.

So z ∈ Z(Λ̃). Hence for each z ∈ Z(Λ̃), z can be written as z = d11+d3(α2α3α4α1 +

α1α2α3α4+α4α1α2α3)+d4α2α1α2α1+d5α2α3α4α1α2α1+d12α4α3α4α3+d14α4α1α2α3α4α3,

where di ∈ K and dimZ(Λ̃) = 6.

5.2. HH1. We compute HH1 explicitly for Example 5.1 and Example 5.2.

We denote the map Qn −→ Qn−1 by dn and we denote the induced map

Hom(Qn,Λ) −→ Hom(Qn+1,Λ) by δn. So δn is induced from dn+1.

5.2.1. HH1(Λ). In order to find HH1(Λ) For Example 5.1, we need to find Ker δ1

and Im δ0, where δ1 : Hom(Q1,Λ) −→ Hom(Q2,Λ) and δ0 : Hom(Q0,Λ) −→

Hom(Q1,Λ). We have Ker δ1 = {f ∈ Hom(Q1,Λ) : δ1(f) = 0}. Let f in Ker δ1,

then f ∈ Hom(Q1,Λ). So f : Q1 −→ Λ is given by

v ⊗x v 7→ c1v + c2x+ c3y + c4xy

v ⊗y v 7→ c5v + c6x+ c7y + c8xy

where ci in K. Since f ◦ d2 = 0, then we have

o(g2
1)⊗ t(g2

1)
d2

7→ (v ⊗x x+ x⊗x v, 0)
f7→ f(v ⊗x v)x+ xf(v ⊗x v)

= 2c1x+ 2c3xy

= 0.

We consider two cases. If charK = 2, then there is no condition on constants. If

charK 6= 2, then c1 = c3 = 0.

o(g2
2)⊗ t(g2

2)
d2

7→ (v ⊗ y − y ⊗ v, x⊗ v − v ⊗ x)
f7→ f(v ⊗x v)y − yf(v ⊗x v) + xf(v ⊗y v)− f(v ⊗y v)x

= c1y + c2xy − c1y − c2yx+ c5x+ c7xy − c5x− c7yx

= 0.
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o(g2
3)⊗ t(g2

3)
d2

7→ (0, v ⊗ y + y ⊗ v)
f7→ f(v ⊗y v)y + yf(v ⊗y v)

= 2c5y + 2c6xy

= 0.

Now we consider two cases. If charK = 2, then there is no condition on constants.

If charK 6= 2, then c5 = c6 = 0.

Hence we have two cases. If charK = 2, then Ker δ1 = Hom(Q1,Λ).

If charK 6= 2, then Ker δ1 = {f ∈ Hom(Q1,Λ) :

f(v ⊗x v) = c2x+ c4xy,

f(v ⊗y v) = c7y + c8xy}.

So we have two cases. If charK = 2, then dim Ker δ1 = 8, and if charK 6= 2, then

dim Ker δ1 = 4.

Next we find Im δ0. We know Im δ0 = {δ0(f) : f ∈ Hom(Q0,Λ)}. Let f ∈

Hom(Q0,Λ), then f : Q0 −→ Λ is given by f(v ⊗v v) = c′1v + c′2x+ c′3y + c′4xy.

So we have

o(g1
1)⊗ t(g1

1)
d1

7→ v ⊗ x− x⊗ v
f7→ f(v ⊗v v)x− xf(v ⊗v v)

= c′1x+ c′3yx− c′1x− c′3xy

= 0.

o(g1
2)⊗ t(g1

2)
d1

7→ v ⊗ y − y ⊗ v
f7→ f(v ⊗v v)y − yf(v ⊗v v)

= c′1x+ c′2yx− c′1x− c′2xy

= 0.

Hence Im δ0 = 0 and dim Im δ0 = 0. Thus HH1(Λ) = Hom(Q1,Λ), if charK = 2,

and if charK 6= 2, then HH1(Λ) = {f ∈ Hom(Q1,Λ) :

f(v ⊗x v) = c2x+ c4xy,

f(v ⊗y v) = c7y + c8xy}.

Hence dim HH1(Λ) = 8, if charK = 2, and dim HH1(Λ) = 4, if charK 6= 2.

5.2.2. HH1(Λ̃). To find HH1(Λ̃), we need to find Ker δ̃1 and Im δ̃0 where

δ̃1 : Hom(Q̃1, Λ̃) −→ Hom(Q̃2,Λ) and δ̃0 : Hom(Q̃0, Λ̃) −→ Hom(Q̃1, Λ̃). We have

Ker δ̃1 = {f̃ ∈ Hom(Q̃1, Λ̃) : δ̃1(f̃) = 0} and let f̃ in Ker δ̃1, then f̃ ∈ Hom(Q̃1, Λ̃).
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So f̃ : Q̃1 −→ Λ̃ is given by

f̃(e2 ⊗α1 e1) 7→ r1α1 + r2α1α2α1 + r3α3α4α1 + r4α1α2α3α4α1

f̃(e1 ⊗α2 e2) 7→ r5α2 + r6α2α1α2 + r7α2α3α4 + r8α2α3α4α1α2

f̃(e2 ⊗α3 e3) 7→ r9α3 + r10α3α4α3 + r11α1α2α3 + r12α3α4α1α2α3

f̃(e3 ⊗α4 e2) 7→ r13α4 + r14α4α3α4 + r15α4α1α2 + r16α4α1α2α3α4,

where ri in K. Since f̃ ◦ d̃2 = 0, then we have

o(g̃2
1)⊗ t(g̃2

1)
d̃2

7→ (e2 ⊗ α2α1α2 + α1α2 ⊗ α2, α1 ⊗ α1α2 + α1α2α1 ⊗ e2, 0, 0)
f̃7→ f̃(e2 ⊗α1 e1)α2α1α2 + α1α2f̃(e2 ⊗α1 e1)α2 + α1f̃(e1 ⊗α2 e2)α1α2

+α1α2α1f̃(e1 ⊗α2 e2)

= 0.

o(g̃2
2)⊗ t(g̃2

2)
d̃2

7→ (e2 ⊗ α2α3α4 − α3α4 ⊗ α2, α1 ⊗ α3α4 − α3α4α1 ⊗ e2, α1α2 ⊗ α4

−e2 ⊗ α4α1α2, α1α2α3 ⊗ e2 − α3 ⊗ α1α2)
f̃7→ f̃(e2 ⊗α1 e1)α2α3α4 − α3α4f̃(e2 ⊗α1 e1)α2 + α1f̃(e1 ⊗α2 e2)α3α4

−α3α4α1f̃(e1 ⊗α2 e2) + α1α2f̃(e2 ⊗α3 e3)α4 − f̃(e2 ⊗α3 e3)

α4α1α2 + α1α2α3f̃(e3 ⊗α4 e2)− α3f̃(e3 ⊗α4 e2)α1α2

= 0.

o(g̃2
3)⊗ t(g̃2

3)
d̃2

7→ (0, 0, e2 ⊗ α4α3α4 + α3α4 ⊗ α4, α3 ⊗ α3α4 + α3α4α3 ⊗ e2)
f̃7→ f̃(e2 ⊗α3 e3)α4α3α4 + α3α4f̃(e2 ⊗α3 e3)α4

+α3f̃(e3 ⊗α4 e2)α3α4 + α3α4α3f̃(e3 ⊗α4 e2)

= 0.

Hence Ker δ̃1 = Hom(Q̃1, Λ̃) and dim Ker δ̃1 = 16.

Now we want to find Im δ̃0. Since Im δ̃0 = {δ̃0(f̃) : f̃ ∈ Hom(Q̃0, Λ̃)}. Let

f̃ ∈ Hom(Q̃0, Λ̃), then f̃ : Q̃0 −→ Λ̃ is given by

f̃(e1 ⊗e1 e1) = d1e1 + d2α2α1 + d3α2α1α2α1 + d4α2α3α4α1 + d5α2α3α4α1α2α1

f̃(e2 ⊗e2 e2) = d6e2 + d7α1α2 + d8α3α4 + d9α1α2α3α4

f̃(e3⊗e3 e3) = d10e3+d11α4α3+d12α4α3α4α3+d13α4α1α2α3+d14α4α1α2α3α4α3

where di ∈ K. So we have

o(g̃1
1)⊗ t(g̃1

1)
d̃1

7→ (−α1 ⊗ e1, e2 ⊗ α1, 0)
f̃7→ −α1f̃(e1 ⊗e1 e1) + f̃(e2 ⊗e2 e2)α1

= −d1α1 − d2α1α2α1 − d4α1α2α3α4α1 + d6α1 + d7α1α2α1

+d8α3α4α1 + d9α1α2α3α4α1
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= (−d1 + d6)α1 + (−d2 + d7)α1α2α1 + (−d4 + d9)α1α2α3α4α1

+d8α3α4α1.

o(g̃1
2)⊗ t(g̃1

2)
d̃1

7→ (e1 ⊗ α2,−α2 ⊗ e2, 0)
f̃7→ f̃(e1 ⊗e1 e1)α2 − α2f̃(e2 ⊗e2 e2)

= d1α2 + d2α2α1α2 + d4α2α3α4α1α2 − (d6α2 + d7α2α1α2 + d8α2α3α4

+d9α2α1α2α3α4)

= (d1 − d6)α2 + (d2 − d7)α2α1α2 + (d4 − d9)α2α3α4α1α2

+d8α2α3α4.

o(g̃1
3)⊗ t(g̃1

3)
d̃1

7→ (0, e2 ⊗ α3,−α3 ⊗ e3)
f̃7→ f̃(e2 ⊗e2 e2)α3 − α3f̃(e3 ⊗e3 e3)

= d6α3 + d7α1α2α3 + d8α3α4α3 + d9α1α2α3α4α3 − (d10α3

+d11α3α4α3 + d13α3α4α1α2α3)

= (d6 − d10)α3 + d7α1α2α3 + (d8 − d11)α3α4α3 + (d9 − d13)α1α2α3

α4α3.

o(g̃1
4)⊗ t(g̃1

4)
d̃1

7→ (0,−α4 ⊗ e2, e3 ⊗ α4)
f̃7→ −α4f̃(e2 ⊗e2 e2) + f̃(e3 ⊗e3 e3)α4

= −(d6α4 + d7α4α1α2 + d8α4α3α4 + d9α4α1α2α3α4) + d10α4

+d11α4α3α4 + d13α4α1α2α3α4

= (−d6 + d10)α4 − d7α4α1α2 + (−d8 + d11)α4α3α4 + (−d9 + d13)

α4α1α2α3α4.

Hence

Im δ̃0 = {δ̃0(f̃) ∈ Hom(Q̃1, Λ̃) :

δ̃0(f̃)(o(g̃1
1)⊗α1 t(g̃

1
1)) = (−d1 + d6)α1 + (−d2 + d7)α1α2α1

+ (−d4 + d9)α1α2α3α4α1 + d8α3α4α1,

δ̃0(f̃)(o(g̃1
2)⊗α2 t(g̃

1
2)) = (d1 − d6)α2 + (d2 − d7)α2α1α2

+ (d4 − d9)α2α3α4α1α1 + d8α2α3α4,

δ̃0(f̃)(o(g̃1
3)⊗α3 t(g̃

1
3)) = (d6 − d10)α3 + d7α1α2α3 + (d8 − d11)α3α4α3

+ (d9 − d13)α1α2α3α4α3,

δ̃0(f̃)(o(g̃1
4)⊗α4 t(g̃

1
4)) = (−d6 + d10)α4 − d7α4α1α2 + (−d8 + d11)α4α3α4

+ (−d9 + d13)α4α1α2α3α4}.

So dim Im δ̃0 = 8 and hence dim HH1(Λ̃) = 8.
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5.3. HH2. We now compute HH2 explicitly for Example 5.1 and Example 5.2.

5.3.1. HH2(Λ). To find HH2(Λ) for Example 5.1, we compute Ker δ2, then Im δ1,

where δ2 : Hom(Q2,Λ) −→ Hom(Q3,Λ) and δ1 : Hom(Q1,Λ) −→ Hom(Q2,Λ). We

know Ker δ2 = {f ∈ Hom(Q2,Λ), δ2(f) = 0}. Let f in Ker δ2, then f ∈ Hom(Q2,Λ).

So f : Q2 −→ Λ is given by

v ⊗1 v 7→ c1v + c2x+ c3y + c4xy

v ⊗2 v 7→ c5v + c6x+ c7y + c8xy

v ⊗3 v 7→ c9v + c10x+ c11y + c12xy

where ci ∈ K. Since δ2(f) = 0, then

o(g3
1)⊗ t(g3

1)
d3

7→ (o(g2
1)⊗1 x− x⊗1 t(g

2
1), 0, 0)

f7→ f(v ⊗1 v)x− xf(v ⊗1 v)

= c1x+ c3yx− c1x− c3xy

= 0.

o(g3
2)⊗ t(g3

2)
d3

7→ (o(g2
1)⊗1 y − y ⊗1 t(g

2
1),−o(g2

2)⊗2 x− x⊗2 t(g
2
2), 0)

f7→ f(v ⊗1 v)y − yf(v ⊗1 v)− f(v ⊗2 v)x− xf(v ⊗2 v)

= c1y + c2xy − c1x− c2yx− c5x− c7yx− c5x− c7xy

= −2c5x− 2c7xy

= 0.

Now we need to consider two cases. If charK = 2, then there is no condition on

constants. If charK 6= 2, then c5 = c7 = 0.

o(g3
3)⊗ t(g3

3)
d3

7→ (0, o(g2
2)⊗2 y + y ⊗2 t(g

2
2), o(g2

3)⊗3 x− x⊗3 t(g
2
3))

f7→ f(v ⊗2 v)y + yf(v ⊗2 v) + f(v ⊗3 v)x− xf(v ⊗3 v)

= 2c5x+ 2c6xy

= 0.

Now we need to consider two cases. If charK = 2, then there is no condition on

constants. If charK 6= 2, then c5 = c6 = 0.

o(g3
4)⊗ t(g3

4)
d3

7→ (0, 0, o(g2
3)⊗3 y − y ⊗3 t(g

2
3))

f7→ f(v ⊗3 v)y − yf(v ⊗3 v)

= c9y + c10xy − c9y − c10xy

= 0.

Hence we have two cases. If charK = 2, then Ker δ2 = Hom(Q2,Λ).
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If charK 6= 2, then Ker δ2 = {f ∈ Hom(Q2,Λ) :

f(v ⊗1 v) = c1v + c2x+ c3y + c4xy,

f(v ⊗2 v) = c8xy,

f(v ⊗3 v) = c9v + c10x+ c11y + c12xy}.

We have two cases. If charK = 2, then dim Ker δ2 = 12 and if charK 6= 2, then

dim Ker δ2 = 9.

Now we need to find Im δ1. We know Im δ1 = {δ1(f), f ∈ Hom(Q1,Λ)}. So for

each f ∈ Hom(Q1,Λ), then we have f : Q1 −→ Λ is given by

v ⊗x v 7→ c′1v + c′2x+ c′3y + c′4xy

v ⊗y v 7→ c′5v + c′6x+ c′7y + c′8xy.

where c′i ∈ K.

Now we will find δ1(f),

o(g2
1)⊗ t(g2

1)
d2

7→ (v ⊗ x+ x⊗ v, 0)
f7→ f(v ⊗x v)x+ xf(v ⊗x v)

= 2c′1x+ 2c′3xy.

o(g2
2)⊗ t(g2

2)
d2

7→ (v ⊗ y − y ⊗ v, x⊗ v − v ⊗ x)
f7→ f(v ⊗x v)y − yf(v ⊗x v) + xf(v ⊗y v)− f(v ⊗y v)x

= c′1y + c′2xy − c′1y − c′2xy + c′5x+ c′7xy − c′5x− c′7yx

= 0.

o(g2
3)⊗ t(g2

3)
d2

7→ (0, v ⊗ y + y ⊗ v)
f7→ f(v ⊗y v)y + yf(v ⊗y v)

= 2c′5x+ 2c′6xy.

Now we need to consider two cases. If charK = 2, then Im δ1 = 0.

If charK 6= 2, then Im δ1 = {f ∈ Hom(Q2,Λ) :

f(v ⊗1 v) = 2c′1x+ 2c′3xy,

f(v ⊗2 v) = 0,

f(v ⊗3 v) = 2c′5x+ 2c′6xy}.

Hence dim Im δ1 = 0, if charK = 2 and Im δ1 = 4, if charK 6= 2.

Thus dim HH2(Λ) = 12, if charK = 2 and dim HH2(Λ) = 5, if charK 6= 2.

Hence we have two cases. If charK = 2, then HH2(Λ) = Hom(Q2,Λ).
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If charK 6= 2, then HH2(Λ) = {f ∈ Hom(Q2,Λ) :

f(v ⊗1 v) = c1v + c3y,

f(v ⊗2 v) = c8xy,

f(v ⊗3 v) = c9v + c11y}.

5.3.2. HH2(Λ̃). To find HH2(Λ) for Example 5.2, we compute Ker δ̃2, then Im δ̃1

where δ̃2 : Hom(Q̃2, Λ̃) −→ Hom(Q̃3, Λ̃) and δ̃1 : Hom(Q̃1, Λ̃) −→ Hom(Q̃2, Λ̃).

We know Ker δ̃2 = {f̃ ∈ Hom(Q̃2, Λ̃) : δ̃2(f̃) = 0}. We have Ker δ̃2 = {f̃ ∈

Hom(Q̃2, Λ̃), δ̃2(f̃) = 0}. Let f̃ in Ker δ̃2, then f̃ ∈ Hom(Q̃2, Λ̃). So f̃ : Q̃2 −→ Λ̃ is

given by

e2 ⊗1 e2 7→ k1e2 + k2α1α2 + k3α3α4 + k4α1α2α3α4

e2 ⊗2 e2 7→ k5e2 + k6α1α2 + k7α3α4 + k8α1α2α3α4

e2 ⊗3 e2 7→ k9e2 + k10α1α2 + k11α3α4 + k12α1α2α3α4

where ki ∈ K. We have δ̃2(f̃) = 0, then

o(g̃3
1)⊗ tg̃3

1)
d̃3

7→ (o(g̃2
1)⊗1 α1α2 − α1α2 ⊗1 t(g̃

2
1), 0, 0)

f̃7→ f̃(e2 ⊗1 e2)α1α2 − α1α2f̃(e2 ⊗1 e2)

= k1α1α2 + k3α3α4α1α2 − k1α1α2 − k3α1α2α3α4

= 0.

o(g̃3
2)⊗ t(g̃3

2)
d̃3

7→ (o(g̃2
1)⊗1 α3α4 − α3α4 ⊗1 t(g̃

2
1),−o(g̃2

2)⊗2 α1α2

−α1α2 ⊗2 t(g̃
2
2), 0)

f̃7→ f̃(e2 ⊗1 e2)α3α4 − α3α4f̃(e2 ⊗1 e2)− f̃(e2 ⊗2 e2)α1α2

−α1α2f̃(e2 ⊗2 e2)

= k1α3α4 + k2α1α2α3α4 − k1α3α4 − k2α3α4α1α2 − k5α1α2

−k7α3α4α1α2 − k5α1α2 − k7α1α2α3α4

= −2k5x− 2k7xy

= 0.

Now we need to consider two cases. If charK = 2, then there is no condition on

constants. If charK 6= 2, then k5 = k7 = 0.
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o(g̃3
3)⊗ t(g̃3

3)
d̃3

7→ (0, o(g̃2
2)⊗2 α3α4 + α3α4 ⊗2 t(g̃

2
2), o(g̃2

3)⊗3 α1α2 − α1α2 ⊗3 t(g̃
2
3))

f̃7→ f̃(e2 ⊗2 e2)α3α4 + α3α4f̃(e2 ⊗2 e2) + f̃(e2 ⊗3 e2)α1α2

−α1α2f̃(e2 ⊗3 e2)

= k5α3α4 + k6α1α2α3α4 + k5α3α4 + k6α3α4α1α2

+k9α1α2 + k11α3α4α1α2 − k9α1α2 − k11α1α2α3α4

= 2k5α3α4 + 2k6α1α2α3α4

= 0.

Now we need to consider two case. If charK = 2, then there is no condition on

constants. If charK 6= 2, then k5 = k6 = 0.

o(g̃3
4)⊗ t(g̃3

4)
d̃3

7→ (0, 0, o(g̃2
3)⊗3 α3α4 − α3α4 ⊗3 t(g̃

2
3))

f̃7→ f̃(e2 ⊗3 e2)α3α4 − α3αf̃(e2 ⊗3 e2)

= k9α3α4 + k10α1α2α3α4 − k9α3α4 − k10α3α4α1α2

= 0.

Hence we have two cases. If charK = 2, then Ker δ̃2 = Hom(Q̃2, Λ̃).

If charK 6= 2, then Ker δ̃2 = {f̃ ∈ Hom(Q̃2, Λ̃) :

f̃(e2 ⊗1 e2) = k1e2 + k2α1α2 + k3α3α4 + k4α1α2α3α4,

f̃(e2 ⊗e2 e2) = k8α1α2α3α4,

f̃(e2⊗3e2) = k9e2+k10α1α2+k11α3α4+k12α1α2α3α4}.

So we have if charK = 2, then dim Ker δ̃2 = 12, and if charK 6= 2, then

dim Ker δ̃2 = 9.

We now find Im δ̃1. We have Im δ̃1 = {δ̃1(f̃), f̃ ∈ Hom(Q̃1, Λ̃)}.

Let f̃ ∈ Hom(Q̃1, Λ̃), then f̃ : Q̃1 −→ Λ̃ is given by

e2 ⊗α1 e1 7→ r1α1 + r2α1α2α1 + r3α3α4α1 + r4α1α2α3α4α1

e1 ⊗α2 e2 7→ r5α2 + r6α2α1α2 + r7α2α3α4 + r8α2α1α2α3α4.

e2 ⊗α3 e3 7→ r9α3 + r10α3α4α3 + r11α1α2α3 + r12α3α4α1α2α3

e3 ⊗α4 e2 7→ r13α4 + r14α4α3α4 + r15α4α1α2 + r16α4α1α2α3α4,

where ri ∈ K.

Now we find δ̃1(f̃),

o(g̃2
1)⊗ t(g̃2

1)
d̃2

7→ (e2 ⊗ α2α1α2 + α1α2 ⊗ α2, α1 ⊗ α1α2 + α1α2α1 ⊗ e2, 0)
f̃7→ f̃(e2 ⊗α1 e1)α2α1α2 + α1α2f̃(e2 ⊗α1 e1)α2 + α1f̃(e1 ⊗α2 e2)

α1α2 + α1α2α1f̃(e1 ⊗α2 e2)

= 0.
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o(g̃2
2)⊗ t(g̃2

2)
d̃2

7→ (e2 ⊗ α2α3α4 − α3α4 ⊗ α2, α1 ⊗ α3α4 − α3α4α1 ⊗ e2,

α1α2 ⊗ α4 − e2 ⊗ α4α1α2, α1α2α3 ⊗ e2 − α3 ⊗ α1α2)
f̃7→ f̃(e2 ⊗α1 e1)α2α3α4 − α3α4f̃(e2 ⊗α1 e1)α2 + α1f̃(e1 ⊗α2 e2)α3α4

−α3α4α1f̃(e1 ⊗α2 e2) + α1α2f̃(e2 ⊗α3 e3)α4 − f̃(e2 ⊗α3 e3)α4α1α2

+α1α2α3f̃(e3 ⊗α4 e2)− α3f̃(e3 ⊗α4 e2)α1α2

= r1α1α2α3α4 − r1α3α4α1α2 + r5α1α2α3α4 − r5α3α4α1α2

+r9α1α2α3α4 − r9α3α4α1α2 + r13α1α2α3α4 − r13α3α4α1α2

= 0.

o(g̃2
3)⊗ t(g̃2

3)
d̃2

7→ (0, 0, e2 ⊗ α3α4α3 + α3α4 ⊗ α4, α3 ⊗ α3α4 + α3α4α3 ⊗ e2,
f̃7→ f̃(e2 ⊗α3 e3)α4α3α4 + α3α4f̃(e2 ⊗α3 e3)α4 + α3f̃(e3 ⊗α4 e2)α3α4

+α3α4α3f̃(e3 ⊗α4 e2)

= 0.

Hence Im δ̃1 = 0 and dim Im δ̃1 = 0. Thus we have two cases. If charK = 2, then

dim HH2(Λ̃) = 12, and if charK 6= 2, then dim HH2(Λ̃) = 9.

Hence we have two cases. If charK = 2, then HH2(Λ̃) = Hom(Q̃2, Λ̃).

If charK 6= 2, then HH2(Λ̃) = {f̃ ∈ Hom(Q̃2, Λ̃) :

f̃(e2⊗1 e2) = k1e2 +k2α1α2 +k3α3α4 +k4α1α2α3α4,

f̃(e2 ⊗2 e2) = k8α1α2α3α4,

f̃(e2⊗3e2) = k9e2+k10α1α2+k11α3α4+k12α1α2α3α4}.

5.3.3. The relation between HH2(Λ) and HH2(Λ̃) of Examples 5.1 and 5.2. We now

find the connection between HH2(Λ) and HH2(Λ̃) of Examples 5.1 and 5.2.

For Example 5.1 we have the basis of HH2(Λ) = sp{z1, z2, z3, z4, z5}, where

z1 : Q2 −→ Λ which is given by (v ⊗1 v) 7→ v, else 7→ 0.

z2 : Q2 −→ Λ which is given by (v ⊗1 v) 7→ c3y, else 7→ 0.

z3 : Q2 −→ Λ which is given by (v ⊗2 v) 7→ c8xy, else 7→ 0.

z4 : Q2 −→ Λ which is given by (v ⊗3 v) 7→ v, else 7→ 0.

z5 : Q2 −→ Λ which is given by (v ⊗3 v) 7→ c11y, else 7→ 0.

For Example 5.2 we have the basis of HH2(Λ̃) = sp{z̃1, z̃2, z̃3, z̃4, z̃5, z̃6, z̃7, z̃8, z̃9},

where

z̃1 : Q̃2 −→ Λ̃ which is given by (e2 ⊗1 e2) 7→ e2, else 7→ 0.

z̃2 : Q̃2 −→ Λ̃ which is given by (e2 ⊗1 e2) 7→ k2α1α2 , else 7→ 0.

z̃3 : Q̃2 −→ Λ̃ which is given by (e2 ⊗1 e2) 7→ k3α3α4, else 7→ 0.
73



z̃4 : Q̃2 −→ Λ̃ which is given by (e2 ⊗1 e2) 7→ k4α1α2α3α4, else 7→ 0.

z̃5 : Q̃2 −→ Λ̃ which is given by (e2 ⊗2 e2) 7→ k8α1α2α3α4, else 7→ 0.

z̃6 : Q̃2 −→ Λ̃ which is given by (e2 ⊗3 e2) 7→ e2, else 7→ 0.

z̃7 : Q̃2 −→ Λ̃ which is given by (e2 ⊗3 e2) 7→ k10α1α2, else 7→ 0.

z̃8 : Q̃2 −→ Λ̃ which is given by (e2 ⊗3 e2) 7→ k11α3α4, else 7→ 0.

z̃9 : Q̃2 −→ Λ̃ which is given by (e2 ⊗3 e2) 7→ k12α1α2α3α4, else 7→ 0.

Now we define the group homomorphism φ2 : HH2(Λ) −→ HH2(Λ̃) via

z1 7→ z̃1

z2 7→ z̃3

z3 7→ z̃4

z4 7→ z̃6

z5 7→ z̃8.

5.4. HH3. We find HH3(Λ) for Example 5.1, and HH3(Λ̃) for Example 5.2.

5.4.1. HH3(Λ). To find HH3(Λ) for Example 5.1, we firstly find Ker δ3, then Im δ2,

where δ3 : Hom(Q3,Λ) −→ Hom(Q4,Λ) and δ2 : Hom(Q2,Λ) −→ Hom(Q3,Λ). We

have Ker δ3 = {f ∈ Hom(Q3,Λ) : δ3(f) = 0}. Let f in Ker δ3, then f ∈ Hom(Q3,Λ).

So f : Q3 −→ Λ is given by

v ⊗1 v 7→ c1v + c2x+ c3y + c4xy

v ⊗2 v 7→ c5v + c6x+ c7y + c8xy

v ⊗3 v 7→ c9v + c10x+ c11y + c12xy

v ⊗4 v 7→ c13v + c14x+ c15y + c16xy

where ci ∈ K. Since δ3(f) = 0, then

o(g4
1)⊗ t(g4

1)
d4

7→ (o(g3
1)⊗1 x+ x⊗1 t(g

3
1), 0, 0, 0)

f7→ f(v ⊗1 v)x+ xf(v ⊗1 v)

= 2c1x+ 2c3xy

= 0.

We need to consider two cases. If charK = 2, then there is no condition on constants.

If charK 6= 2, then c1 = c3 = 0.

o(g4
2)⊗ t(g4

2)
d4

7→ (o(g3
1)⊗1 y − y ⊗1 t(g

3
1),−o(g3

2)⊗2 x+ x⊗2 t(g
3
2), 0, 0)

f7→ f(v ⊗1 v)y − yf(v ⊗1 v)− f(v ⊗2 v)x+ xf(v ⊗2 v)

= 0.
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o(g4
3)⊗ t(g4

3)
d4

7→ (0, o(g3
2)⊗2 y + y ⊗2 t(g

3
2), o(g3

3)⊗3 x+ x⊗3 t(g
3
3), 0)

f7→ f(v ⊗2 v)y + yf(v ⊗2 v) + f(v ⊗3 v)x+ xf(v ⊗3 v)

= 2c5y + 2c9x+ 2(c6 + c11)xy

= 0.

So we consider two case. If charK = 2, then there is no condition on constants. If

charK 6= 2, then c5 = c9 = 0 and c6 = c11.

o(g4
4)⊗ t(g4

4)
d4

7→ (0, 0, o(g3
3)⊗3 y − y ⊗3 t(g

3
3),−o(g3

4)⊗4 x+ x⊗4 t(g
3
4), 0)

f7→ f(v ⊗3 v)y − yf(v ⊗3 v)− f(v ⊗4 v)x+ xf(v ⊗4 v)

= 0.

o(g4
5)⊗ t(g4

5)
d4

7→ (0, 0, 0, o(g3
4)⊗4 y + y ⊗4 t(g

3
4))

f7→ f(v ⊗4 v)y + yf(v ⊗4 v)

= 2c13y + 2c14xy

= 0.

Then we have two cases. If charK = 2, then there is no condition on constants. If

charK 6= 2, then c13 = c14 = 0.

Hence we have if charK = 2, then Ker δ3 = Hom(Q3,Λ). If charK 6= 2, then

Ker δ3 = {f ∈ Hom(Q3,Λ) :

f(v ⊗1 v) = c2x+ c4xy,

f(v ⊗2 v) = c6x+ c7y + c8xy,

f(v ⊗3 v) = c10x+ c6y + c12xy,

f(v ⊗4 v) = c15x+ c16xy}.

So dim Ker δ3 = 16, if charK = 2 and dim Ker δ3 = 9, if charK 6= 2.

We now find Im δ2. Since Im δ2 = {δ2(f), f ∈ Hom(Q2,Λ)} and let f ∈

Hom(Q2,Λ), then f : Q2 −→ Λ is given by

v ⊗1 v 7→ c′1v + c′2x+ c′3y + c′4xy

v ⊗2 v 7→ c′5v + c′6x+ c′7y + c′8xy

v ⊗3 v 7→ c′9v + c′10x+ c′11y + c′12xy,

where c′i ∈ K. So we have,

o(g3
1)⊗ t(g3

1)
d3

7→ (v ⊗ x− x⊗ v, 0, 0)
f7→ f(v ⊗1 v)x− xf(v ⊗1 v)

= c′1x+ c′3xy − c′1x− c′3xy

= 0.
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o(g3
2)⊗ t(g3

2)
d3

7→ (v ⊗1 y − y ⊗1 v,−v ⊗2 x− x⊗2 v, 0)
f7→ f(v ⊗1 v)y − yf(v ⊗1 v)− f(v ⊗2 v)x− xf(v ⊗2 v)

= c′1y + c′2xy − c′1y − c′2xy − c′5x− c′7xy − c′5x− c′7yx

= −2c′5x− 2c′7xy.

o(g3
3)⊗ t(g3

3)
d3

7→ (0, v ⊗2 y + y ⊗2 v, v ⊗3 x− x⊗3 v)
f7→ f(v ⊗2 v)y + yf(v ⊗2 v) + f(v ⊗3 v)x− xf(v ⊗3 v)

= 2c′5x+ 2c′6xy.

o(g3
4)⊗ t(g3

4)
d3

7→ (0, 0, v ⊗3 y − y ⊗3 v)
f7→ f(v ⊗3 v)y − yf(v ⊗3 v)

= c′9x+ c′10xy − c′9x− c′10xy

= 0.

Considering two cases, we have if charK = 2, then Im δ2 = 0.

If charK 6= 2, then Im δ2 = {f ∈ Hom(Q2,Λ) :

f(v ⊗1 v) = 0,

f(v ⊗2 v) = −2c′5x− 2c′7xy,

f(v ⊗3 v) = 2c′5y + 2c′6xy,

f(v ⊗4 v) = 0}.

So dim Im δ2 = 0, if charK = 2 and dim Im δ2 = 3, if charK 6= 2.

Thus dim HH3(Λ) = 16, if charK = 2 and dim HH3(Λ) = 6, if charK 6= 2.

So we have two cases. If charK = 2, then HH3(Λ) = Hom(Q3,Λ).

If charK 6= 2, then HH3(Λ) = {f ∈ Hom(Q3,Λ) :

f(v ⊗1 v) = c2x+ c4xy,

f(v ⊗2 v) = c7y,

f(v ⊗3 v) = c10x,

f(v ⊗4 v) = c15x+ c16xy}.

5.4.2. HH3(Λ̃). For Example 5.2, let δ̃3 : Hom(Q̃3, Λ̃) −→ Hom(Q̃4, Λ̃) and

δ̃2 : Hom(Q̃2, Λ̃) −→ Hom(Q̃3, Λ̃). We have Ker δ̃3 = {f̃ ∈ Hom(Q̃3, Λ̃) : δ̃3(f̃) = 0}.

Let f̃ in Ker δ̃3, then f̃ ∈ Hom(Q̃3, Λ̃). So f̃ : Q̃3 −→ Λ̃ is given by

e2 ⊗1 e2 7→ k1e2 + k2α1α2 + k3α3α4 + k4α1α2α3α4

e2 ⊗2 e2 7→ k5e2 + k6α1α2 + k7α3α4 + k8α1α2α3α4

e2 ⊗3 e2 7→ k9e2 + k10α1α2 + k11α3α4 + k12α1α2α3α4

e2 ⊗4 e2 7→ k13e2 + k14α1α2 + k15α3α4 + k16α1α2α3α4
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where ki ∈ K. Since δ̃3(f̃) = 0, then

o(g̃4
1)⊗ t(g̃4

1)
d̃4

7→ (o(g̃3
1)⊗1 α1α2 + α1α2 ⊗1 t(g̃

3
1), 0, 0, 0)

f̃7→ f̃(e2 ⊗1 e2)α1α2 + α1α2f̃(e2 ⊗1 e2)

= 2k1α1α2 + 2k3α1α2α3α4

= 0.

We need to consider two cases. If charK = 2, then there is no condition on constants.

If charK 6= 2, then k1 = k3 = 0.

o(g̃4
2)⊗ t(g̃4

2)
d̃4

7→ (o(g̃3
1)⊗1 α3α4 − α3α4 ⊗1 t(g̃

3
1),−o(g̃3

2)⊗2 α1α2

+α1α2 ⊗2 t(g̃
3
2), 0)

f̃7→ f̃(e2 ⊗1 e2)α3α4 − α3α4f̃(e2 ⊗1 e2)− f̃(e2 ⊗2 e2)α1α2

−α1α2f̃(e2 ⊗2 e2)

= 0.

o(g̃4
3)⊗ t(g̃4

3)
d̃4

7→ (0, o(g̃3
2)⊗2 α3α4 + α3α4 ⊗2 t(g̃

3
2), o(g̃3

3)⊗3 α1α2

+α1α2 ⊗3 t(g̃
3
3), 0)

f̃7→ f̃(e2 ⊗2 e2)α3α4 + α3α4f̃(e2 ⊗2 e2) + f̃(e2 ⊗3 e2)α1α2 + α1α2

f̃(e2 ⊗3 e2)

= 2k5α3α4 + 2k6α1α2α3α4 + 2k9α1α2 + 2k11α1α2α3α4

= 2k5α3α4 + 2k9α1α2 + 2(k6 + k11)α1α2α3α4.

We consider two cases. If charK = 2, then there is no condition on constants. If

charK 6= 2, then k5 = k9 = 0 and k6 = k11.

o(g̃4
4)⊗ t(g̃4

4)
d̃4

7→ (0, 0, o(g̃3
3)⊗3 α3α4 − α3α4 ⊗3 t(g̃

3
3),−o(g̃3

4)⊗4 α1α2

+α1α2 ⊗4 t(g̃
3
4))

f̃7→ f̃(e2 ⊗3 e2)α3α4 − α3α4f̃(e2 ⊗3 e2)− f̃(e2 ⊗4 e2)α1α2 + α1α2

f̃(e2 ⊗4 e2)

= 0.

o(g̃4
5)⊗ t(g̃4

5)
d̃4

7→ (0, 0, 0, o(g̃3
4)⊗4 y + y ⊗4 t(g̃

3
4))

f̃7→ f̃(e2 ⊗4 e2)α3α4 + α3α4f̃(e2 ⊗4 e2)

= 2k13α1α2 + 2k14α1α2α3α4.

So we have two cases. If charK = 2, then there is no condition on constants. If

charK 6= 2, then k13 = k14 = 0.

Hence we have two cases. If charK = 2, then Ker δ̃3 = Hom(Q̃3, Λ̃).
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If charK 6= 2, then Ker δ̃3 = {f̃ ∈ Hom(Q̃3, Λ̃) :

f̃(e2 ⊗1 e2) = k2α1α2 + k4α1α2α3α4,

f̃(e2 ⊗2 e2) = k6α1α2 + k7α3α4 + k8α1α2α3α4,

f̃(e2 ⊗3 e2) = k10α1α2 + k6α3α4 + k12α1α2α3α4,

f̃(e2 ⊗4 e2) = k15α3α4 + k16α1α2α3α4}.

So we have, if charK = 2, then dim Ker δ̃3 = 16. If charK 6= 2, then dim Ker δ̃3 = 9.

We need to find Im δ̃2. Since Im δ̃2 = {δ̃2(f̃), f̃ ∈ Hom(Q̃2, Λ̃)} and let f̃ ∈

Hom(Q̃2, Λ̃), then f̃ : Q̃2 −→ Λ̃ is given by

e2 ⊗1 e2 7→ k′1e2 + k′2α1α2 + k′3α3α4 + k′4α1α2α3α4

e2 ⊗2 e2 7→ k′5e2 + k′6α1α2 + k′7α3α4 + k′8α1α2α3α4

e2 ⊗3 e2 7→ k′9e2 + k′10α1α2 + k′11α3α4 + k′12α1α2α3α4,

where k′i ∈ K. We have,

o(g̃3
1)⊗ t(g̃3

1)
d̃3

7→ (e2 ⊗1 α1α2 − α1α2 ⊗1 e2, 0, 0)
f̃7→ f̃(e2 ⊗1 e2)α1α2 + α1α2f̃(e2 ⊗1 e2)

= k′1α1α2 + k′3α1α2α3α3 − k′1α1α2 − k′3α1α2α3α4

= 0.

o(g̃3
2)⊗ t(g̃3

2)
d̃3

7→ (e2 ⊗1 α3α4 − α3α4 ⊗1 e2,−e2 ⊗2 α1α2 − α1α2 ⊗2 e2, 0)
f̃7→ f̃(e2 ⊗1 e2)α3α4 − α3α4f̃(e2 ⊗1 e2)− f̃(e2 ⊗2 e2)α1α2 − α1α2

f̃(e2 ⊗2 e2)

= k′1α3α4 + k′2α1α2α3α4 − k′1α3α4 − k′2α1α2α3α4 − k′5α1α2

−k′7α1α2α3α4 − k′5α1α2 − k′7α3α4α1α2

= −2k′5α1α2 − 2k′7α1α2α3α4.

o(g̃3
3)⊗ t(g̃3

3)
d̃3

7→ (0, e2 ⊗2 α3α4 + y ⊗2 e2, e2 ⊗3 α1α2 − α1α2 ⊗3 e2)
f̃7→ f̃(e2 ⊗2 e2)α3α4 + α3α4f̃(e2 ⊗2 e2) + f̃(e2 ⊗3 e2)α1α2 − α1α2

f̃(e2 ⊗3 e2)

= 2k′5α1α2 + 2k′6α1α2α3α4.

o(g̃3
4)⊗ t(g̃3

4)
d̃3

7→ (0, 0, e2 ⊗3 α3α4 − α3α4 ⊗3 e2)
f̃7→ f̃(e2 ⊗3 e2)α3α4 − α3α4f̃(e2 ⊗3 e2)

= k′9x+ k′10α1α2α3α4 − k′9α1α2 − k′10α1α2α3α4

= 0.

Now we need to consider two cases. If charK = 2, then Im δ̃2 = 0, and
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if charK 6= 2, then Im δ̃2 = {f̃ ∈ Hom(Q̃2, Λ̃) :

f̃(e2 ⊗1 e2) = 0,

f̃(e2 ⊗2 e2) = −2k′5α1α2 − 2k′7α1α2α3α4,

f̃(e2 ⊗3 e2) = 2k′5α3α4 + 2k′6α1α2α3α4,

f̃(e2 ⊗4 e2) = 0}.

So we have dim Im δ̃2 = 0, if charK = 2 and dim Im δ̃2 = 3, if charK 6= 2.

Thus, we have two cases. If charK = 2, then dim HH3(Λ̃) = 16. If charK 6= 2, then

dim HH3(Λ̃) = 6.

Hence we have two cases. If charK = 2, then HH3(Λ̃) = Hom(Q̃3, Λ̃).

If charK 6= 2, then HH3(Λ̃) = {f̃ ∈ Hom(Q̃3, Λ̃) :

f̃(e2 ⊗1 e2) = k2α1α2 + k4α1α2α3α4,

f̃(e2 ⊗2 e2) = k7α3α4,

f̃(e2 ⊗3 e2) = k10α1α2,

f̃(e2 ⊗4 e2) = k15α3α4 + k16α1α2α3α4}.

5.4.3. The relation between HH3(Λ) and HH3(Λ̃) of Examples 5.1 and 5.2. We find

the relationship between HH3(Λ) and HH3(Λ̃) of Examples 5.1 and 5.2.

For Example 5.1 we have the basis of HH3(Λ) = sp{z1, z2, z3, z4, z5, z6}, where

z1 : Q3 −→ Λ which is given by (v ⊗1 v) 7→ c2x, else 7→ 0.

z2 : Q3 −→ Λ which is given by (v ⊗2 v) 7→ c4xy, else 7→ 0.

z3 : Q3 −→ Λ which is given by (v ⊗2 v) 7→ c7y, else 7→ 0.

z4 : Q3 −→ Λ which is given by (v ⊗4 v) 7→ c10x, else 7→ 0.

z5 : Q3 −→ Λ which is given by (v ⊗4 v) 7→ c15y, else 7→ 0.

z6 : Q3 −→ Λ which is given by (v ⊗4 v) 7→ c16xy, else 7→ 0.

For Example 5.2 we have the basis of HH3(Λ̃) = sp{z̃1, z̃2, z̃3, z̃4, z̃5, z̃6}, where

z̃1 : Q̃3 −→ Λ̃ which is given by (e2 ⊗g̃3
1
e2) 7→ k2α1α2, else 7→ 0.

z̃2 : Q̃3 −→ Λ̃ which is given by (e2 ⊗g̃3
1
e2) 7→ k4α1α2α3α4, else 7→ 0.

z̃3 : Q̃3 −→ Λ̃ which is given by (e2 ⊗g̃3
1
e2) 7→ k7α3α4, else 7→ 0.

z̃4 : Q̃3 −→ Λ̃ which is given by (e2 ⊗g̃3
2
e2) 7→ k10α1α2, else 7→ 0.

z̃5 : Q̃3 −→ Λ̃ which is given by (e2 ⊗g̃3
1
e2) 7→ k15α3α4, else 7→ 0.

z̃6 : Q̃3 −→ Λ̃ which is given by (e2 ⊗g̃3
1
e2) 7→ k16α1α2α3α4 , else 7→ 0.

So we define the group homomorphism

φ3 : HH3(Λ) −→ HH3(Λ̃) via zi 7→ z̃i, for all i = 1, . . . , 6.
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By the same argument we can show that HH4(Λ) ∼= HH4(Λ̃) and HH5(Λ) ∼=

HH5(Λ̃). We come back to this in the next chapter.
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6. Stratifying ideals and Hochschild cohomology for Λ̃

Chapters 6 and 7 study the Hochschild cohomology rings of Λ and its stretched

algebra Λ̃, and the finiteness condition (Fg). In this chapter, we give some results

on the stretched algebra Λ̃ showing in Theorem 6.9 that Λ̃εΛ̃ is a stratifying ideal.

After that we investigate the connection between HH∗(Λ) and HH∗(Λ̃) and finiteness

conditions. Chapter 7 will study when a d-Koszul algebra has (Fg) in order to apply

the results of this chapter. We begin Chapter 6 with some properties of stratifying

ideals.

6.1. Stratifying ideals.

Definition 6.1. [8, Definition 2.1.1] Let A be an algebra and e an idempotent in

A. The two sided ideal AeA generated by e is called a stratifying ideal if

• The multiplication map Ae⊗eAe eA −→ AeA is an isomorphism, and

• For all n > 0, ToreAen (Ae, eA) = 0.

In order to decide if an ideal is a stratifying ideal, we give some properties of Tor.

Definition 6.2. [40, Chapter 6] Let R be a ring. If M is a left R-module and

Pn : · · · d2−→ P1
d1−→ P0

d0−→ N −→ 0

is a projective resolution of a right R-module N , then

TorRn (N,M) = Ker(dn ⊗ 1M)/ Im(dn+1 ⊗ 1M).

Theorem 6.3. [40, Theorem 7.2] If a right R-module F is flat, then TorRn (F,M) =

0, for all n > 0 and for every left R-module M .

Since every projective module is flat, then we have the following corollary.

Corollary 6.4. If P is a projective right R-module, then TorRn (P,M) = 0, for all

n > 0 and for every left R-module M .

Remark 6.5. Let e be an idempotent element in A. If Ae is projective as a right

eAe-module and the multiplication map Ae ⊗eAe eA −→ AeA is an isomorphism,

then AeA is a stratifying ideal.

Now we use Remark 6.5 to prove Λ̃e2Λ̃ is a stratifying ideal for the algebra Λ̃ in

Example 5.2.
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Proposition 6.6. Let Λ̃ be the algebra in Example 5.2 and we keep the notation of

the previous chapters. Then Λ̃e2Λ̃ is a stratifying ideal.

Proof. For ease of notation, we set B = e2Λ̃e2. We show first Λ̃e2 is projective as a

right B-module, then we prove the multiplication map Λ̃e2 ⊗B e2Λ̃ −→ Λ̃e2Λ̃ is an

isomorphism.

We have

Λ̃e2 = sp{e2, α2, α4, α1α2, α3α4, α2α1α2, α2α3α4, α4α1α2, α4α3α4, α1α2α3α4,

α2α1α2α3α4, α4α1α2α3α4} and

B = sp{e2, α1α2, α3α4, α1α2α3α4}.

So we have e2B = sp{e2, α1α2, α3α4, α1α2α3α4},

α2B = sp{α2, α2α1α2, α2α3α4, α2α1α2α3α4}

α4B = sp{α4, α4α1α2, α4α3α4, α4α1α2α3α4}.

Hence Λ̃e2 = e2B ⊕ α2B ⊕ α4B, where e2B,α2B,α4B are right B-modules. Since

e2 is an idempotent in B, then e2B is projective as a right B-module. Now, using

Proposition 4.15, we have e2B ∼= α2B and e2B ∼= α4B. Hence Λ̃e2
∼= e2B⊕e2B⊕e2B,

where e2B is projective as a right B-module. Since the direct sum of projective

modules is projective, then Λ̃e2 is projective as a right B-module.

Next we show that the multiplication map Λ̃e2⊗Be2Λ̃ −→ Λ̃e2Λ̃ is an isomorphism.

We define the map ψ : Λ̃e2 ⊗B e2Λ̃ −→ Λ̃e2Λ̃ via λ̃e2 ⊗B e2µ̃ 7→ λ̃e2µ̃. It is clear

that ψ is a Λ̃-Λ̃-bimodule homomorphism and is onto. So we need to show that ψ is

one-to-one. We refer the reader to the general result in Theorem 6.9, noting that we

can write λ̃e2 ⊗B e2µ̃ as

e2 ⊗B e2ν1 + q̃e1 ⊗B e2ν2 + q̃e3 ⊗B e2ν3

where ν1, ν2, ν3 are elements of Λ̃ and q̃e1 = α2, q̃e3 = α4 (See also Lemma 6.7). Thus

Λ̃e2Λ̃ is a stratifying ideal.

�

Lemma 6.7. Let Λ = KQ/I and let Λ̃ be the stretched algebra. We keep the

notation of the previous chapters with ε =
∑

v∈Q0
v and B = εΛ̃ε. An element of

Λ̃ε⊗B εΛ̃ is of the form

ε⊗B εν +
∑

w∈Q̃0\Q0

q̃wε⊗B ενw
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where ν, νw are elements of Λ̃.

Proof. Let λ̃ε⊗Bεµ̃ in Λ̃ε⊗BεΛ̃. Then 1Λ̃(λ̃ε⊗Bεµ̃) = ελ̃ε⊗Bεµ̃+
∑

w∈Q̃0\Q0
wλ̃ε⊗B

εµ̃. So we have ελ̃ε ⊗B εµ̃ = εελ̃ε ⊗B εµ̃ = ε ⊗B ελ̃εεµ̃ = ε ⊗B ελ̃εµ̃ = ε ⊗B εν,

where ν = λ̃εµ̃ which is an element in Λ̃.

Also, by the construction of the quiver, wλ̃ε = q̃wθ(λ)ε, for some λ ∈ Λ, so

∑
w∈Q̃0\Q0

wλ̃ε⊗B εµ̃ =
∑

w∈Q̃0\Q0
q̃wθ(λ)ε⊗B εµ̃

=
∑

w∈Q̃0\Q0
q̃wε⊗B εθ(λ)εεµ̃

=
∑

w∈Q̃0\Q0
q̃wε⊗B εθ(λ)εµ̃

=
∑

w∈Q̃0\Q0
q̃wε⊗B ενw

where νw = εθ(λ)εµ̃ which is an element in Λ̃, and the result follows. �

Proposition 6.8. Let Λ = KQ/I and let Λ̃ be the stretched algebra. We keep the

notation of the previous chapters with ε =
∑

v∈Q0
v and B = εΛ̃ε. Then Λ̃ε is

projective as a right B-module.

Proof. We will show Λ̃ε = εB ⊕
(
⊕w∈Q̃0\Q0

v′B
)
. For v ∈ Q0, Λ̃v has basis which

consists of all paths which start from a vertex in Q0 and end at v, and all paths

start from a vertex w and end at v, where w ∈ Q̃0 \ Q0. Then using Definition 4.11,

we can write Λ̃v as Λ̃v = εΛ̃v +
∑

w∈Q̃0\Q0
q̃wΛ̃v, for all v ∈ Q0. Hence

Λ̃ε = εB +
∑

w∈Q̃0\Q0

q̃wB.

Next we show that
∑

w∈Q̃0\Q0
q̃wB = ⊕w∈Q̃0\Q0

q̃wB. Let q̃wb ∈ q̃wB ∩
∑

w′ 6=wq̃w′B.

Then q̃wb = wq̃wb = w
∑

w′ 6=w w
′q̃w′bw′ = 0, where b, bw′ ∈ B. So q̃wB∩

∑
w′ 6=w q̃w′B =

0 and hence
∑

w∈Q̃0\Q0
q̃wB = ⊕w∈Q̃0\Q0

q̃wB. Then

Λ̃ε = εB + (⊕w∈Q̃0\Q0
q̃wB).

Now we show that εB ∩
(
⊕w∈Q̃0\Q0

q̃wB
)

= 0. Let εb ∈ εB ∩
(
⊕w∈Q̃0\Q0

q̃wB
)
.

So εb =
∑

w∈Q̃0\Q0
q̃wbw, where b, bw in B. Then εb = εεb = ε

∑
w∈Q̃0\Q0

q̃wbw = 0.

Hence εB ∩
(
⊕w∈Q̃0\Q0

q̃wB
)

= 0 and thus

Λ̃ε = εB ⊕
(
⊕w∈Q̃0\Q0

q̃wB
)
.
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Since ε is an idempotent in B, then εB is projective as a right B-module. By

using Proposition 4.15(1) we have v′B ∼= q̃wB as right B-modules. Hence, Λ̃ε ∼=

εB ⊕
(
⊕w∈Q̃0\Q0

v′B
)

where εB, v′B are projective right B-modules. Since the

direct sum of projective modules is projective, then Λ̃ε is projective as a right

B-module. �

We can now generalize Proposition 6.6.

Theorem 6.9. Let Λ = KQ/I and let Λ̃ be the stretched algebra. We keep the

notation of the previous chapters with ε =
∑

v∈Q0
v and B = εΛ̃ε. Then Λ̃εΛ̃ is a

stratifying ideal of Λ̃.

Proof. By using Proposition 6.8, we have Λ̃ε is projective as a right B-module. From

Remark 6.5, it remains to show that the multiplication map Λ̃ε⊗B εΛ̃ −→ Λ̃εΛ̃ is

an isomorphism. We define the map ψ : Λ̃ε⊗B εΛ̃ −→ Λ̃εΛ̃ via λ̃ε⊗B εµ̃ 7→ λ̃εµ̃. It

is clear that ψ is a Λ̃-Λ̃-bimodule homomorphism and is onto. So we need to show

that ψ is one-to-one. Suppose that

ψ(λ̃1ε⊗B εµ̃1) = ψ(λ̃2ε⊗B εµ̃2).

Then by Lemma 6.7, we have

λ̃1ε⊗B εµ̃1 = ε⊗B εν +
∑

w∈Q̃0\Q0

q̃wε⊗ ενw

and

λ̃2ε⊗B εµ̃2 = ε⊗B εν ′ +
∑

w∈Q̃0\Q0

q̃wε⊗ εν ′w

where ν, νw, ν
′, ν ′w are elements in Λ̃. Then

ψ(ε⊗B εν +
∑

w∈Q̃0\Q0

q̃wε⊗ ενw) = ψ(ε⊗B εν ′ +
∑

w∈Q̃0\Q0

q̃wε⊗ εν ′w)

So

εν +
∑

w∈Q̃0\Q0

q̃wνw = εν ′ +
∑

w∈Q̃0\Q0

q̃wν
′
w.

and hence

εν − εν ′ +
∑

w∈Q̃0\Q0

q̃w(νw − ν ′w) = 0. (4)

84



First we multiply (3) by ε, then we get εν − εν ′ = 0. Second we multiply (3)

by w, where w ∈ Q̃0 \ Q0, then we have q̃w(νw − ν ′w) = 0. Since the ideal Ĩ

of KQ̃ is generated by uniform elements g̃2
1, . . . , g̃

2
m which all start and end at a

vertex in Q0, a similar argument to Proposition 4.14 shows that νw = ν ′w. Thus

λ̃1ε⊗B εµ̃1 = λ̃2ε⊗B εµ̃2 and hence ψ is one-to-one.

Therefore Λ̃εΛ̃ is a stratifying ideal. �

6.2. The projective dimension of Λ̃/Λ̃εΛ̃. We start with the algebra Λ̃; in

Examples 2.40, 3.13, 4.2 and see also 5.2; and show that Λ̃/Λ̃e2Λ̃ has projective

dimension 2 in this case. We omit some of the details as they are in the general

case, which is Theorem 6.12. We keep the notation from previous chapters.

Proposition 6.10. Let Λ̃ be the algebra in Example 5.2. Then there exists a minimal

projective Λ̃-Λ̃-bimodule resolution of Λ̃/Λ̃e2Λ̃

0 −→ R̃2 ∆2

−→ R̃1 ∆1

−→ R̃0 ∆0

−→ Λ̃/Λ̃e2Λ̃ −→ 0.

Proof. To construct this resolution, we need to find projective bimodules R̃n and

maps ∆n for all n = 0, 1, 2. Since Λ̃/Λ̃e2Λ̃ = sp{e1, e3}, we define R̃0 = Λ̃e1⊗ e1Λ̃⊕

Λ̃e3 ⊗ e3Λ̃ and we define the map

∆0 : R̃0 −→ Λ̃/Λ̃e2Λ̃ via

(λ̃1e1 ⊗ e1µ̃1, λ̃2e3 ⊗ e3µ̃2) 7→ (λ̃1e1µ̃1 + λ̃2e3µ̃2) + Λ̃e2Λ̃, where λ̃i, µ̃i ∈ Λ̃.

We have Ker ∆0 = {(λ̃1e1 ⊗ e1µ̃1, λ̃2e3 ⊗ e2µ̃2) : λ̃1e1µ̃1 + λ̃2e3µ̃3 ∈ Λ̃e2Λ̃} and we

have

Λ̃e1 = sp{e1, α1, α4α1, α2α1, α3α4α1, α1α2α1, α4α3α4α1, α2α3α4α1, α4α1α2α1,

α2α1α2α1, α1α2α3α4α1, α4α1α2α3α4α1, α2α1α2α3α4α1},

e1Λ̃ = sp{e1, α2, α2α1, α2α3, α2α3α4, α2α1α2, α2α3α4α3, α2α3α4α1, α2α1α2α1,

α2α1α2α3, α2α1α2α3α4, α2α1α2α3α4α3, α2α1α2α3α4α1},

Λ̃e3 = sp{e3, α3, α2α3, α4α3, α1α2α3, α3α4α3, α2α1α2α3, α4α1α2α3, α4α3α4α3,

α2α3α4α3, α1α2α3α4α3, α2α1α2α3α4α3, α4α1α2α3α4α3},

e3Λ̃ = sp{e3, α4, α4α3, α4α1, α4α3α4, α4α1α2, α4α3α4α1, α4α1α2α3, α4α1α2α1,

α4α3α4α3, α4α1α2α3α4, α4α1α2α3α4α1, α4α1α2α3α4α3}.

Λ̃e2 = sp{e2, α2, α4, α1α2, α3α4, α2α1α2, α2α3α4, α4α1α2, α4α3α4, α1α2α3α4,

α2α1α2α3α4, α4α1α2α3α4} and

e2Λ̃ = sp{e2, α1, α3, α1α2, α3α4, α1α2α1, α3α4α1, α1α2α3, α3α4α3, α1α2α3α4,
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α1α2α3α4α1, α1α2α3α4α3}.

Also, we note that p̃e1 = α1, q̃e1 = α2, p̃e3 = α3, q̃e3 = α4. So dim Λ̃e1 ⊗ e1Λ̃ = 169

and dim Λ̃e3 ⊗ e3Λ̃ = 169. Then it can be shown that the generators of Ker ∆0 are

e1 ⊗ q̃e1 , p̃e1 ⊗ e1, e3 ⊗ q̃e3 , p̃e3 ⊗ e3.

So we let R̃1 = Λ̃e1 ⊗ e2Λ̃ ⊕ Λ̃e2 ⊗ e1Λ̃ ⊕ Λ̃e3 ⊗ e2Λ̃ ⊕ Λ̃e2 ⊗ e3Λ̃ and we define

the map ∆1 : R̃1 −→ R̃0 as follows

e1 ⊗ e2 7→ e1 ⊗ q̃e1
e2 ⊗ e1 7→ p̃e1 ⊗ e1

e3 ⊗ e2 7→ e3 ⊗ q̃e3
e2 ⊗ e3 7→ p̃e3 ⊗ e3.

Now we have

dim Ker ∆1 = dim R̃1 − dim Ker ∆0

= dim R̃1 − (dim R̃0 − dim(Λ̃/Λ̃e2Λ̃))

= 624− 336

= 288.

It can be shown that the generators of Ker ∆1 are (p̃e1 ⊗ e2,−e2 ⊗ q̃e1 , 0, 0) and

(0, 0, p̃e3 ⊗ e2,−e2⊗ q̃e3). Hence we define the bimodule R̃2 = Λ̃e2⊗ e2Λ̃⊕ Λ̃e2⊗ e2Λ̃,

and we define the map ∆2 : R̃2 −→ R̃1 via

e2 ⊗ e2 7→ (p̃e1 ⊗ e2,−e2 ⊗ q̃e1 , 0, 0)

e2 ⊗ e2 7→ (0, 0, p̃e3 ⊗ e2,−e2 ⊗ q̃e3).

Now dim R̃2 = 288, so dim Ker ∆2 = dim R̃2 − dim Ker ∆1 = 0. Hence, we have the

minimal projective resolution

0 −→ R̃2 ∆2

−→ R̃1 ∆1

−→ R̃0 ∆0

−→ Λ̃/Λ̃e2Λ̃ −→ 0.

as required. �

We now consider the general case and recall some notation from Chapter 4. For

each arrow α in Q1, we have θ(α) = α1 · · ·αA and additional vertices w1, . . . , wA−1

in Q̃0, where wi = t(αi) for i = 1, . . . , A− 1. So wi is properly internal to θ(α). Also

we set dim Λ̃v = V , and dim v′Λ̃ = V ′, where v = o(α) and v′ = t(α). We recall

that p̃wi is the unique shortest path in KQ̃ which starts at a vertex in Q0 and ends

at wi and q̃wi is the unique shortest path in KQ̃ which starts at the vertex wi and

ends at a vertex in Q0. We note that p̃wi = α1 · · ·αi and q̃wi = αi+1 · · ·αA.
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We define Γα to be the subquiver of Q̃

Γα :=
w1· α2−→w2· α3−→ · · · αA−1−→

wA−1·

We have

Λ̃/Λ̃εΛ̃ ∼= ⊕α∈Q1(Λ̃w1Λ̃ + Λ̃w2Λ̃ + · · ·+ Λ̃wA−1Λ̃ + Λ̃εΛ̃)/Λ̃εΛ̃.

Then we define Xα = (Λ̃w1Λ̃ + Λ̃w2Λ̃ + · · ·+ Λ̃wA−1Λ̃ + Λ̃εΛ̃)/Λ̃εΛ̃, so

Λ̃/Λ̃εΛ̃ ∼= ⊕α∈Q1Xα

and hence, KΓα ∼= Xα as algebras.

Proposition 6.11. Let Λ = KQ/I and let Λ̃ be the stretched algebra. We keep the

notation of the previous chapters. Then dim Λ̃/Λ̃εΛ̃ = m1((A− 1)A/2), where m1

is the number of arrows of Q.

Proof. From the construction of Λ̃, and for each arrow α in Q1, we have the following

basis elements in Λ̃/Λ̃εΛ̃ :

A− 1 vertices

A− 2 arrows α2, . . . , αA−1

A− 3 paths of length 2
...

and 1 path of length A− 2 (which is the path α2 · · ·αA−1). So

dimXα =
A−1∑
i=1

i =
(A− 1)A

2
.

Then

dim Λ̃/Λ̃εΛ̃ = m1 dimXα =
m1(A− 1)A

2

where m1 is the number of arrows of Q. �

We now ready to generalize Proposition 6.10.

Theorem 6.12. Let Λ = KQ/I and let Λ̃ be the stretched algebra. Keeping the

above notation, Xα has a minimal projective Λ̃-Λ̃-bimodule resolution

0 −→ R̃2
α

∆2
α−→ R̃1

α

∆1
α−→ R̃0

α

∆0
α−→ Xα −→ 0.

87



Moreover, we have a minimal projective Λ̃-Λ̃-bimodule resolution of Λ̃/Λ̃εΛ̃

0 −→ R̃2 ∆2

−→ R̃1 ∆1

−→ R̃0 ∆0

−→ Λ̃/Λ̃εΛ̃ −→ 0

where R̃i = ⊕R̃i
α, for i = 0, 1, 2 and α ∈ Q1.

Proof. Let α ∈ Q1, and consider Xα, with the above notation. Now, we define

the bimodule R̃0
α = ⊕A−1

i=1 Λ̃wi ⊗ wiΛ̃ and we define the map ∆0
α : R̃0

α −→ Xα via

wi ⊗ wi 7→ wi + Λ̃εΛ̃ where i = 1, . . . , A− 1.

Using Proposition 4.16 with dim Λ̃v = V , dim v′Λ̃ = V ′, we have

dim R̃0
α =

∑A−1
i=1 dim(Λ̃wi) dim(wiΛ̃)

=
∑A−1

i=1 (i+ V )((A− i) + V ′)

=
∑A−1

i=1 i(A− i) +
∑A−1

i=1 iV +
∑A−1

i=1 iV ′ + (A− 1)V V ′

= ((A− 1)A(A+ 1))/6 + ((A− 1)AV )/2 + ((A− 1)AV ′)/2

+(A− 1)V V ′

= (A− 1)(V V ′ + A(V + V ′)/2 + A(A+ 1)/6).

Hence

dim Ker ∆0
α = dim R̃0

α − dimXα

= (A− 1)(V V ′ + A(V + V ′)/2 + A(A+ 1)/6)− (A(A− 1))/2

= (A− 1)
(
V V ′ + A(V + V ′)/2 + A(A− 2)/6

)
.

The next step is to find the generators of Ker ∆0
α. Let K be the Λ̃-Λ̃-bimodule

generated by {p̃w1⊗w1, wA−1⊗ q̃wA−1
, wi⊗αi+1−αi+1⊗wi+1,where i = 1, . . . , A−2}.

So we can see that K ⊆ Ker ∆0
α. Note that, for all i = 1, . . . , A− 1, p̃wi ⊗ wi is in

Ker ∆0
α. Indeed p̃wi ⊗ wi ∈ K, as we can write

p̃wi⊗wi = (p̃w1⊗w1)α2 · · ·αi−
i−1∑
j=1

α1 · · ·αj(wj⊗αj+1−αj+1⊗wj+1)αj+2 · · ·αi.

We claim that Ker ∆0
α = K. We have

K = Λ̃p̃w1 ⊗ w1Λ̃ + Λ̃wA−1 ⊗ q̃wA−1
Λ̃ +

A−2∑
i=1

Λ̃(wi ⊗ αi+1 − αi+1 ⊗ wi+1)Λ̃.

We note that

p̃w1 ⊗ q̃w1 =
A−2∑
j=1

p̃j(wj ⊗ αj+1 − αj+1 ⊗ wj+1)q̃j+1 + p̃wA−1
⊗ q̃wA−1

.
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First suppose that A = 2. We set U1 = Λ̃p̃w1 ⊗ w1Λ̃ and U2 = Λ̃w1 ⊗ q̃w1Λ̃.

Then K = U1 + U2. So dimK = dimU1 + dimU2 − dim(U1 ∩ U2). We can see that

U1 ∩ U2 = Λ̃p̃w1 ⊗ q̃w1Λ̃, since p̃w1 and q̃w1 are arrows in Q̃. So, from Proposition

4.16, we have dimK = V (1 + V ′) + (1 + V )V ′ − V V ′ = V + V ′ + V V ′. So

dimK = dim Ker ∆0
α. Therefore K = Ker ∆0

α.

Now suppose that A ≥ 3. We set U1 = Λ̃p̃w1 ⊗ w1Λ̃, U2 = Λ̃wA−1 ⊗ q̃wA−1
Λ̃, and

U3 =
∑A−2

i=1 Λ̃(wi⊗αi+1−αi+1⊗wi+1)Λ̃. We can see that Λ̃(wi⊗αi+1−αi+1⊗wi+1)Λ̃ ∼=

Λ̃(wi ⊗ wi+1)Λ̃. Then dimK = dim(U1 + U2) + dimU3 − dim(U1 + U2) ∩ U3.

Here dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2). We want to show that

U1 ∩ U2 = {0}. We can see that U1 ⊆ Λ̃w1 ⊗ w1Λ̃ and U2 ⊆ Λ̃wA−1 ⊗ wA−1Λ̃. Since

A ≥ 3 we have U1 ∩ U2 = {0}. So using Proposition 4.15, we have

dimU1 = V ((A− 1) + V ′)

dimU2 = ((A− 1) + V )V ′

dimU3 =
∑A−2

i=1 (i+ V )((A− (i+ 1)) + V ′).

We can see that p̃w1 ⊗ q̃w1 − p̃wA−1
⊗ q̃wA−1

is in U1 + U2. Also

p̃w1 ⊗ q̃w1 − p̃wA−1
⊗ q̃wA−1

= p̃w1(w1 ⊗ α2 − α2 ⊗ w2)q̃w2

+p̃w2(w2 ⊗ α3 − α3 ⊗ w3)q̃w3

+ · · ·+

+p̃wA−2
(wA−2 ⊗ αA−1 − αA−1 ⊗ wA−1)q̃wA−1

.

so it is in U3 and hence it is in (U1 +U2)∩U3. Moreover, (U1 +U2)∩U3 is generated

by p̃w1 ⊗ q̃w1 − p̃wA−1
⊗ q̃wA−1

. So

dim((U1 + U2) ∩ U3) = dim Λ̃(p̃w1 ⊗ q̃w1 − p̃wA−1
⊗ q̃wA−1

)Λ̃ = V V ′.

Hence, dimK

= V ((A− 1) + V ′) + ((A− 1) + V )V ′ +
∑A−2

i=1 (i+ V )((A− (i+ 1)) + V ′)− V V ′

= V (A−1)+V V ′+V ′(A−1)+
∑A−2

i=1 i(A−(i+1))+
∑A−2

i=1 iV ′+
∑A−2

i=1 V (A−(i+1))

+
∑A−2

i=1 V V ′

= (A−1)(V +V ′)+(A−1)V V ′+(A(A− 2)(A− 1))/2−((A− 2)(A− 1)(2A− 3))/6

−((A− 2)(A− 1))/2 + (V ′(A− 1)(A− 2))/2 + (V (A− 1)(A− 2))/2

= (A− 1)
(
V V ′ + A(V + V ′)/2 + A(A− 2)/6

)
.

So dimK = dim Ker ∆0
α. Therefore K = Ker ∆0

α.
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Now we define R̃1
α = Λ̃v ⊗ w1Λ̃ ⊕ (

⊕A−2
i=1 Λ̃wi ⊗ wi+1Λ̃) ⊕ Λ̃wA−1 ⊗ v′Λ̃, and we

define the map ∆1
α : R̃1

α −→ R̃0
α via

v ⊗ w1 7→ p̃w1 ⊗ w1

wi ⊗ wi+1 7→ wi ⊗ αi+1 − αi+1 ⊗ wi+1

wA−1 ⊗ v′ 7→ wA−1 ⊗ q̃wA−1

where p̃w1 ⊗ w1 lies in the t(α1)⊗ t(α1)-component of R̃0
α, wA−1 ⊗ q̃wA−1

lies in the

o(αA)⊗ o(αA)-component of R̃0
α, wi ⊗ αi+1 lies in the o(αi+1)⊗ o(αi+1)-component

of R̃0
α and αi+1 ⊗ wi+1 lies in the t(αi+1)⊗ t(αi+1)-component of R̃0

α. Then

dim R̃1
α = dim Λ̃v dimw1Λ̃ +

∑A−2
i=1 dim Λ̃wi dimwi+1Λ̃ + dim Λ̃wA−1 dim v′Λ̃

= V ((A− 1) + V ′) +
∑A−2

i=1 (i+ V )((A− (i+ 1)) + V ′)

+((A− 1) + V )V ′

=
∑A−1

i=1 V i+
∑A−1

i=1 V ′i+ AV V ′ +
∑A−2

i=1 i(A− (i+ 1))

= AV V ′ + (A(A− 1)(V + V ′))/2 + (A(A− 1)(A− 2))/6.

Then dim Ker ∆1
α = dim R̃1

α − dim Ker ∆0
α = V V ′.

Now we want to find the generators of Ker ∆1
α. We can see that

z = (v ⊗ q̃w1 ,−p̃w1 ⊗ q̃w2 , . . . ,−p̃wi ⊗ q̃wi+1
, . . . ,

−p̃wA−2
⊗ q̃wA−1

,−p̃wA−1
⊗ v′)

is in Ker ∆1
α. Now z generates a sub-bimodule of Ker ∆1

α of dimension V V ′. Hence

Ker ∆1
α is generated by z. So

Ker ∆1
α = Λ̃(v ⊗ q̃w1 ,−p̃w1 ⊗ q̃w2 , . . . ,−p̃wi ⊗ q̃wi+1

, . . . ,

−p̃wA−2
⊗ q̃wA−1

,−p̃wA−1
⊗ v′)Λ̃.

Then we define R̃2
α = Λ̃v ⊗ v′Λ̃ and we define the map ∆2

α : R̃2
α −→ R̃1

α via

v ⊗ v′ 7→ (v ⊗ q̃w1 ,−p̃w1 ⊗ q̃w2 , . . . ,−p̃wi ⊗ q̃wi+1
, . . . ,

− p̃wA−2
⊗ q̃wA−1

,−p̃wA−1
⊗ v′).

Then dim R̃2
α = V V ′ and so dim Ker ∆2

α = dim R̃2
α−dim Ker ∆1

α = 0. Thus, we have

the minimal projective resolution of Xα

0 −→ R̃2
α

∆2
α−→ R̃1

α

∆1
α−→ R̃0

α

∆0
α−→ Xα −→ 0.

The result follows. �

Corollary 6.13. Let Λ = KQ/I and let Λ̃ be the stretched algebra. With the above

notation, pdimΛ̃e Λ̃/Λ̃εΛ̃ = 2.
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6.3. Hochschild cohomology, finiteness conditions, and eventually homo-

logical isomorphisms. We review some definitions and results that relate to

Hochschild cohomology, finiteness conditions, and eventually homological isomor-

phisms which are used in the next section.

We start by introducing the ideal of HH∗(A) which is generated by nilpotent

elements. First note that, if A is a finite dimensional algebra over a field K with

charK 6= 2, then any homogeneous element of HH∗(A) of odd degree is nilpotent.

To see this, let z ∈ HH∗(A) be a homogeneous element of odd degree. By using

HH∗(A) is a graded commutative ring (see Theorem 2.38), then z2 = −z2 and hence

2z2 = 0. So z2 = 0, and thus z is nilpotent.

Definition 6.14. [44] Let N be the ideal in HH∗(A) which is generated by all

homogeneous nilpotent elements. Note that N is a graded ideal and also that N is

the set of all nilpotent elements in HH∗(A), since HH∗(A) is graded commutative.

Proposition 6.15. [44] Let A be a finite dimensional algebra over a field K and

let M ∈ modA. Then

ϕM : HH∗(A) −→ Ext∗A(M,M)

is a homomorphism of graded rings, which is given by ϕM(−) = M ⊗A −.

Let M be a right A-module. The ring homomorphism ϕM in Proposition 6.15

gives Ext∗A(M,M) a left and a right HH∗(A)-module structure. In general, suppose

we have graded rings R and S and a graded ring homomorphism f : S → R. Then

we have a right S-module structure on R which is given by r · s = rf(s) and a left

S-module structure on R which is given by s · r = f(s)r. Moreover, Snashall and

Solberg show in [44, Theorem 1.1] that the left and right module structures are

connected in the following way: let η ∈ HHn(A) and θ ∈ ExtmA (M,M), then

ϕM(η)θ = (−1)mnθϕM(η).

We now introduce the assumption (Fg) which relates to finiteness conditions

on Hochschild cohomology and was introduced by Erdmann, Holloway, Snashall,

Solberg, and Taillefer in [11]. See also [46].
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Definition 6.16. [11] Let A be an indecomposable finite dimensional algebra over

an algebraically closed field K.

(Fg1). H is a graded subalgebra of HH∗(A) such that H is a commutative Noether-

ian ring and H0 = HH0(A).

(Fg2). E(A) is a finitely generated H-module.

We say A satisfies (Fg) if (Fg1) and (Fg2) hold for some H.

Remark 6.17. Note that [11] shows that the two assumptions (Fg1) and (Fg2)

imply that HH∗(A) is a finitely generated H-module, and consequently HH∗(A)

itself is finitely generated as a K-algebra. Moreover, E(A) is a finitely generated

K-algebra.

This work is connected to the more general concept of an eventually homological

isomorphism, which was introduced by Psaroudakis, Skartsæterhagen and Solberg

in [39]. We start with some definitions.

Definition 6.18. [39] Given a functor f : B −→ C between abelian categories and

an integer t, the functor f is called a t-homological isomorphism if there is a group

isomorphism

ExtjB(B,B′) ∼= ExtjC(f(B), f(B′))

for every pair of objects B,B′ in B, and every j > t. Moreover these isomorphisms

are not required to be induced by the functor f.

If f is a t-homological isomorphism for some t, then we say that f is an eventually

homological isomorphism.

We recall the restriction functor from [2] and Chapter 4. For an algebra A, set

B = eAe, where e is an idempotent in A. Then rese is the functor rese : modA −→

modB which is given by rese(N) = (N)e, where N is in modA.

Theorem 6.19. [39, Lemma 8.23] Let A be a finite dimensional algebra over an

algebraically closed field K. Suppose that AeA is a stratifying ideal in A. Then the

following are equivalent:

(1) pdimAe A/AeA <∞.

(2) The functor rese : modA −→ modB is an eventually homological isomor-

phism.
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We note that the proof of [39, Lemma 8.23] gives the following result.

Proposition 6.20. [39, Proof of Lemma 8.23] Let A be a finite dimensional algebra

over an algebraically closed field K. Suppose that AeA is a stratifying ideal in A.

Suppose also that pdimAe A/AeA <∞. If pdimAe A/AeA = t then the functor rese

is a t-homological isomorphism.

Definition 6.21. (See [39, Section 4, p63]) Let A be a finite dimensional algebra

over a field. Then A is called Gorenstein if idimAA <∞ and idimAA <∞.

We have the following result from [11].

Theorem 6.22. [11, Theorem 2.5 (a)] Let A be an indecomposable finite dimen-

sional algebra over an algebraically closed field K. Suppose that A and H satisfy

(Fg). Then the algebra A is Gorenstein.

6.4. Hochschild cohomology of Λ and Λ̃. We now use these results, especially

Theorem 6.9 and Corollary 6.13 to investigate the relationship between HH∗(Λ)

and HH∗(Λ̃). We build on the work of Koenig and Nagase [34], Nagase [37] and

Psaroudakis, Skartsæterhagen and Solberg [39]. Our main results in this section are

Theorem 6.24, Theorem 6.27, Theorem 6.32, Theorem 6.35, and Theorem 6.37.

Proposition 6.23. [37, Proposition 6(1)] Let A be an algebra with a stratifying

ideal AeA. Suppose pdimAe A/AeA < ∞. Then we have HH≥n(A) ∼= HH≥n(eAe)

as graded algebras, where n = pdimAe A/AeA+ 1.

Combining this with Corollary 6.13 gives the following result.

Theorem 6.24. We keep the above notation, so that Λ̃εΛ̃ is a stratifying ideal of

Λ̃. Then HH≥3(Λ) ∼= HH≥3(Λ̃) as graded algebras.

This generalises the result of Example 5.2 from Chapter 5 when we saw HH3(Λ) ∼=

HH3(Λ̃).

Koenig and Nagase [34] also look at the Hochschild cohomology groups of the

algebra A/AeA.

Proposition 6.25. [34, Proposition 3.3(3)] Let A be an algebra with a stratifying

ideal AeA. For any n ≥ 0, then HHn(A/AeA) ∼= ExtnAe(A/AeA,A/AeA).
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Using Corollary 6.13, we get the following result when we apply it to Λ̃.

Proposition 6.26. Let Λ = KQ/I and let Λ̃ be the stretched algebra. Keeping the

notation of the previous chapters, then we have

HHn(Λ̃/Λ̃εΛ̃) ∼= Extn
Λ̃e

(Λ̃/Λ̃εΛ̃, Λ̃/Λ̃εΛ̃).

Hence HHn(Λ̃/Λ̃εΛ̃) = 0, for all n ≥ 3.

However, the following result shows that we also have HH2(Λ̃/Λ̃εΛ̃) = 0.

Theorem 6.27. Let Λ = KQ/I and let Λ̃ be the stretched algebra. We keep the

notation of the previous chapters. Then

HHn(Λ̃/Λ̃εΛ̃) = 0,

for all n ≥ 2.

Proof. The case n ≥ 3 is in Proposition 6.26, so we assume n = 2. By using the

projective resolution of Λ̃/Λ̃εΛ̃ and applying HomΛ̃e(−, Λ̃/Λ̃εΛ̃) we get the following

complex

0 −→ HomΛ̃e(R̃
0, Λ̃/Λ̃εΛ̃)

δ0

−→ HomΛ̃e(R̃
1, Λ̃/Λ̃εΛ̃)

δ1

−→ HomΛ̃e(R̃
2, Λ̃/Λ̃εΛ̃)

δ2

−→ 0.

We have Ext2
Λ̃e

(Λ̃/Λ̃εΛ̃, Λ̃/Λ̃εΛ̃) = Ker δ2/ Im δ1 = HomΛ̃e(R̃
2, Λ̃/Λ̃εΛ̃)/ Im δ1. Let

g ∈ Hom(R̃2, Λ̃/Λ̃εΛ̃). Recall from Theorem 6.12 that R̃2 = ⊕α∈Q1Λ̃o(α)⊗ t(α)Λ̃.

Then for each α in Q1, we have g(o(α)⊗ t(α)) = x+ Λ̃εΛ̃ for some x in Λ̃. Since

o(α)(g(o(α) ⊗ t(α)))t(α) = g(o(α) ⊗ t(α)), then x + Λ̃/Λ̃εΛ̃ = 0 + Λ̃/Λ̃εΛ̃ and

so g = 0. So HomΛ̃e(R̃
2, Λ̃/Λ̃εΛ̃) = 0. Hence Ext2

Λ̃e
(Λ̃/Λ̃εΛ̃, Λ̃/Λ̃εΛ̃) = 0. Thus

HH2(Λ̃/Λ̃εΛ̃) = 0. �

Remark 6.28. We give now an alternative proof for Theorem 6.27. By using

Theorem 2.27, we have that Xα is hereditary and then Λ̃/Λ̃εΛ̃ is hereditary. Thus

gldim Λ̃/Λ̃εΛ̃ = 1 and hence HHn(Λ̃/Λ̃εΛ̃) = 0, for all n ≥ 2.

Proposition 6.29. Let Λ = KQ/I and let Λ̃ be the stretched algebra. We keep the

above notation. Then

HH∗(Λ̃/Λ̃εΛ̃)/N = HH0(Λ̃/Λ̃εΛ̃)/(N ∩ HH0(Λ̃/Λ̃εΛ̃)).
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Proof. By Theorem 6.27 we have HHn(Λ̃/Λ̃εΛ̃) = 0, for all n ≥ 2. So

HH∗(Λ̃/Λ̃εΛ̃) = HH0(Λ̃/Λ̃εΛ̃)⊕ HH1(Λ̃/Λ̃εΛ̃).

Since HH∗(Λ̃/Λ̃εΛ̃) is a graded algebra, then again from Theorem 6.27 we have

HH1(Λ̃/Λ̃εΛ̃)× HH1(Λ̃/Λ̃εΛ̃) = 0.

So for each η ∈ HH1(Λ̃/Λ̃εΛ̃), we have η2 = 0 and hence η is nilpotent. Thus,

HH∗(Λ̃/Λ̃εΛ̃)/N = HH0(Λ̃/Λ̃εΛ̃)/(N ∩ HH0(Λ̃/Λ̃εΛ̃)). �

Koenig and Nagase show in [34] that there are three long exact sequences which

connect HHn(A), HHn(eAe) and HHn(A/AeA).

Theorem 6.30. [34, Theorem 3.4] Let A be an algebra with a stratifying ideal

AeA. Then there are long exact sequences as follows:

(1) · · · −→ ExtnAe(A,AeA) −→ HHn(A) −→ HHn(A/AeA) −→ . . .

(2) · · · −→ ExtnAe(A/AeA,A) −→ HHn(A) −→ HHn(eAe) −→ . . .

(3) · · · −→ ExtnAe(A/AeA,AeA) −→ HHn(A)
fn−→

HHn(A/AeA)⊕HHn(eAe) −→ . . .

Corollary 6.31. [34, Corollary 3.5] Let A be an algebra with a stratifying ideal

AeA.

(1) Let f : HH∗(A) → HH∗(A/AeA) × HH∗(eAe) be the graded algebra homo-

morphism from Theorem 6.30(3). Then (Ker f)2 vanishes.

(2) The induced homomorphism

f̄ : HH∗(A)/N → HH∗(A/AeA)/N × HH∗(eAe)/N

is injective.

Recalling that εΛ̃ε ∼= Λ, then we get the following result when we apply Theorem

6.30 and Corollary 6.31 to Λ̃.

Theorem 6.32. Let Λ = KQ/I and let Λ̃ be the stretched algebra. We keep the

previous notation.

(1) There is a long exact sequence

· · · −→ Extn
Λ̃e

(Λ̃/Λ̃εΛ̃, Λ̃εΛ̃) −→ HHn(Λ̃)
fn−→

HHn(Λ̃/Λ̃εΛ̃)⊕ HHn(εΛ̃ε) −→ . . .
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(2) Let f : HH∗(Λ̃)→ HH∗(Λ̃/Λ̃εΛ̃)× HH∗(Λ) be the graded algebra homomor-

phism from (1). Then (Ker f)2 vanishes.

(3) The induced homomorphism f̄ : HH∗(Λ̃)/N → HH0(Λ̃/Λ̃εΛ̃)/N×HH∗(Λ)/N

is injective.

Note that the algebras Λ and Λ̃ may be connected but Λ̃/Λ̃εΛ̃ is not necessarily

connected.

Example 6.33. Let Λ̃ be the algebra of Examples 2.40, 3.13, 4.2 and 5.2. From

Proposition 6.6 Λ̃e2Λ̃ is a stratifying ideal. It can be seen that Λ̃/Λ̃e2Λ̃ = S1 ⊕ S3.

We may illustrate Λ̃/Λ̃e2Λ̃ as follows:

·e1 ·e3

We can see that Λ̃/Λ̃e2Λ̃ is disconnected.

We now consider the finiteness condition (Fg).

Proposition 6.34. [37, Proposition 6(2)] Let A be an algebra with a stratifying

ideal AeA. Suppose pdimAe A/AeA <∞. Then A satisfies (Fg) if and only if eAe

satisfies (Fg).

We recall in our construction of Λ̃ from Λ we have that Λ ∼= εΛ̃ε. So using

Corollary 6.13 we have the following result.

Theorem 6.35. Let Λ = KQ/I and let Λ̃ be the stretched algebra. We keep the

previous notation. Then Λ̃ satisfies (Fg) if and only if Λ satisfies (Fg).

For our construction of Λ̃, we use Corollary 6.13, Theorem 6.19 and Proposition

6.20 to get the following result.

Corollary 6.36. Let Λ = KQ/I and let Λ̃ be the stretched algebra. We keep the

notation of the previous chapters. Let K be an algebraically closed field. Then

the functor resε : mod Λ̃ −→ mod εΛ̃ε is an eventually homological isomorphism.

Indeed, resε : mod Λ̃ −→ mod εΛ̃ε is a 2-homological isomorphism.

Recall that Erdmann, Holloway, Snashall, Solberg, and Taillefer showed in Theo-

rem 6.22, that when the algebra A has (Fg), then A is Gorenstein. We now use the

method of [39, Theorem 4.3] to prove the following result.
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Theorem 6.37. Let Λ = KQ/I be a finite dimensional algebra and let Λ̃ be the

stretched algebra. Then idimΛ̃ Λ̃ ≤ sup{idimΛ Λ, 2}.

Proof. The inequality holds if Λ has infinite injective dimension. We assume

idimΛ Λ = n. Then sup{idimΛ Λ, 2} = max{idimΛ Λ, 2}. Let m = max{idimΛ Λ, 2}+

1. By Corollary 6.36, resε is a 2-homological isomorphism, so we have

Extm
Λ̃

(X, Y ) ∼= ExtmΛ (resε(X), resε(Y ))

for all X, Y ∈ mod Λ̃. Now, set Y = Λ̃. Then

Extm
Λ̃

(X, Λ̃) ∼= ExtmΛ (resε(X), resε(Λ̃)) ∼= ExtmΛ (resε(X), Λ̃ε).

From Proposition 6.8 we have Λ̃ε is projective as a right εΛ̃ε-module. So idimΛ Λ̃ε ≤

n, since Λ has injective dimension n and Λ ∼= εΛ̃ε. It follows that Extn+1
Λ (resε(X), Λ̃ε) =

0. Hence Extm
Λ̃

(X, Λ̃) = 0 and so idimΛ̃ Λ̃ ≤ m− 1 = max{idimΛ Λ, 2}, using Propo-

sition 2.25. �

We end this chapter with some examples to illustrate the result above.

Example 6.38. Let Λ = KQ/I, where Q is the quiver

1
α1

55 2

α2
uu

and I = 〈α1α2α1, α2α1α2〉. The sets gn are

• g0 = {e1, e2}, with g0
1 = e1 and g0

2 = e2;

• g1 = {α1, α2}, with g1
1 = α1 and g1

2 = α2;

• g2 = {α1α2α1, α2α1α2}, with g2
1 = α1α2α1 and g2

2 = α2α1α2;

• For all n ≥ 3, n odd, we have gn1 = gn−1
1 α2, gn2 = gn−1

2 α1;

• For all n ≥ 3, n even, we have gn1 = gn−1
1 α1α2, gn2 = gn−1

2 α2α1

We can now see that the elements gni ∈ gn have length δ(n) for d = 3, since

• `(g0
i ) = 0, for i = 1, 2.

• `(g1
i ) = 1, for i = 1, 2.

• `(g2
i ) = 3, for i = 1, 2, 3.

• For n ≥ 2, `(g2n
i ) = nd, where i = 1, 2.

• For n ≥ 1, `(g2n+1
i ) = nd+ 1, where i = 1, 2.
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Hence each projective P n is generated in degree δ(n). So Λ is a 3-Koszul monomial

algebra. We can see that the algebra Λ has two indecomposable projective modules

P (1) and P (2) and we may illustrate P (i), where i = 1, 2, with the following

diagrams:

P (1) = e1Λ P (2) = e2Λ

1 2

2 1

1 2

Moreover the indecomposable injective modules I(i), where i = 1, 2, are given as

follows:

1 2

2 1

1 2

I(1) I(2)

Hence I(1) = P (1) = e1Λ and I(2) = P (2) = e2Λ. So idimΛ e1Λ = idimΛ e2Λ = 0.

Then the injective dimension of Λ is 0, so Λ is self-injective.

Now with A = 2 the algebra Λ̃ = KQ̃/Ĩ has the quiver

1
γ1
// v1

γ2

��
v2

γ4

OO

2
γ3

oo

and Ĩ = 〈γ1γ2γ3γ4γ1γ2, γ3γ4γ1γ2γ3γ4〉. Then Λ̃ is a (6, 2)-stacked monomial algebra.

This is the algebra of [14, Example 3.2]. The four indecomposable projective modules

are:

P̃ (1) = e1Λ̃ P̃ (v1) = v1Λ̃ P̃ (2) = e2Λ̃ P̃ (v2) = v2Λ̃

1 v1 2 v2

v1 2 v2 1

2 v2 1 v1

v2 1 v1 2

1 v1 2 v2

v1 2 v2 1

v2 v1

Moreover the indecomposable injective modules are:
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v2 v1

v2 1 v1 2

1 v1 2 v2

v1 2 v2 1

2 v2 1 v1

v2 1 v1 2

1 v1 2 v2

Ĩ(1) Ĩ(v1) Ĩ(2) Ĩ(v2)

Hence Ĩ(v2) = P̃ (v1) = v1Λ̃ and Ĩ(v1) = P̃ (v2) = v2Λ̃. So idimΛ̃ v1Λ̃ = idimΛ̃ v2Λ̃ =

0. In addition we have the following injective resolutions of e1Λ̃ and e2Λ̃:

0 // e1Λ̃ // Ĩ(v1) //

##

Ĩ(v2) // Ĩ(2) // 0

S(v2)

;;

0 // e2Λ̃ // Ĩ(v2) //

##

Ĩ(v1) // Ĩ(1) // 0

S(v1)

;;

where S(v1), S(v2) are the simple modules corresponding to the vertices v1, v2. It

is clear that the injective dimensions of e1Λ̃ and e2Λ̃ are 2. Hence the injective

dimension of Λ̃ is 2. So in this case, idimΛ Λ = 0 and idimΛ̃ Λ̃ = 2. We note from [14]

that Λ̃ has (Fg). It follows from Theorem 6.35 that Λ has (Fg).

Example 6.39. Let Λ = KQ/I be the algebra which is given by the quiver

1
a // 2

b // 3
c // 4

and I = 〈ab, bc〉. The indecomposable projective modules are:

P (1) P (2) P (3) P (4)

1 2 3 4

2 3 4

and the indecomposable injective modules are:
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1 2 3

1 2 3 4

I(1) I(2) I(3) I(4)

It is clear that P (i) = I(i + 1), where i = 1, 2, 3. It remains to find the injective

dimension of P (4). We have:

0 // P (4) // I(4) //

""

I(3) //

""

I(2) // I(1) // 0

S(3)

<<

S(2)

<<

So idimΛ P (4) = 3 and hence idimΛ Λ = 3.

Now with A = 2 the algebra Λ̃ = KQ̃/Ĩ has the quiver

1
a1 // v1

a2 // 2
b1 // v2

b2 // 3
c1 // v3

c2 // 4

and Ĩ = 〈a1a2b1b2, b1b2c1c2〉. The indecomposable projective modules are:

P̃ (1) P̃ (v1) P̃ (2) P̃ (v2) P̃ (3) P̃ (v3) P̃ (4)

1 v1 2 v2 3 v3 4

v1 2 v2 3 v3 4

2 v2 3 v3 4

v2 3 v3 4

v3

and the indecomposable injective modules are:

v1

1 v1 2 v2

1 v1 2 v2 3

1 v1 2 v2 3 v3

1 v1 2 v2 3 v3 4

Ĩ(1) Ĩ(v1) Ĩ(2) Ĩ(v2) Ĩ(3) Ĩ(v3) Ĩ(4)

So we have P̃ (1) = Ĩ(v2), P̃ (v1) = Ĩ(v3), and P̃ (v2) = Ĩ(4). It can be seen that

idimΛ̃ P̃ (3) = 2, idimΛ̃ P̃ (2) = 2, idimΛ̃ P̃ (v3) = 3, and idimΛ̃ P̃ (4) = 3. Thus the

injective dimension of Λ̃ is 3. So here we have idimΛ Λ = 3 = idimΛ̃ Λ̃.

We now want to show that Λ has (Fg). We know Z(Λ) ∼= K, so take H =

HH0(Λ) = K. We have from Green and Mart́ınez-Villa [22], E(Λ) ∼= KQop/I⊥.

Here I⊥ = 0. So E(Λ) ∼= KQop which is finite dimensional, since Q is finite
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and acyclic. It follows E(Λ) is a finitely generated K-module and hence a finitely

generated H-module. So Λ has (Fg). Therefore Λ̃ has (Fg), by using Theorem 6.6

and Theorem 6.35.
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7. (Fg) for d-Koszul algebras

The aim of this chapter is to give sufficient conditions for a finite dimensional

d-Koszul monomial algebra to have (Fg), and we do this in Theorem 7.15.

We start this chapter by introducing some other Koszul algebras which have (Fg);

these are mostly from the work of Erdmann and Solberg in [12]. Then we introduce

overlaps; these were used by Green and Zacharia to describe a basis for the Ext

algebra of a monomial algebra in [29], and by Bardzell to describe the minimal

projective bimodule resolution of a monomial algebra in [4]. We need this concept of

overlaps to use the work of Green and Snashall in [26] where they find the Hochschild

cohomology ring of a stacked monomial algebra. We can then give the commutative

ring H for the (Fg) condition. In Theorem 7.11 we give sufficient conditions for a

finite dimensional Koszul monomial algebra to have (Fg), and in Theorem 7.15 we

give sufficient conditions for a finite dimensional d-Koszul monomial algebra to have

(Fg).

We begin with results from [12] on (Fg) and the graded centre of the Ext algebra

of a Koszul algebra.

Definition 7.1. [7] Let Λ be a finite dimensional algebra. The graded centre of

the Ext algebra Zgr(E(Λ)) is the subring of E(Λ) generated by all homogeneous

elements z such that zy = (−1)|z||y|yz for each homogeneous element y in E(Λ),

where |x| denotes the degree of a homogeneous element x.

Theorem 7.2. [12, Theorem 1.3] Let Λ = KQ/I be a finite dimensional algebra

over an algebraically closed field K.

(a) If Λ satisfies (Fg), then Zgr(E(Λ)) is Noetherian and E(Λ) is a finitely

generated Zgr(E(Λ))-module.

(b) When Λ is Koszul, then the converse implication also holds, that is, if

Zgr(E(Λ)) is Noetherian and E(Λ) is a finitely generated Zgr(E(Λ))-module,

then Λ satisfies (Fg).

We now illustrate this with an example.

Example 7.3. Let Λ be the algebra in Example 4.2 with charK 6= 2 and we keep the

notation of the previous chapters. Since the algebra Λ is Koszul, then by Theorem

3.3, E(Λ) = KQop/I⊥ is Koszul and is generated by f 0
1 , f

1
1 , f

1
2 where f 0

1 corresponds
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to e1 ∈ g0, f 1
1 corresponds to x ∈ g1, f 1

2 corresponds to y ∈ g1. Moreover, the quiver

of E(Λ) is the same as the quiver of Λ. It can be seen that there is only one relation

for the Ext algebra, which is f 1
1 f

1
2 = −f 1

2 f
1
1 and this corresponds to xy + yx = 0.

So we have E(Λ) = KQ/(xy + yx).

By induction, it can be shown that η ∈ Zgr(E(Λ)) with η homogeneous of degree

2n if and only if η =
∑n

i=0 cix
2n−2iy2i, where ci ∈ K. We do not give details here

but note that this example has been well studied (see [12], [45]) and is contained

in Proposition 7.6 below with n = 2 and q12 = −1. In fact Zgr(E(Λ)) = K[x2, y2]

and thus Zgr(E(Λ)) is Noetherian. Moreover E(Λ) is a finitely generated Zgr(E(Λ))-

module, where the generators are {1, x, y, xy}. Thus Λ satisfies (Fg), by using

Theorem 7.2.

Definition 7.4. [43, Chapter 1] A finite dimensional algebra A over a field K

is said to be of finite representation type if the number of isomorphism classes of

indecomposable modules in modA is finite.

Now we present some work of Erdmann and Solberg ([12]) on symmetric Koszul

algebras which have (Fg).

Theorem 7.5. [12, Theorem] Let Λ be a finite dimensional symmetric algebra over

an algebraically closed field with radical cube zero and radical square non-zero. Then

Λ satisfies (Fg) if and only if Λ is of finite representation type, Λ is of type D̃n for

n ≥ 4, Z̃n for n > 0, D̃Zn for n ≥ 2, Ẽ6, Ẽ7, Ẽ8, or Λ is of type Z̃0 or Ãn for n ≥ 1

when q is a root of unity. The algebras are described as follows:
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(1) The case Ãn.

Let Q be the quiver given by

0 a0

##
ān

ppn

an 00

ān−1vv

1 a1

��
ā0

cc

·

an−1 88

2ā1

VV

·

and I = 〈{aiai+1}ni=0, {āi+1āi}ni=0, {aiāi + āi−1ai−1}ni=1 ∪ {a0ā0 + qānan}〉, for

some nonzero element q ∈ K.

(2) The case Z̃n where n > 0:

Let Q be the quiver given by

0b 77 1
ā0

oo

a0 //
2

ā1

oo

a1 // · · · · · ·
ā2

oo

a2 //
n− 1

ān−2

oo

an−2
//

n
ān−1

oo

an−1
//

chh

and I = 〈b2 + a0ā0, ba0, ā0b, {aiai+1}n−2
i=0 , {āiāi−1}n−1

i=1 , {aiāi + āi−1ai−1}n−1
i=1 ,

an−1c, cān−1, c
2 + qān−1an−1〉.

(3) The case Z̃0:

Let Q be the quiver given by

· cffb 88

and I = 〈b2, c2, bc+ qcb〉.
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(4) The D̃Zn-case:

Let Q be the quiver given by

0

2

ā0

^^

a0 ��

ā1

�� a1

@@
3

ā2oo

a2

// · · · · · ·
ā3oo

a3

// n− 2

ān−3
oo

an−3

// n− 1

ān−2
oo

an−2

// n

ān−1
oo

an−1

// bhh

1

where n > 2 and I = 〈a0ā1, a0a2, a1ā0, ā2ā1, ā0a0 − ā1a1, ā2ā0, ā1a1 − a2ā2,

{aiai+1}n−2
i=1 , {āāi−1}n−1

i=2 , {āi−1ai−1 + aiāi}n−1
i=3 , an−1b, ān−1an−1 + qb2, bān−1〉,

for some q ∈ K \ {0}. If n = 2, then the relations are a0b, a1b, bā0, bā1, a0ā1,

a1ā0, ā0a0 − b2, ā1a1 − b2.

(5) The D̃n-case:

Let Q be the quiver given by

0 n− 1

2

ā0

^^

a0 ��

ā1

�� a1

@@
3

ā2oo

a2

// · · · · · ·
ā3oo

a3

// n− 2

ān−3
oo

an−3

//

an−2

::ān−2

zz

b $$

b̄
dd

1 n

Assume that n > 4, then I = 〈a0ā1, a0a2, a1ā0, ā2ā1, ā0a0− ā1a1, ā2ā0, ā1a1−

a2ā2, {aiai+1}n−3
i=1 , {āāi−1}n−2

i=2 , {āi−1ai−1 + aiāi}n−3
i=3 , an−2b, b̄an−2, an−3b,

an−2ān−2 − bb̄, bb̄− ān−3an−3〉.

For n = 4, then I is generated by {a0ā1, a0a2, a0b, a1ā0, a1a2, a1b, ā2ā0,

ā2ā1, ā2b, b̄ā0, b̄ā1, b̄a2, ā0a0 − ā1a1, ā1a1 − bb̄, bb̄− a2ā2}.

(6) The Ẽ6-case:

Let Q be the quiver given by

4

3

a3

OO

ā3

��

0 1
ā0oo

a0

// 2
ā1oo

a1

//

a2

OO

ā2

��
5

ā4oo

a4

// 6
ā5oo

a5

//
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with I = 〈{aiai+1}4
i=0, {āiāi−1}5

i=1, {āi−1ai−1+aiāi}i=1,3,5, a1a4, ā2a4, ā4a2, ā1a1−

a2ā2, a2ā2 − a4ā4〉.

(7) The Ẽ7-case:

Let Q be the quiver given by

4

0 1
ā0oo

a0

// 2
ā1oo

a1

// 3
ā2oo

a2

//

a3

OO

ā3

��
5

ā4oo

a4

// 6
ā5oo

a5

// 7
ā6oo

a6

//

with I = 〈{aiai+1}5
i=0, {āiāi−1}6

i=1, {āi−1ai−1 + aiāi}i=1,2,5,6, a2a4, ā3a4, ā4a3,

ā2a2 − a3ā3, a3ā3 − a4ā4〉.

(8) The Ẽ8-case:

Let Q be the quiver given by

3

0 1
ā0oo

a0

// 2
ā1oo

a1

//

a2

OO

ā2

��
4

ā3oo

a3

// 5
ā4oo

a4

// 6
ā5oo

a5

// 7
ā6oo

a6

// 8
ā7oo

a7

//

with I = 〈{aiai+1}6
i=0, {āiāi−1}7

i=1, {āi−1ai−1 + aiāi}i=1,4,5,6,7, a1a3, ā2a3,

ā3a2, ā3ā1, ā1a1 − a2ā2, a2ā2 − a3ā3〉.

Proposition 7.6. [12, Proposition 9.1] Let Λ = K〈x1, x2, . . . , xn〉/({xixj
+ qijxjxi}i<j, {x2

i }ni=1), qij ∈ K∗. Then Λ satisfies (Fg) if and only if all elements

{qij}i<j are roots of unity.

Remark 7.7. There are other examples in the literature of Koszul algebras which

have (Fg).

(1) The algebra Λ1 of [45] is the algebra of case Ãn in [12].

(2) The algebra of [44] is the algebra of case Z̃1 in [12].

(3) The algebra which is given by the following quiver

·α 88

and relation α2 is of finite representation type and is therefore (Fg) by [12].

(4) The algebra of Example 6.38 is the algebra in [14, Example 3.2] which satisfies

the condition (Fg).
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(5) The algebra of Example 6.39 satisfies the condition (Fg).

The algebras we are interested in are monomial algebras; these are very rarely

Koszul or d-Koszul algebras. So Theorem 7.11 and Theorem 7.15 give new results

for finding algebras with (Fg). We now introduce the concept of overlaps. Green

and Zacharia use this in [29] to describe a basis of the Ext algebra of a monomial

algebra.

We assume that Λ = KQ/I is a monomial algebra unless otherwise stated.

Definition 7.8. [25, Definition 1.1]

(1) A path q overlaps a path p with overlap pu if there are paths u and v such

that pu = vq and 1 ≤ `(u) ≤ `(q). We may illustrate the definition with the

following diagram:

oo v //

p

q

oo
u
//

Note that we allow `(v) = 0 here.

(2) A path q properly overlaps a path p with overlap pu if q overlaps p and

`(v) ≥ 1.

(3) A path p has no overlaps with a path q if p does not properly overlap q and

q does not properly overlap p.

Definition 7.9. [25] A path p is a prefix of a path q if there is some path p′ such

that q = pp′.

We refer the reader to look at Example 7.12.

We now describe the minimal projective resolution of Λ over Λe, by using the

concept of overlaps from [29] and [16], see also [26]. We keep the notation of [26].

The sets Rn are defined as follows:

R0 = set of vertices of Q,

R1 = set of arrows of Q,

R2 = the minimal set of monomials in the generating set of I.

Then for all n ≥ 3, R2 ∈ R2 maximally overlaps Rn−1 ∈ Rn−1 with overlap

Rn = Rn−1u for some u ∈ KQ, if it satisfies the following conditions:

• Rn−1 = Rn−2p, for some path p in KQ;
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• R2 overlaps p with overlap pu;

• There is no element in R2 which overlaps p with overlap being a proper

prefix of pu.

The set Rn is defined to be the set of all overlaps Rn. We may illustrate Rn with

the following diagram:

oo
Rn

//
Rn−2

Rn−1

oo
p

//

R2

oo
u
//

Green, Happel and Zacharia construct the minimal projective resolution (P n, dn)

of Λ/r (see [16]), also the construction can be found in [29] and [25]. For all n ≥ 0,

let P n = ⊕Rn∈Rnt(Rn)Λ. The sets Rn are precisely the sets gn of [28] which we

used in Chapter 4. Define, for n ≥ 1 and Rn ∈ Rn, the map dn : P n −→ P n−1 via

t(Rn) 7→ (0, . . . , 0, p, 0, . . . ), where Rn = Rn−1p and p occurs in the component of

P n−1 corresponding to Rn−1.

Now let (Q∗, δ∗) be the minimal projective Λe-resolution of Λ of [4]. We use the

notation of Green and Snashall in [26]. Then Qn = ⊕Rn∈RnΛo(Rn)⊗t(Rn)Λ. From [4,

Lemma 3.3], each element Rn ∈ Rn, can be expressed uniquely as Rn−1
j aj and as

bkR
n−1
k for some Rn−1

j , Rn−1
k ∈ Rn−1 and paths aj, bk. The map δ2n+1 : Q2n+1 → Q2n

is given via:

o(R2n+1)⊗ t(R2n+1) 7→ o(R2n
j )⊗ aj − bk ⊗ t(R2n

k ),

where R2n+1 = R2n
j aj = bkR

2n
k ∈ R2n+1. Note that the first tensor lies in the sum-

mand corresponding to R2n
j and the second tensor lies in the summand corresponding

to R2n
k .

For even degree the elements R2n can be expressed as follows: R2n = pjR
2n−1
j qj,

for some R2n−1
j ∈ R2n−1 and paths pj, qj with n ≥ 1 and j = 1, . . . , r. So they define

the map δ2n : Q2n → Q2n−1 by o(R2n) ⊗ t(R2n) 7→
∑r

j=1 pj ⊗ qj, where the tensor

pj ⊗ qj lies in the summand of Q2n−1 corresponding to R2n−1
j .
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We define fni to be the Λ-homomorphism P n −→ Λ/r given by

t(Rn
j ) 7→

 t(Rn
i ) + r if j = i;

0 otherwise.

We set fn = {fni } so that |fn| = |Rn|; see also Definition 4.44. We list the elements

of Rn as Rn
1 , . . . , R

n
s for some s. We compose module homomorphisms from right to

left. So the composition f ◦ g means we apply g first then f . We recall that we write

paths in a quiver from left to right. So if fni corresponds to the path Rn
i ∈ Rn and

if Rn
i = eRn

i e
′, where e = o(Rn

i ) and e′ = t(Rn
i ) are in R0, then fni = f 0

e′f
n
i f

0
e where

f 0
e (respectively, f 0

e′) denotes the element of f 0 that corresponds to e (respectively,

e′). With this notation, we have from [29] that fmj f
n
i 6= 0 in E(Λ) if and only if

Rn
i R

m
j = Rn+m

k ∈ Rn+m for some k and fmj f
n
i = fn+m

k . So we identify the set Rn

with a basis of ExtnΛ(Λ/r,Λ/r); see also [29]. We use this identification without

further comment.

Definition 7.10. [26, Section 2]

(1) A closed path C in Q is a non-trivial path C in KQ such that C = vCv for

some vertex v. We may say that C is a closed path at vertex v.

(2) A closed trail T in Q is a non-trivial closed path T = α1 · · ·αm in KQ such

that α1, . . . , αm are all distinct arrows.

(3) Let p be any path and let q be a closed path in Q. Then p lies on q if p is a

subpath of qs for some s ≥ 1.

(4) We say that two trails are distinct if neither lies on the other.

We now give sufficient conditions for a finite dimensional Koszul monomial algebra

to have (Fg).

Theorem 7.11. Let Λ = KQ/I be a finite dimensional monomial Koszul algebra

and let ρ be a minimal generating set for I consisting of quadratic monomials.

Suppose charK 6= 2 and gldim Λ ≥ 4. Suppose that the following two conditions

hold:

(1) If α is a loop in Q, then α2 ∈ ρ but there are no elements in ρ of the form

αβ or βα with β 6= α.
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(2) If T = α1 · · ·αm is a closed trail in Q with m > 1 such that the set ρT =

{α1α2, . . . , αm−1αm, αmα1} is contained in ρ, then there are no elements in

ρ \ ρT which begin or end with any of the arrows αj for j = 1, . . . ,m.

Then Λ has (Fg).

Proof. Let α1, . . . , αu be all the loops in the quiver Q, and suppose that αi is a loop

at the vertex vi. Since Λ is a finite dimensional quadratic monomial algebra, α2
i is

necessarily in the minimal generating set ρ. By hypothesis, we have that there are

no elements in ρ of the form αiβ or βαi with β 6= αi. So there are no overlaps of α2
i

with any element of ρ \ {α2
i }. Again, using that Λ is a finite dimensional monomial

algebra, it follows that the vertices v1, . . . , vu are distinct.

Let Tu+1, . . . , Tr be all the distinct closed trails in Q such that for each i =

u+ 1, . . . , r, we have Ti = αi,1 · · ·αi,mi , where αi,1, αi,2, . . . , αi,mi are arrows, and the

set ρTi = {αi,1αi,2, αi,2αi,3, . . . , αi,miαi,1} is contained in ρ. By hypothesis, there are

no elements in ρ\ρTi which begin or end with any of the arrows αi,j for j = 1, . . . ,m.

So, for j = 1, . . . ,m, no arrow αi,j has overlaps with any element of ρ \ ρTi . Let

Ti,1, . . . , Ti,mi be defined by

Ti,1 = Ti = αi,1αi,2 · · ·αi,mi ;

Ti,2 = αi,2αi,3 · · ·αi,miαi,1;
...

Ti,mi = αi,miαi,1 · · ·αi,mi−1
.

Then the paths Ti,1, . . . , Ti,mi are all of length mi and lie on the closed path Ti.

Now we show that Λ satisfies (Fg1).

Since Λ is a Koszul monomial algebra, then Λ is a (2, 1)-stacked monomial algebra.

Using [26, Theorem 3.4], we have HH∗(Λ)/N ∼= K[x1, . . . , xr]/〈xaxb for a 6= b〉,

where

• for i = 1, . . . , u, the vertices v1, . . . , vu are distinct and the element xi

corresponding to the loop αi is in degree 2 and is represented by the map

Q2 −→ Λ where for R2 ∈ R2,

o(R2)⊗ t(R2) 7→

vi if R2 = α2
i

0 otherwise.
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• and for i = u + 1, . . . , r, the element xi corresponding to the closed path

Ti = αi,1 · · ·αi,mi is in degree 2µi such that µi = mi/ gcd(2,mi) and is

represented by the map Q2µi −→ Λ, where for R2µi ∈ R2µi ,

o(R2µi)⊗ t(R2µi) 7→

o(Ti,k) if R2µi = T
2/ gcd(2,mi)
i,k for all k = 1, . . . ,mi

0 otherwise.

The action of the homogeneous element x ∈ HHn(Λ) on E(Λ) is given by left

multiplication by
∑

j R
n
j where the sum is over all j such that x(o(Rn

j )⊗ t(Rn
j )) 6= 0

and n = |x|. Thus if xi ∈ HH2(Λ) corresponds to the loop αi, then the action of xi

on E(Λ) is given by left multiplication by α2
i . And if xi in degree 2µi corresponds

to the closed path Ti then the action of xi on E(Λ) is given by left multiplication by∑mi
k=1 T

2/ gcd(2,mi)
i,k .

Let H be the subring of HH∗(Λ) generated by Z(Λ) and {x1, . . . , xr}. We want to

show that H is a commutative Noetherian ring. Since Z(Λ) = HH0(Λ) and HH∗(Λ)

is graded commutative, we know that zxi = xiz for all z ∈ Z(Λ) and i = 1, . . . , r. So,

using [26, Theorem 3.4] we have that H = Z(Λ)[x1, . . . , xr]/〈xaxb for a 6= b〉. Hence

H is a commutative ring. Moreover, Z(Λ) is finite dimensional so is a commutative

Noetherian ring. Thus H is a Noetherian ring (see [42, Corollary 8.11]). Therefore

Λ satisfies (Fg1).

We claim E(Λ) is finitely generated as a left H-module with generating set consist-

ing of all fni with n ≤ max{|x1|, . . . , |xr|, |Q1|}. Let N = max{|x1|, . . . , |xr|, |Q1|}.

Let 0 6= y ∈ E(Λ). Then y is a linear combination of fni . We consider y ∈ fn,

with n > N . So y is a homogeneous element of E(Λ) of degree n. Consider the

element R ∈ Rn which corresponds to y ∈ fn, where n > N . We know R is a

maximal overlap sequence. Since Λ is Koszul, then `(R) = n. So we can write

R = a1a2 · · · an, such that aiai+1 ∈ ρ = R2 for i = 1, . . . , n− 1. We may illustrate

R with the following diagram:

a1 a2 a3 a4 · · · an−1 an

Since R ∈ Rn with n > N , then there is some repeated arrow. So we choose j, k

with k minimal and k ≥ 1 such that aj is a repeated arrow, aj, . . . , aj+k−1 are all
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distinct arrows and aj+k = aj. Write

R = (a1 · · · aj−1)(aj · · · aj+k−1)(ajaj+k+1 · · · an).

There are two cases to consider.

Case (1): k = 1. Then aj = aj+1 and so aj is a loop. It follows that

R = (a1 · · · aj−1)(ajaj)(aj+2 · · · an).

By hypothesis a2
j ∈ ρ and there is no relation of the form ajβ or βaj with β 6= aj.

But R is a maximal overlap sequence, so aj−1aj ∈ ρ and ajaj+2 ∈ ρ. Hence aj−1 = aj

and aj+2 = aj. Inductively, we see that R = anj .

From above, let xi be the generator in H corresponding to the loop aj , so 1 ≤ i ≤ u

and |xi| = 2. Then xi acts on E(Λ) as left multiplication by the central element a2
j .

Hence

R =

(a2
j)

(n/2) if n even;

(a2
j)

(n−1)/2aj if n odd.

So

R =

(xi)
(n/2)o(aj) if n even;

(xi)
(n−1)/2aj if n odd

where `(o(aj)) = 0 and `(aj) = 1 and so |o(aj)| ≤ N and |aj| ≤ N .

Case (2): k > 1. We note by our choice of j, k that aj · · · aj+k−1 is a closed trail

of length k. Let T = aj · · · aj+k−1. We have

R = (a1 · · · aj−1)(aj · · · aj+k−1)(ajaj+k+1 · · · an)

and since R is a maximal overlap sequence we may illustrate R with the following

diagram:

a1 a2 a3 a4 · · · aj−1 aj aj+1 aj+2 · · · aj+k−1 aj aj+k+1 aj+k+2 . . . an−1 an

Then ajaj+1, aj+1aj+2, . . . , aj+k−1aj are all in ρ, so the set ρT is contained in ρ. By

hypothesis, there are no elements in ρ\ρT which begin or end with any of the arrows

aj, . . . , aj+k−1.

Now ajaj+k+1 is also in ρ since all subpaths of R of length 2 are in ρ. So, by

hypothesis aj+k+1 = aj+1. We also have that aj+k+1aj+k+2 is in ρ, so aj+1aj+k+2 is
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in ρ. Again, by hypothesis, aj+k+2 = aj+2. Inductively, we see that R lies on the

closed trail T . So we may relabel the trail T so that R = T qp, where T = a1 · · · ak,

p is a prefix of T with 1 ≤ `(p) ≤ k, and n = kq + `(p).

Thus there is a generator in H which corresponds to this closed trail T . Without

loss of generality, suppose that xr is the generator in H corresponding to T . Let

Tr,1 = T = a1a2 · · · ak;

Tr,2 = a2a3 · · · aka1;
...

Tr,k = aka1 · · · ak−1.

The action of xr on E(Λ) is left multiplication by

T
2/ gcd(2,k)
r,1 + T

2/ gcd(2,k)
r,2 + · · ·+ T

2/ gcd(2,k)
r,k .

Suppose first that k is odd. Then gcd(2, k) = 1. So the action of xr on E(Λ) is

left multiplication by T 2
r,1 + T 2

r,2 + · · ·+ T 2
r,k. We have |xr| = 2k. Since n > N ≥ 2k,

it follows that q ≥ 2. Now R = T qp with 1 ≤ `(p) ≤ k. Hence

R =

(T 2)(q/2)p if q even;

(T 2)(q−1)/2Tp if q odd.

We note that `(p) ≤ k ≤ N and `(Tp) = k + `(p) ≤ k + k = 2k ≤ N . We now show

that Tr,lp = 0, for all 2 ≤ l ≤ k. The element Tr,lp in E(Λ) can be written as

al al+1 al+2 al+3 · · · al−2al−1 · a1 a2 a3 · · · a`(p)−1a`(p)

where Tr,l = alal+1 · · · aka1 · · · al−1, and p = a1a2 · · · a`(p). If al−1 · a1 is in ρ, then we

have a closed trail a1a2 · · · al−1 of length l− 1. But l− 1 < l ≤ k. So this contradicts

the minimality of k. Hence al−1 ·a1 is not in ρ. So Tr,lp does not represent a maximal

overlap sequence and hence Tr,lp = 0 for 2 ≤ l ≤ k. Similarly T 2
r,lp = 0, for 2 ≤ l ≤ k.

Hence

R =

(xr)
(q/2)p if q even;

(xr)
(q−1)/2Tp if q odd.

Suppose now k is even. Then gcd(2, k) = 2. So the action of xr on E(Λ) is left

multiplication by Tr,1 + Tr,2 + · · · + Tr,k, and |xr| = k. Here we have q ≥ 1. Now

R = T qp with 1 ≤ `(p) ≤ k (and T = Tr,1). We now show that Tr,lp = 0, for all
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2 ≤ l ≤ k. Again, the element Tr,lp in E(Λ) can be written as

al al+1 al+2 al+3 · · · al−2al−1 · a1 a2 a3 · · · a`(p)−1a`(p)

where Tr,l = alal+1 · · · aka1 · · · al−1, and p = a1a2 · · · a`(p). If al−1 · a1 is in ρ, then we

have a closed trail a1a2 · · · al−1 of length l− 1, which contradicts the minimality of k.

Hence al−1 · a1 is not in ρ. So Tr,lp does not represent a maximal overlap sequence

and hence Tr,lp = 0 for 2 ≤ l ≤ k. Hence R = xqrp.

This shows that E(Λ) is generated by f 0, . . . , fN as a left H-module. Hence Λ

satisfies (Fg2) and thus Λ has (Fg). �

The next example illustrates the above theorem; however {f 0, f 1, . . . , fN} is not

a minimal generating set of E(Λ) as a left H-module in this example.

Example 7.12. Let Λ = KQ/I be the algebra which is given by the quiver

1
α1 // 2

α2 // 3

α3

��
5

α5

OO

4
α4

oo
γ1
// 6

γ2
//

β




7

γ3
// 8

γ4
// 9

γ5
// 10

and I = 〈α1α2, α2α3, α3α4, α4α5, α5α1, β
2, γ1γ2, γ2γ3, γ3γ4, γ4γ5〉. Then Λ is a Koszul

monomial algebra. The algebra Λ satisfies the conditions of Theorem 7.11 with the

loop β and closed trail α1α2α3α4α5. From Theorem 7.11, let x1, x2 be the generators

in H, where x1 corresponds to the loop β with |x1| = 2 and x2 corresponds to

the closed trail α1α2α3α4α5 with |x2| = 10. So the action of x1 on E(Λ) is left

multiplication given by x1 7→ β2, and the action of x2 on E(Λ) is left multiplication

given by

x2 7→ (α1α2α3α4α5)2 + (α2α3α4α5α1)2 + (α3α4α5α1α2)2 + (α4α5α1α2α3)2

+(α5α1α2α3α4)2.

Moreover Z(Λ) = K. Here N = 11 and so E(Λ) is generated by f 0, . . . , f 11 as a left

H-module.

We identify fn with Rn and list the elements of the set Rn, for n = 0, . . . , 11:

R0 = {e1, . . . , e10}

R1 = {α1, α2, α3, α4, α5, β, γ1, γ2, γ3, γ4, γ5}.

R2 = {α1α2, α2α3, α3α4, α4α5, α5α1, β
2, γ1γ2, γ2γ3, γ3γ4, γ4γ5}
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R3 = {α1α2α3, α2α3α4, α3α4α5, α4α5α1, α5α1α2, β
3, γ1γ2γ3, γ2γ3γ4, γ3γ4γ5}

R4 = {α1α2α3α4, α2α3α4α5, α3α4α5α1, α4α5α1α2, α5α1α2α3, β
4, γ1γ2γ3γ4,

γ2γ3γ4γ5}

R5 = {α1α2α3α4α5, α2α3α4α5α1, α3α4α5α1α2, α4α5α1α2α3, α5α1α2α3α4, β
5,

γ1γ2γ3γ4γ5}

R6 = {α1α2α3α4α5α1, α2α3α4α5α1α2, α3α4α5α1α2α3, α4α5α1α2α3α4,

α5α1α2α3α4α5, β
6}

R7 = {α1α2α3α4α5α1α2, α2α3α4α5α1α2α3, α3α4α5α1α2α3α4, α4α5α1α2α3α4α5,

α5α1α2α3α4α5α1, β
7}

R8 = {α1α2α3α4α5α1α2α3, α2α3α4α5α1α2α3α4, α3α4α5α1α2α3α4α5, ,

α4α5α1α2α3α4α5α1α5α1α2α3α4α5α1α2, β
8}

R9 = {α1α2α3α4α5α1α2α3α4, α2α3α4α5α1α2α3α4α5, α3α4α5α1α2α3α4α5α1,

α4α5α1α2α3α4α5α1α2, α5α1α2α3α4α5α1α2α3, β
9}

R10 = {(α1α2α3α4α5)2, (α2α3α4α5α1)2, (α3α4α5α1α2)2, (α4α5α1α2α3)2,

(α5α1α2α3α4)2, β10}

R11 = {(α1α2α3α4α5)2α1, (α2α3α4α5α1)2α2, (α3α4α5α1α2)2α3,

(α4α5α1α2α3)2α4, (α5α1α2α3α4)2α5, β
11}.

Since β11 ∈ R11, then from above β11 corresponds to x5
1β. Also, we have

(α1α2α3α4α5)
2α1 is in R11. So (α1α2α3α4α5)

2α1 corresponds to x2α1. Similarly,

each element in R11 is in the left H-module generated by R0, . . . ,R10. Thus E(Λ)

is generated by R0, . . . ,R10 as a left H-module.

Our final result of this chapter is Theorem 7.15 where we give sufficient conditions

for a finite dimensional d-Koszul monomial algebra to have (Fg). First we need two

propositions.

Proposition 7.13. Let Λ be a finite dimensional monomial d-Koszul algebra, where

d ≥ 2. Suppose that R ∈ Rn for some n ≥ 2. Then all subpaths of R of length d are

in ρ.

Proof. This is clearly true for n = 2, so we start by considering R3. An element

R ∈ R3 is constructed from R2
1 which maximally overlaps R2

2. So that R = R2
2y as
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follows:

oo
R

//

oo x //

R2
2

R2
1

oo
y
//

Since Λ is d-Koszul, then δ(3) = d + 1 and so `(R) = d + 1. So `(x) = 1 = `(y).

Write R = a1a2 · · · adad+1. So there are only two subpaths of length d in R which

are R2
2 = a1a2 · · · ad and R2

1 = a2a3 · · · ad+1. Then R2
1 and R2

2 are both in ρ.

Now let n = 4. An element R ∈ R4 is constructed from a sequence of overlaps.

Since Λ is d-Koszul, then δ(4) = 2d and so `(R) = 2d. We may illustrate R with

the following diagram:

oo x //

oo
R

//R2
1

R2
2

R2
3

and R = R2
1R

2
3. Write R = a1 · · · adad+1 · · · a2d. By hypothesis (R is a maximal

overlap sequence so the overlap of R2
2 with R2

1 gives an element in R3 of length

δ(3) = d+ 1), `(x) = 1 so x = a1 and R2
2 = a2 · · · ad+1 ∈ R2 = ρ which maximally

overlaps R2
1. We know R2

3 overlaps R2
2. So there is a relation R2

4 such that R2
4

maximally overlaps R2
2 with maximal overlap R2

2ad+2 = a2R
2
4 ∈ R3 of length d+ 1:

oo
a2 //

R2
2

R2
4

R2
3

So R2
4 = a3 · · · ad+2 ∈ ρ. Continuing inductively, we see that all subpaths of R of

length d are in ρ:

a1 · · · ad
a2 · · · ad+1,

a3 · · · ad+2,
...

ad · · · a2d−1,

ad+1 · · · a2d.
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The general case uses a similar argument to that for n = 4. For n ≥ 4, an element

R ∈ Rn is constructed from a sequence of overlaps as follows:

oo x //

R2
1

R2
2

R2
3

· · ·
R2
s−2

R2
s−1

R2
s

oo
y

//

Moreover, since Λ is d-Koszul, then `(R) = δ(n) with δ as in Definition 3.5). So

`(x) = 1 and `(y) =

 d− 1 if n even

1 if n odd.

Using the above argument we see inductively that all n− d + 1 subpaths of R of

length d are in ρ. �

Proposition 7.14. Let Λ = KQ/I be a finite dimensional monomial d-Koszul

algebra, where d ≥ 2, and let ρ be a minimal generating set for I consisting of

monomials of length d. Suppose that T = a1a2 · · · an is a closed trail in Q so that

a1, a2, . . . , an are distinct arrows. Suppose also that d ≥ n + 1. Then all paths of

length d which lie on the closed trail T are in ρ.

Proof. Since Λ is finite dimensional, we know that some subpath R of T is in

ρ, and that `(R) = d. Without loss of generality, we may suppose that R =

(a1a2 · · · an)ma1a2 · · · as for some 1 ≤ s ≤ n − 1 with d = nm + s. We know that

d ≥ n+ 1 so the path R has prefix a1a2 · · · ana1. Thus there is an overlap of R with

itself as follows:

oo
a1a2···an //

R

R

So there is a relation R2
1 such that R2

1 maximally overlaps R with maximal overlap

Ras+1 = a1R
2
1 ∈ R3 of length d+ 1:

oo
a1 //

R

R2
1

R

So R2
1 = (a2 · · · ana1)ma2 · · · asas+1 ∈ ρ. Continuing inductively (in the same way as

in Proposition 7.13), we see that ρ contains all paths of length d which lie on the

closed trail T . �
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Note that the set of all paths of length d which lie on the closed trail T in

Proposition 7.14 is the set ρT of [26] with A = 1.

Theorem 7.15. Let Λ = KQ/I be a finite dimensional monomial d-Koszul algebra,

where d ≥ 2, and let ρ be a minimal generating set for I consisting of monomials

of length d. Suppose charK 6= 2 and gldim Λ ≥ 4. Suppose that Λ satisfies the

following conditions:

(1) If α is a loop in Q, then αd ∈ ρ but there are no elements in ρ of the form

αd−1β or βαd−1 with β 6= α.

(2) If T = α1 · · ·αm is a closed trail in Q with m > 1 such that the set ρT =

{α1 · · ·αd, α2 · · ·αd+1, . . . , αmα1 · · ·αd−1} is contained in ρ, then there are no

elements in ρ \ ρT which begin or end with the arrow αi, for all i = 1, . . . ,m.

Then Λ has (Fg).

Note: If T = α1 · · ·αm is a closed trail then the subscript i of αi is taken modulo

m within the range 1 ≤ i ≤ m. Thus ρT is the set of all paths of length d which lie

on the closed trail T .

Proof. The case where d = 2 is the case where Λ is Koszul, and is proved in

Theorem 7.11. So we assume here that d ≥ 3.

Let α1, . . . , αu be all the loops in the quiver Q, and suppose that αi is a loop

at the vertex vi. Since Λ is a finite dimensional monomial d-Koszul algebra, αdi is

necessarily in the minimal generating set ρ. By hypothesis, we have that there are

no elements in ρ of the form αd−1
i β or βαd−1

i with β 6= αi, for i = 1, . . . , u.

We show that there are no overlaps of αdi with any element of ρ \ {αdi }. Suppose

for contradiction, that R ∈ ρ \ {αdi } and that R overlaps αdi . Then either R = αsi b

or R = bαsi where 1 ≤ s ≤ d− 1 and b is a path of length d− s which does not begin

(respectively, end) with the arrow αi. Suppose first that R = αsi b where αi is not

the first arrow of b. Then R overlaps αdi with overlap of length 2d− s as follows:

oo
αd−si //

αdi

R

oo
b

//

Now, this is a maximal overlap since αi is not the first arrow of b and thus gives an

element R3
1 ∈ R3. However, `(R3

1) = d+ 1 since Λ is d-Koszul. Thus 2d− s = d+ 1
118



and so s = d− 1. But then R = αd−1
i b and b is an arrow. This is a contradiction to

the hypothesis. The second case where R = bαsi is similar. So there are no overlaps

of αdi with any element of ρ \ {αdi }.

Again, using that Λ is a finite dimensional monomial algebra, it follows that the

vertices v1, . . . , vu are distinct.

Let Tu+1, . . . , Tr be all the distinct closed trails in Q such that for each i =

u+ 1, . . . , r, we have Ti = αi,1 · · ·αi,mi , where αi,1, αi,2, . . . , αi,mi are arrows, and the

set

ρTi = {αi,1 · · ·αi,d, αi,2 · · ·αi,d+1, . . . , αi,miαi,1 · · ·αi,d−1}

is contained in ρ.

By hypothesis, for each closed trail Ti (u+ 1 ≤ i ≤ r), there are no elements in

ρ \ ρTi which begin or end with the arrow αi,j , for all j = 1, . . . ,m. So no arrow αi,j

has overlaps with any element in ρ \ ρTi .

Let i ∈ {u+ 1, . . . , r} and let Ti,1, . . . , Ti,mi be defined by

Ti,1 = Ti = αi,1αi,2 · · ·αi,mi ;

Ti,2 = αi,2αi,3 · · ·αi,miαi,1;
...

Ti,mi = αi,miαi,1 · · ·αi,mi−1
.

Then the paths Ti,1, . . . , Ti,mi are all of length mi and lie on the closed path Ti.

Now we show that Λ satisfies (Fg1).

Since Λ is a d-Koszul monomial algebra, then Λ is a (d, 1)-stacked monomial alge-

bra. By using [26, Theorem 3.4], we have HH∗(Λ)/N ∼= K[x1, . . . , xr]/〈xaxb for a 6=

b〉, where

• for i = 1, . . . , u, the vertices v1, . . . , vu are distinct and the element xi

corresponding to the loop αi is in degree 2 and is represented by the map

Q2 −→ Λ where for R2 ∈ R2,

o(R2)⊗ t(R2) 7→

vi if R2 = αdi

0 otherwise

• and for i = u + 1, . . . , r, the element xi corresponding to the closed path

Ti = αi,1 · · ·αi,mi is in degree 2µi such that µi = mi/ gcd(d,mi) and is
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represented by the map Q2µi −→ Λ, where for R2µi ∈ R2µi ,

o(R2µi)⊗ t(R2µi) 7→

o(Ti,k) if R2µi = T
d/ gcd(d,mi)
i,k for all k = 1, . . . ,mi

0 otherwise.

Let H be the subring of HH∗(Λ) generated by Z(Λ) and {x1, . . . , xr}. We show

that H is a commutative Noetherian ring. Since Z(Λ) = HH0(Λ) and HH∗(Λ) is

graded commutative, we know that zxi = xiz for all z ∈ Z(Λ) and i = 1, . . . , r. So,

using [26, Theorem 3.4] we have that H = Z(Λ)[x1, . . . , xr]/〈xaxb for a 6= b〉. Hence

H is a commutative ring. Moreover, Z(Λ) is finite dimensional so is a commutative

Noetherian ring. Thus H is a Noetherian ring (see [42, Corollary 8.11]). Therefore

Λ satisfies (Fg1).

The rest of this proof shows that Λ satisfies (Fg2). We will show that E(Λ) is

finitely generated as a left H-module with generating set consisting of all fni with

n ≤ max{3, |x1|, . . . , |xr|, |Q1|}. Let N = max{3, |x1|, . . . , |xr|, |Q1|}.

Let 0 6= y ∈ E(Λ). Then y is a linear combination of fni . We consider y ∈ fn,

with n > N . So y is a homogeneous element of E(Λ) of degree n. Consider the

element R ∈ Rn which corresponds to y ∈ fn, where n > N . Since n > 2, we know

R is a maximal overlap sequence of length δ(n) where (from Definition 3.5)

δ(n) =


n
2
d if n even,

n−1
2
d+ 1 if n odd.

So we can write R = a1a2 · · · aδ(n). From Proposition 7.13, we know that all subpaths

of R of length d are in ρ, that is, a1 · · · ad, a2 · · · ad+1, . . . , aδ(n)−d+1 · · · aδ(n) all are in

ρ. We may illustrate R with the following diagram:

a1 a2 · · · ad ad+1 · · · aδ(n)−d+1 · · · aδ(n)

Since R ∈ Rn with n > N , then there is some repeated arrow. So we choose j, k

with k minimal and k ≥ 1 such that aj is a repeated arrow, aj, . . . , aj+k−1 are all

distinct arrows and aj+k = aj. Write

R = (a1 · · · aj−1)(aj · · · aj+k−1)(ajaj+k+1 · · · aδ(n)).

There are two cases to consider.
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Case (1): k = 1. Then aj = aj+1 and so aj is a loop. It follows that

R = (a1 · · · aj−1)(ajaj)(aj+2 · · · aδ(n)).

Note that n > N ≥ 3 so that n ≥ 4. Hence δ(n) ≥ 2d.

Suppose first that j ≤ d− 1. Then from Proposition 7.13, a2
jaj+2 · · · aj+d−1 is in ρ

since j + d− 1 ≤ δ(n). But adj ∈ ρ and we have seen earlier in the proof that there

are no overlaps of adj with any element of ρ \ {adj}. Thus aj = aj+2 = · · · = aj+d−1.

Inductively we see that R = (a1 · · · aj−1)a
δ(n)−j+1
j . Using Proposition 7.13 again, we

know that a1 · · · aj−1a
d−j+1
j is in ρ and d− j + 1 ≥ 2. And there are no overlaps of

adj with any element of ρ \ {adj}. So aj = a1 = · · · = aj−1. Thus we have R = a
δ(n)
j .

Now suppose that j ≥ d. Then j−d+ 1 ≥ 1, so by Proposition 7.13, we have that

aj−d+1 · · · aj−1aj is in ρ. Since there are no overlaps of adj with any element of ρ\{adj},

it follows that aj−d+1 = · · · = aj−1 = aj, so inductively R = aj+1
j (aj+2 · · · aδ(n)).

Using Proposition 7.13 again, we know that ad−1
j aj+2 is in ρ as j + 1 ≥ d− 1. There

are no overlaps of adj with any element of ρ \ {adj}. So aj = aj+2. Thus inductively,

we see that R = a
δ(n)
j .

So, for all j, we have that R = a
δ(n)
j .

From above, let xi be the generator in H corresponding to the loop aj , so 1 ≤ i ≤ u

and |xi| = 2. Then xi acts on E(Λ) as left multiplication by the central element adj .

Hence

R =

(adj )
(n/2) if n even;

(adj )
((n−1)/2)aj if n odd.

So

R =

(xi)
(n/2)o(aj) if n even;

(xi)
((n−1)/2)aj if n odd

with |o(aj)| ≤ N and |aj| ≤ N .

Case (2): k > 1. We note by our choice of j, k that aj · · · aj+k−1 is a closed trail

of length k. We denote this closed trail by T .

The first step is to show that ρT is contained in ρ, where ρT is the set of all

paths of length d which lie on the closed trail T . If d ≥ k + 1, then we can use

Proposition 7.14 to see that ρT is contained in ρ.
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Otherwise, suppose that d ≤ k. Recall that

R = (a1 · · · aj−1)(aj · · · aj+k−1)(ajaj+k+1 · · · aδ(n)).

Then:

ajaj+1 · · · aj+d−1,

aj+1aj+2 · · · aj+d,
...

aj+k−daj+k−d+1 · · · aj+k−1,

aj+k−d+1aj+k−d+2 · · · aj+k−1aj

are all paths of length d which are subpaths of R. From Proposition 7.13, these

paths are all in ρ.

Now ajaj+1 · · · aj+d−1 overlaps aj+k−d+1aj+k−d+2 · · · aj+k−1aj . So there is a relation

R2
1 ∈ ρ such that R2

1 maximally overlaps aj+k−d+1aj+k−d+2 · · · aj+k−1aj with maximal

overlap of length d+ 1. Then we have that

R2
1 = aj+k−d+2aj+k−d+3 · · · aj+k−1ajaj+1

and this maximal overlap is (aj+k−d+1aj+k−d+2 · · · aj+k−1aj) aj+1 = aj+k−d+1R
2
1. Con-

tinuing in this way, aj+1aj+2 · · · aj+d overlaps R2
1. So there is a relation R2

2 ∈ ρ such

that R2
2 maximally overlaps R2

1 with maximal overlap of length d+ 1. So

R2
2 = aj+k−d+3aj+k−d+4 · · · aj+k−1ajaj+1aj+2

and this maximal overlap is R2
1aj+2 = aj+k−d+2R

2
2. Inductively, we see that every

path of length d on the closed trail T is in ρ. So ρT is contained in ρ.

So for all k > 1 we have that ρT is contained in ρ. Thus, by hypothesis, there are

no paths in ρ \ ρT which begin or end with any of the arrows aj, aj+1, . . . , aj+k−1.

The next step is to show that we can write R in the form R = T qp where p is a

prefix of T . We recall that all subpaths of

R = (a1 · · · aj−1)(aj · · · aj+k−1)(ajaj+k+1 · · · aδ(n))

of length d are in ρ (Proposition 7.13).

Suppose first that d ≤ k. Then aj+k−d+2 · · · aj+k−1ajaj+k+1 is a subpath of R

of length d which begins with the arrow aj+k−d+2 ∈ {aj, aj+1, . . . , aj+k−1}. So,
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by hypothesis, this path is in ρT and hence aj+k+1 = aj+1. Inductively, we have

aj+k+2 = aj+2, aj+k+3 = aj+3, . . . . Also, aj−1aj · · · aj+d−2 is a subpath of R of length

d which ends with the arrow aj+d−2 ∈ {aj, aj+1, . . . , aj+k−1}. So, by hypothesis, this

path is in ρT and hence aj−1 = aj+k−1. Inductively, we have aj−2 = aj+k−2, aj−3 =

aj+k−3, . . . . So we may write R = p1T
qp2, where T = aj · · · aj+k−1, p1 is a suffix of

T and p2 is a prefix of T .

Now suppose that d ≥ k + 1. We consider j ≤ d− 1 and j ≥ d separately. Let

j ≤ d − 1. Then, we know that aj+1aj+2 · · · aj+k−1ajaj+k+1 · · · aj+d is a subpath

of R (since j + d < 2d ≤ δ(n)) and is of length d and starts with the arrow

aj+1 ∈ {aj, aj+1, . . . , aj+k−1}. So by hypothesis, this path is in ρT and hence

aj+k+1 = aj+1, aj+k+2 = aj+2, . . . . Also a1a2 · · · aj−1 · · · ad is a subpath of R of

length d and starts with the arrow a1 ∈ {aj, aj+1, . . . , aj+k−1}. So by hypothesis,

this path is in ρT and hence aj−1 = aj+k−1, aj−2 = aj+k−2 . . . . So we may write

R = p1T
qp2, where T = aj · · · aj+k−1, p1 is a suffix of T and p2 is a prefix of T .

Otherwise j ≥ d. Then, we know that aj−d+k · · · aj−1aj · · · aj+k−1 is a subpath

of R of length d and ends with the arrow aj+k−1 ∈ {aj, aj+1, . . . , aj+k−1}. So by

hypothesis, this path is in ρT and hence aj−1 = aj+k−1, aj−2 = aj+k−2, . . . . Also

aj+k−d+2 · · · aj−1aj · · · aj+k+1 is a subpath of R of length d and starts with the arrow

aj+k−d+2. But we have just shown that aj+k−d+2 ∈ {aj, aj+1, . . . , aj+k−1}. So by

hypothesis, this path is in ρT and hence aj+k+1 = aj+1. Inductively, aj+k+2 =

aj+2, . . . . So again we may write R = p1T
qp2, where T = aj · · · aj+k−1, p1 is a suffix

of T and p2 is a prefix of T .

In all cases we have written R as R = p1T
qp2, where T = aj · · · aj+k−1, p1 is a

suffix of T and p2 is a prefix of T . Without loss of generality, we can relabel the

trail T so that R = T qp, where T = a1 · · · ak, p is a prefix of T with 1 ≤ `(p) ≤ k,

and δ(n) = kq + `(p).

Thus there is a generator in H which corresponds to this closed trail T . Let xr

be the generator in H corresponding to T . Let

Tr,1 = T = a1a2 · · · ak;

Tr,2 = a2a3 · · · aka1;
...

Tr,k = aka1 · · · ak−1.
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The action of xr on E(Λ) is left multiplication by

T
d/ gcd(d,k)
r,1 + T

d/ gcd(d,k)
r,2 + · · ·+ T

d/ gcd(d,k)
r,k .

Suppose first that gcd(d, k) = 1. So the action of xr on E(Λ) is left multiplication

by T dr,1 + T dr,2 + · · · + T dr,k, and |xr| = 2k. So N ≥ 2k. Now R = T qp with

1 ≤ `(p) ≤ k. Write q = cd + w with 0 ≤ w ≤ d − 1. Then R = (T d)c(Twp).

Moreover, Twp corresponds to an element in E(Λ) of length kw + `(p). Now

kw + `(p) ≤ k(d− 1) + k = kd, so `(Twp) ≤ kd. So Twp corresponds to an element

in E(Λ) of degree at most 2k since δ(2k) = kd. Thus Twp corresponds to an element

in E(Λ) of degree at most N .

More generally, the action of xr on E(Λ) is left multiplication by

T
d/ gcd(d,k)
r,1 + T

d/ gcd(d,k)
r,2 + · · ·+ T

d/ gcd(d,k)
r,k

and |xr| = 2k/ gcd(d, k). So N ≥ 2k/ gcd(d, k). Now R = T qp with 1 ≤ `(p) ≤ k.

Write q = d
gcd(d,k)

c+ w with 0 ≤ w ≤ d
gcd(d,k)

− 1. Then

R =
(
T d/ gcd(d,k)

)c
(Twp).

Moreover, Twp corresponds to an element in E(Λ) of length kw + `(p). Now

kw + `(p) ≤ k
(

d
gcd(d,k)

− 1
)

+ k = kd/ gcd(d, k), so `(Twp) ≤ kd/ gcd(d, k). So

Twp corresponds to an element in E(Λ) of degree at most 2k/ gcd(d, k) since

δ(2k/ gcd(d, k)) = kd/ gcd(d, k). Thus Twp corresponds to an element in E(Λ)

of degree at most N .

Now we show that T
d/ gcd(d,k)
r,l p = 0, for all 2 ≤ l ≤ k. Let 2 ≤ l ≤ k. We have

Tr,l = alal+1 · · · aka1 · · · al−1 and p = a1a2 · · · a`(p). So the element T
d/ gcd(d,k)
r,l p in

E(Λ) can be written as

(alal+1 · · · aka1 · · · al−1)d/ gcd(d,k) · a1a2 · · · a`(p)

and is a path of length kd
gcd(d,k)

+ `(p) where 1 ≤ `(p) ≤ k. If this represents a

non-zero element in E(Λ), then t(al−1) = o(a1) so that a1 · · · al−1 is a closed trail.

But l − 1 < k, so this contradicts the minimality of k. Hence T
d/ gcd(d,k)
r,l p = 0 in

E(Λ) for all 2 ≤ l ≤ k.
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Finally, we recall that we have R =
(
T d/ gcd(d,k)

)c
(Twp). Hence R = xcr T

wp and

Twp is in the set {f 0, f 1, . . . , fN}.

This shows that E(Λ) is generated by f 0, . . . , fN as a left H-module. Hence Λ

satisfies (Fg2) and thus Λ has (Fg). �

We now give two examples to illustrate these results. The first example is of a

Koszul monomial algebra and this is the algebra of [14, Example 3.1], where Furuya

and Snashall show that Λ has (Fg). The second is a d-Koszul algebra, where we

show that the algebra Λ has (Fg).

Example 7.16. Let Λ = KQ/I, where Q is the quiver

2

β

��

4

η

��

1

α
^^

ζ
@@

3

γ

@@

5
θ

^^

and I = 〈αβ, βγ, γα, ζη, ηθ, θζ〉. Then Λ is a Koszul monomial algebra. The algebra

Λ satisfies the conditions of Theorem 7.11 with two closed trails αβγ and ηζθ. We

have H = K[x, y]/(xy), where Z(Λ) = K, and x (respectively y) corresponds to the

closed trail αβγ (respectively ηζθ). The algebra Λ has (Fg). Here N = 6 and so

E(Λ) is generated by f 0, . . . , f 6 as a left H-module.

The action of x on E(Λ) is left multiplication given by

x 7→ (αβγ)2 + (βγα)2 + (γαβ)2,

and the action of y on E(Λ) is left multiplication given by

y 7→ (ηθζ)2 + (ζηθ)2 + (θζη)2.

Example 7.17. Let Λ = KQ/I be the 5-Koszul monomial algebra which is given

by the quiver

1
a1 // 2

a2 // 3

b



 a3 // 4
a4 // 5
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with I = 〈a1a2b
2a3, b

5, a2b
2a3a4〉. The algebra Λ satisfies the conditions of Theorem

7.15 with the loop b. Moreover, Z(Λ) = K and H = K[x], where the element x

corresponds to the loop b in degree 2. We have N = 5 and so E(Λ) is generated by

f 0, . . . , f 5 as a left H-module. The algebra Λ has (Fg).

We list the elements of the set Rn, for n = 0, . . . , 5:

R0 = {e1, . . . , e5}

R1 = {a1, a2, b, a3, a4}.

R2 = {a1a2b
2a3, b

5, a2b
2a3a4}

R3 = {a1a2b
2a3a4, b

6}

R4 = {b10}

R5 = {b11}.

The action of x on E(Λ) is left multiplication given by x 7→ b5.

It is an open question as to whether the conditions of Theorem 7.11 and of

Theorem 7.15 give necessary as well as sufficient conditions for a Koszul monomial

algebra (respectively d-Koszul monomial algebra) to have (Fg).
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8. Constructing d-Koszul algebras

In this final chapter we give a construction of an algebra B from a (D,A)-stacked

algebra A, where D = dA, A ≥ 1 and d ≥ 2. One of the main results of this

chapter is Theorem 8.4, where we show that the algebra B we have constructed

from a (D,A)-stacked monomial algebra A is a d-Koszul monomial algebra and

we give conditions in Theorem 8.5 under which A and the stretched algebra B̃ are

isomorphic.

We start with the construction of an algebra B from a (D,A)-stacked algebra

A. Let A = KΓ/I be a (D,A)-stacked algebra and assume that D = dA for some

d ≥ 2, where I is generated by a minimal set ρ̃ of homogeneous uniform relations of

length D. We fix the set ρ̃ and label the elements of ρ̃ as ρ̃1, . . . , ρ̃m. We construct

a new algebra B using the quiver Γ and ideal I, and relate B̃ to the algebra A.

Definition 8.1. We keep the above notation.

(1) Let x in KΓ be a linear combination of paths of length D where D = dA.

We write x =
∑

k ckαk,1 · · ·αk,D where ck are non-zero elements of K and

the αk,j are arrows in Γ. We define the A-subpaths of x to be the paths

αk,rA+1 · · ·αk,(r+1)A for some k, and 0 ≤ r ≤ d− 1.

(2) Fix a minimal generating set ρ̃ for I. We define the A-subpaths of A to be

the set of A-subpaths of x where x ∈ ρ̃. We denote the set of A-subpaths of

A by SA. Note that we consider SA a set with no repeats.

We start by defining a new quiver Q and ideal I of KQ and let B = KQ/I.

Definition 8.2. Let A = KΓ/I be a (D,A)-stacked algebra and assume that

D = dA for some d ≥ 2, where I is generated by a minimal set ρ̃ = {ρ̃1, . . . , ρ̃m} of

uniform relations of length D. For each i = 1, . . . ,m, write ρ̃i =
∑

k ckαi,k,1 · · ·αi,k,D
where ck are non-zero scalars in K and αi,k,j arrows in Γ, for all j = 1, . . . , D. Then

• The vertex set of Q is the set {o(ρ̃i), t(y) for all y ∈ SA and all i = 1, . . . ,m}.

Note that t(αi,k,dA) = t(αi,k,D) = t(ρ̃i). This set does not include any repeats,

so if t(αi,k,rA) = t(αj,l,sA) as vertices of Γ for some i, j, k, l, r, s then we identify

t(αj,k,rA) and t(αi,l,sA) as the same vertex in Q.

• The arrows of Q are constructed as follows. Each y ∈ SA corresponds

to an arrow βy in Q. Recall that we do not include any repeats in SA.
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We illustrate this construction in the following diagram. Consider the

path αi,k,1 · · ·αi,k,D. Then e0 = o(ρ̃i), e1 = t(αi,k,A), . . . , ed = t(αi,k,dA)

are vertices in Q and β1, . . . , βd are arrows in Q corresponding to the A-

subpaths αi,k,1 . . . αi,k,A, . . . , αi,k,(d−1)A+1 . . . αi,k,dA respectively. Then the

αi,k,1 · · ·αi,k,D may be consider as the path of length D in KΓ

e0

αi,k,1...αi,k,A
// e1

αi,k,A+1...αi,k,2A
// . . .

αi,k,(d−1)A+1...αi,k,dA
// ed

which corresponds to the path β1 · · · βd of length d in KQ

e0

β1
// e1

β2
// . . .

βd // ed

• We now define the ideal I of KQ. With the above notation, for each i =

1, ...,m, we define ρi =
∑

k ckβk1 · · · βkd in KQ where βj is the arrow in KQ

corresponds to αj,k,rA+1 · · ·αj,k,(r+1)A for all j = 1, . . . , d and r = 0, . . . , d− 1.

We let I be the ideal of KQ which is generated by the set ρ = {ρ1, . . . , ρm}.

Note that ρ is necessarily a minimal generating set for I, since ρ̃ is a minimal

generating set for I.

• Now we define B = KQ/I.

We give examples of algebras A and B to illustrate different cases where B̃ is

and is not isomorphic to A. This motivates Theorem 8.5. We start by restricting

ourselves to the monomial case.

Example 8.3. (1) Let A1 = KΓ/I be the (4, 2)-stacked algebra which is given

by the quiver

4
α4 // 5

1
α1 // 2

α2 // 3

α3

@@

α5

��
6

α6 // 7
α7 // 8

α8 // 9
α9 // 10

α10 // 11

and with I = 〈α1α2α3α4, α1α2α5α6, α5α6α7α8, α7α8α9α10〉.

The sets gn are given as follows:

• g0 = {e1, . . . , e11}, with g0
i = ei, where i = 1, . . . , 11.

• g1 = {α1, . . . , α10}, with g1
i = αi, where i = 1, . . . , 10.

128



• g2 = ρ̃ = {α1α2α3α4, α1α2α5α6, α5α6α7α8, α7α8α9α10}, with

ρ̃1 = α1α2α3α4, ρ̃2 = α1α2α5α6, ρ̃3 = α5α6α7α8, and ρ̃4 = α7α8α9α10.

• g3 = {α1α2α5α6α7α8, α5α6α7α8α9α10}, with g3
1 = α1α2α5α6α7α8 and

g3
2 = α5α6α7α8α9α10.

• g4 = {α1α2α5α6α7α8α9α10}, with g4
1 = α1α2α5α6α7α8α9α10.

We can now see that the elements gni ∈ gn have length δ(n) for D = 4 and

A = 2, since

• `(g0
i ) = 0, where i = 1, . . . , 11.

• `(g1
i ) = 1, where i = 1, . . . , 10.

• `(g2
i ) = 4, where i = 1, 2, 3, 4.

• `(g3
i ) = 6, where i = 1, 2.

• `(g4
1) = 8.

Hence each projective P n is generated in degree δ(n). So A1 is a (D,A)-

stacked monomial algebra with D = 4, A = 2 and d = 2. We have

SA = {α1α2, α3α4, α5α6, α7α8, α9α10}. Then by using the construction above

and we have ρ̃1 = α1α2α3α4, ρ̃2 = α1α2α5α6, ρ̃3 = α5α6α7α8, and ρ̃4 =

α7α8α9α10. So Q has six vertices {o(α1α2), t(α1α2), t(α3α4), t(α5α6), t(α7α8),

t(α9α10)} and five arrows {β1, β2, β3, β4, β5}, where

β1 corresponds to α1α2,

β2 corresponds to α3α4,

β3 corresponds to α5α6,

β4 corresponds to α7α8,

β5 corresponds to α9α10,

Thus B1 = KQ/I is given by the quiver:

5

1
β1
// 3

β2

@@

β3

��
7

β4
// 9

β5
// 11

and I = 〈β1β2, β1β3, β3β4, β4β5〉. Noting that every quadratic monomial

algebra is Koszul (see Chapter 3 p24, which references [29]), then B1 is

Koszul. Moreover, A1
∼= B̃1.
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(2) Let A2 = KΓ/I be the (4, 2)-stacked algebra which is given by the quiver

1
α1 // 2

α2 //

β1

��

3
α3 // 4

α4 // 5
α5 // 6

α6 // 7

8
β2
// 9

β3
// 10

β4
// 11

β5
// 12

β6
// 13

and I = 〈α1α2α3α4, α3α4α5α6, β1β2β3β4, β3β4β5β6〉.

The sets gn are given as follows:

• g0 = {e1, . . . , e13}, with g0
i = ei, for i = 1, . . . , 13.

• g1 = {αi, βj}, for i = 1, . . . , 6 and j = 1, . . . , 6, we label the elements of

the set g1 by g1
1, g

1
2, . . . , g

1
12 in the order they are given here.

• g2 = ρ̃ = {α1α2α3α4, α3α4α5α6, β1β2β3β4, β3β4β5β6}, with

ρ̃1 = α1α2α3α4, ρ̃2 = α3α4α5α6, ρ̃3 = β1β2β3β4, ρ̃4 = β3β4β5β6.

• g3 = {α1α2α3α4α5α6, β1β2β3β4β5β6}, with g3
1 = α1α2α3α4α5α6 and

g3
2 = β1β2β3β4β5β6.

We can now see that the elements gni ∈ gn have length δ(n) for D = 4 and

A = 2, since

• `(g0
i ) = 0, where i = 1, . . . , 13.

• `(g1
i ) = 1, where i = 1, . . . , 12.

• `(g2
i ) = 4, where i = 1, 2, 3, 4.

• `(g3
i ) = 6, where i = 1, 2.

Hence each projective P n is generated in degree δ(n). So A2 is a (D,A)-

stacked monomial algebra with D = 4, A = 2 and d = 2. We have

SA = {α1α2, α3α4, α5α6, β1β2, β3β4, β5β6}. Then by using the construction

above, Q has eight vertices and six arrows and B2 = KQ/I where Q is the

quiver:

1
γ1
// 3

γ2
// 5

γ3
// 7

2
γ4
// 9

γ5
// 11

γ6
// 13

and I = 〈γ1γ2, γ2γ3, γ4γ5, γ5γ6〉. We can see that the algebra B2 is discon-

nected.
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(3) Let A3 = KΓ/I be the (6, 3)-stacked algebra which is given by the quiver

6
α6 // 7

1
α1 // 2

α2 // 3
α3 // 4

α4 // 5

α5

@@

α7

��
8

α8 // 9
α9 // 10

α10 // 11
α11 // 12

and with I = 〈α1α2α3α4α5α6, α1α2α3α4α7α8, α4α7α8α9α10α11〉.

The sets gn are given as follows:

• g0 = {e1, . . . , e12}, with g0
i = ei, where i = 1, . . . , 12.

• g1 = {α1, . . . , α11}, with g1
i = αi, where i = 1, . . . , 11.

• g2 = ρ̃ = {α1α2α3α4α5α6, α1α2α3α4α7α8, α4α7α8α9α10α11}, with

ρ̃1 = α1α2α3α4α5α6, ρ̃2 = α1α2α3α4α7α8, and ρ̃3 = α4α7α8α9α10α11.

• g3 = {α1α2α3α4α7α8α9α10α11}, with g3
1 = α1α2α3α4α7α8α9α10α11.

We can now see that the elements gni ∈ gn have length δ(n) for D = 6 and

A = 3, since

• `(g0
i ) = 0, for i = 1, . . . , 12.

• `(g1
i ) = 1, for i = 1, . . . , 11.

• `(g2
i ) = 6, for i = 1, 2, 3.

• `(g3
1) = 9.

Hence each projective P n is generated in degree δ(n). So A3 is a (D,A)-

stacked monomial algebra with D = 6, A = 3 and d = 2. We have

SA = {α1α2α3, α4α5α6, α4α7α8, α9α10α11}. Then by using the construction

above, Q has five vertices and four arrows. Thus B3 = KQ/I is given by the

quiver:

7

1
β1
// 4

β2

@@

β3

��
9

β4
// 12

and I = 〈β1β2, β1β3, β3β4〉. Noting that every quadratic monomial algebra

is Koszul (see [29]), then B3 is Koszul. However, with A = 3 the algebra

B̃3 � A3.
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(4) Let A4 = KΓ/I be the (4, 2)-stacked algebra which is given by the quiver

1
α1 // 2

α2 // 3
α3

��

4
β5
// 5

β6
// 6

7

β4
??

α4

��
8

β1
// 9

β2
// 10

β3
??

11
α5 // 12

α6 // 13

with I = 〈α1α2α3α4, α3α4α5α6, β1β2β3β4, β3β4β5β6〉.

The sets gn are given as follows:

• g0 = {e1, . . . , e13}, with g0
i = ei, where i = 1, . . . , 13.

• g1 = {αi, βj}, where i = 1, . . . , 6 and j = 1, . . . , 6, we label the elements

of the set g1 by g1
1, g

1
2, . . . , g

1
12 in the order they are given here.

• g2 = ρ̃ = {α1α2α3α4, α3α4α5α6, β1β2β3β4, β3β4β5β6}, with

ρ̃1 = α1α2α3α4, ρ̃2 = α3α4α5α6, ρ̃3 = β1β2β3β4, and ρ̃4 = β3β4β5β6.

• g3 = {α1α2α3α4α5α6, β1β2β3β4β5β6}, with g3
1 = α1α2α3α4α5α6, and

g3
2 = β1β2β3β4β5β6.

We can now see that the elements gni ∈ gn have length δ(n) for D = 4 and

A = 2, since

• `(g0
i ) = 0, where i = 1, . . . , 13.

• `(g1
i ) = 1, where i = 1, . . . , 12.

• `(g2
i ) = 4, where i = 1, 2, 3, 4.

• `(g3
i ) = 6, where i = 1, 2.

Hence each projective P n is generated in degree δ(n). So A4 is a (D,A)-

stacked monomial algebra with D = 4, A = 2 and d = 2. We have

SA = {α1α2, α3α4, α5α6, β1β2, β3β4, β5β6}. Then by using the construction

above, we have eight vertices and six arrows. Hence B4 = KQ/I is given by

the quiver:

1
γ1
// 3

γ2
// 11

γ3
// 13

8
γ4
// 10

γ5
// 4

γ6
// 6

and I = 〈γ1γ2, γ2γ3, γ4γ5, γ5γ6〉. We can see that the algebra B4 is discon-

nected.
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(5) Let A5 = KΓ/I be the (4, 2)-stacked algebra which is given by the quiver

3
β3
// 4

β4
// 5

β5
// 6

β6
// 7

β7
// 8

β8
// 9

1

β1

55

α1
))
2

β2
??

α2 ��
10

α3 // 11
α4 // 12

α5 // 13
α6 // 14

and with I = 〈α1α2α3α4, α3α4α5α6, β1β2β3β4, β3β4β5β6, β5β6β7β8〉.

The sets gn are given as follows:

• g0 = {e1, . . . , e14}, with g0
i = ei, where i = 1, . . . , 14.

• g1 = {αi, βj}, where i = 1, . . . , 6 and j = 1, . . . , 8, we label the elements

of the set g1 by g1
1, g

1
2, . . . , g

1
14 in the order they are given here.

• g2 = ρ̃ = {α1α2α3α4, α3α4α5α6, β1β2β3β4, β3β4β5β6, β5β6β7β8}, with

ρ̃1 = α1α2α3α4, ρ̃2 = α3α4α5α6, ρ̃3 = β1β2β3β4, ρ̃4 = β3β4β5β6, and

ρ̃5 = β5β6β7β8.

• g3 = {α1α2α3α4α5α6, β1β2β3β4β5β6, β3β4β5β6β7β8}, with

g3
1 = α1α2α3α4α5α6, g3

2 = β1β2β3β4β5β6 and g3
3 = β3β4β5β6β7β8.

• g4 = {β1β2β3β4β5β6β7β8}, with g4
1 = β1β2β3β4β5β6β7β8.

We can now see that the elements gni ∈ gn have length δ(n) for D = 4 and

A = 2, since

• `(g0
i ) = 0, where i = 1, . . . , 14.

• `(g1
i ) = 1, where i = 1, . . . , 14.

• `(g2
i ) = 4, where i = 1, . . . , 5.

• `(g3
i ) = 6, where i = 1, 2, 3.

• `(g4
1) = 8.

Hence each projective P n is generated in degree δ(n). So A5 is a (D,A)-

stacked monomial algebra with D = 4, A = 2 and d = 2. We have SA =

{α1α2, α3α4, α5α6, β1β2, β3β4, β5β6, β7β8}. Then by using the construction

above, we have eight vertices and seven arrows. Hence B5 = KQ/I is given
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by the quiver:

3
γ2
// 5

γ3
// 7

γ4
// 9

1

γ1
??

γ5 ��
10

γ6
// 12

γ7
// 14

and I = 〈γ1γ2, γ2γ3, γ3γ4, γ5γ6, γ6γ7〉. We note that every quadratic monomial

algebra is Koszul (see [29]). Then B5 is Koszul. However, with A = 2 the

algebra B̃5 � A5.

(6) Let A6 = KΓ/I be the (4, 2)-stacked algebra which is given by the quiver

2
β2
// 3

β3
// 4

β4
// 5

1

β1

@@

α1

��
6

α2 // 7
α3 // 8

α4 // 9
α5 // 10

α6 // 11
α7 // 12

α8 // 13

and with I = 〈α1α2α3α4, α5α6α7α8, β1β2β3β4〉. So we have SA = {α1α2, α3α4,

α5α6, α7α8, β1β2, β3β4}. Then by using the construction above, we have seven

vertices and six arrows. Hence B6 = KQ/I is given by the quiver:

3
γ2
// 5

1

γ1

@@

γ3 ��
7

γ4
// 9

γ5
// 11

γ6
// 13

and I = 〈γ3γ4, γ5γ6, γ1γ2〉. It is clear that B6 is Koszul (see Theorem 3.3).

Moreover, with A = 2 the algebra B̃6
∼= A6.

We keep the notation of Chapter 7 and now prove one of our main results.

Theorem 8.4. Let A = KΓ/I be a (D,A)-stacked monomial algebra with gldimA ≥

4, so D = dA, for some d ≥ 2. Let B be the algebra constructed from A using

Definition 8.2. Then B is a d-Koszul monomial algebra.
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Proof. Let B = KQ/I be the algebra constructed from A = KΓ/I. Then I is

monomial. Using the notation of overlaps, set

R̃0 = set of vertices of Γ,

R̃1 = set of arrows of Γ,

R̃2 = the minimal set of monomials in the generating set of I

(denoted ρ̃ in Definition 8.2).

and

R0 = set of vertices of Q,

R1 = set of arrows of Q,

R2 = the minimal set of monomials in the generating set of I

(denoted ρ in Definition 8.2).

So it is clear that `(R0) = 0, `(R1) = 1, and `(R2) = d, for all R0 ∈ R0, R1 ∈ R1

and R2 ∈ R2. For n ≥ 3, let R̃n (respectively Rn) denote the set of overlaps in A

(respectively B).

Since A is a (D,A)-stacked monomial algebra, then the nth projective module

in a minimal resolution of A/ rad(A) is P̃ n = ⊕R̃n∈R̃nt(R̃n)A and is generated in

degree δ(n) (see Definition 3.10) for all n ≥ 0.

We start by considering R3. An element R3 ∈ R3 is constructed from R2
1 which

maximally overlap R2
2 of the form R3 = R2

2y as follows:

oo
R3

//

oo x //

R2
2

R2
1

oo
y
//

By Definition 8.2, R2
1 (respectively R2

2) corresponds to R̃2
1 (respectively R̃2

2) in the

minimal generating set R̃2 for I. So this element gives an overlap of R̃2
1 with R̃2

2:

R̃2
2

R̃2
1

oo
ỹ

//
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We wish to show that R̃2
2ỹ is in R̃3. If R̃2

1 does not maximally overlap R̃2
2, then we

have R̃2
3 ∈ R̃2 which maximally overlaps R̃2

2:

oo //

R̃2
2

R̃2
3

R̃2
1

oo
ỹ

//

But R̃2
3 corresponds to some R2

3 ∈ R3 and so R2
3 overlaps R2

2:

oo //

R2
2

R2
3

R2
1

oo
y

//

which is a contradiction, since R2
1 maximally overlaps R2

2. Hence R̃2
1 does maximally

overlap R̃2
2 and so R̃2

2ỹ ∈ R̃3. Now write R̃2
2ỹ = R̃3 ∈ R̃3. Since `(R̃3) = D + A

and `(R̃2
2) = D, then `(ỹ) = A. However, ỹ is a suffix of R̃2

1 and so ỹ ∈ SA. So ỹ

corresponds to an arrow in B. Hence `(y) = 1 and `(R3) = d+ 1.

We use a similar argument for the elements of R4. An element R4 ∈ R4 is

constructed from a sequence of overlaps as follows:

oo R3

//

oo
R4

//R2
1

R2
2

oo
y

//

R2
3

From Definition 8.2, R2
1 (respectively R2

2, R
2
3) corresponds to R̃2

1 (respectively R̃2
2, R̃

2
3)

in the minimal generating set R̃2 for I. So using the above argument regarding R̃3,

we have:

oo
R̃3

//R̃2
1

R̃2
2

oo
ỹ

//

R̃2
3

and `(ỹ) = A. So in our construction of R4 we have `(y) = 1. But R2
3 overlaps y,

so y must be a prefix of R2
3. Hence t(R2

1) = o(R2
3) and we have
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oo
R4

//R2
1

R2
2

oo
y
//

R2
3

Then R4 = R2
1R

2
3 and `(R4) = 2d.

So continuing in this way, by induction for all n ≥ 0, and all Rn ∈ Rn we have

`(Rn) =


n
2
d if n even,

n−1
2
d+ 1 if n odd.

Thus B is d-Koszul, where B is constructed from A using Definition 8.2. �

We now give conditions under which A and B̃ are isomorphic.

Theorem 8.5. Let A be a (D,A)-stacked monomial connected algebra with gldimA ≥

4, so D = dA, for some d ≥ 2. Let B be the algebra constructed from Definition 8.2.

Assume that the following conditions hold:

(1) Each arrow occurs in precisely one A-subpath;

(2) If v is properly internal to some x ∈ SA, then

(a) v is not properly internal to y ∈ SA for y 6= x.

(b) v 6= o(z) and v 6= t(z), for all z ∈ SA.

Then B̃ ∼= A.

Proof. We define a map F : KΓ −→ B̃ and will show that F is surjective. First,

let v ∈ KΓ. Suppose first that v = o(α) or t(α) for some arrow α. Then by (1) α

occurs in some subpath x ∈ SA. So either v = o(x) or t(x), for some x ∈ SA. Then

v corresponds to a vertex in B and hence to a vertex in B̃ which we also denote by

v. Then we define

F(v) = v.

Otherwise, v is properly internal to a unique x ∈ SA. Note that by (2) we cannot

have v = o(x) or t(x) for some x ∈ SA and v being properly internal to any element

of SA. So we write x = α1 · · ·αrvαr+1 · · ·αA and from Definition 8.2, x corresponds

to a unique arrow β in B and then, by construction of the stretched algebra, we
137



have θ(β) = β1 · · · βA. Hence we define

F(v) = t(βr).

Let α be an arrow in A, so by hypothesis (1) α occurs in precisely one A-subpath

x. So x = α1 · · ·αA with α = αj for some 1 ≤ j ≤ A. Then there is an arrow β ∈ B

corresponding to x and we can write θ(β) = β1 · · · βA in B̃. So we define

F(α) = βj.

It is straightforward to verify that the map F is well defined.

We extend this to KΓ by defining F to be the linear map with

F(α1 · · ·αr) = F(α1) · · · F(αr).

It is clear from the construction that F gives a surjective map KΓ −→ B̃.

Next we show that KerF = I. By our constructions, Definition 8.2 and Definition

4.1, there is a 1-1 correspondence between the elements in the minimal generating

set ρ̃ of I, the elements in the minimal generating set ρ of I and the elements in

the minimal generating set Ĩ of B̃ such that F(I) = Ĩ which is zero in B̃. Thus

KerF = I. From the first isomorphism theorem we have A = KΓ/I ∼= B̃. �

This result is illustrated in Example 8.3 (2) and (8).

Example 8.6. Let A = KΓ/I be a algebra which is given by the quiver

1
α2

55 2

α1
uu

α3
))
3

α4

ii

and I = 〈α1α2α1α2, α3α4α3α4, α1α2α3α4 − α3α4α1α2〉. This algebra was studied

in Example 2.40. Then A is a (4, 2)-stacked algebra. We want to construct the

quiver Q and ideal I of KQ. We use the construction above, with ρ̃1 = α1α2α1α2,

ρ̃2 = α1α2α3α4 − α3α4α1α2, ρ̃3 = α3α4α3α4. Then we have one vertex {o(α1α2)}

and we have two arrows {β1, β2}, where β1 corresponds to α1α2, and β2 corresponds

to α3α4. So we have the following quiver Q:

2 β2ggβ1 77
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Again we use the construction above to get ρ1 = β2
1 , ρ2 = β1β2 − β2β1, ρ3 = β2

2 . We

can see that B is Koszul and A ∼= B̃.
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9. Conclusion

In this thesis we studied Koszul algebras and generalisations of these algebras.

We have given the construction of a stretched algebra Λ̃ from a finite dimensional

algebra Λ. We used a functorial approach to determine the projective resolutions and

the projective bimodule resolution of a stretched algebra. We used stratifying ideals

to give information on finite generation of the Hochschild cohomology ring for a

stretched algebra. We have shown that a d-Koszul algebra satisfies the (Fg) finiteness

condition if and only if its stretched algebra (which is a (D,A)-stacked algebra) also

satisfies the (Fg) finiteness condition. We have also given sufficient conditions for

a finite dimensional d-Koszul monomial algebra to have (Fg). Furthermore, we

have given a construction of an algebra B from a (D,A)-stacked algebra A, where

D = dA, A ≥ 1 and d ≥ 2.

A further study for research would be to focus on how the cohomology of B̃ relates

to that of A, and investigate whether every d-Koszul non-monomial algebra arises

from a (D,A)-stacked non-monomial algebra with D = dA via our construction.

140



References

[1] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics

13, Springer, 1992.
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[44] N. Snashall, Ø. Solberg, Support varieties and Hochschild cohomology rings, Proc. London.

Math. Soc. 88 (2004), 705-732.

[45] N. Snashall, R. Taillefer, The Hochschild cohomology ring of a class of special biserial algebras,

J. Algebra Appl. 9 (2010), 73-122.

[46] Ø. Solberg, Support varieties for modules and complexes, Trend in representation theory of

algebra and related topics, Contemp. Math., 406, Amer. Math. Soc., Providence, RI, 2006,

239-270.

143


