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Abstract

Jordan-Lie Inner Ideals of Finite Dimensional

Associative Algebras

Hasan M S Shlaka

A subspace B of a Lie algebra L is said to be an inner ideal if [B, [B,L]] C B. Suppose
that L is a Lie subalgebra of an associative algebra A. Then an inner ideal B of L is said
to be Jordan-Lie if B> = 0.

In this thesis, we study Jordan-Lie inner ideals of finite dimensional associative al-
gebras (with involution) and their corresponding Lie algebras over an algebraically closed
field [ of characteristic not 2 or 3.

Let A be a finite dimensional associative algebra over . Recall that A becomes a
Lie algebra A(™) under the Lie bracket defined by [x,y] = xy —yx for all x,y € A. Put
A = A) and A®) = [A*=1) A®=D)] for all k > 1. Let L be the Lie algebra A®) (k > 0).
In the first half of this thesis, we prove that every Jordan-Lie inner ideal of L admits
Levi decomposition. We get full classification of Jordan-Lie inner ideals of L satisfying a
certain minimality condition.

In the second half of this thesis, we study Jordan-Lie inner ideals of Lie subalgebras
of finite dimensional associative algebras with involution. Let A be a finite dimensional
associative algebra over F with involution * and let K (1) be the derived Lie subalgebra
of the Lie algebra K of the skew-symmetric elements of A with respect to *x. We classify
«-regular inner ideals of K and K(!) satisfying a certain minimality condition and show
that every bar-minimal *-regular inner ideal of K or K (1) is of the form eKe* for some
idempotent e in A with e*e = 0. Finally, we study Jordan-Lie inner ideals of K (1) in the
case when A does not have “small” quotients and show that they admit *-invariant Levi

decomposition.
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Chapter 1

Introduction

The ground ground field [ is algebraically closed of characteristic p > 0. In this thesis
we study Jordan-Lie inner ideals of finite dimensional associative algebras.

1.1 Overview

Let L be a Lie algebra. A subspace B of L is said to be an inner ideal of L if [B,[B,L]] C B.
Note that every ideal is an inner ideal. On the other hand, there are inner ideals which
are not even subalgebras. This makes them notoriously difficult to study. Inner ideals
were first introduced by Benkart [13]. She showed that inner ideals and ad-nilpotent
elements of Lie algebras are closely related [14]. Since certain restrictions on the ad-
nilpotent elements yield an elementary criterion for distinguishing the non-classical from
classical simple Lie algebras in positive characteristic, inner ideals play a fundamental
role in classifying Lie algebras. It was shown in [28] that inner ideals play role similar
to that of one-sided ideals in associative algebras and can be used to develop Artinian
structure theory for Lie algebras.

Premet ([33] and [34]) proved that every finite dimensional simple Lie algebra over an
algebraically closed field of characteristic not 2 or 3 must have nonzero extremal elements.
Recall that an element x of a Lie algebra L is said to be extremal if [x,[x,L]] C Fx. Since
one dimensional inner ideals of a Lie algebra L are spanned by extremal elements, finite
dimensional simple Lie algebras over an algebraically closed field of characteristic not 2
or 3 must have one dimensional inner ideals. Moreover, it follows from [14], [32] and [17]
that the classical Lie algebras over an algebraically closed field of characteristic greater

than 5 can be characterized as nondegenerate finite dimensional simple Lie algebras which



1.1 Overview

are generated by one dimensional inner ideals. Recall that a Lie algebra L is said to be
nondegenerate if it has no non-zero absolute zero divisors (an element x € L is said to be
an absolute zero divisor or sandwich element if [x, [x,L]] = 0).

Further motivation for studying inner ideals comes from [27], where Fernandez Lépez
et al showed that if L is an arbitrary nondegenerate Lie algebra over a commutative ring
@ with 2 and 3 invertible, then every abelian inner ideal of finite length in L gives rise to
a finite Z-grading of L. Combining this with Zelmanov’s classification [41] (see also [36]
and [37]) of simple Lie algebras with finite Z-gradings, we get that every nondegenerate
simple Lie algebra over fields of characteristic 0 or p > 4n+1 (n is the largest integer with
L, # 0 in the grading) with a nonzero abelian inner ideal of finite length is isomorphic
to either a (derived) Lie subalgebra of a simple associative ring (with involution) with a
finite Z-grading by taking the Lie commutator, or the Tits-Kantor-Koecher algebra of a
Jordan algebra of a nondegenerate symmetric bilinear form, or an algebra of exceptional
type (Eg, E7, Eg, Fy, or y).

Inner ideals of classical Lie algebras were classified by Benkart [13] and completed by
Benkart and Ferndndez Lopez [15], using the fact that these algebras can be obtained as
the derived Lie subalgebras of simple Artinian associative rings (with involution). Ben-
kart’s classification [13] of inner ideals of Lie algebras is similar to McCrimmon’s one
[31] of the derived Jordan subalgebras of simple associative rings (with involution). In
a series of papers, Fernandez Lopez et al ([25], [26], [27], [28], [29] and [24]) show a
strong connection between inner ideals of Lie algebras and inner ideals of Jordan systems
(algebras and pairs, see [23]).

Benkart’s classification was generalised by Fernandez Lopez, Garcia and Gémez Loz-
ano [26] to the case of infinite dimensional finitary simple Lie algebras. Recall that an
algebra is said to be finitary if it consists of finite-rank transformations of a vector space.
Finitary simple Lie algebras over a field of characteristic 0 were classified by Baranov
[2]. He proved that any infinite dimensional finitary central simple Lie algebra over a
field of characteristic zero is isomorphic to either the finitary special linear Lie algebra,
or the finitary unitary Lie algebra, or the finitary symplectic Lie algebra fsp(V, @), or the
finitary orthogonal Lie algebra fso(V, y), where ¢ (resp. y) is a skew-symmetric (resp.
symmetric) bilinear forms, defined on a vector space V over a field of characteristic 0.
These results were further extended by Baranov and Strade [8] to the case of positive
characteristic.

Inner ideals of another class of infinite dimensional Lie algebras were studied by

Baranov and Rowley [6]. They proved that a simple locally finite Lie algebra over an
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algebraically closed field of characteristic O is diagonal (see [1] for definition) if and only
if it has a non-zero proper inner ideal. Recall that an algebra is said to be locally finite
if every finitely generated subalgebra is finite dimensional. The classification of diagonal
simple locally finite Lie algebras was obtained in [1].

Benkart’s and Benkart and Fernandez Lépez’s results were further generalised by
Ferndndez Lopez, Brox and Gomez Lozano. They classified the inner ideals of the derived
Lie subalgebras of centrally closed prime associative algebra over a field of characteristic
# 2,3 [24] and of centrally closed prime ring with involution of characteristic # 2,3,5
[16].

In this thesis we use approach similar to Benkart’s one to study inner ideals of the de-
rived Lie subalgebras of finite dimensional associative algebras (with involution). These
algebras generalise the class of simple Lie algebras of classical type and are closely re-
lated to the so-called root-graded Lie algebras [4]. They are also important in developing
representation theory of non-semisimple Lie algebras (see [9]). As we do not require our
algebras to be semisimple or semiprime we have a lot more inner ideals to take care of (as
every ideal is automatically an inner ideal), so some reasonable restrictions are needed.
We believe that such a restriction is the notion of a Jordan-Lie inner ideal introduced by
Ferndndez Lopez in [24]. We need some notation to state the definition.

Let A be a finite dimensional associative algebra over . Recall that A becomes a
Lie algebra A=) under the Lie bracket defined by [x,y] = xy — yx for all x,y € A. Put
A = A) and AK) = [Ak=1) A*=1)] k> 1. Suppose that A has an involution . Recall
that an involution is a linear transformation * of an algebra A satisfying (a*)* = a and
(ab)* = b*a* for all a,b € A. Note that we will work with involution of the first kind only,
that is, * is F-linear. We denote by u"(A) := {a € A | a* = —a} the vector space of the
skew symmetric elements of A. Recall that K = u"(A) is a Lie algebra with the Lie bracket
defined by [x,y] = xy — yx for all x,y € K. We denote su” (A) := [u”" (A),u" (4)]. It is well
known that the classical simple Lie algebras sl,, sp, and so,, can be defined as su”(A) for
suitable involution simple associative algebras. Put K(0) := K and K¥) = [K(—1) g(k—1)]
forall k > 1.

Let B be an inner ideal of L = A%®) or K*) for some k > 0. We say that B is Jordan-
Lie if B2 = 0. Jordan-Lie inner ideals of A(~) were introduced in [24] by Fernandez
Lopez. In some literature, see for example [16, Section 3], Jordan-Lie inner ideals of K
are called isotropic inner ideals, as they correspond to isotropic subspaces of algebras
with involution. The first motivation of studying Jordan-Lie inner ideals comes from [13,

Theorem 5.1], where Benkart showed that if A is simple Artinian ring of characteristic not
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2 or 3, then every inner ideal of the Lie algebra [A,A]/Z(A) N [A,A] (Z(A) is the centre of
A) has square zero, that is, every inner ideal of such Lie algebra is Jordan-Lie.

Let V be a finite dimensional vector space over a division ring A of characteristic not 2
or 3 with involution and let A = Enda V. Suppose that A has involution and has dimension
greater than 16 over its centre Z(A). It follows from Benkart and Fernandez Lopez results
[15, Theorem 6.1] that every proper inner ideal of L = su”(A)/su”(A) NZ(A) is either
Jordan-Lie or Clifford (in the later case, L is the finitary orthogonal Lie algebra fso(V, v)).
Recall that an inner ideal B of fso(V, ) is said to be Clifford if B = [x,H"], where H is a
hyperbolic plane of V, x is a non-zero isotropic vector of H and H+ = {v e V | w(v,H) =
0} [16]. Moreover, if A is a field, then their results are also true for inner ideals of the Lie
algebra su” (A) [15, Theorem 6.3].

Further motivation comes from [24], where Ferndndez L6pez showed that Jordan-Lie
inner ideals are important in constructing the so-called standard inner ideals. Let A be
an associative algebra over a ring of scalars ® with % € ®. An inner ideal of A7) is
called standard if it is of the form B + Q, where B is a Jordan-Lie inner ideal of A and
Q is a d-submodule of the centre Z(A) of A. The usefulness of standard inner ideals
comes from [24, Corollary 5.5], where it is proved that every abelian inner ideal of the
(derived) Lie algebra of a non-unital centrally closed prime associative algebra over a
field of characteristic not 2 or 3 is standard. Moreover, this is also true in the case when A
is unital and every zero square element of A is Von Neumann regular.

In recent paper [16, Theorem 6.3] Brox, Ferndndez Lépez and Gémez Lozano classify
abelian inner ideals of the Lie algebra u”(A), where A is a centrally closed prime ring with
involution of characteristic not 2, 3, or 5. They proved that every abelian inner ideal of
u’(A) is either (i) isotropic (i.e. Jordan-Lie), or (ii) Clifford (of the form [x,H"]), or
(ii1) standard (of the form B & Q) or (iv) special, where A in (iii) and (iv) is unital with
involution of the second kind and * in (ii) is of orthogonal type. An inner ideal of u"(A)
is said to be special if it is of the form {b+ f(b) | b € B}, where B is a Jordan-Lie
(isotropic) inner ideal of u (A) and f : B — u (Z(A)) is a non-zero F-linear map with
[B,[B,u"(A)]] Ckerf (F = {z€ Z(A) | z* =z} is a field of characteristic not 0) [16].

Further motivation of studying Jordan-Lie inner ideals comes from [6, Corollary 5.6],
where Baranov and Rowley proved that if L is a locally finite infinite dimensional Lie
algebra over an algebraically closed field of characteristic O, then L is finitary if and only
if L has a minimal regular inner ideal. A subspace B of L = AK) (resp. K (k)), k>0, 1s said
to be regular (resp. *-regular) inner ideal if B> = 0 and BAB C B (resp. u (BAB) C B),

see also Propositions 2.5.21 and 3.7.6 for alternative description of regular and *-regular
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inner ideals in terms of the orthogonal pairs of one-sided ideals of A.

Regular inner ideals were first defined in [6] and were recently used in [5] to classify
zero product subsets of simple rings. Note that every regular inner ideal is Jordan-Lie (see
Lemmas 2.5.15) and every x-regular inner ideal is Jordan-Lie (see Lemma 3.7.1). It was
also proved in [5, 4.11] that all maximal abelian inner ideals of simple rings are regular.
The regularity conditions B> = 0 and BAB C B imply the original one ([B,[B,L]] C B)
and are much easier to check, so it is an interesting question to describe the class of all
finite dimensional algebras A such that all Jordan-Lie inner ideals of A®) are regular. We
believe that most algebras A are in this class. However, exceptions do exist, as we show
in Example 2.5.17 that there is an algebra that contains a Jordan-Lie inner ideal which is
not regular. In addition to point spaces (see Definition 2.1.6) are example of Jordan-Lie

inner ideal which are not *-regular.

1.2 Outline of Thesis

Chapter 2 consists mainly of joint work with Alexander Baranov [7]. Recall that the
ground field I is algebraically closed of characteristic p > 0. Let A be a finite dimensional
associative algebra over [ and let R be the radical of A. Let B be a Jordan-Lie inner ideal
of L=AK (k > 0), that is, B is an inner ideal with B2 = 0. Denote by B the image of
Bin L=L/RNL. Let X be an inner ideal of L. We say that B is X -minimal (or simply,
bar-minimal) if B = X and for every inner ideal B’ of L with B’ = X and B’ C B we have
B’ = B. Let e and f be idempotents in A. Then (e, f) is said to be an idempotent pair in
A. An idempotent pair (e, f) in A is said to be orthogonal if ef = fe = 0 and strict if for
each simple component S of A = A/R, the projections of € and f on S are both either zero

or non-zero. We are now ready to state the main results that will be proved in Chapter 2.

Theorem 1.2.1. Let A be a finite dimensional associative algebra and let B be a Jordan-
Lie inner ideal of L = AW (k> 0). Suppose p # 2,3. Then B is bar-minimal if and only
if B=eAf where (e, f) is a strict orthogonal idempotent pair in A.

Corollary 1.2.2. Let A be a finite dimensional associative algebra and let L =AW (k> 0).
Let B be a Jordan-Lie inner ideal of L. Suppose p # 2,3 and B is bar-minimal. Then B is

regular.
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Let B be an inner ideal of L = A®) (k > 0). Then we say that B splits in A if there is a
Levi (i.e. maximal semisimple) subalgebra S of A such that B = Bg&® Bg, where Bs = BN S
and B = BN R (Definition 2.5.5).

Corollary 1.2.3. Let A be a finite dimensional associative algebra and let L =AW (k> 0).
Let B be a Jordan-Lie inner ideal of L. Suppose p # 2,3. Then B splits in A.

In the proof of Theorem 1.2.1 we use the following result, which describes the poset

of bar-minimal Jordan-Lie inner ideals of L and has an independent interest (see Section

.. . LA LR
2 for the definitions of the relations <, < and "~").

Theorem 1.2.4. Let A be an Artinian ring or a finite dimensional associative algebra and
let (e, f) and (€', f') be idempotent pairs in A. Suppose that (e, f) is strict. Then the
following hold.

(i) If (e, f) # (0,0) then eAf # 0.

LR
(i) eAf C ¢Af" if and only if (e, f) < (€, ).
(iii) Suppose that (¢’, f') is strict. Then eAf = ¢’Af’ if and only if (e, f) z (e, 1.
(iv) Suppose that eAf C ¢’Af’. Then there exists a strict idempotent pair (¢”, f”) in A
such that (¢”, ) < (¢, '), (¢", ") 2 (e, f) and e"Af" = eAf.

Remark 1.2.5. It is well-known that every finite dimensional unital algebra is Artinian
as a ring. In particular, semisimple finite dimensional algebras are Artinian. However,
this is not true for non-unital algebras (e.g. for the one dimensional algebra over Q with
zero multiplication). This is why we refer to both Artinian rings and finite dimensional

algebras in the theorem above.

Chapter 3 contains some results in joint work with Alexander Baranov. In this chapter,
we study Jordan-Lie inner ideals of the derived Lie subalgebras of finite dimensional

associative algebras with involution. Let A be a finite dimensional associative algebra
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over IF with involution = (of the first kind) and let R be its radical. In [38] and [39] Taft
proved that there is a *-invariant Levi subalgebra S of A. Recall that K =u"(A) = {a € A |
a* = —a} is a Lie algebra and K(") = su™(A) = [u"(4),u"(4)] is a subalgebra of u"(A).
We denote by sym(A) := {a € A | a* = a} the vector space of symmetric elements of A.
Note that sym(A) is a Jordan subalgebra of A (see [20]). Recall that a subspace B of K (k)
(k > 0) is said to be a *-regular inner ideal if B> = 0 and u"(BAB) C B. We are ready now

to state some of our main results that will be proved in Chapter 3.

Theorem 1.2.6. Let A be a finite dimensional associative algebra with involution and let
B be a Jordan-Lie inner ideal of K ®) (k= 0,1). Suppose that p # 2 and B is bar-minimal.
Then B is x-regular if and only if B = eKe* for some idempotent e in A with e*e = 0.

Let L be a finite dimensional Lie algebra and let B be a subspace of L. Suppose
that there is a quasi Levi (see Definition 2.1.4) decomposition L = Q & N of L such that
B = Bp @ By, where Bp = BN Q and By = BN N. Then we say that B splits in L and Q
is a B-splitting quasi Levi subalgebra of L (Definition 2.5.4). We also say that an inner
ideal B of K*) (k > 0) x-splits in A if there is a x-invariant Levi (i.e. maximal semisimple)
subalgebra S of A such that B = Bs & Bg, where Bg = BN S and Bg = BN R (Definition
3.6.7).

Corollary 1.2.7. Let A be a finite dimensional associative algebra with involution. Sup-

pose that p # 2. Then every x-regular inner ideal of K®) (k = 0,1) x-splits in A.

The theorem and its corollary show that every bar-minimal *-regular inner ideal of
su”(A) generated by idempotent e in A with e*e = 0 and admits a Levi decomposition
in A. We are going to show that all Jordan-Lie inner ideals (not just x-regular ones)
admit a Levi decomposition in A under some natural restrictions on A (absence of “small”
quotients). Such algebras are said to be admissible (see Definition 3.5.1). Our motivation
to study this associative algebras comes from [10, Theorem 6.3], where Baranov and
Zalesskii proved that if A is admissible over an algebraically closed field of characteristic
0, then the Lie algebra su”(A) is perfect, that is [su’(A),su”(A)] = su’(A). We believe
that this is also true in the case when A is admissible over an algebraically closed field of

characteristic not 2 or 3 (the proof is similar to that of characteristic 0 with some extra
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cases to be considered), so we may assume that K(!) = su” (A) is perfect if A is admissible
and p # 2,3. Now, we are ready to state our main results which will be proved in Chapter
3.

Theorem 1.2.8. Let A be a finite dimensional associative algebra with involution and let
B be a bar-minimal Jordan-Lie inner ideal of K 1) — gy (A). Suppose that A is admissible
and p # 2,3. Then B x-splits in A.

Corollary 1.2.9. Let A be a finite dimensional associative algebra with involution. Sup-
pose that A is admissible and p # 2,3. Then the following holds.

(i) Every Jordan-Lie inner ideal ofK(l) x-splits in A.

(ii) Every Jordan-Lie inner ideal ofK(l) splits in KW,

1.3 Notations and Conventions

A is a finite dimensional associative algebra (with involution in Chapter 3).
* x is an involution of the first kind.

* SisaLevi subalgebra of A (x-invariant Levi in Chapter 3) .

R is the radical of A.
c A=A/R

« A) the Lie algebra of A with the Lie bracket defined by [x,y] = xy — yx for all

x,y € A, where xy is the usual multiplication of A.

« A (k> 0) is the derived Lie subalgebra of A, where A(®) = A(-), A1) = [A,A] and
AWK = [A=D A=) for all k > 1.

* K=u"(A)={acA|a" = —a} the Lie algebra of A consisting of skew symmetric

elements of A with respect to the involution .

o KU = sy (A) = [u*(A),u"(4)].
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« KO =K and KW = [k, g*=1)] for all k > 1.
o Z(A) the 1-perfect radical of A is the largest 1-perfect ideal of A (Definition 2.4.5).

o Z,(A) the admissible radical of A is the largest admissible ideal of A (Definition
3.5.5)

o L-perfect inner ideal is an inner ideal B of a Lie algebra L such that [B, [B,L]] = B.
* corer (B) the core of the inner ideal B of a Lie algebra L (Definition 2.4.13).

» M, the algebra of all n X n-matrices over [F.

* gl, the general linear algebra over F.

* sl, the special linear algebra over F.

* sp,, the symplectic Lie algebra over [F:

X X o '
* 50, (m =2n-+1 or 2n) the orthogonal algebra:

X X
sozn:{< ! )]X,XiEJ//nwithXi’:—Xi, i=1,2} and

X, =X!
Y
507,
$02041 = { " Y, ||, Y2eM,}.
v -y 0

* Tz (¢ = *1 or simply %) is a canonical involution defined on .#,, by X — X% =

0 1
Je X1, where J, = / (')l (I, is the identity n X n-matrix) when m = 2n
Elp

1,
and J; = diag( " ],1) when m = 2n+1; 1, is called orthogonal and 7_ is

n
called symplectic (see 3.1.3). Moreover, if * admits T (resp. 7_) in .#,,, then we

say that x is canonical of orthogonal (resp. symplectic) type of A.
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. syrn’f)(e (M) (p = £1 or simply £) is the subspace of .4, defined by

X
symb, (M,) = {( Y, pxt ) | X, Y1, Y2 € My, Y =peY), Y;=pelr};
Y-
p 3
symy, (M)
Symg+ (%Zn—kl) - { o " Y, ’ Y3,Y4 - //nla o c F},

pY, pY; o

where ¢ =0if p = —1.

o symP (M) ={X € M| X" =pX}.



Chapter 2

Jordan-Lie inner ideals of finite
dimensional associative algebras

In this chapter we study Jordan-Lie inner ideals of Lie algebras come from finite dimen-
sional associative algebras over algebraically closed fields of characteristic not 2 or 3. In
particular, we will prove Theorem 1.2.1, Corollary 1.2.2, Corollary 1.2.3 and Theorem
1.2.4. We introduce and describe some special types of inner ideals such as cores of inner
ideals, L-perfect inner ideals, bar-minimal inner ideals and regular inner ideals, which
will be used to prove the main results. The relation between inner ideals and idempotent

pairs will be discussed as well.

Outline of Chapter 2

(Section 2.1) We discuss some background results related to Lie algebras derived from

associative algebras and Jordan-Lie inner ideals of such Lie algebras.

(Section 2.2) We prove Theorem 1.2.4, which is one of our main results that describes

the poset of Jordan-Lie inner ideals generated by idempotents.

(Section 2.3) We study inner ideals of Lie algebras derived from semisimple associative
algebras. We highlight some preliminary results related to inner ideals of such Lie

algebras and state the most important ones.

(Section 2.4) We introduce and describe some classes of inner ideals and associative
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algebras: 1-perfect associative algebras, cores of inner ideals and L-perfect inner

ideals.

(Section 2.5) We introduce and describe bar-minimal and regular inner ideals and their
relation with L-perfect inner ideals. We define Levi decomposition of inner ideals.
We prove that every bar-minimal regular inner ideal is generated by a pair of idem-

potents.

(Section 2.6) Using Theorem 1.2.4 (proved in section 2.2) and the notion of 1-perfect
associative algebras with the properties of L-perfect inner ideals, we prove the main
results of this chapter. In particular, we will prove that bar-minimal Jordan-Lie
inner ideals are generated by idempotents (Theorem 1.2.1) and are regular (Corol-
lary 1.2.2). As a corollary, we show that all Jordan-Lie inner ideals split in their

associative algebras (Corollary 1.2.3).

2.1 Background Materials

Recall that I is an algebraically closed field of characteristic p > 0.

Throughout this chapter, unless otherwise specified, A is a finite dimensional associ-
ative algebra over [F, R =radA is the radical of A, S is a Levi (i.e. maximal semisimple)
subalgebra of A, S0 A=S®R; L= A®) for some k > (0, rad L is the solvable radical of L
and N = RN L is the nil-radical of L. If V is a subspace of A, we denote by V its image in
A =A/R. In particular, L = (L+R)/R = L/N. Since R is a nilpotent ideal of A the ideal
N = RNL of Lis also nilpotent, so N C rad L. It is easy to see that N =rad L if p =0 and
k> 1, so L/N is semisimple in that case. Recall that a Lie algebra M is called perfect if
M, M] =M.

Definition 2.1.1. Let Q be a Lie algebra. We say that Q is a quasi (semi)simple if Q is
perfect and Q/Z(Q) is (semi)simple.

It follows from Herstein [21, Theorem 4] that if A is simple ring of characteristic
different from 2, then A1) = [A,A] is a quasi simple Lie ring. Moreover, if A has an invol-
ution * and of dimensional greater than 16 over its center, then su”(A) = [u"(A),u"(A)]
is a quasi simple Lie algebra [21, Theorem 10]. Recall that u"(A) = {a € A | a* = —a}.



2.1 Background Materials 13

Furthermore, Martindale III and Meirs [30, Theorem 6.1] showed that if A is semiprime
of characteristic not 2, then u”(A)/Z(u"(A)) is semiprime.

The following fact is a particular case of [21, Theorem 4].

Lemma 2.1.2. Let p # 2, n > 2 and let A = M,. Then [A,A] = sl, is quasi simple. In
particular, Al = A,

Note that the case of p = 2 is exceptional indeed as the algebra sl, is solvable in

characteristic 2.

Proposition 2.1.3. Suppose that A is semisimple and p # 2. Then [A,A] is quasi semisimple.
In particular, Al = A1),

Proof. Since A is semisimple, A = €D,-; S; where the S; are simple ideals of A. Since I is
algebraically closed, S; = ., for some n;. Note that [S;,S;] = 0if n; = 1 and [S;, S;] = s,
if n; > 2. Now the result follows from Lemma 2.1.2.

O

Definition 2.1.4. Let M be a finite dimensional Lie algebra and let Q be a quasi semisimple
subalgebra of M. We say that Q is a quasi Levi subalgebra of M if there is a solvable ideal
P of M such that M = Q & P. In that case we say that M = Q & P is a quasi Levi decom-
position of M.

Recall that N = RN L is the nil-radical of L = A%,

Proposition 2.1.5. Let S be a Levi subalgebra of A and let L = [A,A] and Q = [S,S)].
Suppose that p # 2. Then N = [S,R| + [R,R], Q is a quasi Levi subalgebra of L and
L= Q®N is a quasi Levi decomposition of L. Moreover, N = [S,R] if R* = 0.

Proof. We have L = [A,A] = [S®R,S®R]| =[S,S]+[S,R]+ [R,R] = Q@& N where Q =
[S,S] is quasi semisimple by Proposition 2.1.3 and [S,R] + [R,R] = LNR = N is the nil-
radical of L, as required.

O
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A subspace B of A is said to be a Lie inner ideal of A if B is an abelian inner ideal of
L=A"), thatis [B,[B,L]] C B. A subspace B of A is said to be a Jordan inner ideal of A
if B is an inner ideal of the Jordan algebra A [24]. If B2 = 0, then B is an inner ideal of
the Jordan algebra A(*) if and only if it is an inner ideal of the Lie algebra A(~). Indeed,
since BZ = 0, one has

[b, [t ,x]] = —bxb’ — b'xb (2.1.1)

for all b,b’ € B and all x € A. This justifies the following definition.

Definition 2.1.6. [24] An inner ideal B of L = A% is said to be Jordan-Lie if B> = 0.

It follows from Benkart’s result [13, Theorem 5.1] that if A is a simple Artinian ring
of characteristic not 2 or 3, then every inner ideal of [A,A]/(Z(A) N[A,A]) is Jordan-Lie.
For b,b' € B and x € L, we denote by {b,x,b’} the Jordan triple product

{b,x,b'} := bxb' +b'xb.

The following lemma follows immediately from (2.1.1) and the definition.

Lemma 2.1.7. Let L = A% for some k > 0 and let B be a subspace of L. Then B is a
Jordan-Lie inner ideal of L if and only if B> = 0 and {b,x,b'} € B for all b,b’ € B and
xeL.

Recall that our algebra A is non-unital in general. Let A = A +F1 4 be the algebra
obtained from A by adding the external identity element. The following lemma shows
that the Jordan-Lie inner ideals of A*) are exactly those of AK) for all k > 0.

Lemma 2.1.8. Let B be a subspace of A. Then B is a Jordan-Lie inner ideal of A®) if and
only if B is a Jordan-Lie inner ideal of A® (k>0).

Proof. Note that AK) = AK) for all k > 1, so we only need to consider the case when k =0,
i.e. A®¥) = AC9)_If B is a Jordan-Lie inner ideal of A then [B, [B,A]] = [B,[B,A+F1;]] =
[B,[B,A]] C B, so B is a Jordan-Lie inner ideal of A. Suppose now that B is a Jordan-Lie
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inner ideal of A. Then B = (B+A)/A is a Jordan-Lie inner ideal of A/A = F. Since
B? =0, we get that B =0, so B C A. Therefore, B is a Jordan-Lie inner ideal of A.
[l

Recall that idempotents e and f are said to be orthogonal if ef = fe = 0.

Lemma 2.1.9. Let A be a ring and let Z(A) be the center of A. Let e and f be idempotents
in A such that fe =0. Then

(i) eAfNZ(A) =0;

(ii) B=eAf NAW is a Jordan-Lie inner ideal ofA(k) forall k > 0;

(iii) eAf is a Jordan-Lie inner ideal ofA(_) and ofA(]);

(iv) there exists an idempotent g in A such that g is orthogonal to e and eA f = eAg,

Proof. (i) Let z € eAf NZ(A). Then z = eaf for some a € A. Since z € Z(A), we have
0 = [e,z] = [e,eaf]| = eaf = z. Therefore, eAf NZ(A) = 0.

(ii) We have B> C eAfeAf =0 and [B,[B,A%)] C BA®MBNAK CeAfNA® =B, as
required.

(iii) This follows from (ii) as eAf = [e,eAf] C [A,A].

(iv)Put g = f —ef. Then g = (f —ef)> = f> —eff = f —ef = g, so g is an idem-
potent in A. Since ge = (f —ef)e=0and eg =e(f —ef) =ef —ef =0, e and g are
orthogonal. It remains to note that eAg = eA(f —ef) C eAf and eAf = eAf(f —ef) =
eAfg C eAg. Therefore, eAf = eAg, as required.

O

We note the following standard properties of inner ideals.

Lemma 2.1.10. Let L be a Lie algebra and let B be an inner ideal of L.
(i) If M is a subalgebra of L, then BNM is an inner ideal of M.
(ii) If P is an ideal of L, then B+ P/P is an inner ideal of L/P.

2.2 Idempotent pairs

The aim of this section is to prove Theorem 1.2.4, which describes the poset of Jordan-
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Lie inner ideals generated by idempotents. We start by recalling some well known rela-

tions on the sets of idempotents.

Definition 2.2.1. Let A be a ring and let e and ¢’ be idempotents in A. Then
<z
(1) e is said to be left dominated by €, written e < €', if ¢'e = e.
x
(2) e is said to be right dominated by €', written e < ¢, if ee’ = e.

(3) e is said to be dominated by €', written e < €, if e is a left and right dominated by
< 874
¢, thatis, if e < ¢’ and e < ¢/, or equivalently, ee’ = e'e = e.

. : : £, .. <
(4) Two idempotents e and ¢’ are called left equivalent, written e ~ ¢, if ¢ < ¢’ and
<z

e <e.
. , . . . Z ;.. 2,
(5) Two idempotents e and e’ are called right equivalent, written e ~ €', if e < ¢’ and
R
e <e.

< X
Remark 2.2.2. (1) Itis easy to see that < and < are preorder relations, < is a partial order

and Z and Z are equivalences. Note that if A is Artinian, then the set of all idempotents
satisfies the descending chain condition with respect to the partial order <.
(2) If e and ¢’ are idempotents in A, then it is easy to check that e < ¢’ if and only if

¢’ = e+ e for some idempotent ¢ in A with eje = ee; = 0.

The following lemma is well-known.

Lemma 2.2.3. Let A be a ring and let e and €' be idempotents in A. Then
L
(i) e < € if and only if eA C €'A.
(ii) e Ze if and only if eA = €'A.
<z

(iii) If e < €/, then there is an idempotent ¢” in A such that ¢ < e’ and ¢’ ~ e.

<
Proof. (i) Since e < €/, we have eA = e’eA C ¢’A. On the other hand, if eA C ¢’A, then
e=ceec A, soce=e,asrequired.
(i1) This follows from (i).

(iii) Put ¢’ = ¢’ee’ = ee’. Then ¢

= ee'ee’ = eee’ = ee’ =", s0 " is an idempotent.

Since e'e’ = é'(e'ee’) = 'ee’ = ¢" and ¢’ = (¢'ee’)e’ = ¢'ee’ = €, we have ¢’ < €. Tt
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. Z
remains to note that ¢”’e = (ee’)e = e(e'e) = ee = e and ee’ = e(ee’) = e’ =€, s0 e~ €,
as required.

[

We say that (e, f) is an idempotent pair in A if both e and f are idempotents in A.
Moreover, (e, f) is orthogonal if ef = fe = 0.

Definition 2.2.4. Let A be aring and let e, €/, f and f’ be idempotents in A. We say that
LR <
(1) (e, f) is left-right dominated by (€, f'), written (e, f) < (¢, f'), if e < ¢ and

X
f<r.
(2) (e, f) is dominated by (€', '), written (e, f) < (¢/, f'),ife < ¢'and f < f'.
LR
(3) (e, f) and (€, f) are left-right equivalent, written (e, f) Z7 (e, f),if (e, f) <
LR

(¢',f) and (¢', f") < (e, f).

Using Remark 2.2.2, we get the following.

. L7 ) ) LR . )
Remark 2.2.5. (1) The relation < is a preorder, < is a partial order and "~ is an equi-

valence. If A is Artinian, then the set of all idempotent pairs satisfies the descending chain
condition with respect to <.

(2) (e,f) < (¢, f") if and only if ¢’ = e+ ¢; and f' = f+ fi for some idempotents e;
and f1 in A with e and e; (resp. f and f;) orthogonal.

Lemma 2.2.6. Let A be a ring. Let (e, f) and (€', f') be idempotent pairs in A with
LR
(e,f) < (€,f). Then there is an idempotent pair (¢”,f") in A such that (¢",f") <

(€ ,f") and (", f") “F (e, f).

Proof. This follows from Lemma 2.2.3(iii).
O

Proposition 2.2.7. Let A be a simple ring and let e, ¢/, f and f' be non-zero idempotents
in A. Then we have the following.

(i) eAf 0.
(ii) eAf € SAS ifand only if (e.f) < (¢ ).
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LR

(iii) eAf = ¢'Af" if and only if (e, f) "~ (€, f).

Proof. (1) Note that AeA is a two-sided ideal of A containing e. Since A is simple,
AeA = A. Similarly, AfA = A. If eAf =0 then A> = AeAAfA = AeAfA = 0, which
is a contradiction.

(ii) Suppose first that eAf C e’Af’. Then ¢’eaf = eaf forall a € A, so (e —e)af =0
for all a € A. Hence, ¢’e — e belongs to the left annihilator H of Af in A. Note that H
is a two-sided ideal of A. Since A is simple, we have H = A ;r 0. As f & H (because

f(ff)=f+#0),H=0,s0ée—e=0,or e =e. Hence, e < €. Similarly, we obtain

X LR LR
f < f'. Therefore, (e,f) < (¢,f’). Suppose now that (e,f) < (¢,f’). Then e'e =e
and ff' = f,soeAf =e'eAff Ce'Af’, as required.
(iii) This follows from (ii).

O

Definition 2.2.8. (1) Let A be a semisimple Artinian ring and let {S; | i € I} be the set of
its simple components. Let e and f be non-zero idempotents in A and let e; (resp. f;) be
the projection of e (resp. f) to S; for each i € I. Then the pair (e, f) is said to be strict if
for each i € I, e¢; and f; are both either non-zero or zero.

(2) Let A be an Artinian ring or a finite dimensional algebra and let R be its radical.
Let e and f be non-zero idempotents in A. We say that (e, f) is strict if (€, f) is strict in
A=A/R.

The following lemma follows directly from the definition and Proposition 2.2.7(1).

Lemma 2.2.9. Let A be a semisimple Artinian ring and let (e, f) be a non-zero strict
idempotent pair in A. Then eAf # 0.

Now, we are ready to prove Theorem 1.2.4.

Proof of Theorem 1.2.4. Recall that (e, f) and (¢, ') are idempotent pairs in A with (e, f)
being strict.

(i) By Definition 2.2.8 (2), (&, f) is a strict idempotent pair in A, so by Proposition
2.2.9, A f # 0. Therefore, eA f # 0, as required.
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LR LR
(ii) We need to show that eAf C ¢’Af’ if and only if (e, f) < (€, f'). If (e,f) <

(€,f), then eAf = e'eAff C 'Af’, as required.

Suppose now that eAf C ¢/Af’. We need only to check that e éﬂ ¢’ (the proof for
f z f’ is similar). Assume to the contrary that ¢’e # e. Then r = ¢'e —e # 0. Fix
minimal n > 1 such that r ¢ R". By taking quotient of A by R"” we can assume that
R*=0and r € M where M =R" ! if n > 1 and M = A (with A being semisimple) if
n=1. Since MR C R" = 0, the right A-module M is actually an A-module. Note that
re=(e—e)e=¢ee—e=r,sore=r#0. Let {S;|i €I} be the set of the simple
components of A and let &; be the projection of & to S;. Since ré # 0, there is i € [
such that re; # 0, so ré;S; is a non-zero unital right S;-submodule of M. Moreover, it is
isomorphic to a direct sum of copies of the natural S;-module. Since &; # 0 and (e, f) is
strict, f; # 0, so réS;f = ré;S; f; # 0. In particular, there is a € A such that réaf # 0. As
r=¢'e—e, we have that (¢'e —e)éaf # 0, or equivalently, ¢'x # x where x = eéaf = eaf.
On the other hand, x € eAf C €’Af’, so ¢’x = x, a contradiction. Therefore, e éﬂ e, as
required.

(ii1) This follows from (ii).

(iv) This follows from (iii) and Lemma 2.2.6.

2.3 Jordan-Lie inner ideals of semisimple algebras

Recall that A is a finite dimensional associative algebra over F (unless otherwise
stated). If A is simple then A can be identified with EndV for some finite dimensional
vector space V over [F. By fixing a basis of V we can represent the algebra EndV in the
matrix form .#,, where n = dimV. We say that .#), is a matrix realization of A. Recall
that every idempotent of .#, is diagonalizable (as its minimal polynomial is a divisor of

t> —1). Since orthogonal idempotents commute, we get the following.

Lemma 2.3.1. Let (e, f) be an orthogonal idempotent pair in A. Suppose A is simple.
Then there is a matrix realization of A such that e and f can be represented by the diagonal
matrices e = diag(1,...,1,0,...,0) and f = diag(0,...,0,1,...,1) with tk(e) +rk(f) <

n.

Benkart proved that if A is a simple Artinian ring of characteristic not 2 or 3, then
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every inner ideal of [A,A]/(Z(A) N[A,A]) is induced by idempotents [13, Theorem 5.1].

We will need a slight modification of this result.

Theorem 2.3.2. Let A be a simple Artinian ring of characteristic not 2 or 3. Let B be

Jordan-Lie inner ideal of [A,A]. Then there exists orthogonal idempotent pair (e, f) in A
such that B=eAf.

Proof. Let Z be the center of A and let B be the image of B in A = [A,A]/(ZN[A,A]).
Then B is an inner ideal of A and by [13, Theorem 5.1], there are idempotents e and f in
A with fe = 0 such that B is the image of eAf in A. We wish to show that B = eAf. Let
beB. Thenb=-eaf +zforsomeacAandz e Z. As B? = 0 (because B is Jordan-Lie),

0=0> = (eaf +z)(eaf +z) = e(2az) f + 2°.

Hence, by Lemma 2.1.9(i), we obtain z> = e(—2az)f € eAfNZ(A) =0. Therefore, z =10
and B C eAf. Conversely, let a € A. Then there is z € Z such that eaf +z € B. As above,
we obtain z = 0. Therefore, eaf € B, so B=eAf. Since fe =0, by Lemma 2.1.9(iv),
there is an idempotent g in A such that g and e are orthogonal and B = eAf = eAg.

[

Lemma 2.3.3. Let B be a Jordan-Lie inner ideal of L = [A,A]. Suppose A is simple and
p # 2,3. Then there is a matrix realization M, of A and integers 1 < k <1 < n such that

B =span{ey | 1 <s <k <1<t <n}, where ey are matrix units.

Proof. This follows from Theorem 2.3.2 and Lemma 2.3.1.
[

Recall that every simple Artinian ring A is Von Neumann regular, i.e. for every x € A
there is y € A such that x = xyx [19].

Lemma 2.3.4. Let A be a simple Artinian ring of characteristic not 2 or 3 and let B be a
Jordan-Lie inner ideal ofA(l). Then B = [B, [B,A(l)]].



2.3 Jordan-Lie inner ideals of semisimple algebras

21

Proof. We need only to show that B C [B, [B,A(V)]]. Let b € B. By Theorem 2.3.2, B=¢Af
for some orthogonal idempotents e and f in A, so b = eaf for some a € A. Since A is
Von Neumann regular, b = bxb for some x € A. Hence, eaf = b = bxb = (eaf)x(eaf).
Put y = fxe = [f, fxe] € A1) Then b = byb, so [b, [b,y]] = —2byb = —2b. This implies
b € [B,[B,AV), as required.

O

Let L be a finite dimensional semisimple Lie algebra and let {L; | i € I} be the set
of the simple components of L. If B is an inner ideal of L and the ground field is of
characteristic p # 2,3,5,7 then B = @,;B;, where B; = BN L; (see [29, Proposition
2.3]). As the following lemma shows we need less restrictions on p if L = [A,A] and B is

Jordan-Lie.

Lemma 2.3.5. Suppose A is semisimple and p # 2,3. Let {S; | i € I} be the set of the
simple components of A and let B be a Jordan-Lie inner ideal of L = [A,A]. Then B =
@,c; Bi, where B; = BN\ S; is a Jordan-Lie inner ideal of L; = [S;, Si].

Proof. Let y; : L — L;, y;((x1,...,Xi,...) = x;, be the natural projection. We need to
show that y;(B) = B;. By Lemma 2.1.10, y;(B) is a Jordan-Lie inner ideal of L;. Clearly,
B; C y;(B). On the other hand, by Lemma 2.3.4

vi(B) = [vi(B), [yi(B),Li]] € [B,[B,Li]] CBNL; C B

for all i € I. Therefore, B = @,; B;. Since B C [A,A] we have B; C [S;,S;], as required.
]

The following proposition first appeared in [35, Lemma 6.6] in the case p = 0.

Lemma 2.3.6. Suppose A is semisimple and p # 2,3. Let B be a Jordan-Lie inner ideal
of L =[A,A]. Then there exists a strict orthogonal idempotent pair (e, f) in A such that
B=eAf.

Proof. Let {S;|i €I} be the set of the simple components of A. Using Theorem 2.3.2 and
Lemma 2.3.5 we get that B = @, e;S; f; for some orthogonal idempotent pairs (e;, f;) in
Si. Moreover, we can assume thate; = f; =0if B;=BNS; =0. Pute =Y ,,,¢; and f =
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Y.ic1 fi- Then (e, f) is a strict orthogonal idempotent pair in A and eAf = @, eiSifi = B,
as required.
O

Lemma 2.3.7. Suppose A is semisimple and p # 2,3. Let B be a Jordan-Lie inner ideal
of A7), Then B is a Jordan-Lie inner ideal of [A,A].

Proof. Let b € B. Since A is Von Neumann regular, there is x € A such that b = bxb. As
b* =0,
b = bxb = b(xb) — (xb)b = [b,xb] € [A,A].

Therefore, B C [A,A], so B is a Jordan-Lie inner ideal of [A,A].
U]

Lemmas 2.3.6 and 2.3.7 imply that all Jordan-Lie inner ideals of A are generated
by idempotents, which is essentially known, see for example [24, Theorem 6.1(2)]. We

summarize description of Jordan-Lie inner ideals of A® in the following proposition.

Proposition 2.3.8. Suppose A is semisimple, p # 2,3 and k > 0. Let B be a subspace of
A. Then B is a Jordan-Lie inner ideal ofA(k) if and only if B= eAf where (e, f) is a strict

orthogonal idempotent pair in A.

Proof. By Proposition 2.1.3, A® =AM if k > 1. The “only if”” part now follows from
Lemmas 2.3.6 (k > 1) and 2.3.7 (k = 0), and the “if” part follows from Lemma 2.1.9(iii).
O

2.4 [-Perfect inner ideals

1-perfect associative algebras and their associated Lie algebras

Definition 2.4.1. The associative algebra A is said to be Lie solvable if the Lie algebra
A5 is solvable.
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The following is well known.

Lemma 2.4.2. Let p # 2. Then the following are equivalent.

(i) A is Lie solvable.

(ii) There is a descending chain of ideals A=Ay DA D --- DA, = {0} of A such that
dimA;/Ai 1 =1for0<i<r—1.

(iii) There is a descending chain of subalgebras A =Ag D A1 D --- DA, ={0} of A
such that A; | is an ideal of A; and dimA;/A; 11 =1 for0 <i<r—1.

Proof. The implications (if) = (iii) and (iii) = (i) are obvious (as A) C A, for all i). To
prove (i) = (i), suppose that A is Lie solvable. Let R be the radical of A and let S=A/R.
Then S is a Lie solvable semisimple algebra, so by Lemma 2.1.2 and Proposition 2.1.3,
S = " direct sum of m copies of [ for some m. If S = 0, then A = R is nilpotent, so such
a chain exists. Suppose that S ## 0. Since all simple components of S are 1-dimensional,
all composition factors of the S-bimodule R/R? are one-dimensional, so there is a chain
of ideals in A/ R? with 1-dimensional quotients. The lemma now follows by induction on
the degree of nilpotency of R.

O

Definition 2.4.3. An associative algebra is said to be 1-perfect if it has no ideals of codi-

mension 1.

We note the following obvious properties of 1-perfect ideals.

Lemma 2.4.4. (i) The sum of 1-perfect ideals is 1-perfect.
(ii) If P is a 1-perfect ideal of A and Q is a 1-perfect ideal of A / P then the full preimage
of Qin A is a 1-perfect ideal of A.

Lemma 2.4.4(1) implies that every algebra has the largest 1-perfect ideal.

Definition 2.4.5. The largest 1-perfect ideal &2 (A) of A is called the 1-perfect radical of
A.
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The following proposition shows that &7 (A) has radical-like properties indeed.

Proposition 2.4.6. (i) 221(A)?> = 2(A);
(ii) 2\ (P1(A)) = P1(A);
(iii) Z1(A] P1(A)) = 0;
(iv) If p # 2 then P (A) is the smallest ideal of A such that A/ &\ (A) is Lie solvable.

Proof. (i) and (ii) are obvious; (iii) follows from Lemma 2.4.4(ii).

(iv) Let N be an ideal of A such that A/N is Lie solvable. Then it follows from Lemma
2.4.2that N O 2 (A). It remains to prove that A/ &7 (A) is Lie solvable. By Lemma 2.4.2,
it is enough to construct a chain of subalgebras &?|(A) = A, CA,—; C ... CAg=A of
A such that A;; 1 is an ideal of A; of codimension 1 for 0 <i<r—1. Put Ap = A and
suppose Ay C ... C Ap = A has been constructed. If Ay is not 1-perfect then we denote by
Ay any ideal of Ay of codimension 1. If Ay is 1-perfect then by part (i), A} = Ay for all
s s0 Ay is actually an ideal of A: AAy = AAAL ... Ay C ApA1Ay ... A C Ay (and similarly
ArA C Ap). This implies that Ay = &7 (A), as required.

[

Importance of 1-perfect algebras is shown by the following result from [4].
Theorem 2.4.7. [4] If A is 1-perfect and p # 2, then [A,A] is a perfect Lie algebra.
Combining this result with Proposition 2.4.6(iv) we get the following.
Lemma 2.4.8. Let p # 2. Then A = 22, (A)(V),

Proof. Since A/ 2)(A) is Lie solvable, there is n > 0 such that (A/2;(A4))" =0, so
A € 2(A) D, As 2,(A) is 1-perfect, by Theorem 2.4.7, 221(A)(1) is perfect, so
Al = A1) = g2, (A) (D),

O
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L-perfect inner ideals

Definition 2.4.9. Let L be a Lie algebra and let B be an inner ideal of L. We say that B is
L-perfect it B= [B, [B,L]].

It is known that every inner ideal of a semisimple Lie algebra L is L-perfect if p #
2,3,5,7, see for example [29, Proposition 2.3] (or [6, Lemmas 2.19 and 2.20] for charac-
teristic zero). As the following lemma shows we need less restrictions on p if L = [A,A]

and B is Jordan-Lie.

Lemma 2.4.10. Suppose A is semisimple, k > 0 and p # 2,3. Then every Jordan-Lie
inner ideal of L = AWK g L-perfect.

Proof. Suppose first that k > 1. Then A®) = A(1) by Proposition 2.1.3. Therefore, this
follows from Lemma 2.3.5 and Lemma 2.3.4.

Suppose now that k = 0. Let B be a Jordan-Lie inner ideal of A). Then by Lemma
2.3.7, B be is Jordan-Lie inner ideal of A1), so B is A(l)—perfect by above. This obviously
implies that B is A7) -perfect.

O

Lemma 2.4.11. Let L be a Lie algebra and let B be an inner ideal of L. If B is L-perfect,
then B is an inner ideal ofL(k) forall k > 0.

Proof. Suppose B C L® for some k > 0. Then

B=[8,18,1]] € [LW, [, 1] € [LW, 0] = L6+

Y Y

so the result follows by induction on k.
]

Lemma 2.4.12. Let B be an L-perfect Jordan-Lie inner ideal of L=AW (k> 0). If p 2
then B C 2,(A) and B is a Jordan-Lie inner ideal of 21(A)\).
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Proof. Since B is L-perfect, by Lemma 2.4.11, B C L) = A(“), so B is a Jordan-Lie inner
ideal of A, Tt remains to note that A(*) = 22, (A)(!) by Lemma 2.4.8.
O

The core of inner ideals

Let B be an inner ideal of L. Then [B,[B,L]] C B. It is well known that [B, [B,L]]
is an inner ideal of L (see for example [14, Lemma 1.1]). Put By = B and consider the

following inner ideals of L:
Bn = [anl, [anl,LH g Bn,1 for n Z 1. (241)

Then B= By O By 2 By O .... As L is finite dimensional, this series terminates. This

motivates the following definition.

Definition 2.4.13. Let L be a finite dimensional Lie algebra and let B be an inner ideal of
L. Then there is an integer n such that B, = B,,.1. We say that B,, is the core of B, denoted
by corer,(B).

Lemma 2.4.14. Let L be a finite dimensional Lie algebra and let B be an inner ideal of
L. Then

(i) corer,(B) is L-perfect;

(ii) B is L-perfect if and only if B = corer(B);

(iii) corer (B) is an inner ideal of L'®) for all k > 0.

Proof. (i) and (ii) follow from Definitions 2.4.9 and 2.4.13.
(iii) follows from (i) and Lemma 2.4.11.
O

Remark 2.4.15. Letk > 0. If S is a Levi subalgebra of A, then A = SHR, so AR = g(k) @®N,
where N = RNA®. Moreover, A®) = AK /N = AK) /RN AK) is the image of A%) in
A=A/R.

Lemma 2.4.16. Let B be a Jordan-Lie inner ideal of L = A® (k>0). If p#2,3, then
(i) B = corer(B).
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(ii) If corer (B) = 0, then B C N.

Proof. (i) Since A is semisimple and B is a Jordan-Lie inner ideal of L = AWK by Lemma
2.4.10, B is L-perfect. Hence, by Lemma 2.4.14, B = core; (B) = corer (B).
(i1) This follows from (i).

2.5 Bar-minimal and regular inner ideals

Recall that L = A®) for some k > 0, N = RNL, and B is the image of a subspace B of
LinL=L+R/R=L/N.

Bar-minimal inner ideals

Definition 2.5.1. Let L = AX) and let X be an inner ideal of L. Suppose that B is an inner
ideal of L. We say that B is X -minimal (or simply, bar-minimal) if for every inner ideal B’
of L with B =X and B’ C B one has B’ = B.

Lemma 2.5.2. Let k > 0 and let B be a Jordan-Lie inner ideal of L = AW, Suppose that
B is bar-minimal and p # 2,3. Then the following hold.

(i) B = corer B.

(ii) B is L-perfect.

(iii) B is a Jordan-Lie inner ideal of L™ = A®+t™) for all m > 0.

Proof. (i) By definition of the core, core; (B) is an inner ideal of L contained in B. By
Lemma 2.4.16(i), corer (B) = B. Since B is bar-minimal, we have B = core; B.
(i1) This follows directly from (i) and Lemma 2.4.14(i).
(i11) This follows from (ii) and Lemma 2.4.11.
[

Recall that a Lie algebra L is said to be perfect if L = [L, L]. We will need the following

result.
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Lemma 2.5.3. Let L be a perfect Lie algebra and let B be an L-perfect inner ideal of
L. Suppose that L = @,c;L;, where each L; is an ideal of L. Then B = @;c;B;, where
B;i = BN L. Moreover, if L = AW (k > 0) and B is bar-minimal then B; is a B;-minimal
inner ideal of L;, for all i € I.

Proof. Note that [B,[B,L;]] C BNL; = B, for all i € I. Therefore,

B=B,[B,L]]=Y [B,[B,L]] C ) Bi CB,
iel iel
s0 B=Y;;Bi. As BNB; CL;NL;=0 forall i # j, B= @,;B;. Clearly, if B is
bar-minimal, then each B; is B;-minimal.
O

Split inner ideals

Let L be a Lie algebra and let Q be a subalgebra of L. Recall that Q is said to be a
quasi Levi subalgebra of L if Q is quasi semisimple and there is a solvable ideal P of L
such that L= Q@ P.

Definition 2.5.4. Let L be a finite dimensional Lie algebra and let B be a subspace of L.
Suppose that there is a quasi Levi decomposition L = Q @ N of L such that B = By @ By,
where Bp = BN Q and By = BNN. Then we say that B splits in L and Q is a B-splitting

quasi Levi subalgebra of L.

Definition 2.5.5. Let B be a subspace of A. Suppose that there is a Levi subalgebra S of
A such that B = Bg & Bg, where Bs = BN S and Bg = BN R. Then we say that B splits in
A and S is a B-splitting Levi subalgebra of A.

Lemma 2.5.6. Ler L = A% (k > 1) and let B be a subspace of L. Suppose p # 2. If B
splits in A, then B splits in L.

Proof. Suppose that B splits in A. Then there is a B-splitting Levi subalgebra S of A such
that B = Bg® Bg, where Bs = BN S and Bg = BNR. Clearly, Q = [S,S] = S*) is a quasi
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semisimple subalgebra of L, N = LNR is a solvable ideal of L, and L = Q & N is a quasi
Levi decomposition of L. It is easy to see that Bs C Q and Bg C N, so B splits in L.
O

Lemma 2.5.7. Let B be an inner ideal of L = A® (k> 0). Suppose B = eAf for some
orthogonal idempotents e and f of A. Then (i) B splits in A and (ii) if k > 1 then B splits
in L.

Proof. (i) Since e and f are orthogonal, By Wedderburn-Malcev theorem there is a Levi

subalgebra S of A such thate, f € S. Thus, B=eAf =e(SOR)f = eSfDeRf as required.
(i1) This follows directly from (i) and Lemma 2.5.6.

[

Proposition 2.5.8. Let C C B be subspaces of A such that C = B. If C splits in A, then B
splits in A.

Proof. Suppose C splits in A. Then there exists a Levi subalgebra S of A such that C =
CsPCg, where Cs=CNS and Cg =CNR. Put By=BNSand Bg = BNR. Then Cy C Bg,
Cr C Bg and Bs+ Br C B. Since B = C, we have

Bs CB=C=C/Cgr=Cs C Bs,

I

Bg

so Bs = B =2 B/Bg. Since Bs N Bg = 0, we have B = By @ By, as required.
[

Corollary 2.5.9. Let L = A® (k> 0) and let B be an inner ideal of L. Suppose that
p #2,3. If corer (B) splits in A, then B splits in A.

Proof. By Lemma 2.4.14, core(B) = B. Since corer(B) C B and corer(B) splits, by
Proposition 2.5.8, B splits.
O

Definition 2.5.10. Let G be a subalgebra of A. We say that G is large in A if G = A
(equivalently, there is a Levi subalgebra S of A such that S C G; or equivalently, G/rad G
is isomorphic to A/R).
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Remark 2.5.11. Let G be a large subalgebra of A and let B be a subspace of Z;(G).
Then rad(G) = GNR and rad( £ (G)) = Z1(G) Nrad(G) = Z1(G) NR, so the image
B of B in A/R is isomorphic to the images of B in G/rad(G) and 2,(G)/rad(2(G)),
respectively. Thus, we can use the same notation B for the images of B in all these quotient

spaces.

Proposition 2.5.12. Let B be a subspace of A. Let G be a large subalgebra of A and let
C be a subspace of 2\(G). Suppose that C C B, C = B, and C splits in 2,(G). Then B
splits in A.

Proof. Put Ry =rad #|(G). By Remark 2.5.11, Ry Crad(G) C R. Let S; be a C-splitting
Levi subalgebra of & (G), so C = Cs, ® Cg,, where Cs, = CNS; and Cg, = CNR;. Note
that S7 is a semisimple subalgebra of A, so by Wedderburn-Malcev Theorem there is a
Levi subalgebra S of A such that S C S. Since S; C S and Ry C R, C splits in A, so the
result follows from Proposition 2.5.8.

[

Since A is large in A, we get the following corollary.

Corollary 2.5.13. Let B be a subspace of A and let C be a subspace of &?\(A). Suppose
that C C B, C = B, and C splits in 21(A). Then B splits in A.

Proposition 2.5.14. Let B be a Jordan-Lie inner ideal of L = A® (k>0). Let Gbea large
subalgebra of A and let B' = BN GWX). Suppose p # 2,3 and B' = B. Put C = core ;) (B').
Then C is a Jordan-Lie inner ideal of 21(G)") such that C C B and C = B.

Proof. Note that B = BN G® is a Jordan-Lie inner ideal of G By Lemmas 2.4.14(1)
and 2.4.16(i), C = core (B')is a G(k)-perfect Jordan-Lie inner ideal of G¥) with C C
B' C B and C = B' = B. It remains to note that by Lemma 2.4.12, C is Jordan-Lie inner
ideal of 22, (G)(1),

O



2.5 Bar-minimal and regular inner ideals 31

Regular inner ideals

In this section we describe bar-minimal regular inner ideals of A® (k> 0). We start

with the following result which is a slight generalization of [6, Lemma 4.1].

Lemma 2.5.15. Ler L =A% for some k > 0 and let B be a subspace of L such that B> = 0.
Then the following hold.
(i) If p # 2 then B is a Jordan-Lie inner ideal of L if and only if bLb C B for all b € B.
(ii) BABC LNAW.
(iii) If BAB C B, then B is a Jordan-Lie inner ideal of L.

Proof. (i) This follows from Lemma 3.1.3 as
{b,x,b'} = bxb' +b'xb = (b+b)x(b+b") —bxb—b'xb'.

(i) bxb' = [b,xb'] € [AK) A] C AW NAMD =LNAW forall b,b' € Band x € L.
(iii) This is obvious as [B, [B,L]] C BAB.
O

Definition 2.5.16. Let B be a subspace of L = A®) (k > 0). Then B is said to be a regular
inner ideal of L (with respect to A) if B? =0 and BAB C B.

Regular inner ideals were first defined in [6] (in characteristic zero) and were recently
used in [5] to classify maximal zero product subsets of simple rings. Note that every
regular inner ideal is Jordan-Lie (see Lemma 2.5.15). However, the converse is not true

as the following example shows.

Example 2.5.17. Let ny(F) C My(FF) be the set of all strictly upper triangular 4 x 4
matrices. Let A be the direct sum of two nilpotent ideals 7 and 7, with both of them
isomorphic to ny(F). Clearly, A* = 0. Let {e;; | 1 <i< j <4} and {ejj|1<i<j<4}
be the standard bases of Ty and T}, respectively, consisting of matrix units. Consider the

following elements of A:

/ ’ / /
by =en+ezy, by=eu+e,, a=epnter, b=es+ey.
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Let A; =A% +span{by,b,a}. Then Aj is a subalgebra of A as A% C A2 C A;. Consider
the subspace B = span{b,b,,b} of A. It is easy to check that B> = 0 and B is a Jordan-
Lie inner ideal of A|. Moreover, B is not regular as byab, = e14 ¢ B.

Note that B is also a non-regular Jordan-Lie inner ideal of the unital algebra A; =
A1 +F1;,by Lemma 2.1.8.

Lemma 2.5.18. Let A be any ring and let e and f be idempotents in A with fe = 0. Then
the following hold.

(i) If eAf C A® (k> 0), then eAf is a regular inner ideal ofA(k).

(ii) eAf is a regular inner ideal ofA(’) and AW,

Proof. (1) By Lemma 2.1.9(i1), eAf is a Jordan-Lie inner ideal of AW (k> 0). It remains
to note that (eAf)A(eAf) C eAf.
(i1) This follows from (i) and Lemma 2.1.9(iii).

The following result is proved in [6, Proposition 4.12] in the case p = 0.

Proposition 2.5.19. Suppose A is semisimple, p # 2,3 and k > 0. Then every Jordan-Lie

inner ideal ofA(k) is regular.

Proof. This follows from Proposition 2.3.8 and Lemma 2.5.18(1).
[

We will need the following two results which were first proved in [6] in the case when

p = 0. One can easily check that their proofs in [6] apply to any p.

Proposition 2.5.20. /6, Proposition 4.8] Let A be an associative ring. Then

(i) A is Von Neumann regular if and only if #L = Z N YL for all left £ and right #
ideals in A.

(ii) every x in A with x* = 0 is Von Neumann regular if and only if #.L = #N L for
all left & and right X ideals in A with L% = 0.
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Proposition 2.5.21. [6, Proposition 4.9] Let B be a subspace of L = A® (k> 0). Then B
is a regular inner ideal of L if and only if there exist left £ and right Z ideals of A such
that % = 0 and

XYL CBCIAENL.

In particular, if A is Von Neumann regular then every regular inner ideal of L is of the

formB=Z%Y =%N%L.

Let .Z be a left ideal of A and let X be a left ideal of A. Then . is said to be X-
minimal if 2 = X and for every left ideal .#’ of A with ' C % and .#’ = X one has
¥ = %'. We will need the following theorem from [11].

Theorem 2.5.22. [11] Let A be a left Artinian associative ring and let £ be a left ideal
of A. If £ is L -minimal, then £ = Ae for some idempotent e € Z.

Theorem 2.5.23. Let B be a bar-minimal Jordan-Lie inner ideal of L =A®) (k > 0). Then
B is regular if and only if B = eAf for some orthogonal idempotent pair (e, f) in A.

Proof. Suppose first that B = eA f for some orthogonal idempotent pair (e, f) in A. Then
by Lemma 2.5.18, B is regular.

Suppose now that B is regular. Then by Proposition 2.5.21, there are left . and
right Z ideals of A such that % =0and Z¥ CBC #ZN.YL. Hence, #L = R#L C
B C ZN%. Since A is Von Neumann regular (because it is semisimple), by Proposition
2520, Z% =B. Let &' C . (resp. %' C &) be an .£-minimal left (resp. %-minimal
right) ideal of A. Then by Theorem 2.5.22, %' = Af and %’ = eA for some idempotents
ec X and f e ¥ Note that fec L' % C L% =0. Put B = %' ¥ CB. Then
B' = eAAf = eAf (as eAf = eeAf C eAAf C eAf). Since B> = 0, by Proposition 2.5.21,
B’ is aregular inner ideal of L. As B' = %' ' = #.% = B and B is bar-minimal, B = B'.
Thus, B = eAf for some idempotents e and f in A with fe = 0. Therefore, by Lemma
2.1.9(iv), B = eAf = eAg for some idempotent g in A with ge = eg = 0.

[
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2.6 Proof of the main results

The aim of this section is to prove that bar-minimal Jordan-Lie inner ideals are gen-
erated by idempotents (Theorem 1.2.1) and are regular (Corollary 1.2.2). As a corollary,
we show that all Jordan-Lie inner ideals split (Corollary 1.2.3). Recall that S is a Levi
subalgebra of A, L = AK) = g(k) @ N, for some k >0, N = RNL, and B is the image of B
inL=L+R/R=L/N.

First we consider the case when A is 1-perfect. Then L = [A,A] is a perfect Lie algebra

for p # 2 (see Proposition 2.4.7). The following theorem will be proved in steps.

Theorem 2.6.1. Let L = [A,A] and let B be a Jordan-Lie inner ideal of L. Suppose that
p # 2,3, Ais 1-perfect and B is bar-minimal. Then the following hold.

(i) B splits in A.

(ii) B = eAf for some strict orthogonal idempotent pair (e, f) in A.

(iii) B is regular.

First we will consider the case when RZ = 0.

Theorem 2.6.2. Let L = [A,A] and let B be a Jordan-Lie inner ideal of L. Suppose that
p #2,3, Ais 1-perfect, B is bar-minimal and R> = 0. Then B splits in A.

Theorem 2.6.2 first appeared in Rowley’s thesis [35] in the case when p = 0 and we
use some of his ideas below. Unfortunately, his proof is incomplete and contains some
inaccuracies. In particular, the proof of [35, Proposition 6.12] is incorrect. We will need

the following lemma.

Lemma 2.6.3. Let L = [A,A] and Q = [S,S]. Suppose that p # 2, A/R is simple, RA =0
and R is an irreducible left A-module. Then the following hold.

(i) N =R.

(ii) Every Jordan-Lie inner ideal of Q is a Jordan-Lie inner ideal of L.

(iii) Let G be a large subalgebra of A and let B be a Jordan-Lie inner ideal of [G,G].
Then B is a Jordan-Lie inner ideal of L.
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Proof. (i) Let r € R. Since R is irreducible as S-module, r = sr for some s € S. As RA =0,
r=sr=s,r] € [S,R] = N by Proposition 2.1.5, so R = N.

(ii) This follows from (iii) as Q = [S,S] and S is a large subalgebra of A.

(iii) Since G is a large subalgebra of A, it contains a Levi subalgebra of A. Without
loss of generality we can assume S C G. Letx € L. Since L=[A,A] CQ®R, x=q+r
for some g € Q and r € R. As RA =0, for all b,b’ € B we have

{b,x,b'} = bxb' +b'xb=b(q+r)b' +b (q+r)b=bgb' +b'qb = {b,q,b'} € B,

1.e. B is an inner ideal of L, as required.
O

Recall that A is a 1-perfect finite dimensional associative algebra, R is the radical of
A with R> = 0 and S is a Levi subalgebra of A, so by Proposition 2.1.5, L = [A,A] is a
perfect Lie algebra, Q = [S, 5] is a quasi Levi subalgebra of L and L = Q@ N is a quasi
Levi decomposition of L, where N = [S,R].

Proposition 2.6.4. Theorem 2.6.2 holds if A/R is simple, RA = 0 and R is an irreducible
left A-module. Moreover, B C S’ for some Levi subalgebra S' of A.

Proof. By Lemma 2.6.3, R coincides with the nil-radical N of L. We identify A with S.
Recall that B is bar-minimal. We are going to prove that there is a Levi subalgebra S’ of
A such that B C §', so B splits in A. Since S = A/R is simple, by Lemma 2.3.3, there is
a matrix realization .#, of S and integers 1 < k < [ < n such that B is the space spanned
by E={ey |1 <s<k<Il<t<n} where {e;j | | <i,j<n} is the standard basis of
S consisting of matrix units. Since R is an irreducible left S-module, it can be identified
with the natural n-dimensional left S-module V. Let {e1,en,...,e,} be the standard basis
of V. Fix b§}) € B such that bg,l) — ¢ for all s and ¢. Then b§}) = ey +rg, Wwhere rg € R.
Put

A=V =ey+ry:1<s<k<l<t<n}CB.
Since e;5 € L, by Lemma 3.1.3, bAﬁf) = bg,l)embgll) €B.Letry =Y" ,ae;, where o € F.

Then

n n n
2 1 1 st st st st
bﬁ,) = bgt )etsbh(cz) = (est + Z O‘iT ei)ets(est + O‘iT ei) = ess(est + ais ei) =eg+ OC; €.
i—1 i—1 i—1

1= 1= 1=
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Hence, the set
A= =ey+ofe,: 1<s<k<I<t<n}CB.

Put b(lf) = b(ﬁ) = ey +j'e; and for s > 1 set bg’) = {b§,2>,e,1,b(lf)}. Then by Lemma
3.1.3, b € B. Since RA =0, for s > | we have
3 2 2 ) L2, Q)
by = b e b7} = b end(? + b e b
2 2
= (est+a§’es)enb(u) + (€1t+a11tet)€t1b£r)
= en(en+ajer)+er(ex+og'ey)

= eyt Oclltes.

Denote 3, = Ocll’ for all . Then bS’) = ey + Pres € B for all s and 7. Thus
As={bY) =ey+Bes:1<s<k<I<t<n}CB.

Letg = Z;?: Bjej € R. Then g* € R? = 0. Define the special inner automorphism ¢ : A —
Aby ¢(a) = (1+4+qg)a(l —gq) for all a € A. Since RA = 0, by applying ¢ to all bg) eN;
we obtain

o) = (14 Bre))ew+red)(1—0)

=
= (est +Btes)(1 - Zn:Bjej) = €yt +ﬁtes _ﬁtes =eg € (p(B)
=

Therefore,
E={eg|1<s<k<I<t<n}C@(B)NS.

Note that @ (r) = r for all r € R. Hence, ¢(B) = ¢(B)s® ¢@(B)g, where ¢(B)s = ¢(B)NS
and @(B)g = ¢(B) NR. By changing the Levi subalgebra S of A to S’ = ¢! (S) we obtain
B = By ® Bg, where By = BN S’ and Bg = BN R. Therefore, B splits in A.

It remains to show that BC §'. Let P= [Bg, [By,S'(V]] € 8'(1). Then P C [B, [B,A(V)]] C
B, so P C BNS'Y. Since A is semisimple and By = B, we get that

P= [BS’7 [ES’agl(l)]] = [B7 [E’A(l)” =B.

Note that B’ = BNS'(V is a Jordan-Lie inner ideal of S'(1). As P C B/, we have B=P C B/,
so B’ = B. By Lemma 2.6.3, B’ is a Jordan-Lie inner ideal of L. Since B’ = B and B is
bar-minimal, we have B= B’ C §, as required. O
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Proposition 2.6.5. Theorem 2.6.2 holds if A/R is simple and RA = 0.

Proof. Since A is 1-perfect, SR = R, so R as a left S-module is a direct sum of copies
of the natural left S-module V. The proof is by induction on the length ¢(R) of the left
S-module R, the case /(R) = 1 being clear by Proposition 2.6.4. Suppose that /(R) > 1.
Consider any maximal submodule T of R. Then ¢(T) = ¢(R) — 1 and T is an ideal of A.
Let ~ : A — A/T be the natural epimorphism of A onto A = A/T. Denote by R and B the
images of R and B, respectively, in A. Since £(R) = 1, by Proposition 2.6.4, B is contained
in a Levi subalgebra of A. Therefore, B C S; & T for some Levi subalgebra S| of A. Put
G=S81®T. Then G is clearly 1-perfect (i.e. G= 2(G)),rad(G)=T,G=S5, T isa
Levi decomposition of G and C = BNG) is a Jordan-Lie inner ideal of G1') = 22, (G)(l).
Put P = [B,[B,G"]] C C. Then

P= [B7 [Bvé(l)]] = [37 [EaA(l)H =B,

so C = B. Let C’' be any C-minimal inner ideal of GV contained in C. Since G is 1-
perfect and ¢(T') < ¢(R), by the inductive hypothesis, C’ splits in G. Since C' CC C B
and C' = C = B, by Proposition 2.5.12, B splits in A.

O

Proposition 2.6.6. Theorem 2.6.2 holds if A/R is simple and AR = 0.

Proof. The proof is similar to that of Proposition 2.6.5.
[

Proposition 2.6.7. Theorem 2.6.2 holds if A/R is simple and R is isomorphic to the nat-
ural A /R-bimodule A /R with respect to the right and left multiplication.

Proof. Recall that B is a Jordan-Lie inner ideal of L = [A,A] such that B is bar-minimal.
As in the proof of Proposition 2.6.4, we fix standard bases {e;; | 1 <i,j <n} and {f;; |
1 <i,j <n} of S and R, respectively, consisting of matrix units, such that the action of S
on R corresponds to matrix multiplication and B is the space spanned by E = {ey | 1 <
s <k<l<t<n}CS. Weidentify A with S. We are going to prove that there is a Levi
subalgebra S’ of A such that B = By & Bg, where B¢ = BNS' and B = BNR . Put

Ry =span{fy |1 <s<k<I<t<n}CN.
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CLAIM 1: Ry C B. Fix any by € B such that by = ey;. Then by = ey + ry, with
rg¢ € N. By Lemma 3.1.3, by fisbs € B. Since R? =0, we have

bt fisbs = (est +rst) fis(ess +rs) = fos(es +rs) = fr-

Therefore, f;; € B for all s and ¢ as required.
CLAIM 2: For every by = eg + Y i Oc“f,] € B we have

e(bst)—est+2a fll+2 fsjEB-

i>k j<l

Since by € B, by Lemma 3.1.3, bye; b € B. We have

bueisby = (ex +Zaufu ersbs = ess+za Jis)(est +206Stfzj
ij

= est"‘za ﬁt+2 f:c]—e st ‘|’Za fll"‘Za fS]
=1 j=
Since Z o i+ Z S; fsj € Ro C B and bge;sby € B, we have 0(by;) € B as required.
By claim 2, there are some ocf} € [ such that

byt :est+zaztfll+za Jsj € B,
i>k j<l
foralll <s<k<I<t<n.
(1) Define the special inner automorphism ¢; : A — A by ¢;(a) = (1+¢1)a(l —q1)
for all a € A, where

q1 = Zall;lfnj_zailnnﬁl €R.

j<l i>k

Put B; = ¢;(B). Set b§}) = @1 (by ) for all s and ¢. Then
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B = (1+g)bwm(1—aq1)
= (1+Za fn] Zaln.fl €1n+zal ﬁn+za fl] )

j<l i>k i>k j<l
= eln"’za fln+za f1j+a11 nn Zal fm 1—Q1)
i>k j<l i>k
1 1
= eln+za1]flj+a fnn 1_Za1;lfnj+zainnfll)
Jj<l j<l i>k
1 1 1
= e+ Y, i fijt il fin— Y 0T fij+ o i1
J<l j<lI

= eln“‘all?fnn‘i‘aigfll-
Since (B1)? = 0, we have
0 = (b(l))Z _ (e 1n 1n 1n 1n
- In/ — 1n+allfml_'_annfll)(eln+allfnn+annf“)
= O‘ll?fln‘i‘ar};:fln = (all{l+a;%1’11>fln-

Thus, ocllf——oc]” Put o = 061” Then

by = ern+ 0tfi1 — afun € By (2.6.1)

(2) Consider the special inner automorphism ¢, : A — A defined by ¢,(a) = (1 +
ofa1)a(l — o fyy) for all a € A. Put B = ¢»(B;). Then by applying ¢, to (2.6.1), we
obtain

b(li) = ‘PZ(bgn)> (1+afn1)(eln+afll_afnn)(l_afnl)
= (etn+0ofit — Qfpn+ 0 fun) (1 — 0t fu1) = e1n+ afi1 — 0 fi1 = e1n € By.

Put bg) = 9((p2(b£t1))) € B, for all s and 7. Then bgf) = ey + 'ZkB i + Z By fsj» where
1>

st ]F
Put ) = b = ¢y, B = b7 for t # n and by = {7, en, e1n} for s # 1. Then
by Lemma 3.1.3, bgn) € B for all s and ¢. Thus, for s # 1 we have
3 2 2 2 2 2
bgn) = {bgn)aenlaeln} = bfvn)enleln + elnenlbgn) = bgn)enn + ellb§n)
= esn"‘Zﬁ fzn"‘Z fS] ennterl esn"‘Zﬁ fzn"‘z fs;

i>k j<l i>k j<l

= egp+ Z ﬁlsnnfm € B. (2.6.2)

i>k

Note that b} = ey, is also of the shape (2.6.2) with all B\ = 0.
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(3) Consider the special inner automorphism ¢3 : A — A defined by @3(a) = (1 +
g3)a(1 —gq3) for a € A, where

ko
_Z Z i{:lfij'

i>k j=2

Put B; = ¢3(B>) and b'Y) = 3 (b)) € Bs. By applying @ to b in (2.6.2) (for all 5), we

obtain

by = <P3(b§§z))_(1+Q3)b§2)(1—%)
= I_ZZﬁ fzj em""Zﬁ fln I_C[’j)
i>k j= i>k
= evn+ZB fln ZB fm 1+ZZ f’]
i>k i>k i>kj=2
k .
=em+ Y Binfsj € Bs. (2.6.3)
=2

Since (B3)? =0, for all 1 <s,r < k we have

O:bgi)b( = €sn+ZB fS_] ern+ZB fr] ﬁnn sn-

Thus, =0 for all 1 <r <k. Substituting in (2.6.3) we obtain
b = ey, € By forall 1 <s < k.
Put b)) = b = e, and b = 6(b'¥)) € B; for t # n. Then for t # n we have

b§,5) = est+2ﬁtﬁt+2ﬁ§ﬁj for some ¥} € F.

i>k i<l

Put bﬁg) = bg) = ¢g, and bgf) = {esn,enl,b(lf)} for all # # n. Then by Lemma 3.1.3,
bg?) € B3. Thus, for t # n we have

bg?) = {esnaenlabgf)} = esnenlbgf) "‘bgf)enlesn = €s1b§,5) +0
= eqlen+ Y W' fut Y Wif1)) =ex+ Y Nifsi- (2.6.4)
i>k j<l j<l

Note that bﬁﬁ) = ey, is also of the shape (2.6.4) with all ylll” =0.
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(4) We define the final special inner automorphism ¢4 : A — A by @4(a) = (1+
q4)a(l —qq) for a € A, where
n—1
ar=Y. Y 1ifii
i=l j<I

Put B4 = ¢4(B3) and bgt) = (p4(b( )) € By for all s and 7. Then by applying ¢4 to bﬁﬂ in

(2.6.4), we obtain (for all s and ¢)

b = (a(b)) = (1 +q4)b (1 —qu)
n—1
= (1+ Y Y nifi(ea+ Y rifsi)(1—aqa)
i=l j<l j<l
= €st+ZY1,fsj+Z7’1sfzt ZZYljfzJ
J<l i=l j<li
= ey — Z Yljfsj + Z Vlsfzz + ZYUfSJ
j<l j<l
n—1
= e+ Y Nifi € By (2.6.5)

i=l

Since (B4)?> =0, we have (forall 1 <s,r <k <I<t,q<n)
0=bibly = (e + Z Yiifi)(erg + Z Yifig) =it

Thus, }/fﬁ =0forall 1 <r<k<Il<t<n. Substituting in (2.6.5) we obtain bg) = e, for
1 <s<k<Il<t<n. Thus,

E={eg|1<s<k<I<t<n}CB4NS.

Denote by ¢ the automorphism @40 @30 @, o @ of A and L. Then we have E C ¢(B)NS
Note that @;(Ro) = Ro for all i = 1,2,3,4 (because R?> = 0). Hence, ¢(B) = ¢(B)s®
¢@(B)g, where @(B)s = @(B)NS and ¢(B)g = ¢(B) NR = Bg. Now, by changing the Levi
subalgebra S to §' = ¢~ !(S) we obtain B = Bg @ Bg, where By = BNS' and B = BNR.

0

Proposition 2.6.8. Theorem 2.6.2 holds if A/R = S| & Sy, where S; = M, (F), Sy =
M,,(F) and R = My, n,(F) as an S1-S»-bimodule such that RS} = S>R = 0.

Proof. Recall that B is a Jordan-Lie inner ideal of L = [A,A] such that B is bar-minimal.
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We identify A with S. By Lemma 2.3.5, B = X; ® X», where X; = BN S; are Jordan-Lie
inner ideals of Sl(l). As in the proof of Proposition 2.6.5, we fix standard bases {¢;; |
1<i,j<m} {gj| 1 <i,j<m}and {fij |1 <i<n, 1 <j<m}ofS S and
R, respectively, consisting of matrix units, such that the action of S| and of S, on R

corresponds to matrix multiplication and X; = span{E;}, where
El:{est ’ 1<s<k <l Stﬂnl}gsl,

Er={g|1<r<ky<b<g<n}CS.

Put Ry = span{fyy |1 <s<ki, b <qg<n} CN.
CLAIM 1: Ry C B. Fix any by, ¢, € B such that by, = ey and ., = g,4. Then by =
es, +ry and ¢,y = gpg + r,q, with rs,,r;q € N. By Lemma 3.1.3, {bst,ft,,crq} € B. Since
= 0and SR = RS| =0, we have

{bshftra er} = bstftrcrq + erftrbst = bstftrcrq +0= (est + rst)ftr(grq + r;q) = fsq €B.

Therefore, f;, € Bforall 1 <s <k and [, < g < n as required.
CLAIM 2: For every by, = ey +Z§i1 2, o fij € B we have

by) =eq+ Y, 05 fs; €B

J<b

Since by € B, by Lemma 3.1.3, bye;sbs; € B. Since RS; = 0 and R?> =0, we have

ny np n- np
bstershsy = est + Z Z az]fll ersbss = ess Est + Z Z OC fl]
i=1j= i=1j=
= eg+ Z OCSIfSJ 6 (bst) + Z O‘srfSJ
Jj= Jj=h

Since Z?z oc”fs] € Ry C B and bye;sbg € B, we have 0(by) € B as required.

Put Ay = So @R and L, = [A,A]. Denote B = BN L,. By Lemma 2.1.10, B is an
inner ideal of L,. Moreover, B, is a Jordan-Lie inner ideal as (32)2 = (. Note that B, = X»
(because B, contains the preimage of X; in B). By Lemma 2.5.3, B; is X;-minimal. Thus,
B, satisfies the conditions of Proposition 2.6.6. Hence, B; splits. Thus, there is a special
inner automorphisms ¢, : A — A such that E; C ¢,(B,) C ¢»(B). We will deal with the
inner ideal @,(B) of L. Note that ¢(B) = B =X and E; C ¢(B). Our aim is to modify
¢2(B) in such a way that it contains both E| and E,.
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Put bg) = 0(@2(by)) € @2(B) forall 1 <s<k; <l <r<nj. Then

=es+ Z fS]

Jj<h

for all s and 7. Put bg) = bg) =entYj, Ocl]flj and for s > 1 set byt {bs, L€l bgt)}.
Then by Lemma 3.1.3, bg,) € @(B). Since RS; =0, for s > 1 we have

2 1 1 1 1 1 1
by = (b)) .en. b&)}—bﬁ) enbly +by; bl
= est+ Z ij etlblt +b§t)et1 est+ Z ij
j<b J<bh
= 651(61, + Z (Xllj-fu) +0=¢ey+ Z OCll;fs]
Ji<b Ji<b

Thus, for all s and r we have

=eq+ Y, ' fsj- (2.6.6)

Jj<h

Consider the special inner automorphism ¢ : A — A defined by ¢(a) = (1+¢g)a(l —q)
for all a € A, where

n .
=Y Y ajfi;

i:ll j<lz
Since RS; = 0 and R? = 0, by applying ¢ to (2.6.6) we obtain
2
o) = (1+ab(1-q) =5 (1=

= (est+ Z all;ij Z Z OC flj

j<lbp i=l j<b
= eyt Z OC fS] Z OCllj'fsj =ey € (p((p2(B))
i<b i<b

Thus, e, € @(@2(B)) forall 1 <s <k <lj <t <ny. Now, by applying ¢ to g,, € Xo C
¢>(B) and using S>R = 0, we obtain

?(grg) = (1+q)gng(1—q) = (1+q)gn = 1+Z Y o fif)gr

i=l j<lbp

= 8rqgt Z O‘llifiq € ¢(¢2(B)).

i=l



2.6 Proof of the main results

Since (@(¢2(B)))* = 0 and both e, and @(g,,) are in @(¢2(B)), we have

ni .
0=ex0(8rg) = est(8rg + Z O‘llifiq) = O‘llifsq-
i=l,
Hence, Ocllﬁ =0forall 1 <r<kyandalll; <t <nj. Thus, O(g,) = &y € @(¢2(B)) for
all » and g. Therefore,

Elz{est:lgsgkl<11§t§n1}gq)((p2(B))ﬂS

and
E2={grq: 1<r<k <12§q§n2} - (P((pz(B))ﬂS.

Put E = E{UE; C (¢2(B))NS. Since R? = 0, one can easily check that ¢(¢,(Rg)) = Ro.
By changing the Levi subalgebra S to ' = ¢! (¢, 1(8)) we prove that B splits in A.
0

We will need the following result.

Lemma 2.6.9. Let S be a semisimple finite dimensional associative algebra and let {S; |
i € I} be the set of its simple components. Suppose that M is an S-bimodule. Then M is
a direct sum of copies of Ujj, for i,j € IU{0}, where Uy is the trivial 1-dimensional S-
bimodule, Uy is the natural left S;i-module with U;nS = 0, Uy is the natural right S-module
with SUy; = 0 and U;; is the natural S;-S j-bimodule for i, j > 0.

Proof. LetS=S+TF1 ¢» Where 1¢ is the unity of S. Then § is a unital algebra. Set 1 gm =
mlg=mforallm € M. Then M is a unital S-bimodule. Note that § = Dicrufoy Si> where
So = F(13—15) is a 1-dimensional simple component of S. Thus, as a unital S-bimodule
M is a direct sum of copies of the natural S;-S;-bimodules U;; such that U;; = S;US, for
all i and j. It remains to note that U;oS = 0 and SUp; = 0.

O

Now, we are ready to prove Theorem 2.6.2.

Proof of Theorem 2.6.2. Recall that A is 1-perfect with R =0, p # 2,3 and B is a bar-
minimal Jordan-Lie inner ideal of L = [A,A]. Let {S; | i € I} be the set of the simple
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components of S. We identify A with S. By Lemma 2.6.9, the S-bimodule R is a direct
sum of copies of the natural left S;-module Uy, the natural right S;-module Up; and the
natural S;-S ;- bimodule U;; for all i, j € 1. Note that the S-bimodule R has no components
isomorphic to the trivial 1-dimensional S-bimodule Uy as A is 1-perfect with R2=0.

The proof is by induction on the length /(R) of the S-bimodule R. If {(R) = 1, then
R =Uj;; for some i and j. Note that (i, j) # (0,0). Let A = (S;+S;) ®R and let A; be the
complement of S; +S; in S. Then Ay and A; are 1-perfect. Note that A,A; = A1A; =00
both A and A; are ideals of A with A = A; ©A,. Hence L = L| & Ly, where L; = [A;,A]]
for i = 1,2. Since L satisfies the conditions of Lemma 2.5.3, we have B = B| ® B;, where
B; is a B;-minimal Jordan-Lie inner ideal of L;, i = 1,2. Since A, is semisimple, B5 splits
in A;. Note that By satisfies the conditions of one of the Propositions 2.6.5, 2.6.6, 2.6.7
and 2.6.8, so By splits in A;. Therefore, B splits in A.

Assume that /(R) > 1. Consider any maximal S-submodule T of R, so £(T) = ¢(R) —
1. Then T is an ideal of A. Let A = A/T. Denote by B and R the images of B and R in A.
Since /¢ (I?) = 1, by the base of induction, B splits, so there is a Levi subalgebra S’ = S of
A such that B = Bsz @® Bg, where Esz = BNS and Bgr = BNR. Let P be the full preimage
of By in B. Then P = By C &, so P is a subspace of B with P = B. Let G be the full
preimage of §" in A. Then G is clearly 1-perfect (i.e. G = £(G)), rad(G) =T, G/T =S
and P C BNG. Put P, = [P,[P,s'V]] € GV, Then P, C [B,[B,AV]] C B,so P, CBNG),
Note that B = BN G is a Jordan-Lie inner ideal of GUV) (because G(V) is a subalgebra
of Ay, Since P, = [P,[P,5'V]] = [B,|B,A"V)]] = B, we get that B= P, C B’ C B, so
B’ = B. Note that G is a large subalgebra of A (see Definition 2.5.10). Let B” C B be
a B'-minimal Jordan-Lie inner ideal of G"). As G is 1-perfect and ¢(T) < £(R), by the
inductive hypothesis, B” splits in G. Since B” C B' C B and B” = B’ = B, by Proposition
2.5.12, B splits in A.

[

The following result follows from Theorem 2.6.2 and Proposition 2.5.8.

Corollary 2.6.10. Let L = [A,A] and let B be a Jordan-Lie inner ideal of L. Suppose that
p #2,3, Ais 1-perfect, and R*> = 0. Then B splits in A.

Now, we are ready to prove Theorem 2.6.1.
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Proof of Theorem 2.6.1. (i) Recall that B is bar-minimal. Since R = radA is nilpotent,
there is an integer m such that R”~! # 0 and R™ = 0. The proof is by induction on m. If
m =2, then by Theorem 2.6.2, B splits. Suppose that m > 2. Put T = R* # 0 and consider
A =A/T. Let B and R be the images of B and R in A. Then we have R =radA, R> = 0 and
A satisfies the conditions of the Corollary 2.6.10. Hence, there is a Levi subalgebra " of
A such that B = ES/ @ Bg, where ES/ = BNS" and B = BNR. Let P be the full preimage of
By in B. Then P= By C &, so Pis a subspace of B with P = B. Let G be the full preimage
of §' in A. Then G is a large subalgebra of A with P C GNB. Put P = [P,[P,5"V)]] and
B =BNG"Y. Then P C B, [B,AV]] CBand P, C [G,[G,G]] € G, so P, CBNG) =
By. Since P, = [P,[P,§'V)]] = [B,[B,A)]] = B, we get that B= P, C B; C B, so B; = B.
As GV is a Lie subalgebra ofA(l), B =BnN G is a Jordan-Lie inner ideal of G(1). Put
By = core ) (B1). Then by Proposition 2.5.14, B; is a Jordan-Lie inner ideal of &1 (G) (1)
such that B, C B and B, = B. Let B3 C B, be any B,-minimal inner ideal of 2;(G)(").
Since 2| (G) is 1-perfect and rad(2(G))"~! C T"! = R2("=1) = 0, by the inductive
hypothesis, B3 splits in 21 (G). Since B3 = B, = B, by Lemma 2.5.12, B splits in A.

(ii) We wish to show that B = eAf for some strict orthogonal idempotent pair (e, f)
in A. By (i), there is a B-splitting Levi subalgebra S of A such that B = Bg & Bg, where
Bs=BNS and Bg = BNR. Let {S; | i € I} be the set of the simple components of S,
$0 S = @;c;Si. We identify A with S. By Lemma 2.3.5, we have B = @, X;, where
X;=BnS;foralliel PutJ={iel|X; #0}. By Lemma 2.3.3, for each r € J there is
a matrix realization M, (IF) of S, and integers 1 < k, < I, < n, such that X, is spanned by
the set

Er={ey|1<s<k,<l,<t<n}CS,

where {e]; [ 1 <i,j <n,} is a basis of S, consisting of matrix units. Lete =}, yhr e
and f=Y, ;Y7 i, e %;- Then (e, f) is a strict orthogonal idempotent pair in A with Bg =
@D,c;Xi = eSf. Note that eAf is a Jordan-Lie inner ideal of [A,A] with eAf = eSf = B.
We are going to show that eRf C Bg. This will imply eAf = B as B is bar-minimal.

By Lemma 2.6.9, the S-bimodule R is a direct sum of copies of the natural left S;-
module Ujy, the natural right S ;-module Uy}, the natural S;-S ;- bimodule U;; and the trivial
I-dimensional S-bimodule Uy for all i, j € I. Let M be any minimal S-submodule of R.
It is enough to show that eM f C B. Fix r,q € I such that M = U,,. We can assume that
r,q € J (otherwise eM f = {0} C B). Let {fl-rjq | 1<i<n, 1<j<n,} be the standard

basis of M consisting of matrix units, such that the action of S,-S, on M corresponds to
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matrix multiplication. Note that
eMf = span{fy! |1 <s <k, ly <t <ny}.

We need to show that f;! € B for all s and ¢. First, consider the case when r = ¢g. Then
s<k,<Il <t,sos#t. Since e}, € Band f;] = [e};, [{]] € L, by Lemma 2.5.15, we have

r rr r __ rr r rr
exfis €t = fss €y = Jst €B,

as required. Assume now r # ¢. Fix any e . €E, and ¢! € E;. Since €/ J,e € B and
f;iq = [e;. it f;iq] € L, using Lemma 3.1.3, we obtaln
{e;, jrlq, el frlqelqt +el rqer = fil +0€B,
as required.
(iii) Since B = eAf, by Lemma 2.5.18, B is regular.
[

Corollary 2.6.11. Let L = [A,A] and let B be a Jordan-Lie inner ideal of L. Suppose that
p # 2,3 and A is 1-perfect. Then B splits in A.

Proof. Let B C B be a bar-minimal Jordan-Lie inner ideal of L. Then by Theorem
2.6.1(i), B’ splits in A. Therefore, by Lemma 2.5.8, B splits in A.
O

Now we are ready to prove the main results of this paper.

Proof of Theorem 1.2.1. Suppose first that B is bar-minimal. We need to show that B =
eAf for some strict orthogonal idempotent pair (e, f) in A. By Lemma 2.5.2(ii), B is
L-perfect, so by Lemma 2.4.12, B C Z?|(A) and B is a Jordan-Lie inner ideal of L; =
21(A)1). Let C C B be a B-minimal Jordan-Lie inner ideal of L;. Since 2;(A) is 1-
perfect, by Theorem 2.6.1, there exists a strict orthogonal idempotent pair (e, f) in &1 (A)
such that C = e 27 (A) f. Note that 27| (A) is a two-sided ideal of A, so

CAC = e P (A) fAe P (A)f C e (A)f =C
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Hence, by Lemma 2.5.15(iii), C is an inner ideal of L with C C B and C = B. Since B is
bar-minimal, C = B. As e, f € &(A), we have

eP1(A)f CeAf =eeAf CeP(AAf CeP (A)f.

Therefore, e 7 (A)f = eAf and B = C = eAf as required.

Suppose now that B = eAf, where (e, f) is a strict orthogonal idempotent pair in A.
We need to show that B is bar-minimal. Let C C B be a B-minimal Jordan-Lie inner ideal
of L. Then by the “if” part C = e A f; for some strict orthogonal idempotent pair (ey, f)
inA, so ejAf; CeAf and 1Af; = B = eAf. Then by Theorem 1.2.4(iv), there is a strict
idempotent pair (e;, f>) in A such that (e, f2) < (e, f), that is, eep) = epe = e and fof =
ff> = f>. Moreover, by Theorem 1.2.4(iv), exAf> = e1Af; = C, so &Af, = B = éAf.
We are going to show that e; = e (the proof of f, = f is similar). Since (e, f) is strict,
by Theorem 1.2.4(iii) , & Z e, S0 ¢ = ep¢ = epe = &5. Hence, there is r € R such that
e> = e+ r. We have

e+r=e=ce;=e(e+r)=e+er,

so er = r. Similarly, re = r. Since e; is an idempotent,

etr=ey=e3=(e+r)}=e+2r+r.

Therefore, r> = —r and r? = —rforall k € N. As R is nilpotent, we get r =0, so e, =e.
Similarly, f, = f. Therefore, B = eAf = e;A f, = C, as required.

O]

Proof of Corollary 1.2.2. Since B is bar-minimal, by Theorem 1.2.1, there exists a strict
orthogonal idempotent pair (e, ) in A such that B = eAf. Therefore, by Lemma 2.5.18,
B is regular. [

Proof of Corollary 1.2.3. Let C C B be a B-minimal Jordan-Lie inner ideal of L. Then
by Theorem 1.2.1, there exists a strict orthogonal idempotent pair (e, f) in A such that
C =eAf, soby Lemma 2.5.7(i), C splits in A. Therefore, by Proposition 2.5.8, B splits in
A. ]



Chapter 3

Jordan-Lie Inner Ideals of Finite
Dimensional Associative Algebras with
Involution

In this chapter we study Jordan-Lie inner ideals of Lie algebras obtained from finite di-
mensional associative algebras with involution. We use the same approach as in Chapter
2. However, the case of algebras with involution is technically more difficult and more

cases must be considered.

Outline of Chapter 3

(Section 3.1) We discuss some background results related to Lie algebras derived from
associative algebras with involution and Jordan-Lie inner ideals of such Lie algeb-

ras.

(Section 3.2) We describe the relation between inner ideals and idempotents and recall

some known results on inner ideals and point spaces.

(Section 3.3) We study inner ideals of Lie subalgebras of semisimple associative algebras

with involution.

(Section 3.4) We describe the structure of the so-called *-indecomposable associative al-
gebras and their corresponding Lie algebras. We provide some results that describe

the derived Lie subalgebras of *-indecomposable associative algebras.
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(Section 3.5) We study inner ideals of Lie subalgebras of admissible associative algebras.

(Section 3.6) We introduce and describe the structure of inner ideals that admit a -

invariant Levi decomposition.

(Section 3.7) We prove some of the main results stated in Chapter 1. In particular,
we prove that every x-regular bar-minimal Jordan-Lie inner ideal is generated by
x-orthogonal idempotent in the associative algebra (Theorem 1.2.6). As a con-
sequence, we get Corollary 1.2.7 which shows that every x-regular inner ideal *-

splits in the associative algebra.

(Section 3.8) We prove the remaining main results. In particular, we show that if the as-
sociative algebra A is admissible, then every bar-minimal Jordan-Lie inner ideal of
the corresponding Lie algebra su” (A) x-splits in A (Theorem 1.2.8). As a corollary,
we show that every Jordan-Lie inner ideal of su"(A) *-splits in A and splits in the
Lie algebra su”(A) as well (Corollary 1.2.9).

3.1 Background Materials

Throughout this chapter, unless otherwise specified, [F is an algebraically closed field
of characteristic p # 2, A is a finite dimensional associative algebra over [F with involution
x (of the first kind), R = radA is the radical of A, S is a x-invariant Levi (i.e. maximal
semisimple) subalgebra of A (see [38] and [39] for the existence of this subalgebra), so
A =S®R. We denote by K the vector space u” (A) = {a € A | a* = —a} of skew symmetric
elements of A. Then K is a Lie algebra over F. As p # 2, K can be represented in the

form:

K=u(A)={a—a"|acAl. (3.1.1)

Since both S and R are x-invariant, we have K = u"(S) @ u"(R). Moreover, we denote
K the Lie algebra su”(A) = [u"(A),u"(A)]. Note that the relation between K!) and
Al = [A,A] was highlighted in [12], where Baxter proved that if A is a simple ring with
involution of dimension greater than 16 over its centre Z(A) or Z(A) = (0), then A(D) =
[K,sym(A)] + K" and KV = [sym(A),sym(A)] (recall that sym(A) = {a € A | a* = a}
is the vector space of the symmetric elements of A). Furthermore, we denote by rad K the
solvable radical of K and u”(R) = u"(A) NR the nil-radical of K. If V is a subspace of A,
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we denote by V its image in A = A/R. In particular, K = K/u"(R) = u"(S). Since R is a
nilpotent ideal of A, u”(R) is a nilpotent ideal of K, so u" (R) C rad K. It is easy to see that
if p = 0, then u”(S) is semisimple, so u” (R) = radK.

Since * is F-linear, by [16, 2.1], K is also a Jordan triple system with the product
{x,y,2} = xyz+ zyx for all x,y,z € K and the quadratic operator P,(x) = axa. Let B be a
subspace of K. We say that B is a Lie inner ideal of K if B is an abelian inner ideal of K.
Moreover, B is said to be a Jordan inner ideal of K if {B,K,B} C B [16]. We denote

{b,x,b'} := bxb' +b'xb for all b,b’ € B and x € K. (3.1.2)

If B is a subspace of K = u"(A) such that B> = 0, then B is a Lie inner ideal of K if and

only if it is a Jordan inner ideal of K. Indeed, since B? =0, we have
b, [0 ,x]] = —(bxb' 4+ b'xb) = —{b,x,b'} forall b,b’ € Band x € u" (A).

This justifies the following definition. Recall that K(©) = K and K¥) = [K(k=1) g(k=1)]
forall k > 1.

Definition 3.1.1. [24] Let A be an associative algebra with involution. An inner ideal B
of K®) (k > 0) is said to be Jordan-Lie if B> = 0.

Remark 3.1.2. In some literature, see for example [16, Section 3], Jordan-Lie inner ideals
of K are called isotropic inner ideals, as they correspond to isotropic subspaces of algebras

with involution.

The following lemma follows immediately from the definition.

Lemma 3.1.3. Let B be a subspace of K &) (k > 0) with B2 = 0. Then B is a Jordan-Lie
inner ideal of K® if and only if {b,x,b'} € Bforall b,b' € Band x € KK,

Lemma 3.1.4. Let e be an idempotent in A with e*e = 0. Then
(i) eKe* = u" (eAe*).
(ii) eKe*NZ(A) = 0.
(iii) eKe* is a Jordan-Lie inner ideal of both K and KW,
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Proof. By (3.1.1),
U (eAe*) = {eae* —ea*e* |ac A} = {e(a—a*)e* |a € A} = eu (A)e* = eKe*.

(ii) Let z € eKe*NZ(A). Then ez =z and ze = 0, s0 0 = [e, z] = ez — ze = z, as required.
(iii) By (i), eKe* Cu"(A) = K. Let x,a,y € K. Then

{exe”,a,eye” } = exe*aeye™ + eye*aexe” = e(xe*aey+ ye*aex)e” € eKe™.

Since e*e = 0, we have (eKe*)? = 0, so by Lemma 3.1.3, eKe* is a Jordan-Lie inner ideal
of K. It remains to show that eKe* C K(1) = su”(A). Let x € eKe*. Then ex = xe* = x and

xe—e*x—O, SO
6—8*X— e—e* x—xe—e* —€X+X€*—2)C.
[ ? ] (

Note that e —e* € u"(A) = K. Since p # 2, by using (i), we get that x = %[e —e*,x] €
[K,eKe*| C [K,K], as required.
O

Remark 3.1.5. The results of Lemma 3.1.4 are also true when A is an associative algebra

with involution * over a commutative ring ® with % € @ and * is P-linear.

We will need the following well known facts, see for example [6, Lemma 4.5].

Lemma 3.1.6. Suppose that A contains an ideal D such that A = D ® D*. Then

(i) u'(A) = {x—x* | x€ D).

(ii) Let @ be the projection of A on D. Then the restriction of ¢ to u" (A) is an iso-
morphism of the Lie algebras u” (A) and D). Moreover, if P is a x-invariant subalgebra
of D, then ¢(u*(P)) = o(P)().

Recall that A is a finite dimensional associative algebra with involution. Suppose that
A is simple. Then A can be identified with EndV for some finite dimensional vector space
V over F. By fixing a basis E of V we can represent the algebra EndV in the matrix form

My (m =2n, or 2n+ 1 for some positive integer n), where m = dimV. We say that .#,, is
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a matrix realization of A. Moreover, the basis E and the matrix realization of A are called

canonical if * in the chosen basis has the following form (¢ = %1, or simply € = £):

X*=X" = J 1X'J, for all X € .4, (3.1.3)

0

where J; =
el,

I
(;l ) (I, is the identity n X n-matrix) if m = 2n and

n

0 1
Jy =diag( ") ifm=2n+1.

I, 0O
Note that J; I'= eJ,. Moreover, we say that 7, is orthogonal and T_ is symplectic. If x
admits 7, (resp. T_) in .#,,, then we say that x is a canonical involution of orthogonal
(resp. symplectic) type of A.

The following proposition is well known, see for example [3, Proposition 2.3] and
[10, Lemma 2.1].

Proposition 3.1.7. Suppose that dimV = m (m = 2n+1 or 2n). If x is an involution of
A =EndV, then A has a canonical matrix realization My,. In particular, W (A) = so,, or

sp,, and V is the natural w” (A)-module.

Let .4, be a canonical matrix realization of A. To find u"(A), we need to consider

two cases. Suppose first that m = 2n. Then J, I'— ¢J_ and .#5, can be represented in the

a b a b
form 5, ={ |a,b,c,d € My} LetY = € M>,. Then
c d c d
Te t
. a b a 0 eI, a 0 I,
Y — - 8.]8 Jg -
c d c I, O b d el, 0

( a—d  b—eb

Hence, Y —Y* =
c—ed —(a—d")

). Since u (A) = {Y —Y* | Y € Mr,} (see
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(3.1.1)), we get that

w X X . .
u (A) :{< X, _;(t > | X,X; € M, with X! = X;,} = sp,, (ife=—) (3.1.4)

" X X . .
u(A)= {( % _;(r > | X,X; € M, with X! = —X;,} =50y, (ife=+). (3.1.5)

0 1
Suppose now that m = 2n+ 1. Then x =1, Ji = diag(< / (’; ) ), I =0
n

and .#,,11 can be represented in the form

X
«%271
vV ow o
v X
Let % = y € M+ 1. Then as above, we have
vVow
* ! 1
) y vV oo
dy = y = J+ w! J+ = v
vow o Xy o y X o
y_y* x—w!
Thus, % — % = y—V € u (A). Therefore,
—(y— v[)’ _(X_Wt)l 0
Y
* 502
u'(A)={ " Yo | |Y1,Y €My} =500,,1. (3.1.6)
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3.2 Inner ideals and idempotents

Throughout this section, unless otherwise specified, V is a finite dimensional vector
space over IF and y: V x V — I is a nondegenerate symmetric or skew symmetric bilinear
form, that is, y(v,w) = ey(w,v) for all v,w € V, where € = +.

For every x € EndV, define x(x) by the following property

Y (xy(x)v,w) = y(v,xw) forallv,we V.

Then the map *y : EndV — EndV is an involution of the algebra EndV, called the adjoint
involution with respect to y [3]. The following fact is well known (see [22, Chapter 1,

Introduction]).

Proposition 3.2.1. [22] The map Y — *y induces a one-to-one correspondence between
the equivalence classes of nondegenerate symmetric and skew-symmetric bilinear forms

on 'V modulo multiplication by a factor in F* and involutions (of the first kind) on EndV.

For every v,w € V, we denote by w*v € EndV the linear operator on V defined by

wv(x) = y(x,w)v forall xeV. (3.2.1)

Lemma 3.2.2. [15, 3.3] For the linear operator w*v € EndV, the following hold.

(i) (W'v)* = eviw.

(ii) Every a € EndV can be written in the form a =Y}, w}v;, where both the v;’s and
the w;’s are linearly independent.

(iii) (wWivi)(wiva) = wiy(va, wi)vy for all vi,vo,wi,wa € V.

(iv) The operator defined by [u,v] = u*v — v*u belongs to w" (End V).

(v)u*(EndV) = [V,V].

Definition 3.2.3. Let V be a vector space over [F. An idempotent e in EndV is said to be
isotropic if it satisfies the following equivalent conditions (i) e*e = 0, (ii) eV is a totally

isotropic subspace.

Remark 3.2.4. [15, 3.6] To justify the definition we need to show that (i) holds if and only
if (ii) holds. By Lemma 3.2.2(ii), e = Y.\, w;v;, where the w;’s and the v;’s are linearly
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independent vectors in V. Since ¢?

=e, Y(vi,w;) = §;; for all i and j. Moreover, e*e =0
if and only if y(v;,v;) = 0for all i and j, or equivalently, eV is a totally isotropic subspace

of V (because v; form a basis of ¢V).

Definition 3.2.5. [15, Definition 5.6] Let L be a Lie algebra. A subspace P of L is said to

be a point space if [P,P] = 0 and ad> L = Fx for every non-zero element x € P.

In [18], Draper et al showed that the classical Lie algebras of types A,, B+, and
D,+1 contain point spaces of dimension n. For instance, @;_; Fe; ,41 is a point space of
A, = sl,+1. However, every nonzero point space of a classical Lie algebra of type C, is

one dimensional.

Proposition 3.2.6. [15, 5.7] Let L be a Lie algebra. Then
(i) Every point space of L is an abelian inner ideal of L

(ii) Any subspace of a point space of L is also a point space of L.

Definition 3.2.7. [15, 5.12] Let P be a point space of the orthogonal Lie algebra so(V, y).
If there exists a nonzero vector u € V in the image of every nonzero a € P, then P is called

a Type 1 point space. Point spaces which are not of Type 1 are called Type 2 point spaces.

Let W be a totally isotropic subspace of V of dimension greater than 1. Suppose that
u is a nonzero vector in W. Then P = [u, W] is a point space of so(V, y). The following

proposition is a particular case of the results proved in [15].

Proposition 3.2.8. [15, Proposition 5.13] Every Type 1 point space P of the orthogonal
algebra so(V,y) is of the form [u,W|, where W is a totally isotropic subspace of V of
dimension greater than 1 and u is a nonzero vector of W. Moreover, W is uniquely de-
termined by P and if dimW > 2, then [u,W| = [v,W] implies that v = o for some o € F.

The following result classified point spaces of the orthogonal Lie algebras so(V, y).

It is a particular case of the results proved in [15].
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Theorem 3.2.9. [15, Theorem 5.16] Let A = EndV and let K = u"(A). Suppose that P
is a point space of 50(V, ). Then either P is of Type 1 or P = eKe* for some isotropic
idempotent e of rank 3 and P is a point space of Type 2.

Lemma 3.2.10. Suppose that A is simple and x is canonical of orthogonal type. Let P be
a Type 1 point space of [K,K| = su’ (A). Then there is a canonical matrix realization ./,
of A and k < n such that P = span{ehnﬂ — € ntl | 1 <t <k}, where €jntj are matrix

units.

Proof. We identify A with EndV for some finite dimensional vector space V over [F. By
Proposition 3.2.8, P = [u, W] for some totally isotropic subspace W of V and a nonzero
vector u € W. Let W be a maximal totally isotropic subspace of V containing W. Put
u=wy. Let {wy,...,w,} be a basis of W such that {wy,...,w;} (k > 2) form a basis of
W. Then by Lemma 3.2.2(iv),

P = [u,W] = [w,W] =span{[wi,wi] | 1 <i<k}=span{wiw;—wiw;|1<i<k}.

Fix any basis E = {wy,...,Wp,V1,... vy, v} (v omitted if m = 2n) of V such that y(v,v) =1,
v(wi,v;) = &; and y(w;,w;) = y(v;,v;) = y(w;,v) = y(vi,v) =0forall 1 <i,j<n.
Then by using (3.2.1), we get that

wi,wil(wj) = wiwi(w;) —wiwi(w;) = w(w;,wi)w; — y(wj,wi)w; =0,

wi,wil(v) = wiwi(v) —wiwi(v) = w(v,w)w; — y(v,w;)w; =0 and
[wi,wil(v;) = wiwi(vj) =wiwi(v;) = W(vj,wi)wi — Y (vj,wi)wi = §j1w; — 8jiwr.

Hence, [w1,w;] = €; 441 — €1 54 in terms of matrix units ¢; ; in the chosen basis. Note that
this matrix realization of A is canonical. Moreover, the space P in this basis is spanned by
{e1 1t —ernt1 | 1 <t <k <n}, as required.

O

Definition 3.2.11. Let A be a ring with involution and let e be an idempotent in A. We

say that e is a x-orthogonal idempotent if e*e = ee* = 0.

Lemma 3.2.12. Let e be an idempotent in A with e*e = 0. Then there is a x-orthogonal

idempotent g in A such that
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(i) ge = eand eg = g.
(ii) eKe* = gKg*.

Proof. (i) Putg =e— %ee*. Then g* =" — %ee*. Since e*e = 0, we get that g> = g,

1 1
gg=(e— Eee*)(e — Eee*) =0 and
1 1 1 1
gg" = (e— Eee*)(e* — Eee*) =ee" — Eee* — Eee* =0.

Therefore, g is a x-orthogonal idempotent in A. It remains to note that ge = (¢ — %ee*)e =e
and eg = e(e — %ee*) = g, as required.
(i) By (i) there is a x-orthogonal idempotent g in A such that eg = g and ge = e.

Hence, ¢* = ¢*g* and g* = g*e*. Since eKe*, gKg* Cu"(A) =K,
eKe* = geKe*g* C gKg* and gKg" = egKg*e* C eKe™,

so eKe* = gKg*, as required.
O

Remark 3.2.13. The results of Lemma 3.2.12 can be applied to an associative algebra A
with involution * over a commutative ring ¢ with % € ® and * is P-linear. Moreover,
they can also be applied to a semisimple Artinian ring A with involution of characteristic
not 2.

By using Lemma 3.2.12(ii) and Benkart and Ferndndez Lopez results [15, Theorem

6.1,6.3], we get the following result

Theorem 3.2.14. Let A be a simple Artinian ring of characteristic # 2,3 and let K =
u*(A). Suppose that dimA > 16 and B is a Jordan-Lie inner ideal of KV = su®(A). Then
B satisfies one of the following:

(i) If % is canonical of symplectic type, then B = eKe* for some x-orthogonal idem-
potent e in A.

(ii) If * is canonical of orthogonal type, then either B = eKe* for some x-orthogonal

idempotent e in A or B is a Type 1 point space of dimension greater than 1.
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Let e be a *-orthogonal idempotent in A = EndV. Since e*e = 0, by Remark 3.2.4,
e is isotropic and eV is a totally isotropic subspace of V. Moreover, e* is also isotropic
as (e*)*e* = ee®* = 0. Let W be a maximal totally isotropic subspace of V containing
eV. Let {wy,...,w,} be a basis of W such that {wy,...,wi} (k > 1) is a basis of eV. Let
Vi,...,V, be linearly independent vectors in V such that y(w;,v;) = 6;; and y(v;,v;) =0.
Put E = {wy,...wn,v1,...,vy} and U = span(E). If U # V, then there is v € V such that
y(v,U) =0and y(v,v) =1 and V = U @ span{v} (Note that such v exists because F is
algebraically closed). Let

E JifU =V
EUu{v} ,ifU#V.

E' =

Then E’ is a basis of V. Note that the matrix realization [y]g of Y is Jg in (3.1.3), where

8]dn n
when U # V. Moreover, the matrix realization of e and e* with respect to E’ are of the

0 Id, \ . . 0 I, .
Je = 0 in the case when U =V and J = diag( o ,1) in the case

form

e = diag(1,...,1,0,...,0) and ¢* = diag(0,...,0,1,...,1,0...,0) (k<n)  (3.2.2)

Hence, we get the following well known result.

Lemma 3.2.15. Suppose that dimV = m (m = 2n or 2n+1). Let e be a x-orthogonal
idempotents in A = EndV. Then there is a canonical matrix realization #,, of A such
that e and e* are in the form (3.2.2).

Recall that I is an algebraically closed field of characteristic p # 2 and A is a finite

dimensional associative algebra over [ with involution.

Lemma 3.2.16. Suppose that A is simple of dimension greater than 16 and p # 3. Let B be
a Jordan-Lie inner ideal of [K,K] = su” (A). Then there is a canonical matrix realization
My (m=2n+1o0r2n) of A and k < n such that B is one of the following: (e;; are matrix
units)

(i) If = is canonical of symplectic type, then B = span{es it +erpnis |1 <5<t <k <
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(ii) If = is canonical of orthogonal type, then either (a) B = span{ej nyr —€rpt1 |1 <
t <k <n}, or(b) B=span{esnis —€inis |1 <5<t <k<n}.

Proof. By Theorem 3.2.14, B is either a Type 1 point space or B = eKe* for some -

orthogonal idempotent e in A. If B is a Type 1 point space, then by Lemma 3.2.10, B

can be written in the form (ii)(a). Suppose that B = eKe*. Then by Lemma 3.2.15, there

is a canonical matrix realization .#,, (m = 2n+ 1 or 2n) of A and integer k < n such

that e = diag(1,...,1,0...0) and ¢* = (0,...0,1,...,1,0,...,0). Since .#,, is canonical,
—— —— ——

k n k
K =u"(A) = sp,,,,50,, is of the form (3.1.4), (3.1.5) or (3.1.6). Now, simple calculations

show that the space B = eKe™ has the required forms as in (i) or (ii)(b).
O

3.3 Jordan-Lie inner ideals of semisimple associative al-

gebras

Recall that A is a finite dimensional associative algebra with involution. Suppose that
A is semisimple and {S; | i € I} is the set of its simple components. Clearly, * permutes
the simple components of S. Therefore, for each i € I there exists a unique i* € I such that
S* = S;+. Since (i*)* = i, the set  can be expressed as a disjoint union Iy U} UI], where
Ih={iel|i*=i}and I ={i*|ic}.

Definition 3.3.1. [10] Let A be an associative algebra with involution *. Then A is said to

be involution simple if A% # 0 and A has no non-trivial %-invariant ideal.
The following proposition is known, see for example [3, Proposition 2.1].

Proposition 3.3.2. Let A be an involution simple associative algebra. Then A is either
simple as algebra or has exactly two non-zero ideals S| and Sy such that both of them are

simple algebras, ST =S, and A = S1 ® S».

Proposition 3.3.3. Suppose that A = S| © S, and K = u”(A), where Sy is a simple ideal
of A with S{ = S». Let B be a Jordan-Lie inner ideal of K = su” (A). If p # 3, then the
following hold.
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(i) B= (e+ f*)K(f + €*) for some orthogonal idempotents e and f in S|.
(ii) B = gKg* for some x-orthogonal idempotent g in A.

Proof. (i)Let @ : A — S, ¢(s1+s2) = s for all s; € S| and s € S5, be the projection of
A onto S1. Then by Lemma 3.1.6, the restriction of ¢ to u”(A) is an isomorphism of the
Lie algebras u"(A) and ng), s0 @(u"(A)) = §; (). Hence,

Note that the restriction of ¢ to u”(A) is defined by @ (s —s*) = s forall s € S; as u”(A) =
{s—s*|s €S} (see Lemma 3.1.6(i)). In particular, the map ¢~ : Sg_) — U (A) is given
by ¢~ !(s) = s—s* forall s € S;. Since @(B) is a Jordan-Lie inner ideal of ¢(su”(A)) =
Sgl), by Theorem 2.3.2, ¢ (B) = eS| f for some strict orthogonal idempotent pair (e, f) in

Sl. Thus,

B = @ l(eSif)={esf—f*s*e* |s€ S}
= {(e—=f)s—=s)(f—€) |seSi}=(e+f)K(f+e),

as required.
(ii) This follows from (i) by putting g = e+ f* € A.
]

Benkart [13, Theorem 5.5] and Benkart and Ferndndez Lépez [15, Theorem 6.1, 6.3]
classified Lie inner ideals of simple finite dimensional associative algebras with invol-
ution. The following theorem is a slight generalization of their results to the case of

involution simple algebras.

Theorem 3.3.4. Suppose that A is an involution simple such that each simple ideal of A is
of dimension greater than 16. Let B be a Jordan-Lie inner ideal of K = su” (A). If p#3,
then B satisfies one of the following:

(i) B = eKe* for some x-orthogonal idempotent e of A, or

(ii) B is a Type 1 point space of dimension greater than 1.

Proof. This from Theorem 3.2.14(i1) and Proposition 3.3.3(ii).
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Let A be an involution simple finite dimensional associative algebra. By Proposition
3.3.2, we can identify A with either EndV or End V| & EndV, for some finite dimensional
vector spaces V, Vi and V, with dimV| = dimV,. Put dimV| = dimV, = m. Then the
algebra EndV; @ EndV, can be represented in the matrix form .#,, & .#,, with respect
to fixed bases in V| and V,. We say that .4, © .#,, is the matrix realization of End V| ®
EndV,. Moreover, the matrix realization of the algebra End V| & EndV, with involution *

is said to be canonical if * in the chosen basis is of the form: (X;,X» € .#,,)

(X1,X2) — (X5,XD), (3.3.1)

where ¢ is the transpose. It is known that any finite dimensional involution simple associ-
ative algebra over an algebraically closed field of characteristic not 2 or 3 has a canonical
matrix realization, see for example [3].

The following classical result describes the structure of involution simple algebras

which are not simple as algebras:

Proposition 3.3.5. /3, Proposition 2.5] Let V;, i = 1,2, be vector spaces of dimension
m. Put S; = End(V;). Let x be an involution of the algebra S\ ® S, such that S7 = S».
Then for every matrix realization of Sy there is a matrix realization of S» such that the
corresponding matrix realization of S1 ® S, is canonical. In particular, u* (S198,) =
{(X,—X") | X € My} = gl,, Vi is the natural w* (S1 ® Sp)-module and Vs is the module
dual to V.

We will need the following fact.

Lemma 3.3.6. Suppose that A = S| © S> where S| is a simple ideal of A with ST = S>. Let
B be a Jordan-Lie inner ideal of K (), If p # 3, then there is a matrix realization of A such
that B is the space spanned by {(ey,—e;5) | 1 <s <k <1<t <n}, where e;j € My, are

matrix units.

Proof. By Proposition 3.3.3 (i) and (ii), we have B = (e+ f*)K(f +¢*), where e and f are
orthogonal idempotents in A and (e + f*) is a x-orthogonal idempotent in A. Therefore,

the result follows from Proposition 3.3.5 and Lemma 2.3.3.
]
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Recall that {S; | i € I} is the set of the simple components of S, where / can be ex-
pressed as a disjoint union [yUI; UIf withlp ={i €l |i* =i} and [ = {i*|i€];}. Letn;
be an integer such that S; = .#,,.. By Propositions 3.1.7 and 3.3.5, we have the following
(see also [10]).

Lemma 3.3.7. Suppose that A is semisimple and {S; | i € I} is the set of its simple com-
ponents. Then w" (S) = @;cpp, Qi where

u'(S;) = so,,8p,, ifi€l

Oi=4¢
u (Si®S+) =gl,, ificel

Recall Definition 2.1.1 that a Lie algebra Q is said to be a quasi (semi)simple if Q is
perfect (i.e. [Q,0] = Q) and Q/Z(Q) is (semi)simple. The following result is a particular
case of [21, Theorem 10] and [30, Theorem 6.1].

Proposition 3.3.8. Suppose that A is semisimple. Then K1) = su” (A) is quasi semisimple.
In particular KW = g(=),

Proof. By Lemma 3.3.7, K = ¢y, Qi» Where Q; is either 0 or F in the case when
n; = 1 or Q; is isomorphic to one of the Lie algebras so,,, sp,. and gl,,. in the case when
n; > 2. Therefore, ngl) = [0, Qj] is quasi simple for all i. Therefore, Q = @, ¢y, [Qi; Qi
is a quasi semisimple Lie algebra.

O

Recall that an element x in A is said to be Von Neumann regular if there is an element
y € A such that x = xyx [19]. Moreover, A is said to be Von Neumann regular if every
element of A is von Neumann regular. Recall that semisimple Artinian rings are von

Neumann regular.

Lemma 3.3.9. Let A be a semisimple Artinian ring with involution of characteristic not
2. Let x € u' (A). The following hold.

(i) x=xyxfor somey € u (A).
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(ii) Suppose that x> = 0. Then

(a) x € su’(A).

(b) thereisy' € su” (A) such that x = xy'x.

Proof. (i) We have x* = —x. Since A is Von Neumann regular, x = xax for some a € A.
Puty = 1(a—a*) € u"(A). Then

Xyx = %x(a—a*)x = %(xax—xa*x) = %(x— (xax)*) = l(x—)c*) = l(2)c) =x.

(ii) By (i), x = xyx for some y € u"(A).
(a) Since x*> = 0, we get that [x, [x,y] = —2xyx = —2x, so
1 * * %
x ==zl [yl €u(A),su (A)] S su ().

(b) Let e = xy. Then ¢? = xyxy = xy = e and ¢* = yx, so e is an idempotent in A with
e*e = yxxy = 0. By Remark 3.2.13, there is a x-orthogonal idempotent g in A such that
ge=cand eg = g, 50 e*g* = (ge)* = ¢*. Puty = g*yg € u”(A). Since exe* = (xy)x(yx) =
XyxX = X,

xy'x = (exe™)(g"yg) (exe™) = (exe* g")y(gexe™) = (exe™)y(exe*) = xyx = x.

It remains to note that (y')> = (g*yg)(g*yg) = 0, so by (a), y € su”(A), as required.
O

Proposition 3.3.10. Let A be a semisimple Artinian ring with involution of characteristic
not 2. Let B be a Jordan-Lie inner ideal of su” (A). Then B = [B,[B,su” (A)]].

Proof. By definition, [B, [B,su"(A)]] C B. Let b € su”(A). Since b*> = 0, by Lemma 3.3.9
(ii)(b), b = byb for some y € su”(A). Therefore, b = byb = —3[b,[b,]] € [B, [B,su" (A)]],
as required.

O

Proposition 3.3.11. Let A be a semisimple Artinian ring with involution of characteristic
not 2. Let B be a Jordan-Lie inner ideal of w*(A). Then
(i) B is a Jordan-Lie inner ideal of su”(A).
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(ii) B = [B, [B,su* (A))].
(iii) B = [B, [B,u" (A)]].

Proof. (i) By Lemma 3.3.9 (ii)(a), B C su’(A), so B is a Jordan-Lie inner ideal of su”(A).
(i1) This follows from (i) and Proposition 3.3.10.
(iii) By definition, [B, [B,u"(A)]] C B. On the other hand, by (ii), B = [B, [B,su" (A)]] C
(B, [B.u”(A)]
]

Recall that p # 2.

Lemma 3.3.12. Suppose that A is a semisimple, {S; | i € I} is the set of the involution
simple components of A and p # 3. Let B be a Jordan-Lie inner ideal of su” (A). Then
B = @;c; Bi, where B; = BNsu’ (S)).

Proof. Let y;:su” (A) — su’(S;), w;((x1,...,X;,...) = x;, be the projection of su” (A) onto
su’(S;). Then y;(B) is a Jordan-Lie inner ideal of y;(su”(A)) = su”(S;) for each i € I.
We need to show that y;(B) = B; for all i € I. We have B; C y;(B). Since S; is semisimple

with involution (because S; is involution simple), by Proposition 3.3.10,
vi(B) = [Wi(B), [wi(B),su (S)]] C [B,[B,su”(S)]] C B.

Thus, y;(B) = B, for each i € I. Therefore, B = @, Bi.
]

Theorem 3.3.13. Suppose that A is semisimple, p # 3 and every simple component of A
is of dimension greater than 16. Let K = u"(A) and let B be a Jordan-Lie inner ideal of
KW = su” (A). Then B = eKe* @®C, where e is a x-orthogonal idempotent in A and C is a

direct sum of Type 1 point spaces of dimensions greater than 1.

Proof. Let {S;|i € I} be the set of the involution simple components of A. Using Theorem
3.3.4 and Lemma 3.3.12 we get that B = @,; B;, where B is either a Type 1 point space
or B; = e;K;e; for some x-orthogonal idempotents ¢; in A;. Put e =}, el €js where J =
{i€1|B;=eiKej}. Then e is a *-orthogonal and eKe* = @ j¢; ¢ Kje’. Put C = D¢ Bi.
Then C is a direct sum of Type 1 point spaces and B = eKe* & C, as required.

]
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3.4 =x-indecomposable associative algebras

We start with the following definition.

Definition 3.4.1. (1) Let A be an associative algebra with involution. We say that A is a
x-indecomposable if A cannot be represented as a direct sum of two *-invariant ideals.
(2) Let M be a non-zero S-S-submodule of A. We say that M is *-irreducible if M does

not contain proper non-zero x-invariant submodules.

Let S be a semisimple finite dimensional associative algebra and let {S; | i € I'} be the
set of its simple components. Let § = §+F1 ¢» Where 1 is the identity of S. Then S is
a unital algebra. Let M be an S-bimodule. Set 1¢m = mlg =m for all m € M. Then M
is a unital S-bimodule. Put / =7U{0}. Then S = @,;S;, where So = F(1¢— l5) is a
1-dimensional simple component of S. Thus, as a unital S‘-bimodule, M is a direct sum
of copies of the natural simple S;- S;-bimodules U;; = V; ® Vj‘, where V; is the natural left
S;-module and V- is the natural right S;-module. Note that U;pS = SUp; = 0. Recall the

following lemma from Chapter 2 (Lemma 2.6.9).

Lemma 3.4.2. Let S be a semisimple finite dimensional associative algebra and let {S; |
i € I} be the set of its simple components. Suppose that M is an S-bimodule. Then M is a
direct sum of copies of Ujj, fori, j € I=1U {0}, where Uy is the trivial 1-dimensional S-
bimodule, Uy is the natural left S;-module with UjpS = 0, Uy is the natural right S-module
with SUp; = 0 and Ujj is the natural S;- S j-bimodule for i, j # 0.

Let M be as in Lemma 3.4.2. Then M = €, ;.;Uij ® A(i, j), where the A(i, j) are
vector spaces over [F. Suppose now that S is an algebra with involution *. Then * permutes
the simple components of S, so for each i € I, there is i* € I such that ST = S;«. Note that
So = So. Put 15 =Y, 1;, where 1; is the identity of S; for all i € [. Then for each x € M,
we have x = lexle = Zi,jeiliXIj’ soM = @i,jeiliMlj- Put M;; = 1;M1; for all i and ;.
Then obviously we have M;; = @, ;;1:iM1; = Uj; ®@A(i,j) foralli,je .

Suppose now that S is a *-invariant Levi subalgebra of A and M = R =radA. Then by
above we have

R=Rij=PU;xAl,)), (3.4.1)

i,jel i,jel
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where R;; = 1;R1;. Since R* = R, we have
Rij = (LiR1j)" = IiR1} = 1Rl = R (3.4.2)

Suppose that A = S @ R is *-indecomposable, R = 0 and R is -irreducible as S-
bimodule. Then R is isomorphic to either U;; @ U+ (if i # j*) or U;; (if j* = i) for some
i,j,i*,j* €I with (i, ) # (0,0). Since A is *-indecomposable, I contains only i, j and
their duals. Recall that [ = {0} UlyU (I; UI}). We have the following cases.

l. If j=0andi#0:

(a) i € Iy. Then S = S; and R = U;y @ Uy;.
b)iel Ulik. Then S = §; ® S+ and R = Ujg @ Up;+.

2. i,je€ly:

(a) i #j. ThenS:SieBSj andR%Ui_,-@Uﬁ.
(b) i=j. Then S = S; and R = Uj;;.

3.i€ly andjEIlUIT. ThenS:Si@SjEBSj* andR%U,-jEBUj*i.

4. i,jeL UL

(@) i=j. Then S =S; D S; and R = U;; + Ujsj».
(b) i=j*. Then § =S, ®S;+ and R = Uj;.
(© i#j,j". ThenS=8;®S; DS+ ®Sj» and R=U;; B Ujvj».

Note that if U is an irreducible S-submodule of R isomorphic to U;; (so U C R;;), then U*
is an irreducible submodule of R +;+ (because U* C R;"j = Rj++). We proved the following

proposition.

Proposition 3.4.3. Suppose that A is x-indecomposable, R> = 0 and R is *-irreducible
as S-bimodule. Then A has one of the following decompositions.
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(1) S is involution simple and U is a natural left S-module with US = 0:

(@) A=SPU DU where S is simple.
(b) A=S81®S] DU ©U" where Sy is simple and S = S1 © 7.

(i1) S is involution simple and U is an irreducible S-bimodule:

(@) A=S®R where S is simple and R =U.
(b) A=S1®S] DU DU where Sy is simple, S =S1 © S} and R=U ©U* with
US, =SiU =0.

(c) A=S1 DS DR where Sy is simple, S = S| © S| and R is an irreducible S-S -
bimodule with RS} = SR = 0.

(i) S=S®S" whereS' and S"” are involution simple ideals of S and U is an irreducible
S'-S"-bimodule with US' = S"U = 0.

@) A=SoS"oUU* where S', S” are simple.
b) A=S @S, ®S;dU SU* where S' is simple and S, is a simple ideal of S
with 8" = S, @ S},

() A=S1®S]DS® S DU GU* where S| and S, are simple ideals of S' and
S”, respectively, with ' = S} © S} and " = S, ® S3.

From Definition 3.4.1(2), Lemma 3.4.2 and Proposition 3.4.3, we have the following

lemma

Lemma 3.4.4. Let S be a semisimple finite dimensional associative algebra with invol-
ution and let {S; | i € I} be the set of its simple components. Suppose that M is an S-
bimodule. Then M is a direct sum of copies of x-irreducible S-S-bimodules, each of them
is either irreducible S;-Si<-bimodule or isomorphic to U & U*, where U is either a natural

left S;-module or an irreducible S;-S j-bimodule with j # i*.
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The following results describe the structure of the Lie algebra u“(A) when A is *-
indecomposable with R? = 0.

Lemma 3.4.5. Suppose that S is simple and R = Uy ® U, where U, is a natural left S-
module with UjA = 0. Then w (S) = §0,,,5p,, (m =2n or 2n+1) and u*(R) = {r —r* |
reU}=U.

Proof. This follows from (3.1.1) and Proposition 3.1.7.
O

Lemma 3.4.6. Suppose that S is simple and R = U, where U is an irreducible S-bimodule
with U* = U. Then there is a canonical matrix realization of A such that u” (S) = sp,,, or

50,, and as a vector space u" (R) is one of the following (p = %1 or simply +):

X Y
sy (M) = { )i e, vi=pen, vi=penh

)0 pX

r;

p
symy, (Aay)
Sym€+(-//2n+l) ={ o " Yy | Y3,Y4 € My, acF},
pY, pY, «

where a0 =0 if p = —.

Note that as vector spaces symy (.#a,) = P2y, Symg, (Mo,) = 502, and symy, (Mo y1) =

500,41 (see (3.1.4), (3.1.5) and (3.1.6), respectively)

Proof. Since S is simple with $* = S, by (3.1.3) and Proposition 3.1.7, there is a canonical
matrix realization .#, (m = 2n+ 1, or 2n) of S such that * = 7, (¢ = +) and u”" (S) = sp,y,
or $0,,. Since U is an irreducible S-bimodule, as a vector space R = U = .#,,. By
identifying R with .#,, we can fix bases {e;; | 1 <i,j <m}and {f;; |1 <i,j <m}of S
and R, respectively, consisting of matrix units such that the action of S on R corresponds
to matrix multiplication. As U* = U, by (3.1.1), fi; — fi; € u*(U) for each i and j, so we
need to find f7.

Suppose first that m = 2n. Then * = T and u"(S) = sp,,, or 50,,, so by (3.1.4) and

(3.1.5), we have €}; = enq1 ntss e}inﬂ = €é; 45 and e,“;ﬂ’t =¢€epysgforall 1 <s <t <n.
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Hence, fl*l = (ellfllell)* = eTlfikleTl = en+17n+1ff<len+17n+1 € an+1,n+l~ ThuS, there is
anon-zero ¢ € IF such that f}'| = ot f,1+1. Since (f})* = fi1 and x is F-linear, we get
that

fir = (1) = (fur1nm1)” = (Cenyiifirern)” = Qe i flien
= azel,n+1fn+l,n+len+1,1 = a2f117

so oo = £1. Put p = —a. Then f}; = —p fut1n+1 (p = £1 or simply ). Now, for each
1 <s <t <n, wehave

f;; = (eslfllellyl< == eT[fl*le;kl = en—i—l,n—i—l(_pfn+l,n+l)en+1,n+s = _pfn+t7n+s; (343)

fsﬂ:n+t = (eslfllel,n—i-t)* = eT,n+tfl*le:1 = (Set.,rﬁ—l)<_an+l,n+1)en+l,n+s = —PEfrntss
(3.4.4)

Jrtse = (enisifiien)” = ef flie,51 = entrnt1(—PIat1n+1)(Eni1s) = —PEfutes-
(3.4.5)

Hence, fg + P fatintss fsn+t +PESfints and  fois; + PEfuys s belong to u’(R) for all
1<s<t<mn,so

X v

Y, pX' | X,Y; € M, with Y/ =peY;} =symb (M)
2

w'(R) = {

Suppose now that m = 2n+ 1. Then * = 7, and u"(S) = s02,,11, so by (3.1.6), e}, =

* * * * *
Cnttntss €spis = Cintss Cnpss = nttyss Con = Cmntss €ppgm = €ms ANA € = €. By
above, we have f{| = —p fu+1,+1, S0 by using the same technique as in (3.4.3), (3.4.4)

and (3.4.5), we get that i = —p futrntss Sone = —PJints and  fil o = =P futrss
respectively. It remains to find fg,, f,s , and f,,. We have

f:m = (eslf”e]m)* = eTmfl*leTs = _pem,n+1fn+l,n+len+l,n+s = _pfm,n—o—s;

f;zk+s,m = (en+s,1fllelm)* = e>1kmfl*le;kz+s7l = _Pem,n+1fn+1,n+len+l,s = —P fms:
Jom = (em1f11€1m)" = €l fi1€m1 = emnt1Sat1nr1€ns1.m = —P fum-

Hence’ fst + pfn+t,n+s, fs,n+t + pft,n+s, fn+s,t + pfnth,s, fsm + pfm,n+s, fn+s,m + pfms
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and fyum + P frum belong to u” (R) for all 1 < s <t < n. Thus

Y;
Y, ‘ 3.Yo € My, o€ F} = sym€+ (%2,,.,.1).
pY, pY; a+pa

p
i) — g e

]

Lemma 3.4.7. Suppose that S = S| @© S}, where Sy is simple, and R is an irreducible
S1-S7-bimodule with RS| = S{R = 0. Then u'(R) is isomorphic to

symP () ={X € M| X' =pX} (p==).

Proof. Since S = S; @ S}, by Proposition 3.3.5, there is a canonical matrix realization
My @ My of S such that u”(S) = {(X,—X") |€ X € .#,}. By identifying R with .4, we
can fix a standard bases {¢;; | 1 <i,j <n}, {gij|1<i,j<n}and {fjj |1 <i,j<n}of
S1, S’f and R, respectively, consisting of matrix units such that the action of S| and of Sik
on R correspond to the matrix multiplication and ¢;; = g; ;=gji- Then e;j —gji € u'(S)
for each i and j. Since R* =R, by 3.1.1), fi; — f; € u (U) for all i and j. We need to fine

f} We have f]| = (e11fiigin)* = gj,fi1€5; = e11f5:811 € Ffi1, so there is a non-zero
o € F such that f{; = afi;. Since fi1 = (f}})" = (afi1)* = o’ fi1, we get that o = +1.

Thus f}; = pfi1 for some p = +. Therefore,

fiy=(enfugij)" = giflien =en(pfin)gi=pfji forall 1<i,j<n.

Hence, fij —pfji=fij— fi; € 1 (R). This implies u” (R) = symP (.#,,), as required.
0

Lemma 3.4.8. Suppose that S = S| © S, and R =U © U*, where S; is simple with S7 = S;
for each i = 1,2 and U is an irreducible S-S,-bimodule with S U = US| = 0. Then
u'(Si) = 50p,,5p,,, for eachi=1,2 and w'(R) = {r—r* | r €U = My, m, }.

Proof. This follows from (3.1.1) and Proposition 3.1.7.
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Lemma 3.4.9. Suppose that S = S1 ©S]®S2 and R=U S U*, where S| and S, are simple,
S5 =82 and U is an irreducible S1-S>-bimodule with US| = S,U = 0. Then u” (S1@e87) =
{S_S* | RS Sl = j/m1}: u*(SZ) g50771275132@ and u*(R) = {r—r* | rel= '/lrmmz}'

Proof. This follows from from (3.1.1), Proposition 3.1.7 and Proposition 3.3.5.

3.5 Admissible algebras

Recall that a Lie algebra L is called perfect if [L,L] = L. Similarly, we say that an
associative algebra A is perfect if AA = A. If P is an ideal of A. Then we say that P is
perfect if PP = P.

Definition 3.5.1. [10] Let A be a finite dimensional associative algebra with involution.
Then A is said to be admissible if A is perfect and for each maximal *-invariant ideal M
of A one of the following holds (below d = \/m and *; denote the involution of
A/M induced by x):

(1) A/M is not simple and d’ = d//2 > 4;ie., u" (A/M) = gl,.

(2) A/M is simple, d > 6 and *); is symplectic; i.e., u” (A/M) = sp,.

(3) A/M is simple, d > 7 and %y, is orthogonal; i.e., u’ (A) = s0y.

Let P be a subalgebra of A. We denote by < P >4 the ideal of A generated by P.
Recall that S is a x-invariant Levi subalgebra of A.

Lemma 3.5.2. Let S’ be an admissible x-invariant ideal of S. Then < S' >4 is admissible.

Proof. Put A’ = §' ®R. Then A’ is a *-invariant ideal of A and §’ is a *-invariant Levi
subalgebra of A’. Put P =< §' > ,/. Note that P= S SR+ RS’ +RS'R=<§' > 4. Thus
we need to show that P is admissible. We have P is the smallest ideal of A’ containing S'.
Since P? is also an ideal of A’ containing " and P2 C P, we have P2 =P, so P is perfect.
Note that < 8’ >>p is an ideal of P containing the Levi subalgebra S’ of P. Since P is
perfect, < 8’ >>p= P, that is, P is generated by S’ as an ideal. Denote by R’ the radical of
P,so P=S @R'. Let M be a maximal *-invariant ideal of P. If M D §’, then M O P which
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is a contradiction, so M does not contain S’. Hence, §'/M NS’ # 0. We claim that R’ C M.
Assume for the contrary that M does not contain R’. Then M + R’ # M is a *-invariant

ideal of P containing M. Since M is maximal, M +R’ = P, so
P/M=(M+R)/M=R/MNR')#0,

that is, P/M is a non-zero nilpotent quotient of P, so P is not perfect, a contradiction.

Therefore, R’ C M, as required. Now, we have
P/M=(S®R/M)=(S+M)/M=S/MnS).

Since 8’ /(M NS’) is a x-semisimple, P/M is isomorphic to an involution simple compon-
ent of §’. Therefore, P is admissible.
O

Recall that S is a *-invariant Levi (i.e. maximal semisimple) subalgebra of A.

Lemma 3.5.3. Suppose that S is admissible. Then A is admissible if and only if A =<K
S>a.

Proof. If A =< § >4, then by Lemma 3.5.2, A is admissible. Conversely, suppose that
A is admissible. Then A/R is admissible. Since S C<K S >4 andA=SER, A/ < S >4
is a nilpotent quotient of A. As A is perfect, A/ < §>4=0,50 A =<K § >>4.

O]

We note the following properties of admissible ideals.

Lemma 3.5.4. (i) The sum of admissible ideals is admissible.
(ii) If P is an admissible ideal of A and Q is an admissible ideal of A/P then the full
preimage of Q in A is an admissible ideal of A.

Lemma 3.5.4(i) implies that every algebra has the largest admissible ideal.

Definition 3.5.5. The largest admissible ideal &2,(A) of A is called the admissible radical
of A.
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Let S, = Z2,(S) be the largest admissible ideal of S. Then S = S, @ S, where S’ is the

complement of S, in S.

Lemma 3.5.6. < S, >s= Z,(A).

Proof. By Lemma 3.5.2, P =< S, >4 is an admissible ideal of A, so P C #,(A). Put
R' =rad(Z,(A)). Then Z,(A) =S, ®R'. Since S, CK S, >4= P, P,(A)/P is nilpo-
tent, but #,(A) is admissible, so #,(A)/P = 0. Therefore, Z,(A) = P =<K S, >4, as
required.

O

Lemma 3.5.7. (i) A is admissible if and only if A = Z2,(A).
(ii) P4(A) is semisimple.
(iii) rad( 2, (A)) = Z,(A)NR.

Proof. (i) This follows from Lemmas 3.5.3 and 3.5.6.

(i) This is obvious as Z,(A) is an ideal of A.

(ii1) This follows from (ii).

The following proposition shows that &2,(A) has radical-like properties indeed.

\

Proposition 3.5.8. (i) 22,(A)?> = Z,(A);
(ii) Pu(Pa(A)) = Pu(A);
(ili) Pa(A] PalA)) = O

\

Proof. (i) and (ii) are obvious; (iii) follows from Lemma 3.5.4(ii).
O

Recall that [F is an algebraically closed field of characteristic p # 2. Importance of
admissible algebras over I is shown by the following results from [10] for p = 0 and [4]

for p £ 2.
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Theorem 3.5.9. [4, 10] Let A be a finite dimensional associative algebra over F with
involution x and let K = u"(A). If A is admissible, then K\") = su” (A) is a perfect Lie
algebra.

Definition 3.5.10. Let G be a *-invariant subalgebra of A. We say that G is x-large (or,
simply large) in A if G = A (equivalently, there is a *-invariant Levi subalgebra S of A
such that S C G; or equivalently, G/rad G is isomorphic to A/R).

Lemma 3.5.11. Let G be a large subalgebra of A. Then rad(G) = GNR.

Proof. This follows from Definition 3.5.10.
O]

Remark 3.5.12. Let G be a large subalgebra of A and let B be a subspace of &,(G). Then
by Lemma 3.5.11, rad(G) = GNR, so

(B+rad(G))/rad(G) =< B/(BNrad(G) =B/BNR~B+R/R=B.
Moreover, by 3.5.7(ii), rad(Z,(G)) = Z,(G) Nrad(G) = Z,(G)NR, so
(B+rad(Z,(G)))/rad(2,(G)) = B/(BNrad(Z#,(G)) =B/BNR~B+R/R=B.

Therefore, we can use the same notation B for the image of B in A/R, G/radG and

Z,(G)/rad Z,(G).

Proposition 3.5.13. Suppose that A is admissible and R*> = 0. Let G be a large subalgebra
of A. Then G is admissible.

Proof. Let S’ be a x-invariant Levi subalgebra of G. Put T =radG. Then G =5"&T. Note
that T is a *-invariant S’-submodule of R and S’ is a Levi subalgebra of A, so A =S ®R
and S’ is an admissible subalgebra of A. Hence, by Lemma 3.5.3, < §’' > is admissible,
so we need to show that G =< §' >;. We have < §' >;C G. It remains to show
that G C< 8’ >¢. Since R> =0, we have A = A = (S ®R)> = S’ ®S'R+ RS, so
R=S'R+RS'. Since R is a completely reducible $'-bimodule, where §' = '+ 1; (see
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(3.4.1)), we see that R contains no trivial §'-bimodules, so 7 = TS’ + S'T. Therefore,
G=S8SdT=8®(TS+S5T) C< S >¢, as required.
L]

3.6 Bar-minimal inner ideals

Recall Definition 2.4.9 that an inner ideal B of a Lie algebra L is said to L-perfect
if B=[B,[B,L]]. Itis well known that if p # 2,3,5,7, then Jordan-Lie inner ideals of
semisimple Lie algebras are L-perfect, see for example [29, Proposition 2.3] (or [6, Lem-
mas 2.19 and 2.20] for p = 0). In Chapter 2, we introduced this notion and showed that
if A is a semisimple finite dimensional associative algebra over an algebraically closed
field of characteristic p # 2,3, then every Jordan-Lie inner ideal B of L = AW (k> 0) is
L-perfect (see Lemma 2.4.10). The following result shows that this is also true when A
has involution and B is a Jordan-Lie inner ideal of K*) (k=0,1). Recall that p # 2.

Proposition 3.6.1. Suppose that A is semisimple. Then every Jordan-Lie inner ideal of
K® (k=0,1)is K(k)-perfect.

Proof. This follows directly from Proposition 3.3.11 (for k = 0) and Proposition 3.3.10
for (k=1).
]

Let L be a finite dimensional Lie algebra and let B be an inner ideal of L. Put By = B
and B, = [B,—1,[Bn—1,L] C B,_ for n > 1. Then B, is an inner ideal of L for all n > 0.
Recall Definition 2.4.13 that if there is n € N such that B,, = B, 1, then B, is said to be
the core of B, denoted by corey (B). In Chapter 2, we introduced this notion and described

some basic properties related to it. Recall the following lemma (see Lemma 2.4.14).

Lemma 3.6.2. Let L be a finite dimensional Lie algebra and let B be an inner ideal of L.
Then

(i) corer (B) is L-perfect;

(ii) B is L-perfect if and only if B = corer(B);

(iii) corer (B) is an inner ideal of L'®) for all k > 0.
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We also proved that if A is a finite dimensional associative algebra over an algebraic-
ally closed field of characteristic p # 2,3 and B is a Jordan-Lie inner ideal of A® (k> 1),
then B = m (see Lemma 2.4.16). The following results show that this is also true
in the case when A has involution and B is a Jordan-Lie inner ideal of u”(A) and su”(A)

as well.

Lemma 3.6.3. Let B be a Jordan-Lie inner ideal ofK(k) (k=0,1). If p # 3, then
(i) B = coregu (B).
(ii) If core v (B) = 0, then B C u” (R).

Proof. Since A is semisimple with involution and B is a Jordan-Lie inner ideal of K ), by

Proposition 3.6.1, B is K¥)-perfect, so by Lemma 3.6.2(ii), B = core g (B) = core (B).
(i1) This follows from (i).

[

Bar-minimal inner ideals

Let A is a finite dimensional associative algebra with involution and let K = u”(A).
Let B be an inner ideal of K®) (k > 0). Suppose that X is an inner ideal of K *) and B = X.
We say that B is X-minimal (or simply bar-minimal) if for every inner ideal B’ of K (k)
with B’ = X and B’ C B, one has B’ = B.

Lemma 3.6.4. Let B be a Jordan-Lie inner ideal of K ®) (k=0,1). Suppose that B is
bar-minimal and p # 3. Then the following hold:

(i) B = coregu (B).

(i) B is K& -perfect.

Proof. (i) We have coreg)(B) is a Jordan-Lie inner ideal of K (%) contained in B. By
Lemma 3.6.3, core() (B) = B. Since B is B-minimal, we have B = core ) (B).
(i1) This follows directly from (i) and Lemma 3.6.2(i).

Recall that a Lie algebra L is said to be perfect if L = [L,L].
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Lemma 3.6.5. Let L be a perfect Lie algebra and let B be an L-perfect inner ideal of
L. Suppose that L = @,c;L;, where each L; is an ideal of L. Then B = @;c;B;, where
Bi=BNL;. Moreover, if L= K = gy* (A) and B is bar-minimal then B; is a Bi-minimal
inner ideal of L;, for all i € I.

Proof. Since L is perfect and B is L-perfect, as in the proof of Lemma 2.5.3, B = @,; Bi,
where B; = BN L;. Clearly, if L=K (1) and B is bar-minimal, then B; is a B;-minimal
Jordan-Lie inner ideal of L;, for all i € I.

]

Split inner ideals

Let L be a Lie algebra and let Q be subalgebra of L. Recall that Q is called a guasi
Levi subalgebra of L if Q is quasi semisimple and there is a solvable ideal P of L such
that L = Q @ P (see Definitions 2.1.1 and 2.1.4 for quasi semisimple and quasi Levi,
respectively). Recall the following definitions from Chapter 2.

Definition 3.6.6. (1) Let L be a finite dimensional Lie algebra and let B be a subspace of L.
Suppose that there is a quasi Levi decomposition L = Q @ N of L such that B = By @ By,
where Bp = BN Q and By = BN N. Then we say that B splits in L and Q is a B-splitting
quasi Levi subalgebra of L (Definition 2.5.4).

(2) Let A be an associative algebra (not necessarily with involution) and let R be the
radical of A. Let B be a subspace of A. Suppose that there is a Levi subalgebra S’ of A
such that B = By & Br, where B¢ = BN S and B = BN R. Then we say that B splits in A
and S is a B-splitting Levi subalgebra of A (Definition 2.5.5).

Recall that A is a finite dimensional associative algebra with involution *, p # 2, S is

a x-invariant Levi subalgebra of A and R is the radical of A.

Definition 3.6.7. Let B be a subspace of A. Suppose that there is a x-invariant Levi
subalgebra S” of A such that B = Bgs & Bg, where Bg» = BNS” and Bg = BN R. Then we
say that B x-splits in A (or simply splits in A) and S” is a B-x-splitting Levi subalgebra of
A.
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Lemma 3.6.8. Let B be a subspace of K\ = su”(A). Suppose that A is admissible. If B
x-splits in A, then B splits in KW,

Proof. Suppose that B x-splits in A. Then there is a *-invariant Levi subalgebra § of A
such that B = Bs ® Bg, where B¢ = BN S and B = BN R. Since S is admissible (because
A is admissible), Q = su”(S) is a quasi semisimple subalgebra of K (1), Note that N =
KW MR is a solvable ideal of KV, so K() = Q@ N is a quasi Levi decomposition of
KM TItis easy to see that Bg C Q and Bg C N, so B splits in KW,

[

We will need the following result due to Taft [40].

Theorem 3.6.9. [40, Corollary 2] Let A be a finite dimensional associative algebra over
a field ® of characteristic not 2 and let R be the radical of A. Let G be a set of non-
singular linear transformations of A, each element of which is either an automorphism or
an anti-automorphism of the algebra A. Let P be a G-invariant separable subalgebra of

A. Then P may be embedded in a G-invariant Levi subalgebra of A.

As a special case of Theorem 3.6.9, we get the following corollary

Corollary 3.6.10. Let S’ be a x-invariant semisimple subalgebra of A. Then there is a

x-invariant Levi subalgebra of A containing §'.

Lemma 3.6.11. Let e be a x-orthogonal idempotent in A with e*e = 0. Then
(i) eKe* x-splits in A;
(ii) Suppose that A is admissible. Then eKe* splits in K ),

Proof. (i) Since e is a *-orthogonal. By Corollary 3.6.10, there is a *-invariant Levi
subalgebra S of A such that e,e* € S. Since u”(A) = u"(S) Du’ (R),

eKe* =eu (A)e* = e(u”(S) @ u (R))e* =eu (S)e* @eu’ (R)e* = Bs® Bg,

where Bg = eu”(S)e* = BN S and Bg = eu”(R)e* = BNR, as required.
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(ii) This follows directly from (i) and Lemma 3.6.8.
O

Proposition 3.6.12. Suppose that A = D ® D*, where D is an ideal of A. Then every
Jordan-Lie inner ideal of K (1) x-splits in A.

Proof. Let B be a Jordan-Lie inner ideal of K1) = su” (A) and let ¢ : A — D be the
natural projection of A onto D. By Lemma 3.1.6, the restriction of ¢ is a Lie algebra
isomorphism of su”(A) onto DY), Since B is a Jordan-Lie inner ideal of K1), ¢ (B) is
a Jordan-Lie inner ideal of D(); so by Corollary 1.2.3, ¢(B) splits in D. Therefore, B
x-splits in A, as required.

]

Proposition 3.6.13. Let B be a subspace of A. Let G be a large subalgebra of A and let C
be a subspace of 2,(G). Suppose that C C B, C = B, and C x-splits in 2,(G). Then B
x-splits in A.

Proof. Put Ry =rad Z,(G). By Remark 3.5.12, Ry C rad(G) C R. Let S| be a *-invariant
C-splitting Levi subalgebra of &2,(G), so C = Cs, ® Cg,, where Cs, = CNS; and Cg, =
CNR;. Note that Sy is a x-invariant semisimple subalgebra of G and so of A. By Corollary
3.6.10, there is a *-invariant Levi subalgebra S of A containing S;. Put B = BN S and
Br =BNR. Then Cs, C Bs, Cg, C Bg and Bs+ Rg C B. Since B=C,

BsgBSgB:CgC/CRIgC& gBS?

so By = B B/Bg. Since SNR = 0, we get that B = Bg @ Bg, as required.
O

Corollary 3.6.14. Let B be a subspace of A and let C be a subspace of Z,(A). Suppose
that C C B, C = B, and C x-splits in P,(A). Then B -splits in A.

The proof of the following proposition is similar to the proof of Proposition 3.6.13.

Proposition 3.6.15. Let C C B be subspaces of A such that C = B. If C x-splits in A, then
B x-splits in A.
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Corollary 3.6.16. Let B be an inner ideal of K& (K = 0,1). Suppose that p # 3. If
core k) (B) x-splits in A, then B x-splits in A.

Proof. By Lemma 3.6.3, core ) (B) = B. Since corey) (B) C B and coreu (B) *-splits,
by Proposition 3.6.15, B x-splits.
O

3.7 x-regular inner ideals

In this section we prove that if B is a bar-minimal Jordan-Lie inner ideal of K O =K =
u*(A) or K = su™(A), then B is *-regular (see definition below) if and only if B = eKe*
for some *-orthogonal idempotent e in A. We start with the following result which is a

slight generalization of [6, Lemma 4.2].

Lemma 3.7.1. [6, Lemma 4.2] Let B be a subspace ofK(k) (k=0,1) such that B> = 0.
Then the following hold.

(i) u"(BAB) C KX,

(i) u" (BAB) = BABNK®).

(iii) If w"(BAB) C B, then B is a Jordan-Lie inner ideal of K\®).

Proof. (1) This is clear for k = 0. Let k = 1. Clearly, BAB is *-invariant, so by (3.1.1),
u (BAB) = {x—x* | x € BAB}. Let b,b' € u"(BAB) and let a € A. Since B> =0,
bab' — (bab')* = bab' —b'a*b = b(ab' +b'a*) — (ab’' +b'a*)b
= b(ab' — (ab")*) — (ab’ — (ab')*)b

*

= [b,ab’ — (ab')] € [u"(A),u"(A)] = K.

Therefore, u”(BAB) C K1), as required.
(i1) This is obvious.
(iii) Let b,b’ € u"(BAB) and let x € KX). Then

{b,x,b'} = bxb' 4 b'xb = bxb' — (bxb')* € u"(BAB) C B,

so B is a Jordan-Lie inner ideal of K*).
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Definition 3.7.2. Let B be a subspace of K ®) (k> 0). Then B is said to be a x-regular (or
simply, regular) inner ideal of K®) (with respect to A) if B2 = 0 and u” (BAB) C B.

Note that every *-regular inner ideal is a Jordan-Lie inner ideal (see Lemma 3.7.1(ii1)).
However, there are Jordan-Lie inner ideals which are not *-regular. For example, point
spaces are Jordan-Lie inner ideals but they are not x-regular. Regular inner ideals were
first defined in [6] (in characteristic zero) and were recently used in [5] to classify maximal

zero product subsets of simple rings.

Lemma 3.7.3. Let e be an idempotent in A with e*e = 0. Then eKe™ is a x-regular inner
ideal of K% (k=0,1).

Proof. By Lemma 3.1.4(iii), eKe* is a Jordan-Lie inner ideal of K (k) (k=0,1). It remains
to note that u”((eKe*)A(eKe*)) C u”(eAe*) = eu” (A)e* = eKe*.
O

Remark 3.7.4. The result of Lemma 3.7.3 is also true when A is an associative algebra

with involution * over a commutative ring ¢ with % € ® and * is P-linear.

We will need the following results due to Baranov and Rowley [6, Proposition 4.8].

Proposition 3.7.5. Let A be an associative ring. Then

(i) A is Von Neumann regular if and only if #L = Z N YL for all left £ and right #
ideals of A.

(ii) every square zero element x in A is Von Neumann regular if and only if Z.L =
ZNYL forall left £ and right Z ideals of A with L% = 0.

The following proposition is known in the case p = 0 [6, Proposition 4.11].

Proposition 3.7.6. Let B be a subspace of K &) (k> 0). Then B is a x-regular inner ideal
of K if and only if there exists a left ideal £ of A with £.£* = 0 such that

(L) CBC L NgnKW,
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In particular, if A is Von Neumann regular then every regular inner ideal B of K k) g of

the form B= "% = £*N.Z for some left ideal £ with X .£* = 0.

Proof. Suppose that B is x-regular. Put . = AB+ B. Then .Z is a left ideal of A. Note
that £* = BA+B, so Z.¢* = 0. Since B is *-regular, u" (BAB) C B, so

u(Z*#) Cu"(BAB)CBC 2 nLnKW,

as required. On the other hand, let .Z be a left ideal of A such that .£.Z* = 0 and
W(L*L)CBC L *NZNK. Then B> C £.%* = 0. Moreover,

W (BAB) Cu' (L*AZ) Cu' (L*¥) CB.

Therefore, B is x-regular.
[

Let .Z be a left ideal of A and let X be a left ideal of A. Then .% is said to be X-
minimal if 2 = X and for every left ideal .#’ of A with ¢’ C % and .#’ = X one has
¥ = %'. We will need the following theorem from [11].

Theorem 3.7.7. [11] Let A be a left Artinian associative ring and let £ be a left ideal of
A. If L is L-minimal, then £ = Ae for some idempotent e € L.

Now, we are ready to prove Theorem 1.2.6 and Corollary 1.2.7

Proof of Theorem 1.2.6. 1f B = eKe™ for some idempotent e in A with e*e = 0, then by
Lemma 3.7.3, B is x-regular. On the other hand, suppose that B is x-regular. Then by
Proposition 3.7.6, there is a left . ideal of A such that Z.Z* =0 and u" (£*.%) C B C
L NLNKW, sou" (Z*ZL) =u"(L*L) CBC ZN.ZL* Since A is Von Neumann
regular (because it is semisimple), by Proposition 3.7.5, u" (Z*.%) = B. Let £ C £ be
an .Z-minimal left ideal of A. Then by Theorem 3.7.7, %} = Af for some idempotent
feZ,so Ly =fA Pute=f"c & Thene = (f")"=fec. L ande’e= ff*" €
AL CLL* =0. We have ] =Ae* and £} = eA. Put B' = u* (L7 4) CB. Since
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eAe™ = eeAe™ C eAAe*, we have eAAe™ = eAe™, so
B =u' (L A) =u' (eAAe*) = u"(eAe*) = eu” (A)e* = eKe".

As e*e = 0, by Proposition 3.7.3, B is a «-regular inner ideal of K*). As B is B-minimal,
B ' CBand B' =u'(Z'ZL") =u" (£L*L) = B, we get that B= B’ = eKe*, as required.
L]

Proof of Corollary 1.2.7. Let B be a x-regular inner ideal of K® (k=0,1). Let B C Bbe
a B-minimal -regular inner ideal of K (k). Then by Theorem 1.2.6, B’ = eKe*, where e is
an idempotent in A with e*e = 0. By Lemma 3.2.12, there is a x-orthogonal idempotent
g € A such that gKg* = eKe* = B, so by Lemma 3.6.11, B’ *-splits in A. Therefore, by
Proposition 3.6.15, B x-splits in A.

[

3.8 Proof of the main results

Recall that [F is an algebraically closed field of characteristic P # 2, A is a finite
dimensional associative algebra with involution * (of the first kind), R is the radical of A
and S is a x-invariant Levi subalgebra of A, so A = S®R.

Throughout this section, unless otherwise specified, A is admissible, so by Theorem
3.5.9, K1) = su™(A) is a perfect Lie algebra, that is, [K(1), K(V] = k(1)

The aim of this section is to prove the following theorem in steps.

Theorem 3.8.1. Let B be a Jordan-Lie inner ideal of K\. Suppose that p # 3, A is
admissible, B is B-minimal and R* = 0. Then B x-splits in A.

We will prove Theorem 3.8.1 by induction on the length of the S-bimodule R. The
base of the induction (the case of *-irreducible R) will be settled using the following three

propositions, which will be proved in steps.
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Proposition 3.8.2. Theorem 3.8.1 holds if A is x-indecomposable as in Proposition 3.4.3(i),
that is, if A/R is involution simple and R = U ® U™ where U is the natural left S-module
with US = 0. Moreover; if A/R is simple, then B C S’ for some *-invariant Levi subalgebra
S’ of A.

Proposition 3.8.3. Theorem 3.8.1 holds if A is x-indecomposable as in Proposition 3.4.3(ii),
that is, if A/R is involution simple and R = U +U* where U is an irreducible S-bimodule
with respect to the left and right multiplication.

Proposition 3.8.4. Theorem 3.8.1 holds if A is x-indecomposable as in Proposition 3.4.3(iii),
that is, if A/R = S1 @ S,, where S| and S, are involution simple associative algebras and
R=U®®U?*, where U is an irreducible S-S,-bimodule such that US| = S,U = 0.

We will need the following well-known result

Theorem 3.8.5 (Malcev). Let A be a finite dimensional associative algebra and let R be
the radical of A. Suppose that A/R is separable. If S| and S, are two subalgebras of A
such that A = S; ® R (i = 1,2) then there exists q € R such that S; = (1 —q)~'S>(1 —¢q).

For each g € R, we denote by @, the special inner automorphism of A defined by
@y(a)=(1—q) 'a(1—g) foralla € A. Since R" = 0 for some n € N, we have (1 —¢q) ! =
l+g+...+¢"". Thus,

o,a)=(1+g+...+¢" Ha(1—q). (3.8.1)
Moreover, if R? = 0, then

@4(a) = (1+q)a(l —q) =a+qa—aq = a+|q,al. (3.8.2)

Lemma 3.8.6. Suppose that R> = 0. Let ¢, be a special inner automorphism of A for
some g € (R). Then

(i) @4(S) is a x-invariant Levi subalgebra of A;

(ii) ¢4(K) C K.
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Proof. (i) By Theorem 3.8.5, ¢,(S) = (1 —¢q)7'S(1 —¢q) = (1 +¢)S(1 —q) is a Levi
subalgebra of A. Let s € S. Since ¢ € u”(R), by (3.8.2),

Pq(s)" = ((1+q)s(1 —q))" = (1 =¢")s"(1+¢7) = (1 +g)s"(1 = q) € @4(S),

as required.
(i1) This follows from (3.8.2).

Recall that A = A/R.

Lemma 3.8.7. Let ¢, : A — A be a special inner automorphism of A. Then @ (a) = a for
all a € A.

Proof. By 3.8.1), 9,(a)=(1+q+¢*+...¢" Va(l—q) € a+aR+Ra+RaR, so ¢,(a) =
a, as required.
O

Suppose that R = U @ U*, where U is an S-bimodule. Then the algebra A = A/U* is
not *-invariant. The following lemma describes the relation between inner ideals of A and
A.

Lemma 3.8.8. Let U be a subspace of R. Suppose that R> =0 and R = U ® U*. Let B be
a subspace of u"(A) and let B be the image of B in A = A/U*. Suppose that B splits in A,
then B x-splits in A.

Proof. Let X be a subspace of u”(S) with X = B. Since B splits in A, there is a B-splitting
Levi subalgebra S’ of A such that B = By ® By, where By = BN S’ and B; = BN R. Note
that B¢ = B = X. By Theorem 3.8.5, there is ¢ € R > U and a special inner automorphism
@, of A such that § = ¢@,(8'). Since By C S, ¢ (By) C ¢y (S') = S. Moreover, by
Lemma 3.8.7, ¢, (By) = By =B =X. Note that X C § (because X C ), so both ¢, (By)
and X have the same image X in A=A /U. Since both of them are subspaces of S and
SNU =0, they must be equal. Thus, X = ¢, (Bsy) C ¢,(B)NS. Fix any ¢; € U such
that §; = ¢. Put ¢ =¢q1 —q} € w (R). Then § = G; = ¢’. Consider the special inner
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automorphism ¢, of A. Since R>=0, by (3.8.2), @y(r) =rforallr € R, so U" is a @, -
invariant. Hence, @, induces a special inner automorphism ¢, of A=A/U*. Asg=¢,
we see that @y = @5 = @y, 50 X C (f)q(B~). Hence X C ¢,(B) 4+ U*. We wish to show that
X C @4(B). Letx € X. Then x = b+ u* for some b € ¢,(B) and u € U. By Lemma 3.8.6,
@,(B) Cu'(A), so b* = —b. Since x* = —x, we must have (u*)* = —u*. This implies
u=—u*cU*NU =0, sou* =0. Therefore, x = b € ¢,(B), as required.

N

Lemma 3.8.9. Suppose that A is admissible, R2=0,Sis simple and R = U @& U*, where
U is a natural left S-module with US = 0. Then the following hold.

(i) Every Jordan-Lie inner ideal of su”(S) is a Jordan-Lie inner ideal of su”(A).

(ii) Let G be a large subalgebra of A and let B be a Jordan-Lie inner ideal ofﬁu*(G).
Then B is a Jordan-Lie inner ideal of su” (A).

Proof. (i) This follows from (ii) as S is a large subalgebra of A.

(ii) Since G is a large subalgebra of A, it contains a *-invariant Levi subalgebra of A.
Without loss of generality we can assume S C G. Let b,b’ € B. We need to show that
{b,x,b'} € B for all x € su”(A), this will imply, by Lemma 3.1.3, that B is a Jordan-Lie
inner ideal of su”(A), as required. Since su"(A) C su’(S) @ u"(R), x = g+ r for some
g€ su’(S)and r € u'(R). As R> =0 and ARA = SRS = SUS +SU*S =0,

{b,x,b'} ={b,q,b'} +{b,1,b'} = {b,q,b'} +brb' +b'rb={b,q,b'} € B,

as required.

Proof of Proposition 3.8.2
The following lemma represents a special case of Proposition 3.8.2.
Lemma 3.8.10. Theorem 3.8.1 holds if A/R is simple and R = U @® U*, where U is an

irreducible left S-module with US = 0. Moreover, B C S’ for some x-invariant Levi subal-
gebra S’ of A.

Proof. We identify A = A /R with S. Since S is simple, by Lemma 3.4.5, u"(S) 2 50,,, 595,
(m=2n+1or2n)and u (R) = {r—r* | r € U}. Let B be the image of Bin A = A/U* =
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A®U. Since R=U @& U*, by Lemma 3.8.8, to show that B *-splits in A, it is enough to
show that B splits in A. To simplify notations, we will re-denote A, S, R and B by A, S, R
and B, respectively. Thus, R =U and A/U = S. We need to show that B splits in A. Let
{e1,es,...,e,} be the standard basis of U. Since B is a Jordan-Lie inner ideal of A = S
and S is simple, by Lemma 3.2.16, there is a canonical matrix realization .#, of S and
integer 1 < k < n such that the action of S on R corresponds to matrix multiplication and

B is the space spanned by &, where & is one of the following (¢ = %):
E={eipi—enr1|1 <t <k<n}C 5u*(S) =50,

Ef ={esntt—€erpis| 1 <s<t<k<n}C 5u*(S) = 50.,5P,,

where {e;; | 1 <i,j < m} is a standard basis of S consisting of matrix units. Our aim is to
find a special inner automorphism ¢ : A — A such that & C ¢(B). Since & = E, E™, or
E~, we need to consider three cases.

Case (1): Suppose that & =E = {e} y1s — € nt1 | 1 <t <k} Cs0, = su”(S). We wish
to show that there is a special inner automorphism ¢, : A — A such that E C ¢,(B) for
some g € U. Without loss of generality we can assume m = 2n -+ 1 (the case m = 2n will
follow immediately). Fix any subset {b, | 1 <t <k} C B such that b, = e} ;s — € 541 for
allz. Then b, = eyt — e np1 + 110 Ot e;, where af € F. Put bt(l) =bi(ente1 —ent1,4)br €
B (by Lemma 3.1.3). Since UA =0,

m
1
bz( ) = bt(€n+t.,l - €n+1,z)bt = (el,n+t —€rntl T Z chei)(enﬂ,] —€n+l,t)bt

i=1

m
t 1 t
= (e11+en)(e1npr —erpsr1 + Z Qjei) = el nrr—epr1 +0jer + 0e €B.
i=1

Put b}({z) = b,(cl) € B and for t < k set bt(z) = {b,il),en+k,1 — en+17k,b,(1)} € B (by Lemma
3.1.3). Since UA =0,

b = b (ensrn — enr1 )b + b (enrit —ensi )by

= (e1ptk — €kni1+ Oter + oger) (enin — €n+1.,k)br(1)
+(etnit —erni1 +oer +oyge;)(enr — en—H,k)bl((])
= (er1+ew)(e1nst —erns1 +0her + 0 e;)
e (el nrk — exnt1 + Ofer + ofer)

t k t k
= elprtoger —epr1 0 e =el i — el +0aje; +oge €B.

We have b,(z) =elntr—€aplt+ Otiel + Oc,fet € B for all ¢. Consider the inner automorph-
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ism @, : A — A with

Since UA = 0,

oy (b))

SO

as required.

k
j k
q= a{enﬂ—akenﬂ cUCR.
j=2

— (14+qbP(1—q) =0 (1—g)
k

= (erni —erni1 +0Ger +oge) (1= ) ofent j+ e )
=2

t k t k
= elntt — €1 — € pt1 — O e+ e + 0y e

= €lnt+t — €+l € (Pq(B)>

E= {el,n—H — €t n+l [ 1<t <k} C (Pq(B)ﬂSa

Case (2): Suppose that & = E™ = span{es nir — ernts | 1 <5 <t < k}. We wish to
show that there is a special inner automorphism ¢ : A — A such that E* C ¢(B). Fix any
subset {by | 1 <s <t <k} C B such that by = €51 — € pts-

CLAIM 1:
o € F. Then

Suppose that by = €541 — entsr + Lo 0"e; € B (1 <5 <t <k), where

O (bs) == esntt — €rnys+ Oclltes + a,ﬁket €B forall 1<s<t<k.

Put cyy = by (€n+tr,s — €ntss)bs. Then by Lemma 3.1.3, ¢y € B. Since UA =0,

Cst

m
(€5t — erns + Z 0;"ei)(entr,s — €ntss)bs
i=1

m
St st St
(ess + ett)(es,n—i-t — €t nts T Z Q; ei) =€y it —C€rpts T O e+ 0 e, €B.
i=1

Put 6(b1x) = cix € B. For all the remaining indices s and ¢ set 0(by) = {cek,e€nik1 —
ent1k: Cl} € B (by Lemma 3.1.3). Since UA =0, (forall 1 <s <t <k)

0 (by)

= Co(€nti1 —ent1)C1 +Cle(enti1 — €nt1k)Csk

_ sk sk
= (es.,n+k — €k pnts T O e+ O ex) (en—i-k,l - erH—l,k)Clt

1t 1t
+(etntr —ernt1+ 0 er + 04 er)(enir1 — €nt1k)Csk

1t 1t k k
= é€5 (el,n+t — e+l T 0 e+ 0y et) + etk(es7n+k — €k pts T OC; es+ OC]? ek)

1t k 1t k
= esntt T O €5 — € ptst OC]": € = €sntt —Crpts T O €5+ a]i e €B.
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Calculations show that 0(by,) and 0 (by) is also of the shape above. Since 0(b1) = cix
is also of the shape above, we get that 0(by) = €541 — €1 pts + alltes + Oc,ike, € B for all
1 <s <t <k, as required.

Recall that {by | 1 <5 <t <k} C B with by = €511 — €1 n+s. Then by = €5 pir —
ernts + i B e; for some coefficients B € F forall 1 <s <t <k.

CLAIM 2: There exists a special inner automorphism ¢’ of A such that

s ntk — Chknts € @' (B) and egnir — € nts +ﬁ,€kes c ¢'(B) forall t<k.

Since by, = elntt — €l = b e ENET, by Case (1), there is a special inner automorph-
ism @, : A — A such that @,(bi;) = €1 ptt — €111 € @y(B) for all . By using Claim 1, we
get that

0(@y(bst)) = €5t — €1 s + [31”65 + ﬁ,ﬁkel € @y(B) forall s > 1.

Put b, = @y(b11) = €1+t — €rn+1 € Oq(B) and for s > 1 set b, = {O0(@y(byt)),ents,1 —
ent11,b),} € @z(B) (by Lemma 3.1.3). Since UA =0,

by = 0(@q(bst))(enten — en-l—l,t)b/lt + bllt(erH—t.,l —ent11)0(9y(bst))
= (esntr—€rnts+ ﬁftes + ﬁ,fke,) (entr.1 —ent1.)bY,
+(e1ntt —ernt1)(€ntel —ent14)0(Pg(bst))
= €51 (el,n—H - et,n-H) + (611 + ell)(es,n—i-t —€tpt+s T B11t€s + ﬁ,fke,)

= Eesn+t —Ctutst ﬁ]ﬁket € @y (B)

Consider the special inner automorphism ¢, : A — A, where

k—1
q/ = Z ﬁ]ﬁken—ﬂ' ev.
i=2

Put b}, = @, (by,) for all s and 7. As UA =0,

T = @y0) =0+ (1-¢")=b1,(1—-¢)
k—1

= (el,n+k - ek,n+1)(1 + Z ﬁlikenJri) = €lntk — Ckntl € (Pq’((pq(B»
=2
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and (for s > 1)

k—1
;/k = (pq’( ;k) = ;k(l - q,) = (es,n+k — €k nts T+ ﬁ]fkek)(l + Z ﬁ]ikenJri)
=2

= €sn+tk — Cknts — ﬁ]fkek + ﬁ]fkek = €5 n+k — Cknts € (Pq'((Pq(B))-
Therefore,
by = €snik — Cints € Py (Qq(B)) for all s. (3.8.3)

For all ¢ < k, we have

k—1

bll/t = (Pq’( /lt) = /lz(l —61/) = (el,nth _et,n+1)(1 + Z ﬁlﬁkenﬁ)
i=2

= 61,n+r+l3/§k€1 — €t nt+1 = €1 ntr — €rp+1 +ﬁ/€k€1 € @0y (94(B))

and (for 1 <s <t <k)

k—1

by = @p(by) =b,(1—q) = (esnis— erns + Ble) 1+ Y Bitenrti)
i=

€sntt + ﬁ]ikes — €t nts — ﬁ]fket + Blfket
= €sntt —Crn+sTt B]Ekes € @y ((pq (B))7
SO

bl = espit — ernts + Bikes € @ (@y(B)) forall 1 <s <t <k. (3.8.4)

Put ¢’ = @, 0 @,. Then ¢ is a special inner automorphism of A with b, = e, 1k — € s €
¢'(B) and b}, = 511 — €1 pts + ﬁ,ﬁkes € ¢'(B) (by (3.8.3) and (3.8.4), respectively), as
required.

CLAIM 3: There is a special inner automorphism ¢, : A — A such that

b = e —eni1 €0, (¢'(B) =B, forall 1<t<k (3.8.5)

b = egnii—einis+Bife € By forall 1<s<t<k. (3.8.6)

By Claim 2, there is a special inner automorphism ¢’ : A — A such that b, = e, —
Cints € O'(B) and by, = e 1t — € ps + B,ikes € ¢'(B) for t < k. Consider the special

inner automorphism ¢, of A, where

k—1
ik
q1 = Zﬁlg enyj €U.
J=2
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Put By = ¢,,(¢'(B)) and b)) = @,, (b!") € B,. Since UA =0,
1
By = 0 () = (14 b1 —q1) = b1 —q1)
k=1
= (erpsk—€rnt1)(1— Y ﬁkjkenﬂ') = €|tk —€knt+1 € B1
Jj=2
and (for all t < k)
(1) . -
/
by, = oy (BY,) = b1, (1 —q1) = (e1 144 —ernt1+Birer)(1— Z ﬁ/g entj)
=
_ tk tk = __
= Clntr _ﬁk €1 — €rn+l +ﬁk el =elutr —ernt+l € By.

Hence, bg}) = e+t — €1 € By forall 1 <t <k, so (3.8.5) holds. It remains to show
that that (3.8.6) holds. Applying ¢,, to b, for all s > 1, we get that

k—1
1 ik
by = 00 () = b1~ 1) = (exmrt — etnss) (1= X Bfent)
j=2

sk
= C€sntk — Cknts + ﬁk ex € By

and (for all t < k)

k—1

1 |

by = @ () = by(1—q1) = (s prs — ernes+ Bires) (1= Y Bl*ens )
j=2

tk sk tk sk
= C€sntt— ﬁk €s — €t nits + Bk e+ Bk €s = €sntt — €tnts + Bk e € By.

Therefore, bgll) = €5nt1 — Crnts +ﬁ,fke, eBforall 1 <s <t <k, so(3.8.6) holds, as
required.

CLAIM 4: There are k — 2 inner automorphisms ¢y, (1 =1,...,k—2) on A such that

b = el i —ernsi €Br_p forall 1<t<k (3.8.7)

b& ) = ey is —ermis+Ber €Bry forall k—2<s<t<k (3.8.8)

where By_» = @y, (... ¢4, (¢'(B))...)
We are going to prove Claim 4 by induction on t. The base of the induction (when
1 = 1) being clear by Claim 3. Suppose that t > 1. Put k = k —2. By the inductive

hypothesis there are ¥ — 1 inner automorphisms ¢@,, (r =1,...,k—1) on A such that
be‘” =it —€nir € Beo1 forall r<t<k and



3.8 Proof of the main results 93

bﬁ,’f‘” = €5 nt1 — Crnts -I—ﬁ,fket €B_ forall k—1<s<t<k.

Consider the inner automorphism ¢,, : A — A, where

dx = —ﬁkkkem_,( < U

Put By = @y, (Bi—1) and cgf) = (pq(bgf)) € By for all s and ¢. Since UA = 0, for all

r=1,...,k—1, we have
-1 -1 -1
= @b ) = (1+a0bi (1 —ax) = b (1 -gx)
= (er,n—i-K - eK,n—i—r)(l + BkKken—i-K) = €rn+x — €xntr +ﬁkKker € By
and (for all 7 # k)

Cg;c) = (qu‘(bs';c_l)) = bg;(_])O - QK) = (er,n-i-t - et,n-i-r)(l +ﬁkKken+K)

= €rntt —Crntr € By. (3.8.9)
Note that if s > K, then t > K, so

—1 —1
e = @bl ) =bE V(1= g0) = (exnit — erni+ Be) (14 BfFent)
= €xnt+t —Cntk — kKkez + ﬁkKkez =€k n+t —€rntx € By (3.8.10)

and (for s > k)

ot = gu by ™) =0V (1 =) = (evnre — eras+Blter) (1 + B enri)
€sntt —ernts+ P e € By. (3.8.11)
Put bgi) = {cﬁ’,?,en+,,,< — en+,<7t,c$<'f)} € By (by Lemma 3.1.3) and bgf) = cE,K) € By for all
of the remaining indices. Then by (3.8.11), bgf) = cﬁf) = €5 pt1 — Crnts T ﬁ,fket € By for
all k—2 < s <t <k, so (3.8.8) is proved. It remains to show that (3.8.7) holds. For all
r=1,...,xk—1, we have

bg'ﬁ) = cg) (en-l-tﬂc - €n+K,t)b£’1§) + bglrg) (en—Hﬂc - en-l—lgt)bgt()
(e —ernix)(e —e )C(K) +c(K)(e —e )c(K)

- K,n+t t,n+x n+t,K n+x,t )trk rk \¢n+t,x n+x,t )bkt

= (exx+en)(rmix —exnr+ BEer) + e (ensin — enir)cy)

= —exntrt (er,n+K — €k nt+rt BkKker) (en+t,1< - en+K,t)b$(’§)

= —C€xntr— ert(eK,n+t - et,n—i—K) = €rntx — €xpntr € By.

Combining this result with (3.8.9), we get that bgf ) = erntt —Crntr € B forall r <t <k.
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By 3.8.10), b\ = ¢ = ¢4 iy — e/ pix € By forall £ > K, s0
bgf) =€ ntt —€np1 €Bx forall 1<r<k where 1=1,... k.

This proves (3.8.7), as Kk = k — 2, as required.

Now, we are going to define the final inner automorphism in order to complete the
proof. By Claim 4, there are kK — 2 inner automorphisms ¢,, (1 =1,...,k—2) on A such
that

k—2
bg, ) — Cintt — €1 € P (- @y, (¢'(B))...)) =Bi_oforallt <t <k

and (for s > k—2)

k—2 k—2 k
bﬁt )= bi_ui = €5t — rnts+ P e € By_a.

Put v = k — 1. Consider the final inner automorphism ¢@,,, : A — A, where

qv = _Blcvken—O—%
Put By = ¢, (Bi—2) and bg,v ) = (O (bﬁf*”) for all s and ¢. Since UA = 0, for all 1 =
1,...,k—2, we have

BY = (b)) = (1+g0)bl P (1—qv) =5 P (1-gy)

= (el,n+v - ev,n+l)(1 + BkaenJrv) =€rn+v —€vnt1 ‘f’ﬁ/g/kel € By

and (for all r # v)
b(V) _ b(k_z)(l . _ _ 1 vk — _
1w = Ou QV) = (el,n—H é’t,n+1)( "‘ﬁk €n+v) = e ntt — et € By. (3.8.12)

For s = v, we have

k—2
b(v;) - bsxk )(1 —qv) = (ev ik — Ckntv+ Bk\/kek)(l + ﬁkvken_,_v)
= Cynutk — €kntv — ﬁk‘/kek + ﬁk‘}kek = €y n+k — Ckntv € By. (38 13)

Put b\ = {6 eni iy — enivio b} € By (by Lemma 3.1.3) and b = b)) € B, for all
the remaining indices s and ¢. Since UA = 0,

bgl\(/) = bg‘\;) (en+k7v - en+v7k)b5/‘]/<) +b$/‘/}<) (en+k7v - en+v7k)b$://)

= (el,n+v —eypt1+ ﬁk‘/kel)(enJrk,v - en+v,k)bs,‘//<) + bE,‘/? (en+k,v - en+v,k)b£‘\j)
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= —€lk(€v,n+k - €k,n+v) + (€V7n—|—k - €k,n+v) (€n+k,v - €n+v,k)b$‘\j)

= eint+vTt (evv +ekk)(€l,n+v —€vnti +ﬁ/yk€1) =€ ntv —Cynt1 € By.

Combining this with (3.8.12), we get that 5\") = e, 1., — e, ns1 € By forall £. By (3.8.13),
b(v];{) = bs,‘,? = ey ntrk — €k n+v € By. Recall that v =k — 1. Therefore, bgf) =€sntt—€rnts €

By =By forall 1 <s<r<k.Put@=@_jo...00, 0¢". Then ¢ :A — Ais a special

inner automorphism with
ET ={esnyi—ernis| 1 <s<t <k} C @(B)NS,

as required.
Case (3): Suppose that & =E~ = {eg it +erpts | | <5 <1 <k} C su”(S) = sp,,.
As proved in Case (2), there is a special inner automorphism ¢ : A — A such that

{hst = es,n+t+et,n+s | I<s<t< k} - (P(B) ns.

Put hy = hgens shs and hgg = hge, i thg for all 1 <s <t < k. Since e,;; € K for all
1 <i<k,by Lemma 3.1.3,

hgs = hstenth,thst = (es,nth + et,n+s)€n+t,t (es,nth + et,n+s) = €5n+s € (P(B);

hig = hsiens shse = (es7n+k + €k7n+S)en+s7s (es7n+k + ek,n-i—s) = €k n+k € ¢(B).

Hence, ¢; ,; € ¢(B) forall 1 <i <k, so
E” ={esniiteinss |1 <s<t <k} C@(B)NS,

as required.

Now, by Case (1), Case (2) and Case (3), there is a special inner automorphism ¢ :
A — A such that & C @(B)NS. Since R? =0, ¢(+') = ¢ for all r € R. Therefore, ¢(B) =
@(B)s ® ¢(B)g, where ¢(B)s = ¢(B)N S and ¢(B)z = ¢(B)z ®R. By changing the
Levi subalgebra S into S’ = ¢~ !(S), we get that B = By @ By, where By = BN S and
Bz = BNR. Hence, B splits in A = A/U*. Therefore, by Lemma 3.8.8, B *-splits in A.

It remains to show that B C §' for some *-invariant Levi subalgebra S’ of A. We
have B = By @ Bg, where B¢ = BN S’ for some *-invariant Levi subalgebra " of A. Put
P = [By,[Bg,s5u"(S)]] C su”(S)NB. Since A is semisimple, by Lemma 3.6.1,

P = By [By,su"(S)]] = [B,18,K V] = B.
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Note that B’ = BNsu’(S) is a Jordan-Lie inner ideal of su” (S) with B’ = B (because B’ C B
and B = P C B'). By Lemma 3.8.9, B’ is a Jordan-Lie inner ideal of K(!). Since B’ = B
and B is bar-minimal, we must have B = B’ C §, as required.

]

Now, we are ready to prove Proposition 3.8.2.

Proof of Proposition 3.8.2. We identify A/R with S. Since S is involution simple, by
Proposition 3.3.2, § is either simple, or S = S| & S}, where S| is a simple ideal of S.
Suppose first that S = §1 @& S]. Recall that R = U @ U*, where U is the natural left S-
module. Let D =S; @ U. Then D is an ideal of A and A = D & D*, so by Proposition
3.6.12, B x-splits in A.

Suppose now that S is simple. Since SU = U, as a left S-module U is a direct sum of
copies of the irreducible left S-module V. Since R = U & U*, R is completely reducible
and can be written as a direct sum of copies of x-irreducible S-S-submodules V & V*. The
proof is by induction on the length /(R). The case /(R) = 2 being clear by Lemma 3.8.10.
Suppose now that /(R) > 2. Consider any maximal *-invariant submodule 7 of R. Then
T is an ideal of A with ¢(T) < ¢(R). Let : A — A/T be the natural epimorphism of A onto
A =A/T. Denote by B and R the images of B and R, respectively, in A. Since /(R) =2, by
Lemma 3.8.10, B is contained in a x-invariant Levi subalgebra S’ of A. Note that §' is also
a x-invariant Levi subalgebra of A. Let G be the full preimage of §” in A. Then G is a large
subalgebra of A and rad G = T. Since A is admissible and R?> = 0, by Proposition 3.5.13,
G is admissible, so by Lemma 3.5.7(i), G = £,(G). Fix any *-invariant Levi subalgebra
S" of G. Put P = [B,[B,su” (S")]] C G. Then P C [B, [B,su"(G)]] C B (because su" (G) is
a subalgebra of K(1)), so P C BNsu”(G) = B'. Moreover, P = [B,[B,su"(G)]] = B. By
Lemma 2.1.10, B’ is a Jordan-Lie inner ideal of su” (G). Since B=P C B’ and B’ C B, we
get that B’ = B. Let B” C B’ be any B'-minimal Jordan-Lie inner ideal of su”(G). Since G
is admissible, £(T) < £(R), by the inductive hypothesis B” x-splits in G = Z,(G). Since
B" C B' C B with B” = B’ = B, by Lemma 3.6.13, B *-splits in A, as required.

]

Proof of Proposition 3.8.3

Recall Lemma 3.4.6 that if R is an irreducible S-bimodule, then as a vector space
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1" (R) is one of the following:

X v

>|X,Y1,Y2€///m Y[ =peY), Y;=pehr};
Y3
Yy |\ Y3,Y4 € My, a€F},
—-pY, —pY; «

P
symy, (Ao,
sym?, (Mopi1) = { v an)

where ¢ =0if p = —1.

Note that as vector spaces sym; (.#an) = P2y, Symg, (Mon) = 502, and symy, (Mo y1) =

502,11 (see (3.1.4), (3.1.5) and (3.1.6), respectively).
The following lemma represents a special case of Proposition 3.8.3.

Lemma 3.8.11. Theorem 3.8.1 holds if A/R is simple and R is an irreducible S-bimodule
with respect to left and right multiplication.

Proof. We identify A = A /R with S. Since S is simple, by Lemma 3.4.5, 1" (S) 2 50,,, 595,
(m =2n+1 or 2n) and u*(R) = sym} (.#,,). Recall that B is a Jordan-Lie inner ideal of
A =S. As in the proof of Lemma 3.8.10, we fix standard bases of {eij| 1 <i,j <m} and
{fij| 1 <i,j <m} of S and R, respectively, consisting of matrix units, such that the action
of S on R corresponds to matrix multiplication and B is the space spanned by &, where &

is one of the following (¢ = +):
E={eipt—ernt1 |1 <t <k<n}C 5u*(S) = 50,,;

Ef ={esnt1—€erpis| 1 <s<t<k<n}C ﬁu*(S) = §0,;,5P>,, -

Our aim to find a special inner automorphism ¢, : A — A for some g € 1" (R) such that
& C @(B). We need to consider three cases:

Case (1): & =E={e1ppr—epnt1 |1 <t <k<n}C su”(S) = so0,,. Without loss
of generality, we can assume that m = 2n+ 1 (the case m = 2n will follow immediately).
Recall that u”(R) = symf;+ (My). Fix any {b; | 1 <t <k} C Bsuchthatb, =ej 4; — e nt1
for all #. First, we claim that

RS = span{fi it +pfin1 | 1 <t <k} CBNu'(R);
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R =span{fi,y |1 <1<k} CBNu (R) if p=-+.

We have Rg,R;r C u”(R). Recall that b, = e ntt — €rpt1 for all t. Then b, = e 44 —
et n+1+1; for some r; € u “(R). Since R?> = 0, by Lemma 3.1.3,

bt(fn+t,1 +an+1,z)bt = (61,n+t — €t nt1 + ’”t)(fn+z,1 +an+17z)bt

= (fui1 —pfu)(einsr — €t pt1 +11) = finst + P fins1 €B.

Hence, Rg Cc BNu® (R). If p =+, then fry; € u’ (R) for all 1 <i < n, so by Lemma
3.1.3,

bi(fut1a)br = (e1nvt—€rnr1+71) futrs(€lnre —€rnr1+71) = —fiur1 €B
and
bi(fur1,1)br = (€104t —€rnt1 + 1) fur1.1(€1 ntt — €1 +71) = — fintt €B.

Therefore, RT C BN u* (R), as required.
Next, for every b; = e| pt — €; -1 + 11 € B (r; € RNK), we claim that

O(b) = etpyi—eni1+ Y, O (fiaritPLine1)+ Y, i (finti+0Sinse)

i>k j>1
+ Z ﬁt[j(ffj +pfn+j,n+t) + Z ij(flj +an+j,n+1)
J=1 j=1
+Yim(fim + P Smns1) + Vo (fim + P finnte) € B, (3.8.14)

Where OC“, tjaﬁtj7ﬁlj7’ylim7’y{m€IF
Put ¢; = b/ (ey44,1 — €nt1,4)b: € B (by Lemma 3.1.3). Since r; € ut (R) = Sym[r)+ (M),
r; is of the form

no= Y nG(finsitPLias)+ Y, BG(fi Lt inti)
1<i<j<n i,j=1
+ Z fn+l]+pfn+]l +Z,)/ f1m+pfmn+z)
1<i<j<n

+Z7L (fatiam+ P foni) + & (fum + P frum) €0 (R).

Since R*> =0 and p? =1,

¢t = bi(enti1 —ent1,)br = (€1t — €11+ Z nz‘tj(fi,nqu‘f’Pfj,nH)

1<i<j<n

+ Z .B ﬁj+pfn+]n+1 + Z fl’l+lj+pfl’l+jl +Z'}/ flm

i,j=1 1<i<j<n
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+pr,n+i> + Z Aitm(fn-i-i,m +pfmi) + Ct (fmm +pfmm>)<en+t,1 - en+1,t)bt
i=1

= (enn+en+ Z Nifi1 — Znitlfit +p Z nttjfjl —p Z nijfjt
i=1 i=1 = =
+p Z BttjfnJrj,l —p Z ﬁltjfnﬂ',t ‘f‘Pﬁmfml - pﬁmfmt)<el,n+t —€rntl
=1 =
+ Y 0 (finrjtoSfinci)+ Y, Bli(fij+Pfatjnti)
1<i<j<n i,j=1

+ Z Gt’[j(fn+i,j+pfn+j,i)+Z/y£m(fim+pfm.,n+i)
i=1

1<i<j<n

+ Z Aitn1(fn+i,m ‘|‘pfmi) + Ct(fmm +mem))

i=1

n n n
= ettt Y M ifrari+0 Y Mifinvi+ Y, Blifij+ Yimfim
j=1 i=1 j=1
n n n
—€rn+l1 T Z nttjfz,rH—j +p Z nittft,n-i-i + Z ﬁt[jftj + Ytrmftm
=1 i=1 j=1
n n n n
+ Y Mifinsi+ Y M finer+0 Y, 0 finre+0 Y, M ifjns1
i=1 i=1 j=1 j=1
n n
+p Z Bttjfn-l-j,,n—H +p Z Blzjfn+j7n+1 +p71tmfm,n+t +pﬁmfm.,n+l
j=1 j=1
n n
= et =i+ Y, (M +0M50) fiari+ Y (PN +151) finr1

J=1 J=1

Z nfj+pnjt fl"+1+2 pnt]+njt)fjn+t

+Zﬁ1] J1j+Pfutjnr1) + Zﬁz] Jrj+ P fatjontt)

+Vim flm ‘|‘pfm,n+l +7{m ftm‘*‘pfmJH—t)

n
= €t —Crpylt Z(nij+Pn;1)(fl,n+j+pfj,n+1)
j=1
n

Z(nt1+pn]t)(ftn+j +Pfjn+t + Zﬁl] f1j+pfl’l+jl’l+1>

J:

Z ﬁt](ft] +pfn+j7,n+t ‘l"}/im(flm +me n—0—1) +'}/ (ftm +me n-l—t) €B.

J:

N
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Put & ; = ny;+pn}; and of, = n7;+ pnj, forall 1 <4, j <n. Then

n

n
Ct = €lpyt—€rptl T Z aij(fl,n+j +pfj,n+1) + Z O‘itt(ft,n—i—i +pfi,n+t)
j=1 i=1

+ Z Bli(fii + P fuvintt) + Z ﬁfj(flj +Pfutjntt)
i=1 J=1
‘H/lm(flm + P fnnt1) + %m(ftm + 0 fnntt)

k
= () + ) o1 j(finsj +PFint1) + 0 (frns1 + P fiase) €B.
j=1

Since Y5y ol ;(fintj+Pfini1) + 0 (frnt1+Pfinre) €RG CBand of fing1 €RY C
B (if p = +), we get that ¥(b) € B, as required.

Now, we are going to define special inner automorphisms in order to complete the
proof. Recall that we fix {b,; | 1 <7 <k} C B such that b; = €1 1 — € »+1. Then b, =
el it — €1 + 11 (1: € ' (R)). By (3.8.14), there are coefficients such that

bi = einri—ent1+ Y, 00 (finriTPfint1)+ Y Oi(frnvit P finte)

i>k i>1
+ Y Bi(fij P Sarinte) + Y Bii(fij+PSurjnt1)
=1 =

+7/im(f1m +pfm,n+1) + %m(fzm +pfm.,n+t) €B.

Consider the special inner automorphism @q, : A — A, where

a = - Z allcci(fnJrl,nJri +pfi)+ Z a{ci(fn+k7n+i +p fir)

i1 i~k
-y ﬁ/fj(fnﬂ,j +Pfurjn)+ Y, ﬁfj(fmrk,j + 0 fatjk)
=1 =1

_%c(m(fnnLl,m +pfm1)+ 'y{(m(fnntk,m +p fink) € u' (R).
Put By, = ¢4, (B) and b,(l) = @q,(b;) € By, for all t. Since R? =0,

b = gy (bi) = (1+anbi(l—ar)
= (1- Z allcci(fn—t—l,n—i—i +pfir)+ Z a{ci(fn—kk,n—l—i +pfix)
i>1 i~k

-y ﬁ/fj(fnﬂ,j P furjt) + Y, ﬁlkj(fmk,j + P futjk)
J=1 j=1

_YIfm(fn-i—l,m +me1) + ﬁm(fn—}—k,m + pfmk))(el,n+k — €kn+l
+ Y afi(finvit+0Sint1) + Y Ci(fenti+ P finsk)

i>k i>1
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+) ﬁ{{j(flj P fatjnt1)+ Y, ﬁlfj(fkj + P St jntk)
=1 =l

AV (Fim + P L) + Vo Fim + P i) (1 — q1)
= (et psk —hnr1 + Y O (fiari+ 0 Lini1) + Y 0 (finti+ P fink)
i>k i>1
+ Z ﬁfj(flj + 0 fatjnr1) + Z ﬁlfj(fkj + P futjntk) + ,}/l(m(flm
=1 =1
+pfm,n+1) + %c(m (fkm + pfm,n—i—k) —p Z alfifi,n—i—k —p Z a{(ifl}nﬁ—l
i>1 i~k

n

k k k k
_BklfrH—l,rH-k + Bkkfn—i—l,n-i—l —p Z BkjfrH-j,rH-k + Bl lfn+k.,n+k
j=1

_.B{Ckfn—kkm—i—l —p Z ﬁ{cjfn+j,n+1 - p%;mfmm—kk - p’}/{(mfm,nnLl)(l - ql)
=1

J

n n
k k k k
= (e1ntk—€knr1+ Z Oifinvi + Z O fen+i + Z Biifij+ Z B fii
= =1

i~k i1
+Y1kmf1m + Ylfmfkm - Blf] fn+1,n+k + ﬁlfkfn+1,n+l + B{clfn—ﬁ—km—f—k
—Blifokont1) (1 + Y O (fus L i +PSi1) — Y o:(Fusknti + P Six)
i>1 i~k

+ Y B (farr i+ 0 Sasin) = X B (fuskj+ P St i)
= =

‘I’Yllc(m(fnﬂ,m + P fin1) — me(fnﬂc,m + 0 fink))
= elnrk— Y, Oiftnsi T PBGS1L— Y Biif1j — PBlfik — Vimfim
=1

i>k

i>1

—ekni1 — Y, Oifenti— Y, Btifei — PBEfer + PBLLSik — VionSiom
=1

n n
+ Y ofifinrit Y Oifensi+ Y BUf+ Y BEifii + Yonfim
j=1 j=1

i~k i>1
+’}é{mfkm - B]flfn—kl,n—kk + B]fkfn—}—] n+1 + Blk] fn—O—k,n—O—k - B{(kfn—i-k,n—kl
1
b,(c ) = etk — ki1 + B (Fur st +PS11) + BE Fusknsn + P fik)
B Fustnk +ofi1) = Bl (Furknsr +pf1x) € ¢q,(B) = By, -

Since (B, )? =0,
0 = (bz(f))z = (€1 ntk — €knt1 + Bee(Fartart +Pf11) + B Futknsk + P fi)

B Fustmsk Fofet) = Bl Fuvkns1 0 F1)) €1k — €knst
+BE Frttni1 +PF11) + Bl frsknsx + P fik) — B Fut ik + P 1)
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—Bl faskn1 +Pf1k))

= Bfifinrk — Biefiast — BeSenst + Bifonti + BEp fink — Bp fint
—BEP fensk + BieP frns1

= (B + 2B Srnsk — (B + 0B femsr — (Bl — PBL) fins1
+(B = PB) finsk-

Therefore,

ﬁﬁ‘FPﬁlfk:Oa ﬁ{(k_pﬁfk:()? and Blfl_pﬁlflzo (3.8.15)

We need to consider two cases. Suppose first that p = —1. Then ﬁ{‘k = ﬁ,fl =0 and

B= ﬁ/fk = ﬁlkl’ $O
1
b](< = €1.n+k — €kn+l +ﬁ(fn+1,n+1 _fll) +B(fn+k,n+k_fkk) € By,.

Consider the special inner automorphism Py, :A — A, where

0y = B(frs1k— fark1) €U (R).
Since RZ =0,
0 () = (@b (1=a7) = (14 B(fur1k— frsk)) €1k — exnsn

+B(frr1n01 — f11) = B(farknrk — Jir)) (1 = q2)

= (et ntk — €hnt1 + Bt o1 — f11) + B(fusknsk — fik) —
3fn+1,n+1 - ﬁfn+k,n+k>)(1 - Clz)

= (et sk — k1 — BS11 = Bfr) 1+ B(frgkg — fur1 k)

= eiprk+BSfi1 —ekni1+ Bk — Bfi1 —Bfu

= elp+k —Ckn+1 € (pqz—(Bql). (3.8.16)

Suppose now that p = +1. Then by (3.8.15), we have B’ = Bf, = — B, so

b;il) = elnrk —knt1 + B (fi1 + forinrt) = B (fix + furkns1)
Bl (fik+ fuskns1) = B (fir + frst.nsk) € Bay-

Consider the special inner automorphism Py :A — A, where

03 = B' (for1k + frkt) = Bnsin — Bofur1n €0 (R).
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Since R? =0,

0y (0)

Put By, = Py (Bg,) and b,(z) =0

have

= (1+a)b (1-a;)

= (1+ B (far1 e+ Fuit) = BieLosior + Bl for1.1) (€1 ek — €tont
+B' (i1 + furrnt1) = B (it + Farknsn) — B ik =+ Forkns1)
—B& (fir + frstasn)) (1 —ad)

= (e1ntk —ekne1 + B (i1 + furtns1) = B' (fax + frtrnsic)
—Ble(fik + Frsknr1) — Ba (fer + Fartnik) = B ot et
+B' frskntk +B]kkfn+k,n+1 + B furt k) (1—a3)

= (ernrk— exnt1+ B fi1 — B fe — Bl fik — By fin) (1
~B' (fus1 ki) + BlicSuekk — Birfur1.1)

= etk —B'fi +Bifik — exnit + B fu + BE i + B fin
—B' fux — Biyf1x — B fua

= €l ptk—Chkntl € (pq2+(Bq1). (3.8.17)

0 (b,(l)) € By, for all 7. Then by (3.8.16) and (3.8.17), we

2
b](( )= €l ntk — €knt1 € (qu (Bcn) =By,.

By (3.8.14), there are coefficients such that (for all # < k)

19([9;(2)) = €lntt —€rnt1t+ Z Cli(finti+ P fins1)+ Z &i(frnvit P Sfinte)

i>k i>1
+ Y 0 (fej+ P havinee) + Y, 01 (fij+ P St jnt1)
=1 =

+€1[m(flm + pfm,n-i—l) + gtzm<ftm +pfm,n+t) € BQ2'
(3

Put b\ = b\ € By,. Forall t <k, set b = {6\ ep .1 —ens1.4, O (b))} € By, (by
Lemma 3.1.3). Then for all r < k,

b/(f) (entk,1 — €n+1,k)19(bz(2)) + 19(bz(2))(€n+k,1 - en+1,k)b/(<2)

2
(€1 mik = eknst)(@ninr —enr1 ) O (b))

+(61,n+t — €t nt1 + Z C{i(fhnﬂ' + Pfi,n+1) + Z Cttz (ft,n—H' + pfi,n—i—t)

i~k i~1
+ Y (i Sarjne) + Y, M1+ P St 1)
Jj=1 j=1

+§{m (flm + pfm.,rH—l) + gt[m (ﬁ‘m + pfm,nth))(enJrk,l - en+1,k)b](¢2)
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= (en+ew)(etny—ernr1+ Y, Cli(finvi+Pfinr1)

i>k

i>1 j=

+ Y Gl finvitPfint) + Y 0 (fij 40 Satjnte)
1

+ Z nij(flj +pfn+j7n+1) + glzm<f1m +me,n+1) + étlm(ftm +me,n+t))
=1

n

+ew—p Y Slifu+Cifit =0 Y M1 Stk — PELmSmi) (€1 sk — €knt1)

i>k j=1

n
= elantt Z Clzifl n+i + Z nijflj + é{mflm + pCztkfk,n—i-t — €tn+1
i~k =1

n

+p Z Cfifi,n—l—l + Cztkft,n+k +p Z nijfn—O—j,n—H +p§{mfm,n+l

i>k =1
n
= et — i1+ Y Sl finri+ P fins1) + Y, N1 (f1j+ P St jnt1)
i>k =1
+§1tm(f1m + pfm,n+l) + Cttk(fl,n—i-k + pfk,n—i—t) S BQQ'

Since (Bg,)? =0, for all < k, we have

3 3
0 = b;(( b8 = (e1 ik —exnir)(€1nsi —erni1 + Y Cli(finti+ P Sinsr)
i>k

+ Z nij(flj +pfn+j,n+l) + éllm(flm +pfm7n+1) + Cztk(ﬁ,n—i-k +pfk,n+t))
=1

= PNfinet — PN fensts

so N}, = N, = 0. Therefore, for all 1 <t <k,
3
b = it —erni1+ Y, Sli(finvi+tPfini) + Y, Mi(fii+ P favini1)
i~k i1k
+§{m(f1m + pfm.,n—O—l) + Cztk(ft,nJrk +pfk,n+t) S BCI2'

Put b\ = b5 € By, and b\Y) = b € By,. Forall 2 <t <k set B = (b)) ep101 —

ens12,6)} € By, (by Lemma 3.1.3). Then

b,(4) = bf) (ens2,1— en+1,2>bt(3) + bt(3) (ent2,1 — €n+1,2)b§3)
= (e1p2—e2pi1+ Y Sl finvi+Pfine1) + Y, NE(fii+ P fusinet)
i>k i%lvk

+ &2 (Fim+ P 1) + Ca(Fomsk+ P fins2)) (€niat — ent12)b)

+(e1ntt —ernt1+ Z Cilfinvi+Pfing1) + Z M (fri+ P fatint1)
i~k i1k
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+§{m (flm + pfm.,n+1) + Cztk(fun—i-k + pfk,n—i—t)) (€n+2,l - €n+1,2)b§3)

= (en+en—pY Cifo—p Y, Mifuriz = P&l +PGofia)(€1nss
i~k i£Tk
—erni1+ Y Clilfinsi+Pfine1) + Y, Ni(fiit+ P Favint1)
i~k ATk
+§fm(f1m + pfm,n+1) + Cztk(fz,nqu + pfk,n+t))

+(en—p Z Clifa—p Z Mifaviz = PElnfm2) (€112 — €21
i>k i#1k

+ Z Clzz(fl n+itPfint1) + Z n12i<f1i + P fuvint1)

i>k i#1,k
+& o (fim P Snns1) + Gl Pk + P fiens2)
= elnrit+ Y Cifinvit Y, Mifrit&nfin+PGifenti—enti

i~k i£ 1Lk
+C22kft7n+k +P Z C{ifi,nJrl +P Z niifn+i,n+1 +p§{mfm,n+1
i~k i1k
_ t t
= eipst—ent1+ Y CLi(finsi+PSine1) + Y Mi(fii+ P fusinsr)
i~k A1k

+§{m (flm + pfm,n+1) + C22k<ft7n+k + pflgn—l—t) S qu'

Consider the special inner automorphism @, : A — A, where

k=1 : k—1 ,
o= Y Y Sifarjnritpfi)+ Y, Y li(farii+PLati))
J=2i>k J=2i#1k

k=1 |
+ Y &l v jm+Pfmg) = Gl fast wik + P fia) €U (R).
=2

Put By, = ¢q,(Bg,) and b,(S) = @y, (b,(j)) € By,. Since R> =0,

k—1 .
B = o) =1+ 00V (1-a3) = 1+ ¥ Y &\ (furjmsi+pSi7)
Jj=2i>k

k-1 , -1
+ Z Z N Fntji +Pfavig) + Z &l (fusjm=+PSmj)
=20tk =
— G (Fust sk P L)) €1k — €rnt1) (1 — q3)

k-1 ,
= (etnrk— ettt — PG Sinik) 1= Y Y &l (fusjmsi+015))
=ik

k—1 ) k=1
=Y Y vl faitpfurii) = Y &L (Fatjm+ P Smj)
=2

j=2i#1k
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+ 8 (fart ek +PSi1))
= €1k — ent1 — GiSinrk — PSStk
e1nik —exni1 — (G + PGk fnik € By
If p = —1, then b,(cs) = €] nt+k — €kn+t1 € By;. Suppose that p = +1. Then b,(cs) = el ptk—
Chnt1— 2Cszk ntk € Bg;. We have fi ik € RT C B. Since R =0and q; € u”(R) C R (for
all i = 1 2 ,3), we have R{ = @, (R}") for each i, so R{ C By,. Hence, 282 fi ik € By,
Thus, bk + 2Cszk7n+k = €| nt+k — €k n+1 € Bg,. Therefore, for any choice of p, we get that

€lnik —€knt1 € By (3.8.18)

Put b,(f) = €] y+k — €kn+1 € Bg, and for all 1 < k set bt(6) = bt(s)

R? =0, for all r < k, we have

= @y, (b,(4)) € By,. Since

b = b<5>:<pq3<b<‘”>—<1+q3>b<‘”<1—q3>

- 1+ Z chl fn+]n+z‘|‘sz] + Z Z Tlll fn+jz+an+z])

Jj=2i>k J=2i#1k
-1 ,
+ Y & (Farjm+PInj) = S far sk +PF)) (€Lnss —€rnti
=

+ Z C{i(fl,nJri +pfi7n+1) + Z nii(fli +pfn+i,n+l>
i>k i#1k
+&ln (fim+ P fnni1) + C22k<ft,n+k + P finte)) (1 —q3)

= (etnsr—en1 + Y Ci(fravi+Pfint) + Y, Ni(fritPSavine)

i~k oy
+§fm(f1m +Pfmnt1) + szk(ft,n+k + Pfk,n+z) —p Z Cfifi,m—l
i>k
k—1
Z M fotint1 —P Y, Mifurinet — PELSmni1 — PG fints) (1 — 3)
i#1.k
= (61,n+t — i1+ Y Cliftnsit Y Mifrit Elfim+ Gifint
i~k ATk
-1 k1 .
- Z nljtf"-i-jy"-i—l)(l - Z Z Clji(fn+j7n+i+pfij)
j=2 j=2i>k
=1
- Z Z 771, fn+Jl+an+z,j Z gljm(fn+j7m‘|‘pfmj)
J=2i# Tk =2

+ 8 (furtnrk +PSfi1))
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k-1
= einrr— Y Clifinsi— Y, Mifri—p Y, N f1j— Elfim
2

i>k i#1,k j=
2
—€rn+1— <:2kft,n+k + Z Cltifl,nﬂ' + Z n{ifli + gltmflm
i>k i#1,k

k-1
2 J
+Coi ik — Z M Jntjntl
=

k—1

= elptr— et — Y, M, (farjnr1 +Pf1)) € Pgy(Bg,) = Bas-
j=2

Note that for all 1 <t¢,q < k, we have

k—1
6),(6 j
0 = b6 = (errg—equi1 — Y 0, (Fatvint1 +0S1))) (€1 nss — €t
=2
-1
- Z nljt(fn+j,n+1 +pf1)
=2

= N Sinet PN 1art = =N, = PN fLat,

SO
n{t_pnii:() forall 1<i<k.

Consider the final special inner automorphism ¢, : A — A, where

1 k-1 .
qG4 = - 5 Z nlji(fn+j,i+pfn+i,j) cu (R).
i,j=2
Since R? = 0, by applying Qq, to bt(6) € By, for all 7, we get that
6 6
90, (b) = (1+a)b"(1-q)
1 k—1

= (-3

i,j=2

1 k—1
= (eprk—erni) (147 Y nli(farit+pfavig))
=2

= elntk—Cknt1 € Py (By,)

and for ¢ < k, by using (3.8.19), we get that
k—1

) n{i(fn+j,i + P futij) (€1 ntk — €knt1)(1 —qa)

(3.8.19)

1 .
00,(B”) = (1400 (1=00) = (1= 5 ¥ 0fi(fusji+PSusi)ernse

ij=2
k=1

—ernit— Y, My (fatins1 +pf10)(1—da)
i=2
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k—1 k—1
= (€1t —€rnt1— Z M (frtine1 +PS1i) + ) Z nljtfrH—j,rH—l
i=2 =2

1 k—1
P2 Y M) (1 -5
=2
k—1 ) 1 k—1 )
= (el,n+t —€rntl1 — P Z nitfli - 5 Z nitfn+i,n+1
i=2 i=2

1k—1
‘f’PE ; Niifurine1)(1—dqa)

k—1 . lkfl ;

= (et —€rnr1—P Z M S1i— 5 Z (M1 —pni,-)fn+i,n+1)(l —q4)
=2 =2
k—1

= (el n+t — €t nt+1 — P antflz+0 1+ Z m, fn+jl+an+l,j))
i=2 lj 2

lk—l lk—l ) k=1
= ettt ) 77{,-f11+P§ Y i fij—enri—p Y, NS
i=2 j=2 i=2

1 k—1 1 k—1 )
= elntt—€rptlt+ 3 Z nifii —P5 Z N1 f1i
i—2 )

1k—l )
= Clati—et1t Y. (nii—pni,) fii = €14t — €rps1 +0

i=2
= €Lt el € Pou(Bay)-
6 .
Hence, ¢q, (b,( )) = €111 — € nt1 forall . Put @y = @q, © @q, 0 @, 0 @y,. Then @ is a
special inner automorphism with ¢’ € u”(R) and

E = {el,nﬂ—et_‘n“ | 1<t <k} C (pq/(B)ﬂS.

Therefore, if & = E, then there is a special inner automorphism ¢, : A — A such that
& C @y (B)NS, as required.

Case (2): Suppose that & = ET = {esptr —ernss | | <s <1<k} C su’(S) = sop,
(m=2n+1 or 2n). We need to show that there is a special inner automorphism @, : A — A
for some ¢ € u”(R) such that & C @(B)NS. Without loss of generality we can assume
m = 2n+ 1 (the case m = 2n will follow immediately). Fix any subset {by | 1 <s <t <
k} C B such that by, = esn+t — €r.n+s for all s and ¢. Recall that u'(R) = sym’;r (M) Put

RS = span{finsj+pfinyi| 1 <i<j<k} Cu'(R).
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CLAIM 1: Rp C B. Since by = e ntt — €t nts, We have by = e 1 — €1 yqs + 1y fOr
some 7y € 1 (R). Since R? = 0, by Lemma 3.1.3,

bst (fn—i—l,s + pfrH—s,t)bst = (es,n—i—t - et,n—O—s + rst) (fn—H,s + pfn—l—s,t)bst
= (fss - pftt) (es,n—l—l —€tn+tst rsl) = fs,n—i—l + pfl,n—H € B,

Note that if p = +1, then f,1;; € su” (A) forall 1 <i<n,so

bst futssbse = (es,n—H —€tntsT rst)fn—l—s.,S(es,n—H —€tntsT rst) = _ft7n+t €B
and

bt futiibs = (esntt — €rnts +Tst) futit(€sntt — €nts +7st) = —fsnts €B,

as required.
CLAIM 2: For every by = €541 — €1 nts + sy € B (rgy € RNK), we claim that

e(bsl‘) = esn+t_etn+s+2 f:vn+j+pfjn+s +Zan ﬁn+z+pﬁn+t)
j>k i>k

+Z ((fsj + P fatjnts +Z '(fri P fatin+t)

i=1
+Vsﬁ (fsm + pfm,n+s) + %s (ﬁ‘m + me7n+t) € B.

By Lemma 3.1.3, ¢y = by (entt,s — €nts:)bst € B. Since ry € R NnKM Cu® (R), rg is of

the form
ra = Y, Mi(finej+PLinti) ¥ Y, B (fij+PSurjnti)
1<i<j<n i, j—l
+ Z fn+17j+pfn+jz ‘l‘ZYw fzm+men+z>
1<i<j<n
+ Y 85 (futjm+ P foni) + C (fum + P frnm) €0 (R). (3.8.20)
j=1

As R? = 0, we have

Cst = bst(en—i-t,s - en—i—s,t)bst
n
= (eS,IH—t — €t nts + Z n:]t (fi,rH—j + pfj,rH-i) + Z ﬁz;[ (fl] + pfn+j,n+i)
1<i<j<n i,j=1

+ Y G farij+PLarii) + Y% (fim+ P fnn+i)

1<i<j<n i=1
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+ Z 6]St (fn+j,1n + mez) + CSt (fmm +pfmm))(en+t,s - en-i—s,t)bst
= (es3+en+2n fis— Zn fi+p Z N fis—p Y, i fi
=1
+p Z Bz,fn—ﬂs p Z B fn+jt+pYY Jms — p'}’sgtfmtxes,n—b—t — €t n+ts

+ Y M finsi oS+ Y, B (fij+ P Sutjnsi)

1<i<j<n i,j=1

+ Y Gt pfasid) + Y0 (it pfmnsi)

1<i<j<n i=1

+ Z S;I(fn+j7m +pfmi) + CSt(fmm +pfmm))

j=1
= esntrt+ Z Nifsnej+pP antf:sn+l+ Zﬁ i1 fom
—er s+ Z nt]f,nﬂ+p2n frnvit ZB (foj 8 fom
j=
+ Zi it finve + Zi Mis fints +P 21 N fjnte+P i‘,l Nsifjnts
i= i= Jj= Jj=
P i B fatjnse +p Xn‘,l B ot jnss + PV fonntt + PV finnts
j= j=
= esntt—Crntst il Ni(fsntj+0fjnts) + i (P fsnti+ fints)
£ L
3 B+ P s sais) + 8 o+ Pl
L
¥ ilnfﬂft,nﬂ P fie) + Zl M (D fomsi + fimsr)
L L
3 B3 i) + 1 Ui )
L
= et —eimist Zl (034 PN fons s + P Fines)
L

+ Z B:;(fsj +pfn+j.,n+s> + ’}{vvr(f:vm +pfm,n+s)

Z nll +Pnff ﬁn+z+pﬁn+t +Zﬁ ftj+pfn+j,n+t)

j=
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+Ytgt (ftm + pfm7n+t) €B

Put o = 1 +pnj; and o = ;] +pny forall 1 <i,j <n. Then

Cst = esn+t_etn+s+z fsn+j+pf]n+s —I—ZOCH ftn+1+pfln+t)
j=1 i=1

+ Z B:Jl (fsj + pfn+j,n+s) + Z Btyll (fn + pfn+i,n+z)
j=1 i=1
"H’svt (fom+ me,n+s) + th (fim + me,n+t)

k k
- e(bsl) + Z assj'(fs,n—i-j +pfj,n+s) + Z atsit(ft,n—i-i +pfi,n+t) €B
j=l1 i=1

By Claim 1, ZI; (fs ntj+ P fints) +Zz 1 0 (fenvi+ P fintt) € R C B,s0 6(by) €
B, as required.

CLAIM 3: There is a special inner automorphism @, : A — A for some g € u"(R) such
that

= Csntk — Chnts € Og(B) =B, forall 1<s<k (3.8.21)

and (forall 1 <s <t <k)
bgf = €sntt —Crnt+st Z a]ilic(fs,n—ﬁ—i + pfi7n+s)
i>k

+ Y BE(foi P futines) + Y (fom+ P fonnss) € By (3.8.22)

i>k
Recall that by = €541 — €1 pts. Since by, = €1 pis — €rny1 = b € EUE™, by Case (1),
there is a special inner automorphism ¢, : A — A for some ¢’ € " (R) such that @y (b1;) =
1t —ernt1 € Oy (B)NS. Note that W = €snt1 — e nys forall sandz, so @y (by) =
€s.n+t — €t nts + s for some ry € K MNR. As Fg €U (R), rg can be written in the form
(3.8.20), so by Claim 2, for all s > 1, we have

9((Pq’<bst)) = esn+t_etn+s+z ﬁvn+j+Pfjn+s —f—ZOC” (frnti+PSfinst)

j>k i>k

+Zﬁt ﬁl+pfn+ln+l ‘I’Z f:vj‘i'pfn—l—jn—l—s)
i=1

+Ys”(fsm +pfm,n+s) + Yty (ft,m +pfm,n+t) € (Pq’(B)-

Put b, = @y (b1;) = €111 — €1 n1 € @y (B). Forall s > 1, set by, = {0(9y (bst)), ents,1 —
en+1,b),} € 9y (B) (by Lemma 3.1.3). Since R? = 0, for all s > 1, we have

bgt = 9((Pq’(bst))(en+t,l_€n+17t)b/1t+b/1t(en+t,1_en+1,t>9(¢q’(bst))
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Since @, (B)?

0 =

(esn+t_etn+s+z fsn+]+pf]n+s +Zan ftn+l+pfln+t)
j>k i>k

+ Z Btsit (ftl + pfn+i,n+t) + Z Bssjt (fSJ + pfn+j,n+s)

i=1 Jj=1
+,)th(me + pfm,n—ks) + Y;Z (ftm + pfm,n+t))<en+t,l - en+1,t)bllz
+(e1prt — €rnt1)(€nste,1 — €n+17t)9(§0q’(bsz))

es1 +p Z O S fi+p ZﬁtsitfnJri,l ‘i‘p}’tgfml)(el.,nﬂ - et,n+1)
i=1

i>k
+(611 +€tt)<esn+t_et n+ts + Z fsn+j+pfj n+s)
j>k
Zatl Jontit P fintt) +Zﬁ (fei + P fotintt)
l>k

+ Z ij +an+] n+s) + Yy (fsm +me n—i—s) + YY (ftm +me n—i—t))

esn+t+ P Z O‘nft ntt P Zﬁn Jntintt ‘f’PYv Jmntt

i>k
etn+s+2anftn+1+2ﬁ fti“‘yzgtftm
i>k
€snt+t — €t nts T Z OC” ft n+itPfi, ntt) + Z ﬁn (fii +Pfatinte)

i>k i=1

+%v (ﬁm+pfm,n+t) € (Pq/(B).

=0, for all 1 < g <k, we have

ﬁqbét = (el,n+q —€gn+1 ) (es,n—H —€tp+s T Z atsil (fl,n—l—i + pfi,rH—t)
i>k

+ Z ﬁzi‘t (fn + an+i,n+t) + ytw (ftm + pfm,rH—t)

pﬁtsc;fl o+t T Pﬁzsltfqm—i—t )

so B} =0all 1 <i<k. Therefore,

/
bst

"1/
Put b}, = b},

€sn+t — €t nts T+ Z O‘tsit (ft,nJri + pfi,n+t)
i>k

+ Z Btsit (ftt + pfn+i7n+t) + Yt” (ftm + pfm,n+t) S (B)

i>k

= el n+t —€nt1 € Oy (B) and for s > 1 set by, = {b}y,ep ks — enysis bl } €
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¢, (B) (by Lemma 3.1.3). Since R* =0,

bgt = b;k(enJrk,s - en+s7k)b;t + b;z(en—Has - en+s7k)bgk
= (esntk —€knts+ Z a/ff'{(fk,nﬂ +P fink) + Z ﬁlfzk (fri + P futintk)
i>k i>k

+%§k (fkm + pfm,n—i—k))(en—i-k.,s - en—o—s,k)b;z
+(esntt — €rpts + Z &) (frnti+ P finte) + Z B (fri+ P fusinte)
i>k i>k
_var(flm +pPfm n+t)) (en+k s — €nts k)bgk
= (698 + ek + P Z fls +p Zﬁkl fn+l s +P}’Y ﬁnv)(ev n+t — €tnts

i>k i>k

+ Z O‘n ft N+ + pfi,nth) + Z ﬁtsit (ftt +an+i,n+t) + Yz“ (ftm +me,n+t))

i>k i>k

+etk(es7n+k — €k nts T+ Z (X,if{ (fk,n—H' + pfim—i—k) + Z Blfzk(sz + pfrH—t}n—i—k)
i>k i>k

+’)llyck(fkm + pfm,n—i—k))
= esnytt+pP Z O‘/}v,l'cﬁ,nﬂ +p Z B]jlkfn—t—i,n—‘rt + Pﬁkfm,nﬂ

i>k i>k
—rnpst+ Y, O frnvit Y B it W fim
i>k i>k
= €sntt —Crn+st Z O‘]g( (ft,nJri + pfi,n+t) + Z ﬁ]ﬁ,k(fn + pfn+i,n+t)
i>k i>k

+7’I<Yk(ftm + P fmntt) € @y (B).

Recall that b, = ey 41 — €; 011 € @y (B).
Consider the special inner automorphism @, : A — A, where

k=1 . k—1 ,
= -)) O‘/Zf(fn+j,n+i+l)ﬁj) -y Zﬁ;;’,-k(fnﬂ,i +P futij)

=2i>k j=2i>k
= .

- Z Y/i (frH—j,m‘f‘mej) cu (R)
j=2

Note that ¢, = @, o ¢, is a special inner automorphism of A with g € 1’ (R) (because

q',q" € (R)). Put By = ¢,(B) = @ (9,(B)) and b} = @, (b)) € @ (9, (B)) = By for
all s and 7. Since R =0,

e = @0 =0+4")b],(1—4")
k—1

- ZZO‘kl fn+]n+z+sz] ZZﬁ fn+j,i+pfn+i7j)

J=2i>k Jj=2i>k
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and (for s > 1)

"
sk

Therefore, b); = e 1k — €k nts € By = @4(B) for all 5, so (3.8.21), is proved. It remains

k=1
- Z '}’k/k(fn+j,m +p fmj)) (€1 nik —exni1)(1—4")
Jj=2

k-1
ik
(€1 ntk — €knt1)(1+ Z Z o (fotjmvi+PLij)
j=2i>k

k—1 _ k=1

+) Zﬁ;f,-k(fnﬂ,i P furij)+ Y V;ﬁk(fnﬂ,m +pfmj))
J=2i>k Jj=2

€1tk — €knt1 € By = @y (9y(B))

g (bg) = (1+4")bg(1—4")

k—1 . k—1 )
1= ) O‘/gc(fnJrj,nJri +pfij)— Y, Zﬁ/ff(fnﬂ,i-kpfnw,j)

j=2i>k j=2i>k
el .
- Z Y;ﬁ (fn+j.,m + pfmj))(esm-i-k — €k pnts T+ Z O‘l}ci (kaH—i + pfi,n—%)
=2 i>k

j=
+ Z ﬁlfzk(sz +pfn+i,n+k) + YkYk<fkm + pfm,n+k>)(l - C]”>

i>k

(es,n+k — €k.nts + Z a/if (fk,n—H + pfi,n—i—k) + Z ﬁlfzk(sz + pfn—H}n—i—k)
i>k i>k

+Yl§k(fkm + pfm,n—i—k) —p Z a]ill'(fi,n—i-k —p Z Blgcfn—o—i,n—i-k

i>k i>k
PV founsn)(1—4")
(es,n—O—k — €k n+ts + Z a]g‘(fk,n—i-i + Z ﬁ]zlkfkl + ’}’lzkfkm) (1

i~k i~k
k1 . k1 .

+ Y Y ol furjmritofii)+ Y, Y BE (fasji+ P Suvinj)
=2isk =2isk

k—1
ik
+ YW farjm+PImj))
j=2
es,n+k - ek,nJrs - Z (x]g‘(fk,nqti - Z ﬁ/flksz - lekfkm + Z (Xlgcfk,n+i

i>k i>k i>k

k k
+ Z ﬁlfz fki + ka fkm = €s.n+k — €k,n+s € Bq-
i>k

to show that (3.8.22) holds. By applying ¢, to by, for all t < k, we get that

"
1t

@y (blllt) = (1 +q//)b/llt(1 - ‘1//>
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and (for s > 1)

"
bSl‘

k—1 k—1
ik ik
- Z Zazﬁ,- (farjnri+pfij) — Z Zﬁ]ﬁl (farji+PSuriy)
Jj=2i>k j=2i>k
el
- Z Vk/ (fnJrj.,m +mej))(el,n+t - et,n—i-l)(l - q//)
j=2
(el,n—H — €t n+1 +p Z a]tgli(fi,n—ﬁ—l +p Z ﬁlg‘(fn-l—i,n-ﬁ-l +p%rckfm7n+1)(1
i>k i>k
k-1 . k-1 .
+ Z Z O‘Igi (fn+j,n+i+pfij) + Z Zﬁ]ﬁ, (fn+j7i +pfn+i7j)
Jj=2i>k Jj=2i>k

k-1
ik
+ Z ’}’kl (fn+j,m +fmj))
=2
i+ Y, O flasit Y BEfii+ Ve fim— eoni1+0 Y. Ok finin

i>k i>k i>k
+p Y Bt fuviir + PV st
i>k
ettt —Conit + Y, 0 (finvi+PLinet) + Y B (frit P farint1)
i>k i>k

+ﬁk(flm +pfm7n+l) € Bq

@ (by) = (144" )by (1—4¢")

k-1 . k—1 ‘
1-y ) O‘/if(fnJrj,nJri +ofi))— Y, Zﬁ/fik(fn+j,i+pfn+i,j)

jfz i>k j=2i>k

_ZV] fn+jm+pfmj))(€sn+t_eln+s+2akl ftn—H"‘pfln—i-t)

i>k

+Zﬁ fti‘*’pfn—l—im—i—t)‘i"ykg (ftm +pfm7n+t))(1 _q”)

i>k

(esntt — € nts + Z O‘/}vf(ﬁ,nﬁ +P finsr) + Z ﬁ/fzk(fn +P fatintt)

i>k i>k
+YYk<ftm +pfmn+t Zaklﬁn+t+pzaklﬁ n+s
i>k i>k
—p Z ﬁ]f,kfnnti,nﬂ +p Z ﬁlﬁf‘cfn+i,n+s - p'}’]ikfm,nth
i>k i>k

+p ﬁ(kfm,n-i-S) (1—- 6]”)
(es,n+t —€rnt+s T Z a]ill‘(ft,n+i + Z ﬁ]f,kfn + nykflm +p Z a£§ﬁ7n+s

i>k i>k i>k

+pzﬁk’fn+'"“+pzﬁfm"+‘ 1+ZZ% (fatjnti +Pfij)

i>k Jj=2i>k
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k—1 . k=1
+ Z Zﬁlgik(fn+j,i +pfn+i,j) + Z ’ygk<fn+j,m +pfmj))
=

j=2i>k J
= esn+t T+ Z a]?fﬁv,n—i—i + Z Blﬁ{(fsz + V/ffsm — €t nts — Z a/ifft,n—i—i
i>k i>k i>k
k k k k k
=Y B fi= B i+ X O frnit X B fui B fom
i>k i>k i>k
k k k
i>k i>k
= €sntt —Crn+st Z Oﬂ;if(fs,nﬁ + pfi,n—i-s) + Z ﬁ]ﬁf{(fsz + pfn+i,n+s)
i>k i>k

+}/l‘<k(fsm +pfm,n+s) € (Pq//((Pq/(B)) =By.

Therefore, (forall 1 <s <t <k)

bgf = €sntt —Crn+st Z a]if(fs,n—o—i + pfi,n—i—s) + Z ﬁ/ﬁf{(fsz + pfn+i,n+s)
i>k i>k
+Yltck(fsm +me,n+s) € Bq = (Pq”((Pq’(B)) = ¢q(B)a
so (3.8.22) is proved, as required.

Claim 4: There is a special inner automorphism ¢, : A — A such that

BV = e —erni1 € 0 (By) =By, (3.8.23)
and (for s > 1)
by = e — eyt Zka;i{f (frmsi +Pfinte) (3.8.24)
>
+Y B (it P Suinse) + B (fim+ P fnnst) € By,

i>k
By Claim 3, there is a special inner automorphism ¢, : A — A for some ¢ € u”(R) such
that b’} = e 1k — €k nts € By and (for r < k)
bgltl = C€sntt —Crnts + Z a]tcll'c(fs,n—ki + pfi,n—|—s)
i>k

+ Y Bl (fsi+ P atines) + U (fom+ P fmnts) € By

i>k

Consider the special inner automorphism ¢, : A — A, where

k—1 . k—1 ‘
@ o= ) ) O‘lﬁik(fnJrj,nJriJFPﬁj) +Y Zﬂ,{f(fn+_,-,i + P futij)

J=2i>k Jj=2i>k

k=1
+ Z Ylgk(fiwj,m +pfmj) € u*(R).
=2
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Put B, = ¢,,(B,) and bg,l) = @, (b)) for all s and ¢. Since R*> =0,
1
B = onl 0 = (1 a1 =)

. -
= (I+ Z ) O‘/if(fnﬂ,wri +pfi)+ Y Zﬁ/gl'k(fn—i—j7i+l)fn+i7j>

Jj=2i>k J=2i>k

k-1
+ Z Yklk(fnﬂ',m +Pfmj)) (€1 sk — erns1)(1 —q1)
Jj=2

k—1
= (eln+k_€kn+1 Zzakz fn+jn+l+pflj)

j=2i>k
k—1

_Zzﬁkz fn+]l+pfn+l7]) ZY]Zk(fn-i—jm"‘pfmj))

j=2i>k Jj=2
= €|tk —Cknt1 € Qg (By) = By,

and (for all r < k)
1
b = oul )= (4Bl —a)

- 1+ZZO‘kl f"+]"+l+pflj +ZZB fn+]z+pfn+w)

Jj=2i>k Jj=2i>k

+ Z '}’/ fn+] m +pfm]))(el,n+t —€rn+l + Z altci'{(fl,n—i-i +pfi,n+1)

i>k
+ Z Bl (fri+ P fvinst) + W (fim+ P fnnt)) (1 = 1)
i>k
= (et —€rnr1+ Z O‘ltclf(fl i+ Pfing1) + Z ﬁ/éf(fli +P forins1)
i>k i>k

+ﬁk(flm + pfm,n—i—l) —p Z altci'(fi,n—l—l —p Z ﬁlg‘{fn—l-i,n—kl

i>k i>k
—Pﬁckfm,nﬂ)(l —q1)
= (etntt—erns1+ Y, 0 frari+ Y Bifrit Y fim) (1

i>k i>k
k—1 . k—1 .
- Z Z O‘]Zi (fn+j.,n+i+pfij) - Z Zﬁ/fl (fn+j,i +pfn+i,j)
j=2i>k j=2i>k

k-1
ik
=Y W (forjm+PSmj))
=
= elnqr— Z oK fi i — Z B fii = Y fim — e

i>k i>k
+Zak1fln+z+2ﬁklflz+}/]; Jim= €l n+t — €rnt+1 € By,

i>k i>k
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Hence, bg}) = el 4+t —€rn+1 € By, forall 7, so (3.8.23) is proved. It remains to show that
(3.8.24) holds. By applyin to "/ for all s > 1, we get that
y applying ¢g, st g

B = g, (b)) = (1+q0)b(1—q1)
k-1 . k—1 ,
= 1+ Y Y o jmri+0f)+ ¥ Y BEFsji+pFuri))
J=2i>k j=2i>k

=1
+ Z Y/!k(fnﬂ',m +pfmj))(es,n+k - ek,n—i—s)(l - QI)
J=2

- (es,nJrk — €k.n+s + p Z a]g'{fi,nJrk + p Z ﬁkslkfnJri,nJrk + pyzkfm,n+k) (1
i>k i>k

k—1 ) k—1 .
-y ) a;ff(fn+j.,n+i+Pﬁj) -Y Zﬁ,ﬁf(fnﬂ,i + P fatij)

j=2i>k j=2i>k
k—1 "

=Y W (fatjm+PInj))
j=2

= ek —Cknrst Y, O fintit Y B fii+ W im0 Y O finik

i>k i>k i>k
+p Z Blgcfn—&-i,n—i-k + p’}flzkfm,n—kk
i>k
= €sn+k — Cknts + Z a]ill‘c(fk,nJri + pfi,n+k) + Z B]i,k (fki + pfn+i,n+k)
i>k i>k

+’kak(fkm +pfm7n+k) € Bq1
and (for all t < k)
1
b = 0 (bl) = (1+q1)bl (1-q1)

k=1 . k—1 .
= (1+)} ) O‘/if(fnﬂ,wri +pfi)+ ) Zﬁ/gl'k(fn—i—j7i+l)fn+i7j>

j=2i>k j=2i>k

k-1
+ Z ’ykjk<fn+j,m "‘pfmj))(es,n—i-t — € nts T Z a]i?(fs,n—ki + pfim—i—s)

j=2 i>k
+ Z ﬁlg((fﬂ + pfn+i,n+S) + ﬁk(fsm + pfm7n+s>) (1-q1)

i>k

= (eS7n+f — €1 n+ts + Z allcf (fs7n+i + pfiJH—S) + Z ﬁlZ( (fsi + an+i7n+S)
i>k i>k
+7’Irck(fsm + pfm,n—i—s) + p Z O‘]}vll'cﬁ,n—i-t —p Z a/tglicfi,m—s
i>k i>k
+p Z Blilkfn+i,n+t —p Z Blg'cfn-l—i,m—s + P?’;ﬁkfm,nﬂ
i>k i>k

_pﬁkfm,nwLS)(l —q1)
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= (es,nth — €tnts + Z a]i];fs,n+i + Z Blgcfsl + ﬁckfsm +p Z (Xig-(ﬁ7n+z
i>k i>k i>k
k k e ik
+0 Y Bl favintt PR funs) A=Y, Y ol (futjnri+0fi))

i>k j=2i>k
k—1 " k—1 "
- Z ZB}Z, (fn+j,i+pfn+i,j) - Z Y/f (fn+j,m+pfmj))
J=2i>k j=2

= €sntt — Z a]ilicfsmﬁ—i - Z ﬁlg(fsz - '}/];kfsm —€rn+s Tt Z a]g{ftm—i—i

i>k i>k i>k

+ Z Bkyzkflt + Y/ikflm + Z O‘/lclicfs,n—i-i + Z ﬁlgcfsz + er(kfsm

i>k i>k i>k

+p Z Oéif‘fi,m +p Z ﬁlfzkfnnLi,nth + PV]ikfm.,nH

i>k i>k
= €sntt —Ctnt+st Z O‘]ff( (ft,n+i + Pfi7n+z) + Z ﬁlfzk (fii + an+i,n+t)
i>k i>k
+Yl§k(ftm + P fmntt) € By,

Therefore, (forall 1 <s <t <k)
1
bgt) = €sn+t —Crpts T Z szff‘ (ft,n—H + pfl}n-i—t) + Z ﬁkszk (fii + P fotin+t)
i>k i>k

+'}7<Vk(ftm + pfm,n—i—t) € B(h

and (3.8.24) is proved, as required.
CLAIM 5: There are k — 2 inner automorphisms @,, (1 = 1,...,k—2) such that

k—
b D = eyt — i € @g (.04 (By)...)) =By, forall 1<t<k (3825

and (forall k —2 <s <t <k)

k—2
bgt ) = €sntt — C€tnts + Z algc(fl,n+i + Pfi,n+t)
i>k
+ Z ﬁ]f,k (ftz + an+i,n+t) + '}’lzk (ftm + pfm,nth) S BQkfz‘ (3~8-26)
i>k

We are going to prove Claim 5 by induction on t. The base of the induction (when 1t = 1)
being clear by Claim 4. Suppose that 1 > 1. Put k¥ = k — 2. By the inductive hypothesis

there are K — 1 inner automorphisms ¢,, (r=1,...,k — 1) on A such that

be‘” =erntt —Cintr € Oge (.. @y (By)...) =By, , forall r<t<k



3.8 Proof of the main results

120

and (fork — 1 <s <t <k)

st

b(K_l)

€sn+t — €t nts T+ Z a]if'c(ft,n—i-i + pﬁ,n+t)
i>k

+ Z B (fiit 0 farints) + BE(fim+ 0 fnnti) € By, ;-

i>k

Consider the special inner automorphism ¢, : A — A, where

- Z algk<fn+lc,n+i+pfik') - Z ﬁlgk(fn-i-lc,i"_pfn—i-i,lc) - '}/]fk(fn—i—lc,m +me1<) S u* (R)

i>k

i>k

(3.8.27)

Put By = ¢, (Bx—1) and cg, ) = (pq,c(b(K 1)) € B forall sand . Recall that 1 <r <x—1.

Since R? =

(x)

Crx

0,

0 (b)) = (14 )bl V(1 - gx)
I_Zaki (farxnri+Pfix) _Zﬁki (fatici + P Sutix)

i>k i>k
_’}/Il(k(fnJrK',m + P finx)) (€rnix —exnir) (1 —qx)
(er,n+1< —€xntr +p Z algkfi,ner +p Z Bkiikfn+i7"+r
i>k i>k
+P Ylfkfm,n+r)(l + Z ‘ngk (fn+1<,n+i + pfn()
i>k
+ZB fn+Kz+an+t K)“"Yk (fn+1<,m+pfml<))
i>k
Crnt+x T Z Ocllikf rni Z ﬁkfkf ri T Y kf rm
i>k i>k
—exntrt P Z O‘lgkfi,n+r +p Z ﬁ]gkfnﬂ,nﬂ + p'}/lfkfm,n+r
i>k i>k
erntx — €xntr T Z 06;5" (frntit+PSfintr)
i>k

+ZB frz+an+:n+r)+}’k (frm+pfm_‘n+,) GBqK.

i>k

and (for all kK # ¢)

(x)

Crt

0 (b ) = (1 )by V(1 —gx)

(1=Y & (furicnti+0fic) = ¥ BE(Farwci + P fovi)
i>k i>k

_'}’Ifk(fn—i—icm'f‘l)fmk))(ern-i-t_etn+r)(1_qK)

(ern—i-t € n+r 1 + Z fn—H( n+i+ pfnc)
i>k

+ZB fn+1€l+pfn+t K') ’}’fk(fn+1<,m+me;<))

i>k
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(x)

Cr' = erntt—e€nir € By, (3.8.28)
Note that if s = K, then 7 > K, so by applying ¢, to b§f “Din (3.8.27), we get that
) = 9 bd") = (1+a0bl (1)
= (1 - Z aki fn+K,n+i +Pfi;< - Zﬁki fn+K,i +pfn+i,1€)
i>k i>k
_'ykKk(fn—i—mm + P fox)) (€xcnrt — ern+x+ Z O‘lgk(fm—l—i + 0 fintt)
i>k
+ZB ﬁz+pfn+ln+t)+Yk (ﬁm+pfm,n+t))(1_CIK)
i>k
= (exntr —Crntr+ Z Ot;lik(fr,nﬂ +pfintt) + Z Blgk(fti + P fatintt)
i>k i>k
‘H’k (ftm +P fntt) Z akz fl n+t — P Z ﬁkl Snvinte
i>k i>k

—p Yl?-kfm,nﬁ—t)(l - qK)
= (exn+t —€rnx+ Z O frni + Z Bk fii+ v fim) (1

i>k i>k
+). O (foxenvi+0.fix) + Z BE (fasrci+ P fati)
i>k i>k
+}/Il(k(fn+K,m + merc))
= €xntt —Crntx — Z Ocllikft.,m - Z ﬁklikfti - Ylfkftm
i>k i>k
+ Y o frnri+ Y BE fii U fom
i>k i>k
= exntr —Crn+x € By, (3.8.29)

Recall that r =1,..., Kk — 1. Put bﬁi) = {cgi),enﬂ,,( —en+,<,t,c$§)} € By, (k <t <k)and

bEtK ) = c§,’< ) for all of the remaining indices s and 7. Then

b%) = Cg;i) (entr,c — en+tx, t)ng) + Cg;() (éntr,x — en+x, I)C;(’;f')
= (ern+i—exntrt Zakz (frnti+ P fintr) + ZB (fri + P frtintr)
i>k i>k

+’)/Ifk(frm + pfm,n—l—r)) (en+l,1< - €n+1<,z)C$§) + CS(’:) (en—O—I,K‘ - en—‘rk‘,t)c;(ﬂi)
= _ert(ek,n+t - 6t,n+;<) + (ex,n+t - €t,n+1<) (€n+t,1< - en—i—K,t)C;(f’;)
= emtxt+ (emc + ett) (er,n—Hc —exntrt Z algk(fr,n-i-i + pﬁ,n+r)
i>k
+ZB frz"‘an—H n+r)+')/]§k(frm+pfm,n+r))
i>k
= €rntxk — €xnitr € BqK'

Combining this with (3.8.28), we get that b = e,4s — €1ir € By for all r < ¢ < k.
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By (3.8.29), b\ = ¢\ = ¢y iy — enix € By, for all k <t < k. Recall that k = k — 2.
Therefore,

bgﬁz) =einyt—ept €Bg forallt=1,...,k, 1<r<k

and (3.8.25) is proved. It remains to show that (3.8.26) holds. Recall (3.8.27) that for all
K—1<s<t<k,wehave

bgt’(_l) = €sn+t — €tn+ts + Z a]ﬁ{'{(ft,n—i-i +pfi.,n+t)
i>k
+ Z ﬁlflk(ftl + pfn—i—i,n—H) + ’ylik(flm + pfm,n—H) S BqK-
i>k
Note that if s > K, then 7 > K, so by applying ¢, to bgf “Vforall s > K, we get that
—1 ~1
b = el = o (0 ) = (1 +a0bl (1 - i)
= (1- Z algk(fn-i-lc,n-i-i +pfix) — Z ﬁkfk(fnwc,i + P fatix)
i>k i>k
Kk sk
Y (fntiem + P ) (€snte — €rns + Z i (fon+i+ P fintt)
i>k
+ Z ﬁ/?,k(fn + P frvintt) + ﬁvk(ftm + P fnnte)) (1 —qx)
i>k
= (€s7n+t — €tnts + Z alif(flﬂn—ki + pfi7n+t) + Z ﬁkslk(ftt + pfn+i7n+t)
i>k i>k
AR fom P Fnns)) (L Y G (furrcnri+ P fix)
i>k
+ Z Blgk(fnﬁqi + an+i,r<) + ylfk(frH—K,m + pme))
i>k
= C€sntt —Crn+sTt Z Oiff (ft,nJri + pfi7n+t)
i>k
+ Y B+ P favianse) + R (fim + P finsrse) € By
i>k
Therefore, (3.8.26) is proved, as required.
Now, we are going to define the final special inner automorphism in order to complete
the proof. By Claim 5, there are k — 2 inner automorphisms ¢, (1 =1,...,k—2) such

that

k—2
bgt ) — eintt —Cint1 € Pg_, (.. @y (By)...)) =By, forall 1<t<k
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and (forall k—2 <s <t <k)

k—2
By Y = eonii—ensst Y O (fintjt Finte)
>k
+ Y BEfij+ fuvjnst) + W (fim+ fnnss) €B
kj\Jt] n-+j,n-+t k tm m,n+t qr—2"*

Jj>k
Put v = k — 1. Consider the finial special inner automorphism ¢@,, : A — A, where
Qv = — Z O‘]Xjk(fn-l—Wn—i—j +pfiv) — Z ﬁkv]k(fn+v,j +pfatjv)
J>k j>k
_YIz/k(fnJrV,m +pfmv) € u (R).

Put B,, = ¢,,(B,, ,) and bgt ) = ¢q, (by k= ) forall s and ¢. Then forall 1 <1 <k—2, we

have

k—2
by = g, (bly 7)) =(1+a)bly P (1-qy)
= (1 - Z (ij fn+v,n+j+pfjv - Z ﬁkj'](<fn+v7j+pfn+j,v)
j>k j>k

—?’lllk(fnJrv,m +Pfmv))(€intv —evar) (1 —qv)

= (el,n+v —eynt1t+P Z a/:/]kfj,nﬂ +p Z ﬁkvjkfnJrj,nJrl
>k >k
—I—p}’,fkfm,nﬂ)(l + Z (X;fjk(fn+v,n+j +pfiv)
>k
+ZB fn+Vj+pfl’H—j V)+7/k (fn+Vm+pfmv))
j>k
= eptvt Z a;fffl,n+j+ Z ﬁkvjkftj + Vlrkftm
Jj>k j>k
—eynt1 TP Z O kf/ nt1 TP Z Bkvjkfn-i-j,n-i-l +P?’12/kfm,n+n
>k j>k
= €iptv—Cvppt Z O‘/Z]k(fl,nﬂ +Pfjn+1)
J>k

+ZB flj+pfn+1n+l)+}/k (flm‘l‘pfmn—i-l) qu

j>k
and (for all v #1 < k),

BY = 0,5y =(1+g)b P (1-gq1)
- 1_Z.O‘kj f"+V7n+j+pfjv Zﬁ fn+Vj+pfi’H—jV)

J>k j>k
—’Y/Xk(fnJrv,m +pfmv)) (€ nt —€rntr) (1 —qv)

= (€l7n+t - elJH—l)(l + Z alz/jk(fn—i-wn—i-j +pfjv)
j>k
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+ Y B furvii + P Fariw) + W Frsvim+ P fouv))
j>k
= C€intr—C€rnt1 € qu- (3.8.30)

Note that if s > k — 2, then only option remaining for s is s = k— 1 = v. In that case t =k,
: (k—2)
so by applying ¢, to by

B = g (0% = (144,65 P (1 gy)

= (1- Z O‘/z}]k(fn+v,n+j +pfiv)— Z Bkvjk(fn-‘rv,j +pfatjv)
j>k j>k
_yzk(fn-i-wm +pfmv))(ev ik — exniv+ Z akv_,k(fk7n+j +Pfjntk)
J>k
+ Y B (fij + P fu i) + W (e + 0 fonnric)) (1 — qv)
J>k
= (evartk — €ntv+ Y, O (fintj+ P Linsk) + Y, Bef (fej+ P Fosjnt)
Jj>k j>k
+YkYk(fkm +pfm,n+k) —p Z alyjkfj,nJrk —p Z BkvjkfnJrj,nJrk
j>k j>k

_pYIzkfm,an)(l —qv)

= (evatk—€kntv+ Y, Oﬂkv,kfk,nﬂ +Y B fi+ W fim) (1

for all s > k— 2, we get that

j>k j>k
+ Y O Fusvinei +PFiv) + X B v+ P Fusiv)
Jj>k >k
+’}/I¥k(fn+v,m + mev))
= (evnik—Ckniv— Y, Otzfj-kfk,w =) l3kvjkfkj — W fim
Jj>k j>k
+ Y & fenri+ Y B fei+ 0 fim
j>k j>k
= eypik—Chniv € By, (3.8.31)

Put bt = (b1 sty — enivio bV} € By, (by Lemma 3.1.3) and b = b)) € B, for

of all the remaining s and ¢. Then

bgl\c/) = b%) (en+k,v - en+v,k)bs/‘]/¢) + bE/‘]/C) (en+k,v - en+v,k)b§://)
= (el,n+v —eynt1t+ Z a]:/jk(fl,nJrj +Pfj,n+l) + Z Bkvjk(flj +an+j,n+l)
i~k >k

+V/§k(flm + P fmnt1))€niky — €n+v,k)bs,‘;/{) + bs,‘,? (entky— €n+v,k)b£‘\j)
= _elk(ev,n+k - €k,n+v) + (€V7n+k - 6k,n+v) (€n+k,v - €n+v,k)b5¥)

= eintvt (evv + ekk)(el,n—f—v —eynpt1+ Z a]XJk(fl,n—ﬁ—j +pfj7n+l)
j>k
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+ Z ﬁkv]k(fl] + P fotjnt) + '}/l:/k(flm + P fnnt1))
j>k
= €in+v —€ynt1 € qu-
Combining this with (3.8.30), we get that b\\) = e, s — erns € By, fori=1,... k—2
andall 1 <t < k. By (3.831), b)) =bY) = ¢, s — exniv € Byy. Recall that v =k — 1.
Thus, bgf) =€y ntt—€nts €Bg, =By, foralll <s<t <k Put@=¢, ,0...00;00,.
Then ¢ is a special inner automorphism with

ET ={esnit—ernis |1 <s<t <k} C@(B)NS,

as required.

Case (3): Suppose that & = E~ = {eg i1 +erpnts | 1 <s <1 <k} C su”(S) = sp,,.
As in the proof of Case (2) there is a special inner automorphism ¢, : A — A for some
g € u (R) such that

{bsl = €5 n+t T €t nts | I<s<t< k} - (Pq(B) ns.

It remains to show that ¢; ,4; € @,(B) NS for all 1 <i <k. Put by = bgrepys, by and
bgs = bgen by forall 1 <.t < k. Since e,;; € K forall 1 <i<k, by Lemma 3.1.3,

bgs = bsten+t,tbst = (es,nth + et,n+s)en+t,t (es,nth + et,n+s> = €5n+s € Py (B);

by = bsken+s7sbst = (es,n—i-k + ek7n+s)en+s,s(es,n+k + ek,n+s) = €k nt+k € @y (B)

Hence, ¢; o4 € ¢4(B) forall 1 <i<k,so
E = {es,t—o—n‘f‘el,s—l—n | 1 <s<t< k} C (pq(B) ﬂS,

as required.
Now, by Case (1), Case (2) and Case (3), there is a special inner automorphism @, :
A — Asuch that & C @,(B)NS. Since R?> =0, ¢,(r) = r for all r € R. Therefore, ¢,(B) =
¢4(B)s © @4(B)r, where @,(B)s = ¢,(B) NS and ¢,(B)r = ¢4(B) & R. By changing the
Levi subalgebra S into S’ = ¢;1(S), we get that B = By & Bg, where By = BN S’ and
Br =BNR. Since g € u (R), by Lemma 3.8.6, S’ is x-invariant, so B *-splits in A.
]

Now, we are ready to proof Proposition 3.8.3.
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Proof of Proposition 3.8.3. We identify A/R with S. Since S is involution simple, by
Proposition 3.3.2, S is either simple with involution, or S = S| @ S}, where S is a simple
ideal of §. If § is simple with involution, then by Lemma 3.8.11, B *-splits in A.

Suppose that S = S§; @ S7. Then by Lemma 3.4.3 (ii), R is either x-invariant irreducible
S1-87-bimodule with SR = RS1 =0 or R = U @ U* for some irreducible S1-S7-bimodule
U with SU = US; = 0, so we have two cases.

Suppose first that R =U @ U*. Put D = §; @ U. Since R*> =0, D is an ideal of A and
A = D ® D", so by Proposition 3.6.12, B x-splits in A.

Suppose now that R is a x-invariant irreducible S;-S7-bimodule with RS = S*R = 0.
Recall that A = A/R is identified with S. Since B is Jordan-Lie inner ideal of K1) =
su’(A) = su”(S; ®S}), by Proposition 3.3.3, B = (¢ + f*)K(f +&*) for some orthogonal
idempotents € and f of S;. By using Lemma 3.3.6, we fix standard bases {e;; | 1 <
i,j<n}, {ej|1<i,j<n}and{fij|1<i,j<n}of S, S} and R consisting of matrix
units such that e;; = e’ji, the action of S1-S7 on R correspond the matrix multiplication
and B is the space spanned by & = {eg — e, | 1 <s < k<[ <t <n}. Note that A
satisfies the conditions of Lemma 3.4.7, so u”(R) = {X € .4, | X' = pX} (p = £1), that
is, {fij+pfji| 1 <i<j<n}isabasis ofu*(R). Fix any subset {by | | <s <k <<
t <n} C B such that by = ey — e}, for all s and r. We need to show that there is a special
inner automorphism @, : A — A, for some g € u(A), such that ey, — e/, € ¢4(B). This will
imply that B x-splits in A, as required.

First, we claim that

RS = span{fy+pfrs|1 <s<r<k}Cu (R)NB. (3.8.32)

We have Ry C u”(R). As by = e — el for all s and ¢, we have by, = ey — e/ +ry for some
rg €u’(R). Since RS| = SiR = R> =0, by Lemma 3.1.3,
{bstaﬁ‘q + pfqt» brq} — bst (ftq + pfqt)brq + brq(ftq + pfqt)bst
= (eq—ej+ rst)(fig + P far)brg + brqg(fiq + P for ) bst
= fsqlerg— e/qr +7rg) + (€rg — e;r +7rg) (frg + P St st
= —fo+pfules —e+rs)
= _(fsr+pfrs)€B-

Moreover, if p = -+, then f;, € su” (A) forall / <t <n, so by Lemma 3.1.3,

bstfttbst = bstfttbst = (esz - e;s + ”st)fttbsz = fsz(est - e;s + rst) = fss €B.
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Therefore, Rg C u"(R) N B, as required.

Next, for every by = ey — e}, +ry € B (ry € u”(R)), we claim that

0(by) = eg—e+ Y, i (fij+pfjs) €B  forsome o)} € F. (3.8.33)
j>k

By Lemma 3.1.3, ¢y = by (e;5 — €}, )by € B. Since ry € u*(R), ry is of the form ry =
P o055 (fij + pfji), where nf € F. As RS = S{R=R* =0 and p> =1,

cst = by(es— est)bSI = (eg — em+ Z n fz;‘i‘Pfjt))(ets_e;z)bst

i,j=1
— (ess+€ﬂ anlfll‘ p Zns]fjt €5t — e[s+ Z n flj+pfjl))
i,j=1
= esr+Zmes1+PZn fsi— ezs+ZTl fis+p Z UR fjs
i,j=1

= €[Y+ZTI fsj-i-Pst +ZTI pfsj+fj5)

= ezﬁZ’? fS]+pf]S +erl fs1+pf1s)
Jj=

= e[y—’_z Tls]‘|‘Ple§ f9j+pfjs)

Put o = (03 + pnj;) forall 1 < j <n. Then

k
Cst = €5t — 615‘1‘ Z ast fsj+pfjs) - G(bst) + Z assj'(fsj'i'pfjs) €B
Jj=1

j=1

By (3.8.32), Z’]‘.Z] Ocssj-(fsj +pfis) € Rg CBforall 1 <s<k,so0(by) € B, as required.
Now, by (3.8.33), there are coefficients such that

by =eg—e+ Y i (fij+pfis) €B, forall 1 <s<k.
j>k

Put b = by, € B and for s > 1 set b}) = {by,exs — €},,b1;} € B (by Lemma 3.1.3).
Since RS} = S{R =R> =0,

1
bﬁt) = bg(en —€,)b1: +bii(en1 — €},)bsn

= (esn em + Z a ij +Pfjs))(€n1 - elln)blt +b1t(€n1 - elln)bsn
j>k
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= eqlen—en+ Y, aii(fij+0f1)) +bii(en —€),) b

j>k
= eyt Z allj'fsj + (e —epy + Z O‘llj'(flj +pfi))(ent —e€l,)bsn
j>k j>k
= eSl+Za11§'f5j etn pzaljfﬂl €sn — ens+zasn f5j+pfj5))
j>k Jj>k j>k
= es[—FZ(Xll;fsj—e;S—FPZOC Sis = est — ets+2a fSJ“‘prS) B,
j>k j>k j>k

SO

bgtl)—est e,s+2a (fsj+pfjs) forall 1<s<k<I<t<n.
j>k

Consider the inner automorphism ¢, : A — A, where

=) aof H(fajtpfin) €W “(R).

j>k
Since RS| = S{R=R?> =0,

0 (bY) = (1+a1)b}, (1= 1)
= 1"‘205 fnJ‘I’Pf]n))(eln_e:ql"'Zally(flj‘FPfjl))(l_ql)

j>k j>k
! 1 1 1
= (em—e€yu+ Y, i (fij+pfin)—oinfu—p Y, i} fin)(1—q1)
>k >k
1 1
= (eln_eil]‘f‘zal_?flj_al::fnl Za fn]+pf]n))
j>k j>k
1 1 1 1
= ein— Y, 04 fij— POy fin— €y + Y 04T fij— 0y
J>k j>k

= eln_e;ﬂ - allrrzl(fnl +pf1n) € @y, (B>
Since @, (B)> =0,
0 = (P611( (1))2 - (eln _e/ - allr’:(fnl +pf1n)>(€1n _eifll - allig(fnl +pf1n))
= _alnf11+pa1nf11__<aln paln)fll

We have two cases. Suppose first that p = —. Then 0611;’ =0, so

Pq, (bgi))

Suppose now that p = +. Then

0 (B\)) = €1, — ey — a2 (fur + fin) € 94 (B).

=e1,— €y € @y (B). (3.8.34)
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Consider the special inner automorphism ¢, : A — A, where

Since SR = RS| = R%? =0, we get that

00 (9, (b)) = (1+q2)05, (b <>><1—qz>
= (1- r'ffnn)(eln — a2 (fur + fin)) (1 — q2)
= (emn— aln(fli’l +fn1) +ayn fu)(1—q2)
= (em— O‘lnfln)( +(X1n )
= €1n+a1nfln—€;z1—0‘11,7f1n
= ein—¢€p € Qg (g, (B)). (3.8.35)

Put @, = @, (if p = —) or @, = @y, 0@, (f p=-+). By (3.8.34) and (3.8.35), for
any choice of p, we get that e;, — ¢/, € ¢,(B). Note that ¢, : A — A is a special inner
automorphism with ¢ € u*(R). Put bff) = ej, — €}, € @4(B). For all of the remaining

indices set bﬁ,) = 9((pq(b( ))) € @,(B). Then by (3.8.33), there are coefficients such that

st

b = ey —els+ Y Bl(fi+PSis) € @y(B).

>k

Put Y = b2 = ¢, — ¢/ € B,. Forall s > 1, set bl = {b\3), e — €},,b'>)} € 9, (B)
(by Lemma 3.1.3). Since RS; = S{R = R*> =0, for all s > 1, we have

bY) = b (ew — €))% + 61 (ens — &},

1n 1n
= (eo—eht+ Y B fsj +pSs)) (en — €5, )b ) (enr — €, )05
>k
esi(€1n— )+ (e1n— €y ) (en1 — €)DD)
= em+ (311 + e:,n)(esn - e;s + Z ﬁlljn(f:?j +pfjs))
>k
= € _e;s € (pq(B)'

Since bﬁ) =e1n—e€; € ¢y(B), we get that bﬁ?) = ey — €, € Py(B) forall 1 <s <k.

Put bgﬁ) = e+ €, € P (B) and for all 1 < n set

b =05 =eq—ely+ Y Bl fij+pSis) € 94(B).

j>k
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Since @,(B)> =0, for all 1 <s,r <k, we have

0 = b6 = (e —eiy)(en—elt Y B+ Pfir) = PBLL fir:

j>k
0 = bg?)bgg) = (esr — e;s + Z ﬁ]ljt' (ij + pij))<erq - e;r + Z B]qu(frj + pfﬂ))
>k j>k

= pﬁlltqfsr ﬁ fsr (ﬁllct]_pﬁlltq)fsr-

Hence, for all ¢, we have
=0 and Bl'—pB//=0 forall I<j<n. (3.8.36)

Thus,
b = e — e+ Y. Bli(fsi+pfis) € 0(B).

k<j<n
Consider the special inner automorphism ¢, : A — A, where

Z B ﬁj+pfji) € u*(R).

k<u]<n

Since RS; = SR = R> = 0, by using (3.8.36) that B/ —pBli=0 (forallk < j <n), we
get that

o) = (a1 - = (45 L Bl +pfi)en e

k<i,j<n
+ Y BlU(fii+pfi)(1—g3)
k<j<n

= (ex—ep+ Z ﬁl (fsj+pfis) — 5 Z ﬁ fis

k<j<n k<z<n
2: ﬁ j}s )
k<]<n

= (eq—e+ Z ﬁllf:Yj+ Z PB 11tj)ij)(1_q3)
k<j<n k<]<n

= (ew—eit Y, Bijfsi+0)( 1—— Y. Bij(fi+pfii)
k<j<n k<uj<n

— S Z [3 fsj P Z Blltlfsl em"" Z ﬁ ij

k<]<n k<J<n k<j<n
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1 .
= €Egq — €;s + 5 Z (pﬁlljt — 11t])fgj = €5 — €;S - (P%((Pq(B))

1<j<n
By applying ¢, to bgﬁ) = ey, — €),; € Py(B), we get that
0(Bi)) = (14+q:)bh (1-g3)
1 1i /
= (145 X Bi(fy+pfi)lesn—en)(1—q3)

k<i,j<n
1 .
= (esn - e:ls)(l - E Z ﬁll]l'<fij +pfji))
k<i,j<n

= €sn _e:zs S (Pq3(§0q(B))'

Thus,
& ={ex—e | 1 <5 <k<I<t<n}Cu(py(B))NS.

Therefore, by changing the Levi subalgebra S into ' = ¢ 1((pq;1 (S)), we get that B x-
splits in A, as required.
O

Proof of Proposition 3.8.4

We will need the following lemma which represents a special case of Proposition
3.84.

Lemma 3.8.12. Theorem 3.8.1 holds if A/R = S1 ® S, where Sy and S, are both simple
with involutions and R = U & U*, where U is an irreducible S1-Sy-bimodule such that
Us,=SU=0.

Proof. We identify A = A /R with S} @ S;. Since Sj and S, are simple with involutions,
by Lemma 3.4.8, for each i = 1,2 we have u"(S;) & S0m;,5P2,, (Mj = 2n; + 1 or 2n;)
andu”(R) = {(r,—r*) | r €U} 2 U = Myn,m,. Recall that B is a Jordan-Lie inner ideal of
KM =su™(S). As S is semisimple, by Lemma 3.3.12, B = X| @ X,, where X; = BNsu™(S;)
is a Jordan-Lie inner ideal of su”(S;) for each i = 1,2. As in the proof of Lemma 3.8.10,
we fix standard bases {e;; | 1 <i,j <m}, {gij |1 <i,j<mp}and {fij |1 <i<my,1<
J <my} of Sy, Sy and U, respectively, consisting of matrix units, such that the action of

S1 and of S on U corresponds to matrix multiplication and X; is the space spanned by
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&; C S;, where &; is one of the following:
Er={eintr—enm1 | 1<t <ki<ni}Csu (S1)=50m:;

Ef ={egnm 11— €ermss | 1 <5<t <ky <m} Csu' (1) = 50pm,,5P,;
Ey={hig=8inytq—8qmr1|1<q<ky<m} Csu (852) = 50y
E; = {hfq = 8rnytq — E8qm+r | 1 <1< q<hky <m} C su*(S2) = 50my,5P2p, -

Put Ay = S, @R and B, = BNsu (A;). Then B, is a Jordan-Lie inner ideal of su”(A»).
Since B, contains the preimage of X5 in B, we have B, = X,. We may assume that B,
is X>-minimal (if not, then it contains X,-minimal Jordan-Lie inner ideal of su” (A2)).
Thus, B, satisfies the conditions of Proposition 3.8.2, so there is a Levi subalgebra S’2
of Ay such that By = By, @ By, where By, = B, NS,. Note that B, = By = X5. By
Theorem 3.8.5, there is ¢ € u”(R) and a special inner automorphism ¢, of A such that
Sy = @4(55). Since By, C S5, @y(Bay) € 9,(S5) = S2. Moreover, by Lemma 3.8.7,
¢4(B2y) = By, = By = X5. Recall that X C S, so both @,(Ba,,) and X, have the same
image in Ay = Ay /R. Since both of them are subspaces of S,, they must be equal. Thus,
X, = (pq(st,) C @y(B2) NS, s0 & C @u(B2) NS2 € ¢y(B)NS. We will deal with the
Jordan-Lie inner ideal B, = ¢,(B) of K (1), Our aim is find a special inner automorphism
of A such that B, = ¢,(B) contains both &} and &5. This will imply that B *-splits in A. Let
B be the image of BinA =A/U* =~ A®U. Since R =U ®U*, by Lemma 3.8.8, to show
that B *-splits in A, it is enough to show that B splits in A, that is, there is a special inner
automorphism of A such that B, = ¢,4(B) contains both &1 and & . To simplify notations,
we will re-denote A, S, R, B, & and & by A, S, R, B, & and &, respectively. Thus, R = U
and A/U = S. We need to show that B splits in A. Recall that & is either E; C s0,,,, or
E 1+ C 50, or E;” C spy,, . Hence, to complete the proof we need to consider three cases.

Case (1): Suppose that & = E; C su”(S1) = $0,,. We wish to show that there is
a special inner automorphism ¢q : A — A such that &7, C ¢4(B,). Without loss of
generality we can assume m = 2n+ 1 (the case m = 2n will follow immediately). Fix
any subset {b; | 1 <t <k} C B, such that by = €1+t — €rn +1 for all 1. Then b, =
€1n+t — €n+1 + 17 for some 1, € U. Suppose that & = E5. Since R? = S,U =0, by
Lemma 3.1.3, for all hfq = €l nyt+q — €qm+1 € EF, we have

{bﬁfl’l]‘l’l,q?hfq} = btfnlth,qhi:q—i_O = (617”1+I €+l +r’)fn1+fthi:q

= flq(glmz-i-q _ggqmz-&-l) = _gfl,nz-l-l € Bq;
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{btafnl-l-l,l?h?q} - btfnl—i-t,lh?q‘i‘oz(el,n1+t_et.,n1+l+rt)fn1+t,1h21?q

= Ju (gl,nz-i-q - qu7n2+1) = f17n2+q S Bq;

{btafn]+1,qah(i: } - btfn1+l,th1: +O: (el.,nlth_et,n|+1+rt)fn|+l,th
q q q

= —fiq(81,m+g — €8qm+1) = Efr 1 € By

{b, fay+10:05,} = befuy+11h5,+0=(e1n,4t — €rny+1+7¢) fu+1,105
q q q
= _ftl(gl,n2+q - egq,anrl) = _ft,nz-i-q € Bq-

Hence, fin,+j € By forall 1 <i<kjand 1 < j<k;. Note that this is also true in case
when & = E; (because hfq = 81my+q — 8qm+1 = hg € EJ NEy), so for any choice of &
we have

Ro =span{fin,+j| 1 <i<ki, 1<j<k}CUNB,. (3.8.37)

Recall that by = €1 4+ — €1 p,+1+ 1 € By forall t. Asr; € U = Mynymy»

n- n

reo= Y, Y (o fij+ Bl fimr i+ Cifarrig + 0 ifu vimrj)
i:Ij:I
i)

Z(’)/flmz +5 fn1+l mz) Z()’ fm1]+“jfm1,n2+]) +6 fmlmz cv.

i= j=1

Put ¢; = by(€n,+1.,1 — €n,+1,)b: € By (by Lemma 3.1.3). Since US; = R? =0,

¢t = bz(€n1+t,1 —€n1+1,t)bz = (el,n1+t — €t n+1 +”z)(€n1+t,l _en1+l,t)bt
ny np

= (e11+eu)(etnt+t—€rmt1+ Z Z (aitjfij +Bl'tffi’”2+j + Ciljf"1+i’j
i=1j=1
n 12
+n;jfn1+i,n2+j) + Z(%flmz + gi[me:mZ) + Z ()L;fmlj T N;fml’n2+j)
i=1 j=1

+6tfmlm2>
ny ny 2
= ettt Y, 0 f15+ Y Blifia i Vifimy —eom1 + Y, 0fi
=1 =1 j=1
n
+ Z ﬁtzjft,nﬁj""}{ftmz
= €ln+t —€n+1 + Z al]fl] + Z a[]ﬁj+ Z Bl]fl n2+]+ Z ﬁl]fl‘ ny+j

J>ka J>ka

'H’iflmz + %ffmz + Z ﬁ{jfl,nz-kj' + Z ﬁzljftﬂz—i-j
=1 j=1
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ko ky
/ t t
= bl + Z ﬁljflle—O-j + Z Btjff,ﬂz-Fj S Bq7
=1 =
. k k
Since Y72 01 f1n4j T X721 &1 frnt1 € Ro € By, we get that

b; = eln|+t eln1+1+za]]f1]+zatjﬁj+ ZBI]f1n2+J

J>ka

+ Z ﬁzjft-,nz-i-j + 7/1f1mz + %ftm S BQ’
J>ka
Suppose that & = Ef. Since §15> =0, (Bq)2 =0and h’fq = 8lmt+q— E&qm+1 € &2 C By,
we get that

0 = bihi, = (eln1+t_etn1+l+Zaljf1j+2at]ﬁ]+Zﬁl]flnz—Fj
J>ko

+ Z szfhnfrj) + Yiflmz + ﬁftm)(glﬁﬁq - 8gq7n2+1)

J>ka
t t t t
- allfl,anrq - gaqul,n2+l + aﬂft,nz—i-q - 8atqft,nz+17

forall 1 <t <kjand 1 < g <ny,so a{]—afj—Oforalltandalll<j<k2 Note that

this is also true when & = E; (because hy = g1 n,+q — 8gnp+1 = h . € E; FNE). Therefore,

b; = eI+t —Crp+1T Z aijflj—i_ Z attjftj

J>ko Jj>ko
+ Z ﬁ{jﬁmﬂ' + Z ﬁttjﬁ7n2+j + 7/1f1mz + Ytrftmz € By
J>ko J>ko

Put b = b} € By and fort <k set by = {b} ,en, 14,1 — €n 14,0} € By (by Lemma
3.1.3). Smce US| =R?*=0, we have bkl (€nythy.1 — €ny+1.k) = €11 +€xk, and b} (ep, 4,1 —

€n 41k ) = €tk » SO

/! /! / / /!
by = Dby (en 1ky,1 = eny14)br +br(€n 11,1 — €ny 1.4, )bk,
/ /!
= (611+ek1k1)bt+etk1bk1

= (en1+exn)(Cimp—emr1+ Y, 0 fij+ Y, o ifii+ Y Bijfimt
j>ky J>ko Jj>ko

k
+ Z Bttjﬁ,n2+_i + ’}/l‘flmz + Yttftmz) + elkl (el,n1+k1 - ekl ,}’l1+1 + Z al}flj
J>ka j>ko

k k k
+ Y o feit Y Bl it Y B ifamt i+ Y fim + Y fam)

J>ka J>ka 7>k

k
= el,n1+t+ Z a{jflj“f‘ Z ﬁ{jfhnzﬁ-j"'_yl‘flmz_et,n1+1+ Z aklljflj

7>k J>ka J>ka

k
+ Z ﬁklljftan"'j-i_’}é(llﬁmz

J>ka
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eln1+l_etn1+1+ Z al]flj_l_ Z akljflj—'_ Z Bl]fl ny+j

i>ka J>ka >k

+ Z ﬁklljﬁ,n2+j+}/1f1m2 +){1 Jimy € By.

>k
Therefore, for all ¢, we have
"o t k1 t
bt = C€ln+t — €tn+l + Z aljf1j+ Z akljflj + Z Bljfl,anj
J>ko Jj>ka >k

k
+ Y B frmat+ Vi fims + Ve foms € By

J>ka
Consider the special inner automorphism @, : A — A, where

ki . ki X
Y Y aiifrii— Y 0 i+ Y Y Biifurint

i=2 j>ky j>k2 i=2 j>ky

o Z Bkl]fn|+lnz+1+2ﬂfn1+zm2 ’}/(fn1+1m26U

J>ka

Since US| = R?> =0, we have qb” € U(S; +R) =0, so

¢q(by) = (14+q)b/(1—q)=b/(1-q)
= (ermpr—emp1+ Y, 04 f1i+ Y, & fii+ Y Bl ifints

J>ka J>ka J>ka
ki
k .
+ Z Bklljﬁ7”2+j + ﬁflmz + %;lftmz)(l - Z Z O‘ijfnﬁi,j
>k i=2 j>ko
ky
k j k
+ Z (Xklljfn1+1,j_ Z Z B{jfn1+i,n2+j+ Z Bklljfn1+1,n2+j
J>ko i=2 j>ky Jj>ko

ki
_Z/}/ifn1+i,m2+/}{llfn1+l,m2)
i=2
= eimi— Y, 04fij— Y Bijfimeri—Yifimy —€mti

Jj>ko J>ko
Z akljflj Z ﬁkljftnz—i-j ’}{lftmz'f‘ Z al]fl]
J>ka J>ka J>ka
Z ff]"’ Zﬁl]fln2+J+ Zﬁkl]ﬁnz+]+’}/f1m2+7/( ftm2
J>ko J>ko J>ka

= €ln+t —€n+1E (Pq(Bq)-

Therefore,

Er ={einvi—emr1 | 1<t <ki} C @q(By)NS1 € 9q(By)NS.
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Since S>U = R? = 0, we have hy,q € S2U =0, so by applying ¢q to E5, we get that

ki )
(Pq(hfq) = (1 +q)hfq(1 —CI) = (1 +q)hfq = (1 + Z Z aijf"l-l—i,j

i:2j>k2
k J : k
- Z aklljffl1+1.,j+z Z Bijfuy+im+i— Z Br, ifmi+1mr+j
J>ka =2 j>k; >k

ki
+ Z NS mtimy — %{{f S+ 1m ) (8rm+q — E8qmr+r)
i=2

= 8rm+q — €8qnm+r € ‘Pq(Bq)a

SO
E28 = {gr,nz-i—q —E8q.ny+r ’ 1<r<g< k2} - (Pq(Bq) NS.

Since E; C E5 C @q4(B,), we get that & C ¢q(B,). Therefore, if & = Ej, then @q(B,)
contains both &7 and &, as required.

Case (2): Suppose that & = E{” = {egnir —ernrs | 1 <s <t <k} C su”(S1) =50,
We need to show that there is a special inner automorphism ¢ : A — A such that &7,&5 C
@(B,). Fix any subset {by | 1 <s <t <ki} C B, such that by = €5 5,41 — €11 +s-

CLAIM 1: Ry in (3.8.37) is a subspace of B,. Since by = e+t — €+l = b, €
Eq ﬂElJr , by using the same technique that were used to prove (3.8.37) in Case (1), one
can easily show that Ry C By, as required.

CLAIM 2: For every by = €5, 41 — €1.ny+s + It (rsy € U), we have

O(by) = esnit1—€rnits+ Z O‘ss_?fsj"‘ Z aig]{ﬁj—i_ Z Bssjt'fs,n2+j
J>ka P>k 7>k

St t t
+ Z Btjft,nfrj"' Y% Jomy + % Jimy € By,
J>ky
st St St st st
where o}, 007, B, B 1 € F
Since ry € U = Mipym,»

ny ny

ra = Y Y (& fij+ B fimper i+ G furrig + 0 g ving i)
i=1 j=1

ny ny
+ Z(ngtflmz + ‘SiStfnlJri,mz) + Z (A‘;tfmlj + 'ujs'lfmhn2+j) + 5szfm1m2)
i=1 =1

for some coefficients in F. By Lemma 3.1.3, ¢y = by(€p, 41,5 — €n,+s:)bst € By. Since
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US| = R? = 0,
cst = bg(enj+r.s—enj+si)bst = (€sny+1 — €rny+s + Tst)(€ny 1,5 — €ny+s.1)Dst
ny np
= (essten)(esnrs—ermust+ Y, Y (0 fis + Bl fimj+ G frri
i=1j=1
nj
0 o vimr i)+ YV Fimy + & Furvimy)
i=1
n
2 A fon 1 oy 5) + 8 fonms)
j=1

ny ny ny
= em+t Z O‘ssj'ij + Z ss]t'f&nfrj + Vsnfsmz —Crnyts T Z O‘tsjt'flj
j=1 =1 =1
)
+ Z ﬁtsfﬁ,nz-i-j + thftmz
j=1

ny ny
1 1 1
= €sn+t —C€rp+s T Z assjfsj + Z atsjflj + Z [));jfsﬂz'i‘j
Jj=1 Jj=1 J>ka

ky ky
+ Z ﬁtsjgﬁ,nz%—j + ’ygtfsmz + Y;Wftmz + Z B;Jt'fv,n2+j + Z ﬁtsjgft,n2+j
j=1 =1

J>ka
ko ko
= 0(by)+ Z Bss_;'fS,nz+j + Z Bts_;ft,n2+j) € By.
j=1 j=1
Since 21;2:1 B fom+j+ 21;2:1 B} fim+j € Ro € By (by Claim 1), we get that

ny ny
e(bst) = €sni+t —C€tn+s + Z a;;‘fsj + Z atsjt'flj + Z [))s]t'fsﬂz'f‘j
J=1 Jj=1 J>ka

+ Z ﬁtsjﬁﬂzﬂ +% fomy + ¥ fimy € By,.
J>ka

Suppose that & = Ef. Since (Bq)2 =0and S5, = 0, for all h‘fq € E£, we have

ny ny
O - O(bst>h§q - (es7n1+t - et7n1+s + Z agjf:&‘j + Z al:gjlﬁj + Z B;jt'fg7”2+j
J=1 j=1 J>ka

+ Z ﬁzsfft,nz—kj + '}’sg;fsmz + %Sjtftmz) (817n2+q - ggq,nzﬂ)
J>ka

st st st st
aslfSle-i-q - gasqfs7n2+1 + at1ﬁ7ﬂ2+q - gatqft,nz—i-l

for all 1 < g < ks, so a;; = ch]’- =0 for all 1 < j < k. Note that this is also true when
& = E, (because hy = g1 ny1g — &g t1 = hfq € ETNE). Therefore, for any choice of
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&, we get that

e(bst) = Csni+1 —€rnj+sT Z a;;'fsj'i' Z O‘zsjt'ftj'i' Z Bssjt'fs,nz—i-j

J>ky J>ka J>ka
+ Z Bt?ﬁ,nﬁ—j + '}’sg;'fsmz + Ytyjtftmz € Bqa

J>ko
as required.

CLAIM 3: There is a special inner automorphism ¢, of A such that

& C 0y (By) = By (3.8.38)
;/121 = €s.ni+k; — €ky,ni+s € Bq’; (3839)
b_/g/t/ — €s7n1+t - et,n1+s + Z a]illc;fsj + Z ﬁ]g(}fsn+] + '}/];Iflfsmz < Bql (3840)

J>ko J>ko
forall 1 <s <t <k.

Recall that by = €5 41 — €1 pt5. Since by = €1 ¢ — €rn1 = by € ENET, by Case (1),
there is a special inner automorphism ¢, : A — A such that & C @q(B,) and @q(by;) =
€1n+1 — € +1 € Qq(By) for all t. By applying ¢ to by (for all s > 1) and using Claim
2, we get that

e(ﬁoq(bst)) = Csni41 —€rnj+sT Z a;;fsj'f‘ Z af}ftj"‘ Z ﬁssjt'fs.,nz—i-j

J>ka J>ko >k
+ Z ﬁzsfftmﬂ' + ﬁ;fsmz + szjtftmz < ¢q (Bq)-

J>ka
Put b, = @q(b1;) = €1 n+t — €rnt1 € Pq(By). Forall s > 1, set b, = {0(@q(by)), ents1 —
ent11,b),} € @q(B,) (by Lemma 3.1.3). Since US; = R* =0, we have 6(@q(by))(€n, 1.1 —

en1+l,t) = €51, SO

by = 0(@q(bst))(€n 41,1 _€n1+1,t)b/1z +b,ll(enl+l71 —en+1,4)0(9q(bsr))
= esl(el,n]th - et,n1+1) + (el,n]+t - et7n1+1)(en]+t,1 - en|+l,t)bst

= esmrit(ennten)(esni—emst Y, O fsj+ Y, O fi
J>ka J>ko

+ Z ﬂ;}fsmz—f—j + Z ﬁtS;ﬁ7n2+j + ’}{;;'fsmz + ’ytg]tﬁmz)

Jj>ko J>ko
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€sni+t — €ty +s T Z O‘ts]t‘ftj + Z ﬁzs;ﬁ,nz+j + Ytyjtftmz € ¢q (BQ>'
j>ky j>ko
Put b, = b}, =e1 n, 4+ — €1 n,+1 € Byand fors > 1,setbl = {b;k1 sy tkys—€ny+sky > Dl €
¢q(By) (by Lemma 3.1.3). Since US| = R* =0, we have b}, (e, +&, s — €n,+s.k,) = €k, and

bs/q (en1+k1 s en1+s7k1 ) = €ss + eklkl » SO

/! / /
bst = bslq (enl—Hq S en1+S,k1 )bs[ + bs[ (el’ll—"kh - en1+s ki )b9k1

= (eSS +ek1k1)(es,n1+l —€tni+s + Z flj + Z Bt tfl Mo+ j + YY ftmz)

Jj>ko Jj>ko

sk
+er, (esm—l—kl €ky ny+s T Z kl}fklj + Z Bkl]fkhnz—w + '}/]iljfklmz)
J>ko J>ka

€sni+t — €ty+s T Z (Xkllft]—i— Z ﬁkl]ft m+j+ kl]ftmz € (Pq( )
J>ka J>ka

Consider the special inner automorphism ¢, : A — A, where

ki—1 ki—1 ki—1

Z Z ali]:]jfnl“'ly] Z Z B/élf}fnwz na+j Z Y]lq an—t my cU.

i=2 Jj>ko i=2 Jj>ko

Put By = ¢, (9q(By)) and b} = @, (b}) € B, for all s and t. Since US| = R* =0, we
have (1+¢')by,, = by, . s0

= Q¢b) =1+, (1-4)=by, (1-4)

ki—1
ik
= (eLmth — et m+1)(1+ Y, Y, oc,’q‘}fnm,]
i=2 ]>k2
klf klf
+ Z Z ﬁlq]fnlﬂ n2+]+ Z ’}{q fn|+t mz))

i=2 j>ky
= el,n1+k1 _ekl,}’l1+1 S Bq/ = ¢q’<(Pq( (1))
and (for all s > 1)

"

Skl = (Pq ( Skl) skl(l - )
= (esn1+kl Chyny+s T Z ali fk11+ Z ﬁkljfk17n2+1+ylzl fklmz)(l

J>ka J>ka
ki—1 ” ki—1 ki—1
1
+ Z Z klljfn1+l,j+ Z Z ﬁk”fnﬁ-z n2+j+ Z fn1+z mz)
i=2 j>ky i=2 j>k

sk
= es,n1+k1 _ekl,nﬁ—s Z akllfklj Z ﬁkljlfk17n2+] kal fk1m2

J>ka J>ka
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k
+ Z as 1fk1]+ Z ﬁkljfkl,anr]_'_,kal fklmz esn1+k1 ek1 M1+ GB

i>ka J>ka

Therefore,

b;,/él = €5 ni+k; — €kyni+s € Bq/ = QDq/((Pq (Bq/)) for all A\

50 (3.8.39) is proved. Next, we need to show that (3.8.40) holds. Applying @ to all bf;
for all ¢ < ki, we get that

k1—1
ik
o= @y ( 1) =b(1-4)= (€1my+1 — €y +1) (1 + Z Z O‘]lqufnl-i-iJ

i=2 j>ky

ki—1

+ Z Z Bk]]fn1+l nytjt+ Z fn1+i,m2)
i=2 j>ky
= eln+t —C€rm+1+ Z a]q;flj—i_ Z ﬁkl]fl n2+J+}/];] f1m2 GB

J>ko J>ko
and (for all s > 1)

b = 9y(bh) =ba(1 =) = (et —ermss+ Y, 0411

7>k
k ! ik
s i
+ Z ﬁkl}ﬁan‘i'j_'_/}/]zl]ﬁmZ 1+ Z Z a Ifnl“’lv]
J>ko i=2 Jj>ko
ky—1 k-1
+ Z Z Bk]]fnl+l n2+]+ Z ﬁq fn1+l mz)
i=2 j>ky
= Esn+t T+ Z akljfw"" Z Bklijn2+j+’)/]‘<11f5m2_et7”1+5 Z ali ff]
7>k ]> 2 J>ky
sk sk sk
- Z Bkljl'ft,nz—i-j ftm2+ Z OCk ftj+ Z ﬁkljlft n2+j+ k”ftmz
J>ko J>ko J>ka
tk tk k
= €sn+t —Ctpn+s T Z oy lf:vj+ Z ﬁkl;f:vnz-i—]‘l")/]; 1fsmz GB
J>ko J>ko

Therefore, for all s, we have

" tk tk k
by = esny+1 — €rnm+s+ Z aklijJ“f‘ Z ﬁk fsnz—l—]_'_'}{( 1fsmg EBq’a
J>ko J>ko

s0 (3.8.40) is proved. It remains to show that & C B,. We have & C @4(B,). Since
S2U = 0, by applying @y t0 hyy = grny+q — €8gm+r € E5 C Sz (forall 1 <r < g < k),
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we get that
k1—1
0q(hyy) = (1+4")h,(1-¢")=(1+q" ) =(1-3 ) O fy 4i g
i=2 j>ko
ki—1 ki—1 "
- Z Z ﬁk”fnl—H np+j — Z ﬁ(llfnﬁ—imz)(gnnz—ﬁ—q_gq,ng-i-r)
i=2 j>ky =2

= &rmy+q — 8qntr € (Pq’((Pq (Bq>) = Bq’-
Thus, E5 C By. Since E; C E5 C By, we get that & C By = @ (94(By)), so (3.8.38)

holds and Claim 3 is proved, as required.

CLAIM 4: There is a special inner automorphism ¢, : A — A such that

& C 0, (By) = By, (3.8.41)

1
DY = el i —eim i1 € 0 (By) =B, forall 1<t<ki; (3.8.42)

1

b(t) = €5 Jap+t T etnﬁ—s"‘ Z a]i]:;fw“’_ Z ﬁ]ﬁ fs n2+j+7{<1 fsmz € Bq1 (3-8-43)
J>ka J>ka

forall 1 <s <t <kj.

By Claim 3, there is a special inner automorphism ¢, on A such that &; C By,

"
ski = €sny+hky €k nyts € By and

" sk k
by = €sni+t — €tny+s T Z a]q}flj + Z Bkljft,ng+j + 7’/; 1ftm S Bq"
7>k J>ka

Consider the special inner automorphism ¢@,, : A — A, where

ki—1 ki—1

Z Z a]lclfljfm-i-w"f_ Z Z ﬁkljfn1+i,n2+]+ Z ')é fn1+lm ev.

i=2 J>ko i=2 J>ko

Put B, = @4, (B,) and bgtl) = ¢, (b!)) € B,,. Since US; = R* =0,

1
b(lk)1 = ¢ (k) = (1+q1)by, (1 —q1) = b, (1 —q1)
k1

ik ik
= (etmity — ) (1= Y Y 04t fuyij — Z Y B furime

i=2 j>ky i=2 j>ky
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ki—1
B Z Yllq f"1+1m = €ln+ky — €kym+1 € Pgy (Bq’) =By,

and (forall 1 <t < k)

1
by = 9 (W) =bli(1-q1)
= (61 i+t — €41t Z akljflj‘f‘ Z ﬁk”fl n+]+%<1 f1m2

J>ka J>ko
ki—1 " k1—1 ki—1
o

- Z Z 1fnl—i-l] Z Z Bkljfnl—l—l ny+j Z ’y]lq fn1+1m

i= 2]>k2 i= 2j>k2

tk tk tk
€lni+t — Z a]q;fl] Z ﬁk Sinotrj— ?/1;1 Sim — €1+ Z a/q;fl]
J>ky J>ky i>ky

+ Z ﬁkljfl n+]+’}{(l f1m2 €ln+t —€n+1 GBql

J>ko
Hence,

1
bgt) =€l +t —€rm+1 € Qg (By) =By, forall 1<t <k,

s0 (3.8.42) is proved. Next, we need to show that (3.8.43) holds. Applying ¢,, to b} for
all s > 1, we get that

1
b§k1) = (PCI1<b;/I£1) = bgllél(l —q1) = (€S7n1+k1 _ekl,nl-ﬂ)(l

ki—1 ki—1 ki—1
ik ik
- Z Z llqufm—i-z Z Z ﬁkljfnl—i—z ny+j Z /}/;qlfn1+i7m)
=2 j>ky =2 j>ky
Csny+ky — €k17n1+s+ Z OC]f fklj + Z ﬁk]]fkl Jotj —I—'y]:l fk]m c Bq1
J>ka J>ko

and (for all r < ky)
bgtl) = ¢, (b///) _ bm(l . )
= (es ny+t _eln1+s+ Z allclfljfsj+ Z ﬁkljfs n+1+}{<1 fsmz

J>ka J>ka
ki—1 ki—1

o Z Z alillqunHri,j Z Z Bkufnﬂrz m+j 2‘5 ’yli]queri,m)

=2 j>ky =2 j>k

k k
= Csntr— Z altq}fSJ Z Bli fS7n2+J’_%qlfsm_ef,n1+S Z O‘Ii flJ

J>ko J> 2 J>ka

k k k k
+ Y Bl frmi TR St Y o Y B o 0 foms

j>k2 J>k2 J>k2

ki
€sni+t — C€r+s T Z (X]: ftj+ Z Bkljftnz—b—j"f_’yy Sim GBql
Jj>ko Jj>ko
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Therefore, for all ¢, we have

1
bgt) = €sni+t — €rn +s + Z OC]: ftj + Z B/:fjlft ny+j + '}/]qutm € Bq17
J>ka J>ka
s0 (3.8.43) holds. It remains to show that & C By,. We have & C B,. Since SU =0, by

applying @y, 10 hiy = €ypy+q — €€qny+r € E5 C Sy forall 1 <r < g <k, we get that

k1—1
ik
q)m(hfq) = (l‘f“h)hfq(l_%) (1+q1)h (1+ Z Z(X/lqufnlJri.,j
i=2 ]>k2
k-1 k-1
+ Z Z ﬁk”fnﬁrl n2+]+ Z }’,lq fn1+zm)(grn2+q 8gqn2+r)
=2 ]>k2

= Grmytq— E8qmy+r € Py (B q’) =By,

so E5 C B,,. Since & C B, (because E» C E2+ C B,,), we get that & C By,, so (3.8.41)
holds and Claim 4 is proved, as required.

CLAIM 5: There are ki — 2 inner automorphisms ¢, :A — A (1 =1,...,k; —2) such
that

& C Qg (040 (9g,(By)) - -.) = By o (3.8.44)

bt ) = eyt —ermat € By, forall 1<r<ki (3.8.45)

k _
b = et — st Y 0 i+ Y B fs Y fom € By, (3.8.46)
J>ka J>ka

forall k) —2 <s <t <kj.
We will prove Claim 5 by induction on t. The base of the induction (when 1 = 1)
being clear by Claim 4. Suppose that 1 > 1. Put ¥ = k; —2. By the inductive hy-

pothesis there are kK — 1 inner automorphisms ¢, : A — A (r = 1,...,k — 1) such that
& C @y (... ?q, (Bq’) )= By,

-1
bgf ) = ern+t —€r+r € By, forall 1 <1<k

and (forall k — 1 <s <t <kp)

—1
bfv;( )= esn1+z—€tn1+s+2a;i ﬁ]+2ﬂkljﬁn2+,+’}/g Jim € By,

J>ka J>ka
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Consider the special inner automorphism ¢, : A — A, where

Kk Kk
B Z 0, fn1+K,J Z Bklj Sni+xm+j— Yk, 1fn1+K‘,m2 ceU.

Jj>ky J>ko

Put B, = ¢, (B, ,) and cﬁt) = @y (b §f l)) € B,, forall s and t. Since US; = R* =0,

¢ = @ () = (14 g)bls V(1= g) = BV (1 - gye)

Kk
= (ern1+;< €Kn1+r 1—|— Z (Xkl fn1+1<,]+ Z ﬁkl} fn1+Kn2+]
J>ka j>ko

k
+’}/k’i lfn1+K' mz)

Kk Kk Kk
= €tk —Cxnmt+r T Z Qy, j i+ Z ﬁkl f”l2+J+yk1 'frmy € By,
Jj>ky J>ko

and (for all K #t < k)
Cgf) = ‘qu(b(xil)):bgfil)(l—QQ (ermy+t — erm+r)(1

Kk
+ Z akl fn1+1€]+ Z ﬁkl] fn]+1<n2+]+')/kl fn]+1<m2)
J>ka j>ko

€rny+t — €tny+r € qu. (3847)
Note that if s > K, then ¢t > K, so
-1 -1
& = o) =i V0 —aw
ik
= (exmtt—€mixt Y, O‘k, it Z ﬁk’f ftnz+1+7k. ' fimy) (1

J>ka J>ka
Kk Kk
+ Z O, e+ Z Bklj]fnﬂrmnzﬂ"‘ykl i +ieams)
J>ko J>ka
Kk Kk Kk
= C€xn+t — €tk — Z Otk lflj Z ﬁkl ftnz-i-j Ykl 1ftmz
Jj>ko J>ko
Kk
Z O, i 'fiit+ Z ﬁkl] ftn2+1+7k1 ! fim,
J>ka J>ka
= eKthLl — et’n1+1{ € BC]K (3848)

and for s > k, we have

CgtK) = Qg (by by ])):bgzk_l)(l—%c)
- (esn1+t_etn1+s+ Z (Xi: fl‘j+ Z ﬁkljﬁn2+j+ fl.fl‘l’l’Lz>(1

J>ka J>ka

Kk
+ Z 0, ! ik, t+ Z ﬁkl] fn1+Kn2+j+7k1 "o iem)
J>ka Jj>ko
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€sni+t — €t+s T Z 0‘; flj+ Z ﬁkuftnzﬂ"‘?'Y ftmz Equ

J>ka J>ka
so (3.8.46) is proved (as Kk = k; — 2). Next, we need to show that (3.8.45) holds. Let
b%) = {cS',?,ean’K — en1+,(7,,c$<’,()} € By, and bg() = cgtk) € B, for all of the remaining
indices s and ¢. Since US| = R? =0,
b%) = C(K) (en1+t K €n1+m)C$§) "‘CE(’;) (enl—i—t K enl—i-Kt)C;(*’;(c.)
= (erm+x — exm+r+ z}; a/fl fri+ Z ﬁkl] frnz+]+')’kl " frmy ) (eny4i,x
Jj>ko J>ka

(%)

—n i )C) A (it — €rm+ic) (€ny-tte — €mrct)Con
= _ert(eK,n1+t_et,n1+K)+(€KK+ett)(ern1+K Cicn+r+ Z ]lclljlfrj
J>ka

Kk
+ Z Bl: fr"2+1+7’k1 1frmz)
J>ka

= C€rn+kx — Cxm+r € quv
Combining this with (3.8.47), we get that bg{) = ern+1 — € +r € By, forall r <t <kj.
By (3.8.48), bgf) = cgf) = €xn +1 — € +x € By, forall kK <t <ky, so

b = e1psr— i1 €By, forall 1=1,... .k, 1<t<k,

so (3.8.45) is proved. It remains to show that (3.8.44) holds, that is, & C B,,.. Recall that
& C By, . Since U = R? =0, by applying @y, tO h = 8rmy+q — €8qm+r € E3,

(qu(hfq) = (1+QK)hfq<l_qK):(1+qK 1_ Z a]z fn1+K,]
J>ka
k
Z ﬁku fn1+1< ny+j ?’11(1 lfn1+K,m2)(gr,n2+q - qu.,nz-l-r)
J>ke

8rmy+q — €8qmy+r € By,

s0 E£ C ¢, (B, ,) = By, Since E; C E” C B, we get that & C B, = B
(3.8.44) holds and Claim 5 is proved, as required.

qr,—2> SO
Now, we are going to define the final inner automorphism in order to complete the

proof. By Claim 5, there are k — 2 inner automorphisms @,, (1 =1,...,k; —2) on A such
that & C Py, (- 00, (9g, (Bq’)) )= Blefz’

k1—2
DY = erpar —emar € By, forall 1=1,.. k-2, 1<1<k



3.8 Proof of the main results 146

and (forall k1 —2 <s <t <kp)

(k1 — k
bstl 2 = = €5+t — €t n1+s+ Z a/: ftf + Z ﬁlzljl‘ft n+j + ’}il ftm < qul
J>ko J>ko

Put v = k; — 1. Consider the inner automorphism ¢, : A — A, where

vk vk vk
=- Z ak 1fnﬁ—v Z Bkl Ju+vi+j— Y, "o 4vm €U

J>ka J>k2
Put By, = @y, (B, _,) and b} = ¢,, (biy' ")) € By,. Since US) =R =0,(1 <1<k ~2)

bY = 05BN ) = (1+q0)bs 2 (1—gy) =l P (1—gy)

k
= (el,n1+v _ev7n1+l)(1 + Z (X/:jlfn1+v,j+ Z ﬁkl} NTERY g+ j
J>ka Jj>ko

vk
+yk1 lf‘nl+v m2)
vk
= €im+4v—Cyp+1T Z ak 1f1]+ Z ﬁku ln2+]+7k1 ' fim, € By,

J>ka 7>k
and (for all v # 1 < ky)
ki —2 k
bg;) = ‘qu(b(l )):bgtl )(1—%) (e +1 — €rm+1) 1+Zakufn1+vu
J>ko

Z 1 j fn1+v n+j 1 Ykl fn1+vm2) =€ n+t — €+ € qu- (3.8.49)
J>ka

Recall that for all k1 —2 < s <t <k, we have

(k1—2) _ sk k
by' = €541 — €rpy+s T Z kljlft] + Z Bkljﬁ,anrj + kllftm € qurZ'

J>ka J>ka

If s > k1 — 2, then the only option remaining to s is s = k; — 1 = v. In that case t = k1, so

by applying @, to bﬁfl‘z) for all s > ky —2, we get that
V) _ (ki=2)y _ p(ki=2)
bvk1 = @q (bvkl ) - bvkll (1 - q")
vk k k
= (evan+hk — €k mtv+ Z ak 1fk1]+ Z ﬁkvljlfkunzﬂ_'—yl:/l ieimy) (1
J>k2 J>ka
vk k k
+ Z ak lfn1—0—v,j"|_ Z B]:ljlfn]—i-v,nz-kj—f—’)/]; lfn1—|—v,m2)
J>ka J>ky
k k k
= eV,n1+k1 - ekl,n1+v Z ]lelfklj Z B]:/ljlfkl Jo+j ’}/]2/1 lfklmz
J>ka J>ky

vk
+ Y oM fi+ Y B i R fams

J>ko J>ko
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€y +ky — kv € BqV'

Recall that v = k1 — 1, so we get that

(ki—1) _
bklfl,kl = €k —Lny+k; ~ Chkyny+hy—1 € qulq' (3.8.50)

Put bglf/l) = {bg‘\;)aenﬁkl,v ~Cni4v.k 7b5/\l/<)1} S BQv and bgq) = bgt‘/) € BQv for all of the re-

maining indices s and 7. Since US| = R? =0,

k
bgvl) = b(V)(en1+k| ~ Cnytvik )bs/‘llc)l +b$/‘1/<)1 (€ny-+k1,v — €ny+v.ky )bgy/)
vk k
= (el gV eyt Z ak ]flJ + Z ﬁk1j1f17”2+j + ylrl lflmz)(en1+k17v
J>ka 7>k

—€ni4v.k )bsz‘]/()l + (ev,n1+k1 — € ,n1+V) (enl—i—kl,v —€n+v.k )bg‘\i)
- _elkl (eV a1tk — ekl,nl-i-\/) + (e\/V + ek1k1 ) (el Ja+v —€vni+i

vk
+ Z a]:: fl]+ Z ﬁkvl fl n2+]+'}/k1 lflM2>
J>ka J>ko

= einm+v—Cyn+1 € By,

Combining this with (3.8.49), we get that b} = e+ — €1 +1 € By, = Bg, _, for all

k
1 <1<k —2andallt <1 <kj. By (3.8.50). 5", | = et 1,4k — eymti-1 € By,
SO

DY = egmsr — Crns € By, forall 1<s<i1<ki. (3.8.51)

Thus, E," C By, _,. Finally, we need to show that & C By, ,. Recall that & C B
Since SHU = R2=0, by applying ¢, to h = &rmy+q — E8qmrtr € Ef foralll1 <r<g<

Gy —2°

ko, we get that

(PqK(hfq) = (1+QK)hfq(1 qx) = (1 +qi)hy, = (1 - Z 05/:/1 Jutv,j
J>ka
k k
- Z ﬁ]:jlfn1+v,n2+j - '}/]:/1 lfn1+v,m2>(gr7n2+q - qu,n2+r)
J>ka

= 8rmytq — E8&qmtr € By,

so ES C @, (qulﬂ) = B,,. Thus, & C By, (because E, C E2+ C By,). Put o = Pgy, , ©
..0Qy, 0@y 0 @q. Then ¢ : A — A is a special inner automorphism with E;",& C ¢(By).
Therefore, if & = E|", then &1,& C @(B,) NS, as required.

Case (3): Suppose that &1 =E| = {egn 41 +erpts | 1 <5<t <ky <m} CSi. Asin
the proof of Case (2), there is a special inner automorphism ¢ : A — A such that & C ¢(B)
and

{xg =esnpr+einmts | 1 <s<t <ky <ni} C@(B)NS;.



3.8 Proof of the main results 148

Put x4 = Xg€4, 41X and Xy = Xgr€p, 41,1Xsr. Then by Lemma 3.1.3,
Xss = Xst€ny+t,tXst = (es.,nl—i-t + et,n1+s)en1+t,t (es,m—i-t + et,nl-i-s) =€sn+s € (P(B);

Xtt = Xst€ny+s,5Xst = (es,n]+t + et,n|+s)en1+s,s(es,n1+t + et,n|+s) =€rn+t € (P(B)7

SO Xjj = €jpn+i € @(B) forall 1 <i <kj. Hence, E; C ¢(B)NS;.Therefore, if &§ = E|,
then @(B’) contains both &} and &, as required.

From Case (1), Case (2) and Case (3), there is a special inner automorphism ¢ A=A
such that &1, C @(B)NS. Since R> =0, ¢(r) = r for all r € R, so by changing the Levi
subalgebra S into S’ = ¢~ !(S), we get that B splits in A. Therefore, by Lemma 3.8.8, B
x-splits in A.

[

Now, we are ready to prove Proposition 3.8.4.

Proof of Proposition 3.8.4. We identify A/R with S = S| @ S,. Since S| and S, are invol-
ution simple algebras, by Proposition 3.3.2, (for each i = 1,2), S; is either simple with
involution or §; = Q; ® Q7, where Q; is simple ideal of S;.

Suppose first that S| and S, are both simple. Then by Lemma 3.8.12, B *-splits in A.

Next, suppose that S; = Q; @ Q; for each i = 1,2. Then A is a direct sum of two ideals
A =D& D", where D= Q% Q> d U, so by Proposition 3.6.12, B x-splits in A.

Suppose now that S, is simple with involution and S| = Q1 @ Q7F, where Q; is simple.
We identify A with S = S; © S,. Recall that R = U @ U* where U is an irreducible S-
S>-bimodule with $U = US| = 0. Since S; = Q1 © Q7, we have Q1U = 0 or Q17U = 0.
We will consider the case when Q{U = 0. By Lemma 3.4.9, u"(Q; ® Q}) = {s — 5" |
s € O1} = Mpymys W (Q2) = 50,802, (M =2nr+ 1 or 2np) and u* (R) = {(r,—r") |
r €U X Mym,}- Since A is semisimple, by Lemma 3.3.12, B = X; & X, where X; =
BNsu’(S;) is Jordan-Lie of su”(S;) for each i = 1,2. As in the proof of Lemma 3.8.10,
we fix standard bases {e;; [ 1 <i,j <mi}, {ej; | 1 <i,j <m}, {gij|1<i,j<m}and
{fijI1<i<my, 1<j<my}ofQy, Qf,S2and U, respectively, consisting of matrix
units, such that the action of S| and of S, on U corresponds to matrix multiplication, X

is the space spanned by

& = {es, —e;S ’ 1<s<k <[ <t< ml} gsu*(Ql —|—QT) zsu*(Sl)
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and X is the space spanned by &>, where & is one of the following.
Er ={hg=81m+q—8gm+1 |1 <qg<hka} C 5u*(S2) = 50my>

E5 = {hfq = 8rmy+q — €8q,ny+r [ 1<r<q<k}C 5u*(52) = 50my,5P2y, -

Put Ay = S, ®R. Denote B, = BNsu (A;). Then B, is a Jordan-Lie inner ideal of
su” (A2) (because (32)2 = 0). Note that B, = X, (because B, contains the preimage of X,
in B). We may assume that B; is Xp-minimal (if not, then it contains X>-minimal Jordan-
Lie inner ideal of su”(A,)). Thus, B satisfies the conditions of Proposition 3.8.2, so there
is a Levi subalgebra S5 of A, such that B, = B, o @ Bay, where By, = By N S5. Note that
BZS, = B, = X,. By Theorem 3.8.5, there is ¢ € u”(R) and a special inner automorphism
¢, of A such that S = @,(55). Since By, C S5, ¢;(Ba,) € @4(S;) = S2. Moreover, by
Lemma 3.8.7, ¢ (B2, ) = Bz, = By = X». Recall that X, C S5, so both ¢,(B>,,) and X,
have the same image in A, = A, /R. Since both of them are subspaces of S,, they must
be equal. Thus, X; = ¢;(Ba,) € @4(B2) NS, so & C @,(B2) NSy € ¢,(B)NS. We will
deal with the Jordan-Lie inner ideal B, = @,(B) of K!). Our aim is modify B, = ¢,(B)
in such a way that it contains both & and &>. This will imply that B *-splits in A.

Let B be the image of BinA = A/U* <A@ U. Since R = U ®U*, by Lemma 3.8.8,
to show that B x-splits in A, it is enough to show that B splits in A, that is, there is
a special inner automorphism of A such that Bq = @y (B) contains both & and &. To
simplify notations, we will re-denote A, S, R, B, & and & by A, S, R, B, & and &>,
respectively. Thus, R=U and A/U = S. We need to show that B splits in A. Fix any subset
{by |1 <s<k <Ilj <t <m}C B, such that by = ey — e,;. Then by = ey — €} +ry,
where ry; € U. Suppose that & = Ef. By Lemma 3.1.3, {bst,x7h‘fq} € B, forallx e U.
Since Q1U = ShU = R? =0, we have hqubs, € SHU =0, so

{bstaﬁQ7h?q} = bsl‘flthlzq—’_o = (est _e;s +rst)ftq(gl,n2+q - qu,anrl) - _efs,n2+1 S Bq
and
{bStvfﬂ?h?q} = bStfllhfq +0= (eSl - e;s +rSl)fl1(g1,n2+q - 88q,n2+1) = fs,nz—l-q S BQ'

Hence, f; 1,4 € By forall 1 < j <kj. Note that this is also true when &, = E; (because
hg = 81mytq— 8gm+1 = hfq € E5 NEy). Therefore, for any choice of &, we have

Ro =span{fsn,+j| 1 <s<k;, 1<j<k}CB,NU. (3.8.52)
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Put b§}) = by (e — €y )by € By (by Lemma 3.1.3). Since ry € U = My, m,, there are
coefficients such that
ny; np mip np
Fst = Z ZO‘ fu+22ﬁ fznzﬂ‘i‘zyrtfzmz cU.

i=1j= i=1j=

Since US| = QiU = R? =0, we get that

1
bgt) = by (ets - e;[)bst = (est - e;s + rst) (ets - eg;)bct

my np my np
= (ess+ett)(est ets—l—ZZOC ﬁj+ZZB f1n2+J+ZYYfzm2
i=1j= i=1j=

= es[+2a f:c]+2ﬁssjtfsn2+]+ffsm2 ets
ka
/
= eg— eyt Z assj'ij + Z ssjt'fS,anrj + Vsylfsm + Z ssjt‘fs,nfrj
j=1 j>ko J=1

= st +Zﬁ f:vnz-HGB
. k
Since Zj2:1 ;}fs7n2+j € Ry C B,

ny
2
bgt) = €y _e;s‘i' Z O‘SthJ+ Z B fs n2+j+y”f¥m2 € By.
=1

J>ka

Suppose that &> = Ef. Since B2 0 and (Q1 + Q7)S2 = 0, for all hfq € Ef (1 <q<ky),

we have

0 = b,
= (es— ets + Z fSJ + Z sS]['fS,nz+j + '}’sgtfsm)(gl,nz-i-q - egq,nﬂ-l)
J>ka
SlfS,nz'i‘q - sqfs,n2+17

so o) = Ocj; = 0. Hence, o =0 for all 1 <i < k. Note that this is also true when
& = E, (because hy = g1 ny+q — 8qny+1 = h1+q € E; NE;). Therefore, for any choice of
&,

2)

bgt :est_e;s'i' Z aStfs1+ Z Bs fsn2+1+yﬂfsm2 € B

J>ka J>ka
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Pu tbgt) = bgt) € B, and for s > 1 set bst = {bﬁ e — e’lt,bg)} € B, (by Lemma
3.1.3). Since UQ; = QU = R*> =0, for all s > 1, we have

by = bEZZ)(etl_ellt)b(Z)—’_bg)(etl_ellt)bth)

1t

2
— (eq—efs+ ¥ @ Lo+ Y B fomt )1 fom) (er1 — i)

j>ko J>ko
/ 1 1 1 / 2
e —en+ Y, 0ifij+ Y, Biifinti+ Y fimy)(en — )by
>k J>ka
/ 1 1 1
= eqlen—en+ Y, 0ifij+ Y Blifinti+ N fim)
Jj>ko J>ko

—1—(6114—62)(65;—6;5—1— Z O‘Stf51+ Z B f9n2+j+’wasmz>

J>ko Jj>ky

1 1 1
= eg+ Z O‘l;fsj‘i‘ Z ﬁljl'fs,nz+j+'}/1;fsm2 _e;s

j>ko j>ko

= ets+ Z OC fYJ+ Z ﬁ fvng—l—]‘f—’}/]l[fsmz EBq~

J>ka J>ky

Hence, for all s and ¢, we have

3 1 1 1
bgz) = Cst — e;s + Z alj‘ij + Z ﬁl}fsmzﬂ' + 'Yltfsmz € By.
J>ka J>ko

Consider the inner automorphism ¢y A — A, where

Z Z o ﬁj+2 ZB]}fln2+]+ZYI fim, €U (R) =U.

= 11]>k2 i= 11]>k2 i=l;

Since US| = Q{U =R? = 0wehaveq’b§t)€U(S +U)=0,so

oY) = 1+ (1-g)=b(1-¢)
= (esl_e;s"f— Z OC f9j+ Z B fsn2+1+7/11;fsm2)(1

7>k J>ka

Y Y i X X Bl XAl

i=ly j>ko =l j>ko i=l

1 1 1 / 1
= €y — Z al}fsj_ Z Bljt'fs.,nﬁj_%[fsmz_ets"’ Z O‘lj'ij

>k >k J>ka

+ Z BllfY n+j Yl fsnu = eés € Qg (Bq)'

J>k2
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Therefore,
Gl ={eq—e | 1<s<ki <l <t <m} C@y(By)NS).

It remains to show that & C @, (B,). Since SU = 0, by applying ¢ to hy, = ES for all
1 <r<qg<k, we get that

oy (i) = (1+q)h(1-¢")=(1+4)h 1+Z Y ofifij
i=l j>ko
"’Z Zﬁ ﬁn2+J+Z ' fimy) (8rmy g — €8qny+r)
i=ly j>ko i=l

= 8rmp+q — E€8qm+r € Py (Bq)a

SO

Ef = {gr.,nz-i-q —€8q.m+r [ 1<r<g<hk}C (Pq/(Bq) NS,

Since E; C E5” C @ (B,), we get that & C @, (B,). Thus, ¢,(B,) contains both & and
&. Hence, B splits in A. Therefore, by Lemma 3.8.6, B -splits in A.
]

Proof of the main results

Let Q be an algebra and let M be a Q-bimodule. We denote by ¢(M), the length of the
S-bimodule M. 1f Q 1s an algebra with involution and M is a *-invariant Q-bimodule, then
we denote by £*(M), the *-length of the x-invariant Q-bimodule M.

Now, we are ready to prove Theorem 3.8.1.

Proof of Theorem 3.8.1. Recall that A is admissible with R> =0, p # 2,3 and B is a B-
minimal Jordan-Lie inner ideal of K(") = su”(A). Let {S; | i € I} be the set of the simple
components of S. We identify A with S. By Lemma 3.4.4, as an S-bimodule R is a
direct sum of copies of a x-irreducible S-S-bimodules each of them is either irreducible
S;-S;i+-bimodule or isomorphic to U & U*, where U is either a natural left S;-module with
US; = 0, or an irreducible S;-S;-bimodule U;; with S;U;; = U;;S; = 0. Note that the S-
bimodule R has no components isomorphic to the trivial 1-dimensional S-bimodule Uy,
as A is admissible with R* = 0.

The proof is by induction on the *-length £*(R) of the x-invariant S-bimodule R. Sup-
pose that /*(R) =1, i.e. R is *-irreducible. Let A, be the maximal ideal of S such that
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AR = RA; = 0. Let ' be the complement of A, in S and let A} =S @ R. Then A| and A,
are both admissible ideals of A with AyA; = AjA; =0and A = A; ©A,. Put K; = u" (A))
foralli=1,2. Then K (1) = Kl(]) @Kz(l). Since B is bar-minimal Jordan-Lie inner ideals of
KM and KW is perfect, by Lemma 3.6.5, B = B; & B,, where B; is a B;-minimal Jordan-
Lie inner ideal of Kl.(l) (for each i = 1,2). Since A is semisimple, By *-splits in Ap. It
remains to show that By *-splits in A;. By Proposition 3.4.3, A has one of the prescribed
decompositions. Therefore, B satisfies the conditions of one of the Propositions 3.8.2,
3.8.3 and 3.8.4, so By x-splits in Ay. Thus, B *-splits in A.

Suppose now that ¢*(R) > 1. Consider any maximal *-invariant S-submodule 7' of
R, so (*(T) < £*(R). Then T is an ideal of A. Let A =A/T. Denote by B and R the
images of B and R in A. Since ¢* (R) = 1, by the base of induction, B *-splits, so there
is a x-invariant Levi subalgebra S’ of A such that B = By @ Bg, where By = BN S’ and
Br = BNR. Let P be the full preimage of By in B. Then P= By C §',s0 P=B. Let G be
the full preimage of S’ in A. Then G is a large subalgebra of A containing P, so P C GNB.
Put P = [P,[P,su’(S")]] C su”(G). Then P; C [B,[B,su”(A)]] C B, so P| C BNsu'(G).
Note that B = BNsu”(G) is a Jordan-Lie inner ideal of su”(G) containing P;. Since

Pi = [P,[P,su"(§')]] = [B,[B,su” (A)]] = B,
we get that B= P; C B C B, so Bg = B. Since A is admissible and R> = 0, by Proposition
3.5.13(ii), G is admissible (i.e. G = Z,(G)). Let B;; C Bg be a Bg-minimal Jordan-Lie
inner ideal of su”(G). Since G is admissible, T> C R*> = 0 and ¢*(T) < ¢*(R), by the
inductive hypothesis By; *-splits in G = Z2,(G). Since Bj; C B¢ C B and Bj; = Bg = B,
by Lemma 3.6.13, B *-splits in A.
[

The following result follows from Theorem 3.8.1 and Proposition 3.6.15.

Corollary 3.8.13. Let B be a Jordan-Lie inner ideal of K = su” (A). Suppose that p # 2,3,
A is admissible and R*> = 0. Then B *-splits in A.

Now, we are ready to prove Theorem 1.2.8.

Proof of Theorem 1.2.8. Recall that A is admissible, p # 2,3 and B is a B-minimal Jordan-
Lie inner ideal of K1) = su™(A). We need to show that B x-splits in A. Since R is nilpotent,
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there is an integer m such that R”"~! # 0 and R™ = 0. The proof is by induction on m. If
m = 2 , then by Theorem 3.8.1, B x-splits, as required.

Suppose now that m > 2. Put T = R?> # 0 and consider A = A/T. Let B and R be
the images of B and R in A. Then R = radA, R> = 0 and A satisfies the conditions of
the Corollary 3.8.13. Hence, there is a *-invariant Levi subalgebra S; of A such that
B= ES] @® Bg, where ES] =BNS; and Bg = BNR. Let P be the full preimage of le
in B. Then P = Bs, C Sy, so P = B. Let G be the full preimage of S; in A. Then G
is a large subalgebra of A with P C GNB. Put P, = [P,[P,su’(S))]] C su’(G). Then
Py C [B,[B,su’ (A)]] C B, so P, C BNsu (G). Put Bg = BNsu (G). Then Bg is a Jordan-
Lie inner ideal of su” (G) containing P;. Note that

P = [P’ [vau*(gl)]] = [Bv [37511*( )]] :E’

so Bg = B. Fix any x-invariant Levi subalgebra S, of G. Since S, is admissible (because
Sy =2 8), by Lemma 3.5.2, < S, > is an admissible ideal of G, so by Lemma 3.5.6,
< 8 >>6= 2,(G). Put P, = [Bg,[Bg,su" (S2)] € Bg. Then P, C< S> >6= 2,(G), so
P, C #,(G)NBg with

P, = [Bg, [Bg,su (3,)] = [Bg, [Bg,su (G)]] = Bg = B.

Put Pg = [Py, [Py, 51 (S5)]] € Bg. Then Pg C su' (2,(G)), so Pg C BgNsu' (Z,(G)).
Note that B; = BgNsu' (%,(G)) is a Jordan-Lie inner ideal of su”(,(G)) containing
P;. Since

P =[P, [P, s5u"(S55)]] = [B, [B,su" (A)]] = B,

B = Ps C By, but B; C Bg = B, so B; = B. Let B/, C B; be a Bj;-minimal Jordan-Lie
inner ideal of su”(22,(G)). Since Z,(G) is admissible and rad(Z,(G))" ! C 7"~ ! =
R2(m=1) — 0, by the inductive hypothesis, B/, x-splits in 2,(G). As B C B, C Bz CB
and B/, = Bj; = B, by Lemma 3.6.13, B x-splits in A, as required.

U]

Now, we are ready to proof Corollary 1.2.9.

Prof of Corollary 1.2.9. (i) Let B be a Jordan-Lie inner ideal of K(!) = su™(A). Let C C B
be a B-minimal Jordan-Lie inner ideal of K(!). Then by Theorem 1.2.8, C x-splits in A,
so by Proposition 3.6.15 B x-splits in A.

(ii) This follows from (i) and Lemma 3.6.8, B *-splits in K(1).
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