
Inferring Visual Contracts

from Java Applications

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

By

Abdullah Mahfodh Alshanqiti

Department of Informatics

University of Leicester

April 2017

Inferring Visual Contracts

from Java Applications

Abdullah Mahfodh Alshanqiti

Abstract

Visual contracts model the operations of components or services by pre- and

post-conditions formalised as graph transformation rules. They provide a pre-

cise intuitive notation to support testing, understanding and analysis of soft-

ware. However, creating a detailed model of a system in any language is error-

prone.

Visual contracts are no exception, and their specification of object states and

transformations requires a deeper understanding of a system than models of ex-

ternally visible behaviour. This limits their applicability in testing, verification

and program understanding, thus inventing an effective technique for extracting

visual contracts automatically would enable their wider use in general.

In this thesis we study a reverse engineering approach to address such problems

by extracting visual contracts dynamically from existing systems. We propose

an inference solution and implement a prototype tool in Java with empirical

evaluations of the performance, completeness, correctness and utilisations.

The resulting contracts give an accurate description of the observed object

transformations, their effects and preconditions in terms of object structures,

parameter and attribute values, and allow generalisation by universally quanti-

fied (multi) objects. They support program understanding in general, and the

analysis of tests based on a concise, visual and comprehensive representation of

operations’ behaviour in particular.

Acknowledgements

In the name of Allah, the most merciful, the most beneficent

• Above all, I am so grateful to Allah Almighty for giving me the patience and

the capability to accomplish this thesis.

• I give heartfelt thanks to my supervisor Prof. Reiko Heckel. Without his in-

credible generosity and continuous support, this thesis would not have even

been completed. I still remember the first few emails I received from him

regarding my MSc project in 2010; since then, 7 years have passed, and I

have learned so many things from him both academically and personally. His

criticism and encouragement have always been important and meant a lot to

me, because, he always converts my mistakes and pressure into lessons and

strengths. Advisedly, he was involved in every aspect of this thesis and he was

always sharp to spot inconsistencies in my writing that I overlooked. No words

I could use to express my feeling, but I wish him a wonderful and awesome

life ahead with no tensions and worries.

• I would particularly like to thank my second supervisor Dr. Neil Walkinshaw

for his great suggestions and so kind help in several occasions.

• I am grateful to my thesis examiners, Dr. Emilio Tuosto and Dr. Jens Krinke,

for their insightful reviews and a thoroughly inspirational viva.

• Special recognition should be given to Prof. Arend Rensink and Prof. Daniel

Varro whom I met in GTVMT 2014 for their help and nice suggestions. Also,

special thanks should go to Dr. Tamim Khan for his help and cooperation

during the preliminary stages of my research journey.

• I sincerely acknowledge and offer my profound gratitude to the Islamic Uni-

versity in Madinah Almunawarah and to the Ministry of Education in Saudi

Arabia for offering me fully funded scholarship and also for their continued

generosity. I would like to extend my sincerest thanks and appreciation to the

Department of Informatics of the University of Leicester for offering me the

chance to work as a teaching assistant, and also for supporting me to attend

several international conferences.

ii

iii

• I have had the honorable opportunity to know many people in the UK whom I

am glad to call my true friends. My life as a PhD researcher would not have

been as enjoyable without these close friends: Dr. Abdullah Alhejaili, Dr. Mo-

hammed Alabdullatif, Dr. Ayman Bajnaid, Dr. Samir Alrahili, Eng. Ahmad

Alaskah, Eng. Abdusamad Alzubali, Osama Alahmadi, Samir Alharbi, Musaab

Alharbi and many others. Their friendships are really memorable as everyone

has been extremely sympathetic and supportive to bring out the best in me.

I will certainly miss all of them.

• My great appreciation goes to my beloved parents for their wholehearted fond-

ness, deep affection, and endurance. Their dedicated self-sacrifice and being

always selfless in giving me the best of everything make me ever speechless

and teary eyed when just thinking of them. I would like to take this blessed

moment to also express my never-ending love and deep gratitude towards my

siblings for their prayers for my success. Sincerest thanks to all of you.

• I owe my deepest gratitude to my wife Aeshah for her encouragement, emo-

tional and continuous support while the thesis was being written. Sometimes,

when things get complicated, it makes a person irritable, even when it comes

to simple things in life. She has been most helpful in supporting me with this

aspect. A big thank-you especially to my beautiful daughter Abrar that just

watching her smile makes me realise how beautiful my life is. I have to admit

this thesis would not have been possible without the love of my family.

Abdullah Alshanqiti

Table of Contents

Abstract i

Acknowledgements ii

List of Tables viii

List of Figures ix

Abbreviations xi

I Introduction and Background 1

1 Introduction 2

1.1 Visual Contracts . 3

1.2 Motivation . 5

1.2.1 Reverse Engineering Visual Contracts 5

1.2.2 Problem Statement . 7

1.3 Overview of the Approach . 8

1.3.1 Requirements Analysis 8

1.3.2 Visual Contracts as GT Rules 9

1.3.3 Proposed Methodology 13

1.3.4 Technical Challenges . 16

1.4 Contributions and Related Publications 18

1.5 Thesis Structure . 21

2 Model Based Engineering 22

2.1 Basic Terminology . 22

2.1.1 System and Meta-Models 23

2.1.2 Acronyms of Model Driven (MD*) 24

2.1.3 Prescriptive and Descriptive Models 28

2.1.4 Modelling Languages . 29

2.2 Contracts MDE . 30

2.2.1 Design-by-Contract . 30

iv

Table of Contents v

2.2.2 Visual Contracts . 31

2.3 Model Driven Reverse Engineering 33

2.3.1 General RE Motivations and Goals 33

2.3.2 Scientific Challenges . 34

2.3.3 Analysis Approaches . 36

2.3.4 Model Construction . 40

2.4 The Use of Visual Contracts in MDE 41

2.4.1 Specification of Component Interfaces 41

2.4.2 Dynamic Monitoring and Debugging 43

2.5 Summary . 45

II Inference of Visual Contracts 46

3 Extraction of Contract Instances 47

3.1 Extraction Approach . 48

3.2 Running Example . 50

3.2.1 Structural Features . 53

3.2.2 Behavioural Code and Contracts 53

3.3 Tracing System Executions . 55

3.3.1 Aspect Oriented Programming 56

3.3.2 Generating Logs . 57

3.4 Constructing Rule Instances . 58

3.4.1 Scope of Operation . 59

3.4.2 Accessed Objects . 60

3.4.3 Cases to Construct Rules 61

3.4.4 Information on Accessed Objects 62

3.5 Summary . 63

4 Generalisation of Contract Instances 65

4.1 Basic Definitions . 66

4.1.1 Contract Instances . 66

4.1.2 Minimal Rules . 67

4.1.3 Maximal Rules . 67

4.2 Inference Approach . 68

4.2.1 Classification of Contract Instances 69

4.2.2 Rule with Shared Contexts 70

4.2.2.1 Inferring Maximal Rules 71

4.2.2.2 Complexity of the Construction 74

4.3 Incremental Inference . 76

4.4 Summary . 77

Table of Contents vi

5 Inference of Advanced Rule Features 79

5.1 Inferring Universally Quantified Multi Objects 80

5.1.1 Definition of GT Rules with Multi Objects 80

5.1.2 Approach . 81

5.1.3 Algorithm for Inferring Multi-Objects 83

5.2 Deriving Constraints on Attribute and Parameter Values 84

5.2.1 Overview of Learning Invariant Constraints 85

5.2.2 Rules with Attribute and Parameter Constraints 86

5.2.3 Setting up Attributes and Parameters Values 87

5.2.4 Learning Using Daikon 88

5.3 Summary . 90

III Evaluation and Conclusion 92

6 Evaluation 93

6.1 Prototype Tool . 94

6.1.1 Visualisation of Rule Instances 95

6.1.2 Visualisation of Advanced Rules 96

6.2 Accuracy of Extracted Contracts 98

6.2.1 Correctness . 98

6.2.2 Completeness . 99

6.2.3 Manual Inspection . 100

6.3 Utility in Assessing Test Reports and Localising Faults 103

6.3.1 Experimental Setup . 103

6.3.2 Data Collection and Analysis 109

6.3.3 Discussion and Threats to Validity 112

6.4 Performance and Scalability . 113

6.4.1 Case Studies and Test Cases 114

6.4.2 Extraction and Inference 115

6.4.3 Benefits and Validity of Generalisation 118

6.4.4 Analysis of Results and Threats to Validity 121

6.5 Summary . 123

7 Comparison to the State of the Art 125

7.1 Model Extraction . 126

7.1.1 Architecture-Driven Modernization 126

7.1.2 Tracing Approaches . 127

7.1.3 Type of Extracted Models 129

7.1.4 Extraction of Contract Models 130

7.2 Model Generalisation . 131

7.2.1 Application Domain . 131

Table of Contents vii

7.2.1.1 Business Processes 131

7.2.1.2 Biological Systems 133

7.2.1.3 Model Transformation 133

7.2.2 Graph Pattern Mining 136

7.2.2.1 Statistical Approaches 137

7.2.2.2 Node Signature-Based Approaches 138

7.3 Feature Inferences . 138

7.4 Summary . 139

8 Conclusion and Future Work 141

8.1 Summary of the Thesis . 141

8.2 Contributions in a Nutshell . 142

8.3 Limitations . 143

8.3.1 Observing Deleted Objects 144

8.3.2 Concurrency in Multi-Thread Applications 144

8.3.3 Dependence on a Single Maximal Rule Extracted 144

8.4 Outlook and Future Directions 145

8.4.1 Integration with Henshin Tool 145

8.4.1.1 Edit Operations on Models 145

8.4.1.2 Execution of Inferred Contracts 148

8.4.2 Inferring Negative Application Conditions 149

8.4.3 VCs for Debugging . 149

8.4.4 Supporting Multi-Thread Application 150

8.4.5 On-fly Software Development 151

Appendices 153

A: Case study to evaluate the use of extracted VC in testing . . 153

B: Simulate extracting visual contracts 169

Bibliography 171

Graph Transformation and Visual Contracts 171

Specification Learning and Mining 177

Model Based Software Engineering 179

Miscellaneous . 186

List of Tables

3.1 Main cases for rule construction 61

3.2 Extracted properties for each object (node element) in the rule . 62

4.1 Cases of matching elements in MAR with elements in a contract
instance . 73

5.1 Mapping and ordering node elements and setting up their values 88

5.2 Summary or the main cases of detecting invariants (Ernst et al.
2001) . 89

6.1 Statistical data for groups A and B 110

6.2 Overall extractions vs. number of methods based on the last
batch size (2183 and 135) of Figure 6.12 and Figure 6.13 respec-
tively. 117

6.3 JHotDraw objects accessed and processed for the construction of
contracts from 135 instances, see Figure 6.13 117

6.4 Performance of generalising 45 rule instances 118

6.5 Incremental process of computing maximal rule 120

7.1 Similarities with tracing approaches based on aspect oriented . . 128

7.2 Comparison with learning rules from model transformation . . . 137

viii

List of Figures

1.1 An example of a visual contract on the right that models a Java
method registerClient(..) . 4

1.2 An example of graph transformation rule 10

1.3 DPO diagram representing a rule application 12

1.4 Representing multi-object for cancelClientReservation(..) 13

1.5 Overall picture of the thesis . 14

2.1 Relationships between system, models and metamodels (main
part of this figure is originally taken from) (Brambilla, Cabot,
and Wimmer 2012) . 24

2.2 The main layers of model driven MD* (Brambilla, Cabot, and
Wimmer 2012) . 25

2.3 Architectural layers in MDA . 27

2.4 The involvement of visual contracts in MDA approach 42

3.1 Description of how an extracted sequence of read and write oper-
ations of accessing objects are used for constructing contract (or
rule) instances . 49

3.2 Overview of extracting contracts instances 50

3.3 Specification of Car Rental Service 52

3.4 Mapping classes and objects and representing operations 54

3.5 Uncertain cases to recognise code behaviours by static analysis . 55

3.6 Overview of our trace analysis 59

4.1 Inferring maximal rules from contract instances, see Section 3.2 67

4.2 Maximal rules inferred from contract instances, extracted from a
particular operation . 68

4.3 Complex decision to define the accurate intersection 72

4.4 Two snapshots explaining the process of updating MAR 74

4.5 Maximal shared subgraphs are not unique 75

4.6 Applying the complex example (Figure 4.5) in our algorithm . . 76

5.1 Inference of multi-object nodes 80

5.2 Inferring rule with MO from showClientReservation(..) 82

ix

List of Figures x

5.3 Process of learning constraints on attributes and parameters . . 85

5.4 Contract instance extracted from registerClient(..) 86

6.1 Architecture of the Tool . 94

6.2 Visualiser interface . 96

6.3 Object access and code locations 97

6.4 Extraction of rule with multi object 97

6.5 Implementation and rule instances for dropOffCar() 101

6.6 Service specification . 104

6.7 Implementation of the Rental Car Service 105

6.8 Worksheet for explaining failed steps and localising faults 106

6.9 Group A: Test reports used for detecting faults 107

6.10 Group B: Test reports used for detecting faults, 108

6.11 Examples of extracted contracts used for detecting faults. 111

6.12 Scalability for extracting contracts from NanoXML 116

6.13 Scalability for extracting contracts from JHotDraw 116

6.14 Performance based on rule size 118

6.15 Generalised maximal rule for pickupCar(). Best viewed at 350%
zoom. 119

8.1 Henshin representation of extracted contracts from (NanoXML -
a small non-validating XML parser for Java 2016) 146

8.2 Integration with Henshin (Arendt et al. 2010) to learn model
editing rules . 146

8.3 Integration with Henshin (Arendt et al. 2010) to execute ex-
tracted contracts . 148

Abbreviations

ADM Architecture Driven Modernization

AOL Aspect Oriented Language

API Application Program Interface

DbC Design by Contract

DPO Double Push Out

DSL Domain Specific Language

EMF Eclipse Modeling Framework

GT Graph Transformation

GTS Graph Transformation Systems

JML Java Modelling Language

MBE Model Based Engineering

MDE Model Driven Engineering

MDD Model Driven Development

MDA Model Driven Architecture

MDRE Model Driven Reverse Engineering

MDM Model Driven Monitoring

MO Multi Objects

MTBE Model Transformation by Example

NAC Negative Application Conditions

OMG Object Management Group

OOP Object Oriented programming

PIM Platform Independent Model

PSM Platform Specific Model

xi

Abbreviations xii

RE Reverse Engineering

SUT System Under Test

UML Unified Modelling Language

VC Visual Contract

Part I

Introduction and Background

1

Chapter 1

Introduction

Much work on software modelling aims at facilitating software lifecycle through

the use of models as main artifacts (Ramos, Ferreira, and Barcelo 2012; Som-

merville 2011). This helps to make development, analysis, and testing require-

ments robust and more reliable. Modelling abstracts representation of systems

from details, allowing to focus on fundamental parts to precisely understand

and analyse functionality of software systems.

In the field of software engineering, models can be used to develop both existing

systems or proposed systems to be constructed. In the case of developing an

existing system, models can describe how the system works based on extracting

knowledge or design information using a reverse engineering approach (Siegel

2014). For proposed systems, models are used to specify the requirements fol-

lowing a forward engineering approach to design and implement software. Here,

implementations can be generated from models using so-called model-driven de-

velopment (MDD) (Whittle, Hutchinson, and Rouncefield 2014).

The prevalence of many different types of software systems, ranging from small

embedded systems to large, complex and integrated systems, results in the

need to use different types of models. To this end, many types and levels of

2

Chapter 1. Introduction 3

models have been suggested in which a system can be represented from various

perspectives. The main perspectives followed to model software systems are

listed below (Sommerville 2011):

• an external perspective for modelling the environment of a system.

• an interaction perspective for modelling communications between compo-

nents of a system, or between systems and their environments.

• a structural perspective for modelling the organisation or the structure of

a system. A UML class diagram, for example, is widely used to model the

structure of classes.

• a behavioural perspective for modelling dynamic activities and interaction

in the system. For example, UML state machine, sequence diagrams and

object diagrams are popular kinds of models used for this purpose. The

latter represents a complete or partial behaviour of the classes in the class

diagram.

• an architecture perspective for modelling the overall framework of a sys-

tem. It describes both structural and behavioural models at a high level

using, e.g., UML package diagram.

The approach considered in this thesis focuses on design information extracted

from existing systems, handled by reverse engineering structural (classes) and

behavioural (objects) models. We define what type of model we want to extract

in Section 1.1 and the main motivations behind it in Section 1.2.

1.1 Visual Contracts

Visual contracts provide a precise high-level specification of the object graph

transformations caused by invocations of operations on a component or service.

3

Chapter 1. Introduction 4

They link static models (e.g., class diagrams describing object structures) and

behavioural models (e.g., state machines specifying the order operations are in-

voked in) by capturing the preconditions and effects of operations on a system’s

objects. Visual contracts are based on graph transformation rules, as the spec-

ification of a system can be given by a type graph and a set of rules, where the

system’s behaviour is represented by a transformation relation labelled by rule

names (cf. Section 1.3.2).

Visual contracts differ from contracts embedded with code, such as JML in Java

or Contracts in Eiffel, as well as from model-level contracts in Object Constraint

Language (OCL). They are “visual”, using UML notation to model complex

patterns and transformations intuitively and concisely, see the example in Fig-

ure 1.1. Their executable semantics, based on graph transformation, supports

model-based oracle and test case generation (Khan, Runge, and Heckel 2012a;

Runge, Khan, and Heckel 2013), run-time monitoring (Engels et al. 2006a), ser-

vice specification and matching (Hausmann, Heckel, and Lohmann 2005), state

space analysis and verification. In Section 2.2, we give more details for defin-

ing what is a contract in software modelling, and discusses what are the visual

contracts we consider in this thesis.

1 public class Rental implements IRental{
2 ...
3 public String registerClient(
4 String city,
5 String clientName) {
6 Branch b = getBranch(city);
7 if (b !=null){
8 Client c = new Client();
9 c.name =clientName;

10 c.iD = b.city + (b.cMax++);
11 b.of.add(c);
12 return c.iD;
13 } return null;
14 } ...
15 }

Figure 1.1: An example of a visual contract on the right that models a
Java method registerClient(..)

4

Chapter 1. Introduction 5

1.2 Motivation

Reverse Engineering is “a process of discovering the technological principles of

a device, object, or system through analysis of its structure, function, and oper-

ation” (Chikofsky and Cross 1990). It is required with undocumented systems,

or systems that have insufficient or out of date documentation. It provides an

abstract version of how a system works, which can then be used in, e.g., testing

or debugging activities. In Section 2.3, we expand the discussion about reverse

engineering techniques, focusing on models and covering topics such as existing

analysis approaches and their challenges.

1.2.1 Reverse Engineering Visual Contracts

Reverse engineering visual contract is the process of extracting a formal model

of a system, based on graph transformation concepts. Our ultimate motivation

behind this came from the following common challenges:

• The lack of up-to-date models for existing software (Kipyegen, Korir, and

Njoro 2013). This could lead to erroneous understanding of required spec-

ifications, affecting maintenance and/or testing activities. For example,

when a system is changed, all the relevant models need to be updated

to reflect such changes. The challenge is that updating any detailed (be-

havioural) models can be a tedious and error-prone process. Developers

might not have sufficient support to correctly modify models nor have

enough time due to tight deadlines.

• The difficulty of creating a detailed model of the behaviour of a complex

application. Designing system specifications manually, particularly for de-

scribing behaviours, is a time-consuming, error-prone and evidently not

an easy task.

5

Chapter 1. Introduction 6

Visual contracts are no exception, and their specification of object states and

transformations require a deeper understanding of a system than models of

externally visible behaviour such as state machines or sequence diagrams. This

limits their applicability in testing, verification and program understanding in

general.

The mentioned challenges can be addressed by reverse engineering models from

existing systems. Consequently, our objectives are:

1 to study these challenges by proposing a dynamic approach for extracting

contracts automatically from implementations. This also involves address-

ing the problem of having an out-of-date contract model or allowing to

generate new contracts for unmodelled systems.

2 to investigate model generalisation (e.g., extracting shared behaviours and

combining them into higher level versions) for supporting program com-

prehension from two aspects: (a) object behaviours and their relations

based on graph pattern matching and (b) object attributes using an in-

variant detector technique.

3 to systematically evaluate the requirements of such proposal, including

the utility, scalability, correctness and completeness.

In addition to the common advantages of reverse engineering models such as

increasing understandability, discussed in Chapter 2, the extracted visual con-

tracts can be exploited to bridge an important gap in model driven engineering

(MDE). In Section 2.4, we explain that our approach can support the transfor-

mation from implementation layer to Platform Specific Model (PSM) layer.

The generated contracts by our approach can automatically give an accurate

description of behaviour of operations at a high level of abstraction. They convey

information more effectively than code level analysis. They also support program

6

Chapter 1. Introduction 7

understanding in general, and the analysis of tests based on a concise, visual

and comprehensive representation of operations’ behaviour in particular.

1.2.2 Problem Statement

Regardless of the strength of visual contracts in specifying object states and

transformations, their creation is complex, error-prone and time-consuming.

This limits their applicability in general. A recent supporting tool proposed

by (Amálio and Glodt 2015) for visual modelling including contract diagrams

(i.e., model operations by pre- and post- conditions) based on Z (Spivey and

Abrial 1992) has been evaluated. The major limitation found in this tool is the

usability in diagram editing tasks.

The reverse engineering of visual contracts can enable their wider use in test-

ing and verification, and provide a valuable tool for program understanding.

Thus, we seek to study the extraction of candidates of visual contracts from

implementations as a bottom-up approach. The two main requirements for this

extraction are:

• The extracted contracts should faithfully describe the behaviours of the

system.

• The extraction process should consume less time and effort than designing

contract manually.

In Section 1.3.4, we give more deep explanations about the challenges of extrac-

tion of visual contracts. We propose a dynamic solution, based on tracing and

model inference, implemented in a prototype tool. The empirical evaluations

presented in Chapter 6 assess the performance, completeness, and correctness

of visual contracts, as well as their utilisations in testing.

7

Chapter 1. Introduction 8

1.3 Overview of the Approach

The approach considered in this thesis aims at extracting candidates of visual

contracts from implementations of sequential Java applications. These contracts

represent the pre- and postconditions of operations of classes or components by

means of graph transformation rules.

1.3.1 Requirements Analysis

Model extraction from an existing system can be performed by different reverse

engineering approaches, discussed in Section 2.3.3. These approaches have dif-

ferent pros and cons and no single analytical approach can support all desired

features. For example, the static approach can support analysing incomplete

systems, e.g., components that cannot be executed independently (Rountev,

Volgin, and Reddoch 2005), while the dynamic approach allows to detect dy-

namic object-oriented behaviours (Canfora, Di Penta, and Cerulo 2011).

Moreover, in the static approach, it is possible to generate a complete model by

analysing source code without having to execute the system, but it is uncertain

to be correct as many false-positive behaviour can be produced in the model

(Ashish and Aghav 2013; Pistoia and Tripp 2014). In contrast, the dynamic

approach generates an incomplete model but is potentially more correct as its

analysis is based on the actual execution of the system (Cornelissen et al. 2009).

In order to extract visual contracts from implementations that describe opera-

tion behaviours, we need to:

• determine classes and methods using static approach and

• the changes of object/data states at runtime.

8

Chapter 1. Introduction 9

These two requirements show that both static and dynamic approaches are

required in order to extract visual contracts. Our approach introduced in Part II

is semi-automatic. It initially starts with extracting class diagram from code,

allowing to manually select classes and methods of interest to be executed by

test cases. The rest is automatic based on dynamic analysis. The focus in this

thesis is on the latter step as extracting classes statically is achievable by many

available tools.

One critical difference between static and dynamic approaches that led us to

adopt the dynamic is its capability in observing method binding (i.e., over-

loaded and overridden methods), which occurs at compiling/runtime only. In

Section 3.2, we explain by example that it is impossible to determine some

behaviours using static analysis only.

1.3.2 Visual Contracts as GT Rules

In this section, we introduce basic concepts of graph transformation, including

rules and transformations with attributes and multi objects. These concepts

serve as the formal basis for our proposal in Part II. We follow the spirit of the

double-pushout (DPO) approach (Ehrig et al. 2006) while adopting a set-based

presentation.

1.3.2.1 Typed Attributed Graph and Graph Morphism

• A graph G = (V,E, s, t) consists of a set V of nodes (or vertices), a set E

of edges, and source, target functions s, t : E → V .

• An attributed graph G = (GV , GE, GD, src
G, tarG) consists of a set GV of

nodes (or vertices) with a distinguished set of data nodes GD ⊆ GV , a

set GE of edges, and source, target functions srcG, tarG : GE → GV . We

9

Chapter 1. Introduction 10

assume that data nodes represent values and do not have outgoing edges.

When clear from the context we will drop indices and superscripts.

• A graph morphism f : G→ H is a pair of mappings fV : GV → HV , fE :

GE → HE preserving sources and targets, and respecting the distinction

between object and data: for all v ∈ GV , v ∈ GD iff fV (v) ∈ HD.

• A type graph TG is a distinguished graph introducing vertex, edge and

data types.

• An instance graph over a type graph TG is a graph G with a graph

morphism typeG : G → TG. Typed graph morphisms are morphisms

preserving the typing. Instance graphs and morphisms over TG form the

category GraphTG.

A UML class diagram is formally represented as an attributed type graph TG,

i.e., a distinguished graph defining vertex, edge, attribute and data types from

which object graphs can be constructed. An instance graph over TG is a graph

G (i.e., represents UML Object Diagram) equipped with a graph morphism

G→ TG assigning every element in G its type in TG.

Figure 1.2: An example of graph transformation rule

10

Chapter 1. Introduction 11

1.3.2.2 Rules and Graph Transformation System

Figure 1.2 (B) shows a transformation rule which, when applied to the object

graph in the left of (A) at the match mapping b to b1, produces a graph similar

to the one in the right of (A), taking into account that of represents an object

container (ArrayList). In Part II we give more examples of transformation rules.

Formally:

• A rule is a pair L
l←− K

r−→ R of injective graph morphisms. A rule

p = (L ⇒ R) defines left- and right-hand side graphs such that their

union L ∪ R (and hence their intersection L ∩ R) is well-defined. In this

thesis we assume that K = L ∩R and l, r are inclusions. The set of rules

over TG is RuleTG.

Given an instance graph G, rule p can be applied if there is an injective

morphism m : L → G satisfying the dangling condition. That means

L is isomorphic to m(L) and, removing m(L \ R) from G, the resulting

structure is still a graph, i.e., there are no dangling edges. The derived

graph H is obtained from G by deleting m(L \ R) and adding a copy of

R \ L, denoted G
p,m
=⇒ H. The construction of this is a double-pushout

diagram like in Figure 1.3.

• A graph transformation system (GTS) (P, π) consists of a set of rule

names P and a function π assigning each name p a rule π(p) = L
l←−

K
r−→ R. The resulting transformation relation is denoted by G

p
=⇒ H ⊆

GraphTG ×GraphTG.

Extracting visual contract is concerned with deriving specifications from existing

systems. As explained, this needs dynamic analysis technique that allow to

observe changes of object states. In the case of typed graph transformation,

the specification is given by a type graph and a set of rules and the system’s

11

Chapter 1. Introduction 12

Figure 1.3: DPO diagram representing a rule application

behaviour can be represented abstractly by a transformation relation labelled

by rule names. In this setting, dynamic reverse engineering visual contracts

means to infer rules from observed changes of object states.

In Chapter 3, we present our solution for constructing rules by tracing object

states dynamically, while in Chapter 4 we generalise such rules by inference of

higher level features.

1.3.2.3 Rules with Multi Objects

Multi objects (MOs) support universal quantification over unknown contexts

in a rule. An example of a rule with multi object can be seen in Figure 1.4

where node Reservation is an MO node (shown with a 3D shadow) with car-

dinality (one-to-many) applicable to object graphs with at least one Reser-

vation node connected to the Client. Formally: A multi-object (MO) rule

mr = (L ⇒ R,M, card) is a rule with a set M ⊆ (LV \ LD) of MO nodes

and cardinality constraints card : M → (IlN ∪ {∗}) × (IlN ∪ {∗}). It states how

many concrete objects each MO can be instantiated by. The set of MO rules

over TG is MRuleTG.

To derive MO rules from regular rules we have to discover sets of nodes that

have the same structure and behaviour, then represent them by a single multi-

object node. Chapter 5 discusses our proposed algorithm to do so and then

12

Chapter 1. Introduction 13

inferring MO rules. This adds more concise constraints to specify actions across

sets of objects of different cardinalities.

1 public void cancelClientReservation(
2 String clientID) {
3

4 for (int i=this.reservations.size()−1;
5 i>=0; i−−) {
6

7 if (!this.reservations.get(i)
8 .made.id==clientID) {
9 continue;

10 }
11 this.reservations.remove(i);
12 }
13 ...

Figure 1.4: Representing multi-object for cancelClientReservation(..)

1.3.2.4 Graph Transformation Specification

A graph transformation specification (GTSpec) G = (TG,OP, P) consists of a

type graph TG, a set of operation names OP , and a set of parametrised rules

op(x1, . . . , xn) = y : L⇒ R. Here MO rule (L⇒ R,M, card) ∈MRuleTG is la-

belled by operation op ∈ OP and augmented by formal parameters x1, . . . , xn ∈

LV \M and return y ∈ RV \M . The transformation obtained by applying rule

op(x1, . . . , xn) = y : L ⇒ R at match m to an instance graph G is denoted

op(a1, . . . , an) = b : G ⇒ H if m(xi) = ai and m∗(y) = b, briefly G
op(a)=b
=⇒ H

where a = a1, . . . , an.

1.3.3 Proposed Methodology

This section provides an overview of the proposed approach for reverse engi-

neering VCs from existing systems. The approach is divided into three main

steps, illustrated in Figure 1.5 and presented in detail in the mentioned chapters.

The first step (A) focuses on extracting actual behaviour by tracing, yielding

instance-level versions of visual contracts (rule instances). We adopt a dynamic

13

Chapter 1. Introduction 14

analysis approach to construct contract instances by observing system’s execu-

tion at runtime, introduced in Chapter 3.

Figure 1.5: Overall picture of the thesis

The extracted contract instances describe partial behaviour of the system or

component. Generalising them to a model comprehensive version is the second

step, see Figure 1.5 (B). At this step, our solution in Chapter 4 depends on typed

attributed graph transformation rules and uses directed sub-graph matching

algorithms. In the third step, shown in (C) of Figure 1.5 and introduced in

Chapter 5, we seek to increase generality of contracts by inferring multi objects

and attribute conditions based on data. In the following subsections, we give

more details about these three steps.

14

Chapter 1. Introduction 15

1.3.3.1 Extraction of Contract Instances

The model illustrated in Figure 1.1 represents a contract instance, reflecting a

specific behaviour of operation registerClient(). To extract such a contract in-

stance from the implementation, we propose a novel approach based on dynamic

reverse engineering, see (Alshanqiti and Heckel 2014). We use instrumentation

based on Aspect Oriented Programing (AOP) to observe executions of existing

test cases, record these observations in traces and analyse them to filter out ir-

relevant objects based on their classes and aggregate their basic steps into rule

instances covering the overall precondition and effect for that execution.

Along with each constructed instance we collect traceability data for each ele-

ment of the contract, such as the access type (read/write) with line numbers in

the code. These traceability data can be used for graph matching in the next

stage and also for program understanding, e.g., as part of testing or debugging.

1.3.3.2 Generalisation of Contract Instances

The idea of generalisation as far as this thesis is concerned is to infer concise and

comprehensive contracts (rules) from instances to increase understandability.

This is because each contract instance only represents one possible outcome from

any executed operation. The aim is to combine them to a general behaviour

model.

We propose a graph matching algorithm to extract minimal and maximal rules

from pairs of graphs representing transformations, see (Alshanqiti, Heckel, and

Khan 2013). Using extracted contract instances as an input set to this algo-

rithm, our approach allows to generate for each contract instance a minimal

rule, i.e., the smallest rule able to perform the given transformation (Bisztray,

Heckel, and Ehrig 2009). This results in a further partitioning of the input set

into instances with isomorphic minimal rules. In the maximal rule, we match

15

Chapter 1. Introduction 16

the rule instances within each partition and identify their common context ele-

ments. Therefore, any constructed maximal rules would contain all the context

that is present in all instances.

1.3.3.3 Inference of Advanced Rule Features

The aim of this inference is to discover advanced graph transformation features

on generalised rules, which allow to raise the level of specification. For example,

a multi-object node represents a set of nodes in an instance graph the rule is

applied to and carries a cardinality constraint for that set. We propose a novel

approach (Alshanqiti and Heckel 2015) to infer rules with multi objects from

regular rules. It allows to represent regular rules by equivalent rules with smaller

number of elements, i.e., by representing any set of identical nodes by a single

multi-object node.

Furthermore, we allow to enhance generalised rules by including conditions on

attributes and parameters. Each extracted contract instance includes actual

data types and values for node attributes, passed parameters and return. By

considering a list of such data, extracted from all rule instances that belong

to a specific generalised rule, we can then use them as an input or training-

set to a machine learning tool to discover more useful constraints to be added

on generalised rules. For this purpose, we adopt an invariant detector tool

Daikon (Ernst et al. 2007) that is perfectly adequate and supports the main

needed features.

1.3.4 Technical Challenges

Reverse engineering visual contracts can be identified by: (1) tracing changes

to the data state of the component or service under investigation and their

representation by contract instances and (2) the generalisation of these contract

16

Chapter 1. Introduction 17

instances. The latter is a major challenge, which requires solving the problem of

finding and matching relevant independent contract instances that are extracted

from different traces. For example, object identifiers cannot be used as anchors

for matching object graphs extracted from different traces.

The construction of contract instances requires a strategy to observe and record

efficiently the changes of object structures. Additionally, there are potentiality

large numbers of traces to be processed.

Furthermore, each constructed contract represents only a partial behaviour of

the system, i.e., the model obtained is valid for the scenario that was executed.

Therefore, it is important to find out how to extract comprehensive models that

describe general system behaviours. This is considered the most difficult part

in the thesis.

For a deeper discussion we address the challenges in the order of the process, as

shown in Figure 1.5. The technical problems mostly concentrate on graph pat-

tern matching, as sub-graph isomorphism is known to be NP-complete (Conte

et al. 2004):

Scalability. Given an interface and a set of test cases, when analysing the

execution of one of its operations, there could be a large number of object

instances, including low level objects (e.g., from Java.util.*). Hence, how to

define the scope of tracing this operation? How to distinguish between relevant

and irrelevant objects in a scalable way to model their behaviours as a rule?

Subgraph Isomorphism. If we are able to identify the relevant objects and

represent them as visual contracts (pre and post-conditions), how to generalise

them into higher level rules to obtain a complete behavioural model? As men-

tioned, we rely on graph matching to generalise rule instances. It is known that

finding common subgraph isomorphisms has an exponential time complexity

17

Chapter 1. Introduction 18

and could produce a large number of matches (Dahm et al. 2015). How is our

approach affected by these problems? Are we losing behaviours, affecting the

quality of the results?

Correctness. With respect to the implementation, correctness means that

models must behave exactly as the implementation. This implies that models

should not include any invalid behaviours, i.e., not allowing behaviour that is

not implemented. How to evaluate correctness of the extracted VCs? assuming

that the implementation represents the truth.

Completeness. Completeness of models means that the implementation of

all the system’s behaviour is captured by the extracted contracts. How to

evaluate the completeness of extracted VCs to ensure that there are no missing

behaviours?

Generally, the extraction of a complete and correct model is a major chal-

lenge (Canfora, Di Penta, and Cerulo 2011; Cornelissen et al. 2009) and still

an open problem. In our approach, such extraction is not feasible and cannot

be proved conclusively. However, we propose a scalable solution as discussed in

Part II, allowing to address completeness. We use manual inspection to evaluate

the correctness of extracted contracts as discussed in Chapter 6.

1.4 Contributions and Related Publications

The contributions of this thesis focus on the process of extracting and gener-

alising visual contracts from implementations of sequential Java applications,

represented by graph transformation rules. We study techniques related to

dynamic reverse engineering for extraction and graph pattern matching for gen-

eralisation. The papers (Alshanqiti and Heckel 2014; Alshanqiti and Heckel

18

Chapter 1. Introduction 19

2015; Alshanqiti, Heckel, and Kehrer 2016; Alshanqiti, Heckel, and Khan 2013)

contributed to this thesis address different steps of the process, summarised in

this section as follows:

• Instance of visual contracts: we propose a novel approach based on dy-

namic reverse engineering to extract visual contract instances from exist-

ing Java applications.

• Minimal and maximal graph transformation rules: we propose a novel

approach to generalise extracted contracts by inferring a range of graph

transformation rules as interface specifications for operations.

• Rules with multi objects: we propose a novel approach to raise the level

of abstraction of generalised contracts by inferring rules with universally

quantified multi objects.

• Rule conditions on attributes and parameters: we implement a learning

approach to enhance contract descriptions by inferring rule conditions on

parameters and attributes.

• Evaluation: we assess completeness and correctness of extracted visual

contracts using a case study discussed in Section 3.2. We use two other

case studies (NanoXML - a small non-validating XML parser for Java

2016) and (JHotDraw as Open-Source Project by Java 2016) to evaluate

scalability of each part of the approach. We also evaluate the usefulness

of the approach based on 66 participating MSc students for analysing test

reports and identifying faults.

• Prototype tool: we implement all proposed solutions in Java to prove their

concepts. The source code of the tool is available at GitHub repository1

1The source code of our prototype is available at https://github.com/AMahfodh/IGTRRep

19

https://github.com/AMahfodh/IGTRRep

Chapter 1. Introduction 20

Related Publications. The main parts of this thesis have been peer-reviewed

and published in four papers, shown below. My contribution in each paper has

been to develop the methodology and models, implement the tools, conduct the

experiments, perform the analysis, and draft the paper. All my contributions

were under the supervision of Prof. Reiko Heckel who also contributed to the

formalisation not included in this thesis.

• Abdullah M Alshanqiti, Reiko Heckel, and Tamim Khan (2013). “Learn-

ing Minimal and Maximal Rules from Observations of Graph Transforma-

tions”. In: Electronic Communications of the EASST 58

• Abdullah M. Alshanqiti and Reiko Heckel (2014). “Towards Dynamic

Reverse Engineering Visual Contracts from Java”. In: Electronic Com-

munications of the EASST 67. url: http://journal.ub.tu-berlin.

de/eceasst/article/view/940

• Abdullah M. Alshanqiti and Reiko Heckel (2015). “Extracting Visual

Contracts from Java Programs (T)”. in: 30th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2015, Lincoln, NE,

USA, November 9-13, 2015, pages 104–114. doi: 10.1109/ASE.2015.63.

url: http://dx.doi.org/10.1109/ASE.2015.63

• Abdullah M. Alshanqiti, Reiko Heckel, and Timo Kehrer (2016). “Visual

contract extractor: a tool for reverse engineering visual contracts using

dynamic analysis”. In: Proceedings of the 31st IEEE/ACM International

Conference on Automated Software Engineering, ASE 2016, Singapore,

September 3-7, 2016, pages 816–821. url: http://doi.acm.org/10.

1145/2970276.2970287

20

http://journal.ub.tu-berlin.de/eceasst/article/view/940
http://journal.ub.tu-berlin.de/eceasst/article/view/940
http://dx.doi.org/10.1109/ASE.2015.63
http://dx.doi.org/10.1109/ASE.2015.63
http://doi.acm.org/10.1145/2970276.2970287
http://doi.acm.org/10.1145/2970276.2970287

Chapter 1. Introduction 21

1.5 Thesis Structure

The rest of the thesis is organised into seven chapters, categorised into three

main parts. Chapter 2 gives fundamental background on model driven reverse

engineering and visual contracts. Part II introduces our technical contributions

relying on graph transformation concepts, discussed in three chapters:

• Chapter 3 explains our approach for tracing and constructing contract

instances from implementations, supported by a running example. The

approach begins with a static analysis step to extract structural models

(class diagram). Then, it relies on dynamic analysis to trace and observe

executions at runtime.

• Chapter 4 presents a detailed discussion on learning and generalising vi-

sual contracts by graph pattern matching. The resulting contracts are

represented as minimal and maximal rules.

• Chapter 5 discusses the approaches for increasing the level of generality

by inferring multi objects and attribute/parameter conditions.

In Part III, we evaluate and compare our proposed approaches with the state

of the art in Chapter 6 and Chapter 7. We conclude the thesis, discuss the

limitations and possible future directions in Chapter 8.

21

Chapter 2

Model Based Engineering

In this chapter, we go through the modelling concepts and terminology in the

contexts of software engineering that are useful to understand the methods

described in further chapters. First we introduce relevant definitions, acronyms

and languages in Section 2.1 to explain what model we are interested in. The

topics covered by the remainder of the chapter are design-by-contract and visual

contracts in Section 2.2, and reverse engineering models in Section 2.3. These

topics give more depth explanations about the problem statement, presented

in Section 1.2.2, and identify the main challenges in the thesis. We explore, in

Section 2.4, two different uses of contracts based on specification of component

interfaces and dynamic monitoring and debugging.

2.1 Basic Terminology

Before delving into a discussion of model based engineering, it is useful to define

what is a model. The term model devotes a “universal technique to understand

and simplify the reality through abstraction” (Ramos, Ferreira, and Barcelo

2012). In software engineering, ‘model’ has been defined in many different ways

22

Chapter 2. Model Based Engineering 23

in the literature, comprehensively in (Ramos, Ferreira, and Barcelo 2012; Sei-

dewitz 2003; Siegel 2014). Some definitions focus on representing the design ar-

tifact of a complex structure, such as a relational database schema, an interface

definition (API), a semantic network or a complex XML document (Bernstein,

Halevy, and Pottinger 2000). Other definitions lean more toward abstract for-

mal specifications of the function, structure and/or behaviour of a system (Pen-

der 2003; Siegel 2014). The latter involve viewing, manipulating, reasoning

about systems under analysis and expressing how to understand the inherent

complexity of software systems.

In general, a model is “a set of statements about a System Under Study (SUS),

where a statement means expression about the SUS that can be considered true

or false” (Seidewitz 2003). Another general definition by (Kühne 2006) states

that a model is “an abstraction of a (real or language-based) system allowing

predictions or inferences to be made”.

In the context of this thesis, a model is a formal inferred description of the

system’s operation. It gives a high level of abstraction to convey information

more effectively than code. It is represented by metamodel instances (see next

section). In particular, we consider visual contracts used to model the operations

of components or services by pre- and post-conditions.

2.1.1 System and Meta-Models

Figure 2.1 describes the semantic relationships between a system and different

modelling levels (Brambilla, Cabot, and Wimmer 2012). For example, the rela-

tion represents (Favre 2004; Pender 2003) between model and system explains

that the system can be described as a graph, composed of elements (nodes and

edges). Each element in such a graph maps to an element in the metamodel by

the instancesOf relation, such that their model conforms to the metamodel. A

23

Chapter 2. Model Based Engineering 24

Figure 2.1: Relationships between system, models and metamodels
(main part of this figure is originally taken from) (Brambilla, Cabot, and

Wimmer 2012)

similar relation holds between metamodel and meta-metamodel. The purpose

of designing metamodels is to define a set of concepts and relations between

these concepts to validate their instance models (Seidewitz 2003).

Metamodels can be used for defining modelling languages or other classes of

structures (Pender 2003). In our approach, we are concerned with extracting

metamodel instances representing visual contracts from model instances repre-

senting object graphs.

2.1.2 Acronyms of Model Driven (MD*)

Modelling is an activity in software engineering that abstracts and analyses soft-

ware systems for many different purposes. This explains the emergence of many

modelling terms, used to describe different approaches and activities. For ex-

ample, some approaches use modelling as a fundamental part of understanding

and analysing software, while other approaches intent to support code genera-

tion. In the following list, we briefly define the main modelling terms and the

relationship among them, see Figure 2.2:

24

Chapter 2. Model Based Engineering 25

Figure 2.2: The main layers of model driven MD* (Brambilla, Cabot, and
Wimmer 2012)

• Model-Based Engineering (MBE): Under the umbrella of Software En-

gineering (SE), MBE is a specific approach that aims to facilitate the

software lifecycle through the use of models as the main artifacts (Ramos,

Ferreira, and Barcelo 2012; Sommerville 2011). The standard utilisation

of MBE and its future visions are discussed in (Ramos, Ferreira, and

Barcelo 2012), which summarises proposed formalisms, modelling tools

and applications. The expectations mentioned indicate that MBE will

be a fundamental paradigm for development environments, but it would

probably face the challenge of addressing: how to guarantee that the de-

veloped system meets the specification?

• Model-Driven Engineering (MDE) is an approach for software develop-

ment that puts emphasis on domain models rather than programming

(Schmidt 2006; Sommerville 2011; Stahl, Voelter, and Czarnecki 2006;

Whittle, Hutchinson, and Rouncefield 2014). It aims at increasing the ab-

straction of a particular application domain, allowing to focus on knowl-

edge and activities of that domain. Hence, it combines two key tech-

nologies: (1) Domain-Specific modelling languages (DSL) designed for a

certain domain or context and (2) transformation engines and generators

25

Chapter 2. Model Based Engineering 26

to increase automation and analysis in program development (Schmidt

2006). The latter includes model-driven reverse engineering, which is cru-

cial to this thesis. It is noteworthy that the main advantage of adopting

MDE is not for code generation but to provide a well-documented software

architecture (Whittle, Hutchinson, and Rouncefield 2014).

• Model-Driven Development (MDD) supports a more effective modelling

approach (Mellor, Clark, and Futagami 2003; Sommerville 2011; Stahl,

Voelter, and Czarnecki 2006). It is a subset of MDE but all its models

are simultaneously abstract and formal, expressed in the UML. One of the

main objectives of MDD is to automate the generation of implementations

from models (Whittle, Hutchinson, and Rouncefield 2014). This implies

that MDD models must support semantic functionalities, like coding in

any programming languages. In this setting, models are not just used

to design or document software system but also to implement software

without a separate coding phase.

The MDD approach offers advantages in the field of software develop-

ment, especially in reducing the time consumed by manual coding and

also in increasing the quality of generated software. However, there are

still challenges in this approach, such as the complexity of generating all

the required code from models, where manual change is still needed. This

is due to the fact that models are more abstract than code, especially

when code-patterns or external libraries are require to be used (Heckel

and Lohmann 2007). Additionally, preserving the consistency between

models and any manual changes in code is a challenge (Stahl, Voelter,

and Czarnecki 2006).

• Model-Driven Architecture (MDA) is a standardisation of MDD by the

Object Management Group (OMG) that uses a set of UML models (Siegel

26

Chapter 2. Model Based Engineering 27

2014). Unlike MDE, it does not support all aspects of the software en-

gineering process. MDA is limited to design and implementation activi-

ties (Sommerville 2011). For instance, model based testing or debugging is

not part of MDA. Figure 2.3 describes briefly the architecture of applying

MDA in software development. The process relies essentially on UML to

model a system at different level of abstractions and use transformation

technique/rules between produced models and also between MDA’s lay-

ers (Chen et al. 2006; Siegel 2014; Sommerville 2011). The general aims of

MDA are to (1) represent systems at any level of abstraction, (2) enable

transformations between models, (3) support execution of models and (4)

support model exchange in a variety of modelling languages.

Figure 2.3: Architectural layers in MDA

The modelling approach followed in this thesis is a subset of MDE but does

not adopt MDD. We focus on the generation of models from implementations,

which is supported by MDE as model-driven reverse engineering (Favre 2004;

27

Chapter 2. Model Based Engineering 28

Whittle, Hutchinson, and Rouncefield 2014). This also can be applied on exist-

ing implementations of unmodelled systems. While MDD is also defined as a

subset of MDE (Whittle, Hutchinson, and Rouncefield 2014), our approach is

opposite to the main purpose of MDD, in the sense that MDD focuses on the

generation of implementations from models. In the next sections of this chapter

and also in Section 2.4, we expand the discussion about MDA and model-driven

reverse engineering to clarify the relevant concepts in some more detail.

2.1.3 Prescriptive and Descriptive Models

Considering the two arrows in the left and right of Figure 2.3, software engi-

neering can include forward engineering to specify a system to be constructed,

or reverse engineering to extract knowledge or design information (Siegel 2014).

In this setting, the model produced by forward engineering is prescriptive. It

is called descriptive when applying the reverse engineering method as discussed

in (Favre 2004) and citied from (Seidewitz 2003).

With respect to the correctness of models produced during the engineering pro-

cess against the implementation, it is worth mentioning the point of view pre-

sented in (Favre 2004). Producing prescriptive or specification models usually

means that the model carries the truth when testing a system under study.

However, descriptive models suppose that the system represents the truth, i.e.,

“a descriptive model is said to be valid if everything said by the model about

the system is actually true”.

In general, the method we follow in this thesis aims to produce descriptive

models from existing systems and one of the challenges here is to evaluate

correctness of our models. This is not common practice in MDA as most of

existing MDA tools focus on the forward engineering to produce prescriptive

models (Chen et al. 2006).

28

Chapter 2. Model Based Engineering 29

2.1.4 Modelling Languages

A modelling language is a set of models defined by a metamodel, e.g., the set

of all class diagrams making up the language of class diagram. This metamodel

describes structure, syntax, semantics, and rules which are then used to define

a model (Siegel 2014).

A number of languages for software modelling have emerged, some of which

are for general use, i.e., they can be applied to any sector or domain, such

as the well-known Unified Modelling Language (UML). Other languages are

designed specifically for a certain domain or context, known as Domain-Specific

Languages (DSLs) such as JML. As mentioned earlier, our modelling language

is (visual contract), closely related to the following modelling languages:

• The Unified Modelling Language (UML) is “a family of modelling nota-

tions unified by a common meta-model covering multiple aspects of busi-

ness and system modelling” (Siegel 2014). It is an instance of the MOF

(Meta Object Facility) meta-metamodel defined by OMG (The Unified

Modeling Language (UML) 2016). The approach proposed in this thesis

relies on two kinds of UML diagrams: class and object diagrams. These

diagrams are used to design structural and behavioural models, see exam-

ple in Figure 3.4.

• The Java Modelling Language (JML) is a behavioural interface specifi-

cation language for Java programs that follows the Design by Contract

paradigm (Leavens, Baker, and Ruby 2006; The Java Modeling Language

(JML) 2016). It exploits annotation comments in the source files to spec-

ify the pre/postconditions and invariant of Java methods. We compare

JML to the visual contracts we seek to extract from existing systems in

Section 2.2.

29

Chapter 2. Model Based Engineering 30

2.2 Contracts MDE

This section focuses on defining what is a contract in MDE, and discusses what

are the visual contracts we consider in this thesis. Related contract based

approaches and tools are given in Section 2.4.

2.2.1 Design-by-Contract

The term contract, in software modelling, refers to a formal document/agree-

ment between two parties, in order to protect their responsibilities and rewards,

e.g. between class and client (Lohmann, Sauer, and Engels 2005; Meyer 1992).

This agreement is normally used to improve software reliability, including cor-

rectness and robustness of design models against their specifications. Correct-

ness, in this setting, is usually checked by assertions, which evaluates to true

or false, expressed in the agreement as preconditions, postconditions and in-

variants (Heckel and Lohmann 2005; Lohmann, Sauer, and Engels 2005). Ro-

bustness aims to handle exceptions in the case of assertion violations, e.g, when

indicating a fault at one of contract’s parties.

For Java methods, specifications between caller and callee can contain many re-

dundant conditions that are harder to maintain, and could make software more

complex to understand. This has been addressed by the Design by Contract

(DbC) (Meyer 1992), which aims at increasing understandability of software

specifications. DbC is supported by languages such as Eiffel1, JML, iCon-

tract (Kramer 1998), etc.

Listing 2.1 illustrates an example, in Eiffel syntax. The contract of registerCli

ent(..) discussed in the running Example 3.2. Here, the main clauses require

1Eiffel is a commercial DbC tool developed by Bertrand Meyer (Meyer 1992), https:

//www.eiffel.com/values/design-by-contract/

30

https://www.eiffel.com/values/design-by-contract/
https://www.eiffel.com/values/design-by-contract/

Chapter 2. Model Based Engineering 31

//

// Eiffel syntax

//

procedure_name(argument declarations) is

-- Header comment

require

Precondition

do

Procedure body

ensure

Postcondition

end

//

// example from the case study, discussed in Chapter 3.

//

registerClient(String city, String clientName) is

-- method to register a client at the branch name (city)

require

city /= null

clientName /= null

do

--// algorithm statements ..

Client c = new Client();

Branch b = getBranch(city);

...

ensure

b /= null

b.cMax = old b.cMax + 1

b.of.contain(c)=true

end

Listing 2.1: Contract representation based on Eiffel syntax

and ensure are used to specify input pre- and post-conditions on which logical

contract checks can be defined.

2.2.2 Visual Contracts

In this thesis, we use UML notation, formally supported by graph transfor-

mation rules to represent contracts as a behavioural model. Visual contracts

support high-level behaviour modelling of software operations (Meyer 1992).

They consist of a pair of conditions that describe a system’s state, relevant to a

specific operation, before (pre-condition) and after (post-condition) execution.

The pre-condition specifies all requirements to execute the operation, while the

post-condition describes its effects (Heckel and Lohmann 2005; Lohmann, Sauer,

and Engels 2005).

31

Chapter 2. Model Based Engineering 32

The UML includes the textual Object Constraint Language (OCL)2 to describe

rules by pre- and post- conditions and invariants. Despite OCL’s capabilities, it

does not provide a graphical notation, which makes it harder to use or maintain

software specifications (Lohmann, Sauer, and Engels 2005).

Software modelling languages built on mathematical Formal Methods (FMs)

strive precise and unambiguous models. However, FMs are often complicated

and require high cost to be used (Amálio and Glodt 2015; Woodcock et al. 2009).

Therefore, the usability of FM tools by developers or designers is problematic.

The use of graph transformation rules as a formal concept with visual UML

notation will support, in a graphical and potentially understandable way, what

the textual OCL fails to provide.

Visual contracts are typed over design classes from UML class diagrams and

use UML object diagrams to represent their pre- and post-conditions. The

combination between graph transformation rules and UML contributes for two

key advantages (Baresi and Heckel 2002; Lohmann, Mariani, and Heckel 2007):

• It introduces rigorous behaviour modelling of software operations with

an option for formal analysis (Baresi and Heckel 2002). A similar idea,

with respect to the use of Z (Spivey and Abrial 1992) instead of GT, is

discussed in (Amálio and Glodt 2015), see Contract Diagrams (CDs).

• It uses a UML-like notation as a front-end, which is easier to understand

by software designers (Lohmann, Mariani, and Heckel 2007).

2The Object Constraint Language (OCL) is a declarative language, i.e., complement of
the UML notation with the aim of addressing some of its limitations. It is set by the (OMG)
as a standard for object-oriented analysis and design, see for more details http://www.omg.

org/spec/OCL/

32

http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/

Chapter 2. Model Based Engineering 33

2.3 Model Driven Reverse Engineering

This section focuses on model driven reverse engineering activities and ap-

proaches, under the umbrella of MBE. In 1990, (Chikofsky and Cross 1990)

gave effective definitions of many concepts in the context of Reverse Engineer-

ing (RE), which are still in use nowadays. They defined RE as an examination

process (1)to identify the technological principles of the system’s components

and their inter-relationships, and (2) to create a new representation of the sys-

tem at a higher level of abstraction. RE, in general, can be applied at any level

of abstraction and covers only analysis activities, i.e., does not modify or change

the software system. It addresses several problems, such as re-documentation,

re-design, and knowledge recovery (Chikofsky and Cross 1990).

RE has been successfully applied in many domains, reviewed and highlighted

in (CanforaHarman and Di Penta 2007). Examples of these areas include rela-

tional databases, identifying reusable assets, recovering architectures, recover-

ing design patterns, building traceability between software artifacts, code smells,

identifying clones, computing change impacts, re-modularising existing systems,

testing and audit security, migrating toward new architectures and platforms,

etc. (Canfora, Di Penta, and Cerulo 2011). In the next sections, we firstly give

some details about general goals and difficulties in RE. Then we narrow down

to model driven analysis approaches in Section 2.3.3 and model construction

in Section 2.3.4.

2.3.1 General RE Motivations and Goals

There are six comprehensive goals in RE, proposed by Chikofsky (Chikofsky and

Cross 1990), i.e., coping with complexity, generating alternate views, recovering

33

Chapter 2. Model Based Engineering 34

lost information, detecting side effects, synthesizing higher abstractions, facili-

tating reuse. Nevertheless, they are all targeted to support comprehension and

evolution (Canfora, Di Penta, and Cerulo 2011), mostly, for either software

maintenance3 and/or development. In addition to this, (Eilam 2011) presents

and examines many RE tools, related to understanding different issues of com-

puter security. For instance, reverse engineering existing systems to evaluate the

level of security or defeat copy protection. Other security tools are used to audit

malicious software on both sides; malware developers or hackers to discover vul-

nerabilities and developers of antivirus to trace and fix infected systems (Eilam

2011).

2.3.2 Scientific Challenges

The essence of reverse engineering involves (1) analysing software artifacts to

extract information and (2) translating these information into abstract repre-

sentations. Performing the first step (software analysis) is subject to circum-

stances such as the executability of the system, the availability of source codes

and expected view by abstracting facts of the system. Consequently, different

approaches (e.g., static, dynamic, hybrid and historical) can be applied, target-

ing different purposes or uses. We go deeper into these approaches and discuss

their pros and cons in Section 2.3.3.

With respect to the second step, translating the derived information into more

abstract and understandable representations, this step contains challenges such

as incomplete and/or inaccurate representations of the system (Binkley 2007;

Canfora, Di Penta, and Cerulo 2011; Ernst 2003). This is because the derived

information could either neglect some important behaviour or include false pos-

itive/negative. For example, tracing implementations by specifying the scope

3The IEEE Standard for Software Maintenance “recommends reverse engineering as a key
supporting technology to deal with systems that have the source code as the only reliable
representation” (Canfora, Di Penta, and Cerulo 2011).

34

Chapter 2. Model Based Engineering 35

of element types, such as classes or methods, could exclude other important el-

ements, resulting in (false negative) aspects not permitted by the system. False

positives, however, can result from analysing the whole implementation, includ-

ing dead code behaviours. More discussion about the second step is given in

Section 2.3.4.

In addition, there is often a trade-off between having a fully automatic pro-

cess that suffers from the inability to include experts’ knowledge and a semi-

automatic one that is subject to human interactions and subjective decisions.

The latter, for example, involves specifying particular inputs to analyse the

subject system (Canfora, Di Penta, and Cerulo 2011). This makes the derived

behaviours dependent on user-inputs.

Another challenge is traceability and the ability to define relations between dif-

ferent levels of abstractions (Chen et al. 2006). This is due to the fact that the

lower level may describe more detailed information (e.g. aspects from rich pro-

gramming languages), than the higher level that usually abstracts from specific

information. For instance, the transformation from PSM to PIM implies that

there should be a loss of information. To address this and achieving complete

bidirectional transformations without losing information, it requires semantic

knowledge to fill the gap between different levels of abstractions (Chen et al.

2006).

The approach proposed in this thesis is semi-automatic, since identifying test

cases and the scope to limit observing execution are manual activities. The

rest is automatic, starting from tracing to the inference of contract features.

Although it is a challenge to generate a complete representation, our solution

allows to improve completeness by incrementally including new behaviours when

observing additional contracts as required (cf. Section 4.3). For the traceability

problem, it is beyond the scope of this thesis.

35

Chapter 2. Model Based Engineering 36

2.3.3 Analysis Approaches

Reverse engineering begins with an analysis to derive information from the sub-

ject system. Here, we give a brief survey of the various analysis mechanisms and

discuss their advantages and disadvantages. The relevant analysis mechanisms

to this thesis are static and dynamic, explained in Chapter 3. We discus hybrid

and historical analysis as informative background.

Static Analysis

Static analysis of source code, exemplified by (Rountev, Volgin, and Reddoch

2005; Sarkar, Chatterjee, and Mukherjee 2013; Tonella and Potrich 2003), aims

to extract information from implementations without the need to execute any

part of the system (CanforaHarman and Di Penta 2007; Ernst 2003; Venkata-

subramanyam and G. R. 2014). It requires parsing source code into internal

representations, e.g., Abstract Syntax Trees (AST), for further analysis, which

is useful with incomplete systems, e.g., components that cannot be executed

independently (Rountev, Volgin, and Reddoch 2005)

The main feature of static analysis lies in the possibility of describing all pos-

sible behaviours of the system (Ernst 2003; Venkatasubramanyam and G. R.

2014). Generating CFG by parsing code, for example, provides a complete

view of all possible paths that the execution can run through. This could lead

to generate precise results in reasonable time. However, static analysis suffers

from difficulties to observe important object-oriented behaviours, including the

inability to recognise: (1) false-positive behaviours (e.g., a valid path in a CFG

that cannot be executed in the code), (2) class polymorphism and (3) static and

dynamic class binding (i.e., occurs at compile or run time) (Canfora, Di Penta,

and Cerulo 2011).

36

Chapter 2. Model Based Engineering 37

For example, (Tonella and Potrich 2003) propose a static approach for generat-

ing sequence and collaboration diagrams from C++ code, thereby potentially

over-approximating the actual behaviour. In (Binkley 2007; Canfora, Di Penta,

and Cerulo 2011; CanforaHarman and Di Penta 2007), the state of the art on

static analysis approaches is described. Their discussions emphasised the need

to address three major challenges. Being able to (1) parse different language

variants and non-compilable code, (2) extract facts and (3) extract a program’s

semantics.

Dynamic Analysis

The information extracted using dynamic analysis describes actual behaviours

of a system in terms of traces of execution (Cornelissen et al. 2009; Ernst 2003).

This kind of analysis allows to identify run-time information, such as actions

of method calls, changes of object states and values of variables etc. Moreover,

the trace outputs are generated in response to a particular set of inputs, usually

by testing or real time monitoring (Venkatasubramanyam and G. R. 2014).

The main part of our solution is dynamic (discussed in detail in Chapter 6),

based on running the system, as are others (Brito et al. 2012; Zhao, Kong, and

Zhang 2010; Ziadi et al. 2011). The potential drawback here is that the ex-

tracted model represents only those behaviours that are actually executed. In

general, many dynamic reverse engineering approaches take advantage of aspect

oriented concepts for instrumentation at different levels. We focus on instru-

menting low-level Java code to generate visual contract instances at runtime.

A similar strategy lies behind (Brito et al. 2012) generating object graphs or

(Ziadi et al. 2011) extracting sequence diagrams.

37

Chapter 2. Model Based Engineering 38

In order to permit dynamic tracing for a system it requires instrumenting4 the

source/complied code or profiling data collected by debugging methods (Cipolla-

Ficarra 2010; Venkatasubramanyam and G. R. 2014). This is unlike static

information in many ways. For instance, dynamic information is more precise

in identifying feasible behaviours, as it gives evidence of each valid path by

means of recording actual access at run-time. It is able to detect dynamic

object-oriented behaviours, such as dynamic binding (Ernst 2003).

(Cornelissen et al. 2009) provide a comprehensive survey on dynamic analysis

approaches, focusing on program understanding, while more general discussion

and challenges are covered in (Canfora, Di Penta, and Cerulo 2011). They

point out that many techniques and tools still provide unsatisfactory results.

Since dynamic analysis relies on the inputs used to execute the target system,

this leads to three main drawbacks. Firstly, it is limited to observing partial

behaviours only, which in turn impede the construction of a complete view.

Secondly, it suffers from the inability to determine particular inputs to trigger

the system elements of interest. Thirdly, as the trace output is a sequence

of actions, deriving the semantic meaning of these actions is complicated, e.g.

understanding precisely the knowledge behind the order and dependency of all

actions is currently impossible (Ernst 2003).

In addition, while each trace output provides precise information, gathering

multiple traces can cause a scalability issue. On top of this, the generalised

information from multiple traces may become imprecise (Cipolla-Ficarra 2010;

Cornelissen et al. 2009; Ernst 2003). For example, the generalisation could pro-

duce an over-approximation model from observed behaviours that may include

aspects not allowed by the system, caused by inaccurate inferences. The under-

approximation model can also be produced, resulted by accidentally omitting

some necessary information.

4The instrumentation aims to modify code, by inserting annotations at particular parts,
allowing to record/collect data accessed at run-time. It is usually done by Aspect-Oriented
Languages (AOL) tools

38

Chapter 2. Model Based Engineering 39

Hybrid Analysis

Combining static analysis and dynamic analysis techniques is always worth con-

sidering; there are some situations where reverse engineers must weigh the pros

and cons of each individual technique applied (Ernst 2003). In hybrid analysis,

it is possible to avail the strengths of both static and dynamic techniques to

overcome their limitations (Canfora, Di Penta, and Cerulo 2011; Elberzhager,

Münch, and Nha 2012; Ernst 2003). For example, the imprecise results (e.g.,

false positive behaviours) obtained by static analysis can be tested dynami-

cally to improve their precision via feasible behaviours. Furthermore, inferring

semantic information by static analysis (e.g. mining recurring code patterns)

could help to filter out large execution traces and improve their generalisation

techniques, as proposed in (Hassan et al. 2008).

The main issue with the hybrid approach is the need to combine and hop be-

tween different analysis tools. This may affect usability by developer, includ-

ing required set-up and complex configurations. A report on many existing

hybrid approaches, focusing on quality assurance techniques, can be found in

(Elberzhager, Münch, and Nha 2012).

Historical Analysis

This type of analysis is well-known in mining software repositories to help in

understanding software system. A software repository is an archiving stor-

age, normally on online servers, on which software packages, source code and

other valuable information can be retrieved and installed during software evo-

lution (Kagdi, Collard, and Maletic 2007). It supports reporting tool, such as

bug-tracking (e.g., Bugzilla). As described in (Canfora, Di Penta, and Cerulo

2011), and also in an extensive survey on historical analysis approaches (Kagdi,

39

Chapter 2. Model Based Engineering 40

Collard, and Maletic 2007), the repositories contain valuable details about soft-

ware changes over times and their metadata5. They can be used to feed some

machine learning algorithms, as training sets, in order to infer useful information

that supports software analysis.

Compared to static or dynamic analysis for the purpose of program comprehen-

sion, this approach gives a different angle of understanding software system. It

helps to understand: (1) “how an artifact was modified over time?” and (2)

“what artifacts changed together?” (Canfora, Di Penta, and Cerulo 2011).

2.3.4 Model Construction

The second step of the RE process is to create a new representation of the system

at a higher level of abstraction (Chikofsky and Cross 1990). In practice, this

is difficult for three reasons discussed in (Canfora, Di Penta, and Cerulo 2011;

CanforaHarman and Di Penta 2007). Generally, analysing derived information

(i.e., from the first step of the RE process) requires (1) a powerful query language

to construct views and (2) the possibility to visualise constructed views. It also

requires (3) enough understanding from reliable sources to abstract low level

artifacts in a way that enables constructing them for higher levels.

There are many existing approaches to build views at different levels of abstrac-

tion, one of which is the design level (Canfora, Di Penta, and Cerulo 2011).

Model-driven approaches belong to this level. The techniques used for such

derivation are commonly based on process mining (Liesaputra, Yongchareon,

and Chaisiri 2015), grammar inferences6 (Cook and Wolf 1998; Zhao, Kong,

and Zhang 2010) and statistical analysis by machine learning algorithms (Qiu

5Examples of software metadata: “who made the change, why the change was made, when
the change was done etc” (Kagdi, Collard, and Maletic 2007)

6The grammar inference problem can be informally stated as follows. “Given some sample
sentences in a language, and perhaps some sentences specifically not in the language, infer a
grammar that represents the language” (Cook and Wolf 1998)

40

Chapter 2. Model Based Engineering 41

et al. 2010a). Process mining technique, for example, have been considered

in many algorithmic approaches, including heuristic mining and matching ap-

proaches using, e.g., pattern recognition (Conte et al. 2004; Dahm et al. 2015;

Jouili, Mili, and Tabbone 2009; Liesaputra, Yongchareon, and Chaisiri 2015).

2.4 The Use of Visual Contracts in MDE

Contract-based specification plays an important role in MDE as it supports for-

mal definitions of transformation requirements between layers and/or models. It

takes concrete shape in the context of MDA, particularly in the transformation

between PSM and implementation layers. Here code generation from models,

for example, can be formally specified and automated. A typical attempt for

dynamic code generation is proposed in (The Fujaba Tool Suite: From UML

to Java and Back Again 2016), see Figure 2.4 (C). This is targeted to gener-

ate concrete behaviour code for standalone applications. Other approaches, as

shown in (A) and (B), allow to generate structural code, including (contracts)

specification code (Engels et al. 2006b; Lohmann, Engels, and Sauer 2006).

Our approach aims to generate a model at PSM from the implementation as

described in (E).

2.4.1 Specification of Component Interfaces

Contract based specification, at code level (e.g., for an API of a library), can

add precise descriptions about software behaviours within the code (Karaor-

man and Abercrombie 2005; Leavens, Baker, and Ruby 2006; The Java Mod-

eling Language (JML) 2016). At model level, however, contract in graphical

representation can support formal development activities such as (1) visual be-

havioural specification (Heckel and Lohmann 2007; Lohmann, Engels, and Sauer

2006) and (2) generating behavioural code (The Fujaba Tool Suite: From UML

41

Chapter 2. Model Based Engineering 42

Figure 2.4: The involvement of visual contracts in MDA approach

to Java and Back Again 2016). Apart from implementation and model levels,

contract-based specification is also used in web service interfaces (Heckel and

Lohmann 2005) and feature models (Thüm et al. 2012). In our approach, we

are particularly interested in discussing contracts at UML (Siegel 2014) level

but extracted from implementations in Java, as shown in Figure 2.4 (E).

With respect to the tools used for contract specifications, we have come across

two main kinds:

• Contract tools based on Java code, e.g., jContractor7 (Karaorman and

Abercrombie 2005) and tools that use annotation languages, such as JML

(Leavens, Baker, and Ruby 2006) ignored by the Java compiler. JML is

the most wider used and integrated with modelling tools.

• Tools for modelling specifications visually including contract diagrams

(i.e., modelling behaviour of operations by pre- and post-conditions) such

7jContractor is a Java implementation of Design By Contract for the Java language. Home-
page can be found in http://jcontractor.sourceforge.net/

42

http://jcontractor.sourceforge.net/

Chapter 2. Model Based Engineering 43

as VCB (Amálio and Glodt 2015) but based on Z (Spivey and Abrial

1992).

2.4.2 Dynamic Monitoring and Debugging

In order to make visual contracts executable, they have to be translated to

executable code that can be compiled by, e.g., jContractor (Karaorman and

Abercrombie 2005) or JML (Leavens, Baker, and Ruby 2006), etc. Contract

compliers, in general, provide dynamic monitoring and debugging mechanisms

by instrumenting source code that define textually precondition, postcondition

and class invariant operations. At runtime, executing contracts allow to trace

assertions and report with any violations.

Considering Figure 2.4 (B), translating VCs from PSM to JML assertions (at

code level) has been considered in several approaches (Engels, Güldali, and

Lohmann 2007; Engels et al. 2006b; Heckel and Lohmann 2007; Lohmann, En-

gels, and Sauer 2006), discussing so-called Model-Driven Monitoring (MDM).

Apart from generating Java classes from class diagram, these approaches pro-

pose practical mapping solutions, with tools support. Given a class diagram

and visual contract, these approaches generate:

• Java class files describing skeleton structures, shown in Figure 2.4 (A).

Such code structures include operation signatures from interfaces, at-

tributes and method types from classes, etc. The implementation of

method bodies will not be generated but their declarations would tell

programmers which parts of the code needs to be implemented and com-

pleted. For example, consider classes Branch and Client from the class

diagram under Figure 3.4 (A). The generated Java classes will be similar

43

Chapter 2. Model Based Engineering 44

to the code, lines 22-50, shown in the left of Figure 3.4. The implemen-

tation of method bodies such as registerClient(..), lines 4-20, is expecting

to be completed/modified manually.

• From each VC, they generate contract assertion code for each method,

similar to the code described in Listing 2.1 but in JML syntax. These

assertions are written as annotations and used to monitor implementation

of behavioural code.

The key objective of MDM is to monitor and test manual implementations

against their specifications that are hard to generate by following MDA con-

cepts. For example, MDM allows to formally check correctness of Figure 2.4

(D) that is completed by a programmer (Heckel and Lohmann 2007), by refer-

ring to the VC’s specification. This kind of checking could address consistency

problems between PSM and implementation, which is one of the MDA’s chal-

lenges.

The contracts (at instance level) extracted by our approach can support a com-

parable monitoring mechanism with MDM approaches, without depending on

contract compilers. Since the contract specifications are already determined and

the target is to check implementations against specifications, it is possible to

use model-based testing (MBT) based on visual contracts. To be more precise,

visual contracts have been substantially used for: (1) deriving test cases (Dai

et al. 2007; Guldali et al. 2009; Heckel and Lohmann 2005; Runge, Khan, and

Heckel 2013), (2) acting as a test driver or oracle (Dai et al. 2007; Khan, Runge,

and Heckel 2012b), (3) measuring coverage (Khan, Runge, and Heckel 2012a)

and (4) verifying models (Dotti et al. 2006). Therefore, by taking these contri-

butions into consideration, our approach could fill the missing part to automate

MBT.

44

Chapter 2. Model Based Engineering 45

2.5 Summary

In this chapter, we discussed the underlying terminologies and concepts of mod-

els — in the contexts of software engineering — that are useful to understand

many parts of the thesis, particularly visual contracts. We presented the nec-

essary background, related to reverse engineering technique, that covers gen-

eral objectives, challenges, advantages and disadvantages of existing analysis

approaches. We have explained that visual contracts combine graph transfor-

mation rules that support formal analysis, and UML class/object diagrams that

are easy to use by software designers.

After giving the general overview of contract’s uses (as specification of compo-

nent interfaces and dynamic debugging) and highlighting the major technical

challenges, we go into more detail to explain the main contributions in the three

chapters in Part II. We will introduce our proposal, focusing on how visual con-

tracts can be extracted from existing software.

45

Part II

Inference of Visual Contracts

46

Chapter 3

Extraction of Contract Instances

This chapter presents the first step of our methodology, published in (Alshan-

qiti and Heckel 2014), for constructing contract instances from deterministic

Java applications. This step is based on observing runtime changes in object

structures when an operation is executed. Any contract instance represents the

behaviour of a specific invocation of the operation. Its precondition captures the

objects that were read, while the postcondition describes how the object struc-

ture changed during the invocation. This also means that a contract instance

can represent only one possible outcome of the executed operation.

As discussed in Chapter 2, dynamic reverse engineering requires to trace a

system’s execution, e.g., by instrumentation of the code, as well as the analysis

of the traces to extract behavioural models. To explain how our approach has

met these requirements, we divide this chapter into four main sections. In

Section 3.1, we define, at a high level, our strategy for constructing contract

instances from object observations. Section 3.2 presents a simple case study to

illustrate the problem in more detail and our contributions. This case study is

also used by the forthcoming chapters as a running example. Section 3.3 and

3.4 present the implementation of our approach that focuses on instrumenting

Java bytecode using (AspectJ 2016) to observe the internal state of the system

47

Chapter 3. Extraction of Contract Instances by Tracing 48

and its changes during execution. The trace output is a recorded sequence of

elementary read and write operations that is analysed to construct the contract

instance.

3.1 Extraction Approach

Building behaviour models, in the form of visual contract instances, from Java

application begins with observing system executions, which results in the gen-

eration of a set of accessed objects. This observation requires dynamic analysis,

which can be performed by tools that support code injection (i.e., instrumen-

tation for white box analysis) such as (AspectJ 2016; BTrace 2017; Byteman

Trace 2017; InTrace 2017; Method Tracing 2017). Regardless of the different

features provided by these tools, they all support the basic functionality of

tracing read/write access objects at runtime, making an insignificant difference

between them from the viewpoint of this thesis. Thus, the well-known AspectJ

has been chosen as tracing tool for our approach, discussed in Section 3.3.

Given a set of objects O, obtained by tracing an operation invocation op, ordered

by access time, where O = {o1, · · · , ok} and k ∈ N. Each object ok is a result

of access by an elementary r read or w write operations, and the same ok can

be accessed more than once during op’s execution. We assume w access to an

object ok if:

• at least one data-type attribute of ok’s local member has a change,

• it has been connected or disconnected to itself and/or any other object oj

such that oj ∈ O, and

• it has been deleted or created.

48

Chapter 3. Extraction of Contract Instances by Tracing 49

Figure 3.1: Description of how an extracted sequence of read and write
operations of accessing objects are used for constructing contract (or rule)

instances

while, we assume r access to ok if it has no w access (i.e., has no change). Con-

sidering Figure 3.1, we analyse a sequence of the elementary r and w operations

of accessing a set of objects O = {o1, o2, o3, o4} to construct a contract instance.

These objects are generated by the observation of op’s execution such that the

first (o1) and the last (o4) accessed object in the set O represent the start and

end of op’s execution.

Figure 3.2 gives the overview of our approach for extracting contract instances

in four steps. The first two steps focus on tracing, discussed in Section 3.3. Step

3 and 4 present the implementation of our strategy for contract construction,

introduced in Section 3.4. Starting with empty pair of graphs LHS and RHS,

our strategy aims to decide at which graph LHS and/or RHS an accessed

49

Chapter 3. Extraction of Contract Instances by Tracing 50

Figure 3.2: Overview of extracting contracts instances

object ok needs to be added or neglected. We explain briefly the process of our

strategy, illustrated in Figure 3.1, as follows.

1 Add LHS ← w(ok) for object deletion, while LHR ← w(ok) for object

creation cases, see w(o3) and w(o4) in Figure 3.1 as examples.

2 Add ∀r(ok) ∈ O into LHS without duplication (i.e., has not been already

added in step 1), see r(o1) and r(o2) as examples.

3 ∀w(ok) ∈ O that are caused by updating value of date type members, or

by creating/destroying relation with other objects, add their last write-

access that appear in the set O into RHS. This means if an objects being

changed several time, we only consider the first r(ok) and the last w(ok),

while we ignore all the other w(ok) that occur in between, see w(o2).

4 Add a copy of ∀r(ok) ∈ LHS into RHS, e.g. see r(o1).

3.2 Running Example

We consider a simple case study of a Car Rental Service1 as a running exam-

ple to illustrate the problems treated in this thesis. We will use it frequently

1Examples of Java code fragments from implementation can be found in Appendix A.

50

Chapter 3. Extraction of Contract Instances by Tracing 51

public interface IRental extends Serializable{

public String registerClient(String city, String clientName);

public String makeReservation(String ClientID,String pickUp,String dropOff)

public void cancelReservation(String Reference);

public void cancelClientReservation(String clientID);

public void pickupCar(String Reference);

public void dropOffCar(String Reference);

public Reservation[] showClientReservations(String clientID);

public Client[] showClients (String city);

public Car[] showCars (String city);

}

Listing 3.1: Interface of a Car Rental Service

in Part II to illustrate the contributions we have made, and also to evaluate our

approach in Part III. This case study is designed to represent a range of dif-

ferent preconditions and effects of operations over a complex object-structure,

including the creation of objects, the creation and deletion of links as well as

attribute updates and constraints.

An interface with the operations of application is given in Listing 3.1. The

class diagram in the top right of Figure 3.4 shows the classes implementing

these operations. The specification of the operations, given in Figure 3.3, de-

scribe that operation registerClient(..) creates a new client object, registers it

with the branch at city, and updates attribute branch.cMax. Operation mak-

eReservation() allows to book a car for a client by creating a new reservation

object that must be registered with pickup branch. Operations pickupCar()

and dropoffCar() control the movement of a car from the pickup to the dropoff

branch.

In the following subsections we explain informally how Java classes, object struc-

tures and methods are represented by class, object diagrams and visual contract,

respectively.

51

Chapter 3. Extraction of Contract Instances by Tracing 52

Specification of operations

String registerClient (String city, String client)

Creates new client object for client and registers it with the branch at city. The attribute branch.cMax will be
increased for each new client added.

Parameters:

 city - non-null string value used to get branch object by city name.

 client - non-null string value used to set client name

Returns:

 String - if the client is registered successfully with the branch, client id of the form

 city + "_" + Branch.cMax, null otherwise.

String makeReservation (String client, String pickup, String dropoff)

Creates new reservation object for a client that must be registered with pickup branch. The pickup branch must have at

least one Car available to be booked. The attribute branch.rMax will be increased by 1 for each new reservation.

Parameters:

 client - non-null string value used to get client object by name.

 pickup - non-null string value used to get branch object by city name

 dropoff - non-null string value used to get branch object by city name.

Returns:

 String - if the reservation object is created successfully, reservation reference of the form

 city + "_" + Branch.rMax, null otherwise.

Void pickupCar (String reference)

Removes linkes pickup and for between reservation object and pickedup branch. The reserved car can only be picked

up once. If there is no suitable reservation, the operation does not have an effect on the state.

Parameters:

 reference - non-null string value used to get reservation object by reference.

Returns:
 no return

Void dropoffCar (String reference)

Creates new link at by returning reserved car to the dropoff branch, and removes reservation object with all its links,

namely: made, pickup, dropoff and for. If there is no suitable reservation, the operation does not have an effect on the

state.

Parameters:

 reference - non-null string value used to get reservation object by reference.

Returns:
 no return

Void cancelReservation (String reference)

Removes reservation object that matches reference (if it exists) with all its links, namely: made, pickup, dropoff

and for. If there is no suitable reservation, the operation does not have an effect on the state.

Parameters:

 reference - non-null string value used to get reservation object by reference.

Returns:
 no return

Figure 3.3: Specification of Car Rental Service

52

Chapter 3. Extraction of Contract Instances by Tracing 53

3.2.1 Structural Features

The left of Figure 3.4 shows code fragments of Java classes Rental, Branch, and

Client and their corresponding classes in the class diagram under (A). Fields

of Java classes are represented as UML attributes or associations depending on

their type, i.e., fields of primitive types lead to UML attributes, while fields of

object types turn into associations. For example, the fields declared in lines

26-28 are represented as attributes, while the (at) and (of) fields in lines 24-25

become (1-to-many) association.

At the implementation level, we translate a (∗) association to an explicit col-

lection object. This is because collection objects provide information about the

organisation of their elements. For example, elements of an ArrayList in (B) are

known to be ordered. The choices made in representing class structures deter-

mine the representation of object structures. For example, (B) shows fragments

of two states representing objects referred to as (b1) and (c1) and their changes

due to the invocation registerClient(...).

3.2.2 Behavioural Code and Contracts

Each visual contract describes the pre- and postcondition of a possible way of

executing a method. Consider (B), which shows relevant objects of two states

resulting from an execution of the registerClient() operation in lines 4-20. The

rule describing this execution is shown in (C). It specifies how the objects and

their attributes and links change from one state to the other. In the code this

could be achieved by assignments, which represent the creation and deletion of

objects and links or the update of attributes. For instance, the assignment in

lines 12 and 15 represent the creation of an object and an edge respectively.

53

Chapter 3. Extraction of Contract Instances by Tracing 54

1 package RentalService;
2 public class Rental implements IRental{
3 ...
4 public String registerClient(
5 String city,
6 String clientName) {
7

8 Branch b = getBranch(city);
9

10 if (b !=null){
11

12 Client c = new Client();
13 c.name =clientName;
14 c.iD = b.city + (b.cMax++);
15 b.of.add(c);
16

17 return c.iD;
18 }
19 return null;
20 }
21 }
22 public class Branch implements

Serializable {
23

24 private ArrayList<Car> at;
25 private ArrayList<Client> of;
26 private String city=null;
27 private int cMax;
28 private int rMax;
29 ...
30 public Branch (String City,
31 int CMax,
32 int RMax) {
33

34 this.city = City;
35 this.cMax=CMax;
36 this.rMax=RMax;
37 }
38 }
39 public class Client implements

Serializable {
40

41 private String name;
42 private String iD;
43 ...
44 public Client (String CName,
45 String CID) {
46

47 this.name = CName;
48 this.iD = CID;
49 }
50 }

Figure 3.4: Mapping classes and objects and representing operations

It should be noted that information about object references and attribute val-

ues between states is necessary when extracting visual contracts. Without this

information it is impossible to distinguish between some behaviours. For ex-

ample, consider code fragments of operation makeReservation() in Figure 3.5.

It is impossible to determine statically whether the assignment in line 9 should

54

Chapter 3. Extraction of Contract Instances by Tracing 55

1 ...
2 public Reservation(
3 String Reference,
4 Client Made,
5 Branch Pickup,
6 Branch Dropoff,
7 Car CarFor) {
8 ...
9 this.pickup=Pickup;

10 ...
11 }
12 ...

Figure 3.5: Uncertain cases to recognise code behaviours by static analysis

be represented as creating or deleting a link between those two objects. More

precisely, consider the states before and after, as shown in (A), (B) and (C) of

Figure 3.5. Such assignment could lead to three different behaviours, depending

on the value of Reservation.pickup in the state before (e.g. r.pickup=b1) and

the reference of passed object parameter Pickup (e.g. Pickup=b2 from third

parameter of the constructor) that cause change to the state of the reservation

object (r). Consequently, this raises the need to use dynamic analysis to extract

visual contracts.

3.3 Tracing System Executions

The ability of executing existing implementations is required. However, we

assume that the required test cases are given along with implementations. To

organise this section, we first introduce the basic concepts of AOP and AspectJ

that we used to generate logs from the existing system. We then discuss their

55

Chapter 3. Extraction of Contract Instances by Tracing 56

main features that can be exploited in the rule generalisation step presented in

detail in Chapter 4.

3.3.1 Aspect Oriented Programming

Aspect Oriented Programming (AOP) is a programming paradigm that com-

plements Object Oriented Programming (OOP) in modularising crosscutting

concerns such as observation and logging (Laddad 2009). It can be used as a

tracing approach to extract behaviours of object structures at runtime.

(AspectJ 2016) is a well-known AOP language that facilitates the creation of a

special class called aspect to encapsulate crosscutting concerns. It is Java-based

and supports AO concepts such as pointcut, join points, and advices (Laddad

2009), explained as follows:

• A join point is a place where the crosscutting actions take place in the

program execution flow. This place can be a method call, a method ex-

ecution, a field access or an initialisation of an object, etc. It can be

controlled with an aspect class by specific variables such as thisJoinPoint.

• A pointcut is a program declaration that expresses selecting join points

and collects context at those points. For example, when selecting a join

point that specifies an execution of a method, it collects contexts such as

the this object and the arguments to the method.

• An advice allows to implement crosscutting behaviours to be executed at

each join point reached as well as before, after or around join points.

In this setting, each join point allows to observe an internal transformation

step that occurs on a specific object, representing a basic action. Here, we are

interested in composing sequences of basic actions, observed by before and after

56

Chapter 3. Extraction of Contract Instances by Tracing 57

advices for each join point reached. The purpose is to construct a single rule

that represents the behaviour of a certain operation.

3.3.2 Generating Logs

The initial requirement to generate logs are to select Java classes (e.g., from the

class diagram) and methods to be invoked by test cases. We assume these are

to be defined before the tracing process takes place, to identify the objects of

interest at runtime.

In order to generate logs by controlling what actions on which objects to react

to, we declare a pointcut expression that matches all kinds of join points without

any restriction, see Listing 3.2. This means we are able to record all actions

that test or change existing objects and fields or create new objects.

As the advice implements the observation mechanism to be executed before

and/or after each join point, it enables us to trace state changes by comparing

the values obtained from the execution of the actions.

// Pointcut declaration without restrictions, allowing to observe the execution of the all

kinds of internal states

pointcut stateTriggers(): !within(Tracing.*);

Listing 3.2: The declaration of our Pointcut

Observing all actions that involve read or write access to any part of an object,

including invocations and executions, we produce a large number of join points.

These are filtered by the classes defining the scope of our observation, so that

we only record join points relating to instances of these classes. Such classes

can be defined directly from the source code using the ObjectAid tool2.

The result is a sequence of nested join points as shown in Listing 3.3, tracing the

registerClient(..) operation of the Car Rental case study (cf. Section 3.2) and

2http://www.objectaid.com

57

http://www.objectaid.com

Chapter 3. Extraction of Contract Instances by Tracing 58

1 // Tracing registerClient(..) operation from Car Rental Service API
2 { public String registerClient(String city, String clientName); }

3 // The following is a sequence of nested joinpoint outputs from tracing the above
operation

...
4 1 before execution(String RentalService.Rental.registerClient(String, String))
5 2 before call(Branch RentalService.Rental.getBranch(String))
6 3 before execution(Branch RentalService.Rental.getBranch(String))
7 4 before & after get(Branch[] RentalService.Rental.branches)
8 5 before & after get(String RentalService.Branch.city)
9 3 after execution(Branch RentalService.Rental.getBranch(String))
10 2 after call(Branch RentalService.Rental.getBranch(String))
11 6 before initialization(RentalService.Client())
12 7 before & after initialization(java.io.Serializable())
13 8 before & after execution(RentalService.Client())
14 6 after initialization(RentalService.Client())
15 9 before & after set(String RentalService.Client.cName)
16 10 before & after get(String RentalService.Branch.city)
17 11 before & after call(String java.lang.String.valueOf(Object))
18 12 before & after set(String RentalService.Client.cID)
19 13 before & after get(String RentalService.Branch.city)
20 14 before & after get(ArrayList RentalService.Branch.ofClients)
21 15 before & after set(String RentalService.Client.cID)
22 16 before & after get(ArrayList RentalService.Branch.ofClients)
23 17 before & after call(boolean java.util.ArrayList.add(Object))
24 18 before & after get(String RentalService.Client.cID)
25 1 after execution(String RentalService.Rental.registerClient(String, String))
...

Listing 3.3: Sequence of nested join points obtained by tracing

selecting all the classes in Figure 3.4 (A). Depending on the action performed,

join points translate into basic inner rule instances describing the relevant state

transformations. The idea is to aggregate these rule instances into a single rule

as presented in Figure 3.4 (C).

3.4 Constructing Rule Instances

We analyse traces at runtime once the invocation of a method of interest has

completed. In order to aggregate the rule instances for a sequence we identify

elements across the sequence that refer to the same objects. Then the basic

58

Chapter 3. Extraction of Contract Instances by Tracing 59

actions are composed along these shared objects to form the overall contract

instance. This is done using object identifiers, which provide a unique and stable

handle on all objects.

We exploit four types of AspectJ advices to observe the accessed objects and

their changes: before, after, after returning and after throwing. Figure 3.6 de-

scribes the overall process of analysing a sequence of join points, see lines 4 to 25

in Listing 3.3. We restrict the relevant join points based on the selected classes,

shown under (1) of Figure 3.6. This is to define the scope of the operation

as the set of objects potentially affected and match them to the objects that

have actually been accessed based on the join points. These are the elements of

the rules constructed as a result. We discuss these steps in more details in the

following subsections.

Figure 3.6: Overview of our trace analysis

3.4.1 Scope of Operation

The scope of an execution contains all objects potentially needed for the con-

struction of the rule, see Figure 3.6 (2). It is defined by navigating this() and

target() references from each relevant join point, recording also the values of

attributes that may change during execution.

59

Chapter 3. Extraction of Contract Instances by Tracing 60

1 public Enumeration enumerateAttributeNames() {
2 Vector result = new Vector();
3 Enumeration enum = this.attributes.elements();
4
5 while (enum.hasMoreElements()) {
6 XMLAttribute attr = (XMLAttribute) enum.nextElement();
7 result.addElement(attr.getFullName());
8 }
9
10 return result.elements();
11 }

Listing 3.4: Operation enumerateAttributeNames() from (NanoXML - a small
non-validating XML parser for Java 2016)

In addition, the scope prevents us from considering unnecessary objects, which

are of the right class but unrelated to the trace. For example, Listing 3.4 shows

the query method enumerateAttributeNames() which does not affect any mem-

ber of its object but writes to a local Vector object created in line 2. The same

class exists in the class diagram, but write access to the local Vector object is not

relevant to the rule to be extracted, i.e., rule from enumerateAttributeNames()

.

3.4.2 Accessed Objects

By observing read and write access to objects, we are able to identify which

elements of our state are required or modified by the operation. Information

about objects and attributes created, deleted or modified allows us to create a

minimal rule. Read access determines the additional context whose existence is

required in order to apply the operation.

There are two explicit join point types for handling read and write access at the

field level: the get-field and set-field join points. In lines 7 and 15 of Listing 3.3

we show examples of read and write access, respectively. In contrast, access

at the object level is implicit in the method call join point, where it needs

specific restrictions to deal with collection object operations. For example,

60

Chapter 3. Extraction of Contract Instances by Tracing 61

adding elements to a collection represents write access, see line 23. Analogously,

the calls in the following example require the execution to read the elements of

the collection.

call(Enumeration java.util.Vector.elements())

call(int java.util.Vector.size())

We rely on Java object identifiers to find the accessed objects in the scope as

illustrated in Figure 3.6 (3).

3.4.3 Cases to Construct Rules

Once the execution of the last advice has completed, see line 25 in Listing 3.3,

we construct a rule r : L → R by building up graphs L and R by navigating

the accessed objects. This is described in Figure 3.6 (5).

join point step of execution
constructing rule
add to type

1 Initialization (constructor signature) createNode(id:type) R minimal
2 Set (Field write access) as object-field

createEdge(id:type) L & R minimal
3 Call (collection.add(object))
4 Get (Field read access) readNode(id:type) L & R context
5 Set (Field write access) as data-field

updateNode(id:type) L & R minimal
6 Call (collection.set(object))
7 Set (Field write access) as null object-field

deleteEdge(id:type) L & R minimal
8 Call (collection.remove(object))

Table 3.1: Main cases for rule construction

Table 3.1 shows the cases used for constructing rules. For instance in the first

row, the initialization join point indicates the creation of a new object. Accord-

ingly, we add a new vertex to R. The second row indicates the creation of an

edge, which means that the necessary source and target vertices must be added

to both L and R. We translate any object attribute variable-in-class that points

to another object and has a valid type in the class diagram into an edge. The

initial value of an object attribute will be added to L and the last value of a

relevant write access to R.

61

Chapter 3. Extraction of Contract Instances by Tracing 62

In the last column we state for each element if it is minimal (required for the

specification of the effect) or context (shared between pre- and postcondition)

based on the access type. Note that due to the semantics of Java, there is no

join point type for destroying an object, as the garbage collector automatically

destroys objects that are not reachable by any reference. This is one of the

technical limitation of the approach, but as long as the main application of

our technique is in program understanding, this aspect of Java’s semantics is

reflected correctly in the extracted contracts.

3.4.4 Information on Accessed Objects

Property Description

node type a defined object type, valid in the class diagram
isThis current object that includes main observed operation, i.e, the

execution of operation of interest begins from it
isReturn true if the object is the returned parameter from observed op-

eration, false otherwise
isParameter specify if the object (node) is one of the passed object param-

eters
isMinimal true if the object is part of minimal rule elements, context

element otherwise
isInitialised true only with created objects, false otherwise
isCollection specify if the object is a container type
no. step steps numbers in the path of accessed objects
access info list of accesses with type (read/write), values and locations

details, including class names and line numbers in the code (in
the case of tracing source code, not the byte or compiled code)

Table 3.2: Extracted properties for each object (node element) in the rule

Table 3.2 describes the main properties extracted from each accessed object,

represented as a node in the rule. These properties are useful for program

understanding, e.g., as part of testing or debugging. We use some of them

in defining node signature needed for learning and generalising rule instances,

discussed next in Chapters 4 and 5.

62

Chapter 3. Extraction of Contract Instances by Tracing 63

3.5 Summary

This chapter presented a dynamic approach to extract, for each operation in-

vocation, a version of a visual contract capturing the observed behaviour. We

explored the proposed strategy and the notion of a visual contract that we want

to reverse engineer from Java implementations. We base our discussion on be-

havioural Java code and UML class/object models illustrated by a case study

of a Car Rental Services, see Section 3.2. We explained that representing a

contract for a given operation requires:

• determining the type of classes used for implementing operations and

• determining accurately the changes of object and data states.

These two requirements made clear for us that both static and dynamic analysis

techniques are important in order to infer visual contracts. The first requirement

is practically achievable by static analysis tools (e.g., ObjectAid3). Observing

object and data states need dynamic analysis.

Our observation technique is made by weaving instrumentation code using As-

pectJ. They result in a trace recording object creation, read and write access to

objects and attributes, etc., caused by the invocation. We filter out irrelevant

objects and aggregate the basic observations into a contract instance capturing

the overall precondition and effect of the execution.

Along with each constructed instance we collect traceability data for each ele-

ment of the contract, such as the line numbers in the code responsible for each

access. These traceability data can be generally used for program understand-

ing, e.g., as part of testing or debugging.

3ObjectAid UML Explorer based on the OMG’s UML 2.0 specification (ObjectAid UML
Explorer for Eclipse 2014) that aims to extract Class Diagram: http://www.objectaid.com/
class-diagram

63

http://www.objectaid.com/class-diagram
http://www.objectaid.com/class-diagram

Chapter 3. Extraction of Contract Instances by Tracing 64

Moreover, each extracted rule (contract instance) describes one possible be-

haviour of the operation, covering only the part executed by one test case.

Therefore, we usually obtain more than one rule for a specific operation, which

then need to be combined or generalised. In the next Chapter 4, we intro-

duce our proposal for generalising rule instances in order to obtain a general

specification of the operation’s behaviour.

64

Chapter 4

Generalisation of Contract Instances

In this chapter, we introduce the second step of our methodology, published

in (Alshanqiti, Heckel, and Khan 2013). It aims at inferring visual contracts

as interface specifications for the operation from sets of contract instances, i.e.,

pairs of graphs representing transformations. These contract instances are rep-

resented by typed graph transformation rules (Ehrig et al. 2006), extracted by

tracing the execution of test cases as discussed previously in Chapter 3.

Constructed contract instances can be classified by their effects as described by

a minimal rule (cf. Section 4.1.2). Then maximal rules (cf. Section 4.1.3) are

derived that generalise the preconditions of all instances sharing the same effects,

i.e., keeping only context that is always present when the relevant minimal rule is

applied. These two rules can assist developers to understand the range of object

behaviours, with maximal rules representing the best candidate to describe the

functionality of the system.

To tackle the possibility of generating dynamically incomplete behaviour models

with respect to the actual implementations (Cornelissen et al. 2009), our solution

allows to improve completeness by incrementally including new behaviours when

observing additional contracts.

65

Chapter 4. Generalisation of Contract Instances 66

The following sections are organised as follow: In Section 4.1, brief definitions

of contract instances, minimal and maximal rules are given. In Section 4.2,

the inference approach is introduced with graph matching algorithms and an

example demonstrating the construction of maximal rules. In Section 4.3, an in-

cremental inference technique is explained, which aims to improve completeness

of the extracted models.

4.1 Basic Definitions

Abstractly speaking, we are interested in extracting rules from contract in-

stances representing transformations (cf. Chapter 3). Following the running

Example 3.2 and the basic definitions of graph transformation rules introduced

in Section 1.3.2, we assume a type graph TG and set of rule names P , and for

each p ∈ P a set
p−→⊆ GraphTG × GraphTG of successful transformations.

The original rules are not known but the aim is to define, for each rule name

p ∈ P , a rule π(p) such that
p−→⊆ p

=⇒, i.e., the given examples are part of the

rewrite relation.

4.1.1 Contract Instances

Considering Figure 3.4 (C), a contract instance consists of a pair of UML object

graphs representing the situation before and after the operation. We write

b = op(a1, . . . , an) : G ⇒ H to indicate the invocation op(a1, . . . , an) of an

operation with signature op(x1 : T1 . . . , xn : Tn) : T leading to a transformation

of G into H. We assume that G,H live in a common name space given by

unique object identities, so the elements deleted, preserved and created by the

transformation are G \H,G ∩H and H \G, respectively.

66

Chapter 4. Generalisation of Contract Instances 67

4.1.2 Minimal Rules

A minimal rule r = minop(i) is a subrule of the rule instance i it is constructed

from. It is able to perform a given transformation without considering context

elements, i.e., the same elements are created and deleted, but r is stripped of

unnecessary context. In Figure 4.1 (A), we give an example to differentiate

between minimal rule elements (r2 and c1) and context elements (this : Rental

and r1) that remain without change in both graphs.

4.1.3 Maximal Rules

Figure 4.1: Inferring maximal rules from contract instances, see Section 3.2

While the minimal rule captures the shared effect of all instances, it does not

provide a common precondition. The latter is obtained in the maximal rule by

including all context that is present with all instances.

Consider the two pairs of graphs given in Figure 4.1 (A) and (B). The matches

for their minimal rules are given by nodes r2, c1 and r3, c2 respectively. The

intersection of their contexts excludes the Reservation node r1, while preserving

67

Chapter 4. Generalisation of Contract Instances 68

the Rental node this. The maximal rule shown in (C), as inferred from these

two examples, is therefore isomorphic to the second example.

4.2 Inference Approach

As explained, each contract instance only represents one invocation of an oper-

ation, therefore, our aim is to derive a small set of contracts that describe the

overall behaviour as precisely as possible. Such a general contract is given by a

set of parametrised rules op(x1, . . . , xn) = y : L ⇒ R over the same operation

signature with graphs L and R, called the left- and right-hand side of the rule,

expressing the pre- and postconditions of the operation. As before L \R, L∩R

and R \ L represent the elements deleted, preserved and created by the rule.

The example in Figure 4.1 illustrates our solution. Under (A) and (B) we

show two generated contract instances, representing two pairs of graphs. The

inference algorithm analyses these graphs with the purpose of discovering a rule

approximating the one in (C).

Figure 4.2: Maximal rules inferred from contract instances, extracted from
a particular operation

The process of generalising a given set of contract instances is performed in two

steps as described in Figure 4.2. The first step, from (1) to (2), classifies all

contract instances into distinct sets based on their minimal rules. In the second

68

Chapter 4. Generalisation of Contract Instances 69

step, from (2) to (3), we infer a single maximal rule from each classified set. We

explain these two steps in detail in the next Section 4.2.1 and Section 4.2.2.

4.2.1 Classification of Contract Instances

We consider all contract instances representing executions of the same op-

eration, e.g., the set of instances under Figure 4.2 (1). Then, we extract

a minimal rule from each instance, i.e., the smallest rule containing all ob-

jects referred to by the operation’s parameters and able to perform the ob-

served object transformation. The construction has been formalised in (Bisz-

tray, Heckel, and Ehrig 2009) and implemented without considering parameters

in autocite2013AlshanqitiLearning.

Formally, given a contract instance b = op(a1, . . . , an) : G⇒ H its minimal rule

is the smallest rule L ⇒ R such that L ⊆ G,R ⊆ H with a1, . . . , an ∈ L and

b ∈ R as well as G \ H = L \ R and H \ G = R \ L. That means, the rule

is obtained from the instance by cutting all context not needed to achieve the

observed changes nor required as input or return.

The proposed algorithm for classifying contract instances is presented in Algo-

rithm 1. Here, the algorithm takes a set of pairs of UML object graphs as an

input and then produce a classification based on shared effects as shown under

Figure 4.2 (2).

In order to handle efficiently large (numbers of) UML object graphs, we use a

relational database (MySQL), see line 1. This provides the means to formulate

complex operations on graphs as declarative queries. Similar motivations have

led to the use of relational databases in graph transformation before, e.g., in

(Varró, Friedl, and Varró 2006). lines 2-9 sketch the process of extracting the

minimal rules using unique object identities to match graphs and then classifying

all instances into sub-groups.

69

Chapter 4. Generalisation of Contract Instances 70

Algorithm 1 Classifying contact instances based on minimal rules

Inputs: CIs [G,H] is a set of Contract Instances, i.e., a list of pairs of UML object graphs
Outputs: setMRule [minRule[G,H]] is a list of sets of Contract Instances that share the same effects.

Begin
1: initialise CIs in a database for processing
2: set setMRule= ∅
3: for each G and H in CIs do
4: get the minimalRule from G ⇒ H
5: for each mRuleGroup in setMRule do
6: if mRuleGroup.minRule isIsomorphismMatching (minimalRule)

such that minimalRuleG → LHS of minRule
and minimalRuleH → RHS of minRule then

7: mRuleGroup.minRule.add(minimalRule)
8: break
9: add new mRuleGroup in setMRule then add(minimalRule)
End

4.2.2 Rule with Shared Contexts

Each classified set as shown under Figure 4.2 (2) represents instances that have

the same minimal rule (i.e., the same effect), but possibly different preconditions

(i.e, different context elements). Here, our aim is to generalise all instances from

each set by one so called maximal rule. This rule extends the minimal rule by

all the context that is present in all instances, essentially the intersection of all

its instances’ preconditions, see Figure 4.2 (3).

Figure 4.1 shows an example of this generalisation where maximal rule (C)

results from instances (A) and (B) of cancelClientReservation(..). The shared

effect in both cases is the deletion of the Reservation object connected to the

Client and the minimal rule is identical to (B).

In fact, minimal or maximal rules are not just generalisations of instances, but

provide a constructive specification. Given an object graph G, a rule can be

applied if there is a match m : L → G, such that L is (isomorphic to) a

subgraph of G and removing (an image of) L\R from G, the resulting structure

is a graph. The derived object graph H is obtained by adding a copy of R \

L. Unsurprisingly, applying a rule extracted from a contract instance b =

70

Chapter 4. Generalisation of Contract Instances 71

op(a1, . . . , an) : G⇒ H to the pre-graph G of that instance, we obtain its post-

graph H, but we can also apply the same rule to other given graphs deriving

transformations not previously observed.

4.2.2.1 Inferring Maximal Rules

We propose Algorithm 2 to infer a single maximal rule from each classified

set, produced by Algorithm 1. The idea is to identify the intersection of all

elements in pre-graphs, allowing to add shared context elements, i.e., exist in

all instances, to the left-hand side of the minimal rule.

We initialise the computation of intersections using the smallest pair of graphs,

called MAR for Maximal Abstract Rule, which is obviously an upper bound for

the intersection, see line 3 in Algorithm 2. In order to make graph elements

distinguishable during matching, we define a signature for each node element.

The signature is a collection of node type, connected incoming and outgoing

edge types, distance and abstract id. The distance is the shortest path to an

element in the minimal rule. In Figure 4.1 (A) this is indicated by the numbers

in the first pre-graph. The abstract id is a unique identifier in MAR.

Discovering the intersection of the additional contexts of contract instances in

minRule[G,H] is carried out in lines 4-10. The difficulty at this point arises

when matching contexts that have similar signatures. Figure 4.3 describes such

a situation. Assuming the process is at distance (6) and all nodes and edges are

identical based on their signatures, it is unclear which node should be removed

to arrive at the accurate intersection. We overcome this problem by marking the

contexts and leaving the decision to the step of updating MAR after finishing

the second loop in line 10. In Table 4.1, we explain all the situations with the

decisions taken by the algorithm.

71

Chapter 4. Generalisation of Contract Instances 72

Algorithm 2 Inference of maximal rules

Inputs: minRule [G,H] is a set of Contract Instances that share the same effects
Outputs: maxRule is a single maximal rule

Begin
1: load minRule from the database for processing
2: set the distances for each node(s) and edge(s) v ∈ G in minRule

(set distance=0 for all minimal rule elements)
3: let MAR Max-Abstract-Rule = the smallest pair of graphs in minRule
4: for each G and H in minRule where G and H 6= MAR do
5: for each v in LHS of MAR (ascending order by distances) do
6: if v.distance >0 then
7: discover the intersections of the contexts between L of MAR ∩ G
8: set r = the possibility of deleting contexts in MAR that are out of the intersection
9: if r=1 then remove context Otherwise set r++ and mark the contexts
10: update MAR() delete and update the context(s) that has been remarked in line 9 (in a descending

order by distances).
11: set maxRule= MAR
End

Figure 4.3: Complex decision to define the accurate intersection

The process of cutting down unnecessary contexts while updating MAR as in

line 10 must always preserve the validity of the graph structure. Deletion

is performed in a descending order, i.e., from maximum distance back to the

elements of the minimal rule at distance=0. For example, nodes that are marked

to be deleted (r > 1) and still connected to at least one required incoming or

outgoing edge must be preserved. Consider the example given in Figure 4.4. It

supposes that the process is at distance (8), as illustrated in the right snapshot,

and only one node of either (N81, N82 and N83) needs to be removed safely

without damaging the structure of the graph as their r = 1. Mark r indicates

the number of required deletions for a particular node signature at a specific

distance.

While it is possible to choose either (N82 and N83) and then update r to be

r = 0, node N81 cannot be the one because it has a required edge linked with

72

Chapter 4. Generalisation of Contract Instances 73

Left-hand side
of MAR

Pre-graph of
current instance

Decision

Following the example described in Figure 4.3, the aim is to find the matches while
the process at distance (6). Assuming the node N4 has been set as a one-to-one

Obvious case: the abstract id (N6) will
be set in the current-pre-Graph as a
one-to-one match.

Obvious case: the abstract id (N6) will
be set in the all identical nodes.

duplicated case: the abstract ids (N6
and N7) will be set in the all identical
nodes
Difficult case: the abstract ids (N6
and N7) will be set as many-to-one
and their marks r for will be increased
(+1), which indicate the required num-
ber of deletion, such that N6.r = 1 and
N7.r = 1.

Obvious case: the abstract id (N6) will
be removed immediately from the MAR

Obvious case: (N6) will not be consid-
ered as it does not exists in the MAR.

Table 4.1: Cases of matching elements in MAR with
elements in a contract instance

N101. The decision in the left snapshot, i.e. in the next distance at (7), becomes

obvious as the remaining only one option which is the deletion of N62.

In case that there is more than one option with not enough evidences to delete,

the algorithm will preserve the context without deletion. As a result, the

relationships between minimal, maximal and the projected original π(p) is :

min(p) ⊆ π(p) ⊆ max(p).

73

Chapter 4. Generalisation of Contract Instances 74

Figure 4.4: Two snapshots explaining the process of updating MAR

4.2.2.2 Complexity of the Construction

Maximal rules are not unique, not even up to isomorphism. Consider the ex-

ample in Figure 4.5 showing a modified model of a Rental Agency Rt with two

branches Br to which vehicles of types Car, Tr (for trucks) and SUV are al-

located. Taking I1 and I2 as the left-hand sides of two given instances (and

assuming the left-hand side of the shared minimal rule to be given by Rt only),

both M1 and M2 are maximal rules for this set. They represent different gen-

eralisations of the two cases.

Intuitively, we could read M1 as part of a requirement that each branch should

be equipped with vehicles for both passengers (Car and SUV) and goods (Tr and

SUV), while M2 could be part of a weaker requirement stating the same for the

rental agency Rt as a whole. Both requirements are satisfied by both instances,

but they are mutually unrelated and there is no unique way of merging I1 and

I2 such that the result retains a subgraph isomorphism to both I1 and I2.

This is related to the more general problem that graphs and subgraph isomor-

phisms do not form a lattice, causing complications, e.g., for the concept-based

mining of graphical data (Ganter et al. 2004) where a concept has to be rep-

resented by a set of graphs rather than a single graph pattern. In our case,

this approach would require to extract all maximal rules from a set of given

74

Chapter 4. Generalisation of Contract Instances 75

Figure 4.5: Maximal shared subgraphs are not unique

rule instances. Apart from being significantly more expensive computationally,

this solution would result in a set of maximal rules, each one generalising all

instances and the interpretation of them is unclear.

We have instead opted for a test that creates a warning in case a maximal rule

is not unique. In our practice based on rule instances extracted from observing

executions of real code we have not yet encountered this situation. In fact,

analysing the example, it seems that the problem lies in the presence of two

nested unordered containers, i.e., Rt carrying a set of Br nodes and each Br

containing a set of vehicles.

As explained, Algorithm 2 aims to produce a single maximal rule from a set of

instances that share the same effects (i.e., in this case from L1 and L2). This

means the inferred maximal rule should be either M1 or M2. Generally, such

inference by our algorithm depends on (1) which instance comes first in the list

minRule, after sorting all instances, and then on (2) the selection of MAR, i.e.,

located in the top of the list, see line 3 in Algorithm 2.

Using the given complex example in Figure 4.5, Algorithm 2 will always produce

a rule like M1. In either case of selecting L1 or L2 to be a MAR, the algorithm

75

Chapter 4. Generalisation of Contract Instances 76

Figure 4.6: Applying the complex example (Figure 4.5) in our algorithm

cannot produce something M2. This is because, the process of matching ele-

ments, particularly when updating MAR in line 10, always starts with certain

cases (i.e., one-to-one match and r = 0, such as matching Rt or Suv nodes)

and then uncertain cases, including r = {1, 2, · · ·n}. In other words, consider-

ing Figure 4.6, while the process is at distance = 4, the algorithm will confirm

matching the Suv node first for both cases, as this node has a one-to-one match

and its (r = 0). Based on this decision, inferring M2 that does not include Suv

node is not possible.

4.3 Incremental Inference

Using a relational database for recoding traces and/or contracts not only allows

to manage and maintain large contracts, but also to implement a continuous

76

Chapter 4. Generalisation of Contract Instances 77

// get a single instances that still not being classified in any group ..

CachedRowSetImpl crsGetSingleRuleInstances= DBRecord.getByQueryStatement(

"select "

+ "TblBasicRule.MethodSignatureUniqueID, "

+ "TblBasicRule.Observation_IDREFF, "

+ "TblGraph.GraphID "

+ "from TblBasicRule INNER JOIN TblGraph "

+ "on TblBasicRule.Observation_IDREFF= TblGraph.Observation_IDREFF "

+ "where TblGraph.graphType=false "

+ "and TblBasicRule.groupID is null "

+ "and TblBasicRule.hasEffect=true "

+ "order by TblBasicRule.MethodSignatureUniqueID limit 1;", true);

}

Listing 4.1: SQL statement to fetch any unclassified contract instance

learning mechanism. Rather than running the algorithm each time over all

contract instances from scratch, to include new behaviours of instances not

observed before, we store all the needed information to incrementally build

visual contracts.

The SQL code shown in Listing 4.1 is used to fetch any new contract instance

not classified yet, i.e., groupID = null. The Algorithm 1 will be triggered

whenever an unclassified contract instance (say ci) is fetched, attempting to

allocate it in the right group rg of existing minimal rule sets. Accordingly, by

running again Algorithm 2, the latest MAR inferred from rg will be updated

by matching it only with the new instance ci.

4.4 Summary

The main concern of this chapter was to discuss our approach for generalising

sets of contract instances, i.e., pairs of graphs representing transformations into

more concise and comprehensive rules, increasing understandability.

We have discussed the formal definitions of minimal and maximal rules that

are produced by our algorithms. These rules are very useful when simplifying

77

Chapter 4. Generalisation of Contract Instances 78

the representation of many and potentially big instances into a smaller rules

describing precisely the actual effects and common contexts.

We have not yet come across a real example that shows the need of constructing

more than one maximal rule from a set of contract instances sharing the same

minimal rules. As a consequence, we limit the proposed algorithms to generate

only a single maximal rule from each set of rule instances.

In the next chapter, we will discuss a further generalisation by introducing multi

objects and the derivation of logical constraints over attribute and parameter

values.

78

Chapter 5

Inference of Advanced Rule Features

This chapter presents the third step of our methodology focusing on inferring ad-

vanced features to enhance generalised contracts (Alshanqiti and Heckel 2015).

In two independent steps

• we raise the level of abstraction by inferring rules with universally quan-

tified (multi) objects from generalised contracts (maximal rules).

• we enhance contract descriptions at the level of maximal rules by inferring

conditions on parameter and attribute values.

The inference of multi objects supports the construction of concise and com-

prehensive rules and increases understandability. Attribute constraints support

the analysis of tests based on a visual representation of operations’ behaviour.

We discuss the inferences of these features by dividing this chapter into two sec-

tions: inferring multi objects in Section 5.1 and deriving attribute/parameter

constraints in Section 5.2.

79

Chapter 5. Inference of Advanced Rule Features 80

5.1 Inferring Universally Quantified

Multi Objects

The contracts extracted as presented in Chapters 3 and 4 may use a number of

rules to describe the same operation. In the case of iteration over containers, for

example, the set of minimal rules is potentially unbounded, but many may only

differ in the number of objects manipulated while performing the same actions

across all of them. Rules with multi objects (MOs) provide a concise way to

specify constraints and actions across a set of objects of potentially unknown

cardinality.

5.1.1 Definition of GT Rules with Multi Objects

A multi-object node represents a set of nodes in an instance graph the rule

is applied to and carries a cardinality constraint for that set. Consider the

illustrative example Figure 5.1 where the two patterns shown have two or three

occurrences of node (: O) with identical context. They lead to the MO node

(shown with a 3D shadow) inferred on the right, with the cardinality 2..3

Figure 5.1: Inference of multi-object nodes

Following the formal definitions of graph transformation rules introduced in sub-

section 1.3.2, a multi-object (MO) rule mr = (L ⇒ R,M, card) is a rule with

a set M ⊆ (LV \ LD) of MO nodes and cardinality constraints card : M →

80

Chapter 5. Inference of Advanced Rule Features 81

(IlN ∪ {∗}) × (IlN ∪ {∗}). It states how many concrete objects each MO can be

instantiated by. The set of MO rules over TG is MRuleTG.

Application of MO rules is defined by expanding MO nodes into sets of regular

nodes. Expansions of mr are all (regular) rules obtained by successively replac-

ing each MO node m ∈ M, card(m) = (u, v) by c(m) copies for some chosen

u ≤ c(m) ≤ v. This includes copying all incoming and outgoing edges so that

for each node m ∈M and chosen c(m) we get Lm as

• Lm
V = LV \ {m}] {m} × {1, . . . , c(m)} and

• Lm
E = LE \ LE(m)] LE(m)× {1, . . . , c(m)}

where LE(m) = {e | srcL(e) = m∨ tarL(e) = m} is the set of edges attached to

node m. Sources, targets and types of new edges and nodes are inherited from

L.

The expansion extends to R on the MO nodes shared with L. Due to the

associativity of the product× up to isomorphism, the resulting rule is essentially

independent of the order of the MO nodes expanded. Note that for two MO

nodes m1,m2 connected by an edge we will create c(m1) ∗ c(m2) edges between

the copies of m1 and m2. An application of an MO rule to an object graph G

is an application of a maximal applicable expansion.

5.1.2 Approach

The running example in Section 3.2 has two operations that could produce rules

with multi objects. One of them is showClientReservations(..). For example,

node Reservation in Figure 5.2 (C) is an MO node with cardinality (1..2), ap-

plicable to object graphs with 1 or 2 Reservation nodes connected to the Client.

The contracts (regular rules) of two corresponding transformations are shown

in (A) and (B).

81

Chapter 5. Inference of Advanced Rule Features 82

Figure 5.2: Inferring rule with MO from showClientReservation(..)

In order to derive MO rules from such regular rules, we have to discover sets

of nodes that have the same structure and behaviour, then represent them by

a single multi-object node. Here, we only consider multi-object nodes that are

part of the minimal rule because their typical use is to describe universally

quantified effects rather than preconditions.

In the rule instance Figure 5.2 (B), for example, both Reservation nodes have

the same context, i.e., they both point to the same Client node by a made

edge, and they are both connected to return: Collection on the right-hand side,

so share the same behaviour. Therefore they are substituted by one multi-

object, as shown in Figure 5.2 (C), which also generalises (A) with only one

occurrence. After inferring multi objects within individual rules, if two MO

rules are isomorphic, the two original rules can be replaced by a single MO rule

with appropriate cardinalities reflecting the generalised cases.

Two objects are equivalent if they (1) are of the same type; (2) part of the

minimal rule; and (3) have the same context (incident edges of the same type

connected to the same nodes) in the pre- and postcondition (and thus specify

82

Chapter 5. Inference of Advanced Rule Features 83

the same actions). Assuming for every operation op a set of maximal rules R(op)

as constructed in Chapter 4, we derive MO rules from two perspectives.

Merging equivalent objects. For each rule m ∈ R(op) and each non-trivial

equivalence class of objects in m, one object is chosen as the representative for

that class and added to the set of MO nodes for m, while all other objects of

that class are deleted with their incident edges. The cardinality of the MO node

is defined to be the cardinality of its equivalence class (the number of objects it

represents). The resulting set of MO rules is MOR(op).

Combining isomorphic rules. A maximal set of structurally equivalent

rules in MOR(op), differing only in their object identities and cardinalities

of their MO nodes, forms an isomorphism class. For each such class we derive a

single rule by selecting a representative MO rule and assigning to each of its MO

nodes the union of cardinalities of corresponding nodes in all the rules in the

class. The resulting set of combined MO rules is CMOR(op). An example is

the derivation of Figure 5.2 (C), a combination of basic maximal rule (A) with

the MO rule derived from (B) whose cardinalities of 1 and 2 for the Reservation

node are merged to 1..2.

5.1.3 Algorithm for Inferring Multi-Objects

Isomorphic MO rules can be inferred from rules extracted from the same op-

eration but with different maximal rules. The number of rules captured by an

MO rule, as well as the number of nodes represented by each MO node are both

indicators of the confidence (more instances captured leading to a higher level

of confidence) and its effectiveness in the sense of significant abstraction. Our

solution allows domain experts to define the minimum number of nodes required

to represent a MO node on which their confidence levels can be measured.

83

Chapter 5. Inference of Advanced Rule Features 84

Algorithm 3 Inferring multi objects (MOs) from a given rules

Inputs: rule L⇒ R and iConf is a minimum number of nodes required to represent a MO node.
Outputs: modified rule L⇒ R

Begin
1: for each node v1 in L ∪R do
2: if v1 6= null then
3: set v1.isMultiObject = false
4: set v1.card = 1
5: else
6: continue
7: for each node v2 in L ∪R do
8: if v1 6= v2

and v1.type == v2.type
and v1.isMinimal == v2.isMinimal == true
and isContextMatched(v1, v2) == true
and isEffectMatched(v1, v2) == true) then

9: set v1.isMultiObject = true
10: set v1.card = v1.card + 1
11: if v1.card < iConf then
12: continue
13: removeFrom(L, v2)
14: if v2 ∈ R then
15: removeFrom(R, v2)
End

The pseudo code shown in Algorithm 3 gives a high-level view of our algorithm

for extracting multi-object rules. For example, line (8) explains the main con-

ditions used to confirm if two given nodes are structurally and behaviourally

matched, which are then used to infer multi-objects. line (11) checks the num-

ber of occurrence (of nodes confirming the conditions in line (8)) with iConf

that is specified by domain experts. The Java implementation of the algorithm

can be found in our repository1.

5.2 Deriving Constraints on Attribute and

Parameter Values

So far we have focussed on structural preconditions and effects for generalising

visual contracts, disregarding the data held in objects’ attributes or passed as

parameters. At implementation level, manipulation of object structure and data

are tightly integrated. However, at model level, a distinction is visible through

1https://github.com/AMahfodh/IGTRRep/tree/AMaster/IGTR

84

https://github.com/AMahfodh/IGTRRep/tree/AMaster/IGTR

Chapter 5. Inference of Advanced Rule Features 85

the use of associations for object-valued fields vs. attributes for data-valued

fields but even here contracts cover both structural and data constraints and

actions.

While we have seen that the structural view is naturally expressed by graphical

patters, constraints or assignments over basic data types are more adequately

expressed in terms of logic. In this section we explain how visual contracts

handle attribute and parameter manipulation, and how their constraints can be

learned from information extracted from the structural analysis described.

5.2.1 Overview of Learning Invariant Constraints

Figure 5.3: Process of learning constraints on attributes and parameters

Figure 5.3 illustrates the process of inferring conditions on attributes and pa-

rameters that involves the use of an invariant detector tool Daikon (Ernst et

al. 2007). Since each constructed rule instance by tracing includes actual data

values for all its node attributes, passed parameters and return. This gives us

additional flexibility to collect data values for detecting invariants.

Under the first step (1), we describe the process of collecting, mapping and

setting up data values from all rule instances that belong to a specific generalised

(or maximal) rule. By considering such data, we can use them as input or

training set to Daikon, see step (2). Then, in step (3), Daikon acts to discover

85

Chapter 5. Inference of Advanced Rule Features 86

constraints to be fed back to the generalised rule. This allows to increase the

accuracy of generalised rules by including precise conditions on attributes and

parameters. We give more details about these steps in the next subsections.

5.2.2 Rules with Attribute and Parameter Constraints

In Figure 5.4, the contract for registerClient(cityID: String, client: String) de-

scribes the creation of a Client object linked to the Branch whose city matches

the parameter cityID (cf Section 3.2). This is expressed by the equality branch.city

= cityID in the Branch object.

Figure 5.4: Contract instance extracted from registerClient(..)

Formally, branch.city and cityID, as well as the right-hand side counterpart

branch.city′ of branch.city, are local variables of the contract that get instanti-

ated by the match as part of an application. In particular, given a graph object

G and match m : L → G, branch.cityID is instantiated by the value of the

city attribute of m(branch), i.e., m(branch.cityID) = m(branch).cityID. In a

similar way we can extend m to evaluate complex expressions and use these in

assignments to update attributes. The formalisation in attributed graph trans-

formation assumes an abstract data type A as attribute domain linking it to

the structural part by attribution maps (Ehrig et al. 2006).

While access and changes to structure as well as data can be logged in the same

process, the learning of logical data constraints requires a different approach

86

Chapter 5. Inference of Advanced Rule Features 87

from the structural one described so far. Let us consider how attribute con-

straints for contracts can be learned. Say, an instance i = [b = op(a1, . . . , an) :

Gi ⇒ Hi] has attribute and parameter values Ai (i.e., these values were ei-

ther read or written during the corresponding invocation). A maximal rule

r = [op(x1, . . . , xn) = y : L⇒ R] generalising a number of instances with shared

effects is given a set X of local variables for all formal parameters x1, . . . , xn

and all attributes read or accessed by all its instances. Since maximal rule r is

embedded by a match mi into every instance i it subsumes, this extends to an

assignment of the local variables mi : X → Gi.

Fixing an order on the variables X, each mi becomes a vector of values to be

fed into a machine learning tool capable of driving logical constraints. We use

the Daikon tool designed for the derivation of invariants over program variables.

From the assignments mi for all instances i that contributed to the construction

of rule r Daikon generates a set of constraints that are valid for all assignments.

As described in Figure 5.3 (3), these constraints are fed back into the graphical

part of the contract, where each becomes part of the pre- or postcondition

depending on whether the variables used occur only in L or in L,R and the

parameters. This approach allows the separation of structural and constraint

learning.

5.2.3 Setting up Attributes and Parameters Values

Since the aim is to attach inferred invariants to generalised contracts, such as

maximal rules, the actual values of rule attributes and parameters can be ob-

tained from rule instances (cf. Chapter 3). This requires mapping node elements

from maximal rules to all corresponding nodes in the relevant rule instances,

and then fixing the order of attributes. Here, we use node abstract id for map-

ping node elements, which are mainly used for discovering intersections among

rule instances, explained in Chapter 4. For fixing the order of the values we rely

87

Chapter 5. Inference of Advanced Rule Features 88

on index arguments and node attribute names that are unique for each object

(node).

In Table 5.1, we illustrate an example of the data values obtained from register

Client(..). The first two rows list variables specifying the order of nodes and

also their attributes. In the other rows, we systematise all traced values from

rule instances by using mapped node abstract id, index arguments and attribute

name.

In Table 5.1, apart from the first two, each row represents values obtained from

a single rule instance. For example, the data values shown in the third row are

obtained from the rule instance described in Figure 5.4.

Input parameters Attributes in LHS Attributes in RHS Output
City
Par1

client
Name Par2

Branch
L city

Branch
L cMax

Branch
R city

Branch
R cMax

Client
R cID

Client
R cName

return

Leicester Abrar Leicester 5 Leicester 6 Leicester5 Abrar Leicester5
London Reiko London 2 London 3 London2 Reiko London2
London Abdullah London 3 London 4 London3 Abdullah London3
...
...

Table 5.1: Mapping and ordering node elements and setting up their values

5.2.4 Learning Using Daikon

Daikon2 is a machine learning tool, implemented for inferring program invariants

from specific program point(s) (Ernst et al. 2007). Considering a Java method

as a program point P , Daikon observes the values of variables in the scope

of P , including (I/O) values, in order to detect all possible true properties or

invariants. These values are usually obtained by tracing from several executions.

The inferred invariants can represent conditions for a single variable, e.g. for

a column in Table 5.1 (second row), or the relationships among variables (i.e.

2The documentation of Daikon tool is available at http://pag.csail.mit.edu/daikon/

88

http://pag.csail.mit.edu/daikon/

Chapter 5. Inference of Advanced Rule Features 89

Invariants over Detection

any variable
- constant value x = a
- small value set x ∈ {a, b, c}

a single numeric
variable

- range limits a ≤ x ≤ b
- nonzero x 6= 0
- modulus x ≡ a (mod b)
- nonmodulus x 6≡ a (mod b)

two numeric variables

- linear relationship y = ax + b
- ordering comparison x < y, x ≤ y,

x > y, x ≥ y,
x = y, x 6= y

- any invariant over x + y
- any invariant over x− y, e.g. x− y > a

three numeric variables

- linear relationship
z = ax + by + c,
y = ax + bz + c or
x = ay + bz + c

a single sequence
variable

- range: minimum and maximum sequence values,
ordered lexicographically

- element ordering: nondecreasing, nonincreasing or equal
- invariants over all sequence elements

(treated as a single large collection)

two sequence variables

- linear relationship y = ax + b elementwise
- element comparison x < y, x ≤ y, x > y, x ≥ y, x = y, x 6= y
- subsequence relationship: x is a subsequence of y or vice versa
- reversal: x is the reverse of y

a sequence (s) and
a numeric variable (i)

- membership i ∈ s
e.g. element at the index s[i] or s[i− 1]

Table 5.2: Summary or the main cases of detecting invariants (Ernst et al.
2001)

among multiple columns). Table 5.2 summaries the main types of Daikon in-

variants by assuming (x, y and z) to be variables, while (a, b and c) are constant

values (Ernst et al. 2001).

The program point P in our approach is a maximal rule and its variables are

obtained from attributes and parameters of rule instances. As explained in the

previous section, the values of these variables are extracted from rule instances

during the tracing.

By giving Daikon inputs such as Table 5.1, the output will be similar to List-

ing 5.1. Here 14 invariant constraints have been inferred, some of which are de-

scribing the relation between attributes (e.g. BranchLcMax−BranchRcMax+

89

Chapter 5. Inference of Advanced Rule Features 90

Daikon version 5.1.14, released December 22, 2014; http://plse.cs.washington.edu/daikon.
Reading declaration files .

(read 1 decls file)

Processing trace data; reading 1 dtrace file:

Finished reading RegisterClient.dtrace

==
aprogram.point:::POINT
child Par1 == ”objectRef”
CityPar1 one of { ”Leicester”, ”London” }
CityPar1 != clientNamePar2
CityPar1 == BranchLcity
CityPar1 == BranchRcity
CityPar1 < ClientRcID
CityPar1 != ClientRcName
CityPar1 < return
clientNamePar2 != ClientRcID
clientNamePar2 >= ClientRcName
clientNamePar2 != return
BranchLcMax − BranchRcMax + 1 == 0
ClientRcID != ClientRcName
ClientRcID >= return
ClientRcName != return
Exiting Daikon.

Listing 5.1: An example of printing out Daikon constraints

1 == 0) and also between attributes and parameters (e.g. CityPar1 ==

BranchLcity). An example of conditions inferred for a single variable can be

seen in (CityPar1− one− of − {”Leicester”, ”London”}).

5.3 Summary

In this chapter, we introduced an inference technique to extend the learning of

basic contracts, discussed in Chapter 4, by the derivation of general rules with

multi objects and attribute constraints. This technique presents the third phase

of our methodology as discussed in Section 1.3.3

90

Chapter 5. Inference of Advanced Rule Features 91

The inference of multi objects enhances regular contracts as it adds more concise

constraints to specify actions across sets of objects of different cardinalities. It

helps in reducing the size of as well as the number of contracts by combing sev-

eral generalised contracts (i.e., many maximal rules) whose effects only differ by

the number of elements affected. We have discussed our proposed MO algorithm

to discover sets of nodes in rules that have the same structure and behaviour,

then represent them by a single multi-object node with proper cardinality.

In order to derive attribute constraints we used Daikon (Ernst et al. 2007) tak-

ing the actual data values of attributes and parameters as input and producing

true invariant constraints. The actual data values are obtained from tracing

during construction of rule instances. The invariants increase the accuracy of

generalised contracts by including precise conditions on attributes and param-

eters.

The last technical contribution of this thesis has been given in this chapter,

hence, proceed to evaluate and conclude the thesis in Part III.

91

Part III

Evaluation and Conclusion

92

Chapter 6

Evaluation

Our target, in this chapter, is to investigate empirically the efficiency and ef-

fectiveness of the technique introduced in Part II. We consider the following

research questions:

• Can the correctness and completeness of extracted contracts be demon-

strated or at least improved?

• Can the extracted contract instances be used for improving recall and

accuracy of detecting faults in test reports? Do they help developers and

for which kinds of faults they are most effective?

• How well does our approach scale to large rules and/or large number of

rules? What is the cost of each individual step involved in the process,

starting from tracing to the inference of contract features?

We firstly illustrate the implementation of the approach by a proof-of-concept

tool in Section 6.1 and then discuss correctness and completeness of extracted

contracts in Section 6.2. Section 6.3 reports on a user experiment, conducted to

93

Chapter 6. Evaluation 94

assess the utility of test reports and localising faults using visual contracts. Scal-

ability is evaluated based on three case studies in Section 6.4 and the summary

of the chapter is given in Section 6.5.

6.1 Prototype Tool

The approach is implemented by a tool whose high-level architecture is shown

in Figure 6.1. It consists of a Tracer observing the behaviour of selected classes

using AspectJ and constructing contract instances (cf. Chapter 3), a Generaliser

learning minimal, maximal (cf. Chapter 4), MO rules and attribute constraints

(cf. Chapter 5) both supported by a database connection and a Visualiser for

selective display and analysis of contracts. An export to the graph and model

transformation tool Henshin (Arendt et al. 2010) is used to simulate contracts

for validation.

The tool is implemented in Java1 and relies on Daikon (Ernst et al. 2007) to

learn data constraints (cf. Chapter 5). It uses a mySQL database as a back-

end to handle efficiently large (numbers of) contract. The use of such rela-

tional database provides the means to formulate complex operations on contract

graphs as declarative queries.

Figure 6.1: Architecture of the Tool

1The source code is available at https://github.com/AMahfodh/IGTRRep

94

https://github.com/AMahfodh/IGTRRep

Chapter 6. Evaluation 95

In this section, we focus on the Visualiser to illustrate how results are presented

and how they could be used to aid program understanding. The main task

of the Visualiser (see Figure 6.2) is to organise, browse and display extracted

contracts. To this end we support:

• the distinction in colour and style between elements of the minimal and

larger maximal rule, e.g., dotted edges and nodes with coloured back-

ground (green for creation and light-golden for updated node attributes)

represent elements of minimal rules, while nodes with white background

and solid edges are context elements;

• the alternative display of collections as (to-many) associations or using

explicit collection objects;

• the selective visualisation of rules, for example of the minimal rule or the

precondition only, with the flexibility to change graph layouts;

• user interaction to confirm if inferred features are correct;

• export contracts to other formats, rather than Henshin (Arendt et al.

2010), e.g. as a pair of (GXL, JPG-images or DOT graphs).

6.1.1 Visualisation of Rule Instances

Figure 6.2 shows two screenshots of the main interface. In (a), we present an

instance extracted from makeReservation() (cf. Section 3.2). The upper part

of (a) gives information on the operation signature, actual parameters and the

extraction process. Apart from the rule showing the precondition and effect at

a high level, we provide information on the access to individual objects with

the corresponding locations in the code. They are available through a pop-up

window like the one in Figure 6.3 activated by clicking on the :Reservation node

in the right-hand side of the contract.

95

Chapter 6. Evaluation 96

(a) Rule instance

(b) Generalised rules interface

Figure 6.2: Visualiser interface

6.1.2 Visualisation of Advanced Rules

Figure 6.2 (b) shows how generalised (maximal and MO) rules are displayed.

The top left shows a list of the rules organised by their operation signatures.

When selecting, e.g., a maximal rule, all its rule instances will appear in the

table, see the top right of (b). The lower part shows the maximal rule and

96

Chapter 6. Evaluation 97

Figure 6.3: Object access and code locations

(a) Left-hand side of maximal rule
cancelClientReservations()

(b) Left-hand side with multi object ex-
tracted from (a)

Figure 6.4: Extraction of rule with multi object

6 attribute constraints for RegisterClient() (cf. Section 3.2) that describe the

relation between attribute values, input and return parameters. For example,

the 5th constraint states that the value of the cID is returned while the 6th

requires that the cName attribute of the new Client object has the same value as

the 2nd parameter. An example of a rule with multi object is shown in Figure 6.4

(b) as extracted from the maximal rule in (a) for cancelClientReservations().

97

Chapter 6. Evaluation 98

6.2 Accuracy of Extracted Contracts

In order to establish to which extent the contracts extracted provide an accurate

description of the software’s behaviour we consider two directions, the correct-

ness and completeness of the contracts. For every state s in the implementation

there exists a corresponding object graph G(s) at model level obtained by rep-

resenting all objects in the scope of observation (i.e., that are instances of the

classes selected for tracing, cf. start of Chapter 3) as nodes, object-valued at-

tributes as edges and data-valued attributes as node attributes. Then, a model

is correct if for every valid state s and invocation in, a step in : G(s) ⇒ H in

the model implies a step in the implementation from state s to a new state s′

such that H = G(s′). That means, the model does not allow behaviour that is

not implemented by the system.

Conversely, completeness means that for each valid state s, a step caused by

an invocation in of the implementation leading to a state s′ must be matched

by a step in : G(s) ⇒ G(s′) in the model, i.e., all the system’s behaviour is

captured by the model. Generally, the models extracted will be neither correct

nor complete.

6.2.1 Correctness

In software engineering, correctness means that the software’s behaviours is

consistent with the specification. This can be established by two different ap-

proaches: (1) formal verification and (2) software testing (Priestly 2005). In

the context of formal verification, correctness is a boolean property, i.e., soft-

ware is either correct or incorrect. However, correctness based on testing cannot

only give a boolean result, but also level of expectation represented, e.g, by the

number of tests passed. The use of correctness in this thesis follows the notion

98

Chapter 6. Evaluation 99

of testing, and hence, improving correctness means to increase the number of

invocations where the specification’s prediction matches the implementation’s

behaviour.

Generally, proving correctness of our approach fails because the model is ex-

tracted for a certain part of the system only as identified by the implementa-

tion classes selected for tracing. Anything outside this scope of observation is

not recorded and therefore not represented by the model. That means, if the

implementation checks a condition on the state of an object outside scope, this

check is not reflected in the precondition of the contract. If this check fails, a

step in the model may not be reflected by a step in the implementation.

A weaker condition taking into account this limitation is that of effect correct-

ness. It states that, if both preconditions are satisfied, the observable effect of

the implementation-level step should match the effect of the model-level step.

Here the comparison is moderated via the the mapping G() of implementation

states to object graphs, which also takes account of the scope.

6.2.2 Completeness

Completeness fails for the same reason that test cases cannot prove the correct-

ness of a system. The dynamic approach to extracting contracts is inherently

dependent on the range of behaviours observed, and behaviours that have not

been observed will not be reflected in the model.

So what can we realistically hope to achieve? A minimal notion of complete-

ness should require that all observed behaviours are represented in the model,

i.e., when executing the tests the model was extracted from, all steps in the

implementation should be matched by the model. Even if we assume that we

have a complete statement and/or branch coverage of executing implementa-

tion, the extracted models can describe an over-approximation of the observed

99

Chapter 6. Evaluation 100

behaviours, resulted by inferring additional features, that do not have a direct

match to the implementation.

Despite the difficulty of generating a complete model, our technique allows to

improve completeness by incrementally covering new behaviours when observing

additional contracts. In Section 4.3, we explained how the existing (i.e., last

inferred) maximal rules can be modified by covering new contract instances. In

the remainder of this chapter, we illustrate an example of how this work, see

Table 6.5.

6.2.3 Manual Inspection

We used manual inspection on the Car Rental Service case study (cf. Section 3.2)

to validate if the models extracted by the tool satisfy the baseline/moderated

notions of correctness and completeness. The limited amount of code and our

familiarity with the application allowed us to perform a detailed review for every

method in the interface, validating for all execution paths that there exists a

rule in the corresponding contract capturing the path’s combined precondition

and effect, and vice versa for every rule that the behaviour described is fully

implemented. This process was aided by the export of extracted contracts to

the Henshin model transformation tool (Arendt et al. 2010), which provides

a facility to simulate contracts based on their operational semantics as graph

transformation rules.

A more automated solution is partially implemented, discussed in the future

work section in Chapter 8, where Henshin was used to execute the model in

parallel to the implementation, with the same invocations from the original

set of tests being executed by both and the outputs compared for consistency.

However, we could not fully prove the consistency of behaviours from both

executions, as the current release (version 1.2.0) of Henshin does not support

assigning rule attributes by variables.

100

Chapter 6. Evaluation 101

Consider the source code fragment in Figure 6.5 implementing the dropoffCar()

method. There are three possible paths leading to at least three different con-

tracts, depending on the evaluation of the two if statements in lines 4 and 10.

When executing this method by three test cases that cover all statements, the

extracted rules reflect the expected behaviours. This is confirmed by tracing the

line numbers in the code responsible for the access to objects in the contracts.

Figure 6.5 shows the left-hand sides of the three rules extracted from dropoff-

Car(). For example, (a) reflects the behaviours of statements 1-5 as we pass an

invalid reservation id and, accordingly, the execution breaks at line 5. The rule

correctly describes the access to this:Rental and the Reservation container. In

(b) the parameter is valid, i.e., the Reservation object Leicester 12 exists, but

the execution breaks at line 11 since the car has not been picked up yet. This

can be seen from the pickup link which would have been deleted otherwise. The

rule in (c) reflects correctly the third path, i.e., the conditions in 4 and 10 are

false so there is no return from the method there.

Figure 6.5: Implementation and rule instances for dropOffCar()

101

Chapter 6. Evaluation 102

More generally, due to the method of model extraction (and assuming it was

correctly implemented in our prototype tool) we can assert that model and

implementation should show the same behaviour at least for the test cases used.

In particular:

• contract instances capture precisely the preconditions and effects relevant

to the invocation they are derived from, within the scope of observation;

• minimal rules capture exactly the effect of contract instances they are

extracted from;

• maximal rules subsume all contract instances they derive from, i.e., every

contract instance can be replicated as an application of the maximal rule;

• rules with multi-objects are (more concise, but) equivalent to the sets of

maximal rules they derive from, i.e., by retaining the original rules’ cardi-

nality information, they describe exactly the same set of transformations;

• the parameter and attribute constraints derived do not invalidate any of

the contract instances their maximal rule originates from.

The fact that, in general, models are only representative of the behaviour they

were extracted from is an obstacle to some applications, such as their use in

verification, where automated extraction has to be followed by a manual review

and completion of contracts.

In the next section, we demonstrate an application to program understanding

in the context of testing and debugging that does not rely on completeness or

correctness beyond the set of tests executed.

102

Chapter 6. Evaluation 103

6.3 Utility in Assessing Test Reports and

Localising Faults

Using the Car Rental Service case study (cf. Section 3.2), we conducted an ex-

periment to evaluate the utility of visual contracts extracted from the execution

of test cases for analysing test reports and identifying faults. In this paper-based

exercise, our hypothesis was that “visual contracts, rather than textual repre-

sentations of the same information, improve recall and accuracy of detecting

faults in test reports”. Generally, we wanted to find out how visual contracts

help developers, and for which kinds of faults they are most effective.

6.3.1 Experimental Setup

To conduct the experiment, an implementation of the Rental Car Service was

documented in natural language (cf. Figure 3.3), seeded with 8 faults and pro-

vided with several short test cases able to detect them, see Figures 6.6, 6.7, 6.8,

6.9,6.10. The rest of details can be found in Appendix A.

Tests were executed and results recorded in two different formats:

(A) as sequences of invocations and returns of operations from the interface,

with queries added to display details of the internal state after each step

and

(B) as sequences of visual contracts extracted from the same invocations.

Students were asked to (1) identify invocations where the observed behaviour

deviated from the expected based on the documentation and (2) locate the

faults responsible in the code provided. Both groups received reports from 4

103

Chapter 6. Evaluation 104

tests of 4-5 invocations each, containing a total of 20 failures to be traced down

to the 8 seeded faults.

Service Specification

The specification below describing the interface of a car rental agency service consists of a class diagram

modelling the available data, a list of operation signatures and a informal description of the preconditions and

effects of those operations.

Data Model:

Operation Signatures:

• registerClient(city: String, client: String): String

• makeReservation(client: String, pickup: String, dropoff: String): String

• pickupCar(reference: String)

• dropoffCar(reference: String)

• cancelReservation(reference: String)

and for the queries:

• showClientReservations(client: String): Reservation[]

• showCars(reservation: String): Car[]

• showBranch(city: String): Branch

• showClients(city: String): Client[]

Figure 6.6: Service specification

104

Chapter 6. Evaluation 105

public class Rental implements IRental{ 1

 private static final long serialVersionUID = 6324598725198583458L; 2

 ... 3
 public String registerClient(String city, String clientName){ 4
 5
 Branch cBranch = getBranch(city); 6
 if (cBranch !=null){ 7
 8
 Client newClient = new Client(); 9
 newClient.name =clientName; 10
 newClient.id = cBranch.city + "_" + (cBranch.of.size()); 11
 12
 cBranch.of.add(newClient); 13
 return newClient.id; 14
 } 15
 return null; 16
 } 17
 18
 public String makeReservation(String ClientID, String pickup, String dropoff){ 19
 20
 Branch pickupBranch = getBranch(pickup); 21
 Branch dropOffBranch = getBranch(dropoff); 22
 23
 Client clientMade = getClient(pickupBranch, ClientID); 24
 25
 if (clientMade==null){ 26
 clientMade = getClient(dropOffBranch, ClientID); 27
 } 28
 29
 Car car = getCar(pickupBranch); 30
 31
 if (pickupBranch==null 32
 || dropOffBranch==null 33
 || clientMade==null 34
 || car==null){ 35
 return null; 36
 } 37
 38
 pickupBranch.rMax++; 39
 Reservation mReservation = new Reservation(40
 pickupBranch.city + "_" + pickupBranch.rMax, 41
 clientMade, 42
 pickupBranch, 43
 dropOffBranch, 44
 car); 45
 46
 this.reservations.add(mReservation); 47
 return mReservation.reference; 48
 } 49
 50
 public void cancelReservation(String Reference){ 51
 52
 for (int iIndex=this.reservations.size()-1; iIndex>=0; iIndex--){ 53
 54
 Reservation readRes= this.reservations.get(iIndex); 55
 if (!readRes.made.equalsIgnoreCase(Reference)){ 56
 continue; 57
 } 58
 else { 59
 this.reservations.remove(iIndex); 60
 } 61
 } 62
 } 63

... 64
 65

Figure 6.7: Implementation of the Rental Car Service

105

Chapter 6. Evaluation 106

Class Test - Not Assessed

Full Name CFS

You will be given 5 test reports (each consisting of a sequence of invocations) and the source

code of their implementation. Your task is to find out which test reports show failures of the service to

satisfy the specification and locate the faults responsible for the failures in the code.

At the start of each test case the database is initialised with 3 branches and 3 cars using the following

data:

Question 1) Please use the following table to report the failed steps and explain briefly how the

behaviour differs from the specification. The first row has been completed as an example of what is

expected.

Failed step only
Brief Justification Test Report

No
Step
No

1 1
No change in attribute Branch(Leicester).cMax , which should be increased from 0 to 1.
...

...

...

...

...

...

...

...

... ..

...

...

...

...

...

...

...

...

... ..

...

...

...

...

...

...

...

...

...

...

...

... ..

...

Figure 6.8: Worksheet for explaining failed steps and localising faults

106

Chapter 6. Evaluation 107

Test Report 1 * to show the state after

Step Operation invocation Output

1 registerClient("Leicester", "Reiko") "Leicester_0"

*
showClients("Leicester") [0]={cName="Reiko", cID="Leicester_0"}

showBranch("Leicester") {city=" Leicester", rMax=0, cMax=0}

2 registerClient("Leicester", "Abdullah") "Leicester_1"

*
showClients("Leicester")

[0]={cName="Reiko", cID="Leicester_0"}

[1]={cName="Abdullah", cID="Leicester_1"}

showBranch("Leicester") {city=" Leicester", rMax=0, cMax=0}

3 makeReservation("Leicester_1", "Leicester", "Nottingham") "Leicester_1"

*
showClientReservations("Leicester_1")

[0]={ reference="Leicester_1",

made="Leicester_1",

pickup="Leicester",

dropoff="Nottingham",

for="A1"}

showBranch("Leicester") {city=" Leicester", rMax=1, cMax=0}

4 makeReservation("Leicester_1", "Birmingham", "Leicester") null

*
showClientReservations("Leicester_1")

[0]={ reference="Leicester_1",

made="Leicester_1",

pickup="Leicester",

dropoff="Nottingham",

for="A1"}

showBranch("Leicester") {city=" Leicester", rMax=1, cMax=0}

5 cancelReservation ("Leicester_1") -

* showClientReservations("Leicester_1") null

Test Report 2 * to show the state after

Step Operation invocation Output

1 registerClient("Nottingham", "Reiko") "Nottingham_0"

*
showClients("Nottingham") [0]={cName="Reiko", cID="Nottingham_0"}

showBranch("Nottingham") {city="Nottingham", rMax=1, cMax=1}

2 makeReservation("Nottingham_0", "Nottingham", "Nottingham") "Nottingham_2"

*
showClientReservations("Nottingham_0")

[0]={reference="Nottingham_2",

made="Nottingham_0",

pickup=" Nottingham",

dropoff="Nottingham",

for="B2"}

showBranch("Nottingham") {city=" Nottingham", rMax=2, cMax=1}

3 makeReservation("Nottingham_0", "Leicester", "Nottingham") "Leicester_1"

*

showClientReservations("Nottingham_0")

[0]={reference="Nottingham_2",

made="Nottingham_0",

pickup=" Nottingham",

dropoff="Nottingham",

for="B2"}

[1]={reference="Leicester_1",

made="Nottingham_0",

pickup="Leicester",

dropoff="Nottingham",

for="A1"}

showBranch("Nottingham") {city="Nottingham", rMax=2, cMax=1}

showBranch("Leicester") {city="Leicester", rMax=1, cMax=0}

4 cancelReservation ("Nottingham_2") -

* showClientReservations("Nottingham_0") null

Figure 6.9: Group A: Test reports used for detecting faults

107

Chapter 6. Evaluation 108

Test Report 1

Step Operation invocation Extracted visual contracts
Access in the code

line number

1
registerClient(

 "Leicester", "Reiko")

Return : "Leicester_0"

b1:Branch - 6, 11, 13

c1:Client - 9, 10, 11, 14

2
registerClient(

"Leicester", "Abdullah")

Return : "Leicester_1"

b1:Branch - 6, 11, 13

c2:Client - 9, 10, 11, 14

3

makeReservation(

"Leicester_1",

 "Leicester", "Nottingham")

Return : "Leicester_1"

b1:Branch - 21, 24, 39, 40

b2:Branch - 22, 40

c2:Client - 24

v:Car - 30, 40

r:Reservation - 40, 47, 48

4

makeReservation(

"Leicester_1", "Birmingham",

"Leicester")

Return : null

b1: Branch - 22, 27

b3:Branch - 21, 24, 30

c2:Client - 27

5
cancelReservation

("Leicester_1")

No return

r1:Reservation - 55, 56

Figure 6.10: Group B: Test reports used for detecting faults,

108

Chapter 6. Evaluation 109

6.3.2 Data Collection and Analysis

The 66 participating students were volunteers from an MSc module on (UML-

based design, implementation and testing of) Service-oriented Architectures

running February-May, 2015, at the University of Leicester. The ethical ap-

proval to conduct the experiment was given by the Ethics Board of the Depart-

ment of Informatics before the experiment took place. We could use data from

previously submitted coursework, one on modelling and one on implementation

and testing, to check that the average level of qualification of participants in

both groups was comparable. The groups A and B were selected randomly

(handing out worksheets A and B alternatingly), resulting in 32 students in

group A with an average coursework mark of 67.4% and 34 students in group

B with an average coursework mark of 68.1%.

From the module, the students were broadly familiar with the concept of specifi-

cation based testing of service interfaces like the one provided. The Car Rental

Service interface, its documentation and the two types of assignments were

introduced to all students in a 50 min session prior to the experiment. The

participants then had 50 mins under exam conditions to analyse test reports,

detect and document failures and locate the corresponding faults in the code

provided.

Group A achieved an avg. recall of 0.215 (identifying 1.7 out of the 8 faults)

and an avg. precision of 0.232 (with 1.7 correct out of 7.4 responses). Group

B had an avg. recall of 0.3 (correctly identifying 2.41 out of 8) and an avg.

precision of 0.35 (with 2.41 correct out of 6.88 responses). This represents a

factor of improvement recall B / recall A of 0.3/0.215 = 1.4 and precision B /

precision A of 0.35/0.232 = 1.5.

In both cases, the t-test for independent two-sample experiments (for unequal

109

Chapter 6. Evaluation 110

variances and population sizes) showed that the results are statistically signifi-

cant with a probability (p-value) of 0.033 for recall and 0.013 for precision. The

p-value was calculated using an online tool2 for a degree of freedom of 64 (the

sum of population sizes −2), a significance level of 0.05, and a one-tailed hypoth-

esis (there is a reasonable expectation that group B would perform better than

group A). That means, assuming the null hypothesis that “the different repre-

sentations of test reports in both groups have no effect on the resulting scores”

is true, there is a 0.033 resp. 0.013 probability of observing the same results

due to random sampling error. The key figures are summarised in Table 6.13.

recall precision

A mean 0.215 0.232
A std dev. 0.196 0.212
B mean 0.3 0.35
B std dev. 0.18 0.209
t-test 1.875 2.284
p-value 0.033 0.013

Table 6.1: Statistical data for groups A and B

We investigated more closely which faults in which operations were detected

more frequently by which group, see examples of visual representation of ex-

tracted contracts in Figure 6.11 or in Appendix A for complete version. The

numbers are too low to have statistical significance, but suggest that the differen-

tial benefit of using visual contracts is greater with faults that involve structural

features rather than those that concern attributes and parameter values only,

such as

• makeReservation() does not check the of link between Branch and Client

object;

• dropoffCar() does not remove the Reservation object.

2Social Science Statistics, P Value from T Score Calculator, http://www.

socscistatistics.com/pvalues/tdistribution.aspx
3All documents and instructions handed out to both groups as well as the raw data and

detailed calculations are available at http://www.cs.le.ac.uk/people/amma2/experiment

110

http://www.socscistatistics.com/pvalues/tdistribution.aspx
http://www.socscistatistics.com/pvalues/tdistribution.aspx
http://www.cs.le.ac.uk/people/amma2/experiment

Chapter 6. Evaluation 111

The visual representation seems to be less effective for detecting faults in post-

conditions than in preconditions. In fact, there are two examples of structural

postcondition faults, see them in Figure 6.11, that were detected with higher

frequency by group A than B, i.e.,

• cancelReservation() deletes all reservations for the relevant client, rather

than only the one specified by the parameter;

• pickupCar() does not delete the pickup link.

Figure 6.11: Examples of extracted contracts used for detecting faults.

111

Chapter 6. Evaluation 112

Indeed to understand the structural effect of a rule we have to spot the differ-

ences between its left- and right-hand side, which can be difficult if the structure

is complex and there are several changes. This could be addressed, for example,

by using different colours to highlight changes.

The highest relative benefit of visual contracts (13 discoveries in group B vs.

1 in group A) was observed for registerClient() where according to the doc-

umentation, the client id returned should have been formed as city + ” ” +

Branch.cMax while in fact was computed as city + ” ” + Branch.of.size() us-

ing the size of the client list rather than the next free client number cMax. To

detect this problem requires matching information from pre and postcondition,

including the navigation of the link between Client and Branch object, and

the return value. Indeed, one advantage of visual representations is that they

are not linear, and so able correlate items of information across more than one

dimension.

6.3.3 Discussion and Threats to Validity

While it is unlikely that results are due to random error, the design of the exper-

iment itself could have biased the outcome. The (self) selection of participants

may have resulted in groups that are not representative of the software develop-

ers normally concerned with testing tasks or could have provided an advantage

to one of the groups. However, testing is often performed by junior developers.

Many of our MSc students, mostly international with a broad range of back-

grounds, would expect to go into entry level developer roles after graduation.

As stated earlier we checked that both groups were equally capable based on

their academic performance on a related MSc module that matched well with

the expertise required in this task.

The relatively poor performance overall is a cause for concern. We believe this

is due to the limited time to understand and perform a quite complex task,

112

Chapter 6. Evaluation 113

and the lack of practical experience of the participants, but also caused by the

paper-based nature of the exercise, where a debugging tool providing similar

representations in a more interactive, navigable way could improve outcomes.

It is worth stressing, however, that the study does not claim the visual approach

to be effective in absolute terms, only that it works better than the textual one

in this artificial setting. This indicates that it might provide advantages in

related practical tasks as well, but this is yet to be demonstrated.

There could be bias in the representation of information to both groups. Of

course, since the hypothesis claims that the visual representation is more useful,

this “unfair advantage” is intended. Apart from that the information provided

is equivalent: invocations with actual parameters and returns are shown tex-

tually in both cases, only information on the internal state (object structure

and attribute values) is represented differently, in group A by query operations

listing all accessed objects and their state and in group B by visual contracts

extracted.

The choice of case study, with its dominance of structural features and their

manipulation rather than computations on data, limit the validity of results

to just such applications. This is justified by the fact that this is the natural

domain for visual contracts. The NanoXML and JHotDraw case studies provide

further examples of that nature, discussed in the next section.

6.4 Performance and Scalability

Observing large applications can generate too many rules or rules with many

objects. In this section, we assess how well our approach scales to large ob-

servations based on rule size and number of rules extracted. We explore the

general impact on performance across a range of different rules, starting from

extracting contract instances to inferring rule features. We conducted several

113

Chapter 6. Evaluation 114

experiments, applied on three case studies. Furthermore, we will use one of

these experiments to illustrate in more details the benefits and general validity

of inferred rules.

6.4.1 Case Studies and Test Cases

Beside the Rental Car Service case study (cf. Section 3.2), we use (NanoXML - a

small non-validating XML parser for Java 2016) and (JHotDraw as Open-Source

Project by Java 2016) to evaluate scalability to large numbers of invocations as

well as large object graphs. Both case studies are popular benchmarks for

software testing and analysis, and representative of the kind of system our

method would be appropriate for, i.e., with significant and dynamic object

structures in their core model. In NanoXML this is the object representation

of the XML tree, for JHotDraw that of graphics’ objects.

NanoXML is a small non-validating XML parser for Java, which provides a

light-weight and standard way to manipulate XML documents. We use version

2.2.1 which consists of three packages and 24 Java classes. We focus on two

classes, XMLElement and XMLAttribute, which provide the functionalities to

manipulate XML documents. We monitor 41 XMLElement methods, executing

5605 test cases in order to evaluate the handling of large numbers of invocations.

The original test cases were generated by CodePro4, some of which are modified

and completed manually to improve coverage. These tests cover 2099 out of 5836

instructions.

JHotDraw is a highly customisable Java GUI framework for technical and

structured graphics editing, developed as an exercise in good software design

4A JUnit test case generator https://developers.google.com/java-dev-tools/

codepro/doc/features/junit/test_case_generation

114

https://developers.google.com/java-dev-tools/codepro/doc/features/junit/test_case_generation
https://developers.google.com/java-dev-tools/codepro/doc/features/junit/test_case_generation

Chapter 6. Evaluation 115

using patterns. At runtime, this GUI provides a set of features including tool-

box menu to be invoked by the end-users, such as opening new window, in-

serting image, label or shapes etc. We used version 5.3 which comprises 2,080

methods implemented in 243 classes (34,710 instructions), focussing on the top

level methods for the manipulation of graphs, such as *.addFigure(..), *.Delete-

Figure(..), *.copyFigure(..), *.DecoratorFigure(..) and all undoable actions

in *.CommandMenu. actionPerformed(comExe). We use GUI testing using

WindowTester5 to generate test cases by recording user interactions. We exe-

cuted 405 test cases that cover 9284 of 34710 instructions.

6.4.2 Extraction and Inference

In order to assess the scalability based on large inputs, we consider both number

of rules and rule size. This includes time taken to (1) construct contract in-

stances by tracing and (2) infer different rules with features from each instance.

For number of rules we focus on NanoXML and JHotDraw to evaluate rule

size. Consider Figure 6.12 results from NanoXML, we plot the time taken to

execute different batch sizes of tests, from 59 to 2183. Each test generates a

single contract instance from which minimal and maximal rules, multi-objects

and constraints are extracted. Tracing, contract instance construction and ex-

traction of minimal rules are essentially linear, as is the derivation of constraints

and multi objects. The construction of maximal rules requires to compare all

rule instances with shared minimal rules, which is quadratic in the number of

rule instances that share the same effect.

Based on the recorded test cases of JHotDraw, the total runtime of the ex-

traction is about 3 hours 15 mins. Scalability is analogous to NanoXML, see

5A tool to record GUI tests for Swing applications, https://developers.google.com/
java-dev-tools/wintester/html/gettingstarted/swing_sampletest

115

https://developers.google.com/java-dev-tools/wintester/html/gettingstarted/swing_sampletest
https://developers.google.com/java-dev-tools/wintester/html/gettingstarted/swing_sampletest

Chapter 6. Evaluation 116

Figure 6.12: Scalability for extracting contracts from NanoXML

Figure 6.13, but the quadratic component of maximal rule extraction is less

significant due to the smaller overall number of rule instances.

Figure 6.13: Scalability for extracting contracts from JHotDraw

Unlike NanoXML where the number of invocations / contract instances is large

but the size of each contract instance small, JHotDraw produces contract in-

stances up to several hundreds of objects, see Table 6.2. For more details,

116

Chapter 6. Evaluation 117

Table 6.3 shows the number of objects accessed, number of instances, maxi-

mal rules, and rules with MO created (with total size in terms of numbers of

objects), extracted from 135 instances, i.e., the last batch in Figure 6.13.

Java methods contract instances max rules MO rules
NanoXML 41 2183 (9081) 41 (125) 1 (38)
JHotDraw 5 135 (26141) 19 (3032) 2 (416)

number (and size) of rules

Table 6.2: Overall extractions vs. number of methods based on the last
batch size (2183 and 135) of Figure 6.12 and Figure 6.13 respectively.

accessed instance max MO
Executed method signature objects rules rules rules

CopyCommand.execute() 20150 16(400) 3(80) 0
add(Figure) 11106 24(332) 2(26) 0
DeleteCommand.execute() 494971 15(6259) 2(828) 1 (207)
DecoratorFigure.decorate(Figure) 2215 20(90) 2(10) 0
UndoableCommand.execute() 651671 60(19060) 10(2088) 1 (209)

number (and size) of rules

Table 6.3: JHotDraw objects accessed and processed for the construction
of contracts from 135 instances, see Figure 6.13

Another conducted experiment to assess the scalability based on rule size, ap-

plied on Rental Car service. Here, we focus on contract instances extracted

from operation showClientReservations(). These contracts have different min-

imal rules but produce isomorphic MOs rules. Figure 6.14 depicts the results

by comparing different rules containing from 1400 to 7000 nodes. The results

suggest that the relationship between contract size and time taken to load, con-

struct min/max rules as well as to infer MOs is linear. The third column depicts

the number of matching nodes used to produce a single MO node as well as the

number of MO nodes itself. For example, in the first row, 2 MOs are extracted

from 1393 objects.

117

Chapter 6. Evaluation 118

rule size loading+ min-rule+ max-rule No-of MOs MO rule total

1400 1.993 1393(2) 21.39 23.38
2800 5.785 2793(2) 48.155 53.94
4200 12.072 4139(2) 65.855 77.93
5600 20.398 5593(2) 90.461 110.86
7000 31.339 6993(2) 118.299 149.64

All contracts extracted from showClientReservations()

Time - measured in seconds

Figure 6.14: Performance based on rule size

no rule instance No-of-i
nstance

No-of
MOs

loading+
min-rule+
max-rule

MO
rule

total

1 registerClient 5 0 2.614 0.082 2.70
2 makeReservation 5 0 3.992 0.15 4.14
3 cancelReservation 5 0 2.191 0.031 2.22
4 cancelClientReservation 5 12(2) 3.373 1.042 4.42
5 pickupCar 5 0 4.764 0.046 4.81
6 dropoffCar 5 0 2.764 0.031 2.80
7 showClientReservations 5 12(2) 3.673 1.137 4.81
8 showClients 5 0 0.415 0.071 0.48
9 showCars 5 0 0.426 0.069 0.49

Time - measured in seconds Mo - Multi objects

Table 6.4: Performance of generalising 45 rule instances

6.4.3 Benefits and Validity of Generalisation

One of the experiment on the Rental Car Service (cf. Section 3.2) was aimed at

illustrating benefits and general validity of inferred rules. For this aim, we have

118

Chapter 6. Evaluation 119

Figure 6.15: Generalised maximal rule for pickupCar().
Best viewed at 350% zoom.

119

Chapter 6. Evaluation 120

generalised 45 rule instances into 9 sets of rules, classified by their operation

signature. The result is reported in Table 6.4, which also shows the time taken

to extract and infer rules with their features. The number of rule instances

in each set is 5, as shown in the third column. Only two sets produce MOs:

cancelClientReservation() and showClientReservations().

The results also suggest that the time taken to run the MO algorithm on rules

that do not contain any MO is less than for rules that containe MOs. This is

thanks to the use of efficient database queries, which allow to establish quickly if

two or more nodes share the same context. The effect is even more pronounced

with larger rule sizes.

Benefit of constructing maximal rules: Rule pickupCar() in row 5 of Ta-

ble 6.4 has been generalised from 5 rule instances. We present the left-hand side

of only three of them as well as the generalised rule in Figure 6.15, see LHS1,

LHS2, LHS3 and LHS MAX. This demonstrates the benefit of constructing

maximal rules as unnecessary context is being ignored in (LHS MAX), such as

the repeated Car objects in LHS1 or the Reservation object in LHS2 and LHS3.

This simplifies the specification while making it more general. Note that the

process of computing the LHS MAX is performed in an incremental mechanism,

explained in Chapter 4, which make it easier and very efficient to include any

new LHS instances not used before for inferring or updating the latest LHS

MAX extracted. Table 6.5 illustrates the idea of this process, as we consider a

pair of LHSs each time to either produce a new LHS MAX such as the first row

or updating the previous LHS MAX extracted as in the other rows.

Iteration first LHS second LHS extracted LHS-MAX

1 LHS 1 LHS 2 1st LHS-MAX
2 1st LHS-MAX LHS 3 2nd LHS-MAX
3 2nd LHS-MAX LHS 4 3th LHS-MAX
4 3th LHS-MAX LHS 5 4th LHS-MAX (latest)

Table 6.5: Incremental process of computing maximal rule

120

Chapter 6. Evaluation 121

Benefit of inferring multi objects: Figure 6.4 provides a good example

for raising the level of abstraction by inferring multi objects, resulting in a

significant reduction in particular for operations performed in analogous form

on a large set of objects.

Validity of Generalisation: according to the object types and the type of

their relations, extracted from the class diagram in Figure 3.4, all generalised

rules are valid. More significantly, all generalised rules always preserve the

structure of minimal rules. For example, By comparing, manually, (LHS MAX)

and (LHS 1) in Figure 6.15, the structure of minimal elements still have an

exact match. For contexts elements, all generalised rules are also applicable

in a sense, they can be applied in any instances from which they have been

extracted.

6.4.4 Analysis of Results and Threats to Validity

One of the challenges we faced is how to execute systems to trace and extract

visual contracts for evaluation purpose. Using normal execution or online mon-

itoring, in the case of insufficient test cases available, might affect performance

and lead to observe limited behaviours, resulting from constraints in settings

or system configurations. Moreover, it is difficult to determine which scenario

needs to execute in order to trigger the interesting part of the system (Cornelis-

sen et al. 2009). The obvious solution is to generate test cases automatically

but the challenges remain in performance and completeness. For example, the

generated test cases can be very large and expensive to execute. In spite of this,

they might not provide good coverage, which would affect the completeness of

the extracted VCs.

Although the generation of test cases is outside the scope of this thesis, we have

used different methods to execute systems, such as our manual implementation

121

Chapter 6. Evaluation 122

of test cases and using test cases tools to automatically generate them from

on-line executions and/or source code analysis.

Based on the results obtained we conclude that scalability may be acceptable for

batch processing moderately sized test suites, but not necessarily for interactive

testing. In applications to program understanding and debugging, however,

where the human effort is significant, the time taken to prepare a more effective

representation for inspection is likely to pay off, and our user study indicates

that such benefits may be expected. The number of cases where multi objects

could be identified is relatively small but they covered a large number of objects

that may be hard to survey without this added level of abstraction.

Our evaluation is potentially biased by the selection of the case studies and the

choice of operations and test cases within them. The NanoXML case study is one

of a selection of benchmarks in the Software-artifact Infrastructure Repository6

frequently used for evaluating automated testing and program analysis in Java.

At 7646 LOC, 24 classes it is not a large API, but what we have seen from

the evaluation suggests that it is the complexity of the individual operations,

in terms of the number of objects involved, that determines the effort. This in

turn depends on the number of classes we choose to observe.

NanoXML case study was selected because it offers a range of operations of

significant structural complexity, creating objects and creating and destroying

links. Moreover, we have developed/implemented the Car Rental Service case

study to observe more complex structural preconditions. In that sense these

two case studies are the kind of example for which an approach like ours may

be useful. Analysing our own case study, the choice of NanoXML’s operations

to be traced and the test cases used for them are motivated by trying to explore

all aspects of such complexity, and our test cases do indeed cover all the cases,

as given in Table 3.1.

6http://sir.unl.edu

122

http://sir.unl.edu

Chapter 6. Evaluation 123

JHotDraw was selected to assess the scalability on a large API that has more

than 18,000 non-documented LOC (Marin 2004). Furthermore, the focus was on

the top level methods (e.g. *.CommandMenu.actionPerformed(comExe)) that

control GUI toolbar and manipulate drawing/editing all kind of shapes. This

allows us to see how well our approach can handle the extraction of contracts and

their required analyses from thousands of accessed objects at runtime. Rather

than executing the system by normal test cases, recording user interactions

to generate test cases also allows to estimate performance based on on line

monitoring.

6.5 Summary

In this chapter, we have demonstrated the efficiency and effectiveness of ex-

tracting visual contracts from Java applications, proposed in Part II. We have

presented our prototype tool to illustrate the extraction process as a proof-

of-concept and explained that proving the completeness and/or correctness of

extracted contracts dynamically is not always feasible. Despite this, our pro-

posed technique allows to improve completeness by considering new behaviours

each time after execution in an incremental mechanisms. We have used manual

inspection to validate if the models extracted satisfy the baseline/moderated

notions of correctness and completeness.

We have evaluated the usability of the approach based on 66 participating

MSc students for analysing test reports and identifying faults. Here, we have

shown that the differential benefit of using visual contracts is greater with faults

that involve structural features rather than those that concern attributes and

parameter values. We also have evaluated scalability in experiments on three

case studies, and shown that the scalability may be acceptable for batch pro-

cessing moderately sized test suites, but not necessarily for interactive testing.

123

Chapter 6. Evaluation 124

The overall evaluation provides some confidence in the validity of the proposed

technology, the usefulness of the results and the scalability of the tool, but these

aspects were evaluated through separate experiments on a range of different

cases. Ultimately, through our discussions, there is no direct evaluation of

the usability of the tool or of the absolute effectiveness of the approach in

applications to program understanding and testing. Such claims are beyond

the scope of the thesis, but open new research directions to be explored in

future.

124

Chapter 7

Comparison to the State of the Art

This research intends to extract dynamically visual contracts from object ori-

ented systems (Java) in three steps: model extraction, model generalisation and

feature inference. Similar steps have been considered in different research areas

for which a range of related work exists. To organise them and discuss our

investigation of approaches that are closely related to what we have achieved,

we divide this chapter into three sections:

Model Extraction. This step involves observing actual behaviour by tracing,

to be represented by instantiated versions of visual contracts. Here we discuss

related approaches with respect to dynamic analysis techniques. The state of

the art of reverse engineering more generally has already been discussed in

Chapter 2.

Model Generalisation. We compare the relevant approaches with our learn-

ing mechanism based on graph transformation and graph pattern matching for

rule generalisation. We explore recent work in two different aspects: applica-

tions and algorithmic solutions.

125

Chapter 7. Comparison to the State of the Art 126

Feature Inferences. We investigate shared ideas for inferring multi-objects

and rule attribute/parameter constraints that exists in the state of the art.

7.1 Model Extraction

Automated reverse engineering is based on static or dynamic analysis. The

static approach, exemplified by (Rountev, Volgin, and Reddoch 2005; Sarkar,

Chatterjee, and Mukherjee 2013; Tonella and Potrich 2003), examines the source

code only, with the intention of extracting all possible behaviours. This is

useful for incomplete systems, e.g., components that cannot be executed in-

dependently (Rountev, Volgin, and Reddoch 2005), but limited in its ability

to detect dynamic object-oriented behaviours such as dynamic binding. For

example, (Tonella and Potrich 2003) propose a static approach for generating

sequence and collaboration diagrams from C++ code, thereby potentially over-

approximating the actual behaviour. The drawback of a dynamic approach,

such as our but also (Brito et al. 2012; Zhao, Kong, and Zhang 2010; Ziadi et

al. 2011), is that the extracted model represents only those behaviours that are

actually executed. Next, we discus so-called Architecture Driven Modernization

(ADM), then we narrow down to the relevant tracing techniques and types of

extracted models, including contracts.

7.1.1 Architecture-Driven Modernization

As mentioned in Chapter 2, MDA aims to separate implementation and design

from architecture and focuses on forward engineering, i.e., transferring models

from higher levels to lower and more concrete levels (Chen et al. 2006; Siegel

2014). The reverse method so-called Architecture Driven Modernization (ADM)

126

Chapter 7. Comparison to the State of the Art 127

is proposed by OMG’s ADMTF1 (The Architecture-Driven Modernization Task

Force (ADMTF) 2016). They define ADM as “the process of understanding and

evolving existing software assets for the purpose of software improvement, mod-

ifications, interoperability, refactoring, restructuring, reuse, porting, migration,

language translation, enterprise application integration, SOA, MDA migration

and making existing applications more agile”.

Following a similar objective to ours, ADM is necessary to evolve existing soft-

ware in the case of out-of-date PIM and/or PSM’s documentation, unmodelled

software or modelled software that did not follow MDA’s standards (Chen et al.

2006). In Figure 2.3, we explained the idea of ADM within the MDA environ-

ment, which is very analogue to our approach in discovering the PSM model

(visual contract) from the implementation.

7.1.2 Tracing Approaches

Many dynamic reverse engineering approaches take advantage of a customised

debugger, source transformation (e.g. using the TXL language2) or aspect ori-

ented programming for software analysis and instrumentation at different levels.

We use AspectJ to instrument low-level Java bytecode and generate visual con-

tract instances at runtime. A similar strategy lies behind (Brito et al. 2012)

generating hierarchical object graphs or (Zhao, Kong, and Zhang 2010) ex-

tracting graph grammar. At the level of models (Amar et al. 2010) discovers

relationships to support model traceability (Galvao and Goknil 2007), e.g., the

relation between elements of source and target models in a model transforma-

tion.

1ADM is the backward of MDA, so ADMTF stands for Architecture-Driven Modernization
Task Force

2The TXL Programming Language (Source Transformation)- http://www.txl.ca/

127

http://www.txl.ca/

Chapter 7. Comparison to the State of the Art 128

The requirement to trace systems dynamically normally considers (1) an analy-

sis strategy, by e.g., instrumentation, (2) points of interest to observe program

elements at runtime such as point-cut in AOP or breakpoints in debuggers, and

(3) the representation of generated logs to be used for constructing target mod-

els. In Table 7.1, we particularly describe these requirements to differentiate

the main similarities and differences between existing tracing techniques with

ours (presented in Chapter 3).

Analysis strategy Program elements Logs representation Extracted model

ours
AOP-AspectJ
to instrument
byte/source code

generic
-initialization,
-set/get field access,
-and method calls
with parameters

recorded sequences
of accessed objects

instances of
visual contracts

[A] * AOP-AspectJ

* generic
-initialization,
-set/get field access,
-and method calls
with parameters

no logs recorded, but
online extraction
and visualization

hierarchical
object graphs

[B]
customized
debugger

* method calls but
without parameters

Labeled Transition
Systems (LTS)

sequence
diagrams

[C]
TXL source
transformation

* method calls
Labeled Transition
Systems (LTS)

context-based
behaviour models

[D] * AOP-AspectJ
* method calls but
without parameters

GraphML represent-
ing call graph

graph grammar
context-free

[E]

* AOP-AspectJ
integrated with
model transfo-
rmation tool

* specific
-initialization,
-set/get field access,
-and method calls
with parameters

model based on
Java/EMF

model traceability
links model from
EMF transformat-
ions

[F] * AOP-AspectJ * method calls
recorded sequences
of accessed objects

model close to:
- Control Flow Graph
- Finite State Machine

* indicates similarities vertically in each column
References

A Brito et al. 2012
B Ziadi et al. 2011
C Duarte, Kramer, and Uchitel 2006
D Zhao, Kong, and Zhang 2010
E Amar et al. 2010
F Wasylkowski, Zeller, and Lindig 2007

Table 7.1: Similarities with tracing approaches based on aspect oriented

A closely related approach, also based on Java bytecode instrumentation, is

(Zhao, Kong, and Zhang 2010) aiming at extracting a context-free graph gram-

mar. But their use of graph grammars is for representing nested hierarchical call

graphs, not to model the behaviour of the system in terms of transformations on

objects. Not surprisingly, their tracing strategy focusses on method calls only.

128

Chapter 7. Comparison to the State of the Art 129

They use a mining approach to infer the graph grammar by processing the set

of extracted call graphs.

(Wasylkowski, Zeller, and Lindig 2007) propose a code smells detection ap-

proach that takes Java code examples to infer legal sequences of method calls.

They use mining and pattern detection techniques to find locations of abnormal

object usage (defect candidates) in programs in two steps. They first analyse

statically code to create a ‘method model’ closely related to the control flow

graph representation. Then, they create an ‘object usage model’ by data-flow

analysis to check all places in the code where the object could be a target or a

parameter of a method call. Their object model represents finite state machine

with unknown states and transitions but labeled with method calls.

The approach to model traceability in (Amar et al. 2010) infers relations based

on aspect-oriented programming. They trace access to objects by creation,

update and deletion actions based on transformation events and aggregate them

into a relation model. Despite a similar family of observed actions, our approach

in this stage works at the level of Java programmes, not models.

7.1.3 Type of Extracted Models

The current literature reports a significant number of reverse engineering tools

and approaches for extracting different types of models, particularly UML mod-

els. For instance, static, dynamic and hybrid analysis have been applied, within

the MDA Framework, to build structural models, such as class/state diagrams

(Favre, Martinez, and Pereira 2009) and use case diagrams (Claudia, Liliana,

and Liliana 2011; Muhairat and Al-Qutaish 2009), and also behavioural models

including sequence diagrams (Ziadi et al. 2011) and activity diagrams (Mar-

tinez, Pereira, and Favre 2011). Other models (which do not follow MDA con-

cepts) have also been considered, such as hierarchical object graphs (Brito et

129

Chapter 7. Comparison to the State of the Art 130

al. 2012), graphical user interfaces (Kull 2012), ontology models (Alnusair and

Zhao 2009), finite-state models (Corbett et al. 2000; Pradel and Gross 2009),

entity data models from databases (Malpani et al. 2010) and graph grammars

based on call graphs (Zhao, Kong, and Zhang 2010).

Our extracted models describe visually the high-level behaviour of software

operations (Meyer 1992) in the form of a pair of UML object graphs. They

are used to specify the changes of system’s states before (pre-condition) and

after (post-condition) the execution of an operation. The only similar reverse

engineering approach we are aware of has been proposed in (Porres and Rauf

2010), discussed in the next section.

7.1.4 Extraction of Contract Models

The approach proposed by (Porres and Rauf 2010) aims at generating class

contracts from protocol state machines that specify a pre- and post-condition

for each operation, required to trigger a transition in the state machine. These

class contracts are asserted by JML (Leavens, Baker, and Ruby 2006) and can

be used to generate test oracles (i.e. run-time assertions) or to generate test

cases.

The shared idea with ours is extracting actual behaviour of contract instances.

Apart from this, our approach is completely different. Fundamentally, our con-

tracts are visual, extracted from real execution and rely on object diagrams

not state machines. We also do not consider contracts at code level as they

propose by JML. Additionally, we get ahead by supporting the inference of

attribute/parameter conditions and multi-objects.

130

Chapter 7. Comparison to the State of the Art 131

7.2 Model Generalisation

Reverse engineering visual contracts is a process of learning rules from transfor-

mations. This has been suggested in a number of areas, including the modelling

of real-word business processes (Bruggink 2014), biochemical reactions (You,

Holder, and Cook 2009) and model transformations (Dolques et al. 2011). Al-

though related in the aim of discovering rules, the challenges vary based on the

nature of the graphs considered, e.g., directed, attributed or undirected graphs,

the availability of typing or identity information, etc. We organise the discussion

in this section into: application domains and published graph pattern mining

solutions for learning rules.

7.2.1 Application Domain

There are three application domains we have come across so far, discussed in

the following sections:

7.2.1.1 Business Processes

(Bruggink 2014) discusses five mining algorithms, namely, maximal, minimal,

context, genetic and greedy mutation, for learning graph transformation models

from transition systems. These models can be used to understand behaviour

of business processes and/or to model behaviour of human experts. Given an

observed trace, some transition sequences, to be an input for their learning

algorithms, they first encode manually transitions by identifying isomorphic

graphs for each sequential states. This means each transition is limited to

describe creation and/or deletion of edge elements only. In general, this initial

step may affect usability, and obviously requires knowledge about the system

under analysis.

131

Chapter 7. Comparison to the State of the Art 132

The first algorithm maximal rule aims to produce a (large) rule for each transi-

tion, assuming the whole states before and after to be the LHS and RHS of the

generated rule, respectively. The applicability as well as understandability of

such generated rules are problematic, as too much context is present. In their

minimal rule algorithm, the produced rules are similar to ours. They describe

the deletion and/or creation of elements without including contexts elements.

As all the transitions are already identified by isomorphic graphs in their pre-

processing step, computing graph differences (i.e., specifying deletion/creation

of edges only, while we also consider nodes) is straightforward.

Despite this, the quality of generated minimal rules are low as stated. They

measure this by comparing transition system generated by the inferred mod-

els to the input transition system that were used as input to the algorithms.

Since there is no context in the minimal rules, the model allows arbitrary the

movement of some transitions.

The context algorithm provides similar outputs to our inferred maximal rule,

but we differ in the strategy used. Their construction relies on extending the

minimal rule by adding matched context elements. Our approach is the oppo-

site, based on cutting down unmatched context from a chosen contract instance,

which makes it easier to maintain the graph structure as valid against the type-

graph. In addition, we are dealing with more complex (UML object) graph

structures, supporting the inference of advanced rule features, such as multi-

objects and attribute/parameter conditions.

The fourth genetic algorithm has an exponential time complexity. The author

has studied the possibility of combining genetic and greedy mutation algorithms

to produce better results, these algorithms suffer from recognising disjunctive

application conditions, resulting in the inability to generate meaningful com-

mon context in the rules. The correctness of produced rules is not evaluated.

132

Chapter 7. Comparison to the State of the Art 133

The suggestion of how one can measure quality by means of conformance and

simplicity is discussed, but not released.

7.2.1.2 Biological Systems

In (You, Holder, and Cook 2009)’s work, source and target graphs represent net-

works of biomolecules. The authors aim to discover rules modelling reactions.

They extract the minimal rule by best sub-graph matching and adopt a statisti-

cal approach to rate context. Our approach is simpler in that the minimal rule

is determined by tracing and we do not deal with uncertainty of context.

7.2.1.3 Model Transformation

As modelling a software system often requires many different steps, with more

than one model considered at each step, MDA introduces an architecture that

categorise the various kinds of models used with respect to their level of ab-

straction. This architecture includes three main layers: Computation Indepen-

dent Model (CIM)3, Platform Independent Models (PIM) and Platform Specific

Models (PSM) (Siegel 2014).

Broadly speaking, PIM focuses on business concepts and solving domain model

problems without specifying any technological platform. PSM is tied to a spe-

cific technology, i.e., focuses on modelling how a system can be implemented by

a given technology or platform (by e.g., a particular programming language or

operating system) (Siegel 2014).

One of the key ideas in MDA, regarding its architecture, is to support model

transformation that aims to transform a given model into a target model (Mens

and Van Gorp 2006). In general, MDA transformation specifications “provide

3CIM - models of the actual people, places, things, and laws of a domain. The instances
of these models are real things, not representations of those things in an information sys-
tem.(Siegel 2014)

133

Chapter 7. Comparison to the State of the Art 134

the mechanisms to transform between representations and levels of abstraction

or architectural layers”(Siegel 2014). However, MDA puts emphasis on forward

engineering (Chen et al. 2006), i.e., transferring models from higher-level PIM

(e.g., formal specifications) to lower-level PSMs (e.g. UML models) or from

PSM to code level, see the left arrow in Figure 2.3. In (Berrisford 2004)’s work,

the article describes superficially the four possible transformations (CIM↔PIM)

and (PIM↔PSM) in more details.

In order to permit model transformation, several languages have been defined

with various purposes and features. A general survey of some of these ap-

proaches are discussed in (Czarnecki and Helsen 2006), such as Henshin (Arendt

et al. 2010), VIATRA4, AndroMDA5 and ATLAS6 etc. The latter is widely used

in MDA (Allilaire and Idrissi 2004), which is based on OMG standard QVT 7.

When considering approaches to learning model transformations, surveyed in

(Kappel et al. 2012) and, more recently, in (Baki and Sahraoui 2016), we have

to distinguish two types of transformations (Mens and Van Gorp 2006), i.e.,

in-place or endogenous transformations (Langer, Wimmer, and Kappel 2010)

where source and target have the same metamodel, as in animating object

diagrams, and out-place or exogenous transformations (Avazpour, Grundy, and

Grunske 2015; Baki and Sahraoui 2016; Faunes, Sahraoui, and Boukadoum

2013; Kühne et al. 2016), where the metamodels are different, such as when

transforming UML class diagrams to relation schemata. However, in-place can

implement out-place by creating a joint metamodel. In addition, (Kappel et al.

2012) classifies the proposed approaches into model transformation by-example

(MTBE) and model transformation by demonstration (MTBD).

4VIATRA: An Event-driven and Reactive Model Transformation Platform, Eclipse Mod-
elling Project - http://www.eclipse.org/viatra/

5AndroMDA is an open source MDA framework- http://www.andromda.org/
6ATLAS is a model transformation language and toolkit, Eclipse Modelling Project -

https://eclipse.org/atl/
7(QVT) Query/View/Transformation - http://www.omg.org/spec/QVT/

134

http://www.eclipse.org/viatra/
http://www.andromda.org/
https://eclipse.org/atl/
http://www.omg.org/spec/QVT/

Chapter 7. Comparison to the State of the Art 135

The underlying principle of MTBE, initially introduced in (Varró 2006), is to

use interrelated source and target models as examples. These pairs of example

models are defined manually by a domain expert. The idea of MTBD (Langer,

Wimmer, and Kappel 2010) is to observe transformations by stepwise recording

of editing actions such as adding, updating or removing model elements. To de-

rive rules that describe transformation patterns applicable to other models, this

approach relies on templates created by demonstration by the user. Concerning

the post-2012 approaches to learning model transformation specifications from

examples, (Agirre, Sagardui, and Etxeberria 2014; Baki and Sahraoui 2016;

Faunes, Sahraoui, and Boukadoum 2013; Kühne et al. 2016) are based on the

principle of MTBE, while (Avazpour, Grundy, and Grunske 2015; Langer, Wim-

mer, and Kappel 2010) fall into the latter category of MTBD. Our approach in

the tradition of MTBE targeting in-place transformation.

However, referring to the general MTBE process sketched in (Kappel et al.

2012), the most distinguishing aspect of our approach is to support features

such as the inference of multi-objects and conditions on parameters and data

attributes. To the best of our knowledge, none of these features have been pre-

viously addressed by any learning approach. This inference is based on specific

graph transformation theory, such as minimal rule extraction and rule matching.

Existing MTBE approaches sharing with our approach the idea of using larger

sets of examples as input for learning are rather driven by different heuristics,

e.g. based on genetic programming (Baki et al. 2014; Faunes, Sahraoui, and

Boukadoum 2013), association-based mining (Dolques et al. 2010), inductive

logic programming (Balogh and Varró 2009), and other heuristic algorithms

(Dolques et al. 2011) or machine learning.

Table 7.2 summaries model transformation approaches for learning rules. For

out-place transformation, (Dolques et al. 2011) represent input and output mod-

els as meta-model instances supporting concepts such as attributes, inheritance,

135

Chapter 7. Comparison to the State of the Art 136

aggregation, etc. As their transformations mode are out-place, their input-

output pairs would not typically represent the result of applying a single rule,

but potentially a process consisting of several steps. (Balogh and Varró 2009;

Faunes, Sahraoui, and Boukadoum 2012; Faunes, Sahraoui, and Boukadoum

2013; Varró 2006) also propose the learning of out-place transformation rules,

while our approach is of the in-place variety.

The approach proposed by (Langer, Wimmer, and Kappel 2010) address the

learning of in-place model transformations. This approach is interactive, requir-

ing user involvement to confirm the rules proposed by the algorithm on the basis

of observed transformations. Our approach does not have direct user involve-

ment and, significantly, is not based on a small number of carefully hand-crafted

examples, but on large numbers of observations extracted from a running sys-

tem. Therefore, scalability and the ability to deal with example sets providing

incomplete coverage are important.

The approach presented in (Avazpour, Grundy, and Grunske 2015) focuses

on usability by combining both MTBE and MTBD in out-place mode. Their

aim is to provide domain experts with features to visualise source and target

examples, recording actions and define correspondence elements to generate

complex model transformation. Our approach is more flexible in that we only

rely on dynamic tracing to define examples in in-place mode applications.

7.2.2 Graph Pattern Mining

An algorithmic problem closely related to the extraction of rules from example

transformations is graph pattern discovery. Current approaches can be classified

into statistical and node signature-based approaches:

136

Chapter 7. Comparison to the State of the Art 137

Approach Learning inputs learning technique Learning outputs

Our
approach
(in-place)

- Pair of UML object graphs
constructed by tracing that
represent operation behaviour

- GT theory
- Our algorithm

based on pattern
graph matching

- Minimal and maximal rules,
- Rule with multi-objects

[A]
in-place

- Metamodel-independent
- An empty context-free rule

- User involvement to
manually configure
annotated templates
in 4 iterations

- State-based comparison
to identify the new
/deleted elements

- Complex rules that can
dependent

[B,C,D]
out-place

- Source / target metamodels,
- Class diagram to

rel. schema example

Genetic programming
algorithm
(heuristic search)

- Many-to-many transformation
rules

- Control (rule order) [D]
- Negative conditions [D]

[E]
out-place

- Source / target metamodels,
- Class diagram to

rel. schema example

Anchor-prompt
matching

Relational model with source and
target links to support MTBE

[F,G]
out-place

- Source / target metamodels,
- Mapping metamodels and

models
- Class diagram to

rel. schema example

Inductive logic
programming

- Sets of rules for generating:
(a) target nodes and
(b) target edges,

- Negative conditions

[H]
out-place

- Source / target metamodels,
- Mapping metamodels, and

pair of models with traces

- Multi-phase learning
- Genetic programming

algorithm
(heuristic search)

Sets of rules, describing
transformation programs

References
A Langer, Wimmer, and Kappel 2010
B Faunes, Sahraoui, and Boukadoum 2012
C Faunes, Sahraoui, and Boukadoum 2013
D Baki et al. 2014
E Dolques et al. 2011
F Balogh and Varró 2009
G Varró 2006
H Baki and Sahraoui 2016

Table 7.2: Comparison with learning rules from model transformation

7.2.2.1 Statistical Approaches

Finding graph patterns by statistical means is popular in machine learning

(Qiu et al. 2010b). They can produce a large variance in results, depending

on the frequency of a pattern. For instance, an object that is not accessed,

but always present in the context, would be considered an important element

of the rule. (Qiu et al. 2010b) apply decision tree learning, starting to discover

matches from predefined anchor points in a hierarchical search pattern, resulting

in exponential effort.

137

Chapter 7. Comparison to the State of the Art 138

7.2.2.2 Node Signature-Based Approaches

The use of node signatures, as in our approach, can reduce this effort, but the

problem remains NP-complete. (Conte et al. 2004; Dahm et al. 2015) discuss

research in exact and best graph pattern matching. A crucial point in graph or

sub-graph matching is how to make nodes distinguishable when they are can-

didates for possible matches. For example in (Jouili, Mili, and Tabbone 2009),

a node signature for attributed graphs is based on node/edge types and node

attribute(s). We use a node signature-based approach with added structural in-

formation and metadata, extended from subgraph to subrule matching, taking

into account shared minimal rules and parameters.

7.3 Feature Inferences

To the best of our knowledge, no work has been done on inferring multi objects

for visual contracts. However, similar approaches for inferring invariant condi-

tions have be considered in component-based verification (Mariani 2004), and

software testing, such as addressing the test oracles problem (Barr et al. 2015)

or generating logical test inputs (Artzi et al. 2006). We share with them the

technique of using program invariant detection by Daikon (Ernst et al. 2007).

(Mariani 2004) focuses on verification of component-based systems by monitor-

ing I/O and interactions and using Daikon to detect invariants. Their inferred

invariants are not intended to address testing problems or to derive test suites,

but used for behavioural verification. For example, they are used to verify the

behaviour of similar components used in other systems, by invariants that de-

fine relations between system requests and component results, and also between

observed interactions.

138

Chapter 7. Comparison to the State of the Art 139

(Barr et al. 2015) discusses research on deriving test oracles from development

artefacts, particularly from system execution trace. Their main idea is to infer

invariants that capture program behaviours by observing sets of inputs/outputs

at runtime, e.g. from passed test cases. These invariants can be then used

to validate program correctness after any modifications, e.g., when applying

regression testing or when checking new test inputs.

(Artzi et al. 2006) proposes an automated solution to generate logical test inputs

in two steps: inferring a model (by tracing) that represents a call sequence

graph, and then using this model along with random test generation and Daikon

to generate test inputs. We share with them the initial idea of using trace

information that includes method calls, parameters/return values and values

of all accessed object attributes for analysis and inferences. In our case, the

inference output represents invariant constraints on rule attributes/parameters

and their possible matches (with primitive and string types). In contrast, (Artzi

et al. 2006) uses their inference to support test input generation for creating

valid and logical inputs

7.4 Summary

In this chapter, we have compared our approach for extracting and inferring

visual contracts with the current state of the art in different research fields,

including dynamic analysis techniques to reverse engineering models, model

transformations and graph pattern mining. A brief summary of the relevant

research are given below.

Dynamic Tracing. To reverse engineering models from existing systems at

run-time, we use AOP (AspectJ 2016) and propose an original strategy to con-

struct contract instances Chapter 3. We have given some detailed comparison

139

Chapter 7. Comparison to the State of the Art 140

with dynamic tracing approaches that share with us the same underlying con-

cept of extracting models. However, constructing visual contract (instance level)

from code has not been investigated in the literature.

Generalisation of Rule Instances. The underlying idea of our learning is

quite similar to some MTBE approaches for learning rules from model transfor-

mations. We have pointed to approaches such as learning rules form behaviours

of business process as well as biological network systems. The novelty in our

approach lies in the extraction of maximal rule, discussed for the first time in

(Alshanqiti, Heckel, and Khan 2013), and of rule with multi objects.

Inference of Rule Features. We are not aware of any approaches in the

literature for inferring multi-objects from rules as an advanced feature. However,

we share with software testing/verification approaches the technique of using

dynamic invariant detection by Daikon (Ernst et al. 2007).

In the next and last chapter, we conclude the work introduced in this thesis

with a discussion on the main limitations, ongoing work and our outlook for

potential future work and research directions.

140

Chapter 8

Conclusion and Future Work

This thesis introduced an integrated approach and tool for learning visual con-

tracts from instrumentation of Java code and observation of tests to the deriva-

tion of general rules with multi objects and attribute constraints. It supports

the analysis of test reports based on a concise, visual and comprehensive repre-

sentation of operations’ behaviour. The remainder of this last chapter concludes

the thesis with a summary, our contributions, limitations, and discussion on a

possible future work and research directions.

8.1 Summary of the Thesis

The introductory Part I presented the research objectives, motivations, related

literature and background that are useful to understand many parts of the

thesis, particularly visual contracts and reverse engineering techniques.

In Part II, we presented a running example, illustrated and defined formally

by UML and graph transformation concepts to introduce our main technical

contributions, published in (Alshanqiti and Heckel 2014; Alshanqiti and Heckel

141

Chapter 8. Conclusion and Future Work 142

2015; Alshanqiti, Heckel, and Kehrer 2016; Alshanqiti, Heckel, and Khan 2013).

It begins with introducing:

• a dynamic reverse engineering proposal for behaviour models of Java code

represented as instantiated versions of visual contracts,

• a graph pattern matching technique for generalising visual contracts, and

• a learning technique for inferring features including multi objects and

attribute constraints.

In the concluding Part III, we have evaluated the validity of the resulting models,

usability and scalability in experiments on three case studies. The comparisons

with related work are also presented in this part.

8.2 Contributions in a Nutshell

The outputs obtained from the investigation process that we went through in

this thesis, and from our attempts of addressing the thesis statement (cf. Section

1.2.2), might contribute to the MDE field in general, and significantly to model

reverse engineering. These contributions, presented in Part II and Chapter 6,

are summarised below.

• A novel approach for extracting visual contract instances based on ac-

cessed objects at runtime (cf. Chapter 3).

• A novel approach for extracting maximal rules from observations of graph

transformations, based on graph pattern matching (cf. Chapter 4).

• A novel learning approach with an algorithm for inferring multi objects,

an advanced feature in graph transformation rules. This increases the

generalisation of the extracted specification (cf. Chapter 5).

142

Chapter 8. Conclusion and Future Work 143

• A learning approach for inferring rule conditions on parameters and at-

tributes by adopting an invariants detector tool called Daikon (Ernst et al.

2007), discussed in Chapter 5.

• An implementation of all our proposals in a prototype tool as a proof of

concept. The source code of the tool is available at GitHub repository1.

• An evaluation of the usefulness of the approach based on 66 participating

MSc students for analysing test reports and identifying faults.

• An evaluation of completeness and correctness of extracted contracts. We

have used manual inspection to validate if the contracts extracted satisfy

the baseline/moderated notions of correctness and completeness. In addi-

tion, our proposed technique allows to improve completeness by adopting

incremental observation and learning mechanism.

• Several experiments on three Java applications, (NanoXML - a small non-

validating XML parser for Java 2016), and (JHotDraw as Open-Source

Project by Java 2016) and our own Section 3.2, for evaluating performance

and scalability of each part of our approach.

8.3 Limitations

There are three drawbacks, discussed in Part II, that prevent us from producing

a comprehensive approach for inferring visual contracts. We briefly review these

drawbacks in the following subsections.

1The source code of our prototype is available at https://github.com/AMahfodh/IGTRRep

143

https://github.com/AMahfodh/IGTRRep

Chapter 8. Conclusion and Future Work 144

8.3.1 Observing Deleted Objects

One limitation of the approach, due to the semantics of Java and AspectJ (As-

pectJ 2016), is the inability to detect the deletion of objects. This is handled

implicitly by Java’s garbage collector. As long as the main application of our

technique is in program understanding, this aspect of Java’s semantics is re-

flected correctly in the extracted contracts. Where a more high-level, language-

independent model is sought, this limitation may have to be addressed.

8.3.2 Concurrency in Multi-Thread Applications

Observing distributed concurrent system using AspectJ (AspectJ 2016) is com-

plicated and may result in generating non-deterministic models. This is because

AspectJ supports only sequential weaving, not parallel executions. It matches

only a single event at a time (cross-cutting concerns) and the executed join

point cannot distinguish among similar accesses to an object in different threads.

Since the proposed tracing technique (cf. Chapter 3) is built on AspectJ, this

has limited our approach to consider only sequential Java applications.

8.3.3 Dependence on a Single Maximal Rule Extracted

The third limitation of the approach, due to the complexity of constructing

maximal rules discussed in Chapter 4, is that we generate a single maximal rule

even if this is not unique. While constructing all possible maximal rules could be

interesting, the computational effort would be prohibitive and the interpretation

of more than one rule generalising all instances would be unclear Section 4.2.2.2.

144

Chapter 8. Conclusion and Future Work 145

8.4 Outlook and Future Directions

To extend the work proposed in this thesis, we next present a range of possible

future research directions (Alshanqiti, Heckel, and Kehrer 2016), some of which

are presently considered in our ongoing work.

8.4.1 Integration with Henshin Tool

Henshin (Arendt et al. 2010) is a visual model transformation language for the

formal specification of graph transformation rules. It provides a friendly front-

end editor for specifying rules in a descriptive way, allowing to execute them. Its

underlying logics and syntax are built based on graph transformation concepts

(Ehrig et al. 2006).

The integration of our tool with Henshin allows to: (a) evaluate extracted con-

tracts, and (b) support MBE tools in editing and designing operations. This

integration is mostly done (including the import and export features of rules,

examples and types in EMF-ECore (Budinsky 2004) formats) but exploring

their use is planned as future work. In particular, we will investigate how to

exploit the extracted contracts with Henshin to support editing operations and

adaptive testing. We discuss these in more details in the following subsections.

8.4.1.1 Edit Operations on Models

Models have to be frequently modified to meet new changing requirements. Re-

engineering tasks such as re-factoring, merging or updating parts of a model

are supported in MDE tools. This is complex, time-consuming and needs a

high level of understanding and knowledge about the specific domain. There-

fore, failure to correctly modify models may result in generating inconsistent or

invalid models based on their defined meta-model.

145

Chapter 8. Conclusion and Future Work 146

Figure 8.1: Henshin representation of extracted contracts from (NanoXML
- a small non-validating XML parser for Java 2016)

Figure 8.2: Integration with Henshin (Arendt et al. 2010) to learn model
editing rules

Complex editing operations such as model refactorings are a valuable configura-

tion parameter for many tools in Model-driven Engineering (MDE), e.g. to con-

tinuously improve model quality using refactoring tools (Arendt and Taentzer

2013), or to describe the changes between two versions of a model in a mean-

ingful way (Bürdek et al. 2015; Kehrer, Kelter, and Taentzer 2011).

146

Chapter 8. Conclusion and Future Work 147

However, MDE platforms such as the Eclipse Modeling Framework (EMF) of-

fers only a generic low-level API (by means of changing their low-level Abstract

Syntax Graph (ASG)) for model modification. Using such API allows to create

and delete individual model elements, but in turn, it may violate model con-

straints according to their meta-models. In order to specify precisely the change

in a model, e.g. using EMF Refactor, the rules must be defined. To this end,

Kehrer et al (Rindt, Kehrer, and Kelter 2014) propose a meta-tool approach to

generate edit rule operations based on EMF Henshin for a given meta-model.

Rather than generating edit rules from a metamodel that may affect usability,

a better solution would be to focus on concrete models that are closer to the

users understanding.

Likewise, editing operations generated from meta-models, e.g. as proposed by

(Kehrer et al. 2013; Kehrer et al. 2016), are still primitive. Complex operations

can be implemented manually or by specifying their effect as a model transfor-

mation. Both approaches require a deep understanding of the meta-model and

its relation to the concrete syntax, thus being only accessible to tool developers

and language designers.

Our approach can be used to learn complex editing operations automatically

from examples specified by domain experts (Alshanqiti, Heckel, and Kehrer

2016). As a consequence, we want to integrate both approaches to learn editing

rules as described in Figure 8.2. The aim of this ongoing work is to investi-

gate how to automate manual tasks required for generating general edit rule

operations, and evaluate the usefulness of inference of advanced rule features.

An example of a complex editing operation, i.e. the model states before and af-

ter a model refactoring, can be specified using standard model editors. Example

models are transformed into the graph representation of our tool Section 6.1,

generalised to transformation rules and finally exported to Henshin. The ex-

ported transformation rules can be integrated as complex editing operations in

147

Chapter 8. Conclusion and Future Work 148

model editors. In contrast to previous “model transformation by example” pro-

posals requiring manual processing or augmentation of generated operations at

the abstract syntax level (Kappel et al. 2012), the aim here is to stick entirely

to the concrete syntax notation domain experts are familiar with.

8.4.1.2 Execution of Inferred Contracts

Figure 8.3: Integration with Henshin (Arendt et al. 2010) to execute ex-
tracted contracts

Figure 8.3 describes the integration of our tool with Henshin that particularly

aims at evaluating extracted contracts. This involves invoking the model along-

side the original implementation with the same set of tests, comparing outputs

for consistency. Executing the tests the contracts were extracted from can im-

prove their correctness, but more interestingly we can try a range of additional

cases to evaluate how well contracts capture the wider behaviour, beyond the

directly observed.

A related idea is the use for adaptive testing (Cai et al. 2005) where test cases are

generated from contracts in a cycle of test generation, execution, and contract

extraction. Currently, we work on addressing consistency problem by matching

test outputs generated by executing both model and original implementation,

see e.g. the generated report from our tool in Appendix C. Checking such

148

Chapter 8. Conclusion and Future Work 149

consistency in all probability requires first determining identical started states

(or similar start graphs), and then matching all changes after each invocation

at the last state.

8.4.2 Inferring Negative Application Conditions

As part of our ongoing work for increasing the accuracy of the extracted speci-

fication, we intend to infer Negative Application Conditions (NACs) from con-

structed contracts. A NAC allows to specify forbidden graph structures before

(as pre NAC) or after (post NAC) applying the rule.

We have made a preliminary study on inferring pre NACs from contracts that

were extracted from deterministic operations. Our assumption here is limited

to consider only minimal rules that are extracted from the same operation but

have semantically disjoint preconditions.

In order to address this, we come up with two possible solutions. The first

one depends on the inclusion of rules based on graph pattern matching, with

the aim of discovering which rules structurally include others. In the second

solution, we assume that each rule can be a NAC to the other rules based on

determining their priority. This requires a static analysis technique at code level

and probably needs extracting CFG to define paths of all rules extracted.

8.4.3 VCs for Debugging

Traditional debugging, as supported by an IDE such as Eclipse or DDD (Zeller

2000), allows programmers to interactively inspect and trace the dynamic be-

haviour of a program. It requires to define, in advance, breakpoints to hold

execution at a certain point, allowing to observe and investigate accessed ob-

jects, variables and their actual values.

149

Chapter 8. Conclusion and Future Work 150

To apply this technique for tasks such as localising faults, it needs sufficient

precision in identifying breakpoints, which may be an intricate task. Defining

many breakpoints or a breakpoint inside a loop is usually not practical, as it may

lead to either stopping the execution many times or observing similar details

with minor differences at each stop. In the worst case, programmers single-step

through instructions and observe changes to the program state.

Using extracted visual contract instances can serve as an alternative approach

which can be considered as visual debugging. The idea is to exploit the de-

bugging interface provided by the Java Virtual Machine to generate program

snapshots which can be visually inspected. This raises the level of abstraction

from implementation-based debugging to model-based debugging. Accompany-

ing trace information finally helps to localise faults in the source code.

The advantages of debugging at the model-level have been discussed in the

literature, e.g. in (Lindeman, Kats, and Visser 2011; Pavletic et al. 2015). Ex-

isting approaches, however, mainly focus on debugger frameworks for dedicated

domain-specific languages and are not applicable to mainstream Java programs.

The monitoring approach presented in (Hamann, Hofrichter, and Gogolla 2012)

shares similarities with our idea, but we plan to investigate the usability and

scalability of using visual contract instances as an IDE plug-in for run-time

debugging.

8.4.4 Supporting Multi-Thread Application

To provide a general solution for learning visual contracts, not limited to sequen-

tial applications, we will investigate techniques such as Hyper/J (Ossher and

Tarr 2000) for constructing contract instances. Unlike (AspectJ 2016), Hyper/J

supports multi-dimensional separation of concerns, allowing to instrument and

trace multithreaded applications.

150

Chapter 8. Conclusion and Future Work 151

8.4.5 On-fly Software Development

With the rapid change in the world of computing, reverse engineering is becom-

ing more sophisticated and connected with many technologies and innovations.

Traditionally, it has been used to understand legacy systems, while currently,

this trends seem heading to more wider and complex uses. (Canfora, Di Penta,

and Cerulo 2011; CanforaHarman and Di Penta 2007) suggest reverse engineer-

ing could be a promising method to address problems in the next generation of

software technologies. They discuss several emerging trends, one of them is on-

fly-development that aims at supporting forward engineering with information

extracted by reverse engineering as a feedback.

This idea originally discussed in (Müller et al. 2000) argues that involving re-

verse engineering within forward engineering activities would early give a clear

picture of what is designed and created. This may lead to, e.g., reducing de-

velopment errors by constantly tracking the consistency between model and

implementation (Binkley 2007).

In this context, our approach can support manual implementation of operations

or method bodies that are hard to generate from models in MDD approach

(Stahl, Voelter, and Czarnecki 2006), see Section 2.1.2, while preserving the

consistency between models and manual changes in code.

151

Appendix

152

Appendix A

Appendix A : Case study to evaluate the use of extracted VC in testing

Service Specification

The specification below describing the interface of a car rental agency service consists of a class diagram

modelling the available data, a list of operation signatures and a informal description of the preconditions and

effects of those operations.

Data Model:

Operation Signatures:

• registerClient(city: String, client: String): String

• makeReservation(client: String, pickup: String, dropoff: String): String

• pickupCar(reference: String)

• dropoffCar(reference: String)

• cancelReservation(reference: String)

and for the queries:

• showClientReservations(client: String): Reservation[]

• showCars(reservation: String): Car[]

• showBranch(city: String): Branch

• showClients(city: String): Client[]

Specification of operations

String registerClient (String city, String client)

Creates new client object for client and registers it with the branch at city. The attribute branch.cMax will be
increased for each new client added.

Parameters:

 city - non-null string value used to get branch object by city name.

 client - non-null string value used to set client name

Returns:

 String - if the client is registered successfully with the branch, client id of the form

 city + "_" + Branch.cMax, null otherwise.

String makeReservation (String client, String pickup, String dropoff)

Creates new reservation object for a client that must be registered with pickup branch. The pickup branch must have at

least one Car available to be booked. The attribute branch.rMax will be increased by 1 for each new reservation.

Parameters:

 client - non-null string value used to get client object by name.

 pickup - non-null string value used to get branch object by city name

 dropoff - non-null string value used to get branch object by city name.

Returns:

 String - if the reservation object is created successfully, reservation reference of the form

 city + "_" + Branch.rMax, null otherwise.

Void pickupCar (String reference)

Removes linkes pickup and for between reservation object and pickedup branch. The reserved car can only be picked

up once. If there is no suitable reservation, the operation does not have an effect on the state.

Parameters:

 reference - non-null string value used to get reservation object by reference.

Returns:
 no return

Void dropoffCar (String reference)

Creates new link at by returning reserved car to the dropoff branch, and removes reservation object with all its links,

namely: made, pickup, dropoff and for. If there is no suitable reservation, the operation does not have an effect on the

state.

Parameters:

 reference - non-null string value used to get reservation object by reference.

Returns:
 no return

Void cancelReservation (String reference)

Removes reservation object that matches reference (if it exists) with all its links, namely: made, pickup, dropoff

and for. If there is no suitable reservation, the operation does not have an effect on the state.

Parameters:

 reference - non-null string value used to get reservation object by reference.

Returns:
 no return

public class Rental implements IRental{ 1

 private static final long serialVersionUID = 6324598725198583458L; 2

 ... 3
 public String registerClient(String city, String clientName){ 4
 5
 Branch cBranch = getBranch(city); 6
 if (cBranch !=null){ 7
 8
 Client newClient = new Client(); 9
 newClient.name =clientName; 10
 newClient.id = cBranch.city + "_" + (cBranch.of.size()); 11
 12
 cBranch.of.add(newClient); 13
 return newClient.id; 14
 } 15
 return null; 16
 } 17
 18
 public String makeReservation(String ClientID, String pickup, String dropoff){ 19
 20
 Branch pickupBranch = getBranch(pickup); 21
 Branch dropOffBranch = getBranch(dropoff); 22
 23
 Client clientMade = getClient(pickupBranch, ClientID); 24
 25
 if (clientMade==null){ 26
 clientMade = getClient(dropOffBranch, ClientID); 27
 } 28
 29
 Car car = getCar(pickupBranch); 30
 31
 if (pickupBranch==null 32
 || dropOffBranch==null 33
 || clientMade==null 34
 || car==null){ 35
 return null; 36
 } 37
 38
 pickupBranch.rMax++; 39
 Reservation mReservation = new Reservation(40
 pickupBranch.city + "_" + pickupBranch.rMax, 41
 clientMade, 42
 pickupBranch, 43
 dropOffBranch, 44
 car); 45
 46
 this.reservations.add(mReservation); 47
 return mReservation.reference; 48
 } 49
 50
 public void cancelReservation(String Reference){ 51
 52
 for (int iIndex=this.reservations.size()-1; iIndex>=0; iIndex--){ 53
 54
 Reservation readRes= this.reservations.get(iIndex); 55
 if (!readRes.made.equalsIgnoreCase(Reference)){ 56
 continue; 57
 } 58
 else { 59
 this.reservations.remove(iIndex); 60
 } 61
 } 62
 } 63

... 64
 65

 public void pickupCar(String Reference){ 66
 67
 int iIndex = getReservationIndex(Reference); 68
 69
 if (iIndex==-1){ 70
 return; 71
 } 72
 73
 Reservation getReservation = this.reservations.get(iIndex); 74
 75
 // check if it hasn't been picked up already 76
 if (getReservation.pickup==null){ return; } 77
 78
 // check if the reserved car still exists in the pick-up branch 79
 iIndex=-1; 80
 81
 for (int iCarIndex=0; iCarIndex <getReservation.pickup.at.size(); iCarIndex++){ 82
 83
 if (getReservation.pickup.at.get(iCarIndex) 84
 .getRegistration().equalsIgnoreCase(85
 getReservation.for.getRegistration())){ 86
 87
 iIndex=iCarIndex; 88
 break; 89
 } 90
 } 91
 92
 if (iIndex==-1){return; } 93
 94
 // remove car from pickup branch 95
 getReservation.pickup.at.remove(iIndex); 96
 } 97
 98
 public void dropoffCar(String Reference){ 99
 100
 int iIndex = getReservationIndex(Reference); 101
 102
 if (iIndex==-1){ return;} 103
 104
 Reservation getReservation = this.reservations.get(iIndex); 105
 106
 // check if it has been picked up already 107
 if (getReservation.pickup!=null || getReservation.made==null){ 108
 return; 109
 } 110
 111
 // add car to drop-off branch 112
 getReservation.dropoff.at.add(getReservation.for); 113
 114
 getReservation.dropoff=null; 115
 getReservation.for=null; 116
 } 117
 118
} 119

 120

Class Test - Not Assessed - Group A

Full Name CFS

You will be given 5 test reports (each consisting of a sequence of invocations) and the source

code of their implementation. Your task is to find out which test reports show failures of the service to

satisfy the specification and locate the faults responsible for the failures in the code.

At the start of each test case the database is initialised with 3 branches and 3 cars using the following

data:

Question 1) Please use the following table to report the failed steps and explain briefly how the

behaviour differs from the specification. The first row has been completed as an example of what is

expected.

Failed step only
Brief Justification Test Report

No
Step
No

1 1
No change in attribute Branch(Leicester).cMax , which should be increased from 0 to 1.
... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

Failed step only
Brief Justification Test Report

No
Step
No

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

Question 2) Please locate the faults responsible for the failures you identified under 1). Use line

numbers to indicate where these faults occur in the code and explain briefly. Again, the first row provides

an example.

Failed step only
line number and Statement if it exists Test Report

No
Step
No

1 1 Between lines (8 and 13): missing a statement to update attribute cMax

As a part of our survey, please answer the following questions:

 How many years of experience do you have in OO programming?

 For how long, if at all, have you worked in software development outside university?

 If any, how much of this time (in%) involved testing and debugging?

Test Report 1 * to show the state after

Step Operation invocation Output

1 registerClient("Leicester", "Reiko") "Leicester_0"

*
showClients("Leicester") [0]={cName="Reiko", cID="Leicester_0"}

showBranch("Leicester") {city=" Leicester", rMax=0, cMax=0}

2 registerClient("Leicester", "Abdullah") "Leicester_1"

*
showClients("Leicester")

[0]={cName="Reiko", cID="Leicester_0"}

[1]={cName="Abdullah", cID="Leicester_1"}

showBranch("Leicester") {city=" Leicester", rMax=0, cMax=0}

3 makeReservation("Leicester_1", "Leicester", "Nottingham") "Leicester_1"

*
showClientReservations("Leicester_1")

[0]={ reference="Leicester_1",

made="Leicester_1",

pickup="Leicester",

dropoff="Nottingham",

for="A1"}

showBranch("Leicester") {city=" Leicester", rMax=1, cMax=0}

4 makeReservation("Leicester_1", "Birmingham", "Leicester") null

*
showClientReservations("Leicester_1")

[0]={ reference="Leicester_1",

made="Leicester_1",

pickup="Leicester",

dropoff="Nottingham",

for="A1"}

showBranch("Leicester") {city=" Leicester", rMax=1, cMax=0}

5 cancelReservation ("Leicester_1") -

* showClientReservations("Leicester_1") null

Test Report 2 * to show the state after

Step Operation invocation Output

1 registerClient("Nottingham", "Reiko") "Nottingham_0"

*
showClients("Nottingham") [0]={cName="Reiko", cID="Nottingham_0"}

showBranch("Nottingham") {city="Nottingham", rMax=1, cMax=1}

2 makeReservation("Nottingham_0", "Nottingham", "Nottingham") "Nottingham_2"

*
showClientReservations("Nottingham_0")

[0]={reference="Nottingham_2",

made="Nottingham_0",

pickup=" Nottingham",

dropoff="Nottingham",

for="B2"}

showBranch("Nottingham") {city=" Nottingham", rMax=2, cMax=1}

3 makeReservation("Nottingham_0", "Leicester", "Nottingham") "Leicester_1"

*

showClientReservations("Nottingham_0")

[0]={reference="Nottingham_2",

made="Nottingham_0",

pickup=" Nottingham",

dropoff="Nottingham",

for="B2"}

[1]={reference="Leicester_1",

made="Nottingham_0",

pickup="Leicester",

dropoff="Nottingham",

for="A1"}

showBranch("Nottingham") {city="Nottingham", rMax=2, cMax=1}

showBranch("Leicester") {city="Leicester", rMax=1, cMax=0}

4 cancelReservation ("Nottingham_2") -

* showClientReservations("Nottingham_0") null

Test Report 3 * to show the state after

Step Operation invocation Output

1 registerClient("Leicester", "Reiko") "Leicester_0"

*
showClients("Leicester") [0]={cName="Reiko", cID="Leicester_0"}

showBranch("Leicester") {city=" Leicester", rMax=0, cMax=0}

2 registerClient("Leicester", "Abdullah") "Leicester_1"

*
showClients("Leicester")

[0]={cName="Reiko", cID="Leicester_0"}

[1]={cName="Abdullah", cID="Leicester_1"}

showBranch("Leicester") {city=" Leicester", rMax=0, cMax=0}

3 makeReservation("Leicester_0", "Leicester", "Birmingham") "Leicester_1"

*
showClientReservations("Leicester_0")

[0]={ reference="Leicester_1",

made="Leicester_0",

pickup="Leicester",

dropoff="Birmingham",

for="A1"}

showBranch("Leicester") {city="Leicester", rMax=1, cMax=0}

4 makeReservation("Leicester_1", "Leicester", "Leicester") "Leicester_2"

*
showClientReservations("Leicester_1")

[0]={ reference="Leicester_2",

made="Leicester_1",

pickup="Leicester",

dropoff="Leicester",

for="A1"}

showBranch("Leicester") {city="Leicester", rMax=2, cMax=0}

5 cancelReservation ("Leicester_1") -

*
showClientReservations("Leicester_0") null

showClientReservations("Leicester_1") null

Test Report 4 * to show the state after

Step Operation invocation Output

1 registerClient("Nottingham", "Reiko") "Nottingham_0"

*

showClients("Nottingham") [0]={cName="Reiko", cID="Nottingham_0"}

showBranch("Nottingham") {city="Nottingham", rMax=1, cMax=1}

showCars("Nottingham")
[0] = {Registration="B2"}

[1] = {Registration="C3"}

2
makeReservation("Nottingham_0", "Nottingham",

"Birmingham")
"Nottingham_2"

*
showClientReservations("Nottingham_0")

[0]={ reference="Nottingham_2" ,

 made=" Nottingham_0" ,

 pickup="Nottingham" ,

dropoff= "Birmingham",

 for="B2"}

showBranch("Nottingham") {city=" Nottingham", rMax=2, cMax=1}

3 pickupCar("Nottingham_2") -

*

showCars("Nottingham") [0] = {Registration="C3"}

showCars("Birmingham") Null

showClientReservations("Nottingham_0")

[0]={ reference="Nottingham_2" ,

 made=" Nottingham_0" ,

pickup="Nottingham" ,

dropoff= "Birmingham",

for="B2"}

4 dropoffCar ("Nottingham_2") -

*

showCars("Nottingham") [0] = {Registration="C3"}

showCars("Birmingham") [0] = {Registration="B2"}

showClientReservations("Nottingham_0")

[0]={ reference="Nottingham_2" ,

made=" Nottingham_0" ,

 pickup="Nottingham" ,

dropoff=null,

for=null}

Test Report 5 * to show the state after

Step Operation invocation Output

1 registerClient("Birmingham", "Reiko") "Birmingham_0"

*
showClients("Birmingham") [0]={cName="Reiko", cID="Birmingham_0"}

showBranch("Birmingham") {city=" Birmingham", rMax=2, cMax=2}

2 registerClient("Birmingham ", "Abdullah") "Birmingham_1"

*

showClients("Birmingham")
[0]={cName="Reiko", cID="Birmingham_0"}

[1]={cName=" Abdullah ", cID="Birmingham_1"}

showBranch("Birmingham") {city=" Birmingham", rMax=2, cMax=2}

showCars("Birmingham") null

3 makeReservation("Birmingham_0", "Birmingham", "Birmingham") null

*
showClientReservations("Birmingham_0") null

showBranch("Birmingham") {city="Birmingham", rMax=2, cMax=2}

4 makeReservation("Birmingham_1", "Birmingham", "Leicester") null

*
showClientReservations("Birmingham_1") null

showBranch("Birmingham") {city=" Birmingham", rMax=2, cMax=2}

Class Test - Not Assessed - Group B

Full Name CFS

You will be given 5 test reports (each consisting of a sequence of invocations) and the source

code of their implementation. Your task is to find out which test reports show failures of the service to

satisfy the specification and locate the faults responsible for the failures in the code.

At the start of each test case the database is initialised with 3 branches and 3 cars using the following

data:

Question 1) Please use the following table to report the failed steps and explain briefly how the

behaviour differs from the specification. The first row has been completed as an example of what is

expected.

Failed step only
Brief Justification Test Report

No
Step
No

1 1
No change in attribute Branch(Leicester).cMax , which should be increased from 0 to 1.
... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

Failed step only
Brief Justification Test Report

No
Step
No

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

... ..

Question 2) Please locate the faults responsible for the failures you identified under 1). Use line

numbers to indicate where these faults occur in the code and explain briefly. Again, the first row provides

an example.

Failed step only
line number and Statement if it exists Test Report

No
Step
No

1 1 Between lines (8 and 13): missing a statement to update attribute cMax

As a part of our survey, please answer the following questions:

 How many years of experience do you have in OO programming?

 For how long, if at all, have you worked in software development outside university?

 If any, how much of this time (in%) involved testing and debugging?

Test Report 1

Step Operation invocation Extracted visual contracts
Access in the code

line number

1
registerClient(

 "Leicester", "Reiko")

Return : "Leicester_0"

b1:Branch - 6, 11, 13

c1:Client - 9, 10, 11, 14

2
registerClient(

"Leicester", "Abdullah")

Return : "Leicester_1"

b1:Branch - 6, 11, 13

c2:Client - 9, 10, 11, 14

3

makeReservation(

"Leicester_1",

 "Leicester", "Nottingham")

Return : "Leicester_1"

b1:Branch - 21, 24, 39, 40

b2:Branch - 22, 40

c2:Client - 24

v:Car - 30, 40

r:Reservation - 40, 47, 48

4

makeReservation(

"Leicester_1", "Birmingham",

"Leicester")

Return : null

b1: Branch - 22, 27

b3:Branch - 21, 24, 30

c2:Client - 27

5
cancelReservation

("Leicester_1")

No return

r1:Reservation - 55, 56

Test Report 2

Ste

p
Operation invocation Extracted visual contracts

Access in the code

line number

1
registerClient(

"Nottingham ", "Reiko")

Return : " Nottingham_0"

b1:Branch - 6, 11, 13

c:Client - 9, 10, 11, 14

2

makeReservation(

"Nottingham_0",

"Nottingham", "Nottingham")

Return : "Nottingham_2"

b1: Branch - 21, 22, 24,

39, 40

c:Client - 24

v1:Car - 30, 40

r1:Reservation - 40, 47, 48

3

makeReservation(

"Nottingham_0",

 "Leicester", "Nottingham")

Return : "Leicester_1"

b1:Branch - 22, 27, 40

b3: Branch - 21, 24, 39, 40

c:Client - 24, 27

v2:Car - 30, 40

r2:Reservation - 40, 47, 48

4
cancelReservation

("Nottingham_2")

No return

r1:Reservation - 55, 56

r2:Reservation - 55, 56

Test Report 3

Step Operation invocation Extracted visual contracts
Access in the code

line number

1
registerClient(

"Leicester", "Reiko")

Return : "Leicester_0"

b1:Branch - 6, 11, 13

c1:Client - 9, 10, 11, 14

2
registerClient(

"Leicester", "Abdullah")

Return : "Leicester_1"

b1:Branch - 6, 11, 13

c2:Client - 9, 10, 11, 14

3

makeReservation(

"Leicester_0",

"Leicester", "Birmingham")

Return : "Leicester_1"

b1: Branch - 21, 24, 39, 40

b2:Branch - 22, 40

c1:Client - 24

v1:Car - 30, 40

r1:Reservation - 40, 47, 48

4

makeReservation(

"Leicester_1",

"Leicester", "Leicester")

Return : "Leicester_2"

b1: Branch - 21, 24, 39, 40

b3:Branch - 22, 40

c2:Client - 24

v2:Car - 30, 40

r2:Reservation - 40, 47, 48

5
cancelReservation

("Leicester_1")

No return

r1:Reservation - 55, 56

r2:Reservation - 55, 56

Test Report 4

Step Operation invocation Extracted visual contracts
Access in the code

line number

1
registerClient(

"Nottingham", "Reiko")

Return : " Nottingham_0"

b1:Branch - 6, 11,

13

c1:Client - 9, 10, 11,

14

2

makeReservation(

"Nottingham_0",

"Nottingham", "Birmingham")

Return : " Nottingham_2"

b1: Branch - 21, 24,

39, 40

b2:Branch - 22, 40

c1:Client - 24

v1:Car - 30, 40

r1:Reservation - 40,

47, 48

3 pickupCar("Nottingham_2")

No return

b1:Branch - 77, 82,

84, 96

v1:Car - 84

r1:Reservation - 74,

77, 82, 84, 96

4 dropoffCar ("Nottingham_2")

No return

b2:Branch - 108

v1:Car - 113

c1:Client - 108

r1:Reservation -

105, 108, 113, 115,

116

Test Report 5

Step Operation invocation Extracted visual contracts
Access in the code

line number

1
registerClient(

"Birmingham", "Reiko")

Return : " Birmingham _0"

b1:Branch - 6, 11, 13

c1:Client - 9, 10, 11, 14

2
registerClient(

"Birmingham ", "Abdullah")

Return : " Birmingham _1"

b1:Branch - 6, 11, 13

c2:Client - 9, 10, 11, 14

3

makeReservation(

"Birmingham_0",

"Birmingham", "Birmingham")

Return : null

b1: Branch - 21, 24

b2: Branch - 22

c1:Client -24

4

makeReservation(

"Birmingham_1",

"Birmingham", "Leicester")

Return : null

b1: Branch - 21, 24

b2: Branch - 22

c1:Client -24

Appendix B

Appendix B

Simulate Executing Visual Contracts
Validation Report

Summary

* Number of rules that are

A correct 37

B not applicable (unmatched structure) [alert case2] 3

C not applicable (invalid constraints) [alert case1] 0

D not found [alert case1] 1

E not executed 1

Total rules in the model 41

Details..

Implementation Model Daikon Evaluation

Test
case
Id

Rule signature Rule id isApplicable isValid
a.correct
b.case 1
c.case 2

tc01 void net.n3.nanoxml.XMLElement.addChild(IXMLElement) 0_28036_addChild true ? correct

tc02 void net.n3.nanoxml.XMLElement.insertChild(IXMLElement,
int) 1_28038_insertChild true ? correct

tc03 void
net.n3.nanoxml.XMLElement.addChildren(IXMLElement[]) 4_28044_addChildren false ~ ~ case 2

tc03 void
net.n3.nanoxml.XMLElement.addChildren(IXMLElement[]) 33_28094_addChildren false ~ ~ case 2

tc03 void
net.n3.nanoxml.XMLElement.addChildren(IXMLElement[]) 39_28363_addChildren false ~ ~ case 2

tc03 void
net.n3.nanoxml.XMLElement.addChildren(IXMLElement[]) 40_28364_addChildren true ? correct

tc04 void
net.n3.nanoxml.XMLElement.removeChild(IXMLElement) 2_28039_removeChild true ? correct

tc05 void net.n3.nanoxml.XMLElement.removeChildAtIndex(int) 3_28042_removeChildAtIndex true ? correct

tc06 Enumeration net.n3.nanoxml.XMLElement.enumerateChildren() 10_28055_enumerateChildren true ? correct

tc07 boolean net.n3.nanoxml.XMLElement.hasChildren() 25_28081_hasChildren true ? correct

tc08 boolean net.n3.nanoxml.XMLElement.isLeaf() 26_28082_isLeaf true ? correct

tc09 IXMLElement
net.n3.nanoxml.XMLElement.getChildAtIndex(int) 23_28079_getChildAtIndex true ? correct

tc10 int net.n3.nanoxml.XMLElement.getChildrenCount() 27_28083_getChildrenCount true ? correct

tc11 IXMLElement net.n3.nanoxml.XMLElement.getParent() 29_28085_getParent true ? correct

tc12 String net.n3.nanoxml.XMLElement.getName() 30_28086_getName true ? correct

tc13 String net.n3.nanoxml.XMLElement.getFullName() 31_28087_getFullName true ? correct

tc14 Vector net.n3.nanoxml.XMLElement.getChildren() 32_28088_getChildren true ? correct

tc15 void net.n3.nanoxml.XMLElement.setName(String) 20_28069_setName true ? correct

tc16 void net.n3.nanoxml.XMLElement.setName(String, String) 21_28072_setName true ? correct

tc17 IXMLElement
net.n3.nanoxml.XMLElement.createElement(String) 6_28050_createElement true ? correct

tc18 IXMLElement
net.n3.nanoxml.XMLElement.createElement(String, String) 7_28051_createElement true ? correct

tc19 IXMLElement
net.n3.nanoxml.XMLElement.createElement(String, String, int) 8_28052_createElement true ? correct

IXMLElement

tc20 net.n3.nanoxml.XMLElement.createElement(String, String,
String, int)

9_28053_createElement true ? correct

tc21 IXMLElement
net.n3.nanoxml.XMLElement.createPCDataElement() 34_28163_createPCDataElement true ? correct

tc22 void net.n3.nanoxml.XMLElement.setAttribute(String, String) 35_28215_setAttribute true ? correct

tc23 void net.n3.nanoxml.XMLElement.setAttribute(String, String,
String) 36_28325_setAttribute true ? correct

tc24 String net.n3.nanoxml.XMLElement.getAttributeType(String) 12_28060_getAttributeType true ? correct

tc25 String net.n3.nanoxml.XMLElement.getAttributeType(String,
String) 13_28061_getAttributeType true ? correct

tc26 Properties net.n3.nanoxml.XMLElement.getAttributes() 11_28058_getAttributes true ? correct

tc27 int net.n3.nanoxml.XMLElement.getAttribute(String, String, int) 15_28063_getAttribute true ? correct

tc28 String net.n3.nanoxml.XMLElement.getAttribute(String,
String)) 14_28062_getAttribute true ? correct

tc29 String net.n3.nanoxml.XMLElement.getAttribute(String, String,
String) 15_28063_getAttribute true ? correct

tc30 Enumeration
net.n3.nanoxml.XMLElement.enumerateAttributeNames() 37_28327_enumerateAttributeNames true ? correct

tc31 boolean net.n3.nanoxml.XMLElement.hasAttribute(String) 24_28080_hasAttribute true ? correct

tc32 int net.n3.nanoxml.XMLElement.getAttributeCount() 28_28084_getAttributeCount true ? correct

tc33 String
net.n3.nanoxml.XMLElement.getAttributeNamespace(String) 17_28065_getAttributeNamespace true ? correct

tc34 Properties
net.n3.nanoxml.XMLElement.getAttributesInNamespace(String) 18_28066_getAttributesInNamespace true ? correct

tc35 void net.n3.nanoxml.XMLElement.removeAttribute(String) 38_28335_removeAttribute true ? correct

tc36 void net.n3.nanoxml.XMLElement.removeAttribute(String,
String) 19_28068_removeAttribute true ? correct

tc37 Test a non­existent rule ~ ~ ~ ~ ~ ~ case 1

tc38 void net.n3.nanoxml.XMLElement.setContent(String) 22_28073_setContent true ? correct

tc39 void net.n3.nanoxml.XMLElement() 5_28045_XMLElement true ? correct

Not executed rules
28064_getAttribute

Not found rules
TestAnonExistentRule

Bibliography

Graph Transformation and Visual Contracts

Agirre, Joseba Andoni, Goiuria Sagardui, and Leire Etxeberria (2014). “Model Trans-

formation by Example Driven ATL Transformation Rules Development Using Model

Differences”. In: Software Technologies - 9th International Joint Conference (IC-

SOFT), pages 113–130 (cited on page 135).

Alshanqiti, Abdullah M. and Reiko Heckel (2014). “Towards Dynamic Reverse Engi-

neering Visual Contracts from Java”. In: Electronic Communications of the EASST

67. url: http://journal.ub.tu-berlin.de/eceasst/article/view/940 (cited

on pages 15, 18, 20, 47, 141).

– (2015). “Extracting Visual Contracts from Java Programs (T)”. In: 30th IEEE/ACM

International Conference on Automated Software Engineering, ASE 2015, Lincoln,

NE, USA, November 9-13, 2015, pages 104–114. doi: 10.1109/ASE.2015.63. url:

http://dx.doi.org/10.1109/ASE.2015.63 (cited on pages 16, 18, 20, 79, 141).

Alshanqiti, Abdullah M., Reiko Heckel, and Timo Kehrer (2016). “Visual contract

extractor: a tool for reverse engineering visual contracts using dynamic analysis”.

In: Proceedings of the 31st IEEE/ACM International Conference on Automated

Software Engineering, ASE 2016, Singapore, September 3-7, 2016, pages 816–821.

url: http://doi.acm.org/10.1145/2970276.2970287 (cited on pages 19, 20,

142, 145, 147).

Amálio, Nuno and Christian Glodt (2015). “A tool for visual and formal modelling of

software designs”. In: Science of Computer Programming 98, Part 1. Fifth issue of

Experimental Software and Toolkits (EST): A special issue on Academics Modelling

with Eclipse (ACME2012), pages 52 –79. issn: 0167-6423. doi: http://dx.doi.

org/10.1016/j.scico.2014.05.002. url: http://www.sciencedirect.com/

science/article/pii/S0167642314002305 (cited on pages 7, 32, 43).

171

http://journal.ub.tu-berlin.de/eceasst/article/view/940
http://dx.doi.org/10.1109/ASE.2015.63
http://dx.doi.org/10.1109/ASE.2015.63
http://doi.acm.org/10.1145/2970276.2970287
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2014.05.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2014.05.002
http://www.sciencedirect.com/science/article/pii/S0167642314002305
http://www.sciencedirect.com/science/article/pii/S0167642314002305

Bibliography 172

Arendt, Thorsten et al. (2010). “Henshin: Advanced Concepts and Tools for In-Place

EMF Model Transformations”. In: Model Driven Engineering Languages and Sys-

tems - 13th International Conference, MODELS 2010, Oslo, Norway, October 3-8,

2010, Proceedings, Part I, pages 121–135. doi: 10.1007/978-3-642-16145-2_9.

url: http://dx.doi.org/10.1007/978-3-642-16145-2_9 (cited on pages 94,

95, 100, 134, 145, 146, 148).

Avazpour, Iman, John Grundy, and Lars Grunske (2015). “Specifying model trans-

formations by direct manipulation using concrete visual notations and interactive

recommendations”. In: Journal of Visual Languages & Computing 28, pages 195–

211 (cited on pages 134–136).

Baki, Islem and Houari Sahraoui (2016). “Multi-Step Learning and Adaptive Search

for Learning Complex Model Transformations from Examples”. In: ACM Trans.

Softw. Eng. Methodol. 25.3, 20:1–20:37 (cited on pages 134, 135, 137).

Baki, Islem et al. (2014). “Learning Implicit and Explicit Control in Model Transfor-

mations by Example”. In: Model-Driven Engineering Languages and Systems - 17th

International Conference, MODELS 2014, Valencia, Spain, September 28 - Octo-

ber 3, 2014. Proceedings, pages 636–652. doi: 10.1007/978-3-319-11653-2_39.

url: http://dx.doi.org/10.1007/978-3-319-11653-2_39 (cited on pages 135,

137).

Balogh, Zoltán and Dániel Varró (2009). “Model transformation by example using

inductive logic programming”. English. In: International Journal - Software and

Systems Modeling 8.3 (3), pages 347–364. issn: 1619-1366 (cited on pages 135–

137).

Baresi, Luciano and Reiko Heckel (2002). “Tutorial Introduction to Graph Trans-

formation: A Software Engineering Perspective”. In: Proceedings of the First In-

ternational Conference on Graph Transformation. ICGT ’02. London, UK, UK:

Springer-Verlag, pages 402–429. isbn: 3-540-44310-X. url: http://dl.acm.org/

citation.cfm?id=647562.730670 (cited on page 32).

Bisztray, Dénes, Reiko Heckel, and Hartmut Ehrig (2009). “Verification of Archi-

tectural Refactorings: Rule Extraction and Tool Support”. In: Proceedings of the

Doctoral Symposium at the International Conference on Graph Transformation -

Electronic Communications of the EASST 16 (cited on pages 15, 69).

Bruggink, H.J.Sander (2014). “Towards Process Mining with Graph Transformation

Systems”. English. In: Graph Transformation. Edited by Holger Giese and Barbara

König. Volume 8571. Lecture Notes in Computer Science. Springer International

Publishing, pages 253–268. isbn: 978-3-319-09107-5. doi: 10.1007/978-3-319-

http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-642-16145-2_9
http://dx.doi.org/10.1007/978-3-319-11653-2_39
http://dx.doi.org/10.1007/978-3-319-11653-2_39
http://dl.acm.org/citation.cfm?id=647562.730670
http://dl.acm.org/citation.cfm?id=647562.730670
http://dx.doi.org/10.1007/978-3-319-09108-2_17
http://dx.doi.org/10.1007/978-3-319-09108-2_17
http://dx.doi.org/10.1007/978-3-319-09108-2_17

Bibliography 173

09108-2_17. url: http://dx.doi.org/10.1007/978-3-319-09108-2_17 (cited

on page 131).

Dai, Guilan et al. (2007). “Contract-Based Testing for Web Services”. In: Computer

Software and Applications Conference, 2007. COMPSAC 2007. 31st Annual Inter-

national. Volume 1, pages 517–526. doi: 10.1109/COMPSAC.2007.100 (cited on

page 44).

Dolques, Xavier et al. (2010). “Learning Transformation Rules from Transformation

Examples: An Approach Based on Relational Concept Analysis”. In: Workshops

Proceedings of the 14th IEEE International Enterprise Distributed Object Comput-

ing Conference, pages 27–32 (cited on page 135).

Dolques, Xavier et al. (2011). “Easing model transformation learning with automat-

ically aligned examples”. In: Proceedings of the 7th European conference on Mod-

elling foundations and applications. ECMFA’11. Birmingham, UK: Springer-Verlag,

pages 189–204. isbn: 978-3-642-21469-1 (cited on pages 131, 135, 137).

Dotti, FernandoLuis et al. (2006). “Verifying Object-based Graph Grammars”. En-

glish. In: Software and Systems Modeling 5.3, pages 289–311. issn: 1619-1366. doi:

10.1007/s10270-006-0014-z (cited on page 44).

Ehrig, H. et al. (2006). Fundamentals of Algebraic Graph Transformation (Mono-

graphs in Theoretical Computer Science. An EATCS Series). pp 12-21-22 Secaucus.

NJ, USA: Springer-Verlag New York, Inc. isbn: 3540311874 (cited on pages 9, 65,

86, 145).

Engels, Gregor, Baris Güldali, and Marc Lohmann (2007). “Towards Model-Driven

Unit Testing”. English. In: Models in Software Engineering. Edited by Thomas

Kühne. Volume 4364. Lecture Notes in Computer Science. Springer Berlin Heidel-

berg, pages 182–192. isbn: 978-3-540-69488-5. doi: 10.1007/978-3-540-69489-

2_23. url: http://dx.doi.org/10.1007/978-3-540-69489-2_23 (cited on

page 43).

Engels, Gregor et al. (2006a). “Model-Driven Monitoring: An Application of Graph

Transformation for Design by Contract”. In: Graph Transformations, Third Inter-

national Conference, ICGT 2006, Natal, Rio Grande do Norte, Brazil, September

17-23, 2006, Proceedings, pages 336–350. doi: 10.1007/11841883_24. url: http:

//dx.doi.org/10.1007/11841883_24 (cited on page 4).

– (2006b). “Model-Driven Monitoring: An Application of Graph Transformation for

Design by Contract”. English. In: Graph Transformations. Edited by Andrea Cor-

radini et al. Volume 4178. Lecture Notes in Computer Science. Springer Berlin

http://dx.doi.org/10.1007/978-3-319-09108-2_17
http://dx.doi.org/10.1007/978-3-319-09108-2_17
http://dx.doi.org/10.1007/978-3-319-09108-2_17
http://dx.doi.org/10.1007/978-3-319-09108-2_17
http://dx.doi.org/10.1109/COMPSAC.2007.100
http://dx.doi.org/10.1007/s10270-006-0014-z
http://dx.doi.org/10.1007/978-3-540-69489-2_23
http://dx.doi.org/10.1007/978-3-540-69489-2_23
http://dx.doi.org/10.1007/978-3-540-69489-2_23
http://dx.doi.org/10.1007/11841883_24
http://dx.doi.org/10.1007/11841883_24
http://dx.doi.org/10.1007/11841883_24

Bibliography 174

Heidelberg, pages 336–350. isbn: 978-3-540-38870-8. doi: 10.1007/11841883_24.

url: http://dx.doi.org/10.1007/11841883_24 (cited on pages 41, 43).

Faunes, Martin, Houari Sahraoui, and Mounir Boukadoum (2012). “Generating model

transformation rules from examples using an evolutionary algorithm”. In: Pro-

ceedings of the 27th IEEE/ACM International Conference on Automated Software

Engineering. ASE 2012. Essen, Germany: ACM, pages 250–253. isbn: 978-1-4503-

1204-2 (cited on pages 136, 137).

Faunes, Martin, Houari A. Sahraoui, and Mounir Boukadoum (2013). “Genetic Pro-

gramming Approach to Learn Model Transformation Rules from Examples”. In:

Theory and Practice of Model Transformations - 6th International Conference,

ICMT 2013, Budapest, Hungary, June 18-19, 2013. Proceedings, pages 17–32. doi:

10.1007/978-3-642-38883-5_2. url: http://dx.doi.org/10.1007/978-3-

642-38883-5_2 (cited on pages 134–137).

Guldali, B. et al. (2009). “Model-Based System Testing Using Visual Contracts”. In:

Software Engineering and Advanced Applications, 2009. SEAA ’09. 35th Euromicro

Conference on, pages 121–124. doi: 10.1109/SEAA.2009.42 (cited on page 44).

Hamann, Lars, Oliver Hofrichter, and Martin Gogolla (2012). “OCL-Based Runtime

Monitoring of Applications with Protocol State Machines”. In: Modelling Foun-

dations and Applications - 8th European Conference, ECMFA 2012, Kgs. Lyngby,

Denmark, July 2-5, 2012. Proceedings, pages 384–399. doi: 10.1007/978-3-642-

31491-9_29. url: http://dx.doi.org/10.1007/978-3-642-31491-9_29 (cited

on page 150).

Hausmann, Jan Hendrik, Reiko Heckel, and Marc Lohmann (2005). “Model-Based

Development of Web Services Descriptions Enabling a Precise Matching Concept”.

In: Int. J. Web Service Res. 2.2, pages 67–84. doi: 10.4018/jwsr.2005040104.

url: http://dx.doi.org/10.4018/jwsr.2005040104 (cited on page 4).

Heckel, Reiko and Marc Lohmann (2005). “Towards Contract-based Testing of Web

Services”. In: Electronic Notes in Theoretical Computer Science 116. Proceedings

of the International Workshop on Test and Analysis of Component Based Systems

(TACoS 2004)Test and Analysis of Component Based Systems 2004, pages 145 –

156. issn: 1571-0661. doi: http://dx.doi.org/10.1016/j.entcs.2004.02.073.

url: http://www.sciencedirect.com/science/article/pii/S1571066104052831

(cited on pages 30, 31, 42, 44).

– (2007). “Model-driven development of reactive information systems: from graph

transformation rules to JML contracts”. English. In: International Journal on

Software Tools for Technology Transfer 9.2, pages 193–207. issn: 1433-2779. doi:

http://dx.doi.org/10.1007/11841883_24
http://dx.doi.org/10.1007/11841883_24
http://dx.doi.org/10.1007/978-3-642-38883-5_2
http://dx.doi.org/10.1007/978-3-642-38883-5_2
http://dx.doi.org/10.1007/978-3-642-38883-5_2
http://dx.doi.org/10.1109/SEAA.2009.42
http://dx.doi.org/10.1007/978-3-642-31491-9_29
http://dx.doi.org/10.1007/978-3-642-31491-9_29
http://dx.doi.org/10.1007/978-3-642-31491-9_29
http://dx.doi.org/10.4018/jwsr.2005040104
http://dx.doi.org/10.4018/jwsr.2005040104
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2004.02.073
http://www.sciencedirect.com/science/article/pii/S1571066104052831

Bibliography 175

10.1007/s10009-006-0020-z. url: http://dx.doi.org/10.1007/s10009-006-

0020-z (cited on pages 26, 41, 43, 44).

Kappel, Gerti et al. (2012). “Conceptual Modelling and Its Theoretical Founda-

tions”. In: Conceptual Modelling and Its Theoretical Foundations. Edited by Antje

Düsterhöft, Meike Klettke, and Klaus-Dieter Schewe. Berlin, Heidelberg: Springer-

Verlag. Chapter Model transformation by-example: a survey of the first wave,

pages 197–215. isbn: 978-3-642-28278-2 (cited on pages 134, 135, 148).

Karaorman, Murat and Parker Abercrombie (2005). “jContractor: Introducing Design-

by-Contract to Java Using Reflective Bytecode Instrumentation”. English. In: For-

mal Methods in System Design 27.3, pages 275–312. issn: 0925-9856. doi: 10.1007/

s10703-005-3400-1. url: http://dx.doi.org/10.1007/s10703-005-3400-1

(cited on pages 41–43).

Khan, Tamim Ahmed, Olga Runge, and Reiko Heckel (2012a). “Testing against Visual

Contracts: Model-Based Coverage”. In: ICGT, pages 279–293 (cited on pages 4, 44).

– (2012b). “Visual Contracts as Test Oracle in AGG 2.0”. In: ECEASST 47 (cited

on page 44).

Kühne, Thomas et al. (2016). “Patterns for Constructing Mutation Operators: Lim-

iting the Search Space in a Software Engineering Application”. In: European Con-

ference on Genetic Programming. Springer, pages 278–293 (cited on pages 134,

135).

Langer, Philip, Manuel Wimmer, and Gerti Kappel (2010). “Model-to-Model Trans-

formations By Demonstration”. In: Proceedings of the Third international confer-

ence on Theory and practice of model transformations. Edited by Laurence Tratt

and Martin Gogolla. Volume 6142. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, pages 153–167. isbn: 978-3-642-13687-0 (cited on pages 134–

137).

Leavens, Gary T, Albert L Baker, and Clyde Ruby (2006). “Preliminary design of

JML: A behavioral interface specification language for Java”. In: ACM SIGSOFT

Software Engineering Notes 31.3, pages 1–38 (cited on pages 29, 41–43, 130).

Lohmann, M., G. Engels, and S. Sauer (2006). “Model-driven Monitoring: Generating

Assertions from Visual Contracts”. In: Automated Software Engineering, 2006. ASE

’06. 21st IEEE/ACM International Conference on, pages 355–356. doi: 10.1109/

ASE.2006.52 (cited on pages 41, 43).

Lohmann, M., S. Sauer, and G. Engels (2005). “Executable visual contracts”. In: Vi-

sual Languages and Human-Centric Computing, 2005 IEEE Symposium on, pages 63–

70. doi: 10.1109/VLHCC.2005.35 (cited on pages 30–32).

http://dx.doi.org/10.1007/s10009-006-0020-z
http://dx.doi.org/10.1007/s10009-006-0020-z
http://dx.doi.org/10.1007/s10009-006-0020-z
http://dx.doi.org/10.1007/s10703-005-3400-1
http://dx.doi.org/10.1007/s10703-005-3400-1
http://dx.doi.org/10.1007/s10703-005-3400-1
http://dx.doi.org/10.1109/ASE.2006.52
http://dx.doi.org/10.1109/ASE.2006.52
http://dx.doi.org/10.1109/VLHCC.2005.35

Bibliography 176

Lohmann, Marc, Leonardo Mariani, and Reiko Heckel (2007). “A Model-Driven Ap-

proach to Discovery, Testing and Monitoring of Web Services”. In: Test and Anal-

ysis of Web Services. Edited by Luciano Baresi and ElisabettaDi Nitto. Springer

Berlin Heidelberg, pages 173–204. isbn: 978-3-540-72911-2. doi: 10.1007/978-3-

540-72912-9_7. url: http://dx.doi.org/10.1007/978-3-540-72912-9_7

(cited on page 32).

Mens, Tom and Pieter Van Gorp (2006). “A Taxonomy of Model Transformation”.

In: Electron. Notes Theor. Comput. Sci. 152, pages 125–142. issn: 1571-0661 (cited

on pages 133, 134).

Meyer, Bertrand (1992). “Applying ”Design by Contract””. In: Computer 25.10,

pages 40–51. issn: 0018-9162. doi: 10.1109/2.161279. url: http://dx.doi.

org/10.1109/2.161279 (cited on pages 30, 31, 130).

Porres, Ivan and Irum Rauf (2010). “Generating Class Contracts from Deterministic

UML Protocol Statemachines”. English. In: Models in Software Engineering. Edited

by Sudipto Ghosh. Volume 6002. Lecture Notes in Computer Science. Springer

Berlin Heidelberg, pages 172–185. isbn: 978-3-642-12260-6. doi: 10.1007/978-3-

642-12261-3_17. url: http://dx.doi.org/10.1007/978-3-642-12261-3_17

(cited on page 130).

Rindt, Michaela, Timo Kehrer, and Udo Kelter (2014). “Automatic Generation of

Consistency-Preserving Edit Operations for MDE Tools”. In: Proceedings of the

Demonstrations Track of the ACM/IEEE 17th International Conference on Model

Driven Engineering Languages and Systems (MoDELS 2014), Valencia, Spain, Oc-

tober 1st and 2nd, 2014. url: http://ceur-ws.org/Vol-1255/paper7.pdf (cited

on page 147).

Runge, Olga, Tamim Ahmed Khan, and Reiko Heckel (2013). “Test Case Generation

Using Visual Contracts”. In: ECEASST 58 (cited on pages 4, 44).

The Fujaba Tool Suite: From UML to Java and Back Again (2016). url: http:

//www.fujaba.de/ (visited on 03/15/2017) (cited on page 41).

Thüm, Thomas et al. (2012). “Applying Design by Contract to Feature-oriented Pro-

gramming”. In: Proceedings of the 15th International Conference on Fundamental

Approaches to Software Engineering. FASE’12. Tallinn, Estonia: Springer-Verlag,

pages 255–269. isbn: 978-3-642-28871-5. doi: 10.1007/978-3-642-28872-2_18.

url: http://dx.doi.org/10.1007/978-3-642-28872-2_18 (cited on page 42).

Varró, Gergely, Katalin Friedl, and Dániel Varró (2006). “Implementing a Graph

Transformation Engine in Relational Databases”. English. In: International Journal

http://dx.doi.org/10.1007/978-3-540-72912-9_7
http://dx.doi.org/10.1007/978-3-540-72912-9_7
http://dx.doi.org/10.1007/978-3-540-72912-9_7
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1109/2.161279
http://dx.doi.org/10.1007/978-3-642-12261-3_17
http://dx.doi.org/10.1007/978-3-642-12261-3_17
http://dx.doi.org/10.1007/978-3-642-12261-3_17
http://ceur-ws.org/Vol-1255/paper7.pdf
http://www.fujaba.de/
http://www.fujaba.de/
http://dx.doi.org/10.1007/978-3-642-28872-2_18
http://dx.doi.org/10.1007/978-3-642-28872-2_18

Bibliography 177

- Software and Systems Modeling 5.3 (3), pages 313–341. issn: 1619-1366 (cited on

page 69).

Varró, Dániel (2006). “Model Transformation By Example”. In: In Proceedings of the

ACM/IEEE 9th International Conference on Model Driven Engineering Languages

and Systems (MoDELS/UML). Springer, pages 410–424 (cited on pages 135–137).

You, Chang hun, Lawrence B. Holder, and Diane J. Cook (2009). “Learning patterns

in the dynamics of biological networks”. In: Proceedings of the 15th ACM SIGKDD

International conference on Knowledge discovery and data mining. KDD ’09. Paris,

France: ACM, pages 977–986. isbn: 978-1-60558-495-9 (cited on pages 131, 133).

Specification Learning and Mining

Alnusair, Awny and Tian Zhao (2009). “Towards a model-driven approach for reverse

engineering design patterns”. In: Proceedings of the 2nd International Workshop

on Transforming and Weaving Ontologies in MDE (TWOMDE 2009). Denver,

Colorado, USA. Volume 531 (cited on page 130).

Alshanqiti, Abdullah M, Reiko Heckel, and Tamim Khan (2013). “Learning Minimal

and Maximal Rules from Observations of Graph Transformations”. In: Electronic

Communications of the EASST 58 (cited on pages 15, 19, 20, 65, 140, 142).

Artzi, Shay et al. (2006). “Finding the needles in the haystack: Generating legal

test inputs for object-oriented programs”. In: M-TOOS 2006: 1st Workshop on

Model-Based Testing and Object-Oriented Systems. Portland, OR, USA (cited on

pages 138, 139).

Brito, Hugo et al. (2012). “On-the-fly extraction of hierarchical object graphs”. En-

glish. In: Journal of the Brazilian Computer Society, pages 1–13. issn: 0104-6500

(cited on pages 37, 126–129).

Cai, Kai-Yuan et al. (2005). “Adaptive Testing of Software Components”. In: Proceed-

ings of the 2005 ACM Symposium on Applied Computing. SAC ’05. Santa Fe, New

Mexico: ACM, pages 1463–1469. isbn: 1-58113-964-0. doi: 10.1145/1066677.

1067011. url: http://doi.acm.org/10.1145/1066677.1067011 (cited on

page 148).

Conte, D. et al. (2004). “Thirty years of graph matching in pattern recognition”.

In: International journal of pattern recognition and artificial intelligence 18.03,

pages 265–298 (cited on pages 17, 41, 138).

http://dx.doi.org/10.1145/1066677.1067011
http://dx.doi.org/10.1145/1066677.1067011
http://doi.acm.org/10.1145/1066677.1067011

Bibliography 178

Cook, Jonathan E. and Alexander L. Wolf (1998). “Discovering Models of Software

Processes from Event-based Data”. In: ACM Trans. Softw. Eng. Methodol. 7.3,

pages 215–249. issn: 1049-331X. doi: 10.1145/287000.287001. url: http://

doi.acm.org/10.1145/287000.287001 (cited on page 40).

Corbett, J.C. et al. (2000). “Bandera: extracting finite-state models from Java source

code”. In: ICSE- Proceedings of the 2000 International Conference on Software

Engineering, pages 439–448. doi: 10.1109/ICSE.2000.870434 (cited on page 130).

Dahm, Nicholas et al. (2015). “Efficient subgraph matching using topological node

feature constraints”. In: Pattern Recognition 48.2, pages 317 –330. issn: 0031-3203

(cited on pages 18, 41, 138).

Ernst, Michael D. et al. (2001). “Dynamically Discovering Likely Program Invariants

to Support Program Evolution”. In: IEEE Trans. Softw. Eng. 27.2, pages 99–123.

issn: 0098-5589. doi: 10.1109/32.908957. url: http://dx.doi.org/10.1109/

32.908957 (cited on page 89).

Ernst, Michael D. et al. (2007). “The Daikon system for dynamic detection of likely

invariants”. In: Science of Computer Programming 69”.1–3. Special issue on Ex-

perimental Software and Toolkits, pages 35 –45. issn: 0167-6423. doi: http://dx.

doi.org/10.1016/j.scico.2007.01.015. url: http://www.sciencedirect.

com/science/article/pii/S016764230700161X (cited on pages 16, 85, 88, 91,

94, 138, 140, 143).

Ganter, Bernhard et al. (2004). “Concept-Based Data Mining with Scaled Labeled

Graphs”. In: Conceptual Structures at Work: 12th International Conference on

Conceptual Structures, ICCS 2004, Huntsville, AL, USA, July 19-23, 2004. Pro-

ceedings, pages 94–108 (cited on page 74).

Jouili, S., I. Mili, and S. Tabbone (2009). “Attributed graph matching using local

descriptions”. In: Advanced Concepts for Intelligent Vision Systems - Acivs 2009.

Lecture Notes in Computer Science. SEE. Springer, pages 89–99 (cited on pages 41,

138).

Kull, A. (2012). “Automatic GUI Model Generation: State of the Art”. In: Software

Reliability Engineering Workshops (ISSREW), 2012 IEEE 23rd International Sym-

posium on, pages 207–212. doi: 10.1109/ISSREW.2012.23 (cited on page 130).

Liesaputra, Veronica, Sira Yongchareon, and Sivadon Chaisiri (2015). “Efficient Pro-

cess Model Discovery Using Maximal Pattern Mining”. English. In: Business Pro-

cess Management. Edited by Hamid Reza Motahari-Nezhad, Jan Recker, and Matthias

Weidlich. Volume 9253. Lecture Notes in Computer Science. Springer International

Publishing, pages 441–456. isbn: 978-3-319-23062-7. doi: 10.1007/978-3-319-

http://dx.doi.org/10.1145/287000.287001
http://doi.acm.org/10.1145/287000.287001
http://doi.acm.org/10.1145/287000.287001
http://dx.doi.org/10.1109/ICSE.2000.870434
http://dx.doi.org/10.1109/32.908957
http://dx.doi.org/10.1109/32.908957
http://dx.doi.org/10.1109/32.908957
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2007.01.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.scico.2007.01.015
http://www.sciencedirect.com/science/article/pii/S016764230700161X
http://www.sciencedirect.com/science/article/pii/S016764230700161X
http://dx.doi.org/10.1109/ISSREW.2012.23
http://dx.doi.org/10.1007/978-3-319-23063-4_29
http://dx.doi.org/10.1007/978-3-319-23063-4_29
http://dx.doi.org/10.1007/978-3-319-23063-4_29

Bibliography 179

23063-4_29. url: http://dx.doi.org/10.1007/978-3-319-23063-4_29 (cited

on pages 40, 41).

Malpani, A. et al. (2010). “Reverse engineering models from databases to bootstrap

application development”. In: Data Engineering (ICDE), 2010 IEEE 26th Interna-

tional Conference on, pages 1177–1180. doi: 10.1109/ICDE.2010.5447776 (cited

on page 130).

Mariani, Leonardo (2004). “Capturing and Synthesizing the Behavior of Component-

Based Systems”. In: Technical Report LTA:2004:01, DISCO, University of Milano

Bicocca. LTA lab (cited on page 138).

Qiu, M. et al. (2010a). “A New Approach of Graph Isomorphism Detection Based on

Decision Tree”. In: Education Technology and Computer Science (ETCS), 2010 Sec-

ond International Workshop on. Volume 2. IEEE, pages 32–35 (cited on page 40).

– (2010b). “A New Approach of Graph Isomorphism Detection Based on Decision

Tree”. In: Education Technology and Computer Science (ETCS), 2010 Second In-

ternational Workshop on. Volume 2. IEEE, pages 32–35 (cited on page 137).

Spivey, J Michael and JR Abrial (1992). The Z Notation: A Reference Manual. Oriel

College, Oxford, OX1-4EW, England: Second Edition, Prentice Hall International

(UK) Ltd (cited on pages 7, 32, 43).

Woodcock, Jim et al. (2009). “Formal Methods: Practice and Experience”. In: ACM

Comput. Surv. 41.4, 19:1–19:36. issn: 0360-0300. doi: 10.1145/1592434.1592436.

url: http://doi.acm.org/10.1145/1592434.1592436 (cited on page 32).

Zhao, Chunying, Jun Kong, and Kang Zhang (2010). “Program Behavior Discovery

and Verification: A Graph Grammar Approach”. In: IEEE Transactions on Soft-

ware Engineering 36.3, pages 431–448. issn: 0098-5589 (cited on pages 37, 40, 126–

128, 130).

Model Based Software Engineering

Allilaire, Freddy and Tarik Idrissi (2004). “ADT: Eclipse development tools for ATL”.

In: Proceedings of the Second European Workshop on Model Driven Architecture

(MDA) with an emphasis on Methodologies and Transformations (EWMDA-2).

Canterbury, University of Kent, UK, pages 171–178 (cited on page 134).

Amar, Bastien et al. (2010). “Using Aspect-Oriented Programming to Trace Imper-

ative Transformations”. In: Enterprise Distributed Object Computing Conference

http://dx.doi.org/10.1007/978-3-319-23063-4_29
http://dx.doi.org/10.1007/978-3-319-23063-4_29
http://dx.doi.org/10.1007/978-3-319-23063-4_29
http://dx.doi.org/10.1007/978-3-319-23063-4_29
http://dx.doi.org/10.1109/ICDE.2010.5447776
http://dx.doi.org/10.1145/1592434.1592436
http://doi.acm.org/10.1145/1592434.1592436

Bibliography 180

(EDOC), 2010 14th IEEE International. IEEE, pages 143–152 (cited on pages 127–

129).

Arendt, Thorsten and Gabriele Taentzer (2013). “A tool environment for quality

assurance based on the Eclipse Modeling Framework”. In: Automated Software

Engineering 20.2, pages 141–184 (cited on page 146).

Ashish, A.K. and J. Aghav (2013). “Automated techniques and tools for program

analysis: Survey”. In: Computing, Communications and Networking Technologies

(ICCCNT),2013 Fourth International Conference on, pages 1–7 (cited on page 8).

Barr, E. T. et al. (2015). “The Oracle Problem in Software Testing: A Survey”. In:

IEEE Transactions on Software Engineering 41.5, pages 507–525. issn: 0098-5589.

doi: 10.1109/TSE.2014.2372785 (cited on pages 138, 139).

Bernstein, Phillip A., Alon Y. Halevy, and Rachel A. Pottinger (2000). “A Vision

for Management of Complex Models”. In: SIGMOD Rec. 29.4, pages 55–63. issn:

0163-5808. doi: 10.1145/369275.369289. url: http://doi.acm.org/10.1145/

369275.369289 (cited on page 23).

Berrisford, Graham (2004). “Why IT veterans are sceptical about MDA”. In: Pro-

ceedings of the Second European Workshop on Model Driven Architecture (MDA)

with an emphasis on Methodologies and Transformations (EWMDA-2). Canter-

bury, University of Kent, UK, pages 125–135 (cited on page 134).

Binkley, David (2007). “Source Code Analysis: A Road Map”. In: 2007 Future of

Software Engineering. FOSE ’07. Washington, DC, USA: IEEE Computer Society,

pages 104–119. isbn: 0-7695-2829-5. doi: 10.1109/FOSE.2007.27. url: http:

//dx.doi.org/10.1109/FOSE.2007.27 (cited on pages 34, 37, 151).

Brambilla, Marco, Jordi Cabot, and Manuel Wimmer (2012). “Model-driven soft-

ware engineering in practice”. In: Synthesis Lectures on Software Engineering 1.1,

pages 1–182 (cited on pages 23–25).

Budinsky, Frank (2004). Eclipse modeling framework: a developer’s guide. Addison-

Wesley Professional (cited on page 145).

Bürdek, Johannes et al. (2015). “Reasoning about product-line evolution using com-

plex feature model differences”. In: Automated Software Engineering, pages 1–47

(cited on page 146).

Canfora, Gerardo, Massimiliano Di Penta, and Luigi Cerulo (2011). “Achievements

and Challenges in Software Reverse Engineering”. In: Commun. ACM 54.4, pages 142–

151. issn: 0001-0782. doi: 10.1145/1924421.1924451. url: http://doi.acm.

org/10.1145/1924421.1924451 (cited on pages 8, 18, 33–40, 151).

http://dx.doi.org/10.1109/TSE.2014.2372785
http://dx.doi.org/10.1145/369275.369289
http://doi.acm.org/10.1145/369275.369289
http://doi.acm.org/10.1145/369275.369289
http://dx.doi.org/10.1109/FOSE.2007.27
http://dx.doi.org/10.1109/FOSE.2007.27
http://dx.doi.org/10.1109/FOSE.2007.27
http://dx.doi.org/10.1145/1924421.1924451
http://doi.acm.org/10.1145/1924421.1924451
http://doi.acm.org/10.1145/1924421.1924451

Bibliography 181

CanforaHarman, Gerardo and Massimiliano Di Penta (2007). “New Frontiers of Re-

verse Engineering”. In: 2007 Future of Software Engineering. FOSE ’07. Washing-

ton, DC, USA: IEEE Computer Society, pages 326–341. isbn: 0-7695-2829-5. doi:

10.1109/FOSE.2007.15. url: http://dx.doi.org/10.1109/FOSE.2007.15

(cited on pages 33, 36, 37, 40, 151).

Chen, Feng et al. (2006). “A Formal Model Driven Approach to Dependable Software

Evolution”. In: Computer Software and Applications Conference, 2006. COMPSAC

’06. 30th Annual International. Volume 1, pages 205–214. doi: 10.1109/COMPSAC.

2006.10 (cited on pages 27, 28, 35, 126, 127, 134).

Chikofsky, E.J. and II Cross J.H. (1990). “Reverse engineering and design recovery: a

taxonomy”. In: Software, IEEE 7.1, pages 13–17. issn: 0740-7459. doi: 10.1109/

52.43044 (cited on pages 5, 33, 40).

Cipolla-Ficarra, Francisco Vicente (2010). Quality and Communicability for Interac-

tive Hypermedia Systems: Concepts and Practices for Design: Concepts and Prac-

tices for Design. IGI Global (cited on page 38).

Claudia, P., M. Liliana, and F. Liliana (2011). “Recovering Use Case Diagrams

from Object Oriented Code: An MDA-based Approach”. In: Information Technol-

ogy: New Generations (ITNG), 2011 Eighth International Conference on. IEEE,

pages 737–742 (cited on page 129).

Cornelissen, B. et al. (2009). “A Systematic Survey of Program Comprehension through

Dynamic Analysis”. In: Software Engineering, IEEE Transactions on 35.5, pages 684–

702. issn: 0098-5589. doi: 10.1109/TSE.2009.28 (cited on pages 8, 18, 37, 38, 65,

121).

Czarnecki, K. and S. Helsen (2006). “Feature-based Survey of Model Transformation

Approaches”. In: IBM Syst. J. 45.3, pages 621–645. issn: 0018-8670. doi: 10.

1147/sj.453.0621. url: http://dx.doi.org/10.1147/sj.453.0621 (cited on

page 134).

Duarte, Lucio Mauro, Jeff Kramer, and Sebastian Uchitel (2006). “Model Extraction

Using Context Information”. In: Proceedings of the 9th International Conference

on Model Driven Engineering Languages and Systems. MoDELS’06. Genova, Italy:

Springer-Verlag, pages 380–394. isbn: 3-540-45772-0, 978-3-540-45772-5. doi: 10.

1007/11880240_27. url: http://dx.doi.org/10.1007/11880240_27 (cited on

page 128).

Eilam, Eldad (2011). Reversing: secrets of reverse engineering. John Wiley & Sons.

isbn: 9781118079768. url: https : / / books . google . co . uk / books ? id = \ _

78HnPPRU_oC (cited on page 34).

http://dx.doi.org/10.1109/FOSE.2007.15
http://dx.doi.org/10.1109/FOSE.2007.15
http://dx.doi.org/10.1109/COMPSAC.2006.10
http://dx.doi.org/10.1109/COMPSAC.2006.10
http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1109/TSE.2009.28
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1007/11880240_27
http://dx.doi.org/10.1007/11880240_27
http://dx.doi.org/10.1007/11880240_27
https://books.google.co.uk/books?id=_78HnPPRU_oC
https://books.google.co.uk/books?id=_78HnPPRU_oC

Bibliography 182

Elberzhager, Frank, Jürgen Münch, and Vi Tran Ngoc Nha (2012). “A Systematic

Mapping Study on the Combination of Static and Dynamic Quality Assurance

Techniques”. In: Information and Software Technology 54.1, pages 1–15. issn: 0950-

5849. doi: 10.1016/j.infsof.2011.06.003. url: http://dx.doi.org/10.1016/

j.infsof.2011.06.003 (cited on page 39).

Ernst, Michael D (2003). “Static and dynamic analysis: Synergy and duality”. In:

WODA 2003: ICSE Workshop on Dynamic Analysis. Citeseer. Citeseer, pages 24–

27 (cited on pages 34, 36–39).

Favre, Jean-Marie (2004). “Foundations of model (driven)(reverse) engineering: Mod-

els”. In: Proceedings of the International Seminar on Language Engineering for

Model-Driven Software Development, Dagstuhl Seminar 04101. available at http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.9106&rep=

rep1&type=pdf (cited on pages 23, 27, 28).

Favre, Liliana, Liliana Martinez, and Claudia Pereira (2009). “MDA-Based Reverse

Engineering of Object Oriented Code”. English. In: Enterprise, Business-Process

and Information Systems Modeling. Edited by Terry Halpin et al. Volume 29.

Lecture Notes in Business Information Processing. Springer Berlin Heidelberg,

pages 251–263. isbn: 978-3-642-01861-9. doi: 10.1007/978-3-642-01862-6_21.

url: http://dx.doi.org/10.1007/978-3-642-01862-6_21 (cited on page 129).

Galvao, Ismenia and Arda Goknil (2007). “Survey of traceability approaches in model-

driven engineering”. In: Enterprise Distributed Object Computing Conference, 2007.

EDOC 2007. 11th IEEE International. IEEE, pages 313–313 (cited on page 127).

Hassan, A.E. et al. (2008). “An Industrial Case Study of Customizing Operational

Profiles Using Log Compression”. In: Software Engineering, 2008. ICSE ’08. ACM

/ IEEE 30th International Conference on, pages 713–723. doi: 10.1145/1368088.

1379445 (cited on page 39).

Kagdi, Huzefa, Michael L. Collard, and Jonathan I. Maletic (2007). “A survey and

taxonomy of approaches for mining software repositories in the context of soft-

ware evolution”. In: Journal of Software Maintenance and Evolution: Research and

Practice 19.2, pages 77–131. issn: 1532-0618. doi: 10.1002/smr.344. url: http:

//dx.doi.org/10.1002/smr.344 (cited on pages 39, 40).

Kehrer, Timo, Udo Kelter, and Gabriele Taentzer (2011). “A rule-based approach

to the semantic lifting of model differences in the context of model versioning”.

In: 26th Intl. Conf. on Automated Software Engineering, pages 163–172 (cited on

page 146).

http://dx.doi.org/10.1016/j.infsof.2011.06.003
http://dx.doi.org/10.1016/j.infsof.2011.06.003
http://dx.doi.org/10.1016/j.infsof.2011.06.003
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.9106&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.9106&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.58.9106&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-642-01862-6_21
http://dx.doi.org/10.1007/978-3-642-01862-6_21
http://dx.doi.org/10.1145/1368088.1379445
http://dx.doi.org/10.1145/1368088.1379445
http://dx.doi.org/10.1002/smr.344
http://dx.doi.org/10.1002/smr.344
http://dx.doi.org/10.1002/smr.344

Bibliography 183

Kehrer, Timo et al. (2013). “Generating Edit Operations for Profiled UML Models”.

In: Proc. Intl. Workshop on Models and Evolution. Volume 1090. CEUR Workshop

Proceedings, pages 30–39 (cited on page 147).

Kehrer, Timo et al. (2016). “Automatically Deriving the Specification of Model Edit-

ing Operations from Meta-Models”. In: Proc. 9th Intl. Conf. on Model Transfor-

mations. Springer, pages 173–188 (cited on page 147).

Kipyegen, Noela Jemutai, WP Korir, and Kenya Njoro (2013). “Importance of Soft-

ware Documentation”. In: International Journal of Computer Science Issues, IJCSI

10.5, pages 223–228 (cited on page 5).

Kramer, R. (1998). “iContract - The Java(tm) Design by Contract(tm) Tool”. In:

TOOLS 1998: 26th International Conference on Technology of Object-Oriented

Languages and Systems, 3-7 August 1998, Santa Barbara, CA, USA, pages 295–

307. url: http://dx.doi.org/10.1109/TOOLS.1998.711021 (cited on page 30).

Kühne, Thomas (2006). “Matters of (Meta-)Modeling”. In: Software and System

Modeling 5.4, pages 369–385. doi: 10.1007/s10270-006-0017-9. url: http:

//dx.doi.org/10.1007/s10270-006-0017-9 (cited on page 23).

Lindeman, Ricky T., Lennart C. L. Kats, and Eelco Visser (2011). “Declaratively

defining domain-specific language debuggers”. In: Proc. 10th Intl. Conf. on Gen-

erative Programming and Component Engineering, pages 127–136. url: http://

doi.acm.org/10.1145/2047862.2047885 (cited on page 150).

Martinez, L, C Pereira, and L Favre (2011). “Recovering Activity Diagrams from

Object Oriented Code: an MDA-based Approach”. In: Proceedings 2011 Interna-

tional Conference on Software Engineering Research and Practice (SERP 2011).

Volume 1, pages 58–64 (cited on page 129).

Mellor, S.J., A.N. Clark, and T. Futagami (2003). “Model-driven development - Guest

editor’s introduction”. In: Software, IEEE 20.5, pages 14–18. issn: 0740-7459. doi:

10.1109/MS.2003.1231145 (cited on page 26).

Muhairat, Mohammad I. and Rafa E. Al-Qutaish (2009). “An Approach to Derive

the Use Case Diagrams from an Event Table”. In: Proceedings of the 8th WSEAS

International Conference on Software Engineering, Parallel and Distributed Sys-

tems. SEPADS’09. Cambridge, UK: World Scientific, Engineering Academy, and

Society (WSEAS), pages 33–38. isbn: 978-960-474-052-9. url: http://dl.acm.

org/citation.cfm?id=1553890.1553897 (cited on page 129).

Müller, Hausi A et al. (2000). “Reverse engineering: A roadmap”. In: Proceedings of

the Conference on the Future of Software Engineering, ACM. ACM, pages 47–60

(cited on page 151).

http://dx.doi.org/10.1109/TOOLS.1998.711021
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1007/s10270-006-0017-9
http://dx.doi.org/10.1007/s10270-006-0017-9
http://doi.acm.org/10.1145/2047862.2047885
http://doi.acm.org/10.1145/2047862.2047885
http://dx.doi.org/10.1109/MS.2003.1231145
http://dl.acm.org/citation.cfm?id=1553890.1553897
http://dl.acm.org/citation.cfm?id=1553890.1553897

Bibliography 184

Ossher, Harold and Peri Tarr (2000). “Hyper/J: Multi-dimensional Separation of Con-

cerns for Java”. In: Proceedings of the 22Nd International Conference on Software

Engineering. ICSE ’00. Limerick, Ireland: ACM, pages 734–737. isbn: 1-58113-206-

9. doi: 10.1145/337180.337618. url: http://doi.acm.org/10.1145/337180.

337618 (cited on page 150).

Pavletic, Domenik et al. (2015). “Extensible debugger framework for extensible lan-

guages”. In: Reliable Software Technologies–Ada-Europe 2015. Springer, pages 33–

49 (cited on page 150).

Pender, Tom (2003). UML Bible. 1st edition. New York, NY, USA: John Wiley &

Sons, Inc. isbn: 0764526049, 9780764526046 (cited on pages 23, 24).

Pistoia, M. and O. Tripp (2014). Eliminating false-positive reports resulting from static

analysis of computer software. US Patent 8,745,578. url: https://www.google.

com/patents/US8745578 (cited on page 8).

Pradel, Michael and Thomas R. Gross (2009). “Automatic Generation of Object Us-

age Specifications from Large Method Traces”. In: ASE 2009, 24th IEEE/ACM In-

ternational Conference on Automated Software Engineering, Auckland, New Zealand,

November 16-20, 2009, pages 371–382. doi: 10.1109/ASE.2009.60. url: http:

//dx.doi.org/10.1109/ASE.2009.60 (cited on page 130).

Priestly, Mark (2005). “The Logic of Correctness in Software Engineering”. In: Ad-

vanced Information Systems Engineering, 17th International Conference, CAiSE

2005, Porto, Portugal, June 13-17, 2005, Proceedings of the CAiSE’05 Workshops,

Vol. 2, pages 463–473 (cited on page 98).

Ramos, A.L., J.V. Ferreira, and J. Barcelo (2012). “Model-Based Systems Engineer-

ing: An Emerging Approach for Modern Systems”. In: Systems, Man, and Cyber-

netics, Part C: Applications and Reviews, IEEE Transactions on 42.1, pages 101–

111. issn: 1094-6977. doi: 10.1109/TSMCC.2011.2106495 (cited on pages 2, 22,

23, 25).

Rountev, Atanas, Olga Volgin, and Miriam Reddoch (2005). “Static Control-flow

Analysis for Reverse Engineering of UML Sequence Diagrams”. In: SIGSOFT

Softw. Eng. Notes 31.1, pages 96–102. issn: 0163-5948 (cited on pages 8, 36, 126).

Sarkar, Mrinal Kanti, Trijit Chatterjee, and Dipta Mukherjee (2013). “Reverse En-

gineering: An Analysis of Static Behaviors of Object Oriented Programs by Ex-

tracting UML Class Diagram”. In: International Journal of Advanced Computer

Research 3.3. issn: 2249-7277 (cited on pages 36, 126).

Schmidt, D.C. (2006). “Guest Editor’s Introduction: Model-Driven Engineering”. In:

Computer 39.2, pages 25–31. issn: 0018-9162 (cited on pages 25, 26).

http://dx.doi.org/10.1145/337180.337618
http://doi.acm.org/10.1145/337180.337618
http://doi.acm.org/10.1145/337180.337618
https://www.google.com/patents/US8745578
https://www.google.com/patents/US8745578
http://dx.doi.org/10.1109/ASE.2009.60
http://dx.doi.org/10.1109/ASE.2009.60
http://dx.doi.org/10.1109/ASE.2009.60
http://dx.doi.org/10.1109/TSMCC.2011.2106495

Bibliography 185

Seidewitz, Ed (2003). “What Models Mean”. In: IEEE Softw. 20.5, pages 26–32. issn:

0740-7459. doi: 10.1109/MS.2003.1231147. url: http://dx.doi.org/10.1109/

MS.2003.1231147 (cited on pages 23, 24, 28).

Siegel, Jon M. (2014). Object Management Group - Model Driven Architecture (MDA)

Guide rev. 2.0. This final draft of the revised MDA Guide edited in Boston on 18

June 2014 reflects all AB edits requested at the Reston and Boston AB meet-

ings. url: http://www.omg.org/cgi-bin/doc?ormsc/14-06-01 (visited on

03/15/2017) (cited on pages 2, 23, 26–29, 42, 126, 133, 134).

Sommerville, Ian (2011). Software Engineering Ninth Edition. Addison-Wesley (cited

on pages 2, 3, 25–27).

Stahl, Thomas, Markus Voelter, and Krzysztof Czarnecki (2006). Model-Driven Soft-

ware Development: Technology, Engineering, Management. John Wiley & Sons.

isbn: 0470025700 (cited on pages 25, 26, 151).

The Architecture-Driven Modernization Task Force (ADMTF) (2016). url: http:

//adm.omg.org/ (visited on 03/15/2017) (cited on page 127).

The Java Modeling Language (JML) (2016). url: http://www.eecs.ucf.edu/

~leavens/JML//index.shtml (visited on 03/15/2017) (cited on pages 29, 41).

The Unified Modeling Language (UML) (2016). url: http://www.uml.org/ (visited

on 03/15/2017) (cited on page 29).

Tonella, P. and A. Potrich (2003). “Reverse engineering of the interaction diagrams

from C++ code”. In: Software Maintenance, 2003. ICSM 2003. Proceedings. In-

ternational Conference on, pages 159–168 (cited on pages 36, 37, 126).

Venkatasubramanyam, Radhika D. and Sowmya G. R. (2014). “Why is Dynamic

Analysis Not Used As Extensively As Static Analysis: An Industrial Study”. In:

Proceedings of the 1st International Workshop on Software Engineering Research

and Industrial Practices. SER&IPs 2014. Hyderabad, India: ACM, pages 24–

33. isbn: 978-1-4503-2859-3. doi: 10.1145/2593850.2593855. url: http://doi.

acm.org/10.1145/2593850.2593855 (cited on pages 36–38).

Wasylkowski, Andrzej, Andreas Zeller, and Christian Lindig (2007). “Detecting object

usage anomalies”. In: Proceedings of the 6th joint meeting of the European Soft-

ware Engineering Conference and the ACM SIGSOFT International Symposium

on Foundations of Software Engineering, 2007, Dubrovnik, Croatia, September 3-

7, 2007, pages 35–44. doi: 10.1145/1287624.1287632. url: http://doi.acm.

org/10.1145/1287624.1287632 (cited on pages 128, 129).

http://dx.doi.org/10.1109/MS.2003.1231147
http://dx.doi.org/10.1109/MS.2003.1231147
http://dx.doi.org/10.1109/MS.2003.1231147
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://adm.omg.org/
http://adm.omg.org/
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
http://www.eecs.ucf.edu/~leavens/JML//index.shtml
http://www.uml.org/
http://dx.doi.org/10.1145/2593850.2593855
http://doi.acm.org/10.1145/2593850.2593855
http://doi.acm.org/10.1145/2593850.2593855
http://dx.doi.org/10.1145/1287624.1287632
http://doi.acm.org/10.1145/1287624.1287632
http://doi.acm.org/10.1145/1287624.1287632

Bibliography 186

Whittle, J., J. Hutchinson, and M. Rouncefield (2014). “The State of Practice in

Model-Driven Engineering”. In: Software, IEEE 31.3, pages 79–85. issn: 0740-7459.

doi: 10.1109/MS.2013.65 (cited on pages 2, 25, 26, 28).

Zeller, Andreas (2000). “Debugging with DDD”. In: User’s Guide and Reference Man-

ual, Version 3 (cited on page 149).

Ziadi, Tewfik et al. (2011). “A fully dynamic approach to the reverse engineering of

UML sequence diagrams”. In: 16th IEEE International Conference on Engineering

of Complex Computer Systems (ICECCS). IEEE, pages 107–116 (cited on pages 37,

126, 128, 129).

Miscellaneous

AspectJ (2016). url: http://eclipse.org/aspectj/ (visited on 03/15/2017) (cited

on pages 47, 48, 56, 139, 144, 150).

BTrace (2017). url: https://kenai.com/projects/btrace (visited on 03/15/2017)

(cited on page 48).

Byteman Trace (2017). url: http://byteman.jboss.org/ (visited on 03/15/2017)

(cited on page 48).

InTrace (2017). url: https : / / mchr3k . github . io / org . intrace/ (visited on

03/15/2017) (cited on page 48).

JHotDraw as Open-Source Project by Java (2016). url: http://www.jhotdraw.org/

(visited on 03/15/2017) (cited on pages 19, 114, 143).

Laddad, Ramnivas (2009). AspectJ in Action: Enterprise AOP with Spring Appli-

cations. 2nd. Greenwich, CT, USA: Manning Publications Co. isbn: 1933988053,

9781933988054 (cited on page 56).

Marin, M. (2004). “Refactoring JHotDraw’s Undo concern to AspectJ”. In: Pro-

ceedings Workshop on Aspect Reverse Engineering (WARE) at WCRE (cited on

page 123).

Method Tracing (2017). url: http://blog.rejeev.com/2009/04/method-tracing.

html (visited on 03/15/2017) (cited on page 48).

NanoXML - a small non-validating XML parser for Java (2016). url: http :/ /

nanoxml.sourceforge.net/orig/ (visited on 03/15/2017) (cited on pages 19, 60,

114, 143, 146).

http://dx.doi.org/10.1109/MS.2013.65
http://eclipse.org/aspectj/
https://kenai.com/projects/btrace
http://byteman.jboss.org/
https://mchr3k.github.io/org.intrace/
http://www.jhotdraw.org/
http://blog.rejeev.com/2009/04/method-tracing.html
http://blog.rejeev.com/2009/04/method-tracing.html
http://nanoxml.sourceforge.net/orig/
http://nanoxml.sourceforge.net/orig/

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Abbreviations
	I Introduction and Background
	1 Introduction
	1.1 Visual Contracts
	1.2 Motivation
	1.2.1 Reverse Engineering Visual Contracts
	1.2.2 Problem Statement

	1.3 Overview of the Approach
	1.3.1 Requirements Analysis
	1.3.2 Visual Contracts as GT Rules
	1.3.3 Proposed Methodology
	1.3.4 Technical Challenges

	1.4 Contributions and Related Publications
	1.5 Thesis Structure

	2 Model Based Engineering
	2.1 Basic Terminology
	2.1.1 System and Meta-Models
	2.1.2 Acronyms of Model Driven (MD*)
	2.1.3 Prescriptive and Descriptive Models
	2.1.4 Modelling Languages

	2.2 Contracts MDE
	2.2.1 Design-by-Contract
	2.2.2 Visual Contracts

	2.3 Model Driven Reverse Engineering
	2.3.1 General RE Motivations and Goals
	2.3.2 Scientific Challenges
	2.3.3 Analysis Approaches
	2.3.4 Model Construction

	2.4 The Use of Visual Contracts in MDE
	2.4.1 Specification of Component Interfaces
	2.4.2 Dynamic Monitoring and Debugging

	2.5 Summary

	II Inference of Visual Contracts
	3 Extraction of Contract Instances
	3.1 Extraction Approach
	3.2 Running Example
	3.2.1 Structural Features
	3.2.2 Behavioural Code and Contracts

	3.3 Tracing System Executions
	3.3.1 Aspect Oriented Programming
	3.3.2 Generating Logs

	3.4 Constructing Rule Instances
	3.4.1 Scope of Operation
	3.4.2 Accessed Objects
	3.4.3 Cases to Construct Rules
	3.4.4 Information on Accessed Objects

	3.5 Summary

	4 Generalisation of Contract Instances
	4.1 Basic Definitions
	4.1.1 Contract Instances
	4.1.2 Minimal Rules
	4.1.3 Maximal Rules

	4.2 Inference Approach
	4.2.1 Classification of Contract Instances
	4.2.2 Rule with Shared Contexts
	4.2.2.1 Inferring Maximal Rules
	4.2.2.2 Complexity of the Construction

	4.3 Incremental Inference
	4.4 Summary

	5 Inference of Advanced Rule Features
	5.1 Inferring Universally Quantified Multi Objects
	5.1.1 Definition of GT Rules with Multi Objects
	5.1.2 Approach
	5.1.3 Algorithm for Inferring Multi-Objects

	5.2 Deriving Constraints on Attribute and Parameter Values
	5.2.1 Overview of Learning Invariant Constraints
	5.2.2 Rules with Attribute and Parameter Constraints
	5.2.3 Setting up Attributes and Parameters Values
	5.2.4 Learning Using Daikon

	5.3 Summary

	III Evaluation and Conclusion
	6 Evaluation
	6.1 Prototype Tool
	6.1.1 Visualisation of Rule Instances
	6.1.2 Visualisation of Advanced Rules

	6.2 Accuracy of Extracted Contracts
	6.2.1 Correctness
	6.2.2 Completeness
	6.2.3 Manual Inspection

	6.3 Utility in Assessing Test Reports and Localising Faults
	6.3.1 Experimental Setup
	6.3.2 Data Collection and Analysis
	6.3.3 Discussion and Threats to Validity

	6.4 Performance and Scalability
	6.4.1 Case Studies and Test Cases
	6.4.2 Extraction and Inference
	6.4.3 Benefits and Validity of Generalisation
	6.4.4 Analysis of Results and Threats to Validity

	6.5 Summary

	7 Comparison to the State of the Art
	7.1 Model Extraction
	7.1.1 Architecture-Driven Modernization
	7.1.2 Tracing Approaches
	7.1.3 Type of Extracted Models
	7.1.4 Extraction of Contract Models

	7.2 Model Generalisation
	7.2.1 Application Domain
	7.2.1.1 Business Processes
	7.2.1.2 Biological Systems
	7.2.1.3 Model Transformation

	7.2.2 Graph Pattern Mining
	7.2.2.1 Statistical Approaches
	7.2.2.2 Node Signature-Based Approaches

	7.3 Feature Inferences
	7.4 Summary

	8 Conclusion and Future Work
	8.1 Summary of the Thesis
	8.2 Contributions in a Nutshell
	8.3 Limitations
	8.3.1 Observing Deleted Objects
	8.3.2 Concurrency in Multi-Thread Applications
	8.3.3 Dependence on a Single Maximal Rule Extracted

	8.4 Outlook and Future Directions
	8.4.1 Integration with Henshin Tool
	8.4.1.1 Edit Operations on Models
	8.4.1.2 Execution of Inferred Contracts

	8.4.2 Inferring Negative Application Conditions
	8.4.3 VCs for Debugging
	8.4.4 Supporting Multi-Thread Application
	8.4.5 On-fly Software Development

	Appendices
	A: Case study to evaluate the use of extracted VC in testing
	B: Simulate extracting visual contracts

	Bibliography
	Graph Transformation and Visual Contracts
	Specification Learning and Mining
	Model Based Software Engineering
	Miscellaneous

