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Abstract. We study finite dimensional Koszul algebras and their generalisations in-
cluding d-Koszul algebras and (D, A)-stacked algebras, together with their projective
resolutions and Hochschild cohomology. Then we introduce the stretched algebra
A and give a functorial construction of the projective resolution of /~X/ t and the
projective bimodule resolution of A. Following this, we show that if E(A) is finitely

generated then so is F(A). We investigate the connection between HH*(A) and
HH*(A) and the finiteness condition (Fg) using the theory of stratifying ideals. We
give sufficient conditions for a finite dimensional Koszul monomial algebra to have
(Fg) and generalize this result to finite dimensional d-Koszul monomial algebras. It
is known that if A is a d-Koszul algebra then Ais a (D, A)-stacked algebra, where
D = dA. We investigate the converse. We give the construction of the algebra B
from a (D, A)-stacked algebra A and show that if A is a (D, A)-stacked monomial

algebra, then B is d-Koszul with D = dA.
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1. INTRODUCTION

This thesis studies cohomology of finite dimensional algebras, particularly Koszul
algebras and their generalisations. Koszul algebras have been shown to be important
in algebra and algebraic topology [38], see also [21]. The class of Koszul algebras
was introduced by Priddy in 1970, [38]. There are several generalisations of Koszul
algebras; the d-Koszul algebras were introduced by Berger [5] and (D, A)-stacked
monomial algebras were introduced by Green and Snashall [26]. Leader [36] extended
this theory to the class of non-monomial (D, A)-stacked algebras. The Ext algebra
of a Koszul algebra, a d-Koszul algebra and a (D, A)-stacked algebra are all finitely
generated.

We are interested in the cohomology and finiteness conditions for generalizations
of Koszul algebras where A = KQ/I is a finite dimensional algebra for K a field
and @ a finite quiver and I an admissible ideal. Homological algebra has been used
to study the representations of finite dimensional algebras (see [2]) and the study
of cohomology theories (including the Ext algebra and the Hochschild cohomology
ring) has proved extremely useful. The Hochschild cohomology of finite dimensional
algebras was introduced by Hochschild [30]. We study projective resolutions, the
Ext algebra, Hochschild cohomology and the (Fg) condition for generalisations of
Koszul algebras.

In this thesis, we begin with some background information on finite dimensional
algebras A given by quiver and relations. We also remind the reader of the construc-
tion of the minimal projective resolution of A/t of Green, Solberg and Zacharia, given
in [28], where v is the Jacobson radical of A. This is followed by the construction
of the beginning of a minimal projective bimodule resolution of A of Green and
Snashall given in [24].

In Chapter 3 we introduce Koszul algebras and their generalisations. This is
followed by giving a brief introduction to Grobner bases following [13], [15] and [17].
The main result in this chapter is:

Theorem 3.28 Let A = KQ/I be a (D, A)-stacked algebra with gldim A > 4 and
with a reduced Grobner basis G of elements of length D. Then A|D.

In Chapter 4 we explicitly give the construction of a new algebra A from a finite

dimensional algebra A. We call A a stretched algebra. This generalises work by
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Leader [36], where she takes a d-Koszul algebra A and gives a construction of a new
algebra, A. We prove in Theorem 4.8 that the algebras A and eAe are isomorphic

where € = ) v (as an element of A). After that we describe the relationship

vEQo
between the projective resolutions of A/t and A/, and between the projective
bimodule resolutions of A and A. We show that if E(A) is finitely generated then so
is E(A):

Theorem 4.47 Let A = KQ/I and let A be the stretched algebra. Suppose there
is some m > 1 such that the Ext algebra F(A) is generated in degree at most m.
Then the Ext algebra E(A) is also finitely generated, and has generators in degree
at most m + 2.

Chapter 5 calculates the Hochschild cohomology groups of algebras A and A in
Examples 5.1 and 5.2, where we find HH3(A) = HH*(A). Moreover, it is shown in
Chapter 6 that the results of these examples can be extended to the general case
(see Theorem 6.24).

In Chapter 6, we study the Hochschild cohomology rings of A and its stretched
algebra A and the finiteness condition (Fg) using the theory of stratifying ideals.
We give some results on the stretched algebra A showing in Theorem 6.9 that AeA
is a stratifying ideal:

Theorem 6.9 Let A = KQ/I and let A be the stretched algebra. We keep the

notation of the previous chapters with e = > v and B = eAe. Then AcA is a

vEQo
stratifying ideal of A.

We then show in Corollary 6.13 that A / AeA has finite projective dimension:
Corollary 6.13 Let A = KQ/I and let A be the stretched algebra. With the above
notation, pdimje. /~X//~X5/~\ =2.

After that, we build on the work of Koenig and Nagase [34], Nagase [37] and
Psaroudakis, Skartsaeterhagen and Solberg [39]. We prove that A satisfies (Fg) if
and only if A satisfies (Fg):

Theorem 6.35 Let A = KQ/I and let A be the stretched algebra. We keep the
previous notation. Then A satisfies (Fg) if and only if A satisfies (Fg).

We also find a relationship between the injective dimension of A and the injective
dimension of A:

Theorem 6.37 Let A = KQ/I be a finite dimensional algebra and let A be the

stretched algebra. Then idimj; A < sup{idimy A, 2}.
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Chapter 7 presents some other Koszul algebras which have (Fg). We begin

with existing work and results by Erdmann and Solberg [12]. We then give some
properties for a finite dimensional monomial d-Koszul algebra A = KQ/I; let R"
be the set of overlaps R™ and let p be a minimal set of monomials in the generating
set of I. In Proposition 7.13, in which we show that all subpaths of R € R™ (n > 2)
of length d are in p and in Proposition 7.14 we show that all paths of length d which
lie on the closed trail T" are in p:
Proposition 7.14 Let A = KQ/I be a finite dimensional monomial d-Koszul
algebra, where d > 2, and let p be a minimal generating set for I consisting of
monomials of length d. Suppose that T' = ajas - - - a, is a closed trail in Q so that
ai, as, ...,a, are distinct arrows. Suppose also that d > n + 1. Then all paths of
length d which lie on the closed trail "= a4 - - -, are in p.

After that we give sufficient conditions for a finite dimensional d-Koszul monomial
algebra to have (Fg), and we prove this in Theorem 7.15:

Theorem 7.15 Let A = KQ/I be a finite dimensional monomial d-Koszul algebra,
where d > 2, and let p be a minimal generating set for I consisting of monomials
of length d. Suppose char K # 2 and gldim A > 4. Suppose that A satisfies the

following conditions:

(1) If  is a loop in @, then a? € p but there are no elements in p of the form
a? 13 or Bad! with B # a.

(2) If T'= ay---ay is a closed trail in @ with m > 1 such that the set
pr =4{a1 g, Qs Qi1 ..., Qg - g1} 18 contained in p, then there
are no elements in p \ pr which begin or end with the arrow «;, for all

1=1,...,m.

Then A has (Fg).

In Chapter 8, we give a construction of an algebra B from a (D, A)-stacked
algebra A, where D = dA, A > 1 and d > 2. One of the main results of this chapter
is Theorem 8.4, where we prove that the algebra B we have constructed from a
(D, A)-stacked monomial algebra A is a d-Koszul monomial algebra. Also we give
conditions in Theorem 8.5 under which A and B are isomorphic:

Theorem 8.5 Let A be a (D, A)-stacked monomial connected algebra with gldim .4 >
6



4,50 D = dA, for some d > 2. Let B be the algebra constructed from Definition 8.2.

Assume that the following conditions hold:

(1) Each arrow occurs in precisely one A-subpath;
(2) If v is properly internal to some z € S4, then
(a) v is not properly internal to y € Sy for y # .
(b) v # 0(2) and v # t(2), for all z € Sa.
Then B = A.
This key result naturally leads to the intriguing question of how the cohomology
of B is related to that of A, which could prove to be an interesting topic for future

research.



2. FINITE DIMENSIONAL ALGEBRAS AND MODULES

In this chapter, we review the concepts of quiver, path algebra, and admissible
ideal and we discuss the result that every finite dimensional basic K-algebra, where
K is an algebraically closed field, is isomorphic to KQ/I for a quiver Q and an
admissible ideal I. This material is covered in many books on representation theory,

for example [2], [3], [9], [10], and [28]. We follow the approach of [2].

Definition 2.1. A quiver Q = (Qy, Q1, 0, t), consists of two sets, Qy which is the set
of vertices and Q; which is the set of arrows, together with two maps o,t: Q; — Q,,

which associate to each arrow a € Q; its origin o(«) and its tail t(«).

Note that the quiver is finite if both of Qy and Q; are finite. We assume that all

quivers are finite.

Definition 2.2. The quiver Q is connected if the underlying graph Q which is

obtained from ©Q with no orientation on the arrows, is a connected graph.

We assume throughout this thesis that K is field.

Now we want to define the path algebra of a quiver. Before that we define what
is meant by a path. A path is a sequence ajas - - -, of arrows aq,as,...,q, in
Q, with t(oy) = o(ay4y) for I =1,...,n — 1. We say that the length of the path
p = aiay---a, is n and is denoted by ¢(p). For each vertex i, we let e; denote
the trivial path at 7 of length 0, so that e? = e;. We also use v, v;, w,w; to denote
vertices of a quiver. Then, to avoid too many subscripts, we use the same letters
v, v;, w,w; to denote the trivial path at that vertex. It is clear from the context as
to whether we mean the vertex or the trivial path at the vertex.

We write our arrows in a path from left to right.

Definition 2.3. Let Q be a quiver. The path algebra K Q of Q is the K-algebra
whose underlying K-vector space has basis the set of all paths ay - - - «,, of length
n > 0 and such that the product of two paths oy - - -, and Sy - - - 5, is equal to zero
if t(av,,) # 0(f1) and is equal to the composed path g - - - @, By - - - B if t{ay,) = 0(51).

There is a direct sum decomposition of K Q into vector spaces,

KOQ=KQydo K& - - dKQ,d---
8



where K Q,, is the subspace of K Q generated by the set Q,, of all paths of length n,
for all n > 0.

In addition, this decomposition defines a grading on K Q, since (K Q,,)(KQ,,) C
KQ, i for all n,m > 0. This will subsequently be called the length grading.

Let A be an K-algebra throughout this chapter.
An element e € A is called an idempotent if e? = e. The idempotents e;, e; are
called orthogonal if e;e; = ese; = 0, and the idempotent e is said to be primitive if

e cannot be written as a sum of two nonzero orthogonal idempotents of A.

Proposition 2.4. Let Q be a quiver. The element 1 = ZaeQU eq 1S the identity
of KQ and the set {e,|la in Qy} of all trivial paths is a complete set of primitive
orthogonal idempotents for KQ.

Definition 2.5. Let Q be a finite connected quiver. The two-sided ideal of the path
algebra K Q generated (as an ideal) by the arrows of Q is called the arrow ideal of
K Q and is denoted by Rg.

Definition 2.6. Let Q be a quiver and Rg be the arrow ideal of the path algebra
KQ. A two-sided ideal I of K Q is said to be admissible if there exists m > 2 such
that RG C I C R%.

The following result is Gabriel’s Theorem (see [10]). This theorem is the reason

why it is useful to study algebras of the form KQ/I.

Theorem 2.7. Let K be an algebraically closed field and let A be a basic and
connected finite dimensional K-algebra. Then there exists a unique quiver Q and an

admissible ideal I of KQ such that A = KQ/I.
Next we look at projective modules and projective resolutions.

Definition 2.8. A right A-module P is projective if for any epimorphism f : M — N
and any homomorphism ¢ : P — N, there is an homomorphism h : P — M such

that the diagram commutes



Proposition 2.9. Let e be an idempotent element in A. Then e\ is a projective

right A-module.

Definition 2.10. A chain complex is a sequence

NG i LN
of right A-modules with A-homomorphisms such that d"d"™! = 0 for all n > 0.
Definition 2.11. A sequence

NG g i LN

of right A-modules connected by A-homomorphisms is called exact if Kerd" =

Im d"*! for all n. In particular
0— L M2 N—0

is called a short exact sequence if f is a monomorphism and g is an epimorphism

and Kerg = Im f.

Definition 2.12. Let M be a right A-module. A projective resolution of M is an

exact sequence
n d" n—1 1 d! 0 d°

where P" is a projective A-module for all n > 0.

It is called a minimal projective resolution of M if Im d™ C rad P"~! for all n > 0.

Proposition 2.13. Let A = KQ/I be a finite dimensional algebra. Then every

finitely generated module has a minimal projective resolution.

Definition 2.14. A right A-module N is injective if, for any monomorphism
f: L — M and any homomorphism g : L — N, there is an homomorphism

h: M — N such that the diagram commutes



Definition 2.15. Let N be a right A-module. An injective resolution of N is an

exact sequence

hO hn+1
0N — ... 5" " ...

where " is an injective A-module for all n > 0.

2.1. The Ext algebra. Now we look at cohomology theory. This material can be
found in many books on representation theory, including [32], [33], [40] and [28].
Let K be a field, A be a K-algebra with Jacobson radical . We denote by
Mod A the abelian category of all right A-modules, that is, the category whose
objects are right A-modules, the morphisms are A-module homomorphisms, and
the composition of morphisms is the usual composition of maps and we denote by
mod A the subcategory of Mod A, where objects are finitely generated modules.

We assume that all our modules are in mod A, that is, they are finitely generated.

Definition 2.16. Let M, N be right A-modules, and let (P",d") be a minimal

projective resolution of M,
2 1 0
e P2 S pt Ly po L.

We apply Homy (—, N) to give the complex

0 50 1 5t 2 52
0 — Homy (P°, N) — Homy (P, N) — Homy (P*,N) — - --

where 0" is the map induced by d"™! such that 6" : Hom (P", N) — Homy (P"™!, N)
with f —— f od"". The nth cohomology group is denoted by Ext} (M, N), and is
defined by Ext} (M, N) = Ker §"/Im 6" ! for all n > 0.

In particular, Ker 0° = Ext} (M, N) = Homy (M, N).

The following theorem says that Ext} (M, N) is independent of the choice of

projective resolution.

Theorem 2.17. If {P,} and {Q,} are two projective resolutions of M, with
Ext} (M, N) and Ext}y (M,N) computed with these resolutions, then

Ext? (M, N) = Ext} (M, N).
11



Definition 2.18. The Ext algebra of A is
E(A) = Exti(A/t,A/r) = B0 Extl (A/r, AJv).

We need to describe the product structure of Ext} (M, M) = &,>¢ Ext} (M, M)
(see [26]). So we start with a minimal projective resolution (P",d") of M as a right

A-module. We apply Homy (—, M) to get the chain complex
0 — Homy (P°, M) % -+ — Homy (P", M) 23 Homy (P™, M) - --

Let n € Exty (M, M). Then 7 is represented by an element of Ker 6" C Homy (P", M)
and we also denote this element by 7.

Let n € Ext} (M, M) and 0 € Ext{'(M, M) be represented by n € Homy(P", M)
and 6 € Homy (P™, M) respectively. We have a diagram

dn+'m+l dn+m dm+2 dm+1
. prtmAl prt+m .. pm+l1 pm
0
£ty l L9 l £ l L% L \
dn+1 d2 dl d()
NE— 0 pr P PO M 0

where £ is a lifting of 0, so that the diagram commutes.
Now we can represent the element 76 by the map no £"0 : P"t™— M, where

L™0 is the nth lifting of 6. So we have the following diagram

dn+m+1 dn+m dm+2 dm+1
n-m n-rm m m
. — s pntmtl_  pndt pmtl P
0
L£rtlg l L9 l L' l £% L \
dn+1 d2 dl dO
. Pt P" P! PP M 0
\
M

Remark 2.19. The liftings £°9, £10,...,£""10,... are not unique; however the
element nf € Ext}™™ (M, M) is independent of the choice of liftings.

Proposition 2.20. /5, Corollary 2.5.4] Ext} (A/t,A/t) = Homy (P", A/¢), where

(P™,d") is a minimal projective resolution of AJx.

Definition 2.21. Let M be a right A-module. Then pdim, M < n, (writing

pdim, M to denote the projective dimension of M) if there is a finite projective
12



resolution of M

n dm n_ldn—l ]_dl 0 dO
O —pFP"—P"7 — .. —P — P — M-—N0.

If no such finite resolution exists, then pdim, M = co. Note that, pdim, M = n if

M has no projective resolution of length n — 1.

Definition 2.22. [41, Section 8.1] Let A be a finite dimensional K-algebra. Then
the global dimension of A is defined to be

gldim A = sup{pdim, M, M is a right A-module}.

Theorem 2.23. Let M be a right A-module. Then the following statements are
equivalent:

(1) pdim(M) < n;

(2) There exists a projective resolution of M of length n such that

0—spr Dyprt o opt dopo P g
(3) Exti™ (M, N) =0 for all right modules N.

Definition 2.24. Let N be a right A-module. Then idimy N < n, (writing idim N

to denote the injective dimension of N) if there is a finite injective resolution of N
0 1 n—1 n
0— Ny o2yt My,

If no such finite resolution exists, then idimy N = oco. Note that, idimy N =n if N

has no injective resolution of length n — 1.

Proposition 2.25. Let N be a right A-module. Then idimy N = n if and only if
Ext}™(—, N) = 0 and Ext}(—, N) # 0.

2.2. The construction of a minimal projective resolution. Now we study the
construction of a minimal projective resolution for the module A/t from [28] and
the construction of a minimal projective bimodule resolution for A from [24]. Let
R = KQ, where Q is a finite quiver, and let A = KQ/I, where [ is an admissible
ideal. All modules are finitely generated modules. We start with the construction of

a minimal projective resolution from [28]. The following definition is well-known.
13



Definition 2.26. An algebra A is called hereditary if any submodule of a projective

module is projective.
Proposition 2.27. [9, Section 1] Let KQ be a path algebra. Then K Q is hereditary.

Definition 2.28. [28] An element z € K Q is called uniform if there exist two

vertices v, w such that © = ve = zw. We define o(z) = v, t(z) = w.

Now we look at the minimal projective resolution (P",d") for A/t as described
by Green, Solberg and Zacharia in [28].

Let A = KQ/I and let A/t = ®,S;, where S; are right simple A-modules. They
define sets g™ which we will use to describe the resolution as follows:

g° = set of vertices of Q,

g- = set of arrows of Q,
¢g° = a minimal set of uniform relations which generate I.
In [28] Green, Solberg and Zacharia define @;g"* R = (@97 ' R) N (®:g)" *I), for
all n > 3, where R = KQ. We discard all elements g which are in @;g]" ' and
we denote the remaining elements by g'. We may choose all the g' to be uniform
elements; we will assume that they are all uniform. We let ¢" be the set of all
elements ¢'. The set ¢g" can be chosen in such a way that there exists a minimal

projective resolution of A/t as follows:
n _d" n—1 1 dl o d°
i — PP — PV — ... — P — P —At—0

where P" = @;t(¢g/*)A. The P" are projective right A-modules. For each x € g"
there are unique elements r; € R such that » = 37", gy~ 'ry, where [g"7'| = m.
For each n > 1, they define d" : P* — P"! to be the A-homomorphism given
by: t(z)A — >, t(g)~")rjt(x) A, and t(gi~")r;t(x)A is in the component of P
corresponding to t(g}‘_l).

We summarize this in the following theorem.

Theorem 2.29. [28, Theorem 2.4] With the above notation, we can choose the sets

n

g" in such way that for each n, no proper linear combination of a subset of g" lies

in (©g" '+ ®g"* Rg). Then (P",d") is a minimal projective resolution of A/t.

14



Remark 2.30. We note that each g is in (@;g!" ' R)N(®;g" >I), and I has minimal

generating set ¢. In particular, for n = 3, we can write

g = _gni=Y_ agm (1)
with p;,¢;, 7 € KQ and ¢; € Ro.

We will use Theorem 2.29 in the next example.

Example 2.31. Let Q be the quiver

and let A = KQ/I, where I = (af~, fya,vaf). We begin by finding the resolution
of each simple module.

For S; = ejA/ejr, the minimal projective resolution of S is given by
n d" n—1 1 d! 0 d°
e — PP — P — ... — P — P — 5 —0

where we define the modules P" and the maps d" as follows:

o Let PY =e;A. We define the map d° : e;A — e;A/e;t by d°(e1\) = et A +egr
so we have Kerd® = {e;\ : d’(e;\) = 0} = aeA.

o Let P! = e;A and define d' : P! — P° by e\ — aes) where A € A.
Then Imd' = Kerd®. We have Kerd' = {ex)\ : d'(es\) = 0}. Since
es\ = sp{es, 3,87}, then we can write es\ = crep + 28 + 38y € Ker d?
and aes\ = cia + coaf = 0. Hence ¢y = ¢ = 0 and eoA = ¢387y. Thus,
Ker d' = Bve,A.

o Let P? = ¢;A and define d? : P? — P! by d*(e;\) = Byei A\, where ) € A.
Then Im d? = Kerd'. Here Kerd? = {e;\ : d*(e;\) = 0} = {e1\ : Bye A =
0}. Since e; A = sp{ey, a, a8}, we have Ker d* = aeyA.

o Let P2 = eyA and we define d® : P? — P? by d®(es\) = aea\ where A € A.
Then Im d® = Ker d? and Ker d® = Bvye,A.

e For all n > 4, n even we have P* = ¢;A and define d" : P* — P"! by

d"(e1\) = Bryer A so Ker d™ = aesA.
15



e For all n > 5, n odd we have P" = e;A and define the map d" : P* — P!
by d"(esA) = aeaX. So we have Kerd" = Sye; A.

We can find the projective resolutions of S, and S3 in a similar way.
Now we give the projective resolution (P",d") for A/t. To be able to construct

this resolution we need the sets g". They are

e ¢ ={ey,e9,e3} and we label the elements of the set ¢° by g0 = e, g3 = eo,
and g9 = e3.

e g' = {a, 3,7} and we label the elements of the set ¢g* by gi = a, gs = 3, and
g3 =1

o g’ = {afy, Bya,yaf} and we label the elements of the set g° by g% =
afy, g3 = Bya, and g3 = yap.

e For all n > 3, n odd, we have g} = g?’la, g9y = ggflﬁ, and g% = g?’lfy.

e For all n > 3, n even, we have g} = g7 ' 87, g% = g5 'va, and g§ = g7 'af.

The minimal projective resolution of A/t is given by
n 4" pn-1 1 d' po d
i — PP — P — ... — P — P —At—0

where we define the modules P™ and the maps d" as follows:

o Let P? = e;A @ esA @ esA and define d° : P° — A/t to be the canonical
surjection given by d®(e;\q, eahg, €3)3) = 23’:1 e;\; + t, where \; € A for all
i =1,2,3 and hence Ker d° = aesA + BesA + ve A

o Let P! = e A @ esA @ e; A and we define d* : P! — PY by the following
t(gl) — (,0,0),t(g92) — (0, 3,0), and t(g3) — (0,0,7). Then Kerd' =
Byer A + yaes A + afesA.

o Let P? = e1A & eaA @ e3A and we define d* : P? — P! via t(g}) —
t(91)By = (87,0,0), t(g3) = t(g3)ya = (0,7, 0), and t(g3) — t(g3)aff =
(0,0,a8). Then Kerd? = aesA + BezA + ver A,

e For all n > 3, n odd we have P" = e A & e3A @ e; A and define the map
d® . P* — P! via d"(es\1, e3M0, e13) = (aea)q, Besda, veiA3). Then
Kerd" = Byei A + vaes A + afesA.

e For all n > 3, n even we have P" = e;A @ esA @ esA and d" : P — P!
is given by (€1, e\, e3\) — (ByA1, yady, affAg). So we have Kerd" =

aes\ + BesA + yelA.
16



We can also get the minimal projective resolution of a simple module S; from the
minimal projective resolution of A/t. Let Ay be the semisimple algebra generated by
€1,...,e, so that Ag is isomorphic to A/t. Then we tensor the minimal projective
resolution of A/t by S;®p,. This gives an exact sequence which is a minimal
projective resolution of S;. Note that the n-th projective in the minimal projective

resolution of S; is ®t(g})A where the sum is over all g7 with o(g}) = i.
We introduce now the concept of the opposite algebra.

Definition 2.32. Let A be a K-algebra. Then we define the opposite algebra A
of A, where A°? has the same K-module structure as A and the elements of A% are
the same as those of A. The multiplication in A’ is denoted * and is defined by

a * b = ba. where ba is the product of b and a in A.

Definition 2.33. Let A be a K-algebra. Then its enveloping algebra is A = AP®@x A
with the multiplication given by (a; ® by)(as ® by) = a1 * ag ® biby = asa; @ bybs.

We write ® instead of ® x when there is no confusion.

The categories of A-A-bimodules and right A°-modules are isomorphic.

Now we can say that a A-A-bimodule P is a projective bimodule if P is projective
as a right A®module. Also, if e;,e; are any two idempotents corresponding to
vertices 7, j in Q, then (e; ® ¢;)* = (e; ® ¢;)(e; ® €;) = €] ® €5 = ¢; @ ¢;. Thus
e; ® e; is an idempotent in A°. Hence (e; ® e;)A° is a projective A®-module. Now,
(e;®e;)A° corresponds to the A-A-bimodule Ae; ®e;A. Thus Ae; ®e;A is a projective
bimodule.

Let {Q",d"} be a projective bimodule resolution of A
N N s LISy LNy W

where Q' are projective bimodules and d" are A-A-homomorphisms. We apply

Homye(—, A) to this exact sequence to get the chain complex

0 — Homy(Q°, A) N Homy. (Q', A) N Homye(Q", A) RN
Definition 2.34. The nth Hochschild cohomology group is the nth cohomology
group of this complex and it is denoted by HH"(A). So HH"(A) = Ext}.(A, A). The

Hochschild cohomology ring is defined to be HH*(A) = @,,5¢ Extl{c (A, A).
17



Definition 2.35. Let A be a K-algebra. Then the centre of Ais Z(A) ={z € A:
zA = Az for all A € A}

Theorem 2.36. [31] Let A be a finite dimensional K -algebra. Then HH°(A) =
Z(N).

Definition 2.37. [21]

(1) Let A be a K-algebra. Then A is a graded algebra if A = Ay A1 & - - -, with
Ay - Ay C Ay, for all myn > 0.
(2) Let A be a graded algebra. Then A is graded commutative if zy = (—1)*1¥lyz,

for all homogeneous elements = and y in A where |z| denotes the degree of z.
The ring HH*(A) is graded commutative (see [44]).

Theorem 2.38. [/4, Corollary 1.2(a)] Let A be an algebra over a commutative ring
K, where A is a flat as a module over K. Then HH*(A) = Extj.(A, A) is graded

commutative.

Now we look at the construction of the projective bimodule resolution (Q™, ")
for A from [24].
In [24] Green and Snashall construct the first four projective A-A-bimodules Q" for

i=0,1,2,3 and maps ¢° in a minimal projective bimodule resolution of A, namely
3 0% 2 % A1 8 0 8
= QT — QT — Q) — Q" — A — 0.

They define Q° = @®;A0(¢?) ® t(¢))A = ®;Ae; ® e;A and they define the map
6%+ Q° — A by 6°(\e; ® e;n) = deju. They set Q1 = @®;Ao(g}) @ t(ghH)A =
Bal\eo(a) @ e\ and they define this map §' : Q' — Q" by the matrix A; where
the rows of A; are indexed by the vertices of Q, the columns by the arrows of Q
and the entry in the (g?, gjl.)—place is given by

p

o(g;) ® g; if 0(gj) = g and t(g}) # g}
—g; ®@t(g;) if t(g}) = ¢? and o(g}) # ¢!

o(g)) ® gj — g; ®t(g}) if o(g}) = g} = t(g})

0 otherwise.
18
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Also, they define Q* = @®;Ao0(g?) @t(g?)A, where g? are uniform elements in the set g2
and we define 6% : Q% — Q! by the matrix A, where the rows of A, are indexed by
the arrows, and the columns of Ay by the set of the minimal generators for the ideal
I and the entry in the (g}, g?)-place is given by > i1 G S ek - . Q1 ©
Ay1j - - - Gs,j, Where gt = 22:1 Cja1jQg; - . . Agj . . . as,; such that ¢; € K, the ay; are
arrows in Q and

B 1 ay =g;

€kj =
0 otherwise.

They set Q* = ®;Ao(g?) ® t(g?)A. We know that by [28, Section 1] and (1) (see
Remark 2.30), each element of ¢° is in (;9?R) N (P;g, 1), so

ma m2
3 2 2
9= gni=Y a9
j=1 j=1

where p;,q;,7; € KQ with ¢; € Rg. So they define the map ¢* : Q* — Q? by
the matrix As where the rows are indexed by the elements of g% and the columns

are indexed by the elements of g>. The (g7, g?) entry of the matrix Az is given by
0(g7) @pi — ¢ @73

We summarize this in the following theorem.

Theorem 2.39. [2/, Theorem 2.9] With the above notation, the following sequence

is part of a minimal projective resolution of A as a bimodule.
QP —Q*— Q' — Q" —A—0
with maps A; : Q1 — Q1 fori=1,2,3.
We now illustrate this construction with an example.

Example 2.40. Let A = KQ/I be the algebra which is given by the quiver Q

17 97 T3

and let I = {ajapaqan, azagasay, ayaeasay — azagaias). The sets ¢° gt g are
given as follows:
e ¢ = {e1,¢e9,e3} and we label the elements of the set ¢° by ¢ = e1,4) =

ez, and g9 = e3.
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e g' = {ay, as, a3, a4} and we label the elements of the set g' by gf = oy, g3 =
g, g3 = ag,and gj = ay.

o ¢° = {ajanaian, asauasay, aeasoy — asauaas b and we label the elements
of the set ¢? by g% = alagalag,gg = Qa0 — Q3000 and g§ =

Q30040301
So we can construct the minimal projective resolution as follows:
e Let PY = @2 ,e;A and let d° be the natural epimorphism d° : A — A/t
given by d°(e1 1, ea\a, €3)3) = Z?Zl e\ + ¢
o Let P! =@l t(gH)A = 1A B eaA D esA @ esA and d' : P — P° be given

by
t(g1) = (0,01,0),
t(g2) = (a2,0,0),
t(g3) — (0, 3,0) and
t(g;) — (0,0, )

o Let P? = @2 t(g?)A = eaA ® eaA @ e\ and d? : P2 — P! be given by
t(g?) = t(gh)avaias = (azaias, 0,0,0),
t(g3) > t(g])wazay — t(gl)asaiae = (aeazay, 0, —aya; s, 0), and
t(g3) > t(g3)auazay = (0,0, agazay, 0).

We can see that Ker d? = (ajas,0,0)eaA + (azay, —ajas, 0)esA
+ (0, azay, agag)ea A + (0,0, azay)eaA.
By induction for n > 3, we have

o gt = g7 enay;

o For 2 <r < n, we have g" = g" Jasay + (—1)"'g" Tajay;

o gry = gr tasay.

Continuing in this way, we have the projective resolution for A/t as
n d° n—1 1 d o d°
o — PP — PV — ... — P — P —At—0

where P" = @"t(¢g")A and we define the map d" : P — P"~! as follows:
tgt) = t(giaras
t(g") = t(g" Hasay + (1) (g7 ") aray where 2 < r < n,

f(QZH) = f(gZ‘l)a3a4.
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For this algebra and for n > 3, we have

n __ n—1,
© g1 = 1Q2gy

o For 2 <7 < n, we have g" = ajasg™ ' + (= 1)" " lazaug’|;

n _ n—1
O Gpy1 = (304G,

Now we construct the minimal projective bimodule resolution for A. In particular
we construct the first four projective bimodules in a projective resolution of A
from [24] and then we generalize this construction.

We have the following:

e Q' = @ Ae; ® e,A = Aep ® et A B Aey @ eaA @ Aes ® ez and define
50 . QO — A by 50()\161 ® 61[1,1, )\262 ® 62,&2, )\363 ® 63#3) = Z?:l )\zez,uz
o Ql = @;L:lAU(gzl) X t(gzl)A = A€2 X €1A D A€1 X €2A D A€2 X 63A D A€3 X 62A,

and define §' : Q! — QO as follows:

0(g1) ® t(g1) = (a1 ® t(g7),0(g1) @ a1, 0)
0(g5) ® t(g3) = (0(g3) ® a2, =2 ® (g3),0)
0(g3) @ t(g3) = (0,0(g3) ® ag, —az ® t(g3))

)

0(g}) ® t(gs) — (0, —ay @ t(g}), 0(g3) ® au).

We can also write A; as the matrix:

—a1®e; e Qo 0 0
e ®a; —aa®ey e@az —ayg® e
0 0 —Q3 X €3 €3 X Oy

o Q*=®? 1 Ao(g?) @t(g?)A = Aey @ eaA & Neg @ ea\ B Aey ® exA and define
the map 6% : Q? — Q' as follows:

0(g7) @ t(g7) = (0(g1) ® apaias + 10 ® g, @
a1 ® t(gl),0,0)

0(g3) ® t(g7) = (0(g1) ® apasay — 3oy @ Q, a1y ® 34—
gy @ H(gs), ian @ ay — 0(g3) ® auaan,
s @ t(g)) — a3 ® ayan)

0(g3) ® t(g3) = (0,0,0(g3) ® uazay + azoy @ ay, a3 @ azayt

sy ® t(gs)).
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Moreover, we can write the matrix Ay as follows:

o(a1) ® azaiaz + 1oz @z o(a1) ® azazas — azas @ az 0
a1 ® aras + a1aza1 @ Haz) o1 ® asas — azouar ® t(az) 0
0 aras ®ag —o(a3) ® asaraz o(a3) ® asazou + azas ® au
0 arasas @ (o) —az @ aras a3 @ asay + asagas @ t(ag)
e Q°=®!_Ao(g}) @)\ = Aea @ eaA B Aey @ eaA D Aey ® eaA & Aey @ e\
and define 6% : Q* — Q? as follows:
0(g7) ® t(g7) = (0(97) ® araz — aras ® t(g7), 0,0)
0(g3) ® t(g3) = (0(97) ® azay — azau ® t(g}), 0(93) ® (a1 az)—
a1 @ t(g3),0)
0(g3) ®t(g3) = (0,0(g3) @ azau + a3 @4(g3), 0(g5) @1y — 102 @(g3))
0(g7) ® t(g3) = (0,0,0(g3) ® azas — azau @ t(g3)).
Note that we used the general formula to construct Q® and &3, since
(a12)g7t(g7),
g3(—anas) = (a1a2)g3t(g3) + (azca) g7 t(g7),
g3(onon) = (a100)g3t(g3) + (—aseu)git(g3),
(azas)git(g3)-

91 = gilnan) =

95 = g7 (azaa) +

95 = g5(azau) +
(azou) =

3_ 2
gy = g3 Qi3

Furthermore, we can write the matrix Az, where the first column is

(0(9%) R s — s @t(g}) 0 0),

the second column is
(o(62) ® a3 — 00 @ (g?) (~D)o(63) © man + arar @ H(g3)] 0).
the third column is
<O 0(g3) ® azay + asay @ H(g3) 0(g3) @ aran — ajas ® t(g%)),
and the fourth column is (() 0 0(g3) ® azay — azay ® t(gg))
In this example we constructed the projective bimodules @ for all i = 0,1, 2, 3
and maps in the start of a minimal projective bimodule resolution of A using [24].
We can generalize the construction and find the minimal projective bimodule
resolution of A using the minimal projective resolution of A/t and the method of [18]
and [45]. However, this algebra A will be a stretched algebra which we introduce in
Chapter 4. So we can use Theorem 4.43 to say that the minimal projective bimodule
resolution for A is

n 0" An—1 3 0% 2 1 0o ¢
Q" — QN — s — QP — QF— @ — QT — A —0
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where Q" = @;Ao(g") ® t(g?)A and the map 6" : Q" — Q"' is given by
o(g7) @ t(g7) = o((g7") @ araz + (—1)"araz @ t(g7 ™ );
o(g7) @ Hgr) = 0(9771) ® asas + (=1)" ooy @ Hg) 7)) +
(=D lo(gr Y @arag+(—1)"a e @t(g" ) where 2 < r < n;
0(gn11) ® gnya) = o(gn™") ® azou + (—1)"az0u ® Hg ™).

23



3. KOSZUL ALGEBRAS AND GENERALISATIONS

Koszul algebras were introduced by Priddy [38] to study algebraic topology. They
also occur in many places in representation theory of algebras. It is known that the
Ext algebra of a Koszul algebra is finitely generated in degrees 0, 1. In this chapter
we look at Koszul algebras and some generalisations. We also consider Grobner
bases; our main result here is Theorem 3.28 which concerns (D, A)-stacked algebras.

We assume throughout this thesis that K is a field, A = KQ/I for some quiver
Q and admissible ideal I, so that A is a finite dimensional K-algebra. All modules
are finitely generated right A-modules.

Lemma 3.1. [21, Lemma 2.1] Let A = @®;>0/\; be a graded algebra. Then the
following statements are equivalent:

e A is generated in degrees 0 and 1;

o Foralli,j >0, AjAj = Aiyj;

e For all k > 1, Ay is the product of k copies of ;.

Definition 3.2. [21] Let A = KQ/I be a finite dimensional algebra. Then A
is a Koszul algebra if A is a graded algebra with the length grading and if A/t

(considered as a graded A-module in degree 0) has a graded projective resolution
e pr B pt o po Poa g

such that P is generated in degree i. In this case, we say that A/t has a linear

resolution.

Green and Martinez-Villa [21] prove that if A = KQ/I is a Koszul algebra, then
I is quadratic. The converse holds when the admissible ideal I is quadratic and

monomial [29, Proposition 2.2].

Theorem 3.3. [21, Theorem 6.1] Let A = KQ/I be a Koszul algebra. Then E(A)

15 a Koszul algebra.

Moreover, Green and Martinez-Villa [22] show that F(A) & KQ°P /I, where the
description of I+ is as follows. Let V5 be the vector space with basis all paths of
length 2 in KQ. Then V;* is the vector space with basis all paths of length 2 in

K Q. We know that [ is quadratic so let W be the subset of V5 which consists
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of a minimal set of generators of I. They define a bilinear form on V5 x V;* by
(B, a°Pb°P) = §,p(ab) where «, 3, a,b are arrows in Q. Then W+ is the orthogonal
complement in V, of W with respect to this bilinear form. The ideal I+ is the

ideal of K Q°P which is generated by W+.

Example 3.4. Let Q be the quiver

1 —=2

B
and let I = (a3, Ba). For the algebra A = KQ/I the sets ¢g" are given as follows:
o 9" ={er, 2}
o g' ={a, B} with g} = a and g, = f;
e > = {aB, Ba} with ¢ = af and g3 = Ba;
e Forn >3
o g8 =gt ta and g8 = g5 '3, where n odd

o gt = g¢ ' and g} = g5 'a, where n even.

So the minimal projective resolution for A/t is
2 1 0
P

where

o PV =¢; A @ ey and d®(er A, eapt) = (e A + eapt) + ¢, where A,y € A.
o Pl =¢yA @ ey A and the map d' is given by t(gi) — (a,0), t(g2) — (0, ).
o P? =¢;A @ ey and the map d? is given by t(g?) — (5,0), t(g3) — (0, ).
e For n > 3 we have
o If n odd, then P" = esA & e; A and the map P" 2y prts given by
t(gr) = gy o,
t(g5) = tlgz )8,
o If n even, then P" = e; A @ e3A and the map P" Ay prts given by
tgr) = tg' )8,
t(gz) = t(g5 o
We can now see that the elements g' € ¢g" have length n,
e ((¢g))=0,foralli=1,2.

o ((g})=1,foralli=1,2.
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o ((g}) =2, foralli=1,2.
e For n > 2, ((g?) = n, where i = 1,2.
Hence each projective P™ is generated in degree n. So, we have shown that A/t has

a linear resolution. Hence A is a Koszul algebra, and thus the Ext algebra E(A) is

generated in degrees 0 and 1. In addition it can be shown that E(A) = K Q.

There are several generalisations of Koszul algebras. The d-Koszul algebras were

introduced by Berger [6] to study Artin-Schelter regular algebras.

Definition 3.5. [6] Let A = Ag @ Ay @ --- be a graded K-algebra generated in
degrees 0 and 1. Assume that Ag = A/t is a finitely generated semisimple K-
algebra, A is a finitely generated K-module and that (P",d") is a minimal graded
A-projective resolution of A/t. Let d > 2. We say that A is a d-Koszul algebra if|

for each n > 0, P" can be generated in exactly one degree, d(n), and

n

2d if n even,

5(n)=1"
"T’ld +1 if n odd.

We can see from the definition that every Koszul algebra is a 2-Koszul algebra.

Theorem 3.6. [20, Theorem 4.1] Let A = KQ/I be a finite dimensional algebra,
where I is generated by homogeneous elements of length d for some d > 2. Then A

is d-Koszul if and only if the Ext algebra E(A) can be generated in degrees 0,1 and
2.

We give an example of a d-Koszul algebra which is not a Koszul algebra.

Example 3.7. We take the algebra as in Example 2.31. Recall that the sets g" are
o ¢° = {e1,e9,¢3};
o gt ={a,B,7};

9° = {apBy, Bya,vap} ;

e For all n > 3, n odd, we have ¢ = ¢{" ', g% = g '3, and g} = g5 'y

e For all n > 3, n even, we have g°" = g7 87, g% = g 'ya, and
95 = g5 ap
We can now see that the elements g € g™ have length §(n) for d = 3, since

o ((¢9) =0, foralli=1,2,3.
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e ((g})=1,foralli=1,2,3.

o ((g})=3,foralli=1,23.

o ((g}) =4, foralli=1,23.

e For n > 2, ((g?) = nd, where i = 1,2,3.

e Forn > 2, ((g7"™) =nd + 1, where i = 1,2, 3.

Hence each projective P" is generated in degree d(n), so A is a 3-Koszul algebra.

Definition 3.8. [25] Let I be an ideal generated by a set of paths (or monomials)
in KQ. Then we say A = KQ/I is a monomial algebra.

The (D, A)-stacked monomial algebras were introduced by Green and Snashall
in [26, Definition 3.1].

Definition 3.9. [26, Definition 3.1] Let A = KQ/I be a finite-dimensional mono-
mial algebra, where [ is an admissible ideal with minimal set of generators p. Then
A is a (D, A)-stacked monomial algebra if there are natural numbers D > 2 and

A > 1 such that, for all n > 0 and g' € ¢",

;

0 itn=0

s 1 ifn=1

67) = 2D if n is even, n > 2
\”TlejLA if n is odd, n > 3.

In particular all relations in p are of length D.

Note that the length of each path in g2 is D and the length of each path in ¢° is
D + A. Then {(g}) — £(g?) = A, for all g? € g? and g} € ¢

Green and Snashall showed in [25] that they are precisely the finite dimensional
monomial algebras for which every projective module in the minimal projective
resolution of A/t is generated in a single degree and for which the Ext algebra of A
is finitely generated as a K-algebra [25]. Furthermore, F(A) is generated in degrees
0,1,2 and 3 (see 25, Theorem 3.6]).

Leader and Snashall introduced (D, A)-stacked algebras in [35].

Definition 3.10. [35, Definition 1.1] Let A = K'Q/I be a finite dimensional algebra.

Then A is a (D, A)-stacked algebra if there are natural numbers D > 2, A > 1 such
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that, for all 0 < n < gldim A, the projective module P" in a minimal projective

resolution of A/t is generated in degree d(n), where

(

0 ifn=20
1 ifn=1
6(n) =
5D if n even, n > 2
”T_ID—FA if n odd, n > 3.

\
The (D, A)-stacked algebras with A = 1 are precisely the finite dimensional
D-Koszul algebras of Berger.

Theorem 3.11. [35, Theorem 2.4] Let A = KQ/I be a (D, A)-stacked algebra with
D >2 and A > 1. Then E(A) is generated in degrees 0,1,2 and 3.

Proposition 3.12. The algebra of Example 2.40 is a (4,2)-stacked algebra.

Proof. We take the algebra as in Example 2.40, so we have the following,
e PYis generated in degree 0; since £(g?) = 0, where i = 1,2, 3.
e Pl is generated in degree 1; since £(g}) = 1, where i = 1,2, 3, 4.
e P? is generated in degree 4; since £(g?) = 4, where 1 = 1,2, 3.
e P3 is generated in degree 6; since £(g?) = 6, where i = 1,2, 3, 4.
e For n > 1, we have P?" is generated in degree 4n; since £(g?") = 4n, where
i=1,2,... 20 +1.
e Forn > 1, we have P?"*! is generated in degree 4n+2; since £(g7" ') = 4n+2,
where 1 =1,2,...,2n + 2.
Hence, from Definition 3.10 we have D = 4 and A = 2 and A is a (4, 2)-stacked
algebra. ([l

Example 3.13. Let A be the algebra of Example 2.40.
Since A is a (4, 2)-stacked algebra, then E(A) is generated in degrees 0, 1,2 and 3.
For each n and each g" € ¢", we let f* € Hom(P", A/t) be the map given by

t(gh) +v ifi=j;
t(g}) —
0 otherwise.

where f* = {fI"} and |f"| = |¢g"|. So we have the following

e The basis of Ext’(A/t, A/t) is {f0, f3, f31.
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e The basis of Ext'(A/v,A/v) is {f1, f3, f&, f}}, where f} : P! — A/t is

given by
fi:t(gi) = e1— e1 + 1, else — 0;
f3 :t(g3) = ea — ea + 1, else > 0;
f3 :t(g3) = e3 — ez + 1, else — 0;
1 t(g)) = ex > eg + 1, else — 0.
e The basis of Ext*(A/t, A/v) is {fZ, f2, 2}, where f? : P2 — A/t is given
by

2:t(g?) = ea — ex + 1, else > 0;

7:4g3) =ex > ea+t, else = 0;
2:4(g3) =ex > eat+t, else = 0.

e The basis of Ext*(A/v, A/v) is {f}, 3, 3, £3}, where f3 : P? — A/t is

given by
2 t(g}) = ea = eg + 1, else — 0;
I3 :t(g3) = ea > eg + 1, else — 0;
3:4(g3) = ea > e3 + 1, else — 0;
f2:t(g3) = ea > ex + 1, else — 0.

More generally, f* = {f7"} is a basis of Ext}{(A/t, A/¢).

Now we need to find the products in the Ext algebra. Since the algebra is a
(D, A)-stacked algebra, then by [35, Proposition 3.1] we have Ext'(A/t, A/t) x
Ext'(A/t,A/t) = 0. Hence fifj = 0foralld,j = 1,2,3,4. Moreover, we see
in [35, Proposition 3.2] Ext'(A/t, A/t) x Ext*(A/t, A/t) = 0 = Ext*(A/t, A/t) x
Ext'(A/t, A/v). Also Ext'(A/v,A/t) x Ext*(A/v,A/r) = 0 = Ext?(A/r,A/t) x
Ext'(A/r, A/t). We will find the products in Ext*(A/t, A/t) x Ext*(A/r, A/t),
Ext®(A/t, A/v) x Ext®(A/t, AJv), Ext®(A/t, A/r) x Ext®(A/t, A/tr) and
Ext®(A/t, A/r) x Ext?(A/t, Afv).

For the elements in Ext*(A/t, A/t) x Ext®(A/v,A/t), we want to find f7f7 =
ffoL2f?: P* — P> — AJt, where i,j = 1,2,3 and L?f? denotes a lifting of f7.
This product is in Ext*(A/r, A/t). Consider f : P2 — A/t. Then we have the

following diagram
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dd d* d3

P> P4 pP3 P2
i
e j ey l £ l cof l
3 2 1 0
ppL.pr L. p PO Afe— 0

N

(3

AJe

We define £L°fZ : P2 — P% by t(¢g3) = ey +> eg, else — 0. So we have d° o
LOf2(eg) = d°(e3) = €9+t and thus the diagram commutes. Now we want to define
L2 P3 — P! such that the following diagram commutes.

pr T p

Elffl lcoff

Pli)PO

We define L fZ by
t(g7) — t(g1)az, since d*(t(g7))
t(g3) — t(g3)au, since d*(t(g3))

LOfH(d(t(g3))
t(g3) — 0, since d*(t(g3))
t(g3) — 0, since d®(t(g3))

t(g?)aran and LOfE(d3(t(g3))) = a1,
t<g%>a3a4 + f(g%)(—oqozg) and

-~

g = Qi30yy

)
93)asay + t(g3)aras and LOfF(d*(t(g3))) =0
g93)asay and LOf7(d*(t(g7))) = 0.

Now we define L2 : P* — P? such that the diagram commutes

¢
¢

pt L ps

ﬁfol lﬁlff

t(g1) = t(g?), since d*(t(g7)) = t(g{)araz and L' f7(d*(t(g7))) = t(g1)azaras.
t(g3) = t(g3), since d*(t(g3)) = t(g})azau + t(g3)(—ara2)
and L' f7(d*(t(g3))) = t(g1)asazau —t(g3)uaras.
t(g3) = t(g3), since d*(t(g3)) = t(g3)azu + t(g3) vz
and L' f7(d'(t(g3))) = t(g5)aczaa.
t(g3) — 0, since d*(t(g3)) = t(g3) oz + t(g3)(—ara2)
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and L1 f7(d*(t(g1))) = 0.
t(gs) — 0, since d*(t(g5)) = t(gi) s and L1 f{(d*(t(g5))) = 0.

We also need to define £3f2: P> — P3 such that the diagram commutes

P5LP4

LSffl lﬁf%

ps . p

So we define £3 f2 by
t(g7) — t(g1), since d°(t(g7)) = t(g1)anz and L2f7(d°(t(g7))) = t(g7)arcea.
t(g3) — t(g3), since d°(t(g3)) = t(g1)asatt(g3)(—anaz) and L2 f7(d°(t(g3))) =

t(g7)azas + t(g3)(—a1az).

t(g3) = t(g3), since @°(t(g3)) = t(gz)azcu + t(gs)aras and L2 fE(d*(4(g3))) =

t(g3 )z + t(g3) a1z

t(g3) = t(g3), since d°(t(g3)) = t(g3)aza+t(gy)(—araz) and L2 f2(d°(t(g3))) =

t(g3)

t(g2) — 0, since d°(t(g

3 2)) = t(gh)asay + t(gd)aray and L2 f2(dP(t(g2))) = 0.
t(gg) — 0, since d®(t(gg))

(g5)aszaq and L2 f2(d°(t(g3))) = 0.

+~

Now that we have the liftings, we can compute the product f2f? in Ext*(A/t, A/v).
So the products f2f? = f2o L2f?: P* — P2 — AJv are
o fi = fiff = fioL2f}.
o fy=fft=fioL2f}.
o fi=[fift =fioL2f].
In a similar way, we compute the liftings for f2, f2 and f?. The results of the

products f7 f7 are as follows:

e For i = 2, we have

o fy =3 =ITe L3

52 2 f22

o —fs = f3f3 = f30Lf3, since t(g5) — —t(g5) = —e2 + 1,
else — 0.
i £2 2 f'2
o fi=[f2f}= floL?f since t(g]) —3 t(g3) —> ex + 1,
else — 0.

e For i = 3, we have

o fy =[5 =JTo LS5,
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o fi=[fif5=1Ff3oLf3.
o fs=[fif5 =fio L.
Hence, f2f2 = f2f3, [2f} = —f2f2 = f2f3 and f2f} = f2f3. By a similar
argument we can find the elements in Ext®(A/t, A/t) x Ext®(A/t, A/v).
Sowe have f3f7 = —f1f3, f3fi = 55 = 13, fifi = 13 = 515 = - fi,
fifs = f5f3 = f3fi, and fifs = —fifi.
For the elements in Ext*(A/t, A/t) x Ext®(A/t, A/t), we have the products f2f} =
REBRE=-6BE=RE BE=6LF=1/ BE=-K£f
For the elements in Ext®(A/t, A/t) x Ext?(A/t, A/t), we have the products f3 f2 =
A BR=6EE BE=RE 5= Bf=1£f £f=-ff ad
fif5 =11
In the same way we can find products f?f3 = f2f2f2 in Ext®(A/t, A/t), where
i,j=1,...,4and r;s,t =1,...,3. So we have,
fff =170 BR =1 =811=1E7
B =RE=15=f1ff= 1517
BE=BE=LE=-Ri=£Ef=L(1{=/Ef
RE=ER=1=8E/{=-KB£F=R[;f
fifs = —ffi = f5f3f3, and
fifi = 11
Recall that we write paths in a quiver from left to right. So, if f corresponds
to the path g € ¢" and ¢ = o(g")grt(g), then fI = f&g?)ffff(g?) where ft(zg?)
(respectively, fg gr)) denotes the element of /9 that corresponds to t(g)") (respectively,
o(g'))-
Notation: we set f = a;, f7 = b;, and f} = ¢, where i =1,...,4,j=1,...,3,
and k=1,...,4.
For the algebra of Example 2.40 we can now describe the Ext algebra by quiver

and relations.

Theorem 3.14. Let A be the algebra of Example 2.0, and keep the above notation.
The Ext algebra E(A) is KA/, where A is the quiver with vertex set Ag = f° and
arrow set Ay = fLU f2U f3, so that A is

Q@Q

@W



and L 1s generated by
o a;a;, for alli,j.
o a;b;, bjb; for alli,j.
o a;ck,cra; for all i, k.
0 b1by — boby, b3by + baby, bi1bs + bobs, babs — bsbs.
O CoC1 + C1Ca, C3C] — C2C2, C3C1 — C1C3, C4C1 + C3C2, C4C1 — CaC3, CaC3 + C1C4,
CqpCo — C3C3, C3C3 — CoCy, C4C3 + C3Cy.
o bacy — bicy, bscy + baca, bacy — bics, baco — bacs, bacs — bicy, bycs + bacy.
e} 6261 + Cle, C3bl — Cgbg, CQbQ + Clbg, Cgbg + C1b3, Cgbg — Cgbg, C4b2 — Cgbg.
0 11 —b1b1by, a1 —babiby, c3¢1—b3b1b1, 41 —b3baby, 4o —b3b3by, c4c3—b3b3ba,

C4Cy — b3b3b3 .

Note that, since ¢? — b3 is in the minimal generating set for Z, so Z is not length
homogeneous. Hence 7 is not generated by linear combinations of paths of the same
length. We can see also that

o Exti(A/r, A/t) has basis {b?, biby, b2, bybs, b2}
o Ext}(A/r, A/t) has basis {bic1, bycy, bscy, bsca, bscs, bscy}.

o Ext§(A/r, A/t) has basis {c2, cocy, cs¢1, cac1, C4Ca, Cacs, 2}

We now introduce some Grobner basis theory; we follow the approach of [13], [15]
and [17], see also the discussion in [36]. Let Q be a finite quiver, and let 8 be the
basis of all paths in K'Q. We note that 28 is a multiplicative basis of K Q, so that if
p,q € B then either pg € B or pg = 0. Our main result is Theorem 3.28.

Definition 3.15. Let B be the basis of all paths in KQ. Then we say > is a
well-order on ‘B if > is a total order on B and every non empty subset of 8 has a

minimal element.

Definition 3.16. An admissible order on B is a well-order > on B which has the
following properties where p, ¢, r in 5:

(1) if p > g, then pr > ¢r if both pr # 0 and gr # 0.

(2) if p > q, then rp > rq if both rp # 0 and rq # 0.

(3) if p=gqr, then p > g and p > r.
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We have from [15], the left length lexicographic order is an admissible order and
is given as follows: The vertices and arrows have arbitrary order such that every
vertex is smaller than every arrow. So if p,q € B are paths of length more than 1
where p = ay---a,, and ¢ = 5y --- B, with «;, 8; € Qq, then p > ¢ if n > m or, if
n = m, then there is some 1 < i < n such that o; = ; for j < ¢ and a; > ;.

We now introduce the Grobner basis of an ideal. Let K Q be a path algebra and
let 2B be the basis of all paths, with admissible order >.

Definition 3.17. Let = be an element of KQ, so x = Z?Zl cjpj with 0 #¢; € K
and p; € B. The Tip(z) is the largest p;, with respect to the ordering >, occurring
in . We denote the coefficient of Tip(x) by CTip(x). The paths pq,...,p, of B
which occur in z are called the support of x, denoted by Supp(z). If I is an ideal in
KQ, then Tip(I) = {Tip(y) : y € I \ {0}}. The set of finite paths in K'Q which are
not in Tip(7) is called Nontip (/).

Definition 3.18. [13] Let K Q be a path algebra and let B be the basis of all
paths. Then a non-empty subset G is a Grobner basis for an ideal [ if for each

0 # z € I, there exists r, s € B such that Tip(z) = r Tip(g)s, for some g € G.

Definition 3.19. Let 0 # a € KQ. A simple (algebra) reduction for a by f is
determined by a 4-tuple (c,r, f,s) where c € K\ {0}; f € KQ\ {0} and r,s € B,

satisfying the following properties:

(1) rTip(f)s € Supp(a),
(2) rTip(f)s ¢ Supp(a — crfs).
Moreover we say that a reduces over f to a —crfs and write a = a —crfs. In
general, a reduces to a’ over a set X = {fi,..., fn}, denoted by a =x ', if there is
a finite sequence of reductions such that a reduces to a; over fi, a; reduces to a;1

over f;;1 fori=1,...,n—2, and a,_; reduces to a’ over f,.
Let a,b € B. Then we say that alb, if there exist r, s € B such that b = ras.

Definition 3.20. Let hy, hy € KQ and suppose there are elements p, ¢ € 28 such
that:

(1) Tip(h1)p = q Tip(h);

(2) Tip(hy) does not divide g and Tip(hs) does not divide p.
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Then the overlap difference of hy and hy by p, ¢ is defined as

0(h1, ha,p,q) = (1/ CTip(h1))hip — (1/ CTip(h2))qhs.

We now define a reduced Grobner basis. We take the definition from [17], but see
also [13]; note that a reduced Grobner basis of I is called MINSHARP(]) in [13].

Definition 3.21. [17, Section 1] Let K Q be a path algebra and let 98 be the basis
of all paths, with admissible order >. Let I be a ideal in K Q. An element x € [ is
sharp if x = p+ >, a;¢; where Tip(z) = p, a; € K and ¢; € Nontip(/) for all .
A set G is a reduced Grobner basis for [ if the following conditions hold:

(1) each g € G is sharp;

(2) if x € IT'\ {0} then there is some g € G such that Tip(g) is a subpath of

Tip(z);
(3) if g, ¢’ are distinct elements in G, then Tip(g) is not a subpath of Tip(¢g’).

Theorem 3.22. [13, Theorem 13] Let KQ be a path algebra and let H ={h;:j €
J} be a subset of non-zero uniform elements in KQ, which generates the ideal I.
Assume that the following conditions hold;

(1) CTip(h;) =1, for all j € J,

(2) h; does not reduce over h; for all i # j,

(8) every overlap difference for two (not necessarily distinct) members of H

always reduces to zero over H.

Then H is a reduced Grobner basis of 1.
As a consequence we get the following result.

Theorem 3.23. Let A = KQ/I be a (D, A)-stacked monomial algebra, and let G
be a minimal set of homogeneous elements which generate I. Then G is a reduced

Grobner basis of I consisting of elements of length D.

Proof. We show that G is a reduced Grobner basis of I by satisfying the conditions
of Theorem 3.22. Since A is a monomial algebra, G is a set of monomials. Also,
all monomials in any minimal generating set of I will have length D since A is
a (D, A)-stacked monomial algebra. We can see that the condition (1) holds by

inspection.
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Now, consider two arbitrary elements h; and h; in G with h; # h; and we assume
h; reduces over h;. Then there are u,v € B such that « Tip(h;)v € Supp(h;). Since
G is a minimal generating set of monomials of length D, then wh;v = h; and hence
u,v € Qp. So h; = h; which is a contradiction. So h; does not reduce over h;, for
all i # j.

It remains to show that the overlap difference for two elements of G reduces to
zero over G. So let consider two arbitrary elements h; and h; in G and assume there
are elements p, ¢ € B such that h;p = gh;, where h; does not divide ¢ and h; does

not divide p. Then we have

o(hi, hj,p,q) = (1/ CTip(hy))hip — (1/ CTip(hy))gh; = 0.
Thus G is a reduced Grobner basis consisting of elements of length D. O

We have the following result from [26] concerning (D, A)-stacked monomial alge-
bras. Our aim is to generalise this to other (D, A)-stacked algebras, and we give a

partial generalisation in Theorem 3.28.

Proposition 3.24. [20, Proposition 3.3(3)] Let A be a (D, A)-stacked monomial
algebra with gldim A > 4. Then D = dA for some d > 2.

Definition 3.25. [19, Section 3] Let A = KQ/I be a finite dimensional algebra.
We say A is d-resolution determined if there is a map 6 : N — N such that, for all
n > 0 with n < gldim A, the projective module P" in a minimal projective resolution

of A/t is generated in degree 6(n).

It is clear from Definition 3.10 that every (D, A)-stacked algebra is a d-resolution

determined algebra.

Definition 3.26. [25] Let A = KQ/I and let I, be the ideal generated by Tip(I)
in KQ. So I is a monomial ideal. Set Ay, = KQ/Iy;.

The following result of Green and Snashall considers d-resolution determined

algebras.

Theorem 3.27. [25, Corollary 3.4] Let A = KQ/I. Suppose that I is generated by
length homogeneous elements. Let G be the reduced Grobner basis for I with respect

to the length-lexicographic order. Then A is d-resolution determined and G consists
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of length homogeneous elements of one degree D if and only if Ay is d-resolution
determined. Furthermore, in this case, there exist D, A and B with D > A > B > 0
so that

/

0 n = 0;
1 n=1;

o(n) =
n n—2) ) . )
5D + (TB if n even, 2 <n < gldimA;
TID—I—A—l—TB if noodd, 3 <n <gldimA.

\

We now give a generalisation of Proposition 3.24 to some (D, A)-stacked algebras.

Theorem 3.28. Let A = KQ/I be a (D, A)-stacked algebra with gldim A > 4 and
with a reduced Grobner basis G of elements of length D. Then A|D.

Proof. Let A = KQ/I be a (D, A)-stacked algebra and assume G consists of length
homogeneous elements of one degree D. Then A is d-resolution determined. So using
Theorem 3.27 we have Ay is d-resolution determined. Hence Ay, is a (D, A)-stacked
monomial algebra (with the same 0 and hence the same values of D and A as in A).

Hence, by Proposition 3.24 we have that A divides D. 0
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4. THE STRETCHED ALGEBRA AND PROJECTIVE RESOLUTIONS

In this chapter we will give the construction of a new algebra A from a finite
dimensional algebra A. This generalises work by Leader [36], where she takes a
d-Koszul algebra A and a natural number A to create a new algebra, A, and she
shows that the new algebra is a (D, A)-stacked algebra. Leader begins by using the
quiver Q and ideal I of A = KQ/I to define a new quiver O, and ideal T4 of KOy,
where D = dA, A > 1 and d > 2. She then defines Ay = KQA/fA. Furthermore,
she described the construction of the minimal projective resolution of A/t as a right
A-module and the construction of the minimal projective bimodule resolution of A
in [36].

This construction can be generalised by taking any finite dimensional algebra A.
We describe this construction and the generalisation here.

We assume throughout this section that A = K'Q/I is a finite dimensional algebra

and [ is an admissible ideal. We set t to be the Jacobson radical of A.

Definition 4.1. (see [36, Definition 8.1]) Let A = KQ/I be a finite dimensional
algebra where I is generated by a minimal set g? of uniform elements in K Q. Let

A > 1. We construct the new quiver Q.4 as follows:

e All vertices of Q are also vertices in Q4.

e For each arrow « in Q we have A arrows as, ..., a4 in Q4 and additional
vertices wy, wa, ..., W4_1 in QA such that
o) = o(a)
t(ay) = o(lag) = wy
t(aw) = o(ag) = we
t(aa_1) = o(aa) = wa
tlas) = tla)

and the only arrows incident with the vertex w; are a; and ;4.

o We construct the ideal I, of KQ 4 as follows. Let g2 = {¢?, 63, ..., g2} be the
minimal generating set of uniform elements of I. Since each g7 can be written
as linear combination of paths, then g? = Zj CjQy - Qs fori=1,...,m,
where ¢; € K and ¢, is an arrow in Q for each k. We know that every

arrow «;, in @ corresponds to the path ay, ;- -, 4 in Q4. We define §? =
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> il a) e (g @Gy.a), and define g% = {gG7,..., g5} to

be the minimal generating set of I4. We define Ay = KQA/fA.
We now illustrate this construction.

Example 4.2. Let Q be the quiver

T C ® D Y
and let I = (22, 9%, vy — yz). Let A = KQ/I. So we have the following

o 9" ={v}
o g' ={z,y}
o g° = {2%y*, vy — yx}
e For all n > 3 we have
gt =g s
g =91y + (=1)"gr e, where 2 < v <
Gns1 =9n Y-
It can be seen that the sets ¢" have length n. So A/t has a linear resolution. Hence
A is a Koszul algebra.
We want to construct the new quiver Qo 4 and ideal I 4 0f K 9 4. Let A =2. Each

arrow in Q corresponds to path of length 2 in Q4 in such a way that

o(z) = o(a)

tlan) = o(a) = e

tlag) = tz) = e
and

oy) = ofas)

tlaz) = o(au) = e3

tlas) = tly) = e

Hence, x,y correspond to ajas and asay respectively. Thus, the following diagram

illustrates this process of defining Q 4 from Q:

ay as
L —
1 2 3
—_ -~
sz ay

Now we want to find I,. We have ¢? = 22, g2 = zy — yz, and g3 = ¢ so by using

the above construction, we have g% = Q10 g, f]% = Q1030 — Qi3 g, and
39



G2 = azayaszay. We note that As= KQA/iA is the algebra of Example 2.40; see
also Example 3.13.

For the above algebra A4 we have the following sets:
L go - {61762763};

L gl — {a17a27a37a4};

~2 __
® g” = {041042061(12, 3040300, (U Qg3 0ly — 063044041042}.

We have the following properties of this construction, some of which can be found

in [36, Chapter §].

Proposition 4.3. Let mg be the number of vertices of @ and my be the number of

arrows of Q. With the above notation, we have:

A4 is a finite dimensional algebra;

The quiver Q4 has mo +my(A — 1) vertices;

The quiver Q4 has miA arrows;

[ J
o The set g* ={g?,...,3%} is a minimal generating set of uniform elements
for I4.

e If I is generated by length homogeneous elements, then I is generated by
length homogeneous elements.

o If A is a monomial algebra, then A4 is a monomial algebra.

Leader [36] shows that the new algebra A4 is a (D, A)-stacked algebra when A is
a d-Koszul algebra.

Theorem 4.4. [36, Theorem 8.15] Let A = KQ/I be a d-Koszul algebra. Let
A>1 and set D = dA. With the above construction, the algebra /~XA = KQA/fA 18
a (D, A)-stacked algebra.

We now write A instead of A4 to avoid excessive subscripts. We call A a stretched

algebra.

Example 4.5. The algebra A of Example 4.2 is a (4, 2)-stacked algebra using

Theorem 4.4, since A is a Koszul algebra and hence a 2-Koszul algebra.
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Definition 4.6. We keep the above notation. Let 6* : KQ —s KQy4 be the

K-algebra homomorphism which is given by

Vv for each vertex v in Q,

o i o for each arrow o in Q.

Then 6* is also a monomorphism.
We define 6 : KQ/I — KQ/I by 0(z 4 I) = 6*(z) + I for all z € KQ. Then

the map 6 is also a K-algebra monomorphism.

Definition 4.7. Let e = ) | _, v (as an element of A). Note that ¢ is an idempotent

element of A.
The following result shows that the algebras A and eAe are isomorphic.

Theorem 4.8. Let A = KQ/I be a finite dimensional algebra. Then A = eAe
where € =Y

vea, U (as an element of A).

Proof. By using the first isomorphism theorem we have A/Kerf = Im#. Since
Ker# = 0, then A =2 Im#. Now, we want to prove that Imf = eAe. We note that
f(v) and f(«) in eAe, for allv € Qg and o € Q;. Since  is an algebra homomorphism,
it follows that Im @ C eAe. Conversely, let z € eAe, so we have z = jje where § € A.
From the construction of KQ and the map 6, if O(a)) = aqag - - - a4, then the only
arrow which starts at t(a;) is a4 and the only arrow which ends at t(q;) is oy,
for all i = 1,...,A — 1. So, if an element € A has o(j) € Q, and t(p) € Q ,
then p = 0(p), for some p € A. Hence, z = €f(y)e = 0(cye), for some y € A. Thus
eAe CIm6. So Imh = ecAe and A = cAe. O

Let ¥ denote the Jacobson radical of A.

Proposition 4.9. [1, Corollary 17.13] Let R be a ring with radical rad(R) and let
e be an idempotent in R. Then rad(eRe) = erad(R)e.

Applying this to our construction gives the following result.
Proposition 4.10. Let A = KQ/f be constructed as above. Then ete = rad ele.

Moreover, rad eAe = ¢.
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Our aim is to describe the relationship between the projective resolutions of A/v
and A /¢, and between the projective bimodule resolutions of A and A. To do this,

we first introduce some more notation.

Definition 4.11. (See [36, Theorem 8.14]) Suppose w € Qy \ Qo. Let j, be the
unique shortest path in K Q which starts at a vertex in Qy and ends at w. Let ¢, be
the unique shortest path in K Q which starts at the vertex w and ends at a vertex

in Qp. We illustrate these in the following diagram

v
where v, v’ are vertices in Q.

Definition 4.12. [23, Definition 3.1] Let v € Qy. We say v is properly internal to
the path p if p = pyvps, where £(p1), ¢(p2) > 1 and o(p) # v # t(p).

Remark 4.13. Let w € Qy \ Qp. So w is properly internal to §(c) for some arrow
a € Q;. Let v =o(a) and let v = t(«v). Keeping the notation of Definition 4.1, the

quiver Q contains the subquiver
aq [e D) as xA—1 A /
Vo W, —2 Wy — - S Wy — v

Foreachi=1,...,A—1, we have p,, = o1 ---; and G, = Q41 - - (vq; MoOreover

Pw;Quw; = Q1+ Q4.

Proposition 4.14. Let w € Qy\ Qo, and let v' = (Gy) and v = 0(py).
(1) If 0 # VX € VA, then Gu\ # 0 in A.
(2) If 0 # dv € Av, then ANpy # 0 in A.
(3) If X = v'Av € v'Av, so that O(\) € v'Av, then the following are equivalent:
(1) Gub(A)pw = 0.

(ii) GuO(N\) = 0.
(ii1) O(N\)py =0
(iv) 6(N) =0
(v) A=0.

Proof. We show (3)(i) = (v). Suppose G,0(A)p, = 0, and A = v'’Av. Then

considering G,0(\)pw as an element of KQ, we have that §,0(\)p, € I, and T is
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generated by a set of uniform elements g? which all start and end at a vertex in Q.
So by construction of A, recall that if an element € A has o(p) € Qp and t(p) € Qq
then p = 0(p) for some p € KQ. However, no vertices of Qg are properly internal to
either g, or p,. So it follows that (\) = 0. Since 6 is one-to-one, we have A\ = 0.

The rest of the proof is similar, and we leave it to the reader. 0

Proposition 4.15. Let w € Qg \ Qo and let v' = t(G,) and v = 0(p,). Let B = eAe.

Then we have the following properties:

(1) v'B = G,B as right B-modules.
(2) VA 2 G,A as right A-modules.
(3) Bv = Bp, as left B-modules.
(4) Av = Ap,, as left A-modules.

Proof. We prove (1) only. We define a map ¢, : v'B — §¢,B by ¢, (v'z) =
GuwV'r, where x € B. It is straightforward to show that ¢, is a right B-module
homomorphism and is onto. The fact that ¢, is one-to-one follows from Proposition

4.14. U

Proposition 4.16. With the notation of Remark 4.13, w; € Qp \ Qo for alli =
1,...,A—1. Then we have the following properties:

(1) An element of Aw; is of the form

)\wi = E Cjw]'CMj+1 cee oW+ HDw,
1<5<4

where c; € K, [i € A.
(2) An element of w;A is of the form

U)Z)\ = E CiW; Q1 -+ - AW, + quz/?L
i<j<A-1

where ¢; € K, fi € A.
(3) dim Aw; = i + dim Av.
(4) dimw;A = (A — i) + dimv'A.

Proof. We prove (1). It is clear that Aw; has a basis which consists of all paths

w;oq1 - - ogw;, where 1 < 5 < ¢ together with paths of the form 7p,, since
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Dw;, = Q-+ ;. SO We can write

Aw; = E CjW Q41+ + - QW5 + Dy,
1<j<i

where ¢; € K, ji € A. Then (3) follows from (1) and Proposition 4.15. We leave the
rest of the proof to the reader. O

We next study the properties of the idempotent embedding functor 7,. This
material is covered in many books on category theory, and we follow the approach
of [2].

Let e € A be an idempotent in a finite dimensional K-algebra A and consider the
algebra B = eAe = End eA with the identity element e € B. In [2, Chapter 1] the

authors give three additive K-linear covariant functors,

mod B 2\ mod A

which are defined by res.(—) = (—)e, Te(—) = (—)®peA and L.(—) = Homp(Ae, —).

More specifically, for the functor T, : mod B — mod A we have:

e For X € mod B, then T,(X) = X ®p eA.

e For each B-module homomorphism f : X — Y where X,Y € mod B,
the A-module homomorphism T.(f) : T.(X) — T.(Y) is given by T.(f) :
r®pea— f(r)®peaforall z € X and all a € A.

We remind the reader of some category theory concepts.

Definition 4.17. [2, A2, Definition 2.2]

(1) The functor T : C — (" is additive if T" preserves direct sums and, for all
X,Y € ObC, the map Txy : Hom¢(X,Y) — Home (T(X), T(Y)), given
by h+— T'(h), satisfies T'(f + g) = T(f) + T'(g), for all f,g € Homa(X,Y).

(2) Let C and C” be abelian categories. A covariant additive functor 7' : C' — C’
is right exact if, for any exact sequence X Ty 4z somcC , then
the induced sequence T'(X) at T(Y) Tt} T(Z) — 0 is exact in C".

(3) A functor 7' : C — (" is faithful, if the map Txy : Home(X,Y) —
Home (T'(X), T(Y)) given by f +— T(f) is an injective map, for all X|Y €

ObC.
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(4) The functor T' : C — (" is full, if the map Txy : Hom¢(X,Y) —
Home (T'(X), T(Y)) given by f — T(f) is surjective map, for all XY €
ObC.

Theorem 4.18. [2, Chapter 1.6, Theorem 6.8] Suppose that A is a finite dimen-
stonal K-algebra and that e € A is an idempotent, and let B = eAe. The functors

T., L. associated to e € A satisfy the following conditions

(1) T. and L. are full and faithful K-linear functors such that res T, = Inod, =
res, L, the functor L. is right adjoint to res, and T, is left adjoint to res,,

that is, there are functorial isomorphisms
Hom 4 (X4, Le(Yg)) = Homp(res.(X4), Y5)

HomA(Te(YB), XA) = HOIHB(YB, rese(XA))

for every A-module X o and every B-module Yp.

(2) The restriction functor res, is exact, T, is right exact, and L is left exact.

(3) The functor T, and L. preserve indecomposability, T, carries projectives to
projectives, and L. carries injectives to injectives.

(4) A module X 4 is in the category Im T, if and only if there is an exact sequence
Pl — PY — X, — 0, where P and P° are direct sums of summands
of eA.

Proposition 4.19. /2, Chapter 1.6, p36] Let A be a finite dimensional algebra,

let e € A be an idempotent, and let B = eAe. Suppose that e = Z;=1 e;, with e;
primitive orthogonal idempotents, for all j =1,...,s. Thenm; : e;B®peA — ¢; A,

where e;b ®p ea — ejbea, for alla € A and b € B, is a right A-module isomorphism

fori=1,...,s.

We now relate this to our algebras A and A and use the idempotent e. We set

B =c¢ele, so B~ A.

Proposition 4.20. Let A, A be finite dimensional algebras as above. Then
m, : vB ®peA — v/~\, where vb ® g ea — vbea, for all a € Aandbe B, isa right

A-module isomorphism for all v € Q.
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Our aim in this chapter is give a new and functorial approach to the projective
resolution of A/t and the projective bimodule resolution of A and results of [36].

We keep the notation of previous chapters.

4.1. Functorial approach to the projective resolution of /~\/f. Now we take
a minimal projective resolution (P",d") of A/t as given by [28], so we have the sets
g". We use these sets to give sets " in order to describe the minimal projective

resolution of A/

Definition 4.21. (see [36, Definition 8.7]) Define the sets §" € KQ, for n > 0 as

follows

§° is the set of vertices of Q

g' is the set of arrows of Q

e 32 is a minimal generating set of I as given in Definition 4.1

For n > 3, let g = 0*(¢?*) for each g € ¢, and set §" = {g'}.

For n > 2, it can be seen that each g is a uniform element which starts and ends
at the vertex corresponding to the vertex o(g!*) and t(g}*) respectively in Qg and so

~-n __ ~Nn
g, = Eg;¢€.

Definition 4.22. (see [36, Chapter 8]) We define P" to be the projective A-module
P = @t(g?)A, for all n and define A-module homomorphisms by

o d°: P° — AJ%, where d° is the canonical surjection.

o d': P' — PV is given by t(&)\ — &\, where @\ is in the component of P°
which corresponds to o(&), for all X € A.

o Write g7 = >°.a;n;, where a; is an arrow in Q and 7j; € KQ. Then
d?: P2 —s P'is given by t(gf);\ has entry ﬁj;\ in the summand of P which
corresponds to t(d;), for A € A.

e For n > 3 we have g;' = > g}"”_lqj for some ¢; € KQ. Then §* = 6*(¢!) and
so we have P = 7. g7~ '6%(¢;). Thus d" . P —s P 'is given by d™(t(§")\)
has entry t(g;"l)H(qj)S\ in the summand of P"~! which corresponds to (g7 "),
for A € A.

Hence, we have a sequence of A-modules and homomorphisms

pn A", Hn-1 p1_d' 5o A F s
i — PP — P — ... — P — P —At—0 (2)
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It remains to consider whether this sequence is exact. In the case where A is a

d-Koszul algebra, we have the following theorem.

Theorem 4.23. [36, Theorem 8.14] With the above notation and for a d-Koszul

algebra A, then (]5”, CZ") is @ minimal projective resolution of /~\/f as a right A-module.

We now generalise this result. We start by considering the part of the sequence

(1) with n < 2. We observe that
O—)KerdQAPQiIE’ILPOﬁA/{‘HO

where i : Kerd> — P? is the inclusion map, is the start of a minimal projective

resolution of A/% from [28]. Hence this sequence
0 Kerd? —» P? L pt 2 p0 P R 0
is exact. Now consider n > 2.
Proposition 4.24. Let P" and P" be as above. Then T.P™ = P" for alln > 2.

Proof. We have P = @;t(¢"*)A which by Theorem 4.8 we identify with @;t(§?)eAe

via (Hg1) A, - Hgm)Am) = (H(G7)eb(M)e, -, Hgr)eb(An)e) = (HIT)0(M), -,
t(3")0(Am)). Now we use the functor T, : mod B — mod A which is given by
T.(=) = (=) ®p M. So, we have

T.P" = To(@:t(§M)ehe) = @, T-(4(G))eAe = @G )eAe @5 A

By Proposition 4.20 we have ®;t(§")eAe @p eA =2 §:t(§?)A = P". Thus
T.P" = P for all n > 2. O

We identify the elements of T.P" with those of P" as follows. For
(0,...,0,¢(¢")X,0,...,0) in P* and ji in A we have

(0,...,0,4(gMN0,...,0) @5 et = (0,...,0, (GO0, ..., 0)

for A € A, ji € A.

:2

Proposition 4.25. With the above notation and identifications, then T.d" ,
for alln > 3.
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Proof. As above, we write g' = Z;”:l gj”_lqj, where m is the number of elements
in the set ¢"! and let n > 3. Then d"(0,...,t(¢g")A,...,0) has entry t(g;‘_l)qj)\
in the summand of P"! which corresponds to t(g}“_l), for all A € A. Using the

identification above, for ji € A,

T.d™0,...,0,4(G")ji,0,...,0) = T.d™0,...,0,4(g"),0,...,0) ®p cji
= d"(0,...,0,t(g"),0,...,0) ®p eji
= (gt D, g am) @p et
= (UG )0(@r); - - Hgm " )0(gm))eit
= d*(0,...,0,4(g",0,...,0)

as required. O

Using Propositions 4.24 and 4.25, we have the following identification and com-

mutative diagram for n > 3, which we use without further comment.

T.(d")
T.P" — T.P"!

- |~

pn ﬁn—l

an

So we can identify
Sn A" Hn—1 53 4 52
e — PP — P ... — P°— P
with

oo pr TS pprt oy op3 T p2,

Proposition 4.26. Let P" and d be as given above, for n > 3. Then

i s B ity op3 TS p2

is a complex of right A-modules.

Proof. We want to show that T.(d")oT.(d" ™) = 0, for all n > 3. From the definition
of a functor, we have T.(d") o T.(d"*') = T.(d" o d"*1). But (P™,d") is a minimal
projective resolution of A/t, so d" o d"*! = 0 and hence T.(d" o d"*') = 0. Thus

T.(d") o T.(d"*) = 0, for all n > 3 and the result follows. O
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Lemma 4.27. With the above notation, an element of T.P" is of the form

.T®B5+ Z Loy ®B €ﬁw,
weQo\Qo

where x,x,, € P".

Proof. Let z € T.P". Then we can write z as z = 2135 = ze + 3, 5.\ 0, 2W
where ¢ = ZUEQO v. We have z = ) . z; ®p ca;, where a; € A and z; € P".
Now ze = (3,2, ®p eaj)e = ), x; Qp €ae = Y, Tiea,e Vg e = x Qp €, where
x =) .xiea;e. Now consider zw, where w € o)) \ Qo. We have zw = (3>, x; ®p
ca;)w =Y, x; ®p ca;w. By the construction of the quiver eaq;w = €a;'p,,, for some
a; € ehe. So zw = Yo vi€a'e @p €Dy = Ty Xp Py, Where z,, = > . xica’e. So

z2=1TQ®pe+ ZwGQo\Qo Tw @B EPyw as required. O
Proposition 4.28. For n > 3, Ker(7T.d") C Im(7.d"*).
Proof. Let z € Ker(7.d") and n > 3. Then z € T.P" so using Lemma 4.27, we write
z2=xQR®pe—+ Z $w®35ﬁw7
weQo\ Qo
where z, z,, € P". Since z € Ker(7.d"), then T.d"(z) = 0, so

d"(z) ®p e+ Z d"(zw) @B Pu = 0.
we o\ Qo

We may write d"(z) = (4(37 " )pia, -, UG, ) and d™(zw) = (G ) irw, - -
(g1 ) for some g, 1. € A and where m is the number of elements in the

set "~ 1. Hence for each 1 < j < m, we have

W m@set > I w®sbe = G ) (1®se+ > Hjw®sPw) = 0.
wep\ Qo weQo\ Qo

Applying the isomorphism mygn-1) in Proposition 4.20, this gives that
J

G e+ Y Hjwbe) =0.
weQp\Qo
Hence t(g?_l)ujs =0 and t(g?_l)ujMﬁw =0foralll1 <j<mandallwe Q\ Q.
So, from Proposition 4.14, t(g;‘_l)ujw =0 forall 1 <j <m. Thus d"(x) =0 and

d"(z,) = 0, so that z,z,, € Kerd" for all w € o)) \ Qo.
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Now, (P",d") is a minimal projective resolution of A/t, so Imd"™! = Kerd".
Thus there are elements y, y,, € P"™! such that x = d"*!(y) and z,, = d"(y,,) for
all w € Qq \ Qp. So we have

z = vt (y) Xpe+ ZwEQo\QO dnJrl(yw) OB 5]3111
= Tadn+1(y ®pe+ Zwer\Qo Yw OB 515111)
and hence z € Im T.d"*'. Thus Ker(T.d") C Im(7.d"*") as required. O

We summarize Proposition 4.26 and Proposition 4.28 as follows:

Theorem 4.29. The sequence
n d" n—1 3 & 3
e — TP — TP — TP — ImT.d” — 0

15 exact.

Proposition 4.30. With the above notation, then Ker d? = Im T.d>.

Proof. First we show Kerd? C ImT.d?. Let & € Ker d2, then
= (G, ..., t(5%)\m) is an element of P2, for some \; € A and where m is
the number of elements in g*. We can write & = T1; = e + > wedp\o Tw where

€= e,V Foreachi=1,...,m,

WM = @) he+ Y @),
weQ0\ Qo

We may write t(g7)\ie = t(g?)0(\;) for some \; € A and t(§2) \jw = (32)0(Ni.w) P

for some A;,, € A where w € o)) \ Qp. Hence

ze = (4(a1)0(M)e, .. 1(7,)0(Am)e)

and
Tw = (Hg
= (D)0 Mw)e, -, 1(G7,)0 (Am,w)e) Do
So, e = T.(z.) where z. = (t(¢?)\ie, ..., t(g%)A\ne), and Tw = T.(x,)p, Where
Tw = (A wE, - - -, (g2 Amwe), With 2., z,, € P? and for all w € Qp \ Qp. Hence

T = Ts('fs) + Z Te(xw)ﬁw'

weQp\ Qo
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Now, & € Kerd?. Then d?(&) = 0, and so

d(ie)+ Y d*(iw) =0.
we 9o\ Qo

. 2 _ T . - . . . .
We may write g; = ZFl a;3ji, where a; is an arrow in Q and r is the number

of arrows in Q;. Then g7 = >7"_ | 0*(;)0%(B;4) = D' _y cjaca--- ;a0 (Bj4). So,
d?(%) has entry S taj)ags aj 40(B;.:) A\ in the summand of P! corresponding
to t(a;1), and 0 otherwise. Thus, for all j =1,...,r,

m

Z t(aj1)a - aja0(Bj)N = 0.

=1

So 7 tleya)ase - aaf(Bii)hie = 0 and 37 (o) ey - -y ab(Br0) Aw = 0,
for all w € Qp\ Qo and all j =1,...,r. Firstly,

0 = 7 tlaga)ayo: - aya0(8;)t37) Nie
= Y Haga)age - aja0(85.0)0(Ni)e
= tlaja)agja a0 0(BiM))-

Since @z« ;4 = Gia,,), Proposition 4.14 gives > " 6(f;:\;) = 0. Since 6 is
one-to-one, then > 7", B;;\ =0 for all j =1,...,r. Hence d*(z.) = 0. Also,

0 = Z:ll t(%‘,ﬂam s aj,A‘g(ﬁj,i)t(gz?)j‘iw
= tlaga)age - a;a(Q0i 0(85,)0(Niw)Puw)

= tloga)age o a(Q0i 0(BjiNiw))Pu-

A similar argument shows that > 6(53;;\iw) = 0 for all j = 1,...,r and hence
d?(x,) = 0. Thus z. and z,, are in Ker d2, for all w € Qg \ Qy.

But, (P",d") is a minimal projective resolution of A/t, so Imd* = Ker d*>. Thus
there are elements vy.,y, € P3 such that r. = d3(y.) and z, = d*(y,) for all
w e Qq \ Qp. So we have

T = T.(x.)+ ZwEQo\Qo T (Tw)Pu
= T()) + Lueonon T+ () b

= Tsd3 (ys ®pe+ ZWEQO\QO Yuw OB ﬁw)
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and hence & € ImT.d®. Thus Ker d®> C Im(7.d?).

Conversely, we now prove Im 7.d* C Ker d?. As above we write g2 = > i1 B,

50 g7 = Dy ajuaga - al*(B:). Let & € ImTod®, so & = T.d*(g), for some
j € T.P? =~ P3. So using Lemma 4.27, we have §j = y. ®p € + D wedo\0p Yo BB EPw,
for some ., v, € P?. Then
F=d(y)®@set+ Y d(yw) @5 chu.
weQo\ Qo
But, (P",d") is a minimal projective resolution of A/t, so Imd® = Kerd?. Thus
let z. = d®(y.) € Kerd? and x,, = d*(y,,) € Kerd? for all w € 9 \ Qo, and write
z. = (tgHA, . @2 )An)s 2w = (gD M, -+, (%) Amw) Where N\, N € A
Then we identify T with
(30O + Lecanan €I -, HGIOOm)e
Y eanan (T Amw)in )

Then JQ(:Z') has entry Y7 (1) a0+ a0(85:)(0(Ni)e + ZweQO\Qo O(Niw)Pw) in
the summand of P! corresponding to t(a;1) and 0 otherwise. But z.,,, € Ker d?
so d*(z.) = 0 and d*(z,) = 0. Thus >_1", B;:A = 0 and >, BN\ = 0 for
all j = 1,...,r and w € Qy\ Q. Hence d*(#) = 0 and so & € Kerd®. Thus
Im7.d* C Ker d?. Hence Ker d?> = Im T.d3. [

Theorem 4.31. With the above notation, the equation (2)
pr 'y prot oy pt L p0 PR

is exact. Moreover, it is a minimal projective resolution of A/%.

4.2. Functorial approach to the projective bimodule resolution of A. We
now construct a minimal projective resolution of A as a right Ae-module from a
given minimal projective resolution for A as a right A®~-module. We begin with some

background information and some more definitions from [28].
Definition 4.32. [39, Section 2] We define the functor
Te - mod EA°€ — mod A°

by Te(—) = (—) D¢ Reg 5]\6 , where £ = ¢ ® ¢, an idempotent in Ac.
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Proposition 4.33. With the above notation we have A = EAE.

Proof. We have A = eAe by Theorem 4.8, and so A = eAPe. Using [39, Section
2], we have (eAe)e = EA°E. Hence A® = EA°C. d

Definition 4.34. Let A¢, A¢ be as above. Then, we define ¢ : A — A® to be the
composition of the isomorphism A¢ = ¢A°¢ of Proposition 4.33 with the inclusion

map i : A6 — A¢ which is given by
A@ p = E(0(X) @0(u)€E = 0(A) © 0(n)

Moreover ¢ is an algebra monomorphism.

The projective bimodules in a minimal projective bimodule resolution of an algebra

are given by Happel in [30].
Proposition 4.35. [30] Let A be a finite dimensional algebra and let
n 0" n—1 1 ¢! 0o &
= QN — QT — s — @ — QT — A —0
be a minimal projective resolution of A as a A-A-bimodule. Then
Qn _ @ijp(i,j)dimEXtX(Si’Sj)

where P(i,7) is the projective A-A-bimodule A(e; ® e;)A, and S;, S; are the simple

modules corresponding to e;,A and e;\ respectively.

From [28], let (P",d") be a minimal projective resolution of A/t as a right A-
module, so P" = @t(gp)A. Then the n-th projective in a minimal projective
resolution of the simple module S; is ®t(g)A where the sum is now over all g7 with
o(gy) = 1. So, using the result by Benson ([5, Corollary 2.5.4]) (see Proposition 2.20)
we can index Ext}(5;, ;) by the elements of ¢" which start at ¢ and end at j. We
now sum over all ¢ and j and use the result by Happel (Proposition 4.35) to give the
following description of the projective modules in a minimal projective bimodule

resolution of A.

Definition 4.36. Let n > 0. Define Q" = @©ynegnAo(g7") @ t(gf')A so that Q™ is the

nth projective in a minimal projective bimodule resolution of A. Let (Q™,0") be
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a minimal projective bimodule resolution for A with the part up to Q? as given
by [24].

Define Q" = @gfegn]\o(g;) @ t(g")A so that Q™ is the nth projective in a minimal
projective bimodule resolution of A. Define 6" : Qr — Q! by o = Teo™ for all
n >3, and §°,4", 62 to be the maps given in [24].

Proposition 4.37. Let Q™ and Q™ be as above. Then TeQ" = Q", for alln > 2.

Proof. We identify Q™ with @;(0(§") ® t(§7))¢A€ by Proposition 4.33. So

TQ" = ®:(0(3") ® H)EAE By EA°

12
D
—~

=)
S
N}l
N—
(9
-
S
N}l
<3
N—
N~—
-
a

as required. O

Proposition 4.38. The definition of & from Definition 4.36 coincides with that
given by the construction of [24].

Proof. From Remark 2.30 equation (1) we write g7 = >_. g7p; = >, ¢;jg;7;. Then
G = D 950" (ps) 29* 4;)3;6"(r;):
J

Since 6°(0(g}) ® t(g7)) is given by the matrix As where the (g7, g7)-entry is 0(g?) ®
pj — ¢ @ r;, from Definition 4.36 and for all 7 € A¢, we have

0*(0(5)) @ UGN = Ted*(0(g?) @ Hg?)) Denec €
= %(o(g)) ® Hg7)) e &1
= (0(7) ® 0(p;) — 0(g;) @ O(r;))&7.
Hence 6*(0(g?) ® t(3)) is given by the matrix A where the (97, 37)-entry is 0(g3) ®
8(p;) — 0(qj) ® 6(r;). Hence the result follows. O

Hence, we have a sequence of A-A bimodules and homomorphisms
A 0" An—1 51 8t A0 80 R
= QN — QN — - — @ — Q" — A —0 (3)

We want to show the sequence is exact and we start by considering the part of the
sequence:

~ 53 ~ 52 ~ 51 ~ 50 ~
P50 50" 50" S A —o.
54



This is the start of a minimal projective bimodule resolution of A from [24]. Hence
this sequence is exact.

Now consider the case n > 2. We want to show the following sequence is exact

on 53
R Tan Tg—) Tan_l cee —>T§Q3 TE—> TSQQ.

Proposition 4.39. The sequence
Teo™ Ted3
v — Tan §—> Tanil e — T§Q3 £—> T5Q2

is a complex of right A-modules.

Proof. We want to show that T¢(6™)oT¢(6" ) = 0, for all n > 3. From the definition
of a functor, we have T¢(8™) o T¢(6") = T¢(6™ 0 6"1). But (Q™, ") is a minimal
projective resolution of A, so 6" o §"*! = 0 and hence T¢(6™ o 6"*') = 0. Thus

Te(6™) o Te(6") = 0, for all n > 3 and the result follows. O

Lemma 4.40. With the above notation, an element of T:Q" is of the form

Tewe Ogiee & + Z ($s®w DeRee &(e @ pu)+
w,w' €Q0\ Qo
Twee ®§[\e§' g(gw ® 5) + Twew! ®§[\e§ g(gw ® ﬁw’))

WhETE Tege, Lo Twe, Twgw 0T€ 1N Q7.

Proof. Let z € T:(Q". Then we can write z as

2z =213 = 2§ + Z z(s@w)+z(w®s)+z(w®w’))
w,w' €9\ Qo

where { = e®e. Wehave z =), Ii®£[~\eff(:\i®ﬂi), where x; € Q™ and (;\i®ﬂi) € A°.
So
2 = (X Reiee (A ® )€

= D Ti Ogfeg E(N @ )€
= > wi(Ni © )€ ®eRee &
Te@e ®§1~x€§ §

where z.g. =), 3?15(5\1 ® fi;)§.
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Now,

Z(e @ w)

= 3% Pgiee £ ® fi) (e @ w)

= Y Oiee (£ ® (A @ fir) (e © w)

= D% ¢ Reg (85\i8 ® efi;w).

From the construction of K Q, we may write e\ie = e0(\;)e and efizw = £0(1t;)pu,

for some \;, u; € A.

z(e @ w)

where gy,

Similarly

Hence

= D% DeRee (e0(Ni)e ® eb(pi)epuw)

= 2% Qgpee (£ @) (B(N) @ 0(pi)) (¢ ® €) (€ @ pu)

= Zz T O¢fee E(0(N) @ O(p3))§ (e @ Puy)

> Tl (0(N) @ 0(111))§ Deiee £(6 @ Pu)

= Tew ®§[\6§ 5(5 ® ﬁw)

= Zz ;& (O(A

z2(w®e)

i) @ 0(ui))§.

= 3% Dgiee £ ® fir)(w R €)

= 3% Peiee (@) (N ® fig) (w @ €)

= 3% Pghee (WAiE @ £fize)

= D% Ogjee (quel(Ni)e @ 0(pi)e)

= 22T Ogiee £(0(X) ® 0(11))€ (G ® €)
= 221 2€(0(A) ® 0(41:))€ D £(Guw @ €)

= Twe ®§]\eg f(Qw ® 5)

where 0. = Y. :6(0(Ni) @ 0(1;))E.

Also,

z(w @ w')

= Y @ (£ ® ) © i) (w B W)
= D i Ti OpReg (wj\ia ® efr;w'’)
= DT Qe Reg (Guwed(Ni)e ® 0(pi)Pur)

= 22 % Dgiee E0(N) © 0(143))€ (G @ Pur)
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= 22 2i(0(N) ® 0(s))E ®ghee §(Guw @ Pur)
= Twew ®§]\65 £<q~w & ﬁw’>
where Zy,euw = Y, 2:£(0(N) @ 0(1;))E, for some A, p1; € A. O
We now show that Ker(7;6") C Im(7¢6" ), for n > 3.

Proposition 4.41. For n > 3, Ker(Tz6") C Im(T¢6" ™).

Proof. Let z € Ker(T¢™). Then z € TeQ" so using Lemma 4.40, we write

2= Tege Qgfee § + Z ($s®w D¢Ree §(e @ puw)+
w,w' €90\ Qo

Twge Dgieg §(Gw ® €) + Tuwgw Qg Ree §(Gu ® ﬁw’))

where Zoge, Tegws Twge, Twew are in Q™. Since z € Ker(T¢d"), we have T¢0"(z) = 0.

So

6n($5®€) ®§A6§ f + Z ((5n(x5®w) ®£Ae£ 5(5 ®ﬁw)+
w,w' €Q0\ Qo

0" (Twwe) O¢pee §(Guw @ €) + 0" (Twgw) Oggee £(Guw @ ﬁw')> = 0.

We want to show that z.ge, Tegw, Twge, Twgw € Kerd™. For each 7 € {e ®¢e,e ®

w,wRe,ww}, z, isin Q" so §"(z,) is in Q" and we may write

6" (zr) = (0(gP™ ) @ t(gF N (Mir @ pi1r)s - -, 0(g ) @ g ) Nnr @ i)

with the ith component in the summand of Q™! corresponding to o(g/" ") @ t(g!" 1),

where m is the number of elements in the set g"*

and A; -, i - € A. Hence, for
each 1 < j < m, we have

(0(g7 ™) @ g ™)) (Njcwe @ Hjeee) Pghee §F

S weanan (000778 ) Nicon @ yom) S e @ )+
(0(g7 ™) @ t(g) ™)) Njwee @ pjwse) Oree £ (G @ )+
(o065 9400} ™) O @ o) S (i ) ) =0

Then

(0(7 1) @G ) Njewe ® pjewe)E+

S weonan ((o@yl) DTN Nyeon @ 1o )E(E @ Pu)+
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(077 @ G ™) Njwee ® Hjwee)€(Gw ® €)+
(0(9?71) ® t(gyil))()‘jw@w’ ® Nj,w®w/)€<(1w ® ﬁw’>> =0.

1)( je®e & Hj, c2e)§ =0,

1))( J,eQuw ® /~Lj,e®w)£(5 ®]5w) = 07
1))( e @ fjwee)€(Gw @) =0,
)

for all w,w' € Qq \ Qy. Since the ideal I of K Q is generated by uniform elements
g3, ..., g2 which all start and end at a vertex in Qp, a similar argument to Proposition
4.14 gives

(0(77 ) @ UG ) Newn @ Hiewnw)€ = 0,

(0(37 ) @ HF7 ) Nwee @ ftjwee)€ = 0 and

(o(g] ") ® f(@?_l))@j,w@w' ® pjwew )§ = 0.
Thus 6"(z.5:) = 0, " (Tegw) = 0, 0"(Twge) = 0 and 6"(Tygw) = 0, so that
Tese, Teguw, Twse, Twew are in Ker ™ for all w,w’ € Qg \ Qo.

Now (Q",d") is a minimal projective resolution of A so Ker 6" = Im §"**. Thus
there are elements Yewe) Ye@ws Yuweer Yuwaw! n QnJrl such that Tewe = 5n+1(y€®8>7
Tequw = 5n+1(y€®w)’ Tywxe = 5n+1(yw®5) and Tyweuw' — 5n+1 (yw®w’) fOI' all

w,w € Qq \ Qp. So we have
z = 0" (Yene) Qgfee &+ Zw,w’EQO\QO (5n+1(ye®w) Qg Ree £(e ® pu)
0" (Yuwse) DeRee £(Gw ® &) + 0" (Yusuw) DeRee §(Gw ® ﬁw'))
= Teomtt (ya®a e €T D urcdo\ gy Yeow Ogieg £(€ @ Pu)
FYwge Oghee E(Gu @ €) + Yuwgw Dgee E(Guw @ ﬁw’))
and hence z € Im Tz0"**. Thus Ker(T¢6") C Im T;6" " as required. O

We summarize Proposition 4.39 and Proposition 4.41 as follows:
Theorem 4.42. The sequence
Teom Te63
o TQT S T — TQP =5 TeQ?

15 exact.
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Theorem 4.43. With the above notation, the sequence (3)
An 0", An—1 A1 8t A0 0%
Q" — QT — s — Q — QT — A — 0
is ezact. Moreover, it is a minimal projective bimodule resolution of A.

4.3. The relation between the Ext algebras of A and A. We look now at the

relationship between E(A) and E(A).

Definition 4.44. [36, Definition 9.1] Let f}* : P — A/t be the A-module homo-
morphism given by
t(g") +v if j =1

t(g}) — ‘
0 otherwise.

We set f* = {f"} so that || = |g"|.
Let fZ” : Pr— A /t be the A-module homomorphism given by
(G +E it =

t(g}) — -
0 otherwise.

We set f* = {f"} so that |f*| = |3".

The set f* forms a basis for Ext?(A/t, A/t) and the set f* forms a basis for

Extg(]\/f, A/E) by Proposition 2.20. Moreover, for n > 2 we have |¢"| = |§"|, so
1= 19" = 13" = |f"]
Definition 4.45. [36, Definition 9.2] Let A = K'Q/I be a finite dimensional algebra
and let A be the stretched algebra. Let Extz*(A/t, A/t) = D,.>0 Exti (A/r, A/r) and
let Ext]Z\Q([\/‘E, AJF) = D2 EXtK(]\/‘E, A/?). We define a K-module homomorphism
U : Extz”(A/r, Afr) — Ext=*(A/t, A/T) by

U(fr) = fr forn > 2.

We note that W is clearly 1-1 and onto so that it is a K-module isomorphism.
In [36, Theorem 9.15], Leader showed that ¥ is an algebra homomorphism when A
is a d-Koszul algebra. However, her arguments do not require that A is d-Koszul,

and hold more generally. Hence we have the following result.

Theorem 4.46. Let U : Exty*(A/t, A/Jt) — Ext?\Q(f\/E, A/?) be the map given in

Definition 4.45. Then WV is a K-algebra isomorphism.
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We end this chapter with the following result.

Theorem 4.47. Let A = KQ/I and let A be the stretched algebra. Suppose there is
some m > 1 such that the Ext algebra E(A) is generated in degree at most m. Then

the Ext algebra E(A) is also finitely generated, and has generators in degree at most
m + 2.

Proof. Assume m > 1. Suppose that E(A) is generated in degrees 0,1,...,m. We
use induction to show that E(A) is generated in degrees 0,1,...,m + 2.

We start by considering the case n = m 4+ 3. Let z € E(/N\) and suppose that
T € Extg”s(f\/%, A/%). From Theorem 4.46 there is some y in E(A) with W(y) = z,
and |y| = m + 3. By hypothesis, y is a sum of products of elements of degree at
most m. Without loss of generality, suppose that y = y1ys - - -y, where 1 < |y;| < m
for each 1.

If |y1| > 2 so that necessarily we have m > 2, then 3 < |yo---y,| < m+ 1. Let
2 =1yy---y,; then y = yy2 with y;, 2 € Ext32(A/v, A/v). So z = U(y) = U(y;)¥(2)
and ¥(y;), U(z) both have degree at most m + 1. So = can be written as a product
of elements of degree at most m + 1.

Otherwise |y;| = 1. In this case, yo---y, has degree m + 2. Then y =
(v1y2)(ys -+ - yr). Let z1 = y1ys and 29 = y3---y,.. Since y, has degree at most
m, it follows that |z,| > 2. Then y = 212, with 21,2 € Ext3°(A/t,A/t). So
r=V(y) = ¥(z1)¥(z2) and ¥(z;), ¥(z2) both have degree at most m + 1. So x can
be written as a product of elements of degree at most m + 1.

Now we assume that elements of Ext%(]\ /%, A/%) can be written as sums of products
of elements of degree at most m + 2, where m +3 <n < m+ k. We let z € E(A)
and now suppose that = € Ext:{(li/f, A/%) with n = m + (k+ 1). From Theorem
4.46 there is some y in F(A) with U(y) = z, and |y| = m + (k + 1). By hypothesis,
y is a sum of products of elements of degree at most m. Without loss of generality,
suppose that y = 1192 - - - ¢ where 1 < |y;| < m for each 1.

If |y1] > 2 so that necessarily we have m > 2, then k + 1 < |yg---y,| <
m+ (k4+1) — 2. Let 2 =y - 4,; then y = y,2 with y1, 2z € Ext7*(A/t, A/t). So
x=U(y) = V(y;)¥(z) where ¥(y;) has degree at most m and ¥(z) has degree at

most m + k — 1. By hypothesis W(z) can be written as a sum of products of elements
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of degree at most m + 2. Hence x can be written as a sum of products of elements
of degree at most m + 2.

Otherwise |y;| = 1. In this case, yo---y,. has degree m + k. Then y =
(y1y2)(ysz -+ yr). Let z1 = 1192 and 29 = y3---y,. Since yo has degree at most
m, it follows that k < |z < m + k — 1, where £k > 3. Then y = 2,2, with
21,29 € Ext?(A/t,AJt). So x = U(y) = U(z)¥(2,) where ¥(2;) has degree at
most m + 1 and W(zs) has degree at most m + k — 1. By hypothesis ¥(z;) can be
written as a sum of products of elements of degree at most m + 2. Hence x can be
written as a sum of products of elements of degree at most m + 2.

Hence for each element x in Ext%z(/i /%, A/%), x can be written as a sum of products

of elements of degree at most m + 2 and thus E(A) is generated in degree at most

m + 2. |
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5. THE HOCHSCHILD COHOMOLOGY OF TWO EXAMPLES

In this Chapter we study the Hochschild cohomology groups of algebras A and
A in Examples 5.1 and 5.2. Throughout this chapter we will write e; ®, e; for the
generator of the summand of Q™ corresponding to the relation g where o(g') = e;

and t(g)') = e;j.

Example 5.1. Let A = KQ/I be the algebra which is given by the quiver

T C ® D Y
and I = (22, y% 2y — yx). We denote the vertex of the quiver Q by v. We have

o 9" ={v}
o gt ={z.yk
o g = {2%,y*, xy — yx} with g} = 2*, g5 = zy — yz, g5 = ¥%;
e For all n > 3, we have
g = g7 = xgiTh
g =gy + (1) e = (1) yg T+ agp
where 2 < r < n;
Gnp1 =9n Y =ygn "
Now, for n > 1, keeping the above notation, we define the map d" : Q" — Q™!
for the algebra A, where Q" = Ao(g") ® t(g!")A are A-A-bimodules, by
o(g7) @ t(g1) = 0(g7™") @1 a + (—1)"z @1 (g7 )
o(gr) @ t(gy) = 0(9r=)) @1y + (1) o(gr ) @ @
+(=D)" (1) ry @, g ) + 2 @0 tgr )
0(gns1) @ tgnia) = o(gn™") @ny + (=1)"y @ Hg ™).
Note that o(z) = t(g?"") so o(g}™ ) @1 t(g7 o = 0(g] ™) @y 2.
This algebra has been well-studied and (Q", d™) is a minimal projective bimodule
resolution of A; see [18].
So we have, for each f € Hom(Q", A), f is determined by the elements f(v ®, v)

and they can be written as a linear combination of the basis elements in vAv, for

n > 0. Hence f(v ®, v) = c1v + cox + c3y + ¢y, with ¢; € K.
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The following example is the stretched algebra of Example 5.1 with A = 2. This
is also the algebra of Examples 2.40, 3.13 and 4.2.

Example 5.2. Let A = K Q/ I be the algebra which is given by the quiver

a a3
L —
1 2 3
_ T
az ay

and I = (qjasaan, azauasay, apanagay — asagagas). We have

{ €1, €2, 63}
:{ 1,(127043,064}
= { Q1 QoY Qig, Qi3iq i3y, Qi1 a3y — 043044041042}
with g% = Q10 Qo, g; = Q1 Qi3 — Qi34 Qg gg = Qr300403004.

e For n > 3, we have

°ogr =g\ lonag = a10ng; g

o For 2 <r <n, we have §" = §" [ azay + (=1 1§ Lagas

= gy + (1) agaugr T

© 9n+1 =0n 043044 = 063044gn

Keeping the above notation and for n > 3, we define the map d" : Q" — Q™! for
the algebra A, where Q™ = Dgnegn Ao( " ® t(gf)]\ are A-A-bimodules, as follows:
0(g1") ® H(gr) = 0(gr™") @1 arag + (=1) a1 @1 4(g7 )
0(g1) @ t(gr') = 0(g771) @1 s + (=1)"1o(g77") @, ey
(=1 (1) agay @ (G + aras @, 4G )
0(Gi1) @ HFiy) = 0(F ") @ gy + (—1)"agas @, (G ).

Using Example 5.1 and Theorem 4.43, it can be shown that (Q", oi”) is a minimal
projective resolution of A as a A-A-bimodule. See also the comment at the end of
Example 2.40. Alternatively, we can use the argument in [24, Proposition 2.8]; see
also [45, Theorem 1.6]. In this case we need to note that (A/f ®; Q",id ®;d") is

precisely the minimal projective resolution of A /%; this was studied in Example 2.40.

5.1. The centre of the algebras. We now look at HH(A) and HH’(A) in Exam-

ples 5.1 and 5.2.
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Example 5.3. Let A be the algebra in Example 5.1. It can be seen that each

element in A is in Z(A). This is because A is a commutative algebra. In particular

A = Klz,y]/(2? y?). So Z(A) = A.

Example 5.4. Let A be the algebra from Example 5.2. Let z € Z(A). Firstly,
we will show that z can be written as z = ejze; + eazey + e3zes. Since z € Z([\),
then 2\ = 5\2, for all A € A. In particular, ze; = e;z, for all : = 1,2, 3, so we have
ei(ze;) = ei(e;z) = (e2)z =e;z. Now, z=1.2= (e; + ea + €3)2 = €12 + €22 + €32 =
ei1ze1 + eszes + eszes.

Now, z can be written as follows z = dyeq + dyasay + dsasagasa + dyjasa o +
dsaaazogor oo +dgestdro ao+dsasoy+doo asazastdipes+di oo +disogogoy o+

diza o + digogaqaoazaygas, where d; € K.

e We have a1z = zaq, then a2z = diag + doaiasay + dzaqasazaysaq, since
arapaias = 0 and ajasazay = azagaian. Also, zay = dgaq + droyagan +
ngngé40[1 + d9a1a2a3a4a1. Hence, d1 = d@, dg = d7, d3 = dg, dg = 0.

e Similarly, we find di = dg,dy = d7,d3 = dy,ds = 0 when we consider
Qo2 = ZQ9.

e We have a3z = zags, then azz = dygas + djjaszasas + disasagaiasas. Also,
ZO03 = d60é3 + d70élOéQOé3 + ngégOé40é3 + d9a1a2a3a4a3. Hence d10 = d6, dH =
dg, d13 = dg, d7 =0.

e Similarly, we find dyg = dg,d11 = dg,d13 = dy,d7 = 0 when we consider

g2 = Z0y.

Thus z = dy(e1 + ez + e3) + d3(apazaga + arasasay + agonasas) + dyasagasay +
d5a2a3a4a1a2a1 + d120440430é4063 + d140440é10620430440é3, where dz € K.

Now, we want to show if z = d11 + d3(aazasa; + ajasaszay + agaasas) +
d4a2a1aga1 + d5a2a3a4a1a2a1 + d12a4a3a4a3 + d14a4a1a2a3a4a3, where dZ € K,
then z € Z(/N\). We have zey; = dieq + dsasagasay + dyasaanay + dsaoazagan ooy
and e1z = die; + dzasasasaq + dyjasaiasan + dsasasagaiasay. Thus, ez = zey.

Similarly, e;z = ze;, where i = 2, 3.

Next we show that za; = a;z, where 1 =1, ...,4.

e For: = 1, we have a2z = diay+d3ayasagasay and zay = dyag+dsog asagagon

and hence zo = a; 2.
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e Fort = 2, we have apz = dias+dsasaasasay and zay = diay+dsasaizayo g
and hence zay = ayz.

e For¢ = 3, we have agz = diag+dsasasaiasas and zas = dias+dsogasagagos
and hence zas = agz, since a3y = a3 Q.

e Fori = 4, we have ayz = diay+dsasarasasay and zay = dyoy+dsoganaaazay

and hence zay = auz.

So z € Z(A). Hence for each z € Z(A), z can be written as z = d;1 4 d3(asazayoq +
g o3+ Qa0 ) +dycaay ooy +ds ez ooy +dia oy as+digaaon oo,

where d; € K and dim Z(A) = 6.

5.2. HH'. We compute HH' explicitly for Example 5.1 and Example 5.2.
We denote the map Q" — Q" ! by d" and we denote the induced map
Hom(Q",A) — Hom(Q" ™, A) by 6". So 6™ is induced from d"*.

5.2.1. HH'(A). In order to find HH'(A) For Example 5.1, we need to find Ker §*
and Tm 6%, where ' : Hom(Q',A) — Hom(Q?* A) and §° : Hom(Q°, A) —
Hom(Q', A). We have Kerd! = {f € Hom(Q',A) : 6'(f) = 0}. Let f in Kerd',
then f € Hom(Q', A). So f: Q' — A is given by

V@ V> CQU + Co¥ + C3Y + C4TY

UV ®y U > C5U + CX + C7Y + CyTY

where ¢; in K. Since f o d? = 0, then we have
0(g}) @ t(g?) & (V®, x + x ®,;0,0)
EA flo@,v)r 4+ zf(v®,v)
= 2c1x + 2c3zy
= 0.
We consider two cases. If char K = 2, then there is no condition on constants. If
char K # 2, then ¢; == 0.

0(g3) ® t(g3) (WY -y v, @V —v® 1)
fo @, )y —yf(v @, v) +af(ve,v) — v, v)z
= QY+ Ty — 1Y — CYT + C5T + CrXY — C5T — CrYT

= 0.

d
—
gy
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d2
o(g3) @tg3) = (OvRy+yov)
f
= f(v®yv)y+yf(v®yv>
= 2c5y + 2c5xy

= 0.
Now we consider two cases. If char K = 2, then there is no condition on constants.

If char K # 2, then ¢5 = ¢4 = 0.
Hence we have two cases. If char K = 2, then Ker §' = Hom(Q!, A).

If char K # 2, then Ker§' = {f € Hom(Q"', A) :

(v ®q

V) = Cox + cyy,
(v®yv) = cry + csy}.

f

f

So we have two cases. If char K = 2, then dim Ker §' = 8, and if char K # 2, then
dim Ker §' = 4.

Next we find Imd°. We know Im¢° = {6°(f) : f € Hom(Q",A)}. Let f €
Hom(Q, A), then f: Q° — A is given by f(v ®, v) = cjv + chx + cyy + cyxy.

So we have

0(g91) ® t(g7) VR T — T
flo®,v)r —xf(v®,v)

/ / / /
C1T + C3yxr — X — C3xY

0.

- Is

0(g2) ®t(gz) = v®Y—yV
flo @y v)y —yf(v @y, v)
= duo+ cyr —dx — chay
= 0.
Hence Im ¢° = 0 and dimIm¢° = 0. Thus HH'(A) = Hom(Q*, A), ifchar K = 2,

and if char K # 2, then HH'(A) = {f € Hom(Q"',A) :

I= 1= 1

fv®,v) = cox + cuy,

fo®yv) = cry + sy}
Hence dim HH'(A) = 8, ifchar K = 2, and dim HH'(A) = 4, ifchar K # 2.

5.2.2. HH'(A). To find HH'(A), we need to find Ker 4" and Im ¢° where
ot Hom(@l,/i) — Hom(QQ,A) and &° : Hom(@o,]\) — Hom(Q', A). We have

Kero' = {f € Hom(Q',A) : 6'(f) = 0} and let f in Kerd!, then f € Hom(Q",A).
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So f: Q' —> A is given by

f(62 ®a1 61) = r1Qq + ToOl1 V(X1 —+ T334 + T401 0230 4O

fler ®ay €2) = 50 + Tea0 g + 70030y + Tsa3g0 g

f(e2 Ray €3) — Toaz + T1oQ3Q4Q3 + 11O Q203 + T12Q300 0 Q23

f(es ®a, €2) — T130 + T1404030y + T1500400 Q2 + T1a00O L Q0 030,

where 7; in K. Since f o d? = 0, then we have

- - d?
0(g7) @ t(g7)
EN

0(g3) ® Hg3) =

0(g5) ® 4(g3)

I= JIx

(€2 ® apoias + s ® g, 01 @ a0 + Aoy ® ez, 0,0)

f(€2 ®Ra, €1)X201109 + a1@2f(€2 ®Qa, €1)a2 + Oélf(el Ray €2)X0100
+061062061f<€1 Ry €2)

0.

(€2 ® apigay — 3y @ (o, 1 ® Qi30ry — Q30 ® €2, Qs @y
—e @ aqQ, A a3 @ €9 — (i3 @ ()

Flez ®a, €1)azazoy — azasf(es ®a, e1)as + a1 fler ®a, €2)azou
— a0 f(e1 ®ay €2) + 0102 f(€2 Ra, €3)0 — fe2 ®a, €3)
Qg0 + 1003 f(e3 Ra, 2) — a3 fes ®a, €2)aias

0.

(0,0, 62 ® agarzovy + gy @ iy, 3 @ 30y + Qs @ €3)

fes ®a, €3)asasay + azoyf(es @q, €3)0y

+as fes ®a, €2)asas + azasas fes ®a, €2)

0.

Hence Ker§' = Hom(Q', A) and dim Ker ¢! = 16.
Now we want to find Im¢°. Since Imd® = {0°(f) : f € Hom(Q% A)}. Let
f € Hom(Q", A), then f: Q° — A is given by

fle1 ®c, e1) =

f(62 ®€2 62) =

diey + daapar; + dsopry ooy + dyaaaizaaay + dsgisuqory ey

dses + droioe + dsazoy + doay s ory

f(e3®e,e3) = droes+dinouas+disagasoyas+digasog coas+digagoq coasogos

where d; € K. So we have

) @
0(g1) ® t(g1)
Ay

(—a1 ®eq,e0® ay,0)
—a1f(er Qe €1) + fles e, €2)ay

—leél — dQOélOéQOél — d40[10&20(30é40[1 + dﬁOél + d70610520é1

+dgazouan + dgon araizason
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= (=di +dg)ag + (—da + d7)aranay + (—dy + dy) oy sazagon
+dgazaaay.

(61 ® ap, —ap ® €3,0)

fler @e, e1)az — aafles ®e, €2)

leég + dzOégChOég + d4a2a3a4a1a2 — (d@O&z + d7a2a1a2 + d8a2a3a4

0(92) ® (35)

T T

+d9a2a1a2a3044)

(dy — dg)avg + (dy — d7)asayag + (dy — do) oz g
+dgaaazay.

(0,62 ® a3, —avg @ e3)

flea ®e, e2)as — asfles ®e, €3)

deaz + drayanag + dgasoyas + doovasasoyas — (dipass

o
—~
Q0
W
SN—
®
-~
~~
Nl
W
N—

T~ In

+diiazagas + disazasarasos)
= (dg — dio)ag + drayagas + (ds — dyy)agagas + (dy — dig)ageas
Q3.
0(g1) @ t(41) (0, —cu ® €2, €3 @ uq)
—auf(e2 ®e, €2) + fle3 @ey €3)04

—(d6a4 + d7a4a1a2 + d8064043064 + d9&4a1a2043044) + d10a4

T~ I

+d11a4a3a4 -+ d13a4a1a2a3a4
= (—ds + dio)as — dragaqag + (—dg + diy)agasoy + (—dy + di3)

g1 930y
Hence

Im d° = {6°(f) € Hom(Q", A) :
0°(F)(0(31) @ay (31)) = (=di + do)ar + (—dz + dr)ar00:
+ (—dy + dg)aragazagan + dgazasan,
0°(f)(0(33) ®az 1(33)) = (d — de)avs + (do — dr)asaray
+ (dy — dy)anazagagoq + dganazay,
SO(JZ)(U(Q%) Qag t(ﬁ%)) = (d6 — dio)az + dray gz + (ds — dip)azasas
+ (dg — di3)ianazayas,
50(13)(0(@1) @ay 101)) = (—ds + dio)ay — drogarias + (—ds + dir)sasay
+ (—dg + di3) g sazay }.
So dimIm 0° = 8 and hence dim HH!(A) = 8.
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5.3. HH?%. We now compute HH? explicitly for Example 5.1 and Example 5.2.

5.3.1. HH?(A). To find HH?*(A) for Example 5.1, we compute Ker 4, then Im ¢,
where 6% : Hom(Q? A) — Hom(Q?,A) and ' : Hom(Q', A) — Hom(Q? A). We
know Ker 62 = {f € Hom(Q?, A),0%(f) = 0}. Let f in Ker §2, then f € Hom(Q?, A).
So f:Q* — A is given by
V1V U+ CT + C3Y + 4Ty
V Qg U > C5U + g + CrY + cgxTy
V Q3 UV > CoU + C10X + c11Y + Ccroxy
where ¢; € K. Since 6%(f) = 0, then
o(g}) 2 t(gh) S (o(g}) @1 a7 @1 4(g}),0,0)
A flo®@yv)r —xf(v®v)
= T+ C3Yr — 1T — C3TY
0.
(0(g1) @1y —y @1 t(g7), —0(g3) ®2 ¥ — = @2 4(g3),0)
flo@iv)y —yflv@iv) = flv@v)r —zf(v @)

C1Y + CoxYy — C1T — CoYT — C5X — CrYX — C5X — C7TY

0(g3) ® t(g3)

I= I= 1

= —2c5r — 2c72y
= 0.
Now we need to consider two cases. If char K = 2, then there is no condition on
constants. If char K # 2, then ¢5 = ¢; = 0.
o(g) @ tgd) S (0,0(98) @2y +y @2 Hg3), 0(g3) @y & — = @5 ()
B f0@20)y+yf (0 820) + [0 @ v)a —af (v @y )
= 2c5x + 2cq2y
= 0.

Now we need to consider two cases. If char K = 2, then there is no condition on

constants. If char K # 2, then ¢5 = ¢ = 0.
o(g) @ tgd) S (0,0,0(g3) @5y —y €5 t(g}))
L, flv@zv)y —yf(v®sv)
= Coy + C10TY — ColY — C10TY
= 0.
Hence we have two cases. If char K = 2, then Ker §? = Hom(Q?, A).
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If char K # 2, then Ker 6 = {f € Hom(Q?% A) :
flv®1v) = c1v + ez + c3y + cuzy,
fv®2v) = cszy,
f(v®3v) = cov + cr92 + c11y + cr2zy}
We have two cases. If char K = 2, then dim Ker 62 = 12 and if char K # 2, then
dim Ker §% = 9.
Now we need to find Im §'. We know Im & = {§'(f), f € Hom(Q', A)}. So for
each f € Hom(Q', A), then we have f : Q' — A is given by
VR, v U+ cha + Yy + iy
UV Ry v G+ g + Ly + cgay.
where ¢} € K.

Now we will find §'(f),
o(g7) @4(gD) B (W@t ©v,0)
flo@,v)r+zf(v®,v)

2cix + 2chxy.

I- T

(WRY—YRV, TRV —VR )
f(v®wv)y—yf(v®xv)—i—xf(v@yv)—f(v®yv)x
=y + chry — cy — chry + kv + chay — ¢k — chyx

0.

0(g3) ® t(g3)

I= I= 1

0(g3) ® t(g3) 0, vy +ywv)
f(v Xy U)y +yf(v Xy v)

= 2w+ 2c5xy.

I= I%

Now we need to consider two cases. If char K = 2, then Im 6* = 0.
If char K # 2, then Im 6! = {f € Hom(Q?,A) :
fv®1v) =2cx + 2c5xy,
fv®9v) =0,
fv®3v) =2z + 2cgry}.
Hence dimIm ' = 0, if char K = 2 and Im ! = 4, if char K # 2.
Thus dim HH*(A) = 12, if char K = 2 and dim HH?*(A) = 5, if char K # 2.
Hence we have two cases. If char K = 2, then HH?*(A) = Hom(Q?, A).
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If char K # 2, then HH?*(A) = {f € Hom(Q? A) :
fv®1v) = c1v + ey,
flv@2v) = sy,
fv®3v) = cov + c11y}-

5.3.2. HH2(A). To find HH?(A) for Example 5.2, we compute Ker 62, then Im 4!
where 02 : Hom(Q? A) — Hom(Q? A) and 4" : Hom(Q',A) — Hom(Q? A).
We know Kerd® = {f € Hom(Q? A) : 6*(f) = 0}. We have Kerd? = {f ¢
Hom(Q?, A),02(f) = 0}. Let f in Keré?, then f € Hom(Q? A). So f: Q* — Ais
given by

€9 @1 €3 — kieg + kaovyag + kzaszoy + kyaganasoy

€9 ®g €9 > ksea + kgovyoe + krazony + kgopoaaizay

€2 ®3 €3 > koea + kiparas + kriazay + kpagasazay
where k; € K. We have 62(f) = 0, then

o) @ t31) S (o(32) @1 araz — a1 @1 (32),0,0)

I I%

fle2 @1 e2)anan — aras fex @1 e3)
kl(JélOéQ + k3a3a4a1ag - kl&lag - k3a1a2a3a4

= 0.

0(33) @ t(33) = (0(37) @1 azou — oz @1 t(31), —0(73) @2 a1y
—a10 ®2 4(33),0)
= f(ez ®1 €g)az0ry — O43064075(62 ®1 €) — f(ez ®y e2)a10ry
—a102f(e2 ®3 €3)
= kiazoy + koayanasay — kiasay — kaazagonan — ksoan
—krazauagag — ksapon — kropogosoy
= —2ksx — 2kxy

= 0.
Now we need to consider two cases. If char K = 2, then there is no condition on

constants. If char K # 2, then k5 = k; = 0.
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0(g5) ® 4(g3) (0,0(3) @2 as0u + asas ®2 4(33), 0(J3) @3 cnoz — aran ®s 4(g5))

T I3

f(ez ®9 €3)0300 + a3a4f(62 ®s €3) + f(ez ®3 €2)0 0

—041Oé2f(€2 ®3 €2)

=  ksaszay + kgapasasay + ksaszay + kgazagon o
+hoa g + kiiasagonag — kgonag — kjaianasoy

= 2]{?503044 + 2]{?(5@1(12043@4

= 0.
Now we need to consider two case. If char K = 2, then there is no condition on

constants. If char K # 2, then k5 = kg = 0.
o(5%) © 4(3) S (0,0, 0(33) ©5 s — s 25 4(37))
EN f(ez ®3 €9)gay — agaf(eg ®3 €9)
= kgazay + kroaragazay — kgazay — kpazagaias
=0.
Hence we have two cases. If char K = 2, then Ker > = Hom(Q?, A).
If char K # 2, then Ker 42 = {f € Hom(Q?, A) :
f(ea @1 €3) = kyey + kooyvg + ks + kgaganarzon,
f~(€2 Re, €2) = kgaranasay,

f(€2®3€2) = koeg+kipaian+ki1azoy +kipog ooy b

So we have if char K = 2, then dimKerd? = 12, and if char K # 2, then
dim Ker 62 = 9.
We now find Im 6'. We have Im ' = {3'(f), f € Hom(Q', A)}.
Let f € Hom(Q', A), then f: Q' — A is given by
€2 Qq, €1 > Iy + o Qo) + 33y + 7400 Qai30i40
€1 Qqy €2 F> T5Q + Qa1 Qg + T7Qiai30y + T80ia (] (o (V3.
€2 Qay €3 F> T9Qiz + Q343 + 11 Qo3 + T12Q3Q4 Q1 Qia (i3

€3 Qq, €2 > T130y + T1404 Q30 + T15Q40 Qg + T100 00 Qa3 Ly,

where r; € K.
Now we find §'(f),
0(g%) @ t(g?) & (€2 @ a1 + Ay @ (g, a1 @ g + ey ® eg,0)
2, f(ez Ray €1)X2010 + Oéloézf(ez Ra, €1)a + Oélf(€1 Ray €2)

Q10n + 041042041f(€1 Rasy 62)

0.
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0(33) ®H(G35) = (e2 ® apazony — gy ® g, 0 @ Qigovg — gy @ eg,
a1 ® g — €3 ® O Qg, Ay @ ey — a3 ® A as)

2 flez @a, €1)onasoy — azayf(es ®a, €1)an + a1 f(er ®aq, 2)asay
—063044alf(€1 Ray €2) + a1042f(€2 Ray €3)00 — f(ez Ray €3)0401 Q2

+Oé1042043f(63 Ry €2) — aaf(€3 Ry €2)0100

T101 030y — T'1 3041 (X9 + s o (X3(Xy — T'53004001 Op
Frgtii ozt — T9i30i i1 Qg + 1300 Qo i3y — 1130300 QL Qo

0.

0(§§) ® t(g?z,) (0,0, 62 ®@ azouas + azy ® oy, 3 @ oy + azouas @ e,

flea ®ay €3)as030u + 30 f(es @a, e3)0u + a3 f(es ®a, €2)asay
+043044043f(€3 Ra, €2)
= 0.

Hence Im 6! = 0 and dimIm ' = 0. Thus we have two cases. If char K = 2, then
dim HH?*(A) = 12, and if char K # 2, then dim HH*(A) = 9.

Hence we have two cases. If char K = 2, then HH?(A) = Hom(Q?, A).
If char K # 2, then HH?(A) = {f € Hom(Q? A) :
f(ea®1e5) = kyeg+ koo + kgazoug + ksayagorgouy,
Flea ®, e2) = ksanazasoy,

f(€2®3€2) = koea+kiponaatkiiasoy+kipogaaasay}.

5.3.3. The relation between HH*(A) and HH*(A) of Examples 5.1 and 5.2. We now
find the connection between HH?*(A) and HH?*(A) of Examples 5.1 and 5.2.

For Example 5.1 we have the basis of HH?(A) = sp{z1, 20, 23, 24, 25}, where
21 1 Q* — A which is given by (v ®; v) — v, else— 0.
2y : Q* — A which is given by (v ®; v) — c3y, else— 0.

z3 1 Q% — A which is given by (v ®, v) — cgy, else— 0.

25+ Q% — A which is given by (v ®3v) = c11y, else— 0.

)
)
)
z4 : @* — A which is given by (v ®3v) — v, elses 0.
)
(

For Example 5.2 we have the basis of HH*(A) = sp{21, %2, 23, 24, 75, %6, 27, 28, %0},
where

Z Q2 — A which is given by (es ®1 e3) > eg, else— 0.

Zy : Q2 — A which is given by (€2 ®1 €3) > kocyarg , else— 0.

Z3 Q2 — A which is given by (e2 ®1 e3) — kzazay, else— 0.
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Zy Q2 — A which is given by (e2 ®1 e3) — kyajsaszay, else— 0.
Z5 - QZ — A which is given by (e ®g e3) — kgajasaszay, else— 0.
%+ Q* — A which is given by (ey ®3 e3) — ey, elser 0.
(
(

)

)

)
Z7 QQ —— A which is given by (es ®3 e2) — kjpaiae, else— 0.
Zs : Q2 — A which is given by (es ®3 ) > kiazay, else— 0.
Zg - Q2 — A which is given by (e ®3 e3) — kijpayasagay, else— 0.
Now we define the group homomorphism ¢? : HH*(A) — HH?(A) via
Z1 > 21
Zo ¥ 23
Z3 > 2y
Za > Zg

25 > Zg.
5.4. HH?. We find HH*(A) for Example 5.1, and HH3*(A) for Example 5.2.

5.4.1. HH*(A). To find HH?*(A) for Example 5.1, we firstly find Ker 6°, then Im 62,
where 6% : Hom(Q?, A) — Hom(Q*, A) and §? : Hom(Q?* A) — Hom(Q?3, A). We
have Ker 8 = {f € Hom(Q3, A) : 83(f) = 0}. Let f in Ker §*, then f € Hom(Q3, A).
So f: Q% — A is given by
V@1V CLU + CoX + C3Y + 4Ty
V Qo V> C5V + Cg + CrY + C3TY
UV Q3 U > CgU + C10T + C11Y + C122Y
V@4 V> C13V + €147 + C15Y + C16TY
where ¢; € K. Since 6*(f) = 0, then
o(gh) @ tgt) S (o(g}) ®1 7+ @1 t(g}),0,0,0)
EA flo @ v)x+xf(v®v)
= 27+ 2c31y
= 0.
We need to consider two cases. If char K = 2, then there is no condition on constants.
If char K # 2, then ¢; = ¢3 = 0.
o(gd) @ ted) S (o(g}) @1y —y 21 t(g}), —0(g8) @2 7 + 7 5 t(g}),0,0)
flo@iv)y—yflo@iv) = flv@v)z+2f(v®v)
= 0.

=
gy
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d4 - -

o(gh) @tgd) & (0,0(93) Ry +y @2 t(g3),0(g3) @37 + 2 @3 t(g3),0)
L Fo @2 0)y + yf (v @5 0) + f(v @3 0)z + 2 f (0 ©30)
= 2c5y + 2c9x + 2(c6 + c11)xy

= 0.
So we consider two case. If char K = 2, then there is no condition on constants. If

char K # 2, then ¢5 = ¢g = 0 and ¢g = ¢13.

o(gh) @ t(gl) % (0,0,0(g3) @3y — y @3 t(gd), —0(g2) @4 7+ 7 B4 t(g2), 0)
L Fo@sv)y —yf(v @50) — fo @4 v)a + 2 f(v @40)
= 0.

o(gh) @ t(gh) % (0,0,0,0(g) ®uy +y©ut(g})
e fo@sv)y+yf(v@4v)

= 2c13Y + 2c14y

= 0.
Then we have two cases. If char K = 2, then there is no condition on constants. If

char K # 2, then ¢13 = ¢4 = 0.
Hence we have if char K = 2, then Ker 6> = Hom(Q?, A). If char K # 2, then
Keré® = {f € Hom(Q? A) :
flo®1v) = cox + cyy,
flv®qv) = cgx + cry + csry,
f(v®3v) = cr1or + cy + cramy,
fv®4v) = 152 + cre2y}-
So dim Ker 6 = 16,if char K = 2 and dim Ker §% = 9, if char K # 2.
We now find ITmé?  Since Imé? = {6*(f),f € Hom(Q?* A)} and let f €
Hom(Q?, A), then f: Q% — A is given by
VR v v+ dya + cyy + iy
U ®g U > Chv + g + Y + cgry
V30 > coU + X + Y + Yy,

where ¢, € K. So we have,
3

o(g) o Hgt) & w®r-28v,0,0)
A flov @ v)e —xf(v®v)
= da+day —cjx — chay

= 0.
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(U®1y—y®1v,—v®2x—x®2v,0)
flo@v)y —yflv@v) — flv@av)x — 2f(v @)

Ay + cdyry — cy — dyay — chx — chwy — chr — chyx

0(g3) @ t(g3)

I- I%

—2cix — 2chxy.

(0,0 R0y 4y R 0,0 Rz — T R30)
flw@v)y+yf(v®20) + f(v®sv)z —2f(v@30)
2cLx + 2¢5wy.

0(g3) ® t(g3)

I= I= 1

(0,0,v®3y —y ®3v)
flo®@zv)y —yf(v®30)
— dh + dhgay — chr — oy
= 0.
Considering two cases, we have if char K = 2, then Im §? = 0.

If char K # 2, then Im 6% = {f € Hom(Q2 A):
flo@rv) =

0(g3) ® t(g3)

I= I= 1

(
flv®yv) = —205:B — 2cxy,
fv®3v) =2y + 2¢5xy,
fv@40) =0}

So dimIm 6% = 0, if char K = 2 and dimIm 6% = 3, ifchar K # 2.
Thus dim HH?(A) = 16, if char K = 2 and dim HH?(A) = 6, if char K # 2.

So we have two cases. If char K = 2, then HH?(A) = Hom(Q3, A).
If char K # 2, then HH?*(A) = {f € Hom(Q?, A) :

5.4.2. HH*(A). For Example 5.2, let 6° : Hom(Q?, A) — Hom(Q*, A) and
62 : Hom(Q?, A) — Hom(Q?, A). We have Ker 6* = {f € Hom(Q?,A) : 83(f) = 0}.
Let f in Ker 0%, then f € Hom(Q? A). So f: Q* — A is given by

€y ®1 € > kres + kaayas + ksaszay + kiagasasay

€9 @9 €9 > kses + kgayas + kraszay + ksayanasay

€2 @3 g > koea + kipanag + kiiasay + ks agasay

eg ®4 €2 — kizes + kisanan + kisasay + kigagasasoy
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where k; € K. Since 0°(f) = 0, then
o(@l) @ ) S (0(@) ®1 moas +aray @1 (3).0,0,0)
s f(€2 ®1 e2)aray + 041Oé2f(€2 ®1 €2)
= 2kioqoag 4 2ksa ooy

= 0.
We need to consider two cases. If char K = 2, then there is no condition on constants.

If char K # 2, then k; = k3 = 0.
74
0(G4) @ Fh) S (0(F3) @1 azas — azay @1 4(GP), —0(38) ®2 aras
+aron Ko ’t(gg), 0)

T~

f(ez ®1 ea)z0y — 043044f(€2 ®1 e3) — f(ez ®9 €)1z
—aranf(es @ )

0.

T

(0,0(33) ®2 azay + azay @9 4(g3), 0(J3) ®3 aras
+ajas ®3t(g3),0)

0(g3) ® ¢(5)

T

f(€2 ®g eg) g0y + 043Oé4f(€2 ®g €2) + f(€2 ®3 e2)0 g + 0q Qg
f(€2 ®3 €)
= 2]65@3044 + 2k6a1a2a30z4 + 2]’6’90&10[2 + 2]{}110[1@2043044

= 2k’50&30&4 -+ 2](590610(2 -+ 2(k6 —+ kll)OélOégOé;gOé4.
We consider two cases. If char K = 2, then there is no condition on constants. If

char K # 2, then k5 = kg = 0 and kg = ki1.
o(GH @) D (0,0,0(3) @3 agas — agay @3 4G, —0(G3) @4 aras
+arap Q4 4(33))
Fles @3 e2)azay — azauf(es ®; e2) — fles @1 e2)ar0n + 1

f(€2 ®4 €2)
0

I~

(0,0,0,0(g%) @1y +y @4 t(73))
f(ez ®4 e2) 30 + a3044f(€2 ®4 €3)

= 2]4713@10&2 + 2k’140&10&20&30&4.
So we have two cases. If char K = 2, then there is no condition on constants. If

char K 7é 2, then ]{313 = k14 = 0.
Hence we have two cases. If char K = 2, then Ker 6® = Horn(@g7 /~\)

0(g5) ® ¢(35)

I\x l&»’ I
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If char K # 2, then Ker 4> = {f € Hom(Q?, A) :

f(e2 ®1 e2) = kaayan + kyaasazay,

(
f(62 ®3 e2) = ks + krasay + ksajasasay,
f(ez ®3 e2) = ko e + keizay + k120 paza,

f(62 ®4 62) = k150é30[4 —+ k160610é2043064}.

So we have, if char K = 2, then dim Ker 4% = 16. If char K # 2, then dim Ker 0® = 9.
We need to find Im 2. Since Imd*> = {6%(f), f € Hom(Q? A)} and let f €
Hom(Q?2, A), then f: Q* —» A is given by

es ®1 eg > khes + khajas + kyasay + kjaasasay

es Qg €9 > kies + kjaian + khasay + kfaasasay

/ / / /
€2 Q3 €9 > ]{5962 + kloOélOég + /{?11063C¥4 + k12a1a2a3a4,

where k] € K. We have,

o(3}) @ () %

I= 1

0(g3) ® 4(g3)

I I

0(g5) ® ¢(33)

l“ﬂl \T/%:' Il

0(g3) ® 4(g3)

I Iz

(62 ®1 10 — X1Q9 ®1 €2, 0, 0)

f(€2 ®1 e2)aras + a1a2f(€2 ®1 €2)

kiogas + Kyajasasas — kjajag — kajasasay

0.

(€2 @1 gy — 30y @1 €2, —€3 g A1y — A1y @3 €9, 0)

f(ez ®1 e2)a30y — 043044f(€2 ®1 e2) — f(€2 ®g €)1y — Q1
f(ez ®9 €2)

kiasay + khajasasoay — Kjasay — khajasasay — kionas
—k?/70[1042043044 — kéo{10[2 — ]{?—/70430[40[1062

—2]6/50410(2 — 2]{5!70410[20_/3(1/4.

(0, €2 @2 a30us + Y D2 €9, €2 @3 A1ty — A1 tp D3 €2)

f(€2 ®9 e9)azy + 043a4f(€2 ®9 €2) + f(€2 ®3 e9)a1ay — iy
f(62 ®3 €2)

2k ag + 2k asaizay.

(0, O, €9 ®3 304 — (304 ®3 62)

f(ez ®3 €9)z0y — 043044f(ez ®3 €2)

kgr + Kgarazazay — kgaras — Kjgarazazoy

0.

Now we need to consider two cases. If char K = 2, then Im 62 = 0, and
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if char K # 2, then Im 6% = {f € Hom(Q?,A) :

flea @1 e5) =0,
flea ®q e9) = —2kLaran — 2kL0q sy,

flea @5 €3) = 2kLagay + 2kkon oy,
fles ®4e5) = 0}.
So we have dimIm 2 = 0, if char K = 2 and dimIm 42 = 3, if char K # 2.
Thus, we have two cases. If char K = 2, then dim HH3(/~X) = 16. If char K # 2, then
dim HH*(A) = 6.
Hence we have two cases. If char K = 2, then HH*(A) = Hom(Q?, A).

If char K # 2, then HH*(A) = {f € Hom(Q?,A) :

5.4.3. The relation between HH(A) and HH?(A
the relationship between HH?*(A) and HH3(A

) of Examples 5.1 and 5.2. We find
of Examples 5.1 and 5.2.
For Example 5.1 we have the basis of HH?*(A) = sp{z1, 22, 23, 24, 25, 2 }, where

21 : Q3 — A which is given by (v ®1 v) — cox, else— 0.

(A

)

(

)

2y 1 Q3 — A which is given by (v ®3 v) = cy1y, else— 0.
z3 1 @ — A which is given by (v ®,v) — c7y, else— 0.
21+ Q* — A which is given by (v ®4 v) — cioz, else— 0.
25 1 Q® — A which is given by (v ®4v) — ci5y, else— 0.
26 1 Q> — A which is given by (v ®4v) = cigzy, else— 0.

For Example 5.2 we have the basis of HH? (A) = sp{Z1, 22, 23, Z4, 25, Z6 }, Where

% - Q® — A which is given by (e ®gs €a) > kaaiag, elser 0.

Zo Q3 A which is given by (ez ®; g3 €2) kioqaaaizay, else— 0.

%3 1 Q> — A which is given by

Z4 0 Q® — A which is given by (es ®; 3 €2) = kipaiag, else— 0.

)
( €2)
(e2 ®; . ea) — krazay, else— 0.
( €2)
Z5 . @3 —— A which is given by (es g3 es) > kysaizay, else— 0.
€2)

Z6 - Q3 — A which is given by (es g2 — kigapanaizay , else— 0.
So we define the group homomorphism

¢® : HH3(A) — HH*(A) via 2, — %, foralli =1,...,6.
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By the same argument we can show that HH*(A) = HH*(A) and HH®(A) =
HH®(A). We come back to this in the next chapter.
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6. STRATIFYING IDEALS AND HOCHSCHILD COHOMOLOGY FOR /~\

Chapters 6 and 7 study the Hochschild cohomology rings of A and its stretched
algebra A, and the finiteness condition (Fg). In this chapter, we give some results
on the stretched algebra A showing in Theorem 6.9 that AeA is a stratifying ideal.
After that we investigate the connection between HH*(A) and HH*(A) and finiteness
conditions. Chapter 7 will study when a d-Koszul algebra has (Fg) in order to apply
the results of this chapter. We begin Chapter 6 with some properties of stratifying

ideals.
6.1. Stratifying ideals.

Definition 6.1. [8, Definition 2.1.1] Let A be an algebra and e an idempotent in
A. The two sided ideal AeA generated by e is called a stratifying ideal if

e The multiplication map Ae ®.4. eA — AeA is an isomorphism, and
e For all n > 0, Tor®*(Ae,eA) = 0.

In order to decide if an ideal is a stratifying ideal, we give some properties of Tor.

Definition 6.2. [40, Chapter 6] Let R be a ring. If M is a left R-module and
ds d do
P, —P—FP—N-—0

is a projective resolution of a right R-module N, then

Tor® (N, M) = Ker(d,, ® 15)/ Im(dp 11 @ 1p).

Theorem 6.3. [/0, Theorem 7.2] If a right R-module F is flat, then Tor(F, M) =
0, for all n > 0 and for every left R-module M.

Since every projective module is flat, then we have the following corollary.

Corollary 6.4. If P is a projective right R-module, then Tor®(P, M) = 0, for all
n > 0 and for every left R-module M.

Remark 6.5. Let e be an idempotent element in A. If Ae is projective as a right
eAe-module and the multiplication map Ae ®,4. €A — AeA is an isomorphism,

then AeA is a stratifying ideal.

Now we use Remark 6.5 to prove AesA is a stratifying ideal for the algebra A in

Example 5.2.
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Proposition 6.6. Let A be the algebra in Example 5.2 and we keep the notation of
the previous chapters. Then AesA is a stratifying ideal.

Proof. For ease of notation, we set B = esley. We show first Ae, is projective as a
right B-module, then we prove the multiplication map AQQ ®B 62]\ — ]\62]\ is an
isomorphism.

We have

]\62 = Sp{€2, A2, Qg, A, A3y, Q2 A, Ao (X3(ly, (g (2, Ly (X3 0y, (Y] 2 (X3 Oy,
Qo1 i3y, (g iy b and
B = sp{es, aran, azay, ayasazay ).
So we have ey B = sp{eq, ajan, azay, ajasagay},
as B = sp{ag, agayag, agagay, agaganasay }
ayB = sp{ay, agaian, agazay, agaganagag}.
Hence Aeg =eyB ® asB ® ayB, where e B, as B, ay B are right B-modules. Since
es is an idempotent in B, then ey B is projective as a right B-module. Now, using
Proposition 4.15, we have es B = as B and e; B = ayB. Hence /~\€2 = ey BPeyBdes B,
where ey B is projective as a right B-module. Since the direct sum of projective
modules is projective, then Ae, is projective as a right B-module.

Next we show that the multiplication map /~\62 KB 62[\ — /~\€2/~\ is an isomorphism.
We define the map ) : /~\62 ®XpB 62]\ — Aegf\ via 5\62 Xp esft — :\62[6. It is clear
that ¢ is a A-A-bimodule homomorphism and is onto. So we need to show that v is
one-to-one. We refer the reader to the general result in Theorem 6.9, noting that we

can write \es ®p eafi as
€ @B €aV1 + e, @B €212 + ey @B €213

where 11, 1, 3 are elements of A and Je, = i, Ges = 4 (See also Lemma 6.7). Thus
AeyA is a stratifying ideal.
O

Lemma 6.7. Let A = KQ/I and let A be the stretched algebra. We keep the
notation of the previous chapters with ¢ = ZUGQO v and B = ehe. An element of

Ae @p el is of the form

ERpev+ Z quE QB EVy

weQp\ Qo
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where v, v, are elements of A.

Proof. Let Ae®pefiin Ae®@peA. Then 1;\(5\56935&) = 55‘5®B’3/-‘+Zweéo\go WAER g
gft. So we have eXe Q5 ep = eele Qp ep =€ Qp 55\65;] =c®p 55\5;2 =c®pev,
where v = 5\5/1 which is an element in A.

Also, by the construction of the quiver, we = GuwB(N)e, for some A € A, so

Y wcago WA OB Efl = 3 ,co0 0, Wwl(NE @p efi
D _wedp\, Wwe @B e0(A)eci
2 wedn\0, Iwe OB E0(N)eft
D wedo\0p QwE OB €V

where v, = e0(\)eji which is an element in A, and the result follows. U

Proposition 6.8. Let A = KQ/I and let A be the stretched algebra. We keep the
notation of the previous chapters with ¢ = Zvegov and B = eAe. Then Ae is

projective as a right B-module.

Proof. We will show Ae = eB @ ( DBre B0\ Qo U’B). For v € Qq, Av has basis which
consists of all paths which start from a vertex in Qy and end at v, and all paths
start from a vertex w and end at v, where w € Qo \ Qp. Then using Definition 4.11,

we can write Av as Av = eAv + Zweéo\go GwAv, for all v € Qy. Hence
Ae=eB + Z GuwB.
w€eQo\Qo
Next we show that >, 5\ 0, @B = ®eso0,dwB- Let Gub € GuB N2, 2,Gw B
Then G,b = wq,b = w Zw,iw W' Gy by = 0, where b, b,y € B. So quBﬂZw,#w Guw B =
0 and hence ZwEQo\Qo GuB = @ ,5,\0,dwB- Then

Ae =¢B+ (Duedn 0,dwB)-

Now we show that eB N (@wEQO\Qo q~wB) =0. Let ebe BN (@weéo\Qo q~wB).
So b = Zweéo\go Guwbw, where b, b, in B. Then e¢b = ceb=¢)_ by, = 0.
Hence eB N ( Buedo\o cij) = 0 and thus

weEQo\ Qo Qw

‘7\6 =eB® ( 69wEQo\Qo ng)
83



Since ¢ is an idempotent in B, then €B is projective as a right B-module. By
using Proposition 4.15(1) we have v'B = §,B as right B-modules. Hence, Ae =
eB & ( DPrve B0\ 0o U’B) where B, v'B are projective right B-modules. Since the
direct sum of projective modules is projective, then Ae is projective as a right

B-module. O

We can now generalize Proposition 6.6.

Theorem 6.9. Let A = KQ/I and let A be the stretched algebra. We keep the
notation of the previous chapters with ¢ = ZUGQO v and B = eAe. Then AeA is a
stratifying ideal of A.

Proof. By using Proposition 6.8, we have Ae is projective as a right B-module. From
Remark 6.5, it remains to show that the multiplication map Ae @ 5 eA — AeA is
an isomorphism. We define the map ¢ : Ae ® 5 eA — Ael via e Qp fi — ;\5,&. It
is clear that v is a A-A-bimodule homomorphism and is onto. So we need to show

that 1 is one-to-one. Suppose that

(e ®p efin) = Yot @p fia).

Then by Lemma 6.7, we have

Me@pefin =e@pev+ Y GuE @l
weEQo\ Qo
and

MoE @p gfis = € @p eV + Z Gue Q eV,
we o\ Qo

where v, v, V/, v, are elements in A. Then

Y(e ®pev + Z Gue ® eVy) = (e @p e + Z Gue R eV,

wEQo\Qo wEBQp\ Qo
So
eV + Z GuVw = €V + Z Gul,,-
wEQo\ Qo weBo\ Qo
and hence
ev—ev + Z Gu(vw —v),) = 0. (4)
weQp\ Qo
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First we multiply (3) by e, then we get ev — e/ = 0. Second we multiply (3)
by w, where w € Qqy \ Qo, then we have G, (v, — ©/,) = 0. Since the ideal T
of KQ is generated by uniform elements G3,...,g2 which all start and end at a
vertex in Qp, a similar argument to Proposition 4.14 shows that v, = v/,. Thus
5\16 Rp Efly = :\25 ®p ez and hence 1) is one-to-one.

Therefore AeA is a stratifying ideal. 0J

6.2. The projective dimension of A//N\sf\. We start with the algebra A; in
Examples 2.40, 3.13, 4.2 and see also 5.2; and show that /~\//~Xezz~\ has projective
dimension 2 in this case. We omit some of the details as they are in the general

case, which is Theorem 6.12. We keep the notation from previous chapters.

Proposition 6.10. Let A be the algebra in Example 5.2. Then there exists a minimal
projective A-A-bimodule resolution of /~\/]~\62/~\

0— 2225 7125 R0 A% A /Resh — 0.

Proof. To construct this resolution, we need to find projective bimodules R and
maps A" for all n = 0,1,2. Since A/AesA = sp{ey, es}, we define R = Aey @ e; A @
/~\e3 ® 63]\ and we define the map
A% RO — AJAeyA via
(5\161 0% 61,&1, ;\263 X 63,&2) — (5\161,&1 + 5\263,&2) + /162]\, where S\Z’, [Ll € /~\
We have Ker AO = {(5\161 X 61/]1, 5\263 X 62/]/2) . 5\161/]/1 + 5\263[13 € /NX€2/~\} and we
have
/~\€1 = Sp{€1, Qap, G0y, Qaliy, 3y, A Qiply, (g3 iy, i3yl , Qg (v
[ebleseblespResiedietieviespReviesyelle ieviesy 012041042043044041}7
61]\ = sp{el, g, QgX1, Oglg, g3y, Qo (X1 (g, Aoz y (X3, Do (X304 (X1, QLo (X1 (i (X1,
Qo1 (a3, Qip(i (X3 iy, Cig (X Qa3 (V4 (X3, 0420é1042043044@1},
/~\€3 = Sp{€3, a3, QpQrg, Qg i3, 1 Qp(xg, 34 (N3, Qo (X o (X3, Y4V (a3, 4 (X34 (Y3,
QoQi3QiyQig, (X1 o X3y (X3, Qo (V] Ao (X34 (3, 044&1(12043044063},
63[\ = Sp{€3, Qy, g3, Qg0 , Qqi3Qy, O Qlg, (g3, Qg (a3, Qg Qi (g,
030403, i1 o 30y, g Olg 3V (X 0[40410420430[4043}.
/N\GQ = Sp{eg, g, Oy, 019, O30y, D91 Qlg, (3 (y, Vg1 Qlg, g3y, L1 o3y,
Q0 Q30 QL a3y} and

e\ = sp{ez, Qq, a3, Qi Qig, A3y, QL QY , 3 ry, QL Qi i3, (i3 (X3, OV Cig (U3 iy,
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Q) o300y, O a3l (3 } .
Also, we note that p., = a1, Ge, = Q2, Dey = @3, ey = 4. S0 dim Ae; @ ey A = 169
and dim Aes ® e3A = 169. Then it can be shown that the generators of Ker A% are
€1 ® ey Pey D €1,63 R (ey, Pes @ €3.
So we let R! = /~\€1 ® 62A &> ]\62 ® 61]\ &5 /~\63 ® 62[\ &5 /162 ® 63[\ and we define
the map A!: R — RO as follows
€1 ® ey > e ® e
€2 @ €1 > Pe; @ €1
€3 @ ez > €3 @ (eq
€2 @ €3 > Pey @ €3.

Now we have

dimKer A! = dim R! — dim Ker A°
= dim R' — (dim R° — dim(A/AeyA))
= 624 — 336

= 288.
It can be shown that the generators of Ker Al are (., ® ez, —€3 @ Ge,,0,0) and

(0,0, Pey @ €2, —€3 @ G, ). Hence we define the bimodule R? = Aey ® esA @ Aey @ esA\,
and we define the map A?: R?2 — R! via

es ® e > (Pe; ® €2, —€2 @ ey, 0,0)

ez @ e+ (0,0, Pey @ €2, —€2 @ ey ).
Now dim R? = 288, so dim Ker A2 = dim R? — dim Ker A' = 0. Hence, we have the

minimal projective resolution
~ 2 ~ 1 ~ 0 ~ o~ ~
0— B2 25 R' 25 RO 25 A/Aesh — 0.

as required. O

We now consider the general case and recall some notation from Chapter 4. For
each arrow « in Qj, we have 6(a) = oy - - - a4 and additional vertices wyq,...,wa_1
in Qp, where w; = t(ay) fori = 1,..., A—1. So w; is properly internal to (c). Also
we set dimAv = V, and dimv’A = V’, where v = o(a) and v = t(a). We recall
that p,,, is the unique shortest path in K O which starts at a vertex in Qp and ends
at w; and g, is the unique shortest path in K Q which starts at the vertex w; and

ends at a vertex in Qy. We note that p,, = a1 - o; and ¢, = Q41 - Q4.
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We define I',, to be the subquiver of o)

w1 g W2 as ap—1WA-1
Fa-—._>._>..._> .

We have
RJAeA = @oco, (Runh + Rush + - + Awy 1A + Ach)/AeA.
Then we define X, = (Awlf\ + AwoA + - + Awa A+ /15[\)/[&5]\, SO
AJAeA = Beo, Xo
and hence, KT, & X, as algebras.

Proposition 6.11. Let A = KQ/I and let A be the stretched algebra. We keep the
notation of the previous chapters. Then dim A/AeA = m;((A — 1)A/2), where m,

is the number of arrows of Q.

Proof. From the construction of A, and for each arrow « in Q;, we have the following
basis elements in A/AeA :

A — 1 vertices

A — 2 arrows am, ..., 04 1

A — 3 paths of length 2

and 1 path of length A — 2 (which is the path ag---a4_1). So

A-1
. (A-1)A
dim X, = =
im ;z 5
Then
[ A-1)A
dim A/AeA = my dim X, = ma 5 )
where m; is the number of arrows of Q. O

We now ready to generalize Proposition 6.10.

Theorem 6.12. Let A = KQ/I and let A be the stretched algebra. Keeping the

above notation, X, has a minimal projective A-A-bimodule resolution

so AL = AL o AQ
0— R2 S8 R S8 RO S x 0,
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Moreover, we have a minimal projective A-A-bimodule resolution of A / AeA
0 B2 2% B AL 30 A% R/RER — 0

where R = &R, fori=0,1,2 and a € Q.

Proof. Let a € 9y, and consider X, with the above notation. Now, we define
the bimodule R% = @A 'Aw; ® w;A and we define the map A% : RY — X, via
w; @ w; — w; + AeA wherei=1,...,A—1.
Using Proposition 4.16 with dim Av = V, dimv’A = V’, we have
dim R = Z;.A:_ll dim(Aw;) dim (w; A)
= T4 GEHV((A-i)+ V)
= S NA-)+ S VYV s (A- VY
= (A-1DAA+1)/6 +(A-1DAV)/2+ ((A—-1)AV")/2
+A-1HVV!
= A-1)(VV'+ AV +V')/24+ A(A+1)/6).

Hence
dimKer A? = dim R? — dim X,

= A-1D(VV' + AV +V"/24+ AA+1)/6) — (A(A—1))/2
= (A=D1 (VV'+ AV +V')/24+ A(A-2)/6).
The next step is to find the generators of Ker A2. Let K be the A-A-bimodule
generated by {Pw, @W1, WA—1 @ Gu,_,, Wi QU1 — iy QW;pq, whered = 1,..., A—2}.
So we can see that K C Ker A?. Note that, for all i =1,...; A — 1, p,, ® w; is in

Ker A?. Indeed p,, ® w; € K, as we can write
Py, QW; = (P, @1 ) Z oy - (W @01 — 0 QW) yg - - - Oy

We claim that Ker A2 = K. We have

A2
K = Aﬁwl ® wiA+Awa, ® @qu]\ ]\<wi ® Qg1 — Q41 & wi-l—l)A'
=1
We note that
A2
ﬁwl ® le = Zﬁ] (wj ® Oj1 — Qg1 & wj+1)q~j+1 +I5wA—1 ® ij’lﬂA—l'
j=1
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First suppose that A = 2. We set U; = Aﬁwl @ wA and Uy = Aw; @ q~w1/~\.
Then K = U; + Us. So dim K = dim U; 4 dim Us — dim(U; N Usy). We can see that
U nNnUy = Aﬁwl ® q~w1/~\, since Dy, and G,, are arrows in Q So, from Proposition
416, we have dmK = V(1 +V )+ 1+ V)V = VV' =V + V' +VV'. So
dim K = dim Ker A?. Therefore K = Ker AY.

Now suppose that A > 3. We set U; = Aﬁwl ® w1/~\, Uy = /iwA,l ® cij_lf\, and
Us = ZiA:_IQ A(wi®ai+1—ai+1®wi+1)/~\. We can see that /N\(wi®ai+1—ai+1®wi+1)[\ =
Aw; @ wig1)A. Then dim K = dim(U, + Uy) + dim U — dim(U, + Uy) N Us.

Here dim(U; + Us) = dimU; + dim Uy — dim(U; N Uz). We want to show that
Uy NU; = {0}. We can see that U; C /N\wl ® w1/~\ and Uy C /N\wA_1 &® wA_1/~X. Since
A > 3 we have Uy N Uy = {0}. So using Proposition 4.15, we have

dimU; = V((A-1)+V)

dimU, = (A-1)+ W)V’

dimUs = 2260+ V)((A—(i+1) + V).

We can see that py, ® Gu, — Dwa_y @ Guw,_, 18 in Uy + Us. Also

ﬁwl X qw1 - ﬁwA,1 X (ij,1 = ﬁwl (wl ® Qo — (g ® wQ)sz
FDw, (W2 @ a3 — a3 @ W3) Gy
_'_ e +

FPwy o, (Wa—2 @ a1 — a1 @WA—1)Guy_,-

so it is in Us and hence it is in (U; + Us) NUs. Moreover, (U 4+ Us) N Us is generated
by ﬁwl ® (jun - ﬁw,q_1 ® Cij_y So

dim((Uy + Us) N Uz) = dim APy, @ Gy — Proa_s @ Gun)A = V'V,

Hence, dim K
—V((A=D+V)+ (A=) + V' + 226+ V(A= G+ 1)+ V) =V
— V(A= D)+VV V(A=) + 20 A— (i+ 1)+ S22V + S22 V(A= (i+1))
+ v
= (A=1)(VHV)+(A=1)VV'+(A(A - 2)(A —1))/2—((A — 2)(A — 1)(24 — 3)) /6
—((A=-2)(A-1))2+ (V(A-1)(A-2))/2+ (V(A-1)(A-2))/2
=(A-1)(VV' + AV +V")/2+ A(A-2)/6).
So dim K = dim Ker Ag. Therefore K = Ker Ag.
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Now we define R}l = Av @ u A @ (@;4:_12 Aw; ® wiH/NX) ® Awa_; @ v'A, and we
define the map Al : RL — RO via
VR W > Puy @ Wy
Wi @ Wig1 = Wi @ Qip1 — Qip1 @ Wit
Wa—1 @V = w1 @ Gu,_,
where p,,, ® w; lies in the t(a;) ® t(;)-component of Rg, Wa—1 ® Gu,_, lies in the
0(an) ® o(ay)-component of R, w; ® ay iy lies in the 0(a;y1) ® 0(ayy1)-component
of RO and a1 ® wiyq lies in the (a;y1) ® t(@qq)-component of R%. Then
dim Ré = dim Avdim wlf\ + Zf:_f dim [N\wi dim wiH/NX + dim ]\wA,l dim v'A
= V(A-D+V)+ 260+ V(A= (i+1)+ V)
+((A-1)+ V)V’
= SISV AV A - (i 4 1))
= AVV' + (A(A-1)(V+ V") /24 (A(A—-1)(A - 2))/6.
Then dim Ker A, = dim R} — dim Ker A? = VV".
Now we want to find the generators of Ker Al. We can see that
2= (V® Guy» —Puwr @ Guns -+ » Dy @ Guoyrs -+ -
—Puwa—s @ Gua_r» ~Pua_, @ V')
is in Ker A}. Now z generates a sub-bimodule of Ker A} of dimension VV’. Hence
Ker Al is generated by z. So
Ker AL = AV ® Guyy —Pus @ Gugy -+ + > — Dy @ Guogyrs -+ - »
Py @ Quy s ~Pus ®V)A.
Then we define R2 = Av ® v'A and we define the map A2 : R? — R! via
VRV = (VR Guyy —Duy @ Gugs -+ s =Py @ Guogprs - - -
— Pwaz @ Guayy ~Puwa, OV).
Then dim k2 = V'V’ and so dim Ker A2 = dim R2 — dim Ker AL = 0. Thus, we have

the minimal projective resolution of X,
p2 A4 p1 Do po A4
0 — R, — R, — R, — X, — 0.

The result follows. 0

Corollary 6.13. Let A = KQ/I and let A be the stretched algebra. With the above

notation, pdimg. A/ZN\EJNX = 2.
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6.3. Hochschild cohomology, finiteness conditions, and eventually homo-
logical isomorphisms. We review some definitions and results that relate to
Hochschild cohomology, finiteness conditions, and eventually homological isomor-
phisms which are used in the next section.

We start by introducing the ideal of HH*(A) which is generated by nilpotent
elements. First note that, if A is a finite dimensional algebra over a field K with
char K # 2, then any homogeneous element of HH*(A) of odd degree is nilpotent.
To see this, let z € HH*(A) be a homogeneous element of odd degree. By using
HH*(A) is a graded commutative ring (see Theorem 2.38), then 2? = —z? and hence

222 = 0. So 22 =0, and thus z is nilpotent.

Definition 6.14. [44] Let N be the ideal in HH*(A) which is generated by all
homogeneous nilpotent elements. Note that A is a graded ideal and also that N is
the set of all nilpotent elements in HH*(A), since HH*(A) is graded commutative.

Proposition 6.15. [/4] Let A be a finite dimensional algebra over a field K and
let M € mod A. Then

on - HH*(A) — Ext’ (M, M)

is a homomorphism of graded rings, which is given by (=) = M @4 —.

Let M be a right A-module. The ring homomorphism ¢,; in Proposition 6.15
gives Ext’ (M, M) a left and a right HH*(A)-module structure. In general, suppose
we have graded rings R and S and a graded ring homomorphism f : S — R. Then
we have a right S-module structure on R which is given by r - s = rf(s) and a left
S-module structure on R which is given by s-r = f(s)r. Moreover, Snashall and
Solberg show in [44, Theorem 1.1] that the left and right module structures are
connected in the following way: let n € HH"(A) and 6 € Ext"} (M, M), then

m ()0 = (=1)""0pnrr(n).

We now introduce the assumption (Fg) which relates to finiteness conditions
on Hochschild cohomology and was introduced by Erdmann, Holloway, Snashall,

Solberg, and Taillefer in [11]. See also [46].
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Definition 6.16. [11] Let A be an indecomposable finite dimensional algebra over
an algebraically closed field K.

(Fgl). H is a graded subalgebra of HH*(A) such that H is a commutative Noether-
ian ring and H° = HH"(A).

(Fg2). E(A) is a finitely generated H-module.

We say A satisfies (Fg) if (Fgl) and (Fg2) hold for some H.

Remark 6.17. Note that [11] shows that the two assumptions (Fgl) and (Fg2)
imply that HH*(A) is a finitely generated H-module, and consequently HH*(A)

itself is finitely generated as a K-algebra. Moreover, F(A) is a finitely generated
K-algebra.

This work is connected to the more general concept of an eventually homological
isomorphism, which was introduced by Psaroudakis, Skartseeterhagen and Solberg

in [39]. We start with some definitions.

Definition 6.18. [39] Given a functor f : B — C between abelian categories and
an integer ¢, the functor f§ is called a t-homological isomorphism if there is a group
isomorphism

Ext}(B, B') = Ext}(f(B),}(B'))

for every pair of objects B, B’ in 8, and every j > t. Moreover these isomorphisms
are not required to be induced by the functor f.
If § is a t-homological isomorphism for some ¢, then we say that f is an eventually

homological isomorphism.

We recall the restriction functor from [2] and Chapter 4. For an algebra A, set
B = eAe, where e is an idempotent in A. Then res, is the functor res, : mod A —

mod B which is given by res.(N) = (N)e, where N is in mod A.

Theorem 6.19. [39, Lemma 8.23] Let A be a finite dimensional algebra over an
algebraically closed field K. Suppose that AeA is a stratifying ideal in A. Then the
following are equivalent:

(1) pdimy. A/AeA < oo.

(2) The functor res, : mod A — mod B is an eventually homological isomor-

phism.
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We note that the proof of [39, Lemma 8.23] gives the following result.

Proposition 6.20. [39, Proof of Lemma 8.23] Let A be a finite dimensional algebra
over an algebraically closed field K. Suppose that AeA is a stratifying ideal in A.
Suppose also that pdim 4 A/AeA < oo. If pdim 4. A/AeA =t then the functor res,

1s a t-homological isomorphism.

Definition 6.21. (See [39, Section 4, p63]) Let A be a finite dimensional algebra

over a field. Then A is called Gorenstein if idim A4 < oo and idimy4 A < oo.
We have the following result from [11].

Theorem 6.22. [11, Theorem 2.5 (a)] Let A be an indecomposable finite dimen-
stonal algebra over an algebraically closed field K. Suppose that A and H satisfy
(Fg). Then the algebra A is Gorenstein.

6.4. Hochschild cohomology of A and A. We now use these results, especially
Theorem 6.9 and Corollary 6.13 to investigate the relationship between HH*(A)
and HH*(A). We build on the work of Koenig and Nagase [34], Nagase [37] and
Psaroudakis, Skartsseterhagen and Solberg [39]. Our main results in this section are

Theorem 6.24, Theorem 6.27, Theorem 6.32, Theorem 6.35, and Theorem 6.37.

Proposition 6.23. [37, Proposition 6(1)] Let A be an algebra with a stratifying
ideal AeA. Suppose pdim 4. A/AeA < co. Then we have HH="(A) = HH="(eAe)
as graded algebras, where n = pdim 4. A/AeA + 1.

Combining this with Corollary 6.13 gives the following result.

Theorem 6.24. We keep the above notation, so that AeA is a stratifying ideal of
A. Then HHZ3(A) = HHZ3(A) as graded algebras.

Il

This generalises the result of Example 5.2 from Chapter 5 when we saw HH?(A)
HH3(A).

Koenig and Nagase [34] also look at the Hochschild cohomology groups of the
algebra A/AeA.

Proposition 6.25. [34, Proposition 3.3(3)] Let A be an algebra with a stratifying

ideal AeA. For anyn >0, then HH"(A/AeA) = Ext,. (A/AeA, AJ/AeA).
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Using Corollary 6.13, we get the following result when we apply it to A.

Proposition 6.26. Let A = KQ/I and let A be the stretched algebra. Keeping the
notation of the previous chapters, then we have

Hence HH"(A/AeA) = 0, for alln > 3.
However, the following result shows that we also have HH*(A/AcA) = 0.

Theorem 6.27. Let A = KQ/I and let A be the stretched algebra. We keep the

notation of the previous chapters. Then
HH"(A/AeA) = 0,
for alln > 2.

Proof. The case n > 3 is in Proposition 6.26, so we assume n = 2. By using the
projective resolution of A/AeA and applying Hom ie(—, A/ ]\5[\) we get the following

complex

0— Hom]\e(]%o, A/Ael) LN Hom;\e(}?l,]\/f\g]\) 2, HomAe(RQ, A/AeA) 20.

g € Hom(R?, A/AcA). Recall from Theorem 6.12 that R? = @aco,Ao(a) ® t(a)A.
Then for each a in Qy, we have g(o(a) ® t(a)) = z 4+ AeA for some z in A. Since
o(a)(g(o(a) ® t(a)t(a) = glo(a) @ t(a)), then = + A/AeA = 0 + A/AeA and

HH?*(A/AeA) = 0. O

Remark 6.28. We give now an alternative proof for Theorem 6.27. By using
Theorem 2.27, we have that X, is hereditary and then A / AeA is hereditary. Thus
gldim A/AeA = 1 and hence HH"(A/AcA) = 0, for all n > 2.

Proposition 6.29. Let A = KQ/I and let A be the stretched algebra. We keep the

above notation. Then

HH*(A/AeA)/N = HH°(A/AeA) /(N N HH®(A/AeA)).
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Proof. By Theorem 6.27 we have HH"(A/AcA) = 0, for all n > 2. So
HH*(A/AcA) = HH°(A/AcA) @ HH'(A/AcA).
Since HH*(A/AcA) is a graded algebra, then again from Theorem 6.27 we have
HH'(A/AcA) x HH'(A/AeA) = 0.

So for each n € HH'(A/AeA), we have n? = 0 and hence 7 is nilpotent. Thus,

HH*(A/AsA)/N = HH°(A/AcA) /(N N HH®(A/AeA)). O
Koenig and Nagase show in [34] that there are three long exact sequences which

connect HH"(A), HH"(eAe) and HH"(A/AeA).

Theorem 6.30. [34, Theorem 3.4] Let A be an algebra with a stratifying ideal
AeA. Then there are long exact sequences as follows:

(1) -+ — Ext".(A, AeA) — HH"(A) — HH"(A/AeA) — ...

(2) -+ — Ext.(A/AeA, A) — HH"(A) — HH"(ede) — ...

(3) -+ — Ext".(A/AeA, AeA) — HH"(A) =

HH"(A/AeA)®HH" (eAe) — ...

Corollary 6.31. [34, Corollary 3.5] Let A be an algebra with a stratifying ideal
AeA.

(1) Let f : HH*(A) — HH*(A/AeA) x HH"(eAe) be the graded algebra homo-

morphism from Theorem 6.30(3). Then (Ker f)? vanishes.
(2) The induced homomorphism

f: HH*(A)/N — HH*(A/AeA)/N x HH*(eAe) /N
18 1njective.

Recalling that eAe = A, then we get the following result when we apply Theorem
6.30 and Corollary 6.31 to A.

Theorem 6.32. Let A = KQ/I and let A be the stretched algebra. We keep the
previous notation.

(1) There is a long exact sequence

HH"(A/AeA) @ HH"(cAe) — ...
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(2) Let f: HH*(A) — HH*(A/AcA) x HH*(A) be the graded algebra homomor-
phism from (1). Then (Ker f)? vanishes.
(3) The induced homomorphism f : HH*(A) /N — HH°(A/AeA) /N xHH*(A) /N
18 injective.
Note that the algebras A and A may be connected but A / AeA is not necessarily

connected.

Example 6.33. Let A be the algebra of Examples 2.40, 3.13, 4.2 and 5.2. From
Proposition 6.6 AesA is a stratifying ideal. It can be seen that /N\/[Xegf\ =516 95;.
We may illustrate A/AesA as follows:

€1 .€3

We can see that A/Ae;yA is disconnected.
We now consider the finiteness condition (Fg).

Proposition 6.34. [37, Proposition 6(2)] Let A be an algebra with a stratifying
ideal AeA. Suppose pdim 4. A/AeA < 0o. Then A satisfies (Fg) if and only if eAe
satisfies (Fg).

We recall in our construction of A from A we have that A = cAe. So using

Corollary 6.13 we have the following result.

Theorem 6.35. Let A = KQ/I and let A be the stretched algebra. We keep the
previous notation. Then A satisfies (Fg) if and only if A satisfies (Fg).

For our construction of A, we use Corollary 6.13, Theorem 6.19 and Proposition

6.20 to get the following result.

Corollary 6.36. Let A = KQ/I and let A be the stretched algebra. We keep the
notation of the previous chapters. Let K be an algebraically closed field. Then
the functor res. : mod A — modeAe is an eventually homological isomorphism.

Indeed, res. : mod A —s modeAe is a 2-homological isomorphism.

Recall that Erdmann, Holloway, Snashall, Solberg, and Taillefer showed in Theo-
rem 6.22, that when the algebra A has (Fg), then A is Gorenstein. We now use the

method of [39, Theorem 4.3] to prove the following result.
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Theorem 6.37. Let A = KQ/I be a finite dimensional algebra and let A be the
stretched algebra. Then idim; A < sup{idim, A, 2}.

Proof. The inequality holds if A has infinite injective dimension. We assume
idimy A = n. Then sup{idimy A, 2} = max{idimy A, 2}. Let m = max{idim A, 2} +

1. By Corollary 6.36, res. is a 2-homological isomorphism, so we have
Ext?(X,Y) = Ext}'(res.(X),res.(Y))

for all X,Y € mod A. Now, set Y = A. Then

Ext?(X, A) = Ext}(res.(X), res.(A)) = Ext} (res.(X), Ae).
From Proposition 6.8 we have Ae is projective as a right eAe-module. So idims Ae <
n, since A has injective dimension n and A 2 eAe. It follows that Ext? ! (res.(X), Ae) =
0. Hence Ext§ (X, A) =0 and so idim; A < m — 1 = max{idim, A, 2}, using Propo-
sition 2.25. U

We end this chapter with some examples to illustrate the result above.

Example 6.38. Let A = KQ/I, where Q is the quiver

and I = (g, asagas). The sets g" are
¢ ¢° = {e1, ez}, with g = €1 and g3 = ey;
o g' = {a1, s}, with g7 = a; and g5 = ay;
¢ g = {onasar, avonas}, with 9% = ajapa; and 9% = Qo0 Q;
e For all n > 3, n odd, we have g7 = ¢" 'as, g5 = g5 'ou;
e For all n > 3, n even, we have g7 = ¢/ *ayay, g5 = g5 'ana
We can now see that the elements g € g™ have length §(n) for d = 3, since
o ((g)) =0, fori=1,2.
o l(g})=1,fori=1,2.
o ((g?) =3, fori=1,2,3.
e For n > 2, ((g?") = nd, where i = 1, 2.

e Forn > 1, ((g7"™) =nd + 1, where i = 1,2.
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Hence each projective P" is generated in degree d(n). So A is a 3-Koszul monomial
algebra. We can see that the algebra A has two indecomposable projective modules
P(1) and P(2) and we may illustrate P(i), where i = 1,2, with the following

diagrams:
P(].) = €1A P<2) = €2A

1 2
2 1
1 2

Moreover the indecomposable injective modules (i), where i = 1,2, are given as

follows:

(
Hence I(1) = P(1) = e;A and 1(2) = P(2) = esA. So idimy e; A = idimp eaA = 0.

Then the injective dimension of A is 0, so A is self-injective.

Now with A = 2 the algebra A= KQ/f has the quiver

71
1l —— v

74[ |-

Vg <—— 2
73

and T = (y17273747172, Y37471727374)- Then A is a (6, 2)-stacked monomial algebra.
This is the algebra of [14, Example 3.2]. The four indecomposable projective modules

1 Uy 2 Uy

U 2 Uy 1
2 Vo 1 v

Vo 1 (1 2
1 U1 2 Vg

(5] 2 Vg 1
Vg U1

Moreover the indecomposable injective modules are:
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V2 U1

Uy 1 U1 2
1 U1 2 Uy
Uy 2 Uy 1
2 Vg 1 U1
Uy 1 Uy 2
1 U1 2 Uy

I(1) I(v) 1(2) I(v)
Hence I(v5) = P(vy) = v1A and I(v) = P(vy) = voA. So idimj v1A = idimj v, A =

0. In addition we have the following injective resolutions of e; A and esA:

0 €1A

— I1(2) — 0

j(vl) f(w)
\S( | /

0 €2A

— I(1) — 0

j(vz) f(”l)
\S( | /

where S(v1), S(ve) are the simple modules corresponding to the vertices vy, vq. It
is clear that the injective dimensions of e;A and e,A are 2. Hence the injective
dimension of A is 2. So in this case, idimy A = 0 and idim i A = 2. We note from [14]

that A has (Fg). It follows from Theorem 6.35 that A has (Fg).

Example 6.39. Let A = KQ/I be the algebra which is given by the quiver

and I = (ab, bc). The indecomposable projective modules are:
P(1) P(2) P(3) P4)
1 2 3 4

2 3 4

and the indecomposable injective modules are:
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1 2 3
1 2 3 4
1(1) 1(2) 1(3) I(4)
It is clear that P(i) = I(i 4+ 1), where ¢ = 1,2,3. It remains to find the injective
dimension of P(4). We have:

1(4) 1(3) 1(2)
S5(3) S5(2)

So idimy P(4) = 3 and hence idimy A = 3.
Now with A = 2 the algebra A = K Q/I has the quiver

0 — P(4)

(1) —= 0

a1 a2 by ba c1 c2

1 (1 2 V2 3 U3 4

and [ = (ayasbybg, bibacica). The indecomposable projective modules are:

ﬁ(l) P(vy) ﬁ(Z) P(v9) ﬁ(?)) P(v3) ﬁ(4)
1 vy 2 Vg 3 U3 4
U1 2 Uy 3 U3 4
2 Vg 3 U3 4
(o 3 U3 4

U3
and the indecomposable injective modules are:
U1
1 U1 2 Uy
1 U1 2 Uy 3
1 vy 2 Vg 3 U3
1 Uy 2 Vg 3 Vs 4

I(1) I(w) 1(2) I(w) I3) I(vs) I(4)

So we have P(1) = I(v3), P(vy) = I(v3), and P(vy) = I(4). It can be seen that
idimz P(3) = 2, idim; P(2) = 2, idimj P(vs) = 3, and idimz P(4) = 3. Thus the
injective dimension of A is 3. So here we have idimy A = 3 = idimj A.

We now want to show that A has (Fg). We know Z(A) = K, so take H =
HH°(A) = K. We have from Green and Martinez-Villa [22], E(A) = KQ°P/I*+.

Here I+ = 0. So E(A) & KQ° which is finite dimensional, since Q is finite
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and acyclic. It follows F(A) is a finitely generated K-module and hence a finitely
generated H-module. So A has (Fg). Therefore A has (Fg), by using Theorem 6.6
and Theorem 6.35.
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7. (Fg) for d-Koszul algebras

The aim of this chapter is to give sufficient conditions for a finite dimensional
d-Koszul monomial algebra to have (Fg), and we do this in Theorem 7.15.

We start this chapter by introducing some other Koszul algebras which have (Fg);
these are mostly from the work of Erdmann and Solberg in [12]. Then we introduce
overlaps; these were used by Green and Zacharia to describe a basis for the Ext
algebra of a monomial algebra in [29], and by Bardzell to describe the minimal
projective bimodule resolution of a monomial algebra in [4]. We need this concept of
overlaps to use the work of Green and Snashall in [26] where they find the Hochschild
cohomology ring of a stacked monomial algebra. We can then give the commutative
ring H for the (Fg) condition. In Theorem 7.11 we give sufficient conditions for a
finite dimensional Koszul monomial algebra to have (Fg), and in Theorem 7.15 we
give sufficient conditions for a finite dimensional d-Koszul monomial algebra to have
(Fg).

We begin with results from [12] on (Fg) and the graded centre of the Ext algebra

of a Koszul algebra.

Definition 7.1. [7] Let A be a finite dimensional algebra. The graded centre of
the Ext algebra Z, (E(A)) is the subring of E(A) generated by all homogeneous

|z

elements z such that zy = (—1)*Wyz for each homogeneous element y in E(A),

where |z| denotes the degree of a homogeneous element x.

Theorem 7.2. [12, Theorem 1.3] Let A = KQ/I be a finite dimensional algebra
over an algebraically closed field K.
(a) If A satisfies (Fg), then Z,(E(A)) is Noetherian and E(A) is a finitely
generated Z,, (E(A))-module.
(b) When A is Koszul, then the converse implication also holds, that is, if
Zg(E(A)) is Noetherian and E(A) is a finitely generated Zg, (E(A))-module,
then A satisfies (Fg).

We now illustrate this with an example.

Example 7.3. Let A be the algebra in Example 4.2 with char K # 2 and we keep the
notation of the previous chapters. Since the algebra A is Koszul, then by Theorem

3.3, E(A) = KQ°/I+ is Koszul and is generated by f?, fi, f3 where f? corresponds
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to ey € g°, fi corresponds to x € g', f; corresponds to y € g'. Moreover, the quiver
of E(A) is the same as the quiver of A. It can be seen that there is only one relation
for the Ext algebra, which is fif3 = —f4 fl and this corresponds to zy + yx = 0.
So we have E(A) = KQ/(xy + yx).

By induction, it can be shown that n € Z, (E(A)) with n homogeneous of degree
2n if and only if n = Y " ¢;a® #y* where ¢; € K. We do not give details here
but note that this example has been well studied (see [12], [45]) and is contained
in Proposition 7.6 below with n = 2 and ¢ = —1. In fact Z,,(E(A)) = K[z?, 4]
and thus Z, (E(A)) is Noetherian. Moreover E(A) is a finitely generated Zg, (E(A))-
module, where the generators are {1,z,y,zy}. Thus A satisfies (Fg), by using
Theorem 7.2.

Definition 7.4. [43, Chapter 1] A finite dimensional algebra A over a field K
is said to be of finite representation type if the number of isomorphism classes of

indecomposable modules in mod A is finite.

Now we present some work of Erdmann and Solberg ([12]) on symmetric Koszul

algebras which have (Fg).

Theorem 7.5. [12, Theorem] Let A be a finite dimensional symmetric algebra over
an algebraically closed field with radical cube zero and radical square non-zero. Then
A satisfies (Fg) if and only if A is of finite representation type, A is of type D, for
n >4, Z, for n > 0, BZHfornz2,IEG,E7,IES,orAisoftypeZoorAnfornz1

when ¢ is a root of unity. The algebras are described as follows:
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(1) The case A,,.
Let Q be the quiver given by

and [ = <{0JZ'CL¢+1}?:0, {C_qurlai}?:o, {CliC_Li + di,lai,l}?zl U {CL()CL_O -+ qdnan}>, for
some nonzero element g € K.

(2) The case Z, where n > 0:
Let Q be the quiver given by

ag ay a2 An—2 an—1
b (0 1 2 e —n-1_""mn Jc
- -
ag a as an—2 an—1

and I = (b* + oo, bao, Gob, {a;a;11} =7, {@ai—1 Y1 {ait; + Gi—qai1 }17,
Ay 1Cy Clp—1, C* + Q100 1)-

(3) The case Zg:
Let Q be the quiver given by

'C- D

and I = (b% c2, bc + qcb).
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(4)

The ﬁzn-case:
Let Q be the quiver given by

ag
& a as Qan—3 an—2 an—1
2 3 n— 2 n—1 n b
— —_— —_— —_— —_— —_—
‘11/ a2 as an—3 an—2 an—1
/al

where n > 2 and [ = <a0d1, apas, aldo, dgdl, aoao - dlal, agao, a,a; — GQELQ,
{aiaigi Y22 {aa 1 1oy, {@i1aioy + a1, an—1b, @n_1an_1 + qb?,ba,_1),
for some ¢ € K\ {0}. If n = 2, then the relations are agb, a1b, bag, bay, apay,
(llC_Lo, apag — b2, aja; — b2.

The Hj)n—case:

Let Q be the quiver given by

a a

|
|
|

n—1
7

G I n — B
V ” " " X

/a1 \

n

Assume that n > 47 then I = <CL()C_L1, apag, alc_zo, C_LQC_L1, C_L()ao - C_Llal, C_LQC_LQ, a4, —

~ n—3 (== n—2 f— - n—3 A
202, {aiai—f—l}i:l ) {aai—l}izg ) {%’—1@2‘—1 + aiai}izg , Ap—2b, ba,_2, an_3b,
Qp—20n—2 — bb7 bb — an—3an—3>-
For n = 4, then I is generated by {aoas, apas, agh, a1ao, ajas, arb, asay,
C_Lgt_ll, C_lgb, bC_L(], b&l, bag, apagy — C_Llal, ajay — bb, bb — agc_lg}.
The Eg-case:
Let Q be the quiver given by

4
as l T as
3
e
ag a a4 as
0 1 2 ) 6
ap al aq as
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with I = ({@;ai11}ig, {@iai—1 Y-y, {@i—1ai-1+a;a; }iz1 3.5, a104, G204, G402, G101 —
a20y, Aol — A404).

(7) The E;-case:
Let Q be the quiver given by

ag ai az aq as ae

with I = ({a;ai41}0_0, {@i@i-1 101, {@i1ai-1 + @il Fiz1 256, 204, G304, Gaas,
asQy — (Igdg, a3z — (I45L4>.

(8) The Eg-case:
Let Q be the quiver given by

ag al a3 aq as ae ar

with I = ({a;ais1}o g, {@iGi—1 Yy, {@Gi—10i—1 + 085 }im1,45.6,7, G103, G203,

A309, A3a1, G101 — Aoda, G20y — A3G3).

Proposition 7.6. [12, Proposition 9.1] Let A = K(x1, 9, ..., z,)/({ziz;
+ @i bicg, {22}01), 4ij € K*. Then A satisfies (Fg) if and only if all elements

{Qij}i<j are roots of unity.

Remark 7.7. There are other examples in the literature of Koszul algebras which
have (Fg).

(1) The algebra A; of [45] is the algebra of case A, in [12].

(2) The algebra of [44] is the algebra of case Z; in [12].

(3) The algebra which is given by the following quiver

and relation o? is of finite representation type and is therefore (Fg) by [12].

(4) The algebra of Example 6.38 is the algebra in [14, Example 3.2] which satisfies

the condition (Fg).
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(5) The algebra of Example 6.39 satisfies the condition (Fg).

The algebras we are interested in are monomial algebras; these are very rarely
Koszul or d-Koszul algebras. So Theorem 7.11 and Theorem 7.15 give new results
for finding algebras with (Fg). We now introduce the concept of overlaps. Green
and Zacharia use this in [29] to describe a basis of the Ext algebra of a monomial
algebra.

We assume that A = KQ/I is a monomial algebra unless otherwise stated.

Definition 7.8. [25, Definition 1.1]

(1) A path g overlaps a path p with overlap pu if there are paths u and v such
that pu = vg and 1 < {(u) < ¢(q). We may illustrate the definition with the

following diagram:

Note that we allow £(v) = 0 here.

(2) A path g properly overlaps a path p with overlap pu if ¢ overlaps p and
l(v) > 1.

(3) A path p has no overlaps with a path ¢ if p does not properly overlap ¢ and
q does not properly overlap p.

Definition 7.9. [25] A path p is a prefix of a path ¢ if there is some path p’ such
that ¢ = pp'.

We refer the reader to look at Example 7.12.
We now describe the minimal projective resolution of A over A¢, by using the
concept of overlaps from [29] and [16], see also [26]. We keep the notation of [26].
The sets R™ are defined as follows:
R° = set of vertices of Q,
R! = set of arrows of Q,
R? = the minimal set of monomials in the generating set of I.
Then for all n > 3, R? € R? maximally overlaps R"! € R"! with overlap

R" = R" !y for some u € K Q, if it satisfies the following conditions:

e R"1 = R"?p, for some path p in KQ;
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e 1% overlaps p with overlap pu;
e There is no element in R? which overlaps p with overlap being a proper

prefix of pu.

The set R™ is defined to be the set of all overlaps R". We may illustrate R" with

the following diagram:

R2
Rnfl | —

Rn—2

R’n

Green, Happel and Zacharia construct the minimal projective resolution (P",d")
of A/t (see [16]), also the construction can be found in [29] and [25]. For all n > 0,
let P" = @pnernt(R™)A. The sets R™ are precisely the sets g™ of [28] which we
used in Chapter 4. Define, for n > 1 and R" € R", the map d" : P* — P""! via
t(R") — (0,...,0,p,0,...), where R" = R" 'p and p occurs in the component of
P! corresponding to R" 1.

Now let (Q*,0%) be the minimal projective A®-resolution of A of [4]. We use the
notation of Green and Snashall in [26]. Then Q" = @gnernAo(R")@t(R")A. From [4,
Lemma 3.3], each element R™ € R", can be expressed uniquely as R?’laj and as
be Ry~ for some R}~ R~ € R"! and paths aj, by. The map 62"+ : Q2! — Q*n

is given via:
o( R @ t(R*") = o(RS") @ a; — by @ t(R}"),

where R*"*! = R"a; = b RY" € R*"*'. Note that the first tensor lies in the sum-
mand corresponding to RJQ-” and the second tensor lies in the summand corresponding
to Ra".

For even degree the elements R?" can be expressed as follows: R*" = ijJQ-”_lqj,
for some R3"~! € R*"~! and paths p;, ¢; withn > 1and j = 1,...,r. So they define
the map 6°" : Q" — Q**~! by o(R*™) @ t(R*") > Y "_, p; ® ¢;, where the tensor

pj @ ¢; lies in the summand of Q"' corresponding to R?”_l.
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We define f7* to be the A-homomorphism P™ — A/t given by

(RY) tRY) +v ifj =1i;
0 otherwise.
We set f™ = {f"} so that |f"| = |R"|; see also Definition 4.44. We list the elements
of R" as Ry, ..., R} for some s. We compose module homomorphisms from right to
left. So the composition f o g means we apply ¢ first then f. We recall that we write
paths in a quiver from left to right. So if f* corresponds to the path R} € R" and
if R = eR!e’, where e = o(R!) and ¢’ = t(R!") are in R°, then f* = f5ff° where
fY (respectively, f9) denotes the element of f° that corresponds to e (respectively,
e'). With this notation, we have from [29] that f"f* # 0 in E(A) if and only if
R}RT = Ry™™ € R™™ for some k and f" f* = fi™™. So we identify the set R"
with a basis of Ext}(A/t, A/t); see also [29]. We use this identification without

further comment.

Definition 7.10. [26, Section 2]

(1) A closed path C' in Q is a non-trivial path C' in K Q such that C' = vCv for
some vertex v. We may say that C is a closed path at vertex v.

(2) A closed trail T'in Q is a non-trivial closed path T'= ay - - - vy, in K Q such
that aq,...,a,, are all distinct arrows.

(3) Let p be any path and let g be a closed path in Q. Then p lies on ¢ if p is a
subpath of ¢* for some s > 1.

(4) We say that two trails are distinct if neither lies on the other.

We now give sufficient conditions for a finite dimensional Koszul monomial algebra

to have (Fg).

Theorem 7.11. Let A = KQ/I be a finite dimensional monomial Koszul algebra
and let p be a minimal generating set for I consisting of quadratic monomials.

Suppose char K # 2 and gldim A > 4. Suppose that the following two conditions
hold:

(1) If a is a loop in Q, then a® € p but there are no elements in p of the form

af or fa with B # a.
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(2) If T = ay -~ ayy, 15 a closed trail in Q with m > 1 such that the set pp =
{1, ... 100, aan }is contained in p, then there are no elements in

p \ pr which begin or end with any of the arrows o for j=1,...,m.

Then A has (Fg).

Proof. Let aq, ..., a, be all the loops in the quiver Q, and suppose that «; is a loop

2

at the vertex v;. Since A is a finite dimensional quadratic monomial algebra, o is
necessarily in the minimal generating set p. By hypothesis, we have that there are
no elements in p of the form ;3 or Ba; with 3 # a;. So there are no overlaps of a?
with any element of p\ {a?}. Again, using that A is a finite dimensional monomial
algebra, it follows that the vertices vy, ..., v, are distinct.

Let Tyy1,...,T, be all the distinct closed trails in ©Q such that for each i =
u+1,...,r, we have T; = ;1 - - - Qi m,, Where o1, 2, . .., Q; p, are arrows, and the
set pr, = {102, Q2 3, ..., Qm, i1} s contained in p. By hypothesis, there are
no elements in p\ py; which begin or end with any of the arrows «; ; for j =1,...,m.
So, for j = 1,...,m, no arrow «;; has overlaps with any element of p \ pr,. Let
Ti1,...,T;m, be defined by

Tz‘,l =T, = Q1062 O s

Ti,Q = QG200 3 O, O 15

sz = Oym; 01 Q-
Then the paths T} 1,...,T;,,, are all of length m; and lie on the closed path 7;.
Now we show that A satisfies (Fgl).
Since A is a Koszul monomial algebra, then A is a (2, 1)-stacked monomial algebra.
Using [26, Theorem 3.4], we have HH*(A)/N = Klzy,...,z,|/{z.2p for a # b),

where

e for i« = 1,...,u, the vertices vy,...,v, are distinct and the element z;

corresponding to the loop «; is in degree 2 and is represented by the map

Q? — A where for R? € R?,

v; if R? = af

o(R?) @ t(R?)
0 otherwise.
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e and for i = u+1,...,r, the element z; corresponding to the closed path
T, = a1+ Qm, is in degree 2u; such that p; = m;/ged(2,m;) and is

represented by the map Q%% — A, where for R?* € R?M,

o(T;y) if R*i = T'V,éng(Q’mi) forall k =1,...,m;

]

o(R*) @ t(R) s

0 otherwise.
The action of the homogeneous element x € HH"(A) on E(A) is given by left
multiplication by >, R} where the sum is over all j such that z(o(R}) ® t(R})) # 0
and n = |z|. Thus if z; € HH?(A) corresponds to the loop oy, then the action of z;
on E(A) is given by left multiplication by o?. And if z; in degree 2j; corresponds
to the closed path T; then the action of x; on E(A) is given by left multiplication by

mi 2/ ged(2,m;)
k=1 Lik :

Let H be the subring of HH*(A) generated by Z(A) and {z1,...,z,}. We want to
show that H is a commutative Noetherian ring. Since Z(A) = HH(A) and HH*(A)
is graded commutative, we know that zx; = z;z forall z € Z(A) and i =1,...,r. So,
using [26, Theorem 3.4] we have that H = Z(A)[xy, ..., x,]/{z,xp for a # b). Hence
H is a commutative ring. Moreover, Z(A) is finite dimensional so is a commutative
Noetherian ring. Thus H is a Noetherian ring (see [42, Corollary 8.11]). Therefore
A satisfies (Fgl).

We claim E(A) is finitely generated as a left H-module with generating set consist-
ing of all f* with n < max{|zy],...,|z.|,|Q1]}. Let N = max{|z4|,...,|z.|,|Q1|}.

Let 0 # y € E(A). Then y is a linear combination of f*. We consider y € ",
with n > N. So y is a homogeneous element of E(A) of degree n. Consider the
element R € R" which corresponds to y € f", where n > N. We know R is a
maximal overlap sequence. Since A is Koszul, then ¢(R) = n. So we can write
R = ajay -+ - a,, such that q;a;.; € p=R? fori=1,...,n — 1. We may illustrate

R with the following diagram:

Ial &2|a3 a4| T Ian—l a'nl

Since R € R™ with n > N, then there is some repeated arrow. So we choose j, k

with £ minimal and & > 1 such that a; is a repeated arrow, a;,...,a; 1,1 are all
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distinct arrows and a4 = a;. Write

R= (a1 aj-1)(a; - aji5-1)(aj 1641 an).

There are two cases to consider.

Case (1): k= 1. Then a; = a;+1 and so a; is a loop. It follows that
R = (a1 a;1)(a;05)(a42 - an).

By hypothesis a? € p and there is no relation of the form a;3 or fa; with 8 # a;.
But R is a maximal overlap sequence, so a;_ia; € p and aja;12 € p. Hence a;_ = a;
and a;12 = a;. Inductively, we see that R = a.

From above, let x; be the generator in H corresponding to the loop a;j,s0 1 <7 < wu

and |x;] = 2. Then z; acts on E(A) as left multiplication by the central element a?.

Hence )
" (a?)®/2) if n even;
(a?)(”*l)ﬂaj if n odd.
\
So )
. (z:)™Po(a;) if n even;
\ (z;)"Y%a;  if n odd

where £(0(a;)) = 0 and ¢(a;) =1 and so |o(a;)] < N and |a;| < N.
Case (2): k> 1. We note by our choice of j, k that a;--- a1 is a closed trail
of length k. Let T'=a; - - - aj1,—1. We have

R = (a’l e a,jfl)(aj N a’j+k‘*1)(a‘7’a’j+k+l N an>

and since R is a maximal overlap sequence we may illustrate R with the following

diagram:
A1 G2 a3 Ay v Q-1 Aj Qi1 Qg2 o0 Qjpk—1 Aj Qjpkt1 Gjpk42, -« An-1 On,
Then a;a;i1,aj410542,...,a;4k—10; are all in p, so the set pr is contained in p. By

hypothesis, there are no elements in p\ pr which begin or end with any of the arrows
Qjy ooy Qjrf—1-

Now ajajirt1 is also in p since all subpaths of R of length 2 are in p. So, by
hypothesis a;j;;+1 = aj;1. We also have that a; y1101512 1S In p, SO aj41aj4 442 18
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in p. Again, by hypothesis, a;ix+2 = a;+2. Inductively, we see that R lies on the
closed trail T. So we may relabel the trail T so that R = T, where T' = ay - - - ay,
p is a prefix of T with 1 < {(p) < k, and n = kq + £(p).
Thus there is a generator in H which corresponds to this closed trail 7'. Without
loss of generality, suppose that x, is the generator in H corresponding to T'. Let
Tr,l =T =ayay---ag;

Tr,2 = Q203 - - Qray;

Trk = agay -« - Qp—1.

The action of z,, on E(A) is left multiplication by
TZ{ ged(2,k) + TZégcd(Q,k) bt Tzéng(Q’k)‘
Suppose first that k is odd. Then ged(2, k) = 1. So the action of z, on E(A) is

left multiplication by 777, + 17, 4 - - - + T, We have |z,| = 2k. Since n > N > 2k,
it follows that ¢ > 2. Now R = T with 1 < ¢(p) < k. Hence

P (T2)/2)p if ¢ even;
(T?)@=V/2Tp if q odd.

We note that £(p) < k < N and {((Tp) =k +{(p) < k+k =2k < N. We now show
that T, ;p = 0, for all 2 <[ < k. The element 7, ;p in E(A) can be written as

(W Qg1 g2 Qg s G—20—1 0 A1 A2 A3+ Ag(p)—10¢(p)

where T,.; = ajaj1 - -~ agay -~ a;—1, and p = aras - - - agpy. If q—1 - a1 is in p, then we
have a closed trail ajas---a;_1 of length [ —1. But [ —1 <[ < k. So this contradicts
the minimality of k. Hence a;_; -a; is not in p. So T, ;p does not represent a maximal
overlap sequence and hence T, ;p = 0 for 2 <[ < k. Similarly Tflp =0,for2<I<k.

Hence
ne (z,)(9/2p if ¢ even;
(z,) V2T if ¢ odd.
Suppose now k is even. Then ged(2, k) = 2. So the action of z, on E(A) is left
multiplication by 7,1 + Ty.0 + -+ + T, x, and |z,| = k. Here we have ¢ > 1. Now

R =T% with 1 < {¢(p) <k (and T = T,;). We now show that 7,,;p = 0, for all
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2 <[ < k. Again, the element 7, ;p in E(A) can be written as

(U A1 g2 Qg s G—201-1 0 A1 A2 A3+ Ay(p)—10¢(p)

where T,.; = aja;1 - - - agay -~ a;—y, and p = aias - - - agpy. If @—1 - a1 is in p, then we
have a closed trail ajas - - - a;_1 of length [ — 1, which contradicts the minimality of k.
Hence a;_; - a1 is not in p. So T},;p does not represent a maximal overlap sequence
and hence T, ;p = 0 for 2 <[ < k. Hence R = xp.

This shows that F(A) is generated by f°,..., fV as a left H-module. Hence A
satisfies (Fg2) and thus A has (Fg). O

The next example illustrates the above theorem; however {f°, f1,... f¥} is not

a minimal generating set of E(A) as a left H-module in this example.

Example 7.12. Let A = KQ/I be the algebra which is given by the quiver

(&3] Qa2
— 2 —
Qs

3 iz 5

7 8 9 10

Gl — =

3

l 8
Ty

4 Y1 6 2

Q4

and I = (ayan, aoas, azay, auas, asar, B2, Y172, 1273, V374, YaYs)- Then A is a Koszul
monomial algebra. The algebra A satisfies the conditions of Theorem 7.11 with the
loop B and closed trail ayasagasas. From Theorem 7.11, let 21, xo be the generators
in H, where z; corresponds to the loop § with |z;| = 2 and zy corresponds to
the closed trail ajasazayas with |xe| = 10. So the action of 21 on E(A) is left
multiplication given by z; — 2%, and the action of z3 on E(A) is left multiplication

given by

) — (@1&20[30&4065)2 —|— (042063044(15061)2 =+ (043(14065041052)2 + (0640450110{2063)2

+(Oé50410420é3044)2-

Moreover Z(A) = K. Here N = 11 and so E(A) is generated by f9 ..., f1! as a left
H-module.
We identify f* with R™ and list the elements of the set R"™, forn =10,...,11:
R ={e1,...,ew0}
R = {on, o, a3, au, a5, B, 71,72, V3, Va5 15}

2 _ 2
R = {0610427042043,043044,0640457045041,5 ,7172772737’73’74,’74’75}
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3 _ 3
R = {CY10Z2043,@204304470430440457044%041,045@1042,5 77172737’72’73’74,7374’75}
R4 = { 54
= 1 Qoi3Qyy, Qa3 s, A3y 5y, s A2, AL Qo (3, 075 V17277374,
727374’75}
5 _ 5
R°> = {ar1asa3au0s, o0300501, 30000500 g, (L0500 Qa0l, 50 a3 0Ly, 37,
V1Yo Y3 Va5 }
6 _
R® = {ar1asazayasar, 00 ason i, 30040500 0o 0r, (050 Qlp0l3 0Ly
6
a0 aaazauas, 9}
7T _
R" = {a1aazasa501 09, 0p0300405001 QraQtz, (3004005001 Cia 030y, 04 0l5.00 QL O30t O,
7
04504104204306404504175 }
8
R? = {aasazaqas0n o, o300 a0 0l, Qa0 Qo030 Qs
8
Q500 Qa3  Ces e (X5 (0 Qlp (3 ey Qs (e (v, 5 }
9 _
R’ = {a1a2a3a4a5a1agaga4, Qo35 Qa3 iy (s, i3y Q5 Qla (i3l (5 (Y
9
Qg 500 Qa3 004 5ty L, (5 OV Qg (3 (g Oty Q2.0 3 }
10 _ 2 2 2 2
= 10020i300405) 7, (Q2 3 5001 )7, (350010027, 501 Qia(¥g ),
R {(nazasauas)?, (apasagasan)?, (asauasarag)?, (uasonasas)
2 510
(a5a1a2a3a4) ,ﬁ }
11 _ 2 2 2
= 100030405 ) “ 01, (o i3y 5y ) “ Qig, (314 Q51 (g )~ (3,
R {(nagazauas)?aq, (easagasar)?as, (gasasaras)a

(a4a5a1a2a3)2a4, (05(11042@3(14)2045, BH}

Since 8" € R, then from above B'! corresponds to z33. Also, we have
(apasazagas)?a; is in RYM. So (ayasasagas)?®ay corresponds to xaar. Similarly,
each element in R'" is in the left H-module generated by R?, ..., R, Thus E(A)
is generated by R?, ... R0 as a left H-module.

Our final result of this chapter is Theorem 7.15 where we give sufficient conditions
for a finite dimensional d-Koszul monomial algebra to have (Fg). First we need two

propositions.

Proposition 7.13. Let A be a finite dimensional monomial d-Koszul algebra, where
d > 2. Suppose that R € R"™ for some n > 2. Then all subpaths of R of length d are

m p.

Proof. This is clearly true for n = 2, so we start by considering R®. An element

R € R3 is constructed from R? which maximally overlaps R3. So that R = R3y as
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follows:

Since A is d-Koszul, then §(3) = d+ 1 and so /(R) = d + 1. So {(z) =1 = {(y).
Write R = ajas - - - agaqy1. So there are only two subpaths of length d in R which
are R2 = ajay---ag and R? = asas -+ - aqy1. Then R? and R3 are both in p.

Now let n = 4. An element R € R* is constructed from a sequence of overlaps.
Since A is d-Koszul, then §(4) = 2d and so ¢(R) = 2d. We may illustrate R with

the following diagram:

and R = RIR3. Write R = a1+ --a4aqy1 - - - azq. By hypothesis (R is a maximal
overlap sequence so the overlap of R2 with R? gives an element in R* of length
5(3) =d+1),l(x) =1sox=a; and R = ay---aqy; € R?> = p which maximally
overlaps R?. We know R2 overlaps R3. So there is a relation R? such that R?

maximally overlaps R3 with maximal overlap R3aq,2 = asRY € R3 of length d + 1:

So R? = a3 ---aqys € p. Continuing inductively, we see that all subpaths of R of

length d are in p:

al...a/d

a2...ad+17
a3...ad+27
Qq -+ A24-1,
Q41 Aaqd-
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The general case uses a similar argument to that for n = 4. For n > 4, an element

R € R" is constructed from a sequence of overlaps as follows:

R3 R},

R R3 R, R}
Moreover, since A is d-Koszul, then ¢(R) = d(n) with ¢ as in Definition 3.5). So

d—1 1if n even

l(z) =1 and {(y) =
1 if n odd.

Using the above argument we see inductively that all n — d + 1 subpaths of R of
length d are in p. 0

Proposition 7.14. Let A = KQ/I be a finite dimensional monomial d-Koszul
algebra, where d > 2, and let p be a minimal generating set for I consisting of
monomials of length d. Suppose that T = aias - - - a, s a closed trail in Q so that
ai, as, ..., a, are distinct arrows. Suppose also that d > n + 1. Then all paths of

length d which lie on the closed trail T" are in p.

Proof. Since A is finite dimensional, we know that some subpath R of T is in
p, and that ¢(R) = d. Without loss of generality, we may suppose that R =
(arag - - ap)™ajas - - - ag for some 1 < s < n — 1 with d = nm + s. We know that
d > n+ 1 so the path R has prefix ajas - - - a,a;. Thus there is an overlap of R with

itself as follows:

a1a2:--+an T ]
| |
R

So there is a relation R? such that R? maximally overlaps R with maximal overlap

Rags 1 = alR% € R3 of length d + 1:

So R? = (ay -+ ana;)™as - - - asasy1 € p. Continuing inductively (in the same way as
in Proposition 7.13), we see that p contains all paths of length d which lie on the

closed trail T'. O
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Note that the set of all paths of length d which lie on the closed trail T in
Proposition 7.14 is the set pr of [26] with A = 1.

Theorem 7.15. Let A = KQ/I be a finite dimensional monomial d-Koszul algebra,
where d > 2, and let p be a minimal generating set for I consisting of monomials
of length d. Suppose char K # 2 and gldim A > 4. Suppose that A satisfies the

following conditions:

(1) If « is a loop in Q, then a € p but there are no elements in p of the form
a®13 or Badt with B # .

(2) If T = aq -~y 1S a closed trail in Q with m > 1 such that the set pp =
{1 ag,as gy, ..,y -+ g1} is contained in p, then there are no

elements in p \ pr which begin or end with the arrow oy, for alli=1,... m.

Then A has (Fg).

Note: If T'=ay - - - ay, is a closed trail then the subscript i of «; is taken modulo
m within the range 1 < i < m. Thus pr is the set of all paths of length d which lie
on the closed trail 7.

Proof. The case where d = 2 is the case where A is Koszul, and is proved in

Theorem 7.11. So we assume here that d > 3.

Let aq,...,a, be all the loops in the quiver @, and suppose that «; is a loop
d

at the vertex v;. Since A is a finite dimensional monomial d-Koszul algebra, of is
necessarily in the minimal generating set p. By hypothesis, we have that there are
no elements in p of the form af‘lﬁ or 5041_1 with 8 # «;, fori=1,..., u.

We show that there are no overlaps of af with any element of p\ {a¢}. Suppose
for contradiction, that R € p\ {a¢} and that R overlaps af. Then either R = b
or R = ba; where 1 < s < d—1and bis a path of length d — s which does not begin
(respectively, end) with the arrow «;. Suppose first that R = a$b where «; is not

the first arrow of b. Then R overlaps af with overlap of length 2d — s as follows:

Now, this is a maximal overlap since «; is not the first arrow of b and thus gives an

element R? € R3. However, ((R?) = d + 1 since A is d-Koszul. Thus 2d — s =d + 1
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and so s = d — 1. But then R = ¢~ 'b and b is an arrow. This is a contradiction to
the hypothesis. The second case where R = ba; is similar. So there are no overlaps
of ad with any element of p \ {a¢}.

Again, using that A is a finite dimensional monomial algebra, it follows that the

vertices vy, ..., v, are distinct.

Let Tyy1,...,T, be all the distinct closed trails in © such that for each i =
u+1,...,r, we have T; = ;1 - - - Qi m,, Where o1, 2, . .., Qi are arrows, and the
set

PT; = {Oéi,l O gy Oyt Oy e ey O O Oﬂi,dfl}

is contained in p.
By hypothesis, for each closed trail T; (u+ 1 < i <r), there are no elements in
p \ pr, which begin or end with the arrow «; ;, for all j = 1,...,m. So no arrow «; ;
has overlaps with any element in p \ pr,.
Leti e {u+1,...,r} and let T;4,...,T;,,, be defined by
Ti,l =T, = Q109 Qs

Tio = Qo3+ Oy m, i 1;

ﬂ,mi - ai,miai,l e ai,mi_l-

Then the paths T; 1, ...,T;,,, are all of length m; and lie on the closed path T;.

Now we show that A satisfies (Fgl).
Since A is a d-Koszul monomial algebra, then A is a (d, 1)-stacked monomial alge-
bra. By using [26, Theorem 3.4], we have HH*(A) /N = K[y, ..., x,.]/{z,2p for a #

b), where
o for i = 1,...,u, the vertices vy,...,v, are distinct and the element x;
corresponding to the loop «; is in degree 2 and is represented by the map
Q? — A where for R?> € R?,

v; if R?=af
o(R?) @ t(R?)

0  otherwise
e and for i = u+1,...,r, the element z; corresponding to the closed path

T, = a1+ Qm, is in degree 2u; such that p; = m;/ged(d, m;) and is
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represented by the map Q% — A, where for R?* € R,

o(Tyy) if B2 = T4 ™) for all k= 1,...,m,
o(R*) @ t(R*) s ’

0 otherwise.

Let H be the subring of HH*(A) generated by Z(A) and {z1,...,z,}. We show
that H is a commutative Noetherian ring. Since Z(A) = HH(A) and HH*(A) is
graded commutative, we know that zz; = x;z for all z € Z(A) and i =1,...,r. So,
using [26, Theorem 3.4] we have that H = Z(A)[xy, ..., x,.]/(x.xp for a # b). Hence
H is a commutative ring. Moreover, Z(A) is finite dimensional so is a commutative
Noetherian ring. Thus H is a Noetherian ring (see [42, Corollary 8.11]). Therefore
A satisfies (Fgl).

The rest of this proof shows that A satisfies (Fg2). We will show that F(A) is
finitely generated as a left H-module with generating set consisting of all f* with
n < max{3, |z1|,...,|z,|,|Q1]}. Let N = max{3,|z4|,...,|z.],|Q1]}.

Let 0 # y € E(A). Then y is a linear combination of f*. We consider y € f",
with n > N. So y is a homogeneous element of F(A) of degree n. Consider the
element R € R" which corresponds to y € f", where n > N. Since n > 2, we know

R is a maximal overlap sequence of length §(n) where (from Definition 3.5)

2d if n even,

5(n) =4

”T_ld +1 ifn odd.
So we can write R = ajas - - - as(n). From Proposition 7.13, we know that all subpaths
of R of length d are in p, that is, a; ---ag, a2+ - agy1, . . ., A5(n)—d+1* - * Gs(n) all are in

p. We may illustrate R with the following diagram:

[ 1
a1az - g Qa1 0 A5(n)—d+1 " A5(n),

Since R € R™ with n > N, then there is some repeated arrow. So we choose 7, k
with & minimal and & > 1 such that a; is a repeated arrow, a;, ..., a1, are all

distinct arrows and a;y = a;. Write

R= (a1 aj1)(a; - ajrp1)(aj0 41 Q5n))-

There are two cases to consider.
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Case (1): k= 1. Then a; = a;+1 and so a; is a loop. It follows that
R=(ay---a;1)(a05)(arz - - asm))-

Note that n > N > 3 so that n > 4. Hence §(n) > 2d.
Suppose first that j < d — 1. Then from Proposition 7.13, a?aHz “Qjpg—1 1S 1D p
since j +d — 1 < 6(n). But af € p and we have seen earlier in the proof that there

are no overlaps of aj-l with any element of p\ {a?}. Thus a; = ajio =+ = Qj4q-1.

Inductively we see that R = (a; - - aj—l)a?(n)_j 1. Using Proposition 7.13 again, we

know that a; - - -aj_laj_jﬂ isin p and d — j + 1 > 2. And there are no overlaps of

af with any element of p\ {af}. So a; = a; = - = a;_;. Thus we have R = aj(").

Now suppose that j > d. Then j —d+1 > 1, so by Proposition 7.13, we have that
(j_g+1 -+ @105 is in p. Since there are no overlaps of af with any element of p\ {af},
it follows that a;_q41 = -+ = aj_1 = a;, so inductively R = a?“(aj” S Ag(n))-
Using Proposition 7.13 again, we know that ag_lajH isinpasj+1>d—1. There
are no overlaps of af with any element of p \ {af}. So a; = a;4>. Thus inductively,

we see that R = aj.(").

So, for all j, we have that R = aj»(n).
From above, let x; be the generator in H corresponding to the loop a;j, s01 <i < wu

and |z;| = 2. Then z; acts on E(A) as left multiplication by the central element af.

Hence )
" (ad)®/2) if n even;
(ah)(("=1/2q; if n odd.
\
So

)
. (z;)™Po(a;) if n even;
(z;)(=V/2q; if n odd

\

with |o(a;)| < N and |a;| < N.

Case (2): k> 1. We note by our choice of j, k that a;--- a1 is a closed trail
of length k. We denote this closed trail by 7'

The first step is to show that pr is contained in p, where pr is the set of all
paths of length d which lie on the closed trail T. If d > k 4 1, then we can use

Proposition 7.14 to see that pr is contained in p.
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Otherwise, suppose that d < k. Recall that

R= (a1 aj1)(a; - ajp1)(@055011 - Gsn))-

Then:
AjQj+1 " Ajrd—1,

Aj+1Q5+2 - Ajtd,

Ajk—d@jtk—d+1 " Ajk—1,
Aj+k—d+10j+k—d+2 ** " Aj+k—10;5
are all paths of length d which are subpaths of R. From Proposition 7.13, these
paths are all in p.
Now ajajiq1 -+ ajiq—1 overlaps a;yx—a410j45—dt2 - - - Gj1k—1a;5. So there is a relation
Rf € psuch that Rf maximally overlaps a;x—a1+1@;4k—d+2 - * - @j4+k—10; With maximal

overlap of length d 4+ 1. Then we have that
R} = Qjih—dio0jih-dss " Qjak—10jQ541

and this maximal overlap is (@4 k—d+1@j4k—dt2 *** Gjsk—10;) QGj+1 = Gjrp—gi1R3. Con-
tinuing in this way, a;11a;49 - - ajq overlaps R3. So there is a relation Rj € p such

that R2 maximally overlaps R? with maximal overlap of length d + 1. So
R} = Gjih-d+30j4h—did  Qjpk—1050j 410542

and this maximal overlap is Ria;io = ajix_a+2R3. Inductively, we see that every
path of length d on the closed trail 7" is in p. So pr is contained in p.
So for all £ > 1 we have that pr is contained in p. Thus, by hypothesis, there are

no paths in p \ pr which begin or end with any of the arrows a;, a;41, ..., aj415-1.

The next step is to show that we can write R in the form R = T where p is a

prefix of T'. We recall that all subpaths of

R=(ay--aj1)(a; - ajp—1)(a;a54p11 " Q5n))

of length d are in p (Proposition 7.13).
Suppose first that d < k. Then a;yr_g+2 - aj41k-10a;+x4+1 is a subpath of R

of length d which begins with the arrow a;ix—q12 € {aj,aj41,...,aj16-1}. So,
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by hypothesis, this path is in pr and hence aj;441 = aj41. Inductively, we have
Qjtkt2 = Qji2, Qjkt3 = Aji3,.... Also, aj_1a;---ajiq—2 is a subpath of R of length
d which ends with the arrow a;j4-2 € {a;j,aj11,...,aj4k-1}. So, by hypothesis, this
path is in pr and hence a;_1 = aj;,—1. Inductively, we have a;_2 = aj15—2, a;_3 =
@jik—3, - ... 50 we may write R = p1T%y, where T = a; - - - a1, p1 is a suffix of
T and p, is a prefix of T'.

Now suppose that d > k + 1. We consider j < d — 1 and j > d separately. Let
J < d—1. Then, we know that a; a2 aj4x—10;Qj1k41- - aj1q 1S a subpath
of R (since j +d < 2d < d(n)) and is of length d and starts with the arrow
ajr1 € {aj,a;41,...,aj15-1}. So by hypothesis, this path is in pr and hence
Qjtkt1 = Qjp1, Qjpktr2 = Qjto,.... Also ajas---aj_;---a4 is a subpath of R of
length d and starts with the arrow a1 € {a;,a11,...,a;44-1}. So by hypothesis,
this path is in pr and hence a;_; = aj4x—1,0j—2 = @j1x—2.... SO we may write
R = p1Tp,, where T' = a; - - - aji,—1, p1 is a suffix of T and p, is a prefix of T'.

Otherwise j > d. Then, we know that a;_qi---aj_1a;---ajir—1 is a subpath
of R of length d and ends with the arrow a;1,—1 € {a;,aj41,...,a;45-1}. So by
hypothesis, this path is in pr and hence a;_; = aj1x—1,0j_2 = @j1i—2,.... Also
Qjik—dt2 " Qj—10j - Qjrp41 is @ subpath of R of length d and starts with the arrow
Qjtk—d+2. But we have just shown that ajix_4i2 € {a;,a;41,...,aj15-1}. So by
hypothesis, this path is in pr and hence aj;r41 = a;41. Inductively, ajip12 =
@jy2, - ... SO again we may write R = p;Tp,, where T'= a; - - - aj4,—1, p1 is a suffix
of T and py is a prefix of T

In all cases we have written R as R = p1T%s, where T" = a; - - - aj1p—1, p1 is a
suffix of T and p, is a prefix of T'. Without loss of generality, we can relabel the
trail T' so that R = T, where T' = a; - - - ay, p is a prefix of T with 1 < /(p) < k,
and 0(n) = kq+ £(p).

Thus there is a generator in H which corresponds to this closed trail T'. Let .
be the generator in H corresponding to T'. Let

Tin=T=aaz- - a;

Tr,2 = Q203 - - Qray;

Trr = agay -« - Qp—1.

123



The action of z,, on F(A) is left multiplication by

Tg{ ged(d,k) + T:é ged(d,k) 4t Td/ ged(d,k) '

Suppose first that ged(d, k) = 1. So the action of z, on E(A) is left multiplication
by TH + Tl + -+ + T, and |z,] = 2k. So N > 2k. Now R = T with
1 < {4(p) <k. Write ¢ =cd+w with 0 < w < d—1. Then R = (T%)(T"p).
Moreover, T%p corresponds to an element in E(A) of length kw + ¢(p). Now
kw4 £(p) < k(d— 1)+ k = kd, so £(T"p) < kd. So T"p corresponds to an element
in E(A) of degree at most 2k since §(2k) = kd. Thus T"p corresponds to an element
in E(A) of degree at most N.

More generally, the action of x, on E(A) is left multiplication by

Td{ ged(d k) + Td/ ged(d,k) R Td/ ged(d,k)

and |z,| = 2k/gcd(d k). So N > 2k/ gcd(d k). Now R = T with 1 < {(p) < k.

Write ¢ = c+w with 0 < w < — 1. Then

d(d k) (d k)

R = (Td/ gcd(d,k))c (Twp>

Moreover, T%p corresponds to an element in F(A) of length kw + ¢(p). Now
kw+ 0(p) < k <M - 1> + k = kd/ged(d, k), so ((T*p) < kd/ged(d, k). So
T"p corresponds to an element in E(A) of degree at most 2k/ged(d, k) since
0(2k/ ged(d, k)) = kd/ged(d, k). Thus T"p corresponds to an element in E(A)
of degree at most N.

d/gcd(dkp =0, forall 2 <[<k. Let2<I[<k Wehave

Ty = qagsr - agay -+ qi—q and p = aias - - - agp). So the element Td/ng(d K in

Now we show that T

E(A) can be written as

)d/ ged(d,k)

(alal+1 S QpArcaq - a1Q9 - - a/f(p)

and is a path of length dk + 4(p) where 1 < {(p) < k. If this represents a

non-zero element in E(A), then t(a;—1) = o(ay) so that a; ---a;—1 is a closed trail.

But [ — 1 < k, so this contradicts the minimality of k. Hence le/ ng(d’k)p =0 in

E(A) forall 2 <[ <k.
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Finally, we recall that we have R = (T% g“d(d’k))c (T"p). Hence R = z¢T"p and
T%p is in the set {fO, f1,..., fV}

This shows that F(A) is generated by f°,..., f as a left H-module. Hence A
satisfies (Fg2) and thus A has (Fg). O

We now give two examples to illustrate these results. The first example is of a
Koszul monomial algebra and this is the algebra of [14, Example 3.1], where Furuya
and Snashall show that A has (Fg). The second is a d-Koszul algebra, where we
show that the algebra A has (Fg).

Example 7.16. Let A = KQ/I, where Q is the quiver

\/
/\

and I = (af, B, va,(n,nd,0¢). Then A is a Koszul monomial algebra. The algebra
A satisfies the conditions of Theorem 7.11 with two closed trails a8y and n(6. We
have H = Klz,y]/(zy), where Z(A) = K, and z (respectively y) corresponds to the
closed trail af~v (respectively n(#). The algebra A has (Fg). Here N = 6 and so
E(A) is generated by f°,..., f% as a left H-module.

The action of z on E(A) is left multiplication given by

= (af7)* + (Bra)® + (vap)?,

and the action of y on E(A) is left multiplication given by

= (n6C)* + (Cnb)> + (6¢n)*.

Example 7.17. Let A = KQ/I be the 5-Koszul monomial algebra which is given

by the quiver
b

(Y

al as as a4

1 2 3 4 b}
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with I = (ajasb?as, b°, asb®azas). The algebra A satisfies the conditions of Theorem
7.15 with the loop b. Moreover, Z(A) = K and H = K|[z], where the element x
corresponds to the loop b in degree 2. We have N = 5 and so E(A) is generated by
fO ..., f% as aleft H-module. The algebra A has (Fg).

We list the elements of the set R™, forn =10,...,5:

RY = {ey,...,e5}

R' = {ay,as,b,a3,a4}.

R? = {ajasb*as, b°, axb*azay}

R3 = {ajasb*azay, b°}

RY = {p10)

RS = {p11,

The action of x on E(A) is left multiplication given by z + b°.

It is an open question as to whether the conditions of Theorem 7.11 and of
Theorem 7.15 give necessary as well as sufficient conditions for a Koszul monomial

algebra (respectively d-Koszul monomial algebra) to have (Fg).
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8. CONSTRUCTING d-KOSZUL ALGEBRAS

In this final chapter we give a construction of an algebra B from a (D, A)-stacked
algebra A, where D = dA, A > 1 and d > 2. One of the main results of this
chapter is Theorem 8.4, where we show that the algebra B we have constructed
from a (D, A)-stacked monomial algebra A is a d-Koszul monomial algebra and
we give conditions in Theorem 8.5 under which A and the stretched algebra B are
isomorphic.

We start with the construction of an algebra B from a (D, A)-stacked algebra
A. Let A= KTI'/T be a (D, A)-stacked algebra and assume that D = dA for some
d > 2, where Z is generated by a minimal set p of homogeneous uniform relations of
length D. We fix the set p and label the elements of p as py, ..., pm. We construct
a new algebra B using the quiver I' and ideal Z, and relate B to the algebra A.

Definition 8.1. We keep the above notation.
(1) Let « in KT be a linear combination of paths of length D where D = dA.

We write v = Zk crOy 1 - - oy, p Where ¢, are non-zero elements of K and
the oy ; are arrows in I'. We define the A-subpaths of z to be the paths
QprAsl* " Qg (r41)A for some k, and 0 <r < d — 1.

(2) Fix a minimal generating set p for Z. We define the A-subpaths of A to be
the set of A-subpaths of x where z € p. We denote the set of A-subpaths of
A by S4. Note that we consider S, a set with no repeats.

We start by defining a new quiver £ and ideal J of KQ and let B = KQ/7J.

Definition 8.2. Let A = KI'/Z be a (D, A)-stacked algebra and assume that

D = dA for some d > 2, where Z is generated by a minimal set p = {p1,..., pm} of

uniform relations of length D. For each i =1,...,m, write p; = Y, cxQik1 - - QgD

where ¢, are non-zero scalars in K and o, ; arrows in I', for all j =1,...,D. Then

e The vertex set of £ is the set {0(p;), t(y) for all y € Sy and alli =1,...,m}.

Note that t(c; x.44) = t(oix.p) = t(p;). This set does not include any repeats,

so if t(av;kr4) = t(ays4) as vertices of T for some 4, j, k, [, r, s then we identify
t(okra) and t(a; s4) as the same vertex in Q.

e The arrows of Q are constructed as follows. Each y € S4 corresponds

to an arrow 3, in Q. Recall that we do not include any repeats in Sy.
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We illustrate this construction in the following diagram. Consider the

path ;1 - kp. Then eg = o(p;),er = t(iga), .. ,ea = t(Aikdaa)
are vertices in Q and f, ...,y are arrows in 9 corresponding to the A-
subpaths ;g1 ... kA, ..., Qg d—1)A+1 - - - Qikaa Tespectively. Then the

Qi1 0y, p May be consider as the path of length D in KT

Ak, 1O kA Ok, A41-- QG k 2A Ok (d—1)A41-- Q4 k,dA
60 A S 61 e

€d

which corresponds to the path 5y - - - B4 of length d in KQ

B1 B2 Ba
€o €1 e €a

e We now define the ideal J of K. With the above notation, for each i =
1,...,m, we define p; = >, ¢xBk1 - - - Brq in KQ where ; is the arrow in KQ
corresponds to o rat1 - Qg ry1)a forall j=1,... , dandr=0,...,d—1.
We let J be the ideal of KQ which is generated by the set p = {p1,..., pm}
Note that p is necessarily a minimal generating set for J, since p is a minimal
generating set for 7.

e Now we define B = KQ/7J.

We give examples of algebras A and B to illustrate different cases where B is
and is not isomorphic to A. This motivates Theorem 8.5. We start by restricting

ourselves to the monomial case.

Example 8.3. (1) Let A; = KT'/T be the (4, 2)-stacked algebra which is given
by the quiver

and with Z = (ayasaigay, apanasag, asaetrag, raiggtig).
The sets g™ are given as follows:
o ° ={ey,...,en1}, with g0 =¢;, where i = 1,...,11.

e ¢ ={ai,...,a10}, with g} = a;, where i = 1,..., 10.
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o ¢° = p = {ajasazay, ayanasag, asasarag, riggg }, with
P1 = Q10030y, Py = Q1Q20506, P3 = Q506070 and Py = a70g0gQio-
o ¢* = {a1avazagaras, asagaragagag}, with g8 = ajasasagarag and
gg = Q507 igxg (1.
o g' = {orasasasarasagang}, with 9% = Q050 Qi g Cig ().
We can now see that the elements g € g™ have length §(n) for D = 4 and
A =2, since
o ((¢?) =0, where i = 1,...,11.
e ((gi) =1, where i = 1,...,10.
o ((g?) =4, where i = 1,2,3, 4.
e ((g3) =6, where 1 = 1, 2.
° Ugi) =8.
Hence each projective P™ is generated in degree §(n). So A is a (D, A)-
stacked monomial algebra with D = 4, A = 2 and d = 2. We have
S = {a1ag, azay, asag, azas, agage}. Then by using the construction above
and we have p; = ajanazay, po = aiapasag, Pp3 = asQgarasg, and pg =
aragagarg. So Q has six vertices {o(ayas), tlagas), tlasay), Hasag), taras),
t(agag)} and five arrows {1, B2, B3, B4, B}, where
B1 corresponds to aqas,
By corresponds to asay,
(3 corresponds to asag,
B4 corresponds to arag,
(5 corresponds to agag,

Thus By = K9Q/7 is given by the quiver:

5
B2
L
\is
Ba Bs

7T—9 —11

and J = (5152, 5153, B34, B135). Noting that every quadratic monomial
algebra is Koszul (see Chapter 3 p24, which references [29]), then B; is

Koszul. Moreover, A; & B;.
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(2) Let Ay = KT'/T be the (4,2)-stacked algebra which is given by the quiver

) B N SO R QO IV L
o
B2 B3 Ba Bs Be
8 9 10 11 12 13

and 7 = <061042043Oé4, 04304405(16751525354; B3B4B566>-

The sets g" are given as follows:
o ° ={e,...,e13}, with ¢) =¢;, fori =1,...,13.
e gt ={w;, B3}, fori=1,...,6 and j =1,...,6, we label the elements of
the set g' by gi,9s,..., 91, in the order they are given here.
d 92 = p = {araazay, azauasag, S1820384, Bs4Ps5 }, with
P1 = Q100304 P2 = 3040506, P3 = 1520304, pa = P3P4P5 5.
o ¢° = {masasauasae, £16285010566}, with gf = ajopasasasas and
95 = 018230455
We can now see that the elements ¢} € g™ have length §(n) for D = 4 and
A =2, since
e ((g?) =0, wherei=1,...,13.
o ((g)) =1, wherei=1,... 12.
o ((g?) =4, where i = 1,2, 3, 4.
e ((g3) =6, where 1 = 1, 2.
Hence each projective P™ is generated in degree §(n). So A is a (D, A)-
stacked monomial algebra with D = 4, A = 2 and d = 2. We have
Sa = {0, azay, asag, P15, Bsfa, BsP06}- Then by using the construction
above, Q has eight vertices and six arrows and By = KQ/J where Q is the

quiver:
g0l 72 3

V4 75 6

2 9 11 13

and J = (172, 7273, Y475, V576)- We can see that the algebra By is discon-

nected.
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(3) Let A3 = KT'/Z be the (6, 3)-stacked algebra which is given by the quiver

and with Z = (o asagaasag, g etz aiyararg, e igigipi g ) -

The sets g" are given as follows:

o " ={ey,... e}, with g0 = ¢;, where i = 1,...,12.

o g ={ay,...,an}, with g = a;, where i =1,...,11,

o ¢° = p = {ananasauasag, 0 oz arag, QOO b, With

P1 = Q1 003040506, P2 = 000304070, and P = auaroiggoo.

o ¢* = {aanazagaragagaroay }, with g3 = ayasasagaragagaran .
We can now see that the elements ¢! € g™ have length §(n) for D = 6 and
A = 3, since

e ((¢))=0,fori=1,...,12.

o ((gi)=1,fori=1,... 11

e ((g?) =6, fori=1,2,3.

o ((g7) =9.
Hence each projective P™ is generated in degree d(n). So Aj; is a (D, A)-
stacked monomial algebra with D = 6, A = 3 and d = 2. We have
S = {araas, agasag, agarag, agagarr - Then by using the construction
above, Q has five vertices and four arrows. Thus Bs = K£/7 is given by the
quiver:

7
%
B1
1——=14
\53
B4

9 — 12
and J = (01 5s, 103, B3P4). Noting that every quadratic monomial algebra
is Koszul (see [29]), then B; is Koszul. However, with A = 3 the algebra

B; 2 As.
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(4) Let Ay = KT'/T be the (4, 2)-stacked algebra which is given by the quiver

aq a9 55 56
l—2—-3 4 5 6
Y 54/’
7
/33/ \14
B1 B2 as g
8§ —= 9 ——= 10 11 — 12 — 13

with Z = (a1apasay, azauasag, 81528384, B3 8455 56).-
The sets g" are given as follows:
o ¢° ={ey,...,e13}, with g0 = ¢;, where i = 1,...,13.
e ' ={a;, B}, wherei=1,...,6and j = 1,...,6, we label the elements
of the set g' by gi,g1,..., 91, in the order they are given here.
i 92 = p = {aiaazay, azauasag, S1520384, Bs1Ps 5}, with
P1 = Q102030y, P2 = Q300506 P3 = 182030, and py = B3040 56.
o ¢° = {aasazauasag, B15283640506}, with g7 = arasazasasas, and
93 = 5182838455 55.
We can now see that the elements ¢ € g™ have length §(n) for D = 4 and
A =2, since
e ((¢)) =0, where : = 1,...,13.
e ((gi) =1, where i =1,...,12.
o ((g?) =4, where i = 1,2, 3, 4.
e ((g3) =6, where i = 1, 2.
Hence each projective P™ is generated in degree §(n). So Ay is a (D, A)-
stacked monomial algebra with D = 4, A = 2 and d = 2. We have
Sa = {aqag, azay, asag, 5152, B354, P56} Then by using the construction
above, we have eight vertices and six arrows. Hence B, = KQ/J is given by
the quiver:

7 72 V3

1 3 11 13

V4 75 6

8 10 4 6

and T = (172, 7273, 7475, V57Y6) . We can see that the algebra By is discon-

nected.
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(5) Let A; = KT'/Z be the (4, 2)-stacked algebra which is given by the quiver

B3 Ba Bs Be B7 Bs
3 4 5 6 7 8 9
B2
a1
1 2
B1 \
Qs
[o %} (e 7} as a6
10 11 12 13 14

and with T = (ayapazay, azauasas, B15203 64, Bs815556, Bs 86 575s) -

The sets g" are given as follows:

o ° ={ey,... e}, with ¢ =¢;, where i =1,...,14.

= {ai, B}, where i =1,...,6 and j =1,...,8, we label the elements
of the set g' by gi,g4,..., 91, in the order they are given here.

i 92 = p = {a1aszay, asauasas, 51520384, 83848586, Bs 060755}, with
p1 = a3y, Py = Qsouasae, Pz = 120504, pa = P3PaPsPs, and
ps = PsP6P7s.

o ¢* = {arasasasasas, 15283640586, B3 a5 Ps 705}, with
g7 = opasauasas, gs = 18205640506 and g3 = B3455 567 0s.

o g* = {B1B2PsBuPsBosPrBs}, with gi = 5182838455657 s.
We can now see that the elements g/ € g™ have length §(n) for D = 4 and

A =2, since

e ((¢)) =0, where : = 1,...,14.

e ((g}) =1, where i =1,...,14.

e ((g?) =4, wherei=1,...,5.

e ((g}) =6, where i = 1,2, 3.

o l(g1) =8.
Hence each projective P™ is generated in degree 6(n). So As is a (D, A)-
stacked monomial algebra with D =4, A = 2 and d = 2. We have §4 =
{10, azay, asag, B1Pe, BsPa, Bs0s, B78s}. Then by using the construction

above, we have eight vertices and seven arrows. Hence By = K£/7J is given
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by the quiver:

Y2 3 Y4

3 5 7 9

.

1

AN
76 7

10 — 12 — 14

and J = (7172, 7273, V3V4, V576, Y6y7)- We note that every quadratic monomial
algebra is Koszul (see [29]). Then Bs is Koszul. However, with A = 2 the
algebra Bs % As.

(6) Let Ag = KT'/T be the (4,2)-stacked algebra which is given by the quiver

B2 B3 Ba

2 3 4 5
"
1
\il
6 — 72 g M g T2 11 03

and with Z = (o asazay, asagaras, B1Pef304). So we have Sx = {ajae, azay,
a0, aras, B152, B3P} Then by using the construction above, we have seven

vertices and six arrows. Hence Bg = K£/7J is given by the quiver:

72
3 ——=95

4

1

w\
Y4 Y5 Y6

7 9 11 13

and J = (374, V576, 7172)- It is clear that Bg is Koszul (see Theorem 3.3).
Moreover, with A = 2 the algebra Bﬁ >~ Ag.

We keep the notation of Chapter 7 and now prove one of our main results.

Theorem 8.4. Let A = KT'/Z be a (D, A)-stacked monomial algebra with gldim A >
4, so D = dA, for some d > 2. Let B be the algebra constructed from A using

Definition 8.2. Then B is a d-Koszul monomial algebra.
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Proof. Let B = KQ/J be the algebra constructed from A = KT'/Z. Then J is
monomial. Using the notation of overlaps, set
RO = set of vertices of T,
R! = set of arrows of T,
R? = the minimal set of monomials in the generating set of 7
(denoted p in Definition 8.2).
and
R° = set of vertices of 9,
R! = set of arrows of Q,
R? = the minimal set of monomials in the generating set of J
(denoted p in Definition 8.2).
So it is clear that £(R") = 0, ¢(R') = 1, and ¢(R?) = d, for all R € R°, R! € R!
and R? € R2. For n > 3, let R" (respectively R™) denote the set of overlaps in .4
(respectively B).

Since A is a (D, A)-stacked monomial algebra, then the nth projective module
in a minimal resolution of A/rad(A) is P" = @pacpnt(R")A and is generated in
degree d(n) (see Definition 3.10) for all n > 0.

We start by considering R®. An element R® € R3 is constructed from R? which

maximally overlap R3 of the form R* = R2y as follows:

By Definition 8.2, R? (respectively R2) corresponds to R? (respectively R2) in the

minimal generating set R? for Z. So this element gives an overlap of Rf with R%

R

B3
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We wish to show that R%j is in R3. If R? does not maximally overlap R?, then we

have R? € R? which maximally overlaps R3:

B3

which is a contradiction, since R? maximally overlaps R2. Hence R? does maximally
overlap R2 and so R2j € R®. Now write R%j = R® € R?. Since {(R?) = D+ A
and ((R2) = D, then ((j) = A. However, j is a suffix of R? and so § € S4. So §
corresponds to an arrow in B. Hence ¢(y) =1 and ¢(R?) = d + 1.

We use a similar argument for the elements of R*. An element R* € R* is

constructed from a sequence of overlaps as follows:

RS

R4

From Definition 8.2, R? (respectively R3, R?) corresponds to R? (respectively R3, R3)
in the minimal generating set R? for I. So using the above argument regarding R?,

we have:

2 2

and £(§) = A. So in our construction of R* we have ¢(y) = 1. But R32 overlaps y,
so y must be a prefix of R2. Hence t(R?) = o(R2%) and we have
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R4
Then R* = R?R3 and ((R*) = 2d.

So continuing in this way, by induction for all n > 0, and all R™ € R"™ we have

5d if n even,
UR") =
”T’ld +1 ifnodd.
Thus B is d-Koszul, where B is constructed from A using Definition 8.2. O

We now give conditions under which A and B are isomorphic.

Theorem 8.5. Let A be a (D, A)-stacked monomial connected algebra with gldim A >
4, so D = dA, for some d > 2. Let B be the algebra constructed from Definition 8.2.
Assume that the following conditions hold:

(1) Each arrow occurs in precisely one A-subpath;

(2) If v is properly internal to some x € Sy, then
(a) v is not properly internal to y € Sy for y # x.
(b) v # 0(z) and v # t(z), for all z € Sa.

Then B A.

Proof. We define a map F : KI' — B and will show that F is surjective. First,
let v € KT'. Suppose first that v = o(«) or t(«) for some arrow a. Then by (1) «
occurs in some subpath z € S4. So either v = o(z) or t(x), for some € S4. Then
v corresponds to a vertex in B and hence to a vertex in B which we also denote by

v. Then we define

F(v) =v.

Otherwise, v is properly internal to a unique x € S4. Note that by (2) we cannot
have v = o(x) or t(x) for some x € S4 and v being properly internal to any element
of S4. So we write x = oy - - - @ v41 - - - a4 and from Definition 8.2, x corresponds

to a unique arrow (§ in B and then, by construction of the stretched algebra, we
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have 6(5) = 1 - - - f4. Hence we define
F(v) = t(5r).

Let a be an arrow in A, so by hypothesis (1) « occurs in precisely one A-subpath
. Sox =ay -y wWith o = o for some 1 < j < A. Then there is an arrow g € B

corresponding to z and we can write 8(3) = By - -- B4 in B. So we define
Fla) = 5;.

It is straightforward to verify that the map F is well defined.
We extend this to KT by defining F to be the linear map with

Flag ) = F(ag) -+ Flay).

It is clear from the construction that F gives a surjective map KT —s B.

Next we show that Ker 7 = Z. By our constructions, Definition 8.2 and Definition
4.1, there is a 1-1 correspondence between the elements in the minimal generating
set p of Z, the elements in the minimal generating set p of J and the elements in
the minimal generating set J of B such that F(Z) = J which is zero in B. Thus
Ker F = Z. From the first isomorphism theorem we have A = KT'/Z = B. U

This result is illustrated in Example 8.3 (2) and (8).

Example 8.6. Let A = KT'/Z be a algebra which is given by the quiver

ai a3
L —
1 2 3
N ~
Qg oy

and Z = (ajoaqaa, azagizay, 0panasoy — azouaqas). This algebra was studied
in Example 2.40. Then A is a (4, 2)-stacked algebra. We want to construct the
quiver  and ideal J of KQ. We use the construction above, with p; = ajasaias,
P2 = Qa0 — (i3, P3 = azagaay. Then we have one vertex {o(ajaz)}
and we have two arrows {1, 82}, where (; corresponds to ajas, and S5 corresponds

to azay. So we have the following quiver Q:

B1 Clzga B2



Again we use the construction above to get p; = 8%, ps = 5182 — 3251, p3 = B35. We
can see that B is Koszul and A = B.
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9. CONCLUSION

In this thesis we studied Koszul algebras and generalisations of these algebras.
We have given the construction of a stretched algebra A from a finite dimensional
algebra A. We used a functorial approach to determine the projective resolutions and
the projective bimodule resolution of a stretched algebra. We used stratifying ideals
to give information on finite generation of the Hochschild cohomology ring for a
stretched algebra. We have shown that a d-Koszul algebra satisfies the (Fg) finiteness
condition if and only if its stretched algebra (which is a (D, A)-stacked algebra) also
satisfies the (Fg) finiteness condition. We have also given sufficient conditions for
a finite dimensional d-Koszul monomial algebra to have (Fg). Furthermore, we
have given a construction of an algebra B from a (D, A)-stacked algebra A, where
D=dA A>1andd> 2.

A further study for research would be to focus on how the cohomology of B relates
to that of A, and investigate whether every d-Koszul non-monomial algebra arises

from a (D, A)-stacked non-monomial algebra with D = dA via our construction.
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