
 

1 
 

 

  

VALIDATION AND APPLICATIONS OF THE MATERIAL POINT   
METHOD 

 

 

 

 

Thesis submitted for the degree of  

Doctor of Philosophy 

 At the University of Leicester 

 

 

 

By  

Ali Tabatabaeian Nimavardi 

Department of Engineering  

University of Leicester  

 

 

 

July 2016



ABSTRACT 
 

 

2 
 

Abstract 
 

The Material Point Method (MPM) is a modern finite element method that is classified 

as a point based method or meshless method, while it takes the advantage of two kinds 

of spatial discretisation that are based on an arbitrary Eulerian-Lagrangian description 

of motion.  The referenced continuum is represented by the material points, and the 

motions are tracked through a computational background mesh, that is an arbitrary 

constant mesh which does not move the material. Hence, in the MPM mesh distortion 

especially in the large deformation analysis is naturally avoided.  

However, MPM has been employed to simulate difficult problems in the literature, 

many are still unsatisfactory due to the lack of rigorous validation. Therefore, this thesis 

firstly provides a series of simple case studies which any numerical method must pass 

to test the validity of the MPM, and secondly demonstrate the capability of the MPM in 

simulating difficult problems such as degradation of highly swellable polymers during 

large swelling that is currently difficult to handle by the standard finite element method. 

Flory’s theory is incorporated into the material point method to study large swelling of 

polymers, and degradation of highly swellable polymers is modelled by the MPM as a 

random phenomenon based on the normal distribution of the volumetric strain. These 

numerical developments represent adaptability of the MPM and enabling the method 

to be used in more complicated simulations. Furthermore, the advantages of this 

powerful numerical tool are studied in the modelling of an additive manufacturing 

technology called Selective Laser Melting (SLM). It is shown the MPM is an ideal 

numerical method to study SLM manufacturing technique. The focus of this thesis is to 

validate the MPM and exhibit the simplicity, strength, and accuracy of this numerical 

tool compared with standard finite element method for very complex problems which 

requires a complicated topological system.  

Key words: Material Point Method (MPM), Non-uniform swelling, Selective Laser 

Melting (SLM), Degradation of highly swellable polymers
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Chapter 1. Introduction 
 

The theme of this thesis is to take advantage of a modern Finite Element method 

called Material Point Method (MPM) to simulate difficult problems such as the 

swelling behaviour and large deformation coupled with degradation in highly 

swellable polymers. Also, a rigorous validation of the MPM against a set of simple 

problems has been conducted.  Furthermore, we have demonstrated the capability of 

this strong numerical tool to study an additive manufacturing technology called 

Selective Laser Melting (SLM). The aim of this thesis is to clearly demonstrate the 

advantages of MPM over the traditional Finite Element Method (FEM) to simulate 

difficult problems which require complex topological systems.  

 

1.1 Overall theme of the thesis 

The general idea in Material Point Method (MPM) first was introduced by Harlow (1964) 

in fluid dynamics that is called Particle-In-Cell (PIC) method. Further applications of this 

method in solid mechanics were done by Burgess et al. (1995) and Sulsky et al. (1994, 

1995). Following their work, the algorithm of Material Point Method was discussed and 

analytically formulated and applied in publications by Wiezckowski et al. (1999) and 

Wiezckowski (2004). Recently F. Li et al. (2011) have used MPM in the modelling of 

brittle impact failure of disc particles. Also, the same group has used MPM to model 

adhesive contact between fine particles. Material Point Method has been recently 

developed in the literature as a strong numerical tool to simulate some rigorous cases. 

X. Ma et al. (2012) have used MPM for axisymmetric computation of Taylor cylinder 

impacts of ductile and brittle materials, they have also used a dual domain MPM and 

compared the results with the original MPM and found that compared to the other 

numerical methods, MPM has more accurate results especially on severely deformed 

specimens. B. Wang, et al. (2016) carried out an investigation of retrogressive and 

progressive slope failure mechanics using the material point method. They found that 

MPM is a promising method to simulate slope failure and it is mainly useful to capture 

the post-failure of slopes.   
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Although MPM has been used for many difficult case studies in the literature, many still 

suffer from the rigorous validation of the method. History has shown promising 

numerical methods have failed to pass some basic case studies. Therefore, the purpose 

of this work is to test the MPM using firstly a set of simple case studies which any 

numerical method has to pass and secondly apply the MPM to a few difficult problems 

such as simulation of degradation of highly swellable materials during large swelling and 

also simulation of Selective Laser Melting (SLM) manufacturing process as two complex 

examples that are challenging for the standard finite element method.  

1.2 Material Point Method (MPM) 

Simulating extremely large deformation of structures and materials is often too 

complicated and there are no fully analytical solutions to deal with extremely large 

elastic deformation in materials. For example, there is no analytical solution to model 

particularly large elastic swelling of highly swellable polymers.  Therefore a specific 

numerical method is required to solve the problem with a numerical approach as the 

modern computers are getting more and more powerful. For example, in order to 

simulate the swelling problem for highly swellable polymers the numerical method has 

to be capable of simulating large deformation of polymers due to contact with a solvent, 

along with degradation of polymers due to breakage of the polymer chains, or for 

example, in order to simulate Selective Laser Melting (SLM) the numerical method 

should be able to deal with both discrete powders and the solidified material at the 

same time.   

The general attitude of MPM is to represent a material body with some discrete points 

called material points. Material Point Method is using the advantage of an arbitrary 

Lagrangian-Eulerian description of motion and could be categorised as a mesh-less 

method Wiezckowski (2004). In the Material Point Method the mass of the body is 

lumped on the material points, also all the state variables such as stresses, densities, 

and velocities are traced at the material points. Further to material points an 

independent Eulerian mesh is defined (computational mesh) on which all the equations 

of motion are formulated and solved. This Eulerian mesh is a constant background mesh 

that is defined in an arbitrary way, so the problem of mesh distortion which is an 

important issue in the Lagrangian mesh is avoided. The computational mesh has to 
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cover all the possible domain of the motion of the main body. So, particularly for large 

swelling problems, there should be quite a lot of free meshes around the body to include 

the final swelled body. The background mesh is related to the material points through 

a mapping system. The computational mesh is used to determine the accelerations of 

the nodes, and also the stress rates. After calculating the nodal accelerations and stress 

rates at each time step, as opposed to the conventional finite element methods that the 

nodes will be moved, the velocity of each node will be mapped into the material points 

and the new position of the material points will be determined. After finding the new 

positions of the material points a new relationship between material points and 

computational mesh can be defined, so it avoids mesh tangling or distortion. Another 

advantage of computational mesh is for contact problems in which contact boundary 

conditions of impenetrability and contact forces will be easily satisfied. Therefore, MPM 

is a powerful numerical method to simulate extremely large deformations such as 

swelling or shrinking problems of polymers, as well as simulating of degradation in 

polymers, since it can effectively control the topological relationships in extremely large 

deformations or in those problems that deal with discrete powders and solidified parts 

at the same time such as the SLM technique. This method can be perfectly used for 

simulation of material breakage or material degradation. F. Li et al. (2011) have used 

MPM for modelling brittle impact failure of disc particles using material point method. 

1.3 Contribution to science 

As it was discussed earlier, the lack of rigorous validation for the MPM in the literature 

is unsatisfactory. Therefore, the main focus of this thesis is to first test the validity of 

the MPM via a series of simple tests, such as a 1D forced vibration, 2D forced vibration 

and 2D large tensile test. Secondly, MPM is implemented to case studies such as 

Selective Laser Melting (SLM) and polymer degradation during large swelling which is 

currently difficult to handle using traditional Finite Element Method. A topological 

system is presented for the MPM coding, firstly to deal with two different systems of 

discretization that are based on an arbitrary Lagrangian-Eulerian description of motion, 

and secondly to reduce the computational costs to a minimum. Hence, all the codes are 

developed by the author of this thesis from scratch in order to have full control of the 
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numerical implementation. Ultimately, the theme of this thesis is to test the validity of 

MPM as well as to demonstrate its capabilities. 

1.4 The structure of this thesis 

In Chapter 1 an overview of the theme of this thesis is presented. The resolution of this 

thesis is to first, test the validity of MPM code that is entirely written by the author of 

this thesis by solving some simple case studies, and then demonstrate the capability of 

MPM for much more complex systems such as polymer degradation during large elastic 

swelling and an additive manufacturing technique called Selective Laser Melting (SLM).  

In chapter 2 first, a review of the current literature is presented to model swelling of 

polymers based on the equilibrium thermodynamic theory. The theory has been 

improved by the author via adding two more terms to the main governing equation. 

Although it still lacks the capability of modelling highly swellable polymers. To tackle 

this, an alternative non-equilibrium theory is developed based on the Gibbs free energy 

by the author to explain large swelling of highly swellable polymers. Last but not least, 

a new numerical method is suggested to analyse the degradation of highly swellable 

polymers during large swelling.  

In chapter 3, a detailed literature review of material point method is conducted and is 

later used as the main numerical approach in this thesis. Furthermore, the topological 

systems that have been used in my code are discussed in details that come along with a 

flowchart of the MPM code.   

In chapter 4, the MPM code that is developed by the author is validated for a 1D simple 

forced vibration problem against the results of conventional FEM. Furthermore, in this 

chapter, the MPM code is validated through a series of 2D tensile tests.  

In chapter 5, firstly, a rate form of a nonlinear constitutive law for hyperelastic materials 

is developed based on Flory’s theory. Secondly, the nonlinear constitutive law is fitted 

in the MPM code through a convenient tangent modulus and the code is validated via a 

series of large tensile tests. Next, non-uniform swelling is discussed and the MPM code 

is tailored to model large non-uniform swelling of polymers. Finally, it is demonstrated 

that MPM is a robust numerical tool to simulate the degradation of highly swellable 

polymers during large non-uniform swelling in different applications such as in 

controlled drug delivery systems.  
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Chapter 6 is demonstrating the capability of MPM to simulate an additive manufacturing 

method called Selective Laser Melting (SLM) as an industrial application of the MPM for 

small deformation analysis. In this chapter, the main concerns in the simulation of the 

SLM are discussed. Generally, conventional finite element methods struggle to deal with 

the SLM process. Therefore, a simple case study is modelled with the validated MPM in 

two dimensions to prove this method is strong enough to perfectly solve real cases for 

industrial purposes.  

This thesis will be finished with the conclusion in chapter 7.   
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Chapter 2.    Introduction to Nonlinear Finite Element Method 
 

This chapter is to first provide a review of the current literature detailing the 

simulation of materials such as polymers under large deformations, based on 

equilibrium thermodynamic theory and secondly, to present a non-equilibrium 

thermodynamic theory for large deformation of highly swellable polymers due to 

solvent mixing. Furthermore, a discussion is provided on why traditional numerical 

tools such as conventional Finite Element methods cannot be used for problems such 

as degradation of highly swellable polymers during large swelling and also for 

simulation of Selective Laser Melting. Last but not least Material Point Method is 

introduced briefly as a robust numerical tool to model the swelling and degradation 

of highly swellable polymers.  

2.1 Equilibrium thermodynamic theory of polymer swelling 

In this chapter, polymer swelling is used as an example to demonstrate the underlying 

theory for large deformation of materials. Following the works are done by W. Hong et 

al. (2007) and M. Kang and R. Huang (2010) in this section a field theory of the gels is 

explained which is based on the classic works done by J.W. Gibbs (1878) and M.A. Biot 

(1941). 

2.1.1 Variational approach 

A polymer network in the hydrogel state is considered at the current state with the 

volumeΩ  and the surfaceΓ .  The hydrogel body is subjected to a distributed body force 

ib and a surface traction iτ . Furthermore, a chemical potential µ̂ (per solvent molecule) 

is subjected to the hydrogel body as it is dipped in a solvent. Solvent molecules can go 

across the surface Γ  and also through the body of the hydrogel. Figure 2-1 shows a 

schematic hydrogel of the reference configuration with volume 0Ω  and surface 0Γ at 

the initial time that changes through the time and finally reaches the equilibrium state.  
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Figure 2-1 Schematic deformation of the reference configuration. M. Kang and R. 

Huang (2010) 

2.1.2 Calculation of the total work  

According to the virtual work principle, in order to calculate the total work done to the 

hydrogel, including mechanical forces such as the body force and the surface traction 

and chemical work due to the absorption of the solvent molecules, an infinitesimal 

displacement is assumed in either mechanical displacement and/or molecular 

transport. Eq. ( 2-1 ) is calculating the total work:  

Γ−Γ+Ω= ∫∫∫
ΓΓΩ

dindxdxbW kkiiii δµδτδρδ ˆ  ( 2-1 ) 

In Eq. ( 2-1 ) ixδ represents the variation of the current position of the body, and kiδ

represents the variation of the molecular flux that is equal to the number of solvent 

molecules going through, per unit area of the element with respect to the unit normal 

vector in the direction of kx . kn  is the unit normal vector with positive outwards 

direction, and kk in δ− is the vector product that gives the number of solvent molecules 

entering the polymer network across the surface per unit area of the surface. ρ is the 

mass density, b is the body force, and τ  is the surface traction and µ̂ is a solvent 

environment chemical potential (per solvent molecules). Other terms such as work done 

by temperature or magnetic field could be considered in the above formula that is 
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beyond the scope of this thesis. Also, mass transport from solvent to the polymer 

network is considered to be only due to chemical potential and any distributed pump is 

ignored in this thesis.   

The variation of the total free energy of the thermodynamic system which is including 

the gel, the mechanical fields and the field of chemical potential is based on the 

variation of the free energy of the hydrogel and the mechanical/chemical environment 

that is shown in Eq. ( 2-2 ).  

WG δδδ −Φ=  ( 2-2 ) 

In Eq.( 2-2 ) Gδ is a variation of the total free energy of the thermodynamic system, Φδ

is a variation of total free energy of hydrogel and Wδ is total work done to the hydrogel. 

Based on the general principals of thermodynamics, any system tends to reduce its total 

free energy, so for any thermodynamically permissible variation 0≤Gδ . The equality is 

for the thermodynamical equilibrium state.   

2.1.3 Free energy density function for the hydrogels 

Based on Flory’s work (1953), a free energy density function is assumed as ),( CFu , 

which is a function of deformation gradient tensor F and solvent molecular 

concentration in the hydrogelC . Hence, a variation of the total free energy of the 

hydrogel is shown in Eq. ( 2-3 ).  









Ω=Φ ∫

Ω

udδδ  ( 2-3 ) 

Therefore, in order to be able to analyse the swelling deformation of the hydrogel, a 

functional form of the free energy density u  is required, this is introduced in chapter 6 

and is based on Flory’s theory (1953).  

2.1.4 Mass Conservation 

According to the conservation of mass the below equations can be obtained:  

0
),(),(
=

∂
∂

+
∂

∂

k

k

x
txJ

t
txC  ( 2-4 ) 

( ) ( )( ) ( ) 0,,, =− −+ txntxJtxJ kkk  ( 2-5 ) 
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In Eq. ( 2-5 ) ( ) kk ntxJ , represents the number of solvent molecules going through the 

element of area, whereas ),( txC in Eq. ( 2-4 ) signifies the number of solvent molecules 

in an element of volume.  

By using a test function )(xξ and integrating Eq. ( 2-4 ) over the total volume of the gel 

we have:  

∫ ∫
Ω Ω

=Ω
∂
∂

+Ω
∂
∂ 0d

x
Jd

t
C

k

k ξξ  ( 2-6 ) 

By applying divergence theorem to Eq. ( 2-6 ) and using Eq. ( 2-4 ).  

∫ ∫
Ω Ω

Ω
∂
∂

=Ω
∂
∂ d

x
Jd

t
C

k
k

ξξ  ( 2-7 ) 

2.1.5 Total Free energy  

As it was mentioned in section 2.1.2 the total free energy of the thermodynamic system 

G is cumulating of the total free energy of the hydrogel, potential energy of the 

mechanical forces and chemical potential energy. By using Eq. ( 2-1 ), Eq. ( 2-2 ), and Eq. 

( 2-3 ) the rate of changes in total free energy will be obtained as below:  

∫ ∫∫ ∫
Γ ΓΩ Ω

Γ+Γ−Ω−Ω= d
t
i

nd
t
x

d
t
x

bd
t
u

t
G k

k
i

i
i

i δ
δ

µ
δ
δ

τ
δ
δ

ρ
δ
δ

δ
δ ˆ  ( 2-8 ) 

By substituting the mathematical variation of the free energy of the hydrogel as it is 

given in Eq. ( 2-9 ) in the first term of the right hand side of Eq. ( 2-8 ), and also using the 

dynamic force balance in continuum mechanics as in Eq. ( 2-10 ) and ( 2-11 ) We will 

obtain Eq.( 2-12 ).  

C
C
uF

F
uu ik δδδ

∂
∂

+
∂
∂

=                                                         in Ω  ( 2-9 ) 

),(),( txvtxb
x
s

iiii
k

ik ρρ =+
∂
∂                                                in Ω  ( 2-10 ) 

),(),(),()),(),(( txvltxtxntxstxs iiiikikik ρτ =−− +−           on Γ  ( 2-11 ) 

Where ),( txsik in Eq. ( 2-10 ) is the nominal stress tensor and ),( txv is the acceleration, 

il in Eq. ( 2-11 ) is the length of each element of the mesh.  
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∫ ∫

∫ ∫∫
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Furthermore, by applying the divergence theorem Eq. ( 2-12 ) can be written as:  

∫ ∫
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As it was discussed in section 2.1.2, based on the thermodynamic principles, the total 

free energy of a system must be decreasing, i.e. 0≤Gδ , which means this should be 

true for any arbitrary kJ and t
xi
δ

δ .  

In Eq. ( 2-13 ) each term represents a specific mechanism of energy dissipation. While 

the first term on the right hand side expresses the local rearrangement of the small 

molecules, the second term represents the long-term migration of the small molecules. 

The third and fourth terms denote acceleration of the molecules inside the volume and 

on the surface respectively. As opposed to (Hong et. al. 2007) in this thesis the process 

of local rearrangement of the molecules is not assumed to be instantaneous.  Basically, 

they have assumed the process is made of a series of small processes that each one is 

in mechanical equilibrium conditions. (i.e. viscosity of the hydrogel in local 

rearrangement of the molecules is ignored in their theory). Therefore, the third and 

fourth terms on the right hand side of Eq. ( 2-13 ) are added to consider the effect of 

viscosity of the hydrogel either inside the gel or on the surface. The last term on the 

right hand side of Eq. ( 2-13 ) signifies chemical potential of the solvent molecules that 

is diffused into the hydrogel.   

A hydrogel evolves over time when it is under the mechanical loads, which is held 

constant through the time. Two different limiting states can be analysed based on the 

time evolution of the hydrogel. In short time limit, the solvent molecules that are 

penetrated inside the hydrogel has not yet redistributed, but the mechanical governing 

equation can be obtained from the dynamic force balance in continuum mechanics as 

shown in Eq. ( 2-10 ) and Eq. ( 2-11 ). So, if )(XC assumed to be the concentration field 
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of solvent molecules at the time that load changes, then the short time limit of the 

hydrogel will be governed by the dynamic forces, stresses that are shown in Eq. ( 2-14 ) 

and also chemical potential that is achieved through Eq. ( 2-15 ). The short time limit is 

as a result of a local rearrangement of molecules.  

In the Long time limit, thermodynamic equilibrium state can be assumed in the hydrogel 

between mechanical load and the external solvent. Therefore, the free energy of the 

hydrogel should be the minimum that leads to 0/ =tG δδ so that the second integrand 

in the right hand side of Eq. ( 2-13 )must be zero. Accordingly, at the equilibrium state, 

the chemical potential is homogeneous inside the gel, which can be obtained from the 

external solvent. This should be mentioned that thermodynamic equilibrium state is 

different from mechanical equilibrium state. As the system is thermodynamically in the 

equilibrium state and the left hand side of Eq. ( 2-13 ) is zero, so the third and the fourth 

integrand must vanish which leads to zero acceleration of the solvent molecules inside 

the hydrogel and at the surface of the hydrogel at the equilibrium state. So, the long 

time limit state will be determined by force balance equations in Eq. ( 2-10 ), and Eq. 

( 2-11 ) while the acceleration terms inside the hydrogel and at the surface are both 

zero, also Eq. ( 2-14 ) and Eq.( 2-15 ) are the stresses and chemical potential inside the 

hydrogel.  

Furthermore, as at the equilibrium state 0=Gδ , so the left hand side of Eq. ( 2-13 ) is 

zero, therefore by using the advantage of variational approach each term on the right 

hand side can be zero. Consequently, the first integrand in Eq. ( 2-13 ) vanishes, leading 

to  

ik
ik F

CFus
∂

∂
=

),(  ( 2-14 ) 

Furthermore, local equilibrium is assumed between small molecules. Therefore, the 

fifth integrand in Eq. (1. 13) vanishes, leading to  

C
CFu

∂
∂

=
),(µ  ( 2-15 ) 

Hence, by assuming the local equilibrium condition, the stress values can be obtained 

from the derivative of the free energy density of the hydrogel with respect to the 

deformation gradient, and the chemical potential of the solvent molecules that are 
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penetrated inside the hydrogel is equal to the derivative of the free energy density of 

the hydrogel with respect to the concentration of the solvent molecules inside the 

hydrogel. Therefore, a functional form of the free energy density ),( CFu is required to 

be able to derive the equations of state.  Flory’s approach is taken in chapter 5 to define 

a functional form of the free energy density of the hydrogel and derive the equations of 

state. 

However, the above Equilibrium thermodynamic theory looks like a decent theory to 

analyse the behaviour of the hydrogel, (i.e. the polymer in contact with solvents), still 

cannot be used for highly swellable materials. As it was discussed earlier, the short time 

limit is when the solvent molecules are not yet redistributed, while highly swellable 

materials extremely deform in this situation. Therefore, equilibrium thermodynamic 

theory is not capable of analysing fast changes of the hydrogel for highly swellable 

materials in the short time limit. Hence, another non-equilibrium thermodynamic 

theory is required to deal with the short time limit.  

2.2 Non-equilibrium thermodynamic theory 

2.2.1 Variation of total work done by the body force over the volume 

In this approach, another field theory of the gels is developed by the author that is based 

on the variational approach that leads to a non-equilibrium thermodynamic theory. A 

polymer network in the hydrogel state is considered at the current state with the 

volumeΩ  and the surfaceΓ .  Figure 2-2 shows a polymer network, in which iP is a body 

force applied to the molecules, 1m is the number of molecules that move due to the body 

force and iu is the drift velocity vector. The differential form of the variation of the total 

work done by the body force over the volumeΩ is given in Eq. ( 2-16 ).  

 
Figure 2-2 schematic diagram of a polymer network under a body force F and a velocity field u. 

 

Ω  

iP  

iu  

1m
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ii uPmW δδ ..1=  ( 2-16 )  

The total work per unit volume can be written as  

iiii uPcuPmw δδδ .... 1
1 =
Ω

=  ( 2-17 ) 

In Eq. ( 2-17 ) 1c is the number of the molecules per unit volume inside the hydrogel, and 

uδ  is the variation of the drift velocity vector.  

Next, a linear relationship between drift velocity and the body force is assumed, which 

is shown in Eq. ( 2-18 ).  

ii PMu .=  ( 2-18 ) 

In which M is the mobility. Furthermore, flux can be defined as below  

ii ucj 1=  ( 2-19 ) 

Therefore, the variational form of the flux can be written as  

ii ucj δδ 1=  ( 2-20 ) 

Hence, by substituting Eq. ( 2-18 ) and Eq. ( 2-20 ) into Eq. ( 2-17 ) it changes to 

i
i j

Mc
jw δδ

1

=  ( 2-21 ) 

Finally, the variation of total work done by the body force over the volume is  

Ω= ∫
Ω

dj
Mc

jW i
i δδ

1

  ( 2-22 ) 

2.2.2 Gibbs free energy 

The Gibbs free energy of the total system for a constant pressure process is 

STHG ∆−∆=  ( 2-23 ) 

In which H∆ is the enthalpy change at constant pressure, and S∆ is the entropy change 

of the system, and T is the temperature. Eq. ( 2-23 ) shows when the entropy change is 

positive, there is a negative change in the total free energy of the system. As all the 

parameters in the free energy equation are defined in terms of changes in the system, 

we only need to simply check whether or not the free energy change is negative for a 
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given mixing problem. By simplifying Eq. ( 2-23 ) for a swelling problem, we can assume 

that  

mm STG ∆−=  ( 2-24 ) 

For any mixing problem obviously the entropy of the system will be increased, hence 

the free energy change should be negative. As the entropy of the system is related to 

the energy of interaction between the molecules and the number of arrangements 

available to the system, so it would be rational to relate the entropy to the molecular 

quantities.  

2.2.3 Entropy of mixing 

According to the Boltzmann’s equation shown in Eq. ( 2-25 ) and considering statistical 

mechanics the entropy of the system is equal to 

Φ= lnkS  ( 2-25 ) 

In which Φ is the total number of configurations that is possible to happen in the mixing 

of two different materials, and k is the Boltzmann’s constant.  

For the simplest problem of mixing two materials with the same spherical size particles 

A and B the total number of possible configuration can be proved to be  

!!
)!(

BA

BA

nn
nn +

=Φ  ( 2-26 ) 

 
Figure 2-3 Schematic diagram, shows empty lattice that can be filled with two different 

spherical molecules randomly. Painter P. C., Coleman M. M., (2009). 
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In which An and Bn are the total number of spherical particles of materials A and B  

respectively. Therefore, the Boltzmann’s equation can be written in terms of mole 

fractions as shown below by using Stirling approximation ( nnnn −≈ )ln()!ln( ) 

)lnln( BBAAm xnxnkS +=∆−  ( 2-27 ) 

In Eq. ( 2-27 ) Ax  and Bx are the mole fractions of materials A and B  respectively that 

are given in Eq. ( 2-28 ) and Eq. ( 2-29 ) respectively.  

BA

A
A nn

nx
+

=  ( 2-28 ) 

BA

B
B nn

nx
+

=  ( 2-29 ) 

But, mixing of two different materials with different particle size is desirable in the 

swelling problem, as the polymer chains (molecules) are far larger than the solvent 

molecules. Following an earlier suggestion by Fowler and Guggenheim (1941), Flory and 

Huggins (1953) independently used a model which assumes larger molecules such as a 

polymer can be treated as a set of linked segments Painter P. C., Coleman M.M. (2009). 

By substituting Eq. ( 2-27 ) into Eq. ( 2-24 )  

)lnln)(( BBAABAmm xxxxnnTkSTG ++=∆−=  ( 2-30 ) 

 

  
Figure 2-4 Schematic diagram shows a filled lattice with small size (low molecular weight) 

molecules represent solvent molecules in blue and connected red balls represent segments of a 

polymer chain. Painter P. C., Coleman M. M., (2009). 
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Where An and Bn are the total number of solvent molecules and polymer molecules 

respectively. Also Ax and Bx are the mole fractions of materials A and B (i.e. solvent and 

polymer) as before.  

In order to get the free energy density, both side of Eq. ( 2-30 ) should be divided by the 

total volumeΩ . Let’s take )/( BA nn +Ω=Ζ and define Ac and Bc as the concentration of 

the solvent molecules and polymer molecules respectively as shown in Eq. ( 2-31 ) and 

Eq. ( 2-32 ).  

Ζ
= A

A
xc  ( 2-31 ) 

Ζ
= B

B
xc  ( 2-32 ) 

Furthermore, the concentration of the solvent molecules is far more than the 

concentration of the polymer molecules, due to the sizes of the molecules. Hence, 

approximately the total free energy density is equal to 

)]ln([ Ζ≈
Ω

= AA
m

m cckTGg  ( 2-33 ) 

Therefore, the total free energy of mixing over the volume is equal to  

ΩΖ=Ω= ∫∫
ΩΩ

dcckTdgG AAmm )]ln([  ( 2-34 ) 

By differentiating Eq. ( 2-34 ) with respect to time and using the chain rule we have 

Ω
∂
∂

=Ω
∂
∂

∂
∂

= ∫∫
ΩΩ

d
t

cd
t

c
c
gG AA

A

m
m η  ( 2-35 ) 

In which 
A

m

c
g
∂
∂

=η can be obtained from Eq. ( 2-33 ). Hence, the variational form of Eq. 

( 2-35 ) can be written as 

Ω
∂
∂

= ∫
Ω

d
t

cG A
m )(δηδ   ( 2-36 ) 

According to the conservation of the energy in the system, the summation of the total 

free energy of mixing of the system should be equal to the negative of the total work 

done by the force, or it can be written as  
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0=+ mm GW  δδ  ( 2-37 ) 

By substituting Eq. ( 2-22 ) and Eq. ( 2-36 ) into Eq. ( 2-37 ) it can be shown that:  

0)]([
1

=Ω
∂
∂
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d
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Mc

j Aδηδ  ( 2-38 ) 

Following Eq. ( 2-4 ) it can be shown that,  

x
j
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−=
∂
∂ δδ )(  ( 2-39 ) 

Therefore by substituting Eq. ( 2-39 ) into Eq. ( 2-38 ) it gives 

0)]([
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∂
∂

−∫
Ω

dj
x

j
Mc

j δηδ  ( 2-40 ) 

By simplifying Eq. ( 2-40 ) in 1D it can be shown that  

0])([
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δηηδδ  ( 2-41 ) 

By applying the integration over the above equation it can be written as 

0)]([
1

=−
∂
∂

+∫ x
x

jdxj
xMc

j ηδδη
 ( 2-42 ) 

In Eq. ( 2-42 ) each term represents a specific mechanism of the flux of the solvent 

molecules. Taking the advantage of variational approach, the second term on the left 

hand side which represent the flux over the boundary must vanish means there is no 

flux in or out at the boundaries.  

The first term on the left hand side of Eq. ( 2-42 ) must also vanish, that leads to an 

equation of flux of solvent molecules inside the hydrogel, as shown below  

x
Mcj A ∂

∂
−=

η  ( 2-43 ) 

According to Eq. ( 2-33 )η  can be shown as below 

]1)[ln(
Ζ

+Ζ=
∂
∂

= A
A

m ckT
c
g

η  ( 2-44 ) 

Therefore,  
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x
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∂η  ( 2-45 ) 

By substituting Eq. ( 2-45 ) to Eq. ( 2-43 ) 

x
cMkTj A

∂
∂

−=  ( 2-46 ) 

Eq. ( 2-46 ) is very similar to the Fick’s law of diffusion that can explain the behaviour of 

solvent molecules inside the hydrogel. By comparing Eq. ( 2-46 ) and Fick’s law of 

diffusion given in Eq. ( 2-47 ) a constant value will be obtained for M . 

x
cDj A

∂
∂

−=  ( 2-47 ) 

Therefore,  

kT
DM =  ( 2-48 ) 

So, our initial assumption in Eq. ( 2-18 ) is now proved that, there is a linear relationship 

between the force which is applied to the solvent molecules and the velocity vector. 

Therefore, in the numerical simulation of the swelling problem, a constant stress is 

applied to all the material points through the time. This simulation is based on Material 

Point Method that is discussed in chapter 3.  

2.3 Numerical approach to model large swelling of highly swellable 
polymers 

2.3.1 Introduction  

Highly swellable polymers form a jelly phase when they are in contact with a solvent. 

Hydrogels can undergo large and recoverable deformations. Swelling of a polymer is 

also a large deformation procedure that can happen as a result of diffusion of solvent 

molecules into the polymer network due to chemical potential, and form an aggregate 

that is called a polymeric hydrogel. By increasing the number of solvent molecules inside 

the hydrogel, hydrogen bonding breaks between the polymer chains. Therefore, 

polymer chains achieve more rotational freedom and finally swelling happens as a result 

of decreasing the forces between the polymer networks. Therefore, polymer swelling is 

brought about by the concentration of the solvent molecules which is diffused inside 
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the polymer due to the chemical potential. Hence, in order to calculate the nominal 

stresses, the governing equations in Eq.( 2-14 ) and Eq.( 2-15 ) must be solved for 

stresses and chemical potential. Based on the non-equilibrium thermodynamic theory 

that was discussed in section 2.2, it was proposed there is a linear relationship between 

the applied body force to the polymer and the displacement as stated in Eq. ( 2-18 ). In 

this thesis instead of solving the governing equations, we have only focused on the large 

elastic deformations as a consequence of the nominal stresses. Therefore, a computer 

program based on the MPM is designed to work for a range of arbitrary constant 

stresses. Hence, instead of solving the actual governing equations for nominal stresses 

and chemical potential, alternatively, we have assumed a range of known constant 

stresses which are each applied to the polymer like an initial body force. Therefore, the 

computer program will be able to work for more realistic values of stresses and chemical 

potential when required.  In section 2.4.4 the numerical approach that is used in this 

thesis is discussed and the MPM is reviewed in details in chapter 3.  

2.3.2 General introduction to Finite Element Method (FEM) 

Over the last few decades, testing of the prototypes via computer aided design has been 

enormously increased. The most significant effect of the computer aided design is to 

increase the speed of simulations and testing. Partial differential equations (PDE) that 

are used in mathematical modelling of different physical, chemical and biological 

phenomena are often too complicated to be analytically solved. Therefore, there is a 

large range of numerical schemes for solving these PDEs. Numerical simulations all have 

their own limitations. Finite Element Method (FEM) is a powerful numerical technique 

which can be used to find an approximate solution for PDEs, which is used to simulate 

engineering problems, for both evaluations of early designs and also testing details of 

the final design.  Another significant advantage of FEM is that it can be used for the 

problem especially with complicated and irregular geometries and also with 

complicated boundary conditions.  FEM is based on the classical works done by Leonard 

Euler (1707-1783) that is based on the minimum total potential energy principle. There 

are various techniques in the conventional FE analysis to simulate different problems 

including linear/non-linear, static/dynamic, steady state/transient, and coupled or 

uncoupled problems in 1D, 2D or 3D. Conventional nonlinear FEM has been used in 
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many fields of manufacturing such as casting, sheet-metal processing, aviation 

industries as well as automotive industries. However, these days different commercial 

packages of FE are available, understanding the fundamental concepts of non-linear FE 

is essential for both analysts and developers. Also, the key reason of why we need a 

nonlinear FE analysis in our project has been clarified. Furthermore, it has been 

discussed why material point method has been employed for numerical modelling and 

why the conventional FE methods are not sufficient enough to simulate the targeted 

problem in this thesis.  

Generally, in order to solve PDEs by using finite element method, first of all, the PDEs 

must be transformed into a set of equivalent variational or weak forms based on the 

variational principle. Next, the geometry needs to be discretised; therefore a finite 

element mesh needs to be generated following the listed guidelines below: 

1. The mesh should be an accurate representation of the geometry of the 

computational domain and the load distribution of the problem.  

2. The mesh should be fine enough to accurately represent large gradients in the 

solutions.  

3. The mesh can consist of different types or orders (i.e. triangular and 

quadrilateral, linear and quadratic) 

Choosing the type and order of the mesh is very problem-dependent (i.e. one mesh may 

perfectly work for one problem but may not work well for another). There is always a 

concern to use a sufficient refined mesh for the problem to be converged. Therefore, 

an analyst should have a physical insight view of the problem to make a better choice 

of the elements and handle the simulating process. The simulation will be started with 

using a fair course mesh that should meet all the three requirements listed above and 

evaluate the results, that should be in light of a physical understanding of the problem 

and give an approximate analytical and/or experimental information which is available. 

In Figure 2-5 and Figure 2-6 a few different computational domain have been illustrated 

that are discretised by a set of triangular elements.  
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Figure 2-5  illustrate 2D discretised computational domains with triangular elements for 

different geometries. 

 

 
Figure 2-6 Figure shows a 3D geometry which has been discretised with triangular elements. 

 

In order to solve partial differential equations globally with FEM, the total 

computational domain should be transformed to a set of subdomains and therefore, by 

using the approximation functions the PDEs can be replaced by a set of matrix equations 

that take the form of linear and non-linear algebraic equations, or maybe ordinary 

differential equations in the time variable. As it was mentioned in earlier by using the 

shape functions PDEs can be replaced with a set of matrix equations that can be linear 

and non-linear algebraic equations. Using non-linear shape functions or non-linear 

constitutive laws (stress-strain laws) in some cases such as when there is material non-

linearity or geometrical non-linearity is inevitable. The structure in this thesis is based 

on the non-linear large elastic deformation of hyper-elastic materials. Therefore, it is 

necessary to introduce non-linear finite element methods as well.   

2.4 A brief history of nonlinear finite element method 

Due to the extensive applications of nonlinear finite element methods, several books 

and articles have already been published.  A Book such as Oden (1972) which is 
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particularly important as Oden pioneered the field of nonlinear finite element method. 

Furthermore, some books are written particularly in the nonlinear FE field such as 

Belytschko and Hughes (1983), Zienkiewicz and Tylor (1991). One recent book is written 

by Wu and Gu (2012). One of the most recent papers on nonlinear, transient finite 

element method is published by N. Bouklas et.al. (2015).  

 

2.4.1 Introduction to nonlinear finite element method 

A combination of three different fields represents the nonlinear finite element method: 

(1) Linear finite element methods that are based on the matrix methods of structural 

analysis; (2) Nonlinear continuum mechanics; and (3) mathematics, including numerical 

analysis. Two kinds of nonlinearity can happen in finite element analysis of solid 

materials: (1) Nonlinearity due to the material, as a result of complicated nonlinear 

relationship between stresses and strains that cause the equation coefficients to be 

depending on the solution; (2) Geometrical nonlinearity, which is also known as ‘large 

strain’ or ‘large deformation’ analysis. It is always simpler to implement material 

nonlinearity than geometrical nonlinearity.  In practice, there are two main approaches 

that can be adopted to simulate material nonlinearity. The first method involves 

constant stiffness that means by iteratively modifying the right hand side loads vector 

the introduced nonlinearity will be addressed. Therefore, the elastic global stiffness 

matrix is formed once only. This means each iteration includes a static equilibrium 

elastic analysis of solids. So convergence can be tested when the generated stresses by 

the loads can satisfy yield or failure criterion within prescribed tolerances. The load's 

vector at each iteration includes external forces and also body forces. Basically, the 

effect of the body forces is to redistribute stresses or (moments) within the system, but 

they don’t change the net loading of the system, as they are self-equilibrating. The 

constant stiffness method is shown schematically in Figure 2-7. The problem with this 

method is that elastic constant global stiffness matrix highly overestimate the material 

stiffness, therefore it requires a huge number of iterations. I. M. Smith and D. V. 

Griffiths, (2004). 
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Figure 2-7 the constant stiffness method. I. M. Smith and D. V. Griffiths (2004) 

 

The second approach is called variable or tangent stiffness method. This method 

considers the reduction of stiffness of the material as failure is approached. This method 

is equivalent to the explicit Euler method if small enough load steps are taken. 

Practically in this method, the global stiffness matrix will be updated on a periodic basis, 

and body load iterations are used to finally achieve convergence. Variable stiffness 

method is shown graphically in Figure 2-8. The advantage of variable stiffness method 

over the constant stiffness method is that it needs fewer iterations, but on the other 

hand it has an extra cost of reforming and factorising the global stiffness matrix. In the 

next section, a brief discussion is given about the types of constitutive laws (stress-strain 

laws) that should be adopted for these introduced methods I. M. Smith and D. V. 

Griffiths (2004). 
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Figure 2-8 the variable or tangent stiffness method. I. M. Smith and D. V. Griffiths (2004). 

2.4.2 Stress-strain laws  

In nonlinear FEM analysis, it is essential to use a nonlinear constitutive law which means 

a nonlinear relationship between the stresses and strains. In solid mechanics, it depends 

on the nature of the problem whether the material is going through large elastic 

deformation or it undergoes plastic deformation. Different constitutive laws are 

available that are coming from elasticity theories or plasticity theories. Here in this 

thesis, we have focused on the large nonlinear elasticity. 

2.4.3 Nonlinear elasticity    

The constitutive law for elastic large deformation can be simply illustrated in the special 

case of Kirchhoff material, which is actually a straightforward generalization of linear 

elasticity for large elastic deformations, such as many engineering problems that involve 

small strains and large rotations. The criterion to measure the elasticity of the material 

model is the degree of path independency, which is related to the reversibility and non-

dissipative behaviour of the material. Hypo-elastic materials are the most weakly path-
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independent in the category of elastic materials and followed by Cauchy elasticity, that 

the stress is path-independent but the energy is not. Hyper-elastic or Green elastic 

materials are fully reversible and path-independent, and the stress values can be 

derived from strain energy potential. In this thesis, a simulation of large swelling of 

hyper-elastic materials is presented in chapter 6, so their mechanical behaviour will be 

explained in details in chapter 6.  

 

2.4.4 Finite Element Method for non-linear large deformation 

Finite element method is basically an accurate method to deal with large deformation 

simulations. In which normally a numerical constitutive law i.e. stress-strain curve will 

be fed to the numerical system as an input. The Finite Element Method (FEM) is a robust 

numerical tool that is frequently used to solve swelling behaviour of polymers Hong et 

al. (2007). As it was mention earlier FEM is used to find numerical approximations of 

PDEs. The background dynamic PDE description of polymer swelling can be derived 

based on the force method as following. As schematically shown in Figure 2-5 a material 

velocity, and initial 0xposition, initial 0Γ, boundary0Ωwith the referenced volumebody 

, the ttime. At any specific ufielddeforms through the time with the displacement 0v

. vvelocitynew the , and xposition the, at Γ, surfaceΩvolumematerial body occupies 

Therefore, the total applied mechanical force to the material body is given by Eq. (2-49). 

 

Figure 2- 9 schematic diagram shows material body represented deforms as a function of time 

and position. 
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∫∫
ΓΩ

Γ+Ω= dtxdtxbtf iii ),(),()( τρ  ( 2-49 ) 

In Eq. ( 2-49 ) ρ is the density, ib is the body force, ix  is the spatial coordinate system, 

and iτ is the surface traction. Furthermore, the force due to the chemical potential of 

the solvent molecules is ignored, as this field is not solved in our numerical calculation 

in this thesis. Further details are presented in chapter 5. The linear momentum of the 

body is )(tpi  that is represented by  

∫
Ω

Ω= dtxvtp ii ),()( ρ  ( 2-50 ) 

velocity field of the material body.  inertial is the ),( txviIn which  

Momentum conservation dictates that 

That gives   )(
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tf
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i =  
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d

iii ),(),(),( τρρ  ( 2-51 ) 

According to Reynold’s theorem, (see APPENDIX I) the time derivative of the left hand 

side of Eq. ( 2-51 ) gives  
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According to the statement of conservation of mass,  

0)),(.( =∇+ txv
dt
d

iρρ
 ( 2-53 ) 

Therefore, from Eq. ( 2-51 ), Eq. ( 2-52 ) and Eq. ( 2-53 ) can be shown that 

∫∫∫
ΓΩΩ

Γ+Ω=Ω dtxdtxbd
dt

txvd
ii

i ),(),()),(( τρρ  ( 2-54 ) 

By using Gauss theorem which is shown in Eq. ( 2-55 ) all the terms in Eq. ( 2-54 ) can be 

merged  
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∫ ∫ ∫Γ Γ Ω
Ω∇=Γ=Γ dtxdtxndtx ijijji ),(.),(.),( σστ  ( 2-55 ) 

Where, ijσ is the Cauchy stress tensor, and jn is the unit normal vector of the surfaceΓ  

the subjected boundary condition in Eq. ( 2-54 ) is  

),(),(. txtxn iijj τσ =  OnΓ . ( 2-56 ) 

Eq. (1. 1) then can be written as  

∫∫∫
ΩΩΩ

Ω∇+Ω=Ω dtxdtxbd
dt

txvd
iji

i ),(.),()),(( σρρ  ( 2-57 ) 

Or in the differential form, Eq.( 2-57 ) can be written as 

iiji vb ρσρ =∇+ .  ( 2-58 ) 

Eq. ( 2-57 ) is normally called the strong form, and cannot be solved analytically since it 

needs the spatial derivative of the stress field. Therefore, a weak form is required to be 

able to solve this PDE. The weak form is obtained by using virtual work principle.  

Hence, Eq. ( 2-58 ) can be integrated over the volume 

0).( =Ω−∇+∆∫
Ω

dvbv iiji ρσρ  ( 2-59 ) 

By expanding Eq.( 2-59 ) and using indicial form it can be written as  

Ω∆+∆−=Ω
∂
∂

∆ ∫∫
ΩΩ

dvvbvd
x

v iiii
i

ji
i )( ρρ
σ

 ( 2-60 ) 

In which i , j denotes the components of the vectors. According to the chain rule, the 

left hand side of Eq.( 2-60 ) can be written as  

Ω
∂
∆∂

−Ω∆
∂
∂

=Ω
∂
∂

∆ ∫∫∫
ΩΩΩ

d
x
vdv

x
d

x
v ji

j

i
jii

ii

ji
i σσ
σ

)(  ( 2-61 ) 

Hence by applying the Gauss theorem on the first term of the right hand side of Eq. 

( 2-61 ), then it changes to   

Ω
∂
∆∂

−Γ∆=Ω
∂
∂

∆ ∫∫∫
ΩΓΩ

d
x
vdvd

x
v ji

j

i
ii

i

ji
i στ
σ

 ( 2-62 ) 
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Therefore, by substituting Eq. ( 2-62 ) into Eq. ( 2-61 ) and rearranging it, the weak form 

of the Eq. ( 2-61 ) will be obtained that can be used as the governing equation in the 

numerical solutions, as there is no continuity of the stress field in this equation.   

∫∫∫∫
ΩΩΓΩ

=Ω∆+Ω∆−Γ∆−Ω
∂
∆∂ 0dvvdbvdvd
x
v

iiiiiiji
j

i ρρτσ  ( 2-63 ) 

The weak form of Eq. ( 2-63 ) is used to generate a Lagrangian frame on a finite element 

mesh in 1D in chapter 3, to validate the results of Material Point Method which is the 

main numerical frame work of this thesis. Basically, FEM takes the advantage of shape 

functions to represent the deformation of the material body. The shape functions differ 

based on the shape of the finite element and number of nodes of each element.  Eq. 

( 2-63 ) can be discretised over each element by using the proper shape functions for 

the elements, by using the below equations:  

[ ] )(),(}]{[),,(~
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
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
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
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





=  ( 2-64 ) 
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
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

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

=  ( 2-65 ) 

Where, u~ and v~ are displacement of any points within the elements in X and Y direction 

respectively. ),( yxNI Is the shape function, and Iu , Iv are the values of displacements 

of nodes in X and Y direction of a 2D plane respectively and I  is the index of nodes. 

Hence, the velocity of the points can be described as  

dt
tduyxN

dt
tyxud I

I
)(),(),,(~

=  ( 2-66 ) 

dt
tdvyxN

dt
tyxvd I

I
)(),(),,(~

=  ( 2-67 ) 

In order to use the shape functions to discretise equation ( 2-63 ), (I.M. Smith and D.V. 

Griffiths) suggest Table 1:  
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Terms in Differential 

equations 

Terms in matrix equation Symmetry 

u  ∫ dxNN ji  Yes 

dx
du  ∫ dx

dx
dN

N j
i  

No 

2

2

dx
ud  ∫− dx

dx
dN

dx
dN ji  

Yes 

4

4

dx
ud  ∫ dx

dx
Nd

dx
Nd ji

2

2

2

2

 
Yes 

Table 1 shows discretisation of different terms in the FEM. 

As it was mentioned, by using the shape functions the weak form equation can be 

discretised as  

Ω

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




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∆−Ω∆
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)()(

)()()( 

 ( 2-68 ) 

By eliminating iIv∆ from Eq.( 2-68 ) gives 

Ω










∂
∂

−Ω+Γ=Ω ∫∫∫ ∫
ΩΩΩ Γ

d
x

xNdbxNdxNdxNvxN ji
j

iI
iiIiiIiIiIiI σρτρ )()()()()(   ( 2-69 ) 

Eq. ( 2-69 ) can be shortly represented at nodes as  
int

iI
ext

iIiI ffvm −=  ( 2-70 ) 

In which,  

∫
Ω

Ω= dxNxNm iIi
T
I )()(ρ  ( 2-71 ) 

( ) Ω=Ω

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

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
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∂
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dBd
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xN
f jiIjji

j

iI
Ii σσ

)(int  ( 2-72 ) 
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Ω+Γ= ∫∫
ΩΓ

dbxNdxNf iiIiiI
ext

Ii ρτ )()(  ( 2-73 ) 

In Which i defines the directions in x,y,z in the Cartesian coordinate system and I

represents the node number.  The ultimate goal of FEM is to find the deformation of the 

material body under the applied forces. The equation of motion shown in Eq. ( 2-70 ) 

should be solved at each time step in a Lagrangian framework to find the deformation 

of each node. Hence, a specific constitutive law is required for the material to find the 

values of stresses at each node from the strains inside each element. The Constitutive 

law depends on the material properties, for example, Hook’s law is the simplest 

constitutive law that represents the linear relationship between stress and strain in the 

elastic zone. Hence, Constitutive laws can be shown as below  

εσ :C=  ( 2-74 ) 

In which the strains ε are directly calculated from the deformation gradient tensor as 

introduced in Eq. ( 2-86 ), or alternatively, form Eq. ( 2-76 ). Also, C is defined in ( 2-78 ) 

that is the tensor of the material properties.  

Alternatively, the rate form of constitutive law is shown below 

DC :=σ  ( 2-75 ) 

D is the tensor of the rate of deformation that is shown in Eq. ( 2-77 ) and C is the 

tensor of the material properties or the tangent modulus. As it was discussed, 

constitutive laws vary based on the material. Therefore, the tensor of material 

properties should vary as well. In chapter 5 we have used a specific tangent modulus 

which is based on the Flory approach. For example, tangent modulus for Neo-Hookean 

materials will be defined as in Eq. ( 2-78 ).  

x
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∂
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=ε or )(
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ij x
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+
∂
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=ε  ( 2-76 ) 
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∂

∂
+

∂
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 ( 2-77 ) 

)( 111111 −−−−−− ++= kjiljlikklijijkl CCCCCCC µλ  ( 2-78 ) 
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Where in the above equations, iu and iu are the displacements and the velocity term 

respectively, ijklC is the tangent modulus for the second Piola-Kirchhoff stress strain 

tensor, ijC  is defined in Eq. ( 2-83 ),λ are µ introduced in below.  

0λλ =  ( 2-79 ) 

Jln0 λµµ −=  ( 2-80 ) 

In which 0λ and 0µ are Lame constants of the linearized theory which are given in Eq. 

( 2-81 ) and Eq. ( 2-82 ) respectively, in terms of Young’s modulus and Poisson ratio and 

FJ det= in which F is the deformation gradient tensor as it is defined in Eq. ( 2-86 ). 

)1)(21(0 νν
νλ

+−
=

E  ( 2-81 ) 

)1(20 ν
µ

+
=

E  ( 2-82 ) 

In Eq. ( 2-78 ) ijC  can be achieved from Green strains as below 

2/)( ICE ijij −=  ( 2-83 ) 

Where, I is the identity matrix, and ijE  is the Green strain that is defined as 
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=  ( 2-84 ) 

In which X is the material coordinates (Lagrangian coordinate) and u is the 

displacement function, which is defined as below 

iii Xxu −=  ( 2-85 ) 

We can also define deformation gradient tensor in terms of the displacement function 

u  as below 
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Therefore, the Jacobian determinant can also be defined in terms of displacement 

function. 

1

2

2

1
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2
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1 )1)(1(det
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uFJ
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==  ( 2-87 ) 

In Eq. ( 2-86 ) spatial coordinates are denoted by a small letter x which is also called 

Eulerian coordinates. As it is shown in Eq. ( 2-78 ) the elasticity tensor (tangent modulus) 

is a fourth-order tensor, but in the 2D simulation, we only need nine component of this 

tensor. In Eq. ( 2-88 ) we have shown Voigt matrix notation of tangent moduli in 2D. 
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 ( 2-88 ) 

In which ijS are the stresses and ijE are the rate of green strains that is introduced in 

Eq.( 2-84 ). It should be mentioned that second elasticity tensor ijklC has both major and 

minor symmetry, which means klijijkl CC = gives major symmetry, and as it relates 

symmetric measures of stress rate and strain rate, therefore it also has the minor 

symmetries. 

Furthermore, the constitutive laws are shown in Eq. ( 2-74 )and Eq. ( 2-75 ) cannot be 

true in large deformation as shown by Belytschko et al. (2000), because of the wrong 

measure of stress and strain. Basically, solid rotation in large deformation should be 

counted, in the stress and strain measures. Figure 2-10 shows an extreme situation of 

solid rotation of a bar under an initial stress. However the bar undergoes a solid rotation 

in this figure and the value of strain remain zero, the stress in the X direction changes 

from 0σ to zero and stress in the Y direction changes from zero to 0σ . Therefore, in large 

deformation analysis, the constitutive laws mentioned earlier have some inappropriate 

values. 
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Figure 2-10 Shows an extremely solid rotation of a bar under an initial stress, that change the 

value stress without changing the value of strain as an effect of solid rotation. F. Li (2008) 

 

In order to cover the effect of solid rotation in large deformation different objective 

stress rates are defined. Here in this thesis, Jaumann rate is used that is defined as below  
TJ WW .. σσσσ −−=∇   ( 2-89 ) 

Where W is the spin tensor that is shown as below 

)(
2
1

i

j

j

i
ij x

u
x
uW

∂
∂

−
∂
∂

=


 ( 2-90 ) 

Hence, the rate form of the constitutive law shown in Eq. ( 2-75 ) in large deformation 

should be changed to  

DCJ :=∇σ  ( 2-91 ) 

Therefore, the stress rate will be defined as  
JTWW ∇++= σσσσ ..  ( 2-92 ) 

Further discussions and applications of the objective stress rates are given in Chapter 6.  

2.5 The advantages of MPM over traditional FEM 

The material point method (MPM) is a developed finite element method which is based 

on the Lagrangian-Eulerian formulation to describe the deformations. This method 

takes the advantage of two different kinds of spatial discretisation. One characterises 

the motion of the material points which represents the deformation of the continuum 

body. The movement of the material points is traced against a constant background 
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computational mesh. These two meshes are related to each other via a mapping system. 

The two main advantages of MPM over the conventional FEM are first, due to the 

constant background mesh which can be chosen arbitrarily. Therefore, mesh distortion 

that is a major difficulty and a fatal error in conventional FEM which usually happens in 

extremely large deformation analysis can be avoided. However, there are different 

numerical techniques to deal with large deformation problems based on the 

conventional FEM, but as it was mentioned earlier constantly modifying the stiffness 

matrix, re-meshing and changing of the topological inter-relationships and/or modifying 

the force matrix is required, that suggests to develop a robust numerical method that 

makes it easier to simulate large deformations. The second advantage of MPM over 

conventional FEM is the flexibility in changing the main computational domain in the 

MPM. Adding material to or losing material from the total computational domain during 

the analysis is quite a difficult task in the conventional FEM, as it requires to constantly 

changing the mesh system and all the topological relationships need to be defined again. 

So, conventional FEM has a major problem to deal with some problems such as crack 

propagations, degradations of the materials, and also additive manufacturing 

simulations.   

2.6 Summary of this chapter 

In this chapter, the current literature detailing the simulation of materials such as 

polymers under large deformation is reviewed based on the equilibrium 

thermodynamic theory. Therefore, polymer swelling is used as an example to 

demonstrate the underlying theory for large deformation of materials.  Highly swellable 

materials that are in contact with a solvent first form a hydrogel phase and finally falling 

apart due to degradation. However, equilibrium thermodynamic theory sounds 

applicable to simulate the swelling behaviour of the hydrogels, it cannot be used for 

highly swellable polymers, since the theory does not consider the short time limit of the 

swelling process and only deals with the long time limit and the final swelling ratio in 

the equilibrium stage. Therefore, a decent theory is required to deal with the fast 

changes of the hydrogels for highly swellable polymers. Instead, the non-equilibrium 

thermodynamic theory was introduced and its mathematical framework was presented 

to model the swelling behaviour of highly swellable polymers. A simplified version of 
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the non-equilibrium thermodynamic theory is applied to model swelling induced by 

moisture absorption in chapter 4.  

Furthermore, the numerical approach that is used to the model swelling behaviour of 

the hydrogels is discussed that is based on the Material Point Method (MPM). 

Therefore, a rate form of the material constitutive law is required to fit with the MPM. 

A rating form of the linear constitutive law (Hook’s law) is used for the elastic small 

deformation. Furthermore, a rate form of the constitutive law based on Flory’s theory 

is used for extremely large deformation of highly swellable polymers. In addition, in 

order to cover the effect of solid rotation in large deformation, an objective stress rate 

was introduced that is based on the Jaumann rate. Further details of the rate form of 

material constitutive law and the objective stress rates is discussed in details in Chapter 

5.  

Finally, a glimpse of conventional Finite Element Method (FEM) in nonlinear modelling 

was discussed to clarify the reasons why conventional FEM is not capable of modelling 

extremely large deformation of highly swellable polymers that finally falling apart due 

to degradation. Therefore, Material Point Method (MPM) was introduced as a robust 

numerical technique to simulate the swelling behaviour of highly swellable hydrogels. 

In Chapter 3 the MPM is reviewed in detail. 
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Chapter 3. The Material Point Method 
 

Material Point Method (MPM) is an advanced Finite Element numerical tool. This method 

takes advantage of Lagrangian-Eulerian discerption of motion. Therefore, the topological 

system used in this method can effectively deal with extremely large deformations, such as 

large swelling in highly swellable polymers. Furthermore, this method can be efficiently 

applied to difficult problems that deal with discrete elements and continuum bodies at the 

same time, such as the modelling of Selective Laser Melting technique and degradation of 

highly swellable polymers during large swelling. This chapter is to provide a review of MPM 

detailing the mathematical formulations and declare the advantages of MPM over 

conventional FEM. Additionally, the topological system in MPM that is used in our code is 

discussed. 

 

3.1 Introduction 

Over the last few decades, computational techniques have been enormously developed 

for different applications. Recently, by developing the capacities of computers 

numerical techniques are advanced to simulate even more demanding problems. 

Material Point Method is an advanced numerical tool that can be used to model 

complex problems such as granular flow, and plastic forming according to Z. Wieckowski 

(2004). Furthermore, MPM can be conducted for those problems that either the 

discrete elements solidify and make a continuum body such as the simulation of SLM 

technique, or a continuum body starts to disintegrate such as degradation of highly 

swellable polymers during large swelling, that are currently difficult to handle for the 

traditional finite element method. In the new numerical techniques, it is attempted to 

avoid the problem of mesh distortion which is a common problem in the traditional 

finite element method, especially in the large deformation analysis. Therefore, there is 

no need for regular re-meshing systems, and adding or loosing materials to/from the 

main computational body are also possible. In the next section, the advantages of MPM 

over the traditional FEM is discussed.  
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3.2 The advantages of MPM over conventional FEM 

Precisely speaking, dealing with extremely large deformation in conventional FEM is too 

difficult because of mesh distortion and tangling which could be fatal for the numerical 

solution. Conventional FEM in solid mechanics is based on the Lagrangian mesh that is 

deforming with the material. In the large deformation simulation such as swelling, the 

mesh can be distorted rigorously and therefore the accuracy of interpolations loses 

quickly. Tangled mesh in large deformation can also be fatal for FEM simulation because 

it ends up with an ill conditioned stiffness matrix. Therefore, we may need to use re-

meshing technics to avoid fatal errors. However, accuracy in mapping variables from the 

old mesh to the new mesh; and an adaptive algorithm to decide when to re-mesh are 

the two important considerations in any re-meshing technics. Furthermore, FEM is 

developed to deal with continuous problems, while degradation problem involves some 

sort of discontinuity at the breaking sections of the material parts of the main body. 

Thus, by losing material we need to re-mesh the body again and again. According to 

these restrictions, application of conventional FEM for extremely large deformation of 

polymers accompanied with degradation is not suggested. Hence, in order to simulate 

swelling and degradation problems a simple but robust numerical method is required. 

Recently, different generalized Finite Element Methods and mesh free methods have 

been developed. By using the advantage of Eulerian mesh, such as the Arbitrary 

Eulerian-Lagrangian (ALE) mesh Liu et al. (1988), Level set boundary tracking method 

Hettich and Ramm, (2006) and etc. some large deformation problems have been solved. 

The numerical method used in this thesis is based on the newly developed method 

called Material Point Method (MPM) that is explained in details in the next section. 

3.3 Material point method and formulation 

In this chapter algorithm and governing equations of MPM is introduced in detail and, a 

few examples are solved to demonstrate the accuracy and capability of the MPM code. 

A schematic figure is shown in Figure 3-1 to represent the MPM solution algorithm. 
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Figure 3-1 Three main steps of MPM algorithm: (a) Initialisation of the material points, (b) 

deformation of the material points (Lagrangian phase), (c) Resetting the mesh, by using the 
mapping system (convective phase) (Phuong et al. 2015) 

3.3.1 Governing equations 

Most of the materials in this section are taken from Z. Wieckowski (2004) and Ted 
Belytschko et al. (2005). 

The basic idea in MPM is the discretisation of the solid body into groups of material 

points through applying density concentration function. Using Dirac delta function δ~

gives: 

∑
=

−=
pN

p
pp XxM

1
)(~δρ  ( 3-1 ) 

In Eq.( 3-1 ) ρ is the density, pM is the mass of a material point, pN is the total number 

of the material points, δ is the Dirac delta function, x  is the vector of the spatial 

coordinate and pX is the vector of the material points position (the p  subscript indicates 

the variables on the material points) 

In standard FE weak form, Dirac delta function is defined as:  





≠
=

=−
p

p
p Xxif

Xxif
Xx

0
1

)(~δ  ( 3-2 ) 

As it was discussed in chapter 1 the standard weak form in the tensor notation of the 

governing equation, on the material domain Ω  with the boundary Γ is written as  

∫ ∫∫∫ Γ ΩΩΩ
Ω∆+Γ∆+Ω∆∇−=Ω∆ dbvdvdvdvv iiiiiii ρτσρ )(  ( 3-3 ) 
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In Eq. ( 3-3 )v  is the velocity vector, v∆  is a test function and v  is acceleration (the dot 

denotes first order time derivative), σ is the Cauchy stress tensor, τ and b are the 

vectors of surface traction and body force respectively. 

The discretized form of Eq. ( 3-3 ) for MPM is attained as:  

[ ]{ } Γ∆+∆=∆∇+∆ ∫∑∑
Γ=

−

=

dvXvXbMXvXvXvM pp

N

p
ppppp

N

p
p

pp

τσρ )()()()()(
1

1

1

  ( 3-4 ) 

Where in the second term of the left hand side of Eq. ( 3-4 ) 1−
pρ is the inverse of the 

density, which is different from conventional FEM. In order to calculate the velocity of 

the material points, a background mesh is required. By using the Eulerian shape 

functions )(XNI  in which I denotes the nodal index of the computational mesh, and by 

substituting )()( tvXNv III = , and )()( tvXNv III ∆=∆  in Eq. ( 3-4 )the discretised form is 

as below: 

∑ ∫
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 ( 3-5 ) 

This can briefly be shown as the conventional FEM notation that was introduced in Eq. 

( 2-70 ):  
int

I
ext

II ffvm −=  ( 3-6 ) 

In Eq. ( 3-6 ) m , ext
If  and int

If are the consistent mass matrix, nodal external forces, and 

nodal internal forces on the computational mesh, respectively.  

In Eq. ( 3-5 ) )( pI XB is the spatial gradient of the shape function )( pI XN defined as:  

x
XN

XB pI
pI ∂

∂
=

)(
)(  ( 3-7 ) 

In this thesis, the lower case letters represent the spatial/nodal tensor variables of the 

computational mesh, and the upper case letters denote the tensor variables of the 

material points. Another difference between MPM and conventional FEM is in 

employing mass matrix. In the MPM, a lumped mass matrix in explicit time integration 
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that is shown in Eq. ( 3-8 ) is used instead of the consistent mass matrix such as shown 

in the left hand side of Eq. ( 3-5 ) 

∑
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p
pIpI XNMm

1
)(  ( 3-8 ) 

In MPM, all the state variables such as stresses and density and material point velocities 

are traced on the material points. In comparison with conventional FEM material points 

in MPM are used as numerical volume integration points instead of Gauss points to 

calculate the volume integration. The first term on the right hand side of Eq. ( 3-5 ) is 

the nodal internal forces. Which is given below   

∑
=

−=
pN

p
ppp

T
IpI XXBMf
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1int )()( σρ  ( 3-9 ) 

The nodal external forces including all the body forces and surface tractions in Eq. (3-5) 

is given as:  
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Material Point Method is a very convenient numerical method to simulate extremely 

large deformation. Therefore, in the next section, we discuss nonlinear continuum 

mechanics such as the deformation gradient tensor, the Green (Green- Lagrange) strain 

tensor E , the rate of deformation tensor D , the spin tensor W  and Jaumann rate of 

Cauchy stress that is used to explicitly update the stress in each time step.  

3.3.2 Deformation gradient tensor 

The two essential part of the nonlinear continuum mechanics is the description of 

deformation and the measure of strain. Therefore, deformation gradient is an important 

variable in characterization of the deformation, which is defined by  

j

i
ij X

xF
∂
∂

=  ( 3-11 ) 

Where ix and jX refer to the computational coordinates and the material coordinates 

respectively. The deformation gradient in a rectangular coordinate system in 2D is given 
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by Eq. ( 2-86 ) and the determinant of the F which is called Jacobian determinant is 

defined in Eq. ( 2-87 ).  

With the Jacobian determinant, the integrals in the current and reference 

configurations can be related, which is an essential definition of updating the material 

configuration in MPM.  

∫ ∫Ω Ω
Ω=Ω

0
0),(),( Jdtxfdtxf  ( 3-12 ) 

In which x is the position of the material point X at time t , and 0Ω , Ω are the initial 

state of the configuration and the current configuration respectively.  

3.3.3 Green strain tensor 

The most widely used measure of strain especially in finite element method is the Green 

strain. In order to avoid nonzero strains or nonzero stresses, the measure of strain 

should vanish for any rigid body motion, and especially for rigid body rotation. This is 

the most important reason that linear strain displacement equations are restricted in 

nonlinear theories. By using the definition of the deformation gradient tensor the Green 

strain tensor is defined as in Eq. ( 2-84 ).  

3.3.4 Rate of deformation 

The rate of deformation D  or the velocity strain is another important kinematic 

measure in continuum mechanics that is used in MPM. First, consider the velocity 

gradient L  which is defined on the material points. 

j

i
ij x

VL
∂
∂

=  ( 3-13 ) 

By dividing the velocity gradient tensor into symmetric and skew-symmetric parts it 

becomes  

)(
2
1)(

2
1

jiijjiijij LLLLL −++=  ( 3-14 ) 

The symmetric part of the velocity gradient tensor is defined as the rate of deformation

D  that is shown in the Eq.( 3-15 ), and the skew-symmetric part is defined as the spin 

W which is shown in Eq. ( 3-16 ).  



CHAPTER THREE THE MATERIAL POINT METHOD 
 
 

59 
 












∂
∂

+
∂
∂

=
i

j

j

i
ij x

V
x
VD

2
1

 ( 3-15 ) 












∂
∂

−
∂
∂

=
i

j

j

i
ij x

V
x
VW

2
1

 ( 3-16 ) 

In this thesis, the capital letters are used for the material coordinate system, and the 

small letters are used to represent the spatial coordinate system.  

3.3.5 Jaumann rate 

Objective rates in constitutive equations are required for Cauchy stress tensor, to 

consider the solid rotation of the material. Therefore, the objective rate of the stress 

tensor can be used to account for the material rotation that is also called a frame 

invariant rate.  In this thesis Jaumann rate of Cauchy stress is used that is given as 

T
kjikkjik

ijJ
ij WW

Dt
D

⋅−⋅−=∇ σσ
σ

σ  ( 3-17 ) 

Where, W is the spin tensor given in Eq. (2. 2) which is also traced on the material points 

as well as stresses.  

The superscript ∇ in both equations describes an objective rate. The hypo-elastic 

constitutive equation that is used in this thesis is as below: 

DC JJ :σσ =∇  ( 3-18 ) 

Where JCσ is the constitutive law and D  is the rate of deformation that was introduced 

in Eq.( 3-15 ) and the first term on the right hand side of Eq. ( 3-17 ) is the material rate 

for the Cauchy stress tensor, which is given as:  


rotation

T

material

JTJ WWDCWW
Dt
D

⋅+⋅+=⋅+⋅+= ∇ σσσσσσ σ :  ( 3-19 ) 

As it is represented in Eq. ( 3-19 ) the material time derivative of the Cauchy stress 

contains two parts. The first term on the right hand side of Eq. ( 3-19 ) is the rate of 

change due to the material response which is identified as an objective stress rate called 

Jaumann rate. The second term is a change of the stress due to the rotation.  
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3.3.6 Large deformation schemes for incrementally objective integration 

In large deformation analysis, the rigid rotation is an important factor. The idea of 

incremental objectivity is presented by Huges and Winget (1980) that means an update 

algorithm is incrementally objective. Precisely speaking, in a rigid rotation where 

nijn FtQF ⋅=+ )(1 in which ijQ is the rotation tensor and 1det =ijQ . The Cauchy stress is 

given by )()(
)()1(

tQtQ T
ijnijijnij ⋅⋅=

+
σσ . Simo and Hughes (1998) have an extensive 

discussion of objective stress update algorithms. In this thesis, a simple update scheme 

is used based on Jaumann rate. The stress update scheme is given by 
JT

nnnn tQQ ∇
+++ ∆+⋅⋅= σσσ 111  ( 3-20 ) 

In Eq.( 3-20 ) ]exp[
)1(

tWQ ijnij ∆=
+

is the incremental rotation tensor which is related to 

the spin ijW , which is introduced in Eq.( 3-15 ). By substituting Eq. ( 3-19 ) for the 

Jaumann rate in Eq. ( 3-20 ).  

DtCQQ J
n

T
nnn :111

σσσ ∆+⋅⋅= +++  ( 3-21 ) 

In Eq. ( 3-21 ) n is the increment number and D is the rate of deformation. t∆ is the time 

interval and JCσ is the elastic modulus tensor which will be discussed in details in 

chapter 5. 

3.3.7 Mapping procedure 

According to the basic concept of MPM, a mapping procedure is required to map the 

state variables such as velocity, acceleration, and etc. forward and backward between 

the material points and the computational mesh. Similar to the conventional FEM, by 

using the spatial shape functions the information from the nearby material points will 

be transferred to the nodal points of the computational mesh. The first step in mapping 

procedure is to calculate the lumped mass matrix. Hence, spatial shape functions can 

be used to map the mass of the nearby material points to the nodes of the 

computational mesh as it was given in Eq. ( 3-8 ). 

In order to map the velocities of the material points to the nodes of the computational 

mesh, first the momentum of the material points are mapped, according to the 

conservation of the momentum we have 
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In the next step, in order to calculate the nodal velocities, the momentum of the nodal 

points will be divided by the mass of the nodes. In MPM, the procedure of mapping back 

the nodal velocities to the material points follows the standard interpolation procedure.  

∑=
I

pIIp XNvV )(  ( 3-23 ) 

3.3.8 Time integration loop for the dynamic equations 

As all the state variables are defined on the material points, the time integration of the 

dynamic equations starts from the material points. Depend on the initial conditions of 

the problem, the different starting point can be considered. i.e. if an initial velocity is 

assigned to the material points the time integration of the dynamic equations should be 

started from mapping the mass and velocity of the material points to the nodes of the 

computational mesh by using Eq. ( 3-8 ) and Eq. ( 3-22 ). If an initial stress is assigned to 

the material points, then the loop will be started by mapping the stress terms from the 

material points to the nodes of the computational mesh to calculate the internal nodal 

forces by using the Eq. ( 3-26 ). Generally, the time integration should follow the bellow 

algorithm. 

Map the material point’s mass to the nodes of the computational mesh, as it was 

explained earlier 
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Calculate the nodal velocity of the computational mesh,  
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Update the internal nodal forces, by using Eq. ( 3-27 ), some extra term can be added to 

this equation, to model damping of the system or to model constant stresses. In chapter 

3 two more terms will be added to the internal nodal forces for damping force and to 

model constant stresses.   
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Similarly, we can update the external nodal forces by using  
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By using the second law of Newton, nodal acceleration of the nodal points can be 

updated for the time step tt ∆+ as bellow  

])()[(1 int text
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Eq. ( 3-29 ) can be used to update the material point’s velocity, which is the backward 

difference mapping procedure: 

∑ ∆+∆+ ∆+=
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pI

tt
I

t
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tt
p XNvtVV )(  ( 3-29 ) 

In order to update the nodal velocities of the computational mesh, the calculated nodal 

acceleration can be used: 
tt

I
t
I

tt
I vtvv ∆+∆+ ∆+=   ( 3-30 ) 

The next step is to calculate the rate of deformation, by using Eq. ( 3-31 ) we can 

calculate the rate of deformation as shown below 
tt

I
t
pI

t
p

tt vXBXD ∆+∆+ = )()(  ( 3-31 ) 

In which )( pI XB is the derivative of the shape functions.  

 

In order to update the stress in MPM Eq. ( 3-32 ) can be used as shown below 
ttttt t ∆+∆+ ∆+= σσσ   ( 3-32 ) 

The second term on the right hand side of Eq. ( 3-32 ) is the stress rate. Depends on the 

constitutive law we can use a different method to find the stress rate. As we discussed 

in Eq. ( 3-21 ) by using an incrementally objective algorithm, we are able to find the 

stress rate in large deformation analysis.  
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The mass density field is calculated on the material points and will be updated at each 

time increment. Eq. ( 3-33 ) can be used to update the mass density field  
ttttt J ρρ 1)( −∆+∆+ =  ( 3-33 ) 

Where tρ and tt ∆+ρ are the density values of each material points at time step t and 

tt ∆+ respectively, and ttJ ∆+ is the Jacobian that is the determinant of deformation 

gradient tensor as it is discussed earlier at the time tt ∆+ which is related to the material 

configuration at time step t . According to Wieckowski (2004) in some problems 

especially, when stresses are equal to zero at the beginning of the process, Eq. ( 3-33 ) 

is not very accurate and can lead to a major numerical error. In such cases, Wieckowski 

suggested using the current position of the material points to approximate the density 

by using equation below 

∑= iiNx ρρ )(  ( 3-34 ) 

In Eq. ( 3-34 ) iN are the shape functions, and iρ are the nodal value of the mass density, 

in which for a rectangular mesh with linear shape functions can be calculated by: 
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In which I
I

vol)(∑ is the average volume of the elements around the node I that are 

filed with material points (i.e. the volume of the free elements around the boundary do 

not count). The last step is to update the position of the material points by mapping the 

nodal velocities to the material points as  
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tt
p vXNtXX )(  ( 3-36 ) 

In the above time integration procedure, there are two different methods to update the 

nodal velocity vector tt
Iv ∆+  for the next time step, either Eq. ( 3-25 ) can be used via 

conservation of linear momentum or directly updating the nodal velocities via 

acceleration of the nodal points for the next time step as it is shown in Eq. ( 3-30 ). The 

nodal velocities are important in MPM as they have used to both updates the stresses 
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and also to update material point’s positions. In some cases, there are some numerical 

errors especially for those material points located near to the boundary. As it is shown 

in Figure 3-2, when there are a small number of material points in one computational 

cell, the nodal mass t
Im  tends to zero while the calculated nodal forces from Eq. (3-26) 

do not tend to be zero (especially in the case of having an extra term of constant stress 

which will be discussed in chapter 3), hence a large nodal acceleration will be obtained 

that leads to large nodal velocity which causes material points separation.   

 
Figure 3-2 Schematic picture of boundary cells that need special care, as the nodal lumped mass 

will be small especially at the corner cells which may need distinct treatments.  

 

A smoothing technique of Eq. ( 3-25 ) is suggested by Sulsky et al. (1995) to resolve this 

problem.  In our numerical calculation, we have observed both Eq. ( 3-25 ) and Eq. (3-30) 

have almost the same results for small elastic deformations, however, Eq. ( 3-25 ) has 

much better results for extremely large deformations to update the nodal velocities. It 

has been tested that this method will not have any material point separation or 

numerical problems at the boundary cells of the computational mesh. In Chapter 5 a 

discussion is provided for different possible sources of numerical errors in MPM for 

extremely large deformation’s applications.  
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3.4 Topological systems in the MPM 

As Material Point Method utilises two distinctly different discretization methods which 

require a complicated mapping system to link between the computational mesh and the 

discrete material points. There should be an active way of tracking the material points 

on the computational mesh at every time step. Perhaps for small deformation analysis, 

it can be assumed that the material points are not leaving the initial computational cell, 

which makes the tracking system to be much easier, while for large deformation analysis 

a full tracking system is required. Therefore, there must be three different numbering 

system as shown in Figure 3-3. 

• A specific number should be assigned to all the cells of the computational mesh 

• A specific number should be assigned to all the nodal points of the 

computational mesh 

• A specific number should be assigned to all the material points  

 

 
Figure 3-3 topological system of the rectangular mesh 

The topological relationships between the cell’s number and the node’s number in the 

computational mesh in the MPM is easier than the topological relationships in the 

normal Lagrangian mesh that is used in the conventional FEM, because computational 

mesh remains constant in the MPM, and for example the four neighbourhood cells 

around point 5 are always cells number 6,7,10 and 11. Hence, the two main subroutines 

for this purpose should be defined as below 

1. The input is the node’s index number, and the output is the four cell’s index 

numbers around the node.  
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2. The input is the cell’s index number, and the output is the four node’s index 

numbers around the cell.  

Furthermore, there should be active relationships between the material points and the 

computational mesh. In the simulation of extremely large deformation (i.e. 100% 

expansion in each direction) the material points move to the other computational cells, 

and the path cannot be predicted, hence a tracking system is required to track the MPs 

and needs to be updated at each time step. Therefore, the first it is required to know 

the total number of MPs that exist in the cell at each time step, and the second, it is 

essential to investigate the exact index numbers of the MPs that are in each cell, since 

all the other state variables such as stress, velocity, and position vectors and also shape 

functions and derivatives of the shape functions are defined based on the index 

numbers of the MPs. Therefore, three subroutines are required to be able to track the 

MPs.  

1. The input is the cell’s index number, and the output is the total number of 

existing MPs in the cell.  

2. The input is the material point’s index number, and the output is the cell’s index 

number.  

3. The input is the cell’s index number, and the output is the index numbers of all 

the existing MPs in the cell.  

These five subroutines are almost essential to be able to fully track the material points 

for extremely large deformation, in which the material points may move to many 

different cells through the simulation.  

3.5 Summary of this chapter 

In this chapter, the numerical framework of Material Point Method (MPM), is discussed 

in detail. The most important advantages of the MPM are mentioned as below 

•  It does not require any extra computer modelling for re-meshing systems to 

deal with mesh distortion and especial boundary conditions such as polymer 

degradation or erosion, which is a major difficulty of conventional Finite 

Elements Method. 
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• The MPM is a robust tool to simulate discrete systems that turn into a 

continuum system through a sintering or powder impact process.  

• Easy to deal with adding material or loosing material in every time step.  

• Easy to define complicated geometries. As oppose to the conventional FEM the 

computational mesh is independent of the geometry so the material body can 

be easily defined through an initiation of the material points in a global 

coordinate system.  

Ultimately, due to the two different discretization techniques in the MPM and the 

required mapping system between the two meshes, and all the other topological 

relationships that are required for the MPM make this numerical method more 

computationally demanding compared to the conventional FEM, however, it is observed 

in our code that the computational cost of the MPM is also reasonable as long as the 

code considers no multi-dimensional arrays should be used for the material points and 

for the nodal points (i.e. Every component of material point’s position, velocity and 

stress or nodal position, velocity, acceleration and internal forces should be defined 

separately in different X, Y and Z directions). As it was mentioned earlier in the 

conventional FEM the difficulty of mesh construction is directly related to the 

complication of the computational geometry, and usually commercial mesh generators 

are required to construct a convergent mesh for the body, while in the MPM the 

situation is much easier when a simple background computational mesh can be defined 

and it remains unchanged. Furthermore the material points can be easily positioned 

within a global coordinate system and build a large collection of material points in multi-

dimensional space with specific boundary profile, however, then a fairly complicated 

topological system is required to track the material points at every time step, especially 

in large deformations that material points move far from their initial computational cell, 

and at every time step the tracking information should be updated. Also, either global 

or local mesh refinement is possible in the MPM. In addition, modelling of two different 

material in the same computational mesh is possible which suits for simulation of 

composite materials or functionally graded materials as well. 
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Chapter 4. Validation of The Material Point Method for Small 
Deformation  

 

Very few benchmark tests have been presented in the literature for MPM. Therefore, 

this chapter presents a series of basic test case studies to demonstrate the validity of 

the MPM. A range of basic tests from 1D small vibration to 2D tensile test are chosen 

as the benchmark and the results of the MPM code that is written by the author are 

tested against either analytical results or standard FEM results. Furthermore, swelling 

induced by moisture absorption has been tackled as an application of the 1D small 

deformation and also to open an introduction to the simulation of a large swelling 

process for highly swellable polymers that is mainly discussed in chapter 5.    

 

4.1 Introduction  

The MPM was implemented for small deformation by the author to validate the 

method. A series of basic test case studies are chosen that all have analytical results. In 

the first case, a simple 1D forced vibration problem is considered. The results of MPM 

implementation is compared with the results of conventional FEM, for elastic small 

deformation. In the second case, MPM is implemented for 2D problems, and a tensile 

test is chosen as the benchmark. Therefore, in this case, study, the final equilibrium 

state of the deformation is checked with the analytical solution. Also, in order to check 

the accuracy of the implemented linear constitutive law, a series of final results for 

Young’s modulus and Poisson ratio are checked with the initial inputs for these 

parameters. Furthermore, the same dynamic model has been used to simulate swelling 

induced by moisture absorption. This is to demonstrate moisture absorption, swelling, 

and moisture distribution as a result of longitudinal diffusion of solvent molecules into 

the dry polymeric 1D beam. The model is used for small deformation to predict the final 

swelling ratio and solvent distribution in the polymer. This example is to provide a basic 

mathematical framework for the swelling process, and also to use the general idea of 

the non-equilibrium thermodynamic theory that is discussed in chapter 2 and finally, 
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provides an introduction to a large swelling process for highly swellable polymers which 

is discussed in chapter 5.  

4.2 Theoretical background  

Consider a one-dimensional cantilever beam with length L and Young’s modulus E with 

a constant cross section are of A and density ρ as shown in Figure 4-1.  

 

 
Figure 4-1 Cantilever beam under a constant force 

 

Generally, conventional Finite Element Method is based on the principle of minimum 

potential energy. We have used an explicit time integration to simulate a forced 

vibration problem of an elastic bar, using 2-node bar elements. In order to simulate the 

system with FEM, the system can be modelled with a series of mass and springs as 

shown in Figure 4-2, the springs can be regarded as finite elements and masses can be 

regarded as nodes. The elasticity of the springs depends on the material properties, in 

which for a homogeneous bar the elasticity of the spring is given later. Th 

erefore, having finite elements (i.e. springs and masses) simulate a closer system to the 

solid body.  

 

 
Figure 4-2 Schematic model of mass spring 

The ultimate goal of dynamic finite element analysis is to find the vibration behaviour 

of the system. As it is shown in Figure 4-2 the boundary conditions and the boundary 
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load are exactly taken the same as section 4.2, to be able to compare the results of MPM 

and FEM.  

In Figure 4-2 F is the external load which is applied to the right hand side of the body. 

The other boundary conditions are as below:  

1. The initial velocity of the entire system is set to be zero 

2. The left boundary is fixed by setting zero horizontal velocity and acceleration for 

the nodes at left side of the boundary 

3. An external force F is applied to the right boundary 

Figure 4-3 shows a discretised solid bar with linear elements.  

 

Figure 4-3 the discretised geometry using linear elements 

 

4.3 Numerical approach 

4.3.1 Simulating 1D forced vibration of elastic beams with Finite Element Method 

Basically, a solid long bar can be considered as a mass-spring system. Springs are 

considered to be weightless and representing the elements and their lengths, and the 

mass of each element is lumped on the nodes. The stiffness of the springs is related to 

the properties of the material. For a homogeneous solid bar, the stiffness of the linear 

springs is related to Young’s modulus, cross section area and the length of the element 

as it is shown in Eq.( 4-1 ).  

i

ii
i l

AEK =  ( 4-1 ) 

The FEM code calculates the dynamic response of the system of mass-springs to a 

combination of constant applied nodal forces.  

6 

5 
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}{}]{[}]{[ FxKxM ii =+  ( 4-2 ) 

 

In which dot notations denotes time derivatives, ][M is the lumped mass matrix, ][K is 

the stiffness matrix and }{F is the force matrix. At each time step, the value of the nodal 

acceleration will be obtained from the internal nodal forces, as it is shown in Eq.( 4-3 ).   
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Where, i  is the elemental indicator and int
if is the nodal force and is influenced by the 

elastic strain of the spring, which is simply shown in Eq. ( 4-4 ).  
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In order to apply the boundary condition on the left hand side 1K is given a very big 
number so that node number one that is shown in Figure 4-3 will be fixed. Also, a 
constant force 0F is applied to node number n on the right hand side in Figure 4-3.  
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Therefore, at each time step, Eq.( 4-5 ) Should be solved linearly for iX and find the new 

positions of the nodes, and again this loop must be repeated.  

In the next section, we have compared the results from MPM and FEM for 1D forced 

vibration that is shown in Figure 4-3. 

 

4.3.2 Implementing MPM to 1D forced vibration of elastic beams  

As it is shown in Figure 4-4 a simple 1D discretised body is considered. In order to get 

similar results from both MPM and FEM code, we need to have consistent inputs. The 

left hand side of the boundary is fixed, by giving zero nodal velocity and zero nodal 

displacement to the left hand side node of the first mesh. A constant force is applied to 

the right hand side node of the last mesh on the right hand side of the boundary. 

Therefore, by using 1D shape functions in Eq.( 4-6 ) and ( 4-7 ) that are based on the 

local coordinate system the nodal masses can be obtained as shown in Eq.( 4-8 ).  
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Figure 4-4 Schematic discretised system in 1D MPM, the blue points represents the material 

points and the black points represent the elemental nodes.  
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By having the nodal masses and according to the conservation of linear momentum, 

nodal velocities can be found as it was shown in Eq. ( 3-25 ). 

Calculating the out of balance force at each node is a part of the solution in each time 

step, i.e. it is unknown before the problem is solved and is the key to finding the 

acceleration and finally the deformation of the body at each increment. On the other 

hand, as there is no external forces exerted on the body, nodal forces are only updated 

via internal forces between the material points, as argued in Eq.( 3-26 ).  Hence, nodal 

accelerations are calculated as shown in Eq.( 3-28 ).  

In order to update the velocity of the material points, Eq. ( 3-29 ) is used. Hence, it maps 

back the nodal velocities to the material points for the next time step. 

Therefore, there are two different ways to update the nodal velocities that are shown 

in Eq.( 4-9 ) and Eq.( 4-10 ).  
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In Material Point Method, stresses will be updated through the rate of strains as it is 

discussed in Eq.( 4-11 ) by using linear elastic constitutive law which is based on the rate 

of strain Eq. ( 4-12 ) simply can be written as  
ttttt t ∆+∆+ ∆+= σσσ   ( 4-11 ) 

)( t
p

tttt XED ∆+∆+ =σ  ( 4-12 ) 

In which E is Young’s modulus and D is the rate of deformation that can be updated as 

shown in Eq.( 3-31 ).  

The final steps are updating the new positions of the material points through Eq.(3-36) 

and updating the density by using Eq. ( 3-34 ) and Eq.( 3-35 ).  

 

Figure 4-5 Flowchart of MPM for small deformation. 

Initial nodal/MP 
velocity 

Updating MP 
density 

Updating MP 
positions 
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4.4 Validation of the Material Point Method using Analytical Solution 
and Finite Element Analysis  

The validation consists of several stages, starts with a comparison between the results 

for a 1D small vibration problem simulated by Material Point Method and conventional 

FEM also with the analytical solution, followed by simulating a simple elastic tensile test 

to check the accuracy of the linear constitutive law and the final equilibrium state in 2D. 

A code is developed in FORTRAN to simulate the same vibration problem based on the 

MPM that was discussed earlier and the flowchart is given in Figure 4-5 In order to 

validate the results of MPM computer code, the same problem is solved with 

conventional FEM. Both results are compared and a good match was found as shown in 

Figure 4-6, Figure 4-7, and Figure 4-8 also both method consistently can prove the 

analytical equilibrium state of the system.  

 

Figure 4-6 shows MPM vs. FEM results of displacement of the last node for vibration of a bar 
with total length of mml 375.849= , Young’s modulus of MpaE 50= , cross section area of 

210mmA = , the body force NF 5.0= , mass of each material point is 0.13 gr and seven 
material points is used in each mesh in MPM, 173 elements is used in FEM, and lumped mass of 
each node in FEM is 0.91gr. The time step is 001.0=∆t  second of each iteration. 

 

X (mm) 

(Iteration number) 

L∆ Analytical 
equilibrium 
displacement 

L∆  
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L
nL
EAF ∆=  ( 4-13 ) 

In which F is the applied force E , A and L are Young’s modulus, cross section area, and 

the original length respectively. n Is representing the number of the elements, since by 

breaking the bar into finite elements it works as a series of springs, therefore the 

stiffness of the equal spring is divided by the total number of the springs.  

 

 

Figure 4-7 shows MPM vs. FEM results of displacement of the last node for vibration of a bar 
with total length of mml 375.849= , Young’s modulus of MpaE 10= , cross section area of 

210mmA = , the body force NF 5.0= , mass of each material point is 0.13 gr and seven 
material points is used in each mesh in MPM, 167 elements is used in FEM, and the lumped mass 
of each node in FEM is 0.91gr. The time step is 001.0=∆t  second of each iteration.  

(Iteration number) 

X (mm) 

L∆ Analytical 
equilibrium 
displacement 

L∆
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Figure 4-8 shows MPM vs. FEM results of displacement of the last node for vibration of a bar 
with total length of mml 00.849= , Young’s modulus of MpaE 30= , cross section area of 

210mmA = , the body force NF 5.0= , mass of each material point is 0.225 gr and four 
material points is used in each mesh in MPM, 170 elements is used in FEM and lumped mass of 
each node in FEM is 0.9gr. The time step is 001.0=∆t  second of each iteration. 

                                        

4.5 Swelling induced by moisture absorption 1D simulation 

The work presented in this section was carried out by Hai Yan as his MSc project using 
my FEM code under my co-supervision. (Hai Yan, 2013) 

According to Flory, the total deformation in the hydrogels is as a result of both elastic 

strain and the corresponding swelling strain. Basically, swelling strain is formed due to 

solvent (i.e. water) absorption in the hydrogel. Therefore, the total strain in the hydrogel 

is obtained as  

s

E
εσε +=        in 1D ( 4-14 ) 

By assuming molecular incompressibility for the hydrogel, the volumetric change in the 

swollen hydrogel is  

(Iteration number) 

X (mm) 

L∆ Analytical 
equilibrium 
displacement 

L∆  



CHAPTER FOUR VALIDATION OF THE MATERIAL POPINT METHOD FOR SMALL DEFORMATION 
 

 

77 
 

00

2

0

20

0

1

.
.11
VN
vn

V
V

V
VV

V
Vs +=+=

+
==α  ( 4-15 ) 

In Eq.( 4-15 ) 0V  and 1V  are the initial and swollen volume of the hydrogel, 2V is the 

volume of the absorbed solvent, and v is the molar volume of the solvent, n  is the 

number of solvent molecules in the hydrogel and N is the Avogadro’s number. So, the 

volumetric swelling strain is defined as  

00

1
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.
.11
VN
vn

V
V

V
VV ss =−=−=

−
= αε  ( 4-16 ) 

Hence, the swelling strain in the hydrogel is a linear function of solvent concentration 

as below 

cs .αε =  ( 4-17 ) 

In which, α  (m3) is a constant coefficient of hygroscopic swelling and 
0.VN

nc = is the 

number density of the solvent. Hence, for any sort of moisture absorption field, the 

constitutive model is obtained from Eq.( 4-17 ) which is called hygroscopic swelling 

strain.  

As concentration field is a nonhomogeneous and time depending field, it should be 

solved separately by using Fick’s second law and Flory’s theorem as followed next.  

Fick’s second law describes the concentration changes with respect to time and space 

as shown below 

)( cD
t
c

dif∇⋅∇=
∂
∂

 ( 4-18 ) 

Where, difD is the diffusion coefficient, c is the solvent concentration, t is the time and 

∇ is the gradient operator. Analytical solution of Fick’s second law is available for an 

infinite plane sheet of thickness 1. The analytical solution of the concentration field in 

an infinite plane sheet of thickness equal to 1 and boundary conditions which are 

premediated in one dimension is shown in Eq.( 4-19 ). Crank J. (1975) 

l
xn

l
tnD

ncc
cc dif

n

n
t

2
)12(cos}

4
)12(

exp{
12

)1(41 2

22

00

0 ππ
π

++−

+
−

−=
−
− ∑

∞

=∞

 ( 4-19 ) 



CHAPTER FOUR VALIDATION OF THE MATERIAL POPINT METHOD FOR SMALL DEFORMATION 
 

 

78 
 

In which, ∞c is a constant concentration on the surface, 0c is the uniform initial 

concentration, and x is the Cartesian coordinate system in one dimension from 2/l−
to 2/l . 

In Eq.( 4-19 ) diffusion coefficient is assumed to be 1=difD . A dimensionless parameter 

is defined for the length as lxx /~ = and assumed to be 1~ =x . Therefore, Eq. ( 4-19 ) will 

be simplified to Eq.( 4-20 ) in which α is a time depending parameter, that can be 

calculated at any time. In Eq. (4-20) the value of n=0 is assumed since for any higher 

value of n the second term on the right hand side of Eq. (4-19) will so small which can 

be neglected compared to the situation when n=0.  

)
2

~
cos()(1~

0

0 xt
cc
ccc t ⋅

−=
−
−

=
∞

πα  ( 4-20 ) 

The concentration field in Eq. ( 4-20 ) for various time computed in MATLAB is shown in 

Figure 4-9. The horizontal axis shows the length parameter lxx /~ = and the vertical axis 

represents the concentration distribution in the plane sheet. Each curve demonstrates 

the concentration distribution at a specific time in the plane sheet.  

   

Figure 4-9 the concentration of the solvent at the length parameter x~ in a plane sheet. 

In Figure 4-9 each curve represents a concentration distribution profile, based on the 

different time parameter of 2/ ltDdif that is changing from 0.1 to 1, t  is time and l is the 

length. According to Eq. ( 4-24 ) as it is shown in Figure 4-9 in the dry state (i.e. 00 =c ) 

the concentration profile can be expressed by ∞cct / . Hence, the concentration 
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distribution profile can be obtained for 1 dimensional beam through Fick’s second law. 

Concentration profile plays an important role in swelling problems that is discussed in 

details in chapter 5.   

Therefore, according to Eq.( 4-18 ) the displacement of element in swelling is made of 
two parts  

set uuu +=  ( 4-21 ) 

Where eu is the elastic displacement and su is the displacement due to the swelling. By 

substituting the elastic force as Kfu ee /= in which K  is the element stiffness and by 

rearranging Eq.( 4-25 ) then we have 
ste KuKuf −=  ( 4-22 ) 

As it was discussed earlier concentration profile is nonhomogeneous, hence Eq.( 4-17 ) 

can be rearranged as  

dxcdus ⋅= α  ( 4-23 ) 

Therefore, from Eq.( 4-20 ) combined with Eq.( 4-23 ) swelling strain due to moisture 

absorption can be expressed as 

))
2

~
cos(1( xaus

⋅
−⋅=

πα  ( 4-24 ) 

By adding a damper to the initial model which is introduced later in this section along 

with simulating moisture absorption, the governing equation that was introduced in 

Eq.(4-22 ) will be slightly changed. As it was discussed previously, nodal forces are 

obtained in Eq.( 4-22 ). In case there are other internal forces such as damping forces, 

or swelling forces as a result of moisture absorption in swellable polymers, out of 

balance nodal internal forces for element (i) can be calculated as below 
d

i
s

iiiii FFXXKf ++−= + )( 1
int  ( 4-25 ) 

Where, s
iF and d

iF are the swelling force and damping force respectively, that are 

obtained as below in Eq.( 4-26 ) and Eq.( 4-27 ) respectively.  

).( 1 ii
d

i XXdF  −−= +  ( 4-26 ) 

)( 1
s
i

s
i

s
i uuKF −⋅−= +  ( 4-27 ) 
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In which, d  is a constant damping coefficient, and iX are the nodal velocities, that are 

calculated as in Eq.( 4-30 ) and finally su the swelling displacement can be calculated 
through Eq.( 4-24 ). 

Time integration of the dynamic model 

Time integration of the dynamic equations of FEM for simulating moisture absorption 

begins with calculating the nodal forces. 
ts

i
t
i

t
i

t
i

t
ii

t
i FXXdXXKf )().()()( 11
int +−−−= ++

  ( 4-28 ) 

The nodal acceleration can be updated from the equation of motion as  

t
it

i

tt
i f

m
X )(1 int=∆+  ( 4-29 ) 

And the nodal velocities are updated based on the forward difference method 

tt
i

t
i

tt
i XtXX ∆+∆+ ∆+=  .  ( 4-30 ) 

Finally, the new position of the nodes will be updated trough Eq.( 4-31 ) and then the 

loop turns back to Eq.( 4-25 ) to calculate the forces.  
tt

i
t
i

tt
i XtXX ∆+∆+ ∆+= .  ( 4-31 ) 

The Flowchart of the FEM code that is written in FORTRAN is shown in Figure 4-10.  

 

Figure 4-10 the flowchart of FEM code in FORTRAN for 1D Swelling induced by moisture 
absorption 
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4.5.1 Numerical results for 1D Swelling induced by moisture absorption  

The dynamic nature of swelling induced by moisture utilizes the idea of dynamic FEM. 

Therefore, a one-dimensional finite element code is written in FORTRAN. The code will 

be running until it reaches a steady state which is the prediction of the material swelling 

due to moisture absorption. The main variables that are used in the program are given 

in Table 2.  

 

 

Type of elements 1D 2noded elements 

Number of elements 19 

Length of elements 5 

Coefficient of hygroscopic swelling(α ) 1 

Damping coefficient  1 

Time step 0.0001 

Coefficient of elasticity ( K ) 100 

Initial Load  100 

Table 2 the main variables used in the FE code. 

 

4.5.2 Validation of the numerical code based on the static FEM 

 Initially, the 1D FEM code was developed to validate the 1D MPM code that was 

discussed earlier. As both methods well supported each other and also match with the 

analytical results, therefore, the 1D simulation of swelling induced by moisture 

absorption is done based on the dynamic FEM, however, the steady state swelling is 

also checked via a simple static FEM that is briefly explained below.  

According to Hooke’s law,  

}{}]{[ FuK =  ( 4-32 ) 

In which ][K is the global stiffness matrix for the entire meshed system, and }{u is the 

vector of nodal displacements, and }{F is the vector of nodal forces. 
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Hence, by producing the global stiffness matrix ][K  and by applying the boundary 

conditions to the nodal displacement vector as well as load conditions to the nodal force 

vector, Eq.( 4-32 ) can be solved easily. The global stiffness matrix for one-dimensional 

2-nodded elements can be updated as in Eq.( 4-33 ).  
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Hence, Eq.( 4-32 ) for our model with the same number of elements that was introduced 

in Table 2 will be changed to a set of simultaneous linear equations, the boundary 

condition, and load condition is applied as it was shown in Figure 4-3 in 1 dimension.  























=













































−
−

−
−−

−

Fu

u
u

kk
k

kk
kkk

kk













0
0
00

00

020
2

00

20

3

2

 ( 4-34 ) 

 

4.5.3 Model validation 

Figure 4-11 shows a damping forced vibration of the 1D problem that was shown in 

Figure 4-2, in which the blue line is simulated with the dynamic FEM and is the dynamic 

response of the system that is started from the initial length of 95=L and is damped 

over the equilibrium state of the system, all the other variables are taken the same as 

presented in Table 2. The horizontal axis shows the number of iterations that took to 

finally damp the vibration around the equilibrium state.  
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Figure 4-11 Static and dynamic response of forced vibration of the elastic bar with damping. 
The vertical axis shows the length of the beam. The horizontal axis shows the Iteration number. 

The time step is 001.0=∆t  second of each iteration. 

 

In Figure 4-11 the blue line represents the dynamic response of the right hand node as 

shown in Figure 4-3, the dotted line is demonstrating the analytical solution of steady 

state displacement of the right hand node which is initially at 95=L . As it was 

mentioned earlier, the applied force is 100=F and the stiffness of each element is

1000=K , and the total number of elements are 19.  

Therefore, the equilibrium length of the bar after applying the stretching force at the 

right hand side of the bar is 9.969.1 =+= LLeq which is quite close to the steady state 

value of the dynamic response.  

Generally, the analytical solution and the static and dynamic response of the FEM 

simulation of the forced vibration broadly consist with each other, and not only it can 

be used to validate the swelling induced by moisture absorption problem in 1D, but also 

reassure the validation of the 1D MPM code that was discussed earlier in this chapter.   

4.5.4 Results of simulating swelling induced by moisture absorption 

The result of simulating the 1D swelling induced by moisture absorption is shown in 

Figure 4-12, in which the total displacement of nodes 20th, 14th, 9th, and 4th are shown 
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results  
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results   
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boundary 
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in series 1 to series 4 respectively. The horizontal axis shows the number of iterations 

to get the final steady state swelling ratio. As it is shown in Figure 4-12, the lower three 

points start vibrating with a bit of delay. The dotted line in Figure 4-12 highlights the 

time of affecting each node by the moisture absorption, which indicates the motion in 

the beam is sequential with respect to the concentration of water molecules which is 

gradually increasing until it gets to an equilibrium state.  Furthermore, it shows an 

approximately linear moisture absorption in one-dimensional swelling induced 

problem.   

 

 

Figure 4-12 Position of different nodes due to moisture absorption, nodes 20, 14, 9 and 4 
shown from series 1 to series 4 respectively. The vertical axis shows the length of the beam. 
The horizontal axis shows the Iteration number. The time step is 001.0=∆t  second of each 

iteration. 

4.5.5 The effect of damping coefficient 

Clearly damping coefficient does not have any effect on the equilibrium state of the 

system since at equilibrium state the velocity term will be zero and as it is shown in Eq. 

( 4-26 )the damping force will be zero. However, higher damping coefficient makes a 

smoother and slower swelling process as it is shown in Figure 4-13. Therefore, the 

stability of the system will be increased as there will be fewer fluctuations by using 

higher damping coefficients, up to about d=10.  
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Figure 4-13 the effect of different damping coefficient on the swelling induced by moisture 
absorption. The green line shows the system is very slow and not yet reached an equilibrium 
state. For all the three cases diffusion coefficient is 1000=D and Coefficient of hygroscopic 

swelling is 1=α . The vertical axis shows the length of the beam. The horizontal axis shows the 
Iteration number. The time step is 001.0=∆t  second of each iteration. 

 

4.5.6 The effect of diffusion coefficient 

Diffusion coefficient deals with the diffusion of solvent molecules (water molecules) in 

or out of the material, and directly affects the water concentration. Basically, water 

absorption reaches a certain value and remains there, the same time that swelling of 

the polymer reaches an equilibrium state. As it is shown in Figure 4-14 small diffusion 

coefficient makes the process very slow, however, higher diffusion coefficient may 

cause a big fluctuation.  
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Figure 4-14 the effect of the different diffusion coefficient on the swelling induce by moisture 
absorption. The damping coefficient is 1=d and Coefficient of hygroscopic swelling is 1=α

for all the cases. The time step is 001.0=∆t  second of each iteration. 

 

4.5.7 The effect of coefficient of hygroscopic swelling 

The coefficient of hygroscopic directly impacts on the swelling ratio of the system. As it 

is shown in Eq.( 4-24 ) higher coefficient of hygroscopic will cause larger swelling strain. 

Furthermore, Figure 4-15 shows that higher coefficient of hygroscopic increases the 

amplitude of vibration. According to Eq.  ( 4-27 ) higher swelling strain provides a larger 

swelling force that affects the vibration amplitude.  
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Figure 4-15 the effect of different coefficient of hygroscopic swelling of the material. The 
damping coefficient is 1=d  and the diffusion coefficient is 1000=D for all the cases. The 
time step is 001.0=∆t  second of each iteration. 

4.6 Implementation of MPM for 2D problems 

It is important to validate the proposed Material Point Method scheme to insure the 

scheme can be used in more complicated applications. To validate the code in 2D, we 

have again solved a vibration problem with material point method and compared the 

results with analytical solutions. An elastic two-dimensional square body undertaking 

free vibration is employed as a benchmark test for our MPM code. As shown in 

Figure 4-16 the body is discretised into material points and the bottom boundary has 

been constrained to move in the Y direction, and the left boundary has been constrained 

to move in the X direction. One freer square of the computational mesh covers the 

possible domain of deformation of the material points just in case the material points 

move out of the initial square. Initially, the material points are distributed uniformly in 

the computational mesh.  
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Figure 4-16 the schematic picture of a 2dimensional MPM with free meshes 

 

In this case, an arbitrary constant stress )(0 pXσ is applied to every material point 

through the time, also a damping effect is assumed for the system to damp the 

oscillation about the equilibrium state. In order to add the effect of the constant stress 

and the damper, internal nodal forces in Eq.( 4-35 ) should be updated as bellow in each 

time step:  
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In Eq.( 4-35 ) )(0 pXσ is a constant stress term and )( pXC is an arbitrary damping effect, 

that is applied to every material points through the time. The rest of the mapping system 

is the same as discussed in section 3.3.8.  

4.6.1 Validation method 

In order to validate the code, different cases with different Young’s modulus, different 

values of density and different initial stresses are examined. The height and width of the 
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body are 30 mm, and the thickness is 1 mm. Three different Young’s modulus E=10, 

E=250, and E=500 MPa have been used to demonstrate the effect of changing in Young’s 

modulus. Poisson’s ratio is 4.0=ν and the code has been run for two different densities 

of 1000 Kg/m3, and 2000 Kg/m3. For all these cases 10 material points are used in each 

mesh. Furthermore, the number of material points is examined to find the minimum 

number of material points needed for the convergence of the code. The bottom left 

corner of the 2 dimensional bodies that is shown in Figure 4-16 is initially positioned at 

the (0,0) of the computational mesh, the bottom boundary is constrained in the y 

direction by setting the vertical nodal velocity and the vertical nodal acceleration equal 

to zero at the bottom of the boundary; and the left boundary is constrained in the x 

direction by setting zero horizontal velocity and acceleration at the left side of the 

boundary. A different range of initial negative/positive stresses KPaX p 70)(0 −=σ ,

PaX p 1)(0 −=σ , PaX p 70)(0 =σ are employed as the initial stress conditions and a 

very high damping 1000000000)( =pXC  or 1500000000)( =pXC  are applied to every 

material point to damp the vibration about the equilibrium state. So, the above 

conditions are applied one by and the results are shown in the next section.  

 

4.7 Numerical results of 2D vibration simulation 

4.7.1 Case study 1: the effect of Young’s modulus 

In the first case, the initial inputs are given as presented in Table 3 and three different 

Young’s modulus are tested. In Figure 4-17, Figure 4-18, and Figure 4-19 the value of 

strain from the dynamic response of the MPM is compared with the analytical solution.  

The analytical solution can be easily calculated from the generalised Hook’s law as 

shown in Eq.( 4-36 ). 

 

)(1
yxx E

νσσε −=  ( 4-36 ) 
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Thre different Young’s modulus for different 
cases (MPa) 

10, 250, 500 

Poisson’s ratio 0.4 

Density of Kg/m3 1000 

Initial negative stress in X and Y direction 
(KPa) 

-70 

Number of material points per element 100 

Damping coefficient (NS/m) 1000000000  

Table 3 shows the initial input for case study 1 

 

  

 

Figure 4-17 the fluctuating line shows the results MPM code with Young’s modulus E=10 MPa, 
Poisson’s ratio 4.0=ν , the density of 1000 Kg/m3, 100 material points is used in each 
computational cell, initial negative stress  KPaX p 70)(0 −=σ , and damping 

1000000000)( =pXC , and the red line shows the equilibrium state of deformation. The time 

step is 001.0=∆t  second of each iteration. 
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Figure 4-18 the fluctuating line shows the results MPM code for a strain with Young’s modulus 
E=250 MPa, Poisson’s ratio 4.0=ν , the density of 1000 Kg/m3, 100 material points is used in 
each computational cell, initial negative stress  KPaX p 70)(0 −=σ , and damping 

1000000000)( =pXC , and the red line shows the equilibrium state of deformation. The time 

step is 001.0=∆t  second of each iteration. 

 

Figure 4-19 the fluctuating line shows the results MPM code for a strain with Young’s modulus 
E=500 MPa, Poisson’s ratio 4.0=ν , the density of 1000 Kg/m3, 100 material points is used in 
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each computational, initial negative stress  KPaX p 70)(0 −=σ , and damping 

1000000000)( =pXC , and the red line shows the equilibrium state of deformation. The time 

step is 001.0=∆t  second of each iteration. 

4.7.2 Case study 2: the effect of constant stress 

In the second case study, the initial inputs are given as presented in Table 4 with three 

different values of constant stresses. As it is expected for negative values of the constant 

stress the body shrinks and for positive values it expands. As it is shown in Figure 4-17, 

Figure 4-20 and Figure 4-21 strain values from the steady state response of MPM code 

is quite close to the analytical solution from Generalised Hook’s law.  

Young’s modulus (MPa) 10 

Poisson’s ratio 0.4 

Density of Kg/m3 1000 

Initial stress in X and Y direction(KPa) -70,-0.001,0.07 

Number of material points per element 100 

Damping coefficient (NS/m) 1000000000  

Table 4 shows the initial input for case study 2 

 

Figure 4-20 the fluctuating line shows the results MPM code for a strain with Young’s modulus 
E=10 MPa, Poisson’s ratio 4.0=ν , the density of 1000 Kg/m3, 100 material points is used in each 
computational cell, initial negative stress  PaX p 1)(0 −=σ , and damping 

1000000000)( =pXC , and the red line shows the equilibrium state of deformation. The time 

step is 001.0=∆t  second of each iteration. 
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Strain 
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Figure 4-21 the fluctuating line shows the results MPM code for a strain with Young’s modulus 
E=10 MPa, Poisson’s ratio 4.0=ν , the density of 1000 Kg/m3, 100 material points is used in each 
computational cell, initial positive stress  PaX p 70)(0 =σ , and damping 

1000000000)( =pXC , and the red line shows the equilibrium state of deformation. The time 

step is 001.0=∆t  second of each iteration. 

4.7.3 Case study 3: the effect of density and damping coefficient 

As it was expected the MPM program works for a good range of densities. As it is shown 

in Figure 4-21 and Figure 4-22 changing the density when the rest of the parameters in 

Table 1 are kept constant validates almost identical results. This shows the program can 

deal with a good range of densities. Furthermore, as it was discussed earlier the effect 

of the damping force here in this simulation is to damp the dynamic response to the 

steady state situation. Therefore, the value of damping coefficient is not making an 

important role as finally, the damping force reaches zero at the equilibrium state as the 

velocity gets to zero, however, and higher coefficient damps the oscillations faster. 

Figure 4-23 shows the amplitude of oscillations get smaller and the system reached 

equilibrium state faster compared to the Figure 4-22 in which the rest of the parameters 

are taken the same in both of them.  
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Figure 4-22 the fluctuating line shows the results of MPM code for  a strain with Young’s modulus 
E=10 MPa, Poisson’s ratio 4.0=ν ,  the density of 2000 Kg/m3, 100 material points is used in 
each computational cell, initial positive stress  PaX p 70)(0 =σ , and damping 

1000000000)( =pXC , and the red line shows the equilibrium state of deformation. The time 

step is 001.0=∆t  second of each iteration. 

 

Figure 4-23 the fluctuating line shows the results of MPM code for a strain with Young’s modulus 
E=10 MPa, Poisson’s ratio 4.0=ν , the density of 2000 Kg/m3, 100 material points is used in each 
computational cell, initial positive stress  PaX p 70)(0 =σ , and damping 
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1500000000)( =pXC , and the red line shows the equilibrium state of deformation. The time 

step is 001.0=∆t  second of each iteration. 

4.7.4 Case study 4: the effect of number material points  

Generally, Material Point Method is a costly numerical technique compared to the 

conventional finite element method due to its numerical difficulties. As there are 

complicated topological systems between the material points and the background 

computational mesh, using minimum possible material points can hugely decrease the 

cost of numerical analysis. Hence, a convergence test is always suggested specially in 

small deformation. Fan Li (2008) has carried a convergence test based on three different 

factors, a number of material points, the number of cells of computational mesh, and 

material point density (i.e. the average number of material points per unit cell of the 

computational mesh). He has concluded in his study that the material point density is 

the most important factor that controls the convergence. Therefore, he suggested 94 

material points per unit computational cell as the minimum required for the 2D small 

deformation analysis based on the convergence test he has carried out in his study. The 

ultimate goal of this thesis is to apply MPM for large elastic deformation of the materials 

that is also combined with degradation during large swelling.  

 

In problems with large elastic swelling together with degradation, as the material points 

travel far from their initial computational cell due to the large swelling, or the material 

points may be deleted due to the degradation, the material point density may 

enormously decrease, as a result of a huge volume change. Hence, the initial number of 

material points should be much more than the minimum required that is suggested by 

F. Li (2008). Therefore, for the problem of degradation during large swelling the 

convergence test should be carried out for each example separately, since the required 

minimum number of material points may increase for those problems that undergo 

higher elastic swelling. Hence, the MPM should be first validated with a large number 

of material points per unit computational cell, as it is discussed in chapter 6, and then 

the minimum number of material points can be achieved by repeating the same 

modelling for the lower number of material points per until computational cell, until the 

same results is no longer achievable. Alternatively, if the final swelling ratio can be 
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predicted analytically, the initial number of material points per computational cell in the 

reference body can be assigned wisely. The prediction of the final swelling ratio for large 

deformation is discussed in chapter 6. In order to avoid an enormous decrease in 

material point density in the large swelling, especially in the boundary of the main body, 

we have suggested using extra boundary layer around the main body that is described 

in detail in chapter 6 as well.  

 

Here in this case study, the same 2D small vibration in Figure 4-23 is repeated with 94 

material point per unit computational cell, all the other parameters are taken the same 

as case 3. By comparing Figure 4-24 and Figure 4-23 the results are almost identical.   

 

 

Figure 4-24 the fluctuating line shows the results MPM code for a strain with Young’s modulus 
E=10 MPa, Poisson’s ratio 4.0=ν , the density of 2000 Kg/m3, 94 material points is used in each 
computational cell, initial positive stress  PaX p 70)(0 =σ , and damping 

1500000000)( =pXC , and the red line shows the equilibrium state of deformation. The time 

step is 001.0=∆t  second of each iteration. 

 

4.8 Validation of the code by simulating a uniaxial tensile test 

In all the above cases, a constant negative or positive stress is applied to the material 

points and the final steady state swelling ratio is compared with the analytical value. In 

a different attempt to validate the code, a time depending stress is applied to the 
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material points, to simulate a uniaxial tension. Therefore, the value of Young’s modulus 

and Poisson ratio obtaining from the stress strain curve in 2D are compared with the 

initial inputs. In this case, a body with height and width equal to 30 mm and thickness 

equal to 1 mm is considered. Instead of applying a uniaxial nodal force which is usual in 

uniaxial tensile tests, a time depending stress is applied to all the material points. The 

material constitutive law for updating the stress is the simple linear 2D generalized 

Hook’s law. The boundary is constrained at the bottom in the Y direction, and also is 

constrained on the left side in the X direction. Two different cases are examined: 

In the first case study, the material is under a uniaxial tension in the X direction, and a 

time depending initial stress PatX p )*1.0()(0 =σ  is applied to all the material points 

through the time. The initial inputs are, Young’s modulus E=2 GPa, Poisson’s ratio

4.0=ν , damping is 1000)( =pXC . 

As it is shown in Figure 4-25, the result of Young’s modulus which is obtaining from 

Hook’s law 
x

xE
ε
σ

=  is perfectly matched with the initial input for Young’s modulus. 

Furthermore, Figure 4-26 exhibit an impeccable result for the Poisson’s ratio that is the 

negative ratio of transverse to axial strain that is shown in Eq.( 4-37 ).  

x

y

ε
ε

ν −=  ( 4-37 ) 
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Figure 4-25 the value of Young’s modulus is calculated via dividing stress by strain which is 
obtained from MPM in the X direction. The time step is 001.0=∆t  second of each iteration. 

 

 

 

Figure 4-26 the value of Poisson’s ratio is calculated via dividing stain in the Y direction by strain 
in the X direction. The time step is 001.0=∆t  second of each iteration. 

 

In the second case study, the same uniaxial test with all the same conditions has been 

carried out, except Young’s modulus and Poisson’s ratio is set to be E=500 MPa and

2.0=ν . As it is shown in Figure 4-27 and Figure 4-28 the steady state value of Young’s 
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modulus and Poisson ratio that comes from the MPM code is almost identical to the 

initial values.   

 

 

Figure 4-27 the value of Young’s modulus is calculated via dividing stress by strain which is 
obtained from MPM in the X direction. The time step is 001.0=∆t  second of each iteration. 

 

 

Figure 4-28 the graph shows the division of negative of strain in the Y direction by strain in the X 
direction which is equal to the Poisson’s ratio. The time step is 001.0=∆t  second of each 
iteration. 

As it is shown in section 4.7 and section 4.8 the code is validated with two different 

methods. In the first attempt by simulating a forced vibration problem via applying a 

constant stress to the material points and using a big damping system to damp the 
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oscillations over the equilibrium state. It has been tested with different conditions and 

in all the cases the outcomes are perfectly matching with the expecting results. These 

tests show that the MPM code gives the right value of steady state swelling ratio, while 

in the second attempt a simple tensile test for small deformation is considered, by 

applying a time depending uniaxial stress to all the material points. The Young’s 

modulus which has been calculated via dividing the stress and strain at each time is 

equal to the input value for Young’s modulus, and also the value of Poisson’s ratio via 

calculating the ratio of transvers by axial strain has been checked with the initial input 

for Poisson’s ratio which is impeccably matches. The results of the uniaxial test validate 

that the MPM code returns the correct values of stress and strain at any time. 

Furthermore, depends on the constitutive law that has been initially used the response 

of the system is identical. Therefore, the code is surely validated.  

 

4.9 Summary of this chapter 

In this chapter in the first case study to validate the MPM code a simple 1D forced 

vibration is considered as a bench mark. The problem is solved through a dynamic FEM 

and the result of the steady state situation was compared with the analytical solution 

for the equilibrium state, and a good match was obtained. Furthermore, the same initial 

condition was applied to the MPM code in 1D and almost the same respond was 

achieved for a forced vibration from the MPM code, which can be used to validate the 

MPM code in 1D.  

In the second case study, a 2D tensile test was simulated by the MPM code as the 

benchmark. Since Material Point Method returns the dynamic response of the vibration, 

therefore a full validation should include the checking of steady state deformation and 

also the checking of stress, strain relationship at each time step. In this test not only the 

final steady state deformation was compared with the analytical solution for equilibrium 

state, but also the numerical values of Young’s modulus and Poisson ratio was compared 

with the initial inputs. In order to check whether the code only returns the correct 

steady state solution or it can return a correct relationship between stresses and strains 

based on the linear constitutive law. Therefore, by checking the numerical values of 
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Young’s modules and Poisson ratio we can be assured that the linear constitutive law 

that is defined initially is followed in each time step.  

As an application of the non-equilibrium thermodynamic theory that was introduced in 

chapter 2, a 1D polymer swelling induced by moisture absorption is solved numerically 

by finite element method.  As we initially validated the 1D FEM code, the same FEM 

code is used to study the diffusion coefficient, damping coefficient and the effect of 

coefficient of hygroscopic swelling in polymer swelling induced by moisture absorption.
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Chapter 5. Degradation of Highly Swellable Polymers During 
Large Elastic Swelling 

 

The Purpose of this chapter is first to test the validity of MPM for the problem of 

extremely large deformation, by comparing the constitutive law that has been derived 

and fed to the numerical method based on Flory’s constitutive law. The key result is 

shown in Figure 5-19. Secondly, the capacity of MPM to model a non-uniform elastic 

swelling that is difficult to handle by standard FEM is demonstrated. Additionally, 

degradation during large elastic swelling has been modelled as a random 

phenomenon and has been applied to the multi-layered tablets for controlled drug 

released systems. 

5.1 Introduction 

Highly swellable polymers with cross-linked polymeric chains in contact with solvent 

molecules (e.g. water) form hydrogels. The small solvent molecules can migrate through 

three dimensional network structures, and the resulting material that is formed is called 

elastomer, which is capable of large and reversible deformation in response to external 

forces or excitations N. Bouklas (2015). A lot of solvent molecules will be diffused inside 

the polymer to form the hydrogel due to the chemical potential. Figure 5-1 shows a 

schematic diagram of solvent molecules diffused inside the polymer.  
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Figure 5-1 shows a schematic diagram of solvent molecules diffused inside the polymer E. M. 

Aydt and R. Hentschke (1999) 

Therefore the solvent molecules in the hydrogel interact with weak physical bonds and 

may break many of the bindings and locate themselves between adjacent chains. As a 

result of the broken bonds, the hydrogel gets more freedom in three dimension and 

swells. Finally, when the swelling ratio reaches a certain value, degradation will be 

occurring as a result of very weak bonding between the polymer chains. Degradation is 

a random value, which means the polymer chain may break from either end of the chain 

and make an oligomer, or it can happen somewhere in the middle of the chain A. 

Gleadall, et al. (2014). Coupled problem of large deformation and degradation are 

synthetized for diverse applications such as drug delivery systems and tissue 

engineering. Many different processes inside the gel may lead to a large deformation 

and migration as well. For example, when the drug is accommodated inside a highly 

swellable polymer and it is in contact with a solvent, the solvent molecules diffuse in as 

a result of chemical potential. Therefore the drug will be dissolved and migrate out due 

to a change in physiological conditions such as a change in the level of Ph. The rate of 

the drug release is a function of the deformation of the gel. Furthermore, localized stress 

in the gel can occur due to swelling. A nonlinear, transient finite element method was 

suggested by N. Bouklas et al. (2015) to simulate coupled solvent diffusion and large 

deformation of hydrogels that was based on the mixed FEM with implicit time 

integration. They have followed Hong et al. (2008), to describe a constitutive behaviour 

of polymer gel through a free energy density function based on the Flory-Rehner theory. 



CHAPTER FIVE DEGRADATION OF HIGHLY SWELLABLE POLYMERS DURING LARGE ELASTIC 
SWELLING  

 
 

104 
 

Hong et al. (2008); Zhang et al. (2009) assumed both polymer and the solvent are 

incompressible. Therefore, the volumetric strain of the hydrogel should be equal to the 

solvent concentration N. Bouklas (2015) suggested by adding a quadratic term to the 

elastic free energy of hydrogels incompressibility assumption for the polymer can be 

lifted. Therefore, no imposed constraint will be applied on the deformation gradient. 

But neither of them coupled degradation problem with large deformation of highly 

swellable polymers. The main difficulty of coupling degradation problem with extremely 

large deformation is the usage of the appropriate numerical system. Conventional finite 

element methods are capable of simulating large deformation problems, but modelling 

degradation problem with conventional FEM is almost impossible. As the main body 

keeps losing mass, and not only a regular re-meshing system is required, but also it can 

make a difficult geometry or porous body at extreme cases that are difficult to mesh. 

Therefore, the topological system should be constantly changed and this will cause a 

fatal inaccuracy in the conventional FEM.  

Over the last decades, polymeric gels are used in various fields of technologies, Medical 

applications Shahinpoor, Kim (2004), biosensors Gerard, Chaubey, and Malhotra (2002), 

controlled drug delivery L. Djekic et al. (2015) are a few examples of polymer’s  

applications in industry. But, the focus of this thesis is on the highly swellable materials 

that are mainly used in drug delivery systems. There has been an increasing interest in 

the field of controlled drug delivery from non-toxic and highly swellable matrix systems 

(hydrogels) in pharmaceutical industry. Hydrexypropyl methylcellulose (HPMC) is one of 

the most used hydrophilic carrier material mainly for oral controlled drug delivery 

systems Bouklas N., et al. (2015). Being non-toxic and also decent mechanical properties 

of HPMC such as compression characteristics and also sufficient swelling properties (i.e. 

corresponding time and the degree of swelling), have made it a very commonly used 

hydrophilic carrier material. Swellability of the carrier material has a major effect on the 

release kinetics of an incorporated drug Bouklas N., et al. (2015). Polymer networks 

upon contact with small molecules (e.g. water or biological fluid) form polymeric 

hydrogel Siepmann, Peppas, (2000). A hydrogel can swell considerably by absorbing the 

solvent molecules due to various environmental conditions (e.g. temperature) and 

finally dissolves Siepmann, Peppas, (2000). Obviously, the mass concentration of the 
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drug dramatically changes due to swelling of the polymer. According to the Fick’s second 

law, diffusion of the drug out of the polymeric hydrogel is related to the mass 

concentration of the drug, and decreasing in mass concentration causes decreasing in 

drug diffusion. Thus, it is necessary to investigate polymer swelling in the drug delivery 

problem.  

5.2 Theoretical Background 

5.2.1 Rate form of constitutive law for hyperelastic materials 

The majority of the mathematical background should be referenced to T. Belytschko et 
al. 2005, and M. Kang et al. 2010. 

As the rate form of constitutive law is used in the MPM, a general rate form derivative 

of constitutive law based on Flory’s approach is presented in this section. The rating 

form of stress and strain relationship for hyperelastic materials can be defined as below 
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Where SEC is called the tensor of tangent modulus tensor, also it is called the second 

elasticity tensor, and can be obtained as 
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5.2.2 Derivation of rate form of Flory’s constitutive law  

In this section derivation of the nominal stresses and also chemical potential based on 

Flory’s approach is discussed in details based on the works done by (Hong et al. 2007). 

Since the numerical method which is used in this thesis is based on the material point 

method, a rate form of the constitutive law is required. Therefore, in this chapter, only 

the rate form of Flory’s constitutive law is discussed.  

As it was shown in Eq.( 5-3 ) and ( 5-4 ) in order to derive nominal stresses and chemical 

potential, a functional form of the free energy density of the hydrogel is mandatory.  
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5.2.3 Free energy function 

Based on Flory’s theory, the functional form of the free energy density ),( CFU is 

required for the analysis of the swelling deformation of hydrogels. Therefore, the 

suggested approach by Flory is to take into account of two separated parts of the free 

energy function.  

)()(),( CUFUCFU me +=  ( 5-5 ) 

According to M. K. Kang and R. Huang (2010) based on the statistical mechanics model 

of rubber elasticity, was obtained by Flory, the density of the elastic free energy is as 

)]ln(3[
2
1)( 321

2
3

2
2

2
1 λλλλλλ −−++= TNkFu Be  ( 5-6 ) 

Where, 1λ , 2λ  and 3λ  are the principal stretches in the principal directions of the 

deformation gradient tensor F and N is the effective number of polymer chains per 

unit volume of the hydrogel at the dry state, which is related to the cross-link density of 

the polymer network. The initial shear modulus of an elastomer is defined as TNkB  M. 

K. Kang and R. Huang (2010). Equation ( 5-6 ) will be reduced to the familiar strain energy 

density function for an incompressible neo-Hookean material in which the deformation 

does not change the volume (i.e. 1321 =λλλ ). The last term in the bracket of equation 

(5-6 ) is as a result of the entropy change associated with the volume change, and to 

account for the volume change in rubber elasticity many anoher forms of the free 

energy function have been suggested. For example, Kang and Huang suggested the 

following equation: 

)]ln(23[
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1 λλλλλλ −−++= TNkFu Be  ( 5-7 ) 

Note that the principal stretches 1λ , 2λ  and 3λ as well as deformation gradient in 

equation ( 5-3 ) and ( 5-4 ) are defined with respect to the dry state as the reference, 

which assumes to be isotropic.  
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According to the Flory-Huggins polymer solution theory, the free energy change due to 

the mixing of pure solvent with a polymer network is as below:  

)]1(ln[ 11 ϕχϕ −+=∆ nnTkF Bm  ( 5-8 ) 

Where, 1n  is the number of solvent molecules,ϕ is the volume fraction of the solvent, 

and χ is a dimensionless quantity that characterizes the interaction energy between the 

solvent and polymer.  The first term on the right hand side of Eq. ( 5-8 ) comes from the 

entropy of mixing, and the second term comes from the heat of mixing (enthalpy). 

By the assumption of molecular incompressibility, the volume swelling ratio of the 

hydrogel is  

C
V
VJ ν+== 1

0

 ( 5-9 ) 

Where, ν is the volume per small molecule, and Cν  is the volume of the small molecules 

in the gel divided by the volume of the dry polymers, also we have CVn 01 = and

)1( CC ννϕ += . Thus, the free energy of mixing per unit volume is as follows (Kang M.K. 

and Huang R., 2010) 
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Eq. ( 5-10 ) is slightly different from that given by Hong  W. et al. (2007) by a constant, 

which is insignificant for swelling deformation M. K. Kang and R. Huang (2010). At the 

dry state 0=C , 0=mu and increasing in the entropy of mixing which causes decreasing 

of the free energy drives the solvent molecules to enter the polymer network. This 

tendency to mix may be either opposed 0>χ (which motivates the small molecules to 

leave the gel) or enhanced 0<χ (which motivates the small molecules to enter the gel) 

by the heat of mixing, depending on the sign of χ . Furthermore, by preceding the 

process of absorption of the solvent molecules the elastic energy of the network 

increases as a penalty of swelling. Finally, a state of equilibrium swelling may be 

obtained, in which the total free energy reaches a minimum. Thus, for the equilibrium 

swelling state, the condition of molecular incompressibility in Eq. ( 5-10 ) can be imposed 
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as a constraint that relates the solvent concentration, C, to the deformation of the 

polymer.  

Let 1s , 2s  and 3s be the three principal nominal stresses and can be defined as   
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Where, ),( txΠ is a field of Lagrange multiplier which can be used to enforce the 

condition of molecular incompressibility, by adding a term ∫ Ω−+Π dJc )1( ν  to the free 

energy, G, of the system. 

5.2.4 Calculation of tangent modulus based on Flory’s constitutive law 

In order to derive an explicit formula for the tangent modulus at the current state, a 

lengthy derivation is carried out by M. K. Kang and R. Huang (2010). Hence, to find 

tangent modulus based on Flory’s constitutive law, Eqs. ( 5-11 ) and ( 5-12 ) and ( 5-13 ) 

should be changed into rate form.  

M. K. Kang and R. Huang (2010) following Hong et al. (2007) have taken a Legendre 

transformation of the free energy density function that is shown in Eq. ( 5-14 ) to solve 

the equilibrium swelling deformation with a prescribed chemical potential.  

CCFUFU µµ −= ),(),(ˆ  ( 5-14 ) 

In Eq. ( 5-14 )µ is called chemical potential, which is obtained from Eq. ( 5-15 ).   
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Therefore, considering the concentration field which is generally inhomogeneous, 

incompressibility of the hydrogel states that ν/)1( −= JC . By substituting the νC with

)1( −J in Eq. ( 5-15 ), and then substitute it into Eq. ( 5-14 ), finally they introduced the 

functional form of Legendre transformation of the free energy density function as below  
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Finally, the tensor of tangent modulus has been calculated as below 
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In Eq. ( 5-17 ) ijklH  is also a fourth order tensor which is obtained as below 
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In Eq. ( 5-18 ) jkikij FFJB 3/2−= is deviatoric stretch tensor and ijδ is the Kronecker’s delta. 

Also, J  that is shown in Eq. ( 5-17 ) is the Jacobian which is the determinant of the 

deformation gradient tensor. We can also define deformation gradient tensor in terms 

of the displacement function u  as shown in Eq. ( 5-19 ) Therefore, the Jacobian 

determinant can also be defined in terms of displacement function u  
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A full derivative is presented in Appendix 1. 

Here in this chapter, we have assumed, there is no chemical potential as an arbitrary 

constant stress 0σ  have been assumed instead of the chemical potential acting on the 

polymer. Therefore, instead of the resultant stress on the polymer as a result of mixing 

of solvent molecules with the polymer, a constant stress value is assumed to be applied 

to the polymer, and therefore we are only dealing with the elastic free energy of the 

hydrogel which is discussed in Eq. ( 5-7 ) that means we have also ignored free energy 

of mixing due to the mixing of solvent molecules. Hence, the second term and third term 

of the right hand side of Eq. ( 5-16 ) has been ignored. Therefore, only the first term on 

the right hand side of Eq. ( 5-17 ) is taken for the tangent modulus, that also gives the 

tangent modulus for an incompressible, neo-Hookean material.  

][ 3/1
ijklBijkl HJTNkC −=  ( 5-20 ) 
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Hence, TNkB have the same meaning introduced in section 5.2.3 and approximately is 

600000=TNkB (J/mol)for highly swellable materials.   

5.3 The numerical methods 

5.3.1 Material point method for large deformation 

However material point method has been chosen for analysing large swelling of the 

polymers, the numerical algorithm for nonlinear large deformation is different form 

small deformation, mainly because the constitutive law for the highly swellable 

polymers should be changed. In this thesis, Flory constitutive law has been taken to 

determine the governing equations for nonlinear elastic large deformations. Hence, in 

the material point method, a few more steps should be calculated such as the 

deformation gradient tensor, the Jacobian, and also the tangent modulus. The general 

algorithm of MPM has been introduced in chapter 2, but MPM algorithm has been 

tailored for large deformation, and some creativity has been applied to increase the 

speed of the code in this chapter. Furthermore, as we have coupled degradation to our 

model, a new variable β has been assigned to each material point that is based on the 

random value of volumetric strain. The degradation simulation is discussed in section 

5.7 in detail. Here, the numerical algorithm has been discussed.  

As we discussed in chapter 4 the deformation of the material points is calculated from 

the nodal velocities of the computational mesh that are updated from the nodal 

acceleration at each time step. Therefore, the main dynamic governing equation with 

the constant sintering stress and the damping term is  
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In which internal and external nodal forces are calculated as  
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The third term on the right hand side of Eq. ( 5-22 ) is modelling the damping term, 

hence in order to calculate internal nodal forces the damper coefficient is assigned to 

each material point. In this chapter, another method has been suggested to add a 

damping term to the simulation, in order to increase the calculation speed. Basically, 

the value of the damping is not important in the calculation, since it is only used to damp 

the dynamic responses of the simulation and return the steady state results. Therefore, 

instead of applying the damper to the material points it can be added to the nodal points 

of the computational mesh. As it is shown in Figure 5-2 the global matrix of nodal forces 

of the computational mesh are calculated from the summation of the internal forces of 

the proper local nodes of the four neighbour’s elements. Hence, instead of the third 

term on the right hand side of Eq.( 5-22 ), we can add an extra term to the global nodal 

force of the computational mesh as it is shown in Eq.( 5-24 ). Therefore, the lengthy 

numerical calculation which is shown in the third term on the right hand side of Eq. 

(5-22) which should be done for each material point has been substituted by a very 

simple calculation on the nodes of the computational mesh that are much less than the 

number of material points. Therefore Eq. ( 5-22 ) will be calculated in two steps, for 

example as it is shown in Figure 5-2 in order to calculate the nodal force of node 5, first 

we calculate the internal nodal forces of the same point in the cells number 1,2,3, and 

4 through Eq.( 5-22 ) then they should be added together through Eq. ( 5-24 ).   



CHAPTER FIVE DEGRADATION OF HIGHLY SWELLABLE POLYMERS DURING LARGE ELASTIC 
SWELLING  

 
 

112 
 

 

Figure 5-2 the internal topological system in the MPM code 
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In Eq.( 5-24 ) the left hand side is the summation of the internal nodal forces for all the 

four cells around each node. int
If is the value of internal nodal force for the 

corresponding node of each element C  is the damping coefficient and v is the nodal 

velocity of the same node.  

5.3.2 Some vital issues of implementing MPM for large swelling 

In practice, in order to use MPM code for simulating extremely large deformation while 

we have a constant stress (i.e. 0σ  the sintering stress) can be even more complicated. 

As in the case of large swelling, material points should move to the new elements, we 

can see a fatal problem at the boundary of the system. Basically, when only a few 

material points travel to a free mesh at the boundary, the nodal mass of the 

corresponding nodes of the element are very small. Furthermore, the nodal forces of 

the same nodes are calculated from Eq. ( 5-22 ), and due to the constant stress applied 

to all material points, the calculated nodal forces are a big value. Therefore, the nodal 

acceleration that is calculated from Eq. ( 3-28 ) is extremely large, that cause a fatal error 

at the boundary of the system. Hence, a specific treatment is required for the 

boundaries. As a very small inconsistency in the main MPM algorithm can cause a fatal 

1 
2 

3 4 
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error, hence the special treatment at the boundary should be totally stable. A few 

different boundary treatments were tested that are introduced in the next section.  

5.3.3 Special boundary treatments 

5.3.3.1 Constant velocity at the boundary 
As it was explained, due to the constant stress 0σ in this problem that is defined on 

every material point, a large nodal force and therefore, a large nodal acceleration can 

be calculated at the boundary when only a few MPs have travelled to the new element 

as a result of small nodal masses. Then, large nodal acceleration leads to large nodal 

velocities and large material point velocity due to Eq. ( 3-29 ), Eq. ( 3-30 ) Hence, it causes 

the MPs at the boundary move faster and finally, the program will crash. So, the 

suggested treatment was to keep the last velocity of the MP just before it leaves the 

previous mesh until the number of MPs in the new mesh gets to a certain value so that 

the nodal masses will increase and the main problem of dividing the large nodal forces 

by a small nodal masses will not happen in Eq. ( 3-28 ). This suggestion can help if the 

material points in the boundary layer are supposed to move to the free elements only 

once.  Because, if for example the MP velocities are kept constant for half of the MPs of 

the previous element to move the new mesh, then the new mesh is basically not 

counted in the MPM algorithm, until the number of MPs in the new mesh, get to a 

certain value. Also, before the new element gets the certain number of MPs, not only 

the MP velocities should not be updated normally, but also nodal forces, nodal 

acceleration, and nodal velocities of the new mesh should not be updated. When the 

new element gets the certain number of MPs (i.e. half of the MPs of the previous 

element) then this element should join back to the MPM algorithm. Therefore, as the 

MP velocities were kept constant since the MP moved to the free meshes, the new 

updated velocity will be totally wrong, and this cause a big inconsistency between the 

last two meshes around the boundary layer, and finally cause separation between the 

material points.  
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5.3.3.2 Setting a constant zero boundary layer 
As the problem of the boundary layer will always exist in the extremely large swelling 

problems, therefore a new technique has been suggested here to prevent the problem 

mentioned in section 5.3.2.  

In this technique, initially, the domain of the meshes with material points will be defined 

much bigger than the actually referenced body, such that every possible deformation of 

the body still remains in the defined domain. In other words, if the actual subject is 

predicted to have hundred percent swelling in each direction in 2D, then the area of the 

initial domain of the material points should be defined at least four times bigger than 

the area of the actually referenced body. Also, in order to prevent the same problem in 

the new boundary, every material point that reaches this set limit should be deleted. 

Therefore, the deformation for those material points that represent the actual body will 

remain in the defined domain, and those extra MPs will be gradually deleted when they 

reach this set limit.  

5.3.3.3 The effect of the extra material points 
Generally, material points in the MPM methods represent the mass. Therefore, having 

some extra material points around the actually referenced body means some extra mass 

is defined. Hence, this part can resist against the deformation of the referenced body, 

and also by deleting the MPs that reach the set boundary limit the resistance against 

deformation of the actual body decreases. Basically, for a homogeneous swelling, this 

resistance does not take into account, since it will remain uniform everywhere, 

however, for nonhomogeneous swelling losing material in different sections can apply 

a different resistance force to the reference body which should be considered carefully.   

Therefore, in order to reduce the effect of this extra mass on the referenced body, the 

coefficients of the tangent modulus for those extra MPs have been reduced by choosing 

a very small TNkB just for the sake of numerical simulation. Further results and graphes 

are shownnn in the next section. 

5.3.3.4 The effect of initial number of material points per unit computational cell  
As it is discussed in chapter 4, according to F. Li (2008) the material point density (i.e. 

the number of material points per unit computational mesh) is the most important 

factor for MPM to be converged. But, in small deformation analysis, as the material 
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point density does not change enormously, it is possible to find the minimum number 

of material points per unit cell of the computational mesh. Furthermore, for large 

deformation analysis when the volume does not change dramatically, the density of the 

material points does not decrease massively. Since the total number of the 

computational cells that cover the deformed body does not change massively. 

Nevertheless, in order to have a convergent solution, the average number of material 

points should not be below the minimum required. F. Li (2008) has suggested 94 

material point per unit cell is the minimum required for small deformation analysis to 

be converged. Therefore, the best way is to initially assign enough number of material 

points to each unit cell of the computational mesh to cover the possibility of the volume 

change as well. Hence, in order to estimate the final swelling ratio (i.e. volume change), 

it is possible to use the main constitutive law of the material. In section 5.4.1 the 

analytical derivation of the material constitutive law based on Flory’s theory is 

presented. Hence, by using Figure 5-4 a good estimation of the final swelling ratio can 

be obtained, therefore the total number of final computational cells that covers the 

deformed body can be estimated. Therefore, the initial number of material points that 

should be assigned to each computational cell at the reference state scan be estimated.  

Additionally, the problem of material point density should be wisely detected for the 

simulation of degradation during large swelling, as some material points will be deleted 

randomly when they reach a certain volumetric strain. Therefore, the average number 

of the material points per unit cell of the computational mesh should not again below 

the minimum required. So, the initial number of material points that should be assigned 

to each cell of the reference body should be chosen big enough to cover the possibility 

of huge volume change and random degradation.  

Alternatively, the extra material point that was explained in section 5.3.3.3, can avoid a 

dramatic decrease in the material point density, especially around the boundary layer 

of the referenced body.  
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5.4 Validation of the MPM code for large deformation based on Flory’s 
constitutive law 

As the same routine, we used to validate the Material Point Method (MPM) code for 

small deformation problem in chapter 2 that was based on the linear constitutive law. 

In this section the main constitutive law has been changed based on Flory’s theory to 

simulate large deformation, therefore the MPM code has been developed based on 

Flory’s constitutive law. Hence, another analytical validation is proposed to validate the 

MPM code for large deformation problems based on Flory’s constitutive law. A simple 

homogeneous swelling problem due to constant applied stress is modelled through the 

MPM code. The results of final steady state swelling ratio (i.e. steady state deformation) 

are compared with an analytical calculation.  

5.4.1 The analytical approach 

A 2D homogeneous plane shown in Figure 5-3 under equal tensile stresses in both 

directions is simulated for model validation. The coordinate system is shown by X1 and 

X2; u1 and u2 are deformations in the first and the second directions respectively.  

 

 

Figure 5-3 schematics of 2D homogeneous swelling 

 

For a 2D homogeneous swelling, the relationship between displacement vectors and the 

coordinate system is as below 
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11 Xu α=  ( 5-25 ) 

22 Xu α=  ( 5-26 ) 

Since the applied stresses are equal in both directions α is the same coefficient in both 

Eq. ( 5-27 ) and Eq. ( 5-28 ). Therefore strains in X1 and X2 directions are defined as:  

αε =
∂
∂

=
1

1
11 X

u  ( 5-27 ) 

αε =
∂
∂

=
2

2
22 X

u  ( 5-28 ) 

Hence, the constitutive law in the rate form for a homogeneous swelling problem when 

stress is equal in both directions can be written as below:  

22112211111111 εεσ ∆+∆=∆ CC  ( 5-29 ) 

22222211221122 εεσ ∆+∆=∆ CC  ( 5-30 ) 

As it was discussed earlier 22111122 CC = due to the major symmetry of tangent moduli. 

Also, Eq. ( 5-29 ) and Eq. ( 5-30 ) can be simplified as below since αεε ∆=∆=∆ 2211 due 

to homogeneous swelling in both directions.  

ασ ∆+=∆ )( 1122111111 CC  ( 5-31 ) 

ασ ∆+=∆ )( 2222221122 CC  ( 5-32 ) 

Therefore, three independent components of tangent moduli 1111C , 1122C and 2222C are 

required to find a stress strain curve for the homogeneous swelling of hyperelastic 

materials. The derivation of tangent moduli based on Flory’s constitutive law is 

explained in section 5.2.4. Hence, according to Eq. ( 5-20 ) the independent components 

of tangent modulus are  

)]4(
2
1*[][ 11

3/1
1111

3/1
1111 BJTNkHJTNkC BB

−− ==  ( 5-33 ) 

0][ 1122
3/1

1122 == − HJTNkC B  ( 5-34 ) 
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0][ 2211
3/1

2211 == − HJTNkC B  ( 5-35 ) 

)]4(
2
1*[][ 22

3/1
2222

3/1
2222 BJTNkHJTNkC BB

−− ==  ( 5-36 ) 

Where all the terms have the same descriptions as defined in section 6.2.4. The values 

of 1111C , and 2222C  are both nonlinear as a function of the Jacobian. It is also important 

to consider that, 2211C ,and 1122C are both zero that means for a 2D problem based on 

the Flory’s approach, deformation in one direction has no effect on the value of stress 

on the other direction, as oppose to normal Hookean materials that positive strain in 

one direction cause a negative strain in the other direction depending on the value of 

Poisson ratio.  

Therefore, by discretising the value of α∆  a nonlinear stress/ strain curve can be 

obtained from Eq. ( 5-31 ) and Eq. ( 5-32 ) in the first direction and the second direction 

respectively.    

Figure 5-4 shows the analytical constitutive law in each direction, in which the horizontal 

axis shows the value of stretch and the vertical axis shows the value of stress.  
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Figure 5-4 the stress stretch diagram  

 

5.4.2 Uniform swelling results from the MPM code 

In order to check the results from the MPM computer code with the analytical solution 

proposed in section 5.4.1, each time a swelling stress 0σ should be defined, to get the 

final steady state stretch. Therefore, a series of different inputs for 0σ is tested. 

Furthermore, at each test, the final value of stress should be converged to the same 

given value of 0σ and the value of stretch should also be converged to the corresponding 

value of steady state stretch.  In the next section, the results are shown for a various 

range of swelling stresses. Furthermore, it has been shown that the resolution of 

meshes does not change the results.  

5.4.3 Test 1, the effect of the zero boundary layer 

In test 1 the referenced body that is initially divided into a two by two elements is 

located in the middle of a domain of four by four elements. Figure 5-5 shows the initial 
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position of the referenced body and the extra material points that are defined around 

the referenced body to cover the total domain of deformation. The total number of 

material points in each element is 1600. The sintering stress is  11000000 =σ  (Pa), the 

shear modulus of elastomer for the referenced body is 600000=TNkB , and the shear 

modulus of elastomer for the boundary layer is 600=TNkB , the elements of the 

background mesh are squares of 1*1 mm and the thickness is 0.5 mm. The referenced 

body is a square of 2*2 mm and the thickness is 0.5mm which is located in the middle 

of a domain of four by four elements as shown in Figure 5-5, the damping coefficient is 

00035.0=C (Ns/m) and the initial density is 1000 (Kg/m3). In Figure 5-6 and Figure 5-8 

the value of converged stress and steady state displacement are shown respectively. 

Furthermore, the deformed body after about 50% deformation is shown in Figure 5-8.  

 

Figure 5-5 shows a four by four element set up for the initial un-deformed shape of the body. 
The middle two by two elements indicated by the green boundary is the main referenced body. 

The zero limits are also shown by red boundaries. 
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Figure 5-6 shows the converged stress value, the input sintering stress is 11000000 =σ Pa. The 
iteration time step is 001.0=∆t .  

 

 

Figure 5-7  shows the steady state value of swelling deformation when sintering stress is 
11000000 =σ Pa. The iteration time step is 001.0=∆t . 
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Figure 5-8 shows the deformed shape of the body when the value of stress is 11000000 =σ
Pa. The green boundaries represent the deformed main body. The zero limits are also shown by 

red boundaries. 

As it is shown in the Figure 5-6 and Figure 5-7, at the early stage that the swelling 

stresses are applied, a small shrinkage can be seen. This is due to the out of balance 

forces at the of the nodes at the boundary layers. Becaues, these figures are the position 

of the material point located at the boundary layer, which is affected by the negative 

out of balance force at the beginning. After material points move to the next free 

element, the out of balance force will get a positive value, so that the material start 

swelling. This is due to the dynamic effect of the numerical method.  

5.4.4 Test 2, the effect of the number of background elements 

5.4.4.1 First case study 
In test 2  two other examples are shown to prove the number of initial elements is not 

chaniging the final results of steady state swelling. Therefore, in the first case study, a 
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larger body was simulated with the same swelling stress, same shear modulus of 

elastomer for the referenced body and the same shear modulus of elastomer for the 

boundary layer. Also, the same size elements are taken for the computational mesh. 

The main body is a square of 8*8 Mm which is located in the middle of a 14*14 Mm 

domain. The total number of MPs in each element is 196. Other parameters such as 

damping coefficient and density are taken the same as the previous test. Figure 5-9 

shows the un-deformed shape of the computational domain and Figure 5-10 illustrates 

the deformed shape. Similar to the previous example about 50% swelling deformation 

of the initial size can be shown in Figure 5-10, hence the main referenced body that is 

shown in green line in Figure 5-10 has gone through 50% swelling that is shown in Figure 

5-10.  Also, the converged stress value and the steady state displacement are exactly as 

the previous example that is shown in Figure 5-6 and Figure 5-7 respectively.  

 

Figure 5-9 shows a 14*14 element set up for the initial un-deformed shape of the body. The 
middle 8*8 elements indicated by the green boundary is the main referenced body. The zero 

limits are also shown by red boundaries.  
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Figure 5-10 shows the deformed shape of the body when the value of stress is 11000000 =σ
Pa. The green boundaries represent the deformed main body. The zero limits are also shown by 

red boundaries. 

 

5.4.4.2 Second case study  
In the second case study, all the parameters have taken the same, but the size has 

changed. The main body is a square of 20*20 Mm which is located in the middle of a 

computational domain of 32*32 Mm. Figure 5-11 shows the un-deformed shape of the 

computational domain and Figure 5-12 illustrates the deformed shape. Similar to the 

previous example about 50% swelling is shown in Figure 5-12 as well.   
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Figure 5-11 shows a 32*32 element set up for the initial un-deformed shape of the body. The 
middle 20*20 elements indicated by the green boundary is the main referenced body. The zero 

limits are also shown by red boundaries.  

 

 

Figure 5-12 shows the deformed shape of the body when the value of stress is 11000000 =σ
Pa. The green boundaries represent the deformed main body. The zero limits are also shown by 
the red boundaries.  
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5.4.5 The effect of higher constant applied stress  

5.4.5.1 First case study 
In test 3 the total domain has been initially divided into a four by four element, and the 

total number of material points in each element is 1600. The swelling stress is  

16000000 =σ  (Pa), the shear modulus of elastomer is 600000=TNkB , the width and 

height are 4 mm and the thickness is 0.5mm, the un-deformed referenced body is the 

same as shown in Figure 5-5, the damping coefficient is 00035.0=C  and the initial 

density is 1000 (Kg/m3). In Figure 5-13 and Figure 5-14 the value of converged stress and 

steady state displacement are shown respectively. The final deformed shape is also 

shown in Figure 5-15. 

 

 

Figure 5-13 shows the converged stress value, the input sintering stress is 16000000 =σ Pa. 
The iteration time step is 001.0=∆t . 

 

 

-200000

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

1
15

64
31

27
46

90
62

53
78

16
93

79
10

94
2

12
50

5
14

06
8

15
63

1
17

19
4

18
75

7
20

32
0

21
88

3
23

44
6

25
00

9
26

57
2

28
13

5
29

69
8

31
26

1
32

82
4

34
38

7
35

95
0

St
re

ss
 (P

a)

Iteration number  



CHAPTER FIVE DEGRADATION OF HIGHLY SWELLABLE POLYMERS DURING LARGE ELASTIC 
SWELLING  

 
 

127 
 

 

Figure 5-14 shows the steady state value of swelling deformation when sintering stress is 
16000000 =σ Pa. The iteration time step is 001.0=∆t . 

 

Figure 5-15 shows the deformed shape of the body when the value of stress is 16000000 =σ
Pa.  
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5.4.5.2 Second case study 
In this section, the only parameter that is changed with respect to the previous test is 

the value of sintering stress that is 23000000 =σ . Hence, the un-deformed referenced 

body is as shown in Figure 5-5, also Figure 5-16 and Figure 5-17 represent the converged 

value of stress and the steady state swelling deformation respectively. The deformed 

shape after about 90% deformation is shown in Figure 5-18. 

 

Figure 5-16 shows the converged stress value, the input sintering stress is 23000000 =σ Pa. 
The iteration time step is 001.0=∆t . 

 

 
Figure 5-17 shows the steady state value of swelling deformation when sintering stress is 

23000000 =σ Pa. The iteration time step is 001.0=∆t . 
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Figure 5-18 shows the deformed shape of the body when the value of stress is 23000000 =σ
Pa. 

 

5.5 Model validation 

According to the analytical results for the nonlinear swelling that was discussed in 

section 5.4.1 and comparing the numerical results from the MPM computer code that 

was shown in section 5.4.2, with the analytical results in Figure 5-4, a perfect match was 

obtained. In Figure 5-19 the red line shows the nonlinear analytical stress strain curve, 

and the blue stars show the results of the MPM code, that can be used to validate the 

code for large homogeneous swelling of polymers based on Flory’s approach.  
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Figure 5-19 the vertical axis is the value of stress, and the horizontal axis is the value of the 
corresponding stretch.  This figure shows a perfect match between the analytical results 
presented by the red line and the results from the MPM code that is represented by the stars. 
This is the most important figure in this chapter, as it tests the validity of MPM in large elastic 
deformation. The non-linear constitutive law which is based on Flory’s constitutive law has been 
fed to the MPM code, and the results are perfectly matched with the analytical results, that were 
discussed in section 5.4.1. 
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5.6 Non-uniform swelling 

One application of highly swellable materials is in controlled drug delivery systems, as 

these polymers can be used for the drug accommodator in tablets. These materials can 

quickly form a hydrogel and the solvent (water) can be diffused in and dissolve the drug 

and then diffuse the drug out of the hydrogel, and the polymer itself will be degraded 

eventually. The ultimate aim of the presented numerical approach in this thesis is to 

predict drug release profile. Polymers that are mainly used in the controlled release 

tablets can swell hugely and basically release most of the drugs before dissolution. 

Those polymers that are used in tissue engineering and engineering scaffolds and stent 

coatings swell to a much less extent, however, even a small swelling strain significantly 

accelerates drug release. Hence, controlling/ predicting the swelling behaviour of the 

polymer is a critical step in all the controlled drug delivery systems. There are two ways 

to tailor the swelling behaviour of a polymer device: (a) by manipulating the structural 

constraint and (b) by manipulating the polymer chemistry. Therefore, different drug 

release profile is achievable by combining the chemistry and structure design. In this 

section, we have focused on the structural design of the tablets that is including the size 

and shape of the tablet and also using multi-layers of different polymers. Multi-layers 

tablets with different rates of swelling, gelling, and erosion can control the rate of drug 

release in the body. Generally, once water penetrates the tablet, swelling occurs and a 

rubbery state of the polymer will be formed on the outer layer. During the swelling 

process, a distinctive interface between the swelling rubbery zone and the un-swelled 

glassy zone can be often observed as illustrated in Figure 5-20.  
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Figure 5-20 the schematic diagram of the multi-layered tablet during the non-uniform swelling, 
The un-deformed state, and the deformed state are shown.  

5.6.1 Non-uniform swelling VS. Flory’s theory 

According to Flory’s theory (1943), polymer swelling is driven by the reduction in the 

free energy of mixing between the polymer and the solvent and opposed by the entropy 

elasticity of the polymer network. Basically, this theory ignores enthalpy of mixing. The 

theory predicts an ultimate swelling ratio at equilibrium but does not deal with the 

kinetics of the swelling process. To calculate drug release from a swelling polymer, 

diffusion equations for the solvent and drugs should be solved on a swelling domain 

with migrating boundaries. A fundamental problem is that there is no theory of three 

dimensional deformations. Swelling strain was simply assumed to be uniform. Because 

swelling controls drug diffusion, such calculation of drug release cannot be valid in 

particular for multi-layered tablets. As the 2 dimensional MPM computer code was 

validated earlier for extremely large nonlinear deformation, in this section the same 

code is tailored to solve a non-uniform swelling problem. An initial three-layered 

polymer is defined as illustrated in Figure 5-20 to represent the multi-layered tablet, in 

which the black zone shows the hard core of the tablet, the two green zones on the top 

and bottom of the hard core are the soft zones, and the zero limits are also shown by 
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red boundaries. Basically, the difference between the soft and the hard zones are due 

to the concentration of the solvent molecules. Hence, the softer zones have absorbed 

more water. Therefore, the value of the constant stress which is applied in the soft zone 

is higher than the value of the constant stress in the hard zone. Therefore, the swelling 

ratio will be much bigger in the soft zone, rather than the hard zone. 

 

 

 
Figure 5-21 represent the multi-layered tablet, in which the black zone shows the hard core of 
the tablet, the two green zones on the top and bottom of the hard core are the softer zones, and 
the zero limits are also shown by red boundaries. 

 

5.6.2 The results of non-uniform swelling  

As it was discussed in section 5.3.3.2 in order to avoid the fatal numerical error due to 

the moving of the material points near to the free elements, the main computational 

domain (shown in green line in Figure 5-21) was defined such that, the overall 

Soft zone 

Soft zone 

Hard zone 

Extra material points 
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deformation of this domain still remains in the defined material points (shown in red 

line in Figure 5-21). Adding extra material points around the referenced body may not 

cause any problem for homogeneous swelling, but it is definitely not valid for non-

uniform swelling, since extra material points around the referenced body cause 

constraint forces. Therefore, as it was discussed in section 5.3.3.3 in order to neglect 

the effect of extra material points on the overall simulation of non-homogeneous 

problems the shear modulus of elastomer, TNkB , is given a much smaller value for the 

extra material points around the referenced body. So, the value of stress generated in 

the extra layer of material points around the main body is much smaller than the value 

of stress generated in the main body, hence it can be ignored. The result of the non-

homogeneous swelling is shown in Figure 5-22, and the value of stress in the hard core 

section is 5000000 =σ Pa, and stress in the soft sections are 10000000 =σ Pa. The shear 

modulus of elastomer in both hard and soft core are 600000=TNkB , and the shear 

modulus of elastomer in the extra material points is 600=TNkB .  

 

 

Figure 5-22 shows the non-uniform deformed shape of the body when the value of stress in the 
hard core section is 5000000 =σ Pa, and stress in the soft sections are 10000000 =σ Pa. The 

shear modulus of elastomer in both hard and soft core are 600000=TNkB , and the shear 
modulus of elastomer in the extra material points is 600=TNkB .  

0.001 m 

0.001 m 
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In order to demonstrate the effect of the extra material points around the boundary 

layer in the non-uniform swelling, the same reference body in Figure 5-22 is shown in 

the middle of the total computational domain in Figure 5-23. 

 

 

 
Figure 5-23 Non-uniform swelling of the referenced body in the middle of the extra material 
points around the boundary layer. The value of constant stress in the hard core section is 

5000000 =σ Pa, and the constant stress in the soft sections are 10000000 =σ Pa. The shear 

modulus of elastomer in both hard and soft cores are 600000=TNkB  and in the extra material 
points around the boundaries of the referenced body is 600=TNkB . 
 

Furthermore, a stress contour of the deformed body is shown in the Figure 5-24 As it 

was discussed earlier the constant stress in the soft zones are higher than the hard zone 
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due to a higher concentration of water molecules. In Figure 5-24 the values of stresses 

in the X direction including the initial swelling stresses are shown.  

 

 

Figure 5-24 the colour-map contour of stresses in the X direction including the initial swelling 
stresses of the deformed body. 

 

5.7 Simulating of degradation of highly swellable polymers 

Degradation is the other important phenomenon that happens during the controlled 

drug release systems when the polymer undergoes a large swelling ratio. Basically, after 

the polymer reaches a certain volumetric strain it will be degraded. Erosion normally 

happens at the boundary layer of the systems due to bulk breakage of the polymer, 

while degradation is as a result of polymer chain breaking and can happen anywhere 

inside the polymer. Degradation and erosion are both nonhomogeneous and random 

phenomena. 

Generally, polymer chains may break randomly at any point and either make oligomers 

if it is broken from either end of the chain or break from the middle and make two long 

polymeric chains, this phenomenon is called degradation which is a non-homogeneous 

and a random phenomenon by its nature. 
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5.7.1 The analytical approach in simulating of degradation of highly swellable 
polymers 

In order to model the random and non-homogeneous degradation, a random variable 

is initially assigned to every material point. Hence, the normal (or Gaussian) distribution 

),( σµN is defined by its probability density function, as introduced below 

2

2

2
)(

2/1)2(
1)( σ

µ

σπ

−
−

=
x

exf  ( 5-37 ) 

 

In which Rx∈ ,µ is the mean value of the volumetric strain and σ is the standard 

deviation. The derivative of the above function is shown in Appendix III. For example, 

when the polymer undergoes 100% swelling in each side in 2 dimensional modelling, 

the mean value of the volumetric strain is 4=µ , if we assume the standard deviation is 

1=σ , hence the standard normal (Gaussian) distribution graph is as shown in Figure 5-

25.  

 

Figure 5-25 shows a normal (Gaussian) distribution of the volumetric strain when the mean 
value is 4=µ and the standard deviation is 1=σ . 

Hence, the random volumetric strain is defined as below:  

σµε ×+= rvr  ( 5-38 ) 

 In which r is a random value that was initially assigned to every material point, µ and 

σ are the mean value of the volumetric strain and the standard deviation, respectively. 
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Finally, in order to simulate the erosion or degradation to the system, it is necessary to 

check the random value of volumetric strain which is normally distributed around the 

mean value as it was explained above with the actual volumetric strain in each time 

step. Therefore, in case the actual volumetric strain is equal or larger than the assigned 

random value the material point can be easily deleted.  

 

 deleted be point will material the⇒≥ vrvIf εε  

 

There are a couple of different ways of deleting a material point in MPM. The simplest 

way is to zero the mass of the material point, or simply zero all the relative shape 

functions and shape functions’ derivative of the corresponding material point. As we 

discussed in chapter 3, there is always a minimum required a density of the material 

points in each mesh in the MPM to have converged solution. Furthermore, in the 

simulation of extremely large and non-uniform swelling of highly swellable polymers a 

large number of material points should be initially assigned to each mesh, since in order 

to simulate the degradation phenomenon some material points will be deleted after 

they reach a certain value of volumetric strain, and the total number of the remaining 

MPs should endure the minimum required. On the other hand, using a large initial 

number of material points, cause some difficulties to present the results of degradation. 

Figure 6-26 shows the results of the same referenced body that were used in the 

previous section in Figure 5-21 while the mean value of the volumetric strain is set to 

be 4.1=µ  and the standard deviation is 1=σ as the two main criteria of the random 

degradation of highly swellable polymers. The value of constant stress in the hard core 

section is 5000000 =σ Pa, and the constant stress in the soft sections are 10000000 =σ

Pa. The shear modulus of elastomer in both hard and soft cores are 600000=TNkB  and 

in the extra material points around the boundaries of the referenced body is

600=TNkB . 
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Figure 5-26 the mean value of volumetric strain is 7.1=µ  and the standard deviation is 1=σ . 
The value of constant stress in the hard core section is 5000000 =σ Pa, and the constant stress 

in the soft sections are 10000000 =σ Pa. The shear modulus of elastomer in both hard and soft 

cores are 600000=TNkB  and in the extra material points around the boundaries of the 
referenced body is 600=TNkB . 

 

As it is shown in the Figure 5-26 degradation is mostly happened around the boundary 

of the deformed body where we have the maximum volumetric strains. However, 

degradation is assumed to be a random phenomenon, the possibility of degradation is 

higher where there is a higher volumetric strain. 
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5.8 Application of polymer degradation in controlled drug delivery 
systems 

In recent years, there has been an increasing interest in the field of controlled drug 

delivery from water-swellable matrix systems (hydrogels) in pharmaceutical industry. 

Hydrexypropyl methylcellulose (HPMC) is significantly used as a hydrophilic carrier 

material for the preparation of oral controlled drug delivery systems Siepmann J. and 

Peppas, (2000). Good mechanical properties of HPMC such as compression 

characteristics and also sufficient swelling properties (i.e. corresponding time and the 

degree of swelling) have made it a very commonly used hydrophilic carrier material. 

Swellability of the carrier material has a major effect on the release kinetics of an 

incorporated drug Siepmann J. and Peppas, (2000). Polymer networks upon contact 

with small molecules (e.g. water or biological fluid) form polymeric hydrogel Kang M.K. 

and Huang R., (2010). A hydrogel can swell considerably by absorbing the solvent 

molecules due to various environmental conditions (e.g. temperature) and finally 

degrades Kang M.K. and Huang R., (2010). The obviously mass concentration of the drug 

dramatically changes due to swelling of the polymer. According to the Fick’s second law, 

diffusion of the drug out of the polymeric hydrogel is related to the mass concentration 

of the drug, and decreasing in mass concentration causes decreasing in drug diffusion. 

Thus, it is necessary to investigate polymer swelling in the drug delivery problem. Drug 

release mechanisms are very complex issues and involve three different moving 

boundaries which make the corresponding equations and boundary conditions so 

difficult. The three moving boundaries are usually called swelling, diffusion and erosion 

fronts, and the most complicated part of the polymer swelling mathematical model is 

dealing with the moving boundaries. 

5.8.1 Drug release  

 In this simulation, a multi-layered tablet is assumed that the drug released profile 

increases mainly due to the degradation of the material points in the soft zone. Hence, 

an arbitrary drug dosage of 5.0=dD is assigned to each material point in the soft zone, 

and also an arbitrary drug dosage of 1.0=dD is assigned to each material point in the 
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hard zone. After the material point is degraded (deleted) the value of the drug dosage 

will be released. The drug release profile is shown in Figure 5-27.  

 
Figure 5-27 Drug released profile.    

5.9 Summary of this chapter 

In this chapter, MPM is firstly validated for the modelling of extremely large 

deformation of the materials via comparing the results with the analytical results of the 

large tensile test, in which the constitutive law is derived based on Flory’s theory. 

Secondly, the capacity of MPM is demonstrated to model degradation of highly 

swellable materials during large swelling that is a very complex example of the current 

standard finite element method to handle. Following the work was done by M. Kang 

and R. Huang (2010), the rate form of Flory’s constitutive law is calculated only based 

on the elastic free energy of hydrogels, and the Voigt form of the tangent modulus in 

2D is developed. The constitutive law is fitted in the MPM code which is developed by 

the author and the results of 2D uniform swelling are validated by the analytical results 

of the 2D large tensile case study. A perfect match is observed between the analytical 

results and the MPM results for the large tensile test. Next, the same code is tailored 

for the non-uniform swelling and finally degradation during large elastic swelling is 

added to the simulation as a random phenomenon based on the normal distribution of 

the volumetric strain. Last but not least the drug release profile of the tablet in 

(mg) 

001.0=∆t  
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controlled drug delivery systems for multi-layered tablets is presented as an example 

for an arbitrary multi-layered tablet. 
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Chapter 6. Implementation of MPM to Selective Laser Melting 
 

The purpose of this chapter is to demonstrate the capability of the MPM to simulate 

difficult problems such as the simulation of Selective Laser Melting that is challenging 

for the traditional finite element method. The main concerns in the simulation of SLM 

manufacturing technique and the main inputs are discussed. A preliminary computer 

simulation of the SLM with MPM is presented that is mainly focused on the effect of 

scanning strategies to reduce the effect of the thermal stresses to avoid initial cracking 

due to the residual stresses. Furthermore, it is demonstrated that the MPM is a robust 

numerical method to simulate SLM and has significant advantages over traditional 

finite element methods. 

 

6.1 Selective laser melting  

Selective Laser Melting (SLM) is a new manufacturing process that has been developed 

over the last two decades. This method mainly enhances manufacturer to produce parts 

with very complex inner shape designs such as injection moulds with cooling channels, 

medical instruments and automotive parts which cannot be produced by conventional 

methods Laurent V. Belle, et al.  (2012). A major problem in this process is the 

generation of high residual stress profile as a result of the strong temperature gradient 

in the manufactured parts. The main purpose of this chapter is to demonstrate Material 

Point Method as a robust numerical approach to model SLM process and simulate the 

residual stresses.  

 

6.1.1 Introduction 

Speeding the manufacturing process has always been manufacturer’s main goal. 

Therefore, over the last few decades, rapid prototyping from CAD was changed to rapid 

manufacturing of the final net shapes parts usually used for parts with complex inner 

designs.The Rapid Tooling (RT) such as Warm and Arc Additive Layer Manufacturing 

(WAALM), Laser Metal Deposition (LMD) and Selective Laser Melting (SLM) are just 
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some examples of the recent developments towards this aim Laurent V. Belle, et al.  

(2012). In this chapter, we are focused on SLM technique and our efforts are to use 

Material Point Method which has been explained in chapter 2 to simulate the process 

and simulate the problem of residual stress generation in the parts due to a strong 

temperature gradient. SLM was first developed in 1995 by a research project at the 

Fraunhofer Institute ILT in Aachen, Germany. SLM is a technique to produce complex 

parts, layer by layer by fully melting the metallic powders with a laser radiation, and the 

product will be in the net shape and no post processing is required. The process begin 

with designing a multi-layer CAD model of the part, the suitable thickness of each layer 

is usually between 20-50 micrometres, and then the information will be transferred into 

the SLM machine Y. Wang, J. Bergström, C. Burman 2006; X. Su, Y. Yang (2012).  Figure 

6-1 shows the process after the SLM computer receives the input file L. Loh et al. (2015). 

At first, one layer of metallic powders with the designed thickness is deposited on the 

base plate that is located on the surface of a vertical piston. A wiper is used to make the 

powders uniform periodically through the process, then a laser beam is used to scan the 

pattern which has been planned in the CAD model at each layer and melt the metallic 

powders to make the solid materials after it cools down. The piston then moves down 

the platform when the first layer is finished. The height of moving is equal to the 

thickness of one layer. Then a new layer of powders will be laid on the surface of the 

solid structure and this process will be continued until a net body is produced K. 

Osakada, M. Shiomi (2006). There are a significant number of literature over the last 

few years to simulate the residual stress in the parts. L. V. Belle et al. (2012) used a 

numerical model which was based on a double mesh system with a multi-step birth and 

death technique of manufactured part. L. E. Loh et al. (2015) have developed an FE 

model on the SLM that simulate the powder-to-solid transition along with a method to 

calculate the volume shrinkage and the material removal. They have validated the 

model experimentally. P. Li et al. (2014) have developed a full scale 3D finite element 

model to investigate the microscopic deformation of the micro lattice structures and 

the microscopic stress and strain evolution in the solid struts of the micro lattice. The 

selective laser melting has been applied in many areas where parts to be fabricated is 

with complex geometries or structures with thin walls or holes, such as aerospace, 
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automobile, and medical industry. Commercial machines for SLM have been developed 

by several companies such as MCP, TRUMPF in Germany, MATSUUR in Japan and 

PHENIX in U.S.A. M. Vaezi et al. 2013; A. L. Jardini (2014). In this chapter, an FE method 

has been developed based on material point method. The model has been applied to a 

2D structure, to calculate the microscopic deformation of the structure and also to 

investigate the microscopic stress and strain in the solid structure.  

 

 

Figure 6-1 Schematic of the SLM process L. E. Loh et al. (2014) 

 

6.1.2 The main problems and issues of SLM 

There are a few different technical issues in the SLM process that need to be solved. The 

energy density of the laser has to be sufficient in order to ensure not only it melts the 

powder layer but also the current layer that has been scanned need to be fused together 

with the previous layer to avoid weak bonding T. Childs, C. Hauser and M. Badrossamay 

(2005). If the energy density applied to the metallic powder is too high, the temperature 

will continue rising after reaches the melting point. Evaporation will happen when the 

temperature exceeds the boiling point. The evaporated material will be removed with 
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the protection gas when not heated by the laser beam. The rest of the material cools 

down and solidifies. Meanwhile, the metallic powder will shrink in volume because the 

molten material seeps through the porous spaces E. Yasa, J.P. Kruth, J. Deckers (2011). 

The shrinkage causes an undesirable compressive thermal stress and it may lead to 

forming initial cracking. So it is essential to understand what will happen during the 

process of selective laser melting F. Verhaeghe et al. (2009). Figure 6-2 shows an 

example of cracked surfaces of Ti-6-4 specimens formed in the SLM process. S. Leuders 

et al. (2012).  

 

 

Figure 6-2 Crack surfaces of Ti-6-4 specimens following SLM processing, subsequent HIP 
treatment and fatigue at a stress amplitude of 620 MPa. Fatigue lives of the samples shown 

were fairly low (a, c: 188,103 cycles; b, d: 845,383 cycles) due to remaining porosity. The crack 
initiation sites for two different samples are shown in low magnification in (a) and (b); (c) and 
(d) depict the corresponding magnified view of the underlying defects. S. Leuders et al. (2012). 

 

Recently, V. Cain et al. (2015) described the fatigue crack growth rate properties of 

selective laser melting from grade 5 Ti6A14V alloy. They demonstrated low thermal 

stress relief can improve fracture toughness and fatigue crack growth resistance. S. 

Leuders et al. (2012) also tested the mechanical behaviours with titanium alloy TiAl6V4 
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and pointed out the material behaviour of crack growth is particularly influenced by 

internal stresses. Figure 6-2 shows a failure sample of cracking, in which the porous have 

been detected as an initial point of cracks S. Leuders et al. (2012). 

In recent years, researchers have also investigated the thermal stresses generated by 

the SLM process. Several numerical methods have been developed to measure the 

temperature as well as thermal stress distribution of overhanging structures. A. Hussein 

et al. (2013) and D. Zhang et al. (2010), simulated the temperature distribution of 

selective laser melting with 90W–7Ni–3Fe powders and showed that lower thickness, 

narrower scan interval, and a slower scan velocity can improve the temperature in the 

powder bed. C. Casavola, S. L. Campanelli and C. Pappalettere (2008) have studied the 

residual stresses in SLM specimens produced from AISI Marage 300 steel by experiment. 

D. Leordean et al. (2015) have simulated the stress behaviour during the process of SLM 

for a multi-structured femoral prosthesis under different values of laser power. A. H. 

Nickel, D. M. Barnett and F. B. Prinz (2001) have numerically examined the effect of 

deposition patterns with finite element modelling and have drawn the conclusion that 

the different scanning strategies of the laser may affect the stress behaviour of the 

component. M. Shiomi et al. (2004) have measured the distribution of residual stress 

for the selective laser melting process and concluded that the largest (tensile) value in 

the top layer of the model irrespective of the scan speed.  

 

6.2 The purpose of this chapter 

The major advantage of MPM over the conventional FEM in simulating SLM is the 

capability of MPM to simply deal with adding/ losing material to the main body. In MPM, 

there is no need to extend or re-mesh the system during the solidification. Furthermore, 

it is straightforward to deal with separation of two material points as opposed to mesh 

splitting in the conventional FEM. Therefore, simulation of cracks could be effectively 

done by MPM F. Li, J Pan, C. Sinka (2011). Stress analysis with MPM is as accurate as 

conventional FEM, and also different constitutive laws can be used in MPM to model 

different materials with either plasticity theorems or elasticity theorems. In addition, 

modelling complicated geometries could be more convenient with MPM. As it is 

discussed in previous chapters, it is fairly easy to initially distribute the material points 

http://www.sciencedirect.com/science/article/pii/S0921509301011790
http://www.sciencedirect.com/science/article/pii/S0921509301011790
http://www.sciencedirect.com/science/article/pii/S0921509301011790
http://www.sciencedirect.com/science/article/pii/S0921509301011790
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in any arbitrary geometry. With regards to SLM simulation by MPM, scanned metallic 

powders can be represented by the material points. Therefore, MPM can effectively 

handle different scanning pattern and different geometries. In this chapter, MPM is 

combined with elasticity to demonstrate the capability of MPM to simulate fairly 

difficult geometries and different scanning patterns. Details of the numerical 

methodology are described in the next section. As the validation of the model in small 

deformation analysis is described in the previous chapter, elastic stress distribution of 

the SLM simulation is studied in this chapter. It is shown that MPM is a robust numerical 

tool that is suitable to simulate the SLM process and cover most of its difficulties.   

6.3 Overall numerical algorithm  

6.3.1 Adapt Material Point Method for SLM 

The general formulation of MPM is described in chapter 3. Here an overall outline of the 

code is described briefly along with the discretised form of the MPM to consolidate the 

context for elastic small deformation of Selective Laser Melting. Furthermore, a new 

variable ξ  is introduced to enhance the MPM code to simulate the scanning pattern. In 

the MPM, the motion of the material points represents the deformation of the solid 

body. As it was described in chapter 3 the deformation of the material points are 

calculated from the nodal velocities of the computational mesh that are determined 

from the nodal acceleration of the computational mesh, that is updated by calculating 

nodal forces, the same governing equation that was discussed in the small deformation 

processes will be valid here, since SLM is dealing with small deformations.  
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As it is discussed in section 6.1.1, in the SLM process a laser beam is used to melt the 

metallic powders and the solid structure will be formed after cooling down. In the 

material point method, each powder is represented by one material point. In this 
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preliminary simulation, the thermal stress analysis has been ignored, and instead, a 

sintering stress )( 0σ−  which is a compressive stress is assumed that linearly reduced to 

zero after the cooling time ct is passed. (i.e. sintering stress at 0=t for the specific 

material point that is hit by the laser is equal to )( 0σ− and at ctt = the sintering stress 

reduced to zero for the same material point). The discrete material powders are always 

quite near to each other. So several powders may be scanned by the laser beam at the 

same time and a melting pool is formed. Meanwhile, the material points around will 

also shrink due to the high heat transform of the melting pool. Interactions among the 

powders will lead to a compressive stress )( 0σ− . This sintering stress should be 

calculated through thermal stress analysis of the system that is based on the power of 

the laser beam and heat transfer analysis of the structure, however, the material point 

method is flexible to any input from the heat transfer analysis that can be done within 

the same MPM code as a subroutine. Also, the cooling time ct can be changed within the 

code accordingly. But heat transfer analysis is beyond the scope of this project and 

should be conducted via a different project.  

The number of material points that is scanned by the laser at the same time depends 

on the laser spot size; also the temperature gradient depends on the heat transfer of 

the body. Therefore, in this project, the slope of the decreasing sintering stress can be 

simulated by the cooling time. (i.e. the sintering stress )( 0σ− is maximum when the laser 

hit the material point and get to zero after cooling time ct  has passed) 
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Figure 6-3 the distribution of the sintering stress on the material point over time. 

 

Eq. ( 6-1 ) can be simply shown as below:  
extffvm += int  ( 6-2 ) 

In MPM instead of using the consistent mass matrix as it is shown on the left hand side 

of Eq. ( 6-1 ), lumped mass matrix in explicit time integration should be used which is 

defined in Eq. ( 6-3 ).  In addition, the stresses σ are traced on material points. In order 

to calculate the volume integration in MPM, the density of each material point should 

be updated in every time step, therefore, in the first term on the right hand side of Eq. 

( 6-1 ) material points are used as numerical integration points to calculate the volume 

integration. In SLM process, however, strains remain small, locally large solid rotations 

are still possible. Therefore, the same Jaumann rate of stress that is introduced in 

section 3.3.5, is also used in this model. The second term of the right hand side of Eq. 

(6-1 ) shows a damping system which is added to this model to damp the dynamic values 

to the final steady state solutions. The third term on the right hand side of Eq. ( 6-1 ) 

shows the possible body forces such as gravity that are applied on the material points, 

and the fourth term deals with surface traction τ that is applied to the computational 

mesh.  
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The overall algorithm for numerical simulation of selective laser melting, which is based 

on the material point method is described as following.  

1. Construct a collection of material points to represent a layer of powders that 

should be located on the surface of a constant background mesh. The 

background mesh should include any possible domain of movements of the 

material points.  

2. Assign a new variable ξ to every material point that addresses the specific 

material points that are scanned by the laser. The value of  ξ  could be either 

one or zero, and if the material point is scanned by the laser the value is one and 

if it is not yet scanned it remain zero. Therefore, the laser path and laser scanning 

speed can be controlled if ξ  is defined as a function of time. So by controlling 

this variable (defining the scanning pattern and scanning speed) those material 

points that are already scanned take into account as a part of the solid structure; 

otherwise for those material points that are not yet scanned by the laser, their 

mass will not contribute to the density integration and the stress rate 

calculation. Furthermore, with this method controlling of both the scan speed 

and the scan pattern is possible. 

3. Compare the value of ξ to determine those material points that are scanned by 

the laser at each increment 

4. Calculate the mass of the material points pM to represent a solid structure, and 

initialise the state variables of the material points, including stresses, strains, 

velocities, and densities.  

∑
=

−=
pN

p
pp XxM

1
)(~δρ  

The full algorithem for small deformation processes is described in 

chapter 3.  

( 6-4 ) 

5. Updating the stresses, through calculating the Jaumann rate of stress J∇σ using 

the constitutive law as shown in Eq. ( 6-5 ) since in this project, we simulated 

the problem with the elasticity theorems; we have taken generalised Hook’s law 

for the constitutive law. 
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6. Calculate the Von Mises stress, in order to be able to draw a colour map of stress 

distribution at each increment, through the current components of stress matrix 
tt ∆+σ . Therefore, the von Mises criterion can be simplified as  

2
12

2
221

2
1 3σσσσσσ ++−=−Misesvon  ( 6-6 ) 

As, it was discussed earlier, in order to have a uniform nodal mass density, the boundary 

of the system should be determined. In the SLM process, as there may be complicated 

geometries, every node of the background mesh should be checked at each increment 

to make sure if it is located on the boundary. Generally, for simple 4-noded rectangular 

background mesh, every node is surrounded by four elements. If all four surrounded 

elements are expired by the material points, so the corresponding node is not located 

on the boundary of the solid structure, otherwise if only one, two or three elements 

around the node are filled with material points then the nodal mass density for that 

node should be fixed accordingly with a factor of ¼, ½, or ¾ respectively.  

 

6.4 Pre-processing for different scanning strategy in SLM 

In this project, one layer of a pipe with a separation wall is modelled as an example to 

analyse the stress distribution during the process of selective laser melting, with shape 

and dimension represented in Figure 6-4. Different scanning pattern, and scanning 

speed has been examined, and final Von Mises stress distribution has been shown in the 

results.  
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Figure 6-4 the geometry of the circular pipe with a separation wall. All the dimensions are in 
cm. 

 

The programme is quite flexible with the elastic material properties. In this chapter, the 

properties of the material used are listed below:  

 

Density (kg/m3) 7700 

Young’s Modules (GPa) 80 

Poisson Ratio 0.4 

 

Three different scanning strategies are designed in this project, and the results of Von 

Mises stress are compared with each other. In the first strategy, the laser moves laterally 

while it is perpendicular to the plane of powders. As it is shown in Figure 6-5 the laser 

scans following the sequence of bottom layers to the top layer. Here in this particular 

pattern, the mid wall is scanned after the outside wall. In the second pattern, the laser 

moves on a circular base, perpendicular to the plain of powders again. In this method, 

the laser follows a polar coordinate system; it starts from one arbitrary point of the inner 

edge of the circular section of the pipe, and after scanning one whole circle, it moves 

one step in the radial direction and scans the second circle, until it finishes the pipe 

thickness and then scans the mid wall. Figure 6-6 shows the schematic of this pattern. 

In practice most of the times, the laser starts by scanning all the edges of the component 
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first to make it smoother. The third scanning pattern is following a polar coordinate 

system for the inner and outer edges of the circle and then it changes back to the normal 

Cartesian coordinate system. Next, scans the edges of the mid wall and then moves 

laterally and scans inside the circular walls and the mid wall as well. Figure 6-7 shows 

the schematic of this pattern. 

 

 

Figure 6-5 the laser moves laterally and is perpendicular to the plane of powders. 

 

Figure 6-6 the laser moves on a circular base, perpendicular to the plain of powders 

 

 

Figure 6-7 the laser first scans the edges and then scans between the edges. 
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All the three strategies are coded by FORTRAN as a part of the Material Point Method 

program. Therefore, the distribution of von Mises stress at any time during the whole 

process can be demonstrated as result of this project.   

6.5 Results and discussion  

The results presented in this section for case study 1 and case study 3 was carried out 
by Yu Zhou as his MSc project using my MPM code under my co-supervision. (Yu Zhou, 
2013) 

6.5.1 Distribution of von Mises stress for the first scanning strategy 

Distribution of von Mises stress for the first strategy, as the scanning pattern was shown 

in Figure 6-5 the Von Mises distribution of the SLM process is shown at different times. 

In the first scanning method, 10200 material points have been scanned. Figure 6-8 

shows how Von Mises stress behaves during the whole process of selective laser melting 

(with maximum sintering stress MPa5000 −=σ , and 500=ct that means the effect of 

the laser will vanish after 500 iterations, and it is assumed the laser hit only 1 material 

point at each iteration) 
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Figure 6-8 Distribution of von Mises stress for the first scanning strategy with cooling time 
500=ct  and maximum sintering stress MPa5000 −=σ  (All the units in the figure are MPa− ). 

The number of scanned material points: (a) 1530; (b) 5100; (c) 7650; (d) 10200 

The Von Mises stress reaches a maximum when the laser beam hit the material point 

and the value is almost 0σ . This means the power of the laser is the dominant factor to 

Von Mises stress. Then,  Von- Mises stress keeps decreasing after the laser passed the 

heated material point, and finally it reaches almost zero after a period of time because 

only elastic deformation is taken into account in this project. However, MPM is quite 

flexible to use plasticity theories and will be able to calculate the residual stresses; it is 

beyond the scope of this project and further research is required.  

6.5.2 Distribution of von Mises stress for the second scanning strategy 

Von Mises stress distribution for the second strategy that is shown in Figure 6-6 when 

the circular section is following the polar coordinate system is shown in Figure 6-9. In 

this method 8200 MP has been scanned in total with the same sintering stress 

MPa5000 −=σ  and cooling time of 500=ct .  
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Figure 6-9 Distribution of von Mises stress for the third strategy with cooling time 500=ct  
and maximum sintering stress is MPa5000 −=σ  (All the units in the figure are -MPa). The 
number of material points: (a) 600 ;(b) 3500 ;(c) 4500(d) 6150;(e) 6500 ;(f) 7200;(g) 8000 

6.5.3 Distribution of von Mises stress for the third scanning strategy 

As it is discussed in section 6.4, in the third scanning strategy first the edges are scanned, 

and then the laser moves between the edges to scan inside the thickness of the pipe. 

The total number of material points in this method is 12600, and the distribution of the 

Von Mises stress is shown in Figure 6-10. Here it is assumed that the laser spot only 

scans one material point at a time, however, in practice always a melting pool will be 

formed around the laser spot. Such situation that material point is scanned repeatedly 

happens frequently during the whole process. This can cause a high temperature and 

thermal stress, which results in initial cracks. More attention should be paid to this issue 

during practical fabrication.  
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Figure 6-10 Distribution of von Mises stress for the third strategy with cooling time 500=ct  and 
maximum sintering stress is MPa5000 −=σ  (All the units in the figure are -MPa). The number of 

material points: (a) 500 ;(b) 1100 ;(c) 2400 (d) 3930 ;(e) 10050 ;(f) 12600 

6.5.4 Distribution of von Mises stress with different length of cooling period ct  

Different values of cooling time ct  are used to represent how the distribution of von 

Mises stress behaves in a different situation. The behaviour is tested with a cooling time 

of shrinkage stress 20=ct , 100=ct , 500=ct . Figure 6-11 shows the distribution of von 

Mises stress for the first strategy with 1530 material points with different cooling time

ct . The period that Von Mises stress exists is positively proportional to the cooling time 

of shrinkage stress. Therefore, as it is demonstrated this factor can be easily adjusted in 
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this model. Figure 6-11 shows the comparison of thermal stresses under the different 

cooling time of shrinkage stress. In Figure 6-11 (a) and Figure 6-11 (b) when laser begins 

to scan the body of the component, it repeats scanning the material points of the edge 

that have already been totally cooled down. In practical production, it is better to take 

into account the property of shrinkage stress when deciding the material. 

 

Figure 6-11 Distribution of von Mises stress for the first strategy with maximum sintering stress
MPa5000 −=σ , the number of material points 1530 (All the units in the figure are -MPa). 

Cooling time ct  is: (a) 20; (b) 100; (c) 500. 

.  

Figure 6-12 Distribution of von Mises stress for the third strategy with maximum sintering 
stress MPa5000 −=σ , (All the units in the figure are -MPa).  Number of material points 2502 

and cooling time ct  is: (a) 20; (b) 100; (c) 500. 
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6.6 Summary 

In this chapter, the application of Material Point Method has been demonstrated in a 

simulation of Selective Laser Melting (SLM) process. MPM is a strong numerical tool to 

calculate the residual stresses inside the material due to the distribution of thermal 

stresses during the process of SLM. As it was discussed in this process laser scanning 

pattern also play an important role in the distribution of the residual stresses that can 

lead to cracks. Here, we have modified the MPM code for small deformation and 

tailored it to be able to simulate the effect of laser scanning pattern. Three different 

strategies have been considered and the results of Von Mises stress distribution have 

been compared. The results are suitable for a wide range of materials and values of laser 

power due to the flexibility of the programme used in this project. Further improvement 

can be done to the program by using plasticity theorems instead of elasticity theorems 

that are used in this program. Also, thermal analysis enables the program to investigate 

heat transfer in the material that could be used to accurately calculate the residual 

stresses due to the shrinking. The major advantage of MPM over the conventional FEM 

in simulating SLM is the capability of MPM to simply deal with adding/ losing material 

to the main body. The strong side of MPM is its flexibility that can fit in any conditions, 

whether plasticity is used or elasticity for the governing equation. Also, the initial 

sintering stress can be separately calculated and be fed into the program. For example, 

sintering stress can be separately evaluated in a different subroutine via a transient heat 

transfer analysis and be used as 0σ in Eq. ( 6-1 ) in each time step in SLM process. As we 

have used elastic constitutive law, the residual stresses cannot be calculated, therefore 

the sintering stress caused by the laser is always the dominant factor in the von Mises 

stress distribution. That is the reason why, the stress field around the laser spot is always 

much higher than the rest of the body, and also the stress field away from laser spot is 

almost zero.  
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Chapter 7. Conclusion 
 

In this thesis mainly Material Point Method (MPM) is used as a robust numerical tool 

based on Lagrangian- Eulerian discerption of motion to model complex problems such 

as degradation of highly swellable polymers during large elastic swelling. Also, a rigorous 

validation of the MPM is shown against simple problems to fully validate MPM in 

extremely large deformation analysis. This advanced numerical method is further 

demonstrated to model an additive manufacturing technique called Selective Laser 

Melting that is currently difficult to handle for standard Finite Element Method (FEM). 

It is demonstrated that MPM can be perfectly tailored to fulfil the requirements of 

modelling problems dealing with discrete parts and continuum parts at the same time, 

such as SLM. 

The main advantages of MPM over the conventional FEM are first due to the constant 

background mesh that can be chosen arbitrary, that avoids fatal mesh distortion which 

is a common problem in FEM especially in large deformation analysis. Therefore, no re-

meshing technique or iterative contact algorithms are necessary for the MPM. The 

second appealing feature of the MPM is the flexibility of this method to deal with the 

material disintegration or material consolidation which means during the 

computational process material can be added or removed from the main computational 

domain without any re-meshing or iterative schemes. Therefore, in this thesis 

simulation of polymer degradation during large swelling and modelling of Selective 

Laser Melting are chosen as two complex examples to demonstrate the robustness and 

simplicity of the MPM over the conventional FEM for complex problems.  

The Material Point Method is validated in this thesis using a series of analytical solutions 

for simple tensile problems and vibration problems. Therefore, it is demonstrated that 

the method is reliable and the numerical results are of high confidence. Nonetheless, 

the effortlessness and strength and accuracy of this numerical method makes it a very 

authoritative technique to tackle very complex problems beyond the scope of polymer 

degradation during large swelling that was discussed in this thesis.  
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The focus of this thesis, however, is on the capacity of the Material Point Method to 

tackle polymer swelling and polymer degradation for highly swellable polymers. In 

chapter 2 non-equilibrium thermodynamic theory was introduced and the framework 

was presented to model the swelling behaviour of the highly swellable materials. It is 

discussed that the equilibrium thermodynamic theory does not consider the short time 

limit of the polymer swelling and only focuses on the long time limit and the final 

swelling ratio of the hydrogel. Since the swelling process is a fast phenomenon in highly 

swellable materials and a short time limit of the process is of high importance, so 

equilibrium thermodynamic theory cannot be used to explain the swelling behaviour of 

highly swellable materials. Therefore, the non-equilibrium thermodynamic theory is 

presented.  Also, polymer swelling is brought about by the concentration of the solvent 

molecules which is diffused inside the polymer due to the chemical potential. Hence, 

the nominal stresses and the chemical potential (i.e. the governing equation) that are 

shown in Eq.( 2-14 ) and Eq.( 2-15 ) must be solved. Also, non-equilibrium 

thermodynamic theory stated that there is a linear relationship between the applied 

body force (nominal stresses) and displacement of the materials as shown in Eq. (2-18). 

Therefore, the focus of this thesis is to model the large elastic deformation of the 

hydrogel as a consequence of the nominal stresses, rather than solving the actual 

governing equations. Hence, the computer program based on the MPM is designed to 

work for a range of arbitrary constant stresses that is applied to all the material points 

which are representing the mass of the body. Hence, instead of solving the actual 

governing equations for nominal stresses and chemical potential, alternatively, it is 

assumed a range of known constant stresses are applied to the polymer like an initial 

body force. Therefore, it is shown that the computer program is capable of working for 

more realistic values of stresses and chemical potential when required. 

In Chapter 3 the mathematical framework of the MPM is explained in detail, and the 

topological system which is designed for the main computer program for this thesis is 

discussed. Furthermore, in MPM the material points can be easily positioned within a 

global coordinate system and build a large collection of material points in multi-

dimensional space with specific boundary profile. Therefore, modelling and discretising 

of structures with difficult geometries are easy to handle with MPM, while it could be a 
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challenging task for standard FEM, however, then a fairly complicated topological 

system is required to track the material points at every time step, especially in large 

deformation problems that material points move far from their initial computational 

cell. The topological system that is discussed in this chapter can accurately track down 

the material points, and remember the state variables such as position, velocity, 

accelerations, and stress values from the last time step and use them to update for the 

current time step.  The framework that is designed contains two subroutines to relate 

the nodal numbers to the surrounding cell’s index number and also cell’s index number 

to the four node’s index number of the computational cell. Furthermore, three 

subroutines are designed to count the total number of material points per cell at each 

time step, and also to find the current cell’s index number for a specific material point’s 

index number, and last but not least, to find the index number of all the current material 

points per cell’s index numbers. In addition, either global or local mesh refinement is 

possible with the MPM. But, a common issue that often happens in the MPM is when 

there are a few number of material points in a computational element that can happen 

due to moving of the material point to a new element which usually occurs in the 

boundary of the system. This problem is discussed in chapter 3 in detail and a smoothing 

technique which is offered by Sulsky et al. (1995) is presented, however, their 

smoothing technique is useful in small deformation analysis, it will not be helpful for 

extremely large deformation analysis. Therefore, in chapter 5 a unique technique is 

presented by the author of this thesis to solve this issue for extremely large deformation 

problems.  

A rigorous validation of the MPM against an analytical solution of some simple problems 

is conducted in chapter 4 in 1D and 2D for small deformation analysis. Hence, the 

dynamic response of the vibrational system is simulated in 1D and 2D and the results of 

the simulation by the MPM and the FEM are shown having a good match and can be 

also analytically justified. Furthermore, it is shown that the number of material points 

per cell is an important factor for the accuracy of the results of the MPM. Therefore, a 

range of different vibration simulations with different mechanical properties and 

different boundary conditions and load conditions are fulfilled to verify the computer 

program based on the MPM. The next step in the validation of the computer program 
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based on the MPM is to validate the accuracy of the constitutive law and the 

stress/strain values.  Hence, a tensile test is carried out to validate the accuracy of the 

linear constitutive law that is fitted in the MPM computer program for small elastic 

deformation analysis. Therefore, the reliability of the computer program based on the 

MPM is firmly demonstrated in 2D small deformation analysis, by comparing the steady 

state response of the 2D vibrational system with the analytical solution. Also, the results 

of the stress and strain values of the MPM simulation are used to verify Young’s modulus 

and Poisson’s ratio using Hooke’s law, and these results have been compared with the 

initial inputs. A perfect match between the initial inputs of Young’s modulus and 

Poisson’s ratio and that of calculated by the MPM perfectly validate the computer 

program. A damping system is designed to damp the dynamic response of the MPM 

results about the steady state values. It is shown that for a range of different mechanical 

properties and boundary conditions and load conditions the results of the computer 

program have a perfect match with the analytical solutions.  

In chapter 5, degradation of highly swellable polymers during non-uniform and 

extremely large deformation is used as an example of the capability of the MPM in the 

simulation of such a complex problem that is impossible to handle for the conventional 

FEM. The complexity of this problem can be shown in random degradation of the 

polymer during extremely large deformation, while in the conventional FEM random re-

meshing of the discretised system due to the mass loss is impossible. Hence, firstly the 

computer program based on the MPM is validated for the modelling of extremely large 

deformation of the materials or structures, against the analytical result of the large 

tensile test. Secondly, the capability of MPM is shown in the modelling of random 

degradation of highly swellable polymers during non-uniform large swelling. Following 

the work was done by M. Kang and R. Huang (2010), the rate form of Flory’s constitutive 

law is calculated only based on the elastic free energy of hydrogels and is used as the 

material constitutive law of highly swellable polymers in the computer program based 

on the MPM to update the stresses. A perfect match is found between the numerical 

results and analytical results of the 2D uniform large tensile test. Therefore, the 

computer program is then tailored to model a non-uniform swelling by changing the 

reference body to a multi-layered polymer with different values of applied stresses. Last 
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but not least, polymer degradation is modelled as a random phenomenon based on the 

normal distribution of the volumetric strain. The main difficulty in the numerical 

simulation of the non-uniform extremely large swelling based on the MPM is to deal 

with the boundary layer of the system when the material points move to the new empty 

elements of the background mesh, that cause inaccurate high nodal accelerations. The 

fatal numerical issues of implementation of the MPM and also a novel technique to 

solve the problem is presented in sections 5.3.2 and 5.3.3 respectively.  

Part of the work in this chapter was presented in the 5th International Conference on 

Computational Methods (ICCM2014) Cambridge, UK.  

The details of the conference presentation and poster presentation is given in APPENDICES.   

In chapter 6 the capacity of the MPM is demonstrated in the modelling of Selective Laser 

Melting (SLM) manufacturing process. It was shown that the MPM can be simply 

modified and be applied to simulate SLM manufacturing technique, since not only it can 

easily deal with adding/removing materials to the main computational body during the 

process due to the consolidation of metals powders which are melted by the laser, but 

also it can easily deal with complicated geometries which are the main advantage of the 

MPM over the conventional FEM in simulating of the SLM manufacturing technique. The 

simple birth/death technique that is designed and presented in section 6.3.1 in parallel 

with the MPM, is claimed to be much easier than the conventional birth/death 

technique since re-meshing of the system is not required when the material is added to 

the system due to the consolidation of the melted powders. Therefore, it is 

demonstrated that study of the effect of different laser patterns is easy to handle with 

the MPM. Laser scanning pattern is an important factor which can directly effect on the 

residual stresses due to the thermal stresses that are maximum around the laser spot. 

Furthermore, in the conventional FEM, in order to study the effect of the laser spot size, 

or to study the local thermal residual stresses or to study the potential micro-cracks due 

to the thermal residual stresses and also to apply the birth/death technique, it is 

required to use an extremely refined mesh that cause an enormous increase in the 

computational costs Lian Y.P., Zhang X., Liu Y., (2012). Hence, the study of the real size 

parts is extremely difficult and expensive by the conventional FEM. But, in the MPM 
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since each powder can be defined by one material point and also all the state variables 

are defined on the material points a much larger background mesh can be used that 

reduces the computational costs. Therefore, the study of the larger industrial size of the 

machine parts is possible with the MPM. Also, MPM can be easily modified to use the 

plasticity theorem and to calculate the distribution of thermal stresses due to 

conduction, or radiation in order to analyse the residual stresses that are beyond the 

scope of this thesis.  
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 Reynold’s theorem of material time derivative 
Deformation gradient is an important variable in characterization of the deformation, 

which is defined by  

T

j

i

j

i
ij X

x
X

F )( 0Φ∇≡
∂
∂

≡
∂
Φ∂

=  ( AI-1 ) 

Where ),( tXΦ is the equation of motion as shown in Eq. ( AI-2 ), ix and jX refer to the 

computational coordinates and the material coordinates respectively, and 0∇  which is 

the left gradient operator with respect to the material coordinate. 

),( tXx Φ=  ( AI-2 ) 

The determinant of the F is indicated as J and called Jacobian determinant, or 

determinant of the deformation gradient 

)det(FJ =  ( AI-3 ) 

With the Jacobian determinant the integrals in the current and reference configurations 

can be related, Eq. ( AI-4 ) relates the two configuration  

∫∫ ∫ ΩΩ Ω
Ω=ΩΦ=Ω

00
00 ),()),,((),( JdtxfJdttXfdtxf  ( AI-4 ) 

Where f is an arbitrary function, 0Ω  and Ω are initial state of the configuration and the 

current configuration respectively.  

The time derivative of Eq. ( AI-5 ) gives  

).(vJ
x
vJ

dt
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i ∇=
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=  ( AI-5 ) 

In Eq.( AI-5 ) v is the velocity vector and Einstein summation is used. By applying the 

time derivative on Eq. ( AI-5 ) it gives  

∫∫ ∫ ΩΩ Ω
Ω=ΩΦ=Ω

00
00 ),()),,((),( Jdtxf
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dJdttXf

dt
ddtxf

dt
d  ( AI-6 ) 

As the initial configuration is time independent Eq. ( AI-6 ) can be simplified as  
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 Derivatives of tangent modulus based on Flory’s 
constitutive law 

Tangent modulus derivatives based on the Flory’s theory: 

 Formulation of a numerical approach for inhomogeneous swelling is inevitable. 

Therefore, rate form constitutive law has been derived below based on work done by 

M. K. Kang and R. Huang that is following the work done by Hong et al. based on the 

Flory’s theory.  

Flory has suggested the below functional form of Energy, in which the first term is 

related to the elastic free energy density which is a function of deformation gradient 

tensor F . The second term on the right hand side of Eq. is due to free energy of mixing 

that is a function of solvent concentration C .  

)()(),( CUFUCFU me +=  (AII-1) 

M. K. Kang and R. Huang (2010) based on the statistical mechanics model of rubber 

elasticity, suggested an elastic free energy density and free energy of mixing for 

hydrogels based on Flory’s work.  
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Note that the principal stretches 321 ,, λλλ  in equation (AII-2) and are defined with 

respect to the dry state as the reference, which assume to be isotropic. And χ is a 

dimensionless quantity that characterizes the interaction energy between the solvent 

and polymer.   

A Legendre transformation of the free energy density function is introduced by M. K. 

Kang and R. Huang (2010).  

CCFUFU µµ −= ),(),(ˆ  (AII-4) 

In which, µ is the chemical potential which is again suggested by M. K. Kang and R. 

Huang (2010) in Eq. (AII-5) 
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Therefore, by substituting Eq. (AII-2), Eq. (AII-3) and Eq. (AII-5) as well as ν/)1( −= JC

into Eq. (AII-4) the Legendre transformation can be written as  
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Where ikik FFI = . The suggested method needs a long derivation for the true (Cauchy) 

stress and its variation with respect to the current state in terms of a fourth-order 

tangent modulus tensor.  

The nominal stress is given in Eq. (AII-7) 
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According to the literature, the Kirchhoff stress is  
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 Where, ijσ is the true stress at the current state. Hence, by using the free energy 

function that was defined in Eq. (AII-4)  
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Also, it can be shown that  
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Hence, by substituting Eq. (AII-9), (AII-10), (AII-11) and (AII-12) into Eq. (AII-8) an explicit 

formula for the true stress can be obtained as  
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Where, jkikij FFJB 3/2−= is the deviatoric stretch tensor and ijδ is the Kronecker’s delta. 

The variation of the Kirchhoff stress gives that  
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It can be shown that 

kkDJJ δδ =  (AII-15) 
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In the above equations, iuδ is the variation displacement, ijDδ is the symmetric part of 

the deformation gradient, and ijWδ  is the antisymmetric part (spin). It should be noticed 

that, all the above quantities are variational quantities with respect to the current state. 

Therefore, Eq. (AII-14) can be written as  

)()( kjikikkjklijklij WWJDJCJ δσδσδσδ −+=  (AII-21) 
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The second term on the right hand side of Eq. (AII-21) represent the rotation of the local 

coordinates. From Eq. (AII-21) an explicit formula for the tangent modulus tensor at the 

current state can be obtained as  
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The second term on the right hand side of Eq. (AII-22) represent the rotation of the local 

coordinates.  The first term on the right hand side of Eq. (AII-22) gives tangent modulus 

for an incompressible neo-Hookean material.  
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 Expected value of a function of random variable 
It is assumed that X is a random variable defined on a probability space ),,( PFΩ . 

Hence, ][XE is signified as the expected value of the random value X that is defined as 

Lebesgue integral.  

 

∫
Ω
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If )(xf is an admitted probability function of X , then  

∫
∞
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== dxxfxXE )(.][µ                                                                                                          (AIII-2)  

 

With this introduction, the normal (Gaussian) distribution ),( σµN can be defined by its 

probability density function,  
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In which Rx∈ ,µ is the mean value of the volumetric strain and σ is the standard 

deviation. For a case of 0=µ and 1=σ the distribution graph is shown in Fig. AIII-1.  
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Fig. AIII-1 Standard normal distribution, 0=µ and 1=σ . 

So, in this case the probability density function will be reduced to  
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First, it should be proved that )(xf is a probability density function,  
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In order to prove Eq. (AIII-5), let  
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Next, by converting Eq. (AIII-7) to polar coordinates and substituting θρ cos=x , 

θρ sin=y , and the Jacobian determinant ),( θρJ is shown in Eq. (AIII-8) 
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Therefore Eq. (AIII-7) can be written as,  
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Hence, 2/1)2( π=I and it leads to 1)( =∫
∞

∞−
dxxf .  In a general case, by substituting

σ
µη −

=
x

into Eq. (AIII-3), the same result will be obtained.  

Now, let 
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=
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also it can be shown ησddx =  therefore,  
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Therefore, Eq. (AIII-10) proves that )(xf  is an admitted probability function.  
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