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Abstract

Visual contracts model the operations of components or services by pre- and
post-conditions formalised as graph transformation rules. They provide a pre-
cise intuitive notation to support testing, understanding and analysis of soft-
ware. However, creating a detailed model of a system in any language is error-

prone.

Visual contracts are no exception, and their specification of object states and
transformations requires a deeper understanding of a system than models of ex-
ternally visible behaviour. This limits their applicability in testing, verification
and program understanding, thus inventing an effective technique for extracting

visual contracts automatically would enable their wider use in general.

In this thesis we study a reverse engineering approach to address such problems
by extracting visual contracts dynamically from existing systems. We propose
an inference solution and implement a prototype tool in Java with empirical

evaluations of the performance, completeness, correctness and utilisations.

The resulting contracts give an accurate description of the observed object
transformations, their effects and preconditions in terms of object structures,
parameter and attribute values, and allow generalisation by universally quanti-
fied (multi) objects. They support program understanding in general, and the
analysis of tests based on a concise, visual and comprehensive representation of

operations’ behaviour in particular.
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Chapter 1

Introduction

Much work on software modelling aims at facilitating software lifecycle through
the use of models as main artifacts (Ramos, Ferreira, and Barcelo 2012; Som-
merville 2011). This helps to make development, analysis, and testing require-
ments robust and more reliable. Modelling abstracts representation of systems
from details, allowing to focus on fundamental parts to precisely understand

and analyse functionality of software systems.

In the field of software engineering, models can be used to develop both existing
systems or proposed systems to be constructed. In the case of developing an
existing system, models can describe how the system works based on extracting
knowledge or design information using a reverse engineering approach (Siegel
2014). For proposed systems, models are used to specify the requirements fol-
lowing a forward engineering approach to design and implement software. Here,
implementations can be generated from models using so-called model-driven de-

velopment (MDD) (Whittle, Hutchinson, and Rouncefield 2014).

The prevalence of many different types of software systems, ranging from small
embedded systems to large, complex and integrated systems, results in the

need to use different types of models. To this end, many types and levels of
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models have been suggested in which a system can be represented from various
perspectives. The main perspectives followed to model software systems are

listed below (Sommerville 2011):

e an external perspective for modelling the environment of a system.

e an interaction perspective for modelling communications between compo-

nents of a system, or between systems and their environments.

e a structural perspective for modelling the organisation or the structure of
a system. A UML class diagram, for example, is widely used to model the

structure of classes.

e a behavioural perspective for modelling dynamic activities and interaction
in the system. For example, UML state machine, sequence diagrams and
object diagrams are popular kinds of models used for this purpose. The
latter represents a complete or partial behaviour of the classes in the class

diagram.

e an architecture perspective for modelling the overall framework of a sys-
tem. It describes both structural and behavioural models at a high level

using, e.g., UML package diagram.

The approach considered in this thesis focuses on design information extracted
from existing systems, handled by reverse engineering structural (classes) and
behavioural (objects) models. We define what type of model we want to extract

in Section 1.1 and the main motivations behind it in Section 1.2.

1.1 Visual Contracts

Visual contracts provide a precise high-level specification of the object graph

transformations caused by invocations of operations on a component or service.

3
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They link static models (e.g., class diagrams describing object structures) and
behavioural models (e.g., state machines specifying the order operations are in-
voked in) by capturing the preconditions and effects of operations on a system’s
objects. Visual contracts are based on graph transformation rules, as the spec-
ification of a system can be given by a type graph and a set of rules, where the
system’s behaviour is represented by a transformation relation labelled by rule

names (cf. Section 1.3.2).

Visual contracts differ from contracts embedded with code, such as JML in Java
or Contracts in Eiffel, as well as from model-level contracts in Object Constraint
Language (OCL). They are “visual”, using UML notation to model complex
patterns and transformations intuitively and concisely, see the example in Fig-
ure 1.1. Their executable semantics, based on graph transformation, supports
model-based oracle and test case generation (Khan, Runge, and Heckel 2012a;
Runge, Khan, and Heckel 2013), run-time monitoring (Engels et al. 2006a), ser-
vice specification and matching (Hausmann, Heckel, and Lohmann 2005), state
space analysis and verification. In Section 2.2, we give more details for defin-
ing what is a contract in software modelling, and discusses what are the visual

contracts we consider in this thesis.

1 | public class Rental implements IRental{

2

3 public String registerClient(

4 String city, Contract : public String registerClient(String, String)
5 String clientName) { LHS RHS

6 Branch b = getBranch(city); bBranch b-Branch 1—
7 if (b !=null){ — Ve of
8 Client ¢ = new Client(); zll\/\I/a_xc-i LS l
9 c.name =clientName; — Client
10 c.iD = b.city + (b.cMax++); nan;e=n

11 b.of.add(c); id=return

12 return c.iD; |::>

13 } return null; registerClient(c, n) = return

-
IS

)

o
ot

}

FIGURE 1.1: An example of a visual contract on the right that models a
Java method registerClient(..)
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1.2 Motivation

Reverse Engineering is “a process of discovering the technological principles of
a device, object, or system through analysis of its structure, function, and oper-
ation” (Chikofsky and Cross 1990). It is required with undocumented systems,
or systems that have insufficient or out of date documentation. It provides an
abstract version of how a system works, which can then be used in, e.g., testing
or debugging activities. In Section 2.3, we expand the discussion about reverse
engineering techniques, focusing on models and covering topics such as existing

analysis approaches and their challenges.

1.2.1 Reverse Engineering Visual Contracts

Reverse engineering visual contract is the process of extracting a formal model
of a system, based on graph transformation concepts. Our ultimate motivation

behind this came from the following common challenges:

e The lack of up-to-date models for existing software (Kipyegen, Korir, and
Njoro 2013). This could lead to erroneous understanding of required spec-
ifications, affecting maintenance and/or testing activities. For example,
when a system is changed, all the relevant models need to be updated
to reflect such changes. The challenge is that updating any detailed (be-
havioural) models can be a tedious and error-prone process. Developers
might not have sufficient support to correctly modify models nor have

enough time due to tight deadlines.

e The difficulty of creating a detailed model of the behaviour of a complex
application. Designing system specifications manually, particularly for de-
scribing behaviours, is a time-consuming, error-prone and evidently not

an easy task.
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Visual contracts are no exception, and their specification of object states and
transformations require a deeper understanding of a system than models of
externally visible behaviour such as state machines or sequence diagrams. This
limits their applicability in testing, verification and program understanding in

general.

The mentioned challenges can be addressed by reverse engineering models from

existing systems. Consequently, our objectives are:

1 to study these challenges by proposing a dynamic approach for extracting
contracts automatically from implementations. This also involves address-
ing the problem of having an out-of-date contract model or allowing to

generate new contracts for unmodelled systems.

2 to investigate model generalisation (e.g., extracting shared behaviours and
combining them into higher level versions) for supporting program com-
prehension from two aspects: (a) object behaviours and their relations
based on graph pattern matching and (b) object attributes using an in-

variant detector technique.

3 to systematically evaluate the requirements of such proposal, including

the utility, scalability, correctness and completeness.

In addition to the common advantages of reverse engineering models such as
increasing understandability, discussed in Chapter 2, the extracted visual con-
tracts can be exploited to bridge an important gap in model driven engineering
(MDE). In Section 2.4, we explain that our approach can support the transfor-
mation from implementation layer to Platform Specific Model (PSM) layer.

The generated contracts by our approach can automatically give an accurate
description of behaviour of operations at a high level of abstraction. They convey
information more effectively than code level analysis. They also support program

6
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understanding in general, and the analysis of tests based on a concise, visual

and comprehensive representation of operations’ behaviour in particular.

1.2.2 Problem Statement

Regardless of the strength of visual contracts in specifying object states and
transformations, their creation is complex, error-prone and time-consuming.
This limits their applicability in general. A recent supporting tool proposed
by (Amélio and Glodt 2015) for visual modelling including contract diagrams
(i.e., model operations by pre- and post- conditions) based on Z (Spivey and
Abrial 1992) has been evaluated. The major limitation found in this tool is the

usability in diagram editing tasks.

The reverse engineering of visual contracts can enable their wider use in test-
ing and verification, and provide a valuable tool for program understanding.
Thus, we seek to study the extraction of candidates of visual contracts from
implementations as a bottom-up approach. The two main requirements for this

extraction are:

e The extracted contracts should faithfully describe the behaviours of the

system.

e The extraction process should consume less time and effort than designing

contract manually.

In Section 1.3.4, we give more deep explanations about the challenges of extrac-
tion of visual contracts. We propose a dynamic solution, based on tracing and
model inference, implemented in a prototype tool. The empirical evaluations
presented in Chapter 6 assess the performance, completeness, and correctness

of visual contracts, as well as their utilisations in testing.
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1.3 Overview of the Approach

The approach considered in this thesis aims at extracting candidates of visual
contracts from implementations of sequential Java applications. These contracts
represent the pre- and postconditions of operations of classes or components by

means of graph transformation rules.

1.3.1 Requirements Analysis

Model extraction from an existing system can be performed by different reverse
engineering approaches, discussed in Section 2.3.3. These approaches have dif-
ferent pros and cons and no single analytical approach can support all desired
features. For example, the static approach can support analysing incomplete
systems, e.g., components that cannot be executed independently (Rountev,
Volgin, and Reddoch 2005), while the dynamic approach allows to detect dy-

namic object-oriented behaviours (Canfora, Di Penta, and Cerulo 2011).

Moreover, in the static approach, it is possible to generate a complete model by
analysing source code without having to execute the system, but it is uncertain
to be correct as many false-positive behaviour can be produced in the model
(Ashish and Aghav 2013; Pistoia and Tripp 2014). In contrast, the dynamic
approach generates an incomplete model but is potentially more correct as its

analysis is based on the actual execution of the system (Cornelissen et al. 2009).

In order to extract visual contracts from implementations that describe opera-

tion behaviours, we need to:

e determine classes and methods using static approach and

e the changes of object/data states at runtime.
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These two requirements show that both static and dynamic approaches are
required in order to extract visual contracts. Our approach introduced in Part 11
is semi-automatic. It initially starts with extracting class diagram from code,
allowing to manually select classes and methods of interest to be executed by
test cases. The rest is automatic based on dynamic analysis. The focus in this
thesis is on the latter step as extracting classes statically is achievable by many

available tools.

One critical difference between static and dynamic approaches that led us to
adopt the dynamic is its capability in observing method binding (i.e., over-
loaded and overridden methods), which occurs at compiling/runtime only. In
Section 3.2, we explain by example that it is impossible to determine some

behaviours using static analysis only.

1.3.2 Visual Contracts as GT Rules

In this section, we introduce basic concepts of graph transformation, including
rules and transformations with attributes and multi objects. These concepts
serve as the formal basis for our proposal in Part II. We follow the spirit of the
double-pushout (DPO) approach (Ehrig et al. 2006) while adopting a set-based

presentation.

1.3.2.1 Typed Attributed Graph and Graph Morphism

e A graph G = (V, E, s,t) consists of a set V' of nodes (or vertices), a set E

of edges, and source, target functions s,t: £ — V.

e An attributed graph G = (Gv,Gg, Gp, src®, tar®) consists of a set Gy of
nodes (or vertices) with a distinguished set of data nodes Gp C Gy, a

set G of edges, and source, target functions src®, tar® : Gy — Gy. We
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assume that data nodes represent values and do not have outgoing edges.

When clear from the context we will drop indices and superscripts.

e A graph morphism f : G — H is a pair of mappings fy : Gy — Hy, fg :

Gr — Hpg preserving sources and targets, and respecting the distinction

between object and data: for all v € Gy, v € Gp iff fy(v) € Hp.

o A type graph TG is a distinguished graph introducing vertex, edge and

data types.

e An instance graph over a type graph T'G is a graph G with a graph

morphism typeq : G — TG. Typed graph morphisms are morphisms

preserving the typing. Instance graphs and morphisms over T'G form the

category Graphpq.

A UML class diagram is formally represented as an attributed type graph TG,

i.e., a distinguished graph defining vertex, edge, attribute and data types from

which object graphs can be constructed. An instance graph over T'G is a graph

G (i.e., represents UML Object Diagram) equipped with a graph morphism

G — TG assigning every element in G its type in T'G.

(A) Relevant objects from two states

b1:Branch b1:Branch
city="Ely" of city="Ely" of
cMax=1 I cMax=2 I
rMax=0 rMax=0
item[0] :ArrayList item[0] :ArrayList
size =1 size =2
:Client :Client
name="Abdo" name="Abdo"
id=Ely1l id=Ely1l
- item[1]
cl:Client
name="Abrar"
id=Ely2

| registerClient("Ely", "Abrar") I

LHS

RHS

b:Branch

b:Branch —

city=c
cMax=i

cMax=i+1

of

l

c:Client

name=n
id=return

registerClient(c, n) = return

FIGURE 1.2: An example of graph transformation rule

10

(B) contract : public String registerClient(String, String)
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1.3.2.2 Rules and Graph Transformation System

Figure 1.2 (B) shows a transformation rule which, when applied to the object
graph in the left of (A) at the match mapping b to b1, produces a graph similar
to the one in the right of (A), taking into account that of represents an object
container (ArrayList). In Part 1T we give more examples of transformation rules.

Formally:

e A rule is a pair L &K 5 Rof injective graph morphisms. A rule
p = (L = R) defines left- and right-hand side graphs such that their
union L U R (and hence their intersection L N R) is well-defined. In this
thesis we assume that K = LN R and [, r are inclusions. The set of rules

over T'G is Rulerq.

Given an instance graph G, rule p can be applied if there is an injective
morphism m : L — G satisfying the dangling condition. That means
L is isomorphic to m(L) and, removing m(L \ R) from G, the resulting
structure is still a graph, i.e., there are no dangling edges. The derived
graph H is obtained from G by deleting m(L \ R) and adding a copy of
R\ L, denoted G 2% H. The construction of this is a double-pushout

diagram like in Figure 1.3.

e A graph transformation system (GTS) (P,7) consists of a set of rule
names P and a function 7 assigning each name p a rule 7(p) = L &
K - R. The resulting transformation relation is denoted by G == H C

Graphpg X Graphpg.

Extracting visual contract is concerned with deriving specifications from existing
systems. As explained, this needs dynamic analysis technique that allow to
observe changes of object states. In the case of typed graph transformation,

the specification is given by a type graph and a set of rules and the system’s

11
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L K r R
first pushau! G T s second pushout
o™ Do
ﬁ ~ e m# | Ko common interface ie. L N R
E\z\e\[” g \'\% L : left hand side (pre-conditions)
Tl R : right hand side (post-conditions)
- D =(Gm(L)) UmK)| H:=D U Rw~K) ~ m : match _
G I D " *H I & r: specify the type graphs
v

FicUre 1.3: DPO diagram representing a rule application

behaviour can be represented abstractly by a transformation relation labelled
by rule names. In this setting, dynamic reverse engineering visual contracts

means to infer rules from observed changes of object states.

In Chapter 3, we present our solution for constructing rules by tracing object
states dynamically, while in Chapter 4 we generalise such rules by inference of

higher level features.

1.3.2.3 Rules with Multi Objects

Multi objects (MOs) support universal quantification over unknown contexts
in a rule. An example of a rule with multi object can be seen in Figure 1.4
where node Reservation is an MO node (shown with a 3D shadow) with car-
dinality (one-to-many) applicable to object graphs with at least one Reser-
vation node connected to the Client. Formally: A multi-object (MO) rule

= (L = R, M,card) is a rule with a set M C (Ly \ Lp) of MO nodes
and cardinality constraints card : M — (N U {x}) x (N U {%}). It states how
many concrete objects each MO can be instantiated by. The set of MO rules
over TG is M Ruler¢.

To derive MO rules from regular rules we have to discover sets of nodes that
have the same structure and behaviour, then represent them by a single multi-

object node. Chapter 5 discusses our proposed algorithm to do so and then

12
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inferring MO rules. This adds more concise constraints to specify actions across

sets of objects of different cardinalities.

1 public void cancelClientReservation( . . ) . .
5 String clientID) { Contract : public void cancelClientReservation(String)
3

4 for (int i=this.reservations.size()—1; LHS RHS

5 i>=0; i—— - -

. i>=0; i——) { c:Client c:Client

7 if (this.reservations.get(i) id=cID id=cID

8 .made.id==clientID) { made |:‘>

9 continue; .

1 )

11 this.reservations.remove(i);

o
N

}

Jun
w

cancelClientReservation(cID)

FIGURE 1.4: Representing multi-object for cancelClientReservation(..)

1.3.2.4 Graph Transformation Specification

A graph transformation specification (GTSpec) G = (TG, OP, P) consists of a
type graph T'G, a set of operation names OP, and a set of parametrised rules
op(z1,...,x,) =y : L= R. Here MO rule (L = R, M, card) € M Ruler¢ is la-
belled by operation op € OP and augmented by formal parameters z1,...,z, €
Ly \ M and return y € Ry \ M. The transformation obtained by applying rule
op(z1,...,x,) =y : L = R at match m to an instance graph G is denoted
op(ay,...,a,) =b: G = H if m(z;) = a; and m*(y) = b, briefly G O gy

where @ = aq,...,a,.

1.3.3 Proposed Methodology

This section provides an overview of the proposed approach for reverse engi-
neering VCs from existing systems. The approach is divided into three main
steps, illustrated in Figure 1.5 and presented in detail in the mentioned chapters.
The first step (A) focuses on extracting actual behaviour by tracing, yielding

instance-level versions of visual contracts (rule instances). We adopt a dynamic

13
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analysis approach to construct contract instances by observing system’s execu-

tion at runtime, introduced in Chapter 3.

I Toward — extracting and learning visual contracts >
Chapter 1 Generalised contracts Rule features
Contract instances Min & Max rules |::> Multi objects
Attribute conditions
A (8) h

(A)

Chapter 3 ! Extract Chapter 4 |} infer Chapter5 |} infer
Extract
Test = Graph Matching MO Algorithm
S Algorithm P S .
Existing system Dynamic Analysis Learning range of rules Learning rule features

Chapter 6 ﬁ H

: 7 VC tool
S || to visualise outputs

-
Po—

FIGURE 1.5: Overall picture of the thesis

The extracted contract instances describe partial behaviour of the system or
component. Generalising them to a model comprehensive version is the second
step, see Figure 1.5 (B). At this step, our solution in Chapter 4 depends on typed
attributed graph transformation rules and uses directed sub-graph matching
algorithms. In the third step, shown in (C) of Figure 1.5 and introduced in
Chapter 5, we seek to increase generality of contracts by inferring multi objects
and attribute conditions based on data. In the following subsections, we give

more details about these three steps.

14
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1.3.3.1 Extraction of Contract Instances

The model illustrated in Figure 1.1 represents a contract instance, reflecting a
specific behaviour of operation registerClient(). To extract such a contract in-
stance from the implementation, we propose a novel approach based on dynamic
reverse engineering, see (Alshanqiti and Heckel 2014). We use instrumentation
based on Aspect Oriented Programing (AOP) to observe executions of existing
test cases, record these observations in traces and analyse them to filter out ir-
relevant objects based on their classes and aggregate their basic steps into rule

instances covering the overall precondition and effect for that execution.

Along with each constructed instance we collect traceability data for each ele-
ment of the contract, such as the access type (read/write) with line numbers in
the code. These traceability data can be used for graph matching in the next

stage and also for program understanding, e.g., as part of testing or debugging.

1.3.3.2 Generalisation of Contract Instances

The idea of generalisation as far as this thesis is concerned is to infer concise and
comprehensive contracts (rules) from instances to increase understandability.
This is because each contract instance only represents one possible outcome from
any executed operation. The aim is to combine them to a general behaviour

model.

We propose a graph matching algorithm to extract minimal and mazimal rules
from pairs of graphs representing transformations, see (Alshanqiti, Heckel, and
Khan 2013). Using extracted contract instances as an input set to this algo-
rithm, our approach allows to generate for each contract instance a minimal
rule, i.e., the smallest rule able to perfo